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Summary

In the Elbe and Odra estuaries essential feeding grounds, nursery areas, spawning grounds and
transitional habitats for several fish species are found. With climate change and human activities (e. g.
channel management, waste water sewage and nutrient inputs) both estuaries have faced several
anthropogenic stressors in the past and in the present. These stressors are likely to have an influence
on estuarine ecosystems and their food webs. Keystone fish species play an important role in estuarine
food webs. With this regard, in this thesis the feeding ecology and growth of keystone fish species in
the Elbe and Odra estuaries were analysed. Additionally, in the Elbe estuary, the structure and stock
development of the fish fauna, as well as fish health, were evaluated based on stow net catch data and
tissue-specific stress responses of the holobiont. Analyses on feeding and growth of the four keystone
fish species zander Sander lucioperca (Linnaeus, 1758), smelt Osmerus eperlanus (Linnaeus, 1758),
ruffe Gymnocephalus cernua (Linnaeus, 1758) and flounder Platichthys flesus (Linnaeus, 1758) were
carried out, as these species occur in high numbers throughout both estuaries and play key roles in the

respective aquatic food webs.

The food webs in estuarine ecosystems are important biological indicators, therefore the feeding
ecology of the four keystone fish species was studied by stomach content analyses (chapter 2). The
most important prey of zander in both estuaries were fish and mysids. For smelt amphipods were the
most important prey in the Elbe estuary, whereas in the Odra estuary smelt mainly consumed mysids.
The most important prey of ruffe in the Elbe estuary were also amphipods, while annelids (lower
estuary) and insect larvae (upper estuary) were the dominant prey in the Odra estuary. In the Elbe
estuary, flounder fed mainly on copepods, whereas in the Odra estuary they preferred bivalves. In the
Elbe estuary higher dietary overlaps were found, particularly between smelt and ruffe, zander and
ruffe, as well as zander and smelt. By comparing the present diets of zander, smelt and ruffe from the
Elbe estuary with previous studies (1990s), it was noticeable that the consumption of amphipods
increased, while mysids and copepods decreased in their diets. These shifts indicated a restructuring
of the food web, likely driven by environmental changes, which highlights the vulnerability of estuarine

ecosystems.

In chapter 3 we aimed to analyse the growth patterns of the four keystone fish species to identify
regional differences from both estuaries and to compare present findings with those from past studies.
Age determination on hard structures (otoliths, scales, opercula) and length measurements were
carried out. This allowed the determination of size ranges of the individual age groups, which were
used to calculate the parameters of the von Bertalanffy growth function. The asymptotic lengths of
smelt, ruffe, and flounder were larger in the Elbe estuary compared to the Odra estuary, whereas their

growth coefficients were smaller in the Elbe. The growth of zander, smelt and ruffe from the Elbe



estuary were inferior compared to previous studies. The growth of juvenile zander in the Elbe estuary
showed a noticeable reduction in the maximum turbidity zone located in the middle estuary. Slower
growth at these sites appears to be linked to reduced fish prey intake, as juvenile zander relied more
on invertebrates like amphipods, mysids, and decapods. Flounder from the Odra estuary showed
smaller asymptotic length compared to other studies from the Baltic, but had a higher growth
coefficient in contrast to studies from the Pomeranian Bay and Gulf of Gdansk. Our findings indicate a
connection between environmental changes and fish growth via changes in feeding behaviour,

especially in the Elbe estuary.

We created a periodic time series over the last four decades (1984-2022), combining fish species
densities data from stow net catches alongside with environmental data in the Elbe estuary. In chapter
4, we showed that the fish fauna of the Elbe estuary has become more similar in guild structure to that
of macrotidal estuaries in Europe, with a relative increase in marine-estuarine opportunists and a
decrease in diadromous species. Due to an improvement of the water quality in the 1990s, fish
densities, especially of smelt, increased until 2010. However, anthropogenic hydromorphological
interventions, have led to an increase of suspended particular matter until 2022. Together with a
reduced river runoff and poor oxygen condition, these factors acted as stressors for fishes in the
estuary. In 2021-2022 mean fish densities dropped by over 91 % compared to 2009-2010. This decline
was mainly driven by a reduction of the key species smelt, alongside decreases in twaite shad Alosa
fallax (Lacepede, 1803), flounder, ruffe, common bream Abramis brama (Linnaeus, 1758), and other
species. In contrast, densities of marine-estuarine opportunist species such as herring Clupea harengus
Linnaeus, 1758 and whiting Merlangius merlangus (Linnaeus, 1758) increased. Overall, this time-series

provided insights into the strong impact of human intervention in estuarine ecosystems.

In chapter 5, we integrated tissue specific gene expression data from fish host (gill and liver RNAseq)
and 16S rRNA metabarcoding of gill mucus microbiota with physiological and abiotic parameters to
assess the health of juvenile zander along the Elbe estuary. Liver specific gene expression patterns in
fish from highly turbid areas in the middle estuary indicated starvation, which aligned with the
compromised body condition. The gill microbiome derived from the freshwater area with local
occuring oxygen minimum zones was dominated by potentially pathogenic taxa, including Shewanella,
Acinetobacter, Aeromonas and Chryseobacterium. Their presence was found alongside with strong
immune responses in the host gill tissue and increased energy demand in the liver tissue, supporting a
potentially pathogenic role. Together, these results demonstrate how physiological and microbiome
responses in estuarine fish can reflect the cumulative impact of abiotic stressors, which are likely to

intensify under ongoing climate change.



Zusammenfassung

Im Elbe- und Oderéastuar befinden sich wichtige Nahrungs-, Aufwuchs- und Laichgebiete sowie
Wanderungsgebiete fiir verschiedene Fischarten. Beide Astuare wurden sowohl in der Vergangenheit
als auch in der Gegenwart durch anthropogene Stressoren wie Klimawandel, Gewdasserausbau,
Abwasserentsorgung und Nahrstoffeintrage beeinflusst, was vermutlich Auswirkungen auf die
Okosysteme und deren Nahrungsnetze hatte. Schliisselfischarten spielen eine wichtige Rolle in den
Nahrungsnetzen von dstuarinen Okosystemen. In diesem Zusammenhang ist das Ziel dieser Arbeit die
Analyse der Nahrungsdkologie und des Wachstums wichtiger Fischarten in den Astuaren von Elbe und
Oder. Es wurden Analysen zur Erndhrung und zum Wachstum der vier Schlisselfischarten Zander
Sander lucioperca (Linnaeus, 1758), Stint Osmerus eperlanus (Linnaeus, 1758), Kaulbarsch
Gymnocephalus cernua (Linnaeus, 1758) und Flunder Platichthys flesus (Linnaeus, 1758) durchgefiihrt,
da diese Arten in beiden Astuaren haufig vorkommen und eine Schliisselrolle spielen. Dariiber hinaus
wurden im Elbedstuar die Struktur und Bestandsentwicklung der Fischfauna sowie die Fischgesundheit

anhand von gewebespezifischen Stressreaktionen beurteilt.

Nahrungsnetze in dstuarinen Okosystemen haben eine biologische Indikatorfunktion. Aus diesem
Grund wurde die Nahrungsokologie von vier Schlisselfischarten durch Mageninhaltsanalysen
untersucht (Kapitel 2). Die wichtigste Nahrung des Zanders in beiden Astuaren waren Fische und
Mysiden. Die wichtigste Nahrung des Stints im Elbedstuar waren Amphipoden, wahrend Stinte im
Oderastuar bevorzugt Mysiden frallen. Die wichtigste Nahrung des Kaulbarschs im Elbedstuar waren
ebenfalls Amphipoden, wahrend im Oderdstuar Anneliden (unteres Astuar) und Insektenlarven
(oberes Astuar) die wichtigste Nahrung darstellten. Die wichtigste Nahrung von Flunder aus dem
Elbedstuar waren Copepoden, wohingegen sie im Oderastuar Muscheln bevorzugten. Im Elbedstuar
wurden groRBere Nahrungsiberlappungen festgestellt, insbesondere zwischen Stint und Kaulbarsch,
Zander and Kaulbarsch sowie Zander and Stint. Beim Vergleich der rezenten Erndhrung von Zander,
Stint und Kaulbarsch aus dem Elbeadstuar mit friiheren Studien (1990er Jahre) fiel auf, dass der Verzehr
von Amphipoden zunahm, wahrend Mysiden und Copepoden in ihrer Erndhrung zurlickgingen. Diese
Verschiebungen deuten auf eine Umstrukturierung des Nahrungsnetzes hin, welche wahrscheinlich

auf Umweltverdanderungen zuriickzufiihren sind.

In Kapitel 3 war das Ziel, Wachstumsmuster von den vier Schlisselfischarten zu analysieren, um
regionale Unterschiede in beiden Astuaren zu identifizieren und aktuelle Ergebnisse mit denen
friherer Studien zu vergleichen. Es wurden Altersbestimmungen an Hartstrukturen (Otolithen,
Schuppen, Opercula) sowie Langenmessungen durchgefiihrt. Dadurch konnten GréRenbereiche der
einzelnen Altersgruppen ermittelt werden, welche zur Berechnung der von Bertalanffy-

Wachstumsfunktion herangezogen wurden. Die asymptotischen Langen von Stint, Kaulbarsch und



Flunder waren im Elbedstuar grofRer als im Oderastuar, wohingegen ihre Wachstumskoeffizienten in
der Elbe kleiner waren. Das Wachstum von Zander, Stint und Kaulbarsch aus dem Elbeastuar war im
Vergleich zu fritheren Untersuchungen geringer. In der Zone mit der maximalen Triibung im mittleren
Elbedstuar zeigten juvenile Zander ein deutlich geringeres Wachstum. Langsameres Wachstum in
diesem Bereich scheint mit einem geringeren Anteil von Fischen in der Nahrung zusammenzuhangen,
da juvenile Zander dort mehr Wirbellose wie Amphipoden, Mysiden und Dekapoden fralRen. Flundern
aus dem Oderastuar zeigten im Vergleich zu anderen Studien aus der Ostsee eine geringere
asymptotische Lange, hatten aber im Gegensatz zu Studien aus der Pommerschen Bucht und der
Danziger Bucht einen hoheren Wachstumskoeffizienten. Unsere Ergebnisse deuten darauf hin, dass
Umweltverdanderungen, insbesondere im Elbedstuar, das Fischwachstum beeinflusst haben, was den

Zusammenhang mit einem veranderten Fressverhalten verdeutlicht.

Fir Kapitel 4 wurde eine Zeitreihe von 1984 bis 2022 zusammengestellt, in der Daten zur Dichte von
Fischarten aus Hamennetzfangen mit Umweltdaten im Elbedstuar kombiniert wurden. Die
Gildenstruktur der Fischfauna im Elbeédstuar dhnelt zunehmend der makrotidaler Astuare Europas, mit
einem relativen Anstieg der marine-astuarinen Opportunisten und einer Abnahme der diadromen
Arten. Einhergehend mit der Verbesserung der Wasserqualitdt in den 1990er Jahren stieg auch die
Fischdichte, insbesondere die des Stints im Elbedstuar, bis 2010 an. Die bis 2022 durchgefiihrten
hydromorphologischen Eingriffe haben zu einem Anstieg der Schwebstoffkonzentrationen gefiihrt.
Verminderter Oberflachenabfluss und niedrige Sauerstoffwerte wirkten als Stressoren fiir Fische im
Elbedstuar. Von 2009-2010 bis 2021-2022 sank die durchschnittliche Fischdichte um tiber 91 %. Dieser
Rickgang war hauptséachlich auf einen Riickgang der Arten Stint, Finte (Alosa fallax) (Lacepede, 1803),
Flunder, Kaulbarsch, Brassen Abramis brama (Linnaeus, 1758) sowie weiterer Arten zurickzufihren.
Im Gegensatz dazu nahm die Dichte von marine-astuarinen Opportunisten wie Hering Clupea harengus
Linnaeus, 1758 und Wittling Merlangius merlangus (Linnaeus, 1758) zu. Insgesamt lieferte diese

Zeitreihe Einblicke in die Auswirkungen menschlicher Eingriffe auf das Okosystem Elbe.

In Kapitel 5 wurden gewebespezifische Genexpressionsdaten von Fischen als Wirt (Kiemen- und Leber-
RNAseq) und 16S-rRNA-Metabarcoding von Kiemenschleim mit physiologischen und abiotischen
Parametern assoziiert, um die Gesundheit juveniler Zander entlang des Elbedstuars zu bewerten.
Genexpressionsmuster in der Leber von Fischen aus der Zone maximaler Triibung im mittleren Astuar
zeigten Hinweise auf Nahrungsmangel, was mit einem verringerten Korpulenzfaktor einherging. Das
Mikrobiom der Kiemen von Fischen aus der Sauerstoffminimumzone (SiRwasser) wurde von potenziell
pathogenen Taxa dominiert, darunter Shewanella, Acinetobacter, Aeromonas und Chryseobacterium.
Ihr Vorkommen wurde zusammen mit starken Immunantworten im Kiemengewebe des Wirts und

einem erhohten Energiebedarf im Lebergewebe festgestellt, was ihre potenzielle pathogene Rolle

v



unterstitzt. Zusammengenommen zeigen diese Ergebnisse, wie physiologische und mikrobiologische
Reaktionen von Fischen in Astuaren die kumulativen Auswirkungen abiotischer Stressfaktoren

widerspiegeln kénnen, welche sich im Zuge des anhaltenden Klimawandels wahrscheinlich verstarken

werden.



Chapter 1 — Introduction

Chapter 1 General Introduction

1.1 Structure and types of estuaries

Definition and zones of an estuary

The definition of “estuaries” differs between geologists, hydrologists and biologists (Blaber, 2000). Day
(1981) and Blaber (1997) defined estuaries as semi-enclosed coastal water bodies, that have a
continuous or periodical connection to the open sea in which sea water is diluted with freshwater
(Figure 1.1). They represent a transition zone between freshwater and marine ecosystems. A salinity
gradient is formed by the mixing of riverine freshwater and marine waters. Not only the river mouth
areas in the Northeast Atlantic and North Sea, which are influenced by the tide, can be defined as
estuaries, but also bays, lagoons and river mouths in the intercontinental (e.g. European
Mediterranean) and intracontinental seas (e. g. the Baltic Sea) which are influenced only little by the
tides (Nellen and Thiel, 1995; Thiel, 2011). Due to its pronounced salinity gradient, with a decreasing
salinity from east to west, the entire Baltic Sea can be considered as an estuary (Fennel, 1995;

Matthaus, 1995; Thiel, 2011).

Generally, estuaries can be classified into different zones (Snedden et al., 2013): the upper, middle and
lower estuary (Figure 1.1). The upper estuary is characterized by freshwater and is typically influenced
by river discharge. The middle estuary is the transition zone where the maximum mixing of freshwater
and saltwater occurs, creating a brackish environment with fluctuating salinity levels. In the lower
estuary, the marine influence is increased by more intrusion of coastal saltwater. In the mixing zone of
a tidally influenced estuary, a maximum turbidity zone (MTZ) is found at salinities from 1 to 5 ppt (Day

et al., 2012).

/ Lower estuary -— Middle estuary <+  Upper estuary -—

Effective limit
of the tide
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Figure 1.1: Schematic drawing of the ‘standard’ estuary. Modified from Perillo et al. (1999) and Whitfield and Elliott (2011).
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Types of estuaries

Estuaries can be classified according to their geomorphology into distinctive groups: (1) coastal plain
estuaries (Figure 1.2), (2) deltaic estuaries, (3) lagoons (or bar-built estuaries, Figure 1.2), (4) fjords and
(5) tectonically caused estuaries (Pritchard, 1952; Dyer, 1973; Snedden et al., 2012). Coastal plain
estuaries (e. g. Chesapeake Bay, Elbe) consist of a funnel-shaped channel, usually not deeper than 20
m either bordered by broad shallow flats of salt marshes. They were formed during the last eustatic
sea-level rise, when river valleys became increasingly more flooded by melting glaciers (Snedden et al.,
2012). In deltaic estuaries (e.g. Mekong, Mississippi) the main channel branches into multiple side
channels, forming a dendric network of distributaries. These estuaries are generally shallow (< 5 m)
and can harbour expansive fresh-, brackish- and salt marshes and mangroves. The seasonal variation
in discharge is induced either due to winter snowmelt or tropical wet season precipitation, which leads
to overbank flooding transporting nutrients within the system (Snedden et al., 2012). According to
Islam and Gnauck (2009) delta estuaries are among the most productive but fragile estuaries
worldwide. Lagoons (e. g. Greifswald Bodden, Odra Lagoon) have a larger area of open water,
compared to the other estuary types with physical constraints such as narrow channels, strong tidal
currents, or confined geomorphology. They are usually shallow with no extensive tidal influences and
physical processes such as mixing of fresh- and saltwater which is induced by winds (Snedden et al.,
2012). Fjord estuaries are steep walled and U-shaped valleys, that were glacially carved in high latitude
environments. They are geologically young and evolved over a relative short time span. Fjord estuaries
express ranges in deglaciation from either completely glacier-filled to completely deglaciated
(Etherington et al., 2007). Often fjords have a sill at the opening to the sea side, which limits water
exchange between the deeper parts of the fjord and the open ocean. Fjords are among the types of
estuaries that can have higher water depth, reaching down to more than 1.000 m below sea level (e.g.
Manzetti et al., 2010). At the surface, the currents are often directed out of the fjord by freshwater
runoff, since above the sill depth water can freely move in and out of the fjord (Ribergaard et al., 2008).
Tectonic estuaries were formed by geological events such as earthquakes, fractures or generated
deformations on the Earth’s crust in coastal areas. This allows the formation of hollow basin below the

sea level, which is then flooded by marine water (Nebra, 2015).



Chapter 1 — Introduction
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Figure 1.2: Longitudinal and profile view of coastal plain and bar-built estuary types. Modified from Nebra (2015).

The tidal range, which is the difference between high and low tide, varies around the world. Hayes
(1975) adopted an estuarine classification system that is based on tidal range into microtidal (< 2 m),
mesotidal (2 — 4 m) and macrotidal (> 4 m) categories (Whitfield and Elliott, 2011). For instance, the
tidal range in the semi enclosed Mediterranean is small with approximately half a meter, resulting in
narrow intertidal areas. On the contrary due to the shape of the coastline the Bay of Fundy in Canada

has a mean tidal range of 12 m (Dipper, 2022).

Environmental conditions and anthropogenic influences in estuaries

Estuarine ecosystems display highly dynamic habitats, which are characterized by varying abiotic
factors such as salinity, turbidity, discharge regime as well as the ecologic master factors temperature
and oxygen content (Thiel and Potter, 2001; Elliott and McLusky, 2002). These changes in abiotic
factors are driven by seasonal fluctuations, weather patterns and tidal dynamics and therefore present
challenging environments for biota due to its dynamic nature. According to Day (2012) several abiotic

factors shape the unique characteristics of an estuary:

1. Protection against marine forces — by the degree of shielding from direct wave action and tidal
influences.

2. Freshwater input and sediment load — by the amount of freshwater, alongside with dissolved
and suspended materials, that affects water composition and productivity.

3. Water circulation — by riverine and tidal currents as well as winds that influence the circulation.
Also, the tides strongly influence estuarine hydrodynamics and biological processes.

4. Estuary depth —in shallow estuaries there is a stronger interaction between the water column
and the bottom. Therefore, nutrients from sediments can be released to fuel phytoplankton

growth in surface waters.
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5. Sharpness and pattern of the salinity gradient — the transition from marine to freshwater
influences circulation affects the biological processes and organisms
6. Rapid geomorphological changes — Sandbanks, mudflats, and wetlands form, degrade, and

shift, with sediment deposition are shifted by the currents.

In tidal estuaries, the main physical drivers are the tides, which determines the intrusion of marine
water. With increasing tidal range, the mixing zone migrates further into the upper areas of the estuary
(Lang, 1990). Another physical driver is the quantity of riverine freshwater discharge, which also
determines the salinity distribution and stratification. River discharge dynamics often underly seasonal
fluctuations by either high discharge events during early spring induced by higher rates of precipitation

or snow melting, or by droughts during summer when river discharge is reduced.

The salinity gradient is one of the key features of estuarine ecosystems and substantially affects the
species composition and biogeochemical processes (Cloern et al., 2017). The lower estuary,
characterized by highest salinity concentrations, is dominated most by marine species. In upstream
direction, riverine freshwater discharge becomes more prominent in the estuary, resulting in an
increase of freshwater species. There are estuaries with different types of mixing fresh- and saltwater,
which is dependent on the respective hydrology. The process of mixing fresh- and saltwater in an
estuary is neither uniform nor steady, as the ratio of fresh- and saltwater and the river-cross section
increase seawards. In a salt wedge estuary, the water column is stratified, with a halocline that
separates the riverine water and a wedge of saltwater on the bottom layer, while in a well-mixed

estuary no halocline is found (Kumar et al., 2015).

Dissolved oxygen (DO) can enter the water column through photosynthesis by primary producers as
well as atmospheric diffusion, which can be enhanced by winds or increased surface agitation
(Downing and Truesdale, 1955). Bacteria and other decomposing organisms can reduce DO levels in
estuaries, since they consume oxygen while breaking down organic matter. Oxygen depletion can
occur in estuaries when a high abundance of primary producers dies and decomposes as a result of
eutrophication (Conley et al., 2011; Schol et al., 2014; Tiedke et al., 2014; Weinke and Biddanda, 2017).
The DO concentration found in an estuary are also coupled to freshwater discharge and water

circulation (Kauppila et al., 2003).

Turbidity is an indicator for the transparency of the water and is formed by the presence or absence
of suspended solids that are in the water column. With higher turbidity the amount of light that
penetrates the water is reduced, which leads to light limitation for primary producers and inferior
visibility for predators like fish (Brown, 1984; Rodrigues et al., 2023). In tidal estuaries, a maximum

turbidity zone (MTZ) can be found typically at the boundary (mixing zone) between fresh- and marine
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waters, where the concentration of suspended particulate matter is highest. The flood tide, which is
generally shorter but more energetic than the ebb tide, resuspends sediments and transports them
landward. As a result, the sediment transport is typically larger during flood tide, compared to the ebb
tide (Allen et al., 1980; Mitchell, 2013). The location of the MTZ strongly depends on the river
discharge. Uncles et al. (1999) showed in their 3-year measurements in the Humber-Ouse estuary, that
the drought of summer 1995 shifted the MTZ more than 60 km upstream compared to its position in
the previous winter. Therefore, the MTZ in macrotidal estuaries is found more upstream compared to

meso- and microtidal estuaries.

Despite being important ecosystems, estuaries worldwide are heavily influenced by human activities
(Ahlhorn, 2009) through impacts from industrial sewage, dyke construction, deepening of navigation
channels and disposal of sediments (e.g. Barbier et al., 2011; Drabble, 2012; Wetzel et al., 2014). The
stressors on estuarine ecosystems are intensified by climate changes (van Beusekom et al., 2018) on a
long-term perspective (Ducrotoy et al., 2019). All in all, these anthropogenic stressors have influenced
species richness, biomass, genetic structure and food webs in estuaries (Gilarranz et al., 2016). By dam
constructions, habitat connectivity can be destroyed and life-cycle closure in marine-estuarine
organisms may be endangered (Whitfield et al., 2023). Officer (1980) stated that when hydrodynamic
alterations occur quickly relative to biological, geological and chemical transformation, they become

the dominant controlling factors in many ecological processes in estuaries.

Climate change, which includes rising temperatures, sea level rise and increased risks of floods and
droughts, increases the risk of abrupt nonlinear shifts in estuarine ecosystems altering the ecosystem
composition, function, biodiversity and productivity (Ducrotoy et al., 2019). Reponses to climate
change may vary from estuary to estuary worldwide, because estuarine surface temperatures are
influenced by a complex combination of solar radiation, air temperature, ocean temperature, water
exchange and winds (Brown et al., 2016). By sea level rise, the volume of tidal water entering the
estuarine channel lead to tidal intrusion, amplitude and current velocities in the upper estuarine
channel (Holleman and Stacey, 2014). In temperate estuaries, rising water temperatures are expected
to favour spreading of southern species (lusitanian), while species adapted to colder water will be
negatively affected by shifts in seasonal cycles (e.g. spawning periods, larval occurrence) and changes
of growth condition, particularly due to altered food availability (Thiel, 2011). Polte et al. (2021)
described phenological mismatches, when the timing of the phyto- and zooplankton bloom is
misaligned with the hatching of fish larvae. Rising water temperature can affect oxygen levels in
estuaries. Firstly, warmer water cannot hold as much oxygen as colder water (Allen, 1955) and
secondly the microbial metabolisms increases, which can cause hypoxia. There has been recognition

by several authors, that climate change impacts hypoxia in estuarine and coastal waters (Altieri and
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Gedan, 2015; Bendtsen and Hansen, 2013; Claret et al., 2018; Justi¢ et al., 2003; Meier et al., 2011; Ni
et al.; 2019). Extreme drought events in the past have led to decline of freshwater fish species,
reduction of resident fish populations and increases of marine stragglers in Iberian estuaries (Martinho
et al., 2007; Nyitrai et al., 2013). This significant decline in estuarine productivity during drought years
may have also impacted marine fish stocks through a reduced recruitment and export (Dolbeth et al.,

2008).

Biguino et al. (2024) concluded that despite the increase in climate change research since 2000, only
9.3 % of marine climate change studies focused on estuaries, of which only 1.13 % were in situ studies.
This highlights the significant gap in observation data and the need for extensive in situ monitoring to

better understand and address climate change effects in estuarine environments.

Elbe and Odra estuaries

The Elbe estuary is strongly influenced by tides and is classified as mesotidal coastal plain estuary
without a marked halocline (Thiel and Potter, 2001; Eick and Thiel, 2014; Pein et al., 2023). It reaches
from the upper boarder at the weir Geesthacht to the river mouth close to the city Cuxhaven, where
it enters into the southern North Sea. This estuary has been shaped by a long history of human
alteration (Bergemann et al., 1996; Kerner, 2007; Amann et al., 2012; Pein et al., 2021) and therefore
shares fate with estuaries worldwide (Pein et al., 2023). Since the mid nineteenth century the Elbe
estuary has experienced channelization for shipping and an increase in communal, industrial and
agricultural sewages as well as water abstraction for power plant cooling (Thiel et al., 2003; Kerner,
2007; Eick and Thiel, 2014). The alteration of the hydromorphology of the main channel experienced
strong influences on the river runoff dynamics, tidal range and current velocities. In the Hamburg port
area (100 km upstream of the river mouth), the tidal range doubled from 1.9 m to 3.8 m over the last
century (Hein et al., 2021). Recently, a reduction of the sub- and intertidal shallow water areas
occurred due to construction and sedimentation processes, especially in the freshwater area (Scholle
and Schuchard, 2020). At the same time, in the Hamburg port area (freshwater zone) oxygen
deficiencies were reported on regular basis during summer months (Riedel-Lorjé and Gaumert, 1982;
Thiel, 2011; Eick and Thiel, 2014; Scholle and Schuchard, 2020). However, the Elbe estuary still
harbours ecological populations and habitats, that are internationally important, like a number of

other temperate estuaries (Thiel, 2011; Ducrotoy et al., 2019)

The Odra estuary, which is located in north-east Germany drains to the Baltic Sea and has very low
tidal influences with a tidal oscillation below 20 cm (Medvedev et al., 2013). It can therefore be

classified as microtidal lagoon estuary. The Odra estuary can be assigned into three distinctive sections:
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upper section (Odra Lagoon: OL) with salinities ranging between 1 and 3 PSU, the middle section
(Greifswald Bodden: GB) with a salinity between 6 and 7 PSU and the lower section (Pomeranian Bay:
PB) with a salinity between 5 and 8 PSU (Gruszka, 1999; Schernewski, 2011). The river bottom of the
Odra estuary is covered mostly by muddy and sandy substrates. In the Odra Lagoon and Greifswald
Bodden, the bottom structures are dominated by fine-grained sediments, while the Pomeranian Bay
is dominated by sands (Wypych, 1980; Kube et al., 1996; Gruszka 1999). The Odra Lagoon is partly
enclosed and its water exchange with the Pomeranian Bay is highly depended on factors such as wind
conditions, sea levels and the discharge from the Odra river. The largest water exchange occurs
through the Swina (60 -70 %), while through Peenestrom and Dziwna approximately 15 — 20 % water
exchange occurs (Jasiriska and Massel, 2007; Kowalewska-Kalkowska, 2021). Environmental conditions
such as salinity and oxygen concentration are prone to seasonal variation. During spring the salinity
levels typically decrease due to increased river discharge and during autumn the salinity increased
when influx of more saline waters occurs due to storms. In the Odra Lagoon, supersaturation of the
surface water levels during summer month occur regularly (Chojnacki and Tylus, 2013), which is
accompanied by increased turbidity and temporal occurrences of hypoxia (Radziejewska and
Schernewski, 2008; Schernewski, 2011; Friedland et al., 2012; Pein and Staneva, 2024). The Baltic Sea
has a long history of eutrophication (Voss et al., 2011; Pein and Staneva, 2024), that results in regular

blooms of microalgae, including cyanobacteria during summer months.

1.2 Fish in European estuaries

Species numbers and biogeographic affinities

According to Elliott and Hemmingway (2002) a total of 255 fish and lamprey species (consecutively
referred as fish species) were found within 26 European estuaries. Franco et al. (2008), who included
a larger number of estuaries in the Mediterranean, named 317 fish in 38 estuaries, inhabiting between
15 % and 18.6 % of the European fish species (Thiel, 2011). The average species number found in
European estuaries is 56 fish species, ranging from 22 fish species in the Solway estuary and 119 fish

species in the Thames estuary (Thiel, 2011).

Marine, estuarine and diadromous fish species in European estuaries can be subdivided by their
biogeographic affinity (boreal, lusitanian, atlantic) (Jiming, 1982; Dulvy et al., 2008; Engelhard et al.,
2011; Sarrazin et al., 2021). Boreal fish species, occur predominantly between the Norwegian Sea and
The British Islands, which have preferences for colder water temperatures (e. g. Osmerus eperlanus).
Lusitanian fish species, have a distribution range between the northwest North Sea (British Islands)

and die Iberian Peninsula/North Afrika and prefer warmer temperatures (e.g. Merlangius merlangus).
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Atlantic fish species, occur predominantly in the Atlantic Ocean and around the European coasts (e.g.
Salmo salar). Freshwater fish species can be further grouped into two zoogeographical categories
(Leroy et al., 2019): Palearctic (fish species that have European, Siberian and East-Asian distribution)
and Nearctic (introduced from North America). Spatial and temporal variation in the fish fauna
composition, can be distinguished by the guild composition. A longitudinal change in the fish
community in upstream direction, corresponds with the decrease in the abundance of marine species

and an increase of abundance of freshwater species (Thiel, 2011; Eick and Thiel, 2014).

Life cycle guilds

Beside their biogeographic affinity fishes can be categorized by their life cycle. Fish species in European

estuaries were grouped into eight life cycle guilds by Thiel (2011):

1. Marine straggler (M), marine species that are sporadically found in the lower estuarine
sections with higher salinities: Atlantic mackerel (Scomber scombrus), red gurnard
(Chelidonichthys lucerna).

2. Marine estuarine-opportunists (O), marine species that are common and occur in high
densities, primarily as juveniles in estuaries: Atlantic cod (Gadus morhua), Atlantic herring
(Clupea harengus Linnaeus, 1758).

3. Estuarine-marine (B), species that are able to complete their entire life cycle in both estuarine
and marine environments: European anchovy (Engraulis encrasicolus) broadnosed pipefish
(Syngnathus typhle).

4. Estuarine (E), species that complete their entire life cycle within the estuary: common goby
(Pomatoschistus microps), Nilsson’s pipefish (Syngnathus rostellatus).

5. Semi-anadromous (S), species that primarily spawn in the brackish water zone of estuaries but
migrate back to marine waters for growing: three-spined stickleback (Gasterosteus aculeatus),
meagre (Argyrosomus regius).

6. Anadromous (A), species that spawn in freshwater but grow mainly in estuarine and marine
environments: Atlantic salmon (Salmo salar), twaite shad (Alosa fallax).

7. Catadromous (C), species that spawn in the sea but grow mainly in freshwater and estuarine
environments: European eel (Anguilla anguilla), thinlip mullet (Liza ramada).

8. Freshwater (F), freshwater species that occur in estuaries at lower salinities and in higher

densities: zander (Sander lucioperca), northern pike (Esox lucius).

Overall, the diversity of life histories and recruitment mechanisms of taxa found in estuaries implies

that these marine, estuarine, and diadromous fishes are adapted to the variable environments across
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these transitional habitats. As for other biota, salinity and temperature are the main factors influencing
fish species distribution and community structure (Nissling and Westin, 1991; Thiel et al., 1995; Costa
et al., 2002; Harrison and Whitfield, 2006). The longitudinal differences in species richness, evenness

and biomass are caused by varying tolerance and preferences for salinity (Thiel et al., 1995).

Fish faunas and keystone fish species of the Elbe and Odra estuaries

According to Thiel (2011) about 80 fish species occur in the Elbe estuary, which makes it one of the
more species rich estuaries in Europe. Smelt (Osmerus eperlanus) has been the most dominant fish
species, since it occurs throughout the entire estuary with high density and biomass (e.g. Ehrenbaum,
1894; Lillelund, 1961; Moller, 1988; Thiel et al., 1995; Eick and Thiel, 2014). In the time span between
1984 and 2010 smelt displayed between 76 % and 96 % of the total fish density (Moller, 1988; Thiel et
al., 1995; Thiel, 2001; Eick and Thiel, 2014). Since smelt belongs to the anadromous life cycle guild,
anadromous fish species are the dominant life cycle guild (Eick and Thiel, 2014). Based on their
frequencies of occurrence, ruffe and zander are the dominant freshwater fish species, while smelt and
flounder are the dominant euryhaline fish species. Herring and gobiids of genus Pomatoschistus belong

to the dominant marine fish species in the Elbe estuary (Thiel et al., 2025).

The fish fauna of the Odra estuary is structured across three main sections: the Pomeranian Bay,
Greifswald Bodden and the Odra Lagoon. According to Thiel (2011) 50 fish species are counted in the
Odra lagoon, whereas 61 fish species are estimated for the Greifswald Bodden. Smelt, ruffe and zander
belong to the dominant fish species in the Odra lagoon (Lorenz, 2001). Due to its geographical location
and hydrological regime, the Greifswald Bodden hosts species-rich fish fauna (Winkler 1989). Marine
species from the Baltic Sea are permanently or temporarily present here, as well as freshwater fish
species, that enter from the surrounding tributaries (Winkler 1989). In the 1960s, zander catches in
the Bodden increased rapidly, which was linked to eutrophication (Winkler, 1989). As a result of the
favourable feeding conditions, the zander in the Bodden exhibited the highest growth rates compared
to stocks from other coastal waters (Winkler 1989). Although smelt occurred in the Greifswald Bodden,
higher densities are more typical in the nutrient-rich lagoons of the Baltic (Haffe). Flounder occurs
year- round in the Greifswald Bodden and provides relatively stable yields, whereas ruffe can occur in
massive densities seasonally (Winkler, 1989). In the coastal waters of the Pomeranian Bay, species
composition of the fish fauna was assessed using various sampling methods (Thiel et al., 2007). Using
a mini-hopper-trawl, perch (61 %), zander (19 %), and flounder (15 %) were the dominant fish species.
When sampled with an eel-trawl, flounder accounted for 67 % of the catch, followed by perch (12 %)

and zander (13 %).
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Keystone species are crucial for maintaining the structure and diversity of ecological communities and
are therefore key targets in environmental protection efforts aimed at maximizing conservation
outcomes (Paine, 1969; Mills et al., 1993). Across both estuaries, the keystone fish species zander,
smelt, ruffe, and flounder were consistently present and were therefore selected for further feeding

and growth analyses in this thesis.

1.3 European estuaries as feeding and nursery areas for fish

Importance of estuaries for fish

While estuaries constitute only to a comparatively small area (5.8 %), they are among the most
important ecosystems in the coastal zone providing habitats for several plant and animal species
(Barbier et al., 2011; Wetzel et al., 2014). They belong the most productive aquatic ecosystems and
due to nutrient rich and diverse habitats they support a high fish production (Cronin, 1975; Thiel et al.,
1995; Ducrotoy et al., 2019; Arevalo et al., 2023). Fishes are important elements in these aquatic
communities. In estuarine food webs, keystone fish species are considered as suitable indicators for
the assessment of ecosystem quality. They link lower with higher trophic levels such as piscivorous
fish, birds and marine mammals or humans, when commercially fished. While estuaries are important
ecosystems for a variety of biota worldwide, they also hold significant importance for humans.
Historically, settlements developed along estuaries, benefitting from the location and resources. Cities
that are located within reach of an estuary often host major ports serving as essential hub for shipping
and trade. Both commercial and recreational fisheries can often be found, while tourism attracts

visitors for various activities.

Estuaries are also highly important ecosystems for fish since they contain spawning grounds, feeding
and nursery areas as well as migration routes for diadromous species. As migration route for fish
estuaries are critical corridors for anadromous species (e. g. salmon Salmo salar) and catadromous
species (European eel Anguilla anguilla) between freshwater and marine environments (Thiel, 2011).
In addition to seasonal migrations, fishes also perform tidal migrations to forage in intertidal zones
such as sandbanks, mudflats and tidal creeks (Costa et al., 2002). Several fish species including smelt
(Osmerus eperlanus) or twaite shad (Alosa fallax) use estuaries as spawning and nursery area, since
they find favourable conditions for their larval stages (Sepulveda et al., 1993; Thiel et al., 1995; Cabral
et al., 2007; Guerreiro et al., 2021).

It is widely recognized that the annual recruitment variability of fish is primarily determined during the
early life stages, particularly during the planktonic phase (Bolle et al., 2009; Houde, 2008; van der Veer

et al., 2000; Guerreiro et al., 2021). The abundance and distribution of juvenile fish is strongly affected
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by quality and availability of the habitat, together with biotic (prey and predator abundance) and
abiotic conditions (e. g. temperature, salinity, freshwater discharge) (Able et al., 2005; Bento et al.,
2016; Martinho et al., 2007; Guerreiro et al., 2021). The high mortality rate of early life stages of fish
(eggs and larvae), results from their limited swimming capabilities, which hinders them from escaping
unfavourable environmental conditions, predation or areas with low food availability (Arevalo et al.,
2023). In an intact estuary, the habitats generally offer direct physical protection for juveniles and

larvae through seagrasses, wetlands, oyster reefs and/or shallow areas (Arevalo et al., 2023).

In the Elbe estuary, the shallow water of the freshwater region plays a critical role in fish production.
The key areas, including the Mihlenberger Loch, Hahnhofer Nebenelbe and Liihesander Stderelbe,
have been identified as vital nursery grounds for fish larvae as well as juveniles of age group 0 (AGO)
and AG1. Annual fish production (predominantly smelt) in these regions was up to 20 times higher,
exceeding 200 kg per hectare, compared to other parts of the estuary (Thiel et al., 2001). The main
spawning ground of smelt is located further upstream. The hatched larvae are transported by
downstream drift into their shallow nurseries in the southern marginal areal (Ehrenbaum, 1894;

Lillelund, 1961; Thiel, 2001).

In the Odra estuary, the Greifswald Bodden is a major spawning and nursery area for western Baltic
spring-spawning herring (metapopulation), which was documented already in the 1930s (Biester,
1989; Polte et al., 2021). According to Polte et al. (2017), adult herring migrate from offshore pelagic
habitats into inshore waters for spawning, where they attach their adhesive eggs predominantly to
littoral substrates such as macrophytes. However, the reproduction and recruitment of herring in the
region have faced significant challenges. Kanstinger et al. (2018) reported that the coverage of
macrophytes in the Greifswald Bodden was reduced to 5 % compared to historical coverage of 90 % in
this area. Seagrass declined due to light limitation and increased epiphytic algal growth driven by
eutrophication. Despite the efforts to eutrophication reduction no increase of macrophyte coverage
has been observed (Kanstinger et al., 2018). Furthermore, a reduction in herring larval survival has
been linked to a phenological shift, potentially causing a temporal mismatch between the timing of

herring spawning and the availability of adequate plankton prey.

European estuaries have four main functions for fish. Elliott and Hemmingway (2002) classified the
function of 26 European estuaries based on the percentage of fish species on the total species number
with following order: feeding area (75.8 %), nursery area (63.1 %) spawning area (24.3 %) and migration
routes (8.9 %). This shows that European estuaries are especially important feeding and nursery areas

for fish (Thiel, 2011).
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Estuarine food webs

In estuarine food webs, energy flows from the phytoplankton (primary production) and detritus
through various trophic levels ultimately supporting higher trophic levels that consume a wide range
of organisms. Generally, in aquatic food webs, primary production is consumed by zooplankton, which
is then consumed by planktivorous fish, which are later consumed by predatory fish. In estuarine food
webs, most of the primary production is not grazed alive, but being decomposed after death forming
a detrital food web. A key characteristic of estuarine food webs is the importance of the benthic
community, which inhabits filter feeders (clams, mussels), deposit feeders (worms, amphipods) and
bottom feeding predators including other invertebrates (Day et al., 2012). The high availability of food
resources ultimately results in large abundance and diversity of fish in estuaries (Beck et al., 2001;

Trujillo and Thurman, 2013).

The coastal areas consist of diverse interconnected habitats, including pelagic waters, tidal creeks,
seagrass meadows, mussel beds, coral reefs, intertidal flats, rocky shores and tidal wetlands, such as
salt marshes and mangroves. While each habitat has its unique characteristic features, they are linked
within a broader food web through fluxes of matter and energy (Hagy et al., 2012). Habitat connectivity
is important for shaping trophic interactions in estuarine ecosystems, since an estuary can consist of
various habitats. Heck et al. (2008) highlighted how shallow water seagrass meadows contribute to the
adjacent ecosystems via trophic flows. For example, fish species that mainly live in mangroves often
feed in seagrass meadows, generate a carbon transport from seagrass to mangrove (Hagy et al., 2012).
The shallow nature of most estuaries allows benthic-pelagic coupling resulting in a nutrient transport

between those two food webs (Hagy et al., 2012).

Feeding ecology of fishes in estuaries

Information on the food consumption of fish is central to understand aquatic food webs. There are
biological controls such as prey availability and competition (both inter- and intraspecific) between fish
and other predators. In bottom-up scenarios, the controlling factors are the lower trophic levels that
affect the higher levels by resource restriction while in top-down control the lower trophic levels are

affected by predation (Li et al., 2020).

According to Franco et al. (2008) the feeding mode of estuarine fish species can be grouped into eight
categories according to their preferred food: Microbenthivores, who mainly feed on benthic,
epibenthic, and hyperbenthic fauna, primarily targeting prey smaller than 1 cm. Macrobenthivores,
who mainly feed on benthic, epibenthic, and hyperbenthic fauna, primarily target prey larger than 1

cm. Planktivores, who predominantly feed on zooplankton and occasionally on phytoplankton in the
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water column, mainly by filter feeding. Hyperbenthivores/zooplanktivores, who feed just above the
benthos, predominantly on small mobile invertebrates and zooplankton. Hyperbenthivores/piscivores,
who feed just above the benthos, predominantly prey on larger mobile invertebrates and fish.
Detritivores, who feed on small organisms in or on the surface layer of the substratum, such as benthic
algae (e.g. diatoms), including microfauna (Foraminifera and Flagellata), and smaller meiofauna. They
ingest relatively large volumes of sand or mud by suction, digest the organic material and excrete the
inorganic particles. Herbivores, who graze mainly on macroalgae and macrophytes and omnivores,
who consume both plant and animal material due to feeding on macrophytes, periphyton, epifauna

and filamentous algae.

In order to interpret the functioning of estuarine food webs, it is essential to consider prey availability
not only in terms of abundance, but also in terms of detectability by fish. Experimental studies indicate
that visual traits affecting prey selection include contrast with the background, size, movement, shape,
colour, and unusual form features (Wootton, 1984; 1990; Elliott et al., 2002). The importance of visual
predation on fish is reduced in estuaries, particularly in the maximum turbidity zone, due to limited
visibility. Inhabiting these areas may therefore serve as a strategy for fish to avoid predation (Elliott et

al., 2002).

The availability of suitable prey has a crucial impact on the larval fish survival. The size of available prey
is one of the most critical factors in prey selection by fish larvae. This is closely tied to the larvae's
mouth size and foraging abilities (Huang et al., 2021). During ontogenetic development, the mouth
gape increases, which allows them to consume larger prey, alongside with improvements of swimming
capabilities (Sabatés and Saiz, 2000). In early larval stages the small mouth limits the fish larvae to the
smallest available zooplankton such as rotifers, nauplii, copepodites or cladocerans (Mehner and

Heerkloss, 1994; Mehner and Thiel, 1999; Sabatés and Saiz, 2000; Thiel, 2001; Dickmann et al., 2007).

High densities, biomass and overall fish production rates of early life stages of smelt have been
documented in the southern marginal areas of the Elbe estuary, which is close to the Hamburg port
area in the freshwater region and concludes areas such as the Mihlenberger Loch, Hahnhofer
Nebenelbe and Lihesander Siiderelbe. Here the production rates of smelt larvae and juvenile fish were
substantially larger compared to the main channel and northern marginal area (Sepulveda et al., 1993;
Thiel, 2001). These nursery areas were also characterized by high abundances of the copepod
Eurytemora affinis, which has been identified as the dominant prey for fish in this region (Sepulveda

et al., 1993; Bernat et al., 1994; Peitsch et al., 2000; Thiel et al., 1996; Thiel, 2001).

An example of how climate change can affect fish nurseries is seen in Baltic herring: in parts of the

Odra estuary, larval herring suffer from starvation-related mortality due to a trophic mismatch. This
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mismatch results from the premature spawning of herring due to increased water temperatures, while
zooplankton blooms occur later (Polte et al., 2021). After hatching, larvae rely on their yolk sac for
nutrition. Once depleted, they depend on exogenous feeding, making the timely availability of suitable
prey essential for survival (Seljeset et al., 2010; Fiksen and Jgrgensen, 2011; Hernandez et al., 2018).
Throughout the year, zooplankton production varies considerably in the Greifswald Bodden, rising

sharply in March, peaking in June, and then declining thereafter.

Fish larvae that are unable to initiate feeding after yolk sac depletion rapidly approach a physiological
threshold referred to as the "point of no return", typically reached within 3 to 5 days post-yolk
resorption. Beyond this point, even if food becomes available, recovery is no longer possible and
mortality is inevitable. This narrow window underscores the critical importance of precise timing
between larval hatching and the availability of suitable prey in determining early survival success. That
is why the southern marginal channels of the Elbe estuary are of such high importance as fish nurseries:
they provide high densities of suitably sized prey organisms, mainly copepods (Sepulveda et al., 1993;
Bernat et al., 1994; Peitsch et al., 2000; Thiel et al., 1996; Thiel, 2001), which are crucial for the growth

and survival of larval smelt, ruffe, zander and flounder.

In general, the availability of prey is strongly linked with the growth, survival, and ultimately
recruitment of fish during their early life history (Graeb et al., 2004). Nutrition, including the quality
and quantity of food, plays a significant role in growth. Sufficient and balanced nutrition, especially
protein, is critical for somatic growth. Poor imbalanced diets can lead to stunted growth or disease
(Halver, 1954; Magnoni et al., 2019). The rate at which fish increase in length and weight over time is
a direct indicator of how much suitable food is available, as faster growth typically reflects higher prey

abundance and/or quality (Graeb et al., 2004; Cordoleani et al., 2022).

In conclusion, however, it should be emphasized that current and detailed studies on fish fauna
structure, feeding ecology, and growth of keystone fish species in the Elbe and Odra estuaries are
lacking but are urgently needed in order to improve our understanding of ecological processes in
estuarine systems. This thesis includes multiple perspectives, ranging from population ecology and the
overall species composition of the fish fauna to the feeding ecology and growth dynamics of specific

keystone species, and ultimately to individual-level stress responses.

1.4 Objectives
Estuarine areas, such as those of the Elbe and Odra rivers, are influenced by a wide range of both
natural and anthropogenic factors. They are characterized by the dynamic nature of environmental

conditions (e.g., salinity, temperature, oxygen levels, turbidity), provide habitat for numerous plant
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and animal species and rank among the most productive aquatic ecosystems (Day et al., 2012).
However, these regions are also highly impacted by overlapping human activities such as industry,
shipping, fisheries, agriculture, nature conservation, sports, and tourism (Thiel, 2003). Overall,
estuaries are among the most heavily anthropogenically altered habitats on Earth (Haedrich, 1983;

Polgar et al., 1985; Whitfield, 1996; Cabral et al., 2001).

It is well known that human-induced factors in estuaries and other coastal marine systems can affect
biodiversity, biomass, genetic structure and food webs (Gilarranz et al., 2016). In food webs,
anthropogenic influences can alter their stability. Studies have also shown that anthropogenic
influences are traceable in aquatic food webs, especially when the top predators are affected (Pauly
et al., 1998; Pace et al., 1999; Myers and Worm, 2003). Fish play a critical role as top predators in
estuarine food webs. Many planktivorous and benthivorous fish species act as key species in estuarine
ecosystems, linking lower trophic levels with piscivorous fish and birds (Mehner and Thiel, 1999;
Magath et al., 2016). Estuaries have been recognized as important fish habitats for more than a
century, a role that has been repeatedly confirmed over time (Thiel, 2003). To gain deeper knowledge
of the role of fishes in the food webs of temperate estuaries, in chapter 2 the feeding ecology of four
keystone fish species from two different temperate estuaries was analysed. With the Elbe estuary as
mesotidal coastal plain estuary and the Odra estuary as microtidal bar-build estuary, we focused on
two important estuarine types in central Europe. This chapter aims to (1) analyse and compare the
overall food composition of keystone fish species in the two different estuaries, (2) identify spatial and
seasonal trends in their food composition within each of the two estuaries and (3) estimate the dietary

overlap between the keystone fish species.

For understanding the population dynamics of fish, the assessment of growth is an important tool
(Nesslage and Pauly, 2022). In chapter 3 the growth of four keystone fish species was investigated to
identify regional differences between the estuaries and to compare current findings with previous
results. These growth studies were used as an additional indicator of food availability, since increased

food intake generally leads to faster growth.

Evaluation of indicator taxa has been established as simple measurement to be related to more
complex environmental trends (Whitefield and Elliott, 2002). Although the ichthyofaunal composition
in estuaries is highly reflecting the ever-changing environmental factors and life history cycles of
various species, fish assemblages have often been used to illustrate changes of the conditions in
estuarine ecosystems (Whitfield, 1996; Whitefield and Elliott, 2002), are regarded as suitable
indicators that have been incorporated in European monitoring strategies (Water Framework
Directive, Marine Strategy Framework Directive). In chapter 4 the aim of our study was to analyse
historical and present compositions of the ichthyofauna in the Elbe estuary using a dataset of
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comparable traditional fishing methods incorporating seasonal sampling since the 1980s (Moller,
1988; Thiel et al., 1995; Thiel and Potter, 2001; Thiel et al., 2003; Thiel, 2011; Eick and Thiel, 2014).
Hereby we included: (1) assessing changes in life cycle guilds, (2) quantifying shifts in fish species
densities, and (3) identifying long-term trends in environmental factors and their influence on fish
population dynamics. In this context, the Elbe estuary serves as a representative case study for other
temperate, mesotidal European estuaries, as it is one of the few systems in Europe with long-term

guantitative data available for both fish communities and key environmental variables.

Although there is substantial knowledge of the abiotic and biotic changes occurring within estuarine
systems, several spatio-temporal factors (temperature, salinity and dissolved oxygen) act as
confounding variables, complicating the identification of the specific mechanisms driving observed
declines in fish biomass (Koll et al., 2024). Molecular biological methods are increasingly being
considered into biomonitoring and conservation biology. They offer insights into biological processes
across multiple organizational levels and uncover interactions that were previously overlooked
(Connon et al., 2018; Machuca-Sepulveda et al., 2023, Koll et al. 2024). Multiple stressor interactions
can lead to unforeseen synergistic or antagonistic effects, that can result in sublethal impact that
contribute to long-term population declines across generations (Petitjean et al., 2019; Connon et al.,
2018; Koll et al.,, 2024). In chapter 5 we aimed to develop an unsupervised, network-based
dimensionality reduction approach using real-world holobiont omics data derived from RNA and 16S
rRNA libraries. The method was designed to accurately identify tissue-specific gene expression and
shifts in bacterial community composition. By linking microbial dynamics to host immune responses
and physiological measurements, we aimed to identify key environmental stressors and offer tools for

the application of microbial biomarkers for the evaluation of fish health in estuarine ecosystems.
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Abstract

Food webs in estuarine ecosystems serve as important biological indicators. The feeding ecology of
four keystone fish species, pikeperch (Sander lucioperca L.), smelt (Osmerus eperlanus L.), ruffe
(Gymnocephalus cernua L.) and flounder (Platichthys flesus L.), in the Elbe and Odra estuaries was
analyzed using stomach content analyses. Important prey of pikeperch were fishes and mysids in both
estuaries. Amphipods were especially important as prey for smelt in the Elbe estuary, whereas smelt
caught in the Odra estuary mainly consumed mysids. Ruffe fed mainly on amphipods in the Elbe
estuary, while annelids (lower section) and insect larvae (upper section) were the most important prey
in the Odra estuary. Flounder favored copepods as prey in the Elbe estuary, while bivalves were
preferred in the Odra estuary. Higher dietary overlaps were found in the Elbe estuary between smelt
vs. ruffe, pikeperch vs. ruffe, and pikeperch vs. smelt. In the Elbe estuary, a shift in the diet composition
of pikeperch, smelt, and ruffe was observed from 2021 to 2022 compared to food analyses from the
1990s. These shifts included an increased consumption of amphipods, while mysids and copepods had
recently decreased in their diets. These changes indicate a restructuring of the food web, potentially

linked to environmental changes, which highlights the sensitivity of estuarine ecosystems.

Keywords: estuaries; food webs; stomach content; fish

1. Introduction

Fishes are important elements in estuarine food webs, since they link the lower trophic levels with
higher trophic levels such as other piscivorous fish, birds [1], marine mammals, or humans, when used
commercially. Based on the relationships known to date, key fish species in the estuarine food web
are considered suitable indicators for assessing the condition of estuarine ecosystems [2,3,4,5,6], as
parameters such as their diet composition, nutritional intensity, growth rate, abundance, and spatial
distribution depend on the availability of suitable habitats and food resources. Appropriate food
resources availability at each specific stage of their life cycle is crucial for individual development and

stock recruitment.

In estuarine ecosystems, multiple mechanisms shape the composition of food webs. First, prey
availability and habitat differences play an important role, influenced by salinity gradients, substrate
types, primary production, and detritus inputs [7,8,9]. Seasonal variability, including temperature
changes and varying riverine freshwater discharge, affects the transport of prey organisms and triggers

migration and reproductive cycles of prey species [10,11]. Interspecific competition also plays a
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significant role in structuring food webs [12]. Lastly, anthropogenic factors, such as habitat destruction,

eutrophication, and pollution, can significantly alter prey composition in estuarine ecosystems [13,14].

However, the impacts of climate change can disrupt the timing of the availability of suitable food
sources due to phenological mismatches. This occurs when the timing of phyto- and zooplankton
blooms are misaligned with the hatching of fish larvae [15]. Other human-induced factors such as the
loss of shallow water areas, hypoxic events, river dredging, increased turbidity, and contaminations,
are believed to impair estuarine functions [5,16,17,18,19,20,21]. With recent shifts in the
environmental factors, the fish abundance in the Elbe estuary, one of Europe’s largest estuaries, was
reduced by over 90 % [22], which included massive reductions in smelt, ruffe, and flounder. The
reasons for this decline are multifactorial, including habitat destruction by river construction leading
toincreased turbidity, hypoxia events, changes in discharge dynamics, and a reduction in shallow water
areas [22,23,24]. The Odra estuary is part of the Baltic Sea, where stocks of commercially important
fish species such as cod (Gadus morhua) and herring (Clupea harengus) have been collapsing in recent
years, indicating environmental stressors on the ecosystem, thus affecting the food web. The declines
have been driven by a combination of climate change, nutrient loads, and overfishing [15,25,26,27].
Temperature is a key environmental factor influencing foraging behavior and prey—predator
interactions, particularly in ectotherms. Climate change-induced temperature fluctuations affect
metabolic rates, prompting animals to adjust their foraging preferences and efforts to meet their
energy demands [28]. Recognizing this dynamic is crucial for understanding shifts in estuarine food
webs under changing environmental conditions. Given the environmental challenges facing the Elbe
and Odra estuaries, including climate-induced temperature shifts, habitat degradation, and
anthropogenic pressures, this study provides insights into the feeding ecology of keystone fish species,

ultimately influencing food web dynamics.

Smelt (Osmerus eperlanus L.), ruffe (Gymnocephalus cernua L.), flounder (Platichthys flesus L.), and
pikeperch (Sander lucioperca L.) are among the keystone fish species in the Elbe estuary. These species
occur throughout the entire longitudinal stretches of the Elbe estuary [22,29,30,31,32] and thus serve
as key elements of the food web in the Elbe estuary. In the Oder estuary, Lorenz [33] revealed that
smelt, ruffe, and pikeperch belonged to the dominant species in the Odra Lagoon, while according to
Thiel et al. [34], flounder was among the dominant species in the coastal areas of the Pomeranian Bay.

Therefore, these four species were collected for diet analyses.

To gain deeper knowledge of the feeding ecology of fishes in different temperate estuaries, this study
was conducted on four keystone fish species from two temperate estuaries, the Odra as a microtidal
estuary in the southern Baltic Sea and the Elbe as a mesotidal estuary in the south-eastern North Sea.
This study aims to (1) analyze and compare their diet breadth and overall food composition in the two
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different estuaries, (2) identify spatial and seasonal trends in their food composition within each of the

two estuaries, and (3) estimate the dietary overlap between pairs of the keystone fish species.

2. Materials and Methods

2.1. Study Area

The Elbe estuary is located in north-west Germany and extends from the weir at Geesthacht
downstream to its mouth into the southern North Sea close to the city of Cuxhaven (Figure 2.1, left).
It is strongly influenced by tides and is classified as a mesotidal coastal plain estuary with no marked
halocline [32,35,36]. In the freshwater region or upper section (Mihlenberger Loch: ML, Twielenfleth:
TF), the salinity is below 0.5 PSU, which stretches from the weir at Geesthacht (Ekm 586) to Stade (Ekm
654). In the brackish oligohaline area or middle section (Schwarztonnensand: ST), down to Brokdorf at
Ekm 684, the salinity ranges between 0.5 and 5 PSU, and the brackish mesohaline area or lower section

(Brunsbiittel: BB, Medemgrund: MG) continues downstream to the city of Cuxhaven at Ekm 725 [37].

A

BB

MG»—\

0.5 10 15 20 25 km
T T

Figure 2.1. Elbe and Odra estuaries with the designated stations reflecting the longitudinal zonation. Elbe estuary (left):
Medemgrund (MG) and Brunsbttel (BB) as lower estuary, Schwarztonnensand (ST) as middle estuary, Twielenfleth (TF) and
Mihlenberger Loch (ML) as upper estuary. Odra estuary (right): Pomeranian Bay (PB) as lower estuary, Greifswald Bodden

(GB) as middle estuary and Odra lagoon (OL) as upper estuary (map sources: NextGIS, CartoDB).

The Odra estuary is located in north-east Germany and drains to the Baltic Sea (Figure 2.1, right) with
very low influences from the tide with tidal oscillation below 20 cm [38]; it can therefore be classified

as a microtidal estuary. We categorized the Odra estuary into three sections: the upper section (Odra
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Lagoon: OL), with salinities ranging between 1 and 3 PSU, the middle section (Greifswald Bodden: GB),
with a salinity range of 6-7 PSU, and the lower section (Pomeranian Bay: PB), with a salinity of 5-8 PSU
[39,40].

2.2. Collection of Sample Material

We collected samples throughout the year, at least once per season: spring 2021 (May/June 2021),
summer (August 2021), autumn (November 2021), winter (February/March 2021), and spring 2022
(May/June 2022). Fish samples were collected from commercial fishermen using the following catching
techniques: stow net, fish traps, gill nets, trawl net. Fish were frozen at -20 °C immediately after

catching or, at the latest, after landing, for preparation in the laboratory.

2.3. Analysis of Fish Diet

Diet analysis was carried out following Debus and Winkler [41] and Thiel [42]. The stomachs of the
fishes were opened and the abundance, length, and weight of the prey species were determined.
Through digestive processes, the biomass of the consumed prey organisms is reduced; hence, the
actual consumed biomass at the moment of feeding cannot be determined by weighing. Therefore,
the biomass was reconstructed by regression formulas following Debus and Winkler [41] as found in
the literature (Table S1). Fragments were measured with a stereomicroscope Leica MZ 9.5 (+0.01 mm)
combined with Leica Flexacam C1 (Leica LAS X software version 3.7.4.23463). From the fragment
length, the total length and weight of the organism were calculated. Fragments or prey items that
exceeded the maximum length of the stereomicroscope (>20 mm) were measured using millimeter
paper. If no regression formula was available for an organism, standard weight was used. Whenever
no regression formula and no standard weight was available, the available standard weight in the

literature (Table S1) of the taxonomically and morphologically closest relative was used [41].

For species identification of consumed fish, characteristic bony structures (vertebral columns, singular
vertebra, mandibular, pharyngeal teeth, otoliths) were used. Fish severely disintegrated by digestion
were x-rayed (Faxitron MultiFocus) to portray identification features such as number of vertebrae or
number of fin rays. The taxonomic identification of consumed prey objects was determined by
characteristic features found in the literature: refs. [43,44,45,46,47,48,49,50,51,52] for fish and
[53,54,55,56,57,58,59,60,61] for invertebrates. The identified prey organisms were assigned to
taxonomic groups for later analyses (Gastropoda, Bivalvia, Annelida, Copepoda, Cladocera, Isopoda,

Amphipoda, Thecostraca, Mysida, Decapoda, Insecta, Fish).
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2.4. Calculation of Parameters in Feeding Ecology

For the characterization of the food composition, the following three parameters were calculated [62]:
(I) Abundance (Ni): the abundance of prey types (i) to the number of all prey individuals, (I1) frequency
of occurrence (Fi): number of fish that ingested one prey type i in relation to the total number of fished
which were analyzed, and (lll) biomass (Bi): compares one prey individual’s weight per type i to the

total weight of all prey individuals in percent.
n;

N;
1) F,(%) = % 100

111 B;(%) = ﬁ x 100
RB
n = Amount of prey items
i = Number of prey types i
N = Number of fishes with full stomachs
N; = Abundance of prey type i
RB = Reconstructed prey biomass

RB; = Proportion of prey type i in reconstructed prey biomass

Single index approaches for describing the diet can be biased [63], since they fail to capture the
significance of each food component within the diet. The relative importance of prey taxa varies when
only using single indices such Bi, Ni, or Fi alone. Small prey such as copepods occur in large numbers
and are therefore represented with larger abundances (Ni) in the diet, while larger prey such as fish
represent a larger biomass (Bi) although they occur in lower quantities. Using only the abundance of
prey would overestimate the importance of the small prey ingested. To address this limitation, the
Index of Relative Importance (IRl) proposed by George and Hadley [64] was calculated. The IRI
combines multiple dietary metrics, providing a more comprehensive and accurate assessment of the

importance of food components in the diet.

(Bi+N; + F)
IRI (%) = 100
(%) 2B+ N; +F) x10
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The diet breadth (DB) indicates whether a species is a feeding generalist or specialist and was
calculated following Levins [65]. The value of the DB can range from 1 to n. A high DB corresponds with
higher diversity in the diet, and when DB is equal to 1 only one type of food was consumed. The Levins’
DB not only provides information on the number of food components consumed but also about the

distribution or evenness of the diet.

pi = Proportion of prey item i

n = Total number of prey types

Dietary overlap (Cy) was calculated with Schoener’s [66] equation.

n
ny = z min(py;; pxy)
i=1

pxi;pxy = Proportion of usage (IRl) for the resource i by the fish species x and y

n = Number of prey species

2.5. Statistical Analysis

Non-metric multidimensional scaling (NMDS) was conducted on untransformed diet composition data
(IR1%) from each station using Bray—Curtis dissimilarities for the four keystone fish species. From the
individual specimens, subsamples were created for each station: for smelt, 10 specimens per
subsample, for pikeperch, 2 specimens per subsample, for ruffe, 5 specimens per subsample, and for
flounder, 3 specimens per subsample. Analysis of similarities (ANOSIM) and later post hoc pairwise
ANOSIM were conducted (999 permutations) to identify differences between groups (stations). For
the pairwise comparisons, p-values were corrected via the Hochberg adjustment. Similarity percent
(SIMPER) was conducted in order to determine the contribution of each prey taxon to the variation
found in the NMDS ordination. The NMDS, ANOSIM, and SIMPER analyses were performed using the
R-package ‘vegan’ (R version 4.1.2) [67].
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3. Results

3.1. Food Composition and Diet Breadth

In the Elbe estuary, smelt (n = 643) with a size range from 75 to 226 mm, pikeperch (n = 84) with a size
range from 76 to 190 mm, ruffe (n = 199) with a size range from 50 to 220 mm, and flounder (n = 287)
with a size range from 24 to 383 mm were used for dietary analyses. In the Odra estuary, smelt (n =
102) from 76 to 210 mm, pikeperch (n = 121) from 105 to 219 mm, ruffe (n = 194) from 72 to 198 mm,
and flounder (n = 118) from 84 to 339 mm were used. The highest diet breadth (DB) was estimated for
flounder (6.8), followed by smelt (5.6), pikeperch (4.9), and ruffe (3.2). In the Odra, estuary flounder
(6.5) was again the keystone species with the highest DB, followed by pikeperch (4.9), ruffe (4.2), and
smelt (3.0). Pikeperch and flounder had similar DB in both estuaries, while for smelt the DB in the Elbe
estuary was larger than in the Odra estuary. In contrast, the DB of ruffe was larger in the Odra estuary

than in the Elbe estuary.

For pikeperch from the Elbe estuary (Table 2.1), fish as prey displayed 48.4 2% in total (index of relative
importance = IRI, all following values referring the food composition are displayed as IRIl). Most
important prey species were smelt (34.31 %) and herring (6.27 %), while sprat (1.49 %), ruffe (2.99 %),
and sand goby (1.44 %) were of lesser importance. The second most important prey taxon were mysids
(23.65 %), mainly displayed by Neomysis integer (23.06 %). Amphipods displayed a moderately
important prey taxon with 13.06 % (Gammarus spp.), together with decapods (14.88 %) (Crangon

crangon: 5.13 % and Palaemon longirostris: 9.75 %).
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Table 2.1: Food composition (% IRI) of keystone fish species in the Elbe estuary. Single prey components were categorized
by their affiliation to higher groups (mesozooplankton, macrozoobenthos, zoobenthos, nekton). Higher groups in
capitalized letters display the sums of the individual related prey taxa.

Pikeperch Smelt Ruffe Flounder

Diet breadth (B) 4.9 5.6 3.2 6.8
MESOZOOPLANKTON 11.77 34.36
COPEPODA 9.82 34.36
Eurytemora affinis 4.77 16.59
Calanoida indet. 17.77
Cyclopoida 0.20

Copepoda-eggs 2.16
Copepoda-Spermatophores 0.75

Copepoda indet. 1.94

CLADOCERA 1.95

Daphnia galatea 0.78

Daphnia longispina 0.56

Daphnia spp. 0.50

Bosmina longirostris 0.11

Cladocera indet. 0.08
MAKROZOOPLANKTON & 51.56 70.60 91.62 34.58
mainly HYPOZOOBENTHOS 23.65 19.40 23.11 17.01
Neomysis integer 23.06 15.82 21.19 17.01
Mesopodopsis slabberi 0.59 3.58 1.92
AMPHIPODA 13.03 38.84 49.57 10.93
Gammarus spp. 13.03 35.61 48.43 10.93
Corophium volutator 323 114
INVERTEBRATE EGGS 0.76 2.89
DECAPODA 14.88 11.60 18.94 3.75
Crangon crangon 5.13 6.21 13.15 3.75
Palaemon longirostris 9.75 4.67 4.49
Eriocheir sinensis 0.72 1.30
ENDOZOOBENTHOS & 130 1.85 24.67
BIVALVIA 0.20 0.59
Mya sp. 0.59
Pisidium spp. 0.20
ISOPODA 046 0.17 8.00
Idotea balthica 6.56
Idotea emarginata 0.07 0.17

Idotea granulosa 0.09

Sphaeroma sp. 1.44
Isopoda indet. 0.30

ANNELIDA 0.72 2.19
Hedliste diversicolor 0.48

Annelida indet. 0.24

Tubificidae 2.19
INSECTA 0.12 148 13.89
Chaoborus sp. 0.07

Chironomidae 0.05 0.63 13.89
Insecta indet. 0.85
NEKTON (Fish) 48.42 16.27 6.50 6.34
Osmerus eperlanus 34.13 11.79 6.50

Clupea harengus 6.27 3.27

Sprattus sprattus 1.49

Clupeidae 0.56

Gymnocephalus cernua 2.99 0.52

Sander lucioperca 0.05

Pomatoschistus microps 0.06

Pomatoschistus minutus 1.49 0.58 1.44
Merlangius merlangus 0.65
Platichthys flesus 1.49

Fish Eggs 4.25
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Table 2.2: Food composition (% IRI) of keystone fish species in the Odra estuary. Single prey components were categorized
by their affiliation to higher groups (mesozooplankton, macrozoobenthos, zoobenthos, nekton). Higher groups in
capitalized letters display the sums of the individual related prey taxa.

Pikeperch  Smelt Ruffe Flounder

Diet breadth (B) 4.9 3.0 4.2 6.5
MESOZOOPLANKTON 2.15
CLADOCERA 2.15

Daphnia longispina 2.15
MAKROZOOPLANKTON &  41.70 69.50 24.80 15.31
MYSIDA 15.27 53.03 2.64 246
Neomysis integer 15.27 53.03 2.64 246
AMPHIPODA 7.68 2.07 19.5 454
Gammarus spp. 7.68 2.07 11.95 4.54
Corophium volutator 7.55
INVERTEBRATE EGGS 0.49

DECAPODA 18.75 13.91 2.66 831
Crangon crangon 18.09 13.91 1.30 4.02
Palaemon longirostris 0.66

Eriocheir sinensis 1.36

Carcinus maenas 4.29
ENDOZOOBENTHOS & 3.40 7.44 72.82 84.72
GASTROPODA 0.43 0.36 232 1171
Potamopyrgus jenkinsi 0.43

Hydrobiidae 0.36 232 1171
BIVALVIA 0.74 0.40 2.70 48.03
Mya arenaria 0.74

Mya sp. 30.91
Mytilus edulis 7.95
Cerastoderma edule 8.85
Mysella bidentata 0.40

Limecola balthica 0.32
Bivalvia indet. 2.70
THECOSTRACA 0.53
ISOPODA 1.49 156 3.77
Idotea balthica 0.40 3.77
Idotea granulosa 1.16

Idotea chelipes 1.49

ANNELIDA 1.75 5.19 25.50 13.58
Hediste diversicolor 1.75 5.19 25.50 13.58
INSECTA 0.48 40.74 7.10
Chironomidae 0.48 39.85 7.10
Insecta indet. 0.89
NEKTON (Fish) 54.89 23.07 0.28
Osmerus eperlanus 0.28

Clupea harengus 1.75

Gymnocephalus cernua 0.58

Pomatoschistus minutus 14.30

Pomatoschistus spp. 17.15 8.77

Neogobius melanostomus  0.97

Alburnus alburnus 0.76

Rutilus rutilus 33.68

Amphipods (38.84 %) were the most important prey organisms for smelt, which was mainly displayed
by Gammarus spp. (35.61 %). The second most important food taxon for smelt were other fishes (16.26
%), which consisted mainly of other smelt (11.79 %, cannibalism) and herring Clupea harengus (3.27
%). The third most important prey taxon were mysids, displayed mainly by Neomysis integer (15.82 %).
Copepods were also an important prey of smelt (9.82 %), which mainly consisted of Eurytemora affinis.
In smaller amounts, other benthic invertebrates such as the annelid Hediste diversicolor and isopods

(Idotea emarginata, Idotea granulosa) with 0.46 % were consumed by smelt.
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For ruffe, amphipods (49.57 %) were the most important prey organisms (Gammarus spp.: 48.43%).
These were followed by mysids (23.11 %), consisting mainly of Neomysis integer (21.19%), decapods
with 18.94 % (Crangon crangon: 13.15 %, Palaemon longirostris: 4.49 %, Eriocheir sinensis: 1.30 %),
and fish with 6.50 % (smelt). Insect larvae (Chironomidae: 0.63%, insect larvae indet. 0.85%) were of

minor importance for ruffe from the Elbe estuary.

For flounder, copepods (34.35 %) were the most important prey taxon, which were followed by mysids
with 17.01% (Neomysis integer), insect larvae with 13.89 % (Chironomidae), amphipods with 10.93 %
(Gammarus spp.), isopods 8.00 % (Idotea balthica: 6.56 %, Sphaeroma sp.: 1.44 %), fish 4.90 % (fish-
eggs: 4.25%, Merlangius merlangus: 0.65 %). Bivalves were of minor importance 0.59% (Mya sp.) for

flounder from the Elbe estuary and gastropods were not consumed at all.

In the Odra estuary (Table 2.2), pikeperch fed mostly on other fishes, with a proportion of 54.89%
consisting mainly of Rutilus rutilus (33.68 %) and Pomatoschistus spp. (17.15 %). The second most
important prey taxon was displayed by decapods (18.75 %), which consisted almost exclusively of
Crangon crangon (18.09 %). Mysids with 15.27 % were exclusively displayed by Neomysis integer.
Amphipods, displayed by Gammarus spp. (7.68 %), were of minor importance in the diet of pikeperch

from Odra estuary.

3.2. Spatio-Temporal Variability of Food Composition Within the Estuaries
3.2.1. Pikeperch

Polygons representing the stations in the NMDS ordination showed overlap for the samples from all
stations in the diet composition of pikeperch (Figure 2.2). The pairwise ANOSIM indicated that
significant differences existed solely between stations ST (Elbe) and GB (Odra) (R = 0.721, p = 0.028).
In the Elbe estuary, the proportion of piscivorous diet of pikeperch was largest in the lower and upper
sections (MG: 75.9 %, ML: 59.9 %), while in the middle section (ST: 12.5 %) the amount of fish was
smallest (Figure 2.3). In the middle section, the importance of mysids (47.6 %) and amphipods (30.8 %)
was substantially greater compared to the other regions in the Elbe estuary. In the Odra estuary, the
proportion of fish in the diet of pikeperch was largest in the middle section (GB: 81.8 %), compared to
the upper section (OL: 59.7 %) and lower section (PB: 35.7 %). In contrast, the proportion of decapods
in the diet of pikeperch was higher in the lower section (35.2 %) of the Odra estuary, while in the upper
(4.1 %) and middle section (2.1 %), the proportions of decapods were substantially smaller. In both
estuaries, the proportion of fish in the diet of pikeperch was higher during the summer compared to
the autumn samples (Figure 3). In autumn, the proportion of decapods and mysids increased in both

estuaries, whereby in the Odra estuary the general diversity of ingested prey taxa increased.
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Figure 2.2. NMDS ordination on food composition, calculated from the index of relative importance (% IRI) on Bray—Curtis
dissimilarity matrix (top): ANOSIM (R = 0.086, p = 0.0301) of juvenile pikeperch (Sander lucioperca) from Elbe (n = 84) and
Odra (n =121) estuaries. Elbe estuary (left): Medemgrund (MG), Brunsbiittel (BB), Schwarztonnensand (ST), Twielenfleth (TF)
and MuUhlenberger Loch (ML). Odra estuary (right): Pomeranian Bay (PB), Greifswald Bodden (GB) and Odra lagoon (OL).
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Figure 2.3. Seasonal variation in the prey composition of juvenile pikeperch (Sander lucioperca). (Left) Elbe estuary (summer

n =76, autumn n = 8), (right) Odra estuary (summer n = 75, autumn n = 46).

3.2.2. Smelt

The NMDS ordination of the diet composition of smelt revealed that most stations in the ordination
space overlap, except for the PB station which is orientated separately from the other stations (Figure

2.4). Significant dissimilarities in food composition were found at the stations in between the two
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estuaries: BB vs. PB (R = 0.659, p = 0.012), ML vs. PB (R = 0.733, p = 0.012), ST vs. PB (R=0.703, p =
0.012), and TF vs. PB (R = 0.684, p = 0.012). In the Elbe estuary, copepods were absent in the diet of
smelt caught at the lower section (MG). The proportion of copepods in the diet of smelt gradually
increased in the upstream direction: BB (1.5 %), ST (7.3 %), TF (15.3%), ML (29.2 %). Amphipods
reached the highest proportion of the IRl in the middle section at ST (47.5 %). The importance of mysids
in the diet of smelt was largest at the lower sections (MG: 25. 3%, BB 26.7 %). Isopods (MG: 0.6 %, BB:
1.6 %) and annelids (MG: 1.0 %, BB: 1.3 %) were exclusively found in the diet of smelt from the lower
sections. Cladocerans were exclusively found in samples from the middle and upper sections of the
Elbe estuary. In the Odra estuary smelt could only obtained from the lower section (PB), so the overall
description of the food composition corresponds to “3.1 Food composition and diet breadth”. In the
Elbe estuary, seasonal differences in the food composition of smelt were found. In particular, during
spring (45.5 %) and autumn (41.5 %), the percentages of amphipods were higher in the diet of smelt.
In spring and autumn samples (Figure 2.5), amphipods were the dominant prey, while mysids
dominated in summer samples with 40.0 %, and copepods were the most important prey in winter
(43.5 %). In the Odra estuary, samples from summer and autumn were available. Notably, the amount
of fish in the diet of smelt was larger in summer (49.7 %) compared to autumn (14.7 %). On the
contrary, mysids were less important as a food resource during summer and had increased later in the

autumn season.
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Figure 2.4. NMDS ordination on food composition, calculated from index of relative importance (% IRI) on Bray—Curtis

dissimilarity matrix (top): ANOSIM (R =0.231, p < 0.001) of smelt (Osmerus eperlanus) from Elbe (n = 660) and Odra (n = 103)
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estuaries. Elbe estuary (left): Medemgrund (MG), Brunsbuttel (BB), Schwarztonnensand (ST), Twielenfleth (TF), and
Mihlenberger Loch (ML). Odra estuary (right): Pomeranian Bay (PB), Greifswald Bodden (GB), and Odra lagoon (OL).
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Figure 2.5. Seasonal variation in the prey composition of smelt (Osmerus eperlanus). (Left) Elbe estuary (spring n = 183,

summer n = 100, autumn n = 235, winter n = 125), (right) Odra estuary (summer n = 43, autumn n = 59).

3.2.3. Ruffe

The NMDS ordination shows that samples from the Elbe estuary were grouped in clusters, while being
separated from samples of the Odra estuary. Samples from the Odra estuary were less overlapping
compared to samples from the Elbe estuary (Figure 2.6). Pairwise ANOSIM shows significant
dissimilarities between all stations between Elbe and Odra estuaries: BB vs. GB (R = 0.781, p = 0.036),
BB vs. PB (R=0.913, p=0.016), BB vs. OL (R =0.755, p = 0.028), ST vs. GB (R = 0.848, p = 0.016), TF vs.
GB (R =0.702, p = 0.049), ML vs. GB (R = 0.624, p = 0.016) ML vs. PB (R = 0.926, p = 0.028), ML vs. OL
(R=10.659, p=0.049), ST vs. PB (R=0.947, p = 0.016), TF vs. PB (0.856, p = 0.049), ST vs. OL (R = 0.834,
p =0.016), TF vs. OL (R = 0.605, p = 0.049). Within the Elbe estuary, ML vs. ST (R = 0.305, p = 0.049),
was the only comparison that showed significant dissimilarities, while within the Odra estuary, PB vs.
OL (R=0.784, p=0.016), and GB vs. PB (R = 0.663, p = 0.036) were significantly different. For ruffe in
the Elbe estuary, amphipods were the most important prey organisms at all stations, while in the
upstream regions, the IRl of amphipods was slightly elevated (ML: 63.1 %, TF: 55.8 %). Fish in the diet
of ruffe increased alongside the salinity gradient, with highest IRl in the upstream regions (ML: 15.1 %,
TF: 10.5 %). Insect larvae were only found in small amounts in the middle (2.4 %) and upper (2.0 %)

region of the Elbe estuary in the diet of ruffe.

Decapods were important prey organisms from the middle to the lower sections. In the Odra estuary,
insect larvae were the most important food resource of ruffe. Here, the IRl was highest in the upper
region (OL: 66.9 %) and declined alongside the salinity gradient, with 39.9 % in the middle region (GB)

and 4.5 % in the lower region (PB). In contrast, the most important prey in the lower region were
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annelids, which decreased along the salinity gradient when moving upstream: middle region (21.4%),
upper region (no annelids found in the diet). Amphipods were the most important prey organisms
during all four seasons (Figure 2.7), although in slightly lower amounts during summer (46.8 %) and
autumn (45.0 %) compared to spring (54.5 %) and winter (53.9 %). Seasonal differences in the diet of
ruffe were most pronounced in the winter season, while in all other season, mysids were an important
part of the diet; during winter, no mysids were found. Ruffe consumed other fish throughout the year,
except during winter. In the Odra estuary, the amount of insect larvae was particularly lower in autumn
(32.4 %), while in the same season, the proportion of annelids (37.4 %) was highest. Amphipods were
consumed throughout all seasons, and the proportion was largest in winter (34.9 %) and smallest

during summer (6.7 %).
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Figure 2.6. NMDS ordination on food composition, calculated from index of relative importance (% IRI) on Bray—Curtis
dissimilarity matrix (top): ANOSIM (R = 0.549, p < 0.001) of ruffe (Gymnocephalus cernua) from Elbe (n = 198) and Odra (n =
194) estuaries. Elbe estuary: Medemgrund (MG), Brunsbittel (BB), Schwarztonnensand (ST), Twielenfleth (TF), and

Mihlenberger Loch (ML). Odra estuary (right): Pomeranian Bay (PB), Greifswald Bodden (GB), and Odra lagoon (OL).
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Figure 2.7. Seasonal variation in the prey composition of ruffe (Gymnocephalus cernua). (Left) Elbe estuary (spring n = 64,
summer n =71, autumn n = 52, winter n = 13), (right) Odra estuary (spring n = 53, summer n = 26, autumn n = 81, wintern =

34).

3.2.4. Flounder

Food composition reflected by the NMDS ordination showed that most samples of flounder were
partly overlapping while some were not. In particular, samples from the Odra estuary (PB and GB) were
separated in the ordination space (Figure 2.8). Considerable differences were found between stations
in the Elbe and Odra estuaries: BB vs. PB (R = 0.958, p = 0.018), MG vs. GB (R = 0.448, p = 0.011), ML
vs. GB (R = 0.633, p = 0.016), MG vs. PB (R = 0.876, p = 0.011), and ML vs. PB (R = 0.954, p = 0.032).
Within the Elbe estuary, MG vs. ML (R =0.598, p =0.018) and MG vs. TF (R = 0.641, p = 0.032) revealed
significant dissimilarities, while in the Odra estuary dissimilarities of GB vs. PB (R = 0.405, p = 0.018)
were significant. For flounder in the Elbe, the proportion of copepods in the diet was smallest in the
lower regions of the estuary (MG: 4.8 %, BB: 3.0 %). In the upstream direction, the proportion of
copepods successively increased: ST (37.5 %), TF (50. %), and ML (67.3 %). Insects in the diet were only
found in the upstream region (TF: 38.3%, ML 25.0%), while mysids were found in the diet of flounder
caught at the middle and lower regions of the estuary. In the lower region at BB, the mysids displayed
a proportion of 48.5 %. Isopods were found in small amounts in all regions, except for the most
upstream station, ML. In the Odra estuary, in the lower region, bivalves were the dominant food
resource (PB: 64.3 %). In the middle section, the food composition was not as dominated by one food
resource compared to the lower region (Figure 2.9). In the upper regions of the Odra estuary (OL), no
flounder were captured, hence no feeding data were available. At GB, bivalves (25.5 %) were the most
important prey, followed by annelids (23.7 %) and insects (17.0 %). The proportion of mysids in both
regions was comparatively small, with 3.9 % in the lower region and 0.5 % in the middle region. Isopods

were of larger importance for flounder from the middle section (7.6 %) compared to the lower section
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(1.0 %). The diet composition of flounder from the Elbe estuary displayed high seasonal variability
(Figure 2.9). During spring (47.1 %) and winter (48.0 %), copepods were the most important prey
organisms. The proportion of mysids was substantially larger in spring (22.8 %), summer (42.6 %), and
autumn (21.6 %) than in winter (3.6 %). Insect larvae were predominantly found in flounders from
autumn, with an IRl of 53.7 %, compared to summer (12.5 %), and with no insects during spring and
winter. Amphipods, in contrast, were only found in Elbe flounder caught in spring (15.7 %) and winter
(17.4 %). In the Odra estuary, high seasonal variability was found in the diet of flounder. Bivalves were
predominantly found in flounders from summer (63.0 %) and autumn (54.8 %). Isopods were an
important food resource during winter (26.8 %) compared to the other seasons (spring: 3.7 %, summer:
3.8 %, autumn: 1.1 %). Annelids were especially important prey organisms during spring (45.6 %) and

winter (31.7 %), while decapods were particularly important during autumn (18.2 %).
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Figure 2.8. NMDS ordination on food composition, calculated from index of relative importance (% IRI) on Bray—Curtis
dissimilarity matrix (top): ANOSIM (R = 0.646, p < 0.001) of flounder (Platichthys flesus) from Elbe (n = 281) and Odra (n = 94)
estuaries. Elbe estuary (left): Medemgrund (MG), Brunsbittel (BB), Schwarztonnensand (ST), Twielenfleth (TF), and
Miihlenberger Loch (ML). Odra estuary (right): Pomeranian Bay (PB), Greifswald Bodden (GB), and Odra lagoon (OL).
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Figure 2.9. Seasonal variation in the prey composition of flounder (Platichthys flesus). (Left) Elbe estuary (spring n = 81,
summer n =62, autumn n = 81, winter n = 63), (right) Odra estuary (spring n = 16, summer n = 73, autumn n = 26, winter n =

3).

3.3. Dietary Overlap in the Elbe and Odra Estuaries

Generally, the dietary overlap between the keystone species was substantially larger in the Elbe
estuary than in the Odra estuary (Figure 2.10). This was true for all species combinations except for
ruffe/flounder (Elbe Cxy = 0.325, Odra Cxy = 0.319) and pikeperch/smelt (Elbe Cxy = 0.553, Odra Cxy =
0.472), in which the dietary overlap was only slightly larger in the Elbe compared to the Odra. A high
similarity in diet composition was found between ruffe and smelt (Cxy = 0.703), which was the highest
calculated dietary overlap for the keystone fish species compared in pairs in the Elbe estuary. In the
Oder estuary, the dietary overlap between the keystone fish species, especially ruffe and smelt, was

substantially smaller (Cxy = 0.119).
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Figure 2.10. Dietary overlap (Schoener’s index) of keystone fish species from Elbe and Odra estuaries. Higher dietary overlap

is indicated by thicker lines.

46



Chapter 2 - Feeding ecology

4, Discussion

4.1. Spatial Feeding Variability

Notably, pikeperch consumed less fish and more invertebrates (amphipods, mysids, decapods) at
station ST, compared to the other stations. The reduced consumption of fish at ST may in turn be a
consequence of the lower food availability of fish (smelt), especially in the middle region of the Elbe
estuary. The preference of pikeperch for smelt as a prey species of pikeperch in the Elbe estuary is
consistent with findings of Kafemann and Thiel [68]. In a previous study, we found that smelt densities
were much lower in the middle region (ST: 6905 individuals per 1 Mio m3) compared to the upper
region (ML: 32,307 individuals per 1 Mio m3) and the lower region (MG: 30,307 individuals per 1 Mio
m3) [22]. Koll et al. [69] showed that conditions and food supply were unfavorable for juvenile
pikeperch in the middle estuary. At the station ST, the condition factor (Fultons’ body condition factor
K) was lower compared to the other stations, and pikeperch expressed starvation on a molecular level
(transcriptomes). This also reflects the findings of van Densen [70], who described a large growth
difference between piscivorous and non-piscivorous juvenile pikeperch. Juvenile pikeperch appear to
be flexible predators that specialize in different prey taxa, preferably fish, depending on the food
resources of the ecosystem they inhabit. Although a piscivore diet is important for juvenile pikeperch
regarding their survival and growth, the lack of preferred prey organisms can lead to juvenile pikeperch
feeding predominantly on less nutritious taxa such as mysids (Neomysis integer) and amphipods

(Gammarus spp.).

The food composition of smelt in the Elbe and Odra estuaries differed primarily in terms of the
proportions of fish, mysids, and gammarids. The smelt in the Elbe estuary consumed fewer fish (Elbe
estuary: IRl = 16.26 %, Odra estuary: IRl = 23.07 %), fewer mysids (Elbe estuary: IRl = 19.4 %, Odra
estuary: IRl = 53.03 %), and more gammarids (Elbe estuary: IRl = 35.61 %, Odra estuary: 2.07 %) than
in the Odra estuary. In smelt, a gradual change in diet along the longitudinal gradient of the Elbe
estuary was observed, with copepods becoming more important upstream, while the importance of
mysids declined. Eurytemora affinis displays the most abundant copepod species in the Elbe estuary
and was found in the highest densities in the freshwater zone in southern marginal areas close to ML
[71]. Temperature has a larger affect on the reproductive parameters of Eurytemora affinis compared
to salinity, as population densities were described to decrease drastically when water temperature
exceeds 20° C[72,73]. The primary production in the maximum turbidity zone (MTZ) of the Elbe estuary
was low, with a year-round low quality of particulate organic matter (POM) [74,75]. As a result, there
is limited food available for Eurytemora affinis in this region. The high turbidity results in rather
unfavorable living conditions for phototrophic organisms, where phagotrophy provides crucial

advantages for mixotrophic flagellates [76], leading to trophic lengthening [75]. Enriched 815N in
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juvenile smelt was found in the MTZ but not in adults, which means that the adults avoid areas with
inappropriate environmental conditions and limited food availability [75]. In the diet of smelt in the
Eru Bay (Gulf of Finland), amphipods and mysids were the most common prey, while fish in the diet
were important prey organisms, particularly for larger smelt from August to October [77]. In the Gulf
of Riga, juvenile smelt strongly selected the cladoceran Bosmina longispina as prey. It was concluded

that the fish may switch to consume other prey organisms when the preferred food is limited [78].

Fish in the diet of ruffe increased with lower salinities, with the highest IRl observed in the upstream
regions. Insect larvae were only found in small amounts in the diet of ruffe in the middle and upper
regions of the Elbe estuary. Decapods were important prey organisms from the middle to the lower
sections but not in the upper estuary. In the Odra estuary, insect larvae were the most important food
resource for ruffe. The IRl was highest in the upper region and declined with higher salinities in the
middle region (GB). In the lower region (PB) of the Odra estuary, insect larvae were of minor
importance in the diet of ruffe. The most important prey in the lower region were annelids, which
decreased in the upstream regions. This is due to the fact that insect larvae and the annelid Hediste
diversicolor have a certain salinity requirement [79]. In non-tidal estuaries such as the Couronian
Lagoon, adult ruffe prey on juvenile smelt and perch, alongside meso- and macrozooplankton.
Similarly, in the DarR-Zingst Bodden, ruffe also consume nine-spined sticklebacks (Pungitius pungitius)
[80]. In other freshwater habitats (e.g., Lake Vortsjarv, Lake Aydat), chironomid larvae and pupae were

the dominant prey of ruffe [81,82].

In the Elbe estuary, copepods became more prominent in the diet of flounder in the middle and upper
regions, likely due to the preference of Eurytemora affinis for the freshwater zone in the southern
marginal areas [71]. As flounders are migratory species [83], they move through these regions where
copepods are more abundant. In the Odra estuary, bivalves (Mya arenaria) were the dominant prey in
the lower region (PB), where the Odra Bank is located. This shoal, characterized by sandy sediments,
supports a benthic community dominated by Mya arenaria [84]. A proportion of benthic food
components (approx. 50%) has also been determined previously for the Elbe estuary [85] and has also
been found in other estuaries, such as the Schlei [86], the Westerschelde [87], the Humber estuary
[88], the Severn estuary [89], and the Tagus estuary [90]. This shows that the feeding preference of
flounder from the Elbe estuary for copepods and zoobenthic taxa aligns with findings from other
European estuaries. In the Odra estuary, no copepods were consumed, while zoobenthic taxa
accounted for a higher proportion of the IRl (84.72%), indicating a stronger preference for benthic prey
in this system. Flounder in the northern Baltic Sea (Aland archipelago) also showed strong seasonal
variations in the diet of flounder [91]. In the south western Baltic Sea, the main prey of flounder was

Limecola balthica [92].
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Differences in food composition between the two estuaries can be attributed to the prey availability
and generalist feeding behavior of the keystone species, since they exploit a wide range of prey
resources. Consequently, fluctuations in prey availability across different locations result in distinct
food compositions. The Elbe and Odra estuaries are ecologically and hydrologically quite different: The
Elbe is a mesotidal estuary with strong tidal influences and high flow velocities, which shape its
ecological conditions. In contrast, the Odra estuary is microtidal, with minimal tidal influence. Its
lagoon-like structure, rather than a prominent channel, results in larger water residence time in the
OL [93]. This creates conditions that support different prey species, whereas in the Elbe estuary, tidal
currents and daily mixing result in fluctuations in salinity. In the Odra estuary, for example, bivalves
are prevalent on sandbanks, while insects reproduce in large numbers under the oligohaline conditions

of the OL.

4.2. Temporal Feeding Dynamics

Seasonal variations in the food composition for pikeperch were more pronounced in the Odra estuary.
In the Elbe estuary, food compositions between summer and autumn were quite similar. In the Odra
estuary, pikeperch consumed less fish and a larger variety of prey taxa, including benthic invertebrates
such as annelids, gastropods, and isopods during autumn. Additionally, the proportion of decapods
was substantially larger in autumn. This suggests that the preferred fish species were less available in
autumn than in summer. Studies conducted in the Kiel Canal (NOK) by Kafemann and Thiel [68] found
that pikeperch experienced reduced growth because the NOK lacked a sufficiently high supply of fish
as their preferred food, including herring [94] and smelt in particular [70,95]. In the 2021-2022 period,
pikeperch consumed gammarids at nearly all stations (except MG at the river mouth), while gammarids

were not found at all in the food of pikeperch in the Elbe estuary during the 1992-1993 period [70].

In the Elbe estuary, seasonal differences in the food composition of smelt were most pronounced in
winter, with copepods being the dominant prey. This suggests a significantly higher availability of
copepods during late winter. In contrast, in the Odra estuary, fish were the most important prey during
summer but were replaced by mysids in autumn. Smelt fed predominantly on gobies from the genus
Pomatoschistus, which occur most abundantly during late summer months in the Baltic. Pikeperch [96]
showed that the biomass of Pomatoschistus minutus in the Baltic peaked in August/September and
decreased substantially later in October. As the availability of Pomatoschistus sp. as a food resource
decreased in autumn, smelt shifted their main diet to mysids. Compared to the findings from Thiel
[42], a lower proportion of preyed upon smelt were found in the food of smelt (cannibalism) in the

Elbe estuary in the 2021-2022 period than in the 1991-1993 period (IRl = 11.79 % vs. IRl = 23.74 %).
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Overall, fish made up a substantially lower proportion of the smelt’s diet composition in 2021-2022
than in 1991-1993 (IRl = 16.27 % vs. IRl = 26.03 %). Similarly to the pikeperch, the proportion of the
consumed gammarids in 2021-2022 (IRl = 35.61 %) was notably higher than in 1991-1993 (IRl = 3.08
%), while the proportion of the Neomysis integer was similarly high during both periods (IRl 2021—
2022: 15.82 %, IRl 1992/1993: 14.31 %). The proportion of mesozooplankton, especially that of
calanoid copepods of the species Eurytemora affinis, was also highly variable. The number of copepods
in the diet of smelt in the Elbe estuary from 1991 to 1993 was IRl = 11.78 % [42], while the percentage
during 2021-2022 was significantly smaller (IRl = 4.77 %). Ladiges [97] described smelt from the Elbe
estuary as planktonic feeders, which are highly dependent on Eurytemora affinis but periodically
consume benthic invertebrates. It was further stated that between November and March, benthic
organisms were exclusively consumed, mainly displayed by the genus Gammarus, and it was concluded
that smelt undergo a hunger period in winter, during which they shift to less desirable prey organisms
such as gammarids. In the samples from 2021 to 2022, gammarids were a major food component all
year round, indicating a limitation in the preferred food resources for smelt in the Elbe estuary. The
primary production in the maximum turbidity zone (MTZ) of the Elbe estuary is low, with year-round
low quality of particulate organic matter (POM) [74,75], providing limited food resources for grazing
copepods. Hauten [75] found enriched 615N in juvenile smelt in the MTZ but not in adults and
concluded that the adults avoid areas with inappropriate environmental conditions and limited food
availability. The consumption of indigestible objects such as small pieces of wood, stones, plant matter,
and sand was observed most frequently during winter in our samples, which was also described by

Ladiges [97] during starvation periods.

The seasonal diet variation in ruffe was not as pronounced as in the other keystone species in both
estuaries. Across all four seasons, a similar proportion of amphipods was consumed, while in winter,
ruffe did not feed on mysids. In the Odra estuary, especially during autumn, ruffe fed on annelids. In
summer, ruffe from the Odra estuary fed on cladocerans. Long-term studies in the Baltic Sea have
shown that temperature and salinity influence the abundance of cladocerans, and that densities were
highest during summer [98]. By comparing the recently analyzed diet of ruffe with previous studies
from the Elbe estuary, further indications of a change in food availability were found: Thiel [42]
determined very different food compositions for ruffe in this area for the 1991-1993 period. In that
period, ruffe from the Elbe estuary consumed a relatively high proportion of copepods of the species
Eurytemora affinis (IRl = 26.21 %), while in our study, no copepods were found in the diet of ruffe from
2021 to 2022. In the 1990s, gammarids were consumed by ruffe, with an IRl = 7.55%. In the samples
from 2021 to 2022, samples were estimated to contain a substantially larger proportion of gammarids
(IRI: 48.43 %). Amphipods have a sturdy cuticula, which is formed by chitin and calcium (ash, i.e.,

amount of inorganic non-combustible material), which makes them of lower nutritional value
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compared to other prey organisms with no cuticula (e.g., fish) or those with less sturdy cuticula (e.g.,
mysids). The study by Thiel [42] did not report fish in the diet of ruffe, which changed in the samples
from 2021 to 2022, where fish (smelt) were ingested by ruffe (IRl = 6.5 %).

The diet composition of flounder was the most variable among the keystone fish species, likely due to
its generalist feeding behavior [99]. In the Elbe estuary, copepods were a major dietary component
during spring and winter. In the Odra estuary, annelids made up a larger proportion of the diet in spring
and winter, while bivalves were more dominant in summer and autumn. This seasonal difference may
be due to a preference for annelids, as they lack a hard shell, making them easier to digest and a more
favorable prey option. Although the prey composition of flounder changed between these two periods,
the differences were not as pronounced as for the other species. In both periods, 1991-1993 [42] and
2021-2022, flounder consumed copepods in high proportions in the Elbe estuary (IRl 1991-1993:
41.29%, IR1 2021-2022: 34.36 %). The zoobenthos species changed from an IRl of 14.4 % (1991-1993)
toan IRl of 24.7 % (2021-2022). Both groups (copepods, zoobenthic taxa) together accounted for more

than 50 % of the IRI of flounder during both periods in the Elbe estuary.

Seasonal shifts in salinity, temperature, and freshwater inflow across seasons can induce the
reproductive cycles of both predators and prey. The temperature affects the metabolic rate of fish,
influencing their feeding requirements [100]. In contrast to the spatial salinity gradient in estuaries,
seasonal changes in river discharge affect the salinity gradient and therefore the distribution of biota.
The changes in river discharge also affect plankton dynamics [101], as higher discharge increases the
downstream transport of planktonic organisms. The salinity gradient in estuaries plays a crucial role in
shaping the composition and distribution of biota in estuaries [21,30,42,102]. Generalist feeders
opportunistically exploit a wide range of prey resources. As a result, fluctuations in prey availability
lead to temporal dietary shifts, with opportunistic predators adapting to seasonally abundant or
accessible food sources [103]. The combination of seasonal shifts in temperature, salinity, and river
discharge can trigger spawning and recruitment dynamics, which shape the fish composition
[21,30,32,104]. In the Elbe estuary, the spawning migration of smelt in late winter is induced by the
increased river discharge [105]. By comparing the food composition of keystone fish species from the
Elbe estuary with historical data, a shift from a predominantly plankton-based food web to a more
benthos-based food web is observed. This transition could be an indication of possible responses to
shifting environmental conditions, since the Elbe estuary has a long history of anthropogenic

interventions.

Hypoxia has been shown to affect feeding behavior in several fish species [106,107,108], primarily
reducing foraging intensities and metabolic rates, which leads to growth slowing. The oxygen situation
in the Elbe estuary has been documented by several authors within the last 40 vyears
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[21,29,32,109,110]. Especially in the Hamburg Port region (upper estuary), severe hypoxic events have
occurred. Although the oxygen situation improved compared to the 1980s [24], the situation has
declined in recent years leading to recurring hypoxic events. Especially during years with lower river
runoff, areas with low oxygen concentrations have extended upstream to Bunthauser Spitze at Ekm
609. These hypoxic events during summer months could have impaired the feeding activities of the
keystone fish species in the Elbe estuary. Accordingly, changes in feeding strategies can occur under
different turbidity conditions, with visual predators being more affected by turbidity than fish that feed
on benthic macroinvertebrates [111]. For visual predators, the turbidity of the water columns plays a
crucial role in their predation success. Increased turbidity could also be an explanation for the dietary
shift towards extended feeding on amphipods. Generally, pikeperch and smelt feed on more pelagic
organisms, particularly smelt, which primarily consume calanoid copepods, and pikeperch, which
primarily feed on other fish. However, as turbidity increased [24], visual predation might have been
impaired, causing a shift towards more benthic foraging. We suspect these shifts in food composition
were induced by the availability of prey, with accessibility changing foraging behavior as a result of

changed environmental conditions.

4.3. Dietary Overlap

Sharing an abundant food source is not necessarily direct evidence of competition, but it can be caused
by high abundances of certain prey organisms, leading to food selection [112]. Schoener’s values that
are higher than 0.6 or lower than 0.4 are considered to be of ecological relevance
[113,114,115,116,117]. When comparing the dietary overlaps of the key species in the Elbe estuary
from 2021 to 2022 to historical data from the 1990s [42], the general overlaps in the 1990s were
smaller overall, especially due to lower abundances of amphipods in the diet. The high dietary overlap
(0.703) of smelt and ruffe in the Elbe estuary is an indication for relevant competition. The findings
from the Elbe estuary indicate either a competition for amphipods due to a lack of other suitable prey

taxa or a general high availability of this prey taxon.
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5. Conclusions

The differences in the food composition of keystone fish species from Elbe and Odra estuaries were
probably primarily influenced by the availability of prey organisms. The preference for a piscivorous
diet was clear in pikeperch from both estuaries, although the availability of fish as prey fluctuated
within the estuaries. In the Elbe estuary, smelt fed extensively on amphipods, while in the Odra
estuary, amphipods played a subordinate role and mysids were the preferred food objects. Ruffe in
the Elbe estuary preferred mainly amphipods as prey, while in the Odra estuary, insect larvae and
annelids were the preferred food, with preferences changing along the salinity gradient. Flounder had
the most diverse diet, especially in the Elbe estuary, with preferences for copepods, mysids, and insect
larvae, while in the Odra estuary, bivalves, annelids, and gastropods were preferred. Seasonal
differences in food composition were driven by fluctuations in prey availability, leading to temporal
dietary shifts as opportunistic predators adapted to seasonally abundant or accessible food sources.
This effect was most pronounced in flounder, the most generalist feeders, as reflected by the highest
diet breadth (DB) among the keystone species. Compared to investigations from the 1990s, the food
composition in the Elbe estuary has shifted, with a notable increase in amphipods as a dietary
component in pikeperch, smelt, and ruffe. Therefore, the food composition of keystone fish species in
the Elbe estuary showed indications of shifting from a plankton-based (copepods, mysids) food web to
a more benthos (amphipods)-orientated system. Together with trophic elongation of the food chain,
these shifts could have been induced by changed environmental factors, which may further have
ecological impacts on phytoplankton and zooplankton that ultimately affect higher trophic levels,
promoting altered foraging behavior. The increased dietary overlap between species in the Elbe
estuary indicate an increased competition for existing food resources, which could be the result of

limited food availability in the Elbe estuary.
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Abstract

The Elbe and Odra estuaries are essential feeding grounds, nursery and growth areas for several fish
species. With climate change and human activities (e. g. channel management, wastewater sewage
and nutrient inputs) both estuaries have faced several anthropogenic stressors in the past and in the
present. Growth rates in fish often reflect the availability of suitable prey, with abundant food
resources and adequate nutrition typically promoting faster growth. This study aimed to analyse the
growth patterns of four keystone fish species to identify regional differences of two temperate
estuarine ecosystems (Elbe and Odra estuaries), and to compare current findings with past studies.
Length and age of representative samples of four keystone fish species, zander (Sander lucioperca),

smelt (Osmerus eperlanus), ruffe (Gymnocephalus cernua) and flounder (Platichthys flesus) were
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analysed, as these species occur in high numbers throughout both estuaries and play a key role in the
respective aquatic food webs. In addition to length measurements and age determinations, the size
ranges of individual age groups and the parameters of the von Bertalanffy growth function were
calculated for growth assessment. The asymptotic lengths of smelt, ruffe and flounder were larger in
the Elbe compared to the Odra estuary, while the growth coefficients were smaller in the Elbe. When
comparing the growth of zander, smelt and ruffe from the Elbe estuary with previous studies, it
becomes noticeable that the growth in the present study was inferior to values reported in past
studies. In particular, ruffe showed a lower asymptotic maximum length (L), and smelt had smaller
age-specific mean lengths compared to earlier studies. The growth of juvenile zander was even
distinguishable within the Elbe estuary, with reduced growth in the maximum turbidity zone in the
middle estuary. The slower growth observed at these sites appears to be associated with a reduced
intake of fish prey. Juvenile zander at these locations relied more heavily on invertebrates such as
amphipods, mysids and decapods compared to individuals from other stations. In the Odra estuary,
flounder displayed a smaller asymptotic length compared to other studies from the Baltic. Still,
flounder had a higher growth coefficient in contrast to studies from the Pomeranian Bay and Gulf of
Gdansk. Our findings indicate that changes in environmental conditions and food availability,
particularly in the Elbe estuary, are affecting fish growth patterns, highlighting the importance of

ongoing monitoring to identify the underlying causes.

1. Introduction

Estuaries belong to the most heavily anthropogenically altered habitats on earth (Haedrich, 1983;
Polgar et al., 1985; Whitfield, 1996; Cabral et al., 2001). These areas experience a high degree of
overlap from human activities, such as industry, shipping, fisheries, agriculture, nature conservation,
sports and tourism (Thiel, 2003). Given to the yet known relationships, key fish species are considered
suitable indicators for assessing the condition of estuarine ecosystems (e.g. Costa and Elliott, 1991;
Deegan and Garritt, 1997; Hughes et al., 1998; Whitfield and Elliott, 2002; Borja et al., 2004; Harrison
and Whitfield, 2006; Breine et al., 2007; Courrat et al., 2009). The Elbe and Odra estuaries are
influenced by a broad range of both natural and anthropogenic factors. They are characterized by
dynamics of natural environmental variables, such as salinity, temperature, oxygen and turbidity. Both
estuaries provide habitats for various plants and animal species and are among the most productive

aquatic ecosystems.

Estuaries have been recognized to harbour important habitats for fish for over a century, with their
significance in this function reaffirmed (Thiel, 2003). They serve primarily as feeding and nursery areas,

while they also play a role as spawning areas and migration routes (Elliott and Hemmingway, 2002;
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Thiel, 2011). Anthropogenic stressors such as the loss of shallow-water areas, maintenance dredging,
hydromorphological alterations, reduced river runoff, increased turbidity, cooling water extraction,
hypoxia, and pollution are suspected to disturb the function of estuaries as feeding and nursery
habitats (e.g. Gibson, 1994; Cabral et al., 2001; Whitfield and Elliott, 2002; Able, 2005; Gilliers et al.,
2006; Thiel, 2011; Theilen et al., 2025a).

Metrics such as general species abundance, spatial distribution, diet composition, feeding intensity
and growth can be evaluated in order to assess the ecosystem function and quality. Information on
growth is an important element for understanding the population dynamics of fish (Nesslage and
Pauly, 2022): The relationship between length and age reveals when an individual might become
susceptible to fishing mortality and if the fish had chances for reproduction when data on maturity is
available. In fisheries, often the largest and most fecund individuals within a population are harvested
(Darimont et al., 2009; Uusi-Heikkila et al., 2015). The quantitative relationships between length and
age of fish are commonly used to convert length data into age data for stock-assessment models. This

relationship can be quantified by using the standard von Bertalanffy curve (von Bertalanffy, 1938).

The growth of fish can act as an indicator for food availability, as greater food consumption generally
results in faster growth (Goodrich and Clark, 2023). Naturally, fish experience periods of reduced food
intake during their life. During these periods, energy reserves are redirected away from growth in order
to maintain vital body functions (Sumpter et al., 1991). Poor habitat conditions such as low dissolved
oxygen levels have been shown to reduce growth rates (Campbell and Rice, 2014; Cottingham et al.,
2014). However, water temperature still is the physio-chemical factor that affects fish growth the most

(Searcy et al., 2007).

The aim of this study was to analyse the growth of four keystone fish species in the Elbe and Odra
estuaries to identify regional differences between and within the estuaries to compare current findings
with previous studies. These growth studies were carried out in order to act as an additional indicator

for food availability.

2. Material and Methods

2.1 Sample collection

Fish samples were collected throughout the year and at least once per season, by commercial fisheries
using following the catching techniques: stow net, fish traps, gill nets and trawl net (Theilen et al.,

2025b). The samples were frozen immediately after catching or, at the latest, after landing. Samples

originated from five stations in the Elbe estuary: Medemgrund (MG), Brunsbittel (BB),
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Schwarztonnensand (ST), Twielenfleth (TF), Mihlenberger Loch (ML) and from three stations in the

Odra estuary Pomeranian Bay (PB), Greifswald Bodden (GB), Odra lagoon (OL).

2.2 Data acquisition

The age of fish can be determined by using hard structures (Fig. 3.1), as visible annual ring structures
(annuli) form due to seasonal differences in growth (Campana, 2001). Most fishes have an increased
growth during the warmer months of the year due to higher temperatures (metabolic rates) and better
food availability, whereas growth slows down or even comes to a complete halt during the colder
months (Schneider, 2001). This seasonal variation in growth intensity causes summer rings to be wider
than winter rings. Depending on the fish species, different hard structures were used for age
determination. For validation of the age estimation, multiple hard structures were evaluated per

species:

— European smelt (Osmerus eperlanus): otoliths, scales

— Flounder (Platichthys flesus): otoliths

— Ruffe (Gymnocephalus cernua): otoliths, operculum, scales

— Zander (Sander lucioperca): total length measurements indicated that all individuals belonged

toage group 0

These four species occur throughout the Elbe and Odra estuaries in high numbers and thus serve as
key elements of the aquatic food web (Moller, 1988; Thiel et al., 1995; Thiel et al., 2003; Lorenz, 2001;
Thiel et al., 2007; Theilen et al., 2025a; Theilen et al., 2025b)

The age determination was conducted using a Leica MZ 9.5 stereomicroscope. At least ten scales per
specimen were analysed, since scales can regrow after being lost due to injuries and regrown scales
do not reflect the age correctly. Therefore, only scales below the dorsal fin on the left body side were
used for age readings. The scales were cleaned after extraction and were placed between two
microscope slides. Two sagitta otoliths (when possible) and one operculum were used per specimen.
Otoliths were cleaned and dried after removal, and opercula were placed in boiling water in order to
remove skin and soft tissue from the bone. Age determination was performed independently by two
readers. When both readers came to the same result, the reading was considered valid for further

analyses.
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Operculum - G. cernua Ctenoid scale - G. cernua
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Figure 3.1: Hard structures used for age determination in ruffe (Gymnocephalus cernua). Top left: operculum; top right:
scale; bottom: sagitta otoliths. Photos: T. Weddehage in Storz (2023).

2.3 Growth parameters

As a basis for comparing the growth of zander between the estuaries, the total lengths per age group
0 were visualized as boxplots. Since there were no zander analysed from other age groups than 0, no
Bertalanffy curve was calculated. For smelt, ruffe and flounder, multiple age groups were analysed
from both estuaries. These comprehensive data allowed the application of the von Bertalanffy growth
function (VBGF) to compare length growth between the two estuaries the VBGF is given by following

equation:
I-t = Le - (1 —e —K(t—tO))

L; = total length at time t

t = time (age) in years

L= total length at an age of o= (=asymptotic length)
K = specific growth coefficient

to = time where total length is equal to zero
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Fulton’s condition factor K. (Fulton, 1902) was calculated as the indicator for the fish health. The Fulton
conditions factor decreases with increasing body length of a specimen and can be used to compare
fish populations living under different conditions (Ighwela et al., 2011):
_ 100 xW
c — T

K. = Fulton’s condition factor
W = body weighting
L= total length incm

2.4 Statistical tests

For the comparison of juvenile zander sizes as well as condition factors between stations (for all
keystone fish species), Kruskal-Wallis H-test were conducted, followed by a post-hoc Dunn’s test with
Bonferroni correction. Mann-Whitney U-test was used to compare the size ranges of individual age

groups between the two estuaries.

3. Results
3.1 Growth

3.1.1 Zander

In the Elbe estuary, the total length of age group 0 (AGO) zander differed significantly between stations
(Kruskal-Wallis H-test, p < 2e-16). Significant differences were observed between all stations except
ML vs. MG as well as ST vs. TF (Dunn’s test, p = 0.528 for both comparisons). Individuals from MG and
ML had significantly larger total lengths compared to the other stations, while the lowest total lengths
were recorded at ST and TF (Fig. 3.2). Significant differences in total length were found between the
following station combinations (the larger one named first): MG vs. BB (Dunn’s test, p = 0.001), ML vs.
BB (Dunn’s test, p = 0.002), BB vs. ST (Dunn’s test, p = 0.0002), BB vs. TF (Dunn’s test, p = 0.001), MG
vs. ST (Dunn’s test, p = 1.73e-15), Twielenfleth and Medemgrund (Dunn’s test, p = 1.86e-8), ML vs. ST
(Dunn’s test, p = 1.73e-15), and ML vs. TF (Dunn’s test, p = 1.27e-7). In the Odra estuary, the total
lengths of AGO zander varied significantly between the stations (Kruskal-Wallis H-test, p = 2.371e-5).
Zander from GB were significantly larger than specimens from OL (Dunn’s test, p = 0.0001) and
specimens from PB were also larger compared to OL (Dunn’s test, p = 0.002). No significant differences

were found between PB and GB (Dunn’s test, p = 0.154).
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Figure 3.2: Total lengths of zander (Sander lucioperca) from the Elbe and Odra estuaries between 2021-2022. Elbe (left; n =
569), Odra (right; n = 439).

3.1.2 Smelt

In the Elbe estuary, the following median values and corresponding ranges were recorded for each age
group (AG): AGO of smelt: 76 mm (55—-101 mm), AG1: 108 mm (75—154 mm), AG2: 154 mm (119-189
mm), AG3: 177 mm (134-226 mm), and AG4: 200 mm (172—221 mm). In the Odra estuary, the median
values and ranges for each age group were as follows: AG0O: 80 mm (72—87 mm), AG2: 164 mm (150—
170 mm), AG3: 184 mm (169-219 mm), and AG4: 199 mm (196—202 mm). The calculated asymptotic
total length for smelt from the Elbe estuary was 298.85 mm, while for specimens of the Odra the
asymptotic length was smaller, at 238.65 mm (Fig 3.3). The growth coefficient was smaller in the Elbe

(0.22) compared to smelt from the Odra (0.37).
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Figure 3.3: Von Bertalanffy growth curve for smelt (Osmerus eperlanus) from the Elbe and Odra estuaries in 2021-2022.
Elbe (left; n = 645), Odra (right; n = 70).

3.1.3 Ruffe

A total of six age groups (AGO to AG5) of ruffe were identified in the Elbe estuary. However, only a
single individual with a total length of 190 mm was found belonging to AG5 and was therefore excluded
from the comparative analysis between estuaries. In the Odra estuary, four age groups (AGO to AG4)
of ruffe were found. The following median values (and ranges) were determined for each age group in
the Elbe estuary: AGO: 98 mm (50-129 mm), AG1: 126 mm (100-167 mm), AG2: 156 mm (119-177
mm), AG3: 181 mm (152-190 mm), AG4: 178 mm (149-220 mm). In the Odra estuary, the median
values (and ranges) for each age group were: AG0: 98 mm (72—153 mm), AG1: 138 mm (113-167 mm),
AG2: 155 mm (120-189 mm), AG3: 181 mm (152-190 mm), AG4: 194 mm (176—198 mm). Ruffe of AG1
had a significantly smaller total length in the Elbe estuary compared to the Odra estuary (Mann-
Whitney-U test, p = 0.0011), whereas AG3 individuals in the Elbe estuary exhibited a significantly
greater total length than those in the Odra estuary (Mann-Whitney-U test, p = 0.0015). No statistically
significant differences in total length were observed between estuaries for AGO, AG2, and AG4 (Mann-
Whitney-U test, p > 0.05). The asymptotic length of ruffe from the Elbe estuary was larger (219.60 mm)
compared to 187.57 mm in the Odra estuary (Fig. 3.4). The growth coefficient was smaller in the Elbe

(0.31) compared to specimens from the Odra (0.53).
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Figure 3.4: Von Bertalanffy growth curve for ruffe (Gymnocephalus cernua) from the Elbe and Odra estuaries in 2021-2022.
Elbe (left; n = 192), Odra (right; n = 194).

3.1.4 Flounder

Both in the Elbe and Odra estuaries, five age groups of flounder (AGO to AG4) were identified. In the
Elbe estuary, the following median values (and ranges) were determined for the individual age groups:
AGO: 72.5 (24-166) mm, AG1: 127 (65-339) mm, AG2: 264.5 (136—363) mm, AG3: 319.5 (216—-383)
mm, AG4: 313 (181-355) mm. In the Odra estuary, the median values (and ranges) for the individual
age groups were: AGO: 102.5 (84—-142) mm, AG1: 170 (92—-297) mm, AG2: 242 (163—-318) mm, AG3:
302 (129-375) mm, AG4: 310 (269—339) mm. Flounder of AGO and AG1 had a significantly smaller total
length in the Elbe estuary than in the Odra estuary (Mann-Whitney-U test, p < 0.0001 and p = 0.0004,
respectively). No statistically significant differences in total length between the two estuaries were
found for AG2, AG3, and AG4 (Mann-Whitney-U test, p > 0.05). The asymptotic total length calculated
for flounder from the Elbe estuary was 854.71 mm, while in the Odra the asymptotic length was smaller
(368.21 mm) (Fig. 3.5). The growth coefficient in the Odra was larger (0.34) compared to the Elbe
(0.11).
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Figure 3.5: Von Bertalanffy growth curve for flounder (Platichthys flesus) from the Elbe and Odra estuaries in 2021-2022.

Elbe (left; n = 284), Odra (right; n = 206).
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3.2 Condition factor

Zander: In the Elbe estuary (n = 569), age-0 zander had the highest condition factors at the stations
ML, MG, and BB, while the lowest conditions were recorded at TF and ST. Kruskal-Wallis H-test
confirmed significant differences in condition factors between the stations (p < 2.2e-16). Specifically,
the condition factors at BB were significantly higher than at ST (Dunn’s test, p = 6.75e-13) and TF
(Dunn’s test, p = 0.003). Zander at MG had significantly higher condition compared to ST (Dunn’s test,
p=1.47e-17) and TF (Dunn’s test, p = 1.28e-4) as well. ML also had significantly higher condition factors
than ST (Dunn’s test, p = 1.59e-23) and TF (Dunn’s test, p = 3.14e-5). In contrast, no significant
differences were observed between BB vs. MG (Dunn’s test, p = 0.491), BB vs. ML (Dunn’s test, p =
0.256), MG vs. ML (Dunn’s test, p = 0.774), or ST vs. TF (Dunn’s test, p = 0.668). In the Odra estuary (n
= 439), age-0 zander had the highest condition factors in the Greifswald Bodden, while lower
conditions were recorded in the Pomeranian Bay and in the Odra Lagoon. Kruskal-Wallis H-test
confirmed that significant differences in condition factors between regions were found (p = 8.71e-5).
Specifically, condition factors at GB were significantly higher than at PB (Dunn’s test, p = 0.0007) and
OL (Dunn’s test, p = 6.54e-5). However, no significant difference was observed between PB and the OL

(Dunn’s test, p=0.531).

Smelt: The lowest condition factor was found at TF and the largest at BB (Elbe n = 645, Odra n = 70).
This was confirmed by Kruskal-Wallis H-test (p = 0.01058), which showed significant differences

between specimens from these two stations Dunn test BB vs. TF (Dunn’s test, p = 0.00776).
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Ruffe: The highest condition factors were found in the Odra estuary at GB and PB. Kruskal-Wallis H-
test (p = 2.12e-15) showed that condition factors between stations differed significantly (Elbe n = 192,
Odra n = 194). All combinations of stations between estuaries showed significantly larger condition
factors in samples from the Odra estuary (except ML vs. OL, n.s.): BB vs. GB (Dunn's test, p =
0.0000000236), GB vs. ML (Dunn's test, p = 0.0002848), BB vs. OL (Dunn's test, p = 0.0102), BB vs. PB
(Dunn's test, p = 0.00000576), ML vs. PB (Dunn's test, p = 0.00473), GB vs. ST (Dunn's test, p =
0.0000000262), OL vs. ST (Dunn's test, p = 0.00985), PB vs. ST (Dunn's test, p = 0.000000162), GB vs.
TF (Dunn's test, p = 0.0000573), and PB vs. TF (Dunn's test, p = 0.000320). Within the Odra estuary
condition factor of ruffe from GB and PB were significantly larger than OL:GB vs. OL (Dunn's test, p =
0.0000462), OL vs. PB (Dunn's test, p = 0.00275). In the Elbe estuary the condition factor of specimens
from ML were highest and significant differences were found between BB vs. ML (Dunn's test, p =

0.0303).

Flounder: The highest condition factor was found at PB and GB in the Odra estuary (Elbe n = 284, Odra
n = 206). The condition of specimens from those two station were significantly larger compared to
specimens from the Elbe estuary: BB vs. GB (Dunn's test, p = 7.29e-11), GB vs. MG (Dunn's test, p =
1.10e-48), GB vs. ML (Dunn's test, p = 4.67e-104), BB vs. PB (Dunn's test, p = 3.45e-43), MG vs. PB
(Dunn's test, p = 2.58e-65), ML vs. PB (Dunn's test, p = 1.38e-156), GB vs. ST (Dunn's test, p = 7.07e-
31), PB vs. ST (Dunn's test, p = 3.84e-42), GB vs. TF (Dunn's test, p = 4.30e-24), PB vs. TF (Dunn's test,
p = 2.27e-31). In the Elbe estuary the condition of flounder was largest at ML and smallest at BB and
TF: BB vs. ML (Dunn's test, p = 6.53e-04), ML vs. TF (Dunn's test, p = 3.48e-03), while in the Odra estuary

specimens from PB had better condition factors: GB vs. PB (Dunn's test, p = 4.76e-04).
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4, Discussion

4.1 Growth of zander

Kafemann and Thiel (1998) reported on the growth of zander from multiple sources. For the same age
group 0, the back-calculated total lengths in the Elbe estuary during the 1990s, were larger (15.1 cm)
compared to overall mean total length from this study (12.9 cm) (Kafemann and Thiel, 1998). In the
Kiel Canal, which is adjacent to the Elbe estuary, juvenile zander of AGO reached a total length of 14.1,
according to Kafemann and Thiel (1998). In the ljssel (Willemsen, 1977) juvenile zander grew to 15.0
cm and in Lake Balaton they grew largest to a size of 20.4 cm (Bird, 1970). Winkler (1980) calculated a
total length of 16.9 cm for juvenile zander in the Greifswald Bodden. In this study, the mean length in
the Greifswald Bodden was only slightly lower (16.5 cm). In the Odra Lagoon the AGO zander of this
study had a mean total length of 14.2 cm, which is smaller compared to findings reported by Wiktor
(1957): 16.9 cm, Schlumberger (1962) 16.1 cm and Neuhaus (1934) 15.0 cm (Lehtonen et al., 1996). In
the Curonian Lagoon (12.9 cm, Marre, 1933; 13.5 cm, Virbickas et al., 1974), Vistula Lagoon (12.2 cm,
Filuk, 1955) grew less compared to the other water bodies (Lehtonen et al. 1996). In the river Stor (12.0
cm, Mohr, 1916) juvenile zander also grew less. LoZys (2004) concluded that a brackish environment
has a beneficial effect on the growth of zander, which was also observed in this study, with the best
growth found in the Greifswald Bodden (middle estuary). In contrast, the growth of juvenile zander in

the brackish middle estuary of the Elbe was particularly lower.

Kafemann and Thiel (1998) showed in studies conducted in the Kiel Canal (NOK) that zander exhibited
reduced growth due to the insufficient availability of their preferred prey (fish), particularly smelt (van
Densen, 1985; Buijse and Houthuijzen, 1992) and herring (Winkler, 1980). The juvenile zander
examined by Theilen et al. (2025b) showed slightly lower fish consumption in the Elbe estuary (IRB =
48 %) compared to the Odra estuary (IRB = 55 %) in the summer of 2021. This coincided with lower
length growth in the Elbe estuary compared to zander from the Odra estuary. Within the Elbe estuary,
juvenile zander at ST and TF stations exhibited both reduced length growth and lower condition factors
compared to other stations (Koll et al., 2024). This reduced growth can be linked to a lower fish
consumption rate relative to other stations. Instead, juvenile zander at these locations consumed
proportionally more invertebrates (Amphipoda, Mysida, Decapoda) than at other stations (Theilen et
al., 2025b). The reduced fish consumption at ST and TF can be attributed to a lower fish availability,
particularly smelt. In summer 2021, the smelt density at ST was 6,905 individuals per 1 million m3 and
at TF, 9,894 individuals per 1 million m3. In contrast, the downstream and upstream stations had much
higher smelt densities (MG: 30,360 Ind./1Mio m3, BB: 20,284 Ind./1Mio m3, ML: 32,307 Ind./1Mio m?3)
(Theilen et al., 2025a). Koll et al. (2024) showed that the zander in this region expressed starvation
stress on a molecular level (transcriptomes). Additionally, the high turbidity at ST and TF may have
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negatively impacted the hunting success of juvenile zander. According to Amann et al. (2012), the zone
of maximum turbidity (MTZ) in the Elbe estuary lies between Elbe kilometre (Ekm) 650 and 705, which
includes the stations TF, ST, and BB. The exact location of the MTZ is dynamic and varies in response
to hydrological conditions such as river discharge and tidal forces (Abascal-Zorrilla et al., 2020). Overall
the growth of AGO zander from the Elbe estuary was considerable smaller compared to other water
bodies and previous studies, while zander from the Odra estuary grew only slightly less compared to

studies from the Odra lagoon and Greifswald Bodden.

4.2 Growth of smelt

In the Elbe estuary, the asymptotic length (L) was higher at 29.8 cm compared to 23.8 cm in the Odra
estuary. In contrast, the growth coefficient (K) was higher in the Odra estuary (0.37) than in the Elbe
(0.22). Wichmann (2017) calculated an asymptotic length of 23.8 cm and a growth coefficient (K) of
0.29 for smelt from the Elbe estuary, based on samples collected between December 2015 and March

2016.

In the late 1950s, average total lengths of smelt in the Elbe estuary were calculated for each age group
(Trzebiatowski and Gaj, 1978), based on the data of Lillelund (1961): AGO (7.1 cm), AG1 (13.4 cm), AG2
(17.3 cm), AG3 (21.2 cm), and AG4 (23.8 cm). In comparison, our study yielded a slightly higher mean
for AGO (7.5 cm), but lower mean lengths for subsequent age groups: AG1 (10.7 cm), AG2 (15.4 cm),
AG3 (17.8 cm) and AG4 (19.9 cm). In the Odra estuary, we calculated a higher mean length for AGO
(8.0cm), AG2 (16.2 cm) and AG3 (18.6 cm). No mean was calculated for AG1 due to a lack of samples
and AG4 had the same mean in both estuaries (19.9 cm). Trzebiatowski and Gaj (1978) compiled data
on smelt growth from various authors across Europe and Russia. In their work, they applied a different
age group classification, in which the age group AGO used in the present study corresponds to AG1 in
their definition. Smelt populations reported by Trzebiatowski and Gaj (1978) exhibit high variability in
age and size structure, with some populations reaching up to 30.1 cm at 12 years of age in the river
Lena, as documented by Pirojnikov (1950). In the Odra Lagoon Krzykawska (1970) reported following
means for AG1 (7.2 cm), AG2 (8.0 cm), AG3 (11.9 cm), AG4 (12.5 cm) and AG5 (13.5 cm). According to
Widrek (1968), smelt from the Vistula Lagoon grew to following size at the respective age group: AGO
(5.8 cm), AG1 (8.6 cm), AG2 (11.5 cm), AG3 (14.2 cm), AG4 (16.7 cm), AG5 (18.9 cm) and AG6 (20.9
cm). In the Lake Onega the growth of smelt was slowest with following means per age group: AGO (6.3
cm), AG1 (8.8 cm), AG2 (9.4 cm), AG3 (10.6 cm), AG4 (11.0 cm), AG5 (11.3 cm), AG6 (11.8 cm) and AG7
(12.3 cm) (Stefanovska, 1957; Trzebiatowski and Gaj, 1978). Other Lake populations as in Lake Ladoga
expressed more growth: AGO (8.0 cm), AG1 (9.5 cm), AG2 (10.7 cm), AG3 (15.8 cm), AG4 (18.3 cm)
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(Trzebiatowski and Gaj, 1978). Overall growth of smelt in the Elbe and Odra estuaries was superior
compared to those from lake populations and of those from the Odra lagoon. In recent years, growth
of smelt in the Elbe estuary has been inferior compared to previous studies, indicating a temporal shift

in the ecosystem.

4.3 Growth of ruffe

Holker and Thiel (1998) described the asymptotic length (L) for multiple water types inhabited by
ruffe: tidal estuary (25.3 cm) were largest followed by lakes (19.3 cm), nontidal estuaries (18.7 cm) and
rivers (17.9 cm). In ponds and rivers ruffe grow to a L~ of 14.6 and 14.5 cm (Holker and Thiel, 1998).
The asymptotic length of ruffe calculated in this study for the Odra estuary (18.7 cm) aligns with the
findings of Holker and Thiel (1998) for non-tidal estuaries. For ruffe from the Elbe estuary the
asymptotic length was 21.9 cm and therefore smaller compared to the finding from Hélker and Thiel
(1998). Furthermore, Holker and Thiel (1998) found that the growth coefficient (K) was highest in
ponds and reservoirs (0.42 and 0.37, respectively). In tidal estuaries, the growth coefficient was smaller
(0.28). In non-tidal estuaries, the growth coefficient was slightly higher (0.32). This also aligns with the
results from this study, where the growth coefficient was larger in the nontidal estuary (Odra, K=0.53)

compared to the tidal estuary (Elbe, K= 0.31).

A direct comparison of ruffe growth between the Elbe and Odra estuaries did not reveal a clear pattern
of reduced growth in either estuary. In the Elbe estuary, AG1 exhibited lower length growth, whereas
AG3 showed higher length growth compared to the Odra estuary. No significant differences in length
growth were found for the other age groups between the two estuaries. However, a slight decrease in
growth compared to historic studies on ruffe in the Elbe estuary was observed compared to the 1980s
and 1990s. For example, Hammer and Holker (1994) reported an average total length of 20.3 cm for
females and 20.7 cm for males in AG4, whereas in this study a median total length of only 17.8 cm (for
both sexes combined) was determined for AG4. The maximum total lengths of ruffe cited by Moller
(1988) and Holker and Thiel (1998) were 29 cm and 25 cm, for the Elbe estuary. In contrast, the
maximum total length recorded in this study for the period 2021-2022 was only 22 cm. Overall, the
growth of ruffe from the Elbe estuary was inferior compared to the literature, while the findings from

the Odra estuary reflected the finding for the respective habitats.
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4.4 Growth of flounder

In the Elbe estuary, flounder from this study reached an asymptotic length (L-) of 85.4 cm with a
growth coefficient (K) of 0.11, whereas in the Odra estuary, flounder reached an L.. of 36.8 cm but with
a considerably higher growth coefficient of 0.34. In comparison, flounder from the Gulf of Gdansk
reached an asymptotic length (L) of 69.1 cm with a growth coefficient (K) of 0.0915 (Antoszek and
Krzykawski, 2005), while those from the Pomeranian Bay had a lower L.. of 54.7 cm but a slightly higher
K of 0.1274 (Antoszek and Krzykawski, 2003). Flounder from the Odra estuary had a smaller asymptotic
length but higher growth coefficient compared to studies from the Pomeranian Bay and Gulf of
Gdansk. Drevs et al. (1999) identified a significant decrease in flounder length per age group from
southwest to northeast in the Baltic Sea. However, they also demonstrated that regional length
differences became smaller as the flounder aged. Similarly, no statistically significant differences in
total length were found between flounder from the Elbe and Odra estuaries for the older age groups
(AG2, AG3, and AG4) caught during the 2021-2022 period. The unusually high L.. calculated by the
VBGF (854.71 mm) eventually resulted from inaccuracies in age estimation. In general, age
determination for flounder was less precise, particularly in the Elbe estuary where multiple specimens
above 200 mm TL were assigned to AG1 and several specimens around 150 mm were assigned to AGO.
In this study flounder from the Odra estuary, expressed a smaller asymptotic lengths but larger growth

coefficient.

5. Conclusion

Overall, inferior growth was observed for zander in the Elbe estuary compared to the Odra estuary.
For smelt, ruffe, and flounder, the asymptotic maximum length was larger in the Elbe estuary
compared to the Odra, while the growth coefficient was smaller in the Elbe. Zander, smelt, and ruffe
all showed smaller growth compared to previous studies, with zander particularly affected in the
maximum turbidity zone of the Elbe estuary. The asymptotic length (Le) of ruffe also declined, while
the age group means of smelt were smaller than previously reported. Flounder from the Odra estuary
exhibited a smaller asymptotic length but a higher growth coefficient compared to studies from the
Pomeranian Bay and the Gulf of Gdansk. These findings suggest that changing environmental factors
and food availability in the Elbe estuary may have influenced growth patterns, highlighting the need

for continued monitoring to understand the underlying causes.
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Abstract

Anthropogenic perturbations paired with increasing climatic changes, affect the biota composition and
ecosystem services provided by highly productive estuarine transitional ecosystems worldwide. To
determine driving forces affecting fish stocks in an estuarine habitat, we created a periodic time series
over the last four decades (1984—-2022) combining fish species compositions and densities with
environmental conditions along the course of the temperate mesotidal Elbe estuary. We detected
major changes in the species composition alongside with changes in life cycle guilds composition. With
a relative increase of marine-estuarine opportunists and reduction of diadromous species, the fish
fauna of the Elbe estuary has become more similar in guild structure compared to macro tidal estuaries
in Europe. Improvements in water quality in the 1990s were accompanied by increased fish densities,
specially smelt (Osmerus eperlanus), until 2010. Anthropogenic hydromorphological interventions,
however, could have led to an increase in suspended particular matter until 2022, which combined
with reduced river runoff and poor oxygen concentrations in summer months acted as poor
environmental conditions for fishes in the estuary. Mean fish densities dropped by over 91 % compared
to 2010 to an all-time low in the data. This reduction was primarily a result of a decline of the key
species smelt in the system along with declines of twaite shad (Alosa fallax), flounder (Platichthys
flesus), ruffe (Gymnocephalus cernua), common bream (Abramis brama) and other species. On the
contrary, marine species herring (Clupea harengus) and whiting (Merlangius merlangus) densities
increased. Overall, the time-series provides insight into the strong impact of human intervention that

are however expected to lead to further stressors.

Keywords: Estuary; Fish assemblage; Guild composition; Fish stocks; Environmental influences

1. Introduction

Estuaries constitute only 5.8 % of the coastal area (Wetzel et al., 2014), but are among the most
important environments of the coastal zone providing habitats for numerous plant and animal species
(Barbier et al., 2011). While the faunal composition varies due to spatial and temporal dynamics,
estuaries are often characterized by high productivity (e.g. Thiel et al., 1995; Ducrotoy et al., 2019).
However, environmental conditions of many estuaries worldwide are heavily influenced by humans
(Ahlhorn, 2009) through impacts from industrial sewage, dyke construction, deepening of navigation
channels and dumping of sediments to name a few (e.g. Barbier et al., 2011; Drabble, 2012; Wetzel et
al., 2014). Today, estuaries are among the most heavily anthropogenically modified aquatic habitats
on earth (e.g. Haedrich, 1983; Whitfield, 1996; Pein et al., 2023). Exogenous pressure is further exerted

by climate change in particular (van Beusekom et al., 2018). Differences in the trends of climate change
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and human activities result in highly variable long-term developments (Ducrotoy et al., 2019), with
anthropogenic factors generally influencing species richness, biomass, genetic structure and food webs

in estuaries (Gilarranz et al., 2016).

The Elbe estuary, as one of the largest in Europe, shared a common fate of the above-mentioned
interventions with estuaries worldwide (Pein et al., 2023), which has been shaped by a long history of
human alterations (Bergemann et al., 1996; Schroeder, 1997; Kerner, 2007; Amann et al., 2012; Pein
et al., 2021). Since the mid nineteenth century the Elbe estuary has been under anthropogenic
influences, which includes channelization for shipping, increasing inlet of industrial, agricultural and
communal sewage as well as abstraction of water for power plant cooling (Thiel et al., 2003; Kerner,
2007; Illing, 2009; Eick and Thiel, 2014). Hydromorphological alterations of the main channel had
strong influences on the river runoff dynamics, tidal range and current velocities. The tidal range at the
port of Hamburg (100 km upstream of the river mouth) doubled from 1.9 m to 3.8 m over the last
century (Hein et al., 2021). As a further consequence of channelization, the sub- and intertidal shallow
water areas, especially in the freshwater regions, were reduced. At the same time, oxygen deficiency
situations in the Hamburg port region increase during summer months (Riedel-Lorjé and Gaumert,
1982; Thiel, 2011; Eick and Thiel, 2014; Scholle and Schuchard, 2020). However, the Elbe estuary still
harbours internationally important ecological populations and habitats (Thiel and Thiel, 2015), like a

number of other temperate estuaries worldwide (Ducrotoy et al., 2019).

The Elbe estuary serves as an important nursery habitat for several fish species. Especially the southern
marginal areas of the estuary are characterized by very high fish production with over 200 kg/ha per
annum (Thiel, 2001). These marginal areas provide shelter from predation by larger fishes due to
shallower waters and reduced flow velocities and provide abundant food resources such as copepods
(Eurytemora affinis) and mysids (Neomysis integer) (Sepulveda, 1994). These southern marginal areas
were found directly downstream of the Hamburg harbour at Muhlenberger Loch (Ekm 633-636),
Hanhofer Nebenelbe (Ekm 636—644) and Liihesander Stiderelbe (Ekm 647—652). Larval retention and
accumulation of smelt was described by Sepulveda (1994), by active vertical migration, migrating to
the surface layers during flood tides and to the bottom during ebb tides. Active vertical migration,
upstream transport and accumulation in the southern marginal areas of the Elbe estuary was also
described for flounder larvae (Bos, 2000). Besides providing essential feeding, spawning grounds and
migration routes for a number of fish species (Nellen and Thiel, 1994; Thiel et al. 1996, 2003) the Elbe

estuary with around 80 fish species is the most species-rich estuary in Europe (Thiel, 2011).

There is a lack of quantitative long-term studies on the influence of environmental and anthropogenic
factors on the fish fauna composition in a number of European estuaries (e.g. Thiel, 2011) and estuaries
worldwide (Pasquaud et al., 2015). A consistent and continuous dataset covering the entire period
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from the 1980s to the present day is still lacking, since evaluation of fish species composition in large
estuaries is cost-intensive. Even when these data exist, there can be difficulties obtaining the data,
since the data at the authorities/data portals are not always up to date. Monitoring data of fish
composition and densities available from state funded monitoring used varying fishing methods
rendering catch data from before 2000 and recent data not useable for this study. With the
implementation of the Water Framework Directive (WFD) in 2000, fish surveys are conducted twice a
year, however, these data are insufficient to study trends in fish communities since fish populations
exhibit significant seasonal variations. Therefore, only data from stow net catches at five consecutive

station were used, to insure best comparability.

To fill the knowledge gaps shown above, the aim of our study was to analyse historical and present
compositions of the ichthyofauna in the Elbe estuary using a dataset of comparable traditional fishing
methods incorporating seasonal sampling since the 1980s (Moller, 1988; Thiel et al. 1995, 2003; Thiel
and Potter, 2001; Thiel, 2011; Eick and Thiel, 2014). The aims of the study include (1) the assessment
of changes in the life cycle guilds, (2) the quantification of changes in the densities of the fish species
and (3) the identification of long-term shifts of environmental factors and their influence on the fish
species densities. In this regard, the Elbe estuary can be seen as a case study for other temperate
mesotidal European estuaries, as it is one of the few estuaries in Europe for which quantitative data

for fish and relevant environmental factors are available over longer time series.

2. Material and methods

2.1. Study area and stations

The study was conducted in the Elbe estuary, which is located in north-west Germany and ranging from
a weir at the city of Geesthacht downstream to its mouth into the southern North Sea, close to the city
of Cuxhaven. The strongly tidally influenced Elbe estuary is classified as mesotidal, coastal-plain estuary
and has no marked halocline (Thiel and Potter, 2001; Eick and Thiel, 2014; Pein et al., 2023). In past
studies, the Elbe estuary was categorized as a well-mixed estuary (Muylaert and Sabbe, 1996; Amann
et al., 2012; Eick and Thiel, 2014), but recent findings from Pein et al. (2021), argue that hydrodynamic
modelling approaches showed buoyancy driven density gradients, that induce periodic stratification,
especially during summer. In extreme cases water temperature reaches above 25 °C during summer
months and down to -1 °C in extreme winters (FGG-Elbe, 2024). The freshwater region (salinity <0.5
PSU) extends from the Geesthacht weir (Ekm 586; upper end of tidal influence) to Stade (Ekm 654),
the brackish oligohaline area (salinity 0.5-5 PSU) reaches down to Brokdorf (Ekm 684) and the brackish

mesohaline area (salinity 5-18 PSU) continues downstream to the city of Cuxhaven (Ekm 725) (ARGE
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Elbe, 2007). Turbidity in the Elbe estuary is high, and has increased in recent years, which is mainly
driven by marine sediments brought upstream by increased tidal pumping and resuspension by
extensive dredging for channel maintenance (Kerner, 2007; Schulz et al., 2023). Kappenberg and
Grabemann (2001) described a variability of suspended particular matter (SPM) in the Elbe estuary,
with a maximum turbidity zone (MTZ) located between Ekms 670 and 690 before the year 2000. Due

to seasonal variation of river runoff, the SPM concentration varies throughout the year.

The hydromorphological changes by channel deepening were accompanied by increased tidal pumping
and therefore increased sediment transport towards the Hamburg port (Pein et al., 2021). Scholle and
Schuchard (2020) showed that the shallow water areas in the Miihlenberger Lock were reduced from
210.000 m? in the year 2000 to 113.000 m3 in the year 2016 by construction and siltation processes
(Scholle and Schuchard, 2020), which could have influenced the estuary's nursery function. The filling
of a portion of the Mihlenberger Loch (2001-2004) led to a direct loss of shallow water areas in the

southern marginal areas.

We selected five stations along the salinity gradient at regularly spaced distances within the Elbe
estuary (Fig. 4.1): mesohaline (river mouth section): Medem Reede/Medemgrund at Elbe-kilometre
(Ekm) 713/716 (A’/A), oligo-mesohaline (lower section): Brunsbiittel at Ekm 692 (B), oligohaline
(middle section): Schwarztonnensand at Ekm 665 (C), freshwater-oligohaline (upper section):
Twielenfleth at Ekm 651 (D) and freshwater (upper section): NeBsand/Miihlenberger Loch at Ekm
633/639 (E'/E). Out of these five stations, three stations (B, C, D) were sampled at the exact same
location throughout entire investigation period, while stations A and E had to be slightly relocated

(approx. 6 km difference) due to changed nautical circumstances and regulations.
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Fig. 4.1. Elbe estuary with the sampled stow net stations (white circles): Medem Reede/Medemgrund at Ekm 713/716 (A’/A),
Brunsbuttel at Ekm 692 (B), Schwarztonnensand at Ekm 665 (C), Twielenfleth at Ekm 651 (D) and NeBsand/Mihlenberger
Loch at Ekm 633/639 (E’/E). Stations from which environmental data were obtained from the FGG-Elbe data portal were

indicated with triangles (Map sources: NextGIS, CartoDB).
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2.2. Field sampling strategy

Sampling was conducted during four time periods (period I: 1984-1986, period Il: 1994-1995, period
[ll: 2009-2010, period 1V: 2021-2022) covering all seasons (spring, summer, autumn, winter) in each
period. Fishes were caught (day and night) using commercial stow net vessels having mesh sizes
between 5 and 10 mm at the cod end (Fig. Al). The vessel was anchored at each sampling site and the
net immersed, so that the net opening faced the direction of the water flow (Thiel et al. 1995, 2003;
Thiel and Potter, 2001; Eick and Thiel, 2014). Species identification of the caught fish was conducted
on board immediately. Fishes were counted, weighted (wet weight, 1 g accuracy) and total lengths
were measured. Specimens that were not directly identifiable on board were either frozen using dry
ice, freezers (-20 °C) or were preserved in formaldehyde solution (5 %) for later taxonomical
identification in the laboratory following Whitehead et al. (1986), Muus and Nielsen (1999), Kottelat
and Freyhof (2007), Knebelsberger and Thiel (2014) and Froese and Pauly (2022).

2.3. Harmonization of fish density data

In the initial time period | from 1984 to 1986, used stow nets had a net opening area of 80 m?2 and 95
mZ. One tidal phase (A at flood tide; B, C, D and E at ebb tide) was sampled per station (Méller, 1988),
which resulted in one haul per sampling station at each sampling campaign. For comparison purposes,
all catches in period | have already been converted to a net opening of 80 m? by Méller (1988). In time
period Il from 1994 to 1995 a stow net with a net opening of 90 m?2 was used (Thiel et al. 1995, 2003).
During period Il one stow net haul was performed during both tidal phases (flood an ebb tide) at each
station resulting in two hauls per sampling station at each sampling campaign. In period Il from 2009
to 2010 a stow net with a net opening of 135 m? was used (Eick and Thiel, 2014). During period lIl,
during each tidal phase two hauls were conducted. For comparability these two hauls were
summarized into one haul per each tidal phase. In period IV from 2021 to 2022 the stow net had a net
opening of 135 m2. The mean haul duration per period was 4 h for period | (Méller, 1988), 4 h during
period Il (Thiel et al., 2003), 3 h (combined) during period Ill (Eick and Thiel, 2014) and 3 h during period
V.

Fish densities were calculated based on the filtered water volume of each haul and the number of
individuals of each species caught. The filtered water volume was determined by using the net opening
area and water flow, which was measured using mechanical flow meters (Hydro-Bios® and/or General
Oceanics®) during period Il, Il and IV. From the filtered water volume and the number of individuals
caught was expressed as density, which was standardized to a fixed water volume (individuals per 1
million m3) for each haul by proportional rule. This standardization ensures consistency and
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comparability across hauls, regardless of the variations on the filtered water volumes. Water flow in
period | was not measured directly but was approximated by using the haul durations of period | and
comparable flow velocities from period II. In assumption that between period | and period Il no major
changes in the hydromorphology by channel deepening (Gaumert and Bergemann, 2007) of the Elbe
estuary occurred, approximation of the water volume based on these two periods was regarded as
sufficiently accurate. During period IV only the five sampling sites A-E were sampled and only one
sampling campaign during each season was performed, whereas during the periods | (Moller, 1988), II
(Thiel et al. 1995, 2003) and Il (Eick and Thiel, 2014) a higher spatial and temporal resolution of the
sampling data were available. In order to ensure the best possible comparability of the density data
from the four different periods, the more detailed data records from periods | to lll were reduced and

adjusted to the resolution of period IV by utilizing records from the very same months.

2.4. Life cycle guilds and geographical distribution categories

Fish species in the Elbe estuary were grouped into life cycle guilds (LCG) following Thiel and Potter
(2001), Thiel et al. (2003), Elliott et al. (2007), Franco et al. (2008), Thiel et al. (2011) and Eick and Thiel
(2014): S: marine stragglers (e.g. lesser sand eel, Ammodytes tobianus), O: marine estuarine-
opportunists (e.g. herring), E: solely estuarine (e.g. common goby, Pomatoschistus microps), C:
catadromous (e.g. European eel, Anguilla anguilla), A: anadromous (e.g. smelt), F: freshwater (e.g.
zander, Sander lucioperca). These definitions were based on the most recent work by Potter et al.
(2013), who classified life cycle guilds of estuarine fish species worldwide. To ensure exact comparison

with previous data (Thiel et al., 1995; Eick and Thiel, 2014), a classification with six LCG was chosen.

Freshwater fish species in the Elbe estuary were further grouped into two geographical distribution
categories (Leroy et al., 2019): Palearctic fish species that have European, Siberian and East-Asian
distributions and Nearctic fish species that are introduced from North America. Spatial and temporal
variation in the fish fauna composition of the Elbe estuary can be described by their guild composition.
A longitudinal change in the fish community in upstream direction corresponds with a decrease of
densities of marine species and an increase of densities of freshwater species (Thiel, 2011; Eick and
Thiel, 2014). In the past century, the anadromous smelt has been dominant fish species in the Elbe
estuary since it occurs in the entire estuary with high densities and biomasses (Ehrenbaum, 1894;
Lillelund, 1961; Moller, 1988; Thiel et al., 1995; Eick and Thiel, 2014). The invasive round goby

(Neogobius melanostomus) was assigned to the freshwater LCG.
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2.5. Collection of environmental data

Environmental data originated from long-term routine monitoring programs by the local authorities
and were downloaded from the FIS Elbe data portal (FGG-Elbe, 2024). The variables electric
conductivity (EC uS/cm: DIN EN 27888 C8), water temperature (wTemp °C: DIN 38404-4 C4), dissolved
oxygen (DO mg/L and %: DIN ISO 17289 G25 and DIN 38408-23 G23), pH (DIN EN ISO 10523 C5),
suspended particular matter (SPM mg/L: DIN EN 872 H33), ammonium (NH4s mg/L: DIN EN ISO
11732:2005-05), nitrite (NO> mg/L: DIN EN ISO 13395 D28), nitrate (NO3 mg/L: DIN EN I1SO 10304-1
D20), phosphate (POs mg/L: DIN EN 1SO 15681-2 D46) and total organic carbon (TOC mg/L: DIN EN
1484 H3) were downloaded between the years 1982 and 2022. Monitored stations were chosen in

closest proximity possible to the fishing sampling stations (see Appendix Tab. A.1).

The monitoring program of the local authorities included measurements from monthly helicopter
flights (longitudinal profile) from 1982 to 1986, eight times a year from 1987 to 1993 (February, April,
May, June, July, August, September, November) and six times per year from 1994 to 2022 (February,
May, June, July, August, November). The water samples were extracted from the middle of the channel
at a depth between 0.5 and 1 m during low tide (ARGE Elbe, 1999; FGG-Elbe, 2021). From the stations
Brunsbuttelkoog (1982-2022), Grauerort (1982—2022) and Seemannshoft continuous measurements
with usually one to four measurements per month were available. Monthly and annual means were

calculated based on stationary continuous measurements and helicopter flights measurement.

2.6. Ordination and statistical analyses

Ordinations were computed using the R-package ‘vegan’ (Oksanen et al., 2022). Principal component
analyses (PCA) was performed on standardized environmental variables (as percentage of maximum
value recorded for the specific variable). Detrended correspondence analysis (DCA) was carried out on
log10 transformed species density data was carried out for further data exploration (see Appendix Fig.
A12). With the fist axis of the DCA expressing a gradient length >4, the data were suitable for unimodal
analyses (ter Braak & Smilauer 2012). The relationship between fish species composition and
environmental gradients were determined using unimodal canonical correspondence analysis (CCA).
Statistical significance of the relationships between each environmental variable and the species
composition were tested using the post-hoc permutation test anova.cca (999 permutations) of the
‘vegan’ R-package. Similarity percentage (SIMPER) analysis was carried out in order to identify species
contribution to ordination. Analysis of similarities (ANOSIM) was used to determine differences of the
fish fauna between periods, while using pairwise ANOSIM with Bonferroni correction to address
differences between individual periods. Over the entire time series, fish density data from stow net
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hauls was assigned to environmental data by matching sampling month. Monthly median values of not

normally distributed data were calculated for the ordination matrix of environmental factors. Hauls

were removed from the dataset when no environmental data could be assigned. From originally n

365 stow net hauls (period | n = 85, period Il n = 72, period lll n = 159, period IV n = 49) a total of n
310 hauls was used for ordination computation (period | n = 79, period Il n = 63, period Ill n = 126,

period IV n = 42).

3. Results

3.1. Fish species composition

A total of 69 fish taxa were recorded across four time periods wherein period | (1984—-1986) had 47
species, declining to 38 in period Il (1994—-1995), during period Il (2009-2010) there was an increase
to 53 species, that recently declined again to 44 species in period IV (2021-2022). During the entire
investigation period, the 15 most abundant fish species were: smelt, herring, twaite shad, three-spined
stickleback (Gasterosteus aculeatus), ruffe, flounder, sprat (Sprattus, sprattus), silver bream (Blicca
bjoerkna), common bream, lesser pipefish (Syngnathus rostellatus), whiting, zander, common/sand
goby (Pomatoschistus spp.), common seasnail (Liparis liparis) and European eel (Fig. 4.2, Tab. A.2).
While smelt was the most abundant fish species in the Elbe estuary during all four time periods the
ranks of the remaining species were different between the investigated time periods. Twaite shad was
the second most abundant species during the 1980s, while in the 1990s twaite shad was on the 7th
rank and during 2009-2010 it was on the 3rd rank and during recent survey (2021-2022) it was on the
11th rank. Herring displayed the third most abundant species during the 1980s and 1990s, the fourth
most abundant species in 2009-2010 and the second most abundant species during the 2020s. Other
abundant species were ruffe, which was the second most abundant species during 2009—2010 (1980s:
15th, 1990s: 5th, 2020s: 7th) and three-spined stickleback which was the second most abundant
species during the 1990s (1980s: 4th, 2009-2010: 11th, 2020s: 9th). While whiting was the third most
abundant species in the 2020s, the ranks of whiting were lower in the 1980s (42nd), 1990s (10th),
2009-2010 (26th).
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Fig. 4.2. Fish taxa found in in the Elbe estuary at the distinctive time periods 1984-1986, 1994-1995, 2009-2010 and 2021-

2022. Changes of mean densities per haul (Log transformation) indicated by heatmap. Log-transformation of density data for

enhanced visualization (large ranges of densities between species), untransformed data see Table A2.

The mean density per haul of several species exhibited varying patterns over time (Fig. 4.2, Tab A.2).

Specifically, there was an increase in density observed from the 1980s through the 1990s, followed by

a peak during the 2009-2010 period. However, our subsequent survey conducted in the 2020s

indicated a decline in mean density of fish species such as smelt, zander, ruffe, river lamprey (Lampetra

fluviatilis), silver bream, common bream and lesser pipefish in comparison with the previous period.
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In the following we report the approximate number of fishes as individuals per 1 million m3 water.
Especially the mean density per haul of smelt reached from ca. 12,000 during the 1980s to 29,000 in
the 1990s to 168,000 during 2009-2010 and was reduced with the most recent period (2020s) to
13,000. European eel expressed a gradual decrease over time, displaying the highest density during
the 1980s and the lowest during 2020s. The density of twaite shad decreased from the 1980s from
1700 to 52 in the 1990s. With the period 2009-2010 density of twaite shad increased to 1000 and
decreased with the latest period (2021-2022) to 12. Mean density of flounder increased in the 1990s
up to 600, but exceeding to the time periods 2009-2010 (240) and 2021-2022 (33) the density was
reduced. Common/sand goby had the highest density during the 1980s (165), which decreased to 15
in the 1990s and 0.7 during 2009-2010, while the density of common/sand goby increased in the time
period 2021-2022 (26). Additionally, during 2021-2022 herring (1,500) and whiting (314) displayed

their highest mean densities in the analysed time frame.

3.2. Spatiotemporal density variability of dominant fish species

Differences in the distribution of species density from the 1980s to the 2020s aim to illustrate
variations in species dynamics, focusing on spatial disparities across five locations along the salinity
gradient in the Elbe estuary. Boxplots for of fish species that were among the most abundant species
(smelt, herring, twaite shad, three-spined stickleback, ruffe, flounder) as well as important predatory
fish species (zander, whiting), river lamprey as endangered anadromous species and European eel as
endangered catadromous species across various stations in the Elbe estuary were chosen to indicate

their variance across spatiotemporal scales (Fig. 4.3).

94



Chapter 4 - Fish fauna Elbe estuary

Smelt << Herring <alipw<
5e+05 1 ‘ 20000
il | Z 15000
3 3e+051 ‘ P .
§ 264051 : g 100007
© Je+05 1 L u S 50001 é
0er00L —Bm —H. B 0 .l | 0- e, T e s
A/N B ' D E/E A/N B C D E/E'
Three-spined stickleback <)< Twaite shad *(
2500 1 600
z 29004 Z 4001
a 1500 3
g ﬁ 8 2001 i ﬁ
) 018 — DES——— . ST ™ S~ = — | 01 - | . SE— D_ — Iﬁ_
A/A’ B C D E/E’ A/A B C D E/E'
Ruffe Q( Flounder .1
6000 100001
£ 4000 Z 75001
5 2 E'OOO‘
o J | [ 2 °
2000 M } o 25001
P S S T - T - = E— - M T e - r—— —
A/ B C D E/E A/N B C D E/E
Zander <= Whiting e
1500'
300 n
£ 200 & | |
& & 500 1
& 1001 | g 500 L
0 i R == e =—" " = 0 el . e e i
A/N B C D E/E A/N B C D E/E’
European eel 4 River lamprey s————
400 151
z 3001 gy |
g 2001 é é ] [] :
100 é 1 2 ﬁ \ N
ol — B Hoe e WL ol O O B A — — .
A/ B C D E/E' AN B C D E/E

Fig. 4.3. Densities of ten of the key fish species along the longitudinal course of the Elbe estuary. A line at zero indicating
complete absence of the species at the specific station during the referring time period. Medem Reede/Medemgrund at Ekm
713/716 (A/A'), Brunsbiittel at Ekm 692 (B), Schwarztonnensand at Ekm 665 (C), Twielenfleth at Ekm 651 (D) and
NeBsand/Miihlenberger Loch at Ekm 633/639 (E/E’). Colours indicating the respective sampling periods: red (1984-1986),
yellow (1994-1995), green (2009-2010) and blue (2021-2022). Outliers (>1.5 x interquartile range) removed for enhanced

visualization of quartiles.

Densities of smelt, changed most substantially in the upstream regions being completely absent at
several occasions during the 1980s ((Jun./Jul./Aug./Oct. 1985, Jun./Jul. 1986), D (May/Jun./Oct. 1985,
Jun. 1986) and C (May 1986). In the most recent survey (2021-2022) the highest smelt densities were
observed the Hamburg region. At E/E’ with a median density of 25,000 during period IV, the population
was reduced by nearly 85 %, compared to period Il with a median density of 162,000. In the same time
period the median density at D was reduced from 76,000 to 5000 while at C the density was reduced
from 33,000 to 2200.
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Generally, herring exhibited its highest median densities in the downstream areas, specifically at
stations A/A’ (1690 at period V) and B (651 at period IV) near Cuxhaven and Brunsbittel. Throughout
all four time periods, herring was found up to the mid estuarine section (C). Density of herring was
notably lower during the 1980s compared to surveys conducted in the 2020s, where the density
reached its peak in that region. Only during the periods of 2009-2010 and 2021-2022 the presence of

herring extended till the upper estuary (D), with higher density observed in the 2020s.

The highest median density (27) of twaite shad was recorded at A/A’ during the 1980s, which had
decreased to the 1990s (4.5), increased to 2009-2010 (26) and again decreased after the 2020 (4).
During the 2020s, the highest maximum densities of twaite shad were observed at E/E’ with 40

(spawners) and B with 262 (juveniles).

Three-spined stickleback density was highest during the 1990s period, especially at station C, where
the median density of three-spined stickleback was17. During the most recent period (2021-2022)
densities of three-spined stickleback were considerably lower at all five stations compared to period

11 (2009-2010).

During the 1980s, ruffe was absent in the downstream regions at A/A’ and B, while in the 1990s, 2009—
2010 and the 2020s ruffe occurred occasionally in low densities. However, during the 1990s and the

2009-2010 period, the density of ruffe was highest in the freshwater region, particularly at D and E/E’.

Flounder was found at its highest density during the 1990s with A/A’ (median density: 3000). Lower
median densities of flounder during the 1990s were found upstream at B (451), at C (43), at D (44) and
at E/E’ (23). Decrease of flounder over was most prominent in the downstream areas A/A’ and B from

period Il to period IIl.

The highest densities of zander were particularly found close to the Hamburg area at E/E’, during the
2009-2010 period. Zander were also most abundantly found at E/E’ during the 2021-2022 survey.
Between those two periods the median density of zander increased from 7.5 to 17 at E/E’. At the more

downstream areas zander densities were lower during all four time periods.

Whiting was found exceptionally in the downstream regions in the river mouth at A/A’ and B, where
the higher densities were found at the outermost station A/A’, especially during the 2021-2022 survey.
During period IV at A/A’ the median density of whiting reached 263, while the median density at the

other periods was 0, since whiting occurred only sporadically during those time periods.

Generally, the density of river lamprey decreased with our recent sampling in the 2020s. The highest
median densities of river lamprey were found in the river mouth are, especially during the 2009-2010

period at A/A’ (2.1). At B the median densities were lower: 0.7 (1980s) and 0.8 (1990s). During period
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[l at D the maximum density of river lamprey recorded was 177, followed by 89 at C and 82 at D. The
maximum density of river lamprey in the 2021-2022 period was found at B with 11, which had also

decreased.

Densities of European eel decreased consistently at all five stations across the Elbe estuary over the

four observed time periods.

3.3. Spatiotemporal variations of life cycle guilds

Marine stragglers were found only in the downstream areas (A/A’ and B), with relatively low and
consistent densities, with less than 0.1 % (Fig. 4.4, Tab. A.3). The highest density of marine stragglers,

with a maximum of 1.6, was recorded during period IV (2020s) sampling at the downmost region (A/A’).

Marine Straggler

Opportunis
= - Log (Density +1)
Freshwater I e
us
1 _ _ - I_ -

Fig. 4.4. Spatiotemporal variation of mean densities of LCG at four distinct time periods along the salinity gradient of the Elbe

estuary: Medem Reede/Medemgrund at Ekm 713/716 (A/A’), Brunsbittel at Ekm 692 (B), Schwarztonnensand at Ekm 665
(C), Twielenfleth at Ekm 651 (D) and NePBsand/Miihlenberger Loch at Ekm 633/639 (E/E’). Log-transformation of density data

for enhanced visualization (large ranges of densities between guilds), untransformed data see Tab A.3.

At A/A’ the marine estuarine opportunists increased from 178 (1980s) to 597 (1990s) to 517 (2009—
2010). From 2009 to 2010 to the 2020s at, the number of marine-estuarine opportunists decreased
from 517 to 255. In contrast, the relative proportions between the 1980s and 2009-2010, remained
nearly constant (8.6 %, 10.9 %, 7.6 %). However, compared to the most recent sampling relative
proportion of marine estuarine opportunists increased from 7.6 % to 18.5 % at A/A’. At B, the number
of marine estuarine opportunists from 1980s to the 1990s remained constant with densities of 220
and 191 (6.9 %, 5.1%), while from 2009 to 2010 to 2021-2022 marine estuarine opportunists increased
from 116 to 464 at station B, which was a relative increase from 1.4 % to 36.9 %. In the middle section
of the estuary the density of marine-estuarine opportunists devolved from 14.8 (1980s) over to 9.3
(1990s) to 12.9 (2009-2010) and 17.0 (2020s). Therefore, the relative proportion increased from 0.1
% to 0.3 % (1980s until 2009-2010) to 3.9 % during the 2020s. In the upper sections the densities of

the estuarine-opportunists LCG were lower.

In the river mouth section (A/A’) the density of the estuarine LCG decreased from 660 (1980s) to 99
(1990s), to 567 (2009-2010) and 12 (2020s), while in the lower section at B, densities decreased from
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173 during the 1980s to 21 in the 1990s, 1.0 in 2009-2010 and 2.0 during the 2020s. Their numbers
remained nearly constant at the freshwater to upper oligohaline areas with densities around 0.5 (<0.1

%).

The number of catadromous species consistently decreased throughout the entire estuary from the
1980s to the 2020s. The mean density of anadromous species increased from the 1980s to the 1990s
and further to 2009-2010, but then drastically decreased in the 2020s. In the downstream areas,
changes in anadromous LCG densities were less pronounced compared to the upstream areas. From
2009 to 2010 period to 2021-2022 period the density of freshwater species declined notable in the

freshwater regions of E/E’ and D.

3.4. Long term shifts of environmental factors

Over the course of the past 40 years, the Elbe estuary underwent changes in environmental conditions
(Fig. 4.5). EC in the upstream regions (D, E/E’) decreased from 1980s until the early 2000s, but
increased from there slightly. The pH was lowest during the 1980s and early 1990s in the upstream
regions (C- E). TOC had decreased in all five stations since the 1980s. At region C the total organic
carbon concentration increased again. Phosphate concentration was highest in the upstream regions
(D & E) during the 1980s and gradually decreased across the time scale. Nitrate concentration at all
five regions decreased from 1980s until 2022. Maximum nitrate values were around 8 mg/L at region
B during the early 1980s and early 1990s. Nitrite concentration was highest at region E/E’, especially
during the entire 1980s decade, shown by highest annual means. At region E/E’ and B nitrite peaks
above 0.8 mg/L. On multiple occasions nitrite concentrations above 0.5 mg/L were found at stations
E/E’, D and C. Generally, the nitrite concentration decreased over time. The highest annual ammonium
concentrations were found in the upper and middle sections E/E’, D, and C. The maximum
concentrations in the upper and middle sections E/E’, D and C ranged between 4 mg/L and 5 mg/L
during the 1980s. From the beginning of the 1990s the ammonium concentration decreased in the

entire estuary.
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Fig. 4.5. Environmental parameter electric conductivity (EC), nitrate (NOs), nitrite (NO2), ammonium (NH,), phosphate (PO,),
total organic carbon (TOC), suspended particular matter (SPM), water temperature (wTemp), dissolved oxygen (DO) and pH
as heatmap (annual mean) from 1982 to 2022. A = Medem Reede/Medemgrund (Ekm 713), B = Brunsbiittel (Ekm 692), C =
Schwarztonnensand (Ekm 665), D = Twielenfleth (Ekm 651), E = NeBsand/Miihlenberger Loch (Ekm 633).

The oxygen concentration in the Elbe estuary was particularly lowest during the 1980s in the upstream
region E/E’, D and C, shown by the annual mean oxygen levels. In the river mouth at station A/A’, no
critical oxygen values were measured at any time. At region B, especially during the 1980, critical
oxygen levels were measured. In this region, on multiple occasions the oxygen concentration fell below
4 mg/L, with incidences below 2 mg/L in the early 1980s. Going further upstream lower oxygen
concentrations were more frequently measured, which resulted in lower annual mean DO. At regions
C and D oxygen concentrations below 2 mg/L occurred most frequently during the 1980s and oxygen
situation improved from the 1990s on. At region E/E’, located in the Hamburg port area, oxygen
concentrations close to zero were measured during the 1980s. Although the oxygen situation had

improved from the 1990s onward, low oxygen levels were still regularly found in that region until the
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year 2022. During hypoxic events in that time period oxygen concentrations below 4 mg/L and 2 mg/L

were measured, especially during summer months.

At the station at A/A’, located at the river mouth, the annual mean of SPM ranged from 38.1 mg/L to
89.7 mg/L. In the lower section at station B, the SPM measurements reached the maximum, with
annual means ranging from 90.5 mg/L (2003) to 293.9 mg/L (1986). At station C in the time frame from
1982 to 2010 (a 28-year period), the annual mean of SPM exceeded 100 mg/L on four occasions: 1984,
1991, 1993, and 2001. However, in a shorter 12-year period from 2010 to 2022, 100 mg/L was
surpassed nine times, peaking at 193.8 mg/L in 2020. In region D, the highest annual means of SPM
were recorded in 2019 (111.3 mg/L), 2020 (107.7 mg/L), and 2017 (97.2 mg/L). In the region of E/E’
the annual mean of SPM concentration had more than tripled from 1982 to 2022. From 1982 to 2013
the SPM annual mean at station E/E’ exceeded a concentration of 50 mg/L only once in 2006 (50.3
mg/L), however since 2014, the annual mean concentration of SPM has consistently surpassed 50 mg/L
each year. During the 1980s, concentrations ranged between 18.6 mg/L and 30.7 mg/L. Subsequently,
in the 1990s, they increased to a range of 30.5 mg/L to 44.6 mg/L. In the 2000s, concentrations
continued to rise, reaching concentrations between 31.8 mg/L and 50.6 mg/L. In the 2010s
concentrations were varying from 26.3 mg/L to 72.5 mg/L, and in the 2020s, SPM peaked between
71.1 mg/L and 92.1 mg/L.

The PCA (Fig. 4.6) shows spatial and periodical separation on both axis by the environmental variables.
The axis PC1 accounted for 30.4 % while PC2 accounted for 21.7 % of the variation. The samples show
a spatial gradient with station A as the station in the river mouth mostly ordinated at -2.5, while
freshwater station (C, D, E) were mostly ordinated in positive ordination space extending to above +7
on PC1. Samples from period | are clearly separated from the other periods due to changed

environmental conditions.
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Fig. 4.6. Principle component analysis (PCA) classified by solely environomental variables measured in the Elbe estuary
between 1984 and 2022. A = Medem Reede/Medemgrund (Ekm 713), B = Brunsbuttel (Ekm 692), C = Schwarztonnensand
(Ekm 665), D = Twielenfleth (Ekm 651), E = NeBsand/Mihlenberger Loch (Ekm 633).

3.5. Influence of environmental factors on the fish fauna

The CCA ordination CCAL1 (eigenvalue = 0.35) and CCA2 (eigenvalue = 0.12) accounted for 67.3 % of the
variation (Fig. 4.7). The ordination showed the spatial distribution of the samples with stations in the
river mouth (A, B) orientated in the positive ordination space along axis CCA1, while freshwater
samples (D, E) were oriented in the negative ordination space. The fish species were oriented in a
similar pattern: while marine stragglers e. g. hooknose (Agonus cataphractus) or tub gurnard
(Chelidonichthys lucerna) and marine estuarine opportunists (e.g. herring, whiting) were oriented in
the positive ordination space along CCA1 axis, freshwater species were orientated in the negative
space. Diadromous fish species (e.g. smelt, twaite shad, three-spined stickleback) were ordinated
centralized in the ordination space. This is also reflected by the salinity gradient as expressed by the
vector EC in which the EC acts as a proxy for the salinity. Samples with higher water temperature are
ordinated in the negative ordination space along CCA2 axis. The vectors for water quality parameters
nitrate, nitrite, ammonium and TOC showed that samples from the 1980s mainly in the freshwater
region (D, E) and the middle section (C) had higher concentrations compared to samples from the other

periods.
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Fig. 4.7. Canonical correspondence analysis, separated for visualization by top: species as abbreviations; and bottom:
environmental variables as vectors: EC (electric conductivity), SPM (suspended particular matter), NO; (nitrite), NOs (nitrate),
NH4 (ammonium), PO4 (phosphate), TOC (total organic carbon), Wtemp (water temperature), O, (oxygen saturation in % and
concentration in mg/L) and pH. ANOSIM (R2=0.219, p < 0.001). A = Medem Reede/Medemgrund (Ekm 713), B = Brunsbuttel
(Ekm 692), C = Schwarztonnensand (Ekm 665), D = Twielenfleth (Ekm 651), E = NeBsand/Miihlenberger Loch (Ekm 633).
Species abbreviations: Abramis brama (A.bram), Alburnus alburnus (A.albu), Alosa fallax (A.fall), Ammodytes tobianus
(A.tobi), Anguilla anguilla (A.angu), Ballerus ballerus (B.ball), Carassius carassius (C.cara), Carassius gibelio (C.gibe), Chelon
labrosus (C.labr), Chelon ramada (C.rama), Clupea harengus (C.hare), Coregonus albula (C.albu), Coregonus maraena
(C.mara), Cyprinus carpio (C.carp), Dicentrarchus labrax (D.labr), Gadus morhua (G.morh), Gasterosteus aculeatus (G.acul),
Gymnocephalus cernua (G.cern), Lampetra fluviatilis (L.fluv), Leuciscus aspius (L.aspi), Limanda limanda (L.lima), Merlangius
merlangus (M.merl), Myoxocephalus scorpius (M.scor), Neogobius melanostomus (N.mela), Oncorhynchus mykiss (O.myk),
Osmerus eperlanus (O.eper), Perca fluviatilis (P.flvi), Petromyzon marinus (P.mari), Platichthys flesus (P.fles), Pleuronectes
platessa (P.plat), Pomatoschistus spp. (P.spp.), Pungitius pungitius (P.pung), Rutilus rutilus (R.ruti), Salmo salar (S.sala), Salmo
trutta (S.trut), Salvelinus fontinalis (S.font), Sander lucioperca (S.luci), Scardinius erythrophthalmus (S.eryt), Scophthalmus
maximus (S.maxi), Silurus glanis (S.glan), Solea solea (S.sole), Sprattus sprattus (S.sprat), Squalius cephalus (S.ceph), Tinca

tinca (T.tinc), Trisopterus minutus (T.minu), Vimba vimba (V.vimb), Zoarces viviparus (Z.vivi).
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SIMPER analysis (Table 4.1) revealed that the largest influence on the ordination is caused by variation
of density from smelt (21.5 %). The species that had the second most influence on the dissimilarity
matrix was herring (8.9 %) followed by three-spined stickleback (7.9 %), ruffe (7.4 %), twaite shad (7.2
%), sprat (5.7 %), flounder (5.0 %), European eel (4.4 %), zander (3.5 %) and common bream (3.0 %).

Table 4.1: Cumulative percentages of the ten fish species responsible for the most variation (75 %) in the Elbe estuary

(SIMPER-Analysis).

Species Cumulative contribution [%]
Smelt 21.5
Herring 30.4
Three-spined stickleback 38.3
Ruffe 45.7
Twaite shad 52.9
Sprat 58.6
Flounder 63.6
European eel 68.0
Zander 71.5
Common bream 74.7

The four time periods 1984-1986, 1994-1995, 2009-2010 and 2021-2022 were statistically
distinguishable by ANOSIM analysis (R? =0.219, p < 0.001). Post-hoc pairwise ANOSIM with Bonferroni
correction (adjusted alpha level reduced to 1/6th of 5 %) showed that dissimilarities between period |
and IV were not significant (R? = -0.01, p = 0.606) as well as dissimilarities between period Il and Il (R?
= 0.05, p = 0.034). Dissimilarities between period | and Il were highest (R? = 0.29, p = 0.001), while
dissimilarities between period Ill and IV (R? = 0.17, p = 0.001) or between period Il and IV (R2=0.11, p

= 0.002) were also significant.

The post-hoc permutation test for constrained correspondence analysis showed that all factors had
significant influence on the species composition (Table 4.2). Strongest influence was expressed by EC
(F = 41.91), which acts as proxy for the salinity, since presence of marine species is highly depended
on the salinity. Second strongest environmental variable was oxygen concentration (F = 8.44), since
oxygen minimum zones had affected the species composition. Third and fourth strongest influences

were expressed by nitrogen compounds nitrate (8.42) and ammonium (F = 5.79). SPM (F = 5.33) was
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identified as fifth most influential environmental variable affecting the fish species composition.
Although being of minor importance, variables such as pH (F = 1.92) or TOC (F = 2.01) still had significant

influence on the compositing of the fish fauna.

Tab. 4.2: Influences of environmental variables on the fish species composition by post-hoc permutation test. Higher F-value

indicating more influence on the species composition.

Environmental variable Chi-square F-value Pr(>F)
EC 0.33608 41.91 | 0.001***
02mg/L 0.06767 8.44 1 0.001***
NO3 0.06754 8.42 | 0.001***
NH* 0.04646 5.79 | 0.001***
SPM 0.04275 5.33 | 0.001***
PO* 0.03470 4.33|0.001***
NO? 0.03325 4.15| 0.001%***
wTemp 0.02016 2.51|0.001***
0O2sat% 0.02010 2.51|0.003**
TOC 0.01615 2.01|0.008**
pH 0.01541 1.92 | 0.021**

4, Discussion

4.1. Changes of life cycle guilds

In this study we aimed to describe changes in the density and the species composition in a temperate
mesotidal estuary across four distinct periods extending over four decades and determine the driving

environmental factors for fish occurrences.

As being among the most abundant species, smelt and twaite shad account for the largest portion of
the anadromous LCG. Since the Elbe estuary provides suitable nursery areas for both species, we found
juvenile life stages in high numbers. However, as both species have faced a reduction in their
population sizes, the anadromous LCG decreased within recent years. From period Ill to period IV the
mean density of the anadromous LCG was reduced from 20,000 to 1500 individuals per 1 million m3
resulting a decline of over 92 %. This LCG was mainly represented by smelt, twaite shad and three-

spined stickleback.

The recent decline in the density of anadromous (juvenile) fish species in the Elbe estuary can be linked
to a combination of factors contributing to the overall degradation of habitat quality. Key stressors
include the recently increased oxygen deficiencies and SPM loads. Additionally, the reduction of

shallow water areas within the freshwater region further increased the stress on growing larval and
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juvenile fish (Scholle and Schuchard, 2020; llling et al., 2024). While tested environmental factors play
significant roles, it is important to note that this decline is most likely a result of multiple interacting
stressors. Further investigation with mesocosm experiments could further address these issues, in

order to quantify the effects of multiple environmental stressors.

The catadromous LCG was mainly represented by European eel, whose populations decreased
throughout Europe and therefore listed as ‘critically endangered’ on the IUCN Red List (Pike et al.,
2020). The factors resulting in the collapse of European eel populations are versatile: migration
barriers, silver eel mortality by hydropower plants, parasites e.g. swim bladder nematode Anguillicola
crassus, disease spreading of anguillid herpesvirus by stocking, and fisheries (especially glass eel)
(Behrmann-Godel and Eckmann, 2003; Briand et al., 2007; Dekker, 2016; Kullmann et al., 2017). These
problems are not specifically related to factors found exclusively in the Elbe, but are found in other

European water bodies as well.

The increase of marine species in the Elbe estuary can be explained by an increase of marine influence
by the flood stream paired with reduced river runoff. The river runoff between 2014 and 2020 was 32
% lower than the long-term 1960—-2020 mean (Rewrie et al., 2023). Due to enlarged channel diameter,
larger quantities of marine waters can enter the Elbe estuary during high tides (Zhu et al., 2014; Ralston

and Geyer, 2019), which favors the inland prevalence of marine fish species.

With the relative increase of marine-estuarine opportunists and the reduction of diadromous species,
the Elbe estuary has become somewhat more similar in its guild structure to the macrotidal estuaries
found in the UK (i.e. Forth, Tyne, Humber). In these estuaries the ecological guilds of estuarine
residents, marine juvenile migrant and marine adventitious species displayed the largest portion of the
fish fauna, while diadromous fish species were of less importance (Elliott and Dewailly, 1995). These
alterations suggest an ongoing transition of the fish guild composition towards those found in a

macrotidal estuary.

4.2. Environmental factors structuring the fish fauna

Over the entire time scale, certain environmental factors had a major influence on structuring the fish
species composition in the Elbe estuary. The strongest influence was attributed to EC, which acts as a
proxy for salinity. Stations with higher salinities at the river mouth and lower sections (A and B, see
Fig. 4.1) had higher densities of marine stragglers and marine-estuarine opportunists, which confirms
the findings of the spatiotemporal structure found in previous studies (e.g. Thiel and Potter, 2001; Eick
and Thiel, 2014). With increasing sea level rise and reduced river runoff due to climate change, these

marine influences are likely to increase even more in the future (Little et al., 2022; Pein et al., 2023).
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Seasonal changes of the fish fauna composition in relation to water temperature were also described
by Thiel and Potter (2001). With diadromous species such as smelt, twaite shad, three-spined
stickleback in the fish community, species composition changes during migration periods and juvenile
nursery time. Smelt densities peaked between early June and late August, when the population
consists predominantly of juvenile young-of-the-year specimens. Densities of three spined-stickleback
tended to be highest in colder temperatures during winter and early spring samples. In the freshwater
sections common bream densities tended to be higher at warmer temperatures during summer
months. Upstream migration of anadromous fish can be induced by factors such as rising water
temperature (Aprahamian et al.,, 2003) and increased river runoff (Lillelund, 1961). The seasonal
variation of the fish species composition is characterized by spawning and nursing activities, with high
densities of juveniles occurring in the estuary during spring and summer. As water temperature follows
seasonal patterns, the significant influence on the species composition expressed in Fig. 4.6, reflects

these seasonal changes rather than long-term shifts by increased temperature.

In the 1980s water quality in the Elbe estuary was poor due to waste water sewage (ARGE Elbe, 1984;
Moller and Scholz, 1991), which was expressed by high concentrations of nitrogen compounds
(ammonium, nitrite, nitrate), TOC and phosphates. The concentrations of those compounds were
highest in the freshwater and upper oligohaline areas of the estuary (Fig. 4.2). Nitrite is particularly
toxic to fish by reducing oxygen uptake ultimately causing death (Russo and Thurston, 1977) by
suffocation which is even more unfavourable during events with low oxygen concentration.
Schaperclaus (1979) described concentrations of nitrite of 1 mg/L as non-toxic (with regard to lethal
exposure). However more recent studies investigating long-term effects of sublethal nitrite exposure
of 0.3 mg/L for 60 days indicated significantly lower food intake and growth performance in juvenile
percids (Zhang et al., 2021). With values regularly exceeding 0.3 mg/L in the freshwater regions during
the 1980s these values have been exceeded for long times in the Elbe estuary classified as highly
polluted (LAWA, 1998). Adding to this, ammonium values that, depending on temperature and pH
becomes fish toxic ammonia, reached values of 2.4 mg/L during multiple years rendering the estuarine

waters as severely polluted by classification of LAWA (1998).

The water quality described in the 1980s was accompanied by recurring low oxygen concentrations,
occasionally even anoxic conditions (Méller and Scholz, 1991). During anoxic events in the years 1985
and 1986, O. eperlanus was completely absent from E/E’ (seven samples), D (four samples) and C (one
sample) between May and August. Entire smelt generations can be destroyed by an early onset of
oxygen depletion in their life cycle (Moller and Scholz, 1991; Thiel et al., 1995). During 1985 highest
catches of juvenile smelt were in areas with more than 5 mg/L DO (Mdller and Scholz, 1991). In the

1980s the oxygen minimum reached downstream to B, where values below 2 mg/L were measured.
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After the 1990s at C and D no DO concentrations below 2 mg/L were measured, but occasionally values
below 4 mg/L were reached. Generally, the oxygen situation improved compared to the 1980s,
especially at B, C and D. Although the oxygen situation had improved after 1990, at E/E’ concentrations
below 4 mg/L and 2 mg/L were still regularly measured during summer, meaning the oxygen situation
at E/E’' remained relatively unchanged after the late 1990s. With regard to fish larvae that use the
region around the Mihlenberger Loch (E/E’) as feeding area, Sepulveda (1994) showed that DO

concentrations below 4.5 mg/L already reduced the growth performance of smelt larvae.

4.3. Anthropogenic influences on fish densities

Historically, nutrient loads and eutrophication have severely impacted fish populations, leading to
significant oxygen depletion and causing destruction of entire cohorts (Méller and Scholz, 1991). As
water quality improved, fish stocks had recovered between the mid-1990s and early 2000s. However,
compared to the time period 2009-2010, our most recent survey showed that several of the dominant

fish species in the Elbe estuary declined in their density.

In a scenario of intensified river dredging, the effects of tidal pumping are amplified, resulting in several
stress factors for the fish fauna in the Elbe estuary. Bilkovic (2011) found that recently dredged tidal
creeks provide less suitability nursery habitats for fish, while Yang et al. (2019) concluded that
suspended sediments can have direct impacts on the survival of fish eggs and larvae. Model
calculations showed that channel deepening appeared to be the main enhancing factor for an
upstream transport of sediments (van Maren et al., 2015). Sexton et al. (2024) concluded that ship
traffic in freshwater waterways is related with declines in biodiversity for fish and macroinvertebrates.
They concluded that channelization and riparian degradation have a detrimental effect on these
ecosystems. Findings from Thiel and Pezenburg (2007) showed that elevated SPM concentration in the
Muhlenberger Loch region can induce alterations in the gill epithelial tissue (increase of mucocytes) of

juvenile smelt and therefore could cause raised mortality rates and stunted growth.

Hecht and van der Lingen (1992) found that turbidity affects feeding behaviour in fish. Under different
turbidity conditions, changes in feeding strategies were described, whereby visual predators are more
affected by turbidity than fish that feed on macroinvertebrates. Higher concentrations of SPM were
shown to affect lower trophic levels, resulting in less phytoplankton production by light limitation (de
Jonge et al., 2014; Steidle and Vennell, 2024) leading to lower densities of zooplankton and benthic
invertebrates (Shoup and Wahl, 2009) and therefore restrict food availability for fish. This is supported
by findings from Bernat et al. (1994), who found that increased SPM negatively affects the filtration

rate of calanoid copepod Eurytemora affinis in nauplii stages and adults, thus affecting copepod

107



Chapter 4 - Fish fauna Elbe estuary

densities in recent years and disrupting the entire food web of the estuary. The increased turbidity in
this scenario can affect the fishes in the Elbe estuary on various levels: firstly, the suspended solids
could have caused irritation in the gill tissue, secondly, foraging behaviour could have been impaired

and finally, overall food availability could have been reduced.

Increasing SPM concentration at C (Schwarztonnensand) showed that the reach of the maximum
turbidity zone has migrated upstream. In the description of Lang (1990), in a mesotidal estuary the
highest concentrations of SPM are found in the gradient zone, while in a macrotidal estuary higher
concentrations of SPM can be found in the freshwater areas. With the increased tidal amplitude and
the upstream migration of the MTZ, the Elbe estuary is driven towards a macrotidal estuary. Upstream
migrations of the MTZ have already been observed in other heavily modified estuaries such as the Ems
estuary (de Jonge et al., 2014). Especially the side channels of southern marginal area in the upper
section of the estuary (between D and E/E’) Hahnofer Nebenelbe, Lihesander Suderelbe and the
shallow bay Miihlenberger Loch were described as locations where the annual production of fish was
the highest (more than 200 kg/ha per year) in the entire estuary (Thiel, 2001). In the shallow water,
the ratio between surface and water volume is in favour for the fish larvae, since diffusion of
atmospheric oxygen and penetration through the shallow water column mitigates low oxygen
situations, which occur in the main channel during summer. Copepod densities are highest in the
Mihlenberger Loch area around E/E’ (Fiedler, 1991; Kafemann et al., 1996; Thiel, 2001), making this
area the favoured nursery habitat for fish larvae, as prey organisms of the optimal size are available
here. The upstream sediment transport from tidal pumping also carries organic compounds. These
particles include organic carbon and active microorganisms that consume and break down the organic
compounds (Tobias-Hunefeldt et al., 2024), leading to higher oxygen demands and oxygen deficiencies
during summer. These oxygen deficiencies, especially in the freshwater regions of the estuary, which

are the nurseries for several fish species lead to a reduction of survival of fish larvae and juveniles.

Another factor that can affect the autochthonous fish fauna are invasive species. In 2008 the first
individual of round goby (Neogobius melanostomus) was caught by commercial fisherman in the Elbe
estuary (Hempel and Thiel, 2013). The high numbers of records and juveniles by the year 2012 and
2013 suggested the establishment of the species in the Elbe estuary. Round goby can negatively impact
local fish populations by competition for habitats and food resources or direct predation of eggs and
juveniles. But they have also incorporated in the food web by being part of the diet composition of
predatory fish such as zander (Hempel et al., 2016). While adult predatory fish benefit from round goby
as an easily available prey throughout the year, they may suffer from them at earlier life stages, since
percid fish eggs were found in the diet of round goby in the Elbe at Hamburg and the adjacent Kiel
Kanal (Giesler, 2015; Hempel, 2017).
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While several fish species in the Elbe estuary suffered from negative impacts, the marine-estuarine
opportunist LCG (e.g. herring and whiting) did benefit from changing environmental factors. The
upstream shift of the upper brackish water boarder allowed them to access a larger area of the estuary
more easily. Whiting is a lusitanian fish species and according to Thiel et al. (2025) densities of whiting
have recently increased in the German North Sea areas. Although high densities of juvenile whiting are
not an event that occur every year, with the increasing temperature in the North Sea and the Elbe
estuary due to climate change, the appearance of large juvenile whiting schools in the Elbe river mouth

is likely to occur more regularly.

5. Conclusion

Our long-term case study in the Elbe estuary demonstrates the significant influence of environmental
factors, many altered by human impacts, on fish fauna composition in European estuaries. Despite
improvements in water quality and oxygen conditions boosting fish densities in the 1990s and early
2000s, recent years have seen a dramatic decline. Increased SPM concentrations, upstream shifts in
turbidity, reduced river runoff, and hypoxic summer conditions have severely affected fish stocks, with
mean fish densities plummeting by over 91 % from 2009 to 2010 to 2021-2022, primarily impacting
smelt populations. These findings highlight the critical importance of protecting estuarine nurseries to
maintain ecosystem services, which are currently undermined by ongoing ecological degradation. For
key species like smelt, the lack of refuge areas due to blocked upstream migration exacerbates their

plight which is likely to be intensified by climate change effects.
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Abstract

Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival
and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic
stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance
to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional
RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic
measurements in a network analysis approach to decipher the impact of multiple stressors on the
health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline
areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue
remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were
undergoing starvation which was supported by compromised body condition. Potential pathogenic
bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill
microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided
with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy
demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological
responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase
with consequences of climate change. We further present a method for the close-meshed detection

of the main stressors and bacterial species with disease potential in a highly productive ecosystem.

Keywords: Transcriptomics and Metabarcoding; Network analysis; Hypoxia; Holobiont; Estuary

1. Introduction

Coastal and estuarine environments have undergone significant changes in the past century due to
overexploitation, habitat fragmentation, pollution, and species invasion (Lotze et al., 2006). Estuaries,
as transitional ecosystems, exhibit intense variations in physicochemical conditions such as hydrology,
salinity, turbidity, temperature, oxygen levels and habitat availability (Elliott and Quintino, 2007).
Global change is expected to increase pressures on fish communities in estuaries, with a particular
focus on the increasing frequency and intensity of oxygen minimum zones (OMZ), which have critical
impact on fish physiology and distribution (Breitburg et al., 2018; Cottingham et al., 2018; Diaz and
Rosenberg, 2008; Lauchlan and Nagelkerken, 2020; Sampaio et al., 2021).

Adding to this, the tidal Elbe as one of Europe's largest estuaries faces substantial pressure from
centuries of construction projects including diking and improvement of access to the Hamburg harbor.

Deepening and maintenance dredging of navigation channels resulted in the relocation of ca. 23 million
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m3 sediment in 2021 (WSV.de, 2023) of which a proportion was resuspended into the water column
(Kappenberg and Grabemann, 2001). Low dissolved oxygen levels, including instances of hypoxia (<2
mg/L) in upstream areas, have been reported since the 1980s (Schdl et al., 2015). During summer, the
otherwise well-mixed estuary (Middelburg and Herman, 2007) experiences stratification, particularly
in the port area and deepened navigation channel. Under these conditions it is common to observe
oxygen depletion and ammonium accumulation in the hypolimnic waters (Pein et al., 2021). Limited

efforts have been made to address these issues.

Fish respond to changes in their environment through various mechanisms, including behavioral,
morphological, physiological, and molecular adaptations, with severe stress ultimately leading to
mortality (Richards, 2009). Avoidance reactions in fish (Roberts et al., 2009; Thiel et al., 1995) can be
hindered by factors such as oxygen minimum zones, which restrict access to deeper, oxygen-rich areas
(Diaz and Rosenberg, 2008). The first timeseries studies on one anadromous fish species (Osmerus
eperlanus) in the Elbe estuary have revealed massive declines in abundance over the last decade
attributed to multiple stressors comprising habitat loss, cooling water extraction, dredging, increased

turbidity and recurring hypoxia (Scholle and Schuchardt, 2020).

In this study we use juvenile zander Sander lucioperca (Linnaeus, 1758) (0+ cohort) sampled in late
summer 2021 from the Elbe estuary as a model organism to explore gene expression patterns and
holobiont interaction linked to biometric parameters indicative for physiological condition in response
to steep abiotic gradients. The zander is among the most abundant fish in the ecosystem and among
the top predatory species in the Elbe exerting a strong top-down control on other species (Eick and
Thiel, 2014). In contrast to their embryonic stages, which require a salinity of <7 psu for their
development (Klinkhardt and Winkler, 1989), juvenile and adult zander tolerate mesohaline conditions
and strong osmotic fluctuations (Brown et al., 2001) allowing them to inhabit the entire estuary. Life
history strategies of the population comprise either brackish residency or freshwater-brackish water
strategy in which reproduction and larval growth occur in freshwater with later dispersal to more saline
habitats (Kafemann et al., 2000). Larvae typically hatch between April and June and switch to
piscivorous feeding within their first year (Vinni et al., 2009), with O. eperlanus being primary prey in
the tidal Elbe (Kafemann and Thiel, 1998). The summer period is characterized by intensive growth,
the juveniles sampled here spent 4 to 5 months in the estuary reaching 16 + 2 cm with high metabolic

activity susceptible to be altered by the multiple prevailing stressors (Laurent et al., 2023).

Despite a well-found knowledge of the abiotic and biotic changes occurring within the estuary, many
spatio-temporal factors (i.e. temperature, salinity, DO levels) are confounding and make it difficult to
determine the precise mechanisms underlying observed losses in fish biomass. Omics are increasingly
considered in the context of biomonitoring and conservation biology, as they enable a deep
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understanding of processes at all levels of biological organization and of previously overlooked
interactions (Connon et al., 2018; Miranda et al., 2023). Co-working of multiple stressors is expected
to lead to unforeseen synergistic or antagonistic effects in organisms (Petitjean et al., 2019), sublethal
impacts of which can contribute to population declines over generations (Connon et al., 2018).
Molecular adjustments precede high level responses thereby probably allowing earlier detection of
adverse situations (Bahamonde et al., 2016). Real-world omics studies indicate molecular mechanisms
used by fish to cope with adverse effects of multi-stress environment. Reversely they can inform about
the environmental conditions themselves allowing the identification of unexpected stressors as shown

in recent studies (Jeffrey et al., 2019; Laurent et al., 2023).

Biotic interaction with microbiota on mucosal surfaces of teleost fish plays a crucial role in host
metabolism, growth and health (Kelly and Salinas, 2017). The gill mucosal surface constitutes a special
habitat for host-associated microbes due to its unique functions in waste excretion, gas exchange and
immune activity (Pratte et al.,, 2018; Salinas, 2015). Local immune cell populations composed of
adaptive and innate parts form the gill associated lymphoid tissue (GIALT) (Salinas, 2015) and enable
fish to discriminate between beneficial and pathogenic bacteria thus keeping microbiome homeostasis
(Yu et al., 2021). Changes in the environment however, including water conditions, seasonal changes
and physiological stress can lead to compositional disturbances that turn commensals into pathogens
(Kelly and Salinas, 2017). Several studies, particularly in aquaculture, have indicated an impaired
immune response and spread of pathogens under low-oxygen conditions (Abdel-Tawwab et al., 2019;
Boutin et al., 2013; Leeuwis et al., 2024). Likewise, suspended sediment was indicated to cause
microbial shifts towards pathogenic communities (Hess et al., 2015). This sensitivity to environmental
parameters makes the external mucus composition a biomarker for fish health built by a stable
community of core taxa of low number but shared over a large range of conditions and a variable

community strongly influenced the environment (Sehnal et al., 2021).

The objective of this study was to design an unsupervised network-based dimension reduction method
based on real-world holobiont omics data from RNA and 16S rRNA libraries to precisely identify tissue-
specific gene profiles and dynamics in bacterial composition. This allows us to determine driving
stressors in the ecosystem and, by describing the microbiome and linking it to the immune response
in the host, to provide a first basis for the use of microbial biomarkers for the evaluation of fish health

in the estuarine ecosystem.
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2. Material and methods

2.1. Sample collection

Fish were caught with a stow-net fishing vessel (opening area of 135 m2, mesh size of 10 mm at the
cod end) at four stations along the Elbe estuary (Fig. 5.1) in the summer period from 25 to 29.08.2021.
Sampling stations were chosen within different estuarine sections classified by dominating abiotic
drivers (Amann et al., 2012): Station ML-Elbe kilometer 663 within oxygen minimum zone (OMZ)
(stream km 620-650, low oxygen, summer <2 mg/L, salinity <0.5 psu), stations SS-Ekm 665 and BB-
Ekm-692 within the maximum turbidity zone (MTZ) (stream-km 650-705, high loads of suspended
matter, salinity >0.5 < 5 psu) and station MG-Ekm 715 within post-MTZ (Ekm 705-730, transition full
marine, salinity >1 < 20 psu). See Fig. 5.1 for sampling overview map and Fig. 5.2 C for abiotic conditions
in the water column at sampling times. Sampling procedures followed the standards described in the
German Animal Welfare Act (§4 TierSchG). Exemptions to the ordinances on nature reserves were
obtained (see Permits). 3102 individuals of age 0+ were caught at the sampling stations (200 at MG,
134 at BB, 208 at SS and 2560 at ML). Six individuals from each ebb haul (n = 24, total length 16 + 2
cm) were randomly chosen and processed immediately on board. Trends in physiological measures
(length, weight, body condition) are representative in the subsets when compared to the larger sample
size (see Fig. A.1, (Amieva Mau, 2022)). Physiological and abiotic sample data are supplied in Appendix
C. Sample processing was conducted in the following standardized manner: After being brought on
board, the fish were stunned with a blow to the head, before being killed with a heart stab. Samples
were cooled to 4° until sampling immediately afterwards to ensure best RNA quality. Fish were
measured and weighed before recovering gill bacteria with sterile cotton swabs from the middle part
of the second and third arch. The same part of the gill tissue as well as the right most edge of the liver
was resected for preservation. All samples were kept on dry ice on board and moved to —-80 °C until
further procession. Tissue samples were first placed in tubes with RNAlater (Macherey-Nagel) for 1 h
before they were moved to dry ice. Abiotic conditions (oxygen & salinity levels, Secchi depth,
temperature, pH) were measured at start and end of each haul using a multi-probe (Hanna HI 9829
and Secchi disc) at the water surface. Water samples (n = 4) obtained from the water column were
vacuum filtered onto 0.2 um polycarbonate membranes (Whatman™ Nucleopore™ Track-Etch). Whole
fish samples were frozen at —20 °C and further analyzed in the lab: body indices were determined
(Fulton's body condition (FultonK), hepato-somatic - (HSI) and spleno-somatic indices (SSI) see
(Petitjean et al., 2020), stomach content was weighed and age determination from otoliths and scales

was performed.
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Fig. 5.1. Elbe estuary with section classification following (Amann et al., 2012): Oxygen minimum zone (OMZ), maximum
turbidity zone (MTZ), and post-MTZ and sampling locations Muhlenberger Loch (ML), Schwarztonnensand (SS), Brunsbittel
(BB) and Medemgrund (MG) with Elbe river kilometer (Ekm).
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Fig. 5.2. Relationship between gene expression, bacterial composition, biometric fish data and abiotic conditions for Elbe
estuarine zander. Integrated heatmap of gill network analysis (A) showing correlation between host gene expression module
eigengenes (middle panel: Gill-RNAO-38), physiological traits (left panel: FultonK, StomachContent, HSI (hepatosomatic
index)) and relevant abiotic factors (left panel: 02, salinity, Secchi depth) as well as microbiome abundance module eigenASVs

(right panel SSUO-12). The middle panel shows Z-score of eigengene values per module as rows for individual fish ordered for
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sampling location in upstream direction as columns. The left panel shows Pearson correlation strength between eigengene
and host/external traits, the right panel shows Pearson correlation to SSU eigenASVs (brown representing positive, zero white
and green negative correlation) and statistical significance indicated by stars: * p <0.05, ** p<0.01, *** p<0.001. Integrated
heatmap of liver network analysis of matching fish (B) with host module eigengenes (right panel: Liver-RNAO-39) correlated
to physiological traits and abiotic factors (left panel). Abiotic factors measured in the water column are depicted for sampling

stations (C) as well as selected physiological measurements of HSI (D) and Fulton's condition (E).

2.2. Transcriptome
2.2.1. RNA extraction

Total RNA extraction from gill and liver tissues was performed via sample homogenization (45 s) with
ceramic beads in peqGOLD Trifast (Peqlab), RNA dissolving in chloroform and mixing with 70 % ethanol
before immobilization on a silica membrane (Crystal RNA Mini Kit, BiolabProducts). On-column DNA
digestion with RNase free DNase | (Qiagen) was performed for all samples. RNA quantity and integrity
were controlled by spectroscopy (Nanodrop, Thermo Fisher) and on denaturing agarose gels and
Bioanalyzer (Agilent Technologies) (avg. RIN 9.6 + 0.6 over 48 samples). For every individual (n = 24)
liver and gillmRNA was isolated using either NEBNext Poly(A) Magnetic Isolation Module (New England
BioLabs) followed by stranded cDNA library creation (NEBNext Ultra Il Directional RNA Library
Preparation kit (New England Biolabs)) or the lllumina RNA stranded mRNA kit including polyA
enrichment. Individually barcoded libraries were 2 x 150 paired-end sequenced on NovaSeq6000
(lumina) (300 cycles, v1.5 reagents, S4 FlowCell) on three different lanes resulting in 3.4 billion reads
(avg. ca. 25 + 6.8 million). To account for possible batch effects from library preparation and

sequencing runs, biological replicates from sampling location are spread over runs.

2.2.2. Transcriptome analysis

Transcriptome analysis was performed on the University Hamburg Hummel HPC. Read files were
quality controlled using FASTQC (v 0.11.9) and MultiQC (1.12) followed by removal of adapter
sequences, clipping of first and last base pairs, quality filtering bases lower Phred score 20 and
discarding reads lower than 20 base pairs in length via TrimGalore (v 0.6.10) wrapper of cutadapt
(Martin, 2011) and FastQC (Andrews, 2010). Clean reads were mapped to the genome of Sander
lucioperca SLUC_FBN_1.2 (Nguinkal et al.,, 2019) using Hisat2 (v.2.2.1) (Kim et al., 2015) (overall
mapping rate 99 + 1 %) followed by expression determination via featureCounts (subread v.2.0.2) (Liao
et al., 2014) (assignment rate 51 £ 5.4 %; 18 £ 5 million assignments). All downstream analyses were

performed in R (v.4.3.0) using visualization packages ggplot2 (v.3.4.2) and cowplot (v.1.1.1). Genome
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wide annotation databases org.XX.eg.db (v.3.17.2) (Carlson, 2019) for human, mouse, and zebrafish as
well as AnnotationHub (v3.17) (Morgan, 2023) entries for zander were used to translate between
different gene identifiers, names and symbols. CDS regions from the reference genome were
annotated using diamond (v.2.0.15) blast against UniProt, UniRef90, TrEMBL, RefSeq-Protein and
Human EMBL-EBI reference proteome databases. Blast results were filtered for E-value <le-6 and bit
score higher 50, for multiple hits to the same transcript, the one with the lowest E-value was retained.
Wherever human genes could be assigned to transcripts on gene-level the human annotation was used

for pathway analyses.

2.2.3. DEA & Functional term enrichment

Differential expression analysis was performed to verify network analysis results via DESeq?2 (v. 1.41.4)
(Love et al., 2014) (significance when FDR adjusted p value <0.05 & Log2FoldChange (LFC) 0.05 or 1)
contrasting sampling locations along the estuary. Genes failing to meet expression threshold of
transcripts per million mapped reads (TPM) of 1 in at least three samples were excluded from
downstream analyses (Lataretu and Holzer, 2020). Genes were aggregated and hierarchical clustered
using in ComplexHeatmap (v.2.17) (Gu et al., 2016). Functional enrichment of heatmap clusters was

performed via overrepresentation analyses as described in Section 2.3. For results see Fig. A2 & A 3.

2.3. Microbiome
2.3.1. DNA extraction

Swabs were incubated in a mix of lysozyme, mutanolysin and lysostaphin before the cells were
physically disrupted in a bead mill (Travis et al., 2020). Proteinase K digestion in CTAB buffer was
followed by chlorophorm-phenol extraction. Nucleic acids were precipitated in PEG 6000 using LPA-
carrier and recovered and washed repeatedly with 95 % and 70 % ethanol before resuspension in water
(Neubauer et al., 2021). QC was performed via spectroscopy (Nanodrop, Thermo Fisher) and gel

electrophoreses.

2.3.2. DNA sequencing

The V3-V4 variable regions of the 16S rRNA gene were amplified in a one-step PCR using the primer
pair 341F-806R (dual-barcoding approach (Kozich et al., 2013); primer sequences: 5'-CCTACGGGAGG-
CAGCAG-30and 5-GGACTACHVGGGTWTCTAAT-30). After verification of the presence of PCR-products
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by gel electrophoresis, normalization (Sequal Prep Normalization Plate Kit; Thermo Fisher Scientific,
Waltham, USA) and equimolar pooling was performed. Sequencing was conducted on the MiSeq
platform (MiSeqFGx; Illumina, San Diego, USA) with v3 chemistry (2 x 300 bp). The settings for

demultiplexing were 0 mismatches in the barcode sequences.

2.3.3. DNA bioinformatics

Sequence data trimming, amplicon sequence variant (ASV) prediction and taxonomic identification
were performed using cutadapt, FastQC and DADA?2 (v.1.29.0) (Callahan et al., 2016). Quality profiles
of paired reads were inspected and truncated at 270 and 190 for forward and reverse reads. ASV
inference was performed with pooling method and taxonomy assignment used the SILVA SSU v138
taxonomic database (Quast et al., 2013). Accuracy of DNA extraction, sequencing until taxonomic
assignment was validated via inclusion of mock community samples (ZYMO research). ASV table and
sample data were parsed to phyloseq (v 1.45.0) (Mcmurdie and Holmes, 2012) removing ASVs
taxonomically assigned to non-bacteria. Low abundance taxa with sum of counts lower than 0.005 %
of total sum of all counts were filtered reducing the number of zeros in the dataset by 50 % to improve
interpretability and minimize the risk of spurious correlations. A total of 1285 bacterial ASVs were
included in further analyses, minimum sampling depth was ca. 7000, (avg. ca. 21,000 + 13,000) clean
sequences for fish samples. Alpha diversity measures were calculated via vegan package (v. 2.6.4)
(Oksanen et al., 2022). The core microbiome was determined from relative abundance data via
microbiome package (v. 1.23.0) (Lahti and Shetty, 2017) with filtering detection threshold to 0.0001 %
within samples and 90 % prevalence. Centered log-ratio (CLR) transformation to the ASV matrix was
applied following best practices for handling of compositional data (Gloor et al., 2017) using the
microbiome package (Lahti and Shetty, 2017). The transformed data were used for visualization and
network analyses. Permutation multivariate analysis of variance was used to test differences in
community structure between fish and bacterioplankton as well as between fish sampling groups in
vegan followed by post hoc pairwise t-test via pairwiseAdonis (Martinez Arbizu, 2020). Detailed results
in Table A 2. Negative binominal GLM fitting and Wald statistics in DESeq2 (v. 1.41.4) (Love et al., 2014)
were used to identify taxa with significantly changing abundances between conditions used to verify

the network analysis results. For results see Table A 3 and Fig. A5 F.

2.4. Holobiont analyses: WGCNA

A Mantel test based on distance matrices was used as an initial approach to reveal overall matrix

correlations (Fig. A 4). Weighted gene co-expression network analysis (WGCNA) (v.1.77-1) (Langfelder
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and Horvath, 2008) was then used for network inference using the following steps and parameters: 1.
Signed network construction using biweight midcorrelation measure (Wilcox, 1997). Weighted
adjacency is created via soft-thresholding, multiplying the co-expression matrix by a power that leads
to approximate scale-free topology. Signed Topological Overlap Measure (TOM) is then used to
measure interconnectedness accounting for indirect interactions and assignment of genes and
bacterial clusters was performed via hierarchical clustering. Three samples were identified as outliers
in both tissue RNAseq datasets by PCA and Euclidean distance clustering and excluded for network
analysis and DEA. Parameter list: networkType = “signed”, TOMType = “signed”, corType = “bicor”,
minModuleSize = 30/5 (RNA/SSU), reassignThreshold = 0, deepSplit = 3, mergeCutHeight = 0.25. Our
parameters were set to allow highest reproducibility between the different datasets in this study and
upcoming samplings. Minimum module sizes of 30 and 5 for transcriptomic and SSU (Small subunit
rRNA) datasets were chosen to facilitate interpretability. The first principal components of each
module (Eigengene/EigenASV) are considered representative for the gene expression or bacteria
abundance profile. Functional roles were assigned to the network modules by overrepresentation
analyses against the KEGG- (Kanehisa and Goto, 2000) and GO-databases (Aleksander et al., 2023)
using ClusterProfiler (v.4.9.0) (Wu et al., 2021). A subset of genes with correlation between gene
expression profile and module eigengene (module membership) higher 0.8 was used for function
annotation to increase interpretability. From each module, nodes with highest intramodular
connectivity from the adjacency (hubs) were inspected as they are considered and shown functionally
important (Langfelder et al., 2013). Module eigengenes/ASVs where correlated between the different
networks and to physiological traits of the fish (Fulton's body condition, weight, length, stomach
content weight, HSI, SSI) and external abiotic factors (DO levels, salinity, Secchi depth) via Pearson
correlation. An integrated heatmap analysis approach was used to visualize host responses and

holobiont interaction following a workflow developed by Strand et al., (2021).

2.4.1. Principal component analysis

Principal component analyses (PCA) were performed on variance stabilizing transformed counts for
RNAseq data or CLR transformed counts for 16S data using PCAexplorer and PCAtools (Blighe, 2023;
Marini and Binder, 2019). Evaluation of clustering in PCA-plots indicated no obvious batch effects
between sequencing runs. Nevertheless, ComBat-seq (Zhang et al., 2020) batch effect adjustment tool
was applied on the datasets but lead to an overall non-batch effect related reduction in variance and

was discarded for further analyses.
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3. Results

To gain insight into fish response and fish-microbiota interactions under steep abiotic gradients in an
estuarine habitat, we applied an integrative approach of tissue specific RNA-seq and gill epithelial
mucus 16S rRNA amplicon sequencing collected from juvenile zander from Elbe estuary during late
summer. The sampling sites spanned mesohaline to freshwater habitats (Kennish, 2002), with DO
levels, turbidity and salinity showing variation between the discreet estuarine areas (Amann et al.,
2012): The post-maximum turbidity zone (post-MTZ, station: MG), the maximum turbidity zone (MTZ,
stations: SS, BB) as well as the oxygen minimum zone around the Hamburg harbor area (station ML)

(Fig. 5.1).

3.1. Network analysis
3.1.1. Post-maximum turbidity zone - salinity adaptation

The post-MTZ was characterized by mesohaline conditions ranging from 9.0 to 14.9 psu and stable DO
levels between 8.2 and 8.5 mg/L (see Fig. 5.2 C). Only a few RNAseq modules positively correlated to
salinity levels exhibited functional enrichment. Gill-RNA-1 (753 genes with module membership MM >
0.8, Pearson's correlation R = 0.54 and p value 0.01 to salinity levels) was enriched in cellular
communication and signaling (focal adhesion, extracellular matrix (ECM)-receptor interaction, cell
adhesion), signal transduction (PI3K-AKT, MAPK, cGMP-PKG) and axon guidance (compare Fig. 5.2 A &
B & Fig. 5.3 C). Module hub genes were transmembrane protein 204 (tmem204) and protein tyrosine
kinase 2 (ptk2aa). Genes in Gill-RNA-5 (144 genes, salinity R = 0.67, p 7.8E-04) were involved in ER
protein processing and Gill-RNA-37 (22 genes, salinity R = 0.46, p 3.4E-02) in glutathione metabolism
(gpx7, mgst3a). The liver tissue-specific response in RNA-Liver-10 (22 genes, salinity R = 0.49, p 0.022)

was related to fatty acid metabolism (elovl5, scdb).
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Fig. 5.3. Tissue specific gene

regulation in relation to estuarine sections. KEGG pathway enrichments in modules correlated

with abiotic traits from tissue specific network analyses are shown. Modules with negative correlation to dissolved oxygen

levels (A) and positive correlation to turbidity (B) and salinity (C) are indicative for gene expression patterns within the oxygen

minimum zone, the maximum turbidity zone and the post MTZ. In each plot KEGG-level 1 (left y Axis) and KEGG- level 2 (right

y Axis) against the number of genes within each module with >0.8 Module membership are depicted.

3.1.2. Maximum turbidity zone — enhanced energy metabolism

The maximum turbidity zone was marked by high particle load (Secchi depth of 10-30 cm), salinity

fluctuation between 5 and 0.6 psu (SS: 0.9-0.6 psu, BB: 1.6-5.2 psu) but stable DO levels 7.6-8.8 mg/L

(see Fig. 5.2 C). Gill-RNA modules with significant negative correlation to Secchi depth values

comprised Gill-RNA-3 (1469 genes, Secchi depth R = -0.55, p 9E-3) enriched in ribosomal genes of both

subunits and Gill-RNA-13 (50 genes, Secchi depth R = -0.69, p 5E-4) that contained genes involved in

axon guidance (compare Fig. 5.2 A & B & Fig. 5.3 C). Liver-RNA-1 (754 genes, Secchi depth R =-0.57, p

5E-3) comprised genes related to autophagy (AMPK, mTOR, Insulin, FoxO, adipocytokine), mitophagy

and peroxisome with autophagy related hub gene bnip4. Liver-RNA-6 (118 genes, Secchi depth R =

-0.56, p 6.6E-3) was composed of ribosomal subunit genes. Liver-RNA-9 (138 genes, Secchi depth R =

-0.45, p 3.6E-2) was highly enriched in metabolic pathways comprising fatty and amino acid

degradation (tryptophan metabolism, valine, leucine and isoleucine degradation, lysine degradation,

alanine, aspartate and glutamate metabolism).
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3.1.3. Oxygen minimum zone - cellular stress and immune reactions

The oxygen minimum zone was characterized by low DO levels between 4.6 and 5.0 mg/L (46-52 %
saturation) and stable salinity levels (0.46 psu). Seven Gill-RNA modules were negatively correlated to
oxygen levels in the surrounding milieu, five of them were also negatively correlated to salinity (see
Fig. 5.2 A & B). Gill-RNA-Module 2 (455 genes, DO R =-0.52, p 0.015) was highly enriched in replication
and repair pathways (DNA replication, base excision repair, mismatch repair, nucleotide excision
repair), cell growth and death (cell cycle, apoptosis, necroptosis), folding, sorting and degradation
(proteasome), immune system (antigen processing and presentation) as well as signal transduction
(NF-kappa B signaling pathway). Hub genes comprised proteasomal subunits (psmb9a, psmaél,
psmb10, psmel), innate immunity related irflb and erap2. Gill-RNA-4 (326 genes, DO R = -0.51, p
0.017) showed enrichment in protein procession (proteasome, protein processing in ER, Protein
export), genetic information processing (nucleocytoplasmic transport and spliceosome). Hub genes
were psmd2, ups5, uspl4 involved in protein processing as well as cell proliferation related ppp5c. The
immune response in gill tissue was divided between two modules. Gill-RNA-7 (123 genes, DO R=-0.79,
p 2.6e-05) included innate immune response parts (chemokine signaling and viral protein interaction
with chemokine). Hub genes were microbicidal oxidase system of phagocytes (cyba, nox1) and MHC
class Il paralogues. Three variants encoding for eosinophil peroxidase (epx-like) and mucin-2 like
isoforms were most correlated to DO levels (R-0.85) and highly upregulated in the Hamburg area (LFC
> 1, see Fig. A 2). Gill-RNA-11 (213 genes, DO R = -0.59, p 4.5e-03) was enriched in adaptive immune
system processes specifically T cell receptor signaling, T-helper cell differentiation, NK cell mediated
cytotoxicity and general chemokine signaling. Hub genes include the protein tyrosine phosphatase
ptprc and lymphocyte cytosolic protein 2 Icp2a. Gill-RNA-21 (64 genes, DO R = -0.77, p 4.6e-05) was
enriched in porphyrin metabolism (hubs: rhd and alas2) and strongly upregulated hemoglobin subunit
alpha-2-like and beta-2-like. Gill-RNA-25 (19 genes, DO R = -0.6, p 4e-03) shows enrichment in lysine
degradation (kmt2d, ezh2, kmt2bb). The liver specific response was less pronounced compared to gill,
Liver-RNA-2 (2327 genes, DO R = -0.45, p 0.03) was enriched in genetic information processing
pathways (proteasome, protein processing in ER, DNA replication, spliceosome, base excision repair),
cellular processes (cell cycle) and metabolism (carbon metabolism, N-glycan biosynthesis, TCA cycle).
Hub genes include again usp14 and ppp5c. Liver-RNA-8 (81 genes, DO R =-0.49, p 0.02) was enriched
in energy metabolism (oxidative phosphorylation), metabolism (of amino acids, cofactors, vitamins),

mismatch repair as well as protein procession (proteasome, protein export, N-glycan biosynthesis).
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3.2. Gill microbial community structure

Approximately 630,000 trimmed, filtered and merged reads across 24 zander and four water samples
resulted in 42.000 ASVs. Filtering for ASVs contributing at least 0,005 % of overall abundance reduced
sparsity in the dataset by 50 % and retained 1285 ASVs for further analysis (complete ASV list in
Appendix B). Species accumulation analysis indicated that the rare microbiome was not sufficiently

captured in the dataset (see Fig. A 5 A) but overall composition was when excluding rare taxa (Fig. A5

B).

3.2.1. Host-associated differ from free-living bacterial communities

We identified seven bacterial phyla associated with the fish microbiome and eight phyla in the
surrounding water column (Table A 1). There was a significant difference between the microbiome of
the fish and that of the surrounding water column (DF 1, F 7.5686, p 0.001) (Fig. A 5C, Table A 2). Of
the 1285 ASVs identified 51 were found only in the water column while 600 were unique to the fish
gill microbiome (Fig. 5.4 B). The water column was characterized by a large abundance of
Actinobacteriota (25 % in water samples, 1-6 % in fish), Proteobacteria (38 %, fish: 53—-78 %),
Bacteroidota (15 %, fish: 14—32 %), Verrucomicrobiota (8 %, fish: 1-3 %) and several phyla not
represented in fish samples at all: Cyanobacteria (4 %), Nitrospirota (3 %), Acidobacteriota (2 %),
Planctomycetota (1 %). Firmicutes, Deinococcota and Desulfobacterota in the contrary were only

recovered from fish gills.
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Fig. 5.4. Bacterial composition fish gill mucus and bacterioplankton. Compositional barplot (A) shows genus accumulated
relative abundance (>1 %) per sample. Venn Diagrams depict presence/absence of bacterial ASVs found in water samples

(WF) and on fish (SL) (B), and in fish swabs along the curse of the estuary (C).
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3.2.2. Host-associated communities diverge along the course of the estuary

We found a significant site-dependent difference in the bacterial community composition of the fish
gill (DF 3, F 3.5533, p 0.001) between all sampling locations (Fig. A5 C, PC2, Table A 2). 45 % of ASVs
occurred in at least one fish from each sampling site and there were few site-specific taxa (1-6 %) (Fig.
5.4 C). The community was dominated by Proteobacteria followed by Bacteroidota and Actinobacteria
which were the only phyla present on all individuals. The ratio of abundances between Proteobacteria
and Bacteroidota was subjected to strong changes (MG: 62/21 %, BB: 53/20 %, SS: 54/32 %, ML: 78/14
%). Enterobacterales (32 %), Flavobacteriales (19 %), Burkholderiales (13 %), Pseudomonadales (9 %)
and Clostridiales (6 %) make up 80 % of the relative bacterial abundance over the estuary.
Enterobacterales (49 % in most downstream — 12 % in most upstream sampling station) steadily
decrease over the course of the estuary with Photobacterium (27 % — 0 %), Citrobacter (8—3 %),
Enterobacter (7-2.5 %), Lelliottia (4—2 %) being the most abundant genera. Burkholderiales (3—36 %)
with the genera Polynucleobacter (0-28 %) Verticiella (0—-7 %) and the Pseudomonadales (5-17 %) with
the genera Acinetobacter (0-14 %) and Psychrobacter (0-2 %, SS 8 %) show increasing relative
abundance in fish gill swabs in upstream direction. Flavobacteriales show differing patterns with the
genera Elizabethkingia (16—8 %) steeply decreasing over estuary and the genus Chryseobacterium (0—
6 %, SS 9 %) increasing with a peak in the middle of the estuary. Alpha diversity slightly changes along
the course of the estuary, observed richness steadily increased from 364 to 502 ASVs (sampling group

means) in upstream direction with slight changes in Shannon index: MG: 3.9; BB: 3,6; SS: 4.3; ML: 4.0.

3.2.3. The core microbiome community of estuarine zander gills

The core microbiome comprised 43 ASVs from 11 orders predominated by roughly even relative
abundance of Proteobacteria and Bacteroidota (Fig. A5 D & E): Proteobacteria (Enterobacterales (18
%), Pseudomonadales (1 %), Burkholderiales (1 %), Caulobacterales, Sphingomonadales), Bacteroidota
(Flavobacteriales (16 %), Chitinophagales (1 %), Sphingobacteriales), Actinobacteriota (Microtrichales
(1 %), Corynebacteriales, Micrococcales), Deinococcota (Deinococcales) & Verrucomicrobiota
(Chthoniobacterales). While the relative proportion of core taxa in the total microbiome declined along
the course of the estuary (56 to 28 %), the relative proportions within core taxa stayed overall stable
(Bacteroidota/Proteobacteria from 55/40 to 60/35 %). The Hamburg harbor area has the largest
impact on the core microbiome, with slight increases in Bacteroidota. CL500-29 marine group was the
only taxon shared in large amounts (>1 %) between core fish gill microbiome and surrounding water

column.
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3.2.4. Potential pathogens correlate to host immune response

The bacterial network modules Gill-SSU-2 (Fig. 5.5 B) and 3 were correlated with the host gillimmune
modules (Gill-RNA-7 & 11) (Fig. 5.5 A and Fig. A 6), comprising 17 genera with Pearson correlation
(>0.6) and intramodular connectivity (>0.8) (Fig. 5.5 C). Of these Verticiella (4 ASVs), Shewanella spp.,
S. baltica and S. putrefaciens (9 ASVs), Aeromonas (8 ASVs), Acinetobacter spp., A. johnsonii, A.
tjernbergiae, A. iwoffii (24 ASVs), Polynucleobacter (4 ASVs), Plesiomonas (2 ASVs) and
Chryseobacterium spp., C. piscicola, C. haifense (13 ASVs) were with almost all strains absent from the
bacterioplankton. In the contrary, Methylococcaceae (4 ASVs), Gemmataceae (4 ASVs), Luteolibacter
(5 ASVs), Terrimicrobium (9 ASVs), Cyanobium (3 ASVs) and Legionella (7 ASVs) were abundant in both

water and fish samples.
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c Phylum Order Lowest Taxonomic level Relative [%]  SS5U Moddul Module Membership Correlation to Gill-RNA-7 Correlation to Gill-RNA-11
ASV306: baltica Avg 0.05; max 0.53 2 0,90 0.85 0.61
ASV413: Shewanella 0.04; 0.42 2 0.98 0.80 0.50
ASV415: Shewanella 0.07;0.44 3 0.89 0.78 0.60
ASV221: Shewanella putrefaciens 0.03;0.36 3 0.85 072 0.69
ASV485: Aeromonas 0.02;0.16 2 0.80 0.78 0.56
ASV158: Aeromonas 0.07;0.76 3 0.83 073 0.59
ASV846: Aeromonas 0.01;0.03 2 0.82 063 0.63
ASV1298: Plesiomonas shigelloides 0.01;0.08 2 0.91 0.69
ASV95: Aci 0.15;1.09 2 0.90 0.75 0.50
ASV972: Acinetobacter.tjernbergiae 0.01;0.09 2 0.86 074
ASV259: Acinetobacter.lwoffii 0.02;0.14 2 0.89 0.69
ASV977: Acinetobacter.johnsoni 0.02;0.17 3 091 0.77 0.50
ASV1105: Pseudomonas 0.01;0.10 2 0.86 074
ASV4432: Alkanindiges 0.01;0.10 2 0.86 0.69
ASV1872: 0.01;0,17 2 0.84 0.70
Methylococcales ASV1000: Methyloparacoccus 0.08; 0.61 2 0.83 0.79
ASV272: Methylococcaceae 0.30; 1.11 3 0.96 087
Legionellales ASV1944: Legionellaceae 0.02;0.08 2 0.89 0.76
Burkholderiales ASV15: Verticiella 1.14;1151 3 0.83 0.86
ASV25: Polynucleobacter 3.02;38.54 3 0.84 077 0.64
[« ASV973:Terrimicrobium 0.06; 0.42 2 0.90 0.84 0.63
Bacteroidota Flavobacteriales ASV3488: Chryseobacterium 0.01;0.08 2 0.80 0.68
ASV3501: Chryseobacterium.piscicola 0.01;0.04 2 0.87 0.64 0.58
Planctomycetota Gemmatales ASV140: Gemmataceae 0.15;0.71 3 0.95 084 0.53

Fig. 5.5. Specific bacterial strains highly correlated with innate and adaptive immune response in host gill. Bacterial
abundance correlated to host gill innate immune response Gill-RNA-7 module eigengene (A). ASV module membership on X-
axis and Pearson correlation on Y-Axis, point size indicates intramodular connectivity, color core depicts module membership.
The co-occurrence network module Gill-SSU-2 (B) highly correlated with host immune response is shown where point size
indicates average relative abundance ASVs with highest correlation to host immune response modules Gill-RNA-7 and 11 (C).
Relative abundance values over all samples (Avg.) and for the highest sample (max.) are shown. Only the first strain per lowest

taxonomic level with Module Membership >0.8 and Pearson correlation >0.6 is depicted.
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4, Discussion

In this study we sought to understand, through OMICs, how the predatory fish zander responds to
changing abiotic and biotic (microbiome) conditions along an estuary, as a means for understanding
existing and future paradigms of environmental change and fish biomass losses. Here we were able,
using a global molecular approach, to demonstrate how fish physiology is impacted in a tissue-specific
manner, both by different environmental impacts (salinity, turbidity and oxygen availability) and by

changes in the relative contribution of core and potentially pathogenic bacteria on the fish gills.

4.1. Salinity adaptation

While zander larvae are stenohaline bound to freshwater and oligohaline areas, juveniles acquire the
capacity to adapt to a wider range of osmotic fluctuations. Osmoregulation requires synergistic action
of a complex sensing and signal transduction network that could be achieved by enhanced
osmosensing in the juvenile zander via mitogen-activated protein kinase (MAPK) pathway (Kiltz and
Avila, 2001) and PI3k-Akt regulating involved salinity stress response (Zhao et al., 2021). Further, we
found cell-cell/ECM interactions related to gill remodeling processes during salinity fluctuations
(Jeffries et al., 2019; Lam et al., 2014; Zhou et al., 2022) and protein tyrosine kinase 2 (here ptk2aa) as
hub gene in gill remodeling (Zhang et al., 2023). Major epithelial cells in fish gills, pavement and
mitochondria-rich cells, play complementary roles in ion transport (Evans et al., 2005). Their growth
and differentiation may be organized by axonal guidance contributing to functional plasticity in
estuarine fish (Lai et al., 2015). In accordance, axonal guidance was enriched in zander gill from
mesohaline till oligohaline areas. While osmoregulation is among the most energy-intensive metabolic
activities in teleosts (Boeuf and Payan, 2001), mesohaline zander in this study showed highest

biometric values and gene expression pattern related to hepatic fat accumulation (Perera et al., 2020).

4.2, Starvation in murky waters

The mid estuary maximum turbidity zone is marked by liver specific elevated metabolic pathways,
autophagy and regulation of ribosomal genes. These correlate with lowest biometric data (length,
weight, HSI, and compromised body condition) indicative for nutritional stress (Echevarria et al., 1997).
During periods of nutrient deprivation, fish exhibit shifts in energy utilization, depleting liver glycogen
(De Pedro et al., 2003; Yang et al., 2019) and relying on lipids as major energy source (Bar, 2014). Lipid
droplets are broken down to free fatty acids via lysosomal-autophagy pathway (Wang et al., 2018). In

mammalian cells, starvation causes disruption of mitochondrial structure (Domenicali et al., 2001) thus
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increases ROS and induces autophagy via AMPK pathway (Li et al., 2013). Likewise, fish show increased
ROS (Varju et al., 2018) and induced autophagy and mitophagy (Pan et al., 2022). Autophagy is a key
pathway mediating damage control and metabolic adaptation (Kroemer et al., 2010) triggered i.a. by
hypoxic conditions involving BNIP3 and Beclinl signaling while nutrient depletion activates AMPK-
dependent ULK1 and Beclinl (Kim et al., 2022) in mammals. Zebrafish ortholog genes include hypoxia-
induced bnip3a, closest to human BNIP3, and hypoxia-independent bnip3 and bnip4 (Feng et al., 2011).
Here we identified bnip4 and sirt5-like as hub genes related to autophagy. Sirtulin enzymes, such as
mitochondria-specific SIRT5, play pivotal role controlling lipid metabolism, mitophagy and apoptosis
possibly via AMPK pathway (Guedouari et al., 2017; Hong et al., 2020). These could be indicative for

nutrient depletion driven autophagy activation in zander liver.

The upregulation of ribosomal genes appears seemingly counterintuitive as ribosome biogenesis is
most energy-consuming (Kraft et al., 2008) and downregulated in starving fish (Salem et al., 2007).
However, severely reduced translation might be detrimental for acclimatization responses (Zhu and
Dai, 2019), especially in a multi-stress real-world setting. Ribosomes occupy large amounts of amino
acids that can be tapped by autophagy during starvation delivering fuel for proteome remodeling
(Rabinowitz and White, 2010). However, autophagic tissue degradation has to be balanced by

macromolecule synthesis to maintain homeostasis (Rabinowitz and White, 2010).

The cause of the starvation situation remains unclear. Turbidity, in general exerting negative effects
on prey capture (Ortega et al., 2020), did not affect foraging success in juvenile zander across a range
of turbidity levels (Ljunggren and Sandstrém, 2007). We did not investigate potential influences on
prey availability or altered food spectra, observed in other estuarine predatory fish during increased
turbidity (Lowe et al., 2015). As tissue fat content is a crucial factor for overwinter survival of juvenile
zander (Rennert et al., 2005), the low weight, HSI and body condition particularly detected in the
upstream part of the turbidity zone together with fat and other energy source degradation pathways
activation can be expected to affect survival rates of MTZ zander. Sediment load was shown to damage
gill tissue in different species (Hess et al., 2015; Lowe et al., 2015), however an anticipated immune
response linked to turbidity was not evident here. The relationship between starvation and immune
regulation is complex and might relate to suppression of tissue (Salem et al., 2007) and external mucus
immune functions (Soltanian and Gholamhosseini, 2019). We cannot rule out starvation related

immunosuppression masking underlying processes.
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4.3. Cellular stress in oxygen minimum zone

Gills are the primary organ for physiological exchanges and first response to stressors like hypoxia
(Evans et al., 2005). Low DO acclimatization involves optimizing uptake and distribution, reflected in
enhanced erythrocyte and hemoglobin concentrations (Richards et al., 2009). Identified genes,
including hemoglobin subunit beta-2-like hbb2, linked to oxygen transfer and upregulated in OMZ,
mirror findings in other percid species like Elbe estuarine ruffe and yellow croaker (Mu et al., 2020;
Tiedke et al., 2015). Hypoxic conditions also induce epigenetic modulation by KMT2 family genes (Tsai
and Wu, 2014), proposed as adaptive coping mechanism in rainbow trout (Léger et al., 2021) and

identified here as module hubs (kmt2d and kmt2bb).

The upregulation of carbon and amino acid metabolism pathways together with TCA and OXPHOS in
juvenile zander liver from the estuarine OMZ indicates a locally enhanced energy demand. Remodeling
of energy metabolism is an effective strategy in fish to compensate increased demand during hypoxic
conditions (Ding et al., 2020) or infection (Xiong et al., 2022). The liver plays a pivotal role controlling
energy reserves utilizing amino acids as primary fuel (Jia et al., 2021) with upregulated metabolism
(Gracey et al., 2001; Ni et al., 2014) observed during hypoxic episodes. Prolonged hypoxia can increase

dominance of aerobic TCA and OXPHQOS (Ding et al., 2020).

Local response was further marked by different aspects of cellular stress response (Kiltz, 2005)
including cell cycle arrest and DNA repair accompanied by affected proteostasis in both tissues. Halting
energy-intensive genome duplication processes leverages time for macromolecular repair and allows
for energy redirection (Kiiltz, 2020). Recovery from stressors on the other hand is accompanied by
sustained repair processes (Mustafa et al., 2015; Zhang et al., 2021). In our study, ppp5c is a cross-
tissue hub gene involved in cell cycle arrest and DNA damage repair (Hinds and Sanchez, 2008) shown
dysregulated in fish under severe stress (Bertucci et al., 2020). The ATP-dependent ubiquitin-
proteasome system (UPS) mitigates proteotoxicity from damaged proteins (Bard et al., 2018) resulting
i.a. from disrupted endoplasmic reticulum (ER) (Hetz, 2012). In both tissues we found moderate
hypoxia correlated with UPS and endoplasmic reticulum (ER) stress response (Hwang and Qi, 2018)
characterized by luminal chaperone and ER-associated degradation (ERAD) activation. Besides
ubiquitin-proteasome subunits, deubiquitinase genes (DUBs) usp5 & uspl4 showed highest
intramodular connectivity linking enhanced protein turnover with DNA repair (Nakajima et al., 2014),
immune response (Jia et al., 2020) and autophagic processes (Wang et al., 2021). Enrichment in
apoptosis and necrosis pathways specific in gill indicates stress exceeding cellular tolerance levels

(Kultz, 2005) in the exposed tissue.
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Adaptive modification of the ubiquitin-proteasome composition by disassembly into the 20S unit
increases recognition capacity for oxidatively damaged proteins (Grune et al., 2011). Inflammation as
well as oxidative stress induce transcriptional upregulation of PSMB8, PSMB9, PSMB10, encoding
specialized beta subunits in the 20S proteasome core creating the so-called immunoproteasome (Friih
et al., 1994). Immunoproteasomes are central to processing antigenic peptides presented by major
histocompatibility complex class (MHC) | molecules, clearance of oxidized proteins and protection of
cells from inflammation induced damage (Johnston-Carey et al., 2016). In mammals, transcription of
the inducible B-type subunits is suspected to be controlled by the Interferon regulation factor-1 (IRF-
1) signal transduction pathway (Foss and Prydz, 1999). In line, we identified B-type subunits (psmb8a
& b, psmb9a, psmb10) together with irflb as hub genes in the largest oxygen correlated gill module.
So far there is relatively little research focusing in depth on proteasomal gene expression in fish.
Enhanced expression of psmb (8, 9, 9-L, 10) was shown during antibacterial and antiviral response
(Kasthuri et al., 2014) used as discriminative markers for infection monitoring (Miller et al., 2017). The
expression and high intramodular connectivity of a full set of 20S proteasome, proteasome activator
and inducible immunoproteasome indicate elevation of oxidized proteins due to oxygen stress and
elevated ROS-levels and increased activity of immunologically active cells in the gill tissue of Hamburg

harbor fish coordinated by irflb signaling.

4.3.1. Gill immune response

Both, the co-expression networks and the differential gene expression analyses identified specific
marker genes for T and B cell signaling upregulated in Hamburg area. Adaptive immune module hubs
ptprc as essential regulator of T and B cell antigen receptor (Barashdi, 2021) and T cell signaling related
LCP2 (lcp2a) were also identified as immune hubs in bacteria challenged flounder (Wang et al., 2022).
The latter was also found regulated upon infection with eukaryotic parasites (Syahputra et al., 2018)
and bacteria (Li et al., 2018) indicating cross-species and cross-tissue importance in teleost immune
response. Immune cells use reactive oxygen species (ROS) for destruction of pathogen cells involving
CYBA and NOX2 encoded phagocyte NADPH oxidase multiprotein complex (Bedard and Krause, 2007).
In mucosal immunity NOX1 is hypothesized to replace NOX2 (Geiszt et al., 2003), activity of which
requires CYBA, NOXO1 and NOXA1 stimulated by IFN-y (Kuwano et al., 2006). Phagocyte NADPH
oxidase has key regulatory function in innate immune response via ROS mediated signaling in
mammals (Thomas, 2018), matching identification of this gene set as innate immune module hubs in
juvenile zander. The highly upregulated eosinophil peroxidase variants in Hamburg area indicate
involvement of eosinophils in anti-microbial immune response (Mickenberg et al., 2014). Eosinophils
are associated with parasitic infections, controlling inflammation and maintaining epithelial barrier
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(Gleich, 2000) but have only been studied in a limited number of teleosts including zebrafish (Balla et
al., 2010), turbot (Noia et al., 2021) and flounder (Choi et al., 2021). All variants show a strong negative
correlation with DO, indicative for eukaryotic infestation in the OMZ. Strong upregulation of Mucin-2
like isoforms involved in GIALT physical barrier in Hamburg area further support the local immune
response. These variants have already been found enhanced in skin mucus of salmonids under
physiological stress going along with immune suppression and overgrowth in bacteria (Tacchi et al.,

2015).

4.4. The zander gill microbiome

Juvenile zander host a complex gill microbiome distinct from that of the surrounding water column
which was clearly impacted by the sampling location along the estuary. Although influenced by the
bacterioplankton (Pratte et al., 2018), gill structure and function support a unique and highly diverse
bacterial composition in wild fish (Minich et al., 2020). Differing tolerances of inhabiting taxa to
physiochemical gradients influence the composition of fish mucus communities (Lokesh and Kiron,
2016). The strong variation in bacterial composition along the estuary identified in this study is
accompanied by only a slight increase in observed taxa with decreasing salinity. The significant
differentiation between sampling sites combined with relatively high similarity of bacterial
composition on individuals from the same location might be indicative for low movement patterns of
juvenile zander within the course of the estuary. Overall, the oxygen minimum zone and freshwater
transition in the Hamburg harbor area were found most influential for the variable composition as well
as for the core microbiome. This is indicative for a microbial reorganization and possible disease in
these animals (Sehnal et al., 2021). On the one hand the core species, assumed to serve beneficial roles
in the host, decline: Asinibacterium and Enterobacter taxa are considered to inhibit pathogen growth
(Halet et al., 2007; Schubiger et al., 2015), Lelliottia is described as a critical part in juvenile percides
gut microbiomes (Gallo et al., 2023). Elizabethkingia is a well-known component in mucus communities
in freshwater and in marine fish (Jacobs and Chenia, 2011; Zhang et al., 2022). On the other hand, with
the emergence of known freshwater taxa like Polynucleobacter (Jezbera et al., 2011) and Verticiella, a

variety of opportunistic pathogenic taxa gain abundance in the OMZ.

4.4.1. The zander holobiont in the Elbe estuary

Host-microbe and microbe-microbe interaction are gaining more and more attention due to their
tremendous importance for fish health (Kelly and Salinas, 2017). A few recent studies focused on the

bacterial composition on gills in wild fish (Pratte et al., 2018) assessing pathogen load from the
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presence of specific genera and species (ltay et al., 2022; Minich et al., 2020). Here, we aimed to
describe the holobiont incorporating bacterial abundance with tissue specific gene expression patterns
in the host. Stressful conditions are expected to affect the interplay (Yu et al., 2021), oxygen deficiency
in aquaculture for example has been linked to immunosuppressive effects (Abdel-Tawwab et al., 2015;
Gallage et al., 2017) and increased abundance of potentially pathogenic taxa (Boutin et al., 2013). As
such, a substantial number of suspected or confirmed fish pathogens on zander gill aligned with an
intensified host immune response in the oxygen minimum zone. Taxa with suspected opportunistic
pathogenic functions comprise Pseudomonas (Duman et al., 2021), Chryseobacterium (Loch and Faisal,
2015), Acinetobacter (Kozinska et al., 2014), Psychrobacter (Hisar et al., 2002) and Aeromonas (8 ASVs),
the latter known for causing multi-tissue damage in freshwater fish (Nielsen et al., 2001). Kidney
specific transcriptome studies indicated OXPHOS and proteasome to be strongly activated upon
Aeromonas infection followed by cellular senescence and apoptosis pathways (Xiong et al., 2022)
matching our results. Shewanella strains (16 ASVs), including the species S. putrefaciens and S. baltica,
showed highest correlation to the immune response and abundances of up to 3.5 % in fish while being
scarce in bacterioplankton. Shewanella is known for its role in decomposing organic matter under
hypoxic conditions (Nealson and Scott, 2006) and various strains have been found in gill mucus
communities of marine fish (ltay et al., 2022; Pratte et al., 2018) some of which resemble potentially
pathogenic species (Minich et al., 2020). Besides repeated detection in diseased fish (Cocchi et al.,
2018; Pazdzior et al., 2023; Rusev et al., 2016), a recent study found high pathogenicity of S.
putrefaciens strains with infection rates peaking when the DO values fall below 5 mg/L (Esteve et al.,

2017).

The oxygen minimum zone in the Elbe estuary shows persistent DO levels below 5 mg/L during the
summer month. Nevertheless, the largest numbers of juvenile zander hatching in freshwater or
oligohaline waters reside in this region. The observed cellular stress response, the immune response,
the impaired core microbiome and high levels of potentially pathogenic bacteria are not directly
correlated with compromised biometrics, but may indicate a burden on the health situation of the fish
that precedes these physiological markers. The effects shown here are also likely to have impact on
other fish species that hatch and develop in this region and for which a decline in biomass has already
been observed in the Elbe estuary (Scholle and Schuchardt, 2020). Immediately downstream from the
OMZ, zander show signs of starvation and reduced biometric data. Migration to the lower parts of the
estuary, where high biometric values were observed, would require crossing of the OMZ and MTZ. The
prevailing conditions could represent a migration barrier due to avoidance behavior (Roberts et al.,
2009; Thiel et al., 1995) and thus weaken parts of the population. This would affect the nutrient flow
and carbon sequestration in the estuary which is strongly influenced by the presence of top predatory

fish species (Atwood et al., 2015; McLean et al., 2019).
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Although we focused on the responses to the three dominant environmental factors, these must be
regarded as proxies for an environment with numerous biotic and abiotic pressures. The Elbe estuary
has a long history of organic compound and heavy metal pollution with toxicity values expected to
affect fish communities especially in the harbor area (Wetzel et al., 2013) that were not measured
here. Contaminant and pathogen defense both affect the same physiological traits (Petitjean et al.,
2019) and stimulate oxidative stress response that was already triggered by the lowered oxygen levels

in the OMZ interacting with the overall response of zander from this region.

With this exploratory study, we were able to create a global overview of potential drivers of fish health
in this ecosystem and interpret these against the background of experimental data from the literature.
With the relatively large amount of high-quality data and independent bioinformatic approaches, we
were able to identify patterns based on high numbers of correlated gene regulations. Many findings
are consistent with laboratory experiments (e.g. gill remodeling processes in response to salinity and
lowered DO values), but for some correlations, such as the interaction of opportunistic bacteria,
environmental stressors and the immune response in the host, the study is limited and more in-depth
investigations will be required. Especially in the light of recent research findings related to
deoxygenation and suppression of the adaptive immune components in fish (Leeuwis et al., 2024), our
findings here will need to be validated in large-scale multi-stress experiments across an extended range

of methods.

5. Conclusion

This explorative study is one of the first using an unsupervised analysis approach of the microbiome in
combination with tissue-specific gene expression in an estuarine wild-fish population. Our results
provide deeper insight into prevailing stressors than biometric and abundance data alone, improve the
ability to assess the health of fish stocks and to understand population declines. Our findings (Fig. 5.6)
reveal that juvenile zander gene expression is significantly impacted by turbidity, related to signs of
starvation, and reduced oxygen levels triggering robust immunological and cellular stress responses.
The disruption of the core microbiome and the rise of potential pathogens under low-oxygen
conditions highlight the pressing need to understand and address the responses of the holobiont. As
oxygen deficiency events are projected to increase due to climate change, this study underscores the
potential escalation of disease risks, such as shewanellosis. Mowing forward, future studies should
consider multi-stress experiments in conjunction with OMICS-based time-series monitoring across
additional, likely more vulnerable life stages to validate these results and anticipate how fish

populations in highly productive estuarine nursery areas will develop under climate change.

139



Chapter 5 — Zander omics
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Fig. 6. Graphical summary. The main tissue specific gene expression pattern and mostimportant gill mucus bacteria are shown
in the course of the estuary correlated with the dominant environmental drivers (salinity, turbidity, oxygen levels) used as

proxies for multiple stressors.
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Chapter 6 General Discussion

6.1 Spatial and temporal variability of estuarine fish feeding

Spatial variability

The food composition of fishes in estuaries varies primarily due to salinity gradients, which influence
both the composition of available prey and the diversity of feeding and foraging habitats. These
environmental differences lead to distinct feeding opportunities and dietary patterns among fish

species in different parts of the estuary (Koehler et al. 2022, Theilen et al. 2025b).

In the middle estuary of the Elbe (Schwarztonnensand), zander consumed fewer fish and more
invertebrates (amphipods, mysids, decapods) than at other stations, likely due to lower availability of
smelt, their preferred prey (Theilen et al., 2025b). The preference for smelt as prey aligns with findings
by Kafemann and Thiel (1998). Species density data showed that smelt densities were much lower in
the middle estuary (Schwarztonnensand: 6,905 per 1 Mio m3) compared to the upper (Mihlenberger
Loch: 32,307) and lower regions (Medemgrund: 30,307) (Theilen et al., 2025a). Juvenile zander are
flexible predators that prefer fish but switch to less nutritious invertebrates when preferred prey is
scarce. This may affect their growth and survival (van Densen, 1985; Vinni et al., 2009; Theilen et al.
2025a, Theilen et al. 2025b). Scarcity of preferred pray may have forced them to consume
predominantly less nutritious taxa like mysids (Neomysis integer) and amphipods (Gammarus spp.) in

the Elbe estuary likely affecting their growth.

The diet of smelt differed between the Elbe and Odra estuaries, mainly in the proportions of fish,
mysids and gammarids. Smelt in the Elbe consumed fewer fish (IRI: 16.26 % vs. 23.07 %), fewer mysids
(19.4 % vs. 53.03 %) and more gammarids (35.61 % vs. 2.07 %) compared to the Odra. Along the Elbe
estuary, the diet of smelt shifted along the river course: copepods increased upstream, while mysids
declined (Theilen et al. 2025b). Eurytemora affinis, the dominant copepod in the Elbe, is mostly
concentrated in the freshwater zones near Mihlenberger Loch (K6pcke, 2022). Temperature has a
large effect on the reproductive parameters of Eurytemora affinis, as population densities were
described to decrease drastically when water temperature exceeds 20° C (Devreker et al., 2007;
Devreker et al., 2009). Predation on zooplankton can substantially influence their population sizes. In
1992, a collapse of the Eurytemora affinis population was observed in the Miihlenberger Loch region,
which was likely caused by predation from juvenile fish (Thiel, 2011). According to Mehner and Thiel
(1999), smaller fish larvae (4—20 mm in length) exert lower predation pressure on zooplankton such as
rotifers, copepodid stages and small cladocerans. However, juvenile fish that exceed 20 mm, have the

potential to significantly impact populations of larger copepods and cladocerans. Their enhanced
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predation success is attributed to their larger mouth gape and more developed abilities to detect and
capture prey (Mehner and Thiel, 1999; Thiel 2011). Képcke (2002) concluded that in the Mihlenberger
Loch and the other side-channel areas of the Elbe estuary, populations of Eurytemora affinis are
regulated through top-down control by predation from fish and Neomysis integer starting in May and

June.

In the maximum turbidity zone (MTZ), low primary production and poor-quality POM limit food for E.
affinis (Biederbick et al., 2024; Hauten, 2024). High turbidity favors mixotrophic flagellates,
lengthening trophic chain and leading to enrichment of 6"°N (Hauten, 2024; Martens et al., 2024).
Enriched 86N was found in smelt juveniles in the MTZ (but not in adults), which suggests that adult
smelt avoid areas with inappropriate environmental conditions and limited food availability (Hauten,
2024). In Eru Bay (Gulf of Finland), smelt primarily fed on amphipods and mysids, with fish becoming
an important prey taxon for adults between August and October (Taal et al., 2014). In the Gulf of Riga,
juvenile smelt showed a strong preference for the cladoceran Bosmina longispina, but were found to

switch to consume alternative prey when preferred food sources were limited (Lankov et al., 2010).

The diet of ruffe shifted along the salinity gradient, with fish becoming more important at lower
salinities, particularly in upstream regions where the highest IRl was observed (Theilen et al., 2025b).
In the Elbe estuary insect larvae were only found in the diet of ruffe from the middle and upper Elbe
estuary. In the Odra estuary, the importance of insect larvae was highest in the upper region and
decreased downstream with rising salinity (Theilen et al.,, 2025b). In the lower Odra region
(Pomeranian Bay), insect larvae played a minor role, while annelids, particularly Hediste diversicolor,
were the dominant prey, declining in importance upstream due to salinity preferences (Bagarrado et
al., 2014, Theilen et al., 2025b). In non-tidal estuaries like the Couronian Lagoon, adult ruffe feed on
juvenile smelt and perch, along with meso- and macrozooplankton, while in the DarR-Zingst Bodden,
they also consume nine-spined sticklebacks (Pungitius pungitius) (Holker and Thiel, 1998). In other
freshwater habitats, such as Lake Vortsjarv and Lake Aydat, chironomid larvae and pupae were the
major prey of ruffe (Jamet and Lair, 1991; Kangur and Kangur, 1996). This corresponds with the findings
from the Odra estuary (Theilen et al., 2025b), where chironomid larvae were the dominant prey of

ruffe in the freshwater area (Odra Lagoon).

In the Elbe estuary, copepods were a more important food source for flounder in the middle and upper
regions, likely reflecting the relatively high abundance of Eurytemora affinis in the freshwater zone of
the southern marginal area (Képcke, 2002). As migratory fish (Bos, 2000) flounder pass through these
areas where copepods are more available. In contrast, flounder in the Odra estuary primarily
consumed bivalves (Mya arenaria) in the lower region (PB), which includes the sandy Odra Bank, where
the benthic community is dominated by this species (Zettler and Gosselck, 2006). Benthic prey made
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up approx. 50 % of the flounder diet in the Elbe estuary (Drenkelfort, 1994), consistent with
observations from other European estuaries such as the Schlei (Nellen, 1968), Westerschelde (Maes,
2000), Humber estuary (Marshall, 1995), Severn estuary (Moore and Moore, 1976), and Tagus estuary
(Costa and Bruxelas, 1989). Flounder feeding on copepods and benthic organisms in the Elbe estuary
aligns with the findings from other European estuaries (Theilen et al., 2025b). In the Odra estuary, no
copepods were found in flounder diets and benthic taxa accounted for a high IRl (84.72 %), indicating
an even stronger reliance on benthic prey (Theilen et al., 2025b). Seasonal dietary shifts have been
observed in flounder from the Aland archipelago (northern Baltic Sea) (Aarnio et al., 1996), while in

the southwestern Baltic, Limecola balthica is the main prey species (Haase et al., 2020).

Differences in food composition between the two estuaries reflect both prey availability and the
generalistic feeding behaviour of the keystone species, which exploit a range of food resources. As a
result, local fluctuations in prey abundances lead to distinct dietary patterns. The Elbe and Odra
estuaries differ in their ecological and hydrological characteristics: the Elbe is a mesotidal system with
strong tidal currents and high flow velocities, driving daily salinity fluctuations. In contrast, the Odra is
a microtidal estuary with a lagoon-like structure and longer water residence times in the Odra Lagoon
(Pein and Staneva, 2024), supporting different prey compositions. In the Elbe estuary copepods
dominated in the southern marginal areas in the freshwater zone (Képcke, 2002), whereas the shallow
areas close to the mouth of the river Odra were dominated by Mya arenaria (Darr et al., 2014), while
insects reproduce in large numbers under lower salinities (Williams and Williams, 1998) of the Odra

Lagoon.

Temporal variability

Most studies capture only a brief snapshot of food availability, typically during summer when stream
flows are low and temperatures are high, thereby neglecting important seasonal variations that can
significantly affect fish growth (Armstrong et al., 2021; Bacon et al., 2004; Ouellet et al., 2024). In this
regard, samples in this study were collected during all four seasons. Seasonal variations in salinity,
temperature and freshwater inflow have influences on the reproductive cycles of both predators and
prey in estuarine ecosystems. Temperature affects the metabolic rates of fish, thereby altering their
feeding demands (Volkoff and Rgnnestad, 2020). Seasonal fluctuations of the river discharge, modify
the salinity gradient dynamically and affect the distribution of aquatic organisms. These discharge
changes particularly influence plankton dynamics, as higher flow rates increase the downstream
transport of planktonic species (Steidle and Vennell, 2024). Generalist predators respond

opportunistically to these environmental shifts, adapting their diets based on the seasonal availability
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of prey (Costalago et al., 2012). The combination of seasonal shifts in temperature, salinity, and
discharge also affects spawning and recruitment processes of fish, thereby influencing fish community
structure (Thiel et al., 1995; Thiel, 2011; Kellnreitner et al., 2012; Eick and Thiel, 2014). In the Elbe
estuary, for instance, smelt spawning migrations in late winter are triggered by increased river

discharge (Lillelund, 1961).

Seasonal changes in the diet of zander were more pronounced in the Odra estuary. While food
composition in the Elbe remained relatively similar between summer and autumn, zander in the Odra
estuary consumed fewer fish and a broader range of prey in autumn, including benthic invertebrates
such as annelids, gastropods and isopods. The proportion of decapods also increased, suggesting a
reduced availability of preferred fish prey in autumn (Theilen et al., 2025b). Studies from the Kiel Canal
(NOK) by Kafemann and Thiel (1998) reported reduced growth of zander due to a lack of sufficient fish
prey, particularly when prey such as herring (Winkler, 1980) and smelt (van Densen, 1985; Buijse and

Houthuijzen, 1992) is missing.

In the Elbe estuary, seasonal shifts in smelt diet were most evident in winter, when copepods
(especially Eurytemora affinis) were the dominant prey, indicating higher copepod availability in late
winter. Compared to findings from the years 1991-1993 (Thiel, 2001), smelt in 2021-2022 (Theilen et
al., 2025b) showed less cannibalism (IRl = 11.79% vs. 23.74%) and consumed fewer fish overall (IRl =
16.27% vs. 26.03%) in the Elbe estuary. Liichtenberg (1986) described cannibalism in smelt from the
Elbe estuary, noting that cannibalism rates increase over the year, being low in early spring (March,
0.9 %) and reaching higher levels by August (11.4 %). Gammarids were more important in the recent
period (IRl = 35.61% vs. 3.08%), while mysid proportions remained similar. The shift towards an
increased consumption of amphipods, serves as indicators for an altered food web in the Elbe estuary.
The proportion of Eurytemora affinis in the diet of smelt generally declined (IRI = 4.77% in 2021-2022
vs. 11.78% in 1991-1993), suggesting reduced copepod availability (Theilen et al., 2025b). Historically
described as plankton feeders dependent on Eurytemora affinis, smelt were also reported to shift to
benthic prey such as gammarids during winter starvation periods (Ladiges, 1935). In 2021-2022,
however, gammarids were a major food source year-round, pointing to a long-term decline in
preferred prey. The low primary production and poor POM quality in the Elbe’s maximum turbidity
zone (MTZ) likely constrain zooplankton resources. Stable isotope data (Hauten, 2024) further suggest
that juvenile smelt remain in the MTZ despite poor conditions, while adults avoid it. Frequent ingestion
of indigestible items like sand and plant debris, especially in winter, supports the idea of seasonal food
limitation. Smelt in the Odra estuary fed primarily on fish during late summer, particularly gobies of
the genus Pomatoschistus. As the availability of gobies declined by October, mysids became the main

prey (Theilen et al. 2025b).
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Seasonal diet variation in ruffe was less pronounced compared to the other keystone species from
both estuaries. Amphipods were consistently consumed across all seasons, although mysids were
absent in the diet of ruffe caught during winter season in both estuaries (Theilen et al., 2025b). In the
Odra estuary, ruffe fed primarily on annelids in autumn and on cladocerans in summer, likely reflecting
seasonal peaks in cladoceran abundance due to temperature and salinity conditions in the Baltic Sea
(Mollmann et al., 2002; Theilen et al., 2025b). A comparison with earlier studies of ruffe from the Elbe
estuary revealed changes in the food composition: In 1991-1993, ruffe consumed a significant
proportion of Eurytemora affinis copepods (IRl = 26.21 %) (Thiel, 2001), which were entirely absent in
2021-2022 specimens (Theilen et al., 2025b). The importance of gammarids increased substantially
(IRI'=48.43 % vs. 7.5 5%). Unlike in the 1990s, fish (mainly smelt) were present in the diet of ruffe (IRI

= 6.5 %), indicating a shift in prey availability or food selection (Theilen et al., 2025b).

The diet composition of flounder showed the largest variability among the keystone fish species,
reflecting its generalist feeding behaviour (Teichert et al., 2022). In the Elbe estuary, copepods were a
major dietary component during spring and winter, while in the Odra estuary, annelids dominated in
spring and winter, and bivalves were more dominant prey in summer and autumn. This seasonal shift
likely reflects a preference for annelids, which are easier to digest due to their lack of a hard shell.
Although the prey composition of flounder varied between the 1991-1993 (Thiel, 2001) and 2021-
2022 periods (Theilen et al., 2025b), the differences were less pronounced compared to other species.
In both periods, copepods were a major part of the diet in the Elbe estuary (IRl 1991-1993: 41.29 %,
IRI 2021-2022: 34.36 %), while zoobenthos species increased from 14.4 % (1991-1993) to 24.7 %
(2021-2022). Together, copepods and other zoobenthic taxa made up more than 50 % of flounder's
diet in both periods in the Elbe estuary (Theilen et al. 2025b).

6.2 Competition for food resources

When food resources are scarce, they are often not shared equally among competing organisms
(Rajaniemi and Reynolds, 2004; Thompson and Fox, 1993; George and Collins, 2024). Species that are
larger, more aggressive or faster growing, emerge earlier or reproduce fast tend to gain
disproportionate access to food or habitat. This can lead to asymmetric competition, where some
individuals or species experience significantly greater negative effects than others (George and Collins,
2024). Within a species, competition for food can be a strong evolutionary force, favouring individuals

that forage more efficiently over their less successful counterparts (Ward et al., 2006).

To further quantify differences and similarities in diet composition among estuarine fish species,

hierarchical clustering showed two main groups at a dissimilarity of approx. 60 % (Figure 6.1). The first
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cluster was formed by zander (E, O), smelt (E, O) and ruffe (E), since those species consumed fish,
amphipods and mysids. The first cluster was further divided into smelt and ruffe from the Elbe estuary
and flounder from the Elbe estuary. The smelt/ruffe (E) subcluster was formed due to the dominance
of amphipods in both diets and the similar proportions of fish, mysids and decapods. The first cluster
was further divided by a separation of zander (E, O), since zander from both estuaries consumed
approx. 50 % fish. The diets of flounder and ruffe from the Odra estuary were separated from the first
cluster. The flounder/ruffe subcluster was formed due to their shared consumption of insects,
decapods, mysids, amphipods and annelids. These cluster patterns suggest that trophic similarities are
influenced not only by species identity but also by estuarine-specific prey availability and habitat
characteristics. The distinct grouping of flounder and ruffe from the Odra estuary likely reflects
localized prey communities and feeding opportunities. the consistent clustering of zander from both
estuaries, driven by their high fish consumption, underscores their role as top predators in both
estuaries. The clustering of smelt and ruffe from the Elbe estuary can be attributed to their similar
consumption of amphipods, mysids, and decapods, indicating potential competition for shared food

resources (Theilen et al. 2025b).
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Figure 6.1: Hierarchical clustering of diet composition from keystone fish species (SL = Sander lucioperca, OE = Osmerus
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eperlanus, GC = Gymnocephalus cernua, PF = Platichthys flesus) from the Elbe (E) and Odra (O) estuaries on Bray-Curtis
dissimilarity. General diet composition described by the index of relative importance (IRI %) of each individual keystone
species and the respective estuary. Dashed line at 70 % dissimilarity.
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Sharing an abundant food source does not necessarily indicate direct competition; it may instead
reflect high availability of certain prey items that drives food selection (Stanford et al., 1986).
Schoener’s index values above 0.6 or below 0.4 are typically considered ecologically significant
(Matthews and Hill, 1980; Wallace, 1981; Galat and Vucinich, 1983; Muth and Snyder, 1995; Minder,
2023). The comparison of dietary overlap among keystone fish species in the Elbe estuary between
2021-2022 (Theilen et al., 2025b) and historical data from the 1990s (Thiel, 2001) showed generally
lower overlapsin the 1990s, largely due to the increased presence of amphipods in the diet from recent
samples. The observed changes in the the two species zander, smelt and ruffe, which are widely
distributed along the entire Elbe estuary, suggest that the food availability for these fish species has
shifted between the 1990s and 2021/2022 (Kafemann & Thiel, 1998; Thiel, 2001; Theilen et al., 2025b).
Although it cannot currently be definitively concluded that the reduced food availability in the Elbe
estuary is solely responsible for the presently lower growth of the ruffe, the change in food availability
is very likely a contributing factor (Chapter 3). The high dietary overlap (0.703) between smelt and
ruffe in the Elbe estuary suggests ecologically relevant competition. These findings point either to
competition for amphipods due to limited availability of alternative prey or to an overall high
abundance of amphipods during the study period. Limited availability of preferred prey would indicate

a degradation of the food web in Elbe estuary.

6.3 Nutritional requirements for fish diets

Due to their distinct life histories and prey preferences, different fish species can have varying
nutritional requirements. The growth of fishes is dependent on the sustained supply of food resources.
Periods with generally lower food availability or absence of nutritious prey organisms can directly lead
to decelerated growth in fish (Amundsen et al., 2007). According to Ouellet et al. (2024), food quality
may be equally important to food quantity in riverine ecosystems. The food resources available to fish
in rivers differ in energy and nutrient content. There is a wide variation in the biomass, digestibility,
and energy density across organisms from different taxonomic groups (Cummins and Wycheck, 1971,

Ouellet et al., 2024).

The diet of fish includes macronutrients such as proteins, lipids, and carbohydrates, as well as
micronutrients like minerals (e.g. calcium, magnesium, iron) and vitamins. According to Wilson (2003),
the major organic compound of fish tissue is protein, making up to 65 % to 75 % of the total dry weight.
Consumed protein is used to obtain amino acids which are used to synthesise new protein (for growth
and reproduction) or to replace existing protein (maintenance), therefore a consistent intake of
protein is necessary. Inadequate protein in the diet results in growth reduction since protein from less

vital existing tissues is used to maintain vital functions. In fish, the liver plays a key role in regulating
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and mobilizing energy reserves, primarily using amino acids as a fuel source (French et al., 1981, Falco

et al., 2020, Jia et al., 2021).

The amount of dietary protein is crucial for fish growth, as protein is the primary macronutrient
supporting tissue development (Wilson, 2003). Studies have confirmed that optimal protein
requirements vary among fish species and that inadequate or imbalanced protein sources can restrict
weight gain and reduce growth efficiency (e.g. Park et al., 2022; Wang et al., 2023; Wiechetek et al.,
2025).

The feeding analysis in this thesis showed that amphipods were an important part of the diet,
especially in smelt, ruffe and zander from the Elbe estuary. When comparing the food composition of
these three species with data from the 1990s, it is evident that amphipods have become a more
prominent component of their diet, potentially leading to an imbalance in optimal protein content and
consequently, reduced survival and growth. For zander, this pattern is noticeable on a spatial scale
within the Elbe estuary: in the maximum turbidity zone of the middle estuary where amphipod
consumption was highest, growth and condition factor were lowest (Koll et al., 2024; Theilen et al.,

2025b).

Abo-Taleb et al. (2021) substituted fish meal by amphipod meal extracted from Gammarus pulex and
found that weight gain of reared fish (Mugil cephalus) was reduced when fish meal was replaced by
amphipod meal in a formulated diet, indicating that amphipod meal was inferior to fish meal. The
biochemical analyses by Abo-Taleb et al. (2021) showed that dry weight of fish meal (60.17 %) had
higher crude protein level compared to amphipod meal (40.02 %), but less amounts of nitrogen free
extracts (fish meal: 11.5 %, amphipod meal: 24.51 %), and ash (fish meal: 15.4 %, amphipod meal:
19.82 %). Amphipods have a sturdy cuticula, which is formed by chitin and calcium (ash i.e. amount of
inorganic non-combustible material), which makes them of lower nutritional value compared to other
prey organisms with no cuticula such as fish or less sturdy cuticula such as mysids or copepods.
Biochemical analyses by Raymont et al. (1968) showed that protein content of Neomysis integer was

71 % and ash (including chitin) 14 % of the dry weight.

While the importance of amphipods in the diets of smelt, ruffe, and zander has increased compared
to the 1990s in the Elbe estuary, the proportions of calanoid copepods (Eurytemora affinis) and mysids
(Neomysis integer) have declined. This dietary shift may result in an overall lower intake PUFAs, leading
to inadequate nutrition that could have negatively affected growth and reproduction success of these
species. All vertebrate species have dietary requirements for certain poly unsaturated fatty acids
(PUFA), which belong to the so-called essential fatty acids (EFA), including linoleic acid, 18:2n-6

(omega-6 fatty acids) and alpha-linolenic acid, 18:3n-3 (omega-3 fatty acids). PUFA are almost
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exclusively synthesized by plants, which are transferred to highly trophic levels in a planktonic food
web and are accumulated in the higher trophic levels (Brett and Miiller-Navarra, 1997; Bandara et al.,
2023). High contents of PUFA, which includes all varieties of highly unsaturated fatty acids, are
especially found in fish and shellfish (Ackman, 2007; Brett and Miiller-Navarra, 1997). Therefore,
preying on other fish or other organisms from the planktonic food web comes with nutritional
advantages. Highly unsaturated fatty acids (HUFA) are a specific group of PUFA, which have 20 or more
carbon atoms and 3 or more double bonds (Olsen, 2009). Long-chain PUFAs are mainly produced by
certain algae, such as diatoms and cryptophytes and transferred through the food web to fish (Taipale
et al., 2013). Stream diatoms are rich in long-chain PUFAs eicosapentaenoic acid (EPA, 20:5n-3) but
low in docosahexaenoic acid (DHA, 22:6n-3) and differ from marine and lake species (Torres-Ruiz et
al., 2007; Brett et al., 2009). Green algae offer moderate nutritional quality due to alpha-linolenic acid
(ALA, 18:3n-3) and linoleic acid (LIN, 18:2n-6) content, while cyanobacteria lack long chain PUFAs,
making them poor food for invertebrates (Martin-Creuzburg et al., 2008; Lang et al. 2011). As
herbivorous invertebrates cannot synthesize long-chain PUFAs efficiently, their PUFA profiles reflect
those of their algal diet, ultimately affecting the nutritional quality for secondary consumers, such as
fish (Brett and Miiller-Navarra, 1997; Guo et al., 2017). Evjemo et al. (2003) found that especially the
calanoid copepods Temora longicornis and Eurytemora affinis have higher total HUFA content,
extending to 55-62 % of the total fatty acids. Diet of Neomysis integer in the Elbe estuary was
dominated by calanoid copepod Eurytemora affinis, while being supplemented by rotifers,
cladocerans, phytoplankton and benthic organisms (Fockedey and Mees, 1999). Higher concentrations
of suspended particulate matter (SPM) have been shown to impact lower trophic levels, primarily by
limiting phytoplankton production due to reduced light availability (de Jonge et al., 2014; Steidle and
Vennell, 2024). Findings from Bernat et al. (1994) demonstrated that higher SPM levels impaired the
filtration efficiency of the calanoid copepod Eurytemora affinis during both naupliar and adult stages.
The recent increase in SPM concentrations in the freshwater regions of the Elbe estuary may have
affected copepod densities, potentially disrupting the entire food web. Similar effects were described
by Shoup and Wahl (2009), in which the decreased densities of zooplankton and benthic invertebrates
ultimately restricted food availability for fish. Many secondary consumers will have optimum growth,
when there is a sufficient amount of long chain PUFA is directly available in their diet. High retention
of long chain PUFA in the secondary consumers results in higher availability in the next trophic level

(Brett and Miiller-Navarra, 1997).

Even non-specialist predators sometimes consume prey organisms that are hard to digest, like hard-
shelled invertebrates, especially when higher quality food is scarce or inaccessible. According to the

optimal foraging theory (Stephens and Krebs, 1986), costly prey can become favourable when the net
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energy gain outweighs that of other available feeding options, especially under conditions like resource

depletion, competition or increased predation risk (Langerhans et al., 2021).

6.4 Effects on fish growth

Growth is determined by a range of factors, including environmental conditions, genetic
characteristics, dietary composition and health. Fishes grow continuously throughout their lives,
although growth rates tend to slow down as they reach maturity (Ali et al., 2003; Kozlowski, 1996;
Ziegelbecker and Sefc, 2021). They are ectotherms and therefore their metabolic rate is strongly
affected by the water temperature (Volkoff and Rgnnestad, 2020). Warmer temperatures generally
increase the metabolic activity leading to faster growth, and colder temperatures slow down the
growth. Excessively high temperatures can cause stress, leading to health issues that ultimately inhibit
growth (Volkoff and Regnnestad, 2020). Fish express their optimum growth within a specific
temperature range. However, thermal stress (particularly at temperatures above the species’
optimum) can lead to physiological disturbances, reduced growth, and a higher risk of disease

outbreaks (Brett, 1971; Farrell, 2002; Alfonso et al., 2020).

Liver transcriptomes indicated that zander from highly turbid areas were experiencing starvation,
which was supported by their compromised body condition and the respective growth. Gene
expression patterns (activation of autophagy and fat degradation pathways in the liver) in zander from
the maximum turbidity zone (middle estuary) matched with lower Fulton’s condition factor (K)
compared to those at other stations and a relative increase in invertebrate (amphipods, mysids,
decapods) consumption compared to fish. This indicated that environmental conditions and food
availability were unfavourable for juvenile zander in the middle estuary (Koll et al., 2024; Theilen et al.,
2025a). As densities of smelt, which is the preferred prey of zander (Kafemann and Thiel, 1998, Theilen
et al. 2025b), were substantially lower in the middle region compared to the upper region and the
lower region (Theilen et al., 2025a). These observations match with findings by van Densen (1985),
who reported substantial growth differences between piscivorous and non-piscivorous juvenile
zander. In the middle region instead of fish, the juvenile zander consumed more invertebrates

(amphipods, mysids, decapods), which has led to stunted growth in that area.

It is widely recognized that healthier fish tend to grow faster, as they require less energy for
maintenance and immune responses, allowing more energy to be invested in growth (Esmaeili, 2021).
Sepulveda (1994) found, that a concentration of below 4.5 mg/L dissolved oxygen already causes
reduced growth in smelt larvae. In the oxygen minimum zone (OMZ), which is in the freshwater region

of the Elbe estuary, dissolved oxygen concentration regularly falls below 5 mg/L during summer (FGG-
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Elbe, 2024; Theilen et al., 2025a). This reoccurring hypoxia could have impaired the growth of smeltin
recent years. Despite the oxygen depletion in summer, in this area the highest densities of juvenile
zander are found (Theilen et al., 2025a). The found cellular stress responses, immune activation,
disruption of the core microbiome and elevated levels of potentially pathogenic bacteria, which were
observed, were not directly linked to compromised biometric indicators (body condition). However,
zander from the maximum turbidity zone showed signs of starvation, reflected by poor body condition
and activation of liver autophagy and fat degradation pathways. Similar effects are likely to also impact
other fish species that hatch or develop in this region, several of which have already shown declining
biomass in the Elbe estuary (Scholle and Schuchardt, 2020; Koll et al. 2024; Theilen et al., 2025a). As
oxygen deficiency events are expected to increase with climate change, this study highlights the
potential rise in disease risks, including shewanellosis (Koll et al., 2024). The interaction between host
and the microbiome is gaining growing attention in the evaluation of individual fish health (Kelly and
Salinas, 2017). In recent studies the bacterial composition of wild fish gills was investigated for an
assessment of pathogen presence and identifying potentially pathogenic species (Pratte et al., 2018;
Itay et al., 2022; Minich et al., 2020). In our study (Koll et al., 2024), Shewanella strains, including S.
putrefaciens and S. baltica, showed the strongest correlations with immune responses in fish samples,
while remaining rare in the water column. Shewanella has the ability to degrade organic matter under
hypoxic condition (Nealson and Scott, 2006). Repeated detection in diseased fish, combined with S.
putrefaciens infection indicates the high pathogenicity (Cocchi et al., 2018; Pazdzior et al., 2023; Rusev
et al., 2016). Infection rates were shown to be highest in European eel (Anguilla anguilla) when

dissolved oxygen concentrations dropped below 5 mg/L (Esteve et al., 2017).

Fish growth can serve as an indicator of food availability, as increased food intake generally leads to
faster growth (Goodrich and Clark, 2023). An undernourished fish lacks the nutrients necessary for
proper growth, resulting in impaired development of bones, muscles and internal organs. Naturally,
fish undergo periods of reduced food intake as part of their life cycle, during which energy reserves
are redirected from growth toward maintaining essential physiological functions (Sumpter et al.,
1991). Hypoxia has been shown to affect feeding behaviour in several fish species (Pichavant et al.,
2001; Eby et al., 2005; Chabot and Claireaux, 2008). The hypoxic conditions primarily reduce foraging
intensities and metabolic rates, which leads to slowed growth (Chabot and Claireaux, 2008). There
have been several authors that have documented the oxygen situation in the Elbe estuary over the last
40 years (Riedel-Lorjé and Gaumert, 1982; Moller, 1988; Moéller and Scholz, 1991; Thiel et al., 1995;
Thiel, 2011; Eick and Thiel, 2014). Within this time frame, severe hypoxic conditions occurred especially
in the Hamburg Port region (freshwater areas). Compared to the 1980s, the oxygen concentration
improved, however, in recent years the oxygen conditions have deteriorated again, which led to

reoccurring hypoxic events during summer months (FGG-Elbe, 2024). These hypoxic events could have
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impaired the foraging behaviour of the keystone fish species, as hypoxia can reduce feed intake,
growth, and oxygen consumption in fish (Pichavant et al., 2001; Magnoni et al., 2018). Changes in
feeding strategies can also occur under different turbidity conditions, with visual predators being more
affected by increased turbidity than fish that feed on benthic macroinvertebrates (Hecht and van der
Lingen, 1992). For visual predators, the turbidity of the water column plays a crucial role in their
predation success. Increased turbidity could also explain the dietary shift towards extended feeding
on benthic invertebrates (amphipods). Generally, zander and smelt feed on more pelagic organisms,
particularly smelt, who primarily consume calanoid copepods, and zander, who primarily feed on other
fish. However, as turbidity increased (FGG-Elbe, 2024), visual predation might have been impaired,
causing a shift towards more benthic foraging (Theilen et al. 2025b). Notably, during 2021-2022,
zander consumed gammarids at nearly all stations (except MG at the river mouth), whereas gammarids
were completely absent from their diet in the Elbe estuary in 1992-1993 (Kafemann and Thiel, 1998;
Theilen et al., 2025b), which led to inferior growth. It is suspected that these shifts in food composition
were induced by the availability of prey, with changing foraging behaviour as a result of altered
environmental conditions. The comparison of recent and historical diet data for keystone fish species
reveals a shift in the Elbe estuary from a predominantly plankton-based food web to one that is more
reliant on benthic organisms. This may reflect ecological responses to long-term environmental

changes and anthropogenic alterations in the estuary.

In addition to the abundance of accessible prey species, their nutritional quality plays a crucial role in
food assimilation and the respective growth (Ouellet et al.,, 2024). Assimilation efficiency is the
proportion of ingested food that an organism is able to digest and absorb into its body for use in
metabolism, growth and reproduction. According to Welch (1968), net growth efficiency is negatively
correlated with assimilation efficiency and may range from 20 % to 90 %, while gross growth
efficiencies typically lie between 15 % and 35 %. Carnivorous species generally exhibit high assimilation
efficiency but lower net growth efficiency, whereas herbivores and detritivores have lower assimilation
efficiencies and higher net growth efficiencies (Welch, 1968). The diet composition also influences
assimilation efficiency in fish, with lipid-rich prey enhancing energy uptake, while prey with high

cellulose content (e. g. algal cell walls) reduces assimilation efficiency (Teferra, 2003).

Costly prey consumption can be caused by animals optimizing under poor conditions (optimal
foraging). Once high-quality food becomes available, the growth enters a compensatory growth phase.
Durophagy, the consumption of hard-shelled prey, can impose costs such as reduced somatic or
reproductive growth due to a high proportion of indigestible material and limited gut space, as hard-
shelled prey is digested slower (Langerhans et al., 2021). This corresponds with our findings, as we

observed a shift in the diet within the Elbe estuary from easily digestible prey such as mysids and
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copepods (1990s) to harder-shelled prey like amphipods (2020s), which could have affected the

growth of the keystone species.

6.5 Fish fauna composition in a mesotidal estuary

Smelt and twaite shad are the most abundant species in the anadromous life cycle guild (LCG) in the
Elbe estuary (Theilen et al., 2025a). Both species have faced a reduction of their stock size in the Elbe
estuary in recent years. Between 2009-2010 and 2021-2022 mean densities of the anadromous LCG
dropped by over 92%, from 20,000 to 1,500 individuals per million m3. The decline of the anadromous
LCG, was mainly due to smelt but also species such as twaite shad and three-spined stickleback
contributed to this finding (Theilen et al., 2025a). In the Elbe estuary smelt alone comprising up to 96
% of the fish fauna (Eick and Thiel, 2014). Smelt begin aggregating at the river mouth between
November and February in preparation for their spawning migration, which occurs from February to
March (Lillelund, 1961; Borchardt 1988; Kottelat and Freyhof, 2007). This temperature-driven
migration (Kottelat & Freyhof 2007) ensures that larval development is well synchronized with peak
local food availability (Sepulveda et al. 1993, Képcke 2002). The decline of several fish species likely
results from multiple stressors including increased oxygen deficiency, higher suspended particulate
matter, starvation and reduced shallow nursery habitats (Scholle and Schuchard, 2020; Illing et al.,
2024; Koll et al., 2024; Theilen et al., 2025a). Simultaneously, lower river runoff (32 % below the long-
term average between 2014 and 2020) and an enlargement of the channel have intensified marine
water intrusion, favouring inland migration of marine species (Zhu et al., 2014; Ralston and Geyer,
2019; Rewrie et al., 2023). Consequently, the fish guild structure in the Elbe estuary experiences a shift
to that of macrotidal UK estuaries, where diadromous species are less important (Elliott and Dewailly,

1995; Theilen et al. 2025a).

Over the study period, environmental factors strongly shaped fish community structure in the Elbe
estuary. Electrical conductivity, reflecting salinity, had the greatest influence with higher salinity zones
near the river mouth supporting more marine species consistent with earlier findings of Thiel and
Potter (2001) and Eick and Thiel (2014). Ongoing sea level rise and declining river runoff are expected
to intensify marine influence (Little et al.,, 2022; Pein et al.,, 2023). Seasonal changes in species
composition were linked to temperature, migration and spawning (Theilen et al., 2025a). The high
densities of diadromous species like smelt, twaite shad, and three-spined stickleback lead to seasonal
shifts in species composition during migration and nursery periods. Smelt densities peaked from early
June to late August, dominated by young-of-the-year individuals. Three-spined stickleback were more
abundant in colder months, while common bream (freshwater species) densities in the upper sections

increased during warmer summer temperatures. Anadromous migration of smelt and twaite shad was
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associated with rising temperatures and higher runoff (Lillelund, 1961; Aprahamian et al., 2003). The
densities of freshwater species (ruffe) showed a drastic decline (Theilen et al. 2025a). In 2009, Freyhof
et al. (2023) considered ruffe a beneficiary of bank stabilization measures, predicting a long-term
population increase with temporary stability. However, this assessment is no longer supported. More
recent evaluations indicate a moderately declining short-term population trend, and ruffe is now
included on the early warning list (Freyhof et al., 2023). In the 1980s, poor water quality, caused by
high nutrient loads and frequent hypoxic events, negatively impacted fish. Severe oxygen deficits (even
anoxia) led to local complete absence of smelt (Moller and Scholz, 1991). Early oxygen depletion during
critical life stages can wipe out entire smelt generations (Moller and Scholz, 1991; Thiel et al., 1995).
Oxygen conditions generally improved after 1990, particularly in the lower and middle estuary at
Brunsbiittel, Schwarztonnensand and Twielenfleth, but critical dissolved oxygen levels persisted in the
upper areas at Mihlenberger Loch during summer, continuing to effect larval growth (Sepulveda,

1994).

Historically, nutrient loading and eutrophication led to oxygen depletion and collapse of entire fish
cohorts in the Elbe estuary (Moller and Scholz, 1991). While fish stocks recovered after water quality
improvements in the 1990s, recent surveys showed declines in several key species since 2009-2010.
Intensified dredging has amplified tidal pumping, increasing suspended particulate matter (SPM),
which harms eggs and larvae (Yang et al., 2019) and alters smelt gill tissues, may increase mortality
and impair growth (Thiel and Pezenburg, 2007). SPM peaks have shifted upstream, indicating a
transition toward macrotidal dynamics (de Jonge et al., 2014). Especially affected are side channels
and shallow nursery habitats like Mlhlenberger Loch, formerly high in copepod prey density (Thiel,
2001; Kopcke 2002). Through tidal pumping organic-rich sediments are transported upstream. These
particles include organic carbon and active microorganisms, that break down the organic compounds
and increase oxygen demand, which contributes to summer oxygen deficiencies (Tobias-Hunefeldt et
al., 2024). Rising SPM concentrations at Schwarztonnensand indicated an upstream migration of the
maximum turbidity zone (MTZ). According to Lang (1990), mesotidal estuaries typically have peak SPM
in the gradient zone, while macrotidal estuaries exhibit higher SPM in freshwater areas. The observed
upstream MTZ migration, coupled with increased tidal amplitude, suggests, that the Elbe estuary is
transitioning toward macrotidal conditions. The southern side channels between Twielenfleth and
Muihlenberger Loch, including Hahnofer Nebenelbe, Lithesander Stiderelbe and the Mihlenberger
Loch, were identified as the estuary’s most productive fish habitats (> 200 kg/ha/year; Thiel, 2001),
but are now impaired by sediment loads and oxygen deficiencies. Invasive species, such as round goby
(Neogobius melanostomus) established in the Elbe estuary since 2008, compete with native fish for
resources and prey on their eggs, but have also become a year-round food source for predators like

zander (Hempel et al., 2016). While several fish species in the Elbe estuary were negatively affected,
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marine-estuarine opportunists like herring and whiting have benefited from shifting environmental
conditions. The increased intrusion of marine waters has expanded their accessible habitat and
whiting, a Lusitanian species, has shown increasing densities in the German North Sea (Thiel et al.,
2025). Although peaks of juvenile whiting are not annual, rising temperatures due to climate change

are likely to make their occurrence in the Elbe river mouth more frequent.

6.6 Conclusions

The differences in the diet of keystone fish species were highlighted, in which the variation in the Elbe
and Odra estuaries were probably driven by prey availability. Seasonal changes in food composition
was reflected by fluctuations in prey availability, with opportunistic predators adapting their diets
accordingly. This was most evident in flounder, who had the highest diet breadth amoung the keystone
species. Compared to the 1990s, the Elbe estuary now shows increased amphipod consumption in
zander, smelt, and ruffe, suggesting a shift from a plankton-based to a more benthic-oriented food
web. Together with trophic elongation of the food chain, these shifts could have been induced by
changed environmental factors, which may have ecological impacts on phytoplankton and
zooplankton that ultimately affect higher trophic levels, promoting altered foraging behaviour. The
increased dietary overlap among species in the Elbe estuary further suggests intensified competition,

likely due to limited food resources.

For smelt, ruffe, and flounder, the asymptotic maximum lengths were larger in the Elbe estuary
compared to the Odra, while the growth coefficients were smaller in the Elbe. Zander, smelt and ruffe
also showed slower growth compared previous studies in the Elbe estuary. Inferior growth was
observed particularly for juvenile zander in the Elbe estuary compared to the Odra estuary. The growth
of juvenile zander was particularly affected in the maximum turbidity zone in the middle estuary in the
Elbe. The slower growth observed in these regions appears to be associated with a reduced intake of
fish prey. Here, the juvenile zander consumed more invertebrates such as amphipods, mysids and
decapods. These results suggest that altered environmental conditions in the Elbe estuary are
influencing fish growth patterns, emphasizing the need for continued monitoring to further validate

underlying causes.

The quantitative long-term analysis of environmental impacts on fish community composition in the
Elbe highlighted the strong influence of human-altered factors on estuarine fish fauna. Water quality
improvements in the 1990s and early 2000s initially boosted fish densities. Recent conditions, which
are marked by increased suspended particulate matter, upstream migration of the maximum turbidity

zone, reduced runoff and summer hypoxia have severely affected fish stocks in the Elbe estuary. Mean
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fish densities dropped by over 90% between 2009-2010 and 2021-2022, primarily affecting smelt
populations. These findings highlight the critical importance of the protection estuarine fish nurseries

to maintain ecosystem services, which are currently undermined by ongoing ecological degradation.

The integration molecular data from gill and liver tissues, key organs for immune function and
metabolic stress response, together with the gill mucus microbiota composition, physiological and
abiotic data, was used to identify stress on estuarine fish at high resolution. Zander from the maximum
turbidity zone showed signs of starvation, reflected by poor body condition and activation of liver
autophagy and fat degradation pathways. In contrast, zander from the upper estuary living under
higher temperatures, nutrient loads and low oxygen exhibited, both adaptive and immune responses,
linked to specific bacterial taxa. Many of the observed stress and immune pathways were previously
undocumented for this species. Overall, the study demonstrated the feasibility of using field-collected

molecular data for monitoring fish health in estuarine environments.

This thesis highlights fish ecology in estuarine ecosystems from four perspectives: (1) fish population
dynamics and species composition, (2) food composition emphasizing the ecological roles of individual
keystone species, (3) growth analyses as indicators of food availability and habitat quality and (4) stress
responses at the individual level, using zander as representative for the keystone fish species. These
findings provide evidence of altered environmental conditions in the Elbe estuary as reflected in shifts
in species composition, changes in prey consumption and reduced growth compared to earlier studies.
Together, these insights contribute to a better understanding of ecological processes and stressors in

estuarine ecosystems.
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