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Abstract

This dissertation presents methods to improve X-ray single-particle imaging

(SPI) for recovering detailed 3D structures of nanoscale biomolecules — such as

viruses and proteins — at synchrotrons and X-ray free-electron laser sources (XFELs).

Specifically, it addresses challenges posed by structural heterogeneity in the sam-

ple of interest and high background noise akin to experiments, both of which

significantly limit the achievable near-atomic resolution.

Chapter 1 provides an overview and historical context of SPI. Chapter 2 briefly

introduces fundamental concepts. In Chapter 3, 4, 5 and 6, developed methods

are discussed in detail. Chapter 7 summarizes the findings and outlines future

directions. Additional technical information is included in the Supplementary and

Appendix chapters.

In Chapter 3, a way of using SPI and combination of machine learning tech-

niques is discussed to observe structural transition in viral capsids such as MS2

bacteriophages after aerosolization. The method classifies hundreds of thousands

of single particle diffraction patterns to learn the structural landscape of the cap-

sid morphology as a function of time spent in the aerosol phase. A previously

unreported compact conformation as well as intermediate structures were discov-

ered suggesting a likely protective mechanism in viral capsid, leading to the large

observed morphology change. These findings demonstrate the power of SPI and

machine learning methods in unraveling heterogeneity and studying biomolecular

structural dynamics.

Chapter 4 describes an improved reconstruction algorithm for holographic-SPI

at XFELs. A maximum likelihood estimation algorithm is introduced, offering better

scalability and enabling finer sampling of latent parameters to achieve higher resolu-

tions and significantly improved performance in low-signal conditions. This method

employs experimental configuration where strong scattering gold nanospheres are

placed in close proximity to the target object, as holographic reference objects.

This approach enhances the quality of the interference patterns. Furthermore,

holographic-SPI enables structural variations within the target particle to be aver-

aged directly in real space, facilitating the recovery of an average structure across

conformational states. This leads to greater robustness in handling structural het-

erogeneity compared to conventional SPI. With these computational advancements,
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holographic-SPI demonstrates the potential to achieve sub-nanometer resolution in

biomolecular imaging.

Chapter 5 builds upon previous work by introducing an experimental configu-

ration for holographic-SPI to address challenges posed by high background noise

and radiation damage resulting from prolonged exposures at synchrotrons. The

method involves placing a strongly scattering 2D crystal lattice as reference object

near the target object. The holographic enhancement provided by the lattice Bragg

peaks enables structure retrieval even when background levels are up to 10
5

times

higher than the target object signal. This method significantly improves the signal-

to-background ratio, supports practical fixed-target sample delivery, and enables

high-resolution imaging under near-native conditions at synchrotron sources.

To explore and validate holographic-SPI ideas further, Chapter 6 presents two

synchrotron-based experiments investigating lattice-enhanced holographic-SPI.

Two types of 2D crystal reference structures were employed: (i) a self-assembled

monolayer of polystyrene nanospheres and (ii) lithographically patterned crossed

gratings. By leveraging coherent interference between the structured reference

and the sample, modulations in Bragg peak intensities were analyzed. Although

challenges remain, particularly in fabricating high-quality low-variation references,

preliminary results demonstrate the feasibility of this approach and suggest promis-

ing avenues for further optimization.

The Appendix provides details on the developed code associated with Chapter 3

and 5. Supplementary material includes additional data and analysis relevant to

Chapter 3.
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Kurzfassung

Diese Dissertation stellt Methoden zur Verbesserung der Röntgen-Single-Particle-

Imaging (SPI) vor, um detaillierte 3D-Strukturen nanoskaliger Biomoleküle – wie

Viren und Proteinen – an Synchrotronen und Röntgenfreie-Elektronen-Laser-

Quellen (XFELs) zu rekonstruieren. Insbesondere werden Herausforderungen

behandelt, die durch strukturelle Heterogenität in der Probe sowie starkes Hinter-

grundrauschen, ähnlich wie in realen Experimenten, entstehen – beides Faktoren,

die die erreichbare nahe-atomare Auflösung erheblich einschränken.

Kapitel 1 bietet einen Überblick und den historischen Kontext von SPI. Kapitel 2

führt kurz in grundlegende Konzepte ein. In Kapitel 3, 4, 5 und 6 werden die entwick-

elten Methoden ausführlich diskutiert. Kapitel 7 fasst die Ergebnisse zusammen

und skizziert zukünftige Richtungen. Zusätzliche technische Informationen sind in

den Kapiteln Supplement und Anhang enthalten.

In Kapitel 3 wird ein Ansatz beschrieben, bei dem SPI mit Methoden des

maschinellen Lernens kombiniert wird, um strukturelle Übergänge in viralen

Kapsiden – wie denen von MS2-Bakteriophagen – nach der Aerosolisierung zu

beobachten. Die Methode klassifiziert Hunderttausende von Einzelpartikelbeu-

gungsmustern, um die Strukturlandschaft der Kapsidmorphologie in Abhängigkeit

von der Verweildauer in der Aerosolphase zu erfassen. Eine zuvor nicht berichtete

kompakte Konformation sowie Zwischenstrukturen wurden entdeckt, was auf

einen wahrscheinlichen Schutzmechanismus im viralen Kapsid hinweist und die

beobachtete starke Veränderung der Morphologie erklärt. Diese Ergebnisse zeigen

die Leistungsfähigkeit von SPI und Methoden des maschinellen Lernens zur Aufk-

lärung von Heterogenität und zur Untersuchung biomolekularer Strukturdynamiken.

Kapitel 4 beschreibt einen verbesserten Rekonstruktionsalgorithmus für holo-

graphisches SPI an XFELs. Ein Maximum-Likelihood-Schätzalgorithmus wird

vorgestellt, der eine bessere Skalierbarkeit bietet und eine feinere Abtastung latenter

Parameter ermöglicht, um höhere Auflösungen und eine deutlich bessere Leistung

bei schwachen Signalen zu erreichen. Diese Methode nutzt eine experimentelle

Konfiguration, bei der stark streuende Goldnanosphären als holographische Ref-

erenzobjekte in unmittelbarer Nähe zum Zielobjekt platziert werden. Dieser Ansatz

verbessert die Qualität der Interferenzmuster. Darüber hinaus ermöglicht holo-

graphisches SPI eine Mittelung struktureller Variationen innerhalb des Zielpartikels
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direkt im Realraum, wodurch eine durchschnittliche Struktur über Konformation-

szustände hinweg wiederhergestellt werden kann. Dies führt zu einer höheren

Robustheit im Umgang mit struktureller Heterogenität im Vergleich zu herkömm-

lichem SPI. Mit diesen rechnergestützten Fortschritten zeigt holographisches SPI

das Potenzial, subnanometergenaue Auflösungen in der biomolekularen Bildgebung

zu erreichen.

Kapitel 5 baut auf früheren Arbeiten auf und stellt eine experimentelle Kon-

figuration für holographisches SPI vor, die Herausforderungen wie hohes Hinter-

grundrauschen und Strahlenschäden durch längere Belichtungen an Synchrotro-

nen adressiert. Die Methode beinhaltet das Platzieren eines stark streuenden 2D-

Kristallgitters als Referenzobjekt in der Nähe des Zielobjekts. Die holographische

Verstärkung durch die Gitter-Bragg-Peaks ermöglicht die Strukturrekonstruktion

selbst bei Hintergrundniveaus, die bis zu 10
5
-mal höher sind als das Signal des

Zielobjekts. Diese Methode verbessert das Signal-zu-Hintergrund-Verhältnis er-

heblich, unterstützt eine praktikable Probenzufuhr im Festkörpermodus und er-

möglicht hochauflösende Bildgebung unter nahezu nativen Bedingungen an Syn-

chrotronen.

Zur weiteren Untersuchung und Validierung der holographischen SPI-Ideen

beschreibt Kapitel 6 zwei synchrotronbasierte Experimente zur Untersuchung des

gitterverstärkten holographischen SPI. Es wurden zwei Arten von 2D-Kristall-

Referenzstrukturen verwendet: (i) eine selbstorganisierte Monoschicht aus Polystyrol-

Nanosphären und (ii) lithografisch gefertigte gekreuzte Gitterstrukturen. Durch

Nutzung der kohärenten Interferenz zwischen der strukturierten Referenz und

der Probe wurden Modulationen in den Intensitäten der Bragg-Peaks analysiert.

Obwohl weiterhin Herausforderungen bestehen – insbesondere bei der Herstellung

hochwertiger, variantenarmer Referenzen – zeigen erste Ergebnisse die Machbarkeit

dieses Ansatzes und deuten auf vielversprechende Möglichkeiten zur weiteren Op-

timierung hin.

Der Anhang enthält Details zum entwickelten Code, der in Kapitel 3 und 5

beschrieben wird. Zusätzliches Datenmaterial und Analysen zu Kapitel 3 sind im

Supplement enthalten.
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Preface

When a kid is born, it is like the start of this amazing adventure, full of little

steps that change them bit by bit. For the first six months or so, babies see the world

with limited color-vision, poor contrast till now! Study suggests their eyes and

brains are still figuring things out, and color vision sensitivity kicks in slowly [1].

Then, around age one to two, kids start getting what choices are all about. Like

when they grab the red toy instead of the blue one - it is their way of saying, “Hey,

I have got opinions now!” Research shows this is when they start understanding

they can pick between things, showcasing self-awareness [2]. Every stage, from

those shaky first steps to yelling “no” at the top of their lungs, is them growing into

who they are.

Honestly, my PhD journey over the last five years felt a lot like that. When I

started, I was clueless on the starting line of an adventure - like a baby squinting at

a blurry, faded world. I could barely make sense of the big ideas in my field. But

little by little, things got clearer, just like how colors pop into a baby’s life. By year

two or three, I was picking my own path - like a toddler choosing their favorite

snack; taking time to build skills and confidence in something new [3]. I started

seeing the cool, tricky stuff in my research that was not obvious at first glance.

It was not always smooth sailing, though. Some days, I felt stuck, like a kid

throwing a fit because they can not say what they mean. But then there were these

“aha!” moments - like when a kid spots a rainbow and can not stop staring. Over

these five years, I have dug into some pretty neat, not-so-simple ideas in my field.

It took patience, a ton of coffee, and being okay with messing up sometimes. This

dissertation is the summation of all that. It is not just about the research — it is

about how I grew along the way. I am like that five-year-old now, excited and ready

for what is next, knowing there is still so much more to figure out and grow into.
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1
Introduction

One night, you spotted an alien ship landing quietly in a dense forest. Curious but

cautious, you followed its faint trail, keeping low to avoid being seen. In a hidden

clearing, you watched as the aliens placed a parasitic, shape-shifting sculpture on

the ground. It glowed faintly—an ominous object that looked like a weapon to

destroy the world.

Taking the sculpture or trying to grab it was too risky—it could alert the aliens

and put you in serious danger. Instead, you chose to document what you saw. You

snapped as many photos as possible, but the darkness made it impossible to use a

bright flash without drawing attention. The images turned out blurry, with fuzzy

outlines and distorted details. To make matters worse, the sculpture kept subtly

changing shape, so each photo captured a slightly different version of it.

Now, back at home, you face a daunting challenge: reconstruct the full 3D

structure of the sculpture. Using these grainy, inconsistent images, you must piece

together a clear 3D model— capturing every detail— to reveal what this object truly

is and the threat it may pose.

This metaphor captures the essence of X-ray single-particle imaging (SPI) -

a powerful technique capable of reconstructing full 3D structures of nanoparti-

cles from millions of noisy, randomly oriented diffraction snapshots [4, 8–10]. By

employing ultrashort, ultra-intense X-ray pulses from X-ray free-electron lasers

(XFELs)[11, 12], SPI records each diffraction pattern from an individual parti-

cle just before the sample is destroyed - a process known as “diffraction-before-

destruction”[13].

The ability to visualize biomolecular structures at high resolution has pro-

foundly advanced the field of structural biology [14–16]. Techniques such as

1



X-ray crystallography, cryogenic electron microscopy (cryo-EM), and nuclear mag-

netic resonance (NMR) spectroscopy have enabled researchers to uncover intricate

biomolecular architectures [17–19]. A core principle in structural biology is that

the function of a biomolecule is intrinsically tied to its structure - even subtle

conformational changes can affect its interactions or biological activity within the

environment [20, 21]. Capturing both static structures and dynamic behaviors is

therefore essential for understanding biological mechanisms under physiologically

relevant conditions.

The profound impact of structural insights has been recognized through presti-

gious scientific honors, such as Nobel Prizes awarded for breakthroughs in imaging

and structure determination methods that have significantly enhanced our ability

to observe biomolecular forms and motions [22–24]. Despite these advancements,

the pursuit continues. Crystallography relies on highly ordered crystals, posing

challenges in studying flexible, transient, or heterogeneous systems [25–27]. Cryo-

EM, while avoiding crystallization, necessitates freezing target single particles,

which can obscure ultrafast dynamic processes occurring at physiological temper-

atures [28, 29]. SPI fills a crucial gap by capturing structures without the need

for crystallization or freezing. It offers in situ condition possibilities and tolerates

sample variability, enabling the observation of biomolecules in action through

time-frozen snapshots [9, 12, 30].

However, the SPI technique encounters several formidable challenges. Firstly,

the signal-to-background ratio is often poor, especially for small or weakly scat-

tering particles [31, 32]. Background scattering from aerosol carriers, liquid jets,

beamline optics, and detector artifacts can overpower the already weak signal,

which rapidly decays at high scattering angles [9, 31, 33]. Secondly, while radia-

tion damage is mitigated by femtosecond pulses, it still poses a concern for long

exposures and synchrotron-based experiments [34]. Thirdly, structural hetero-

geneity within biological samples blurs averaged reconstructions, necessitating

sophisticated classification techniques [4, 8].

This thesis addresses these challenges by integrating experimental innovation

with computational advancements. Specifically, it presents three distinct contribu-

tions to the field:

Structural dynamics in viral systems (Chapter 3) explores how aerosolized

MS2 bacteriophage viruses undergo changes in shape and size during dehydration.

Using Bayesian methods and unsupervised learning, we analyze SPI data to uncover

a continuous landscape of viral capsid shapes and sizes. This reveals a spectrum of

structures, ranging from fully hydrated icosahedral forms to previously uncharac-
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terized asymmetric capsids. These findings illuminate biomolecular mechanisms

that protect viral genomes under environmental stress. This work demonstrates

how SPI in combination with machine learning techniques can resolve structural

ensembles in the context of conformational dynamics.

Holographic-SPI to retrieve weak signals (Chapter 4) describes how to over-

come the limitations imposed by background noise from various sources through

reference-enhanced SPI, a technique that involves attaching a known, strongly

scattering reference particle (such as a gold nanoparticle or a 2D crystal lattice) to

the target object. This holographic interference boosts the signal, enabling orienta-

tion recovery and phase retrieval, even in low signal conditions [35]. The chapter

presents a novel algorithm based on maximum-likelihood pattern search that effi-

ciently scales with dataset size and resolves both orientations and multiple latent

parameters. This robust reconstruction approach offers high-resolution imaging in

low-signal limits, even for heterogeneous samples.

High-resolution SPI at synchrotron sources (Chapter 5 & 6) when XFELs

are limited in availability for routine SPI, highlighting the need to adapt SPI tech-

niques for use with synchrotron sources which is considered impossible. However,

synchrotrons provide lower flux and require longer exposure times, which can

lead to radiation damage in biological target samples. These chapters introduce

a fixed-target, lattice-enhanced holographic SPI configuration. The approach em-

ploys a nano-fabricated two-dimensional crystal on a thin substrate to generate

strong Bragg peaks that interfere with the weak sample signal. This customized

holographic framework enables the reliable extraction of weak biomolecular sig-

nals, even in backgrounds up to 10
5

times stronger than the sample signal. This

advancement significantly extends the capabilities of routine structural biology at

synchrotron facilities. [36].

These studies collectively demonstrate how SPI can pave the way for high-

resolution, ultrafast dynamic SPI, making it a valuable tool in structural biology. Due

to its compatibility with heterogeneous, flexible, and hard-to-crystallize systems, SPI

provides a complementary approach for capturing ultrafast structural dynamics and

uncovering functional mechanisms at room temperature. Recent advances in sample

delivery, background suppression, and machine learning–based analysis pipelines

are accelerating SPI’s progress toward achieving sub-nanometer resolution.

By addressing key challenges in signal detection, resolution enhancement, and

sample heterogeneity, this dissertation contributes to the broader goal of realizing

the full potential of SPI but as a mainstream method for dynamic, high-resolution,

room-temperature biomolecular imaging.
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2
Basic Concepts

≺ This chapter provides a concise overview of the fundamental concepts and

background information essential for understanding the experimental and

computational work in this dissertation. For a more in-depth understanding,

relevant sources are cited accordingly. ≻

2.1 Biomolecules

Biomolecular assemblies—such as viruses and protein complexes—are among the

smallest yet most intricate systems in nature. These nanoscale entities, typically

ranging from tens to hundreds of nanometers, are composed of repeating subunits

that self-assemble into highly organized and functional architectures [37]. Their

structural organization underpins critical biological processes, including replication,

enzymatic catalysis, and host-pathogen interactions [38, 39].

Understanding the structural and dynamic properties of these assemblies in

their native environments is essential for advancing virology, structural biology, and

biotechnology [40, 41]. For instance, probing the conformational dynamics of viral

capsids or protein machines reveals how these systems adapt to environmental cues,

maintain stability, and facilitate function. Such insights are crucial for developing

antiviral therapies, designing vaccines, and engineering synthetic biomolecular

systems [42].
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2.1.1 Structure and Function

The function of biomolecules is intrinsically linked to their structure, which follows

a hierarchical organization. Primary sequences of proteins and nucleic acids fold

into secondary motifs—such as α-helices and β-sheets—which further assemble

into stable tertiary and quaternary structures. These higher-order assemblies are

maintained by non-covalent interactions that simultaneously confer stability and

flexibility necessary for biological activity [37, 38].

Viruses exemplify this principle: their genomes are encased within protein

capsids that often adopt symmetric architectures, like icosahedral symmetry, to

optimize packaging efficiency and mechanical stability [42, 43]. For example, the

MS2 bacteriophage forms a T=3 icosahedral capsid from 180 identical coat pro-

tein subunits arranged into A/B and C/C dimers [44, 45]. These dimers assemble

into pentamers and hexamers around the 5-fold and 3-fold symmetry axes, respec-

tively, creating a robust shell that interacts with both the viral genome and host

receptors [46–48].

Similarly, protein complexes such as the bacterial ribosome operate as molecular

machines composed of structured RNA and proteins. The ribosome comprises two

subunits (30S and 50S), each formed from ribosomal RNA (rRNA) and dozens of

proteins, precisely organized to coordinate protein synthesis [49–52].

Non-covalent interactions provide both structural cohesion and adaptability.

Viral capsids, for example, exhibit tightly packed subunit interfaces that permit

localized conformational changes in response to environmental stimuli such as

pH or ionic strength [53, 54]. Understanding how symmetry, robustness, and

adaptability are balanced within these assemblies provides valuable insights for

antiviral strategy and synthetic nanostructure design [41].

2.1.2 Heterogeneity and Conformational Dynamics

Biomolecules are inherently dynamic, transitioning between multiple conforma-

tional states that correspond to local minima in a complex energy landscape [55, 56].

These structural transitions span diverse temporal and spatial scales, from pi-

cosecond side-chain fluctuations to global rearrangements over milliseconds or

longer [39, 57–59].

In viruses, such flexibility underlies essential processes like capsid breathing,

genome release, and response to environmental stress [48, 54]. For instance, the

FG-loops near the 3-fold axes in MS2 bacteriophage adjust pore size and curvature

during dehydration or ionic changes, influencing both assembly and infectivity [45,
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60–63].

Protein complexes also rely on conformational plasticity. During bacterial

translation, the ribosome’s small subunit undergoes coordinated shifts that enable

tRNA and mRNA translocation, facilitated by subtle movements of RNA helices

and protein domains [50, 51, 64, 65].

This structural heterogeneity arises from thermal fluctuations, allosteric reg-

ulation, or incomplete assembly and enables precise control of functional tran-

sitions [41, 66, 67]. Molecular dynamics (MD) simulations, which track atomic

motion over time, have proven instrumental in characterizing these conformational

pathways [68, 69].

Capturing the interplay between structural order and dynamic flexibility is

essential for understanding how biomolecular assemblies carry out complex, regu-

lated tasks. The study of these behaviors increasingly relies on advanced structural

techniques capable of probing both static and transient states under near-native

conditions—a need that has driven the development of powerful X-ray imaging

sources.

2.2 X-ray Sources

High-resolution X-ray imaging has been foundational to structural biology, enabling

atomic-level visualization of biomolecules. The discovery of X-rays by Wilhelm

Röntgen in 1895 and the subsequent demonstration of X-ray diffraction by Max

von Laue laid the groundwork for X-ray crystallography, a method later formalized

by William and Lawrence Bragg [70–72].

Early X-ray tubes, which produced radiation through electron-target collisions,

were limited in brightness and tunability [73]. The introduction of synchrotron radi-

ation in the 1970s revolutionized the field by delivering high-intensity, tunable, and

collimated X-ray beams suitable for a wide range of biological investigations [74].

More recently, X-ray free-electron lasers (XFELs) have advanced the field further,

generating ultrashort pulses with unprecedented brightness and coherence, ideal

for studying fast structural dynamics [11, 75, 76].

These technological innovations have transformed X-ray imaging into a versa-

tile platform for probing biological systems with increasing spatial and temporal

resolution. In the following subsections, we examine the characteristics and appli-

cations of synchrotron and XFEL sources in structural biology.
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2.2.1 Synchrotrons

Synchrotrons produce intense, tunable X-rays by accelerating electrons to near-

light speeds in a circular storage ring and steering them through magnetic fields.

As electrons are deflected by bending magnets, wigglers, or undulators, they emit

synchrotron radiation—characterized by high brightness, broad spectral range, and

low divergence [74, 77].

Undulators, a key component of third-generation synchrotrons, generate quasi-

monochromatic, highly coherent X-ray beams that are optimal for techniques

such as macromolecular crystallography, small-angle X-ray scattering (SAXS), and

coherent diffraction imaging (CDI) [78–80]. The performance of these sources is

quantified by spectral brightness:

B(λ) = F (λ)
(2π)2εxεy

(2.1)

where F (λ) is the photon flux, and εx, εy are the horizontal and vertical beam

emittances. Lower emittance values improve beam sharpness and intensity, directly

enhancing imaging resolution [74].

Modern synchrotron facilities (3
rd

and 4
th

Generation) —including APS (USA),

ESRF (France), PETRA III (Germany), and SPring-8 (Japan)—employ advanced

magnet lattices and storage ring designs to achieve low emittance and high stabil-

ity [81–84]. These sources support a broad array of biological applications, from

high-resolution protein crystallography to in situ tomography and studies of large

macromolecular complexes [85, 86].

However, synchrotron pulses typically have durations in picoseconds to nanosec-

onds range, limiting their ability to resolve ultrafast processes. To overcome this

limitation, XFELs offer a complementary approach with femtosecond-scale time

resolution.

2.2.2 X-ray Free-Electron Lasers (XFELs)

XFELs represent the state-of-the-art in X-ray generation, producing ultrashort,

coherent pulses with peak brightness up to 109
times greater than synchrotrons [87,

88]. Unlike storage rings, XFELs use linear accelerators to propel electron bunches

through long undulators. Within the undulators, the self-amplified spontaneous

emission (SASE) process converts electron energy into highly coherent X-ray radia-

tion.

The exponential gain in X-ray intensity along the undulator is governed by the
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FEL gain length LG:

LG = λu

4π
√

3 ρFEL

(2.2)

where λu is the undulator period and ρFEL is the FEL parameter, indicating the

efficiency of energy transfer from electrons to photons [89].

XFELs enable the technique of “diffraction-before-destruction,” in which ultra-

short pulses capture structural information before radiation damage occurs [12,

30, 90]. This approach has revolutionized structural biology by facilitating serial

femtosecond crystallography (SFX) and single-particle imaging (SPI), especially for

weakly scattering or radiation-sensitive specimens [91–93].

Flagship XFEL facilities include the Linac Coherent Light Source (LCLS) in

the USA and the European XFEL in Germany [94, 95]. These platforms support

time-resolved studies of ultrafast phenomena in nanoscale systems. Despite their

capabilities, XFEL experiments require precise synchronization, advanced sample

delivery systems, and complex beam diagnostics [11, 75].

Together, synchrotrons and XFELs provide complementary capabilities for

structural biology, spanning from equilibrium imaging of static structures to time-

resolved studies of molecular dynamics. These sources form the foundation for

cutting-edge imaging techniques, which are explored in the next section.

2.3 Nanoscale Imaging Techniques

Advances in nanoscale imaging have transformed structural biology, enabling

visualization of biomolecules with molecular to near-atomic resolution. Techniques

such as X-ray crystallography, cryogenic electron microscopy (cryo-EM), X-ray

single-particle imaging (SPI), Ptychography and holographic methods provide

complementary views of biological structures, accommodating various levels of

structural order, sample heterogeneity, and temporal dynamics [86, 96].

Each technique offers distinct advantages: crystallography remains powerful

for highly ordered systems, cryo-EM excels at imaging heterogeneous and large

complexes, while SPI, Ptychography and holographic methods extend imaging

capabilities to non-crystalline and transient structures. Collectively, these methods

have illuminated thousands of biomolecular architectures and continue to expand

our understanding of structure-function relationships [97].
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2.3.1 X-ray Crystallography

X-ray crystallography has long been a foundational technique for determining

atomic structures of biomolecules. It relies on the elastic scattering of X-rays from

a crystalline lattice. Constructive interference of the scattered waves produces

diffraction patterns governed by Bragg’s law:

nλ = 2d sin θ (2.3)

where n is an integer, λ is the X-ray wavelength, d is the interplanar spacing,

and θ is the incidence angle [72]. These patterns are used to reconstruct electron

density maps, from which atomic models are built [98].

Synchrotron-based crystallography has enhanced this method by providing

intense, tunable beams, enabling the use of advanced phasing strategies and the

resolution of increasingly complex structures [49, 99, 100]. The measured diffraction

intensities I(q) are proportional to the square of the structure factor:

F (q) =
∑

j

fj(q) e2πi q·rj
(2.4)

where fj(q) is the atomic form factor and rj is the position of atom j in the

unit cell.

A key limitation of crystallography is its reliance on well-ordered crystals,

which are often difficult to obtain for flexible or membrane-associated biomolecules.

XFEL-enabled serial femtosecond crystallography (SFX) addresses this by using

ultrashort pulses to collect diffraction from micro- or nanocrystals before radiation

damage sets in [12, 101]. This “diffraction-before-destruction” approach has opened

pathways for time-resolved studies of dynamic molecular transformations.

Crystallography remains highly valuable when integrated with complementary

methods—such as cryo-electron microscopy, NMR spectroscopy, and computational

modeling—to yield a holistic view of biomolecular structure and function [102].

2.3.2 Cryo-Electron Microscopy (Cryo-EM)

Cryogenic electron microscopy (cryo-EM) enables high-resolution imaging of

biomolecules in their native, hydrated states - without requiring crystallization [103,

104]. Samples are rapidly vitrified by plunging into liquid ethane, preserving their

structural integrity in a thin film of amorphous ice. Electron beams are transmitted

through these frozen samples, and the resulting scattering patterns are captured to

9



produce high-contrast micrographs.

The technique gained momentum with the development of vitrification methods

by Dubochet and colleagues in the 1980s. Subsequent breakthroughs in detector

technology and image processing, particularly in the 2010s, triggered the so-called

“resolution revolution,” enabling routine structure determination at 2–4 Å resolu-

tion [18].

Cryo-EM encompasses multiple imaging modes, including single-particle anal-

ysis (SPA), cryo-electron tomography (cryo-ET), and micro-electron diffraction

(MicroED) [105, 106]. Among these, SPA is most widely used for high-resolution

structure determination. It involves capturing thousands of 2D projections of iden-

tical particles in random orientations, which are then computationally aligned and

averaged to reconstruct a 3D electron density map [107].

In many respects, cryo-EM SPA resembles inline holography, as it records the

interference of elastically scattered electron waves with an unscattered reference

beam. The resulting image contrast is modulated by the microscope’s contrast

transfer function (CTF), which encodes phase information crucial for structural

recovery [108, 109]. Accurate CTF estimation and correction are essential steps in

reconstruction pipelines.

A central computational challenge in SPA is the reconstruction of a 3D struc-

ture from noisy 2D projections, where both particle orientations and underlying

structures are unknown. This gives rise to a latent variable problem, in which the

model must simultaneously infer hidden viewing parameters and optimize the 3D

volume [5, 110]. This problem is typically formulated as an inverse estimation task,

where the goal is to minimize the discrepancy between the measured images Ii and

projections Pθi
(V ) of a candidate 3D volume V :

L(θ) =
N∑

i=1
|Pθi

(V )− Ii|2 (2.5)

State-of-the-art software such as RELION [110], cryoSPARC [5], and EMAN2 [111]

use Bayesian inference, maximum likelihood estimation, and deep learning to refine

reconstructions, resolve heterogeneity, and identify conformational states within

particle ensembles.

Recent innovations, such as time-resolved cryo-EM, now enable visualization

of transient molecular events, providing deeper insight into dynamic biological pro-

cesses [29, 107]. Despite challenges like radiation sensitivity and sample variability,

cryo-EM remains a cornerstone of structural biology.
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2.3.3 X-ray Single-Particle Imaging (SPI)

X-ray single-particle imaging (SPI) offers a non-crystallographic route to structural

information. It involves collecting diffraction patterns from many isolated, ran-

domly oriented particles—such as proteins or viruses—and reconstructing their 3D

electron density through computational algorithms [4, 7, 112]. Conceptually, SPI

shares common ground with cryo-EM in that both adopt a single-particle analysis

(SPA) approach: multiple 2D projections of identical particles are used to infer a

3D structure. However, SPI employs X-rays instead of electrons, leveraging their

shorter wavelengths and coherence properties for high-resolution imaging.

XFELs are particularly well-suited for SPI due to their high brightness and

coherence, enabling collection of structural data before radiation damage occurs [8,

30, 92, 113]. The scattered intensity from a particle is proportional to the square

modulus of its Fourier transform:

F (q) =
∫

ρ(r) e−2πi q·r d3r (2.6)

Phase retrieval algorithms—such as Hybrid Input-Output (HIO) [114] and Dif-

ference Map [115]—are used to reconstruct the missing phase information from

measured intensities, enabling recovery of 3D structures.

SPI also benefits from the spatial and temporal coherence of XFEL pulses, which

are essential for producing high-contrast speckle patterns in coherent diffraction

imaging (CDI) [116, 117]. While radiation damage challenge has been addressed for

biological samples [118, 119], the use of femtosecond XFEL pulses allows imaging

before significant atomic displacement occurs [90, 120]. This has made SPI a key

technique for studying radiation-sensitive and heterogeneous specimens with high

spatial and temporal resolution.

2.3.4 Fourier Transform Holography

Fourier Transform Holography is a lensless imaging technique that reconstructs an

object’s complex wavefront by recording its far-field interference with a reference

wave. In contrast to iterative phase retrieval approaches used in coherent diffraction

imaging (CDI), it offers a direct, non-iterative route to phase recovery by encoding

spatial information into a measurable hologram [121, 122].

In the context of X-ray imaging, it employs highly coherent soft or hard X-ray

sources, such as synchrotrons or XFELs, to probe nanoscale objects. A typical

experimental setup involves placing the sample near a reference scatterer—often a
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pinhole or a thin metallic film—on a substrate. The interference between waves

scattered by the object and the reference is captured in the far field and numerically

back-propagated to retrieve the object image [122]. This configuration bypasses

complex optics and is well suited to imaging non-crystalline, weakly scattering

biological samples.

A more recent development is free-flying Fourier holography, which eliminates

the need for fixed substrates by allowing both the sample and reference scatterer

to co-propagate in free flight [123]. It demonstrated this technique by introducing

a nanoparticle reference alongside a biomolecular target, both suspended in a

vacuum beam and illuminated by XFEL pulses. This innovation permits single-shot

holographic imaging of isolated particles without mechanical supports.

Fourier transform holography presents a promising approach for single-particle

imaging of small biological targets. It offers robustness to noise, non-iterative

reconstruction, and flexibility in experimental geometry, all of which make it a

powerful addition to the X-ray imaging toolkit.

2.3.5 Ptychography

Ptychography is a scanning coherent diffraction imaging (CDI) technique that

enables high-resolution, quantitative phase and amplitude imaging of extended and

non-crystalline samples. In this method, a coherent X-ray beam (the “probe”) is

scanned across the specimen in overlapping regions. At each position, a far-field

diffraction pattern is recorded, and the set of these patterns is used to recon-

struct both the complex transmission function of the sample and the illumination

probe [124, 125].

A defining feature of ptychography is variable-position imaging: the probe is

systematically translated across the sample with partial spatial overlap between

adjacent scan positions. This redundancy in the dataset provides robust constraints

during phase retrieval, improving convergence and resilience to noise [126]. Unlike

holography, which relies on the addition of a known reference wave to recover phase

information, ptychography reconstructs the phase by exploiting the multiplicative

interaction between the probe function and the sample at each scan point.

Mathematically, the intensity measured at each scan position ri corresponds to

the modulus squared of the Fourier transform of the exit wave:

Ii(q) = |F [P (r− ri) ·O(r)]|2 (2.7)

where P (r) is the complex probe function, O(r) is the object transmission
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function, and F denotes the Fourier transform. By iteratively solving for both P

and O using algorithm [126] or maximum likelihood optimization [127], a high-

resolution image of the object can be reconstructed.

X-ray ptychography has been successfully applied in biological imaging to

visualize subcellular structures, hydrated specimens, and cryo-preserved macro-

molecules with nanometer-scale resolution [128, 129]. Its combination of high

spatial resolution, quantitative contrast, and compatibility with thick, weakly scat-

tering specimens makes it a powerful technique.

2.3.6 Holographic SPI

Holographic SPI builds upon SPI by introducing a known, strongly scattering

reference—such as a gold nanoparticle—positioned near the target biomolecule.

This reference produces an interference pattern with the scattered wave from the

sample, effectively encoding relative phase information into the far-field diffraction

pattern [35, 36, 122].

Unlike ptychography, which uses a multiplicative interaction between the probe

and object across overlapping scan positions, holographic SPI is fundamentally

additive: the complex exit wave is a coherent sum of the target and reference

contributions. This additive formulation allows the resulting diffraction pattern

to directly encode cross-interference terms that carry phase-sensitive information

about the weakly scattering object.

A distinctive advantage of holographic SPI is that it naturally provides multiple

views of both the reference and target object. This redundancy forms a rich dataset

that significantly enhances signal-to-noise ratio and supports robust phase retrieval

without requiring an explicit support constraint, which is typically essential in

conventional SPI [36]. Optimization algorithms can exploit these multiple views to

iteratively reconstruct the complex-valued Fourier transform of the object, even

under noisy or undersampled conditions.

Conceptually, holographic SPI is a hybrid of three imaging paradigms: X-ray

SPI, Fourier transform holography, and ptychography. From SPI, it inherits the

ability to image isolated particles without crystallization; from fourier transform

holography, the use of a reference to enable phase recovery; and from ptychography,

the principle that phase information can be retrieved from multiple views of the

same object, although here those views are obtained holographically, rather than

through scanning. The holographic principle ensures that the exit wave encapsu-

lates complete structural information of the target object, and its reconstruction is
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facilitated by the interference with the known reference wave.

The total electron density of the sample-reference system is expressed as:

ρ(r) = ρo(r) + ρRef (r− t) (2.8)

The measured diffraction intensity becomes:

I(q, t) = |Fo(q) + FRef (q)ei2πq·t|2 (2.9)

Expanding this yields the crucial interference term:

I(q, t) = |Fo(q)|2 + |FRef (q)|2 + 2Re

[
Fo(q)F ∗

Ref (q)ei2πq·t
]

(2.10)

When the reference dominates scattering (|FRef | ≫ |Fo|), the signal-to-noise

ratio (SNR) simplifies to:

SNR(q) ≈ 2|Fo(q)| (2.11)

This reflects a twofold SNR advantage over standard SPI [35], significantly

boosting detectability of weakly scattering biological specimens. Holographic SPI,

through this fusion of techniques, provides a powerful framework for imaging

isolated biomolecules with high sensitivity and phase fidelity.

2.4 Reconstruction Algorithm

SPI seeks to reconstruct the 3D electron density, ρ(r), of nanoscale biological speci-

mens from a collection of noisy 2D diffraction patterns. Each pattern captures the

squared modulus of the particle’s Fourier transform, projected at an unknown ori-

entation and subject to varying X-ray fluence. The reconstruction process therefore

involves solving a high-dimensional latent variable inference problem, followed by

phase retrieval to recover real-space structure.

The overall workflow consists of (1) modeling hidden variables such as par-

ticle orientation and pulse fluence, (2) applying the Expectation-Maximization-

Compression (EMC) algorithm to estimate the 3D intensity distribution in reciprocal

space, and (3) retrieving the phase to reconstruct real-space electron density.
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2.4.1 Latent Variables and Forward Model

Each recorded diffraction pattern is influenced by several latent parameters that

must be inferred:

• Orientation Ω ∈ SO(3): the unknown 3D rotation of the particle at the

time of X-ray exposure.

• Fluence φ: the variable intensity of the incident X-ray pulse for each pattern.

• Detector mapping: transformation of detector pixels to points in reciprocal

space on the Ewald sphere [7].

In holographic SPI, additional latent parameters include the reference particle’s

properties, such as size or position relative to the object.

The measured photon counts Kdt at detector pixel t for pattern d are modeled

as Poisson-distributed with mean φdWrt, where Wrt is the model intensity at

orientation r:

P (Kdt|Wrt, φd) = (φdWrt)Kdte−φdWrt

Kdt!
(2.12)

This probabilistic framework supports joint inference over model intensities,

orientations, and fluence values.

2.4.2 Expectation-Maximization-Compression (EMC)

The EMC algorithm [4, 7] is an iterative method designed to estimate the 3D

reciprocal-space intensity distribution from randomly oriented 2D snapshots. It

alternates among three core steps:

• E-step (Expansion): Project the current 3D intensity model onto detector

planes for all sampled orientations.

• M-step (Maximization): Update the orientation probabilities and model

parameters by maximizing the expected log-likelihood of the observed data.

• C-step (Compression): Integrate the updated projections back into a single

3D intensity model, maintaining consistency.

The overall model update at iteration (t + 1) can be expressed as:

W (t+1) = C ◦M ◦ E
[
W (t)

]
(2.13)
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Fluence correction is incorporated by estimating a per-pattern scale factor:

φnew

d =
∑

r,t PdrKdt∑
r,t PdrWrt

(2.14)

The updated intensity model becomes:

W new

rt =
∑

d PdrKdt∑
d Pdrφd

(2.15)

This approach allows robust inference even under noisy and highly variable

imaging conditions, making EMC a powerful algorithm for SPI data analysis.

2.4.3 Phase Retrieval

Once the 3D Fourier intensity model has converged, the next step is to recover the

real-space electron density ρ(r) by solving the phase problem—i.e., recovering the

phase of the complex-valued Fourier transform from its squared modulus.

Phase retrieval is an ill-posed inverse problem and is typically addressed using

iterative algorithms such as: (i) Hybrid Input-Output (HIO) [114], Difference Map

(DM) [115] and Shrinkwrap [130].

These algorithms alternate between real-space and reciprocal-space projections,

enforcing known constraints—such as positivity, compact support, and measured

amplitudes—to iteratively refine the electron density.

2.4.4 Resolution

Resolution quantifies the level of structural detail recovered in the 3D reconstruction.

In SPI, resolution depends on the signal-to-noise ratio and angular coverage of the

diffraction data. Two common metrics are used for its estimation:

Fourier Shell Correlation (FSC): FSC compares the agreement between two

independently reconstructed volumes in Fourier space:

FSC(q) =
∑

q∈shell
F1(q) · F ∗

2 (q)√∑ |F1(q)|2 ·∑ |F2(q)|2
(2.16)

The resolution is defined as the spatial frequency q at which the FSC drops

below a threshold, commonly 0.143 or 0.5 [131].

Phase Retrieval Transfer Function (PRTF): PRTF evaluates phase consistency

across independent reconstructions:
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PRTF(q) = |⟨eiϕ(q)⟩| (2.17)

where ϕ(q) is the recovered phase at spatial frequency q, and the average is

taken over multiple reconstructions. PRTF values range from 0 (random) to 1

(perfectly consistent). Resolution is typically defined at the point where the PRTF

falls below 0.5 or 1/e [13].

Together, FSC and PRTF provide quantitative measures of reconstruction fidelity,

guiding the interpretation and validation of SPI results.

2.5 Machine Learning

Machine learning (ML) has emerged as a transformative approach for analyzing

the vast and noisy datasets generated in SPI experiments. The high-throughput

nature of modern XFEL and synchrotron facilities produces millions of diffraction

patterns—many of which are noisy, heterogeneous, or corrupted by background.

ML techniques are increasingly used to address challenges in pattern classification,

denoising, heterogeneity modeling, and structural inference [132–136].

These data-driven approaches offer flexibility, scalability, and robustness in

processing large-scale SPI datasets. By learning underlying data distributions, ML

methods can extract structural insights that are difficult to access through purely

algorithmic pipelines.

Classification

Accurate identification of usable diffraction patterns is a critical preprocessing step

in SPI. Experimental datasets often contain a mix of single-particle hits, aggregates,

multiple hits, and empty frames. Supervised learning models—particularly convo-

lutional neural networks (CNNs)—have shown strong performance in classifying

patterns into meaningful categories [137–139].

Beyond binary hit-finding, fine-grained classification techniques group patterns

by properties such as orientation, sample composition, or scattering strength. Di-

mensionality reduction methods—such as principal component analysis (PCA) and

t-distributed stochastic neighbor embedding (t-SNE)—are often used to visualize

and cluster high-dimensional diffraction data [136, 140].
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Unsupervised Learning and Heterogeneity Modeling

A major advantage of unsupervised learning in SPI is its ability to model continuous

conformational variability and sample heterogeneity. Probabilistic models such

as variational autoencoders (VAEs) enable low-dimensional representations of

structural variation without requiring labeled data [36, 136, 141].

In a VAE framework [142], an encoder maps each diffraction pattern to a point

in a latent space, while a decoder reconstructs the corresponding scattering distri-

bution. Each point in the latent space represents a distinct structural state, allowing

smooth interpolation between conformations. These models have been used to

map conformational landscapes of flexible biomolecules such as viral capsids [132].

Incorporating physical constraints—such as known symmetry, Fourier trans-

form properties, or estimated orientations—can improve reconstruction fidelity.

Some models jointly learn latent coordinates and reconstruct full 3D intensity vol-

umes in Fourier space. This enables direct recovery of heterogeneous 3D structures

from unaligned, noisy data.

Emerging Methods

Recent work has explored amortized inference approaches to speed up the recon-

struction process and reduce memory usage [143, 144]. These methods replace

iterative optimization with fast, learned mappings from diffraction data to model

parameters.

As SPI experiments continue to scale in size and complexity, ML-driven methods

are expected to play an increasingly central role in structure determination. By

integrating machine learning with traditional reconstruction pipelines, one can

efficiently handle heterogeneous datasets, identify rare conformational states, and

push the limits of resolution and throughput in SPI.
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3
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3.1 Abstract

Single-stranded RNA viruses co-assemble their capsid with the genome and vari-

ations in capsid structures can have significant functional relevance. In particu-

lar, viruses need to respond to a dehydrating environment to prevent genomic

degradation and remain active upon rehydration. Theoretical work has predicted
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low-energy buckling transitions in icosahedral capsids which could protect the

virus from further dehydration. However, there has been no direct experimental

evidence, nor molecular mechanism, for such behavior. Here we observe this transi-

tion using X-ray single particle imaging of MS2 bacteriophages after aerosolization.

Using a combination of machine learning tools, we classify hundreds of thousands

of single particle diffraction patterns to learn the structural landscape of the capsid

morphology as a function of time spent in the aerosol phase. We found a previously

unreported compact conformation as well as intermediate structures which suggest

an incoherent buckling transition which does not preserve icosahedral symmetry.

Finally, we propose a mechanism of this buckling, where a single 19-residue loop is

destabilized, leading to the large observed morphology change. Our results pro-

vide experimental evidence for a mechanism by which viral capsids may protect

themselves from dehydration upon aerosolization. In the process, these findings

also demonstrate the power of single particle X-ray imaging and machine learning

methods in studying biomolecular structural dynamics.

3.2 Introduction

Viral capsids assemble optimally to prioritize the protection and efficient packaging

of the genome [53, 60]. It ensures the survival of the virus and facilitates interactions

with a host to maintain infectivity. Most spherical viruses in nature assemble their

capsids with icosahedral symmetry, characterized by a triangulation number (T): the

number of structural subunits forming the triangular facets of the icosahedron [42].

For instance, the MS2 bacteriophage, a 27 nm single-stranded RNA virus infecting

Escherichia coli bacteria (E. coli), is a non-enveloped virus with a T = 3 icosahedral

capsid structure [44]. With non-genomic RNA, the capsid protein can also assemble

into T = 4 as well as hybrid capsids between these two triangulation numbers [145].

Furthermore, covalent dimerization of the coat protein in MS2 can lead to an

octahedral structure under certain buffer conditions [146].

The variability in capsid structures and symmetry breaking in icosahedral cap-

sids can potentially affect infectivity, and has been well-studied in the context of

viral maturation [60]. The shape of the capsids is determined by elastic properties

such as stretching and bending energies, spontaneous curvature, and chirality. The

transition from smooth to faceted shapes in icosahedral capsid shells corresponds

to a soft-mode buckling transition, driven by bending stiffness [147]. Continuum

elasticity theory attributes shape transitions in capsids with non-icosahedral sym-

metries to a trade-off between stretching and bending energies [148]. Moreover, the
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Figure 3.1: X-ray SPI Experiment. (a) MS2 bacteriophage particles, ∼ 27 nm

in diameter, were aerosolized using an electrospray and focused with an aerody-

namic lens stack to the interaction region within the X-ray beam of 250×250 nm2

focus. The top inset shows a representative cryo-electron microscopy (cryo-EM)

micrograph of the particles. (b) The 3D structure of MS2 capsid determined by

cryo-EM (resolution 0.49 nm), served as the control for the subsequent X-ray SPI

experiment. (c) The same cryo-EM structure was low-pass filtered to the resolution

of the conventional X-ray SPI structure. (d) The structure retrieved from diffraction

data (6.1 nm resolution) using the conventional analysis pipeline is notably different

from the cryo-EM structure in (c).

elastic responses to external forces elucidate the mechanical stability and rupture

behavior of both empty and filled viral capsids [149].

Understanding the intricate and non-trivial variations in viral capsid structure

is essential for unraveling the fundamental processes driving viral infectivity and

hardiness. In this study, we approach this problem using the emerging technique

of single particle imaging (SPI) at an X-ray Free Electron Laser (XFEL) source. This

is a powerful method for probing the structures of nanoscale systems [10, 113, 134].

In these experiments, extremely bright, ultrashort and coherent X-ray pulses from

XFELs interact with copies of isolated single particles in random orientations one

at a time. This process generates millions of diffraction patterns, each from a

single viral particle. Machine learning approaches, including unsupervised meth-

ods [136, 150], are employed to identify diffraction patterns scattered from the target

object amid contaminants, aggregates and outliers. This is followed by orientation
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determination and phase retrieval to obtain the electron density of the average

particle [7, 133, 151]. Since each measurement is made on an individual particle, one

additionally has the opportunity to classify them and obtain not only the average

structure, but also the landscape of structural variations [10, 134, 136, 152].

The short pulses of an XFEL also enable time-resolved SPI experiments to inves-

tigate ultrafast phenomena and structural dynamics in ensembles of particles at the

nanoscale. This progression has enabled the exploration of ultrafast photo-induced

dynamics [153], resolving the non-equilibrium shape distributions [134], retrieving

the 3D morphology of polyhedral particles [154], melting to explosive disintegration

of nanoparticles [155], demonstrating diffraction before destruction at the protein

scale [156] and retrieving structures of heterogeneous nanoparticles [10].

In this work, we explore and analyze the structural dynamics of MS2 bacte-

riophage viruses after aerosolisation. In the process of being transported to the

XFEL beam, the aerosol droplets are continuously drying, simulating the natural

dehydration process [157–159]. Dehydrated viruses have been the target of studies

since the earliest days of macromolecular structural studies [160]. These studies

used electron microscopy [161] and crystallography [162] to study dried virus

crystals, reporting a reduction in the diameter compared to the hydrated case, but

still with a symmetric structure. This still left the question open about the structure

of the intermediate stages during dehydration, and the possibility that asymmetries

and heterogeneity introduced by the drying process were averaged over. Another

approach applied to study dehydrated viruses is using atomic force microscopy

(AFM) [163, 164]. These studies showed mostly icosahedral structures and in certain

cases, structures resembling those that have been produced in wet conditions under

high salt concentrations.

In the current experiment, the aerosolized particles are probed using the XFEL

at random degrees of dehydration to produce single particle diffraction patterns.

Using a combination of maximum likelihood and deep learning techniques, we map

the collected diffraction data from the ensemble of MS2 capsids to a continuous

structural landscape. One can then observe viral capsid structures ranging from

the fully-hydrated state to a previously unobserved capsid form with full coverage

of intermediate structures. This data then enabled us to hypothesize a molecular

mechanism for the observed conformational changes, which seems to apparently

protect the genome from further dehydration. In the process, we also show how the

combination of machine learning methods with high-throughput SPI measurements

at XFELs can be used to understand the conformational landscape and dynamics of

biomolecules in a fairly general manner.
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3.3 X-ray SPI Experiment

Data was collected at the SPB/SFX (single particles, clusters and biomolecules &

serial femtosecond crystallography) instrument [165] of the European XFEL using

6 keV photons focused into a 250×250 nm2
spot. Individual x-ray pulses were

generated with 3.8 mJ of energy on average (3.94 × 1012
photons/pulse). The

pulses were delivered in 352-pulse trains with an intra-train repetition rate of 1.1

MHz and trains arriving every 0.1 s, leading to a maximum data collection rate of

3520 frames/second. A detector built specifically for this burst mode operation,

the Adaptive Gain Integrating Pixel Detector (AGIPD) [166], was placed 700 mm

downstream of the interaction region to collect the diffraction patterns for each

pulse individually up to a scattering angle of 13◦
at the corner of the detector.

MS2 bacteriophage particles in an aqueous buffer (sample preparation details in

Supplementary Section 1) were aerosolised and sequentially injected into the X-ray

beam interaction region using an electrospray-ionization aerodynamic-lens-stack

sample delivery system [167], as shown in Fig. 3.1a. Diffraction patterns were

collected at an average rate of 3520 frames/second for an integrated collection time

of 3.6 h with a hit ratio of around 0.7%. Frames with diffraction from particles were

detected by setting a threshold on the scattered signal. A total of 287 168 potential

hit diffraction patterns were identified containing 4873 photons per pattern on

average in the resolution range of 48 nm to 3 nm. The average non-hit frame

contained 1014 photons in the same range.

The highly noise-tolerant EMC algorithm [4] can be used to categorize and

orient diffraction frames with only a few photons [133, 168, 169]. We employed the

Dragonfly software [7], to perform two-dimensional (2D) classification using this

algorithm. This procedure generated multiple 2D intensity models of diffraction

patterns in the detector plane [10] by determining the in-plane rotation angle and

relative incident fluence of each diffraction pattern. These 2D reciprocal space

intensity models capture the average of aligned copies of a subset of patterns

from the entire dataset, following which class averages were manually selected

corresponding to single particles, indicated by high fringe contrast and a convex

envelope. This procedure was then repeated, each time rejecting the various

contaminants like aggregates and other outliers (details in Supplementary Section 3).

The final selection contained intensity models revealing distinctive diffraction

features corresponding to an icosahedral particle with good contrast and sharp

streaks. The subset of diffraction frames associated with this intensity model was

selected to reconstruct a three-dimensional (3D) Fourier model using Dragonfly.
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Icosahedral symmetrization was applied due to the subset having only 7249 patterns.

Subsequently, it was phased to retrieve the electron density of the MS2 capsid,

as shown in Fig. 3.1d, with an estimated resolution of 6.1 nm (phase retrieval

parameters in Supplementary Section 4).

Even at this resolution, this structure is markedly different from the one ob-

tained using cryo-electron microscopy (cryo-EM) on the same sample batch shown

in Fig. 3.1b. This structure at 0.49 nm resolution provides insight into the con-

formation of the hydrated, flash-frozen capsid, which is a near-spherical particle

with icosahedral symmetry (see Supplementary Section 2 for details). This baseline

structure, along with the similar crystallographic structure of the capsid (PDB:

2MS2) [45] serves as a reference for interpreting structural changes induced by

aerosolisation. The low-pass filtered version shown in Fig. 3.1c shows differences

at both the 5-fold and 3-fold sites, with the X-ray structure indenting inwards at

the 3-fold sites.

The fact that only a limited number of patterns (only 2.5%) went into the final

3D structure with the conventional X-ray SPI analysis pipeline raises the question

of the structures of the rejected particles and the source of the heterogeneity. As

the particles traverse through the low-humidity environment aerodynamic lens

and then the vacuum environment of the interaction region, the surrounding water

envelope is continuously evaporating. We explore the possibility of whether the

rejected patterns contain information about the transition from the hydrated state

to the final structure depicted in Fig. 3.1d.

3.4 Heterogeneity Analysis Workflow

Figure 3.2a shows the analysis workflow for learning the structural landscape of

aerosolized MS2 capsids. By using a much larger fraction of the data, we can recon-

struct not just a single homogeneous object, but a whole family of structures, and

then to study the variations in that family. We first used the same 2D classification

approach as for the single reconstruction above. In order to effectively train and

utilize the deep learning method discussed below, we expanded the total number of

intensity models by performing multiple runs of 2D classification. In each of the

100 independent bootstrapping runs, 20% of the diffraction frames (from a total

of 170 355) were randomly selected and classified into 100 distinct 2D intensity

models, resulting in 10 000 intensity models.

Upon scrutinizing the 2D intensity models, distinctive patterns emerged, in-

cluding some with strong streaks in the detector plane from faceted particles but
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also nearly circular diffraction rings from rounded objects. These observations

hinted at particle shapes spanning from icosahedral to almost perfectly round. We

applied size filtering on the 2D intensity dataset to retrieve distribution of different

discrete heterogeneity in the MS2 particles. The effective size of the particles was

determined from each intensity average using a spherical diffraction model [170]

(see Supplementary Section 6).

We curated a dataset of 2558 2D intensity models from 79711 diffraction frames,

representing particles with different capsid morphologies, but excluding models

from dimers, aggregates and other contaminants whose nominal size was outside

the 23-31 nm size range. To understand the structural landscape of the remaining

particles, we employed an unsupervised deep learning approach – a variational au-

toencoder (VAE) network [142]. Inspired by the pioneering cryoDRGN approach us-

ing a VAE network to study heterogeneity in single-particle cryo-EM datasets [171]

and our prior work on continuous shape transitions in gold nanoparticles [136],

we adapted the network for our MS2 virion dataset as a β-VAE, described below.

An autoencoder consists of two components, the first of which (the encoder)

takes the input data and returns a low-dimensional vector, termed the latent vector.

The second part (the decoder) takes this vector as input, which could even be a

single number, and reconstructs the input data. Both networks are simultaneously

trained to minimize the difference between the inputs and corresponding outputs.

By forcing this operation to go through this bottleneck, the encoder not only

learns a low dimensional latent representation of the dataset, but the decoder

can then be used to generate the data for arbitrary points in the latent space. A

variational autoencoder further refines this approach by replacing the latent vector

by a distribution, usually represented as the mean and standard deviation of a

normal distribution. During training, instead of directly passing the estimate of the

latent vector to the decoder, a random vector is sampled from the normal distribution

parameterized by the encoded mean and standard deviation. The decoder has to

figure out how to recover the input given a Gaussian neighborhood rather than a

specific point in the latent space, which accommodates noise/uncertainties in the

input and drives smoothness of the latent representation.

In SPI experiments, not only are there unknown structural and orientation

parameters, but the measurements are also incomplete, since they are 2D images of

3D objects. Thus, we implement a 2D encoder which takes 2D diffraction images,

but the decoder reconstructs a 3D intensity distribution. The loss function then com-

pares the input with a slice through this 3D intensity at the estimated orientation.

In order to separate the effect of true structural variations from the large, but trivial,
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Figure 3.2: Analysis Pipeline. (a) Schematic of diffraction data analysis workflow.

All steps other than the unsupervised learning ones are part of the standard SPI

workflow. (b) Detailed flow chart of the unsupervised learning step to generate the

structural latent space and associated 3D Fourier intensity volumes. The pipeline

involves training a β-VAE with a local orientation optimizer. Every 20
th

epoch,

the optimizer outputs an improved estimate for the orientation (Ω) given the 3D

Fourier volumes, dataset, and the current estimate of the orientations. (c) Schematic

representation of the β-VAE network. The model takes 2D class-average intensities

and orientations as input and encodes them into a latent space via an encoder

network. This latent space coordinate (Z) is subsequently utilized by a decoder

network to reconstruct 3D Fourier volumes.
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variations in diffraction patterns of differently oriented particles, we include the

quaternion representation of the estimated orientation (Ω) for every 2D intensity

model in the dense layers of the encoder network (see Fig. 3.2c). In the decoding

process, after sampling the latent vector, the decoder reconstructs a 3D Fourier

volume, which is then sliced at Ω to retrieve the input intensities as reconstructed

output data. Finally, the β part of the β-VAE is a method to regularize the latent

space to avoid overfitting. This allows the network to use information from patterns

in different orientations with slightly different structures. The description of the

network architecture as well as the analysis workflow to refine the orientation

estimates is detailed in Fig. 3.2b and the Supplementary Sections 5 and 7.

As an initial estimate, the orientation of each of these 2D intensity class averages

was determined against a single 3D Fourier volume of the icosahedrally symmetrized

MS2 bacteriophage from the conventional SPI reconstruction (Fig. 3.1d). These

orientation estimates were incrementally updated using a so-called Local Optimizer,

which works as follows. After a given epoch, each input data frame was used to

generate a 3D Fourier volume using a single pass through the VAE. This volume

was sliced multiple times, using orientations which were slightly different from the

current estimate (standard deviation of 5 mrad or 0.3◦
). The updated orientation

for this frame was chosen to be the one which maximized the Pearson correlation

coefficient with the data (see Supplementary Section 7 for details). This pipeline is

shown schematically in Fig. 3.2b.

For this dataset, the β-VAE was trained over a total of 2000 epochs. In the

first 1000 epochs, the Local Optimizer was turned off, and icosahedral symmetric

orientation estimates were used, allowing the VAE to learn features from the dataset

and stabilize itself. In the later 1000 epochs, the orientations were updated.

Once trained, the β-VAE network enables detailed analysis and systematic

exploration of structural heterogeneity by examining the 3D intensity volumes

reconstructed by the decoder for various points in the latent space. The effective

diameter of each 3D volume was determined by fitting a sphere model, the result of

which is shown in Fig. 3.3a where the two components of the latent vector mean,

µ1 and µ2 are represented along the axes and the color and height represent the

effective diameter.

3.5 Structural landscape

We highlight two paths through the structural landscape shown in Fig. 3.3a, captur-

ing two salient features of the evolution of the capsid morphology. Firstly, the dotted
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Figure 3.3: Structural Landscape. (a) The latent space learned by the β-VAE

colored by the estimated diameter (d) of individual patterns. The plot highlights

two distinct trajectories selected to capture the structural variation phenomenon

within the latent space. The retrieved electron density of MS2 particles via phase

retrieval of Fourier volumes generated by decoder network of β-VAE network is

shown in the grid. (b) The dottedGray trajectory, following from top to bottom in (a),

depicts the shape-size variation in the ensemble of capsids. (c) The Green trajectory,

progressing from left to right in (a), corresponds to different shape realizations for a

fixed size of capsid. Red-white-blue colored radially. (d) Encapsulated overlay of the

3D structure of the MS2 capsid from the low-pass filtered cryo-EM reconstruction

(gray) and the dehydrated X-ray SPI reconstruction (green). The overlap highlights

the altered conformations in the vicinity of the 5-fold and 3-fold sites.
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Gray line trajectory illustrates the variation in shape and size, as observed from

top to bottom, which we ascribe to the effect of dehydration. Three-dimensional

structures of the MS2 capsids along this path are depicted in Fig. 3.3b. Following

this path, we note a transition from larger particles to smaller, nearly icosahedral

particles as dehydration progresses. The largest particles (29-31 nm) were nearly

spherical and larger than the reported 27 nm hydrated structure, representing MS2

capsids with a water envelope around them. The contour images in Fig. 3.3b and

c are color-coded radially from red to white to blue in order to ease visualization

of facets, curvature, and size changes. The structure in Fig. 3.1d, reconstructed

without the VAE, lies at the end of this path and is highlighted by a star in the

landscape.

The second, Green, trajectory is shown in Fig. 3.3c. Along this path, all particles

had an estimated diameter of 27 nm. Here, subtle and gradual deviations from

the icosahedral shape at a constant size are observed. Close examination shows

structures with varying degrees of deviation from the symmetric structure, also

borne out by individual diffraction patterns and class averages showing asymmetric

structures. This suggests that whatever morphological change is occurring, is not a

coherent change acting on all icosahedral sites simultaneously, but seems to occur

independently at each site.

3.6 Proposed molecular mechanism

In order to better understand the capsid morphology change, we focus on the fully

dehydrated state and compare it to the MS2 capsid structures obtained from cryo-

EM and crystallography. Figure 3.3d displays an overlay visualization of the two

MS2 capsid structures: the low-pass filtered cryo-EM reconstruction and the X-ray

SPI reconstruction. This overlay emphasizes the locations of the pores at the 5-fold

and 3-fold sites (vertex and face center respectively), which are affected during

dehydration through aerosolisation. The T=3 icosahedral capsid of MS2 consists of

12 5-fold contacts at the vertices and 20 6-fold contacts at the face-centers, as seen

in the cryo-EM structures in Fig. 3.1b and c. The configuration of the coat protein

creates a capsid shell featuring 32 pores (about 2 nm in diameter), denoted here as

5-fold and 3-fold pores, respectively.

The crystal structure of the MS2 virus capsid [45] shows that the coat protein

has three possible conformations, termed A, B and C. These proteins assemble into

two types of dimers: asymmetric A/B dimers and symmetric C/C dimers. Although

the A, B, and C subunits (129 residues) are almost structurally identical, they differ
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Figure 3.4: Dehydrated capsid model. (a-b) The pentameric (5-A/B) and hexameric

(3-A/B and 3-C/C) faces of the T=3 icosahedral capsid shell from the 2MS2 PDB

structure. At the 5-fold axis FG loops of B (B-FG loop, green, a), and at the 3-fold

axis FG-loops of A (A-FG loop, sky blue, b) and C (C-FG loop, red) are crucial for

capsid assembly and curvature. (c ) The A-FG loop and C-FG loop exhibit significant

fluctuations compared to B-FG loop (residues 66-82, shaded region). The Root Mean

Square fluctuation (RMSF) was calculated from a 20 ns vacuum MD-trajectory of

A/B and C/C dimers. (d) Transformed hexameric building block designed/modeled

from the X-ray SPI map. At the 3-fold axis, C/C dimers move toward the capsid

center. (e) Map generated from transformed capsid model (at 6.1 nm resolution). The

left half is in a similar representation as the experimental X-ray SPI map (Fig. 3.1d)

for visual comparison.

in the conformation of the FG-loop (residues 66-82), with the A and C subunits

exhibiting a conformation that is different from that of the B subunit.

The 5-fold pores consist of 5 A/B dimers, with the FG-loops of the five B-subunits

oriented towards the pores in a compact conformation, as depicted in Fig. 3.4a. The

3-fold pores are formed by six dimers–3 A/B and 3 C/C–arranged alternately, with

3 FG-loops from each A and C subunit in an extended conformation (Fig. 3.4b).

The FG-loop plays a pivotal role in capsid assembly and affects its curvature and

mutations in this region can disrupt assembly [172].

We performed molecular dynamics (MD) simulations of the A/B and C/C dimers

in vacuum conditions similar to those during sample delivery of the SPI experiment

(see Supplementary Section 9 for details). The FG-loop of A and C subunits showed

notable conformational changes or movements compared to the FG-loop of B on

30



a nanosecond timescale (marked in gray in Fig. 3.4c). The dehydration primarily

affects the FG-loop of A and C [61, 173], suggesting a strong role for water molecules

in stabilizing the extended form of the FG-loop around the 3-fold pore. In addition,

mass spectrometry observations hint that a section of the internal RNA stabilizes

the A/B dimers of the capsid [174].

Based on these observations, we formulate a hypothesis that due to the high

mobility of the FG-loops of A and C under dehydrating conditions, the FG-loops

around the 3-fold pore contract upon losing stabilizing waters and the C/C dimer

shifts towards the center of the virus. We utilized the positions of A, B, and C

subunits from the asymmetric unit of the 2MS2 crystallographic model as a starting

point, then adjusted the position of the C subunit (by translation and rotation)

to form a new capsid assembly and minimized the energy of the entire capsid

model in vacuum conditions. This procedure was iterated until we obtained a stable

capsid shell model which also fit our SPI electron density map, shown in Fig. 3.4d.

Figure 3.4e shows the full capsid with the modeled pore structure. The left half

shows the low-pass filtered electron density map showing a remarkable similarity

to the experimental map in Fig. 3.1d.

3.7 Discussion

The structural response of viruses to a dehydrating environment is an important,

and somewhat understudied question, limited by the inability to study these sys-

tems in situ under these conditions. Single particle imaging using XFELs provides a

unique opportunity to probe the structures of these viral capsids while they are

dehydrating in an aerosol stream. With the use of machine learning tools to classify

the whole ensemble of observed particles, one can observe complex conformational

trajectories which would be hidden with other ensemble-averaged measurements.

The femtosecond XFEL pulses allow one to temporally freeze the structural tran-

sitions and observe non-equilibrium, intermediate structures that occur during

dehydration.

In this work, we apply this method to MS2 bacteriophage capsids, where we

observe 3D structures ranging from a well-hydrated particle with a liquid envelope

down to a dehydrated structure, with a different capsid morphology. Not only do

we see these endpoints, but also a large number of intermediate conformations

which break icosahedral symmetry, providing clear evidence for a site-specific

transformation rather than a capsid-wide concerted change. However, it remains

an open question how similar the dynamics are for aerosolized viruses at room
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temperature and ambient pressure. The success of native mass spectrometry studies

under harsher conditions than applied in this work suggest that these dynamics

may not be wholly foreign [175].

While this study is limited to a moderate resolution, the large scale changes

in this system are already clearly apparent. Upcoming technical improvements

promise to push this resolution barrier to sub-nm levels [35, 176]. This work also

opens up the possibility of studying this important question for aerosol-transmitted

pathogenic viruses.
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4.1 Abstract

Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is a technique

to determine the 3D structure of nanoscale objects like biomolecules from a large

number of diffraction patterns of copies of these objects in random orientations. The

technique has been limited to relatively low resolution due to background noise and

heterogeneity of the target particles. A recently introduced a reference-enhanced

holographic SPI methodology uses strongly scattering holographic references to

improve background tolerance and thus, the achievable resolution, at the cost of

additional latent variables beyond orientation. Here, we describe an improved

reconstruction algorithm based on maximum likelihood estimation, which scales

better, enabling fine sampling of latent parameters to reach high resolutions, and

much better performance in the low signal limit. Furthermore, we show that struc-

tural variations within the target particle are averaged in real space, significantly

improving robustness to conformational heterogeneity in comparison to conven-

tional SPI. With these computational improvements, we believe reference-enhanced
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SPI is capable of reaching sub-nm resolution biomolecule imaging.

4.2 Introduction

Single particle imaging (SPI) experiments leverage X-ray free electron lasers (XFELs)

to investigate the structure and dynamics of biological entities in their near-native

state [92]. The ultrashort X-ray pulses enable the study of ultrafast structural

dynamics in biological samples such as proteins and viruses at room temperature

via diffraction before destruction [13], and without the need to freeze samples.

Many XFEL pulses with high flux and spatial coherence diffract from unknown

target objects one at a time, in random orientations to collect millions of diffraction

patterns. These are then computationally aligned and merged to reconstruct the

3D structure of the object [177].

This analysis often broadly follows the following three steps: First, diffraction

patterns containing signal from spurious contaminants, multiple particle aggregates

and other outliers are identified and removed using some machine learning frame-

work [10, 178]. The rest of the patterns each represent a tomographic slice through

the target object’s 3D Fourier transform, albeit without the Fourier phases. The

second step in the analysis pipeline is to align and average these patterns to obtain

the 3D distribution of Fourier magnitudes [4, 7]. Finally, iterative phase retrieval

methods are used to recover the structure of the particle from these oversampled

magnitudes, possibly with some background subtraction [115, 133, 179, 180].

SPI has been used successfully in imaging samples in the 100-nm size range

since they have high scattering cross section in comparison to the background,

hence yielding high quality diffraction patterns [8, 151, 180]. However, for smaller

particles, signal levels are much lower and extraneous background can severely

hinder the alignment process. And while reconstruction algorithms are remarkably

tolerant to low signal levels [4, 133, 168], background often poses a fundamental

limit on the achievable resolution since the diffraction signal from a compact object

falls off very quickly with increasing momentum transfer but the background

usually does not [31].

Various sample delivery methods have been used to deliver samples to the

X-ray beam focus each balancing the requirements of maximizing efficiency (hit

rate) with minimizing background. Aerosol sample delivery has low background

signal but has a relatively low particle density, leading to low hit fractions [9, 167].

Liquid-jets and solid substrates can be used as carrier media to increase the hit

ratio [12, 181–184] but each hit now also has substantial signal from medium that
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obscures signal from the sample and limits orientation determination. With the

advent of high repetition rate XFELs [185], even with the low hit rates of aerosol

methods, one can still collect millions of patterns in a day [10]. Nevertheless, even

here, the background from the carrier gas of the aerosol and from detector false

positives still produces sufficient background to limit the resolution to around 2

nm.

Recently, a reference-enhanced SPI [35] technique was introduced, based on

the holographic principle. The approach suggests attaching a strongly scattering

particle to the target object to form a composite object. The references considered

were a spherical gold nanoparticle (AuNP) and a 2D crystal lattice with unit cell size

comparable to target object. The total scattered signal is increased for each shot

when a reference is attached and the signal now becomes more tolerant to back-

ground. A reconstruction algorithm was also developed to analyze the diffraction

patterns generated from such a system in order to recover unknown parameters

beyond orientation resulting from shot-to-shot variations in the composition of the

composite object.

This holographic SPI technique alleviates the problem of high sensitivity to

extraneous background, but at the cost of additional computational complexity

in recovering the structure from the data. The technique introduces additional

degrees of freedom in the composite system, which are unknown parameters for

each pattern in diffraction dataset. The algorithm now has to recover not only the

unknown orientation of the target object but also these hidden (latent) parameters

characterizing the properties of the reference and the relative displacement between

the reference and the target object. For the composite system where the reference

is a spherical AuNP, the reference can be specified by one parameter: its diameter

D.

The previous work also introduced a reference-EMC algorithm [35] which is a

modified version of the EMC algorithm [4, 7] that recovers these additional latent

parameters and directly reconstructs the target object’s complex Fourier transform

and not just the intensities. However, as we will discuss in Section 4.3, this method

has problems dealing with very weak patterns as well as scaling to fine parameter

sampling required to reach a high resolution. In this work, we propose a phase

retrieval algorithm for holographic-SPI based on maximum likelihood estimation via

pattern search dubbed as MaxLP. MaxLP scales efficiently with sampling of latent

parameters and total number of diffraction patterns in comparison with previously

introduced divide and concur approach in the reference-EMC algorithm [186].

Additionally, we observe that it performs much better when the signal level is
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normal-SPI Holographic-SPI

(a) (b)

Figure 4.1: Attached Reference Object. (a) Simulated diffraction pattern con-

tributed for a random object in a normal single-particle imaging (SPI) case with

4810 photons. (b) Diffraction pattern from the same particle with a small AuNP

attached (10,000 photons). If background is present, structural information can be

discerned at higher scattering angles in the holographic case. Insets show the true

projected electron density of the objects.

low. The algorithm is described in Section 4.3 and its performance is shown with

simulated data in Section 4.4.1.

We also discuss the performance of the holographic-SPI method with the MaxLP

algorithm in the case where the target object itself is heterogeneous. In conventional

SPI, this heterogeneity would have to be classified shot-by-shot before averaging

since averaging intensities from variable structures can lead to meaningless results.

Here, we show that in our approach, even without classification, we are able to

reconstruct the average structure, making the process of handling conformational

variations much more tractable. Thus, we find that this combination of the MaxLP

algorithm with the holographic SPI experimental setup shows substantial promise

in pushing the SPI technique to sub-nm resolution.

4.3 Reconstruction algorithm

In a holographic SPI experiment, the sample of interest (target object) is in the

vicinity of a strongly scattering reference, which in this work, we take to be a

spherical gold nanoparticle (AuNP). Large number of diffraction patterns of these

conjugates are collected in order to reconstruct the 3D structure of the target

object. This reconstruction process consists broadly of two steps, the first being

the determination of the unknown, or latent, parameters for each pattern, followed

36



by a step to recover the structure given the data with the estimated parameters,

which include the orientation of the object and the relative position and structure

of the reference. Fortunately, the structure of the spherical AuNP can be described

by just one number, namely its diameter D. For illustrative purposes, we limit

ourselves to a two-dimensional object with only one in-plane rotational degree of

freedom. Within this space, for a homogeneous reproducible object, we have four

latent parameters to solve for: unknown orientation θ , diameter of AuNP d and

relative positions of AuNP and target object in x- and y- directions (tx, ty). In the

general case, there are three orientational and translational parameters each, but the

structure of the problem remains unchanged. The electron density of the composite

object ρ(r) is the sum of electron densities of the spherical AuNP ρs(r, D) and the

unknown target object ρo(r)

ρ(r) = ρo(r) + ρs(r− t, D), (4.1)

where t is the relative shift of the centers of the two objects and D represents the

diameter of spherical AuNP. The total intensity distribution on the far-field detector

in each frame is then

I(q, D, t) =
∣∣∣Fo(q) + Fs(q, D)e2πiq.t

∣∣∣2 , (4.2)

where the F terms represent the Fourier transform of electron densities, F (q) =
F [ρ(r)](q), and frame-by-frame shifts of the sphere transform to a phase ramp.

The simulated diffraction dataset contains of a large number of patterns defined

by Eq. 4.2, each with random D and t parameters and rotated in-plane by a uniform

random angle θ. These holographic intensities are then Poisson sampled with a

given mean intensity level to generate the simulated photon counts per pixel. In

Fig. 4.1, we see the effect of the spherical AuNP attached as a reference to the target

object on a simulated pattern for a given set of latent parameters with the same

effective incident fluence. In both patterns, the single-frame signal-to-noise ratio

(SNR) is very low beyond the first few speckles. In conventional SPI, this is improved

by aligning and averaging a large number of patterns as long as this alignment can

be performed in the presence of background and sample heterogeneity. For the

chosen AuNP size, the conjugates have on average twice as many total scattered

photons with much of the excess in the higher order rings which improve the SNR in

the presence of background at these resolutions, making hit detection significantly

more effective. Larger AuNPs will scatter more strongly, but with lower contrast
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along the diffraction rings. The radii and intensity modulations in these rings

are relevant to solve for diameter of the AuNP and its relative position. In order

to retrieve the target object’s structure which is assumed to be common to all

the intensities, the first step is to solve for the set of latent parameters for each

diffraction pattern and retrieve Fo(q).
A modified version of EMC algorithm (Ref-EMC) was developed for holographic

SPI [35]. The conventional EMC algorithm involves three steps in each iteration:

Expand, Maximize and Compress which iteratively update the 3D intensity model

to one which has a higher-likelihood of generating the observed diffraction pat-

terns. When the reference is attached, the optimal final model is not the intensity

distribution of the composite assembly, but rather the complex Fourier transform

of just the target object, Fo(q). In the E-step of Ref-EMC, the latent parameter

space is grid-sampled and predicted intensities are generated for each sample us-

ing the current estimate of Fo(q). In the M-step, the noisy diffraction patterns

are compared with these predicted intensities and a probability distribution over

parameters for each pattern is calculated. This distribution is then used to update

the predicted intensities for each sampled parameter vector. The final C-step needs

to recover the optimal Fo(q) consistent with this stack of these intermediate pre-

dicted intensities, one for each sampled parameter set. This separate reconstruction

problem is somewhat reminiscent of ptychography where multiple intensities are

generated from a common object by varying translations [129]. In this case how-

ever, the intensities are generated by coherent addition with a reference (Eq. 4.2)

rather than by multiplication with a probe function. In Ref. [35], a divide and

concur iterative phase retrieval approach was implemented to solve this problem.

However, the requirement to generate the intermediate intensities limits scalability

of this algorithm. For a finer sampling of diameters and relative shifts, which is

necessary for a high resolution, one ends up with many realizations of intermediate

intensities which quickly becomes computationally expensive. Additionally, this

method is composed of projection operations minimizing a Euclidean error metric.

This implicitly assumes a Gaussian error distribution which becomes increasingly

incorrect at lower signal levels [127].

4.3.1 Maximum-Likelihood Phase Retrieval

Taking the above mentioned considerations into account, we implement a maximum

likelihood estimation strategy using pattern search technique dubbed as Maximum

Likelihood Phaser (MaxLP) to retrieve the full Fo(q) of an unknown target object.
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The E- and M-steps of the EMC iteration are the same as before, with the only

difference that we only use the most likely set of parameters rather than the

whole probability distribution. The C-step is changed from the phase-retrieval-

like approach using intermediate intensities to a direct search for the most likely

complex Fourier amplitudes of the target object given the diffraction data and the

current estimate of the latent parameters. The optimization is performed using a

pattern search procedure implemented for each model pixel independently. The

approach was tested for different intensity signal levels in diffraction datasets with

low signal having as few as 2000 photons per pattern. We find that the algorithm is

more noise-tolerant with better fidelity at lower signal levels where the previously

introduced divide and concur approach yields poor results.

In addition, the MaxLP approach scales more favorably as the sampling of latent

parameters is made finer. The computational complexity of the C-step is now

independent of the sampling, while in the previous approach, finer sampling would

result in a large number of intermediate intensities from which to perform the

“phase retrieval”. Since the final resolution is ultimately determined by the accuracy

of the estimated latent parameters, this algorithm can be efficiently scaled and the

parameters to be refined by local searches.

4.3.2 Single-pixel Behavior

The optimal Fo(q) is determined at every model pixel independently. To illustrate

the working of the reconstruction algorithm, we now discuss the behavior for

a single pixel detector at a given q assuming the orientations are known. In

holographic- or reference-enhanced-SPI, the measured intensity at a given detector

pixel is described by Eqn 4.2. The estimated orientation of the object then relates

the detector pixel to some pixel in the Fourier representation of the target object’s

electron density.

A single model pixel intensity at a fixed q can be written as

Ipix =
∣∣∣Fo,pix + Fs,pix(D)e2πiqpix.t

∣∣∣2 , (4.3)

Here Fo is the complex number which we need to solve from the diffraction dataset,

Ipix, with varying shifts, t and AuNP diameters, D, at the given model pixel from

multiple realizations in different patterns.

Figure 4.2 depicts the behavior of the true intensity and measured photon counts

for different phase shifts (∆s = q.t) between the AuNP and the target object. The

photon distribution at a given phase shift value is Poisson distributed with the
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Figure 4.2: Single-pixel Behavior. Intensity behavior at a single detector pixel for

a holographic-SPI diffraction data. (a)-(d) Average number of photons vs relative

phase shifts of gold sphere with respect to the target object. The ideal intensity on

the same pixel is represented by the orange line. (e) & (f) Log-likelihood landscapes

obtained from diffraction data for case (a) & (d), respectively. The ‘×’ denotes the

true value of F (q) maximizing the log-likelihood. The grid lines (1st
- orange and

2nd
- blue) depict the size of pattern search grid in consecutive iterations.
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mean being the true intensity shown in orange. When the average photon count at

the pixel is high enough, the intensity follows a sinusoidal form with respect to the

phase shifts, as seen in Fig. 4.2(a). The relative phase, offset and amplitude of this

sinusoidal curve tells us the phase and magnitude of the object’s Fourier transform

at that q. As the range of phase shifts becomes small, one is effectively zooming

into the sinusoidal curve for the same amount of average photons (see Fig. 4.2(c)),

and the fitting becomes more challenging.

Similarly, when the average photon count on the detector falls, as seen in

Fig. 4.2(b), the photon distribution becomes too sparse to immediately see the true

intensity and in the hardest case, for smaller phase shifts and low counts the true

intensity plot becomes almost flat (Fig. 4.2(d)).

The log-likelihood of such a diffraction dataset at any model pixel can be

calculated by

Q(Fo,pix) =
∑

d

Kpix,dlog(Ipix,d)− Ipix,d, (4.4)

where Ipix,d is predicted intensity given by Eq. 4.3 and Kpix,d is the number of

observed photons in pattern number d. The Kpix,d! term is neglected since it does

not depend upon the model Fo. Figure 4.2(e-f) show this log-likelihood function

distribution in the complex plane of Fo,pix for the diffraction pattern data given

from Fig. 4.2(a) and (d), respectively. The likelihood has a well behaved landscape

with a sharp maxima with different values of real and imaginary part of Fo, when

the average photon count is high enough with large shift range. When the average

photon count is low with small shifts, the likelihood landscape becomes much

flatter along the visible ridge.

Furthermore, this likelihood distribution is independent of the measured photon

counts at the neighboring detector pixel. As a result, one can implement an algo-

rithm for the each pixel individually as a maximum-likelihood estimation problem

and try to converge for an optimal Fo for each pixel and trivially parallelize the

algorithm over all model pixels. Of course, the Fourier transform is oversampled

and thus, the model at neighboring pixels are strongly correlated. This information

will be taken into account later in Section 4.4.

4.3.3 Finding the most likely solution

The likelihood function given in Eq. 4.4, can not be solved analytically. While one

can perform this 2D optimization in the complex plane with many methods, we

found that derivative based approaches were not robust, with maximization of
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likelihood failing for low photon count cases and small shifts. We found reasonable

success with a pattern search approach [187] for two reasons: it could be efficiently

parallelized on the graphical processing units (GPUs) and secondly it was quite

robust in low signal and small shift cases.

Pattern search optimization is essentially a non-derivative technique that does

not require a gradient calculation in its update of parameters. The search begins

with a 2D grid of values of F (see Fig. 4.2(e-f), orange grid lines). At each iteration,

this grid moves to a set of values which best maximizes the likelihood function. If

it finds a set of values of F which does not have better likelihood then it stays at

current value and the grid shrinks and becomes denser with smaller steps between

the grid values (blue grid lines). A search is run till a threshold error between the

current and the previous estimate is reached.

This is performed for all the model pixels and then the final model is used to

get updated latent parameters for the next EMC iteration. The pseudocode for a

single iteration is described in Algorithm 1.

4.4 Results

We tested the performance of the algorithm described above on 2D simulated data

with a single angular degree of freedom. The target object was a randomly generated

agglomeration of small spheres, approximating the electron density distribution of

a biological sample. Each diffraction pattern was a Poisson-sampled distribution

of scattered photons from a conjugate object consisting of the target attached to a

spherical gold nanoparticle (AuNP) reference. The average diameter of the AuNP

was roughly 1/5th the size of the target and the contrast was 11 times higher, to

reflect the electron density ratio of gold to organic matter. The conjugate objects

varied from pattern to pattern in multiple ways. The relative shifts in x- and y-

directions between their centers were sampled from a normal distribution with a

standard deviation of 1 pixel. The diameter of AuNP was also normally distributed

with a mean and standard deviation of 7 and 0.5 pixels, respectively and the target

object was 35 pixels across. The intensity distribution from this composite object

was rotated in-plane by a uniform random angle before Poisson sampling. The

diffraction patterns were collected on a circular detector with a diameter of 185

pixels and a central hole with a 4 pixel radius.

Multiple datasets were simulated with a varying signal levels with 10,000 pat-

terns in each dataset. A common randomly generated object was used as the target

in all of the simulations. The signal levels ranged from 2×103
to 105

photons/frame
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Algorithm 1 Pseudocode for one iteration of the MaxLP. The latent parameters

are determined as in the EMC algorithm.

Input:

Fo(q) ▷ Current estimate of target object Fourier transform at pixel q
Kpix,d ▷ Dataset: photons at pixel, pix and frame, d
Ωd ▷ Current estimate of latent parameters: t, D, θ for each frame d

grid ▷ Square grid of points in the complex plane with unit spacing

function RunIteration(Fo(q), Kpix,d, Ωd)

for q in 1..Npix do
F ′

o(q)← OptimizePixel(q, Fo(q), Kpix, Ω)

end for
end function

function OptimizePixel(q, Fo, K, Ω)

step← |Fo|/4
for n in 1..10 do

for i in 1..Ngrid do
Fi ← Fo + gridi× step

Qi ← Likelihood(K, Ω) ▷ (Eq. 4.4)
end for
iopt ← argmini Qi

if iopt = 0 then ▷ Center of grid
step← step /

√
Ngrid

end if
if step < |Fo| × 10−3 then

break
end if

end for
end function
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Figure 4.3: Performance. Simulation results for homogeneous target object at-

tached to a spherical AuNP as reference. (a) Magnitude of reconstructed Fourier

model for high signal diffraction data with MaxLP method (105
ph/frame). (b)

Same for low signal diffraction data (2000 ph/frame). Both datasets had 104
frames.

Dashed rings highlight the FRC=0.5 cutoff. (c) Comparison of Fourier ring cor-

relation (FRC) between reconstructions and ground truth with different signal

level diffraction data. Maximum-likelihood Phaser (MaxLP), Divide and Concur

(DivCon), High Signal (H.S.) and Low Signal (L.S.). (d) Normalized error (difference

between successive iterations) vs iteration number showing faster convergence for

higher signal levels as observed in conventional SPI as well [4].
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at the low and high extremes.

Figure 4.3(a) and (b) depicts the absolute magnitude of the reconstructed complex

Fourier model for the highest and lowest signal levels. The algorithm was run for 100

iterations and Fig. 4.3(d) shows the convergence behavior. Convergence is achieved

after 15 iterations for the high signal level and 40 iterations for the low signal level,

respectively. For each reconstruction, the iteration times ranged from 200 s for the

low signal case and 600 s for the high signal case on a single V100 GPU. At the

final reconstruction iteration, both Fourier models have a few poorly reconstructed

pixels, primarily at low q. This is due to the missing data in the central hole as

well as regions where the scattering from the reference is significantly weaker

than from the target. The intensity at these pixels is only minimally affected by

the frame-to-frame variation in shifts or diameters, resulting in the Fourier phase

being poorly constrained. These pixels were filled in using the following approach.

First, a support mask was calculated using data from moderate q using the dark-

field diffractive imaging approach [188]. This mask was then used as a real-space

constraint and the difference map iterative phase retrieval algorithm [115] was

used to fill in the missing region as well as obtain a real-space image.

4.4.1 Signal level dependence of reconstruction quality

The fidelity of the reconstructed model is calculated using the Fourier Ring Correla-

tion (FRC) metric, shown in Figure 4.3(c). We compare the performance of MaxLP

method with the previously published method of divide and concur in [35] at low

and high signal levels. For high signals, both algorithms perform well, but the divide
and concur approach fails for the low signal case, whereas the MaxLP reconstructs

the Fourier model with FRC > 0.5 up to q = 55 pixels. This can be attributed to

the MaxLP method correctly accounting for the Poisson noise process rather than

the Gaussian noise model implicit in the divide and concur method.

We then investigate the ability of the algorithm to correctly estimate the latent

parameters given the current model. The sampling rate of all the latent parameters

is kept identical across all datasets to facilitate comparison. Figure 4.4 shows the

error distribution for the diameter of AuNP , in-plane orientation and relative shifts

in x- and y- directions, respectively. The sampling of the in-plane orientation is

in range of 0 and 180◦
with step size of 2◦

. In Fig. 4.4(a) one can see distribution

of errors between the retrieved and true in-plane angles for high and low signal

level, respectively. The centers are shifted since the reconstruction has an arbitrary

overall orientation. As expected, the distribution is narrow for high signal, with
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Figure 4.4: Latent Parameters. Error distribution for reconstructed latent parame-

ters for homogeneous target object attached with a spherical AuNP as reference

for low (L.S.) and high signal (H.S.) levels. (a) In-plane orientation, (b) diameter of

gold sphere, (c) & (d) relative displacements between center of target object and

reference in x- and y- direction. The vertical lines in (b) and the grid lines in (c)

and (d) show half the sampling rate, which sets a lower bound on the width of the

distributions.
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σ = 0.85◦
which is below the sampling rate, and significantly broader for low

signal with σ = 11.4◦
.

Similarly, AuNP diameter and x− & y− shifts are sampled with a step size of

0.5 and 1 pixel, respectively. Figure 4.4(b) shows that the diameter of the AuNP

for each frame is close to the true values with uncertainties for high and low

signal being 0.15 and 0.18 pixels. Even for the lowest signal level, the diameter

can be accurately estimated below half the sampling rate, which is consistent

with the high precisions which can be obtained in small-angle X-ray scattering.

Figure 4.4(c) & (d) show the error distribution of shifts in x- and y- direction

for the two signal levels. The error is confined for many of the patterns within

half the sampling bin size of 1 pixel. However the error distribution for the low

signal case is relatively broad. This is strongly correlated to the error in the in-

plane orientations. A large error in orientation leads to wrongly estimated shifts

because the diffraction pattern is obtained by adding the AuNP to the target object

and rotating the entire composite object. The predicted shift values are rotation-

corrected using the predicted orientations and then compared with true values.

The behavior of the reconstruction metrics discussed above is evaluated for

multiple intermediate signal levels in Fig. 4.5. Figures 4.5(b-d) show the dependence

of the latent parameter errors on the signal level. Here we see that beyond 5000

photons/frame, the errors are all below the sampling rate indicated by the dotted

red line. Figure 4.5(a) shows the dependence of the resolution on signal level, which

depends both on accurate estimation of latent parameters as well as total signal from

all the frames in aggregate. Thus, we expect the reconstruction FRC to improve

significantly with more patterns beyond this threshold of 5000 photons/frame.

4.4.2 Heterogeneity of target object

Many biological entities have flexible sub-units that can move following a continu-

ous landscape of various conformational states. The study of these conformation

changes can help us understand the function of such biomolecules. However, there

are significant computational challenges to retrieve conformational states and struc-

ture of target object from diffraction data. In conventional SPI, the averaging of

patterns from variable structures has an undetermined effect on the retrieved struc-

ture. This is because even though the Fourier transform is a linear operator, it’s

the intensities (squared magnitudes) that are averaged across different frames. In

general, the resultant intensity distribution has lower contrast and is not the Fourier

transform of any compact object. In some cases with uncorrelated random motion
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Figure 4.5: Signal Level Dependence. Evaluation metrics of Maximum-likelihood

phaser (MaxLP) for different photon signal levels. (a) q value when FRC = 0.5 vs
number of photons/frame. The horizontal dashed line corresponds to a resolution of

1 real-space pixel. Standard deviation values for (b) diameter errors, (c) orientation

errors, and (d) shift errors in x- and y- direction. The horizontal dashed lines in

(b)-(d) indicate half the sampling rate.
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Figure 4.6: Structural Heterogeneity. Simulation results for structural hetero-

geneity in the target object (a) Average structure of target object which exists in

one of two discrete states (State A & State B, shown in inset). (b) Reconstructed

real-space target object with an AuNP sphere attached using MaxLP. (c) Recon-

structed real-space target object without reference attached. (d) Average structure

of target object which exists in a continuous distribution of states. Inset shows

the target object with random sub-unit where arrow depicts the free direction

of motion for sub-unit in each shot. (e) Reconstructed real-space target object

with an AuNP sphere attached using MaxLP. (f) Reconstructed real-space target

object without reference attached. (g) Comparison of Fourier ring correlation (FRC)

between holographic-SPI and normal-SPI for the different scenarios.
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of atoms, one could expect the background-subtracted intensities to represent the

scattering from the average structure, but this is in no way guaranteed, especially

with correlated motions. Thus, extensive computational efforts must be employed

to discover a subset of data from a homogeneous ensemble or to solve for additional

latent parameters associated with structural variations.

In the current holographic regime, we solve for the complex Fourier transform,

which is linearly related to the real-space structure. Thus, we may expect the

reconstruction to be that of the average structure. To examine whether this is

indeed the case, we perform two computational experiments below where the target

object varies from frame to frame but the algorithm still attempts to reconstruct a

single structure.

Two-state heterogeneity

We investigate the scenario in which the target object is composed of a homogeneous

rigid part (the large unit) and a moving sub-unit that exists in different states

shot-to-shot. Without explicitly modifying the MaxLP algorithm or providing

any information about such heterogeneity, the algorithm analyzes the diffraction

dataset simulated from these target objects. In the first case, the moving sub-unit

object exists in two distinct discrete states: State A & State B, as shown in inset

of Fig. 4.6(a). The larger sub-unit remains in same position, whereas the smaller

sub-unit occupies one of two opposite states about the center of the larger one.

The diffraction patterns are now generated from this heterogeneous ensemble

in two ways, one with the AuNP attached and the other with just the target object

(as in conventional SPI). In the former case, we still have the shot-to-shot variations

in the AuNP diameter and relative position as before, which are recovered with

the MaxLP procedure developed above. For the latter case, conventional intensity

reconstruction is performed with the EMC algorithm, followed by phase retrieval.

Figure 4.6(b-c) shows the reconstructions from the holographic and normal SPI

scenarios. In the holographic case, the reconstruction is an object very similar to

the real-space average of structure shown in Fig. 4.6(a). However, in the absence

of a reference, as shown in Fig. 4.6(c), the reconstruction after phase retrieval is

quite poor. This is also seen in the FRC comparisons with the real-space average in

Fig. 4.6(g).

We would like to stress that this result, while expected, is not trivial. First,

we are still measuring real-valued intensities and not complex Fourier amplitudes.

Secondly, each pattern has a different set of latent variables, leading to different
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intensity distributions on the detector. The difference is that the MaxLP algorithm

does not average these intensities directly, but rather fits a common complex Fourier

transform of the target object to all these intensities, which turns out to reflect the

average object over all patterns.

Continuous heterogeneity

The previous example addressed the extreme case of having the moving sub-unit in

two diametrically opposite locations. We now investigate a more realistic scenario

where the moving sub-unit occupies a continuous local distribution of positions.

The displacements are sampled from a normal distribution with σ = 0.5 pixels, as

represented by arrows in the inset of Fig. 4.6(d). The dataset consists of diffraction

patterns generated from the target object where the smaller sub-unit is in a different

position every frame. Figure 4.6(e-f) show the MaxLP and normal SPI reconstruc-

tions as before. In the holographic case, the homogeneous part is reconstructed to

a good resolution while the wobbling sub-unit part has been reconstructed as a

blurry object, as expected in a real-space average. This is in contrast to the normal

SPI case, where the resolution of the reconstruction is globally affected due to the

averaging in intensity space, leading to loss of contrast at higher q. Once again,

the Fig. 4.6(g) shows that the holographic SPI reconstruction compares much more

favorably with the average structure.

The critical aspect of this robustness to heterogeneity seems to be the presence

of translational latent parameters. For the continuous translation case, one can

envision sharpening the small sub-unit reconstruction by choosing the AuNP shifts

relative to that sub-unit rather than whole object. However the current method

will struggle to solve for a conjugate of two unknown objects with a shot-by-shot

variation in their relative position. This is because of the assumption that the signal

at any given q is composed of a known reference and the target object, and if part

of the object itself is used as the reference, its Fourier transform at high q is not

known a priori before sharpening.

4.5 Conclusions

In conventional SPI experiments, the biggest challenge in reaching sub-nm res-

olutions is to collect a large number of diffraction patterns with sufficiently low

background in order to enable orientation determination and averaging. The intro-

duced holography-based imaging methodology overcomes this issue by attaching a

51



strong scattering object (a reference) to the sample of interest. this significantly

improves background tolerance, but adds a large amount of computational com-

plexity by introducing more unknown parameters associated with each pattern

defining the conjugate system. In this work, we described an algorithm based on

maximum-likelihood estimation using pattern search called MaxLP that enables one

to scale the method to high resolution and to weakly scattering objects. The results

above show how it significantly outperforms the previously published method in

the cases of low signal and without the need for a large number of intermediate

average intensity models.

We extended the application of MaxLP to retrieve the structure of the target

object for the scenario where it has shot-to-shot structural heterogeneity. Two

cases of heterogeneity were investigated: one in which a sub-unit is in two discrete

conformational states and one in which the sub-unit is in a continuous distribution

of states. In both the cases, the algorithm reconstructs an object that is real space

average of structure in all the conformation states, without prior knowledge that

the target object was varying from shot-to-shot.

On the contrary, the conventional SPI without an added holographic reference

generates an average over the intensities in Fourier space that on phase retrieval

yields a poorly reconstructed object not just in the vicinity of the moving sub-unit,

but globally due to the delocalized nature of the Fourier transform.

The algorithm can also be applied when the reference is a 2D crystal lattice

and the target object is located in one of the unit cells. In such scenarios, one

solves for relative shifts between the center of unit cell and target object in each

shot and the size of unit cell. In future work, we will explore the possibility of

adjusting the xy shifts in order to selectively reconstruct different regions of the

particle to varying degrees of sharpness. We also plan to explicitly incorporate

structural heterogeneity either as multiple discrete classes [10] or as continuous

latent variables [136]. While intensity-space classifications have been performed

previously, the holographic approach may enable a more fine-grained approach

similar to that applied in cryogenic electron microscopy [171].
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5.1 Abstract

Biological nano-machines, such as viruses and protein assemblies, derive their

function from well-ordered 3D structures. X-ray single particle imaging offers the

potential to visualize structures of such nanoscale objects in situ at near-atomic

resolution. However, high background and radiation damage from long exposures

make even detection of these objects impossible at synchrotrons. Here, we intro-

duce a novel experimental technique based on the holographic principle, exploiting

a strongly scattering 2D crystal lattice placed near the object. The holographic

enhancement from the lattice Bragg peaks allows structure retrieval even in back-

ground levels up to 10
5

times higher than the object signal. This method improves

the signal-to-background ratio, supports practical fixed-target sample delivery,

and enables high-resolution imaging under near-native conditions. A reconstruc-

tion algorithm recovers the structure of the target object along with unknown
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experimental parameters, such as orientation, position within the unit cell, and

incident fluence. Numerical simulations with Ribosome as model shows robustness

in varying background levels and exposure time conditions. The approach opens

new avenues for high-resolution imaging of biological objects in high-background

environments.

5.2 Introduction

Biomolecules, such as viruses and large protein complexes, play an essential role

in understanding fundamental life processes, including their functionality and

survival mechanisms [189, 190]. The structures of these biological complexes largely

determine their functional properties, making the imaging of their architecture and

dynamics an essential aspect in structural biology [191].

X-ray single particle imaging (SPI) is a powerful technique for visualizing the

structure and ultrafast dynamics of nanoscale entities, such as viruses and inor-

ganic nanoparticles, in near-native environments [8, 10, 132, 135]. Conformational

heterogeneity in such systems requires the ability to observe individual particles

rather than ensemble averages. Traditional methods like crystallography and

cryo-electron microscopy rely on crystallization or shock-freezing—conditions far

removed from physiological environments—and thus face inherent limitations [113].

SPI overcomes these challenges by capturing diffraction snapshots from many iden-

tical particles before radiation damage sets in [192, 193], enabling 3D structural

reconstruction with nanometer-scale resolution [4, 7, 10]. It can also disentangle

conformational heterogeneity and track ultrafast dynamics [132, 134–136, 194].

SPI has shown its greatest successes at X-ray free-electron laser sources (XFELs),

which provide ultrabright, ultrafast pulses ideally suited for imaging weakly scat-

tering biological particles [10, 76, 169, 177]. However, XFEL access is limited, and

optimizing sample delivery to minimize experimental and instrumental background

remains a major challenge [167, 176, 195, 196]. Synchrotrons—being more widely

available and increasingly brilliant [197–199]—offer an attractive alternative for

routine SPI. However, their lower flux per pulse and longer exposure times result in

elevated background scattering from substrates, beamline components, and other

non-target sources, often overwhelming the already weak signals from biological

samples [133, 200]. This slowly varying background makes biomolecular imaging

extremely difficult, limiting the applicability of SPI at synchrotrons.

While aerosol-based sample delivery minimizes background at XFELs, adapting

it for synchrotron use remains challenging. Fixed-target approaches, though more
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practical at synchrotrons, introduce additional substrate scattering that degrades

data quality [182–184]. Moreover, current X-ray imaging at synchrotrons is largely

limited to larger particles that scatter strongly enough to produce detectable pat-

terns [33, 201]. These challenges—compounded by radiation damage—continue to

hinder the dream of SPI of various biomolecules at synchrotrons, underscoring the

need for novel experimental configuration and detection strategies to fully unlock

their potential.

Here, we propose an experimental strategy to enable high-resolution SPI at

synchrotrons by employing a strongly scattering 2D crystal lattice as a holographic

reference in a fixed-target setup. This approach adapts “reference-enhanced” holo-

graphic SPI, initially developed for XFELs, in which a reference object—such as

a gold nanoparticle—was used [35, 36]. In introduced method here, a 2D crystal

lattice is fabricated on one side of a thin substrate, producing sharp Bragg peaks,

while target object particles, such as ribosomes, are randomly dispersed on the

opposite side [202, 203]. The far-field diffraction arises from strong interference

between the lattice signal and the weak scattering from the object. The holographic

interference significantly enhance the signal-to-background ratio (SBR), even when

background noise exceeds the object signal by orders of magnitude up to 10
5
. By

integrating Bragg peak intensities, the weak signal of target object can be reliably

extracted which exists as modulation on the Bragg peaks. A tailored reconstruction

algorithm simultaneously determines the structure of object, in-plane orientation,

translation shift within the unit cell, and incident beam fluence, eliminating the

need for additional support constraints and minimizing modeling assumptions [36].

Simulations using the ribosome as a model biomolecular complex demonstrate

that this lattice-based holographic approach can resolve target structures under

conditions of high background scattering, substrate contamination, and variable

beam exposure. The method’s robustness accommodates the longer exposure

times typical of synchrotrons, mitigating challenges such as radiation damage and

impractical sample delivery [35]. By leveraging the lattice’s coherence and single-

shot diffraction patterns, the technique simplifies phase retrieval and enhances

signal strength, making it well-suited to synchrotron conditions. This framework

broadens the scope of SPI, enabling routine, high-resolution imaging of diverse

biomolecular assemblies at synchrotron facilities and establishing a path toward

efficient, standardized structural studies.
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(a) (b)

Figure 5.1: Holographic SPI. (a) Schematic of the holographic SPI setup. A 2D

crystal lattice serves as the reference, while Ribosome particles (blue) are the target

objects. The lattice is positioned on one side of the substrate, with target particles

randomly distributed on the opposite side. The measured far-field diffraction

pattern on the detector results from the coherent sum of Bragg peaks from several

illuminated unit cells of the lattice and the scattering signal from a single target

particle. (b) Far-field intensity modulation shown on a logarithmic scale. These

modulations reflect Bragg peaks perturbed by the target object signal within the

illumination area. The modulation, ∆I , is defined as the difference between the

intensity from the lattice alone, I = |FL(q)|2 and the intensity with both the lattice

and the target object I = |FL(q) + φ ·Fo(R⊤q)ei2πq·s|2, for a given translation shift

within unit cell, in-plane orientation, and incident fluence.

5.3 Problem Formulation

This section describes the mathematical framework used to simulate holographic

single particle imaging in a fixed-target configuration using a 2D crystal lattice. The

formulation is designed to replicate realistic synchrotron conditions. In this fixed-

target setup, the lattice – either patterned onto a chip or self-assembled as a colloidal

crystal [203] – on one side of a thin substrate while target object particles such as

the Ribosome ( [204]; PDB 7NHM, ≈20 nm in diameter) are randomly dispersed

on the opposite side, as shown in the schematic in Fig.5.1(a). This configuration

generates structured interference patterns with Bragg Peaks on the detector, that

encode information from both the lattice and the target object.

To model this setup, we conduct 2D numerical simulations using synthetic

data considering experimental conditions. The electron density of a square lattice,

denoted as ρL(r), generates sharp Bragg peaks whereas ρo(r), represents the pro-
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jected electron density of the Ribosome as the target object. The total scattering

contrast, incorporating a rotated and translated target object within a unit cell of

the lattice is then expressed as :

ρ(r) = ρL(r) + ρo(Rr− s), (5.1)

where R corresponds to rotation operator for the in-plane orientation (θ) uni-

formly sampled from [0, 2π]. The vector s denotes the translation shifts of the

target object within the unit cell along x- and y− direction, uniformly sampled

from [0, 1] expressed in fractional coordinate. More broadly, s describes the lateral

position of the target object relative to the lattice. For a periodic reference, such

as a 2D crystal, s can be interpreted as a shift within the unit cell, reflecting the

lattice’s translational symmetry.

The corresponding diffracted intensity measured at the detector incorporating

a slowly varying background B(q), is given by :

I(q) =
∣∣∣FL(q) + φFo(R⊤q)ei2πq·s

∣∣∣2 + B2(q), (5.2)

where FL = ζ · F [ρL] is the scaled Fourier transform of the lattice, Fo = F [ρo] is

the Fourier transform of the target object, and φ is the incident fluence. The strong

scattering from the lattice serves as a holographic reference, facilitating signal

extraction of target object and translation shifts estimation. It’s relative scattering

strength compared to the target is controlled by ζ factor (discussed in Section 5.3.1)

and plays a critical role in signal retrieval, noise tolerance, and the optimization of

reference design.

The phase term, ei2πq·s
, encodes the translational shift of the target object within

the unit cell, while the background term, B(q), accounts for contributions from the

substrate, noise, and beamline scattering — common in synchrotron experiments.

Consequently, the observed intensity, incorporating photon counting noise is:

Iobs(q) = Poisson(I(q) · t)
t

−B2(q), (5.3)

where Poisson(λ) denotes a Poisson noise distribution with mean λ and t is the

exposure time in seconds. In practical experiments, the background B(q) can be

estimated from dark measurements — taken without the reference or target particles

— or by fitting smooth functions to detector regions away from the Bragg peaks.

Accurate background estimation is essential and is assumed to be achievable using

standard techniques such as polynomial fitting or blank frame subtraction. The 2D
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Figure 5.2: Scattering Strength of Lattice. The plot illustrates the uncertainty

in estimating the scattering amplitude of Fo(q), quantified by

√
tr(C) (the square

root of the combined amplitude and phase variances of Fo(q)) as a function of the

scattering strength of the 2D crystal lattice, with a fixed background B2(q). Results

are shown for three different scattering amplitudes of Fo(q). Solid lines depict

analytical estimates based on the inverse curvature of the objective function, while

dots represent uncertainties obtained from simulated data through curve fitting.

lattice reference can be experimentally characterized using approaches similar to

probe characterization methods commonly employed in ptychography [205].

Eq. 5.2 contains a cross term that plays a key role in determining the SBR. As

shown in [35], this term includes a cosine component whose amplitude carries

important information about translational shifts. A strong reference improves

the robustness of the signal: although it increases the overall noise level, it also

makes the signal less sensitive to background. The amplitude of the cross term’s

fluctuations is crucial—if it’s large enough, the relative positions of the target can

be extracted from the diffraction patterns. This amplitude also affects the feasibility

to reconstruct the complex function Fo(q).

5.3.1 Scattering Strength of Lattice

To quantify the influence of lattice strength on the accuracy of retrieving Fo(q),
we performed simulations to analyze how the uncertainty in fitting Fo(q) depends

on the strength of the lattice, FL(q).
In simple terms, one can rewrite Eq. 5.2 as:

I =
∣∣∣L + Feiϕ

∣∣∣2 + B2, (5.4)
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To characterize the relationship between lattice strength and estimation accuracy,

synthetic datasets were generated for different values of F with a fixed value of

B, specifically B = 3, and F = 1, 3, 10. In each scenario, 104
diffracted intensity

measurements were produced. Subsequently, F was retrieved through non-linear

fitting, and the resulting uncertainties were quantified by computing the covariance

matrix, C .

The resulting uncertainty, defined as the square root of the trace of the covari-

ance matrix

√
tr(C), was evaluated across a range of lattice strengths L from 1 to

100. Fig. 5.2 reveals distinct regimes depending on the ratio between B and F .

For low scattering amplitudes |F |2 ≲ B, the uncertainty decreases monotoni-

cally with increasing lattice strength. Thus, stronger scattering lattices improve the

accuracy of recovering F . For higher scattering amplitudes |F |2 ≫ B, an optimal

lattice strength emerges around L ≈ B, beyond which further increases in L reduce

accuracy. This suggests that, for large scattering amplitudes of F , matching the

lattice strength to the background intensity is advantageous.

Practically, ζ should be experimentally optimized to ensure lattice scattering

strength matches or exceeds background noise intensity, maximizing reconstruction

fidelity. For our simulation we keep the scattering strength of lattice as large as

possible by allocating ζ to be high. This is also suggested [130], where uniformly

redundant arrays (URAs) serve as structured references with high and spatially uni-

form scattering strength. These arrays provide a near-constant scattering strength

up to high frequencies, significantly enhancing retrieval.

Given a flux of 1 × 1011
photons/µm

2/s, the simulation with Dragonfly [7]

reports 3.56× 105
photons/sr at a scattering angle corresponding to a resolution of

100 nm after 1 second of exposure. A 1 µm beam at 8 keV photon energy subtends

a solid angle of 2.4 × 10−8
sr at the position of a Bragg peak. Accordingly, the

expected number of photons within such a Bragg peak is 8.54× 10−3
.

5.3.2 Reconstruction Algorithm

We begin by defining the model intensity, which the reconstruction algorithm fits

to the measured diffraction data:

Icalc(q) =
∣∣∣FL(q) + φ Fo(R⊤q) ei2π q·s

∣∣∣2 (5.5)

The goal of our reconstruction is to estimate four unknown parameters from noisy

diffraction measurements: (a) the translational shift of the object, denoted by the 2D

vector s, representing the position of the target object within the unit cell along the
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x- and y-directions; (b) the incident fluence, φ, which quantifies the total number

of photons illuminating the particle and effectively captures the degree of overlap

between the particle and the beam; (c) the in-plane orientation of the object,θ;

and the phasing step for (d) the complex-valued Fourier transform of the target

object, Fo(q), which upon inverse Fourier transform, yields the real-space electron

density, corresponding to a 2D projection of the Ribosome. Each diffraction frame is

modeled as a noisy intensity measurement, as described in Eq. 5.3, and is associated

with a randomly sampled orientation θ, translation s, and fluence φ. The exposure

time, denoted t (in seconds), determines the total photon flux and thereby influences

the signal-to-background ratio. Diffraction intensities are recorded on an N ×N

detector grid in reciprocal space. The corresponding real-space grid has dimensions

101×101 pixels, with each pixel representing 10Å with a total unit cell size of 100

nm.

To reconstruct s, φ, and Fo(q), the algorithm minimizes the discrepancy be-

tween predicted and measured diffraction intensities. Specifically, at each iteration,

we minimize :

E =
∑

j

∑
q

[Iobs,j(q)− Icalc(q|sj, φj, θj, Fo(q))]2 (5.6)

where Iobs(q) represents the observed intensity, and Icalc(q) is the predicted inten-

sity across j frames and q . This is carried out in an iterative cycle of three key

updates through a systematic grid search over the unknown parameters, inspired

by the pattern search method in [36]. The search proceeds in two stages: an initial

coarse exploration over a broad parameter space, followed by a fine search around

the best coarse estimate to refine the solution. While one can perform this 2D

optimization in the complex plane with many methods, we found that with a grid

search approach, it could be efficiently parallelized on the graphical processing

units (GPUs) and secondly it was quite robust in high background limit.

Firstly, the algorithm begins by initializing Fo(q), either with random values

or using a circular object estimate sized similarly to the target object, where size

estimates may be derived from SAXS studies [206]. For the simulations presented

here, Fo(q) is initialized randomly and in-plane orientation θ. To estimate the

in-plane translation shifts s and incident fluence φ, a coarse grid search samples

possible values across a broad range and identifies the best candidate by comparing

the measured and predicted intensities. A finer “zoomed-in” search then refines this

estimate. In practice, each frame has its own shift and fluence, so these computations

are repeated frame by frame.
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Secondly, given the updated s and φ, we next solve for the in-plane rotation

angle θ. A coarse angular sweep from 0 to 2π locates a region of minimal error,

followed by progressively narrower bracket searches around this best angle. We

gradually reduce the step size until no significant further improvement is found.

Lastly, with s, φ and θ fixed, we update each pixel q of Fo(q). The unknown

amplitude is treated as a complex number, and we perform a coarse-to-fine grid

search on the complex plane to minimize the squared error across all frames. This

entire three-step process constitutes one iteration. The algorithm then repeats

these parameter updates for multiple iterations (e.g., 100) until convergence or a

preset limit is reached.

This coarse-to-fine search approach, although computationally intensive for

large experimental datasets, is feasible by leveraging parallelized computation.

Future experimental implementations would benefit significantly from GPU ac-

celeration and adaptive optimization algorithms to ensure efficient processing of

extensive datasets.

The pseudocode for a single iteration is described in Appendix Section 2.

5.4 Results

We assess the performance of the reconstruction algorithm within the holographic

SPI framework using a 2D crystal lattice. This evaluation focuses on both the quality

of the reconstructed image and the error distribution in the estimated unknown

parameters. Figure 5.3 presents a comprehensive analysis, including signal strength

comparisons, reconstruction accuracy, and the precision of parameter estimation.

Figs. 5.3a–b display the ground truth 2D projection of the ribosome electron den-

sity and the unit cell of the 2D crystal lattice, modeled as random noise. Figure 5.3c

shows the scattering strength as a function of q for the 2D lattice (L = FL(q)), the

target object (F = Fo(q)), and the background (B(q)). Notably, the background

intensity exceeds that of the target object by many orders of magnitude up to 105
,

posing a major challenge for conventional SPI techniques, where weak biological

signals are often obscured by overwhelming background noise—making structural

reconstruction nearly impossible. In contrast, within the conjugated system used

here, the lattice signal remains comparable to or even stronger than the background

at low q values, ensuring the visibility of Bragg peaks. These peaks are modu-

lated by the presence of the target object, allowing detection even in high-noise

conditions. This approach relies on two key assumptions: firstly, the modulations

introduced by the target object exceed the intrinsic fluctuations of the lattice signal,
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Figure 5.3: Performance. (a) Ground truth 2D projection of the Ribosome electron

density. (b) Unit cell of the 2D crystal lattice, modeled as random noise. (c) Scattering

intensity as a function of q for the 2D lattice (blue), Ribosome target object (red), and

background (yellow). The background exceeds the signal of Ribosome by more than

105
, while the lattice intensity is comparable to or greater than the background. (d)

Reconstructed electron density of the Ribosome (scale bar: 10 nm). (e) Fourier ring

correlation (FRC) between the reconstruction and the ground truth Fo(q). Green

lines indicate FRC values averaged over 8 random-start reconstructions; the shaded

region represents the standard deviation across runs. (f) Ratio of estimated to true

incident fluence, φ. (g) Distribution of estimation errors for in-plane orientation

angle θ across random runs. (h) Distribution of translational shift errors in the x

and y directions for the target object within the unit cell (unit cell size: 100 nm).

The performance is evaluated for exposure time t=1.
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(a) (b)

Figure 5.4: Evaluation of Reconstructions. (a) Fourier ring correlation (FRC)

values at q = 0.26 nm
−1 vs background B2

, for various exposure times (t). Each data

point represents the maximum FRC value from eight random-start reconstruction

runs. The horizontal solid line at FRC = 1 denotes the theoretical limit corresponding

to infinite exposure time, t→∞. (b) Contour plot of FRC values (color scale) as

a function of B2
and t, both on logarithmic scales. Green circles indicate regions

where FRC ≥ 0.5, orange crosses mark regions with 0 < FRC < 0.5, and the black

line traces the threshold boundary at FRC = 0.5. The sawtooth pattern along the

bottom edge represents the approach to infinite exposure time t→∞ where FRC

reaches 1.

and both the lattice signal and background can be accurately measured.

Fig. 5.3d presents the reconstructed electron density map of the ribosome,

demonstrating that the algorithm can successfully recover fine structural details

despite the weak and noisy diffraction signal shown in Fig. 5.3c. The reconstruction

accurately captures the major features of the target object. Importantly, the coherent

interference between the lattice and the target introduces sufficient modulation to

enable effective phase retrieval — even in the absence of support constraints or any

prior information about the target object.

Fig. 5.3e evaluates the quality of the reconstruction using the Fourier ring

correlation (FRC) between the reconstruction and the ground truth, based on eight

independent runs with randomized initializations and diffraction datasets. The

solid curve shows the mean FRC across runs, while the error bars represent the

standard deviation at each q. The FRC consistently exceeds the 0.5 threshold

(the half-resolution criterion) across the entire q range, indicating reliable and

reproducible reconstructions. The narrow spread of the error bars further highlights

the algorithm’s robustness to noise and initialization variability. These results

correspond to a diffraction dataset with an exposure time of t = 1 second.

Panels f–h of Figure 5.3 assess the accuracy of the reconstructed latent pa-

rameters: incident fluence (φ), in-plane orientation (θ), and translational shifts

(t). Results are aggregated across all diffraction frames from eight independent
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reconstruction runs, each initialized randomly. Figure 5.3f shows a histogram of the

ratio between the estimated and true incident fluence, with a distribution tightly

centered around 1—indicating reliable frame-to-frame estimation of beam exposure.

Figure 5.3g displays the error distribution in the estimated in-plane orientation.

Despite high noise levels, the errors are sharply peaked around 0◦
, demonstrating

consistent and accurate recovery of particle orientation, which is crucial for proper

alignment of diffraction frames. Figure 5.3h presents a 2D histogram of transla-

tional shift errors within the unit cell. The majority of estimates fall within ±0.2

nm of the true position in both x and y directions, with regions of highest density

indicated by dashed lines. Together, these results highlight the robustness and effec-

tiveness of the method under realistic noise conditions, showing strong resilience

to background interference, accurate estimation of experimental parameters, and

consistent structural recovery across multiple runs.

The precision in estimating these parameters (θ, s, and φ) directly influences

the accuracy of particle alignment and subsequent averaging necessary for 2D

reconstruction. Thus, the high accuracy demonstrated here ensures minimal error

propagation into final reconstructed structures.

To assess the conditions under which our reconstruction algorithm remains

effective, we systematically evaluated its performance across a range of background

levels, B
2

and exposure time, t. Fig. 5.4a shows the FRC value at q = 0.26 nm
−1

as a function of these parameters. At low exposure times, the weak scattering

from both the lattice and the target object fails to generate reliable interference

patterns, resulting in reconstruction failure. Fig. 5.4b presents a contour plot of

the FRC values at q = 0.26 nm
−1

, mapped over logarithmic axes of B
2

and t. The

plot reveals a distinct transition boundary (black line) where the FRC drops below

0.5, marking the threshold for reliable reconstruction. The color gradient indicates

reconstruction quality, with yellow and red markers denoting specific evaluation

points. These results collectively define a practical operating window for successful

holographic SPI under varying experimental conditions.

5.5 Discussion

We introduced a holographic SPI technique for synchrotron radiation sources by

employing a 2D crystal lattice. The approach addresses significant limitations in

imaging biomolecules due to high background and prolonged radiation exposure.

Through holographic enhancement from a strongly scattering lattice, the method

substantially improves the SBR, making the signal from the target object recoverable
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even in scenarios where background scattering exceeds the object signal by several

orders of magnitude (≈ 10
5
).

Numerical simulations, using the ribosome as the target object, validate the

robustness and accuracy of the introduced methodology. The lattice reference effec-

tively generates coherent interference with the weak target object signal, allowing

the extraction of high-quality diffraction data under conditions that previously

rendered SPI impractical at synchrotrons. Moreover, the optimization algorithm

reliably reconstructs the electron density of the target object, simultaneously re-

trieving unknown experimental parameters such as orientation, translation shifts

within the unit cell, and incident fluence. Results from multiple independent runs

underscore the consistency and reproducibility of the reconstruction outcomes, as

quantified by the Fourier ring correlation (FRC), which consistently exceeds the

half-resolution criterion.

Importantly, the optimized scattering strength analysis illustrates that an ap-

propriately selected lattice strength is crucial. While choosing stronger lattice

scattering generally aids the recovery of weaker signals, optimal lattice strength

becomes especially critical when sample signals are relatively weak compared to the

background. This insight provides clear guidance for future experimental design,

emphasizing the careful tailoring of lattice references to specific experimental con-

ditions and biological samples. Experimentally, the fabrication of tailored 2D lattice

structures, potentially employing advanced lithography or colloidal self-assembly

techniques, will be a critical step in practically realizing this technique.

In conclusion, our proposed lattice-based holographic SPI framework signif-

icantly expands the feasibility of high-resolution single-particle imaging at syn-

chrotrons. By effectively mitigating background and optimizing data acquisition,

this approach could enable routine structural characterization of sensitive biological

samples, opening new avenues for in situ investigations of biomolecular dynamics

under near-native conditions.

Although the current study is limited to 2D numerical simulations, our method

naturally extends to 3D reconstructions. Extending would introduce additional

latent parameters, including 3D orientations and positions along the beam axis,

thereby increasing computational complexity, which still can be handled by the

algorithm.
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6
Holographic-SPI Experiment
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6.1 Abstract

This chapter discusses two synchrotron-based experiments aimed at investigating

lattice-enhanced holographic SPI. We utilized 2D crystal reference structures: (i)

a self-assembled monolayer of polystyrene nano-spheres and (ii) lithographically

patterned crossed gratings — to amplify weak scattering signals from individual

biological particles and nanoparticles. By leveraging coherent interference between

the structured reference and the sample, modulations in Bragg peak intensities were

analyzed to extract structural information from target objects, procedure discussed

in Chapter 4 and 5. Despite challenges, particularly in synthesizing high-quality

lattices to minimize variations that could overshadow the modulations induced by

the target particle, preliminary results demonstrate the feasibility of method and

suggest pathways for further optimization.
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6.2 Overview

The primary objective of the experiment was to enable SPI at synchrotrons by

utilizing coherent amplification from 2D lattices. Conventional SPI is limited by ra-

diation damage and background scattering, which hinder high-resolution structural

reconstruction for many biological samples.

Our approach employed crystalline 2D lattices as structured holographic ref-

erences. When illuminated by a coherent X-ray beam, these lattices generate

high-contrast Bragg peaks. The presence of a target object, such as a virus or

nanoparticle, induces interference between its scattered wave and the lattice’s peri-

odic wavefield, modulating the Bragg peaks. These modulations encode structural

information about the object, even in noisy conditions.

The experiments were conducted at the NanoMAX beamline of the MAX IV

synchrotron. The first experiment utilized self-assembled monolayer of polystyrene

nano-spheres as the reference, while the second employed lithographically pat-

terned crossed gratings. Both experiments aimed to demonstrate reference-enhanced

imaging of gold nanoparticles (test objects) and biological samples (primary target

objects), assessing the technique’s efficacy under realistic synchrotron conditions.

6.3 Samples

Two 2D lattice configurations were tested to be employed as strong scattering

references:

1. Self-Assembled Polystyrene Nanospheres: A monolayer of 100 nm and

200 nm diameter polystyrene (PS) nanospheres was self-assembled on a

silicon nitride (Si3N4) membrane to form a 2D periodic lattice. The opposing

membrane face was dispersed with target objects: spherical AuNPs (50 nm

and 80 nm), MS2 bacteriophage, and tobacco mosaic virus (TMV).

2. Crossed Lithographic Gratings: A pair of orthogonal silicon nitride grat-

ings (100 nm pitch,∼25 nm bar width), fabricated via EUV interference lithog-

raphy, served as high-quality periodic references. Target Samples included

— 80 nm AuNPs, TMV, and virus-like particles (VLPs) — were deposited on

a thin membrane situated within the X-ray focal depth, downstream of the

crossed gratings.

Each system was designed to maximize coherent interference between the
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structured reference and weakly scattering particles, enhancing signal extraction

even in the presence of background noise.

The gratings were manufactured by Eulitha and Si3N4 were ordered from Nor-

cada.

6.3.1 Synthesis and Deposition

PS Lattice Formation

The self-assembled PS nanosphere monolayers were prepared using a modified

air–water interface method, as inspired by techniques reported in [203] and sub-

sequent adaptations. The deposition procedure followed an optimized protocol

developed at Brewster Angle Microscope (BAM) provided by Kibron Inc., with final

adjustments made based on prior studies [207] The Langmuir-Blodgett (LB) method

was used to transfer monolayer colloidal crystals from the air-water interface to

the substrate (see Figure 6.1a). The setup was provided by Kibron Inc.

A 1:2 mixture of 2% w/v PS nanosphere suspension (100 nm or 200 nm diameter)

and ethanol was used. A total of 30 µL was transferred dropwise (2 µL per drop)

onto a glass slide positioned above a water surface. Each droplet was allowed

to spread slowly and transfer to the water–air interface, avoiding splashing and

shockwaves that could disrupt monolayer formation. Drops were dispensed at

2-second intervals to promote even spreading and to facilitate controlled flake

growth.

Following deposition, the monolayer was compressed at a controlled rate of

10 mm/min for approximately 35 minutes until fault lines appeared. Compression

was then reduced to 2 mm/min or paused during the final transfer onto the Si3N4

membrane. This protocol was initially optimized on a silicon wafer before being

applied to the Si3N4 membrane. Target object particles were dispersed on the

opposite side of the membrane (Figure 6.1b). The Si3N4 membrane was mounted

in a sample holder for fixed-target delivery into the X-ray beam (Figure 6.1c). The

quality of the PS nanosphere monolayer was evaluated using scanning electron

microscopy (SEM). SEM images of the monolayer, shown in Figure 6.1d-e, depict

nanospheres with diameters of 100 nm and 200 nm, respectively. The 200 nm PS

monolayer exhibits relatively better ordering compared to the 100 nm monolayer,

though both display grain boundaries resulting in small ordered domains.

The air–water interface method is well established for producing high-quality

monolayer colloidal crystals with enhanced uniformity and domain size [203, 208].

Incorporating ethanol into the colloidal suspension improves spreading by lowering
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Figure 6.1: PS Monolayer and Sample Preparation. (a) Langmuir-Blodgett setup

used to form a monolayer of polystyrene (PS) nanospheres at the air–water interface

and transfer it onto a Si3N4 substrate. (b) Si3N4 substrates with varying transparent

window sizes, featuring a PS nanosphere monolayer on one side and dispersed

target particles on the opposite side. (c) Custom sample holder for mounting the

Si3N4 substrates, enabling fixed-target delivery of the lattice and target particles into

the X-ray beam. (d, e) SEM images of PS nanosphere monolayers with diameters

of 100 nm and 200 nm, respectively. (f) SEM image of 80 nm gold nanoparticles

(AuNPs).

surface tension [208, 209]. The droplet-by-droplet deposition approach adopted

here aligns with best practices for minimizing convective instabilities and enabling

controlled self-assembly [210]. Additionally, precise control of the compression rate

is critical, as surface pressure directly influences monolayer integrity and defect

formation during transfer [211]. The resulting SEM-evaluated film morphologies

are consistent with previous reports [212]. These combined refinements setup

the protocol of our PS lattice formation for preparing well-ordered nanospheres

monolayer.

Deposition of Gold Nanoparticles

AuNPs with diameters of 50 nm and 80 nm were deposited onto the Si3N4 membrane

side opposite the PS lattice. Prior to deposition, the AuNPs were diluted in MilliQ

water to final dilutions of 1:1, 1:100, and 1:1000. To improve dispersion, samples
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were sonicated for 30 minutes. Drop-casting was performed by applying a small

volume of the suspension directly onto the membrane surface, followed by air

drying at ambient conditions.

Among various solvent systems tested, citrate-buffered AuNPs were found to

be most compatible, particularly for 50 nm particles. Chloroform-based prepara-

tions proved immiscible, and PBS-buffered AuNPs showed reduced adherence or

aggregation. Particle density was empirically determined to be approximately 0.42

particles/µm
2

for a 1:10 dilution, based on SEM characterization. Figure 6.1f show

SEM image of isolated AuNPs of diameter 80nm deposited on Si3N4, illustrating

coverage density and particle dispersion.

Deposition of Biological Targets

MS2 bacteriophage, TMV, and virus-like particles (VLPs) were deposited using

methods similar to those applied for AuNPs, though the handling of biological

targets was subject to more stringent control to prevent degradation. Virus samples

were drop-cast from dilute buffer suspensions and allowed to air-dry under clean,

low-humidity conditions. Due to their weak scattering contrast and susceptibility

to damage or aggregation, their visibility in diffraction data was strongly dependent

on experimental noise conditions and background minimization. The SEM and

Atomic Force Microscopy (AFM) did not yield high-quality characterization of the

biological samples, most likely due to suboptimal dispersion on the substrate.

6.4 Results

Self-Assembled PS Lattice

Approximately 4,770 diffraction patterns were collected over 40 hours using an 8

keV X-ray beam focused to 1× 1 µm
2
, with the Eiger 1M detector positioned 3.5

m downstream. Each exposure lasted 30 s, with a flux of 9× 108
photons/s. The

primary dataset comprised 200 nm PS lattices with 50 nm and 80 nm AuNPs.

The self-assembled PS lattice produced well-defined Bragg peaks due to high

ordering.

A subset of 3,380 patterns (200 nm PS with 80 nm AuNPs) was selected for

further analysis.

Figure 6.2 summarizes key characteristics of the collected diffraction data. Panel

(a) displays the average background signal, acquired from the beamline setup
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(a)

(b)

(c)

Figure 6.2: Diffraction Data. (a) Average scattering background from the beamline

and the air-exposed Si3N4 window setup without samples. (b) Powder diffraction

pattern, obtained by integrating all diffraction images collected from various regions

of interest for a 200 nm PS nanosphere lattice. The central spot corresponds to the

maximum intensity. (c) Preliminary evaluation of a dataset collected from a 200 nm

PS lattice with 80 nm AuNPs as target objects. Single 30-second exposure from a

2D crystal of 200 nm PS nanospheres, showing holographic modulation induced by

the AuNPs. Dark regions are masked due to strong background scattering from the

beamline.
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(a) (b)

Figure 6.3: Holographic Enhancement. (a) Average intensity from 500 aligned

diffraction patterns. Holographic interference causes intensity variation between

otherwise symmetry-related peaks. This is visually most apparent in weak peaks

as shown in green circles. (b) Simulation of 200 nm PS with 80 nm AuNPs as target

objects. Intensity vs q for single 80 nm AuNP vs 25 PS spheres (200 nm). The

vertical dotted lines are positions of different order of Bragg peaks.

without a sample, highlighting contributions from air scattering and the Si3N4

window. This background was subtracted from subsequent measurements.

Panel (b) shows the powder-averaged diffraction pattern of the self-assembled

200 nm PS lattice, revealing a series of well-defined Bragg rings indicative of certain

degree of ordering. The central intense spot, which appears overexposed, reflects

the direct beam region where no beamstop was used.

In panel (c), a single-exposure diffraction pattern from a 200 nm PS lattice

embedded with 80 nm AuNPs exhibits modulations superimposed on the Bragg

peaks. These features suggest holographic interference from the AuNPs; however,

interpretation was limited by variability in the illuminated domains of PS monolayer.

Since the X-ray beam scanned different regions of the monolayer from shot to shot,

short range domain boundaries and inhomogeneities in the PS lattice structure

introduced inconsistencies that obscured the subtle modulation from the target

particles. As a result, many diffraction patterns could not be reliably merged or

analyzed to extract a coherent signal from the AuNPs.

A 2D expectation-maximization analysis on this dataset reveals a class of diffrac-

tion pattern with 500 patterns aligned showing the signs of modulation present

on bragg peaks (Figure 6.3a) . The modulation from the first ring of AuNP sphere

resides on the bragg peaks present at that radial distance from the center. This
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effect is more prominent on the weak peaks (circled in green, Figure 6.3a).

Figure 6.3b, a preliminary simulation of the experimental setup illustrates the

occurrence of modulation due to holographic interference of 2D lattice and AuNP

target object. For simplicity, we model 2D lattice of 25 PS spheres stacked together

in the interaction region. The radial average depicts the distance from the center

where the maxima from reference and target object interfere. The effect is more

extractable near the peaks at q ≈ 0.022 nm
−1

.

Crossed Lithographic Gratings

Over 200,000 patterns were collected in 72 hours with exposure times between

0.1–5 s. An improved beamline configuration delivered ∼50× greater flux than

previous experiment, enabling shorter exposures.

Lithographically defined gratings offered nearly 100% diffraction efficiency

across frames. Only seam regions in the gratings generated excessive diffuse

scattering (Figure 6.4b). Unlike the self-assembled PS spheres, these gratings showed

low polydispersity and large coherent domains.

However, frame-to-frame intensity fluctuations arose due to small variations

in grating bar widths. These fluctuations obscured modulation signals from weak

scatterers such as TMV and VLPs. Hit-finding was successful for AuNPs, but not

sensitive enough for biological particles.

Figure 6.4 illustrates these aspects of the crossed grating experimental setup

and representative diffraction results. Panel (a) shows a schematic of the beamline

configuration with the dual-grating geometry and sample integration. The inset

highlights the fixed-target delivery system used for precise sample positioning.

Panel (b) presents an SEM image of one of the lithographically patterned grat-

ings, with a visible stacking fault where two regions intersect and subtle width

variations; such defects were the primary source of overshadowing the modula-

tion of the Bragg peaks from the target particles. The inset in (b) quantifies this

background in the absence of a sample, demonstrating its minimal impact outside

seam areas. Panels (c) and (d) show single-exposure diffraction images from indi-

vidual AuNPs and AuNP dimers, respectively, collected using the crossed grating

configuration. In both cases, distinct diffuse scattering are visible.

However, one difficulty which remains is that we are still highly sensitive to

imperfections in the grating “bars”. Nominally, the lattice period was 100 nm and

the bars were 25 nm. If this was the case, then the 4th order (100/25) peak would

be absent. But in Figure 6.5, we see how the grating bar width varies somewhat
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(c)

(d)

Figure 6.4: Crossed Grating Setup and Diffraction Data. (a) Schematic of the

experimental setup: two crossed gratings generate a periodic exit wave that is

subsequently modulated by the sample. The inset shows the fixed-target sample

delivery configuration and grating specifications. (b) SEM image of one of the EUV

interference lithography gratings, highlighting a stacking fault at the intersection

of two regions. Inset: average background scattering from the beamline and the

air-exposed dual-grating window setup without a sample. (c) Single 10-second

exposure showing diffraction from an individual AuNP with crossed gratings. (d)

100-second exposure of an AuNP dimer under the same configuration. In both (c)

and (d), the diffuse signal is sufficiently strong to reveal the particles.
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(a) (b) (c)

Figure 6.5: Imperfections in Gratings. Scan of 2D Grating with empty SiN

membrane with exposure time of 2 sec. A total of around 5000 frames were collected

for characterizing (a) Brightness scaling (b) Relative bar width (0.25 on average)

(c) Sharpness of average profile, which reflects the degree of variations within the

focal spot.

randomly over the whole lattice. A necessary improvement in the setup would be

to have the X-rays hit the same part of the grating for every frame and only the

sample membrane be scanned.

Figure 6.5 presents an analysis of imperfections in a 2D grating patterned on an

empty silicon nitride (SiN) membrane. The dataset comprises approximately 5000

frames, acquired under a 2-second exposure time, to characterize key structural

and optical features of the grating. Three main parameters are analyzed. (a) Bright-

ness Scaling: It illustrates the variation in detected brightness across the grating,

which may arise due to non-uniform illumination, fabrication defects, or material

inconsistencies. (b) Relative Bar Width: The average relative width of the grating

bars is found to be around 0.25, indicating the periodic spacing and uniformity

of the grating lines. Deviations from this average provide insight into fabrication

tolerances and alignment precision but can also introduce fluctuations in scattered

signal from these artefacts. (c) Sharpness of Average Profile: It quantifies the focus

quality and local uniformity within the grating pattern. Reduced sharpness suggests

local deformations or imperfections in the grating or membrane, which can impact

optical performance. Together, these metrics help assess the structural integrity and

optical uniformity of the fabricated grating, critical for high-precision applications.

These fluctuations became significant from frame to frame as we scanned

both the grating and the sample simultaneously. Diffraction measurements with

a fixed reference and a scanned sample would be more effective for accurately

characterizing the reference signal in each frame, thereby minimizing the prominent

variations observed when moving across the grating.
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6.5 Discussion

These experiments collectively validate the feasibility of lattice-enhanced holo-

graphic SPI at synchrotron sources. In the experiment with PS nanosphere lattices,

interference between the PS lattice Bragg peaks and AuNPs confirmed coherent

enhancement. The results demonstrated that the modulation amplitude is sensitive

to both the particle size and its location within the unit cell.

Additionally, the experiment involving crossed gratings yielded significantly

higher data quality. However, intrinsic imperfections in the grating structure

introduced modulations unrelated to the sample, which hindered the detection of

weakly scattering viruses.

In our current experiment, both the lattice and the sample were scanned simulta-

neously, which introduced unwanted variation from the uncertainties in reference

structure. To mitigate this, future implementations in sample delivery should fix

the lattice and scan across dispersed side with the sample, thereby minimizing

modulation artifacts arising from spatial inhomogeneities within the reference.

It is critical that the modulation signal from the target object exceeds the signal

introduced by lattice uncertainty or imperfections.

In well-characterized gratings, such variations could be nearly negligible. Com-

putationally, however, the reference used here could be modeled using Markov

Chain Monte Carlo (MCMC) methods as discussed in [134]; however, these models

can become unstable or intractable if too many free parameters need to be evaluated

for characterization.

To improve the method’s viability, we recommend the following:

• To reduce structural noise originating from different regions on the reference,

fix the illuminated reference region across exposures. This can be achieved

by maintaining a fixed reference along the beam path while scanning only

the dispersed samples.

• Improve the quality of holographic reference through fabrication, if possi-

ble, to minimize intensity fluctuations from defects or disorders. This was

observed to be an improvement when transitioning from PS monolayers to

2D gratings. A high-quality grating with fewer structural uncertainties will

help ensure that any extraneous signals remain smaller than the Bragg peak

modulations from the target particle.

With these improvements, lattice-enhanced SPI could become a practical tool
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at synchrotron facilities for biomolecular imaging, allowing for the determination

of 3D structures of biological macromolecules under near-native conditions.
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7
Summary and Outlook

In this dissertation, we have applied SPI methodologies and developed novel experi-

mental configuration to investigate the structure and dynamics of nanoscale systems

under a range of experimental conditions. In Chapter 3, we presented the first

observation of aerosolization-induced morphological changes in MS2 bacteriophage

capsids, revealing an incoherent buckling transition that likely serves to protect viral

capsids from dehydration [132]. In Chapter 4, we introduced a maximum-likelihood

phasing algorithm (MaxLP) for gold nanoparticle (AuNP)–enhanced holographic

SPI approach, demonstrating sub-nanometer resolution reconstructions even in the

low-signal, heterogeneous data regime [35]. Finally, in Chapter 5 and Chapter 6,

we extended holographic SPI to synchrotron sources by employing a 2D crystal

lattice as a strongly scattering reference, enabling high-resolution imaging under

extreme background conditions — up to five orders of magnitude stronger than

the sample signal. We demonstrated the experimental feasibility using two lattice

reference examples.

Together, these studies advance both the experimental and computational capa-

bilities of SPI, significantly broadening its applicability across biological, materials,

and aerosol science.

Structural Dynamics of Viral Capsids

Using SPI in combination with machine learning techniques, we directly visual-

ized a novel compact capsid conformation and intermediate morphologies of the

MS2 bacteriophage under dehydration stress (Chapter 3). Machine learning–based

classification of hundreds of thousands of diffraction patterns enabled mapping of

a continuous structural landscape, revealing that a single 19-residue loop under-
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goes localized destabilization, triggering an incoherent buckling transition. These

findings provide the experimental observation of shape transitions in icosahe-

dral viruses and highlight the potential of integrating SPI with unsupervised deep

learning approaches to resolve subtle conformational heterogeneity [134, 136].

AuNP-Enhanced Holographic SPI

In Chapter 4, we addressed the fundamental resolution and signal-to-background

limitations of conventional SPI by attaching a strongly scattering gold nanoparticle

(AuNP) to a target object mimicking a biological object. To enable robust structure

recovery under low-signal conditions, we developed the MaxLP algorithm, which

combines maximum-likelihood estimation with a pattern search strategy to jointly

recover object Fourier amplitudes and latent experimental parameters—including

particle orientation, AuNP size, and relative shift. MaxLP performs reliably even

at photon counts as low as ∼2,000 photons per frame. Simulations demonstrated

that MaxLP outperforms previous divide-and-concur approaches in the low-signal

regime and naturally converges to the ensemble-average structure in the presence

of conformational heterogeneity [35, 171].

Lattice-Enhanced Holographic SPI

Chapter 5 and Chapter 6 extended holographic SPI to synchrotron beamlines by

introducing a fixed-target configuration with a fabricated 2D crystal lattice serving

as a periodic reference. The sharp Bragg peaks generated by the lattice enhance

interference with weak biomolecular scattering, enabling recovery of particle sig-

nals even when the background intensity exceeds the object signal by a factor

of 10
5
. We developed an iterative grid-search optimization algorithm that jointly

retrieves the target object’s electron density, orientation, in-unit-cell shift, and

fluence. Under realistic exposure and noise conditions, this approach achieved

reproducible reconstructions with Fourier ring correlation (FRC) values exceeding

the 0.5 threshold [36]. We experimentally demonstrate by utilizing 2D crystal

reference structures: (i) a self-assembled monolayer of polystyrene nano-spheres

and (ii) lithographically patterned crossed gratings — to amplify weak scattering

signals from individual biological particles and nanoparticles. By leveraging coher-

ent interference between the structured reference and the sample, modulations in

Bragg peak intensities were analyzed to extract structural information from target

objects.
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Ongoing upgrades at XFELs and fourth-generation synchrotrons promise en-

hanced spatial coherence and increased per-pulse flux, opening the door to sub-

nanometer resolution in SPI [213, 214]. In the viral system discussed in Chap-

ter 3, femtosecond pump–probe schemes could capture real-time capsid dynamics

through hydration, offering molecular-timescale insight into hydration-driven struc-

tural transitions with a controlled pump. Similarly, incorporating AuNP or lattice

references into time-resolved SPI experiments could reveal ultrafast conformational

pathways in proteins.

While spherical AuNPs and 2D crystal lattices are simplistic choice of references,

future work should explore optimized holographic references—such as uniformly

redundant arrays (URAs) or tailored nanofabricated masks — that provide broad-

band, high-angle scattering [130]. These engineered references could maximize

phase-contrast modulation while minimizing parasitic background, extending SPI

to smaller or more weakly scattering biomolecules.

Our preliminary demonstration that MaxLP recovers real-space averages in

the presence of heterogeneity (Chapter 4) suggests a path toward continuous con-

formational mapping without the need for discrete classification. By embedding

additional latent variables into the MaxLP framework — similar to the continuous

latent models used in cryoDRGN [171] — it may be possible to reconstruct structural

ensembles directly from diffraction data, enabling better resolution for dynamic

molecular states.

The ability to image dehydrating viruses under near-ambient conditions has

direct implications for understanding airborne pathogen stability and transmission.

Extending the MS2 study to clinically relevant viruses such influenza and SARS-

CoV-2 could uncover fundamental mechanisms of aerosol viability and inform

public health strategies.

The lattice-enhanced holographic SPI method developed in Chapter 5 and

Chapter 6 offers a practical blueprint for routine biological imaging at widely

accessible synchrotron beamlines. The integration of high-throughput fixed-target

stages with embedded lattices—possibly — could enable automated, large-scale SPI

experiments across diverse biomolecules. Currently 2D simulation demonstration

has shown it’s potential, extending introduced algorithm to 3D problem could be

enable GPU-acceleration.

Widespread adoption of holographic SPI will also depend on the development of

robust, open-source software implementing MaxLP and related algorithms. These

tools should feature user-friendly interfaces and seamless integration with existing

SPI workflows such as Dragonfly [7]. The collaborative development of bench-
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mark datasets and standardized validation protocols will be critical for ensuring

cross-platform reproducibility and accelerating community-wide progress.

In summary, the techniques developed in this thesis unlock new capabilities for

imaging nanoscale systems under previously inaccessible conditions. By combining

machine learning, holographic references and advanced reconstruction algorithms,

we have laid the groundwork for a new era of SPI — one in which dynamic, heteroge-

neous and weakly scattering biological assemblies can be visualized at near-atomic

resolution in their native environments. The challenges ahead—from reference

design to time-resolved implementations—present rich opportunities for innovation

at the intersection of physics, biology and data science.
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8
Supplementary

≺ This chapter provides additional methodological details on data analysis,

and supporting figures that expand upon the results presented in Chapter 3

of this dissertation. The content herein is intended to offer deeper technical

insight and ensure reproducibility of the work described. ≻

8.1 Sample Preparation.

E. coli strain C-3000 (ATCC 15597 ) was cultured in volumes of 50 ml at 37°C with

shaking at 150 rpm. Shaking was reduced to 90 rpm when the exponential growth

phase was reached, and the culture was infected with 100 µL MS2 (2.9 mg mL−1
,

ε280 = 3.86 mg mL−1
) (ATCC 15597-B1) and 100 µL CaCl2 (1 M). Incubation was

stopped when the cells were lysed (c. 3 hours). One milliliter of the lysate and

800 µL CaCl2 was used to infect 400 mL of exponential phase growth culture of E.

coli. Incubation was carried out with shaking at 90 rpm until the cells were lysed

(ca. 5 hours). The lysate was precipitated using 10% (w/v) PEG 6000 and 0.5 M NaCl

over 48 hours at 4 ◦C.

After precipitation, the suspension was centrifuged at 10 000 g for 30 min. The

pellet was re-suspended in 30 mL 0.01 M Tris, pH 7.5 (containing 0.1 M NaCl,

0.1 mM MgCl2, and 0.01 mM EDTA). Stirring was carried out for 1 hour at room

temperature until complete re-suspension. Next, the suspension was incubated at

37 ◦C with shaking at 120 rpm after adding 1.5 mg lysozyme, 300 µL MgCl2 (1 M),

and 10 µL Benzonase. After incubation, the suspension was centrifuged at 8000 g
for 30 min. The supernatant was precipitated using 10% (w/v) PEG 6000 and 0.5 M
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NaCl and incubated at 4 ◦C overnight. The suspension was centrifuged at 27 000 g
for 30 min, and the pellet was re-suspended in Tris buffer. The re-suspension was

applied to a sucrose gradient (15-50%) and centrifuged at 40 000 g for 18 h at 4 ◦C.

The sucrose in the collected band fractions was removed by repetitive concentration

and dilution steps with Tris buffer using an Amicon Ultra Centrifugal Filter (100

kDa cutoff).

Prior to cryo-EM grid preparation and sample injection at the XFEL, the Tris

buffer of the sample was exchanged to a buffer containing 0.2 mM sodium citrate

and 5 mM ammonium acetate using a PD Minitrap G-25 column (Cytiva). The

sample concentration was adjusted to ∼ 2× 1015
particles/mL (or ∼12 mg/mL) for

both experiments.

8.2 Cryo-EM structure determination

An aliquot (3 µL) of MS2 virions was deposited onto freshly glow-discharged, 300

mesh R2/2 Quantifoil grids, followed by 3 s of blotting at 4°C and 95% humidity

using a Vitrobot Mark IV instrument (ThermoFisher Scientific). The blotted grid

was plunge-frozen into a 37:63 (v/v) liquid ethane/propane mixture. Images were

acquired using a Talos Arctica microscope (ThermoFisher Scientific) operated at

200 kV and equipped with a Falcon 3EC detector (ThermoFisher Scientific). A total

of 861 movies were recorded using the EPU software (ThermoFisher Scientific) in

integration mode at a nominal magnification of ×92,000, yielding a final pixel size

of 1.58 Å
2
. Each movie had a total dose of 36e

-
/Å

2
over 39 frames.

Image processing was performed using cryoSPARC [5]. Drift and beam-induced

motions were corrected using patch motion correction, and the contrast transfer

function (CTF) was estimated using patch CTF estimation. The micrographs were

inspected and curated using the manually curated exposures job, from which 622

micrographs were accepted for further processing. Blob picking was used to pick

60,861 particles, of which 47,546 remained after two rounds of 2D classification.

Two classes out of four from ab initio reconstruction and heterogeneous refinement

(C1 symmetry) had apparent density for both the capsid and the A protein. The

particles from these two classes (22,592) were selected for homogenous refinement

(C1), where a 4.9 Å resolution map was obtained as estimated by the Fourier shell

correlation (FSC) = 0.143 criterion (see Fig. 8.1).
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Figure 8.1: FSC Curve. FSC curve of the cryo-EM reconstruction generated using

cryoSPARC [5] for the cryo-EM reconstruction of the MS2 capsid from the same

batch as used for the X-ray SPI experiment. The average resolution of 0.49 nm was

estimated based on FSC = 0.143 threshold [6] (black dashed line).
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8.3 Classification, Discrete Heterogeneity and Poly-
morphism

8.3.1 Classification

The first step of data classification was the generation of average two-dimensional

(2D) classes in the detector plane from the full diffraction dataset using the 2D

classification procedure implemented in Dragonfly [7, 10]. This process employs a

modified EMC algorithm to classify all frames into a specified number of averages

(models, termed classes in Dragonfly). We began by classifying the dataset into

50 2D classes. Examples of these classes are shown in Fig. 8.2a. The 2D classes

corresponding to very weak hits (pink dashed grid) were excluded at this stage.

To obtain the training dataset, a bootstrapping method was employed by running

the 2D EMC reconstruction 100 times, each with 100 models, using a random subset

of 20% of the frames (from 170 355 diffraction frames) each time, resulting in

10 000 2D intensity models. Size filtering was then applied to the dataset by fitting

a spherical object Fourier model to the radial average of the intensity, resulting in a

size distribution of 2D intensity models (Fig. 8.2b). By comparing the 2D models

and their locations in the distribution, we qualitatively divided the space into three

groups, as shown in Fig. 8.2b. In the figure, red denotes icosahedral, blue denotes

octahedral, and green denotes contaminants, including outliers and dimers. The

corresponding example samples of 2D intensities for different groups are shown

in Fig. 8.2c. The top row shows the classes with panel gaps and detector artefacts,

which have fitted diameters greater than 40 nm in the distribution. Among all

dataset models, 2558 were icosahedral corresponding to 79 771 diffraction frames.

These icosahedral 2D intensity models were used for training the β-VAE.

8.3.2 Discrete Heterogeneity

The 2D classification also yielded some interesting structures which had a different

symmetry than the icosahedral objects. Figure 8.3a shows some of the 2D intensity

averages with reasonable intensity contrast. Note that since intensities are always

non-negative, the averages from diverse aggregates and contaminants typically

generate low-contrast models. The insets show the projected electron densities

resulting from 2D phase retrieval. Only patterns belonging to classes like the

“Icosahedral” class were selected for Fig. 3.1d.
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a b

c

Figure 8.2: Classification. (a) Examples from the 50 2D intensity models obtained

from the initial EMC classification. (Dashed pink grid) Models rejected prior to

generating the training dataset for the β-VAE. (Bottom row) Examples of the 2D

intensity models used for the dataset generation. (b) Histogram of the fitted diame-

ters for the 2D intensity classes dataset (10,000 classes). Different structure types

are manually marked in the distribution as icosahedral (red), octahedral (blue), and

others, including dimers, outliers, etc. (green). (c) The corresponding examples of

2D intensity models for each structure class. (Top row) Examples of classes with

panel gaps and detector artifacts, which had fitted diameters > 40 nm.
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Figure 8.3: Discrete Heterogeneity. (a) Examples from the diffraction dataset of 2D

intensity models and corresponding electron density projections (inset) via phase

retrieval; the scale bar is 30 nm. (b) 3D structure of the MS2 capsid reconstructed

from the octahedral data.

8.3.3 Polymorphism

Along with the rounded icosahedra and dimers, we also obtain patterns with clear

octahedral structure. The 3D structure of the octahedral particle was reconstructed

without any imposed symmetry from 11 626 patterns. The reconstructed electron

density at 6.1 nm resolution is shown in Fig. 8.3b and is 1.53 times lower in volume

than the icosahedral structure. MS2 capsids have been reported to assemble with

octahedral packing and T = 3 quasi-symmetry [146, 215]. The primary distinction

between icosahedral and octahedral structures lies in the presence of four-fold

contacts rather than five-fold contacts, potentially resulting in curved interfaces.

The octahedral packing results from the fusion of two coat-protein subunits [216].

These capsids have been reported to disassemble and reassemble into the octahedral

structure during crystallisation [146]. To the best of our knowledge, this is the

first observation of octahedral MS2 capsids without mutation or different buffer

conditions.

8.4 Phase retrieval

The electron densities were reconstructed through a 3D iterative phase retrieval

method applied to the full-resolution intensity volume of the MS2 bacteriophage.

The procedure was almost identical to the pipeline discussed in [133]. Fig. 1d

illustrates the reconstructed electron density obtained for a dehydrated phage.

In Fig. 8.4, the phase retrieval transfer function (PRTF) metric, evaluating the

reproducibility of retrieved phases based on 128 independent phasing runs for both

icosahedral and octahedral structure of MS2 capsid.

The electron density reconstruction from the background-subtracted intensity
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Figure 8.4: Phase retrieval transfer function (PRTF). (a) Smoothed phase re-

trieval transfer function (PRTF) vs q. The solid lines represent the azimuthal average

PRTF conventionally used to determine the resolution of the structure. The typical

1/e cutoff is shown in gray. The resolution at the cutoff for both capsid structures

was estimated to be ≈ 6.1 nm. (b) Slice at 001-plane through the Fourier volume of

the MS2 capsid for icosahedral (top) and octahedral (bottom) structures retrieved

using Dragonfly [7]. Fig. 3.1d & Fig. 8.3b shows the corresponding phased electron

density.

distribution involved a hybrid approach employing the error reduction (ER) algo-

rithm and the difference map (DM) algorithm. Each phasing run consisted of 400

iterations, comprising 100 ER iterations followed by 200 DM iterations, and conclud-

ing with 100 additional ER iterations. The support was updated after each iteration

using a smoothing and thresholding procedure, with the strongest 40 000 voxels

retained in the support.

The phase retrieval process for the reconstructed Fourier volumes by the decoder

network for various trajectory points involved 16 random model starts. The number

of voxels for the support was determined based on the estimated diameter size and

fringe counts in the 3D Fourier volumes. The electron density maps were visualised

with radial colouring to depict structural variations.

The density map, crystal structure and SPI densities were visualised using the

Chimera software [217].
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8.5 Architecture and Training of β-VAE

The β-VAE consisted of an encoder and a decoder neural network, to encode informa-

tion into a lower dimension and retrieve it back respectively. The encoder encodes

diffraction data (in this case, 2D intensity models) generating a low-dimensional la-

tent vector, Z , for each input pattern X. The encoder parameterises this distribution

with a mean µ(X) and a variance σ(X). During training, this distribution is sam-

pled from a normal distributionN (µ(X), σ(X)) before being passed to the decoder,

which introduces stochasticity, improving robustness and ensuring smoothness of

the latent space.

The network was trained and optimised by minimising a loss function, combin-

ing mean square error as a reconstruction loss and Kullback-Leibler (KL) divergence

loss as a regularization term, which discourages a too-sharp latent space. In our

case, the optimized β-VAE had β = 0.5, with the latent space dimension of Z = 2.

8.5.1 Pre-processing

The initial 2D intensities from Dragonfly have dimensions of 503 × 503 pixels.

Preprocessing steps were applied to enhance relevant features and reduce com-

putational redundancy. Given the highly sampled nature of the data and minimal

scattering signal at high q, the size was reduced to 171 × 171 through downsam-

pling and cropping. Additionally, background normalisation was performed by

subtracting the mean at high q and dividing by the mean at low q. Considering that

diffraction patterns of compactly supported objects are primarily dominated by low

q signal, to appropriately weight higher q shape information, the 2D intensities

were divided by the radial average intensity over the whole dataset before inputting

them into the network. This weighting was then reverted when generating the 3D

Fourier volumes. This approach optimises computational efficiency by focusing

solely on relevant information in the diffraction data, where distinctive features

are evident.

8.5.2 Network Parameters

The encoder network consists of a series of convolutional layers, specifically three

Conv2d layers that increase in channel depth from 8 to 32, followed by a sequence of

linear layers reducing the dimensionality to a latent space dimension Z. Conversely,

the decoder utilizes a symmetrical setup starting from the latent dimension Z,

expanding through linear layers, and then upscaling spatial dimensions through
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three ConvTranspose3d layers, ultimately reconstructing the input data. Other

optimized hyperparameters of the β-VAE include a batch size of 32 and a learning

rate of 10−4
and weight decay of 10−5

for Adam optimizer [218]. The architecture

parameters of the β-VAE are detailed in Table 8.1.

8.5.3 Training performance

The β-VAE was trained over a total of 2000 epochs. Fig. 8.5(a) depicts the generative

performance of the β-VAE on 2D intensity data at the final epoch. The majority of

prominent features are successfully reconstructed in the output, indicating high-

quality reconstruction performance. This highlights the effectiveness of the deep

learning model in capturing the fundamental attributes inherent in the input data.

Fig. 8.5(b) illustrates the loss of the β-VAE over the final 1000 epochs, during

which the orientation was updated every 20
th

epoch before terminating the training.

This approach was adopted because the loss stabilized with no significant changes

observed. These stable training dynamics suggest efficient convergence of the VAE

and optimization of orientation estimates for each 2D intensity model.

8.5.4 Choosing β and latent space dimensions

Figure 8.5(c) illustrates the VAE training to determine the optimal value of β. The

process involved training multiple VAE networks across a range of β values from

0 to 10. The optimal value was chosen based on achieving the minimal loss. The

selection of β = 0.5 strikes a balance between smooth disentanglement in the latent

space and preservation of reconstruction quality, providing sufficient regularization

to prevent overfitting.

Similarly, for latent space dimension Z > 2, there was a reduction in MSE loss;

however, this improvement did not reveal any new or distinctive features in the

latent space. Conversely, Z = 2 seemed to effectively encapsulate the variations in

the dataset.

Figure 8.5(d) shows the latent space representation color-coded by σ =
√

σ2
1 + σ2

2 .

The low standard deviation values suggest that the network can effectively extract

and learn significant features, which are closely correlated and can be accurately

reconstructed with minimal uncertainty.
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Figure 8.5: Training of β-VAE. (a) Comparison between input 2D intensity data

and the corresponding output (reconstruction) by β-VAE. (b) Loss evolution during

β-VAE training exhibited a decline over the 1000 epochs. However, the decrease

was not significant later in training, prompting the decision to terminate further

training. The depicted loss encompasses both the Mean Squared Error (MSE) loss

for reconstruction and the Kullback-Leibler (KL) divergence loss. (c) β-VAE Loss

versus β values. The plot illustrates a rise in loss as β values increase. The optimal

trade-off between minimizing loss and providing sufficient regularization occurred

at β = 0.5 (red dashed line). (d) Latent space representation of the β-VAE color

labeled with σ =
√

σ2
1 + σ2

2 .
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Figure 8.6: Latent Space. Latent space representation of the β-VAE for different

random initializations of weight and bias parameters. The low-dimensional em-

bedding varies due to the random start, converging to nearby minima. However, it

maintains the same information for shape and size variations.

8.5.5 Stability for different random initialization

Figure 8.6 shows the latent space representation of the β-VAE for three different

random initializations of weights and biases. Specifically, random seeds of 42, 61,

and 99 were used, respectively. Although the low-dimensional embeddings appear

different due to these random initializations, the latent space consistently captures

similar information regarding shape and size variation across all three cases. This

demonstrates the robustness of the β-VAE in retrieving information from diffraction

data despite variations in initial conditions.

8.6 Particle Size Determination

We utilized spherical particle fitting on the Fourier volumes reconstructed by the

decoder network of β-VAE. This process involved computing the radial average of

the volumes and fitting them with the Fourier model of a spherical particle. This

analysis yielded an estimation of the diameter of the MS2 phages during shape-

phase transition. The Fourier model for a spherical particle is described by the

function S(q, d):

S(q) ∝ d6
(

sin(πqd)− πqd · cos(πqd)
(πqd)3

)2

(8.1)

where d denotes the diameter of the particle and q is defined with the crystallography

convention. The size distribution of MS2 bacteriophage is shown in Fig. 8.7.
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Network Layer Output Size Weights Bias

Encoder Conv2d (1, 8) H/3×W/3× 8 5× 5× 1× 8 8

Conv2d (8, 16) H/9×W/9× 16 5× 5× 8× 16 16

Conv2d (16, 32) H/27×W/27× 32 5× 5× 16× 32 32

Linear 128 800× 128 128

Linear 64 128× 64 64

Linear 8 64× 8 8

Linear (mean) Z 8× Z Z
Linear (log variance) Z 8× Z Z

Decoder Linear 64 Z× 64 64

Linear 128× 5× 5× 5 64× 128× 5× 5× 5 128

ConvTranspose3d (128, 64) H/3×W/3×D/3× 64 5× 5× 5× 128× 64 0

ConvTranspose3d (64, 32) H ×W ×D × 32 5× 5× 5× 64× 32 0

ConvTranspose3d (32, 1) H ×W ×D × 1 7× 7× 7× 32× 1 0

Table 8.1: Architecture of β-VAE
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Figure 8.7: Particle Size Distribution. Histogram depicting the particle size distri-

bution, represented by fitted diameter values, d (nm). These values were obtained

through spherical particle model fitting on the Fourier volumes reconstructed using

the decoder network of the optimized β-VAE.
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8.7 Local Orientation Optimizer

The Local optimizer updates the orientation (Ω) every 20th
epoch during training.

To monitor the convergence of orientation estimates, we assess the Root Mean

Square Deviation (RMSD) between estimates at consecutive update steps (Fig. 8.8).

Convergence is quantified by the measured angle, denoted as Θ, between orien-

tations represented by quaternions at consecutive update steps. Θ is calculated

as

Θ = arccos
(
2 · (q1 · q2)2 − 1

)
(8.2)

where q1 and q2 are the normalized quaternions representing orientations.

The RMSD is computed over these angles to measure the average deviation

between orientations across update steps of the Local Optimizer. It is determined as

RMSD =
√√√√ 1

n

n∑
i=1

Θ2
i (8.3)

where n is the number of data samples and Θi is the angle between orientations

for data sample i at two consecutive epochs.

8.8 Performance of VAE on simulated data

In order to test the VAE architecture on a simulated dataset with similar character-

istics, 5000 2D intensity images were generated from heterogeneous particles in

random orientations. The particles were uniform density icosahedra of variable size

and roundness, where the latter was implemented by smoothing and thresholding a

faceted icosahedron.

The VAE with 2 dimensional latent space was trained for 500 epochs and ter-

minated as the loss reached a minimal, stable value that no longer changed across

epochs. Fig. 8.9(a) illustrates the reconstruction performance of the VAE on simu-

lated 2D intensity data at the final epoch. The majority of features were successfully

reconstructed, and the VAE effectively captured the inherent varying features in

the input data. Fig. 8.9(b) displays the latent space representation learned by the

VAE on the simulated data. The red points correspond to the reconstructed data

sample shown in Fig. 8.9(a).

Fig. 8.9(c) presents the distribution of roundness and size parameters used

to generate diffraction patterns from the icosahedral particles. This distribution

reflects continuous variation in shape and roundness which is controlled by σ.
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Figure 8.8: Root mean square deviation (RMSD). Root mean square deviation

(RMSD) vs Epoch. The RMSD values were evaluated between the orientation esti-

mates at two consecutive updates of the Local Optimizer. The update is performed

every 20
th

epoch of the training.

Fig. 8.9(d) and (e) show the latent space representation learned by the VAE, with

data points colored by the ground truth roundness and size, respectively. The latent

space effectively captures the relationships between these parameters.

The pseudocode for a single epoch is described in Appendix Section 1.

8.9 MD Simulation

We employed the Gromacs package [219] for our simulations, utilising the OPLS-AA

force field [61] to investigate the A/B and C/C dimers in vacuum conditions. The

initial configurations were based on the 2MS2 PDB structure [45]. To achieve a total

charge of +10e for the dimers, we protonated specific aspartic and glutamic acid

residues within each subunit [174], adhering to a well-established protocol [61].

Subsequently, the structures underwent a steepest descent energy minimisation fol-

lowed by a brief equilibration at 300K, without the application of periodic boundary

conditions or pressure coupling, to simulate vacuum conditions. Protein dynamics

were monitored over a 20 ns period, with all parameters maintained in alignment

with the established protocol [61].
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Figure 8.9: Simulated Dataset. (a) Comparison between the input 2D intensity

data and the corresponding VAE reconstruction on the simulated dataset. (b) Latent

space representation of the VAE; the red points indicate the data sample shown

in (a), with coordinates provided in the inset. (c) Ground truth distribution of size

and roundness parameters used to generate the simulated dataset of icosahedra

particles. (d, e) Latent space representations of VAE color-coded by roundness and

size, respectively.
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9
Appendix

≺ This chapter provides additional methodological details on developed

code that expands upon the results presented in Chapters 3 and 5 of this

dissertation. The content herein is intended to offer deeper technical insight

and support reproducibility of the described work. ≻

9.1 Training VAE on Simulated Data

Algorithm 2 outlines the training procedure for VAE on simulated diffraction data

that captures shape and size variations of an icosahedral object (see Supplementary

Section 8). The training begins by loading 2D diffraction class averages and their

corresponding orientations, represented as quaternions. During preprocessing,

each intensity image is rescaled and normalized, producing input suitable for the

VAE.

The VAE comprises an encoder that maps each input image and its orientation

vector to a latent distribution in a low-dimensional space (Z ), and a decoder that

reconstructs a 3D volume from a sample drawn from this distribution. For each

mini-batch, the reconstructed volume is symmetrized using Friedel symmetry, and

the input data is subsequently reconstructed by slicing these volumes at known

orientations.

The training loss L is composed of two terms: The squared error term, denoted

LSE, measures the difference between input and reconstructed images, while the

Kullback–Leibler divergence, LKL, regularizes the latent distribution. A standard

β-VAE with β = 1 is used. This training process yields a generative model that
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captures meaningful latent variations in the diffraction data. When applied to

experimental datasets, algorithmic modifications were introduced, as described in

Chapter 3.
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Algorithm 2 Training VAE on Simulated Data

Require: Diffraction frames I , orientations Ω
Ensure: Trained VAE

function PreprocessData

Load 2D intensities I and orientations Ω
Apply scaling and normalization

return (Iinput, Ω)
end function
function VAE(latent_dims)

Define Encoder: (Ib, Ωb)→ µ, σ
Sample latent variable: z ∼ N (µ, σ2)
Define Decoder: z → V̂ (3D volume)

return VAE model

end function
procedure TrainVAE

(Iinput, Ω)← PreprocessData

Initialize VAE with latent space Rlatent_dims

Set optimizer (Adam) and computation device

Define slicing planes from orientations Ω
for epoch = 1 to Nepochs do

for all batches (Ib, Ωb) do
z ← Encoder(Ib, Ωb)
V̂ ← Decoder(z)
Apply Friedel symmetry: V̂sym

Project to 2D: Îb ← Slice(V̂sym, Ωb)
Compute loss:

L = ∥Ib − Îb∥2 + LKL

Backpropagate and update weights

end for
if epoch mod 10 = 0 then

Save model checkpoint and current outputs

end if
end for
return Trained VAE

end procedure
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9.2 Grid Search Optimization

The pseudocode in Algorithms 3 through 6 describes an iterative optimization

routine for reconstructing the Fourier transform of the target object from simulated

diffraction data in scenario of lattice-enhanced holographic-SPI detailed in Chapter 5.

The process begins by initializing a random complex object fobj and a random set of

in-plane orientations θi for each frame. These parameters along with translational

shifts (s) and incident fluence (φ) are then refined over multiple iterations using a

modular pipeline of independent optimization stages.

The optimization cycle comprises three main stages. First, the Parameter Opti-
mizer (Algorithm 4) estimates translation shifts s and incident fluence φ by mini-

mizing the error between the calculated and observed intensities across a coarse

3D grid, followed by local refinement (fine grid search). Second, the Orientation Op-
timizer (Algorithm 5) searches for the best in-plane rotation angle θ for each frame

using a coarse-to-fine grid strategy that first explores a broad parameter range, then

refines the search in a smaller, high-resolution grid. Finally, the Object Optimizer
(Algorithm 6) reconstructs the object’s Fourier transform fobj by optimizing the real

and imaginary components of each pixel, minimizing intensity mismatch across

frames.

This iterative optimization framework, managed by the Optimization Runner
(Algorithm 3), updates all parameters in a loop, gradually improving the estimates

at each step. The grid-based approach, combined with hierarchical refinement,

allows for robust convergence even under noisy input data, making the method

well-suited for practical imaging scenarios.

Algorithm 3 Optimization Runner

procedure Initialize(config_file)

Load Hyperparameters

Initialize random fobj
Initialize random angles θi ∼ U(0, 2π)

end procedure
procedure run optimization(num_iter)

for i = 1 to num_iter do
(s, φ)← Parameter Optimizer(fobj, θ).optimize params()

θ ← Orientation Optimizer(fobj, s, φ).optimize orientation()

fobj← Object Optimizer(s, φ, θ).solve()

end for
return Optimized parameters and fobj

end procedure
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Algorithm 4 Parameter Optimizer

procedure Initialize(Iobs, fobj, θ)

Define grid (h, k)
end procedure
function Grid Search((h, k), fobj, Iobs, (s, φ) ranges)

Form grid of s, φ
Compute Icalc, Error

Return Optimal s∗
,φ∗

, Error
∗

end function
function Analyze Frame(Iobs, (h, k), θ)

Grid Search: Coarse grid

while error change > ε do
Fine search

Grid Search

end while
return Optimal s, φ, Error

end function
function Optimize Params

for each frame i do
Analyze Frame

end for
return si, φi

end function

Algorithm 5 Orientation Optimizer

procedure Initialize(φ, s, fobj, Iobs)

Define grid (h, k)
end procedure
function optimize orientation

for each frame i do
Coarse search over θ ∈ [0, 2π]
Fine search over θ until ∆θ < 10−4

end for
return Optimal θi

end function
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Algorithm 6 Object Optimizer

procedure Initialize(s, φ, θ, Iobs)

Define grid (h, k)
Define coarse search ranges for ℜ(fobj) and ℑ(fobj)

end procedure
function Compute Error Grid(ℜ, ℑ, Iobs)

Form grid of fguess = ℜ+ iℑ
Compute Icalc
Return

∑(Icalc − Iobs)2

end function
function Solve

for each (h, k) do
Coarse search
Fine search

end for
return Optimized fobj

end function
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