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What is fully, completely understood
leaves no trace as memory.
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Abstract

The most successful theory for explaining the matter and forces in our universe is the
Standard Model of particle physics (SM). Despite its success, it is known that the SM
does not and cannot provide a complete description of all fundamental interactions
and observed physics phenomena. Experiments at the CERN Large Hadron Collider
(LHC) are at the forefront of worldwide e↵orts to understand Nature at the smallest
scales and highest energies and to pin down the laws and dynamics that lie beyond the
SM.

This thesis presents two projects that advance the search for new physics in di↵erent
ways.
In the first part of this thesis, a machine learning-based morphing approach is introduced
which has been developed to facilitate particle physics analyses in a broad context by
refining simulations to improve their accuracy.
The second part describes a search for signs of extensions to the SM that are based
on the concept of supersymmetry (SUSY). Such manifestations of physics beyond the
SM are motivated by the fact that they address numerous theoretical issues of the SM
and can provide a dark matter candidate. Specifically, the presented analysis targets
so-called natural SUSY scenarios with low-mass higgsinos, exhibiting compressed mass
spectra.

The refinement tool and its supporting studies demonstrate that classical fast simulation
applications can be augmented to achieve an accuracy very near that of more detailed,
high-fidelity, but compute-intensive simulation engines. This opens up the prospect
for much more e�cient and granular studies of new physics models in the future CMS
physics program.
The analysis presented in the second part of this thesis establishes sensitivity to some of
the last viable phase space regions of natural SUSY, testing for higgsino-like dark matter
candidates with masses up to 180GeV. The data, recorded by the CMS experiment at
the LHC, are found to be consistent with the predictions of the SM, and no evidence
of new physics is found. Higgsinos are excluded for a range of mass splittings between
the lightest chargino and neutralino of 0.3 to 1.2GeV corresponding to cases which were
unconstrained by previous searches.
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Zusammenfassung

Das Standardmodell der Teilchenphysik (SM) ist das Modell, welches das gesammelte
Wissen über die fundamentalen Bausteine und Kräfte unseres Universums am erfolg-
reichsten zusammenfasst. Trotzdem ist bekannt, dass es nur als Teil einer noch unbe-
kannten, umfassenderen Theorie verstanden werden kann. Die Experimente am CERN
Large Hadron Collider (LHC) nehmen eine weltweit führende Rolle darin ein, die Natur
in kleinsten Maßstäben und bei höchsten Energien zu erforschen und so den Gesetzen
und Dynamiken jenseits des SM näher zu kommen.

In dieser Arbeit werden zwei Projekte vorgestellt, die auf unterschiedliche Weise die Su-
che nach neuer Physik voranbringen.
Im ersten Teil der Arbeit wird eine refinement-Methode vorgestellt, die auf maschinellem
Lernen basiert und entwickelt wurde, um die Genauigkeit von Simulationen zu verbes-
sern. Im übergeordneten Kontext kann diese Methode verwendet werden, um generell
Datenanalysen in verschiedenen Gebieten der Teilchenphysik zu verbessern.
Der zweite Teil der Arbeit beschreibt eine konkrete Suche nach Phänomenen, die dafür
sprechen, das SM um das Konzept der Supersymmetrie (SUSY) zu erweitern. Auf SUSY
basierende Erweiterungen des SM sind in der Lage, einer Vielzahl der theoretischen Un-
zulänglichkeiten des SM zu begegnen und eine Erklärung für Dunkle Materie zu liefern.
Im Speziellen werden sogenannte natürliche SUSY-Szenarien untersucht, in denen Higgs-
inos mit sehr kleinen Massendi↵erenzen vorhergesagt werden.

Durch die hier eingeführte refinement-Methode können klassische, sogenannte fast si-
mulation-Anwendungen so erweitert werden, dass sie eine Genauigkeit erreichen, die
sehr nah an die der gängigen detaillierteren, aber rechenintensiveren Simulationsanwen-
dungen herankommt, was in dieser Arbeit durch mehrere Studien gezeigt wird. Dies
erö↵net die Möglichkeit sehr viel e�zienterer detailreicher Suchen nach neuer Physik im
zukünftigen CMS-Physikprogramm.
Die im zweiten Teil beschriebene Analyse ist sensitiv in Phasenraumregionen, die einige
der letzten möglichen Manifestationen natürlicher SUSY-Szenarien beinhalten. Es zeigt
sich, dass die vom CMS-Experiment am LHC aufgenommenen Daten mit den Vorhersa-
gen des SM konsistent sind und somit keine Anzeichen für Physik jenseits des SM vorlie-
gen. In der Analyse können Modelle mit Higgsino-Massen bis zu 180GeV und Massen-
di↵erenzen zwischen 0,3 und 1,2GeV ausgeschlossen werden. Damit wird der in vorange-
gangenen Suchen erforschte Bereich signifikant erweitert.
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1 The Standard Model of Particle
Physics and Beyond

Nearly all knowledge about the building blocks of our universe is encapsulated in a
remarkable theory called the Standard Model of particle physics (SM). Describing all
known fundamental particles and their interactions, the SM has been developed and
validated in great detail throughout the past century [3–7]. One of the most recent
experimental highlights was the observation of a SM-compatible Higgs boson by the
ATLAS and CMS collaborations at the LHC in 2012 [8, 9]. With this discovery, all
particles included in the SM have been experimentally confirmed, whereas, as of yet, no
particle outside the SM has been observed.

In the Standard Model, particles are described as excitations of quantum fields. To-
gether with the notion of invariance under di↵erent symmetries, the theory unfolds.
The particle content of the SM is visualized in Fig. 1.1. It can be divided into fermions
with half-integer spin and bosons with integer spin. The fermions are further divided
into quarks and leptons each arranged in three generations with ascending particle
masses. The first generation quarks, up and down, together with electrons (which are
first generation leptons) form atoms and make up our everyday matter. The gauge
bosons with spin 1 mediate three of the four known fundamental forces: the electro-
magnetic, weak, and strong force. Gravity is the only observed interaction that is not
described in the SM. The Higgs boson is the only SM particle with spin 0 and plays a
central role in spontaneous symmetry breaking, responsible for generating the particle
masses.

In the following, the formulation of the SM based on its Lagrangian density will be
discussed. This exposes the particles along with their interactions and important prop-
erties. The chapter will be concluded by a brief review of hints of physics beyond the
SM, introducing the concept of supersymmetry as a possible way to extend the the-
ory.
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Figure 1.1: Particles of the SM with their mass, charge, and spin [10].

1.1 The Lagrangian of the Standard Model

The Standard Model is formulated as a quantum field theory based on the gauge sym-
metry group SU(3)C ⇥ SU(2)L ⇥ U(1)Y . Here, SU(3)C refers to the group associated
to the strong force which acts on the color charge C and the group SU(2)L ⇥ U(1)Y
describes the electroweak part of the SM. The subscript L indicates that the weak in-
teraction only acts on left-handed particles, and Y is the weak hypercharge. The SM
Lagrangian density is invariant under local SU(3)C ⇥ SU(2)L ⇥ U(1)Y gauge transfor-
mations as well as under global Poincaré transformations, which include translations,
rotations, and Lorentz-boosts.

The full SM Lagrangian can be decomposed into multiple parts, each describing a distinct
part of the theory:

LSM = Lfermion + LQCD + LEWK + LHiggs + LYukawa . (1.1)

Fermions can be represented as 4-component Dirac spinors  (combining two spin states
of a particle and of its antiparticle) that are solutions of the Dirac equation1

(i�µ@µ � m) = 0 . (1.2)

1As throughout this thesis, natural units are used: c = ~ = 1.
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1.1 The Lagrangian of the Standard Model

The 4⇥4 gamma matrices can be written with the three Pauli matrices �i as:

�0 =

0

BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCA , �i =

✓
0 �i

��i 0

◆
i = 1, 2, 3.

With this formalism and the Dirac adjoint  ̄ defined as  ̄ =  †�0, the kinetic term for
fermions reads:

Lfermion = i ̄�µ@µ . (1.3)

Fermion spinors can be decomposed according to chirality into left-handed and right-
handed components. The chiral projection operators are written with �5 = i�0�1�2�3

as

PL =
1

2
(1 � �5) and PR =

1

2
(1 + �5) .

Left-handed particles carry the charge related to SU(2) (weak isospin I3) and are ar-
ranged in isospin doublets with weak isospin values of I3 = ±1

2
:

 L =

✓
n
e

e

◆

L

,

✓
nµ

µ

◆

L

,

✓
nt

t

◆

L

,

✓
u
d0

◆

L

,

✓
c
s0

◆

L

,

✓
t
b0

◆

L

.

The flavor eigenstates d0, s0, b0 and n
e
, nµ , nt mix to form the mass eigenstates d, s, b

and n
1
, n

2
, n

3
.

Right-handed particles carry no weak isospin and are arranged as singlets:

 R = e
R
, µ

R
, t

R
, uR, dR, cR, sR, bR, tR .

Many extensions of the SM also include right-handed neutrinos which allows for neutrino
masses to be non-zero.

To make the Lagrangian invariant under local SU(3) transformations connected to the
theory of quantum chromodynamics (QCD), the derivative in Eq. 1.3 is replaced by
the covariant derivative:

Dµ = @µ + igsT
aGa

µ , (1.4)

where gs is the strong coupling constant and T a are the generators of the SU(3) group,
explicitly represented by T a = �

a

2
with the Gell-Mann matrices �a. The 8 vector fields

Ga correspond to 8 gluons that themselves carry color charge and therefore couple to
themselves and to quarks. Defining the field strength tensor with structure constant
fabc 6= 0 as

Ga

µ⌫ = @µG
a

⌫ � @⌫G
a

µ � gsf
abcGb

µG
c

⌫ , (1.5)
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the QCD Lagrangian becomes:

LQCD = i ̄�µ@µ � gs ̄
�
�µT aGa

µ

�
 � 1

4
Ga

µ⌫G
aµ⌫ . (1.6)

In this way, the kinetic term for fermions (first term) is complemented by a term de-
scribing the interaction between quarks and gluons (second term) and a third expression
including the kinetic term for gluons as well as their self-interaction in the form of three-
and four-gluon vertices.

To describe the electroweak part of the SM, local invariance under SU(2)L ⇥U(1)Y is
required. The corresponding generators for SU(2) are defined with the Pauli matrices
�a to be T a = �

a

2
. Three new vector fields W a

µ are introduced with field strength tensor
W a

µ⌫ and coupling constant g analogously to Eq. 1.5:

W a

µ⌫ = @µW
a

⌫ � @⌫W
a

µ � g✏abcW b

µW
c

⌫ , (1.7)

where ✏abc is the structure constant. On the other hand, invariance under U(1) leads to
one new gauge field Bµ with field strength tensor

Bµ⌫ = @µB⌫ � @⌫Bµ . (1.8)

With this, the Lagrangian reads

LEWK = i ̄L�
µDµ L + i ̄R�

µDµ R � 1

4
W a

µ⌫W
aµ⌫ � 1

4
Bµ⌫B

µ⌫ . (1.9)

It di↵erentiates between left- and right-handed fermions and the respective covariant
derivatives are:

Dµ,L L =

✓
@µ +

ig

2
�aW a

µ +
ig0

2
Y Bµ

◆
 L (1.10)

Dµ,R R =

✓
@µ +

ig0

2
Y Bµ

◆
 R. (1.11)

In order to include mass terms of the form �m ̄ in the SM Lagrangian, the Higgs

mechanism postulates a complex SU(2) doublet with spin 0:

� =

✓
�+

�0

◆
=

✓
�1 + i�2

�3 + i�4

◆

with corresponding Lagrangian

LHiggs =
��Dµ�

��2 � V (�). (1.12)
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1.1 The Lagrangian of the Standard Model

The potential is assumed to have the form

V (�) = µ2 |�|2 + � |�|4 , (1.13)

where µ and � are free parameters. However, for the vacuum to be stable � > 0
has to be fulfilled otherwise the potential would not be bounded from below. Also,
only µ2 < 0 leads to the desired e↵ect of spontaneous symmetry breaking where the

minimum of the potential lies at |�| = v =
q

�µ
2

�
6= 0 with the vacuum expectation

value v.

Expanding the Higgs field around this minimum using the unitary gauge,

� =
1p
2

✓
0

v +H

◆
, (1.14)

and inserting it into the first part of the Lagrangian (Eq. 1.12), the physical gauge bosons
and their masses are exposed:

m
W

± =
v

2
g , mZ =

v

2

q
g2 + g0

2
, mA = 0.

Here, the W± bosons are linear combinations of W1,2, W
± = (W1 ⌥ iW2)/

p
2, and the

physical Z boson and photon A are formed by rotating the W3 and B fields by the
Weinberg angle ✓W :

✓
A
Z

◆
=

✓
cos ✓W sin ✓W

� sin ✓W cos ✓W

◆✓
B
W3

◆
.

Given this, the potential can now be written as

V (�) = �µ2H2 + �vH3 +
1

4
�H4 (1.15)

and includes the mass term of the physical Higgs boson with mH =
p
2µ2 and its self-

interaction in the form of three- and four-vertex couplings.

Finally, also fermions acquire mass through spontaneous symmetry breaking by aYukawa

interaction between their fields and the Higgs field:

LYukawa = �
cfvp
2
 ̄L R �

cfp
2
 ̄LH R. (1.16)

One can see that the coupling strength of a fermion to the Higgs field is proportional to
its mass mf = cfv/

p
2.
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1.2 Indications of Physics Beyond the Standard Model

Despite the SM’s success in explaining and predicting a vast and comprehensive set of
experimental outcomes, including the measurement of cross-sections over many orders
of magnitude, it can only be understood as an approximation to a yet unknown more
fundamental theory or even a theory of everything. Reasons in the form of experimental
evidence include the following:

• The existence of gravity is not explained by the SM. The Planck scale ⇤Planck ⇡
1028 eV (many of orders of magnitude larger than what is probed with current high-
energy physics experiments) marks the energy scale at which a theory of quantum
gravity becomes necessary.

• In the Big Bang, unequal amounts of matter and antimatter were produced. This
baryon asymmetry can not be explained within the SM, which predicts that
any asymmetry is constrained by the amount of CP violation.

• The accelerated expansion of the universe is assumed to be driven by a form of
energy called dark energy. Although it is measured to constitute the largest
share of the universe’s energy density (roughly 68% [11]), the SM provides no
explanation of dark energy.

• Moreover, there is a host of observations that imply the existence of an additional
form of matter that does not interact electromagnetically or via the strong in-
teraction, referred to as dark matter. Measurements of the cosmic microwave
background by the Planck collaboration, interpreted within the standard model of
cosmology, indicate that dark matter makes up approximately 27% of the energy
density of the universe, compared to only 5% attributed to ordinary matter [11].
Its e↵ects can also be observed in multiple ways including gravitational lensing,
structure formation, and rotational curves of galaxies.

Additionally to such experimental hints for physics beyond the SM, also conceptual
flaws have been pointed out. These include the large number of free parameters (mainly
the masses of the particles) and the hierarchy problem. The latter refers to the
fact that the mass of the Higgs boson receives radiative corrections proportional to
the energy scale of the theory in which the SM is to be embedded. Assuming this
scale to be ⇤Planck ⇡ 1028 eV, it appears highly unnatural that the corrections can-
cel to the level necessary to explain the measured Higgs boson mass of approximately
125GeV.
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1.3 Supersymmetry

1.3 Supersymmetry

Supersymmetry (SUSY) is a compelling concept that extends the SM and addresses
several of the above mentioned puzzles [12]. It postulates a symmetry between fermions
and boson and thus predicts the existence of yet-to-be-observed particles. The minimal
supersymmetric Standard Model (MSSM) is the realization of SUSY which introduces
the least number of new particles. Its particle content can be seen in Fig. 1.2. The
SM Higgs doublet is extended to contain two such doublets, leading to four additional
Higgs bosons. The superpartners of the SM fermions are scalar bosons with spin 0
and are denoted with a prepending “s”, e.g., selectron referring to the superpartner of
the electron. For the names of the superpartners of the SM bosons, the su�x “-ino”
is appended to those of their SM counterparts. The superpartners of the SM gauge
bosons are called gluino, bino, and wino; whereas those of the Higgs bosons are named
higgsino.

Together with the neutral higgsinos eH0

u and eH0

d , the bino eB and neutral wino fW 0

mix to form mass eigenstates e�0

i called neutralinos with i 2 {1, 2, 3, 4} ascending in
mass. Using these states as basis vectors, the mixing is characterized by the mass
matrix

MN =

0

BB@

M1 0 �g0vd/2 g0vu/2
0 M2 gvd/2 �gvu/2

�g0vd/2 gvd/2 0 �µ
g0vu/2 �gvu/2 �µ 0

1

CCA , (1.17)

where M1, M2 and µ are the bino, wino and higgsino mass parameters, respectively, and
vu,d are the vacuum expectation values of the Higgs doublets.

Similarly, the charged winos fW± and the charged higgsinos eH+

u and eH�
d
mix to chargino

states e�±
i (i 2 {1, 2}) according to the mass matrix

MC =

✓
M2 gvu/

p
2

gvd/
p
2 µ

◆
. (1.18)

In the context of the MSSM, a new quantum number called R-parity is introduced
as:

PR = (�1)3B+L+2s. (1.19)

Here, B is the baryon number, L the lepton number, and s the spin of a particle.
Particles of the SM have R-parity +1 and their superpartners PR = �1. If R-parity
is conserved, SUSY particles can only be produced in even numbers. Conservation of
R-parity is motivated for example by the stability of the proton. Furthermore, it leads
to the fact that the lightest supersymmetric particle (LSP) is stable which makes it a
suitable dark matter candidate.
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Figure 1.2: Particle content of the minimal supersymmetric Standard Model divided into
particles with R-parity +1 (left) and -1 (right) [10].

The hierarchy problem of the SM receives an elegant solution in the MSSM. The seem-
ingly accidental cancellations in the radiative corrections to the Higgs boson mass are ex-
plained by the fact that fermions and bosons contribute with opposite sign.

It is noted that an unbroken version of supersymmetry would mean that the superpart-
ners of the SM particles should have the same mass as their counterparts. Apparent from
the absence of evidence for such particles, SUSY must therefore be a broken symmetry.
If the superpartner masses are too large, a new fine-tuning problem arises. Still, the
corresponding little hierarchy problem is orders of magnitude smaller than the original
hierarchy problem. Its extent can be quantified by the electroweak fine-tuning param-
eter �EW [13] which is defined in the following way: First, minimization of the MSSM
potential leads to the relation

m2

Z

2
=

(m2

Hd
+ ⌃d

d) � (m2

Hu
+ ⌃u

u) tan
2 �

tan2 � � 1
� µ2 , (1.20)

where Hd and Hu refer to the two supersymmetric Higgs doublets, tan � = vu/vd to the
ratio of their vacuum expectation values, and ⌃d

d and ⌃u

u are loop corrections. Now, the
electroweak fine-tuning parameter is defined with the individual contributions Ci in the
expanded version of Eq. 1.20 to be

�EW = max
i

|Ci|
m2

Z/2
, (1.21)
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1.3 Supersymmetry

with CHd
= m2

Hd
/(tan2 ��1), CHu

= �m2

Hu
tan2 �/(tan2 ��1), Cµ = �µ2, and C

⌃
d
d(k)

=

�⌃d

d(k)/(tan
2 ��1), C

⌃
u
u(k)

= �⌃u

u(k) tan
2 �/(tan2 ��1) where k labels the various loop

contributions.

Natural realizations of SUSY with low fine-tuning require µ to be close to the SM Z
boson mass and are thus generally characterized by higgsino-like charginos and neu-
tralinos with masses . 200GeV, third-generation squarks with masses . 1.5TeV and
gluinos with mg̃ . 3TeV [13]. Part II of this thesis presents a search for such mod-
els, targeting the decay of higgsino-like charginos featuring low-momentum, isolated
and mildly displaced pions along with a large magnitude of missing transverse momen-
tum.
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2 The CMS Experiment at the Large
Hadron Collider

In order to experimentally scrutinize the SM and examine its theorized extensions, ar-
guably the best setup is provided by high-energy particle accelerators. As the world’s
largest and most powerful accelerator, the Large Hadron Collider (LHC) enables unpar-
alleled insights into the subatomic world. It is located at the CERN research facility
in and around Geneva, Switzerland, and hosts four main experiments residing at four
interaction points along its circular path. The research for this thesis was performed
on simulations for and data recorded by one of those experiments, the Compact Muon
Solenoid (CMS), which is introduced in this chapter.

2.1 The Large Hadron Collider

The LHC is a circular particle accelerator with a circumference of 27 km designed to op-
erate at a proton-proton center-of-mass energy of up to

p
s = 14TeV. It is embedded in

the CERN accelerator complex as the final part, in which the particles gain their highest
energies after having gone through a chain of pre-accelerators as depicted in Fig. 2.1.
The particles (most of the time protons but also heavy lead ions) pass through the LHC
ring in two opposing beams and are brought to collision at four interaction points. At
each of those points, a particle detector is located: ATLAS, ALICE, CMS, and LHCb
in a clockwise direction from the CERN main campus.

Apart from the center-of-mass energy, the (instantaneous) luminosity L is a determining
property of a particle collider. It can be used to calculate the rate of a given process
with cross section �:

dN

dt
= L ⇥ � . (2.1)

By integrating over a period of time, the integrated luminosity L is given by

L =

Z
L dt . (2.2)
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2.1 The Large Hadron Collider

Figure 2.1: Schematic of the CERN accelerator complex [14].
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2 The CMS Experiment at the Large Hadron Collider

Time periods over which the LHC collides particles with a similar set of conditions
are called Runs, where Run 1 refers to the years 2010 through 2012 with collisions atp
s = 7TeV and 8TeV, and a total delivered luminosity of approximately 30 fb�1. After

the first long shutdown, Run 2 started in 2015 and lasted until 2018 with
p
s = 13TeV

and L ⇡ 150 fb�1. The currently ongoing Run 3 started in 2022 and is characterized
by the highest ever center-of-mass energy of 13.6TeV. Also, the mean number of hard
interactions per beam crossing (referred to as pileup) is greater than in all previous years
as can be seen in Fig. 2.2.
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Figure 2.2: Left: Integrated luminosity delivered by the LHC and recorded by CMS
cumulative over the course of the three Runs. Right: Breakdown of recorded
luminosity by year and mean number of interactions per crossing [15].

2.2 The CMS Experiment

The Compact Muon Solenoid (CMS) detector is one of the two multi-purpose particle
detectors at the LHC, located approximately 100 meters below ground near the French
village of Cessy. It is built like a cylindrical onion with multiple sub-detectors layered
around the interaction point and measures 29 meters in length and 15 meters in diameter
(a big onion). Figure 2.3 shows an overview of the detector components along with some
of their most important features. In the following, a brief summary of the components
is given; more details can be found in Ref. [16].

The eponymous superconducting solenoid magnet generates a magnetic field of 3.8T
in which the trajectories of charged particles are bent according to their charge and
momentum. Enclosed by the magnet, the tracking detectors and calorimeters provide
momentum and energy measurements. The innermost part, the pixel tracker — up-
graded in 2016/2017 as described in Ref. [18] — consists of 124 million silicon sensors
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2.2 The CMS Experiment

Figure 2.3: A cutaway view of the CMS detector with its various subdetectors and im-
portant features [17].
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2 The CMS Experiment at the Large Hadron Collider

sized 100⇥150µm2. They are arranged in concentric cylindrical layers around the beam
pipe (referred to as the barrel part, BPIX) and in disks in the forward region (FPIX) as
seen in Fig. 2.4. The pixel tracker is surrounded by a silicon strip detector, adding 9
million channels to the tracking system. The setup achieves a resolution of the transverse
impact parameter with respect to the primary interaction vertex as precise as 20µm for
tracks with transverse momentum pT & 10GeV (60µm for pT ⇡ 1GeV) [19]. The reso-
lution of the transverse (longitudinal) position of the primary interaction vertex reaches
10µm (15µm) [20].

Figure 2.4: Layout of the CMS pixel tracker before (bottom) and after (top) the Phase-1
upgrade between the 2016 and 2017 data taking [18].

Apart from the tracker, the volume within the solenoid magnet also houses two calorime-
ter systems, designed to stop emerging particles and measure their energies. The
electromagnetic calorimeter consists of 76,000 scintillator crystals made from lead
tungstate (PbWO4), that act both as an absorber and active material. The hadron

calorimeter on the other hand is built as a sampling calorimeter with alternating layers
of brass as the absorber and plastic scintillator as the active material. Both calorimeter
systems include barrel parts and endcaps extending the coverage to regions close to the
beam pipe.

The outermost part of the detector is the muon system which is embedded in the
steel return yoke outside the magnet coil. It consists of various types of gas-ionization
chambers (drift tubes, resistive plate chambers, and cathode strip chambers) providing
measurements of muon tracks passing through the detector.

As it is not feasible to store the detector response of all occurring collisions, a two-tiered
trigger system is employed, which reduces the rate of events to be read out from 40MHz
to ⇡ 1 kHz. It consists of the Level-1 (L1) trigger implemented in custom hardware which
enables a latency of 4µs [21]. The trigger decision is made by combining information from
the calorimeters and the muon systems, yielding a simplified description of the full event.
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2.2 The CMS Experiment

The second tier, the High-Level Trigger (HLT), uses the full detector information and is
run on a farm of CPU processors. Upon selection by the HLT, events are transferred to
the Tier 0 data center for reconstruction and storage.

The origin of the coordinate system used for the CMS experiment sits at the nominal
interaction point, that is, the center of the detector. The x-axis then points towards
the center of the LHC ring, the y-axis upward, and the z-axis along the beam pipe

towards the Jura Mountains. Therefore, the transverse momentum is pT =
q
p2x + p2y.

As shown in Fig. 2.5, the azimuthal angle ' is the angle in the x-y (transverse) plane to
the x-axis and the polar angle ✓ in the z-y plane to the z-axis. Most often, to state the
direction of a particle, the polar angle is transformed to the pseudorapidity ⌘ according
to

⌘ = � ln

✓
tan

✓
✓

2

◆◆
(2.3)

in order to obtain invariant di↵erences under Lorentz-boosts along the z-axis. To express
the angular distance between particles, the distance measure �R =

p
�'2 +�⌘2 is

typically used.

Figure 2.5: The CMS coordinate system and a visualization of the definition of pseudo-
rapidity [10].

2.2.1 Object Reconstruction

In each collision event, a multitude of particles are created both from the primary
(highest-energetic) proton-proton collision as well as from additional pileup interactions.
The aim of the global event reconstruction is to identify each of those particles by com-
bining information from all detector sub-systems. In CMS, the Particle Flow (PF)
algorithm is used for this task [22]. It makes use of the fact that di↵erent particle types
leave di↵erent traces in the detector. For example, as shown in Fig. 2.6, electrons leave
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2 The CMS Experiment at the Large Hadron Collider

a track in the silicon tracker and afterwards deposit their energy in the electromagnetic
calorimeter.

The PF algorithm starts by linking tracks reconstructed in the tracker to energy clusters
in the calorimeters, forming so-called PF blocks. Additional ECAL energy deposits are
linked to the block if they are located tangentially to the track, capturing bremsstrahlung
photons. As the first physics objects, muons are identified if a PF block has an asso-
ciated track in the muon chambers and the various elements fulfill certain quality and
consistency criteria. The elements used are then “locked” and not considered in the
following steps of the algorithm. Next, electrons and photons are constructed from
PF blocks comprised of clusters in the ECAL with (electrons) and without (photons)
matching tracks. Energy deposits in the ECAL and HCAL without a matching track
are interpreted as neutral hadrons, whereas charged hadrons are identified by combining
tracks and calorimeter clusters.

1m 2m 3m 4m 5m 6m 7m0m

Transverse slice
through CMS

2T

3.8T

Superconducting
Solenoid

Hadron
Calorimeter

Electromagnetic
Calorimeter

Silicon
Tracker

Iron return yoke interspersed
with Muon chambers

Key:
Electron
Charged Hadron (e.g. Pion)

Muon

Photon
Neutral Hadron (e.g. Neutron)

Figure 2.6: Transverse slice through the CMS detector with characteristic traces left by
di↵erent particle species [22].

In the following, the reconstruction of tracks and the formation of jets is described in
more detail.

Tracks To reconstruct the helical paths of all charged particles in an event, an iterative
algorithm based on Kalman filtering is run on the tracker hits [20]. Each iteration con-
sists of three steps: In the first step, referred to as seeding, two or three hits are identified
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2.2 The CMS Experiment

as a starting point for the next steps. The track finding is then performed by extrapolat-
ing the track candidate from its seed along the expected path and progressively adding
hits. As a third step, track fitting is performed to constrain the track parameters and
get their uncertainties. Finally, track candidates are kept or discarded depending on
the number of hits and the quality of the fit. These three steps are run multiple times
iteratively with di↵erent seeding configurations and quality criteria, targeting first the re-
construction of high-momentum prompt tracks with later iterations tailored to displaced
and/or lower-momentum tracks, possibly with missing hits.

The standard track parameterization used in CMS is based on five quantities defined at
the reference point of the track (x0, y0, z0), which is the point of closest approach to the
nominal interaction point, i.e., the center of the detector:

1. Azimuthal angle '0

2. Dip angle � = ⇡

2
� ✓

3. Signed inverse momentum q/|~p|

4. Signed minimal distance in the transverse plane between the straight line passing
through (x0, y0) with angle ' and the point (0, 0):

dxy
0
= �x0 sin(') + y0 cos(')

5. Signed minimal distance in the s-z-plane between the straight line passing through
(x0, y0, z0) with angles ' and � and the point (s = 0, z = 0). The s-axis is defined
by the projection of this straight line onto the transverse plane:

dsz0 = z0 cos(�) � (x0 cos(') + y0 sin(')) sin(�) .

See Section 3.1 of Part II for further discussion of soft and displaced tracks.

Jets The objects reconstructed by the PF algorithm, collectively referred to as PF can-
didates, are also used to construct higher-level objects like jets. For the clustering of jets,
the anti-kT algorithm [23] is run on all reconstructed PF candidates. Most often, the dis-
tance parameterR is set to 0.4 (AK4 jets) or 0.8 (AK8 jets).

An important aspect of reconstructing jets is the rejection of particles from pileup in-
teractions. This can be achieved by omitting PF candidates with a track which is
associated to a pileup vertex. This procedure is e↵ective in rejecting charged hadrons
from pileup interactions — and is thus known as charged hadron subtraction (CHS)
— but falls short in covering neutral particles and particles outside the tracker accep-
tance.
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2.3 Simulation

A crucial part of all LHC experiments, like all modern high-energy physics experiments,
is the accurate simulation of particle collisions (the event), the detector response, and
subsequent reconstruction. This is realized using stochastic Monte Carlo (MC) tech-
niques and involves multiple steps and dedicated software applications.

GEN In the first step, the collision of two protons is simulated using an event gen-
erator like MadGraph [24] or pythia [25]. Mainly due to the composite nature of
protons, this step includes the simulation of many individual processes as depicted in
Fig. 2.7.

Figure 2.7: Diagrammatic representation of an LHC event showing the collision of two
protons (denoted by three incoming green lines from left and right). The
hard interaction (large red circle) is followed by the decay of the produced
particles (small red circles), the hadronization marked in light green and
the hadron decays (dark green). Additionally to the hard interaction, the
remaining initial state partons also interact (purple blob). Photon radiation
is marked with yellow curly lines [26].
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2.3 Simulation

SIM The next step involves the simulation of the passage of the final state particles as
produced by the GEN step through the detector. It relies on a detailed representation
of the detector geometry and a precise simulation of the interaction with the detector
material, implemented, for example, in Geant4 [27–29].

DIGI & RECO Subsequently, the simulated detector hits are digitized. The output of
this step is equivalent to what is recorded by the detector in the real experiment. The
event reconstruction as described in Section 2.2.1 is then also run on the simulated event,
yielding the objects that are used for further analysis.

2.3.1 The CMS Fast Simulation Framework

In CMS, two simulation chains are used that trade o↵ between accuracy and speed. The
fast simulation application (FastSim) [30, 31] is, including all steps, approximately 10
times faster than the traditional high-fidelity Geant4-based full simulation (FullSim).
This speed-up is possible by a number of simplifications, e.g.,

• fast calorimetry based on GFLASH [32],

• simplified detector geometry (infinitesimally thin layers),

• parametrized material interactions,

• fast tracking in the RECO step using information from the event generator.

Figure 2.8 shows the CPU time per event consumed by the SIM step (in which the
speed advantage of FastSim is most prominent) for FullSim and FastSim for two di↵erent
physics processes and for di↵erent versions of the CMS software framework (cmssw).

Generally, the FastSim output is in good agreement (within 10%) with the respective
simulated data using FullSim, but the speed-up also comes at the price of decreased
accuracy in some final analysis observables. In Part I of this thesis, a method to refine the
output of the FastSim chain and thus improve the agreement with FullSim is presented.
This e↵ort aims at expanding the usage of FastSim within the collaboration which, in
turn, is an important aspect of staying within the computing budget for the coming
Runs of LHC operation featuring higher luminosity and more granular detectors, see
Fig. 2.9.
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Figure 2.8: CPU time performance of CMS FullSim and FastSim for the SIM step, sim-
ulating two di↵erent physics processes. The numbers are given for di↵erent
computer architectures and versions of cmssw [33].

Figure 2.9: Projection of the total CPU time needed in CMS considering two scenarios:
a baseline with no R&D and a scenario with the most probable outcome
of ongoing R&D activities (blue lines). The gray shaded area shows the
projected available resources [34].
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Part I

Machine Learning-Based Refinement
of Simulations

As introduced in Section 2.3 of the Introduction, the CMS Collaboration uses a fast sim-
ulation chain (FastSim) as an alternative to the high-fidelity yet more resource-intensive
full simulation framework (FullSim). The usefulness of FastSim and the positive impact
of its usage on the computing budget rely on its accuracy. Ongoing e↵orts to improve the
accuracy of FastSim aim to optimize its internal algorithms and the parameterizations
used. In contrast to these approaches, this part introduces a method that uses ma-
chine learning (ML) to apply a post-hoc modification to the FastSim output improving
its accuracy. This refinement strategy makes maximum use of the domain knowledge
contained in the FastSim framework and applies a relatively small deterministic residual
correction. This technique and corresponding machine ML architecture are much lighter
than many other applications of (generative) ML for LHC simulations that attempt to
learn the feature space from random noise. The task can be understood as a general
distribution matching or morphing problem which is approached by training a regression
neural network with a dedicated ensemble-based loss function. The method is described
in detail in Chapter 1. Chapter 2 shows that the refinement, applied to various use cases,
leads to a considerably improved agreement with the target distribution not only in one-
dimensional projections but also considering correlations between observables. Beyond
this application, Part II of this thesis also makes use of the method in the context of
refining Monte Carlo simulation targeting real data.



1 Refinement Method

The basic concept of the refinement method is the application of a regression neural
network as a post-hoc correction to selected observables produced by a given simula-
tion chain. In doing so, the agreement of the simulation with a target is improved.
The agreement can be measured in one-dimensional marginal distributions as well as
in correlations within the set of refined and additional observables. Importantly, the
method does not apply weights in order to improve the distribution-level agreement —
like classical histogram-based techniques or, e.g., theDctr approach [35] — but instead,
the values of the observables are modified. This preserves the statistical power of the
input data set1 and enables a multidimensional and unbinned correction which is not
limited to the domain of the input, like it is the case when applying weights. However,
this approach does not inherently correct for e�ciency biases, meaning that simulated
data points are always shifted in the multidimensional feature space but cannot be dis-
regarded or down-weighted. Other realizations of the refinement idea can be found in
Refs. [36–39].

This application of machine learning for high-energy physics simulations is di↵erent from
many others, e.g., generative modeling for calorimeter simulations (see [40] for a review),
as it builds on the established, classical (fast) simulation engine and its physics-based
domain knowledge. It does not add additional stochasticity to the simulation, but is of
deterministic nature ensuring traceability. It is assumed that the simulation which is
refined already contains the needed stochasticity.

The vector of features to be refined is denoted by x
0 and after refinement by x̂(✓), the

latter depending on the network parameters ✓. The vector x refers to the corresponding
features in the target data set. Each element of x0 is taken as input to the refiner net-
work, possibly along with conditioning variables y0, concatenated as a0 = (x0,y0)|. In the
presented studies, additional “hidden” observables of the input (target) dataset h0 (h)
are used as a proof of principle of the method. Although they are not directly re-
fined, the refined correlations corr(x̂,h0) are studied regarding their agreement with
corr(x,h).

1A weighted data set composed of N samples with weights wi (with mean w and variance s2w =
1
N

PN
i=1(wi � w)2) has the same relative statistical fluctuations as a data set composed of Ne↵.

unweighted samples, where Ne↵. = (
P

i wi)
2/
P

i w
2
i = N/(1 + (s2w/w)2) < N .
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1.1 Network Architecture

1.1 Network Architecture

The refiner network is built as a residual network, which means that before training
it acts as the identity function. This is achieved by using residual blocks consisting of
multiple fully-connected linear layers supplemented by a skip connection which adds
the input of the first layer of a block to the output of the last layer, see Fig. 1.1. The
trainable network parameters are initialized according to the Fixup method [41]: All
biases are set to zero before training, as are the weights of all linear layers except for the
first of each residual block which are initialized by the Kaiming initialization [42]. The
architecture is inspired by the ResNet model [43, 44].

Additional pre- and post-processing layers might be added to the network to apply
transformations to the variables, e.g., to increase their dynamic range or to ensure
boundary conditions given by the problem at hand.

Figure 1.1: Depiction of a residual block with two linear layers and a skip connection
used to initialize the refinement network as the identity mapping.

1.2 Loss Functions

The method makes use of two types of loss function to measure the similarity between the
network output and the target, the maximum mean discrepancy and the mean squared
error. First, estimators of the maximum mean discrepancy (MMD) are used as
ensemble-based distance measures. The MMD is an integral probability metric that
measures the distance between two distributions via their embeddings in a reproducing
kernel Hilbert space [45].

Given two samples from the distributionsA and Â, denoted by {ai}i=1,...m and {âi}i=1,...m,
with vectors ai = (a1i , ..., a

na
i
)| and âi = (â1i , ..., â

na
i
)| (where na is the number of dimen-

sions), two estimators of the MMD can be calculated; the biased MMDb (Eq. 1.1) and
the unbiased MMDu (Eq. 1.2):
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MMDb(✓) =
1

m2

mX

i,j=1

k(ai, aj) +
1

m2

mX

i,j=1

k(âi(✓), âj(✓)) � 2

m2

mX

i,j=1

k(ai, âj(✓)) , (1.1)

MMDu(✓) =
1

m(m � 1)

mX

i=1

mX

i 6=j

k(ai, aj) +
1

m(m � 1)

mX

i=1

mX

i 6=j

k(âi(✓), âj(✓))

� 2

m2

mX

i,j=1

k(ai, âj(✓)) . (1.2)

Both estimators use a kernel function k which is chosen to be the Gaussian kernel

k(a, â) = exp

 
�

naX

l=1

(âl � al)2

�2

l

!
, (1.3)

with bandwidth set by the median heuristic for each dimension: �l = median{ka0li �
aljk : i, j 2 [m]} [45]; this ensures similar influence from each dimension with possibly
di↵erent scales. Choosing the median distance is reasonable since a too large bandwidth
would put all possible values of k(a, â) close to one, suppressing the gradient of the
MMD with respect to the network weights during training, and a too small bandwidth
decreases the “e↵ective batch size” since most terms in the sums are very close to
zero.

The first (second) terms in Eq. 1.1 and Eq. 1.2 are sums over all possible pairs of
data points within the target (output) data set. For each pair, the kernel function is
evaluated. The di↵erence between the biased and unbiased estimator is that in the first
case, the “diagonal elements”, pairings of a data point with itself, are included. For
the third terms, which are subtracted from the sum of the first two, all output data
points are paired with all target data points and the kernel function is evaluated. The
result of the subtraction is a large number if the multidimensional overlap between the
output and target data sets is small and a small number when the overlap is great.
For the biased estimator, the lower bound of MMDb is zero whereas for the unbiased
estimator, the expectation value of MMDu for two iid samples is zero, allowing MMDu

to be negative.

Furthermore, the mean squared error (MSE) is used as a pairwise distance mea-
sure. It requires an element-by-element matching of the output and target samples.
Additionally to the standard MSE (Eq. 1.4), the Huber loss (Eq. 1.5) might be used
which combines the MSE and the mean absolute error (MAE), reducing the influence of
outliers.
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1.3 Training Schemes

MSE(✓) =
1

m

mX

i=1

||âi(✓) � ai||2. (1.4)

Huber(✓) =
1

m

mX

i=1

hi , (1.5)

hi =

⇢
0.5||âi(✓) � ai||2 if ||âi(✓) � ai|| < �

� (||âi(✓) � ai|| � 0.5�) otherwise
with � = const .

1.3 Training Schemes

Fundamentally, the training of the refinement network depends on whether the input and
target data sets can bematched. This means that a given sample of the input data set has
a corresponding sample in the target data set, sharing, e.g., a common ground truth. If
this is possible, the pairwise MSE (or Huber) loss function can be meaningfully defined.
Otherwise, only the ensemble-based MMD loss can be used.

This section describes various training schemes using one or multiple loss terms, introduc-
ing important algorithmic aspects and possible (dis)advantages. Figure 1.2 summarizes
the training setup of the refinement network.

Figure 1.2: Sketch of the refinement network and the training setup. The variables to
be refined are denoted by x

0 and after refinement by x̂. The loss functions
MSE and MMD are used to compare the output of the network to the target
x. Additional variables y

0 can be used to condition the network and as
extra dimensions in the MMD loss to include their correlations to the refined
variables in the training objective.
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1 Refinement Method

1.3.1 Single Loss Term

Only MMD

The vanilla training scheme using only the MMD loss has the advantage that it is sim-
ple to implement and e�cient in correcting the distribution-level agreement between
the refined and target data sets. Furthermore, it does not require a matching between
the input and target data set and is therefore also suitable for the refinement of a sim-
ulation output with respect to distributions of real data. For the training, the biased
estimator is preferred over the unbiased estimator, since it is bounded from below at
zero. A possible shortcoming is that if the input and target data sets exhibit a large
discrepancy in an additional dimension which is not an input to the MMD, this dis-
crepancy can lead to incorrect morphing in the superspace including the additional
dimension.

Only MSE

Training the refinement network with only the MSE loss leads to undesired results. This
is due to the independent stochastic nature of the simulation chains, which leads to
many data points where a feature value far from the mean is matched to a target data
point likely closer to the mean. Therefore the input sample will be modified towards
less extreme values. This regression to the mean e↵ect leads to an underrepresentation
of samples in the tails of all feature distributions. Importantly though, deterministic
biases between the input and target data sets can be corrected via the pairwise match-
ing manifest in the MSE loss, which indirectly encodes information about correlations
among refinable and hidden observables. Therefore, a pairwise loss function like the
MSE can be used together with the ensemble-based MMD loss as described in Sec-
tion 1.3.2.

1.3.2 Multiple Loss Terms

Training a neural network with multiple, possibly counteracting, loss terms is a multi-
objective optimization which, in general, has no solution that minimizes all objective
functions simultaneously. The set of all optimal solutions X out of all possible solutions
Y defines the Pareto front. In the bi-objective case with loss functions f and g, a so-
lution ✓? 2 X is considered optimal if there is no solution ✓ 2 Y with f(✓) < f(✓?)
and g(✓) < g(✓?). Solutions may exist with lower values of f or g but not both,
as visualized in Figure 1.3. The shape of the Pareto front for a given (neural net-
work) optimization problem is a priori unknown, it can be convex, concave, or a mix-
ture.
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1.3 Training Schemes

Combinations of multiple loss terms are omnipresent in the ML literature, be it that
models are trained for multiple tasks, weight regularization terms are added, or in the
case of the generative adversarial network setup, where a generator and a discriminator
network are trained simultaneously. In the training of the refinement network, the MMD
and MSE can be identified as two (competing) loss functions, addressing stochastic and
deterministic biases respectively. The following sections describe ways in which the two
loss functions can be combined.

Figure 1.3: Visualization of a convex Pareto front in the bi-objective optimization with
objective functions f1 and f2 [46].

Fixed Weights

An obvious choice when combining multiple loss terms is to use their weighted sum as
the objective function. The weights may be chosen to strike a desired balance between
the two loss functions. However, this choice does not necessarily allow convergence to
all points on the Pareto front neither does it allow directly choosing the desired point
on the Pareto front [47]. Essentially, using the sum of multiple losses with fixed weights
transforms the problem into a single-loss optimization.

MDMM Algorithm

The modified di↵erential method of multipliers (MDMM) algorithm is a solution to the
multi-loss optimization problem which reformulates the network training as a constrained
Lagrangian optimization [48]. Identifying a primary loss f(✓) and an additional loss
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1 Refinement Method

g(✓), which both are functions of the network parameters ✓, the Lagrangian is written
as

L(✓,�) = f(✓) � � ("� g(✓)) . (1.6)

The objective is to minimize the primary loss subject to the constraint g(✓) = ". Im-
portantly, the Lagrange multiplier � is not a constant weight but is updated during
training via gradient ascent in contrast to the network parameters ✓ which are opti-
mized, as usual, via gradient descent. Hence, the Lagrangian is minimized with respect
to the network parameters and maximized with respect to the Lagrange multiplier.
In order to ensure convergence, an additional damping term �

2
("� g(✓))2 is added to

the Lagrangian. By choosing the value of ", the desired location on the Pareto front
can be converged on, as mathematically formalized in the Karush–Kuhn–Tucker condi-
tions [49, 50].

For the application of the MDMM algorithm to the training of the refinement network,
either the MMD or the MSE are treated as the primary loss. Both choices are elaborated
in the following.

Primary Loss MMD Choosing the MMD as the primary loss while placing a constraint
on the MSE is well motivated since the aim of the refinement is the agreement of the out-
put and target distributions. However, the corresponding target value for the MSE is not
apriori calculable, and typically requires empirical tuning.

Primary Loss MSE Using the MSE as the primary loss and the unbiased estimator of
the MMD as the constrained loss functions comes with the advantage that the target
value " has a natural choice which is zero, the expectation value for two iid samples. It
is important to choose an appropriate starting value of the Lagrange multiplier � 6= 0
such that the influence of the MSE at the start of the training does not lead to an
overcorrection of values in the tails but is balanced by the MMD constraint from the
beginning.

1.3.3 Two-Stage Training

By combining two of the previously introduced training schemes, the performance of the
refinement network can be further improved [1]. In the first stage, the MDMM algorithm
using MSE as the primary loss and the constraint MMDu(✓) = 0, combining the advan-
tages of both loss terms. After convergence of the algorithm, to fine-tune the network,
only the biased estimator of the MMD (MMDb) is used. This ensures that for the second
stage, no “pressure” from the MSE is applied on the tails.
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2 Applications

2.1 Refinement of Jet Flavor Tagging Observables
Using CMS FastSim

The refinement methodology has been applied to the CMS FastSim chain to improve
its agreement with the FullSim output. The results are presented in this chapter and have
been published in Ref. [2], where further details can be found.

The simulated data set consists of events in which pairs of gluinos, supersymmetric
partners of gluons, are produced. Each gluino subsequently decays to a top quark pair
and a neutralino. This corresponds to the supersymmetric simplified model T1tttt [51].
The generator-level events are processed twice, once using FastSim (the input data set
to be refined) and once with FullSim (the target data set). The features to be refined
are four jet flavor tagging observables:

x =
�
B, CvB, CvL, QG

�|
.

They are computed for each jet with pT > 15GeV from the output of the DeepJet
algorithm [52], a multiclass neural network with six output nodes, activated with a
softmax function. The nodes correspond to jets containing hadronically (leptonically)
decaying b hadrons — labeled b (lepb), jets containing two b hadrons (bb), and jets
from c quarks (c), light quarks (uds), and gluons (g). From those values, the four
discriminator observables are defined as

B = b+bb+ lepb , CvB =
c

c+b+bb+ lepb
, CvL =

c

c+uds+ g
, QG =

g

g+uds
.

The discriminators are transformed using a logit-transformation and an additional layer
is added to the postprocessing block of the refiner network which ensures that the re-
finement preserves the sum of the DeepJet output nodes (which is unity due to the
softmax activation). Additional conditioning variables are the true transverse momen-
tum of the simulated jet pGEN

T , pseudorapidity ⌘GEN, and the flavor of the underlying
hadron.

In this application, the refiner network is trained using the MDMM algorithm with the
biased estimator of the MMD as the primary loss and a constraint on the Huber loss.
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2 Applications

Multiple values of the corresponding target value " are scanned. The evolutions of the
two losses are plotted in Fig. 2.1 along with training versions using only MMDb, only
Huber, or a sum of both losses with fixed weights of one. As expected, the version
using only the Huber loss leads to a smaller average disagreement between the matched
jet-jet pairs (on the vertical axis) but clearly to a worsening in the distribution-level
agreement (on the horizontal axis). Also, using a simple sum of MMDb and Huber does
not lead to improved distribution-level agreement. However, using only the MMDb loss
or combining the two losses via the MDMM algorithm leads to an improvement in both
loss dimensions.

Figure 2.1: Evolution of the two loss terms, MMDb and Huber, for di↵erent trainings
of the refiner network with and without the MDMM algorithm. The values
of MMDb are normalized to the baseline value comparing unrefined FastSim
and FullSim, such that values smaller than 1 indicate improved agreement
between the distributions. The Pareto front is observed to exhibit a convex
shape [2].

Figure 2.2 shows the distributions of the four DeepJet discriminators for the FullSim
data set as well as for the unrefined FastSim and the refined FastSim using the net-
work trained with the MDMM algorithm, setting " = 0.084. The improvement in
the agreement between FastSim and FullSim after refinement is evident. Furthermore,
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2.1 Refinement of Jet Flavor Tagging Observables Using CMS FastSim

correlations within the set of (refined) observables and additional truth-level features
are examined by evaluating the Pearson correlation coe�cients as shown in Fig. 2.3.
Also by these measures, the accuracy of the FastSim output is improved by the refine-
ment.
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2 Applications
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Figure 2.2: Distributions of the four DeepJet discriminators B (upper left), CvB (upper
right), CvL (lower left), and QG (lower right) for FullSim, FastSim, and
refined FastSim [2].
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2.1 Refinement of Jet Flavor Tagging Observables Using CMS FastSim
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Figure 2.3: Upper row: Pearson correlation coe�cients for a set of jet observables for
FullSim (left), FastSim (center), and refined FastSim (right). Lower row: rel-
ative di↵erence between each correlation factor and the corresponding Full-
Sim value. All entries in the bottom left plot are zero by construction and
a relative di↵erence of 100% indicates cases where the correlation factor for
FullSim or for (refined) FastSim, as shown in the upper plot, is zero [2].
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2 Applications

2.2 Refinement of Jet Substructure Observables Using
Delphes Simulation

A study has been performed using Delphes [53], a parametric detector simulation frame-
work, to showcase the application of the refinement method to jet substructure observ-
ables. A ground truth data set based on the pair production of SM top quarks in proton-
proton collisions is processed twice with Delphes: once with the default CMS detector
implementation yielding the data set that is treated as FullSim and once with a manually
flawed implementation emulating a FastSim data set. The features to be refined are cho-
sen to be three ratios of the N-subjettiness ⌧N [54], variables used to establish information
about the initial particle from which a given jet originated.

The two-stage training as described in Section 1.3.3 is used to train the refiner network.
The corresponding learning curves can be seen in Fig. 2.4, where the switch from the
first to the second training stage is visible after 118 epochs. At this point, MMDu has
converged to its target value of " = 0 and the corresponding Lagrange multiplier � does
not change anymore. In the second stage, by removing MSE as a training objective,
the MMD estimators can be further minimized. The figure also shows the evolution
of a metric called omniscient MMD which includes not only the refined dimensions
but also additional (hidden) observables. The omniscient MMD is not used for the
training of the network but for evaluation purposes, containing information about cor-
relations between the refined and hidden observables. The hidden observables include
the jet mass, pT, ⌘, the distance to the closest neighbor jet dR =

p
d⌘2 + d'2 (with

azimuthal angle '), and the numbers of charged and neutral jet constituents N(ch)
and N(ne).

The results of applying the refiner network to the input data set are presented in Figs. 2.5
and 2.6. A clear improvement in the agreement with the target data set can be ob-
served. These results have been published as a major article [1] containing further
details.

2.3 Refinement of Simulation to Data

In both of the previously shown applications, the refinement method is employed to
refine the output of a fast simulation chain with respect to a more precise full simulation
output. Another well-motivated use case of the method is the refinement of a simulated
sample with respect to distributions observed in real-world data. This is realized in
Part II of this work (see Section 6.2.2) in the context of a search for new physics using
data recorded by the CMS experiment at the LHC.
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2.3 Refinement of Simulation to Data

Figure 2.4: Evolution of the MSE, (omniscient) MMD estimators, and Lagrange multi-
plier � during training of the refiner network used in the Delphes application.
The switch from the first to the second training stage is visible after 118
epochs [1].

Figure 2.5: Marginal distributions of the three N-subjettiness ratios for the target (“full-
sim”), input (“fastsim”), and refined data sets. The lower panels show the
relative di↵erences of bin counts to the target distribution [1].
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2 Applications

Figure 2.6: Upper row: Pearson correlation coe�cients for a set of jet observables for
the target “fullsim” (left), input “fastsim” (center), and refined (right) data
sets. Lower row: relative di↵erence between each correlation factor and the
corresponding target value [1].
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3 Summary and Outlook

In this Part, a method to refine output observables of a simulation chain with respect
to a target distribution was introduced and illuminated. It makes use of a regression
neural network, trained to provide a residual correction (morphing) to the input data
set and trained with a dedicated ensemble-based loss function — the maximum mean
discrepancy (MMD). The MMD can be complemented by a pair-based loss function
like the MSE, where the combination of the two objective functions is realized by the
modified di↵erential method of multipliers (MDMM), assuring convergence on the Pareto
front.

Two applications have been presented in which the data set to be refined corresponds
to the output of fast simulation applications, which is modified to better agree with the
output of a more accurate, yet also more resource-intensive, full simulation program. In
both cases, a substantial improvement of the modeling, also regarding correlations to
hidden features, is shown. This concept of using machine learning for the refinement
of available physics-informed simulations is a promising way forward facing increasing
computational challenges in science.

The impact of the choice of kernel function in the MMD loss remains an open topic.
For example, using another radial basis function like the inverse multiquadric kernel, as
suggested in Ref. [55] due to its heavier tails, might be beneficial for the refinement. Fur-
thermore, combining the refinement approach with a weight-based technique could lead
to an improved performance since data points could be weighted to directly correct for
the mismodeling of (reconstruction) e�ciencies additionally to the refinement correction
which shifts the data point within the feature space.
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Part II

Search for Natural Supersymmetry
with Low-Momentum and Displaced
Tracks

The search for physics beyond the Standard Model (BSM) is one of the key objectives
of experiments at the LHC. A particularly well-motivated class of BSM scenarios is
based on the concept of natural supersymmetry, featuring higgsino-like charginos and
neutralinos, discussed in Section 1.3 of the Introduction. In this Part, a search for
such models, performed at the CMS experiment, is presented. The crucial element
of the analysis is the usage of low-momentum, isolated, and displaced tracks to gain
sensitivity to the signal. After giving a more detailed description of the signal model
and the analysis strategy in Chapter 1, the data sets and physics objects used are
introduced in Chapters 2 and 3. The multiclass neural network employed to distinguish
signal from background tracks is explained in Chapter 4, followed by the selection of
events and the definition of signal regions in Chapter 5. To obtain a reliable estimate
of the SM background yields in the signal regions, dedicated corrections are applied
to the simulated MC samples, including the application of the refinement methodology
introduced in Part I, as explained in Chapter 6. Based on the systematic uncertainties
compiled in Chapter 7, the results are presented in Chapter 8. The search excludes
previously unexplored phase space regions with chargino masses up to 180GeV.



1 Compressed Higgsinos

As explained in Section 1.3 of the Introduction, naturalness arguments call for the
higgsino mass parameter in supersymmetric extensions of the SM to be on the order
of the Z boson mass. This leads to the configuration that the three lightest elec-
troweakinos ec0

2, ec±
1 , and ec0

1 (the lightest supersymmetric particle, LSP) are higgsino-
like and thus referred to as higgsinos. The mass di↵erences between the higgsinos
�m± ⌘ m(ec±

1 ) � m(ec0

1) and �m0 ⌘ m(ec0

2) � m(ec0

1) are small — on the order of
1GeV— characterizing the compressed mass spectrum. Corresponding to the limit of
large tan � in Ref. [56], the relation �m0 = 2�m± holds.

If R-parity is conserved, the production of such higgsinos happens in pairs and ec0

2 and ec±
1

decay to ec0

1 and a highly virtual Z or W boson, respectively, see Fig. 1.1. As described
in Ref. [56] and [57], the dominant decay of the higgsino-like chargino ec±

1 is to the LSP
and, via an o↵-shell W boson, a single pion (as shown in Fig. 1.2). The corresponding
decay length can be calculated as

c⌧(ec±
1 ! ec0

1p±) = 1.1 cm

✓
�m±

300MeV

◆�3✓
1 � m(p±)2

�m±2

◆�1/2

(1.1)

and the associated total width is plotted in Fig. 1.2. It can be seen that a mass splitting
�m± . 1GeV can lead to a measurable decay length of the chargino.

1.1 Previous Searches

In searches for electroweakinos with such a compressed mass spectrum, the analysis
strategy depends on the specific mass splittings, as visualized in Fig. 1.3. If �m0 is
larger than ⇡ 1GeV soft, prompt leptons from the decay of the second-lightest neutralino
(ec0

2 ! ec0

1Z
⇤ ! ec0

1l
+l�) can be used to gain sensitivity to the signal phase space [58].

On the other hand, if �m± is smaller than ⇡ 0.3GeV, the chargino becomes su�ciently
long-lived to reach the third or fourth layer of the tracking detector before decaying,
which can give rise to a disappearing track signature [59].

Exclusion limits set by analyses performed by the ATLAS collaboration using those
signatures can be seen in Fig. 1.4 as blue and green shaded areas. Searches using these
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Figure 1.1: Feynman diagrams for electroweakino pair production. Possible processes
include the production of two charginos (top left), one chargino along with
the second-lightest (top right) or lightest neutralino (bottom left), as well as
two neutralinos (bottom right).

Figure 1.2: Total width (left) and branching fractions (right) of the higgsino-like chargino
versus �m± [57]. The total width is also shown for the case of a wino-like
chargino.
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1 Compressed Higgsinos

Figure 1.3: Sketch of detector signatures that can be used to search for electroweaki-

nos ec0

2, ec±
1 , and ec0

1 in di↵erent regimes of mass splittings �m(ec±
1 , ec0

1) and
�m(ec0

2, ec0

1). This analysis targets the soft displaced pion signature shown
in red.
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1.2 Analysis Strategy

strategies have also been recently carried out by CMS in final states with disappearing
tracks [60] and with pairs of very soft leptons [61]. Exclusion limits derived in the model
phase space are shown in Fig. 1.5.

However, the intermediate region, 0.3GeV . �m± . 1GeV, cannot be probed by either
of these methods and is the target of the search presented in this work. The correspond-
ing analysis strategy is presented in the following.

Figure 1.4: Exclusion limits set by the ATLAS Collaboration in the plane of chargino
mass and mass splitting between the chargino and the lightest neutralino
assuming the higgsino simplified model for di↵erent search strategies. The
red line corresponds to the result of the soft displaced pion analysis [62].

1.2 Analysis Strategy

This analysis targets natural SUSY models with a compressed higgsino mass spectrum,
0.3GeV . �m(ec±

1 , ec0

1) . 1GeV, using events in which one or two charginos ec±
1 are

produced (see Feynman diagrams in Fig. 1.1). After a short but discernible decay
length up to O(1 cm), the charginos decay to the lightest neutralino ec0

1 and an o↵-
shell W boson. The W boson in turn most often decays to a single pion p± which
is the final state on which this analysis is focused. The energy transferred to the
pion is very small and corresponds to the di↵erence in masses �m(ec±

1 , ec0

1), labeled
�m±.

The signature of such events in the detector is dominated by a large amount of missing
transverse energy if the higgsinos recoil against an initial-state radiation jet. This is due
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Figure 1.5: Observed and expected limits obtained in the Higgsino model phase space
by the analysis of disappearing tracks [60] (left) and soft lepton pairs [61]
(right).

to the neutralinos ec0

1 leaving the detector without depositing their energy. The other
signal feature is the pion, which can be reconstructed as a significantly bent track and
thus be used to distinguish signal events from SM background. This track can be used
to establish sensitivity to the model phase space region, as illustrated by the expected
exclusion limits in Fig. 1.6 and the observed limits set by the ATLAS Collaboration
shown in Fig. 1.4 as a red line.

In this analysis, the most signal-like track in an event is selected using a neural network
classifier (see Section 4) and events are subsequently categorized into various signal
regions after passing the baseline “monojet”-like event selection requiring the presence
of a high-momentum jet and an imbalance in the transverse momenta of all reconstructed
objects (see Section 5.2).

To pass the baseline event selection, reconstructed events necessarily have to exhibit
a large magnitude of missing transverse momentum pmiss

T . Thus, the SM processes
leading to such events primarily feature neutrinos which escape the detector without
depositing their energy. Consequently, the dominant SM background to this search
is the “invisible” Z boson decay Z ! nn (labeled “Z(inv)Jets”). The sub-dominant
background comes from the W ! ln process which is suppressed by vetoing on the
presence of leptons. Further minor backgrounds, making up in total less than 1% of all
events in the signal regions, include processes in which (pairs of) top quarks (labeled
“TTJets/ST” where “ST” stands for single-top) or two gauge bosons WW, WZ, or ZZ
(“Diboson”) are produced. These processes constitute the event-level background to
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1.2 Analysis Strategy

Figure 1.6: Expected exclusion limits for the “T” (�m0 = 0) and “Sandwich” (�m0 =
2�m±) configurations based on phenomenological studies of soft displaced
track signature [63].

this search.

In each of those events, numerous soft — and often displaced — tracks are present that
can fake the signature of the signal pion. Those tracks are mostly not originating from
the hard process but rather stem from the underlying event, pileup interactions, and
errors in the reconstruction (fakes). Therefore, the track-level background is largely
independent of the event-level SM process. However, there are correlations of the track
kinematics with the overall event topology, e.g., the direction of the track with respect
to ~pmiss

T .

The expected background event yields in the signal regions are estimated using MC
simulations corrected by data (see Section 6). The analysis strategy is summarized in
Fig. 1.7.

Figure 1.7: Steps involved in the processing of events for data and simulation (MC).
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2 Data Sets

2.1 Collected Data

The data sets used in this analysis correspond to the so called MET and SingleMuon
data streams collected by the CMS experiment during the LHC Run 2 in the years
2016, 2017, and 2018. The ultra-legacy reconstruction is used and only events within
certified “lumi sections” are considered. Events from the MET data stream generally
exhibit a large magnitude of missing transverse momentum pmiss

T and are therefore used
to populate the signal regions whereas the SingleMuon data stream is used to con-
struct a control region by selecting Z ! µµ events, see Section 6.1. The integrated
luminosities for each year amount to 36.3 fb�1, 41.5 fb�1, and 59.8 fb�1 for 2016, 2017,
and 2018, respectively. Tables A.1 and A.2 in the Appendix list the detailed data set
names.

Trigger

For both data streams, a logical or of the following triggers is used which all use the pres-
ence of large missing transverse energy to identify events:

• HLT PFMETX PFMHTX IDTight v* (X = 90, 100, 110, 120, 130, 140),

• HLT PFMETX PFMHTX IDTight PFHT60 v* (X = 100, 110, 120, 130, 140),

• HLT PFMETNoMuX PFMHTNoMuX IDTight v* (X = 90, 100, 110, 120, 130, 140),

• HLT PFMETNoMuX PFMHTNoMuX IDTight PFHT60 v* (X = 100, 110, 120, 130, 140).

By requiring an o✏ine cut on pmiss

T and Hmiss

T of 300GeV (see Section 3 for definitions of
the observables and Section 5.2 for a detailed description of the o✏ine selection cuts),
the majority of SM background can be rejected and the trigger turn-on avoided with
negligible loss in sensitivity. This family of triggers has been studied in Ref. [64] and
is found to be 99% e�cient for the above-mentioned o✏ine selection, as can be seen in
Fig. 2.1.
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T cross triggers versus Hmiss

T [64].

2.2 Standard Model Backgrounds

Background samples were simulated centrally by the CMS Collaboration and are based
on FullSim. They include simulated Z ! nn, W ! ln, top quark (pair) production,
and WW, WZ, and ZZ production. Also, simulated Z ! ll events are used for the
Z ! µµ control region. The primary names of the MC background data sets are listed
in the Appendix in Table A.3 along with the respective cross section. Table A.4 lists
the processing strings for each of the four eras.

2.3 Signal

Signal samples are produced privately using FastSim and FullSim. The simulation has
been carried out by Samuel Bein. Event generation is performed using Pythia8.240 [65].
An admixture of all production modes, including neutralino-chargino, chargino-chargino,
and neutralino-neutralino are generated simultaneously by setting the Pythia configura-
tion parameter susy:all = on. Leading order NNPDF 3.1 PDFs are used during event
generation. The production cross sections are computed at NLO plus next-to-leading-log
(NLL) precision in a limit of mass-degenerate higgsino ec0

2, ec±
1 , and ec0

1 with all the other
superpartners assumed to be heavy and decoupled [66–68].
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2 Data Sets

Table 2.1 lists the simulated signal model points and their cross sections. The model
properties are based on Ref. [56] and [57] and further discussed in Section 1.

Table 2.1: Simulated signal model points and cross sections. The second value of �m±

in each row (bold) corresponds to the case of pure higgsinos with the mass
splitting arising only from radiative corrections from the SM particles.

m(ec±
1 ) (GeV) �m± (GeV) � (fb)

100 0.16, 0.26, 0.36, 0.46, 0.56, 0.76, 0.96, 1.26, 1.76 16797.21
115 0.17, 0.27, 0.37, 0.47, 0.57, 0.77, 0.97, 1.27, 1.77 10833.94
140 0.18, 0.28, 0.38, 0.48, 0.58, 0.78, 0.98, 1.28, 1.78 5166.30
160 0.19, 0.29, 0.39, 0.49, 0.59, 0.79, 0.99, 1.29, 1.79 3109.02
180 0.19, 0.29, 0.39, 0.49, 0.59, 0.79, 0.99, 1.29, 1.79 2040.76
200 0.20, 0.30, 0.40, 0.50, 0.60, 0.80, 1.00, 1.30, 1.80 1335.61
250 0.21, 0.31, 0.41, 0.51, 0.61, 0.81, 1.01, 1.31, 1.81 577.31
300 0.22, 0.32, 0.42, 0.52, 0.62, 0.82, 1.02, 1.32, 1.82 284.86
500 0.22, 0.32, 0.42, 0.52, 0.62, 0.82, 1.02, 1.32, 1.82 33.85
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3 Physics Objects

This section describes the reconstructed objects used in this analysis. They are listed
in Tables 3.1 and 3.2 along with their respective phase space cuts and isolation defini-
tions. The isolation measures, used to purify the object selections, are calculated in the
following ways for photons, muons, and electrons:

Isog = chargedHadronIso+ neutralHadronIso+ photonIso ,

Isoµ = chargedHadronIso+max(0, neutralHadronIso+ photonIso � 0.5 ⇤ sumPUPt) ,
Isoe = chargedHadronIso+max(0, neutralHadronIso+ photonIso � 0.5 ⇤ sumPUPt) ,

where chargedHadronIso/neutralHadronIso/photonIso/sumPUPt refers to the sum
of transverse energies of charged hadrons associated to the primary vertex/neutral
hadrons/photons/charged hadrons associated to pileup vertices in a cone of �R < 0.3
around the corresponding object.

More details on the general object reconstruction procedure in CMS including the parti-
cle flow (PF) algorithm can be found in Section 2.2.1 of the Introduction.

All objects except for tracks are standard objects with centrally provided selection cri-
teria used in CMS analyses. The preselection for tracks includes quality criteria, e.g.,
on the goodness of the track fit, and the requirement that the track is associated to a
reconstructed Particle Flow candidate. A cut on the pseudorapidity restricts tracks to
the acceptance of the tracking detector, whereas cuts on the transverse momentum, the
longitudinal impact parameter, and the distance to the closest jet reject tracks which
are irrelevant to the signal model phase space. Sections 3.1 and 4 describe the further
treatment of tracks beyond this preselection.

Jets

Jet energy corrections (JEC) are applied in data and MC, whereas for MC, the jet energy
resolution (JER) is also corrected using centrally provided correction maps. To tag jets
as originating from b quarks, the DeepCSV algorithm [69, 70] with loose working
point is employed. This is used to veto events with such jets in order to suppress SM
background events including top quarks (t ! Wb).
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Table 3.1: Definition of physics objects used in this analysis - Part 1

Tracks Jets Taus

cmssw collection generalTracks ak4PFJetsCHS hpsPFTauProducer

Selection criteria highPurity quality
&& isPfCand

TightLepVeto ID Tight ID

Phase space cuts pT < 20GeV, |⌘| < 2.4,

|dzPV| < 1 cm

pT > 30GeV, |⌘| < 2.4 pT > 20GeV, |⌘| < 2.3

Isolation definition �R(closest jet) > 0.4 — —

Table 3.2: Definition of physics objects used in this analysis - Part 2

Photons Electrons Muons

cmssw collection gedPhotons gedGsfElectrons muons

Selection criteria Cut-based loose ID Cut-based veto ID PFMuon &&
(GlobalMuon ||
TrackerMuon)

Phase space cuts pT > 15GeV, |⌘| < 2.5 pT > 10GeV, |⌘| < 2.5 pT > 10GeV, |⌘| < 2.4
Isolation definition Isog/pT < 0.2 Isoµ/pT < 0.2 Isoe/pT < 0.2

The following event-level observables are defined using the reconstructed and corrected
jets:

Hmiss

T = |
X

jet2{jets with pT>30GeV and |⌘|<5.0}

~pT(jet)|

HT =
X

jet2{jets with pT>30GeV and |⌘|<2.4}

|pT(jet)|

H5

T =
X

jet2{jets with pT>30GeV and |⌘|<5.0}

|pT(jet)| .

Missing Transverse Momentum

The missing transverse momentum ~pmiss

T (and its magnitude pmiss

T ) is calculated as the
negative vectorial sum of the transverse momenta of all reconstructed PF candidates
(corresponding to the pfMet cmssw collection). Jet energy corrections are propagated
to ~pmiss

T (Type-1 correction) and “MET filters” are applied to veto noisy events (see
Section 5.1).
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3.1 Soft and Displaced Tracks

Pileup Reweighting

Simulated events are reweighted according to the number of true pileup interactions
in order to better match the distribution observed in data using centrally provided
weights.

3.1 Soft and Displaced Tracks

This section describes the treatment of the central element of this analysis — soft and
displaced tracks. Importantly, for single displaced tracks, standard requirements on the
track’s association to the primary vertex or a secondary decay vertex cannot be used.
Instead, the fitted tracks are extrapolated along their helical path using a custom helix
parameterization. This enables improved matching of soft and displaced reconstructed
tracks to their corresponding generator-level particles and allows for the definition of
additional track observables.

Helix Extrapolation

Tracks with assigned charge q, azimuthal angle '0, polar angle ✓ (corresponding to
dip angle � = ⇡

2
� ✓ and pseudorapidity ⌘ = � ln(tan( ✓

2
))), and momentum ~p (with

magnitude p = |~p| and thus transverse momentum pT = p cos(�)), are extrapolated from
their reference point (x0, y0, z0), which is the point of closest approach to the center
of the CMS detector, along a helical path parameterized by t. The parametrization
is:

x(t) = x0 +R1 cos(�)pq
�1 (sin('0) � sin('0 � t))

y(t) = y0 +R1 cos(�)pq
�1 (cos('0 � t) � cos('0)) (3.1)

z(t) = z0 +R1 sin(�)pq
�1t .

The constant R1 corresponds to the radius of the track of a particle with charge q = 1e
and pT = 1GeV in a magnetic field of 3.8T,

R1 =
pT
q · B =

1GeVc�1

1e · 3.8T ⇡ 87.78 cm .

Along this path, both the curvature (and therefore pT) and the pseudorapidity are con-
stant. The azimuthal angle changes according to ' (t) = '0 � t. This parameterization
assumes a constant magnetic field, which is a good approximation in the region close to
the luminous region within the beam line.
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3 Physics Objects

Track Matching

It is found that the matching of tracks to generator-level (GEN) objects using the dis-

tance measure �R =
p

�'2 +�⌘2 can be ine�cient for very soft and displaced objects.
This is due to a shifting frame of reference. Namely, ' is defined at the track’s reference
point. If this point is distinctly di↵erent from the origin vertex of the generator-level
particle, also the azimuthal angle ' of the track and the generator-level particle are
di↵erent. This can also be due to subtle misaligment or material interactions of the
charged particle in the detector. The issue is illustrated in Fig. 3.1 for the signal pro-
cess.

Figure 3.1: Sketch visualizing how the standard �R matching breaks down for very soft
and displaced tracks due to di↵erent definitions of '.

To recover matching e�ciency for soft and displaced particles, a helical matching proce-
dure is developed. It uses the vertex of the generated particle in addition to its trajectory.
By extrapolating the helix of a given track (Eq. 3.1), the parameter value tmin can be
determined that corresponds to the distance of closest approach �xyz of the track helix
to said vertex. Then, by extrapolating the track’s azimuthal angle to the point of closest
approach, the extrapolated distance measure

�Rextrapolated =
q

('GEN � 'track(tmin))
2 + (⌘GEN � ⌘track)

2

is computed and the matching criterion is defined to be

�xyz < 0.2 cm and �Rextrapolated < 0.05 .

To reduce the computational load without a loss of matching e�ciency, the helical
matching to a generator-level particle is performed only for the subset of tracks which
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3.1 Soft and Displaced Tracks

have been assigned the particle’s charge and fulfill |pT,GEN � pT,track|/pT,GEN < 0.2, as
well as |⌘GEN � ⌘track| < 0.1 and |'GEN � '0,track| < 1.57. As a fallback in cases where
the helical matching leads to no matching track, the simple �R < 0.02 matching is
attempted on all tracks.

The helical matching procedure is validated by comparing the �xyz versus �Rextrapolated

distributions for signal pions and tracks with the same charge and with opposite charge.
The distribution with the wrongly charged track does not show any accumulation in
the matching region, indicating that the matching criteria e↵ectively identify the correct
tracks and reject random pairings. This can be seen in Fig. 3.2.

Figure 3.2: Two-dimensional distributions of �xyz versus �Rextrapolated for generator-
level signal pions paired with tracks of the same charge (left) and opposite
charge (right). The distributions refer to signal events simulated for 2018
(Phase 1 tracker geometry) using the sum of all signal model points.

The lower rows of Figs. 3.3 and 3.4 show a comparison of the pion matching e�cien-
cies for the standard �R < 0.02 matching procedure with the newly developed helical
matching for 2016 (Phase 0 tracker) and 2018 (Phase 1 tracker). The matching e�ciency
is defined as the number of signal pions with a matching reconstructed track (after pre-
selection) divided by all signal pions, and is plotted for di↵erent chargino transverse
decay lengths and pion transverse momenta. The improvement for transverse decay
lengths of the chargino larger than approximately 1 cm and pion transverse momenta
lower than roughly 2GeV are clearly visible. Also plotted in the upper parts are the
matching e�ciencies, using the procedure outlined above, versus various variables of
interest. Complementing Fig. 3.4, Fig. 3.6 shows the e�ciency for a wider range of
chargino transverse decay lengths.

As can be seen in Fig. 3.5, the e�ciency of reconstructing and matching the signal pion
is largely independent of the chargino mass m(ec±

1 ). This is due to fact that the chargino
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3 Physics Objects

decay length as well as the pion kinematics are rather determined by the mass splitting
�m(ec±

1 , ec0

1).

Track Observables

The helix extrapolation is further used to define a set of custom track observables that
serve to improve the final analysis sensitivity. They are listed in Table 3.3.

Table 3.3: Custom track observables defined using the track helix extrapolation de-
scribed in Section 3.1. All quantities are defined with respect to (a) the
leading primary vertex, (b) the closest primary vertex from pileup interac-
tions, (c) the primary vertex associated to the track during reconstruction,
and (d) the closest primary vertex excluding the associated vertex.

Observable Description

IP Distance in 3D (impact parameter) between a track and a vertex,
evaluated at the point of closest approach in 3D between the track
helix and the vertex.

IP Significance Impact parameter significance, IP/�(IP), with uncertainty �(IP)
calculated by propagating the covariance matrices of the track and
the vertex.

IPxy Distance in the transverse plane (transverse impact parameter) be-
tween a track and a vertex, evaluated at the point of closest ap-
proach in 3D between the track helix and the vertex.

IPxy Significance Transverse impact parameter significance, IPxy/�(IPxy), with un-
certainty �(IPxy) calculated by propagating the covariance matri-
ces of the track and the vertex.

IPz Distance along the z-axis (longitudinal impact parameter) between
a track and the primary vertex, evaluated at the point of closest
approach in 3D between the track helix and the primary vertex.

IPz Significance Transverse impact parameter significance, IPz/�(IPz), with uncer-
tainty �(IPz) calculated by propagating the covariance matrices of
the track and the vertex.
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3.1 Soft and Displaced Tracks

Figure 3.3: Pion reconstruction and matching (“RECO”) e�ciencies versus pion pT (top
left), pion pseudorapidity ⌘ (top right), chargino transverse decaylength (cen-
ter left). Comparisons between the standard �R matching and the helical
matching e�ciencies versus �m± (center right) and in two dimensions (pion
pT versus chargino transverse decaylength, bottom row). All distributions
refer to signal events simulated for 2016 (Phase 0 tracker geometry) using
the sum of all signal model points.
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Figure 3.4: Pion reconstruction and matching (“RECO”) e�ciencies versus pion pT (top
left), pion pseudorapidity ⌘ (top right), chargino transverse decaylength (cen-
ter left). Comparisons between the standard �R matching and the helical
matching e�ciencies versus �m± (center right) and in two dimensions (pion
pT versus chargino transverse decaylength, bottom row). All distributions
refer to signal events simulated for 2018 (Phase 1 tracker geometry) using
the sum of all signal model points.
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3.1 Soft and Displaced Tracks

Figure 3.5: Pion reconstruction and matching (“RECO”) e�ciency versus chargino mass
for signal events simulated for 2018 (Phase 1 tracker geometry) using the sum
of all signal model points.

Figure 3.6: Pion reconstruction and matching (“RECO”) e�ciency versus chargino
transverse decaylength for signal events simulated for 2018 (Phase 1 tracker
geometry) using the sum of all signal model points. Zoomed out version of
the plot in Fig. 3.4.
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4 Soft Track Classifier

A multiclass neural network is used to distinguish signal tracks from background tracks,
where background tracks refers to all tracks in signal events not originating from the ec±

1

or ec0

2 decay, as well as tracks in SM processes. For training and validation of the network,
tracks matched to the generator-level pion from the chargino decay (see Section 3.1) are
taken from the simulated signal samples and constitute the signal track class. All model
points given in Table 2.1 are used and weights are applied to provide a flat distribution
of �m± and m(ec±

1 ) for training. For the final results of the analysis, not only the decay
to a single pion but all possible decays channels of the chargino are taken into account,
see Fig. 1.2.

Background tracks are taken from simulated Z ! nn and W ! ln events, weighted
relative to cross section. A matching of background tracks to generator-level particles
is also established (if possible), and they are subsequently classified into four classes of
background tracks: spurious tracks (without a generator-level match), tracks associated
to prompt particles from the primary vertex, tracks associated to secondary particles
from the primary vertex, and tracks associated to decay products of t decays in W ! tn
events. The data set is divided into a train and a test data set; Table 4.1 lists all track
classes with the corresponding numbers of tracks used.

As described in Section 4.1, the characteristics of the signal tracks vary considerably for
di↵erent values of the signal model parameter �m±. Therefore, the neural network is
parameterized by this mass splitting. The value �m± is provided to the network as an
additional input along with the observable features. For background tracks, a random
value is chosen by sampling the distribution of �m± in the signal sample. To account for
di↵erent characteristics of tracks from di↵erent background track classes, the network
has multiple output nodes; one for signal tracks and one for each of the four classes of
background tracks.

The network uses the 37 variables listed in Table 4.2 and is parameterized by �m±

and an integer value encoding the era of data taking. Distributions of the input vari-
ables for signal and background tracks can be found in Figs. A.2 and A.3 in the Ap-
pendix.
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4.1 Signal Characteristics

Table 4.1: Statistics of the train and test data sets for the di↵erent track classes. An
independent validation data set is constructed by taking 10% of the tracks of
the training data set.

Track class Ntrain

unweighted Ntrain

weighted Ntest

unweighted

Signal 6⇥105 6.00⇥105 8⇥104

Spurious / no GEN match 1⇥106 3.89⇥105 1⇥105

PV-associated (prompt) 1⇥106 0.90⇥105 1⇥105

PV-associated (secondary) 1⇥106 1.14⇥105 1⇥105

Secondary from t in W ! tn 4⇥104 0.06⇥105 7⇥103

4.1 Signal Characteristics

Figures 4.1 and 4.2 show some of the important track variables for di↵erent signal
model points compared to background tracks. Both background tracks in signal events
(dashed histogram) and tracks from SM background events (stacked histogram) are
shown. Di↵erences between the two can arise due to di↵erent event topologies or might
be a sign of biases in the simulation of signal events (using FastSim) compared to Full-
Sim.

In Fig. 4.1 (upper left), it can be seen that the pT of the signal track, as noted above, is
on the order of the mass splitting �m±. Independent of the mass splitting, signal tracks
are isolated from any jets in the event (upper right) and point in the direction of ~pmiss

T

and opposite to the leading jet (lower two plots).

Another key aspect is the displacement of the signal tracks, as shown by the plots
in Fig. 4.2. Most importantly, the upper left plot shows that the smaller �m±, the
longer the chargino lifetime and, therefore, the more displaced the signal track with
respect to the leading primary vertex (PV). The displacement is quantified by the impact
parameter (IP) significance with respect to the primary vertex both in the transverse
and longitudinal direction (see Section 3.1). The distribution for background tracks is
bimodal, with one peak at small values attributed to tracks from the PV and another
peak at higher values comprising “spurious” tracks including pileup and fakes. When
looking at the displacement with respect to the closest pileup vertex, including (upper
right) and excluding (lower left) the vertex to which the track is associated to during
reconstruction, signal tracks yield large values. In addition, the error on the transverse
displacement is smaller for signal tracks compared to background tracks (lower right
plot).
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4 Soft Track Classifier

Table 4.2: Variables used by the neural network soft track classifier.

Variable Description

pT Transverse momentum of the track.

|⌘| Pseudorapidity of the track.

|�'(Track, ~pmiss

T )| Azimuthal angle between the track and the missing
transverse momentum vector.

|�'(Track,Leading Jet)|,
|�⌘(Track,Leading Jet)|

Azimuthal angle and distance in pseudorapidity between
the track and the leading jet.

log
10
(dxy), log

10
(dz) Transverse and longitudinal impact parameters (stan-

dard straight line approximation) with respect to (a)
the leading primary vertex and (b) the closest primary
vertex from pileup interactions.

log
10
(dxyError), log

10
(dzError) Error on the transverse and longitudinal impact param-

eters (standard straight line approximation).

log
10
(IPxy), log

10
(IPz),

log
10
(IPxy Significance),

log
10
(IPz Significance)

Transverse and longitudinal impact parameters and im-
pact parameter significances (custom helix extrapola-
tion) with respect to (a) the leading primary vertex, (b)
the closest primary vertex from pileup interactions, (c)
the primary vertex associated to the track during recon-
struction, and (d) the closest primary vertex excluding
the associated vertex.

�xy(PV, ass. PV),
�z(PV, ass. PV)

Distance in the transverse plane and along the z-axis be-
tween the leading primary vertex and the primary vertex
associated to the track (if assigned).

�xy(PV, ass. SV),
�z(PV, ass. SV)

Distance in the transverse plane and along the z-axis
between the leading primary vertex and the secondary
vertex associated to the track (if assigned).

Abs. Iso PF Sum of transverse momenta of PF candidates within a
cone of �R < 0.3 around the track.

�Rmin Distances to the (a) closest jet with pT > 30GeV, (b)
closest jet with pT > 15GeV, (c) closest track with pT >
5GeV, and (d) second closest track with pT > 5GeV.

pmiss

T Event-level magnitude of missing transverse momentum.

72



4.1 Signal Characteristics

0

0.05

0.1

0.15

0.2

0.25

Fr
ac

tio
n 

of
 T

ra
ck

s

Spurious PV-associated

)τSec. from W( In-signal Bkg.

Sig. (115, 0.3) Sig. (115, 0.6)

Sig. (115, 1.0) Sig. (160, 0.6)

 (13 TeV)-1138 fb

CMS

Simulation
Work in progress

0 1 2 3 4 5 6
 (GeV)

T
p

0.5
1

1.5

In
-s

ig
. B

 / 
B

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

Fr
ac

tio
n 

of
 T

ra
ck

s

Spurious PV-associated

)τSec. from W( In-signal Bkg.

Sig. (115, 0.3) Sig. (115, 0.6)

Sig. (115, 1.0) Sig. (160, 0.6)

 (13 TeV)-1138 fb

CMS

Simulation
Work in progress

0 1 2 3 4 5 6
 (GeV)

T
p

0.5
1

1.5

In
-s

ig
. B

 / 
B

0

0.05

0.1

0.15

0.2

0.25

Fr
ac

tio
n 

of
 T

ra
ck

s

Spurious PV-associated

)τSec. from W( In-signal Bkg.

Sig. (115, 0.3) Sig. (115, 0.6)

Sig. (115, 1.0) Sig. (160, 0.6)

 (13 TeV)-1138 fb

CMS

Simulation
Work in progress

0 2 4 6 8 10
jets pT > 30 GeV
minR∆

0.5
1

1.5

In
-s

ig
. B

 / 
B

6−10

5−10

4−10

3−10

2−10

1−10
1

10

210

310

410

Fr
ac

tio
n 

of
 T

ra
ck

s

Spurious PV-associated

)τSec. from W( In-signal Bkg.

Sig. (115, 0.3) Sig. (115, 0.6)

Sig. (115, 1.0) Sig. (160, 0.6)

 (13 TeV)-1138 fb

CMS

Simulation
Work in progress

0 2 4 6 8 10
jets pT > 30 GeV
minR∆

0.5
1

1.5

In
-s

ig
. B

 / 
B

0

0.05

0.1

0.15

0.2

0.25

0.3

Fr
ac

tio
n 

of
 T

ra
ck

s

Spurious PV-associated

)τSec. from W( In-signal Bkg.

Sig. (115, 0.3) Sig. (115, 0.6)

Sig. (115, 1.0) Sig. (160, 0.6)

 (13 TeV)-1138 fb

CMS

Simulation
Work in progress

0 0.5 1 1.5 2 2.5 3 3.5 4
)|miss

T
(Track, pφ∆|

0.5
1

1.5

In
-s

ig
. B

 / 
B

3−10

2−10

1−10

1

10

Fr
ac

tio
n 

of
 T

ra
ck

s

Spurious PV-associated

)τSec. from W( In-signal Bkg.

Sig. (115, 0.3) Sig. (115, 0.6)

Sig. (115, 1.0) Sig. (160, 0.6)

 (13 TeV)-1138 fb

CMS

Simulation
Work in progress

0 0.5 1 1.5 2 2.5 3 3.5 4
)|miss

T
(Track, pφ∆|

0.5
1

1.5

In
-s

ig
. B

 / 
B

0

0.05

0.1

0.15

0.2

0.25

Fr
ac

tio
n 

of
 T

ra
ck

s

Spurious PV-associated

)τSec. from W( In-signal Bkg.

Sig. (115, 0.3) Sig. (115, 0.6)

Sig. (115, 1.0) Sig. (160, 0.6)

 (13 TeV)-1138 fb

CMS

Simulation
Work in progress

0 0.5 1 1.5 2 2.5 3 3.5 4
(Track, Leading Jet)|φ∆|

0.5
1

1.5

In
-s

ig
. B

 / 
B

3−10

2−10

1−10

1

10

Fr
ac

tio
n 

of
 T

ra
ck

s

Spurious PV-associated

)τSec. from W( In-signal Bkg.

Sig. (115, 0.3) Sig. (115, 0.6)

Sig. (115, 1.0) Sig. (160, 0.6)

 (13 TeV)-1138 fb

CMS

Simulation
Work in progress

0 0.5 1 1.5 2 2.5 3 3.5 4
(Track, Leading Jet)|φ∆|

0.5
1

1.5
In

-s
ig

. B
 / 

B

Figure 4.1: Distributions of track observables for background and signal tracks from four
example signal model points. The filled histograms show distributions for
background tracks in SM background events, whereas the dashed lines show
background tracks within signal events, i.e., tracks that are not matched to
(decay products of) the SUSY particles. The lower panels show the ratio of
in-signal background to SM background. The contribution from tau decay
products is too small to be visible.
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Figure 4.2: Distributions of displacement-related track observables for background and
signal tracks from four example signal model points. The filled histograms
show distributions for background tracks in SM background events, whereas
the dashed lines show background tracks within signal events, i.e., tracks that
are not matched to (decay products of) the SUSY particles. The lower panels
show the ratio of in-signal background to SM background. The contribution
from tau decay products is too small to be visible.
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4.2 Architecture and Training

4.2 Architecture and Training

Table 4.3 summarizes the hyperparameters of the soft track classifier neural network
and Table 4.4 comprises a list of parameters that determine the network training. Pre-
processing layers are added to the network to one-hot-encode the era parameter and
to normalize the inputs by subtracting the mean and dividing by the variance of each
variable. The classification performance was checked to be robust with respect to the
detailed choice of hyperparameters.

Table 4.3: The hyperparameters defining the architecture of the neural network used for
multiclass track classification. The number of output dimensions corresponds
to the number of track classes.

Hyperparameter Value

Input dimensions 39
Output dimensions 5
Hidden dimensions 256
Number of hidden layers 3
Activation function (hidden layers) LeakyReLU (↵ = 0.1)
Activation function (last layer) Softmax
Batch normalization momentum 0.7
Batch normalization epsilon 1⇥10-3

Table 4.4: Parameter values used for training the fully-connected multiclass neural net-
work.

Training parameter Value

Loss function Categorical cross-entropy
Learning rate 1⇥10-4

Optimizer Adam
Number of epochs 2000
Early stopping 100
Batch size 10000
Dropout rate 0.2

4.3 Performance

The track-level output of the signal node evaluated for a given value of �m± is denoted
as P(Signal |�m = ... GeV). Figure 4.4 shows the normalized distributions of P(Signal |
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4 Soft Track Classifier

Figure 4.3: Evolution of the categorical cross-entropy loss function (top) and the network
accuracy (bottom) over the course of training. Values are given for the train
and validation data sets. The slight o↵set between the two can be explained
by the fact that dropout is active for evaluating on the train data set but
not for evaluating on the validation data set.
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4.4 Validation

�m = 0.3GeV), P(Signal |�m = 0.6GeV), and P(Signal |�m = 1.0GeV) for signal
and background tracks from the train and test data sets.

In this analysis, usually, the logit-transformed value is used to enhance the dynamic
range of the tails:

eP := logit (P) = ln

✓
P + ✏

1 � P + ✏

◆
. (4.1)

The o↵set ✏, taken to be 1 ⇥ 10-6, is added to ensure numerical stability; it confines the
possible values of eP to the range

⇥
� ln(106 + 1), ln(106 + 1)

⇤
⇡ [�13.82, 13.82].

An event-level quantity is defined as the maximum achieved eP(Signal |�m = ... GeV)
within all tracks of a given event: ePmax(Signal |�m = ... GeV) (Fig. 4.5). Note that the
event-level pmiss

T is already used as an input to the network.

4.4 Validation

The ROC1 curves (Fig. 4.6) indicate that the classifier performs well when varying the
variables it is parameterized on; �m± and era. To substantiate the choice of training
one network for all eras combined, the ROC curves for a reference training which only
uses the subset of the full training data set that corresponds to 2016 postVFP data are
shown. It can be seen that the performance is slightly worse compared to the training
with all eras combined.

Also evaluated are the SHAP values [71] for the input variables indicating their impor-
tance in classifying a track as signal-like. This is done both for evaluating the network
with �m± = 0.3GeV (Fig. 4.7) and with �m± = 1.0GeV (Fig. 4.8) by selecting 100
tracks from each of the background classes and evaluating the SHAP values with respect
to the signal node output. Positive (negative) SHAP values indicate large influence of
a variable to classify a given track as (not) signal-like. In the plots, the coloring of each
dot depends on the value of the respective variable for the given track ranging from red
(large value with respect to the sample mean) to blue (small value with respect to the
sample mean). For each background class, the variables are sorted by descending mean
absolute SHAP value.

The SHAP values provide in-depth information about the impact of each input vari-
able on the signal node score. Generally, for both the 0.3 and 1GeV model evaluation,
the most important variables for determining signal-like phase space are displacement-
related. For the 1GeV case, smaller displacements and smaller impact parameter signif-
icances with respect to the leading primary vertex are associated with more signal-like
tracks. For the 0.3GeV evaluation, on the other hand, larger values of these observables,

1Receiver operating characteristic
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Figure 4.4: Response of the signal node for background (stacked histograms) and signal
(green lines) tracks for di↵erent �m± values used in the evaluation. The
set of signal tracks is restricted to the respective mass splitting. Also shown
are the distributions for the independent test data sets and, in the lower
panels, calibration curves indicating both no signs of overtraining and good
calibration.

78



4.4 Validation

0 0.2 0.4 0.6 0.8 1
m=0.3 GeV)∆(Signal | maxP

0

50

100

150

200

250

300

350

400
310×

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

0 0.2 0.4 0.6 0.8 1
m=0.3 GeV)∆(Signal | maxP

1−10
1

10
210
310
410
510
610
710
810
910

1010
1110

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

15− 10− 5− 0 5 10 15
m=0.3 GeV)∆(Signal | maxP~

0

10

20

30

40

50

60

310×

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

15− 10− 5− 0 5 10 15
m=0.3 GeV)∆(Signal | maxP~

4−10
3−10
2−10
1−10
1

10
210
310
410
510
610
710
810
910

1010
1110
1210

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

0 0.2 0.4 0.6 0.8 1
m=0.6 GeV)∆(Signal | maxP

0

50

100

150

200

250

300

310×

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

0 0.2 0.4 0.6 0.8 1
m=0.6 GeV)∆(Signal | maxP

1−10
1

10
210
310
410
510
610
710
810
910

1010
1110

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

15− 10− 5− 0 5 10 15
m=0.6 GeV)∆(Signal | maxP~

0

10

20

30

40

50

60

310×

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

15− 10− 5− 0 5 10 15
m=0.6 GeV)∆(Signal | maxP~

4−10
3−10
2−10
1−10
1

10
210
310
410
510
610
710
810
910

1010
1110
1210
1310

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

0 0.2 0.4 0.6 0.8 1
m=1.0 GeV)∆(Signal | maxP

0

50

100

150

200

250

310×

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

0 0.2 0.4 0.6 0.8 1
m=1.0 GeV)∆(Signal | maxP

1−10
1

10
210
310
410
510
610
710
810
910

1010
1110

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

15− 10− 5− 0 5 10 15
m=1.0 GeV)∆(Signal | maxP~

0

10

20

30

40

50

60

310×

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

15− 10− 5− 0 5 10 15
m=1.0 GeV)∆(Signal | maxP~

4−10
3−10
2−10
1−10
1

10
210
310
410
510
610
710
810
910

1010
1110
1210

Ev
en

ts

Z(inv)Jets W(tau)Jets

W(e,mu)Jets )=(115,0.3)±m∆,χ(

)=(115,0.6)±m∆,χ( )=(115,1.0)±m∆,χ(

)=(160,0.6)±m∆,χ(

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

 (13 TeV)-1137.8 fb

CMS

Simulation
Work in progress

Figure 4.5: Distributions of Pmax(Signal) (left column) and ePmax(Signal) (right column)
for �m± = 0.3GeV (top row), �m± = 0.6GeV (center row), and �m± =
1.0GeV (bottom row) for signal and background events.

79



4 Soft Track Classifier

Figure 4.6: Background rejection versus signal e�ciency (top row) of the trained neural
network classifier for �m± = 0.3GeV (left column), �m± = 0.6GeV (center
column), and �m± = 1.0GeV (right column). The bottom row highlights
the region of high background rejection (low background e�ciency). The
curves are plotted for each era separately and a reference training using only
2016 postVFP data is also shown.
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4.4 Validation

Figure 4.7: SHAP values of the NN input variables corresponding to the signal node
output evaluated for 100 tracks from each of the Spurious (top left), Prompt
(top right), Secondary (bottom left), and Secondary from t in W ! tn
(bottom right) background classes. The mass splitting for evaluation is set
to �m± = 0.3GeV.
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4 Soft Track Classifier

Figure 4.8: SHAP values of the NN input variables corresponding to the signal node
output evaluated for 100 tracks from each of the Spurious (top left), Prompt
(top right), Secondary (bottom left), and Secondary from t in W ! tn
(bottom right) background classes. The mass splitting for evaluation is set
to �m± = 1.0GeV.
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4.4 Validation

e.g., the transverse impact parameter, lead to more signal-like candidates. Track pT is
also important for the 0.3GeV evaluation with smaller values generally identified as more
signal-like. The opposite is true for the 1.0GeV evaluation where relatively larger values
of pT yield higher signal node output scores, except for tracks from the Secondary from
t in W ! tn class where smaller values of pT (relative to other tracks within the class)
are more signal-like.

High purity of true signal tracks is important when selecting from among all tracks in a
signal event. Fig. 4.9 shows that the fraction of signal events in which the highest scor-
ing track is matched to the signal pion (or to another particle from the ec±

1 or ec0

2 decay) is
greater than 90% for a su�ciently high cut on the max score.
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4 Soft Track Classifier
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Figure 4.9: Distributions of simulated signal events along with the subsets of events in
which the highest scoring track is matched to the signal pion (light green)
or any particle associated to the decay of a higgsino (dark green) versus
ePmax(Signal |�m = 0.3GeV) (top left), ePmax(Signal |�m = 0.6GeV) (top
right), and ePmax(Signal |�m = 1.0GeV) (bottom) with the corresponding
fractions shown in the lower panels.
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5 Event Selection

5.1 Event Filters

As recommended by the CMS JetMET physics object group1, events are required to pass
the following noise filters to exclude badly reconstructed events:

• goodVertices

• globalSuperTightHalo2016Filter

• HBHENoiseFilter

• HBHENoiseIsoFilter

• EcalDeadCellTriggerPrimitiveFilter

• BadPFMuonFilter

• BadPFMuonDzFilter (not for 2016)

• eeBadScFilter

• ecalBadCalibFilter (not for 2016).

Furthermore, to improve data/MC agreement, events with abnormally large energy de-
posits in the forward region are discarded by requiring:

• H5

T/HT < 2 .

To mitigate the influence of the outage of two sectors of the hadronic endcap calorimeter
in the 2018 data taking period (“HEM 15/16 failure”), events in the 2018 era are vetoed
if there is a jet present that fulfills:

• pT > 30GeV,�'(jet, ~Hmiss

T ) < 0.5,�3.2 < ⌘ < �1.2,�1.77 < ' < �0.67 .

1https://twiki.cern.ch/twiki/bin/viewauth/CMS/MissingETOptionalFiltersRun2
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5 Event Selection

5.2 Baseline Selection

The cuts that form the baseline event selection are listed in Table 5.1. They follow closely
from the selection in the Run 2 CMS “Monojet” analysis [72], requiring the presence of a
high-pT jet and, importantly, large missing transverse energy and vetoing on the presence
of isolated photons or leptons, taus, and b-tagged jets.

Tables 5.2 and 5.3 list the e�ciencies for each of the cuts for various backgrounds and for
signal. Figures 5.1 and 5.2 show data versus MC comparisons for various event-level and
track-level observables after the baseline event selection is applied. The disagreement in
HT and Hmiss

T is addressed by a pmiss

T -dependent correction, as explained in Section 6.2.3.
The discrepancy in the tail of the NPV (number of primary vertices) distribution is found
not to have an impact in the signal regions.

Table 5.1: The event-level cuts defining the baseline event selection. For detailed object
definitions see Section 3.

Observable Criterion

pmiss

T > 300GeV
Njet(pT > 100GeV) � 1
Hmiss

T > 300GeV
�'min(~p

miss

T , jet
1,2,3,4

) > 0.5
Njet(pT > 30GeV) < 5
Njet(pT > 30GeV, b-tagged loose WP) = 0
Nisolated photon = 0
Nisolated electron = 0
Nisolated muon = 0
Nhadronic tau = 0
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5.2 Baseline Selection

Table 5.2: Cut flow tables for background processes indicating the e�ciency of each cut
of the baseline event selection and the cumulative e�ciency with respect to
the skim selection in parentheses. The skim selection refers to the selection of
events out of all simulated events that are considered for analysis, including
noise filters and a cut of pmiss

T > 200GeV. A detailed reference of the triggers
is given in Section 2.1.

Cut Z ! nn
HT = 200 – 400GeV

Z ! nn
HT > 2500GeV

tt
(di-leptonic)

Skim selection 12.85% (100.0%) 50.05% (100.0%) 2.203% (100.0%)
pmiss

T > 300GeV 13.18% (13.18%) 62.26% (62.26%) 15.17% (15.17%)
Njet(pT > 100GeV) � 1 99.54% (13.12%) 100.0% (62.26%) 98.74% (14.98%)
Hmiss

T > 300GeV 69.86% (9.17%) 94.18% (58.63%) 75.56% (11.31%)
�'min(~p

miss

T , jet
1,2,3,4

) > 0.5 97.41% (8.93%) 36.27% (21.27%) 47.80% (5.41%)
Njet(pT > 30GeV) < 5 98.72% (8.81%) 62.00% (13.18%) 58.63% (3.17%)
Njet(pT > 30GeV, b-tag) = 0 75.88% (6.69%) 40.35% (5.32%) 13.02% (0.41%)
Nisolated photon = 0 98.42% (6.58%) 97.67% (5.20%) 54.10% (0.22%)
Nisolated electron/muon = 0 99.76% (6.57%) 99.64% (5.18%) 29.90% (0.07%)
Ntau = 0 99.86% (6.56%) 99.94% (5.17%) 89.81% (0.06%)
Trigger fired 99.30% (6.51%) 99.92% (5.17%) 98.76% (0.06%)

Cut W ! ln
HT = 200 – 400GeV

W ! ln
HT > 2500GeV

WW
(inclusive)

Skim selection 3.951% (100.0%) 31.46% (100.0%) 0.395% (100.0%)
pmiss

T > 300GeV 8.910% (8.91%) 52.92% (52.92%) 24.67% (24.67%)
Njet(pT > 100GeV) � 1 99.47% (8.86%) 100.0% (52.92%) 97.63% (24.09%)
Hmiss

T > 300GeV 73.32% (6.50%) 94.48% (50.00%) 86.20% (20.76%)
�'min(~p

miss

T , jet
1,2,3,4

) > 0.5 91.52% (5.95%) 28.03% (14.01%) 81.96% (17.02%)
Njet(pT > 30GeV) < 5 98.40% (5.85%) 59.09% (8.28%) 92.00% (15.66%)
Njet(pT > 30GeV, b-tag) = 0 75.80% (4.44%) 24.49% (2.03%) 61.08% (9.56%)
Nisolated photon = 0 80.73% (3.58%) 63.33% (1.28%) 86.31% (8.25%)
Nisolated electron/muon = 0 67.52% (2.42%) 40.71% (0.52%) 82.37% (6.80%)
Ntau = 0 97.64% (2.36%) 95.10% (0.50%) 98.45% (6.69%)
Trigger fired 99.28% (2.34%) 99.92% (0.50%) 99.50% (6.66%)
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Figure 5.1: Comparison of event-level observables for data and simulated SM background
after the baseline event selection is applied. The distributions are shown
before the application of the MC corrections introduced in Section 6.2 and
without a cut on the soft track classifier output.
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Figure 5.2: Comparison of track-level observables for data and simulated SM background
after the baseline event selection is applied. The distributions are shown
before the application of the MC corrections introduced in Section 6.2 and
without a cut on the soft track classifier output.
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5 Event Selection

Table 5.3: Cut flow tables for specific signal model points indicating the e�ciency of
each cut of the baseline event selection and the cumulative e�ciency with
respect to the skim selection in parentheses. The skim selection refers to the
selection of events out of all simulated events that are considered for analysis,
including noise filters and a cut of pmiss

T > 200GeV. For signal, the trigger
e�ciency is not available due to the usage of FastSim.

Cut m(ec±
1 ) = 115GeV,

�m± = 0.3GeV
m(ec±

1 ) = 115GeV,
�m± = 1.0GeV

m(ec±
1 ) = 160GeV,

�m± = 0.6GeV

Skim selection 2.001% (100.0%) 1.956% (100.0%) 3.011% (100.0%)
pmiss

T > 300GeV 33.81% (33.81%) 33.50% (33.50%) 37.25% (37.25%)
Njet(pT > 100GeV) � 1 99.74% (33.72%) 99.71% (33.41%) 99.79% (37.18%)
Hmiss

T > 300GeV 85.48% (28.82%) 87.26% (29.15%) 86.56% (32.18%)
�'min(~p

miss

T , jet
1,2,3,4

) > 0.5 93.32% (26.90%) 93.40% (27.22%) 93.57% (30.11%)
Njet(pT > 30GeV) < 5 94.63% (25.45%) 94.68% (25.78%) 94.28% (28.39%)
Njet(pT > 30GeV, b-tag) = 0 84.19% (21.43%) 84.83% (21.87%) 83.35% (23.66%)
Nisolated photon = 0 98.78% (21.17%) 98.50% (21.54%) 98.77% (23.37%)
Nisolated electron/muon = 0 99.88% (21.14%) 99.42% (21.41%) 99.84% (23.33%)
Ntau = 0 99.90% (21.12%) 99.87% (21.38%) 99.85% (23.30%)
Trigger fired — — —
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5.3 Signal Regions

5.3 Signal Regions

Phase space regions with enhanced sensitivity to signal events (“signal regions”) are
constructed and optimized in the following way:

1. Compute the event-level max score observables ePmax(Signal |�m = 0.3GeV),
ePmax(Signal |�m = 0.6GeV), and ePmax(Signal |�m = 1.0GeV) (defined in Sec-
tion 4.3) by evaluating the neural network soft track classifier for all tracks in the
event using each of the three mass splittings.

2. Categorize each event into one of three signal distributions (SR 0.3, SR 0.6, SR
1.0) according to the highest of the three ePmax(Signal |�m = ... GeV) values. This
ensures orthogonality and avoids double counting of events.

3. In each signal distribution, scan for the highest cut significance in ePmax(Signal |
�m = ... GeV) observable, see Fig. 5.3. The cut significance is computed as the
Asimov significance assuming a 20% systematic error on the background yield. For
the evaluation of the cut significance, the signal model point with mass splitting
corresponding to the mass splitting for which the classifier is evaluated for, is used.

4. In each signal distribution, define three signal regions using the cut obtained in
the previous step and two looser cuts which lead to the same number of expected
signal events in each signal region (“flat-S binning”).

5. To further enhance the sensitivity to the signal, split the tightest signal region in
each signal distribution in two, giving four signal regions per classifier evaluation.

This procedure leads to 12 signal regions with di↵erent background compositions that
are sensitive to di↵erent parts of the signal model space (see Tab. 5.4). The e�ciencies
for each of the mutually exclusive signal regions are given in Tab. 5.5 and 5.6 for a set
of background processes and for three signal model points.

Fig. 5.4 shows the e�ciency of the signal region cuts for signal events versus di↵erent
variables. It can be seen how the di↵erent signal regions are sensitive to di↵erent re-
gions of the signal phase space and that mainly signal events with large pmiss

T > 500GeV
contribute to the signal regions. The impact of the high pmiss

T region can also be seen in
Fig. 5.5, which shows the significance in SR 0.6 in bins of pmiss

T .
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Figure 5.3: Cut significance scans in ePmax(Signal |�m = 0.3GeV) (top left),
ePmax(Signal |�m = 0.6GeV) (top right), and ePmax(Signal |�m = 1.0GeV)
(bottom) as explained in step 3 of the procedure used in constructing signal
regions. The cut significance is computed as the Asimov significance assum-
ing a 20% systematic error on the background yield. In the lower panels, the
uncertainties shown around the solid lines indicate the statistical uncertainty
of the MC samples.
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Figure 5.4: Signal e�ciency per bin in the three signal regions versus generator-level

chargino transverse decaylength (top left), pion pT (top right), and pmiss

T

(bottom). The signal events for these plots are pooled from all signal model
points with m(ec±

1 ) < 200GeV and �m± < 1GeV.
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5 Event Selection

Table 5.4: Cut values on ePmax(Signal |�m = 0.3GeV) (for SR 0.3), ePmax(Signal |�m =

0.6GeV) (for SR 0.6), and ePmax(Signal |�m = 1.0GeV) (for SR 1.0) defining
the signal regions.

Signal region Lower cut Upper cut

SR 0.3

I 9.5 10.0
II 10.0 11.0
III 11.0 11.5
IV 11.5 —

SR 0.6

I 8.75 9.0
II 9.0 9.5
III 9.5 10.5
IV 10.5 —

SR 1.0

I 7.25 7.5
II 7.5 8.0
III 8.0 8.75
IV 8.75 —
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Figure 5.5: Distributions of pmiss

T for signal and background events passing the SR 0.6
selection. The lower panel shows the significance in each bin.
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5.3 Signal Regions

Table 5.5: E�ciencies in the signal regions for various background processes. E�ciencies
are stated with respect to the baseline event selection, see Section 5.2.

Signal region Z ! nn
HT = 200 – 400GeV

Z ! nn
HT > 2500GeV

tt
(di-leptonic)

SR 0.3

I 0.0000% 0.3632% 0.0000%
II 0.0000% 0.4269% 0.0000%
III 0.0000% 0.1274% 0.0000%
IV 0.0000% 0.1211% 0.0000%

SR 0.6

I 0.0000% 0.0765% 0.0000%
II 0.0031% 0.1274% 0.0000%
III 0.0000% 0.1211% 0.0000%
IV 0.0000% 0.0701% 0.0000%

SR 1.0

I 0.0000% 0.2357% 0.0000%
II 0.0016% 0.3568% 0.0000%
III 0.0000% 0.5097% 0.0000%
IV 0.0000% 0.2740% 0.0000%

Signal region W ! ln
HT = 200 – 400GeV

W ! ln
HT > 2500GeV

WW
(inclusive)

SR 0.3

I 0.0000% 0.0805% 0.0228%
II 0.0000% 0.2213% 0.0228%
III 0.0000% 0.0604% 0.0000%
IV 0.0000% 0.0000% 0.0076%

SR 0.6

I 0.0000% 0.0402% 0.0456%
II 0.0000% 0.0805% 0.0076%
III 0.0000% 0.0805% 0.0456%
IV 0.0000% 0.0000% 0.0076%

SR 1.0

I 0.0043% 0.1811% 0.0532%
II 0.0087% 0.1609% 0.0228%
III 0.0000% 0.3219% 0.0609%
IV 0.0000% 0.1207% 0.0000%
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5 Event Selection

Table 5.6: E�ciencies of the signal region cuts for a set of signal model points. The e�-
ciencies are stated with respect to the baseline event selection, see Section 5.2.

Signal region m(ec±
1 ) = 115GeV,

�m± = 0.3GeV
m(ec±

1 ) = 115GeV,
�m± = 1.0GeV

m(ec±
1 ) = 160GeV,

�m± = 0.6GeV

SR 0.3

I 0.1720% 0.0129% 0.1505%
II 0.1178% 0.0129% 0.1728%
III 0.0223% 0.0032% 0.0130%
IV 0.0223% 0.0097% 0.0409%

SR 0.6

I 0.1306% 0.0453% 0.4236%
II 0.1879% 0.0615% 0.4551%
III 0.1306% 0.0388% 0.3920%
IV 0.0255% 0.0194% 0.1245%

SR 1.0

I 0.1975% 0.6504% 0.5387%
II 0.2357% 0.6633% 0.6669%
III 0.1338% 0.4109% 0.4236%
IV 0.0605% 0.1165% 0.1375%
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6 Background Estimation and MC
Corrections

The expected SM background event yields in the signal regions of this analysis are
estimated using MC simulation corrected by data. The following sections describe the
background modeling and the MC corrections used in this analysis. An important
component is the usage of a cleaned Drell-Yan (DY) control region as described in
Section 6.1.

6.1 Cleaned Drell-Yan Control Region

To prepare a well-controlled data sample that mimics the main SM background process
Z ! nn, the Drell-Yan cleaning method is used. The idea is that selecting Z !
µµ events and “removing” the muons from the events gives a good proxy for Z !
nn events since the overall kinematics of the Drell-Yan process are independent of the
lepton flavor. Given that the soft component of the events, namely the soft tracks, is
largely independent from the hard scatter process, this control region provides a faithful
template of both the PV-associated (non-tau) and Spurious tracks across all of the SM
background processes.

The cleaned Drell-Yan sample is constructed by first selecting events with two oppositely
charged, isolated muons with an invariant mass close to the Z boson mass. The detailed
selection criteria are

pT(µ) > 30GeV ,

Isoµ/pT(µ) < 0.2 ,

75GeV < m(Z) < 105GeV ,

pT(Z) > 200GeV ,

where Z denotes the dimuon system and the isolation measure Isoµ is the sum of the
deposited energy associated with the primary vertex within �R < 0.3 around the muon,
as discussed in Section 3.
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6 Background Estimation and MC Corrections

As a second step, the muons are removed from the event record, rendering them neutrino-
like. First, the transverse momenta of the selected muons are vectorially added to the
missing transverse momentum:

~pmiss

T ! ~pmiss

T +
2X

i=1

~pT(µi) . (6.1)

The muons and associated matched tracks, PF candidates, photons, and jets are removed
from the respective collections and are not considered for further analysis of the event.
The matching is done using an angular �R criterion with thresholds of 0.4 for the jet
matching and 0.05 for the other objects.

It is found that the pT distribution of the generator-level Z boson in the cleaned DY
MC sample is biased with respect to the distribution found in simulated Z ! nn events.
Therefore, the simulated cleaned DY events are reweighted according to the pT of the
generator-level Z boson. For the derivation of the weights, the event selection is loos-
ened to the skim selection (see Section 5.2) with pmiss

T > 200GeV and no cut on the pT
of the reconstructed dimuon system is applied. The weights are determined individu-
ally for each data taking era. The corresponding histograms can be found in Fig. A.1
in the Appendix. As can be seen in Fig. 6.1, this reweighting improves the agree-
ment of the cleaned DY MC pmiss

T distribution with both MC Z ! nn and cleaned DY
data.

Figure 6.2 shows the distributions of the invariant mass and transverse momentum of the
muon pair for both data and MC. The lower panel shows that there is good agreement
of the simulated cleaned DY sample with the data sample. Furthermore, Figs. 6.4
and 6.5 show that the observable shapes found in the cleaned DY sample very well
approximate the real pmiss

T background, Z ! nn, even in the neural network max scores
observables.

Throughout this section, data distributions in the cleaned DY control region are dis-
played with green dots as opposed to black dots used for the real pmiss

T data.

Track- vs. Event-level Signal Node Output Score Observables

The cleaned DY data set is also used to study the connection between the inclusive
track-level signal node scores eP(Signal |�m = ... GeV) and the event-level max scores
ePmax(Signal |�m = ... GeV). As shown in Fig. 6.6, the two observables become congru-
ent for values of eP(max)(Signal |�m = ... GeV) ' 5, signifying that the number of tracks
above this threshold per event is (close to) one.
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6.1 Cleaned Drell-Yan Control Region
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Figure 6.1: Distributions of pT(ZGEN
) (top row) and pmiss

T (bottom row) for cleaned DY
and Z ! nn before (left column) and after (right column) the cleaned DY
MC events are reweighted. For these distributions, the pT(Z) > 200GeV cut
is not applied.

99



6 Background Estimation and MC Corrections

0

2

4

6

8

10

12

14

16

18

310×

Ev
en

ts

Cleaned DY Data

Cleaned DY MC

 (13 TeV)-1138 fb

CMS
Work in progress

0 20 40 60 80 100 120 140
DY Cleaning m(Z) (GeV)

0.5
1

1.5

D
at

a 
/ M

C

310

410

510Ev
en

ts

Cleaned DY Data

Cleaned DY MC

 (13 TeV)-1138 fb

CMS
Work in progress

0 20 40 60 80 100 120 140
DY Cleaning m(Z) (GeV)

0.5
1

1.5

D
at

a 
/ M

C

0

2

4

6

8

10

12

14

16

310×

Ev
en

ts

Cleaned DY Data

Cleaned DY MC

 (13 TeV)-1138 fb

CMS
Work in progress

0 500 1000 1500 2000 2500
(Z) (GeV)

T
DY Cleaning p

0.5
1

1.5

D
at

a 
/ M

C

2−10

1−10
1

10

210

310

410

510

610

710

810

910

1010

Ev
en

ts
Cleaned DY Data

Cleaned DY MC

 (13 TeV)-1138 fb

CMS
Work in progress

0 500 1000 1500 2000 2500
(Z) (GeV)

T
DY Cleaning p

0.5
1

1.5

D
at

a 
/ M

C

Figure 6.2: Invariant mass and pT of the dimuon system used in the Drell-Yan cleaning.
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Figure 6.3: Comparison of event-level observables for the cleaned DY sample in data and
MC.
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Figure 6.4: Distributions of event-level observables for Z ! nn events and cleaned DY
(data and MC) scaled to Z ! nn.
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Figure 6.5: Distributions of ePmax(Signal |�m = ... GeV) for Z ! nn events and cleaned
DY (data and MC) scaled to Z ! nn. The distribution for Z ! nn is
divided into whether the highest scoring track is associated to the Spurious
or PV-associated track class.
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Figure 6.6: Distributions of eP(Signal |�m = 0.3GeV), eP(Signal |�m = 0.6GeV), and
eP(Signal |�m = 1.0GeV) for all tracks in the cleaned DY data set as well
as only for the max scoring track per event.
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6.2 MC Corrections

6.2 MC Corrections

To get an accurate prediction of the expected event yields in the signal regions, the
MC samples are corrected using data. The correction procedure applied to the SM
background samples consists of normalization corrections and shape corrections, uses the
cleaned DY control sample and is validated in a single-lepton validation region. Before
an extended explanation is given, the following short summary provides the essential
details, as well as a roadmap for the section below.

• Background Normalization Correction: Scale factors are derived for the PV-
associated and Spurious background classes both in the cleaned DY and real pmiss

T

regions, as discussed in Section 6.2.1. The scale factor for the background associ-
ated to secondaries from tau lepton decays is derived in the context of the signal
e�ciency study in Section 7. Additional scale factors specific to the ePmax(Signal |
�m = ... GeV) observables are derived in sidebands of the respective observables
after the background class-specific scale factors are applied, as discussed below in
Section 6.2.1.

• MC Shape Correction: Three track variables are simultaneously corrected using
a refinement neural network approach. The network is trained in the cleaned DY
region after the application of the normalization scale factors and is applied to
all simulated tracks (background and signal) in the real pmiss

T region. Additional
correction factors for each SR are taken from the residual cleaned DY data/MC
ratios using a line fit, as described below in Section 6.2.2.

• Background pmiss
T -based Correction: Background MC events are reweighted to

better model the observed pmiss

T spectrum in data, as shown in Section 6.2.3. This
event-level correction is independent of the previous two track-level corrections
and thus treated in a factorized way.

• Signal FastSim Correction: Simulated signal events are corrected with SR-
specific correction factors to compensate for the usage of FastSim, as given in
Section 6.2.4. These factors are derived after the track-level refinement is applied.

6.2.1 Background Normalization Correction

Normalization correction factors (scale factors) are derived for the PV-associated and
Spurious track classes by comparing inclusive MC and data distributions. To distin-
guish tracks from the two classes, the longitudinal impact parameter is used; by requir-
ing

log
10
(dz w.r.t. PV) < 10�3.0 cm = 0.001 cm (6.2)
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an e↵ectively pure sample of PV-associated tracks can be obtained, whereas requir-
ing

log
10
(dz w.r.t. PV) > 10�0.2 cm ⇡ 0.631 cm (6.3)

isolates Spurious tracks.

Figure 6.7 shows the corresponding distributions used to derive the scale factors for the
set of inclusive tracks passing the preselection. The regions mentioned above are the first
and third (last) bin in the rebinned histogram. The scale factors (with statistical errors)
in the cleaned DY control region are determined to be

• 0.9116 ± 0.0036 for PV-associated and

• 1.1767 ± 0.0012 for Spurious tracks.

A selection of track-level variables is shown in Figs. 6.8 and 6.9 after applying the scale
factors.

The corresponding scale factors for the two background classes in the real pmiss

T data are
found to be

• 0.82417 ± 0.00086 for PV-associated and

• 1.05799 ± 0.00030 for Spurious tracks.
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Figure 6.7: Distributions of log
10
(dz w.r.t. PV) for tracks in (simulated) cleaned DY

events. Left: linear y-scale, fine-binning; right: logarithmic y-scale, coarse
binning used to derive the scale factors.

Additionally to the global normalization corrections for each track class, signal region-
specific scale factors are derived in sidebands of the signal-sensitive observables: 5 <
ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) < 7. They are compiled in Table 6.1.
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Figure 6.8: Track-level observables for cleaned DY data and MC after application of the
scale factors. The overlap of the barrel and forward parts of the tracker
detector is visible as a dip in the pseudorapidity distribution at |⌘| ⇡ 1.4.
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Figure 6.9: Displacement-related track-level observables for cleaned DY data and MC
after application of the scale factors.
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Table 6.1: Sideband scale factors for the ePmax(Signal |�m = ... GeV) distributions.

Observable Scale factor

ePmax(Signal |�m = 0.3GeV) 1.0103 ± 0.0064
ePmax(Signal |�m = 0.6GeV) 1.0618 ± 0.0102
ePmax(Signal |�m = 1.0GeV) 0.9869 ± 0.0096
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6.2.2 MC Shape Correction

Figures 6.8 and 6.9 show generally good agreement between data and simulation after
applying the normalization correction. Still, to correct for remaining shape di↵erences
between the distributions of simulated and observed track variables, a machine learning-
based approach is employed. It is realized by applying a regression neural network to
the simulated MC samples, which is trained to improve the agreement to data. To
obtain a training sample, inclusive sets of tracks passing the preselection are taken
from the cleaned DY control region in data and MC. Scale factors are applied to the
PV-associated and Spurious tracks in MC, correcting for global e�ciency biases; after
these corrections, residual discrepancies can be assumed to be due to shape mismodel-
ing.

A neural network equipped with skip connections is now trained to refine a set of track
observables in MC which are found to be biased and important for the soft track classifier.
Refinement (or morphing) means that the values of the observables are changed by the
method. This approach contrasts with reweighting approaches where the values are
unchanged but object- or event-level weights are determined to make up for discrepancies
in distributions. The refiner neural network is implemented as a feedforward regression
network (see Fig. 6.11), taking the MC values as inputs and trained to output refined
values such that their distributions better resemble the target distributions observed in
data. This is achieved by training the network with the biased estimator of the maximum
mean discrepancy (MMD) [45] as the loss function. The MMD is a multidimensional
two-sample test measuring the similarity between two sets of data points of batch size
m and is calculated as:

MMD(✓)b =
1

m2

mX

i,j=1

k(xi,xj) +
1

m2

mX

i,j=1

k(x̂i(✓), x̂j(✓)) � 2

m2

mX

i,j=1

k(xi, x̂j(✓)) . (6.4)

Here, xi are vectors taken from the data distribution whereas x̂i are the outputs of the re-
finer which depend on the trainable network parameters ✓.

A Gaussian kernel function is used,

k(a,b) = exp

 
�

DX

d=1

(bd � ad)2

�2

d

!
, (6.5)

with individual bandwidths �d for each dimension d. The notation ad refers to the d-th
component of a vector a. The bandwidths are set to the median distance between all
pairs of input and target samples in the corresponding dimension.

Further details of the method can be found in Part I of this thesis.
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6.2 MC Corrections

For the shape correction, three variables are refined: the track pT, log10(dxy
Error), and

log
10
(dzError), whose distributions are shown in Fig. 6.12. For the training, pT is trans-

formed by pT 7! log
10
(pT). In principle, more variables could be added but in order

to keep the loss function sensitive also to the tails of the distributions and not “wash
out” the training set over many dimensions, the correction is only applied to these three
dimensions as they are (a) found to be important to the soft track classifier (Figs. 4.7
and 4.8) and (b) exhibit mismodeling in the data to MC comparisons (see Figs. 6.8 and
6.9). Table 6.2 shows the hyperparameters of the refiner network along with the training
parameters. Figure 6.10 displays the evolution of the loss during training. To study and
minimize the influence of the random initialization of weights and the random sampling
of batches during training, five variations of the refiner network are trained with the
same settings. For evaluation, the mean output of the five networks is taken to be the
nominal refined value.

Figure 6.10: Learning curve for the refinement network used for the MC shape correction.

Figure 6.11: Sketch of the training setup for the MC shape correction strategy using a
refinement neural network.

The results of the refinement applied to the three variables are shown in Fig. 6.12. It is
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6 Background Estimation and MC Corrections

evident that the correction leads to improved data/MC agreement over the full range of
pT as well as in the signal-like regime of small to medium values of log

10
(dxyError) and

log
10
(dzError). A worsened agreement is observed for very large values of log

10
(dxyError)

and log
10
(dzError), however, this exotic phase space region has negligible impact on the

analysis.

The MC shape correction is subsequently propagated to the signal node scores eP(Signal |
�m = ... GeV) which are used to define the signal regions. This is done by re-evaluating
the soft track classifier taking as input the refined track variables. The results are shown
in Fig. 6.13. Also in the signal-like tails of these distributions, an improved data/MC
agreement is observed despite the fact that those observables are not directly refined but
only change via the modified input variables to the soft track classifier. Furthermore,
Fig. 6.14 shows the corresponding event-level ePmax(Signal |�m = ... GeV) distributions,
that are used for the signal regions.

To account for small remaining discrepancies observed between the data and MC dis-
tributions of the max score observables, two line fits are performed to the data/MC
ratio in the cleaned DY region using the fit ranges ePmax(Signal |�m = ... GeV) > 5
and ePmax(Signal |�m = ... GeV) > 7, see Fig. 6.15 and Tables 6.3 and 6.4. Back-
ground events in the signal regions are reweighted with the function value of the line
fit in the looser region evaluated at the low edge of the signal region. A system-
atic uncertainty is applied that is quantified by the di↵erence between this function
value and the corresponding function value using the fit in the tighter region, see Sec-
tion 7.
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6.2 MC Corrections

Table 6.2: Hyperparameters corresponding to the architecture and training of the MC
shape correction refiner neural network.

Parameter Value

Number of residual blocks 5
Hidden layers per residual block 2
Nodes per hidden layer 512
Activation function LeakyReLU (↵ = 0.01)
Loss function MMD
Kernel bandwidths �d 0.083, 0.109, 0.193 for log

10
(pT),

log
10
(dxyError), log

10
(dzError), resp.

Learning rate 1⇥10-5

Optimizer Adam
Number of epochs 100
Batch size 4096
Number of batches for training,
testing, validation

350, 25, 25

Total data set size 1638400

Table 6.3: Line slopes and intercepts fitted to the cleaned DY data/MC ratios in Fig. 6.15

in the signal-sensitive regions ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) > 5.

Observable Fitted slope Fitted intercept

ePmax(Signal |�m = 0.3GeV) �0.033 ± 0.021 1.27 ± 0.12
ePmax(Signal |�m = 0.6GeV) �0.046 ± 0.024 1.38 ± 0.14
ePmax(Signal |�m = 1.0GeV) �0.003 ± 0.037 1.07 ± 0.20

Table 6.4: Line slopes and intercepts fitted to the cleaned DY data/MC ratios in Fig. 6.15

in the signal-sensitive regions ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) > 7.

Observable Fitted slope Fitted intercept

ePmax(Signal |�m = 0.3GeV) �0.146 ± 0.073 2.23 ± 0.57
ePmax(Signal |�m = 0.6GeV) �0.192 ± 0.062 2.54 ± 0.48
ePmax(Signal |�m = 1.0GeV) �0.042 ± 0.109 1.32 ± 0.83
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Figure 6.12: Distributions of the three track variables to which the MC shape correction
(refinement) is applied. The distributions for data are shown alongside
those for refined and unrefined MC in the cleaned DY region. In the lower
panel, the green dots indicate the ratio of data to refined MC, the black
line indicates the ratio of data to unrefined MC, and the gray lines show
the ratio of data to each of the five refinement variations.
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Figure 6.13: Track-level distributions of eP(Signal |�m = 0.3GeV), eP(Signal |�m =

0.6GeV), and eP(Signal |�m = 1.0GeV) for tracks in data as well as in MC
with and without refinement applied to the input variables in the cleaned
DY region. In the lower panel, the green dots indicate the ratio of data
to refined MC, the black line indicates the ratio of data to unrefined MC,
and the gray lines show the ratio of data to each of the five refinement
variations.
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Figure 6.14: Event-level distributions of ePmax(Signal |�m = 0.3GeV), ePmax(Signal |
�m = 0.6GeV), and ePmax(Signal |�m = 1.0GeV) for events in data as
well as in MC with and without refinement applied to the input variables
in the cleaned DY region. In the lower panel, the green dots indicate the
ratio of data to refined MC, the black line indicates the ratio of data to
unrefined MC, and the gray lines show the ratio of data to each of the five
refinement variations. The three tightest bins in each distribution corre-
spond to the signal regions defined in Section 5.3 (the two tightest signal
regions are merged into one bin to increase the statistics).
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Figure 6.15: Event-level distributions of ePmax(Signal |�m = 0.3GeV), ePmax(Signal |
�m = 0.6GeV), and ePmax(Signal |�m = 1.0GeV) for events in data as
well as in refined MC in the cleaned DY region, as also shown in Fig. 6.14.
Linear fits to the data/MC ratio are shown for two ranges of the observ-
ables, once for ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) > 5 (red) and once
for ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) > 7 (blue).
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6.2.3 Background pmiss
T -based Correction

The background MC samples are further corrected to improve the agreement with the
pmiss

T distribution observed in data. For this, a line fit is performed to events pass-
ing the baseline event selection (but no cut on the signal node scores) in the region
300GeV < pmiss

T < 1000GeV and simulated events are reweighted according to the
corresponding function value. Events with pmiss

T > 1000GeV are weighted with the
value at pmiss

T = 1000GeV. This procedure is safe with respect to sensitivity to sig-
nal events since the signal regions only make up a very small fraction of all high-pmiss

T

events.

The distributions and outcome of the fit can be seen in Fig. 6.16. Figure 6.17 shows the
distributions of pmiss

T and ePmax(Signal |�m = 0.6GeV) for events categorized into the
SR 0.6 distribution before and after applying the weights.
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Figure 6.16: Distributions of pmiss

T used to derive the correction weights.
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Figure 6.17: Distributions of pmiss

T (top) and ePmax(Signal |�m = 0.6GeV) (bottom) for
background MC and data for events categorized into the SR 0.6 distribution
before (left) and after (right) applying the pmiss

T -based correction weights.
The data histogram for ePmax(Signal |�m = 0.6GeV) is blinded beyond 5.
The lower panels show the ratio of data to unrefined MC as a black line
and data to refined MC as black dots.
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6 Background Estimation and MC Corrections

6.2.4 Signal FastSim Correction

To derive corrections for the signal samples compensating for mismodeling in FastSim,
the signal is also simulated with FullSim for the 2018 era of data taking. Distributions of
observables for three groups of model points corresponding to three di↵erent mass split-
tings (�m± = 0.3GeV, �m± = 0.6GeV, and �m± = 1.0GeV) are compared. For each
of these mass splittings, the model points for all chargino masses are pooled: m(ec±

1 ) =
{100, 115, 140, 140, 160, 180, 200, 250, 300, 500} GeV.

Firstly, Fig. 6.18 shows good agreement in the simulation of standard event-level quan-
tities. Still, in Fig. 6.19 discrepancies in the ePmax(Signal |�m = ... GeV) observables
used to define the signal regions can be observed. From these, as a first order correc-
tion, normalization correction factors are derived by comparing the total yields for each
group of signal model points and then taking the average correction factor within all
groups for each observable, see Table 6.5. To further correct for di↵erent signal region
e�ciencies in FastSim and FullSim, a second set of correction factors is derived for each
signal region individually. For each signal region, the group of signal model points cor-
responding to the mass splitting for which the classifier is evaluated for, is used. The
resulting correction factors are compiled in Table 6.6.

The distributions with both correction factors applied are shown in Fig. 6.20. An im-
proved agreement between the corrected FastSim samples and the FullSim samples
can be observed, especially in the diagonal (top left to bottom right) which shows
the classifier evaluated for the �m± equal to the �m± of the probed signal model
point.

Table 6.5: FastSim/FullSim normalization correction factors taken from the distributions
in Fig. 6.19. The error on the average is calculated as the standard deviation
of the three individual estimates divided by

p
3.

�m±
true = 0.3GeV �m±

true = 0.6GeV �m±
true = 1.0GeV Average

SR 0.3 1.208 1.376 1.597 1.394 ± 0.113
SR 0.6 1.023 0.952 1.282 1.085 ± 0.100
SR 1.0 0.605 0.595 0.604 0.601 ± 0.003
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Figure 6.18: Distributions of the number of primary vertices and pmiss

T for a benchmark
signal model point simulated with FastSim and with FullSim.

Table 6.6: FastSim/FullSim signal region correction factors with statistical uncertainties
taken from the distributions in Fig. 6.19.

�m±
true = 0.3GeV �m±

true = 0.6GeV �m±
true = 1.0GeV

SR 0.3

I 0.358 ± 0.112
II 0.514 ± 0.135
III 0.155 ± 0.093
IV 0.047 ± 0.033

SR 0.6

I 0.544 ± 0.091
II 0.425 ± 0.067
III 0.476 ± 0.087
IV 0.710 ± 0.218

SR 1.0

I 0.763 ± 0.122
II 0.649 ± 0.092
III 0.711 ± 0.133
IV 0.418 ± 0.130
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Figure 6.19: Distributions of ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) for three sig-
nal model mass splittings simulated with FastSim and with FullSim
before FastSim corrections. For each value of signal model �m±

(each column), multiple values of m(ec±
1 ) are pooled: m(ec±

1 ) =
{100, 115, 140, 140, 160, 180, 200, 250, 300, 500} GeV. The last four bins in
each histogram correspond to the signal regions for the respective observ-
able, as given in Table 5.4, the remaining bins are not used for the statistical
interpretation.

122



6.2 MC Corrections

0

200

400

600

800

1000

1200

1400

1600

1800

Ev
en

ts

m = 0.3 GeV) FullSim∆Sig. (

m = 0.3 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.3 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

1−10

1

10

210

310

410

510

610

710

Ev
en

ts

m = 0.3 GeV) FullSim∆Sig. (

m = 0.3 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.3 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

0

200

400

600

800

1000

1200

1400

Ev
en

ts

m = 0.6 GeV) FullSim∆Sig. (

m = 0.6 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.3 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

1−10

1

10

210

310

410

510

610

710

Ev
en

ts

m = 0.6 GeV) FullSim∆Sig. (

m = 0.6 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.3 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

0

200

400

600

800

1000

1200

1400

Ev
en

ts

m = 1.0 GeV) FullSim∆Sig. (

m = 1.0 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.3 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

2−10

1−10

1
10

210

310

410

510

610

710

810

Ev
en

ts

m = 1.0 GeV) FullSim∆Sig. (

m = 1.0 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.3 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

0

50

100

150

200

250

300

350

400

450

Ev
en

ts

m = 0.3 GeV) FullSim∆Sig. (

m = 0.3 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.6 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

3−10

2−10

1−10

1
10

210

310

410

510

610

710

Ev
en

ts

m = 0.3 GeV) FullSim∆Sig. (

m = 0.3 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.6 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

0

100

200

300

400

500

600

700

Ev
en

ts

m = 0.6 GeV) FullSim∆Sig. (

m = 0.6 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.6 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

2−10

1−10

1

10

210

310

410

510

610

710

Ev
en

ts

m = 0.6 GeV) FullSim∆Sig. (

m = 0.6 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.6 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

0

100

200

300

400

500

Ev
en

ts

m = 1.0 GeV) FullSim∆Sig. (

m = 1.0 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.6 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

1−10

1

10

210

310

410

510

Ev
en

ts

m = 1.0 GeV) FullSim∆Sig. (

m = 1.0 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=0.6 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

0

100

200

300

400

500

600

700

800

Ev
en

ts

m = 0.3 GeV) FullSim∆Sig. (

m = 0.3 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=1.0 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

1−10

1

10

210

310

410

510

610

Ev
en

ts

m = 0.3 GeV) FullSim∆Sig. (

m = 0.3 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=1.0 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

0

100

200

300

400

500

600

700

800

Ev
en

ts

m = 0.6 GeV) FullSim∆Sig. (

m = 0.6 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=1.0 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

1

10

210

310

410

510

Ev
en

ts

m = 0.6 GeV) FullSim∆Sig. (

m = 0.6 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=1.0 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

0

200

400

600

800

1000

1200

Ev
en

ts

m = 1.0 GeV) FullSim∆Sig. (

m = 1.0 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=1.0 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

1−10

1

10

210

310

410

510

610

710

Ev
en

ts

m = 1.0 GeV) FullSim∆Sig. (

m = 1.0 GeV) FastSim∆Sig. (

 (13 TeV)-160 fb

CMS

Simulation
Work in progress

4− 2− 0 2 4 6 8 10 12 14
m=1.0 GeV)∆(Signal | maxP~

0.5
1

1.5

Fu
ll 

/ F
as

t

Figure 6.20: Distributions of ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) for three sig-
nal model mass splittings simulated with FastSim and with FullSim af-

ter FastSim corrections are applied. For each value of signal model
�m± (each column), multiple values of m(ec±

1 ) are pooled: m(ec±
1 ) =

{100, 115, 140, 140, 160, 180, 200, 250, 300, 500} GeV. The last four bins in
each histogram correspond to the signal regions for the respective observ-
able, as given in Table 5.4, the remaining bins are not used for the statistical
interpretation.
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7 Systematic Uncertainties

The following uncertainties are relevant for the estimates of the yields of the signal and
background processes in the signal regions:

• Background scale/normalization: The uncertainty in the scale factors for the
PV-associated and Spurious backgrounds is determined by deriving alternative
scale factors within di↵erent sets of tracks, namely the highest scoring tracks for
�m± = 0.3GeV (for Spurious) and �m± = 1.0GeV (for PV-associated) in a
sideband region of 5 < ePmax(Signal |�m = 0.3 (1.0)GeV) < 7. The nominal
and alternative scale factors are compiled in Table 7.1, leading to a variation of
9% (5%) for the Spurious (PV-associated) class; this variation is assigned as a
systematic uncertainty for each class. This procedure accounts for a possible bias
in the selection of the highest scoring track due to under- or overrepresentation in
the MC. However, based on Fig 6.6, it is expected that this e↵ect is minimal in
the signal regions. For the subdominant background arising from t secondaries in
W ! tn events, the normalization uncertainty is taken to be 10%, determined
from the di↵erence of the corresponding scale factor to unity, as seen in Fig. 7.4
and Table 7.2.

• Background shape: The uncertainty in the background shape is twofold. First,
the influence of the random initialization of weights and random iteration through
the training dataset is determined by training the refinement network with the
same settings five times and comparing the signal region yields for background. It
can be seen in Figs. 6.12, 6.13, and 6.14 that this e↵ect is negligible. Secondly,
the residual disagreement between cleaned DY data and MC in the signal regions
is assessed as the di↵erence of the two line fits to the ratios in Fig. 6.15. The
di↵erences of the corresponding function values at the low edges of the signal
region bins are taken as variations of the nominal prediction, yielding values of
O(10%), as seen in Table 7.3.

• Jet energy scale: Corrections to the jet energy scale simulation are varied using
pT and ⌘-dependent uncertainties derived centrally. The variations are propagated
to higher level variables such as jet multiplicity, pmiss

T , HT and Hmiss

T . By re-
evaluating the classifier with the varied pmiss

T , the influence of the variation on the
final signal regions is assessed. Figure 7.1 shows an approximately flat e↵ect of 5%
for both signal and background.
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• Pileup modeling: The e↵ect of potential pileup mismodeling is checked by de-
termining the expected event yields in the ePmax(Signal |�m = 0.3GeV) signal
regions — which are most dominated by tracks from pileup interactions — with-
out applying the weights. Based on the distributions in Fig. 7.2, an uncertainty of
3% is applied.

• L1 prefiring: In the 2016 and 2017 data taking periods, an issue with the L1
trigger resulted in possible losses of signal events due to the wrongful association
of trigger bits to the previous bunch crossing. The impact of this prefiring on the
analysis is evaluated by comparing the nominal ePmax(Signal |�m = 0.6GeV) dis-
tributions for signal and background to the respective distributions after removing
events with jets with pT > 100GeV and 2.25 < |⌘| < 3.0. Figure 7.3 shows that,
towards the signal regions with ePmax(Signal |�m = 0.6GeV) > 8.75, the e↵ect is
⇡ 1% and a systematic uncertainty of 2% is applied.

• Luminosity: An uncertainty of 1.6% is applied corresponding to the accuracy of
the luminosity measurement as per central recommendation by the CMS Collabo-
ration [73].

• Signal e�ciency: To get an estimate of the signal e�ciency in data compared
to MC, soft tracks from tau decays in W ! tn are used as a proxy since the
underlying physics process is similar to the signal. Those tau tracks are isolated
in the tail of the tau node output distribution eP(W(t) |�m = 0.3GeV). The
discrepancy between data and prediction yields is measured in six regions with
a successively tighter selection applied on eP(W(t) |�m = 0.3GeV). For this
procedure, all tracks passing the preselection and a loose cut on eP(Signal |�m =
0.3GeV) of -5 are used. The observable is shown in Fig. 7.4 and the results are
compiled in Table 7.2. Derived from the deviation of the tau track scale factor
from unity, a signal uncertainty of 10% is applied.

Table 7.1: Scale factors derived in the nominal and alternative way. Nominal refers to
the inclusive set of tracks passing the preselection whereas the alternative sets
consist of only the highest-scoring tracks for�m± = 0.3GeV (for the Spurious
class) and �m± = 1.0GeV (for the PV-associated class) in a sideband region
of 5 < eP(Signal |�m = 0.3 (1.0)GeV) < 7.

Background class Nominal ± stat. Alternative ± stat. Deviation

PV-associated 0.82417 ± 0.00086 0.783 ± 0.036 5.0%
Spurious 1.05799 ± 0.00030 0.968 ± 0.011 8.5%
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7 Systematic Uncertainties
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Figure 7.1: Nominal distributions of ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) together
with the distributions for an up-variation of the jet energy corrections.
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Figure 7.2: Nominal distributions of ePmax(Signal |�m = 0.3GeV) together with the dis-
tributions with no pileup weights applied.
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Figure 7.3: Assessment of the impact of the L1 prefiring issue in 2016 and 2017 data
taking. The “L1 prefiring veto” refers to the removal of events with jets with
pT > 100GeV and 2.25 < |⌘| < 3.0.
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Figure 7.4: Distributions of eP(W(t) |�m = 0.3GeV) used to determine the tau track
scale factor which is also used as an estimate for the uncertainty of the signal
e�ciency.

Table 7.2: Tau track scale factors computed from the data to MC ratio in the distribu-
tions shown in Fig. 7.4.

Cut on eP(W(t) |�m = 0.3GeV) SF

2 0.975 ± 0.027
2.5 0.957 ± 0.034
3 0.880 ± 0.052
3.5 0.850 ± 0.078
4 0.952 ± 0.166
4.5 0.262 ± 0.279

Weighted mean 0.938 ± 0.112
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Table 7.3: Magnitudes of the systematic uncertainties on the background prediction in
each signal region. The scale uncertainties for PV-associated and Spurious
refer to the di↵erence of the nominal to the alternative scale factors (see
Table 7.1), whereas for the tau track background, the scale uncertainty cor-
responds to the di↵erence of the scale factor to unity (see Table 7.2). The
shape uncertainties are derived from two line fits to the data/MC ratio in
the cleaned DY region, taking the di↵erence of the function values of the two
fitted lines evaluated at the low edge of each signal region as the size of the
uncertainty (see Tables 6.3 and 6.4).

Uncertainty Scale Shape

Background PV-associated Spurious Tau tracks All

SR 0.3

I

5% 9% 10%

11%
II 17%
III 28%
IV 34%

SR 0.6

I

5% 9% 10%

12%
II 15%
III 23%
IV 37%

SR 1.0

I

5% 9% 10%

3%
II 4%
III 6%
IV 9%
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7 Systematic Uncertainties

7.1 Single-lepton Control Region Validation

To validate the background estimation method, a validation region is defined by inverting
the lepton veto and requiring exactly one lepton in the event selection. Note that all other
baseline selection cuts including the pmiss

T cut of 300GeV are applied. The single-lepton
validation region is expected to be dominated by W ! ln events, a process very similar
to Z ! nn, the dominant background in the signal regions.

The corresponding distributions of the track-level signal node output scores eP(Signal |
�m = {0.3, 0.6, 1.0}GeV) are shown in Fig. 7.5 and show good agreement between the
data and prediction in the full phase space, including in the signal regions. The impact
parameters of tracks in the single-lepton CR are also examined to check for features
that may arise from material interactions or other geometric factors. Figure 7.6 shows
distributions of the transverse impact parameter (with respect to the leading primary
vertex) for all tracks in the single-lepton validation region with three di↵erent choices of
x-axis limits. The two dimensions are plotted against each other in Fig. 7.7 for a subset
of events in data (Run 2018 D) and for simulated W ! ln events with high HT. For
these two-dimensional distributions, a cut of eP(Signal |�m = 0.3GeV) > 5 is applied
to test the phase space region sensitive to the most displaced signal. None of the figures
seems to indicate structure arising from detector material.

7.2 Impacts/Pulls of the Maximum Likelihood Fit

In the maximum likelihood fit, each source of systematic uncertainty is encoded in the
likelihood as a log-normal function with a single parameter (nuisance parameter) taken
to modify the rate of a given process. The width of the log-normal is estimated as the
prefit uncertainty assigned to a given nuisance parameter, as described in Section 7. The
robustness of the maximum likelihood fit model is studied using the Asimov data set cor-
responding to the background-only hypothesis, as well as to the background-plus-signal
hypothesis. The results of the maximum likelihood fit are shown in terms of the impact
of the fit on each nuisance parameter in Figs. 7.8 and 7.9.
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Figure 7.5: eP(Signal |�m = {0.3, 0.6, 1.0}GeV) distributions of events in the single-
lepton validation region with all MC corrections applied. The last four bins
in each distribution correspond to the signal regions. The systematic uncer-
tainties are shown as shaded areas in the lower panels, the black error bars
indicate the statistical uncertainty in the data.
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Figure 7.6: Distributions of the transverse impact parameter for tracks in data and MC
in the single-lepton validation region. Two di↵erent x-axis limits are shown.
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Figure 7.7: Two-dimensional distributions of dx versus dy for tracks with eP(Signal |
�m = 0.3GeV) > 5 in data (left) and W ! ln MC (right) in the single-
lepton validation region
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Figure 7.8: Impact on the nuisance parameters of the background-only Asimov data set.
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8 Results and Interpretation

Figure 8.1 shows the distributions of the ePmax(Signal |�m = {0.3, 0.6, 1.0}GeV) observ-
ables for SM background and various signal model points. Also shown are the observed
data histograms. The last four bins in each distribution correspond to the signal regions.
The 12 signal regions are additionally compiled in Fig. 8.2. The data are consistent with
the background-only model over the full range of the signal-sensitive observables, also
in the signal regions.

8.1 Exclusion Limits

In the absence of signs of signal events in the signal regions, exclusion limits are derived
based on CLs asymptotic limits [74] using the Combine tool [75]. They are shown in
Fig. 8.3 in the plane of �m± versus chargino mass. The excluded region encompasses
�m± 2 [0.3, 1.2]GeV for m(ec±

1 ) = 110GeV and extends to around m(ec±
1 ) = 185GeV

for �m± = 600MeV. The impact of the observed data on the nuisance parameters in the
maximum likelihood model are shown in Fig. 8.4. The best fit signal strength modifier
is consistent with 0 within the uncertainties of the fit. The most significant pull is down-
ward on the Spurious background normalization by 0.9�.

The maximum likelihood fit leading to the exclusion limits has been carried out by
Samuel Bein.

8.2 Comparison to Previous Searches

As expected, the excluded region of this analysis sits between the exclusions of disap-
pearing track and soft lepton searches, see Figs. 1.5 and 1.4. Compared to the limits set
by the ATLAS Collaboration using the same signature as this search (Ref. [62] featured
in Fig. 1.4), a considerable extension of the ruled out model phase space is observed. The
presented search extends the maximum sensitivity to chargino mass by approximately
20GeV and leads to significantly more extensive sensitivity in the mass splitting �m±.
This improvement can be attributed to the parametrization of the soft track classifier,
leading to increased sensitivity to a wide range of �m±.
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Figure 8.1: Distributions of events in the signal-sensitive observables ePmax(Signal |�m =
{0.3, 0.6, 1.0}GeV) for expected background, signal, and observed data. The
systematic uncertainties are shown as shaded areas in the lower panels, the
black error bars indicate the statistical uncertainty in the data. The MC
distributions are shown pre-fit.
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Figure 8.2: Expected yields of background and signal for four benchmark signal model
points, as well as observed data yields, in all 12 signal regions. The systematic
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bars indicate the statistical uncertainty in the data. The MC distributions
are shown pre-fit.
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9 Summary and Outlook

A search has been presented for new physics manifesting as a minimal supersymmet-
ric extension of the Standard Model featuring electroweakinos with compressed mass
spectra. The considered signal models are characterized by the pair-production of
electroweakinos, including one or two charginos. For �m± = �m(ec±

1 , ec0

1) . 1GeV,
the charginos decay to the lightest neutralino and, via an o↵-shell W boson, most
often to a single pion. Due to the small mass di↵erence between the chargino and
the lightest neutralino, the chargino has a discernible decay length of up to O(1 cm).
The chargino most often decays within the beam pipe, endowing the pion with a
small but measurable impact parameter with respect to the primary interaction ver-
tex.

This signature is experimentally probed by selecting events with large missing transverse
momentum pmiss

T (owing to the final state neutralinos) and a low-momentum, displaced
track (associated with the pion). To isolate signal-like tracks from the vast quantity
of background tracks coming from the underlying event, pileup vertices, and erroneous
reconstruction, a neural network classifier is trained. It uses various input observables
including kinematic track variables, displacement- and isolation-related features, as well
as pmiss

T and the angle of the track to ~pmiss

T . Furthermore, the network is parametrized
by the mass splitting �m±, boosting sensitivity across the considered range of �m±,
which spans significant variations in signal characteristics.

The soft track classifier is evaluated for all tracks in an event using three mass splittings
(�m± = 0.3GeV, �m± = 0.6GeV, and �m± = 1.0GeV) and the maximum classifier
value considering all tracks and all values of �m± is determined. Events are categorized
based on which �m± value corresponded to the highest scoring track, and signal regions
are constructed by placing cuts on the maximum score, leading to four signal regions in
each category and 12 overall.

For the background prediction in the signal regions, dedicated corrections are applied
to the MC simulation, including a novel shape correction method using a refinement
neural network. This regression model is trained in a cleaned Drell-Yan control region
to provide a residual correction to the simulated samples such that their distribution-
level agreement with the observed data is improved.
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The leading systematic uncertainties are associated to the normalization of the back-
ground prediction and to the corresponding shape. To assess the validity of the signal
simulation, tracks from t lepton decays are used as a signal proxy.

The search excludes previously unexplored phase space regions of well-motivated natu-
ral SUSY scenarios with exclusion limits reaching up to m(ec±

1 ) = 190GeV for �m± =
0.5GeV. The absence of signal in the probed phase space does not rule out SUSY in gen-
eral. However, it means that, if existent, SUSY must be more fine-tuned, weakening the
argument for the theory as the solution to the hierarchy problem.

Remaking this analysis using the data collected during Run 3 of the LHC and during
the future High-Luminosity phase will further enhance the sensitivity to the compressed
electroweakino model space. Beyond the LHC, Ref. [76] studies the potential reach of
a similar search using soft tracks conducted at a 3TeV muon collider. The estimated
exclusion region with chargino masses up to the TeV scale is especially interesting due
to the fact that higgsino-like neutralinos in this range can fully explain the dark matter
relic density.
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A Appendix

pT(ZGEN) Weights

0

20

40

60

80

100

120

140
310×

Ev
en

ts

Z(inv)Jets

Cleaned DY MC

 (13 TeV)-119.7 fb

CMS

Simulation
Work in progress

0 500 1000 1500 2000 2500
)

GEN
(Z

T
p

0.5
1

1.5

Z(
in

v)
 / 

C
l. 

D
Y

2−10

1−10
1

10

210

310

410

510

610

710

810

910

1010

1110

Ev
en

ts

Z(inv)Jets

Cleaned DY MC

 (13 TeV)-119.7 fb

CMS

Simulation
Work in progress

0 500 1000 1500 2000 2500
)

GEN
(Z

T
p

0.5
1

1.5

Z(
in

v)
 / 

C
l. 

D
Y

0

20

40

60

80

100

120
310×

Ev
en

ts

Z(inv)Jets

Cleaned DY MC

 (13 TeV)-117.0 fb

CMS

Simulation
Work in progress

0 500 1000 1500 2000 2500
)

GEN
(Z

T
p

0.5
1

1.5

Z(
in

v)
 / 

C
l. 

D
Y

1−10
1

10

210

310

410

510

610

710

810

910

1010

Ev
en

ts

Z(inv)Jets

Cleaned DY MC

 (13 TeV)-117.0 fb

CMS

Simulation
Work in progress

0 500 1000 1500 2000 2500
)

GEN
(Z

T
p

0.5
1

1.5

Z(
in

v)
 / 

C
l. 

D
Y

0

50

100

150

200

250

310×

Ev
en

ts

Z(inv)Jets

Cleaned DY MC

 (13 TeV)-141.5 fb

CMS

Simulation
Work in progress

0 500 1000 1500 2000 2500
)

GEN
(Z

T
p

0.5
1

1.5

Z(
in

v)
 / 

C
l. 

D
Y

2−10

1−10
1

10
210

310

410

510

610

710

810

910

1010

1110

1210

Ev
en

ts

Z(inv)Jets

Cleaned DY MC

 (13 TeV)-141.5 fb

CMS

Simulation
Work in progress

0 500 1000 1500 2000 2500
)

GEN
(Z

T
p

0.5
1

1.5

Z(
in

v)
 / 

C
l. 

D
Y

0

50

100

150

200

250

300

350

400
310×

Ev
en

ts

Z(inv)Jets

Cleaned DY MC

 (13 TeV)-159.7 fb

CMS

Simulation
Work in progress

0 500 1000 1500 2000 2500
)

GEN
(Z

T
p

0.5
1

1.5

Z(
in

v)
 / 

C
l. 

D
Y

1
10

210

310

410

510

610

710

810

910

1010

1110

Ev
en

ts

Z(inv)Jets

Cleaned DY MC

 (13 TeV)-159.7 fb

CMS

Simulation
Work in progress

0 500 1000 1500 2000 2500
)

GEN
(Z

T
p

0.5
1

1.5

Z(
in

v)
 / 

C
l. 

D
Y
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) correction for

cleaned DY MC.
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Track-level variables used in the soft track classifier
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Figure A.2: Distributions of kinematic track observables used in the soft track classifier
for background tracks and signal tracks from four exemplary signal model
points. The filled histograms show distributions for background tracks in SM
background events, whereas the dashed lines correspond to the distributions
of background tracks within signal events, i.e. tracks that are not matched
to (decay products of) the SUSY particles.
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Figure A.3: Distributions of kinematic track observables used in the soft track classifier
for background tracks and signal tracks from four exemplary signal model
points. The filled histograms show distributions for background tracks in SM
background events, whereas the dashed lines correspond to the distributions
of background tracks within signal events, i.e. tracks that are not matched
to (decay products of) the SUSY particles.
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Data sets

Table A.1: Data sets and corresponding integrated luminosities used from the MET data
stream. The AOD data tier is used.

Era Processing string Lint. (fb
�1)

2016 preVFP

Run2016B-21Feb2020 ver1 UL2016 HIPM-v1

36.3

Run2016B-21Feb2020 ver2 UL2016 HIPM-v1
Run2016C-21Feb2020 UL2016 HIPM-v1
Run2016D-21Feb2020 UL2016 HIPM-v1
Run2016E-21Feb2020 UL2016 HIPM-v1
Run2016F-21Feb2020 UL2016 HIPM-v1

2016 postVFP
Run2016F-21Feb2020 UL2016-v1
Run2016G-21Feb2020 UL2016-v1
Run2016H-21Feb2020 UL2016-v2

2017

Run2017B-09Aug2019 UL2017 rsb-v1

41.5
Run2017C-09Aug2019 UL2017 rsb-v1
Run2017D-09Aug2019 UL2017 rsb-v1
Run2017E-09Aug2019 UL2017 rsb-v1
Run2017F-09Aug2019 UL2017 rsb-v1

2018

Run2018A-15Feb2022 UL2018-v1

59.8
Run2018B-15Feb2022 UL2018-v1
Run2018C-15Feb2022 UL2018-v1
Run2018D-15Feb2022 UL2018-v1
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A Appendix

Table A.2: Data sets and corresponding integrated luminosities used from the Single-
Muon data stream. The AOD data tier is used.

Era Processing string Lint. (fb
�1)

2016 preVFP

Run2016B-21Feb2020 ver1 UL2016 HIPM-v1

36.3

Run2016B-21Feb2020 ver2 UL2016 HIPM-v1
Run2016C-21Feb2020 UL2016 HIPM-v1
Run2016D-21Feb2020 UL2016 HIPM-v1
Run2016E-21Feb2020 UL2016 HIPM-v1
Run2016F-21Feb2020 UL2016 HIPM-v1

2016 postVFP
Run2016F-21Feb2020 UL2016-v1
Run2016G-21Feb2020 UL2016-v1
Run2016H-21Feb2020 UL2016-v1

2017

Run2017B-15Feb2022 UL2017-v1

41.5
Run2017C-15Feb2022 UL2017-v1
Run2017D-15Feb2022 UL2017-v1
Run2017E-15Feb2022 UL2017-v1
Run2017F-15Feb2022 UL2017-v1

2018

Run2018A-15Feb2022 UL2018-v1

59.8
Run2018B-15Feb2022 UL2018-v1
Run2018C-15Feb2022 UL2018-v1
Run2018D-15Feb2022 UL2018-v1
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Table A.3: Simulated SM background data sets and corresponding cross sections. The
AODSIM data tier is used. The cross sections for ZJetsToNuNu* and DY-
JetsToLL* (WJetsToLNu*) include k-factors of 1.23 (1.21).

Primary data set name � (pb)

ZJetsToNuNu HT-100To200 TuneCP5 13TeV-madgraphMLM-pythia8 325.1
ZJetsToNuNu HT-200To400 TuneCP5 13TeV-madgraphMLM-pythia8 89.09
ZJetsToNuNu HT-400To600 TuneCP5 13TeV-madgraphMLM-pythia8 12.21
ZJetsToNuNu HT-600To800 TuneCP5 13TeV-madgraphMLM-pythia8 2.932
ZJetsToNuNu HT-800To1200 TuneCP5 13TeV-madgraphMLM-pythia8 1.320
ZJetsToNuNu HT-1200To2500 TuneCP5 13TeV-madgraphMLM-pythia8 0.3055
ZJetsToNuNu HT-2500ToInf TuneCP5 13TeV-madgraphMLM-pythia8 0.0069

WJetsToLNu HT-100To200 TuneCP5 13TeV-madgraphMLM-pythia8 1523
WJetsToLNu HT-200To400 TuneCP5 13TeV-madgraphMLM-pythia8 405.2
WJetsToLNu HT-400To600 TuneCP5 13TeV-madgraphMLM-pythia8 54.23
WJetsToLNu HT-600To800 TuneCP5 13TeV-madgraphMLM-pythia8 12.92
WJetsToLNu HT-800To1200 TuneCP5 13TeV-madgraphMLM-pythia8 6.088
WJetsToLNu HT-1200To2500 TuneCP5 13TeV-madgraphMLM-pythia8 1.398
WJetsToLNu HT-2500ToInf TuneCP5 13TeV-madgraphMLM-pythia8 0.0317

TTJets DiLept TuneCP5 13TeV-madgraphMLM-pythia8 53.05
TTJets SingleLeptFromT TuneCP5 13TeV-madgraphMLM-pythia8 105.9
TTJets SingleLeptFromTbar TuneCP5 13TeV-madgraphMLM-pythia8 105.0

ST t-channel antitop 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8 67.93
ST t-channel top 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8 113.4
ST tW antitop 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 32.51
ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 32.45

WW TuneCP5 13TeV-pythia8 76.17
WZ TuneCP5 13TeV-pythia8 27.44
ZZ TuneCP5 13TeV-pythia8 12.16

DYJetsToLL M-50 HT-100to200 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8 171.2
DYJetsToLL M-50 HT-200to400 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8 47.23
DYJetsToLL M-50 HT-400to600 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8 6.364
DYJetsToLL M-50 HT-600to800 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8 1.547
DYJetsToLL M-50 HT-800to1200 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8 0.6886
DYJetsToLL M-50 HT-1200to2500 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8 0.1605
DYJetsToLL M-50 HT-2500toInf TuneCP5 PSweights 13TeV-madgraphMLM-pythia8 0.0037

Table A.4: Processing strings for the simulated SM background data sets.

Era Processing string

2016 preVFP RunIISummer20UL16RECOAPV-106X mcRun2 asymptotic preVFP v8*
2016 postVFP RunIISummer20UL16RECO-106X mcRun2 asymptotic v13*
2017 RunIISummer20UL17RECO-106X mc2017 realistic v6*
2018 RunIISummer20UL18RECO-106X upgrade2018 realistic v11 L1v1*
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