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Abstract

This thesis investigates an idealized two-dimensional stochastic climate model consisting
of coupled atmospheric and ocean components. The atmospheric component incorpo-
rates stochasticity using the stochastic advection by Lie transport (SALT) approach,
while the ocean component remains deterministic. The model serves as a tool to study
fundamental processes arising from ocean-atmosphere interactions and to quantify the
uncertainty induced by unresolved small-scale dynamics.
We conduct numerical simulations of the climate model to evaluate the effectiveness of
SALT in representing the impact of unresolved dynamics on large-scale flow behavior.
Our methodology consists of three stages. First, we develop numerical schemes for
the ocean component. Next, we perform a numerical investigation of an idealized
stochastic atmosphere model. Finally, we combine these approaches to solve the full
stochastic climate model. Additionally, we present numerical simulations of stochastic
incompressible Navier-Stokes equations.
The stochastic noise terms are estimated using synthetic data from high-resolution
deterministic simulations. While the temporal component of noise is typically modeled
using a Gaussian process, we also explore an alternative approach based on Orn-
stein–Uhlenbeck (OU) processes. The latter method results in smoother temperature
and vorticity fields and enhances uncertainty quantification performance.
Our results demonstrate that ensemble forecasts from the stochastic climate model
exhibit good reliability, with ensemble spread proportional to the ensemble root mean
square error over a significant time window. Comparisons between the stochastic and
deterministic model forecasts, initialized from randomly perturbed initial conditions,
reveal that the stochastic approach consistently outperforms the deterministic one
throughout the simulation period. Overall, our findings indicate that (1) SALT
parameterization improves ensemble performance and (2) modeling temporal noise
with an OU process instead of a Gaussian process enhances prediction quality.
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Zusammenfassung

Diese Dissertation untersucht ein idealisiertes zweidimensionales stochastisches Kli-
mamodell, das aus gekoppelten atmosphärischen und ozeanischen Komponenten besteht.
Die atmosphärische Komponente integriert Stochastizität mithilfe des Ansatzes der
stochastischen Advektion durch Lie-Transport (SALT), während die ozeanische Kom-
ponente deterministisch bleibt. Das Modell dient als Werkzeug zur Untersuchung
grundlegender Prozesse, die aus Wechselwirkungen zwischen Ozean und Atmosphäre
entstehen, sowie zur Quantifizierung der Unsicherheiten, die durch nicht aufgelöste
kleinskalige Dynamiken verursacht werden.
Wir führen numerische Simulationen des Klimamodells durch, um die Wirksamkeit
von SALT bei der Darstellung der Auswirkungen nicht aufgelöster Dynamiken auf
das großskalige Strömungsverhalten zu bewerten. Unsere Methodik besteht aus drei
Phasen. Zunächst entwickeln wir numerische Schemata für die ozeanische Komponente.
Anschließend führen wir eine numerische Untersuchung eines idealisierten stochastis-
chen Atmosphärenmodells durch. Schließlich kombinieren wir diese Ansätze, um das
vollständige stochastische Klimamodell zu lösen. Darüber hinaus präsentieren wir nu-
merische Simulationen der stochastischen inkompressiblen Navier-Stokes-Gleichungen.
Die stochastischen Rauschterme werden mithilfe synthetischer Daten aus hochau-
flösenden deterministischen Simulationen abgeschätzt. Während die zeitliche Kompo-
nente des Rauschens typischerweise durch einen Gaußschen Prozess modelliert wird,
untersuchen wir auch einen alternativen Ansatz basierend auf Ornstein–Uhlenbeck-
(OU)-Prozessen. Letzterer Ansatz führt zu glatteren Temperatur- und Vortizitätsfeldern
und verbessert die Leistung der Unsicherheitsquantifizierung.
Unsere Ergebnisse zeigen, dass Ensemble-Vorhersagen des stochastischen Klimamodells
eine gute Verlässlichkeit aufweisen, wobei die Ensemble-Streuung proportional zum
ensemblebasierten mittleren quadratischen Fehler über ein signifikantes Zeitfenster
ist. Vergleiche zwischen den stochastischen und deterministischen Modellvorhersagen,
die aus zufällig gestörten Anfangsbedingungen initialisiert wurden, zeigen, dass der
stochastische Ansatz den deterministischen über den gesamten Simulationszeitraum
hinweg konsequent übertrifft. Insgesamt zeigen unsere Ergebnisse, dass (1) die SALT-
Parametrisierung die Ensemble-Performance verbessert und (2) die Modellierung des
zeitlichen Rauschens mit einem OU-Prozess anstelle eines Gaußschen Prozesses die
Vorhersagequalität erhöht.

iv



Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor, Peter, for
introducing me to this fascinating research topic. I am thankful for the academic
freedom he gave me to explore my own research interests, while also ensuring that I
remained focused on the core objectives of the project.

This project would not have been possible without the guidance and support of
Wei, James, and Sagy. Thank you for always making time to answer my questions and
help me navigate through various research challenges.

My heartfelt thanks to my friends and colleagues, Fabian and Ezra, for the countless
technical and non-technical discussions we’ve shared over the past four years. Your
presence across the office has been both intellectually stimulating and personally
comforting.

Last but certainly not least, I would like to thank my parents, my brother, and my
wonderful girlfriend for their love, support, and encouragement throughout this entire
journey. Your belief in me has been my greatest source of strength.

v





Contents

1 Introduction 1
1.1 Stochastic advection by Lie transport . . . . . . . . . . . . . . . . . . . 2
1.2 Coupled ocean-atmosphere models . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 The stochastic climate model . . . . . . . . . . . . . . . . . . . 8
1.3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Deterministic models 13
2.1 The ocean model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Advection-diffusion equation . . . . . . . . . . . . . . . . . . . . 18

2.2 The atmosphere model . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Galewsky test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 2D viscous shallow water equations . . . . . . . . . . . . . . . . 24
2.2.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 The climate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Inclusion of stochasticity 37
3.1 Stochastic model calibration . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Stochastic atmosphere model . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Stochastic climate model . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Numerical simulations 47
4.1 Stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Fine grid simulation . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Stochastic model simulation . . . . . . . . . . . . . . . . . . . . 53
4.1.3 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Stochastic atmosphere model . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Fine grid simulation . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



4.2.2 Impact of parameterization . . . . . . . . . . . . . . . . . . . . 74
4.2.3 SPDE ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.4 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . 88
4.2.5 Deterministic model versus stochastic model . . . . . . . . . . . 95
4.2.6 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Stochastic climate model . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.1 Fine grid simulation . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.2 Stochastic model simulation . . . . . . . . . . . . . . . . . . . . 108
4.3.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Summary and outlook 129

Our contribution 133

Data availability statement 137

Bibliography 139

Declaration of authorship 147

viii



Chapter 1

Introduction

Earth’s oceans and atmosphere are characterized by a rich hierarchy of interacting
processes that span a wide range of scales (Vallis, 2017; Fox-Kemper, 2018). The
spatial scale of these processes typically ranges from a few millimeters to thousands of
kilometers, whereas the temporal scale ranges from a few seconds to several decades (see
Figure 1.1). In both media, small-scale motions coexist and interact with large-scale
circulations, and these interactions are essential for energy transfer, mixing, and the
overall dynamics of the climate system (Williams, 2005). For instance, mesoscale ocean
eddies (∼ 10–100 km) modulate the transport of heat and nutrients in basin-scale
currents like the Gulf Stream (Holland, 1978), while atmospheric turbulence at the
kilometer scale influences the structure of synoptic-scale (∼ 1000 km) weather systems
(Wyngaard, 2010).

Mathematical models are constructed to study such physical processes. These
models are then solved numerically to gain further insights into the physical phenomena
and predict the behavior of the atmosphere or the ocean in the future. Due to limited
computational resources, however, it is practically impossible to capture all spatial and
temporal scales in numerical simulations. Processes that occur at scales smaller than
the grid resolution of the models remain unaccounted for or unresolved. The effect of
small scales on large scales is therefore not captured by these models, which can lead
to errors in predictions.

The representation of small scales is one of the most challenging aspects of numer-
ical weather prediction and climate modeling. To account for the missing effect of
unresolved/small scales, additional terms are added to the models. This process is
known as parameterization or subgrid-scale modeling. Parameterization can be divided
into two categories: deterministic parameterization and stochastic parameterization.

Deterministic parameterizations represent the effect of unresolved scales using fixed,
predictable functions of the resolved variables. These methods often rely on empirical
relationships or theoretical derivations (Zanna et al., 2017). On the other hand, stochas-
tic parameterizations incorporate random (or probabilistic) components to represent
the unpredictable or chaotic aspects of unresolved processes. Over the past two decades,
the use of stochastic parameterizations in weather and climate models has gained
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Figure 1.1: Spatial and temporal scales of various meteorological phenomena (Stull, 2017).

significant momentum. It offers several advantages over traditional (deterministic)
approaches when modeling unresolved/subgrid-scale processes (Palmer, 2012; Berner
et al., 2017). Subgrid processes are inherently unpredictable and intermittent in nature.
Stochastic methods explicitly account for this randomness rather than providing a
single, averaged outcome. This leads to a more realistic depiction of variability, par-
ticularly in ensemble forecasting. By introducing random fluctuations that mimic the
variability of unresolved scales, stochastic parameterizations generate a broader range
of outcomes. This enhanced ensemble spread better represents forecast uncertainty
and improves probabilistic forecasts.

In this thesis, we investigate the use of a stochastic parameterization method known
as stochastic advection by Lie transport (SALT) in modeling the effect of unresolved
scales on the resolved scales and quantifying the uncertainty due to unresolved scales.
The SALT method is a powerful way of introducing stochasticity into fluid dynamics
equations while preserving their geometric structure, particularly the conservation
laws and symmetries that arise from the deterministic version (Holm, 2015). Our
aim is to simulate an idealized climate model which is parameterized using the SALT
methodology.

1.1 Stochastic advection by Lie transport

A common approach to model the uncertainty due to unresolved scales is to add
random forcing terms to the governing fluid dynamics equations. This approach is
typically implemented post hoc i.e., after formulating a deterministic model, one adds
noise with a chosen amplitude and correlation structure (Berner et al., 2012; Berner

2



1.1. Stochastic advection by Lie transport

et al., 2017). While such noise can improve ensemble spread or model variability, the
resulting stochastic model may no longer preserve the fundamental conservation laws
or symmetries of the fluid system. Moreover, the addition of noise, which is not based
on physical principles, may lead to errors in the probability density functions of the
system’s dynamics (Brecht et al., 2021). The stochastic advection by Lie transport
(SALT) framework addresses these limitations by introducing stochasticity through a
variationally consistent and geometrically informed approach.

The idea behind SALT was introduced by Holm in the seminal paper Holm (2015).
In fluid dynamics, equations of motion are derived starting from the assumption that
fluid particles satisfy the equation

dX(a, t)

dt
= u(X(a, t), t), X(a, 0) = a ∈ R2 or R3, (1.1)

where X(a, t) denotes the trajectory of a particle (with Lagrangian label a) at time t
and u denotes the velocity field. In Holm (2015), one starts with the assumption that
the Lagrangian particle paths follow a Stratonovich stochastic process given by

dX(a, t) = u(X(a, t))dt+
∑

i

ξi(X(a, t)) ◦ dW i
t (1.2)

where u denotes the mean flow velocity and
∑

i ξi(X(a, t)) ◦ dW i
t denotes a stochastic

perturbation about the mean flow. The idea is to write fluid trajectories as a combination
of a mean flow, representing large-scale dynamics, and noise terms representing the
small-scale dynamics. In equation (1.2), W i

t are independent Brownian motions whereas
the vectors ξi represent the spatial correlation of the small-scale velocity fluctuations.

Equations for fluid dynamics (in Euler form) are then derived using the stochastic
variational principle. The assumption (1.2) leads to the appearance of stochastic vector
fields in the transport terms of fluid equations. The SALT approach can thus be
viewed as a parameterization technique that models the uncertain transport behavior
associated with small-scale/unresolved flow dynamics.

Cotter et al. (2017) showed that by using homogenization techniques, one can
arrive at equation (1.2) starting from a multi-scale decomposition of the deterministic
Lagrangian flow map into a slow large-scale mean and rapidly fluctuating small-scale
map. The small-scale map can be represented by a stochastic process, if the time scale
of the fluctuating map is sufficiently rapid in comparison to mean field dynamics and the
fast dynamics is sufficiently chaotic. The Ansatz (1.2) for fluid particle trajectories was
also used by Mémin (2014) to derive another class of stochastic fluid equations—known
as modeling under Location Uncertainty (LU)—to model the effect of unresolved scales.

The motivation behind choosing a stochastic Lagrangian dynamics can be under-
stood by examining the data from satellite observations of Earth’s oceans. Figure 1.2
shows Lagrangian trajectories of drifters (floating oceanographic devices) on the ocean
surface driven by the wind and ocean currents. Each color represents a different drifter.

3



Chapter 1. Introduction

Figure 1.2: Trajectories of drifters in the ocean. Each color corresponds to a different drifter
(Lilly, 2024). These data were compiled from satellite observations by the National Oceanic
and Atmospheric Administration Global Drifter Program.

A careful look at the drifter paths reveals that they evolve under a combination of
mean drift and rapid fluctuations.

The inclusion of stochasticity at the level of Lagrangian flow map (equation (1.2))
leads to stochastic fluid dynamics where the fundamental mathematical properties of
the underlying deterministic equations are preserved (Crisan et al., 2019; Crisan et al.,
2023a; Crisan and Lang, 2024). SALT-based models preserve Kelvin circulation, a
fundamental property in fluid dynamics. The SALT framework also enables a new
approach for sub-grid scale parameterization (Gay-Balmaz and Holm, 2018). The
stochastic terms introduced by the SALT parameterization can be deduced from
statistical analysis of high-resolution data (either observed, or numerically simulated).

We can use equations (1.1) and (1.2) to express the stochastic terms as the difference
between Lagrangian particles advected by the true velocity field u and a coarse grained
(averaged) version u,

u(X(a, t))dt+
∑

i

ξi(X(a, t)) ◦ dW i
t ≈ u(X(a, t), t)dt,

∑

i

ξi(X(a, t)) ◦ dW i
t ≈ u(X(a, t), t)dt− u(X(a, t), t)dt.

The true velocity field u can be obtained from satellite observations or high-resolution
simulations of deterministic models. Once u is obtained, one can obtain u using
standard filtering/averaging methods. Statistical methods like empirical orthogonal
function (EOF), principal component analysis (PCA) or singular value decomposition
(SVD) can then be applied to Lagrangian trajectory data u(X(a, t), t)dt−u(X(a, t))dt

leading to the estimation of ξi.
One of the first numerical implementations of stochastic fluid dynamics equations

parameterized using SALT was carried out by Cotter et al. (2019). In this study, 2D
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1.1. Stochastic advection by Lie transport

stochastic Euler equations were solved on coarse grids and the uncertainty arising from
unresolved scales was quantified by performing several uncertainty quantification tests.
The stochastic terms (which model the small-scale processes) were estimated using
high-resolution simulations of the corresponding deterministic model. It was shown
that the ensemble generated by the stochastic model could capture the large-scale
behavior of the underlying deterministic system for a physically adequate period of
time.

Similar observations were made by Cotter et al. (2020a) for a two-layer quasi-
geostrophic model. In addition to uncertainty quantification tests, Cotter et al. (2020a)
analyzed the reliability of the stochastic spread by studying the skill-spread relationship
and found promising results. The results from the stochastic model were also compared
with the corresponding deterministic model (without any parameterization). It was
found that the stochastic spread captures the true solution at significantly more grid
points and over longer time periods than the deterministic spread.

In both the above studies, the temporal evolution of stochastic terms (arising
from small-scale dynamics) was modeled by Gaussian processes. Ephrati et al. (2023)
extended the work of Cotter et al. (2019) by studying the performance of stochastic
Euler equations for different modeling choices of time series associated with unresolved
flow dynamics. Interestingly, it was found that the use of Ornstein–Uhlenbeck processes
instead of Gaussian processes improves the quality of the coarse-grid predictions. In
this thesis, we explore both modeling approaches for the stochastic terms.

The effectiveness of SALT parameterization for uncertainty quantification has been
tested for several other geophysical fluid dynamics equations. Some notable examples
are Crisan et al. (2023b) for shallow water equations and Resseguier et al. (2020) for a
surface quasi-geostrophic model. In Crisan et al. (2023b), a new approach for noise
calibration was developed. Their method used the entire solution field for estimating
ξi instead of using Lagrangian trajectories of fluid parcels.

In all the above-mentioned works, one common feature of the stochastic model
realizations is their ability to capture the true solution for a physically meaningful
duration while maintaining sufficient ensemble spread. This property makes these
stochastic models suitable for ensemble based data assimilation methods which can
further improve the quality of solutions. Data assimilation combines observations with
numerical model data to find the best possible model state. Particle filters, which are
a type of ensemble based data assimilation methods, have been successfully combined
with some of the stochastic models; Cotter et al. (2020b) combined the stochastic 2D
Euler equation with a particle filter, Cotter et al. (2020c) showed data assimilation
for quasi-geostrophic model, and Lang et al. (2022) presented a particle filter for the
rotating shallow water model. In this thesis, we focus on numerical simulations of an
idealized climate model without delving into particle filters. However, incorporating
data assimilation would be a natural next step.

In recent years, the SALT framework has primarily been applied as a tool for
quantifying uncertainty arising from unresolved scales in simplified geophysical fluid
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dynamics models, such as the Euler equations, the shallow water equations, and quasi-
geostrophic models. In the present study, we aim to extend the application of SALT to
more complex fluid dynamics systems. Specifically, we investigate an idealized coupled
ocean-atmosphere climate model formulated using the SALT approach.

Alongside testing SALT’s capabilities for uncertainty quantification in this setting,
we also look into different ways of modeling the stochastic noise terms, with the goal
of improving the model’s accuracy. In particular, we examine whether incorporating
noise—intended to represent unresolved small-scale dynamics—can effectively guide
large-scale processes toward the true solution, and how the performance of stochastic
models compares to their deterministic counterparts.

Such an investigation is currently lacking in the literature, especially within the
context of coupled ocean-atmosphere systems, and thus represents a novel contribution
of this work.

1.2 Coupled ocean-atmosphere models

Many physical processes occur because of the close interaction between the ocean and the
atmosphere. One famous example of such a process is the El Niño–Southern Oscillation
(ENSO). ENSO is characterized by periodic variations in sea surface temperatures in
the central and eastern tropical Pacific, with El Niño corresponding to unusually warm
conditions and La Niña to unusually cool conditions (Cane and Zebiak, 1985). These
fluctuations drive changes in atmospheric convection, leading to significant impacts on
global weather patterns ranging from altered precipitation regimes and storm tracks to
extreme temperature events across different regions of the world (Philander, 2001).

Such phenomena can only be effectively studied using coupled ocean–atmosphere
models because their dynamics arise from the two-way feedbacks between oceanic
and atmospheric processes. By incorporating the interactions between sea surface
temperature anomalies, atmospheric convection, and wind stress on ocean currents,
coupled models can capture the essential feedback mechanisms that drive phenomena
like ENSO (McCreary Jr. and Anderson, 1991). This integrated approach has the
potential to reduce systematic biases inherent in models that treat the ocean and
atmosphere separately and enhance the simulation of overall climate variability.

In this thesis, we numerically solve an idealized coupled ocean-atmosphere model
introduced by Crisan et al. (2023a) and quantify the uncertainty caused by running
the model on coarse grids at low resolution. Such a model can be used to study some
of the fundamental processes that occur due to interactions between the ocean and the
atmosphere (ENSO for example). The atmosphere component of the coupled model
is derived following the SALT approach (making it stochastic) whereas the ocean
component is kept deterministic.

This choice is inspired by the stochastic climate model of Hasselmann (1976).
Hasselmann proposed that the climate system can be divided into a fast component

6



1.2. Coupled ocean-atmosphere models

(essentially the atmosphere) representing high-frequency weather fluctuations and
a slow component (the ocean, land, etc.) that represents the long-term climatic
variability. The fast processes act as a random, or stochastic, forcing on the slow
climate variables. This separation into two distinct time scales is fundamental because
it explains how short-term, seemingly chaotic weather events can collectively induce
long-term, persistent climate variability (Lucarini and Chekroun, 2023).

The climate model of Crisan et al. (2023a), although resting on Hasselmann’s
paradigm in a general sense, incorporates stochasticity into the atmosphere model
equations in a way that deviates from traditional methods. Instead of directly adding
stochastic terms to the deterministic model equations, stochasticity is introduced at
the level of Lagrangian fluid trajectories and then the model equations are derived.
The deterministic version of the climate model introduced by Crisan et al. (2023a) can
be described by

Atmosphere :
∂ua

∂t
+ (ua · ∇)ua +

1

Roa
ẑ× ua +

1

Ca
∇θa = 1

Rea
∆ua, (1.3)

∂θa

∂t
+∇ · (uaθa) = γ(θa − θo) +

1

Pea
∆θa,

Ocean :
∂uo

∂t
+ (uo · ∇)uo +

1

Roo
ẑ× uo +

1

Roo
∇po = σ(uo − ua

sol) +
1

Reo
∆uo,

∇ · uo = 0,

∂θo

∂t
+ uo · ∇θo = 1

Peo
∆θo,

where the vector variable u and the scalar variables θ and p (with superscripts for the
atmosphere and ocean components) denote the velocity, potential temperature, and
pressure fields, respectively. These variables are functions of the 2D spatial coordinate
x = (x, y) and the time variable t. ẑ represents a unit vector in the z direction.

The atmosphere is modeled by the two-dimensional (2D) compressible Navier-Stokes
equations which are coupled to a 2D advection-diffusion equation for the temperature
θa. The atmospheric velocity field ua transports the atmospheric temperature, and
the gradient in the temperature field, in turn, alters the velocity. The atmospheric
temperature is coupled to the ocean temperature through the term γ (θa − θo) in the
advection-diffusion equation. This term can be thought of as representing the transfer
of heat from the ocean to the atmosphere.

The ocean is modeled by the 2D incompressible Navier-Stokes equations along with
an equation for the ocean temperature θo, which is passively advected by the ocean
velocity field uo. The atmosphere and ocean velocities are coupled through the term
σ(uo − ua

sol) which models the shear stress exerted by atmospheric winds on the ocean
surface. ua

sol is the divergence-free part of the atmospheric velocity, ua = ua
sol +∇q.

The divergence-free component is obtained by the Helmholtz decomposition,

∆q = ∇ · ua.
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Atmosphere

Ocean

xy

z

Figure 1.3: Schematic diagram of the 2D domain (in blue) on which the climate model
equations are defined.

The strength of coupling is regulated by the magnitude of coupling constants γ, σ < 0.
The constants Re, Pe, and Ro denote the Reynolds, Péclet, and the Rossby numbers,
respectively. As a result of the non-dimensionalization, a new constant appears in the
denominator of ∇θa. We denote this number by Ca.

Figure 1.3 shows a schematic diagram of the 2D domain on which the climate
model equations are solved. The model (1.3) represents the fluid dynamics at the
ocean-atmosphere interface (highlighted in blue) in the x−y plane. One way to visualize
such a 2D domain is to start with a 3D domain (as shown on the left in Figure 1.3)
and take the average of all the relevant variables (such as ocean velocity, atmosphere
velocity etc.) in the z direction up to the point of ocean-atmosphere interface. We
can then obtain a 2D domain on which both the ocean and atmosphere variables are
defined at each point.

1.2.1 The stochastic climate model

The introduction of stochasticity into the climate model (1.3) leads to the following
stochastic climate model equations

Atm. : dua + ((uadt+
∑

i

ξi ◦ dW i) · ∇)ua +
1

Roa
ẑ× (uadt+

∑

i

ξi ◦ dW i) (1.4)

+
∑

i

(
2∑

j=1

uaj∇ξi,j +
1

Roa
∇(ξi ·R)

)
◦ dW i = (− 1

Ca
∇θa + 1

Rea
∆ua)dt,

dθa +∇ · (θa(uadt+
∑

i

ξi ◦ dW i)) = (γ(θa − θo) +
1

Pea
∆θa)dt,

Ocean :
∂uo

∂t
+ (uo · ∇)uo +

1

Roo
ẑ× uo +

1

Roo
∇pa = σ(uo − Eua

sol) +
1

Reo
∆uo,

∇ · uo = 0,

∂θo

∂t
+ uo · ∇θo = 1

Peo
∆θo,

8



1.3. Our approach

where uaj and ξi,j denote the jth components of atmosphere velocity ua and the spatial
correlation vectors ξi, respectively.

The atmosphere component of the climate model is derived following the SALT
approach resulting in additional noise terms in the equations. These noise terms describe
the otherwise unmodeled effect of the small-scale processes on the large-scale dynamics.
The ocean component equations are identical to their deterministic counterparts except
in the coupling term, where the expected value of the divergence-free part of the
atmospheric velocity Eua

sol is passed to the momentum equation instead of ua
sol. Our

goal is to numerically solve this stochastic climate model.

1.3 Our approach

The climate model (1.4) poses certain technical challenges that must be addressed
in order to confidently rely on the simulation results. Some of these challenges are
unique to this model due to its coupled nature and therefore have not previously
been encountered in the study of other stochastic models. We highlight three main
challenges:

(1) We use Lagrangian trajectory data from high-resolution simulations of the deter-
ministic climate model (1.3) to estimate/calibrate the vectors ξi for the stochastic
climate model (1.4). However, this climate model was only recently introduced,
and the literature therefore lacks a numerical analysis of the governing equations.
A discretization scheme must be developed and tested to numerically solve the
model equations.

(2) The calibration procedures presented in the literature (for example, in Cotter
et al., 2019, Crisan et al., 2023b) are based on the assumption that the fluid is
incompressible. However, the atmospheric component of the climate model we
consider is compressible. Therefore, a new estimation method for ξi needs to be
proposed that works in the compressible setting.

(3) The stochastic climate model equations involve an interaction between stochastic
and deterministic variables. This setting makes it difficult to use traditional ap-
proaches, which have been effective for other stochastic models. A new discretization
algorithm is therefore required to handle such coupled systems.

We approach the task of solving the stochastic climate model equations by breaking the
problem into simpler sub-problems. We begin by investigating the deterministic climate
model equations. We decouple the climate model into its constituent components
(atmosphere and ocean) and analyze them separately. The ocean component consists of
the incompressible Navier-Stokes equations and an advection-diffusion equation. These
equations have been extensively studied in the literature and many numerical schemes

9
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are available to solve them. We review relevant methods and choose an appropriate
numerical method for their discretization.

Next, we study the atmosphere model equations. We test a new numerical scheme
to solve these equations and check its accuracy by performing several numerical
experiments. Finally, we combine the numerical schemes for the ocean and atmospheric
components to arrive at a numerical discretization of the deterministic climate model.

The next step is the calibration of the stochastic climate model, followed by numerical
simulations. However, due to the complexity of this model, we first investigate two
simpler stochastic models:
(1) SALT-parameterized incompressible Navier-Stokes equations, and
(2) the atmosphere component of the stochastic climate model.
There are two main reasons for studying the stochastic incompressible Navier-Stokes
equations:
(1) We want to assess the performance of SALT as a tool for quantifying the uncer-

tainty arising from unresolved scales. The literature lacks such a study for the
incompressible Navier-Stokes equations.

(2) These equations are relatively simpler to solve than the stochastic atmosphere
model and therefore serve as an ideal precursor. Moreover, some of the algorithms
developed during their numerical investigation can be reused in analyzing the
atmosphere model.
After performing uncertainty quantification tests for the incompressible Navier-

Stokes equations, we move on to the stochastic atmosphere model. We conduct several
experiments with this model. In addition to uncertainty quantification tests, we also
compare the stochastic model results with those of the non-parameterized deterministic
model.

At the final stage, we solve the stochastic climate model equations. The insights
gained from the earlier models help us to carefully design:
(1) a discretization scheme for the stochastic climate model,
(2) a calibration procedure to estimate ξi, and
(3) numerical experiments for uncertainty quantification.

1.3.1 Thesis outline

The thesis is structured in the following manner. In Chapter 2, a numerical discretization
scheme for the deterministic coupled ocean–atmosphere model is developed. The coupled
model is first broken into its individual components (ocean and atmosphere), which
are then analyzed separately.

Section 2.1 presents spatial and temporal discretization schemes for the Navier–Stokes
equations and the advection–diffusion equation, which together form the ocean model.
We use the finite element method for the spatial discretization of these equations. This
section also briefly discusses the associated challenges, advantages, and limitations of
using finite element methods for solving the ocean model equations.

10
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Section 2.2 describes a numerical scheme for the atmospheric model equations.
Results from several experiments are presented to test the accuracy of this scheme.
Finally, in Section 2.3, an algorithm for solving the coupled model is presented, based
on the numerical schemes developed for its individual components.

In Chapter 3, a calibration method for estimating the correlation vectors present in
the SALT-parameterized models is proposed first. Then, the three stochastic models,
namely, the stochastic Navier–Stokes model, the stochastic atmospheric model, and
the stochastic climate model, are introduced along with their numerical discretizations.

Chapter 4 presents numerical simulation results for the three stochastic models
introduced in Chapter 3. This is followed by Chapter 5, where the main results of this
thesis are summarized and suggestions for future research directions are provided.
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Chapter 2

Deterministic models

Overview

Our goal is to numerically solve (1.3) in high resolution and use the simulation data
to calibrate the noise terms present in the stochastic model and ultimately solve the
model on coarse grids. In order to achieve this, we first simplify the model by breaking
it into an idealized ocean model and an idealized atmosphere model. Section 2.1
presents the numerical investigation of the idealized ocean model. We describe the
numerical methods used to solve the incompressible Navier-Stokes equations and the
advection-diffusion equation. In Section 2.2, we describe the numerical discretization
of the atmosphere model equations. Finally, in Section 2.3, we describe the numerical
scheme used to solve the climate model.

2.1 The ocean model

The ocean dynamics is described by 2D incompressible Navier-Stokes equations for the
velocity and an advection diffusion equation for the temperature. The ocean model
equations (after removing the coupling terms) can be written as

∂u

∂t
+ (u · ∇)u+

1

Ro
ẑ× u+

1

Ro
∇p = 1

Re
∆u, (2.1)

∇ · u = 0,

∂θ

∂t
+ u · ∇θ = 1

Pe
∆θ.

In (2.1), the ocean temperature is passively advected by the velocity. The uncoupled
nature of ocean variables (velocity and temperature) makes the process of discretizing
these equations relatively straightforward. We can arrive at the discretized equations
for the ocean model by combining the discrete versions of the Navier-Stokes equations
with the advection-diffusion equation.
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Chapter 2. Deterministic models

2.1.1 Navier-Stokes equations

The motion of fluid in a computational domain Ω ∈ Rd, d = {2, 3} can be described
by the incompressible Navier-Stokes equations (in dimensionless form) as

∂tu+ (u · ∇)u = −∇p+ 1

Re
∆u+ f , in (0, T ]× Ω (2.2)

∇ · u = 0,

where u(x, t) denotes the fluid velocity, p(x, t) denotes the pressure, f(x, t) is the
external force and Re is the Reynolds number (John, 2016). The above system of
equations (2.2) is completed with an initial condition for velocity and appropriate
conditions on the boundary. The initial velocity needs to be divergence-free,

u(x, 0) = u0, ∇ · u0 = 0.

Different kinds of boundary conditions can be specified on the boundary ∂Ω for
incompressible flows. We assume free-slip boundary conditions1

(∇u n) · τ = 0 on ∂Ω, (2.3)

u · n = 0 on ∂Ω,

where n is the unit normal vector at x ∈ ∂Ω and τ is the unit tangent vector.
Several methods exist for numerically solving the Navier-Stokes equations. Some of

the popular ones are the Finite Difference Method, the Finite Volume Method and the
Finite Element Method (FEM). We describe the use of FEM to solve (2.2).

Spatial discretization

The discretization process is split into spatial discretization and temporal discretization.
In spatial discretization, the first step is to write the equations (2.2) in variational form.
In this regard, we assume that the velocity u at any time instant belongs to the space

V := H1(Ω)d, d = {2, 3}

and the pressure p at any time instant belongs to the space2

Q := L2
0(Ω) =

{
ψ : ψ ∈ L2(Ω) with

∫

Ω

ψ(x) dx = 0

}
.

1In the literature, the first part of free-slip boundary conditions is usually expressed as (2Du n)·τ = 0,
where Du = 1

2 (∇u+∇uT ) is the symmetric gradient. However, for flat boundaries in 2D, it can be
proven that (∇uT n) · τ = 0 and hence one would get (2.3) as the free-slip boundary conditions.

2The notation dx represents the integral over all the independent space variables. For example, in
2D, dx represents dx× dy
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2.1. The ocean model

The variational form is obtained in the usual way by multiplying the equations in (2.2)
with test functions, integrating the equations over Ω, and applying integration by parts
to transfer derivatives from the solution to the test functions. The variational problem
for (2.2) with boundary conditions (2.3) is to find, (u(·, t), p(·, t)) ∈ V ×Q such that

⟨∂tu,v⟩Ω + ⟨(u · ∇)u,v⟩Ω = ⟨∇ · v, p⟩Ω − 1

Re
⟨∇u,∇v⟩Ω + ⟨f ,v⟩Ω, (2.4)

⟨∇ · u, ψ⟩Ω = 0,

holds for all test functions, (v, ψ) ∈ V ×Q. The form ⟨·, ·⟩Ω denotes the standard L2

inner product. Note that the choice of admissible spaces V and Q for velocity and
pressure respectively is not arbitrary. It is governed by the well-posedness requirements
for the problem (2.4). In fact, due to the inherent coupling between velocity and
pressure, the spaces V and Q should satisfy the so called inf-sup condition (John, 2016)
for the problem to be well posed.

In the next step of spatial discretization, one replaces the infinite-dimensional spaces
V and Q by a finite-dimensional velocity space Vh and a finite-dimensional pressure
space Qh. The projection of equations in (2.4) onto finite-dimensional spaces V ×Q

is considered which leads to approximations uh and ph of u and p, respectively. The
semi-discrete variational formulation of (2.2) then becomes: find (uh, ph) ∈ Vh ×Qh

such that

⟨∂tuh,vh⟩Ω + ⟨(uh · ∇)uh,vh⟩Ω = ⟨∇ · vh, ph⟩Ω − 1

Re
⟨∇uh,∇vh⟩Ω

+ ⟨fh,vh⟩Ω,
⟨∇ · uh, ψh⟩Ω = 0,

holds for all (vh, ψh) ∈ Vh ×Qh. One of the main steps involved in the Finite Element
Method is the decomposition of computational domain into smaller entities called
elements. In 2D, the domain is generally divided into triangles or quadrilaterals. We
denote the discretized domain and the elements by Th (where h represents the size of
mesh elements) and K respectively. The Finite Element Method is called conforming,
if Vh ⊂ V and Qh ⊂ Q, otherwise it is called non-conforming. Similar to the infinite
dimensional case, the spaces Vh and Qh should also satisfy (a discrete version of) the
inf-sup condition so that the problem is well-posed.

One of the most popular choices for spaces Vh, Qh is the family of Taylor-Hood
(TH) finite element spaces. The Taylor-Hood spaces3 are given by Pk − Pk−1, k ≥ 2,
where Pk denotes the space of continuous piece-wise polynomials of degree k. The
spaces Pk−Pk−1 satisfy the discrete inf-sup condition and hence leads to stable solutions.
The spaces P2 −P1 are extensively used in practice due to their ease of implementation
and low order. The Taylor-Hood spaces, however, have one significant drawback: their

3In the notation Pk − Pk−1, the first element Pk corresponds to the velocity space Vh while second
element Pk−1 corresponds to the pressure space Qh.
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Figure 2.1: Barycentrically refined version (right) of a regular 2×2 mesh (left). A barycentric
refinement is achieved by connecting the vertices of each triangle to the barycenter/centroid
of the corresponding triangle.

poor mass conservation property. The mass conservation property is described by
∫

Ω

∇ · u ψ dx = 0 ∀ψ ∈ L2
0(Ω), (2.5)

in the variational formulation (2.4). This implies that ∇ · u = 0 holds over the
computational domain Ω in the L2 sense. In the discrete problem, with finite element
spaces Vh and Qh for velocity and pressure, respectively, one obtains the variational
equation ∫

Ω

∇ · uh ψh dx = 0, ∀ψh ∈ Qh.

Although, the function uh is called discretely divergence-free, it generally does not
imply ∇·uh = 0 in Ω in the L2 sense since Qh ̸= L2

0(Ω). This raises concerns about how
well the finite element discretization conserves mass. One approach to alleviate mass
conservation issues is to use the Scott-Vogelius finite element pair on Barycentrically
refined mesh (see Figure 2.1).

The Scott-Vogelius (SV) finite element pair is defined as Pk − Pdisc
k−1, where k ≥ d.

The velocity space for this pair is identical to that of the Taylor-Hood finite element
pair. However, the pressure space differs; it consists of piecewise polynomials of degree
k − 1 that are not necessarily continuous across element boundaries.

For the SV pair Pk − Pdisc
k−1, k ≥ d, one can choose ψh = ∇ · uh + c in (2.5), where c

is a constant selected such that
∫
Ω
ψh dx = 0. Substituting this choice yields

∫

Ω

(∇ · uh)
2 dx = 0,

which implies that the discrete velocity field is divergence-free. However, the SV pair
generally leads to unstable solutions on standard meshes, as it does not satisfy the
discrete inf-sup condition. To ensure stability, the mesh must be barycentrically refined,
allowing the SV pair to meet the inf-sup condition (John, 2016).

The Scott-Vogelius finite element pair’s ability to properly conserve mass, compared
to Taylor-Hood elements, not only leads to more physically consistent solutions but
also enhances the solution accuracy. Schroeder and Lube (2017) conducted several
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experiments aimed at comparing the performance of Taylor-Hood method to the Scott-
Vogelius methods. It was found that the solutions obtained using the SV pair exhibit
considerably fewer artifacts compared to the TH pair. The experiments could also be
run with higher Reynolds numbers without losing vortical characteristics when the SV
pair was used. Moreover, the Scott-Vogelius FEM ran successfully on highly anisotropic
meshes where Taylor-Hood elements failed to produce a converged solution.

The satisfaction of discrete divergence-free property is not unique to Scott-Vogelius
finite elements. In fact, there are several other finite element pairs which lead to
exactly divergence-free solutions. Popular examples are the Raviart-Thomas elements
(RT) and the Brezzi-Douglas-Marini (BDM) elements. The use of these elements for
discretization is called the H(div)−conforming FEM. In Schroeder and Lube (2017),
numerical experiments revealed that the Raviart-Thomas elements perform better than
both the Taylor-Hood and the Scott-Vogelius finite elements. In our work, however, we
prefer the use of Scott-Vogelius pair over other choices because of their relatively good
performance, ease of implementation and satisfactory mass conservation properties.
H(div)−conforming finite elements are relatively difficult to implement. Moreover, they
are nonconforming, which requires the addition of penalty terms in the discretization
of the momentum equations (Farrell et al., 2021).

Time discretization

We discuss two approaches that are often used for the time discretization of the Navier-
Stokes equations. The first approach is called the method of lines. In this approach,
equations (2.4) are discretized in space first to obtain a nonlinear system of differential
algebraic equations (DAEs). The DAEs are then discretized in time. In the second
approach, discretization in time is applied first to equations (2.4), followed by space
discretization. This approach is known as Rothe’s method. In this section, we describe
Rothe’s method.
One of the most popular methods for time discretization is the ϑ(theta)-scheme. The
ϑ−scheme for (2.2) is of the form

un+1 − un

∆t
+ ϑ

(
(un+1 · ∇)un+1 − 1

Re
∆un+1

)
+∇pn+1 (2.6)

= (1− ϑ)

(
−(un · ∇)un +

1

Re
∆un

)
+ ϑfn+1 + (1− ϑ)fn,

∇ · un+1 = 0,

where ϑ ∈ [0, 1] and the time-step size ∆t = tn+1 − tn. These equations are solved for
unknowns un+1, pn+1 at time tn+1, given the velocity un at time tn. Two well-known
ϑ−schemes are the Crank-Nicolson scheme (when ϑ = 0.5) and the backward Euler
scheme (when ϑ = 1). The backward Euler scheme has a consistency order of 1 while
the Crank-Nicolson scheme has a consistency order of 2. Both schemes are A-stable
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(Gross and Reusken, 2011).
The variational form for (2.6) can be written as: find (un+1, pn+1) ∈ V ×Q such that

〈
un+1 − un

∆t
,v

〉

Ω

+ ϑ

(〈
(un+1 · ∇)un+1,v

〉
Ω
+

1

Re

〈
∇un+1,∇v

〉
Ω

)

− ⟨pn+1,∇ · v⟩Ω + ⟨∇ · un+1, ψ⟩Ω

= (1− ϑ)

(
−⟨(un · ∇)un,v⟩Ω − 1

Re
⟨∇un,∇v⟩Ω

)

+ ϑ⟨fn+1,v⟩Ω + (1− ϑ)⟨fn,v⟩Ω

holds for all (v, ψ) ∈ V×Q. Spatial discretization can be applied to this problem with
spaces Vh ⊂ V, Qh ⊂ Q leading to a fully discrete problem.

In our work, we use the Scott-Vogelius pair P2 − Pdisc
1 on barycentrically refined

meshes for spatial discretization and the Crank-Nicolson scheme for time discretization
of the 2D incompressible Navier-Stokes equations. The fully discrete Navier-Stokes
problem can be formulated as: given un

h ∈ P2 at time tn, find (un+1
h , pn+1

h ) ∈ P2 × Pdisc
1

at time tn+1 = tn +∆t such that
〈
un+1
h − un

h

∆t
,vh

〉

Ω

+
1

2

〈(
un+1
h · ∇

)
un+1
h + (un

h · ∇)un
h,vh

〉
Ω

− ⟨∇ · vh, p
n+1
h ⟩Ω +

1

2Re
⟨∇un+1

h +∇un
h,∇vh⟩Ω

− 1

2
⟨fn+1

h + fnh ,vh⟩Ω + ⟨∇ · un+1
h , ψh⟩Ω = 0,

holds for all (vh, ψh) ∈ P2 × Pdisc
1 .

Remark 2.1.1 (Advection-dominated flows). In applications, the advective term
(u · ∇)u often dominates the viscous term ∆u/Re. For advection-dominated flows,
standard Finite Element Methods (as described above) lead to unstable solutions (John
et al., 2018). The simulation results are polluted with artifacts or spurious oscillations.
In order to counter these effects, additional stabilization terms need to be added to the
variational formulation (see Gelhard et al., 2005; Burman and Linke, 2008 for more
details).

2.1.2 Advection-diffusion equation

We consider the advection-diffusion equation

∂tθ + u · ∇θ = 1

Pe
∆θ in (0, T ]× Ω (2.7)

in a computational domain Ω ∈ Rd, d = {2, 3}, where θ(x, t) denotes a scalar quantity
(such as ocean temperature) which is being advected by a divergence-free velocity field

18



2.1. The ocean model

u(x, t). Pe denotes the Péclet number

Pe =
LU

η
,

where L is a characteristic length, and U is a characteristic velocity of the flow. The
heat diffusion coefficient is denoted by η. Equation (2.7) needs to be equipped with an
initial condition and appropriate boundary conditions for the problem to be well-posed.
We assume an initial condition

θ(x, 0) = θ0

and the Neumann boundary condition

n · ∇θ = 0

for θ(x, t).
In order to discretize equation (2.7), we follow Rothe’s method as described in the

last section. The time discretization form, using the Crank-Nicolson scheme, for the
advection-diffusion equation can be written as

θn+1 − θn

∆t
+

1

2

(
un+1 · ∇θn+1 + un · ∇θn

)
=

1

2Pe

(
∆θn+1 +∆θn

)
(2.8)

with ∆t = tn+1 − tn. The variational problem corresponding to equation (2.8) can be
posed as: find θn+1 ∈ H1(Ω) such that

〈
θn+1 − θn

∆t
, ϕ

〉

Ω

+
1

2

〈
un+1 · ∇θn+1 + un · ∇θn, ϕ

〉
Ω

(2.9)

+
1

2Pe

〈
∇θn+1 +∇θn,∇ϕ

〉
Ω
= 0,

holds for all test functions ϕ ∈ H1(Ω).
Spatial discretization is applied to the problem (2.9) with space Vh ⊂ H1(Ω) leading

to the following full discrete problem: given θn ∈ Vh at time tn, find θn+1 ∈ Vh at time
tn+1 = tn +∆t such that

〈
θn+1
h − θnh
∆t

, ϕh

〉

Ω

+
1

2

〈
un+1
h · ∇θn+1

h + un
h · ∇θnh , ϕh

〉
Ω

+
1

2Pe

〈
∇θn+1

h +∇θnh ,∇ϕh

〉
Ω
= 0,

holds for all ϕh ∈ Vh. A typical choice for the finite element space Vh is P2 or P1. The
use of a finite-dimensional subspace of H1(Ω) (typically piecewise polynomials over a
mesh) to approximate θh and ϕh is called the standard Galerkin finite element method.

A well-known challenge in solving the advection-diffusion equation arises when
advection dominates diffusion. This is characterized by a high value of the Péclet
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number, more specifically when the mesh Péclet number Peh = ∥u∥∞h/η ≫ 1. For
advection-dominated flows, the standard Galerkin method, although consistent, often
produces nonphysical/spurious oscillations in the numerical solution (John et al., 2018).
A characteristic feature of the solutions of equation (2.7) is the appearance of thin
regions where the gradient of the solution is very high. The standard Galerkin method
is not capable of resolving such regions, thus leading to the appearance of spurious
oscillations in the solution (Franca et al., 2006). In order to avoid such numerical
instabilities, finer meshes or stabilization methods are required.

Stabilization methods modify the Galerkin formulation by adding targeted artificial
diffusion or residual-based terms to control oscillations while preserving consistency.
Some of the popular stabilization methods are the streamline-upwind Petrov-Galerkin
(SUPG) method (Brooks and Hughes, 1982; Bochev et al., 2004), continuous interior
penalty (CIP) method (Burman and Hansbo, 2004), and the Galerkin/least-squares
(GLS) method (Hughes et al., 1989).

Another class of methods used to improve accuracy and stability in advection-
diffusion equations is the discontinuous Galerkin (DG) method (Ayuso and Marini,
2009). In DG, the solution is approximated by piecewise polynomials that are allowed
to be discontinuous across element boundaries. Each element is coupled to its neighbors
only through flux terms, which can be chosen to enforce stability (for example, using
upwind fluxes for convective terms). This inherently provides a form of upwinding that
controls oscillations without needing additional Petrov–Galerkin terms, making DG
naturally suited for advection-dominated flows.

One of the main aims of this thesis is to develop numerical schemes for the stochastic
models. These schemes are inherently complex due to the presence of noise terms in
the model equations. In order to keep the numerical schemes as simple as possible, we
refrain from using any stabilization method or the DG method to deal with spurious
oscillations. Instead, we choose suitable mesh grid sizes that can resolve steep gradients
of the solution resulting from advection-dominated flows.

2.2 The atmosphere model

The equations for the deterministic version of the uncoupled stochastic atmosphere
model can be written as

∂u

∂t
+ (u · ∇)u+ f ẑ× u = −κ∇θ + ν∆u, (2.10)

∂θ

∂t
+∇ · (θu) = η∆θ

where ν is the kinematic viscosity, and η is the heat diffusion coefficient. The Coriolis
force is denoted by f ẑ× u where f = 2ΩE sinφ is called the Coriolis parameter; ΩE

denotes the Earth’s angular velocity and φ is the latitude. The constant κ takes the
value, κ = cv(R/p0)

2/5 in which p0 is the reference pressure level, cp is specific heat at
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constant pressure and R is the specific gas constant (Crisan et al., 2023a).
We assume a constant value for the Coriolis parameter (the f -plane approximation)

throughout the computational domain and write the equations (2.10) in dimensionless
form starting from the assumption that

x̃ =
x

L
, ỹ =

y

L
, θ̃ =

θ

Θ
, ũ =

u

U
, t̃ =

t

L/U
,

where L,U, and Θ are the characteristic length, characteristic velocity and charac-
teristic potential temperature of the flow, respectively. The equations (2.10) after
non-dimensionalization become

U2

L

∂̃u

∂̃t̃
+
U2

L
(ũ · ∇̃)ũ+ Uf ẑ× ũ = −κΘ

L
∇̃θ̃ + νU

L2
∆̃ũ, (2.11)

UΘ

L

∂̃θ̃

∂̃t̃
+
UΘ

L
∇̃ · (θ̃ũ) = ηΘ

L2
∆̃θ̃

With a slight abuse of notation, we rewrite (2.11) in a simplified manner by removing
the tilde over the non-dimensionalized variables. The uncoupled atmosphere model
equations in dimensionless form can be formulated as

∂u

∂t
+ (u · ∇)u+

ẑ× u

Ro
+

∇θ
C

=
∆u

Re
, (2.12)

∂θ

∂t
+∇ · (θu) = ∆θ

Pe
,

where,

Ro =
U

Lf
, C =

U2

κΘ
, Re =

LU

ν
, Pe =

LU

η
.

For the geophysical processes considered in this thesis, the magnitude of Re, Pe
is of the order of 1010. The spatial resolution needed to compute smooth solutions
corresponding to these values of Re, Pe is extremely high. We therefore introduce
explicit diffusion/ eddy viscosity (in place of ∆u/Re and ∆θ/Pe) in order to be able to
solve the model in a reasonable amount of time with available computational resources.
The non-dimensional model equations can then be reformulated as

∂u

∂t
+ (u · ∇)u+

ẑ× u

Ro
+

∇θ
C

= νe∆u,

∂θ

∂t
+∇ · (θu) = ηe∆θ

where νe denotes the eddy viscosity and ηe denotes the explicit diffusion coefficient.
We use the Finite Element Method to numerically solve the atmosphere model

equations. The fully discrete variational formulation of (2.12) on a 2D bounded domain
with free-slip boundary conditions for velocity and Neumann boundary conditions for
temperature, can be posed as: find un+1 ∈ V1, θ

n+1 ∈ V2 at time tn+1 = tn +∆t given
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un, θn at time tn such that
〈
un+1 − un

∆t
,v

〉

Ω

+
1

2

〈(
un+1 · ∇

)
un+1 + (un · ∇)un,v

〉
Ω

+
1

2Ro

〈
ẑ× (un+1 + un),v

〉
Ω
+

1

2C

〈
θn+1 + θn,∇ · v

〉
Ω

+
νe
2
⟨∇u+∇u,∇v⟩Ω = 0,

〈
θn+1 − θn

∆t
, ϕ

〉

Ω

− 1

2

〈
θn+1un+1 + θnun,∇ϕ

〉
Ω

+
ηe
2

〈
∇θn+1 +∇θn,∇ϕ

〉
Ω
= 0,

holds for all v ∈ V1, ϕ ∈ V2. The spaces V1 and V2 are the finite-dimensional subspaces
of H1(Ω)2 and H1(Ω), respectively. The Crank-Nicolson scheme is used for the temporal
discretization. We choose the finite element spaces V1 = P1, V2 = P1 for the spatial
discretization.

To the best of our knowledge, no benchmark tests are available in the literature to
check the accuracy of our numerical scheme. The atmosphere model, however, has a
strong resemblance to the viscous shallow-water equations (SWE) where the role of
potential temperature is played by the height field. We can therefore, establish the
accuracy of our numerical scheme by checking how it performs on the benchmark tests
of shallow-water equations. We use the Galewsky benchmark test (Galewsky et al.,
2004) for this purpose.

2.2.1 Galewsky test

Galewsky et al. (2004) proposed an initial-value problem for global viscous shallow-water
equations

∂u

∂t
+ (u · ∇)u+ f ẑ× u = −g∇h+ ν∆u, (2.13)

∂h

∂t
+∇ · (uh) = ν∆h,

where the prognostic variables are u = u1i + u2j, the velocity vector tangent to the
spherical surface (where i and j are the unit vectors in the eastward and northward
directions, and u1 and u2 are the corresponding velocity components), and h is the
thickness4 of the fluid layer. The other notations are standard i.e. f = 2ΩE sin(φ) is
the Coriolis parameter (φ denotes latitude), ΩE is the angular velocity of the Earth, g
is the acceleration due to gravity, and ν is the diffusion coefficient.

The Galewsky test is divided into two parts. In the first part, the model is run with
an initial condition consisting of a basic zonal flow with a correspondingly balanced

4not to be confused with the mesh element size which is also denoted by h.

22



2.2. The atmosphere model

RE

φ

λ

Figure 2.2: Illustration of the spherical coordinate symbols. RE is the Earth’s radius, φ is
the latitude and λ is the longitude.

height field. In the second part, the height field is perturbed in order to initiate
barotropic instability. This test case generates complex flow structures over time
consisting of two distinct (slow and fast) time-scales.

The non-viscous shallow-water equations can be written in the spherical coordinate
system as

∂u1
∂t

+ u · ∇u1 −
(
f +

u1
RE

tanφ

)
u2 +

g

RE cosφ

∂h

∂λ
= 0,

∂u2
∂t

+ u · ∇u2 +
(
f +

u1
RE

tanφ

)
u1 +

g

RE

∂h

∂φ
= 0,

∂h

∂t
+ u · ∇h+

h

RE cosφ

(
∂u1
∂λ

+
∂u2
∂φ

cosφ

)
= 0,

where RE is the Earth’s radius and λ is the longitude in radians (see Figure 2.2).

The initial meridional velocity is set to zero (u2 = 0) while the zonal velocity is
defined as

u1(φ) =





0 for φ ≤ φ0,

umax

en
exp

(
1

(φ− φ0)(φ− φ1)

)
for φ0 < φ < φ1,

0 for φ ≥ φ1,

where umax = 80 ms−1, φ0 = π/7, φ1 = π/2− φ0 and en = exp(−4/(φ1 − φ0)
2). The

balanced height h is obtained by numerically integrating the balance equation

gh(φ) = gh0 −
∫ φ

REu1(φ
′)

(
f + u1(φ

′)
tan(φ′)

RE

)
dφ′.

Barotropic instability is initiated by perturbing the balanced height field by adding
a localized bump to it which has the form

h′(λ, φ) = 120 cos(φ)e−(3λ)2e−(15(π/4−φ))2 for − π < λ < π.
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The shallow-water equations (with ν = 0), when integrated numerically with zonal
jet and unperturbed, balanced height field as initial conditions should be able to hold
the unperturbed zonal flow over a long time (≈ 120 h). All fields should remain
identical to the initial ones. When the same model is run with perturbed height field
as initial condition, gravity waves should develop in the flow in the initial phase (see
Figure 2 of Galewsky et al., 2004). In the later stages of the flow, complex vortical
dynamics should appear (see Figure 4 and Figure 6 of Galewsky et al., 2004) in the
flow.

2.2.2 2D viscous shallow water equations

In Galewsky et al. (2004), the shallow water equations (SWE) are solved on a spherical
domain. We, however, solve the SWE on a 2D domain to avoid the complexities
associated with discretizing spherical domains. The idea is to compare the qualitative
behavior of our discrete model results with the results from the Galewsky test case.
We first derive the model equations and the initial conditions of the Galewsky test for
a 2D domain. We create test conditions on a 2D domain which are as close as possible
to the Galewsky test conditions on the spherical domain.

In the Galewsky test problem, most of the flow dynamics occur in the Earth’s
northern hemisphere, especially in the region between 25◦ and 65◦ latitude. For our
2D domain, we take the domain length in the x direction to be Lx = 2πRE cos(π/4)

(RE denotes Earth’s average radius) so that it corresponds to a distance in the zonal
direction around the globe at 45◦ latitude. The domain length in the y direction is
taken to be Ly = RE(φe − φs) which corresponds to a distance on the Earth’s surface
in the Meridional direction. This domain size tries to capture the flow dynamics of the
Earth’s northern hemisphere between the latitudes φs and φe.

We enforce periodic boundary conditions in the x direction and free-slip conditions
on the boundaries in y direction. Additionally, the β-plane approximation is assumed
for the Coriolis parameter f = f0 + βy, where f0 = 2ΩE sinφs, β = 2ΩE cosφs/RE

and ΩE is the angular velocity of the Earth.
We define the dimensionless variables as

x̃ =
x

L
, ỹ =

y

L
, ũ =

u

U
, t̃ =

t

L/U
, h̃ =

h

H
,

and non-dimensionalize the viscous shallow-water equations (2.13) leading to

U2

L

∂ũ

∂t̃
+
U2

L

(
ũ · ∇̃

)
ũ+ (f0 + βLỹ)ẑ× ũ+

gH

L
∇̃h̃ =

νU

L2
∆̃ũ, (2.14)

UH

L

∂h̃

∂t̃
+
UH

L
∇̃ ·
(
ũh̃
)
=
νH

L2
∆̃h̃.

The equations (2.14) are further simplified by introducing the following dimensionless
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φs

φe

φ0

φ1

RE

(a)

1

Lx/Ly

y0

y1

(b)

Figure 2.3: Comparison between the domains used in Galewsky test problem (A), and
our experiments (B). φ denotes the latitude and RE denotes the Earth’s radius. Lx =
2πRE cos(π/4) and Ly = RE∆φ, where ∆φ = φe − φs.

quantities:

Ro =
U

Lf0
, νe =

ν

LU
, C =

U2

gH
, B =

Lβ

f0
.

The viscous shallow water equations after non-dimensionalization can be written as
(we remove the tilde on top of non-dimensionalized variables for brevity)

∂u

∂t
+ (u · ∇)u+

(1 +By)

Ro
ẑ× u+

1

C
∇h = νe∆u,

∂h

∂t
+∇ · (uh) = νe∆h.

(2.15)

After the non-dimensionalization, our domain has a size of Lx/Ly × 1 (Figure 2.3).
We take the characteristic length scale to be L = Lx , the characteristic velocity to be
U = 80 ms−1 and the characteristic height to be H = 10 km for numerical simulations.

The initial zonal velocity u1 in dimensionless form for our 2D domain can be
formulated as

u1(x, y) =





0 for y ≤ y0

exp
(

α2

(y − y0)(y − y1)

)
exp

(
4α2

(y1 − y0)2

)
for y0 < y < y1

0 for y ≥ y1

(2.16)

where
α =

RE

L
, y0 =

φ0 − φs

φe − φs

, y1 =
φ1 − φs

φe − φs

.

The balanced height field hbal, corresponding to the initial zonal flow, is obtained by
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solving the equations

∂hg
∂x

= 0,
∂hg
∂y

=
−C
Ro

(1 +By)u1. (2.17)

where hbal = 1 + hg. The initial height for the test is chosen to be

hi = hbal + hp,

where the last term

hp = c0 cos
(πy

2

)
e−c1(x−x0)2e−c2(y−y2)2 ,

represents a perturbation field over the balanced height with parameters c0 = 0.01, c1 =

(3L/RE)
2, c2 = (15L/RE)

2, x0 = 0.5Lx/Ly, and y2 = 0.5. The values of these
parameters are chosen so way that the height hi is similar to the initial height field of
the Galewsky test problem.

We assume periodic boundary conditions for velocity and height fields in the x-
direction. At the boundaries y = 0 and y = 1, we apply free-slip boundary conditions
for the velocity:

u2 = 0,
∂u1
∂y

= 0,

and Neumann boundary conditions for the height:

∂h

∂y
= 0,

The variational formulation for (2.15) can be posed as: find u ∈ H1(Ω)2 with u2 = 0

at y = 0, y = 1 and h ∈ H1(Ω) such that

⟨∂tu,v⟩Ω + ⟨(u · ∇)u,v⟩Ω +
1

Ro
⟨(1 +By)ẑ× u,v⟩Ω (2.18)

− 1

C
⟨h,∇ · v⟩Ω = −νe ⟨∇u,∇v⟩Ω ,

⟨∂th, ϕ⟩Ω − ⟨hu,∇ϕ⟩Ω = −νe ⟨∇h,∇ϕ⟩Ω ,

holds for all v ∈ H1(Ω)2 with v2 = 0 at y = 0, y = 1 and ϕ ∈ H1(Ω).

We use the Finite Element Method to discretize (2.18) for the spatial variable and the
Crank-Nicolson time-stepping scheme to discretize equations for the temporal variable.
The fully discrete variational problem then becomes; find un+1 ∈ V1, h

n+1 ∈ V2 at
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2.2. The atmosphere model

Table 2.1: Model configuration of different experiments corresponding to the 2D Galewsky
test case.

Parameters Experiment 1 Experiment 2 Experiment 3

Number of elements, Nx ×Ny 448× 128 448× 128 896× 256
Smallest element size, ∆x 1/128 (∼ 60 km) 1/128 (∼ 60 km) 1/256 (∼ 30 km)

Time-step size, ∆t 0.01 (∼ 16 min.) 0.01 (∼ 16 min.) 0.005 (∼ 8 min.)
Initial height hbal hbal + hp hbal + hp

Diffusion coefficient, νe 0 1/(6× 103) 1/(6× 105)

time tn+1 = tn +∆t given un, hn at time tn such that
〈
un+1 − un

∆t
,v

〉

Ω

+
1

2

〈(
un+1 · ∇

)
un+1 + (un · ∇)un,v

〉
Ω

+
1

2Ro

〈
(1 +By)(ẑ× un+1 + ẑ× un),v

〉
Ω

+
1

2C

〈
hn+1 + hn,∇ · v

〉
Ω
+
νe
2
⟨∇u+∇u,∇v⟩Ω = 0,

〈
hn+1 − hn

∆t
, ϕ

〉

Ω

− 1

2

〈
hn+1un+1 + hnun,∇ϕ

〉
Ω

+
νe
2

〈
∇hn+1 +∇hn,∇ϕ

〉
Ω
= 0

for all v ∈ V1, ϕ ∈ V2. We choose V1 = P1, V2 = P1 for our numerical simulations.

2.2.3 Numerical experiments

Galewsky test case in 2D

Most of the flow dynamics resulting from the Galewsky test case take place in the
northern Hemisphere. Therefore, we restrict our domain between φs = π/18 (10◦

latitude) and φe = 8π/18 (80◦ latitude). We choose φ0 = π/7 and φ1 = 5π/14,
matching the Galewsky test case. This results in

y0 =
φ0 − φs

φe − φs

=
11

49
, y1 =

φ1 − φs

φe − φs

=
38

49
,
Lx

Ly

≈ 3.5

The characteristic length is L = Ly = RE∆φ ≈ 7782 km and the characteristic time
scale is T ∗ = L/U ≈ 27 hours. We conduct three different experiments in this test
setup (Table 2.1).

In the first experiment, the model is run with ν = 0 on a computational domain
Ω = [0, 3.5]× [0, 1] with a grid of size 448× 128 elements. The initial height for this
experiment is the unperturbed, balanced height field hbal (see (2.17)) corresponding
to the zonal jet (2.16). Figure 2.4 shows the plots for initial height and velocity fields.
We aim to check whether our numerical scheme can keep the unperturbed zonal flow
stable until t = 120 hours. A perfect numerical discretization would lead to a solution
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Figure 2.4: In the left column, plots of the initial velocity field and the corresponding
balanced height field for the 2D Galewsky test are displayed. The variation of velocity (x
component) and height along the y axis is plotted in the right (column).

where the values of initial velocity and height fields are maintained up to the machine
precision at all times.

The velocity and height fields obtained from our simulation at t = 120 h are shown
in Figure 2.5. We find that our numerical scheme is able to maintain the initial velocity
and height profiles until t = 120 h. The magnitude of the difference between the fields
at t = 0 and t = 120 h is, however, not equal to zero (up to machine precision) and
instead is of the order of 10−5.

In the second experiment, we perturb the balanced height field at t = 0 (Figure
2.6) and run the model until t = 144 hours on the grid of size 448× 128. The diffusion
coefficient is chosen to be ν = 105 (νe = 1/(6 × 103)). The vorticity fields resulting
from this experiment at times t = 96 hours, t = 120 hours and t = 144 hours are shown
in Figure 2.7. The vorticity fields match the results shown in Figure 6 in Galewsky
et al. (2004).

In the third experiment, we reduce the diffusion coefficient ν = 103 (νe = 1/(6×105))
and run the model on a higher resolution grid, i.e., a grid of size 896× 256 elements.
The results are shown in Figure 2.7 where we also compare the vorticity fields obtained
for this experiment with the vorticity fields of experiment 2. As expected, the reduction
of diffusion leads to the formation of vortical structures with steep gradients. Our
numerical scheme is able to resolve the steep gradients present in the solution. Moreover,
the vortical dynamics resulting from this experiment becomes closer to the vortical
dynamics achieved in the Galewsky test for the case ν = 0 (see Figure 4 in Galewsky
et al. (2004)).

For ν = 103, we also plot the height and divergence fields during the initial phase
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Figure 2.5: Velocity and height fields at t = 120 hours from experiment 1 are shown (left
column). In addition, the difference between the velocity-fields/height-fields at t = 0 and
t = 120 hours is displayed (right column).
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Figure 2.6: Plot of the perturbation field hp, which is added to the balanced height field to
induce barotropic instability.
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t = 96 hours

t = 120 hours

t = 144 hours
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Figure 2.7: Plot of the vorticity field at different time instances for the 2D Galewsky test
case. The simulation results correspond two different values of the diffusion coefficients:
ν = 105 (left column) and ν = 103 (right column).

of the simulation (also known as the adjustment period). We want to check whether
our solution exhibits the formation of gravity waves similar to the Galewsky test case.

Our simulation results are shown in Figure 2.8. We can observe the emergence
of waves from the center of the initial perturbation similar to the results from the
Galewsky test case (see Figure 2 of Galewsky et al. (2004) for comparison).

Long-term behavior

We re-run experiment 3 with slightly adjusted parameters. The new test parameters
are shown in Table 2.2. Instead of observing the flow dynamics only until t = 144 hours,
this time the simulation is performed until t = 30 days.

Figure 2.9 shows the vorticity plots at different stages of the simulation. The
vorticity field develops complex flow dynamics after t = 5 days. A wide range of
spatial scales can be observed, containing filament-like structures and a mix of eddies
of different sizes. After a spin-up time of 15 to 20 days, the fluid seems to have attained
a steady-state in the sense that the number of small, medium, and large-scale eddies
does not change. This can be verified from the kinetic energy time series (Figure 2.10).
The kinetic energy (KE) of the flow drops rapidly until t = 16 days before becoming
relatively stable for a period of 10 days. From t = 26 days onwards, however, we
observe a steep drop in KE again. This test serves as a starting point to explore similar
initial conditions and parameter values for experiments carried out later in our study.
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t = 2 hours

t = 4 hours

t = 6 hours

-0.0036 0.0026-0.0010 -0.19 0.300 0.1

Figure 2.8: Plot of the height (left column) and the divergence fields (right column) during
the adjustment process. The height is plotted as a difference between the instantaneous height
(denoted by ht) and the balanced, unperturbed, initial height hbal = 1 + hg at time t.

Table 2.2: Model parameters of the Galewsky test case (experiment 3) and the long-term
behavior test.

Parameters Galewsky test case, experiment 3 Long-term behavior test

φs π/18 11π/72
φe 8π/18 25π/72
φ0 π/7 π/6
φ1 5π/14 π/3
Ly 7782 km 3891 km

Lx/Ly 3.5 7
Nx ×Ny 896× 256 1792× 256

∆x 1/256 (∼ 30 km) 1/256 (∼ 15 km)
∆t 0.005 (∼ 8 min.) 0.005 (∼ 4 min.)
νe 1/(6× 105) 1/(3× 105)
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Figure 2.9: Evolution of vorticity field for the long-term behavior test. The model is run
until t = 30 days.
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Figure 2.10: Kinetic energy time series plot for the long-term behavior test.

2.3 The climate model

We reintroduce the deterministic version of the climate model of Crisan et al. (2023a)
as

Atmosphere :
∂ua

∂t
+ (ua · ∇)ua +

1

Roa
ẑ× ua +

1

Ca
∇θa = νa∆ua,

∂θa

∂t
+∇ · (uaθa) = γ(θa − θo) + ηa∆θa,

Ocean :
∂uo

∂t
+ (uo · ∇)uo +

1

Roo
ẑ× uo +

1

Roo
∇po = σ(uo − ua

sol) + νo∆uo,

∇ · uo = 0,

∂θo

∂t
+ uo · ∇θo = ηo∆θo.

Here, the viscous and diffusion terms are represented using artificial diffusion. The
atmospheric velocity ua is decomposed following the Helmholtz decomposition, ua =

ua
sol +∇q and its divergence-free part ua

sol is passed on to the ocean component of the
climate model.

2.3.1 Discretization

We solve the climate model equations on a rectangular computational domain Ω, which
is periodic in the x direction. Free-slip boundary conditions are assumed for both the
ocean and atmosphere velocities,

u2 = 0,
∂u1
∂y

= 0
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at the boundaries in the y direction. On the same boundaries, Neumann/insulated
boundary conditions are assumed for the ocean and atmosphere temperatures,

∂θ

∂y
= 0.

We represent (with a slight abuse of notation) the discrete versions of atmosphere
velocity and temperature by ua and θa respectively. The variational formulation for
the atmosphere component can be written as

⟨∂tua,va⟩Ω + ⟨(ua · ∇)ua,va⟩Ω +
1

Roa
⟨ẑ× ua,va⟩Ω

− 1

Ca
⟨θa,∇ · va⟩Ω = −νa ⟨∇ua,∇va⟩Ω ,

⟨∂tθa, ϕa⟩Ω − ⟨θaua,∇ϕa⟩Ω = ⟨γ(θa − θo), ϕa⟩Ω − ηa ⟨∇θa,∇ϕa⟩Ω ,

where va and ϕa are the test functions corresponding to ua and θa, respectively. We
choose ua, θa ∈ P1, i.e., piecewise continuous polynomials of degree 1.
The variational formulation for the ocean component is given by

⟨∂tuo,vo⟩Ω + ⟨(uo · ∇)uo,vo⟩Ω +
1

Roo
⟨ẑ× uo,vo⟩Ω

− 1

Roo
⟨po,∇ · vo⟩Ω = σ ⟨uo − (ua −∇q),vo⟩Ω − νo ⟨∇ua,∇va⟩Ω ,

⟨∇ · uo, ψ⟩Ω = 0,

⟨∂tθo, ϕo⟩Ω + ⟨uo · ∇θo,∇ϕo⟩Ω = −ηa ⟨∇θo,∇ϕo⟩Ω ,

where vo, ψ, and ϕo are the test functions. We use the Scott-Vogelius finite element
spaces, uo, po ∈ P2 × Pdisc

1 to represent ocean velocity and pressure in order to strictly
satisfy the variational incompressiblity condition. Both the ocean velocity and ocean
pressure are defined on a barycentrically refined mesh. Similar to the atmospheric
temperature, the ocean temperature is chosen to be in the space of piecewise continuous
polynomials of degree 1 (θo ∈ P1).

The divergence-free part of the atmospheric velocity is obtained by solving

∆q = ∇ · ua, (2.19)

for q and using the Helmholtz decomposition, ua
sol = ua −∇q. The weak formulation

for (2.19) is shown in (2.20) where χ denotes the test function corresponding to q. We
choose q to be in the space of piecewise continuous polynomials of degree 2 (q ∈ P2).

−⟨∇q,∇χ⟩Ω = ⟨∇ · ua, χ⟩Ω (2.20)

We use the Crank-Nicolson time-stepping scheme for time discretization. Our
numerical implementation procedure is summarized in Algorithm 1.
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Algorithm 1 Solver algorithm for the deterministic climate model
1: Let ∆t and ∆x be the time discretization step and the spatial discretization step

respectively. Let ua
0,u

o
0 and θa0 , θ

o
0 be initial velocity and temperature variables,

respectively of the coupled model at t = 0.
2: Solve

−⟨∇q0,∇χ⟩Ω = ⟨∇ · ua
0, χ⟩Ω

to obtain q0 and set ua
sol,0 = ua

0 −∇q0.
3: for ti = i∆t, i = 0, 1, 2 . . . , N − 1, with tN = T do
4: Set ua

n = ua
i , θ

a
n = θai , θ

o
n = θoi ,u

a
sol,n = ua

sol,i

5: Solve the atmosphere component

〈
ua
n+1 − ua

n,v
a
〉
Ω
+

∆t

2

〈
(ua

n · ∇)ua
n +

(
ua
n+1 · ∇

)
ua
n+1,v

a
〉
Ω

+
∆t

2Roa
〈
ẑ× (ua

n + ua
n+1),v

a
〉
Ω
− ∆t

2Ca

〈
θan + θan+1,∇ · va

〉
Ω

+
∆t νa

2

〈
∇ua

n +∇ua
n+1,∇va

〉
Ω
= 0,

〈
θan+1 − θan, ϕ

a
〉
Ω
− ∆t

2

〈
θanu

a
n + θan+1u

a
n+1,∇ϕa

〉
Ω
−∆t γ

〈
θan + θan+1

2
− θon, ϕ

a

〉

Ω

+
∆t ηa

2

〈
∇θan +∇θan+1,∇ϕa

〉
Ω
= 0,

to obtain ua
n+1 and θan+1.

6: Solve
−⟨∇qn+1,∇χ⟩Ω =

〈
∇ · ua

n+1, χ
〉
Ω

to obtain qn+1 and set ua
sol,n+1 = ua

n+1 −∇qn+1.
7: Solve the ocean component

〈
uo
n+1 − uo

n,v
o
〉
Ω
+

∆t

2

〈
(uo

n · ∇)uo
n +

(
uo
n+1 · ∇

)
uo
n+1,v

o
〉
Ω

+
∆t

2Roo
〈
ẑ× (uo

n + uo
n+1),v

o
〉
Ω
− ∆t

2Roo
⟨pn+1,∇ · vo⟩Ω

− ∆t σ

2

〈
uo
n + uo

n+1 − (ua
sol,n + ua

sol,n+1),v
o
〉
Ω

+
∆tνo

2

〈
∇uo

n +∇uo
n+1,∇vo

〉
Ω
+∆t

〈
∇ · uo

n+1, ψ
〉
Ω
= 0,

〈
θon+1 − θon, ϕ

o
〉
Ω
+

∆t

2

〈
uo
n · ∇θon + uo

n+1 · ∇θon+1, ϕ
o
〉
Ω

+
∆t ηo

2

〈
∇θon +∇θon+1,∇ϕo

〉
Ω
= 0,

to obtain uo
n+1, pn+1 and θon+1.

8: Set ua
i+1 = ua

n+1, θ
a
i+1 = θan+1, u

a
sol,i+1 = ua

sol,n+1, u
o
i+1 = uo

n+1, θ
o
i+1 = θon+1.

9: end for
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Chapter 3

Inclusion of stochasticity

Overview

In this chapter, we present discretization schemes for three stochastic models: the
stochastic Navier-Stokes model, the stochastic atmosphere model, and the stochastic
climate model. The stochastic models must be well calibrated to ensure good perfor-
mance. Therefore, before presenting the discretization of the models, we illustrate our
methodology for calibration. In our work, we use (synthetic) data from high-resolution
simulations of deterministic models to calibrate the corresponding stochastic models.
The calibration methodology presented in this section, however, can also be easily
applied to observational/satellite data.

3.1 Stochastic model calibration

We estimate ξi from the difference between Lagrangian trajectories of the high resolution
velocity field u and the coarse-grained velocity field u evaluated on a coarse grid,

∑

i

ξi(X(a, t)) ◦ dW i
t ≈ u(X(a, t), t)dt− u(X(a, t))dt.

For small time-step size ∆t, we can rewrite the above equation in Eulerian form as
∑

i

ξi(x) ◦∆W i
n ≈ (u(x, t)− u(x, t))∆t,

where x denotes standard Euclidean coordinates on the computational domain and
∆W i is a Gaussian process with mean zero and variance equal to ∆t. This equation
can be further modified to make the Gaussian process dimensionless,

∑

i

ξi ◦∆Bi
n ≈ (u− u)

√
∆t,

where ∆Bi
n ∼ N (0, 1).
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Chapter 3. Inclusion of stochasticity

We obtain the coarse-grained velocity by first spatially averaging the velocity on
the fine grid (by applying the Helmholtz operator1 (Cotter et al., 2020b; Ephrati et al.,
2023)) and then projecting the averaged field onto the coarse grid. The average velocity
is therefore obtained by solving

u− c2∆u = u,

with appropriate boundary conditions for u. The choice of c is determined by the
smallest element size in the coarse grid. The action of the Helmholtz operator averages
out the velocity field u in a box of size c× c throughout the mesh. This way, length
scales smaller than the size of a coarse grid element are filtered out.
The following steps are involved in the estimation of ξi:

1. Create a data matrix by calculating (u − u)∆t for all the coarse-grid points at
different time instances. We denote this data matrix by ∆X. If we have data from
(let’s say) m time instances and p points in the domain, ∆X would be a m × 2p

matrix. The first p columns would contain (u1 − u1)∆t data while the remaining
columns would contain data from (u2 − u2)∆t.

2. Rescale the data matrix:
F ′ =

∆X√
∆t
.

The rescaled matrix is denoted by F ′.

3. Subtract the column-mean from each entry of F ′:

F =

(
Im − 1

m
1m1

T
m

)
F ′,

where Im is the m×m identity matrix and 1m = (1, . . . , 1)T is a column vector of
length m containing only ones (Hannachi et al., 2007). This step is necessary to
satisfy the assumption that ∆Bi ∼ N (0, 1).

4. Apply the singular value decomposition (SVD) algorithm to decompose F :

SVD(F ) = UΛV T ,

where U is m× r matrix, Λ is r × r diagonal matrix, and V T is r × 2p matrix in
which

r = rank(F ) ≤ min(m, 2p).

The diagonal entries λi = Λii of matrix Λ are known as the singular values of F .
The matrices U and V are unitary and form a set of orthonormal vectors,

UTU = Ir, V TV = Ir
1not to be confused with the standard Helmholtz equation which has a different formulation.
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3.1. Stochastic model calibration

The columns u1, . . . ,ur of U are a basis for the columns space of F and the columns
v1, . . . ,vr of V are a basis for the row space of F . Moreover, the columns of U have
zero mean (since columns of F have zero mean). These properties make ui good
candidates to approximate the Gaussian processes ∆Bi. However, the columns need
to be rescaled to match their variance with that of ∆Bi.

5. The covariance between the column entries of U is given by:

Cov(U) :=
UTU

m− 1
=

Ir
m− 1

.

Each column has a variance of 1/(m− 1). We re-express the matrix F as

F = U V
T
, where U =

√
m− 1 U and V T

=
Λ√
m− 1

V T .

The columns
√
m− 1 ui of U have zero mean and unit variance, and therefore are

assumed to model ∆Bi.

6. The vectors ξi are obtained from the rows of V T :

ξi =
λi√
m− 1

vT
i .

The vectors ξi represent the spatial correlations of unresolved/small-scale velocity.
This is clear if we compute the covariance between the columns of matrix F . We denote
the spatial covariance tensor by R,

R : =
F TF

m− 1

=
V ΛTUTUΛV T

m− 1
=
V Λ2V T

m− 1
,

RV = V
Λ2

m− 1

The columns vi (of matrix V ) are the eigenvectors of R with corresponding eigenvalues
α2
i := λ2i /(m− 1). The vectors ξi can therefore be obtained from eigenvectors of spatial

covariance tensor. This procedure of obtaining ξi is called the empirical orthogonal
function (EOF) analysis (Hannachi et al., 2007). The ith EOF is simply the ith
eigenvector vi. The eigenvalues of the covariance tensor R provide a measure of the
variance accounted for by the corresponding eigenvectors. Generally, the amount of
variance explained by a spatial correlation vector ξi is expressed as a percentage:

α2
i∑r

i=1 α
2
i

× 100.

39



Chapter 3. Inclusion of stochasticity

3.2 Stochastic Navier-Stokes equations

A stochastic version of the 2D incompressible Navier-Stokes equations is presented in
Goodair and Crisan (2024). The stochastic Navier-Stokes equations can be written as

du+ (u · ∇)u dt+
N∑

i=1

[(Li +Ai)u] ◦ dW i = −∇p dt+
1

Re
∆u dt+ f dt, (3.1)

∇ · u = 0

where Li := (ξi · ∇)u, Aiu :=
∑2

j=1 uj∇ξi,j (in which ξi,j denotes the jth component
of ξi) and ξi are divergence-free and time-independent vector fields. We present the
numerical discretization of equations (3.1) for a unit-square domain Ω with free-slip
boundary conditions

(Du n) · τ = 0, u · n = 0,

on the boundary ∂Ω.

3.2.1 Discretization

We discretize the equations (3.1) for the temporal variable first using the stochastic
version of the Crank-Nicolson scheme (Zhang et al., 2013). The Brownian motion terms
dW i are approximated by wi

√
∆t, where wi ∼ N (0, 1) are independent and identically

distributed (i.i.d.) samples from a Gaussian distribution with mean zero and unit
variance. The stochastic system then becomes

un+1 − un =

(
−(un+1 · ∇)un+1 + (un · ∇)un

2
−∇pn+1

)
∆t (3.2)

+

(
1

2Re
(∆un+1 +∆un) + f

)
∆t

−
∑

i

(
(ξiwi · ∇)un+1 + (ξiwi · ∇)un

2

)√
∆t

−
∑

i

(
(un+1

1 + un1 )

2
∇(ξi,1wi) +

(un+1
2 + un2 )

2
∇(ξi,2wi)

)√
∆t,

∇ · un+1 = 0,

where un+1 and un denote the velocity fields at time tn+1 and tn respectively. The
time-step size is denoted by ∆t = tn+1 − tn. We simplify these equations further by
denoting the noise components as

∑

i

ξiwi =

(∑

i

ξi,1wi,
∑

i

ξi,2wi

)
= (ũ1, ũ2) = ũ.
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3.3. Stochastic atmosphere model

Similar to the spatial discretization of the deterministic equations, we discretize the
stochastic system (3.2) using the Scott-Vogelius pair on barycentrically refined meshes.
The variational formulation for the equations (3.2) is posed as: given un

h ∈ P2 at time
tn, find (un+1

h , pn+1
h ) ∈ P2 × Pdisc

1 at time tn+1 = tn +∆t such that

〈
un+1
h − un

h,vh

〉
Ω
+∆t

〈
(un+1

h · ∇)un+1
h + (un

h · ∇)un
h

2
,vh

〉

Ω

−∆t
〈
∇ · vh, p

n+1
h

〉
Ω

+
∆t

Re

〈∇un+1
h +∇un

h

2
,∇vh

〉

Ω

−∆t ⟨fh,vh⟩Ω

+∆t
〈
∇ · un+1

h , ψh

〉
Ω
+
√
∆t

〈
(ũn · ∇)(un+1

h + un
h)

2
,vh

〉

Ω

+
√
∆t

〈
(un+1

1,h + un1,h)

2
∇ũn1,h,vh

〉

Ω

+
√
∆t

〈
(un+1

2,h + un2,h)

2
∇ũn2,h,vh

〉

Ω

= 0,

holds for all (vh, ψh) ∈ P2 × Pdisc
1 .

3.3 Stochastic atmosphere model

We consider the stochastic version of the uncoupled atmosphere model introduced in
Section 2.2. The stochastic model equations are written as (Crisan et al., 2023a)

du+ ((udt+
∑

i

ξi ◦ dW i) · ∇)u+ f ẑ× (udt+
∑

i

ξi ◦ dW i) (3.3)

+
N∑

i=1

(
2∑

j=1

uj∇ξi,j +∇(ξi ·R)

)
◦ dW i = (−κ∇θ + ν∆u)dt,

dθ +∇ ·
(
θ(udt+

∑

i

ξi ◦ dW i)

)
= η∆θdt.

New parameterization terms ẑ×∑i ξi◦dW i+
∑N

i=1∇(ξi ·R)◦dW i appear in equations
(3.3) that are absent in the stochastic Navier-Stokes equations. These terms account
for the rotation in the deterministic atmosphere model (Holm and Luesink, 2021). The
vector field R is a vector potential of the Coriolis parameter: curl(R) = f ẑ.

Similar to the deterministic case, we derive the non-dimensional form of (3.3). The
equations for the non-dimensionalized stochastic atmosphere model (after removing
tilde over the non-dimensionalized variables and introducing eddy viscosity and artificial

41



Chapter 3. Inclusion of stochasticity

diffusion terms) can be formulated as

du+

(
(u dt+

∑

i

ξi ◦ dW i) · ∇
)
u+

1

Ro
ẑ× (u dt+

∑

i

ξi ◦ dW i)

+
N∑

i=1

(
2∑

j=1

uj∇ξi,j +
1

Ro
∇(ξi ·R)

)
◦ dW i =

(
− 1

C
∇θ + νe∆u

)
dt,

dθ +∇ ·
(
θ

(
udt+

∑

i

ξi ◦ dW i

))
= ηe∆θ dt.

In our study, we assume that the vector fields ξi are divergence-free. In addition to
that, we neglect the parameterization terms which account for the rotation. These
assumptions lead to the following stochastic model

du+

(
udt+

∑

i

ξi ◦ dW i

)
· ∇u+

1

Ro
ẑ× udt+

∑

i

(
2∑

j=1

uj∇ξi,j
)

◦ dW i (3.4)

=

(
− 1

C
∇θ + νe∆u

)
dt,

dθ +∇ · (θu) dt+
∑

i

(ξi ◦ dW i) · ∇θ = ηe∆θ dt.

3.3.1 Discretization

In this section, we explain the discretization procedure for equations (3.4). First, we
discretize the equations for the temporal variable using stochastic Crank-Nicolson
scheme. The Brownian motion terms dW i are approximated by Gaussian processes
wi

√
∆t, where wi ∼ N (0, 1). The SPDEs can then be written as

un+1 − un =

(
−(un+1 · ∇)un+1 + (un · ∇)un

2
− 1

Ro
ẑ× un+1 + un

2

)
∆t (3.5)

+

(
− 1

C

∇θn+1 +∇θn
2

+ νe
∆un+1 +∆un

2

)
∆t

−
∑

i

(ξiwi · ∇)
un+1 + un

2

√
∆t

−
∑

i

(
un+1
1 + un1

2
∇(ξi,1wi) +

un+1
2 + un2

2
∇(ξi,2wi)

)√
∆t,

θn+1 − θn =

(
−∇ · (θn+1un+1) +∇ · (θnun)

2
+ ηe

∆θn+1 +∆θn

2

)
∆t

−
∑

i

ξiwi ·
∇θn+1 +∇θn

2

√
∆t.
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3.4. Stochastic climate model

We simplify the equations further by defining

∑

i

ξiwi =

(∑

i

ξi,1wi,
∑

i

ξi,2wi

)
:= (ũ1, ũ2) = ũ.

We discretize the stochastic system of equations (3.5) using the finite element spaces
for velocity and temperature that were used for the deterministic model. The discrete
variational problem for the uncoupled stochastic atmosphere model can be posed as:
given un ∈ P1, θ

n ∈ P1 at time tn, find (un+1, θn+1) ∈ P1 × P1 at time tn+1 = tn +∆t

such that

〈
un+1 − un,v

〉
Ω
+

∆t

2

〈(
un+1 · ∇

)
un+1 + (un · ∇)un,v

〉
Ω

+
∆t

2Ro

〈
ẑ× (un+1 + un),v

〉
Ω
+

∆t

2C

〈
θn+1 + θn,∇ · v

〉
Ω

+
νe∆t

2

〈
∇un+1 +∇un,∇v

〉
Ω
+

√
∆t

2

〈
(ũ · ∇)(un+1 + un),v

〉
Ω

+

√
∆t

2

〈
(un+1

1 + un1 )∇ũ1 + (un+1
2 + un2 )∇ũ2,v

〉
Ω
= 0,

〈
θn+1 − θn, ϕ

〉
Ω
− ∆t

2

〈
θn+1un+1 + θnun,∇ϕ

〉
Ω
+
ηe∆t

2

〈
∇θn+1 +∇θn,∇ϕ

〉
Ω

+

√
∆t

2

〈
ũ · (∇θn+1 +∇θn), ϕ

〉
Ω
= 0,

for all (v, ϕ) ∈ P1 × P1.

3.4 Stochastic climate model

The stochastic atmosphere model introduced earlier is coupled to an idealized ocean
model. This leads to the following equations for the coupled ocean-atmosphere model

Atmosphere : dua + ((uadt+
∑

i

ξi ◦ dW i) · ∇)ua +
1

Roa
ẑ× uadt (3.6)

+
∑

i

(ua1∇ξi,1 + ua2∇ξi,2) ◦ dW i = (− 1

Ca
∇θ + νa∆ua)dt,

dθa +∇ · (θaua)dt+
∑

i

(ξi ◦ dW i) · ∇θa = (γ(θa − θo) + νa∆θ)dt,

Ocean :
∂uo

∂t
+ (uo · ∇)uo +

1

Roo
ẑ× uo +

1

Roo
∇pa = σ(uo − Eua

sol) + νo∆uo,

∇ · uo = 0,

∂θo

∂t
+ uo · ∇θo = ηo∆θo.
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Chapter 3. Inclusion of stochasticity

Unlike in the deterministic case, the ocean model here is driven by the expected value
of the divergence-free part of the atmospheric velocity. Due to this coupling, it is not
possible to solve for all the unknowns in equations (3.6) simultaneously. As a result,
we are restricted to solving the individual components separately. We combine the
discretization schemes developed for the atmosphere and ocean components in the
previous sections to arrive at a numerical scheme for the stochastic climate model.

Algorithm 2 summarizes our numerical procedure for solving the stochastic climate
model equations. This algorithm is implemented using the Firedrake finite element
package. We use Firedrake’s parallelization feature to run each ensemble member on a
separate CPU core; steps 2 to 4 and steps 7 to 11 of the algorithm are performed on
different cores.
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3.4. Stochastic climate model

Algorithm 2 Solver algorithm for the stochastic climate model
1: Let ∆t and ∆x be the time discretization step and the spatial discretization step,

respectively. Let uo
0 and θo0 be the initial velocity and temperature fields of the

ocean component of the model at t = 0. Let ua
0,j and θa0,j (where j = 1, 2, . . . , Np) be

the initial atmospheric velocity and temperature for each particle in the ensemble.
2: for j = 1, 2 . . . , Np do
3: Solve

−⟨∇q0,j,∇χ⟩Ω =
〈
∇ · ua

0,j, χ
〉
Ω

to obtain q0,j, and set ua
sol,0,j = ua

0,j −∇q0,j.
4: end for
5: for tk = k∆t, k = 0, 1, 2 . . . ,M − 1, with tM = T do
6: Set ua

n,j = ua
k,j, θ

a
n,j = θak,j, u

a
sol,n,j = ua

sol,k,j, u
o
n = uo

k, θ
o
n = θok.

7: for j = 1, 2 . . . , Np do
8: Let

∑

i

ξiwi :=

(∑

i

ξi,1wi,
∑

i

ξi,2wi

)
= (ũ1, ũ2) = ũ for i.i.d. wi ∈ N (0, 1).

9: Solve the atmosphere component

〈
ua
n+1,j − ua

n,j,v
a
〉
Ω
+

∆t

2

〈(
ua
n+1,j · ∇

)
ua
n+1,j +

(
ua
n,j · ∇

)
ua
n,j,v

a
〉
Ω

+
∆t

2Roa
〈
ẑ× (ua

n+1,j + ua
n,j),v

a
〉
Ω

+
∆t

2Ca

〈
θan+1,j + θan,j,∇ · va

〉
Ω

+
νa∆t

2

〈
∇ua

n+1,j +∇ua
n,j,∇va

〉
Ω

+

√
∆t

2

〈
(ũ · ∇)(ua

n+1,j + ua
n,j),v

a
〉
Ω

+

√
∆t

2

〈
(ua1,n+1,j + ua1,n,j)∇ũ1,va

〉
Ω

+

√
∆t

2

〈
(ua2,n+1,j + ua2,n,j)∇ũ2,va

〉
Ω
= 0,

〈
θan+1,j − θan,j, ϕ

a
〉
Ω
+

∆t

2

〈
θan+1,ju

a
n+1,j + θan,ju

a
n,j,∇ϕa

〉
Ω

− γ ∆t

〈
θan,j + θan+1,j

2
− θon, ϕ

a

〉

Ω

+
ηa∆t

2

〈
∇θan+1,j +∇θan,j,∇ϕa

〉
Ω

+

√
∆t

2

〈
ũ · (∇θan+1,j +∇θan,j), ϕa

〉
Ω
= 0,

to obtain the updated values ua
n+1,j and θan+1,j.
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10: Solve
−⟨∇qn+1,j,∇χ⟩Ω =

〈
∇ · ua

n+1,j, χ
〉
Ω

to obtain qn+1,j, and set ua
sol,n+1,j = ua

n+1,j −∇qn+1,j.
11: end for
12: Set

ua
sol,n =

1

Np

Np∑

j=1

ua
sol,n,j and ua

sol,n+1 =
1

Np

Np∑

j=1

ua
sol,n+1,j

13: Solve the ocean component

〈
uo
n+1 − uo

n,v
o
〉
Ω
+

∆t

2

〈
(uo

n · ∇)uo
n +

(
uo
n+1 · ∇

)
uo
n+1,v

o
〉
Ω

+
∆t

2Roo
〈
ẑ× (uo

n + uo
n+1),v

o
〉
Ω
− ∆t

2Roo
⟨pn+1,∇ · vo⟩Ω

− ∆t σ

2

〈
uo
n + uo

n+1 − (ua
sol,n + ua

sol,n+1),v
o
〉
Ω

+
∆tνo

2

〈
∇uo

n +∇uo
n+1,∇vo

〉
Ω
+∆t

〈
∇ · uo

n+1, ψ
〉
Ω
= 0,

〈
θon+1 − θon, ϕ

o
〉
Ω
+

∆t

2

〈
uo
n · ∇θon + uo

n+1 · ∇θon+1, ϕ
o
〉
Ω

+
∆t ηo

2

〈
∇θon +∇θon+1,∇ϕo

〉
Ω
= 0,

to obtain uo
n+1, pn+1 and θon+1.

14: Set ua
k+1,j = ua

n+1,j, θ
a
k+1,j = θan+1,j, u

a
sol,k+1,j = ua

sol,n+1,j, u
o
k+1 = uo

n+1,
and θok+1 = θon+1.

15: end for
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Numerical simulations

Overview

In this chapter, we present results from the numerical simulations of three stochastic
models. The first stochastic model is a SALT parameterized version of the 2D Navier-
Stokes equations. The calibration procedure described in the previous chapter is used
to estimate the stochastic terms in the model. We present results from several tests to
quantify the uncertainty introduced by running the model on coarse grids. The second
stochastic model is an idealized stochastic atmosphere model. We present an extensive
numerical investigation of this model since it forms an integral part of the climate
model. Finally, we present the simulation results for the stochastic climate model.

4.1 Stochastic Navier-Stokes equations

In this section, we evaluate the effectiveness of SALT (stochastic advection by Lie
transport) parameterization in capturing the uncertainty introduced by unresolved
transport phenomena in the Navier-Stokes equations. The 2D stochastic incompressible
Navier-Stokes equations can be written as

du+ (udt+
∑

i

ξi ◦ dW i) · ∇u = −
∑

i

(u1∇ξi,1 + u2∇ξi,2) ◦ dW i (4.1)

−∇p dt+
1

Re
∆u dt+ f dt,

∇ · u = 0

These equations represent the stochastic counterpart of the deterministic Navier-Stokes
equations

∂tu+ (u · ∇)u = −∇p+ 1

Re
∆u+ f , (4.2)

∇ · u = 0.
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Figure 4.1: Computational domain (with labeled boundaries) on which the Navier-Stokes
equations are solved.

Table 4.1: The value of grid parameters for Navier-Stokes model simulation

Parameter Fine grid Coarse grid 1 Coarse grid 2

Number of elements, Nx ×Ny 256× 256 64× 64 32× 32
Element size, ∆x 1/256 1/64 1/32
Time-step size, ∆t 0.025 0.1 0.2

Reynolds number, Re 8× 104 4× 104 2× 104

We solve these equations on a two-dimensional unit-square domain Ω (Figure 4.1) with
free-slip boundary conditions

(∇u n) · τ = 0, u · n = 0 on ∂Ω,

which, due to the domain geometry, simplify to

u1 = 0, ∂xu2 = 0 on boundaries 1 and 2,

u2 = 0, ∂yu1 = 0 on boundaries 3 and 4.

The external force f is defined as

f(x, y) = (αy sin(βπx), α sin(βπx) sin(βπy)) ,

where the parameters α and β control the intensity and frequency of the forcing,
respectively.

Our goal is to calibrate the stochastic model for coarse grid simulations using data
from high-resolution deterministic model runs and to perform uncertainty quantification
tests. We consider three different mesh configurations (see Table 4.1). The aim is to
extract the small-scale flow information from simulations on 256× 256 grid and use it
to run the stochastic model on 64× 64 and 32× 32 grids and quantify the uncertainty
of coarse grid simulations.
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4.1.1 Fine grid simulation

We run the deterministic model (4.2) on the fine grid of size 256× 256 starting from
the initial condition

u(t = 0) = (0, 0),

and forcing parameters α = 0.01, β = 8.
Figure 4.2 shows the evolution of fluid velocity, pressure, and vorticity fields over

time. We identify a time window during which the numerical solutions attain statistical
equilibrium. This is important for effective calibration of the stochastic model, which
is derived on the assumption that the velocity-velocity correlation of the unresolved
dynamics is stationary or time-independent.

We observe from Figure 4.3 and the kinetic energy plot (Figure 4.4) that the flow
has reached energy equilibrium after an initial spin-up time of approximately 50 time
units.

Stochastic model calibration

We estimate the correlation eigenvectors ξi using the Lagrangian trajectory data
obtained from the fine grid velocity field u and its coarse-grained counterpart u on
the coarse grid. The coarse-grained velocity is calculated by first spatially averaging
the fine grid velocity and then projecting the averaged field onto the coarse grid. The
average velocity is obtained by solving

u− c2∆u = u in Ω,

with free-slip conditions on the boundary. We choose c = 1/64 for the 64× 64 grid and
c = 1/32 for the 32× 32 grid.

Figure 4.5 shows the result of coarse graining on the high-resolution velocity field
corresponding to time t = 50. The velocity field for the 64× 64 grid loses information
about sharp gradients when compared to the fine grid. The effect of coarse graining
is even more noticeable for 32× 32 grid. Figure 4.5 also displays the vorticity fields
corresponding to coarse-grained velocity fields.

We record the fine grid velocity u from t = 50 to t = 110 time units at an interval
of ∆t (the coarse grid time-step) and apply the calibration procedure described in
Section 3.1. Applying this procedure yields a data matrix ∆X of size 600× 98818 and
300× 24834 for grids of size 64× 64 and 32× 32, respectively.

Figure 4.6 shows the plots for the EOF normalized spectrum for both coarse grids.
We find that for 64 × 64 grid, 32 EOFs/ξi can capture 90% of the total variability
in ∆X. For 32× 32 grid, 90% of the total variability in ∆X is captured by just 23

EOFs. Table 4.2 shows the number of EOFs required by the coarse grids for capturing
different levels of variability in data.

Figures 4.7 and 4.8 show some of the estimated ξi for coarse grids 64 × 64 and
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Figure 4.2: Velocity (left column), pressure (middle column), and vorticity (right column)
fields at t = 10 (top), t = 20, t = 30, and t = 40 (bottom). The fields are obtained by solving
the deterministic model (4.2) on the fine grid.
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t = 50

t = 70

t = 90

t = 110

0.00 0.160.05 0.1
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Figure 4.3: Velocity (left column), pressure (middle column), and vorticity (right column)
fields at t = 50, t = 70, t = 90, and t = 110 (bottom). The fields are obtained by solving the
deterministic model (4.2) on the fine grid. The color scales are kept the same across all time
snapshots.
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Figure 4.4: Evolution of kinetic energy of the deterministic model solution on 256× 256
grid over time.
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Figure 4.5: Coarse-grained velocity and vorticity fields for grids of size 64× 64 (middle) and
32× 32 (right). The coarse-grained fields are obtained by applying the Helmholtz operator to
the fine-grid velocity field (left) at time t = 50. The first row shows the velocity fields; the
second row shows the corresponding vorticity fields.
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Figure 4.6: EOF normalized spectrum for coarse grids of size 64 × 64 (left) and 32 × 32
(right).

Table 4.2: Number of ξi (denoted by nξ) needed to explain different levels of variance in
the data ∆X for grids 64× 64 and 32× 32.

90% variance 70% variance 50% variance

nξ, 64× 64 grid 75 32 14
nξ, 32× 32 grid 56 23 10

32×32, respectively. We observe from the figures that the first ξi exhibit large-scale flow
patterns, whereas the later modes contain small-scale patterns. Similar observations
were also made by Crisan et al. (2023b) in their study of the stochastic shallow water
equations.

4.1.2 Stochastic model simulation

We use the ξi obtained after the calibration procedure to run the SPDE (4.1) on
coarse grids of size 64× 64 and 32× 32. The initial condition for all the independent
realizations of the SPDE is chosen to be the coarse-grained initial velocity at time
t = 50. The SPDE is integrated for a time period of 20 units i.e., until t = 70.

For uncertainty quantification, we analyze the SPDE solution at 9 observation
points inside the computational domain (Figure 4.9). Figure 4.10 shows the evolution
of velocity (x and y components) at the observations points. This result is obtained
from 30 independent realizations of the SPDE on the 64× 64 grid. The noise term in
the SPDE is modeled using first 32 EOFs (nξ = 32) capturing 90% of the total variance
present in the calibration data.

Along with the SPDE solution, Figure 4.10 also shows the coarse-grained high-
resolution solution (denoted as the truth). We can observe that the ensemble spread
remains closer to the truth (on most of the observation points) for 5 to 6 time units
before diverting. At a few observation points, however, the ensemble fails to capture
the true solution from the start.
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Figure 4.7: Estimated ξi for the coarse grid of size 64× 64. The 1st, 14th, and 32nd ξi are
shown. For 64× 64 grid, the first 32 EOFs explain 90% of the variance in the data.
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Figure 4.8: Estimated ξi for the coarse grid of size 32× 32. The 1st, 10th, and 23rd ξi are
shown. For 32× 32 grid, the first 23 EOFs explain 90% of the variance in the data.

Figure 4.9: Observation points (red dots) within the domain where the SPDE solution is
analyzed for uncertainty quantification.
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SALT parameterization and hence the resulting stochastic terms in the model do not
account for the discretization errors, it only models the unresolved transport dynamics.
Therefore, it is better to compare the ensemble results with a reference solution which
accounts for the discretization error. We follow Ephrati et al. (2023) to define such a
reference solution.

Adapted reference solution

In the SALT approach, the information about the unresolved scales is supplied to
the deterministic model as a stochastic forcing

∑
i ξi∆W

i
n. This forcing term can be

written as an approximation of a function g(x, t) such that

g(x, t)
√
∆t = (u− u)∆t ≈

∑

i

ξi∆W
i
n.

In the calibration process, the function g(x, t) is obtained from SVD decomposition of
the Lagrangian trajectory data, where the stochastic process W i

n is modeled by the
Gaussian noise. The forcing g acts as a correction to u, which is a part of high-resolution
velocity u that can be resolved on a coarse grid. The application of the SVD algorithm
on (u− u)

√
∆t measurement data yields

g(x, t) = ξ0 +
N∑

i

ai(t)ξi(x), (4.3)

where ξ0(x) is the time-mean of the measurement data and ai(t) are the time series
corresponding to each correlation vector ξi(x). The stochastic model is generally
calibrated by utilizing only the rescaled EOF modes ξi. The time-mean ξ0(x) is
neglected and the time series ai(t) is approximated as i.i.d. samples of a standard
normal distribution.

Instead of approximating the correction term using stochastic forcing, we utilize
the full information contained in (u − u)∆t and apply it as deterministic forcing g.
The resulting solution from such deterministic forcing is denoted by adapted reference
solution.

The adapted reference solution serves as a benchmark for comparing the results
of stochastic model simulations on coarse grids. In fact, it is a better measure for
evaluating the results from the stochastic model than the coarse-grained high-resolution
fields since it contains the effect of discretization errors when the model is run on
coarse grids. This effect is missing in the solution obtained from coarse-graining the
high-resolution solution.
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Figure 4.10: Evolution of the velocity components (x and y) over time at 9 observation
points, illustrating the comparison between the ensemble spread, the truth, and the adapted
reference solution.
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We obtain the adapted reference solution by solving the following discrete in-time
equations

un+1 − un =

(
−(un+1 · ∇)un+1 + (un · ∇)un

2
−∇pn+1

)
∆t

+

(
1

2Re
(∆un+1 +∆un) + f

)
∆t

−
(
(gn+1 · ∇)un+1 + (gn · ∇)un

2

)√
∆t

−
(
un+1
1 ∇gn+1

1 + un1∇gn1
2

+
un+1
2 ∇gn+1

2 + un2∇gn2
2

)√
∆t

∇ · un+1 = 0.

In our study, for the calculation of adapted reference solution, we always use the amount
of ξi which explains 90% of the variance in the calibration data.

In Figure 4.10, we plot the adapted reference solution (x and y components of
velocity) at observation points and compare it with the ensemble solution and the
coarse-grained truth. We can observe that at all locations, the ensemble spread captures
the adapted reference solution for longer time-periods in comparison to the coarse-
grained solution. This observation is further substantiated by visible inspection of
the velocity, pressure and vorticity fields at t = 70 (see Figures 4.11 and 4.12). The
stochastic model realizations are not able to accurately capture the large-scale flow
patterns of the coarse-grained solution after running for 20 time units (Figure 4.12).
However, the SPDE results are remarkably closer to the adapted reference solution
(Figure 4.11).

Uncertainty quantification

In this section, we show the uncertainty quantification test results. We denote the
independent realizations of our SPDE by “particles” following the data-assimilation
vocabulary. We first evaluate the effect of a using different number of particles Np,
different number of EOFs nξ, and different levels of mesh refinement on one standard
deviation region about the mean of SPDE solutions (we call it the ensemble spread) at
9 observation points on the domain.

For 64× 64 grid, with nξ ≡ 0.9 (i.e. the number of EOFs capturing 90% variance)
fixed, we compare the differences due to changing the number of particles in the
ensemble: Np = 30 versus Np = 60. The results are shown in Figure 4.13. Varying
the number of EOFs shows no significant effect on the ensemble spread size within
the observed time frame. We analyze the impact of using a different number of EOFs
by fixing Np = 60 and comparing the ensemble results for different number of EOFs:
nξ ≡ 0.9 (32 EOFs capturing 90% variance) versus nξ ≡ 0.7 (14 EOFs capturing 70%

variance). The results are shown in Figure 4.14. The use of different number of EOFs
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Particle 1: SPDE solution
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Figure 4.11: Velocity (left column), pressure (middle column), and vorticity (right column)
fields corresponding to the adapted reference solution (bottom row) and two independent
realizations of the SPDE (top two rows) on 64× 64 grid at time t = 70.
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Figure 4.12: Coarse-grained velocity and vorticity fields for the grid of size 64× 64 at time
t = 70.

also does not seem to have an effect on the ensemble spread size. Ideally, the ensemble
spread size should increase when the number of EOFs or the number of particles are
increased. However, the differences shown in Figures 4.13 and 4.14 are negligible.
Similar observations were made by Cotter et al. (2019) in their study of the stochastic
2D Euler equations.

In order to study the impact of mesh grid size on the ensemble spread, we fix the
variance level and the number of ensemble particles (nξ ≡ 0.9, Np = 60) and run
the SPDE on a coarser grid of size 32× 32. Figure 4.15 shows the results where the
ensemble spread is compared for velocity fields at 9 observation points for two different
mesh resolutions. It can be observed that the ensemble spread for the 64 × 64 grid
is narrower than the ensemble spread for 32× 32 grid. When we compare the SPDE
solutions with the reference solutions, it is clear that the spread generated by 64× 64

grid is more accurate than the spread of 32× 32 grid. The spread for the 64× 64 grid
captures the reference solution for longer time intervals in comparison to the 32× 32

grid. In this sense, the SALT parameterization is consistent under mesh refinement.
Figures 4.13–4.15 highlight the effect of using different number of particles, variance

levels, and mesh refinement levels on the ensemble spread size only at certain observation
points on the grid. In order to quantify the impact of these parameters on the whole
domain, we investigate relative L2 distance between the stochastic model realizations
and the coarse-grained truth. The relative L2 error for velocity is defined by

∥u(t)− utruth(t)∥L2(Ω)

∥utruth∥L2(Ω)

.

Figure 4.16 compares the ensemble mean relative L2 error for different model configura-
tions. The use of different number of ξi or the number of particles has negligible effect
on the L2 error. The effect of mesh refinement on the L2 error is, however, quite visible.
The L2 error grows much more rapidly for the 32× 32 grid than for the 64× 64 grid.
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Figure 4.13: Uncertainty quantification results comparing the effect of using different number
of particles (in the SPDE ensemble) on the ensemble spread for velocity field at 9 observation
points.
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ûx ± σux u.q. at 9 internal grid points

nξ ≡ 0.7, Np = 60, res. = 64

nξ ≡ 0.9, Np = 60, res. = 64

adapted ref. sol.

c. truth

0 5 10 15 20

0

2

4

6

v
e
lo

ci
ty

y
co

m
p

o
n

e
n
t ×10−2

0 5 10 15 20

−5

0

5

×10−2

0 5 10 15 20

−3

−2

−1

×10−2

0 5 10 15 20

−2

0

2

4

v
e
lo

ci
ty

y
co

m
p

o
n

e
n
t ×10−2

0 5 10 15 20

0.25

0.50

0.75

1.00

×10−1

0 5 10 15 20

0

2

4
×10−2

0 5 10 15 20

time

−2

0

2

4

6

v
e
lo

ci
ty

y
co

m
p

o
n

e
n
t ×10−2

0 5 10 15 20

time

−5

0

5
×10−2

0 5 10 15 20

time

−2

0

2

4

6
×10−2
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Figure 4.14: Uncertainty quantification results comparing the effect of using different number
of EOFs (in the SPDE) on the ensemble spread for velocity field at 9 observation points.
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ûx ± σux u.q. at 9 internal grid points

nξ ≡ 0.9, Np = 60, res. = 32

nξ ≡ 0.9, Np = 60, res. = 64

adap. ref. sol., res. = 32

adap. ref. sol., res. = 64

0 5 10 15 20

0

2

4

6

v
e
lo

ci
ty

y
co

m
p

o
n

e
n
t ×10−2

0 5 10 15 20
−5.0

−2.5

0.0

2.5

5.0

×10−2

0 5 10 15 20

−3

−2

−1

0
×10−2

0 5 10 15 20

−2

0

2

4

v
e
lo

ci
ty

y
co

m
p

o
n

e
n
t ×10−2

0 5 10 15 20

0

2

4

6

×10−2

0 5 10 15 20

−2.5

0.0

2.5

5.0

×10−2

0 5 10 15 20

time

−2

0

2

4

v
e
lo

ci
ty

y
co

m
p

o
n

e
n
t ×10−2

0 5 10 15 20

time

−5.0

−2.5

0.0

2.5

5.0
×10−2

0 5 10 15 20

time

−2

0

2

4

6
×10−2
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Figure 4.15: Uncertainty quantification results comparing the effect of using different mesh
resolutions on the ensemble spread for velocity field at 9 observation points.
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Figure 4.16: Relative L2 distance between the SPDE ensemble and the truth for velocity,
averaged over all ensemble members. Results are shown for different model configurations.

Figure 4.17 shows the L2 error of the stochastic model (nξ ≡ 0.9, Np = 60) solution
along with the L2 error of the deterministic model solution for different mesh resolutions.
Instead of plotting the mean L2 error, this time we plot one standard deviation regions
around the ensemble mean. We find that the L2 error of the stochastic model solution
(on both coarse grids) is similar to the deterministic model solution. This suggests
that parameterizing the deterministic models offers no apparent advantage in this
case. However, the main advantage of the stochastic model is its ability to generate
an ensemble of solutions whose spread size is proportional to the solution bias. This
ability helps in quantifying the uncertainty in the model solution. The bias in the
stochastic model solution, which indicates how far the ensemble mean is from the true
solution, can be corrected using data assimilation techniques like particle filters. In
Figure 4.17, the increase in spread size over time indicates decreased confidence of the
stochastic model solution. This is reflected in the values of L2 errors which gradually
increase over time. Moreover, the ensemble spread size for 64× 64 grid is consistently
smaller than the spread size for 32× 32 grid indicating an increase in confidence of the
SPDE solution as the mesh gets more refined.

4.1.3 Discussion and outlook

SALT parameterized Navier-Stokes model exhibits certain desirable features. We have
seen that the stochastic parameterization is consistent under mesh refinement. The
stochastic model solution on the 64× 64 grid has both a smaller ensemble spread size
and a smaller relative L2 error in comparison to the grid of size 32×32 (see Figure 4.16).
In addition to this, the ensemble generated by the stochastic model is able to capture
the reference solution for a few time units (see Figure 4.15). However, certain expected
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Figure 4.17: Relative L2 errors of the stochastic and deterministic model solutions. The
colored bands represent one standard deviation regions around the ensemble mean of L2 errors
of stochastic model solutions.

properties of a SALT parameterized model are not exhibited by our model. First,
we did not observe growth in the ensemble spread size with an increase in either the
number of particles or the number of EOFs/ξi. Second, the accuracy of the stochastic
model is not better than the deterministic model (without parameterization)in terms
of the relative L2 errors (Figure 4.17). We suspect these shortcomings might be linked
to an improper modeling of the noise term

∑
i ξi ◦ dW i.

The noise term
∑

i ξi ◦ dW i is approximated using the results from SVD decom-
position of the Lagrangian trajectory data (u− u)∆t. The SVD decomposition results
in two matrices; one matrix contains the EOFs and the other matrix contains the
time series data corresponding to each EOF. The EOFs are used directly as ξi for
numerical simulations while the time series data are approximated using standard
normal distributions. We analyzed the time series data and found that, the time series
corresponding only to the last few EOFs or ξi exhibit Gaussian-like distribution. The
elements in the time series corresponding to the first few EOFs—which explain the
majority of variance in observation data and hence contribute the most to the noise
term

∑
i ξi ◦ dW i)—are highly correlated. Figure 4.18 displays the plots of time series

data for the grid of size 64× 64. It can be observed that the time series corresponding
to ξ73, ξ74, and ξ75 (denoted by a73, a74, and a75 respectively) closely match an inde-
pendent realization of the standard normal distribution. On the other hand, the time
series a1, a2, and a3 do not resemble a random or Gaussian process. In order to make
a more quantitative comparison, we plot the autocorrelation function (ACF) for time
series data and compare it to the ACF of a normally distributed Gaussian process.

The autocorrelation function gives a measure of similarity between a time series and
its delayed copy over successive time periods or lag times (Park, 2018). Mathematically,
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Figure 4.18: Time series plots corresponding to ξ1, ξ2, ξ3 (left) and ξ73, ξ74, ξ75 (middle)
for a coarse grid of size 64 × 64. For comparison, the time series generated by a Gaussian
process is shown (right).
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Figure 4.19: Autocorrelation function (ACF) plots for the time series data corresponding to
ξ1, ξ2, ξ3 (left) and ξ73, ξ74, ξ75 (middle) for coarse grid of size 64× 64. For comparison,
the ACF plot for time series generated by a Gaussian process is shown (right).

ACF is denoted by ρk, where k represents the lag time or the number of time-steps
between the observations. For a time series dataset (say Xn where n denotes a time
instance), the ACF at lag k is given by (Toboga, 2021)

ρk =
1

N−k

∑N−k
n=1 (Xn − µ)(Xn+k − µ)
1
N

∑N
n=1(Xn − µ)2

,

where N denotes the number of data points in the time series, and µ is the sample
mean.

Figure 4.19 shows the ACF plots for the time series data at different lag times.
The independence or decorrelation between the realizations of a Gaussian process is
indicated by a sudden drop of ACF value from 1 to 0 for lag times of one or more
time-steps. This trend is closely followed by the time series a73, a74 and a75. The ACF
values corresponding to the time series of first three EOFs, on the other hand, takes
at least 50 times steps to get closer to zero, thus suggesting very strong correlation
between the data points. We believe that a better approximation of the time series
data can improve the accuracy of stochastic model solution.
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4.2 Stochastic atmosphere model

This section investigates the effectiveness of SALT parameterization in modeling
the effect of unresolved/small scales on the resolved/large-scale flow dynamics. The
stochastic parameterization results in an ensemble of solutions, and hence it can also
be used to quantify the uncertainty generated by solving the model on coarse grids.
We present a numerical investigation of the idealized stochastic atmosphere model
introduced in the previous chapter. When coupled with an ocean component, this model
yields a coupled ocean-atmosphere system suitable for studying some fundamental
processes that occur due to the interaction between the ocean and the atmosphere.

The governing equations for the atmosphere model are

du+

(
udt+

∑

i

ξi ◦ dW i

)
· ∇u+

1

Ro
ẑ× u dt+

∑

i

(
2∑

j=1

uj∇ξi,j
)

◦ dW i (4.4)

=

(
− 1

C
∇θ + νe∆u

)
dt,

dθ +∇ · (θu) dt+
∑

i

(ξi ◦ dW i) · ∇θ = ηe∆θ dt.

These equations represent a stochastic extension of the deterministic two-dimensional
model

∂u

∂t
+ (u · ∇)u+

ẑ× u

Ro
+

∇θ
C

= νe∆u, (4.5)

∂θ

∂t
+∇ · (θu) = ηe∆θ.

We solve models (4.4) and (4.5) on a 2D domain with periodic boundary conditions
applied in the zonal (East-West) direction (see Figure 4.20 and Figure 4.21). This
configuration approximates mid-latitude atmospheric flow between 27.5◦ and 62.5◦

north latitude. Along the meridional (North–South) boundaries, we impose free-slip
conditions on velocity:

u2 = 0,
∂u1
∂y

= 0,

and insulated boundary conditions for temperature:

∂θ

∂y
= 0.

Three different mesh configurations are considered for the numerical experiments
(see Table 4.3). The idea is to run the deterministic model on the fine grid with size
1792× 256 and use the high-resolution velocity data to calibrate the stochastic model
which can later be run on coarser grids.
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Figure 4.20: Schematic representation of the 2D domain (right) on which the atmosphere
model is simulated.
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(0,1) (7,1)

Figure 4.21: Computational domain (after non-dimensionalization) for the atmosphere
model simulation.

Table 4.3: Values of grid parameters for different configurations of the atmosphere model.

Parameter Fine grid Coarse grid 1 Coarse grid 2

Number of elements, Nx ×Ny 1792× 256 448× 64 224× 32
Smallest element size, ∆x 1/256 (∼ 15 km) 1/64 (∼ 60 km) 1/32 (∼ 120 km)

Time-step size, ∆t 0.005 (∼ 4 min.) 0.02 (∼ 16 min.) 0.04 (∼ 32 min.)
Eddy viscosity, νe 1/(3× 105) 1/(3× 104) 1/104

Diffusion coefficient, ηe 1/(3× 105) 1/(3× 104) 1/104

Rossby number, Ro 0.3 0.3 0.3
C 0.02 0.02 0.02
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4.2.1 Fine grid simulation

The initial conditions for the deterministic model (2.12) are designed to resemble the
Galewsky test-case (Galewsky et al., 2004). The initial zonal velocity profile is given by

u1(x, y) =





0 for y ≤ y0,

exp
(

α2

(y − y0)(y − y1)

)
exp

(
4α2

(y1 − y0)2

)
for y0 < y < y1,

0 for y ≥ y1,

where α = 1.64, y0 = 1/14, and y1 = 13/14. The corresponding temperature field
consists of a balanced state plus a perturbation:

θ = 1 + θb + θ̂ cos(πy/2)e−c1(x−x0)2e−c2(y−y2)2 ,

where θ̂ = 0.01, c1 = 4, c2 = 81, x0 = 3.5, and y2 = 0.5. The balanced temperature θb
satisfies

∂θb
∂y

= − C

Ro
u1,

∂θb
∂x

= 0.

The model is integrated for 54 time units (approximately 30 days). Figures 4.22–
4.28 illustrate the evolution of temperature, velocity, and vorticity fields. An initial
temperature perturbation triggers the development of turbulence, which gradually
decays. After approximately 27 time units, the flow stabilizes. This is also evident
from the kinetic energy plot (Figure 4.29) which reveals that the rate of kinetic energy
loss reduces over time. We consider the flow from t = 27 to t = 45 for further analysis.
The vorticity plots show that the flow contains a mix of small, medium and large-scale
vortices from t = 27 to t = 45. We use the velocity data obtained from this time-period
for stochastic model calibration.

Stochastic model calibration

We use the difference between the Lagrangian trajectories generated by the high-
resolution (1792× 256 grid) velocity field u and its coarse-grained/filtered version u at
different time-instances to estimate ξi. The SALT parameterization is based on the
assumption that

(u− u)∆t ≈
∑

i

ξi∆W
i
n,

where ∆W i are samples from a Gaussian distribution with zero mean and a standard
deviation of

√
∆t. The coarse grid time-step size is denoted by ∆t. The difference in

the Lagrangian trajectories, (u − u)∆t, is evaluated at the coarse grid nodes. The
procedure for obtaining the coarse-grained velocity consists of two steps. In the first
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Figure 4.22: Temperature (top), velocity (middle), and vorticity (bottom) fields at t = 0
from the deterministic model simulation on a 1792× 256 grid.
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Figure 4.23: Temperature (top), velocity (middle), and vorticity (bottom) fields at t = 9 (∼
5 days) from the deterministic model simulation on a 1792× 256 grid.
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Figure 4.24: Temperature (top), velocity (middle), and vorticity (bottom) fields at t =
18 (∼ 10 days) from the deterministic model simulation on a 1792× 256 grid.
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Figure 4.25: Temperature (top), velocity (middle), and vorticity (bottom) fields at t =
27 (∼ 15 days) from the deterministic model simulation on a 1792× 256 grid.
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Figure 4.26: Temperature (top), velocity (middle), and vorticity (bottom) fields at t =
36 (∼ 20 days) from the deterministic model simulation on a 1792× 256 grid.
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Figure 4.27: Temperature (top), velocity (middle), and vorticity (bottom) fields at t =
45 (∼ 25 days) from the deterministic model simulation on a 1792× 256 grid.
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Figure 4.28: Temperature (top), velocity (middle), and vorticity (bottom) fields at t =
54 (∼ 30 days) from the deterministic model simulation on a 1792× 256 grid.
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Figure 4.29: Time series plot of kinetic energy from the deterministic atmosphere model
simulation on a grid of size 1792× 256 for 54 time units (∼ 30 days).
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Figure 4.30: Coarse-grained temperature (top), velocity (middle), and vorticity (bottom)
fields at time t = 27 for the coarse grid of size 224× 32.

step, we solve (on a fine grid of size 1792× 256)

uavg − c2∆uavg = u,

with periodic boundary conditions on the East and West boundaries and free-slip
boundary conditions on the North and South boundaries to calculate the spatially
averaged velocity uavg. The coarse-grained velocity is obtained in the second step by
projecting the spatially averaged velocity on a coarse grid. The value of parameter c is
governed by the smallest element size of the coarse grid (c = 1/32 for 224× 32 grid
and c = 1/64 for 448× 64 grid).

Figures 4.30 and 4.31 show the coarse-grained fields calculated at time t = 27 for
grids with sizes 224× 32 and 448× 64, respectively. The coarse-grained temperature
fields are calculated from fine grid (1792 × 256) temperature fields following the
coarse-graining procedure described earlier for velocity. The coarse-grained vorticity is
obtained from coarse-grained velocity, ω := ∇×u. The effect of coarse-graining (which
removes the small-scale features from the fine grid solution) is more visible when one
looks at the vorticity plots.

We record the fine grid velocity u from t = 27 to t = 45 time units at an interval of
∆t (the coarse grid time-step) and apply the calibration procedure described in Section
3.1. For the grid with size 224× 32, SVD decomposition results in 450 EOFs/ ξi. We
find that out of 450 EOFs, 51 EOFs can explain 90% of the total variance present
in the data matrix ∆X. 21 EOFs are needed explain 70% of the total variance. For
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Figure 4.31: Coarse-grained temperature (top), velocity (middle), and vorticity (bottom)
fields at time t = 27 for the coarse grid of size 448× 64.

Table 4.4: Number of ξi (denoted by nξ) needed to explain different levels of variance in
the observation data ∆X for 64× 64 and 32× 32 grids.

90% variance 70% variance 50% variance

nξ, 448× 64 grid 94 39 18
nξ, 224× 32 grid 51 21 10

the grid with size 448× 64, the SVD decomposition results in 900 EOFs. In order to
capture 90% and 70% of the total variability in ∆X, number of EOFs required are 94

and 39, respectively. Table 4.4 summarizes the results obtained from the calibration
procedure.

Figures 4.32 and 4.33 show the plots of some of the calculated ξi for grids of size
224 × 32 and 448 × 64 respectively. It can be observed that for both coarse grids,
the first EOF contains large-scale features whereas the last EOF contains small-scale
features. Note that we observed similar flow features for the EOFs obtained in the
analysis of the stochastic Navier-Stokes equations.

4.2.2 Impact of parameterization

The SALT parameterization is designed to model the effect of unresolved (small-scale)
components on the resolved (large-scale) components of the flow. The stochastic
parameterization leads to an ensemble of solutions which can be further used to probe
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Figure 4.32: Estimated ξi for the coarse grid of size 224× 32. The 1st (top), 21st (middle),
and 51st (bottom) ξi are shown. The first 51 EOFs explain 90% of the total variance present
in the observation data.
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Figure 4.33: Estimated ξi for the coarse grid of size 448× 64. The 1st (top), 39th (middle),
and 94th (bottom) ξi are shown. The first 94 EOFs explain 90% of the total variance present
in the observation data.
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the uncertainty resulting from running the model on coarse grids. In this section, we
evaluate the effectiveness of SALT parameterization in nudging the large-scale features
of the flow towards the coarse-grained high-resolution solution (henceforth referred to
as the “truth”) when the model is run on coarser grids.

We first run the deterministic model on a coarse grid with coarse-grained high-
resolution fields at t = 27 as initial conditions. The idea is to see how the large-scale
flow patterns evolve on the coarse grid (which does not include the effect of small scales)
in comparison to the high-resolution simulation. We compare the temperature, velocity
and the vorticity fields for 224× 32 grid with the coarse-grained high-resolution fields.

Figures 4.34 and 4.35 show the simulation results at time t = 36 and t = 45,
respectively. At t = 36, we can observe slight differences in the deterministic model
solution and the coarse-grained fields. The difference in flow patterns is more apparent
when one compares the vorticity field plots. At t = 45, significant differences (especially
in the vorticity fields) can be observed between the two solutions. In Figure 4.35, we
can see that the deterministic model solution fails to capture the locations of most of
the vortices. The deterministic model solution also cannot retain the total number of
vortices in the flow. For the deterministic model, the vortices seem to combine and
form big vortices much earlier in comparison to the truth. We can attribute these
observations to two main factors:

(1) The deterministic model does not contain any information about the small-scale
processes at the start of simulation (due to coarse-graining). The effect of small
scales on the large scales is also absent in the deterministic PDE since it has not
been parameterized with any sub-grid closure model yet.

(2) The model is run on a coarse grid and therefore the solution inherently contains
discretization errors which accumulate over time resulting in large difference between
the model solution and the coarse-grained field at t = 45.

The SALT parameterization is designed to tackle the first factor i.e. the effect of
small (unresolved) scales on large (resolved) scales. The information about the unre-
solved scales is supplied to the deterministic model as a stochastic forcing

∑
i ξi∆W

i
n.

We can write this stochastic forcing as an approximation of a function g(x, t) such that

g(x, t)
√
∆t = (u− u)∆t ≈

∑

i

ξi∆W
i
n.

The function g(x, t) is obtained from SVD decomposition of the Lagrangian trajectory
data in the calibration procedure. The application of SVD algorithm on the (u−u)

√
∆t

measurement data yields

g(x, t) = ξ0 +
N∑

i

ai(t)ξi(x), (4.6)
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Figure 4.34: Comparison between the deterministic model simulation results (left) and the
coarse-grained high-resolution fields for the 224×32 grid. The plots correspond to temperature
(top), velocity (middle,) and vorticity (bottom) fields at time t = 36.

Deterministic model solution

0.98 1.010.99 1
Temperature

Coarse-grained fields

0.97 1.010.99 1
Temperature

0.0 0.80.2 0.4 0.6
Velocity

0.0 0.90.2 0.4 0.6
Velocity

-6.1 6.00
Vorticity

-7.3 7.1-5 0 5
Vorticity

Figure 4.35: Comparison between the deterministic model simulation results (left) and the
coarse-grained high-resolution fields for the 224×32 grid. The plots correspond to temperature
(top), velocity (middle,) and vorticity (bottom) fields at time t = 45.
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where ξ0(x) is the time-mean of the measurement data and ai(t) are the time series
corresponding to each correlation vector ξi(x). The stochastic model is calibrated by
utilizing only the rescaled EOF modes ξi. The time-mean ξ0(x) is neglected and the
time series ai(t) is approximated as i.i.d. samples of a standard normal distribution.

Instead of approximating the correction term by a stochastic forcing, we can use
all the information contained in (u− u)∆t and force the model with a deterministic
forcing g(x, t). The resulting solution from such a deterministic forcing is denoted
by the adapted reference solution. The discrete in-time equations which lead to the
adapted reference solution for the atmosphere model are

un+1 − un = −
(
(un+1 · ∇)un+1 + (un · ∇)un

2
+

1

2Ro
ẑ× (un+1 + un)

)
∆t (4.7)

− 1

2C

(
∇θn+1 +∇θn

)
∆t+

νe
2
(∆un+1 +∆un)∆t

− (gn+1 · ∇)un+1 + (gn · ∇)un

2

√
∆t

−
(
un+1
1 ∇gn+1

1 + un1∇gn1
2

+
un+1
2 ∇gn+1

2 + un2∇gn2
2

)√
∆t,

θn+1 − θn = −
(∇ · (θn+1un+1) +∇ · (θnun)

2

)
∆t

+
ηe
2
(∆θn+1 +∆θn)∆t

−
(
gn+1 · ∇θn+1 + gn · ∇θn

2

)√
∆t.

We obtain the adapted reference solution after solving equations (4.7) from time
t = 27 to t = 45 on a grid of size 224 × 32. We use 51 EOFs for estimating the
deterministic function g(x, t). Figures 4.36 and 4.37 show a comparison between the
adapted reference solution and the coarse-grained fields at t = 36 and t = 45 respectively.
It is clearly visible from the plots that the adapted reference solution is closer to the
truth than the deterministic solution (see Figure 4.34 and Figure 4.35). Figure 4.38
shows vorticity plots at t = 45 for the adapted reference solution, the deterministic
model solution and the coarse-grained fine solution. The adapted reference solution is
able to capture some of the flow patterns which are missed by the deterministic model
solution. For example, a vortex in the bottom-left corner of the domain is absent in
the deterministic model solution but is captured by the adapted reference solution.
In order to make a more quantitative comparison, we investigate relative L2 distance
between the deterministic model solution or the adapted reference solution and the
coarse-grained truth. The relative L2 error can be defined as

∥θ(t)− θtruth(t)∥L2(Ω)

∥θtruth(t)∥L2(Ω)

for temperature and similarly for velocity and vorticity fields. This error provides a
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Figure 4.36: Comparison between the adapted reference solution (left) and the coarse-
grained high-resolution fields for the 224 × 32 grid. The plots correspond to temperature
(top), velocity (middle,) and vorticity (bottom) fields at time t = 36.
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Figure 4.37: Comparison between the adapted reference solution (left) and the coarse-
grained high-resolution fields for the 224 × 32 grid. The plots correspond to temperature
(top), velocity (middle,) and vorticity (bottom) fields at time t = 45.
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-7.3 7.1-5 0 5
Vorticity

Figure 4.38: Vorticity fields at t = 45 from the coarse-grained fine-grid solution (top),
deterministic model simulation (middle), and adapted reference solution (bottom) for the
224× 32 grid.

global measure for comparing the solutions at different time instances. Figure 4.39
shows an evolution of relative L2 errors for the deterministic model solution and the
adapted reference solution from t = 27 to t = 45. The velocity and vorticity L2 errors
for both solutions remain fairly close to each other for the first 9 time units i.e., until
t = 36. After t = 36, the L2 error for the deterministic model overtakes the adapted
model. The temperature L2 error for the deterministic model remains lower than the
adapted model for most of the simulation window but it too surpasses the L2 error of
the adapted model after approximately 15 time units. The qualitative and quantitative
assessment clearly shows an advantage of parameterization for the deterministic model.
We expect to get similar results from the SPDE (parameterized by SALT) ensemble
in capturing the effect of small scales on large scales since it is an approximation (or
stochastic version) of the adapted reference solution.

4.2.3 SPDE ensemble

In this section, we analyze the simulation results of the stochastic atmosphere model.
The stochastic model (4.4) is simulated on a coarse grid of size 224× 32 from t = 27 to
t = 45. Each independent realization of the SPDE is initialized with the same initial
conditions. The initial velocity and temperature fields for the SPDE ensemble are
obtained from coarse-graining of high-resolution (1792× 256) velocity and temperature
fields at t = 27. We use 51 EOFs (explaining 90% variability in the data) to generate
the noise terms in the SPDE. The evolution of velocity and temperature fields are
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Figure 4.39: Relative L2 errors for the deterministic model solution (blue) and the adapted
reference solution (orange) over 18 time units (t = 27 to t = 45). Errors are shown for
temperature (left), velocity (center), and vorticity (right).

monitored for 50 ensemble particles at three internal grid points (1.75, 0.5), (3.5, 0.5),

and (5.25, 0.5) in the domain.
Figure 4.40 shows the evolution of one standard deviation region about the ensemble

mean for velocity (x and y components) and temperature fields with time. The SPDE
results are compared with the adapted reference solution. Preliminary analysis suggests
that the SPDE ensemble is able to capture the adapted reference solution for a major
part of the simulation time window. This is particularly true for the temperature field
where the adapted solution stays inside the ensemble spread for all times. The spread
generated by the SPDE solution is higher for temperature in comparison to velocity
suggesting more variability or uncertainty in the coarse grid temperature fields. At first
glance, these results appear promising in the sense that the SPDE solution exhibits
a spread whose size gradually increases over time as expected. The ensemble spread
also captures the reference solution for extended time periods signifying an accurate
approximation of the noise terms. A deeper analysis of the SPDE results, however,
reveals some serious issues.

Figures 4.41 and 4.42 compare the velocity, temperature and vorticity fields of one
independent realization of the SPDE with the adapted reference solution at t = 36

and t = 45, respectively. At t = 36 , although the velocity and vorticity fields from
the SPDE solution show a great resemblance to the adapted reference solution, the
temperature field differs substantially. The temperature field is very noisy and has a
lot of artifacts. These artifacts stay in the temperature field throughout the simulation
time window.

In Figure 4.43, we compare the vorticity fields for three independent realizations of
the SPDE with the deterministic model solution and the adapted reference solution at
t = 45 (i.e. after 18 time units). Vorticity fields obtained from the SPDE solution are
noisier than both the deterministic solution and the adapted reference solution. Large-
scale flow patterns in the SPDE solution resemble the deterministic model solution
more than the adapted reference solution flow patterns. Moreover, we can not observe
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Figure 4.40: One-standard-deviation bands about the ensemble mean for velocity (x and y
components) and temperature, compared with the adapted reference solution at three internal
grid points in the domain. The black solid line represents the adapted reference solution;
colored bands indicate ensemble spread.
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Figure 4.41: Comparison between one independent realization of the SPDE and the adapted
reference solution for the 224× 32 grid. The plots show temperature (top), velocity (middle),
and vorticity (bottom) fields at t = 36.
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Figure 4.42: Comparison between one independent realization of the SPDE and the adapted
reference solution for the 224× 32 grid. The plots show temperature (top), velocity (middle),
and vorticity (bottom) fields at t = 45.
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Figure 4.43: Comparison of vorticity fields at t = 45 for three independent SPDE realizations,
deterministic model solution, and adapted reference solution on the 224× 32 grid.
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Figure 4.44: Time series data corresponding to ξ1, ξ2, ξ3 (left) and ξ49, ξ50, ξ51 (middle)
for coarse grid of size 224× 32. The time series generated by a Gaussian process is shown on
the right.

any variability in large-scale flow patterns of independent realizations of the SPDE
(Figure 4.43 shows results for 4 members in the 50 particle ensemble). The stochastic
parameterization appears to add only random noise to the flow rather than producing
different flow states. The spread exhibited by the independent realizations of SPDE can
thus be attributed to random noise in the solution rather than to different large-scale
flow patterns. We conclude that the noise generated by SALT parameterization neither
induces variability in the flow nor steers the large-scale flow towards the truth. We
suspect that approximating the time series ai(t) (in (4.6)) with a Gaussian distribution
may be the reason why the SPDE solution does not match the adapted reference
solution. We investigate this further in the next section.

Gaussian noise versus OU process

The time series ai(t) is modeled by a Gaussian process N (0, 1). Although the time
series ai(t) has zero mean and unit standard deviation, it is possible that its elements
are not uncorrelated. Figure 4.44 presents time series plots corresponding to the first
three and last three EOFs obtained for a 224× 32 grid. For this grid, 51 EOFs capture
90% of the total variance in observation data. It is clear from this figure that the time
series plots for a1, a2 and, a3 do not resemble a Gaussian process. The time series plots
for a49, a50 and, a51 however do look similar to a Gaussian process. Nevertheless, the
first few EOFs explain the most variance present in the data and if the time series
corresponding to those EOFs are not modeled accurately, the parameterization may
not have the desired effect on the large-scale flows. We make a more quantitative
assessment by plotting the autocorrelation function (ACF) for ai.

Figure 4.45 shows the ACF plots for time series data corresponding to some EOFs.
Ideally, the ACF values for all the time series ai should start at 1 and drop to 0 for a
lag time-period of more than 1 time-step. We observe that, only the time series of last
few EOFs follow this pattern. We can thus conclude that the time series are highly
correlated. The approximation of ai(t) using a Gaussian process, therefore, may not be
a good modeling choice.
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Figure 4.45: Autocorrelation function (ACF) plots for time series data corresponding to
ξ1, ξ2, ξ3 (left) and ξ49, ξ50, ξ51 (middle) for coarse grid of size 224× 32. The ACF plot for
time series generated by a Gaussian process is shown on the right.

The Ornstein-Uhlenbeck (OU) process presents a good alternative to the Gaussian
process in modeling time series data which is highly correlated (Ephrati et al., 2023).
The noise generated using the OU process can mimic the temporal correlation of the
measured time series. Ephrati et al. (2023), in their study of stochastic 2D Euler
equations, demonstrated that the ensemble generated by OU noise provides better
uncertainty quantification than the ensemble generated by Gaussian noise.

We approximate the time series ai(t) in (4.3) using the discrete analog of OU
process, known as the autoregressive model of order 1 (AR(1) model), see Maller et al.,
2009. The AR(1) model is a stochastic process defined as

Xt = φXt−1 + ϵt,

where Xt is the value of the process at time t, φ is the autoregressive coefficient, and
ϵt ∼ N (0, σ2) is a white-noise process with zero mean and a constant variance of σ2.
This process satisfies

E(Xt) = 0, Var(Xt) =
σ2

1− φ2
,

and the correlation between Xt and Xt+1 is

Corr(Xt, Xt+1) =
Cov(Xt, Xt+1)

var(Xt)
= φ,

where var(Xt) denotes the variance of Xt and cov(Xt, Xt+1) is the covariance between
Xt and Xt+1.

Our method for generating a discrete OU process corresponding to the time series
ai(t) is presented in Algorithm 3. Figure 4.46 shows the generated discrete OU processes
corresponding to time series of six different ξi. We can clearly observe similarities
between the observation data time series ai(t) and the AR(1) model generated time
series oi(t). The OU processes, denoted by oi(t)), do not match the time series ai(t) at
each time instance; rather, they replicate only the general behavior or pattern of ai(t).
This discrepancy arises because the AR(1) model is initialized using a random draw
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from N (0, 1) rather than the actual value of ai(i) at t = 0.

Algorithm 3 Algorithm for generating discrete OU processes using the AR(1) model
1: Let ai(tk) be a time series corresponding to the correlation vector ξi where tk =
k∆t, k = 0, 1, 2, . . . ,M − 1 and tM = T . We know that

Var(ai) = 1, E(ai) = 0.

2: Calculate the parameter φ where

φ =
Cov(ai(tk), ai(tk+1))

Var(ai)
=

1

M

M−1∑

k=0

ai(tk)× ai(tk+1).

3: Use φ to calculate σ,
σ =

√
1− φ2.

4: Initialize the discrete OU time series X(t) corresponding to ai(t),

X(t0) ∼ N (0, 1).

5: for j = 0, 1, 2 . . . ,M − 1 do
6: X(tj+1) = φX(tj) + σrj where rj ∼ N (0, 1)
7: end for

Figure 4.47 presents a comparison of ensemble spread sizes (one standard deviation
region around the ensemble mean) generated by 50 independent realizations of the
SPDE using Gaussian noise and OU processes. The SPDE with the OU process
exhibits slightly larger spread sizes for velocity compared to the SPDE realizations
using Gaussian noise. However, the spread for temperature is significantly reduced
when Gaussian noise is replaced by OU processes.

To further investigate this observation, we plot the temperature fields resulting
from the Gaussian noise SPDE and the OU process SPDE at t = 36 and t = 45. The
results are shown in Figure 4.48 and Figure 4.49. It is evident that the use of OU
processes results in smoother temperature fields. Interestingly, artifacts present in the
temperature fields of Gaussian noise SPDE are completely eliminated when we switch
to OU process SPDE. Moreover, the temperature fields from the SPDE using the OU
process exhibit a closer resemblance to the adapted reference solution compared to
those generated with Gaussian noise. To provide a quantitative comparison, we analyze
the relative L2 distance between the SPDE solution (produced using Gaussian noise
and, separately, using the OU process) and the adapted reference solution.

Figure 4.50 presents a comparison of the one-standard-deviation regions around
the ensemble mean of relative L2 errors for the SPDE solutions using Gaussian noise
and the OU process. For the temperature field, the ensemble relative L2 errors with
Gaussian noise are significantly higher than those with the OU process. In contrast,
the magnitudes of L2 errors for velocity and vorticity fields are similar for both SPDE
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Figure 4.46: Time series plots generated using the AR(1) model corresponding to ξ1, ξ2, ξ3
(left) and ξ49, ξ50, ξ51 (right) for the coarse grid of size 224 × 32. The AR(1) model is
initialized with a random sample from the standard normal distribution.

solutions. However, the OU process results in a larger spread than Gaussian noise,
indicating greater variability in the solution as the L2 error increases. This characteristic
makes ensembles generated using OU processes more suitable for data assimilation
than those using Gaussian processes.

Figure 4.51 shows vorticity plots for four randomly selected members (particles)
of the SPDE ensemble generated using OU processes at t = 45. Clear differences
in the large-scale flow patterns among these four particles can be observed. This
variability is entirely absent in the ensemble members generated using Gaussian noise
(see Figure 4.43). These observations suggest that OU processes can meaningfully
influence large-scale flow patterns rather than merely introducing random noise, as is
the case with Gaussian noise.

We conclude that the OU process is a more suitable choice for modeling the time
series ai(t) (see (4.6)) than Gaussian noise. Since the data exhibits correlation, it is
essential to incorporate this information into the stochastic model. The stochastic model
using OU processes produces more accurate temperature fields, which are smoother
and exhibit lower L2 errors compared to the model with Gaussian noise. Furthermore,
the use of OU processes improves uncertainty quantification, as the increasing L2 error
of the solution over time is reflected in the growing ensemble spread size.

4.2.4 Uncertainty quantification

This section focuses on the uncertainty quantification of stochastic model ensemble
predictions. The SPDE is simulated for 18 time units, and the solution is compared
with the truth (coarse-grained fine-grid solution) and the adapted reference solution.
Each independent realization of the SPDE begins with the same initial condition,
namely, the coarse-grained fine-grid solution at t = 27.

We analyze the effect of different model parameters on the ensemble spread of
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Figure 4.47: Comparison of one standard deviation bands generated by the SPDE using
Gaussian noise and the OU process for velocity (x and y components) and temperature.
Results are compared to the adapted reference solution (black solid line) at three internal
grid points. Colored regions indicate the ensemble spread.
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Figure 4.48: Temperature fields from SPDE simulations using Gaussian noise (top) and
the OU process (center) at t = 36, with the adapted reference solution (bottom) shown for
comparison.
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Figure 4.49: Temperature fields from SPDE simulations using Gaussian noise (top) and
the OU process (center) at t = 45, with the adapted reference solution (bottom) shown for
comparison.
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Figure 4.50: Relative L2 error between the SPDE ensembles and the adapted reference
solution for temperature (left), velocity (center), and vorticity (right). Colored bands represent
one standard deviation around the ensemble mean. The cyan band corresponds to Gaussian
noise SPDE and the blue band corresponds to OU process SPDE.

stochastic solutions. Keeping the number of ensemble particles fixed at Np = 50, we
examine differences in the one-standard-deviation regions around the ensemble mean
solution at three internal grid points when different numbers of EOFs are used: nξ ≡ 0.9

versus nξ ≡ 0.5.
Figure 4.52 presents the results for velocity and temperature fields. The plots

indicate that varying the number of particles has a negligible effect on the spread size.
For velocity, the truth remains within the ensemble spread for approximately 4 to 5
time units before deviating. However, the SPDE ensemble performs poorly for the
temperature field, as the truth deviates from the ensemble spread after just 1 or 2 time
units. In contrast, the adapted reference solution remains within the ensemble spread
for a significantly longer duration (roughly 10 time units). This is expected, as the
adapted reference solution accounts for discretization errors, which are not considered
when calculating the truth. Additionally, the plots show that the spread size increases
over time, indicating growing uncertainty in the stochastic model forecast for longer
time periods.

Next, we fix the number of EOFs at nξ ≡ 0.9 and compare the one-standard-
deviation regions for different ensemble sizes: Np = 50 versus Np = 100. Figure 4.53
presents the results, where velocity and temperature values are plotted for three internal
grid points. The use of different ensemble sizes has a negligible effect on the spread
size.

Figures 4.52 and 4.53 correspond to SPDE solutions computed on a grid of size
224× 32. To further investigate uncertainty quantification, we examine the effect of
different mesh resolutions. Keeping the number of particles and the variance level fixed
(nξ ≡ 0.9, Np = 50), we repeat the uncertainty quantification tests on a finer grid of
size 448× 64. The results are shown in Figure 4.54, where the SPDE ensemble spread
is compared with the coarse-grained high-resolution solution corresponding to each
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Figure 4.51: Vorticity field comparison between four independent realizations of SPDE
(using OU processes), deterministic model solution and the adapted reference solution at
t = 45.
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Figure 4.52: Uncertainty quantification plots comparing one standard deviation bands about
the ensemble mean with the truth and adapted reference solution at three internal grid points
on the 224× 32 grid. For a fixed ensemble size (Np = 50), spread sizes are shown for different
numbers of EOFs: nξ ≡ 0.9 (magenta) and nξ ≡ 0.5 (cyan).
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Figure 4.53: Uncertainty quantification plots comparing one standard deviation bands about
the ensemble mean with the truth and adapted reference solution at three internal grid points
on the 224 × 32 grid. For a fixed number of EOFs (nξ ≡ 0.9), spread sizes are shown for
different ensemble sizes: Np = 50 (magenta) and Np = 100 (cyan).
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mesh resolution.
In the uncertainty quantification plots, the effect of mesh refinement on spread size

is evident. The SPDE solution on the 448× 64 grid produces narrower spread sizes
for both velocity and temperature fields. Additionally, the truth remains within the
ensemble spread for a longer duration on the 448×64 grid compared to the 224×32 grid.
These observations suggest that the stochastic parameterization remains consistent
under grid refinement.

Global comparison

The plots in Figures 4.52–4.54 illustrate the impact of different model parameters
(nξ, Np, mesh resolution) on the ensemble spread at three internal grid points. These
plots also provide insight into the accuracy of the SPDE solution, as they include
both the adapted reference solution and the true solution. However, this evaluation is
limited to only three locations in the grid. Moreover, assessing the effect of different
model parameters on model accuracy solely from these plots is difficult. To facilitate a
more quantitative and global comparison, this section examines the relative L2 errors
of SPDE realizations for different model parameters.

Figure 4.55 presents the ensemble mean of relative L2 distances between the SPDE
solution and the coarse-grained solution. The left plot displays the relative L2 errors for
temperature, while the right plot shows the relative L2 errors for velocity. The results
indicate that varying the ensemble size and the number of EOFs has no significant effect
on the L2 errors for either coarse grid. However, a substantial reduction in L2 error is
observed when increasing the grid resolution from 224× 32 to 448× 64. Additionally,
the rate of increase in L2 error is lower for the 448× 64 grid compared to the 224× 32

grid. These findings further confirm the consistency of stochastic parameterization
under grid refinement.

4.2.5 Deterministic model versus stochastic model

To compare the performance of the stochastic model relative to the deterministic model,
we compute the relative L2 errors of ensemble members and the deterministic model
with respect to the truth. The results are shown in Figure 4.56, which also includes
the relative L2 errors of the adapted reference solution for different mesh resolutions.

For velocity, the L2 error of the adapted reference solution on both mesh resolutions
is lower than that of the corresponding deterministic model solution, in particular
towards the end of the simulation window. This can be attributed to the inclusion
of unresolved scales in the adapted reference solution, which helps maintain closer
agreement with the coarse-grained fine-grid solution. However, the advantage of
the adapted reference solution over the deterministic model is less evident for the
temperature field. The deterministic model exhibits lower L2 errors than the adapted
reference solution (on both meshes) for most of the simulation. The L2 error of the
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Figure 4.54: Uncertainty quantification plots comparing one standard deviation bands about
the ensemble mean with the truth at three internal grid points. For a fixed number of EOFs
(nξ ≡ 0.9) and ensemble size (Np = 50), spread sizes are shown for different grid resolutions:
224× 32 (magenta) and 448× 64 (cyan).
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Figure 4.55: Relative L2 distance between SPDE ensemble and truth for temperature (left)
and velocity (right) averaged over all ensemble members. The results are shown for different
model configurations.

adapted reference solution drops below that of the deterministic model only after
approximately 14 to 16 time units. Nevertheless, this reduction in L2 error is a positive
indication of the effectiveness of the stochastic parameterization.

Since the stochastic model is an approximation of the adapted reference solution, we
expect the L2 errors of ensemble members to behave similarly to those of the adapted
reference solution. In Figure 4.56, the colored bands represent the one-standard-
deviation region around the ensemble mean of the relative L2 error. Interestingly,
these bands follow the deterministic solution more closely than the adapted reference
solution. This suggests that, on average, the stochastic model does not offer a significant
advantage over the deterministic model, as the L2 error of a typical ensemble member
is comparable to that of the deterministic solution.

However, the stochastic model generates an ensemble of solutions, and some ensemble
members may achieve lower L2 errors than the deterministic model. To investigate this
further, we compute the L2 errors for individual ensemble members averaged over all
time steps and identify the ensemble member with the lowest L2 error. The results,
shown in Figure 4.57, reveal that the best-performing ensemble member consistently
has a lower L2 error than the deterministic model solution at all time steps on both
grids (224× 32 and 448× 64).

To further assess model accuracy, we compare the vorticity field of the best-
performing ensemble member with the deterministic solution and the truth at t = 45

(after 18 time units). Figures 4.58 and 4.59 present the results for the 224× 32 and
448× 64 grids, respectively. On the 224× 32 grid, notable differences emerge between
the deterministic and stochastic model solutions. While both models fail to fully
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Figure 4.56: Comparison of relative L2 errors between the stochastic model solution, adapted
reference solution, and deterministic model solution. The colored bands represent one standard
deviation regions around the ensemble mean of L2 errors of stochastic model solution.
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Figure 4.57: Comparison of relative L2 errors for the best-performing SPDE ensemble
member, the adapted reference solution, and the deterministic model solution. Dashed lines
indicate the ensemble member with the lowest L2 error among all SPDE realizations.
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Figure 4.58: Vorticity fields at t = 45 from the best-performing SPDE ensemble member,
the deterministic model solution, and the coarse-grained fine-grid solution on the 224× 32
grid.

capture certain large-scale flow features, the stochastic model solution appears visibly
closer to the truth.

The accuracy of both models improves significantly when the grid resolution is
increased to 448 × 64. However, as observed in the 224 × 32 case, the stochastic
model continues to outperform the deterministic model. The stochastic model solution
successfully captures most of the large-scale flow structures present in the coarse-
grained solution, whereas the deterministic model still fails to reproduce some vortical
flow structures. For instance, the vortex in the lower-left corner (see Figure 4.59) is
better captured by the stochastic model, further demonstrating its advantage over the
deterministic approach.

4.2.6 Discussion and outlook

One of the main findings of our work is that the SPDE with OU noise outperforms the
SPDE with Gaussian noise. We have shown that the approximation of times series data
using discrete OU processes instead of standard normal distribution leads to better
uncertainty quantification. The use of OU processes lead to an increased ensemble
spread size and, smoother and more accurate temperature fields.

Time series resulting from the SVD decomposition of the observation data (u−u)∆t

are found to be highly correlated. This indicates that the observation data are also
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Figure 4.59: Vorticity fields at t = 45 from the best-performing SPDE ensemble member,
the deterministic model solution, and the coarse-grained fine-grid solution on the 448× 64
grid.

highly correlated in time. Figure 4.60 shows the ACF plots of observation data (u−u)∆t

at 100 different nodes for the 224× 32 grid. The figure also presents the mean of ACF
values over all nodes in the grid. It can be observed that the mean ACF value drops to
zero only for a lag period of more than 50 time steps. These results indicate that the
average decorrelation time is at least 50 ∆t.

The fact that the consecutive column entries of data matrix ∆X are correlated is
not surprising. We created the matrix ∆X by recording the Lagrangian trajectory
differences (u− u)∆t at an interval of size ∆t. For a small value of ∆t, the length of
an increment of a Lagrangian flow path is proportional to the velocity and to the time
step size ∆t (Resseguier et al., 2020). The residual flow path (u− u)∆t begins to act
as a Brownian motion only when the time interval between the recordings (u− u)∆t

becomes larger than the correlation time of the small-scale Lagrangian velocities (u−u)

(Resseguier et al., 2020).

The ACF plots in Figure 4.60 show that the residual flow paths become decorrelated
only after 50 time steps. If we reformulate the data matrix ∆X by considering only
every 50th data entry of the original data matrix, its SVD should lead to a time series
whose values are decorrelated and hence closely matching a Gaussian distribution. This
approach was also followed by Crisan et al. (2023b) in their study of stochastic shallow
water equations for model calibration and considered only decorrelated (u − u)∆t
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Figure 4.60: ACF plots of the observation data (u− u)∆t for the 224× 32 grid. The first
two plots corresponds to the ACF values (at different lag times) for x and y components of
the flow increments (u− u)∆t at 100 randomly selected nodes, respectively. The third plot
shows the mean of ACF values over all grid nodes.

values in the data matrix ∆X for estimation of ξi.
The calculation of ξi using decorrelated data did not lead to better results for our

model (results not shown here). The temperature fields still contained many artifacts
and there was no change in the ensemble spread sizes (for both velocity and temperature
fields). This limitation likely stems from the insufficient quantity of observation data
available for the SVD. For the grid of size 224× 32, the observation data matrix ∆X

has a size 451× 14784. The selection of every 50th row entry reduces the matrix size
to 10× 14784. The SVD of this matrix results in a times series matrix of size 10× 10

and an EOF matrix of size 10 × 14784. The number of elements (10) in the time
series matrix are not enough to model a Gaussian distribution accurately. The SVD of
observation matrix ∆X (with decorrelated data entries in the rows) can lead to a time
matrix with decorrelated time series only if the number of rows are large enough.

One possible solution to the problem of insufficient data in the matrix ∆X is to
record the Lagrangian trajectory data for longer periods of time. However, this may
be difficult to achieve in practice. It is possible that after a certain period of time
the unresolved velocity is not stationary anymore. For example, in our test case, even
though we had Lagrangian trajectory data from t = 27 to t = 54, we only used the data
from t = 27 to t = 35 for model calibration. This is because the unresolved velocity
does not remain stationary after approximately t = 35. For such situations, we believe
that modeling the time series using OU processes is a better solution.

The numerical investigation of stochastic atmosphere model presented here is limited
in scope. In our analysis, we neglected the parameterization terms which account for
the rotation. These terms are ẑ×∑i ξi ◦ dW i +

∑N
i=1∇(ξ ·R) ◦ dW i. In addition to

this, we also assumed that the vector fields ξi are divergence-free. To see the impact of
these assumptions on the stochastic model performance, we did two preliminary tests.
In the first test, we did numerical simulation of the stochastic model which included
the rotation parameterization terms. The vector field R is a vector potential of the
Coriolis parameter, curl(R) = f ẑ. We assumed the vector field R to be R = (−yf, 0).
In the second test, we removed the divergence-free constraint for the correlation vectors
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Figure 4.61: Comparison of temperature and vorticity fields at t = 45 on the 224× 32 grid.
The top row shows the SPDE solution with divergence-free ξi and no rotation parameterization.
Test 1 (middle) includes rotation parameterization terms but assumes divergence-free ξi. Test 2
(bottom) removes the divergence-free constraint on ξi but excludes rotation parameterization.

ξi and ran the stochastic model.
Figure 4.61 presents the temperature and vorticity fields at t = 45 from these

tests on 224× 32 grid. The inclusion of rotation parameterization terms or removal of
divergence-free constraint on ξi leads to noisy solutions, particularly in the temperature
fields. The inclusion of rotation parameterization seems to make the solution noisier.
This is also reflected in the ensemble spread sizes of the SPDE solution (see Figure
4.62). The ensemble spread size for the temperature fields have increased in size for
both tests. The velocity fields on the other hand still exhibits the same ensemble spread
size. Further analysis is warranted to fully understand the effects of including rotation
parameterization and relaxing the divergence-free assumption on model accuracy and
stability.
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Figure 4.62: Uncertainty quantification plots comparing one standard deviation bands about
the ensemble mean with the truth and adapted reference solution at three internal grid points
on the 224× 32 grid. For a fixed ensemble size (Np = 50) and number of EOFs (nξ ≡ 0.9),
the impact of rotation parameterization and the divergence-free assumption on ξi is assessed.
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4.3 Stochastic climate model

Crisan et al. (2023a) derived a stochastic coupled ocean-atmosphere climate model using
a stochastic variational principle based on Hasselmann’s paradigm for stochastic climate
models. In this formulation, stochasticity is introduced into the atmospheric component
via stochastic Lie transport, while the ocean component remains deterministic. The
governing equations of the model are

Atmosphere : dua + (uadt+
∑

i

ξi ◦ dW i) · ∇ua +
1

Roa
ẑ× uadt (4.8)

+
∑

i

(ua1∇ξi,1 + ua2∇ξi,2) ◦ dW i = (− 1

Ca
∇θ + νa∆ua)dt,

dθa +∇ · (θaua)dt+
∑

i

(ξi ◦ dW i) · ∇θa = (γ(θa − θo) + νa∆θ)dt,

Ocean :
∂uo

∂t
+ (uo · ∇)uo +

1

Roo
ẑ× uo +

1

Roo
∇pa = σ(uo − Eua

sol) + νo∆uo,

∇ · uo = 0,

∂θo

∂t
+ uo · ∇θo = ηo∆θo.

In this section, we present numerical simulation results for this model (equations
(4.8)). The correlation vectors ξi of the unresolved transport dynamics are obtained
using high-resolution simulations of the deterministic version of the climate model. The
equations for the deterministic climate model can be formulated as

Atmosphere :
∂ua

∂t
+ (ua · ∇)ua +

1

Roa
ẑ× ua +

1

Ca
∇θa = νa∆ua, (4.9)

∂θa

∂t
+∇ · (uaθa) = γ(θa − θo) + ηa∆θa,

Ocean :
∂uo

∂t
+ (uo · ∇)uo +

1

Roo
ẑ× uo +

1

Roo
∇po = σ(uo − ua

sol) + νo∆uo,

∇ · uo = 0,

∂θo

∂t
+ uo · ∇θo = ηo∆θo.

We solve both climate model formulations ((4.8) and (4.9)) on a rectangular domain
Ω, with periodic boundary conditions in the x direction. The physical dimensions of the
domain are 27237 km (in x) and 3891 km (in y), which, after non-dimensionalization,
correspond to Ω = [0, 7]× [0, 1] (see Figure 4.63).

The atmosphere and ocean variables are both non-dimensionalized using the same
characteristic velocity (denoted by U) and characteristic length (denoted by L). The
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Ly = 1

Lx = 7

x

y

Figure 4.63: Schematic representation of the 2D domain (right) used for the climate model
simulations.

Table 4.5: Grid parameters for the atmosphere and ocean components of the climate model

Parameters Fine grid Coarse grid

Number of elements, Nx ×Ny 896× 128 224× 32
Smallest element size, ∆x 1/128 (∼ 30 km) 1/32 (∼ 120 km)

Time-step size, ∆t 0.010 (∼ 8 min.) 0.04 (∼ 32 min.)
Eddy viscosity, νa, νo 1/(8× 104) 1/104

Diffusion coefficient, ηa, ηo 1/(8× 104) 1/104

key non-dimensional parameters in the model have the form

Roa = Roo =
U

Lf
, Ca =

U2

κΘ
, κ = cv

(
R

p0

) 2
7

where f = 2Ωe sinφe is the Coriolis parameter and Θ is a reference temperature.

Based on typical geophysical scales, we assume: L = 3891 km, U = 80 m/s, T =

300 K, φ = 27.5◦, and compute the non-dimensional parameters: Roa = Roo =

0.3, Ca = 0.02. The variables νa, νo and ηa, ηo denote eddy viscosity and diffusion
coefficient terms, respectively. These variables depend on the spatial resolution of the
domain.

Free-slip conditions are applied for velocity in both the ocean and atmosphere:

u2 = 0,
∂u1
∂y

= 0.

For temperature, insulated boundary conditions are imposed:

∂θ

∂y
= 0.

We consider two different mesh configurations for our experiments: the fine grid
consists of 896× 128 elements whereas the coarse grid has 224× 32 elements. Table
4.5 displays the parameters used in the numerical simulations for these grids.
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4.3.1 Fine grid simulation

We solve the deterministic climate model (4.9) on a fine grid with 896× 128 elements.
The initial atmospheric velocity is set to represent a zonal jet in the northern hemisphere,
with profile

ua1(x, y, t = 0) =





0 for y ≤ y0,

exp
(

α2

(y − y0)(y − y1)

)
exp

(
4α2

(y1 − y0)2

)
for y0 < y < y1,

0 for y ≥ y1,

ua2(x, y, t = 0) = 0.

where α = 1.64, y0 = 1/14, and y1 = 13/14. This formulation generates a smooth,
localized jet centered in the meridional direction. The initial atmospheric temperature
is given by

θa(x, y, t = 0) = 1 + θ0,

where θ0 is obtained by solving the balance equations

∂θ0
∂y

= − Ca

Roa
ua1,

∂θ0
∂x

= 0.

The ocean is set to be at rest at t = 0: uo(x, y, t = 0) = (0, 0). We choose the initial
ocean temperature to be

θo = 1 + θ0 + θ̂ cos
(πy

2

)
e−c1(x−x0)2e−c2(y−y2)2 , (4.10)

where θ̂ = 0.01, c1 = 4, c2 = 81, x0 = 3.5, and y2 = 0.5. Equation (4.10) represents
a perturbation in the ocean temperature above the initial atmosphere temperature
profile. Figure 4.64 shows the plots of initial conditions for the test on 896× 128 grid .

We set the coupling coefficients to γ = 10, σ = −0.1, and run the deterministic
model until t = 45 (approximately 27 days). Figure 4.65 presents the time series of
atmospheric kinetic energy. After an initial spin-up phase of around 20 time units, the
kinetic energy stabilizes, indicating that the model has reached a statistically steady
state.

Figure 4.66 displays the velocity and temperature fields for both the atmosphere
and ocean at t = 25. Both velocity fields exhibit multiscale structures, with a range
of eddies and filaments. This is further illustrated by Figure 4.67, which shows the
corresponding vorticity fields. The presence of diverse flow features, from large-scale
eddies to fine filaments, suggests that the system has entered a dynamically rich regime.

To further investigate the temporal evolution of the flow, Figure 4.68 shows snapshots
of the atmospheric vorticity field from t = 30 to t = 45. Over this time interval, the
spatial structure of flow is fairly maintained: the eddies move around in the domain
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Figure 4.64: Initial atmospheric temperature (top), atmospheric velocity (middle), and
ocean temperature (bottom) fields at t = 0. The ocean velocity is set to zero at t = 0.

without exhibiting much dissipation. We conclude that the flow has achieved a state
of statistical equilibrium between t = 25 and t = 45. We use the atmosphere velocity
data from this period to calibrate the stochastic model.

Stochastic model calibration

We use the difference between the Lagrangian trajectories generated by the high-
resolution (896× 128 grid) velocity field u and its coarse-grained version u at different
time-instances to estimate ξi. The coarse-grained velocity is evaluated for the grid of
size 224 × 32. A singular value decomposition (SVD) analysis of (u − u)∆t reveals
that the first 53, 20 and 10 empirical orthogonal functions (EOFs) explain 99%, 90%,
and 70% of the total variance, respectively in the data. Figure 4.69 shows some of the
estimated ξi for the coarse grid of size 224× 32. The scale of flow structures exhibited
by ξi decreases with increasing i. Relative to ξ1 which contains large-scale structures,
ξ10 contains small-scale structures. This trend is also shown by the ξi that we obtained
for the stochastic Navier-Stokes and stochastic atmosphere models.

The time series corresponding to each ξ is generally modeled as a Gaussian process.
However, the autocorrelation function (ACF) of these time series reveal that the data
(particularly corresponding to the first few ξi) are highly correlated (see Figures 4.70
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Figure 4.65: Time series of kinetic energy for the atmospheric component of the climate
model over 45 time units.

and 4.71). The decorrelation time for the time series corresponding to first three ξi is
between 50 to 150 time steps. Therefore, modeling these time series using standard
normal distributions (which assume a decorrelation time of 1 time step) is not correct.
We model the time series data using the OU processes (see Algorithm 3).

4.3.2 Stochastic model simulation

We run the stochastic climate model on a coarse grid of size 224× 32 with the coarse-
grained velocity and temperature fields (Figure 4.72 and 4.73) corresponding to t = 25

as initial conditions. Figure 4.72 displays the initial velocity and temperature fields
for the stochastic climate model. Coarse graining procedure has led to a smoothening
of these fields. In comparison to the high-resolution fields (Figure 4.66), the coarse-
grained fields have lost sharp gradients (both for velocity and temperature) in the
flow. Moreover, the filaments present in the high-resolution atmosphere vorticity field
(Figure 4.67) can no longer be seen in the coarse-grained vorticity field (Figure 4.73).

The stochastic climate model is simulated for 20 time units (from t = 25 to t = 45).
We use 53 EOFs (which explains 99% of the total variance) for the simulation. Each
realization of the SPDE starts from the same initial condition.

Figure 4.74 shows the atmosphere vorticity fields obtained from three independent
realizations/particles of the SPDE after 10 time units i.e., at t = 35. These particles, al-
though starting from same initial condition, have developed different vortical structures
over time due to the stochastic parameterization. Figure 4.74 also displays the results
obtained from a deterministic model simulation (without any parameterization) and
the coarse-grained high-resolution solution (henceforth denoted as the truth). It can
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Figure 4.66: Atmospheric (top two) and oceanic (bottom two) velocity and temperature
fields at t = 25 for the deterministic climate model simulation on the 896× 128 grid.
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Figure 4.67: Atmospheric vorticity (top) and ocean vorticity (bottom) fields at t = 25 for
the deterministic model simulation on the 896× 128 grid.

be observed that the stochastic solutions closely match the truth at all the locations
except the central region. This observation is also true for the deterministic solution.
However, the advantage of stochastic solutions lie in their capability of representing
the uncertainty. The stochastic solutions exhibit a lot of variability and hence spread
in the vorticity fields near the central region. This indicates that one should be less
confident about the results provided by the SPDE solution in this region. Interestingly,
the correlation fields ξi (Figure 4.69) also capture more flow structures in the central
region than elsewhere, suggesting that unresolved scales predominantly influence this
region.

In order to quantify the uncertainty in the SPDE solution, we monitor the velocity
and temperature fields at 84 uniformly distributed observation points in the grid (see
Figure 4.75). Figures 4.76 and 4.77 show the stochastic simulation results. We compare
the velocity and temperature values between the truth and the deterministic solution
at six observation points. The stochastic ensemble captures the truth for a few time
units before diverting. In general, the ensemble spread increases over time, suggesting
increased uncertainty in the stochastic model solution as time progresses.

We analyze the SPDE results further by using ensemble mean, ensemble standard
deviation (also called spread) and ensemble root mean square error (RMSE). We denote
different realizations of an SPDE variable at a particular time instance by Xi, where
i = 1, 2, . . . , Np denotes the particle number. The ensemble mean is defined as

Ê(Xi) =
1

Np

Np∑

i=1

Xi,
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Figure 4.68: Evolution of atmosphere vorticity field over time. The number of small,
medium, and large eddies remains roughly constant over the time interval.
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Figure 4.69: Estimated ξi for the coarse grid (224× 32). The 1st (top), 10th (middle), and
20th (bottom) ξi are shown. The first 20 EOFs explain 90% of the total variance.

0 100 200 300 400 500

number of time-steps

−2

−1

0

1

2

ti
m

e
-s

e
ri

e
s

d
a
ta

a1 a2 a3

0 100 200 300 400 500

number of time-steps

−2

−1

0

1

2

ti
m

e
-s

e
ri

e
s

d
a
ta

a51 a52 a53

0 100 200 300 400 500

number of time-steps

−3

−2

−1

0

1

2

ti
m

e
-s

e
ri

e
s

d
a
ta

Gaussian process; N (0, 1)

Figure 4.70: Time series plots corresponding to ξ1, ξ2, ξ3 (left) and ξ51, ξ52, ξ53 (center)
for the coarse grid of size 224× 32. For comparison, the time series generated by a Gaussian
process is also shown (right).
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Figure 4.71: Autocorrelation function (ACF) plots for time series corresponding to ξ1, ξ2, ξ3
(left) and ξ51, ξ52, ξ53 (center) for the coarse grid of size 224× 32. For comparison, the ACF
plot for time series generated by a Gaussian process is also shown (right).

Table 4.6: Parameter values for different configurations of the stochastic climate model

Configuration Ensemble size, Np Variance level in %

1 50 70
2 50 99
3 100 70
4 100 99

the ensemble spread is defined as

Spread(Xi) =

√√√√ 1

Np

Np∑

i=1

(
Xi − Ê(Xi)

)2
,

and the ensemble RMSE with respect to truth Xtruth is defined as

RMSE(Xi, Xtruth) =

√√√√ 1

Np

Np∑

i=1

(Xi −Xtruth)
2

where Xtruth represents the coarse-grained high-resolution field.
Figures 4.78 and 4.79 display the plots for the evolution of ensemble spread and

RMSE at six different locations on the grid. It can be observed that the size of ensemble
spread is proportional to the RMSE (for at least 15 time units) at all the locations.
This suggests that the error in the stochastic solution can be estimated by its own
spread. This property makes the SPDE solution suitable for data assimilation methods
(Resseguier et al., 2017).

Uncertainty quantification

We compare the impact of using different ensemble sizes and different number of ξi on
the ensemble spread and RMSE. Four different model configurations are considered in
the analysis (see Table 4.6).
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Figure 4.72: Coarse-grained velocity and temperature fields of the atmosphere (top two)
and ocean (bottom two) at t = 25. These fields are obtained by filtering high-resolution
(896× 128) fields onto a grid of size 224× 32.
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Figure 4.73: Initial vorticity field for the stochastic model simulations. This corresponds to
the coarse-grained vorticity field at t = 25.

We calculate the averages of ensemble spread and RMSE over all the observation
points (Figure 4.75) for different choices of ensemble sizes and different number of
EOFs/ξi. The results are plotted in Figure 4.80. In the initial phase of the simulation,
the spread sizes are similar for all configurations. However, in the later stages, the
effect of stochastic parameterization kicks in and we clearly see differences in the
spread sizes. Maximum spread is generated when Np = 100 and nξ ≡ 0.99 (99%
variance level). The ensemble spread size increases with increase in the number of
particles or the variance level captured by the EOFs. This confirms that our stochastic
parameterization methodology is consistent with the ensemble size and the number of
EOFs.

The effect of using different model parameters is less prominent on the RMSE in
comparison to the spread size. Differences in RMSE for different model configurations
only develop near the end of simulation time window. The average of ensemble spread
size over the whole domain seems to develop in proportion to average RMSE only for 10
to 15 time units. After that, the RMSE keeps on growing unlike the spread size which
stabilizes. In terms of RMSE, best results are obtained when Np = 50 and nξ ≡ 0.99.

Stochastic versus deterministic ensemble

We perturb the atmosphere velocity field at t = 25 to create an ensemble of initial
conditions

upert = u0 + 0.2× r × u0,

where u0 denotes the coarse-grained velocity field and r ∈ N (0, 1) is a random variable
from a Gaussian distribution. The deterministic climate model is simulated on the
coarse grid with these initial conditions to generate an ensemble of solutions. The
same (perturbed) initial conditions are also used to run the stochastic climate model.
We compare the results for 50 independent realizations of the deterministic and the
stochastic model.

Figures 4.81 and 4.82 compare the evolution of stochastic and deterministic ensem-
bles for the atmospheric velocity and temperature at six different locations within the
computational domain. Visual inspection of these figures reveals that the stochastic
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Figure 4.74: Atmospheric vorticity fields from three independent realizations of the SPDE
on the 224× 32 grid at t = 35 (top three plots), compared with the deterministic model result
(fourth plot) and the coarse-grained high-resolution solution (last plot).
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Figure 4.75: Observation points (red dots) within the domain where the SPDE solution is
analyzed for uncertainty quantification.

model exhibits bigger spreads/one-standard-deviation regions than the deterministic
model at all times. Due to a bigger spread size, true solution stays inside the spread
of stochastic model solution for a longer time than the spread of deterministic model
solution.

In order to do a more quantitative comparison, we compare the ensemble spread
and root mean square error of solutions produced by these two models at the same
six locations. The results are plotted in Figures 4.83 and 4.84. Ensemble spread
sizes of the stochastic model solution are indeed larger than the deterministic model
solution. Interestingly, the RMSE of the stochastic model solution is also higher than
the deterministic model solution. For both models, the spread pattern resembles the
RMSE pattern for at least 10 to 15 time units. This suggests that both models have
good uncertainty quantification skills. However, these findings are limited to only six
locations on the grid. To get a global picture, we compute the average spread size and
average RMSE over all observation points in the grid.

Figure 4.85 displays the plots of average spread size and average RMSE values
for both the stochastic and deterministic models. The stochastic model consistently
produces a bigger spread than the deterministic model. The RMSE values corresponding
to both models follow similar trends: for the x component of velocity, the error
continuously increases over time, for the y component, the error increases for the first
10 time units, stays constant for roughly the next 5 time units and then increases again
until the end of simulation. The ensemble spread of the stochastic model solution is
able to match the RMSE trend for the first 10 to 12 time units. On the other hand,
the ensemble spread of the deterministic model solution could match the RMSE trend
only for 6 to 8 time units. These observations indicate that the stochastic model
has better uncertainty quantification skills than the deterministic model. In terms of
model accuracy, however, the deterministic model (with perturbed initial conditions)
outperforms the stochastic model; it has lower RMSE values. Since both models have
their own strengths—the stochastic model is better at uncertainty quantification while
the deterministic model is closer to the true solution—it is difficult to say which model
is better. We need a metric which can evaluate the performance of an ensemble forecast
based on both the uncertainty quantification skill and the RMSE. Continuous ranked
probability score (CRPS) is one such metric.
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Figure 4.76: Evolution of atmospheric velocity (x and y components) at six observation
points on the grid over time (t = 25 to t = 45). The solution from the stochastic model is
compared with the coarse-grained high-resolution solution (truth) and the deterministic model
solution.
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Figure 4.77: Evolution of atmospheric temperature at six observation points on the grid
over time (t = 25 to t = 45). The solution from the stochastic model is compared with the
coarse-grained high-resolution solution (truth) and the deterministic model solution.

Continuous ranked probability score

Continuous Ranked Probability Score (CRPS) is a widely recommended metric for
evaluating ensemble forecasts (Hersbach, 2000; Zamo and Naveau, 2018). CRPS
is a strictly proper scoring rule which rewards forecasts that provide an accurate
representation of the true underlying distribution. This ensures that the metric
encourages improvements in both the probabilistic accuracy and sharpness of forecasts
(Gneiting and Raftery, 2007). Metrics like RMSE or Mean Absolute Error (MAE), on
the other hand, can measure the average magnitude of errors but they do not reflect the
distributional properties of forecasts, such as variability, spread, or confidence intervals.
CRPS applies to probabilistic forecasts and considers both the spread and bias of the
forecast distribution.

CRPS is defined as a quadratic discrepancy measure between the forecast cumulative
distribution function (CDF) F (x) and the empirical CDF 1(x ≥ y) of the observation
y:

crps(F, y) =
∫ ∞

−∞
(F (x)− 1(x ≥ y))2 dx,

where 1 is the Heaviside step function that equals 1 if x ≥ y and 0 otherwise (Gneiting
and Raftery, 2007).

When F is known only through Np ensemble particles xi=1,......,Np , an estimator is
used to approximate CRPS. We use a CRPS estimator known as the ˆcrpsPWM (where
the subscript PWM stands for probability weighted moment) to evaluate forecasts
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Figure 4.78: Ensemble RMSE and spread of velocity (x and y components) values at six
observation points in the grid over time.
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Figure 4.79: Ensemble RMSE and spread of temperature (x and y components) values at
six observation points in the grid over time.

obtained from the stochastic model and the deterministic model. The expression for
ˆcrpsPWM is given by

ˆcrpsPWM(Np, y) =
1

Np

Np∑

i=1

|xi − y|+ 1

Np

Np∑

i=1

xi −
2

Np(Np − 1)

Np∑

i=1

(i− 1)xi,

where it is assumed that the ensemble particles xi are sorted in increasing order (Zamo
and Naveau, 2018). A lower CRPS value indicates a better forecast accuracy while a
higher CRPS value suggests a poor probabilistic forecast.

Figure 4.86 compares the CRPS values of the stochastic ensemble and the deter-
ministic ensemble for atmospheric variables (velocity and temperature). The CRPS
values displayed are obtained by taking the average of CRPS over all the observations
points (84 in total, see Figure 4.75) at an interval of 1 time unit from t = 25 to t = 45.
The stochastic ensemble corresponds to the configuration: Np = 50, nξ ≡ 0.99. The
deterministic ensemble consists of 50 particles. Unlike the RMSE plots (Figure 4.85),
where we observed a significant difference between the stochastic and deterministic
ensembles, the CRPS values for both models are very close to each other.

For the y component of velocity uay and the temperature θa, the CRPS values of
stochastic model are consistently lower than the CRPS values of deterministic model.
For the x component of velocity uax, the CRPS values of both models are similar.
However, near the end of simulation, a clear difference between the CRPS values can
be noticed. These observations suggest that the stochastic model predictions is more
accurate than the deterministic model predictions.
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Figure 4.80: Uncertainty quantification plots comparing the average spread and average
RMSE for different configurations of the stochastic model.
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Figure 4.81: Comparison of atmospheric velocity generated by the stochastic ensemble and
the deterministic ensemble. Both ensembles start with same initial conditions (perturbed
velocity fields at t = 25). The stochastic model is parameterized using SALT.
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Figure 4.82: Comparison of atmospheric temperature generated by the stochastic ensemble
and the deterministic ensemble. Both ensembles start with same initial conditions (perturbed
velocity fields at t = 25). The stochastic model is parameterized using SALT.

4.3.3 Concluding remarks

Uncertainty quantification tests for the coupled ocean-atmosphere model have shown
promising results. The stochastic parameterization methodology was found to be
consistent with respect to both the number of EOFs/ξi (denoted by nξ) and the number
of ensemble particles (denoted by Np): an increase in either Np or nξ led to a larger
ensemble spread. More importantly, the stochastic spread demonstrated favorable
reliability properties. At certain locations on the grid, the spread in the solution closely
matched the actual error during the first 5 to 10 time units. This property enables the
stochastic model ensemble to estimate the magnitude of its own errors.

One approach to quantifying uncertainty due to unresolved small-scale processes
involves running the deterministic model with randomly perturbed initial conditions.
However, this method is known to produce insufficient ensemble spread (Resseguier
et al., 2021), leading to underestimation of error and a lack of variability in the
solution. In our study, this behavior was observed in the deterministic climate model
ensembles. In contrast, the stochastic model (also initialized with perturbed conditions)
exhibited significantly bigger spread. However, the stochastic model was found to be
less accurate: the RMSE of the stochastic ensemble was consistently larger than that
of the deterministic ensemble. These contrasting results complicate the assessment of
ensemble forecast quality. To address this, we employed the CRPS (continuous ranked
probability score) metric, which evaluates an ensemble based on its ability to represent
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Figure 4.83: Comparison of ensemble spreads and RMSE for atmospheric velocity (x and y
component) generated by the deterministic model and the stochastic model at six locations
on the grid. The ensemble consists of 50 particles.
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Figure 4.84: Comparison of ensemble spreads and RMSE for atmospheric velocity (x and y
component) generated by the deterministic model and the stochastic model at six locations
on the grid. The ensemble consists of 50 particles.
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Figure 4.85: Uncertainty quantification plots comparing the average spread size and average
RMSE for ensembles generated by the deterministic model and the stochastic model.
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Figure 4.86: CRPS plots comparing the performance of the stochastic ensemble and the
deterministic ensemble.

the true underlying distribution. A comparison of CRPS values revealed that the
stochastic parameterization produced better forecast accuracy than the deterministic
approach.

The analysis presented here for the stochastic climate model is limited in scope.
There are several opportunities for improvement and further exploration. In our
simulations, we considered only a single coarse grid mesh of size 224 × 32 for the
stochastic model. As a result, our study lacks an analysis of consistency with respect to
mesh refinement. It would be valuable to investigate the performance of the stochastic
parameterization on finer meshes, such as the 448× 64 grid.

In our analysis, we did not explore the evolution of ocean dynamics in detail. An
interesting research direction would be to examine how ocean dynamics evolve over time
due to the stochastic nature of the atmosphere. Comparing these results with those
from a deterministic climate model could help assess whether atmospheric stochasticity
impacts the long-term behavior of the oceanic flow. Another possible direction is
to extend the current framework by coupling a stochastic atmosphere model with a
stochastic ocean model.

The reliability tests presented in this work are not comprehensive. We compared
ensemble spread (interpreted as the estimated error) with true error (measured by the
ensemble RMSE) only at selected grid points. Although, comparing average ensemble
spread to average RMSE offers a general indication of reliability, it may not be sufficient
to assess ensemble performance comprehensively. A more informative approach would
involve comparing spatial plots of ensemble spread and true error. This would make it
easier to identify regions in the domain where the ensemble performs particularly well
or poorly.

The literature offers several methods for assessing the reliability of probabilistic
forecasts. For instance, Resseguier et al. (2020) and Resseguier et al. (2017) compare
absolute bias with 1.96 times the ensemble standard deviation at each grid point. In
Cotter et al. (2020a), the spatial average of RMSE of the ensemble mean is compared
to the spatial average of the ensemble standard deviation. Crisan et al. (2023b), on
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the other hand, compared ensemble RMSE and bias with ensemble spread at selected
locations. Incorporating such approaches into our study would offer a more robust
evaluation of reliability in the stochastic climate model.

In the future, we plan to address the issues discussed above and conduct a more
comprehensive numerical investigation of the stochastic climate model.
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Summary and outlook

The goal of this thesis was to numerically simulate a stochastic coupled ocean-
atmosphere climate model and investigate the effectiveness of SALT in representing
the influence of unresolved scales on resolved flow dynamics, as well as in quantifying
the uncertainty induced by these unresolved small scales. We approached this problem
by breaking it into simpler subproblems, analyzing them thoroughly before progressing
to the more complex coupled model. Our methodology consisted of three phases. First,
we developed numerical schemes for the ocean component and solved the stochastic
incompressible Navier–Stokes equations. Next, we conducted a numerical investigation
of an idealized stochastic atmosphere model. Finally, we integrated these approaches
to solve the coupled ocean–atmosphere model. Below, we summarize our main findings
and suggest directions for future research.

Section 2.1 addressed the numerical discretization of the ocean model equations.
This model comprises the 2D incompressible Navier–Stokes equations and an advec-
tion–diffusion equation for temperature. We used the Finite Element Method (FEM) to
solve these equations, employing the Scott–Vogelius finite element pair P2–Pdisc

1 (with
u ∈ P2 and p ∈ Pdisc

1 ) on barycentrically refined meshes for spatial discretization of the
Navier–Stokes equations. We selected this pair over alternatives such as Taylor–Hood
and Raviart–Thomas due to its favorable accuracy, ease of implementation, and ex-
cellent mass conservation properties. For time discretization, we used a second-order
implicit Crank–Nicolson scheme. The advection–diffusion equation was discretized
spatially using the standard Galerkin FEM (θ ∈ P1) and temporally using the same
Crank–Nicolson method. Both the Navier–Stokes and advection–diffusion equations
are known to produce numerical artifacts when advection dominates diffusion. We
addressed this issue by choosing mesh sizes capable of resolving steep solution gradients,
thereby avoiding instability.

Section 4.1 presented the numerical simulation results for the stochastic Navier-
Stokes equations. We used high-resolution (256 × 256) deterministic simulations to
generate data for calibrating the stochastic model. The calibration involved several
steps: (1) computing differences between Lagrangian trajectories obtained from the
high-resolution velocity field u and its coarse-grained version u at multiple time
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instances to form a space–time matrix of measurements; (2) applying singular value
decomposition (SVD) to decompose the matrix into empirical orthogonal functions
(EOFs) and corresponding time series; and (3) using the EOFs as correlation vectors ξi
in the stochastic model, while modeling the time series using Gaussian distributions.
To evaluate the model performance, a new reference solution was generated by using
the exact time series of the EOFs, thus creating a deterministic benchmark that
included time-accumulated discretization errors absent in the coarse-grained solution.
The stochastic model was then solved on coarser grids (64 × 64 and 32 × 32), and
uncertainty quantification (UQ) tests were performed. The stochastic parameterization
was found to be consistent with mesh refinement: the SPDE solution on the 64× 64

grid captured the reference solution for a longer period and showed significantly lower
L2 error compared to the 32× 32 case. However, increasing the number of particles
or the number of EOFs ξi had no observable effect on ensemble spread size or mean
ensemble L2 error.

Section 2.2 focused on the numerical discretization of the deterministic version
of an idealized stochastic atmosphere model. We developed spatial and temporal
discretization schemes for the atmosphere model equations, using u ∈ P1 and θ ∈ P1

along with the Crank–Nicolson method. The accuracy of this discretization was
evaluated using the Galewsky test case. Although originally designed for shallow-water
models, this test case was suitable for our purposes due to similarities in governing
dynamics. Our numerical model successfully reproduced key features of the test case:
geostrophic balance was maintained for 120 hours with unperturbed initial conditions,
gravity waves appeared during the adjustment phase, and complex vortical structures
developed in the long term.

In Section 4.2, we investigated the idealized stochastic atmosphere model. A
modified version of the Galewsky initial conditions was used for numerical experiments.
As in the Navier–Stokes case, Lagrangian trajectory data was used to estimate the
correlation vectors ξi. Two approaches were considered for modeling the associated
time series: Gaussian distributions and Ornstein–Uhlenbeck (OU) processes. Replacing
Gaussian noise with OU processes resulted in marked improvements: relative L2 errors
decreased, and temperature fields were free of spurious oscillations or numerical artifacts.
Subsequent UQ tests using the OU-based stochastic model yielded results consistent
with those from the stochastic Navier–Stokes case. The parameterization remained
consistent under mesh refinement but was insensitive to changes in the number of
ensemble members or the number of EOFs. To further assess the impact of stochastic
parameterization, we compared the stochastic ensemble to a deterministic model
without any parameterization. While the mean L2 error of the stochastic ensemble
was comparable to that of the deterministic model, some individual ensemble members
achieved lower L2 errors and successfully captured large-scale flow features absent in
the deterministic solution.

Section 4.3 discussed the numerical simulation of the full stochastic climate model.
High-resolution deterministic simulations on a 896× 128 grid were used to calibrate the
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EOFs ξi for stochastic simulations on a coarser 224× 32 grid. The temporal component
of the noise was modeled using an OU process. The calibration was validated through
standard UQ tests. Unlike the stochastic Navier–Stokes and atmosphere models, where
ensemble spread size showed no dependence on particle number Np or the number of
EOFs nξ, here the parameterization was found to be consistent: increases in Np or
nξ led to larger ensemble spread, especially during the later stages of the simulation.
The parameterization also demonstrated good reliability: the ensemble root mean
square error (RMSE) was proportional to the spread size for at least 10 time units.
Forecast performance of the stochastic model was further evaluated by comparison
with a deterministic model initialized from randomly perturbed initial conditions. The
continuous ranked probability score (CRPS) of the stochastic ensemble was consistently
lower than that of the deterministic ensemble for both velocity and temperature fields,
indicating improved forecast accuracy.

Outlook

In this thesis, we presented simulation results for the stochastic incompressible Navier
– Stokes equations and an idealized stochastic atmosphere model. The numerical
investigation of these models aided in the development of a discretization scheme
for the idealized stochastic climate model, which constituted our main objective.
Uncertainty quantification (UQ) tests for all three models produced promising results.
However, further work is needed to address some of the limitations of the approaches
presented in this thesis. Doing so will deepen our understanding of these models and
improve their predictive capabilities. Below, we outline potential improvements and
propose directions for future research.

In the analysis of the stochastic incompressible Navier–Stokes equations, the tem-
poral component of the noise should be modeled using an Ornstein–Uhlenbeck (OU)
process rather than a Gaussian distribution due to the strong correlations observed
in the time series data. The UQ tests could be enhanced by incorporating additional
reliability diagnostics, such as spread versus bias or root mean square error (RMSE),
and by conducting comparative studies between stochastic and deterministic model
ensembles.

For the stochastic atmosphere model, the impact of parameterization terms as-
sociated with rotation requires further investigation. It remains unclear why these
terms induce spurious oscillations in the temperature fields. One potential research
direction is the use of high-order time-discretization schemes, such as strong stability
preserving Runge–Kutta (SSPRK) methods of order 3 or 4 (Hansen and Penland,
2006; Rüemelin, 1982). The ensemble study can also be expanded through additional
reliability assessments and comparisons with deterministic ensemble forecasts.

The SALT parameterization of the coupled ocean–atmosphere model yielded strong
ensemble performance, providing a solid foundation for the implementation of data
assimilation techniques. We plan to explore this direction in our future work.

131





Our contribution

Our work has made scientific contributions in the following key areas:

Stochastic incompressible Navier–Stokes equations

We presented, to the best of our knowledge, the first numerical investigation of two-
dimensional incompressible Navier–Stokes equations parameterized by SALT. We
proposed a calibration technique capable of extracting spatial correlations of unresolved
small-scale features from Lagrangian trajectory data, applicable to both compressible
and incompressible fluids. We conducted tests demonstrating the effectiveness of SALT
in quantifying uncertainties arising from unresolved transport dynamics and discussed
methods to further improve the accuracy of solutions obtained from stochastic models.

Stochastic atmosphere model

We performed an extensive numerical analysis of the atmospheric component of an
idealized stochastic climate model. Our study identified significant limitations, in
terms of both uncertainty quantification and solution accuracy, when the temporal
component of the stochastic noise was modeled using a Gaussian process rather than
an Ornstein–Uhlenbeck process. In addition to quantifying uncertainty, we compared
stochastic model solutions directly against deterministic counterparts. Furthermore, we
highlighted specific challenges introduced by fluid compressibility and parameterization
effects associated with the Coriolis force in the stochastic modeling of atmospheric
dynamics.

Stochastic climate model

We conducted the first numerical simulations of an idealized coupled ocean–atmosphere
climate model derived using the SALT methodology. Numerical tests were performed
to assess SALT’s effectiveness in quantifying uncertainties due to unresolved small-scale
processes within the coupled climate model setting. Additionally, the impact of SALT
parameterization on forecast skill was evaluated by directly comparing stochastic model
outcomes with results from the corresponding non-parameterized deterministic model.
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Publications and conference contributions

The doctoral studies resulted in the following publications and conference contributions:

Publications

• Kamal Sharma and Peter Korn. Numerical Simulation of an idealized coupled
Ocean-Atmosphere Climate Model. In Modeling, Simulation and Optimization
of Fluid Dynamic Applications, pages 113–130. Springer, Cham, 2023. DOI:
10.1007/978-3-031-45158-4_7

Conference contributions

• Workshop on Stochastic Transport in Upper Ocean Dynamics, French Research
Institute for Exploitation of the Sea (IFREMER), Brest, France, contributed talk
(2023).

• Conference on Mathematical and Computational Issues in the Geosciences, Society
for Industrial and Applied Mathematics (SIAM), Bergen, Norway, contributed
talk (2023).

• Conference on Computational Science and Engineering, Society for Industrial and
Applied Mathematics (SIAM), Amsterdam, Netherlands, contributed talk (2023).

• Firedrake User and Developer Workshop, University of Exeter & Imperial College
London, Totnes, England, contributed talk (2023).

• Workshop on Modeling, Simulation & Optimization of Fluid Dynamic Applica-
tions, Groß Schwansee, Germany, contributed talk (2022).

• Workshop on Modeling, Simulation & Optimization of Fluid Dynamic Applica-
tions, Groß Schwansee, Germany, contributed talk and poster (2021).

Declaration of contribution

• Except for Figure 1.2, all tables and figures in this thesis were created by the
candidate.

• Some of the text used in Chapter 1 corresponds to the paper Sharma and Korn
(2023). Modified versions of the numerical schemes presented in Sharma and
Korn (2023) are used in this thesis.

• The selection of test cases for the numerical experiments presented in Section
2.2 was a joint effort between Peter Korn and the candidate. All numerical code
used to solve the equations in this section was written by the candidate and is
publicly available on GitHub.
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Our contribution

• The idea behind the calibration methodology in Chapter 3 was proposed by
Wei Pan. Its implementation was carried out solely by the candidate. The
time discretization scheme for the stochastic partial differential equations in this
chapter was developed in collaboration with James Woodfield.

• A Python package (bary.py), written by Patrick Farrell, was used to create the
barycentrically refined meshes in Section 4.1. Algorithm 3 was developed in
collaboration with Sagy Ephrati.

• The code for solving the three stochastic models in Chapter 4 was written entirely
by the candidate. The section about the continuous ranked probability score
(CRPS) is the result of discussions between James Woodfield and the candidate.

• Section 4.3 is expected to lead to a publication co-authored with Peter Korn; the
manuscript is currently in preparation.
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Data availability statement

The computational code, data, and post-processing scripts used in this thesis are
available on Github.

• 2D viscous shallow water equations (Subsection 2.2.2): https://github.com/sha
rma-kk/viscous_shallow_water_2d.

• Stochastic Navier-Stokes equations (Section 4.1): https://github.com/sharma-k
k/NS_free_slip_SALT.

• Stochastic atmosphere model (Section 4.2): https://github.com/sharma-kk/at
mo_semi_periodic_SALT.

• Stochastic climate model (Section 4.3): https://github.com/sharma-kk/coupled_
OA_model

Numerical implementation is done using the open-source Python Finite Element package
Firedrake (Rathgeber et al. 2016). The simulation results are visualized using the
ParaView application (Ahrens et al. 2005). All post-processing is done in Jupyter
Notebook.
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