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1. Introduction

We are open systems in exchange with the environment; the
environment acts on us to produce sensory impressions and we act

on the environment to change its states.

Friston, 2009

The ultimate and permanent task of a living organism is to ensure its integrity, by pro-
tecting its physiological boundaries. This process requires the interpretation of the world
with the limited sensory abilities that it has and adequate reactions to response to changes
of this interpretation. Traditionally, the interpretation of the world is what we call perception,
and the reactions to it actions. Because the human perceptual system can only cover a
small part of qualities of our surroundings, it relies on inference. This inference process
is not passive, but active, thereby blurring the boundaries of action and perception. Ac-
tive inference has the goal to minimize surprise elicited by sensory events, a perspective
put forward by the normative free-energy principle. Besides the update of predictions, it
also entails the recruitment of endogenous bodily sources to map the expected state of the
body to the sensory processes (Friston, 2009, 2010). One of endogenous systems is the
descending pain modulatory system (Fields, 2004). Similar to other endogenous signals,
pain guides the organism away from stimuli that threaten its physiological bounds, thereby
reducing surprise. Pain has an interesting intermediate status between sensation and emo-
tion. While there is a clear connection to specific nerve fibers transmitting nociception, pain
also has a strong affective component, placing it somewhere in between sensations like vi-
sion and audition and emotions of negative valence like fear or disgust (Poublan-Couzardot
& Talmi, 2024). This intermediate status might be highly relevant to understand why the

adaptive danger signal of pain might become persistent, without an externally perceivable
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reason. This is the case in conditions of chronic pain, which are highly prevalent. For ex-
ample, in the 2019 National Health Interview Survey in U.S. adults, 20.5% reported to be
in pain most days or even every day (Yong et al., 2022).

To better understand the effects of the constructive nature of pain, it is crucial to inves-
tigate the neural basis of this process and to understand under what circumstances it is
modulated. For example, does the experience of contingencies between actions and pain
influence the endogenous perceptual processes and attenuate pain? Experiencing con-
tingencies between actions and outcomes is what naturally creates our subjective feeling
of controllability. To be able to influence one’s surroundings, to be in control constitutes
a inherently rewarding state for humans (Leotti & Delgado, 2011; Ly et al., 2019). It influ-
ences how self-efficient we feel, or if there is a perceived lack of control, how helpless we
might be. Helplessness can be interpreted as an emotional outcome of a lack of control.
Observational studies found that patients with chronic pain conditions who report higher
levels of helplessness and lower self-efficacy also report higher levels of pain severity and
interference (Samwel et al., 2006; Craner et al., 2016). While obviously the causality here
remains unclear, it suggests an interesting research question, namely, can an increase in
subjective control also directly attenuate pain. Thus, the original aim of the projects con-
ducted in the context of this thesis was to investigate the relationship between the subjective
feeling of control and pain perception. We thought that this might provide relevant findings
for shaping psychologically supported pain management therapies. Furthermore, it would
contribute to understand the basic function that pain has for the organisms by investigating
environmental factors, which recruit the endogenous modulation system of pain.

The central hypothesis when | started this PhD was that a higher level of perceived
control should cause attenuation of experienced pain. Also, this modulatory effect should
become visible in brain regions that are part of the descending pain modulatory systems
during a controllable painful stimulation. However, when | started the project and reviewed
literature on empirical studies on the topic, it became more obvious that such a simple hy-

pothesis neglected the complexity of pain and control. Especially studying control specifi-
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cally presented itself less trivial than one could intuitively expect. As outlined above, there
is by now overwhelming evidence that pain relies on predictive processing (Buchel et al.,
2014). Studies on placebo effects, for example, nicely illustrate how strong expectation
effects can be on pain. This matters significantly when studying effects of control over
pain, because when something is controllable it naturally is also more predictable (Cramer
& Perreault, 2006; Ligneul, 2021).

Because this became apparent during the design of the first empirical study, it resulted
in a more methodological approach by including a novel control condition, separating ef-
fects of predictability and controllability on pain processing in the brain. | expected to detect
a relevant overlap of effects of both. While this does not discredit findings in the domain of
control in general, because this overlap is ecologically valid, it is relevant to assess this to
know precisely where pain modulating effects originate from. This first project was followed
by a second project, that aimed to target the consequences of a lack of control over pain
rather than the immediate perception. This was motivated mainly by the reports of helpless-
ness in chronic pain and the possible ensuing motivational and cognitive consequences of
the experience of helplessness (Yessick & Salomons, 2022).

In the following chapters, | will provide a theoretical introduction to motivate the interpre-
tation of pain as a not purely sensational experience by separately defining nociception and
pain, discuss physiological mechanisms, the behavioral function of pain and the influence
of expectations. Then | will review the literature on control and discuss it in the context
of empirical investigations of effects of control over pain. The major part of the thesis is
two empirical studies, of which | will describe the methodological requirements and results.
Finally, | will conclude this work by presenting a synthesis of the results, implications for
the field and providing a perspective on how those results potentially could inform future

studies.
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1.1 Pain

When trying to carry a very hot cup of coffee to your desk, the burning painful sensation that
builds up over time typically results in the decision to put the cup down and let it cool before
your next attempt to bring it to its destination. This example highlights two relevant aspects
of pain that this chapter will address: first, the transmission of the burning, painful sensation
from the heat of the cup to the hand and then to the brain in terms of the neurophysiology
of nociception and secondly, the behavioral function of pain, that is, that you would put the
cup down in order to prevent an injury. Linked to the behavioral function of pain, | will also
outline how central neural pathways contribute to endogenous pain modulation in response
to environmental and psychological factors.

Importantly, pain is not equivalent to the pure processing of sensory inputs, i.e. noci-
ception, even though both typically co-occur. Nociception refers to the activation of specific
nerve fibers (nociceptors) when encountering mechanical, thermal, or chemical stimuli that
exceed a certain threshold (Basbaum et al., 2009). However, the conscious experience
of pain encompasses more than the activation of these sensory neurons and can also be
present without their activation (Raja et al., 2020). Pain thresholds can deviate from the
typical activation thresholds of nociceptors (Coghill, 2010) and can even emerge in the
complete absence of nociceptive input (Tracey, 2005). The pain percept is an interpreta-
tion of the nociceptive signal, which is influenced by cognitive and affective factors (Tracey
& Mantyh, 2007). The differentiation of pain and nociception is important in context of en-
dogenous pain modulation, because it explains why an individual perceives different levels
of pain in response to the same stimulus intensity when it is applied under different internal

or external conditions.

1.1.1 Physiological mechanisms of nociception and pain

Nerve fibers that convey nociceptive input after thermal, mechanical or chemical stimulation

can be grouped into two main classes. Myelinated A 6 fibers mediate well localized, sharp
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and fast pain, and unmyelinated C fibers mediate slower but enduring pain (Basbaum et
al., 2009; Middleton et al., 2021). Stimuli above a certain temperature threshold (for heat
around 43°C) recruit both fiber types (Basbaum et al., 2009). From the periphery, the signal
is then transmitted to dorsal horn neurons in the spinal cord (Julius & Basbaum, 2001).
There, nociceptive reflexes are initiated through connections with ventral horn neurons
(Todd, 2010) and projections from the dorsal horn convey the nociceptive signal to the
brain stem, thalamic nuclei and from there to several cortical key areas: the primary (S1)
and secondary (S2) somatosensory cortices, the insula and the anterior cingulate cortex
(ACC) (Fields, 2004; Todd, 2010; Mouraux & lannetti, 2018). These cortical key regions
for pain perception are not specific for pain processing, but also respond to other salient
events (Mouraux & lannetti, 2018). However, the dorsal posterior insula is a candidate
region for the specific processing pain, because it encodes changes in heat pain intensity,
but not changes in warmth and is not typically activated in response to other aversive and
salient stimuli (Segerdahl et al., 2015; Horing & Blchel, 2022).

Alongside this ascending processing of nociceptive input, excitatory and inhibitory neu-
rons that descend from cortical, subcortical and brain stem regions modulate the noci-
ceptive signal (Fields, 2004). Important hubs of this descending pain modulatory sys-
tem (DPMS) are the periaqueductal gray (PAG), locus coeruleus, rostral ventromedial
medulla (RVM), pontine nuclei, ACC, dorsolateral prefrontal cortex (dIPFC) and limbic
system (Fields, 2004; Eippert et al., 2009; Bannister & Hughes, 2023; Neyama et al.,
2025). Endogenous pain modulation involves different neurotransmitter systems, including
GABAergic neurons, that are sensitive to opioids and project from frontal cortical regions
(ACC, dIPFC) to the brain stem and the spinal cord (Fields, 2004; Bannister, 2019; Chen et
al., 2024; Neyama et al., 2025) as well as noradrenergic connections of the locus coeruleus
(Bannister & Hughes, 2023). These pathways don’t have purely pain facilitatory or inhibitory
properties but allow context dependent calibration of pain perception by distinct activation
of different cell classes (Fields, 2004; Bannister & Hughes, 2023). In sum, the presence

of these complex interconnected pathways enables endogenous top-down modulation of
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pain and influences an individuals perception of pain beyond the intensity of the physical

stimulus that activates nociceptors.

1.1.2 Behavioral function of pain

Fundamentally, the behavioral function of pain is the protection of the physical integrity of an
organism (Seymour, 2019). Itis a learning signal that prevents or stops the performance of
actions that could potentially result in injuries. On a longer temporal dimension, pain signals
the body to rest in order to allow recovery and restore bodily resources. This function places
pain alongside other homeostatic drives like hunger, itch, need for air, thermo-sensation
and thirst, that maintain the physiological functioning of the body (Craig, 2003). Pain is
integrated with other internal and external signals and goals, for example other homeostatic
drives or external rewards. Relative to other signals, it can become more or less relevant
to attend to the pain signal. Studies show that pain is perceived as less intense, when
winning in a game of chance, because of a shift in focus towards the acquisition of the
reward (Becker et al., 2013, 2017). This effect can be described by the motivation-decision
perspective on pain that argues that an organism weighs the pain signal against other goals
that the organism needs to pursue. If this weighing leads to prioritizing of the motivation to
get the reward, pain is perceived as less intense (Fields, 2018). Additionally, other factors,
like the attentional demands of the environment (Torta et al., 2017) or extreme emotional
states (Butler & Finn, 2009) can divert focus away from pain and modulate pain processing

already at the spinal cord (Sprenger et al., 2012).

1.1.3 The role of expectations in pain modulation

Besides reward, attention and emotions, expectations play a major role in pain modulation
(Fields, 2018). The phenomenon of placebo analgesia, the reduction in pain perception
after receiving an inert treatment along with a positive outcome expectations, or nocebo hy-
peralgesia, the increase in pain after receiving a treatment along with negative outcome ex-

pectations, showcases how strongly pain can be influenced by expectations (Atlas, 2021).
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Pain modulatory effects of expectations have correlates in the brain (Zunhammer et al.,
2021) including key regions of the DPMS, like the insular cortex, ACC and thalamus (Atlas
& Wager, 2012) and the spinal cord (Tinnermann et al., 2017).

Pain modulation by expectation arises from the requirement to react as quickly and ac-
curately as possible to a painful stimulus, due to its relevance for physical integrity and
survival. This is enabled by integrating prediction and sensation by a mechanism that has
been called predictive processing (Poublan-Couzardot & Talmi, 2024). The most probable
"true” state of the world is inferred and this prediction is continuously updated with actual
sensory input, processing primarily unexpected events to enable efficient use of neuronal
resources (Huang & Rao, 2011). Originally developed in context of studies on visual per-
ception, which showed that unpredicted elements of sensory inputs (prediction errors) are
conveyed from lower to higher-level processing areas with priority (Rao & Ballard, 1999),
the predictive coding model has also been put forward to explain the effect of placebo anal-
gesia (Buchel et al., 2014). Empirical studies confirmed the model predictions regarding
pain processing by physiological measures and changes in functional brain activity (Geuter,
Boll, et al., 2017).

1.1.4 The Bayesian approach to pain perception

The predictive coding model relies on Bayesian integration, a principle drawn from Bayes’
theorem, a mathematical rule, which describes how the probability of an event can be opti-
mally inferred by integrating its prior probability with the probability of observations (McEI-
reath, 2020, p. 37). Evidence for Bayesian mechanisms stems not only from studies on
visual perception (Huang & Rao, 2011) but also from research on temporal and spatial
magnitude estimation, which indicates that a similar pattern is present in many cognitive
domains (Petzschner et al., 2015). Translated to theoretical accounts of pain, the term like-
lihood is mostly used to describe the somatosensory or sometimes nociceptive processing,
while the prior refers to the expected painfulness (Habermann et al., 2024). The integra-

tion of the prior and the likelihood results in the pain percept (posterior), which can be
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assessed by intensity ratings. Typically, the prior and the likelihood are formalized as two
normal distributions, with their variance representing uncertainty in expectation and noise
in the sensory processing. This formalization allows an analytical mathematical solution for
Bayes’ theorem (Gelman, 2014), with another normal distribution resulting for the posterior
probability of perceived pain (Blchel et al., 2014). The mean of the posterior distribution,
i.e. the peak of the pain percept, depends on precision weighted means of the prior and
the likelihood distributions and will be biased to the more precise distribution.

An advantage of a formal model definition is that it allows to derive testable predic-
tions. For example, a placebo effect should be stronger when very precise expectations
have been established, for example, when given a pill by a very trustworthy physician. In
contrast, a placebo effect should be weak when the expectation is vague, for example,
when study participants remain uninformed whether they received an allegedly effective
treatment or not (Blchel et al., 2014). And indeed a study that manipulated expectation
precision through high or low consistency during a placebo conditioning phase could show
that lower expectation precision resulted in smaller placebo effects (Grahl et al., 2018).
Bayesian models have also been informative for the formalization of pain modulatory ef-
fects arising from the interaction of expectations and other factors (Habermann et al., 2024).
For example, the beneficial effects of agency, i.e. when self-administering a placebo treat-
ment, may be better explained by a shift in expectations than by a change in sensory pre-
cision (Strube et al., 2023). Finally, also the major topic of this thesis - pain modulation by

perceived control - is tightly interwoven with the matter of expectation.

1.2 Control

When confronted with a painful experience, a crucial aspect of assessing the risk of the
situation is the level of control that the organism has over the cause of the pain. If control is
given, a pain-free state can be reached and future painful states can be avoided. Estimating

control also allows resource-efficient behavior, because some actions should ideally only
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be performed if they are expected to lead to better, pain-free states (Gandhi et al., 2017).
Consequently, the estimation of the controllability of outcomes determines which behavioral
strategy is selected when confronted with a threat, e.g., a pain-eliciting stimulus (Moscarello
& Hartley, 2017). Without control, the metabolic costs of performing defensive pro-active
actions can be saved, and alternative coping behavior can be initiated. Similar behavioral
strategies emerge in the appetitive domain, where different levels of control signal how
much effort should be invested in a potentially rewarding task (Fromer et al., 2021; Grahek
et al., 2023). In addition to environmental features, control perception also depends on
general beliefs about control (Lefcourt, 1976; Ly et al., 2019). This broader feeling of being
in control of personal and societal events, has an important influence on the well-being of
a person (Bandura, 1982) and influences reactivity to situations with different levels of con-
trollability. General control beliefs can change the evaluation of outcomes and learning: a
high subjective level of uncontrollable stress impairs learning about rewards (Guitart-Masip
et al., 2023) and perceived helplessness, or lack of control, is associated with an increase
in perceived pain severity in chronic conditions (Samwel et al., 2006; Craner et al., 2016).
High perceived self-efficacy on the other hand leads to reinforcement of reward processing
(Blain & Sharot, 2021). Before presenting data on the influence of control on pain percep-
tion in depth, the following paragraphs will introduce relevant conceptual aspects of control

and potential brain mechanisms underlying control estimation.

1.2.1 Definition of control

There are different levels of control that matter for cognitive science. The main focus of
this thesis is the effect of environmental control on pain perception and related changes
in behavior and cognition. With environmental control, | refer to the influence an organism
can exert on its surroundings that is given by the design of the environment, for example,
when a painful stimulus can be terminated by a button press. This is directly related but
not equivalent to behavioral control, or the ability to perform movements in a coordinated

way and with predictable results, e.g. being able to self-initiate the button press (Haggard,
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2017). Finally, cognitive control refers to control over internal processes as switching at-
tentional focus or coordinating executive functions (Shenhav et al., 2013), also relevant
for coordinated behavior. The different levels of control interact with each other: without
behavioral or cognitive control, an organism cannot profit environmental control. Hence,
the estimate of environmental control immediately influences how behavior and cognition
are coordinated, that is, only when outcomes are controllable, cognitive resources should
be focused on the execution of a difficult task (Grahek et al., 2023). Furthermore, control
can be exerted over different features of a stimulus, for example, in some cases it might be
possible to change the intensity of a painful stimulus, in other cases control can be exerted
over the onset or offset of pain (Habermann et al., 2024).

Theoretical notions of control in cognitive science evolve around the fact that organisms
estimate the control by performing actions (A) and observing statistics of ensuing outcomes
(O) (Huys & Dayan, 2009). If outcomes can be reliably achieved or avoided by performing
specific actions, control is given; conversely, no control is perceived, if outcomes occur
independently of actions. In an early account (Maier & Seligman, 1976), perceived con-
trol was defined as the difference in conditional outcome probabilities. For example, if a
shock is less probable after a button press has been performed, the perceived control is
high: p(O|A) < p(O|=A). Accordingly, animals should keep track of both conditional prob-
abilities and mentally compare them to determine the degree of environmental control. In
the controllable environment, the conditional action-outcome probabilities differ, while in an
uncontrollable environment the outcome probability is the same regardless of action exe-
cution: p(O]A) = p(O|—-A). Both conditional probabilities can be high or low, but control
is only perceived if they are unequal. This formalization provided a good initial solution to
quantify control levels in psychological experiments, but some relevant aspects are missing
(Huys & Dayan, 2009; Ligneul, 2021).

First, the original definition does not implement changes in control estimation if an action
is not only predictive of one, but multiple outcomes. In order to extend the definition of

control to more than one action, it can be reformulated in terms of outcome entropy (Huys &

10
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Dayan, 2009). Entropy is defined as the average uncertainty or surprise of an event defined
through its average log-probability (McElreath, 2020). Lower entropy reflects decreases in
outcome uncertainty and an increase in control, whereas entropy is necessarily high in
uncontrollable environments. With this generalizable measure, control can be elegantly
parametrized as one value in more complex scenarios, by H(p) = — ", pilog(p;). For
example, there is higher perceived control, when one action only leads to one outcome with
a certain probability (low entropy) compared to the case where one action produces multiple
different outcomes with the same probability (high entropy; Huys and Dayan, 2009).
Secondly, the basic definition does not take into account the valence of outcomes that
are or are not controllable. It might not matter to an individual if a neutral outcome can
reliably be obtained, but control over highly rewarding or very aversive outcomes should
be correctly inferred. Consequently, when estimating control, outcomes of higher positive
or negative valence should be weighted in the most, and control can be formulated as the
fraction of achievable rewards (Huys & Dayan, 2009) or the fraction of avoidable pain.
Especially if positive reinforcers are present, the subjective assessment of control can
deviate from the factual level of control provided by the environment (Alloy and Abram-
son, 1979, but see Teodorescu and Erev, 2014). This illusion of control, the tendency of
individuals to judge the likelihood of success to be higher than what is objectively reason-
able (Langer, 1975), can lead them to behave as if they have control over events that are
actually governed by chance. The relationships between actions and outcomes are often
perceived as causal, despite the absence of contingencies, especially if the outcome is
frequent and rewarding (Alloy & Abramson, 1979). While formal definitions of control are
crucial for the design of experiments and for the discussion of basic processes, the effect of
illusory control has to be kept in mind, when designing and analyzing study results. Ideally,
subjective estimates of control should be compared to the levels of factual control provided

in the experiment.

11
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1.2.2 Controllability and predictability

A more conceptual critique of the original definition of control argues that it is insufficient
because it confounds control with outcome predictability (Ligneul, 2021). While this critique
is not per se new (Cramer & Perreault, 2006), it did not lead to a formal redefinition of con-
trol until now. The proposed alternative definition of control also relies on the conditional
relationship of actions and outcomes, but crucially it also takes the additional dependence
on states into account. The factual causal influence over state transitions and not their
correct prediction should matter for control estimation (Ligneul, 2021). The formal variable
measuring control in this approach is transfer entropy (I). Transfer entropy is the differ-
ence between entropy of outcomes conditioned on states alone and entropy of outcomes
conditioned on states and actions I(0; A|S) = H(O|S) — H(O|A, S). If an environment is
not controllable, both entropy values should be equal and thus the transfer entropy would
tend to zero. In a controllable system, transfer entropy would be positive, because the
outcome entropy (i.e. surprise), when conditioned on states and actions, is lower than
outcome entropy conditioned on the state alone. A recent study elegantly applied this
definition in a computational model and shows that the internal control estimate can be de-
scribed by comparing the likelihood of two internal learning models: the first one tracking
outcomes conditioned on states alone, and a second one taking into account states and
actions (Ligneul et al., 2022). The differentiation of predictability and controllability is impor-
tant, when specific effects of control on behavior and brain activity are under investigation.
Especially with regard to pain modulation, the differentiation of expectation and perceived
control is crucial, because perceived pain can strongly be influenced by (the precision of)
expectations. Hence, if interested in the effects of control and not expectation precision on

pain, a sensible control condition has to be implemented in the experimental design.
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1.2.3 Generalization of control beliefs

Control beliefs are not generated for each situation in isolation, but previously learned con-
tingencies regarding actions and outcomes influence subsequent selection behavioral strat-
egy and updating of control beliefs. This was first observed in studies, performed by Maier
and Seligman, 1976, where dogs subjected to inescapable electrical shocks in a first ex-
perimental phase failed to escape in a subsequent shuttle-box task, while another group
of dogs that learned to terminate shocks by their own behavior successfully escaped in
the second task. Critically, the groups were matched for stimulus intensity and duration,
only differing in terms of controllability of the shock duration during the first phase. The au-
thors concluded that experiencing uncontrollable aversive events results in the subsequent
selection of passive behavioral strategies, because they learned that proactive escape re-
sponses would be a waste of resources. They coined the term "learned helplessness” for
this effect and it has been replicated in multiple rodent studies (for a review see Baratta et
al., 2023) showing that experiencing uncontrollable stress leads to slower learning (Amat
et al., 2008) and reduced exploration behavior (Kubala et al., 2012). Likewise, early stud-
ies with human participants report slowing down in learning after having been confronted
with unsolvable anagrams or inescapable shocks (Hiroto & Seligman, 1975). A more re-
cent study tried to translate the original study design as a computerized version and utilized
aversive sounds and electrical shocks as stressors (Meine et al., 2020). Contrary to what
would be expected, participants in the uncontrollable condition explored more in the sec-
ond phase of the study. One potential explanation for this result could be that the perceived
risk for survival induced in the first phase is relatively low in humans compared to animals
that are forced endure electrical shocks in a cage. This could change the behavior follow-
ing experience of low control. For example, it could lead to compensatory behavior in the
second phase to make up for perceived performance difficulties.

Learned helplessness relies on the generalization of the perceived level of control from
one situation to future situations (Huys & Dayan, 2009; Lieder et al., 2013). Generaliza-

tion on the perceptual level is a general property of the nervous system and describes the
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effect that after a behavioral response to a stimulus has been established, novel stimuli
that resemble the first evoke a similar response (Ghirlanda & Enquist, 2003). For example,
after being bitten by a poodle, an individual is likely to act more careful around other types
of dogs, but not cats, because the estimated probability of getting bitten again is higher.
Generalization takes place across similar looking stimuli (Onat & Blichel, 2015) and con-
texts (De Voogd et al., 2020; Esser et al., 2021) and generalized responses include ge-
netically prepared and learned behavior (Ghirlanda & Enquist, 2003). Control beliefs rely
on higher-order cognition and are more abstract than the reflexive responses, which are
typically investigated in fear generalization studies (e.g. differences in skin conductance
responses; Dymond et al., 2015). However, putting forward the notion of generalization as
a universal law with respect to psychological spaces (Shepard, 1987), more sophisticated
cognitive responses should align with it as well. Evidence for generalization of cognitive
responses comes, for example, from studies on value-generalization in the financial do-
main, showing similar generalization patterns as physically evoked responses measured
by reaction times and expectancy ratings (Norbury et al., 2018). In addition, studies in-
vestigating cognitive spaces effectively illustrate how mental representations of abstract
concepts resemble the representations of perceptual stimuli, or physical space (Bottini &
Doeller, 2020). Therefore, it is conceivable that also control estimates generalize at least
partly based on perceptual and conceptual similarities between contexts. Yet, the strength
of control belief generalization does not merely rely on perceptual or conceptual similar-
ity between situations, but might additionally depend on personality traits (Huys & Dayan,
2009). This idea is inherent in the concept of the locus of control (Lefcourt, 1992) or Ban-
dura’s concept of self-efficiency (Bandura, 1982). It assumes that the person’s inherent
control belief influences learning about contingencies and controllability in a new context.
In addition, these trait variables might interact with the perceptual level of generalization,
as in the case of fear generalization where patients with anxiety disorders or people scor-
ing high on intrusive anxiety show broader generalization patterns (Dymond et al., 2015;

Norbury et al., 2018). Other accounts propose the inverse mechanism, suggesting thatiitis
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not the personality trait that leads to differences in the strength of generalization, but rather
that the accurately perceived lack of control over repeated uncontrollable stress results
in changes in the personality trait, as assessed by depression or helplessness question-
naires (Pizzagalli, 2014; Yessick & Salomons, 2022) or behavioral readouts (Lieder et al.,
2013). However, as is often the case with correlation, the direction of causality in this in-
stance remains ambiguous and the directionality of the effects difficult to assess as trait
variables and state estimates might also reinforce each other, resulting in a vicious cycle
of increasing lack of perceived control and symptom severity (Blichel, 2023). Hence, con-
trolled experimental studies are needed to provide insights in how perceived controllability
of pain influences behavior in a subsequent situation, if personality variables interact with

this effect and how control affects perception of acute pain.

1.2.4 Locus of control and depression

The locus of control is defined as a general belief regarding the causality of one’s own
actions and consequences or effects on the world (Rotter, 1966). An external locus of con-
trol has been associated with depressive symptoms (Hovenkamp-Hermelink et al., 2019),
but sometimes also with a fewer number of depressive symptoms (Yu & Fan, 2016). This
depends on what types of events are externalized (Abramson et al., 1978). If failures are
attributed to external events, outside of personal influence, this can indeed conserve self-
esteem (Yu & Fan, 2016). If positive events on the other hand are exclusively believed
to result by chance or the influence of powerful others, this might lower self-efficacy and
contribute to anxiety and depression. A lack of perceived control is therefore usually asso-
ciated with a higher level of anxiety and depression (Dan et al., 2024). The allocation of the
locus of control is stable over time and can be considered a personality trait (Hovenkamp-
Hermelink et al., 2019).
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1.2.5 Neural bases of control estimation

Different brain regions have received attention in the context of control estimation, depend-
ing on the domain of investigation. The domains include general learning and contingency
estimation (Ligneul et al., 2022), inference about the cause of rewarding outcomes (Dorf-
man et al., 2021) or state changes (Ligneul et al., 2022), agency over movements (Haggard,
2017), and, coming from the learned helplessness literature, effects of stressor controlla-
bility (Maier & Seligman, 2016). Due to this diversity, it is not surprising that many different
brain regions have been associated with perceived control, but some brain regions have
been repeatedly reported to be relevant to multiple types of perceived control.

One of these regions is the anterior insula. Activity in the insula follows the estimated
causal influence of actions over state changes that did (Dorfman et al., 2021) or did not
(Ligneul et al., 2022) entail rewards. On the other hand, a study on threat controllability
reported lower activity in the anterior insula, when (non-painful) electrical shocks were per-
ceived as controllable than if they were uncontrollable (Limbachia et al., 2021; Meine et al.,
2021). These divergent results could be partly explained for different levels of salience of
either contingent neutral, or contingent aversive environments. Salience is higher for un-
controllable (non-contingent) stress (Wanke & Schwabe, 2020), as it leads to higher predic-
tion errors. The anterior insula is strongly associated of processing of prediction errors, i.e.,
salient events (Wiech et al., 2010; Horing & Blichel, 2022; Kim et al., 2025; Willems et al.,
2025). Interestingly, patterns of activity in the anterior insula during exposure to uncontrol-
lable stress also differ between participants that were previously exposed to uncontrollable
stress and a second group that was able to control the stress induced by aversive sounds
in a prior task (Cohodes et al., 2023). However, salience in the sense of attention (Parr &
Friston, 2019) could also be increased when experiencing contingencies that are neutral
or positive, because it helps processing of these positive events, possibly explaining the
higher activation of the anterior insula with control in some studies.

More consistently, activity in the prefrontal cortical regions has been related to higher

levels of inferred control. This was the case in non-reinforced scenarios (Ligneul et al.,
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2022), as well as in response to higher control over aversive outcomes (Meine et al., 2021).
Especially the ventromedial prefrontal cortex (vmPFC), has received a lot of attention in the
context of controllable stress. Rodent studies found that stress responses were inhibited
by neurons in the paralimbic cortex, the rodent homologue of the human vmPFC, when
stressors were controllable (Amat et al., 2005). This process is mediated by the seroton-
ergic pathways connecting dorsal raphe nucleus with the PAG and the amygdala (Maier
& Seligman, 2016; Ligneul & Mainen, 2023). Furthermore, fMRI studies in humans report
that BOLD signal in the vmPFC increased during non-painful electrical stimulation if its off-
set was controllable (Meine et al., 2021), as well as during the anticipation of avoidable
aversive videos (Kerr et al., 2012) or controllable aversive sounds (Wade-Bohleber et al.,
2021).

The dorsal part of the frontal cortex, namely the dorsal anterior cingulate cortex (dAACC)
is mostly associated with the regulation of cognitive control (Shenhav et al., 2013) and
the neighboring pre-supplementary motor area (pre-SMA) has been associated with the
cognitive aspects of behavioral control and put forward as a region encoding conscious
intention (Lau et al., 2004).

Moving along this frontal to parietal gradient of abstractness of control processes, the
region that is primarily associated with perceived control over body movements (agency)
is the supplementary motor area (SMA; Moore et al., 2010). SMA activity increases when
actions were perceived as voluntary (Kihn et al., 2013) and is thought to arise from the
comparison of a neural efference copy with the actual sensory feedback in sensorimo-
tor regions (Haggard, 2017; Wen & Imamizu, 2022). If both match, agency is perceived,
whereas if movement plans and sensory feedback are incongruent, the sense of agency
is diminished. Theories of sensory attenuation relate agency also to differences in per-
ception, which is crucial when thinking about the effects of self-inflicted or self-controlled
painful stimulation compared to externally controlled pain (Strube et al., 2023).

In sum, the vmPFC, the anterior insula and SMA appear consistently in neuroimaging

studies on perceived control employing different tasks and types of control. Moreover,
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regarding the combined study of control and pain, these regions deserve attention, because
to their known role for pain modulation by cognitive and environmental factors (Kragel et
al., 2018; Zunhammer et al., 2021; Horing & Buchel, 2022). The next chapter will discuss

results of studies that investigated pain modulation by subjective control.

1.3 The Effects of Control on Pain

Pain can be modulated by external and internal factors that lead to the recruitment of the
endogenous pain modulatory system. One instance of this modulation are the effects of ex-
pectations on pain processing. Subjective control is tightly linked to the precision of expec-
tations, because it results from perceiving reliable contingencies between environmental
cues, actions and outcomes. This chapter will converge the topics pain, subjective control
and expectations and discuss how control influences pain perception. Special emphasis

will be placed on the overlap of control and predictability.

1.3.1 Behavioral mechanisms

As discussed above, pain can be understood as a behavioral learning signal that guides
the organism away from experiences that threaten its physical integrity (Seymour, 2019).
An interesting question arises, if the organism can’t react to this internal learning signal.
Such a loss of control occurs, for instance, in chronic pain conditions, where the strategy to
alleviate or prevent pain might not be known, and, in fact, in most laboratory experiments
investigating pain perception, where participants are asked to endure pain.

Theoretical accounts came up with different hypotheses regarding the effects of control
over pain. The first and most intuitive hypothesis on this matter is that if pain falls under
individual control, it is perceived as less intense, because it is evaluated to be less threat-
ening (Wiech et al., 2006). Conversely, pain should be perceived as more intense if it is
uncontrollable, as no reappraisal in terms of safety can be initiated. This hypothesis also

aligns with the idea that perceiving control is related to dopaminergic reward processing
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(Leotti et al., 2010; Ly et al., 2019) and may trigger a mechanism similar to reward-induced
hypoalgesia (Becker et al., 2021). Support for control induced hypoalgesic effects comes
from surveys with chronic pain patients, showing that helplessness, the perceived lack of
control and low perceived self-efficacy are predictors of increased pain severity (Samwel
et al., 2006; Craner et al., 2016; Yessick & Salomons, 2022). Furthermore, if pain treat-
ment can be self-administered after surgery, patients consume less medication (Ballantyne
et al., 1993), but see Macintyre, 2001 for a more in-depth discussion. This indicates lower
perceived pain or higher perceived treatment potency, if treatment is under individual con-
trol. Also, multiple studies that experimentally investigated effects of control on acute pain
found evidence for a hypoalgetic effect of control. The results emerged in context of differ-
ent experimental designs and across different pain modalities, like electrical shocks (Miller,
2012; Gonzalez-Roldan et al., 2021), thermal heat pain (Wiech et al., 2006; Brascher et al.,
2016; Strube et al., 2023) and mechanical pain (Lee et al., 2021).

Other accounts propose that control might actually increase perceived pain intensity.
The hypothesis of control-induced hyperalgesia can be derived straightforwardly, when
framing pain as a learning signal (Seymour, 2019). If pain’s function is to convey informa-
tion about how and when to act, i.e. when to set down the hot coffee mug, then it should
be modulated according to the environmental need and opportunity to learn (Zhang et al.,
2018). As a result, controllability might increase acute pain, as it allows the organism to
react to it and profit from the informational value it provides. In contrast, if no control over
pain can be exerted, there is no need for a strong internal learning signal, because nothing
can result from it behaviorally. Notably, the theory predicts also an increase in pain relief
(i.e. lower pain), if control is provided over the offset of a tonic painful stimulus. It sug-
gests that in this case the relief signal should be increased, because it can be exploited
(Desch et al., 2023). Indeed, there are some studies that report hyperalgesic effects, when
control over pain was given (Salomons et al., 2015; Gonzalez-Roldan et al., 2016) and
hypoalgesic effects of control, when control over pain relief was given (Zhang et al., 2018;

Strube et al., 2023). Another argument for hyperalgesic effect of control over pain is re-
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lated to effects of stress on pain: high stress can have hypo- or analgesic effects (Butler
& Finn, 2009), because this enables the execution of a defensive action. When facing
uncontrollable pain, an individual might be more stressed than if it has control over pain.
Thus, reducing stress levels by providing control could result in relatively higher perceived
pain, because no stress-induced hypoalgesic mechanisms are triggered. A similar hypoth-
esis has been put forward to explain higher perceived pain when stimuli were predictable,
because unpredictability may have led to stress-induced hypoalgesia in the compared ex-
perimental condition (Quelhas Martins et al., 2015). However, the results from studies on
how stress influences pain perception, particularly when the stress is relatively mild, are
ambiguous, as some studies have also shown increases in pain sensitivity under stress
(Reinhardt et al., 2013; Loffler et al., 2023), while other studies report a decrease in per-
ceived pain (Timmers et al., 2018), possibly depending on the duration, chronicity and
severity of stress.

Finally, when considering that controllability of pain entails a higher expectation pre-
cision (Cramer & Perreault, 2006; Ligneul, 2021) regarding its intensity and/or duration,
studies investigating effects of (un-)predictability on pain perception can be indicative (Pavy
et al., 2024), especially when considering scenarios where a controllable condition has not
been compared to a condition in which pain was equally predictable (Miller, 2012). A re-
cent meta-analysis reports that predictability neither generally decreases or increases pain
perception, but interacts with stimulus intensity (Pavy et al., 2024). In the context of the
Bayesian pain model, it is not surprising that a precise expectation of high pain, in pre-
dictable circumstances, should lead to a more accurate perception of its intensity, just as
precise expectations of mild pain would do. This may lead to an interaction effect if com-
pared to an unpredictable condition, where percepts of both intensities are biased toward
an expected average pain (Zaman et al., 2021), resulting in lower perceived high pain and
higher perceived mild pain, if unpredictable. In fact, studies on magnitude estimation show
that under uncertainty, participants expect stimulus intensity at the mean of the possible

outcomes (Petzschner et al., 2015) and multiple studies report exact this result pattern
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when investigating effects of predictability on pain perception (C. A. Brown et al., 2008;
Zaman et al., 2017; Pavy et al., 2023).

Because the role of predictability has been considered only rarely (e.g. Wood et al.,
2015) when designing experiments on control effects on pain, its interactive influence might
explain inconsistencies in behavioral findings and null effects that were reported in some
studies (Salomons, 2004; Mohr et al., 2005; Kissi et al., 2021; Mosch et al., 2023). The
hypothesis that higher predictability of controllable pain affects its perception depending on
the intensity level is further corroborated by a couple of studies on effects of instrumental
choice on placebo and nocebo effects. Placebo effects were enhanced, when participants
had control over a sham treatment device, resulting in lower perceived pain, i.e. increased
placebo effect, compared to a passive placebo condition, that did not provide control (Tang
et al.,, 2019). Inversely, when framing the effect of the device negatively and inducing
nocebo effects, also nocebo effects were enhanced in the control condition resulting in
higher perceived pain in following active choice compared to the passive nocebo condition
(Tang et al., 2024). These results show that increased expectation precision by control
can lead to increases or decreases in perceived pain depending on the controlled (and

predicted) outcome.

1.3.2 Neural mechanisms

The description of neurobiological mechanisms of control over pain in following section has
been summarized by referring to the literature review conducted in the context of this PhD
thesis, see Habermann et al., 2024. Studies investigating changes in functional brain ac-
tivity in response to controllable compared to uncontrollable pain naturally focus on typical
pain processing regions. Accordingly, an influential early study reported attenuated ac-
tivity in the ACC, anterior insula, and somatosensory cortices in response to controllable
pain (Salomons, 2004). The results were later replicated by the same authors and com-
plemented by the finding that controllable pain decreased activation in the amygdala and

increased activation in the nucleus accumbens (Salomons et al., 2015). The authors inter-

21



Chapter 1. Introduction

preted these signal changes as resulting from the positive emotional impact of perceived
control, which attenuates the affective and motivational response to pain. However, they
did not find an effect on subjective pain ratings in response to the control manipulation,
but only a decrease in state anxiety during controllable pain in one study (Salomons et al.,
2015). Prefrontal brain areas, including lateral PFC, vmPFC and rACC are hypothesized to
mediate this emotion-regulatory effect of control (Limbachia et al., 2021) and the affective
aspects of pain modulation (Kragel et al., 2018). Indeed, the relative increase in prefrontal
cortex (lateral, dACC) activity during controllable pain was replicated and accompanied by
lower anxiety ratings and decreased pain ratings (Wiech et al., 2006; Mosch et al., 2023).
In addition, a multivariate activation pattern, which primarily predicts psychological aspects
of pain (not pain intensity) and includes the nucleus accumbens and PFC, mediated the
effect of control on the attenuation of reported pain (Woo et al., 2017).

Other studies point to an influence of control on early sensory processes, as they show
a decrease in primary and secondary sensory cortex activity, when control over pain was
possible (Helmchen et al., 2006; Lee et al., 2021). Yet, not all results regarding neural
processes triggered by control over pain are consistent. Self-applied pain has also been
associated with steeper intensity-related increases in posterior insula activity (Helmchen et
al., 2006; Mohr et al., 2008), a region that usually scales with increased pain intensity and
reflecting rather the sensory than the modulatory aspect of pain (Segerdahl et al., 2015).
The same study reported steeper increases in S1, prefrontal cortex activity and cerebel-
lum in the externally applied pain condition (uncontrollable). In addition, increased positive
connectivity between the anterior insula and the medial PFC were reported when pain was
uncontrollable, alongside with increased pain perception, while negative connectivity be-
tween the insula and the dorsolateral PFC in the controllable condition (Brascher et al.,
2016). The authors suggest that different subparts of the PFC either facilitate or inhibit
pain via the anterior insula. Finally, studies on pain-avoidance (which could be framed
as control over pain occurrence), showed that surprising pain was encoded in PFC, ACC

and insula; whereas surprising successful avoidance changed brain activity in S1 (Jepma
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et al., 2022; Le et al., 2024). However, these activations were not compared with a condi-
tion, where pain could not be avoided at all (uncontrollable condition), so these pain-related
brain activation patterns can not be directly related to the opportunity to avoid.

As for the behavioral results, the mixed results in neuroimaging studies can also partly
be explained by the fact that no adequate control for predictability effects has been in-
stalled, making it difficult to attribute the effects to control and not to decreased salience
or surprise. Compared to a condition where outcomes are unpredictable and therefore
more salient, control and precise prediction render events less surprising and decrease the
need for attentional focus. The (anterior) insula and the ACC represent central regions of
the salience network (Uddin et al., 2019; Molnar-Szakacs & Uddin, 2022). Thus, activity
changes in these regions were equally likely to result from changes in predictability and
not controllability, when both environmental factors were confounded. The same applies
to the PFC, which is recruited during focused attention (Uddin et al., 2019), but also has
pain-modulatory properties (Peyron et al., 2019) and responds to changes in contingency
(Ligneul et al., 2022). Although seemingly difficult to disentangle those factors, it might be
that the unspecific role of those brain regions in fact reflects how the (hypoalgesic) effects

of control are mediated.

1.4 Contribution of this thesis

This thesis discusses how perceived control over pain influences its perception, specifically
whether feeling in control reduces pain. Besides an extensive literature review that inves-
tigated control-induced effects on experimental acute pain and brain activity (published as
Habermann et al., 2024), | conducted two empirical studies for which | designed novel ex-
perimental tasks to first, disentangle controllability and predictability, particularly also as
influences on brain activity in response to pain; and secondly test generalization effects
of a lack of control over pain. The fMRI-experiment revealed overlapping and specific ef-

fects of predictability and controllability on reported pain intensity and neural responses and
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pinpoints these effects to changes in the expectation precision. The second, purely behav-
ioral project tested in a typical learned helplessness design, that, also assessed changes
in pain perception, how learning is affected by uncontrollable pain. It tested if a causal
chain of effects can be created in the laboratory setting, where a lack of control over pain
leads to alterations in perception and results in behavioral changes. Results showed that
different personality traits influence the response to the experience of uncontrollable pain:
dependent on the locus of control and depressive symptoms participants, showed either
compensatory or random behavior after experiencing a lower level of control over pain. In
the next chapter, | will outline the methods that are relevant to understand the design and
statistical analysis of the empirical results. In chapters 3 and 4, | will provide the detailed
descriptions of the empirical studies, before merging the findings and interpreting them as
a whole in the general discussion in chapter 5, where | evaluate the implications of the re-
sults, potential limitations, and provide a perspective on how the results can inform future

studies.
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The central objective of the empirical studies was to explore the relationship of subjec-
tive control and pain on the behavioral and neural level. In a first study, the shared and
specific mechanisms by which controllability and predictability modulate pain were investi-
gated by collecting behavioral data (pain ratings) and functional brain activity in two distinct
samples. This more conceptual approach of disentangling control and expectation effects
is relevant, because expectation effects play a major role in sensory processes related to
control and pain. To detect how this effects are mediated, predictions from different mech-
anistic models of pain perception were applied to the behavioral data. The second study
examined how a perceived lack of control might shape learning behavior and pain percep-
tion. Before presenting both studies in detail, some general methods are described in this
section. These encompass the methods for applying cognitive models to behavioral data,
as well as shared methods of both studies, concerning participants, thermal stimulation,

statistical models, questionnaires and the software used.

2.1 Participants

Participants for the behavioral and the fMRI samples were recruited through a local online
platform (https://www.stellenwerk.de/hamburg) and included when they met none of the
following exclusion criteria: acute or chronic disease, drug or medication intake (except for
contraceptive or allergy medication), chronic or acute pain conditions, acute condition or
injury on the stimulation sites (lower forearm (study 1), lower leg (study 2)). The sample
undergoing fMRI scanning, was additionally screened for specific contraindications (preg-
nancy, metal implants, claustrophobia, etc.) and the participants of study 2 for allergy to

capsaicin. Participants were informed about the study procedures and screened for exclu-
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sion criteria during a phone call before participation. Upon arrival, all participants provided
informed consent and received financial compensation (and in some cases additional study
credits) for their participation afterwards. The local ethics committee (Ethikkommission der

Arztekammer Hamburg) approved the studies.

2.2 Thermal stimulation and calibration

The pain modality in both studies was thermal heat pain. Thermal stimulation was per-
formed using 30x30mm? Peltier element thermode (Pathway model in the behavioral stud-
ies and TSA2 model in the MR scanner, with CHEPS probes in the first studies and ATS
probe for study 2, all made by Medoc, Israel). The thermode settings were adjusted slightly
to accommodate the different safety requirements of the studies, based on the differing du-
rations of the applied stimuli (see Methods sections 3.1 and 4.1). Prior to the main tasks
in all studies, individual stimulus intensities (in °C) were derived by a calibration proce-
dure. After the application of pre-exposure stimuli, pain thresholds were determined by
binary ratings of the participants classifying a stimulation temperature as either painful or
non-painful. Following this threshold determination, stimuli with varying temperatures were
applied in order to derive the range of temperatures that would be rated between pain
threshold (minimally painful) and pain tolerance (unbearable pain). Individual regression
lines were iteratively fitted to the provided rating and temperature relationship and validated
in a further step to establish a fit of stimulus intensity to VAS ratings. In study 2, stimuli were
administered on skin that was pretreated with capsaicin cream and had different lengths in
parts of the experiment. Therefore, different settings and limits for baseline temperature,
rise time and maximal allowed temperature were applied, which are described in detail in

the methods sections of the empirical studies.
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2.3 Locus of control questionnaire

In both studies the locus of control (LC) of the participants was determined. Because there
are different ways to assess the locus of control, the instrument used in the empirical part of
this thesis is shortly described here. The locus of control questionnaire developed by Kram-
pen, 1991 collects answers to four different subscales that reflect different types of control
beliefs: self-concept of own skills, internality, social externality (usually framed as "powerful
others”) and fatal externality ("chance”). From those scales, the subscales internality and
externality can be computed by respectively summing up both scores of self-concept of
skills and internality and social and fatal externality. Example items from the self-concept
and internality subscales are: ”"In an unclear or dangerous situation, | always know what
| can do.” or ’I can determine many things that happen in my life myself.”. The two other
subscales (powerful others and chance) together constitute the externality score. Example
items for the externality subscales are: "My well-being depends to a large extent on the
behavior of other people.” (powerful others) and "It is not good for me to plan far in ad-
vance, as fate often intervenes.” (chance). Answers to the items are collected on a scale
ranging from 1 (very wrong) to 6 (very correct). The externality and internality scales have
a minimum value of 16 and a maximal value of 96. For the other questionnaires utilized
in the studies, | kindly refer the reader to the referenced manuals or papers describing the

instrument development.

2.4 \Visual analogue scales

Pain ratings were collected on a computerized visual analogue scale (VAS) ranging from 0
to 100 that was depicted in white on a dark grey background. Participants were instructed
that a rating at the lower anchor indicated a minimally painful experience, while a rating at
the upper anchor represented unbearable pain. They were always instructed that "unbear-

able pain” was to be understood in the context of study participation and not necessarily
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to the most excruciating pain imaginable. Participants were verbally instructed about the
meaning of the different sections of the scale, but ticks and descriptive labels were only
shown at the scale start and end during the experiments. Participants could move a red
rating bar and confirm their rating by button presses. The starting position of the rating bar
was randomized to prevent systematic anchoring effects. In study 2, additional pain relief
pleasantness, perceived control and helplessness were rated on similar VAS, described in

more detail in the methods section of study 2.

2.5 Statistics

2.5.1 Linear mixed effects models

Effects in both studies were quantified with linear mixed effects model (LMM). Linear mixed
effects models include explicit predictors of the outcome variable (fixed effects) and, addi-
tionally to a random error term, include a structured error term related to other predictive
variables. This structured error term is called the random effect term and can be included to
control for example, for repeated measurements or a paired design. Main and interaction
effects are be defined in the design matrix. Importantly, the effects are always estimated as
deviations from an implicit reference category. This reference category is the intercept from
which the increase or decrease in the dependent variable is estimated given the different
levels of the predictor. If interaction effects are modeled in the design matrix (by hand or
by the internal building of a model matrix in a package), the main effect of a predictor in the
model output can only be interpreted at the lowest factor level of the predictors, which are
also included in the interaction term. For example, if an interaction effect of experimental
group and intensity is modeled, then the estimated effect of intensity will only refer to the
effect of intensity in the experimental group that is included as the reference category, but
won’t be informative regarding the effect of intensity at group average. By more complex
coding, also a zero intercept or baseline can be included in the model, from which all ef-

fects can be estimated. However, if interaction effects are present, the interpretation of
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main effects can be misleading, because the average estimate might let the effects appear
more consistent than they actually are. The predictor or regression weights are typically de-
scribed as § values and | will use the terms interchangeably throughout the results sections
of this thesis.

A typical way to implement those models is the use of packages like Ime4 (Bates et al.,
2015). In Ime4, model parameters are estimated by optimizing a restricted maximum like-
lihood (REML) criterion. Because the exact null distribution for the parameters is unknown
in linear mixed models, an approximation of the degrees of freedom is necessary. The
package "ImerTest” (Kuznetsova et al., 2017) uses the Satterthwaite’s method as default
to make it possible to derive p-values from those models. Due to time constraints, this
approach was implemented for the statistical analyses in study 2. However, rating data in

study 1 were analyzed with Bayesian methods, that are described in the next section.

2.5.2 Bayesian data analysis

Bayesian methods represent an alternative way to estimate model parameters. In contrast
to REML optimization, the full Bayesian approach allows for uncertainty in the estimated
parameters (Bates et al., 2015) and outputs the entire probability distribution of the es-
timated parameter space. Furthermore, it does not rely on null hypothesis testing, but
allows to derive the actual probability of parameter values. The Bayesian approach makes
all prior assumptions regarding distributions of parameters explicit by design (Kruschke,
2021), because the assumptions regarding data distribution are included in the form of pri-
ors, which are combined with observed data points (likelihood) to derive the probability of
model parameters (posterior). Bayesian parameter estimation for the linear mixed models
was performed in study 1, using the Hamilton Monte Carlo (HMC) sampler implemented
in Stan (Betancourt, 2017; Stan Development Team, 2024). The random effects and error
structure was modeled in parallel to the approach outlined in Sorensen et al., 2016. De-
sign matrices were self-written in R (R Core Team, 2020). Also, more complex mechanistic

models were applied to explain effects in study 1. Those models were also implemented
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in Stan and are described in detail in section 3.1.

Sampling Instead of optimizing a maximum likelihood criterion, estimates are derived
by sampling from a simulation of the combined probability space of the parameters. Stan
implements a No-U-Turn sampler, an adaptive type of a HMC sampler (Betancourt, 2017).
The sampler determines the most likely values of model parameters by running physical
simulations of the posterior distribution of the model parameter space and samples values
in respect to their estimated probability given the model, prior and likelihood (McElreath,
2020). For the sampling process, the number of iterations, separate chains performing the
sampling and the number of warm up trials need to be defined. The following settings were
applied: number of iterations = 4000, number of chains = 4, number of warm up iterations
= 1000. For parameter recovery of the cognitive models, the number of iterations was

changed to 1000 (plus 500 warm-up iterations) for time efficiency reasons.

Model convergence and sampling diagnostics To check that the sampling process did
not encounter any problems, possibly due to errors in the model, trace plots and the shape
of the posterior distributions for the parameters were visually inspected. Trace plots plot
the samples of the chains in sequential order. An additional measure of chain convergence
is the R measure, which compares the within-chain to the between-chain estimates of pa-
rameters (Vehtari et al., 2021). A R values > 1.00 indicates that a chain did not converge
(McElreath, 2020), i.e., that it got stuck in another area of the probability space. Additional
model diagnostics are pairs plots of the parameter samples and the number of effective
samples. With pairs plots, the shape of the posterior densities of each parameter as well
as their inter-correlations can be examined; the number of effective samples corrects the
number of samples with respect to auto-correlation in the sampling process (Gelman, 2014;
Stan Development Team, 2024). R, trace and pairs plots were checked for each model fit-

ted with Stan. These measures were evaluated for all models used throughout this work.
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Highest posterior density intervals The shape of the resulting distribution of model
parameter estimates can be evaluated by computing highest posterior density intervals
(HPDI). HPDIs cover the range of parameter values (e.g. predictor weights) that has a
specified probability mass. For example, if the probability of a parameter to be zero would
be very high, the HPDI would cover mainly zero and very small values. In context of predic-
tor weights within the linear mixed models, this would indicate that low or absent influence
of the predictor on the dependent variable, i.e., that changes in the predictor did not result in
changes in the dependent variable. In contrast to p-values and confidence intervals derived
in frequentist analysis approaches, HPDIs directly indicate the probability of regression co-
efficients (Kruschke, 2015). In sum, they communicate how compatible different parameter

values are with the model and the data, depending on the prior choice (McElreath, 2020).

Priors A crucial step in Bayesian data analysis is the definition of priors. Priors repre-
sent sensible assumptions about the distribution of the model parameters. They encode
the prior state of information before the model has "seen” the data. While the approach
outlined in Sorensen et al., 2016 uses flat uniform priors for the predictor weights in a lin-
ear mixed model, it has been advocated to use "weakly informative” or regularizing priors
in regressions instead (Gabry et al., 2019). This is because uniform priors place to much
probability on very high and low values. In context of the regression models applied in this
study, the weakly informative priors for the predictor weights rendered the analysis more
conservative, because they placed more weight on zero. Thereby, the priors protect the
analysis from overfitting. The priors in the more complex models depend on the assump-

tions in the different models. All priors are described in methods section of study 1 (3.1).

Expected log-pointwise predictive density One strategy to estimate the predictive ac-
curacy of models with Bayesian estimation procedures is leave one out cross-validation
(McElreath, 2020). In this type of cross validation, one observation is left out from the sam-
ple, the model is trained on remaining observations and the left-out data point is predicted.

The (log-)probability of the left-out data point under the model assumption is evaluated.
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This is repeated of all observations and the summed log-probabilities then constitutes a
measure for the accuracy of the model: the expected expected log-pointwise predictive
density (ELPD). To avoid fitting the model over and over again (which would take very long
due to the sampling procedure), the impact of observations can be evaluated using im-
portance weighted samples from the posterior distribution (Vehtari et al., 2015). By using
these weighted observations, the models out of sample accuracy can be estimated and
the impact of the single observations is approximated. Study 1 used Pareto smoothed im-
portance sampling for the approximation of these importance weights (Vehtari et al., 2015,
2017) . One diagnostic of this method are the Pareto-i values, which shape the distribu-
tion that smooths the importance weight. If k values are too high, the importance weights
cannot be reliably estimated and thus also the results of the cross-validation cannot be in-
terpreted. Because this was the case for some of the models, a more robust method that
employs a novel mixture estimator for ELPD was applied (Silva & Zanella, 2022). A higher
positive value of ELPD indicates a higher probability of the data given the posterior over
parameters. ELPD is relevant for model comparison, i.e., to decide if one model explains
the data better than an alternative model. A difference of ELPD < 4 between models is
considered small. If ELPD differences between models are larger than 4 and data includes
more than 100 observations model comparison results can use the standard error of the
difference for interpretation (Sivula et al., 2022). Leave one out cross validation and model

comparison was done using the loo package in R (Vehtari et al., 2024).

Parameter recovery \When testing new models, it is important to verify that they behave
as intended under the best possible conditions (Wilson & Collins, 2019). This can be done
with parameter recovery. Parameter recovery describes the process of simulating datasets
with known parameter values. After the simulation, the models of interest are tested and
parameter values are derived. The resulting parameters estimated by the model are com-
pared with the input values of the simulation. This recovery procedure ensures that a model

can at least theoretically perform as intended. In a perfect scenario, the input and output
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parameters are highly correlated. For the mechanistic models tested in study 1, data sets
of 60 hypothetical participants were simulated, using the structure of the different models.
The sample size was chosen to be close to the empirical one. The resulting parameter
values were correlated with the parameter input of the simulation. Additionally, the input-
and output parameters were plotted against each other in a scatter plot, see Figures A1
to A3. Successful recovery was determined based on correlation coefficients and visual

inspection of the scatter plots.

2.6 Software

Behavioral data of both studies were preprocessed, analyzed and visualized using MAT-
LAB R2020a (The MathWorks Inc., 2020), R (R Core Team, 2020), especially using the
Ime4 package (Bates et al., 2015), rstan (Stan Development Team, 2024) and Python. P-
values from linear mixed models were estimated using the ImerTest package (Kuznetsova
et al., 2017). Figures of behavioral data were created with the ggplot2 package in R (Wick-
ham, 2016). Questionnaires in study 2 were implemented in LimeSurvey (LimeSurvey
GmbH, n.d.). Preprocessing and analysis of fMRI data were conducted with SPM12 build
7771 (Friston, 2011) in MATLAB R2020a (The MathWorks Inc., 2020). Figures of fMRI re-
sults were created with nilearn (Nilearn contributors et al., 2025). The experimental tasks
were programmed using the Psychtoolbox extension (Brainard, 1997; Pelli, 1997; Kleiner

et al., 2007).
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The problem of disentangling the effects of [actual] controllability

from predictability may be next to logically impossible.

Seligman, 1975

In his quote, Seligman (1975), raises the issue, that when an event is controllable, it
naturally is also predictable. For example, if the intensity of a painful stimulation can be
self-controlled, it can also be precisely predicted. This interrelatedness of controllability
and predictability of stimuli can pose a challenge when trying to estimate the influence of
control on pain. Many studies established that expectations, and the precision of these
expectations can influence pain perception (Blichel et al., 2014; Geuter, Koban, & Wa-
ger, 2017; Grahl et al., 2018). Therefore, when studying effects of control, it might not
be clear which of the two environmental features, controllability or predictability, actually
caused changes in pain perception. The disentanglement requires an experimental con-
dition, where the level of predictability of pain is matched to the level of predictability that
results as a by-product of control.

Effects of predictability were shown to interact with stimulus intensity regarding modula-
tory effects on pain (Pavy et al., 2024): high pain is rated as more intense when its intensity
is predictable, whereas low pain is rated as less intense under predictable conditions (Za-
man et al., 2021). This stems from the effect that predictability anchors expectations at
the intensity level of the stimulation, while unpredictability leads to widely distributed ex-
pectations. This is because, in the unpredictable case, the best guess about the stimulus
intensity, is the expected value, i.e., the average of all possible intensities. Following the
expectation-integration framework of the Bayesian pain model, expectations that are cen-

tered at an average intensity produce an interaction effect, because perception of both,
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stimuli of low intensity and high intensity, will be biased towards the mean of all possible
outcomes.

Keeping these results in mind, hypotheses about the pain modulatory influence of con-
trol can be formulated, which integrate the known effect of predictability. For example, it
might be that controllability decreases pain perception across all intensity levels. This is hy-
pothesized by accounts that put forward control as a general safety signal, which produces
hypoalgesia (Salomons, 2004); or controllability might increase pain across all intensity lev-
els, as theorized by the informational value theory of pain (Seymour, 2019). Both effects
would not result in an interaction effect with predictable, but solely with the unpredictable
pain. It could also be the case, that controllability even strengthens the interaction effect
of predictability by internally increasing expectation precision through self-involvement. Fi-
nally, effects of control over pain intensity could potentially be fully explainable by pre-
dictability, resulting in an equivalent strength of interaction effects of both, when compared
to unpredictable pain.

To test for specific effects of control, this empirical study accordingly implemented a
predictable condition that provided the same level of information about pain intensity as the
control condition, without actually granting control. In addition, to measure net effects of
predictability, another experimental condition was included, where pain was neither con-
trollable nor predictable. Thus in the three conditions pain was either (i) controllable and
predictable, (ii) predictable, but uncontrollable or (iii) unpredictable and uncontrollable. As
outcome variable, pain intensity ratings were collected. The experimental paradigm was
tested as a within-subject design in a behavioral sample and then in a independent sample,
which completed the task during functional magnetic resonance imaging (fMRI).

The fMRI study aimed to explore the neural bases of the effects of controllability and
predictability on pain processing. Results of early imaging studies report control-induced
changes in brain regions that are associated with the descending pain modulatory system
(e.g. the insula and ACC) and the exertion of cognitive control (lateral prefrontal cortex) dur-

ing pain (Salomons, 2004; Wiech et al., 2006). This was interpreted in light of an emotional
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reappraisal mechanism induced by control. Following the argumentation of the studies, the
effects resulted from activation of prefrontal brain regions that conveyed safety signals to
pain processing regions upon detection of control. These regulatory neural pathways then
supposedly contributed to pain reduction. However, the reported activation differences in
brain regions like ACC and anterior insula are especially prone to also result from differ-
ent levels of predictability, because unpredictable stimuli are usually more salient and both
regions are typically activated by unexpected and salient stimuli, as discussed in the in-
troduction. Also multiple studies showed that different pain expectations recruit the ACC
(Schenk et al., 2024), insula (Horing & Blichel, 2022) and PAG (Roy et al., 2014). Specif-
ically the PAG seems to be responsive to different precision level of expectation (Grahl
et al., 2018). Thus the effects reported by earlier studies might in fact not be related to
control-induced hypoalgesia, but stem from different levels of predictability. So, the col-
lection of fMRI data was necessary to reveal if and where an overlapping and/or specific

influence of control on neural pain processing might be present.

3.1 Methods

Sample 59 participants were included originally in the behavioral study. During data pre-
processing, five participants had to be excluded from the study (four made to many errors
in the task (in >10% of color-matching trials), one person did not understand the task). A
final dataset of 54 participants was analyzed. An independent sample of 64 participants
participated in the fMRI study. Participants who were included in the behavioral study were
not eligible. Five participants had to be excluded from the analysis (two had a very low pain
threshold, one thought that they were deceived by the experimenter, one mad to many er-
rors in the task and one had an incidental neurological finding). Behavioral data from 59
participants were analyzed, while four imaging data sets were excluded due to excessive or
frequent head movement, as determined by visual inspection. This allowed for the analysis

of functional brain activity from a total of 55 individual datasets.
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Thermal stimulation settings Thermal stimulation was performed as described in the
general methods. The baseline temperature was set to 32°C the rise/fall rate was set to
15°C/s in the behavioral and 13°C/s in the fMRI sample, due to different software limitations
of the thermode models. The maximally allowed temperature was set to 49°C for safety
reasons. If calibration suggested higher temperatures, they were adjusted to that upper
limit. Stimuli had a plateau duration of 4s and were calibrated to correspond to rating
targets of 30, 50, and 70 on a 0-100 VAS.

Study design The study investigated within-subject effects to reduce between-subject
error. All participants completed runs of the controllable, predictable and unpredictable
pain condition. After establishing the paradigm in the behavioral sample, it was used to
investigate concurrent neural activity during the improved task with functional brain imaging.

Pain ratings and answers to questionnaires were collected in both samples.

Experimental procedure After arriving, participants received information regarding the
thermal stimulation, experimental task and measuring procedures and signed informed
consent. Additionally, they filled out the questionnaires and provided demographic infor-
mation. Then participants were familiarized with the thermode and underwent a calibra-
tion procedure to determine individual stimulus intensities. After the calibration procedure,
participants performed each experimental condition twice, resulting in six runs. Each run
included 15 trials, so in total participants completed 90 experimental trials. The condition
ordering was pseudo-randomized to ensure that each condition would be presented once
in the first half and once in the second half of the experiment. For instructive reasons, par-
ticipants did three test trials of each conditions before the tasks started in the first half of
the experiment. The thermode was placed on the participants left forearm at three different
locations throughout the experiment. The location of the thermode was changed after each
run. Each skin patch was stimulated twice after the same time interval, to guarantee the
same duration of recovery. The positioning order was pseudo-randomized to counterbal-

ance conditions. After completion of the task, participants filled out the payment form and
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participants in the fMRI sample additionally completed a short exit questionnaire. Each run
took approximately 7 min; including the instruction, preparation and calibration period, the

experimental sessions had an overall duration of approximately 2 - 2.5 hours each.

Task All participants completed two runs of the three experimental conditions, in which
pain intensity was either (i) controllable and predictable, (ii) predictable but uncontrollable,
or (iii) unpredictable and uncontrollable. In all three experimental conditions, low, medium
and high intensity heat pain stimuli (corresponding to VAS ratings of 30, 50, and 70) were

applied to the left forearm of the participants.

Controllable condition In the controllable condition, participants determined the
stimulus intensity that would be applied later in the same trial (choice task). The pain
intensity levels were represented by three differently sized (small, medium and large) and
colored (purple, yellow, turquoise) circles, which were shown at the beginning of one trial
(see Figure 3.1). To make a choice, participants had to select the button displayed on the
lower part of the screen that matched the color of the circle sized correspondingly to the
desired intensity level (i.e., they had to press the button with the same color as the largest
circle, if they wanted to select the highest stimulus intensity). To guarantee that participants
received the same number of stimuli at all three intensity levels in the controllable condition
as in the other two conditions, a limitation was imposed on the free choice: each intensity
had to be selected five times in one run (15 trials in total). When participants tried to select
an intensity level for a sixth time, one of the other available intensity levels would randomly
be chosen by the computer program. Participants were instructed to avoid that behavior,
but to choose deliberately. Inside the circles, numbers were shown that indicated how often
the corresponding intensity level was still available. A zero was displayed after the intensity
level had been selected five times. A time limit of 4s was imposed for the choice period.
Choice was executed by pressing a key on a keyboard (behavioral sample) or a button on
a button box device (fMRI sample). The chosen circle was then highlighted for 3s and the

respective stimulus intensity was applied after a jittered expectation phase of 2-5s during

38



Chapter 3. Empirical Study 1

which a white fixation cross appeared on the screen. After the cued stimulation period, the
white fixation cross was shown again for 2-5s. Participants then rated the pain intensity of
the stimulus on a VAS scale (8s max.). The starting position of the rating bar was random-
ized to be shown at some new position between 30 and 70 in each trial to avoid systematic
anchoring effects. During the inter-trial interval (ITI) of 2-4s the fixation cross was shown.
The position and colors of the circles and the color-button mapping for the motor response
was randomized across trials to control for perceptual similarity and spatial remapping. For

an schematic overview of the time-course of the task see Figure3.1.

Predictable condition In the predictable condition, the trials also started with the dis-
play of the three circles, but all circles were shown in the same color. Participants had to
do a "color-matching task”, i.e., select the button that matched the color of the circles. This
task was introduced to control for motor responses and to keep participants focused. In
contrast to the controllable condition, the button press in the predictable condition did not
have an impact on the intensity of the subsequent pain stimulus in the trial. Importantly,
participants were informed about the upcoming stimulus intensity in each trial, by the high-
lighting of the circle that represented the upcoming stimulus intensity. Also, participants
were informed about the number of times the different intensity levels would be applied
again during the current run, by the numbers shown inside the circles. The anticipation,
stimulation, and rating phases, as well as the ITI, were designed to be equivalent to the

controllable condition.

Unpredictable condition In the unpredictable condition, participants did the same
color-matching task as in the predictable condition. However, they were not informed about
the upcoming stimulus intensity or about the remaining trials of each intensity application
in the run. Instead, a zero was shown inside of all circles from the start and all circles were
highlighted after the response in the color-matching task. The expectation, stimulation,
and rating phases, as well as the ITI were equivalent to the other conditions. Intensity se-

quences in the predictable and unpredictable conditions were defined by the experimental
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script.

controllable

predictable
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unpredictable
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trial start response information anticipation stimulus jitter rating
0.5s 4s 3s 2-5s 4s 2-5s 8s (max)

Figure 3.1. Time-course of one experimental trial. Participants either chose the upcoming stimulus intensity
(controllable runs) or confirmed the color of the circles (predictable, unpredictable runs) by selecting the correct
button displayed on the lower part of the screen. The number of remaining stimuli of each intensity level were
shown inside the circles in the controllable and predictable condition. In the unpredictable condition a zero
was shown inside the circles for the duration of the entire run. To guarantee ratings for all intensity levels in
controllable runs, the limitation was imposed that participants had to select each intensity level five times in
one run. After the button press, the circle was highlighted, which corresponded to the intensity in size that was
either self-chosen (controllable) or script-determined (predictable). In the unpredictable condition, all circles
were highlighted for 3 seconds. After a jittered anticipation phase (2-5s), a white fixation cross turned red and
a 4s long painful heat stimulus of either low (VAS 30) medium (VAS 50) or high (VAS 70) intensity was applied.
After stimulus offset the cross turned white (2-5s jitter) before the rating scale was shown.

Intensity sequence generation While the intensity sequences were determined by par-
ticipants’ choices in the controllable condition, they had to be predefined for the predictable
and unpredictable condition. Here, the aim was to match the sequences of intensities as
closely as possible to the controllable condition, to avoid confounding order-effects. In a
within-subject design, there are different strategies to implement this matching procedure
across conditions. One strategy is to use the sequence that was determined by the par-
ticipant’s choice in the controllable condition and apply this to the other conditions, where
no choice is possible. However, this requires that the controllable condition always is com-
pleted before the other conditions, making it impossible to completely counterbalance their

order. Also, this strategy provides the experimenter with only one sequence per experi-
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mental half, which could make the intensity sequences in the unpredictable condition un-
intentionally predictable. The other option would be to yoke across participants, that is, to
apply the chosen intensity sequence of one participant to the next. This would only be a
valid approach if one assumes similar choice behavior across participants. Because con-
ditions should be counterbalanced to control for habituation to the painful stimulation and
because systematics in choice behavior were unclear before starting data collection, no
yoked design was implemented. Thus, in the behavioral sample, the stimulus intensities
in predictable and uncontrollable runs varied randomly and were consequently uniformly
distributed among trials.

After analyzing the choice pattern of the behavioral sample, it became visible there
was a shared structure in the sequence in which participants selected the intensities. Par-
ticipants tended to select high intensity stimuli rather in the beginning, stimuli of medium
intensity in the middle and of low intensity toward the end of a run (see section 3.2.1). Af-
ter observing this effect, the intensity sequence generation for the predictable and unpre-
dictable conditions was adapted to match that choice pattern instead of creating uniform
distributions. The frequencies of stimulus intensities in controllable trials of the behavioral
sample were used as probabilities to create intensity sequences for the predictable and
unpredictable runs. Due to the limit of choosing each intensity five times and the proba-
bilistic structure that was applied without any additional sequence criterion in this approach,
the generated intensity sequences showed an unwanted increase of high intensity stimuli
towards the end of the predictable and unpredictable runs. When this became visible dur-
ing data collection (after collecting data from 34 participants), the procedure was adapted
again. For approximately the second half of the fMRI sample (n=25), intensity sequences
of controllable runs from the behavioral study were applied, in the predictable and unpre-

dictable condition.

Questionnaires Demographic information was collected from the participants, in addi-

tion to the state form of the State-Trait-Anxiety Inventory (STAI) (Laux et al., 1981) and a
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German version of locus of control (LC) questionnaire (Krampen, 1991). The fMRI sample
completed a qualitative exit questionnaire. To ensure that participants did not incorrectly
assume that they were deceived by the experimenter, they were asked if they felt that they
got the temperature they selected (controllable condition) or were informed about (pre-
dictable condition). Finally, they were asked how many different stimulus intensities they

perceived and if they had any further comments about the study.

Behavioral data analysis

Linear Models Linear model implementation followed the statistical approach out-
lined in sections 2.5.1 and 2.5.2. Design matrices that specified fixed main and interaction
effects as well as the subject identifier for the random intercept were created. Regression
parameters, namely intercept, 5-weights and random effects and the error term were esti-
mated using HMC sampling. Resulting posterior distribution shapes, 95% HPDI and ELPD
were analyzed to evaluate the effects. Reaction times were analyzed using linear mixed

effects models in Ime4 (Bates et al., 2015), due to time constraints.

Reaction Times To detect differences in cognitive demand between the conditions
and to verify that participants made deliberate choices in the controllable condition, the
reaction times (RT) in the different tasks (choice; color-matching) were compared. The RT
in the choice task was defined as the time period between the appearance of the options
on the screen and the button press indicating the choice. In the color-matching task, the
RT refers to the time until the button showing the same color as the circles was pressed.
Predictors included session number, trial number and condition as fixed; and the subject

identifier as a random intercept effect.

Choice behavior To detect general choice patterns in the controllable condition, in-
tensity frequencies over trials were analyzed with simple linear models. The models in-

cluded the trial number (¢t € [1,15] N Z) as predictor for the dependent variable y, the
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occurrence frequency of the intensity levels in percent. This analysis was conducted par-
ticularly for the controllable condition, as it aimed to reveal a shared strategy of participants
to order the intensity levels in a run. Distinct models were fitted for each intensity level (low,
medium, high). The models for low and high intensity had the following form, including an

intercept «, a slope 3 for the predictor, and an error term e.

y=oa+pPt+e (3.1)

To predict the frequencies of the medium intensities across trials, a quadratic term was
included in a second model, to account for the inverted U-shape observed during visual

examination of the raw data.

Y=o+ fit+ Pat® + ¢ (3.2)

Pain intensity ratings Differences in pain ratings were analyzed with linear mixed
effects model (LMM) to account for repeated measurements of each subject. In addition
to the subject identifier as a random intercept effect, the dummy coded condition identifier
(controllable, predictable, unpredictable), the linear term for the stimulus intensity and the
interaction terms of condition and intensity were included as fixed effects in the design
matrix (X). Run and trial numbers were included to control for habituation/sensitization
effects. To derive all pairwise interaction parameters, the model was fitted twice: once with
the controllable condition as reference category and then with the predictable condition
as reference category (see section 2.5.1). The mean ratings (1) were modeled, with the
following parameters: group intercept («), vector of predictor weights of fixed effects (),
estimate for subject-specific error (e;); see equation 3.3. Ratings y were approximated
assuming a normal distribution around predicted mean and the unexplained error variance

(o¢); see equation 3.4.
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p=a+ (XB)+es (3.3)

y~ N(p, o) (3.4)

Priors for the regression weights were defined as 3 ~ cauchy(0,2.5) and the intercept
as a ~ N(0,50). Uniform priors over [—oo, +00] were implemented for the error terms, to

avoid shrinking of the variance terms.

Standard deviations of pain intensity ratings As a proxy for expectation uncer-
tainty, within-subject standard deviations of all condition-intensity combinations were ana-
lyzed with an additional set of LMMs. The design matrices differed slightly from the rating
models, because intensity was coded as a factor with three distinct levels and not as a
linear term. This approach was necessary because of the quadratic relationship between
intensity level and rating variability that was visible upon inspecting the raw data. There-
fore, additional pairwise differences between intensity levels were investigated: high vs.
medium, low vs. high, low vs. medium. Again, the models were fitted twice: once with the
unpredictable condition and the low intensity as baseline and once with the controllable and
the medium intensity as baseline. The model structure to predict average standard devia-
tion was followed the equations 3.3 and 3.4. Priors for the regression weights were defined
as B ~ cauchy(0,2.5) and the intercept as o ~ N(0,25). Uniform priors over [—o0, 4+00]

were implemented for the error terms, to avoid shrinking of the variance terms.

Expectation Integration Models To investigate what mechanism might have con-
tributed to the effects found in the linear model analysis, a set of mechanistic expectation-
sensation integration models was applied to the rating data. The models follow Bayesian
notions of pain perception and provide predictions of trial-wise pain intensity ratings, while
taking different expectation values into account. Through model comparison it can be de-

termined how likely pain ratings, the measure for individual pain perception, were produced
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by different mechanisms. The models have different sets of group-level and subject-level
parameters and by sampling, the most likely parameter configuration to predict the data
pattern is determined. All models share the aspect that the ratings are approximated by a
normal distribution with a specific mean 1 and variance 7-12, i.e., the posterior distribution,
which can be written as § ~ N (1, 72). The posterior distribution is based on the approxima-
tions of two normal distributions that, respectively, represent the probability of expectation
intensity and intensity of sensory input. The posterior resulting from a normal prior and a
normal likelihood can be analytically derived by normal-normal integration(Gelman, 2014).
The mean of the posterior distribution p; is the precision-weighted and normalized sum of
the prior mean p and the likelihood mean y (see equation 3.5). The precision (inverse

variance) of the posterior distribution }2 is the sum of the prior and likelihood precision

1

(equation 3.6).

72 Ho + =2y
=TT (3-5)
2t
0
111
==+ (3.6)

An equivalent way to express the posterior mean is the prior mean that is adjusted to
the likelihood mean y (equation 3.7). The magnitude of this adjustment depends on the
ratio of prior variance to total variance, i.e., if the prior is very precise it gets adjusted less,
it is imprecise the adjustment to the likelihood is larger. Hence, the influence of the prior

on the posterior mean results from the precisions of both distributions.

2
70

02—{—73

1 = po + (Y — o) (3.7)

In this study, only pain ratings were collected to inform the posterior, but no expectation
ratings that could additionally inform the modeling of the prior distribution. Therefore, the
data did not enable the identification of distinct prior and likelihood precision, because either

the precision of the prior or the likelihood could be the cause of a change in the posterior
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precision, as they are dependent in the formula. Therefore, the precision ratio was replaced
by a parameter o (equation 3.8) that indicated how strongly the prior would influence the
posterior (equation 3.9). Because « represents a ratio, it was constraint to range between 0
and 1. An « value close to zero would reflect a greater influence of the prior on the posterior
mean, because it reflects low variance in the prior distribution and thus a higher degree of
expectation precision. A value close to one reflects more variance in the prior relative to
the likelihood distribution and therefore the posterior mean is drawn more to the likelihood

mean.

2

__To .
a= m,a € [0,1] (3.8)
1 = po + (Y — po)ex (3.9)

Apart from the precision ratio, the prior mean and the likelihood mean need to be de-
fined. The likelihood mean y in a trial ¢ was defined as the VAS rating target of the specific
trial and therefore could have values 30, 50 or 70, depending on the intensity i of the stim-
ulus. Furthermore, a linear term was subtracted from the likelihood mean to account for
habituation or sensitization over trials in a run. The likelihood mean reflects the peak of the

probability distribution of the sensory component of pain.

ye = yi — ht;y; € {30,50,70} (3.10)

The prior mean p represents the central measure of the expected intensity of pain. Its
definition is crucial to implement the hypothesized rating differences between the experi-
mental conditions. In contrast to the controllable and predictable condition, the upcoming
pain intensity was unknown to the participants in the unpredictable condition. In the follow-
ing paragraph, two approaches to include this aspect in the models are outlined. Informed
by earlier accounts on unpredictability of pain, the models implemented a prior mean that

varied closely around the expected value of the three possible stimulus intensities, corre-
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sponding to an average value of 50 on the VAS.

Baseline model Two versions of a "baseline model” were set up to test different im-
plementations of an average expectation in the unpredictable condition. One version of
the models defined a fixed prior mean in the unpredictable condition: as a free parameter,
this fixed prior was kept constant in all unpredictable trials. It was determined individually
for each subject by drawing it from the group-level normal distribution (see Table A1, prior
mean for medium intensity). The second, dynamic, implementation of the average prior
mean, accounted for the possibility that participants actually tracked how often each in-
tensity level was applied throughout an unpredictable run. For example, the probability of
receiving very intense pain would be reduced after the occurrence of multiple subsequent
highly painful stimuli. The dynamic unpredictable prior mean was defined as the summed
product of outcome probability and the prior mean values of the different intensity levels
(drawn from normal distributions around their likelihood values 30, 50 or 70). The outcome
probabilities of the intensity level, which weighted the prior means, were negatively related
to the number of previous occurrences, and defined by dividing the remaining number of
occurrences by the remaining trials in a run (w = 1% for all intensity levels in trial one;
w; = ﬁ in trial 2, if the intensity level had been chosen, and w; = % for the other two
intensity levels, etc.). The prior means of the different intensity levels were multiplied with
their probability weights and summed to form the unpredictable prior mean for the next trial
(equation 3.11). The prior mean again varied around the value of 50, but a slight change
would be predicted by the dynamic model over time, especially after the same intensity

level had been applied repeatedly.

o,unp. = W30M0,30 + Ws040,50 + W70L0,70 (3.11)

Allowing the change in the unpredictable prior mean, was the first step to implement
expectation effects that could possible have contributed to effects on pain ratings. The

predicted ratings in the controllable and predictable condition by this model were defined
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as samples directly from the hypothesized prior distributions. This is possible, because
a change in the sensory component of the model, i.e. the likelihood, was unlikely in this
study setup, where stimulus intensities were calibrated to meet individual pain levels and
kept constant throughout conditions. Prior means in the controllable and predictable condi-
tion were derived from six distinct normal distributions representing the hypothesized prior
distributions for low, medium and high intensity stimuli. The individual prior means for each
subject were drawn from these normal distributions on group-level, that were centered at
different means for the intensity levels. The prior means were free to vary across condi-
tions, providing each participant with a set of nine prior means in the dynamic version and
seven prior means in the fixed version of the model. Both models included the habituation

term as a subject-specific free parameter.

Different alpha parameters Because the expectation-integration models should also
reveal if different mechanism produced differences in rating average and dispersion be-
tween the controllable and predictable condition, an extension regarding the alpha param-
eters was added consecutively to the models. First, the model was extended to differentiate
between the parameter in the unpredictable condition (c.,) and a (shared) parameter for the
two other conditions («.,). Then, because this was the main interest of this analysis, the
parameter was split up further, and a model with three different parameters (a,, a., o)
was tested. Unfortunately, similar to full Bayesian model versions, that were tested at the
very preliminary stages of data analysis, model parameter recovery for the three parameter

model was not successful (see Figure A1).

Mean-shift and precision-change model To follow an alternative approach to com-
pare mechanisms in the controllable and predictable condition, the baseline model was then
tested with additional constraints regarding parameter distributions. Two different versions
of the baseline model were tested, to detect by model comparison, if rather different mean
expectations (mean-shift model), or differences in expectation precision (precision-change

model) produced different pain ratings in the controllable and predictable condition. Im-
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portantly, if no constraints are imposed on the distributions and assuming constant mean
values, a change in prior or likelihood precision alone could not lead to a change in posterior
precision. However, in the context of pain ratings as an outcome variable, hard boundaries
are imposed on the lower and upper limit of the distributions (VAS 0 indicating the pain
threshold and VAS 100 indicating pain tolerance level). Therefore, all distributions were
truncated to produce positive values below 100. In case of truncated distributions, different
precisions can actually lead to a bias in mean ratings when sampling from the posterior
distribution, particularly on the scale extremes. Less precise posterior distributions will pro-
duce higher mean values at the lower intensity level, and lower values on the high intensity
level, because the values are more dispersed in only one direction on the scale.

In the mean-shift version of the baseline model the implementation of . followed the
description above. Importantly, the prior means between the controllable and predictable
were allowed to differ, while their standard deviation was constraint to be equal. For each
participant an individual set of seven (fixed model) or nine (dynamic model) prior means
was fitted, while only one dispersion parameter o was allowed. Parameters were sampled
from group-level distributions (see Table A1).

The precision-change model tested a different constraint on the parameters between
the controllable and predictable condition. While all conditions shared the same standard
deviations for the posterior means in the mean-shift model, the precision-change model
allowed different values for the standard deviations o for the distributions of ratings in the
controllable, predictable and unpredictable condition. Parameters of both models were

recoverable, see Figures A2 and A3.

Nullmodels Finally, the models were compared with a nullmodels. The first nullmodel
included only the habituation term for the likelihood mean and sampled ratings from the
same intensity specific distribution for all conditions. A second nullmodel applied the same
structure for the predictable and controllable condition as the baseline model, but did not

include the expectation integration in the unpredictable condition.
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FMRI data analysis

Data acquisition Structural and functional scans were acquired with a 3T magnetic
resonance scanner (PRISMA; Siemens, Erlangen, Germany) with a 64-channel head coil.
First, a structural T1-weighted magnetization-prepared rapid acquisition gradient echo im-
age was acquired, with a voxel size of 1.0mm? and 240 slices. Then, functional data was
collected in six runs with a T2* weighted gradient echo-planar imaging (EPI) sequence of
50 slices (voxel size = 2.0mm?3) and the following parameter settings: TR = 1.5s, TE =

26ms, flip angle = 60°, FOV = 224mm, multiband factor = 2, GRAPPA PAT factor = 2.

Preprocessing The functional images were slice-timing corrected, realigned and co-
registered to the structural T1-weighted images using a non-linear coregistration approach.
For this approach, nonlinear spatial normalization was performed on segmented mean EPI
images to map them to the segments of the T1-weighted images. Then, warp fields to map
the T1-weighted images to template space (MNI ICBM 152; 2009c Nonlinear Asymmetric)
were computed and combined with the warp fields from native space to T1-segment space.
All warp fields used in the co-registration procedure were computed with the DARTEL tool-

box (Ashburner, 2007).

First-level analysis For the first-level analysis, preprocessed functional images were
masked with the smoothed (3mm at full-width half maximum (FWHM)) and skull-stripped
structural image. General linear models (GLM) with hemodynamic response function con-
volved regressors, as implemented in SPM (Friston, 2011), were computed. For all models,
physiological noise (heartbeat, breathing) was modeled using the RETROICOR method as
from the TAPAS toolbox (Frassle et al., 2021) and a total of 24 motion regressors (trans-
lation, rotation, pitch in all three spatial dimensions and their temporal derivatives) were
included as nuisance regressors to the first level design matrices (Friston et al., 1996). Ad-
ditionally, because all runs were concatenated for the first-level matrix of each participant,

session intercepts were included to account for session specific error variance. After esti-
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mating first level results, beta images were normalized to MNI space and smoothed with a
4mm FWHM smoothing kernel. The event onsets were defined for the different models as

described below.

Condition-dependent pain processing The onsets of pain stimulation were defined
at the start of the stimulus plateau (stimulus onset plus the time the thermode needed
to reach the targeted temperature), separately for the three conditions. Each of the re-
gressors was defined as a boxcar with a duration of 4s, corresponding to stimulus length.
Z-standardized pain ratings were added to the onset regressors as parametric modulators.
This resulted in a total of six regressors of interest (one onset and one parametric modula-
tor regressor for each condition). In a second model, z-standardized pain intensity levels
(not ratings) were included as parametric modulators as a direct equivalent to the analysis

of the behavioral data.

Task-related neural activity Because the study consisted of a sequence of a
condition-dependent task (choice vs. color-matching) and the stimulation, additional GLMs
were defined, which included the onset times of the different tasks in all three conditions
to investigate potential task-dependent differences in neural activity. Also, a finite impulse
response (FIR) model was set up to allow time-resolved comparisons between the con-
ditions, particularly at the time-point of stimulus onset, to exclude confounding baseline
differences between the conditions, possibly elicited by the different tasks. Regions of
interest for the comparisons of FIR time bins were the regions resulting from analysis of

condition-dependent pain processing, to exclude a confound for this effect of interest.

Models for visualization A final model including each intensity-condition combination
as distinct onset regressor, served for the visualization of the effects (resulting in 3 x 3
= 9 regressors in total). This was necessary to evaluate if activity pattern in the brain
corresponded to the condition differences regarding pain ratings and visualize effects of

pain intensity.
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Second-level analysis For group-level analysis, the smoothed and normalized first-
level beta images were analyzed with a flexible factorial model. Pain onsets and parametric
modulators (pain ratings, intensity levels) were analyzed with one-way ANOVA on group
level. Contrasts of pain onset compared to baseline, between intensity levels and condi-
tions were computed. For the effects of condition, pain onset regressors were contrasted.
For the effect of pain intensity and interactions, parametric modulators were evaluated.
First the contrast between the two predictable and the unpredictable condition (C, P vs. U)
was computed, and in a second step, the controllable and the predictable condition were
compared. Finally, for the interaction effects, the parametric modulators of each condi-
tion were contrasted in both direction, to implement positive and negative intensity scaling
for both conditions, i.e., the intensity modulator was positively scaled for one condition in
one comparison and then negatively in the second comparison with the same condition.
Concerning the FIR model of task, contrasts were computed across the time bins prior to
stimulation onset. Correction for multiple comparison was performed with family-wise error

(FWE) correction and the significance threshold was set to p <.05 on whole-brain level.

3.2 Results

3.2.1 Behavioral Results
General quality check

The samples did not differ in distribution of self-reported age, gender, state anxiety, in-
ternality or externality of locus of control. The stimulation temperatures were similar be-
tween samples. Sampling diagnostics and model convergence for all linear (mixed) and
expectation-integration models were assured by visual examination of trace plots, evalua-
tion of R values, pairs plots and posterior distribution. Additionally, model structures were
optimized until no convergence warnings regarding effective sample size or R resulted dur-

ing the sampling procedure. All tables summarizing demographics, calibration outcomes,
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model parameters and diagnostics can be found in the appendix (Tables A1 to A9).

Choice behavior

Participants in both samples shared a common pattern of choice behavior in the control-
lable condition: they selected high intensity stimuli preferentially at the beginning and the
low intensity stimuli towards the end of a run (see Figure 3.2). The medium intensity stimuli
were mainly selected in the middle of a run. Slopes fitted to the frequency of the high inten-
sity stimuli by the linear models were clearly negative in both samples. The corresponding
95% HPDIs did not include zero; behavioral sample: g =-3.59, HDPI = [-4.45, -2.65]; fMRI
sample: g = -2.63, HPDI =[-3.42, -1.76]. The slopes of the fitted lines for frequency of
low intensity stimuli were positive, indicating an increase towards the run’s end; behavioral
sample § = 3.08, HPDI = [2.18, 3.96]; fMRI sample: § = 2.21, HPDI = [1.19, 3.19]. The
distribution of choice frequencies of the medium intensity level was better explained by the
model including a second order polynomial term as assessed by leave-one out cross val-
idation, confirming the quadratic shape of the frequency distribution (behavioral sample:
ELPDy;,, = -58.9, ELPD,,, = -55; fMRI sample: ELPDy;, = -56.7, ELPD,,, = -52.9).
These findings imply that participants shared a common behavior in selecting high pain at
the beginning and saving low pain for the end of a run. The systematics in choice patterns
posed an additional challenge for the stimulus intensity sequences across the experimental
conditions. As described before, the sequences in the unpredictable and predictable condi-
tion originally defined by randomly drawing from a uniform distribution, and were changed
according to the empirical choice systematics for the fMRI sample. The improvement of
the matching procedure is visible from the time-resolved analysis of frequency differences
of intensities between the conditions (see Figure 3.2)). All model parameters and sampling

diagnostics are summarized in Table A3.
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Figure 3.2. Choice behavior and matching of intensity sequences in both samples. a) Participants in both
samples show the same tendency in choice behavior. They select preferentially stimuli of high intensity (70) at
the beginning of a run and keep stimuli of low intensity (30) for the end of a run. b) Visualization of evaluation of
matching between the controllable and predictable condition. Within-participant differences between stimulus
intensity frequencies are grouped in three bins of 5 trials, separate for each intensity level. For each time
bin and intensity level, the frequency of predictable stimuli was subtracted from the frequency of controllable
stimuli. A positive value indicates a higher frequency in controllable trials, and a negative value indicates a
higher frequency in predictable trials. The matching in the fMRI sample was improved as visible from the
distribution plots.
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Reaction Times

Reaction times were longer in the choice task (controllable condition) than in the color-
matching task, which was performed in the other conditions (M+SD in behavioral sam-
ple: controllable: 1.76s+0.84s; predictable: 1.46s+0.87s; unpredictable: 1.36s +£0.84s;
fMRI sample: controllable: 1.72s+0.66s, predictable: 1.09s+0.47s, unpredictable:
1.02s+£0.45s). This is an indicator for higher cognitive demand in the controllable condition,

showing that participants took the task seriously.

Pain intensity ratings

On average, pain intensity ratings decreased over trials and sessions, indicating a general
habituation to the thermal stimuli (behavioral sample: 541 = -0.19, Bsession = -1.38; fMRI
sample: Biria = -0.40, Bsession = -0.36). Pain intensity ratings increased with increases
higher intensity levels (behavioral sample: g = 1.59; fMRI sample: g = 1.45). 95% HPDIs
did not cover zero, see Tables A4 and A5. In addition, there was an interactive effect of
intensity and condition. In both samples, participants rated unpredictable pain at a low in-
tensity level as more intense than predictable or controllable pain. This effect reversed for
the medium intensity and flattened for the high intensity in the behavioral sample. In the
fMRI sample, there was no difference between conditions for the medium intensity level
and at the high intensity level the effect reversed: participants rated controllable and pre-
dictable high intensity stimuli as more painful than unpredictable stimuli, see Figure 3.3.
The interaction was strongest between the controllable and unpredictable condition (be-
havioral sample: 5 = -0.07, HPDI =[-0.13, 0.00]; fMRI sample: 3 = -0.29, HPDI = [-0.35,
-0.23]). In the fMRI sample there was also an interaction between the predictable and un-
predictable condition predictable vs. unpredictable: 5 =-0.2, HPDI = [-0.27, -0.14]; and
the controllable and predictable condition (controllable vs. predictable: g = -0.08, HPDI =
[-0.14, -0.02]). The same trend effects were present in the behavioral sample, although the

HPDIs of the interaction parameters covered zero, indicating very small effect sizes (pre-
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dictable vs. unpredictable: 5 =-0.04, HPDI =[-0.11, 0.02]; controllable vs. predictable: 5 =
-0.02, HPDI =[-0.07, 0.04]). Due to the interaction effect that crosses over intensity levels,
analysis of condition main effects are not warranted, because this would make the data
appear more consistent than they are. All estimates for both samples including standard
errors of the mean, effective sampling size, HPDI and random effects are summarized in

tables A4 and A5.
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Figure 3.3. Pain ratings of the a) behavioral (n = 54) and ¢) fMRI sample (n = 59) in the controllable (dark green),
predictable (light green) and unpredictable (yellow) condition. Large black points in the boxes show the mean
of all ratings, boxes show the 25th to 75th percentile around the indicated median line; whiskers extend to +
1.5 IQR; outliers are shown as small black points. Below, posterior distributions of the interaction parameters
and as schematic figures, fitted lines from the linear models are shown for the behavioral b) and the fMRI
sample d). The grey curves show the estimated probability density of the parameter values. A positive value
of the interaction parameter (beta) indicates an increase in slope over intensities for the indicated condition
pair, i.e. when moving from the unpredictable to the predictable condition (U to P), from the unpredictable to
the controllable condition (U to C), and from the predictable to the controllable condition (P to C). If posteriors
do not include zero, this indicates an effect on the ratings. Please note that for visualization purposes the
effects were recoded by multiplying the posteriors with -1. The schematic line plots illustrate the changes in
slope between the conditions, which is quantified by the interaction parameter.
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Standard deviations of pain intensity ratings

The standard deviations of pain ratings were compared between conditions, because the
consistency of ratings indicates how precise the expectation about the painfulness were.
Indeed, the standard deviations of pain intensity ratings differed for the intensity levels and
conditions, see Figure 3.4. Standard deviations of ratings were lower in the controllable and
predictable than in the unpredictable condition (behavioral sample: Sy¢c =-2.45, Byp = -
2.09; fMRI sample: Byc =-4.41, Byp =-3.31; no HPDI covered zero). In addition, standard
deviations were higher for the medium intensity level than for the other two intensity levels,
and higher for the high intensity level than for the low intensity level. Importantly, in the
fMRI sample, standard deviations were higher in the predictable relative to the controllable
condition: Bcp = 0.98, HPDI = [0.02, 2.04], indicating possible differences in expectation
precision between the conditions; see all g values and HPDIs in Tables A6 and A7 in the

appendix .

Expectation-integration models

Parameter recovery of simulated datasets was successful for the fixed and dynamic version
of the basic mean-shift model with one scaling parameter for the unpredictable condition
(«), the precision-change models with one scaling parameter and the two null models. Not
all parameters of the model implementing three distinct o parameters were recoverable,
therefore it was not fitted to the true rating data. Formal model comparison suggested that
the models, which were based on the baseline model and implemented an expectation
bias for the unpredictable condition (mean-shift and precision-change models), explained
the rating patterns better than the null models. The « parameter was high overall (M+SD
= 0.74+0.18), due to the overall strong influence of the likelihood, i.e., calibrated pain in-
tensity, in the unpredictable condition. The models including a dynamic unpredictable prior
mean explained the ratings better than the versions with fixed centered prior mean. This

indicates that participants possibly updated their expectations in the unpredictable condi-
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Figure 3.4. Standard deviations of pain intensity ratings, separately for both samples. a) Standard deviations
were higher in the unpredictable than in the predictable and controllable condition and higher for the medium
than the low and high intensity in the behavioral sample. b) In the fMRI sample, standard deviations were
higher in the unpredictable than in the predictable and controllable condition, and additionally higher in the
predictable than the controllable condition. Regarding intensity levels, standard deivations were higher for the
medium than the low and high intensity in the fMRI sample, showing the same pattern as in the behavioral
sample. Please note that for the visualization purposes the effects were recoded by multiplying the posteriors
values with -1
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tion over time. In addition, the precision-change models explained the data better than the
mean-shift models, supporting the hypothesis that differences in expectation precision pro-
duced differences in pain ratings, which was already suggested by the analysis of standard
deviations. Accordingly, the standard deviation for the prior, as estimated by the precision-
change model was highest in the unpredictable condition, followed by the predictable stan-
dard deviation and lowest estimated standard deviation in the controllable condition. The
precision-change model with a dynamic prior mean in the unpredictable condition showed
the best fit to the data. Figure 3.5 shows the result of model comparison and the predictions

of the mean-shift and precision-change models compared to the true data.

3.2.2 Neural Results

Pain processing

The analysis of the parametric modulation of neural activity at pain plateau onset showed
activation in typical pain processing regions. The BOLD signal scaled with z-scored pain
ratings in bilateral central operculum and posterior and anterior insula, middle cingulate
gyrus, putamen, somatosensory and motor cortices and thalamus. The peak of the pain
intensity effect was located in central operculum, see Figure 3.6. The analysis including

z-scored intensity levels, not ratings, resulted in an equivalent pattern.

Condition-dependent pain processing

Contrasting the predictable and controllable condition with the unpredictable conditions at
pain onset showed higher BOLD signal in the bilateral anterior insula, the SMA, middle
cingulate cortex, ACC, cerebellum and PAG compared to the predictable and controllable
conditions (contrast C,P < U). Furthermore, comparing the predictable with the controllable
condition showed higher BOLD in the predictably condition in the SMA, dorsal ACC, PAG,
precunues, parietal cortex and cerebellum (contrast C < P). These findings show a para-

metric relationship of pain elicited activity over conditions, namely that the highest BOLD
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Figure 3.5. Model comparison and predictions. a) Model comparison results using the leave one out cross
validation using robust mixture estimates. Bars depict expected log point-wise predictive density (ELPD) +
the standard error of the difference. Higher ELPD values indicate a better model fit. The winning precision-
change model implemented a dynamic prior mean and allowed different standard deviations for the priors in
the conditions, while keeping the means constant across conditions. The mean-shift model allowed varying
prior means, but constraint the standard deviations to be equal. b) Density curves depict the distribution
of the estimated standard deviation of the different models with dynamic unpredictable prior mean against the
distribution of true standard deviations (yellow). The precision-change model (pink) is better able to capture the
differences between the conditions than the mean-shift model (grey). c) Predicted and true rating distributions
in the three conditions for the three intensity levels. Mean-shift and precision-change model make similar
predictions. d) Model predictions for pain ratings in two exemplary subjects. Yellow points show the true rating
averages, pink points show trial-wise predictions of the precision-change, grey points show predictions of the
mean-shift model.
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Figure 3.6. Neural activation in response to perceived pain intensity. Contrast image shows the parametric
effect of perceived painfulness, as measured by pain intensity ratings. The regions with the highest BOLD
signal increase in response to higher pain ratings was the central operculum at at voxel = [36, 7.5, 9], T =
12.76. On the right, the extracted parameter from this voxel estimated with a model including separate onset
regressors for low, medium and high pain are shown to visualize the parametric effect.

signal resulted from unpredictable pain, followed by predictable and controllable pain. The
reversed contrast (C,P > U) showed that the BOLD signal was relatively higher during both
predictable conditions in rostral parts of the ACC, hippocampus and precuneus. Effects
were relatively smaller in this contrast (see 3.7. The rACC and a small subpart of the cen-
tral operculum showed additionally higher BOLD signal during controllable than predictable

pain (C > P).

Interaction with of condition and intensity

No interaction effect was significant at the whole brain FWE significance level of p <.05. Vi-
sual inspection at a lower significance threshold (uncorrected p <.001) showed that activity
in a cluster in the rACC followed the intensity rating pattern, i.e. activity scaled positively
with intensity in the controllable and negatively with intensity in the unpredictable condition.
Activity during predictable pain also scaled positively with intensity, but less than during
controllable pain. To evaluate at what level this activation would become significant, a
post-hoc small volume FWE correction using an ACC mask was performed. By that it was
possible to estimate the effect size of the activation. With small volume correction, the

activation would become significant: p = .003 (see Figure A4).
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Figure 3.7. Effects of predictability and controllability on brain activity during pain. Overlay in hot colors are
derived from statistical maps at p <.001 (unc.). Black contours indicate regions that were significant at p
<.05 after whole-brain FWE correction. Barplots show parameter estimates for the conditions (dark green:
controllable, light green: predictable, yellow: unpredictable), which were derived from voxels that showed
significant activation differences. a) Regions that responded with relatively lower activity to predictable pain. b)
Regions showing an additional effect of controllability and parameter estimates for the conditions, for the SMA
[-7.5, 21, 45] and the PAG [6, -27, -7.5]. Both regions exhibited reduced activity in response to predictability
and controllability. ¢) Regions that responded with increased activity to predictable pain. A cluster in the rACC
[1.5, 28.5, -6] was significant after whole-brain FWE correction. d) Controllability had an additional effect on
prefrontal brain activity, with a significant cluster in the rACC [-1.5, 40, -3].

Task-related activity

The controllable task elicited different activation patterns than the predictable and unpre-

dictable task (see Figure A5). During the choice task, the supplementary motor cortex
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anterior and middle cingulate cortex, bilateral anterior insula, precuneus, thalamus, brain
stem and cerebellum showed higher BOLD signal than during the color-matching task (C >
P). Although the task was the same for the predictable and unpredictable condition, BOLD
signal was significantly different between the predictable and unpredictable condition at
task-onset. The BOLD signal in the bilateral anterior insula, parietal cortex, thalamus and
brain stem was higher in the predictable than in the unpredictable condition (P > U). The
FIR model covering time bins from task onset up to stimulus onset showed significant differ-
ences between the conditions up to the time point 10.5-13.5s after time onset (i.e. average
of time bins 8 & 9) in the SMA and the PAG. Including the rise time of the thermode to reach
the desired temperature, the stimulus reached its peak intensity at 10-13s after the task on-
set, thereby suggesting that it is unlikely that task induced pre-stimulus effects influenced

the condition effect during stimulation.

3.3 Discussion

This study focused on the confounding effect of predictability when studying control-induced
effects on pain processing. It also investigated to what extent controllability possibly mod-
ulates pain above predictability. Behavioral intensity ratings and neural activity were com-
pared between painful heat stimuli of either controllable, predictable, or unpredictable in-
tensity in a within-subject design. Pain ratings showed a bias towards the extremes of the
rating scale in the controllable and predictable condition, whereas they were drawn towards
the middle of the ratings scale in the unpredictable condition. Thus, ratings were biased
towards the predicted intensity level, when a precise prediction of intensity was possible.
This effect was even stronger for the controllable condition in the fMRI sample, which ex-
perienced better matched intensity sequences. In addition, the ratings were less variable
in the predictable condition than in the unpredictable condition in both samples, reflect-
ing an increased precision of expectations. Again, there was an additional effect between

the controllable and the predictable condition in the fMRI sample, with higher rating con-
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sistency in the controllable condition. This result also indicated an increased expectation
precision with control. Furthermore, the comparison of two mechanistic models suggested
that rather an increase in precision and not a bidirectional shift in expected pain intensity
led to the observed effects. These results confirm the hypothesis of changes in expectation
through control, but would not suggest a general increase or decrease of perceived pain
intensity by controllability. In addition, the different levels of expectation precision in the
three conditions were accompanied by changes in BOLD-signal in rostral ACC, PAG and
the SMA.

The interactive effect introduced by predictability confirms the results of multiple studies
(C. A. Brown et al., 2008; Zaman et al., 2021; Pavy et al., 2024). It fits well in the Bayesian
framework, that postulates that pain perception can be explained by the integration of ex-
pectation and sensory input (Blchel et al., 2014). The possibility to precisely predict the
intensity of a painful stimulus anchors expectations and results in a percept that will be cen-
tered on the expected value. In the unpredictable case, the best guess about pain intensity
will be the average of all possible outcome options, so it will be centered on the mean of the
rating scale. Integrating the mean-centered and less precise expectation with the actually
received stimulus intensity is followed by a bias to the mean in the percept. In fact, this ef-
fect was present in the rating data. Interestingly, while the rating data from the behavioral
sample suggested that effects of controllability could be explained by predictability alone,
because there was no difference between the controllable and predictable condition, there
was an additionally enhanced interaction effect between the controllable and predictable
condition in the fMRI sample. This is particularly relevant, because in this sample, the con-
ditions were better matched regarding intensity sequences. Changes in ratings were very
likely to be produced by changes in expectations, because sensory input was principally
equivalent under all conditions. This was achieved by calibrating all stimulus temperatures
to subjective pain perception and keeping them constant throughout all conditions.

The study investigated control over the intensity of the painful stimulus. However, con-

trol can also be exerted over different aspects of stimuli, for example, the onset, offset,
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occurrence or location (Habermann et al., 2024). Most possibly, the increase in expecta-
tion precision is relevant for all types of control, with respect to the dimension that is under
control. Crucially, only those features of the stimuli become more predictable, which are
controllable. For instance temporal predictability of a stimulus does not convey informa-
tion about its intensity. So, general uncertainty regarding the painful stimulus depends on
more than one aspect and context-dependent importance weighting of the different aspects
might also play a role. Furthermore, other types of control might involve additional percep-
tual mechanisms, especially when self-touch or motion are part of the control processes.
Here, mechanisms of sensory attenuation, often discussed in the context of motor agency,
might be generated (Blakemore et al., 2000; H. Brown et al., 2013; Strube et al., 2023).
The interaction effect resulting from different expectation precision with control, might also
explain, why control was found to have beneficial effects on placebo interventions (Tang
et al., 2019), but that it also can entail unfavorable effects as found in a study on nocebo
hyperalgesia (Tang et al., 2024).

With respect to neural processing of pain, unpredictability of pain intensity was accom-
panied by increased activity in the anterior insula, dorsal ACC, parietal and middle frontal
gyrus and the cerebellum, regions typically responding to unexpected and behaviorally rel-
evant (salient) stimuli (Mouraux & lannetti, 2018; Uddin et al., 2019). Activity in the SMA
and the PAG was additionally attenuated during pain of self-chosen intensity. Activity in
the hippocampus, precuneus and rostral ACC was increased in response to predictability
and controllability of pain.

The anterior insula, PAG and anterior cingulate cortex responded with activation
changes to both environmental features, predictability and controllability. Because these
regions are also associated with processing of pain (Tracey & Mantyh, 2007), this highlights
the need for predictability-matched control condition in studies on control over pain and
shows that careful assessment of studies is warranted that did not include such a control
condition. While this overlap is important to keep in mind, there was an additional signif-

icant BOLD-signal change in PAG, when contrasting the controllable and the predictable
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condition, with attenuated activity if stimuli intensity was self-determined. The PAG plays a
key role in pain modulation and is associated with placebo hypoalgesia and nocebo hyper-
algesia (Fields, 2004; Eippert et al., 2009; Tinnermann et al., 2017; Crawford et al., 2021).
The PAG responds to differences in expectation precision, with lower responding to stimuli
with known intensity and higher activation levels when pain intensity is unpredictable (Lin
et al., 2014). Consequently, the PAG has also be shown to respond to pain-related predic-
tion errors (Roy et al., 2014), underlining its integrative role for expectation and ascending
nociceptive information. Animal studies have also shown, that the PAG responds to un-
expected shocks during fear learning, but does not respond to the same stimulation after
conditioning, i.e. when the outcome is certain (Strickland & McDannald, 2022; Vazquez-
Leodn et al., 2023).

A recent study found, that rACC-PAG coupling was increased in response to placebo
effects, that were enhanced by side effects (Schenk et al., 2024). Interestingly, BOLD
signal in the rACC was relatively decreased during the active placebo condition in this
study, although it has also been related to enhanced placebo effects (Eippert et al., 2009),
distraction induced hypoalgesia (Oliva et al., 2022) and opioid analgesia (Tinnermann et
al., 2022). These results have also been supported by animal studies showing that rACC
neurons are crucially involved in pain modulation by expectation of pain relief (Chen et al.,
2024).

Controllability also attenuated activity in the SMA. The (pre-)SMA is typically activated
by motor planning or imagery (Nachev et al., 2008; Mizuguchi et al., 2013). Critically, it also
enables correction of motor activity if the inhibition of an erroneous response is required
(Bonini et al., 2014). The SMA and the neighboring cingulate motor areas also initiate pain
triggered motor responses, i.e. removing the body from the pain source (Perini et al., 2013;
Lynn et al., 2016). Relevant for putting the results of the present study into perspective is
the finding, that SMA activity also increases when a painful stimulus of unexpected intensity
is applied (C. Brown, 2017). This is in line with the result of this study,namely that SMA

activity is attenuated with pain of self-chosen intensity, which had the highest subjective
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expectation precision, as concluded from the analysis of behavioral data. Possibly this is
related to higher precision of expectations reducing the demand to monitor changes in pain
intensity and prepare pain-related motor responses. Unpredictability of stimulus intensity
on the other hand could increase the need to accumulate evidence about how painful the
stimulus is leading to higher levels of SMA activity. In addition, the anterior part of the SMA,
close to the cingulum has been linked to higher order cognitive processes (De La Vega et
al., 2016). For example, there is a suggested functional gradient from handling allocation of
motor control in the SMA to cognitive control when moving from SMA through pre-SMA to
the dorsal ACC (Shenhav et al., 2013). The activation distribution in this study, extending
from SMA to pre-SMA indicates that control over pain and increased expectation precision
regarding pain, not only affects motor preparation, but also general attention allocation,
possibly necessary for pain evaluation.

In sum, linking the fMRI results to the differences in rating and their consistency, the rel-
evant role of differences in subjective precision of expectations emerges. Activity increase
in salience and attention processing brain areas (SMA; PAG) reflect the higher uncertainty
regarding the pain intensity in the unpredictable and predictable condition relative to the
controllable trials. Still, the analysis shows that there is a considerable overlap in effects

on behavior and neural activity between the effects of predictability and controllability.

3.4 Limitations

The experiment consisted of a sequence of task and stimulation. The neural activation
difference between the conditions at task onset in SMA, anterior insula, dorsal ACC and
PAG suggests different recruitment of those attention processing regions due to increased
cognitive demand in the controllable condition, which was also intended by the experimen-
tal setup. During pain, the activation pattern flipped in the opposite direction, i.e. the SMA,
PAG, dorsal ACC and anterior insula were least active in the controllable condition. This

"seesaw” effect needs careful assessment, because of possible adaptation effects in the
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BOLD signal. Adaptation in fMRI refers to the effect that a brain region that is sensitive to
a feature, responds less to a second task, if it has previously been activated by a task that
shares the relevant feature (Barron et al., 2016). This effect can be employed to investigate
specificity of responding of different brain regions. Itis usually related to repetition suppres-
sion, an effect visible in single-unit recording of electro-physical neuron activity. There it
has been established, that showing exactly the same visual input twice with a very short
inter-stimulus interval, leads to reduced responding for the second presentation (Fritsche
et al., 2020). The exact relationship of repetition suppression in neural activity and BOLD
are debated, as it is unclear how the neural activation effect results in the net effect on
hemodynamic activity (Barron et al., 2016). However, adaptation effects need to be taken
into account in this study, because they might limit the finding of differential condition ef-
fects during pain. The FIR models show that it is unlikely that the condition effects on
pain processing are explainable only by adaptation. Activity in the SMA and PAG return
to the same levels, before pain onset, although the effect of attenuated activity lasts quite
long. This is surprising because usually adaptation processes only lead to small reduction
in responding after short time period (~10% after 1s), although also changes up to ~6s
have been reported (Klein-Flligge et al., 2013). While the seesaw in the activity could be
framed as a confound, it is also not unlikely that this might actually represent exactly the
mechanism how increased precision of expectations is represented in the brain. Possibly,
the salience and attention network activation is reduced in response to the choice, thereby
responding less to pain stimulation. Furthermore, it could also be the case that the same
ensemble of brain regions responds to the task and is then activated differentially during
pain. The investigation of the exact mechanisms might be an inspiration for future studies,
and calls for a in depth assessment of potential sequential effects in fMRI activity. A final
limitation concerning the fMRI results is the absence of significant interaction effects during
pain, which would parallel the behavioral data. While there is a trend for such an effect
in the rACC, a region that would be a candidate region to find such an effect, the main

effects between conditions are stronger. This might be related to the fact, that the level of
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uncertainty drives the neural activity pattern and that relative to this, the interaction in pain
intensity processing affects neural activity to a lower extent.

In this study control was provided over the sequence of stimulus intensities, with the
limitation that all intensity levels had to be selected five times in a run. This resulted in
free choice among all three intensities in most of the trials in the controllable condition
and was necessary, because the overall stimulation should be the equal in all conditions.
Still this poses a minor limitation, as the absence of complete control, i.e. being able to
always select medium or low pain, might have reduced the subjective feeling of control.
Furthermore, participants had control over different levels of pain but could not use control
to achieve a positive outcome, only a less negative outcome. In addition it could be argued
with regard to the unpredictable condition, that because participants were aware of the
stimulation scheme in the other two conditions, intensity sequences were not maximally
unpredictable. Still, compared to the other two conditions, the information level regarding
stimulus intensity in each trial were considerably lower. Therefore it constitutes a good
control condition. Finally, one could question how ecologically valid the choice over pain
intensities is. Being also a methodological study, as a major study focus was the isolation
of controllability and predictability effects, the ecological validity might be less of an issue,
but still this needs to be kept in mind when discussing its findings. Lastly, a limitation
regarding the application of the mechanistic model is that the parameters for the more
complex models were not recoverable and that there were, in context of the study design,
too few data points to estimate parameters of models with a full Bayesian structure. To
better disentangle prior and likelihood, either another design, for example one that induces
precise expectations and then later violates them, as in placebo experiments, or additional
measures like ratings regarding the expected intensity of pain, i.e., expectation ratings,
would have been necessary. On the other hand including expectation ratings might also
change the behavior of participants, because they might lead to changes in attentional

focus regarding pain.
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3.5 Conclusions

Although some questions remain open, this study showed that subjective expectation pre-
cision is a relevant factor considering control over pain intensity. The interaction effect
produced by this change of expectation precision would indicate that there is not general
hypoalgetic effect of control, especially not in setups similar to this study’s design. While
it is true, that positive treatment outcomes could be boosted if their outcome can be con-
trolled and is reliable, control over pain might also result in unfavorable outcomes. These
findings also suggest that a lack of control, as experienced in chronic pain, could lead to a
reduced expectation precision regarding positive treamtent outcomes and thereby reduce

treatment effects.
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People who believe they can alleviate suffering will likely mobilize
whatever ameliorative skills they have learned and will persevere in
their efforts. Those who doubt their controlling efficacy are likely to

give up readily in the absence of quick results.

Bandura et al., 1987

The motivation for the second study came from reports of increased perceived helpless-
ness associated with pain severity in chronic pain patients (Samwel et al., 2006; Craner et
al., 2016). The theory of learned helplessness in the context of chronic pain assumes that
uncontrollable pain, which only allows passive coping strategies, leads to a generalization
of perceived lack of control and passive responding to other life stressors (Yessick & Sa-
lomons, 2022). This might inhibit the exploration of active coping strategies, although they
might have become possible in a new context. A similar reasoning is inherent in the fear-
avoidance model of pain persistence, which outlines that adaptive strategies in response
to acute pain, namely increased arousal or avoidance of pain-triggering movements, can
become unfavorable over time and contribute to pain persistence, due to maintenance of
pain-related fear and hypervigilance (Vlaeyen & Linton, 2012). This fear of action could con-
tribute to lower perceived self-efficacy, increase helplessness and shift the attentional focus
away from other goals (Blichel, 2023). If generalized to other contexts, lower perceived self-
efficacy also lets other goals appear less achievable. According to the motivation-decision
model of pain, this leads to increased pain, because no other goals are pursued, which
would bias perception away from pain (Fields, 2018). An inversion of this cycle by increas-
ing perceived control would be a promising goal of pain management therapy. But before

pursuing such strategies in a therapeutic setting, multiple basic assumptions need to be
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tested. For example, whether a lack of control over acute pain leads to passivity and how
it influences perception remains an open question.

To explore the connection between pain perception, a lack of control and generalization,
this study investigated short-term changes in learning strategies induced by uncontrollable
acute pain. The study used a yoked between-subject design, which is typical for studies
on learned helplessness (Maier & Seligman, 1976). One group could learn how to avoid
a painful heat stimulus on capsaicin pretreated skin and instead receive a cooling relief
stimulus by correctly responding to a cue (control group). This was not possible in a second
group (yoked group). The sequence of painful and relieving stimuli in the second group was
yoked to the control group, to ensure the same level and sequence of stimulation. An open
test phase was included after the uncontrollability induction, to investigate whether different
levels of perceived control in the first task would change learning behavior in a second task.
In this test environment, both groups could learn how to initiate a pain-relieving cooling
stimulus by detecting the correct field on a computerized grid. Learning outcomes and
behavioral strategies (e.g. number of movements and successful trial outcomes) were
measured in this second phase. Simultaneously, ratings of perceived pain intensity and
relief pleasantness were collected during both phases. Especially, the parallel investigation
of changes in perceived pain and learning represents a novel aspect, because most studies
investigated either how perceived control influences pain in a single task (Salomons et al.,
2015; Brascher et al., 2016; Mosch et al., 2023), or focused on changes in learning, without
investigating pain perception (Meine et al., 2020, 2021).

Learned helplessness theory would predict less active exploration and increased pas-
sivity in the yoked group during the test phase (Meine et al., 2020). The control group, on
the other hand, is expected to learn faster and perform more successfully. Regarding pain
perception, the literature on control-induced hypoalgesia, would predict that a higher level
of perceived control reduces pain (Wiech et al., 2006; Strube et al., 2023). However, the
results from other studies suggest that the control group perceives relief as more pleasant

and pain as more intense, because of increased informational value (Desch et al., 2023).
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Also increased outcome certainty by control could contribute to the effect. In study 1 this
effect led to increased reported pain intensity, when it was executed over a highly painful
stimulus and decreased reported pain intensity, when it was executed over a mildly painful
stimulus.

Finally, the possible impact of trait variables such as locus of control and depression
deserves attention in the context of control, learning and pain. For example, participants
with a more depressive symptoms are less likely to show an illusion of control (Alloy &
Abramson, 1979) and an internal locus of control has been related to attenuated prefrontal
cortex activity in response to uncontrollable pain (Wiech et al., 2006). Different allocation
of the locus of control could lead to changes in the behavioral strategy in response to
uncontrollability, which then also influences pain perception. Therefore, different state and
trait questionnaires were included in the study, to investigate how the locus of control and

depressiveness influence changes in learning and pain in response to uncontrollability.

4.1 Methods

Sample 89 participants were invited for study participation after a screening for exclusion
criteria via phone. Four participants had to be excluded during the calibration procedure,
because they reacted very sensitive to the capsaicin treatment and rated even very low
temperatures as unbearably painful. Data of eight participants had to be excluded from
the analysis, because they did not comply to the experimental procedure (three subjects
secretly checked their phone or talked throughout the experiment), three subjects misun-
derstood the task and/or failed to learn the correct action in the control condition and two
subjects showed extreme habituation and rated more than 25% of pain ratings with zero.
Finally, due to a technical failure, data from one participant could not be recorded during
the second study phase. The resulting sample sizes were N = 77 for the first experimental

phase and N = 76 for the second experimental phase.
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Capsaicin application and thermal stimulation Four skin patches of the size of the
thermal stimulator were marked on participants’ lower leg using a paper template. Prior to
the calibration procedure, 1ml capsaicin cream (hot Thermo dura® C Creme, Mylan Ger-
many GmbH, Germany, 53mg capsaicin/100g) was applied to two of the four skin patches
(0.5 ml per patch) and covered with a plastic patch for a duration of 15 minutes. The ther-
mode was placed on the first of the treated skin patches for the calibration procedure and
on the second patch for the first experimental phase. Before the second phase started,
capsaicin cream was applied on the two remaining skin patches following the same proce-
dure. Throughout the experiment, the thermode was placed on four different locations. The
positioning was pseudo-randomized, with the constraint that always two adjacent positions
were treated at the same time.

Thermal stimulation was performed as described in the general methods. The base-
line temperature was set to 29°C for the calibration and the second experimental task. In
the first experimental task, baseline temperature was set to 32°C to induce a lightly un-
comfortable sensation on the capsaicin pretreated skin. For stimulation, temperature was
increased (or decreased) to the destination temperature at a rate 10°C/s. The minimal and
maximal allowed temperature in the first phase were 36°C and 47°C respectively. Stimuli
had a plateau duration of 6s and were targeted to correspond to an intensity of 80 on a
0-100 VAS scale. Stimuli in the second phase had a variable length, depending on partici-
pants’ behavior and ranged from 7s to 20s and targeted a VAS rating of 60. Temperatures
between 35-46°C were allowed. If temperatures were outside the required range, they were
adjusted to either the lower or the upper limit of the allowed temperature ranges. Temper-
atures for the first study task needed adjustment for 14 participants in the experimental
group (adjusted temperature: M = 42.29°C; rating: M = 59.48) and 12 participants in the
control group (adjusted temperature: M = 41.5°C; rating: M = 53.11).

Study design The study used a "yoked” between-subjects design with two experimental

phases. The yoking allowed the matching of pain and relief sequences of the uncontrollable
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with the controllable group to keep pain constant between conditions. In the first phase,
the uncontrollability induction task (UCIT), participants in the control group learned how to
receive a pain-relieving cool stimulus by pressing the correct key in response to one of four
cues shown on the screen. The pain relief for participants in the yoked group occurred in
the same trials as for the matched person in the control group, but was not related to their
actions. In a subsequent test environment, both groups could learn how to shorten the du-
ration of a painful stimulus and induce a pain relief, by moving and placing an agent across
a computerized grid. Throughout both phases, pain intensity, pain relief pleasantness,
subjective control, and helplessness were assessed by ratings on a VAS. Among others,
the depressive symptoms and locus of control were measured by the Beck’s Depression
Inventory (BDI; Beck et al., 1996) and German version of a locus of control questionnaire
(Krampen, 1991), respectively. Additional readouts of learning behavior in the test phase
were the number of successful trials, the trial duration, number of visited fields and amount

of switching.

Experimental procedure First, participants were instructed about the study procedure
and provided informed consent. For all instructions, standardized videos were shown, and
participants were given the opportunity to ask the experimenter for clarifications afterward.
Then capsaicin was applied to the first two of four placements on participants’ lower leg for
15 minutes. During the capsaicin treatment, participants completed a first set of question-
naires and then underwent the calibration procedure, before completing the uncontrollabil-
ity induction task (UCIT) and the test phase. Before the UCIT, the thermode position was
changed. Participants performed two blocks of the UCIT, which took approximately 20 min-
utes in total. After the UCIT, capsaicin was applied to the remaining two skin patches and
participants completed a second set of questionnaires. Then participants performed two
blocks of the second task (test environment). Thermode location was changed in between
blocks of the second task, due to the longer task duration of approximately 20 minutes

per block. Finally, participants completed an exit questionnaire with qualitative questions
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about the tasks and were debriefed about the aims of the experiment and the function of

the group allocation.

Uncontrollability induction task (UCIT) The first phase of the experiment was designed
to induce a feeling of control in one group by successful performance in a learning task,
whereas the yoked group experienced positive and negative outcomes unrelated to their
behavior. This was intended to induce a low level of subjective control in the yoked group.
All participants were instructed that their task was to correctly assign four fractal cues to
four of six possible keys on a standard keyboard. Throughout the task, the thermode was
attached to participants leg and the baseline temperature was set to 32°C to provoke a
constant uncomfortable sensation on the capsaicin pre-treated skin. In the control group, a
correct key press in response to the fractal cue was deterministically followed by a six sec-
ond long 23°C (cooling) stimulus. The cool stimulus was followed by a relief-pleasantness
rating on a VAS ranging from 0 (neutral) to 100 (very pleasant). If the response was not
correct, the temperature was increased from the baseline to reach the individual VAS target
of 80. The painful stimuli were followed by a pain intensity rating on a VAS ranging from
0 (minimal pain) to 100 (unbearable pain). Participants had a maximum of 10 seconds to
rate the stimuli.

Before the UCIT started, two pre-exposure stimuli were applied. Then, each trial started
with the presentation of one of the cues and participants had eight seconds to choose
a key. The order of cue presentation was randomized. To guarantee exploration and
prevent failure of learning in the control group, the relationship between cue and action was
designed as follows: every third new action that was pressed in response to the same cue
would be assigned to that cue. This action would then become unavailable for assignment
to any of the other cues. After the initial assignment, the action would always lead to a relief,
when the cue was presented again, see 4.1. After three successful relief trials for each cue,
the task would end automatically, or if this condition was not met, the task would end after a

maximum of 35 trials. Due to this learning criterion, the task could have a different number
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Figure 4.1. a) Uncontrollability induction task (UCIT). The control group learned to associate cues to key
presses. Each third new action, tested in response to a cue would deterministically lead to a cooling stimulus
(blue arrow) and then stay assigned to that cue until the end of a block. If the incorrect action was chosen,
a painful stimulus was applied (red arrow). The sequence of pain and relief in the yoked group was matched
to the control group. The cue images were presented randomly thereby producing inconsistent relationship
of cues, actions and outcomes. b) Test environment. In each trial a tonic painful stimulus was applied. After
6s, participants rated the pain intensity. Then the grid was shown on the screen. Participants could move the
character with the arrow keys and select a field to stay. Special fields were highlighted with a colored frame
if moved upon. If participants selected a special field, they could receive a relief stimulus, dependent on the
relief probability of that field. The relief probability was 10% for decoy fields (light blue) and 90% for the goal
field (dark blue). If selected a standard field, relief probability was 0%. After the trial, participants rated the
outcome (pain or relief). The gray circles show possible locations of the special fields, four out of these were
selected for each instance of the task.
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of trials for participants. In the second block of the task, a new set of fractals was presented
and the task had to be repeated. After both blocks, participants performed a memory taskin
which they were asked to indicate the correct action for each of the four cues and rate their
confidence in their response on a VAS scale. In addition, feelings of subjective control and
helplessness were measured on three different VAS ranging from 0 to 100: (1) "How much
control did you have over the outcomes?”, (2) "How often did you feel that you couldn’t stand
the pain anymore?”, (3) "How often did you have the feeling that you could do something
to reduce the pain?”.

The yoked group received the same instructions as the control group, namely that they
had to find the correct key to each cue. Unbeknownst to the participants in the yoked group,
it was actually not possible for them to change the outcomes by their actions. Instead,
each participant in the yoked group was matched to one participant in the control group
and received exactly the same sequence of pain and relief trials as their partner. The
rating procedure, memory task and control/helplessness assessments were equivalent to

the procedure in the control group.

Test environment (Generalization) In the second phase of the experiment, both groups
performed the same task in the test environment. The test environment was included to
evaluate potential behavioral generalization effects induced by different levels of control
during the UCIT. Participants performed two blocks of 20 trials. Each trial started with a
painful stimulus aiming at a rating of VAS 60. After six seconds, a first pain intensity rating
was collected. Then a 5x5 grid was displayed on screen and participants could use the
arrow keys to move a Pacman-like character across the fields. At the beginning of each trial,
the character was placed in the middle of the grid. Possible movements were: up, down, left
and right. No diagonal moves were possible. By pressing the return key, participants could
decide to stay on a field for the remaining duration of the trial, thereby disabling moving.
Following the stay action, two outcomes were possible: either participants received a cool

stimulus (23°C), or the temperature remained at the same painful intensity level until the
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trial ended. According to the outcome, the character and screen frame changed their color
to either green (relief) or red (pain).

Located at four of eight possible locations on the grid were special fields. These fields
were highlighted with a colored frame, if the character was moved upon them. The frames
very only visible while the character was placed on the field and disappeared when it was
removed. The only way to receive a relief in the task was stopping on one of the special
fields. While three of the fields served as decoy options with a very low relief probability
(0.1), one of the fields (goal) resulted in a relief with a high probability (0.9). Participants
were not informed about the relief probabilities, the number or possible locations of the
decoy and goal fields or about the function of the special fields in general. They were
only informed that some of the fields would look different, when moved upon and that it
was possible to perform the stay action on these special fields as well as on the standard
fields. They were also informed about the different possible outcomes of the stay action,
but not related to the different field types. Each trial ended after 20s (6s pain and 14s
in the grid) and a second pain or relief rating was collected after each trial. The special
field configuration in the second block was changed, but the only possible locations for the

special fields were the eight fields around the grid corners (see Figure 4.1).

Questionnaires Participants completed questionnaires at three different time points
throughout the experimental session. A first set of questionnaires was answered during
the first capsaicin treatment, before the UCIT (T1). This included the state forms of the
Positive and Negative Affect Schedule (PANAS; Breyer and Bluemke, 2016), State-Trait-
Anxiety Inventory (STAI; Laux et al., 1981), State-Trait Anger Expression Inventory (STAXI;
Spielberger, C. D., 1999); as well as the trait questionnaires assessing the locus of control
(LC; Krampen, 1991), self-efficacy (Jerusalem & Schwarzer, 2003) and Pain Catastrophiz-
ing Scale (PCS; Meyer et al., 2008). After completion of the first task, participants filled
out a second set of questionnaires (T2). This included the PANAS, STAI and STAXI for

a second time, to assess changes in mood, anxiety and anger, as well as the BDI (Beck

79



Chapter 4. Empirical Study 2

et al., 1996), a pain-related self-instruction questionnaire (Flor, 1991), which measures ac-
tive coping in contrast to catastrophizing, behavioral inhibition and activation (BIS, BAS;
Strobel et al., 2001) and demographic questions. Finally, an exit questionnaire after the

second task assessed the general understanding of the tasks.

Data Preprocessing After the exclusion of participants, due to compliance issues and
capsaicin sensitivity, datasets were screened for extreme habituation in the UCIT. The cri-
terion was a rating of 0 (no or minimal pain) in > 25% of trials. In this step, two subjects
were excluded. In addition, the exit questionnaire was analyzed qualitatively by two in-
dependent experimenters to assess if participants understood the tasks correctly. If the
participant was flagged by both experimenters, they were excluded; if the assessment dif-
fered, the exclusion decision was made following a collaborative discussion of the pro- and
contra arguments. As stated above, this resulted in the sample sizes of N = 77 for the first
experimental phase and N = 76 for the second experimental phase (technical failure in one

participant).

Data Analysis

Questionnaires Potential baseline differences concerning the trait questionnaires
were assessed between the groups using paired t-tests for all complete pairs. Additionally,
unpaired t-test were conducted to check for differences on average group level. Changes
in state questionnaires (anxiety, anger, positive and negative affect) from T1 (before UCIT)
to T2 (after UCIT) were analyzed using linear mixed models including the interaction term
of experimental group and time point as fixed effects and the subject identifier nested in
the corresponding pair number as random intercept effect to control for repeated measure-

ments. In addition, correlation tests between the trait questionnaires were computed.

Learning and contingency measures To verify that the control group learned how to

obtain relief in the UCIT, it was assessed if the task finished before reaching the maximum
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of 35 trials. If this was not the case (for two persons), it was checked whether they were
able to receive relief at least once. This was true for one participant, while the other was
excluded from the analysis. Because the outcome sequence in the yoked group depended
on the control group, it was not possible to alter the sequence of relief and pain stimuli on-
line while participants made their choices. Hence, it could principally happen, that through
their behavior spurious contingencies between key presses and outcomes emerged. In or-
der to quantify this effect, two control measures were computed, to quantify the degree of
these unwanted contingencies. First, a summed entropy-like measure for each cue-action
combination was computed for those combinations that resulted in a relief at least once
(for the others, the entropy would be zero or undefined). For each action the conditional
probabilities of both outcomes (relief and pain) were computed, separately for each cue.
To do so, the number of relief and pain trials for that cue-action combination was divided by
the overall number of times the cue-action was present. Not all possible cue-action combi-
nations were necessarily present for each subject, depending on their behavior. Then, the
entropy H for each cue ¢ was computed (see equation 4.1); the two instances of = were

pain or relief. The formula was applied for each cue of both runs.

He(X) ==Y plx)logp(x) (4.1)

Due to the task design, the entropy was not defined for participants in the control con-
dition, as one cue-action combination deterministically led to relief, but different levels of
entropy could occur in the yoked group. In addition to the entropy measure, the number of
(different) actions that would result in a relief was computed separately for each cue. This is
relevant because the number of possibly rewarding options could principally influence the
degree of perceived control, and this information is not inherent in the entropy measure.
Entropy and the number of relief actions were correlated with the ratings of perceived con-
trol in the yoked group and were included as a control measure to evaluate the outcomes
of the memory task, i.e., it was analyzed if confidence ratings were higher for cues with low

outcome entropy.
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Analysis of UCIT outcomes Linear models were applied to the predict ratings of pain
intensity, relief pleasantness, perceived control and helplessness in the induction task. In
addition, accuracy and confidence ratings from the memory task, as well as mood, anger
and anxiety changes from T1 to T2 were analyzed. Entropy and the number of relief actions
were analyzed within the yoked group.

Models of control and helplessness ratings included the experimental group as pre-
dictor as well as the pair and subject identifier to respectively account for matching and
repeated measurements over blocks. An equivalent model was applied to the confidence
ratings resulting from the memory task. Accuracy in memory task was only assessed for
the control group, as there were no correct answers for the yoked group. These analysis
were conducted as a manipulation check.

The group identifier, trial number and stimulus temperature were included as predictors
in the model for pain intensity ratings. To include the trial number was important, because
changes induced by the experimental condition are expected to develop over time as the
control group learns to obtain relief and the yoked group experiences a higher degree of
uncontrollability. Random intercept effects were included to account for repeated mea-
surements over the two blocks. Additionally, nested random effects of subjects in pairs
were included to account for the matching across groups. Due to the learning criterion
implemented for the control group, participants completed different numbers of trials. To
guarantee that each trial number still had enough observations and that outliers would not
drive the results, only trials with data points from a minimum of 20 subjects were included in
the analysis. The first two trials were excluded from the analysis because they presented
outliers in ratings, possibly due to an insufficient amount of pre-exposure before the task
started; this was visible as a steep drop in pain ratings after trial two. This resulted in 17
trials from block one and 12 trials from block two that were included in the analysis.

For the analysis of relief pleasantness ratings, the group identifier, the average pain rat-
ing, the temperature of the pain stimuli and the trial number were included as fixed effects.

The same random effect structure as for the pain ratings was tested, but because the effect
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of block number was very small (resulting in a singular variance-covariance matrix), only
the nested subject-pair effect was finally included. The same sample size criterion was
applied as for the pain ratings. For the analysis of relief ratings, 21 trials were included
from block one and 20 trials from block two.

The relationship between depressive symptoms and locus of control (externality, inter-
nality), control, helplessness, pain and relief ratings was analyzed by including the respec-

tive questionnaire scores as additional predictors in the models.

Analysis of test environment outcomes Pain ratings collected in the test phase
while the stimulus was ongoing (after 6s, online rating) and after the trial was over (post-
rating) were analyzed with linear models including stimulus temperature, trial number and
group identifier as fixed effects. The subject identifier and block number were included
as random intercept effects. Models applied to relief pleasantness ratings, included the
stimulus temperature (of pain stimuli), the trial number and group identifier as fixed effects
and subject identifier as random intercept. Including the pair number for the pain pre-rating
model and the block number for the relief ratings did not change the variance explained
by the random effects and were thereby not excluded after testing the models. The first
two trials were excluded from the analysis of pain and relief ratings, because here a steep
habituation effect was present, which was detected upon visual inspection. Importantly,
the sequence of pain and relief stimuli in the test environment could differ drastically be-
tween participants depending on their behavior. Therefore, the comparison of ratings is
confounded by the different amount of pain and relief stimuli that the participants experi-
enced and thus the results only limited validity.

The primary readouts of the test environment were differences in the behavioral strate-
gies of the two groups. Concerning those readouts the following measures were analyzed:
the number of successful trials (resulting in reliefs), the number of times the goal or decoy
location was chosen as end location, the trial duration before the stay-decision, the total

and distinct number of visited fields and the number of switches. The number of fields in-
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dicated how many fields the participants visited throughout one block in total, whereas the
number of distinct fields did not count double visits. A "switch” was defined as a change
the last location in the trial compared to the previous trial. The models to predict these
different outcomes all included the subject identifier as random effect and the group identi-
fier and the run number as fixed effects. The trial number was included if applicable. Also
the relationship of the amount of switching and the type of the last field (goal, decoy) was
assessed.

Finally, the BDI score of the participants and locus of control (externality and internality
scores) were included in the models to investigate the interaction between trait variables

and the behavioral measures of the test phase.

4.2 Results

Trait questionnaires and demographics To verify that there were no systematic base-
line differences, trait questionnaire scores were compared between the groups. Paired
t-tests were computed for complete pairs. Four participants did not have a partner, be-
cause they were excluded during data pre-processing. The experimental groups did not
differ significantly in BDI score (¢(35) = -0.29, p = 0.77), LC internality (¢(35) = -1.46, p =
0.15) or externality (£(35) = -0.36, p = 0.72). Neither did the groups differ in the other trait
questionnaires: self-efficacy, pain catastrophizing, behavioral activation and inhibition, or
pain related self-instructions (all p > .05). The sample size, age and gender distributions
of the experimental groups were similar. This ensured that potential effects of the experi-
mental manipulation were unlikely to be related to pre-existing differences between groups.
For all summary statistics see Tables 4.1 and B1. The BDI score correlated positively with
pain catastrophizing (PCS: p =.02; pain-related self instructions (catastrophizing): p =.006)
and externality (p <. 001) and negatively with self-efficacy (p =.003). Self-efficacy was pos-
itively related to active coping subscale of the pain-related self instructions questionnaire

(p <.001), and behavioral activation (p = .002).
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State questionnaires Positive affect decreased in both groups from T1 to T2 (before
and after UCIT). The decrease was stronger in the control group than in the yoked group,
resulting in a significant interaction effect (5 = 0.23, se = 0.1, t(75) = 2.17, p = .03).
Negative affect (NA) and state anxiety (STAI) decreased from T1 to T2 in both groups
(NA: 5 =-0.08, se = 0.03, {(75) =-2.5, p = .01; STAI: g =-2.21, se = 0.42, t(76) = -5.25, p

<.001). There was no effect of time or group on anger ratings.

Table 4.1. Demographics, BDI and LC scores

group age BDI LC () LC (E)

N ¢ M (SD) M (SD) M (SD) M (SD)
control 37 28 2551(5.76) 8.38(8.52) 65.16 (8.13)  43.14 (8.94)
yoked 40 29 25.25(3.91) 7.70(6.63) 62.05 (8.64) 42.35(7.07)

Note. BDI: Becks Depression Inventory; LC (l): internality; LC (E): externality

Uncontrollability induction task

Control and helplessness ratings As intended by the experimental manipulation,
the uncontrollability induction resulted in significant differences in control ratings between
the experimental groups, see Figure 4.2. Ratings of perceived control were significantly
higher in the control group than in the yoked group (M + SD: yoked: 53.95 + 27.92; con-
trol: 70.07 + 22.02; 5 = 16.04, p = .0017). The groups did not differ significantly in the

helplessness items.

Learning and contingency measures One person in the control group did not un-
derstand the task and pressed always the same key, resulting in zero relief trials. The
subject was excluded from further analyses. In the yoked group, the average entropy was
M=+SD = 3.02+1.56 in block one and M+SD = 2.18+1.19 in block two. The average num-
ber of relief actions in block one was M+SD = 6+1.88 and M+SD = 4.95+1.41 in block
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two. Both measures were significantly higher in the yoked group than in the control group
(p <.001). By design, the entropy in the control group was always zero and the number of
relief actions equal to 4, if all actions were learned, which was the case for all participants
except for one person. Neither entropy nor number of relief actions correlated with control

ratings on group-level.

Memory task The control group was significantly more confident in their responses
during the memory task, for the cue-action combination they correctly remembered (3 =
21.00, se = 3.29; p <.001) and significantly less confident for the cue-action combination
they did not correctly remember (5 = -22.49, se = 4.95; p <.001), see Figure 4.2 and Table
B4. In the yoked group the confidence rating was significantly correlated to the outcome
entropy (r(38) =-0.37, p = .019). Those cue-action combinations that had lower outcome
entropy consequently were remembered with higher confidence although there was, in

principle, no correct answer in the memory task for the yoked group.
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Figure 4.2. Confidence and control ratings. a) Confidence in the memory task was significantly higher in
the control group for the correctly remembered cue-action combination (dark purple), than in the yoked group
(turquoise). Most of the cue-action combinations were correctly remembered. The control group was less
confident in incorrectly indicated cue-action combinations, then the yoked group average. b) Control ratings
were higher in the control group than in the yoked group, indicating a successful experimental manipulation of
subjective control.
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Pain and relief ratings Pain ratings in the yoked group decreased over trials, while
pain ratings from the control group were constant in block one and even increased slightly
in block two, leading to a significant interaction effect of group and trial (8 = 0.58, p <.001).
There was a significant main effect of temperature on pain ratings, with higher temperatures
resulting in higher pain ratings, despite the calibration procedure (5 =2.98, p <.001). Amain
effect of experimental group, tested in a separate model, was not significant. The groups
also differed in the development of relief pleasantness ratings over time, resulting in a
significant interaction effect (5 = -0.66, p <.001). Although relief was rated as less pleasant
over time in both groups (8 = -0.33, p <.001), ratings in the yoked group were lower from
the start and decreased less than in the control group. For visualization, see Figure 4.3.
The average pain ratings significantly predicted relief ratings (8 = 0.18, p <.001), indicating
higher pleasantness of relief, if pain was perceived as more intense. All parameters and

statistics on fixed and random effects are summarized in Table B3.
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Figure 4.3. Pain and relief ratings in UCIT. Lines fitted to mean ratings of the trials with data from a minimum
of 20 participants from the control group (purple) and yoked group (turquoise). Error bars depict the standard
error of the mean. Separate plots are shown for block one and two. a) Pain ratings: the yoked group showed
a stronger habituation than the control group. b) Relief ratings: the yoked group showed a stronger decrease
in pain ratings than the control group. Relief ratings were generally lower in the yoked group, but the decrease
was more pronounced in the control group.
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Test environment

Pain and relief ratings The online pain ratings, which were collected in each trials
before the grid was shown, differed between the groups over time. Pain was rated as
increasingly higher over time by the yoked group, while ratings by the control group flat-
tened towards the end of the first block. In the second block, pain ratings in both groups
decreased, indicating strong habituation (Figure 4.4). The decrease was stronger in the
control group, resulting in a significant interaction effect between group and trial number (3
=-0.40, p =.003). None of the predictors alone (stimulus temperature, trial number, condi-
tion) was significantly related to ratings. The pain ratings collected post trial increased sig-
nificantly over time (3 = 0.38, p <.001) but were not statistically different between groups or
showed an interaction effect. Relief pleasantness ratings decreased over trials (5 = -0.43,

p <.001). There were no other significant main or interaction effects.

Successful, goal and decoy trials The groups did not differ in the overall number of
successful (relief) trials (8 = -1.78, p >.05). The yoked group ended on the goal location
nominally more often than the control group, but the difference only reached trend level (3
= -2.09, p =.059). The groups also did not differ in the number of decoy fields (3 = -0.24,
p = 0.7), but participants of both group ended more often in a decoy location in the second
experimental block (5 = 1.47, p <.001), while there was no effect of block on the number of

goal or successful trials. All measures are visualized in Figure 4.5.

Number of visited fields, switches and duration Neither the total or distinct number
of visited fields, the number of switches nor trial duration differed between groups. Partic-
ipants visited fewer (8 = -0.08, p <.001) and explored less different fields over trials (3 =
-0.07, p <.001). The number of switches and trial duration decreased significantly from the

first to the second experimental block and over trials (all p <.05, see B6 and B7).
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Figure 4.4. Pain and relief ratings in test environment. Lines fitted to mean ratings from the control group
(purple) and yoked group (turquoise). Error bars depict the standard error of the mean. Separate plots are
shown for block one and two. Note that between ftrials, participants received a different number of pain and
relief stimuli that also had different length. a) Online pain ratings. The ratings were collected six seconds after
trial onset, while the pain was ongoing and before the grid was shown on the screen. b) Post trial pain ratings
of the test phase. Both pain ratings show increased pain sensitivity over time, but the online ratings in the
yoked group increased more than in the control group in block one. In block two, both groups showed strong
habituation to the stimulation, but pain ratings in the yoked group were higher than in the control group. c) Post
trial relief ratings decreased over time and were similar between groups.
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Figure 4.5. Learning measures in test phase.a) Number of successful trials, which resulted in a relief. Nom-
inally the control group (purple) had a lower number of successful trials. The difference was not significant.
b) Number of trials that ended on the goal location. Staying at the goal location resulted in a relief with 90%
probability. ¢) Number of trials that ended on the decoy location. Staying at the decoy fields resulted in a relief
with 10% probability. d) Duration of trial, before the stay action was performed. The duration decreased from
block one to block two for both groups. e) Total number of visited fields, averaged across trials. f) Switches
indicate a different end position than in the previous trials. The groups did not significantly differ in any of the
learning measures in the test phase.
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Locus of control and depressiveness

External Locus of Control Locus of control externality was not associated with pain
or relief ratings during the UCIT. Neither did externality predict control, confidence, or help-
lessness ratings. There was a significant association of externality with pain ratings, but
not relief ratings in the test environment. Higher externality was related to higher online
(8 = 0.69, p = .004) and post-trial pain ratings (5 = 0.81, p = .002). However, there was
no interaction effect of externality and experimental group on pain ratings. In addition, ex-
ternality predicted a lower number of successful trials in the test environment. In fact, this
effect differed for the two groups, leading to a significant interaction effect (6 = 0.35, p =
.008). Yoked participants received a different number of relief stimuli, dependent on their
locus of control. Low externality in the yoked group, was related to more successful (relief)
trials, whereas yoked participants with an external locus of control had a lower number of
relief trials. No such relationship between externality and relief trials was present in the
control group. This effect was driven by the parallel interaction of externality and group on
number of trials that ended on the goal location (5 = 0.33, p = .016). Also the relationship
between externality and the number of switches differed between groups (5 = -0.36, p =
.01). In the yoked group, participants with high externality scores switched end location
more often, while there was no such effect in the control group. There was no effect on
number of decoy trials, duration or number of visited fields. For regression parameters and

significance values, see Tables B8, B11, B12, B13.

Internal Locus of Control Locus of control internality was not significantly related to
pain, relief, control, confidence, or helplessness ratings in the UCIT. Neither was there a
significant main effect on pain ratings in the test environment. The interaction of group and
internality on post-trial pain ratings was significant (3 = -1.04, p = 0.048). No interaction
of main effect of internality on relief ratings, number of successful, goal or decoy ftrials,
trial duration, switching behavior or number of visited fields was present. For regression

parameters and significance values, see Tables B9, B11, B12, B14.
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Figure 4.6. Interaction effect of group, depressiveness and externality on outcomes. a) Interaction of group
and depressiveness (BDI score) on number of successful trials, resulting in a relief. With higher BDI score,
the number of successful trials decreases in the yoked group (turquoise), but not in the control group. Yoked
participants with low BDI have a higher number of successful trials than control participants. b) Interaction of
group and external locus of control on number of successful trials. With a more external locus of control, the
number of successful trials decreases in the yoked group but not in the control group. Yoked participants with
low externality score, have a higher number of successful trials than control participants. ¢) The interaction
effect on successful trials is driven by the same interaction present for the goal trials. Yoked participants with
low externality score stayed at the goal location more often, while yoked participants with high externality score
stayed at the goal location less often than the control participants. d) Participants in the yoked group that scored
low on externality, switched less often than the control group, while yoked participants with a high externality
score switched more often.

92



Chapter 4. Empirical Study 2

Depressive symptoms Depressive symptoms, measured by the BDI, were not re-
lated to pain intensity, relief pleasantness, control, confidence, or helplessness ratings (all
p >.05). But the effect of the BDI score on the number of successful trials differed between
experimental groups. While participants with higher BDI scores generally obtained a lower
number of relief this effect was mainly driven by participants in the yoked group. Yoked par-
ticipants with a low BDI score obtained relief even more often than control participants with
similar BDI score. However, yoked participants with high BDI scores obtained a lower num-
ber of relief trials than control participants (8 = 0.3, p = .034). This result is not surprising
regarding the high correlation of externality and depressiveness (p <. 001).

Additionally, there was a significant main effect of BDI score on the number of goal
trials (8 = -0.16, p = 0.02), but the interaction term of BDI and group was not significant
(p = .07). Also, a higher BDI score predicted a higher number of switches, but also this
effect did not differ between groups. There was no effect of BDI on the trial duration, total
number of visited fields or decoy trials. For regression parameters and significance values,

see Tables B10, B11, B12, B15.

4.3 Discussion

This study investigated the effects of uncontrollability on acute pain perception and sub-
sequent learning. It used a yoked between-groups design, to control for sequence and
intensity of stimulation. In the first phase, the groups experienced different levels of control
over pain. The control group learned how to avoid pain and obtain relief by learning differ-
ent cue-action combinations, while the yoked group received the same stimulus sequence,
but not related to their behavior. In a second phase, both groups could principally learn to
shorten a tonic pain stimulus by selecting the correct field (goal) on a grid in a game-like
test environment. Pain and relief perception was assessed during both tasks. Successful
learning and behavior, i.e., the number of visited fields, the number of switches and the trial

duration, were measured in the test environment to determine if the groups differed in the
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exploration behavior and performance.

For a manipulation check, ratings of perceived control in the first phase were compared
between the groups. As intended, the control group reported higher perceived control than
the yoked group. Also, the confidence in the memory tasks, in which participants had to in-
dicate the action-cue combination that would lead to relief, was higher in the control group.
In contrast, the entropy of the outcomes and the number of different actions that provided
relief were significantly higher in the yoked group. This shows that the experimental ma-
nipulation was successful and provides a good basis for the interpretation of the results.

During the first phase, the yoked group perceived the painful stimuli as less intense and
the relief stimuli as less pleasant over time. Because the effect developed only over time,
there was no significant difference in pain or relief ratings on average group level. However,
this is expected, because perceived control could only have influenced pain differentially,
after the control group had learned that they could change the outcome by their actions
and the yoked group had experienced uncontrollability. The fact that the control group
rated pain intensity and relief pleasantness higher than the yoked group can be interpreted
in light of the differences in the informational value of pain and relief for each group (Sey-
mour, 2019). For the control group, pain was actually indicative of a false response, while
relief was a reliable signal for correct behavior. Especially towards the end of a block, a
painful stimulus received by the control group signaled an error, which should be corrected.
Thereby, pain might have gained a high level of salience (Horing & Blichel, 2022), which
might have heightened its rated intensity. Relief stimuli were also more informative for
the control group, especially at the beginning of the task. Over time, the associations of
cue and actions were learned and relief became more frequent, reducing its relevance for
learning. This possibly caused lower attention towards relief stimuli over time, resulting in
a decrease in perceived pleasantness. So far, studies reporting that control increased per-
ceived pain interpreted this result in light of lower attention towards the task in the control
group, leading to less attention-induced hypoalgesia compared to the group that experi-

enced uncontrollable pain (Salomons et al., 2015). They also put forward the explanation
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of increased anger or frustration in the control group, because for the control pain actually
indicated an avoidable error (Gonzalez-Roldan et al., 2016). The latter could also be an
alternative explanation for the results in the present study, as the increase in perceived
pain intensity towards the end of the task could also be driven mainly by those control par-
ticipants that had difficulties learning and perceived pain as more intense as a result of
increased frustration and negative mood (Tracey & Mantyh, 2007). However, a more par-
simonious explanation is the modulation of pain and relief perception by their informational
content. This was also supported by a recent study, where pain increases and decreases
were rated as more extreme if they were under instrumental control (Desch et al., 2023),
as well as by studies reporting increased relief and placebo perception with control (Zhang
et al., 2018; Tang et al., 2019; Strube et al., 2023).

In the yoked group, neither pain nor relief were informative regarding the correctness of
the selected actions. Through the reduction in value as a learning signal, this might have
led to an overall decrease in perceived intensity and pleasantness. This decrease in ratings
might be an effect of general blunting of perception in response to the increased level of
uncontrollability, which similarly affected positive and negative outcomes over time. Blunt-
ing refers to a general suppression of responses to positive and negative reinforcers (Huys
& Dayan, 2009) through experience of uncontrollability. For example, reward-processing
brain regions are less responsive if there is low action-reward contingency (Tricomi et al.,
2004) or if a positive outcome resulted from a choice of a computer program in contrast
to self-made choice (Romaniuk et al., 2019). This effect might be boosted by the inherent
rewarding property of choice (Leotti & Delgado, 2011), for example the possibility to exert
control increases positive affect in general (Stolz et al., 2020) and selected options are
valued more than discarded ones after the decision has been made (Sharot et al., 2009),
but see (Becker et al., 2021) where perceived pain relief was larger in a condition without
control. An example for blunting towards painful outcomes is hypoalgesia triggered by in-
escapable shocks in animals (Grau et al., 1981). Here the body recruits its own opioidergic

endogenous mechanisms to manage pain, due to a lack of alternative coping options.
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While often negatively framed, this blunted response actually represents a adaptive
form of passive coping with uncontrollable pain, because it would be inefficient to invest
resources trying to change predetermined outcomes (Gandhi et al., 2017). It enables pain
acceptance, which in fact has been related to lower reported pain intensity and longer
endurance in a cold pressor task (Masedo & Rosa Esteve, 2007). However, passive coping
is not always adaptive, especially if it is generalized to positive reinforcers, because then
the orientation towards other goals might be inhibited (Fromer et al., 2021). Also, if passivity
becomes maladaptive, when generalized to future situations, where pain might actually be
shortened or avoided by active responding (Gandhi et al., 2017). The generalization effects
in this study were assessed by evaluating behavior in the test phase.

Both groups completed two blocks of the test environment. Here participants moved an
agent across a grid and could select different types of fields. The selection of some special
fields could yield a cooling relief from a tonic painful heat stimulus. Participants were not
instructed how to behave nor were they informed about the relief probabilities. They could
only learn by how to receive relief by selecting different fields. The best possible field (goal)
had a relief probability of 90%, three other decoy fields provided relief with a probability of
10%. In fact, none of the behavioral measures (number of successful (relief) trials, visited
fields, switches or trial duration) was different between groups, but there was a trend for a
higher number of successful trials in the yoked group.

The absence of effects on group level can be explained by the fact, participants in the
yoked group behaved differently dependent on the allocation of their locus of control and
number or severity of depressive symptoms, as measured by the BDI. An external locus of
control reflects the tendency to attribute events to chance or the influence of other people,
rather than to oneself (Rotter, 1966; Lefcourt, 1976). Yoked participants with high external-
ity scores ended on the goal location less often, switched more between fields and thereby
received less relief, than yoked participants with low externality scores or control partic-
ipants. Yoked participants with low externality scores on the other hand received relief

even more often than control participants, because they returned to the goal location more
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consistently. A more external locus of control is a significant predictor of depressive symp-
toms (Hovenkamp-Hermelink et al., 2019) possibly via reduced reward responsiveness
and higher stress sensitivity (Pizzagalli et al., 2007). Because externality and depressive
symptoms were also highly correlated in present study, it is not surprising that the same
interaction effects of group and BDI score were significant predictors if the number of suc-
cessful trials. Importantly, there were no significant baseline differences in distribution of
BDI or externality scores between groups, indicating that the effects were a result of the
interactions of traits with the experimental manipulation. That people react differently to
an experimental manipulation of controllability dependent on their locus of control was al-
ready reported in early studies on learned helplessness (Abramson et al., 1978; Alloy &
Abramson, 1979). Especially the attribution style was put forward to explain proneness to
develop the typical helplessness response, i.e., generalized passivity in situations were es-
cape would be possible by active responding. For example, if uncontrollability and resulting
helplessness is attributed to a stable, global and internal cause, it will more likely lead to
a general lower self-esteem and motivational deficits (Abramson et al., 1978). Changes
in generalization kernel by trait characteristics are also established in the domain of fear,
where high anxiety was shown to increase perceptual generalization (Dymond et al., 2015;
Norbury et al., 2018). That the locus of control influences how vulnerable people are to de-
velop learned helplessness has also been discussed in the context of pain (Gandhi et al.,
2017). Locus of control was reported to influence hyperalgesia that was triggered by un-
controllability of acute experimental pain (Brascher et al., 2016), neural processing of pain
(Wiech et al., 2006) and physiotherapy outcomes in patients with chronic pain (Alvarez-
Rodriguez et al., 2022). Although, in one study a beneficial effect of control on pain-related
suffering was actually greater in participants with an external locus of control (Loffler et al.,
2018).

The test environment of this study was designed in a way that made exploration un-
necessary, after the goal location was discovered, because the relief probabilities were

constant throughout the task. Therefore, to obtain the maximal number of relief trials, the
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best strategy was to always return to the goal location and a deviation of that strategy
could be considered suboptimal. This makes it difficult to test predictions of classic learned
helplessness theory, which would predict suboptimal behavior by higher passivity in the
yoked group implying less exploration, a lower number of successful trials, visited fields
and switches. The participants in the yoked group, who had a low BDI and externality
score, mainly showed optimal behavior, which consisted in the exploitation of the goal field
and led to a high number of relief trials and a low amount of switches. One explanation
for this effect is, that they wanted to compensate the level of experienced randomness in
phase one, what could have been perceived as bad task performance. The participants with
high BDI and externality scores in the yoked group, visited the goal location less often and
switched more. This could also be an indicator of more random and less goal-directed be-
havior, possibly also influenced by lower reward responsiveness if the the goal was found
at least once and stronger generalization of perceived environmental uncontrollability in
those participants with a high level of externality. Participants in the control group, on the
other hand, neither maximally exploited the goal location, nor did they switch as often as
the other yoked group participants, independent on their BDI and externality score, hinting
to a more balanced exploration-exploitation behavior.

In sum, this study showed again, that the simple assumption of control-induced hypoal-
gesia does not hold, as pain was perceived as less intense with uncontrollable and unpre-
dictable outcomes. It shows that a lower perceived control leads to short-term changes
in learning strategies that are different dependent on participant characteristics, i.e. more
exploitation in those participants who generally attribute outcomes of life events to the in-
fluence of other people or chance. Coming back to the assumptions for the potential use
of therapeutic measures to increase the subjective sense of control, this study underlines
that especially the attribution of pain reduction to one’s own actions should be increased
dependent on the context. If perceived control over life events is generally increased, this
might lead to unwanted results because it might hinder pain acceptance and adaptive forms

of passive coping if treatment attempts are unsuccessful (Gandhi et al., 2017).
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4.4 Limitations

While the explanation for the different behavior in the yoked group (showing either random
behavior due to more generalization of lack of control or increased exploitation) is intrigu-
ing, it must remain speculative. To determine if the behavior in the yoked participants with
an external locus of control was actually random or just more explorative, the task should
have included a change in goal locations to make exploration more beneficial than exploita-
tion. This would require an ongoing balancing of exploration and exploitation strategies for
optimal behavior. Possibly, such a task could also show if yoked participants with low BDI
scores overly exploited to make up for the lack of control in the first phase. Overly exploiting
one option would result in suboptimal outcomes in such an improved task, because it would
lead to a longer latency before detecting a change in goal. This change of goal location
was not implemented this study, because the major aim was to avoid a overly difficult task
for the participants. The application of long painful stimuli limited the possible number of
trials and therefore it a relocation of the goal would have been harder to learn within the
trial limits. Still, an option for future studies could be to use stimuli of other pain modalities,
add more trials and implement a slow change in reward probabilities across fields. Despite
this limitation, the results can be very informative for future studies. They underscore once
more the relevance of assessing locus of control and depressive symptoms in the context
of control. Interestingly, neither externality, internality or the BDI score correlated with the
VAS ratings of control in the first phase.

One additional aspect that potentially limits the findings of the study is, that control
ratings in the yoked group were still quite high. This was possibly due to experienced level
of unwanted contingencies and the tendency of humans to develop illusory control (Alloy
& Abramson, 1982; Yarritu et al., 2014). In addition to the change in goal location over
time, an improved task should either evaluate responses and outcomes in the induction
task online, in order to prevent such unwanted contingencies or change the task for the

yoked group to make it more random, as for example in Ligneul et al., 2022. Of course this
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would make a perfect matching of tasks between groups impossible, the effects of which
would need to be evaluated in pilot experiments.

Finally, the choice of thermal stimulation of capsaicin pre-treated skin posed some chal-
lenges, because participants habituated extremely to the stimulation. In the second block
of the test phase, the average rating was approximately 30 on the VAS instead of the tar-
geted rating of 60. While this is related to the employed pain modality, it might partly also
be explained by changes in task performance in the second block because this changed
the occurrence frequency of pain and relief stimuli, possibly resulting in temporal contrast
effects on pain. In both phases pain stimuli were more frequent at the beginning and relief
stimuli were more frequent towards the end of a block. Thus, an unexpectedly received re-
lief at the beginning, or unexpected pain at the end, was additionally modulated by contrast
effects. Temporal contrast effects in pain are a phenomenon that has been extensively
studied (Grill & Coghill, 2002). For example, an increase in stimulus intensity is perceived
as disproportionally less intense, and a reduction in stimulus intensity is perceived as dis-
proportionally more intense, after a longer highly painful stimulation (Alter et al., 2020; Fust
et al., 2021). However, at least in the first task, the stimulation frequencies were perfectly
matched across groups. Thus, the different temporal development of pain and relief ratings
in the yoked group indicates that the manipulation of control and not contrast effects led to

the changes in perception in the first study phase.
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5. Discussion

| started this PhD project with the aim understand the interplay of the subjective feeling
of control and pain perception. Perceived control has often been reported in context of
more beneficial trajectories in chronic pain (Cramer & Perreault, 2006) and factual control
over pain medication can increase analgesic efficacy (Ballantyne et al., 1993; Macintyre,
2001). From those effects, the initial hypothesis was derived that a higher feeling of subjec-
tive control would reduce perceived pain intensity, which then could possibly be a valuable
direction for the design of pain management therapies. Although this hypothesis has often
been reiterated to motivate numerous studies, the relationship between perceived control
and pain perception is more complex and the literature less conclusive than it could be
expected. During the design of the first study, it also became apparent that expectation ef-
fects, particularly in the context of acute pain in experimental laboratory settings, would be
a relevant component to consider. This broadened the scope of the first project, resulting in
a rather methodological investigation of how control relates to precision of expectations and
how both factors influence sensory processing of pain. The second study aimed to shed
light on the outcomes of perceived control over pain on other measures than perception,
drawing inspiration from learned helplessness theory. In addition to supporting an inter-
esting new view on the informational value function of pain (Zhang et al., 2018; Seymour,
2019; Desch et al., 2023), the second study also stressed the relevance of personality traits
in interplay with pain uncontrollability. After having reported and discussed the empirical
results of the studies, | will now converge findings of both studies and relate them to the

initial hypothesis and question how control modulates pain.
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5.1 Recapitulation of research questions

Derived from the reasoning presented above, the explicit research questions for the differ-
ent studies were (i) does control influence pain perception and neural processing above
predictability, and (ii) does control change pain perception and behavior in a second task

due to the generalization of control beliefs.

5.2 Summary of empirical studies

The first study showed, that control over pain intensity prior to the stimulation did not simply
attenuate pain. Instead, control strengthened interaction effects induced by predictability
through the anchoring of expectations. By that, predictable low stimulation intensities were
perceived as less intense and higher intensities perceived as more intense. This effect
was even stronger in the controllable than in the predictable condition. Controllability did
not generally change the neural processing of pain. However, predictability of pain inten-
sity strongly influenced brain activity in response to pain. The SMA, PAG, anterior insula,
ACC, parietal cortex and thalamus were less active in the anticipation of a painful stimulus
of predictable intensity. When pain intensity was additionally controllable, the activation dif-
ference to the unpredictable condition was even more extreme. Controllability effects were
primarily significant in the PAG and SMA, but the activation difference showed the para-
metric effect in many of the aforementioned brain regions. All these regions are usually
more activated in response to more unexpected sensory outcomes or when a task requires
attention. So their activation does not specifically indicate changes in pain processing. This
finding challenges former interpretation for control-induced attenuation of pain processing
in these brain regions, especially when the controllable pain condition was confounded by
predictability.

The second study implemented control over pain relief in a between-subject study and

tested generalization effects. The group that perceived a lower level of control did not report
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reduced, but increased perceived pain intensity, but also increased reward pleasantness.
A lack of control over pain led to different behavior in a subsequent task. The type of be-
havioral change depended on depressive symptoms and locus of control. A higher belief in
the influence of external forces on life events and more depressive symptoms in combina-
tion with the experience of uncontrollable pain led to less goal-directed behavior. A belief
of a minor influence of external forces on life events and less depressive symptoms led to

compensatory exploitation behavior after experiencing uncontrollable pain.

5.2.1 Synthesis of results

The combined message of both projects could be the following: control alters pain percep-
tion by increasing the expectation precision and informational value of pain. Although there
are some apparent differences in the type of control manipulation and design, the study re-
sults converge regarding one aspect, that is the differential influence of control depending
on outcome intensity and/or valence. Control differentially affected pain of high and low
intensity, and relief perception. Control enhanced the reported intensity in contrast to the
other possible outcomes in the task in both studies. In study one, the high pain stimulus
was perceived as more and the low pain stimulus as less intense with control and also in
study two, both outcomes were rated as more extreme with control: pain was perceived as
more intense and relief was perceived as more pleasant. | would like to put forward two
non-exclusive explanations for the results of the studies: higher expectation precision and
informational value of pain in the control conditions. When actions matter for outcomes,
the feedback about these outcomes that guides learning is naturally more relevant than
if they don’t. In the first study, the pain intensities received, especially in the first trials,
had more informational relevance, because after receiving them, participants could esti-
mate the range of painfulness they would experience dependent on their choice. Referring
to the predictive processing perspective of pain (Blichel et al., 2014), the endogenous in-
crease in perceived intensity by higher informational value, could reflect a strategy of the

brain to reduce prediction errors and behave optimally by allocation of attentional focus.
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This perceptual information guided participants’ behavior when sequencing low, medium
and highly painful stimuli in the control condition. But after having experienced each stim-
ulus intensity once, there was no additional information that could be gathered to guide
choice behavior. However, at that time point, the expectation precision had increased a
lot, because stimulus intensities were reliably related to the choice of the participant. Thus,
even though there was a little amount of new information, the predictability of outcome in-
tensities was high. This created the interactive effects on ratings and is reflected in the
parametric pattern in brain activity. Interestingly, self-involvement even subjectively in-
creased expectation precision in comparison with the predicable-only condition, indicating
a higher amount of internal uncertainty when events are determined externally. In study
two, pain was perceived as more intense in the beginning, as did relief, even though it was
not precisely predictable. But through the observation of outcome contingencies to actions
in the control group, it was clear that painful and relieving outcomes could be connected to
erroneous or correct behavior. This again increased the relevance of pain for action guid-
ing, i.e., the informational value. The increase in prior precision would occur after some
time of interacting with a (controllable) environment. At the end of the task in study two,
this could have contributed to the effect that relief was still rated as more pleasant by the
control group, even though behavior should have been consolidated by then (and informa-
tional value of outcomes reduced). In sum, both studies show that the informational value
of pain is increased by control and possibly heightens the processing of stimulus intensities
in reference to the other possible outcomes. This effect is even maintained after learning,

possibly by the heightened predictability, that is inherent to controllability.

5.2.2 Limitations

While it is compelling to motivate the theory of informational value in this context, the theory
itself has some short-comings regarding empirical results. For example, it expects pain to
be perceived as more intense if the environment is unpredictable because there, the op-

portunity to learn is greatest (Seymour, 2019; Desch et al., 2023). But it does not formalize
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the interactive effects of predictability over intensities that has been reliably reported (Pavy
et al., 2024). This effect touches upon a second limitation that applies to both studies and
that is that the outcome space was principally known in the unpredictable or uncontrollable
conditions. Either it was known from the beginning by the instructions, or after the first few
trials. This makes it really different from real-world experiences, because there usually the
possibly perceived pain intensities are not known. For example, a migraineur might not be
able to always predict how badly an attack might develop, but also not how beneficial a
treatment would be. One further limitation of both studies is, that they explored only one
pain modality, thermal heat pain, of rather short duration. It is generally difficult to translate
findings from acute to chronic pain, also regarding the interpretation in light of informational
value. Chronic pain can still be perceived as very intense, although the informational value
for guidance of behavior according to endogenous needs is possibly not given. This might
indicate that the an internal evaluation of the relevance of the pain signal converged on a
value that is not favorable for the individual.

Another factor limiting the ecological validity of the studies is the choice of control di-
mension, especially in study one. While the intensity of a painful experience might be
controllable by behavior in real life, i.e., when taking an analgesic that is known to be effec-
tive, control is usually not exerted over the onset of different levels of painfulness arising
from a non-painful baseline. While the control modality in the second experiment, induc-
ing a relief, by behavior, is generally more close to real world experience, the setup with
the computerized task is far away from the complexity of a real pain experience. Although
it is necessary to reduce processes to their controllable cores in laboratory studies, this
discrepancy between the lab and the world always needs to be kept in mind.

In particular, because also other types of controllability and predictability, which might be
more realistic could be investigated. For example predictability could be altered in form of
different temporal development of pain over time. Coming back to the example of carrying
a mug of hot coffee, the amount of painfulness can be predicted, especially if it builds up

for a while before crosssing the pain threshold. Here the brain infers the painfulness based
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on a auto-regressive model over time; or based on the slope of the sensory intensity. It
would be interesting to investigate what happens if this predicted trajectory is violated by
unpredictable change of intensity.

Finally, possible improvements of both tasks are possible. To improve the modeling
analysis of study one, it would be important to collect more data points to estimate trial-
wise expectations of pain and their precision. This would allow to set up a full Bayesian
model instead of relying on approximations. This would also make it possible to investigate
the processing of signed predictions errors in the unpredictable condition and determine if
for example the PAG activity is related to aversive prediction errors, as it has been shown
before (Roy et al., 2014) or to the change in predictability in general. Concerning study
two, it would be relevant to include a condition that reduces the control perception even
more, to avoid residual contingencies. Also a larger sample size with a wider distribution
of BDI and externality scores should be tested to confirm the use of different strategies
after uncontrollability confrontation depending on those traits. Especially given the fact,
that locus of control did not have an influence on the effect of controllability in study one.
Yet, this might be explainable by the within-subject design, because there, all participants
experienced also the control condition and no one completed only the uncontrollable and

unpredictable trials.

5.3 Implications for the field

The findings discussed above have multiple implications for the field. First, they stress that
an equally predictable control condition is highly relevant when the specific influence of
perceived contingencies of behavior and outcomes is under investigation. This is crucial in
the context of pain and of utmost importance for studying changes in functional brain ac-
tivity, because predictability alters the state of salience and attention processing networks
to a major extent. This finding replicates once more that predictive processing also ap-

plies to pain aligns with the hypothesis that it is a universal principle of human action and
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perception as the neural implementation of the free-energy principle and active inference
(Poublan-Couzardot & Talmi, 2024). The present work further implies, that it is undercom-
plex to assume that control per se reduces perceived pain. However, it can be beneficial
in the context of pain treatment by increasing outcome certainty of a positive outcome, as
demonstrated by the influence of control over placebo treatments (Tang et al., 2019). In
that context it is important to note, that perceived control might also be counter-productive,
if lower treatment efficacy or higher pain are attributed to one’s own behavior or hinders
pain acceptance (Gandhi et al., 2017).

Hopefully, the literature review conducted in parallel of the empirical studies described
in this thesis (Habermann et al., 2024), helps to distinguish different implementations of
controllability and what their distinct influence on perception might be. When conducting
future studies, experimenters should think about what control dimension they would like to
investigate, for example, control over treatment onset, pain intensity or pain onset. Then,
inspiration for study design and evidence evaluation can be derived from those studies
that actually tested the same control manipulation, with predictability taken into account.
Controllability and predictability could be principally tested separately, but not along the
same dimension. For example, a study could test the effects of predictable pain intensity in
combination with an uncontrollable duration, but an uncontrollable pain onset excludes the
possibility to make it predictable. If studies used more similar tasks and tried to replicate
findings on the behavioral and neural level, maybe settling on the control dimension that is
most ecologically valid (pain offset or intensity modulation), could lead to more convincing
evidence regarding control-induced effects on pain.

A final implication of the present work is, that personality traits, which are consolidated
over a lifetime, naturally influence the reaction to a situational manipulation of controllability.
They encode an internal prior for controllability that is carried from one environment to the
next and require different levels of observational evidence to result in action changes (Huys
& Dayan, 2009). This effect should be investigated in more detail by measuring prior beliefs

about controllability, and how those might be affected by different conditions or events,
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i.e., depression, chronic pain, traumatic experiences or chronic mild stress, when studying

effects of pain uncontrollability.

5.4 Perspective

Although it would have been nice to provide a clear answer regarding effects of subjective
control on pain perception, this thesis majorly identified factors that make the relationship of
both more complex. However, it is important to shed light on the complexity of phenomena
in order to derive a better understanding. Knowing this, future studies should use more
similar tasks, investigate control dimensions more consistently or at least deliberately chose
and motivate them. When revisiting earlier results on control effects of pain, we should ask
ourselves, if a more simple explanation, like increased saliency by predictability can explain
the effects on ratings and functional brain activity. A cool endeavor would be to come up
with smart tasks that can actually separate prior, likelihood and posterior distribution by
design or report from study participants. Also, how the entropy of the environment, which
is objectively experienced and computed by the brain, translates to subjective reports of
control and how this might be influenced by the personality prior of controllability acquired

through life events should be a major focus of future studies.
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Table A1. Model variables and group-level priors

Model parameters Group-level prior Description
140,V AS30 N (30,100) prior mean low intensity
140,V AS50 N(50,100) prior mean medium intensity*
140,V AST0 N(70,100) prior mean high intensity
log(op,) N(1.5,0.5) standard deviation of prior mean
o N(0.5,0.3) scaling parameter
h N(0,1) habituation term
log(mo) N(1.5,0.5) prior standard deviation
log(T1) N(1.5,0.5) posterior standard deviation
1 posterior mean
w probability weights intensity
*fixed po for all intensities

Table A2. Demographic information and questionnaire results
sample N age STAI LC () LC (E)

Q d div. M SD M SD M SD M SD
behavioral 54 31 22 1 2715 454 36.59 7.06 56.76 16.86 51.39 16.54
fMRI 59 35 24 O 26.56 511 33.14 6.36 67.15 9.01 46.93 10.00
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Table A3. Results of linear models on choice frequency

param mean se_mean sd n_eff Rhat HPDI_min HPDI_max model name
@ 8.66 0.07 413 3825.89 1.00 0.36 16.82 lin_low_beh
8 3.08 0.01 045 378579 1.00 2.18 3.96 lin_low_beh
o 7.22 0.02 1.62 4513.15 1.00 4.52 10.38 lin_low_beh
@ 15.64 0.07 454 3798.80 1.00 6.59 24.73 lin_low_fmri
B8 2.21 0.01 0.50 391447 1.00 1.19 3.19 lin_low_fmri
o 8.05 0.03 1.85 4155.37 1.00 4.98 11.74  lin_low_fmri
@ 29.52 0.10 6.50 3906.07 1.00 17.38 43.34 lin_med_beh
B8 0.48 0.01 0.71 4138.02 1.00 -0.92 1.92 lin_med_beh
o 11.84 0.04 269 383943 1.00 7.56 17.31  lin_med_beh
@ 29.52 0.10 6.50 3906.07 1.00 17.38 43.34 lin_med_beh
B8 0.48 0.01 0.71 4138.02 1.00 -0.92 1.92 lin_med_beh
o 11.84 0.04 269 383943 1.00 7.56 17.31  lin_med_beh
@ 29.95 0.08 558 4410.20 1.00 18.81 41.05 lin_med_fmri
B8 0.43 0.01 0.61 4388.21 1.00 -0.79 1.61 lin_med_fmri
o 10.05 0.04 229 417220 1.00 6.10 14.40 lin_med_fmri
«@ 10.27 0.16 8.16 2711.77 1.00 -6.41 26.34 poly_med_beh
Bl1] 7.26 0.05 235 252842 1.00 7.28 7.28 poly_med_beh
B[2] -0.42 0.00 0.14 267559 1.00 9.38 9.38 poly_med_beh
o 8.73 0.03 2.06 3616.42 1.00 5.44 12.93 poly_med_beh
«@ 13.62 0.13 6.77 2867.81 1.00 0.28 27.08 poly_med_fmri
Bl1] 6.18 0.04 195 2662.75 1.00 9.67 9.67 poly_med_fmri
BI2] -0.36 0.00 0.12 2838.70 1.00 5.98 5.98 poly_med_fmri
o 7.43 0.03 1.77 3392.04 1.00 4.49 10.92 poly_med_fmri
@ 62.07 0.06 4.14 451237 1.00 53.43 69.97 lin_high_beh
154 -3.59 0.01 046 4439.29 1.00 -4.45 -2.65 lin_high_beh
o 7.53 0.02 1.65 4661.54 1.00 4.67 10.74 lin_high_beh
@ 54.33 0.06 3.78 3982.86 1.00 46.87 61.94 lin_high_fmri
154 -2.63 0.01 041 393579 1.00 -3.42 -1.76  lin_high_fmri
o 6.70 0.02 149 478292 1.00 4.21 9.66 lin_high_fmri

Note. «: intercept, 5: slope, o: error. The model name indicates the type (linear vs. polynomial)
intensity (low, med: medium, high), and sample (beh: behavioral, fmri);
n_eff: number of effective samples

Table A4. Results of linear mixed models on pain ratings (behavioral sample)

predictor mean se_mean n_eff Rhat HPDI_min  HPDI_max
intercept -33.13 0.08 589.01 1.01 -37.00 -29.42
trial -0.19 0.00 8802.15 1.00 -0.29 -0.09
session -1.38 0.00 8499.79 1.00 -1.64 -1.13
intensity 1.59 0.00 2804.69 1.00 1.55 1.64
IA_CP -0.02 0.00 2781.57 1.00 -0.07 0.04
IA_CU -0.07 0.00  3028.21 1.00 -0.13 -0.00
IA_PU -0.04 0.00 2746.76 1.00 -0.11 0.02
subject_error  10.39 0.01 8036.51 1.00 8.45 12.53
noise 15.46 0.00 10478.41 1.00 15.15 15.76

Note. Pairwise interaction effects of conditions. n_eff: number of effective samples;
IA: interaction effect; U: unpredictable, C: controllable; P: predictable;

The first condition indicates the reference condition for the interaction effect.

Main effects are not meaningful if interactions are defined in the model.
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Table A5. Results of linear mixed models on pain ratings (fmri sample)

predictor mean se_mean n_eff Rhat HPDI_min HPDI_max
intercept -30.32 0.05 1244.23 1.00 -33.72 -26.94
trial -0.40 0.00 10503.77 1.00 -0.50 -0.30
session -0.36 0.00 9309.97 1.00 -0.60 -0.13
intensity 1.45 0.00 3046.05 1.00 1.40 1.49
IA_CP -0.08 0.00 3476.59 1.00 -0.14 -0.02
IA_CU -0.29 0.00 3368.49 1.00 -0.35 -0.23
IA_PU -0.20 0.00 3080.84 1.00 -0.27 -0.14
subject_error 7.95 0.01 9553.99 1.00 6.49 9.54
noise 15.18 0.00 12770.01 1.00 14.88 15.47

Note. Pairwise interaction effects of conditions. n_eff: number of effective samples;

IA: interaction effect; U: unpredictable, C: controllable; P: predictable;

The first condition indicates the reference condition for the interaction effect.

Main effects are not meaningful if interactions are defined in the model.

Table A6. Results of linear mixed models on standard deviations of pain ratings (behavioral sample)

predictor mean se_mean n_eff Rhat HPDI_min HPDI_max
intercept 9.47 0.01 6963.74 1.00 8.19 10.83
beta_UC -2.45 0.00 15607.34 1.00 -3.57 -1.30
beta_UP -2.09 0.00 16189.86 1.00 -3.29 -1.00
beta_CP 0.27 0.00 1747473 1.00 -0.87 1.35
beta_low_med 4.91 0.00 15340.13 1.00 3.76 6.09
beta_low_high 1.84 0.00 15894.08 1.00 0.68 3.01
beta_med_high -2.87 0.00 16010.91 1.00 -4.09 -1.76
subject_error 2.94 0.00 9652.42 1.00 2.19 3.74
noise 5.32 0.00 20729.85 1.00 4.97 5.68

Note. Pairwise effects of conditions and intensity levels. Fixed effect predictors: U: unpredictable,
C: controllable; P: predictable; low: low intensity; med: medium intensity;
high: high intensity. Random effect: subject_error; error term: noise. The first condition in braces
indicates the reference condition/intensity.

Table A7. Results of linear mixed models on standard deviations of pain ratings (fmri sample)

mean se_mean n_eff Rhat HPDI_min HPDI_max
intercept 12.06 0.01 9968.29 1.00 10.93 13.17
beta_UC -4.41 0.00 18069.93 1.00 -5.44 -3.36
beta_UP -3.31 0.00 17610.12 1.00 -4.33 -2.29
beta_low_med 3.98 0.00 17626.36 1.00 2.96 5.02
beta_low_high 2.32 0.00 17334.42 1.00 1.32 3.38
subject_error 2.34 0.00 732410 1.00 1.69 3.01
noise 4.94 0.00 20180.26 1.00 4.63 5.27
beta_CP 0.98 0.00 18011.92 1.00 0.02 2.04
beta_med_high -1.50 0.00 17098.70 1.00 -2.49 -0.46

Note. Pairwise effects of conditions and intensity levels. Fixed effect predictors: U: unpredictable,
C: controllable; P: predictable; low: low intensity; med: medium intensity;
high: high intensity. Random effect: subject_error; error term: noise. The first condition in braces
indicates the reference condition/intensity.
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Table A8. Pain ratings and Temperatures for all Samples

VAS mean_temp (°C) sd_temp (°C) sample

0
30
50
70
100
0
30
50
70
100

40.93 4.25 behavioral
43.56 2.63 behavioral
45.31 1.66 behavioral
47.07 1.14  behavioral
49.76 2.05 behavioral
42.09 2.86 fmri
44.31 2.06 fmri
45.79 1.67 fmri
47.20 1.39  fmri
49.50 1.81  fmri

Table A9. Parameter recovery simulation settings

model variable

values for simulation

number of subjects
number of trials
number of runs
likelihood mean

prior mean controllable
prior mean predictable
prior mean unpredictable
h

posterior sd

prior sd controllable
prior sd predictable

au

Q¢

Qp

60

15

6

mean € {30, 50,70}, sd = 1
€ {30, 50,70}, sd = 15
€ {30,50,70},sd =15
€ {30,50,70}, sd = 15
mean = 0.5,sd = 0.2
mean =10,sd =5
mean=10,sd=5
mean =10,sd =5
mean = 0.5, sd =0.2
mean =0.5,sd =0.2
mean = 0.5,sd =0.2

Note. All simulation input value parameters were sampled from truncated normal distributions
around the specified mean and standard deviation. For likelihood and prior means the
distributions had a lower bound at 0 and an upper bound at 100. The other parameters were

constrained to lie in the interval [0,1].
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Figure A1. Parameter recovery results of the model with three « scaling parameters. The parameters high-
lighted in violet could not be recovered sufficiently well in relation to their importance for the model. Therefore,
we could not proceed with the model with three scaling parameters (o , ac, ap).
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model: mean-shift dynamic
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Figure A2. All parameter can be reasonably well recovered (significant correlation, visual inspection).
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model: precision-change dynamic
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Figure A3. All parameter can be reasonably well recovered (significant correlation, visual inspection),I 33
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Figure A4. Interaction effect of condition and intensity a) Thresholded statistical maps for the interaction effect
between controllable and unpredictable condition. Green areas indicate regions significant at uncorrected p
<.001. Pink region shows the cluster that would be significant at p <.05 with small-volume FWE correction
using the shown ACC mask. b) Parameter estimates of the significant interaction voxel, visualized with a 9-
regressors model separately showing activity in the voxel = [-7.5, 37.5, -1.5] (T = 4.96, p (sv-corr) = .003) in the
three conditions at low (30), medium (50) and high (70) stimulus intensity. While there is a positive scaling with
intensity for controllable (C) and predictable (P) condition, activity decreases with intensity in the unpredictable
(U) condition.
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Figure A5. Effects of choice task on brain activity. a) Statistical maps of condition differences at task onset.
Hot colors show statistical maps at uncorrected p <.001. Black contour lines indicate significant activation
differences at p <.05, whole-brain FWE correction for multiple comparisons. Contrast are shown for higher
activity in the controllable than predictable (C > P) and higher activity in the predictable than the unpredictable
condition (P > U).b) Time courses derived from the FIR model starting at task onset and covering the time until
stimulus onset (11 time bins of TE = 1.5s).
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Table B1. Trait questionnaires

group SWE PCs BIS BAS CAT COP
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
control 30.11 (3.41) 20.19 (10.07) 2.92 (0.52) 3.14 (0.37) 1.35 (0.86) 3.43(0.82)
yoked 29.40 (3.61) 19.23 (7.00) 2.92 (0.52) 3.03 (0.36) 1.23 (0.62) 3.39 (0.71)
Note. SWE: self-efficacy; PCS: pain catastrophizing; BIS: behavioral inhibition; BAS:
behavioral activation; CAT: catastrophizing, COP: self-instruction active coping
Table B2. State questionnaires

group PA NA STAI STAXI

T T2 T T2 T T2 T T2

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
control 2.98 2.67 1.28 1.19 40.9 39.1 16.2 16.6

(0.52) (0.72) (0.41) (0.43) (4.08) (4.32) (4.02) (4.13)
yoked 2.90 2.82 1.28 1.2 411 38.5 16.2 16.4

(0.58) (0.76) (0.31) (0.36) (4.22) (5.03) (3.44) (3.60)

Note. PA: positive affect; NA: negative affect; STAI: state-trait anxiety inventory;
STAXI: state-trait anger inventory; T1: before UCIT; T2: after UCIT.

136



Table B3. UCIT regression models

Rating
pain relief control PCS 5 PCS 12
Q) 2) 3) 4) ()
trial —0.56"** —0.33"**
(0.12) (0.10)
condition —4.23 13.117** 16.04** —0.31 6.71
(4.03) (3.72) (4.76) (5.72) (5.50)
temp 298"
(0.48)
pain_mean 0.18"**
(0.04)
pain_temp —0.64
(0.43)
trial:condition 0.58"** —0.66™""
(0.17) (0.14)
Constant —70.95"** 52.79** 53.93*** 22.97*** 44.48***
(21.44) (17.59) (3.76) (3.97) (3.81)
Observations 1,187 1,680 154 154 154
Log Likelihood —4,810.75 —6,971.37 —694.37 —665.21 —687.41
Akaike Inf. Crit. 9,639.50 13,960.73 1,400.73 1,340.41 1,384.82
Bayesian Inf. Crit. 9,685.21 14,009.57 1,418.96 1,355.60 1,400.00

Note:

*p<0.05; **p<0.01; ***p<0.001
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Table B4. Confidence in memory task relative to yoked group

Dependent variable:

value
control group false —22.49™
(4.95)
control group correct 21.00"**
(3.29)
Constant 73.01***
(2.71)
Observations 169
Log Likelihood —714.27
Akaike Inf. Crit. 1,440.53
Bayesian Inf. Crit. 1,459.31
Note: *p<0.05; **p<0.01; ***p<0.001

Table B5. Test environment pain and relief ratings

Rating
online post
pain pain relief
(1) (2) (3)
temp_pain 0.33 0.95 —-0.71
(0.52) (0.56) (0.55)
trial 0.07 0.38"** —-0.43***
(0.09) (0.09) (0.10)
condition —-0.12 -3.87 4.95
(4.11) (4.12) (4.06)
trial:condition —0.40"*
(0.13)
Constant 25.49 3.01 70.51*
(22.47) (23.36) (21.75)
Observations 2,736 1,738 998
Log Likelihood —-11,927.68 —7,606.02 —4,266.47
Akaike Inf. Crit. 23,871.35 15,226.04 8,544.94
Bayesian Inf. Crit. 23,918.67 15,264.26 8,574.37
Note: *p<0.05; **p<0.01; ***p<0.001
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Table B6. Test environment behavioral measures (run)

Dependent variable:

n_relief n_goal n_decoy avg_distinct n_switches
condition —-1.78 —2.09 —-0.24 —0.02 1.65
(1.07) (1.09) (0.62) (0.32) (1.11)
run 112 0.97 1.47* 0.13 —1.26*
(0.60) (0.63) (0.44) (0.13) (0.55)
Constant 6.40"** 6.45""* 3.88"** 5.30"** 15.71"**
(1.16) (1.21) (0.78) (0.29) (1.13)
Observations 152 152 152 152 152
Log Likelihood —454.68 —460.26 —-391.11 —251.45 —451.91
Akaike Inf. Crit. 919.35 930.51 792.23 512.89 913.82
Bayesian Inf. Crit. 934.47 945.63 807.35 528.01 928.94

Note:

*p<0.05; **p<0.01; ***p<0.001

Table B7. Test environment behavioral measures (trial)

Dependent variable:

n_state n_unique_state dur_escape
(1) (2) (3)
condition 0.08 —0.02 0.52
(0.41) (0.32) (0.43)
trial —0.08"** —0.07*** —0.08"**
(0.01) (0.01) (0.01)
run 0.15 0.13 —0.62***
(0.13) (0.10) (0.11)
Constant 6.64"** 5.99*** 8.06™*
(0.36) (0.29) (0.35)
Observations 3,040 3,040 3,040
Log Likelihood —8,177.35 —7,604.02 —7,673.92
Akaike Inf. Crit. 16,366.69 15,220.05 15,359.85
Bayesian Inf. Crit. 16,402.81 15,256.16 15,395.97

Note:

*p<0.05; **p<0.01; ***p<0.001
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Table B8. UCIT regression models with externality predictor

Rating
pain relief control PCS 5 PCS 12
(1) 2 ) 4) ®) (6)

trial —0.56™** —0.33***

(0.12) (0.10)
condition —4.29 13.10"** 16.14*** -0.71 6.90 16.77°**

(4.04) (3.74) (4.81) (5.70) (5.52) (2.79)
temp 297

(0.49)
pain_mean 0.18***

(0.04)
pain_temp —0.65
(0.44)

EXT_CON 0.05 0.01 —0.12 0.50 —-0.24 —0.04

(0.25) (0.21) (0.32) (0.36) (0.35) (0.21)
trial:condition 0.58*** —0.66™*"

(0.17) (0.14)
Constant —72.79** 52.35"* 58.81*** 1.82 54.67*** 7479

(22.94) (19.03) (14.14) (15.70) (15.23) (9.52)
Observations 1,187 1,680 154 154 154 154
Log Likelihood —4,811.22 —6,972.01 —694.52 —664.35 —687.31 —650.52
Akaike Inf. Crit. 9,642.43 13,966.02 1,403.04 1,340.69 1,386.62 1,313.03
Bayesian Inf. Crit. 9,693.22 14,025.71 1,424.30 1,358.91 1,404.84 1,331.25

Note:

*p<0.05; **p<0.01; ***p<0.001
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Table B9. UCIT regression models with internality predictor

Rating
pain relief control PCS 5 PCS 12

trial —0.56™*" —0.33**

(0.12) (0.10)
condition —4.17 13.80"** 15.46™* 1.09 6.70 16.96"**

(4.12) (3.77) (4.91) (5.80) (5.63) (2.84)
temp 297

(0.48)
pain_mean 0.18™**

(0.04)
pain_temp —-0.69
(0.43)

INT_CON -0.02 -0.22 0.19 -0.45 0.004 -0.07

(0.23) (0.20) (0.30) (0.34) (0.33) (0.19)
trial:condition 0.58"** —0.66™""

(0.17) (0.14)
Constant —69.57" 68.36™" 42.22* 50.90" 44 .23 77.25"**

(27.14) (22.30) (19.21) (21.67) (21.05) (12.43)
Observations 1,187 1,680 154 154 154 154
Log Likelihood —4,811.29 —6,971.44 —694.45 —664.50 —687.59 —650.56
Akaike Inf. Crit. 9,642.57 13,964.88 1,402.90 1,341.00 1,387.18 1,313.13
Bayesian Inf. Crit. 9,693.37 14,024.57 1,424.16 1,359.22 1,405.40 1,331.35
Note: *p<0.05; **p<0.01; ***p<0.001
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Table B10. UCIT regression models with BDI predictor
Rating
pain relief control PCS 5 PCS 12

trial —0.56™*" —0.33**

(0.12) (0.10)
condition —4.18 13.20"** 15.98"** —0.48 7.14 16.59"**

(4.07) (3.76) (4.79) (5.75) (5.43) (2.72)
temp 298"

(0.48)
pain_mean 0.18™**

(0.04)
pain_temp —-0.65
(0.43)

BDI_sum —0.05 -0.14 0.10 0.24 —0.62 0.21

(0.26) (0.22) (0.34) (0.38) (0.36) (0.21)
trial:condition 0.58"** —0.66™""

(0.17) (0.14)
Constant —70.60"" 54.09** 53.15"** 21,127 49.29*** 71.46**

(21.59) (17.74) (4.59) (4.96) (4.68) (3.38)
Observations 1,187 1,680 154 154 154 154
Log Likelihood —4,811.18 —6,971.78 —694.50 —665.05 —686.03 —650.06
Akaike Inf. Crit. 9,642.36 13,965.56 1,402.99 1,342.10 1,384.05 1,312.11
Bayesian Inf. Crit. 9,693.15 14,025.26 1,424.25 1,360.32 1,402.28 1,330.33

Note:

*p<0.05; **p<0.01; ***p<0.001
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Table B11. BDI and LC influence on pain ratings in test environment

Dependent variable:

rating_pre rating_post
temp_pain 0.15 0.32 0.31 0.74 0.71 0.98
(0.50) (0.53) (0.52) (0.54) (0.57) (0.56)
trial -0.12 —0.12 -0.12 0.38"** 0.38"** 0.38"**
(0.07) (0.07) (0.07) (0.09) (0.09) (0.09)
condition —5.07 —4.25 —4.90 —19.82 61.90 -0.53
(3.62) (3.87) (3.79) (22.76) (32.87) (6.06)
EXT_CON 0.69"* 0.58
(0.23) (0.41)
INT_CON —0.16 0.43
(0.23) (0.34)
BDI_sum 0.35 0.70
(0.25) (0.43)
condition:EXT_CON 0.37
(0.52)
condition:INT_CON —1.04*
(0.51)
condition:BDI_sum —-0.44
(0.56)
Constant 5.52 38.42 25.86 —13.38 —13.77 —-3.59
(22.78) (27.15) (22.38) (27.88) (29.71) (23.83)
Observations 2,736 2,736 2,736 1,738 1,738 1,738
Log Likelihood —11,927.38 —11,931.34 —11,930.57 —7,601.25 —7,604.21 —7,604.44
Akaike Inf. Crit. 23,870.75 23,878.68 23,877.13 15,220.50 15,226.42 15,226.89
Bayesian Inf. Crit. 23,918.06 23,925.99 23,924.45 15,269.64 15,275.56 15,276.03

Note:

*p<0.05; **p<0.01; ***p<0.001
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Table B12. BDI and LC influence on relief ratings in test environment

Dependent variable:

rating_post
Q) 2) 3)
temp_pain —0.65 -0.67 -0.67
(0.56) (0.55) (0.56)
trial —0.43"** —0.43"** —0.43*
(0.10) (0.10) (0.10)
condition 33.34 —-19.21 9.19
(21.86) (31.93) (6.00)
EXT_CON 0.22
(0.39)
condition:EXT_CON —-0.67
(0.51)
INT_CON —0.60
(0.31)
condition:INT_CON 0.40
(0.50)
BDI_sum 0.35
(0.47)
condition:BDI_sum —0.56
(0.58)
Constant 58.78" 105.94*** 66.35""
(26.26) (27.94) (22.30)
Observations 998 998 998
Log Likelihood —4,265.60 —4,264.80 —4,265.98
Akaike Inf. Crit. 8,549.19 8,547.61 8,549.96
Bayesian Inf. Crit. 8,593.34 8,591.76 8,594.11

Note:

*p<0.05; **p<0.01; ***p<0.001
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Table B13. Externality influence on behavioral measures in test environment

Dependent variable:

n_relief n_goal n_decoy n_switches n_state
condition —16.69"" —-16.01"" 5.85 16.82"* 3.37
(5.59) (5.77) (3.41) (5.88) (2.27)
EXT_CON —0.35""* —0.33"" 0.12* 0.34** 0.04
(0.10) (0.10) (0.06) (0.10) (0.04)
condition:EXT_CON 0.35"* 0.33" -0.14 —0.36"" —0.08
(0.13) (0.13) (0.08) (0.14) (0.05)
Constant 22.72%* 21.89"** 0.95 —-0.38 4.50™"
(4.27) (4.40) (2.69) (4.50) (1.73)
Observations 152 152 152 152 3,040
Log Likelihood —453.37 —459.55 —394.78 —451.43 —8,204.70
Akaike Inf. Crit. 920.75 933.09 803.55 916.86 16,423.40
Bayesian Inf. Crit. 941.92 954.26 824.72 938.02 16,465.54
Note: *p<0.05; **p<0.01; ***p<0.001

Table B14. Internality influence on behavioral measures in test environment

Dependent variable:

n_relief n_goal n_decoy n_switches n_state
condition 5.40 2.73 —-0.24 1.88 —-2.19
(8.35) (8.58) (0.63) (1.13) (3.25)
INT_CON 0.16 0.13 —0.0003 —0.08 —0.01
(0.09) (0.09) (0.04) (0.07) (0.03)
condition:INT_CON -0.12 —0.08 0.04
(0.13) (0.13) (0.05)
Constant —1.56 -0.24 6.11* 19.00"** 6.64"*
(5.37) (5.51) (2.50) (4.29) (2.08)
Observations 152 152 152 152 3,040
Log Likelihood —457.43 —463.29 —395.27 —454.57 —8,205.65
Akaike Inf. Crit. 928.86 940.58 802.55 921.15 16,425.31
Bayesian Inf. Crit. 950.03 961.75 820.69 939.29 16,467.45
Note: *p<0.05; **p<0.01; ***p<0.001
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Table B15.

BDI influence on behavioral measures in test environment

Dependent variable:

n_relief n_goal n_decoy n_switches n_state
condition —4.03*" —2.00 —0.25 1.54 0.07

(1.48) (1.06) (0.63) (1.07) (0.41)
BDI_sum —0.35"" —0.16" 0.02 0.18** 0.01

(0.11) (0.07) (0.04) (0.07) (0.03)
condition:BDI_sum 0.30"

(0.14)
Constant 10.74** 9.156"** 5.95** 12.39"** 5.90"**

(1.17) (0.98) (0.88) (1.08) (0.35)
Observations 152 152 152 152 3,040
Log Likelihood —453.81 —460.84 —395.10 —452.03 —8,203.64
Akaike Inf. Crit. 921.63 933.68 802.19 916.06 16,419.29
Bayesian Inf. Crit. 942.80 951.83 820.34 934.20 16,455.40

Note:

*p<0.05; **p<0.01; ***p<0.001
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Abstract

Pain is an important information signal that protects bodily integrity by changing behavior
in reaction to the environment. If the environment changes in accordance with an organ-
ism’s intentions, it is perceived as controllable. This thesis discusses evidence regarding
the influence of perceived control on pain perception. It contributes to the understanding of
pain as a percept that is placed between sensory and emotional experiences, shows how
environmental factors can change this percept and how consolidated beliefs about control
influence outcomes of aversive experiences. Besides an extensive review of the literature
about the behavioral and neuronal effects of control on pain, | conducted two empirical
studies to measure the effects of control over thermal heat-pain. The first study followed
a rather methodological aim of disentangling the effects of predictability and controllability
on neural processing of pain. The second study investigated effects of uncontrollable pain
on perception and subsequent learning. Results of the studies show that because control
increases expectation precision regarding pain and its informational value, pain perception
under control is biased towards the extremes of possible outcomes. That implies that pain
of high intensity is perceived as more painful, and relief, or pain of lower intensity is per-
ceived as less painful in a controllable environment. Furthermore, the neural results show
overlapping patterns of controllability with predictability in salience processing regions, like
the anterior insula and the anterior cingulate cortex. Importantly, controllability specifically
attenuated activity in the periaqueductal gray and the supplementary motor area. Addition-
ally, the second study showed that effects of uncontrollable pain on subsequent learning
depend on general beliefs about control, resulting in less goal-directed behavior. Taken
together, this thesis contributes to the improvements of future studies in the field and helps
to understand the complexity of the interplay between descending pain modulation, control,

and expectations.

147



Zusammenfassung

Schmerz ist ein wichtiges Informationssignal des Korpers, um dessen Integritédt durch
Verhaltensanderungen in Reaktion auf die Umgebung zu sichern. Eine Umgebung wird
als kontrollierbar empfunden, wenn sie sich entsprechend den Intentionen eines Or-
ganismus verandert. Die vorliegende Arbeit diskutiert Evidenz zum Einfluss von Kon-
trolle auf Schmerz. Dabei platziert sie die Wahrnehmung von Schmerz zwischen purer
Sensorik und Emotion. Zusatzlich zu einer umfassenden Darstellung der Literatur zu
den Effekten von Kontrolle auf Schmerz und dessen neuronale Verarbeitung, habe ich
im Rahmen dieser Arbeit zwei empirische Studien durchgefiihrt, die untersuchten, wie
sich Kontrolle auf die Wahrnehmung von Hitzeschmerz auswirkt. Die erste Studie fol-
gte dabei dem methodischen Ziel die Effekte von Vorhersagbarkeit und Kontrolle auf die
neuronale Verarbeitung von Schmerz zu trennen. Die zweite Studie untersuchte die Ef-
fekte von unkontrollierbaren Schmerz auf Wahrnehmung und anschlieRende Veranderun-
gen des Lernverhalten. Die Ergebnisse zeigen, dass durch Kontrolle sowohl Schmerz,
als auch eine relative Schmerzlinderung als intensiver empfunden werden kann. Dies
wird vermittelt Gber erhdhte Erwartungsprazision und Informationswert von Schmerz in
einer kontrollierbaren Umgebung. Darlber hinaus zeigen sich groRe Gemeinsamkeiten
in den neuronalen Verarbeitungsmustern von kontrollierbaren und perfekt vorhersagbaren
Schmerzreizen. Dies auldert sich als Aktivitatsreduktion in Regionen des Salienznetzw-
erks, beispielsweise in der anterioren Insula und dem anterioren Cingulum. Kontrolle tiber
die Schmerzintensitat verringerte zusatzlich die Aktivitat im periaquaduktalen Grau und
dem supplementaren motorischen Areal. Die zweite Studie zeigte, dass die Auswirkungen
von einer unkontrollierbaren Schmerzerfahrung auf darauffolgendes Lernverhalten von all-
gemeinen Kontrolliberzeugungen abhangen. Eine starkere Wahrnehmung von externen

Einflussfaktoren auf Lebensereignisse filhrte dabei zu weniger zielgerichtetem Verhalten.
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Alles in allem tragt diese Arbeit dazu bei, zukinftige Studien durch adaquate Kontrollbe-
dingungen zu verbessern sowie das Verstandnis des komplexen Zusammenspiels von

Schmerzwahrnehmung, Kontrolle und Erwartungen zu erhéhen.
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