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Zusammenfassung

Axionen sind schwach wechselwirkende pseudo-skalare Teilchen, die ursprünglich im
Zusammenhang mit der Peccei-Quinn-Lösung des starken CP-Problems der QCD
postuliert wurden. Im kosmologischen Kontext stellen Axionen eine vielversprechen-
de Lösung für die Erklärung der fehlenden dunklen Materie im aktuellen Standard-
modell des Universums dar. Wenn das kosmische Axionfeld erst nach der kosmologi-
schen Inflation etabliert wird - wie in dieser Arbeit angenommen - führen die daraus
resultierenden Fluktuationen in der axionischen Materiedichte zur Bildung kompak-
ter massiver Strukturen. Auf kleinen Skalen führen diese Strukturen zur Bildung
von Axionen-Miniclustern und Axionen-Sternen – äußerst massedichten Objekten,
die voraussichtlich später die Entstehungsorte von Galaxien durch aufeinanderfol-
gende Minicluster-Merger bestimmen. Es wird daher erwartet, dass die Halos aus
dunkler Materie in typischen Galaxien eine vielfältige Substruktur leichter und mit-
telschwerer Minicluster aufweisen, in deren Zentrum jeweils ein Axionen-Stern vor-
handen ist. Diese zentralen Axionen-Sterne haben hohe Dichten, die ihre mögliche
Detektion durch parametrische Resonanz und relativistische Teilchen-Emission er-
möglichen.
In dieser Arbeit erweitern wir vorangegangene Studien über die Massen- und Größen-
verteilung der Minicluster-Population durch ihre Übertragung auf Dunkle-Materie-
Halos von Galaxien mit besonderem Schwerpunkt auf den Eigenschaften ihrer zen-
tralen Axionen-Sterne. Ausgehend von den Eigenschaften galaktischer Axionen-
Sterne berechnen wir die erwarteten Ereignisraten für verschiedene Signaturen, die
durch Kollisionen zwischen Neutronensternen, Miniclustern und Axionen-Sternen
entstehen. Wir betrachten Axion-Massen im Bereich von 10−12 eV≤ ma ≤ 10−2 eV
mit unterschiedlicher Abhängigkeitma (T ) von der kosmologischen Temperatur. Un-
sere Analyse legt nahe, dass Signaturen aus Kollisionen zwischen Substrukturen aus
axionischer dunkler Materie und Neutronensternen in der Milchstraße voraussicht-
lich nicht nachweisbar sind. Stattdessen leiten wir in dieser Arbeit neuartige Detek-
tionsmethoden her, die das kontinuierliche Massenwachstum von Axionen-Sternen
in Miniclustern nutzen. Wir zeigen, dass langfristige Massenakkretion von Axionen-
Sternen beobachtbare Signale sowohl durch parametrische Resonanz als auch durch
wiederkehrende Bosenovae liefern kann. Durch die Abschätzung der erwarteten Häu-
figkeit von akkretierenden Axionen-Sternen in unserer Galaxie zeigen wir, dass galak-
tische Radiolinien für eine große Bandbreite an Axion-Massen und Axion-Photon-
Kopplungen vorhergesagt werden. Darüber hinaus legen unsere Ergebnisse nahe,
dass die Häufigkeit galaktischer Bosenovae ausreichen kann, um ihren Nachweis in
zukünftigen Breitband-Detektoren für axionische dunkle Materie zu ermöglichen.



Abstract

Axions are weakly interacting pseudo-scalar particles originally motivated by the
Peccei-Quinn solution of the strong CP problem of QCD. In the context of cosmol-
ogy, axions provide a compelling solution to explain the missing dark matter in the
standard model of the universe. When the cosmic axion field is established after
the inflationary epoch as assumed in this work, the resulting fluctuations in the
axion matter density source the formation of compact structures. On small scales,
these structures lead to the formation of axion miniclusters and axion stars - highly
overdense objects, which are expected to source the sites of galaxy formation at late
times through consecutive minicluster mergers. As a consequence, the dark matter
halos of standard galaxies are expected to exhibit a rich substructure of lighter and
inter-mediate mass miniclusters, each hosting a single axion star core. These axion
star cores have large central densities that allow for their possible detection through
parametric resonance and relativistic axion emission.
In this work, we extend earlier investigations on the mass and size distribution of
the minicluster population to galaxy dark matter halos with special emphasis on
the properties of their axion star cores. Inferring the properties of galactic axion
stars, we calculate the expected event rates for different signatures given by colli-
sions between neutron stars, miniclusters and axion stars. We consider axion masses
in the range 10−12 eV ≤ ma ≤ 10−2 eV with various scenarios for the cosmological
temperature evolution of ma(T ). Our analysis suggests that signatures from colli-
sions of neutron stars with miniclusters and axion stars are unlikely to be detected
in the Milky Way. Instead we provide novel detection schemes by exploiting the
continuous mass growth of the axion star cores. We show that long-time mass ac-
cretion of axion stars can provide observable signals from both parametric resonance
and re-occurring bosenovae. Evaluating the expected axion star abundance of our
galaxy, we demonstrate that galactic radio lines are predicted for a large range of
axion masses and axion-photon couplings. Similarly, we find that the rate of galactic
bosenovae may be sufficient to allow for their detection in future broadband axion
dark matter searches.
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Introduction 1
The cosmological standard model ranks among the most important scientific achievements since
it encompasses our fundamental understanding of the laws of nature. It provides an important
framework prescribing the interpretation of various observational data and explains the cosmic
history from the early universe until today. The most recent fundamental shift in our under-
standing of the universe occurred in 1998, when its accelerated expansion was discovered through
recession velocities of type 1A supernovae [5]. After that, dark energy (Λ) was understood to
be a major contribution to the total energy budget of the universe, next to cold dark matter
(CDM), in the so-called ΛCDM model.
The ΛCDM model is the most simple and most well-tested cosmological model that stands up to
observational challenges from decades of astronomical observations. Despite its great success in
explaining precision measurements of the cosmic microwave background and the homogeneity of
the present-day universe, the ΛCDM model still faces a series of fundamental challenges. These
challenges include the Hubble tension arising from different measurements of the present-day
expansion rate of the universe [6], the nature of dark energy and most importantly for this work,
the unknown nature of the name-giving cold dark matter (DM) component.
The first evidence for the existence of dark matter came through observations in the kinemat-
ics of galaxy clusters by Fritz Zwicky [7] in the 1930s. Ever since then, a large amount of
experimental data has consolidated the need for a larger matter component, mainly through
measurements of galaxy rotation curves [8–10], combined observations of the Bullet cluster [11,
12] and CMB measurements [13, 14]. Within the last decades, extensive searches for different
dark matter candidates like massive compact halo objects (MACHOS), primordial black holes
and weakly interacting massive particles (WIMPs) have been performed. Despite these efforts,
neither WIMPs nor any other dark matter particles have been found so far, which raised scien-
tific interest in new models and explanations. Among the most elegant and well-motivated of
these is the QCD axion, a weakly interacting pseudo-scalar particle that was proposed by Peccei
and Quinn in the 1970s to explain the strong CP problem of quantum chromodynamics [15, 16].
Analogous to the QCD axion, there exist many other extensions of the standard model, which
also introduce a spontaneously broken global shift symmetry [17, 18] and a corresponding
pseudo-Nambu-Goldstone boson that can serve as dark matter. These so-called axion-like par-
ticles are generally very light but can be produced abundantly via the non-thermal vacuum
realignment mechanism [19–21], in which the energy stored in the oscillations of the early axion
field behaves like cold dark matter at low cosmological temperatures. The subsequent evolution
of the matter density perturbations sourced by the axion field is fundamentally different de-
pending on if the symmetry breaking occurred before or after cosmic inflation. When the global
symmetry remains unbroken during inflation as will be assumed in this work, the axion field
takes different values across a Hubble patch leading to the collapse of large matter overdensities
around matter-radiation equality [22].
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Chapter 1 Introduction

The objects formed from these overdensities are called axion miniclusters [23, 24]. They exhibit
a large range of masses, with typical values M ∼ 10−12M⊙ for ma ∼ 50µeV, and are expected
to host a dense core of condensed axions, called an axion star, or soliton [25, 26]. Miniclusters
have been shown to form heavier structures through consecutive mergers throughout the cosmo-
logical evolution [27] and could thereby source the sites of galaxy formation at late times. Just
like their minicluster counterparts in N-body simulations [27–29], the galaxy-sized dark mat-
ter halos formed from such mergers are expected to exhibit a rich substructure of lighter and
intermediate-mass miniclusters [30]. This scenario has important implications for experimental
observations of dark matter in our galaxy: First, the collisions of these objects with earth-based
detectors could lead to observable signals in axion DM search experiments. Secondly and im-
portantly for this work, axion stars on the verge of instability, can source the emission of either
radio bursts [31–34] or relativistic axion particles [35, 36]. Miniclusters, which host an unstable
axion star in their center can therefore allow for either confirmation or exclusion of different
axion models through (non-)observation of the resulting axion star signals.
In this work, we introduce the galactic DM substructure and more specifically the axion star
population of the Milky Way in a hierarchical approach: We start from the production of axion
dark matter in the early universe and consider the galactic dark matter halo of the Milky Way to
be composed out of a large population of lighter and heavy axion miniclusters, each of which can
host up to a single axion star core. Axion stars in return have been considered to yield observ-
able signatures through a variety of mechanisms, namely through spontaneous decay of axions
into photons, relativistic axion emission during collapse and radio amplified radio conversion in
the presence of the strong magnetic fields of neutron stars. The major goal of this work is to
provide a complete evaluation of the aforementioned, most important axion star signatures and
their detectability. A second part of this work is dedicated to the development of new detection
strategies, which exploit the mass growth of axion star cores.
For this, we start by introducing the fundamental properties of different axion models together
with different production and detection mechanisms of axion matter density perturbations in
Chap. 2. Chap. 3 summarizes how current knowledge on the formation and evolution of axion
miniclusters can be applied to estimate their present-day mass distribution in the galactic dark
matter halo. The resulting properties of galactic miniclusters are thereafter used to infer the
mass distribution of their respective axion star cores in Chap. 4. In Chap. 5 the combined
properties of axion stars and miniclusters can then be used to re-evaluate the detectability of
various signatures through calculation of the mass-integrated collision rates with astrophysical
sources. The resulting findings motivate the development of new observational methods for ac-
creting axion stars in Chap. 6 and Chap. 7. First, Chap. 6 focusses on the development of two
major accretion mechanisms for isolated and non-isolated axion-star-minicluster systems. Both
of these mechanisms are shown to induce substantial mass growth and resulting spontaneous
decay in axion stars, which is detectable with existing radio telescopes like LOFAR and FAST
according to our analysis. An equivalent approach is taken in Chap. 7, where the continuous
mass growth of axion stars leads to numerous, re-occurring axion bursts within the Milky Way,
which can potentially be detected using future broadband axion searches. Lastly, the results of
this work are summarized together with possible improvements in Chap. 8.
For the sake of clarity, we provide a schematic overview of the total structure and content of
this work in Fig. A.1 and App. A.2. The different minicluster- and axion star parameters used
in this thesis are summarized together with their respective definitions in Tab. A.1.
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Axion Dark Matter 2
This chapter serves as a basic introduction of both the cosmological QCD axion and other axion-
like particles - together more broadly referred to as axions in this thesis (see Conventions). Such
particles are both motivated by the ongoing search for the missing dark matter in our universe
and by other, model-dependent considerations, most importantly by the solution of the strong
CP problem in the case of the QCD axion. The strong CP problem will be introduced in Sec. 2.1
together with the Peccei-Quinn mechanism in Sec. 2.2. Sec. 2.3 summarizes the interactions be-
tween different axion models and the standard model. The generalization to axion-like particles
and their fundamental properties are introduced in Sec. 2.4. Different production mechanisms
of axion dark matter and its role in the cosmological evolution are summarized in Sec. 2.5 and
Sec. 2.6, with special emphasis on the axion misalignment mechanism. Lastly, Sec. 2.7 gives
a summary of the most relevant experimental techniques designed to either detect or exclude
different axion models, and more specifically their predicted axion small-scale structure. The
content of this chapter is based on more elaborate reviews such as Ref.s [37–39] for the strong
CP problem and Ref.s [40–49] for the cosmological axion.

2.1 The strong CP Problem
Soon after the theory of Quantum Chromo-Dynamics (QCD) was established as the fundamental
theory of strong interactions, it was understood that the general QCD Lagrangian could con-
tain a term which violates invariance under time reversal (T) and parity (P) transformations.
This equivalently CP violating term (with CP denoting the combined transformation of charge
conjugation (C) and parity) is generally referred to as the θ-term with Lagrangian

Lθ = θ
αs

8π
Ga

µνG̃
a,µν ⊂ LQCD , (2.1)

where αs = g2s/(4π) is the strong fine-structure constant and gs the strong coupling. The field
strength tensor Ga

µν = ∂µGaν−∂νGaµ−gsfabc[Gbµ, Gcν ] is built from the gluon field Gaµ and the
structure constants fabc of the gauge group of QCD. Its dual is defined as G̃aµν = ϵµναβGa

αβ/2
and importantly, θ is expected to be an order one parameter, which serves as a measure of the
strength of CP violation in QCD [37].
Another contribution to the strong CP problem arises from the quark mass Lagrangian

LM = q̄iRMijqjL + h.c. (2.2)

with indices L and R labelling the left- and right-handed helicity states of the quark fields qi.
Since, the quark mass matrixMij is generally complex, a chiral transformation q → exp(iαγ5/2)q
of the quark fields with the Dirac matrix γ5 = iγ0γ1γ2γ3 is needed to change to a physical basis
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Chapter 2 Axion Dark Matter

by diagonalization of Mij . These chiral transformations change the θ vacuum state of QCD by
introducing a rotation [37]

eiαγ5 |θ⟩ = |θ + α⟩ . (2.3)

The shift required to render the quark masses real and positive is α = arg(detM), so that the
total contribution to the CP violating θ̄-term including the effects of chiral transformations is
2π-periodic with

θ̄ = θ + arg(detM) , (2.4)

taking values θ̄ ∈ [−π, π] and where θ̄ = 0 amounts to no violation of the CP symmetry of QCD
[37, 50]. The general θ̄-term and the corresponding violation of CP symmetry for θ̄ ̸= 0 induce
an electric dipole moment for the neutron which is roughly on the order of

dn ∼ θ̄emumd

m2
n(mu +md)

∼ 10−16 θ̄ e cm , (2.5)

with the electron charge e, the neutron mass mn and the masses mu,md of the up- and down
quarks [51]. Experimental measurements of this dipole moment yield an upper bound of |dn| <
1.8 ·10−26e cm [52], which amounts to the stringent constraint |θ̄| ≲ 10−10 for the θ̄-parameter in
Eq. (2.4). Since the natural expectation for θ̄ ∈ [−π, π] is an O(1) number, the apparently exact
CP symmetry of QCD constitutes a fine-tuning problem raising the question why the observed
value of θ̄ is so extremely small.

2.2 The Peccei-Quinn Mechanism and the QCD Axion
The easiest possible solution to the strong CP problem of QCD is to assume that one of the
quarks is massless. In this case detM = 0 and the arg(detM) term in Eq. (2.4) becomes
arbitrary, allowing one to set θ̄ = 0 for any θ. However it was quickly found that the lightest
quark mass in the standard model is that of the up quark with mu = 2.2± 0.5MeV [53], which
effectively ruled out the massless quark explanation.
Another, more viable solution was proposed by Peccei and Quinn (PQ) in the 1970s, who
introduced a new axial U(1)PQ symmetry which is broken at some energy scale fa, often referred
to as the decay constant [15]. Under this symmetry, the newly defined complex scalar field

φ(x) = φ0(x) e
iϕ(x)/fa (2.6)

transforms according to

φ(x) → eiαφ(x) , (2.7)

where the field φ is decomposed into the radial mode φ0(x) and a pseudo-scalar field ϕ(x).
Similar to the Higgs mechanism, the field φ has a symmetry breaking potential, where the
U(1)PQ symmetry is spontaneously broken by the vacuum expectation value ⟨φ⟩ = fa. The
pseudo Nambu-Goldstone boson associated to this symmetry breaking, ϕ(x), is known as the
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2.2 The Peccei-Quinn Mechanism and the QCD Axion

axion [15, 17]. It can be shown that the corresponding axion Lagrangian contains the crucially
important axion-gluon interaction term

Lagg =
αs

8π

ϕ

fa
GµνG̃

µν . (2.8)

This term encompasses a solution of the strong CP problem since it provides a similar contribu-
tion than the theta-term in Eq. (2.1) and Eq. (2.4) [15, 37]. The cancellation of the CP violation
contained in Lθ, LM and Lagg can also be seen from the axion potential V (ϕ), which is inherited
from the Lagrangian Eq. (2.8). A simplified but common assumption for the cosmological axion
potential is [40, 41, 54]

V (ϕ) = m2
πf

2
π

mumd

m2
u +m2

d

[
1− cos

(
θ̄ +

ϕ

fa

)]
, (2.9)

whereas its exact form has to be computed numerically from instantons [54] or chiral perturba-
tion theory [55]. It is given in terms of the pion mass and decay constant mπ, fπ and exhibits
a CP conserving minimum at ⟨ϕ⟩ = −θ̄fa. The strong CP problem of QCD is thus solved
dynamically by the field ϕ(x) relaxing to its potential minimum, where the shift ϕ → ϕ + ⟨ϕ⟩
cancels the CP violating contributions from Eq. (2.1) and Eq. (2.2). Accordingly, one can also
interpret the PQ solution as a promoting of the static CP violation parameter θ̄ to a dynamical
field θ̄ → ϕ(x)/fa. Apart from solving the CP problem, the axion potential Eq. (2.9) induces
an axion mass

m2
a =

∂2V (ϕ)

∂ϕ2

∣∣∣∣∣
min(ϕ)

=
m2

πf
2
π

f2a

mumd

m2
u +m2

d

, (2.10)

with Eq. (2.10) implying m2
af

2
a = const. Inserting standard model values for the known param-

eters mu, md, mπ, fπ, the zero-temperature axion mass from Eq. (2.10) is commonly expressed
in terms of the decay constant as [56]

ma ≈ 50µeV
(
1.2 · 1011 GeV

fa

)
(2.11)

where in this work we assume a representative value of ma = 50µeV, in good agreement with
Ref.s [28, 30, 43, 57] . More generally and above the QCD confinement scale, the axion potential
V derived from the Lagrangian Eq. (2.8) evolves with the cosmological temperature T as

V (ϕ, T ) = m2
a(T )f

2
a

[
1− cos

(
ϕNDW
fa

)]
, (2.12)

where NDW = 1 is the domain wall number and the temperature dependent axion mass

m2
a(T ) =

χ(T )

f2a
(2.13)

is given in terms of the topological susceptibility χ(T ) of QCD [54]. Note that the axion field
in Eq. (2.12) has already been shifted compared to Eq. (2.9). For temperatures below the QCD
scale T < TQCD ≈ 180MeV [54], ma(T ) approaches its zero-temperature value from Eq. (2.11).
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Chapter 2 Axion Dark Matter

Conversely, χ(T ) evolves beyond the QCD confinement scale, rendering the axion effectively
mass-less at high temperatures. Wantz and Shellard [54] reported the scaling

χ(T ) = αaΛ
4
a

(
T

Λa

)−2n

, T > Λa (2.14)

of the susceptibility, with coefficient αa = 1.68 · 10−7, temperature index n = 3.34 and Λa =
400MeV. This means that the axion mass temperature evolution in Eq. (2.13) can be parametrized
by a power law according to

ma(T ) =

√
αa Λ

2
a

fa

(
T

Λa

)−n

≃ ma,0

(
T

Λa

)−n

, T > Λa (2.15)

where ma,0 ≡ ma(T = 0) is the zero-temperature axion mass and the decay constant fa was es-
timated from the zero-temperature relation Eq. (2.13) as fa ∼

√
χ(0)/ma,0 ∼

√
αaΛ

2
a/ma,0 [58].

Unless the temperature dependence is explicitly written out, we refer to the low-temperature
value of the axion mass, i.e. ma ≡ ma,0. In Sec. 2.5, this parametrization of ma(T ) will be used
to determine the present-day axion abundance for a given set of parameters αa, n, Λa, which in
turn have to be found numerically from QCD lattice calculations [41, 54].

2.3 Axion Models and Interactions
In this section we will examine the coupling of different axion models to standard model particles.
It should be noted that the original Peccei-Quinn-Weinberg-Wilczek (PQWW) axion involving
only a single additional complex scalar field is excluded by experiments. As we will see, axion
couplings to the standard model are proportional to 1/fa, which is why the original PQWW
axion with fa ∼ 100GeV on the order of the electroweak phase transition was quickly ruled out
by laboratory experiments [59, 60]. A solution to this problem was the invention of so-called
invisible axion models, for which the PQ scale is introduced independently of the electroweak
scale. This allows for much larger axion decay constants fa ≫ 100GeV, which lead to smaller
couplings to the standard model, that have not been ruled out yet [19, 61].
Many of these models can be assigned to one of two different categories: the Kim-Shifman-
Vainshtein-Zakharov (KSVZ) type axions introducing heavy quarks next to a PQ scalar, and
the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type models, which introduce an additional Higgs
field next to the PQ scalar [41]. Conveniently, the zero-temperature axion mass, which is
derived from the axion-gluon coupling Eq. (2.8), is essentially model-independent. The simple
explanation for this is the fact that the Lagrangian Lagg, which gives rise to the axion potential
and which is required to cancel the CP-violating θ̄ term, has to be model-independent in order
to solve the strong CP problem consistently.
In this work and in the context of axion small-scale structure, we will focus on the case of KSVZ-
type models with domain wall number NDW = 1, for which miniclusters are a generic prediction
in standard QCD axion models [58]. For DFSZ-type axion models with NDW > 1 on the other
hand, the axion relic density can be enhanced above ΛCDM values, as explained in more detail
in Subsec. 2.5.3. Independent of the QCD axion model at hand, the total Lagrangian contains
the terms

Lind = −1

2
∂µϕ∂

µϕ+
αs

8π

ϕ

fa
GµνG̃

µν ⊂ La (2.16)
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2.3 Axion Models and Interactions

which amount to a kinetic term plus the Lagrangian Lagg from Eq. (2.8). At low energies,
the phenomenologically most relevant couplings to the standard model are given by the model-
dependent axion interactions with photons, nucleons, protons and electrons (γ, f = n, p, e)

Laγγ =− gaγγ

4
ϕFµνF̃µν , (2.17)

Laff =
∑

f=n,p,e

gaff

2mf

∂µϕΨfγ
µγ5Ψf , (2.18)

Lafγ =− i
∑

f=n,p

gafγ

2mf

ϕFµν
Ψfσµνγ5Ψf , (2.19)

where Fµν , F̃µν are the electromagnetic field strength tensor and its dual respectively, Ψf are
fermion wave functions and σµν is the spin operator. Here, gaγγ is the axion-photon coupling,
gaff is the coupling to fermions and gafγ is the mixed coupling leading to the neutron electric
dipole moment. Note that gaγγ , gafγ have mass dimension -1, while gaff is dimensionless by
definition. The coupling strengths in Eq. (2.17) - Eq. (2.19) are often expressed in terms of the
dimensionless coupling constants Caγγ , Caff and Cafγ defined by

gaγγ ≡ α

2π

Caγγ

fa
, gaff ≡ Caffmf

fa
, gafγ ≡ Cafγ

fa
, (2.20)

where all couplings g scale inversely with fa as mentioned before.
Phenomenologically most relevant for this work is the axion-photon coupling coefficient

Caγγ =
E

N
− 1.92(4) , (2.21)

where E/N = is the model-dependent ratio between the electromagnetic anomaly number E
and the number of color anomalies N . KSVZ-type models usually have E/N = 0, while classical
DFSZ models have E/N = 8/3. The above coefficient yields the axion-photon coupling constant

gaγγ =

[
0.203(3)

E

N
− 0.39(1)

]
ma

GeV2 , (2.22)

of the decay process a→ γ + γ.
In the KSVZ axion model, which we focus on in this work, the axion-nucleon and axion-electron
coupling constants Caff take the values [43, 62, 63]

CKSVZ
ann = −0.02(3) , (2.23)

CKSVZ
app = −0.47(3) , (2.24)

CKSVZ
aee =

3α2
s

4π2

[
E

N
ln
(
fa

me

)
− 1.92 ln

(
1GeV
me

)]
. (2.25)

(2.26)
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Chapter 2 Axion Dark Matter

For completeness, we also give the corresponding coefficients for DFSZ type models which are
found to be [62, 63]

CDFSZ
ann = 0.254 + 0.414 sin2 β ± 0.025 (2.27)

CDFSZ
app = 0.617 + 0.435 sin2 β ± 0.025 (2.28)

CDFSZ
aee =

sin2 β

3
, (2.29)

(2.30)

where β is an angular parameter related to the vacuum expectation value of the Higgs field.
Lastly, the model-independent axion-photon-nucleon couplings [62, 63]

Canγ = −Capγ = (3.7± 1.5) · 10−3 (2.31)

of the neutron and proton have equal magnitudes and opposite signs.
Note that the QCD axion models introduced in this section obey specific relations Eq. (2.20)
between their coupling constants gaγγ , gaff , gafγ and the decay constant fa of the PQ symmetry
breaking. Taking into account Eq. (2.11), this means that the mass ma of the QCD axion
fixes both its decay constant fa and the standard model couplings gaγγ , gaff , gafγ The search
for axion models constituting the missing cold dark matter thus amounts to optimizing the
parameter range for ma to fix the present-day axion abundance to the correct value (see also
Sec. 2.5). This so-called cosmological axion mass band lies in the range 10−6 eV≤ ma ≤ 10−4 eV.

2.4 Axion-like Particles
The ongoing search for dark matter and the realization that the QCD axion provides an excel-
lent dark matter candidate motivated the definition of a broader class of particles with similar
properties than the previous QCD axion models. These so-called axion-like particles (ALPs, or
often simply termed axions) are typically massive pseudo-scalar particles that are either gener-
ated dynamically like the QCD axion or that are present in the universe from the beginning.
Axion-like particles can arise naturally as the pseudo-Nambu-Goldstone bosons from extensions
of the standard model, where an approximate symmetry becomes spontaneously broken. The
introduction of ALPs can hence be seen as a generic class of axion-like dark matter candidates,
that do not solve the strong CP problem and which are often motivated rather by their simple
nature and their CDM like behavior at low temperatures.
Generally, ALPs can appear in many different extensions of the standard model, like SUSY
theories [64] or string theoretical models [65–67], which is why we take a simplified approach in
the following and refer to Ref. [68] for a detailed review on the topic. A common assumption is
that the ALP potential inherited from some strongly interacting sector is similar to the QCD
instanton potential from Eq. (2.12), i.e.

VA(ϕA) ∼ Λ4

[
1− cos

(
ϕA

fA

)]
, (2.32)

which gives a similar relation for the ALP mass mA

m2
A =

∂2VA(ϕA)

∂ϕ2A

∣∣∣∣∣
min(ϕA)

=
Λ4

f2A
, (2.33)
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and where Λ4 takes the role of the topological susceptibility χ(T ) in Eq. (2.13).
Opposed to the QCD axion models in Sec. 2.3, ALPs can have arbitrary combinations of the
parameters mA, fA and gaγγ , gaff , gafγ , largely enhancing their possible parameter space. Due
to their Nambu-Goldstone nature, ALP couplings are suppressed by the symmetry breaking
scale fA, yielding feeble interactions for large fA as in the case of the QCD axion.
In the context of arbitrary ALP models, the temperature evolution of the quantity Λ(T ) in
Eq. (2.33), which governs the temperature evolution of the ALP mass, is strongly model-
dependent. We deal with this model-dependence following the approach in Ref.s [58] and [54]
by introducing a parametrization of the form

mA(T ) = mA,0

(
T

Λ0

)−n

, T > Λ0 (2.34)

to describe the temperature evolution of the ALP mass mA with zero-temperature value mA,0 ≡
mA(T = 0) in terms of the temperature index n and a reference scale Λ0. Note that this
parametrization is equivalent to the QCD axion mass scaling in Eq. (2.15).
While the QCD axion has ma,0 ≈ 21µeV, n = 3.34 and Λ0 = Λa = 400MeV according to
the instanton liquid model in Ref. [54], the ALP parameters mA,0, n and Λ0 are essentially
unconstrained. Eq. (2.34) can therefore be interpreted as a generalization of the QCD axion
relation Eq. (2.15), where each ALP model has a different set of parameters mA,0, n and Λ0 de-
termining the evolution of mA with T . Based on the zero-temperature scaling of the QCD axion
in Eq. (2.13), we assume Λ0 ≡ Λ(T = 0) ∼

√
mA,0fA for the general ALP mass temperature

evolution in Eq. (2.34)1.
In this work and in the following, the term axions refers to the general class of axion-like particles,
including the QCD axion, whereas the term ALPs refers to axion-like particles specifically.

2.5 Axion Dark Matter Production
In the previous sections we have introduced the QCD axion as the pseudo-Nambu-Goldstone
boson of a spontaneously broken U(1)PQ symmetry which solves the strong CP problem. Simi-
larly, ALPs can be generated as the pseudo-Nambu-Goldstone bosons of more general symmetry
breaking, with both mechanisms being described by some high energy scale fa. In a cosmolog-
ical context, the symmetry breaking will take place in the early universe with the axion field
dynamic and subsequent dark matter production depending strongly on the hierarchy of fa and
other cosmological temperature scales. The most relevant such scale is the temperature of the
universe during inflation, given by the Gibbons-Hawking temperature of the de-Sitter horizon

TI =
HI

2π
, (2.35)

which is defined in terms of the inflationary Hubble scale HI [41, 69]. It is common to distinguish
axion models and their subsequent evolution as CDM into two scenarios: those with a pre-
inflationary symmetry breaking, i.e. fa > TI and those with a post-inflationary PQ transition,
where fa < TI . We use this distinction to describe axion DM production by the misalignment

1Note that here for the QCD axion Λ0 ̸= Λa, which agrees roughly with the scaling Λ0 ∼ 2.5
√
mA,0fA reported

in Ref. [58].
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mechanism in Subsec. 2.5.2, but restrict our analysis to the post-inflationary case for the majority
of our study.
As for this section, we start by introducing the thermal production of relic axions in Subsec. 2.5.1
and put special emphasis on the misalignment mechanism in Subsec. 2.5.2. As it turns out, the
latter provides an excellent explanation linking the axion field to the expected abundance of cold
dark matter in our universe. We also summarize how the decay of the axion string-domain-wall
network leads to additional axion DM production in Subsec. 2.5.3 and how it seeds the formation
of small-scale DM structures in Sec. 2.6.

2.5.1 Thermal Production

There are different thermal processes in the plasma of the early universe, which can contribute
to the production of relic axions, mainly derived from their interactions with quarks, gluons and
pions. In the case of the QCD axion, the most relevant among them is given by pion-scattering
π + π ↔ π + a [22, 41]. Pion-scattering becomes relevant after hadronization at temperatures
T ≲ 200MeV. Compared to the QCD axion, ALPs are often more weakly coupled to the strongly
interacting sector, which is why the abundance of thermal ALPs is strongly model-dependent.
For simplicity, we will thus only consider the thermal production of QCD axions in the following.
Once the interaction rate for pion-scattering drops below the Hubble expansion rate, the number
density of relic axions is fixed by freeze-out at the decoupling temperature. Thermal axions
have to be out of equilibrium by recombination, i.e. for T > 0.26 eV≫ ma, when they are
still relativistic. Thermally produced axions with sub-eV mass will thus contribute to the total
energy budget of the universe in the form of some yet unobserved ’dark radiation’ component.
This is why the relic density of thermal axions is often expressed in terms of the excess number
of neutrino species ∆Neff = Neff − 3.044 by writing [42, 70, 71]

ρa,th = ρrad − ργ − ρν =
7

8

(
4

11

)4/3

∆Neffργ , (2.36)

where Neff is the effective number of neutrino flavours. Here, ρrad denotes the total relativistic
energy density composed out of photons in the cosmic microwave background (CMB) with
density ργ , the Nν = 3 neutrino species constituting ρν and thermal axions with relic density
ρa,th. Using the conservation of the comoving entropy density, one can show that any light,
weakly interacting scalar particle will contribute to the dark radiation component by an amount
[70]

∆Neff =
4

7

[
11

4

g⋆,S(Tν)

g⋆,S(Td)

]4/3
≈ 0.027

[
106.75

g⋆,S(Td)

]4/3
, (2.37)

where g⋆,S(Td) is the number of entropic degrees of freedom at the decoupling temperature Td.
Since the standard model has g⋆,S(T ) ≲ g⋆,S(T ≳ 3mtop) = 106.75 for temperatures above
the top-quark mass T ≳ 100GeV, it can be seen from Eq. (2.37) that the QCD axion should
contribute at least with ∆Neff ≈ 0.027 to the effective number of neutrinos Neff.
For the QCD axion, thermal production becomes more efficient when the axion-pion coupling
gets larger. Recalling the inverse scaling of the standard model couplings in Eq. (2.20) with fa,
this means that a smaller symmetry breaking scale fa will enhance the thermal axion abundance.
The required value for the thermal axion population to become visible in future galaxy redshift
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surveys [72] is fa ∼ 107 GeV, corresponding to ma ≥ 0.15 eV [41]. On the other hand, stellar
cooling constrains the decay constant to fa > 109 GeV, where the thermal relic abundance is
essentially negligible. Depending on the ALP model, thermal production may however become
significant for other axion-like dark matter candidates, see e.g. Ref.s [41, 42, 70] for a more
detailed discussion.

2.5.2 Misalignment Mechanism

In the previous subsection we have summarized how axions can contribute to the total energy
budget of the universe in the form of hot dark matter. However cosmological observations of
both the cosmic microwave background and the matter power spectrum in the ΛCDM model
strongly constrain the abundance of relativistic DM particles. Instead they suggest that the
majority of the matter component should be non-relativistic, or cold [73]. As we will see in
this subsection, the vacuum realignment of the axion field provides an excellent mechanism for
axion CDM to be produced abundantly [19, 20, 74]. To demonstrate the vacuum realignment
mechanism, we start with the derivation of the equation of motion (EOM) for the axion field
in an expanding universe. Neglecting axion self-interactions and couplings to standard model
particles, the EOM can be obtained from the Lagrangian [41]

Lθ = f2a

[
−1

2
∂µθ∂

µθ − V (θ, T )

]
, (2.38)

where gµν is the metric tensor and V (θ, T ) is the axion potential from Eq. (2.12). Note that the
axion field has been rescaled to θ = ϕ/fa here. Taking the Friedman-Lemaitre-Robertson-Walker
metric with zero curvature

ds2 = −dt2 + a2(t)
(
dr2 + r2dΩ2

)
, (2.39)

and scale factor a(t), the equation of motion for θ becomes

θ̈ + 3Hθ̇ − 1

a2
∇2θ +

∂V (θ)

∂θ
= 0 , (2.40)

where H = ȧ/a is the Hubble constant. The stress energy tensor of the axion field is

Tµν = f2a∂
µ∂νθ + f2ag

µν

[
−1

2
∂αθ∂

αθ − V (θ, T )

]
, (2.41)

which yields the axion energy density ρa and pressure Pa [41]

ρa = f2a

[
1

2
θ̇2 +

1

2a2
(∇θ)2 + V (θ, T )

]
, (2.42)

Pa = f2a

[
1

2
θ̇2 − 1

6a2
(∇θ)2 − V (θ, T )

]
. (2.43)

The basic principle of the misalignment mechanism can be understood from Eq. (2.40), Eq. (2.42)
and Eq. (2.43): Assuming a small displacement, i.e. a small initial angle θ = θI ≪ 1 for the
axion field, one can perform a Taylor expansion and write V (θ, T ) ≈ m2

a(T )θ
2/2. This so-called
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Chapter 2 Axion Dark Matter

harmonic approximation linearizes the EOM and allows for a simplified analytical treatment
of the misalignment mechanism. Applying it to the homogeneous axion field with ∇θ = 0,
Eq. (2.40) reduces to the differential equation of a damped harmonic oscillator

θ̈ + 3H(T )θ̇ +m2
a(T )θ = 0 , (2.44)

where the Hubble friction term ∝ 3H(T ) takes the role of the damping and where the axion mass
ma(T ) evolves according to Eq. (2.15). At early times and before the QCD phase transition,
the axion is effectively massless ma(T ) ≈ 0. This means that for T ≫ TQCD, the homogeneous
field evolution is dominated by the Hubble drag, with 3H(T ) ≫ ma(T ), so that the axion
field remains essentially frozen at its initial value θ = θI ∈ [−π, π]. Looking at Eq. (2.42)
and Eq. (2.43) for T ≫ TQCD, θ̇ = 0 and ∇θ = 0, it can be seen that the axion field in the
harmonic approximation has ρa = −Pa in this epoch, which implies the same equation of state
w = P/ρ = −1 as dark energy.
In the second part of its evolution, the axion starts to oscillate around the time when 3H(Tosc) =
ma(Tosc), with a frequency ∼ ma. The temperature Tosc defining equality between axion mass
and Hubble drag is called the oscillation temperature. After the onset of axion oscillations, the
field θ behaves like CDM. The subsequent dynamical evolution of the field θ and its density
fluctuations differs drastically depending on the hierarchy between the temperature scales of
inflation and PQ symmetry breaking. We will thus make use of Eq. (2.35) to distinguish between
the pre- and post-inflationary symmetry breaking scenarios in the following.
Before treating the two different scenarios in more detail, we can estimate the relic abundance of
axions produced from the misalignment mechanism as a function of the initial misalignment angle
θI using the harmonic approximation. Once the axion oscillations begin and for slow variation
of ma(T ), the comoving axion number density na(T ) = ρa(T )/ma(T ) becomes conserved [41].
This allows us to express the present-day axion density at T = T0 = 2.725K [14]

na(T0) = na(Tosc)

(
aosc
a0

)3

(2.45)

in terms of the number density and scale factor aosc = a(Tosc) at the temperature Tosc. Assuming
that the homogeneous field with ∇θ = 0 and initial value θI does not change significantly until
Tosc, i.e. θ̇i ≈ 0, Eq. (2.42) yields the number density

na(Tosc) =
ρa(Tosc)

ma(Tosc)
≈ 1

2
ma(Tosc)f

2
aθ

2
I (2.46)

from the mass density ρa(Tosc). Together with ρa(T0) = ma(T0)na(T0) one obtains

ρa(T0) =
1

2
θ2If

2
ama(T0)ma(Tosc)

(
a0

aosc

)−3

(2.47)

=
1

2
θ2If

2
ama(T0)ma(Tosc)

[
g⋆,S(T0)T

3
0

g⋆,S(Tosc)T 3
osc

]
, (2.48)

where in the last expression we have used the conservation g⋆,S(T )T 3a3 = const of the comoving
entropy. It can be shown by taking the average ⟨·⟩ over the field oscillations, that the averaged
axion pressure is ⟨Pa⟩ = 0 [41, 75] and that the corresponding time-dependent equation of state
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2.5 Axion Dark Matter Production

oscillates around w = 0. Together with the conservation of the comoving number density na,
the axion field thus behaves like CDM at T ≲ Tosc.
The remaining quantity needed to obtain the relic density Eq. (2.47) for a given axion model
with characteristic parameters ma, fa, n and initial angle θI is the oscillation temperature Tosc.
In the QCD axion case with ma obeying Eq. (2.15), the defining condition 3H(Tosc) = ma(Tosc)
can be rearranged to find the expression [42]

Tosc =

(√
10

π2g⋆,R(Tosc)
maMPl

) 2
2n+4

T
2n

2n+4

QCD , (2.49)

where MPl = 1/
√
8πG is the reduced Planck mass. The typical oscillation temperature is of

order Tosc ∼ 1GeV for representative axion parameters ma ∼ 10−5 eV , TQCD ∼ 180MeV and
n = 4. Re-expressing Eq. (2.47) in terms of the critical density ρc = 3H2M2

Pl yields the axion
relic density contribution

Ωmis
a =

ma(T0)ma(Tosc)f2aθ
2
I

6H2
0M

2
Pl

[
g⋆,S(T0)T

3
0

g⋆,S(Tosc)T 3
osc

]
(2.50)

produced from the misalignment mechanism. For the QCD axion, ma and fa are related by
Eq. (2.11), while the temperature evolution of ma(T ) described by n, Λa sets the oscillation
temperature Tosc. However in the most general case of axion-like particles, mA and fA can
take independent values so that the oscillation temperature needs to be calculated numerically.
This can be done by equating the ALP mass temperature evolution mA(T ) in Eq. (2.34) as
mA(T ) = 3H(T ) with H(T ) obtained from the second Friedmann equation

3H(T )2M2
Pl =

π2

30
g⋆,R(T )T

4 , (2.51)

where g⋆,R(T ) are the relativistic degrees of freedom. In this work we use the fits by Wantz &
Shellard [54] for g⋆,i with i = R,S parametrized by

g∗,i = exp


ai0 +

5∑

j=1

aij,1

(
1.0 + tanh

T̃ − aij,2

aij,3

)
 , T̃ = ln T

1GeV . (2.52)

The corresponding fit parameters aij in Tab. A.2 are accurate up to ≲ 4% precision around the
QCD phase transition and up to roughly 1% elsewhere [54].
With the determination of the oscillation temperature for QCD axions and ALPs outlined above,
Eq. (2.50) allows us to estimate the relic abundance Ωmis

a for arbitrary axion models, i.e. for
different combinations of mA, n, fA. The remaining quantity needed to fix Ωmis

a is the initial
misalignment angle θI ∈ [−π, π] entering quadratically in Eq. (2.50). As mentioned before,
understanding the dynamical evolution of the axion field and its initial conditions prescribed by
θI leads us to study the pre- and post-inflationary scenarios for both QCD axions and ALPs in
the following.

Pre-inflationary Scenario

We start with the pre-inflationary case depicted in Fig. 2.1 on the left. In this scenario, the PQ
symmetry (or any other relevant symmetry for ALPs) is broken before the onset of inflation,
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Chapter 2 Axion Dark Matter

Figure 2.1: Conceptual diagram demonstrating the axion field evolution depending on the time of PQ
symmetry breaking, taken from Ref. [42]. Left: In the pre-inflationary case, the axion field gets broken at
some scale fa > TI and the rapid expansion during inflation leaves a roughly uniform ∇θ ≈ 0 distribution
of θ in the current Hubble patch. Right: When the PQ symmetry is broken after inflation fa < TI , the
same horizon is filled with a random ensemble of values for θ ∈ [−π, π] so that ∇θ ̸= 0.

fa > TI , with the Gibbons-Hawking temperature TI from Eq. (2.35). Once the temperature
drops below fa, the PQ symmetry becomes spontaneously broken. At this point, each causally
disconnected Hubble patch with horizon size RH ∼ 1/H takes a different value for the ini-
tial misalignment angle, with θI being randomly drawn from a uniform distribution between
[−π, π]. As argued above, the axion field remains frozen at its initial value θ = θI as long as
ma(T ) < 3H(T ) and the axion energy density is roughly given by ρa ≃ f2am

2
a(T )θ

2
I/2.

Simultaneously, the universe continues to cool down followed by a rapid expansion during infla-
tion, which stretches out the Hubble patches with different initial values of θI . As a consequence,
the present-day Hubble volume in this scenario exhibits a uniform value of θI everywhere, with
∇θ ≈ 0, as indicated by the zoomed in panel in the bottom left of Fig. 2.1.
In the pre-inflationary scenario, the value of θI in our universe is completely random and it sets
the relic abundance of the pre-inflationary misalingment production according to Eq. (2.50). The
dependence of Ωmis

a on θI can be intuitively understood from the fact that the energy stored
in the axion field oscillations depends directly on the initial misalignment angle, with which
the field started to oscillate. This means that with some fine-tuning of θI one can set Ωmis

a to
almost arbitrary values. As a consequence, the predictive power of the pre-inflationary scenario
is arguably compromised (see Ref.s [76, 77] for discussions on the topic). Importantly for this
work, we will hereafter focus on the post-inflationary scenario, where the ambiguity in the choice
of θI vanishes.
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2.5 Axion Dark Matter Production

Post-inflationary Scenario

In the second scenario, the PQ symmetry remains unbroken throughout the inflationary period,
i.e. fa < TI as shown by the absence of the axion field in the gray panel on the right of
Fig. 2.1. After inflation, the radiation temperature eventually drops below fa and similarly to
before, the axion field is established with θI taking random values on the interval [−π, π]. The
important difference here is that in the post-inflationary scenario, many regions with different
θI are contained within a single Hubble horizon so that generally ∇θ ̸= 0. It is thus most
reasonable to consider the spatially averaged background energy density

ρ̄a =
1

V

∫
d3x ρa(x) (2.53)

instead of its local counterpart ρa from Eq. (2.47). Note that this is equivalent to averaging over
different Hubble patches with different θI . Therefore using the averaged energy density, one can
follow the same steps that led to the relic abundance in Eq. (2.50) by means of the replacement
ρa → ρ̄a. We can estimate that

ρ̄a(T ) ≃
1

2
f2ama (Tosc)ma(T )

(
a (Tosc)

a(T )

)3

⟨θ2I ⟩ , (2.54)

where the randomly drawn average value of θ2I over a Hubble patch is now given by

⟨θ2I ⟩ =
∫ +π

−π

dθF(θ)θ2 =
π2

3
(2.55)

with a flat distribution function F(θ) = 1/(2π). In principle, the resulting modification of the
relic abundance Ωmis

a in Eq. (2.50) amounts to a replacement θ2I → ⟨θ2I ⟩ = π2/3. There are
however additional modifications to Ωmis

a in the post-inflationary scenario that we will need to
take into account as well.
The first such modification arises from the fact that Eq. (2.50) has been computed from the
harmonic axion potential V (θ) = m2

a(T )θ
2/2, which is valid for θI ≪ 1. However when the

initial displacement angle becomes large, θI ∼ 1, anharmonic corrections caused by the axion’s
self-interactions become relevant. In this case, the axion potential will be flattened for larger θI
and the onset of oscillations at Tosc will be delayed [41]. This results in the relic abundance being
increased compared to the prediction in the harmonic approximation. The corresponding an-
harmonic corrections are usually taken into account by assuming g⋆,R = const over the timescale
on which anharmonic corrections change Tosc [58]. Under this assumption, the correction to Tosc
can be calculated analytically performing the replacement

ρmis
a → Fan (θI) ρ

mis
a (2.56)

with the anharmonic correction function

Fan(θI) =

[
ln
(

e

p(θI)

)]q
, (2.57)

where the power index

q =
3

2
− n

2n+ 4
(2.58)
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is given in terms of the axion mass temperature index n from Eq. (2.34) [58]. The polynomial
fitting function

p(θ) = 1−
(
θ

π

)4

(2.59)

obtained from Ref. [58] was matched to the solution of the EOM in Eq. (2.40) for a homogeneous
axion field with a cosine potential of the form in Eq. (2.32). Note that as expected Fan → 0 for
small θ and that Fan(θ) is monotonically increasing for θ → π. Applying Eq. (2.56) amounts to
replacing θ2I in Eq. (2.50) by

〈
θ2IFan (θI)

〉
=

1

2π

∫ π

−π

dθFan(θ)θ
2 ≡ can

π2

3
. (2.60)

Comparing with Eq. (2.55), it can be seen that the coefficient can effectively accounts for the
anharmonic corrections from the axion cosine potential. Rearranging Eq. (2.60), the value of
can can be obtained from the polynomial fit p(θ) by writing

can =
3

2π3

∫ π

−π

dθ θ2

[
ln
(

e

1−
(
θ
π

)4

)] 3
2
− n

2n+4

. (2.61)

Note that here, can only depends on the axion mass temperature index n. For the extended relic
abundance Ωan

a including anharmonic corrections, we obtain the result

Ωan
a =

ma(T0)ma(Tosc)f2a
6H2

0M
2
Pl

can π2

3

[
g⋆,s(T0)T

3
0

g⋆,s(Tosc)T 3
osc

]
, (2.62)

which is independent of the initial angle θI as opposed to Eq. (2.50) for the pre-inflationary case.
As a consequence, the predicted total relic abundance Ωan

a is completely set by the three model-
dependent axion parameters ma, n, fa, where the remaining constants Λa and Λ0 in Eq. (2.15)
and Eq. (2.34) are fixed by QCD calculations or the approximate relation Λ0 ≃ √

mAfa for
ALPs respectively.
We conclude by emphasizing that the random values of θI seeded by the PQ symmetry breaking
in the bottom right panel of Fig. 2.1 contribute large O(1) fluctuations in the energy density of
the axion field ρa(x). These fluctuations extend over scales on the order of the horizon at the
time when QCD instanton effects give rise to the axion potential and most importantly for this
work, they are expected to seed the formation of so-called axion miniclusters, which we treat in
more detail in Chap. 3. Before moving on to the formation of axion small-scale structure and
its possible detection, there is yet another production mechanism contributing to the total relic
abundance, that needs to be taken into account.
We also mention for completeness, that next to the standard misalignment mechanism from this
subsection with θ̇ = 0, there exist similar models in which the axion field has a non-zero initial
velocity |θ̇| > 0. This so-called kinetic misalignment mechanism is explored in Ref.s [78–81], but
not considered in this thesis for simplicity.
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2.5 Axion Dark Matter Production

2.5.3 Decay of Topological Defects

A third production mechanism of axion dark matter arises from the gradient term proportional
to ∇θ in Eq. (2.40) and from the resulting non-linear axion field dynamics in the post-inflationary
scenario. In this scenario and after the PQ symmetry breaking, the continuous axion field θ(x)
will adopt randomly chosen angles at different locations x within a Hubble patch. As a con-
sequence of this randomness, there should exist some points in space, where the surrounding
axion field happens to wrap around the entire range of θ ∈ [−π, π].
At these particular points, the complex scalar field φ will be forced into the center of the com-
plex plane at |φ| = 0, i.e. on top of the Mexican hat potential, where the PQ symmetry is
effectively restored and the angle θ is undefined. The resulting field configuration turns out to
be stable due to the 2π-winding of θ as long as the potential V (θ, T ) has no preferred value
of θ, or equivalently, as long as the axion remains massless. In three dimensions, the singular
points with |φ| = 0 connect along a one-dimensional line that is commonly referred to as an
axion string [82–84].
The energy contained in the cores of axion strings is set by the radial shape of the complex field
φ(x) defined by Eq. (2.6), Eq. (2.40), Eq. (2.12) with θ = a/fa and is thereby closely related to
the decay constant fa [42]. It is commonly expressed in terms of the string tension µs, which is
given in units of energy per unit length. After the PQ symmetry breaking at T ≃ fa and before
the QCD phase transition, the string tension can be calculated using the EOM from Eq. (2.40)
together with the cosmological horizon as a large-scale cutoff rmax = H(t)−1 for the string size,
which gives µs ∼ f2a [22, 42, 85]. Accordingly, the cosmic string network can potentially store
a considerable amount of energy [86, 87], where the exact contributions need to be calculated
from extensive numerical calculations [87–97].
Once the axion acquires a mass around T ∼ Tosc, the potential V (θ, T ) develops a CP-conserving
minimum at θ = 0, that allows the cosmic strings to unravel themselves due to the existence of
a preferred value for θ. This is often visualized as a tilting of the Mexican hat potential, where
due to the tilting, V (θ, T ) exhibits an absolute minimum at θ = 0 and a quasi-stable maximum
at the saddle point θ = ±π. The resulting decay of axion strings contributes to the dark matter
relic abundance and occurs until the axion field oscillates around the minimum θ = 0 every-
where. During the decay of axion strings, another topological defect arises in locations, where
the axion field gets stuck at the saddle point θ = ±π. The two-dimensional surfaces where
this happens are called domain walls because they separate different regions (’domains’) of the
universe, in which the axion field rolls down either along the positive θ ∈ [0, π] or negative set
of values θ ∈ [−π, 0] of the shift-symmetric field θ ∈ [−π, π]. Importantly, domain wall decay
can provide an additional energy contribution to the relic abundance Ωa.
Fig. 2.2 shows a visualization of the string- and domain wall network from numerical simulations
of the QCD axion field in the post-inflationary scenario with ma = 50µeV before and after the
axion mass becomes relevant at Tosc, taken from Ref.s [28, 42]. At temperatures T > Tosc in the
left panel, cosmic strings can be seen to form as the red-colored filaments with larger densities
given by ln(ρa/ρ̄a). After the onset of axion oscillations at T ≲ Tosc, domain walls can be seen
to form as the yellow colored surfaces connecting cosmic strings. Throughout the onset of axion
oscillations, both of these structures will decay, thereby stir up the cosmic axion field and lead
to additional production of axion DM compared to the case with ∇θ = 0.
The calculation of the axion abundance resulting from the decay of strings and domain walls
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Figure 2.2: Visualization of the string- and domain wall network taken from Ref. [42] as reproduced
from the simulations in Ref. [28] for the QCD axion with ma = 50µeV. The color scaling indicates the
logarithmic overdensity ln(ρa/ρ̄a). Axion strings appear at T > Tosc as the red colored filaments, while
domain walls form later at T < Tosc as seen by the yellow surfaces bound by red strings.

requires sophisticated numerical simulations of the complex PQ field. As it turns out, these
simulations are extremely challenging because they need to resolve string cores with a typical
width ∆x ∼ f−1

a in a system of box size L ∼ H(t)−1, eventually reaching L/∆x ∼ 1028 for the
QCD axion [42]. This means that late-time extrapolation of the simulated results, specifically of
the power spectrum of string-radiated axions, is necessary due to numerical limitations. Addi-
tional complication arises from the determination of the initial conditions and by use of different
numerical techniques, see e.g. Ref.s [28, 97–99] for detailed discussions on the topic.
Summarizing the different production mechanisms of axion dark matter, including axion produc-
tion from the misalignment mechanism in Eq. (2.62) and from the decay of topological defects
parametrized by αdec, the total axion relic abundance can be written as [41]

Ωtot
a h2 = (1 + αdec)Ω

an
a h

2 , (2.63)

where predictions for the parameter αdec range from 0.16 to 186 [92, 100–102]. The large uncer-
tainty in the determination of αdec is related to the inconclusiveness of the numerical simulations
discussed above. In this work we follow Ref.s [92] and [58] by assuming an intermediate value
of order-one, namely αdec = 2.48 obtained from the calculations in Ref. [103]. It should be
emphasized that improved numerical simulations are needed to ultimately resolve uncertainties
in the production of axion dark matter from topological defects. For now and fixing αdec = 2.48,
we can finally write the total relic abundance as

Ωtot
a = (1 + αdec)

ma(T0)ma(Tosc)f2a
6H2

0M
2
Pl

can π2

3

[
g⋆,s(T0)T

3
0

g⋆,s(Tosc)T 3
osc

]
, (2.64)

with T0 = 2.725K and where both the misalignment mechanism with anharmonic corrections
and the decay of the combined string-domain-wall network around Tosc are taken into account.
Note that the above treatment of topological defects was given for the case NDW = 1 considered
in this work. In a more general context with NDW > 1, the NDW minima of V (θ, T ) become
degenerate, rendering domain walls stable. In contradiction to cosmological observations, stable
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domain walls tend to quickly dominate the energy budget of the universe. This property of axion
models with NDW > 1 is called the domain wall problem, see also Ref.s [42, 104] for discussions
and possible solutions.

2.6 Axion Structure Formation
Before moving on to its phenomenological aspects, we briefly summarize the cosmological evo-
lution of the axion field and how it gives rise to observable axion small-scale structure in the
present-day universe. At some high temperature T ∼ fa < TI , the spontaneous symmetry
breaking of the QCD axion- or ALP field occurs, where for the masses 10−12 eV≤ ma ≤ 10−2 eV
and for the axion models considered in this work, the decay constant lies in the range 1010 GeV≲

fa ≲ 1013 GeV (c.f. Fig. 3.7). After the PQ symmetry breaking and a period of inflation, the
initial misalignment angle θI ∈ [−π, π] takes random values over a Hubble patch. The ran-
domness of the axion field θ(x) sources topological defects, which decay around T ∼ Tosc with
model-dependent oscillation temperatures in the range 1MeV≲ Tosc ≲ 102 GeV. Around the
same time, the energy stored in the axion oscillations with misalignment angle θ = θI will give
rise to the production of dark matter while the axion field oscillates around its zero-temperature
value θ = 0.
The inhomogeneous initial conditions of the axion field and the subsequent decay of the string-
domain-wall network for NDW = 1 turn out to source large isocurvature fluctuations in the axion
energy density. As soon as the axion acquires a mass around Tosc, these density fluctuations
become matter density perturbations seeding the formation of dark matter structure. The re-
sulting perturbations are large in amplitude with Φ = ρa/ρ̄a− 1 ∼ O(1) but small in size. They
collapse gravitationally around matter-radiation equality and are generally referred to as axion
miniclusters to distinguish them from the large-scale dark matter halos formed at late times.
Their rich phenomenology and substructure is laid out in more detail in Chap. 3 and Chap. 4.

Figure 2.3: Snapshots of the merging of miniclusters at redshift z = 999 after the collapse of minicluster
seeds around z ≳ zeq ≃ 3402, taken from Ref. [42] and based on the simulations in Ref. [105]. The zoomed
in panel shows a significantly heavier and larger minicluster containing a rich substructure of light and
intermediate mass miniclusters. Such heavy miniclusters are expected to evolve into the sites of galaxy
formation at late times, motivating our study of the NFW dark matter halo in Chap. 3.
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For the purpose of this section, we briefly demonstrate how axion small-scale structure emerges
from the initial density perturbations of the inhomogeneous axion field in Fig. 2.3.
Fig. 2.3 shows a visualization of the cosmic structures formed by merging miniclusters in the
N-body simulations performed in Ref. [105] and taken from Ref. [42]. The node and filament
structure of the matter overdensities in Fig. 2.3 was sourced by the initial axion field θI(x)
and by the subsequent formation and decay of the axion string-domain-wall network depicted
in Fig. 2.2. After the gravitational collapse of the axion matter perturbations into miniclusters
around matter-radiation equality redshft z ≳ zeq ≃ 3402, the miniclusters evolve to form heavier
structures through successive merger events and tidal disruption.
An example for a high-mass minicluster formed by such mergers is shown in the zoomed in panel
on the right of Fig. 2.3, where a central dense core and several lower-mass miniclusters can be
seen to be embedded in the larger structure. The evolution of the minicluster distribution will
be treated in detail in Chap. 3. For now we emphasize that the successive mergers of these
objects lead to the formation of increasingly massive and large structures, which eventually seed
the sites of galaxy formation in the late universe.

2.7 Experimental Searches
Before moving on to the details of axion small-scale structure and its detection prospects, we
will summarize the fundamental aspects of the most relevant astrophysical and laboratory axion
searches in this section. Based on the different interactions of the axion field with standard
model particles introduced in Sec. 2.3, we distinguish experiments exploiting the axion-photon
coupling gaγγ from Eq. (2.17) in Subsec. 2.7.1 from those using the axion-fermion coupling gaff
in Eq. (2.18) and Subsec. 2.7.2.
We focus on the case of the axion-photon interaction in Subsec. 2.7.1 since most of the observation
methods of galactic axion DM structures in this work are based on it. For the analysis of galactic
axion burst signals in Chap. 7 and Ref. [3], we also briefly mention the concept of spin-precession
experiments as an example for DM searches exploiting axion-fermion couplings in Subsec. 2.7.2.

2.7.1 Axion-Photon Coupling

The phenomenologically most relevant interaction relies on the coupling gaγγ between axions
and photons as described in the Lagrangian from Eq. (2.17). This interaction gives rise to the
decay of an axion into two photons, a→ γ+ γ. Due to the large lifetime of axion DM particles,
the corresponding interaction rate for this process is generally very small. On the other hand,
and in the presence of a strong magnetic field, axions may be converted into photons (and vice
versa). This process is known as the axion Primakoff effect [106].
The Primakoff effect serves as the starting point for three major types of axion experiments,
which were proposed in the seminal paper in Ref. [107] by Pierre Sikivie. The three classifications
are called Light-Shining-through-a-Wall (LSW), helioscope and haloscope experiments. In a
fourth scenario, the magnetic field needed for the conversion of axions may also be provided
by an active neutron star, which encounters an axion overdensity or a minicluster. For the
considerations in this work, we focus on the above four types of DM detection schemes, but we
emphasize the large range of existing and upcoming axion-photon searches, see e.g Ref.s [41, 42,
44, 45, 48] for detailed reviews on the topic.
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Light-shining-through-a-Wall Experiments

LSW type experiments rely on the partial conversion of photons into axions (and vice versa),
which occurs when photons from a high-intensity laser beam travel along a transverse magnetic
field. Axions are hereby produced from the traversing laser beam in the production region shown
in the left of Fig. 2.4. The newly produced axions can then travel through an optically opaque
barrier or ’wall’ indicated by the black solid bar in the center of Fig. 2.4 to be subsequently
converted back into photons in the reconversion region on the right. For coherent conversion

Figure 2.4: Schematic representation of an LSW type experiment with production (left) and reconver-
sion regions (right) separated by an optical barrier indicated by the black bar, taken from Ref. [44].

ma ≪
√

2πω/L in a transverse magnetic field of strength B0 and length L, the conversion
probabilities of the production and reconversion region are approximately given by

P(γ → a) ≃
(
gaγγBL

2

)2

≃ P(a→ γ) , (2.65)

where ω is the photon energy and the observed power will be proportional to P(γ → a→ γ) =
P(a → γ)2 [44, 45]. The conversion probabilities in Eq. (2.65) can be significantly amplified
by using resonators like optical cavities in the production and regeneration regions through a
process called resonant regeneration [45, 108–110]. In the case of resonant regeneration, the total
conversion probability gains an additional factor of P(γ → a→ γ) ∝ βPβR, where βP , βR ∼ 104

are the power built up factors of the production and reconversion regions respectively. The
corresponding enhancement βPβR ∝ Q2 scales with the quality factor Q measuring the number
of round trips a typical photon can take before exiting the cavity.
Important LSW experiments include the ongoing ALPS-II experiment [111], its predecessor the
ALPS-I experiment [112] and OSQAR [113]. LSW experiments are broadband in nature, but
have the disadvantage of being limited in sensitivity due to the scaling P(γ → a→ γ) ∝ g4aγγ of
the double conversion process.

Helioscopes

Helioscope DM searches can be understood from the right part of the LSW scheme in Fig. 2.4:
The fundamental idea in this class of experiments is to convert solar axions, which are produced
from interactions between thermal photons and the Coulomb fields of nuclei in the solar plasma.
Due to the temperature T ∼ 1 keV of the solar core [114], the observed solar axion flux lies in the
keV-energy range, with a peak around an energy of Ea ≃ 3 keV for the simplest case2 involving

2More specifically this is the case for the KSVZ-type axion models considered in this work. For DFSZ models
on the other hand, the axion-electron coupling is usually dominant, leading to a peak around E ∼ 1 keV, see
Ref.s [115, 116] for details.
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Chapter 2 Axion Dark Matter

only Primakoff conversion in the solar plasma [117]. In a static magnetic field, the energy of the
reconverted photon is equal to the energy of the incoming axion, Eγ = Ea ∼ keV, so that X-ray
detectors are used to detect the converted solar axion flux.
Opposed to LSW and haloscope searches, helioscopes have to follow the suns trajectory across
the horizon throughout an observation. The experimental setup is therefore embedded on a
movable platform, which carries a long cylindrical dipole magnet with a homogeneous field of
strength B and length L. Similarly to Eq. (2.65), the conversion probability of a reference
helioscope may be written as [45, 107]

P(a→ γ) = 2.6 · 10−17

(
gaγ

10−10GeV−1

)2(
Be

10 T

)2(
L

10 m

)2

F (2.66)

where the form factor F measures the coherence of the conversion. In vacuum, and for coherent
conversion ma ≪

√
2πω/L along the entire magnetic field of length L the form factor is F = 1.

Some of the most important helioscope experiments are CAST [118], the upcoming babyIAXO
[119] and its final stage, IAXO [120].

Haloscopes

Similar to helioscopes, haloscopes exploit the axion-photon conversion probability P(a→ γ) to
obtain a photon signal from an incoming flux of axions. An important difference compared to
helioscopes is the fact that haloscope experiments aim to convert axions from DM overdensities
in the galactic NFW halo. This implies that haloscopes rely on the assumption that axions
constitute the missing dark matter in the universe. They can be used to constrain the product
gaγγ

√
ρa/ρdm, where 0 < ρa/ρdm ≤ 1 is the fraction of the local axion dark matter density

relative to the local DM density ρdm ≃ 0.45GeVcm−3 [121]. Accordingly, the sensitivity of
haloscope experiments decreases if axions are a subdominant component, i.e. for ρa/ρdm < 1.
With the axion being one of the most well motivated dark matter candidates, we will assume
ρa/ρdm ≃ 1 in the following (see also Sec. 3.2).
Haloscopes play a particularly important role in the observation of the local axion small-scale
structure, because they can directly probe fluctuations in the local axion DM density. Such fluc-
tuations can be caused by the inhomogeneous local axion field (c.f. Sec. 2.5) axion miniclusters
(c.f. Chap. 3), axion stars (c.f. Chap. 4) and relativistic axion bursts (c.f. Chap. 7).
In general, DM axions are non-relativistic, with a velocity dispersion on the order of σv ∼ 10−3

related to the virial velocity of the NFW halo of the Milky Way. The local axion spectrum with
angular frequency

ωa = Ea = ma +
1

2
mav

2 = ma

(
1 +O

(
10−6

))
(2.67)

is therefore expected to be close to monochromatic, which allows for the use of microwave cav-
ities with a large quality factor Q to enhance the signal power through resonant conversion.
Given the large range of possible axion masses under consideration, the resonance frequency
of the cavity has to be tunable to the axion mass within a frequency width of ∆f ∼ ma/Q.
This resonance matching is responsible for the characteristic line-like structure of haloscope con-
straints on gaγγ .
The design of haloscope experiments capable of achieving resonance for larger ma > µeV is tech-
nically challenging because higher frequencies require smaller cavitiy volumes, which in return
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2.7 Experimental Searches

yield a smaller signal power. Conversely, smaller axion masses ma < µeV require large cavity
volumes for which suitable large magnets are difficult and expensive to design [45]. To deal
with these challenges, a large range of different experiments are under development. Among
the most important examples are traditional microwave cavity searches like ADMX [122] and
FLASH [123], dish antenna experiments based on the concept from Ref. [124] like BRASS [125]
or BREAD [126] and dielectric haloscopes [127] like MADMAX [128, 129]. For the purpose of

Figure 2.5: Schematic arrangement of an axion haloscope experiment, modified from Ref. [45]. The
two parallel magnets in red source the homogeneous magnetic field B leading to a resonant conversion of
axions with suitable mass ma ≈ ω, where ω is the tuned frequency of the cavity in blue.

this thesis, we focus on the conventional haloscope design from Ref. [107] and refer to other
experiments in Chap. 7 if needed.
The basic microwave cavity design depicted in blue in Fig. 2.5 consists of a homogeneous mag-
netic field with strength B surrounding the blue cavity with volume V and a tunable resonance
frequency. When the cavity frequency matches ma, the axion-photon conversion gets enhanced
by a factor proportional to the quality factor Q of the cavity. The resulting signal power in the
mass band ma ±ma/Q is given by [45, 107]

Ps ∼ ρa
g2aγγB

2
0

ma
V CQ , (2.68)

where C is the geometric factor of the resonant mode, assuming that the DM bandwidth is
smaller than the width of the cavity resonance, σ2v ≲ 1/Q. For ADMX-like parameters with
ρa = 0.45GeVcm−3, gaγγ ∼ 10−14 GeV−1, B0 ∼ 7T, ma ∼ 50µeV, V ∼ 140 l, C = 0.4 and
Q = 50000, the expected power is roughly on the order of Ps ∼ 10−21 W [122]. For QCD axions,
the signal power Ps is typically much smaller than the system noise

Pn = Tsys ∆f = Tsys
maσ

2
v

2π
∼ 10−19

(
Tsys
K

)(
ma

50µeV

)
, (2.69)

where the noise temperature Tsys accounts for amplifier and thermal fluctuations in the detector
[45]. This means that haloscope experiments have to rely on large observation times tobs to
sufficiently increase the signal to noise ratio, given by Dicke’s radiometer Equation

S

N
=

Ps

Tsys

√
tobs
∆f

. (2.70)
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The large amount of measurements with a narrow width of ∆f = ma/Q required to scan across
a considerable parameter range in ma and the observation times tobs = (S/N)2(Tsys/Ps)

2∆f
imply experimental run times on the order of months to years [45, 122].

It should be noted that the above microwave cavity experiments, by construction, require es-
tablishing a precise resonance between axion mass and the cavity resonance. Due to the narrow
width of this resonance and because of the long measurement times required, both spectral and
time-dependent modulations of the axion DM density are hard to obtain. However time vary-
ing, O(1) background fluctuations of the local axion field and its expected modulations arising
from the occurrence of galactic axion bursts (see Chap. 7) motivate the additional development
of broadband DM searches. The experimental details of these searches are beyond the scope
of this work and can be found in Ref.s [124, 127] and [125, 126, 128]. We briefly summarize
the fundamental concepts and differences compared to microwave cavity searches but refer to
Ref.s [44, 45, 114] for reviews on the topic.
The concept of dish antennas as introduced in Ref. [124] relies on the fact that a time-dependent
axion field ϕ(t) induces a homogeneous electric field

Ea(t) = −gaγγB0ϕ(t) (2.71)

in the presence of a locally homogeneous magnetic field B0. In this case, the axion field and
its induced electric field Ea(t) parallel to B0 oscillate at a frequency ωa ∼ ma. For conducting
or dielectric media, the effective field Ea decreases due to polarization effects and free charge
currents in the medium, compared to the vacuum case in Eq. (2.71). It can be shown from the
axion-modified Maxwell equations, that the continuity of fields at the boundaries of different
media is ensured through the emission of almost monochromatic photons with frequency f =
ma/(2π). When the magnetic field is aligned parallel to the boundary of the medium, e.g. along
a metallic mirror, the electromagnetic wave is emitted perpendicular to the mirror surface as
shown in the left panel of Fig. 2.6. The BRASS experiment [125] uses this concept and a
spherical metallic mirror to focus the emitted photons in the center of curvature of the dish.
The resulting power emitted from a dish with surface A is [45]

Pγ =
A|Ea|2

2
=
Agaγγ |B0|2

2
(2.72)

∼ 10−27 W

m2

(
gaγ

10−14GeV−1

)2(50µeV
ma

)2( |B0|
10T

)2(
A

m2

)
, (2.73)

which implies that stronger magnetic fields and larger dishes can be used to increase the ob-
served signal strength.
Dielectric haloscopes are designed to achieve both of the above effects by employing a series of
parallel dielectric discs between a mirror and a receiver as depicted in the right panel of Fig. 2.6.
In this configuration, each of the parallel, transparent dielectric disks takes the role of a single
dish antenna, which emits photons perpendicular to its surface. The emitted electromagnetic
waves will be reflected by and transmitted through the surrounding disks before eventually
reaching the receiver. Additionally, the separation of the disks can be optimized to amplify the
emitted power of photons in the dielectric haloscope.
Since the axion-induced electric field in Eq. (2.71) and the resulting photon-emission from the
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2.7 Experimental Searches

Figure 2.6: Left: Concept of a dish antenna with a spherical metallic mirror and parallel magnetic field
B, similar to the one used by the BRASS collaboration [125], taken from Ref. [44]. Right: Mirror and
disk arrangement of a dielectric haloscope with parallel B-field [130], similar to the setup of MADMAX
[129].

boundary surface occur for a whole range of axion masses and photon frequencies f = ma/(2π),
the broadband detection range is mostly limited by the receiver. The dielectric haloscope experi-
ment of the MADMAX collaboration [128] aims to probe the range 40µeV ≲ ma ≲ 400µeV with
DSFZ sensitivity [131, 132]. Likewise the dish antenna experiment of the BRASS collaboration
aims to explore QCD axion models in the range 50µeV ≲ ma ≲ meV [125] while the BREAD
collaboration focuses on the range 20meV ≲ ma ≲ 0.1meV [44, 126, 133]. Importantly for the
considerations in Chap. 7, all three of these experiments can operate in broadband-mode.

Neutron Star Collisions

A common property of most axion-photon search experiments is the use of a strong magnetic field
to enhance the conversion probabilities arising from the Primakoff effect. In an astrophysical
context, a sufficiently strong magnetic field may similarly be provided by an active neutron
star encountering an axion DM overdensity, e.g in a galactic transient event. As we will see in
Chap. 5, such events can potentially occur numerously between galactic miniclusters and neutron
stars and they have been conjectured to provide measurable radio bursts within observation times
on the order of a year [134–137].
Fig. 2.7 shows a graphical representation of an axion particle entering the vicinity r ≲ ±120 km
of an active neutron star in gray, where the spatially dependent plasma frequency ωp(r) of
the neutron star magnetosphere in eV is indicated by the color gradient. The representative
trajectory of an incoming axion in purple ends at the conversion surface Rc, defined by equality of
axion mass and plasma frequency, ωp(r) ≈ ma ≈ µeV. At this distance, the conversion probability
is greatly enhanced, leading to the effective production of radio photons with frequency f =
ma/(4π) as indicated by the purple outgoing wave.
The plasma frequency ωp is related to the modified dispersion relation of photons traveling
through a plasma, which generates an effective photon mass. It is given in terms of the spatially
dependent number density of electrons ne(r) by [138]

ωp(r) =

√
4παEMne(r)

me
, (2.74)
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Figure 2.7: Visualization of the neutron star magnetosphere in the Goldreich-Julian model taken from
Ref. [42]. The color-coding indicates the spatially dependent plasma frequency ωp(r) of the NS mag-
netosphere and the pink contour line indicates the conversion surface where ωp(r) ≈ ma ≈ µeV. A
representative trajectory of an axion particle reaching the conversion surface Rc and being converted into
a radio photon is depicted in purple.

where αEM ≈ 1/137 is the fine structure constant and the electron mass is me = 511 keV [53].
The most simple approach to model the electron density ne(r) in a rotating neutron star with an
aligned, co-rotating magnetosphere is given by the Goldreich-Julian model [139]. In this model,
the strong rotating magnetic field induces electric surface fields that lead to the extraction of
charges from the neutron star surface. The extracted charges form a current along the magnetic
field lines and constitute the plasma in the stars magnetosphere. Associated with the electric
fields induced on the neutron star surface, is the so-called Goldreich-Julian charge density

nGJ (r) =
2ΩNS · B

e

1

1− Ω2
NSr

2 sin2 θ
, (2.75)

where ΩNS = (2π/PNS)ẑ is the angular rotation vector of the neutron star magnetic field with
period PNS and velocity v = Ωr sin θ at a polar angle θ relative to the z-axis. Importantly, for
B ∥ ΩNS and at the magnetic poles θ = 0, π, Eq.(2.75) simplifies to nGJ = 2ΩNSB/e.
The co-rotating magnetic field B is generally modeled as a (misaligned) dipole with field strength
B0 at the NS surface and B ∼ B0(r/rNS)

3 beyond. For typical neutron stars, the rotation period
is on the order of PNS ∼ O(s) and the magnetic field strength at the surface lies in the range
B0 ∼ 1013− 1014 Gauss. A common assumption that we apply in this work is to set the electron
density ne = |nGJ| to be equal to the absolute of the Goldreich-Julian charge density given
by Eq. (2.75) [140, 141]. From this approach, one can derive the conversion surface Rc of
the neutron star, where ωp(r) ≈ ma and axion-photon conversion is resonantly enhanced by
the magnetosphere. The detailed formula for a magnetic field configuration, which is misaligned
with respect to the rotation axis was derived in Ref. [140], who found Rc ∼ 100 km for ma ≃ µeV
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and typical neutron stars with rNS = 1, B0 = 1014 Gauss, P = 1 s.
Most importantly for this work, effective axion-photon conversion in a NS transient event requires
sufficiently large plasma frequencies ωp and thus large enough B0 to fulfil the resonance condition
ωp ≈ ma for a given axion mass ma. As will be shown in Chap. 5, this condition drastically
limits the fraction of neutron star encounters producing radio signals in our galaxy.

2.7.2 Axion-Nucleon Coupling

Different to haloscope-type experiments who exploit the axion-photon coupling in Eq. (2.17),
spin precession experiments utilize the axion-fermion couplings from Eq. (2.18) and Eq. (2.19) to
obtain an axion DM signal using nuclear magnetic resonance (NMR) techniques. In preparation
of the analysis in Chap. 7, we summarize the basic concept of the cosmic axion-spin precession
experiment (CASPEr) [142] in this section. More specifically we will constrain our analysis
to the CASPEr Wind search [142] looking for couplings of the form in Eq. (2.18). The full
potential of CASPEr and other axion-spin experiments can be read up in Ref.s [142, 143]. It
can be shown that the relevant Lagrangian Laff for nucleons f = N ≡ n, p in Eq. (2.18) results
in a non-relativistic Hamiltonian [143]

HaN = gaN∇ϕ(r, t) · σN , (2.76)

which is similar to the potential energy He ⊃ −µBB · σ 3 of an electron with spin operator σ

in a magnetic field B, where µB = e/(2me) is the Bohr magneton. Eq. (2.76) thus describes the
interaction of nuclear spins with an oscillating ’pseudo-magnetic field’ generated by the gradient
∇ϕ(r, t) of the axion field. The magnitude of this gradient can be estimated from the momentum
operator p = −i∇, which gives

|∇ϕ| ≈ mavϕ0 , (2.77)

where ϕ0 is the amplitude of the oscillating axion field with ϕ(t) ≈ ϕ0 cos(ωat) at leading
order and v ≃ 10−3 is the relative velocity of the incoming axion flux. Since the corresponding
values of ϕ0 and v are locally dependent on the galactic position of earth-based experiments, spin
precession searches like CASPEr Wind rely on the assumption that axions constitute the galactic
DM. The resulting flux of dark matter particles arriving at earth as described by Eq. (2.77) is
often called the axion wind. It acts as a pseudo-magnetic field directed along v [143] and induces
an energy-shift HaN to the nuclear spins in an NMR experiment. Expressing ϕ0 by assuming
an axion-dominated DM energy density ρdm ≃ m2

aϕ
2
0/2 ≃ 0.4GeVcm−3, the corresponding

time-dependent value of HaN can be estimated to be on the order of [143]

HaN ≃ gaN
√

2ρdm cos(ωat) v · σN . (2.78)

The induced energy shift in Eq. (2.78) is small, but it can be measured using NMR techniques
as depicted in Fig. 2.8. In this approach, the sample of nuclear spins is embedded in an homoge-
neous background magnetic field B0 in red that determines the Larmor frequency ΩL = γn|B0|
with which the spins precess around the direction of B0. As long as the leading field B0 is
misaligned with the axion-induced pseudo-magnetic field Ba ∝ gaNN

√
2ρDMv in green, the spins

can be tipped away from their initial orientation. This tipping occurs when ωa ≈ ΩL and the
3Where the g-factor of the electron was approximated to g ≈ 2.
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Figure 2.8: Schematic representation of the CASPEr Wind arrangement, taken from Ref. [142]: The
leading field B0 in red determines the Larmor frequency ΩL = γ|B0| of the spin sample. When the axion
wind induces a pseudo-magnetic field Ba in green, which has a resonant oscillation frequency ωa ≈ ΩL,
the spins will be tipped away from B0. The amplitude of the magnetic field arising from the precessing
magnetic dipoles µN in the spin ensemble can then be detected using a magnetometer.

oscillations of the axion field match the Larmor frequency of the background magnetic field. In
the laboratory frame, the nuclear spins with magnetic dipole moments µN can then be seen to
precess around B0, as indicated by the gray sphere and black arrow in Fig. 2.8.
For experimental detection, a magnetometer can be used to measure the transverse magnetiza-
tion arising from the ensemble of polarized spins with magnetic dipoles µN in the sample. Due
to the dependence of the Larmor frequency ΩL on |B0|, the axion mass to be probed can be set
by tuning the strength of the leading field |B0| [44, 45].
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Axion Miniclusters 3
As was already pointed out in Sec. 2.5 and Sec. 2.6, the post-inflationary symmetry breaking
of the axion field is characterized by the emergence of large inhomogeneities. The density per-
turbations seeded by these inhomogeneities generate significant deviations from standard CDM
on small scales due to the formation of dense axion miniclusters [23–25, 28–30, 144–148]. On
galactic scales, miniclusters are expected to constitute the NFW dark matter halos of galaxies,
which implies that a significant number of these objects could be contained in our galactic en-
vironment.
This scenario has important phenomenological consequences for possible observations of axion
DM: First, miniclusters (or minicluster remnants, sometimes called tidal streams) in the solar
neighbourhood can induce fluctuations of the local dark matter density ρdm probed in earth-
based detectors [42, 149, 150]. Secondly, galactic miniclusters and their solitonic cores can collide
with other astrophysical objects like neutron stars producing bursts of radio photons [134, 136,
140, 151–157]. And most importantly for this work, we can employ various existing knowledge
on galactic miniclusters to constrain the properties of their accreting axion star cores to develop
new detection strategies for axion dark matter in Chap. 4 to Chap. 7.
In this chapter, we summarize the current status of analytical and numerical research on the
formation, evolution and present-day properties of axion miniclusters. We start by introducing
the equations of motion governing the non-relativistic evolution of axion DM with and without
self-interactions in Sec. 3.1. Sec. 3.2 incorporates the spherical collapse model describing the
formation of miniclusters around matter-radiation equality. After their formation, miniclus-
ters evolve during the matter dominated epoch, where the analytical description of their mass
distribution is summarized in Sec. 3.3 and Sec. 3.4. In Sec. 3.5, we consider the full range of
minicluster masses predicted from numerical simulations in Subsec. 3.5.1 and analytical calcu-
lations in Subsec. 3.5.2. From this, we infer the estimated properties of the galactic minicluster
distribution in the NFW dark matter halo of the Milky Way at present-day redshift in Sec. 3.6.
Lastly in Sec. 3.7, we introduce the canonical core-halo mass relation linking the properties of
miniclusters to those of their axion star cores in Chap. 4. The combined content presented in
this chapter and in Chap. 2 constitutes the green shaded panels in the schematic summary of
Fig. A.1.

3.1 Gross-Pitaevskii Poisson System
As laid out in Chap. 2, the early universe evolution of the axion field from the symmetry break-
ing around T ∼ fa until the onset of axion oscillations at T ∼ Tosc is dominated by non-linear
axion self interactions and the formation of topological defects. Later, at T < Tosc after the
axion mass becomes relevant and topological defects have decayed, the remaining fluctuations
in the matter density will collapse gravitationally and decouple from the Hubble flow. At these
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temperatures, the axion field behaves like cold dark matter, which allows for a non-relativistic
treatment, which we introduce in the following.
We follow the derivation of the non-relativistic EOM for the QCD axion similar to the calcu-
lations in Ref.s [33, 158–161] and modify the approach to include axion-like particles by also
considering arbitrary combinations of ma and fa, next to the QCD axion relation Eq. (2.11).
More precisely, this thesis closely follows the approach in Ref. [1], which lays the foundation for
the subsequent publications, Ref. [2] and Ref. [3], all of which are part of this thesis.
The total Lagrangian density of the self-gravitating axion field in Eq. (2.38) can be written as

L =
√−g

[
−gµν

2
∂µϕ∂νϕ− V (ϕ) +

R
16πG

]
, (3.1)

where the Ricci scalar R accounts for the evolution of the metric gµν and G = 1/
(
8πM2

Pl
)

is the
gravitational constant. From the Lagrangian in Eq. (3.1) one obtains the relativistic equations
of motion

Rµν − 1

2
gµν = 8πGT µν

a , (3.2)
1√
g
∂µ
[√−ggµν∂ν

]
ϕ+ V ′(ϕ) = 0 , (3.3)

which are often called the Einstein-Klein-Gordon equations (EKG) [162]. Eq. (3.3) describes the
evolution of the axion field, while the Einstein Eq. (3.2) determines the geometry of spacetime
as a function of the stress energy tensor Tµν of the axion field from Eq. (2.41). A crucial step
in the derivation of the non-relativistic EOM is to make appropriate assumptions for the axion
potential V (ϕ) from Eq. (2.12), the metric tensor gµν and the axion field ϕ. Starting with V (ϕ),
we can expand the axion potential around the CP-conserving minimum ϕ = 0, keeping only the
two leading-order terms

V (ϕ) = m2
af

2
a

[
1− cos

(
ϕ

fa

)]
=
m2

a

2
ϕ2 +

λ

4!
ϕ4 +O

(
λ2ϕ6/m2

a

)
, (3.4)

where we have introduced the quartic coupling constant

λ = −cλ
m2

a

f2a
(3.5)

of the attractive self-interaction with λ < 0. For the case of the QCD axion, the constant cλ
depends on the up- and down quark masses mu, md with cλ = 1 − 3mumd/(m

2
u +m2

d) ≈ 0.3
according to more accurate calculations using chiral perturbation theory and lattice QCD [33,
43]. More generally and for the case of axion-like particles, cλ is an O ∼ 1 parameter, which is
why we assume cλ = 1 for different axion models in the following [41, 158] This also coincides
with the standard dilute instanton gas approximation for the QCD axion.
As will be shown in Chap. 4, the second-order term in Eq. (3.4) is crucial for the stability of
axion matter fluctuations, because it describes the self-interactions of the axion field. The other
relevant force is the gravitational interaction of axions, where in the context of miniclusters,
a Newtonian treatment is sufficient. This can be seen by estimating the magnitude of the
Newtonian potential ΦN ∼ GM0/R ≪ 1 using the characteristic minicluster mass M0 ∼
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10−12M⊙ and radius R ∼ 107 km (see Sec. 3.2). In the Newtonian limit and for vanishing
anisotropic stress, the metric can be written as [163]

ds2 = −(1 + 2ΦN )dt2 + (1− 2ΦN )δijdx
idxj , (3.6)

with √−g ≈ 1− 2ΦN and R ≈ 2(∇ΦN )2. Expressing gµν using Eq. (3.6), the Lagrangian of the
axion field from Eq. (3.1) reduces to

L =
(∇ΦN )2

8πG
+

1− 4ΦN

2
ϕ̇2 − (∇ϕ)2

2
− (1− 2ΦN )V (ϕ) , (3.7)

where V (ϕ) obeys the Taylor expansion from Eq. (3.4). The third assumption to be made in
this section relates to the axion field ϕ in Eq. (3.7). At temperatures below Tosc, the axion field
behaves like cold dark matter, where we assume that its relic density is Ωah

2 ≃ Ωch
2 = 0.12

[14]. From this, we can infer the occupation number of CDM axions by estimating its de-Broglie
wavelength as

λdB =
2π

mav
= 29.8m

(
50µeV
ma

)(
250 km/s

v

)
, (3.8)

which together with the local axion DM density ρa = ρdm yields

Na ∼ ρdm
ma

λ3dB ∼ 1023
(
50µeV
ma

)4(250 km/s
v

)3

(3.9)

for the number of particles in a de Broglie volume V ∼ λ3dB. Considering only sub-eV axion
masses, the occupation number Na turns out to be so large that the system is best described
by classical waves, similar to how the large occupation number of photons in electromagnetism
motivates a classical treatment of the electric and magnetic fields. Furthermore the axion field
is also highly non-relativistic with a typical minicluster escape velocity on the order of vesc ∼√
GM0/R ∼ 10−9 ≪ 1. Thus expressing the classical real (pseudo-)scalar field ϕ in terms of a

slowly varying complex scalar field ψ(x, t) one can write [161, 164, 165]

ϕ(x, t) =
1√
2ma

[
ψ(x, t)e−imat + ψ∗(x, t)eimat

]
. (3.10)

with |ψ̇| ≪ mψ and |ψ̈| ≪ m2ψ so thatma is the dominant energy scale in the problem. Inserting
Eq. (3.10) into the Lagrangian Eq. (3.7), the rapidly oscillating terms proportional to e±imat

may be neglected since they average to zero over time. This way, the non-relativistic evolution
of the complex field ψ can be shown to follow the Gross-Pitaevskii-Poisson system (GPP):

i
∂ψ

∂t
= − 1

2ma
∆ψ +maΦNψ − |λ|

8m2
a

|ψ|2ψ , (3.11)

∆ΦN = 4πGma|ψ|2 , (3.12)

where the Newtonian potential ΦN in Eq. (3.12) is sourced by the matter density ρa = ma|ψ|2
of the non-relativistic axion field [158]. The same matter density can be used to determine the
total number and mass of the system according to

N =

∫
d3x|ψ|2 , M = ma

∫
d3x|ψ|2 , (3.13)
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Chapter 3 Axion Miniclusters

both of which are conserved quantities. Other important conservation laws relate to the total
energy E and angular momentum L of the system [166]. The conservation of energy and the
stationary solutions to the GPP system are examined in detail in Sec. 4.1.
Note that the GPP system Eq. (3.11) and Eq. (3.12) is given for attractive self-interactions
λ < 0 explicitly. In a more general context, repulsive self-interactions have λ > 0, while in the
specific case of λ = 0 the system reduces to the Schrödinger-Poisson system

i
∂ψ

∂t
= − 1

2ma
∆ψ +maΦNψ , (3.14)

∆ΦN = 4πGma|ψ|2 , (3.15)

which is commonly used in numerical simulations and for axion miniclusters with smaller den-
sities |ψ| and negligibly weak self-interactions (see also App. B and e.g. Ref.s [30, 167–172]).
We emphasize that both the GPP and the SP equations are classical by nature due to the large
occupation numbers of the axion field., as explained in Ref. [173].
Lastly, the solutions to the GPP equations, Eq. (3.11), Eq. (3.12) - and those of the SP system
for λ = 0 - obey a scaling symmetry of the form

{r, t, ψ,E,ΦN , λ} →
{
µ−1r, µ−2t µ2ψ, µ2E, µ2ΦN , µ

−2λ
}
, (3.16)

with an arbitrary, non-zero shift parameter µ [174]. Essentially, the symmetry in Eq. (3.16) can
be used to transform a given solution of the GPP system onto another solution with a different
density profile ρ = ma|ψ|2 but the same λ2ρ [174]. We focus on the derivation of the stationary
solutions in Sec. 4.1 and continue with the formation of miniclusters in the next section.

3.2 Spherical Collapse Model
The gravitational collapse of miniclusters is seeded by density fluctuations in the axion field,
which emerge at temperatures around T ∼ Tosc. Until matter-radiation equality, the horizon-
sized patches with initial overdensities Φ = ρa/ρ̄a − 1 will collapse forming highly overdense
objects, which are called axion miniclusters. Their characteristic size is given by the horizon size
at T = Tosc, which leads to radii on the order of R ∼ 1/H(Tosc) ∼ 107 km. The corresponding
typical mass is set by the mass enclosed within a sphere with radius R ∼ 1/H(Tosc), which
implies M ∼ 10−12M⊙ for ma = 50µeV and the QCD axion. Typical miniclusters have Φ ∼ 1
and collapse redshifts zc ∼ zeq, where more generally Φ ∈ (0, 104] is expected from numerical
calculations [28, 175].
Since Φ stays roughly constant during the radiation-dominated epoch, the spherical collapse
model can be used to estimate the central minicluster density ρmc as a function of Φ. The
equation of motion for a spherical region in a flat universe with radiation density ρrad and
matter density ρm is [24]

r̈ = −8πGρrad
3

r − GM
r2

, (3.17)

where r denotes the radius of the region and M is its enclosed mass. Eq. (3.17) can be rephrased
by changing to conformal time dη = dt/a(t) and expressing the radius r = a(η)Rξ(η)ξ in
terms of a comoving shell with label ξ, where Rξ(η) measures the deviation of the shell motion
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3.2 Spherical Collapse Model

from the Hubble flow. Using the Friedmann equations for a flat universe and the densities
ρrad = ρeq(aeq/a)4, ρm = ρeq(aeq/a)3 set by the value ρeq at matter-radiation equality, one
obtains the equation of motion [24]

aR′′
ξ + a′R′

ξ +

(
GM
ξ3R2

ξ

− 4πG

3
a3ρmRξ

)
= 0 . (3.18)

The total mass enclosed within a comoving shell ξ can be parametrized as

M =
4π

3
ρeqa

3
eq [1 + Φ(ξ)] ξ3 , (3.19)

which together with the definition x = a/aeq yields

x(1 + x)
d2Rξ

dx2
+

(
1 +

3

2
x

)
dRξ

dx
+

1

2

(
1 + Φ

R2
ξ

−Rξ

)
= 0 . (3.20)

Eq. (3.20) was solved numerically in Ref. [24], but an analytic solution may be found by ex-
panding Rξ in a power series to second order in x. Using this assumption, Eq. (3.20) reduces
to

Rξ = 1− Φx

2
− Φ2x2

8
. (3.21)

For ṙ = 0 in Eq. (3.17), or equivalently at Rξ + xdRξ/dx in Eq. (3.20), the spherical fluctuation
with size r switches from an expanding to a collapsing sphere. To second order in Eq. (3.21),
the scale factor and matter density corresponding to this turn-around are given by

xta =
Cx

Φ
, and ρta = Cρρeq

Φ3

3ξ2
d

dξ
(1 + Φ) ξ3 , (3.22)

where the parameters Cx and Cρ are determined numerically. Using the numerical result Cρ ≃ 17
from Ref. [24] and considering that the virial radius is half of the turn-around radius, the central
density of the minicluster with initial overdensity Φ is roughly

ρmc ≃ 140 ρeq Φ
3 (1 + Φ) ≃ 7 · 106Φ3(1 + Φ)

(
Ωah

2

0.12

)4 GeV
cm3

, (3.23)

where the factor 2 from the virial radius yields a relative factor 8 between the virial density
and ρta. The characteristic density in Eq. (3.23) is of crucial importance for the analysis in this
work. It determines both the density and radius of the collapsed miniclusters as a function of
Φ ∈ (0, 104].
Note that as discussed in Ref.s [29, 30, 176], the radial density profiles of typical miniclusters
can be well-fit using the NFW profile from Eq. (A.1). Their expected concentration parameters
c = rvir/Rs with the virial and scale radius rvir, Rs range from 160 ≲ c ≲ 400 depending on
the minicluster mass M and for ma = 50µeV [28–30]. Since the scaling of the minicluster
concentration c with M, Φ, ma and z is not generally known, we rely on a homogeneous sphere
model for the minicluster profile throughout this work. Deviations from the NFW profile of
dense miniclusters exhibiting a steeper central slope at late times were recently discussed in
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Chapter 3 Axion Miniclusters

Ref. [175].
Assuming a spherically homogeneous profile with total mass M = 4π/3ρmcR3, the characteristic
minicluster radius

R ≃ 3.4 · 107
Φ(1 + Φ)1/3

( M
10−12M⊙

)1/3

km (3.24)

is easily obtained as a function of the overdensity parameter Φ from Eq. (3.25). In order
to determine the range of R, both knowledge on the distribution of Φ and M is required.
Starting with M, the distribution and time evolution of minicluster masses is a major source of
uncertainty. A summary of semi-analytical methods following the work in Ref. [58] is presented in
Sec. 3.3 to Sec. 3.6. As for now, the characteristic mass M0 of miniclusters can be estimated from
the amount of axion dark matter contained within a spherical region of radius R ∼ 1/H(Tosc).
Using a spherical geometry for the minicluster collapse and writing the comoving horizon size
in terms of the comoving wavenumber kosc = aH(Tosc), one obtains

M0 = ρ̄a
4π

3

(
π

kosc

)3

, (3.25)

which is equivalent to other definitions of M0, e.g. in Ref. [146], up to a geometrical factor of
4π4/3 ≃ 130 [58]. The range of minicluster masses is typically centered around M ∼ M0 and
it will be determined in the following sections.
Continuing with the second open parameter in Eq. (3.24), the distribution of the initial mini-
cluster overdensity Φ was calculated from Eq. (2.40) in the simulations of Ref. [146]. We follow

10
−2

10
0

10
2

10
4

Φ0

0.0

0.2

0.4

0.6

0.8

1.0

F
(>

Φ
0
)

10
−2

10
0

10
2

10
4

Φ

0.0

0.1

0.2

0.3

0.4

p
(Φ

)

Figure 3.1: Left: Initial cumulative mass fraction F(> Φ0) of miniclusters with Φ > Φ0. Right:
Probability distribution pΦ(Φ) of objects with initial overdensity parameter Φ following Ref.s [2, 58, 146].

the approach of Ref. [58], who showed that the mass fraction of miniclusters with Φ > Φ0 from
Ref. [146] is well-fit by a Pearson-VII-type distribution of the form

F (> Φ0) ≃
1

[1 + (Φ0/a1)]
a2 , (3.26)
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with a1 ≃ 1.023 and a2 ≃ 0.462. From the initial cumulative mass fraction in Eq. (3.26), we can
derive the initial probability distribution:

pΦ(Φ) =
a2

a1(1 + Φ/a1)a2+1
, (3.27)

as a function of Φ. It can be seen from the left panel of Fig. 3.1, that roughly 70% of the
miniclusters form with initial overdensities Φ > 1 and that approximately 14% of miniclusters
form with large overdensities of Φ > 10 [146]. The distribution of Φ depicted in the right panel
of Fig. 3.1 will be applied to the minicluster population of the galactic DM halo in Chap. 6 and
Chap. 7. Before, we continue to constrain the remaining free parameter from Eq. (3.24): the
range of minicluster masses M and its evolution over time.

3.3 Linear Growth of Matter Perturbations
The linear growth of miniclusters with the initial properties from Sec. 3.2 can be understood
by considering the growth of axion matter perturbations in an expanding universe. In this
section we recall the most fundamental results on the dynamics of linear axion fluctuations
from cosmological perturbation theory following Ref.s [41, 177, 178]. Considering the continuity
and Euler equations of a relativistic fluid, the EOM describing the linear growth of the time-
dependent matter perturbations δa(t) = ρa(t)/ρ̄a(t) − 1 in an axion-dominated universe for
T ≪ Tosc can be shown to take the form [41, 177]

δ̈a + 2Hδ̇a +

(
k2c2s
a2

− 4πGρa

)
δa = 0 , (3.28)

where cs is the sound speed of the fluid. Eq. (3.28) describes an oscillator with a time-dependent
damping, that expresses the competition between pressure and gravitational collapse. Matter
perturbations δa will thus experience a different evolution depending on the scaling of the first
and second term in round brackets. The axion Jeans scale kJ is defined as the scale, where
the pressure term c2sk

2δa/a
2 and the gravitational term cancel each other. Entering the axion

effective sound speed c2s ≈ k2/(4m2
aa

2), one obtains

kJ =
[
16πGa4ρ̄a(a)

]1/4
m1/2

a . (3.29)

The scale-dependent behavior of the density fluctuations can also be understood by considering
the solutions to Eq. (3.28). Using the axion effective sound speed and expressing H for a matter
dominated universe one obtains [41]

δa = C+D+(k, a) + C−D−(k, a) , (3.30)

where C± carry information on the initial conditions and the solutions D±(k, a) are the growing
and decaying modes respectively. The exact form and time-dependent behavior of D±(k, a) can
be found in Ref. [178]. For this work, we summarize that modes with k < kJ will grow linearly
after matter-radiation equality, similar to the standard cold dark matter case.
The modes with k > kJ on the other hand separate into two different categories: First, the
largest wavenumbers k > kJ(a0) correspond to fluctuations which are still smaller than the
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present-day Jeans scale. They show an oscillating behavior in D+, D− with constant amplitude
over time, thus suppressing structure formation on very small scales. Secondly, modes in the
range kJ(aeq) ≤ k ≤ kJ(a0) oscillate as long as they remain below the a-dependent Jeans scale
kJ(a). As soon as they move above the Jeans scale, these modes show the usual growing and
decaying modes D+(k, a) and D−(k, a).
This observation has two important consequences: First, axion dark matter differs from standard
CDM on scales below the Jeans scale k > kJ and secondly, it exhibits a CDM-like behavior on
large scales in the limit k2c2s → 0 with a growing mode δ ∝ a and decaying mode δa ∝ a−3/2.
Importantly for this work, the similarity to standard CDM allows us to employ analytical linear
growth models to the mass distribution of miniclusters in the next section.

3.4 Press-Schechter Formalism
As mentioned in Sec. 3.2, miniclusters are expected to form over a wide range of masses until
matter-radiation equality. While the characteristic quantities from Sec. 3.2 provide order-of-
magnitude estimates for typical minicluster properties, a more precise knowledge of the mass
and size distribution of these objects is required. This is specifically important due to the
ongoing tidal interactions and mergers between miniclusters that dominate their evolution in
the matter-dominated epoch and which lead to the formation of heavier structures over time.
The standard approach to model the linear mass growth of axion miniclusters is given by the
Press-Schechter formalism [179, 180].
Calculations involving a spherically symmetric perturbation in a flat, matter-dominated universe
show that a linearly evolved overdensity δ has collapsed into a halo or minicluster once δ(x, t) >
δc = 1.686 [181]. Using the linear growth model from Sec. 3.3, the time-dependence of the density
contrast can be expressed in terms of the growing mode D(t) ≈ D+(t) as δ(x, t) = D(t)δ0(x),
which is valid at late times t≫ t0

1.
This simple collapse criterion serves as the main assumption in the estimation of the mass
distribution of collapsed objects in the Press-Schechter approach. An important first step in
this formalism is to smooth the density field δ(x, R) with a window function W (x, Rf )

δs(x, Rf ) =

∫
d3x′ δ0

(
x′
)
W
(
x + x′, Rf

)
, (3.31)

which amounts to a filtering of δ(x, Rf ) on a length scale Rf through convolution with W (x, Rf ).
In this framework all points in space satisfying δs(x, Rf , t) > δc are considered to be part of
a minicluster. There exist different choices for the window function W , with the two most
prominent being the spherical top hat filter and the Gaussian filter

W (x, Rf ) =
1

(2π)3/2R3
f

exp
(
−|x|2
2R2

f

)
(3.32)

used in Ref. [58] and in Sec. 3.6 of this work. The variance σ2(Rf ) of the density field δs(x, Rf , t)
smoothed on a scale Rf can be expressed in terms of the linear power spectrum P (k) as

σ2(Rf ) = ⟨δ2s(x, Rf )⟩ =
1

2π2

∫ ∞

0
dkk2P (k)W 2(kRf ) , (3.33)

1Note that this is equivalent to the common formulation of a time-dependent collapse barrier δc(t) = δc/D(t),
for the initial overdensity with threshold δ0(x) > δc(t).
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where W (kRf ) = exp(−k2R2
f/2) is the Fourier transform of the window function W (x, Rf ).

Since the smoothing length Rf is directly related to the mass M = Cf ρ̄R
3
f of the structure with

a filter-dependent constant Cf = (2π)3/2, the variance σ2(M) = σ2(R) is often called the mass
variance.
Press and Schechter [179] postulated that the probability P[> δc] to find δs(x,M, t) > δc at a
given time t is equal to the mass fraction F [> M ] contained in objects with mass greater than
M . For a Gaussian density field, the probability is found to be [182]

P [> δc] =
1√

2πσ(M)

∫ ∞

δc

dδ exp
[
− δ2

2σ(M)2

]
=

1

2
erfc

[
δc(t)

2σ(M)

]
, (3.34)

with the complementary error function erfc(x) = 1 − erf(x). The mass function n(M, t)dM
gives the number of objects with masses in the range [M,M + dM ] per comoving volume, with
n(M, t) = dn/dM = 1/Mdn/d lnM . This can be used to equate the mass function using the
fraction of mass ∂F/∂MdM contained in structures with masses in the range [M,M + dM ]:

n(M, t)dM =
ρ̄

M

∂F (> M)

∂M
dM , (3.35)

where ρ̄ is the comoving background density. Taking into account an additional fudge factor
2, the relation between the probability P(> δc) and the mass fraction of objects more massive
than M is F (> M) = 2P[> δc]. This relation yields the Press-Schechter halo mass function [58]

dn

d lnM = 2ρ̄
∂P (> δc)

∂M
=

√
2

π

ρ̄

M

δc
σ(M)

exp
(
− δ2c
2σ(M)2

) ∣∣∣∣
d lnσ(M)

d lnM

∣∣∣∣ , (3.36)

which gives the comoving number density of objects per logarithmic mass interval as a function
of M and where it was used that ∂P/∂M = ∂P/∂σ(M)|dσ(M)/dM |. The time dependence of
the mass function in Eq. (3.36) enters through the linear growth factor D(t), which determines
the time evolution of the smoothed density field δs(t) and the mass variance σ(M).
Note also that Eq. (3.36) was derived using a spherical collapse model. There exist extensions of
the simple Press-Schechter approach introduced in this section, namely the ellipsoidal collapse
model by Sheth and Tormen [183], which provides better agreement with N-body simulations
[171]. As argued in Ref. [58], the use of the Press-Schechter approach in Eq. (3.36) provides
a reasonable estimate for the linear growth of the minicluster mass function due to the large
underlying uncertainties (see Subsec. 3.5.2 for a more detailed discussion).

3.5 Minicluster Evolution
In the previous sections, we have introduced the spherical collapse model of Ref. [23] and showed
how it can be used to estimate characteristic minicluster properties for different axion masses
or models. From this, the next step is to infer the present-day properties of miniclusters with
special emphasis on the minicluster (halo) mass function (MCMF) using the Press-Schechter
approach from Sec. 3.4 and Ref. [58].
In this context, it is useful to divide the evolution of the axion field into three distinct stages:
First, in the early universe, the axion field arises from the spontaneous symmetry breaking
around T ∼ fa and acquires a mass around T ∼ Tosc leading to the formation of topological
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defects as summarized in Sec. 2.5. This stage and the emergence of early minicluster seeds has
been investigated by means of lattice simulations following Eq. (2.40) in Ref.s [23, 28, 184]. In
the second stage, the system is dominated by the gravitational force, which allows for the use
of N-body simulations in the context of miniclusters [29, 30]. Lastly, and in the third stage,
minicluster mergers lead to the formation of large-scale dark matter halos seeding the formation
of galaxies at late times. In this section, we discuss the results from N-body simulations obtained
from the second stage in Subsec. 3.5.1 following Ref. [30]. Subsequently in Subsec. 3.5.2, we
apply the predictions from Ref. [58] to estimate the properties of axion miniclusters in the third
evolutionary stage, i.e. in the present-day universe.

3.5.1 Numerical Simulations

Starting with the gravitational evolution of the MCMF, this section summarizes the numerical
results found in Ref.s [30] and [29]. The authors of Ref. [30] used the initial conditions from
the lattice simulations in Ref. [185] together with the GAGDET-3 code [185] to trace the evo-
lution of the QCD axion density perturbations with ma = 50µeV from redshift z ∼ 106 down
to z = 99. The redshift-dependent evolution of the MCMF reproduced from the corresponding
N-body simulations is shown in Fig. 3.2, where the left and right panels depict the mass distri-
bution of structures before and after matter-radiation equality zeq ≃ 3402.
In the left panel of Fig. 3.2, it can be seen that the MCMF at early times, z ∼ 106 in blue, peaks
at the lower masses close to the low-mass resolution cutoff at M ∼ 10−15M⊙. The miniclusters

10−15 10−14 10−13 10−12 10−11

M/M�

102

103

104

105

106

d
n

m
c
/
d
ln
(M

)[
p
c
−
3
]

z =156787

z =99999

z =39241

z =15678

z =6292

10−14 10−12 10−10 10−8

M/M�

101

102

103

104

105

106

d
n

m
c
/
d
ln
(M

)[
p
c
−
3
]

z =2507

z =999

z =250

z =99

Fit: α = −0.7 , z = 99

Figure 3.2: Evolution of the minicluster mass function with redshift z before (left) and after (right)
matter-radiation equality zeq ≃ 3402. A power-law fit with slope α ≃ −0.7 following Eq. (3.37) is applied
to the z = 99 data in black. The data is taken from the numerical N-body simulations of miniclusters in
the post-inflationary scenario performed in Ref. [30] for the QCD axion mass ma = 50µeV.

forming at these large redshifts z ≫ zeq amount to structures, which are deeply non-linear and
thus characterized by large initial overdensities Φ ≫ 1. As mentioned before and as shown in
Fig. 3.1, the majority of the overall collapsed objects has moderate overdensities Φ ∼ 1, which
is why most miniclusters collapse around comparatively lower redshifts z ∼ zeq in purple.
Accordingly at lower redshift z, the overall number of collapsed objects grows quickly and the
MCMF develops a pronounced second peak at M ≳ 10−13M⊙ around z ∼ 4 · 104. This second
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3.5 Minicluster Evolution

peak corresponds to the canonical miniclusters with characteristic masses M ∼ M0 predicted
by Eq. (3.25). Until matter-radiation equality, the evolution of the MCMF exhibits a contin-
uous growth in amplitude due to the ongoing collapse of minicluster seeds and a simultaneous
extension towards the high-mass end M ∼ 10−11M⊙. Note that similar results were obtained
in the N-body simulations performed in Ref. [29].
Around redshifts z ∼ zeq ≃ 3402, the second peak has been flattened out and the MCMF is
well-fit by a power-law with slope index α = −0.7 [30]

dn

d lnM ∝ Mα . (3.37)

Finally and after matter-radiation equality, the overall (comoving) number density of miniclus-
ters decreases due to tidal interactions and minicluster mergers, which simultaneously raise the
high-mass end of the MCMF to M ∼ 10−9M⊙ at the lowest redshift z = 99. The evolution of
the MCMF following Eq. (3.37) has several important consequences for this work, namely:

1. The MC mass distribution peaks towards the lower masses, presumably extending to
masses lower than the resolution cutoff mass M ∼ 10−15M⊙

2. A slope index α = −0.7 can be used to characterize the MCMF for z < zeq

3. The range {M} of minicluster masses changes over time due to gravitational interactions

4. Large-scale dark matter haloes are expected to have a (sub-)minicluster population similar
to the late-time MCMF at z = 99 in the right panel of Fig. 3.2 in red

We note that point 4 in the above enumeration is not directly evident from the MCMF in
Fig. 3.2. This observation is best made by counting the number of sub-miniclusters, which are
embedded within the virial radius of a heavier ’host’ minicluster with Mhost > Msub. From
this we obtain the global sub-halo MCMF depicted in figure Fig. 3.3 as a function of the host
minicluster mass Mhost. As can be seen in Fig. 3.3, the evolution of the sub-halo MCMF is
approximately frozen after matter-radiation equality. The high-mass end Msub ≳ 10−12M⊙ of
the MCMF is subject to large uncertainty due to the low number of samples in the simulation
volume. Importantly for this work and point 4., the fitted slope-index α = −0.7 of the host
MCMF in the right panel of Fig. 3.2 also remains approximately valid for the global population
of sub-miniclusters as seen by the black line in Fig. 3.3.
The conclusion to draw from this observation, is that the approximate power-law slope of the
(sub-halo) MCMF can be assumed to also apply at late times in the following. This assumption
has the important consequence that the galactic NFW halo of the Milky Way (and those of other
standard spiral galaxies) are expected to host a large number of miniclusters with a wide range
of masses {M} and an MCMF slope index α at z = 0 due to their host minicluster nature.
It should however be emphasized that there is an underlying uncertainty on the exact value
of the slope parameter −0.7 ≲ α ≲ −1/2 [29, 30, 58] depending on the initial conditions,
the method of investigation and on the mass range {M} under consideration. Since N-body
simulations can not be performed until present-day redshift z ∼ 0, it is common to extrapolate
their power-law behavior at z ≲ 100 down to z = 0. N-body simulations predict α ≃ 0.7 [30],
while α − 0.6 [180] and α = −1/2 [58] are obtained from semi-analytical models. Crucially for
the considerations in this work, additional predictions estimating the present-day range of M
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Figure 3.3: Evolution of the global sub-halo MCMF at redshifts z < zeq as a function of the parent
halo mass Mhost for ma = 50µeV. A power-law fit with slope α = −0.7 following Eq. (3.37) is applied
to the z = 99 data in black. The data was extracted from the numerical N-body simulations performed
in Ref. [30].

for different axion models ma, n, fa are needed (c.f. Sec. 2.4). Such predictions are best obtained
from semi-analytical considerations, which will be introduced in Subsec. 3.5.2.
As for this section dealing with the MCMF evolution in N-body simulations, we conclude that the
initial mass distribution which is established around z ≃ zeq, is determined by the initial power
spectrum of axion density perturbations [28, 184]. Subsequently in the matter-dominated epoch,
the MCMF evolves due to tidal disruption and minicluster mergers leading to the formation of
increasingly heavy structures over time. This leads to an extension of the mass range towards
larger minicluster masses M, where the power-law slope α established at zeq is expected to
remain roughly preserved at z < zeq.

3.5.2 Parametrization for Mass Distributions

In the previous subsection, we have shown how numerical simulations can be used to predict
that the MCMF evolves with a roughly constant slope index α = −0.7. In this section, we follow
the semi-analytic Press-Schechter approach from Ref. [58] to motivate the second representative
value α = −1/2 of the MCMF slope considered in this work. More specifically, we summarize
the steps performed in Ref. [58] leading to the parametrization of the z = 0 mass distribution
of miniclusters, which we will use to infer the galactic MCMF in the following sections.
The authors of Ref. [58] used a Gaussian window function of the form in Eq. (3.32) to smooth
the axion density field, for which the mass contained within a comoving volume of radius R
is M = (2π)3/2ρ̄aR

3. In their framework with a constant collapse threshold δc = 1.686, the
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3.5 Minicluster Evolution

statistics of the smoothed density field δa(η)
2 following Eq. (3.31) are characterized by the

time-dependent power spectrum P (k, η) according to the relation

⟨|δa(x, η)|2⟩ =
∫

d3k

(2π)3
P (k, η) , (3.38)

where the (conformal) time-dependence η is inherited from the linear growing or oscillating
modes of Eq. (3.28). The initial power spectrum at the temperature Tosc when the axion matter
density perturbations are established is truncated at the comoving size kosc = aH(Tosc) of the
horizon at Tosc according to

P0(k) ≡ P (k, ηosc) =
24π2

5k3osc
Θ(kosc − k) , (3.39)

where θ(x) is the Heaviside function [58]. Expressing the evolution P (k, η) = P0(k)T 2(k, η) in
terms of the isocurvature transfer function T (k, η) from Ref. [186] together with the Heaviside
initial power spectrum P0(k), the mass variance evolves with time as

σ2(M, η) =

∫
k2dk

2π2
P0(k)T 2(k, η)|W (k,M)|2 , (3.40)

which exhibits a scaling of σ(M) ∝ M−1/2. More details on the calculation and properties of
the mass variance σ(M) can be found in Ref. [58]. Since the present-day η = η0 overdensity
from linear growth scales as δ(η0) ∝ D(η0)/D(ηeq)δ(ηeq) = δ(ηeq)/D(ηeq) and from σ2 ∝ δ2 in
Eq. (3.33), it follows that the mass variance at z = 0 is simply given by

σ2(M, z = 0) =
σ2(M, zeq)

D2(zeq)
, (3.41)

with the initial mass variance σ(M, zeq) and the linear growth factor D(zeq). The linear growth
factor of cold dark matter in a flat universe with ΩΛ = 1− Ωm is

D(z) =
Ωm

D̃(0)

5

2

H(z)

H0

∫ ∞

z

dz′
[

H (z′)

(1 + z′)H0

]−3

, (3.42)

which is normalized to unity at z = 0 and where D̃(0) is the corresponding growth factor before
normalization [58].
Using the time-dependent mass variance of the Gaussian filtered density field from Eq. (3.40),
the authors of Ref. [58] calculated the redshift-dependent evolution of the MCMF for different
ma, fa, n from zeq until present-day redshift z = 0. Details on the calculation can be found in
Ref. [58] and the references therein; as for this work, we will only demonstrate their results and
apply them to axion-like particles in the following.
The evolution of a representative MCMF given for an axion withma = 10−7 eV and temperature-
independent mass evolution n = 0 following Eq. (2.34) is depicted in Fig. 3.4.

2Note that compared to the general Press-Schechter formalism in Sec. 3.4 we have switched to conformal time
dt = adη here.
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Chapter 3 Axion Miniclusters

Figure 3.4: Evolution of the MCMF with redshift z obtained from the Press-Schechter approach in
Ref. [58] for ma = 10−7 eV and n = 0 in Eq. (2.34). The MCMF is established at matter-radiation
equality zeq ≃ 3402 and broadens over time due to tidal interactions as indicated by the colored lines.

It can be clearly seen from the initial MCMF at z = zeq ≃ 3402 in purple that the mass
distribution of miniclusters is comparably narrow and roughly centered around the characteristic
MC mass M0 ≃ 10−12M⊙ at early times. Towards lower redshift, the MCMF broadens due to
the ongoing collapse of density seeds with modes in the range kJ(ηeq) < k < kJ(η0) and due to
the formation of heavier structures from minicluster mergers. Eventually, at redshift z = 0 in
red, the present-day MCMF is established, thus providing an analytical estimate for the present-
day range of minicluster masses from linear growth predictions.
As it turns out, the predicted MC mass range at z = 0 indicated by the red line in Fig. 3.4 can
be expressed in terms of the characteristic mass M0 from Eq. (3.25) and in terms of the Jeans
mass

MJ = 1.4 · 10−18M⊙

(
ma

50µeV

)−3/2( Ωm

0.32

)1/4(
h

0.67

)1/2

, (3.43)

which is derived from the Jeans scale in Eq. (3.29). Specifically, in the case of the z = 0 MCMF
and for different choices of ma, n, fa, the authors of Ref. [58] showed that the mass range of
miniclusters can be parametrized using an upper and a lower mass bound MJ,min and Mmax
respectively.
These two limiting masses are indicated by the red dashed lines and red notations in Fig. 3.5,
together with the z = 0 MCMF taken from Fig. 3.4 in black lines. Comparing the analytical
MCMF to the lower and upper mass bounds MJ,min, Mmax in red, a good agreement in the
predicted mass ranges can be seen. As was shown in Ref. [58], the lower mass bound is related
to the redshift-dependent Jeans mass MJ by

MJ,min(ma)
∣∣∣
z=0

≈ MJ

[
1.8

7.5 + log10D(z = 0)

]2
(3.44)

≈ 8.3 · 10−20M⊙

(
ma

50µeV

)−3/2( Ωm

0.32

)1/4(
h

0.67

)1/2

, (3.45)
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3.5 Minicluster Evolution

Figure 3.5: Parametrization of the MCMF in black at present-day redshift z = 0 for ma = 10−7 eV,
taken from Ref. [58]. The characteristic MC mass M0 is indicated by the gray dashed line and the blue
dashed line shows the power-law fit from Eq. (3.37) with slope index α = −1/2. The absolute low- and
high-mass cutoffs from the Jeans limit Mmin = MJ,min in Eq. (3.45) and from linear growth, Mmax in
Eq. (3.46), are shown in red dashed lines.

where the index J indicates the connection to MJ and Eq. (3.45) will only be evaluated at z = 0
in this work. Below this mass scale, miniclusters do not form by gravitational collapse.
The corresponding upper mass bound can also be expressed in terms of the linear growth factor
D(z) from Eq. (3.42) according to [58]

Mmax(ma, n)
∣∣∣
z=0

≈ 4.9 · 106M0(ma, n)D(z = 0)2 , (3.46)

where we have indicated an additional dependence on the axion mass temperature evolution
index n - opposed to the temperature-independent lower mass bound in Eq. (3.45). The upper
mass bound Mmax is related to the linear growth of structures with M ∼ M0 at zeq, that leads
to the occurrence of high-mass MCs with M ≫ M0 at late times. Note that the definition
of Mmax depends on the characteristic MC mass M0 from Eq. (3.25). Therefore, the mass
distribution of miniclusters at z = 0 can be parametrized by the three masses MJ,min, M0 and
Mmax - together with the slope index α = −1/2 in Fig. 3.5 [58].
Between the minimum and maximum minicluster masses MJ,min and Mmax, the MCMF slope
in Fig. 3.5 is well-fit by a power-law of the form in Eq. (3.37) with α = −1/2 indicated by
the blue dashed line, except for the lowest masses with M below the gray dotted line 3. The
corresponding low-mass tail has M ≲ M0/25 and exhibits a cut-off dependence as mentioned
by the gray arrows in Fig. 3.5.
This cutoff dependence is expected to modify the MCMF slope at the low-mass tail to a degree,
which strongly depends on the initial power spectrum in Eq. (3.39) and on the applied window

3The discrepancy between the α = −0.7 scaling observed in Subsec. 3.5.1 at z ≳ 100 and linear growth
predictions with α = −1/2 at z = 0 is currently unresolved.
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Chapter 3 Axion Miniclusters

function in Eq. (3.31). A detailed discussion on the impact of different filters on the MCMF
can be found in Ref. [58]. In this work, we briefly summarize the most important uncertainties
leading to the cutoff dependence at M ≲ M0/25 for the Gaussian filter and Heaviside power
spectrum:
On scales M <M0 the density field δ(η) is highly non-Gaussian, which means that the standard
Press-Schechter formalism can not be applied for these matter perturbations. Independent of
the Gaussianity of the field, a cutoff in the MCMF is expected from the truncated axion power
spectrum in Eq. (3.39) for M ≲ M0. Indications for this cutoff were found in numerical
simulations [187] and from the filter-dependence observed in Ref. [58]. Using the parametrization
introduced in Subsec. 3.5.2 based on the Gaussian window function and Heaviside initial power
spectrum, Fairbairn & Marsh [58] found that this cutoff dependence becomes relevant below an
approximate M0-cutoff scale

M0,min ≡ M0 / 25 , (3.47)

where the index ’0’ indicates the connection to the characteristic mass M0.
To account for the large uncertainties in the low-mass tail of the MCMF Eq. (3.47), we will
consider two different low-M cutoffs in the following: First the cut-off prediction in Eq. (3.47)
proportional to M0 and secondly the Jeans mass cutoff MJ,min introduced in Eq. (3.45).
In the range where M0/25 ≤ M ≤ Mmax, the MCMF can be parametrized by a power-law with
α = −1/2 with good precision (c.f. Fig. 3.5). For simplicity, we also apply the scaling α = −1/2
in the range MJ,min ≤ M ≤ Mmax with the Jeans cutoff MJ,min, similar to what was done in
Ref.s [136, 188].

3.6 Galactic Minicluster Mass Distribution
With the combined numerical and analytical predictions for the evolution of miniclusters from
Sec. 3.3 to Subsec. 3.5.2, we are now in a position to extrapolate their initial properties from
Sec. 3.1 and Sec. 3.2 to the hypothetical present-day population of galactic sub-miniclusters in
the NFW halo of the Milky Way. Analogous to the approach in Ref.s [58] and [1], we consider
different classes of axion models in the range 10−12 eV≤ ma ≤ 10−3 eV with QCD-like potentials
from Eq. (2.32) and a modified temperature dependence n of the axion mass ma(T ) in Eq. (2.34).
We introduce the characterization of different axion models following Ref. [58] in Subsec. 3.6.1
and apply the resulting MC mass predictions for different models ma, n, fa to the Milky Way
DM halo in Subsec. 3.6.2 following Ref. [1]. In Subsec. 3.6.3, we also consider the impact of tidal
disruption on the long-time survival of miniclusters.

3.6.1 General approach for axion-like Particles

Our implementation of different axion models (i.e. of ALP DM models, including the QCD axion)
is best understood by listing the three characteristic quantities that allow for the parametrization
of the z = 0 MCMF in Subsec. 3.5.2, namely: α, MJ,min and M0.
The first is the power law scaling α from Eq. (3.37), where the corresponding slope indices α =
{−1/2,−0.7} considered in this work are motivated by the analytic and numerical predictions
from Fig. 3.2 and Fig. 3.5 respectively. Secondly and thirdly, the low-mass bound MJ,min in
Eq. (3.45) only depends on the axion mass ma, while the high-mass bound Mmax in Eq. (3.46)
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3.6 Galactic Minicluster Mass Distribution

also depends on the characteristic MC mass M0 from Eq. (3.25).
This characteristic mass scale measures the amount of dark matter contained within a Hubble
horizon around T ∼ Tosc. Following Eq. (3.25), the dependence of M0 on Tosc is encoded in the
comoving wavenumber

kosc = a(Tosc)H(Tosc) =

[
g⋆,S(T0)

g⋆,S(Tosc)

]1/3
T0

Tosc
H(Tosc) (3.48)

at T = Tosc and where g⋆,S(T ) are the entropic degrees of freedom from Ref. [54] and Tab. A.2.
Eq. (3.48) clearly depends on the oscillation temperature Tosc, which can be determined ana-
lytically only for the QCD axion case (see Eq. (2.49)). For our considerations involving axion-
like particles, the oscillation temperature needs to be calculated numerically by equating the
temperature-dependent scaling of the axion mass in Eq. (2.34) with the Hubble drag from
Eq. (2.40), i.e. 3H(Tosc) = ma(Tosc), as explained in Subsec. 2.5.2. The left-hand side of this
equation can be obtained from the second Friedmann Eq. (2.51) using the fit for g⋆,R(T ) in
Tab. A.2.
Moving on to the right-hand side, the remaining quantity needed to determine the temperature
which gives 3H(T ) = ma(T ) is the temperature scale Λ0 defined in Eq. (2.34). As mentioned
before, this quantity is equivalent to the QCD susceptibility in Eq. (2.14), which specifies the
zero-temperature ma-fa relation from Eq. (2.11) (see Sec. 2.3 for details). For the generalization
to axion-like particles, we adopt the approach from Ref. [58] by assuming the simplified QCD-
like scaling Λ0 =

√
mafa. Note that in the specific case of the QCD axion, this temperature

scale is given by Λ ≃ 2.5
√
mafa [58], which is well within the uncertainties of the linear growth

predictions from Subsec. 3.5.2.
Following this procedure, we can calculate Tosc, kosc and M0 for any combination of the three
parameters ma, fa, n, or equivalently for arbitrary axion-like models with properties defined
in Sec. 2.3. However since we are interested mainly in axion-like dark matter candidates which
should have order-one relic abundance Ωah

2 ∼ Ωch
2 ∼ 0.12, we can use the total relic abun-

dance Ωtot
a (fa) from Eq. (2.64) to fix the symmetry breaking scale fa in the following. The

corresponding requirement Ωa(fa)h
2 !
= 0.12 for fa is equivalent to the consideration of axion

models, which constitute 100% of the missing dark matter.
In this approach, we characterize each axion model by choosing a set of parameters (ma, n) from
the range 10−12 eV≤ ma ≤ 10−3 eV and for three characteristic values of n = {0, 1, 3.34}, where
n = 3.34, ma ≈ 50µeV roughly corresponds to the numerical calculation of the QCD axion in
Ref. [54]. Since the aforementioned generalization of axion-like DM candidates is crucial for
the analysis in the following chapters, we summarize the fundamental steps performed for each
axion model (ma, n) in short below:

1. Choose an axion model (ma, n) with ma ≡ ma,0 = ma(T = 0) and n defined in Eq. (2.34)

2. For this model, determine fa by requiring 100% DM abundance Ωtot
a (fa)h

2 !
= 0.12 using

• the total relic abundance Ωtot
a (fa) from Eq. (2.64)

• with Tosc from 3H(Tosc) = ma(Tosc) and Λ0 =
√
mafa in Eq. (2.34),

• H(T ) from Eq. (2.51) and ma(T ) from Eq. (2.34)

3. Determine Tosc again for the above specific value of fa and Λ0 =
√
mafa
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Chapter 3 Axion Miniclusters

4. From this calculate kosc according to Eq. (3.48)

5. Using kosc calculate the characteristic MC mass M0(ma, n) in Eq. (3.25)

6. Apply the Press-Schechter predictions from Sec. 3.4

• With α = −1/2 (or α = −0.7 in some cases) for the MCMF slope, Eq. (3.37)
• With low-mass cutoffs MJ,min or M0,min from Eq. (3.45) or Eq. (3.47)
• and the high-mass cutoff Mmax of the MCMF in Eq. (3.46)

7. Obtain the galactic MCMF by normalization to the Milky Way DM halo (see Sec. 3.6)

We emphasize the dependence of Tosc, M0, Mmax and M0,min on the axion parameters (ma, fa, n),
where in our formalism the dependence reduces to (ma, n) as explained above. The application of
the generalized axion-model approach to the hypothetical minicluster distribution of the Milky
Way in point 7. will be presented in Subsec. 3.6.2. Note also that the entire range of steps 1.
to 7. in the above enumeration is displayed in green panels in the schematic representation of
Fig. A.1.
Before moving on to galactic minicluster properties, we continue by plotting our results for Tosc
and fa in Fig. 3.6. As seen in the left panel of Fig. 3.6, the oscillation temperature decreases
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Figure 3.6: Left: Oscillation temperature Tosc defining the onset of axion oscillations with 3H(Tosc) =
ma(Tosc) in Eq. (2.40) obtained from the above procedure following Ref. [58] and Subsec. 2.5.2. Right:
decay constant fa(ma, n) fixed by matching the relic abundance in Eq. (2.64) at different n in colored
lines, compared to the black dashed QCD axion scaling from Eq. (2.11). The green band and lines
correspond to different predictions for the temperature index n of the QCD axion [54, 55, 189]. The gray
region is excluded by inflationary constraints on the tensor-to-scalar ratio fa < 8.2 · 1012 GeV [58, 190].

with stronger temperature dependence n and for smaller axion masses ma. This is related to
the fact that the temperature of equality with 3H(T ) = ma(T ) decreases with smaller ma(T ),
which in turn decreases both for smaller ma = ma,0 and larger n for T > Λ0 in Eq. (2.34). In
other words, the axion mass switches on with decreasing temperature and becomes relevant,
ma,0(T/Λ0)

−n ∼ H(T ), earlier for larger zero-temperature mass ma,0 and smaller temperature-
dependence n. For the QCD-axion-like case with ma ≃ 50µeV and n ≃ 3.34 in green, we obtain
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3.6 Galactic Minicluster Mass Distribution

Tosc ∼ 1GeV in agreement with the literature [41, 42, 54].
Additional information is contained in the right panel of Fig. 3.6, where the decay constants giv-
ing Ωtot

a h2 = 0.12 are shown. To demonstrate the underlying uncertainty in the determination of
the temperature index n, we also show the decay constants for n = 2.82 obtained from Ref.s [41,
189] and n = 4 from the dilute instanton gas model in Ref.s [41, 189]. The spread in fa arising
from different values of n = 2.82, 3.34, 4 is large, but the representative value of n = 3.34 from
Ref.s [41, 54] lies in between. Our choice of n = 3.34 hence provides an intermediate estimate
on the possible range of the QCD axion temperature dependence.
We also depict the QCD axion ma-fa relation from Eq. (2.11) in black dashed lines and indicate
its approximate agreement with axion-like models for ma ∼ 100µeV and n ≃ 3.34 by the solid
vertical line. For n = 3.34, the QCD axion mass lies in the range 50µeV≲ ma ≲ 200µeV [58],
where uncertainties in the determination of Ωtot

a (and more specifically αdec and cn, see also
Sec. 2.5) have been taken into account. Since the analysis in this work focuses on the observa-
tional prospects of current and next-generation radio-telescopes such as SKA-mid ranging from
350MHz to 14GHz, we choose the lower bound of ma ≈ 50µeV for the QCD axion, which
amounts to roughly 12GHz and fa ≃ 1012 GeV [191].
The gray shaded area in Fig. 3.6 is of specific importance for the minicluster scenario consid-
ered in this chapter. It is derived from constraints on the tensor-to-scalar ratio r < 0.07 of
the CMB [190]. In an inflationary scenario, this ratio constrains the Hubble scale and thus the
temperature Eq. (2.35) of the inflationary universe, as demonstrated in Ref.s [192, 193]. To
be consistent with the post-inflationary (PQ) scenario assumed in this work (see Sec. 2.5), the
symmetry breaking at T ≃ fa has to occur below T = fa < 8.2 · 1012 GeV [58]. This condition
defines the boundary of the gray-shaded area indicated by the black dotted line in the right
panel of Fig. 3.6.
To summarize, the post-inflationary constraint fa < 8.2 · 1012 GeV truncates the MC properties
M0 at some low-mass value of ma, which depends on the temperature index n. For the remain-
der of this work, we will omit the gray-shaded region indicating the cutoff in fa for simplicity.
We continue our application to general axion-like models by moving on to point 5 in the above
enumeration, i.e. to the determination of M0(ma, n)

4.
The characteristic minicluster masses from Eq. (3.25) obtained from Tosc, fa and (ma, n) in
Fig. 3.6 are plotted in Fig. 3.7, which shows M0 for temperature-independent axions in red
and for n = 1, n = 3.34 in blue and green. The scaling of M0 in Fig. 3.7 shows both an
increase with decreasing axion mass ma and an increase with larger n. This can be under-
stood by means of the scaling of kosc in Eq. (3.48) with Tosc: Considering radiation domination
H(Tosc) ∼ H0

√
Ωrada(Tosc)−4 ∝ T 2

osc and neglecting the change of g⋆,S(T ) for simplicity, we
obtain kosc ∝ H(Tosc)/Tosc ∝ Tosc from Eq. (3.48). Applying this scaling to M0 in Eq. (3.25)
yields

M0 ∝ k−3
osc ∝ T 3

oscH(Tosc)
−3 ∝ T−3

osc , (3.49)

which roughly coincides with the scaling of Tosc and M0 in Fig. 3.6 and Fig. 3.7 (and also with
that of kosc obtained in Ref. [58]).
The precise scaling and shape of M0(ma, n) in Fig. 3.7 is caused by the temperature depen-
dence of H(T ) in Eq. (2.51), the relativistic degrees of freedom g⋆,R(T ) in Eq. (2.51) and the

4The interested reader may find the results for step 4 and kosc depicted in Ref. [58].
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Figure 3.7: Characteristic minicluster mass M0(ma, n) as a function of axion mass ma and its (colored)
temperature dependence n, reproduced from the procedure in Ref. [58], Sec. 3.2 and taken from Ref. [1].
In this plot and in the following figures, the truncation of axion models ma, n at low axion masses ma

arises from the condition fa < 8.2 · 1012 GeV as shown in Fig. 3.6.

temperature evolution of the axion mass in Eq. (2.34). In the case of temperature-independent
axions with n = 0, the characteristic mass can be shown to agree with [58]

M0(ma, n = 0) ≈ 6.5 · 10−16M⊙

(
ma

50µeV

)−3/2(Ωch
2

0.12

) (
Ωm

0.32

)−3/4(1 + zeq
3403

)3/4

, (3.50)

where the scaling M0 ∝ m
−3/2
a will become important at a later point. For n = 1, 3.34 the

scaling of M0 is slightly changed due to the different temperature evolution of the axion mass.
Nevertheless, even for n > 0 the scaling M0 ∝ m

−3/2
a from Eq. (3.50) remains roughly valid.

With the characteristic minicluster masses in Fig. 3.7 at hand, the next step to apply the linear
growth predictions from Ref. [58] using the MCMF parametrization from Subsec. 3.5.2. This
will be done together with the normalization to the galactic DM abundance in the next section.

3.6.2 Generalized Minicluster Mass Distributions

We calculate the MCMF parametrization from Subsec. 3.5.2 for axion miniclusters in the Milky
Way dark matter halo using both low-mass cutoffs MJ,min, M0,min from Eq. (3.45), Eq. (3.47).
This combined treatment of the possible low-M cutoffs allows us to estimate the phenomenolog-
ical impact of the MCMF cutoff dependence from Subsec. 3.5.2 in the following chapters. Since
also the final slope of the MCMF is subject to open debate, we will assume the Press-Schechter
power-law index α = −1/2 from Subsec. 3.5.2 unless stated otherwise and consider the case
α = −0.7 separately later. In the most general way, we can define the normalized minicluster
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mass function as

dn

d lnM = Cn

( M
Mmin

)α

, (3.51)

where Mmin = {MJ,min, M0,min} takes the role of a reference MC mass and Cn is a normaliza-
tion constant to be determined in the following. For simplicity, we will assume that the mass
distribution of miniclusters is independent of the galactocentric radial coordinate r.
The total mass of minclusters can then be calculated from Eq. (3.51) by integrating over the
MC mass density dm/dM = Mdn/dM. Assuming a spherically symmetric Milky Way volume
VMW = 4π/(3R3

MW) with radius RMW = R200 = 237 kpc following the mass models in Ref. [194],
we obtain the total MC mass

Mtot = VMW

∫ Mmax

Mmin

dMCn

( M
Mmin

)α

= VMWMmin
Cn

α+ 1

[(Mmax
Mmin

)α+1

− 1

]
. (3.52)

The normalization constant Cn from Eq. (3.52) is found by setting Mtot
!
= fmc MMW, where

fmc ≃ 0.75 is equal to the fraction of galactic dark matter contained in miniclusters [30] and
MMW = 1.43 ·1012M⊙ is the mass of the Milky Way DM halo taken from Ref. [195]. Using this
normalization, the corresponding total number of galactic miniclusters

Ntot = VMW

∫ Mmax

Mmin

dMCn

M

( M
Mmin

)α

= VMW
Cn

α

[(Mmax
Mmin

)α

− 1

]
(3.53)

can be found by integrating over the number density dn/dM. We determine the normalization
constant Cn together with the total MC number Ntot for every axion model (ma, n) and for both
cutoffs of the MCMF, i.e. for Mmin = M0,min and Mmin = MJ,min. The resulting number of
miniclusters is strongly model-dependent and lies in the range 1018 ≤ Ntot ≤ 1026 for the QCD
axion mass ma = 50µeV as shown in Fig. C.1.
We show the resulting MCMF obtained for the QCD axion mass ma = 50µeV and n =
{0, 1, 3.34} in Fig. 3.8. The different shades and colored lines in Fig. 3.8 refer to the differ-
ent mass cutoffs of the MCMF, which truncate the MC mass range through Mmax in Eq. (3.46),
through Mmin = M0,min in solid lines and through Mmin = MJ,min in dashed colored lines.
Dotted colored lines and shaded regions indicate the M0-cutoff at M0,min = M0/25. Note that
the dashed Jeans mass cutoff MJ,min in Eq. (3.45) is temperature-independent, while the value
of Mmax in Eq. (3.46) is directly proportional to M0. Accordingly, the spread of the minicluster
mass range in Fig. 3.8 increases with larger M0 and specifically for larger n as seen in Fig. 3.7.
More importantly, we highlight several fundamental features of the MCMF that are crucial for
understanding the properties of galactic axion small-scale structure: First, the MCMF peaks
around the low-M cutoff which means that the MC number and typical mass will be subject to
large uncertainty arising from the cutoff dependence discussed in Subsec. 3.5.2. Furthermore,
the majority of miniclusters will exhibit masses close to the low-M cutoff M ∼ Mmin.
Secondly, Fig. 3.8 also demonstrates that the intermediate- to high-mass component M0 ≲ M ≲

Mmax of the MCMF is essentially insensitive to the low-mass cutoffs and to the normalization
in Eq. (3.52). The reason for this is the fact that a large majority of the mass relevant for the
normalization of the MCMF is contained in the high-mass tail M ≫ M0. The total number
of miniclusters Eq. (3.53) on the other hand is very sensitive to the low-mass cutoff as can be
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Figure 3.8: MCMF per Milky Way volume obtained using the parametrization from Subsec. 3.5.2 for
ma = 50µeV, α = −1/2 and different n = 0, 1, 3.34 indicated by colored lines, taken from Ref. [1]. The
shaded regions and dotted colored lines denote the low-mass cutoffs given by M0,min = M0(n)/25. Solid
lines show the MCMF after applying the M0(n)/25-cutoffs while dashed lines display the MCMF with
the MJ -cutoff from Eq. (3.45). Taken from Ref. [1].

understood from Eq. (3.53) and Fig. C.1.
Independent of the low-mass cutoff, large MC masses are predicted in both cases of Mmin, es-
pecially for larger values of n. This observation has important implications for DM searches,
which we discuss in detail in Chap. 5, Chap. 6 and Chap. 7.

3.6.3 Tidal Disruption in stellar Encounters

In the previous section we have constrained the mass distribution of galactic miniclusters. While
we assumed that the MC mass M and the galactocentric radial coordinate r are independent
of each other, we have to consider another effect, which constrains the spatial distribution of
axion miniclusters in the Milky Way. This additional effect on the galactic MCMF arises from
close encounters between the gravitational fields of stars with M ∼ M⊙ and the much lighter
miniclusters with M ≪M⊙. Owing to the stellar density distribution and the NFW distribution
of the dark matter, these events occur most numerously in the vicinity of the galactic center
r ≲ 1 kpc. The gravitational dynamics and present-day implications of the tidal interactions of
miniclusters with stellar and galactic fields (from the disc and DM halo) have been investigated
by numerous studies [42, 149, 150, 188, 196–198].
In this work we employ a simplified approach to model the radial and Φ-dependence of the
tidal MC disruption based on the results of Ref.s [188, 197] and Ref. [196] respectively. More
precisely we treat the set (M,Φ, r) of minicluster parameters as independent and consider the
r- and Φ-dependence of the resulting survival probabilities separately. Starting with the former,
the spatially dependent tidal interactions between stars and miniclusters with typical densities
Φ ∼ 1 at position r introduce an effective minicluster survival probability Psurv(R) over long
times t ∼ tH , as shown in Fig. 3.9 from Ref. [188]. The two colored lines in Fig. 3.9 show two
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3.6 Galactic Minicluster Mass Distribution

Figure 3.9: Survival probability of galactic miniclusters as a function of the galactocentric radius r,
taken from Ref. [188]. The vertical dashed line marks the position of the solar system, while green and
blue colors indicate different minicluster profiles.

different minicluster density profiles that were considered in Ref. [188]: First a power-law profile
ρmc ∝ (Rs/r)

9/4 truncated at the spherical radius R from Eq. (3.24) and secondly the NFW
profile from Eq. (A.1). In our analysis, we apply the results from the power-law profile since it
provides the same minicluster size R as Eq. (3.24), but with a more realistic, non-homogeneous
density profile.
As can be seen by the blue curve in Fig. 3.9, the survival probability for MCs with a power-law
profile is roughly equal to 1 for large radii r ≳ 3 kpc. Below r ≃ 2 kpc, Psurv drops rapidly
until reaching a ∼ 10% level at r ∼ 0.1 kpc. We use the turnaround point where Psurv ≃ 0.5
at Rsurv ≃ 1 kpc as a benchmark for our cutoff and assume that an order one fraction of the
miniclusters at r ≥ 1 kpc survive, while all objects below this threshold with r < 1 kpc are
assumed to be disrupted. Using this approach, the NFW distribution of miniclusters in the
Milky Way halo is truncated below

r ≤ Rsurv ≃ 1 kpc . (3.54)

Since this amounts to neglecting the ∼ 10% component of the MCMF close to the galactic center
r < 1 kpc, our approach can be seen as a simplified but conservative modeling of the effects of
stellar disruption on miniclusters with a power-law profile and radius R.
Comparing the results with the green curve and NFW profile miniclusters in Fig. 3.9, the trun-
cation of the MCMF would be at a much higher radial coordinate giving roughly rNFW ∼ R⊙ ≃
8.3 kpc. While this effect could significantly lower the predicted event and signal rates in Chap. 5,
Chap. 6 and Chap. 7, there is currently no stringent evidence for the NFW profile to apply uni-
versally. In a recent study performed in Ref. [175], the authors showed that while miniclusters
form with NFW-like density profiles initially, there is evidence that the inner density profiles
scale like ρmc ∼ r−2 at later times. This result is comparable to the scaling of ρmc ∼ r−9/4

assumed for the power-law profile in Ref. [188], and hence provides further motivation for our
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choice of the minicluster density profile.

Moving on to the Φ-dependence of the minicluster survival probability, Psurv(Φ), we briefly
recall the results from Ref. [196] in the following. The authors of Ref. [196] used a superpo-
sition of energy eigenstates and the WKB approximation [199, 200] to describe gravitationally
bound miniclusters and their interaction with external fields. Ref. [196] estimated the survival
fraction of miniclusters in an NFW dark matter halo interacting with the stellar distribution
of the Milky Way over cosmic timescales up to t ∼ 10Gyr. According to their calculations,
stellar disruption at the solar position r = R⊙ affects the distribution of the initial overdensity
parameter Φ ∈ (0, 104] according to

Psurv(Φ) =
1

2

[
1 + tanh

(
log10 ρ̃mc(Φ)− 4.25

2

)]
, (3.55)

ρ̃mc(Φ) =
ρmc(Φ)

1M⊙pc−3
, (3.56)

which is given in terms of the dimensionless minicluster density ρ̃mc derived from ρmc(Φ) in
Eq. (3.23) [196]. We demonstrate in Fig. 3.10 that Eq. (3.56) effectively constrains the density
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Figure 3.10: Survival probability of MCs as a function of the overdensity parameter Φ from Eq. (3.56),
taken from Ref. [2] and reproduced from the results of Ref. [196].

distribution of present-day t ∼ 10Gyr galactic miniclusters to Φ ≳ 0.5.
We use the full functional form of Psurv(Φ) in our subsequent calculations and extend the result
from Ref. [196] obtained at r ∼ R⊙ to the entire range r ≥ Rsurv from Eq. (3.54). Improved
results could be obtained by investigating the dependence of Psurv(Φ) on the three-dimensional
galactic cylindrical coordinates ϱ, z, φ. Since such an extensive analysis is beyond the scope of our
simple estimations, we will deal with the uncertainties from the combined r- and Φ-dependence
of stellar disruption by overestimating the effects from Eq. (3.56) at r > R⊙ and possibly
underestimating them at smaller radii Rsurv ≤ r < R⊙. On the technical side, our numerical
calculations performed in Chap. 5 and following can easily be modified by incorporating improved
modeling of galactic minicluster disruption compared to Eq. (3.54) and Eq. (3.56) - once such
results become available.
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3.7 Core-Halo Relation
The last important property of gravitationally bound miniclusters to be mentioned in this chap-
ter is the formation of a dense solitonic core at the center of a given minicluster, as observed
in Ref.s [167–169, 172, 201–206]. The dynamics and evolution of these solitonic cores will be
explored in detail in Chap. 4, whereas this section motivates the further investigation of their
properties by means of the MCMF and the evolution of their host miniclusters. An example
for a composite minicluster-core system is shown in Fig. 3.11, which was taken from the sim-
ulations of Ref. [167] for an axion mass ma = 10−8 eV and a box size L = 0.356pc/h. The
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Figure 3.11: Numerical simulation of an axion minicluster with a solitonic core formed around z ∼ zeq
and shown at z = 1277 for ma = 10−8 eV, λ = 0 taken from Ref. [167]. The matter density is given in
M⊙ pc−2, for a soliton mass M⋆ = 5.04 · 10−12M⊙ and a total mass of M = 5.98 · 10−11M⊙.

authors of Ref. [167] evolved the Schrödinger-Poisson system in an expanding universe to trace
the redshift-dependent formation of axion minicluster cores, finding typical formation redshifts
z ∼ zeq with the example in Fig. 3.11 shown at z = 1277. As can be seen by the color grading
in Fig. 3.11, the axion star core in red is much denser than the yellow to green minicluster
background in which it is embedded. The granular structure of the minicluster is shown in the
bottom right panel of Fig. 3.11. It arises from wave interference of the self-gravitating system
forming granular overdensities (see also the simulations in Sec. 4.3 and App. B).
Based on the simulations of several composite systems in Ref. [167] with the solitonic cores form-
ing around z ∼ zeq, we will assume for simplicity that axion stars appear together with their
host miniclusters in a virialized state at the collapse redshift zc = zeq. Even more important for
this work is the fact that the mass of the red solitonic core in Fig. 3.11 can be related to the total
mass (i.e. including that of the core) of its host minicluster in green, as was first shown in the
simulations of Ref. [169]. Since the corresponding mass relation was first derived in simulations
of ultra-light dark matter with ma ∼ 10−22 eV and O(kpc) halo sizes, it is commonly referred
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to as the core-halo (mass) relation. The axion-star core mass M⋆ predicted by the core-halo
relation

M⋆(z) = Mh,min(z)

[ M
Mh,min(z)

]1/3
(3.57)

depends on the axion mass ma and the redshift of formation z through the redshift-dependent
minimum halo mass

Mh,min(z) = 2.36 · 10−16M⊙

(
1 + z

1 + zeq

)3/4 [
ζ(z)

ζ(zeq)

]1/4(
ma

50µeV

)−3/2

, (3.58)

which is defined by requiringM⋆ = M. Physically, the minimum halo mass Mh,min(z) represents
the lightest halo or minicluster mass, at which the formation of a composite core-halo system
with M ≥ M⋆ can occur at a given redshift. Note also that the factor 1/4 from the original
definition in Ref. [169] was dropped here, since we use a different definition of the soliton mass
compared to the original authors of Ref. [169].
The quantity ζ(z) in Eq. (3.58) is the overdensity at virialization [207]

ζ(z) ≈ 18π2 + 82[Ωm(z)− 1]− 39[Ωm(z)− 1]2

Ωm(z)
(3.59)

in a flat ΛCDM cosmology, which sets the redshift-dependent halo mass according to

M =
4π

3
r3virζ(z)ρ̄a , (3.60)

with the comoving virial radius rvir [169]. The matter density parameter

Ωm(z) =
Ωm,0(1 + z)3

Ωm,0(1 + z)3 +Ωr,0(1 + z)4 +ΩΛ,0
(3.61)

in Eq. (3.59) depends on the redshift z, which gives ζ(zeq) ∼ 180 for our considerations and
Planck [14, 167] parameters Ωm,0 = 0.3089, Ωr,0 = 8.486 · 10−5 and ΩΛ,0 = 0.7.
To summarize, the results from Ref. [169] established a relation between the mass of the solitonic
core and the mass of its host halo, for ultra-light dark matter with ma ∼ 10−22 eV. Additionally,
the authors of Ref. [167] showed that the corresponding mass scaling relation Eq. (3.57) remains
valid also for axion miniclusters with masses ma = 10−8 eV and a formation redshift of order
z ∼ zeq, as depicted in Fig. 3.11. Simulations involving composite systems with larger axion
masses ma ≥ 10−8 are currently not feasible due to numerical limitations in grid resolution
and computational performance. However from the scaling symmetry Eq. (3.16) of solutions to
the GPP and SP systems Eq. (3.11) and Eq. (3.14) it is expected, that the same scaling which
applies in the range 10−23 eV≤ ma ≤ 10−8 eV remains valid also for larger sub-eV masses. This
scaling argument motivates the use of the core-halo relation for larger axion masses, like the
QCD axion mass ma = 50µeV assumed in this work.
We also emphasize that both the results from Ref. [167] and Ref. [169] were obtained for the
Schrödinger-Poisson system, i.e. for λ = 0, which is a good approximation for the gravitationally
dominated evolution of the large and dilute host miniclusters. However as we will see in the
next chapter, the self-interaction of the axion becomes important when considering the balance
of forces that ensures the stability of axion star cores in Sec. 4.1. This complication motivates
us to further investigate the validity of the core-halo relation in Eq. (3.57) for axion stars with
weak attractive self-interactions in Sec. 4.6.
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Axion Stars 4
In the previous chapters we have followed the evolution of small-scale axion structure from the
symmetry breaking at T ∼ fa in the early universe, over the production of non-relativistic dark
matter at T ∼ Tosc down to the present-day minicluster distribution of the Milky Way DM
halo. These predictions can finally be used together with the core-halo relation from Sec. 3.7 to
infer the properties and mass distributions of the most overdense component of axion small-scale
structure: so-called axion stars, which have been studied extensively in the literature [23, 26,
162, 164, 167, 172, 174, 208–229].
We introduce axion stars as the stationary solutions to the GPP system focusing on the case
of weak attractive self-interactions λ < 0 in Sec. 4.1. The formation and mass growth of axion
stars are examined by means of numerical simulations in Sec. 4.2 and Sec. 4.3 respectively. Over
time, the continuous accretion of the axion star core from its surroundings can trigger one of two
instabilities leading either to the resonant conversion of axions into radio photons in Sec. 4.4 or
to the relativistic emission of axion dark matter as shown in Sec. 4.5. Lastly we validate the use
of the λ = 0 core-halo relation for dilute axion stars in Sec. 4.6 and derive the first estimates
of the galactic axion star mass distribution from the properties of their host miniclusters in
Sec. 4.7.
In terms of the schematic representation in Fig. A.1, this chapter provides the basis for axion
star signatures to be investigated in Chap.s 5 to 7 and describes the derivation of the axion star
mass distribution shown by the blue shaded panel in Fig. A.1.

4.1 Mass-Radius Relation
In this section, we will extremize the total energy of the system to introduce axion stars as
the stationary solutions to the GPP equations, Eq. (3.11) and Eq. (3.12). Depending on the
context and on the self-interaction parameter λ, these stationary solutions are generally termed
solitons, bose stars (λ = 0) or ALP/axion stars (typically λ < 0, like for the QCD axion). As
was shown in Ref.s [25, 26, 158, 159, 209, 210, 212, 230–232], the strength of the self-interaction
constant λ is crucial to determine the possible range of soliton solutions. While the QCD
axion has λ = −cλm2

a/f
2
a set by the decay constant fa in Eq. (2.11), ALPs can have arbitrary

combinations of the parameters ma, fa and λ. In this work, we fix λ = −m2
a/f

2
a with cλ = 1

for ALPs and use the correct dark matter abundance Ωah
2 = 0.12 to find fa as summarized in

Subsec. 3.6.1.
Our derivation of the properties of axion stars is closely based on the approach applied in
Ref.s [1, 33, 158]. The first step in finding the soliton solutions to the GPP system Eq. (3.11),
Eq. (3.12) is to assume an analytic expression for the radially symmetric soliton density profile
ρ⋆(r) = ma|ψ(r)|2. There exist a range of choices for the profile ρ⋆, many of which were
analyzed and compared to numerical ground state solutions in Ref. [231]. Importantly, the
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different analytical profiles show O(1) deviations, which are well within uncertainties arising
from the linear growth of axion DM structure, compared to the exact numerical solutions of the
GPP system.
Similar to Ref.s [158, 159], we employ a Gaussian ansatz for the spherically symmetric wave
function

ρ⋆(r) ≡ ma|ψ(r)|2 =
(

M⋆

π3/2R3
⋆

)
e
− r2

R2
⋆ (4.1)

defined in terms of the axion star mass M⋆, radius R⋆ and the radial coordinate r [159]. We
choose the Gaussian profile for simplicity but keep our approach general by tracking the corre-
sponding ansatz-specific coefficients αkin, αgrav and αint, which will be introduced in the follow-
ing. We also confirmed that the resulting soliton solutions predicted from the ansatz in Eq. (4.1)
do not deviate significantly from the best-fit sech(x) profile obtained in Ref. [231].
Independent of the specific profile, we can express the Newtonian potential ΦN (x, t) in Eq. (4.3)
through the Green’s function for the Poisson Eq. (3.12) [231], and write the different energy
contributions of the non-relativistic axion star as

Ekin =
1

2ma

∫
d3x |∇ψ(x)|2 = αkin

M⋆

m2
aR

2
⋆

, (4.2)

Egrav = −ma

2

∫
d3xΦN (x)|ψ(x)|2 = −αgrav

GM2
⋆

R⋆
, (4.3)

Eint =
λ

16m2
a

∫
d3x |ψ(x)|4 = −αint

|λ|M2
⋆

m4
aR

3
⋆

, (4.4)

where the ansatz-specific coefficients

αkin =
3

4
, αgrav =

1√
2π

, αint =
1

32π
√
2π

(4.5)

are calculated for the Gaussian profile in Eq. (4.1). The three different energy components in
Eq. (4.2), Eq. (4.3) and Eq. (4.4) correspond to the three relevant forces in the system. Stability
is ensured by an exact cancellation of the kinetic quantum pressure in Eq. (4.2) by the combined
gravitational and attractive self-interactions. Within the Gaussian ansatz, the total energy of
the axion star with mass M⋆ and radius R⋆ may be written as [159]

E⋆,tot =
3M⋆

4m2
aR

2
⋆

− GM2
⋆√

2πR⋆

− |λ|M2
⋆

32π
√
2πm4

aR
3
⋆

. (4.6)

Varying the energy E⋆,tot in Eq. (4.6) with respect to the axion star radius R⋆, one can find
the stationary solutions Ṙ⋆ = Ṁ⋆ = 0 of the GPP equations. Before doing so and for ease
of computation, it is useful to transform the physical variables x, t, ψ,ΦN onto dimensionless
quantities of order unity by means of the rescaling [33]

x = x̃/(
√
Gmafa) , t = t̃/(Gmaf

2
a ) , (4.7)

ψ =
√
Gmaf

2
a ψ̃ , ΦN = Gf2a Φ̃N , (4.8)
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where the rescaled variables are indicated by a tilde and the spatial coordinates y, z transform
just like x. The rescaling in Eq. (4.7), Eq. (4.8) excludes all factors G, ma and λ from Eq. (3.11)
and Eq. (3.12), which yields the rescaled Gross-Pitaesvskii-Poisson system

i
∂ψ̃

∂t̃
= −1

2
∆̃ψ̃ + Φ̃N ψ̃ − 1

8
|ψ̃|2ψ̃ , (4.9)

∆̃Φ̃N = 4π|ψ̃|2 , (4.10)

that is often used in numerical simulations (see also App. B). The dimensionless observables of
the rescaled GPP system in Eq. (4.9), Eq. (4.10) are connected to their physical counterparts
by the relations

Ñ =
Gm2

a

fa
√
G
N , M̃ =

Gma

fa
√
G
M , (4.11)

Ẽ⋆,tot =
ma

f3a
√
G
E⋆,tot , P̃ =

1

mafa
√
G
P , (4.12)

where the total momentum of the system

P =

∫
d3xψ(x)∗∇ψ(x) (4.13)

is important for the numerical simulations to come in Sec. 4.2, Sec. 4.3 and App. B. Using
Eq. (4.12) to rewrite the total energy of the axion star in Eq. (4.6) in its dimensionless and
profile-independent form yields the total energy relation

Ẽ⋆,tot(R̃⋆) = αkin
M̃⋆

R̃2
⋆

− αgrav
M̃2

⋆

R̃⋆

− αint
M̃2

⋆

R̃3
⋆

, (4.14)

which we extremize with respect to the star radius R̃⋆ to obtain the rescaled mass-radius relation
of axion stars [158, 159]

R̃⋆ =
αkin ±

√
α2

kin − 3αintαgravM̃2
⋆

αgravM̃⋆

. (4.15)

The range of axion star radii given by the plus and minus sign in Eq. (4.15) separates the sta-
tionary solutions to the GPP system into two distinct branches: First, the stable dilute branch,
characterized by solutions with a plus sign, and the unstable dense branch of axion stars in-
dicated by the minus sign. We also show the resulting branches of the mass-radius relation
Eq. (4.18) in Fig. 4.1, where stable soliton solutions are plotted in green and unstable profiles
in red lines. The detailed contents of Fig. 4.1 are explained at the end of this section.
The critical point M̃⋆ = αkin/

√
3αintαgrav between the two branches constitutes what is com-

monly referred to as the maximum mass M⋆,λ and minimum radius R⋆,λ of stable, dilute axion
stars. Scaling back to physical variables we obtain the critical quantities

M⋆,λ =

√
3

G

2πfa
ma

, R⋆,λ =

√
3

32πG

1

mafa
, (4.16)
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where we have entered the specific coefficients αkin, αint and αgrav of the Gaussian ansatz in
Eq. (4.5). For later calculations involving the properties of axion stars we also express the
mass-radius relation from Eq. (4.15) in physical units

M⋆ =

√
2πR⋆

2m2
aG
3 R2

⋆ +
1

16πf2
a

, (4.17)

R⋆ =
αkin

αgravGm2
aM⋆

±
√(

αkin
αgravGm2

aM⋆

)2

− 3αint
αgravGm2

af
2
a

. (4.18)

We emphasize that the mass and radius of the axion star M⋆, R⋆ should not be interpreted
as an absolute mass and size of the object, but rather as characteristic quantities. In order to
determine the total mass enclosed within the soliton profile with boundary conditions ρ⋆(r) → 0
for r → ∞, one has to specify a cutoff radius at which to truncate the non-vanishing mass
density ρ⋆(r) > 0 at finite r.
We define the cutoff radius R⋆,90 of the soliton profile as the value of r containing 90% of the
total axion star mass, where R⋆,90 = 1.76796R⋆ for the Gaussian profile [158]. In the following
sections, we will use R⋆,90 as the representative value for the physical soliton radius and drop
the index ’90’ thereafter. The physical equivalents M⋆(R⋆,90), R⋆,90 of Eq. (4.17), Eq. (4.18) are
indicated by the black star in Fig. 4.1.
Another important constraint to be considered for soliton solutions on the dense branch with
R⋆ ≤ R⋆,λ is the validity of the non-relativistic approximation inherent to the GPP system
Eq. (3.11), Eq. (3.12). With decreasing R̃⋆ ≪ R̃⋆,λ =

√
3αint/αgrav in Eq. (4.15), the density of

the soliton with M⋆ ∝ R⋆ increases as ρ⋆ ∝ M⋆/R
3
⋆ ∝ 1/R2

⋆. Eventually and at small enough
R⋆, the soliton profile reaches a point, where the Taylor expansion in Eq. (3.4) breaks down
and higher order terms in the axion potential need to be taken into account. This regime is
governed by the relativistic Einstein-Klein-Gordon equations Eq. (3.2), Eq. (3.3), which were
solved numerically in Ref. [35].
In the above relativistic limit, the invariance of the Lagrangian density under the transformation
ϕ −→ ϕ+ 2πfa is broken. From this one can infer the non-relativistic condition [231]

ϕ0

2πfa
=

ψ0

πfa
√
2ma

=

√
M⋆

2π7/2m2
af

2
aR

3
⋆

=

√
Gf2aM̃⋆

2π7/2R̃3
⋆

≪ 1 (4.19)

for the mass M⋆ and radius R⋆ of the axion star and where ψ0 ≡ ψ(x = 0) was expressed from
the profile in Eq. (4.1). Physically, Eq. (4.19) introduces a lower bound on the dense branch
radius

R⋆ ≫
(

M⋆

2π7/2m2
af

2
a

)1/3

, (4.20)

which we implement in any calculation involving the mass-radius relation of axion stars in
the following. Solitons with radii below this bound violate the non-relativistic assumptions
from Sec. 3.1 and can therefore not be modeled by the mass-radius relation Eq. (4.17) used in
this thesis. The corresponding critical point for the validity of the GPP equations defined by
Eq. (4.20) is indicated by the red dot in Fig. 4.1.
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Figure 4.1: Mass-radius relation in Eq. (4.17) for QCD axions with ma = 50µeV and fa ≃ 1011 GeV
using R⋆,90 as characteristic axion star radius. The dense branch of unstable solutions (II) is given in red,
together with the relativistic limit from Eq. (4.20) indicated by the red dot. Stable solutions of dilute
axion stars (I) are shown in green, while the critical solution with maximum mass M⋆,λ and minimum
radius R⋆,90,λ, which separates (I) and (II), is labeled with a black star. Taken from Ref. [1].

We summarize the above results in Fig. 4.1, which shows the mass-radius relation Eq. (4.18) of
QCD axion stars with ma = 50µeV, n = 3.34 and fa ≃ 1011 GeV 1.
By definition of M⋆,λ, R⋆,λ in Eq. (4.16), the dilute branch solutions (I) in Fig. 4.1 in green are
dominated by the self-sourced gravitational force of the axion field in Eq. (3.12), while the dense
branch solutions (II) in red are dominated by the short-range forces of the axion self-interaction
from Eq. (3.4). More importantly for composite axion-star-minicluster systems (ASMCs), the
dilute branch solutions have been shown to be stable against perturbations in the stability anal-
ysis of Ref.s [159, 212, 231, 233], whereas solitons on the dense branch are typically unstable
against perturbations [35, 209] [36] [234]. This observation leads us to the crucial assumption
that the present-day axion star distribution of the galactic dark matter halo should mainly be
composed of dilute solitons with R > R⋆,λ.
We also emphasize at this point, that the critical mass M⋆,λ in Fig. 4.1 does not provide a strict
distinction between the stable and unstable soliton solutions. Instead the numerical analysis
performed in Ref. [235] using the three-dimensional simulations introduced in App. B showed
that solutions in the vicinity of the critical point R⋆ ∼ R⋆,λ can exhibit a semi-stable behavior
leading to possible transitions between the two branches under specific perturbations. While
these transitions can potentially lead to interesting observable phenomena (see e.g. Sec. 4.4 and
Sec. 4.5), they will not be considered in the analysis in this work.

1The approximate value of the decay constant is related to the QCD-axion-like properties of the axion model
with ma = 50µeV, n = 3.34 in Sec. 3.5 and Fig. 3.6.
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We conclude that long-lived, stable axion stars should exclusively populate the green branch of
solutions in Fig. 4.1, which is why we focus our work on dilute axion stars. Using this assumption
together with the mass-radius relation Eq. (4.17), we can fix the axion star radius R⋆, profile ρ⋆
and energy E⋆,tot as a function of its mass M⋆ for a given axion model with parameters ma, n
and fa. In principle, the last step in determining the present-day axion star mass distribution
is to fix the remaining free axion star parameter - the soliton mass M⋆ - from the minicluster
mass M. However, the derivation of the present-day core mass distribution requires a deeper
understanding of the mass- and time evolution of axion stars, which will be provided in the next
sections.

4.2 Axion Star Formation
The obvious starting point in the time evolution of any axion star is its formation, which we
assume to always appear in the center of an axion minicluster2. In the context of numerical
simulations, the formation of axion stars is typically observed from random initial conditions
and it has been examined in various studies, e.g. in Ref.s [167, 170, 174, 213]. Since the axions
in the soliton populate the same ground state solution with the statistics of a Bose-Einstein
condensate, the process of axion star formation is often called condensation [237, 238].
In order for the axion ensemble to form a condensate, the system has to establish a locally
coherent configuration through gravitational scattering in the Newtonian potential of the inho-
mogeneous density field. Since the random initial conditions of wave dark matter simulations
(ma ≲ eV) are characterized by random phases, the time needed to reach a coherent ground
state is generally much larger than the gravitational free-fall time

τff =
πR3/2

4
√
GM

(4.21)

of the system with size R and total mass M. To see this, we summarize the fundamental
analytical calculations and assumptions utilized in the simulations of Ref. [170] in the following.
The characteristic timescale for the condensation of a soliton from random, globally homogeneous
initial conditions can be calculated in the kinetic regime

R ≫ 1

mav
, τgr ≫

1

mav2
, (4.22)

where the initial coherence length and time scale of the particles given by the de-Broglie wave-
length of the axion field with velocity v are much smaller than the system size R and the
expected formation time τgr [170] of the condensate.
The authors of Ref.s [170, 215] demonstrated by means of numerical simulations that the time-
dependent energy spectrum F (t, ω) = dM/dω of particles with energy ω evolves according to
a Landau kinetic equation. Considering the gravitational scattering rate Γgr ∝ nσgrv ∝ 1/τkin
with cross section σgr, the kinetic behavior of the numerical simulations motivates the use of

2Note however that there exist also other scenarios, namely the enhanced formation of axion stars from the
decay of topological defects at scales near the quantum Jeans scale, which was investigated in Ref. [236]. In this
case, the numerous appearance of axion stars with increased relative core masses leads to a significant boost of
their relative DM abundance. Their study is complementary to our work involving composite ASMC systems.

60



4.2 Axion Star Formation

the kinetic relaxation time [170]

τgr ∼ τkin =
4
√
2

σgrvnf
, (4.23)

where the bosonic axion system has an occupation number f ≫ 1, size L and number density
n = N/L3. The Rutherford cross section of the gravitational scattering

σgr ≈
8π(mG)2Λ

v4
(4.24)

depends on the Coulomb logarithm Λ = ln(mvL) and the occupation number f in Eq. (4.24)

f =
6π2n

mv3
(4.25)

accounts for the large phase space densities due to Bose statistics [170, 211]. Putting the above
together one obtains the gravitational relaxation time [170]

τgr =
b
√
2

12π3
mv6

G2n2Λ
∼ 1010 yr

Φ3(1 + Φ)

( M
10−13M⊙

)2(
ma

50µeV

)3

, (4.26)

where the coefficient b ∼ 1, relating τgr compared to τkin, is determined numerically depending on
the initial conditions at t = 0. Note however that the gravitational relaxation time in Eq. (4.26)
only provides a rough estimate of the true formation time τc ∼ τgr observed in simulations.
This statement is best demonstrated by performing the same three-dimensional simulations
that were used to validate τgr in Ref. [170]. As described in detail in App. B, the numerical
simulations of non-relativistic axion stars are often based on a pseudo-spectral operator splitting
method similar to Ref.s [170, 239]. The operator splitting scheme essentially decomposes the
time evolution operator

U = T exp
(
−i
∫ t+∆t

t

dt′H
)

= T exp
{
−i
∫ t+∆t

t

dt′
[

k2

2ma
+maΦN − |λ|

8m2
a

|ψ|2
]}

, (4.27)

of the GPP system in Eq. (3.11), Eq. (3.12) with time ordering operator T into exponentials of
the spatial and momentum components Hx, Hk of the total Hamiltonian

H = − ∇2

2ma
+maΦN − |λ|

8m2
a

|ψ|2 = Hx +Hk , (4.28)

Hx = maΦN − |λ|
8m2

a

|ψ|2 , Hk = − ∇2

2ma
. (4.29)

The above separation of the Hamiltonian H facilitates the calculation of the energy expectation
value and other observables in position and in Fourier space, where ⟨ψ|Hx |ψ⟩ and ⟨ψk|Hk |ψk⟩
become diagonal. In this approach, the wave function ψ(x, t+∆t) = Uψ(t) - or its Fourier space
equivalent ψk(k, t) - may be evolved in time through repeated Fourier transforms and combined
multiplication with exponentials exp (−iHidt) of the Hamiltonian components Hx and Hk in the
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corresponding eigenspace i. For this, the time evolution operator U needs to be ’split up’ into
an ordered series of products of the second-order representation

exp [−i(Hx +Hk)dt] = exp
(
−iHk

2
dt

)
· exp (−iHxdt) · exp

(
−iHk

2
dt

)
+O(dt3) (4.30)

at each discrete timestep dt in Eq. (4.27). Note that the identity in Eq. (4.30) can be di-
rectly obtained by applying the Baker-Campbell-Hausdorff formula in Eq. (B.8) to the product
exp(A) exp(B) as explained in App. B and Ref. [239].
Although the method used in the simulations in this thesis is of higher order O(dt4), all of the
fourth- to 8th-order schemes from App. B are based on the second-order splitting in Eq. (4.30).
We refer to App. B for a detailed explanation of the grid discretization and operator splitting
methods of the numerical GPP system in three-dimensional simulations. For now and given
a three-dimensional grid with resolution Nx, the numerical system can be evolved in time to
arbitrary t using a discrete step size ∆t and repeated Fourier transforms to compute the energy
eigenvalues and their exponentials exp(−iHidt) in the respective (diagonal) basis i.
With the numerical time evolution being prescribed by Eq. (4.27) and Eq. (4.30), the final state
of the system is completely determined by the initial state ψ0(x) - apart from small numeri-
cal errors. The initial wavefunction in return is typically specified in Fourier space, where two
approaches are common in the literature [170, 174, 213]: First the Gaussian initial distribution

ψ̃0(k̃) = 2
√
2π3/4

√
Ñ exp

(
− k̃2

2
+ iθr(k)

)
(4.31)

where the initial phase θr(k̃) ∈ [0, 2π] is randomly drawn from a uniform distribution at each
point k̃ on the momentum space grid. And secondly, the δ-distributed wave function

|ψ0(k)|2 ∝ δD(|k| −mav0) , (4.32)

which constitutes the surface of a sphere with radius |k| = mav0 equal to the characteristic mo-
mentum k0 = mav0 of the system and again with random phases θr ∈ [0, 2π]. For the Gaussian
and δ-distributions considered in this section, we obtained b = 0.9 and b = 0.6 respectively,
which agrees with the predictions from the original work, Ref. [170]. Note that in Eq. (4.31) and
in the following, numerical variables of the simulations are prescribed in rescaled units following
Eq. (4.8) for λ ̸= 0 and Eq. (A.5) for λ = 0.
We demonstrate the initial configuration and subsequent evolution of a δ-distributed system in
Fig. 4.2, which was obtained using the pseudo-spectral algorithm from App. B. Fig. 4.2 shows
different two-dimensional planes z̃ in position space, at which the soliton is situated at a given
t̃. The three-dimensional grid was set up with a resolution of Nx = 2563 and initialized with a
δ-distributed initial field for a rescaled system size L̃ = 44 and particle number Ñ = 55 shown
in the top left panel. As before, the quantities labeled by a tilde indicate the dimensionless
variables obtained from the rescaling in Eq. (4.8). We use rescaled coordinates to evolve the ma-
independent GPP system in Eq. (4.9), Eq. (4.10) for negligible self-interactions λ = 0 and choose
Ñ , L̃ appropriately such that the resulting soliton mass M̃⋆ corresponds to a dilute soliton with
M⋆ ≃ 1.9 ·10−14M⊙ after t̃ = 104 for ma = 50µeV, fa ≃ 1011 GeV and v0 ≃ 10−9 3. The mass of

3Here, the physical mass-dependence of the rescaled GPP system is absorbed in the rescaling Eq. (4.58). As
soon as we relate the ma-independent simulation to a specific axion model, the axion parameters ma, fa determine
the physical system properties of the simulation.
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the total system is M ≃ 1.5 · 10−13M⊙ and its length is L = 1.7 · 105 km for the aforementioned
QCD axion parameters. Note that the soliton mass growth is substantial, since the initial core
mass at t̃ = 2500 shown in orange in Fig. B.3 with Ñ ≃ 2 is roughly M⋆ ≃ 5 · 10−15M⊙. For the
operator splitting and time coordinate, we use the fourth-order scheme from Eq.s (B.18), (B.19)
and ∆t̃ = 0.01, where a more detailed analysis of this simulation can be found in App. B.

Figure 4.2: Simulation of the formation and mass growth of a soliton, starting from globally homoge-
neous, random initial conditions as in Eq. (4.32). The simulation was run for λ = 0, L̃ = 44, Ñ = 55 on an
Nx = 2563 grid with timesteps ∆t̃ = 0.01 and predicted condensation time τ̃gr ≃ 1445. Initial conditions
are shown in the top left panel, followed by the formed soliton at different times t̃ = 1830, 2500, 9860.

Initially, the system is globally homogeneous, with random fluctuations on scales k ∼ k0 and
random phases θr, as seen in the top left panel of Fig. 4.2. After an amount of time, which roughly
agrees with the predicted condensation time τ̃gr ≃ 1445, a spherical object can be seen to have
formed in the top right panel. The physical formation time of the soliton is τgr ≃ 600 yrs for QCD
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axion parameters. It is surrounded by spherical overdensities, which interact with the soliton
and are sometimes referred to as gravitationally bound quasi-particles or granular overdensities
due to their Brownian-like motion in the global Newtonian potential. Over time, the newly
formed soliton grows in mass leading to an increase of the maximal density maxx̃ |ψ̃(t̃, x̃)|2 as
seen by the yellow color in the bottom panels of Fig. 4.2. The time-dependent mass growth of
this object will be analyzed in more detail in the following section.

4.3 Axion Star Mass Growth
Once a given axion star has formed inside of its host minicluster around the condensation
time τc ≃ τgr, it begins to accrete mass from the surrounding density field through repeated
interactions with the granular quasi-particle overdensities observed in Fig. 4.2. The rate of
mass growth of the soliton depends mainly on the time t > τgr and secondly on the minicluster
parameters M,Φ,R as well as on the axion model ma, n setting the former .
Importantly for this work, the continuous accretion of the axion star from some initial value
M⋆,0 = M⋆(τgr) can drive the composite ASMC system to criticality, leading to observable
phenomena through soliton instability (see Sec. 4.4 and Sec. 4.5). In this section we introduce
two approaches to model the mass evolution of axion stars: First the power-law fits for M⋆(t) in
Subsec. 4.3.1 and secondly the semi-analytical attractor model investigated in Ref. [170], which
provides a crucial framework for the accretion estimates in Chap.s 6, 7 as shown by the yellow
bottom panel in Fig. A.1.

4.3.1 Power-Law Fits

The first observations of soliton mass growth in numerical simulations relate to the early stage
of accretion, right after condensation and at times t ≳ τgr. At these early times, the axion star
acquires mass from the surrounding gas of particles leading to a time-dependent mass growth
similar to [170]

M⋆(t) ≃M⋆,0

(
t− τgr
τgr

)1/2

, (4.33)

where M⋆,0 is the initial mass at formation t = τgr. The above growth rate was confirmed in
numerous studies [167, 170, 174, 213, 215] including our simulations using the pseudo-spectral
method in App. B.
Fig. 4.3 shows the maximum field density maxx̃ |ψ̃(x̃)|2 obtained from the long-time evolution
of the condensed soliton in Sec. 4.2 and Fig. 4.2 using the code from App. B. The numerical
results in red show a rapid increase of the maximal density after t̃ ≃ 1000 and demonstrate
that the numerically determined collapse time τ̃c = 1325 ≃ τ̃gr is in good agreement with the
prediction τ̃gr ≈ 1445 from Eq. (4.26). It can further be seen from the scaling M⋆(t) ∝ ρ⋆(t, 0)

1/4

[174] that the power-law scaling in Eq. (4.33) implies roughly ρ⋆(t, 0) ∝ t1/2, as indicated by the
black dashed line in Fig. 4.3 [174]. Similarly, the dotted line corresponds to the density scaling
inferred from Eq. (4.33) with a fitting constant τ̃0 = 1000. In both cases, the soliton growth is
roughly approximated by the predictions ρ̃⋆ ∝ t̃2 and Eq. (4.33) for t̃ ≳ 2000.
Note that as a consequence of of the mass-radius relation in Eq. (4.17), the mass increase of the
dilute soliton induces a decrease of its radius R⋆ ∼ 1/M⋆, as is best observed in the radial profile
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Figure 4.3: Maximum density maxx̃ |ψ̃(t̃, x̃)|2 of the three-dimensional grid in the simulation from
Fig. 4.2 and App. B, as a function of rescaled simulation time t̃. The numerical results in red are compared
to a simple power-law scaling ρ̃⋆ ∝ t̃2 in black dashed lines and the actual scaling from Eq. (4.33) in the
black dotted line. Note that here we have replaced the gravitational condensation time τ̃gr in Eq. (4.33)
with a fitting constant τ̃0 = 1000 due to large uncertainties in the numerical determination of τgr.

plot of |ψ̃(r̃)| at different t̃ in Fig. B.2. Most importantly, the mass growth in Fig. 4.3 starts to
saturate around the latest simulation times t̃ ≲ 104, which indicates a possible transition to a
third stage of axion star evolution (after formation and early mass growth ∝ t2).
This observation raises the crucial question whether the power-law scaling in Eq. (4.33) continues
indefinitely or whether the growth rate changes after long times t̃≫ τ̃gr. To answer this question,
it makes sense to consider the expected equilibrium configuration of the SP or GPP system,
where the size of the overdensities is approximately equal to the soliton size R⋆,vir corresponding
to a mass M⋆,vir. In this particular state of balance, the accretion rate of the virialized soliton is
expected to drop. A natural prediction for the time τsat, where the mass growth rate saturates,
may be obtained by setting the virial velocity of the λ = 0 soliton [49, 171]

v⋆,vir ≃ GM⋆ma (4.34)

equal to the virial velocity

vmc,vir ≃
√
GM

R (4.35)

of its host minicluster. Inserting Eq. (4.34) for v in Eq. (4.26) and assuming the power-law from
Eq. (4.33) to hold, one obtains the mass growth law [167, 171, 174]

M⋆(tstar) ≃M⋆,vir

(
tstar
τsat

)1/8

(4.36)
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of the saturated axion star at t > τsat with the saturation time [167]

τsat =
b
√
2

12π3
mv6⋆,sat

G2n2 ln(mvhR)
, (4.37)

where M⋆,vir is the boson star mass at t = τsat and v⋆,sat = v⋆,vir(M⋆,vir).
Due to the significant amount of computational power required to reach the saturated stage
t > τsat and due to lack of numerical resources, we do not reproduce the power-law from
Eq. (4.36) in our simulations. Instead we summarize the result of the original work, Ref. [174],
confirming that the late-time accretion indeed saturates at M⋆(t) ∝ t1/8 in Fig. 4.4.
Figure Fig. 4.4 shows the averaged time-dependent central densities ρ⋆(t, 0) ∝M4

⋆ (t) of solitons
formed in a series of simulations with box sizes L̃ = 25, 20, 18, 15 and different particle numbers
Ñ = 691, 754, 817, 880, 942, 1005, 1131. The shaded regions indicate the 1 − σ intervals of

Figure 4.4: Averaged central densities ρ̃⋆(t, 0) for different solitons formed in numerical simulations at
fixed L̃ = 25, 20, 18, 15 and for different Ñ = 691, 754, 817, 880, 942, 1005, 1131, taken from Ref. [174].
The black lines show the power-law predictions from Eq. (4.33) and Eq. (4.36), respectively. Shaded
regions indicate the 1− σ intervals of the averaged simulations at different Ñ and same L̃. The densities
are normalized to a power of the total mass Ñ691 = Ñ/691 for better representation.

the averaged densities at fixed L̃ and the density is normalized to a power of the total mass
Ñ691 = Ñ/691.
Due to the large overall densities in the system, the axion stars form almost immediately τgr ∼ τff
and thereafter accrete with the predicted scalings ρ⋆(t, 0) ∝ t2 and t1/2 shown in dotted and
dashed lines. This is opposed to the numerical system in Fig. 4.2 and App. B, which has a
significantly lower density n and thus larger τgr in Eq. (4.26). We emphasize however that the
decrease of τgr in terms of the parameters Ñ , L̃ comes at the cost of drastically smaller required
timesteps ∆t̃ ≲ 10−5, so that even the simulations in Fig. 4.4 require immense computation
times compared to Fig. 4.3.
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Lastly, the power law deviations, which occur around the transition region t̃ ∼ τ̃sat at the
intersection of the dotted and dashed black lines, indicate the need for an improved modeling
of the mass growth rates. Such an improved model providing a smooth time evolution of the
soliton mass will be introduced in the next subsection.

4.3.2 Self-similar Attractor Model

The first detailed model of the time- and M-dependent mass growth of an axion star is the self-
similar attractor model introduced in Ref. [240], which we summarize in this subsection. Similar
to the power-law fits from Subsec. 4.3.1, this model was tested in numerical simulations of the
Schrödinger-Poisson system Eq. (3.14), Eq. (3.15), which amounts to negligible self-interactions
λ = 0. Since axion miniclusters are dominated by gravitational forces [167, 241], and since the
self-interaction of their dilute axion star cores in our considerations is relatively weak4, we will
use the λ = 0 attractor model also for the ASMC systems with weak attractive self-interactions
λ < 0.
A more detailed discussion on the minicluster- and core energy deviations induced by additional
consideration of the self-interaction energy in Eq. (4.4) compared to the λ = 0 case can be found
in Sec. 4.6. To summarize, we find that even in the most extreme case M⋆ = M⋆,λ, the self-
interaction only contributes 1/3 of the total system energy. Compared to the large uncertainties
arising from the linear growth in Subsec. 3.5.2, this justifies the use of the λ = 0 attractor model
as an order-of-magnitude estimate for the true axion star growth rate in the following.
Coming back to the derivation of the original authors, who considered solitons with λ = 0, it is
helpful to consider the energy spectrum F (t, ω) = dM/dω of the boson mass distribution over
different energies ω. As originally shown in the related Ref. [170], the energy spectrum develops
a sharp peak with ω < 0 at the time of condensation. Physically, the mass and energy of this
peak correspond to the soliton mass and potential energy of the gravitationally bound axion
star. An explicit example of the spectrum evaluated at two different points in time t ≈ 3.2τgr
in pink and t ≈ 10.9τgr in blue is depicted in Fig. 4.5.
The energy spectrum in Fig. 4.5 is given in rescaled units with dimension one, namely F̃ =
2ω0F/M and ω̃ = ω/(2ω0), where ω0 = mv20/2 is the characteristic energy of the particles. Two
more important features in the spectrum in Fig. 4.5 are the bath component of the ambient,
gravitationally unbound particles in the simulation at ω̃ > 0 and the bound states with ω̃ ≲ 0,
which constitute the granular environment of the soliton seen in Fig. 4.2.
Over time and comparing the pink and blue spectra, the system can be seen to evolve into
a configuration with a more strongly bound bose star, indicated by the blue peak at smaller
ω̃ and a thermal bath with an increased high-ω tail extending to the largest particle energies
ω̃ ∼ 5. The total mass of the system can be found by integrating over the above two and a third
component, which gives a total system mass M = M⋆ +M⃝ +Mb, where M⃝ describes the
excited bound states in the vicinity of the soliton and Mb is the mass of the bath or background.
A crucial observation in the derivation of the mass growth model is the realization that the
time-dependent spectra in Fig. 4.5 exhibit a scaling symmetry of the form [240]

F̃ (t, ω̃) = asFs(bsω̃), as = τ−1/Ds , bs = τ2/Ds−1 (4.38)

4That is, by definition of the stable dilute branch of axion stars in Sec. 4.1 and λ = −m2
a/f

2
a , which we have

limited our analysis to.
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Figure 4.5: Simulated rescaled energy spectra F̃ = 2ω0F/M at two different points in time after
condensation: t ≈ 3.2τgr in pink and t ≈ 10.9τgr in blue. The sharp peaks at negative energies ω̃
correspond to bose stars (i.e. with λ = 0) and the bell-shaped curves represent the bath at different
times. The latter of which can be parametrized by the rescaling in Eq. (4.38) as shown by the white
circles. The figure was taken from Ref. [240].

where τ = t/τgr is the relative time coordinate and Ds = 2.8 is a numerical coefficient. The
parametrization of the time-dependent spectra using Eq. (4.38) with the self-similar scaling
function Fs (ωs) is indicated by the white circles in Fig. 4.5.
Importantly, the rescaling in Eq. (4.38) describes a time-dependent mass Mb ∝ τkM of the bath
and a corresponding energy Eb ∝ τkE with power-law parameters [240]

kM = 1− 3/Ds, kE = 2− 5/Ds, 3kE − 5kM = 1 (4.39)

Physically, this means that some fraction of the particles in the bath will eventually lose energy
through gravitational scattering and become bound to either the soliton M⋆ or to a quasi-particle
overdensity in its surrounding M⃝. The scaling in Eq. (4.39) can then be used to derive an equa-
tion of motion for the resulting mass growth of the total system.
A crucial step here is to assume that the weakly time-dependent scaling parameters from
Eq. (4.38) are given by Ds = Ds(τ), kM (τ) = d lnMb/d ln τ and kE(τ) = d lnEb/d ln τ and
that at different times τ they satisfy the relation 3kE − 5kM ≈ 1 in Eq. (4.39). Then writ-
ing the mass of the soliton and its quasi-particle environment as M⊛ = M⋆ + M⃝, the con-
servation of the total mass Mb = M − M⊛ and energy Eb = E − E⊛ of the system give
d ln τ ≈ 3d ln (E − E⊛)− 5d ln (M−M⊛), which after integration yields

(
1− E⊛

E

)3(
1− M⊛

M

)−5

≈ τ − τi

τ⋆
, (4.40)

where E⊛ = E⋆+E⃝, E is the total energy and τ⋆ an integration constant to be determined later5.
Since the excited states in M⃝ carry relatively little energy, the energy of the bose star and its
environment in Eq. (4.40) may be approximated as E⊛ ≈ E⋆ = −γM3

⋆ with γ ≈ 0.0542m2
aG

2.

5Note here that for consistency with other chapters, the ’⋆’ symbols used in this work correspond to the index
’bs’ in Ref. [240], while the symbol ’⊛’ replaces the ’∗’ symbol in Ref. [240].
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Additionally defining ϵ2 = E/(γM3) one finally obtains the mass growth equation
[
1 +

M3
⋆

ϵ2M3

]3 [
1− M⃝

M − M⋆

M

]−5

≈ τ − τi

τ⋆
(4.41)

of the self-similar attractor [240]. The quantities τi ≈ −0.1 and τ⋆ in Eq. (4.41) are empiric
fitting parameters where the integration constant τ⋆ ≈ (1− τi) (1−M⃝/M)5 is fixed by the
initial condition M⋆ = 0 at τ = 1.
Taking all of the above together, we show a comparison between different simulations of the
self-similar system in Eq. (4.41) with relative energies ϵ ≈ 0.186 and ϵ ≈ 0.074 in Fig. 4.6. The

Figure 4.6: Time-dependent soliton mass M⋆(t) obtained from 22 simulations with different M, L̃, τgr
but same ϵ ≈ 0.186 and ϵ ≈ 0.074 in colored lines, taken from Ref. [240]. The dashed black lines indicate
the predictions from Eq. (4.41) after fixing τ⋆ from the initial conditions. White circles indicate the
average over different simulations with same ϵ.

corresponding predictions from the mass growth model in Eq. (4.41) are shown in black dashed
lines and can be seen to agree well with the different numerical simulations in colored lines.
The same remains true for the averaged numerical data at same ϵ, as seen by the white empty
circles in Fig. 4.6. Similar to the results in Fig. 4.3 and Fig. 4.4, the largest disagreement can
be observed at early times t ∼ τgr, where the system is most sensitive to the random nature of
the initial conditions from Sec. 4.2.
For completeness and for later considerations, Eq. (4.41) can be used to derive the mass growth
rate [2]

δM⋆

δt
≃

(
1− M⋆

M

)6

[
5 +

1

ϵ2

(
M⋆

M

)2(
9− 4

M⋆

M

)][
1 +

1

ϵ2

(
M⋆

M

)3
]2

M
1.1 τgr

, (4.42)

of the axion star core in a composite ASMC system with ϵ determined by [240]

ϵ ≃ 0.008
√
Φ(1 + Φ)1/6

(
10−13M⊙

M

)2/3(
50µeV
ma

)
(4.43)

and where the small contribution of the excited states around the soliton was neglected. This
means that for a given axion model ma, n, the accretion rate in Eq. (4.42) generally depends on
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three parameters: the minicluster density parameter Φ, the minicluster mass M and the axion
star mass M⋆. As already pointed out in Sec. 3.2, we assume the two parameters M and Φ to
be independent from each other and from the galactocentric radial coordinate r for simplicity.
At this stage, M is prescribed from the MCMF in Subsec. 3.6.2 and Φ ∈ (0, 104] is known from
the simulations in Ref. [146]. The remaining parameter, M⋆ will be fixed in section Sec. 4.7.
For now, we show the accretion rates from Eq. (4.42) after normalization to the characteristic
value M/τgr in Eq. (4.42) for the two classes of systems in Fig. 4.6 with ϵ ≈ 0.186 and ϵ ≈ 0.074
in orange and blue. Importantly for the analysis in this work, the accretion rates are initially

Figure 4.7: Predicted accretion rates of the solitons in Fig. 4.6 with ϵ ≈ 0.186 in orange and ϵ ≈ 0.074
in blue, taken from Ref. [2]. The growth rates are normalized by M/τgr following Eq. (4.42).

large, shortly after the time of condensation, and drop significantly at large values of t ≫ τgr.
Even at the latest times t ≫ τgr, the accretion remains sufficiently large for the star mass to
change considerably over long timescales t ∼ tH as will be shown in Chap. 7. This means that
after forming with some initial mass M⋆,0, the axion star will continue to accrete over time until
potentially reaching one of the two critical mass thresholds to be explored in the following two
sections.

4.4 Bosenovae
The first and most important critical soliton mass was already introduced in the derivation of the
mass-radius relation in Sec. 4.1: the maximum stable axion star mass due to self-interactions,
M⋆,λ in Eq. (4.16). Physically, the stationary solution with M⋆,λ, R⋆,λ describes the point of
approximate equipartition between the gravitational energy Egrav(M⋆) from Eq. (4.3) and the
self-interaction energy Eint(M⋆) from Eq. (4.4).
Once an axion star exceeds the critical mass M⋆ > M⋆,λ, the self-interaction potential of the
axion in Eq. (2.9) triggers relativistic multi-particle interactions in a process commonly referred
to as a Bosenova or axion nova [35, 209, 212, 217, 225, 234, 242–244]. During the ensuing
collapse of the super-critical soliton, relativistic axions are generated in repeated cycles of col-
lapse, particle emission and expansion until the resulting mass-loss drives the system to become
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sub-critical, M⋆ ≤ M⋆,λ, again. Due to the relativistic nature of the field dynamics, the non-
relativistic pseudo-spectral method from App. B is insufficient to trace the Bosenova process.
Instead, the full Einstein-Klein-Gordon equations, Eq. (3.2), Eq. (3.3) need to be solved numer-
ically.
In the following, we recall the most important results from Ref. [35], who solved the spherically
symmetric relativistic field equations for a marginally super-critical solution M⋆, R⋆ numeri-
cally. The resulting collapse of a super-critical axion star is depicted in Fig. 4.8, which shows
the time-dependent evolution of the central density ρ(t, 0). In this case, the super-criticality

Figure 4.8: Time-dependent central soliton density ρ⋆(t, 0) during one of several collapse cycles from
the relativistic simulations for ma ≈ 2·10−9 eV, fa ≈ 3·1015 GeV and cλ ≈ 0.44, taken from Ref. [35]. The
time coordinate is normalized by the characteristic time scale τ ∼ 1/(mac

2) of the relativistic particles.

was achieved by performing a transformation ψ(r) → γψ(γr) with γ = 1− 10−4 on the critical
soliton profile with initial mass M⋆,λ [35].
The numerical parameters correspond to an axion model with ma ≈ 2·10−9 eV, fa ≈ 3·1015 GeV.
Note also that the authors used a different coupling constant cλ = (1+ y2 − y)/(1+ y2)2 ≈ 0.44
with y = mu/md ≈ 0.56, compared to our simplified assumption of cλ = 1 for the quartic
coupling in Eq. (3.4). As argued in Subsec. 3.6.1, the exact value of cλ setting the coupling
λ = −cλm2

a/f
2
a is not expected to drastically alter the qualitative evolution of the system since

the corresponding critical mass in Eq. (4.16) scales as M⋆,λ ∝ 1/
√
λ ∝ 1/

√
cλ. From a different

perspective, the leading order peak in Fig. 4.10 has the lowest k/ma ≈ 2.4, which suggests that
higher order processes in λ are subdominant, see also Eq. (3.4). The axion model simulated in
Ref. [240] is therefore in rough correspondence with the models considered in this work.
At early times, the soliton exhibits an increase in central density compared to the initial value
mat = 1800 of the normalized time coordinate. At a central density of ρ⋆(t, 0)/(m2

af
2
a ) ∼ 102,

the relativistic collapse and subsequent emission of relativistic particles from the soliton lead to
a sudden drop in density down to ρ⋆(t, 0)/(m2

af
2
a ) ∼ 10−3. This collapse process repeats itself

Nc = 8 times until enough axion matter is depleted for the star to relax to a stable configura-
tion M⋆ ≤M⋆,λ. As was shown in the simulations of Ref. [35], the process in Fig. 4.8 involving
Nc = 8 collapse cycles can also occur repeatedly, with the number of cycles N⋆ ∼ 5 6 depending
on the initial mass M⋆ > M⋆,λ of the super-critical soliton configuration [240].

6Specifically, the authors of Ref. [240] compared two simulations with different fa, leading to different M⋆,λ in
Eq. (4.16) and N⋆ = 5, 7 collapse cycles.
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Additional insight on the production of relativistic waves in the system can be obtained by
inspecting the radially symmetric soliton profile ρ⋆(r, t) at different times t in Fig. 4.9. The

Figure 4.9: Radial axion star profile ρ⋆(r, t) at different times t = 0, 802, 2253 in red, green and blue
colors, taken from the relativistic simulations of Ref. [35]. The text indicates the generation of relativistic
(green) and non-relativistic (blue) waves in the system, which become visible in the soliton profile. Note
that between the different points in time t = 0, 802, 2253, several collapse cycles of the form in Fig. 4.8
have occurred in the meantime.

red line in Fig. 4.9 shows the initial soliton profile at mat = 0, which soon develops into the
green profile around mat = 802 once the production of relativistic waves in the central region
ρ⋆(t, 0) commences. These relativistic waves with k/ma ≫ vesc, with the escape velocity vesc,
will quickly leave the central region thereby transporting energy away from the soliton core.
The emission of relativistic particles in Fig. 4.8 is accompanied by the production of non-
relativistic modes which are shown as slow density waves in the bottom panel and blue curve
of Fig. 4.9. These low energy waves can partially escape the system if their wavenumbers fulfill
the inequality k/ma > vesc. However most of the non-relativistic waves with k/ma < vesc are
eventually captured again by the soliton remnant, so that M⋆(tf ) ≃ 0.7M⋆(t = 0) at the final
simulation time tf [240]. As outlined above, the production of high- and low energy waves, the
subsequent soliton dilution and its re-collapse repeat itself multiple times during the evolution
of a super-critical system.
An important measure of the bosenova dynamics is given by the energy spectrum dE/dk of
emitted axions shown in Fig. 4.10. The solid line in blue shows the energy spectrum obtained
from the simulations of the collapsing axion star, compared to a power-law fit dE/dk ∝ k−2.3

shown by the black dashed line. It can clearly be seen, that the energy spectrum exhibits four
well pronounced peaks with an approximate width of ∆k ≈ ma.
Different peaks are indicated by the red colored shades and lines respectively, whereas the peaks
are centered around the characteristic values k/ma ≈ 2.4, 3.9, 5.5, 7.1. The amplitude of the
spectrum in Fig. 4.10 is normalized by the scaling of the leading-peak component at k/ma ≈ 2.4

E2.4
ma

=

∫ 2.9

1.9
d(k/ma)

dE
dk

≈ 3400N⋆
f2a
m2

a

∝ N⋆
f2a
m2

a

(4.44)
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Figure 4.10: Energy spectrum of emitted axions in a bosenova in solid lines together with a power-law fit
of the form dE/dk ∝ k−2.3 in black dashed lines. The leading peaks of the spectrum with width ∆k ≈ ma

are indicated by the red lines and shaded regions, which are centered around k/ma ≈ 2.4, 3.9, 5.5, 7.1.
This figure was taken from Ref. [36] and reproduced from the data in Ref. [240].

with ∆k = ma and the explosion number N⋆ = O(few) [36]. After several repeated collapse
cycles involving N⋆ explosions for ma ≈ 2 · 10−9 eV, fa ≈ 3 · 1015 GeV as above, the authors of
Ref. [35] showed that the total energy loss of the system may be well-fit by the linear parametriza-
tion

fem ≡ Eloss
M⋆,λ

≈ 0.3 + 830
fa

mPl
,

fa

mPl
≲ 10−3 , (4.45)

where mPl is the Planck mass. The final state of the soliton with initial super-critical mass
M⋆ ≥ M⋆,λ in Eq. (4.45) - after experiencing an energy loss Eloss - corresponds to a diffuse
gravitationally bound configuration. In different simulations, collapsing axion stars have been
observed to lose between 30% and 60% of their mass through axion emission [35].
For simplicity, we will use the conservative estimate fem = 0.3 of the emitted energy of a
bosenova in the following [3]. Another important scale relates to the duration of a single axion
burst emitted from a bosenova event at the source, which is approximately given by

δtburst ≈
400

ma
≈ 6ns

(
50µeV
ma

)
(4.46)

and which we use in the considerations of axion burst detection in Chap. 7.

4.5 Parametric Resonance
Moving on to the second critical soliton mass, this section deals with the modification of the
Maxwell equations in the presence of a homogeneous axion field. The basic goal is to derive a
simplified resonance criterion for solitons, similar to what was done in Ref.s [31–33]. Opposed
to the critical mass M⋆,λ from Eq. (4.16) and Sec. 4.4 due to the self-interaction instability, the
critical mass in this section represents the onset of resonant conversion of gravitationally bound

73



Chapter 4 Axion Stars

axions in the soliton into photons under specific conditions.
To understand these conditions, it is useful to start from the Lagrangian Laγγ from Eq. (2.17)
describing the interaction of the electromagnetic field in the presence of an axion field ϕ. Varying
the Lagrangian in Eq. (2.17) with respect to the four vector potential Aµ = (A0,A) and neglect-
ing gradients of the non-relativistic axion field ϕ, which is slowly varying in space |∇ϕ| ≪ |∂tϕ|,
one obtains the equation of motion

Äk + k2Ak + gaγγik
∫

d3k′

(2π)3
∂tϕk−k′Ak′ = 0 (4.47)

in Fourier space [32]. Here, the two degrees of freedom of the propagating photon are described
by A, where the corresponding vector potential is formulated in the Coulomb gauge, ∇ · A = 0.
The next step is to assume the time- and k-dependence of the axion field in Eq. (4.47). Physically,
the system under consideration is a soliton with a Gaussian profile ρ⋆(r) of the form in Eq. (4.1),
which depends on the soliton mass M⋆. However as was shown in the detailed study of Ref. [32],
the condition for resonant axion-photon conversion inside of the soliton may be qualitatively
described by considering a homogeneous axion field

ϕ(t) = ϕ0 cos(ω0 t) (4.48)

with field amplitude ϕ0 and an oscillation frequency ω0 ≈ ma. It is therefore sufficient to
insert the homogeneous axion field ϕ from Eq. (4.48) into Eq. (4.47) while expressing the vector
potential A in terms of time-dependent mode functions sk(t) (see App. D.1 and Ref. [32] for
details). Using these assumptions, the different polarizations decouple and the corresponding
mode functions can be shown satisfy so-called Mathieu equation [32]

s̈k +
[
k2 − gaγγ ω0 k ϕ0 sin(ω0 t)

]
sk ≡ s̈k + ω2

k(t)sk = 0 , (4.49)

which describes an oscillator with a periodic pump frequency ω2
k(t) = ω2

k(t + T ) and period
T = 2π/ω0. According to common literature [245, 246], the solutions to the Mathieu equation
exhibit a band structure of stable, oscillating and unstable, exponentially growing solutions.
These solutions can be written in the general form

sk(t) = Pk(t)e
µkt + Pk(−t)e−µkt , (4.50)

where Pk(t) is a periodic function of time and the parameter µk is called the Floquet exponent.
Importantly for our considerations of resonant axion-photon conversion, the real component of
the Floquet exponent µk is responsible for the exponentially growing modes.
At small amplitudes, k/ω0 ≫ gaγγϕ0/2, the resulting spectrum of narrow resonant bands is
composed of equally spaced lines with decreasing width, centered around k2 ≈ (nω0/2)

2 for
n ∈ N

+. We demonstrate the derivation of the corresponding EOM in App. D.1 by employing
the small-amplitude analysis from Ref.s [32, 33]. As for the resonance condition, we summarize
that the exponential growth of the photon occupation number from Eq. (4.50) is dominated by
the first instability band with n = 1, which has the largest width and Floquet exponent µ(n)k ,
respectively. Following the derivation in App. D.1, one obtains the exponential growth rate [32]

µ
(1)
k =

√√√√g2aγγ k
2 ϕ20

4
−

(
k2 − ω2

0
4

)2

ω2
0

(4.51)
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of the first instability band at n = 1. The width of this resonant band can be found from the
wavenumbers k, where µk = 0 and the resonance gets shut off. Denoting the lower and upper
edges of the band with minus and plus signs, the edges of the first instability band are given by

k
(1)
± =

√
ω2
0

4
+
g2aγγ ω

2
0 ϕ

2
0

16
± gaγγ ω0 ϕ0

4
= k(1)c ± ∆k(1)

2
, (4.52)

where k(1)c is the center of the n = 1 band and the corresponding bandwidth ∆k(1) is proportional
to the axion-photon coupling constant gaγγ :

∆k(1) = k
(1)
+ − k

(1)
− =

gaγγ ω0 ϕ0

2
. (4.53)

For small amplitudes k/ω0 ≫ gaγγϕ0/2, the central wavenumber

k(1)c = ω0/2
√
1 + g2aγγϕ

2
0/2 (4.54)

with ω0 ≈ ma is approximately equal to half the axion mass k(1)c ≈ ma/2. At this specific value
of k = k

(1)
c ≈ ma/2, the growth exponent in Eq. (4.51) takes its maximum value of

µH ≈ gaγγ ma ϕ0

4
, (4.55)

where the subscript H emphasizes that this result was obtained for the homogeneous axion field
in Eq. (4.48). Note that the n = 1 instability band considered in this section represents the
decay process a→ γ+γ, which does not include effects of Bose enhancement and therefore does
not depend on the number of previously produced particles. Similarly, the second instability
band with n = 2 and ω = ω0 in Eq. (D.11) amounts to the process a + a → γ + γ. For the
small amplitudes considered in this section however, higher order processes n > 1 are suppressed
compared to the first instability band so that the leading-order resonance described in Eq. (4.55)
is sufficient to find the resonance condition we are interested in.
Coming back to the relevant case of solitons with a non-homogeneous profile ρ⋆(r), Ref. [32]
investigated the parametric resonance of axion stars by exploiting the spherical symmetry of the
problem. According to their numerical calculations, the corresponding maximum growth rate
µ⋆ of the spherically symmetric soliton is approximately given by

µ⋆ ≈
{
µH − µesc, µH > µesc

0, µH < µesc
, (4.56)

where µH is the maximum growth rate of the homogeneous condensate in Eq. (4.55) and µesc ≈
1/ (2R⋆) is the photon escape rate of the soliton with characteristic radius R⋆. For the Gaussian
radial profile in Eq. (4.1) assumed in this work, the axion field amplitude ϕ0 in Eq. (4.55) can
be obtained from the wavefunction ψ(r) following Eq. (3.10) and

ϕ0 =

√
2

ma
ψ0 =

√
2M⋆

m2
aπ

3/2R3
⋆

. (4.57)
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Inserting the above expression for ϕ0 together with µesc ≈ 1/ (2R⋆) and µH from Eq. (4.55), the
resonance condition µH > µesc in Eq. (4.56) can be rephrased into the condition [2, 33]

gaγγfa > 0.42

[
cλg(α⋆)

α⋆

]1/2
(4.58)

for the axion parameters gaγγ , λ = −cλm2
a/f

2
a and fa. Here the parameter α⋆ ∈ (0, 1] and the

function g(α⋆) = (1+
√

1− α2
⋆)/α⋆ were used to express the soliton mass M⋆ and radius R⋆ [33]

M⋆ = α⋆M⋆,λ (4.59)
R⋆ = g(α⋆)R⋆,λ , (4.60)

in terms of the mass-radius relation Eq. (4.17) and the critical quantities M⋆,λ, R⋆,λ from
Eq. (4.16) 7.
Since α⋆, g(α⋆) are essentially functions of M⋆, R⋆ with the critical quantities M⋆,λ, R⋆,λ being
fixed at each axion model ma, n, the condition Eq. (4.58) can be rephrased into a mass require-
ment for the axion star mass M⋆ ≥ M⋆,γ . Thus entering M⋆, R⋆ from Eq. (4.59), using the
mass-radius relation from Eq. (4.17) and rearranging for M⋆, we obtain the critical mass [2]

M⋆,γ ≃ 5.94 · 10−14M⊙

(
50µeV
ma

)(
10−11GeV−1

gaγγ

)2(
1011GeV

fa

)√(
gaγγfa

0.42

)2

− cλ

2
, (4.61)

beyond which the decay of axions into photons in the soliton leads to a parametric resonance
with exponential enhancement of the photon occupation number with µ⋆ given by Eq. (4.56).
The detailed derivation of M⋆,γ can be found in App. D.2.
Importantly, axion stars with M⋆ > M⋆,γ can act as resonant amplifiers of ambient photons
with frequencies f ≃ ma/(4π) through cascade-like stimulated emission. The essential picture
here is that a photon with suitable frequency f passing through the soliton with radius R⋆

can stimulate the emission of another photon, which excites emission of another photon along
traveling a distance ∼ R⋆ and so forth.
Accordingly, axion stars with M⋆ > M⋆,γ acquire an additional mechanism of energy emission,
which is triggered rapidly after reaching M⋆,γ and which has directly observable consequences.
We demonstrate numerical predictions for the expected radio emission of resonant axion stars in
Subsec. 5.5.1 and explore the combined predictions arising from the continuous mass growth of
axion stars in Sec. 4.3 triggering the instability above M⋆,γ in Chap. 6. Before doing so however,
we need to establish a formalism to derive the mass distribution of axion stars from that of their
host miniclusters in Chap. 3. This will be done in the remaining sections of this chapter.

4.6 Core-Halo Relation of Axion Stars
The missing link connecting the mass distribution of galactic miniclusters from Sec. 3.6 to the
properties of their axion star cores was already introduced in Sec. 3.7. However there is a
crucial limitation inherent to the canonical core-halo relation in Eq. (3.57), which is related
to the fact that it was derived for negligible self-interactions, λ = 0, specifically [169]. An

7Note that the different proportionality constant in Eq. (4.58) is due to the fact that Ref.s [32, 33] used a
sech(x) profile opposed to the Gaussian profile used in Eq. (4.1) and Ref. [2].
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important question, which arises naturally for the ASMC systems with weak self-interactions
λ = −m2

a/f
2
a < 0 considered in this work, is whether and to what extent the mass relation

Eq. (3.57) may be applied for soliton cores with a λ-dependent mass-radius relation of the form
in Eq. (4.17). To answer this question, we take two different approaches for estimating the
expected modification of the core-halo relation from Eq. (3.57), under the influence of weak
attractive self-interactions. Both of the approaches in Subsec. 4.6.1 and Subsec. 4.6.2 are based
on the analytical calculations in Ref.s [241, 247, 248], which will be used to infer constraints on
the applicability of the λ = 0 relation from Ref. [169] as a function of M⋆, M and ma, n.
We emphasize, that the derivation and simulation of an extended core-halo relation for self-
interacting systems are beyond the scope of this work. Furthermore it is important to note here
that the canonical core-halo relation in Eq. (3.57) is far from universal. To this date, there is
an ongoing discussion on the meaning and distinction of different core-halo scalings M⋆ ∝ Mβ

with 1/3 ≤ β ≤ 2/3 [169, 204, 249]. The major conclusion seems to be that the observed scaling
depends sensitively on the initial conditions and the merger history of the simulation. We direct
the attention of the interested reader to Ref.s [241, 247–249] for detailed reviews on the topic
and to Ref.s [205, 206, 250, 251] for recent investigations.
Since our considerations involve axion minicluster systems forming around redshifts z ∼ zeq,
we use the canonical relation in Eq. (3.57), which was numerically confirmed for z ∼ zeq in the
minicluster simulations of Ref. [167]. In a more general context, our approach in deriving the
ASMF in Sec. 4.7 and Fig. A.1 is strongly modular, so that any update on the mass relation of
axion stars could be easily implemented.

4.6.1 Modification of virial Velocities

We start with the first of two equivalent approaches in the derivation of the M⋆ ∝ M1/3 scaling.
This first approach is based on the assumption that the virial velocity of the total system
equilibrates with the characteristic velocity of the soliton, v⋆,vir ≃ vmc,vir at late times [171, 174].
Using the virial velocity of a gravitating sphere for the minicluster in Eq. (4.35) together with
the soliton groundstate property from Eq. (4.34), one can directly obtain the β = 1/3 scaling
by expressing the radius as R = [3M/(4πρmc)]1/3.
Note however that the groundstate solution of the Schrödinger-Poisson system used to derive
v⋆,vir deviates from Eq. (4.34) in the general case |λ| ̸= 0. This is why the authors of Ref. [247]
modified the standard assumption v⋆,vir ≃ vmc,vir for the virial velocities of the star and total
system by introducing a modified virialization condition of the form

GM⋆

R⋆
≃ Dh

GM
R , (4.62)

where the perturbative coefficient Dh is determined by matching the λ = 0 results to those of
Schive et al. [169]. In this approach, both the minicluster and its soliton core are modeled as
spherical overdensities, where the deviations from the standard virialization condition are con-
tained in the effective modification constant Dh. In the following, we summarize the results from
Ref. [247], who presented a redshift-independent extension of the core-halo relation Eq. (3.57)
for arbitrary |λ| > 0 based on the analytical approaches in Ref.s [169] and [249].
Combining Eq. (4.62) with the mass-radius relation of self-interacting axion stars in Eq. (4.17),
the authors of Ref. [247] showed that the extended core-halo relation scales asM⋆ ∝

√
1 + ∆λ(M)
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at z = 0, where the corresponding perturbation term

∆λ = 1.48 · 10−9

(
fa

1011 GeV

)−2( M
10−13M⊙

)2/3

(4.63)

quantifies the expected modification of M⋆ compared to Eq. (3.57) and Eq. (3.58). We apply the
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Figure 4.11: Perturbation term ∆λ(M, fa) from Eq. (4.63) measuring the modification of M⋆(M) at
|λ| > 0 compared to the λ = 0 mass relation in Eq. (3.57). Both with colors indicating different values
for the axion mass ma and its temperature dependence n. The ranges of M⋆ obtained with the M0- and
MJ -cutoffs from Subsec. 3.5.2 are shown in solid and dashed lines. Stars correspond to the maximum
stable AS mass M⋆,λ from Eq. (4.16). The figure was taken from Ref. [1].

perturbative measure ∆λ from Eq. (4.63) to redshift z = zeq in Fig. 4.11 for ma = 50µeV and
find that the predicted modification due to self-interactions λ remains negligible ∆λ ≤ 3 · 10−5

for every ma, n = 0, 1, 3.34 and for every stable branch soliton with mass M⋆.
The colored lines in Fig. 4.11 indicate the different axion star mass ranges predicted from the
two low-mass cutoffs of the MCMF in Sec. 3.5, where solid lines correspond to the M0-cutoff
from Eq. (3.47) and dashed lines show the MJ -cutoff from Eq. (3.45). As a consequence of the
scaling of Mmax in Eq. (3.46) with M0 and n (see also Fig. 3.7), the range of AS masses for
n = 1, 3.34 in blue and green extends to larger M⋆ compared to the temperature-independent
cases in red.
We generally confirm that for all axion models ma, n under consideration, the contribution of
∆λ remains negligible. For the specific case of ma = 50µeV in Fig. 4.11, the perturbation
parameter reaches its maximum value of ∆λ ≃ 3 · 10−5 at M⋆ =M⋆,λ.
This result is not surprising since we had limited our analysis to the dilute stable branch of
axion stars, which is characterized by dominance of gravity over short-range interactions. Let us
emphasize here that, in contrast, the smallness of ∆λ would break down entirely on the dense
branch, where axion self-interactions become the dominant force in the system. The long-term
stability of the dilute component in the mass radius relation in Fig. 4.1 thus provides a natural
parameter space in which the λ = 0 relation Eq. (3.57) remains applicable.
Nevertheless, some modifications of the core-halo relation in Eq. (3.57) are expected to occur
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once the star mass approaches the critical point M⋆ =M⋆,λ, where both gravitational and self-
interacting contributions become comparably important. This is why we additionally employ a
second, more conservative approach to estimate possible modifications to the core-halo relation
in Subsec. 4.6.2.

4.6.2 Modification of specific Energies

The second approach to derive the mass relation Eq. (3.57) is given by the approximate equality
of the specific energies E⋆/M⋆ and ε/M of the soliton and its host minicluster respectively. This
scaling was originally observed in the numerical simulations of Ref. [169], which established the
canonical β = 1/3 relation. As was shown in Ref. [241], the virialization condition v⋆,vir ≃ vmc,vir
is equivalent to the requirement

|E⋆,tot|
M⋆

≃ |E|
M

E⋆,tot∼Egrav⇐⇒ GM⋆

R⋆
≃ GM

R (4.64)

for the specific energies of the composite ASMC system. The total star energy E⋆,tot in Eq. (4.64)
is typically assumed to be on the order of the gravitational binding energy Egrav from Eq. (4.3)
[169, 247]. This assumption remains valid for most of the dilute branch solitons withM⋆ ≪M⋆,λ,
which are considered for the galactic ASMF. Instead of the modified virialization approach from
Subsec. 4.6.1 and Eq. (4.62) we can thus consider the changes in E⋆,tot and E to measure the
effective modification of the core mass relation in Eq. (3.57).
Starting with the right-hand side of Eq. (4.64), which measures the change ∆E in the minicluster
energy, we can argue that for typical ASMC systems with overdensity parameter Φ ∼ 1, the
minicluster density ρmc in Eq. (3.23) will be much lower than that of their axion star cores
ρ⋆ ≲ M⋆,λ/R

3
⋆ ∼ 1023 GeV/cm3, where we have used QCD axion parameters ma = 50µ eV and

n = 3.34. In these dilute systems, the short-range self-interaction will be negligible compared to
the long-range gravitational force (see also Ref. [247] for a detailed calculation). Physically, the
self-interaction energy of the minicluster in the Hamiltonian of Eq. (4.9) scales with a higher
power of the small field Eint ∝ |ψ̃|4 compared to the gravitational scaling Egrav ∝ |ψ̃|2 with
|ψ̃| < 1 as depicted in Fig. 4.2.
Thus assuming ∆E ≪ E for the host miniclusters, the relevant energy shift in the equilibrium
state described by Eq. (4.64) is simply given by the left-hand side contribution

∆E⋆ ≡ |E⋆,tot − E⋆,tot(λ = 0)| = |Eint| , (4.65)

where E⋆,tot(λ = 0) is the Schrödinger-Poisson soliton energy evaluated at λ = 0. We show
the relative energy shifts |∆E⋆/Egrav| = Eint/Egrav appearing in the specific energy ansatz from
Eq. (4.64) in Fig. 4.12, again for ma = 50µeV and n = 0, 1, 3.34. Like before, the range of
masses M⋆ in Fig. 4.12 corresponds to the core-masses derived from the MCMF in Fig. 3.8 using
the core-halo relation in Eq. (3.57) with the MJ -cutoff in dashed and the M0-cutoff in solid
colored lines. Fig. 4.12 thus demonstrates that the condition in Eq. (4.64) is more stringent than
the virial velocity approach from Eq. (4.62) and that it yields qualitatively similar results by
predicting negligible energy shifts |∆E⋆/Egrav| ≪ 1 for the majority of the soliton mass range
M⋆.
There is however a small mass range, where M⋆ becomes similar to the maximum stable
mass M⋆,λ (i.e. close to the gray line and colored stars) and the relative perturbation term
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Figure 4.12: Relative core energy fractions |∆E⋆/Egrav| as a function of AS mass M⋆ reaching up to
|∆E⋆/Egrav| = 1/3 indicated by the gray line. Stars correspond to the maximum stable AS mass M⋆,λ

from Eq. (4.16). The figure was taken from Ref. [1].

|∆E⋆/Egrav| ≈ 1/3 reaches its maximum value. In this mass range, one expects any extended
core-halo relation to be modified compared to Eq. (3.57) from Ref. [169]. Importantly for our
considerations, even at the critical point M⋆ = M⋆,λ, the expected energy shift in Eq. (4.64)
is of order one. This leads us to the conclusion that the λ = 0 core-halo relation should still
provide us with a reasonable estimate that is well within the large uncertainties of the linear
growth MCMF in Sec. 3.5.
To summarize the results of this section, we have checked the applicability of the core-halo re-
lation from Eq. (3.57) using both the virial velocity approach from Ref. [247] in Fig. 4.11 and
our more stringent energy modification in Fig. 4.12. In both of these cases we find negligible
effects for the majority of soliton masses with M⋆ ≪ M⋆,λ, and limited evidence for order-one
modifications at near-critical masses M⋆ ∼ M⋆,λ. Therefore and restricting our analysis of the
galactic axion star distribution to dilute stable solitons, we use the canonical mass relation in
Eq. (3.57) as an order-of-magnitude estimate for M⋆, while keeping in mind the need for an
extended core-halo relation for more precise predictions.

4.7 Galactic Axion Star Mass Distribution
Having confirmed the validity of the core-mass relation Sec. 3.7 in the previous section, we
are finally in a position to derive the galactic axion star mass distribution from the MCMF in
Sec. 3.5. To ensure the physical consistency of our composite ASMC model, we need to obey
the minimum mass requirement M ≥ Mh,min from Eq. (3.58) together with another condition
for the size of R⋆ and R. These additional cutoffs will be introduced in Subsec. 4.7.1 before we
analyze the resulting ASMF in detail in Subsec. 4.7.2.
In terms of the schematic representation of Fig. A.1, we have arrived at the rectangular lightblue
panel depicting the determination of the present-day ASMF. This step presents a crucial result
for the analysis in this thesis since it allows us to combine previous investigations, namely

80



4.7 Galactic Axion Star Mass Distribution

numerical results in yellow and experimental limitations in gray panels in Fig. A.1, with the
ASMF to infer novel observation methods for axion small-scale structure in Chap. 5 to Chap. 7.

4.7.1 Low-Mass Cutoffs in Axion Star Distributions

Starting with the introduction of the two fundamental consistency requirements of the ASMF,
we have assumed that each minicluster can contain up to a single soliton core, whose mass
M⋆ ⊂ M is embedded in the composite structure with total mass M, also referred to as the
minicluster mass. Furthermore, the definition of the axion star core requires the object to be
situated at the center of the minicluster, which implies that its size is expected to be smaller
than the size R from Eq. (3.24). We formulate these fundamental considerations analytically by
demanding two conditions for the existence of a composite ASMC system: First, that the total
mass M entering the core-halo relation in Eq. (3.57) is larger or equal to the mass of its core
and secondly that the radius of the axion star should not exceed that of its host minicluster:

M⋆(M)
!
≤ M , (4.66)

R⋆(M⋆)
!
≤ R , (4.67)

where we use the dilute branch mass-radius relation from Eq. (4.18) in the second condition,
as before. Note that the mass configuration leading to the equality in Eq. (4.66) was used
in Ref. [169] to define the redshift-dependent minimum mass from Eq. (3.58). This means
that the corresponding low-M⋆ cutoff of the ASMF is straight-forwardly obtained by requiring
M⋆ ≥M⋆(Mh,min) = Mh,min using the core-halo relation and Eq. (3.58).
The second axion star mass threshold relating to Eq. (4.67) can be calculated by solving for M⋆,
with R⋆ given by the mass-radius relation Eq. (4.18) and R from Eq. (3.24). Again demanding
equality, R !

= R⋆, and using Eq. (4.18), Eq. (3.24) and Eq. (3.57), we obtain the critical minimum
axion star mass of the radius cutoff with index ’R’

M⋆,R = 4.87 · 10−17M⊙

√
Φ(1 + Φ)1/6

√
αkinR⋆,90

αgravR⋆

(
1 + z

1 + zeq

)1/4 [
ζ(z)

ζ(zeq)

]1/12(
ma

50µeV

)−3/2

,

(4.68)

where we have dropped an additional term which can be neglected as long as the condition

fa ≫ 18GeV
√
Φ(1 + Φ)1/6

(
m

50µeV

)1/2( 1 + z

1 + zeq

)1/4 [
ζ(z)

ζ(zeq)

]1/12
(4.69)

is fulfilled (see App. D.3 for details). We checked that in our framework with fa ≳ 1010 GeV
following Fig. 3.6 and for an axion mass range of 10−12 eV ≤ ma ≤ 10−3 eV, Eq. (4.69) remains
valid even for the densest miniclusters with Φ ∼ 104.
Note that as argued in Ref. [1], our predictions for the radius cutoff do not match the results
observed in Ref. [188], who used the same MCMF parametrization and core-halo relation from
Subsec. 3.5.2 and Sec. 3.7 at a QCD axion mass of ma = 20µeV. The simple explanation for
this discrepancy is the fact that our approach to the core-halo relation Eq. (3.57) was evaluated
at redshift z = zeq compared to the assumption z = 0 applied in Ref. [188]. Using the collapse
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redshift z = 0, Ref. [188] reported that none of the systems with M ≤ 5 · 10−16M⊙ passed the
radius cutoff from Eq. (4.67) at ma = 20µeV and Φ ∼ 0.1. We can compare our result from
Eq. (4.68) to their prediction by relating M⋆,R to its minicluster equivalent, which gives

MR,min(z) = 2.07 · 10−18M⊙

(
αkinR⋆,90

αgravR⋆

)3/2√
Φ3(1 + Φ)

(
1 + z

1 + zeq

)−3/4

×
[
ζ(z)

ζ(zeq)

]−1/4(
ma

50µeV

)−3/2

, (4.70)

where the coefficients αi and R⋆,90 are specific to the Gaussian ansatz in Eq. (4.1). Thus evalu-
ating Eq. (4.70) for z = 0 and with ma,Φ as in Ref. [188], we find MR,min(0) = 6.55 · 10−16M⊙

at ma = 20µeV, Φ ∼ 0.1, which agrees well with the observation MR,min(0) ≈ 5 · 10−16M⊙

made in Ref. [188].
The remaining question is which of the two approaches for the collapse redshift zc = 0, zeq should
be used. Referring to the formation of axion stars in Fig. 3.11 and Ref. [167], numerical sim-
ulations clearly favor zc ∼ zeq. This means that the ASMC systems undergo an early collapse
around matter-radiation equality after which the gravitationally bound structures decouple from
the cosmic expansion, thus freezing the redshift-dependence of the collapsed system at z = zeq.
Despite this preference, the redshift dependence of the core-halo relation Eq. (3.57) remains
subject to open debate, which is why keep track of z in our calculations.
Putting all of the above together, we can use Eq. (3.58) and Eq. (4.70) to calculate the two ASMF
cutoffs for different axion models ma, n. For completeness, we have also added the n-dependent
low-mass cutoffs M0,min and MJ,min from Eq. (3.45), Eq. (3.47) to the cutoff masses Mh,min,
MR,min in Fig. 4.13. It can be seen that essentially all of the AS-cutoff (minicluster) masses

Figure 4.13: Different MC masses setting the low-M cutoffs of the ASMF at z = zeq as a function of
ma, taken from Ref. [1]. Quantities in solid colored lines are independent of the axion mass temperature
index n, while the dashed colored lines show the different n-dependent M0-cutoffs from Eq. (3.47).

in Fig. 4.13 scale as M ∝ m
−3/2
a , with only minor deviations applying to the to the dashed
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colored M0-cutoffs with n > 0 and a modified temperature evolution [58]. In the absence of the
M0-cutoff and for n = 0 in red lines, Fig. 4.13 shows that the most stringent requirement for
the formation of composite ASMC systems is the purple minimum MC mass Mh,min. Note that
this prediction differs from the results in Ref. [188] due to the deviating redshift-dependence of
M⋆,h(z) and M⋆,R(z) in Eq. (3.58) and Eq. (4.68).
In a more general context, the choice of the relevant minicluster threshold masses Mi,min depends
on the specific scenario at hand. While the cutoff masses in Fig. 4.13 apply to any consideration
involving axion star cores, we will see in Chap. 6 and Chap. 7 that additional cutoffs become
necessary when accretion is taken into account. We also emphasize that the low-mass cutoffs
Mh,min, MR,min introduced in this section do only apply to axion star core formation i.e. only
to the ASMF and not to the MCMF in Subsec. 3.6.2. This fact can be phenomenologically
advantageous since the total number of miniclusters in the Milky Way is less constrained than
the total number of axion stars, i.e. Ntot ≥ N⋆,tot, as we will see in the next section.
Lastly we also implement an additional cutoff to the axion model parameter space ma, n nu-
merically, where the minimum soliton mass in the ASMF becomes comparable to the maximum
stable AS mass, min(M⋆) ≈ M⋆,λ, and the gravitational limit of the core-halo relation breaks
down for the entire AS population. However this condition only applies to a small region of the
low-ma component of axions with n ≥ 3.34 and for the M0-cutoff.

4.7.2 Axion Star Mass Distributions

In this subsection, we can finally infer the galactic ASMF from the MCMF for both the MJ -
and the M0-cutoff from Subsec. 3.5.2 under additional consideration of the core-halo cutoff
from Eq. (3.58) and the radius cutoff in Eq. (4.68). The results presented in this subsection
are taken from Sec. VI.C in Ref. [1]. Analogously to the MCMF in Eq. (3.36), the logarithmic
mass distribution of axion stars is defined as the comoving number density dn⋆/d ln(M⋆) per
logarithmic AS mass interval. The ASMF is connected to the MCMF by the relation dn = dn⋆
[34], which leads to the simple relation

dn⋆

d lnM⋆
= 3

dn

d lnM (4.71)

with the right-hand side defined in Eq. (3.51) and where the factor of 3 comes from the core-halo
scaling M⋆ ∝ M1/3 in Eq. (3.57).
Combining this definition with the knowledge from previous sections, we can follow the approach
from Fig. A.1 leading to the blue ASMF panel, which we briefly summarize for reasons of com-
prehensibility: We apply our generalized axion model approach from Chap. 2 and Subsec. 3.6.1,
where we determine fa by requiring Ωtot

a = 0.12 for a given model ma, n. For each combina-
tion of ma, n, we infer the characteristic minicluster mass M0 and from that the parametrized
MCMF from Subsec. 3.5.2, whose total mass in Eq. (3.52) we normalize to the Milky Way mass
Mmc,tot = fmcMMW with fmc = 0.75 [30]. We then apply the λ = 0 core-halo relation to the
MCMF hosting dilute stable axion stars while taking into account the effective low-mass cutoff

M⋆,min = max(Mmin,Mh,min,MR,min) (4.72)

of the ASMF given by the MCMF cutoff masses Mmin = MJ,min,M0,min, together with Mh,min
from Eq. (3.58) and MR,min from Eq. (4.70). Only ASMC systems with total masses M ≥
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M⋆,min are expected to host a stable axion star core according to our previous analysis.
The representative ASMF obtained from the host MCMF in Fig. 3.8 for an axion mass ma =
50µeV and with slope index α = −1/2 is shown in Fig. 4.14. For each value of n = 0, 1, 3.34,
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Figure 4.14: ASMF per Milky Way volume obtained from the MCMF for α = −1/2 in Fig. 3.8.
Colored lines and symbols indicate AS masses at different n = 0, 1, 3.34; the shaded regions and thin
dotted colored lines denote the low-mass cutoffs given by M0(ma, n)/25. Solid and dashed lines indicate
the ASMF with and without applying the M0-cutoffs; dash-dotted lines represent the radius cutoff in
Eq. (4.68) in purple and the core-halo cutoff in Eq. (3.58) in black. Colored stars refer to the maximum
stable AS mass M⋆,λ from Eq. (3.57), above which the n = 3.34 component is truncated due to stability
(see thick green dotted line). The average AS masses for the two low-M cutoffs from Subsec. 3.5.2
following Eq. (4.77) are shown in colored diamonds and crosses. Taken from Ref. [1].

the maximum stable AS mass M⋆ =M⋆,λ due to self-interactions is indicated with colored stars,
while dashed and solid colored lines show the ASMF mass ranges obtained from the two different
low-M cutoffs Mmin in Subsec. 3.5.2.
In the case of n = 3.34 in green, we have additionally applied a high-mass cutoff in dotted
green lines, where the predicted core mass lies above the maximum stable mass M⋆ ≥ M⋆,λ.
The relatively small number of such systems could have reached a critical stage resulting in a
bosenova as discussed in Sec. 4.4. In theory, the repeated axion bursts produced during the
collapse could introduce sufficient mass-loss for the star to reach a sub-critical configuration
again, i.e. M⋆ ≤ M⋆,λ, thus ensuring long-time survival of the corresponding ASMC systems.
However, due to their relatively small abundance and from a lack of knowledge about their
detailed evolution, we will ignore the super-critical ASMF component in this work.
In agreement with the low-M cutoffs shown in Fig. 4.13, the red low-M⋆ component of the
n = 0 ASMF in Fig. 4.14 is truncated by the core-halo cutoff Mh,min from Eq. (3.58) for both
of the MCMF cutoffs Mmin = MJ,min,M0,min (see the black dash-dotted line in Fig. 4.14 and
Fig. 3.8). The other cases n = 1, 3.34 in blue and green on the other hand, are either cut off by
the core-halo mass Mh,min or the M0-cutoff mass M0,min. Comparing the low-mass components
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of the MCMF and ASMF with the MJ -cutoff in solid lines in Fig. 3.8 and Fig. 4.14, it can be
seen that numerous ASMC systems do not pass the effective AS cutoff in Eq. (4.72) due to their
total masses being below the minimum threshold M <M⋆,min.
We also highlight an important feature of the ASMF and MCMF in Fig. 3.8 and Fig. 4.14,
which is the approximate independence of the high-mass population M > M0 from the low-
mass cutoffs Mmin. This observation indicates that even with different Mmin and considering the
large uncertainties in the low-M-cutoffs from Subsec. 3.5.2, the abundance of high-mass ASMC
systems predicted from linear growth does not change significantly. The simple explanation for
this weak cutoff dependence is the fact that we fix the number of ASMC systems by their total
mass Mtot in Eq. (3.52), to which the high-mass tail yields the largest contribution. On the
other hand, the total number of objects depends sensitively on the low-M cutoffs due to the
slope index α = −1/2 in Eq. (3.51) (c.f. Eq. (3.53), Fig. C.1 and Fig. C.3).
We conclude that the mass range of the ASMF in Fig. 4.14 is determined mainly by the M0,min,
Mh,min and Mmax-cutoffs with a strong temperature dependence inherited from M0 in Fig. 3.7.
Additionally defining the core mass range

min(M⋆) =M⋆(M⋆,min) , (4.73)
max(M⋆) = min(M⋆(Mmax),M⋆,λ) (4.74)

of the ASMF using M⋆,min from Eq. (4.72), Eq. (3.46) and Eq. (4.16), we can directly calculate
the total mass and number of galactic axion stars cores for differentma, n, analogous to Eq. (3.52)
and Eq. (3.53). A simple integration of the ASMF over M⋆ yields the following expression for
the total mass contained in axion stars

M⋆,tot = 4πR3
200

∫ max(M⋆)

min(M⋆)
dM⋆M⋆

CnM
3α−1
⋆

Mα
minM2α

h,min(z)

=
4πR3

200Cn

3α+ 1

min(M⋆)
3α+1 − max(M⋆)

3α+1

Mα
minM2α

h,min(z)
, (4.75)

where Cn is determined by Eq. (3.52) and Eq. (3.51). Similarly, the total number of axion stars
can be obtained from the relation

N⋆,tot = 4πR3
200

∫ max(M⋆)

min(M⋆)
dM⋆

CnM
3α−1
⋆

Mα
minM2α

h,min(z)

=
4πR3

200Cn

3α

min(M⋆)
3α − max(M⋆)

3α

Mα
minM2α

h,min(z)
. (4.76)

In the following chapters, we repeatedly determine the relevant high- and low-mass cutoffs of
both the MCMF and ASMF for every axion model ma, n with 10−12 eV ≤ ma ≤ 10−3 eV and
n = 0, 1, 3.34. The important result from this extensive approach is that we can infer the dis-
tribution of various axion star properties M⋆, R⋆, N⋆,tot as well as their MC equivalents from
knowledge of the axion parameters ma, n alone. We exploit this knowledge and its phenomeno-
logical consequences in more detail in Chap. 5 to Chap. 7.
To obtain a better understanding of the physical implications of the ASMF, we continue to
evaluate the exemplary case of the QCD axion with m = 50µeV and n = 3.34 from Fig. 3.8 and
Fig. 4.14 by supplementing the mass-radius relation from Fig. 4.1 with the ASMF results from

85



Chapter 4 Axion Stars

Fig. 4.14. The axion star mass ranges predicted from the MJ - and M0-cutoff are indicated by
the light and dark gray shaded regions in Fig. 4.15. For comparison with previous works, we
have additionally plotted the characteristic axion star parameters that were used in earlier lit-
erature on axion star phenomenology, namely in Ref.s [33, 134, 135, 137]. The clustering of the

Figure 4.15: Mass-radius relation from Eq. (4.15) with AS properties inferred from the MCMF in
Fig. 3.8 using the core-halo relation in Eq. (3.57) for QCD axions with ma = 50µeV, n = 3.34 and
fa ≃ 1011 GeV. Green and red lines show the stable and unstable branches, black symbols denote the
AS parameters used in the literature [33, 134, 135, 137]. Light/dark gray shaded areas and dotted lines
correspond to the ASMF with the MJ -/M0-cutoff in Fig. 4.14. The upper (dotted) boundary of the
shaded areas corresponds to the maximum stable mass M⋆,λ shown by the red star. Average AS masses
from Eq. (4.77) obtained from the two MCMF cutoffs are labeled by red symbols. Taken from Ref. [1].

black symbols in Fig. 4.15 demonstrates that most of the previous authors chose the maximum
stable mass M⋆,λ as a representative value for the expected core mass range.
Our results confirm the existence of such near-critical systems but also indicate that their abun-
dance is generally much lower than previously assumed. The reason for this discrepancy is
essentially given by the core-halo scaling M⋆ ∝ M1/3 in Eq. (3.57), which means that a ma-
jority of the galactic dark matter is contained in miniclusters but not in their typically much
lighter soliton cores with M⋆ ≤M⋆,λ. This is especially relevant for the intermediate- and high-
M systems in Fig. 3.8 with masses M ≫M⋆,λ leading to M⋆,tot ≪ Mtot. An additional factor
reducing the AS abundance is the negative slope of the MCMF, which peaks at the lowest MC
masses M ∼ Mmin well before the core-halo cutoff mass Mh,min thus restricting the presence
of soliton cores in the lightest and most abundant ASMC systems.
The deviations between the assumptions from previous literature in black symbols and our re-
sults for M⋆, R⋆ can also be seen by the red cross and hexagon in Fig. 4.15, which indicate the
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averaged axion star masses

⟨M⋆⟩ =
∫ max(M⋆)

min(M⋆)
dM⋆M⋆

dn⋆

dM⋆∫ max(M⋆)
min(M⋆)

dM⋆
dn⋆

dM⋆

(4.77)

over the mass distribution of the MJ - and M0-cutoffs respectively. The average soliton radius
⟨R⋆⟩ corresponding to ⟨M⋆⟩ is defined as the radius of the averaged mass, i.e.

⟨R⋆⟩ = R⋆(⟨M⋆⟩) (4.78)

using the mass-radius relation in Eq. (4.18). Our results for the averaged axion star quantities
⟨M⋆⟩, ⟨R⋆⟩ are plotted in Fig. C.4 and Fig. C.5 of App. C. We note that the n-dependent average
values ⟨M⋆⟩, ⟨R⋆⟩ coincide for the MJ -cutoff and n = 0, 1, 3.34, because the vast majority of
objects has properties similar to the low-mass cutoff M⋆,min.
In most previous studies, the distribution and average mass or radius of axion stars were essen-
tially unknown. This is why the authors of Ref.s [33, 137] calculated the collision and merger
rates of such objects in the Milky Way using a parametrization of their relative abundance and
typical mass. More specifically, they expressed the number and typical mass of axion stars in
terms of two parameters, f⋆ and ε⋆, which are defined as

f⋆ =
M⋆,tot
MMW

, ε⋆ =
⟨M⋆⟩
M⋆,λ

. (4.79)

Here, f⋆ ∈ [0, 1] describes the relative dark matter abundance of galactic soliton cores and
ε⋆ ∈ (0, 1] their typical masses as a fraction of the critical mass M⋆,λ. An understanding of the
different assumptions for f⋆, ε⋆ between our work and previous literature is crucial to compare
our predictions for galactic signal rates in Chap. 5 to those of Ref.s [135, 137, 188]. We therefore
use the numerical results from Eq. (4.75) and Fig. C.4, to directly calculate our linear growth
estimates for these two parameters, which are shown in Fig. 4.16 and Fig. 4.17.
Starting with n = 0 in red in Fig. 4.16, both of the two low-M cutoffs in dashed and solid lines
coincide, because the core-halo requirement from Eq. (3.58) is more stringent than both MJ,min
and M0,min. The cases n = 1 and n = 3.34 on the other hand show significant deviations
between the solid and dashed lines in both f⋆ in Fig. 4.16 and ε⋆ in Fig. 4.17. Because of the
scaling of M0,min with M0, n (and the temperature-independence of MJ,min, see also Fig. 3.7),
the separation becomes more significant with larger values of n. Physically, a larger M0 means
that the M0-cutoff truncates a larger fraction of the intermediate-mass range of the ASMF (c.f.
Fig. 4.14).
Apart from the cutoff dependence, the strongest impact on f⋆ and ε⋆ is given by the temperature
index n, which sets the characteristic minicluster mass M0 determining both the MCMF and
ASMF ranges according to Eq. (3.47). In the case of f⋆ ∝ M⋆,tot shown in Fig. 4.16, the tem-
perature dependence f⋆(n) can be explained by the core-halo scaling M⋆ ∝ M1/3

0 , which implies
that for lager M0, n, the relative contribution of the core mass M⋆ to each composite system
with mass M decreases. Similarly, looking at the average core mass ⟨M⋆⟩, which increases with
larger Mmin and Mmax ∝ M0, it is straightforward to see that ε⋆ = ⟨M⋆⟩/M⋆,λ in Fig. 4.17 will
also increase with larger n.
Let us also highlight the precise independence of f⋆ on ma for axion models with n = 0 in red
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Figure 4.16: Axion star dark matter abundance f⋆ from Eq. (4.79) at different axion masses ma and
for n = 0, 1, 3.34 in colored lines, taken from Ref. [1]. Dashed/solid lines show the results obtained using
the MJ -/M0-cutoffs of the MCMF from Subsec. 3.5.2, both for α = −1/2.

lines of Fig. 4.16. This effect and the weak dependence of the other two cases n = 1, 3.34 can be
understood by considering the scaling M0 ∝ m

−3/2
a of the characteristic mass in Eq. (3.50): The

normalization condition Mtot = fmc MMW with Mtot in Eq. (3.52) implies that the constant
Cn in Eq. (3.51) scales as Cn ∝ M−1

0 .
Neglecting one of the two boundaries of the integral in Eq. (4.75) with min(M⋆)

−1/2 ≫ max(M⋆)
−1/2

and inserting the scalings of MJ,min, Mh,min, M0(n = 0) ∝ m
−3/2
a from Eq. (3.45), Eq. (3.58),

and Eq. (3.50), one arrives at the scaling

M⋆,tot(n = 0) ∝ CnMh,minM1/2
min min(M⋆)

−1/2

∝ M−1
0 m−3/2

a m−3/4
a m−3/4

a ∝ const (4.80)

of the total axion star mass, where we have used that Mmin ∝ m
−3/2
a for the two low-M cutoffs

of the MCMF [1, 58] and inserted α = −1/2. Note also that the minimum star mass min(M⋆)
for n = 0 in Eq. (4.80) is derived from the core-halo cutoff Mh,min, which allowed us to rewrite
min(M⋆) =M⋆(Mh,min) ∝ m

−3/2
a using the core-halo relation and Eq. (3.50).

Since f⋆ ∝M⋆,tot, one directly obtains f⋆(ma) ∝ const from the scaling in Eq. (4.80). For n > 0
in Fig. 4.16, f⋆ is only roughly constant in ma, since as argued in Fig. 3.7 before, the scaling
M0 ∝ m

−3/2
a is weakly violated by the temperature evolution for n > 0 of the axion mass ma.

This approximate scaling is the reason why f⋆ in Fig. 4.16 is only approximately independent
of ma for n = 1, 3.34 in blue and green lines.
The important conclusion to draw from this section is that the common assumption f⋆ ≲ 1
[33, 137] in the literature was proven to be inadequate when dealing with composite ASMC
systems in the galactic environment. Conversely, our estimates predict much smaller ranges
10−4 ≤ f⋆ ≲ 1, potentially suppressing the galactic event rates, which will be examined in more
detail in the next chapter. Similarly, a considerable range of axion models ma, n can reach the
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4.7 Galactic Axion Star Mass Distribution

Figure 4.17: Axion star mass parameter ε⋆ from Eq. (4.79) at different axion masses ma and for
n = 0, 1, 3.34 in colored lines for α = −1/2, taken from Ref. [1].

previously anticipated value ε⋆ ∼ 1 for n = 1, 3.34. Their soliton abundance f⋆ on the other
hand is expected to be strongly suppressed 10−7 < f⋆ < 10−4 by the larger mass contribution
of the host minicluster population for M⋆ ∝ M1/3. In the specific case n = 0 of temperature-
independent axion masses, we obtain the largest abundance of axion stars f⋆ ≃ 10−3, yet with
drastically reduced star masses ε⋆ ≲ 10−3, which renders bosenovae and parametric resonance
signatures improbable.
In a more general context, the detailed predictions of the properties and distributions of ASMC
systems obtained in Subsec. 3.6.2 and Subsec. 4.7.2 represent a crucial improvement in the
understanding of galactic axion-small scale structure. To this date, similar results were only
obtained in Ref.s [34, 252], who focused on the case λ = 0. Our results in Subsec. 3.6.2
and Subsec. 4.7.2 demonstrate that the uncertainties in the low-M cutoff of the MCMF from
Subsec. 3.5.2 are essentially irrelevant for the abundance of high-mass ASMC systems in our
galaxy. As we will see in Chap. 6 and Chap. 7, these systems are of particular interest for
phenomenological observations of the AS instabilities at M⋆ =M⋆,λ,M⋆,γ .
Conveniently, also the λ = 0 core-halo relation is expected to remain roughly applicable for most
of the long-time stable solitons on the dilute branch in Fig. 4.1. On the other hand, our analysis
indicates a strong dependence of the predicted mass and number of axion stars on the exact
scaling α = 1/3 of the core-mass relation M⋆ ∝ M1/3. Better understanding of this relation is
especially relevant when considering the long-time accretion of axion star cores as demonstrated
in Sec. 4.3 and Ref. [240].
For now, we conclude that our approach of using linear growth predictions for the minicluster
mass distributions from Subsec. 3.5.2 and the canonical core-halo mass prediction at z = zeq
constitutes a conservative estimate on the true late-time axion star mass distribution. As we will
argue in the later chapters, the ongoing accretion from the host minicluster onto its soliton core
over a Hubble time is expected to further boost the number of the phenomenologically relevant
systems with M⋆ ≲M⋆,γ in Chap. 6 and M⋆ ≲M⋆,λ in Chap. 7 respectively.
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Signatures of Axion Stars 5
In the previous chapters, we have applied results from previous investigations on the properties
of axion miniclusters to infer the properties of their axion star cores. As shown in Fig. A.1, the
major objective of this approach is to estimate the rate and potential detectability of different
interactions between axion stars, miniclusters and astrophysical sources in the Milky Way. In
the last years, several promising detection methods exploiting the high density and particular
properties of axion stars have been proposed.
As for this particular chapter, which is indicated by the red colored rectangle of Fig. A.1, we
re-evaluate the expected signal rates of the most promising methods for axion small-scale struc-
ture in our galaxy. These are given by the self-interaction instability from Sec. 4.4 and Ref.s [35,
36, 253], the resonant conversion of axion dark matter in the strong magnetic fields of active
neutron stars [134–137, 140, 151–157, 214, 254–256] from Fig. 2.7 and the parametric resonance
of axion stars [32, 33, 253, 257, 258] in Sec. 4.5.
This chapter therefore serves as an extension of the predictions from previous literature, specif-
ically Ref.s [135, 137, 188, 197], which performed similar estimates on the expected event rates
but without detailed knowledge on the mass and size distribution of these objects. Our work
improves these predictions by incorporating the full mass distributions of ASs and MCs, the two
MCMF cutoffs from Subsec. 3.5.2, the two representative MCMF slopes α = −1/2, α = −0, 7
and different axion models ma and n. Importantly for this thesis, the results obtained in this
chapter will pave the way for the most promising detection prospects, which we examine in
Chap. 6 and Chap. 7. The contents of this chapter are taken from Ref. [1].
We start our analysis of the galactic signal rates by summarizing the calculation of the mass-
integrated collision rates in Sec. 5.1. The first application of the latter is presented in Sec. 5.2,
where we examine the signal rates arising from collisions between neutron stars and axion stars.
An analogous evaluation is given for the collisions between axion miniclusters and neutron stars
in Sec. 5.3. Sec. 5.4 and Sec. 5.5 focus on the detectability of bosenovae from ASMC mergers and
parametric resonance, respectively. Lastly, we also estimate the possible observation of axion
star signals from extra-galactic events in Sec. 5.6 before summarizing our results in Sec. 5.7.

5.1 Mass-integrated Collision Rates
Looking at the mass distributions from Fig. 3.8 and Fig. 4.14, it becomes clear that the properties
of galactic axion stars and their host miniclusters span across multiple orders of magnitude.
Additionally, the spatial distribution of dark matter throughout the galaxy leads to a strong
dependence of the number densities n(r), n⋆(r) from Eq. (3.51), Eq. (4.71) on the galactocentric
radius r. In order to account for the combined mass, size and number density distribution of
these objects, we introduce the mass-integrated collision rates of axion stars and miniclusters
with astrophysical objects using Milky Way parameters (see App. A).
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We use the indices ’i’ and ’j’ to label encounters between different types of objects, where the
symmetry factor

S =

{
1
2 i = j,

1 i ̸= j
(5.1)

prevents double counting in the case that i = j. The total rate of collisions per year and
galaxy can thus be obtained by integrating over the galactocentric radius r and over the mass
distributions of Mi,Mj according to

Γi−j =4πS

∫ R

0
dr r2ni(r)nj(r)

∫
dMi pi(Mi)

∫
dMj pj(Mj) ⟨σeff(v,Mi,Mj) v⟩v , (5.2)

where ni(r), nj(r) are the radially symmetric number densities of the objects i and j. For our
considerations, the radial symmetry holds for axion stars i = ⋆ and miniclusters i = mc, both
of which follow the NFW profile in Eq. (A.1). The effective cross section

σeff(v,Mi,Mj , Ri, Rj) = π (Ri +Rj)
2 (1 + ηgr) (5.3)

in Eq. (5.2) depends on the masses and sizes Mi, Ri, where

ηgr =
2G(Mi +Mj)

(Ri +Rj) v2
(5.4)

is the gravitational enhancement and v is the relative velocity of the collision. The mass distribu-
tions of each object i follow a probability distribution function pi(Mi) obtained from Eq. (3.51)
and Eq. (4.71) respectively. Angled brackets ’⟨ ⟩v’ in Eq. (5.2) refer to the average over the
distribution of relative velocities. We set the escape velocity of the Milky Way vesc = 622 kms−1

[194] as an upper limit on v and define the velocity-averaged cross section as

⟨σeff(v)v⟩v = 4π

∫ vesc

0
dv pv(v)σeff(v)v

3 (5.5)

with the Gaussian velocity distribution

pv(v) =
1

(πv2vir)
3/2

exp
(
− v2

v2vir

)
(5.6)

obeying the normalization condition

4π

∫ vesc

0
dv v2pv(v) = 1 . (5.7)

The reference velocity vvir = 239 km s−1 [194] is set to the virial velocity of the MW dark matter
halo and the normalization constant pv(0) ≈ 1/(πv2vir)

3/2 in Eq. (5.6) was approximated for
vesc ≳ vvir [33].
While the NFW dark matter halo exhibits a spherical symmetry allowing us to integrate Γi−j

according to Eq. (5.2) in the case of AS- and MC collisions, the baryonic matter distribution of
the MW follows the well-known disc and bulge profile. For collisions involving neutron stars,

92



5.1 Mass-integrated Collision Rates

we will thus use cylindrical coordinates instead and express the galactocentric radial coordinate
r =

√
ϱ2 + ℓ2 in terms of its cylindrical counterpart ϱ. Since the spread in observed neutron star

masses is small MNS ∼M⊙ compared to the MCMF and ASMF, we neglect the corresponding
NS mass distribution and assume the typical values of RNS = 10 km and MNS = 1.4M⊙

instead. This assumption is also computationally beneficial, because it ensures that all of the
mass-integrated rates amount to four-dimensional integrals (one in v, one to two in Mi,Mj and
one to two in space, see Eq. (5.2) and Eq. (5.8) respectively).
Therefore switching to cylindrical coordinates and dropping the dependence on Mj , we only
need to integrate over the galactic spatial neutron star distribution nNS(r) according to the
analogous definition

Γi−NS = 4πS

∫ Rϱ

0
dϱ ϱ

∫ Rℓ

0
dℓ nNS(ϱ, ℓ)ni

(√
ϱ2 + ℓ2

)

×
∫

dMi pi(Mi) ⟨σeff(v,Mi) v⟩v , (5.8)

where the boundaries Rϱ = 50 kpc, Rℓ = 25 kpc are fixed by the fitting functions to observational
data from Ref. [259] and Sec. A.7. The number densities ni used in the following sections are
the AS density, MC density and NS density defined by

n⋆(r) = C⋆ ρNFW (r), (5.9)
nmc(r) = Cmc ρNFW (r) , (5.10)

nNS(ρ, z) =
CNS

2πϱ
pϱ(ϱ)pℓ(ϱ, ℓ) , (5.11)

where the normalization constants C⋆, Cmc with units of inverse mass are set by requiring

N⋆,tot = 4π

∫
dr r2n⋆(r) (5.12)

Ntot = 4π

∫
dr r2nmc(r) (5.13)

with N⋆,tot, Ntot according to Eq. (4.76) and Eq. (3.53). The neutron star number density and
its dimensionless normalization constant CNS on the other hand are determined by requiring

NNS = 2

∫ Rϱ

0
dϱ

∫ Rℓ

0
dℓCNS pϱ(ϱ) pℓ(ϱ, ℓ) = 109 (5.14)

with pϱ(ϱ), pℓ(ϱ, ℓ) taken from the phenomenological fit to the galactic NS distribution introduced
in Ref. [259] and summarized in Sec. A.7. Note that the collision rates defined in Eq. (5.2)
and Eq. (5.8) are integrated over the mass range of the ASMF/MCMF and over the galactic
coordinates r, ϱ, ℓ, which means that they describe the total rate of collisions occurring in the
entire AS/MC population per year and galaxy.
We numerically solve the integrals in Eq. (5.2) and Eq. (5.8) using a CPU-parallelized Python
algorithm, which determines the boundaries of the mass integrals for i = ⋆,mc automatically
from the corresponding ASMF and MCMF in Sec. 4.7 and Subsec. 3.6.2. Same as in the
previous chapters, we repeat the procedure for different axion models ma, n from Subsec. 3.6.1
with 10−12 eV≤ ma ≤ 10−3 eV and n = 0, 1, 3.34. We start our analysis of the expected signal
rates with the neutron star collision rates described by Eq. (5.8) in the following two sections.
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5.2 Neutron-Star-Axion-Star Collisions
Over the last years, the resonant conversion of axion dark matter in the strong magnetic fields
surrounding active neutron stars has been investigated in numerous studies [134–137, 140, 151–
157, 214, 254–256]. We introduced the fundamental mechanism of this process in the theory
section on experimental detection in Subsec. 2.7.1 and apply the Goldreich-Julien model for
neutron stars to determine their magnetic field properties, similar to what was done in Ref.s [1,
134, 141]. Let us also emphasize that the resonance in this scenario amounts to the equality of
axion mass and photon plasma frequency on the conversion surface Rc of the neutron star and
that it is fundamentally different from the parametric resonance occurring inside axion stars in
Sec. 5.5.
In order to infer the total number of galactic and extra-galactic radio signals from neutron-star-
axion-star (NS-AS) encounters, we need to combine the collision rates from Sec. 5.1 with the
predicted single event signatures from existing literature. We therefore start by summarizing
predictions for the single event signal of a typical NS-AS transient in Subsec. 5.2.1 and combine
the resulting information about the transient signal strength with its expected abundance in
Subsec. 5.2.2 and Sec. 5.6. The same approach of a combined signal strength and rate analysis
will also be taken in the following sections and applied to an extra-galactic context in Sec. 5.6.

5.2.1 Signals of Neutron-Star-Axion-Star Transients

The dynamics of a transient event between a dilute axion star and an active neutron star
have been studied in Ref. [135] using Schrödinger-Poisson solvers. In their work, the authors
demonstrated that in the presence of the strong gravitational field of the neutron star, both the
self-gravity and the kinetic pressure of dilute axion stars can be neglected. Additionally ignoring
contributions from self-interactions λ = 0, they showed that the total system is dominated by
tidal forces from the neutron star in head-on collisions. This observation can be understood by
comparing the characteristic timescale of the gravitationally interacting axion star [135]

τ⋆ =

√
R3

⋆

GM⋆
(5.15)

to the crossing time

τT ≈ RRoche√
2GMNS/RRoche + v2∞

, (5.16)

that the AS with velocity v∞ = 10−3 at infinity needs to travel from the Roche radius [214]

RRoche = R⋆

(
2MNS

M⋆

)1/3

≃ 1.3 · 106 km
(

R⋆

102 km

)(
MNS

M⊙

)1/3(10−12M⊙

M⋆

)1/3

(5.17)

to the NS surface. Physically, the Roche radius represents the distance to the neutron star,
where the self-gravitational force of the soliton equals the external tidal force. For QCD axion
parameters and dilute axion stars with M⋆ ≲ 10−11M⊙, the crossing time τT is smaller than
τ⋆ so that the transient time is too short for the AS dynamics to become relevant, τT /τ⋆ < 1.
Similar effects were also studied extensively in Ref. [209].
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Therefore neglecting the energy contributions of the axion star in Eq. (4.2), Eq. (4.3) and
Eq. (4.4), Ref. [135] used hydrodynamical N-body simulations of the Schrödinger-Poisson sys-
tem1 with an external NS potential to simulate the collision of a soliton of mass M⋆ = 10−12M⊙

and radius R⋆ = 2691 km with a neutron star of mass MNS = 1M⊙ and conversion radius
Rc ∼ 100 km. The resulting dynamics of the collision are shown in Fig. 5.1. In the top panel of

Figure 5.1: Representative head-on collision between an axion star and a neutron star simulated for
ma = 10−5 eV, M⋆ = 10−12M⊙, R⋆ = 2691 km, MNS = 1M⊙ and with an axion star velocity v⋆ = 10−3

at infinity, taken from Ref. [135]. The two-dimensional mass densities are shown in cylindrical coordinates
ϱ, φ, ℓ, where the radial distance ϱ and height ℓ are shown. The white circle in the bottom panel indicates
the scale of the conversion radius Rc ∼ 100 km of the neutron star.

Fig. 5.1, the dilute axion star is initially in its spherically symmetric ground state configuration
with a radial extension of R⋆ = 2691 km along both ϱ and ℓ. At t = 0 s, the initial separation
between the neutron star- and axion star center is on the order of D ≃ 3.5 ·107 km. Later around
t ∼ 105 s, the axion star approaches a separation of D ∼ 29.000 km ∼ 10R⋆. By this time, the
gravitational perturbation introduced by the neutron star leads to a significant elongation of the
soliton profile across a radius of R′

⋆ ∼ 10R⋆ along the ℓ-direction. The bottom panel of Fig. 5.1
shows the time shortly after, when a fraction of the axion star mass has already been scattered
by the neutron star. At late times, when the entire soliton profile has crossed the neutron star
region, the initially bound axion star configuration is completely disrupted [135].
The key takeaway here is that the stretching of the dilute axion star in the neutron star gravita-
tional field leads to a time modulation of the resulting radio signal from axion-photon conversion
on the conversion surface Rc ∼ 100 km shown by the white circle in Fig. 5.1. In this context,
the duration of the signal ts ∼ τT depends on the size R⋆ of the axion star and the relative
velocity v ∼ 10−3 of the collision. The signal strength on the other hand scales with the soliton

1The SP equations can be transformed into continuity and Euler equations using the Madelung transformation
in App. A.8.
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density ρ⋆, which decreases with larger R⋆ and smaller M⋆ according to the mass-radius relation
of dilute axion stars in Eq. (4.17) with R⋆ ∝ 1/M⋆.
Recently, the authors of Ref. [134] investigated the brightness, spectral width and time depen-
dence of the radio flux arising from a NS-AS transient event in great detail. To this date, their
work represents the most complete analysis of the expected signatures from both NS-AS and
NS-MC collisions. We recall their results for the observed radio flux in the following and from

Figure 5.2: Sky-averaged differential flux as a function of the transient time in three NS-AS encounters
with different impact parameters b = 103 km, b = 5 · 103 km and b = 109 km at an observation distance
dT = 1 kpc. The representative transient events were simulated for ma = 26µeV, gaγγ = 10−14 GeV−1,
M⋆ = 10−13M⊙, R⋆ = 3905 km assuming an observation bandwidth of ∆fT = 10−5ma. Neutron star
and collision parameters are summarized in Tab. 5.1. Taken from Ref. [134].

this infer the galactic signal rates in Subsec. 5.2.2, Subsec. 5.3.2 and the extra-galactic signatures
in Sec. 5.6.
The authors of Ref. [134] calculated the rate of resonant conversion occurring inside a neutron
star whose Goldreich-Julien charge density follows Eq. (2.75) and whose rotation axis is mis-
aligned by an angle θm with respect to the dipolar NS magnetic field B. They computed the
position- and velocity-dependent resonant photon production rate of axions on the NS conversion
surface, assuming a flat axion velocity distribution below the escape velocity of the axion star
vesc(M⋆). The final results obtained for the sky-averaged differential flux observed from three
NS-AS collisions with different impact parameters b = 103, 5 · 103, 104 km are shown in Fig. 5.2.
For these representative transient events, the NS properties are summarized in Tab. 5.1, whereas
the axion mass and coupling are ma = 26µeV, gaγγ = 10−14 GeV−1 and the AS parameters are
M⋆ = 10−13M⊙, R⋆ = 3905 km. Fig. 5.2 shows the observed spectral flux densities ST in the
bandwidth ∆fT = 10−5ma and at a distance of dT = 1 kpc in units of mJy.
In all cases, the peak flux densities ranging from ST ∼ 106 mJy to ST ∼ 108 mJy are used to
determine the t = 0 s point of the transient. The total duration of the signal is roughly on
the order of ts ∼ 80 s, where signals with larger impact parameter b have slightly larger ts, as
seen by the blue line in Fig. 5.2. Remarkably, the blue flux density with the largest impact
parameter b = 104 km yields by far the largest peak flux with ST ∼ 108 mJy. This observation is
opposed to the naive expectation, that small impact parameters b ≈ 0 should provide the largest
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Parameter Value
B0 1.6 · 1014 G
PNS 3.76 s
θm 0.2 rad
v 100 km/s
θv 0 rad

Table 5.1: Neutron star (collision) parameters used in Fig. 5.2 and Fig. 5.6, both taken from Ref. [134]:
The magnetic field strength at the NS surface B0, the NS rotational period PNS , the misalignment angle
θm between magnetic field and rotation axis, the relative velocity of the NS-AS/MC collision v and its
orientation with respect to the NS rotation axis θv.

axion densities ρ⋆(r ≈ 0) in the NS region and hence the strongest signals. The explanation for
this behavior lies in the non-trivial structure of the axion star velocity distribution and in the
trajectories of the infalling axions, which tend to miss the conversion surface for small b [134].
Additionally, NS-AS signals with non-zero impact parameter show stronger sky-averaged flux
densities, but also strong anisotropy due to the modified particle trajectories, as discussed in
Ref. [134].
For the considerations in this section, we conclude that the radio flux observed from a NS-AS
transient event is considerable even at O(1 kpc) distances. The strong time modulation of the
signal is largely dependent on the orientation and dynamics of the specific collision, where in this
work, we neglect the anisotropy of the signals from Ref. [134] and use the results from Fig. 5.2
as benchmark for a representative NS-AS radio signal in Sec. 5.6. Before, the next step is to
compute the corresponding encounters rates of the above single event signals in our galaxy.

5.2.2 Galactic Signal Rates and Neutron Star Evolution

The event rates of collisions between axion stars and neutron stars in the Milky Way have been
found to be considerable Γ⋆−NS > 1 yr−1galaxy−1 in several earlier studies [135, 137, 188]. The
calculations were commonly based on the assumption that an O(1%) to O(1) fraction of dark
matter is gravitationally bound in axion stars or miniclusters. We apply our improved modeling
of the AS and MC mass distribution to the NS collision rates from Eq. (5.8) for an MCMF slope
of α = −1/2 using both low-mass cutoffs from Subsec. 3.5.2 in Fig. 5.3.
As before, solid lines indicate the M0-cutoff of the MCMF, while dashed lines show the results
using the lower Jeans mass cutoff, MJ,min. The encounter rates in Fig. 5.3 suggest that for
larger axion masses ma and smaller temperature dependence n, a considerable range of axion
parameters could be detected. This is firstly due to the fact that for smaller n, the average AS
radius R⋆ ∝ 1/M⋆ is significantly larger, thus enhancing the cross section in Eq. (5.3). Sec-
ondly, for lighter structures M⋆,M0 in Fig. C.4 and Fig. 3.7, the total number of axion stars
N⋆,tot ≲ Ntot ∝ 1/M0 is increased.
More precisely, the NS-AS collision rates show slightly different scalings with ma and n depend-
ing on the temperature index n, as already explained for M0(ma, n) in Sec. 3.2. In the repre-
sentative case n = 0, we can use the identities N⋆,tot ∝ M−1

0 ∝ m
3/2
a and ⟨R⋆⟩ ∝ m−2

a ⟨M⋆⟩−1 ∝
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Figure 5.3: Mass-integrated collision rates per year and galaxy between axion stars and neutron stars
in the Milky Way as a function of ma with MCMF power-law index α = −1/2, taken from Ref. [1].
Colored lines indicate the temperature index n, solid and dashed lines represent the two different low-M
cutoffs of the MCMF in Subsec. 3.5.2. In this case and in the following figures, the cosmological mass
band 10−6 eV ≤ ma ≤ 10−4 eV of the QCD axion is indicated by the gray-shaded region, where the black
solid line marks ma = 50µeV.

m−2
a M−1

0 ∝ m−1/2 from Eq. (4.75) and Eq. (4.18) to obtain the relations

Γ⋆−NS

∣∣∣
n=0

∝
{
N⋆,tot⟨R⋆⟩2 ∝ m

1/2
a , ηgr < 1

N⋆,tot⟨R⋆⟩MNS ∝ ma, ηgr > 1
, (5.18)

where we used MNS ≫ M⋆, MNS = const and the results displayed in Fig. C.3, Fig. C.5. The
turnaround point between the two scalings is reached when the gravitational enhancement term
ηgr in Eq. (5.3) becomes relevant. The other cases with n > 0 roughly follow the same trend,
but with different turnarounds for ηgr and marginally different scalings with ma from the tem-
perature evolution index n. Note also that for n = 0 the results in Fig. 5.3 and Fig. 5.5 are
independent of the low-M cutoff because the minimum MC mass Mh,min > M0,min > MJ,min
from Eq. (3.58) is the dominant constraint on the ASMF.
Summarizing the predictions of Fig. 5.3, the MJ -cutoff is generally beneficial, because it in-
creases the total number of objects by including the low-mass tail of the MCMF and ASMF
in Fig. 3.8, Fig. 4.14. Especially for ma ≳ 10−6 eV, n = 0 and ma ≳ 10−5 eV, n = 1 with the
MJ -cutoff, NS-AS encounters seem to be sufficiently probable to be observed over observation
timescales on the order of a decade or less. However the emission of a radio signal from an
AS-NS encounter in Subsec. 5.2.1 requires the neutron star to have an active magnetic field with
suitable photon plasma frequency ωp ≳ ma to allow for the resonant conversion of axions into
photons at the NS conversion surface.
In order to quantify the fraction of NS collisions, which are suitable to produce radio signals
through resonant conversion of axion DM from galactic ASs and MCs, we introduce the following
procedure: We compose a statistically distributed sample population of NS = 105 neutron stars,
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5.2 Neutron-Star-Axion-Star Collisions

for which the initial magnetic field strength B0, misalignment angle θm and rotation frequency
ΩNS = 2π/PNS with period PNS are determined from Gaussian distributions in B0, θm and
PNS respectively (see also Tab. 5.1).
For the corresponding distributions, we follow the approach in Ref. [141] by employing the results
from the neutron star population synthesis of Ref.s [260, 261]. This way, each of the NS = 105

neutron stars in the sample has its initial properties B0, θm, PNS drawn from the distributions

pB (B0) =
1√
2πσ2B

exp
[
−{log10 (B0)− µB}2

2σ2B

]
, (5.19)

pθ(θm) = sin
(
θm

2

)
, (5.20)

pP (PNS) =
1√
2πσ2p

exp
[
−(PNS − µp)

2

2σ2p

]
, (5.21)

where B0 is given in Gauss, θm in degrees and PNS in seconds [141]. The fit parameters are
µB = 13.2, σB = 0.62, µp = 0.22 and σp = 0.423 [260]. With the initial NS properties specified
by Eq. (5.19) to Eq. (5.21), the individual time evolution of the total sample is determined by
the evolution equations

˙θm = −βκ2
B2

P 2
NS

sin θm cos θm , (5.22)

˙PNS = β
B2

PNS

(
κ0 + κ1 sin2 θm

)
, (5.23)

where κ0 ∼ κ1 ∼ κ2 ∼ 1 and β = 6 · 10−40 s/G2 following Ref. [141]. As for B0, the Ohmic
dissipation of the dipolar magnetic field with initial strength B0 leads to an exponential decay

B(t) = B0 exp(−t/τOhm) , (5.24)

that is characterized by the Ohmic decay constant τOhm. Same as in Ref. [141], we assume
τOhm = 1Myr, which gives an approximate average NS lifetime of tNS ∼ 10 τOhm.
In order to obtain a representative NS population from the above evolution model, we assume
a constant formation rate over the age of the universe for the NS = 105 neutron stars with
uniformly distributed individual ages ti ∈ [0, 10 τOhm) and evolve each object i in time until ti
by numerically solving the evolution equations Eq. (5.22) to Eq. (5.24). The constant forma-
tion rate and Ohmic decay yield an overall survival suppression factor fsurv ∼ 10 τOhm/tH ∼
10Myr/10Gyr = 10−3, which has to be combined with an additional resonance factor fres(ma)
accounting for the relative fraction of active neutron stars with a plasma frequency fulfilling the
ma-dependent resonance condition ωp ≳ ma.
To infer the remaining suppression factor fres(ma), we need to determine ω(i)

p (ti) for each of the
neutron stars. This is done by assuming ne = |nGJ| for the typical electron density, which yields
the Goldreich-Julien plasma frequency at the NS surface

ωp =

√
4πnGJαEM

me
= 4π

√
BαEM

ePNSme
, (5.25)
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where we have evaluated nGJ = 2ΩNSB/e from Eq. (2.75) for θ = 0, π. We use Eq. (5.25) as
an estimate for the locally dependent plasma frequency ωp(r), similar to Ref. [141] and use the
latter in the resonance condition ωp ≳ ma for a given ma.
Following the above approach we determine the relative NS fraction fres(ma) numerically by
counting the number of neutron stars fulfilling the condition ωp ≳ ma for every ma in the range
10−12 eV ≤ ma ≤ 10−3 eV. The resulting effective fraction fNS(ma) = fsurvfres(ma) is plotted
in Fig. 5.4. For ma ≲ 10−7 eV, we obtain fres(ma) ≈ 1 and the effective NS fraction saturates

10
−7

10
−6

10
−5

10
−4

10
−3

ma [eV]

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

f
N

S
(m

a
)

Figure 5.4: Fraction fNS(ma) of active neutron stars in our mock model, which exhibit a plasma
frequency ωp ≳ ma enabling the resonant conversion of axions with mass ma, taken from Ref. [1].

at fNS(ma) ≈ fsurv ≈ 10−3.
On the other hand, in the range ma > 10−7 eV the fraction of objects in the sample fulfilling
the resonance condition quickly drops, until reaching fNS(ma) ≈ 0 at ma ≥ 10−4 eV. Since we
assume a total number NNS = 109 in this work, dropping below fNS ∼ 10−8 effectively excludes
NS-collisions from occurring in our galaxy. The ma-dependence of the suppression rate fNS in
Fig. 5.4 has important phenomenological consequences for the detectability of the expected NS-
AS encounters. We compute the expected signal rates emitted from galactic NS-AS encounters,
which are predicted from our NS population in Fig. 5.4 and from the collision rates in Fig. 5.3
by writing

Γs
i−NS = fNS · Γi−NS (5.26)

and plot the corresponding results in Fig. 5.5. As a consequence of the scaling Γ⋆−NS(ma) ∝ ma

in Eq. (5.18), Fig. 5.3 for large ma and from the NS fraction fNS(ma), the signal rates in Fig. 5.5
peak around ma ≈ 10−5 eV. Above these values, Γs

NS−⋆ quickly drops to zero, as expected from
fNS(ma). Crucially, for every of the axion models ma, n the signal rates end up well below
Γs
NS−⋆ = 1 yr−1galaxy−1. We therefore find that galactic radio signals from NS-AS collisions

are expected to be extremely rare, especially for axions with n = 3.34 and the QCD axion.
Let us emphasize here that the same remains true for a modified MCMF slope of α = −0.7,
which boosts the signal rates in Fig. 5.5 by n-dependent factors of order ∼ 10 to ∼ 100 giving
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Figure 5.5: Mass-integrated NS-AS signal rates per year and galaxy in the Milky Way, calculated from
Fig. 5.3 by applying the NS fraction fNS(ma) in Eq. (5.26). Colored lines indicate the temperature
dependence of the axion mass, solid and dashed lines represent the two different low-mass cutoffs of the
MCMF. Taken from Ref. [1].

Γ⋆−NS < 10−1 yr−1 for n = 0 and even smaller rates for n > 0 and the QCD axion. We checked
the resulting modifications and confirmed that none of them are sufficient to qualitatively alter
the results shown for α = −1/2 in Fig. 5.5.
Unless a majority of the galactic dark matter is contained in axion stars rather than in mini-
clusters (thus yielding f⋆ ∼ 1), NS-AS collisions will be far less promising than anticipated. A
possible exclusion to this prediction is given by the numerous formation of axion stars from topo-
logical defects in Ref. [236], for which the AS abundance would be greatly enhanced, f⋆ ∼ 1. As
previously mentioned, this mechanism is expected to apply only to specific axion models, which
leaves us with the conclusion that NS-AS collisions are generally improbable due to the limited
number and size N⋆,tot, R⋆ of the solitons. This observation motivates a similar investigation
for the signatures of their larger and more numerous host miniclusters, which we perform in the
next section.

5.3 Neutron-Star-Minicluster Collisions
With the signal rates for NS-AS encounters being insufficiently frequent, a reasonable next step
is to explore the abundance and signal strength of the resonant axion conversion in the NS
magnetosphere during minicluster-NS transients. This idea is especially appealing because the
mass M ≫ M⋆ and size of miniclusters with R ∼ 107 km is much larger than that of their
AS cores, thus enhancing the cross-section of their interactions. Another advantage is the fact
that the size of miniclusters with a spherically homogeneous profile in Eq. (3.24) scales with
their mass as R ∝ M1/3, opposed to the inverse mass scaling R⋆ ∝ 1/M⋆ of dilute axion stars
in Eq. (4.17). Owing to the modified scaling behavior of R in Eq. (5.3), the collision rates
of heavier objects are less suppressed by the cross-section in Eq. (5.3) compared to the axion
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star case. On the phenomenological site, this can be beneficial, because heavier ASMC systems
generally host a denser AS core.
On the other hand, the weaker gravitational binding and large size of miniclusters make these
objects more prone to tidal disruption, especially in dense environments such as the galactic
bulge. The resulting constraints on the survival of typical miniclusters over long times were
discussed in Subsec. 3.6.3 and explored in more detail in Ref.s [136, 188, 196, 197]. On the
basis of the results from Ref. [188] in Fig. 3.9, we adopt a simplified approach by truncating the
radial distribution of the MC population above the lower integration boundary Rsurv = 1 kpc
in Eq. (5.8). Therefore restricting our analysis to miniclusters outside of the galactic bulge,
r > Rsurv, we employ the same methods as in Sec. 5.2 using the MC mass and radius distribution
obtained from the MCMF and Eq. (3.24). As before, we start by summarizing the single event
signal in Subsec. 5.3.1 and combine the resulting detectability with the encounter rates from
Eq. (5.8) in Subsec. 5.3.2 and Sec. 5.6.

5.3.1 Signals from Neutron-Star-Minicluster Transients

The collision dynamics in a NS-AS encounter are fundamentally different from the NS-AS event
described in Subsec. 5.2.1 and Fig. 5.2. This is mostly because of the greatly enhanced radius
R/R⋆ ≫ 1 and mass M/M⋆ ≫ 1 of the axion overdensity undergoing photon conversion. Since
M0 ≪M⊙ for all axion models ma, n in Fig. 3.7, the gravitational and tidal forces in the inter-
action are again dominated by the neutron star. The size of the two colliding objects however
differs by many orders of magnitude, typically R/RNS ∼ 107 km/10 km ∼ 106, which implies
that the grid resolution in numerical simulations poses great challenges.
Due to lack of adequate numerical data on the temporal and spatial evolution of NS-MC encoun-
ters at the time of writing, we go on to describe the expected collision dynamics qualitatively
instead of demonstrating numerical simulations. Comparing the NS-MC scenario to the NS-AS
collision in Fig. 5.1 and Fig. 5.2, it is clear that the crossing time τT in Eq. (5.16) should be
much greater due to the larger size of the minicluster. Accordingly, the resulting signal duration
should be orders of magnitude larger ts ≫ 80 s than in the NS-AS case. In a similar way, the
large radius of the minicluster also increases the maximum impact parameter b leading to radio
conversion, which is shown in blue lines in Fig. 5.2 and Fig. 5.6.
On the other hand, and due to the reduced density ρmc ∼ 107 GeVcm−3 compared to ρ⋆ ≲

M⋆,λ/R
3
⋆,λ ∼ 1023 GeVcm−3 at M⋆ = M⋆,λ, the resulting signal strength will be drastically re-

duced compared to ST in Fig. 5.2. The dilute nature of the minicluster indicates that it too is
expected to experience significant elongation for distances D ≪ RRoche well below the Roche
radius. An important quantity determining the temporal evolution of the collision and resulting
signal is the profile of the miniclusters, which was shown to be well-fit by NFW profiles with an
increased concentration in Ref. [30].
Regarding the observed radio conversion signal, we already mentioned in Subsec. 5.2.1 that
Ref. [134] provides a detailed analysis of the resulting radio fluxes from both axion stars and
miniclusters in NS encounters. We demonstrate their predictions for the sky-averaged differen-
tial flux obtained from a collision involving a minicluster with NFW-distributed mass density
and the same NS parameters from Tab. 5.1 in Fig. 5.6. In agreement with the aforemen-
tioned expectations from the underlying collision dynamics, we find that the signal duration is
ts ∼ 400d for all of the three impact parameters b = 0, 108 km and b = 109 km. The maximum
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Figure 5.6: Sky-averaged differential flux as a function of the transient time in three NS-MC encounters
with different impact parameters b = 0 km, b = 108 km and b = 109 km at an observation distance
dT = 1 kpc. The representative transient event was simulated for ma = 26µeV, gaγγ = 10−14 GeV−1,
M = 10−12M⊙, R = 1.86 · 109 km assuming an observation bandwidth of ∆fT = 10−5ma. The
minicluster density was modeled using an NFW profile, while the neutron star and collision parameters
are the same as in Fig. 5.2 and Tab. 5.1. Taken from Ref. [134].

observable impact parameter in blue is bmax ≃ 109 km for the minicluster with M = 10−12M⊙,
R = 1.86 · 109 km, and thus much greater than bmax ≃ 104 km in Fig. 5.2.
Owing to the modified velocity distribution2 and infall dynamics of the larger miniclusters, the
dependence of ST on the impact parameter b is inverted compared to the AS case. A possible
explanation for this behavior is the fact that even with b ≫ 0 km, an order one fraction of the
NS conversion surface is surrounded by the axion MC cloud with R ≫ RNS during most of the
conversion time ts.
Looking at the signal strength, we confirm the expectation from the reduced axion density
ρmc ≪ ρ⋆ that the signal is significantly weaker than the AS collision with ST ∼ 10−2 mJy
compared to the maximum of ST ∼ 108 mJy from Fig. 5.2. Remarkably for smaller values of b,
the slope of the peak in ST at t = 0 d is significantly increased compared to Fig. 5.2. This can
be understood from the scaling ρNFW ∝ 1/r below Rs, which enters in the observed flux density
ST ∝ nmc ∝ 1/r, thus greatly enhancing the emission close to the MC center at r = 0 kpc.
The expected reduction in brightness also directly implies a reduced detectability, however as
we will show in the next part, the resulting collision rates in turn are greatly enhanced. Since
ST ∝ 1/d2T , where dT = 1 kpc in Fig. 5.6, it is clear that the maximum observable distance
of NS-MC encounters is much smaller than the AS case. The important question about which
observation distances are typical within a given time frame will be answered in the following by
computing the encounter rates of the above signals.

2Where we note that for the minicluster, the authors of Ref. [134] assumed a Maxwell-Boltzmann distribution
truncated at vesc(M) opposed to the flat truncated AS distribution below vesc(M⋆) in Fig. 5.2.
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5.3.2 Galactic Signal Rates of Neutron-Star-Minicluster Collisions

Starting with the mass-integrated collision rates between neutron stars and miniclusters at
galactic distance coordinates Rϱ, Rℓ > Rsurv = 1 kpc in Eq. (5.8), we show the results for an
MCMF slope of α = −1/2 using both low-mass cutoffs in Fig. 5.7. Compared to the analogous
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Figure 5.7: Mass-integrated collision rates per year and galaxy between miniclusters and neutron stars
as a function of ma for α = −1/2, taken from Ref. [1]. Colored lines indicate the temperature dependence
of the axion mass, solid and dashed lines represent the two different low-M-cutoffs from Subsec. 3.5.2.

AS case in Fig. 5.3, one observes a significant boost in the overall number of collisions per year
and galaxy. As argued before, this boost is a direct consequence of the increased number density
of MCs, nmc in Eq. (5.8), and of the enhanced cross section for R ∝ M1/3 in Eq. (5.3).
The qualitative behavior with ma, n is similar to the AS case in Fig. 5.3, where both larger ma

and smaller n are beneficial due to the decreased mass and increased number of the objects.
Analogous to Eq. (5.18), the n = 0 scaling of the NS-MC encounter rates in red in Fig. 5.7 and
Fig. 5.9 may be divided into two regimes using M0 ≪MNS , Ntot ∝ M−1

0 and R ∝ M1/3 from
Eq. (3.24)

Γmc−NS

∣∣∣
n=0

∝
{
NtotR2 ∝ m

1/2
a , ηgr < 1

NtotR ∝ ma, ηgr > 1
, (5.27)

with a modified turnaround ηgr ∼ 1 around the QCD axion mass ma ≈ 50µeV. For the cases
n > 0 in blue and green a similar trend with slightly different turnaround point ηgr ∼ 1 can be
seen.
Note that the results in Fig. 5.7 are nearly independent of the low-mass cutoffs MJ,min and
M0,min because the major contribution to the mass-integrated collision rates is given by the
high-mass tail with M ≳ M0 and R(M) ≳ R(M0). Without considering the NS resonance
condition ωp ≳ ma, as done in Fig. 5.7, NS-MC collisions appear rather frequently, reaching
≃ 4 yr−1 galaxy−1 for the QCD axion with both MCMF cutoffs and up to ∼ 103 yr−1 galaxy−1

for n = 0 and ma = 50µeV. Estimating the abundance of the corresponding galactic signal
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rates, which we are interested in requires multiplication of Γmc−NS with fNS from Fig. 5.4. The
resulting signal rates obtained from Fig. 5.7 are plotted in Fig. 5.8. Coincidentally as before,

Figure 5.8: Mass-integrated signal rates per year and galaxy, calculated from the encounters between ax-
ion miniclusters and neutron stars in Fig. 5.7 by applying the resonance condition fNS(ma) in Eq. (5.26).
Shown as a function of axion mass ma for α = −1/2. This figure is taken from Ref. [1].

the regions where Γmc−NS(ma) becomes large are strongly suppressed by fNS(ma) so that the
effective rates for producing astrophysical signatures are typically well below 1 per decade for
most models ma, n in Fig. 5.8. The only region, where the signal rates are comparable to one
per decade and galaxy is given by n = 0 in red and for ma ∼ 10−5 eV, which leaves the general
observation of galactic NS-MC encounters very improbable.
We emphasize that this result strongly depends on the power-law index α = −0.5 of the MCMF
dn/d lnM ∝ Mα which we have assumed until now. For comparison, the authors of Ref. [136]
used a steeper power-law with α = −0.7, motivated by numerical simulations of the formation
and evolution of miniclusters from Subsec. 3.5.1 and Ref. [30]. For this slope index, the relative
contribution of the low-M components is significantly increased, yielding enhancements by a
factor of ∼ 10 to ∼ 100 for the n-dependent encounter rates of miniclusters. We can confirm the
prediction of Γmc−NS ≃ 4 /day from Ref. [136], after neglecting the NS resonance and modifying
the MC mass range at ma = 20 eV to 3.3 · 10−19M⊙ ≤ M ≤ 5.1 · 10−5M⊙ with α = −0.7.
We also note that different to Ref. [136], we use the phenomenological NS distribution fit from
Ref. [259] in Sec. A.7 instead of the stellar distribution used by Ref. [136]. The results of our
calculations with power-law index α = −0.7 are shown in Fig. 5.9.
For the slope index α = −0.7 in Fig. 5.9, the low-mass cutoff dependence becomes stronger due
to the larger contribution of light miniclusters with M <M0, as argued above. The conclusion
to draw from our analysis of NS collisions is that despite the very promising encounter rates
with ASMC systems, the occurrence of actual signatures from axion-photon conversions is much
less common than previously expected. This is especially true for NS-AS collisions which are
basically undetectable in the galactic minicluster scenario. For the NS-MC case, detection might
still be possible, especially for n = 0, α = −0.7 and axion masses around ma ≃ 10µeV shown
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Figure 5.9: Mass-integrated collision- (left) and signal rates (right) per year and galaxy between axion
miniclusters and neutron stars as a function of ma, both taken from Ref. [1]. Calculated for the same
parameters as in Fig. 5.7, but for a modified MCMF slope of α = −0.7 instead (similar to Fig. 3.2).

in Fig. 5.9. Taking into account the large uncertainties in the NS properties and in the detailed
evolution of the minicluster population, the occurrence of radio signals from NS-MC collisions
cannot be ultimately ruled out. Our results suggest however, that future research on axion
miniclusters should aim to explore new detection mechanisms due to the small expected rates
of NS-AS/MC signals in our galaxy.

5.4 Axion Star Mergers and relativistic Bursts
With the galactic detection of radio bursts from axion small-scale structure in neutron star
encounters rendered improbable, we direct our attention towards the remaining two major
prospects of axion star detection: axion bursts from bosenovae in this section and radio bursts
from parametric resonance in Sec. 5.5. The relativistic bursts from axion star core mergers are
expected to yield similar signatures to the super-critical solitons from Sec. 4.4, since in both
cases the (merged) core mass can reach a super-critical level, M⋆ ≥M⋆,λ.
An important distinction of the bosenovae occurring in the isolated stars of Sec. 4.4 is that the
super-criticality was not introduced through a dynamic process like the gravitational collapse
and subsequent soliton merging considered in this section. We therefore summarize the funda-
mental collision dynamics following the numerical simulations of dilute axion star mergers from
App. B in Subsec. 5.4.1 and consider the abundance of the corresponding bursts separately in
Subsec. 5.4.2. In the latter section, we explore both the mass-integrated rates for direct mergers
of axion stars, with Γ⋆−⋆ from Eq. (5.2), as well as that of core mergers following previous host
minicluster mergers with rate Γmc−mc.

5.4.1 Axion Star Merger Dynamics

Starting with the collision dynamics between two collapsing dilute axion stars, we can employ
the numerical methods from App. B to simulate the non-relativistic evolution of the merging
system. Analogous simulations were previously performed in Ref.s [31, 33, 172] using similar
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numerical methods. It should be noted here that the above references as well as our subsequent
analysis focus on the case of dilute, non-relativistic soliton solutions. This regime is distinct
from the collapse and signatures of compact axion stars, for which the resulting multimessenger
merger signal was recently investigated for the first time in Ref.s [34, 253].
Compact axion stars exhibit significantly higher densities thus requiring relativistic simulations,
for which the self-interactions are often neglected - as was also done in Ref.s [253, 257]. Our
considerations of axion bursts are crucially different from their results, as we are interested
in the scalar emission arising from the relativistic multi-particle processes induced by the axion
self-interactions with λ < 0 and the axion potential from Eq. (2.9). The scalar emission observed
in Ref.s [253, 257] on the other hand arises only from the relativistic collapse of the compact
objects, where no self-interactions λ = 0 were assumed.
We will therefore rely on the signal predictions from Sec. 4.4 for a qualitative understanding
of the resulting axion bursts and demonstrate the non-relativistic collision dynamics leading
to the super-criticality of the merged axion star by means of the non-relativistic simulations
from App. B. More specifically, we re-simulate the condensation of the λ = 0 SP system with
Ñ = 55, L̃ = 44 from App. B and Fig. 4.2 until t̃ = 4000 in order to obtain a stable soliton con-
figuration including its quasi-particle environment. The total merging system is then composed
out of spherical background fluctuations of the axion field, of the soliton core, the excited states
around it and of another solitonic object to be specified in the following.
The technical details of the simulation in Fig. 5.10 are presented in App. B and will be summa-
rized together with its time evolution in the following. The condensed axion star core is first
evolved until well after the time of condensation, t̃ = 4000 ∼ 3τ̃gr. After reaching this time, the
grid fields get shifted such that the soliton core sits in the origin of the transformed coordinates3.
We determined that the initial mass of the central soliton core at x̃ = 0, t̃ = 4000 is roughly
M̃⋆ ≈ 5, which corresponds to M⋆ ≈ 1.34 · 10−14M⊙ for QCD axion parameters ma = 50µeV,
fa ≃ 1011 GeV.
Next, a spherical object with similar mass M̃s = 6 or Ms ≈ 1.6 · 10−14M⊙ and initial velocity
|ṽ0| = ṽy = 1 is embedded at position x̃ = (0, 17, 0) in the volume. The corresponding spheri-
cal overdensity with physical velocity −v0 along the y-direction4 can be seen together with the
condensed soliton system in the top left panel of Fig. 5.10, which shows the axion field density
ρ̃(x̃) = |ψ̃(x̃)|2 at different times and z̃ ≈ 05.
For the numerical implementation of the additional soliton M̃s, we follow the best-fit sech profile
obtained in Ref. [231] using the definition

ψ̃s(x̃) = ψ̃sech (|x̃|) exp(iṽyỹ + iθs) , (5.28)

where θs = 0 in Fig. 5.10 is a relative phase and ψ̃sech(r̃ = |x̃|) is the profile fit from Eq. (B.38).
Both of these objects can be seen to have similar size and density in Fig. 5.10, where the actual
merger event at t̃ ≈ 4010 is depicted in the top right panel. After the solitons have collapsed, a
spherically shaped wave front of gravitationally accelerated particles can be seen to spread out
from the central simulation region in the bottom left panel of Fig. 5.10. The wave front expands
and dilutes over time, as some of the accelerated particles lose energy through scattering in the

3The shift symmetry is ensured by the periodic boundary conditions with ψ̃(x̃) = ψ̃(x̃ + Lñx̃) [170]
4For the SP system in Eq. (3.14), Eq. (3.15), v0 is the reference velocity of the rescaling in App. A.6.
5Note that the approximate equality of the position z̃ is related to the stochastic motion of the soliton, which

slowly drives it away from the origin after t̃ = 4000.
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background fields. A fraction of the wave front particles with velocities v > vesc(M⋆,m) would

Figure 5.10: Simulation of two sub-critical axion stars with initial masses M̃⋆ ≈ 5, M̃s = 6 merging
into a stable configuration with M̃⋆,m ≈ 8 < M̃⋆,λ around t̃ ≈ 4010 for λ̃ = 0. The numerical system is
identical with the one simulated in Fig. 4.2 and App. B, except for the spherical object M̃s with θs = 0 in
Eq. (5.28), initial position x̃0 = z̃0 = 0 , ỹ0 = 17 and velocity |ṽ0| = ṽy = 1. At t̃ = 4000, the condensed
soliton M⋆ is set to the origin x = 0. For QCD axion parameters ma = 50µeV, this corresponds to
M⋆ ≈ 1.34 · 10−14M⊙, Ms = 1.6 · 10−14M⊙, with a total merger duration of tm ≈ 6.3 yrs.

exit the simulation volume after t̃ = 4015. The overall collision with t̃ = 15 takes roughly 6.3 yrs
for QCD axion parameters.
At t̃ > 4010, the two solitons have formed a stable object with merged mass M̃⋆,m ≈ 8 or
M⋆,m ≈ 2.14 ·10−14M⊙ for QCD axion properties. The initial momentum of the moving soliton,
Msvs, gets absorbed into the quasi-particle environment of the central core region. We also
confirm the mass prediction [33]

M⋆,m ≈ 0.7(M⋆,1 +M⋆,2) (5.29)
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for the final merger mass in all of our simulations. We emphasize that for the sub-critical
configuration M⋆,m < M⋆,λ simulated in Fig. 5.10, the merged soliton remains stable over long
times t̃ > 4015.
Accordingly, the simulation in Fig. 5.10 is purely non-relativistic, so that only the gravitational
collapse of dilute stars without the self-interaction instability from Fig. 4.8 can be demonstrated.
We thus do not investigate the long-time evolution of the merged system, but continue by
comparing the dependence of the collision dynamics on the relative phase θs of the object M̃s in
Eq. (5.28). Since the system at hand is of wavelike nature, the interference between the objects
M̃⋆ and M̃s is effectively governed by their relative phase θ⋆ − θs

6.
To demonstrate this effect, we show the results from four different, analogous merger simulations
with the same grid parameters from Fig. 5.10 and different θs in Fig. 5.11. Remarkably, the

Figure 5.11: Maximum density maxx̃ |ψ̃(t̃, x̃)|2 over the three-dimensional simulation volume in three
merger simulations with the same parameters from Fig. 5.10 but at different θs = 0, π/2, π, 3π/2. Different
colors indicate different phases θs of the soliton wavefunction ψs in Eq. (5.28).

resulting collapse around t̃ = 4010 is most violent for θs = π/2 in blue lines in Fig. 5.11.
This is most likely due to the two soliton profiles having more suitable phases for constructive
interference. In contrast, the green curve with θs = 3π/2 shows the largest peaks at earlier times
t̃ < 4010, when the soliton travels through the axion background fluctuations.
This peculiar behavior suggests a separate effect of constructive interference with the background
field. Even more remarkable is the fact that the late-time oscillations of the merged soliton at
t̃ > 4010 in green are also enhanced, compared to the other three phases θs in blue, black
and red. It could therefore be possible that the phase matching between background field and
external soliton plays a particularly important role in the merging process.
For future research, the role of background fluctuations in the merger process would be worth

6We do not determine the time-dependent phase θ⋆ of the condensed core in our simulations.
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further investigation. This would be feasible through use of the techniques from App. B with
minor additional effort. However for the purpose of this work, we conclude that the collision
dynamics of dilute axion stars behave similar to the simulation of sub-critical axion stars in
Fig. 5.10 until the self-interaction instability develops. After the instability is triggered, the
merged soliton mass is considered to be greater than the critical value of M⋆,λ from Eq. (4.16)
leading to the emission of a relativistic axion burst similar to the one in Fig. 4.10.
An important restriction to this process is that the relative velocity v < vesc(M⋆,m) required
for the formation of a merged soliton with M⋆,m ≈ 0.7(M⋆ +Ms) is very small compared to
astrophysical scales vvir ≫ vesc(M⋆,m), where vvir = 239 km s−1 is the virial velocity of the NFW
halo. We use this observation to investigate the resulting abundance of the AS merger events in
the next section.

5.4.2 Axion Star Merger Rates

With the fundamental collision- and burst dynamics demonstrated in Subsec. 5.4.1 and Sec. 4.4,
we will ignore any further details of the bosenova evolution in this subsection and assume that the
resulting density fluctuations in the axion dark matter background could potentially be detected
by earth based experiments [36, 234]. We dedicate a separate chapter to the detectability of the
resulting burst signals in Chap. 7 and motivate the in-depth analysis with estimations of the
galactic signal rates in the following.
To estimate how common the occurrence of such axion bursts in our galaxy is, we start by
computing the model-dependent (ma, n) and mass-integrated collision rates for i = j = ⋆,mc in
Eq. (5.2) with symmetry factor S = 1/2. The results for direct AS-AS core collisions are shown
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Figure 5.12: Mass-integrated binary collision rates of axion stars per year and galaxy as a function
of axion mass ma, taken from Ref. [1]. Colored lines indicate the temperature dependence of the axion
mass, solid and dashed lines represent the two different low-M cutoffs for α = −1/2.

for both MCMF cutoffs in Fig. 5.12 as a function of ma and n.
The collision rates in Fig. 5.12 show a linear scaling with ma, which can again be explained by
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simple considerations: For both axion stars and miniclusters, the gravitational enhancement in
Eq. (5.4) is negligible, ηgr ≪ 1, so that the encounter rates for n = 0 in red lines in figures 5.12
with N⋆,tot ∝ M−1

0 and ⟨R⋆⟩ ∝ m−1/2 (see Fig. C.5) simply scale as

Γ⋆−⋆

∣∣∣
n=0

∝ N2
⋆,tot⟨R⋆⟩2 ∝ m2

a . (5.30)

The same scaling also applies to the n = 0 minicluster rates in red in Fig. 5.14 and Fig. 5.16.
For the remaining cases n = 1, 3.34 in blue and green, the scalings of the binary collision rates
with ma will be marginally different but qualitatively identical as argued before.
Coming back to the predicted encounter rates in Fig. 5.12, we find that for all of the models
ma, n with n = 0, 1 the resulting collisions are extremely common, Γ⋆−⋆ ≫ 1 yr−1 galaxy−1.
This is especially true for QCD axion masses ma = 50µeV and heavier axions, with the only
exception given by the two M0-cutoff with temperature index n = 3.34 in green dashed lines.
As in the previous sections, the MJ -cutoff produces larger event rates due to the reduced mass
and enhanced number of galactic objects, see Fig. C.3. Overall, we can summarize that similar
to the previous cases, the occurrence of AS-AS collisions is mostly governed by their abundance
and therefore increased for lighter object masses, i.e. for heavier ma. Equivalent predictions
were already made by the authors of Ref. [33]. In contrast, the same statement does not hold
true for the case of AS-AS merger rates, which we aim to investigate in this section.
By our definition, mergers are different from collisions in the sense that the final state is a
gravitationally bound merged soliton with final mass M⋆,m ≃ 0.7(M⋆,1+M⋆,2). The probability
for the two solitons involved in an AS-AS collision to merge can be estimated from the ratio of
the escape velocity of the binary cores, vesc(M⋆,m) and the typical velocity vvir of objects in the
NFW dark matter halo, which for the scaling in Eq. (5.5) yields

Γm
⋆−⋆ ∼

[
vesc(M⋆)

vvir

]4
Γ⋆−⋆ ≡ fescΓ⋆−⋆ (5.31)

for the corresponding merger rate Γm
⋆−⋆. We apply this estimate to our calculation of the total

number of AS mergers determined by Eq. (5.2) in Fig. 5.13 by replacing the velocity cutoff vesc
in Eq. (5.5) with the escape velocity v⋆,esc(M⋆,1 +M⋆,2) ≃

√
2G(M⋆,1 +M⋆,2)/(R⋆,1 +R⋆,2) of

each binary axion star collision. The corresponding fraction of encounters, which can lead to a
merger has an upper bound of

fesc(M⋆, n = 0) ≲

[
v⋆,esc(M⋆,λ)

vvir

]4
50µeV∼

(
10ms−1

100 km s−1

)4

∼ 10−16 (5.32)

and it depends on the distribution of AS masses M⋆ ≤M⋆,λ in the ASMF, where we have taken
the maximum AS properties as an upper bound for n = 0 and neglected the impact of the
reduced number density at large M⋆ for simplicity.
Integrating the M⋆-dependent suppression factor from Eq. (5.32) over the whole range of AS
masses and taking into account the reduced number densities at large values of M⋆, the effective
suppression can become orders of magnitude smaller than fesc(M⋆,λ) ∼ 10−16 - depending on
the temperature index n and the low-mass cutoff Mmin. Accordingly, the AS merger results for
an MCMF slope of α = −1/2 in Fig. 5.13 are generally many orders of magnitude lower than
the corresponding collision rates in Fig. 5.12. More specifically, all of the AS merger rates in
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Figure 5.13: Mass-integrated total merger rates of axion stars per year and galaxy as a function of
axion mass ma for α = −1/2, taken from Ref. [1]. Successful AS mergers are determined by applying the
merged core escape velocity v⋆,esc(M⋆,1 +M⋆,2) ≃

√
2G(M⋆,1 +M⋆,2)/(R⋆,1 +R⋆,2) as a velocity cutoff

in Eq. (5.3).

Fig. 5.13 are well below Γ⋆−⋆ < 1/tH ∼ 10−10 yr−1 galaxy−1, which indicates that these pro-
cesses are unlikely to occur even over the age of the universe.
The above analysis shows that while galactic axion star encounters in Fig. 5.12 are very common
Γ⋆−⋆ ≫ 1 yr−1 galaxy−1 for most models except n = 3.34 with the M0-cutoff, they are extremely
unlikely to ever merge. The simple explanation for this strong suppression are the relatively
very small binding energy of axion stars and their large typical velocities in the Milky Way DM
halo with velocity dispersion vvir = 239 km s−1.
The small escape velocities in return are related to the low masses of axion stars M⋆ ≪ M⊙.
This observation motivates another equivalent study of merger events in the host minicluster
population, which generally exhibits significantly larger masses M ≫ M⋆ compared to their
AS cores, which means that these objects are overall much more likely to merge. Since in the
gravitational limit with weak self-interactions λ = −m2

a/f
2
a , every minicluster has been shown

to host at most a single core (see Fig. 4.2, Fig. 5.10), AS core mergers are guaranteed to appear
after a successful host minicluster merger.
Therefore replacing the AS parameters in Eq. (5.2) with the corresponding MC properties and
using vmc,esc(M1+M2) ≃

√
2G(M1 +M2)/(R1 +R2) as a velocity cutoff in Eq. (5.3) instead,

we can similarly compute the collision- and merger rates of miniclusters shown in Fig. 5.14 and
Fig. 5.15, again for α = −1/2. Starting with Fig. 5.14, we find a significant increase in the
overall collision rates of miniclusters compared to the AS-AS encounters in Fig. 5.12. This can
be understood from two effects: First, the increased number of objects due to the absence of the
ASMF cutoffs from Subsec. 4.7.1 in the MCMF and secondly the different scaling of the radius
R ∝ M1/3 compared to R⋆ ∝ 1/M⋆, which enhances the cross section of the intermediate and
high-mass component of the MCMF in Eq. (5.3).
Concerning the merger rates of miniclusters, it is important to note here that only MC-MC
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Figure 5.14: Mass-integrated MC collision rates per year and galaxy as a function of axion mass ma,
taken from Ref. [1]. Colored lines indicate the temperature dependence of the axion mass, solid and
dashed lines represent the two different low-M cutoffs for α = −1/2.

mergers with a total mass M1+M2 ≥ M(M⋆,λ) will safely lead to the production of relativistic
bursts (where we have inverted the core-halo relation in Eq. (3.57) to find the MC mass corre-
sponding to M⋆,λ). For this reason we plot the minicluster bosenova merger rates in Fig. 5.15
and Fig. 5.16 by only considering collisions, which simultaneously pass the velocity cutoff vmc,esc
and the requirement M1+M2 ≥ M(M⋆,λ). In a more general context, the AS cores are not ex-
pected to merge simultaneously with their host miniclusters. Nevertheless, the relevant free-fall
time of the two AS cores is generally much smaller than the time between two MC collisions,
so that we can assume the axion stars to merge quasi-instantaneously to a good approximation
(see also the calculation in Sec. 5.6) in the following.
For the case n = 1 in blue lines in Fig. 5.15, the bosenova merger rates quickly drop to zero
beyond ma ≳ 10−5 eV where 2Mmax < M(M⋆,λ). More importantly, the MC signal rates are
significantly enhanced in the case of the MJ -cutoff due to the large total number of MCs,
reaching Γmc−mc ≳ 1 yr−1 galaxy−1 for axions with n = 3.34 and at ma ≈ 50µeV, α = −1/2.
The weak dependence of the merger rates on ma indicates that for larger axion masses and
hence smaller M0(ma), the boost from having an increased number of objects Ntot ∝ 1/M0

roughly cancels with their decreased merger rates due to the smaller typical size R ∝ M1/3
0 .

The corresponding suppression factor for minicluster merger rates is bound from above by

fesc(M, n = 0) ≲

[
v⋆,esc(Mmax)

vvir

]4
50µeV∼

(
100ms−1

100 km s−1

)4

∼ 10−12 , (5.33)

which as expected is orders of magnitude larger than the corresponding factor of the AS case in
Eq. (5.32). Here we have again evaluated fesc(M) at the maximum MC mass Mmax given by the
high-mass cutoff in Eq. (3.46) and neglected the reduced number density dn/dM at M = Mmax
to obtain an upper bound on fesc.
Lastly, we note that due to the suppression factor in Eq. (5.33) and its mass-dependence, the

113



Chapter 5 Signatures of Axion Stars

10
−12

10
−10

10
−8

10
−6

10
−4

ma [eV]

10
−6

10
−4

10
−2

10
0

10
2

Γ
m
c
−
m
c
[y
r−

1
g
a
la
x
y
−
1
]

n = 0, M0-Cutoff

n = 1

n = 3.34

n = 0, MJ -Cutoff

n = 1

n = 3.34

Figure 5.15: Mass-integrated bosenova MC merger rates with M1 + M2 ≥ M(M⋆,λ) per year and
galaxy as a function of axion mass ma for α = −1/2. Successful MC mergers are determined by applying
the merged core escape velocity vmc,esc(M1+M2) ≃

√
2G(M1 +M2)/(R1 +R2) as a velocity cutoff in

Eq. (5.3). Taken from Ref. [1].

bosenova rates in Fig. 5.15 are dominated by encounters between the numerous low-mass mini-
clusters with M ≃ Mmin and the rare high-mass MCs with M ∼ Mmax. To investigate the
benefit from an increased number of light MCs with M ≃ Mmin, which can be captured by the
heaviest structures, we also plot the results obtained for a modified MCMF slope index α = −0.7
from Subsec. 3.5.1. The steeper MCMF slope resulting from assuming α = −0.7 in Eq. (3.51)
implies a larger relative abundance of the lightest miniclusters M ≃ Mmin.

Figure 5.16: Mass-integrated MC collision rates (left) and MC merger rates with M1+M2 ≥ M(M⋆,λ)
(right) per year and galaxy as a function ofma, taken from Ref. [1]. Colored lines indicate the temperature
dependence of the axion mass, solid and dashed lines represent the two different low-M cutoffs for
α = −0.7. Note that MC mergers could also produce radio bursts when M⋆,γ < M⋆,λ (see Sec. 5.5).

As a consequence, the total number of miniclusters Ntot is significantly boosted due to the
smaller fraction of heavy MCs and hence larger number of light MCs in the Milky Way with
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total mass Mtot = fmcMMW. For the same reason, the total numbers of MC-MC encounters
Γmc−mc ∝ N 2

tot and bosenova mergers in Fig. 5.16 are strongly enhanced compared to the
α = −1/2 case in Fig. 5.14 and Fig. 5.15.
We conclude that for the detection of bosenovae from galactic ASMC systems, the low-M cutoff
and the slope index α = −1/2,−0.7 of the MCMF have a strong impact on the expected
bosenova event rates investigated in this section. Our results suggest that for the QCD axion
case ma = 50µeV, n = 3.34 and axions with similar temperature evolution, bosenovae can occur
as often as ∼ 1 per year for α = −1/2 and as often as ∼ 3 per day for α = −0.7, both with the
MJ -cutoff.
Conversely, for the M0-cutoff the expected merger rates in Fig. 5.15 and Fig. 5.16 are well below
one per year - independent of ma and n. Bosenovae from MC-MC mergers thus require large
numbers of miniclusters and benefit from a larger maximum mass Mmax as seen for n > 0 in
dashed lines in Fig. 5.15 and Fig. 5.16. Even in the cases, where bosenova merger rates are
small, other mechanisms such as AS accretion, could still trigger large numbers of bosenovae
even for the M0-cutoff. This possibility will be explored in more detail in Chap. 7.

5.5 Parametric Resonance and Axion Star Accretion
The last major axion star signature to be evaluated by means of the galactic ASMF is the
parametric resonance of solitons with M⋆ ≥ M⋆,γ from Eq. (4.61) and Sec. 4.5. Similar to
the previous case of the critical mass M⋆,λ, the decay mass M⋆,γ may be reached through two
fundamental processes: First through successful mergers of axion stars, which were found to
be sufficiently common in our galaxy for n = 1, 3.34 with the MJ -cutoff in Subsec. 5.4.2 and
secondly through the ongoing mass growth of the solitonic core that was observed in Sec. 4.3.
In this section, we investigate both possibilities, while focusing on the second case of axion star
accretion, which turns out to be the most promising mechanism. The merger process on the
other hand was already discussed in Sec. 5.4, where the AS resonance rates are qualitatively
similar as long as M⋆,γ ≲M⋆,λ and the resonance is not prevented by the relativistic collapse at
the maximum stable mass M⋆,λ. As with the previous signatures, we start by demonstrating the
electromagnetic signal and luminosity of parametrically resonant solitons in Subsec. 5.5.1. We
compute the abundance of the corresponding radio bursts in Subsec. 5.5.2 and estimate their
extra-galactic detectability in Sec. 5.6, using the signal strengths from Subsec. 5.5.1.

5.5.1 Signals from parametrically resonant Axion Stars

While the resonance condition for axion stars in Eq. (4.61) could be derived by means of simple
considerations and for a homogeneous soliton profile, the computation of the exact properties
of the corresponding signal is very challenging to perform. The most complete analysis of the
electromagnetic signal from dilute R⋆ ≳ R⋆,λ and self-interacting λ ̸= 0 axion stars is currently
provided in the extensive study of Ref. [31].
Importantly for this work, the authors of Ref. [31] investigated two separate scenarios in which
radio emission may be observed from critical solitons: First, when the parametric resonance gets
triggered in an axion star with resonant mass M⋆ =M⋆,γ < M⋆,λ, as introduced in Sec. 4.5. And
secondly, when the increased axion densities ρ⋆ during the collapse of a non-resonant, unstable
soliton with M⋆ = M⋆,λ < M⋆,γ alleviate the resonance condition from Eq. (4.58), leading
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to stimulated decay of axions into photons below the resonance mass M⋆,γ . The first case of
resonant axion stars on the dilute branch can be described by neglecting self-interactions, i.e. λ =
0, since the dynamics are governed by the gravitational and electromagnetic interactions. The
second case on the other hand involves larger axion field densities and thus requires consideration
of the full axion potential from Eq. (2.9).
Starting with the first scenario involving resonant solitons and vanishing self-interactions, we
emphasize that the resonance mass for λ = 0 is different to M⋆,γ due to the absence of self-
interactions in the groundstate solution Ms of the SP system. To make clear the distinction
between an ’actual’ axion star M⋆ with λ = −m2

a/f
2
a < 0 and the Schrödinger-Poisson soliton

mass Ms for λ = 0, we change the subscript from ’⋆, γ’ to ’s, γ’. The corresponding λ = 0
Schrödinger-Poisson resonance mass can then be written as [31]

Ms,γ = 7.66
mPl

magaγγ
, λ ≈ 0 , (5.34)

where we note that the parametric resonance process occurring for Ms ≥ Ms,γ is equivalent to
the case M⋆ ≥M⋆,γ - apart from the modified mass-radius relation for λ < 0.
The λ = 0 soliton radius corresponding to the soliton mass Ms can be obtained from numerical
calculations of the eigenstates of the Schrödinger-Poisson system Eq. (3.14), Eq. (3.15), which
are given in App. A.5. It is commonly expressed in terms of the half-mass radius Rs of the
corresponding n = 0 ground state with mass Ms from Eq. (A.2) according to [49]

Rs ≃
4m2

Pl
Msm2

a

= 4r0 , (5.35)

where the equivalent scale radius r0 = m2
Pl/(Msm

2
a) provides a dimensional estimate of the half-

mass radius, see also Fig. 5.18. In the following simulations for λ = 0, the Schrödinger Poisson
solitons Ms undergo the same parametric resonance and qualitative behavior, which is expected
for the λ = −m2

a/f
2
a axion stars treated in this work.

The representative radio luminosity Lγ ∝ nγ ∝ exp(2µt) from a resonant Schrödinger-Poisson
soliton with Ms = 1.04Ms,γ is depicted in Fig. 5.17. Fig. 5.17 has been obtained using the
rescaled units from Ref. [31] and App. A.6. The results are shown in universal units, which
are fixed by the specific value of Ms = 1.04Ms,γ and the axion model with ma, fa, gaγγ . For
QCD axion values ma = 50µeV, fa ≈ 1011 GeV and with an axion-photon coupling gaγγ =
10−12 GeV−1 that is enhanced compared to standard KSVZ models, this corresponds to Ms =
1.74 · 10−12M⊙ and Rs ≃ 24.2 km following Eq. (5.35).
Overall, the time evolution of the resonating λ = 0 soliton in Fig. 5.17 can be roughly split
into two stages: First the stage of exponential growth in which Lγ ∝ nγ ∝ exp(2µt) in dashed
lines and secondly the late-time regime indicated by the gray region and black dotted line in
Fig. 5.17. The late-time behavior is characterized by the onset of backreaction, which appears
when the exponentially growing decay of axions into photons starts to deplete the total mass
of the soliton. Since the photon conversion rate depends on the decaying axion field density
ρs(t) ∼M⋆/R

3
⋆, the backreaction eventually leads to a decrease and saturation of the luminosity

in Fig. 5.17.
For the exemplary case of a resonant SP soliton with Ms = 1.04Ms,γ in Fig. 5.17, gaγγ =
10−12 GeV−1 and QCD axion values for ma, fa, the peak luminosity corresponds to Lγ,max ∼
2 · 1039 erg s−1. Assuming a galactic Doppler spread of ∆f ∼ 10−3ma from vvir ∼ 10−3 and a
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Figure 5.17: Evolution of the luminosity of a resonating soliton with Ms = 1.04Ms,γ from Ref. [31].
For QCD axion parameters ma = 50µeV, fa = 1011 GeV with enhanced axion-photon coupling gaγγ =
10−12 GeV−1, this corresponds to Ms = 1.74 · 10−12M⊙ and Rs ≃ 24.2 km. The dashed black line shows
the regime, where Lγ ∝ exp(2µt) increased exponentially, whereas the black dotted line indicates the
regime after the onset of backreaction.

sensitivity of S ∼mJy [191], the resulting photon flux could possibly be detected at maximum
distances of O(Gpc), see Sec. 5.6 for details.
We also demonstrate the directional dependence of the resulting electromagnetic flux predicted
in Ref. [31] in Fig. 5.18. The left panel of Fig. 5.18 shows the photon flux in a cubic volume of
size L ∼ 4.2r0 obtained from a resonant soliton with λ = 0 and increased mass Ms = 1.36Ms,γ ,
again in rescaled units. For QCD axion values ma = 50µeV, fa ≈ 1011 GeV with an enhanced
axion-photon coupling gaγγ = 10−12 GeV−1, the resonant soliton in the left panel has a mass
Ms = 2.28 · 10−12M⊙ and radius Rs ∼ 18.5 km. The electromagnetic flux is normalized to
its maximum value Fγ,max, which can be estimated from Fig. 5.17 and Ref. [31] to be of order
Fγ,max ∼ 1030 erg s−1 m−2 at a distance of d ≈ 2.1 r0.
Similarly, in the second case of a collapsing soliton with attractive self-interactions λ ≃ −m2

a/f
2
a

and non-resonant mass M⋆ =M⋆,λ < M⋆,γ in the right panel of Fig. 5.18, the resulting emitted
flux remains qualitatively similar to that of the λ = 0 soliton in Fig. 5.17 - apart from the shifted
color scale of Fγ and ργ . An important difference with respect to the λ = 0 simulation on the left
is the fact that the rescaling for λ ̸= 0 on the right is no longer universal, since v0 in Eq. (A.5)
is fixed by the self-interaction parameter λ7. Accordingly, the soliton parameters in the right
panel of Fig. 5.18 are set to Ms = 2.77 · 10−7M⊙ ≈M⋆,λ, fa = 1.2 · 1014 GeV, ma = 5 · 10−8 eV,
λ = −m2

a/f
2
a and gaγγ = 2.79 · 10−15 GeV−1. For QCD axion parameters, the luminosity of the

collapsing soliton in Fig. 5.18 was reported to saturate around

Lγ = 2.1 · 1040
(

ma

50µeV

)−3

erg s−1 , (5.36)

7For the same reason, the two panels in Fig. 5.18 show different normalizations of the coordinates and electro-
magnetic flux, see Ref. [31].
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Figure 5.18: Left: Electromagnetic flux from a resonating SP soliton with mass Ms = 1.36Ms,γ , radius
r0 = m2

Pl/(m
2
aMs) [49], and for λ = 0. For QCD axion values m = ma = 50µeV, fa = 1.2 · 1011 GeV with

enhanced axion-photon coupling gaγγ = 10−12 GeV−1, this corresponds to Ms = 2.28 · 10−12M⊙, Rs ∼
18.5 km and Fγ,max ∼ 1030 erg s−1 m−2 at d ≈ 2.1 r0 (from Lγ,max in Fig. 5.17). Right: Electromagnetic
flux from an off-resonant, collapsing unstable axion star with mass M⋆ = 2.77 · 10−7M⊙ ≈ M⋆,λ and
radius R⋆ = 123 km for λ ≃ −m2

a/f
2
a . Simulated for fa = 1.2 · 1014 GeV, ma = 5 · 10−8 eV and gaγγ =

2.79 · 10−15 GeV−1, for which Eq. (5.36) predicts Lγ ∼ 1049 erg s−1. Both taken from Ref. [31].

which indicates that both of the above photon conversion processes are potentially observable
at O(Gpc) cosmological distances.
Fig. 5.18 also shows random fluctuations in the electromagnetic flux, which are caused by the
spontaneous decay of axions into photons. In the simulations of Ref. [31], the quantum effects
were implemented by means of randomly distributed classical waves with amplitudes set by the
spontaneous decay of the soliton profile.
The important conclusion here is that the photon emission observed from the unstable axion
star with M⋆ = M⋆,λ in the right panel of Fig. 5.18 occurs for a mass that lies below the
resonance mass, M⋆ ≲M⋆,γ . Equivalent results were recently confirmed in Ref. [258]. It should
therefore be understood that the distinction between the relativistic axion emission from Sec. 4.4,
Subsec. 5.4.1 and the parametric resonance in this section is not of physical nature. Instead, the
occurrence of resonant radio emission from axion stars is expected to appear either in an isolated
way for M⋆,γ ≤M⋆ ≪M⋆,λ or accompanied by the production and emission of relativistic axions
for M⋆ ≳M⋆,λ [253, 258] due to the self-interaction instability at λ ̸= 0.
Summarizing the above two processes, we conclude that the parametric instability of resonant
axion stars leads to short bursts of exponentially growing photon flux, which last until the soliton
relaxes back to a sub-critical stage M⋆ < M⋆,γ . The duration of these roughly isotropic radio
bursts depends on the AS mass and photon coupling gaγγ and was recently reported to be on
the order of ∼ 0.1 s in Ref. [258].

5.5.2 Abundance of parametrically resonant Axion Stars

In the previous section we have demonstrated the remarkable observational potential for the
detectability of distant O(Gpc) radio bursts from different resonant M⋆,γ and collapsing M⋆,λ
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axion stars. The next step is to estimate the galactic abundance of these signals from the mass
distributions and encounter rates obtained from the ASMF considering both AS mergers and
AS accretion.

Axion Star Mergers

We found in Fig. 5.15 that the rate of galactic minicluster mergers, which eventually lead to
the formation of merged axion star cores with core-halo masses above the critical value M⋆,λ,
is significant for n = 1, 3.34 and the MJ -cutoff. Since the maximum stable AS mass due to
self-interactions M⋆,λ imposes an absolute upper limit on the existence of (stable) axion stars,
the corresponding escape velocity cutoff vesc(M⋆,λ), which we applied for the bosenova rates
in Subsec. 5.4.2, can also be seen as an optimistic estimate for the resonant merger rate with
vesc(M⋆,γ) ≲ vesc(M⋆,λ).
Therefore assuming that the two signal rates are qualitatively similar, we infer from Fig. 5.15
and Fig. 5.16 that between ∼ 1 yr−1 galaxy−1 and ∼ 103 yr−1 galaxy−1 events are predicted for
α = −1/2 and α = −0.7 respectively. Analogous to the conclusion from Subsec. 5.4.1, the
corresponding minicluster merger rates suggest that radio bursts from parametric resonance in
merged solitons are sufficiently probable to be observed in our galaxy. Let us emphasize here,
that this result remains true only for the range of axion-photon-couplings gaγγ , which are suffi-
ciently strong for the decay mass in Eq. (4.61) to have M⋆,γ ≲M⋆,λ.
On the other hand for very weak axion-photon couplings gaγγ ≪ 10−17 GeV−1, we get M⋆,γ ≫
M⋆,λ, which effectively prevents the parametric instability from occurring in most of the pre-
dicted mergers with M⋆,m ∼ M⋆,λ following Eq. (5.29). Note that this is also the case for most
of the standard QCD axion models like the KSVZ and DFSZ axion models with gaγγ and fa
fixed by Eq. (2.22) and Eq. (2.11) (see also the constraint plot in Fig. 5.19).

Axion Star Accretion

The same constraint remains true in the accretion scenarios of combined resonance and on-
going axion star mass growth, which we focus on in the following. Applying this scenario to
the hypothetical ASMC population of the Milky Way has profound consequences due to two
different aspects. First, we have assumed the core-halo relation from Eq. (3.57) to describe the
virialized equilibrium state between the star and its host minicluster. As a direct consequence
of this approach and for suitable couplings gaγγ , we predict a large number of stars residing in
heavier miniclusters to have M⋆,γ(gaγγ) ≤ M⋆ < M⋆,λ. However these solitons are prevented
from reaching a virialized state by the developing parametric instability and resulting mass-loss
mechanism described in Subsec. 5.5.1 and Sec. 4.5.
The consequence in this scenario is an ASMC system that continuously (or repeatedly) feeds
axion dark matter into its soliton core trying to reach an equilibrium state that is prohibited
by the exponential decay into radio photons at M⋆ = M⋆,γ

8. Similarly, in a second accretion
scenario, the numerical simulations from Sec. 4.3 predict that the accretion from the host mini-
cluster onto its axion star core continues even at late times [167, 174]. The recent semi-analytical
study performed in Ref. [240] suggests that up to an order one fraction of the MC mass could

8One expects the axionic mass-loss due to exponential decay into photons to eventually overtake the moderate
AS accretion from the MC background, soon after the resonance develops. The parametric instability then gets
shut off but it can develop again after sufficient mass growth, see also Chap. 6 for details.
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be absorbed by the soliton core over time. Incorporating these effects, of what we call long-time
AS accretion, in composite ASMC systems leads to a continuous mass growth of the AS core
until reaching either M⋆ = M⋆,γ , M⋆ = M⋆,λ or M⋆ ≃ M. For both of these two mass growth
mechanisms, a considerable fraction of the galactic axion dark matter can be converted into
radio photons (and axions for M⋆,λ ≲M⋆,γ) in the narrow frequency band f ≈ ma/(4π), where
∆f ∼ 10−3f is set by the galactic Doppler-shift.
It should therefore be clear, that the generic existence of galactic axion small-scale structure
in KSVZ-like axion models ma, n and its characteristic properties from Chap. 3, Chap. 4 can
already be probed by existing radio telescopes. A study of the parametric resonance in accret-
ing axion stars would require detailed estimations of the time- and mass-dependent evolution of
the solitonic cores. It is therefore advisable to first infer preliminary estimates on the expected
abundance and observational potential of such systems in our galaxy from the galactic ASMF
in Subsec. 4.7.2, as will be done in the following.
We plot the parameter space in ma and gaγγ for which radio emission from parametric resonance
can occur in the galactic ASMFs for different n in Fig. 5.19. Black background contours indicate
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Figure 5.19: Solid colored lines and dark shades: Regions of parameter space with axion-photon coupling
gaγγ in GeV−1 and axion massma in eV, where the core-halo relation in Eq. (3.57) predicts the existence of
photon-critical axion stars below the maximum AS mass in the ASMF, i.e. where M⋆,γ ≤ max(M⋆)|n,ma

.
Dashed colored lines and light shades: axion-photon couplings, with M⋆,γ ≤ M⋆,λ, where parametric
resonance can occur before the self-interaction instability develops at M⋆,λ. This part of parameter space
could be explored when including effects of AS accretion. Current parameter constraints are shown in
black and the QCD axion band is indicated by the yellow-shaded region [262]. Taken from Ref. [1].

existing exclusions in the corresponding parameter space [262]. The dashed and solid lines in
Fig. 5.19 indicate two different limitations: First in darker shades and solid lines, we plot the
requirement that the present-day MCMF from the linear growth of miniclusters in Subsec. 3.6.2
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predicts the existence of parametrically resonant axion stars, i.e.

M⋆,γ(ma, n, gaγγ) ≤ max(M⋆)|ma,n , (5.37)
max(M⋆) = min(M⋆(Mmax),M⋆,λ) , (5.38)

where max(M⋆) indicates the maximum core mass in the ASMF from Fig. 4.14 for a given model
ma, n. The condition in Eq. (5.37) represents a more conservative approach since it only involves
the linear growth MCMF and the core-halo relation from Eq. (3.57) to determine the soliton
mass while neglecting both long-time AS accretion (see Fig. 4.6) and the previous core merger
events. On a similar note, the second case in Fig. 5.19 shown by the light shades and dashed
colored lines indicates the weaker constraint that

M⋆,γ(ma, n, gaγγ) ≤M⋆,λ(ma, n) , (5.39)

which basically demonstrates where axion stars in models with ma, n, fa can experience para-
metric resonance before the self-interaction instability given by Eq. (4.16) starts to develop.
The weaker condition in Eq. (5.39) is especially relevant when including the effects of long-time
accretion from the minicluster onto its AS core, similar to what was suggested in Ref. [240].
Most importantly, the accreting solitons could eventually absorb an order one fraction of the
mass of their host MCs - unless prevented by the critical masses M⋆,γ and M⋆,λ. As a con-
sequence, the expected mass range of the galactic population of parametrically resonant axion
stars could be significantly boosted compared to the linear growth predictions from Subsec. 3.6.2
and Subsec. 4.7.2. In this late-time accretion scenario, every ASMC system with

M ≳M⋆,γ ≳M⋆,λ (5.40)

could potentially serve as a site of radio conversion. We emphasize that in this case, the late-
time equilibrium state between the AS core and its host minicluster has become fundamentally
different from the canonical core-halo relation in Eq. (3.57). Recalling the core-halo scaling
of M⋆ ∝ M1/3 in Eq. (3.57), the condition in Eq. (5.40) is therefore equivalent to a modified
core-halo scaling more similar to M⋆ ∼ M.
With the three aforementioned resonance conditions describing different predictions from the lit-
erature, we are now in a position to estimate the abundance of the corresponding radio bursts. In
order to quantify the predicted number of potentially resonant axion star cores in our galaxy, we
can use the integration method from Eq. (4.76) together with the conservative resonance condi-
tion in Eq. (5.37) and the optimistic prediction Eq. (5.40) due to long-time accretion. We denote
the resulting number of resonant ASMC systems for which the ASMF obeys Eq. (5.37) Nγ,tot
and plot the result for different models ma, n at the representative value of gaγγ = 10−11 GeV in
Fig. 5.20.
The solid lines in Fig. 5.20 show our results using the canonical core-halo relation with M⋆ ∝
M1/3, which correspond to Eq. (5.37) and solid lines in Fig. 5.19. The dashed lines on the other
hand indicate the results from the more optimistic second accretion scenario from Ref. [240] with
M⋆ ∼ M, which implies Eq. (5.40) and hence larger numbers of resonant ASMC systems, as
seen in Fig. 5.20. For the conservative case M⋆ ∝ M1/3, Nγ,tot quickly drops to zero at the point
where max(M⋆)|n,ma = M⋆,γ . The detailed shape of the curves depends on the temperature-
dependence n of the axion mass and on the interplay of the different cutoffs of the ASMF in
Fig. 4.13 with the decay mass M⋆,γ .
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Figure 5.20: Total number of resonant ASMC systems in the Milky Way for which Eq. (5.37) holds.
Shown for different axion models ma, n with MCMF slope α = −1/2, for an axion-photon coupling
gaγγ = 10−11 GeV and using the M0-cutoff of the MCMF, but with different core mass relations. Solid
lines show M⋆ given by the core-halo relation in Eq. (3.57) with M⋆ ∝ M1/3, while dashed colored lines
assume M⋆ ∼ M as suggested in Ref. [240]. Taken from Ref. [1].

Conversely, in the case M⋆ ∼ M in dashed lines, the number of resonant systems only vanishes
at significantly larger axion masses ma, when M⋆,γ ≥M⋆,λ again depending on the temperature
index n. The crucial observation for both of the discussed scenarios is the prediction of very large
numbers 109 ≲ Nγ,tot ≲ 1025 of potentially resonant ASMC systems in the Milky Way. Due to
the resonant nature of the emission process in Subsec. 5.5.1, the diffuse radio background signal
emanating from these highly abundant objects should be peaked around a narrow frequency
range centered around f ≈ ma/(4π).
We conclude that there is a significant potential in exploiting the combined effects of axion star
accretion and parametric resonance in the context of galactic ASMC systems. Let us emphasize
again that the occurrence of radio bursts from resonant axion stars in a given model ma, n, gaγγ
is essentially limited to the color-shaded regions in Fig. 5.19, where M⋆,γ ≤ M⋆,λ. Similar limi-
tations are expected for the case of collapsing unstable axion stars shown in the right panel of
Fig. 5.18, since the parametric instability is unlikely to be triggered far away from the resonance,
i.e. for M⋆,γ ≫M⋆,λ.

5.6 Cosmological Event Rates
The last consideration to be inferred from the galactic ASMF and the combined signal rates
from previous sections is related to extra-galactic axion small-scale structure. While the clear
focus of this work lies on the analysis of different signatures from galactic ASMC systems, it is
helpful to also evaluate the detectability of the resulting signals in the context of nearby galaxies.
The considerations from this section will not be investigated further in this work, but should
rather be seen as an estimate of the broader and cosmological scope of our results. We therefore
constrain our analysis to order of magnitude estimates and leave a more detailed calculation to
future research.
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Throughout our estimations, we will assume other galaxies to exhibit a similar dark matter
abundance, NFW halo profile and neutron star distribution from Sec. A.7. This allows us to
translate the galactic signal rates from Eq. (5.2) and Eq. (5.8) onto the cosmological distribution
of Milky-Way-like galaxies. For the latter, we assume a galaxy density of ngal ∼ 10−2 Mpc−3

[263] to estimate the isotropic emission from extra-galactic AS/MC-NS and MC-MC collisions.
Neglecting redshift defects, we define the duty cycle

D ∼ γs
4π

3
d3obsts , γs = ngalΓs , (5.41)

where the extra-galactic signal rate γs = ngalΓs in units of s−1Mpc−3 is given in terms of the
galactic signal rates Γs. Here, the typical observation distance is taken to be dobs = 2Gpc, and
the signal duration ts depends on the specific encounter under consideration. The corresponding
duty cycle within a beam size ∆Ω of a given radio telescope is then simply given by D∆Ω/(4π).
For a typical beam size of order ∼ 1◦ one has ∆Ω/(4π) ≃ 3 · 10−4 sr.
In the following, we require the duty cycle per beam D∆Ω/(4π) to not be much smaller than one
in order to have individual events, which are sufficiently frequent to be detectable with typical
radio telescopes and accessible observation times. A rough estimate for the observed spectral
flux of a single event with total emitted energy Es and at cosmological distance dobs is given by

js ∼
Es

4πd2obs∆f ts
≃ 10−13 Jy

(
Es

1042 eV

)(
ma

50µeV

)−1(
ts

50 s

)−1(
dobs
2Gpc

)−2

, (5.42)

where we assume the bandwidth ∆f ≃ 10−3ma from the galactic velocity dispersion. The next
step is to enter the signal rates Γs based on the results from Subsec. 5.2.2 to Subsec. 5.5.2 for a
QCD axion mass ma = 50µeV combined with Es, ts from the single event signals in Subsec. 5.2.1
to Subsec. 5.5.1.

NS-AS Collisions

Starting with the AS-NS collisions from Fig. 5.5, we get γs ∼ 10−16 Mpc−3s−1 for the MJ -
cutoff and an MCMF slope index of α = −1/2. The duration ts can be inferred from the
results in Fig. 5.2 by considering the signal from an AS-NS transient event with non-zero impact
parameter b = 103 km. The resulting signal duration ts ∼ 50 s leads to a duty cycle of roughly
D ≃ 2 ·10−4 ≪ 1. Using the same event with b = 103 km in Fig. 5.2, we obtain the total emitted
energy Es ∼ 4π kpc2ts∆fT ST ∼ 1042 eV from the flux density ST ∼ 105 mJy at a distance of
1 kpc. This yields an observed flux of js ≃ 10−13 Jy at dobs = 2Gpc in Eq. (5.42), which lies
way below the sensitivity of current radio telescopes.

NS-MC Collisions

For the more common NS-MC collisions we predicted larger signal rates γs ∼ 10−12 Mpc−3s−1

in Fig. 5.9 for the MJ -cutoff with α = −0.7. From Fig. 5.6 and for an impact parameter of
b = 108 km, we find ts ∼ 150d, which leads to a much larger duty cycle D ≃ 4 · 105 ≫ 1
compared to the previous NS-AS case. To further estimate the observed flux density of a single
NS-MC collision according to Eq. (5.42), we consult the differential fluxes from Fig. 5.6 and find
that Es ∼ 4π kpc2ts∆fT ST ∼ 1037 eV from ST ∼ 10−6 mJy at 1 kpc distance, which yields an
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essentially undetectable signal with js ≃ 4 · 10−24 Jy.
This result is expected since the spectral flux in Eq. (5.42) scales inversely with the signal
duration ts and linearly with ST . The signal duration in return scales with the velocity and size
of the minicluster. A consideration of the densest miniclusters with Φ ∼ 104 would therefore
have advantageous effects due to both the reduced size R in Eq. (3.24) and the increased central
density ρmc in Eq. (3.23). Tracing the scalings R ∝ Φ4/3 and ρmc ∝ Φ4 for Φ ∼ 104 and
assuming that the NS conversion rate scales linearly with the MC density, ST ∝ ρmc, one
obtains a potential boost of order ∼ 1021 for the densest miniclusters. The substantial benefit
does however come at the cost of a drastically reduced collision rate, which renders such signals
too rare to be searched for.

Parametric Resonance and MC-MC Merger

The last and most relevant scenario in the cosmological context is the occurrence of parametric
resonance in AS core mergers following a successful minicluster merger - as was calculated in
Subsec. 5.4.2 for bosenovae. For sufficiently large axion-photon coupling gaγγ and M⋆,γ ≲M⋆,λ,
one expects a strong radio emission following a host minicluster merger. An important detail to
this scenario is the question how long it takes for the axion star cores to merge after their host
miniclusters have merged. For the preliminary considerations of this section, we can estimate
the typical time between two MC mergers with final mass M1 + M2 ≥ M(M⋆,λ) by dividing
the corresponding rate Γmc−mc/N⋆,tot ∼ 103 yr−1/1023 from Fig. 5.16 by the total number of
MCs for ma = 50µeV, n = 3.34, α = −0.7 in Fig. C.1, which gives tmerg ∼ 1020 yr. This time
should be compared to the intrinsic timescale of the ASMC system.
Note that the condensation time from Eq. (4.26), which measures the required time for soliton
formation starting from random initial conditions, does not apply here since the merged host
minicluster provides a distinct potential minimum for the merging AS cores. Instead we use the
free-fall time of the merged miniclusters as an estimate for the timescale of the AS core merger,
which gives

τff =
πR3/2

4
√
GM(M⋆,λ)

≃ 0.2 yrs (5.43)

for QCD axion structures with M(M⋆,λ) ≃ 4·10−7M⊙ and R ≃ 2·109 km from Eq. (3.24). With
the timescale of MC merger interactions tmerg ∼ 1020 yr being much larger than the free-fall time
in Eq. (5.43), we can assume AS mergers to happen quasi-instantaneously in the following.
The resulting energy emitted in a single radio burst can be estimated from the saturated axion
star luminosity in Eq. (5.36) assuming a burst duration of ts = 0.1 s as reported in Ref. [258] for
ma ≈ µeV. Thus expressing

js ∼
L

4πd2obs∆f
≃ 400 Jy

(
L

1042 erg s−1

)(
ma

µeV

)−4(
dobs
2Gpc

)−2

(5.44)

we find a significant spectral flux for ma = µ eV, which corresponds to js ∼ 0.1mJy sr−1 for
the QCD axion mass ma = 50µeV with undetermined signal duration ts. Combining the above
numbers with γs ∼ 10−6 Mpc−3s−1 from Fig. 5.16 for the MJ -cutoff with α = −0.7, Eq. (5.42)
also yields a considerable duty cycle of D ≃ 3 · 104. For a beam size of ≃ 1◦ with ∆Ω/(4π) ≃
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3 · 10−4, the beam duty cycle is of order unity for the resonant MC mergers in Eq. (5.41). This
means that within one beam we would expect a popcorn like signal that should be easy to
distinguish from backgrounds as long as the time integrated intensity is above the sensitivity of
the radio telescope considered. Note however that our above considerations predict narrow line
signals with ∆f ≃ 10−3ma, for which the frequency gets redshifted depending on dobs.
As an estimate, we compare the expected flux density js ≃ 400 Jy sr−1 from Eq. (5.42) to
the SKA-mid sensitivity S ∼ 10µJy hr−1/2 [191], which, integrated over a signal duration of
ts = 0.1 s [264], gives S ∼ 2mJy (0.1 s/ts)1/2. This is significantly smaller than the estimate in
Eq. (5.44) for the resonant AS flux density at cosmological distances. Parametric resonance in
AS core mergers therefore provides the most compelling detection mechanism in the context of
extra-galactic background signals from axion small-scale structure. A particularly interesting
feature of the predicted flux density in Eq. (5.44) is the strong dependence on ma, which greatly
enhances the detectability for low-mass QCD axions due to the luminosity scaling from Eq. (5.36)
and Ref. [31]. We also note that a similar study involving soliton merger rates of cosmological
dark matter halos with collapse redshifts zc ≳ 10 was already performed in Ref. [34].

5.7 Implications for Axion Searches
Throughout this chapter, we have used the ASMF from Subsec. 4.7.2 to improve previous esti-
mates on the galactic abundance and detectability of the three most anticipated AS signatures
from Chap. 4: Neutron star collisions, bosenovae and radio bursts from resonating axion stars.
The evaluation of the resulting signal rates paves the way for a more detailed analysis of what
turns out to be the most promising axion star signatures. An improved analysis will be per-
formed separately in the remainder of this thesis in Chap. 6 and Chap. 7. As for this section, we
summarize our results for the different event rates obtained in Sec. 5.1 to Sec. 5.6 and deduce
the most important implications for galactic axion searches, which aim to exploit the properties
of axion small-scale structure. The following considerations thus provide a potential guideline
for future and possibly more detailed research efforts.

We start with the case of resonant axion-photon conversion in the neutron star magnetosphere,
which received significant attention in the recent literature [134, 135, 137, 141, 188]. While
previous work on the radio flux [134] and encounter rates of NS-MC/AS transient events [135,
137, 188] determined the potential detectability of the resulting radio signals in our galaxy to be
significant, our results indicate the opposite. This conclusion is first related to the fact that we
assumed the population of galactic axion stars to be gravitationally bound in miniclusters, which
significantly constrains their relative dark matter abundance f⋆ ≪ 1 in Fig. 4.16. Secondly and
more importantly, the signal rates of both suitable NS-AS encounters in Fig. 5.5 and of the
more probable NS-MC encounters in Fig. 5.8, Fig. 5.9 are greatly reduced by the suppression
factor fNS(ma) in Fig. 5.4, which accounts for the resonance condition ωp ≳ ma of the NS
magnetic field. This leads to an essentially undetectable signal abundance Γmc−NS ≲ 10−3 yr−1

galaxy−1 for QCD axion parameters. The strong suppression indicates that a majority of the
NNS = 109 galactic neutron stars assumed in this chapter are either inactive or expected to
have incompatibly weak magnetic fields due to Ohmic dissipation.
We note that the first of the two previous points of small AS abundance f⋆ may be modified
in the case of enhanced axion star formation, which was suggested in Ref. [236]. Apart from
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this exception, we conclude that neutron star encounters are found to be unlikely to become
observable in current radio telescopes - independent of the axion model ma, n and MCMF slope
α.

In the context of bosenovae on the other hand, our results for n = 3.34 in Fig. 5.15 and Fig. 5.16
suggest that MC-MC mergers can appear as often as ∼ 10 yr−1 galaxy−1 for α = −1/2 and
∼ 103 yr−1 galaxy−1 for α = −0.7, using the MJ -cutoff. This prediction has important conse-
quences for the future detection of AS signatures from both parametric resonance and bosenovae
triggered by AS core mergers [33, 253, 264, 265] following a MC merger. A particularly impor-
tant observation is the fact that this prediction remains true also for the well-motivated QCD
axion with n = 3.34 and ma = 50µeV. Conversely for the M0-cutoff, the total number of
galactic miniclusters in Fig. C.1 is significantly lower, which is why AS core mergers can not be
efficiently triggered by MC collisions using this cutoff. A better understanding of the evolution
of the low-mass component M < M0 of the MCMF in Subsec. 3.5.2 is therefore crucial in
improving our predictions for the detectability of AS core mergers. We also emphasize that the
M0-cutoff does not exclude the occurrence of radio/axion bursts in general since the long-time
effects of ongoing accretion are expected to play a vital role in the AS evolution.

The same realization led us to develop a new emission mechanism for resonant ASMC sys-
tems with M⋆,γ ≲ M⋆ ≲ M⋆,λ, for which the ASMF from Subsec. 4.7.2 predicts a considerable
abundance in Fig. 5.20 - depending on the axion-photon coupling gaγγ . For these systems, we
expect a continuous mass growth of the axion star core from two basic mechanisms: First the
system with M > M(M⋆,γ) tries to reach a virialized state given by the (inverted) core-halo
relation in Eq. (3.57) leading to an effective mass increase of M⋆. Similarly, in the second
case, the AS core is expected to continuously accrete axion dark matter from the minicluster
background as observed in Fig. 4.3, Fig. 4.7 and Ref.s [167, 170, 174, 240]. In both of the
above scenarios, the total ASMC system continues to drive its solitonic core into instability at
M⋆ = M⋆,γ due to parametric resonance or at M⋆ = M⋆,λ due to self-interactions - depending
on gaγγ and Eq. (4.61).
This has grave consequences for the observability of both radio bursts and bosenovae: The corre-
sponding super-critical systems will not only reach the point of instability once, but repeatedly.
In this case, a considerable fraction of the dark matter is contained in miniclusters, which drive
their AS cores to become unstable, converting an order-one fraction of their mass M⋆ into either
photons or relativistic particles and repeat the process at a later time depending on the rate of
AS accretion. The combined accretion scenario thus carries extensive observational potential,
which motivates us to dedicate the remaining two chapters to a more careful investigation of AS
mas growth and its consequences for radio signatures in Chap. 6 and for axion bursts in Chap. 7.

Lastly in Sec. 5.6, we have briefly discussed the potential of extra-galactic NS-AS/MC encounters
and minicluster mergers with a parametrically resonant AS core. Our rough estimates suggest
that NS-AS/MC signals are too faint for individual detection but that the extra-galactic radio
bursts from resonant AS mergers can have large spectral fluxes of ∼ 0.5 Jy even at cosmological
distances of dobs ≃ 2Gpc. The corresponding duty cycle can reach order-one values within a
typical radio telescope beam with degree-scale opening angle suggesting potential observability
of such events.
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Radio Lines from Axion Stars 6
The evaluation of the different signal rates from Chap. 5 and their implications for the detection
of axion dark matter from Sec. 5.7 motivate us to develop a combined framework of AS accretion
and parametric resonance in the following. An analogous framework will be used in Chap. 7
to analyze the detectability of galactic axion bursts from the self-interaction instability, which
develops at M⋆,λ. In this chapter, we start with the case of galactic radio line emission from
resonant axion stars with M⋆ ≥M⋆,γ from Sec. 4.5 and Sec. 5.5, since the resulting background
emission can be probed by existing radio telescopes. The contents of this chapter are taken from
Ref. [2].
As was already mentioned in Sec. 5.7, the calculation of the background signal from the galactic
population of accreting solitons with M⋆ ≥ M⋆,γ requires us to employ detailed mass growth
models for the AS cores. To do this, we introduce two different accretion models for composite
ASMC systems: First the external minicluster accretion model in Sec. 6.2, which involves the
capturing of axion dark matter from the galactic NFW background of the Milky Way and
secondly the internal MC accretion model in Sec. 6.3, which utilizes the self-similar attractor
solution from Eq. (4.41). For both of these models, we estimate the resulting background photon
flux from resonant ASMC systems and compare it to galactic radio backgrounds in Subsec. 6.4.1.
This allows us to demonstrate the possible constraints on the axion-photon coupling gaγγ , which
can be inferred through future radio observations, in Sec.s 6.5 and 6.5.
Similar to the previous chapters, we assume at most a single axion star core to be embedded
in each minicluster, where (unless stated otherwise) the mass relationship between core- and
total system mass is given by the zeq core-halo relation in Eq. (3.57). Opposed to Chap. 5,
we constrain our analysis of accreting systems in Chap. 6 and Chap. 7 to the M0-cutoff from
Eq. (3.47) with an MCMF slope α = −1/2, since the relevant ASMC population with core-
masses M⋆ ∼ M⋆,γ and M⋆ ∼ M⋆,λ is mostly independent of the low-mass component with
M < M0. We extend our analysis of the MCMF by additionally scanning through the (M-
independent) parameter range Φ ∈ (0, 104] of the initial MC overdensity from Sec. 3.2 and where
Φ follows the distribution from Fig. 3.1. The resulting ASMF cutoffs constraining the existence
of resonant ASMC systems in this approach are summarized in Sec. 6.1.
For the expected radio signals of the resonant AS cores, we assume a conversion efficiency of
order-one between the mass excess δM⋆ = M⋆ − M⋆,γ at M⋆ ≥ M⋆,γ and the energy of the
emitted photons with resonance frequency f = ma/(4π) of half the axion mass. Although the
single event luminosity is expected to modulate significantly over observation timescales as shown
in Fig. 5.17, we employ an averaged approach by assuming a constant emission rate, which is
proportional to the accreted mass excess δM⋆. The validity of the averaged radio emission of the
total resonant AS population is essentially ensured by the large number of resonating systems,
e.g. Nγ,tot ≳ 109 for gaγγ = 10−11 GeV−1 in Fig. 5.20.
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6.1 Mass Distribution of resonant Systems
We start by specifying the fundamental approach with which we determine the galactic abun-
dance of resonating ASMC systems from the MCMF of the Milky Way in Subsec. 3.6.2. For
this, we essentially follow the low-mass cutoff M⋆,min of the ASMF in Eq. (6.1), but with the
definition Mmin = M0,min specifically. An important distinction to previous considerations is
the fact that we vary Φ alongside M, which implies that the radius cutoff mass from Eq. (4.70)
is promoted to Φ-dependent quantity MR,min(Φ). Tracing the scaling MR,min(Φ) ∝ Φ2 for large
Φ ≫ 1, it can be seen that the radius cutoff becomes especially important for the densest mini-
clusters in the population, see also Fig. 4.13. The effective low-mass cutoff at Mmin = M0,min
takes the form

M⋆,min(Φ) = max[M0,min,Mh,min,MR,min(Φ)] , (6.1)

where we highlight the dependence on Φ, which we discuss at the end of this section. Another
obvious constraint on the resonant ASMC population is provided by the gaγγ-dependent decay
mass from Eq. (4.61). Combining this with the high-mass ASMF cutoff due to the existence of
the maximum stable AS mass M⋆,λ from Eq. (4.16), we obtain the effective low- and high-mass
cutoffs

Mγ,min(gaγγ ,Φ) = max[Mγ(gaγγ), M⋆,min(Φ)] , (6.2)
Mγ,max = min[M(M⋆,λ), Mmax] (6.3)

of the resonating ASMC population, where Mγ = M(M⋆,γ) is expressed using the inverted core-
halo relation. Examples for the Φ = 1 case of this population were already shown in Fig. 5.20.
An important question for the understanding of the resonant ASMC population relates to the
hierarchy of the different low-mass cutoffs in Eq. (6.2).
It was already mentioned that the ∝ Φ2-scaling of the radius cutoff MR,min from Eq. (4.70)
at large Φ makes it the dominant low-mass cutoff for M⋆,min in Eq. (6.1). As seen by the
blue and dashed lines of the ASMF cutoff comparison in Fig. 4.13, the takeover in Φ, for which
M⋆,min(Φ) >M0,min, is generally model-dependent1. Additional axion model-dependence arises
from the scaling of Mγ and M⋆,γ from Eq. (4.61) with the axion-photon coupling gaγγ . Putting
the above relations together, the relevant hierarchy in Eq. (6.2) is governed by the interplay
between M0(n), MR,min(Φ) and Mγ(gaγγ), where only the dependence on the most relevant
parameters is indicated. We performed a qualitative analysis of the different scalings and briefly
summarize our findings in the following.
For very weak axion-photon couplings gaγγ ≲ 10−14 GeV−1, the decay MC mass Mγ takes over
as the dominant cutoff, which combined with the maximum stable AS mass M⋆,λ prevents the
existence of resonant systems altogether. At larger values of gaγγ and for moderate overdensities
Φ ≲ 10, M0,min becomes the most relevant. The densest miniclusters with Φ ≳ 103 on the other
hand are strongly constrained by the radius cutoff MR,min(Φ) and their suppressed abundance
from the probability distribution pΦ(Φ) in Eq. (3.27). We checked the impact of the MR,min-
cutoff and found that it does not affect our qualitative predictions, since the major contribution
to the radio emission is given by ASMC systems with Φ in the intermediate density range

1More specifically and for the M0-cutoff, it depends mainly on the temperature index n, since all low-mass
cutoffs scale roughly as Mi,min ∝ m

−3/2
a [58].
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1 ≲ Φ ≲ 100.
We also mention for completeness that we neglect contributions from parameter regions Φ,
M, gaγγ , where Mγ < M⋆,min since the long-term stability of such systems is questionable.
Conveniently, the large values of gaγγ , where the above detail becomes relevant, are already
excluded by helioscopes and other observations [118].
Summarizing the above considerations, the number of resonant ASMC systems in the Milky
Way can be calculated from the galactic MCMF according to the relation

Nγ,tot = 4π

∫ R200

Rsurv

dr r2
∫ 104

0
dΦ pΦ(Φ)Psurv(Φ)

∫ Mγ,max

Mγ,min(Φ)

dM dn

dM(r) (6.4)

for α = −1/2, Mmin = M0,min and where the Milky Way volume in Eq. (3.53) is absorbed
in the spatial integral over the galactocentric radius r. Note that here, the renormalization
constant Cn(r) was promoted to a function of r set by the NFW profile of the dark matter halo.
The boundaries of the spatial integral are given by the minicluster survival cutoff due to stellar
disruption from Eq. (3.54) and the radius R200 of the DM halo. Another survival probability is
contained in the Φ-integral, which follows the distribution from Eq. (3.27) and the minicluster
survival probability Psurv(Φ) at r = R⊙ from Eq. (3.56) and Ref. [196].
With the galactic abundance of parametrically resonant ASMC systems being prescribed by
Eq. (6.4), the next step in determining the background signal is to infer the signal strength of
the individual resonant systems. This will be done by introducing different accretion models in
the next two sections.

6.2 External Minicluster Accretion Model
We start with the external minicluster accretion model - sometimes referred to as ’external
accretion’ - in this section. As the name suggests, the source of the accreted core mass growth in
this scenario is external with respect to the total ASMC system. The fundamental assumption
that motivates the development of this non-isolated model is related to the simulated abundance
fmc = 0.75 of axion dark matter in gravitationally bound structures like miniclusters [29, 30].
Translating the above MC dark matter abundance to the NFW halo of the Milky Way, one
expects a background dark matter field with mass density

ρa,f (r) = (1− fmc) ρNFW(r) = 0.25 ρNFW(r) (6.5)

to be present in our galaxy, next to the NFW-distributed minicluster population. Physically,
such a background field can be provided by tidal streams from disrupted minicluster remnants
[42, 149, 150] or by ’free-streaming’ axions within the dark matter halo.
As a consequence, galactic miniclusters with typical velocities vmc ∼ vvir ∼ 100 km s−1 are
expected to encounter and potentially capture a fraction of the background axions over time.
Note here that in this approach, we neglect MC-MC encounters for simplicity, since the resulting
collision dynamics and effective mass growth or loss depend sensitively on the combination of
parameters M1,Φ1, M2,Φ2 of the binary system.
We lay out the resulting accretion scenario involving gravitationally bound miniclusters and
background DM particles in the schematic representation in Fig. 6.1. In this figure, the host
minicluster and its density are indicated by the blue spherical shades, where the dense, yellow
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AS core is embedded in its center. This composite ASMC systems moves through the galactic
DM halo and encounters axions from the background field ρa,f (r) in Eq. (6.5), shown by the
black dashed arrows. Depending on the minicluster size R, mass M and density Φ, a mass

Figure 6.1: Schematic representation of the external minicluster accretion model for axion star cores,
taken from Ref. [2]. In this scenario, the composite ASMC system in blue shades travels through the dark
matter background of the galactic NFW halo with mass density in Eq. (6.5), shown in dashed arrows.
It encounters background axions with relative velocities v ∼ vvir and captures a fraction of the colliding
particles as indicated by the solid black arrows. A fraction of the acquired DM mass δM captured by the
minicluster is subsequently accreted onto the axion star core in yellow, see red arrow. The resulting mass
excess δM⋆ ∝ δM can be converted into the blue radio photons for suitable core masses M⋆ ≥M⋆,γ .

excess δM of the incoming particles can be captured by the MC, shown by black solid arrows.
In a secondary stage of this accretion process, a fraction of the accreted mass can be transferred
onto the axion star core, which induces the core mass growth δM⋆ ∝ δM indicated by the red
arrow. Importantly, the resonating systems of our interest are expected to host an AS core
with mass M⋆ ≈ M⋆,γ . In such systems, the mass excess δM⋆ can be resonantly converted into
radio photons shown by the blue wave in Fig. 6.1. The corresponding conversion-efficiency of
the axion DM decay into photons will be introduced together with the resulting photon flux in
the following.
It should be emphasized at this point that the typical velocities vrel ∼ vvir in an average encounter
are very large compared to the typical escape velocities vesc(10−12M⊙) ∼ 0.1ms−1 of ASMC
systems. We therefore start by developing a simplified geometrical capture model, which utilizes
the M- and Φ-dependent escape velocities of the total system, in the following. Defining the
corresponding cross section σmc = 4πR(Φ,M)2 of the total system with negligible gravitational
enhancement, we can write the external MC accretion rate at a radial position r in terms of
ρa,f (r) as [2]

δM
δt

(Φ,M, r) = 4πR(Φ,M)2ρa,f (r)⟨vcap(Φ,M, r)⟩ , (6.6)
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where R(Φ,M) obeys Eq. (3.24), and the average relative velocity of the captured particles
⟨vcap(Φ,M, r)⟩ is defined in terms of the relative velocity distribution fv(r)

⟨vcap(Φ,M, r)⟩ =
∫ vesc(Φ,M)

0
dv v fv(r) , (6.7)

such that particles with v > vesc(Φ,M) are considered to withstand the gravitational capturing.
We assume a one-dimensional Gaussian distribution for the spatially dependent relative velocities
in fv(r) given by

fv(r) =
1√

2π vvir(r)
exp

(
− v2

2vvir(r)2

)
, v ∈ (−∞,∞) , (6.8)

where the virial velocity vvir(r) ∼ 239 km/s is computed from the spatially dependent velocity
dispersion of the Milky Way rotation curve in Ref. [194]. Entering the Gaussian distribution for
fv(r) in Eq. (6.7), the average capture velocity is found to be [2]

⟨vcap(Φ,M, r)⟩ = vvir(r)√
2π

[
1− exp

(
−vesc(Φ,M)2

2vvir(r)2

)]
, (6.9)

≈ 1

2
√
2π

vesc(Φ,M)2

vvir(r)
. (6.10)

In general, the r-dependent velocity integral in Eq. (6.10) would need to be evaluated at ev-
ery point of the parameter space in M,Φ, r. However as can be checked numerically, the
velocity vvir(r) ∼ 200 km s−1 is roughly constant in the relevant radial range from 1 kpc to
O(100) kpc [194, 266, 267]. We therefore simplify our numerical calculations by assuming
vvir(r) ≈ 239 km s−1 as approximately constant and find that it does not affect our qualita-
tive results in the following
In the above framework, axion DM particles encountering the ASMC system with relative veloc-
ities v ≤ vesc are considered to get captured by the minicluster. The MC accretion efficiency fcap
with respect to the background field ρa,f (r) can be estimated for typical QCD axion parameters
M ∼ 10−12M⊙, Φ ∼ 1, R ∼ 107 km by considering the ratio

fcap(M,Φ) ∼ vesc(M,Φ)

vvir
∼ 0.1ms−1

100 km s−1
∼ 10−6 , (6.11)

which gives fcap ≪ 1 for most M,Φ. Note also that while large values of Φ increase vesc and fcap,
they simultaneously decrease the cross section σmc in Eq. (6.6). Overall, the dominant scaling
of δM in Eq. (6.6) effectively benefits from small values of Φ, which increase R in Eq. (3.24)
and thus the geometric cross section of the total system.
In a more general context, the highly overdense ASMC system can also capture particles through
repeated scattering in the gravitational AS/MC potential - a process which we neglect in our
approach. For the considerations in this work, Eq. (6.6) provides a qualitative estimation for
the expected mass growth of MCs in the galactic dark matter halo.
In order to obtain a radio signal from the MC accretion rate δM/δt in Eq. (6.6), the next step
is the derivation of the corresponding core mass growth rate δM⋆/δt. We assume the core-halo
mass relation from Eq. (3.57) to provide the virial equilibrium configuration of the composite
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ASMC system. This interpretation is in agreement with the virialization condition in Eq. (4.62)
and it provides an intuitive connection between the mass growth of the host minicluster and its
AS core.
The corresponding virialization condition can straight-forwardly be exploited by differentiating
the core-halo relation with respect to time. Combining the resulting relation of the mass growth
rates with the definition of dM/δt in Eq. (6.6), we obtain the AS accretion rate [2]

δM ext
⋆

δt
(Φ,M, r) =

1

3

( M
Mh,min

)− 2
3 δM
δt

(Φ,M, r), (6.12)

=
4π

3

( M
Mh,min

)− 2
3

R(Φ,M)2ρa,f (r)⟨vcap(Φ,M, r)⟩, (6.13)

≃
√
2π

3

( M
Mh,min

)− 2
3

R(Φ,M)2ρa,f (r)
vesc(Φ,M)2

vvir(r)
(6.14)

in the external minicluster model. We emphasize that our approach of using the core-halo
relation at formation redshift z = zeq is conservative because we tend to underestimate the
abundance of resonating ASMC systems by neglecting the long-time mass growth δM/δt · tH
over a Hubble time tH and its impact on the core mass M⋆.
The possible enhancement of the accretion rate in Eq. (6.14) due to long-time AS accretion
motivates us to introduce the effective efficiency factor

Ch =

( M
Mh,min

)− 2
3

, (6.15)

which is a direct consequence of the z = zeq core-halo relation in Eq. (3.57). We introduce
a second, external MC accretion model in which the core mass growth is increased by setting
Ch = 1 in Eq. (6.14) and Eq. (6.15). We call this specific scenario with increased growth rate

δM enh
⋆

δt
(Φ,M, r) =

√
2π

3
R(Φ,M)2ρa,f (r)

vesc(Φ,M)2

vvir(r)
. (6.16)

and Ch = 1 the enhanced external MC accretion model in the following. This enhanced growth
rate prediction can be seen as a less conservative estimate on the expected (late-time) viri-
alization rate of ASMC systems in an NFW background. In the following, we compare our
predictions from the conservative external scenario in Eq. (6.6) and its enhanced equivalent in
Eq. (6.16). Before continuing with the resulting radio emission of these systems, we investigate
the predicted growth rates in some more detail.
A natural consistency check of our models can be obtained by comparing the predicted mass
accretion of the AS core, δM⋆/δt · tH over a Hubble time tH to the mass M of the total sys-
tem. When the relative fraction δM/δt · tH/M exceeds order unity, the NFW background
ρa,f (r) is expected to be depleted at present-day redshift z = 0. Since δM = δM⋆/3 in the
enhanced model in Eq. (6.16), the above statement is equivalently true for the core mass growth
rate δM⋆/δt in Eq. (6.14), Eq. (6.16). We present the corresponding mass fractions for typical
ASMC systems with a predicted core mass M⋆,λ and Φ = 1 in Fig. 6.2. Here, the conservative
external model from Eq. (6.14) is indicated by the solid colored lines, while dashed lines corre-
spond to the enhanced case from Eq. (6.16) with Ch = 1.
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Fig. 6.2 clearly demonstrates that the efficiency factor Ch in Eq. (6.15) induces a significant
suppression of the AS growth rate. More importantly, for every n = 0, 1, 3.34 and both ac-
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Figure 6.2: Relative fraction of accreted mass δM⋆/δt · tH/M over a Hubble time tH ≃ 1.3 · 1010 yrs,
normalized by the total mass M of the ASMC system with core mass M⋆ = M⋆,λ and Φ = 1. Both
given for the external MC accretion model from Eq. (6.14) as a function of ma, n, with the enhanced case
Ch = 1 indicated by dashed colored lines.

cretion models, the relative mass gain over tH is found to be non-substantial, thus ensuring
possible mass growth in the present-day galaxy without depletion of the NFW background ρa,f .
For better comprehensibility, we also present the absolute growth rates at two different values
of the initial MC overdensity Φ = 1, 103 in Fig. 6.3. Solid lines correspond to typical values
Φ = 1, while dashed lines show some of the densest miniclusters with Φ = 103. As previously
mentioned for the scaling of R and δM/δt with Φ in Eq. (6.14), the growth rates benefit from
smaller values of Φ, which increase the MC radius in Eq. (3.24) and its geometric cross section.
On the other hand, the survival probability function Psurv(Φ) from Eq. (3.56) strongly con-
strains the abundance of the Φ ≪ 1 population, so that the dominant contribution is given by
the Φ ∼ 1 component nevertheless. Lastly, the increased mass growth at low axion masses ma

and fixed n in Fig. 6.3 is related to the increased mass and escape velocity of typical structures
with M0 ∝ m

−3/2
a in Eq. (3.50).

In the last step of the depicted accretion process, the AS core can serve as a powerful site of
radio conversion when it reaches the decay mass, M⋆,γ and any mass excess δM⋆ = M⋆ −M⋆,γ

is converted into photons with a frequency f ≃ ma/(4π). We continue to estimate the result-
ing radio flux emitted from the accreting galactic ASMC systems with resonant core masses
M⋆ ≥ M⋆,γ . The accretion-induced flux F⋆,s ∝ δM⋆/δt received from a single resonant axion
star depends on three different parameters: on the initial overdensity parameter Φ, the host MC
mass M, and the galactic position r. This simplified dependence can be expressed as

F⋆,s = ηaγγ
c2

4πdobs(r)2
δM⋆

δt
(Φ,M, r), (6.17)
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Figure 6.3: Absolute accretion rates of a critical ASMC system with maximum stable core mass M⋆ =
M⋆,λ in kg s−1. Shown for different n, at Φ = 1 in solid and Φ = 103 in dashed colored lines.

where dobs(r) is the distance to the observer and the factor of c2 is written to indicate the
conversion from core mass excess to radiated energy. The coefficient ηaγγ = 1 in Eq. (6.17)
denotes the order-one efficiency of the resonant axion-photon conversion. In the most general
sense, ηaγγ is expected to encode the onset of backreaction, the luminosity evolution Lγ(t) with
time and its dependence on the axion-photon coupling gaγγ , as depicted in Fig. 5.17.
In this work, we are mostly interested in the averaged galactic background signal arising from the
Nγ,tot ≫ 108 resonant ASMC systems, which is why we set ηaγγ = 1 for simplicity. The overall
flux observed from the total population of resonating systems can be obtained by integrating
the single event flux F⋆,s over M,Φ and the galactic radial position r, similar to what was done
in Eq. (6.4) for Nγ,tot. An important difference to Eq. (6.4) is the consideration of the three-
dimensional position r to account for the random nature of the observed distances dobs(r) of the
different single event fluxes. Thus considering the full spatial dependence, we obtain the total
flux estimate [2]

F⋆,tot ≃
∫ 104

0
dΦ pΦ(Φ)Psurv(Φ)

∫ Mγ,max

Mγ,min(Φ)
dM

∫

|r|>Rsurv

d3r
dn

dM(r)F⋆,s, (6.18)

= ηaγγc
2

∫ 104

0
dΦ pΦ(Φ)Psurv(Φ)

∫ Mγ,max

Mγ,min(Φ)
dM (6.19)

×
∫

|r|>Rsurv

d3r
1

4πdobs(r)2
dn

dM(r) δM⋆

δt
, (6.20)

where dn/dM(r) is the MC distribution defined in terms of the MCMF in Eq. (3.51). In the
above expression, the spatial dependence of the distance dobs(r) = |r − RE | ≃ max(r,R⊙)
between a single event and the observer can be simplified by averaging over two limiting cases
of observation distances: first ⟨dobs(r)⟩r≤R⊙

≃ R⊙ in the central region and ⟨dobs(r)⟩R⊙≤r ≃ r
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beyond the solar radial position, which gives

F⋆,tot ≃ ηaγγc
2

∫ 104

0
dΦ pΦ(Φ)Psurv(Φ)

∫ Mγ,max

Mγ,min(Φ)
dM

∫ R200

Rsurv

dr

[
r

max(r,R⊙)

]2
dn

dM(r)
δM⋆

δt
.

(6.21)

Subsequently entering the external accretion rate from Eq. (6.14), one arrives at the total flux

F ext
⋆,tot ≃

√
2π

3
ηaγγc

2

∫ 104

0
dΦ pΦ(Φ)Psurv(Φ)

∫ Mγ,max

Mγ,min(Φ)
dM

( M
Mh,min

)− 2
3

×R(Φ,M)2
vesc(Φ,M)2

vvir

∫ R200

Rsurv

dr

[
r

max(r,R⊙)

]2
ρa,f (r)

dn

dM(r), (6.22)

of the external MC accretion model, which we calculate numerically using the results from
Sec. 3.6 and Sec. 6.1. Note here that the contribution to radio signals from the galactic center
r ≲ Rsurv is suppressed by the MC survival from Fig. 3.9 and similarly for the periphery beyond
100 kpc due to the low density ρa,f (r) and the large distances dobs to earth.
Lastly, we can perform the same calculation from Eq. (6.22) for the case Ch = 1 in Eq. (6.16)
to infer the total flux

F enh
⋆,tot =

√
2π

3
ηaγγc

2

∫ 104

0
dΦ pΦ(Φ)Psurv(Φ)

∫ Mγ,max

Mγ,min(Φ)
dMR(Φ,M)2

vesc(Φ,M)2

vvir

×
∫ R200

Rsurv

dr

[
r

max(r,R⊙)

]2
ρa,f (r)

dn

dM(r). (6.23)

of the enhanced minicluster accretion model with order-one mass translation onto the AS core.
The remaining step at this point is to evaluate the detectability of the corresponding radio flux
densities with different telescopes. Before doing so, we continue to introduce a second class of
accretion scenarios in the following section.

6.3 Internal Minicluster Accretion Model
This second class of models focuses on isolated ASMC systems, where the source of the accreted
AS core mass is given by the minicluster itself. To make clear the distinction to the non-isolated
external accretion model from the previous section, we call this second accretion scenario the
internal MC accretion model in the following. The physical motivation for this accretion process
comes from the long-time evolution of isolated ASMC systems in the numerical simulations of
Subsec. 4.3.2 and Ref. [240].
According to the predictions from Ref. [240], the axion star mass growth obeys the time evolution
from Eq. (4.41) after soliton condensation around t ∼ τgr, where the condensation time τgr is
given by Eq. (4.26). The resulting mass growth is depicted in Fig. 4.6 for different values of
ϵ in Eq. (4.43), which in turn is defined in terms of the minicluster parameters M,Φ and the
axion mass ma. Most importantly for the considerations in this chapter, we can obtain the
time-dependent mass growth rate of the self-similar system by taking the time derivative of
Eq. (4.41). The resulting internal MC accretion rate in Eq. (4.42) and Fig. 4.7 will be used to
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determine the total flux of the resonant ASMC population in the following - analogous to the
computation of F⋆,tot performed in Sec. 6.2.
We demonstrate the fundamental accretion mechanism of the internal model in Fig. 6.4, which
shows the total ASMC system composed of the yellow AS core and the blue minicluster. The

Figure 6.4: Schematic representation of the internal minicluster accretion model for axion star cores,
taken from Ref. [2]. In this scenario, the isolated ASMC system exhibits a continuous mass growth of the
axion star core, predicted from Eq. (4.41) and Eq. (4.7). The resulting mass excess δM⋆ in red arrows
can be converted into the blue radio photons for suitable core masses M⋆ ≥M⋆,γ .

major distinction between Fig. 6.4 and Fig. 6.1 is the absence of the background DM field ρa,f .
As mentioned before, the core mass growth δM⋆ in red is sourced by the corresponding mass-loss
of its surrounding minicluster background with mass M −M⋆. A more complete scenario of
AS accretion would be given by the combined contributions from internal and external mass
growth. We leave a more sophisticated treatment of this combined process up to future research
and instead explore the possibility of the two major mechanisms separately.
According to Eq. (4.42) and Eq. (4.43), the core mass growth rate δM⋆/δt in the internal
accretion model is fixed by a set of five different quantities: The minicluster parameters M,Φ,
the axion model ma, n setting the former through M0 and the core mass M⋆. In the context
of our approach using the ASMF prediction from Subsec. 4.7.2, the core mass M⋆ is fixed by
the z = zeq core-halo relation in Eq. (3.57). An alternative modeling of the corresponding core
mass growth could be obtained by using the initial soliton mass M⋆,0 at the time of formation
t ∼ τgr and the present-day time coordinate t0 of the system. In this way, the present-day core
mass M⋆ would be predicted by evolving the system in Eq. (4.41) until t0.
We note here that a similar study of the long-time mass growth of soliton cores without self-
interactions λ = 0 was recently performed in Ref. [252]. Since the self-similar attractor model
faces fundamental uncertainties after reaching the critical masses M⋆ = M⋆,γ or M⋆ = M⋆,λ

and since our previous approach to the ASMF was determined for the conservative core mass
estimate at z = zeq in Eq. (3.57), we use a different way to determine the soliton mass in the
following.
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We take the present-day parametrization of the linear growth MCMF from Subsec. 3.5.2 and
derive the core masses from the core-halo relation at z = zeq like before. This approach takes into
account the linear long-time mass growth of miniclusters but not the long-time (internal) mass
growth of their AS cores. Thus assuming M⋆ to be given by the conservative initial estimate
from the canonical core-halo relation, we can compute the corresponding mass growth rate from
Eq. (4.42) for a given model ma, n while integrating over the distributions of M and Φ, similar
to Eq. (6.21). More specifically, the resonating systems of our interest are expected to have
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Figure 6.5: Relative fraction of accreted mass δM⋆/δt · tH/M over tH ≃ 1.3 · 1010 yrs, normalized by
the total mass M of the accreting system with core mass M⋆ = M⋆,λ. Both given for the internal MC
accretion model from Eq. (4.42) for n = 0, 1, 3.34, for Φ = 1 in solid and Φ = 103 in dashed colored lines.

M⋆ =M⋆,γ , where larger core masses are prohibited by the parametric instability from Sec. 4.5.
This way, the mass growth rate of the internal accretion model in Eq. (4.42) is fixed by the
parameters M,Φ,M⋆,γ for each axion model ma, n. We demonstrate the long-time stability of
the accreting systems in Fig. 6.5 by plotting the relative mass gain δM⋆/δt · tH/M. The typical
overdensity Φ = 1 is indicated by the solid colored lines, while dashed lines correspond to some
of the densest miniclusters with Φ = 103. Fig. 6.5 demonstrates that the long-time stability
δM⋆/δt · tH/M ≪ 1 of the systems is guaranteed for the most abundant ASMC systems with
Φ ∼ 1.
The same statement does not hold true however for the densest miniclusters Φ = 103, for
which the mass fraction in Fig. 6.5 exceeds order one for the smallest ma and largest n in
the sample. This is mostly due to the increased absolute mass of the structures as seen from
M0 in Fig. 3.7. To ensure the consistency of the accreting systems in the ASMF at large
Φ, we introduce an additional requirement for the resonating ASMC population in the internal
accretion model. The resulting condition ensures the long-time survival of the respective systems
through linear extrapolation of the mass growth rate at M⋆ = M⋆,γ , which can be expressed
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through multiplication with a Heaviside function in Eq. (6.4) according to

N int
γ,tot = 4π

∫ R200

Rsurv

dr r2
∫
dΦ pΦ(Φ)Psurv(Φ)

∫ Mγ,max

Mγ,min(Φ)

dMCn(r)

M

( M
M0,min

)−1/2

×Θ

(
M− δM int

⋆

δt

∣∣∣∣
M⋆=M⋆,γ

tH −Mγ

)
, (6.24)

where the Θ function equates both the combined AS mass and its accreted mass after t = tH
with the minicluster mass M. Let us also mention for completeness, that in all applications of
the internal accretion rate, we check the kinetic regime condition from Eq. (4.22) for consistency.
From the above assumptions and with the internal mass growth rate given by Eq. (4.42), it is
straight forward to obtain the overall AS flux of the internal accretion model equivalent to the
procedure in Eq. (6.21). The expected total flux can then be estimated from the expression [2]

F int
⋆,tot ≃ ηaγγc

2

∫ 104

0
dΦ pΦ(Φ)Psurv(Φ)

∫ Mγ,max

Mγ,min(Φ)
dM

∫ R200

Rsurv

dr

(
r

max(r,R⊙)

)2

× dn

dM(r)
δM int

⋆

δt

∣∣∣∣
M⋆=M⋆,γ

Θ

(
M− δM int

⋆

δt

∣∣∣∣
M⋆=M⋆,γ

tH −Mγ

)
, (6.25)

where we have neglected the mass-loss backreaction of having increased M⋆/M and thus de-
creased accretion rates δM⋆/δt at late times t ∼ tH .
Similar to the definition of the enhanced external accretion model in Sec. 6.2, it is helpful to
introduce a less conservative modification to the expected signal in Eq. (6.25). In this case the
so far neglected long-time mass growth of the AS cores over tH can lead to a significant boost
of the expected number of resonating systems in Eq. (6.24) and Eq. (6.25). We explore the re-
sulting phenomenological potential by introducing a fourth type of scenario in which the initial
core-halo relation at z = zeq from Eq. (3.57) is relaxed to account for the prediction M⋆ ∼ M
in Ref. [240]. This can be achieved by parametrizing the late-time core mass relation of the
internal model in terms of a constant Cacc ≤ 1 according to

M⋆ = CaccM , (6.26)

where we set Cacc = 1/2, such that the AS core can absorb up to 50% of the total mass M.
Since in this case, the core-halo relation is effectively replaced by the relation in Eq. (6.26),
we also drop the corresponding cutoffs Mh,min in Eq. (6.1) and MR,min for consistency. As
a consequence, the late-time relation Eq. (6.26) leads to an effective decrease of the low-mass
cutoff Mγ,min in Eq. (6.2). The corresponding total flux predicted by the enhanced internal
accretion model is then found by additionally expressing Mγ through Eq. (6.26), which yields

F
int,acc
⋆,tot ≃ F int

⋆,tot(Mγ =M⋆,γ/Cacc) (6.27)

with modified Mγ,min = max(M0,min,Mγ) as outlined above. We use the above enhanced
internal accretion model to estimate the potential detectability of resonant axion stars with
improved accretion modeling at late times.
We also note for completeness that the condensation time τgr in Eq. (4.26) can become larger
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than tH for some parameters. This observation does not contradict the existence of axion stars
in such systems since τgr was derived for random homogeneous initial conditions, which are
different from the gravitational collapse of the large overdensities in Sec. 3.2. As mentioned in
Ref. [167], the time of AS formation can be significantly enhanced in the early universe.

6.4 Line Emission & galactic Radio Backgrounds
In the previous sections, we have introduced two major accretion models - internal and external
- which each contain a conservative and an enhanced estimate on the expected accretion rates.
The purpose of this section is to investigate the resulting signal flux densities in more detail.
In the following analysis, we compare the expected flux rates from Eq. (6.21) to galactic radio
backgrounds over a range of observable radio frequencies.
Subsec. 6.4.1 introduces a phenomenological fit to the galactic radio backgrounds, which we
use to evaluate the detectability of external and internal signal rates in Subsec. 6.4.2 and Sub-
sec. 6.4.3. We also discuss the possible detuning of the parametric resonance in the gravitational
potential of the Milky Way in Subsec. 6.4.4 and demonstrate the directional dependence of the
AS line signal in Subsec. 6.5.4.

6.4.1 Galactic Radio Background

The strength of galactic radio backgrounds is accounted for by using the power-law fit for the
observed thermodynamic background temperature Tbkg from Ref. [268]. The phenomenological
fit in Ref. [268] was obtained by matching data from different radio surveys in the range from
22MHz to 10.49GHz. It is essentially composed of the blackbody temperature TCMB = 2.722K
of the cosmic microwave background and of a temperature power-law found from the observed,
averaged radio excess. The resulting fit for predicting the background temperature at different
frequencies f is [268]

Tbkg(f) = TCMB + TR,0

(
f

fR,0

)βf

= TCMB + 30.4K
(

f

310MHz

)−2.58

, (6.28)

where TR,0 = 30.4K is the background reference temperature at a reference frequency of fR,0 =
310MHz and βf = −2.58 the spectral index of the power law. In order to compare our flux
rate predictions from Eq. (6.21) to the background emission from Eq. (6.28), we convert Tbkg
and F⋆,tot into spectral flux densities. We use Planck’s law to convert the thermodynamic
temperature predictions from Ref. [268] into the background flux density

Sbkg(f) =
8πhf3

c3
1

exp
(

hf
kBTbkg

− 1
) (6.29)

with Tbkg from Eq. (6.28). The resulting flux density has units of power per unit area and
frequency, integrated over the solid angle Ω. Similarly, we can compare the units of F⋆,tot in
Eq. (6.21), which are power per unit area integrated over solid angle, to find the corresponding
spectral flux density S⋆,tot.
Since the leading-order conversion process in resonating axion stars produces a nearly monochro-
matic emission, for which the narrow bandwidth ∆f ∝ gaγγ is given by Eq. (4.53), we can simply
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divide F⋆,tot by ∆f to obtain its spectral equivalent S⋆,tot. For the axion-photon couplings un-
der consideration, the corresponding frequency width of the expected signal is dominated by the
Doppler broadening in the Milky Way gravitational potential. Using the velocity dispersion of
the galactic disc and DM halo for the relative velocities of the resonating ASMC systems, we
find vrel ≃ vvir ≃ O(200 km/s), which results in ∆f/f ≃ vrel/c ≃ 10−3, as before . Therefore
writing ∆f = 10−3f with f = ma/(4π), we obtain the total spectral flux density [2]

S⋆,tot (ma = 4πf) ≃ F⋆,tot(ma)

10−3ma/(4π)
(6.30)

emitted from the galactic population of resonating axion stars over the entire sky. Finally
expressing the center frequency f = ma/(4π) of the expected radio line background in Eq. (6.29),
we can directly compare the magnitude of Sbkg and S⋆,tot for different axion models ma, n. This
will be done for a representative value of gaγγ in the next section.

6.4.2 Spectral Flux from External Accretion

Starting with the scenario of external minicluster accretion from Eq. (6.22) and Eq. (6.23),
we show the resulting spectral fluxes obtained for a representative axion-photon coupling of
gaγγ = 10−11 GeV−1 in Fig. 6.6. The frequency range in MHz encompasses axion masses in the
range 10−8 eV ≤ ma ≤ 10−2 eV, which can potentially be probed by terrestrial radio telescopes.
We extend the considered range of ma beyond these frequencies to demonstrate predicted signals
in units of MJy, which could potentially be searched by space-borne telescopes.
On a more general note in Fig. 6.6 and in the following plots, we show the conservative estimate
in the left panel together with the enhanced accretion scenario on the right. The black solid
line in Fig. 6.6 indicates the radio backgrounds predicted by the power law fit in Eq. (6.28) and
Eq. (6.29). We have separated the black body spectrum of the CMB from the overall fit as
indicated by the gray dashed line at lower frequencies f ≲ 1GHz. Note that in Fig. 6.6 and in
following figures, the colors were changed with respect to the representation of n = 0, 1, 3.34 in
previous chapters.
It can clearly be seen by comparing the black solid to the colored lines at different temperature
indices n, that the expected spectral fluxes can become orders of magnitude larger than the
backgrounds. This is especially true away from the CMB peak around f ≃ 160GHz and for
lower frequencies of f ≲ 1GHz corresponding to ma ≲ 5µeV. We emphasize here that each point
in Fig. 6.6 corresponds to a narrow line, for which the central frequency is set by Eq. (4.53)
and the amplitude by the axion model ma, n following Eq. (6.22), Eq. (6.23). The narrow
radio line nature of the expected signal is mainly responsible for the increasingly large flux
densities S⋆,tot ≫ 1GJy at small f ∝ ma. Two major reasons for this observation are the scaling
S⋆,tot ∝ m−1

a in Eq. (6.30) and the increased accretion rates from Eq. (6.14) for heavier and
larger structures M0 ∝ m

−3/2
a , R ∝ M1/3, see Eq. (3.50), Eq. (3.24).

Furthermore, a comparison of the conservative and enhanced models in the left and right panels
of Fig. 6.6 reveals the strong impact of the efficiency factor Ch = (M/Mh,min)

−3/2 in Eq. (6.14).
This observation does not only demonstrate the benefit of improved understanding of the (time-
dependent) core-halo relation of composite ASMC systems, but it also indicates a significant
potential for enhancements of the expected signals through additional consideration of long-
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Figure 6.6: Spectral flux density S⋆,tot(ma) of the external accretion models in Eq. (6.14) (left) and
Eq. (6.16) (right) in MJy, taken from Ref. [2]. Calculated from Eq. (6.22) and Eq. (6.23) for an axion-
photon coupling of gaγγ = 10−11 GeV−1, where each point represents a narrow line centered around
the frequency f = ma/(4π) of the axion mass ma. The black solid line describes the radio back-
grounds, including the cosmic microwave background (dashed) and observed radio excesses, parametrized
by Eq. (6.28).

time accretion2. The important conclusion from Fig. 6.6 is that the external MC accretion
model provides spectral fluxes, which are comparable to galactic backgrounds for a large range
of axion models ma, n - especially for the enhanced scenario in the right panel.
On a technical side, the amplitudes of S⋆,tot at different n in Fig. 6.6 arise due to a mixing of
the following effects: the modified ranges of the ASMF in Fig. 4.14, the different abundance of
the objects in Fig. 5.20 and their different scalings compared to M⋆,γ in Eq. (4.61), which is
approximately constant for different n3. Effectively, the high-frequency cutoffs in Fig. 6.6 are
given by regions of ma, n, where the resonant AS mass M⋆,γ > max(M⋆) grows beyond the range
of the ASMF. Lastly, the scaling of the spectral flux densities in different accretion models can
be understood from the relation

S⋆,tot ∝
∫
dM dn

dM
δM⋆

δt
∝
∫
dMM−3/2Mp , (6.31)

where p ≃ 2/3 for the conservative external MC accretion and p ≃ 4/3 due to the absence of
Ch in Eq. (6.14) for the enhanced external accretion scenario. The scaling of S⋆,tot with M
in Eq. (6.31) and p > 1 indicates that the dominant contribution to the total galactic radio
flux from resonating ASMC systems is given by the high-mass component of the MCMF with
large M > M0. Note however that we apply a stability cutoff to the largest MC masses with
predicted core masses M⋆ ≥M⋆,λ due to the unknown late-time evolution after occurring of the
self-interaction instability from Sec. 4.4.
To conclude, we highlight that the external accretion model from Sec. 6.2 provides a promising
mechanism and strong expected radio line emission for a large range of axion models ma, n.

2This is because the factor Ch essentially relates the mass distribution of the AS core and its host minicluster,
where Ch ∼ 1 corresponds to increased or late-time AS core masses as predicted by Ref. [240].

3This is because the second term under the square root in Eq. (4.61) is negligible for most models ma, n so
that M⋆ is essentially independent of fa(n) in Fig. 3.6.
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6.4.3 Spectral Flux from Internal Accretion

Next we examine the detectability of the spectral flux density given by the flux in Eq. (6.25) and
Eq. (6.27) for the (enhanced) internal accretion scenario. Analogous to the previous section, we
plot the resulting flux density predictions for different models ma, n with representative axion-
photon coupling gaγγ = 10−11 GeV−1 compared to the galactic radio backgrounds from Eq. (6.29)
in Fig. 6.7. As before, black solid and dashed lines show the total and CMB components of the

Figure 6.7: Spectral flux density S⋆,tot(ma) of the internal accretion models in Eq. (4.42) with the core-
mass given by Eq. (3.57) and M⋆ ∝ M1/3 (left) and M⋆ ∼ M in Eq. (6.26) (right) in MJy, taken from
Ref. [2]. Calculated from Eq. (6.25) and Eq. (6.27) for an axion-photon coupling of gaγγ = 10−11 GeV−1,
where each point represents a narrow line centered around the frequency f = ma/(4π) of the axion mass
ma. The black-solid line describes the radio backgrounds, including the cosmic microwave background
(dashed) and observed radio excesses, parametrized by Eq. (6.28).

backgrounds while different colors indicate axion models with different temperature evolution
index n. The left panel of Fig. 6.7 shows the standard internal accretion model, which uses the
canonical core-halo relation from Eq. (3.57) to fix the mass range of the ASMF. In contrast,
the right panel of Fig. 6.7 depicts the same results for the enhanced internal accretion, which is
given by the modified mass relation in Eq. (6.26).
Remarkably, both internal accretion models show significantly larger spectral flux densities
compared to the external scenarios in Fig. 6.6. A major reason for this boost in signal amplitude
is given by the increased accretion rates, which can become particularly large for dense Φ ≫ 1
and heavy M > M0 miniclusters. Opposed to the external accretion rates in Eq. (6.6), which
benefit from small values of Φ, the survival probabilities Psurv(Φ) for large Φ are not suppressed,
see Fig. 3.10. This leads to an increased survival of the most strongly emitting ASMC systems
in the internal models.
Comparing the left and right panels of Fig. 6.7, one observes that the major distinction between
the conservative and enhanced accretion models is the extended observable frequency range at
large ma on the right. This can simply be explained by the relaxed low-mass cutoff of the
resonant MCMF population given by Eq. (6.26). The important conclusion for the internal
accretion scenarios in Fig. 6.7 is that the observability of the radio line emission is essentially
limited by the existence of resonating ASMC systems in the galaxy altogether. If this population
is present, as predicted by the cutoffs from Eq. (6.2), Eq. (6.3) and Eq. (6.26) respectively, the
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received spectral flux is expected to be overwhelmingly strong compared to galactic backgrounds.

6.4.4 Gravitational Detuning

Before we investigate the parameter constraints in the next section, we turn to briefly discuss the
potential detuning of the AS resonance from Sec. 4.5 in the galactic gravitational potential, as
presented in Ref. [269] and Ref. [2]. Physically, Ref. [269] investigated two fundamental detuning
mechanisms, which were shown to suppress the exponential growth of stimulated photon decay
in some configurations.
The first mechanism relates to the momentum spread δp of the axion field, which should not
exceed the characteristic length scale of the resonance for the instability to develop. If the
momentum spread is much larger than the resonance length, an average emitted photon will
be prevented from triggering further stimulated emission due to the significant change in axion
energy across its trajectory. In the framework of Ref. [269], the momentum spread of a coherent
clump is given by the inverse length scale, δp ∼ 1/R⋆, and the resonance length 1/µH is defined
as the inverse of the growth factor µH from Eq. (4.56), which sets the physical scale of the
parametric resonance.
The second source of potential detuning is given by the gravitational redshift of photons in an
external potential like that of the Milky Way dark matter halo. When the gravitational redshift
changes the photon energy sufficiently over the resonance length 1/µH , an average photon will
be detuned with respect to the energy of the axions it is supposed to stimulate. Both of the
above mechanisms can be formulated into two requirements for the resonance condition, as done
in Ref. [269]. Defining the detuning distance of a photon as the spatial distance it has to travel
in a constant external potential Φext to be shifted out of resonance from the resulting energy
loss, the two criteria can be summarized as [269]

1. The axion momentum spread δp ∼ 1/R⋆ should be smaller than the growth factor, δp < µH
(i.e. smaller than the inverse resonance length 1/µ−1

H as formulated in Ref. [269])

2. The detuning distance ∆z of the gravitational redshift should be longer than the resonance
length 1/µH , so that ∆z > 1/µH

Note that the first point is equivalent to the resonance condition µH > µesc from Eq. (4.56)
and Eq. (4.58) with µesc = 1/(2R⋆). It is therefore sufficient to test the validity of the second
requirement in the following. For this, we can express the second condition by writing µH∆z > 1
in terms of the effective axion momentum peff =

√
p2⋆ − 2m2

aΦext in the roughly constant external
potential Φext as [269]

µH∆z =
4µ2H
m2

a

peff
|∂rΦext(r)|

=
g2aγγρ⋆

2m2
a

√
−2m2

aΦext
|∂rΦext(r)|

> 1 , (6.32)

where ρ⋆ ≃ M⋆/(4π/3R
3
⋆) and p⋆ ≪ 2m2

aΦext is the typical momentum of the clump in a
dominant external potential. The properties of Φext can be estimated from the corresponding
Poisson equation as Φext(r) ≃ −4πGρextr2 and ∂rΦext ≃ −8πGρextr, where ρext is the dominant
matter density sourcing the overall potential Φext.
In the case of diffuse axions, ρext is set by the Milky Way potential, whereas for the overdense
axion clumps of our interest ρext ≈ ρ⋆ [2]. Thus considering the gravitational redshift induced
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by the dominant AS matter density ρ⋆, we can rearrange Eq. (6.32) for the radius R⋆ to obtain
the resonance condition

R⋆ ≲

(
1

8π

√
3

2

)2/3(
g4aγγM⋆

m2
aG

)1/3

∼
(
g4aγγM⋆

m2
aG

)1/3

. (6.33)

due to gravitational detuning [2]. Apart from the order-one numerical prefactors, the scaling
in Eq. (6.33) is identical to the scaling of the resonating AS radius R⋆,γ = R⋆(M⋆,γ) obtained
from Eq. (4.17) and Eq. (4.61). We therefore conclude, that the two detuning mechanisms
from Ref. [269] are (1.) already included in our formalism and (2.) only expected to differ
within order-one ranges, which are well within uncertainties of the galactic MCMF and ASMF.
Effectively, a potential change of the resonance condition in Eq. (4.58) by order-one factors
would drive the corresponding mass M⋆,γ slightly above the values in our consideration, which
does not affect our qualitative results. Opposed to the case of diffuse axion configurations in
Ref. [269], we summarize that the coherent clumps of our interest are not considerably affected
by gravitational detuning.

6.5 Constraints on the Axion-photon Coupling
With the exemplary signal flux densities evaluated in the previous sections, a straight-forward
next step is to explore the potential constraints, which can be inferred from exclusion of the
corresponding signals. For this, we follow the approach in Ref. [2] by employing two different
criteria for the detectability of the total AS line emission: First, a simple background comparison
based on the galactic radio backgrounds from Subsec. 6.4.1 and secondly a dedicated signal
search using different radio telescopes and their respective sensitivities. Both of these criteria
will be introduced in Subsec. 6.5.1 before applying them separately for the external MC accretion
models in Subsec. 6.5.2 and the internal MC accretion scenario in Subsec. 6.5.3.

6.5.1 Approaches to Background Comparison

In the general context of this chapter, we scan the axion models ma, n from Subsec. 3.6.1
across an axion mass range 10−8 eV ≤ ma ≤ 10−2 eV and for n = 0, 1, 3.34 as before. The
resulting signal fluxes from Eq. (6.21) and Eq. (6.30) depend sensitively on the model ma, n

and on the axion-photon coupling gaγγ , which in our considerations spans across the range
10−17 GeV−1 ≤ gaγγ ≤ 10−8 GeV−1 - independent of ma, n. For each model ma, n, we use the
abundance of resonating ASMC systems from Eq. (6.4) together with the internal and external
accretion rates to obtain a corresponding signal flux in Eq. (6.21), which we compare both
with radio backgrounds from Eq. (6.28) and with telescope sensitivities. Same as in Fig. 6.6
and Fig. 6.7, we use the black-body radiation law in Eq. (6.29) and Eq. (6.30) to convert from
temperature and flux to spectral flux densities in units of MJy.
The corresponding signal flux densities of the galactic AS radio line emission is then compared
to sensitivity requirements from two different approaches to be introduced in the following.
As a major result for each of the two signal comparisons, we obtain the potential constraints
in the parameter space of ma, gaγγ at a given n, which can be inferred in the future through
(non-)observation of the predicted radio lines from resonating systems.
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Simple Background Comparison

In the first most straight-forward approach, we employ a simple comparison of the predicted
spectral flux density S⋆,tot with the spectral flux from galactic radio backgrounds in Eq. (6.29).
Accordingly, we evaluate each point ma, gaγγ in the parameter space at given n by calculat-
ing the different galactic flux densities numerically (analogous to Fig. 6.6, Fig. 6.7 for gaγγ =
10−11 GeV−1), and determine the parameter space in ma, gaγγ , where

S⋆,tot(ma, n) >

(
S

N

)
Sbkg(ma) . (6.34)

The resulting two-dimensional parameter plots of potentially constrainable regions are given for
a signal-to-noise ratio of S/N = 5 with n = 0, 1, 3.34 and correspond to axion modelsma, n, gaγγ ,
for which the galactic line emission from resonating axion stars is expected to be detectable.
Importantly, the predicted constraints of the simple background comparison in Eq. (6.34) do
only depend on the signal-to-noise ratio S/N and not on the experimental properties of a given
telescope. They can therefore be seen as a preliminary estimate on the observational potential
that can be probed with current and future radio telescopes.
We show the exclusion potential obtained from this approach in Fig. 6.8 and Fig. 6.10 and
evaluate the results in detail in Subsec. 6.5.2 and Subsec. 6.5.3 respectively. Before moving on
to potential constraints, we continue with the second, experimentally motivated approach.

Radio Telescope Sensitivities

As seen in Fig. 6.6, the expected spectral flux of the galactic population of resonating axion
stars drops below the expected radio backgrounds for some ma, n in the external accretion sce-
nario. It is therefore helpful to explore the possibilities of different existing and upcoming radio
telescopes in this section. This is particularly relevant since the radio line emission predicted
in this work needs to be either observed or excluded by astronomical observations to derive the
respective constraints on the axion-photon coupling gaγγ . In the following, we consider four
different telescopes: LOFAR [270, 271], FAST [272, 273], ALMA [274, 275] and the upcoming
square kilometer array, SKA [276, 277].
The experimental requirements for a possible detection of S⋆,tot are best understood by dis-
cussing the expected nature of the radio line signal. Owing to the NFW profile of the Milky
Way dark matter halo in Eq. (A.1) and Eq. (6.5), the distribution of resonating axion stars
should be roughly isotropic when observed from the galactic center. This isotropy is obviously
violated at the solar position R⊙ = 8.3 kpc, however the MC survival cutoff, which we apply
at r < Rsurv = 1 kpc in Eq. (3.54) is expected to partially reduce anisotropic effects from the
central DM component at r < R⊙. For simplicity and due to the large uncertainties in the
evolution of the galactic ASMF, we will therefore assume that the line emission of resonant
axion stars can be treated as approximately isotropic in the following.
We also note that, while the AS emission will be stronger towards the galactic bulge with larger
ρNFW(r), the radio backgrounds (and foregrounds) of the baryonic matter will also be boosted,
thus complicating possible detection of our signal. The above circumstances also motivate an
observation strategy in which the telescopes are pointed away from the Milky Way disc. This
approach is especially promising, because S⋆,tot - opposed to the signal event signal in Eq. (6.17)
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- amounts to a diffuse signal, that can also be observed far away from the galactic plane4. Ac-
cordingly, the AS line signal is expected to be smooth over large angular scales compared to the
size of the typical beam of radio telescopes.
The diffuse nature of S⋆,tot implies that our signals do not benefit from the interferometric tech-
niques, which LOFAR, ALMA and SKA provide. Interferometers are designed to increase the
angular resolution through an array of smaller dishes with a large maximal distance between
them (called the baseline), where the effective area of the dish is given by the baseline. Im-
portantly for our considerations, the largest angular scales in the interferometric mode, which
are larger than the shortest baseline and connected to our diffuse signal, will be removed. This
limitation requires us to only consider the single-dish mode of interferometers for detection.
Lastly at the same time, we consider a large parameter range in ma ∈ [10−8 eV, 10−2 eV], which
leads to the requirement of a large range of observable frequencies f ∈ [fmin, fmax] for a given ex-
periment. To summarize the above, our signal has several fundamental properties: The narrow
spectral width of the line, which benefits from sufficiently small frequency bins, the diffuse nature,
which requires single-dish (mode) observations and the large range of constrainable frequencies
f ∈ [1MHz, 103 GHz]. We choose the FAST telescope as a single dish with a particularly large
diamter Dtel = 300m and the LOFAR, ALMA and upcoming SKA arrays to cover a broad range
of frequencies, see Tab. 6.1 for details.
With the experimental requirements and telescope choices summarized above, the next step is
to infer the potential detectability of our line predictions using the aforementioned methods.
In the context of radio astronomy, the spectral flux density S⋆,tot in Eq. (6.30) should be more
commonly expressed in terms of the antenna temperature Tant, which is the noise temperature
of a hypothetical resistor that gives the same amount of power density as the observed signal.
For this, the sky-integrated total flux density S⋆,tot needs to be converted into the spectral flux
density Spb

⋆,tot within the observed solid angle ∆Ωpb of the primary beam of the telescope

S
pb
⋆,tot(ma) ≃ S⋆,tot(ma)

∆Ωpb
4π

, (6.35)

where ∆Ωpb = 2π(1− cos(θpb/2)) is a function of the primary beam angle θpb [278, 279]. Note
that by applying Eq. (6.35), we have implicitly assumed that the chosen bandwidth ∆B of
the given telescope is similar to the spectral width ∆f ≃ ∆B of the AS signal. If for a given
experiment, the bandwidth ∆B > ∆f exceeds the line width, the resulting signal would be
suppressed by an additional factor

η∆B ≃ ∆f

∆B
≃ 10−3ma

∆B
(6.36)

compared to Eq. (6.35).
Then, setting the bandwidth efficiency η∆B = 1 by employing Eq. (6.35), we can convert the
observed flux density Spb

⋆,tot into the corresponding antenna temperature

T
pb
ant =

1

2kB
Aeff S

pb
⋆,tot(ma), (6.37)

4Depending on the telescope, there will be limitations to the observable elevation of the dish and antennas,
which we do not consider in the qualitative estimates of this chapter.
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of the primary beam, where Aeff = ηAA is the effective area of the telescope, with efficiency
factor ηA and dish surface area A [278, 279]. For single dish telescopes, the detectability of the
signal Spb

⋆,tot inducing the antenna temperature Tant in Eq. (6.37) is typically expressed by means
of the radiometer equation

(
S

N

)

single
=
T

pb
ant

Tmin
, (6.38)

where in this work S/N = 5 as before. The minimum observable temperature

Tmin =
Tsys√
∆B tobs

(6.39)

depends on the bandwidth ∆B ≃ ∆f ≃ 10−3ma/(4π) and the observation time tobs = 100 hrs.
Physically, Tmin quantifies the noise of the system with total temperature Tsys = Trec+Tbkg given
by the sum of the receiver noise and the radio background temperature Tbkg from Eq. (6.28)
in a given measurement. Note also that the criterion in Eq. (6.38) is valid only for single dish
telescopes, i.e. for FAST in our considerations.
Telescope arrays like LOFAR, ALMA and SKA on the other hand consist of multiple, smaller
single dishes which are operated together. For a telescope setup involving Ntel individual dishes
with Npol = 2 polarizations, the single-mode signal to noise ratio can be inferred from Eq. (6.38)
according to

(
S

N

)

array
=
√
NtelNpol

(
S

N

)

single
=
√
NtelNpol

T
pb
ant

Tmin
. (6.40)

For a given telescope, the detectability for S/N = 5 depends on the primary beam angle θpb
setting Ωpb in Eq. (6.35), on the effective area Aeff in Eq. (6.37), the observation bandwidth
and duration ∆B, tobs and on the system temperature Tsys. For telescope arrays, additional
parameters are given by the number of telescopes Ntel, where we set Npol = 2 in Eq. (6.40). The
corresponding specifications of the different telescopes considered in this work are summarized
in Table 6.1 [2]. We indicate the observable frequency ranges using the lowest and highest
observable frequencies fmin, fmax of the telescopes. In the special case of the ALMA telescope,
we have simplified the frequency dependence of the system temperature due to the existence of
different observation bands. The system temperatures of the ten frequency bands of ALMA are
shown separately in Tab. 6.2 for completeness.
In the case of the LOFAR-LBA in the first column, we have set the primary beam angle to π/3
since the LBA dipole beam covers most of the sky above an elevation of ∼ 30◦. In the case of
FAST, Ntel indicates the number of beams of the single dish telescope and the effective area an
primary beam angles depend on the wavelength λ = c/f of observation. For simplicity, we have
grouped different ALMA bands in Tab. 6.2 with same Tsys together.
To summarize the above approach, we determine if the antenna temperature in Eq. (6.37) of
the respective accretion- and axion model ma, n, gaγγ is sufficient to yield a signal-to-noise ratio
of S/N ≥ 5 using Eq. (6.38) for FAST and Eq. (6.40) for LOFAR, ALMA and SKA with the
parameters from Tab. 6.1 and Tab. 6.2. If we find S/N ≥ 5 for a given axion model ma, n, gaγγ ,
we consider the corresponding point in the parameter space of ma, gaγγ constrainable through
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Parameter LOFAR-LBA FAST SKA-Low / Mid ALMA
fmin [MHz] 10 1050 50 35k
fmax [MHz] 90 1450 14k 950k
Dtel [m] 81.34 300 35 / 15 12
Ntel 40 19 911 / 200 50
Npol 2 2 2 2
tobs [hrs] 100 100 100 100
Trec [K] 104 24 40 / 20
Tsys [K] Trec + Tbkg Trec + Tbkg Trec + Tbkg 90 to 3700
Aeff min(16λ2obs, 4500m2) 0.55π(Dtel/2)

2 0.8π(Dtel/2)
2 0.26π(Dtel/2)

2

θpb π/3 1.02λobs/Dtel 1.02λobs/Dtel 1.02λobs/Dtel

Table 6.1: Specifications of different radio telescopes: LOFAR-LBA [270, 271], FAST [272, 273], SKA
[276, 277, 280] and ALMA [274, 275] taken from Ref. [2]. For ALMA, the range of Tsys ∈ [90K, 3700K] is
due to the ten different frequency bands in the range of [35GHz, 950GHz], see Tab. 6.2. The parameters
are not chosen to maximize detectability but to offer comparable estimates of the achieved sensitivity.
The quantities fmin, fmax indicate the observable frequency ranges, Dtel is the telescope diameter, λobs
the observed wavelength and the remaining parameters are defined in accordance with the main text.

Frequency Band Frequency Range [GHz] Tsys [K]
B1 [35, 50] 90
B2 - B3 [67, 116] 200
B4 - B7 [125, 373] 400
B8 [385, 500] 870
B9 [602, 720] 2200
B0 [787, 950] 3700

Table 6.2: ALMA specifications from Tab. 6.1 and Ref. [2] for the ten different frequency bands under
consideration [274, 275]. Frequency ranges of the respective bands are given in units of GHz, together
with the different system temperatures Tsys in units of Kelvin. Where possible, bands with same system
temperature have been grouped together.

(non-)observation of the expected radio signals. We do not perform the data analysis looking
for AS radio lines in this work and continue our evaluation by demonstrating the resulting
constraints for the external accretion models in the next section.

6.5.2 Constraints from External Accretion

Starting with the conservative (left) and enhanced (right) external MC accretion models from
Eq. (6.22) and Eq. (6.23), Fig. 6.8 shows the parameter regions of ma, gaγγ , where the observed
signal-to-noise ratio from resonating axion stars following Eq. (6.34) is S/N ≥ 5. The resulting
plots only show the potential constraints that can be inferred through simple comparison of
S⋆,tot with galactic backgrounds, while neglecting experimental constraints like the observable
frequency range [fmin, fmax] from Tab. 6.1. For comparison, we also plot existing laboratory and
astrophysical constraints on the axion-photon coupling in gray shades. To indicate experimental
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Figure 6.8: Potential constraints inferred from the external accretion model for different axion models
ma, n with couplings gaγγ in the range ma = 10−7 eV − 10−2 eV, taken from Ref. [2]. In this simple
background comparison, the spectral flux densities S⋆,tot(ma) from Fig. 6.6 and Eq. (6.22) are compared
to the background spectral flux density from Eq. (6.28), requiring S/N = S

pb
⋆,tot/Sbkg ≥ 5. Dark shades

correspond to existing constraints and the yellow band represents the couplings of QCD axion models.

limitations of terrestrial telescopes, we impose an additional low-ma cutoff at the radio window
boundary of f = 10MHz, which corresponds to ma ≃ 10−7 eV. The colored regions indicate the
potential constraints that can be inferred for different ma, gaγγ at a given n.
In both panels of Fig. 6.8, the constrainable regions differ depending on n, where the n = 3.34
case in the left panel vanishes completely. The scaling of the flux density S⋆,tot with the temper-
ature index n is generally difficult to trace, since it incorporates several interdependent effects.
These effects include the different mass cutoffs of the resonating MCMF in Eq. (6.2), Eq. (6.3),
the dependence of the accretion rates in Eq. (6.14), Eq. (6.16) on ma, n and the varying scalings
of Nγ,tot, M⋆,γ , max(M⋆) with ma, n, gaγγ in Eq. (6.4) and Eq. (4.61).
The same statement remains true for the upper and lower boundaries of the potential con-
straints with respect to the range in gaγγ . More specifically, the high-gaγγ regions are excluded
because the resonance mass M⋆,γ ∝ 1/gaγγ drops below the predicted mass range of the ASMF,
M⋆,γ < min(M⋆). In such cases, we drop the resulting signal due to violation of the (initial)
core-halo relation in Eq. (3.57) - except for the enhanced internal model from Eq. (6.26), which
uses a modified mass relation altogether. Similarly, the lower boundaries of the potential con-
straints in gaγγ appear when the decay mass exceeds the maximum core mass M⋆,γ > max(M⋆)
of the ASMF. This can either appear for M⋆,γ > M⋆,λ or earlier for lower values of n with smaller
high-mass cutoffs Mmax of the MCMF in Eq. (3.46).
Further comparing the conservative and enhanced external scenarios in the left and right panel
of Fig. 6.8, it can be seen that the axion masses, where the potential constraints start to vanish,
are larger for the enhanced model. This observation coincides with expectations from the en-
hanced flux densities in Fig. 6.6. In agreement with the scalings of S⋆,tot(ma) and Sbkg(ma) in
Fig. 6.6, the external flux densities drop below the backgrounds around ma ∼ 10−6 eV, while the
spectral fluxes of the enhanced model with Ch = 1 only vanish around the CMB peak around
ma ∼ 10−3 eV. The same scalings between signal and background are also responsible for the
appearance of the narrow regions at ma ≲ 10−2 eV in the right panel of Fig. 6.8.
We conclude that the simple background comparison of the two flux densities at S/N ≥ 5
demonstrates the potential for new constraints around the parameter regions ma ∼ 10−6 eV,
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gaγγ ∼ 10−12 GeV−1 and ma ∼ 10−4 eV, gaγγ ∼ 10−11 GeV−1 for the enhanced external ac-
cretion model in the right panel of Fig. 6.8. The next step is to examine the experimentally

Figure 6.9: Potential constraints inferred from the external accretion model in Eq. (6.22) by comparing
our signals in Fig. 6.6 with the sensitivities of different telescopes in Tab. 6.1. The spectral flux density
S⋆,tot(ma) is translated into the antenna temperature T pb

ant in Eq. (6.37) and compared to the minimum
observable temperature Tmin in Eq. (6.39), requiring (S/N)array ≥ 5. SKA constraints are denoted by
dotted lines, while all others are represented by solid lines. ALMA constraints appear as narrow strips
due to the six sets of frequency bands, which have gaps between them. Dark shades correspond to existing
constraints and the yellow band represents the couplings of QCD axion models. Taken from Ref. [2].

motivated comparison of the representative telescope properties from Tab. 6.1, for S/N ≥ 5
following Eq. (6.38) and Eq. (6.40). Fig. 6.9 shows the resulting potential constraints which
can be inferred with the existing telescopes LOFAR, FAST and ALMA in solid lines and with
the upcoming SKA telescope in dotted lines. Same as in Fig. 6.8, colored shades denote ex-
cludable regions for different n, gray shades demonstrate existing constraints and the yellow
band indicates the QCD axion parameters ma and gaγγ in eV and GeV−1 respectively. Note
here that overlapping regions in ma, gaγγ can amount to different axion models due to the color-
dependence of n.
Overall Fig. 6.9 demonstrates the same behavior with the axion mass range being constrained by
experimental limitations and the range of gaγγ constrained by the scaling of M⋆,γ with the cut-
offs min(M⋆),max(M⋆) of the ASMF. The major difference compared to the simple background
comparison is given by the increased range of the potential constraints in ma and specifically
the appearance of the n = 3.34 models in the left panel of Fig. 6.9. The reason for this increased
detectability in radio telescopes is given by the narrow spectral shape of the expected line signal,
which can be distinguished from the smooth, broad emission from galactic backgrounds.
Comparing the two accretion scenarios in the left and right panel of Fig. 6.9, the accretion
model-dependence of the potential constraints is reduced compared to Fig. 6.8, so that the en-
hanced external accretion with Ch = 1 only allows for an extension to the high-ma range, which
can be probed with ALMA. With respect to new constraints , the overall potential in Fig. 6.9
is qualitatively similar to that from the background comparison in Fig. 6.8 - apart from the
improved coverage of ALMA around ma ∼ 10−3 eV and gaγγ ∼ 10−11 GeV−1. We conclude that
again, the AS line emission is either prevented by the high-mass cutoffs M⋆,γ , min(M⋆), and
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max(M⋆) or significantly larger than the background flux density Sbkg(ma)
5. For both accre-

tion scenarios and sensitivity approaches, new experimental constraints can be inferred from
dedicated searches for line emission around frequencies corresponding to ma ∼ 10−6 eV and
10−5 ≲ ma ≲ 10−2 eV.

6.5.3 Constraints from Internal Accretion

In this chapter we perform an equivalent analysis of the two sensitivity approaches for the in-
ternal accretion models from Eq. (6.25) and Eq. (6.27). Like before we set the signal-to-noise
ratio to S/N ≥ 5 as a requirement for both the potential constraints in Fig. 6.10 and Fig. 6.11,
which show the excludable regions inferred from the background comparison in Eq. (6.34) and
Eq. (6.38), Eq. (6.40) respectively.
We begin by evaluating the simple background comparison for the internal accretion rates with
the canonical core-halo relation M⋆ ∝ M1/3 in the left, and the modified mass relation with
M⋆ ∼ M in Eq. (6.26) in the right panel of Fig. 6.10. Note here the intersections between

Figure 6.10: Potential constraints inferred from the internal accretion model with M⋆ ∝ M1/3 from
Eq. (3.57) and M⋆ ∼ M from Eq. (6.26) for different ma, n, gaγγ . In this simple background comparison,
the spectral flux densities S⋆,tot(ma) from Fig. 6.7 and Eq. (6.25) are compared to the background spectral
flux density from Eq. (6.28), requiring Spb

⋆,tot/Sbkg ≥ 5. Dark shades correspond to existing constraints
and the yellow band represents the couplings of QCD axion models. Taken from Ref. [2].

the color-shaded regions and the yellow QCD axion band in the right panel of Fig. 6.10 do not
correspond to QCD axion models since the different ALP models have differing values of n. As
mentioned before, the condition M⋆,γ < min(M⋆) is not accounted for in the enhanced model due
to the absence of a low-mass cutoff equivalent to Mh,min, which is why the potential constraints
in the right panel extend to the largest gaγγ compared to the other three accretion scenarios.
While the high-gaγγ region presents an uncertainty in our different approaches, its impact on the
observational constraints is negligible since the corresponding couplings are already excluded by
helioscopes and other experiments in gray.
Another important difference between the two core-halo scalings of the internal model in Fig. 6.10
is given by the inverted hierarchy of the lower boundaries in gaγγ at different colors n. While the
n = 1 constraints extend to the lowest values of the axion-photon coupling for M⋆ ∝ M1/3 in

5This observation indicates that the impact of the chosen value S/N = 5 is low compared to the other effects
mentioned in the main text of this section.
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the left panel, the enhanced model with M⋆ ∼ M on the right has n = 0 models reaching lower
values of gaγγ . The explanation for this behavior is an increased benefit from having large num-
bers of low-mass miniclusters with M ∼ M0 in the n = 0 case. Effectively, the mass relation in
Eq. (6.26) removes the low-mass cutoff Mh,min in Eq. (6.2) and alleviates the low-mass cutoff
Mγ substantially. This modification increases the importance of the total number of miniclus-
ters Nmc,tot for the observed flux over the range of their high-mass tail M0 ≤ M ≤ Mmax.
For a similar reason, the overall signal strength of the internal models is enhanced compared
to the external cases, which leads to the extended ranges of inferable constraints in the col-
ored regions of Fig. 6.10 compared to Fig. 6.8. The increase in magnitude of the predicted

Figure 6.11: Potential constraints for the internal accretion model in Eq. (6.25) with M⋆ ∝ M1/3

from Eq. (3.57) and M⋆ ∼ M from Eq. (6.26). Inferred by comparing our signals in Fig. 6.7 with the
sensitivities of different telescopes in Tab. 6.1, requiring (S/N)array ≥ 5. SKA constraints are denoted
by dotted lines, while all others are represented by solid lines. ALMA constraints appear as narrow
strips due to the six sets of frequency bands, which have gaps between them. Dark shades correspond
to existing constraints and the yellow band represents the couplings of QCD axion models. Taken from
Ref. [2].

flux density S⋆,tot is also responsible for the fact that the telescope sensitivity approach does
not considerably improve the excludable parameter space in Fig. 6.11 - apart from the largest
couplings gaγγ , which are already ruled out.
Especially in the case of the internal and enhanced external accretion scenarios, the nature of
the predicted AS signals is best understood in terms of an on-off-pattern: Either the resonance
mass M⋆,γ is present in the ASMF of a given axion model ma, n, gaγγ and the resulting signal
becomes detectable, or M⋆,γ lies below or above the mass range of the ASMF and no signal is
expected.
To summarize, the numerically motivated internal exclusion models provide enhanced accretion
rates and resulting flux densities S⋆,tot, which can be measured using earth-based experiments
for a wide range of axion models ma, n, gaγγ . Similar to the prospects inferred from the en-
hanced external model in Fig. 6.9, both internal accretion models can be used to provide novel
constraints on the axion-photon coupling gaγγ for axion masses in the ranges ma ∼ 10−6 eV and
10−5 ≲ ma ≲ 10−2 eV.
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6.5.4 Directional Dependence of resonant Emission

As emphasized before, the potential constraints in Subsec. 6.5.2 and Subsec. 6.5.3 need to be
combined with dedicated radio line searches in order to obtain actual information on the param-
eter space of the axion-photon coupling gaγγ . On the experimental side, a dedicated analysis of
astronomical radio data may require careful identification of galactic foregrounds, backgrounds
and specifically an identification of atomic and molecular transition lines, which could exhibit
similar features to our signal predictions. While we do not perform an analysis of the correspond-
ing radio data in this work, we present additional information on the directional dependence of
the signal, which should prove helpful in the development of future search strategies for galactic
AS line emission.
The spatial distribution of galactic ASMC systems (and the background density ρa,f (r) in the
external accretion model) follows the spherically symmetric NFW profile of the Milky Way. It is
therefore possible to express the simplified directional dependence of the total emitted flux F⋆,tot
in terms of the observed polar angle θE on earth. For this, we assume the earth to be aligned
with the galactic plane as shown in the right panel of Fig. 6.12. Defining the flux density, which

θ
E

dΩ
E

Earth

Figure 6.12: Left: Flux density per solid angle as a function of the polar angle θE at the earth,
normalized by its average value, F⋆,tot/(4π). The blue line shows the directional dependence of the
external accretion models from Eq. (6.22), Eq. (6.23), while the orange line shows the angular dependence
of the internal accretion model in Eq. (6.25). Gray shades represent the observing direction towards the
galactic bulge, where galactic foregrounds could easily overwhelm the expected signals. Right: Schematic
representation of the observation angle θE at earth with the NFW DM halo in gray shades and the
galactic disc and bulge in yellow. Both taken from Ref. [2].

is observed within a solid angle dΩE at polar angle θE, as F⋆,E(θE)dΩE gives the flux density per
solid angle F⋆,E(θE) along the line of sight.
We plot the angular dependence of the flux density per solid angle F⋆,E(θE) in the left panel
of Fig. 6.12, where blue and orange lines indicate the external and internal accretion models in
Eq. (6.22) and Eq. (6.25) respectively. The quantity F⋆,E(θE) in Fig. 6.12 is normalized by the
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sky-averaged flux density

⟨F⋆(θE)⟩ΩE ≡ 1

4π

∫
dΩEF⋆(θE) =

1

4π
F⋆,tot (6.41)

and the polar angle θE is given in unit of radians. Gray shades in Fig. 6.12 indicate the galactic
center at r ≲ 3 kpc, where the NFW-distributed dark matter density yields the largest flux
densities. Note that here F⋆,E(θE) peaks at θE > 0 due to the applied survival cutoff Rsurv from
Eq. (3.54), which prevents the existence of gravitationally bound miniclusters in the galactic
bulge.
Effectively, the direction dependent flux density F⋆,E(θE) depends on the product of the total
number of resonating axion stars Nγ,tot and on the model-dependent accretion rate δM⋆/δt. The
different slopes of the two curves in Fig. 6.12 can be explained by the additional dependence
of the external accretion rate δM⋆/δt in Eq. (6.14) on the background density ρa,f (r). While
the flux in the internal model is proportional to ρNFW(r) through the total number of objects
given by the spatial number density dn/dM(r), the external model has a quadratic dependence
F⋆,tot ∝ ρNFW(r)2 due to the additional background dependence of δM⋆/δt.
Importantly for future searches, the normalized angular flux density F⋆,E(θE) in Fig. 6.12 is of
order one or above for θE ≲ π/3. Telescopes in AS line searches may hence be pointed away
from the galactic plane and towards polar angles of θE ≃ π/3, which allow for a significant
reduction of galactic foregrounds. This is especially promising because the direction-dependent
flux density in these directions is F⋆(θE) ≳ F⋆,tot/(4π), which renders our constraint predictions
from Subsec. 6.5.2 and Subsec. 6.5.3 essentially valid also for θE ≃ π/3.

6.6 Outlook on Axion Star Radio Lines
In this chapter, we have combined knowledge on the present-day MCMF and ASMF from
Sec. 4.7 with different predictions for the mass growth of axion star cores in our galaxy. For
axion-photon couplings gaγγ , which render the axion star resonance mass M⋆,γ < M⋆,λ smaller
than the critical mass of the axion self-interaction λ, the accretion rates of the solitonic core lead
to significant radio line emission at the solar position. As shown in Subsec. 6.5.2 to Subsec. 6.5.4,
the predicted spectral flux densities are either non-existing or overwhelmingly strong compared
to the galactic background emission from Subsec. 6.5.1.
For all of the four accretion scenarios discussed in this work, we find that new constraints on
the axion-photon coupling can be inferred for parameters in the range 10−7 eV ≲ ma ≲ 10−5 eV
and gaγγ ∼ 10−11 GeV−1, with additional dependence on the temperature evolution index n. In
the case of the enhanced external and for both internal accretion models, additional exclusion
potential is predicted in the range 10−5 eV ≲ ma ≲ 10−3 eV and gaγγ ≳ 10−11 GeV−1. Most
importantly, all of these parameter regions can be probed by existing radio telescopes, with the
specific examples given for LOFAR, FAST, ALMA and the upcoming SKA telescope.
We have also briefly explored the directional dependence of the predicted flux densities in Sub-
sec. 6.5.4 and found that the approximate isotropy of our signal at large polar angle θE can be
used to avoid galactic foreground emission while keeping an order-on intensity of the desired AS
signal. Future experimental searches and additional analysis of existing radio data can directly
combine observational evidence with our predictions to infer new constraints covering a signifi-
cant region of currently unconstrained parameter space in ma, gaγγ .
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This finding is especially promising considering the fact that our modeling of the linear growth
MCMF in Subsec. 3.6.2 and the use of the z = zeq core-halo relation with M⋆ ∝ M1/3 have
been conservative approaches to the late-time predictions of axion star mass distributions. More
specifically, our predicted signals can potentially be boosted by additional considerations of the
following effects:

1. The non-linear evolution of the galactic minicluster population

2. The consideration of the long-time mass growth of solitonic cores, which is predicted to
reach substantially increased masses, M⋆ ∼ M for λ = 0 in simulations, see Sec. 4.3

3. A combined consideration of the mass growth of axion stars due to both internal and
external MC accretion, which we have treated separately for simplicity

4. The possible survival of systems with M⋆ ≥M⋆,λ, which we have neglected

Next to these major effects, which are expected to enhance the intensity of the radio emission,
there are also other effects, which can reduce the radio emission and abundance of resonating
systems, namely

1. The radio conversion efficiency ηaγγ of the resonating axion stars, which is assumed to be
of order one

2. The time modulation of the signal described by ηaγγ , which could reduce the background
emission if the burst duration δtγ ≪ 1/Γ⋆,γ is much smaller than the inverse rate of galactic
axion bursts Γ⋆,γ for a given model ma, n, gaγγ

6

3. The long-time survivability of galactic ASMC systems due to the combined

• Parametric resonance at M⋆,γ

• Self-interaction instability at M⋆,λ

• M-, r- and Φ-dependent tidal disruption in stellar encounters

We emphasize that according to our findings, the above effects should rather enhance than de-
crease the signals obtained from our conservative predictions. The process of radio emission
from resonating axion stars in our galaxy hence provides a compelling mechanism to probe cur-
rently unexplored axion models. For future studies, our results can be combined with improved
modeling of the evolution of miniclusters, axion stars and the triggering of the instabilities at
M⋆,γ , M⋆,λ to reinforce and extend the potential constraints presented in this chapter. We
emphasize that especially the Φ-dependence of the AS mass growth rates and core-halo mass re-
lation from Ref. [240] and Ref. [169] require further investigation. Lastly, for axion masses below
ma ∼ 10−7 eV, space-borne radio telescope can theoretically be used additionally to constrain
even smaller values of gaγγ and ma.

6We do not perform the corresponding calculations due to a lack of numerical data on the signal duration δtγ
for different axion models ma, n, gaγγ and AS masses M⋆,γ .
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In the previous chapter, we have developed different accretion models for composite ASMC
systems and investigated how the parametric instability at M⋆,γ can lead to the emission of
radio line signals at M⋆ ≥ M⋆,γ . The potential constraints in Sec. 6.5 remain true as long
as M⋆,γ < M⋆,λ, whereas in the second case M⋆,γ > M⋆,λ, which amounts to relatively weak
axion-photon couplings, the self-interaction instability develops before the AS resonance. For
completeness and complementary to Chap. 7, we treat the observational consequences of the
second scenario M⋆,γ > M⋆,λ in more detail in this chapter. The results presented in the
following are taken from Ref. [3].
Opposed to the radio line emission from resonating axion stars, the relativistic axion bursts from
galactic bosenovae can not be straight-forwardly probed by existing experiments. The results
of this chapter hence provide an incentive for the development of new experimental techniques
for the detection of galactic axion bursts. Due to the lack of adequate observational methods
at the time of writing, our treatment of the galactic bosenova rates is further simplified and
less elaborate compared to the evaluation of galactic radio signals in Chap. 6. Our approximate
modeling of the AS core collapse rates relies on conservative assumptions, for which we indicate
possible extensions and improvements for future research at the end of this chapter.
As before, we use the galactic MCMF and ASMF from Subsec. 3.6.2 and Sec. 4.7 with a slope
index α = −1/2 and for the M0-cutoff of the MCMF in Eq. (3.47). This means that we neglect
the low-mass component of the galactic minicluster population M <M0 since the corresponding
soliton cores are the furthest away from reaching the relevant critical mass M⋆,λ. For simplicity,
we ignore any effects of the parametric resonance at M⋆,γ > M⋆,λ on the population of galactic
AS cores and consider only the emission of relativistic particles from the bosenova collapse
according to Sec. 4.4 and Ref. [35]1.
For the mass growth of the AS cores, we employ the internal accretion model from Sec. 6.3,
since it provides the largest and numerically most motivated accretion rates of the different
approaches in Chap. 6. Same as in previous sections, we consider the parameters M,Φ, r to be
independent of each other, where M is determined from the MCMF at each axion model ma, n

with 10−12 eV ≤ ma ≤ 10−2 eV and modified temperature indices n = 1, 2, 3.342. The remaining
assumptions about the survival probability of miniclusters at different r and Φ are identical to
previous chapters, see Eq. (3.54), Eq. (3.56).
We summarize the modified mass growth modeling that describes the abundance of galactic
bosenovae in Sec. 7.1 and combine it with the generalized sensitivity criteria from Ref. [36]
to measure the expected detectability of these events in Sec. 7.2. The resulting observable

1Note here that in the physical context and away from the case M⋆,λ ≪ M⋆,γ , a multi-messenger signal
involving both radio and axion emission is expected, see Ref.s [31, 253, 257, 258].

2We do not consider temperature-independent axion masses n = 0 here since for n < 1, our predictions are
significantly diminished due to the non-existence of heavy axion stars with M⋆ ≲M⋆,λ in the ASMF, see Fig. 4.14.
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parameter range in ma depends strongly on the nature of the utilized axion coupling in a given
experiment. We calculate the corresponding collapse rates in Sec. 7.3 and Sec. 7.4 and use them
to infer the number of detectable bosenovae occurring within an observation time of tobs = 1 yr.

7.1 Mass Growth Modeling
In the context of accreting ASMC systems, the predicted number of galactic bosenovae depends
mainly on three quantities: the observation time tobs = 1 yr, the minicluster mass M determining
M⋆ and its initial overdensity parameter Φ. As in previous chapters, we integrate over the MC
mass M obtained from the MCMF and over Φ ∈ (0, 104], with the probability distribution pΦ(Φ)
from Eq. (3.27) and survival probability Psurv(Φ) from Eq. (3.56). We employ the internal MC
accretion rate from Eq. (4.42) with the canonical core-halo relation in Eq. (3.57), where the
resulting mass growth is determined by M,Φ and M⋆ at given ma, n respectively. Integrating
the MCMF over M, Φ and the galactocentric radius r, the remaining quantities to be determined
are the corresponding low- and high-mass cutoffs of the collapsing AS population of the Milky
Way.
In the context of bosenovae, a straight-forward choice for the high-mass cutoff is given by the
maximum core mass at t = 0, which can be estimated from the z = zeq core-halo relation
according to

Mλ,max = min(Mmax,Mλ) , (7.1)

where the minicluster mass Mλ = M(M⋆,λ) is obtained by inverting Eq. (3.57). Note here that
the above high-mass cutoff is conservative in the sense that it neglects the long-time accretion
of axion stars, which likely sets Mλ,max = Mλ at present-day redshift. The low-mass cutoff on
the other hand needs to be inferred from the minimum core mass M⋆,acc, which can reach the
critical mass M⋆,λ after continuous mass growth over tobs. In general, this minimum core mass
needs to be determined by considering the whole range of minicluster masses M for each value
of Φ and for each axion model ma, n.
To increase computational efficiency, we adopt a simplified approach for the determination of
M⋆,acc, which can be motivated by means of the time dependence of the internal accretion rate
in Fig. 4.7. An important observation in this figure is the fact that the accretion rate obtained
from Eq. (4.42) decreases monotonically with increasing M⋆ for a given M,Φ, ϵ. Accordingly,
the mass growth rate of galactic axion stars with attractive self-interactions reaches its minimum
at the largest stable mass M⋆ =M⋆,λ.
Furthermore, the high-mass tail of the MCMF with M >M0 provides a major contribution to
the number of miniclusters hosting an AS core close to the critical mass M⋆ ∼M⋆,λ. Due to the
scaling M⋆ ∝ M1/3 of the core-halo relation in Eq. (3.57), these near-critical ASMC systems
exhibit very small values of M⋆/M (see also Fig. C.4, Fig. C.2), which renders the AS accretion
rate δM⋆/δt ∝ M/τgr ∝ 1/M in Eq. (4.42) smaller for larger M. Together, the above observa-
tions lead us to take the simplifying but conservative assumption that every axion star accretes
with a rate similar to that of a critical ASMC system, i.e. δM⋆/δt ∼ δM⋆(Mλ,M⋆,λ,Φ)/δt.
Under this assumption, we can extrapolate the minimum AS mass, which reaches criticality over
an observation time tobs as a function of Φ, which gives

M⋆,acc(Φ, tobs) =M⋆,λ − δM⋆(Mλ,M⋆,λ,Φ)

δt
tobs, (7.2)
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at the critical mass M⋆,λ and corresponding MC mass Mλ, where the internal growth rate
reaches its lowest value. We derive the corresponding minicluster threshold mass corresponding
to the AS mass M⋆,acc from the core-halo relation, i.e.

Mλ,acc ≡ M(M⋆,acc) . (7.3)

For typical miniclusters with Φ ∼ 1, Mλ,acc in Eq. (7.3) provides the dominant low-mass cut-
off of the ASMF. However at the largest overdensities Φ ∼ 104, the internal accretion rates
δM⋆(Mλ,M⋆,λ,Φ)/δt can increase substantially so that the low-mass cutoffs of the MCMF be-
come relevant. It is therefore important to consider the effective low-mass cutoff of a given
ASMC system with overdensity parameter Φ to be composed out of the combination

Mλ,min ≡ max[M0,min, Mh,min, Mλ,acc(Φ, tobs)] , (7.4)

where M0,min is the M0-cutoff and Mh,min is the core-halo minimum mass threshold from
Eq. (3.58). In this approach, any axion star with initial mass M⋆ ≥ M⋆,acc(tobs) will accrete
enough axion dark matter from its surrounding minicluster within a given time tobs to become
super-critical M⋆ ≥M⋆,λ.
Note that in Eq. (7.4) we have neglected the AS radius cutoff, since for the densest MCs with
Φ ∼ 104, the mass scaling of the canonical core-halo relation in Eq. (3.57) used to derive the AS
radius cutoff in Eq. (4.70) can arguably be modified. A direct application of the AS radius cutoff
would diminish the predicted collapse rates, because many of the densest MCs with Φ ≫ 10
would be removed from the sample. There are however physical considerations from which a
modification of the cutoff scaling is expected.
Following the virialization condition v⋆,vir ≃ vmc,vir that can be used to derive the canonical
core-halo scaling M⋆ ∝ M1/3, the virial velocity of the minicluster is generally a function of M
and Φ, since vmc,vir ≃

√
GM/R(Φ) according to Eq. (4.35) and Eq. (3.24). Tracing the scalings

with Φ one obtains vmc,vir ∝ Φ2/3 for Φ ≫ 1, which implies that the increased central density ρmc
increases the virial velocity of the total system. The above scaling would lead to an increased AS
core mass and a relaxation of the AS radius cutoff in Eq. (4.70) compared to our considerations.
In order to resolve this uncertainty, future studies can extend the numerical analysis of the
core-halo mass relation performed in Ref. [169] to account for variable MC densities Φ.
Therefore neglecting the AS radius cutoff and using the effective ASMF cutoffs from Eq. (7.1),
Eq. (7.4), the number of expected bosenovae expected in super-critical ASMC systems can be
calculated from the MCMF according to

NNova(tobs) = 4π

∫ R200

Rsurv

dr r2
∫ 104

0
dΦ pΦ(Φ)Psurv(Φ)

∫ Mλ,max

Mλ,min(Φ,tobs)
dM dn

dM(r) , (7.5)

where the lower boundary of the mass-integral has to be evaluated at each value of Φ in the
distribution. From the scaling δM⋆ ∝ τ−1

gr ∝ Φ4 in Eq. (4.42), we can already see that the
strongest contribution to NNova is given by the densest miniclusters, which have Φ ≲ 104. In
some extreme cases with Φ ≈ 104, the accretion rates can become large enough for M⋆,acc in
Eq. (7.2) to reach negative values, when δM⋆/δt · tobs > M⋆,λ. In the following, we drop the
corresponding ASMC population with {M,Φ} predicting M⋆,acc < 0, due to uncertainties about
their long-time stability. We also note that in principle, the AS cores of the heaviest miniclusters
with M > Mλ, which we have neglected by applying Eq. (7.1), can additionally contribute to
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the number of bosenovae through repeated collapse events.
For QCD axion parameters with n = 3.34, ma = 50µeV, critical masses M⋆,λ ≃ 2 ·10−13M⊙ and
Mλ ≃ 2 ·10−7M⊙, we find that typical systems with Φ ≃ 1 should have δM⋆(Mλ,M⋆,λ,Φ)/δt ≃
2 · 10−38M⊙ s−1, which implies M⋆,acc ≈M⋆,λ. On the other hand, for the densest miniclusters
with Φ ≃ 104 we obtain δM⋆(Mλ,M⋆,λ,Φ)/δt ≃ 10−22M⊙ s−1, which gives δM⋆/δt · tobs ≃
4 · 10−15M⊙ for the accreted mass in Eq. (7.3) after tobs = 1 yr, corresponding to an order one
percent mass growth.
We illustrate the total number of galactic bosenovae derived from Eq. (7.5) for three different
values of n = 1, 2, 3.34 in Fig. 7.1. The sharp turn-arounds arise from the ma-dependence of the
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Figure 7.1: Predicted number of bosenovae occurring within the Milky Way DM halo for tobs =
1 yr for the M0-cutoff, i.e. without the low-M tail of the MCMF. Colors denote axion models with
different temperature evolution n according to Eq. (2.34). As before, the gray shaded region denotes the
cosmological QCD axion mass band with 10−6 eV≤ ma ≤ 10−4 eV and the black solid vertical indicates
the QCD axion mass ma ≈ 50µeV assumed in this work. Taken from Ref. [3]

accretion-induced low-mass cutoff Mλ,acc derived from Eq. (7.2) and from the cutoff-dependence
of Mλ,min, Mλ,max following Eq. (7.4) and Eq. (7.1). Notably, the number of galactic bosenovae
increases with larger n. The different scaling of the peaks in Fig. 7.1 is related to two competing
effects: First, the increased number of composite ASMC systems N⋆,tot ∝ 1/M0 for smaller n
and M0, and secondly the increased accretion rates for larger n.
The first of these effects is a direct consequence of the normalization of the MCMF, which is
set to match the total DM mass of the Milky Way, hence Ntot ∝ 1/M0, where Ntot is the
total MC number (see Fig. 3.7 and Fig. C.3). The second effect on the other hand relates to
the scaling of the critical mass M⋆,λ ∝ fa in Eq. (4.16), which inherits an implicit temperature
dependence from the n-dependent decay constant fa in Fig. 3.6. We demonstrate the scaling
of M⋆,λ with three representative temparature indices n = 0, 1, 3.34 together with the resulting
accretion rates δM⋆,λ/δt = δM⋆/δt(M⋆,λ,Mλ) of the critical ASMC systems at ma, n in the left
and right panel of Fig. 7.2.
For larger n, Eq. (4.16) yields smaller critical AS masses M⋆,λ, which turn out to boost the
accretion rates of the self-similar attractor in Eq. (4.42) and Fig. 7.2. The enhanced accretion
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Figure 7.2: Left: Maximum stable AS masses M⋆,λ from Eq. (4.16) for different axion models ma, n

with colors indicating n = 0, 1, 3.34. Right: Internal accretion rates δM⋆,λ/δt from Eq. (4.42) in kg s−1

for critical ASMC systems with core mass M⋆ =M⋆,λ, M = Mλ and Φ = 1 at different ma, n.

rates for smaller M⋆,λ in Fig. 7.2 can be qualitatively understood as a shifting of the monotoni-
cally decreasing mass growth rate from Fig. 4.7 towards earlier times with smaller M⋆,λ.
As can be seen by the scaling of NNova with larger n in Fig. 7.1, the benefit of having larger
accretion rates and smaller M⋆,λ is dominant over the scaling of Ntot. Lastly and in the case of
small n = 1 in blue, a sudden drop in NNova arises from the different scalings of Mmax and Mλ.
Eventually at some ma, the accretion-induced critical mass Mλ,acc > Mmax grows beyond the
range of the initial ASMF, yielding NNova = 0.
We also mention for completeness, that the results in Fig. 7.1 imply that the number of bosen-
ovae occurring within a Hubble time can become as large as NNova tH ≫ Ntot for some (ma, n).
This observation indicates that a large number of axion stars are expected to collapse repeatedly
on cosmological timescales. In fact, we can consider the exemplary case of the QCD axion with
ma = 50µeV and n = 3.34 to find that M⋆,λ/Mλ ∼ 10−6, which means that a typical ASMC
system with near-critical AS/MC-masses can undergo ∼ 106 bosenovae until it is eventually
depleted of its total mass.
Answering the question of how many of the ASMC systems are expected to shed their initial
mass within tH requires investigation of the full time evolution of the MCMF, ASMF and core-
halo relation - all of which are beyond the scope of this work. We also refer to Ref. [281] for a
similar study, which constrains axion models through significant depletion of cold dark matter
following repeated bosenovae in the cosmological context. Our analysis complements the work
in Ref. [281] by using the direct observation of relativistic axions from galactic bosenovae in
different axion dark matter searches.

7.2 Detectability of galactic Axion Bursts
With the number of galactic axion bursts over tobs = 1 yr being determined by Eq. (7.5), the
next step lies in the derivation of approximate criteria for the detectability of such bursts in
different earth-based experiments. We approach the derivation of an experimentally independent
sensitivity criterion in this section by first recalling the fundamental properties of the relativistic
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axion bursts from Sec. 4.4 and their propagation following Ref.s [3, 35, 36]. After a brief
introduction about burst wave spreading, we define the resulting maximal observable distance,
which can be used to infer the number of observable bursts for experiments exploiting both
axion-photon and axion-fermion couplings of the form in Eq. (2.17) and Eq. (2.18).

7.2.1 Burst Properties and Propagation

The intensity of a given axion burst is mainly determined by the total energy E , which is emitted
during the relativistic collapse. We follow the numerical results from Ref. [35] and Eq. (4.45),
which stated that the typical energy loss is approximately 30% of the critical AS mass. In this
approach, one can simply estimate the total energy output of the axion burst by defining the
mass loss fraction fem = 0.3, where fem ≃ 0.2− 0.5 according to simulations [35], and write

E ≃ femM⋆,λ ∼ 1043 GeV
(

fa

1011 GeV

)(
ma

50µeV

)−1

(7.6)

for QCD axion parameters. The local burst density ρ⋆,d measured at the detector corresponding
to Eq. (7.6) will be diluted by two major effects. First, from the propagation of the spherical
waves over a distance dobs to the observer, the resulting signal is reduced by a relative factor of
ρ⋆,d ∝ d−2

obs. Secondly, the emission of relativistic axions with an energy spectrum following the
one in Fig. 4.10 implies a range of particle momenta k = qma with q ≳ 1. Since particles with
larger q will reach the detector sooner than axions with q ≃ 1, the burst signal experiences an
additional temporal spread, that leads to the measured burst duration δt at the detector.
In general, the temporal and spatial dilution of the signal varies depending on the spread δk of
the emitted axion momenta. The scalings of these three quantities can be obtained from the
relativistic axion dispersion relation

ω =
√
k2 +m2

a , (7.7)

which can be rephrased in terms of the velocity v = ∂ω/∂k as

v2 =
k2

k2 +m2
a

=
q2

q2 + 1
, (7.8)

where we have used k = qma in the last equation. Applying differentials one both sides one
obtains [36]

vδv =
qδq

(q2 + 1)2
, (7.9)

which can be written in terms of the relative velocity spread δv/v as

δv

v
=
δq

q

1

q2 + 1
=
δk

k

m2
a

ω2
=
δk

k

m2
a

k2 +m2
a

. (7.10)

For an instantaneous burst centered at k0 with a negligible momentum spread δk/k ≪ 1, the
relative spatial spread δx/x with x = dobs is equal to the velocity spread in Eq. (7.9), which
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yields the observed signal length δx [36]
δx

x
=

δx

dobs
=
δv t

vt
=
δv

v
(7.11)

⇔ δx =
δv

v
dobs ≈

δk

k0

m2
a

k20 +m2
a

dobs =
δk

ma

dobs
q(q2 + 1)

. (7.12)

The observed signal duration δt at the detector from an axion burst with δk/k ≪ 1 is straight-
forwardly approximated from Eq. (7.12) as

δt =
δx

v
≈ δk

ma

dobs

q2
√
q2 + 1

∼ 80d
(
dobs
1pc

)
, (7.13)

where in the last expression we have entered q = 2.4 and δk ≃ ma from Fig. 4.10. An important
question is whether the above wave spreading effects are expected to considerably modify the
signal properties at galactic distances dobs ∼ 1pc. Notably, the minimum momentum spread
δk is given by the uncertainty principle δk ≳ 1/δx0, where δx0 is the original burst duration
at the source. We can use this observation as a lower boundary on the spatial broadening δx
in Eq. (7.12) to estimate the ratio of the observed signal duration δx at the detector over the
actual burst duration δx0 by writing

δx

δx0
≳

δk

ma

dobs
q(q2 + 1)δx20

≃ 5 · 1013
q(q2 + 1)

(
dobs
pc

)(
ma

50µeV

)
, (7.14)

where in the last equation we have used that δx0 ≈ 400/ma according to the simulations in
Ref. [35]. Taking the leading peak at k/ma ≈ 2.4 from the same simulation in Fig. 4.10, with
δk/ma ∼ 1 and q ≈ 2.4, the wave spreading effect described by δx in Eq. (7.12) dominates over
the intrinsic burst duration δx0 for ma ≳ 10−15 eV and dobs ≳ 0.03pc [36].
We therefore continue to evaluate the burst properties by only considering the spatial and
temporal dilution due to wave spreading according to Eq. (7.12) and Eq. (7.13) in the following.
An important realization in the above approach is that for relativistic particles with v ∼ 1, the
spatial and temporal spread of the observed signal are approximately equal

δx ≃ δt ≃ δka

ma

dobs
q3

, (7.15)

where we have used that q2 + 1 ≃ q2 [3, 36]. Therefore replacing the temporal dilution of the
observed signal ρ⋆,d ∝ 1/δt with δx, the observed burst density ρ⋆,d at the detector from a
bosenova event with total energy output E from Eq. (7.6) can be written as [3, 36]

ρ⋆,d ≃ E
4πd2obsδx

∼ 3 · 10−12 GeV
cm3

(
dobs
1pc

)−3(
fa

1011 GeV

)(
ma

50µeV

)−1

, (7.16)

where dobs is the distance to the bosenova, and δx ≃ δt for relativistic particles. The local axion
matter density ρ⋆,d can be probed by different axion search experiments, like the axion DM
searches from Sec. 2.7.1 and the spin precession experiments from Subsec. 2.7.2.
Taking the first relativistic momentum peak in the bosenova spectrum in Fig. 4.10 with q ≈ 2.4
and δka ≃ ma, it can be seen from Eq. (7.15) that the temporal spread is δt ≃ 10−2dobs, which
implies a long duration of the observed signal at the detector δt ∼ 80d for dobs ∼ pc. Lastly
and as mentioned in Ref. [36], the momentum spread of the burst δk is much larger than for the
cold DM case (where δka ≃ 10−3ma), indicating that broadband searches are most suitable for
detecting bosenovae, rather than resonant-type searches.
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7.2.2 Burst Sensitivity and Detection

The wave spreading of the relativistic axion burst in Eq. (7.12) provides an approximate estimate
on the observed signal shape from the properties of the emission process, which was simulated
in Ref. [35]. In this section, we will use the corresponding burst properties at the detector
together with additional considerations on the temporal scaling of the sensitivities in axion search
experiments. For this, we will define two additional time parameters - next to the observed burst
duration δt from Eq. (7.13). The first important time scale is the observed coherence time [36]

τ⋆ ∼
2π

δω
≈ 2πdobs
q3maδtb

≃ πdobs
200q3

∼ 1d
(
dobs
1pc

)
(7.17)

of the burst, which is dominated by wave spreading in the limit in Eq. (7.14) and Eq. (7.15)
under consideration. In the last equality of Eq. (7.17), we have used that the burst duration
at the source is δtb ≈ 400/ma following Eq. (4.46). The coherence time at the detector given
by Eq. (7.17) is important for the sensitivity of a given experiment, as we will explain in the
following.
Continuing with the second important timescale for the sensitivity approach from Ref. [36], we
introduce the equivalent coherence time of the cold dark matter background ρa, which is given
by the de-Broglie wavelength λdB = 2π/(mavvir) from Eq. (3.8) as

τa ≃ 2π

mav
2
vir

∼ 10−4 s
(
50µeV
ma

)
, (7.18)

where as before vvir ≈ 239 km s−1 is the virial velocity of the galactic dark matter halo [130].
The two coherence times from Eq. (7.17), Eq. (7.18) will be combined with the observed burst
duration δt from Eq. (7.15) and the observation time tobs = 1 yr in order to determine the time
scaling of the relative sensitivity to axion bursts. We define the sensitivity in a given experiment
in terms of the minimum detectable coupling gi,min of a signal ’i’ probed in terms of a given
interaction Lagrangian. In the concrete example of the axion-photon coupling from Eq. (2.17),
we can write the axion-photon interaction as

Laγγ ∼ gaγγϕiF
µνF̃µν , (7.19)

where ϕi =
√
ρi is the axion field observed from either the burst i = b or the cold dark matter

density i = a. As in Eq. (2.20), we set gaγγ ∝ Caγγ/fa for different axion models, where the
model-dependent coefficient Caγγ may be chosen arbitrarily, except in the case of the QCD axion
with ma = 50µeV, n = 3.34 and Caγγ = E/N − 1.92 following Eq. (2.21).
Defining the ratio of the bosenova sensitivity over the sensitivity to cold axion DM as g⋆,min/ga,min,
it can be seen from Eq. (7.19) that the corresponding sensitivity ratio is proportional to the
inverse of the respective field values ϕi, which implies g⋆,min/ga,min ∼

√
ρa/ρ⋆,d. Another im-

portant scaling is that of the relative burst sensitivity g⋆,min/ga,min with the observation time
tobs. Complementary to the density scaling from Eq. (7.19), the time scaling can be motivated
heuristically using the above timescales δt, τa and τ⋆.
Starting with the time scaling of the cold dark matter background, the minimum detectable
coupling should scale as ga,min ∝ t

−1/2
obs for a coherently oscillating signal, i.e. for tobs < τa. On

the other hand in the temporally incoherent regime tobs > τa, the sensitivity scales with the
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measurement time as ga,min ∝ t
−1/4
obs [36, 282]. Combining the above two cases, we may write

ga,min ∝ t
−1/4
obs min(t1/4obs , τ

1/4
a )−1.

Analogously for the axion burst with duration δt and coherence time τ⋆, one obtains each a sensi-
tivity improvement ∝ t

−1/4
obs if tobs < δt and one if tobs < τ⋆. This means that the burst sensitivity

may be written in terms of the minimum coupling as g⋆,min ∝ min(t1/4obs , δt
1/4)−1 min(t1/4obs , τ

1/4
⋆ )−1.

Both of the above statements were used to motivate the approximate scaling of the relative burst
sensitivity in terms of the minimal couplings [36]

g⋆,min
ga,min

≃
√

ρa

ρ⋆,d

t
1/4
obsmin

[
t
1/4
obs , τ

1/4
a

]

min
[
t
1/4
obs , δt

1/4
]
min
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where in our case we set tobs = 1 yr. While the burst duration δt and burst coherence time τ⋆
are of order 1d and 100d, the coherence time of cold dark matter is τa ∼ 10−4 s, which indicates
that the time scaling of Eq. (7.20) is ∝ t

1/4
obs for tobs = 1 yr.

Concerning the scaling of the densities, ρa is close to the canonical cold dark matter value
ρa = 0.4GeV/cm3. Without tidal streams, the local DM density is a factor of 4 smaller, arising
from the minicluster DM abundance of fmc = 0.75, which we assume following Ref.s [28, 30].
This gives ρa = (1 − fmc) 0.4GeV/cm3 for the local DM background. According to Eq. (7.20),
this would change g⋆,min/ga,min by a factor of 1/2 thus improving the detectability of bosenovae
compared to the cold DM case.
The burst density ρ⋆,d at the detector in Eq. (7.16) on the other hand depends strongly on the
observation distance dobs and on the mass of the axion star M⋆,λ. For smaller axion masses ma,
one obtains larger M⋆,λ, larger emitted energies E ∝ M⋆,λ and thus larger densities ρ⋆,d, which
reduce the sensitivity ratio in Eq. (7.20) and thereby improve the relative burst detectability.
Therefore bosenovae are detectable at larger distances dobs for smaller ma.
Note that at this point, the only unknown in Eq. (7.20) is the observation distance, since all
other parameters either depend on dobs or on the axion model ma, n. This allows us to formulate
a simplified criterion for the detectability of observed bosenova events by defining the maximum
observable sensitivity ratio (g⋆,min/ga,min)max = 1 as

g⋆,min
ga,min

≤
(
g⋆,min
ga,min

)

max
≡ 1 , (7.21)

where the point of equality introduces an upper bound on dobs. The distance of equality can
be found by recalling the scaling of the different temporal quantities tobs = 1 yr, τa ∼ 10−4 s,
δt ∝ 80d dobs/pc and τ⋆ ∝ 1d dobs/pc, which indicates that tobs is typically the dominant
temporal scale. We can therefore simplify the time scaling from Eq. (7.20) and enter ρ⋆,d from
Eq. (7.16) together with the expressions for τa, δt and τ⋆, which yields
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, tobs > δt (7.22)
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as long as tobs > δt as argued above. Rearranging the above equation for dobs, we obtain the
maximum observable distance, which gives g⋆,min/ga,min = 1

dmax ≃
√
femM⋆,λvvir
200q3ρa
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400tobs

)1/4(
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≃ 7 · 10−4 pc
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tobs
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)−1/4 ( vvir
239 km s−1

)1/2
(7.24)

for a typical bosenova signal and QCD axion parameters ma, fa. Typically, the maximal distance
is a few orders of magnitude smaller than a parsec for couplings of the form in Eq. (7.19), and
somewhat larger for axion-fermion-like couplings similar to Eq. (2.18), depending on the input
parameters.
The former type of couplings are exploited in the spin precession experiments introduced in
Subsec. 2.7.2. Due to the presence of the spatial derivative ∂µϕ in Eq. (2.18), we call these
interactions derivative couplings, with the typical example given by the axion-fermion coupling

L ∼ gaff (∂µϕi)Ψ̄γ
µγ5Ψ , (7.25)

where Ψ is a standard model fermion field and ϕi is the field density of the burst and cold
dark matter field respectively. A crucial difference of derivative couplings compared to the non-
derivative axion-photon coupling in Eq. (7.19) is the fact that the corresponding sensitivity ratio
g⋆,min/ga,min receives an additional factor of vvir/v⋆ ∼ vvir from the gradient of the axion field
∇ϕi in Eq. (7.25). This factor suppresses the sensitivity by v−1

vir ∼ 103 in the non-relativistic
DM case, giving searches for relativistic fields a comparative advantage. The corresponding
sensitivity ratio with derivative couplings takes the form [36]
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where we use the index ’∇’ to indicate the distinction from the non-derivative couplings in
Eq. (7.19). As we will see in the next section, this factor of ∼ 103 enhancement in sensitivity
ratio motivates ongoing and future experiments searching for axions with derivative couplings,
e.g. CASPEr [142, 282], which is under development but designed for resonant searches. Note
also that since g⋆,min/ga,min is a ratio of sensitivities, the results in Eqs. (7.20) and (7.26) are
independent of the properties of a particular broadband-type experiment.
Similar to the derivation of dmax in Eq. (7.23), we can follow the same steps in order to obtain
the maximum observable distance of derivative coupling interactions

d∇max ≃ v−1
vir

√
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200q3ρa

(
ma
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)1/4(
g⋆,min
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max
= v−1

vir dmax , tobs > δt , (7.27)

which is boosted by a factor of ∼ 103 compared to the non-derivative case in Eq. (7.23) and
where the detectability threshold (g⋆,min/ga,min)∇max = 1 is defined analogously to Eq. (7.21).
In the above framework of detectability, we can compare the maximum observable distances
dmax, d∇max to the typical observation distance of galactic axion bursts, which can be inferred
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from the abundance of NNova in Eq. (7.5). Since the maximum observable distance derived from
Eq. (7.20) is small dmax ≲ 1pc compared to galactic length scales ∼ 1 kpc, we can estimate the
typical distance between two bosenovae by writing

⟨d⟩ ∼
(

V⊙

NNova|r<R⊙

)1/3

∼
(
4πR3

⊙/3

f⊙NNova

)1/3

, (7.28)

where V⊙ = 4πR3
⊙/3, with the solar position R⊙ = 8.3 kpc and where f⊙ ≈ 0.032 is the fraction

of galactic MCs contained within r ≤ R⊙. Physically, Eq. (7.28) gives the average distance
between f⊙NNova events within a spherical volume of radius R⊙, where the NFW distributed
nature of the events is accounted for by f⊙ and NNova from Eq. (7.5). From this we define the
average observed burst distance as

⟨dobs⟩ =
⟨d⟩
2
, (7.29)

which differs from Eq. (7.28) only by the geometrical factor of 1/2. Summarizing the above
approach for each axion model ma, n, the AS properties derived from the ASMF in Fig. 4.14
and the internal accretion rate in Eq. (4.42) yield a fixed average observation distance ⟨dobs⟩
defined by NNova in Eq. (7.5), which needs to be compared to the maximum observable distance
dmax. As we will show in the following, the sensitivity ratios of these experiments, given by
Eq. (7.20) and Eq. (7.26), depend strongly on the axion model and coupling.

7.3 Non-Derivative Couplings
In this and in the following section, we consider the detectability of galactic bosenovae with dif-
ferent axion interactions separately. Starting with the axion-photon interaction from Eq. (2.17),
or more generally with non-derivative type couplings of the form in Eq. (7.19), we show the re-
sults for dmax from Eq. (7.23) and ⟨dobs⟩ from Eq. (7.29) at different axion models ma, n in
Fig. 7.3. More specifically, colored dashed lines show the n-dependent contour lines, where
g⋆,min/ga,min(dobs) = 1 and the axion bursts emitted from collapsing ASs are sufficiently close to
become distinguishable from the background DM. The contour lines are determined numerically
and are well-fit by the analytic expression for dmax in Eq. (7.23).
As mentioned before, the maximum observable distance needs to be compared with the av-
erage expected distance of galactic bosenovae in solid lines. In this approach and for given
n = 1, 2, 3.34, regions of ma with ⟨dobs⟩ ≤ dmax can potentially be probed by current and
upcoming broadband experiments. The solid lines in Fig. 7.3 thus demonstrate, that using
the MCMF from Sec. 3.5 and for composite ASMC systems obeying the core-halo relation in
Eq. (3.57), bosenovae occur too rarely to be detected in axion DM searches.
Nevertheless, there are several considerations that can improve these predictions. First and
mainly, we have neglected long-time AS accretion, which is expected to significantly boost the
number of bosenovae within tobs. Secondly, the relative burst sensitivity of future telescopes
could be improved, for example by including spectral information about the signal or by per-
forming dedicated axion burst searches, thus enhancing the maximum observable distance dmax
for bosenovae detection. And lastly, there have been recent studies, namely Ref.s [236] and [252],
which suggest that an order-one fraction of the total galactic dark matter may be contained in
the form of axion stars, rather than miniclusters as we have assumed. We can equivalently
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Figure 7.3: Typical observation distance ⟨dobs⟩ of galactic bosenovae in solid colored lines, the same
for the case that f⋆ ∼ 1 in dotted lines, and maximum observable distance dmax for g⋆,min/ga,min = 1 in
dashed lines. Colors denote axion models with different temperature evolution n = 1, 2, 3.34. Shown for
axions with non-derivative couplings in Eq. (7.19) using the M0-cutoff of the MCMF. The gray shaded
region denotes the cosmological QCD axion mass band with 10−6 eV≤ ma ≤ 10−4 eV and the black solid
vertical line indicates the QCD axion mass ma ≈ 50µeV assumed in this work. Taken from Ref. [3].

evaluate these models by setting the relative DM abundance f⋆ of axion stars from Eq. (4.79)
equal to one, f⋆ = 1.
Recalling the results from Subsec. 3.6.2 and Fig. 4.16, our approach predicts f⋆ ∼ 10−7 to
f⋆ ∼ 10−4, depending on n. Setting f⋆ ∼ 1 would thus boost the total number of ASs (and thus
also NNova) by a linear factor of f−1

⋆ . According to Eq. (7.28), this can significantly lower the
expected average distance of galactic bosenovae. The resulting reduction is of order ∼ 10−2 for
the average distance ⟨dobs⟩ ∝ f

1/3
⋆ . We plot the corresponding predictions from setting f⋆ = 1

in dotted colored lines in Fig. 7.3 and find that such an enhanced AS abundance can potentially
allow for the detection of axion bursts with only minor improvements in the sensitivity ratio
g⋆,min/ga,min and for axion models with small ma < 10−6 eV. Therefore, relativistic axion bursts
can specifically be used to constrain the most optimistic predictions for the abundance of AS
dark matter through the development of dedicated axion burst searches.
Note that our predictions for ⟨dobs⟩ in Fig. 7.3 and the remainder of this chapter are based on the
initial ASMF from Sec. 4.7 without the long-time AS mass growth predicted in Eq. (4.36) and
Ref. [240]. Incorporating long-time accretion effects on the AS cores could lead to a pile-up of
axion star masses around M⋆ ≈M⋆,λ thus enhancing the expected number of galactic bosenovae
NNova, and presumably reducing the predicted values ⟨dobs⟩ below the threshold of observability
dmax. Better understanding of AS mass growth could therefore still yield observable signatures
even in the case of axion-photon couplings.
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7.4 Derivative Couplings
Moving on to the second scenario, we can exploit derivative type couplings like the axion-
fermion interaction from Eq. (2.18) for the possible detection of galactic bosenovae following
Eq. (7.26) and Eq. (7.27). This consideration is especially promising because the sensitivity ratio
(g⋆,min/ga,min)∇ of DM search experiments utilizing derivative-type axion couplings is boosted
by the ratio of non-relativistic to relativistic burst speeds, roughly vvir/v⋆ ≃ 10−3. As shown

Figure 7.4: Typical observation distance ⟨dobs⟩ of galactic bosenovae in solid colored lines and maximum
observable distance dmax given by (g⋆,min/ga,min)

∇
max = 1 and Eq. (7.27) in dashed lines. Calculated for

axions with derivative couplings as in Eq. (7.25), using the M0-cutoff. Color-shaded regions indicate the
axion mass range, where bosenovae are detectable, i.e. where ⟨dobs⟩ ≤ dmax. Taken from Ref. [3].

in Eq. (7.27) and by the dashed lines in Fig. 7.4, this circumstance increases the maximum
observable distance dmax determined from setting (g⋆,min/ga,min)∇max = 1 by a factor of ∼ 103.
For visualization, regions of ma with ⟨dobs⟩ ≤ dmax are highlighted by colored shades, indicating
that the resulting boost in relative burst sensitivity is sufficient to render a large part of the
axion mass range detectable.
As argued in Sec. 7.1, the detailed scaling of d∇max with n in solid colored lines in Fig. 7.4 arises
from a combination of the scaling of the decay constant fa fixed by Eq. (2.64), the scaling of the
characteristic MC mass M0 from Eq. (3.25) and the internal accretion rate from Eq. (4.42) used
to determine M⋆,acc in Eq. (7.2). Coincidentally, the cosmological axion band indicated by the
gray-shaded regions in Fig. 7.4 is just beyond detectability for dmax set by (g⋆,min/ga,min)∇max = 1.
In the future, dedicated bosenova searches using information on the energy spectrum of the burst
could be used to improve the sensitivity g⋆ in Eq. (7.26) relative to the cold DM sensitivity ga,min
(see Ref. [36] for discussion).
We can therefore estimate the prospects of axion burst DM searches with increased sensitivity
ratios, assuming an improvement of order 10, which is equivalent to increasing the maximum
sensitivity ratio in Eq. (7.27) to (g⋆,min/ga,min)∇max = 10 as depicted in Fig. 7.5. In this scenario,
the maximum observable distance dmax of galactic bosenovae is sufficiently enhanced to allow
probes of axion models in the cosmological axion band 10−6 eV≤ ma ≤ 10−4 eV using axion
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Figure 7.5: Typical observation distance ⟨dobs⟩ of galactic bosenovae in solid colored lines and projected
maximum observable distance dmax of future experiments with (g⋆,min/ga,min)

∇
max = 10 in dashed lines.

Shown for axions with derivative couplings in Eq. (7.25) using the M0-cutoff. Color-shaded regions
indicate the axion mass range, where bosenovae are detectable, i.e. ⟨dobs⟩ ≤ dmax. Taken from Ref. [3].

bursts. Conveniently, the case n = 3.34 with QCD-like temperature dependence of ma in green
lines and shades covers nearly the entire range of the axion mass. Even axion models with
n = 1, 2 in blue and red can be probed for a wide range of axion masses. This enhancement
in the case of axion-fermion coupling searches motivates further innovation and potentially
dedicated searches for bosenovae in future broadband experiments.
For future improvements and potential experimental searches, we also provide the estimated
number of bosenovae occurring within an observation volume Vobs = 4πd3max/3 assuming a
constant DM density over the volume V⊙ = 4πR3

⊙/3, given by

Nobs ∼ b
Vobs
V⊙

f⊙NNova = b

(
dmax
R⊙

)3

f⊙NNova , (7.30)

where b = 6/π is an order one coefficient introduced to set Nobs = 1 galaxy−1 when ⟨dobs⟩ = dmax
for consistency using our definition of ⟨dobs⟩ in Eq. (7.29).
We show the resulting number of observable bosenovae Nobs, which pass the sensitivity thresholds
(g⋆,min/ga,min)∇max = 1 in solid and (g⋆,min/ga,min)∇max = 10 in dashed colored lines for tobs = 1 yr
in Fig. 7.6. While a more sophisticated treatment of the detectability and galactic distribution of
bosenovae is required to give more concrete predictions, our rough estimations demonstrate that
bosenova signals are expected to occur even within smaller observation times than tobs = 1 yr. In
the case of order-one sensitivity thresholds in solid lines, Nobs ranges from order one to roughly
100 observable events depending on (ma, n). Assuming a roughly constant collapse rate for
simplicity, this suggests that required observation times range from tobs ∼ 1 yr for n = 3.34
down to tobs ∼ 3d for n = 1.
The temporal requirement is further relaxed in the case of (g⋆,min/ga,min)∇max = 10 in dashed lines,
where all axion models (ma, n) allow tobs ≲ O(10) days forma ≲ 10−4 eV. The cosmological axion
band and the canonical QCD axion parameters ma ≈ 50µeV are expected to yield Nobs ∼ 10,
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Figure 7.6: Expected number of galactic bosenovae Nobs occurring within a maximum observable
distance dmax from Eq. (7.27), given by (g⋆,min/ga,min)

∇
max = 1 in solid and (g⋆,min/ga,min)

∇
max = 10 in

dashed colored lines. Shown for axions with derivative couplings from Eq. (7.25), using the M0-cutoff
and tobs = 1 yr. The gray horizontal line indicates Nobs = 1 galaxy−1. Taken from Ref. [3].

which implies a required observation time of about a month. We note for completeness that the
detailed time-dependence of Nobs depends sensitively on the detailed accretion and reformation
rates before and after the AS collapse, which we have neglected in our estimates.

7.5 Outlook on Detection of Bosenovae
Summarizing the results from Sec. 7.3 and Sec. 7.4, we find that in axion models with non-
derivative couplings like the axion-photon coupling in Eq. (2.17), bosenovae are unlikely to be
detected in current axion DM searches. Nevertheless, we have shown that with minor improve-
ments in the relative burst sensitivity, our approach can be used to test predictions involving
large AS abundance f⋆ ∼ 1 as suggested in Ref.s [236] and [252]. For f⋆ ∼ 1 and different tem-
perature evolution of ma, axion masses with ma ≲ 10−6 eV could be probed in future broadband
experiments. Importantly, our conservative treatment of the present-day ASMF from Sec. 4.7
does not exclude the occurrence of bosenovae in experimental searches using the axion-photon
coupling, since the number of burst signals can be significantly enhanced under additional con-
siderations of long-time AS mass growth.
Even without consideration of the long-time core accretion and using conservative assumptions,
we find that galactic bosenovae in axion models with derivative couplings, like the axion-fermion
coupling in Eq. (2.18), could be probed experimentally for a wide range of axion masses, ranging
up to 10−12 eV≤ ma ≤ 10−6 eV, depending on the temperature index n. Most importantly, our
analysis suggests that moderate increases in the relative sensitivity of future broadband tele-
scopes can potentially probe the QCD axion model with n = 3.34 and ma ≃ 50µeV as well as
ALPs with n = 3.34 up to the cosmological mass band 10−6 eV≤ ma ≤ 10−4 eV. We emphasize
however that the detection of the spectrally broad bosenova signals benefits from broadband
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axion DM searches and that the exemplary CASPEr experiment using derivative couplings is
of resonant type. Our predictions thus motivate further innovation in broadband DM experi-
ments, both for axion-photon and axion-fermion couplings. Since the detection of galactic axion
bursts provides a complementary mechanism to the radio emission from resonant AS cores in
Chap. 6, the development of new experiments and dedicated axion burst searches can be seen
as a promising additional method to probe the axion parameter space in Fig. 5.19.
On the experimental side, there exist several current and planned broadband-type axion ex-
periments which exploit the axion-photon interaction Laγγ and could thus potentially be used
for bosenova searches. These experiments include dish antenna setups like BRASS [124, 125]
and BREAD [126, 133], which can probe axion masses in the range 50µeV ≲ ma ≲ meV and
20meV ≲ ma ≲ 0.1eV, respectively. Other potentially suitable broadband experiments are
ABRACADABRA [283, 284], which utilizes a superconducting toroidal magnet to search for
axion masses in sub-µeV ranges and WISPLC [285], which uses an LC circuit for axion masses
around the O(neV) range. Since our predictions in Fig. 7.3 favor lower masses ma ≲ 10−4 eV,
mainly BRASS, ABRACADABRA and WISPLC could reach the relevant parameter space for
f⋆ ∼ 1 and n = 3.34. At distances dobs ≤ dmax ∼ 10−3 pc for ma ∼ µeV, fa ∼ 2 · 1011 GeV
in Eq. (7.23), the signal duration would be δt ≲ 2hrs and the density at the detector is
ρ⋆,d ≳ 0.01GeVcm−3, according to Eq.s (7.15) and (7.16). The corresponding spectral width
following Ref.s [35, 36] and Fig. 4.10 would be approximately δk ∼ ma for the leading peak at
k/ma ≈ 2.4 and δk ∼ 7ma for the overall bosenova spectrum.
Lastly and for possible extensions of our work, we list the most important uncertainties in our
modeling of galactic AS collapse rates. Most of these uncertainties are directly inherited from
the linear growth predictions of the MCMF in Sec. 3.6 and Ref. [58], as well as from the semi-
analytic predictions for the mass growth of AS cores from Sec. 6.3 and Ref. [240]. We refer to
the conclusion of the mass growth modeling from Sec. 6.5 for detailed explanations and only
add specific uncertainties, which differ from the parametric resonance case in Chap. 6.
First, the bosenova rates exhibit a stronger dependence on the initial overdensity parameter Φ,
compared to the parametric resonance in Chap. 6. This is mainly due to our simplified model-
ing of the AS collapse rates, which neglect the mass-loss backreaction on the AS accretion rate.
Secondly, we have not taken into account the possibility of multiple bosenovae occurring inside
a single ASMC system for simplicity. We do however find evidence for such systems since the
internal accretion rates scale as δM⋆/δt ∼ τ−1

gr ∼ Φ4. For the densest MCs in the MCMF with
Φ > 10, which dominate the contribution to NNova, multiple axion bursts within tobs = 1 yr are
possible.
A more careful study of the galactic AS collapse rates including the effects of long-time AS accre-
tion would hence provide a promising extension of our work. Finally, a more reliable prediction
of the galactic bosenova rates would also require additional consideration of the anisotropic
distribution, long-time core mass growth and long-time stability of galactic ASMC systems.
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Conclusion & Outlook 8
To summarize the results of this work, we put our combined predictions for galactic axion dark
matter substructure into context with existing literature in Sec. 8.1. We also discuss extensions
of our work and its implications for future research on signatures of axion dark matter in Sec. 8.2.

8.1 Conclusion
In Chap.s 2 to 4, we have gathered results of earlier investigations on the properties and time
evolution of axion miniclusters together with the stability of their AS cores in order to infer
the first predictions for the combined present-day mass distribution of galactic axion stars with
attractive self-interactions λ < 0. For this, we have employed a generalized approach for the de-
scription of axion-like particles following Ref. [58], which allowed us to extend the corresponding
predictions to a broad range of light scalar dark matter candidates, including the QCD axion
with n = 3.34 and ma = 50µeV. Our application of the canonical core-halo relation in the grav-
itational limit of stable axion stars with attractive self-interactions indicates that their relative
DM abundance 10−7 ≲ f⋆ ≲ 10−4 is generally much smaller than was commonly assumed in
the literature with f⋆ ≲ 1 [33, 135, 137]. We emphasize that this result is not particular to
our modeling of the mass distributions but that it is a general finding for single-core ASMC
structures in which the stable core mass is much lighter than the total mass of the structure.

A second crucial result of this work is the mass-integrated calculation of the spatially distributed
collision- and signal rates for the most promising signatures of galactic axion stars in Chap. 5.
In this chapter and in the corresponding publication, Ref. [1], we have performed the currently
most detailed calculation of the abundance and detectability of galactic axion star encounters
with astrophysical objects. We extended previous calculations by additionally considering the
exact mass- and size distribution of these objects while keeping track of the different low-mass
cutoffs and slope indices α = −1/2,−0.7 of the MCMF.
In the context of resonant axion conversion in galactic NS-AS/MC transients, we confirmed pre-
vious findings that the collision rates of these events are considerable for a large range of axion
models [135–137, 188], especially for larger axion masses. Crucially, our additional modeling of
the resonance criterion between axion mass and typical NS plasma frequencies indicates that
the signal rates from the above encounters are substantially diminished, rendering NS-AS/MC
collisions effectively undetectable - independent of the MCMF cutoffs and slope index α.
A more positive conclusion could be inferred for the case of galactic AS core mergers in com-
posite, merging ASMC systems. In this case and including the low-mass MC component, we
found that the rate of AS core mergers can reach up to ∼ 3d−1 galaxy−1 for α = −0.7, and
∼ 10 yr−1 galaxy−1 for α = −1/2, both for the QCD axion. Minicluster mergers can hence lead
to frequent emission of radio bursts or to relativistic axion emission, where the signal properties
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depend on the detailed merger dynamics outside of the scope of this work. We also performed
simple estimations demonstrating that the resulting radio bursts become observable even over
cosmological distance dobs ∼ 2Gpc.

Most importantly for this work, the analysis from Chap. 5 indicated a remarkable potential for
scenarios of combined AS accretion and triggering of radio- or axion bursts at the respective in-
stabilities. We investigated the corresponding mass growth and resulting radio line backgrounds
in more detail in Chap. 6 and Ref. [2]. Our analytical modeling of the external MC accretion from
the NFW halo of the Milky Way and the semi-analytical predictions from numerical simulations
of isolated ASMC systems both indicate that the expected radio signals are overwhelmingly
strong if present. For both of the above accretion scenarios we estimated their potential de-
tectability using different radio telescopes and found that dedicated line searches can be used
to infer new constraints in ranges of up to 10−7 eV ≲ ma ≲ 10−2 eV and gaγγ ≳ 10−12 GeV−1.
The combined scenarios of AS resonance and core mass growth hence provide a compelling new
mechanism to probe previously unexplored axion-parameter space with existing radio telescopes.

Lastly and complementary to the previous analysis, we also investigated the occurrence of re-
peated bosenovae in the Milky Way in Chap. 7 and Ref. [3]. While the observable distance of
axion bursts is generally low, dobs ≲ 1pc, the large (internal) accretion rates of ASMC systems
with density parameters in the range 1 ≲ Φ ≲ 104 are sufficient to potentially become de-
tectable over observation times on the order of years. More specifically for experiments, which
probe the axion-photon coupling, we find that optimistic predictions with order-one AS dark
matter abundance f⋆ ∼ 1 can be probed by dedicated axion burst searches. The detectabil-
ity of axion bursts is further enhanced for experiments exploiting derivative couplings like the
axion-fermion interaction, which could potentially yield observable signatures up to QCD ax-
ion masses, ma ≲ 10−4 eV. However at the time of writing, there exist no suitable broadband
experiments, which utilize derivative axion couplings.

8.2 Outlook & Implications for Future Research
Summarizing the above findings, the investigations in this work greatly diminished prospects
on the detection of NS-AS/MC collisions, but on the other hand opened up new promising
observational methods for composite ASMC systems, especially when the mass growth of the
AS core is accounted for. A particularly appealing possibility is given by the combined use of
analytical radio line predictions from this work together with future, dedicated line searches
with existing radio telescopes, as suggested in Chap. 6. Similarly, broadband experiments like
BRASS [124, 125], ABRACADABRA [283, 284] and WISPLC [285] can potentially be used to
constrain axion models with large AS abundance f⋆ through development of dedicated axion
burst searches. A major benefit from such methods is the fact that they can be performed with
comparatively low financial expenditure. However, the financial benefit comes at the cost of
large theoretical uncertainties so that these searches should be seen as a promising addition to
existing laboratory and astrophysical searches.
In future studies, the corresponding large uncertainties can be reduced through improved un-
derstanding of the evolution of galactic axion DM substructure. For possible extensions of our
studies, we conclude by listing 1. the major uncertainties inherent to our modeling of the mass
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distributions and corresponding accretion rates and 2. the fundamental dependence of our re-
sults on different assumptions and parameters.
First and mainly, we have used the canonical λ = 0 core-halo relation from Ref. [169] in the
gravitational limit and the Press-Schechter theory predictions from Ref. [58] for the present-day
minicluster distributions. The most relevant uncertainties in the Press-Schechter model include
the low-M cutoff of the MCMF, the initial power spectrum and non-linear effects of structure
formation. There is also ongoing research on the MCMF slope α, the M-, Φ-scaling of the λ = 0
core-halo relation and on the Φ-dependence of AS accretion rates. For all of these uncertain-
ties we have used the most well-tested assumptions, but we emphasize that our approaches can
be straight-forwardly updated by using modified versions of the above relations without loss
of generality. We continue to briefly elaborate about the impact of such modifications on the
predictions in this work.
Starting with the canonical λ = 0 core-halo relation, we have used different analytical estima-
tions finding that the impact of weak attractive self-interactions on the equilibrium configuration
of the ASMC system lies below uncertainties from the mass growth of these structures. Consid-
ering a modified core mass scaling M⋆ ∝ Mβ, where 1/3 ≤ β ≤ 7/9 has been found in different
literature [167–169, 172, 201–206, 247–249, 251, 286–290], we can summarize that larger β would
increase the abundance of high-mass axion stars in MCs of mass M >M0. Therefore our pre-
dictions based on the instabilities of axion stars from Chap.s 6 and 7 benefit from larger values
of β.
Additional uncertainty arises from the long-time AS mass growth after the collapse of composite
ASMC systems around matter-radiation equality when the core-halo relation is established [167].
On one hand, we have demonstrated how modified core mass relations of the form in Eq. (6.26)
can significantly enhance the number of resonant and critical systems. On the other hand, any
of these scenarios of late-time accretion quickly raise additional questions about the stability and
time evolution of AS cores after triggering one of the two AS instabilities. We emphasize that
such uncertainties are inherent to any study aiming to exploit axion star collapse- or resonance
rates and that additional simulations are required to resolve these uncertainties.
Conveniently for the different low-mass cutoffs of the MCMF, we found in Chap. 5 that the
largest and phenomenologically most relevant AS masses are mostly independent of the low-
mass MC population. This also led us to solely consider the M0-cutoff in Chap.s 6, 7. The only
exception of this rule is given by the merger rates of ASMC systems in Fig. 5.15, which benefit
from numerous capturing of light miniclusters. Similarly, the MCMF slope index α = −1/2,−0.7
controls the abundance of the lightest miniclusters, which is why the MCMF with α = −0.7
enhances the expected MC merger rates in Fig. 5.16. On the other hand, a flatter MCMF slope
of α = −1/2 would increase the relative abundance of high-mass miniclusters, thus boosting the
abundance of near-critical systems in Chap.s 6, 7.
Another crucial ASMC parameter is the initial overdensity parameter Φ ∈ (0, 104] considered in
Chap.s 6 and 7. While the effect of Φ > 1 on collision and merger rates is expected to be small,
the resulting impact on some of the most promising detection mechanisms involving axion star
accretion was found to be substantial. In the external MC accretion model, the geometric cross
section favors smaller values of Φ ≲ 1, whereas for the numerically tested internal accretion
model, the radio signals are dominated by larger overdensities of 1 ≲ Φ ≲ 100. The latter
statement also remains true for the collapse rates of ASs in Chap. 7, which benefits from having
large Φ ≳ 103 and thereby enhanced AS accretion- and collapse- rates.
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A.1 Table of important Parameters

Quantity Explanation Definition
ρmc Characteristic MC density Eq. (3.23)
Φ MC overdensity parameter Φ = δρa/ρa
M0 Characteristic MC mass Eq. (3.25)
R Spherically homogeneous MC radius Eq. (3.24)

MJ,min Low-mass MCMF cutoff from the Jeans mass MJ Eq. (3.45)
M0,min Low-mass MCMF cutoff from the characteristic MC mass M0 Eq. (3.47)
Mmin Applied low-mass MCMF cutoff at z = 0 M0/J,min
Mmax High-mass MCMF cutoff at z = 0 Eq. (3.46)
Mh,min MC mass of ASMF cutoff from core-halo relation Eq. (3.58)
MR,min MC mass of ASMF radius cutoff where R = R⋆ Eq. (4.70)
M⋆,min Effective low-mass cutoff of the ASMF Eq. (6.1)
Mγ,min Combined M-, Φ-cutoff of the Φ-integrated resonant MCMF Eq. (6.2)
Mγ,max High-mass cutoff of the above resonant MCMF Eq. (6.3)
Mλ,acc MCMF high-mass cutoff due to accretion over tobs Eq. (7.3)
Mλ,min Combined M-, Φ-cutoff of the Φ-integrated accreting MCMF Eq. (7.4)
Mλ,max High-mass cutoff of the above accreting MCMF Eq. (7.1)
Mtot Total mass of MCs in the MW Eq. (3.52)
Ntot Total number of MCs in the MW Eq. (3.53)
Nγ,tot Number of MCs hosting a resonant AS with M⋆ ≥M⋆,γ Eq. (6.4)
NNova Total number of galactic bosenovae occurring within tobs Eq. (7.5)
M⋆,λ Maximum stable AS mass imposed by self-interactions Eq. (4.16)
R⋆,λ Minimum stable AS radius imposed by self-interactions Eq. (4.16)
M⋆,h Low-mass ASMF cutoff from core-halo relation Mh,min
M⋆,R Low-mass ASMF radius cutoff where R = R⋆ Eq. (4.68)
M⋆,γ Decay mass of ASs triggering parametric resonance Eq. (4.61)
M⋆,acc ASMF high-mass cutoff due to accretion over tobs Eq. (7.2)
M⋆,tot Total mass of ASs in the MW Eq. (4.75)
N⋆,tot Total number of ASs in the MW Eq. (4.76)
f⋆ Fraction of total MW mass contained in ASs Eq. (4.79)
ε⋆ Parameter describing the typical AS mass Eq. (4.79)

Table A.1: Different minicluster (top) and axion star parameters (bottom) used in this work.
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In Tab. A.1 we summarize the different minicluster (top part) and axion star parameters (bottom
part) used in this thesis together. For each parameter, a short explanation is provided together
with the corresponding equation of definition in the right row. In the specific case of the
minimum mass M⋆,h imposed by the core-halo relation in Eq. (3.58), we emphasize that M⋆,h =
Mh,min by definition of Mh,min.

A.2 Schematic Summary of Contents
Fig. A.1 depicts a graphical summary of the contents of this work highlighting the logical struc-
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Figure A.1: Schematic representation of the structure of this thesis, modified from the scheme in Ref. [1].
Green panels indicate methods derived from Ref. [58], yellow panels relate to other literature [30, 194,
240], while black-framed colored elements indicate the results obtained in this work and Ref.s [1–3].
Underlying assumptions are explained by text items and the corresponding sections are shown in blue.
Gray panels indicate additional considerations of experimental requirements.
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ture of the different chapters. Corresponding chapters and sections are indicated in dark blue
numbers, green panels indicate the approach from Ref. [58], light blue panels show the results
taken from Ref. [1] and black rectangles indicate phenomenological implications corresponding
to the three publications, Ref.s [1–3] in Chap.s 5, 6, 7, respectively. Yellow and gray panels
indicate additional input from numerical simulations and experimental instrumentation.
To summarize the overall structure in a few sentences: The green panels indicate the derivation
of the present-day properties of axion miniclusters for different axion models ma, n from Sec. 3.6.
Combining the minicluster properties with the core-halo relation from Eq. (3.57) together and
additional consistency requirements in Sec. 4.7.1, we obtain the present-day mass distribution of
axion stars in the Milky Way after normalization to the total mass of the NFW DM halo. The
inferred knowledge on axion stars is thereafter applied to existing (Chap. 5) and novel signatures
(in Chap.s 6 and 7) of galactic axion stars and miniclusters.

A.3 Relativistic Degrees of Freedom

In order to obtain the oscillation temperature Tosc numerically from the condition ma(Tosc) =
3H(Tosc), we employ the fits to the relativistic and entropic degrees of freedom from Ref. [54],
analogous to what was done in Ref. [58]. The corresponding fit parameters used in Eq. (2.52)
are summarized in Tab. A.2.

j 1 2 3 4 5

aR0 1.21
aRj,1 0.572 0.330 0.579 0.138 0.108
aRj,2 -8.77 -2.95 -1.80 -0.162 3.76
aRj,3 0.682 1.01 0.165 0.934 0.869
aS0 1.36
aSj,1 0.498 0.327 0.579 0.140 0.109
aSj,2 -8.74 -2.89 -1.79 -0.102 3.82
aSj,3 0.693 1.01 0.155 0.963 0.907

Table A.2: Parameters for the fits of the relativistic ’R’ and entropic ’S’ degrees of freedom as a function
of temperature following Eq. (2.52), taken from Ref. [54].

A.4 Navarro-Frank-White Profile

For the profile of the galactic DM halo we use the Navarro-Frank-White (NFW) profile [291]

ρNFW(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 , (A.1)

with characteristic density ρ0 = ρa = 0.32GeV/cm3 and core radius Rs = 20.2 kpc [194].
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A.5 Ground States of the Schrödinger-Poisson System
Complementary to our analytical calculations of the soliton properties in Sec. 4.1, there have been
numerous studies about the numerical computation of the exact groundstates of the Schrödinger-
Poisson system, e.g. in Ref.s [49, 235, 292–294]. The groundstate properties of the lowest energy
eigenstates with n = 0 are commonly used for the derivation of the core-halo mass relation in
Eq. (3.57) [171] and for other qualitative λ = 0 soliton properties, e.g. in Eq. (5.35).
For the considerations in this work and for completeness, we briefly recall the fundamental re-
sults from Ref. [49] for the parameters of the lowest five 0 ≤ n ≤ 4 eigenstates of the SP system
with

Rs =
1

GMsm2
a

fn , Es = − (GMma)
2 ϵn , (A.2)

ρs =
(
Gm2

a

)3
M4ρn, , vs,vir = GMsmaw

1/2
n . (A.3)

Note that the half-mass radius in Eq. (A.2) describes an effective mass-radius relation for λ = 0,
analogous to the λ < 0 case in Eq. (4.17). The dimensionless constants ρn, fn, ϵn, and wn are
determined numerically and taken from Ref. [49]. Together with the relation wn = 2

3ϵn, the
corresponding parameters are summarized in Tab. A.3.

n ρn fn ϵn wn

0 0.00440 3.9251 0.16277 0.10851
1 0.000180 23.562 0.03080 0.02053
2 0.000031 60.903 0.012526 0.008351
3 9.400 · 10−6 116.18 0.006747 0.004498
4 3.733 · 10−6 178.60 0.004209 0.002806

Table A.3: Properties of the lowest energy eigenstates of the Schrödinger-Poisson equation [49].

A.6 Rescaling of the Schrödinger Poisson system
Similar to the λ ̸= 0 case of the GPP system in Eq. (4.7) and Eq. (4.8), there exists a class
of transformations, which excludes the physical parameters ma, G from the system Eq. (3.14),
Eq. (3.15). The corresponding rescaling can be achieved by normalization of the system prop-
erties with the de-Broglie wavelength (mav0)

−1 and coherence time ∼ (mav
2
0)

−1 according to
[170]

x = x̃/(mav0) , t = t̃/(mav
2
0) , (A.4)

ψ = v20
√
ma/G ψ̃ , ΦN = v20 Φ̃N , (A.5)

where as in the main text the tilde indicates the dimensionless, rescaled quantities. The resulting
rescaled Schrödinger-Poisson system is

i
∂ψ̃

∂t̃
= −1

2
∆̃ψ̃ + Φ̃N ψ̃ , (A.6)

∆̃Φ̃N = 4π|ψ̃|2 , (A.7)
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which is equivalent to Eq. (4.9) and Eq. (4.10) for λ = 0 as expected. Note here that the
λ < 0 rescaling from Eq. (4.7) and Eq. (4.8) is essentially a special case of the SP rescaling for
v0 = fa

√
G/cλ, where v0 is fixed by the self-interaction strength λ [35].

A.7 Galactic Neutron Star Distribution
We model the galactic neutron star distribution using the phenomenological fit from Ref. [259]

nNS(ρ, ℓ) =
CNS

2πϱ
pϱ(ϱ)pℓ(ϱ, ℓ) , (A.8)

pϱ(ϱ) = A0,ϱ +A
ϱγ−1

λγ
e−ϱ/λ , (A.9)

pℓ(ϱ, ℓ) = A0,ℓ θ(ℓ− 0.1kpc) +A1,ℓe
−ℓ/h1(ϱ) +A2,ℓe

−ℓ/h2(ϱ), (A.10)

where θ(x) is a Heaviside function. The scale heights h1,2(ρ) are defined by

h1(ϱ) = k1ϱ+ b1 , (A.11)

h2(ϱ) =

{
k<2 ϱ+ b<2 , ϱ ≤ 4.5kpc
k>2 ϱ+ b>2 , ϱ ≥ 4.5kpc

. (A.12)

with the relevant parameters summarized in Tab. A.4.

Parameter Value
γ 1.83
A0,ℓ 1.8 · 10−5 kpc−1

A1,ℓ 1.87 kpc−1

A2,ℓ 35.6 · 10−3 kpc−1

k1 13 · 10−3

k<2 18.4 · 10−3

k>2 0.05

Parameter Value
A 95.6 · 10−3

λ 4.48 kpc
b1 12.8 · 10−3 kpc
b<2 0.03 kpc
b>2 0.65 kpc
A0,ϱ 5 · 10−3 kpc−1

Table A.4: Best-fit parameters obtained from Ref. [259] for the galactic neutron star distribution of
the Milky Way used for the calculation of the total mass-integrated collision rates Γi−NS in Eq. (5.8),
Sec. 5.2 and Sec. 5.3.

A.8 Madelung Transformation
In the context of N-body simulations, it is useful to rewrite the wavefunction of the SP equations
as [171, 295]

ψ =

√
ρ

ma
eimaθp/h̄ =

√
n eimaθp/h̄ , (A.13)

where the velocity amounts to the phase gradient v = ∇θp. We keep track of powers of h̄ in this
section to indicate the connection between the Schrödinger equation and the hydrodynamical
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representation in the following. In this approach, the first line of Eq. (3.14) takes a form analo-
gous to the mass- and momentum conservation equations in fluid dynamics. The corresponding
transformation is called the Madelung transformation and it yields the equations

∂tρ+∇(ρv) = 0 , (A.14)

∂tv + (v∇)v = −∇ΦN +
h̄2

2m2
a

∇
(∇2√ρ

√
ρ

)
. (A.15)

Comparing Eq. (A.14) with the Euler equations of fluid dynamics, one finds that the only
difference is given by the last term, which encodes the contribution of scalar field gradients to
the change of momentum:

Q = − h̄2

2m2
a

∇2√ρ
√
ρ

. (A.16)

The extra term in Eq. (A.16) is often referred to as a quantum pressure term, since it is derived
from the Schrödinger-Poisson equations. We note however that it is neither a pressure nor of
real quantum nature in the context of the classical axion field equations derived in Sec. 3.1.

182



Numerical Methods B
This chapter summarizes the numerical techniques used for the non-relativistic three-dimensional
simulations, which are employed in Subsec. 4.3.1 and Subsec. 5.4.1 following Ref.s [170, 239].
Numerical simulations of the SP and GPP system have been performed in numerous studies,
e.g. Ref.s [27, 32, 33, 166, 167, 170, 172, 174, 175, 202, 213, 231, 296–301], using either N-body
simulations or pseudo-spectral methods. The fundamental goal in all of these simulations is to
evolve the rescaled wavefunction ψ̃ in the rescaled Gross-Pitaesvskii-Poisson system

i
∂ψ̃

∂t̃
= −1

2
∆̃ψ̃ + Φ̃N ψ̃ − 1

8
|ψ̃|2ψ̃ , (B.1)

∆̃Φ̃N = 4π(|ψ̃|2 − ñ) , (B.2)

starting from random homogeneous initial conditions for ψ̃0 = ψ̃(t̃ = 0) as argued in Sub-
sec. 4.3.1. Note that the rescaled number density ñ = Ñ/L̃3 in the dimensionless Poisson
equation in Eq. (B.2) is related to the periodic boundary conditions in Sec. B.2, B.3. In the case
of periodic boundary conditions, one can show that the volume integral over the source term
needs to vanish. This is ensured by subtracting the average over |ψ̃|2, given by n.
We introduce the pseudo-spectral operator-splitting method, which allows for high-performant
parallel computations, in Sec. B.1 following Ref. [239]. The operator splitting scheme decom-
poses the time evolution operator from Eq. (4.27) into diagonal components on the corresponding
position- and Fourier space grids from Sec. B.2. Combining the numerical grid setup with the
discrete Fourier transformation from Sec. B.3 and the overall summary of the resulting algo-
rithmic scheme in Sec. B.4, we apply our simulations to the case of axion star condensation in
Sec. B.5, Subsec. 4.3.1 and to non-relativistic AS core mergers in Subsec. 5.4.1.

B.1 Operator-Splitting Methods

As mentioned in Sec. B.5, the time evolution of cold axion dark matter, described by ψ̃(x̃, t̃+∆t̃),
can be determined from the time evolution operator

Ũ = T̃ exp
(
−i
∫ t̃+∆t̃

t̃

dt̃′H̃
)

= T̃ exp



−i

∫ t̃+∆t̃

t̃

dt̃′



˜̃k
2

2
+ Φ̃N − 1

8
|ψ̃|2





 (B.3)

of the rescaled GPP system in Eq. (B.1), Eq. (B.2), where T̃ is a time ordering operator. A
crucial realization in Eq. (B.3) is the fact that the Hamiltonian of the system may be separated
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into exponentials of the spatial and momentum components H̃x̃, H̃k̃ according to

H̃ = −∇̃2

2
+ Φ̃N − 1

8
|ψ̃|2 = H̃x̃ + H̃k̃ , (B.4)

H̃x̃ = Φ̃N − 1

8
|ψ̃|2 , H̃k̃ = −∇̃2

2
. (B.5)

The decomposition in Eq. (B.4) can be used to facilitate the calculation of different expectation
values in the corresponding eigenspace, i.e. in position and in Fourier space, where ⟨ψ̃| H̃x |ψ̃⟩
and ⟨ψ̃k̃| H̃k̃ |ψ̃k̃⟩ become diagonal. By means of the above separation of the Hamiltonian, the
wave function ψ̃(x̃, t̃+∆t̃) = Ũ ψ̃(t̃) may be evolved in time by multiplication with exponentials
exp H̃i of the Hamiltonian components H̃x̃ and H̃k̃ in the corresponding eigenspace i. focusing on
a single step ∆t̃ in Eq. (B.3) for simplicity, the time evolution operator exp(−iH̃∆t̃) needs to be
decomposed into a series of products of exp(−iH̃x̃∆t̃) and exp(−iH̃k̃∆t̃). Since the commutator
of the two eigenbases is non-vanishing [x̃, k̃] ̸= 0, a specific decomposition into the above products
can only be accurate up to a certain order in time.
In the simplest case, exp(−iH̃∆t̃) = exp(−iH̃x̃∆t̃) · exp(−iH̃k̃∆t̃) +O(∆t̃2) the resulting error
is quadratic in the timestep size ∆t̃. Another particularly simple and well-known scheme is the
so-called Strang-splitting [302]

exp
[
−i(H̃x̃ + H̃k̃)∆t̃

]
= exp

(
−iH̃k̃

2
∆t̃

)
exp

(
−iH̃x̃∆t̃

)
exp

(
−iH̃k̃

2
∆t̃

)
+O(∆t̃3) , (B.6)

which is accurate up to O(∆t̃3). This can best be seen by applying the Baker-Campbell Hausdorff
formula [239, 303], which states that the general product of the exponentials

exp(X) exp(Y ) = exp(Z) (B.7)

of two arbitrary non-commuting operators X and Y may be expressed as

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]] +

1

24
[X, [Y, [Y,X]]] + . . . . (B.8)

Applying the Baker-Campbell-Hausdorff formula twice to the Strang product [239]

e
X
2 eY e

X
2 = exp

{
X

2
+ Y +

X

2
+

1

2

[
X

2
, Y

]
+

1

2

[
Y,
X

2

]
+O(dt3)

}
= eX+Y +O(∆t̃3) (B.9)

one finds that the O(∆t̃2) contributions given by the commutator of X = −iH̃k̃∆t̃ and Y =

−iH̃x̃∆t̃ cancel each other. More specifically, it can be shown that all other commutators, which
correspond to even orders in time, also vanish. Following Ref. [239], one can apply Eq. (B.8)
repeatedly at higher orders and write

exp
(
X

2

)
exp(Y ) exp

(
X

2

)
= exp(W ) (B.10)
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with

W = X + Y +
1

12
[Y, [Y,X]]− 1

24
[X, [X,Y ]] +

7

5760
[X, [X, [X, [X,Y ]]]]

− 1

720
[Y, [Y, [Y, [Y,X]]]] +

1

360
[X, [Y, [Y, [Y,X]]]] +

1

360
[Y, [X, [X, [X,Y ]]]]

− 1

480
[X, [X, [Y, [Y,X]]]] +

1

120
[Y, [Y, [X, [X,Y ]]]] + . . . . (B.11)

Defining the time-independent operators A = X/∆t̃ and B = Y /∆t̃, Eq. (B.10) implies that
the second-order integrator from Eq. (B.9) may be expressed in odd powers of ∆t̃ as

S2(∆t̃) ≡ exp
(
A

2
∆t̃

)
exp

(
B∆t̃

)
exp

(
A

2
∆t̃

)

= exp
(
α1∆t̃+ α3∆t̃

3 + α5∆t̃
5 + . . .

)
, (B.12)

where the corresponding coefficients αi can be read off from Eq. (B.11), namely

α1 = A+B, α3 =
1

12
[B, [B,A]]− 1

24
[A, [A,B]], (B.13)

α5 =
7

5760
[A, [A, [A, [A,B]]]] + . . . . (B.14)

As argued in Ref. [239], the vanishing of even powers in S2 is a direct consequence of the fact
that the operator is symmetric and time reversible, S2(∆t̃)S2(−∆t̃) = 1.
Crucially for the splitting schemes used in this work, the fundamental operator S2 can be used
to derive higher order splitting schemes

S2n+2(∆t̃) := S2n
(
z1∆t̃

)
S2n

(
z0∆t̃

)
S2n

(
z1∆t̃

)
= , (B.15)

where the effective time arguments zi∆t̃ of S2n with n ∈ N introduce two coefficients z0 and z1,
which must satisfy the conditions1

z0 + 2z1 = 1, z2n+1
0 + 2z2n+1

1 = 0 (B.16)

in order for the higher order product S2n+2(∆t̃) to produce an operator of order O(∆t̃2n+2) in
the time coordinate ∆t̃. Ref. [239] used the inductive method in Eq. (B.15) to derive operators
of up to eigth order in time. For arbitrary A, B the resulting schemes S2n+2 can equivalently
be characterized by a product series of the form

exp
[
∆t̃(A+B)

]
=

k∏

i=1

exp
(
ci∆t̃A

)
exp

(
di∆t̃B

)
+O

(
∆t̃n+1

)
, (B.17)

where the products are ordered from left to right and the splitting parameters ci, di are deter-
mined from repeated application of Eq.s (B.15) and (B.16) respectively. For the case of interest,
A = −iH̃k̃ and B = −iH̃x̃ as mentioned before. Geometrically Eq. (B.17) separates each time
step ∆t̃ into two sets of sub-intervals {ci∆t̃, di∆t̃}, which correspond to the kinetic and potential

1This can be straight-forwardly shown by repeated application of the identity in Eq. (B.12) for S2n at n = 0
combined with induction arguments.
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components of the rescaled Hamiltonian in Eq. (B.4).
Specifically, for the fourth-order splitting scheme the coefficients are [239]

c1 = c4 =
1

2
(
2− 21/3

) , c2 = c3 =
1− 21/3

2
(
2− 21/3

) , (B.18)

d1 = d3 =
1

2− 21/3
, d2 = − 21/3

2− 21/3
, d4 = 0 . (B.19)

Importantly for the numerical algorithm in this thesis, we find that the fourth-order splitting
has the best combination of computational efficiency and resulting numerical errors. We briefly
elaborate on numerical efficiency of our simulations at the end of this section and continue with
the higher order splitting schemes.
At higher orders, the splitting schemes are often characterized by a set ofm equivalent coefficients
wi, which are related to the coefficients ci, di in Eq. (B.17) via the conditions

k∑

i=1

ci =

k∑

i=1

di = 1 , (B.20)

together with the coefficient relations

cj = ck+1−j =
1

2
(wm+2−j + wm+1−j) , wm+1 = 0 (B.21)

dj = dk−j = wm+1−j , dk = 0 , (B.22)

where k = 2m+ 2 is the number of parameters ci, di, 1 ≤ j ≤ (m+ 1)/2 and m = 3, 7 for O(6)
and O(8) in this work [170, 239]. We implement the above approach of using different sets of wi

from the literature for operators of order O(∆t̃n) for n = 4, 6, 8. At each n, we compared the
results from various literature [239, 304–307] to find the best splitting scheme with coefficients
wi for our simulations.
Crucially, we find that higher orders in time reduce numerical errors but simultaneously lead to
an O(2) increase of the required steps, namely k = 4, 8, 16 for n = 4, 6, 8. It is therefore advisable
to choose lower orders n in time together with smaller stepsizes ∆t̃, which after adequate choice
for ∆t̃, turns out to yield the best combination of numerical performance and computational
error control. The corresponding time stepping scheme is introduced in Sec. B.2.

wi n = 6, m = 3 n = 8, m = 7

w1 -1.17767998417887 0.315293092396767
w2 0.235573213359359 0.334624918245298
w3 0.784513610477560 0.299064181303656
w4 -0.573862471116082
w5 0.190754710296238
w6 -0.409100825800032
w7 0.741670364350613

Table B.1: Splitting coefficients wi, ..., wm at different orders n determining the k = 2m + 2 splitting
steps in Eq. (B.17). The n = 6 scheme was taken from Ref. [239] and the n = 8 scheme from Ref. [304].
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Before, we finish this section by listing the optimal sets of wi determined from different literature
and optimization tests to our problem in Tab. B.1. The time splitting schemes in Eq.s (B.18),
(B.19) and Tab. B.1 contribute operator splitting methods at orders n = 4, 6, 8 in time. The
remaining choice of the time step size ∆t will be discussed together with the spatial grid setup
in the next section.

B.2 Three-dimensional Grid Setup
Starting with the spatial grid setup, we use three-dimensional, evenly spaced grids for both
position space, where ψ̃x̃(t̃) is multiplied by components exp(−idiH̃x̃∆t̃) of Ũ , and momentum
space, where ψ̃k̃(t̃) is evolved using exp(−iciH̃k̃∆t̃). Each axis of the x̃− and k̃-grids has the
maximum values x̃max, k̃max and grid spacing ∆x̃, ∆k̃ given by

x̃max =
L̃

2
, k̃max =

πNres

L̃
(B.23)

∆x̃ =
L̃

Nres
, ∆k̃ =

2π

L̃
, (B.24)

where L̃ is the rescaled grid length and Nres its resolution. In the simulations, L̃ and Nres are
specified by user input, from which the grid parameters are inferred. Note here that due to the
zero-points of the grid, there is an asymmetry for the even grid resolution Nres = 256 which we
use2. In the algorithm, the slightly asymmetric grid axes are set up as

−x̃max +∆x̃ ≤ x̃i ≤ x̃max , (B.25)
−k̃max ≤ k̃i ≤ k̃max −∆k̃ , (B.26)

where we note that the periodic boundary condition ψ̃(x̃) = ψ̃(x̃ + Lnx̃x̃) is fulfilled. The
asymmetry of the Fourier space grid requires the vanishing of modes with large k̃ ∼ k̃max, where
the asymmetry becomes relevant. This can either be achieved by increasing the resolution Nres
or by decreasing the grid length L̃ according to Eq. (B.25).
Our code performs automated consistency checks at specified timesteps to ensure that the modes
in the system fulfill k̃ < k̃max. This can straight-forwardly done by computing the expectation
value of the total momentum operator P̃ (t̃) of the system in Eq. (4.13), since the initial conditions
to be specified in the following are isotropic in Fourier space and since P̃ is a conserved quantity
of the rescaled GPP system.
Moving on to the isotropic initial conditions of the three-dimensional simulations, we emphasize
that the final state of the system is completely determined by the initial state ψ0(x) and the time
evolution specified by the operator splitting schemes in Eq. (B.17) and Tab. B.1. The initial
wavefunction in return is specified in Fourier space, where we employ two approaches that are
common in the literature [170, 174, 213]. First the Gaussian initial distribution

ψ̃0(k̃) = 2
√
2π3/4

√
Ñ exp

(
− k̃2

2
+ iθr(k̃)

)
(B.27)

2It is important to choose powers of 2 for the fast Fourier transform algorithm to perform efficiently.
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where the initial phases θr(k̃) ∈ [0, 2π] are randomly drawn from a uniform distribution at each
point k̃ on the momentum space grid. And secondly, the δ-distributed wave function

|ψ0(k)|2 ∝ δD(|k| −mav0) , (B.28)

which constitutes the surface of a sphere with radius |k| = mav0 equal to the characteristic mo-
mentum k0 = mav0 of the system and again with random phases θr ∈ [0, 2π]. For the Gaussian
and δ-distributions considered in this section, we obtained b = 0.9 and b = 0.6 respectively,
which agrees with the predictions from the original work, Ref. [170]. On the technical side, we
also allow for variable radii of the initial momentum sphere by employing the delta distribution
as |ψ̃(k̃)|2 ∝ δD(|k̃| − c0|k̃0|) with c0k̃0 = c0 = 0.6 for the simulations in this work.
As mentioned in the main text, we demonstrate the initial configuration and subsequent evo-
lution of a δ-distributed field ψ̃0(x̃) in Fig. 4.2, which was obtained using the pseudo-spectral
operator splitting method in App. B. The simulations in this work were set up with a resolution
of Nx = 2563 and initialized with a δ-distributed initial field for a rescaled system size L̃ = 44
and particle number Ñ = 55 shown in the top left panel.
After specification of the initial wavefunction ψ̃(k̃) according to the above procedure, the next
step is to initialize the three-dimensional operator field Φ̃N (x̃), which determines the position
space component H̃x̃ in Eq. (B.4) and thereby the time evolution in Eq. (B.17). In order to
obtain the Newtonian potential from the source term ∝ |ψ̃(x̃)|2 in Eq. (B.2), we use Fourier
transforms to calculate Φ̃N (k̃) in momentum space. The procedure and numerical implementa-
tion of the Fourier transformation is presented in Sec. B.3.
Before, we summarize the numerical grid setup of this section by introducing the adaptive time
stepping scheme obtain from the Courant–Friedrichs–Lewy condition [308, 309] of the system:

∆t̃ = min




∆x̃L̃

π2ck
,

1

cx max
[
Φ̃N (x̃)

]



 , (B.29)

where max[Φ̃N (x̃)] is the absolute maximum of the Newotnian position space potential and
∆x̃ is the spatial cell size from Eq. (B.26). The numerical constants ck = cx depend on the
system at hand, where for the simulations in this work ck = cx = 10 provides the best results.
Upon initialization, our numerical algorithm allows the determination of a constant number of
timesteps Nt together a fixed, temporal step size ∆t̃. When the step size ∆t̃ is omitted upon
initialization, the adaptive method from Eq. (B.29) is employed automatically.
For long-time simulations like the results in Fig. 4.2 and Sec. B.5, the best approach is to first
perform a test simulation of the condensation process with adaptive ∆t̃ until t̃ ≳ τ̃gr to obtain
a suitable step size from the data output. This step size can then be used to re-calculate the
same simulation with improved ∆t̃ to enhance the numerical stability at large t̃ ≫ τ̃gr. The
simple reason for the resulting improvement is the fact that at the time of rapid collapse during
condensation, the position term max[Φ̃N (x̃)] can change considerably between two time steps
∆t̃ in Eq. (B.29).

B.3 Discrete Fourier Transform and Discrete Observables

As mentioned in the previous sections, the kinetic components ∝ exp(−idiH̃k̃∆t̃) of the time
evolution operator in Eq. (B.17) need to be applied in Fourier space. Similarly, the Newtonian
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potential Φ̃N needs to be computed using Fourier transformations as will be specified in the
following. In this section, we summarize the implementation and application of the discrete
Fourier transformation (DFT) in the numerical algorithm.
For the implementation of the DFT, we use the FFTW library [310] in C++17, which we
normalize according to

ψ̃(k̃) =
√

1

N3
res

∑

x̃
ψ̃(x̃)e−ik̃x̃ =

√
∆x̃3

L̃3

∑

x̃
ψ̃(x̃)e−ik̃x̃ , (B.30)

where the sum goes over all N3
res discrete points x̃ of the position space grid. Similarly, the

inverse discrete Fourier transform (IDFT) is defined with the same normalization constant

ψ̃(x̃) =
√

1

N3
res

∑

k̃

ψ̃(k̃)eik̃x̃ =

√
∆x̃3

L̃3

∑

k̃

ψ̃(k̃)eik̃x̃ , (B.31)

which yields a factor of N−3
res after consecutive application of the DFT and IDFT. The discrete

Fourier transforms are applied using periodic boundary conditions and the above FFTW algo-
rithm to allow for CPU parallelization, for which we find that generally 64 CPU threads yield
the best performance.
After initialization of the t̃ = 0 wavefunction in k̃-space, the Fourier transform of the Newtonian
potential Φ̃N can be computed from the Poisson equation in Eq. (B.2) according to

Φ̃N (k̃) = −4π|ψ̃(k̃)|2
|k̃|2

, Φ̃N (|k̃| = 0) = 0 , (B.32)

where we have set the k̃ = 0 mode to zero, as in Ref. [170]. The coordinate representation Φ̃N (x̃)
is then simply obtained by applying the inverse DFT to the field in Eq. (B.32). In the case of
adaptive time stepping in Eq. (B.29), the maximum of Φ̃N (x̃) is used to determine ∆t̃ for the
next propagation length in time.
On a different note about Fourier transformations, we employ the evolution operator decomposi-
tion in Eq. (B.17) to the total Hamiltonian in Eq. (B.4) and its components H̃x̃, H̃k̃. This implies
that the propagation of the wavefunction ψ̃(t̃ + ∆t̃) at each timestep ∆t̃ requires k = 2m + 2
applications of the DFT and IDFT respectively in order to switch between position and mo-
mentum space, where the split steps ci and di in Eq. (B.17) are performed.
Simultaneously, the algorithm computes the expectation values for different observables of the
system. The first such quantity is the rescaled total particle number

Ñ = ∆x̃3
∑

x̃
|ψ̃(x̃)|2 = ∆x̃3

∑

k̃

|ψ̃(k̃)|2 , (B.33)

which can either be computed in position or in Fourier space and which is equal to the total
mass in rescaled coordinates. Another important conserved quantity is the total energy of the
system

Ẽ = ∆x̃3
∑

k̃

k̃2

2
|ψ̃(k̃)|2 + ∆x̃3

2

∑

x̃
Φ̃N (x̃) |ψ̃(x̃)|2 + ∆x̃3

2

∑

x̃
λ̃ |ψ̃(x̃)|4 , (B.34)
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which is composed out of the kinetic, gravitational and self-interaction energy of the system,
equivalent to Eq.s (4.2), (4.3), (4.4). Crucially for our checks of the numerical stability, the
relative energy

∆Ẽ(t̃)

Ẽ(t̃ = 0)
=
Ẽ(t̃)− Ẽ(0)

Ẽ(0)
(B.35)

can be used to check the conservation of energy in the system (see Fig. B.1). We ensure that
none of our simulations exceed ∆Ẽ/Ẽ(0) ∼ 10−3 for consistency.
A third conserved quantity of the rescaled GPP system is the total momentum

P̃ = ∆x̃3
∑

k̃

k̃ |ψ̃(k̃)|2 , (B.36)

which is computed numerically in Fourier space. As mentioned in Sec. B.2, the initial wavefunc-
tion at t̃ = 0 is specified with P̃ (0) = 0 in Fourier space, so that the conservation of momentum
can simply be checked by ensuring that P̃ (t̃) ≪ 1 over time. In each simulation and at different
specified time steps, the numerical algorithm computes all three of the above expectation values,
provides them as live output during runtime and raises warnings if any of the conservation laws
are considerably violated. In order for a simulation to be considered numerically stable, all three
of the above quantities need to be conserved at all t̃.

B.4 Pseudo-spectral Operator-splitting Scheme
With the basic numerical techniques of our simulations being specified in Sec.s B.1 to B.3, we
continue to briefly summarize how these techniques are combined in the schematic structure of
the algorithm. For later use, the documentation of the numerical C++ code is contained in
the respective ’.cpp’ files and in the main file. We also mention some technical details about
parallelization, data output and operating systems at the end of this section.
Starting with the schematic summary of the algorithm, each simulation can be broadly summa-
rized by the following points:

1. Initialize the spatial grid with Ñ , L̃ and resolution Nres

2. Set the number Nt and size ∆t̃ of timesteps to be performed

3. Initialize t̃ = 0 wavefunction ψ̃0(k̃) in Fourier space (either Gaussian or δ-distributed,
see Eq.s (B.27), (B.28))

4. Perform kinetic evolution through multiplication of ψ̃(k̃) by exp(−iciH̃k̃∆t̃)

5. Fourier transform to position space to compute the source term in Eq. (B.2) with ñ =
Ñ/L̃3 from ψ̃(x̃) and Eq. (B.33)

6. Transform back to Fourier space with DFT

7. Compute the Poisson potential in Fourier space from Eq. (B.32)

8. IDFT to position space and evolve ψ̃(x̃) through multiplication with exp(−idiH̃x̃∆t̃)
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9. Repeat steps 4. to 8. until k = 2m + 2 and the product series in Eq. (B.17) is complete
for a given time step ∆t̃

10. Calculate expectation values Ẽ, P̃ and Ñ from Eq.s (B.34), (B.36) and (B.33)

11. Save expectation values to data and print to user output

12. Repeat steps 4. to 11. for each of the Nt time steps with step size ∆t̃

13. Save final density field ψ̃(t̃f ) to output for later simulations

The above enumeration demonstrates the importance of the computational efficiency of the
DFT in Eq. (B.30), (B.31). In principle the parallelization can also be performed on graphics
processing units as for example done in Ref.s [170, 174]. As mentioned before, in our code we
use CPU parallelization, which is implemented with the FFTW library [310] using 64 cores and
the OpenMP library using arbitrary multiples of 2 for the thread number.
The code also allows for controlled data output at dedicated steps by tracing the axion star in the
z̃-plane through determination of the point with maximum density max(|ψ̃|2) in x̃. This allows
to significantly reduce data output through saving only the corresponding z̃-plane in position
space at specified steps n∆t̃ with n ∈ N.
Other utility functions include the time dependent output of the projected Fourier spectrum
|ψ̃(|k̃|)|2 as a function of |k̃|, the output and animation of the radial profile ψ̃(r̃, t̃) over time and
the implementation of absorbing boundary conditions for AS mergers similar to what was done
in Ref.s [33, 172]. The absorbing potential is defined in terms of an overall amplitude V0 with
center Lc and width δabs according to [33]

Vabs(x̃) = − iV0
2

[
2 +

tanh (max(x̃, ỹ, z̃)− Lc)

δabs
− tanh

(
Lc

δabs

)]
. (B.37)

This potential was used in the non-relativistic AS merger simulation from Fig.s 5.10 and 5.11 to
prevent back-reflection of emitted waves, where we choose V0 = 100, Lc = 22 and δabs = 0.5 from
optimization of the collision process. It is implemented as an external addition to the Newtonian
potential Φ̃N and added to the position space Hamiltonian H̃ in Eq. (B.4). Note here that we
have omitted the tilde for some variables since they do not have a physical equivalent, namely
V0, Lc and δabs.
In the specific case of the AS merger from Fig. 5.10, we have added a second axion star through
implementation of the best-fit, spherically symmetric sech-profile [33, 231]

ψ̃(r̃) =

√
3M̃⋆

π3R3
0

sech
(
r̃

R̃0

)
, (B.38)

where R̃0 ∼ 1 is a length scale which sets the profile shape of the sech-fit and where we use
M̃⋆ = 6. As part of the thesis in Ref. [235], the numerical code in this work was also extended by
an implementation of the exact, spherically symmetric soliton solutions, which were calculated
in Ref. [231]. The stability analysis in Ref. [235] using improved exact profiles compared to the
sech-fit in Eq. (B.38) showed that there exist transition regions in the stable and dilute branches
of axion stars in Fig. 4.1. This realization can be interested for transition between the two
branches and future research on long-time stability of axion stars.
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To conclude this section, we mention that all of the simulation figures in this thesis and several
from Ref. [235] were produced using a fully automated plotting routine in Python, which uses
the C++ output data and a Python-C++ interface.

B.5 Application to Axion Star Condensation
We continue with the application of the above numerical simulations to axion star condensation,
which was already shown in the main text in Sec. 4.2 and Sec. 4.3.1. The simulations in this
thesis are performed for λ = 0, L̃ = 44, Ñ = 55 on a Nx = 2563 grid with timesteps ∆t̃ = 0.01
and predicted condensation time τ̃gr ≃ 1445. For computational efficiency, the order of the time
splitting scheme was chosen as four, corresponding to Eq.s (B.18) and (B.19), and the time step
size ∆t̃ = 0.01 was found from previous test simulations.
Fig. B.1 clearly shows that all of the relevant observables remain precisely conserved up to
deviations of order O(∆) ∼ 10−4 or lower. The largest relative violation of conservation laws
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|Ẽgrav(t̃)/Ẽ(t̃)| · 10−5

Figure B.1: Time-dependent numerical consistency checks for different conserved observables of the
GPP system in Eq.s (B.36), (B.34) and (B.33) with the conserved dimensionless total momentum P̃ (t̃)
shown in black lines. The violation of energy- and mass-conservation are measured by the relative energy
shift |∆Ẽ(t̃)/Ẽ(0)| in red and by the relative shift |∆Ñ(t̃)/Ñ(0)| of the total particle number in blue lines.
The green line indicates the relative potential binding energy |Ẽgrav(t̃)/Ẽ(t̃)| of the dilute system, which
is dominated by Egrav in Eq.s (4.3) and (B.34). Prior to the point of condensation around t̃ ∼ τ̃gr ≃ 1445,
the potential energy can be seen to rapidly increase, see also Fig. 4.2.

is seen for the total momentum P̃ (t̃) in black, which indicates that the asymmetry of the k̃-space
grid is a dominant effect in the simulations. On the other hand, the particle number Ñ(t̃) is
well-preserved since it only inherits numerical errors through repeated application of the DFT
and IDFT in Eq.s (B.30), (B.31), as argued in Ref. [170].
Another useful tool for the considerations of axion star mass growth is given by the radial profile
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ψ̃(|̃r|, t̃), which can be saved and animated automatically. The corresponding soliton profiles of
the long-time simulation with λ = 0 from Fig. 4.2 and B.1 are depicted by colored lines at
different times t̃ in Fig. B.2. Importantly and in accordance with the mass-radius relation of
stable axion stars M⋆ ∝ 1/R⋆, the profile can be seen to increase in amplitude and decrease in
radius during the mass growth at larger t̃.
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Figure B.2: Radial axion star profile ψ̃(|̃r|, t̃) over time obtained from the simulations in Fig.s 4.2 and
B.1. At t̃ < τ̃gr ≃ 1440 in blue, the automated algorithm determines the maximum density from the
background fluctuations, which gives a roughly homogeneous ψ̃(|̃r|, t̃).
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Figure B.3: Integrated rescaled mass (i.e. particle number) of the axion star over time in the simulations
from Fig.s 4.2, B.1 and B.3. At t̃ < τ̃gr ≃ 1440 in blue, the automated algorithm determines the maximum
density from the background fluctuations, which gives a roughly constant mass Ñ(|r̃|, t̃).
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The wave-like features in the cumulative radial AS mass in Fig. B.3 are essentially caused by
the spherically symmetric quasi-particle fluctuations in the excited surrounding region of the
condensed soliton, see also Fig. 4.2.

B.6 Outlook on numerical Simulations for Future Research
We conclude the summary of the numerical simulations from this thesis by listing the most
promising fields of its application for future studies. It should be clear from the theory part
in Chap. 4, that the field of axion star condensation from isotropic initial conditions is well-
established at the time of writing. Accordingly, mass growth simulations of interest to scientific
publications require enhanced performance with GPU acceleration and use of large computer
clusters, both beyond the scope of our simulations. Instead, there are some other, less straight-
forward directions, which can be explored using the numerical techniques from this appendix.

1. Through implementation of the redshift-dependent Schrödinger-Poisson equations in an
expanding universe, the virializition of composite ASMC systems around matter-radiation equal-
ity could be explored, similar to what was done in Ref.s [30, 169], but with special emphasis
on the Φ-dependence of the core-halo mass relation from Eq. (3.57). This dependence was also
mentioned as one of the major uncertainties for ASMC phenomenology in the conclusions in
Sec.s 6.5, 7.5.

2. The numerical study of the stability of exact spherically symmetric solutions of axion stars
in Ref. [235] using this code demonstrated that the dilute and stable branch regions around the
critical value M⋆ ∼ M⋆,λ should not be understood as absolutely distinguishable. Instead the
simulations in Ref. [235] showed that quasi-stable solutions can exist on the top of the dense
branch, and that transitions between the two branches can be induced through external pertur-
bation, e.g. through external gravitational fields in transient events. Such stability simulations
have not been published to date and would be worth exploring.

3. The interference effects in axion star mergers from Fig. 5.11 suggested possible constructive
interference with the minicluster background, which could have considerable effect on the merger
dynamics. While such effects have been observed in the collisions of isolated solitons before, for
example in Ref.s [33, 172], the interaction of the minicluster background has not been taken into
account so far. Constructive interference effects could prove beneficial for the development of
parametric resonance or Bosenovae following MC mergers and would contribute to the current
understanding of composite ASMC systems.
Overall, the combined phenomenology of axion stars in galactic miniclusters allows for a range
of new scientific studies, which can be performed with three-dimensional solvers like the one
developed in this thesis. The modular and automated nature of the corresponding algorithm
and its data output hence allows for simple extensions of our work in future investigations.
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Additional Information
on Mass Distributions C
This chapter provides additional information on our results for different AS-/MC-properties
inferrred from the MCMF and ASMF in Subsec.s 3.6.2 and 4.7.2, respectively. Sec. C.1 shows
the total number, average masses and radii of miniclusters obtained for different axion models
ma, n considered in this work. Similarly, Sec. C.2 contains the same quantities inferred from the
core-halo relation in Eq. (3.57) for axion stars at different ma, n.

C.1 Properties of galactic Miniclusters
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Figure C.1: Total number of galactic axion miniclusters for different axion models ma, n from Sub-
sec. 3.6.1, obtained from the linear growth MCMF from Sec. 3.6. Shown for both MCMF low-mass cutoffs
from Subsec. 3.5.2 in solid and dashed lines. Taken from Ref. [1].
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Figure C.2: Average mass (left) and radius (right) of galactic axion miniclusters from Eq.s (4.77),
(4.78) for different axion models ma, n from Subsec. 3.6.1. Obtained from the linear growth MCMF from
Sec. 3.6 for both MCMF low-mass cutoffs from Subsec. 3.5.2 in solid and dashed lines.
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of the low-M cutoffs. Taken from Ref. [1].
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Analytical Calculations
on Axion Stars D
D.1 Parametric Resonance
In this chapter, we summarize the derivation of the AS resonance criterion from Sec. 4.5 following
Ref. [32]. The first step is to start from the Lagrangian Laγγ from Eq. (2.17), which describes
the interaction of the electromagnetic field in the presence of an axion field ϕ. Varying the
Lagrangian in Eq. (2.17) with respect to the four vector potential Aµ = (A0,A) and neglecting
the gradients of the non-relativistic axion field ϕ, which is slowly varying in space, one obtains
the equation of motion

Ä −∇2A + gaγγ∇ (∂tϕA) = 0 (D.1)

for the two degrees of freedom of the propagating photon described by A. Note that Eq. (D.1)
is formulated in the Coulomb gauge ∇ · A, as indicated by the fact that the time-derivative ∂tϕ
is contained inside the brackets and spatial derivative ∇. In Fourier space, Eq. (D.1) may be
expressed in terms of the electromagnetic modes in k-space as

Äk + k2Ak + gaγγik
∫

d3k′

(2π)3
∂tϕk−k′Ak′ = 0 , (D.2)

where again gradient terms have been neglected compared to the time-derivatives of the axion
field, |∇ϕ| ≪ |∂tϕ|.
The next step is to insert the time- and k-dependence of the axion field into Eq. (D.2). As was
shown in the detailed studies of Ref. [32], the fundamental dynamics of the soliton resonance we
are interested in may also be captured by assuming a homogeneous axion field

ϕ(t) = ϕ0 cos(ω0 t) (D.3)

with field amplitude ϕ0 and an oscillation frequency ω0 ≈ ma. While the system in Eq. (D.3)
is by nature unstable against gravitational collapse and soliton formation, it allows for a sim-
plified analytical treatment. Importantly for this work, the condition for resonant axion-photon
conversion inside the soliton is derived from the properties of the homogeneous axion field in
Eq. (D.3). Therefore using the above approach for ϕ(t) in Eq. (D.2), the electromagnetic modes
decouple in Fourier space, yielding the simplified EOM

Äk + k2Ak − gaγγ ω0 ϕ0 sin(ω0 t) i kAk = 0 (D.4)

for the vector potential A, whose Fourier transform can be expressed in terms of the time-
dependent mode functions sk(t)

Ak(t) =
∑

λ=±

[
ak,λ ϵk,λ sk(t) + a

†
k,λ ϵ

∗
k,λ s

∗
k(t)
]
, (D.5)
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where ϵk,λ=± are vectors describing the circular polarization and ak,λ and a
†
k,λ are annihilation

and creation operators. Finally writing ikϵk,λ = k ϵk,λ, the two polarizations in Eq. (D.4)
decouple so that the mode functions sk(t) satisfy the Mathieu equation

s̈k +
[
k2 − gaγγ ω0 k ϕ0 sin(ω0 t)

]
sk = 0 , (D.6)

which describes an oscillator with a periodic pump frequency ω2
k(t) = ω2

k(t + T ) and period
T = 2π/ω0. Defining the effective frequency ω2

k(t) = A+B sin(ω0 t), Eq. (D.6) reduces to

s̈k + ω2
k(t)sk = 0 , (D.7)

where the coefficients

A = k2 , B = −gaγγ ϕ0 k ω0 (D.8)

will prove useful at a later point in the calculation. Due to the periodicity of the pump, the
system exhibits a resonance for modes with certain values of k. To see this in general, the
Mathieu equation, needs to be solved numerically, see also Ref. [32] for a detailed analysis.
For the purpose of this work, it is sufficient to perform a small amplitude analysis, in which the
pumping term stays relatively small. The corresponding solutions to Eq. (D.6), Eq. (D.7) can
be written in the general form

sk(t) = Pk(t)e
µkt + Pk(−t)e−µkt , (D.9)

where Pk(t) is a periodic function of time and the parameter µk is the Floquet exponent describing
the stability of the solution. As stated in the main text, the real component of the Floquet
exponent µk is responsible for the exponentially growing modes. At small amplitudes, k/ω0 ≫
gaγγϕ0/2, the resulting spectrum of narrow resonant bands is composed of equally spaced lines
at k2 ≈ (nω0/2)

2 for n ∈ N
+.

Next, taking advantage of the small amplitudes of the periodic pump, one can write the mode
functions from Eq. (D.9) in terms of the harmonic expansion

sk(t) =
+∞∑

ω=−∞

ei ω tfω(t) , (D.10)

where the frequencies ω are summed over the range of ω = ±nω0/2. Inserting the harmonic
expansion Eq. (D.10) into Eq. (D.6) and dropping terms ∝ f̈ω, gives [32]

4 i ωḟω(t) + 2(A− ω2)fω(t)− i B [fω−ω0(t)− fω+ω0(t)] = 0 (D.11)

for the differential equations at different frequency bands ω = ±nω0/2. Then focusing on the
dominant instability in the n = 1 band and the lowest frequencies ω = ±ω0/2, one obtains the
coupled pair of differential equations

d

dt

[
fω0

2
(t)

f−ω0
2
(t)

]
=

i

m

[
A− ω2

0
4 −iB2

−iB2 −A+
ω2
0
4

][
fω0

2
(t)

f−ω0
2
(t)

]
. (D.12)

According to standard matrix theory, the system Eq. (D.12) exhibits an exponential growth
∝ exp (±µkt) where the growth rate µk is given by the eigenvalues of the above matrix. Solving
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the coupled differential equations in Eq. (D.12), and inserting the expressions for A and B in
Eq. (D.8), yields the exponential growth rate

µ
(1)
k =

√√√√g2aγγ k
2 ϕ20

4
−

(
k2 − ω2

0
4

)2

ω2
0

(D.13)

of the dominant n = 1 instability band. Since the width an growth factors µ(n)k of higher order
instabilities decrease with larger n, it is sufficient to consider the leading n = 1 instability for
AS resonance, as done in the remaining steps in Sec. 4.5.

D.2 Derivation of Axion Star Resonance Mass
This appendix contains the derivation of the decay mass from Eq. (4.61) for the Gaussian profile,
analogous to what was done in Ref.s [33, 231] for the sech-profile in Eq. (B.38). As argued in
Sec. 4.5, the condition for the parametric instability to develop in a given soliton can be inferred
from the growth exponent Eq. (4.55) of the first instability band for the homogeneous axion
field in Eq. (D.3). Requiring µH > µesc with µH from Eq. (4.55) and µesc ≈ 1/(2R⋆) [231], one
obtains

gaγγma

4
ϕ0 >

1

2R⋆
, (D.14)

where the central density ϕ0 = ϕ(r = 0) can be obtained from Eq. (3.10) for the Gaussian profile
in Eq. (4.1), which gives ϕ0 =

√
2M⋆/(π3/2m2

aR
3
⋆) in Eq. (4.57). This leads to the AS resonance

condition

gaγγma

4

√
2M⋆

π3/2m2
aR

3
⋆

>
1

2R⋆
, (D.15)

⇔ gaγγ

√
M⋆

2π3/2R⋆

> 1 , (D.16)

where the rescaling from Eq. (4.7) and Eq. (4.8) can be used to write

M⋆

R⋆
=

mPlfa

mac
1/2
λ

mafaM̃⋆

mPlc
1/2
λ R̃⋆

=
f2a
cλ

M̃⋆

R̃⋆

. (D.17)

This leads to the condition

gaγγfa >
(
2π3/2

)1/2
√
R̃⋆

M̃⋆

cλ

=
√
2π3/4

[
g(α⋆)cλ
α⋆

]1/2
√√√√ R̃⋆,λ

M̃⋆,λ

≡ β⋆

[
g(α⋆)cλ
α⋆

]1/2
(D.18)

from Eq. (4.58), where in the last two equations, we have expressed the AS quantities M⋆, R⋆

in terms of the critical quantities M⋆,λ, R⋆,λ by introducing an additional parameter α⋆ ∈ (0, 1],
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which parametrizes the mass-radius relation according to Eq. (4.59) and Eq. (4.60) with g(α⋆) =
(1+

√
1− α2

⋆)/α⋆ [33]. Just like the critical quantities M⋆,λ, R⋆,λ from Eq. (4.16), the parameter

β⋆ =
√
2π3/4

√√√√ R̃⋆,λ

M̃⋆,λ

≈ 0.42 (D.19)

in Eq. (D.18) depends on the chosen ansatz for the radially symmetric wavefunction, where
β⋆ ≈ 0.42 for the Gaussian profile in Eq. (4.1) used in this work. In rescaled coordinates, the
critical quantities take the values

M̃⋆,λ = 10.88 , (D.20)
R̃⋆,λ = 0.173 . (D.21)

With the above relations we can derive the decay mass, beyond which the parametric resonance
develops. Rearranging the point of equality given by Eq. (D.18) in terms of the mass parameter
α⋆ from Eq. (4.59) leads to

gaγγfa = β⋆

[
cλg(α⋆)

α⋆

]1/2
(D.22)

⇔ g2aγγf
2
a = β2⋆cλ

1 +
√

1− α2
⋆

α2
⋆

(D.23)

⇔ 1 +
√

1− α2
⋆ = α2

⋆

g2aγγf
2
a

β2⋆cλ
(D.24)

⇔ 1− α2
⋆ = α4

⋆

g4aγγf
4
a

β4⋆c
2
λ

+ 1− 2α2
⋆

g2aγγf
2
a

β2⋆cλ
(D.25)

⇔ α2
⋆

g4aγγf
4
a

β4⋆c
2
λ

=
2g2aγγf

2
a

β2⋆cλ
− 1 (D.26)

⇔ α⋆ =

√
2cλβ2⋆
g2aγγf

2
a

− β4⋆c
2
λ

g4aγγf
4
a

=
M⋆

M⋆,λ

. (D.27)

Then expressing M⋆,λ in terms of its rescaled equivalent from Eq. (D.20) and rearranging for
M⋆ =M⋆,γ , we obtain the Gaussian profile decay mass

M⋆,γ = M̃⋆,λ
mPlfa
ma

√
2cλβ

2
⋆

g2aγγf
2
a

√
g2aγγf

2
a

β2⋆cλ
− 1

2
(D.28)

= M̃⋆,λ
mPl
ma

√
2β2⋆

g2aγγfa

√(
gaγγfa

β⋆

)2

− cλ

2
(D.29)

= M̃⋆,λ
mPl
ma

2
√
2π3/2

R̃⋆,λ

M̃⋆,λ

1

g2aγγfa

√(
gaγγfa

β⋆

)2

− cλ

2
(D.30)

= 5.94 · 10−14M⊙

(
50µeV
ma

)(
10−11GeV−1

gaγγ

)2(
1011GeV

fa

)√(
gaγγfa

0.42

)2

− cλ

2
(D.31)

from Eq. (4.61) and Ref. [2].
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D.3 Derivation of Axion Star Radius Cutoff

The axion star radius cutoff masses MR,min, M⋆,R from Eq. (4.70), Eq. (4.68) can be derived
from the condition Eq. (4.66), as will be shown in this chapter. For ease of computation, it is
useful to first rewrite the spherically homogeneous minicluster radius from Eq. (3.24) in terms
of a Φ-dependent function fΦ(Φ) according to

R =
3.4 · 107 km
Φ(1 + Φ)1/3

( M
10−12M⊙

)1/3

≡ fΦ(Φ)M1/3 . (D.32)

Similarly, we define the function fz(z) as the power of Mh,min in Eq. (3.57), Eq. (3.58) which
relates the AS core mass

M⋆(z) = M2/3
h,min(z)M1/3 ≡ fz(z)M1/3 (D.33)

to the mass M of its host minicluster. Note also that we defined the physical radius of the
soliton to be given by the radius

R⋆,90 = C⋆,90R⋆ , C⋆,90 = 1.76796 (D.34)

containing 90% of the total soliton mass at position r −→ ∞, and where C⋆,90 is a profile-
dependent constant. For the Gaussian profile in Eq. (4.1) assumed in this work, C⋆,90 = 1.76796
[159]. This way, we can express the equality of axion star core and host minicluster size in
Eq. (4.66) as

R⋆,90 = C⋆,90R⋆
!
= R . (D.35)

Lastly, we express the scale radius R⋆ in the above equation in terms of the AS mass M⋆ through
the mass-radius relation Eq. (4.17) and write the MC radius in terms of its mass M, which gives

αkin
αgravGm2

aM⋆
±
√(

αkin
αgravGm2

aM⋆

)2

− 3αint
αgravGm2

af
2
a

=
fΦ(Φ)M1/3

C⋆,90
. (D.36)

The axion star mass can be eliminated from Eq. (D.36) by using the core-halo relation from
Eq. (3.57), which after re-arranging yields

(
fΦ(Φ)M1/3

C⋆,90
− αkin
αgravGm2

afz(z)M1/3

)2

=
f2Φ(Φ)M2/3

C2
⋆,90

− 2αkinfΦ(Φ)

αgravGm2
afz(z)C⋆,90

+

(
αkin

αgravGm2
afz(z)M1/3

)2

=

(
αkin

αgravGm2
afz(z)M1/3

)2

− 3αintα2
kin

αgravGm2
af

2
a

(D.37)

⇔ f2Φ(Φ)M2/3

C2
⋆,90

=
2αkinfΦ(Φ)

αgravGm2
afz(z)C⋆,90

− 3αintα2
kin

αgravGm2
af

2
a

. (D.38)
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Solving the above equation for the minicluster mass M at the point of equality, R⋆,90 = R, and
re-entering the helper functions fΦ and fz, we obtain the final low-mass cutoff

MR,min =

(
2αkinC⋆,90

αgravGm2
afz(z)fΦ(Φ)

−
3αintα2

kinC
2
⋆,90

αgravGm2
af

2
afΦ(Φ)

2

)3/2

(D.39)

=

(
2αkinC⋆,90Φ(1 + Φ)1/3(10−12M⊙)

1/3

αgravGm2
aMh,min(z)2/3 · 3.4 · 107 km

−
3αintα2

kinC
2
⋆,90Φ

2(1 + Φ)2/3(10−12M⊙)
2/3

αgravGm2
af

2
a (3.4 · 107 km)2

)3/2

(D.40)

=

(
2αkinΦ(1 + Φ)1/3C⋆,90

αgrav
1.28 · 108 kg2/3

(
50µeV
ma

)2( 1 + z

1 + zeq

)1/2(
ξ(z)

ξ(zeq)

)1/6

−
3αintα2

kinΦ
2(1 + Φ)2/3C2

⋆,90

αgrav
8.82 kg2/3

(
50µeV
ma

)2(6 · 1011 GeV
fa

)2
)3/2

(D.41)

of the ASMF. The complete relation in Eq. (D.41) contains a modification term ∝ αint that arises
due to the weak attractive self-interactions λ = −m2

a/f
2
a considered in this thesis. Comparing

the corresponding coefficients we find that the condition for the self-interaction term to be
negligible is

3αintαkinΦ(1 + Φ)1/3C⋆,90

2

8.82

1.3 · 108
(

ma

50µeV

)(
1 + z

1 + zeq

)1/2(
ξ(z)

ξ(zeq)

)1/6(6 · 1011 GeV
fa

)2

≪ 1 ,

(D.42)

which for the axion models ma, n from Subsec. 3.6.1 can be formulated in terms of the symmetry
breaking constant fa to obtain the condition

fa ≫ 18GeV
√
Φ(1 + Φ)1/6

(
m

50µeV

)1/2( 1 + z

1 + zeq

)1/4 [
ζ(z)

ζ(zeq)

]1/12
. (D.43)

We checked that the condition in Eq. (D.43) remains valid for all of the axion models with
10−12 eV ≤ ma ≤ 10−2 eV and n = 0, 1, 2, 3.34 considered in this work. We note that this
statement can also be read off from Fig. 3.6 and that it coincides with our definition of weak self-
interactions. Physically, Eq. (D.43) demonstrates, that the self-interaction is indeed negligible
for the dilute and large solitons on the stable branch of Fig. 4.1, which have R⋆ ≫ R⋆,λ and are
hence dominated by gravity.
Therefore neglecting the ∝ αint term in Eq. (D.41), we finally obtain the minicluster mass

MR,min ≈ 4.9 · 10−17M⊙

√
Φ(1 + Φ)1/6

(
αkinC⋆,90

αgrav

)1/2( 1 + z

1 + zeq

)1/4 [
ζ(z)

ζ(zeq)

]1/12(50µeV
ma

)3/2

(D.44)

corresponding to the ASMF radius cutoff in Eq. (4.70). Note that after entering fz(z) in the
above expressions, the radius cutoff masses become dependent on the core-halo relation. Addi-
tional dependence on the assumed soliton profile is indicated by the constants αi and C⋆,90.
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