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1

Chapter 1

Different perspectives on
Multiple q-Zeta Values

In this thesis, we investigate q-analogues of Multiple Zeta Values algebraically, combi-
natorially, and analytically. It is a cumulative thesis, consisting of three works [16], a
revised version of [15], and [12] that can be found in Chapters 2, 3, and 4, respectively.
They consider q-analogues of Multiple Zeta Values from an algebraic, combinatorial, and
analytic perspective, respectively. Although we assume the reader is familiar with Mul-
tiple Zeta Values, we provide in Section 1.1 all the basic knowledge about Multiple Zeta
Values and their q-analogues one might need to understand this thesis. Sections 1.2,
1.3, and 1.4 then introduce the three works of this thesis and contain their main results,
while Section 1.5 gives a conclusion of the three works and how they are connected. This
chapter is an overview and summary of the results obtained in the mentioned works. As
this chapter is intended as an introduction, the proofs of the main results are mainly
omitted.

Multiple Zeta Values (MZVs for short) are real numbers. They are defined for inte-
gers ℓ1 ≥ 2, ℓ2, . . . , ℓr ≥ 1 as follows:

ζ(ℓ1, . . . , ℓr) :=
∑

m1>···>mr>0

1
mℓ1

1 · · ·mℓr
r

,

see also Definition 1.10. They have a long history (Euler [27] already studied them in
the 18th century!) but were temporarily pushed into the background. In the last few
decades, however, Multiple Zeta Values have emerged in various areas of mathematics
and theoretical physics, so their study has regained importance. Of particular interest
in current research is their algebraic structure. Compared to the importance of Multiple
Zeta Values in research, only little is known about their algebraic structure, e.g., already
statements about the irrationality of single Zeta Values (which are ζ(ℓ) for ℓ ∈ Z≥2) is
possible only for very few of them. Nevertheless, a lot of linear relations among Multiple
Zeta Values are known. For example, we have

ζ(4) = 4ζ(3, 1) and ζ(3) = ζ(2, 1).

In general, studying the algebraic behaviour of real numbers is a hard task. A com-
mon approach to expose the algebraic structure of real numbers is to study so-called q-
analogues of them. These are objects depending on an extra parameter q that give back
the original object in the limit q → 1 (after possible minor modification such as multiply-
ing with an appropriate power of (1 − q)) and inheriting parts of the algebraic structure.
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For example,

ζSZ
q (ℓ1, . . . , ℓr) :=

∑
m1>···>mr>0

qm1ℓ1

(1 − qm1)ℓ1
· · · qmrℓr

(1 − qmr )ℓr

is a q-analogue of ζ(ℓ1, . . . , ℓr) since it gives back the Multiple Zeta Value after multiplica-
tion with (1−q)ℓ1+···+ℓr and taking the limit q → 1 then (see Definitions 1.23 and 1.26 for
a general definition). We will call such objects Multiple q-Zeta Values (qMZVs for short);
the particular ones from above are referred to as Schlesinger–Zudilin Multiple q-Zeta Val-
ues. Note that Schlesinger–Zudilin qMZVs are defined for all ℓ1 ∈ Z>0, ℓ2, . . . , ℓr ∈ Z≥0,
where r ∈ Z≥0, in contrast to MZVs.

Both MZVs and Schlesinger–Zudilin qMZVs satisfy the stuffle product which describes
the product of MZVs, respectively Schlesinger–Zudilin qMZVs, as linear combination of
MZVs, respectively Schlesinger–Zudilin qMZVs, again and arises from the multiplication
of iterated sums. We refer to Definition 1.3 for the precise definition of the stuffle product
and to Proposition 1.12, respectively Proposition 1.28, for the statement that the product
of MZVs, respectively Schlesinger–Zudilin qMZVs, indeed can be described by the stuffle
product.

Besides the stuffle product, duality (of Schlesinger–Zudilin qMZVs) is of importance
for this thesis. By duality, we mean, in this thesis, the relations

ζSZ
q (k1, 0, . . . , 0︸ ︷︷ ︸

z1

, . . . , kd, 0, . . . , 0︸ ︷︷ ︸
zd

) = ζSZ
q (zd + 1, 0, . . . , 0︸ ︷︷ ︸

kd−1

, . . . , z1 + 1, 0, . . . , 0︸ ︷︷ ︸
k1−1

),

where k1, . . . , kd ∈ Z>0 and z1, . . . , zd ∈ Z≥0. For the general statement, we refer to
Definition 1.6/Theorem 1.29. Together with the stuffle product, one obtains many more
linear relations among Schlesinger–Zudilin qMZVs. Moreover, conjecturally those are all:

Conjecture (Bachmann, [1]). All Q-linear relations among Schlesinger–Zudilin qMZVs
are obtained by the stuffle product and duality.

Large parts of this thesis were motivated by this conjecture, and the results are
consistent with this conjecture.

The algebraic perspective on qMZVs. As mentioned, Section 1.2 introduces the
work that builds Chapter 2, which contains an algebraic view on Multiple q-Zeta Values.
We focus on the Q-algebra Zq of all Schlesinger–Zudilin qMZVs, the subalgebra Z◦

q ,
generated by those Schlesinger–Zudilin qMZVs with ℓ1, . . . , ℓr ≥ 1, and a conjecture by
Bachmann [2] stating that they coincide.

Conjecture (Bachmann, [2]). We have Zq = Z◦
q .

Partial results already exist by works of Bachmann [3], Burmester [21], and Vleeshouw-
ers [44]. Theorem 1.52 will extend those partial results by Bachmann and Burmester
again by using the stuffle product and duality only. The motivation for the latter con-
jecture due to Bachmann comes from viewing (Schlesinger–Zudilin) qMZVs as q-series:
By geometric series expansion, one obtains that every (Schlesinger–Zudilin) qMZV is of
shape

H∑
d=0

∑
m1>···>md>0

n1,...,nd>0

Qd(m1, . . . ,md, n1, . . . , nd)qm1n1+···+mdnd ,
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where the Qd ∈ Q[X1, . . . , Xd, Y1, . . . , Yd] are polynomials and H ∈ Z≥0 depends on
the qMZV. Bachmann’s Zq = Z◦

q -Conjecture now states that it is possible to find poly-
nomials Q̃d ∈ Q[X1, . . . , Xd] such that every qMZV is of shape

H̃∑
d=0

∑
m1>···>md>0

n1,...,nd>0

Q̃d(m1, . . . ,md)qm1n1+···+mdnd

with some H̃ ∈ Z≥0 depending on the qMZV. Note that one could let the polynomials Q̃d

depend on n1, . . . , nd only as well instead of m1, . . . ,md by using duality.
A main result of this thesis is that Bachmann’s Zq = Z◦

q -Conjecture is true in some
small cases. Expressed in terms of Schlesinger–Zudilin qMZVs, it is the following.

Theorem (Theorem 2.75). For all ℓ1, . . . , ℓr ∈ Z≥0 with ℓ1 ≥ 1 and r ≤ 6, we have

ζSZ
q (ℓ1, . . . , ℓr) ∈ Z◦

q .

The result builds Theorem 2.75 and is obtained using the stuffle product and dual-
ity only. Hence, consistent with the first conjecture above, we will work mainly with
formal qMZVs, which are formal objects satisfying the stuffle product and duality only.
Furthermore, we will refine Bachmann’s conjecture Zq = Z◦

q , see Conjecture 2.10, and
we will give evidence for small cases, see Theorem 2.76.

While playing around with relations induced by the stuffle product and duality, it
seemed useful to develop the box product, which gives a specific part of the stuffle prod-
uct that is of main interest when studying such relations. In this way, we will refine the
already refined Zq = Z◦

q -conjecture again for “half” of the cases occurring, see Conjec-
ture 2.39. More precisely, if Conjecture 2.39 is true, one can write every ζSZ

q (ℓ1, . . . , ℓr),
satisfying z := #{ℓj = 0} ≥ #{ℓj ̸= 0}, as a Q-linear combination of Schlesinger–
Zudilin qMZVs with less than z zero-entries. For the other “half” of the cases, we present
a promising approach that also works in small cases, as the proof of our main results will
show.

The combinatorial perspective on qMZVs. Section 1.3 introduces the work that
builds Chapter 3, which contains a combinatorial perspective on Multiple Zeta Values.
It arises from writing Multiple q-Zeta Values as (formal) power series in the parameter q
via geometric series expansion

qmℓ

(1 − qm)ℓ
=
∑
n>0

(
n− 1
ℓ− 1

)
qmn,

yielding, for k1, . . . , kd ∈ Z>0 and z1, . . . , zd ∈ Z≥0, that

ζSZ
q (k1, 0, . . . , 0︸ ︷︷ ︸

z1

, . . . , kd, 0, . . . , 0︸ ︷︷ ︸
zd

)

=
∑

m1>···>md>0
n1,...,nd>0

 d∏
j=1

(
mj −mj+1 − 1

zj

)(
nj − 1
kj − 1

) qm1n1+···+mdnd

(with md+1 := 0). In this way, one can consider Schlesinger–Zudilin qMZVs as the
generating series of a distinguished set of partitions of non-negative integers counted with
some multiplicity. For this, one visualizes the occurring exponentsN := m1n1+· · ·+mdnd
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via the Young Tableau of the partition of N that is given in Stanley Coordinates by

(m1, . . . ,md;n1, . . . , nd).

As usual, one calls the mj ’s the parts and the nj ’s the multiplicities (of the mj-part) of
the partition. We refer to [42] for further details about Stanley Coordinates. For example,

m1

m2

n1

n2

is the Young Tableau of the partition of N = 24, given in Stanley Coordinates by

(m1,m2;n1, n2) = (6, 3; 3, 2).

The multiplicity

d∏
j=1

(
mj −mj+1 − 1

zj

)(
nj − 1
kj − 1

)

in front of qN can be visualized by marking rows and columns of the Young Tableau
in a specific way, leading to the notion of marked partitions as introduced in [14]. I.e.,
Multiple q-Zeta Values will be considered as generating series of distinguished marked
partitions. More precisely, we interpret the binomial coefficient

(nj−1
kj−1

)
as the number of

marking exactly kj −1 rows in the Young Tableau between the rows containing the (j−1)-
th and j-th corner, counted top to bottom; similarly, we interpret

(mj−mj+1−1
zj

)
as the

number of marking exactly zj columns between columns containing the j-th and (j+ 1)-
th rightmost corner. For convenience, we mark rows and columns containing corners by
default. For example,

is a marked partition that we will associate with ζSZ
q (1, 0, 0, 3, 0, 1); see also Example 1.75.

In [14], the following was already proven regarding marked partitions.

Theorem. The duality of qMZVs can be described via an explicit bijection among cor-
responding sets of marked partitions.

The main theorem of Chapter 3 is the following.

Theorem (Theorem 3.17, weak version). The stuffle product of qMZVs can be described
explicitly as pairing on marked partitions.

The refined version of this statement is Theorem 3.17. The proof consists of showing
that particular numbers of marked partitions satisfy the same recursion as multiplicities
occurring in the stuffle product. Recalling the above conjecture by Bachmann that
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the stuffle product and duality of Multiple q-Zeta Values already give all linear relations
among Multiple q-Zeta Values, the main result of Chapter 3 is that (under the assumption
of this conjecture) now all linear relations among qMZVs can be described on the level of
marked partitions. In this way, we have created a combinatorial approach to the algebraic
structure of qMZVs, giving rise to plenty of future projects. For example, using marked
partitions, one can try to make progress in proving Bachmann’s Zq = Z◦

q -conjecture.

The analytic perspective on qMZVs. Section 1.4 then introduces the joint paper
that builds Chapter 4, which mainly contains an analytic view on Multiple q-Zeta Values.
We use Wright’s Circle Method to focus on asymptotic formulas for q-series which is a tool
from complex analysis to study the asymptotic behaviour of a given sequence (c(n))n∈N0

of (complex) numbers having moderate growth, see Section 1.4.2 for a brief introduction
to the Circle Method.

For roughly stating our main theorem of Chapter 4, let f : N → N0 be a function
and set Λ := N \ f−1({0}). For q = e−z (z ∈ C with Re(z) > 0), define

Gf (z) :=
∑
n≥0

pf (n)qn =
∏
n≥1

1
(1 − qn)f(n) , Lf (s) :=

∑
n≥1

f(n)
ns

.

Theorem (Theorem 4.5). Under assumption of certain conditions the on density of Λ
in N, the meromorphic continuation of Lf , and a growth condition on Lf (see (P1), (P2),
and (P3) for the precise assumption), for some integers M,N ∈ N, we have

pf (n) = C

nb
exp

A1n
α

α+1 +
M∑

j=2
Ajn

αj

1 +
N∑

j=2

Bj

nβj
+OL,R

(
n

− min
{

2L−α
2(α+1) , R

α+1

}) ,
where L ∈ N, R > 0 come from the assumptions (P1) and (P2), α the largest pole
of Lf , 0 ≤ αM < αM−1 < · · ·α2 < α1 = α

α+1 are given by L, and 0 < β2 < β3 < · · · are
given by M + N , where L, M, and N are sets depending on the poles of Lf . Moreover,
if α is the only positive pole of Lf , then we have M = 1.

For the concrete definition of L, M, and N , we refer to (4.6.1), (4.6.2), and (4.6.3),
respectively. Furthermore, the coefficients Aj and Bj can be calculated explicitly; the
constants A1, C, and b are provided in (4.6.4) and (4.6.5).

The theorem gives asymptotic formulas for a large class of q-series, including several
(infinite) sums of q-analogues of Multiple Zeta Values, such as∑

n≥0
ζSZ

q (1, . . . , 1︸ ︷︷ ︸
n

).

The analytic study of Multiple q-Zeta Values is of interest since the coefficients occurring
in such asymptotic expansions often (maybe always; this is current research) are Q-linear
combinations of Multiple Zeta Values. Hence, by comparing coefficients, a relation among
Multiple q-Zeta Values gives a set of Q-linear relations among Multiple Zeta Values. In
this way, the analytic study of Multiple q-Zeta Values has an impact on the algebraic
study of Multiple Zeta Values. It is also current research, whether the Q-linear relations
among MZVs obtained in this way give all Q-linear relations among MZVs.

1.1 Introduction to Multiple (q-)Zeta Values
In this section, we introduce the basic knowledge about Multiple Zeta Values and their q-
analogues one might need to understand this thesis and the related works. For this, we
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introduce in Section 1.1.1 the algebraic setup. In particular, there, we introduce quasi-
shuffle products, of which the stuffle product mentioned above is a distinguished one.
Section 1.1.2 introduces Multiple Zeta Values, while Section 1.1.3 introduces their q-
analogues in the common understanding (as in [2, 11, 37, 38, 40, 43, 46, 48]). Last,
Section 1.1.4 contains particular so-called models of Multiple q-Zeta Values that will be
of importance for the thesis.

1.1.1 Algebraic setup

For the algebraic setup, we introduce some notation on quasi-shuffle algebras and related
algebraic objects. Notably, we will need the stuffle product, a special quasi-shuffle prod-
uct, and duality mainly in Sections 1.2 and 1.3, and in the corresponding Chapters 2
and 3 to obtain new results on the structure of Multiple q-Zeta Values.

Let us fix some general notation first.

Definition 1.1. Given a field F and a countable set A. We call A also an alphabet, and
elements of A are referred to as letters. Denote by spanF A the F -vector space spanned by
elements of A. Furthermore, monomials of elements in A (with respect to concatenation)
are called words. Usually, the neutral element with respect to concatenation is denoted
by 1 and called the empty word. Let A∗ denote the set of words with letters in A, then
we write F ⟨A⟩ for the F -vector space spanF A∗, equipped with the non-commutative,
but associative multiplication, given by concatenation.

We will also need the notion of quasi-shuffle algebras, studied, e.g., by Hoffman [32],
to describe the product structure of (q)MZVs.

Definition 1.2 (Quasi-shuffle product). Let F be a field, A an alphabet, and ⋄ a F -
bilinear, associative and commutative product on spanF A. Then we define the quasi-
shuffle product ∗⋄ : F ⟨A⟩ × F ⟨A⟩ → F ⟨A⟩ as the F -bilinear product, which is defined
via 1 ∗⋄ W := W ∗⋄ 1 := W for any W ∈ A∗ and recursively through

aW1 ∗⋄ bW2 := a(W1 ∗⋄ bW2) + b(aW1 ∗⋄ W2) + (a ⋄ b)(W1 ∗⋄ W2)

for any W1, W2 ∈ A∗ and a, b ∈ A.

In [32] it is shown that (F ⟨A⟩, ∗⋄) is a commutative algebra. For more details, we refer
to [32] and [33]. The following example of a quasi-shuffle product, the stuffle product,
will be important for almost all parts of this thesis.

Definition 1.3 (Stuffle product). Choose F = Q, A = U := {uj | j ∈ Z≥0}, and
define uk1 ⋄ uk2 := uk1+k2 . We call the induced quasi-shuffle product the stuffle product
and write ∗ for short instead of ∗⋄. I.e., we have W ∗ 1 := 1 ∗ W := W for all W ∈ U∗.
Furthermore, for all k1, k2 ∈ Z≥0 and W1, W2 ∈ U∗, by definition, we have

uk1W1 ∗ uk2W2 = uk1 (W1 ∗ uk2W2) + uk2 (uk1W1 ∗ W2) + uk1+k2 (W1 ∗ W2) .

Remark 1.4. We write Q⟨U⟩◦ for the Q-span of words with letters in U , not starting
with u0. Furthermore, the set of such words is denoted by U∗,◦ := U∗\u0U∗. Note that
the stuffle product restricts to a map

∗ : Q⟨U⟩◦ × Q⟨U⟩◦ −→ Q⟨U⟩◦.

Hence, (Q⟨U⟩◦, ∗) is a commutative Q-algebra.
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Let us fix some basic notations we will need throughout the whole thesis.

Definition 1.5. Let be r ∈ Z≥0 and k = (k1, . . . , kr) ∈ Zr
≥0 an index.

(i) We write u∅ := 1 for k = ∅ and uk := uk1 · · ·ukr if r > 0.

(ii) We define

len(uk) := len(k) := r,

zero(uk) := zero(k) := #{j | kj = 0},
depth(uk) := depth(k) := #{j | kj ̸= 0},

wt(uk) := wt(k) := k1 + · · · + kr + zero(k)

to be the length, the number of zeros, the depth, the weight, respectively, of uk
and k, respectively.

The following definition of duality will be important when considering the algebraic
structure of (q)MZVs. We will use the (in the following defined) duality τ for investigat-
ing qMZVs, while the similar looking map τ̃ is important for MZVs.

Definition 1.6. (i) Define the Q-linear map τ : Q⟨U⟩◦ → Q⟨U⟩◦ by τ(1) := 1 and

τ (uk1u
z1
0 · · ·ukd

uzd
0 ) := uzd+1u

kd−1
0 · · ·uz1+1u

k1−1
0

for all k1, . . . , kd ∈ Z>0 and z1, . . . , zd ∈ Z≥0. Furthermore, for W ∈ Q⟨U⟩◦, we
call τ(W) the dual of W.

(ii) Write Q⟨U⟩1 ⊂ Q⟨U⟩◦ for the Q-span of words with letters in U\{u0}, not starting
with u1. Furthermore, write U∗,1 := (U\{u0})∗ \u1 (U\{u0})∗ for such words. We
define the Q-linear map τ̃ : Q⟨U⟩1 → Q⟨U⟩1 by τ̃(1) := 1 and

τ̃ (uk1u
z1
1 · · ·ukd

uzd
1 ) := uzd+2u

kd−2
1 · · ·uz1+2u

k1−2
1

for all k1, . . . , kd ∈ Z≥2 and z1, . . . , zd ∈ Z≥0.

Since duality will be of significant impact, particularly in Section 1.2 and Chapter 2,
we collect some basic properties.

Remark 1.7. (i) We remark that ∗ restricts to a map Q⟨U⟩1×Q⟨U⟩1 → Q⟨U⟩1, giving
rise to a commutative Q-algebra (Q⟨U⟩1, ∗).

(ii) Note that τ is an involution on Q⟨U⟩◦. Furthermore, τ̃ is an involution on Q⟨U⟩1.

(iii) Depth and weight are invariant under τ while the number of zeros and the length
generally are not.

(iv) With τ̃ and duality τ , we can describe particular linear relations that Multiple Zeta
Values, respectively their q-analogues, satisfy, see Theorems 1.18 and 1.29.

Let us consider a small example.

Example 1.8. We have

τ(u3u0u1) = τ
(
u2+1u

1
0u0+1u

0
0

)
= u0+1u

0
0u1+1u

2
0 = u1u2u0u0

and

τ̃(u3) = τ̃
(
u3u

0
1

)
= u0+2u

3−2
1 = u2u1.



8 Chapter 1. Different perspectives on Multiple q-Zeta Values

For investigating the multiplicative structure of Multiple Zeta Values, besides the
stuffle product, it will be necessary to have the notion of the shuffle product ([26])
defined in the following.

Definition 1.9 (Shuffle product). We define the shuffle product to be the Q-bilinear
map� : Q⟨{p, y}⟩×Q⟨{p, y}⟩ → Q⟨{p, y}⟩, given by W∗1 := 1∗W := W for all W ∈ Q⟨{p, y}⟩
and

aW1 � bW2 := a(W1 � bW2) + b(aW1 � W2)

for all W1, W2 ∈ Q⟨{p, y}⟩ and a, b ∈ {p, y}.

Denoting by Q⟨{p, y}⟩◦ the Q-vector space spanned by words not starting with y, the
shuffle product restricts to a map

� : Q⟨{p, y}⟩◦ × Q⟨{p, y}⟩◦ −→ Q⟨{p, y}⟩◦.

In the following, we will use the translation

ι : Q⟨{p, y}⟩◦ −→ Q⟨U⟩1,

pk1−1y · · · pkr−1y 7−→ uk1 · · ·ukr

for all r, k1, . . . , kr ∈ Z≥1 with k1 ≥ 2, and ι(1) := 1. By abuse of notation, we will also
write � for the map

Q⟨U⟩1 × Q⟨U⟩1 −→ Q⟨U⟩1, (W1, W2) 7−→ ι(ι−1(W1)� ι−1(W2)).

1.1.2 Basics on Multiple Zeta Values

Multiple Zeta Values (MZVs) are real numbers defined as iterated sums. From this
representation, one may see that their product again is a sum of MZVs. Besides this rep-
resentation, MZVs can be described as iterated integrals. Also, using this representation
gives rise to the observation that their product is a sum of MZVs again. Surprisingly,
these two representations of the product of MZVs generally do not coincide. I.e., one
obtains linear relations among MZVs, the double shuffle relations. The name comes from
the fact that both representations of the product can be described via quasi-shuffle prod-
ucts. Besides the double shuffle relations, there is another class of linear relations among
MZVs, the MZV duality. We refer to [20, 31, 35] for more details on the basic properties
of MZVs.

With the notion of U∗,1 (see Definition 1.6(ii)), we are prepared to define Multiple
Zeta Values.

Definition 1.10. For all words W = uk1 · · ·ukr ∈ U∗,1, the Multiple Zeta Value (MZV)
of W is defined as

ζ(W) :=
∑

m1>···>mr>0

1
mk1

1 · · ·mkr
r

.

For W = 1, we set ζ(1) := 1. Furthermore, we consider ζ as map Q⟨U⟩1 → R via Q-linear
continuation.

With MZVs, we are able to express products of (single) Zeta Values as integer linear
combinations of MZVs, induced by handling iterated sums. In particular, we can describe
the product of MZVs using the stuffle product.



1.1. Introduction to Multiple (q-)Zeta Values 9

Example 1.11. Considering for k1, k2 ∈ Z≥2 the product of ζ(uk1) and ζ(uk2),

ζ(uk1) · ζ(uk2) =
∑
n≥1

1
nk1

∑
m≥1

1
mk2

=
∑

n>m>0

1
nk1mk2

+
∑

m>n>0

1
mk2nk1

+
∑

n=m>0

1
nk1mk2

= ζ(uk1uk2) + ζ(uk2uk1) + ζ(uk1+k2)
= ζ(uk1 ∗ uk2),

one obtains that this product indeed is a sum of MZVs. In particular, all words of MZVs
occurring are of the same weight k1+k2, which is the sum of the weights of the length-one
words uk1 and uk2 we started with.

The observation that the product of MZVs is ζ of the stuffle product of the corre-
sponding words is always the case.
Proposition 1.12 ([31, Theorem 4.2]). The map ζ : (Q⟨U⟩1, ∗) → (R, ·) is an algebra
homomorphism. In particular, for all W1, W2 ∈ U∗,1, we have

ζ(W1) · ζ(W2) = ζ(W1 ∗ W2).

Besides the definition of MZVs as iterated sums, MZVs have a remarkable represen-
tation as iterated integrals, the so-called Kontsevich integrals.
Proposition 1.13 (Kontsevich integral, [31, Theorem 6.1]). Let W = uk1 · · ·ukr be a
word in U∗,1. Then we have

ζ(W) =
∫

1>t1>···>tk>0

ω1(t1) · · ·ωk(tk),

where k := wt(W) and

ωi(t) :=
{

dt
1−t , if i ∈ {k1, k1 + k2, . . . , k1 + · · · + kr},
dt
t , else.

Proof. For proof, see [20].

One can see that the product of such iterated integrals again is an integer linear
combination of such iterated integrals, i.e., multiplying MZVs represented as Kontsevich
integrals leads to a linear combination of MZVs again. One can describe it using the
shuffle product.
Proposition 1.14 ([34, Theorem 4.1]). The map ζ :

(
Q⟨U⟩1,�

)
→ (R, ·) is an algebra

homomorphism. In particular, for all W1, W2 ∈ U∗,1, we have

ζ(W1) · ζ(W2) = ζ(W1 � W2).

What is remarkable about the shuffle product representation of MZVs is that it is
generally different from the stuffle product representation.
Example 1.15. Considering for integers k1, k2 ∈ Z≥2 the product of ζ(uk1) and ζ(uk2),
both represented as Kontsevich integrals, one obtains

ζ(uk1) · ζ(uk2) =
∑

a+b=k1+k2
a≥2

((
a− 1
k − 1

)
+
(
a− 1
ℓ− 1

))
ζ(uaub) = ζ(uk1 � uk2).
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In particular, we see that, in general, the right sight is represented by different MZVs
than in ζ(uk1 ∗ uk2); see Example 1.11.

Again, we observe that the words occurring in the shuffle product have weight equals
the sum of the weight of the words uk1 and uk2 . This holds for the general case; details
can be seen in [20].

Linear relations among MZVs Since stuffle and shuffle product representation, in
general, are different, one obtains via

ζ (W1 ∗ W2 − W1 � W2) = 0

for W1, W2 ∈ U∗,1 non-trivial linear relations among MZVs. They are called double shuffle
relations.

Example 1.16. Using the the stuffle product representation, one observes

ζ(u2) · ζ(u2) = ζ(u2 ∗ u2) = 2ζ(u2u2) + ζ(u4).

The shuffle product representation gives

ζ(u2) · ζ(u2) = ζ(u2 � u2) = 2ζ(u2u2) + 4ζ(u3u1).

Hence, we obtain the linear relation

ζ(u4) = 4ζ(u3u1).

Remark 1.17. There are lots of proofs in the literature for the famous so-called Euler
identity ([27])

ζ(u3) = ζ(u2u1). (1.17.1)

Recall that for every word W occurring in W1 ∗ W2 or W1 � W2 (with W1, W2 ∈ U∗,◦, we
have wt(W) = wt(W1) + wt(W2). Hence, double shuffle relations cannot obtain the Euler
identity since ζ(u1) is not defined for convergence reasons. There are three ways to deal
with that. One possibility is to regularize both stuffle and shuffle product, leading to
extended double shuffle relations from which relations such as (1.17.1) can be obtained.
Those extended double shuffle relations conjecturally imply all Q-linear relations among
MZVs. Proving this is still an open problem and one of the most famous ones in the
broad field of MZVs. For a detailed study of (extended) double shuffle relations, we refer
to [35]. Another way to obtain identities like (1.17.1) is via MZV duality, presented in
the following theorem. The third way to deal with the fact that ζ(u1) is not defined in
considering q-analogues of them as we will do in Section 1.1.3 since on this level we can
give a well-defined q-analogue for ζ(u1). Among q-analogues, one can study Q-linear re-
lations similarly to the (extended) double shuffle relations that give back relations among
MZVs when taking the limit q → 1 after some small modification; see the paragraph after
Definition 1.26.

Theorem 1.18 (MZV duality, [31, Corollary 6.2]). On Q⟨U⟩1, we have ζ ◦ τ̃ = ζ.

When speaking about MZV duality (Theorem 1.18), we will always speak indeed
about MZV duality in contrast to just duality which is a similar looking Theorem for
q-analogues of MZVs (see Theorem 1.29). Let us consider a small example.

Example 1.19. By Example 1.8, Theorem 1.18 gives ζ(u3) = ζ(u2u1), i.e., the Euler
identity (1.17.1).
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A natural question is what a basis of Z looks like. Finding such a basis is still an open
problem, so one focuses on finding generating systems as small as possible. Considering
the Euler identity and its generalization (obtained via MZV duality)

ζ(uk) = ζ
(
u2u

k−2
1

)
for k ∈ Z≥2, it could be reasonable that Z is spanned by ζ(W)’s for W ∈ (U\{u0, u1})∗’s,
i.e., for words with letters in {u2, u3, . . . }. Indeed, this statement is true and can be
deduced directly from Theorem 1.22.
Theorem 1.20. We have Z = spanQ {ζ(W) | W ∈ (U\{u0, u1})∗}.

Although a stronger version of this theorem is already proven (see Theorem 1.22
below), this statement is still interesting for what we will do in Section 1.2/Chapter 2
since we investigate there Conjecture 1.49 which can be seen as the analogous statement
to Theorem 1.20 for the space qMZVs span.

Regarding the question of how a basis of Z looks like, Hoffman [32] conjectured a
stronger statement of Theorem 1.20.
Conjecture 1.21 ([32]). A basis of the Q-vector space Z is given by the set of MZVs ζ(W)
satisfying W ∈ {u2, u3}∗.

The current status is that one is not able to prove the Q-linear independence of the
MZVs occurring in Hoffman’s Conjecture 1.21. A partial result was obtained by Brown.
Theorem 1.22 ([19]). A spanning set of the Q-vector space Z is given by the set of
MZVs ζ(W) satisfying W ∈ {u2, u3}∗.

1.1.3 Basics on Multiple q-Zeta Values

Multiple Zeta Values are real numbers, which makes investigating their algebraic struc-
ture sometimes hard. A common strategy, not only used for MZVs, to avoid parts of this
problem is to consider q-analogues of the objects one investigates. These are modified ob-
jects with an extra parameter q such that they inherit (parts) of the algebraic structure of
the original objects. Furthermore, they have the property that one gets back the original
objects when taking the limit q → 1, maybe after some modification such as multiplying
with a specific power of (1 − q), for example. In Section 1.1.3, we introduce q-analogues
of MZVs (qMZVs for short) and their Q-algebra Zq (defined in [10]).

One of the most used q-analogues are the expressions

[n]q := 1 − qn

1 − q
,

seen as q-analogues of positive integers n. Indeed, one has, as q approaches 1,

[n]q = 1 + q + q2 + · · · + qn−1 −→ n.

Now, an intuitive way to obtain q-analogues of MZVs would be to replace in the
definition of MZVs (Definition 1.10) every mj with [mj ]q. To avoid convergence issues,
one has to be more careful, but it is the main idea leading to the definition of qMZVs.
Definition 1.23 ([10, Equation 1]). (i) Define for all W = uk1 · · ·ukr ∈ U∗,◦ and poly-

nomials Q1 ∈ XQ[X], Q2, . . . , Qr ∈ Q[X], the Multiple q-Zeta Value (qMZV)

ζq(W;Q1, . . . , Qr) :=
∑

m1>···>mr>0

Q1(qm1)
(1 − qm1)k1

· · · Qr(qmr )
(1 − qmr )kr

∈ QJqK,
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where we set ζq(1, ∅) := 1 in case r = 0.

(ii) Define Zq as

spanQ

{
ζq(W;Q1, . . . , Qr)

∣∣∣ W=uk1 ···ukr ∈U∗,◦, r∈Z≥0,

Q1∈XQ[X], deg(Qj)≤kj (1≤j≤r)

}
.

Note that Q1 ∈ XQ[X] is necessary for convergence reasons. Furthermore, for a
word W ∈ U∗,1, with r := len(W), one has

lim
q→1

(1 − q)wt(W)ζq(W;Q1, . . . , Qr) = ζ(W)
r∏

j=1
Qj(1).

In this general definition of qMZVs, there is no obvious notion of weight as for MZVs. A
canonical choice would be wt(W) leading to uniqueness issues since, e.g., for every k1 ∈ Z>0
and polynomials Q1 ∈ XQ[X], we have

ζq(uk1 ;Q1) = ζ(uk1+1;Q1 · (1 −X)).

Therefore, one usually chooses the polynomials Qj such that (1 −X) ̸ |Qj(X).
In the definition of qMZVs, one can also say that the words W ∈ U∗,◦ should sat-

isfy zero(W) = 0 when one allows an additional polynomial factor (in m1, . . . ,mr) in the
summand, see Proposition 1.25 below. Let us consider an example first.

Example 1.24. Choose k1 ∈ Z>0 and Q1 ∈ XQ[X] with deg(Q1) ≤ k1. Furthermore,
let Q2 = Q3 = 1 and k2 = k3 = 0. Then, by definition, ζq (uk1u0u0;Q1, 1, 1) is an element
of Zq. But we also have

ζq (uk1u0u0;Q1, 1, 1) =
∑

m1>m2>m3>0

Q1(qm1)
(1 − qm1)k1

=
∑

m1>0

(
m1 − 1

2

)
Q1(qm1)

(1 − qm1)k1
.

In particular, the latter sum is of the same shape as in the original definition of qMZVs
with an additional polynomial factor in m1 in the summand.

In the following, we show that the observation of Example 1.24 is true in general;
we will use it (implicitly) in Chapter 2 to validate that our definition of Schlesinger–
Zudilin qMZVs (see Section 1.1.4) is equivalent to the usual one.

Proposition 1.25. Choose a word W = uk1 · · ·ukr ∈ U∗,◦ and polynomials Qj sat-
isfying Q1 ∈ XQ[X], deg(Qj) ≤ kj for 1 ≤ j ≤ r = len(W). For every polyno-
mial Q0 ∈ Q[Y1, . . . , Yr], we have

∑
m1>···>mr>0

Q0(m1, . . . ,mr) Q1(qm1)
(1 − qm1)k1

· · · Qr(qmr )
(1 − qmr )kr

∈ Zq.

Proof. We sketch a variation of the proof provided in [10]. For this, choose an arbitrary
word W = uk1u

z1
0 · · ·ukd

uzd
0 ∈ U∗,◦ and abbreviate fj := z1 + · · · + zj−1 + j for 1 ≤ j ≤ d.

Furthermore, choose Qj ∈ Q[X] with deg(Qfj
) ≤ fj for 1 ≤ j ≤ d and Qj = 1 else. We

obtain that

∑
m1>···>mlen(W)>0

Q1(qm1)
(1 − qm1)k1

· · ·
Qlen(W)(qmlen(W))

(1 − qmlen(W))klen(W)

=
∑

m1>···>md>0

(
m1 −m2 − 1

z1

)
· · ·
(
md−1 −md − 1

zd−1

)(
md − 1
zd

)



1.1. Introduction to Multiple (q-)Zeta Values 13

× Q1(qm1)
(1 − qm1)k1

· · · Qfd
(qmd)

(1 − qmd)kfd

∈ Zq.

Note that {(
Y1 − Y2 − 1

z1

)
· · ·
(
Yd−1 − Yd − 1

zd−1

)(
Yd − 1
zd

) ∣∣∣∣∣ z1, . . . , zd ∈ Z≥0

}

builds a basis of Q[Y1, . . . , Yd]. Hence, we indeed have

∑
m1>···>mr>0

Q0(m1, . . . ,mr) Q1(qm1)
(1 − qm1)k1

· · · Qr(qmr )
(1 − qmr )kr

∈ Zq

for every uk1 · · ·ukr ∈ U∗,◦, polynomials Qj with Q1 ∈ XQ[X], deg(Qj) ≤ kj for all
integers 1 ≤ j ≤ r, and for every polynomial Q0 ∈ Q[Y1, . . . , Yr].

1.1.4 Models of qMZVs

Similar to Z, a natural question is what a basis of Zq looks like. Finding such a basis is
one of the open problems regarding qMZVs and seems very difficult to answer. Therefore,
one focuses on finding (small) generating sets of Zq, which we call in distinguished cases
models (of Multiple q-Zeta Values). We refer to the original works [2, 11, 37, 38, 40, 43,
46, 48] for details on often used models and to [14] for an overview. Every model has
its advantage when studying qMZVs and their structure. Schlesinger–Zudilin’s model,
e.g., inherits the stuffle product, while Bradley–Zhao’s model satisfies the same duality
relation as the one MZVs satisfy. Important as well is Bachmann’s model given by bi-
brackets since it gives a direct connection to quasi-modular forms playing an essential
role in the theory of MZVs as Gangl, Kaneko, and Zagier [29] have shown. We present
the considered models’ main facts about their algebraic structure. In particular, we will
focus on relations for qMZVs similar to the duality of MZVs.

For a particular choice of the polynomials Qj (in dependence of the kj ’s), we say that
the corresponding qMZVs build a model (of qMZVs) if they span Zq. We now present
two models with which we will work in this thesis.

Schlesinger–Zudilin model. A particular generating system of Zq is the following.

Definition 1.26 (Schlesinger–Zudilin qMZVs). For all W = uℓ1 · · ·uℓr ∈ U∗,◦, we define
the Schlesinger–Zudilin qMZV (SZ-qMZV for short) by ζSZ

q (1) := 1 and, for positive r,
by

ζSZ
q (W) := ζq(W;Xℓ1 , . . . , Xℓr ).

By definition of ζq, note that for all W = uk1 · · ·ukr ∈ U∗,◦, we have

ζSZ
q (W) =

∑
m1>···>mr>0

qm1ℓ1

(1 − qm1)ℓ1
· · · qmrℓr

(1 − qmr )ℓr
.
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Furthermore, writing W = uk1u
z1
0 · · ·ukd

uzd
0 with d, z1, · · · , zd ∈ Z≥0, k1, . . . , kd ∈ Z>0

uniquely determined, we obtain the following representation of SZ-qMZVs, which is con-
sistent with Proposition 1.25,

ζSZ
q (W) =

∑
m1>···>md>0

∑
m1>···>md>0

d∏
j=1

(
mj −mj+1 − 1

zj

)
qmjkj

(1 − qmj )kj
.

Also, when k1 > 1 and z1 = · · · = zd = 0, i.e., W ∈ U∗,1, we observe

lim
q→1

(1 − q)wt(W)ζSZ
q (W) = ζ(W) ∈ Z.

By [8, Theorem 1.2], it is known that this limit exists (after possible regularization) for
all words W ∈ U∗,◦ and is always element of Z. Moreover, SZ-qMZVs span Zq. This
justifies calling qMZVs as introduced in Definition 1.23 indeed q-analogues of MZVs.

For describing SZ-qMZVs algebraically, we need the following evaluation map.

Definition 1.27. We define the map ζSZ
q : Q⟨U⟩◦ −→ Zq via

W 7−→ ζSZ
q (W)

for every word W ∈ U∗,◦ and extend it to Q⟨U⟩◦ by Q-linearity.

Similar to MZVs (see Proposition 1.12), SZ-qMZVs respect the product structure
induced by the stuffle product.

Proposition 1.28 ([41, Theorem 3.3]). The map ζSZ
q : (Q⟨U⟩◦, ∗) −→ (Zq, ·) is an

algebra homomorphism. In particular, for all W1, W2 ∈ Q⟨U⟩◦, we have

ζSZ
q (W1) · ζSZ

q (W2) = ζSZ
q (W1 ∗ W2).

Besides the stuffle product, another fact on SZ-qMZVs makes it interesting to study
their structure. For this, we need the involution τ from Definition 1.6. One can obtain the
following identity of qMZVs, e.g., using marked partitions (see Section 1.3 and Chapter 3).

Theorem 1.29 (Duality, [46, Theorem 8.3]). On Q⟨U⟩◦, we have ζSZ
q ◦ τ = ζSZ

q .

Recall that τ is an involution on Q⟨U⟩◦. The name of duality comes from the fact that
it looks very similar to MZV duality. Nevertheless, it is not the same in the sense that
it is an open problem to show that τ and ∗ imply MZV duality already. One approach
for the connection of τ and τ̃ can be found in [13], where so-called connected sums are
used to prove both at once. As one can see from duality, the role of u0 is special for the
map ζSZ

q . Hence, we introduce Z◦
q as the subalgebra of Zq generated by SZ-qMZVs of

words containing no u0.

Definition 1.30. We define

Z◦
q := spanQ

{
ζSZ

q (W)
∣∣∣ W ∈ (U\{u0})∗

}
.

Note that the stuffle product is closed on Z◦
q making (Z◦

q , ∗) indeed a subalgebra
of (Zq, ∗). Besides the similarity between τ and τ̃ , a second connection exists between
SZ-qMZVs and MZVs. Namely, the structure of Zq seems to be similar to the one of Z
in the sense that u0’s seem to be ’unnecessary’, similar to Theorem 1.20 which stated
that u1’s in words are not needed to obtain a generating system of Z. More precisely,
we have the following.
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Conjecture 1.31 ([3, Conjecture 4.3]). We have Zq = Z◦
q .

We will discuss this conjecture in Section 1.2 and Chapter 2 in more detail and give
new partial results.

Bi-brackets. Every quasi-modular form is an element of Zq. Therefore, qMZVs can
be seen as a generalization of quasi-modular forms. A model of qMZVs depicting this
property was introduced by Bachmann in his Thesis ([2]). The qMZVs in this model are
called bi-brackets.

Definition 1.32 ([3, Definition 2.1]). (i) For all integers d ∈ Z≥0, k1, . . . , kd ∈ Z>0,
and z1, . . . , zd ∈ Z≥0, the bi-bracket is g

(∅
∅
)

:= 1 for d = 0 and for d > 0 it is

g
(
k1, . . . , kd

z1, . . . , zd

)
:=

∑
m1>···>md>0

d∏
j=1

m
dj

j

dj !
Pkj

(qmj )
(1 − qmj )kj

,

where Pk is the k-th Eulerian polynomial,

Pk(X) := (1 −X)k
∑
n>0

nk−1

(k − 1)!X
n.

Furthermore, we define

zero
(
k1, . . . , kd

z1, . . . , zd

)
:= z1 + · · · + zd,

depth
(
k1, . . . , kd

z1, . . . , zd

)
:= d,

wt
(
k1, . . . , kd

z1, . . . , zd

)
:= k1 + · · · + kd + z1 + · · · + zd.

(ii) We define g(∅) := 1, and for any d ∈ Z>0 and any k = (k1, . . . , kd) ∈ Zd
>0, we define

the bracket of k as

g(k) :=
∑

m1>···>md>0

d∏
j=1

Pkj
(qmj )

(1 − qmj )kj
.

Note that by Proposition 1.25, bi-brackets indeed are elements of Zq. Moreover, we
have1

Zq = spanQ

{
g
(
k1, . . . , kd

z1, . . . , zd

) ∣∣∣∣∣ kj ∈ Z>0, d, zj ∈ Z≥0 (1 ≤ j ≤ d)
}

and

Z◦
q = spanQ {g(k1, . . . , kd) | d ∈ Z≥0, kj ∈ Z>0 (1 ≤ j ≤ d)} .

1In earlier works regarding (bi-)brackets such as [3], Zq was denoted by BD and Z◦
q by MD.
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Both, Z◦
q and Zq are Q-algebras (with the usual product of q-series via multiplication)

as shown in [3]. Furthermore, note that every bracket is a bi-bracket since

g(k1, . . . , kd) = g
(
k1, . . . , kd

0, . . . , 0

)

for all k1, . . . , kd ∈ Z>0.

Definition 1.33. (i) For (N, op) ∈ {(Z, zero), (D,depth), (W,wt)}, n ∈ Z, and for a
set S ⊂ Zq, we write

FilNn S := spanQ

{
g
(

k
z

) ∣∣∣∣∣ op
(

k
z

)
≤ n

}
∩ S.

(ii) For S ⊂ Zq, N1, . . . ,Nm ∈ {Z,D,W} (m ∈ Z>0), and integers n1, . . . , nm ∈ Z, we
abbreviate

FilN1,...,Nm
n1,...,nm

S :=
m⋂

j=1
FilNj

nj S.

In particular, we have Z◦
q = FilZ0 Zq. Similarly to duality, bi-brackets satisfy a relation

analogous to the duality relation (Theorem 1.29). For this, we introduce for every d ∈ Z≥0
the generating series

g

(
X1, . . . , Xd

Y1, . . . , Yd

)
:=

∑
k1,...,kd>0
z1,...,zd≥0

g
(
k1, . . . , kd

z1, . . . , zd

)
d∏

j=1
X

kj−1
j Y

zj

j .

Theorem 1.34 (Partition relation, [3, Theorem 2.3]). For all d ∈ Z>0 we have

g

(
X1, . . . , Xd

Y1, . . . , Yd

)
= g

(
Y1 + · · · + Yd, . . . , Y1 + Y2, Y1
Xd, Xd−1 −Xd, . . . , X1 −X2

)
.

Note that in the case d = 1, one can express the partitions relation with bi-brackets
of depth 1 as follows.

Corollary 1.35. For all k ∈ Z>0 and z ∈ Z≥0, we have

g
(
k

z

)
= g

(
z + 1
k − 1

)
.

The name of the partition relation comes from the combinatorial interpretation
of qMZVs as generating series of particular partitions, similar to what we will do in
Section 1.3. The partition relation comes from the invariance of the considered q-series
under transposing the Young Tableau of each partition.

Theorem 1.36 ([14, Theorem 14]). Under the translation of bi-brackets to the SZ-
model [48, Proposition 3], duality and the partition relation are equivalent.

In Section 1.4, we will need the following fact about bi-brackets.

Theorem 1.37 ([9, Theorem 1.7]). We have q d
dq Z◦

q ⊂ Z◦
q .

Using generating series of bi-brackets, Bachmann obtained the following explicit result
for depth 1.
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Proposition 1.38 ([3, Proposition 4.2]). For k ∈ Z>0, z ∈ Z≥0, we have

q
d

dq
g
(
k

z

)
= k(z + 1) g

(
k + 1
z + 1

)
.

Using Theorem 1.37, the following is an immediate consequence of Proposition 1.38.

Corollary 1.39 ([3, Proposition 4.4]). For all integers k ∈ Z>0, and z ∈ Z≥0, we
have g

(k
z

)
∈ Z◦

q .

Bradley–Zhao qMZVs. Although the Multiple q-Zeta Values, introduced by Bradley
and Zhao, do not span Zq (but a proper subspace), we mention them here since they are
of importance for the theory of Multiple (q-)Zeta Values. This is, for example, due to
the fact that they satisfy the same duality relation as Multiple Zeta Values.

Definition 1.40 (Bradley–Zhao qMZVs). For all words W = uk1 · · ·ukr ∈ U∗,1, the
Bradley–Zhao Multiple q-Zeta Value (BZ-qMZV) of W is defined as

ζBZ
q (W) :=

∑
m1>···>mr>0

qm1(k1−1)

(1 − qm
1 )k1

· · · q
mr(kr−1)

(1 − qm
r )kr

.

For W = 1, we set ζBZ
q (1) := 1. Furthermore, we consider ζBZ

q as map Q⟨U⟩1 → R
via Q-linear continuation.

Note that for all W ∈ U∗,1, we have

lim
q→1

(1 − q)wt(W)ζBZ
q (W) = ζ(W).

Therefore, Bradley-Zhao qMZVs indeed are q-analogues of MZVs. In particular, they are
in the sense of Definition 1.23. Furthermore, Bradley-Zhao qMZVs are of interest since
a part of the structure MZVs have transfers.

Theorem 1.41 (BZ duality, [11, Theorem 5]). On Q⟨U⟩1, we have ζBZ
q ◦ τ̃ = ζBZ

q .

I.e., BZ-qMZVs satisfy the same duality relation as MZVs (Theorem 1.18). We should
note that BZ-qMZVs do not span Zq as mentioned at the beginning of this paragraph
since, e.g., ζq(u1;X) ∈ Zq can not be written as a linear combination of BZ-qMZVs.

Remark 1.42. (i) If Conjectures 1.43 and 1.44 below are true, one can show (via
induction on the weight) that BZ-qMZVs satisfy the analogue of Theorem 1.20 in
the sense

spanQ

{
ζBZ

q (W) | W ∈ U∗,1
}

= spanQ

{
ζBZ

q (W) | W ∈ (U\{u0, u1})∗
}
.

(ii) However, BZ-qMZVs do not satisfy the analogue of Theorem 1.22, i.e.,

spanQ

{
ζBZ

q (W) | W ∈ U∗,1
}
⊋ spanQ

{
ζBZ

q (W) | W ∈ {u2, u3}∗
}
.

1.2 The algebraic side of Multiple q-Zeta Values considered
in Paper I

In this section, we introduce the work from Chapter 2 that considers qMZVs algebraically.
For this, we will focus on the conjecture that the stuffle product and duality already imply
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all linear relations among qMZVs. Motivated by this conjecture, we present formal
Multiple q-Zeta Values, similar as in [21]. These are algebraic objects satisfying the
stuffle product and duality by definition but not having linear relations among them
that are not implied by stuffle product or duality. We first present in Section 1.2.1
known results and conjectures about Zq. One of the most well-known conjectures is the
one by Bachmann that bi-brackets and brackets span the same space. Furthermore, we
present the main results of Chapter 2, which are partial results towards Bachmann’s
conjecture. In Section 1.2.2, we introduce and motivate the main ideas leading to the
proof of those new results.

Section 1.2.1 then is about various conjectures and known results about the structure
of qMZVs. As part of this thesis, we give new partial results in Section 1.2.2 for one of
the main conjectures (Bachmann’s Conjecture 1.49) among qMZVs and their structure.
Furthermore, we develop the main ideas for the proof, which will be given in Chapter 2.
These ideas, in particular, then lead to a refinement of Bachmann’s Conjecture 1.49.

1.2.1 Known statements about the algebraic structure of qMZVs

This section will gather well-known results and conjectures about the structure of Zq.
One folklore conjecture is the following by Bachmann (see [1]) that can be found in [48,
Conjecture 1].

Conjecture 1.43 (Bachmann). All Q-linear relations among elements in Zq are ob-
tained by the stuffle product ∗ and duality τ .

According to Conjecture 1.43, when investigating the structure of Zq (see Section 1.2.2
and Chapter 2), we will use the stuffle product and duality only. More precisely, we will
use relations only that are of shape

ζSZ
q (W1 ∗ (W2 − τ(W2))) = 0

for any words W1, W2 ∈ U∗,◦.
Furthermore, the conjecture of paramount importance for this section and Chapter 2

is the following one by Bachmann.

Conjecture 1.44 ([3, Conjecture 4.3]). We have FilZ,D,W
z,d,w Zq = FilD,W

z+d,w Z◦
q for all inte-

gers z, d, w ∈ Z≥0.

We will use the SZ-model of qMZVs in Chapter 2. For this, we need the following
notation of formal qMZVs as introduced in [21].

Definition 1.45. The algebra of formal qMZV is

Zf
q := (Q⟨U⟩◦, ∗)⧸T ,

where T is the ∗-ideal in Q⟨U⟩◦ generated by {τ(W) − W | W ∈ Q⟨U⟩◦}.

Remark 1.46. Note that the notion of formal multiple Eisenstein series [7] exists,
which is equivalent to our notion but inspired by considering qMZVs as so-called multiple
Eisenstein series. In contrast, the definition of Zf

q is inspired by considering qMZVs as
Schlesinger–Zudilin qMZVs.

For a more detailed description of what we are doing, it will be necessary to have
filtrations by number of zeros, depth, and weight respectively on Zf

q (and Q⟨U⟩◦). We
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introduce them in the following definition. First, note that depth and weight are invariant
under τ , while the number of zeros, in general, is not as one may see, e.g., in the example

τ(uk) = u1u
k−1
0

for k ∈ Z>0. Therefore, we must be careful (compared to the analogous filtration
on Q⟨U⟩◦) when defining the filtration by the number of zeros on Zf

q . Recall that we
write U∗,◦ = U∗\u0U∗ for the set of words not starting with u0.

Definition 1.47. (i) For (N, op) ∈ {(Z, zero), (D,depth), (W,wt)}, n ∈ Z, and for
sets S ⊂ Q⟨U⟩◦, S ′ ⊂ Zf

q , we write

FilNn S := spanQ {W ∈ U∗,◦ | op(W) ≤ n} ∩ S,

FilNn S ′ := spanQ

{
ζ f

q (W) ∈ Zf
q | W ∈ U∗,◦, op(W) ≤ n

}
∩ S ′

for the filtration by number of zeros (if N = Z), depth (if N = D), and weight
(if N = W) respectively on S and S ′ respectively. Furthermore, we define

Zf,◦
q := FilZ0 Zf

q .

(ii) For S ⊂ Q⟨U⟩◦ or S ⊂ Zf
q , N1, . . . ,Nm ∈ {Z,D,W} (m ∈ Z>0), and inte-

gers n1, . . . , nm ∈ Z, we abbreviate

FilN1,...,Nm
n1,...,nm

S :=
m⋂

j=1
FilNj

nj S.

Remark 1.48. Note that Zf,◦
q is a subalgebra of Zf

q and that we can consider ζSZ
q also

as map Zf
q → Zq due to Theorem 1.29. Furthermore, referring to the translation from

bi-brackets to the SZ-model (see [14, Theorem 13]), for all z, d, w ∈ Z≥0, we have

ζSZ
q

(
FilZ,D,W

z,d,w Zf
q

)
= FilZ,D,W

z,d,w Zq.

We refer to the translation from bi-brackets to the SZ-model (see [14, Theorem 13])
to obtain the statement of Conjecture 1.44 written in the SZ-model, and strengthened
under consideration of Conjecture 1.43.

Conjecture 1.49 (Bachmann, Conjecture 1.44 strengthened). For all z, d, w ∈ Z>0, we
have

FilZ,D,W
z,d,w Zf

q ⊂ FilD,W
z+d,w Zf,◦

q .

In particular, we have Zf
q = Zf,◦

q .

Note that Conjecture 1.49 indeed is a strengthened version of Conjecture 1.44 by
definition of formal qMZVs since they fulfill - by definition - no other relations than SZ-
qMZVs do, i.e., proving Conjecture 1.49 would imply a proof of Conjecture 1.44 directly.

In the following, we give an overview of known results regarding Conjecture 1.44 and
what their analogue regarding Bachmann’s Conjecture 1.49 looks like. First, we give the
statements using Bachmann’s model of bi-brackets since most of them originally were
stated in this model.
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Theorem 1.50. (i) [3, Proposition 4.4] For all k ∈ Z>0, z ∈ Z≥0, we have

g
(
k

z

)
∈ FilD,W

z+1,k+z Z◦
q .

(ii) [3, Proposition 5.9] For all k1, k2 ∈ Z>0, we have

g
(
k1, k2
1, 0

)
, g
(
k1, k2
0, 1

)
∈ FilD,W

3,k1+k2+1 Z◦
q .

(iii) [44, Theorem 5.3] For all k1, k2 ∈ Z>0, z1, z2 ∈ Z≥0 with k1 + k2 + z1 + z2 odd, we
have

g
(
k1, k2
z1, z2

)
∈ Z◦

q .

(iv) [21, Theorem 6.4] For all k1, . . . , kd ∈ Z>0, and for all 1 ≤ j ≤ d, we have

g
(
k1, . . . , kj , . . . , kd

0, . . . , 1, . . . , 0

)
∈ FilD,W

d+1,k1+···+kd+1 Z◦
q .

As mentioned, we will rephrase these known results using the model introduced by
Schlesinger and Zudilin and the translation from [14, Theorem 13].

Theorem 1.51 (Theorem 1.50 rewritten). (i) For all k ∈ Z>0, z ∈ Z≥0, we have

ζ f
q (uku

z
0) ∈ FilD,W

z+1,k+z Zf,◦
q .

(ii) For all k1, k2 ∈ Z>0, we have

ζ f
q (uk1u0uk2) , ζ f

q (uk1uk2u0) ∈ FilD,W
3,k1+k2+1 Zf,◦

q .

(iii) For all k1, k2 ∈ Z>0, z1, z2 ∈ Z≥0 with k1 + k2 + z1 + z2 odd, we have that the
formal qMZV ζ f

q (uk1u
z1
0 uk2u

z2
0 ) is an element of Zf,◦

q up to lower weight terms in
depth 2 with at most z1 + z2 zeros each.

(iv) For all k1, . . . , kd ∈ Z>0 and for all 1 ≤ j ≤ d, we have

ζ f
q

(
uk1 · · ·ukj

u0ukj+1 · · ·ukd

)
∈ FilD,W

d+1,k1+···+kd+1 Zf,◦
q .

For a translation of bi-brackets to the SZ-model, we refer to [14]. From there, the
lower weight terms mentioned in Theorem 1.51(iii) can be deduced explicitly.

1.2.2 Statement of results

We present in the following the main results of the work in Chapter 2. The first con-
tributes to the general idea of an approach to proving Bachmann’s Conjecture 1.49,
which is showing ζ f

q (W) ∈ FilZzero(W)−1 Zf
q for every W ∈ U∗,◦ with zero(W) ≥ 1. Further-

more, it generalizes results by Bachmann ([3, Proposition 4.4], see Proposition 2.21) and
Burmester ([21, Theorem 6.4], see Corollary 2.28).
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Theorem 1.52 (Theorem 2.6). Let be z, d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0, and let

be 1 ≤ j1 ≤ j2 ≤ d. Deconcatenate k as

k(1;j1) = (k1, . . . , kj1), k(j1+1;j2) = (kj1+1, . . . , kj2), k(j2+1;d) = (kj2+1, . . . , kd).

We have

ζ f
q

(
uk(1;j1)

(
uk(j1+1;j2) ∗ uk(j2+1;d)u

z
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

where w = |k| + z. In particular, for all 1 ≤ j ≤ d, deconcatenating the index k
as k(1;j−1) = (k1, . . . , kj−1), (kj , . . . , kd), we have

∑
ℓj ,...,ℓd≥0

ℓj+···+ℓd=z

ζ f
q

(
uk(1;j−1)ukj

u
ℓj

0 · · ·ukd
uℓd

0

)
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q .

Extending our methods used for the proof of Theorem 1.52, we observe the following
result.

Theorem 1.53 (Theorem 2.8). Bachmann’s Conjecture 1.49 is true for all triples of
positive integers (z, d, w) ∈ Z3

>0 with z + d ≤ 6.

Remark 1.54. Note that Theorem 1.53 is indeed independent of the weight w. There-
fore, Theorem 1.53 is a generalization of Theorem 1.51(ii) and, in parts, a generalization
of (iii) and (iv) of the same theorem. We refer to Example 1.64 for a first example
regarding Theorem 1.53.

Theorem 1.53, e.g., will be proven in several steps. In this way, we obtain the following
conjecture that strengthens Bachmann’s Conjecture 1.49 (see Lemma 2.68 for proof of
this statement). To state it, we denote

Fz,d,w := FilZ,D,W
z,d,w−1 Zf

q +
∑

z′+d′=z+d−1
0≤z′≤z

FilZ,D,W
z′,d′,w Zf

q

for all z, d, w ∈ Z>0.

Conjecture 1.55 (Refined Bachmann Conjecture, Conjecture 2.10). For all triples of
positive integers (z, d, w) ∈ Z3

>0, we have

FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w .

The following is a particular result regarding the refined Bachmann Conjecture 1.55.

Theorem 1.56 (Theorem 2.12). The refined Bachmann Conjecture 1.55 is true for
all (z, d, w) ∈ Z>0 with 1 ≤ d ≤ 4.

Together with Lemma 2.68, the impact of Theorem 1.56 is that one can prove Bach-
mann’s Conjecture 1.49 now almost for z+ d ≤ 7 (extending Theorem 1.53) in the sense
that just the proof for (2, 5, w) ∈ Z3

>0 of the refined Bachmann Conjecture 1.55 remains
to be done.
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1.2.3 Our approach to the refined Bachmann Conjecture

In the following, we present our approach to the refined Bachmann Conjecture 1.55. In
general, we will use Q-linear relations only that are implied by

ζ f
q (W1 ∗ (W2 − τ(W2))) = 0 (1.56.1)

for any words W1, W2 ∈ U∗,◦. At this point, note that

FilZ,D,W
z,d,w Q⟨U⟩◦ ∗ FilZ,D,W

z′,d′,w′ Q⟨U⟩◦ ⊂ FilZ,D,W
z+z′,d+d′,w+w′ Q⟨U⟩◦

and

τ
(
FilZ,D,W

z,d,w Q⟨U⟩◦
)

= FilZ,D,W
w−z−d,d,w Q⟨U⟩◦

for all z, z′, d, d′, w, w′ ∈ Z≥0. Hence, considering (1.56.1), W1 ∗ W2 and W1 ∗ τ(W2) are,
in general, in different filtrations of Q⟨U⟩◦ regarding the number of zeros since, in gen-
eral z ̸= w − z − d (we precise this observation in the following proposition). Therefore,
for given W ∈ U∗,◦, it is difficult to find the minimal z ∈ Z≥0 such that ζ f

q (W) ∈ FilZz Zf
q .

Proposition 1.57 (Proposition 2.13). Let be W1, W2 ∈ U∗,◦ and write

z = zero(τ(W1)) + zero(τ(W2)), d1 = depth(W1), d2 = depth(W2), w = wt(W1) + wt(W2).

Then, for 0 ≤ s ≤ min{d1, d2}, there are uniquely determined

Lmax{d1,d2}+s ∈ spanQ {W ∈ U∗,◦ | depth(W) = s+ max{d1, d2}}

such that

W1 ∗ W2 =
min{d1,d2}∑

s=0
Lmax{d1,d2}+s.

Furthermore, for all 0 ≤ s ≤ min{d1, d2}, we have

τ
(
Lmax{d1,d2}+s

)
∈ FilZ,D,W

z−s,max{d1,d2}+s,w Q⟨U⟩◦.

In particular, τ
(
Lmax{d1,d2}

)
is the part of τ(W1 ∗ W2) having the maximum number of

zeros and we have

τ(W1 ∗ W2) ∈
min{d1,d2}∑

s=0
FilZ,D,W

z−s,max{d1,d2}+s,w Q⟨U⟩◦.

Let us consider an example to point out the statement of Proposition 1.57.

Example 1.58 (Example 2.14). Choose W1 = u2, W2 = u1u2, i.e., d = 2 in the notion of
Proposition 1.57. We have

W1 ∗ W2 = u3u2 + u1u4︸ ︷︷ ︸
= L2

+u2u1u2 + 2u1u2u2︸ ︷︷ ︸
= L3

.

Observe

τ(L2) = u1u0u1u0u0 + u1u0u0u0u1, τ(L3) = u1u0u1u1u0 + 2u1u0u1u0u1.
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We see that τ(L2) indeed is the part of τ(u2 ∗ u1u2) having the maximum number of
zeros.

Since - regarding Bachmann’s Conjecture 1.49 and regarding the refined Bachmann
Conjecture 1.55 - we want to ’reduce the number of zeros’, we often will be interested in
the part of the stuffle product only that has the maximum number of zeros. Therefore,
Proposition 1.57 motivates the definition of the box product that extracts this part of the
stuffle product.

Definition 1.59 (Box product, Definition 2.15). We define the Q-bilinear box prod-
uct � : Q⟨U⟩◦ × Q⟨U⟩◦ → Q⟨U⟩◦ as follows: For Wj ∈ U∗,◦ with depth(Wj) = dj ,
where j ∈ {1, 2}, we set

W1 � W2 := Lmax{d1,d2}

in the notion of Proposition 1.57.

We continue Example 1.58 regarding the box product.

Example 1.60 (Example 2.16). Choose W1 = u2, W2 = u1u2. We have

W1 � W2 = u2 � u1u2 = u3u2 + u1u4,

which is exactly L2 of Example 1.58, i.e., after applying τ , one indeed obtains the part
of the stuffle product u2 ∗ u1u2 having maximum number of zeros.

We refer to Section 2.4 of Chapter 2 for a detailed investigation. Let us consider an
example of how the box product may help us concerning the refined Bachmann Conjec-
ture 1.55.

Example 1.61. Fix k1, k2, k3 ∈ Z>0 and set W1 := u1u1, W2 := uk1uk2uk3 . Clearly, we
have ζ f

q (W1 ∗ W2) ∈ FilD,W
5,w Zf,◦

q ⊂ F1,5,w (where w := k1 +k2 +k3 +2). Using τ -invariance
of formal qMZVs, we have, modulo FilZ,D,W

1,5,w Zf
q ,

ζ f
q (W1 ∗ W2)

≡ ζ f
q

(
u1u1 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
≡ ζ f

q

(
u2u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0 + u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0 + u1u

k3−1
0 u2u

k2−1
0 u2u

k1−1
0

)
≡ ζ f

q (uk1uk2u0uk3u0) + ζ f
q (uk1u0uk2uk3u0) + ζ f

q (uk1u0uk2u0uk3) (1.61.1)
≡ Ψ(k1,k2,k3)(u1u1 � u1u1u1),

where we set (see Definition 2.54 for a generalized definition), for all ℓ1, ℓ2, ℓ3 ∈ Z>0,

Ψ(k1,k2,k3)(uℓ1uℓ2uℓ3) := uℓ1u
k3−1
0 uℓ2u

k2−1
0 uℓ3u

k1−1
0 .

We see in this way that the linear combination from (1.61.1) is an element of F1,5,w

already, although all the three words displayed there are in FilZ,D,W
2,3,w Q⟨U⟩◦.

Example 1.61 shows that (non-trivial) box-products will be important. With the
notion of

P := spanQ {W1 � W2 | W1, W2 ∈ (U\{u0})∗ , W1, W2 ̸= 1} ⊂ Q⟨U\{u0}⟩

(see also Definition 2.30), we obtain the following generalization of Example 1.61 which
is our main approach towards the refined Bachmann Conjecture 1.55.
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Lemma 1.62 (Lemma 2.56). Let be z = (zd, . . . , z1) ∈ Zd
>0 such that uz ∈ P. Then, for

every word W = uk1u
z1−1
0 · · ·ukd

uzd−1
0 with k1, . . . , kd ∈ Z>0 arbitrary, we have

ζ f
q (W) ∈

∑
1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q ⊂ Fz,d,w,

where z = zero(W) and w = wt(W).

Approach to the refined Bachmann Conjecture 1.55 in case z ≥ d. In the
case z ≥ d, the approach to the refined Bachmann Conjecture 1.55 melts down to inves-
tigate the box products. More precisely, with the notion of

𝒯z,d := spanQ

{
uµ | µ ∈ Zd

>0, |µ| = z + d
}
.

for all z, d ∈ Z>0, we need to prove Conjecture 2.39 which claims in case z ≥ d that

𝒯z,d = 𝒯z,d ∩ P.

I.e., if the Conjecture 2.39 is true for z ≥ d, then we obtain FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w for
all w ∈ Z>0 immediately from Lemma 1.62. What is remarkable about this approach is
that it is independent of w.

Approach to the refined Bachmann Conjecture 1.55 in case z < d. In the
case z < d, we will extend our approach towards the refined Bachmann Conjecture 1.55
since then, we conjecturally (see Conjecture 2.39) have 𝒯z,d ∩ P ⊊ 𝒯z,d. We will present
in the Outlook of Chapter 2 (Section 2.7) an approach that conjecturally works. To
prove our main results, we will not use this approach in its abstract form. However, we
will consider some Q-linear combinations of formal Multiple Zeta Values in FilZ,D,W

z,d,w Zf
q

explicitly that arise from stuffle products again.
More precisely, we fix z, d, w ∈ Z≥0 with z < d in the following and assume that

FilZ,D,W
z̃,d̃,w̃

Zf
q ⊂ Fz̃,d̃,w̃

for z̃ ≤ z, d̃ < d, w̃ < w is proven already. Let us consider an example of such a linear
combination of formal qMZVs arising from a stuffle product we consider in case z < d
additionally to the ones from the approach for case z ≥ d.

Example 1.63. Let be k1, k2, k3 ∈ Z>0 and denote w = k1 +k2 +k3 +2 in the following.
First, we see that ζ f

q (u2 ∗ uk1uk2uk3) ∈ F1,3,w. Furthermore, we have

ζ f
q (τ(τ(u2) ∗ τ(uk1uk2uk3)))

= ζ f
q

(
τ
(
u1u0 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

))
≡ ζ f

q

(
τ
(
k3u2u

k3
0 u1u

k2−1
0 u1u

k1−1
0 + k2u2u

k3−1
0 u1u

k2
0 u1u

k1−1
0

+k2u1u
k3−1
0 u2u

k2
0 u1u

k1−1
0 + k1u2u

k3−1
0 u1u

k2−1
0 u1

+k1u1u
k3−1
0 u2u

k2−1
0 u1 + k1u1u

k3−1
0 u1u

k2−1
0 u2u

k1
0

))
mod F1,3,w

≡ k3ζ
f
q (uk1uk2uk3+1u0) + k2ζ

f
q (uk1uk2+1uk3u0) + k2ζ

f
q (uk1uk2+1u0uk3)

+ k1ζ
f
q (uk1+1uk2uk3u0) + k1ζ

f
q (uk1+1uk2u0uk3) + k1ζ

f
q (uk1+1u0uk2uk3)mod F1,3,w .
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I.e., the latter linear combination of formal qMZVs is in F1,3,w. In comparison to (1.61.1),
it stands out that the shape of the latter linear combination does dependent on (k1, k2, k3)
in the sense that the coefficients are not independent of (k1, k2, k3) and that occurring
words do not have the same non-u0-letters in the same order. Nevertheless, all occurring

words uk′
1
uz1

0 uk′
2
uz2

0 uk′
3
uz3

0 satisfy k′
j ≥ kj and

3∑
j=1

(k′
j − kj) = 1 ≤ 2 = d− z, when z = 1

and d = 3 denote the number of zeros and depth, respectively, of each of such words. We
will generalize this observation briefly in Section 2.7.

Let us consider a small example of how the proof of Theorem 1.53 works in case z < d
using the ideas described.

Example 1.64. Let be k1, k2, k3 ∈ Z>0. Consider ζ f
q (uk1u0uk2u0uk3) ∈ FilZ,D,W

2,3,w Zf
q ,

where w = k1 + k2 + k3 + 2. In the following, we prove that this formal qMZV is an
element of F := FilZ,D,W

0,5,w Zf
q + FilZ,D,W

1,4,w Zf
q ⊂ F2,3,w. Particularly, by Theorem 1.53(iv),

then it will be proven that ζ f
q (uk1u0uk2u0uk3) ∈ FilD,W

5,w Zf,◦
q . Note that this is not a

direct consequence of the known results (Theorem 1.53) since uk1u0uk2u0uk3 has depth 3
and more than one u0 which will be also the case after applying τ (if k1 + k2 + k3 > 4).
In the following, we will use the calculation from Example 1.61 and similar ones. We
use τ -invariance in each of the following steps to obtain

ζ f
q (uk1u0uk2u0uk3) = ζ f

q

(
u1u

k3−1
0 u2u

k2−1
0 u2u

k1−1
0

)
≡ ζ f

q

(
u1u1 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
− ζ f

q

(
u1 ∗ u2u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
+ ζ f

q

(
u3u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F

≡ ζ f
q (u1u1 ∗ uk1uk2uk3) − ζ f

q (u1 ∗ uk1uk2uk3u0)
+ ζ f

q (uk1uk2uk3u0u0) mod F .

Now, the first two summands are in F since in the stuffle product, the number of u0’s
does not increase. Hence,

ζ f
q (uk1u0uk2u0uk3) ≡ ζ f

q (uk1uk2uk3u0u0) mod F . (1.64.1)

Now, note that ζ f
q (uk3u0u0) ∈ FilD,W

3,k3+2 Zf,◦
q due to Theorem 1.51(i), i.e., we already

have ζ f
q (uk1uk2 ∗ uk3u0u0) ∈ FilD,W

5,w Zf,◦
q ⊂ F . Therefore, we have

ζ f
q (uk1uk2uk3u0u0)

= ζ f
q (uk1uk2 ∗ uk3u0u0) − ζ f

q (uk3(uk1uk2 ∗ u0u0))
− ζ f

q (uk1uk3(uk2 ∗ u0u0)) − ζ f
q (uk1+k3(uk2 ∗ u0u0)) − ζ f

q (uk1uk2+k3u0u0)

≡ ζ f
q

(
uk1uk2 ∗ u3u

k3−1
0

)
− ζ f

q

(
(u2 + u1u1) ∗ u1u

k2−1
0 u1u

k1−1
0 u1u

k3−1
0

)
− ζ f

q

(
(u2 + u1u1) ∗ u1u

k2−1
0 u1u

k3−1
0 u1u

k1−1
0 − u1 ∗ u1u

k2−1
0 u1u

k3−1
0 u2u

k1−1
0

)
− ζ f

q

(
(u2 + u1u1) ∗ u1u

k2−1
0 u1u

k1+k3−1
0

)
− ζ f

q

(
u3u

k2+k3−1
0 u1u

k1−1
0

)
mod F

≡ ζ f
q

(
uk1uk2 ∗ u2 ∗ u1u

k3−1
0

)
− ζ f

q ((u2 + u1u1) ∗ uk3uk1uk2)

− ζ f
q ((u2 + u1u1) ∗ uk2uk3uk1 − u1 ∗ uk2u0uk3uk1) − ζ f

q ((u2 + u1u1) ∗ uk1+k3uk2)

− ζ f
q

(
u1 ∗ u2u

k2+k3−1
0 u1u

k1−1
0 − u1u1 ∗ u1u

k2+k3−1
0 u1u

k1−1
0

)
mod F

≡ ζ f
q (uk1uk2 ∗ u2 ∗ uk3) − ζ f

q (u1 ∗ uk1uk2+k3u0) + ζ f
q (u1u1 ∗ uk1uk2+k3) mod F .
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The latter linear combination of formal qMZVs clearly is in F . I.e., we have proven
that ζ f

q (uk1u0uk2u0uk3) ∈ F . Now, note the inclusion FilZ,D,W
1,4,w Zf

q ⊂ FilD,W
5,w Zf,◦

q (by
Burmester’s Theorem 1.51(iv)), we have ζ f

q (uk1u0uk2u0uk3) ∈ FilD,W
5,w Zf,◦

q . Moreover,
due to (1.64.1), we also have shown that ζ f

q (uk1uk2uk3u0u0) ∈ FilD,W
5,w Zf,◦

q .

1.2.4 Outlook

Besides the connection of the box product with Zf
q and its structure, the box product

seems interesting due to its straightforward definition. Nevertheless, it seems it did not
occur so far in the literature. In particular, for future work, it would be interesting to
investigate where the box product can be used, e.g., in combinatorics. Furthermore,
for future work, it would be of interest to understand the box product completely in the
sense that one could prove Conjecture 2.39 (and its refinement, Conjecture 2.58). Partial
results regarding Conjecture 2.39 will be presented in Chapter 2. Similar to Example 1.64
and Proposition 2.21, our approach to the refined Bachmann Conjecture 1.55 is usable
to derive explicit formulas for every ζ f

q (W) with W ∈ U∗,◦ and zero(W) ≥ 1 as linear
combination of (products of) elements in Zf,◦

q .

1.3 The combinatorial side of Multiple q-Zeta Values con-
sidered in Paper II

This section introduces the work that builds Chapter 3. It is the combinatorial view on
Multiple q-Zeta Values of this thesis. Section 1.3.1 introduces the notion of partitions
and Stanley coordinates needed in Section 1.3.2 to introduce marked partitions and
their connection to Multiple q-Zeta Values. Furthermore, in Section 1.3.3, the results of
Chapter 3 are presented.

By using geometric series expansion, for appropriate an,k,ℓ ∈ Z≥0, one obtains

qmℓ

(1 − qm)k
=
∑
n≥0

an,k,ℓq
nm

for all positive integers m and non-negative integers k and ℓ. Therefore, every qMZV,
seen as a formal q-series, is of shape∑

m1>···>md>0
n1,...,nd>0

cm1,...,md
qm1n1+···+mdnd .

Hence, we can view the qMZV as the generating series of partitions, given in Stanley
coordinates (see Section 1.3.1), with multiplicities cm1,...,md

, depending on the several
parts m1, . . . ,md of the partition, but not on their multiplicities n1, . . . , nd. This is part
of Section 1.3.2 and is mainly based on [14]. The main result of this section will be
Theorem 1.84 describing the stuffle product on the level of marked partitions and can be
found in Section 1.3.3.

1.3.1 Partitions and Stanley coordinates

This section aims to introduce Stanley coordinates as described in [42]. For this, we first
clarify what a partition of a positive integer is.
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Definition 1.65. Given a positive integer N . A partition λ of N is a non-increasing
sequence (λ1, . . . , λr) of positive integers summing to N , i.e.,

λ1 ≥ · · · ≥ λr, |λ| :=
r∑

j=1
λj = N.

For N = 0, the unique partition is λ = ∅.

A visualization of a partition is given by the Young Tableau, also known as the Ferres
diagram. For a reference and more details, see [28].

Definition 1.66. Given a partition λ = (λ1, . . . , λr) of N ∈ Z>0. The Young Tableau
of λ is obtained by drawing, left aligned and each other, λ1, . . . , λr boxes to the right.

Example 1.67. Consider the partition λ = (5, 5, 4, 2) of N = 5 + 5 + 4 + 2 = 16. Then,

is the Young Tableau of λ.

We need the following definition since we will describe τ on a combinatorial level.

Definition 1.68. Given a partition λ of some positive integer N . The conjugated par-
tition of λ has the Young Tableau of λ reflected at the diagonal as the Young Tableau.

Example 1.69. Take the partition λ = (5, 5, 4, 2) from Example 1.67. The Young
Tableau reflected at the main diagonal is the following.

I.e., the conjugated partition of λ is (4, 4, 3, 3, 2).

Next, we define Stanley coordinates of a partition. With those, one can describe the
conjugated partition very well; see Proposition 1.72 below.

Definition 1.70. Given a partition λ = (λ1, . . . , λr) of a positive integer N . Denote
by mj ∈ Z>0 the j-th largest value of λ and by nj ∈ Z>0 the multiplicity of mj occurring
in λ. I.e., if λ consists of d different integers, we have

m1 > · · · > md > 0,
d∑

j=1
mjnj = N.

The pair of indices ((m1, . . . ,md), (n1, . . . , nd)) is called Stanley coordinates of the par-
tition N .

Example 1.71. The Stanley coordinates of the partition λ = (5, 5, 4, 2), considered in
Example 1.67, are

(m1,m2,m3) = (5, 4, 2), (n1, n2, n3) = (2, 1, 1).
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In Stanley coordinates, it is easy to express the conjugated partition, as we will see
now.

Proposition 1.72. Given a partition λ with Stanley coordinates (m,n) ∈ Zd
>0 × Zd

>0.
The conjugated partition of λ has Stanley coordinates

((n1 + · · · + nd, n1 + · · · + nd−1, . . . , n1), (md,md−1 −md, . . . ,m1 −m2)) .

1.3.2 qMZVs as generating series of marked partitions

As mentioned in the introduction of this section, we can interpret qMZVs as generating
series of partitions, particularly when considering their Stanley coordinates. In the fol-
lowing, we will extend Young Tableaus by marking rows and columns specifically, leading
to marked partitions as introduced in [14]. The first aim of the procedure is to interpret
Schlesinger–Zudilin qMZVs as generating series of specific marked partitions.

The following can be obtained using geometric series expansion and is a variation of
a statement from the proof of [25, Lemma 5.1].

Proposition 1.73. For any word W = uk1u
z1
0 · · ·ukd

uzd
0 ∈ U∗,◦, we have

ζSZ
q (W) =

∑
m1>···>md>0

n1,...,nd>0

 d∏
j=1

(
mj −mj+1 − 1

zj

)(
nj − 1
kj − 1

) qm1n1+···+mdnd .

In the following, we introduce the marked partitions regarding the Schlesinger–Zudilin
model (see also Chapter 3).

Definition 1.74. Let λ be a partition of N and denote by (m,n) ∈ Zd
>0 × Zd

>0 the
Stanley coordinates of λ.

(i) If for kj rows of length mj are marked, we call k = (k1, . . . , kd) the type of this row
marking. A row marking is called distinct if the lowest row for each length mj is
marked.

(ii) A distinct column marking of λ is a d-tupel z = (z1 +1, . . . , zd +1), such that (zd +
1, . . . , z1 + 1) is a distinct row marking of the conjugate partition of λ.

(iii) We identify a pair (k; z) of such distinct row and column markings with the
word W = uk1u

z1
0 · · ·ukd

uzd
0 ∈ U∗,◦ and call the pair (k; z) of such distinct markings

for short a W-marking of λ.

(iv) For W ∈ U∗,◦, let be MPW the set of marked partitions with marking W. The set of
all marked partitions is MP =

⋃
W∈U∗,◦

MPW.

We visualize row markings with a coloured dot to the left of the row. Analogously, a
column marking is visualized with a coloured dot on top of the column that got marked.

Example 1.75. A marked partition of type u1u0u0u3u0u1 is

.
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We can describe the combinatorial interpretation of Schlesinger–Zudilin qMZVs as
follows.

Lemma 1.76 ([14, Proposition 17]). Given a word W ∈ U∗,◦. Then, ζSZ
q (W) is the gener-

ating series of marked partitions of type W, i.e.,

ζSZ
q (W) =

∑
λ̂∈MPW

q|λ̂|.

In [14], one obtains a remarkable fact by considering a marked partition and its
conjugate (when row markings become column markings and vice versa).

Lemma 1.77. Given a word W ∈ U∗,◦. The marked partitions of type W are in one-to-
one correspondence with marked partitions of type τ(W). An explicit bijection is given by
conjugating the Young Tableaus together with the markings.

Since conjugation does not change the partitioned number, Lemma 1.77 gives directly
that the corresponding generating series are the same.

Corollary 1.78 ([14]). Duality already follows from the one-to-one correspondence of
marked partitions of type W and marked partitions of type τ(W) for any W ∈ U∗,◦ as
described in Lemma 1.77.

Remark 1.79. In this way, we have a combinatorial proof of duality, Theorem 1.29.
Remarkable about this proof is that it is not only based on the fact that the (integer)
coefficients in ζSZ

q (W) and ζSZ
q (τ(W)), for any W ∈ U∗,◦, are the same, but also gives them a

combinatorial interpretation as the number of specifically marked partitions from which
we constructed a one-to-one correspondence. This way, this proof is more profound than
the standard ones using, e.g., a rearrangement of sums.

1.3.3 Stuffle product described with marked partitions

In the following, we provide the main result of [15] which is Chapter 3. It consists
of a combinatorial description of the stuffle product (for Schlesinger–Zudilin qMZVs)
using marked partitions. The idea for this is slicing two marked partitions into their
horizontal blocks (a horizontal block of a (marked) partition is the union of all rows of
the corresponding Young Tableau having a given length) and "glueing" them together to
a new marked partition, in some way we will present now.

Definition 1.80 (Definition 3.5). The map Φ: MP ×MP → MP is defined as follows:
Given marked partitions p̂1 of N1 and p̂2 of N2, then p̂ = Φ(p̂1, p̂2) is the marked partition
of N1 +N2 obtained by the following rules:

(i) We set Φ(∅, p̂2) := p̂2 and Φ(p̂1, ∅) := p̂1.

(ii) The Young Tableau of p̂ is obtained by cutting the Young Tableau of p̂1 and p̂2
horizontally below the rows containing corners into their horizontal blocks and
glueing them (horizontally again) together to a new Young Tableau. If both, p̂1
and p̂2, have horizontal blocks of same length, the ones of p̂1 will occur above the
ones of p̂2 in the new partition.

(iii) Keep the markings of the rows.

(iv) If there was a marking in the j-th leftmost column of p̂1 or p̂2, the j-th leftmost
column of p̂ will be marked as well.
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Remark 1.81. Note that the map Φ is associative but not commutative. The underlying
Young Tableau of Φ(p̂1, p̂2) is the same as the one of Φ(p̂2, p̂1) and also the column
markings match. However, the row markings, in general, do not if p̂1 and p̂2 have
horizontal blocks of the same length.

Example 1.82 (Example 3.7). Consider the following pair of marked partitions.

p̂1 p̂2

First, we slice them into their horizontal blocks.

Following the definition of Φ, we obtain Φ(p̂1, p̂2) after sorting the horizontal blocks
as the following marked partition:
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Horizontal blocks ordered

Φ(p̂1, p̂2)

Definition 1.83 (Definition 3.8). (i) For W1, W2, W ∈ U∗,◦, we set mW1,W2;W ∈ Z≥0 to be
the multiplicity of W in W1 ∗ W2, i.e., to be the unique integer satisfying

W1 ∗ W2 =
∑

W∈U∗,◦
mW1,W2;WW.

(ii) For W1, W2, W ∈ U∗,◦ and p̂ ∈ MPW, we define

mW1,W2;p̂ := # {(p̂1, p̂2) ∈ MPW1 × MPW2 | Φ(p̂1, p̂2) = p̂} .

Note that, for fixed W1, W2 ∈ U∗,◦, almost all mW1,W2;W are zero. The main result now
is how the stuffle product can be interpreted combinatorially using marked partitions.

Theorem 1.84 (Theorem 3.9). Consider words W1, W2, W ∈ U∗,◦. For all marked parti-
tions p̂ ∈ MPW, we have

mW1,W2;p̂ = mW1,W2;W.

In particular, given W1, W2, mW1,W2;p̂ only depends on the word W but not on the marked
partition p̂ ∈ MPW.

The proof of Theorem 1.84 is provided in Chapter 3. It uses mainly a combinatorial
argument for obtaining a recursion of the numbers mW1,W2;p̂ that will be a similar recursion
as one can obtain for the numbers mW1,W2;W using the stuffle product (which can be found
in Lemma 3.12). The new aspect of Theorem 1.84 is that it provides a combinatorial
and deeper understanding of the stuffle product than it was known so far.

1.3.4 Outlook

After this short introduction to marked partitions, we will briefly examine how marked
partitions can be used for other aspects of the algebraic structure of (q)MZVs.
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Both duality and the stuffle product are now understood on marked partitions.
Referring to Conjecture 1.43, conjecturally, every linear relation among (Schlesinger–
Zudilin) qMZVs now can be described using marked partitions.

Nevertheless, the structure of marked partitions has yet to be understood entirely
regarding the linear relations among qMZVs. For future study, it will be interesting if
one can make progress in proving Conjecture 1.49, e.g., using marked partitions. The
main idea is that, for fixed W ∈ U∗,◦ with zero(W) ≥ 1, one can find for every integer N
a bijection from the set of marked partitions of N of type W to a particular (union of)
set(s) of marked partitions of N of type W′ satisfying W′ ∈ U∗,◦ and zero(W′) < zero(W).

1.4 The analytic side of Multiple q-Zeta Values considered
in Paper III

This section introduces the paper [12] that builds Chapter 4, which contains an analytic
perspective on Multiple q-Zeta Values. As mentioned at the beginning of this chapter,
quasi-modular forms are particular qMZVs via their Fourier expansion. Similarly, one
can consider every Multiple q-Zeta Value as Fourier expansion of a function on the upper
half plane H := {z ∈ C : Im(z) > 0} via setting q = e2πiτ for τ ∈ H. A common
strategy for investigating q-series, also for their algebraic structure, is considering their
asymptotic expansion. We will do this in Section 1.4.1 for several qMZVs and give
ideas for an approach for general qMZVs. Such asymptotic expansions are of particular
interest since the coefficients often are linear combinations of MZVs, i.e., every Q-linear
relation among qMZVs will give several Q-linear relations among MZVs. The results of
Section 1.4.1 were obtained jointly with H. Bachmann, J.–W. van Ittersum, and N. Sato.
Furthermore, when considering particular sums of qMZVs such as∑

d≥0
ζSZ

q (ud
1),

one obtains the well-known generating series of partition numbers that has an expression
as Euler product. W. Bridges, B. Brindle, K. Bringmann, and J. Franke studied the
asymptotic expansion in detail for a large class of them using Wright’s Circle Method
which we briefly introduce in Section 1.4.2. We will present in Section 1.4.3 the main
results of this work, which is Chapter 4.

1.4.1 Asymptotics of qMZVs

First, recall from Section 1.1.4 that for every bi-bracket G = g
(k1,...,kd

z1,...,zd

)
multiplied

with (1 − q)w, where w := k1 + · · · + kd + z1 + · · · + zd, the limit q → 1 exists (af-
ter possible regularization), due to [8, Theorem 1.2]. Then, for q = e−t, we want to
describe the asymptotic expansion

G ∼ a−w
1
tw

+
∑

n>−w

ant
n (t → 0),

where a−w is the limit mentioned above. A naive guess is that the coefficients an are linear
combinations of Multiple Zeta Values of lower depth and mixed weight. That a−w ∈ Z
is already known from [8, Theorem 1.2]. We refer to Lemma 1 and Proposition 1 of [48]
for partial results on the asymptotic behaviour of bi-brackets. Another approach can be
deduced from Zagier’s work [45]. The following statement ([45, Eq. (48)]) is the basis for
Lemma 1.86.
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Proposition 1.85. Setting q = e−t, for all z ∈ Z>0, we have

g

(
1
z

)
= g

(
z + 1

0

)
∼ ζ(z + 1)

tz+1 − 1
z!

∞∑
r=0

(−1)r+zBr

r!
Br+z

r + z
tr−1 (t → 0),

where Bm denotes the mth Bernoulli number.

By noting that q d
dq = − d

dt for q = e−t, we obtain the asymptotic expansion of most
bi-brackets in depth 1.

Lemma 1.86. Let be k, z ∈ Z>0 satisfying z > k − 1. Setting q = e−t, we have

g

(
k

z

)
= g

(
z + 1
k − 1

)
∼ ζ(z − k + 2)

(k − 1)!
1
tz+1 + (−1)z−k Bz−k+1

z!(z − k + 1)
1
tk

+ 1
(k − 1)!z!

∞∑
r=0

(−1)r+z−k+1 1
r!

Br+kBr+z+1
(r + k)(r + z + 1) t

r (t → 0).

For an investigation of the asymptotic behaviour of bi-brackets, in depth 1, the
case z = k − 1 remains to be considered. For this case, we recall the definition of
bi-brackets in depth 1. When setting q = e−t, we have

g

(
k

z

)
= 1
z!
∑
m>0

mz Pk(qm)
(1 − qm)k

= 1
z!

1
tz

∑
m>0

(mt)z Pk(e−mt)
(1 − e−mt)k

(1.86.1)

Now, since Pk(X) has no zero in X = 1 for all k ∈ Z>0, we have a pole of order k− 1
if z = k − 1. Defining

f(k,z)(t) := tz
Pk(e−t)

(1 − e−t)k
,

we are interested in the asymptotic expansion of

g(k,z)(t) :=
∑
m>0

f(k,z)(mt).

For z = k − 1, note that f(k,k−1)(t) has a single pole in t = 0, i.e., it has, near t = 0,
asymptotic development

f(t) ∼
∞∑

n=−1
bnt

n (1.86.2)

for appropriate bn ∈ R. We make use of the following result due to Zagier.

Lemma 1.87 ([45, Proposition 3]). If

f(t) ∼
∑

λ≥−1
bλt

λ (t → 0),

then we have

g(t) =
∑
m>0

f(mt) ∼ 1
t

(
b−1 log 1

t
+ I∗

f

)
+

∞∑
λ>−1

bλζ(−λ)tλ (t → 0).



34 Chapter 1. Different perspectives on Multiple q-Zeta Values

Here, I∗
f denotes the integral

I∗
f :=

∫ ∞

0
f(t) − b−1

e−t

t
dt.

Therefore, Lemma 1.87 gives, together with (1.86.2), the desired asymptotic develop-
ment for t → 0 of g

( k
k−1
)

(when setting q = e−t) already when knowing the coefficients bn

in (1.86.2).

Lemma 1.88. For every k ∈ Z>0 and t ∈ R\{0}, we have

fk,k−1(t) = t−1 + (−1)k−1

(k − 1)!

∞∑
n=0

Bn+k

(n+ k)n! t
n+k−1.

In particular, we have this expression as asymptotic behaviour as t → 0.

Proof. Using one of the fundamental properties of Eulerian polynomials, we find

Pk(e−t)
(1 − e−t)k

= 1
(k − 1)!

(
− d

dt

)k−1 1
et − 1

= 1
(k − 1)!

(
− d

dt

)k−1 ∞∑
n=0

Bn

n! t
n−1,

implying the lemma after multiplication with tk−1.

For the asymptotic behaviour of g(k,k−1)(t), it remains to compute I∗
f(k,k−1)

.

Lemma 1.89. We have

I∗
f(k,k−1)

=
∞∫

0

f(k,k−1)(t) − e−t

t
dt = δk>1Hk−1 + γ,

where Hk−1 denotes the (k − 1)st harmonic number and γ the Euler constant.

Sketch of the proof. We have

tk−1
(

− d

dt

)k−1 e−t

t
= (k − 1)!e

−t

t
+

k−2∑
j=0

(
k − 1
j

)
j!e−ttk−j−2.

Hence, we obtain

f(k,k−1)(t) − e−t

t
=

k−2∑
j=0

e−ttk−j−2

(k − j − 2)! + tk−1

(k − 1)!

(
− d

dt

)k−1 [ 1
et − 1 − e−t

t

]
.

This leads to

I∗
f(k,k−1)

= δk>1Hk−1 + 1
(k − 1)!

∞∫
0

tk−1
(

− d

dt

)k−1 [ 1
et − 1 − e−t

t

]
dt,

where Hk−1 denotes the (k − 1)st harmonic number. Integrating by parts leads to the
recursion

∞∫
0

tk−1
(

− d

dt

)k−1 [ 1
et − 1 − e−t

t

]
dt = (k − 1)

∞∫
0

tk−2
(

− d

dt

)k−2 [ 1
et − 1 − e−t

t

]
dt,
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yielding
∞∫

0

tk−1
(

− d

dt

)k−1 [ 1
et − 1 − e−t

t

]
dt = (k − 1)!γ.

In particular, we conclude

I∗
f(k,k−1)

= δk>1Hk−1 + γ,

proving the lemma.

Using Lemmas 1.87, 1.88, 1.89, and ζ(−n) = (−1)n Bn+1
n+1 for nonnegative integers n,

we obtain now the asymptotic behaviour of g(k,k−1)(t) as t → 0.

Corollary 1.90. For all k ∈ Z>0, we have, as t → 0,

g(k,k−1)(t) ∼
log 1

t

t
+ δk>1Hk−1 + γ

t
+ 1

(k − 1)!

∞∑
n=0

Bn+k

(n+ k)
Bn+1

(n+ 1)!(−t)
n+k−1.

With (1.86.1), we obtain the asymptotic expansion of g
( k

k−1
)
.

Corollary 1.91. For all k ∈ Z>0, when setting q = e−t, we have, as t → 0,

g
(

k

k − 1

)
∼

log 1
t

(k − 1)!tk + δk>1Hk−1 + γ

(k − 1)!tk + 1
(k − 1)!2

∞∑
n=0

Bn+k

(n+ k)
Bn+1

(n+ 1)!(−t)
n.

Therefore, the depth 1 case of bi-brackets is done. For higher depth, one approach
is to use [17, Theorem 1.4]. The challenge there is computing integrals such as I∗

f in a
generalized way. This is current research and is left as an open problem.

1.4.2 The Circle Method

Another way to consider qMZVs is in viewing them as q-series and investigating the
asymptotic of the coefficients as the exponent tends to ∞. One will do this using Wright’s
Circle Method. We briefly introduce here the Circle Method which is a tool from com-
plex analysis used in analytic number theory and combinatorics to better understand
properties of sequences. We find asymptotic formulas for a general class of partition
functions, see Sections 1.4.3 and 4.1.6. This is also for the study of qMZVs of interest
since every qMZV is the generating function of a class of marked partitions, as presented
in Section 1.3.

Suppose that a sequence (c(n))n∈N0 has moderate growth and the generating function

F (q) :=
∑
n≥0

c(n)qn,

is holomorphic in the unit disk with radius of convergence 1. Via Cauchy’s integral
formula one can then recover the coefficients from the generating function

c(n) = 1
2πi

∫
C

F (q)
qn+1 dq, (1.91.1)

for any simple closed curve C contained in the unit disk orientated counterclockwise.
The so-called Circle Method uses the analytic behavior of F (q) near the boundary of the
unit circle to obtain asymptotic information about c(n). In fact for “nice” examples this
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method is automatic and there is a long history for example with the Prime Number The-
orem. For instance, if the c(n) are positive and monotonically increasing, it is expected
that the part close to q = 1 provides the dominant contribution to (1.91.1) (Tauberian
Theorems then show this). This part of the curve is the major arc and the complement
is the minor arc. To obtain an asymptotic expansion for c(n), one then evaluates the
major arc to some degree of accuracy and bounds the minor arc. Depending on the
function F (q), both of these tasks present a variety of difficulties.

In Chapter 4, we are interested in infinite product generating functions of the form

F (q) =
∏
n≥1

1
(1 − qn)f(n) .

Such generating functions are important in the theory of partitions, but also arise, for
example, in representation theory. If the Dirichlet series for f(n) has a single simple
pole on the positive real axis and F is “bounded” away from q = 1, then Meinardus [36]
proved an asymptotic expression for c(n). Debruyne and Tenenbaum [24] eliminated
the technical growth conditions on F by adding a few more assumptions on the f(n),
which made their result more applicable. The main results of Chapter 4, Theorems 1.93
and 1.94, yield asymptotic expansions given mild assumptions on f(n) and have a variety
of new applications.

1.4.3 Analytic behaviour of q-series studied with the circle method

A particular connection of qMZVs to the partition functions is given in the following
lemma, which can be found, e.g., in [3] or [14].

Lemma 1.92. Denoting by p(n) the number of partitions of n, one has

∑
d≥0

ζSZ
q (ud

1) =
∑
n≥0

p(n)qn =
∏
n≥1

1
1 − qn

. (1.92.1)

In [30], Hardy and Ramanujan used (1.92.1) to show the asymptotic formula

p(n) ∼ 1
4
√

3n
eπ
√

2n
3 , n → ∞,

which gave birth of the Circle Method. Using modular transformations, one can describe
with high precision the analytic behaviour of the product if q is near a root of unity. One
further sees directly from the infinite product that dominant singularities occur at such
roots of unity with small denominator. These ideas culminate in Rademacher’s exact
formula for p(n) [39].

With Theorem 1.93 we find, for certain constants Bj and arbitrary N ∈ N,

p(n) = eπ
√

2n
3

4
√

3n

1 +
N∑

j=1

Bj

n
j
2

+ON

(
n− N+1

2
) .

Similarly, one can treat the cases for k-th powers (in arithmetic progressions), see [24].
The main goal of Chapter 4 (which is [12]) was to prove asymptotic formulas for a

general class of partition functions. To state it, let f : N → N0, set Λ := N \ f−1({0}),
and for q = e−z (z ∈ C with Re(z) > 0), define

Gf (z) :=
∑
n≥0

pf (n)qn =
∏
n≥1

1
(1 − qn)f(n) , Lf (s) :=

∑
n≥1

f(n)
ns

.
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We require the following key properties of these objects:
(P1) All poles of Lf are real. Let α > 0 be the largest pole of Lf . There exists L ∈ N,

such that for all primes p, we have |Λ \ (pN ∩ Λ)| ≥ L > α
2 .

(P2) Condition (P2) is attached to R ∈ R+. The series Lf (s) converges for some s ∈ C,
has a meromorphic continuation to {s ∈ C : Re(s) ≥ −R}, and is holomorphic on
the line {s ∈ C : Re(s) = −R}. The function L∗

f (s) := Γ(s)ζ(s+ 1)Lf (s) has only
real poles 0 < α := γ1 > γ2 > · · · that are all simple, except the possible pole
at s = 0, that may be double.

(P3) For some a < π
2 , in every strip σ1 ≤ σ ≤ σ2 in the domain of holomorphicity, we

uniformly have, for s = σ + it,

Lf (s) = Oσ1,σ2

(
ea|t|

)
, |t| → ∞.

Note that (P1) implies that |Λ \ (bN∩ Λ)| ≥ L > α
2 for all b ≥ 2. The analytic properties

of Lf are a major ingredient needed to prove the following theorem, as analytic contin-
uation in (P2) gives rise to asymptotic expansions of 2 Log(Gf (z)) and (P3) assists with
vertical integration.
Theorem 1.93 (Theorem 4.5). Assume (P1) for L ∈ N, (P2) for R > 0, and (P3).
Then, for some M,N ∈ N,

pf (n) = C

nb
exp

A1n
α

α+1 +
M∑

j=2
Ajn

αj

1 +
N∑

j=2

Bj

nβj
+OL,R

(
n

− min
{

2L−α
2(α+1) , R

α+1

}) ,
where 0 ≤ αM < αM−1 < · · ·α2 < α1 = α

α+1 are given by3 L (defined in (1.93.1)),
and 0 < β2 < β3 < · · · are given by M + N , where M and N are defined in (1.93.2)
and (1.93.3), respectively. The coefficients Aj and Bj can be calculated explicitly; the
constants A1, C, and b are provided in (1.93.4) and (1.93.5). Moreover, if α is the only
positive pole of Lf , then we have M = 1.

With the notation of Theorem 1.93, we define

L := 1
α+ 1PR +

∑
µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0, (1.93.1)

M := α

α+ 1N0 +

−
∑

µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
[
0, R+ α

α+ 1

)
, (1.93.2)

N :=


K∑

j=1
bjθj : bj ,K ∈ N0, θj ∈ (−L) ∩

(
0, R

α+ 1

) . (1.93.3)

We set, with ωα := Ress=α Lf (s),

A1 :=
(

1 + 1
α

)
(ωαΓ(α+ 1)ζ(α+ 1))

1
α+1 ,

C := eL′
f (0)(ωαΓ(α+ 1)ζ(α+ 1))

1
2 −Lf (0)

α+1√
2π(α+ 1)

,

(1.93.4)

2Throughout we use the principal branch of the logarithm.
3We can enlarge the discrete exponent sets at will, since we can always add trivial powers with

vanishing coefficients to an expansion. Therefore, from now on we always use this expression, even if the
set increases tacitly.
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b :=
1 − Lf (0) + α

2
α+ 1 . (1.93.5)

We will provide the proof of the Theorem 1.93 and several examples in Chapter 4.
The second main result of Chapter 4 is the following theorem giving the asymptotic
expansion in the case that Lf has exactly two positive poles.

Theorem 1.94 (Theorem 4.29). Assume that f : N → N0 satisfies the conditions of
Theorem 1.93 and that Lf has exactly two positive poles α > β, such that ℓ+1

ℓ β < α ≤
ℓ

ℓ−1β for some ℓ ∈ N. Then we have

pf (n) = C

nb
exp

(
A1n

α
α+1 +A2n

β
α+1 +

ℓ+1∑
k=3

Akn
(k−1)β

α+1 + k−2
α+1 +2−k

)

×

1 +
M1∑
j=2

Bj

nνj
+OL,R

(
n

− min
{

2L−α
2(α+1) , R

α+1

}) , (n → ∞),

with

A1 := (ωαΓ(α+ 1)ζ(α+ 1))
1

α+1

(
1 + 1

α

)
, A2 := ωβΓ(β)ζ(β + 1)

(ωαΓ(α+ 1)ζ(α+ 1))
β

α+1
,

and for all k ≥ 3

Ak := Kk + c
1

α+1
1
α

ℓ∑
m=1

(
−α
m

) ∑
0≤j1,...,jℓ≤m
j1+...+jℓ=m

j1+2j2+...+ℓjℓ=k−1

(
m

j1, j2, . . . , jℓ

)
Kj1

2 · · ·Kjℓ
ℓ+1

c
m

a+1
1

+ c2

βc
β

a+1
1

ℓ∑
m=1

(
−β
m

) ∑
0≤j1,...,jℓ≤m
j1+...+jℓ=m

j1+2j2+...+ℓjℓ=k−2

(
m

j1, j2, . . . , jℓ

)
Kj1

2 · · ·Kjℓ
ℓ+1

c
m

a+1
1

.

Here, C and b are defined in (1.93.4) and (1.93.5), the νj run through M + N , the Kj

are given in Lemma 4.28, and c1, c2, and c3 run through (4.27.4).

1.4.4 Outlook

(i) An example of Theorem 1.93 is given in Theorem 4.4 where we studied the asymp-
totic behaviour of the finite-dimensional representation of so(5) which is closely
connected with the corresponding Witten zeta function ζso(5). A more detailed
study of ζso(5) and the proof for Theorem 4.4 is provided in Section 4.5.

(ii) Furthermore, since qMZVs, in general, do not have an Euler product representa-
tion, Theorem 1.93 gives the asymptotic expansion of particular (infinite) sums of
qMZVs only, such as in (1.92.1). Therefore, obtaining the asymptotic expansion for
general qMZVs is an open problem. Nevertheless, the Circle Method has turned
out to be a powerful tool in answering such questions over the last decades. This
is why studying the asymptotic of qMZVs using the Circle Method gives rise to a
research project for the future.

(iii) Solving the open problem of finding the asymptotic expansion for all qMZVs can
help answer the question of which (Q-linear combinations of) qMZVs are (quasi-)
modular forms.



1.5. Conclusion 39

1.5 Conclusion
This section briefly considers how our perspectives to qMZVs are connected.

i) Our combinatorial approach described in Section 1.3 is directly connected with
the algebraic one from Section 1.2. Both duality and the stuffle product are now
understood on marked partitions. Referring to Conjecture 1.43, conjecturally, ev-
ery linear relation among (Schlesinger–Zudilin) qMZVs now can be described us-
ing marked partitions. This opens the door to various new research projects; it
would be interesting to translate several (folklore) conjectures about the algebraic
structure of qMZVs into terms of marked partitions. For example, Bachmann’s
Conjecture 1.49 would be of interest to consider on the level of marked partitions.
It states - roughly speaking - that every (Schlesinger–Zudilin) qMZVis linear com-
bination of generating series of marked partitions as considered where only row
markings (resp. only column markings when using duality) are allowed. Hence,
for proving Conjecture 1.49, one has to deal with particular bijections (that has to
be discovered yet) among several sets of marked partitions, similar to the problem
of describing the stuffle product. One approach could be to translate the refined
Bachmann Conjecture 1.55 into the “language” of marked partitions.

ii) In general, the analytic study of Multiple q-Zeta Values is of interest since the
coefficients occurring in such asymptotic expansions often (maybe always; this is
current research) are Q-linear combinations of Multiple Zeta Values. Hence, by
comparing coefficients, a relation among Multiple q-Zeta Values gives a set of Q-
linear relations among Multiple Zeta Values. In this way, the analytic study of
Multiple q-Zeta Values has an impact on the algebraic study of Multiple Zeta
Values.

iii) Another aspect of the analytic study of Multiple q-Zeta Values is the connection to
quasi-modular forms since every quasi-modular form is a (linear combination of)
Multiple q-Zeta Values via their Fourier expansion. To study this connection, it
is often helpful to consider qMZVs as multiple Eisenstein series, introduced in [2].
For more details on multiple Eisenstein series, we refer to the works [2, 3, 4, 5, 6, 7,
22]. Note that there is also another connection of quasi-modular forms and MZVs,
conjectured by Broadhurst and Kreimer, see [18] for details.
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Abstract. In 2015, Bachmann [2] conjectured that the Q-vector space Zf
q of (formal) q-

analogues of Multiple Zeta Values (qMZVs) is spanned by a very particular set compared
to known spanning sets. This work proves that this conjecture is true for a subspace
of Zf

q spanned by words satisfying some condition on their number of zeros and depth.
According to this partial result, we give an explicit approach to the whole conjecture
based on particular Q-linear relations among formal Multiple q-Zeta Values, which are
implied by duality.

2.1 Introduction
Given a field F and a countable set A, we call A also an alphabet and elements of A
are referred to as letters. Denote by spanF A the F -vector space spanned by elements
of A. Furthermore, monomials of elements in A (with respect to concatenation) are
called words. Usually, the neutral element with respect to concatenation is denoted by 1
and called the empty word. Let A∗ denote the set of words with letters in A, then we
write F ⟨A⟩ for the F -vector space spanF A∗, equipped with the non-commutative, but
associative multiplication, given by concatenation.

Choosing F = Q and A = U := {uj | j ∈ Z≥0}, we define the stuffle product to be
the Q-bilinear map ∗ : Q⟨U⟩ × Q⟨U⟩ → Q⟨U⟩ recursively via

uj1W1 ∗ uj2W2 = uj1(W1 ∗ uj2W2) + uj2(uj1W1 ∗ W2) + uj1+j2(W1 ∗ W2)

for all j1, j2 ∈ Z≥0 and W1, W2 ∈ U∗ with initial condition 1 ∗ W = W ∗ 1 = W for W ∈ U∗.
By Hoffman’s work [7], (Q⟨U⟩, ∗) is an associative and commutative Q-algebra. For a
word W = uk1 · · ·ukr ∈ U∗, we often write uk (u∅ := 1), where k = (k1, . . . , kr), and
associate the notion of

length, len(W) := len(k) := r,

depth, depth(W) := depth(k) := #{kj ̸= 0 | 1 ≤ j ≤ r},
number of zeros, zero(W) := zero(k) := #{kj = 0 | 1 ≤ j ≤ r},

weight, wt(W) := wt(k) := |k| + zero(W),

where |k| := k1 + · · · + kr. Furthermore, we denote U∗,◦ := U∗\u0U∗ to be the set of
words not starting with u0 and we define the corresponding Q-vector space Q⟨U⟩◦ ⊂ Q⟨U⟩

1 Benjamin Brindle
benjamin.brindle@uni-hamburg.de
Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
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spanned by the words from U∗,◦. Note that Q⟨U⟩◦ is closed under ∗ which gives rise to
a commutative Q-algebra (Q⟨U⟩◦, ∗) (see [7]). The map ζSZ

q : (Q⟨U⟩◦, ∗) → (QJqK, ·)
is the Q-algebra homomorphism (see [8]) defined via ζSZ

q (1) = 1, Q-linearity, and,
with md+1 := 0,

ζSZ
q (uk1u

z1
0 · · ·ukd

uzd
0 ) :=

∑
m1>···>md>0

d∏
j=1

(
mj −mj+1 − 1

zj

)
qmjkj

(1 − qmj )kj
, (2.0.1)

for any k1, . . . , kd ∈ Z>0 and z1, . . . , zd ∈ Z≥0 where d ∈ Z>0 (note that this definition
is not the usual one, like in [11], but equivalent to it; this statement can be deduced,
e.g., from [5, Theorem 2.18]). We denote by Zq the image of ζSZ

q and call elements in Zq

(Schlesinger–Zudilin) qMZVs ((SZ-)qMZVs for short). Note that these q-series are q-
analogues of Multiple Zeta Values since in the case k1 ≥ 2 and z1 = · · · = zd = 0, we
have

lim
q→1

(1 − q)k1+···+kdζSZ
q (uk1 · · ·ukd

) = ζ(uk1 · · ·ukd
) :=

∑
m1>···>md>0

1
mk1

1 · · ·mkd
d

.

But in this work, we focus purely on the algebraic structure of (SZ-)qMZVs and do
not consider its implication for classical Multiple Zeta Values. Over the years, several
versions of qMZVs were introduced (see, e.g., [3, 4, 9, 10, 14]); for an overview, see [5].
Because of Conjecture 2.1 and since the q-series on the right of (2.0.1) is invariant under
the Q-linear involution τ : Q⟨U⟩◦ → Q⟨U⟩◦, defined by τ(1) := 1 and

τ (uk1u
z1
0 · · ·ukd

uzd
0 ) := uzd+1u

kd−1
0 · · ·uz1+1u

k1−1
0

for all d ∈ Z>0, k1, . . . , kd ≥ 1, and z1, . . . , zd ≥ 0 (see [13, Theorem 8.3]), we will
consider the algebra of formal qMZVs,

Zf
q := (Q⟨U⟩◦, ∗)⧸T ,

where T is the ∗-ideal in Q⟨U⟩◦ generated by {τ(W) − W | W ∈ Q⟨U⟩◦}. For W ∈ Q⟨U⟩◦, we
set ζ f

q (W) to be the congruence class of W in Zf
q . Note that depth and weight are invariant

under τ while the number of zeros generally is not. Furthermore, playing with τ and
the stuffle product ∗, one obtains non-trivial Q-linear relations among formal qMZVs.
The following folklore conjecture (see [1]; a published version can be found in [14, Con-
jecture 1]) states the expectation of how the Q-linear relations among SZ-qMZVs look
like.

Conjecture 2.1 (Bachmann). All Q-linear relations among elements in Zq are obtained
by the stuffle product ∗ and duality τ .

I.e., one expects Zq ≃ Zf
q . We will consider in this paper only Q-linear relations

in Zf
q which are implied by

ζ f
q (W1 ∗ (W2 − τ(W2))) = 0 (2.1.1)

for any words W1, W2 ∈ U∗,◦. For investigating Zf
q in more detail, we need the following

notion of filtrations.

Notation 2.2. (i) For every (N, op) ∈ {(Z, zero), (D, depth), (W,wt)}, n ∈ Z, and
sets S ⊂ Q⟨U⟩◦, S ′ ⊂ Zf

q , write

FilNn S := spanQ {W ∈ U∗,◦ | op(W) ≤ n} ∩ S,
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FilNn S ′ := spanQ

{
ζ f

q (W) ∈ Zf
q | W ∈ U∗,◦, op(W) ≤ n

}
∩ S ′

for the filtration by number of zeros (N = Z), depth (N = D), and weight (N = W)
respectively on S and S ′ respectively.

(ii) For S ⊂ Q⟨U⟩◦ or S ⊂ Zf
q , N1, . . . ,Nm ∈ {Z,D,W}, where m ∈ Z>0, and for

integers n1, . . . , nm ∈ Z, we abbreviate

FilN1,...,Nm
n1,...,nm

S :=
m⋂

j=1
FilNj

nj S.

The following particular filtration will play a main role in this paper.
Definition 2.3. We define

Zf,◦
q := FilZ0 Zf

q .

At this point, note that

FilZ,D,W
z,d,w Q⟨U⟩◦ ∗ FilZ,D,W

z′,d′,w′ Q⟨U⟩◦ ⊂ FilZ,D,W
z+z′,d+d′,w+w′ Q⟨U⟩◦ (2.3.1)

and

τ
(
FilZ,D,W

z,d,w Q⟨U⟩◦
)

= FilZ,D,W
w−z−d,d,w Q⟨U⟩◦ (2.3.2)

for all z, z′, d, d′, w, w′ ∈ Z. Hence, considering (2.1.1), W1 ∗ W2 and W1 ∗ τ(W2) are, in
general, in different filtrations of Q⟨U⟩◦ regarding the number of zeros since we have,
in general z ̸= w − z − d. Therefore, for given W ∈ U∗,◦, it is difficult to find the
minimal z ∈ Z≥0 such that ζ f

q (W) ∈ FilZz Zf
q .

Let us consider a small example of how we use Q-linear relations of shape (2.1.1) to
obtain that, e.g., ζ f

q (W) ∈ Zf,◦
q for W = u2u0 ∈ U∗,◦. First, we note that

u2u0 = u1 ∗ u1u0 − 2u1u1u0 − u1u1 − u1u0u1.

Now,

0 = ζ f
q (u1 ∗ (u1u0 − τ(u1u0))) − 2ζ f

q (1 ∗ (u1u1u0 − τ(u1u1u0)))
− ζ f

q (1 ∗ (u1u0u1 − τ(u1u0u1)))
= ζ f

q (u1 ∗ u1u0) − ζ f
q (u1 ∗ u2) − 2ζ f

q (u1u1u0) + 2ζ f
q (u2u1)

− ζ f
q (u1u0u1) + ζ f

q (u1u2) ,

and so,

ζ f
q (u2u0) = ζ f

q (u1 ∗ u2) − 2ζ f
q (u2u1) − ζ f

q (u1u1) − ζ f
q (u1u2) (2.3.3)

= ζ f
q (u1u2) + ζ f

q (u3) − ζ f
q (u2u1) − ζ f

q (u1u1) − ζ f
q (u1u2) ∈ Zf,◦

q .

That formal qMZVs are in Zf,◦
q already is not just a coincidence, as the following con-

jecture shows.
Conjecture 2.4 (Bachmann, [3, Conjecture 3.9]). For all z, d, w ∈ Z>0, we have

FilZ,D,W
z,d,w Zf

q ⊂ FilD,W
z+d,w Zf,◦

q . (2.4.1)

In particular, we have Zf
q = Zf,◦

q .
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We say that Bachmann’s Conjecture 2.4 is true for (z0, d0, w0) ∈ Z3
>0 if (2.4.1) is true

for (z, d, w) = (z0, d0, w0).
Partial results already exist; we will collect them in the following.

Theorem 2.5. (i) By Bachmann ([3, Proposition 4.4]), Bachmann’s Conjecture 2.4
is true for all (z, 1, w) ∈ Z3

>0.

(ii) also by Bachmann ([3, Proposition 4.4]), Bachmann’s Conjecture 2.4 is true for
all (1, 2, w) ∈ Z3

>0.

(iii) by Vleeshouwers ([12, Theorem 5.3]), Bachmann’s Conjecture 2.4 is true for all
triples (z, 2, w) ∈ Z3

>0 with some parity condition on w,

(iv) and by Burmester ([6, Theorem 6.4]), Bachmann’s Conjecture 2.4 is true for
all (1, d, w) ∈ Z3

>0.

While the proofs of (i)–(iii) are mainly based on generating series of the correspond-
ing q-series, the proof of (iv) uses the stuffle product and duality relations. Using relations
among formal Multiple Zeta Values of shape (2.1.1) only suffices to prove the following
theorem.

Theorem 2.6 (Theorem 2.26). Let be z, d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0, and consider

integers 1 ≤ j1 ≤ j2 ≤ d. Deconcatenate k as

k(1;j1) = (k1, . . . , kj1), k(j1+1;j2) = (kj1+1, . . . , kj2), k(j2+1;d) = (kj2+1, . . . , kd).

We have

ζ f
q

(
uk(1;j1)

(
uk(j1+1;j2) ∗ uk(j2+1;d)u

z
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

where w = |k| + z.

Remark 2.7. (i) Theorem 2.6 is a generalization of Bachmann’s Theorem [3, Propo-
sition 4.4] via the case d = 1. We have already seen the proof for an example
of this theorem using our methods in (2.3.3). We will generalize this approach in
Proposition 2.21 to generalize Bachmann’s Theorem 2.5(i).

(ii) Note that Theorem 2.6 also generalizes Burmester’s Theorem [6, Theorem 6.4] via
considering the special cases z = 1. For details, we refer to Corollary 2.28.

Extending our methods of playing with relations of shape (2.1.1), we observe the
following theorem.

Theorem 2.8 (Theorem 2.75). Bachmann’s Conjecture 2.4 is true for all (z, d, w) ∈ Z3
>0

with z + d ≤ 6.

In this paper, we will use duality and the stuffle product only for an approach to
write ζ f

q (W) for every W ∈ U∗,◦ satisfying zero(W) ≥ 1 as linear combination of ζ f
q (W′)’s

with zero(W′) < zero(W) and W′ ∈ U∗,◦. We need the following notion of Fz,d,w for this.

Definition 2.9. For z, d, w ∈ Z>0, we define

Fz,d,w := FilZ,D,W
z,d,w−1 Zf

q +
∑

z′+d′=z+d−1
0≤z′≤z

FilZ,D,W
z′,d′,w Zf

q .
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In this paper, our main approach towards Bachmann’s Conjecture 2.4 is to strengthen
the conjecture as follows and then to investigate the strengthened version for obtaining
results like Theorem 2.8.

Conjecture 2.10 (Refined Bachmann Conjecture). For all z, d, w ∈ Z>0, we have

FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w . (2.10.1)

We say that the refined Bachmann Conjecture 2.10 is true for (z0, d0, w0) ∈ Z3
>0,

if (2.10.1) is true for (z, d, w) = (z0, d0, w0).

Lemma 2.11 (Lemma 2.68). Fix z, d, w ∈ Z>0. If the refined Bachmann Conjecture 2.10
is true for (z, d, w) and if Bachmann’s Conjecture 2.4 is true for all (z′, d′, w′) ∈ Z3

>0
with z′ + d′ + w′ < z + d + w, then Bachmann’s Conjecture 2.4 is true for (z, d, w). In
particular, the refined Bachmann Conjecture 2.10 implies Bachmann’s Conjecture 2.4.

To study the refined Bachmann Conjecture 2.10, we will introduce the box product
(see Definition 2.15) that provides a connection to the stuffle product (see Lemma 2.56)
and allows us to refine the refined Bachmann Conjecture 2.10 for z ≥ d again (see
Conjecture 2.39). In this way, we obtain another particular result towards the refined
Bachmann Conjecture 2.10.

Theorem 2.12 (Theorem 2.76). The refined Bachmann Conjecture 2.10 is true for all
triples of positive integers (z, d, w) ∈ Z3

>0 with 1 ≤ d ≤ 4.

Theorem 2.12 will follow mainly using Theorem 2.8 and the investigation of the
box product from Section 2.4. Furthermore, Theorem 2.12 is a strong statement since
- together with some more results of this paper - now, Bachmann’s Conjecture 2.4 is
almost proven for z + d ≤ 7 as well: Namely, following Lemma 2.11, it remains to prove
the refined Bachmann Conjecture 2.10 for triples of shape (2, 5, w) ∈ Z3

>0.
All our main results (and those implied by the box product) are based on Q-linear

relations of shape (2.1.1) only. Following our approach to a general proof of the refined
Bachmann Conjecture 2.10 (and so of Bachmann’s Conjecture 2.4 too), described in
Section 2.5, it is conjecturally possible to prove the refined Bachmann Conjecture 2.10
using Q-linear relations of shape (2.1.1) only. Based on our results, it seems that this
approach works. Furthermore, our explicit approach has the advantage that it is (com-
pared to other approaches) easy to obtain explicit formulas for ζ f

q (W) (with W ∈ U∗,◦)
as element of Zf,◦

q . Proposition 2.21, for example, contains such an explicit formula.
Nevertheless, the explicitness limits this method in the sense that the larger z + d is in
the refined Bachmann Conjecture 2.10, the more confusing the Q-linear relations (2.1.1),
one needs to consider following our approach, become.

Organization of the paper. Section 2.2 contains the introduction of the box product
mentioned. Section 2.3 contains generalizations of theorems by Bachmann and Burmester
concerning the refined Bachmann Conjecture 2.10, like Theorem 2.6. In Section 2.4,
we will investigate the box product and consider its connection to the stuffle product.
Furthermore, Section 2.5 contains the rough description of our approach to the refined
Bachmann Conjecture 2.10. Using the approach from Section 2.5, in Section 2.6, we
prove new partial results towards Bachmann’s Conjecture 2.4. Particularly, there, we
will provide proofs for Theorems 2.8 and 2.12. Last, Section 2.7 ends the paper with
some open questions and a rough generalization of our calculations from Section 2.6.
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Acknowledgements. The author thanks Henrik Bachmann, Annika Burmester, Jan-
Willem van Ittersum, and Ulf Kühn for valuable discussions and helpful comments on
this paper.

2.2 Introduction of the box product
In this section, we introduce the box product and consider elementary properties. First,
we briefly remark on a property of the stuffle product in the following proposition.

Proposition 2.13. Let be W1, W2 ∈ U∗,◦ and write

z = zero(τ(W1)) + zero(τ(W2)), d1 = depth(W1), d2 = depth(W2), w = wt(W1) + wt(W2).

Then, for 0 ≤ s ≤ min{d1, d2}, there are uniquely determined

Lmax{d1,d2}+s ∈ spanQ {W ∈ U∗,◦ | depth(W) = max{d1, d2} + s}

such that

W1 ∗ W2 =
min{d1,d2}∑

s=0
Lmax{d1,d2}+s.

Furthermore, for all 0 ≤ s ≤ min{d1, d2}, we have

τ
(
Lmax{d1,d2}+s

)
∈ FilZ,D,W

z−s,max{d1,d2}+s,w Q⟨U⟩◦.

In particular, τ
(
Lmax{d1,d2}

)
is the part of τ(W1 ∗ W2) having the maximum number of

zeros and we have

τ(W1 ∗ W2) ∈
min{d1,d2}∑

s=0
FilZ,D,W

z−s,max{d1,d2}+s,w Q⟨U⟩◦.

Proof. This is a direct consequence of Equations (2.3.1) and (2.3.2).

Let us consider an example to point out the statement of Proposition 2.13.

Example 2.14. Choose W1 = u2, W2 = u1u2, i.e., d1 = 1, d2 = 2 in the notion of
Proposition 2.13. We have

W1 ∗ W2 = u3u2 + u1u4︸ ︷︷ ︸
= L2

+u2u1u2 + 2u1u2u2︸ ︷︷ ︸
= L3

.

Observe

τ(L2) = u1u0u1u0u0 + u1u0u0u0u1, τ(L3) = u1u0u1u1u0 + 2u1u0u1u0u1.

We see that τ(L2) indeed has the maximum number of zeros in the expression τ(u2∗u1u2).

Since we want to reduce the number of zeros, we often will be interested in the
part of the stuffle product only that has the maximum number of zeros. Therefore,
Proposition 2.13 motivates the definition of the box product that basically extracts this
part of the stuffle product after one applies τ .
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Definition 2.15 (Box product). The Q-bilinear box product � : Q⟨U⟩◦×Q⟨U⟩◦ → Q⟨U⟩◦

is defined as follows: For Wj ∈ U∗,◦ with depth(Wj) = dj , where j ∈ {1, 2}, we set

W1 � W2 := Lmax{d1,d2}

in the notion of Proposition 2.13.

For illustration, we continue Example 2.14.

Example 2.16. We have

u2 � u1u2 = u3u2 + u1u4,

which is exactly L2 of Example 2.14, i.e., after applying τ , one obtains the part of the
stuffle product u2 ∗ u1u2 having maximum number of zeros. We state and prove the
generalization of this observation in Lemma 2.56.

Corollary 2.17. Let be W1, W2 ∈ U∗,◦ and write

z = zero(τ(W1)) + zero(τ(W2)), d1 = depth(W1), d2 = depth(W2), w = wt(W1) + wt(W2).

Then,

τ(W1 ∗ W2) − τ(W1 � W2) ∈
min{d1,d2}∑

s=1
FilZ,D,W

z−s,max{d1,d2}+s,w Q⟨U⟩◦.

Proof. This is an immediate consequence of Proposition 2.13 and the definition of the
box product.

Lemma 2.18. Consider the alphabet U\{u0} = {uj | j ∈ Z>0}. The restriction of the
box product � : Q⟨U\{u0}⟩ × Q⟨U\{u0}⟩ → Q⟨U\{u0}⟩ can be described as follows. For
any two words W1 = un1 · · ·uns , W2 = uℓ1 · · ·uℓr ∈ (U\{u0})∗, we set recursively

W1�̃W2 :=


0, if s > r,

W2, if W1 = 1,
uℓ1 (W1�̃uℓ2 · · ·uℓr ) + un1+ℓ1 (un2 · · ·uns�̃uℓ2 · · ·uℓr ) , if s ≤ r.

Then, W1�̃W2 = W1 � W2 whenever len(W1) ≤ len(W2).

Note that the box product satisfies the following connection to the stuffle product.

Lemma 2.19. For all indices of positive integers n1,n2, ℓ, we have

un1 � (un2 � uℓ) = (un1 ∗ un2) � uℓ = un2 � (un1 � uℓ).

Proof. The proof of the first equality follows by induction on len(n1) + len(n2) and
the definition of stuffle and box product. The second equality then follows from the
commutativity of the stuffle product and the first equality.

Next, we make an easy but instrumental observation. For this, we denote for an given
index k = (k1, . . . , kr) its reversed index by rev(k) := (kr, . . . , k1).

Proposition 2.20. Given n ∈ Zs
>0, ℓ ∈ Zd

>0 with 1 ≤ s ≤ d. Writing

un � uℓ =
∑

µ∈Zd
>0

aµuµ
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with aµ ∈ Z appropriate, we have

urev(n) � urev(ℓ) =
∑

µ∈Zd
>0

aµurev(µ).

Proof. Using Lemma 2.18 and induction on len(n)+len(ℓ), the claim follows immediately.

2.3 A common approach to theorems by Bachmann and
Burmester

In this section, we consider the cases of d = 1 (and z ∈ Z>0 arbitrary), and z = 1
(and d ∈ Z>0 arbitrary), respectively, of Bachmann’s Conjecture 2.4. The first case
mainly is a result originally due to Bachmann ([3, Proposition 4.4]), which we will reprove
in a way giving explicit formulas for every element of FilZ,D,W

z,1,w Zf
q as linear combination of

elements in FilD,W
z+1,w Zf

q . The second case is done by Burmester’s thesis ([6, Theorem 6.4]),
which we will extend in Section 2.3.2.

2.3.1 Bachmann’s Conjecture 2.4 for (z, 1, w)
By [3, Proposition 4.4] (see also Theorem 2.5(i)), it is known that Bachmann’s Conjec-
ture 2.4 is true for all triples (z, 1, w). Here, we give an alternative proof which gives an
explicit expression in terms of elements in Zf,◦

q .

Proposition 2.21. For all k ∈ Z>0 and z ∈ Z≥0, we have that ζ f
q (uku

z
0) equals

(−1)z
∑

j1,j2≥0
j1+j2=z

∑
n0,...,nj2 ≥0

n0+···+nj2 =k−1

∑
1≤p≤j2

0≤εp≤min{1,np}

ζ f
q

(
unj2 −εj2 +1 · · ·un1−ε1+1un0+1u

j1
1

)

+
∑

1≤j≤z

∑
ℓ1,...,ℓj≥1

ℓ1+···+ℓj≤z

∑
j1,j2≥0

j1+j2=z−ℓ1−···−ℓj∑
n0,...,nj2 ≥0

n0+···+nj2 =k−1

∑
1≤p≤j2

0≤εp≤min{1,np}

(−1)z−jζ f
q

(
uℓ1

1 ∗ · · · ∗ uℓj

1 ∗ unj2 −εj2 +1 · · ·un1−ε1+1un0+1u
j1
1

)
.

In particular, we have ζ f
q (uku

z
0) ∈ FilD,W

z+1,k+z Zf,◦
q , yielding Bachmann’s Conjecture 2.4

for all triples (z, 1, w).

Proof. First note that a calculation, using the definition of the stuffle product, shows for
all a ∈ Z>0, b ∈ Z≥0 the identity

uau
b
0 =

a−1∑
ℓ=1

(−1)ℓ−1uℓ
1 ∗ ua−ℓu

b
0 + (−1)a−1h(a, b), (2.21.1)

where h(a, b) :=
∑

j1,j2≥0
j1+j2=a−1

uj1+1
1

(
uj2

1 ∗ ub
0

)
. Choosing a = z + 1 and b = k− 1, we obtain

uz+1u
k−1
0 =

z∑
ℓ=1

(−1)ℓ−1uℓ
1 ∗ uz+1−ℓu

k−1
0 + (−1)zh(z + 1, k − 1).
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Using the latter formula and (2.21.1) repeatedly, we obtain

uz+1u
k−1
0 =

∑
1≤j≤z

∑
ℓ1,...,ℓj≥1

ℓ1+···+ℓj≤z

(−1)z−juℓ1
1 ∗ · · · ∗ uℓj

1 ∗ h(z + 1 − ℓ1 − · · · − ℓj , k − 1)

+ (−1)zh(z + 1, k − 1).

(2.21.2)

Now, note that for all a ∈ Z>0 and b ∈ Z≥0, we have

h(a, b) =
∑

j1,j2≥0
j1+j2=a−1

uj1+1
1

(
uj2

1 ∗ ub
0

)

=
∑

j1,j2≥0
j1+j2=a−1

∑
n0,...,nj2 ≥0

n0+···+nj2 =b

∑
1≤p≤j2

0≤εp≤min{1,np}

uj1+1
1 un0

0 u1u
n1−ε1
0 · · ·u1u

nj2 −εj2
0 .

Hence, by τ -invariance of formal qMZVs,

ζ f
q (h(a, b)) =

∑
j1,j2≥0

j1+j2=a−1

∑
n0,...,nj2 ≥0

n0+···+nj2 =b

∑
1≤p≤j2

0≤εp≤min{1,np}

ζ f
q

(
unj2 −εj2 +1 · · ·un1−ε1+1un0+1u

j1
1

)
,

implying the claim when using (2.21.2) and ζ f
q (uku

z
0) = ζ f

q (τ(uku
z
0)) = ζ f

q

(
uz+1u

k−1
0

)
.

From the obtained representation of ζ f
q (uku

z
0), we get directly ζ f

q (uku
z
0) ∈ FilD,W

z+1,k+z Zf,◦
q

due to (2.3.1).

Let us consider an example regarding Proposition 2.21.

Example 2.22. For k = z = 2, Proposition 2.21 yields

ζ f
q

(
u2u

2
0

)
= ζ f

q (u1 ∗ u1 ∗ u2) − 2ζ f
q (u1 ∗ u2u1) − ζ f

q (u1 ∗ u1u2) − ζ f
q (u1 ∗ u1u1) − ζ f

q (u1u1 ∗ u2)
+ 3ζ f

q (u2u1u1) + 2ζ f
q (u1u2u1) + ζ f

q (u1u1u2) + 3ζ f
q (u1u1u1)

= ζ f
q (u4) − ζ f

q (u3u1) − ζ f
q (u2u2) − ζ f

q (u2u1) − ζ f
q (u1u2) ∈ FilD,W

2,4 Zf,◦
q ⊂ FilD,W

3,4 Zf,◦
q .

2.3.2 Bachmann’s Conjecture 2.4 for (1, d, w)
Given an index k = (k1, . . . , kd) ∈ Zd

>0, we introduce the following notation of subindices

k(j1;j2) :=
{

(kj1 , . . . , kj2), if 1 ≤ j1 ≤ j2 ≤ d,

∅, else.

Lemma 2.23. Fix z, d ∈ Z>0 and k ∈ Zd
>0. For 1 ≤ j ≤ d, we have

ζ f
q

(
uk1

(
uk(2;j) ∗ uk(j+1;d)u

z
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

where w = |k| + z.

Proof. We prove by induction on d. The base case d = 1 corresponds to Proposition 2.21
since then j = 1 and so k(2;j) = k(j+1;d) = ∅. Hence, we may assume d > 1 and that
Lemma 2.23 is proven already for all smaller values of d. First, note that the case j = d
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follows from k(j+1;d) = ∅ in this case and from

∑
n1,...,ns′ ≥1

n1+···+ns′ =z
1≤s′≤d

ζ f
q

(
un1 · · ·uns′ ∗ uk

)
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q

since ∑
n1,...,ns′ ≥1

n1+···+ns′ =z
1≤s′≤d

ζ f
q

(
un1 · · ·uns′ ∗ τ(uk)

)

=
∑

n1,...,ns′ ≥1
n1+···+ns′ =z

1≤s′≤d

ζ f
q

(
un1 · · ·uns′ ∗ u1u

kd−1
0 · · ·u1u

k1−1
0

)

=
∑

n1,...,ns′ ≥1
n1+···+ns′ =z

1≤s′≤d

ζ f
q

(
τ
(
un1 · · ·uns′ ∗ u1u

kd−1
0 · · ·u1u

k1−1
0

))

≡
∑

n1,...,ns′ ≥1
n1+···+ns′ =z

1≤s′≤d

ζ f
q

(
τ
(
un1 · · ·uns′ � u1u

kd−1
0 · · ·u1u

k1−1
0

))
mod

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q .

The last identity is a consequence of Proposition 2.13 and the definition of the box
product. Furthermore, the remaining expression is

≡ ζ f
q

(
uk1

(
uk(2;d) ∗ uz

0

))
mod

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

which can be verified via induction on s′ + d and the definition of the stuffle product.
Hence, let be 1 ≤ j ≤ d − 1 and assume that the claim holds for all larger values of j.
The induction hypothesis on d implies, since len(∅) + len

(
k(j+2;d)

)
= d− j − 1 < d− 1,

ζ f
q

(
uk(j+1;d)u

z
0

)
= ζ f

q

(
ukj+1(u∅ ∗ uk(j+2;d))u

z
0)
)

∈
z∑

s=1
FilZ,D,W

z−s,d−j+s,w′ ,

where w′ = |k(j+1;d)| + z. Hence, by (2.3.1), we obtain

ζ f
q

(
uk(1;j) ∗ uk(j+1;d)u

z
0

)
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q . (2.23.1)

Now, using the definition of the stuffle product, we obtain

uk(1;j) ∗ uk(j+1;d)u
z
0 =uk1

(
uk(2;j) ∗ uk(j+1;d)u

z
0

)
+ ukj+1

(
uk(1;j) ∗ uk(j+2;d)u

z
0

)
+ uk1+kj+1

(
uk(2;j) ∗ uk(j+2;d)u

z
0

)
.

Note that the formal qMZVof the second summand on the right-hand side is an element
of

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q due to the assumption on j, while the formal qMZV of the third
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one is by induction hypothesis on d. Hence, because of (2.23.1), we obtain

ζ f
q

(
uk1

(
uk(2;j) ∗ uk(j+1;d)u

z
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

completing the induction step. Therefore, the lemma is proven.

Corollary 2.24. Fix z, d ∈ Z>0. For all k ∈ Zd
>0, we have

ζ f
q (uku

z
0) ∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

where w = |k| + z.

Proof. This is the special case j = 1 of Lemma 2.23.

Corollary 2.25. Fix d ∈ Z>0. For all k ∈ Zd
>0, we have

ζ f
q (uku0u0) ∈ FilD,W

d+2,w Zf,◦
q ,

where w = |k| + 2.

Proof. The special case z = 2 of Corollary 2.24 and FilZ,D,W
1,d+1,w Zf

q ⊂ FilD,W
d+2,w Zf,◦

q by
Burmester’s Theorem 2.5(iv) yield the claim.

Lemma 2.23 is a special case of the following theorem.

Theorem 2.26 (Theorem 2.6). Let be z, d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0, and consider

integers 1 ≤ j1 ≤ j2 ≤ d. We have

ζ f
q

(
uk(1;j1)

(
uk(j1+1;j2) ∗ uk(j2+1;d)u

z
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q , (2.26.1)

where w = |k| + z.

Proof. We prove by induction on d. Note that the base case d = 1 follows from Propo-
sition 2.21 since then j1 = j2 = 1 and so k(j1+1;j2) = k(j2+1;d) = ∅. Hence, choose d > 1
and assume the theorem is proven for all smaller values of d. Furthermore, note that
the case j1 = 1 is nothing else than Lemma 2.23. Hence, let 2 ≤ j1 ≤ d arbitrary. The
claim for j2 = j1 corresponds to Corollary 2.24 since then k(j1+1;j2) = ∅. Therefore,
assume j2 > j1 > 1 in the following and that the claim is proven for all possible smaller
values of j1, j2 and len(k(j1+1;j2)) = j2 − j1, respectively. Using the recursive definition
of the stuffle product gives

uk(1;j1)

(
uk(j1+1;j2) ∗ uk(j2+1;d)u

z
0

)
=uk(1;j1−1)

(
uk(j1+1;j2) ∗ ukj1

uk(j2+1;d)u
z
0

)
− uk(1;j1−1)ukj1+1

(
uk(j1+2;j2) ∗ ukj1

uk(j2+1;d)u
z
0

)
− uk(1;j1−1)ukj1 +kj1+1

(
uk(j1+2;j2) ∗ uk(j2+1;d)u

z
0

)
Now, the formal qMZVof the first summand on the right-hand side is in

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q

due to the assumption on j1 (since len
(
k(1;j1−1)

)
= len

(
k(1;j1)

)
− 1), while the second
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one is as well due to the assumption on j2−j1 (since len
(
k(j1+2;j2)

)
= len

(
k(j1+1;j2)

)
−1),

and the third one is due to the induction hypothesis on d. In particular, we have

ζ f
q

(
uk(1;j1)

(
uk(j1+1;j2) ∗ uk(j2+1;d)u

z
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

completing the induction step. Hence, the theorem follows.

Corollary 2.27. Let be z, d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0. For all 1 ≤ j ≤ d, we have

∑
ℓj ,...,ℓd≥0

ℓj+···+ℓd=z

ζ f
q

(
uk(1;j−1)ukj

u
ℓj

0 · · ·ukd
uℓd

0

)
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q , (2.27.1)

where w = |k| + z.

Proof. Let be 1 ≤ j ≤ d. The corollary is obtained from the special case j1 = j, j2 = d of
Theorem 2.26 and multiplying out the corresponding stuffle product occurring in (2.26.1)
since then k(j2+1;d) = ∅.

As a corollary of Corollary 2.27, we obtain Burmester’s Theorem 2.5(iv).

Corollary 2.28 (Burmester, [6, Theorem 6.4]). Bachmann’s Conjecture 2.4 is true for
all (1, d, w) ∈ Z3

>0.

Proof. Let be d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0 and denote w = |k| + 1 in the following.

Considering Corollary 2.27 with z = 1 and j = d, we obtain ζ f
q (uku0) ∈ FilD,W

d+1,w Zf,◦
q .

Now, let be 1 ≤ j′ ≤ d − 1. Considering the difference of (2.27.1) with z = 1, j = j′

and (2.27.1) with z = 1, j = j′ + 1, we obtain

ζ f
q

(
uk(1;j′)

u0uk(j′+1;d)

)
∈ FilD,W

d+1,w Zf,◦
q .

In particular, for every W ∈ U∗,◦ ∩ FilZ,D,W
1,d,w Q⟨U⟩◦, we have shown ζ f

q (W) ∈ FilD,W
d+1,w Zf,◦

q ,
i.e., we have FilZ,D,W

1,d,w Zf
q ⊂ FilD,W

d+1,w Zf,◦
q , completing the claim.

Corollary 2.29. Let be d ∈ Z≥2 and k = (k1, . . . , kd) ∈ Zd
>0. We have

ζ f
q

(
uk1u0uk2u0uk(3;d)

)
∈ FilD,W

d+2,w Zf,◦
q ,

where w = |k| + 2.

Proof. Consider the difference of (2.27.1) for z = 2, j = 2, and (2.27.1) for z = 2, j = 3
to obtain, all congruences modulo FilZ,D,W

1,d+1,w Zf
q ,

0 ≡
∑

ℓ3,...,ℓd≥0
ℓ3+···+ℓd=2

ζ f
q

(
uk1uk2uk3u

ℓ3
0 · · ·ukd

uℓd
0

)
−

∑
ℓ2,...,ℓd≥0

ℓ2+···+ℓd=2

ζ f
q

(
uk1uk2u

ℓ2
0 · · ·ukd

uℓd
0

)

≡ − ζ f
q

(
uk1uk2u0u0uk(3;d)

)
−

∑
ℓ3,...,ℓd≥0

ℓ3+···+ℓd=1

ζ f
q

(
uk1uk2u0uk3u

ℓ3
0 · · ·ukd

uℓd
0

)

≡ − ζ f
q

(
u1u

kd−1
0 · · ·u1u

k3−1
0 u3u

k2−1
0 u1u

k1−1
0

)
−

∑
ℓ3,...,ℓd≥0

ℓ3+···+ℓd=1

ζ f
q

(
uℓd+1u

kd−1
0 · · ·uℓ3+1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
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≡ ζ f
q

(
u1u

kd−1
0 · · ·u1u

k3−1
0 u2u

k2−1
0 u2u

k1−1
0

)
− ζ f

q

(
u1 ∗ τ

(
uk1uk2u0uk(3;d)

))
≡ ζ f

q

(
uk1u0uk2u0uk(3;d)

)
.

Since FilZ,D,W
1,d+1,w Zf

q ⊂ FilD,W
d+2,w Zf,◦

q by Corollary 2.28, the claim follows.

2.4 Investigation of the box product
First, in Section 2.4.1, we show that several monomials can already be written as a Q-
linear combination of non-trivial box products. In Section 2.4.2, we investigate a conjec-
ture (Conjecture 2.39) regarding the structure of box products and give partial results
for it. Furthermore, in Section 2.4.3, we study the main connection between the box
product and the stuffle product that we will need to prove our main results. Last, in
Section 2.4.4, we give some further results about the box product that are interesting for
itself but not necessary for the remaining paper.

2.4.1 Monomials as linear combination of box products

In the following, we characterize some particular monomials in Q⟨U\{u0}⟩ as a linear
combination of box products. The results will be important for proving Theorem 2.76.

We will need the Q-vector space spanned by (non-trivial) box products in the follow-
ing.

Definition 2.30. We define

P := spanQ {W1 � W2 | W1, W2 ∈ (U\{u0})∗ , W1, W2 ̸= 1} ⊂ Q⟨U\{u0}⟩. (2.30.1)

Corollary 2.31. Given µ ∈ Zd
>0 with d ∈ Z>0. Then uµ ∈ P if and only if urev(µ) ∈ P.

Proof. This is an immediate consequence of Proposition 2.20.

Lemma 2.32. For all d ∈ Z>0 and 0 ≤ j ≤ d− 1, we have

ud
2, u

j
1u1+du

d−j−1
1 ∈ P.

Proof. A direct calculation shows ud
2 = ud

1 � ud
1, giving the first part of the lemma.

Furthermore, for all 0 ≤ j ≤ d− 1, we have

uj
1u1+du

d−j−1
1 =

d∑
a=1

(−1)a−1 ua
1 � uj

1u1+d−au
d−j−1
1 ,

giving the second claim of the lemma.

Lemma 2.33. For arbitrary d ∈ Z>0 and 0 ≤ j ≤ d− 2, we have

u1u
j
2u3u

d−j−2
2 ∈ P.

Proof. For any 0 ≤ j ≤ d− 2, one verifies

u1u
j
2u3u

d−j−2
2

=
j+1∑
a=1

(−1)a+1 uj−a+1
1 u2u

d−j−2
1 � uau

d−1
1 +

j+2∑
a=1

(−1)a+1 ud−a+1
1 � uau

d−1
1 .
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We first need an auxiliary lemma to prove the statements in Corollary 2.35 and
Lemma 2.36.

Lemma 2.34. For all d, µ1, µ2 ∈ Z>0 with µ1 + µ2 ≤ d+ 2, we have

uµ1uµ2(ud−µ1−µ2+2
1 � ud−2

1 ) ∈ P.

Proof. We prove by induction on µ1. First, consider µ1 = 1. Similarly to the proof of
Lemma 2.33, we obtain by direct calculation that

u1uµ2(ud−µ2+1
1 � ud−2

1 )

= − u1uµ2−1(ud−µ2+2
1 � ud−2

1 ) −
∑

0≤a≤µ2−3
0≤b≤1+a

(−1)b ud−µ2+b+2
1 � u2+a−buµ2−2−au

d−2
1

+
∑

0≤a≤µ2−3
0≤b≤a

(−1)a+b ua−b
1 u2u

d−µ2+1
1 � u1+buµ2−2−au

d−2
1 .

Hence, we have for all µ2 ∈ Z>0 that u1uµ2(ud−µ2+1
1 � ud−2

1 ) ∈ P if and only if we
have u1uµ2−1(ud−µ2+2

1 � ud−2
1 ) ∈ P, giving recursively that u1uµ2(ud−µ2+1

1 � ud−2
1 ) ∈ P

if and only if

u1u3(ud−2
1 � ud−2

1 ) ∈ P,

which is true since this is the j = 0 case of Lemma 2.33.
Now, for µ1 > 1, assume that the lemma is proven for µ1 − 1 already. We calculate

uµ1uµ2(ud−µ1−µ2+2
1 � ud−2

1 ) =
d−µ1+2∑

a=µ2

(−1)µ2+a ud−ℓ1−a+3
1 � uµ1−1uau

d−2
1

− uµ1−1uℓ2(ud−µ1−µ2+3
1 � ud−2

1 )
+ (−1)d−µ1+1−µ2 uµ1−1ud−µ1+3u

d−2
1 .

I.e., we have uµ1uµ2(ud−µ1−µ2+2
1 �ud−2

1 ) ∈ P by the assumption that the lemma is proven
for µ1 − 1.

Corollary 2.35. For all d ∈ Z>0 and 0 ≤ j ≤ d, we have

u1+jud−j+1u
d−2
1 ∈ P.

Proof. Setting µ1 = 1 + j and µ2 = d− j + 1 in Lemma 2.34, we obtain the claim.

Furthermore, Lemma 2.34 is used to prove the following observation.

Lemma 2.36. For arbitrary d ∈ Z>0 and all 0 ≤ j ≤ d− 3, we have

u2u1u
j
2u3u

d−j−3
2 ∈ P.

Proof. First, a direct calculation gives for all 0 ≤ j ≤ d− 3 that

u2u1u
j
2u3u

d−j−3
2

=
j+2∑
a=2

(−1)a uj−a+2
1 u2u

d−j−3
1 � uau

d−1
1 +

j+3∑
a=1

(−1)a ud−a+1
1 � uau

d−1
1
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−
∑

a,b≥2
a+b≤j+3

(−1)a+b u
j−(a+b)+3
1 u2u

d−j−3
1 � uaubu

d−2
1

+ (−1)j+3 u2uj+3(ud−j−3
1 � ud−2

1 )

+ (−1)j+3 ∑
a,b≥2

a+b=j+3

ua+2ub+1(ud−j−4
1 � ud−2

1 ) + ua+2ub(ud−j−3
1 � ud−2

1 ).

Using Lemma 2.34 now yields the claim.

Collecting the results of this subsection, we have proven the following theorem.

Theorem 2.37. Let be d ∈ Z>0.

(i) For all 0 ≤ j ≤ d− 2, we have

u1u
j
2u3u

d−j−2
2 , uj

2u3u
d−j−2
2 u1 ∈ P.

(ii) For all 0 ≤ j ≤ d, we have

u1+jud−j+1u
d−2
1 , ud−2

1 ud−j+1u1+j ∈ P.

(iii) For all 0 ≤ j ≤ d− 3, we have

u2u1u
j
2u3u

d−j−3
2 , uj

2u3u
d−j−3
2 u1u2 ∈ P.

Proof. Using Corollary 2.31 each, the proof for (i) follows from Lemma 2.33, the proof
of (ii) follows from Corollary 2.35, and the proof of (iii) follows from Lemma 2.36.

2.4.2 A conjecture about particular box products and implications

We consider in this section the structure of all box products un � uℓ such that len(ℓ)
and |n| + |ℓ| are fixed. For this, we will need the spaces 𝒮z,d and 𝒯z,d in the following.

Definition 2.38. (i) For all z, d ∈ Z>0, we define

𝒯z,d := spanQ

{
uµ | µ ∈ Zd

>0, |µ| = z + d
}
,

𝓉z,d := dimQ 𝒯z,d.

(ii) Furthermore, for all z, d ∈ Z>0, we define

Jz,d :=
{

(n, ℓ)
∣∣∣n ∈ Zs

>0, ℓ ∈ Zd
>0, 1 ≤ s ≤ d, |n| + |ℓ| = z + d

}
,

𝒿z,d,: = #Jz,d.

and

𝒮z,d := spanQ {un � uℓ | (n, ℓ) ∈ Jz,d} = 𝒯z,d ∩ P,
𝓈z,d := dimQ 𝒮z,d.

Based on numerical calculations (see Lemma 2.42), we conjecture the following for
the dimension of 𝒮z,d.
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Conjecture 2.39. For all z, d ∈ Z>0, we have

𝓈z,d =
(

z + d− 1
min{z, d} − 1

)
. (2.39.1)

Given (z0, d0) ∈ Z>0, we say that Conjecture 2.39 is true for (z0, d0) if (2.39.1) is
true for (z, d) = (z0, d0). Note the following equivalent formulation for z ≥ d.

Corollary 2.40. Given (z, d) ∈ Z2
>0 with z ≥ d. Conjecture 2.39 is true for (z, d) if and

only if 𝒮z,d = 𝒯z,d.

Proof. Clearly, for all z, d ∈ Z>0, one has

𝓉z,d =
(
z + d− 1
d− 1

)

since 𝓉z,d is the number of compositions of z + d into exactly d positive integers. Hence,
for (z, d) ∈ Z2

>0 with z ≥ d, Conjecture 2.39 is equivalent to 𝓈z,d = 𝓉z,d which is equivalent
to 𝒮z,d = 𝒯z,d since 𝒮z,d ⊂ 𝒯z,d and both 𝒮z,d and 𝒯z,d are finite-dimensional Q-vector
spaces.

Theorem 2.41. Fix d ∈ Z>0. If Conjecture 2.39 is true for (d, d), then it is also true
for all (z, d) ∈ Z2

>0 with z > d.

Proof. Fix d ∈ Z>0 and assume that Conjecture 2.39 is true for (d, d). I.e., by Corol-
lary 2.40, we assume 𝒮d,d = 𝒯d,d. This is equivalent to

uz =
∑

(n,ℓ)∈Jd,d

an,ℓ(z)un � uℓ

for all z = (z1, . . . , zd) ∈ Zd
>0 with |z| = 2d and with an,ℓ(z) ∈ Q appropriate.

Now, assume z > d and let be z = (z1, . . . , zd) ∈ Zd
>0 with |z| = z + d arbitrary. We

can write

(z1, . . . , zd) = (z′
1 + δ1, . . . , z

′
d + δd)

with δ1, . . . , δd ∈ Z≥0 and z′ = (z′
1, . . . , z

′
d) ∈ Zd

>0 with |z′| = 2d. Hence,

uz =
∑

(n,ℓ)∈Jd,d

an,ℓ(z′)un � uℓ1+δ1 · · ·uℓd+δd
.

Since z was chosen arbitrary, we obtain 𝒮z,d = 𝒯z,d, proving the theorem.

Lemma 2.42. Conjecture 2.39 is true for all (z, d) ∈ Z2
>0 with 1 ≤ d ≤ 8.

Proof. The proof for 1 ≤ z ≤ d ≤ 8 is obtained by computer algebra; for details, see
Remark 2.60 and the appendix. By Theorem 2.41, Conjecture 2.39 is also true for z ≥ d
when 1 ≤ d ≤ 8, proving the lemma.

Note that 𝓈z,d is the dimension of the image of the Q-linear map

Bz,d : spanQ Jz,d −→ 𝒯z,d,

(n, ℓ) 7−→ un � uℓ
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that we continue Q-bilinearly. By the rank-nullity theorem, we know that

𝓈z,d + dimQ ker Bz,d = dimQ spanQ Jz,d. (2.42.1)

The right-hand side is given by 𝒿z,d, which is the number of writing z + d as ordered
sum of at least d+ 1 and at most d+ min{z, d} positive integers, i.e.,

dimQ spanQ Jz,d = 𝒿z,d =
min{z,d}∑

j=1

(
z + d− 1
d+ j − 1

)
. (2.42.2)

Hence, determining 𝓈z,d now is equivalent to determining dimQ ker Bz,d. While it seems
to be difficult to obtain a (conjectured) basis of 𝒮z,d, we can give a conjectured basis
of ker Bz,d explicitly. To do so, we need the notion of stuffle product and box product on
index level. I.e., we set n∗∅ := ∅∗n := n, n�∅ := ∅�n := n for every index n. Further-
more, for given indices n = (n1, . . . , ns) ∈ Zs

>0, m = (m1, . . . ,mt) ∈ Zt
>0 with s, t ≥ 1,

we set recursively

n ∗ m := (n1).((n2, . . . , ns) ∗ m) + (m1).(n ∗ (m2, . . . ,mt))
+ (n1 +m1).((n2, . . . , ns) ∗ (m2, . . . ,mt))

as formal sum of indices, where ().() means the concatenation of indices. Similarly, we
define the box product n � m to be the part of n ∗ m of smallest length.

Example 2.43. To illustrate the definition of stuffle product and box product of indices,
we consider n = (1, 2) and m = (3, 2). We have

n ∗ m = (1, 2) ∗ (3, 2)
= (4, 4) + (1, 5, 2) + (1, 3, 4) + 2(4, 2, 2) + (3, 3, 2)

+ (1, 2, 3, 2) + 2(1, 3, 2, 2) + 2(3, 1, 2, 2) + (3, 2, 1, 2)

and

n � m = (1, 2) � (3, 2) = (4, 4).

In the following, for z, d ∈ Z>0, we consider the set

Kz,d :=
{

(n1,n2 � ℓ) − (n1 ∗ n2, ℓ)
∣∣∣∣∣ n1∈Zs1

>0, n2∈Zs2
>0, ℓ∈Zd

>0,

1≤s1,s2≤d, |n1|+|n2|+ℓ=z+d

}
⊂ spanQ Jz,d,

where (·, ·) is Q-bilinearly continued.

Lemma 2.44. For all z, d ∈ Z>0, we have spanQ Kz,d ⊂ ker Bz,d.

Proof. This is an immediate consequence of Lemma 2.19.

By numerical calculations (see the appendix), we conjecture that the converse inclu-
sion is also true if z ≤ d.

Conjecture 2.45. Let be z, d ∈ Z>0 with z ≤ d. Then,

spanQ Kz,d = ker Bz,d. (2.45.1)

We say that Conjecture 2.45 is true for (z0, d0) if (2.45.1) is true for (z, d) = (z0, d0).
Note the following consequence.
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Lemma 2.46. Let be z, d ∈ Z>0 with z ≤ d. If Conjecture 2.45 is true for (z, d), we
have

𝓈z,d ≥
(
z + d− 1

d

)
.

In particular, if z = d additionally, then Conjecture 2.39 is true for (d, d).

Proof. Let be z, d ∈ Z>0 with z ≤ d. We begin by noting that we have

#Kz,d =
z∑

j=2

(
z + d− 1
d+ j − 1

)

since #Kz,d is the number of ways one can write z+d as ordered sum of at least d+2 and
at most d+ min{z, d} (= d+ z in case z ≤ d) positive integers. Now, if Conjecture 2.45
is true for (z, d), we obtain by (2.42.1) and (2.42.2), that

𝓈z,d = 𝒿z,d − dimQ ker Bz,d ≥
z∑

j=1

(
z + d− 1
d+ j − 1

)
−

z∑
j=2

(
z + d− 1
d+ j − 1

)
=
(
z + d− 1

d

)
.

In case z = d, the right hand side is 𝓉d,d, i.e., we must have equality and so, Conjec-
ture 2.39 is true for (d, d). This completes the proof of the lemma.

The set Kz,d seems to be of special interest regarding determining a basis of ker Bz,d

as the following refinement of Conjecture 2.45 shows.

Conjecture 2.47. Let be z, d ∈ Z>0 with z ≤ d. Then Kz,d is a basis of ker Bz,d.

As usual, we say that Conjecture 2.47 is true for (z0, d0) if Kz0,d0 is a basis of ker Bz0,d0 .
We give evidence for Conjecture 2.47.

Lemma 2.48. Conjecture 2.47 is true for all (z, d) ∈ Z2
>0 satisfying 1 ≤ z ≤ d ≤ 8.

Proof. For z = 1 and d ∈ Z>0, we have K1,d = ∅ and 𝒿z,d = d = 𝓈1,d as we will show
in Lemma 2.52, i.e., ker B1,d is the trivial vector space. Hence, Conjecture 2.47 is true
for all (1, d) ∈ Z2

>0. For z ≥ 2, the claim is obtained by numerical calculations, see the
appendix.

Note the following consequence that Conjecture 2.47 is a refinement of Conjec-
ture 2.39.

Lemma 2.49. Let be z, d ∈ Z>0 with z ≤ d. If Conjecture 2.47 is true for (z, d), then
also Conjecture 2.39 is true for (z, d).

Proof. Let be z, d ∈ Z>0 with z ≤ d and assume that Conjecture 2.47 is true for (z, d).
By (2.42.1) and (2.42.2), then we obtain

𝓈z,d = 𝒿z,d − dimQ ker Bz,d =
z∑

j=1

(
z + d− 1
d+ j − 1

)
−

z∑
j=2

(
z + d− 1
d+ j − 1

)
=
(
z + d− 1

d

)
,

i.e., Conjecture 2.39 is true for (z, d).

We investigate 𝓈z,d in the following in more detail.

Lemma 2.50. For all z, d ∈ Z>0, we have

𝓈z,d+1 + 𝓈z+1,d ≤ 𝓈z+1,d+1.
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Proof. Fix z, d ∈ Z>0. By definition of 𝓈z,d+1, there are 𝓈z,d+1 linearly independent linear
combinations ∑

(n,ℓ)∈Jz,d+1

a
(j)
n,ℓ(z)un � uℓ (1 ≤ j ≤ 𝓈z,d+1).

Then, the 𝓈z,d+1 linear combinations (1 ≤ j ≤ 𝓈z,d+1 in the following) of case (z+1, d+1),∑
(n,ℓ)∈Jz,d+1

a
(j)
n,ℓ(z)un � u(ℓ1,...,ℓd,ℓd+1+1), (2.50.1)

are linearly independent as well. Note that all occurring words uµ1 · · ·uµd+1 in this linear
combinations satisfy µd+1 ≥ 2.

Now, by definition of 𝓈z+1,d, there are 𝓈z+1,d linear independent linear combinations∑
(n,ℓ)∈Jz+1,d

b
(j)
n,ℓ(z)un � uℓ (1 ≤ j ≤ 𝓈z+1,d). (2.50.2)

Considering for 1 ≤ j ≤ 𝓈z+1,d the following linear combinations in case (z + 1, d+ 1)∑
(n,ℓ)∈Jz+1,d

b
(j)
n,ℓ(z)un � uℓu1

=

 ∑
(n,ℓ)∈Jz+1,d

b
(j)
n,ℓ(z)un � uℓ

u1 +
∑

(n,ℓ)∈Jz+1,d

b
(j)
n,ℓ(z)

(
u(n1,...,ns−1) � uℓ

)
u1+ns

(2.50.3)

are linearly independent again because of (2.50.2). Furthermore, they and the ones
from (2.50.1) are linearly independent since the latter ones contain words ending in uµd+1

with µd+1 ≥ 2 while the linear independence of (2.50.3) already comes from words ending
all in u1.

Summarized, we have proven 𝓈z,d+1 + 𝓈z+1,d ≤ 𝓈z+1,d+1.

Remark 2.51. Assuming Conjecture 2.39, the inequality in Lemma 2.50 is an equality
if and only if z ̸= d.

With Lemma 2.50, we can now prove the following partial result towards Conjec-
ture 2.39.

Lemma 2.52. Conjecture 2.39 is true for all pairs (z, d) ∈ Z2
>0 with 1 ≤ z ≤ 3.

Proof. Note that the proof for 1 ≤ z ≤ 2 is contained in Remark 2.61. Therefore,
assume z = 3 in the following. For (z, d) ∈ {(3, 1), (3, 2), (3, 3)}, the claim follows from
Remark 2.61. Hence, consider d ≥ 4 and prove by induction (with already proven base
case d = 3) on d. By Lemma 2.50, the induction hypothesis, and the case z = 2 of the
lemma that is proven in Remark 2.61, we know that

𝓈3,d ≥ 𝓈3,d−1 + 𝓈2,d =
(
d+ 1

2

)
+
(
d+ 1

1

)
=
(
d+ 2

2

)
.

Therefore, it suffices to prove 𝓈3,d ≤
(d+2

2
)
. Note that for (z, d) = (3, d) the number of

box products spanning 𝒮3,d is
(d+2

0
)

+
(d+2

1
)

+
(d+2

2
)
. I.e., if we can show that

(d+2
2
)

of
those are such that the other

(d+2
0
)

+
(d+2

1
)

ones are in their Q-span, we are done. We
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consider the set of
(d+2

2
)

box products

R3,d :=


u2u1�ud

1, u1u2�ud
1,

u2�u
j1
1 u2u

d−j1−1
1 , u1�u

j2
1 u3u

d−j2−1
1 ,

u1�u
j3
1 u2u

j4
1 u2u

d−j3−j4−2
1

∣∣∣∣∣ 0≤j1≤d−2, 0≤j2≤d−2,
0≤j3,j4≤d−2, j3+j4≤d−2

 .
In the following, we show that the other box products in case (z, d) = (3, d) are in
the Q-span of R3,d. For 0 ≤ j1 ≤ d− 2, we obtain

u1u1 � uj1
1 u2u

d−j1−1
1 = 1

2
(
(u1 ∗ u1 − u2) � uj1

1 u2u
d−j1−1
1

)
∈ spanQ R3,d (2.52.1)

due to Lemma 2.19 and the definition of R3,d. Furthermore, we have that

u3 � ud
1 =

d−1∑
j2=0

u1 � uj2
1 u3u

d−j2−1
1 − (u2u1 + u1u2) � ud

1 (2.52.2)

is in the Q-span of R3,d. This implies, due to u2 ∗u1 = u2u1 +u1u2 +u3 and Lemma 2.19,
that

u2 � ud−1
1 u2 =u2 �

u1 � ud
1 −

d−2∑
j1=0

uj1
1 u2u

d−j1−1
1


= (u2u1 + u1u2 + u3) � ud

1 −
d−2∑
j1=0

u2 � uj1
1 u2u

d−j1−1
1 ∈ spanQ R3,d.

Similar to (2.52.1), one obtains now

u2 � ud−1
1 u2 ∈ spanQ R3,d.

Using (2.52.2), Lemma 2.19 and the definition of R3,d, we get

u1u1u1 � ud
1 = 1

3
(
(u1 ∗ u1u1 − u2u1 − u1u2) � ud

1

)
∈ spanQ R3,d,

completing the claim. In particular, the lemma is proven for z = 3.

Proposition 2.53. Conjecture 2.39 is true for (4, 4) and therefore, by Theorem 2.41,
for all pairs (z, 4) with z ≥ 4.

Proof. Using Corollary 2.40, we have to show 𝒮4,4 = 𝒯4,4. From Theorem 2.37 and
Lemma 2.32, we already have

u2u2u2u2, u5u1u1u1, u1u5u1u1, u1u1u5u1, u1u1u1u5, u1u3u2u2, u1u2u3u2,

u1u2u2u3, u3u2u2u1, u2u3u2u1, u2u2u3u1, u2u4u1u1, u3u3u1u1, u4u2u1u1,

u1u1u2u4, u1u1u3u3, u1u1u4u2, u2u1u3u2, u2u1u2u3, u2u3u1u2, u3u2u1u2 ∈ 𝒮4,4.

Hence, considering u1�u2u1u2u2, we obtain u3u1u2u2 ∈ 𝒮4,4, and so, by Corollary 2.31,we
also have u2u2u1u3 ∈ 𝒮4,4. Now, considering u1u1 � u1j1u2u

j2
1 u2u

j3
1 for j1, j2, j3 ∈ Z≥0

with j1 + j2 + j3 = 2, yields u3u1u3u1, u3u1u1u3, u1u3u3u1, u1u3u1u3 ∈ 𝒮4,4. Last,
consider u1 � uj1

1 u2u
j2
1 u3u

j3
1 for j1, j2, j3 ∈ Z≥0 with j1 + j2 + j3 = 1 immediately

gives u2u1u4u1, u2u1u1u4, u1u2u4u1, u1u2u1u4 ∈ 𝒮4,4, yielding, by Corollary 2.31 again,
that u4u1u2u1, u4u1u1u2, u1u4u2u1, u1u4u1u2 ∈ 𝒮4,4. Therefore, 𝒮4,4 = 𝒯4,4 follows,
completing the proof.
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2.4.3 Connection between the box product and the stuffle product

First, to connect the box product with the stuffle product, we introduce the maps Ψk.

Definition 2.54. Fix d ∈ Z>0 and k = (k1, . . . , kd) ∈ Zd
>0. We define the Q-linear

map Ψk : spanQ {W ∈ U∗,◦ | len(W) = d} → Q⟨U⟩◦, given on generators by

uµ1 · · ·uµd
7−→ uµ1u

kd−1
0 · · ·uµd

uk1−1
0 .

Note the following connection of maps Ψk with the box product.

Lemma 2.55. Let be z, d, w ∈ Z>0 and (n, ℓ) ∈ Jz,d. Furthermore, let be k ∈ Zd
>0

satisfying |k| = w − z. Then,

un � Ψk(uℓ) = Ψk(un � uℓ).

Proof. Using the notation as in the lemma, we note that particularly depth(uℓ) = d.
The claim immediately follows by the definition of the box product and the definition of
the map Ψk.

The following Lemma 2.56 now connects the stuffle product with the box product.
It will be the key for proving Theorem 2.69 below and one of the main observations for
our approach to the refined Bachmann Conjecture 2.10.

Lemma 2.56. Let be z, d, w ∈ Z>0 and (n, ℓ) ∈ Jz,d. Furthermore, let be k ∈ Zd
>0

satisfying |k| = w − z. Then,

ζ f
q (Ψk(un � uℓ)) ∈

∑
1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q .

Proof. Let be z, d, w ∈ Z>0, (n, ℓ) ∈ Jz,d, k ∈ Zd
>0 such that |k| = w− z and write s′ for

the length of n. I.e., we have, un ∈ FilZ,D,W
0,s′,|n| Q⟨U⟩◦ and Ψk(uℓ) ∈ FilZ,D,W

|k|−d,d,|k|+|ℓ|−d Q⟨U⟩◦.
Since (n, ℓ) ∈ Jz,d, we have |n| + |ℓ| = z + d. Therefore, (2.3.1) implies, together with
the assumption |k| = w − z, that

un ∗ Ψk(uℓ) ∈ FilZ,D,W
w−d−z,d+s′,w Q⟨U⟩◦.

By (2.3.2), this implies now

τ(un ∗ Ψk(uℓ)) ∈ FilZ,D,W
z−s′,d+s′,w Q⟨U⟩◦,

yielding, since 1 ≤ s′ ≤ min{z, d},

ζ f
q (un ∗ Ψk(uℓ)) = ζ f

q (τ(un ∗ Ψk(uℓ))) ∈
∑

1≤s≤min{z,d}
FilZ,D,W

z−s,d+s,w Zf
q .

Furthermore, due to Corollary 2.17, we also have

ζ f
q (un � Ψk(uℓ)) ∈

∑
1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q .

Hence, the lemma follows now from Lemma 2.55.
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Corollary 2.57. Let be z, d, w ∈ Z>0 and µ ∈ Zd
>0 satisfying |µ| = z + d. If uµ ∈ P

with P from (2.30.1), then

ζ f
q (Ψk(uµ)) ∈

∑
1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q ⊂ Fz,d,w

for all k ∈ Zd
>0 satisfying |k| = w − z.

Proof. Let be z, d, w ∈ Z>0 and µ ∈ Zd
>0 satisfying |µ| = z + d. Furthermore, choose an

index k ∈ Zd
>0 arbitrary with the property |k| = w − z. Assume uµ ∈ P, i.e., we have

uµ =
∑

(n,ℓ)∈Jz,d

an,ℓ un � uℓ

with an,ℓ ∈ Q appropriate. Now, for all (n, ℓ) ∈ Jz,d, by Lemma 2.56, we have

ζ f
q (Ψk(un � uℓ)) ∈

∑
1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q .

I.e., by Q-linearity of ζ f
q and Ψk, hence we obtain

ζ f
q (Ψk(uµ)) =

∑
(n,ℓ)∈Jz,d

an,ℓ ζ
f
q (Ψk(un � uℓ)) ∈

∑
1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q ,

completing the claim.

2.4.4 Supplementary results and calculations regarding the box prod-
uct

We collect in this subsection further results towards the box product that are connected
to Conjecture 2.39 but not needed in the following. First, we refine Conjecture 2.39. For
this, we define for all z, d, smin ∈ Z>0 with 1 ≤ z ≤ d,

𝒮z,d,smin := spanQ {un � uℓ | (n, ℓ) ∈ Jz,d, len(n) ≥ smin} ⊂ 𝒮z,d,

𝓈z,d,smin := dimQ 𝒮z,d,smin .

Conjecture 2.58. For all z, d, smin ∈ Z>0 with 1 ≤ z ≤ d, we have

𝓈z,d,smin =
(
z + d− 1
z − smin

)
. (2.58.1)

Given (z0, d0, smin,0) ∈ Z>0 with 1 ≤ z ≤ d, we say that Conjecture 2.58 is true
for (z0, d0, smin,0) if (2.58.1) is true for (z, d, smin) = (z0, d0, smin,0).
Remark 2.59. With Theorem 2.41, we see that if Conjecture 2.39 is true for z = d, then
the statement for z > d follows as well. Hence, we can view Conjecture 2.58 (via smin = 1)
indeed as a refinement of Conjecture 2.39, despite it is a refinement for z ≤ d only.
Remark 2.60. Conjecture 2.58 is true for all triples (z, d, smin) ∈ Z3

>0 with 1 ≤ z ≤ d ≤ 8
and 1 ≤ smin ≤ 8. The proof is obtained by computer algebra; for details, see the
appendix. One could use the code in the appendix for verifying Conjecture 2.58 also for
larger values of z and d. The only limit is the computing capacity and time since the
code is based on computing ranks of matrices that grow exponentially in z and d.

In the next remark, we give an elementary proof, not based on numerical calculations,
for the part of Lemma 2.42 that is needed for proving our main results of this paper.
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Remark 2.61. We could verify Conjecture 2.39 for all pairs (z, d) ∈ Z2
>0 with 1 ≤ d ≤ 3

also without numerical calculations. For this, first, assume d = 1 and fix z ∈ Z>0. Note
that 𝒯z,1 = spanQ {uz+1}, yielding 𝓈z,1 ≤ dimQ 𝒯z,1 = 1. Furthermore,

uz+1 = u1 � uz ∈ 𝒮z,1,

giving 𝓈z,1 ≥ 1. Hence, Conjecture 2.39 is true for all pairs (z, 1) ∈ Z2
>0 since

𝓈z,1 = 1 =
(

1 + z − 1
min{z, 1} − 1

)
.

Now, assume z = 1 and fix d ∈ Z>0. In this case, 𝒮1,d = spanQ

{
u1 � ud

1

}
, i.e., 𝓈1,d = 1.

In particular, we have proven Conjecture 2.39 for z = 1 since

𝓈1,d = 1 =
(

d+ 1 − 1
min{1, d} − 1

)
.

Next, assume d = 2 and fix z ∈ Z≥2. Note that the case (z, d) = (1, 2) follows from
the z = 1-case we have proven. Note that 𝒯z,2 = spanQ {uauz+2−a | 1 ≤ a ≤ z + 1}. A
direct calculation shows

uauz+2−a =


u1u1 � ua−1uz+1−a, if 2 ≤ a ≤ z,

u1 � u1uz − u1u1 � u1uz−1, if a = 1,
u1 � uzu1 − u1u1 � uz−1u1, if a = z + 1.

Hence, uauz+2−a ∈ 𝒮z,2 for all 1 ≤ a ≤ z + 1, i.e., 𝒮z,2 = 𝒯z,2, giving

𝓈z,2 = dimQ 𝒯z,2 =
(

2 + z − 1
min{z, 2} − 1

)

since we assumed z ≥ 2 = d. Hence, Conjecture 2.39 is true for all pairs (z, 2) ∈ Z2
>0.

Now, assume z = 2 and fix d ≥ 2 (since the (z, d) = (2, 1)-case follows from the d = 1-
case of the theorem). In this case, 𝒮2,d is spanned by the d+ 2 box products

u1 � uj
1u2u

d−j−1
1 (0 ≤ j ≤ d− 1), u1u1 � ud

1, u2 � ud
1.

Note that all but the last box product are linear independent since u1u1 � ud
1 does not

contain any word with letter u3 while u1 �uj
1u2u

d−j−1
1 does contain exactly one such one

which is unique for fixed j. Furthermore, we have

u2 � ud
1 =

d−1∑
j=0

u1 � uj
1u2u

d−j−1
1 − 2u1u1 � ud

1,

i.e., u2 � ud
1 is not linearly independent of the box products. Therefore,

𝓈2,d = d+ 1 =
(

d+ 2 − 1
min{2, d} − 1

)

since we assumed d ≥ 2. This proves Conjecture 2.39 for z = 2.
Now, assume d = 3. Since the cases (z, d) ∈ {(1, 3), (2, 3)} follow from the case z = 1,

respectively z = 2, that we have proven already, we may fix z ∈ Z≥3. For z = 3, from
Lemmas 2.32, 2.33, and 2.36, we obtain 𝒮3,3 = 𝒯3,3, yielding, by Corollary 2.40, the
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claim. For z > 3, we apply Theorem 2.41 to obtain the remaining part for the proof that
Conjecture 2.39 is true for all pairs (z, 3) ∈ Z2

>0 from the case z = 3.
Noting Corollary 2.40, Conjecture 2.39 is equivalent to 𝒮z,d = 𝒯z,d for all z ≥ d. I.e.,

in these cases, every uµ with µ ∈ Zd
>0 and |µ| = z + d conjecturally can be written

as Q-linear combination of box products un � uℓ with (n, ℓ) ∈ Jz,d. With the following
lemmas, we reduce the number of such µ’s. For that, we have to show this, which can
be seen as progress towards Conjecture 2.39. For this, given W1, W2 ∈ (U\{u0})∗, we call
the box product W1 � W2 non-trivial if 1 ≤ len(W1) ≤ len(W2).
Lemma 2.62. Let be µ ∈ Zd

>0 for some d ≥ 1. Then, uµ can be written as a linear
combination of words ending in u1 and non-trivial box products.
Proof. Choose µ = (µ1, . . . , µd) ∈ Zd

>0 with µd > 1 (for µd = 1 there is nothing to prove).
Then,

uµd−1 � uµ1 · · ·uµd−1u1 = uµ +
(
uµd−1 � uµ1 · · ·uµd−1

)
u1,

i.e., after rearranging, one obtains the claim.

Lemma 2.63. Fix z, d ∈ Z>1 with z ≥ d ≥ 2. If Conjecture 2.39 is true for (z, d − 1),
then every uµ with µ ∈ Zd

>0 and |µ| = z + d can be written as linear combination of
words ending in u2 and non-trivial box products.
Proof. Assume d and z as in the lemma. Let be µ = (µ1, . . . , µd) ∈ Zd

>0 with |µ| = z+d.
If µd = 2, there is nothing to prove. If µd > 2, we proceed as in the proof of Lemma 2.62.
If µd = 1, by assumption and Theorem 2.41, we have

uµ1 · · ·uµd−1 =
∑

(n,ℓ)∈Jz,d−1

an,ℓ(µ)un � uℓ

for appropriate an,ℓ(µ) ∈ Q. Then,∑
(n,ℓ)∈Jz,d−1

an,ℓ(µ)un � uℓu1 = uµ +
∑

(n,ℓ)∈Jz,d−1

an,ℓ(µ)
(
u(n1,...,ns−1) � uℓ

)
u1+ns .

The latter sum consists of words ending in some uµ′
d

with µ′
d ≥ 2. However, such words

can be written as linear combinations of words ending in u2 and box products, similar
to the proof of Lemma 2.62, completing the proof.

Lemma 2.64. Fix z, d ∈ Z>1 with z ≥ d ≥ 2. If Conjecture 2.39 is true for (z−1, d−1),
then every uµ with µ ∈ Zd

>0 and |µ| = z + d can be written as linear combination of
words ending in u3 and non-trivial box products.
Proof. Assume d and z as in the lemma. Using Lemma 2.63, we only have to show that
a word ending in u2 can be written as a linear combination of words ending in u3 and

box products. Choose such a word uµ1 · · ·uµd−1u2, i.e., 2 +
d−1∑
j=1

µj = z + d. Then, by

assumption, one has

uµ1 · · ·uµd−1 =
∑

(n,ℓ)∈Jz−1,d−1

an,ℓ(µ)un � uℓ

for appropriate an,ℓ(µ) ∈ Q. Hence,∑
(n,ℓ)∈Jz−1,d−1

an,ℓ(µ)un � uℓu2 = uµ +
∑

(n,ℓ)∈Jz−1,d−1

an,ℓ(µ)
(
u(n1,...,ns−1) � uℓ

)
u2+ns .
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The latter sum consists of words ending in some uµ′
d

with µ′
d ≥ 3. However, such words

can be written as linear combinations of words ending in u3 and box products, similar
to the proof of Lemma 2.62, completing the proof.

Lemma 2.65. Let be n ∈ Zs
>0, ℓ ∈ Zd

>0 with 1 ≤ s ≤ d. Then, un � uℓ can be written as
linear combination of non-trivial box products un′ � uℓ′ where ℓ′ ends in 1.

Proof. Writing ℓ = (ℓ1, . . . , ℓd), we may assume ℓd > 1 since for ℓd = 1 there is nothing
to prove. Then,

un � uℓ =un �

uℓd−1 � u(ℓ1,...,ℓd−1,1) −
d−1∑
j=1

u(ℓ1,...,ℓj+ℓd−1,...,ℓd−1,1)


= (un ∗ uℓd−1) � u(ℓ1,...,ℓd−1,1) −

d−1∑
j=1

un � u(ℓ1,...,ℓj+ℓd−1,...,ℓd−1,1),

where we used Lemma 2.19 in the last step.

A further result about the numbers 𝓈z,d is the following lemma that gives a lower
bound.

Lemma 2.66. For all z, d ∈ Z>0, we have 𝓈z,d ≥
(z+d−2

d−1
)
.

Proof. We prove by induction on z+d. For z = 1, the claim is clear, since for all d ∈ Z>0,
we have 0 ̸= u1 � ud

1 ∈ 𝒮1,d, i.e.,

𝓈1,d ≥ 1 =
(

1 + d− 2
d− 1

)
.

For d = 1, we have for all z ∈ Z>0 equality by Lemma 2.42. In particular, the base
case z + d = 2 is proven. Now, let be z, d ∈ Z>1 and assume that the lemma is proven
for all smaller values of z + d. By Lemma 2.50 and the induction hypothesis, we obtain

𝓈z,d ≥ 𝓈z,d−1 + 𝓈z−1,d ≥
(
z + d− 3
d− 2

)
+
(
z + d− 3
d− 1

)
=
(
z + d− 2
d− 1

)
.

We end this subsection with some remark on Conjecture 2.39 that is independent of
the rest of the paper.

Remark 2.67. Using basic linear algebra, we obtain the following equivalent formula-
tion of Conjecture 2.39 in the cases z ≥ d. Fix positive integers d and z with z ≥ d.
Conjecture 2.39 is true for the pair (z, d) if and only if the

(z+d−1
d−1

)
expressions ∑

(n,ℓ)∈Jz,d

ϵµn,ℓ un � uℓ

∣∣∣∣∣ µ ∈ Zd
>0, |µ| = z + d


are Q-linearly independent. Here, ϵµn,ℓ denotes the multiplicity of uµ in un � uℓ.

2.5 Our approach to the refined Bachmann Conjecture 2.10
In the following, we present the approach with which one is trying to make progress in
proving the refined Bachmann Conjecture 2.10. The general idea is to prove by induction
on zero(W) for W ∈ U∗,◦ that ζ f

q (W) ∈ Zf,◦
q . This is trivial for the base case zero(W) = 0.
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Thus, we assume zero(W) > 0. Particularly - for proving the induction step - one has to
write ζ f

q (W) as a linear combination of ζ f
q (W′)’s with W′ ∈ U∗,◦ and zero(W′) < zero(W). In

our approach, we refine the induction step by showing that for every word W ∈ U∗,◦ we
can write ζ f

q (W) as a linear combination of ζ f
q (W′)’s with W′ ∈ U∗,◦ and zero(W′) < zero(W),

or

zero(W′) = zero(W) and depth(W′) + wt(W′) < depth(W) + wt(W)

(see the refined Bachmann Conjecture 2.10). The general observation of why the refined
Bachmann Conjecture 2.10 is of interest when studying Bachmann’s Conjecture 2.4 is
given in the following lemma.

Lemma 2.68 (Lemma 2.11). Fix z, d, w ∈ Z>0. If the refined Bachmann Conjecture 2.10
is true for (z, d, w) and if Bachmann’s Conjecture 2.4 is true for all (z′, d′, w′) ∈ Z3

>0
with z′ + d′ + w′ < z + d + w, then Bachmann’s Conjecture 2.4 is true for (z, d, w). In
particular, the refined Bachmann Conjecture 2.10 implies Bachmann’s Conjecture 2.4.

Proof. Fix z, d, w ∈ Z>0 and assume that the refined Bachmann Conjecture 2.10 is true
for (z, d, w) and that Bachmann’s Conjecture 2.4 is true for all triples (z′, d′, w′) ∈ Z3

>0
satisfying z′ + d′ + w′ < z + d + w. By definition of Fz,d,w and the second part of our
assumption, it follows

Fz,d,w = FilZ,D,W
z,d,w−1 Zf

q +
∑

z′+d′=z+d−1
0≤z′≤z

FilZ,D,W
z′,d′,w Zf

q

⊂ FilD,W
z+d,w−1 Zf,◦

q + FilD,W
z+d−1,w Zf,◦

q ⊂ FilD,W
z+d,w Zf,◦

q .

Using the assumption FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w, we obtain FilZ,D,W
z,d,w Zf

q ⊂ FilD,W
z+d,w Zf,◦

q , i.e.,
Bachmann’s Conjecture 2.4 for (z, d, w).

For given z ≥ d, our approach to the refined Bachmann Conjecture 2.10 restricts -
independent of the weight w - to prove Conjecture 2.39 for the pair (z, d) as the following
theorem shows.

Theorem 2.69. Fix z, d ∈ Z>0 with z ≥ d. If Conjecture 2.39 is true for the pair (z, d),
then for all w ∈ Z>0, we have

FilZ,D,W
z,d,w Zf

q ⊂
∑

z′+d′=z+d−1
0≤z′≤z−1

FilZ,D,W
z′,d′,w Zf

q ⊂ Fz,d,w .

In particular, the refined Bachmann Conjecture 2.10 is true for the triples (z, d, w) ∈ Z3
>0

with w arbitrary.

Proof. Fix z, d ∈ Z>0 with z ≥ d and assume that Conjecture 2.39 is true for (z, d). This
means uz ∈ P for all z ∈ Zd

>0 with |z| = z + d. Hence, the claim follows immediately
from Corollary 2.57.

Remark 2.70. Immediately from Theorems 2.41 and 2.69 the following statement is
obtained: If Conjecture 2.39 is true for all z = d, then we have

FilZz Zf
q ⊂ FilZd−1 Zf

q
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for all (z, d) ∈ Z2
>0 with z ≥ d. More precise, then we have

Zf
q = Zf,◦

q +
∑

0≤z≤d−1
d≥1

FilZ,D,W
z,d,2z+d−1 Zf

q .

Remark 2.71. For z ≥ d, our approach to Bachmann’s Conjecture 2.4, and the refined
Bachmann Conjecture 2.10, is to study Conjecture 2.39 in more detail. We will explain
this in Section 2.6. For z < d, this approach will not suffice since in this case, we
have 𝒮z,d ⊊ 𝒯z,d by Conjecture 2.39 which is numerically explicit verified for small values
of z and d (see Lemma 2.42). Hence, we need to extend our approach. We make do
with few explicit calculations to prove our main results in Section 2.6. In the outlook,
Section 2.7, we abstract our calculations and leave it as an open question whether this
generalization is sufficient.

2.6 Proof of our main results towards the refined Bach-
mann Conjecture 2.10

In this section, we first provide the proof of our main results, namely, Theorems 2.8
and 2.12, where some particular statements are black-boxed. We deliver their proofs in
Sections 2.6.1, 2.6.2, and 2.6.3.

Proposition 2.72. The refined Bachmann Conjecture 2.10 is true for all (z, 2, w) ∈ Z3
>0.

Proof. Due to case d = 2 of Lemma 2.42, Conjecture 2.39 is true for all (z, 2) ∈ Z2
>0

with z ≥ 2. Theorem 2.69 then implies FilZ,D,W
z,2,w Zf

q ⊂ Fz,2,w for all z, w ∈ Z>0 with z ≥ 2.
Hence, it remains to prove case z = 1. However, this follows immediately from the special
case d = 2 of Corollary 2.28.

Proposition 2.73. The refined Bachmann Conjecture 2.10 is true for all (z, 3, w) ∈ Z3
>0.

Proof. The case z = 1 is proven by Corollary 2.28, the case z = 2 will follow from
Theorem 2.77 below, and the cases z ≥ 3 are proven by the z = 3 case of Lemma 2.52,
Theorem 2.41, and Theorem 2.69.

Proposition 2.74. The refined Bachmann Conjecture 2.10 is true for all (z, 4, w) ∈ Z3
>0.

Proof. While the case z = 1 is proven by Corollary 2.28, the case z = 2 will be obtained
from Theorem 2.82 below, and the case z = 3 will be obtained from Theorem 2.97
below. Furthermore, the cases z ≥ 4 are proven by Proposition 2.53 and Theorem 2.69,
completing the claim.

We are now able to prove one of our main theorems.

Theorem 2.75 (Theorem 2.8). Bachmann’s Conjecture 2.4 is true for all (z, d, w) ∈ Z3
>0

with z + d ≤ 6.

Proof. For z + d ≤ 3, the claim is an immediate consequence of Proposition 2.21 and
Corollary 2.28. For z = d = 2, the claim follows by induction on w, using the proven
claim for z + d ≤ 3, Lemma 2.68, and Proposition 2.72 in the induction step. Together
with Proposition 2.21 and Corollary 2.28, the claim holds now for z + d ≤ 4. Further-
more, inductively on w, the claim for (z, d) ∈ {(3, 2), (2, 3)} follows from the already
proven claim for z + d ≤ 4, Lemma 2.68, and Proposition 2.72 (for (z, d) = (3, 2)), and
Proposition 2.73 (for (z, d) = (2, 3)). Now, using Proposition 2.21 and Corollary 2.28,
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the claim follows for z + d ≤ 5. Analogously, for (z, d) ∈ {(4, 2), (3, 3), (2, 4)}, the claim
follows in each case inductively on w, where we use in the induction step the already
proven claim for z + d ≤ 5, Lemma 2.68, and Proposition 2.72 (for (z, d) = (4, 2)), 2.73
(for (z, d) = (3, 3)), and 2.74 (for (z, d) = (2, 4)), respectively. Now, using Proposi-
tion 2.21 and Corollary 2.28, the theorem is proven for z+ d ≤ 6 as well, completing the
proof.

Theorem 2.75 is the main ingredient in the proof of the next main theorem.

Theorem 2.76 (Theorem 2.12). The refined Bachmann Conjecture 2.10 is true for all
triples of positive integers (z, d, w) ∈ Z3

>0 with 1 ≤ d ≤ 4.

Proof. For 1 ≤ z < d ≤ 4 and w ∈ Z>0 arbitrary, we obtain the claim from Theorem 2.75.
Furthermore, for 1 ≤ d ≤ 3, z ≥ d and w ∈ Z>0 arbitrary, we obtain the claim from
Corollary 2.57, Lemma 2.42, and Theorem 2.69. For d = z = 4 and w ∈ Z>0 arbitrary, the
claim follows from Proposition 2.53 and Corollary 2.57. Hence, for z ≥ d = 4 and w ∈ Z>0
arbitrary, the claim is a direct consequence of Corollary 2.57 and Theorem 2.69, proving
the theorem finally.

2.6.1 The refined Bachmann Conjecture 2.10 for (z, d, w) = (2, 3, w)
Theorem 2.77. The refined Bachmann Conjecture 2.10 is true for all (2, 3, w) ∈ Z3

>0,
i.e.,

ζ f
q (uk1u

z1
0 uk2u

z2
0 uk3u

z3
0 ) ∈ F2,3,w (2.77.1)

for all integers kj ∈ Z>0, zj ∈ Z≥0, where 1 ≤ j ≤ 3, satisfying z1 + z2 + z3 = 2
and w = k1 + k2 + k3 + 2.

Proof. For k1 = k2 = k3 = 1 and for all z1, z2, z3 ≥ 0 satisfying z1 + z2 + z3 = 2, (2.77.1)
is true since, after using τ -invariance of ζ f

q, we have

ζ f
q (u1u

z1
0 u1u

z2
0 u1u

z3
0 ) = ζ f

q (uz3+1uz2+1uz3+1) ∈ F2,3,w .

Furthermore, for k2 > 1, (2.77.1) will follow from Lemma 2.79, for k3 > 1, (2.77.1)
will follow from Lemma 2.80, and for k1 > 1, (2.77.1) will follow from Lemma 2.81,
completing the proof of the theorem.

Lemma 2.78. Let be k1, k2, k3 ∈ Z>0 and write w = k1 + k2 + k3 + 2. We have

ζ f
q (uk1uk2uk3u0u0) , ζ f

q (uk1u0uk2u0uk3) ∈ F2,3,w, (2.78.1)
ζ f

q (uk1uk2u0u0uk3) ≡ ζ f
q (uk1u0uk2uk3u0) mod F2,3,w (2.78.2)

≡ −ζ f
q (uk1u0u0uk2uk3) ≡ − ζ f

q (uk1uk2u0uk3u0) mod F2,3,w . (2.78.3)

In particular, for fixed k1, k2, k3, if one of the latter four formal Multiple Zeta Values is
in F2,3,w, (2.77.1) is true for the corresponding choice of k1, k2, k3.

Proof. First note that (2.78.1) is a consequence of Corollaries 2.25 and 2.29. Furthermore,
after using Lemma 2.56 and τ -invariance of formal qMZVs, with (2.78.1), we obtain

0 ≡ ζ f
q

(
Ψ(k1,k2,k3)(u1u1 � u1u1u1)

)
mod F2,3,w

≡ ζ f
q

(
u2u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0 + u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F2,3,w

≡ ζ f
q (uk1uk2u0uk3u0) + ζ f

q (uk1u0uk2uk3u0) mod F2,3,w, (2.78.4)
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0 ≡ ζ f
q

(
Ψ(k1,k2,k3)(u1 � u1u2u1)

)
mod F2,3,w

≡ ζ f
q

(
u2u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0 + u1u

k3−1
0 u3u

k2−1
0 u1u

k1−1
0

)
mod F2,3,w

≡ ζ f
q (uk1uk2u0uk3u0) + ζ f

q (uk1uk2u0u0uk3) mod F2,3,w,

0 ≡ ζ f
q

(
Ψ(k1,k2,k3)(u1 � u1u1u2)

)
mod F2,3,w (2.78.5)

≡ ζ f
q

(
u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0 + u1u

k3−1
0 u1u

k2−1
0 u3u

k1−1
0

)
mod F2,3,w

≡ ζ f
q (uk1u0uk2uk3u0) + ζ f

q (uk1u0u0uk2uk3) mod F2,3,w .(2.78.6)

We obtain (2.78.2) and (2.78.3), by comparing (2.78.4), (2.78.5), and (2.78.6).

Lemma 2.79. Equation (2.77.1) is true for k2 > 1.

Proof. Let be k1, k2, k3 ∈ Z>0 and write w = k1 + k2 + k3 + 3. By (2.3.1), we have

u2u1 ∗ uk1uk2uk3 ∈ FilZ,D,W
0,5,w Q⟨U⟩◦.

Hence, and due to τ -invariance of formal qMZVs, we have

0 ≡ 1
k2
ζ f

q (τ(u2u1) ∗ τ (uk1uk2uk3)) mod F2,3,w

≡ 1
k2
ζ f

q

(
u1u1u0 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,3,w

≡ ζ f
q

(
u2u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
+ k1
k2
ζ f

q

(
u1u1 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1
0

)
mod F2,3,w

≡ ζ f
q (uk1uk2+1u0uk3u0) + ζ f

q

(
Ψ(k1+1,k2,k3)(u1u1 � u1u1u1)

)
mod F2,3,w,

≡ ζ f
q (uk1uk2+1u0uk3u0) mod F2,3,w,

where the last step is a consequence of Lemma 2.56. Now, with Lemma 2.78, (2.77.1)
indeed is true for k2 > 1.

Lemma 2.80. Equation (2.77.1) is true for k3 > 1.

Proof. Let be k1, k2, k3 ∈ Z>0 and write w = k1 + k2 + k3 + 3. By (2.3.1), we have

u2 ∗ uk1u0uk2uk3 ∈ FilZ,D,W
1,4,w Q⟨U⟩◦.

Hence, and due to τ -invariance of formal qMZVs, we have

0 ≡ 1
k3
ζ f

q (τ(u2) ∗ τ (uk1u0uk2uk3)) mod F2,3,w

≡ 1
k3
ζ f

q

(
u1u0 ∗ u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F2,3,w

≡ ζ f
q

(
u2u

k3
0 u1u

k2−1
0 u2u

k1−1
0

)
+ k2
k3
ζ f

q

(
u2u

k3−1
0 u1u

k2
0 u2u

k1−1
0

)
+ k2
k3
ζ f

q

(
u1u

k3−1
0 u2u

k2
0 u2u

k1−1
0

)
+ k1
k3
ζ f

q

(
Ψ(k1+1,k2,k3)(u1 � u1u1u2

)
mod F2,3,w

≡ ζ f
q (uk1u0uk2uk3+1u0) mod F2,3,w .

The last step is obtained by Lemmas 2.56 and 2.79. Hence, the lemma is proven by
Lemma 2.78.

Hence, for proving Proposition 2.73, the remaining case is k2 = k3 = 1.
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Lemma 2.81. Equation (2.77.1) is true for k1 > 1.

Proof. Let be k1, k2, k3 ∈ Z>0 with k1 > 1 and write w = k1 + k2 + k3 + 2. Due to
Lemmas 2.79 and 2.80, we may assume k1 > 1 and k2 = k3 = 1, i.e., w = k1 +4 then. By
Proposition 2.72, we have ζ f

q (uk1u0u1u0) ∈ F2,2,w−1 and thus ζ f
q (u1 ∗ uk1u0u1u0) ∈ F2,3,w.

Multiplying out the latter product and using Proposition 2.72, (2.78.1), and Lemma 2.79,
we see that

0 ≡ ζ f
q (u1 ∗ uk1u0u1u0) ≡ 2ζ f

q (uk1u0u1u1u0 + uk1u1u0u1u0) mod F2,3,w

≡ ζ f
q (uk1u0u1u1u0) mod F2,3,w,

where the last congruence is obtained from (2.78.4). Thus, the proof of the lemma follows
from Lemma 2.78.

2.6.2 The refined Bachmann Conjecture 2.10 for (z, d, w) = (2, 4, w)
Theorem 2.82. The refined Bachmann Conjecture 2.10 is true for all (2, 4, w) ∈ Z3

>0,
i.e.,

ζ f
q (uk1u

z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) ∈ F2,4,w (2.82.1)

for all integers kj ∈ Z>0, zj ∈ Z≥0, for 1 ≤ j ≤ 4, satisfying z1 + z2 + z3 + z4 = 2
and w = k1 + k2 + k3 + k4 + 2.

Proof. In the case k1 = k2 = k3 = k4 = 1, (2.82.1) is true since for all z1, . . . , z4 ≥ 0, we
have by τ -invariance of ζ f

q that

ζ f
q (u1u

z1
0 u1u

z2
0 u1u

z3
0 u1u

z4
0 ) = ζ f

q (uz4+1uz3+1uz2+1uz1+1) ∈ FilD,W
4,w Zf,◦

q .

In the four cases ki1 , ki2 , ki3 > 1 with pairwise distinct i1, i2, i3 ∈ {1, 2, 3, 4}, (2.82.1) will
follow from Lemma 2.87, Proposition 2.88, and Proposition 2.89. Furthermore, the six
cases ki1 , ki2 > 1 for distinct i1, i2 ∈ {1, 2, 3, 4} (and the two other kj ’s equal 1) then follow
from Lemmas 2.87, 2.90, 2.91, and 2.92. Next, the four cases of ki > 1 (i ∈ {1, 2, 3, 4})
(and the three other kj ’s equal 1), will follow from Lemmas 2.93, 2.94, 2.95, and 2.96.
This completes the proof of the theorem.

In the following three lemmas, we state some congruences that are true independently
of the several cases we might consider.

Lemma 2.83. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · · + k4 + 2. We have

0 ≡ ζ f
q (uk1uk2uk3uk4u0u0) mod F2,4,w, (2.83.1)

0 ≡ ζ f
q (uk1u0uk2u0uk3uk4) mod F2,4,w, (2.83.2)

0 ≡ ζ f
q (uk1uk2uk3u0uk4u0) + ζ f

q (uk1uk2uk3u0u0uk4) mod F2,4,w . (2.83.3)

Proof. Note that (2.83.1) is a direct consequence of Corollary 2.25, while (2.83.2) follows
from Corollary 2.29. Last, (2.83.3) follows from (2.83.1) and Corollary 2.27 used with
the special case d = 4, z = 2, j = 3.

Lemma 2.84. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · · + k4 + 2. We have

0 ≡ ζ f
q (uk1uk2uk3u0uk4u0) + ζ f

q (uk1uk2u0uk3uk4u0)
+ ζ f

q (uk1u0uk2uk3uk4u0) mod F2,4,w,
(2.84.1)
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0 ≡ ζ f
q (uk1uk2u0uk3u0uk4) + ζ f

q (uk1u0uk2uk3u0uk4) mod F2,4,w, (2.84.2)
0 ≡ ζ f

q (uk1uk2u0uk3uk4u0) + ζ f
q (uk1uk2u0uk3u0uk4)

+ ζ f
q (uk1uk2u0u0uk3uk4) mod F2,4,w,

(2.84.3)

0 ≡ ζ f
q (uk1u0uk2uk3uk4u0) + ζ f

q (uk1u0uk2uk3u0uk4)
+ ζ f

q (uk1u0u0uk2uk3uk4) mod F2,4,w,
(2.84.4)

0 ≡ ζ f
q (uk1uk2uk3u0u0uk4) + ζ f

q (uk1uk2u0u0uk3uk4)
+ ζ f

q (uk1u0u0uk2uk3uk4) mod F2,4,w,
(2.84.5)

0 ≡ ζ f
q (uk1uk2uk3u0uk4u0) + ζ f

q (uk1uk2u0uk3uk4u0)
+ ζ f

q (uk1u0uk2uk3uk4u0) + ζ f
q (uk1uk2u0uk3u0uk4)

+ ζ f
q (uk1u0uk2uk3u0uk4) mod F2,4,w .

(2.84.6)

Proof. All relations are, by Lemma 2.56, a consequence of

0 ≡ ζ f
q (τ(Ψk(un � uℓ))) mod F2,4,w

with k = (k1, . . . , k4) each and (n, ℓ) ∈ J2,4, where Lemma 2.83 was applied. Pre-
cisely, for (2.84.1), we used (n, ℓ) = ((1), (2, 1, 1, 1)), while for obtaining (2.84.2), we
used (n, ℓ) = ((1), (1, 2, 1, 1)), for (2.84.3), we used (n, ℓ) = ((1), (1, 1, 2, 1)), for (2.84.4),
we used (n, ℓ) = ((1), (1, 1, 1, 2), for (2.84.5), we used (n, ℓ) = ((2), (1, 1, 1, 1)). Further-
more, for (2.84.6), we used (n, ℓ) = ((1, 1), (1, 1, 1, 1)).

Lemma 2.85. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · · + k4 + 3. We have

0 ≡ k4ζ
f
q (uk1u0uk2uk3uk4+1u0) − k3ζ

f
q (uk1u0u0uk2uk3+1uk4)

− k2ζ
f
q (uk1u0u0uk2+1uk3uk4) mod F2,4,w,

(2.85.1)

0 ≡ k4ζ
f
q (uk1uk2u0uk3uk4+1u0) − k3ζ

f
q (uk1uk2u0u0uk3+1uk4) mod F2,4,w, (2.85.2)

0 ≡ k4ζ
f
q (uk1uk2uk3u0uk4+1u0) + k2ζ

f
q (uk1uk2+1u0uk3u0uk4) mod F2,4,w, (2.85.3)

0 ≡ k3ζ
f
q (uk1uk2uk3+1u0uk4u0) − k2ζ

f
q (uk1u0uk2+1uk3uk4u0) mod F2,4,w, (2.85.4)

0 ≡ k3ζ
f
q (uk1uk2uk3+1u0u0uk4) − k2ζ

f
q (uk1u0u0uk2+1uk3uk4) mod F2,4,w .(2.85.5)

Proof. We use τ -invariance of formal qMZVs and Corollary 2.28 to see in the following
calculations that each of the formal qMZVs of stuffle products in the first line indeed is
an element of F2,4,w in the following.

Now, by (2.83.2) and (2.84.4), we have

0 ≡ ζ f
q (τ(u2) ∗ τ (uk1u0uk2uk3uk4)) mod F2,4,w

≡ ζ f
q

(
u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q

(
u2u

k4
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
− k3ζ

f
q

(
u1u

k4−1
0 u1u

k3
0 u1u

k2−1
0 u3u

k1−1
0

)
− k2ζ

f
q

(
u1u

k4−1
0 u1u

k3−1
0 u1u

k2
0 u3u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q (uk1u0uk2uk3uk4+1u0) − k3ζ

f
q (uk1u0u0uk2uk3+1uk4)

− k2ζ
f
q (uk1u0u0uk2+1uk3uk4) mod F2,4,w,

proving (2.85.1). Furthermore, using (2.83.2), we have

0 ≡ ζ f
q (τ(u2) ∗ τ (uk1uk2u0uk3uk4)) mod F2,4,w
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≡ ζ f
q

(
u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q

(
u2u

k4
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
− k3ζ

f
q

(
u1u

k4−1
0 u1u

k3
0 u3u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q (uk1uk2u0uk3uk4+1u0) − k3ζ

f
q (uk1uk2u0u0uk3+1uk4) mod F2,4,w,

proving (2.85.2). Now, applying (2.83.3) yields

0 ≡ ζ f
q (τ(u2) ∗ τ (uk1uk2uk3u0uk4)) mod F2,4,w

≡ ζ f
q

(
u1u0 ∗ u1u

k4−1
0 u2u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q

(
u2u

k4
0 u2u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
+ k2ζ

f
q

(
u1u

k4−1
0 u2u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q (uk1uk2uk3u0uk4+1u0) + k2ζ

f
q (uk1uk2+1u0uk3u0uk4) mod F2,4,w,

proving (2.85.3). Next, use (2.83.1) and (2.84.1) to obtain

0 ≡ ζ f
q (τ(u2) ∗ τ (uk1uk2uk3uk4u0)) mod F2,4,w

≡ ζ f
q

(
u1u0 ∗ u2u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k3ζ
f
q

(
u2u

k4−1
0 u2u

k3
0 u1u

k2−1
0 u1u

k1−1
0

)
− k2ζ

f
q

(
u2u

k4−1
0 u1u

k3−1
0 u1u

k2
0 u2u

k1−1
0

)
mod F2,4,w

≡ k3ζ
f
q (uk1uk2uk3+1u0uk4u0) − k2ζ

f
q (uk1u0uk2+1uk3uk4u0) mod F2,4,w,

proving (2.85.4). Now, (2.83.1) and (2.84.5) imply

0 ≡ ζ f
q (τ(u2u0) ∗ τ (uk1uk2uk3uk4)) mod F2,4,w

≡ ζ f
q

(
u2u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k3ζ
f
q

(
u1u

k4−1
0 u3u

k3
0 u1u

k2−1
0 u1u

k1−1
0

)
− k2ζ

f
q

(
u1u

k4−1
0 u1u

k3−1
0 u1u

k2
0 u3u

k1−1
0

)
mod F2,4,w

≡ k3ζ
f
q (uk1uk2uk3+1u0u0uk4) − k2ζ

f
q (uk1u0u0uk2+1uk3uk4) mod F2,4,w,

proving (2.85.5). This completes the proof of the lemma.

Corollary 2.86. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · · + k4 + 3. We have

0 ≡ ζ f
q (uk1u0uk2+1uk3u0uk4) mod F2,4,w, (2.86.1)

0 ≡ ζ f
q (uk1uk2+1u0uk3u0uk4) mod F2,4,w, (2.86.2)

0 ≡ ζ f
q (uk1uk2uk3u0uk4+1u0) mod F2,4,w, (2.86.3)

0 ≡ ζ f
q (uk1uk2uk3u0u0uk4+1) mod F2,4,w . (2.86.4)

Proof. Adding (2.85.4) and (2.85.5), yields, applying (2.83.3),

0 ≡ − k2
(
ζ f

q (uk1u0uk2+1uk3uk4u0) + ζ f
q (uk1u0u0uk2+1uk3uk4)

)
mod F2,4,w

≡ k2ζ
f
q (uk1u0uk2+1uk3u0uk4) mod F2,4,w,
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where the last step follows from (2.84.4). Hence, (2.86.1) is proven. Furthermore, (2.86.2)
is deducted from (2.84.2) and (2.86.1). Now, (2.86.3) follows from (2.85.3) and (2.86.2).
Since (2.86.4) is a consequence of (2.86.3) and (2.83.3), the corollary is proven.

Lemma 2.87. Equation (2.82.1) is true for k2, k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 and write w = k1 + k2 + k3 + k4 + 4. By Equa-
tions (2.83.1), (2.84.1), and (2.86.3), we have

0 ≡ ζ f
q (τ(u1u3) ∗ τ (uk1uk2uk3uk4)) mod F2,4,w

≡ ζ f
q

(
u1u0u0u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4k2ζ
f
q

(
u2u

k4
0 u1u

k3−1
0 u1u

k2
0 u2u

k1−1
0

)
+ ζ f

q

(
u1u

k4−1
0

(
u1u0u0u1 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

))
+ ζ f

q

(
u2u

k4−1
0 u1

(
u0u0u1 ∗ uk3−1

0 u1u
k2−1
0 u1u

k1−1
0

))
mod F2,4,w .

Now, by (2.84.2), (2.84.4), (2.84.6), and (2.86.1), the latter is, modulo F2,4,w, congruent

k4k2ζ
f
q (uk1u0uk2+1uk3uk4+1u0) −

(
k3 + 1

2

)
ζ f

q (uk1uk2uk3+2u0uk4u0)

+ k3k2ζ
f
q (uk1u0uk2+1uk3+1uk4u0) −

(
k2 + 1

2

)
ζ f

q (uk1u0u0uk2+2uk3uk4) .

Using (2.85.2), (2.85.3), (2.85.4), and (2.85.5), the latter is, modulo F2,4,w, congruent

− k2k3ζ
f
q (uk1uk2+1u0u0uk3+1uk4) − 1

2k2k3ζ
f
q (uk1u0uk2+1uk3+1uk4u0)

+ k3k2ζ
f
q (uk1u0uk2+1uk3+1uk4u0) − 1

2k2k3ζ
f
q (uk1uk2+1uk3+1u0u0uk4)

≡ k2k3

(
−ζ f

q (uk1uk2+1u0u0uk3+1uk4) − 1
2ζ

f
q (uk1uk2+1uk3+1u0u0uk4)

+1
2ζ

f
q (uk1u0uk2+1uk3+1uk4u0)

)
mod F2,4,w .

With (2.84.2), (2.84.3), (2.84.6), and (2.86.2), one obtains so

0 ≡ ζ f
q (uk1uk2+1u0uk3+1uk4u0) mod F2,4,w . (2.87.1)

Now, this, together with (2.84.3) and (2.86.2) imply

0 ≡ ζ f
q (uk1uk2+1u0u0uk3+1uk4) mod F2,4,w . (2.87.2)

Furthermore, (2.85.2) and (2.87.2) imply

0 ≡ ζ f
q (uk1uk2+1u0uk3uk4+1u0) mod F2,4,w .

Note that by Lemma 2.83, Corollary 2.86, and the congruences in Lemma 2.84, the claim
follows.

Proposition 2.88. Equation (2.82.1) is true for k1, k3, k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1, k3, k4 > 1 and write w = k1 + k2 + k3 + k4 + 2.
For all z2, z3, z4 ≥ 0 with z2 + z3 + z4 = 2, using Theorem 2.77 in the first step and
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Lemma 2.87 additionally in the second step, we have

0 ≡ ζ f
q (uk1 ∗ uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) ≡ ζ f

q (uk1uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

Using this observation, for z1 ≥ 1, z2, z3, z4 ≥ 0 with z1 + · · · + z4 = 2, we have, using
Corollary 2.28 in the first step due to z2 + z3 + z4 ≤ 1,

0 ≡ ζ f
q (uz1 ∗ τ (uk1uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 )) mod F2,4,w

≡ ζ f
q

(
uz1 ∗ uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ ζ f
q

(
uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ f
q (uk1u

z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

This completes the proof of the proposition.

Proposition 2.89. Equation (2.82.1) is true for k1, k2, k3 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1, k2, k3 > 1 and write w = k1 + k2 + k3 + k4 + 2.
Using Lemma 2.87 and Proposition 2.88, we obtain for z1, z2, z4 ≥ 0 with z1 +z2 +z4 = 2
that

0 ≡ ζ f
q (uk4u

z4
0 ∗ uk1u

z1
0 uk2u

z2
0 uk3) ≡ ζ f

q (uk1u
z1
0 uk2u

z2
0 uk3uk4u

z4
0 ) mod F2,4,w,

where we used Proposition 2.21 and Proposition 2.73 for the first congruence. Now, for
all z1, . . . , z4 ≥ 0 with z1 + · · · + z4 = 2 and z3 > 0, we have

0 ≡ ζ f
q (uz3 ∗ τ (uk1u

z1
0 uk2u

z2
0 uk3uk4u

z4
0 )) mod F2,4,w

≡ ζ f
q

(
uz3 ∗ uz4+1u

k4−1
0 u1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ f
q

(
uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ f
q (uk1u

z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

This completes the proof of the proposition.

Lemma 2.87 and Propositions 2.88 and 2.89, show that Theorem 2.82 is true when
three of the kj are larger than 1. Hence, in the following, we will prove the remaining
cases that two of the kj ’s are larger 1.

Lemma 2.90. Equation (2.82.1) is true for k3, k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k3, k4 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemma 2.87 and Proposition 2.88, we may assume k1 = k2 = 1. Using
Proposition 2.73 for the first two steps in the following calculation, while using Equa-
tions (2.83.2), (2.84.2), and (2.86.1) for the last step, we have

0 ≡ ζ f
q (u1 ∗ u1u0uk3u0uk4) mod F2,4,w

≡ 2ζ f
q (u1u1u0uk3u0uk4) + ζ f

q (u1u0u1uk3u0uk4)
+ ζ f

q (u1u0uk3u1u0uk4) + ζ f
q (u1u0uk3u0u1uk4)

+ ζ f
q (u1u0uk3u0uk4u1) mod F2,4,w

≡ ζ f
q (u1u1u0uk3u0uk4) mod F2,4,w . (2.90.1)
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This implies, with (2.84.2) again,

0 ≡ ζ f
q (u1u0u1uk3u0uk4) mod F2,4,w . (2.90.2)

Now, using Proposition 2.73 for the first step, then using (2.83.2), (2.86.1), and Lemma 2.87
for the second step, then applying (2.90.1) and (2.90.2), we obtain

0 ≡ 1
4
(
ζ f

q (u1u0 ∗ u1u0uk3uk4) − ζ f
q (u1 ∗ u1u0uk3uk4u0)

)
mod F2,4,w

≡ ζ f
q (u1u1u0u0uk3uk4) + 1

2ζ
f
q (u1u1u0uk3u0uk4)

+ 1
4ζ

f
q (u1u0u1uk3u0uk4) mod F2,4,w

≡ ζ f
q (u1u1u0u0uk3uk4) mod F2,4,w .

The lemma follows using the relations in Lemma 2.84.

Lemma 2.91. Equation (2.82.1) is true for k2, k3 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k2, k3 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Proposition 2.89 and Lemma 2.87, we may assume k1 = k4 = 1. Using
Proposition 2.73 for the first step and Lemmas 2.87 and 2.90 for the second one, we
obtain

0 ≡ ζ f
q (u1 ∗ u1u0u0uk2uk3) ≡ ζ f

q (u1u0u0uk2uk3u1) mod F2,4,w,

giving by (2.84.5), respectively by (2.84.4) and (2.86.1),

0 ≡ ζ f
q (u1uk2uk3u0u0u1) mod F2,4,w, (2.91.1)

0 ≡ ζ f
q (u1u0uk2uk3u1u0) mod F2,4,w .

Note that (2.91.1) implies by (2.83.3)

0 ≡ ζ f
q (u1uk2uk3u0u1u0) mod F2,4,w,

completing, together with (2.83.1), (2.83.2), (2.86.1), (2.86.2), (2.87.1), and (2.87.2), the
proof of the lemma.

Lemma 2.92. Equation (2.82.1) is true for k1 > 1 and one of k2, k3, k4 larger 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1 > 1 and write w = k1 + k2 + k3 + k4 + 2. First,
assume that one of k3, k4 larger 1 as well. For z2, z3, z4 ≥ 0 with z2 + z3 + z4 = 2, we
have, using Proposition 2.73 in the first step and Lemmas 2.87, 2.90, and 2.91 for the
second one,

0 ≡ ζ f
q (uk1 ∗ uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) ≡ ζ f

q (uk1uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

Now, for all z1 > 0, z2, z3, z4 ≥ 0 with z1 + · · · + z4 = 2, using Corollary 2.28, we obtain

0 ≡ ζ f
q (uz1 ∗ τ (uk1uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 )) mod F2,4,w

≡ ζ f
q

(
uz1 ∗ uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ ζ f
q

(
uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ f
q (uk1u

z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w,
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showing that (2.82.1) holds for k1, k3 > 1, and for k1, k4 > 1 as well.
It remains considering the case of k1, k2 > 1 with k3, k4 ∈ Z>0 arbitrary. Note

that for z3, z4 ≥ 0 with z3 + z4 = 2, we have by the previous results of this proof and
Lemmas 2.87, 2.90, and 2.91,

0 ≡ ζ f
q (uk3u

z3
0 uk4u

z4
0 ∗ uk1uk2) ≡ ζ f

q (uk1uk2uk3u
z3
0 uk4u

z4
0 ) mod F2,4,w .

By Corollary 2.28 for the first congruence and for the second, again, by the previous
results of this proof and Lemmas 2.87, 2.90, and 2.91, we have

0 ≡ ζ f
q (uk3uk4u0 ∗ uk1u0uk2) ≡ ζ f

q (uk1u0uk2uk3uk4u0) mod F2,4,w .

Using the previous results of this proof and (2.83.1), (2.83.2), (2.86.2), (2.86.1), and
Lemma 2.84, we obtain that (2.82.1) also holds true for k1, k2 > 1, completing the
proof.

As in the proof of Theorem 2.82 mentioned, for completing the proof of Theorem 2.82,
it remains to consider the cases where one of the kj ’s is larger 1 while the other three
equal 1.

Lemma 2.93. Equation (2.82.1) is true for k3 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k3 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemmas 2.90, 2.91, 2.92, we may assume k1 = k2 = k4 = 1, i.e., w = k3 +5.
Using Proposition 2.73 for the first congruence, Corollary 2.28 and Proposition 2.73 for
the second one, and (2.83.2), (2.84.5), and (2.86.4) for the third one, we have

0 ≡ ζ f
q (u1 ∗ u1u0u0u1uk3) mod F2,4,w

≡ 2ζ f
q (u1u1u0u0u1uk3) + ζ f

q (u1u0u1u0u1uk3)
+ 2ζ f

q (u1u0u0u1u1uk3) + ζ f
q (u1u0u0u1uk3u1) mod F2,4,w

≡ ζ f
q (u1u0u0u1uk3u1) mod F2,4,w . (2.93.1)

Furthermore, using Proposition 2.73 for the first congruence, Corollary 2.28, Proposi-
tion 2.73 and Equations (2.83.2), (2.84.2), and (2.86.1) for the second congruence, gives

0 ≡ ζ f
q (u1 ∗ u1u0uk3u0u1) ≡ ζ f

q (u1u1u0uk3u0u1) mod F2,4,w, (2.93.2)

and so, by (2.84.2) again,

0 ≡ ζ f
q (u1u0u1uk3u0u1) mod F2,4,w . (2.93.3)

Now, (2.84.4) in combination with (2.93.1) and (2.93.3) implies

0 ≡ ζ f
q (u1u0u1uk3u1u0) mod F2,4,w . (2.93.4)

Using Corollary 2.28 for the first congruence and, for the second one, Corollary 2.28,
Propositions 2.72 and 2.73 and Equations (2.84.1), (2.102.11), (2.83.2), (2.93.2), (2.93.3),
we obtain

0 ≡ 1
4
(
ζ f

q (u1u0u1 ∗ u1u0uk3) − ζ f
q (u1u0 ∗ u1u0u1uk3)

)
mod F2,4,w

≡ ζ f
q (u1u1u0u0uk3u1) mod F2,4,w . (2.93.5)

The remaining proof follows directly from Lemma 2.84.
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Lemma 2.94. Equation (2.82.1) is true for k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k4 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemmas 2.90, 2.87, 2.92, we may assume k1 = k2 = k3 = 1, i.e., w = k4 +5.
Using Corollary 2.28 for the first congruence, and for the second one, Corollary 2.28,
Proposition 2.73, and Equations (2.84.6), (2.86.3), and (2.93.4), we have

0 ≡ 1
4
(
ζ f

q (u1u0 ∗ u1u0u1uk4)
)

≡ ζ f
q (u1u1u0u0u1uk4) mod F2,4,w .

This, (2.86.4), and (2.93.5), gives, together with Proposition 2.73,

0 ≡ ζ f
q (u1 ∗ u1u1u0u0uk4) ≡ ζ f

q (u1u1u0u1u0uk4) mod F2,4,w .

The remaining part of the proof follows from (2.83.1), (2.83.2), (2.86.3), (2.86.4), and
Lemma 2.84.

Lemma 2.95. Equation (2.82.1) is true for k2 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k2 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemmas 2.87, 2.91, 2.92, we may assume k1 = k3 = k4 = 1, i.e., w = k2 +5.
First note that, by Proposition 2.73 and Lemma 2.93, one has

0 ≡ 1
2ζ

f
q (u1 ∗ u1u0u0uk2u1) ≡ ζ f

q (u1u0u0uk2u1u1) mod F2,4,w,

giving, with (2.84.4) and (2.86.1),

0 ≡ ζ f
q (u1u0uk2u1u1u0) mod F2,4,w, (2.95.1)

Furthermore, by Proposition 2.73 for the first congruence, Corollary 2.28, Proposi-
tion 2.73 and Lemma 2.93, Equations (2.84.1), (2.86.2), and (2.95.1) for the second
congruence, we obtain

0 ≡ ζ f
q (u1 ∗ u1uk2u0u1u0) ≡ ζ f

q (u1uk2u0u1u1u0) mod F2,4,w .

The remaining part of the proof follows from (2.83.1), (2.83.2), (2.86.2), (2.86.1), and
Lemma 2.84, immediately.

Lemma 2.96. Equation (2.82.1) is true for k1 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemma 2.92, we may assume k2 = k3 = k4 = 1, i.e., w = k1 + 5. For
any z2, z3, z4 ≥ 0 with z2 + z3 + z4 = 2, we have, using Corollary 2.28, Proposition 2.73,
and Lemmas 2.93, 2.94, and 2.95 for the third congruence,

0 ≡ ζ f
q (uk1 ∗ τ (uz4+1uz3+1uz2+1)) mod F2,4,w

≡ ζ f
q (uk1 ∗ u1u

z2
0 u1u

z3
0 u1u

z4
0 ) mod F2,4,w

≡ ζ f
q (uk1u1u

z2
0 u1u

z3
0 u1u

z4
0 ) mod F2,4,w .

This implies, for any z1 > 0, z2, z3, z4 ≥ 0 with z1 + · · · + z4 = 2, using Proposition 2.73
for the first congruence and, additionally, Corollary 2.28 for the third congruence,

0 ≡ ζ f
q (uz1 ∗ τ (uk1u1u

z2
0 u1u

z3
0 u1u

z4
0 )) mod F2,4,w

≡ ζ f
q

(
uz1 ∗ uz4+1uz3+1uz2+1u1u

k1−1
0

)
mod F2,4,w
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≡ ζ f
q

(
uz4+1uz3+1uz2+1uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ f
q (uk1u

z1
0 u1u

z2
0 u1u

z3
0 u1u

z4
0 ) mod F2,4,w,

completing the proof of the lemma.

2.6.3 The refined Bachmann Conjecture 2.10 for (z, d, w) = (3, 4, w)
Theorem 2.97. The refined Bachmann Conjecture 2.10 is true for all (3, 4, w) ∈ Z3

>0,
i.e.,

ζ f
q (uk1u

z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) ∈ F3,4,w (2.97.1)

for all integers kj ∈ Z>0, zj ∈ Z≥0, for 1 ≤ j ≤ 4, satisfying z1 + z2 + z3 + z4 = 3
and w = k1 + k2 + k3 + k4 + 3.

Proof. In the case k1 = k2 = k3 = k4 = 1, (2.97.1) is true since, by τ -invariance of ζ f
q,

for any z1, . . . , z4 ≥ 0, we have

ζ f
q (u1u

z1
0 u1u

z2
0 u1u

z3
0 u1u

z4
0 ) ≡ ζ f

q (uz4+1uz3+1uz2+1uz1+1) ∈ Zf,◦
q .

For k3 > 1, (2.97.1) will follow from Lemma 2.101, for k4 > 1, (2.97.1) will follow from
Lemma 2.102, for k2 > 1, (2.97.1) will follow from Lemma 2.103, and for k1 > 1, (2.97.1)
will follow from Lemma 2.104. This completes the proof of the theorem.

First, we will consider some relations we need more than once.

Lemma 2.98. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · · + k4 + 3. We have

0 ≡ ζ f
q (uk1uk2uk3uk4u0u0u0) mod F3,4,w, (2.98.1)

0 ≡ ζ f
q (uk1u0uk2u0uk3u0uk4) mod F3,4,w . (2.98.2)

Proof. Congruence (2.98.1) is a special case of Corollary 2.24. Setting k := (k1, . . . , k4),
Equation (2.98.2) follows from Lemma 2.56 and (2.98.1) via

ζ f
q

(
Ψk

(
u1u

3
2

))
≡

3∑
j=0

(−1)j−1ζ f
q

(
Ψk

(
uj

1 � u4−ju
3
1

))
≡ 0 mod F3,4,w .

Next, we consider relations coming from products with no u0 in one of the factors.

Lemma 2.99. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · · + k4 + 3. We have

0 ≡ ζ f
q (uk1uk2uk3u0uk4u0u0) + ζ f

q (uk1uk2u0uk3uk4u0u0)
+ ζ f

q (uk1u0uk2uk3uk4u0u0) mod F3,4,w,
(2.99.1)

0 ≡ ζ f
q (uk1u0u0uk2uk3uk4u0) + ζ f

q (uk1u0u0uk2uk3u0uk4)
+ ζ f

q (uk1u0u0uk2u0uk3uk4) + ζ f
q (uk1u0u0u0uk2uk3uk4) mod F3,4,w,

(2.99.2)

0 ≡ ζ f
q (uk1uk2uk3u0uk4u0u0) + ζ f

q (uk1uk2uk3u0u0uk4u0)
+ ζ f

q (uk1uk2u0uk3u0uk4u0) + ζ f
q (uk1u0uk2uk3u0uk4u0) mod F3,4,w,

(2.99.3)

0 ≡ ζ f
q (uk1u0uk2uk3uk4u0u0) + ζ f

q (uk1u0uk2uk3u0uk4u0)
+ ζ f

q (uk1u0uk2u0uk3uk4u0) + ζ f
q (uk1u0u0uk2uk3uk4u0) mod F3,4,w,

(2.99.4)

0 ≡ ζ f
q (uk1u0uk2uk3u0uk4u0) + ζ f

q (uk1u0uk2uk3u0u0uk4)
+ ζ f

q (uk1u0uk2u0uk3u0uk4) + ζ f
q (uk1u0u0uk2uk3u0uk4) mod F3,4,w,

(2.99.5)
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0 ≡ ζ f
q (uk1u0uk2u0uk3uk4u0) + ζ f

q (uk1u0uk2u0uk3u0uk4)
+ ζ f

q (uk1u0uk2u0u0uk3uk4) + ζ f
q (uk1u0u0uk2u0uk3uk4) mod F3,4,w,

(2.99.6)

0 ≡ ζ f
q (uk1uk2uk3uk4u0u0u0) + ζ f

q (uk1uk2uk3u0u0uk4u0)
+ ζ f

q (uk1uk2u0u0uk3uk4u0) + ζ f
q (uk1u0u0uk2uk3uk4u0) mod F3,4,w,

(2.99.7)

0 ≡ ζ f
q (uk1uk2uk3u0uk4u0u0) + ζ f

q (uk1uk2uk3u0u0u0uk4)
+ ζ f

q (uk1uk2u0u0uk3u0uk4) + ζ f
q (uk1u0u0uk2uk3u0uk4) mod F3,4,w,

(2.99.8)

0 ≡ ζ f
q (uk1uk2u0uk3uk4u0u0) + ζ f

q (uk1uk2u0uk3u0u0uk4)
+ ζ f

q (uk1uk2u0u0u0uk3uk4) + ζ f
q (uk1u0u0uk2u0uk3uk4) mod F3,4,w,

(2.99.9)

0 ≡ ζ f
q (uk1u0uk2uk3uk4u0u0) + ζ f

q (uk1u0uk2uk3u0u0uk4)
+ ζ f

q (uk1u0uk2u0u0uk3uk4) + ζ f
q (uk1u0u0u0uk2uk3uk4) mod F3,4,w,

(2.99.10)

0 ≡ ζ f
q (uk1u0uk2uk3u0uk4u0) + ζ f

q (uk1u0uk2u0uk3uk4u0)
+ ζ f

q (uk1u0u0uk2uk3uk4u0) + ζ f
q (uk1u0u0uk2u0uk3uk4)

+ ζ f
q (uk1u0u0u0uk2uk3uk4) mod F3,4,w,

(2.99.11)

0 ≡ ζ f
q (uk1uk2uk3u0u0u0uk4) + ζ f

q (uk1uk2u0u0u0uk3uk4)
+ ζ f

q (uk1u0u0u0uk2uk3uk4) mod F3,4,w,
(2.99.12)

0 ≡ ζ f
q (uk1uk2uk3u0uk4u0u0) + ζ f

q (uk1uk2u0uk3uk4u0u0)
+ ζ f

q (uk1u0uk2uk3uk4u0u0) + ζ f
q (uk1uk2u0uk3u0u0uk4)

+ ζ f
q (uk1u0uk2uk3u0u0uk4) + ζ f

q (uk1u0uk2u0u0uk3uk4) mod F3,4,w,

(2.99.13)

0 ≡ ζ f
q (uk1uk2uk3u0u0uk4u0) + ζ f

q (uk1uk2u0u0uk3uk4u0)
+ ζ f

q (uk1u0u0uk2uk3uk4u0) + ζ f
q (uk1uk2u0u0uk3u0uk4)

+ ζ f
q (uk1u0u0uk2uk3u0uk4) + ζ f

q (uk1u0u0uk2u0uk3uk4) mod F3,4,w,

(2.99.14)

0 ≡ ζ f
q (uk1uk2u0uk3u0uk4u0) + ζ f

q (uk1u0uk2uk3u0uk4u0)
+ ζ f

q (uk1u0uk2u0uk3uk4u0) mod F3,4,w .
(2.99.15)

Proof. All relations are a consequence of Lemma 2.98 and, by Lemma 2.56,

0 ≡ ζ f
q (τ(Ψk(un � uℓ))) mod F3,4,w

with k = (k1, . . . , k4) and (n, ℓ) ∈ J3,4 each. Precisely, we used (n, ℓ) = ((1), (3, 1, 1, 1))
for (2.99.1), (n, ℓ) = ((1), (1, 1, 1, 3)) for (2.99.2), (n, ℓ) = ((1), (2, 2, 1, 1)) for (2.99.3).
Furthermore, we used (n, ℓ) = ((1), (2, 1, 1, 2)) for (2.99.4), (n, ℓ) = ((1), (1, 2, 1, 2))
for (2.99.5), (n, ℓ) = ((1), (1, 1, 2, 2)) for (2.99.6), (n, ℓ) = ((2), (2, 1, 1, 1)) for (2.99.7).
Furthermore, we used (n, ℓ) = ((2), (1, 2, 1, 1)) for (2.99.8), (n, ℓ) = ((2), (1, 1, 2, 1))
for (2.99.9), (n, ℓ) = ((2), (1, 1, 1, 2)) for (2.99.10), (n, ℓ) = ((1, 1), (1, 1, 1, 2)) for (2.99.11).
Furthermore, we used (n, ℓ) = ((3), (1, 1, 1, 1)) for (2.99.12), (n, ℓ) = ((2, 1), (1, 1, 1, 1))
for (2.99.13), (n, ℓ) = ((1, 2), (1, 1, 1, 1)) for (2.99.14), and (n, ℓ) = ((1, 1, 1), (1, 1, 1, 1))
for (2.99.15).

Note that we have the following conclusions.
Lemma 2.100. Let be k = (k1, . . . , k4) ∈ Z4

>0 and write w = |k| + 3. For all 1 ≤ j ≤ 4,
we have

0 ≡ ζ f
q

(
Ψk

(
uj−1

1 u4u
4−j
1 + uj−1

2 u1u
4−j
2

))
mod F3,4,w, (2.100.1)

0 ≡ ζ f
q (uk1uk2uk3u0u0uk4u0) + ζ f

q (uk1uk2u0u0uk3uk4u0) (2.100.2)



84 Chapter 2. Paper I: On the relations satisfied by Multiple q-Zeta Values

+ ζ f
q (uk1uk2u0u0uk3u0uk4) mod F3,4,w,

0 ≡ ζ f
q (uk1uk2uk3u0uk4u0u0) + ζ f

q (uk1uk2u0uk3uk4u0u0) (2.100.3)
+ ζ f

q (uk1uk2u0uk3u0u0uk4) mod F3,4,w,

0 ≡ ζ f
q (uk1uk2u0u0uk3u0uk4) + ζ f

q (uk1u0u0uk2u0uk3uk4) mod F3,4,w, (2.100.4)
0 ≡ ζ f

q (uk1uk2uk3u0uk4u0u0) + ζ f
q (uk1u0uk2u0u0uk3uk4) mod F3,4,w, (2.100.5)

0 ≡ ζ f
q (uk1u0uk2uk3uk4u0u0) + ζ f

q (uk1uk2u0u0uk3u0uk4) mod F3,4,w, (2.100.6)
0 ≡ ζ f

q (uk1u0u0uk2uk3uk4u0) + ζ f
q (uk1uk2u0uk3u0u0uk4) mod F3,4,w . (2.100.7)

Proof. The proof of (2.100.1) is obtained from Lemma 2.56 and the direct calculation

0 ≡
3∑

p=1
(−1)pζ f

q

(
Ψk

(
up

1 � uj−1
1 u4−pu

4−j
1

))
mod F3,4,w

≡ ζ f
q

(
Ψk

(
uj−1

1 u4u
4−j
1 + uj−1

2 u1u
4−j
2

))
mod F3,4,w .

Note that (2.100.4) is a consequence of (2.98.1), (2.99.3), (2.99.8), (2.99.7), when using
Equation (2.99.14). Analogously, (2.100.5) is a consequence of (2.98.1), (2.99.6), (2.99.9),
(2.99.10), using (2.99.13). Furthermore, we obtain (2.100.6) with (2.99.13), (2.99.15), and
with the case j = 3 of (2.100.1), in a similar way, using Lemma 2.56,

0 ≡ ζ f
q (Ψk(u1 � u1u2u1u2)) − ζ f

q (Ψk(u2 � u1u2u1u1))

− ζ f
q (Ψk(u2 � u1u1u1u2)) − ζ f

q

(
u1u

k4−1
0 u2u

k3−1
0 u3u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u0uk2uk3uk4u0u0) + ζ f

q (uk1uk2u0u0uk3u0uk4) mod F3,4,w

and we obtain (2.100.7) with (2.99.14), (2.99.15), and with case j = 3 of (2.100.1),

0 ≡ ζ f
q (Ψk(u1 � u2u1u1u1)) − ζ f

q (Ψk(u2 � u1u1u2u1))
− ζ f

q (Ψk(u2 � u2u1u1u1)) mod F3,4,w

≡ ζ f
q (uk1u0u0uk2uk3uk4u0) + ζ f

q (uk1uk2u0uk3u0u0uk4) mod F3,4,w,

completing the proof of the lemma.

For the proof of Theorem 2.97, it remains to consider the cases where we have for
one j ∈ {1, 2, 3, 4} that kj > 1.

Lemma 2.101. Equation (2.97.1) is true for k3 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 and write w = k1 + k2 + k3 + k4 + 4. By (2.98.2)
and (2.99.15), we obtain

0 ≡ 1
k3
ζ f

q (τ(u1u1u2) ∗ τ (uk1uk2uk3uk4)) mod F3,4,w

≡ 1
k3
ζ f

q

(
u1u0u1u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u2u

k4−1
0 u1u

k3
0 u2u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u0uk2u0uk3+1uk4u0) mod F3,4,w . (2.101.1)
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Similar, using (2.98.2), (2.99.15), (2.101.1), we have

0 ≡ − 1
k2
ζ f

q (τ(u1u2u1) ∗ τ (uk1uk2uk3uk4)) mod F3,4,w

≡ − 1
k2
ζ f

q

(
u1u1u0u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u2u

k4−1
0 u2u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1uk2+1u0uk3u0uk4u0) mod F3,4,w . (2.101.2)

Furthermore, using (2.99.15), (2.101.2), (2.99.11), we have

0 ≡ 1
k3
ζ f

q (τ(u2u1) ∗ τ (uk1u0uk2uk3uk4)) mod F3,4,w

≡ 1
k3
ζ f

q

(
u1u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u2u

k4−1
0 u2u

k3
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u0uk2uk3+1u0uk4u0) mod F3,4,w . (2.101.3)

This implies by (2.99.15) and (2.101.1)

0 ≡ ζ f
q (uk1uk2u0uk3+1u0uk4u0) mod F3,4,w . (2.101.4)

Now, by equations (2.99.15), (2.100.2), (2.100.3), (2.101.4), (2.101.2), we have

0 ≡ − 1
k2
ζ f

q (τ(u2u1) ∗ τ (uk1uk2u0uk3uk4)) mod F3,4,w

≡ − 1
k2
ζ f

q

(
u1u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u2u

k4−1
0 u3u

k3−1
0 u1u

k2
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1uk2+1uk3u0u0uk4u0) mod F3,4,w . (2.101.5)

Considering (2.100.4), this implies

0 ≡ ζ f
q (uk1u0u0uk2+1u0uk3uk4) mod F3,4,w . (2.101.6)

Next, we consider, using Corollary 2.28, (2.99.14), (2.100.2), (2.100.3),

0 ≡ 1
k3
ζ f

q (τ(u2u0u1) ∗ τ (uk1uk2uk3uk4)) mod F3,4,w

≡ 1
k3
ζ f

q

(
u1u2u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u2u

k4−1
0 u3u

k3
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1uk2uk3+1u0u0uk4u0) mod F3,4,w . (2.101.7)

Now, a consequence of (2.100.4) is

0 ≡ ζ f
q (uk1u0u0uk2u0uk3+1uk4) mod F3,4,w .
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In a similar way, we obtain by Corollary 2.28, (2.99.13), (2.100.2), (2.100.3),

0 ≡ 1
k3
ζ f

q (τ(u2u1u0) ∗ τ (uk1uk2uk3uk4)) mod F3,4,w

≡ 1
k3
ζ f

q

(
u2u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u3u

k4−1
0 u2u

k3
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1uk2uk3+1u0uk4u0u0) mod F3,4,w . (2.101.8)

By (2.100.5), one obtains

0 ≡ ζ f
q (uk1u0uk2u0u0uk3+1uk4) mod F3,4,w . (2.101.9)

From Corollary 2.28, (2.101.7), (2.101.5), and (2.101.2) we immediately get

0 ≡ 1
k2
ζ f

q (τ(u2u1) ∗ τ (uk1uk2uk3u0uk4)) mod F3,4,w

≡ 1
k2
ζ f

q

(
u1u1u0 ∗ u1u

k4−1
0 u2u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u1u

k4−1
0 u3u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1uk2+1u0uk3u0u0uk4) mod F3,4,w, (2.101.10)

and so, by (2.100.7),

0 ≡ ζ f
q (uk1u0u0uk2+1uk3uk4u0) mod F3,4,w . (2.101.11)

This implies, using (2.99.2), (2.101.6), (2.101.2),

0 ≡ ζ f
q (uk1u0u0uk2+1uk3u0uk4) mod F3,4,w . (2.101.12)

Also, from (2.99.7), using (2.101.5), (2.101.11), and (2.98.1), we obtain

0 ≡ ζ f
q (uk1uk2+1u0u0uk3uk4u0) mod F3,4,w . (2.101.13)

This leads to, using (2.99.14), (2.101.5), (2.101.6), (2.101.11), (2.101.12),

0 ≡ ζ f
q (uk1uk2+1u0u0uk3u0uk4) mod F3,4,w . (2.101.14)

A consequence of (2.100.6) then is

0 ≡ ζ f
q (uk1u0uk2+1uk3uk4u0u0) mod F3,4,w . (2.101.15)

By Corollary 2.28, (2.99.4), (2.99.2), and (2.101.1), we have

0 ≡ − 1
k4
ζ f

q (τ(u1u2) ∗ τ (uk1u0uk2uk3uk4)) mod F3,4,w

≡ − 1
k4
ζ f

q

(
u1u0u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u3u

k4
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u0uk2uk3uk4+1u0u0) mod F3,4,w .(2.101.16)
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Hence, by Theorem 2.82 for the first congruence and by applying (2.99.4), (2.99.2),
(2.101.3) afterwards, we see that

0 ≡ − 1
k3
ζ f

q (τ(u2) ∗ τ (uk1u0uk2uk3uk4u0)) mod F3,4,w

≡ − 1
k3
ζ f

q

(
u1u0 ∗ u2u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u3u

k4−1
0 u1u

k3
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u0uk2uk3+1uk4u0u0) mod F3,4,w . (2.101.17)

Now, (2.100.6) yields

0 ≡ ζ f
q (uk1uk2u0u0uk3+1u0uk4) mod F3,4,w .

Furthermore, (2.101.17) implies with (2.99.10) and (2.101.9), respectively (2.99.1)
and (2.101.8),

0 ≡ ζ f
q (uk1u0uk2uk3+1u0u0uk4) mod F3,4,w,

respectively,

0 ≡ ζ f
q (uk1uk2u0uk3+1uk4u0u0) mod F3,4,w .

The latter implies by using (2.99.13) for the first congruence, then (2.100.7) for the second
one, (2.99.7) for the third one, and (2.99.14) for the last one,

0 ≡ ζ f
q (uk1uk2u0uk3+1u0u0uk4) mod F3,4,w,

0 ≡ ζ f
q (uk1u0u0uk2uk3+1uk4u0) mod F3,4,w,

0 ≡ ζ f
q (uk1uk2u0u0uk3+1uk4u0) mod F3,4,w,

0 ≡ ζ f
q (uk1u0u0uk2uk3+1u0uk4) mod F3,4,w .

This completes the proof of the lemma.

Lemma 2.102. Equation (2.97.1) is true for k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 and write w = k1 + k2 + k3 + k4 + 4. From (2.101.16),
we obtain by (2.100.6)

0 ≡ ζ f
q (uk1uk2u0u0uk3u0uk4+1) mod F3,4,w . (2.102.1)

From Corollary 2.28, Lemma 2.101, (2.99.6), (2.101.6), one sees

0 ≡ − 1
k4
ζ f

q (τ(u1u2) ∗ τ (uk1uk2u0uk3uk4)) mod F3,4,w

≡ − 1
k4
ζ f

q

(
u1u0u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u3u

k4
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1uk2u0uk3uk4+1u0u0) mod F3,4,w, (2.102.2)

With (2.99.1), this implies

0 ≡ ζ f
q (uk1uk2uk3u0uk4+1u0u0) mod F3,4,w, (2.102.3)
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0 ≡ ζ f
q (uk1u0uk2u0u0uk3uk4+1) mod F3,4,w .

The second congruence is a consequence of the first one and (2.100.5).
Furthermore, Theorem 2.82 for the first congruence, Lemma 2.101 and (2.99.5) for

the third one, give

0 ≡ 1
k4
ζ f

q (τ(u2) ∗ τ (uk1u0uk2uk3u0uk4)) mod F3,4,w

≡ 1
k4
ζ f

q

(
u1u0 ∗ u1u

k4−1
0 u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u2u

k4
0 u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u0uk2uk3u0uk4+1u0) mod F3,4,w, (2.102.4)

and so, applying case j = 3 of (2.100.1),

0 ≡ ζ f
q (uk1uk2u0u0u0uk3uk4+1) mod F3,4,w . (2.102.5)

Furthermore, by Theorem 2.82 for the first congruence and by Lemma 2.101 and
(2.99.2) for the third one, we observe

0 ≡ 1
k4
ζ f

q (τ(u2) ∗ τ (uk1u0u0uk2uk3uk4)) mod F3,4,w

≡ 1
k4
ζ f

q

(
u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u3u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u2u

k4
0 u1u

k3−1
0 u1u

k2−1
0 u3u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u0u0uk2uk3uk4+1u0) mod F3,4,w . (2.102.6)

This implies, using (2.100.7), and (2.99.13) for the second congruence additionally,

0 ≡ ζ f
q (uk1uk2u0uk3u0u0uk4+1) mod F3,4,w, (2.102.7)

0 ≡ ζ f
q (uk1u0uk2uk3u0u0uk4+1) mod F3,4,w .

Now, (2.99.9), (2.102.4), (2.102.2), (2.102.7) yield

0 ≡ ζ f
q (uk1u0u0uk2u0uk3uk4+1) mod F3,4,w,

0 ≡ ζ f
q (uk1uk2uk3u0u0uk4+1u0) mod F3,4,w . (2.102.8)

The second congruence is a consequence of the first one and (2.100.4). Using (2.102.8)
and equations (2.99.7) and (2.102.6), we see that

0 ≡ ζ f
q (uk1uk2u0u0uk3uk4+1u0) mod F3,4,w,

0 ≡ ζ f
q (uk1u0u0uk2uk3u0uk4+1) mod F3,4,w, (2.102.9)

where the second congruence is implied by the first one and (2.99.14).
Combining (2.99.8), (2.102.3), (2.102.1), (2.102.9), we have

0 ≡ ζ f
q (uk1uk2uk3u0u0u0uk4+1) mod F3,4,w, (2.102.10)

0 ≡ ζ f
q (uk1u0uk2u0uk3uk4+1u0) mod F3,4,w .

The second congruence is a consequence of the first one and case j = 2 of (2.100.1).
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Now, (2.99.12), (2.102.10), (2.102.5), (2.98.1) give

0 ≡ ζ f
q (uk1u0u0u0uk2uk3uk4+1) mod F3,4,w,

0 ≡ ζ f
q (uk1uk2u0uk3u0uk4+1u0) mod F3,4,w . (2.102.11)

The second congruence is a consequence of the first one and case j = 4 of (2.100.1)
additionally. This completes the proof of the Lemma.

Lemma 2.103. Equation (2.97.1) is true for k2 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 and write w = k1 + k2 + k3 + k4 + 4. Note that
by Theorem 2.82 for the first congruence and by Lemmas 2.101 and 2.102, and Equa-
tions (2.101.13) and (2.101.2) for the third congruence, we have

0 ≡ 1
k2
ζ f

q (τ(u2) ∗ τ (uk1uk2u0uk3uk4u0)) mod F3,4,w

≡ 1
k2
ζ f

q

(
u1u0 ∗ u2u

k4−1
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
u3u

k4−1
0 u1u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u0u0uk2+1uk3u0uk4) mod F3,4,w . (2.103.1)

By (2.99.1) and (2.101.15), this yields

0 ≡ ζ f
q (uk1uk2+1uk3u0uk4u0u0) mod F3,4,w, (2.103.2)

leading to, by using (2.100.5) and then (2.99.13),

0 ≡ ζ f
q (uk1u0uk2+1u0u0uk3uk4) mod F3,4,w,

0 ≡ ζ f
q (uk1u0uk2+1uk3u0u0uk4) mod F3,4,w .

Combining (2.99.8), (2.103.2), (2.101.14), and (2.101.12), we obtain

0 ≡ ζ f
q (uk1uk2+1uk3u0u0u0uk4) mod F3,4,w,

0 ≡ ζ f
q (uk1u0uk2+1u0uk3uk4u0) mod F3,4,w .

The second congruence is a consequence of the first one and case j = 2 of (2.100.1).
Furthermore, combining (2.99.9), (2.103.1), (2.101.10), and (2.101.6), we obtain

0 ≡ ζ f
q (uk1uk2+1u0u0u0uk3uk4) mod F3,4,w .

0 ≡ ζ f
q (uk1u0uk2+1uk3u0uk4u0) mod F3,4,w .

The second congruence is a consequence of the first one and case j = 3 of (2.100.1). This
completes the proof of the lemma.

Lemma 2.104. Equation (2.97.1) is true for k1 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1 > 1 and write w = k1 + k2 + k3 + k4 + 3. Using
Proposition 2.73 for the first congruence and Lemmas 2.101, 2.102, 2.103 afterwards, for
all z2, z3, z4 ≥ 0 with z2 + z3 + z4 = 3, we obtain

0 ≡ ζ f
q (uk1 ∗ uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F3,4,w

≡ ζ f
q (uk1uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F3,4,w . (2.104.1)
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Now, choose z1 ≥ 1, z2, z3, z4 ≥ 0 with z1+· · ·+z4 = 3. Then, we obtain by Theorem 2.82
(in case z1 = 1), Corollary 2.28 (in case z1 = 2), and (2.104.1),

0 ≡ ζ f
q (uz1 ∗ τ (uk1uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 )) mod F3,4,w

≡ ζ f
q

(
uz1 ∗ uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q

(
uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F3,4,w

≡ ζ f
q (uk1u

z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F3,4,w .

This completes the proof of the lemma.

2.7 Conclusion and outlook
With FilZ,D,W

z,d,w Zf
q ⊂ Fz,d,w for all (z, d, w) ∈ Z3

>0 (the refined Bachmann Conjecture 2.10),
we gave a refinement of Bachmann’s Conjecture 2.4 and proved several cases. For z ≥ d,
we gave a strategy for a general proof. Furthermore, for z < d, we were also able to
prove the cases 1 ≤ d ≤ 4. One can generalize our approach as described in the following
paragraph.

Approach to the refined Bachmann Conjecture 2.10 in case z < d. We fix
positive integers z, d, w ∈ Z>0 with z < d in the following and assume throughout the
whole paragraph that

FilZ,D,W
z̃,d̃,w̃

Zf
q ⊂ Fz̃,d̃,w̃

for z̃ ≤ z, d̃ < d, w̃ < w is proven already. Note that the approach from case z ≥ d
will not suffice for the case z < d since 𝒮z,d ⊊ 𝒯z,d in this case by Conjecture 2.39.
Therefore, we extend this approach as follows. Fix throughout this paragraph an in-
dex k = (k1, . . . , kd) ∈ Zd

>0 with |k| = w − z. Besides

S
(1)
z,d,k :=

{
ζ f

q (Ψk(un � uℓ)) | (n, ℓ) ∈ Jz,d

}
⊂ FilZ,D,W

z,d,w Zf
q

(the inclusion follows from Lemma 2.56), we consider

S
(2)
z,d,k :=

ζ f
q

(
τ(τ(Wn,m) ∗ τ(Wℓ,k′))

) ∣∣∣∣∣(n,ℓ)∈Jz,d, m∈Zlen(n)
≥0 , |m|≤len(n)+d−z,

k′∈Zd
>0, kj≥k′

j≥1 (1≤j≤d),
|m|+|k′|=s+|k|, wt(Wn,m)+wt(Wℓ,k′ )=w

 ,
where

Wn,m := um1u
ns−1
0 · · ·umsu

n1−1
0 , Wℓ,k′ = uk′

1
uℓd−1

0 · · ·uk′
d
uℓ1−1

0 .

Remark 2.105. Note that we have S(1)
z,d,k ⊂ S

(2)
z,d,k for all z, d ∈ Z>0 with z < d and for

all k ∈ Zd
>0.

Furthermore, we consider

S
(3)
z,d,k :=

{
ζ f

q

(
uσ(k1)u

e1
0 · · ·uσ(ks′ )u

es′
0 ∗ uσ(ks′+1)u

es′+1
0 · · ·uσ(kd)u

ed
0

) ∣∣∣∣∣ σ∈Sk, 1≤s′≤d−1,
e=(e1,...,ed)∈Zd

≥0, |e|=z

}
,

where Sk is the set of permutations on {kj | 1 ≤ j ≤ d}.
Similarly to the proof of Lemma 2.56, we can show the following.
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Lemma 2.106. Fix z, d, w ∈ Z>0. For all (n, ℓ) ∈ Jz,d, k, k′ ∈ Zd
>0, and m ∈ Zs

≥0,
where s = len(n), satisfying |k| = w − z, |m| ≤ len(n) + d − z and kj ≥ k′

j ≥ 1 for
all 1 ≤ j ≤ d, |m| + |k′| = s+ |k|, wt(Wn,m) + wt(Wℓ,k′) = w, we have

ζ f
q

(
τ(τ(Wn,m) ∗ τ(Wℓ,k′))

)
∈

∑
1≤s′≤s

FilZ,D,W
z−s′,d+s′,w Zf

q .

In particular, we have S(2)
z,d,k ⊂ Fz,d,w.

Let us consider an example for illustration of Lemma 2.106.

Example 2.107. Denote w = k′
1 + k′

2 + k′
3 + 2 in the following and choose

n = (1), m = (2), ℓ = (1, 1, 1), k′ = (k′
1, k

′
2, k

′
3) ∈ Z3

>0

in the notation of Lemma 2.106. First, we see that Wn,m ∗ Wℓ,k′ = u2 ∗ uk′
1
uk′

2
uk′

3
∈ F ,

where F = FilZ,D,W
0,4,w Q⟨U⟩◦ + FilZ,D,W

1,3,w−1 Q⟨U⟩◦. Furthermore, we have

τ(τ(u2) ∗ τ(uk′
1
uk′

2
uk′

3
))

= τ
(
u1u0 ∗ u1u

k′
3−1

0 u1u
k′

2−1
0 u1u

k′
1−1

0

)
≡ τ

(
k′

3u2u
k′

3
0 u1u

k′
2−1

0 u1u
k′

1−1
0 + k′

2u2u
k′

3−1
0 u1u

k′
2

0 u1u
k′

1−1
0

+k′
2u1u

k′
3−1

0 u2u
k′

2
0 u1u

k′
1−1

0 + k′
1u2u

k′
3−1

0 u1u
k′

2−1
0 u1

+k′
1u1u

k′
3−1

0 u2u
k′

2−1
0 u1 + k′

1u1u
k′

3−1
0 u1u

k′
2−1

0 u2u
k′

1
0

)
mod F

≡ k′
3uk′

1
uk′

2
uk′

3+1u0 + k′
2uk′

1
uk′

2+1uk′
3
u0 + k′

2uk′
1
uk′

2+1u0uk′
3

+ k′
1uk′

1+1uk′
2
uk′

3
u0 + k′

1uk′
1+1uk′

2
u0uk′

3
+ k′

1uk′
1+1u0uk′

2
uk′

3
mod F .

Hence,

k′
3ζ

f
q

(
uk′

1
uk′

2
uk′

3+1u0
)

+ k′
2ζ

f
q

(
uk′

1
uk′

2+1uk′
3
u0
)

+ k′
2ζ

f
q

(
uk′

1
uk′

2+1u0uk′
3

)
+ k′

1ζ
f
q

(
uk′

1+1uk′
2
uk′

3
u0
)

+ k′
1ζ

f
q

(
uk′

1+1uk′
2
u0uk′

3

)
+ k′

1ζ
f
q

(
uk′

1+1u0uk′
2
uk′

3

)
∈ F2,3,w .

Compared to the linear combinations in S
(1)
z,d,k, it stands out that the latter linear com-

bination is not a linear combination of words with the same multiplicity and the same
non-u0 letters in the same order. Nevertheless, all occurring words uk1u

z1
0 uk2u

z2
0 uk3u

z3
0

satisfy kj ≥ k′
j and

3∑
j=1

(kj − k′
j) = 1 = |m| − s = d− z.

Furthermore, we have the following.

Lemma 2.108. Fix z, d, w ∈ Z>0 with z < d and assume that FilZ,D,W
z′,d′,w′ Zf

q ⊂ Fz′,d′,w′ is
proven already for z′ ≤ z, d′ < d, w′ < w. Then, for every index k = (k1, . . . , kd) ∈ Zd

>0
and for all permutations σ on {k1, . . . , kd}, 1 ≤ s′ ≤ d − 1, and e = (e1, . . . , ed) ∈ Zd

≥0
satisfying |e| = z, we have

ζ f
q

(
uσ(k1)u

e1
0 · · ·uσ(ks′ )u

es′
0 ∗ uσ(ks′+1)u

es′+1
0 · · ·uσ(kd)u

ed
0

)
∈ Fz,d,w .

In particular, we have S(3)
z,d,k ⊂ Fz,d,w.

With the proofs of Theorems 2.8 and 2.12, we gave evidence for the following conjec-
ture for d ≤ 4.
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Conjecture 2.109. Fix z, d, w ∈ Z>0 with z < d and assume that FilZ,D,W
z′,d′,w′ Zf

q ⊂ Fz′,d′,w′

is proven already for all z′ ≤ z, d′ < d, w′ < w. Then, for every k = (k1, . . . , kd) ∈ Zd
>0

and for every word W = uk1u
z1
0 · · ·ukd

uzd
0 ∈ U∗,◦ satisfying zero(W) = z, depth(W) = d,

and wt(W) = w, we have

ζ f
q (W) ∈ spanQ

(
S

(2)
z,d,k ∪ S

(3)
z,d,k

)
+ Fz,d,w ⊂ Fz,d,w . (2.109.1)

In particular, then we have FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w.

Remark 2.110. Note that the inclusion in (2.109.1) follows from Lemmas 2.106 and 2.108.

Remark 2.111. We can refine our approach to Conjecture 2.109 as follows. First, we
will use for k ∈ Zd

>0 satisfying #{kj > 1} ≥ d − z the linear combinations from S
(2)
z,d,k

only to show (2.109.1). For the remaining cases, we then may assume without loss of
generality that #{kj = 1} ≥ z and use both, S(2)

z,d,k and S
(3)
z,d,k to prove (2.109.1). More

precise, we consider the cases of j0 := #{kj = 1} with increasing j0 ≥ z. The intuitive
reason for this is that, for given j0, on the one hand we may assume that the cases
for smaller values of j0 are proven, making the linear combinations from S

(2)
z,d,k easier to

handle since parts of them are in Fz,d,w already. On the other hand, the more entries of k
are the same (for our purposes: one), the less formal Multiple Zeta Values of different
words occur in the linear combinations from S

(3)
z,d,k.

Conclusion. For z < d, our strategy also works in the small cases 1 ≤ d ≤ 4 as shown,
but there is still much to do for the general proof. More concretely, we conclude with
the following open questions:

(i) How can one prove Conjecture 2.39 in general?

(ii) Conjecturally, Conjecture 2.39 can be proven via induction on z, d, or z + d.

(iii) Regarding Conjecture 2.39, we conjecturally have 𝓈z,d = 𝓈d,z for all z, d ∈ Z>0. Can
one prove this equality?

(iv) How to prove Conjecture 2.47 in general?

(v) How can one prove FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w for z < d in general?

(vi) Similar to Proposition 2.21, our approach for showing FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w is suit-
able to obtain for all words W ∈ U∗,◦ an explicit formula ζ f

q (W) = ζ f
q (L), where L

is a linear combination of products of elements in Zf,◦
q . With some engagement

following our calculations, this already can be done now for all words W ∈ U∗,◦

satisfying zero(W) + depth(W) ≤ 6. What do they look like? Can one find some
systematics such that one can derive such formulas also for zero(W) + depth(W) > 6
(which would prove Bachmann’s Conjecture 2.4 in particular)?

2.8 Code of the calculations in Chapter 2
The numerical calculations of Chapter 2 were done using Python. In this appendix, the
original source code is presented.
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2.8.1 Computations regarding Lemma 2.42

Setup and basic functions

We begin with the required packages.
1 import numpy as np
2 import itertools
3 import math
4 from ast import literal_eval

The first definitions were elementary for the main calculations.

Function 2.112. The function d(z,d,s) returns
(z+d−1

z−s

)
for integers z, d, s ∈ Z>0

with s ≤ z ≤ d, which is conjecturally 𝓈z,d,s (see Conjecture 2.58).
1 def d(z,d,s):
2 if (z <= d) and (s <= z):
3 return (math.comb(z+d-1,z-s))
4 elif (z <= d) and (s > z):
5 return (0)

Function 2.113. The function part(r,s) returns the list of all ordered partitions of r
into exactly s non-negative integers.

1 def part(r,s):
2 if s <=0:
3 return ([[]])
4 else:
5 P = []
6 for S in set( itertools . combinations (range(r+s -1) , s -1)):
7 p = []
8 I = [-1] + list(S) + [r+s -1]
9 for i in range(len(I)):

10 if i > 0:
11 p. append (I[i]-I[i -1] -1)
12 P. append (p)
13 return (P)

Function 2.114. The function ppart(r,s) returns the list all ordered partitions into
exactly s positive integers.

1 def ppart(r,s):
2 if s <=0 or r<s:
3 return ([[]])
4 else:
5 P = []
6 for p in part(r-s,s):
7 q = p
8 for j in range(len(p)):
9 q[j] += 1

10 P. append (q)
11 P.sort ()
12 return (P)

Function 2.115. The function Indices(z,d) returns the list of all indices µ ∈ Zd
>0

with |µ| = z + d.
1 def Indices (z,d):
2 if z==0:
3 return ([d *[1]])
4 else:
5 I = []
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6 for index in Indices (z-1,d):
7 for k in range(d):
8 indi = index [:k] + [index[k]+1] + index[k+1:]
9 if indi not in I:

10 I. append (indi)
11 I.sort ()
12 return (I)

The box product

In this section, we implement the box product as linear combination of uµ ∈ (U\{u0})∗.
Furthermore, for a set of box products, we implement the adjacency matrix whichs rows
will correspond to the linear combinations and the columns to the words uµ, i.e., the
entries are the coefficient of a word in a linear combination of box products.

We begin with the box product.

Function 2.116. The function box(index1,index2) returns uindex1 � uindex2 as
follows. It returns a dictionary D containing as keys the indices ind satisfying that uind
occurs in the box product uindex1 � uindex2 with multiplicity ̸= 0; the value D[ind]
then is the multiplicity of uind in uindex1 � uindex2.

1 def box(index1 , index2 ):
2 D = {}
3 s = len( index1 )
4 d = len( index2 )
5 if s>d:
6 return (D)
7 elif index1 == []:
8 D[str( index2 )] = 1
9 else:

10 for S in set( itertools . combinations (range(d), s)):
11 L = list(S)
12 L.sort ()
13 ind = []
14 for k in range(d):
15 if k in L:
16 ind. append ( index2 [k]+ index1 [L.index(k)])
17 else:
18 ind. append ( index2 [k])
19 D[str(ind)] = 1
20 return (D)

Based on box, we introduce the following function representing uindex1 � uindex2
as dictionary D with keys ind ∈ Zlen(index2)

>0 , satisfying

|ind| = |index1| + |index2|,

and with D[ind] being the multiplicity of uind in the box product uindex1 � uindex2.
1 def BOX(index1 , index2 ):
2 s = len( index1 )
3 d = len( index2 )
4 z = sum( index1 )+sum( index2 )-d
5 I = Indices (z,d)
6 D = {}
7 for ind in I:
8 D[str(ind)] = 0
9 if s>d or sum( index1 )+sum( index2 ) != z+d:

10 return (D)
11 elif index1 == [] and sum( index2 ) == z+d:
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12 D[str( index2 )] = 1
13 else:
14 for ind in box(index1 , index2 ):
15 D[ind] = box(index1 , index2 )[ind]
16 return (D)

Let us consider an example to see the difference between the functions box and BOX.

Example 2.117. We have

u2 � u1u1u1 = u3u1u1 + u1u3u1 + u1u1u3.

Now, box([2],[1,1,1]) returns
1 {’[3, 1, 1]’: 1, ’[1, 3, 1]’: 1, ’[1, 1, 3]’: 1}

and BOX([2],[1,1,1]) returns
1 {’[1, 1, 3]’: 1,
2 ’[1, 2, 2]’: 0,
3 ’[1, 3, 1]’: 1,
4 ’[2, 1, 2]’: 0,
5 ’[2, 2, 1]’: 0,
6 ’[3, 1, 1]’: 1}.

Dimension of spaces spanned by box products

We considered in the paper the dimension of spaces spanned by several box products
(in particular, 𝒮z,d). Numerically, we will obtain such dimensions as the rank of the
coefficient matrix of the box products that span the space we consider, interpreted as
linear combination of words uµ ∈ (U\{u0})∗. For this, we introduce the function MATR.

Function 2.118. The function Dim(P) takes a list P of box products, given in shape
of BOX(index1,index2), and returns the dimension of the space they span. This is done
via computing the rank of the coefficient matrix (as list of lists) of these box products
with rows corresponding to the box products, columns corresponding to the coefficient
of words uµ ∈ (U\{u0})∗.

1 def Dim(P):
2 M = []
3 for prod in P:
4 I = []
5 for index in prod:
6 I. append (prod[index ])
7 M. append (I)
8 rk = np. linalg . matrix_rank (M)
9 return (rk)

LATEX-Output

We will consider subspaces of 𝒮z,d for several z, d ∈ Z>0. Usually, we skip the cases
of z = 1 or d = 1 since we already know the dimension of the corresponding subspace
in these cases. The function MatLatex produces the LATEX-code of a table in which we
collect our calculations.

Function 2.119. The function MatLatex(M,cap) gives the LATEX-code of the table with
caption cap and three entries in each cell. Here, M is a list of lists with four entries each.
They are all of shape

[z, d, rk, dim],
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where z defines the column, d defines the row, rk is the (numerical) dimension of the
subspace of 𝒮z,d we consider, while dim is the corresponding conjectured dimension each.
Every cell consists of two numbers, where the first one in black is the (numerically
obtained) dimension of the subspace of 𝒮z,d we consider and the second number is in
blue the conjectured dimension of the subspace of 𝒮z,d we consider.

1 def MatLatex (M,cap):
2 dmin = M [0][0]
3 dmax = M[ -1][0]
4 zmin = M [0][1]
5 zmax = M[ -1][1]
6 B = "\\ begin{ figure }[h]\n \\ centering \n \\ caption {"+cap+"}\n \\ begin{

tabular }{|" + "c|".join("" for j in range(zmin ,zmax +2)) + "c|}\n \\
hline\n"

7 E = "\\ end{ tabular }\n \\ end{ figure }"
8 newM = (dmax - dmin + 1) *[( zmax - zmin + 1)*["&-"]]
9 S = "d$\\ backslash$ z&" + "&".join(str(j) for j in range(zmin ,zmax +1))

+ "\\\\ \\ hline\n"
10 for result in M:
11 helpstr = "&" + str( result [2]) + "\\ \\ textcolor {blue }{"+str(

result [3])+"}
12 dact = result [0] - dmin
13 zact = result [1] - zmin
14 rowact = newM[dact]
15 newM = newM [:( result [0] - dmin)] + [ rowact [: zact] + [ helpstr ] +

rowact [zact +1:]] + newM [( result [0] - dmin +1) :]
16 for j in range(dmax - dmin + 1):
17 S = S + str(dmin + j)
18 for k in range(zmax -zmin +1):
19 S = S + newM[j][k]
20 S = S + "\\\\ \\ hline\n"
21 return (B+S+E)

Next, we produce the function giving the desired table for the dimension of 𝒮z,d,smin

for some smin and 2 ≤ z, d up to an upper bound we declare in the input.

Function 2.120. Choosing zmax, dmax, smin ∈ Z>0, the following function returns
the tabular according to Function 2.119 where in black the computed dimension of the
space 𝒮zmax,dmax,smin is displayed, while in blue the conjectured dimension (coming from
Conjecture 2.58) appears.

1 def Tabular (zmax ,dmax ,smin):
2 M = []
3 for z in range (2, zmax +1):
4 for d in range (2, dmax +1):
5 P = []
6 for k in range(smin ,min(d,z)+1):
7 S = ppart(d+z,d+k)
8 for partition in S:
9 P. append (BOX( partition [:k], partition [k:]))

10 rk = Dim(P)
11 M. append ([d,z,rk ,d(z,d,smin)])
12 if smin != 1:
13 cap = " Dimension of $\\ mathcal {S}_{z,d,"+str(smin)+"}$."
14 else:
15 cap = " Dimension of $\\ mathcal {S}_{z,d}$."
16 return ( MatLatex (M,cap))
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Results

In the following, we present several results of our calculations. Recall that every cell of the
following tables consists of two numbers, where the first one in black is the (numerically
obtained) dimension of the subspace of 𝒮z,d we consider and the second number is in
blue the conjectured dimension from Conjecture 2.58.

Remark 2.121. (i) Using Tabular(8,8,1), we obtain that Conjecture 2.58 is true
for 2 ≤ z ≤ d ≤ 8 and smin = 1, i.e., Conjecture 2.39 is true for z, d ≤ 8:

Figure 2.1: Dimension of Sz,d.

d\ z 2 3 4 5 6 7 8
2 3 3 - - - - - -
3 4 4 10 10 - - - - -
4 5 5 15 15 35 35 - - - -
5 6 6 21 21 56 56 126 126 - - -
6 7 7 28 28 84 84 210 210 462 462 - -
7 8 8 36 36 120 120 330 330 792 792 1716 1716 -
8 9 9 45 45 165 165 495 495 1287 1287 3003 3003 6435 6435

(ii) Using Tabular(8,8,2), we obtain that Conjecture 2.58 is true for 2 ≤ z ≤ d ≤ 8
and smin = 2:

Figure 2.2: Dimension of Sz,d,2.

d\ z 2 3 4 5 6 7 8
2 1 1 - - - - - -
3 1 1 5 5 - - - - -
4 1 1 6 6 21 21 - - - -
5 1 1 7 7 28 28 84 84 - - -
6 1 1 8 8 36 36 120 120 330 330 - -
7 1 1 9 9 45 45 165 165 495 495 1287 1287 -
8 1 1 10 10 55 55 220 220 715 715 2002 2002 5005 5005

(iii) Using Tabular(8,8,3), we obtain that Conjecture 2.58 is true for 2 ≤ z ≤ d ≤ 8
and smin = 3:

Figure 2.3: Dimension of Sz,d,3.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 1 1 - - - - -
4 0 0 1 1 7 7 - - - -
5 0 0 1 1 8 8 36 36 - - -
6 0 0 1 1 9 9 45 45 165 165 - -
7 0 0 1 1 10 10 55 55 220 220 715 715 -
8 0 0 1 1 11 11 66 66 286 286 1001 1001 3003 3003

(iv) Using Tabular(8,8,4), we obtain that Conjecture 2.58 is true for 2 ≤ z ≤ d ≤ 8
and smin = 4:
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Figure 2.4: Dimension of Sz,d,4.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 1 1 - - - -
5 0 0 0 0 1 1 9 9 - - -
6 0 0 0 0 1 1 10 10 55 55 - -
7 0 0 0 0 1 1 11 11 66 66 286 286 -
8 0 0 0 0 1 1 12 12 78 78 364 364 1365 1365

(v) Using Tabular(8,8,5), we obtain that Conjecture 2.58 is true for 2 ≤ z ≤ d ≤ 8
and smin = 5:

Figure 2.5: Dimension of Sz,d,5.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 0 0 - - - -
5 0 0 0 0 0 0 1 1 - - -
6 0 0 0 0 0 0 1 1 11 11 - -
7 0 0 0 0 0 0 1 1 12 12 78 78 -
8 0 0 0 0 0 0 1 1 13 13 91 91 455 455

(vi) Using Tabular(8,8,6), we obtain that Conjecture 2.58 is true for 2 ≤ z ≤ d ≤ 8
and smin = 6:

Figure 2.6: Dimension of Sz,d,6.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 0 0 - - - -
5 0 0 0 0 0 0 0 0 - - -
6 0 0 0 0 0 0 0 0 1 1 - -
7 0 0 0 0 0 0 0 0 1 1 13 13 -
8 0 0 0 0 0 0 0 0 1 1 14 14 105 105

(vii) Using Tabular(8,8,7), we obtain that Conjecture 2.58 is true for 2 ≤ z ≤ d ≤ 8
and smin = 7:
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Figure 2.7: Dimension of Sz,d,7.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 0 0 - - - -
5 0 0 0 0 0 0 0 0 - - -
6 0 0 0 0 0 0 0 0 0 0 - -
7 0 0 0 0 0 0 0 0 0 0 1 1 -
8 0 0 0 0 0 0 0 0 0 0 1 1 15 15

(viii) Using Tabular(8,8,8), we obtain that Conjecture 2.58 is true for 2 ≤ z ≤ d ≤ 8
and smin = 8:

Figure 2.8: Dimension of Sz,d,8.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 0 0 - - - -
5 0 0 0 0 0 0 0 0 - - -
6 0 0 0 0 0 0 0 0 0 0 - -
7 0 0 0 0 0 0 0 0 0 0 0 0 -
8 0 0 0 0 0 0 0 0 0 0 0 0 1 1

2.8.2 Computations regarding Lemma 2.48

Setup and basic functions

We use the same setup as in Section 2.8.1 and the functions part and ppart from there.

Stuffle product and box product

We define the stuffle product on index level and call the function stuffleprod.

Function 2.122. For indices L1 and L2 (input as lists), the function stuffleprod(L1, L2)
returns a list of indices (as lists) with the property that their formal sum is exactly the
stuffle product L1 ∗ L2.

1 def stuffleprod (L1 ,L2):
2 if len(L1) == 0:
3 return ([L2])
4 elif len(L2) == 0:
5 return ([L1])
6 L = []
7 for L3 in stuffleprod (L1 [1:] , L2):
8 L. append ([L1 [0]]+ L3)
9 for L3 in stuffleprod (L1 ,L2 [1:]):

10 L. append ([L2 [0]]+ L3)
11 for L3 in stuffleprod (L1 [1:] , L2 [1:]):
12 L. append ([L1 [0]+ L2 [0]]+ L3)
13 return (L)

Furthermore, we define the box product on index level and call the function boxprod.
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Function 2.123. For two indices L1 and L2 (input as lists), the function boxprod(L1, L2)
returns a list of indices (as lists) with the property that their formal sum is exactly the
box product L1 ∗ L2.

1 def boxprod (L1 ,L2):
2 s = len(L1)
3 d = len(L2)
4 if s>d:
5 return ([])
6 elif s==0:
7 return ([L2])
8 L = []
9 for L3 in boxprod (L1 [1:] , L2 [1:]):

10 L. append ([L1 [0]+ L2 [0]]+ L3)
11 for L3 in boxprod (L1 ,L2 [1:]):
12 L. append ([L2 [0]]+ L3)
13 return (L)

The numbers dimQ spanQ Kz,d

First, we implement for given 1 ≤ z ≤ d the conjectured dimension of spanQ Kz,d.
Following Conjecture 2.39, (2.42.1), and (2.42.2), this number is

z∑
j=2

(
z + d− 1
d+ j − 1

)
. (2.123.1)

Function 2.124. For z, d ∈ Z>0 with z ≤ d, the function kerneldimconj returns the
conjectured dimension of spanQ Kz,d, which is given by (2.123.1).

1 def kerneldimconj (z,d):
2 S = 0
3 for j in range(d+1,z+d):
4 S = S + math.comb(z+d-1,j)
5 return (S)

The next function returns for given 1 ≤ z ≤ d the number dimQ spanQ Kz,d.

Function 2.125. Let be z, d ∈ Z>0 with z ≤ d. The function kerneldim(z,d) returns
the number dimQ spanQ Kz,d via computing ranks of matrices.

1 def kerneldim (z,d):
2 Rel = []
3 for s in range(d+2,z+d+1):
4 for partition in ppart(z+d,s):
5 for t in range(d+1,s):
6 Mind = partition [t:]
7 Lind = partition [:d]
8 Nind = partition [d:t]
9 D = {}

10 for s in range(d+1,z+d+1):
11 for ppartition in ppart(z+d,s):
12 D[str( ppartition )] = 0
13 for P in boxprod (Mind ,Lind):
14 D[str(Nind+P)] = D[str(Nind+P)] + 1
15 for P in stuffleprod (Nind ,Mind):
16 D[str(P+Lind)] = D[str(P+Lind)] - 1
17 R = []
18 for key in D:
19 R. append (D[key ])
20 Rel. append (R)
21 return (np. linalg . matrix_rank (Rel))
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Results

Via
1 for d in range (2 ,9):
2 for z in range (2,d+1):
3 print(z,d,( kerneldim (z,d),kerneldimconj (z,d)))

we obtain in the following in each row four entries, the first one corresponding to z,
the second to d, the third to the numerical result for dimQ spanQ Kz,d, and the fourth is
the value we expect for dimQ spanQ Kz,d:

1 2 2 (1, 1)
2 2 3 (1, 1)
3 3 3 (6, 6)
4 2 4 (1, 1)
5 3 4 (7, 7)
6 4 4 (29, 29)
7 2 5 (1, 1)
8 3 5 (8, 8)
9 4 5 (37, 37)

10 5 5 (130 , 130)
11 2 6 (1, 1)
12 3 6 (9, 9)
13 4 6 (46, 46)
14 5 6 (176 , 176)
15 6 6 (562 , 562)
16 2 7 (1, 1)
17 3 7 (10, 10)
18 4 7 (56, 56)
19 5 7 (232 , 232)
20 6 7 (794 , 794)
21 7 7 (2380 , 2380)
22 2 8 (1, 1)
23 3 8 (11, 11)
24 4 8 (67, 67)
25 5 8 (299 , 299)
26 6 8 (1093 , 1093)
27 7 8 (3473 , 3473)
28 8 8 (9949 , 9949)

Remark 2.126. Regarding our results, Lemma 2.48 is proven.
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Abstract. We show how the quasi–shuffle product, Schlesinger–Zudilin Multiple q–Zeta
Values (SZ-qMZVs) satisfy, behaves on the level of partitions. For this, we work with
marked partitions, which are partitions in whose Young–Tableau rows and columns are
marked in some way. Together with the description of duality using marked partitions
(see [4]) and the conjecture by Bachmann [1] that all linear relations among qMZVs
are implied by duality and the stuffle product, this paper completes conjecturally the
description of the structure of qMZVs using marked partitions.

3.1 Introduction
Multiple q-Zeta Values, qMZVs for short, can be seen as generalizations of MZVs as well
as (quasi-)modular forms or as generating functions of particular types of partitions.
They are q-series giving back a Multiple Zeta Value (or a Q-linear combination of them)
in the limit q → 1, often after modifying the series via multiplicating with some power
of 1−q. In this paper, we focus on qMZVs introduced by Schlesinger [7] and Zudilin [10].
For an overview of qMZVs, see, e.g., [4].

In the following, we consider U := {uj | j ∈ Z≥0}. We call U also an alphabet, and
elements of U are referred to as letters. Furthermore, monomials of elements in U (with
respect to concatenation) are called words. Usually, the neutral element with respect to
concatenation is denoted by 1 and called the empty word. Let U∗ denote the set of words
with letters in U , then we write Q⟨U⟩ for the Q-vector space spanQ U∗, equipped with
the non-commutative, but associative multiplication, given by concatenation. We define
the stuffle product to be the Q-bilinear map ∗ : Q⟨U⟩ × Q⟨U⟩ → Q⟨U⟩ recursively via

uj1W1 ∗ uj2W2 := uj1 (W1 ∗ uj2W2) + uj2 (uj1W1 ∗ W2) + uj1+j2 (W1 ∗ W2)

for all j1, j2 ∈ Z≥0 and W1, W2 ∈ U∗ with initial condition 1 ∗ W = W ∗ 1 = W for all
words W ∈ U∗. By Hoffman ([5]), (Q⟨U⟩, ∗) is an associative and commutative Q-algebra.
For a word W = uk1 · · ·ukr ∈ U∗, we associate the length, len(W) := r and the depth,
which is depth(W) := #{kj ̸= 0 | 1 ≤ j ≤ r}. Furthermore, we write U∗,◦ := U∗\u0U∗ for
the set of words in U∗ not starting with u0 and we denote by Q⟨U⟩◦ the corresponding
subspace of Q⟨U⟩, i.e., the Q-vector space generated by words not starting in u0. Note
that Q⟨U⟩◦ is closed under ∗ which gives rise to a commutative Q-algebra (Q⟨U⟩◦, ∗)

1 Benjamin Brindle
benjamin.brindle@uni-hamburg.de
Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
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(see [5]). The map ζSZ
q : (Q⟨U⟩◦, ∗) → (QJqK, ·) is the Q-algebra homomorphism (see [6])

defined via ζSZ
q (1) = 1, Q-linearity, and, with md+1 := 0,

ζSZ
q (uk1u

z1
0 · · ·ukd

uzd
0 ) :=

∑
m1>···>md>0

d∏
j=1

(
mj −mj+1 − 1

zj

)
qmjkj

(1 − qmj )kj
,

for any k1, . . . , kd ∈ Z>0 and z1, . . . , zd ∈ Z≥0 where d ∈ Z>0 (note that this definition is
not the usual one, like in [8], but equivalent to it; this statement can be deduced, e.g.,
from [4, Theorem 2.18]). We denote by Zq the image of ζSZ

q and call elements in Zq

(Schlesinger–Zudilin)-qMZVs ((SZ-)qMZVs for short). Remarkable is that SZ-qMZVs
are invariant under the involution τ : Q⟨U⟩◦ → Q⟨U⟩◦ , defined by Q-linearity, τ(1) := 1,
and

τ (uk1u
z1
0 · · ·ukd

uzd
0 ) := uzd+1u

kd−1
0 · · ·uz1+1u

k1−1
0

for all d ∈ Z>0, k1, . . . , kd ≥ 1, and z1, . . . , zd ≥ 0 (see [9, Theorem 8.3]; τ is often referred
to as duality). Note at this point the following folklore conjecture by Bachmann (see [1];
a published version can be found in [11, Conjecture 1]) about the structure of Zq.

Conjecture 3.1 (Bachmann). All Q-linear relations among elements in Zq are obtained
by the stuffle product ∗ and duality τ .

Furthermore, the space Zq contains all quasi-modular forms via their q-expansion

ζSZ
q (W) =

∑
N≥0

ψN (W)qN ,

where ψN (W) denotes the N -th Fourier coefficient of ζSZ
q (W) for any W ∈ U∗,◦ (see [2]).

The Fourier coefficients of modular forms have been a key feature of their study. This
paper gives a combinatorial approach to the Fourier coefficients of qMZVs, interpreted as
finite sums over so-called marked partitions (they were introduced in [4]). In particular,
we will describe the stuffle product as a pairing on marked partitions.

We will use the following combinatorial interpretation of ψN developed in [4]. Let p
be a partition of N with d distinct parts mj with multiplicities nj , meaning that we have

m1 > · · · > md > 0, n1, . . . , nd ∈ Z>0, N = m1n1 + · · · +mdnd.

We shall mark rows with a dot in the Young Tableau of p. If for kj rows of length mj

are marked, we call k = (k1, . . . , kd) the type of this row marking. A row marking is
called distinct if the lowest row for each length mj is marked. Furthermore, a distinct
column marking of p is an d-tupel z = (z1 + 1, . . . , zd + 1), such that (zd + 1, . . . , z1 + 1)
is a distinct row marking of the conjugate partition of p. A pair (k; z) of such distinct
markings is identified with W = uk1u

z1
0 · · ·ukd

uzd
0 ∈ U∗,◦ and called for short a W-marking

of p.

Definition 3.2. (i) We interpret ∅ as the unique marked partition (of N = 0) of
type 1.

(ii) For any W ∈ U∗,◦, we define MPW as the set of all marked partitions of type W.

(iii) We denote by MP :=
⋃

W∈U∗,◦
MPW the set of all marked partitions.

(iv) Given a (marked) partition, we call the union of all rows in the Young Tableau
having a given length a horizontal block (of the partition/Young Tableau).
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Example 3.3. The following is a marked partition of type W = u2u0u0u1u1u0 of the
integer N = 9 · 3 + 5 · 2 + 2 · 2 = 41.

It consists of three horizontal blocks in the notation of Definition 3.2.

One has the following connection of marked partitions and the Fourier coefficient of
SZ-qMZVs.

Proposition 3.4 ([4]). For all N ∈ Z≥0 and W ∈ U∗,◦, we have

ψN (W) = #MPW.

For the main theorem about the combinatorial interpretation of the product of SZ-
qMZVs, we need the following pairing Φ on the set of marked partitions.

Definition 3.5. The map Φ: MP × MP → MP is defined as follows: Given marked
partitions p̂1 of N1 and p̂2 of N2, then p̂ = Φ(p̂1, p̂2) is the marked partition of N1 +N2
obtained by the following rules:

(i) We set Φ(∅, p̂2) := p̂2 and Φ(p̂1, ∅) := p̂1.

(ii) The Young Tableau of p̂ is obtained by cutting the Young Tableau of p̂1 and p̂2
horizontally below the rows containing corners into their horizontal blocks and
glueing them (horizontally again) together to a new Young Tableau. If both, p̂1
and p̂2, have horizontal blocks of same length, the ones of p̂1 will occur above the
ones of p̂2 in the new partition.

(iii) Keep the markings of the rows.

(iv) If there was a marking in the j-th leftmost column of p̂1 or p̂2, the j-th leftmost
column of p̂ will be marked as well.

Remark 3.6. Note that the map Φ is associative but not commutative. The underlying
Young Tableau of Φ(p̂1, p̂2) is the same as the one of Φ(p̂2, p̂1) and also the column
markings match but the row markings, in general, do not if p̂1 and p̂2 have blocks of
same length.

Example 3.7. Consider the following pair of marked partitions.

p̂1 p̂2

We slice them into their horizontal blocks.
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Following the definition of Φ, we obtain Φ(p̂1, p̂2) after sorting the horizontal blocks
as the following marked partition:

Horizontal blocks ordered

Φ(p̂1, p̂2)

Definition 3.8. (i) For W1, W2, W ∈ U∗,◦, we set mW1,W2;W ∈ Z≥0 to be the multiplicity
of W in W1 ∗ W2, i.e., to be the unique integer satisfying

W1 ∗ W2 =
∑

W∈U∗,◦
mW1,W2;WW.

(ii) For W1, W2, W ∈ U∗,◦ and p̂ ∈ MPW, we define

mW1,W2;p̂ := # {(p̂1, p̂2) ∈ MPW1 × MPW2 | Φ(p̂1, p̂2) = p̂} .

Note that, for fixed W1, W2 ∈ U∗,◦, almost all mW1,W2;W are zero.

Statement of results. The main result of this paper states how the stuffle product
can be interpreted combinatorially using marked partitions.
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Theorem 3.9 (Theorem 3.17). Let be W1, W2, W ∈ U∗,◦. For all p̂ ∈ MPW, we have

mW1,W2;p̂ = mW1,W2;W.

In particular, given W1, W2, mW1,W2;p̂ only depends on the word W but not on the marked
partition p̂ ∈ MPW.

Remarkable about Theorem 3.9 is that now, conjecturally, all linear relations among
Multiple q-Zeta Values can be described combinatorially using marked partitions. This is
due to Conjecture 3.1 and since duality already can be described using marked partitions,
see [4]; Theorem 3.9 now gives the combinatorial interpretation of the stuffle product
using marked partitions.
Example 3.10. Let be W1 = u1u0u1u0, W2 = u2u0u0, and W = u3u0u0u1u0. Note that
we have mW1,W2;W = 4. Furthermore, let be

p̂ = ∈ MPW.

The (p̂1, p̂2) ∈ MPW1 × MPW2 satisfying Φ(p̂1, p̂2) = p̂ are

, , , ,

, , , .

In particular, the claim of Theorem 3.9 in this case is true since we have

mW1,W2;p̂ = 4 = mW1,W2;W.

Organization of the paper. In Section 3.2, we consider a recursion of the stuffle
product. This will be the key for proving the main theorem in Section 3.3 where we
show that the numbers mW1,W2;p̂ and mW1,W2;W satisfy the same recursion.

Acknowledgements. The author thanks Henrik Bachmann, Annika Burmester, Niclas
Confurius, and Ulf Kühn for valuable discussions and their comments on an earlier ver-
sion of this paper.

3.2 About the stuffle product
Note the following characterization of the stuffle product, which is equivalent to the
definition of the stuffle product.
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Proposition 3.11. Let be W1, W2 ∈ U∗ and j1, j2 ∈ Z≥0. Then,

W1uj1 ∗ W2uj2 = (W1 ∗ W2uj2)uj1 + (W1uj1 ∗ W2)uj2 + (W1 ∗ W2)uj1+j2 .

Proof. The proof is obtained by induction on len(W1) + len(W2) where one uses the defi-
nition of the stuffle product in the induction step.

In preparation for proving Theorem 3.9, we need the following recursion the stuffle
product satisfies.

Lemma 3.12. Let be W′
1, W′

2 ∈ U∗, j1, j2 ∈ Z>0, and n1, n2 ∈ Z≥0. Consider

W1 = W′
1uj1u

n1
0 , W2 = W′

2uj2u
n2
0 .

We have

W1 ∗ W2 =
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 + k

n1

)(
n1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 + k

n2

)(
n2
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
n2∑

k=0

(
n1 + k

n1

)(
n1

n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0 .

Proof. We first prove the statement for n1 = 0 by induction on n2. Note that we have
to show for n1 = 0 and n2 ∈ Z≥0 that

W′
1uj1 ∗ W′

2uj2u
n2
0 =

∑
0≤j≤n2

0≤ε≤min{1,n2−j}

(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

j
0

+
(
W′

1uj1 ∗ W′
2
)
uj2u

n2
0 +

(
W′

1 ∗ W′
2
)
uj1+j2u

n2
0 .

The statement for the base case n2 = 0 reduces to the equivalent definition of the stuffle
product of W1 ∗ W2, which is deduced from Proposition 3.11, and hence, the claim follows
in this case. Therefore, let be n2 ∈ Z>0 and assume that the claim holds for n1 = 0 and
all smaller values of n2. Then, by Proposition 3.11, we have

W1 ∗ W2 = W′
1uj1 ∗ W′

2uj2u
n2
0

=
(
W′

1 ∗ W′
2uj2u

n2
0
)
uj1 +

(
W′

1uj1 ∗ W′
2uj2u

n2−1
0

)
u0 +

(
W′

1 ∗ W′
2uj2u

n2−1
0

)
uj1 .

Using the induction hypothesis for the second summand, we obtain

W1 ∗ W2 =
(
W′

1 ∗ W′
2uj2u

n2
0
)
uj1 +

(
W′

1 ∗ W′
2uj2u

n2−1
0

)
uj1

+

 ∑
0≤j≤n2−1

0≤ε≤min{1,n2−1−j}

(
W′

1 ∗ W′
2uj2u

n2−j−1−ε
0

)
uj1u

j
0

+
(
W′

1uj1 ∗ W′
2
)
uj2u

n2−1
0 +

(
W′

1 ∗ W′
2
)
uj1+j2u

n2−1
0

u0
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=
∑

0≤j≤n2
0≤ε≤min{1,n2−j}

(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

j
0

+
(
W′

1uj1 ∗ W′
2
)
uj2u

n2
0 +

(
W′

1 ∗ W′
2
)
uj1+j2u

n2
0 ,

completing the induction step. Next, for n1 ∈ Z≥0 and n2 = 0, the proof follows similarly
by induction on n1.

For the remaining cases n1, n2 ∈ Z>0, we prove by induction on n1 +n2 (with already
proven base case n1 + n2 = 1). Hence, fix n1, n2 ∈ Z>0 and assume that the claim holds
for all smaller values of n1 + n2. We have, by Proposition 3.11,

W1 ∗ W2

= W′
1uj1u

n1
0 ∗ W′

2uj2u
n2
0

=
(
W′

1uj1u
n1−1
0 ∗ W′

2uj2u
n2
0 + W′

1uj1u
n1
0 ∗ W′

2uj2u
n2−1
0 + W′

1uj1u
n1−1
0 ∗ W′

2uj2u
n2−1
0

)
u0.

Applying the induction hypothesis for each of the three summands, we obtain(
W′

1uj1u
n1−1
0 ∗ W′

2uj2u
n2
0

)
u0

=
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k≤j≤n1−1
0≤ε≤min{1,n1−1−j}

(
n2 + k

n2

)(
n2
j − k

)(
W′

1uj1u
n1−1−j−ε
0 ∗ W′

2

)
uj2u

n2+k+1
0

+
n2∑

k=0

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0

=
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

1≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 + k − 1

n2

)(
n2
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
n2∑

k=0

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0 ,

and (
W′

1uj1u
n1
0 ∗ W′

2uj2u
n2−1
0

)
u0

=
∑

0≤k≤j≤n2−1
0≤ε≤min{1,n2−1−j}

(
n1 + k

n1

)(
n1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−1−j−ε
0

)
uj1u

n1+k+1
0

+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 − 1 + k

n2 − 1

)(
n2 − 1
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
n2−1∑
k=0

(
n1 + k

n1

)(
n1

n2 − 1 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k+1
0
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=
∑

1≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 + k − 1

n1

)(
n1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 − 1 + k

n2 − 1

)(
n2 − 1
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
n2∑

k=1

(
n1 + k − 1

n1

)(
n1

n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0 ,

and (
W′

1uj1u
n1−1
0 ∗ W′

2uj2u
n2−1
0

)
u0

=
∑

0≤k≤j≤n2−1
0≤ε≤min{1,n2−1−j}

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−1−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k≤j≤n1−1
0≤ε≤min{1,n1−1−j}

(
n2 − 1 + k

n2 − 1

)(
n2 − 1
j − k

)(
W′

1uj1u
n1−1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
n2−1∑
k=0

(
n1 − 1 + k

n1 − 1

)(
n1 − 1

n2 − 1 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0

=
∑

0≤k<j≤n2
0≤ε≤min{1,n2−j}

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
j − 1 − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k<j≤n1
0≤ε≤min{1,n1−j}

(
n2 − 1 + k

n2 − 1

)(
n2 − 1
j − 1 − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
n2−1∑
k=0

(
n1 − 1 + k

n1 − 1

)(
n1 − 1

n2 − 1 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0 .

Now, using the identity(
ℓ1 − 1
ℓ2 − 1

)(
ℓ2 − 1
ℓ3 − 1

)
+
(
ℓ1 − 1
ℓ2

)(
ℓ2
ℓ3

)
+
(
ℓ1 − 1
ℓ2 − 1

)(
ℓ2 − 1
ℓ3

)
=
(
ℓ1
ℓ2

)(
ℓ2
ℓ3

)

for ℓ1, ℓ2, ℓ3 ∈ Z≥0, we obtain

∑
0≤k≤j≤n2

0≤ε≤min{1,n2−j}

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

1≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 + k − 1

n1

)(
n1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k<j≤n2
0≤ε≤min{1,n2−j}

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
j − 1 − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0
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=
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 + k − 1

n1

)(
n1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
j − 1 − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

=
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 + k

n1

)(
n1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0 ,

and

∑
1≤k≤j≤n1

0≤ε≤min{1,n1−j}

(
n2 + k − 1

n2

)(
n2
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 − 1 + k

n2 − 1

)(
n2 − 1
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
∑

0≤k<j≤n1
0≤ε≤min{1,n1−j}

(
n2 − 1 + k

n2 − 1

)(
n2 − 1
j − 1 − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

=
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 + k − 1

n2

)(
n2
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 − 1 + k

n2 − 1

)(
n2 − 1
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 − 1 + k

n2 − 1

)(
n2 − 1
j − 1 − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

=
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 + k

n2

)(
n2
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0 ,

and
n2∑

k=0

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0

+
n2∑

k=1

(
n1 + k − 1

n1

)(
n1

n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0

+
n2−1∑
k=0

(
n1 − 1 + k

n1 − 1

)(
n1 − 1

n2 − 1 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0
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=
n2∑

k=0

(
n1 − 1 + k

n1 − 1

)(
n1 − 1
n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0

+
n2∑

k=0

(
n1 + k − 1

n1

)(
n1

n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0

+
n2∑

k=0

(
n1 − 1 + k

n1 − 1

)(
n1 − 1

n2 − 1 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0

=
n2∑

k=0

(
n1 + k

n1

)(
n1

n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0 .

Hence, we have

W1 ∗ W2

=
(
W′

1uj1u
n1−1
0 ∗ W′

2uj2u
n2
0

)
u0 +

(
W′

1uj1u
n1
0 ∗ W′

2uj2u
n2−1
0

)
u0

+
(
W′

1uj1u
n1−1
0 ∗ W′

2uj2u
n2−1
0

)
u0

=
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 + k

n1

)(
n1
j − k

)(
W′

1 ∗ W′
2uj2u

n2−j−ε
0

)
uj1u

n1+k
0

+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 + k

n2

)(
n2
j − k

)(
W′

1uj1u
n1−j−ε
0 ∗ W′

2

)
uj2u

n2+k
0

+
n2∑

k=0

(
n1 + k

n1

)(
n1

n2 − k

)
(W′

1 ∗ W′
2)uj1+j2u

n1+k
0 ,

completing the induction step and providing proof of the lemma.

We write in the following

δ• :=
{

1, if • is true,
0, if • is false

for the Kronecker Delta, as usual. Using Lemma 3.12, we obtain the following recursion
for the numbers mW1,W2;W.

Proposition 3.13. Let be W1, W2, W ∈ U∗,◦.

(i) If W1 = 1, we have mW1,W2;W = δW=W2.

(ii) If W2 = 1, we have mW1,W2;W = δW=W1.

(iii) If W = 1, we have mW1,W2;W = δW1=W2=1.

(iv) If W1, W2, W ̸= 1, write

W1 = W′
1uj1u

n1
0 , W2 = W′

2uj2u
n2
0 , W = W′uj3u

n3
0

with unique W′
1, W

′
2, W

′ ∈ U∗,◦, j1, j2, j3 ∈ Z>0, and n1, n2, n3 ∈ Z≥0. Then,

mW1,W2;W =
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 + k

n1

)(
n1
j − k

)
mW′

1,W′
2uj2 u

n2−j−ε
0 ;W′δ j1=j3,

n1+k=n3
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+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 + k

n2

)(
n2
j − k

)
mW′

1uj1 u
n1−j−ε
0 ,W′

2;W′δ j2=j3,
n2+k=n3

+
n2∑

k=0

(
n1 + k

n1

)(
n1

n2 − k

)
mW′

1,W′
2;W′δj1+j2=j3,

n1+k=n3

.

Proof. While (i), (ii), and (iii) are evident following the definition of the stuffle prod-
uct, (iv) is an immediate consequence of Lemma 3.12.

3.3 Proof of our main theorem
After we have shown the recursion for the stuffle product in Lemma 3.12, we can now
prove our main theorem. The idea is relatively simple: We show combinatorially that
the numbers mW1,W2;p̂ satisfy the same recursion as the numbers mW1,W2;W such that the
claim will follow by induction on depth(W). First, we need some notion to clarify our
combinatorial arguments in the proof of the main theorem.

Definition 3.14. Let be W ∈ U∗,◦ and p̂ ∈ MPW.

(i) We denote by sm (p̂) the minimal length of the parts of p̂.

(ii) We denote by C (p̂) ⊂ {1, . . . , sm (p̂)} the column markings of p̂ of columns that
occur in the horizontal block of minimal length of p̂, i.e., j ∈ C (p̂) if and only if
the j-th leftmost column in p̂ has a marking and j ≤ sm (p̂).

(iii) We denote by (p̂)−1 the marked partition arising from p̂ when removing from p̂ the
horizontal block of minimal length sm (p̂) and the corresponding row markings and
all column markings from the j-th leftmost column if j ∈ C (p̂).

(iv) We denote by (p̂)1 the marked partition arising from p̂ as the horizontal block of
minimal length sm (p̂) of p̂ by keeping the row markings and with a column marking
in the j-th leftmost column if and only if j ∈ C (p̂).

Note that we will use sometimes the phrase that “m is column marking of p̂” when
meaning that the m-th column of p̂ is marked.

Let us consider an example towards the notation from Definition 3.14.

Example 3.15. Consider

.

p̂ =

Using the notation from Definition 3.14, we have sm (p̂) = 2 and C (p̂) = {1, 2}.
Furthermore, we have

(p̂)−1 =
.

(p̂)1 =and
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Remark 3.16. (i) For all W ∈ U∗,◦ and p̂ ∈ MPW, we have

p̂ = Φ((p̂)−1, (p̂)1).

(ii) For W ∈ U∗,◦ with depth(W) ≥ 1, write W = W′uju
n
0 with W′ ∈ U∗,◦, j ∈ Z>0,

and n ∈ Z≥0 uniquely determined. For all p̂ ∈ MPW, we have (p̂)−1 ∈ MPW′ .

With the additional notation from Definition 3.14, we are now ready to prove our main
theorem stating that Φ describes the stuffle product on the level of marked partitions.

Theorem 3.17 (Theorem 3.9). Let be W1, W2, W ∈ U∗,◦. For all p̂ ∈ MPW, we have

mW1,W2;p̂ = mW1,W2;W.

In particular, given W1, W2, mW1,W2;p̂ only depends on the word W but not on the marked
partition p̂ ∈ MPW.

Proof. We begin with the three special cases W1 = 1, W2 = 1, W = 1. First, if W1 = 1, we
note that

W1 ∗ W2 = 1 ∗ W2 = W2,

i.e., for all W ∈ U∗,◦, by Proposition 3.13(i), we have

m1,W2;W = δW=W2 .

Furthermore, we have MPW1 = MP1 = {∅}. Hence, for all W ∈ U∗,◦ and p̂ ∈ MPW, we
have

mW1,W2;p̂ = # {(p̂1, p̂2) ∈ MPW1 × MPW2 | Φ(p̂1, p̂2) = p̂}
= # {(∅, p̂2) ∈ MP1 × MPW2 | Φ(∅, p̂2) = p̂}
= # {(∅, p̂2) ∈ MP1 × MPW2 | p̂2 = p̂}
= δW=W2

=mW1,W2;W.

I.e., if W1 = 1, the claim follows. Similarly (using Proposition 3.13(ii)), we obtain the
claim for W2 = 1. Next, consider the special case of W1, W2 ∈ U∗,◦ arbitrary and W = 1.
Then,

mW1,W2;1 = δW1=W2=1.

Furthermore, we have MPW = MP1 = {∅} and so

mW1,W2;∅ = # {(p̂1, p̂2) ∈ MPW1 × MPW2 | Φ(p̂1, p̂2) = ∅}
= # {(p̂1, p̂2) ∈ MPW1 × MPW2 | p̂1 = p̂2 = ∅}
= δW1=W2=1

=mW1,W2;1,

where the last step follows from Proposition 3.13(iii). I.e., the claim follows also for
all W1, W2 ∈ U∗,◦ when W = 1.

Therefore, we may assume W1, W2, W ̸= 1 in the following. We write

W1 = W′
1uj1u

n1
0 , W2 = W′

2uj2u
n2
0 , W = W′uj3u

n3
0 ,
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where W′
1, W

′
2, W

′ ∈ U∗,◦, j1, j2, j3 ∈ Z>0, and n1, n2, n3 ∈ Z≥0 are uniquely determined.
We prove the claim of the theorem by induction on depth(W) and note that the base
case depth(W) = 0 has already been proven since then W = 1. Therefore, we may as-
sume depth(W) > 0 and that the claim holds for all smaller values of depth(W). Let
be p̂ ∈ MPW arbitrary. Particularly, in (p̂)1, there are exactly j3 rows marked and n3 + 1
columns, including the row and column, respectively, containing the corner. To ob-
tain mW1,W2;p̂, we need to count the pairs (p̂1, p̂2) ∈ MPW1 × MPW2 of marked partitions
such that Φ(p̂1, p̂2) = p̂. In particular, we have

(Φ(p̂1, p̂2))1 = (p̂)1.

There are three distinct cases we will study.

(i) sm (p̂1) < sm (p̂2): I.e., the horizontal block of minimal length of p̂1 (neglecting
the column markings) builds the whole horizontal block of minimal length of p̂
(neglecting the column markings).

(ii) sm (p̂1) > sm (p̂2): I.e., the horizontal block of minimal length of p̂2 (neglecting
the column markings) builds the whole horizontal block of minimal length of p̂
(neglecting the column markings).

(iii) sm (p̂1) = sm (p̂2): I.e., the horizontal block of minimal length of p̂ is the horizontal
block of minimal length of p̂1 above horizontal block of minimal length of p̂2, in
particular (p̂)1 = Φ((p̂1)1, (p̂2)1).

Case (i). Let us consider (i) first. We want to find the number

# {(p̂1, p̂2) ∈ MPW1 × MPW2 | sm (p̂1) < sm (p̂2) , Φ(p̂1, p̂2) = p̂} .

Note that for (p̂1, p̂2) ∈ MPW1 × MPW2 with sm (p̂1) < sm (p̂2) and (p̂1, p̂2) = p̂, we have

p̂ = Φ(p̂1, p̂2) = Φ((Φ(p̂1, p̂2))−1, (p̂)1).

Furthermore, we have

(Φ(p̂1, p̂2))−1 = Φ
(
(p̂1)−1, ˜̂p2

)
∈ MPW′ ,

where ˜̂p2 is the marked partition p̂2 without column markings in C (p̂) \{sm (p̂)}. Note
that we have

(p̂1)−1 ∈ MPW′
1

and ˜̂p2 ∈ MPW′
2uj2 u

n2−j−ε
0

,

where j = # ((C (p̂) \{sm (p̂)}) ∩ C (p̂2)) and

ε =
{

0, if sm (p̂) ̸∈ C (p̂2) ,
1, if sm (p̂) ∈ C (p̂2) .

Now, fix 0 ≤ j ≤ n2, 0 ≤ ε ≤ min{1, n2 − j} and marked partitions

q̂1 ∈ MPW′
1

and ˜̂q2 ∈ MPW′
2uj2 u

n2−j−ε
0
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such that sm (p̂) < sm
( ˜̂q2
)

and

q̂ := Φ
(
q̂1, ˜̂q2

)
= (p̂)−1 ∈ MPW′ .

Hence, we are interested in the number of pairs (q̂′, q̂2) ∈ MPuj1 u
n1
0

× MPW2 such
that sm (q̂′) < sm (q̂2),

p̂ = Φ(Φ(q̂1, q̂
′), q̂2),

and such that q̂2 without column markings in C (p̂) \{sm (p̂)} is ˜̂q2 (in accordance with
the notation above). Note that the underlying Young Tableau of q̂′ consists of exactly
one horizontal block and is uniquely determined by (p̂)1, as well as the row markings of q̂′.
In particular, this is possible only if j1 = j3, and implies sm (q̂′) = sm (p̂). Furthermore,
since

#(C
(
q̂′) \{sm

(
q̂′)}) = n1, #(C (p̂) \{sm (p)}) = n3, and C

(
q̂′) ⊂ C (p̂) ,

we have
(n3

n1

)
choices to determine C (q̂′) and so to determine q̂′. Now, for fixed q̂′, q̂2

is determined up to the column markings in C (p̂) by definition. The other n3 − n1
column markings of C (p̂) \{sm (p̂)} have to be column markings of q̂2. Moreover, by
definition of ˜̂q2, therefore j − (n3 − n1) column markings of q̂2 that do not belong to ˜̂q2
are column markings of q̂′ as well, which is possible in

( n1
j−(n3−n1)

)
ways, determining q̂2

finally. Hence, we have proven that

# {(p̂1, p̂2) ∈ MPW1 × MPW2 | sm (p̂1) < sm (p̂2) , Φ(p̂1, p̂2) = p̂}

=
∑

0≤j≤n2
0≤ε≤min{1,n2−j}

(
n3
n1

)(
n1

j − (n3 − n1)

)
mW′

1,W′
2uj2 u

n2−j−ε
0 ;(p̂)−1

δj1=j3

=
∑

0≤j≤n2
0≤ε≤min{1,n2−j}

(
n3
n1

)(
n1

j − (n3 − n1)

)
mW′

1,W′
2uj2 u

n2−j−ε
0 ;W′δj1=j3 , (3.17.1)

where the last step follows from the induction step since depth(W′) = depth(W) − 1.

Case (ii). Now, considering (ii), analogously, we obtain

# {(p̂1, p̂2) ∈ MPW1 × MPW2 | sm (p̂1) > sm (p̂2) , Φ(p̂1, p̂2) = p̂}

=
∑

0≤j≤n1
0≤ε≤min{1,n1−j}

(
n3
n2

)(
n2

j − (n3 − n2)

)
mW′

1uj1 u
n1−j−ε
0 ,W′

2;W′δj2=j3 . (3.17.2)

Case (iii). We want to find the number

# {(p̂1, p̂2) ∈ MPW1 × MPW2 | sm (p̂1) = sm (p̂2) , Φ(p̂1, p̂2) = p̂} .

Note that for (p̂1, p̂2) ∈ MPW1 × MPW2 with sm (p̂1) = sm (p̂2) and (p̂1, p̂2) = p̂, we have

(p̂)−1 = Φ((p̂1)−1, (p̂2)−1) and (p̂)1 = Φ((p̂1)1, (p̂2)1).
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Furthermore, for h ∈ {1, 2}, we have

(p̂h)−1 ∈ MPW′
h
, (p̂h)1 ∈ MPujh

u
nh
0
, (p̂)−1 ∈ MPW′ , and (p̂)1 ∈ MPuj3 u

n3
0
.

Now, for h ∈ {1, 2}, fix marked partitions q̂h ∈ MPW′
h

such that

Φ(q̂1, q̂2) = (p̂)−1.

We are interested in the number of pairs (q̂1
′, q̂2

′) ∈ MPuj1 u
n1
0

× MPuj2 u
n2
0

such that

Φ(q̂1
′, q̂2

′) = (p̂)1.

Note that the underlying Young Tableau of both q̂1
′ and q̂2

′ are uniquely determined
by (p̂)1, as well as the row markings of q̂1

′ and q̂2
′. In particular, this is possible only

if j3 = j1 + j2, and implies sm
(
q̂1

′) = sm
(
q̂2

′) = sm (p̂).
Now, since

#(C
(
q̂1

′) \{sm
(
q̂1

′)}) = n1, #(C (p̂) \{sm (p)}) = n3, and C
(
q̂1

′) ⊂ C (p̂) ,

we have
(n3

n1

)
choices to determine the column markings of q̂1

′ which determines q̂1
′. Fur-

thermore, since C
(
q̂1

′)∪C
(
q̂2

′) = C ((p̂)1), we have that n2 − (n3 −n1) column markings
of q̂2

′, different from sm
(
q̂2

′), belong to q̂1
′ as well, which is possible in

( n1
n2−(n3−n1)

)
ways

when q̂1
′ is already determined, determining q̂2

′ finally.
Hence, by using p̂ = Φ((p̂)−1, (p̂)1), we have proven

# {(p̂1, p̂2) ∈ MPW1 × MPW2 | sm (p̂1) = sm (p̂2) , Φ(p̂1, p̂2) = p̂}

=
(
n3
n1

)(
n1

n2 − (n3 − n1)

)
mW′

1,W′
2;(p̂)−1

δj3=j1+j2

=
(
n3
n1

)(
n1

n2 − (n3 − n1)

)
mW′

1,W′
2;W′δj3=j1+j2 , (3.17.3)

where the last step follows from the induction hypothesis since depth(W′) = depth(W)−1.

Conclusion. Now, (3.17.1), (3.17.2), and (3.17.3) yield by definition of mW1,W2;p̂ that

mW1,W2;p̂

= # {(p̂1, p̂2) ∈ MPW1 × MPW2 | sm (p̂1) < sm (p̂2) , Φ(p̂1, p̂2) = p̂}
+ # {(p̂1, p̂2) ∈ MPW1 × MPW2 | sm (p̂1) > sm (p̂2) , Φ(p̂1, p̂2) = p̂}
+ # {(p̂1, p̂2) ∈ MPW1 × MPW2 | sm (p̂1) = sm (p̂2) , Φ(p̂1, p̂2) = p̂}

=
∑

0≤k≤j≤n2
0≤ε≤min{1,n2−j}

(
n1 + k

n1

)(
n1
j − k

)
mW′

1,W′
2uj2 u

n2−j−ε
0 ;W′δ j1=j3,

n1+k=n3

+
∑

0≤k≤j≤n1
0≤ε≤min{1,n1−j}

(
n2 + k

n2

)(
n2
j − k

)
mW′

1uj1 u
n1−j
0 ,W′

2;W′δ j2=j3,
n2+k=n3

+
n2∑

k=0

(
n1 + k

n1

)(
n1

n2 − k

)
mW′

1,W′
2;W′δj1+j2=j3,

n1+k=n3

=mW1,W2;W,
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where the last step immediately follows from Proposition 3.13(iv). This completes the
induction step, so the theorem is proven.

Remark 3.18. Marked partitions seem a powerful tool for studying the coefficients in
the q-expansion of qMZVs. With them, we give the (algebraic) behaviour of qMZVs a
combinatorial interpretation. In this paper, we did this for the stuffle product. In [4],
we already did this for duality in the Schlesinger–Zudilin model of qMZVs (and in the
Bradley–Zhao model for an involution similar to τ). For future works, it would be
interesting, for example, to describe problems like Bachmann’s conjecture (bi-brackets
and brackets span the same Q-vector space, see [3, Conjecture 4.3]) combinatorially with
marked partitions and making progress in proving them.
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Abstract. Recently, Debruyne and Tenenbaum proved asymptotic formulas for the
number of partitions with parts in Λ ⊂ N (gcd(Λ) = 1) and good analytic properties
of the corresponding zeta function, generalizing work of Meinardus. In this paper, we
extend their work to prove asymptotic formulas if Λ is a multiset of integers and the zeta
function has multiple poles. In particular, our results imply an asymptotic formula for
the number of irreducible representations of degree n of so(5). We also study the Witten
zeta function ζso(5), which is of independent interest.

4.1 Introduction and statement of results

4.1.1 The Circle Method

In analytic number theory and combinatorics, one uses complex analysis to better under-
stand properties of sequences. Suppose that a sequence (c(n))n∈N0 has moderate growth
and the generating function

F (q) :=
∑
n≥0

c(n)qn,

is holomorphic in the unit disk with radius of convergence 1. Via Cauchy’s integral
formula one can then recover the coefficients from the generating function

c(n) = 1
2πi

∫
C

F (q)
qn+1 dq, (4.0.1)

for any simple closed curve C contained in the unit disk orientated counterclockwise.
The so-called Circle Method uses the analytic behavior of F (q) near the boundary of the

1 Walter Bridges
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Kathrin Bringmann
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unit circle to obtain asymptotic information about c(n). In fact for “nice” examples this
method is automatic and there is a long history for example with the Prime Number The-
orem. For instance, if the c(n) are positive and monotonically increasing, it is expected
that the part close to q = 1 provides the dominant contribution to (4.0.1) (Tauberian
Theorems then show this). This part of the curve is the major arc and the complement
is the minor arc. To obtain an asymptotic expansion for c(n), one then evaluates the
major arc to some degree of accuracy and bounds the minor arc. Depending on the
function F (q), both of these tasks present a variety of difficulties.

In the present paper, we are interested in infinite product generating functions of the
form

F (q) =
∏
n≥1

1
(1 − qn)f(n) .

Such generating functions are important in the theory of partitions, but also arise, for
example, in representation theory. If the Dirichlet series for f(n) has a single simple
pole on the positive real axis and F is “bounded” away from q = 1, then Meinardus [30]
proved an asymptotic expression for c(n). Debruyne and Tenenbaum [17] eliminated
the technical growth conditions on F by adding a few more assumptions on the f(n),
which made their result more applicable. Our main results, Theorems 4.5 and 4.29,
yield asymptotic expansions given mild assumptions on f(n) and have a variety of new
applications.

4.1.2 The classical partition function

Let n ∈ N. A weakly decreasing sequence of positive integers that sum to n is called a
partition of n. The number of partitions is denoted by p(n). If λ1 + . . . + λr = n, then
the λj are called the parts of the partition. The partition function has no elementary
closed formula, nor does it satisfy any finite order recurrence. However, setting p(0) := 1,
its generating function has the following product expansion

∑
n≥0

p(n)qn =
∏
n≥1

1
1 − qn

, (4.0.2)

where |q| < 1. In [23], Hardy and Ramanujan used (4.0.2) to show the asymptotic
formula

p(n) ∼ 1
4
√

3n
eπ
√

2n
3 , n → ∞,

which gave birth of the Circle Method. Using modular transformations one can describe
with high precision the analytic behavior of the product if q is near a root of unity. One
further sees directly from the infinite product that dominant singularities occur at such
roots of unity with small denominator. These ideas culminate in Rademacher’s exact
formula for p(n) [33].

With Theorem 4.5 we find, for certain constants Bj and arbitrary N ∈ N,

p(n) = eπ
√

2n
3

4
√

3n

1 +
N∑

j=1

Bj

n
j
2

+ON

(
n− N+1

2
) . (4.0.3)

Similarly, one can treat the cases for k-th powers (in arithmetic progressions), see [17].
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4.1.3 Plane partitions

Another application is an asymptotic formula for plane partitions. A plane partition of
size n is a two-dimensional array of non-negative integers πj,k for which

∑
j,k πj,k = n,

such that πj,k ≥ πj,k+1 and πj,k ≥ πj+1,k for all j, k ∈ N. We denote the number of plane
partitions of n by pp(n). MacMahon [25] proved that

∑
n≥0

pp(n)qn =
∏
n≥1

1
(1 − qn)n .

Using Theorem 4.5, we recover Wright’s asymptotic formula2 [38]

pp(n) = C

n
25
36
eA1n

2
3

1 +
N+1∑
j=2

Bj

n
2(j−1)

3

+ON

(
n− 2(N+1)

3

) ,
where the constants Bj are explicitly computable,

C := ζ(3)
7

36 eζ′(−1)

2
11
36

√
3π

, A1 := 3ζ(3)
1
3

2
2
3

with ζ the Riemann zeta function.

4.1.4 Partitions into polygonal numbers

The n-th k-gonal number is given by3 (k ∈ N≥3)

Pk(n) := 1
2
(
(k − 2)n2 + (4 − k)n

)
. (4.0.4)

The study of representations of integers as sums of polygonal numbers has a long history.
Fermat conjectured in 1638 that every n ∈ N may be written as the sum of at most k k-
gonal numbers which was finally proved by Cauchy. Let pk(n) denotes the number of
partitions of n into k-gonal numbers. We have the generating function

∑
n≥0

pk(n)qn =
∏
n≥1

1
1 − qPk(n) .

The pk(n) have the following asymptotics.4

Theorem 4.1. We have, for all 5 N ∈ N,

pk(n) = C(k)eA(k)n
1
3

n
5k−6

6(k−2)

1 +
N∑

j=1

Bj,k

n
j
3

+ON

(
n− N+1

3
) ,

where the Bj,k can be computed explicitly and

C(k) :=
(k − 2)

6−k
6(k−2) Γ

(
2

k−2

)
ζ
(

3
2

) k
3(k−2)

2
3k−2

2(k−2)
√

3π
4k−9

3(k−2)
, A(k) := 3

2

(√
π

k − 2ζ
(3

2

)) 2
3
.

2Note the well-known typographic error in Wrights asymptotic, he is off by a factor
√

3.
3Note that these count points in polygons.
4Note that asymptotics for polynomial partitions were investigated in a more general setting by Dunn–

Robles [19].
5Explicit asymptotic formulas for p3(n), p4(n), and p5(n) are given in Corollary 4.33.
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Remark 4.2. Theorem 4.1 strengthens an asymptotic formula of Brigham for log(pk(n))
(see page 191 of [7] part D).

4.1.5 Numbers of finite-dimensional representations of Lie algebras

The special unitary group su(2) has (up to equivalence) one irreducible representation Vk

of each dimension k ∈ N. Each n-dimensional representation
⊕∞

k=1 rkVk corresponds to
a unique partition

n = λ1 + λ2 + · · · + λr, λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1 (4.2.1)

such that rk counts the number of k in (4.2.1). As a result, the number of representations
equals p(n). It is natural to ask whether this can be generalized. The next case is the
unitary group su(3), whose irreducible representations Wj,k indexed by pairs of positive
integers. Note that (see Chapter 5 of [22]) dim(Wj,k) = 1

2jk(j + k). Like in the case
of su(2), a general n-dimensional representation decomposes into a sum of these Wj,k,
again each with some multiplicity. So analogous to (4.0.2), the numbers rsu(3)(n) of n-
dimensional representations, have the generating function

∑
n≥0

rsu(3)(n)qn =
∏

j,k≥1

1

1 − q
jk(j+k)

2

,

again with rsu(3)(0) := 1. In [34], Romik proved that, as n → ∞,

rsu(3)(n) ∼ C0

n
3
5

exp
(
A1n

2
5 +A2n

3
10 +A3n

1
5 +A4n

1
10
)
,

with explicit constants6 C0, A1, . . . , A4 expressible in terms of zeta and gamma values.
Two of the authors [8] improved this to an analogue of formula (4.0.3), namely, for
any N ∈ N0, we have

rsu(3)(n) =C0

n
3
5

exp
(
A1n

2
5 +A2n

3
10 +A3n

1
5 +A4n

1
10
)

×

1 +
N∑

j=1

Cj

n
j

10
+ON

(
n− N+1

10
) , (4.2.2)

as n → ∞, where the constants Cj do not depend on N and n and can be calculated
explicitly. The expansion (4.2.2) with explicit values for Aj (1 ≤ j ≤ 4) and C0, can also
be obtained using Theorem 4.29.

This framework generalizes to other groups. For example, one can investigate the
Witten zeta function for so(5), which is (for more background to this function, see [27]
and [28])

ζso(5)(s) :=
∑
φ

1
dim(φ)s

= 6s
∑

n,m≥1

1
msns(m+ n)s(m+ 2n)s

, (4.2.3)

where the φ are running through the finite-dimensional irreducible representations of so(5).
We prove the following; for the more precise statement see Theorem 4.43.

Theorem 4.3. The function ζso(5) has a meromorphic continuation to C whose positive
poles are simple and occur for s ∈ {1

2 ,
1
3}.

6Note that Romik used different signs for the constants in the exponential.
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It is well-known that the finite-dimensional representations of so(5) can be doubly
indexed as (φj,k)j,k∈N with dim(φj,k) = 1

6jk(j+k)(j+2k), which explains the last equality
in (4.2.3). A general n-dimensional representation decomposes as a sum of these φj,k,
each with some multiplicity. Therefore, as in the case su(3), we find that

∑
n≥0

rso(5)(n)qn =
∏

j,k≥1

1

1 − q
jk(j+k)(j+2k)

6

.

We prove the following.
Theorem 4.4. As n → ∞, we have, for any N ∈ N,

rso(5)(n) = C

n
7

12
exp

(
A1n

1
3 +A2n

2
9 +A3n

1
9 +A4

)1 +
N+1∑
j=2

Bj

n
j−1

9
+ON

(
n− N+1

9
) ,

where C, A1, A2, A3, and A4 are given in (4.45.6)–(4.45.7) and the Bj can be calculated
explicitly.

4.1.6 Statement of results

The main goal of this paper is to prove asymptotic formulas for a general class of partition
functions. To state it, let f : N → N0, set Λ := N \ f−1({0}), and for q = e−z (z ∈ C
with Re(z) > 0), define

Gf (z) :=
∑
n≥0

pf (n)qn =
∏
n≥1

1
(1 − qn)f(n) , Lf (s) :=

∑
n≥1

f(n)
ns

. (4.4.1)

We require the following key properties of these objects:
(P1) All poles of Lf are real. Let α > 0 be the largest pole of Lf . There exists L ∈ N,

such that for all primes p, we have |Λ \ (pN ∩ Λ)| ≥ L > α
2 .

(P2) Condition (P2) is attached to R ∈ R+. The series Lf (s) converges for some s ∈ C,
has a meromorphic continuation to {s ∈ C : Re(s) ≥ −R}, and is holomorphic on
the line {s ∈ C : Re(s) = −R}. The function L∗

f (s) := Γ(s)ζ(s+ 1)Lf (s) has only
real poles 0 < α := γ1 > γ2 > . . . that are all simple, except the possible pole
at s = 0, that may be double.

(P3) For some a < π
2 , in every strip σ1 ≤ σ ≤ σ2 in the domain of holomorphicity, we

uniformly have, for s = σ + it,

Lf (s) = Oσ1,σ2

(
ea|t|

)
, |t| → ∞.

Note that (P1) implies that |Λ \ (bN∩ Λ)| ≥ L > α
2 for all b ≥ 2. The analytic properties

of Lf are a major ingredient needed to prove the following theorem, as analytic contin-
uation in (P2) gives rise to asymptotic expansions of 7 Log(Gf (z)) and (P3) assists with
vertical integration.
Theorem 4.5. Assume (P1) for L ∈ N, (P2) for R > 0, and (P3). Then, for
some M,N ∈ N,

pf (n) = C

nb
exp

A1n
α

α+1 +
M∑

j=2
Ajn

αj

1 +
N∑

j=2

Bj

nβj
+OL,R

(
n

− min
{

2L−α
2(α+1) , R

α+1

}) ,
7Throughout we use the principal branch of the logarithm.
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where 0 ≤ αM < αM−1 < · · ·α2 < α1 = α
α+1 are given by8 L (defined in (4.6.1)),

and 0 < β2 < β3 < . . . are given by M + N , where M and N are defined in (4.6.2)
and (4.6.3), respectively. The coefficients Aj and Bj can be calculated explicitly; the
constants A1, C, and b are provided in (4.6.4) and (4.6.5). Moreover, if α is the only
positive pole of Lf , then we have M = 1.

Remark 4.6.

(1) Debruyne and Tenenbaum [17] proved Theorem 4.5 in the special case that f is the
indicator function of a subset Λ of N. They also assumed that the associated L-
function can be analytically continued except for one pole in 0 < α ≤ 1. In (P1),
the assumption that |Λ \ (pN ∩ Λ)| ≥ L is used in Lemma 4.17 to bound minor arcs,
whereas the additional assumption L > α

2 , that was automatically satisfied in [17],
ensures that the bounds for the minor arcs are sufficient.

(2) The complexity of the exponential term depends on the number and positions of the
positive poles of Lf . Theorem 4.29 is more explicit and covers the case of exactly
two positive poles. This case has importance for representation numbers of su(3)
and so(5).

In Section 4.2, we collect some analytic tools, properties of special functions and
useful properties of asymptotic expansions that are heavily used throughout the paper.
In Section 4.3, we apply the Circle Method and calculate asymptotic expansions for the
saddle point ϱn and the value of the generating function Gf (ϱn). In Section 4.4, we
complete the proof of Theorem 4.5, and we also state and prove a more explicit version
of Theorem 4.5 in the case that Lf has two positive poles (Theorem 4.29). The proofs
of Theorems 4.1, 4.3, and 4.4 are given in Section 4.5; this includes a detailed study of
the Witten zeta function ζso(5) which is of independent interest.
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Notation
For β ∈ R, we denote by {β} := β − ⌊β⌋ the fractional part of β. As usual, we
set H := {τ ∈ C : Im(τ) > 0} and E := {z ∈ C : |z| < 1}. For δ > 0, we define

Cδ :=
{
z ∈ C : |Arg(z)| ≤ π

2 − δ
}
,

where Arg uses the principal branch of the complex argument. For r > 0 and z ∈ C, we
set

Br(z) := {w ∈ C : |w − z| < r}.
8We can enlarge the discrete exponent sets at will, since we can always add trivial powers with

vanishing coefficients to an expansion. Therefore, from now on we always use this expression, even if the
set increases tacitly.
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For a, b ∈ R, we let Ra,b;K be the rectangle with vertices a ± iK and b ± iK, and we
let ∂Ra,b;K be the path along the boundary of Ra,b;K , surrounded once counterclockwise.
For −∞ ≤ a < b ≤ ∞, we denote Sa,b := {z ∈ C : a < Re(z) < b}. We also set, for
real σ1 ≤ σ2 and δ > 0,

Sσ1,σ2,δ := {s ∈ C : σ1 ≤ Re(s) ≤ σ2}
∖Bδ

(1
2

)
∪

1⋃
j=−∞

Bδ

(
j

3

) .
For k ∈ N and s ∈ C, the falling factorial is (s)k := s(s−1) · · · (s−k+1). For f : N → N0,
we let P be the set of poles of L∗

f , and for R > 0 we denote by PR the union of the poles
of L∗

f greater than −R with {0}. We define

L := 1
α+ 1PR +

∑
µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0, (4.6.1)

M := α

α+ 1N0 +

−
∑

µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
[
0, R+ α

α+ 1

)
, (4.6.2)

N :=


K∑

j=1
bjθj : bj ,K ∈ N0, θj ∈ (−L) ∩

(
0, R

α+ 1

) . (4.6.3)

We set, with ωα := Ress=α Lf (s),

A1 :=
(

1 + 1
α

)
(ωαΓ(α+ 1)ζ(α+ 1))

1
α+1 , C := eL′

f (0)(ωαΓ(α+ 1)ζ(α+ 1))
1
2 −Lf (0)

α+1√
2π(α+ 1)

,

(4.6.4)

b :=
1 − Lf (0) + α

2
α+ 1 . (4.6.5)

4.2 Preliminaries
In this section, we collect and prove some tools used in this paper.

4.2.1 Tools from complex analysis

We require the following results from complex analysis. The first theorem describes Tay-
lor coefficients of the inverse of a biholomorphic function; for a proof, see Corollary 11.2
on p. 437 of [11].

Proposition 4.7. Let ϕ : Br(0) → D be a holomorphic function such that ϕ(0) = 0
and ϕ′(0) ̸= 0, with ϕ(z) =:

∑
n≥1 anz

n. Then ϕ is locally biholomorphic and its local
inverse of ϕ has a power series expansion ϕ−1(w) =:

∑
k≥1 bkw

k, where

bk = 1
kak

1

∑
ℓ1,ℓ2,ℓ3...≥0

ℓ1+2ℓ2+3ℓ3+···=k−1

(−1)ℓ1+ℓ2+ℓ3+···k · · · (k − 1 + ℓ1 + ℓ2 + · · · )
ℓ1!ℓ2!ℓ3! · · ·

(
a2
a1

)ℓ1 (a3
a1

)ℓ2

· · · .

To deal with certain zeros of holomorphic functions, we require the following result
from complex analysis, the proof of which is quickly obtained from Exercise 7.29 (i)
in [10].
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Proposition 4.8. Let r > 0 and let ϕn : Br(0) → C be a sequence of holomorphic func-
tions that converges uniformly on compact sets to a holomorphic function ϕ : Br(0) → C,
with ϕ′(0) ̸= 0. Then there exist r > κ1 > 0 and κ2 > 0 such that, for all n sufficiently
large, the restrictions ϕn|Bκ1 (0) : Bκ1(0) → ϕn(Bκ1(0)) are biholomorphic
and Bκ2(0) ⊂ ϕn(Bκ1(0)). In particular, the restrictions ϕ−1

n |Bκ2 (0) : Bκ2(0) → ϕ−1
n (Bκ2(0))

are biholomorphic functions.

4.2.2 Asymptotic expansions

We require two classes of asymptotic expansions.

Definition 4.9. Let R ∈ R.

(1) Let g : R+ → C be a function. Then g ∈ K(R) if there exist real
numbers νg,1 < νg,2 < νg,3 < · · · < νg,N < R and complex numbers ag,j such that

g(x) =
Ng∑
j=1

ag,j

xνg,j
+OR

(
x−R

)
, (x → ∞).

(2) Let ϕ be holomorphic on the right half-plane. Then ϕ ∈ H(R) if there are real
numbers νϕ,1 < νϕ,2 < νϕ,3 < · · · < νϕ,N < R and aϕ,j ∈ C such that, for all k ∈ N0
and 0 < δ < π

2 ,

ϕ(k)(z) =
Nϕ∑
j=1

(νϕ,j)kaϕ,jz
νϕ,j−k +Oδ,R,k

(
|z|R−k

)
, (z → 0, z ∈ Cδ). (4.9.1)

If there is no risk of confusion, then we write N , νj , and aj in the above. The R-
dependence of the error only matters if R varies, for instance, if we can choose it to be
arbitrarily large.

Note that any sequence g(n) with

g(n) =
N∑

j=1

aj

nνj
+OR

(
n−R

)
, (n → ∞), (4.9.2)

can be extended to a function g in K(R). Conversely, each function in K(R) can be
restricted to a sequence {g(n)}n∈N satisfying (4.9.2). In addition, we include functions
in K(R) that have asymptotic expansion as in (1), but are initially defined only on
intervals (r,∞) for some large r > 0. The reason for this is that it does not matter
how the function is defined up to r, and therefore it can always be continued to (0,∞).
If g ∈ K(R) for all R > 0, then we write

g(x) =
∑
j≥1

aj

xνj
, (x → ∞). (4.9.3)

We use the same abbreviation if ϕ ∈ H(R) for all R > 0. In this case we write g ∈ K(∞)
and ϕ ∈ H(∞), respectively. In some situations, we write for R ∈ R ∪ {∞}

g(x) =
N∑

j=1

ag,j

xνg,j
+OR

(
x−R

)
,
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where R might depend on the choice of the function g. If R = ∞, then one may ignore
the error OR(x−R) and use the notation (4.9.3) instead. We have the following useful
lemmas, that can be obtained by a straightforward calculation.

Lemma 4.10. Let R1, R2 ∈ R, λ ∈ C, g ∈ K(R1), and h ∈ K(R2). Then we have the
following:

(1) We have λg ∈ K(R1) and g+h ∈ K(min{R1, R2}). The exponents νg+h,j run through

({νg,j : 1 ≤ j ≤ Ng} ∪ {νh,j : 1 ≤ j ≤ Nh}) ∩ (−∞,min{R1, R2}).

(2) We have gh ∈ K(min{R1 + νh,1, R2 + νg,1}). The exponents νgh,j run through

({νg,j : 1 ≤ j ≤ Ng} + {νh,j : 1 ≤ j ≤ Nh}) ∩ (−∞,min{R1 + νh,1, R2 + νg,1}).

We next deal with compositions of asymptotic expansions with holomorphic functions.

Lemma 4.11. Let 0 < R ≤ ∞, g ∈ K(R) with νg,1 = 0 and h holomorphic at ag,1.
Then (h ◦ g)(x) is defined for all x > 0 sufficiently large, and we have h ◦ g ∈ K(R) with

{νh◦g,j : 1 ≤ j ≤ Nh◦g} =

Ng∑
j=1

νg,jN0

 ∩ [0, R).

We need a similar result for general asymptotic expansions.

Lemma 4.12. Let 0 < R1, R2 ≤ ∞, ϕ ∈ H(R1), g ∈ K(R2),
and R := min{R2 − νg,1, νg,1R1}. Assume νg,1 > 0 and g(x) > 0 for x sufficiently large.
Then ϕ ◦ g ∈ K(R), aϕ◦g,1 = aϕ,1a

νϕ,1
g,1 , and

{νϕ◦g,j : 1 ≤ j ≤ Nϕ◦g} =

νg,1{νϕ,1, ..., νϕ,Nϕ
} +

Ng∑
j=2

(νg,j − νg,1)N0

 ∩ (−∞, R).

4.2.3 Special functions

The following theorem collects some facts about the Gamma function.

Proposition 4.13 (see [1, 35]). Let γ denote the Euler–Mascheroni constant.

(1) The gamma function Γ is holomorphic on C \ (−N0) with simple poles in −N0.
For n ∈ N0 we have Ress=−n Γ(s) = (−1)n

n! .

(2) For s = σ + it ∈ C with σ ∈ I for a compact interval I ⊂ [1
2 ,∞), we uniformly have

max
{

1, |t|σ− 1
2
}
e− π|t|

2 ≪I |Γ(s)| ≪I max
{

1, |t|σ− 1
2
}
e− π|t|

2 .

The bound also holds for compact intervals I ⊂ R if |t| ≥ 1.

(3) Near s = 0, we have the Laurent series expansion Γ(s) = 1
s − γ +O(s).

(4) For all s ∈ C \ Z, we have Γ(s)Γ(1 − s) = π
sin(πs) .

For s, z ∈ C with s /∈ −N, the generalized Binomial coefficient is defined by(
s

z

)
:= Γ(s+ 1)

Γ(z + 1)Γ(s− z + 1) .
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We require the following properties of the Riemann zeta function.

Proposition 4.14 (see [2, 9, 35]).

(1) The ζ-function has a meromorphic continuation to C with only a simple pole at s = 1
with residue 1. For s ∈ C we have (as identity between meromorphic functions)

ζ(s) = 2sπs−1 sin
(
πs

2

)
Γ(1 − s)ζ(1 − s).

(2) For I := [σ0, σ1] and s = σ + it ∈ C, there exists mI ∈ Z, such that for σ ∈ I

ζ(s) ≪ (1 + |t|)mI , (|t| → ∞).

(3) Near s = 1, we have the Laurent series expansion ζ(s) = 1
s−1 + γ +O(s− 1).

For the Saddle Point Method we need the following estimate.

Lemma 4.15. Let µn be an increasing unbounded sequence of positive real
numbers, B > 0, and P a polynomial of degree m ∈ N0. Then we have∫ µn

−µn

P (x)e−Bx2
dx =

∫ ∞

−∞
P (x)e−Bx2

dx+OB,P

(
µ

m−1
2

n e−Bµ2
n

)
.

Finally, we require the following in our study of the Witten zeta function ζso(5).

Lemma 4.16. Let n ∈ N0. The function g : R → R defined
as g(u) := e|u| ∫∞

−∞ |v|ne−|v|−|v+u|dv satisfies g(u) = On(un+1) as |u| → ∞.

Proof. Let u ≥ 0. Then we have

g(u) = n!
2n+1

n∑
j=0

2j

j! u
j + un+1

n+ 1 + n!
2n+1 = On

(
un+1

)
.

The lemma follows, since g is an even function.

4.3 Minor and major arcs

4.3.1 The minor arcs

For z ∈ C with Re(z) > 0, we define, with Gf given in (4.4.1),

Φf (z) := Log(Gf (z)).

Note that we assume throughout, that the function f grows polynomially, which is im-
plicitly part of (P2). We apply Cauchy’s Theorem, writing

pf (n) = 1
2π

∫ π

−π
exp (n(ϱn + it) + Φf (ϱn + it)) dt,

where ϱn → 0+ is determined in Subsection 4.3.3. We split the integral into two parts,
the major and minor arcs, for any β ≥ 1

pf (n) = eϱnn

2π

∫
|t|≤ϱβ

n

exp (int+ Φf (ϱn + it)) dt+ eϱnn

2π

∫
ϱβ≤|t|≤π

exp (int+ Φf (ϱn + it)) dt.

(4.16.1)
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The first integral provides the main terms in the asymptotic expansion for pf (n), the
second integral is negligible, as the following lemma shows.

Lemma 4.17. Let 1 < β < 1 + α
2 and assume that f satisfies the conditions of Theo-

rem 4.5. Then ∫
ϱ

β
n

2π
≤|t|≤ 1

2

e2πintGf (ϱn + 2πit)dt ≪L ϱ
L+1
n Gf (ϱn).

Sketch of proof. The proof may be adapted from [17, Lemma 3.1]. That is, we estimate
the quotient,

|Gf (ϱn + 2πit)|
Gf (ϱn) ≤

∏
m≥1

(
1 + 16||mt||2

emϱnm2ϱ2
n

)− f(m)
2

,

where ||x|| is the distance from x to the nearest integer. We then throw away m-th
factors depending on the location of t ∈ [ϱβ

n
2π ,

1
2 ]. The proof follows [17, Lemma 3.1]

mutatis mutandis; key facts are hypotheses (P1) and (P3) of Theorem 4.5 and that
(which follows from [35, Theorem 7.28 (1)])

∑
1≤m≤x

f(m) ∼ Ress=αLf

α
xα.

4.3.2 Inverse Mellin transforms for generating functions

We start this subsection with a lemma on the asymptotic behavior of the function Φf

near z = 0.

Lemma 4.18. Let f : N → N0 satisfy (P2) with R > 0 and (P3). Fix some 0 < δ < π
2 −a.

Then we have, as z → 0 in Cδ,

Φf (z) =
∑

ν∈−PR\{0}
Ress=−ν L

∗
f (s)zν − Lf (0)Log(z) + L′

f (0) +OR

(
|z|R

)
.

For the k-th derivative (k ∈ N), we have

Φ(k)
f (z) =

∑
ν∈−PR\{0}

(ν)k Ress=−ν L
∗
f (s)zν−k + (−1)k(k − 1)!Lf (0)

zk
+OR,k

(
|z|R−k

)
.

Proof. With Jf (s; z) := L∗
f (s)z−s, we obtain, for κ ∈ N0,

2πiΦ(κ)
f (z) = dκ

dzκ

( ∫ −R+i∞

−R−i∞
+ lim

K→∞

(∫
∂R−R,α+1;K

+
∫ −R−iK

α+1−iK
+
∫ α+1+iK

−R+iK

))
Jf (s; z)ds.

(4.18.1)

Here we use (P2), giving that there are no poles of Jf (s; z) on the path of integration.
By Proposition 4.14 (2), [8, Theorem. 2.1 (3)], and (P3), we find a constant c(R, κ) such
that, as |v| → ∞, ∣∣∣L∗

f (−R+ iv)
∣∣∣ ≪R (1 + |v|)c(R,κ)e−( π

2 −a)|v|.
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This yields, with Leibniz’s integral rule and 0 < δ < π
2 − a,∣∣∣∣∣ dκ

dzκ

∫ −R+i∞

−R−i∞
Jf (s; z)ds

∣∣∣∣∣ ≪R,κ |z|R−κ.

For the second integral in (4.18.1), applying the Residue Theorem gives

dκ

dzκ
lim

K→∞

1
2πi

∫
∂R−R,α+1;K

Jf (s; z)ds

=
∑

ν∈−PR\{0}
(ν)κ Ress=−ν L

∗
f (s)zν−κ + dκ

dzκ

(
−Lf (0)Log(z) + L′

f (0)
)
,

since s = 0 is a double pole of Jf (s; z). For the last two integrals in (4.18.1) we have, for
some m(I) ∈ N0, depending on I := [−R,α+ 1],∣∣∣∣∣

∫ α+1±iK

−R±iK
Jf (s; z)ds

∣∣∣∣∣ ≪I (1 + |K|)m(I) max
{

|z|α+1, |z|−R
}
e−(δ−a)|K|,

which vanishes as K → ∞ and thus the claim follows by distinguishing κ = 0
and κ ∈ N.

4.3.3 Approximation of saddle points

We now approximately solve the saddle point equations

−Φ′
f (ϱ) = n = −Φ′

f (ϱn). (4.18.2)

The following proposition provides an asymptotic formula for certain functions.

Proposition 4.19. Let ϕ ∈ H(R) with R > 0, νϕ,1 < 0, and aϕ,1 > 0. Assume
that ϕ(R+) ⊂ R. Then we have the following:

(1) There exists a positive sequence (ϱn)n∈N, such that for all n sufficiently
large, ϕ(ϱn) = n holds.

(2) We have9 ϱ ∈ K(1 − R+1
νϕ,1

), aϱ,1 = a
− 1

νϕ,1
ϕ,1 , and the corresponding exponent set

{νϱ,j : 1 ≤ j ≤ Nϱ} =

− 1
νϕ,1

+
Nϕ∑
j=1

(
1 − νϕ,j

νϕ,1

)
N0

 ∩
(

−∞, 1 − R+ 1
νϕ,1

)
.

In particular, we have ϱn → 0+.

Proof. In the proof we abbreviate νn := νϕ,n and an := aϕ,n.
(1) For n ∈ N, set

ψn(w) := −1 + 1
n
ϕ

((
n

a1

) 1
ν1
w

)
.

As ϕ is holomorphic on the right-half plane by assumption, so are the ψn. Using (4.9.1),
write

ψn(w) = wν1 − 1 + En(w), (4.19.1)
9Recall that we can consider the sequence ϱn as a function on R+.
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where the error satisfies

En(w) = 1
n

Nϕ∑
j=2

aj

(
n

a1

) νj
ν1
wνj +OR

(
n

R
ν1

−1|w|R
)
.

We next show that, for all n sufficiently large, the ψn only have one zero near w = 1. We
argue with Rouché’s Theorem. First, we find that, for n sufficiently large, the inequality

|En(w)| < |1 − wν1 | + |wν1 − 1 + En(w)| = |1 − wν1 | + |ψn(w)| (4.19.2)

holds on the entire boundary of Bκ(ν1)(1), with 0 < κ(ν1) < 1
2 sufficiently small such

that w 7→ 1 − wν1 only has one zero in Bκ(ν1)(1). By Rouché’s Theorem and (4.19.2),
for n sufficiently large ψn also has exactly one zero in Bκ(ν1)(1). We denote this zero
of ψn by wn. It is real as ϕ is real-valued on the positive real line and a holomorphic
function. One can show that ϱn = ( n

a1
)

1
ν1wn > 0 satisfies ϕ(ϱn) = n.

(2) We first give an expansion for wn. By Proposition 4.8, there exists κ > 0, such that
for all n sufficiently large and all z ∈ Bκ(0), the inverse functions ψ−1

n of ψn are defined
and holomorphic in Bκ(1). Using this, we can calculate wn, satisfying ψn(wn) = 0. For
this, let

hn(w) := ψn(w + 1) − ψn(1).

We have hn(0) = 0, and we find, with Theorem 4.7,

wn − 1 = h−1
n (−ψn(1)) =

∑
m≥1

(−1)mbm(n)ψn(1)m,

where the bm can be explicitly calculated. First, ψn(1)m (m ∈ N0) have expansions in n
by (4.19.1) and Lemma 4.11. They have exponent set

∑
2≤j≤Nϕ

(1 − νj

ν1
)N0 ∩ [0, 1 − R

ν1
).

We find, for k ∈ N,

ψ(k)
n (1) = 1

n

Nϕ∑
j=1

(νj)kaj

(
n

a1

) νj
ν1 +OR

(
n

R
ν1

−1
)
. (4.19.3)

Again by Lemma 4.11, and (4.19.3), ψ(k)
n (1) (k ∈ N0) has expansions in n, with exponent

set (
∑

2≤j≤Nϕ
(1 − νj

ν1
)N0) ∩ [0, 1 − R

ν1
). By Lemma 4.11 we have the following expansion

in n

ψ′
n(1)−m =

ν1 + 1
n

Nϕ∑
j=2

νjaj

(
n

a1

) νj
ν1 +OR

(
n

R
ν1

−1
)−m

with exponent set (
∑

2≤j≤Nϕ
(1 − νj

ν1
)N0) ∩ [0, 1 − R

ν1
). By the formula in Theorem 4.7,

the bm(n) are essentially sums and products of terms ψ′
n(1)−1 and ψ(k)

n (1), where k ≥ 2.
Hence, bm(n) has an expansion in n, with exponent set (

∑
2≤j≤Nϕ

(1− νj

ν1
)N0)∩ [0, 1− R

ν1
),

and according to Proposition 4.10, the same holds for finite linear
combinations

∑
1≤m≤M (−1)mbm(n)ψn(1)m. As ψn(1) = O(n

ν2
ν1

−1) for n → ∞, one has,
for M sufficiently large and not depending on n,

∑
m≥M+1

(−1)mbm(n)ψn(1)m = OR

(
n

R
ν1

−1
)
.

Now, as wn ∼ 1, we conclude the theorem recalling that ϱn = ( n
a1

)
1

ν1wn.
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We next apply Theorem 4.19 to −Φ′
f . For the proof one may use Corollary 4.18

with k = 1.

Corollary 4.20. Let ϱn solve (4.18.2). Assume that f : N → N0 satisfies the conditions
of Theorem 4.5. Then ϱ ∈ K( R

α+1 + 1) with aϱ,1 = a
1

α+1
−Φ′

f
,1 = (ωαΓ(α + 1)ζ(α + 1))

1
α+1

and we have

{νϱ,j : 1 ≤ j ≤ Nϱ} =

 1
α+ 1 −

∑
µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
[ 1
α+ 1 ,

R

α+ 1 + 1
)
.

4.3.4 The major arcs

In this subsection we approximate, for some 1 + α
3 < β < 1 + α

2 ,

In :=
∫

|t|≤ϱβ
n

exp(Φf (ϱn + it) + int)dt,

where α is the largest positive pole of Lf . The following lemma can be shown us-
ing [17, §4].

Lemma 4.21. Let f : N → N0 satisfy the conditions of Theorem 4.5, ϱn solve (4.18.2),
and N ∈ N. Then we have

In =
√

2πGf (ϱn)

 1√
Φ′′

f (ϱn)
+

∑
2≤k≤ 3H(N+α)

2α

(2k)!λ2k(ϱn)
2kk!Φ′′

f (ϱn)k+ 1
2

+ON

(
ϱN

n

) ,
where H := ⌈ N

3(β−1− α
3 )⌉ + 1 and

λ2k(ϱ) := (−1)k
H∑

h=1

1
h!

∑
3≤m1,...,mh≤ 3(N+α)

α
m1+···+mh=2k

h∏
j=1

Φ(mj)
f (ϱ)
mj ! .

The following lemma shows that the first term in Lemma 4.21 dominates the others;
its proof follows with Lemma 4.12, Corollary 4.18, and Corollary 4.20 by a straightforward
calculation.

Lemma 4.22. Let k ≥ 2 and assume the conditions as in Lemma 4.21. Then we have

λ2k(ϱn)
Φ′′

f (ϱn)k+ 1
2

=
M∑

j=1

bj

nηj
+OR

(
n−R+1+(k−⌊ 2k

3 ⌋+ 3
2 ) α

α+1
)
,

where the ηj run through

α+ 2
2(α+ 1) + α

α+ 1N0 +

−
∑

µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
[
0, R+ α

α+ 1

)
.

We next use Lemma 4.12 and Corollary 4.20 to give an asymptotic expansion forGf (ϱn).



4.3. Minor and major arcs 137

Lemma 4.23. Assume that f : N → N0 satisfies the conditions of Theorem 4.5. Then,
we have

Gf (ϱn) = eL′
f (0)n

Lf (0)
α+1

a
Lf (0)
α+1

−Φ′
f

,1

exp

 1
α

(ωαΓ(α+ 1)ζ(α+ 1))
1

α+1n
α

α+1 +
M∑

j=2
Cjn

βj



×

1 +
N∑

j=1

Bj

nδj
+OR

(
n− R

α+1
) ,

where 0 ≤ βM < · · · < β2 <
α

α+1 run through L and 0 < δ1 < δ2 < · · · < δN

through M + N .

Proof. Let ϕ(z) := Φf (z)+Lf (0)Log(z) and F := ϕ◦ϱ. By Lemma 4.18, Proposition 4.19,
and Lemma 4.12 we find that

Φf (ϱn) + Lf (0) log(ϱn) = L′
f (0) +

NF∑
j=1

aF,j

nνF,j
+OR

(
n− R

α+1
)
, (4.23.1)

where νF,j run through (the inclusion follows by Corollary 4.20)− 1
α+ 1PR +

Nϱ∑
j=2

(
νϱ,j − 1

α+ 1

)
N0

 ∩
(

−∞,
R

α+ 1

)

⊂

− 1
α+ 1PR −

∑
µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
(

−∞,
R

α+ 1

)
. (4.23.2)

Note that, again by Lemma 4.12 and Corollary 4.18, we obtain

aF,1 = aϕ,1a
νϕ,1
ϱ,1 = 1

α
(ωαΓ(α+ 1)ζ(α+ 1))

1
α+1 .

We split the sum in (4.23.1) into two parts: one with nonpositive νF,1, . . . , νF,M , say,
and the one with positive νF,j <

R
α+1 . Note that M is bounded and independent of R.

Exponentiating (4.23.1) yields

exp(Φf (ϱn)) = ϱ
−Lf (0)
n eL′

f (0) exp

 NF∑
j=M+1

aF,j

nνF,j
+OR

(
n− R

α+1
) exp

 M∑
j=1

aF,j

nνF,j

 .
Note that the positive νF,j run through (4.23.2) with −∞ replaced by 0. By Lemma 4.11,
we have

exp

 NF∑
j=M+1

aF,j

nνF,j
+OR

(
n− R

α+1
) = 1 +

K∑
j=1

Hj

nεj
+OR

(
n− R

α+1
)

for some K ∈ N and with exponents εj running through N . Recall that, by Corol-

lary 4.20, we have ϱn ∼ aϱ,1n
− 1

α+1 . Now set h(n) := n−
Lf (0)
α+1 ϱ

−Lf (0)
n .

A straightforward calculation using Corollary 4.20 shows that h ∈ K(R+α
α+1 ) with exponent

set (−
∑

µ∈PR
( µ+1

α+1 − 1)N0) ∩ [0, R+α
α+1 ) ⊂ M and ah,1 = a

−
Lf (0)
α+1

−Φ′
f

,1 . By Proposition 4.10 (2),
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we obtain, for some N ∈ N, Bj ∈ C, and δj running through M + N ,

h(n)

1 +
K∑

j=1

Hj

nεj
+OR

(
n− R

α+1
) = ah,1

1 +
N∑

j=1

Bj

nδj
+OR

(
n− R

α+1
) .

Setting Cj := aF,j for 1 ≤ j ≤ M , the lemma follows.

Another important step for the proof of our main theorem is the following lemma.

Lemma 4.24. Let f : N → N0 satisfy the conditions of Theorem 4.5. Then we have,
as n → ∞,

enϱn = exp

(ωαΓ(α+ 1)ζ(α+ 1))
1

α+1n
α

α+1 +
M∑

j=2
aϱ,jn

ηj

1 +
N∑

j=1

Dj

nµj
+OR

(
n− R

α+1
)

for some 1 ≤ M ≤ Nϱ, with α
α+1 > η2 > · · · > ηM ≥ 0 running through L and the µj

through N .

Proof. Let g(n) := nϱn. By Corollary 4.20 we have g ∈ K( R
α+1) with exponent set

{νg,j : 1 ≤ j ≤ Nϱ} =

−1 + 1
α+ 1 −

∑
µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
[
−1 + 1

α+ 1 ,
R

α+ 1

)
.

Hence, for some 1 ≤ M ≤ Nϱ, we obtain

enϱn = exp

a 1
α+1
−Φ′

f
,1n

α
α+1 +

M∑
j=2

aϱ,j

nνg,j

 exp

 Nϱ∑
j=M+1

aϱ,j

nνg,j
+OR

(
n− R

α+1
)

with − α
α+1 < νg,2 < · · · < νg,M ≤ 0 < νg,M+1 < · · · < νg,Nϱ . By Lemma 4.18 we

obtain a
1

α+1
−Φ′

f
,1 = (ωαΓ(α+ 1)ζ(α+ 1))

1
α+1 .

Note that the exponents 0 < νg,M+1 < · · · < νg,Nϱ run through− α

α+ 1 −
∑

µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
(

0, R

α+ 1

)
.

By Lemma 4.11, exp(
∑Nϱ

j=M+1
aϱ,j

nνg,j +OR(n− R
α+1 )) is in K( R

α+1), with exponent set
K∑

j=1
bjθj : K, bj ∈ N0, θj ∈

− α

α+ 1 −
∑

µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
(

0, R

α+ 1

) .
As α ∈ PR, this is a subset of N , so the above exponents are given by N , proving the
lemma.

The following corollary is very helpful to prove our main theorem.

Corollary 4.25. Let f : N → N0 satisfy the conditions of Theorem 4.5. Then we have

enϱnGf (ϱn) = eL′
f (0)n

Lf (0)
α+1

a
Lf (0)
α+1

−Φ′
f

,1

exp

A1n
α

α+1 +
M∑

j=2
Ajn

αj

1 +
N∑

j=1

Ej

nηj
+OR

(
n− R

α+1
) ,
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with A1 defined in (4.6.4), α
α+1 > α2 > · · · > αM ≥ 0 running through L, and ηj

through M + N .

4.4 Proof of Theorem 4.5

4.4.1 The general case

The following lemma follows by a straightforward calculation, using (4.16.1) and Lem-
mas 4.17, 4.21, and 4.22.

Lemma 4.26. Let f : N → N0 satisfy the conditions of Theorem 4.5. Then we have

pf (n) = enϱnGf (ϱn)√
2π

 M∑
j=1

dj

nνj
+OL,R

(
n

− min
{

L+1
α+1 , R+α

α+1 + α+2
2(α+1)

})
for some M ∈ N, d1 = 1√

α+1(ωαΓ(α+ 1)ζ(α+ 1))
1

2(α+1) , and the νj run through

α+ 2
2(α+ 1) + α

α+ 1N0 +

−
∑

µ∈PR

(
µ+ 1
α+ 1 − 1

)
N0

 ∩
[
0, R+ α

α+ 1

)
.

In particular, we have ν1 = α+2
2(α+1) .

We prove the following lemma.

Lemma 4.27. Assume that f satisfies the conditions of Theorem 4.5 and that Lf has
only one positive pole α. Then we have

nϱn + Φf (ϱn) = (ωαΓ(α+ 1)ζ(α+ 1))
1

α+1
(
1 + 1

α

)
n

α
α+1 − Lf (0) log(ϱn) + L′

f (0) + o(1).

Proof. By Lemma 4.18, we have

Φf (ϱn) = ωαΓ(α)ζ(α+ 1)
ϱα

n

− Lf (0) log(ϱn) + L′
f (0) +O

(
ϱR0

n

)
, (4.27.1)

where

R0 :=

 − max ν
ν∈PR∩(−R,0)

if PR ∩ (−R, 0) ̸= ∅,

R otherwise.
(4.27.2)

To show the lemma, we need an expansion for ϱn. We have, by (4.18.2) and again by
Corollary 4.18,

−Φ′
f (ϱn) = ωαΓ(α+ 1)ζ(α+ 1)

ϱα+1
n

+ Lf (0)
ϱn

+O
(
ϱR0−1

n

)
.

By Corollary 4.20, we have an expansion for ϱn with an error o(1). We iteratively find
the first terms. By Corollary 4.20 we have ϱn ∼ a

1
α+1
−Φ′

f
,1n

− 1
α+1 , as n → ∞. We next

determine the second order term in ϱn =
a

1
α+1
−Φ′

f
,1

n
1

α+1
+ K2

nκ2 + o(n−κ2) for some κ2 < 1
α+1
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and K2 ∈ C. We choose κ in

n

1 + K2

a
1

α+1
−Φ′

f
,1n

κ2− 1
α+1


−α−1

+ Lf (0)

a
1

α+1
−Φ′

f
,1

n
1

α+1

1 + K2

a
1

α+1
−Φ′

f
,1n

κ2− 1
α+1


−1

= n+O(nκ)

as small as possible. One finds that

(α+ 1)K2

a
1

α+1
−Φ′

f
,1

n1−κ2+ 1
α+1 = Lf (0)

a
1

α+1
−Φ′

f
,1

n
1

α+1 ,

and hence

ϱn =
a

1
α+1
−Φ′

f
,1

n
1

α+1
+ Lf (0)

(α+ 1)n + o

( 1
n

)
. (4.27.3)

Plugging (4.27.3) into Φf leads, by (4.27.1), to

Φf

a
1

α+1
−Φ′

f
,1

n
1

α+1
+ Lf (0)

(α+ 1)n + o

( 1
n

) =
a

1
α+1
−Φ′

f
,1

α
n

α
α+1 −Lf (0)

α+ 1 −Lf (0) log(ϱn)+L′
f (0)+o(1).

As a result, using (4.27.3), we conclude the claim.

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. Corollaries 4.20 and 4.25 with Lemmas 4.26 and 4.27 give the
asymptotic for pf (n). We use Lemma 4.23 to calculate the exponents and (4.6.4) as
well as (4.6.5) for the constants. Throughout we use Lemma 4.10 (2) to deal with the
expansions of products of functions.

4.4.2 The case of two positive poles of Lf

If α > 0 is the only positive pole of Lf , then we can calculate the single term in the
exponential in the asymptotic of pf (n) explicitly, by Theorem 4.5. In this subsection we
assume that Lf has exactly two positive simple poles, α and β. In this case, Corollary 4.18
with k = 1 gives

−Φ′
f (z) = c1

zα+1 + c2
zβ+1 + c3

z
+OR

(
|z|R0−1

)
with R0 from (4.27.2). Above we set cj := a−Φ′

f
,j for 1 ≤ j ≤ 3, i.e., by Lemma 4.18

c1 = ωαΓ(α+ 1)ζ(α+ 1), c2 = ωβΓ(β + 1)ζ(β + 1), c3 = Lf (0). (4.27.4)

In the next lemma, we approximate the saddle point in this special situation.

Lemma 4.28. Let f satisfy the conditions of Theorem 4.5. Additionally assume that Lf

has exactly two positive poles α and β that satisfy ℓ+1
ℓ β < α ≤ ℓ

ℓ−1β for some ℓ ∈ N,
where we treat the case ℓ = 1 simply as 2β < α. Then there exists 0 < r ≤ R

α+1 such that

ϱn =
ℓ+1∑
j=1

Kj

n(j−1)(1− β+1
α+1 )+ 1

α+1
+ c3

(α+ 1)n +OR

(
n−r−1

)
(4.28.1)
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for some constants Kj independent of n and c3 as in (4.27.4). In particular, we have

K1 = c
1

α+1
1 , K2 = c2

(α+ 1)c
β

α+1
1

, K3 = c2
2(α− 2β)

2(α+ 1)2c
2β+1
α+1

1

,

K4 = c3
2
(
2α2 − 9αβ − 2α+ 9β2 + 3β

)
6(α+ 1)3c

3β+2
α+1

1

,

K5 = c4
2(6α3 − 44α2β − 15α2 + 96αβ2 + 56αβ + 6α− 64β3 − 48β2 − 8β)

24(α+ 1)4c
4β+3
α+1

1

.

Proof. By Corollary 4.20, the exponents of ϱn that are at most 1 are given by combina-
tions

1
α+ 1 + (j − 1)

(
1 − β + 1

α+ 1

)
+m

(
1 − 1

α+ 1

)
≤ 1,

with j ∈ N and m ∈ N0. A straightforward calculation shows that ℓ+1
ℓ β < α ≤ ℓ

ℓ−1β if
and only if

0 < 1
α+ 1 + (j − 1)

(
1 − β + 1

α+ 1

)
≤ 1

for all 1 ≤ j ≤ ℓ + 1 but not for j > ℓ + 1. Together with the error term induced by
Corollary 4.20, (4.28.1) follows. Assuming ℓ ≥ 5, K1–K5 and the term c3

(α+1)n can be
determined iteratively.

We are now ready to prove asymptotic formulas if Lf has exactly two positive poles.

Theorem 4.29. Assume that f : N → N0 satisfies the conditions of Theorem 4.5 and
that Lf has exactly two positive poles α > β, such that ℓ+1

ℓ β < α ≤ ℓ
ℓ−1β for some ℓ ∈ N.

Then we have

pf (n) = C

nb
exp

(
A1n

α
α+1 +A2n

β
α+1 +

ℓ+1∑
k=3

Akn
(k−1)β

α+1 + k−2
α+1 +2−k

)

×

1 +
M1∑
j=2

Bj

nνj
+OL,R

(
n

− min
{

2L−α
2(α+1) , R

α+1

}) , (n → ∞),

with

A1 := (ωαΓ(α+1)ζ(α+1))
1

α+1

(
1 + 1

α

)
, A2 := ωβΓ(β)ζ(β + 1)

(ωαΓ(α+ 1)ζ(α+ 1))
β

α+1
, (4.29.1)

and for all k ≥ 3

Ak := Kk + c
1

α+1
1
α

ℓ∑
m=1

(
−α
m

) ∑
0≤j1,...,jℓ≤m
j1+...+jℓ=m

j1+2j2+...+ℓjℓ=k−1

(
m

j1, j2, . . . , jℓ

)
Kj1

2 · · ·Kjℓ
ℓ+1

c
m

a+1
1

+ c2

βc
β

a+1
1

ℓ∑
m=1

(
−β
m

) ∑
0≤j1,...,jℓ≤m
j1+...+jℓ=m

j1+2j2+...+ℓjℓ=k−2

(
m

j1, j2, . . . , jℓ

)
Kj1

2 · · ·Kjℓ
ℓ+1

c
m

a+1
1

.

Here, C and b are defined in (4.6.4) and (4.6.5), the νj run through M + N , the Kj are
given in Lemma 4.28, and c1, c2, and c3 run through (4.27.4).
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Proof. Assume that g : N → C has an asymptotic expansion as n → ∞ and denote
by [g(n)]∗ the part with nonnegative exponents. With Lemmas 4.18 and 4.26 we obtain,
using that Lf has exactly two positive poles in α and β,

pf (n) = C

nb
exp

([
nϱn + c1

αϱα
n

+ c2

βϱβ
n

]
∗

)1 +
M1∑
j=2

aj

nδj
+OL,R

(
n

− min
{

2L−α
2(α+1) , R

α+1

})
with the δj running through M. With the Binomial Theorem and Lemma 4.28, we find

c1
αϱα

n

= c
1

α+1
1
α

n
α

α+1

1 +
∑
m≥1

(
−α
m

)ℓ+1∑
j=2

Kjc
− 1

α+1
1

n(j−1)(1− β+1
α+1 ) + c3c

− 1
α+1

1

(α+ 1)n
α

α+1
+ o

(
n− α

α+1
)m  .
(4.29.2)

By definition, [ c1
αϱα

n
]∗ is the part of the expansion of c1

αϱα
n

involving nonnegative powers
of n, i.e., for m ≥ 2 in the sum on the right of (4.29.2) we can ignore the term

c3

(α+ 1)c
1

α+1
1 n

α
α+1

+ o
(
n− α

α+1
)
.

Applying the Multinomial Theorem to (4.29.2) gives

c1
αϱα

n

= c
1

α+1
1
α

n
α

α+1 − c3
α+ 1 + c

1
α+1
1
α

ℓ∑
m=1

(
−α
m

) ∑
0≤j1,j2,...,jℓ≤m

j1+···+jℓ=m

(
m

j1, j2, . . . , jℓ

)
Kj1

2 · · ·Kjℓ
ℓ+1

c
m

a+1
1

× n
(j1+2j2+···+ℓjℓ)β

α+1 + j1+2j2+···+ℓjℓ−1
α+1 −(j1+2j2+···+ℓjℓ−1) + o(1). (4.29.3)

Similarly, we have

c2

βϱβ
n

= c2

βc
β

a+1
1

n
β

α+1 + c2

βc
β

a+1
1

ℓ∑
m=1

(
−β
m

) ∑
0≤j1,j2,...,jℓ≤m

j1+···+jℓ=m

(
m

j1, j2, . . . , jℓ

)
Kj1

2 · · ·Kjℓ
ℓ+1

c
m

a+1
1

× n
(j1+2j2+···+ℓjℓ+1)β

α+1 + j1+2j2+···+ℓjℓ
α+1 −(j1+2j2+···+ℓjℓ) + o(1). (4.29.4)

Finally, we obtain, with Lemma 4.28,

[nϱn]∗ = K1n
α

α+1 +
ℓ∑

m=1
Km+1n

mβ
α+1 + m−1

α+1 −(m−1) + c3
α+ 1 . (4.29.5)

Combining (4.29.3), (4.29.4), and (4.29.5), we find that[
nϱn + c1

αϱα
n

+ c2

βϱβ
n

]
∗

=
(

1 + 1
α

)
c

1
α+1
1 n

α
α+1 + c2

βc
β

α+1
1

n
β

α+1 +
ℓ∑

k=2
Ak+1n

kβ
α+1 + k−1

α+1 −(k−1),

where

Ak = Kk + c
1

α+1
1
α

ℓ∑
m=1

(
−α
m

) ∑
0≤j1,j2,...,jℓ≤m

j1+···+jℓ=m
j1+2j2+···+ℓjℓ=k−1

(
m

j1, j2, . . . , jℓ

)
Kj1

2 · · ·Kjℓ
ℓ+1

c
m

a+1
1
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+ c2

βc
β

a+1
1

ℓ∑
m=1

(
−β
m

) ∑
0≤j1,j2,...,jℓ≤m

j1+···+jℓ=m
j1+2j2+···+ℓjℓ=k−2

(
m

j1, j2, . . . , jℓ

)
Kj1

2 · · ·Kjℓ
ℓ+1

c
m

a+1
1

.

Note that we have by definition of c1, c2 (see (4.27.4)), K1, and K2 (see Lemma 4.28),

A1 =
(

1 + 1
α

)
c

1
α+1
1 =

(
1 + 1

α

)
(ωαΓ(α+ 1)ζ(α+ 1))

1
α+1 ,

A2 = c2

βc
β

a+1
1

= ωβΓ(β)ζ(β + 1)

(ωαΓ(α+ 1)ζ(α+ 1))
β

α+1
,

which gives (4.29.1). Hence we indeed obtain, as n → ∞, for suitable M1 ∈ N

pf (n) = C

nb
exp

(
A1n

α
α+1 +A2n

β
α+1 +

ℓ+1∑
k=3

Akn
(k−1)β

α+1 + k−2
α+1 −(k−2)

)

×

1 +
M1∑
j=2

Bj

nνj
+OL,R

(
n

− min
{

2L−α
2(α+1) , R

α+1

}) ,
where the νj run, as in Theorem 4.5, through M + N . This proves the theorem.

4.5 Proofs of Theorems 4.1, 4.3, and 4.4
We require the zeta function associated to a polynomial P ,

ZP (s) :=
∑
n≥1

1
P (n)s

with P (n) > 0 for n ∈ N. In particular, we consider P = Pk (see (4.0.4)). The following
lemma ensures that all the Pk satisfy (P1) with L arbitrary large.

Lemma 4.30. Let k ≥ 3 be an integer and let

Λ[k] := {Pk(n) : n ∈ N} .

For every prime p, we have |Λ[k] \ (Λ[k] ∩ pN)| = ∞.

We next show that (P2) and (P3) hold.

Proposition 4.31. Let k ∈ N with k ≥ 3.

(1) The function ZPk
has a meromorphic continuation to C with at most simple poles

in 1
2 − N0. The positive pole lies in s = 1

2 .

(2) We have ZPk
(s) ≪ Qk(| Im(s)|) as | Im(s)| → ∞ for some polynomial Qk.

Proof. (1) The meromorphic continuation of ZPk
to C follows by [29, Theorem B].

By [29, Theorem A (ii)] the only possible poles (of order at most one) are located
at 1

2 − 1
2N0. Holomorphicity in −N0 is a direct consequence of [29, Theorem C]. Fi-

nally, note that Pk(n) ≪k n
2. Thus, as x → ∞,

∑
1≤n≤x

1
Pk(n)

1
2

≫k

∑
1≤n≤x

1
n
.
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This proves the existence of a pole in s = 1
2 , completing the proof.

(2) This result follows directly by [29, Proposition 1 (iii)].

To apply Theorem 4.5, it remains to compute ZPk
(0) and Z ′

Pk
(0), as well as Ress= 1

2
ZPk

(s).

Proposition 4.32. Let k ∈ N with k ≥ 3.

(1) We have ZPk
(0) = 1

2−k and

Z ′
Pk

(0) =
log

(
k−2

2

)
k − 2 + log

(
Γ
( 2
k − 2

))
− log(2π).

(2) We have Ress= 1
2
ZPk

(s) =
√

1
2(k−2) .

Proof. (1) Since the roots of Pk are not in R≥1, we may use [29, Theorem D] to obtain
that ZPk

(0) = 1
2−k . For the derivative, one applies [29, Theorem E] yielding

Z ′
Pk

(0) =
log

(
k−2

2

)
k − 2 + log

(
Γ
( 2
k − 2

))
− log(2π).

(2) Since ZPk
(s) = ( 2

k−2)s ∑
n≥1

(n− k−4
k−2)−sn−s, the result follows as the sum has residue 1

2

at s = 1
2 by equation (16) of [29].

The previous three lemmas are used to prove Theorem 4.1.

Proof of Theorem 4.1. We may apply Theorem 4.5 as Lemma 4.30 and Lemma 4.31 en-
sure that conditions (P1)–(P3) are satisfied. Hence, one obtains an asymptotic formula
for pk(n). The constants occurring in Theorem 4.5 are computed using (4.6.4), (4.6.5),
and Lemma 4.32. That the exponential consists only of the term A1n

1
3 follows by The-

orem 4.5, since ZPk
(s) has exactly one positive pole, lying in s = 1

2 . Note that we are
allowed to choose L and R arbitrarily large due to Lemma 4.30 and Lemma 4.31 (1).

We consider some special cases of Theorem 4.1.

Corollary 4.33. For triangular numbers, squares, and pentagonal numbers, respectively,
we have

p3(n) ∼
ζ
(

3
2

)
2

7
2
√

3πn
3
2

exp
(

3
2π

1
3 ζ

(3
2

) 2
3
n

1
3

)
, p4(n) ∼

ζ
(

3
2

) 2
3

2
7
3
√

3π
7
6n

7
6

exp
(

3
2

4
3
π

1
3 ζ

(3
2

) 2
3
n

1
3

)
,

p5(n) ∼
Γ
(

2
3

)
ζ
(

3
2

) 5
9

2
13
6 3

4
9π

11
9 n

19
18

exp
(

3
2
3

2 π
1
3 ζ

(3
2

) 2
3
n

1
3

)
.

The next lemma shows that
∏

j,k≥1(1 − q
jk(j+k)(j+2k)

6 )−1 satisfies (P1) for L arbitrarily
large.

Lemma 4.34. Let f : N → N0 be defined by

f(n) :=
∣∣∣∣{(j, k) ∈ N2 : jk(j + k)(j + 2k)

6 = n

}∣∣∣∣ .
Then, for all primes p, we have |Λ \ (Λ ∩ pN)| = ∞.
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For investigating the function ζso(5), we need the Mordell–Tornheim zeta function,
defined by

ζMT,2(s1, s2, s3) :=
∑

m,n≥1
m−s1n−s2(m+ n)−s3 .

By [27], for Re(s) > 1 and some − Re(s) < c < 0 we get a relation between ζMT,2
and ζso(5) via

ζso(5)(s) = 6s

2πiΓ(s)

∫ c+i∞

c−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz. (4.34.1)

We have the following theorem.

Theorem 4.35 ([26, Theorem 1]). The function ζMT,2 has a meromorphic continuation
to C3 and its singularities satisfy s1 + s3 = 1 − ℓ, s2 + s3 = 1 − ℓ, s1 + s2 + s3 = 2,
with ℓ ∈ N0.

Fix M ∈ N0 and 0 < ε < 1. Let Re(s1),Re(s3) > 1, Re(s2) > 0, and s2 /∈ N. Then,
for Re(s2) < M + 1 − ε, we have (see equation (5.3) in [26])

ζMT,2(s1, s2, s3)

=Γ(s2 + s3 − 1)Γ(1 − s2)
Γ(s3) ζ(s1 + s2 + s3 − 1)

+
M−1∑
m=0

(
−s3
m

)
ζ(s1 + s3 +m)ζ(s2 −m)

+ 1
2πi

∫ M−ε+i∞

M−ε−i∞

Γ(s3 + w)Γ(−w)
Γ(s3) ζ(s1 + s3 + w)ζ(s2 − w)dw. (4.35.1)

The first two summands on the right-hand side of (4.35.1) extend meromorphically
to C3, so to show that (4.34.1) extends meromorphically, we consider (4.35.1). Note
that Re(w) = M − ε. To avoid poles on the line of integration, we assume that

Re(s3 + w) > 0 ⇔ Re(s3) > ε−M, (4.35.2)
Re(s1 + s3 + w) > 1 ⇔ Re(s1) + Re(s3) > 1 −M + ε, (4.35.3)

Re(s2 − w) < 1 ⇔ Re(s2) < 1 +M − ε. (4.35.4)

Note that the final condition is already assumed above.
By Propostition 2.6 (2), the integral converges compactly and the integrands are

locally holomorphic. Thus, the integral is a holomorphic function in the region defined
by (4.35.2), (4.35.3), and (4.35.4).
Recalling (4.34.1), we are interested in ζMT,2(s, s − z, 2s + z). By Theorem 4.35, this
function is meromorphic in C2 and holomorphic outside the hyperplanes defined
by 3s+ z = 1 − ℓ, 3s = 1 − ℓ, and 4s = 2, where ℓ ∈ N0. With (4.35.1), we obtain

ζMT,2(s, s− z, 2s+ z) = Γ(3s− 1)Γ(z + 1 − s)
Γ(2s+ z) ζ(4s− 1)

+
M−1∑
m=0

(
−2s− z

m

)
ζ(3s+ z +m)ζ(s− z −m) + IM (s; z), (4.35.5)
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where s ∈ C \ {1
2 ,

1−ℓ
3 }, and

IM (s; z) := 1
2πi

∫ M−ε+i∞

M−ε−i∞

Γ(2s+ z + w)Γ(−w)
Γ(2s+ z) ζ(3s+ z + w)ζ(s− z − w)dw.

The following lemma shows that IM (s; z) is holomorphic in z. To state it let

µ = µM,σ := max{−1 + σ −M + ε, 1 − 3σ −M + ε,−2σ −M + ε}.

Lemma 4.36. Let s = σ + it ∈ C, M ∈ N0, and 0 < ε < 1. Then z 7→ IM (s; z) is
holomorphic in Sµ,∞.

Proof. If z ∈ Sµ,∞, then Re(2s+ z+w) > 0, Re(3s+ z+w) > 1, and Re(s− z−w) < 1
for w ∈ C satisfying Re(w) = M−ε, so Γ(2s+z+w), ζ(3s+z+w), and ζ(s−z−w) have
no poles on the path of integration. As 0 < ε < 1, we have M − ε /∈ N0, so w 7→ Γ(−w)
has no pole if Re(w) = M − ε. As a result, no pole is located on the path of integration,
and by Proposition 4.13 (2) and the uniform polynomial growth of the zeta function
along vertical strips we find that the integral converges uniformly on compact subsets
of Sµ,∞.

The next lemma shows, that IM is bounded polynomially in certain vertical strips.
A proof is obtained using Propositions 4.13 (2) and 4.14 (2).

Lemma 4.37. Let σ1 < σ2 and σ3 < σ4, such that Sσ3,σ4 ⊂ Sµ,∞ for all s ∈ Sσ1,σ2

and fix 0 < ε < 1 sufficiently small. In Sσ1,σ2 × Sσ3,σ4 the function (s, z) 7→ IM (s; z) is
holomorphic and satisfies |IM (s; z)| ≤ Pσ1,σ2,σ3,σ4,M (| Im(s)|, | Im(z)|) for some polyno-
mial Pσ1,σ2,σ3,σ4,M (X,Y ) ∈ R[X,Y ].

Next we investigate ζMT,2(s, s− z, 2s+ z) for fixed s more in detail.

Lemma 4.38. Let s ∈ C\ {1
2 ,

1
3 − 1

3N0}. Then z 7→ ζMT,2(s, s− z, 2s+ z) is holomorphic
in the entire complex plane except for possibly simple poles in z = 1 − ℓ− 3s with ℓ ∈ N0.

Proof. As holomorphicity is a local property, it suffices to consider arbitrary right half-
planes. By Lemma 4.36, for M sufficiently large, IM is holomorphic in an arbitrary right
half-plane. By (4.35.1), possible poles of ζMT,2(s, s− z, 2s+ z) therefore lie in z = s− ℓ
and in z = −3s−m− ℓ, ℓ ∈ N. A direct calculation shows that the residue at z = s− ℓ
vanishes if ℓ ≤ M − 1. Consequently, for a fixed pole s− ℓ, we can choose M sufficiently
large such that we only have to consider the of (4.35.1). This gives the claim.

We are now ready to prove growth properties of ζMT,2. As we need to avoid critical
singular points, we focus on incomplete half-planes of the type Sσ1,σ2,δ (with δ > 0
arbitrarily small).

Lemma 4.39. Let σ1 < σ2, σ3 < σ4 with 1 − 3σ1 < σ3 and δ > 0 arbitrarily small.
For (s, z) ∈ Sσ1,σ2,δ × Sσ3,σ4, we have, for some polynomial Pσ1,σ2,σ3,σ4,δ only depending
on Sσ1,σ2,δ and Sσ3,σ4,

|ζMT,2(s, s− z, 2s+ z)| ≤ Pσ1,σ2,σ3,σ4,δ(| Im(s)|, | Im(z)|).

If σ1 < 0, for all s ∈ U with U ⊂ Sσ1,σ2, a sufficiently small neighborhood of 0, we have∣∣∣∣ζMT,2(s, s− z, 2s+ z)
Γ(s)

∣∣∣∣ ≤ Pσ3,σ4,U (| Im(z)|),

where the polynomial Pσ3,σ4,U only depends on σ3, σ4, and U .
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We need another lemma dealing with the poles of the Mordell–Tornheim zeta function.

Lemma 4.40. Let k ∈ N0. Then the meromorphic function s 7→ ζMT,2(s, s− k, 2s+ k)
is holomorphic for s = −ℓ with ℓ ∈ N≥ k

2
and has possible simple poles at s = ℓ ∈ N0

with 0 ≤ ℓ < k
2 . In particular, s 7→ Γ(s+ k)ζMT,2(s, s− k, 2s+ k)Γ(s)−1 is holomorphic

at s = −ℓ with ℓ ∈ N0.

Proof. Let s lie in a bounded neighborhood of −ℓ. We use (4.35.5) with s = k. Analogous
to the proof of Lemma 4.36, the function s 7→ IM (s; k) is holomorphic in a neighborhood
of s = −ℓ. The analysis of the remaining terms is straightforward, and the lemma
follows.

The next lemma states where the integral of (4.34.1) defining ζso(5) is a meromorphic
function.

Lemma 4.41. Let ε > 0 be sufficiently small and let K ∈ N. Then the function

s 7→ 1
2πiΓ(s)

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz (4.41.1)

is meromorphic on the half plane {s ∈ C : Re(s) > 1−K+ε
3 } with at most simple poles

in {1
2 ,

1
3 − 1

3N0} \ (−N0) (with Re(s) > 1−K+ε
3 ) and grows polynomially on vertical strips

with finite width.

Proof. We first show holomorphicity in Sσ1,σ2,δ with 1−K+ε
3 < σ1 < σ2 and 0 < δ < 1.

Since Re(s) > 1−K+ε
3 > −K + ε, there are no poles of Γ(s + z)Γ(−z) on the path of

integration Re(z) = K − ε. By Lemma 4.38, z 7→ ζMT,2(s, s − z, 2s + z) has no poles
for s ∈ Sσ1,σ2,δ, as Re(z + 3s − 1) = K − ε + 3 Re(s) − 1 > 0. By Proposition 4.13 (2),
Lemma 4.39, and Lemma 4.16, the integral is holomorphic away from singularities and
grows polynomially on vertical strips of finite width.

We are left to show that (4.41.1) has at most a simple pole at s = s0,
where s0 ∈ {1

2 ,
1
3 − 1

3N0} \ (−N0) with s0 ≥ 1−K+ε
3 . Recall the representation of ζMT,2

in (4.35.5). By Lemma 4.37∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)IM (s; z)dz

converges absolutely and uniformly on any sufficiently small compact subset C contain-
ing s0 for M sufficiently large. Similarly, by Propositions 4.14 (2) and 4.13 (2),

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)

M−1∑
m=0

(
−2s− z

m

)
ζ(3s+ z +m)ζ(s− z −m)dz

converges absolutely and uniformly in C. In particular, both integrals continue holomor-
phically to s0. As s 7→ 1

Γ(s) is entire, it is sufficient to study

Γ(3s− 1)ζ(4s− 1)
Γ(s)

∫ K−ε+i∞

K−ε−i∞

Γ(s+ z)Γ(−z)Γ(1 + z − s)
Γ(2s+ z) dz

around s0. Again, by Proposition 4.13 (2), the integral converges absolutely and uni-
formly in C. As Γ(3s−1)ζ(4s−1)

Γ(s) has at most a simple pole in s0 and a removable singularity
if s0 ∈ −N0, the proof of the lemma is complete.

The following lemma is a refinement of Lemma 4.41 for the specific case that z ∈ Z
and follows from Lemma 4.37, by using Propositions 4.13 and 4.14.
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Lemma 4.42. Let k ∈ N0 with 0 ≤ k ≤ K − 1. Then, for all σ1 < σ2, there exists a
polynomial PK,σ1,σ2, such that, uniformly for all σ1 ≤ Re(s) ≤ σ2 and | Im(s)| ≥ 1,

|ζMT,2(s, s− k, 2s+ k)| ≤ PK,σ1,σ2(| Im(s)|).

The following theorem shows that the function ζso(5) satisfies the conditions of The-
orem 4.5 and gives the more precise statement of Theorem 4.3.

Theorem 4.43. The function ζso(5) extends to a meromorphic function in C and is
holomorphic in N0. For K ∈ N and 0 < ε < 1, we have, on S 1−K+ε

3 ,∞,

ζso(5)(s) = 6s

Γ(s)

K−1∑
k=0

(−1)kΓ(s+ k)
k! ζMT,2(s, s− k, 2s+ k)

+ 6s

2πiΓ(s)

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz. (4.43.1)

All poles of ζso(5) are simple and contained in {1
2 ,

1
3 ,−

1
3 ,−

2
3 , . . . }. Furthermore, for

all σ0 ≤ σ ≤ σ1 as | Im(s)| → ∞, for some polynomial depending only on σ0 and σ1,

|ζso(5)(s)| ≤ Pσ0,σ1(| Im(s)|).

Proof. Assume Re(s) > 1. By Lemma 4.38, the only poles of the integrand in (4.34.1)
in S− Re(s),∞ lie at z ∈ N0. By shifting the path to the right of Re(z) = M − ε, we
find, with Lemma 4.39 and the Residue Theorem, that (4.43.1) holds on S1,∞. By
Lemma 4.41 the right-hand side is a meromorphic function on S 1−K+ε

3 ,∞. By Theo-
rem 4.35, the functions s 7→ ζMT,2(s, s − k, 2s + k) only have possible (simple) poles
for s1 + s3 = 3s + k = 1 − ℓ, s2 + s3 = 3s = 1 − ℓ, s1 + s2 + s3 = 4s = 2,
with ℓ ∈ N0, i.e., for s ∈ {1

2 ,
1
3 , 0,−

1
3 ,−

2
3 ,−1, . . . }. However, by Lemma 4.40 the

sum in (4.43.1) continues holomorphically to −N0, so the sum only contributes pos-
sible poles s ∈ S := {1

2 ,
1
3 ,−

1
3 ,−

2
3 ,−

4
3 , . . . }. Note that this argument does not depend

on the choice of K. On the other hand, if we choose K sufficiently large, then the integral
in (4.43.1) is a holomorphic function around s = −m for fixed but arbitrary m ∈ N0,
and it only contributes poles in S in S 1−K+ε

3 ,∞ by Lemma 4.41, where 0 < ε < 1. So the
statement about the poles follows if K → ∞.

We are left to show the polynomial bound. With Lemma 4.42 we obtain the bound for
the finite sum, as we chose K in terms of σ0 and σ1. Lemma 4.41 implies the polynomial
bound for the integral.

To apply Theorem 4.5 we require ζso(5)(0).

Proposition 4.44. We have ζso(5)(0) = 3
8 .

Proof. Since IM (s; z) is holomorphic in s for z ∈ Sµ,∞ by Lemma 4.37 and Γ(s) has a
pole in s = 0,

lim
s→0

IM (s; z)
Γ(s) = 0. (4.44.1)

Let K ∈ N. For z ∈ C with Re(z) = K − 1
2 and m ∈ N0, we have ±(z + m) ̸= 1.

Hence, s 7→
(−2s−z

m

)
ζ(3s+ z+m)ζ(s− z−m) is holomorphic at s = 0. This implies that

for z ∈ C with Re(z) = K − 1
2 , we have

lim
s→0

(
−2s− z

m

)
ζ(3s+ z +m)ζ(s− z −m)

Γ(s) = 0.
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Using this, (4.43.1) with ε = 1
2 , (4.44.1), Proposition 4.13 (4), and Lebesgue’s dominated

convergence theorem, we obtain, for integers K ≥ 3,

lim
s→0

6s

2πiΓ(s)

∫ K− 1
2 +i∞

K− 1
2 −i∞

Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz = i

72

∫ K− 1
2 +i∞

K− 1
2 −i∞

1
sin(πz)dz.

Since sin(π(z + 1)) = − sin(πz) and

lim
L→∞

∫ K+ 1
2 −iL

K− 1
2 −iL

1
sin(πz)dz = lim

L→∞

∫ K− 1
2 +iL

K+ 1
2 +iL

1
sin(πz)dz = 0,

the Residue Theorem implies that

lim
s→0

6s

2πiΓ(s)

∫ K− 1
2 +i∞

K− 1
2 −i∞

Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz = 1
72 Resz=K

π
sin(πz) = (−1)K

72 .

(4.44.2)
In the following we use that ζ(s) does not have a pole in s = ±m for m ∈ N≥2, implying
that s 7→

(−2s−1
m−1

)
ζ(3s+m)ζ(s−m) is holomorphic at s = 0.

Moreover s 7→ Γ(s + k)
(−2s−k

m

)
ζ(3s + k + m)ζ(s − k − m) is holomorphic at s = 0

for (k,m) ∈ (N × N0)\{(1, 0)}. Thus, using Propositions 4.13 (3) and 4.14 (3) and the
fact that ζ(−1) = − 1

12 and10 ζ(0) = −1
2 , we obtain, with (4.35.5),

lim
s→0

6s

Γ(s)

K−1∑
k=0

(−1)kΓ(s+ k)
k! ζMT,2(s, s− k, 2s+ k)

=3
8 + (−1)K+1

72 + lim
s→0

IM (s; 0) +
K−1∑
k=1

(−1)k

k
lim
s→0

IM (s; k)
Γ(s) . (4.44.3)

Since, by Lemma 4.37, s 7→ IM (s; k) is holomorphic at s = 0 for every k ∈ N0 and 1
Γ(s)

vanishes in s = 0, we have

lim
s→0

IM (s; k)
Γ(s) = 0.

Applying the Lebesgue dominated convergence theorem gives lim
s→0

IM (s; 0) = 0, yielding
the claim with (4.43.1), (4.44.2), and (4.44.3).

Furthermore, we need certain residues of ζso(5).

Proposition 4.45. The poles of ζso(5) are precisely {1
2} ∪ {d

3 /∈ Z : d ≤ 1 odd}. We have

Ress= 1
2
ζso(5)(s) =

√
3Γ
(

1
4

)2

8
√
π

.

Moreover for d ∈ Z≤1 \ (−3N0),

Ress= d
3
ζso(5)(s) =

3
d
3 − 3

2πΓ
(

d
6

)
ζ
(

4d
3 − 1

)
2

d
3 −1(1 − d)!Γ

(
d
3

)2
Γ
(

d
2

) (d3
)(

1 + 2
2d
3 −1

)
. (4.45.1)

10In the published version, ζ(0) = 1
2 was written; the sign was corrected here. Note that the (corrected)

sign does not affect the calculation since ζ(0) occurs squared only.
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In particular, we have

Ress= 1
3
ζso(5)(s) = 2

1
3 + 1
3

2
3

ζ

(1
3

)
.

Proof. With Lemma 4.41, near s = 1
2 , we can choose K = 1 in (4.43.1) and obtain

Ress= 1
2
ζso(5)(s)

= lim
s→ 1

2

(
s− 1

2

)

×
(

6sζMT,2(s, s, 2s) + 6s

2πiΓ(s)

∫ 1
2 +i∞

1
2 −i∞

Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz
)
.

Now, we have

lim
s→ 1

2

(
s− 1

2

)
6sζMT,2(s, s, 2s) =

√
3π

2
√

2
.

On the other hand, we find

lim
s→ 1

2

(
s− 1

2

) 6s

2πiΓ(s)

∫ 1
2 +i∞

1
2 −i∞

Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz

= lim
s→ 1

2

(
s− 1

2

) 6sΓ(3s− 1)ζ(4s− 1)
2πiΓ(s)

∫ 1
2 +i∞

1
2 −i∞

Γ(s+ z)Γ(−z)Γ(z + 1 − s)dz, (4.45.2)

since s 7→ Γ(s+z)Γ(−z)ζ(3s+z)ζ(s−z)
Γ(s) and s 7→ Γ(s+z)Γ(−z)I1(s;z)

Γ(s) are holomorphic if Re(z) = 1
2 .

Shifting the path to the left and using [21, 9.113], Proposition 4.13 (1), 15.4.26 of [31],
and Proposition 4.13 (4) we obtain that (4.45.2) equals

√
3π

2
√

2 2F1

(1
2 ,

1
2; 1; −1

)
−

√
3π

2
√

2
=

√
3Γ
(

1
4

)2

8
√
π

−
√

3π
2
√

2
.

This proves the first part of the proposition.
Now, let d ∈ Z≤1 \ (−3N0) and choose 0 < ε < 1

3 , and also K,M > 1 − d. We have,
by (4.43.1),

Ress= d
3
ζso(5)(s) = lim

s→ d
3

(
s− d

3

)
6s

Γ(s)

K−1∑
k=0

(−1)kΓ(s+ k)
k! ζMT,2(s, s− k, 2s+ k)

+ lim
s→ d

3

(
s− d

3

)
6s

2πiΓ(s)

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz. (4.45.3)

Note that lim
s→ d

3

(s− d
3)IM (s; k) = 0 because of holomorphicity of IM by Lemma 4.37 and

lim
s→ d

3

(
s− d

3

)
ζ(3s+ k +m) = 1

3δm=1−d−k.
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Thus we obtain, by (4.35.5) and (15.4.26) of [31],

lim
s→ d

3

(
s− d

3

)
6s

Γ(s)

K−1∑
k=0

(−1)kΓ(k + s)
k! ζMT,2(s, s− k, k + 2s)

=
6

d
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For the integral in (4.45.3), we obtain that

lim
s→ d

3

(
s− d

3

)
6s

2πiΓ(s)

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s+ z)dz

=
(−1)d+16

d
3 ζ
(

4d
3 − 1

)
3(1 − d)!Γ

(
d
3

) 1
2πi

∫ K−ε+i∞

K−ε−i∞

Γ
(
z + d

3

)
Γ
(
z + 1 − d

3

)
Γ(−z)

Γ
(
z + 2d

3

) dz. (4.45.5)

By shifting the path of integration to the left such that all poles
of Γ(d

3 + z)Γ(1 − d
3 + z)Γ(−z) except the ones in N0 lie left to the path of integration, we

obtain with formula (9.113) of [21]
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where the final equality is due to (15.4.26) of [31]. Equation (4.45.1) follows by this
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calculation together with (4.45.3), (4.45.4), (4.45.5), and Proposition 4.13 (4). Finally
note that (4.45.1) vanishes for even d ≤ 1.

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Note that by Lemma 4.34 and Theorem 4.43 all conditions of
Theorem 4.5 are satisfied (with L and R /∈ 1

3N arbitrary large). As ζso(5) has, by Propo-
sition 4.45, exactly two positive poles α := 1

2 >
1
3 =: β, Theorem 4.29 applies with ℓ = 3,

and we obtain
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So we are left to calculate c, b, A1, A2, A3, and A4. By Proposition 4.44, ζso(5)(0) = 3
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Moreover, by Lemma 4.28, we have
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Now, we compute A1, C, and b by (4.6.4) and A2, A3, A4 by Theorem 4.29 and obtain

b = 7
12 , C =

e
ζ′
so(5)(0)Γ

(
1
4

) 1
6 ζ
(

3
2

) 1
12

2
1
3 3

11
24

√
π

, A1 =
3

4
3 Γ
(

1
4

) 4
3 ζ
(

3
2

) 2
3

2
8
3

, (4.45.6)
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This proves the theorem.

4.6 Open problems
We are led by our work to the following questions:

(i) Is there a simple expression for ζ ′
so(5)(0)?

(ii) Can one weaken the hypothesis that f(n) ≥ 0 for all n in Theorem 4.5? An important
application would be that the rf (n) are eventually positive. There are many special
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cases in the literature (see [12, 13, 14, 15, 16]), but to the best of our knowledge no
general asymptotic formula has been proved.11

(iii) In [20], Erdős proved by elementary means that if S ⊂ N has natural density d and 1S

is the indicator function of S, then log(p1S (n)) ∼ π
√

2dn
3 . Referring to Theorem 4.5,

can one prove by elementary means that for any ε > 0

log (rf (n)) = A1n
α

α+1 +
M∑

j=2
Ajn

αj +O(nε)?

(iv) Can one “twist” the products in Theorem 4.5 by w ∈ C and prove asymptotic
formulas for the (complex) coefficients of

∏
n≥1

1
(1 − wqn)f(n) ?

If f(n) = n or f(n) = 1, then such asymptotics were shown to determine zero attrac-
tors of polynomials (see [3, 4]) and equidistribution of partition statistics see [5, 6]),
and the general case of |w| ≠ 1 was treated by Parry [32]. Nevertheless, all of these
results require that Lf (s) has only a single simple pole with positive real part.

(v) In Theorem 4.5, can one write down explicit or recursive expressions for the con-
stants Aj in the exponent, say in the case that Lf (s) has three positive poles?

(vi) Can one prove limit shapes for the partitions generated by (4.4.1) in the sense
of [18, 37]?
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Abstract
In this dissertation we investigate objects from number theory, q-analogues of Multiple
Zeta Values, with respect to their algebraic structure.

Multiple Zeta Values are real numbers that appear in various areas of mathematics
and theoretical physics. Apart from this, the simple zeta values, i.e. the values of the
Riemann zeta function ζ at integer digits greater than or equal to 2, are also widely used.
Little is known about the algebraic properties of the latter values. For example, only one
such value of the form ζ(2n+ 1) for n ∈ Z>0 is known to be irrational - namely for ζ(3)
(for ζ(2n) more is known). If you are now interested in the algebraic structure of these
single zeta values, it is in a way natural to consider the so-called Multiple Zeta Values
as a generalization, since the product of two Multiple Zeta Values is in turn an integer
linear combination of Multiple Zeta Values. For the investigation of their (algebraic)
structure, for example, it is natural to study Q-linear relations between Multiple Zeta
Values due to various known representations of the product as a linear combination of
Multiple Zeta Values.

An q-analogue of a Multiple Zeta Value is an q-series, which (after possible modification)
results in a Multiple Zeta Value in the limit q → 1. Just like the Multiple Zeta Values,
their q-analogues also fulfill many linear relations in analogy to the Multiple Zeta Values.
It is often practical to consider the algebraic structure of Multiple Zeta Values in order
to avoid unwanted effects of real numbers. This paper is devoted to the structure of
these q-analogues. We present different approaches for this purpose: An algebraic, a
combinatorial and an analytic one.

The algebraic approach investigates the Q-algebra of q-analogues, Zq, using well-known
methods such as duality and the stuffle product representation of the product of q-
analogues. Here, a special class of linear relations is systematically exploited to obtain
new results, in particular with regard to a conjecture from Bachmann’s dissertation. For
this purpose, so-called formal multiple q-zeta values, as introduced in Burmester’s dis-
sertation, are used, which algebraically abstract the considered q-analogues with respect
to the considered class of relations. Bachmann’s conjecture states that the algebra of
formal multiple q-zeta values Zf

q corresponds to the subalgebra Zf,◦
q , where Zf,◦

q initially
appears much ’smaller’ than Zq due to its definition. We will further refine this conjec-
ture and give a more precise approach than previously known to a (hopefully) general
proof of the conjecture, which still remains open.

The combinatorial approach, on the other hand, leads via so-called marked partitions,
which are partitions in whose Young diagram rows and columns are marked in a certain
way. All q-analogues of Multiple Zeta Values are the generating series of special marked
partitions, as is already known from my master thesis. Having clarified in the latter how
duality can be described by labeled partitions, we now give an explicit description of
the stuffle product at the level of labeled partitions. This is innovative as it allows us
to derive a deeper understanding of the stuffle product. Moreover, any linear relation
between Multiple q-Zeta Values can now presumably be described by labeled partitions,
since duality and stuffle product presumably imply all such linear relations. A seminal
question is how labeled partitions can be used to prove algebraic conjectures about
Multiple (q-)Zeta Values.

Finally, the analytical approach deals with the asymptotic behavior of q-analogues. There
are two different asymptotic behaviors to investigate: By setting q = e−t (t > 0) and
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looking at the asymptotic evolution of the q-analogue for t → 0. Or by examining the
asymptotic behavior of the coefficients of qn of the corresponding q-series for n → ∞.
Both turn out to be difficult, so that both approaches in this work provide the asymptotic
evolution only of special q-analogues and leave the evolution for general q-analogues of
Multiple Zeta Values open as a further subject of research. However, the chosen approach
via the asymptotic development of the Fourier coefficients by means of Wright’s circle
method provides the asymptotic development of many other q-series relevant in number
theory and beyond.

Each of the three approaches to the algebraic structure of q-analogues of Multiple Zeta
Values raises new questions and at the same time shows ways to continue.
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Zusammenfassung
In dieser Dissertation untersuchen wir Objekte aus der Zahlentheorie, q-Analoga Multi-
pler Zetawerte, hinsichtlich ihrer algebraischen Struktur.

Multiple Zetawerte sind reelle Zahlen, welche in verschiedenen Gebieten der Mathematik
und der theoretischen Physik auftauchen. Davon abgesehen finden die einfachen Zeta-
werte, also die Werte der Riemann’schen Zeta-Funktion ζ an ganzzahligen Stellen größer
oder gleich 2, ebenfalls breite Anwendung. Von dem letztgenannten Werten ist wenig
über ihre algebraischen Eigenschaften bekannt. Zum Beispiel weiß man lediglich von
genau einem solchen Wert der Form ζ(2n+ 1) für n ∈ Z>0, dass er irrational ist - näm-
lich für ζ(3) (für ζ(2n) ist mehr bekannt). Interessiert man sich nun für die algebraische
Struktur dieser einfachen Zetawerte, ist es in gewisser Weise natürlich, als Verallge-
meinerung die sogenannten Multiplen Zetawerte zu betrachten, da das Produkt zweier
Multipler Zetawerte wiederum eine ganzzahlige Linearkombination Multipler Zetawerte
ist. Für die Untersuchung derer (algebraischer) Struktur ist es zum Beispiel aufgrund
verschiedener bekannter Darstellungen des Produkts als Linearkombination Multipler
Zetawerte wiederum natürlich, Q-Linearrelationen zwischen Multiplen Zetawerten zu
studieren.

Ein q-Analogon eines Multiplen Zetawerts ist eine q-Reihe, welche (nach eventueller
Modifikation) im Grenzwert q → 1 einen Multiplen Zetawert ergibt. Ebenso wie die
Multiplen Zetawerte erfüllen auch deren q-Analoga viele Linearrelationen in Analogie zu
den Multiplen Zetawerten. Oftmals ist es praktisch, für die Untersuchung der algebrais-
chen Struktur Multipler Zetawerte deren q-Analoga zu betrachten, um nicht gewollte
Effekte reeller Zahlen zu umgehen. Diese Arbeit widmet sich nun der Struktur dieser
q-Analoga. Wir stellen hierfür unterschiedliche Zugangsmöglichkeiten vor: Einen alge-
braischen, einen kombinatorischen und einen analytischen.

Der algebraische Zugang untersucht die Q-Algebra der q-Analoga, Zq, mit altbekan-
nten Mitteln wie der Dualität und der stuffle-Produkt-Darstellung des Produkts von q-
Analoga. Hierbei werden eine spezielle Klasse von Linearrelationen systematisch aus-
genutzt, um neue Resultate, insbesondere hinsichtlich einer Vermutung aus Bachmanns
Dissertation, zu erlangen. Hierfür werden sogenannte formale Multiple q-Zetawerte, wie
in Burmesters Dissertation eingeführt, verwendet, welche die betrachteten q-Analoga
hinsichtlich der betrachteten Klasse von Relationen algebraisch abstrahiert. Die genann-
te Vermutung von Bachmann sagt aus, dass die Algebra der formalen Multiplen q-
Zetawerte Zf

q mit der Unteralgebra Zf,◦
q übereinstimmt, wobei Zf,◦

q durch ihre Definition
zunächst wesentlich ’kleiner’ als Zq erscheint. Wir werden diese Vermutung weiter ver-
feinern und geben einen präziseren Ansatz als bislang bekannt zu einem (hoffentlich)
allgemeinen Beweis der Vermutung, welcher nach wie vor offen bleibt.

Der kombinatorische Zugang hingegen führt über sogenannte markierte Partitionen,
welche Partitionen sind, in deren Young-Diagramm Zeilen und Spalten auf gewisse Weise
markiert sind. Sämtliche q-Analoga Multipler Zetawerte sind die Erzeugendenreihe von
speziellen markierten Partitionen, wie aus meiner Masterarbeit bereits bekannt ist. Nach-
dem in letzterer geklärt wurde, wie Dualität durch markierte Partitionen beschrieben
werden kann, geben wir nun eine explizite Beschreibung des stuffle-Produkts auf dem
Level der markierten Partitionen. Dies ist innovativ, da sich hieraus ein tieferes Ver-
ständnis des stuffle-Produkts ableiten lässt. Zudem kann nun vermutungsweise jede Lin-
earrelation zwischen Multiplen q-Zetawerten durch markierte Partitionen beschrieben
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werden, da Dualität und stuffle-Produkt vermutungsweise alle solche Linearrelationen
implizieren. Eine zukunftsweisende Frage ist, wie sich markierte Partitionen zum Beweis
algebraischer Vermutungen über Multiple (q-)Zetawerte einsetzen lassen.

Der analytische Zugang zuletzt beschäftigt sich mit dem asymptotischen Verhalten von q-
Analoga. Hierbei gibt es zwei unterschiedliche asymptotische Verhalten zu untersuchen:
Indem man q = e−t (t > 0) setzt und die asymptotische Entwicklung des q-Analogons
für t → 0 betrachtet. Oder indem man das asymptotische Verhalten der Koeffizien-
ten von qn der entsprechenden q-Reihe für n → ∞ untersucht. Beides stellt sich als
schwierig heraus, sodass beide Ansätze in dieser Arbeit die asymptotische Entwicklung
nur von speziellen q-Analoga liefern und die Entwicklung für allgemeine q-Analoga von
Multiplen Zetawerten als weiteren Forschungsgegenstand offen lässt. Jedoch gibt der
gewählte Ansatz über die asymptotische Entwicklung der Fourierkoeffizienten mittels
der Kreismethode nach Wright die asymptotische Entwicklung sehr vieler weiterer, in
der Zahlentheorie und darüber hinaus, relevanter q-Reihen.

Durch jede der drei Herangehensweise an die algebraische Struktur von q-Analoga Mul-
tipler Zetawerte werden neue Fragestellungen aufgeworfen und zugleich Wege zur Fort-
setzung aufgezeigt.
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