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Chapter 1

Different perspectives on
Multiple g-Zeta Values

In this thesis, we investigate g-analogues of Multiple Zeta Values algebraically, combi-
natorially, and analytically. It is a cumulative thesis, consisting of three works [16], a
revised version of [15], and [12] that can be found in Chapters 2, 3, and 4, respectively.
They consider g-analogues of Multiple Zeta Values from an algebraic, combinatorial, and
analytic perspective, respectively. Although we assume the reader is familiar with Mul-
tiple Zeta Values, we provide in Section 1.1 all the basic knowledge about Multiple Zeta
Values and their g-analogues one might need to understand this thesis. Sections 1.2,
1.3, and 1.4 then introduce the three works of this thesis and contain their main results,
while Section 1.5 gives a conclusion of the three works and how they are connected. This
chapter is an overview and summary of the results obtained in the mentioned works. As
this chapter is intended as an introduction, the proofs of the main results are mainly
omitted.

Multiple Zeta Values (MZVs for short) are real numbers. They are defined for inte-
gers {1 > 2, lo,...,¢. > 1 as follows:

C(€1>"'7£1”) = Z W,

my>-->me>0 1M My

see also Definition 1.10. They have a long history (Euler [27] already studied them in
the 18th century!) but were temporarily pushed into the background. In the last few
decades, however, Multiple Zeta Values have emerged in various areas of mathematics
and theoretical physics, so their study has regained importance. Of particular interest
in current research is their algebraic structure. Compared to the importance of Multiple
Zeta Values in research, only little is known about their algebraic structure, e.g., already
statements about the irrationality of single Zeta Values (which are ((¢) for ¢ € Z>9) is
possible only for very few of them. Nevertheless, a lot of linear relations among Multiple
Zeta Values are known. For example, we have

((4) = 4¢(3,1) and ((3) = ¢(2,1).

In general, studying the algebraic behaviour of real numbers is a hard task. A com-
mon approach to expose the algebraic structure of real numbers is to study so-called g-
analogues of them. These are objects depending on an extra parameter ¢ that give back
the original object in the limit ¢ — 1 (after possible minor modification such as multiply-
ing with an appropriate power of (1 —¢)) and inheriting parts of the algebraic structure.
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For example,

mil1 Myl

4q q
S, ) =Y

s S so (L—gm)f (1 —gmr)tr

is a g-analogue of ((/1, ..., ¢,) since it gives back the Multiple Zeta Value after multiplica-
tion with (1—¢)“ 4 and taking the limit ¢ — 1 then (see Definitions 1.23 and 1.26 for
a general definition). We will call such objects Multiple ¢-Zeta Values (¢MZVs for short);
the particular ones from above are referred to as Schlesinger—Zudilin Multiple q-Zeta Val-
ues. Note that Schlesinger—Zudilin ¢MZVs are defined for all 41 € Z~q, {2, ...,{, € Z>o,
where r € Z>(, in contrast to MZVs.

Both MZVs and Schlesinger—Zudilin gMZVs satisfy the stuffle product which describes
the product of MZVs, respectively Schlesinger—Zudilin ¢MZVs, as linear combination of
MZVs, respectively Schlesinger—Zudilin ¢MZVs, again and arises from the multiplication
of iterated sums. We refer to Definition 1.3 for the precise definition of the stuffle product
and to Proposition 1.12, respectively Proposition 1.28, for the statement that the product
of MZVs, respectively Schlesinger—Zudilin gMZVs, indeed can be described by the stuffle
product.

Besides the stuffle product, duality (of Schlesinger—Zudilin gMZVs) is of importance
for this thesis. By duality, we mean, in this thesis, the relations

52(k1,0,...,0,...,kq,0,...,0) = (J%(24+ 1,0,...,0,...,21 +1,0,...,0),
~—— —— S—— N~——
21 2d kg—1 k1—1
where ki,...,kq € Zso and 21,...,24 € Z>o. For the general statement, we refer to

Definition 1.6/ Theorem 1.29. Together with the stuffle product, one obtains many more
linear relations among Schlesinger—Zudilin gMZVs. Moreover, conjecturally those are all:

Conjecture (Bachmann, [1]). All Q-linear relations among Schlesinger—Zudilin gMZVs
are obtained by the stuffle product and duality.

Large parts of this thesis were motivated by this conjecture, and the results are
consistent with this conjecture.

The algebraic perspective on ¢MZVs. As mentioned, Section 1.2 introduces the
work that builds Chapter 2, which contains an algebraic view on Multiple g-Zeta Values.
We focus on the Q-algebra Z; of all Schlesinger-Zudilin ¢gMZVs, the subalgebra Z/,
generated by those Schlesinger—Zudilin ¢MZVs with ¢1,...,£, > 1, and a conjecture by
Bachmann [2] stating that they coincide.

Conjecture (Bachmann, [2]). We have Z, = Z_.

Partial results already exist by works of Bachmann [3], Burmester [21], and Vleeshouw-
ers [44]. Theorem 1.52 will extend those partial results by Bachmann and Burmester
again by using the stuffle product and duality only. The motivation for the latter con-
jecture due to Bachmann comes from viewing (Schlesinger—Zudilin) gMZVs as g-series:
By geometric series expansion, one obtains that every (Schlesinger—Zudilin) gMZV is of
shape

H
Z Z Qd(ml’ sy Mgy Ny ey nd)qmlnl_‘_""i_mdnd,

d=0 mi1>--->mg>0
ni,...,ng>0
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where the Q4 € Q[X1,...,X4,Y1,...,Yy] are polynomials and H € Z>o depends on
the gMZV. Bachmann’s 2, = Z_-Conjecture now states that it is possible to find poly-

nomials @d € Q[X1,...,Xy| such that every gMZV is of shape

H
Z Z CZd(TrLl7 ey md)qmlnl—i_”""mdnd

d=0 mi>--->mg>0
n1,...,ng>0

with some H € Z>o depending on the gMZV. Note that one could let the polynomials @d
depend on ny,...,ng only as well instead of my,...,mgq by using duality.

A main result of this thesis is that Bachmann’s Z, = Z,-Conjecture is true in some
small cases. Expressed in terms of Schlesinger—Zudilin gMZVs, it is the following.

Theorem (Theorem 2.75). For all ¢1,...,¢, € Z>¢ with £; > 1 and r < 6, we have
S0y, ) € 2.

The result builds Theorem 2.75 and is obtained using the stuffle product and dual-
ity only. Hence, consistent with the first conjecture above, we will work mainly with
formal g MZVs, which are formal objects satisfying the stuffle product and duality only.
Furthermore, we will refine Bachmann’s conjecture Z;, = Z7, see Conjecture 2.10, and
we will give evidence for small cases, see Theorem 2.76.

While playing around with relations induced by the stuffle product and duality, it
seemed useful to develop the box product, which gives a specific part of the stuffle prod-
uct that is of main interest when studying such relations. In this way, we will refine the
already refined Z; = Z_-conjecture again for “half” of the cases occurring, see Conjec-
ture 2.39. More precisely, if Conjecture 2.39 is true, one can write every Cqsz(él, by,
satisfying z := #{¢; = 0} > #{¢; # 0}, as a Q-linear combination of Schlesinger—
Zudilin gMZVs with less than z zero-entries. For the other “half” of the cases, we present
a promising approach that also works in small cases, as the proof of our main results will
show.

The combinatorial perspective on ¢MZVs. Section 1.3 introduces the work that
builds Chapter 3, which contains a combinatorial perspective on Multiple Zeta Values.
It arises from writing Multiple ¢g-Zeta Values as (formal) power series in the parameter ¢
via geometric series expansion

Y4
qm (n - 1) mn
—omye Z 119 >
=~ &\
yielding, for k1,...,kq € Z>o and 21, ..., zq € Z>0, that

52(k1,0,...,0,...,kq,0,...,0)
———— ——

21 24

d
_ 2 : H my — Myj+1 — 1 ng — 1 qm1n1+---+mdnd
Zj kj -1

mi1>-->mg>0 | j=1
n1,...,ng>0

(with mgy1 := 0). In this way, one can consider Schlesinger—Zudilin ¢MZVs as the
generating series of a distinguished set of partitions of non-negative integers counted with
some multiplicity. For this, one visualizes the occurring exponents N := mini—+- - -+mgng
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via the Young Tableau of the partition of N that is given in Stanley Coordinates by
(my,...,mg;ni,...,nq).

As usual, one calls the m;’s the parts and the n;’s the multiplicities (of the mj-part) of
the partition. We refer to [42] for further details about Stanley Coordinates. For example,

} n1

ma
—t—

}ng

——
m2

is the Young Tableau of the partition of N = 24, given in Stanley Coordinates by

(m1,ma;n1,n2) = (6,3;3,2).

d (mj — m]’+1 — 1) (nj — 1)
j=1 Zj kij -1

in front of ¢V can be visualized by marking rows and columns of the Young Tableau
in a specific way, leading to the notion of marked partitions as introduced in [14]. Le.,
Multiple g-Zeta Values will be considered as generating series of distinguished marked
partitions. More precisely, we interpret the binomial coefficient (Zj_l) as the number of

The multiplicity

-1
marking exactly k;—1 rows in the Young Tableau between the rows containing the (j—1)-
th and j-th corner, counted top to bottom; similarly, we interpret (™7 _72;_'“_1) as the
number of marking exactly z; columns between columns containing the j-th and (j + 1)-
th rightmost corner. For convenience, we mark rows and columns containing corners by
default. For example,

is a marked partition that we will associate with (gz(l, 0,0,3,0,1); see also Example 1.75.
In [14], the following was already proven regarding marked partitions.

Theorem. The duality of ¢MZVs can be described via an explicit bijection among cor-
responding sets of marked partitions.

The main theorem of Chapter 3 is the following.

Theorem (Theorem 3.17, weak version). The stuffle product of gMZVs can be described
explicitly as pairing on marked partitions.

The refined version of this statement is Theorem 3.17. The proof consists of showing
that particular numbers of marked partitions satisfy the same recursion as multiplicities
occurring in the stuffle product. Recalling the above conjecture by Bachmann that
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the stuffle product and duality of Multiple g-Zeta Values already give all linear relations
among Multiple ¢-Zeta Values, the main result of Chapter 3 is that (under the assumption
of this conjecture) now all linear relations among gMZVs can be described on the level of
marked partitions. In this way, we have created a combinatorial approach to the algebraic
structure of gMZVs, giving rise to plenty of future projects. For example, using marked
partitions, one can try to make progress in proving Bachmann’s Z;, = Z/-conjecture.

The analytic perspective on ¢MZVs. Section 1.4 then introduces the joint paper
that builds Chapter 4, which mainly contains an analytic view on Multiple ¢-Zeta Values.
We use Wright’s Circle Method to focus on asymptotic formulas for g-series which is a tool
from complex analysis to study the asymptotic behaviour of a given sequence (¢(n))nen,
of (complex) numbers having moderate growth, see Section 1.4.2 for a brief introduction
to the Circle Method.

For roughly stating our main theorem of Chapter 4, let f : N — Ny be a function
and set A := N\ f71({0}). For ¢ = e=* (2 € C with Re(z) > 0), define

G(2) = Y prlnyg” = [ —— Ly =y I,

n>0 nst1 (1 — gm)! ™ n>1

Theorem (Theorem 4.5). Under assumption of certain conditions the on density of A
in N, the meromorphic continuation of L, and a growth condition on Ly (see (P1), (P2),
and (P3) for the precise assumption), for some integers M, N € N, we have

Jj=2

C o X _ N B; _mind 2L-a _R_
pf(n) = ﬁeXp (Alna+l + ZAjna]) (1 + Z niﬁjj +OLR (n mln{ 2(a+1)7a+1})) ,
j=2

where L € N, R > 0 come from the assumptions (P1) and (P2), a the largest pole

of Ly, 0 <ay <apy-1 <--az<a :a%rl are given by £, and 0 < 2 < B3 < --- are
given by M + N, where £, M, and N are sets depending on the poles of L;. Moreover,

if v is the only positive pole of Ly, then we have M = 1.

For the concrete definition of £, M, and N, we refer to (4.6.1), (4.6.2), and (4.6.3),
respectively. Furthermore, the coefficients A; and B; can be calculated explicitly; the
constants Ay, C, and b are provided in (4.6.4) and (4.6.5).

The theorem gives asymptotic formulas for a large class of g-series, including several
(infinite) sums of g-analogues of Multiple Zeta Values, such as

A,

n>0 n

The analytic study of Multiple ¢-Zeta Values is of interest since the coefficients occurring
in such asymptotic expansions often (maybe always; this is current research) are Q-linear
combinations of Multiple Zeta Values. Hence, by comparing coefficients, a relation among
Multiple g-Zeta Values gives a set of Q-linear relations among Multiple Zeta Values. In
this way, the analytic study of Multiple ¢-Zeta Values has an impact on the algebraic
study of Multiple Zeta Values. It is also current research, whether the Q-linear relations
among MZVs obtained in this way give all Q-linear relations among MZVs.

1.1 Introduction to Multiple (g-)Zeta Values

In this section, we introduce the basic knowledge about Multiple Zeta Values and their ¢-
analogues one might need to understand this thesis and the related works. For this, we



6 Chapter 1. Different perspectives on Multiple ¢-Zeta Values

introduce in Section 1.1.1 the algebraic setup. In particular, there, we introduce quasi-
shuffle products, of which the stuffle product mentioned above is a distinguished one.
Section 1.1.2 introduces Multiple Zeta Values, while Section 1.1.3 introduces their ¢-
analogues in the common understanding (as in [2, 11, 37, 38, 40, 43, 46, 48]). Last,
Section 1.1.4 contains particular so-called models of Multiple ¢-Zeta Values that will be
of importance for the thesis.

1.1.1 Algebraic setup

For the algebraic setup, we introduce some notation on quasi-shuffle algebras and related
algebraic objects. Notably, we will need the stuffle product, a special quasi-shuffle prod-
uct, and duality mainly in Sections 1.2 and 1.3, and in the corresponding Chapters 2
and 3 to obtain new results on the structure of Multiple g-Zeta Values.

Let us fix some general notation first.

Definition 1.1. Given a field F' and a countable set A. We call A also an alphabet, and
elements of A are referred to as letters. Denote by spany A the F-vector space spanned by
elements of 4. Furthermore, monomials of elements in A (with respect to concatenation)
are called words. Usually, the neutral element with respect to concatenation is denoted
by 1 and called the empty word. Let A* denote the set of words with letters in A, then
we write F'(A) for the F-vector space spany A*, equipped with the non-commutative,
but associative multiplication, given by concatenation.

We will also need the notion of quasi-shuffle algebras, studied, e.g., by Hoffman [32],
to describe the product structure of (¢)MZVs.

Definition 1.2 (Quasi-shuffle product). Let F' be a field, A an alphabet, and ¢ a F-
bilinear, associative and commutative product on spanyp . A. Then we define the quasi-
shuffle product o: F(A) x F(A) — F(A) as the F-bilinear product, which is defined
via 1 %, W:= Wk, 1 := W for any W € A* and recursively through

aWy ko bWy := a(Wy *o bW2) + b(aWy o Wo) + (a © b)(Wy *, W)
for any Wi,Wy € A* and a,b € A.

In [32] it is shown that (F(A), *,) is a commutative algebra. For more details, we refer
to [32] and [33]. The following example of a quasi-shuffle product, the stuffle product,
will be important for almost all parts of this thesis.

Definition 1.3 (Stuffle product). Choose F' = Q, A = U = {u; | j € Z>p}, and
define uy, © ug, = ug, 11, We call the induced quasi-shuffle product the stuffle product
and write * for short instead of *,. l.e., we have Wx 1 := 1 xW := W for all W € U*.
Furthermore, for all k1, ko € Z>o and Wy, Wa € U™, by definition, we have

U W1 % UpyWo = gy (W1 % UpyWa) + Upy (Uky W1 % Wa) + Upey 1y (W1 % Wa) .

Remark 1.4. We write Q(U)° for the Q-span of words with letters in U, not starting
with ug. Furthermore, the set of such words is denoted by U*° := U*\uold*. Note that
the stuffle product restricts to a map

*: QU)® x QU)* — QU)°.

Hence, (Q(U)°, %) is a commutative Q-algebra.
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Let us fix some basic notations we will need throughout the whole thesis.
Definition 1.5. Let be 7 € Z>g and k = (K1, ..., k;) € Z%, an index.
(i) We write ug :=1 for k = ) and uy := uy, - - - ug, if r > 0.

(ii) We define

len(uy) :=len(k) := r,
zero(ug) :=zero(k) := #{j | k; =0},
depth(uy) = depth(k) = #{j | k; # 0},
wt(ug) :==wt(k) := k1 + -+ + k, + zero(k)

to be the length, the number of zeros, the depth, the weight, respectively, of wuy
and k, respectively.

The following definition of duality will be important when considering the algebraic
structure of (¢)MZVs. We will use the (in the following defined) duality 7 for investigat-
ing ¢MZVs, while the similar looking map 7 is important for MZVs.

Definition 1.6. (i) Define the Q-linear map 7: Q(U)° — Q(U)° by 7(1) := 1 and

z Zd\ . kq—1 k1—1
T (Uky ug' -+ - gy up") 1= Uzgp1ug? U g

for all ki,...,kq € Zso and z1,...,24 € Z>o. Furthermore, for W € QU)°, we
call 7(W) the dual of W.

(i) Write Q) € Q(U)° for the Q-span of words with letters in U\ {ug}, not starting
with u;. Furthermore, write U*! := U\ {uo})* \u1 U\{uo})" for such words. We
define the Q-linear map 7: Q(U)! — Q{U)! by 7(1) := 1 and

~ Z1 Zd e k)d72 k172
T (Ulﬁul T Ukg Uy ) = Uz 42U crr Uz 42Uy

for all kl,...,kdEZZQ and Zl,...,szZzo.

Since duality will be of significant impact, particularly in Section 1.2 and Chapter 2,
we collect some basic properties.

Remark 1.7. (i) We remark that x restricts to a map QU)* x QU)* — Q(U)!, giving
rise to a commutative Q-algebra (Q(U)!, *).

(ii) Note that 7 is an involution on Q(i/)°. Furthermore, 7 is an involution on Q(/)*.

(iii) Depth and weight are invariant under 7 while the number of zeros and the length
generally are not.

(iv) With 7 and duality 7, we can describe particular linear relations that Multiple Zeta
Values, respectively their g-analogues, satisfy, see Theorems 1.18 and 1.29.

Let us consider a small example.

Example 1.8. We have
_ 1 0\ _ 0, 2 _
T(’U,g’uOul) =T {U241UUO+1Uy ) = UO4+1UQULI+1Uy = UTU2UQUQ
and

. ~ 0 3-2
T(ug) =7 <U3u1) = Uppou;] T = UgUj.
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For investigating the multiplicative structure of Multiple Zeta Values, besides the
stuffle product, it will be necessary to have the notion of the shuffle product ([26])
defined in the following.

Definition 1.9 (Shuffle product). We define the shuffle product to be the Q-bilinear

map W: Q({p,y})xQ({p,y}) = Q({p,y}), given by Wx1 := 1+W :=WforallW € Q({p, y})
and

aWi LU bWy := a(Wl LLI bWQ) + b(an LLI WQ)

for all Wi, W € Q({p,y}) and a,b € {p,y}.

Denoting by Q({p, y})° the Q-vector space spanned by words not starting with y, the
shuffie product restricts to a map

w: Q{{p, y})° x Q{p,y})° — Q{p, y})°.

In the following, we will use the translation

L Q<{p7 y}>0 — Q<Z/{>1,
Py P Ty gy g,
for all r, k1,...,k, € Z>1 with k; > 2, and (1) := 1. By abuse of notation, we will also
write LU for the map

QU x QU — Q), (Wi, W) — o(t ™ (W) w1 (Wo)).

1.1.2 Basics on Multiple Zeta Values

Multiple Zeta Values (MZVs) are real numbers defined as iterated sums. From this
representation, one may see that their product again is a sum of MZVs. Besides this rep-
resentation, MZVs can be described as iterated integrals. Also, using this representation
gives rise to the observation that their product is a sum of MZVs again. Surprisingly,
these two representations of the product of MZVs generally do not coincide. IL.e., one
obtains linear relations among MZVs, the double shuffle relations. The name comes from
the fact that both representations of the product can be described via quasi-shuffle prod-
ucts. Besides the double shuffle relations, there is another class of linear relations among
MZVs, the MZV duality. We refer to [20, 31, 35] for more details on the basic properties
of MZVs.

With the notion of U/*! (see Definition 1.6(ii)), we are prepared to define Multiple
Zeta Values.

Definition 1.10. For all words W = uy, - --uy, € U™, the Multiple Zeta Value (MZV)
of W is defined as

C(W) = Z 1

kr
my>e>me>0 1M1 My

For W = 1, we set ((1) := 1. Furthermore, we consider ¢ as map Q(U)! — R via Q-linear
continuation.

With MZVs, we are able to express products of (single) Zeta Values as integer linear
combinations of MZVs, induced by handling iterated sums. In particular, we can describe
the product of MZVs using the stuffle product.
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Example 1.11. Considering for ki, k2 € Z>2 the product of ((ug,) and ((ug,),

) - ) = 30— 0

n>1 m>1
1 1 1
= Z kL mk2 + Z mk2nk + Z nkLmkz
n>m>0 m>n>0 n=m>0

- <<uk1uk2) + C(quUkl) + C(uk1+k2)
= C(ukl * ng),
one obtains that this product indeed is a sum of MZVs. In particular, all words of MZVs

occurring are of the same weight k1 + ko, which is the sum of the weights of the length-one
words ug, and uy, we started with.

The observation that the product of MZVs is ¢ of the stuffle product of the corre-
sponding words is always the case.

Proposition 1.12 ([31, Theorem 4.2]). The map ¢: (QU)',x) — (R,-) is an algebra
homomorphism. In particular, for all Wi,Wy € UL, we have

C(Wy) - ¢(Wa) = ¢(Wy *Wa).
Besides the definition of MZVs as iterated sums, MZVs have a remarkable represen-

tation as iterated integrals, the so-called Kontsevich integrals.

Proposition 1.13 (Kontsevich integral, [31, Theorem 6.1]). Let W = wuy, ---ug, be a
word in U*. Then we have

W= [ e,
1>t >-->t, >0

where k := wt(W) and

ifie{klvkl+k23"'7k1+"'+k7“}7

else.

_dt_
wi(t) = {Clltt
t7

Proof. For proof, see [20]. O

One can see that the product of such iterated integrals again is an integer linear
combination of such iterated integrals, i.e., multiplying MZVs represented as Kontsevich
integrals leads to a linear combination of MZVs again. One can describe it using the
shuffle product.

Proposition 1.14 ([34, Theorem 4.1]). The map ¢: (QU)', W) — (R,-) is an algebra
homomorphism. In particular, for all Wi,We € U™, we have

C(W1) - ¢(W2) = (W1 LI Wg).
What is remarkable about the shuffle product representation of MZVs is that it is
generally different from the stuffle product representation.

Example 1.15. Considering for integers ki, k2 € Z>9 the product of ((uy,) and (u,),
both represented as Kontsevich integrals, one obtains

Clur) - Clu) = 3 ((k - 1) + (ﬁi)) Cluau) = Clug, Wu,).

a+b=k1+ko
a>2



10 Chapter 1. Different perspectives on Multiple ¢-Zeta Values

In particular, we see that, in general, the right sight is represented by different MZVs
than in ¢(ug, * ug,); see Example 1.11.

Again, we observe that the words occurring in the shuffle product have weight equals
the sum of the weight of the words uy, and ug,. This holds for the general case; details
can be seen in [20].

Linear relations among MZVs Since stuffle and shuffle product representation, in
general, are different, one obtains via

C(Wl*WQ—wlLLIWQ):O

for Wi, Wy € U*! non-trivial linear relations among MZVs. They are called double shuffle
relations.

Example 1.16. Using the the stuffle product representation, one observes

C(uz) - C(uz) = ((ug * uz) = 2¢(uguz) + ((ua).

The shuffle product representation gives

Cuz) - C(uz) = ((ug Wug) = 2¢(uguz) + 4¢(uzuq).

Hence, we obtain the linear relation

C(ug) = 4¢(uzuy).

Remark 1.17. There are lots of proofs in the literature for the famous so-called Euler
identity ([27])

C(uz) = ((ugur). (1.17.1)

Recall that for every word W occurring in Wy % Wo or Wy L Wy (with Wi, We € U™°, we
have wt(W) = wt(W;) + wt(W2). Hence, double shuffle relations cannot obtain the Euler
identity since ((u1) is not defined for convergence reasons. There are three ways to deal
with that. One possibility is to regularize both stuffle and shuffle product, leading to
extended double shuffle relations from which relations such as (1.17.1) can be obtained.
Those extended double shuffle relations conjecturally imply all Q-linear relations among
MZVs. Proving this is still an open problem and one of the most famous ones in the
broad field of MZVs. For a detailed study of (extended) double shuffle relations, we refer
o [35]. Another way to obtain identities like (1.17.1) is via MZV duality, presented in
the following theorem. The third way to deal with the fact that ((u;) is not defined in
considering g-analogues of them as we will do in Section 1.1.3 since on this level we can
give a well-defined g-analogue for ((u1). Among g-analogues, one can study Q-linear re-
lations similarly to the (extended) double shuffle relations that give back relations among
MZVs when taking the limit ¢ — 1 after some small modification; see the paragraph after
Definition 1.26.

Theorem 1.18 (MZV duality, [31, Corollary 6.2]). On Q(U)*', we have (o7 = (.

When speaking about MZV duality (Theorem 1.18), we will always speak indeed
about MZV duality in contrast to just duality which is a similar looking Theorem for
g-analogues of MZVs (see Theorem 1.29). Let us consider a small example.

Example 1.19. By Example 1.8, Theorem 1.18 gives ((u3) = ((uguy), i.e., the Euler
identity (1.17.1).
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A natural question is what a basis of Z looks like. Finding such a basis is still an open
problem, so one focuses on finding generating systems as small as possible. Considering
the Euler identity and its generalization (obtained via MZV duality)

Cug) =¢ (uwlf_Q)

for k € Z>3, it could be reasonable that Z is spanned by ((W)’s for W € (U\{ug,u1})"’s,
i.e., for words with letters in {ug,us,...}. Indeed, this statement is true and can be
deduced directly from Theorem 1.22.

Theorem 1.20. We have Z = spang {{(W) |W € (U\{uo,u1})"}.

Although a stronger version of this theorem is already proven (see Theorem 1.22
below), this statement is still interesting for what we will do in Section 1.2/Chapter 2
since we investigate there Conjecture 1.49 which can be seen as the analogous statement
to Theorem 1.20 for the space ¢MZVs span.

Regarding the question of how a basis of Z looks like, Hoffman [32] conjectured a
stronger statement of Theorem 1.20.

Conjecture 1.21 ([32]). A basis of the Q-vector space Z is given by the set of MZ Vs (W)
satisfying W € {ug, us}*.

The current status is that one is not able to prove the Q-linear independence of the
MZVs occurring in Hoffman’s Conjecture 1.21. A partial result was obtained by Brown.

Theorem 1.22 ([19]). A spanning set of the Q-vector space Z is given by the set of
MZVs ((W) satisfying W € {ug,us}*.

1.1.3 Basics on Multiple g-Zeta Values

Multiple Zeta Values are real numbers, which makes investigating their algebraic struc-
ture sometimes hard. A common strategy, not only used for MZVs, to avoid parts of this
problem is to consider g-analogues of the objects one investigates. These are modified ob-
jects with an extra parameter g such that they inherit (parts) of the algebraic structure of
the original objects. Furthermore, they have the property that one gets back the original
objects when taking the limit ¢ — 1, maybe after some modification such as multiplying
with a specific power of (1 — ¢), for example. In Section 1.1.3, we introduce g-analogues
of MZVs (¢MZVs for short) and their Q-algebra Z, (defined in [10]).

One of the most used g-analogues are the expressions

seen as g-analogues of positive integers n. Indeed, one has, as g approaches 1,
nlg=1+q+¢@+-+¢" 1 —n

Now, an intuitive way to obtain g-analogues of MZVs would be to replace in the
definition of MZVs (Definition 1.10) every m; with [m;],. To avoid convergence issues,
one has to be more careful, but it is the main idea leading to the definition of ¢gMZVs.

Definition 1.23 ([10, Equation 1]). (i) Define for all W = wuy, - - - ug, € U™° and poly-
nomials Q1 € XQ[X], Qo,...,Q, € Q[X], the Multiple ¢-Zeta Value (qQMZV)

Cq("‘le;--er) — Z Ql(qml) Qr(qu)TEQ[[q]L

s T so (L= g@m)F (1 —gmr)k
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where we set (4(1,0) :=1 in case r = 0.

(ii) Define Z, as

Spa‘n(@ {Cq(w» Q17 HLRR} QT)

W=up, ug, €U, 7€L>0, }
Q1€XQ[X], deg(Q;)<k; (1<j<r)

Note that @; € XQ[X] is necessary for convergence reasons. Furthermore, for a
word W € U*!, with r := len(W), one has

lim (1 — q)"*M¢,(W; Qu, ..., Q) = C(w) [] @;(1).
j=1

q—1

In this general definition of gMZVs, there is no obvious notion of weight as for MZVs. A
canonical choice would be wt(W) leading to uniqueness issues since, e.g., for every k1 € Zg
and polynomials @; € XQ[X], we have

Cq(ug,; Q1) = Clup,+1; Q1 - (1 — X)).

Therefore, one usually chooses the polynomials @); such that (1 — X) fQ;(X).

In the definition of gMZVs, one can also say that the words W € U*° should sat-
isfy zero(W) = 0 when one allows an additional polynomial factor (in my,...,m,) in the
summand, see Proposition 1.25 below. Let us consider an example first.

Example 1.24. Choose k; € Z~¢ and Q1 € XQ[X] with deg(Q1) < k;. Furthermore,
let Q2 = Q3 =1 and kp = k3 = 0. Then, by definition, {; (ug, uouo; @1,1,1) is an element
of Z,. But we also have

G (upuouo; Qu,1,1) = 3 _@le™) 3 <m1 —1>(Ql(qm1)

_ k _ ki
mi1>mo>ms3>0 (1 qml) ! m1>0 2 1 qml) !

In particular, the latter sum is of the same shape as in the original definition of gMZVs
with an additional polynomial factor in m; in the summand.

In the following, we show that the observation of Example 1.24 is true in general;
we will use it (implicitly) in Chapter 2 to validate that our definition of Schlesinger—
Zudilin ¢gMZVs (see Section 1.1.4) is equivalent to the usual one.

Proposition 1.25. Choose a word W = uy, ---up, € U™° and polynomials Q; sat-
isfying Q1 € XQ[X], deg(Q;) < kj for 1 < j < r = len(W). For every polyno-
mial Qo € Q[Y1,...,Y,], we have
mi uze
Z Q(](ml,--.,mr) Ql(q ) QT(q ) qu

m1>->mp>0 (1 —gm)h (1 —gmn)ks

Proof. We sketch a variation of the proof provided in [10]. For this, choose an arbitrary
word W = ug, ug' - - -ukdugd € U™° and abbreviate f; := 21 +---+2zj_1 +jfor 1 <j <d.
Furthermore, choose Q; € Q[X] with deg(Qy;) < fj for 1 < j < d and Q; = 1 else. We
obtain that

Z Ql (qml) o Qlen(w) (qmlen(w))

m1>~~>m1en(W)>0 (1 o qml)kl (1 - qmlen(w))klen(w)

N Z (ml — mo — 1) (md_l — mq — 1) <md — 1)
my>>mg>0 1 Fd—1 Zd



1.1. Introduction to Multiple (¢-)Zeta Values 13

Qi¢™)  Qp(d™)
(T—gm)M (1 gma)tsa

Yi—Ys—1 Yy —Yy—1\[Y;—1
21 Zd—1 Zd
builds a basis of Q[Y7,...,Yy]. Hence, we indeed have

Z Qo(m1,...7mr)(Q1(qm1) Qn(g™) -

my>>me>0 L—gm)h (1= gm)k

€z,

Note that

Zl,...,Zd€Z>0}

for every ug, ---ug, € U*°, polynomials Q; with @1 € XQ[X], deg(Q;) < k; for all
integers 1 < j <r, and for every polynomial Qg € Q[Y7,...,Y;]. O

1.1.4 Models of gMZVs

Similar to Z, a natural question is what a basis of Z, looks like. Finding such a basis is
one of the open problems regarding ¢gMZVs and seems very difficult to answer. Therefore,
one focuses on finding (small) generating sets of Z,, which we call in distinguished cases
models (of Multiple q-Zeta Values). We refer to the original works [2, 11, 37, 38, 40, 43,
46, 48] for details on often used models and to [14] for an overview. Every model has
its advantage when studying ¢MZVs and their structure. Schlesinger—Zudilin’s model,
e.g., inherits the stuffle product, while Bradley—Zhao’s model satisfies the same duality
relation as the one MZVs satisfy. Important as well is Bachmann’s model given by bi-
brackets since it gives a direct connection to quasi-modular forms playing an essential
role in the theory of MZVs as Gangl, Kaneko, and Zagier [29] have shown. We present
the considered models’ main facts about their algebraic structure. In particular, we will
focus on relations for ¢MZVs similar to the duality of MZVs.

For a particular choice of the polynomials @; (in dependence of the k;’s), we say that
the corresponding ¢gMZVs build a model (of gMZVs) if they span Z,. We now present
two models with which we will work in this thesis.

Schlesinger—Zudilin model. A particular generating system of Z, is the following.

Definition 1.26 (Schlesinger—Zudilin gMZVs). For all W = uy, - - -uy, € U*°, we define
the Schlesinger—Zudilin gMZV (SZ-¢gMZV for short) by CEZ(l) := 1 and, for positive r,
by

CIA(W) = Gy X5, X,

By definition of (4, note that for all W = ug, - --ug, € U™°, we have

milq qmrﬁ,-

SZ () = 4 _
! m1>-Z>:mr>0 (1 —qm™ )@1 (1 - qmr)ev‘
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Furthermore, writing W = wg, u' - - ug,uc? with d, 21, -+ ,2q4 € Z>o, ki1,...,ka € Z>o
uniquely determined, we obtain the following representation of SZ-¢gMZVs, which is con-
sistent with Proposition 1.25,

87 T (mi = mi -1\ g
= X > H( ‘ >(1_qm)k

mi1>-->mg>0mq>-->mg>0 j=1 %
Also, when k1 > 1land z; =--- = 27 =0, i.e., W € U*', we observe

- t(W) ~SZ (v7\ _
lim (1 - )"0 ¢SZW) = (W) € 2.
By [8, Theorem 1.2], it is known that this limit exists (after possible regularization) for
all words W € U™ and is always element of Z. Moreover, SZ-¢gMZVs span Z,. This
justifies calling ¢MZVs as introduced in Definition 1.23 indeed g-analogues of MZVs.
For describing SZ-gMZVs algebraically, we need the following evaluation map.

Definition 1.27. We define the map CqSZ: QU)°® — Z, via
W (7 (W)
for every word W € U*° and extend it to Q(U)° by Q-linearity.

Similar to MZVs (see Proposition 1.12), SZ-¢gMZVs respect the product structure
induced by the stuffle product.

Proposition 1.28 ([41, Theorem 3.3]). The map (5% : (QU)°, %) — (Z4,-) is an
algebra homomorphism. In particular, for all Wi,We € Q(U)°, we have

¢ () - (57 (W) = 7 (W + Wy).

Besides the stuffle product, another fact on SZ-¢gMZVs makes it interesting to study
their structure. For this, we need the involution 7 from Definition 1.6. One can obtain the
following identity of gMZVs, e.g., using marked partitions (see Section 1.3 and Chapter 3).

Theorem 1.29 (Duality, [46, Theorem 8.3]). On Q(U)°, we have CEZ oT = gz.

Recall that 7 is an involution on Q(U/)°. The name of duality comes from the fact that
it looks very similar to MZV duality. Nevertheless, it is not the same in the sense that
it is an open problem to show that 7 and * imply MZV duality already. One approach
for the connection of 7 and 7 can be found in [13], where so-called connected sums are
used to prove both at once. As one can see from duality, the role of ug is special for the
map Cqsz. Hence, we introduce Z as the subalgebra of Z; generated by SZ-gMZVs of
words containing no uyg.

Definition 1.30. We define
Z, :=spang {CQSZ(W) ’W € (U\{uo})*} )

Note that the stuffle product is closed on Z; making (Zf;) ,*) indeed a subalgebra
of (Z,%). Besides the similarity between 7 and 7, a second connection exists between
SZ-gMZVs and MZVs. Namely, the structure of Z, seems to be similar to the one of Z
in the sense that ug’s seem to be 'unnecessary’, similar to Theorem 1.20 which stated
that u1’s in words are not needed to obtain a generating system of Z. More precisely,
we have the following.
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Conjecture 1.31 ([3, Conjecture 4.3]). We have Z, = Z;.

We will discuss this conjecture in Section 1.2 and Chapter 2 in more detail and give
new partial results.

Bi-brackets. Every quasi-modular form is an element of Z,. Therefore, gMZVs can
be seen as a generalization of quasi-modular forms. A model of ¢MZVs depicting this
property was introduced by Bachmann in his Thesis ([2]). The ¢MZVs in this model are
called bi-brackets.

Definition 1.32 ([3, Definition 2.1]). (i) For all integers d € Zxq, k1, ..., kq € Z>o,
and z1,...,24 € Z>0, the bi-bracket is g (8) :=1 for d =0 and for d > 0 it is

d.
klu"'akd o mj] J )
R B &

Bly .o Zd my>>mg>05=1 "I’

where Py is the k-th FEulerian polynomial,
k—1

PuX)i=(1-X)*3 h){".
n>0 '

Furthermore, we define

zero(l’ ’d> =21+ 24,

Zlye--s5”d
depth (klkd> =d,
Zly-+-52d

vvt<1 d) =k 4 kgt + za
Zly---52d

(ii) We define g(0) := 1, and for any d € Z~o and any k = (k1, ..., kq) € Z<,, we define
the bracket of k as
Mj)

d
gk):= > 1:[1

— m]
mi1>-->mg>0j q

Note that by Proposition 1.25, bi-brackets indeed are elements of Z,. Moreover, we
have!
ki,...,kq
Z, =
= o s (1)

Z;) :spanQ{g(k1,...,kd) ’ de 2207 k?j € Z~g (1 <3< d)}

kj € Z~o, d,Zj €Z20 (1 <jJ Sd)}

and

'n earlier works regarding (bi-)brackets such as [3], Z, was denoted by BD and Z by MD.
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Both, Z; and Z, are Q-algebras (with the usual product of g-series via multiplication)
as shown in [3]. Furthermore, note that every bracket is a bi-bracket since

I
ki,....kqg) =
g( 1, ) d) g<07’0>

for all ky,...,kq € Z~p.
Definition 1.33. (i) For (N,op) € {(Z,zero), (D, depth), (W, wt)}, n € Z, and for a

set S C Z,, we write
k
op ( ) < n} ns§s.
z

k
Fil} S := spang {g (z)

(ii) For S C Z4, Ny,...,N;,, € {Z,D, W} (m € Zy), and integers ni,...,n,, € Z, we
abbreviate

Fil1--Nn § .= () Fila; S.

Nn1,..sMm
J=1

In particular, we have Z; = Fﬂ% Z,. Similarly to duality, bi-brackets satisfy a relation
analogous to the duality relation (Theorem 1.29). For this, we introduce for every d € Z>g
the generating series

Xl,...,Xd> (k:lkd> 4l s
g( = Z g HXj] }/jj'
Yl,...,Yd k1 fog>0 Zlye--5”d j=1

215,220

Theorem 1.34 (Partition relation, [3, Theorem 2.3]). For all d € Z~o we have

g Xl?"'aXd o }/1++Yd7aY1+Y2;Y1
Yi,..., Yy Xg, Xg1—Xg,... . X1 — X )

Note that in the case d = 1, one can express the partitions relation with bi-brackets

of depth 1 as follows.

Corollary 1.35. For all k € Z~o and z € Z>o, we have

() =+(5)

The name of the partition relation comes from the combinatorial interpretation
of gMZVs as generating series of particular partitions, similar to what we will do in
Section 1.3. The partition relation comes from the invariance of the considered g-series
under transposing the Young Tableau of each partition.

Theorem 1.36 ([14, Theorem 14]). Under the translation of bi-brackets to the SZ-
model [48, Proposition 3], duality and the partition relation are equivalent.

In Section 1.4, we will need the following fact about bi-brackets.
Theorem 1.37 ([9, Theorem 1.7]). We have qd%Zj; C Z.

Using generating series of bi-brackets, Bachmann obtained the following explicit result
for depth 1.
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Proposition 1.38 ([3, Proposition 4.2]). For k € Zo, z € Z>o, we have

d k k+1
_ = 1 .
qdqg (z) k(z+ )g<z+1>

Using Theorem 1.37, the following is an immediate consequence of Proposition 1.38.

Corollary 1.39 ([3, Proposition 4.4]). For all integers k € Zsq, and z € Zxp, we
have g (]D € Z7.

Bradley—Zhao ¢qMZVs. Although the Multiple ¢-Zeta Values, introduced by Bradley
and Zhao, do not span Z, (but a proper subspace), we mention them here since they are
of importance for the theory of Multiple (¢-)Zeta Values. This is, for example, due to
the fact that they satisfy the same duality relation as Multiple Zeta Values.

Definition 1.40 (Bradley-Zhao ¢MZVs). For all words W = wy, ---ux, € U, the
Bradley-Zhao Multiple q-Zeta Value (BZ-gMZV) of W is defined as

BZ( ) Z qml(lﬁ—l) qmr(kr—l)

W) = .

! s T o (L= a1 =g

For W = 1, we set C};’Z(l) := 1. Furthermore, we consider fz as map QU)! — R

via Q-linear continuation.

Note that for all W € U*!, we have

lim (1 — )" P2 () = ¢(w).
q—1

Therefore, Bradley-Zhao gMZVs indeed are g-analogues of MZVs. In particular, they are
in the sense of Definition 1.23. Furthermore, Bradley-Zhao ¢MZVs are of interest since
a part of the structure MZVs have transfers.

Theorem 1.41 (BZ duality, [11, Theorem 5]). On Q(U)*, we have (P* o 7 = (P~

Le., BZ-gMZVs satisfy the same duality relation as MZVs (Theorem 1.18). We should
note that BZ-gMZVs do not span Z, as mentioned at the beginning of this paragraph
since, e.g., (4(u1; X) € Z, can not be written as a linear combination of BZ-¢gMZVs.

Remark 1.42. (i) If Conjectures 1.43 and 1.44 below are true, one can show (via
induction on the weight) that BZ-¢gMZVs satisfy the analogue of Theorem 1.20 in
the sense

spang { fZ(W) |we U*’l} = spang { EZ(W) |we (U\{uo,ul})*} .
(ii) However, BZ-gMZVs do not satisfy the analogue of Theorem 1.22, i.e.,
BZ *,1 BZ *
spanQ{ . (W) weldd } 2 span@{ ¢ (W)W e {uz,us} }
1.2 The algebraic side of Multiple g-Zeta Values considered
in Paper I

In this section, we introduce the work from Chapter 2 that considers ¢MZVs algebraically.
For this, we will focus on the conjecture that the stuffle product and duality already imply
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all linear relations among ¢MZVs. Motivated by this conjecture, we present formal
Multiple q-Zeta Values, similar as in [21]. These are algebraic objects satisfying the
stuffle product and duality by definition but not having linear relations among them
that are not implied by stuffle product or duality. We first present in Section 1.2.1
known results and conjectures about Z,. One of the most well-known conjectures is the
one by Bachmann that bi-brackets and brackets span the same space. Furthermore, we
present the main results of Chapter 2, which are partial results towards Bachmann’s
conjecture. In Section 1.2.2, we introduce and motivate the main ideas leading to the
proof of those new results.

Section 1.2.1 then is about various conjectures and known results about the structure
of gMZVs. As part of this thesis, we give new partial results in Section 1.2.2 for one of
the main conjectures (Bachmann’s Conjecture 1.49) among ¢MZVs and their structure.
Furthermore, we develop the main ideas for the proof, which will be given in Chapter 2.
These ideas, in particular, then lead to a refinement of Bachmann’s Conjecture 1.49.

1.2.1 Known statements about the algebraic structure of gqMZVs

This section will gather well-known results and conjectures about the structure of Z,.
One folklore conjecture is the following by Bachmann (see [1]) that can be found in [48,
Conjecture 1].

Conjecture 1.43 (Bachmann). All Q-linear relations among elements in Z, are ob-
tained by the stuffle product * and duality 7.

According to Conjecture 1.43, when investigating the structure of Z, (see Section 1.2.2
and Chapter 2), we will use the stuffle product and duality only. More precisely, we will
use relations only that are of shape

G52 (W1 (W — 7(W2))) = 0

for any words Wi, Wo € U™°.
Furthermore, the conjecture of paramount importance for this section and Chapter 2
is the following one by Bachmann.

Conjecture 1.44 ([3, Conjecture 4.3]). We have Filf’?;l\)}v 2, = Fil?jr\ilvw Z, for all inte-
gers z,d,w € Z>q.

We will use the SZ-model of ¢MZVs in Chapter 2. For this, we need the following
notation of formal gMZVs as introduced in [21].

Definition 1.45. The algebra of formal ¢MZV is

3 QU ),

a
where T is the *-ideal in Q(U)° generated by {7(W) —W|W € Q{U)°}.

Remark 1.46. Note that the notion of formal multiple Eisenstein series [7] exists,
which is equivalent to our notion but inspired by considering gMZVs as so-called multiple
FEisenstein series. In contrast, the definition of ZCJ; is inspired by considering ¢gMZVs as
Schlesinger—Zudilin gMZVs.

For a more detailed description of what we are doing, it will be necessary to have
filtrations by number of zeros, depth, and weight respectively on Z({ (and Q(U)°). We
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introduce them in the following definition. First, note that depth and weight are invariant
under 7, while the number of zeros, in general, is not as one may see, e.g., in the example

T(u) = ululg_l

for k € Zso. Therefore, we must be careful (compared to the analogous filtration
on Q(U)°) when defining the filtration by the number of zeros on Z({ . Recall that we
write U™° = U*\uold* for the set of words not starting with wup.

Definition 1.47. (i) For (N,op) € {(Z,zero), (D, depth), (W,wt)}, n € Z, and for
sets S C QU)°, §' C Z({, we write

FilY S := spang {W € U™° [ op(W) <n} NS,
FilY & := spang {C; (W) € Z({ |We U™, op(W) < n} ns'

for the filtration by number of zeros (if N = Z), depth (if N = D), and weight
(if N = W) respectively on S and S’ respectively. Furthermore, we define

zhe=Til§ 2.

(ii) For S ¢ QU)° or S C 2§, N1,...,N,, € {Z,D,W} (m € Zsg), and inte-

gers ni, ..., Ny, € Z, we abbreviate
AN
Filjl»-Nm S = (1) Filn! S.
j=1

Remark 1.48. Note that Zg ° is a subalgebra of Zg and that we can consider CEZ also
as map Z({ — Z4 due to Theorem 1.29. Furthermore, referring to the translation from
bi-brackets to the SZ-model (see [14, Theorem 13]), for all z,d, w € Z>q, we have
e (e 2l) =2\ 2,
We refer to the translation from bi-brackets to the SZ-model (see [14, Theorem 13])

to obtain the statement of Conjecture 1.44 written in the SZ-model, and strengthened
under consideration of Conjecture 1.43.

Conjecture 1.49 (Bachmann, Conjecture 1.44 strengthened). For all z,d,w € Z~g, we
have

AZDW o f ADW o f0
FilZ) 28 c R, 20

In particular, we have Zg = Zg’o.

Note that Conjecture 1.49 indeed is a strengthened version of Conjecture 1.44 by
definition of formal ¢gMZVs since they fulfill - by definition - no other relations than SZ-
qMZVs do, i.e., proving Conjecture 1.49 would imply a proof of Conjecture 1.44 directly.

In the following, we give an overview of known results regarding Conjecture 1.44 and
what their analogue regarding Bachmann’s Conjecture 1.49 looks like. First, we give the
statements using Bachmann’s model of bi-brackets since most of them originally were
stated in this model.
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Theorem 1.50. (i) [3, Proposition 4.4] For all k € Zsg, z € Z>¢, we have
k .1D,W o
g <Z> S8 D USRS

(ii) [3, Proposition 5.9] For all ki, ks € Zsq, we have
k1, ko k1, ko AD,W °
g ( 1.0 >a g < 0.1 € Filg} ki1 Z4-

(iii) [44, Theorem 5.3] For all ki, ko € Zso, 21,22 € L>o with ki + ka + 21 + 22 odd, we

have
k1, k
g( b 2) €2z,
21,22
(iv) [21, Theorem 6.4] For all ki, ... kg € Z~q, and for all 1 < j < d, we have
ki,....kj, ... kq AD,W o
g( 0,...,1,...,0 ) € F11d+1,k1+~~+k:d+1 ZQ'

As mentioned, we will rephrase these known results using the model introduced by
Schlesinger and Zudilin and the translation from [14, Theorem 13].

Theorem 1.51 (Theorem 1.50 rewritten). (i) For all k € Zsq, z € Z>¢, we have

£ 2 D,W :
G (ukug) € FILZY, ) Z{"'

(ii) For all ky, ke € Z~¢, we have

o

f f AD,W :
Cq (ukluoukz) ) Cq (uk1uk2u0) € Fll3,k1+k2+1 Zt{ .

(iii) For all ki,ka € Zso, 21,22 € Z>o with k1 + ko + 21 + 22 odd, we have that the
formal qMZV Ccf] (ugy ug ugyug?) is an element of ZCJ;’O up to lower weight terms in
depth 2 with at most z1 + zo zeros each.

(iv) For all ky,... kg € Z~o and for all 1 < j < d, we have

£ D,W :
Cq (Ukl S UL UQUR v 'de) S Fﬂd+1,k1+~~~+kd+1 Zgo.
For a translation of bi-brackets to the SZ-model, we refer to [14]. From there, the
lower weight terms mentioned in Theorem 1.51(iii) can be deduced explicitly.

1.2.2 Statement of results

We present in the following the main results of the work in Chapter 2. The first con-
tributes to the general idea of an approach to proving Bachmann’s Conjecture 1.49,
which is showing Cg (W) € Fﬂgero(w)—l Z({ for every W € U*° with zero(W) > 1. Further-
more, it generalizes results by Bachmann ([3, Proposition 4.4], see Proposition 2.21) and

Burmester ([21, Theorem 6.4], see Corollary 2.28).
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Theorem 1.52 (Theorem 2.6). Let be z,d € Z=o, k = (k1,...,kq) € Zio, and let
be 1 < j1 < jo < d. Deconcatenate k as

k(l;jl) = (kla SRR kjl)’ k(j1+1;j2) = (kj1+17 SRR ka): k(j2+1;d) = (kj2+1> SRR kd)
We have

f z Z,D;W
Cq (uku;n) (uk<j1+1;j2> * “k<j2+1;d>“0)) ZFﬂz sdts 2

where w = |k| + z. In particular, for all 1 < j < d, deconcatenating the index k
as k1) = (b1, .., kj-1), (kj, ..., kq), we have

£ ¢ 7.D,W
Z Cq (uk(l;j—l)ukjuo Uk Yo ) ZFllz sdtsw 2
0 nly>0

£j+~'~+€d=Z

Extending our methods used for the proof of Theorem 1.52, we observe the following
result.

Theorem 1.53 (Theorem 2.8). Bachmann’s Conjecture 1.49 is true for all triples of
positive integers (z,d,w) € Z3, with z +d < 6.

Remark 1.54. Note that Theorem 1.53 is indeed independent of the weight w. There-
fore, Theorem 1.53 is a generalization of Theorem 1.51(ii) and, in parts, a generalization
of (iii) and (iv) of the same theorem. We refer to Example 1.64 for a first example
regarding Theorem 1.53.

Theorem 1.53, e.g., will be proven in several steps. In this way, we obtain the following
conjecture that strengthens Bachmann’s Conjecture 1.49 (see Lemma 2.68 for proof of
this statement). To state it, we denote

— Fil%DW zf 1ZDW f
F.aw:=Fily L 20+ > Filig, Z
2/ +d'=z+d—1
0<z'<2

for all z,d, w € Zy.

Conjecture 1.55 (Refined Bachmann Conjecture, Conjecture 2.10). For all triples of
positive integers (z,d,w) € Z3,, we have

FilZ )V 2] CF.gu.

z,d,w
The following is a particular result regarding the refined Bachmann Conjecture 1.55.

Theorem 1.56 (Theorem 2.12). The refined Bachmann Conjecture 1.55 is true for
all (z,d,w) € Zsg with 1 < d < 4.

Together with Lemma 2.68, the impact of Theorem 1.56 is that one can prove Bach-
mann’s Conjecture 1.49 now almost for z 4+ d < 7 (extending Theorem 1.53) in the sense
that just the proof for (2,5, w) € Z3, of the refined Bachmann Conjecture 1.55 remains
to be done.
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1.2.3 Owur approach to the refined Bachmann Conjecture

In the following, we present our approach to the refined Bachmann Conjecture 1.55. In
general, we will use Q-linear relations only that are implied by

¢l (Wy x (Wo — 7(W2))) = 0 (1.56.1)
for any words Wi, Ws € U*°. At this point, note that

:1Z,D,W o :1Z,D;W o :1Z,D;W o
FilZDoV Q) « FiZSY, Q) c FiZD% L L Q)

and

(P2 Q) = Fl2Y, Q)

z,d,w w—z—d,d,w

for all z,2/,d,d",w,w’ € Z>o. Hence, considering (1.56.1), W; * Wo and Wy * 7(Wg) are,
in general, in different filtrations of Q(U)° regarding the number of zeros since, in gen-
eral z # w — z — d (we precise this observation in the following proposition). Therefore,
for given W € &*°, it is difficult to find the minimal z € Z>¢ such that C}; (W) € Fil% Z({.

Proposition 1.57 (Proposition 2.13). Let be Wi, Wo € U*° and write
2z = zero(T(W1)) + zero(7(W2)), di = depth(Wy), do = depth(Ws), w = wt(Wy1) + wt(Ws).
Then, for 0 < s < min{dy,ds}, there are uniquely determined
Linax{dy,ds}+s € spang {W € U™ | depth(W) = s + max{dy,da}}

such that

min{di,d2}

Wi *Wg = Z ‘Cmax{d1,d2}+8'
s=0

Furthermore, for all 0 < s < min{dy,ds}, we have
-12,D;W o
T (Cmax{dhdz}-ﬁ-S) S Fllz—s,max{d1,d2}+s,w Q<U> :

In particular, T <[’max{d1,d2}) is the part of T(Wy * We) having the mazimum number of
zeros and we have

min{dy,d2}
2,D,W
T(Wy % Wg) € Z Fllz_&max{dl’dz]’ﬂ’w QU)°.
s=0
Let us consider an example to point out the statement of Proposition 1.57.

Example 1.58 (Example 2.14). Choose Wy = ug, Wo = ujug, i.e., d = 2 in the notion of
Proposition 1.57. We have

Wi * Wo = ugus + uiug + uguiug + 2uiusus .
=Ly = £3

Observe

T(ﬁg) = U1UNUIUQUQ + U1UoUOUOUT T(£3) = U1UpUIUTIUQY + 2U1U,OU1UOU1.
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We see that 7(L2) indeed is the part of 7(ug * ujug) having the maximum number of
ZEeros.

Since - regarding Bachmann’s Conjecture 1.49 and regarding the refined Bachmann
Conjecture 1.55 - we want to 'reduce the number of zeros’, we often will be interested in
the part of the stuffle product only that has the maximum number of zeros. Therefore,
Proposition 1.57 motivates the definition of the box product that extracts this part of the
stuffle product.

Definition 1.59 (Box product, Definition 2.15). We define the Q-bilinear bozx prod-
uct B: QU)° x QU)° — Q(U)° as follows: For W; € U*° with depth(W;) = dj,
where j € {1,2}, we set

Wi B Wy := Emax{d1,d2}

in the notion of Proposition 1.57.
We continue Example 1.58 regarding the box product.
Example 1.60 (Example 2.16). Choose Wy = ug, Wo = ujuz. We have

Wi B Wo = ug B ujuz = usug + Uy,

which is exactly Lo of Example 1.58, i.e., after applying 7, one indeed obtains the part
of the stuffle product ug * ujus having maximum number of zeros.

We refer to Section 2.4 of Chapter 2 for a detailed investigation. Let us consider an
example of how the box product may help us concerning the refined Bachmann Conjec-
ture 1.55.

Example 1.61. Fix ki, ko, k3 € Z~o and set Wy := uwjug, Wo := ug, ug,ug,. Clearly, we
have C; (W1 W) € Filg;ﬁv Z,{’O C F15,w (where w := kj + ko +k3+2). Using 7-invariance
of formal gMZVs, we have, modulo Filf’g {UW Z({ ,

_ ~f ) ks—1 ko—1 k1—1

:Cq (ulul *ULUG® UIUGS  ULUg )

__ f ks—1 ko—1 ki1—1 ks—1 ko—1 k1—1 ks—1 ko—1 ki1—1

= Qq <u2u0 UUg™ UL U + ugug® Tuiug” U + uiug® “u2ug” uug )

_ f f

= (g (Uky Ugy UoUR;U0) + (g (Uky UUEy Uz U0) + (g (Uky UUEy U UL ) (1.61.1)

= ‘I’(’fl,kz,ks)(ulul U UL UL ),

where we set (see Definition 2.54 for a generalized definition), for all ¢;, {5, {3 € Z~y,

. ks—1 ko—1 k1—1
\Il(kl,k27k3) (uﬁ Uty Ug3) U Ut Uy Ut UgsUg -

We see in this way that the linear combination from (1.61.1) is an element of Fy 5,
already, although all the three words displayed there are in Filg’?’ {UW QU)°.

Example 1.61 shows that (non-trivial) box-products will be important. With the
notion of

P = spang {W1 B Wz | Wy, W € U\{uo})", Wi, Wa # 1} C QU\{uo})

(see also Definition 2.30), we obtain the following generalization of Example 1.61 which
is our main approach towards the refined Bachmann Conjecture 1.55.
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Lemma 1.62 (Lemma 2.56). Let be z = (24, ...,21) € Z%, such that u, € P. Then, for
every word W = uklugl_l ‘e ukdué‘rl with ki, ..., kg € Zsg arbitrary, we have

f :14,D,W
Gwye > FIED L2 CFoaw
1<s<min{z,d}

where z = zero(W) and w = wt(W).

Approach to the refined Bachmann Conjecture 1.55 in case z > d. In the
case z > d, the approach to the refined Bachmann Conjecture 1.55 melts down to inves-
tigate the box products. More precisely, with the notion of

.4 —spanQ{u“ lp ezl |ul = z+d}.
for all z,d € Z~g, we need to prove Conjecture 2.39 which claims in case z > d that
cJz,cl = gz,d n7p.

e., if the Conjecture 2.39 is true for z > d, then we obtain F11ZDWZf C F, 4. for
all w € Z~o immediately from Lemma 1.62. What is remarkable about thls approach is
that it is independent of w.

Approach to the refined Bachmann Conjecture 1.55 in case z < d. In the
case z < d, we will extend our approach towards the refined Bachmann Conjecture 1.55
since then, we conjecturally (see Conjecture 2.39) have 9, ;NP C J, 4. We will present
in the Outlook of Chapter 2 (Section 2.7) an approach that conjecturally works. To
prove our main results, we will not use this approach in its abstract form. However, we
will consider some Q-linear combinations of formal Multiple Zeta Values in Fil% C]?UYV Z({
explicitly that arise from stuffle products again.

More precisely, we fix z,d,w € Z>¢ with z < d in the following and assume that

for 2 < z,d < d, @ < w is proven already. Let us consider an example of such a linear
combination of formal ¢MZVs arising from a stuffle product we consider in case z < d
additionally to the ones from the approach for case z > d.

Example 1.63. Let be ki, ko, k3 € Z~¢ and denote w = ki + ko + k3 + 2 in the following.
First, we see that C; (ug * ug, g, Uk, ) € F1 3. Furthermore, we have

Gy (7(7(ug) * 7 (ug, ur,ur,)))
f

_ ks— ko—1 k1—1
—(:q (7‘ (uluo*uluo U Uy” UL Uy ))

= (T(l{:gugu’é‘"’ulug ululgl + kyuguls tuguPuguf

ks— k ki— ks—1  ko—1
+kouiug? uQu02u 1Ug" Ly Eruoug® ™ urug® T ug

+/~61u1uk3 luQu§2 1u1+k1u1u]5 u1u§2 1u2u’81)) mod Fy 3,

= K€l (why o Wi 100) + K2 Ch (Why Why 41y u0) + K2 Gl (wpy Whg 1 U0 Uk, )

+ 1 € (w1 Wk iy ) + K CE (g p1upy uouny) + k1 ¢l (why 41 w0ty ug, ) mod Fig .
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Le., the latter linear combination of formal gMZVs is in F; 3,,. In comparison to (1.61.1),
it stands out that the shape of the latter linear combination does dependent on (k1, k2, k3)
in the sense that the coefficients are not independent of (k1, k2, k3) and that occurring
words do not have the same non-ugp-letters in the same order. Nevertheless, all occurring

3
words g ug' upy ug’ up ug” satisfy K > kj and Zl(k; —kj)=1<2=d—z whenz=1
J:

and d = 3 denote the number of zeros and depth, respectively, of each of such words. We
will generalize this observation briefly in Section 2.7.

Let us consider a small example of how the proof of Theorem 1.53 works in case z < d
using the ideas described.

Example 1.64. Let be ki, ko, k3 € Z~g. Consider { (U, UoUR, UOUE,) € Filg:??l’uw z/

where w = k1 + ko + ks + 2. In the following, we prove that this formal ¢MZV is an
element of F := Fi 10’ D,W Zg + Fili’gq’uw Z({ C Fa34. Particularly, by Theorem 1.53(iv),
then it will be proven that C; (U, YUy UOULy) € Fll Zf’ . Note that this is not a
direct consequence of the known results (Theorem 1.53) since u, ok, UoUy, has depth 3
and more than one uy which will be also the case after applying 7 (if k1 + ko + k3 > 4).
In the following, we will use the calculation from Example 1.61 and similar ones. We
use T-invariance in each of the following steps to obtain

£ f ks—1, ko—1,  ki—1
Cq (upy vouR, uoULy) = (u1u03 Uguy® UUy' )

__ ks— ko— 1 kl—l ks— ko—1 ki1—1
= Qq (u1u1 * Uy u1u0 ) — Cq (u1 * U u1u0 U U )
+ C; (u;;ug“‘ 1u1u’52 Y ulgl 1) mod F

_ it f
=(, (uru * Up, Ugy Uky) — Cq (U1 * Uk, Uky Uk Uo)
f
+ (g (Uky Upy Upg U0 UO) mod F.

Now, the first two summands are in F since in the stuffle product, the number of ug’s
does not increase. Hence,

C; (U, U Ukey U ULy ) = C; (Ug, Uky Uz uoup)  mod F. (1.64.1)

Now, note that Cf (ugguouo) € F‘llng\;vJr2 Zf’ due to Theorem 1.51(i), i.e., we already
have ¢} (ug, up, * ug,uouo) € Fll Zf7 C F. Therefore, we have

¢l (e gy ug uouo)
= C; (uk1 Uy * uk3u0u0) - <£ (uks (uk’l Uy * UOUO))
— 3 (g Uy (g * Uot0)) — g (kg (g * U0U0)) — € (U, Ukyoks Uo o)

_f f ko— k-1 ks—1
:Cq(uklukz*uguo ) C((ug—i—ulul)*uluo u1u01 urug®” )

ko— ks—1  ki—1 ko— ky—1,, o ki—1
— Cq ((u2 + ujug) * ugug? u1u03 Uiy — Uk urug’ u1u03 2Ugp" )
f ko— k1+ks—1 katks =1, ki—1
-G ((UQ + ugug) * urug’ u1u01 3 ) Cq (u Uy BT uqugt ) mod F

_ f ks—1 £
=, (uklukz * Ug * U U ) — G ((u2 + urun) * upgug, ug, )
f f
- Cq ((UQ + ulul) * Uky Upg Ufy; — UL * uk2u0uk3uk1) - Cq ((UQ + ulul) * uk1+k3uk2)
— C; (u1 * uzu’82+k3_1u1u§1_1 — UpU * u1u§2+k3_1u1u’81_1) mod F

= Cé (Upy Uk * U2 * Upg ) — C; (U1 * Upy Uyt kg Uo) + C; (uru * Uk Uky+kg) mod F.
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The latter linear combination of formal ¢gMZVs clearly is in F. l.e., we have proven
that C (U, UoUky UoULKy) € F. Now, note the inclusion Fll%fwwz C Fl Zf’ (by

Burmester’s Theorem 1.51(iv)), we have C (Ukey U ULy UOUL5) € F11 Zf’ . Moreover,
due to (1.64.1), we also have shown that C (g, Uk, ugzuou0) € Fily ), WZﬁ

1.2.4 Outlook

Besides the connection of the box product with Z({ and its structure, the box product
seems interesting due to its straightforward definition. Nevertheless, it seems it did not
occur so far in the literature. In particular, for future work, it would be interesting to
investigate where the box product can be used, e.g., in combinatorics. Furthermore,
for future work, it would be of interest to understand the box product completely in the
sense that one could prove Conjecture 2.39 (and its refinement, Conjecture 2.58). Partial
results regarding Conjecture 2.39 will be presented in Chapter 2. Similar to Example 1.64
and Proposition 2.21, our approach to the refined Bachmann Conjecture 1.55 is usable
to derive explicit formulas for every (; (W) with W € U*° and zero(W) > 1 as linear
combination of (products of) elements in Zg ©.

1.3 The combinatorial side of Multiple g-Zeta Values con-
sidered in Paper 11

This section introduces the work that builds Chapter 3. It is the combinatorial view on
Multiple g-Zeta Values of this thesis. Section 1.3.1 introduces the notion of partitions
and Stanley coordinates needed in Section 1.3.2 to introduce marked partitions and
their connection to Multiple ¢g-Zeta Values. Furthermore, in Section 1.3.3, the results of
Chapter 3 are presented.

By using geometric series expansion, for appropriate a, 1 ¢ € Z>0, one obtains
Z Qn, k Zq
(1 o q n>0

for all positive integers m and non-negative integers k& and ¢. Therefore, every ¢qMZV,
seen as a formal g¢-series, is of shape

E mini—+---+mgng
le,...,mdq .
my1>-->mg>0
n1,...,ng>0

Hence, we can view the gMZV as the generating series of partitions, given in Stanley
coordinates (see Section 1.3.1), with multiplicities ¢, .. m,, depending on the several
parts maq, ..., mq of the partition, but not on their multiplicities nq,...,ng. This is part
of Section 1.3.2 and is mainly based on [14]. The main result of this section will be
Theorem 1.84 describing the stuffle product on the level of marked partitions and can be
found in Section 1.3.3.

1.3.1 Partitions and Stanley coordinates

This section aims to introduce Stanley coordinates as described in [42]. For this, we first
clarify what a partition of a positive integer is.
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Definition 1.65. Given a positive integer N. A partition A of N is a non-increasing
sequence (Ag, ..., A,) of positive integers summing to N, i.e.,

A > > A A=)\ =N.
j=1

For N = 0, the unique partition is A = ().

A visualization of a partition is given by the Young Tableau, also known as the Ferres
diagram. For a reference and more details, see [28].

Definition 1.66. Given a partition A\ = (A1,..., ) of N € Z~(y. The Young Tableau
of A is obtained by drawing, left aligned and each other, Aq,..., A, boxes to the right.

Example 1.67. Consider the partition A = (5,5,4,2) of N =5+5+4+ 2 = 16. Then,

is the Young Tableau of .
We need the following definition since we will describe 7 on a combinatorial level.

Definition 1.68. Given a partition A of some positive integer N. The conjugated par-
tition of A has the Young Tableau of A reflected at the diagonal as the Young Tableau.

Example 1.69. Take the partition A = (5,5,4,2) from Example 1.67. The Young
Tableau reflected at the main diagonal is the following.

Le., the conjugated partition of A is (4,4, 3, 3,2).

Next, we define Stanley coordinates of a partition. With those, one can describe the
conjugated partition very well; see Proposition 1.72 below.

Definition 1.70. Given a partition A = (A1,...,\,) of a positive integer N. Denote
by m; € Z~q the j-th largest value of A and by n; € Z~ the multiplicity of m; occurring
in A. Le., if A consists of d different integers, we have

d
my > - >mg >0, ijnj:N.
j=1
The pair of indices ((m1,...,mq), (n1,...,nq)) is called Stanley coordinates of the par-

tition N.

Example 1.71. The Stanley coordinates of the partition A = (5,5,4,2), considered in
Example 1.67, are

(m17m27m3) - (5)4-5 2)7 (77’17”27”3) - (27 17 1)
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In Stanley coordinates, it is easy to express the conjugated partition, as we will see
now.

Proposition 1.72. Given a partition A\ with Stanley coordinates (m,n) € Zio X Zio.
The conjugated partition of X\ has Stanley coordinates

((n1+"'+nd)nl+"'+nd—17"'7n1)a(mdamd—l*mdw"aml*m2))-

1.3.2 ¢gMZVs as generating series of marked partitions

As mentioned in the introduction of this section, we can interpret gMZVs as generating
series of partitions, particularly when considering their Stanley coordinates. In the fol-
lowing, we will extend Young Tableaus by marking rows and columns specifically, leading
to marked partitions as introduced in [14]. The first aim of the procedure is to interpret
Schlesinger—Zudilin ¢MZVs as generating series of specific marked partitions.

The following can be obtained using geometric series expansion and is a variation of
a statement from the proof of [25, Lemma 5.1].

Proposition 1.73. For any word W = ug ug' - - - ug,uy’ € U*°, we have

d
fwe 5 ([ ) (o) e
J

mi>->mg>0 \j=1 %
n1,..,1q>0
In the following, we introduce the marked partitions regarding the Schlesinger—Zudilin
model (see also Chapter 3).

Definition 1.74. Let A be a partition of N and denote by (m,n) € Z%, x Z2, the
Stanley coordinates of .

(i) If for k; rows of length m; are marked, we call k = (ki, ..., kq) the type of this row
marking. A row marking is called distinct if the lowest row for each length m; is
marked.

(ii) A distinct column marking of A is a d-tupel z = (21 +1,..., 24+ 1), such that (z4+
1,...,21 + 1) is a distinct row marking of the conjugate partition of \.

(iii) We identify a pair (k;z) of such distinct row and column markings with the
word W = ug,ug' - - ug,uy’ € U*° and call the pair (k;z) of such distinct markings
for short a W-marking of \.

(iv) For W e U™°, let be MPy the set of marked partitions with marking W. The set of

all marked partitions is MP = |J MPy.
weu*,o

We visualize row markings with a coloured dot to the left of the row. Analogously, a
column marking is visualized with a coloured dot on top of the column that got marked.

Example 1.75. A marked partition of type ujuguouszuguy is

o o o o 0 o
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We can describe the combinatorial interpretation of Schlesinger—Zudilin ¢gMZVs as
follows.

Lemma 1.76 ([14, Proposition 17]). Given a word W € U*°. Then, §§Z(w) is the gener-
ating series of marked partitions of type W, i.e.,

Sy = 3 M.

XeMPy

In [14], one obtains a remarkable fact by considering a marked partition and its
conjugate (when row markings become column markings and vice versa).

Lemma 1.77. Given a word W € U*°. The marked partitions of type W are in one-to-
one correspondence with marked partitions of type T(W). An explicit bijection is given by
conjugating the Young Tableaus together with the markings.

Since conjugation does not change the partitioned number, Lemma 1.77 gives directly
that the corresponding generating series are the same.

Corollary 1.78 ([14]). Duality already follows from the one-to-one correspondence of
marked partitions of type W and marked partitions of type T(W) for any W € U™° as
described in Lemma 1.77.

Remark 1.79. In this way, we have a combinatorial proof of duality, Theorem 1.29.
Remarkable about this proof is that it is not only based on the fact that the (integer)
coefficients in CEZ (W) and (l?z (T7(W)), for any W € U™°, are the same, but also gives them a
combinatorial interpretation as the number of specifically marked partitions from which
we constructed a one-to-one correspondence. This way, this proof is more profound than
the standard ones using, e.g., a rearrangement of sums.

1.3.3 Stuffle product described with marked partitions

In the following, we provide the main result of [15] which is Chapter 3. It consists
of a combinatorial description of the stuffle product (for Schlesinger—Zudilin ¢MZVs)
using marked partitions. The idea for this is slicing two marked partitions into their
horizontal blocks (a horizontal block of a (marked) partition is the union of all rows of
the corresponding Young Tableau having a given length) and "glueing" them together to
a new marked partition, in some way we will present now.

Definition 1.80 (Definition 3.5). The map ®: MP x MP — MP is defined as follows:
Given marked partitions p; of N and p3 of Na, then p = ®(p1, p2) is the marked partition
of N1 + N, obtained by the following rules:

(i) We set ®(0,p3) := pz and ®(p1,0) := p1.

(ii) The Young Tableau of p is obtained by cutting the Young Tableau of p1 and p3
horizontally below the rows containing corners into their horizontal blocks and
glueing them (horizontally again) together to a new Young Tableau. If both, py
and Pz, have horizontal blocks of same length, the ones of p; will occur above the
ones of ps in the new partition.

(iii) Keep the markings of the rows.

(iv) If there was a marking in the j-th leftmost column of p; or py, the j-th leftmost
column of p will be marked as well.
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Remark 1.81. Note that the map @ is associative but not commutative. The underlying
Young Tableau of ®(p1,p2) is the same as the one of ®(ps,pr) and also the column
markings match. However, the row markings, in general, do not if p; and ps have
horizontal blocks of the same length.

Example 1.82 (Example 3.7). Consider the following pair of marked partitions.

P1 D2

° ° [T 1]

First, we slice them into their horizontal blocks.

°
o

(TIITITIT]

°

o

Following the definition of ®, we obtain ®(py, p2) after sorting the horizontal blocks
as the following marked partition:
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Horizontal blocks ordered

° o ° ° °
[l [TTTTTITT]
ooo ° ° @(]/)T?Z’)E)
e o o ° e o o
. . |
°
° o °
°
° o ° °
° °
(<] —)O
° o
°o o °
°
°

Definition 1.83 (Definition 3.8). (i) For Wy, Wa, W € U™°, we set my, wow € Z>o to be
the multiplicity of W in Wy * Wo, i.e., to be the unique integer satisfying

w1 * w2 = Z mw17w2;ww.
weu*:°

(ii) For Wy,We,W € U*° and p € MPy, we define

mwl’w%ﬁ:: # {(ﬁ?@) € MPW1 X MPWz ’ q)(ﬁvﬁa) :ﬁ} :

Note that, for fixed Wy,Wo € U™°, almost all my, w,.w are zero. The main result now
is how the stuffle product can be interpreted combinatorially using marked partitions.

Theorem 1.84 (Theorem 3.9). Consider words Wi, Wy, W € U™°. For all marked parti-
tions p € MPy, we have

iy izip = 1L W2 -

In particular, given Wy, Wa, my, Woip only depends on the word W but not on the marked
partition p € MPy.

The proof of Theorem 1.84 is provided in Chapter 3. It uses mainly a combinatorial
argument for obtaining a recursion of the numbers m, Wop that will be a similar recursion
as one can obtain for the numbers my, y,.w using the stuffle product (which can be found
in Lemma 3.12). The new aspect of Theorem 1.84 is that it provides a combinatorial
and deeper understanding of the stuffle product than it was known so far.

1.3.4 Outlook

After this short introduction to marked partitions, we will briefly examine how marked
partitions can be used for other aspects of the algebraic structure of (¢)MZVs.
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Both duality and the stuffle product are now understood on marked partitions.
Referring to Conjecture 1.43, conjecturally, every linear relation among (Schlesinger—
Zudilin) ¢gMZVs now can be described using marked partitions.

Nevertheless, the structure of marked partitions has yet to be understood entirely
regarding the linear relations among ¢MZVs. For future study, it will be interesting if
one can make progress in proving Conjecture 1.49, e.g., using marked partitions. The
main idea is that, for fixed W € U*° with zero(W) > 1, one can find for every integer N
a bijection from the set of marked partitions of N of type W to a particular (union of)
set(s) of marked partitions of N of type W satisfying W € U*° and zero(W') < zero(W).

1.4 The analytic side of Multiple g-Zeta Values considered
in Paper 111

This section introduces the paper [12] that builds Chapter 4, which contains an analytic
perspective on Multiple g-Zeta Values. As mentioned at the beginning of this chapter,
quasi-modular forms are particular gMZVs via their Fourier expansion. Similarly, one
can consider every Multiple g-Zeta Value as Fourier expansion of a function on the upper
half plane H := {z € C: Im(z) > 0} via setting ¢ = €?™7 for 7 € H. A common
strategy for investigating g-series, also for their algebraic structure, is considering their
asymptotic expansion. We will do this in Section 1.4.1 for several ¢MZVs and give
ideas for an approach for general gMZVs. Such asymptotic expansions are of particular
interest since the coefficients often are linear combinations of MZVs, i.e., every Q-linear
relation among gMZVs will give several Q-linear relations among MZVs. The results of
Section 1.4.1 were obtained jointly with H. Bachmann, J.—W. van Ittersum, and N. Sato.
Furthermore, when considering particular sums of gMZVs such as

> S (uf),

d>0

one obtains the well-known generating series of partition numbers that has an expression
as Euler product. W. Bridges, B. Brindle, K. Bringmann, and J. Franke studied the
asymptotic expansion in detail for a large class of them using Wright’s Circle Method
which we briefly introduce in Section 1.4.2. We will present in Section 1.4.3 the main
results of this work, which is Chapter 4.

1.4.1 Asymptotics of ¢MZVs

First, recall from Section 1.1.4 that for every bi-bracket G = 9(2’:::’53) multiplied

with (1 — ¢)¥, where w := k1 + -+ + kg + 21 + - -+ + 24, the limit ¢ — 1 exists (af-
ter possible regularization), due to [8, Theorem 1.2]. Then, for ¢ = e~!, we want to
describe the asymptotic expansion

1
GNa_wt—w+ > ant"™ (t—0),

n>—w

where a_,, is the limit mentioned above. A naive guess is that the coefficients a,, are linear
combinations of Multiple Zeta Values of lower depth and mixed weight. That a_,, € Z
is already known from [8, Theorem 1.2]. We refer to Lemma 1 and Proposition 1 of [48]
for partial results on the asymptotic behaviour of bi-brackets. Another approach can be
deduced from Zagier’s work [45]. The following statement ([45, Eq. (48)]) is the basis for
Lemma 1.86.
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Proposition 1.85. Setting g = e~t, for all z € Z~q, we have

1 z+1 C(z+1 1 B, B _
g( ) =g< >~(tz+1)_Z'Z(—1)T+ZTWtT ! (t —0),
T r=0

z 0 rl r+z

where By, denotes the mth Bernoulli number.

—t

By noting that qd% = —% for ¢ = e7*, we obtain the asymptotic expansion of most

bi-brackets in depth 1.

t

Lemma 1.86. Let be k,z € Z~ satisfying z > k — 1. Setting g = ™", we have

k 241\ (z—k+2) 1 v Big 1
9<z> g(k—l) Gonr e O e

T | BB
1 r+z—k+1 + r+kDr+2z41 n t )
+(k:—1)!z!§]( ) e Y E—— (t=10)

For an investigation of the asymptotic behaviour of bi-brackets, in depth 1, the
case z = k — 1 remains to be considered. For this case, we recall the definition of
bi-brackets in depth 1. When setting ¢ = ™!, we have

) T AT g
11 Z (mt)zw (1.86.1)
I = (1 —e-mt)k e

Now, since Pj(X) has no zero in X =1 for all k € Z~(, we have a pole of order k — 1
if z =k — 1. Defining

z P -t
f(k,z)(t) =t (1k—(2t))k’

we are interested in the asymptotic expansion of

9(k,z) (t) = Z f(k,z) (mt)

m>0

For z = k — 1, note that f(; ,—1)(t) has a single pole in ¢t = 0, i.e., it has, near ¢ = 0,
asymptotic development

Ft) ~ Y but” (1.86.2)
n=-—1
for appropriate b, € R. We make use of the following result due to Zagier.
Lemma 1.87 ([45, Proposition 3]). If
f)~ 3" bt (t—0),
A>—1
then we have

o) = 3 flmt) ~ % (bllogi + 1;) 3 bC-NE (- 0).

m>0 A>—1
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Here, I; denotes the integral

= —-b 7etd
I*: t — t.
f /O f() 1t

Therefore, Lemma 1.87 gives, together with (1.86.2), the desired asymptotic develop-
ment for ¢t — 0 of g(kﬁl) (when setting ¢ = ™) already when knowing the coefficients b,
n (1.86.2).

Lemma 1.88. For every k € Zso and t € R\{0}, we have
( k ! i n-i-k n+k71
—1)! (n+ k) n' ’

In particular, we have this expression as asymptotic behaviour as t — 0.

frr—1(t) =1t~

Proof. Using one of the fundamental properties of Eulerian polynomials, we find

Py(e™) 1 ( d)’” 1

Q—ef  (k—1!\ dt) e—1

1 AN*1& B, .,
RS (_dt) 2t

n=0

implying the lemma after multiplication with t*~1. O
For the asymptotic behaviour of g(hk_l)(t), it remains to compute I}k(k e

Lemma 1.89. We have
o0 et
Fk—1) /f(kk n(t —*dt— Op>1Hg—1 + 7,
0

where Hy_1 denotes the (k — 1)st harmonic number and ~ the Euler constant.

Sketch of the proof. We have

d\F et et A2 (p 1 .
b (YT S (e
dt ( ) t ; J

Hence, we obtain

—t k=2  _4k—j—2 k-1 k-1 —t
e e tk—J t d 1 e
fe-1y(8) = == = Z(k_j_2)!+(k_l)! <_dt> [et—l _t] '

This leads to

" _ 1 T/ dV ] 1 ot
If(k,k—1) —5k>1Hk—1 + W /t <_dt) ﬁ _ T dt,
0

where Hj_q denotes the (k — 1)st harmonic number. Integrating by parts leads to the
recursion

o0 d k—1 1 e—t o0 d k—2 1 e—t
k-1(_ 9% _c _ _ k=2 ( _ % _ -
/t ( dt) let -1 t ] dt = (k 1)/t < dt) et —1 t di,

0 0
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yielding

[e.o]

d k—1 1 e—t
k—1 _
/t (_dt) [et—1 -< 1 dt = (k — 1)l

0

In particular, we conclude

Iy = Oks1He1 +7,
proving the lemma. O

Using Lemmas 1.87, 1.88, 1.89, and ((—n) = (—1)"% for nonnegative integers n,

we obtain now the asymptotic behaviour of g ,—1)(t) as t — 0.

Corollary 1.90. For all k € Z~¢, we have, ast — 0,

log §  Oks1Hi 1+ T Btk n+1 k1
ik -1y () ~ — =+ ; 1 Z CENSICESY] (=)

With (1.86.1), we obtain the asymptotic expansion of g (kﬁl)

t we have, ast — 0,

k log 1 Op>1Hp—1 + g Bnir  Bpit
~ —)™.
g(kz—l) = DF T (k= D) —1'22 CEICES AR
Therefore, the depth 1 case of bi-brackets is done. For higher depth, one approach

is to use [17, Theorem 1.4]. The challenge there is computing integrals such as I}k in a
generalized way. This is current research and is left as an open problem.

Corollary 1.91. For all k € Z~q, when setting g = e~

1.4.2 The Circle Method

Another way to consider gMZVs is in viewing them as g-series and investigating the
asymptotic of the coefficients as the exponent tends to co. One will do this using Wright’s
Circle Method. We briefly introduce here the Circle Method which is a tool from com-
plex analysis used in analytic number theory and combinatorics to better understand
properties of sequences. We find asymptotic formulas for a general class of partition
functions, see Sections 1.4.3 and 4.1.6. This is also for the study of gMZVs of interest
since every gMZV is the generating function of a class of marked partitions, as presented
in Section 1.3.

Suppose that a sequence (¢(n))nen, has moderate growth and the generating function

F(q) =Y c(n)q",

n>0

is holomorphic in the unit disk with radius of convergence 1. Via Cauchy’s integral
formula one can then recover the coefficients from the generating function

c(n) = i/ F@,. (1.91.1)

2mi Je qn+1

for any simple closed curve C contained in the unit disk orientated counterclockwise.
The so-called Circle Method uses the analytic behavior of F'(¢) near the boundary of the
unit circle to obtain asymptotic information about ¢(n). In fact for “nice” examples this
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method is automatic and there is a long history for example with the Prime Number The-
orem. For instance, if the c(n) are positive and monotonically increasing, it is expected
that the part close to ¢ = 1 provides the dominant contribution to (1.91.1) (Tauberian
Theorems then show this). This part of the curve is the major arc and the complement
is the minor arc. To obtain an asymptotic expansion for ¢(n), one then evaluates the
major arc to some degree of accuracy and bounds the minor arc. Depending on the
function F'(q), both of these tasks present a variety of difficulties.
In Chapter 4, we are interested in infinite product generating functions of the form

1
F(Q)ZHW

n>1

Such generating functions are important in the theory of partitions, but also arise, for
example, in representation theory. If the Dirichlet series for f(n) has a single simple
pole on the positive real axis and F is “bounded” away from g = 1, then Meinardus [36]
proved an asymptotic expression for ¢(n). Debruyne and Tenenbaum [24] eliminated
the technical growth conditions on F' by adding a few more assumptions on the f(n),
which made their result more applicable. The main results of Chapter 4, Theorems 1.93
and 1.94, yield asymptotic expansions given mild assumptions on f(n) and have a variety
of new applications.

1.4.3 Analytic behaviour of g-series studied with the circle method

A particular connection of gMZVs to the partition functions is given in the following
lemma, which can be found, e.g., in [3] or [14].

Lemma 1.92. Denoting by p(n) the number of partitions of n, one has

1

> GHuh) = 3 pma =TT —

n
d>0 n>0 n>1 q

(1.92.1)

In [30], Hardy and Ramanujan used (1.92.1) to show the asymptotic formula

1 n
p(n) ~ e™v 2?, n — 0o,
4/3n

which gave birth of the Circle Method. Using modular transformations, one can describe
with high precision the analytic behaviour of the product if g is near a root of unity. One
further sees directly from the infinite product that dominant singularities occur at such
roots of unity with small denominator. These ideas culminate in Rademacher’s exact
formula for p(n) [39].

With Theorem 1.93 we find, for certain constants B; and arbitrary N € N,

n 44/3n

p(n) 1+§:£§+0N (nNa“))

j=1M2

Similarly, one can treat the cases for k-th powers (in arithmetic progressions), see [24].

The main goal of Chapter 4 (which is [12]) was to prove asymptotic formulas for a
general class of partition functions. To state it, let f : N — N, set A := N\ f~1({0}),
and for ¢ = e= % (z € C with Re(z) > 0), define

Grz) = Y ps(n)g" = ] ——

n>0 ns1 (1= gn)/ ™ =
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We require the following key properties of these objects:

(P1) All poles of Ly are real. Let o > 0 be the largest pole of Ly. There exists L € N,
such that for all primes p, we have |A\ (pNNA)| > L > §.

(P2) Condition (P2) is attached to R € RT. The series L (s) converges for some s € C,
has a meromorphic continuation to {s € C : Re(s) > —R}, and is holomorphic on
the line {s € C: Re(s) = —R}. The function L}(s) := I'(s)((s + 1)Ly(s) has only
real poles 0 < « := 71 > 72 > --- that are all simple, except the possible pole
at s = 0, that may be double.

(P3) For some a < 7, in every strip 01 < 0 < 02 in the domain of holomorphicity, we

uniformly have, for s = o + it,
Ly(s) = Ogy (M), [t = o0.

Note that (P1) implies that [A\ (B(NNA)| > L > § for all b > 2. The analytic properties
of Ly are a major ingredient needed to prove the following theorem, as analytic contin-
uation in (P2) gives rise to asymptotic expansions of 2 Log(G(z)) and (P3) assists with
vertical integration.

Theorem 1.93 (Theorem 4.5). Assume (P1) for L € N, (P2) for R > 0, and (P3).
Then, for some M, N € N,

C o M o N Bj —min{ 2L- _E_
pr(n) = ﬁexp (Alna+1 +j§2Ajn J) (1 +]~§nﬁj +OLR (n {2<a+1> aH})) ,
where 0 < apy < ap—1 < ~rag < a1 = O%H are given by® L (defined in (1.93.1)),
and 0 < B2 < B3 < --- are given by M + N, where M and N are defined in (1.93.2)
and (1.93.3), respectively. The coefficients A; and B; can be calculated explicitly; the
constants Ay, C, and b are provided in (1.93.4) and (1.93.5). Moreover, if « is the only
positive pole of Ly, then we have M = 1.

With the notation of Theorem 1.93, we define

1 w1
L= Pr+ Y. ( - 1) No, (1.93.1)
a+1 ePn a+1
o pw+1 R+«
M = No+ = > ( — 1) No | N {0, ) , (1.93.2)
a+1 ( = a+1 a+1
K R
N = ;bjej b, K € No,gj € (—ﬁ) N (0, a—i—l) . (1.93.3)

We set, with w, := Ress—q Ly (s),

Avi= (14 2) @l @+ gl + 1)),

, L1 .0 (1.93.4)
o o €70 wal (o + ¢(a+ 1) "=
o 2r(a+1) ’

2Throughout we use the principal branch of the logarithm.

3We can enlarge the discrete exponent sets at will, since we can always add trivial powers with
vanishing coefficients to an expansion. Therefore, from now on we always use this expression, even if the
set increases tacitly.
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_1—Lf(0)+%
B a+1 '

b: (1.93.5)

We will provide the proof of the Theorem 1.93 and several examples in Chapter 4.
The second main result of Chapter 4 is the following theorem giving the asymptotic
expansion in the case that L; has exactly two positive poles.

Theorem 1.94 (Theorem 4.29). Assume that f : N — Ny satisfies the conditions of
Theorem 1.93 and that Ly has exactly two positive poles o > (3, such that ”Tlﬁ <a<
%5 for some £ € N. Then we have

C _a _B_ s (k=18 k=2 o_
pf(n) =— exp (A]_TLO‘JA + A2na+1 + Z AkTL P e +2—k
n k=3

My
B_j —min{ 2Lz ,L
X (1+ZM+OL,R (n {2(a+1) o+l )) , (n — 00),
7j=2
with

A1 = (wal (o + 1)C(a + 1)) 51 <1 + 1) , Ay = wpl(A)C(B+ 1) ,

a (wal (@ + 1)C(a + 1)) a1

and for all k > 3

1 . .

ot 4 —a m K. .. Ke
A = K + 1 Z Z .. . #
@ m=t N ogjigesm D J2e 0t H

€y
Jit...+je=m
j1+2j2+...+£jg=k71

ey () % o\ R
2 m OSJIaJESm j17j27"'7jf C“+1

1
Jit...+je=m
j1+2j2+...+fjg:k—2

Here, C and b are defined in (1.93.4) and (1.93.5), the vj run through M + N, the K;
are given in Lemma 4.28, and c1, co, and c3 run through (4.27.4).

1.4.4 Outlook

(i) An example of Theorem 1.93 is given in Theorem 4.4 where we studied the asymp-
totic behaviour of the finite-dimensional representation of so(5) which is closely
connected with the corresponding Witten zeta function (5. A more detailed
study of (y(5) and the proof for Theorem 4.4 is provided in Section 4.5.

(ii) Furthermore, since gMZVs, in general, do not have an Euler product representa-
tion, Theorem 1.93 gives the asymptotic expansion of particular (infinite) sums of
gMZVs only, such as in (1.92.1). Therefore, obtaining the asymptotic expansion for
general ¢gMZVs is an open problem. Nevertheless, the Circle Method has turned
out to be a powerful tool in answering such questions over the last decades. This
is why studying the asymptotic of ¢MZVs using the Circle Method gives rise to a
research project for the future.

(iii) Solving the open problem of finding the asymptotic expansion for all ¢MZVs can
help answer the question of which (Q-linear combinations of) ¢MZVs are (quasi-)
modular forms.
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1.5

Conclusion

This section briefly considers how our perspectives to gMZVs are connected.

i)

iii)

Our combinatorial approach described in Section 1.3 is directly connected with
the algebraic one from Section 1.2. Both duality and the stuffle product are now
understood on marked partitions. Referring to Conjecture 1.43, conjecturally, ev-
ery linear relation among (Schlesinger—Zudilin) ¢MZVs now can be described us-
ing marked partitions. This opens the door to various new research projects; it
would be interesting to translate several (folklore) conjectures about the algebraic
structure of ¢gMZVs into terms of marked partitions. For example, Bachmann’s
Conjecture 1.49 would be of interest to consider on the level of marked partitions.
It states - roughly speaking - that every (Schlesinger—Zudilin) ¢gMZVis linear com-
bination of generating series of marked partitions as considered where only row
markings (resp. only column markings when using duality) are allowed. Hence,
for proving Conjecture 1.49, one has to deal with particular bijections (that has to
be discovered yet) among several sets of marked partitions, similar to the problem
of describing the stuffle product. One approach could be to translate the refined
Bachmann Conjecture 1.55 into the “language” of marked partitions.

In general, the analytic study of Multiple ¢-Zeta Values is of interest since the
coefficients occurring in such asymptotic expansions often (maybe always; this is
current research) are Q-linear combinations of Multiple Zeta Values. Hence, by
comparing coefficients, a relation among Multiple g-Zeta Values gives a set of Q-
linear relations among Multiple Zeta Values. In this way, the analytic study of
Multiple g-Zeta Values has an impact on the algebraic study of Multiple Zeta
Values.

Another aspect of the analytic study of Multiple g-Zeta Values is the connection to
quasi-modular forms since every quasi-modular form is a (linear combination of)
Multiple g-Zeta Values via their Fourier expansion. To study this connection, it
is often helpful to consider ¢gMZVs as multiple Eisenstein series, introduced in [2].
For more details on multiple Eisenstein series, we refer to the works [2, 3, 4, 5, 6, 7,
22]. Note that there is also another connection of quasi-modular forms and MZVs,
conjectured by Broadhurst and Kreimer, see [18] for details.
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Abstract. In 2015, Bachmann [2] conjectured that the Q-vector space Zg of (formal) ¢-
analogues of Multiple Zeta Values (¢MZVs) is spanned by a very particular set compared
to known spanning sets. This work proves that this conjecture is true for a subspace
of Z({ spanned by words satisfying some condition on their number of zeros and depth.
According to this partial result, we give an explicit approach to the whole conjecture
based on particular Q-linear relations among formal Multiple ¢-Zeta Values, which are
implied by duality.

2.1 Introduction

Given a field F' and a countable set A, we call A also an alphabet and elements of A
are referred to as letters. Denote by spanyp A the F-vector space spanned by elements
of A. Furthermore, monomials of elements in 4 (with respect to concatenation) are
called words. Usually, the neutral element with respect to concatenation is denoted by 1
and called the empty word. Let A* denote the set of words with letters in A, then we
write F'(A) for the F-vector space spany A*, equipped with the non-commutative, but
associative multiplication, given by concatenation.

Choosing F' = Q and A =U = {u; | j € Z>¢}, we define the stuffle product to be
the Q-bilinear map *: Q(U) x QU) — Q(U) recursively via

Wi, Wy * wjoWo = wj, (W1 * wg,Wa) + wj, (wg, Wy * Wa) + wj, 1, (W1 * Wa)

for all j1,j2 € Z>0 and Wy, Wy € U* with initial condition 1 *W =W 1 = W for W € U*.
By Hoffman’s work [7], (Q(U),*) is an associative and commutative Q-algebra. For a
word W = wy, ---ug, € U*, we often write ux (ug := 1), where k = (ki,..., k), and
associate the notion of

length, len(W) :=len(k) :=r,

depth, depth(W) := depth(k) := #{k; #0 |1 <j <r},
number of zeros, zero(W) := zero(k) :=#{k; =0]1<j <r},

weight, wt(W) := wt(k) := |k| + zero(W),

where |k| := k; + -+ + k,. Furthermore, we denote U*° := U"\uold* to be the set of
words not starting with ug and we define the corresponding Q-vector space Q(U)° C Q(U)

Benjamin Brindle
benjamin.brindle@uni-hamburg.de

Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany



46 Chapter 2. Paper I: On the relations satisfied by Multiple g-Zeta Values

spanned by the words from U*°. Note that Q(U/)° is closed under * which gives rise to
a commutative Q-algebra (Q(U)°,*) (see [7]). The map CQSZ: (QU)°, %) — (Q[q],-)
is the Q-algebra homomorphism (see [8]) defined via CEZ(I) = 1, Q-linearity, and,
with mgy1 := 0,

d miks
SZ z L m; — Mj41 — 1 q'"i%i
S upud ity = S]] ( iy >(1 — Y (2.0.1)

my>->mg>0j=1

for any ki,...,kq € Zso and z1,...,2q € Z>o where d € Z~( (note that this definition
is not the usual one, like in [11], but equivalent to it; this statement can be deduced,
e.g., from [5, Theorem 2.18]). We denote by Z, the image of CSZ and call elements in Z,
(Schlesinger—Zudilin) qMZVs ((SZ-)gMZVs for short). Note that these g-series are g-

analogues of Multiple Zeta Values since in the case ky > 2 and 2y = --- = zg = 0, we
have

. 1

h_%(l o q)k1+ +kd§,§z(w~c1 - ukd) — C(ulﬁ .. 'ukd) = Z T

q mi>>mg>0 M1 My

But in this work, we focus purely on the algebraic structure of (SZ-)gMZVs and do
not consider its implication for classical Multiple Zeta Values. Over the years, several
versions of gMZVs were introduced (see, e.g., [3, 4, 9, 10, 14]); for an overview, see [5].
Because of Conjecture 2.1 and since the g-series on the right of (2.0.1) is invariant under
the Q-linear involution 7 : Q(U)° — Q(U)°, defined by 7(1) := 1 and

T (ukluél o uk’dugd) = u2d+1u’5d*1 e u'zl-i-lulgli1

for all d € Zso, k1,...,kqg > 1, and z1,...,24 > 0 (see [13, Theorem 8.3]), we will
consider the algebra of formal gMZVs,

Zf = (Q<u> 7*)/117

q

where T is the *-ideal in Q(U)° generated by {7(W) —W|W € Q(U)°}. For W € Q(U)°, we
set C; (W) to be the congruence class of W in Zg . Note that depth and weight are invariant
under 7 while the number of zeros generally is not. Furthermore, playing with 7 and
the stuffle product *, one obtains non-trivial Q-linear relations among formal ¢MZVs.
The following folklore conjecture (see [1]; a published version can be found in [14, Con-
jecture 1]) states the expectation of how the Q-linear relations among SZ-gMZVs look
like.

Conjecture 2.1 (Bachmann). All Q-linear relations among elements in Z, are obtained
by the stuffle product * and duality T.

Le., one expects Z, ~ Z({ . We will consider in this paper only Q-linear relations
in Z({ which are implied by
¢h Wy x (Wo — 7(W2))) = 0 (2.1.1)
for any words Wi, Ws € U™°. For investigating Zg in more detail, we need the following
notion of filtrations.
Notation 2.2. (i) For every (N,op) € {(Z,zero), (D,depth),(W,wt)}, n € Z, and
sets S C QU)°, S’ C Z({, write

FilY S := spang {W € U™° | op(W) < n} NS,
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FilY & := spang {C; (W) € Z({ |WelU™°, op(W) < n} ns'

for the filtration by number of zeros (N = Z), depth (N = D), and weight (N = W)
respectively on S and S’ respectively.

(ii) For S € QU)° or § C Z,{, Ny,...,N;,, € {Z,D, W}, where m € Zsq, and for
integers ni,...,ny, € Z, we abbreviate

N1 Mm

m
FilY1--Nm § .= () Fil,! S.
j=1
The following particular filtration will play a main role in this paper.
Definition 2.3. We define
f,O -— 7Z f
Z,° = Fily Z;.

At this point, note that

FilZ )V Q)° « FIZY, Q) c FIZON, 4w QU)° (2.3.1)
and
r (P2 Qu)?) = Py, L o) (2.3.2)

for all 2,2/, d,d',w,w" € Z. Hence, considering (2.1.1), Wy * Wy and Wy * 7(Wy) are, in
general, in different filtrations of Q(U)° regarding the number of zeros since we have,
in general z # w — z — d. Therefore, for given W € U*°, it is difficult to find the
minimal z € Z>( such that {}; (W) € FilZ Z({.

Let us consider a small example of how we use Q-linear relations of shape (2.1.1) to
obtain that, e.g., C; (W) € Z({’O for W = ugug € U*°. First, we note that

U2Up = U1 * U1U) — 2’LL1’LL1U0 —Ui1U1 — UIUQUT .

Now,
0 = ¢} (ug * (uruo — 7(u1ug))) — 2¢; (1 * (urusug — 7(urusup)))
— Cé (1 * (uguour — 7(uiupuy)))
= C; (ug * ugug) — {; (ug * ug) — 2(; (uguiug) + 2(; (uguy)
- C; (uruous) + C; (uruz),
and so,

(; (UQU()) = C; (u1 * UQ) — 2C§ (uzul) — Cé (ulul) — (é (uluQ) (2.3.3)
= () (uyun) + ¢} (ug) — ¢ (ugur) — ¢ (uaur) — ¢ (urup) € ZJ°.

That formal ¢MZVs are in Zg ' already is not just a coincidence, as the following con-
jecture shows.

Conjecture 2.4 (Bachmann, [3, Conjecture 3.9]). For all z,d,w € Z~g, we have

FilZ ) 2l c R, 210 (2.4.1)

In particular, we have ZJ = Z{’O.
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We say that Bachmann’s Conjecture 2.4 is true for (zo,do, wo) € Z3 if (2.4.1) is true
for (Za da U)) = (Z0> dUa ’UJO)-
Partial results already exist; we will collect them in the following.

Theorem 2.5. (i) By Bachmann ([3, Proposition 4.4]), Bachmann’s Conjecture 2.}
is true for all (z,1,w) € Z3,

(ii) also by Bachmann ([3, Proposition 4.4]), Bachmann’s Conjecture 2.4 is true for
all (1,2,w) € Z3,

(iii) by Vieeshouwers ([12, Theorem 5.3]), Bachmann’s Conjecture 2.4 is true for all
triples (z,2,w) € Z3,, with some parity condition on w,

(iv) and by Burmester ([6, Theorem 6.4]), Bachmann’s Conjecture 2.4 is true for
all (1,d,w) € 73,

While the proofs of (i)—(iii) are mainly based on generating series of the correspond-
ing g-series, the proof of (iv) uses the stuffle product and duality relations. Using relations
among formal Multiple Zeta Values of shape (2.1.1) only suffices to prove the following
theorem.

Theorem 2.6 (Theorem 2.26). Let be z,d € Z~o, k = (k1,...,kq) € Z‘io, and consider
integers 1 < j1 < jo < d. Deconcatenate k as

k(l;jl) = (klv CER) kjl)v k(j1+1;j2) = (klerla SRR ka)? k(j2+1;d) = (kj2+17 s kd)
We have

f Z,D;W
Cq (uk(l;h) (uk(j1+1;j2> uk(]2+1 d) )) Z Fﬂz s,d+s, w

where w = |k| + z.

Remark 2.7. (i) Theorem 2.6 is a generalization of Bachmann’s Theorem [3, Propo-
sition 4.4] via the case d = 1. We have already seen the proof for an example
of this theorem using our methods in (2.3.3). We will generalize this approach in
Proposition 2.21 to generalize Bachmann’s Theorem 2.5(i).

(ii) Note that Theorem 2.6 also generalizes Burmester’s Theorem [6, Theorem 6.4] via
considering the special cases z = 1. For details, we refer to Corollary 2.28.

Extending our methods of playing with relations of shape (2.1.1), we observe the
following theorem.

Theorem 2.8 (Theorem 2.75). Bachmann’s Conjecture 2.4 is true for all (z,d,w) € Z3
with z +d < 6.

In this paper, we will use duality and the stuffle product only for an approach to
write C}; (W) for every W € U*° satisfying zero(W) > 1 as linear combination of Cé (W)’s
with zero(W) < zero(W) and W € U*°. We need the following notion of F, 4, for this.

Definition 2.9. For z,d, w € Z~q, we define

Z,.D,W 1Z,D,W
Foaw:=Fil7 L 20+ > Filog5 2/

Z'+d'=z+d—1
0<z'<z
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In this paper, our main approach towards Bachmann’s Conjecture 2.4 is to strengthen
the conjecture as follows and then to investigate the strengthened version for obtaining
results like Theorem 2.8.

Conjecture 2.10 (Refined Bachmann Conjecture). For all z,d,w € Z~o, we have

FilZ ) 2] CFgu . (2.10.1)
We say that the refined Bachmann Conjecture 2.10 is true for (zo,do, wo) € Z3,,
if (2.10.1) is true for (z,d,w) = (zo, do, wo).

Lemma 2.11 (Lemma 2.68). Fix z,d,w € Zg. If the refined Bachmann Conjecture 2.10
is true for (z,d,w) and if Bachmann’s Conjecture 2.4 is true for all (z',d',w') € Z3,
with 2’ +d +w' < z+ d + w, then Bachmann’s Conjecture 2.4 is true for (z,d,w). In
particular, the refined Bachmann Conjecture 2.10 implies Bachmann’s Conjecture 2.4.

To study the refined Bachmann Conjecture 2.10, we will introduce the box product
(see Definition 2.15) that provides a connection to the stuffle product (see Lemma 2.56)
and allows us to refine the refined Bachmann Conjecture 2.10 for z > d again (see
Conjecture 2.39). In this way, we obtain another particular result towards the refined
Bachmann Conjecture 2.10.

Theorem 2.12 (Theorem 2.76). The refined Bachmann Conjecture 2.10 is true for all
triples of positive integers (z,d,w) € Z2, with 1 < d < 4.

Theorem 2.12 will follow mainly using Theorem 2.8 and the investigation of the
box product from Section 2.4. Furthermore, Theorem 2.12 is a strong statement since
- together with some more results of this paper - now, Bachmann’s Conjecture 2.4 is
almost proven for z + d < 7 as well: Namely, following Lemma 2.11, it remains to prove
the refined Bachmann Conjecture 2.10 for triples of shape (2,5, w) € Z?;O.

All our main results (and those implied by the box product) are based on Q-linear
relations of shape (2.1.1) only. Following our approach to a general proof of the refined
Bachmann Conjecture 2.10 (and so of Bachmann’s Conjecture 2.4 too), described in
Section 2.5, it is conjecturally possible to prove the refined Bachmann Conjecture 2.10
using Q-linear relations of shape (2.1.1) only. Based on our results, it seems that this
approach works. Furthermore, our explicit approach has the advantage that it is (com-
pared to other approaches) easy to obtain explicit formulas for Cé (W) (with w € U*°)
as element of Z({ °. Proposition 2.21, for example, contains such an explicit formula.
Nevertheless, the explicitness limits this method in the sense that the larger z + d is in
the refined Bachmann Conjecture 2.10, the more confusing the Q-linear relations (2.1.1),
one needs to consider following our approach, become.

Organization of the paper. Section 2.2 contains the introduction of the box product
mentioned. Section 2.3 contains generalizations of theorems by Bachmann and Burmester
concerning the refined Bachmann Conjecture 2.10, like Theorem 2.6. In Section 2.4,
we will investigate the boxr product and consider its connection to the stuffle product.
Furthermore, Section 2.5 contains the rough description of our approach to the refined
Bachmann Conjecture 2.10. Using the approach from Section 2.5, in Section 2.6, we
prove new partial results towards Bachmann’s Conjecture 2.4. Particularly, there, we
will provide proofs for Theorems 2.8 and 2.12. Last, Section 2.7 ends the paper with
some open questions and a rough generalization of our calculations from Section 2.6.
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2.2 Introduction of the box product

In this section, we introduce the box product and consider elementary properties. First,
we briefly remark on a property of the stuffle product in the following proposition.

Proposition 2.13. Let be Wy, Wo € U*° and write
z = zero(T(Wy)) + zero(7(Wg)), di = depth(W;), dy = depth(Ws), w = wt(Wy) + wt(Wa).
Then, for 0 < s < min{dy,ds}, there are uniquely determined
Linax{d, do}+s € spang {W € U™ | depth(W) = max{dy,da} + s}

such that

min{di,d2}

wl * w2 - Z Emax{dl,dg}-i-S'
s=0

Furthermore, for all 0 < s < min{d;,ds}, we have
:1Z,D;W o
T (Emax{d17d2}+s> € Fﬂz—s,max{d1,d2}+s,w @<u> :

In particular, T ('cmax{dl,dg}) is the part of T(Wy * We) having the mazimum number of
zeros and we have

T(WixW) e Y. FiXDV QU)°.

z—s,max{d1,d2 }+s,w
s=0

Proof. This is a direct consequence of Equations (2.3.1) and (2.3.2). O
Let us consider an example to point out the statement of Proposition 2.13.

Example 2.14. Choose Wiy = uo, Wo = wuqus, i.e., di = 1,dy = 2 in the notion of
Proposition 2.13. We have

Wi % Wo = ususg + upty + uguis + 2uiusus .
=L =L3

Observe
T(ﬁg) = ULUQULUQUY + UL UQUQUQUT, T(ﬁg) = ULUQULULUY + 2UT UGUL UYU] -
We see that 7(L2) indeed has the maximum number of zeros in the expression 7(ug*ujus2).

Since we want to reduce the number of zeros, we often will be interested in the
part of the stuffle product only that has the maximum number of zeros. Therefore,
Proposition 2.13 motivates the definition of the box product that basically extracts this
part of the stuffle product after one applies 7.
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Definition 2.15 (Box product). The Q-bilinear boz product &: Q(U)° x Q(U)° — Q(U)°
is defined as follows: For W; € U*° with depth(W;) = d;, where j € {1,2}, we set

Wi B Wy := Emax{dth}
in the notion of Proposition 2.13.

For illustration, we continue Example 2.14.

Example 2.16. We have
U B U U2 = U3U2 + U Uy,

which is exactly Lo of Example 2.14, i.e., after applying 7, one obtains the part of the
stuffle product us * ujus having maximum number of zeros. We state and prove the
generalization of this observation in Lemma 2.56.

Corollary 2.17. Let be Wi,Ws € U™ and write
z = zero(T(Wy)) + zero(7(Ws)), di = depth(Wy), do = depth(Ws), w = wt(W1) + wt(Wa).

Then,

min{dy,d2}
T(Wy * W) —T(W BW) € Y FilPDW QU)°.
s=1

z—s,max{d1,d2 }+s,w
Proof. This is an immediate consequence of Proposition 2.13 and the definition of the
box product. ]

Lemma 2.18. Consider the alphabet U\{uo} = {u; | j € Z>o}. The restriction of the
box product E: QU\{uo}) x QU\{uo}) — QU\{uo}) can be described as follows. For
any two words Wi = Up, *+ Up,, Wo = ug, - ug, € (U\{uo})*, we set recursively

0, if s >,
WiBEWy := < W, if W = 1,
we, (Wi Bug, < - g, ) + Upy oy (Uny =+ Un Bug, -+ ug, ), if s <7
Then, WiEWe = Wy B Wy whenever len(Wy) < len(Ws).
Note that the box product satisfies the following connection to the stuffle product.

Lemma 2.19. For all indices of positive integers ny,ns, £, we have
Uny B (Uny B Uup) = (Upg * Upy) B Up = Upy B (Up, B ug).

Proof. The proof of the first equality follows by induction on len(n1) + len(ng) and
the definition of stuffle and box product. The second equality then follows from the
commutativity of the stuffle product and the first equality. O

Next, we make an easy but instrumental observation. For this, we denote for an given
index k = (kq,...,k,) its reversed indezx by rev(k) := (ky, ..., k1).

Proposition 2.20. Given n € 73, £ € 72, with 1 < s < d. Writing

Un B Up = Z O
d
HELS,
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with a, € Z appropriate, we have

Urev(n) B Urey(e) = Z AplUrev(p)-
HEZL,

Proof. Using Lemma 2.18 and induction on len(n)+len(€), the claim follows immediately.
U

2.3 A common approach to theorems by Bachmann and
Burmester

In this section, we consider the cases of d = 1 (and z € Z-( arbitrary), and z = 1
(and d € Z- arbitrary), respectively, of Bachmann’s Conjecture 2.4. The first case
mainly is a result originally due to Bachmann ([3, Proposition 4.4]), which we will reprove
. . . . 1Z2,DW ~f . . .

in a way giving explicit formulas for every element of Fil3”;, " ZJ as linear combination of
elements in Filivl\{w ZJ. The second case is done by Burmester’s thesis ([6, Theorem 6.4]),
which we will extend in Section 2.3.2.

2.3.1 Bachmann’s Conjecture 2.4 for (z,1,w)

By [3, Proposition 4.4] (see also Theorem 2.5(i)), it is known that Bachmann’s Conjec-
ture 2.4 is true for all triples (z,1,w). Here, we give an alternative proof which gives an
explicit expression in terms of elements in ZCJ; .

Proposition 2.21. For all k € Z~¢ and z € Z>q, we have that C; (ugug) equals

(=1)7 Z Z Z C; (unjz —€jp 17T un1*€1+1uno+1uj11)

J1,J220  ng,...,n;, >0 1<p<j2
J1+j2=2 no+-+nj,=k—1 0<ep<min{l,np}

DI 2.

1SJSZ fl,‘..,ZjZI jlvj?ZO
€1++€JS2]1+]2:Z*€177€]
1)z 9¢t (uh b J1
(_ ) Cq Up oo R UL FUnjy—gj+1 77 Ung—e1+1Une+1UT ) -
0.,y 20 1<p<jo

no+-+nj,=k—1 0<ep<min{l,np}

b.w zIe yielding Bachmann’s Conjecture 2./

In particular, we have C}; (upug) € FiL 3, ., 2

for all triples (z,1,w).

Proof. First note that a calculation, using the definition of the stuffle product, shows for
all a € Z~o, b € Z>( the identity

a—1
ugug = > (=1) M * ug_guf + (—1)"'h(a, b), (2.21.1)
/=1
where h(a,b) := 3 't (u{z * ug). Choosing a = z+1 and b = k — 1, we obtain
L 550
jlzl-ljf:a—l

z
woprl ™ = S (1) uf v uppr ™+ (<1)7h(z 4 Lk — 1),
=1
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Using the latter formula and (2.21.1) repeatedly, we obtain

Uyt Z Z (—l)z_juﬁl>x<-~->x<u§j*h(z+1—€1—--~—€j,k—1)
1<j<z f1,.,4;>1
At (2.21.2)

+ (=1)%h(z + 1,k —1).

Now, note that for all a € Z~¢ and b € Z>(, we have

ha,b)= > w (u{Q * ug)

J1,J220

Jjitje=a—1
_ Ji+1, no n1—e1 Mo —€j2
-y ¥ T o g,
J1,7220  no,...,nj, >0 1<p<j2

Jitje=a—1 pot.. +nj, =b0<ep<min{l,np}

Hence, by 7-invariance of formal gMZVs,

C; (h(a,b)) = Z Z Z C; (u”jz —€jy 1" 'un1—61+1uno+1u{1) )

J1,J220  no,...,nj, >0 1<p<j2
Jitjz=a—1ng+-4nj,=b0<ep<min{lny}

implying the claim when using (2.21.2) and Cf (ugug) = Cf( (ugug)) = C (UZ+1UO 1).

From the obtained representation of Cf (ugug), we get directly Cf (ugug) € F112+1 etz Z ©
due to (2.3.1). D

Let us consider an example regarding Proposition 2.21.
Example 2.22. For k = z = 2, Proposition 2.21 yields
C; (UQU%))
= C; (ug *uyg *ug) — 2C§ (ug * uguy) — C; (ug * ugug) — Cé (ug * uguy) — C; (uruy * ug)

+ 3{; (uguiuy) + 2(; (uruguy) + Cé (uguiug) + 3(; (ugugug)
= ¢F (ug) — ¢ (ugur) — ¢ (ugua) — ¢ (uowr) — ¢ (urug) € FilyyY 21 c Fily,¥ 2/

2.3.2 Bachmann’s Conjecture 2.4 for (1,d,w)

Given an index k = (k1,...,kq) € Z‘io, we introduce the following notation of subindices

k L (kj17--'7kj2)7 lflgjl S]QSda
Uig2) * 0 else.

Lemma 2.23. Fix z,d € Z~¢ and k € Z‘io. For1 < j <d, we have

f p Z,D,W
Cq (“kl (“k@;j) Uk 150) “0)) Z FILZS dvsw 2

where w = |k| + z.

Proof. We prove by induction on d. The base case d = 1 corresponds to Proposition 2.21
since then j = 1 and so kg;5) = K(jy1,0) = (). Hence, we may assume d > 1 and that
Lemma 2.23 is proven already for all smaller values of d. First, note that the case j =d
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follows from k;1,q) = () in this case and from

f 7Z,.D,W
> (Um *uk) ZFﬂZ s 21
ni,...,ng>1
ni+-+ng=z
1<s'<d

since

Z Cg (um S Up, T(uk))

ni,...,ng>1
ni+-tng=z
1<s'<d

£ ka—1 ki—1
- Z ¢ (um e Up, ¥ uTUg?T s ugugt )

ni,...,ng>1
ni+-tng=z
1<s'<d

= > C(g (7— (UmU fugupd ™t uguf ! ))

ni,...,ng>1
ni+-+4ng=z
1<s'<d

z

— 2 : kqg—1 k1—1 2: :1Z2,D,W

= C; (T (unl e Uns/ uluod ce uluOl )) InOd FllZ—S,d-‘y—SﬂU qu
s=1

N1y, Mgt 21
ni+-Ang=z
1<s’'<d

The last identity is a consequence of Proposition 2.13 and the definition of the box
product. Furthermore, the remaining expression is

z
_ f .1Z,D,W
= ¢, (ukl (uk@;d) * ug)) mod Z F112_87d+5,w Zg,
s=1
which can be verified via induction on s’ + d and the definition of the stuffle product.

Hence, let be 1 < 7 < d — 1 and assume that the claim holds for all larger values of j.
The induction hypothesis on d implies, since len()) + len (k(j+2;d)) =d—j—-1<d-1,

zZ
f z\ _ Af z :1Z,D,W
Cq (uk<j+1;d) u0> =g (uij(u@ * uk<j+2;d>)u0)) € Z Fil7 0 s

where w' = |k(;;1,9)| + 2. Hence, by (2.3.1), we obtain

z
f Z,D,W
Ch (i) * e i) € SO FIEDTL 2 (2.23.1)
s=1
Now, using the definition of the stuffle product, we obtain

z z
Uk(15) * Uk(jp1,0) %0 = Uks (uk<2 7 “k<j+1;d>u0) T Ukjpa (“ku;j) * “k<j+z;d)“0)
4
+ Ukt (“k(zm ¥ “k(j+z;d>“0) ‘

Note that the formal gMZVof the second summand on the right-hand side is an element
z
of FilZPW Z({ due to the assumption on j, while the formal ¢MZV of the third
s=1

z—8,d+s,w
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one is by induction hypothesis on d. Hence, because of (2.23.1), we obtain

f z Z,D,W
Cq <uk21 (uk(g;]-) * uk(j+1;d)u0)) Z Fllz S, d+s w

completing the induction step. Therefore, the lemma is proven. ]

Corollary 2.24. Fix z,d € Z~q. For allk € Zio, we have

ukuo Z Fil“2W

z— sd+sw

where w = k| + z.
Proof. This is the special case j = 1 of Lemma 2.23. O

Corollary 2.25. Fix d € Z~qg. For allk € Z‘io, we have

C; (ukuouo) S Flld_;_\;vw Zf’

where w = |k| + 2.

Proof. The special case z = 2 of Corollary 2.24 and Fili’?_{_\fw Zg C FlldD+\;V Zf ° by

Burmester’s Theorem 2.5(iv) yield the claim. O
Lemma 2.23 is a special case of the following theorem.

Theorem 2.26 (Theorem 2.6). Let be z,d € Z~o, k = (k1,...,kq) € Zim and consider
integers 1 < j1 < jo < d. We have

f Z,D,W
S (“ku;m <Uk<j1+1;j2> Uk(gpt1sa) )) ZFﬂz sdtsw 2 (226.1)

where w = |k| + z.

Proof. We prove by induction on d. Note that the base case d = 1 follows from Propo-
sition 2.21 since then j; = j2 =1 and so K(j,11,5,) = K(j41,0) = (). Hence, choose d > 1
and assume the theorem is proven for all smaller values of d. Furthermore, note that
the case j; = 1 is nothing else than Lemma 2.23. Hence, let 2 < j; < d arbitrary. The
claim for j2 = ji corresponds to Corollary 2.24 since then k;, 41,5,y = (). Therefore,
assume jo > j1 > 1 in the following and that the claim is proven for all possible smaller
values of ji, j2 and len(k;, 41.5,)) = j2 — j1, respectively. Using the recursive definition
of the stuffle product gives

uk(l;h) (uk(j1+1;j2) * uk(j2+1;d)u6)

= Uk, -1y (“k<j1+1;12) * ukjluk(j2+1;d)u8)
T Uk, 1) Uk (uk<11+2;j2) Ukjy Uk (jyt1;a) Z)
T Uk(ygjy - 1) Wk (“k<jl+2;j2> KUKyt 15a) “8)

Z,D,W f
z—s,d+s,w Z

4
Now, the formal gMZVof the first summand on the right-hand side isin ) Fil
s=1

due to the assumption on j; (since len (k(l;jl_l)) = len (k(l;j1)> — 1), while the second
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one is as well due to the assumption on jo—j; (since len (k(j1+2;j2)> = len (k(j1+1;j2)> —1),
and the third one is due to the induction hypothesis on d. In particular, we have

f z Z,D,W
Cq (uk(l;h) (uk(j1+1;.7'2> * uk(j2+1;d) uO)) Z Fi lz s,d+s, w

completing the induction step. Hence, the theorem follows. O

Corollary 2.27. Let be z,d € Z~¢, k = (k1,...,kq) € Z‘io. For all1 < j <d, we have

2 : f £; 7,D,W
Cf] (uk(l;jfl)ukjuo T UkgUg ) E :Fllz s d+sw (2271)
Lj,....,0q>0
fj-‘r“'-‘rfdzz

where w = |k| + z.

Proof. Let be 1 < j <d. The corollary is obtained from the special case j; = j, jo = d of
Theorem 2.26 and multiplying out the corresponding stuffle product occurring in (2.26.1)
since then k(;,41,q) = 0. O

As a corollary of Corollary 2.27, we obtain Burmester’s Theorem 2.5(iv).

Corollary 2.28 (Burmester, [6, Theorem 6.4]). Bachmann’s Conjecture 2.4 is true for
all (1,d,w) € Z3,

Proof. Let be d € Z~o, k = (ki,...,kq) € Z¢, and denote w = |k| + 1 in the following.
Considering Corollary 2.27 with z = 1 and j = d, we obtain Cg (uxug) € FlldD+V1\[w Zf’
Now, let be 1 < 5/ < d — 1. Considering the difference of (2.27.1) with z = 1, j = j’

and (2.27.1) with z =1, j = j' 4+ 1, we obtain

f D,W fio
S (uku;j')uouk(ﬂﬂ;d)) € Fily1 ., 24
In particular, for every W € U*° N Fll% c]l)u\)N Q(U)°, we have shown (; (W) € FﬂdDlew Zf’
i.e., we have Fil%’?{uw Z({ - FlldDJerV Z , completing the claim. []

Corollary 2.29. Let be d € Z>2 and k = (ki,...,kq) € Z¢,. We have

D,W
gq (ukluouk2u0uk 53d) ) € Fﬂd+2w Zf’

where w = |k| + 2.
Proof. Consider the difference of (2.27.1) for z =2, j = 2, and (2.27.1) for 2 =2, j =3

. Z,D)W
to obtain, all congruences modulo Fil}” i w Z
_ f l3 1 f 153 1
0= Z Cq (uklukzuksuo : ukdu0d> - Z G (Ulcl Uk, U - deuod)
l3,...,£4>0 l2,...,£4>0
€3+---+€d:2 £2+---+£d:2
= — & (g, up, uouou — E Cfuuuuuf-uued
= q \ Uk Uk UOUO UK 5. o) q \Uk1 Uk U0UE3 U ka0
l3,...,64>0
la3+-4Lg=1

k 1. ks—1 ko—1 ki1—1
—gq (u SRR L7 TR VA AR ThE )

f kq—1 k3— ka1, k1—1
- Z Cq (Wd+1uo g gt ugug Uo

£3,...,£q>0
la+-—4Ly=1
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_ f kg—1 ks—1 ko—1 ki—1 f
= g“q (uluo Ceuug T T uUg” T Uy — Cq Uy % T Ugy Uy UOU 5.,

_ f
= Cq (ukluou;@uouk(g;d)) .

Since Fil))V zf < Fill;Y  21° by Corollary 2.28, the claim follows. O

2.4 Investigation of the box product

First, in Section 2.4.1, we show that several monomials can already be written as a Q-
linear combination of non-trivial box products. In Section 2.4.2, we investigate a conjec-
ture (Conjecture 2.39) regarding the structure of box products and give partial results
for it. Furthermore, in Section 2.4.3, we study the main connection between the box
product and the stuffle product that we will need to prove our main results. Last, in
Section 2.4.4, we give some further results about the box product that are interesting for
itself but not necessary for the remaining paper.

2.4.1 Monomials as linear combination of box products

In the following, we characterize some particular monomials in Q(U\{up}) as a linear
combination of box products. The results will be important for proving Theorem 2.76.

We will need the Q-vector space spanned by (non-trivial) box products in the follow-
ing.

Definition 2.30. We define
P = spang {W; B Wy | Wi, W € (U\{uo})™, Wi,Wo # 1} C QU\{uo}). (2.30.1)
Corollary 2.31. Given p € Zio with d € Z>o. Then uy, € P if and only if uey(u) € P-
Proof. This is an immediate consequence of Proposition 2.20. ]
Lemma 2.32. For alld € Z~g and 0 < j < d—1, we have
ug, u{quuf*jfl cP.

Proof. A direct calculation shows ud = u¢ ® uf, giving the first part of the lemma.

Furthermore, for all 0 < 7 < d — 1, we have

d
j d—j—1 _ -1 J d—j—1
U U 44U = Z(—l)“ uf B U U 4d—aU] ,
a=1
giving the second claim of the lemma. O

Lemma 2.33. For arbitrary d € Z~g and 0 < j < d — 2, we have

d—j—2
wujuszug 7 € P.

Proof. For any 0 < j < d — 2, one verifies
i d—j—2
uluéu?,uQ J
i+l . j+2
i—a+1 —j—2 - - -
= (=D ] ugui ugu M+ (D) @ g O
a=1 a=1
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We first need an auxiliary lemma to prove the statements in Corollary 2.35 and
Lemma 2.36.

Lemma 2.34. For all d, p1, pa € Zso with pu1 + po < d + 2, we have

d—p1—p2+2 d—2
Upy Upy (ul Uy ) cP.

Proof. We prove by induction on pp. First, consider u; = 1. Similarly to the proof of
Lemma 2.33, we obtain by direct calculation that

d— 1 —
urty, (uy " @ ?)
d—pio+2 d—2 b, d—p2+b+2 d—2
= —uup,—1(uy T BT — Z (—1)7uy ™ B U24a—bUpz—2—ally
0<a<pz—3
0<b<1+a
_ d—pia+1 —2
+ Z (—1)0H0 8 baypq§H2F u1+buu2_2_au‘f )
0<a<ps—3
0<b<a
H d—pa+1 d—2 . .
ence, we have for all s € Zso that wiuy,(u; ui~“) € P if and only if we
d— 2 — - . d— 1 —
have wyu,, 1 (uf "2 B uf?) € P, giving recursively that uyu,, (uf "> ®uf?) € P

if and only if

uruz(uf? B ud?) € P,

which is true since this is the j = 0 case of Lemma 2.33.
Now, for u; > 1, assume that the lemma is proven for p; — 1 already. We calculate

d—p1+2
d—p1—p2+2 d—2\ _ pota  d—f1—a+3 d—2
Upy Upap (U Bui ?)= Y (~1FFug B Uy —1Ually
a=p2
d—py—pa+3 d—2
= Upy— 1, (U Bup ")

d—p1+1— d—2
+ (=1 Mum—lud—m—%ul :

Le., we have u,, u,, (ucll_’“_”2+2 Bul"?) € P by the assumption that the lemma is proven

for p; — 1. O
Corollary 2.35. For alld € Z~g and 0 < j < d, we have

ulﬂ-ud_ﬂlu‘f2 eP.
Proof. Setting 11 =14 j and pu2 =d — j + 1 in Lemma 2.34, we obtain the claim. O

Furthermore, Lemma 2.34 is used to prove the following observation.

Lemma 2.36. For arbitrary d € Z~g and all 0 < j < d — 3, we have

d—j—3
u2u1uéu;3u2 772 e Pp.

Proof. First, a direct calculation gives for all 0 < j < d — 3 that

J d—j—3
U2UTURUI Uy
j+2 . j+3
Curo dlis - B B
=3 (1) u]  Pupu 7 T Bugud T+ Y (1) T @ ugud !
a=2 a=1
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j—(a+b)+3 —j— -
— Z (—1)o+bod (a+b)+ u2ucll 173 @ uqupud >

a,b>2
a+b<j+3
i+3 d—j—3 . d—2
+ (=17 ugujpa(uy 7T By
i3 d—i—4 d—2 d—j—3 d—2
+ (7Y aroup (uy 7T B Ul ) + uaroup(ug T @ g ).
a,b>2
a+b=j5+3
Using Lemma 2.34 now yields the claim. O

Collecting the results of this subsection, we have proven the following theorem.
Theorem 2.37. Let be d € Z~g.
(i) For all 0 < j <d— 2, we have

o d—j—2 d—j—2
wiuduguy 77, whusug 7wy € P.

(ii) For all 0 < j < d, we have
d—2 d—2
Ul4jUd—j+1U] 5 U] Ud—jr1Ui4j € P.

(iii) For all 0 < j < d— 3, we have

i d—j=3 _j d—j-3
ugurujusuy 77, whuguy ! Mugug € P.

Proof. Using Corollary 2.31 each, the proof for (i) follows from Lemma 2.33, the proof
of (ii) follows from Corollary 2.35, and the proof of (iii) follows from Lemma 2.36. [

2.4.2 A conjecture about particular box products and implications

We consider in this section the structure of all box products uy B ug such that len(£)
and |n| + |£| are fixed. For this, we will need the spaces S, 4 and J, 4 in the following.

Definition 2.38. (i) For all z,d € Z~(, we define

gz,d ‘= Spallg {uu | (1A Zd>0a |/J’| =z+ d} s

1,4 :=dimgJ, 4.
(ii) Furthermore, for all z,d € Z~¢, we define
Teai={(m,0)|nersy el 1<s<d [n|+f| =z+d},
jz,d,: = #\727d'
and

8..a:= spang {un Bug | (n,£) € T, 4} =T.aNP,
dzd 1= dimQ Sz,d-

Based on numerical calculations (see Lemma 2.42), we conjecture the following for
the dimension of §, 4.
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Conjecture 2.39. For all z,d € Z~¢, we have

z+d—1
= . 2.39.1
2z <min{z, d} — 1) (2:39.1)

Given (z9,do) € Zso, we say that Conjecture 2.39 is true for (zo,do) if (2.39.1) is
true for (z,d) = (z0,do). Note the following equivalent formulation for z > d.

Corollary 2.40. Given (z,d) € Z2, with z > d. Conjecture 2.39 is true for (z,d) if and
only if S, 9 =9,4.

Proof. Clearly, for all z,d € Z~g, one has

t = z+d-—1
2T\ d-1

since {, 4 is the number of compositions of z + d into exactly d positive integers. Hence,
for (z,d) € Z2, with z > d, Conjecture 2.39 is equivalent to 3, 4 = t, 4 which is equivalent
to 8,4 = 9,4 since S, 4 C J, 4 and both S, 4 and T, 4 are finite-dimensional Q-vector
spaces. ]

Theorem 2.41. Fiz d € Z~q. If Conjecture 2.39 is true for (d,d), then it is also true
for all (z,d) € Z%, with z > d.

Proof. Fix d € Z~( and assume that Conjecture 2.39 is true for (d,d). ILe., by Corol-
lary 2.40, we assume Sg 4 = J44. This is equivalent to

Uz = Y ane(z)un Bug
(n,€)€T4,q

for all z = (21,...,24) € Z¢, with |z| = 2d and with ap ¢(z) € Q appropriate.
Now, assume z > d and let be z = (21,...,24) € Z%, with |z| = z + d arbitrary. We
can write

(21,...,Zd):(Zi—i—(sl,...,zél—l-&i)

with 01,...,0q € Z>o and 2’ = (2},...,2)) € Z¢, with |z’| = 2d. Hence,
Uy = Z ane(Z') Un B gy 15, - Ugyts,-
(n,€)€T4,q
Since z was chosen arbitrary, we obtain S, 4 = J, 4, proving the theorem. O

Lemma 2.42. Conjecture 2.39 is true for all (z,d) € ZQ>O with 1 < d < 8.

Proof. The proof for 1 < 2z < d < 8 is obtained by computer algebra; for details, see
Remark 2.60 and the appendix. By Theorem 2.41, Conjecture 2.39 is also true for z > d
when 1 < d < 8, proving the lemma. ]

Note that 3, 4 is the dimension of the image of the Q-linear map

Bz,d: Spallg jz,d — (Jz,da
(n,£) — up B ug
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that we continue Q-bilinearly. By the rank-nullity theorem, we know that
3,4 +dimg ker B, 4 = dimg spang J 4 (2.42.1)

The right-hand side is given by j, 4, which is the number of writing z + d as ordered
sum of at least d + 1 and at most d + min{z, d} positive integers, i.e.,

min{z,d}
. . z+d—1
dimg spang J..q = jza = Z <d ‘ 1). (2.42.2)
= \ETIT

Hence, determining 3, 4 now is equivalent to determining dimg ker B, 4. While it seems
to be difficult to obtain a (conjectured) basis of S, 4, we can give a conjectured basis
of ker B, 4 explicitly. To do so, we need the notion of stuffle product and box product on
index level. Le., we set nx() := 0*n :=n, n®( := (En := n for every index n. Further-
more, for given indices n = (n1,...,ns) € Z5, m = (my,...,my) € ZL, with s,¢t > 1,
we set recursively

n*xm:=(ny).((na,...,ns)*m) + (mq).(n* (ma,...,my))

+ (n1 +mq).((n2,...,ng) *x (Ma,...,my))

as formal sum of indices, where ().() means the concatenation of indices. Similarly, we
define the box product n ® m to be the part of n * m of smallest length.

Example 2.43. To illustrate the definition of stuffle product and box product of indices,
we consider n = (1,2) and m = (3,2). We have

nxm=(1,2)%(3,2)
— (4,4) + (1,5,2) + (1,3,4) + 2(4,2,2) + (3,3,2)
4 (1,2,3,2) +2(1,3,2,2) +2(3,1,2,2) + (3,2, 1,2)

and
nEm= (1,2)®(3,2) = (4,4).

In the following, for z,d € Z~(, we consider the set

ny€Z} nyeZ2 pezd
= 70 — >0 50068450,
K.a {(nl, np ®£) — (ny *ng, £) L<or s 2t I+ e+ tra [ © SPANgQ T ds

where (+,-) is Q-bilinearly continued.
Lemma 2.44. For all z,d € Z~¢, we have spang K, 4 C ker B, 4.
Proof. This is an immediate consequence of Lemma 2.19. O

By numerical calculations (see the appendix), we conjecture that the converse inclu-
sion is also true if z < d.

Conjecture 2.45. Let be z,d € Z~q with z < d. Then,
spang K, g = ker B, 4. (2.45.1)

We say that Conjecture 2.45 is true for (zo,do) if (2.45.1) is true for (z,d) = (20, do).
Note the following consequence.
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Lemma 2.46. Let be z,d € Z~o with z < d. If Conjecture 2.45 is true for (z,d), we
have

In particular, if z = d additionally, then Conjecture 2.39 is true for (d,d).
Proof. Let be z,d € Z~o with z < d. We begin by noting that we have
L fz+d—-1
K pu—
#hod ;<d+j—1>

since #K, 4 is the number of ways one can write z+d as ordered sum of at least d+2 and
at most d + min{z,d} (= d+ z in case z < d) positive integers. Now, if Conjecture 2.45
is true for (z,d), we obtain by (2.42.1) and (2.42.2), that

o (z4+d—-1 o fz+d—-1 z+d-—1
22d = Jzd T AHHNQREE B2 ];<d+y—1> j§2<d+3—1> < d )

In case z = d, the right hand side is t44, i.e., we must have equality and so, Conjec-
ture 2.39 is true for (d,d). This completes the proof of the lemma. O

The set K, 4 seems to be of special interest regarding determining a basis of ker B, 4
as the following refinement of Conjecture 2.45 shows.

Conjecture 2.47. Let be z,d € Zxo with z < d. Then K, 4 is a basis of ker B, 4.

As usual, we say that Conjecture 2.47 is true for (2o, do) if K, 4, is a basis of ker B, 4,
We give evidence for Conjecture 2.47.

Lemma 2.48. Conjecture 2.47 is true for all (z,d) € Z2%, satisfying 1 < z <d < 8.

Proof. For z = 1 and d € Z~(, we have K14 = ) and j, 4 = d = 31 4 as we will show
in Lemma 2.52, i.e., ker By 4 is the trivial vector space. Hence, Conjecture 2.47 is true
for all (1,d) € Z2. For z > 2, the claim is obtained by numerical calculations, see the
appendix. ]

Note the following consequence that Conjecture 2.47 is a refinement of Conjec-
ture 2.39.

Lemma 2.49. Let be z,d € Z~o with z < d. If Conjecture 2.47 is true for (z,d), then
also Conjecture 2.39 is true for (z,d).

Proof. Let be z,d € Z~y with z < d and assume that Conjecture 2.47 is true for (z,d).
By (2.42.1) and (2.42.2), then we obtain

= (z+d—-1 = (z+d—1 z+d—1
dpd = 2 —di k BZ = . - . = )
@ = Jzd — QHRQEET Bad jz_:l<d+j—1> jz_;<d+y—1> ( d )
i.e., Conjecture 2.39 is true for (z,d). O

We investigate 3, 4 in the following in more detail.

Lemma 2.50. For all z,d € Z~¢, we have

dzd+1 T d01.d < dzp1,dt1-
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Proof. Fix z,d € Z~o. By definition of 3, 41, there are 3, 441 linearly independent linear
combinations

> aff,)e(Z) unBup (1< 7<d2401)
(nzz)ejz,d+1

Then, the 3, 441 linear combinations (1 < j < 4, 441 in the following) of case (2 +1,d+1),

Z (If,i)e(Z) ul'l u(ﬁ1,...,ed,€d+1+1)? (2501)
(nvz)ejz,d+1

are linearly independent as well. Note that all occurring words wuy,, - - - u,,, in this linear
combinations satisfy pqy1 > 2.
Now, by definition of 3, 4, there are 3,41 4 linear independent linear combinations

Yoo W@ unmue (1<) <b014). (2.50.2)
(n7e)€\72+1,d

Considering for 1 < j <4, 4 the following linear combinations in case (z +1,d + 1)

Z bEf;)e(z) Uy B gty
(n7£)€jz+1,d
(2.50.3)

- ( Z bf,i)e(Z) Un uf) U + Z bii)e(z> (u(nl,...,ns_l) Ug> u1+ns
(

nf)eT 414 (nL)ET 41,4

are linearly independent again because of (2.50.2). Furthermore, they and the ones
from (2.50.1) are linearly independent since the latter ones contain words ending in u,,
with pig41 > 2 while the linear independence of (2.50.3) already comes from words ending
all in uq.

Summarized, we have proven 3, gi1 + 3,414 < d241,d+1- ]

Remark 2.51. Assuming Conjecture 2.39, the inequality in Lemma 2.50 is an equality
if and only if z # d.

With Lemma 2.50, we can now prove the following partial result towards Conjec-
ture 2.39.

Lemma 2.52. Conjecture 2.39 is true for all pairs (z,d) € Z2, with 1 < z < 3.

Proof. Note that the proof for 1 < z < 2 is contained in Remark 2.61. Therefore,
assume z = 3 in the following. For (z,d) € {(3,1),(3,2),(3,3)}, the claim follows from
Remark 2.61. Hence, consider d > 4 and prove by induction (with already proven base
case d = 3) on d. By Lemma 2.50, the induction hypothesis, and the case z = 2 of the
lemma that is proven in Remark 2.61, we know that

d+1 d+1 d—+2
03,d263,d—1+62,d=< 9 >+< 1 ):( 9 >

Therefore, it suffices to prove 334 < (dJQFQ). Note that for (z,d) = (3,d) the number of

box products spanning 83 q is (dérQ) + (d4{2) + (d§2). Le., if we can show that (d;rz) of

those are such that the other (?}%) + (*12) ones are in their Q-span, we are done. We
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consider the set of (d;Z) box products

upui Buf, uiuz@Euf,
—g1-1 0<j1<d—2,0<j2<d—2,

0<J3,j4<d—2, j3+js<d—2

j d—jo—1
, U1 Ew 2u3u1 J2 ,
d—j3—js—2
ullul uzujl‘luzu J3774

j d
Rg,d = uzlul u2u1

In the following, we show that the other box products in case (z,d) = (3,d) are in
the Q-span of R3 4. For 0 < j; < d — 2, we obtain

_ 1
uyuy B w) uzu‘f =l 3 ((ul * U] — ug) B w) u2u¢11 1= ) € spang R34 (2.52.1)

due to Lemma 2.19 and the definition of R3 4. Furthermore, we have that

d—1
U3lu1— Zullul U3Up
J2=0

R (upuy 4 ugug) @ ud (2.52.2)

is in the Q-span of R3 4. This implies, due to ug*u; = ugui +ujuz +u3 and Lemma 2.19,
that

UQUil Ly =us @ ullu1 Zuluuf =
71=0
d—2 '
= (uguy + ugug + uz) @ ul Z ug B u) u2uil n-l g spang R3 4-
71=0

Similar to (2.52.1), one obtains now
d-1
ug B uj uz € spang R 4.

Using (2.52.2), Lemma 2.19 and the definition of R3 4, we get

1
ULU UL u‘li =3 ((u1 kULUD — UQUL — U UQ) uf) € spang R34,

completing the claim. In particular, the lemma is proven for z = 3. O

Proposition 2.53. Conjecture 2.39 is true for (4,4) and therefore, by Theorem 2.41,
for all pairs (z,4) with z > 4.

Proof. Using Corollary 2.40, we have to show 844 = J44. From Theorem 2.37 and
Lemma 2.32, we already have

U2U2ULU2, UsUIUIUL, UTUSUIUT, UTUIUSUL, UTUIUIU5, UIUIU2U2, UTU2UIU2,
U1U2UUZ, UU2U2UL, U2UIU2UT, U2U2UIUT, U2U4UI UL, USUZUIUL, U4U2UIUT,

UTULUU4, UTUTUZUZ, UTUIU4UL, UUIUZUL, UU]U2UZ, UU3UI U2, U3UUIUL € 84,4-

Hence, considering ui Muguiugus, we obtain usujusus € Sy, and S0, by Corollary 2.31,we
also have usuguiusz € S44. Now, considering uju; @ u1]1u2u1 ugul for ji,72,J3 € Z>o
with j1 + j2 + j3 = 2, yields uguiuzui, usuiuius, uiugusul, uiusuius € Sy4. Last,
consider uq u1 uguizu;z,ul for j1,j2,73 € Z>o with j1 4+ j2 + j3 = 1 immediately
gives UgU1UgU1, UDUTUIUL, UTU2UAUT, UTU2UT U4 € Sy 4, Yielding, by Corollary 2.31 again,
that wguiusuy, uguiuiUs, U ULUSIUT, UTULUI U E 8474. Therefore, 8474 = 37474 follows,
completing the proof. ]
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2.4.3 Connection between the box product and the stuffle product

First, to connect the box product with the stuffle product, we introduce the maps ¥y.

Definition 2.54. Fix d € Zso and k = (ki,...,kq) € Z%,. We define the Q-linear
map Wy : spang {W € U™° | len(W) = d} — Q(U)°, given on generators by

kq—1 k1—1
Upy = Upg 7 Upy Ug T Upg U

Note the following connection of maps Wy with the box product.

Lemma 2.55. Let be z,d,w € Zs¢ and (n,£) € J,q. Furthermore, let be k € Zio
satisfying |k| = w — z. Then,

Un B Uy (ug) = Uy (un B ug).

Proof. Using the notation as in the lemma, we note that particularly depth(ug) = d.
The claim immediately follows by the definition of the box product and the definition of
the map WUy. O

The following Lemma 2.56 now connects the stuffle product with the box product.
It will be the key for proving Theorem 2.69 below and one of the main observations for
our approach to the refined Bachmann Conjecture 2.10.

Lemma 2.56. Let be z,d,w € Z~o and (n,£) € J,q. Furthermore, let be k € Z‘io
satisfying |k| = w — z. Then,

FWunmu)) e Y FAOY . zf

z—s,d+s,w
1<s<min{z,d}

Proof. Let be z,d,w € Z~o, (n,£) € J, 4, k € Z<, such that |k| = w — z and write s’ for
the length of n. I.e., we have, uy, € Filg’g"\z}' Q{U)° and Uy (uy) € Fillzk’&gvd ‘k|+|e|_d<@<u>°.
Since (n,£) € J 4, we have |n| + €| = z + d. Therefore, (2.3.1) implies, together with
the assumption |k| = w — z, that

un * Ui (ug) € Fili’?&w QU)°.

!
—z,d+s" w

By (2.3.2), this implies now

7(un * Ui (up)) € Fil22W . QUu)°,

s’ d+s’w

yielding, since 1 < s’ < min{z, d},

Ch (um % Wie(ug)) = Cf (T(um * Wi(we))) € >0 FiZDH 2]
1<s<min{z,d}

Furthermore, due to Corollary 2.17, we also have

¢E (un B Uie(ur)) € S FY L2l

z—s,d+s,w
1<s<min{z,d}

Hence, the lemma follows now from Lemma 2.55. [
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Corollary 2.57. Let be z,d,w € Z~o and p € 72, satisfying |u| = z +d. Ifu, € P
with P from (2.30.1), then

1 Z,D,W
G(Wn(uy)) e > FilZg w2 CFagw
1<s<min{z,d}
for allk € 72, satisfying |k| = w — 2.

Proof. Let be z,d,w € Z~q and p € Z2 satisfying |u| = z + d. Furthermore, choose an
index k € Z2, arbitrary with the property |k| = w — z. Assume u, € P, i.e., we have

Uy, = Z Gn g Un X Ug
(nve)ejz,d

with an ¢ € Q appropriate. Now, for all (n,£) € J, 4, by Lemma 2.56, we have

Cé (\pk(un 'LL[)) S Z FﬂZLDs’}Zi-&w Zl{
1<s<min{z,d}

Le., by Q-linearity of Cé and Wy, hence we obtain

.1Z,D;W
C(Tk(un) = D aned) (Ti(un Bup)) € > FilZ e zf
(n£)eT q 1<s<min{z,d}

completing the claim. O

2.4.4 Supplementary results and calculations regarding the box prod-
uct

We collect in this subsection further results towards the box product that are connected
to Conjecture 2.39 but not needed in the following. First, we refine Conjecture 2.39. For
this, we define for all z,d, sSmin € Z~¢ with 1 < z <d,

8. d,smin = SPaNg {un Bup | (n,£) € T, 4, len(n) > smin} C S, 4,

ézvdysmin = dlm@ Szvdvsmin'

Conjecture 2.58. For all z,d, spin € Z~¢ with 1 < z < d, we have

d—1
g)Z,d,srnin = <Z + >' (2'58']‘)

Z — Smin

Given (zo,do, Smin,0) € Z>o with 1 < z < d, we say that Conjecture 2.58 is true
for (20, do, Smin,0) if (2.58.1) is true for (2, d, smin) = (20, do, Smin,0)-

Remark 2.59. With Theorem 2.41, we see that if Conjecture 2.39 is true for z = d, then
the statement for z > d follows as well. Hence, we can view Conjecture 2.58 (via Smin = 1)
indeed as a refinement of Conjecture 2.39, despite it is a refinement for z < d only.

Remark 2.60. Conjecture 2.58 is true for all triples (z, d, Smin) € Z?;U withl < 2z<d<8
and 1 < spin < 8. The proof is obtained by computer algebra; for details, see the
appendix. One could use the code in the appendix for verifying Conjecture 2.58 also for
larger values of z and d. The only limit is the computing capacity and time since the
code is based on computing ranks of matrices that grow exponentially in z and d.

In the next remark, we give an elementary proof, not based on numerical calculations,
for the part of Lemma 2.42 that is needed for proving our main results of this paper.
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Remark 2.61. We could verify Conjecture 2.39 for all pairs (z,d) € Z2, with 1 <d < 3
also without numerical calculations. For this, first, assume d = 1 and fix z € Z~(. Note
that 9,1 = spang {u. 41}, yielding 3.1 < dimg 9,1 = 1. Furthermore,

Uyl = U H Uy € 8271,

giving 3,1 > 1. Hence, Conjecture 2.39 is true for all pairs (z,1) € ZQ>O since

S
217 T \minfz, 13— 1)

Now, assume z = 1 and fix d € Zo. In this case, S; 4 = spang {u1 uil}, ie, s 4 =1
In particular, we have proven Conjecture 2.39 for z = 1 since

oo dri-n
L= 57 \min{1,d} — 1)

Next, assume d = 2 and fix z € Z>3. Note that the case (z,d) = (1,2) follows from
the z = 1-case we have proven. Note that I, = spang {ustz42-« |1 <a<z+1}. A
direct calculation shows

ULU] B Ug—1Uzp1—q, if 2<a<z,
Uglz42—q = § U1 B U1U, — uruy B ujt,—1, ifa=1,
w1 B Uu1 — UTU B Uy U1, ifa=z+1.

Hence, uqu,42-q € S;2 forall 1 <a <z+1,ie., S;2 =192, giving

. 24+2z-—1
b2 = dimg Jz2 = <min{z 2} — 1)

since we assumed z > 2 = d. Hence, Conjecture 2.39 is true for all pairs (z,2) € Z2>0.
Now, assume z = 2 and fix d > 2 (since the (z,d) = (2, 1)-case follows from the d = 1-
case of the theorem). In this case, Sy 4 is spanned by the d + 2 box products

i d—j—1 .
uy B ujuguy 0<j<d-1), wu u‘f, U9 uil.

Note that all but the last box product are linear independent since wjuq u‘f does not
contain any word with letter us while u; u{uzuil_] ~1 does contain exactly one such one
which is unique for fixed j. Furthermore, we have

d—1
upy B ud = Zul wjugu
j=0

d—7—1
17T = 2wy uﬁl,

i.e., up @ uf is not linearly independent of the box products. Therefore,

g dt2-1
24— ~ \min{2,d} - 1

since we assumed d > 2. This proves Conjecture 2.39 for z = 2.

Now, assume d = 3. Since the cases (z,d) € {(1,3),(2,3)} follow from the case z = 1,
respectively z = 2, that we have proven already, we may fix z € Z>3. For z = 3, from
Lemmas 2.32, 2.33, and 2.36, we obtain S33 = Y33, yielding, by Corollary 2.40, the



68 Chapter 2. Paper I: On the relations satisfied by Multiple g-Zeta Values

claim. For z > 3, we apply Theorem 2.41 to obtain the remaining part for the proof that
Conjecture 2.39 is true for all pairs (z,3) € Z%, from the case z = 3.

Noting Corollary 2.40, Conjecture 2.39 is equivalent to S, 4 = 9, 4 for all z > d. lLe.,
in these cases, every u, with p € Zio and |pu| = z + d conjecturally can be written
as Q-linear combination of box products un ® up with (n,£) € J, 4. With the following
lemmas, we reduce the number of such p’s. For that, we have to show this, which can
be seen as progress towards Conjecture 2.39. For this, given Wy,Wa € (U\{ug})", we call
the box product Wy B Wy non-trivial if 1 < len(W;) < len(Ws).

Lemma 2.62. Let be p € Zio for some d > 1. Then, u, can be written as a linear
combination of words ending in w1 and non-trivial box products.

Proof. Choose pp = (u1,...,14) € Zio with pg > 1 (for g = 1 there is nothing to prove).
Then,

Upg—1 B Upyy =+ Upg_ UL = Uy + (uud—l Upy - 'u#d—1) U1,

i.e., after rearranging, one obtains the claim. O

Lemma 2.63. Fiz z,d € Z~1 with z > d > 2. If Conjecture 2.39 is true for (z,d — 1),
then every u, with p € Zio and |pu| = z + d can be written as linear combination of
words ending in uy and non-trivial box products.

Proof. Assume d and z as in the lemma. Let be pu = (1, ..., pg) € Z%, with |p| = z+d.
If g = 2, there is nothing to prove. If ug > 2, we proceed as in the proof of Lemma 2.62.
If ug = 1, by assumption and Theorem 2.41, we have

Upyg = Upg y = Z anve(“) Un B Up
(nv‘e)ejz,dfl

for appropriate an ¢(pt) € Q. Then,

Z ane(p) Un B uguy = uy + Z ane(p) (u(m,...,nsq) ue) Ul 4, -
()T, 41 (n)ET. .41

The latter sum consists of words ending in some Uy, with p/, > 2. However, such words
can be written as linear combinations of words ending in us and box products, similar
to the proof of Lemma 2.62, completing the proof. O

Lemma 2.64. Fiz z,d € Z~1 with z > d > 2. If Conjecture 2.39 is true for (z—1,d—1),
then every u, with p € Zio and || = z + d can be written as linear combination of
words ending in us and non-trivial box products.

Proof. Assume d and z as in the lemma. Using Lemma 2.63, we only have to show that

a word ending in uo can be written as a linear combination of words ending in us and
d—1

box products. Choose such a word uy, - --uy, ,u2, ie., 2+ '21 p; = z +d. Then, by
J:

assumption, one has

Upy = Upg_y = Z an,E(N’) Un = Ug
(nve)ejzfl,dfl

for appropriate an¢(pt) € Q. Hence,

Y e un@uz = wt S ane(h) () B ) e,
(n)eT.—1,a-1 (n)eT.—1,a—1
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The latter sum consists of words ending in some Uy, with !, > 3. However, such words
can be written as linear combinations of words ending in u3 and box products, similar
to the proof of Lemma 2.62, completing the proof. O

Lemma 2.65. Let be n € Z,£ ¢ Zio with 1 < s <d. Then, u, ®up can be written as
linear combination of non-trivial box products u,s E uy where £’ ends in 1.

Proof. Writing £ = (¢1,...,44), we may assume f4 > 1 since for /; = 1 there is nothing
to prove. Then,

d—1
ul’l uf :Un <u£d—1 U(Zl,...,éd,l,l) - Z u(él,...,fj—‘rfd—l,‘..,gd1,1))

T&w.

1

= (Un *Upgy—1) B U, 0y 1) — D Un B UL 0401, 00 1,1)
1

.
Il

where we used Lemma 2.19 in the last step. O

A further result about the numbers 4, 4 is the following lemma that gives a lower
bound.

z+d—2) )

Lemma 2.66. For all z,d € Z~o, we have 3,4 > (/%]

Proof. We prove by induction on z+d. For z = 1, the claim is clear, since for all d € Z~,
we have 0 # u; B uf € 81,4, i€,

For d = 1, we have for all z € Z~( equality by Lemma 2.42. In particular, the base
case z + d = 2 is proven. Now, let be z,d € Z-; and assume that the lemma is proven
for all smaller values of z + d. By Lemma 2.50 and the induction hypothesis, we obtain

24d—3 z+d—3 Z4+d—2
> > = :
5z,d_5z,d1+5zl,d_< d—2 >+< d—1 ) ( d—1 > H

We end this subsection with some remark on Conjecture 2.39 that is independent of
the rest of the paper.

Remark 2.67. Using basic linear algebra, we obtain the following equivalent formula-

tion of Conjecture 2.39 in the cases z > d. Fix positive integers d and z with z > d.

Conjecture 2.39 is true for the pair (z,d) if and only if the (ﬁf}l) expressions

{ Y ehiunBug | pe 7L, |l :Z+d}
(nve)er,(i

are Q-linearly independent. Here, EZ’E denotes the multiplicity of u, in wu, & wue.

2.5 Our approach to the refined Bachmann Conjecture 2.10

In the following, we present the approach with which one is trying to make progress in
proving the refined Bachmann Conjecture 2.10. The general idea is to prove by induction
on zero(W) for W € U*° that ¢! (W) € ZJ/°. This is trivial for the base case zero(W) = 0.
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Thus, we assume zero(W) > 0. Particularly - for proving the induction step - one has to
write (f (W) as a linear combination of ¢} (W)’s with W € U*° and zero(W') < zero(W). In
our approach, we refine the induction step by showing that for every word W € U*° we
can write C; (W) as a linear combination of Cé (W)’s with W € U*° and zero(W') < zero(W),
or

zero(W') = zero(W) and depth(W) + wt(W') < depth(W) + wt(W)

(see the refined Bachmann Conjecture 2.10). The general observation of why the refined
Bachmann Conjecture 2.10 is of interest when studying Bachmann’s Conjecture 2.4 is
given in the following lemma.

Lemma 2.68 (Lemma 2.11). Fiz z,d,w € Z~g. If the refined Bachmann Conjecture 2.10
is true for (z,d,w) and if Bachmann’s Conjecture 2.4 is true for all (#',d',w') € Z3,
with 2 +d +w' < z+ d + w, then Bachmann’s Conjecture 2.4 is true for (z,d,w). In
particular, the refined Bachmann Conjecture 2.10 implies Bachmann’s Conjecture 2.4.

Proof. Fix z,d,w € Z~o and assume that the refined Bachmann Conjecture 2.10 is true
for (z,d,w) and that Bachmann’s Conjecture 2.4 is true for all triples (2, d’,w’) € Z3,
satisfying 2’ + d' + w' < z 4 d + w. By definition of F, 4,, and the second part of our
assumption, it follows

:1Z,D;W :1Z,D;W
S qu + > FilZ o zgj

2/ 4+d' =z+d—1
0<z'<z
DWW fo0 .D,W o D)W 2fo
C F11z+d,w71 Zq + Fllz+d—1,w Zq C Fllerd,w Zq .

Using the assumption Filf’?;vw Z({ C F. 4w, we obtain Fﬂf’?g}v ZC{ C FilZDjr\ilvw ngo, ie.,

Bachmann’s Conjecture 2.4 for (z,d, w). O

For given z > d, our approach to the refined Bachmann Conjecture 2.10 restricts -
independent of the weight w - to prove Conjecture 2.39 for the pair (z, d) as the following
theorem shows.

Theorem 2.69. Fiz z,d € Z~o with z > d. If Conjecture 2.39 is true for the pair (z,d),
then for all w € Z~q, we have

AZDW f AZDW f
F11Z7d’w Zq - E Fllz’,d’,w Zq CF.aw-
2'+d' =z+d—1
0<z'<2—1

In particular, the refined Bachmann Conjecture 2.10 is true for the triples (z,d,w) € Zio
with w arbitrary.

Proof. Fix z,d € Z~ with z > d and assume that Conjecture 2.39 is true for (z,d). This
means u, € P for all z € Z%, with |z| = z + d. Hence, the claim follows immediately
from Corollary 2.57. O

Remark 2.70. Immediately from Theorems 2.41 and 2.69 the following statement is
obtained: If Conjecture 2.39 is true for all z = d, then we have

FilZ 2/ C Filj_; Z]
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for all (z,d) € Z%, with z > d. More precise, then we have
o 1Z,D,W
ZJ = Z«;’ + Z Fil 5 rd qu-
0<z2<d—1
d>1

Remark 2.71. For z > d, our approach to Bachmann’s Conjecture 2.4, and the refined
Bachmann Conjecture 2.10, is to study Conjecture 2.39 in more detail. We will explain
this in Section 2.6. For z < d, this approach will not suffice since in this case, we
have 8, 4 € I, 4 by Conjecture 2.39 which is numerically explicit verified for small values
of z and d (see Lemma 2.42). Hence, we need to extend our approach. We make do
with few explicit calculations to prove our main results in Section 2.6. In the outlook,
Section 2.7, we abstract our calculations and leave it as an open question whether this
generalization is sufficient.

2.6 Proof of our main results towards the refined Bach-
mann Conjecture 2.10

In this section, we first provide the proof of our main results, namely, Theorems 2.8
and 2.12, where some particular statements are black-boxed. We deliver their proofs in
Sections 2.6.1, 2.6.2, and 2.6.3.

Proposition 2.72. The refined Bachmann Conjecture 2.10 is true for all (z,2,w) € Zio.

Proof. Due to case d = 2 of Lemma 2.42, Conjecture 2.39 is true for all (z,2) € Z2,
with z > 2. Theorem 2.69 then implies Filf”;?{yv Z({ CF.oforall z,w € Z>g with z > 2.
Hence, it remains to prove case z = 1. However, this follows immediately from the special

case d = 2 of Corollary 2.28. O
Proposition 2.73. The refined Bachmann Conjecture 2.10 is true for all (z,3,w) € Z2,,.

Proof. The case z = 1 is proven by Corollary 2.28, the case z = 2 will follow from
Theorem 2.77 below, and the cases z > 3 are proven by the z = 3 case of Lemma 2.52,
Theorem 2.41, and Theorem 2.69. O

Proposition 2.74. The refined Bachmann Conjecture 2.10 is true for all (z,4,w) € Zio.

Proof. While the case z = 1 is proven by Corollary 2.28, the case z = 2 will be obtained
from Theorem 2.82 below, and the case z = 3 will be obtained from Theorem 2.97
below. Furthermore, the cases z > 4 are proven by Proposition 2.53 and Theorem 2.69,
completing the claim. O

We are now able to prove one of our main theorems.

Theorem 2.75 (Theorem 2.8). Bachmann’s Conjecture 2.4 is true for all (z,d,w) € Z3,,
with z +d < 6.

Proof. For z 4+ d < 3, the claim is an immediate consequence of Proposition 2.21 and
Corollary 2.28. For z = d = 2, the claim follows by induction on w, using the proven
claim for z + d < 3, Lemma 2.68, and Proposition 2.72 in the induction step. Together
with Proposition 2.21 and Corollary 2.28, the claim holds now for z + d < 4. Further-
more, inductively on w, the claim for (z,d) € {(3,2),(2,3)} follows from the already
proven claim for z + d < 4, Lemma 2.68, and Proposition 2.72 (for (z,d) = (3,2)), and
Proposition 2.73 (for (z,d) = (2,3)). Now, using Proposition 2.21 and Corollary 2.28,
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the claim follows for z + d < 5. Analogously, for (z,d) € {(4,2),(3,3),(2,4)}, the claim
follows in each case inductively on w, where we use in the induction step the already
proven claim for z +d < 5, Lemma 2.68, and Proposition 2.72 (for (z,d) = (4,2)), 2.73
(for (z,d) = (3,3)), and 2.74 (for (z,d) = (2,4)), respectively. Now, using Proposi-
tion 2.21 and Corollary 2.28, the theorem is proven for z 4+ d < 6 as well, completing the
proof. O

Theorem 2.75 is the main ingredient in the proof of the next main theorem.

Theorem 2.76 (Theorem 2.12). The refined Bachmann Conjecture 2.10 is true for all
triples of positive integers (z,d,w) € Z2, with 1 < d < 4.

Proof. For1 < z < d <4 and w € Z~( arbitrary, we obtain the claim from Theorem 2.75.
Furthermore, for 1 < d < 3, z > d and w € Z~( arbitrary, we obtain the claim from
Corollary 2.57, Lemma 2.42, and Theorem 2.69. For d = z = 4 and w € Z~( arbitrary, the
claim follows from Proposition 2.53 and Corollary 2.57. Hence, for z > d = 4 and w € Zq
arbitrary, the claim is a direct consequence of Corollary 2.57 and Theorem 2.69, proving
the theorem finally. O

2.6.1 The refined Bachmann Conjecture 2.10 for (z,d,w) = (2,3, w)

Theorem 2.77. The refined Bachmann Conjecture 2.10 is true for all (2,3,w) € Z?;O,
i.€.,

Cg (ko ug U U ks UG ) € Fo g4y (2.77.1)

for all integers k; € Zwo, zj € Z>o, where 1 < j < 3, satisfying z1 + 22 + 23 = 2
and w = ki + ko + kg + 2.

Proof. For ky = ky = k3 = 1 and for all 21, 29, 23 > 0 satisfying 21 + 29 + 23 = 2, (2.77.1)
is true since, after using 7-invariance of C(g, we have
Cé (ulugl u1u82u1u(z)3) - Cé (u23+1uz2+1uz3+1) € F2,3,w .

Furthermore, for ko > 1, (2.77.1) will follow from Lemma 2.79, for ks > 1, (2.77.1)
will follow from Lemma 2.80, and for k; > 1, (2.77.1) will follow from Lemma 2.81,
completing the proof of the theorem. O

Lemma 2.78. Let be ki, ko, k3 € Z~g and write w = k1 + ko + k3 + 2. We have

C; (U Uk Ukea UOUO) C; (U U Uky UO Uy ) € Fa 3., (2.78.1)
Cg (ukluk2u0u0uk3) = C; (ukl uouk2uk3uo) mod F2737w (2.78.2)
= Cg (uk1u0u0uk2uk3) = — Cé (uklukzuouk3u0) mod F2737w . (2783)

In particular, for fived ki, ko, ks, if one of the latter four formal Multiple Zeta Values is
in Fa 3.4, (2.77.1) is true for the corresponding choice of ki, ko, ks.

Proof. First note that (2.78.1) is a consequence of Corollaries 2.25 and 2.29. Furthermore,

after using Lemma 2.56 and 7-invariance of formal ¢MZVs, with (2.78.1), we obtain

_ f

0= gq (\Il(khk%m)(ulul U1U1U1)> mod F273’w
_ ks—1,  ko—1  _ ki—1 ks—1 ko—1 k-1
= C(g (uQu03 uguy’ T uIUg' A uug® T Uyt uguy! ) mod Fa 33,

= C; (ukl uk2u0uk3u0) + C; (ukluOqunguO) mod F273,w, (2.78.4)
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0= ¢ (‘I’(kl,kg,kS)(ul U1U2U1)> mod F 3.,
= (; <u2u§3 Lu uISQ 1u1u’81 1+u1uk3 1U3u§2 1u1u§1 1) mod Fa3 4
= (5 (tpy Upy U0tk 10) + GG (W, UpyUoUOUR,) mod F2 34,
0= ¢ (‘I’(kl,kz,kg)(m u1u1uQ)) mod Fa3, (2.78.5)
= C; (uzug3 IU1u§2 luQulgl S uk3 1u1u§2 lu;J,ulgl 1) mod Fa 33,
= (5 (g UOURy Uy 10) + G (g UOUOUR,y U, mod Fa 3, .(2.78.6)
We obtain (2.78.2) and (2.78.3), by comparing (2.78.4), (2.78.5), and (2.78.6). O

Lemma 2.79. Equation (2.77.1) is true for ka > 1.

Proof. Let be ki, ko, ks € Z~¢ and write w = k1 + ka2 + k3 + 3. By (2.3.1), we have

Z,D;W
UgU1 * Uk Uky Uk € Fily’s ) QU)°.

Hence, and due to 7-invariance of formal gMZVs, we have

1
0= k;(é (T(uguy) * 7 (U Uy Uiy )) mod Fs 33,

1
f ks— ko— 1 kl—l
—Cq (ululuo * U U’ uluo Uy )

mod F2737w

ko
_ ko ki—1) , K1 ¢ ka—1  ko—1 K
= ¢, <u2u0 u2u02u1u01 ) + kszq (u1u1 * ULUy® u1u02 u1u01> mod Fa3 4
_ £
= (y (Upy Uy 100UR5U0) + G (‘1’(k1+1,k2,k3)(u1u1 u1U1U1)) mod F3 34,
_
= (g (Uky Upy+1U0 UK, Uo) mod Fa 3.4,

where the last step is a consequence of Lemma 2.56. Now, with Lemma 2.78, (2.77.1)
indeed is true for ko > 1. O

Lemma 2.80. Equation (2.77.1) is true for ks > 1.

Proof. Let be ki, ka, ks € Z~ and write w = k1 + ko + k3 + 3. By (2.3.1), we have

Z,D;W
Ug * Uk UoUky Uky € Fil77p ) QU)°.

Hence, and due to 7-invariance of formal gMZVs, we have

1
0 k—g{é (T(u2) * T (Uky UoUky Uks)) mod Fs 3,

ko— 1 k1—1
Ug

1
£ ks —
k—Cq (uluo * ULUy® u 1Ug mod Fa 34

ko1, ki—1) , K2 R T
= Cq (u2u0 urug® Uy ) + k—Cq <u2u0 U UG U2 U

ko ksl ko ki—1) , K1 g
+ kigc(] (u1u03 ug’uo?uguol ) + k73Cq (\I](k1+1,k2,k3)(u1 u1u1u2) mod F2737w

— f
= Cq (ukluouk2uk3+1u0) mod F2,3,w .

The last step is obtained by Lemmas 2.56 and 2.79. Hence, the lemma is proven by
Lemma 2.78. O

Hence, for proving Proposition 2.73, the remaining case is ko = k3 = 1.
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Lemma 2.81. Equation (2.77.1) is true for k; > 1.

Proof. Let be ki, ko, ks € Z~g with k1 > 1 and write w = k1 + ko + k3 + 2. Due to
Lemmas 2.79 and 2.80, we may assume k1 > 1 and ko = k3 = 1, i.e., w = k1 +4 then. By
Proposition 2.72, we have Cg (ug, uourug) € Fa2,—1 and thus Cg (u1 * ug, upuiup) € Fo 3.
Multiplying out the latter product and using Proposition 2.72, (2.78.1), and Lemma 2.79,
we see that

0= Cé (U1 * up, uouiug) = 2(; (ug, upuLUIUY + Uk, UL UULUQ) mod Fa 3.,
= ¢f (wg, uoururug) mod F2 3,

where the last congruence is obtained from (2.78.4). Thus, the proof of the lemma follows
from Lemma 2.78. O

2.6.2 The refined Bachmann Conjecture 2.10 for (z,d,w) = (2,4, w)

Theorem 2.82. The refined Bachmann Conjecture 2.10 is true for all (2,4,w) € Z3,,
i.€.,

C; (Uhoy UG ko UG Wiy UG Uk, UG ) € Fo g0y (2.82.1)

for all integers k; € Z~o, zj € Z>o, for 1 < j < 4, satisfying z1 + 20 + 23 + 24 = 2
and w = k1 + ko + ks + k4 + 2.

Proof. In the case k1 = ko = k3 = kg = 1, (2.82.1) is true since for all z1,...,24 > 0, we
have by 7-invariance of Cg that

f 21 29 23 z4\ _ Af ADW 4 fo
Cq (“luo U1Ug"ULUY" U1 U ) = Cq <u24+1uz3+1u22+1u21+1) € F114,w Zq :

In the four cases k;,, ki,, ki, > 1 with pairwise distinct 41, i2,13 € {1,2, 3,4}, (2.82.1) will
follow from Lemma 2.87, Proposition 2.88, and Proposition 2.89. Furthermore, the six
cases k;, , ki, > 1 for distinct i1, 72 € {1,2,3,4} (and the two other k;’s equal 1) then follow
from Lemmas 2.87, 2.90, 2.91, and 2.92. Next, the four cases of k; > 1 (i € {1,2,3,4})
(and the three other k;’s equal 1), will follow from Lemmas 2.93, 2.94, 2.95, and 2.96.
This completes the proof of the theorem. O

In the following three lemmas, we state some congruences that are true independently
of the several cases we might consider.

Lemma 2.83. Let be ky,...,ky € Z~o and write w =k, + --- + kg + 2. We have

0= g (thy Uk Uy Uy UoUo) mod Fau., (2.83.1)
0= (g (Uky U0UR UoUky U, mod Fa4,, (2.83.2)
0= C; (Ukey Whey Upey WO UK, UO) + C; (kg Uy Uhoy UOUO U, ) mod Fa 4, . (2.83.3)

Proof. Note that (2.83.1) is a direct consequence of Corollary 2.25, while (2.83.2) follows
from Corollary 2.29. Last, (2.83.3) follows from (2.83.1) and Corollary 2.27 used with
the special case d =4, z =2, j = 3. 0

Lemma 2.84. Let be ky,...,ky € Z~o and write w = k1 + --- + kg + 2. We have

_ f f
0 = (g (Why Whoy Upgg U0 Uk, U0) + Cg (kg Upgy U0 Uy U, Up) (2.84.1)

t
+ (g (Uky o Uy Uky Uk, U0) mod F2 4,4,
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0= C; (U, Uy U0 Ukea UO UL, ) + C}; (U UoURy Uk UoUE,) mod Fa 4., (2.84.2)
0= Cé (kg Ukey UOUEy Uk, U0) + C; (tpey Uk U0 Uk U U, ) (2.84.3)
+ C(g (Wkey Uy UOUO U U, ) mod F2 4.4, o
0= C; (ukluoukZukguk4uo) + C; (ukluoqunguoum) (2.84.4)
+ ¢ (wn, oo, ug, u,) mod Fa 4.4, o
0= ¢ (g Uy Uy U0t UR, ) + CF (U Uy UoUO Uy U, (2.84.5)
+ ¢ (wn, oo, ug, uk,) mod F 4.4, o
0= ¢} (tk, Wky ks oty o) + Gl (W, iy oty g, )
+ (; (Uhoy WO Uy Uy Wiy Up) + C; (Uhey Uhey UO Uy UO U, ) (2.84.6)

+ C; (Ukoy WO Uy Uy UO Uk, ) mod Fo 4, .
Proof. All relations are, by Lemma 2.56, a consequence of
0= Ccf] (T(Uk(un Eug))) mod Fayq .

with k = (ki1,...,k4) each and (n,£) € Jo4, where Lemma 2.83 was applied. Pre-
cisely, for (2.84.1), we used (n,£) = ((1),(2,1,1,1)), while for obtaining (2.84.2), we
used (n,£) = ((1),(1,2,1,1)), for (2.84. 3) we used (n,£) = ((1),(1,1,2,1)), for (2.84.4),
we used (n,£) = ((1),(1,1,1,2), for (2.84.5), we used (n,£) = ((2),(1,1,1,1)). Further-
more, for (2.84.6), we used (n,£) = ((1, 1), (1,1,1,1)). O

Lemma 2.85. Let be ky,...,ky € Z~o and write w = k1 + --- + kg + 3. We have

g £
0 = kaCy (U, UoUpy Ukes Ukyr110) — K3Cy (Uky U0UOURy Ukg 11Uk, )

£ (2.85.1)

— ko (g UoUOUky 41Uk, Uky) mod Fg 44,
0 = FaCy (U, Uy UoUky U,y 4100) — 3Gy (hy Uky UoUOURs 11Uk,) MO Fa g4, (2.85.2)
0= k:4C (Upey Uk Uk U URy+1U0) + K2y CE (up, gy 1u0uR, uouE,) mOd Fo g4, (2.85.3)
0= k:ng (Uhy Uy Uk +1UO UL, UO) — kQCé (Uhy U ULy 41Uk Uk, o) MOd Fo 44, (2.85.4)
0= k?ng (kg Uy Ukeq +1UOUO U, ) — kggg (Uhy UOUOUky+1 Uk Uk, ) MOd Fo 44, .(2.85.5)

Proof. We use t-invariance of formal ¢MZVs and Corollary 2.28 to see in the following
calculations that each of the formal ¢gMZVs of stuffle products in the first line indeed is
an element of Fg 4, in the following.
Now, by (2.83.2) and (2.84.4), we have
0= C; (T(Ug) * T (ukluoquukSuk4)) mod F2747w
= g“q (uluo*ululg4 1u1u183 1u1u§2 lugugl 1) mod Fa 44
= k:4Cq (u2u0 ulug U ulgz ! kl_l) — k5C£ (ulug ululg“ululg u;),u’gl 1)
- k:g( (uluo ulu’g?’ 1u1u’82u;3u§1 1) mod Fa 44,
= k4Cq (k) UO Uy Uy Ukey41U0) — k3Cq (Uky WOUO Uy Uk 41Uy )
— aC} (upy U0 UOWky 1 Uy Uy mod F2 4.4,

proving (2.85.1). Furthermore, using (2.83.2), we have

0= C; (T(u2) * T (Uky Uky UOUkg Uk, ) ) mod Fg 44
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= g‘; (uluo *ululg - u1u§3 1u2u§2 1u1u]0Cl 1) mod F2 44,
= k:4C (u2u0 ululg ugu](? Ly ulgl 1)
—kng (ululg“ luluk"’u;gulgz lulu'gl 1) mod Fg 44,
= €l (ny pey oty gy 41000) — K3Ch (W, Wiy U0UO Uy 11Uk, ) mod F2 4 4,
proving (2.85.2). Now, applying (2.83.3) yields
0= C; (T(u2) * 7 (Wky Uy Ug U0 U, )) mod Fg 44
= C; (uluo *ulug u2u§3 1u1u§2 1u1u§1 1) mod F2 44,
= k4C (u2u0 uzuIS:” 1u1u§2 ululgl 1)
—|—k2Cq (ululg“ 1u2u183 1uQu§2u1ulgl 1) mod Fg 44
= k4§é (Wkoy Uy Uy UOURy+1U0) + szq (Ukoy Ukoy 41 UO Uk Up Uk, ) mod F2 4 4,
proving (2.85.3). Next, use (2.83.1) and (2.84.1) to obtain
0= C; (T(u2) * T (Uky Wky Uky Uk, Up ) ) mod Fg 44
= C; (u1u0 *uzug u1u§3 1u1u§2 Ly ulgl 1) mod F2a 44,
= kng (ugug“ Yugulsugu? tugult 1)
— kng (uzulg u1u§3 1u1u182u ulgl 1) mod Fa 4.4
= kgCy (W, Uk Uky 41 U0, U0) — K2l (W, U0 Uky 41 Uy Upey Uo) mod Fg 4.,
proving (2.85.4). Now, (2.83.1) and (2.84.5) imply
0= (; (T(ugup) * T (Uky Uky Uky Uk, ) mod F3 44
= (; (uzu()*ulug u1u§3 ! 1u§2 ululgl 1) mod F2 44,
= kgcg (ulug U3u§3u1u§2 Lu ulgl 1)
— kgC; (ululg“_ u1u§3 1u1u§2u;z,ulgl 1) mod Fg 44
= kgl (W, Why Uky +1U0UOUR, ) — K2l (W, UOUO Uy 1 Uy Uy ) mod Fg 4.,
proving (2.85.5). This completes the proof of the lemma. O

Corollary 2.86. Let be ki,...,kqs € Z~o and write w =k + --- + kg + 3. We have

0= ;(ukluouk2+1uk3uouk4) mod F3 4 4, (2.86.1)
0= ;(u L Ukg+1 U0 Uy U0 Uk ) mod F3 4 4, (2.86.2)
0= C; (Whoy Wy Uy UOUkey+1U0) mod Fa 44, (2.86.3)
0= C; (Uky Uy Ukea UOUO Uy +1) mod Fy 4, . (2.86.4)
Proof. Adding (2.85.4) and (2.85.5), yields, applying (2.83.3),
0= — ko (C; (U, U0 Uky 1 Uy Uy U0) + (Uk1UOUOUk2+1Uk3Uk4)) mod Fa 4

£
= koCy (U, U0Uky 41Uk WO UK, ) mod F9 4.4,
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where the last step follows from (2.84.4). Hence, (2.86.1) is proven. Furthermore, (2.86.2)
is deducted from (2.84.2) and (2.86.1). Now, (2.86.3) follows from (2.85.3) and (2.86.2).
Since (2.86.4) is a consequence of (2.86.3) and (2.83.3), the corollary is proven. O

Lemma 2.87. Equation (2.82.1) is true for ko, kq > 1.

Proof. Let be ki, ko, k3, ks € Z~y and write w = ki + ko + k3 + k4 + 4. By Equa-
tions (2.83.1), (2.84.1), and (2.86.3), we have

0= C(g (T(urug) * 7 (Uky Uy Uy Uk ) mod Fg 44
= C; <u1u0u0u1 * ululg“_1u1u§3_1u1u§2_1u1u’81_1> mod F2 44,
= k‘4k2§§ (ugug“ululgrlululgz’uQulgrl)

+ {}; (ulug“_l (u1u0u0u1 * u1u§3_1u1u§2_1u1ugl_l))
+ C; (u2u§4_1u1 (uououl * ulgi‘_lululgrlululgl_l)) mod Fo 4., .

Now, by (2.84.2), (2.84.4), (2.84.6), and (2.86.1), the latter is, modulo Fg 4 ,,, congruent

ks+1

9 ) Cé (g, Up, Ukz4+2U0 ULy up)

£
KakoCq (Why U0 Uky+1 kg Wky+1U0) — (

ko +1

9 )C; (ukl U’Ououk2+2uk3uk4) :

+ kigkaCh (wk, U0 Wk 11 Wky 11Uk, U0) — <
Using (2.85.2), (2.85.3), (2.85.4), and (2.85.5), the latter is, modulo F3 4 ,,, congruent

1
£ f
— kok3(y (kg Uky 1 1U0UO Uy 11Uk, ) — 5 K2k3(y (Uhy UOURy 11Uk 1 1UE, Uo)

2
1
£ f
+ kighaGy (g U0Uky +1 Uk +1Uky U0) — 5 K2k3Cq (e Uk 1Ukg+100UOUR, )
1
_ £ f
= koks (Cq (Ukey Uk +1UOUO U5 +1Uky ) — §<q (Ukey Uk +1Ukeg+1U0UO ULy )
L
+§<q (Uky WO Uk 41 Uk 41Uk U0) mod F2 44, -

With (2.84.2), (2.84.3), (2.84.6), and (2.86.2), one obtains so

0= C}; (W) Uyt 1UO Uz +1 UK, o)  MOd Fo g, . (2.87.1)
Now, this, together with (2.84.3) and (2.86.2) imply

0= C; (UWhky Uyt 1UOUO Uz +1UE,)  mOd Fo g, (2.87.2)
Furthermore, (2.85.2) and (2.87.2) imply

0= (,1; (Why Uyt 1UO Uz Uky+120)  mOd Fo g, .

Note that by Lemma 2.83, Corollary 2.86, and the congruences in Lemma 2.84, the claim
follows. O

Proposition 2.88. Equation (2.82.1) is true for ki, ks, kg > 1.

PT‘OOf. Let be kq, ko, k3, ky € Z~ with k1, ks, kg > 1 and write w = k1 + ko + k3 + kg + 2.
For all 29,23,24 > 0 with 290 + 23 + 24 = 2, using Theorem 2.77 in the first step and
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Lemma 2.87 additionally in the second step, we have
— f z: zs 24\ f z zs z
0= Cq (U * Uk UG Uk UG UR, uGt) = Cq (Upy Uy Uy Uk U U, ug)  mod Fogy, .

Using this observation, for z; > 1, 29, 23,24 > 0 with z; 4+ -+ + 24 = 2, we have, using
Corollary 2.28 in the first step due to zo + 23 + 24 < 1,

0= Q; (Uzy * T (Uky Wiy UG Uy UG Uk UG)) mod Fo 44
= gé (%1 * uz4+1u0 luz3+1u]5 _luz2+1u§ lulugl 1) mod Fa 44
= (UZ4+1U0 g _1UZQ+1U§2_1UZ1+1U§1_1) mod F 4.4
= Cj; (Whoy UG Whoo UG Uk UG Wk UG mod Fo 4, .
This completes the proof of the proposition. O

Proposition 2.89. Equation (2.82.1) is true for ky, ko, k3 > 1.

Proof. Let be ky, ko, k3, k4 € Z~g with ki, ko, ks > 1 and write w = k1 + ko + k3 + k4 + 2.
Using Lemma 2.87 and Proposition 2.88, we obtain for 21, 20, 24 > 0 with z1 + 20424 = 2
that

_ f z z z S § z 2z z
0= ¢ (U ug? * Upy UG Uy UG Uk ) = Cq (Upy Uy Uk UG Uk Uk, ug)  mod Fa g4,

where we used Proposition 2.21 and Proposition 2.73 for the first congruence. Now, for

all z1,...,24 > 0 with 21 +--- + 24 = 2 and z3 > 0, we have
M ) )
__ f
= (g (zy * 7 (W, UG Wy UG Uk Uk ")) mod Fy 4.
_ f k ko—1 ki—1
= q (qu *uz4+1u0 u1u03 Uzg b 1Uy° Uz 41U ) mod F2 44
_ f ks—1 ko—1 ki—1
= q (u +1u0 uz3+1u0 Uzp b 1UG" Uz 41U ) mod F2 44,
_ f
= (g (upy ug Uy UG Upes g upy ug" ) mod Fy 4, .
This completes the proof of the proposition. O
p b prop

Lemma 2.87 and Propositions 2.88 and 2.89, show that Theorem 2.82 is true when
three of the k; are larger than 1. Hence, in the following, we will prove the remaining
cases that two of the k;’s are larger 1.

Lemma 2.90. Equation (2.82.1) is true for ks, ka > 1.

Proof. Let be ki, ko, ks, ky € Z~o with ks, ks > 1 and write w = k1 + ko + k3 + kg + 2.
According to Lemma 2.87 and Proposition 2.88, we may assume k1 = ko = 1. Using
Proposition 2.73 for the first two steps in the following calculation, while using Equa-
tions (2.83.2), (2.84.2), and (2.86.1) for the last step, we have

0= C (U1 * Uj U UL, U UL, ) mod Fg 44
= 2Cq (U1U1 U U U UL, ) + C; (U1 UoUI Uy Uo U, )
+ {; (U1UpULR, UL UQUL, ) + C; (w1 U Uk, UoUT UL, )
+ ¢ (ur g, oty ur) mod F2 44

S C; (w1u1 uo Uk, Uo Uk, ) mod Fa4,. (2.90.1)
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This implies, with (2.84.2) again,
0= C; (uluoulukguouk4) mod F2747w . (2.90.2)

Now, using Proposition 2.73 for the first step, then using (2.83.2), (2.86.1), and Lemma 2.87
for the second step, then applying (2.90.1) and (2.90.2), we obtain

0= i (C; (u1up * Uy UeUL, Uk, ) — C; (uq * uluoukguk4u0)> mod Fo 4
= ¢§ (wuuouour, ug,) + %C; (uru1uoukguoUL,)
+ iC; (w1 tour gy o U, ) mod Fa 4.,
= C; (w1 U1 UoUO UK, UL, ) mod Fg 4, .
The lemma follows using the relations in Lemma 2.84. 0

Lemma 2.91. Equation (2.82.1) is true for kg, ks > 1.

PT’OOf. Let be ki, ko, k3, k4 € Z~¢ with ko, ks > 1 and write w = ki + ko + ks + kg + 2.
According to Proposition 2.89 and Lemma 2.87, we may assume k1 = k4 = 1. Using
Proposition 2.73 for the first step and Lemmas 2.87 and 2.90 for the second one, we
obtain

_ _ f
0 = (g (ur * uruguoup, ugy) = Cg (W1uotoUg,ukwr) mod Fo g,

giving by (2.84.5), respectively by (2.84.4) and (2.86.1),
0= C; (urug,ugguouour) mod Fo g, (2.91.1)
0= C}; (u1uoug, ugauitug) mod Fo g, .

Note that (2.91.1) implies by (2.83.3)
0= (; (urug, ugguouiug)  mod Fo g,

completing, together with (2.83.1), (2.83.2), (2.86.1), (2.86.2), (2.87.1), and (2.87.2), the
proof of the lemma. O

Lemma 2.92. Equation (2.82.1) is true for ky > 1 and one of ko, ks, ky larger 1.

Proof. Let be ki, ko, k3, k4 € Z~g with k1 > 1 and write w = k1 + ko + k3 + k4 + 2. First,
assume that one of ks, k4 larger 1 as well. For z9, 23,24 > 0 with 20 + 23 + 24 = 2, we
have, using Proposition 2.73 in the first step and Lemmas 2.87, 2.90, and 2.91 for the
second one,

_ z Z 24\ — I z Z z
0=¢, (Ukey * Uy UG Ukea U U, UG = Cq (Uky Uy UG Uk UG U, ug*)  mod Fao gy,

Now, for all z1 > 0, 29, 23, 24 > 0 with z1 + - -+ 4+ z4 = 2, using Corollary 2.28, we obtain

_ AT

= g (zy * T (Upy Uy ug Uy ug* upy ug') ) mod F2 44
_ A —1 ks—1 ko—1 k1—1

= ¢ (uz1 TR Vi TR Vi TN Vi TR Vhi ) mod F 44
_ Af ks—1 ko—1 ki1—1

= Cq (UZ4+1UO uz3+1u0 u22+1u0 u21+1u01 ) mod F2747w

’—h

z3 z
(ukluo uk2u0 uk3u0 uk4u04) mod F2,4,w,
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showing that (2.82.1) holds for ki, ks > 1, and for k1,ks > 1 as well.

It remains considering the case of kq,ko > 1 with k3, k4 € Z~( arbitrary. Note
that for z3,2z4 > 0 with z3 + 24 = 2, we have by the previous results of this proof and
Lemmas 2.87, 2.90, and 2.91,

_ f _ f
0 = (g (unyug ur,ug" * Uy Upy) = Co (Upy Uny Uz ug Uy ug')  mod Fo gy, .

By Corollary 2.28 for the first congruence and for the second, again, by the previous
results of this proof and Lemmas 2.87, 2.90, and 2.91, we have

_ f _
0 = (g (UpsUky U0 * Upy UOURy) = Co (Uky UoUR, Uz Uy o) MOd Fo g4

Using the previous results of this proof and (2.83.1), (2.83.2), (2.86.2), (2.86.1), and
Lemma 2.84, we obtain that (2.82.1) also holds true for ki,ks > 1, completing the
proof. O

As in the proof of Theorem 2.82 mentioned, for completing the proof of Theorem 2.82,
it remains to consider the cases where one of the k;’s is larger 1 while the other three
equal 1.

Lemma 2.93. Equation (2.82.1) is true for ks > 1.

Proof. Let be ki, ko, k3, kg € Z~o with k3 > 1 and write w = k1 + ko + k3 + kg4 + 2.
According to Lemmas 2.90, 2.91, 2.92, we may assume k| = ky = k4 = 1, i.e., w = k3 +5.
Using Proposition 2.73 for the first congruence, Corollary 2.28 and Proposition 2.73 for
the second one, and (2.83.2), (2.84.5), and (2.86.4) for the third one, we have

0= ¢ (ur * wuououru,) mod Fg 4,
= 2(; (w1 ugupuoUI Uk, ) + Cg (w1 upurUuoUI ULy )
+ 2C§ (w1 uouour U ugy) + C; (u1uouou Uk, U1) mod Fa 4,
= ¢ (uauouous g, us) mod Faiw. (2.93.1)

Furthermore, using Proposition 2.73 for the first congruence, Corollary 2.28, Proposi-
tion 2.73 and Equations (2.83.2), (2.84.2), and (2.86.1) for the second congruence, gives

0= C; (u1 * ugupUE,uoul) = C; (ururuougguour) mod Fa g, (2.93.2)
and so, by (2.84.2) again,
0= Cé (uiuourugguour) mod Fo g,y . (2.93.3)
Now, (2.84.4) in combination with (2.93.1) and (2.93.3) implies

0= (; (uluouluk3u1u0) mod F2747w . (2.93.4)

Using Corollary 2.28 for the first congruence and, for the second one, Corollary 2.28,
Propositions 2.72 and 2.73 and Equations (2.84.1), (2.102.11), (2.83.2), (2.93.2), (2.93.3),
we obtain

0= 1 (C; (ugupuy * ujupUk, ) — Cé (ugup * uluouluk3)) mod Fo 4,

= C; (w1 ur uguouk, 1) mod Fa4, . (2.93.5)

The remaining proof follows directly from Lemma 2.84. O
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Lemma 2.94. Equation (2.82.1) is true for kq > 1.

Proof. Let be ki, ko, ks, kqy € Z~o with kg4 > 1 and write w = k1 + ko + ks + kg + 2.
According to Lemmas 2.90, 2.87, 2.92, we may assume k1 = ko = k3 = 1, i.e., w = kg +5.
Using Corollary 2.28 for the first congruence, and for the second one, Corollary 2.28,
Proposition 2.73, and Equations (2.84.6), (2.86.3), and (2.93.4), we have

0

1
1 (Cé (ugug * uluouluk4)) = C; (ururuououiug,) mod Fog,,.
This, (2.86.4), and (2.93.5), gives, together with Proposition 2.73,

0= Cg (u1 * upuuouoUk, ) = (; (ururuouruouy,) mod Fo g, .

The remaining part of the proof follows from (2.83.1), (2.83.2), (2.86.3), (2.86.4), and
Lemma 2.84. O

Lemma 2.95. Equation (2.82.1) is true for ko > 1.

Proof. Let be ki,ko, k3, ky € Z~g with ko > 1 and write w = ki + ko + ks + kg + 2.
According to Lemmas 2.87, 2.91, 2.92, we may assume k| = k3 = k4 = 1, i.e., w = ko +5.
First note that, by Proposition 2.73 and Lemma 2.93, one has

Loy

0= ¢, (u1 * uwruguoug,uy) = C; (uruououg,uiwy) mod Foy .,

giving, with (2.84.4) and (2.86.1),
0= C; (uruour,urutug)  mod Fa gy, (2.95.1)

Furthermore, by Proposition 2.73 for the first congruence, Corollary 2.28, Proposi-
tion 2.73 and Lemma 2.93, Equations (2.84.1), (2.86.2), and (2.95.1) for the second
congruence, we obtain

_ f _ f
0= ((u1 *xuruguourug) = (o (wrup,uouruiug) mod Fo gy .

The remaining part of the proof follows from (2.83.1), (2.83.2), (2.86.2), (2.86.1), and
Lemma 2.84, immediately. O

Lemma 2.96. Equation (2.82.1) is true for k; > 1.

Proof. Let be ki, ko, ks, ks € Z~o with k1 > 1 and write w = k1 + ko + ks + kg + 2.
According to Lemma 2.92, we may assume ko = k3 = k4 = 1, i.e., w = k1 + 5. For
any 2s, 23, z4 > 0 with 2o + 23 + 24 = 2, we have, using Corollary 2.28, Proposition 2.73,
and Lemmas 2.93, 2.94, and 2.95 for the third congruence,

0= ¢ (upy * 7 (Usy 18z 1U2911)) mod Fy 4,
q

= ¢ (wp, * wuPuudPuug!) mod Fa 4,

= Cé (why wrug? ur ug urugt) mod Fa 4.4 -

This implies, for any z; > 0, 29, 23, 24 > 0 with 21 4+ - - - + 24 = 2, using Proposition 2.73
for the first congruence and, additionally, Corollary 2.28 for the third congruence,

0= Cé (uzy * 7 (ug, uruguruguiugt)) mod Fo 44

f ki—1
=( (Uzl * Uszy 41Uz +1Uzp+1U1 Ugy ) mod F9 4.4,
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_ k1—1

= Cq (UZ4+1UZ3+IUZQ+1UZ1+1U()1 ) mod F2,47w

— f

= ¢ (up ug urug*urug*urugt) mod Fy 4 4,
completing the proof of the lemma. O

2.6.3 The refined Bachmann Conjecture 2.10 for (z,d,w) = (3,4, w)

Theorem 2.97. The refined Bachmann Conjecture 2.10 is true for all (3,4,w) € Z?;O,
i.e.,

C(g (ukl ugluk2u32uk3u83uk4ug4) € F3747w (2.97.1)

for all integers kj € Zso, zj € Z>o, for 1 < j < 4, satisfying z1 + 2o + 23 + 24 = 3
and w = k1 + ko + ks + k4 + 3.

Proof. In the case k1 = ko = k3 = ky = 1, (2.97.1) is true since, by 7-invariance of C;,
for any z1,...,24 > 0, we have

Cg (wrug' viugtuiuguiugt) = C}; (Uzyt1Uzgt 1 Uz 41Uz +1) € Z{’O.

For k3 > 1, (2.97.1) will follow from Lemma 2.101, for k4 > 1, (2.97.1) will follow from
Lemma 2.102, for k2 > 1, (2.97.1) will follow from Lemma 2.103, and for k; > 1, (2.97.1)
will follow from Lemma 2.104. This completes the proof of the theorem. O

First, we will consider some relations we need more than once.
Lemma 2.98. Let be kq,...,kqs € Z~o and write w = k1 + -+ kg + 3. We have
0= C; (uklukzukguk4u0uou0) mod F3,47w, (2.98.1)

0= Cg (ukluouk2uouk3uouk4) mod F3,47w . (2.98.2)

Proof. Congruence (2.98.1) is a special case of Corollary 2.24. Setting k := (ky, ..., kq),
Equation (2.98.2) follows from Lemma 2.56 and (2.98.1) via

3
C; (\Ilk (u;w%)) = Z(—l)]_l(:; <\Ilk (ujl U4_ju:{’)> = 0 mod Fza.. O
§=0
Next, we consider relations coming from products with no ug in one of the factors.

Lemma 2.99. Let be ky,...,kq4 € Z~o and write w = k1 + --- + kg + 3. We have

0= C; (Ukey Uk Uhoy UO U, WU ) + C; (Ukey Uk UO Ueq Uk, UOU )

(2.99.1)
+ Cf (1, 0 Uy Uy U, U0 mod Fs 4.,
0= C(l; (ukluouoquUkSUk4uo) + Cé (uk1u0u0uk2uk3u0uk4) (2 99 2)
! . .99.
+ Cq (uk1u0u0uk2uouk3uk4) + Cq (Uk1u0u0u0uk2uk’3uk4) mod F3:4’w’
_ f £
0= (g (Why Why Uk U0 Uk, UoU0) + Cg (Uky Wy Uk UoUO UK, U ) (2.99.3)
! . .99.
+ Cq (tky wky otk UoUk, U0) + Cg (Uny UoUR, Uky UoUR o) MO F3 4,0,
_ £
0= (g (Why U0Uky kg Wkey UoU0) + Cg (Uky U0 Uk Uky U0 UK, U ) (2.99.4)
! . .99.
+ G (e U0 Uky U0 U, Uy U0) + Cq (Uk, UOUOUky Uky Uky o) MO 340,
_ £
0= Cq (ukluouk2uk3uouk4u0) + <q (uk1u0uk2uk3u0u0uk4) (2 99 5)

f f
+ G (Ukey WUy UoUk5 U UR, ) + (g (Uky UoUOURy Uk UoUE,) MOd F3 44,
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0= C; (W) U Ukey UOUfeg Uk, U0) + (2 (U, U0 Uy UOUfeq UO UL, )

+ ¢ (why o, uouowk Uk, ) + G (up, w0k, oty ug,) mod F gy, (2.99.6)
0= G} (tky kg pey ey uotuoo) + € (g gy gy uouoUR, o) (2.99.7)
+ ¢ (g wiy wououwrgwe wo) + €8 (wr, vouour, ukguk o) mod Fagn,
0= (; (Uhey Uk Uhoy U0 U, U0 ) + C; (Ukey Uk Ukoy UOUOUO U, ) (2.998)
+ CF (e wi wouourguouk, ) + ¢ (w, vouour, ukguouk,) mod Faguw,
0= €} (g Wey U0 Uky gy uoU0) + € (Why Uy o, uOUOUE,) (2.99.9)
+ ¢ (upy g uououour, uk, ) + C (up, woour,uouk,uk,) mod Fagp,
0= G} (tky U0Uky iy g, uot0) + Cf (g oty Uy uoUOU, ) (2.99.10)
+ ¢ (upy woupy wououR, Uk, ) + C (uk ouououR, Uk, uk,) mod Fagw,
0 = G} (tky Uy iy o, o) + Cf (W Uty QU U, )
+ C; (Ukey UOUQ Uy Uiy Uk, Up) + C; (Uhey UOUO Uy UO Uy Uk ) (2.99.11)
+ ¢ (th, UoUOUO Uy Uy Uk, ) mod F3 4,4,
0= C; (Uky Uy Ukea UOUOUO UL, ) + Cé (U, Uky UOUOUO Uy Uk, ) (2.99.12)
+ C; (U, UoUOUO Uy Uy Uk, ) mod F34 ), o
0= C; (Uky Uy Ukea UO UL, U0 U ) + C; (Wky Uy U0 U Uk, UOUO )
+ C; (Uhey WO Uy Uk Ukey UUp ) + C; (U Uy UOUfeq UOUO Uk ) (2.99.13)
+ C}; (Uhey UO Uy Uy UOUO Uy ) + (; (W) UKy UOUO Uz U, ) MOd F3 44,
0= C; (Uky Uy Ukea UOUO UL, U0 ) + Cg (U, Uy UOUOUfeq Uk, U0 )
+ C; (Whey WO UO Uy Wk Uy U0) + C(g (Uhey Uk UOUO Uy UO Uy ) (2.99.14)
+ C; (Uk; UOUO Uy Uky U0 UL, ) + Cé (Uky UOUOUR, U ULy UR, ) MOd F34 4,
0= C; (Uhey Ukey UO Uy UO U, U0 ) + C; (Ukey WO Uy Uhoy UO U, U ) (2.99.15)

+ C; (ukluoukZUOuk3uk4uo) mod F3,47w .
Proof. All relations are a consequence of Lemma 2.98 and, by Lemma 2.56,
0= Cg (T(Uk(un Eug))) mod Fgyq .

with k = (k1,...,k4) and (n, £) 6 Js,4 each. Precisely, we used (n,£) =

(1), 3,
for (2.99.1), (n £) =((1),(1,1,1,3)) for (2.99.2), (n,£) = ((1),(2,2,1,1)) for (2.99.3).
Furthermore, we used (n,€) = ((1),(2,1,1,2)) for (2.99.4), (n,£) = ((1),(1,2,1,2))
for (2.99.5), (n,€) = ((1),(1,1,2,2)) for (2.99.6), (n, ) ((2),(2,1,1,1)) for (2.99.7).
Furthermore, we used (n,£) = ((2) (1,2,1,1)) for ( 9.8), (m,¢) = ((2),(1,1,2,1))
for (2.99.9), (n,£) = ((2), ( ,1,2)) for (2.99.10), (n,£) =((1,1),(1,1,1,2)) for (2.99.11).
Furthermore, we used (n,£) = ((3),(1,1,1,1)) for (2 99.12), (n,2) =1((2,1),(1,1,1,1))
for (2.99.13), (1, €) = ((1,2), (1, 1,1,1)) for (2.99.14), and (n, £) = ((1,1,1), (1,1,1,1))
for (2.99.15). O

Note that we have the following conclusions.

Lemma 2.100. Let be k = (ki,...,k4) € Z2, and write w = |k| +3. For all1 < j <4,
we have

0= C; (‘I’k (U{_luw%_‘j +ud uguy J)) mod F3 4., (2.100.1)

0= C; (kg Uy Ukea UOUO UL, U ) + Cq (W) Uky UOUQUfeg Uk, U ) (2.100.2)
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+ C; (U, Uy UOUO Uz UO U, ) mod F34 4,
0= Cg (W) Uy Ukea UO UL, U0 U ) + C}; (W) Uy U0 Uk Ul UOUO ) (2.100.3)
+ Cé (Ukey Uk UO Uz UOUO U ) mod F3 4.,
0= C; (Ukey Ukey UOUO Uz U0 Uy ) + C; (Ukey UOUO Uy UQUey Uy ) mod F3 4., (2.100.4)
0= C; (Uhey Uk Uhey UO U, U0 ) + {}; (Ukey UO Uy UOUQ U Uik ) mod Fg4., (2.100.5)
0= (; (Uhey UO Uy Uk Uk, U0 ) + C; (Ukey Uhoy UOUO Uz UO U ) mod F34.,, (2.100.6)
0= (; (Ukey UWOUO Uy Ufeg Uk, o) + C, f (ukluk2uouk3u0uouk4) mod F34, . (2.100.7)

Proof. The proof of (2.100.1) is obtained from Lemma 2.56 and the direct calculation

3

0= Z(—l)pgg (\Ifk (u]f u{ Vg puzll J)) mod F3 4.4
p=1
= C; (\I/k (u{f U4’LL1 = +u2 lulug J)) mod F34. .

Note that (2.100.4) is a consequence of (2.98.1), (2.99.3), (2.99.8), (2.99.7), when using
Equation (2.99.14). Analogously, (2.100.5) is a consequence of (2.98.1), (2.99.6), (2.99.9),
(2.99.10), using (2.99.13). Furthermore, we obtain (2.100.6) with (2.99.13), (2.99.15), and
with the case j = 3 of (2.100.1), in a similar way, using Lemma 2.56,

0= C; (\I/k(u1 U1UQU1UQ)) — C; (lpk(UQ 'LLlUQUlUl))
— (; (U (ug B uguiuiug)) — Cq (ululg‘l 1U2U183 1u?)uISQ Y ulgl 1) mod F3 44
= C; (Ul UQ Uy Uy Ukey Up U ) + C; (Ukoy Uky UUO U UpUE,) MO F3 44,
and we obtain (2.100.7) with (2.99.14), (2.99.15), and with case j = 3 of (2.100.1),
0= C; (\I»'k(ul uQululul)) — C:; (\I’k(UQ u1u1u2u1))
— Cé (\I’k(UQ u2u1u1u1)) mod F3747w
= 3 (U, UOUOURy Uy Wiy o) + Cf (U, Uy U0 U, UoUOUE,) MOd F3 g,
completing the proof of the lemma. O

For the proof of Theorem 2.97, it remains to consider the cases where we have for
one j € {1,2,3,4} that k; > 1.

Lemma 2.101. Equation (2.97.1) is true for ks > 1.

Proof. Let be ki, ko, ks, ky € Zso and write w = ki + ko + k3 + k4 + 4. By (2.98.2)
and (2.99.15), we obtain

1
— f
0= ?Cq (T(u1u1u2) *T (ukn ukzuk3u1€4)) mod F3747w
3
1
— f ka—1 k3—1 ko—1 k1—1
= k—Cq (uluoulul*uluo Uy’ Uyt uUg ) mod F3.4 .4
_ k ko— k1—1
= (q <u2u0 u1u03uzu0 uzuol ) mod F3 44

= Cq (Uky U0 Ukey UO Uy 41Uy U mod Fj34, . (2.101.1)
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Similar, using (2.98.2), (2.99.15), (2.101.1), we have

0= — Ecé (T(U1UQU1) * T (Uklukzuk3uk4)) mod F3’4’w

= - *Cé (uwwom * u1u’54’1mulgrlulu’grlululgl’l) mod F3 4.4
ko

= <§ (ugulg“ 1uw’53 lugul(?u ulgl 1) mod F3 4.4
= (g (thy Uky 41 U0UR, UOUR, Uo) mod F3 4, .(2.101.2)
Furthermore, using (2.99.15), (2.101.2), (2.99.11), we have
L ¢
0= k—3Cq (T(uguy) * T (Uky UoUky Uky Uk, )) mod F3 44
1 _
= k—ggé (u1u1u0 *ululg u1u§3 lululgz ! 181 1) mod F3 4.4,
= Cq (uzulg“ 1u2u’53u1u§ - uzulgl 1) mod F3.4 .4
= (g (thy U0Upy Uk 11 U0UR, Uo) mod F3 4, . (2.101.3)
This implies by (2.99.15) and (2.101.1)
0= ( (Uhey Uy UOUkeg+1 U0 UK, Up) MO Fg 4. (2.101.4)

Now, by equations (2.99.15), (2.100.2), (2.100.3), (2.101.4), (2.101.2), we have

1
f
= 30 Ca (T(u2ua) * 7 (ug, Uy oy Uk, )) mod F3 4.
2
1
= — k—(j; (ululuo*ululg ulug“ 1u2u§2 1u1u§1 1) mod F3 44
2
= (f <u2u§4 1u3u’83 u1u§2u1u§171> mod F3 4
= () (Uky Uy 41 Uy UOUOUR, ) mod F34, . (2.101.5)

Considering (2.100.4), this implies
0= C; (ukluououk2+1uouk3uk4) mod F374,w . (2.101.6)

Next, we consider, using Corollary 2.28, (2.99.14), (2.100.2), (2.100.3),

[
0= ]{TCQ (T(u2u0u1) *T (ukluk2uk3uk4)) mod F3,4,w
3
1
= kf(é (U1UQU() * uw’g U1u§3 1u1u§2 Lu ulgl 1) mod F3 4.4
3
_ ka—1, K ko—1 k-1
= g‘q (U2U04 uzuguLUy® ULy ) mod F3 4.4
= (g (thy Uiy Uy 41 UOUOUR, Uo) mod F3 4, . (2.101.7)

Now, a consequence of (2.100.4) is

_ A
0=¢, (Uhy UOUO Uy U ULy +1Uk,)  MOd Fg 4.
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In a similar way, we obtain by Corollary 2.28, (2.99.13), (2.100.2), (2.100.3),

1
0= 1?342 (T(uguruo) * 7 (g, Upy Upy U, )) mod Fg4.u

1 _ _ _ _
= k—(é (UQUlUO*Ulug4 1u1u§3 1u1u’82 lululgl 1) mod F3 44
3

= C(g (u;;ulg“_lugug?’u1u§2_1u1ulgl_l) mod F3 4
_
= Cq (ukluk2uk3+1u0uk4u0u0) mod F3747w . (2.101.8)

By (2.100.5), one obtains
0= C; (Uky U ULy UOUO ULz +1UE,) MO Fg 4. (2.101.9)

From Corollary 2.28, (2.101.7), (2.101.5), and (2.101.2) we immediately get

0= ]:2@‘; (T(uguy) * 7 (Upy Uy U Uo Uk, )) mod F3 44
= ]:2(; (ululuo * u1u§4_1ung3_1u1u§2_1u1ulgl_l) mod F34 .4
= C; (u1u§4_1U3u§3_1u2u§2u1u’51_1) mod F3 4.4
= () (tky Uy 41 U0 Uk UOUO U, ) mod Fs4., (2.101.10)
and so, by (2.100.7),
0= C; (Uky UOUO Uy +1Uka Uk, o) O Fg 44, (2.101.11)
This implies, using (2.99.2), (2.101.6), (2.101.2),
0 = ¢} (wp, uououg,11uksuour,) mod Fz gy . (2.101.12)

Also, from (2.99.7), using (2.101.5), (2.101.11), and (2.98.1), we obtain
0= C; (Uky Uy 1UOUO Uk Uk, o)  MOd Fg gy (2.101.13)
This leads to, using (2.99.14), (2.101.5), (2.101.6), (2.101.11), (2.101.12),
0= C; (Uky Uy 1UOUO ULz U0UE,)  MmOd Fg 4. (2.101.14)
A consequence of (2.100.6) then is
0= C; (Uhey WUy 41 Ukea Uiy UpUp) MO Fg g4 (2.101.15)
By Corollary 2.28, (2.99.4), (2.99.2), and (2.101.1), we have

1
0= — /.74@5 (T(urug) * T (U, UoUpy Uk Uy )) mod F3.4.

1 _ _ _ _
= —k—gé (uluoul*ululg“ 1u1u§3 1u1u§2 1u2u’51 1) mod F34 4
4

f N 1 ko—1 k1—1)

ks —
q (’LL3U0 uLUy® UGS U2Uyg mod F3 4.4,

= Cg (Uhey UO Uy Uk Uy +-1 U0 U0 ) mod F3 4, .(2.101.16)
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Hence, by Theorem 2.82 for the first congruence and by applying (2.99.4), (2.99.2),
(2.101.3) afterwards, we see that

L ¢
0= — k—cq (T(’U,z) * T (ukluoukguksuhuo)) mod F3,47w

3
L ¢ haly, ka1, ka1, ki1

= — k—g‘q (ulu() * Uyt u1u03 Uty UUg' ) mod F34 4
3

= Cq (U3u§4 1u1u§3u1u§2 L ugl 1) mod F34 4

=t (Whey WO ULy Ukog+1 Uk, UOUO) mod F34, . (2.101.17)

q

Now, (2.100.6) yields

_
0 = (, (ug, UpyUoUOUR; +1UOUK,)  MOd F3 44,

Furthermore, (2.101.17) implies with (2.99.10) and (2.101.9), respectively (2.99.1)
and (2.101.8),

_ ot
0 = (; (Uky UoURy Uky 1 1UUOUE,) MO F3 44,
respectively,
_
0 = ( (ug, UpyUoULs 11Uk uouo)  mOd F3 44 .

The latter implies by using (2.99.13) for the first congruence, then (2.100.7) for the second
one, (2.99.7) for the third one, and (2.99.14) for the last one,

__ +f
0= Cq (uklukzuouk3+1u0u0uk4) mOd F3,4,’wa
__ At
0=¢, (Ukey UOUO Uy Uy +1 Uk, Up)  MOd Fg 4 4,
__ f
0 = (g (g, Uy UoUOUR; +1Uk,u0)  mOd F3 44,
__ f
0=¢, (Uky UOUO ULy Uy +1UOUE,) MO Fg 4.
This completes the proof of the lemma. O

Lemma 2.102. Fquation (2.97.1) is true for ky > 1.

Proof. Let be k1, ko, ks, k4 € Z~o and write w = ky + ko + k3 + k4 + 4. From (2.101.16),
we obtain by (2.100.6)

0= ( (Uhey Uy UOUO Uz U0 Uy +1) MO Fg 4. (2.102.1)
From Corollary 2.28, Lemma 2.101, (2.99.6), (2.101.6), one sees

0= — l{;:(; (T(urug) * 7 (Ug, Uy UoULs Uk, ) mod F3.4.u

1
f kqa— ks—1 ko—1 k1—1
_ I?Cq (uluoul * upugt uluo Ul UL U ) mod F3 44

& (w1 —
= Gl (U, Uy U0 Uk Uy 11 U0 Uo) mod F3 4., (2.102.2)

With (2.99.1), this implies

0= C; (uklquUksuouk4+1u0uo) mod F374,w, (2.102.3)
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— f
0= Cq (ukluoukguououksuk4+1) mod F3747w .

The second congruence is a consequence of the first one and (2.100.5).
Furthermore, Theorem 2.82 for the first congruence, Lemma 2.101 and (2.99.5) for
the third one, give

L ¢
0= 2, Ca (7(ua) 57 (s, votny ks vou, )) mod F3 4.
L ¢ ka1, ks—1 ko1 ky—1
= *Cq (uwo * urugt uzu03 Ut Ul ) mod F3 4,
_ ka—1 ko—1_  ki—1
:C (u2u0 Uy’ uUGS UU' ) mod F34 4
=} (W, U0 Uy Uk U0 U, 4110 mod Fz 4., (2.102.4)

and so, applying case j = 3 of (2.100.1),
0= C; (Whoy Wk UOUOUO UL Uy +1)  MOd F3 44, (2.102.5)

Furthermore, by Theorem 2.82 for the first congruence and by Lemma 2.101 and
(2.99.2) for the third one, we observe

L
0= ch (T(u2) * T (Uky UOUO ULy Uy Uk, )) mod F3 44
1
= —Cé (u1u0 * ululg u1u§3 lululg2 L ulgl 1) mod F34 .4
_ k k l ki—1
= Cq (u2u04u1u0 u1u02 3Uy" ) mod F3.4 .4
= Cq (Whey WOUO Uy Uy Uy +1U0) mod F34, . (2.102.6)

This implies, using (2.100.7), and (2.99.13) for the second congruence additionally,

0= C; (Ukey Uk UO ULz UOUOURy+1) Od F3 44, (2.102.7)

0 = ¢} (wp uoup, ursuotiotir, 1) mod F gy .
Now, (2.99.9), (2.102.4), (2.102.2), (2.102.7) yield

ot
0 = ¢, (ug, uoUoUg,UoUks Uk, +1)  mod F3 44,

0= (g (Whoy Wky Uy UoUOUR,+1U0)  MOd F3z 44, (2.102.8)

The second congruence is a consequence of the first one and (2.100.4). Using (2.102.8)
and equations (2.99.7) and (2.102.6), we see that

_
0=¢, (Ukey Uk UOUO ULz Uky+110)  MOd F3 4 4,

0= C}; (Ukey UOUO ULy Ukg UoUky+1) MOd F3 4 4, (2.102.9)

where the second congruence is implied by the first one and (2.99.14).
Combining (2.99.8), (2.102.3), (2.102.1), (2.102.9), we have

0= Cé (uklukzuk3u0u0uouk4+1) mod F3747w, (2.102.10)

_ ot
0 = ¢, (Uhy UOURy UOUE; Uky+1U0) O F3 44

The second congruence is a consequence of the first one and case j = 2 of (2.100.1).
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Now, (2.99.12), (2.102.10), (2.102.5), (2.98.1) give
0= <§ (Uk UOUOUO Uy Ukey Uy 1)  TOd F34 0,

0= Cg (ukluk2u0uk3uouk4+1u0) mod F3747w . (2.102.11)

The second congruence is a consequence of the first one and case j = 4 of (2.100.1)
additionally. This completes the proof of the Lemma. O

Lemma 2.103. Equation (2.97.1) is true for ko > 1.

Proof. Let be ki, ko, ks, ky € Z~p and write w = ki1 + ko + k3 + k4 + 4. Note that
by Theorem 2.82 for the first congruence and by Lemmas 2.101 and 2.102, and Equa-
tions (2.101.13) and (2.101.2) for the third congruence, we have

L ¢
0= k—gq (T(u2) * T (Uky Uky U0 Uy U, U0)) mod F3 4.,
2
[ ka1 ks—1 ko1 k-1
= k—QCq (u1u0 * Uy’ uIUy® T uguyt T Ut Ut ) mod F3 44
_ Af ka—1 ks—1 k k1—1
= Cq (U3u04 urug® Uy Uy ) mod F34 4
_
= (g (Uky UOUOURy +1Ukz U0 U, ) mod Fg4, . (2.103.1)

By (2.99.1) and (2.101.15), this yields
0 = ¢} (wpy Uy 1k U0k, Uotg)  mod F3 4, (2.103.2)
leading to, by using (2.100.5) and then (2.99.13),
0 = ¢} (upy uoup,11uououk,uk,) mod F g,
0 = ¢} (upy uoup, 11wk, uouour,) mod Fz gy .
Combining (2.99.8), (2.103.2), (2.101.14), and (2.101.12), we obtain
0= Cé (Uky Uy 1 Uz UoUQUOUE, )  MOd F3 4 4,
0= C; (Uky ULy +1UQ UL Uk Up)  MOd F3 44, .

The second congruence is a consequence of the first one and case j = 2 of (2.100.1).
Furthermore, combining (2.99.9), (2.103.1), (2.101.10), and (2.101.6), we obtain
0= Ccf, (Uky Uyt 1UOUOUO U5 UE,) MO Fg 4.
0= Ccf] (Uhy UOULy+1 Uz UoURK,Up) MO Fg 4.

The second congruence is a consequence of the first one and case j = 3 of (2.100.1). This
completes the proof of the lemma. O

Lemma 2.104. Equation (2.97.1) is true for ki > 1.

Proof. Let be k1, ko, k3, kq4 € Z~o with k1 > 1 and write w = k1 + ko + k3 + k4 + 3. Using
Proposition 2.73 for the first congruence and Lemmas 2.101, 2.102, 2.103 afterwards, for
all zo, 23,24 > 0 with 29 4+ 23 + 24 = 3, we obtain

0= Cg (Uhey * Wk UG Wheq UG Upey UG mod Fs 4.4

= (; (Uhoy Wy UG U UG U, UG*) mod Fs 4. (2.104.1)
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Now, choose z; > 1, 29, 23, 24 > 0 with z1+- - -4+2z4 = 3. Then, we obtain by Theorem 2.82
(in case z; = 1), Corollary 2.28 (in case z; = 2), and (2.104.1),

0= C}; (Uzy * T (Whey Whooy UG Wheq UG Up uGh)) mod F3 44
= ; (uzl *uz4+1u0 luz3+1u§371u,22+1u§ 1u1u’81 1) mod F3 4.4
= 2 (UZ4+1U0 Mgy 1l gy g sy g 1) mod F3 44
= f(ukluo U Uy Whe U Uy UG ) mod F3 4, .
This completes the proof of the lemma. O

2.7 Conclusion and outlook

With Fili’gl’z}v Z({ C F,qq forall (z,d,w) € Z3 (the refined Bachmann Conjecture 2.10),
we gave a refinement of Bachmann’s Conjecture 2.4 and proved several cases. For z > d,
we gave a strategy for a general proof. Furthermore, for z < d, we were also able to
prove the cases 1 < d < 4. One can generalize our approach as described in the following

paragraph.

Approach to the refined Bachmann Conjecture 2.10 in case z < d. We fix
positive integers z,d,w € Zsq with z < d in the following and assume throughout the
whole paragraph that

Z,D,W

Rl 2] CFe g
for 2 < z,d < d, @ < w is proven already. Note that the approach from case z > d
will not suffice for the case z < d since S, 45 C T, 4 in this case by Conjecture 2.39.

Therefore, we extend this approach as follows. Fix throughout this paragraph an in-
dex k = (ki,...,kq) € Z%, with [k| = w — 2. Besides

S = {6 (Wclum B we)) | (0,0) € T..a} < PIZDY 2]

z,d,w
(the inclusion follows from Lemma 2.56), we consider

(,0)€T.,4, meZSy™ jm|<len(n)+d—z,
K€z ), ki >k, >1 (1<5<d), ,
|m|+ k' |=s+]k|, wt(wnym)—&-wt(we?k/):w

S = L ¢ (r((Wnm) * 7 (W)

where

o ns—1 ni—1 o Lg—1 f1—1
wn,m = Umy Ug” T UmgUg ) wZ,k’ = uk’luo s uk&uo .

Remark 2.105. Note that we have Sila){ x C Sﬁ%k for all z,d € Z~q with z < d and for
all k € 74,

Furthermore, we consider

e:(el,...,ed)EZ‘éOJe\:z )

(3) e €s/ 11 eq o€y, 1<s'<d—1,
Sk Co (o) u§" - - Uo(h, ) 10" * Ug(r, )t - (kg Ul

where Sy is the set of permutations on {k; | 1 < j < d}.
Similarly to the proof of Lemma 2.56, we can show the following.
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Lemma 2.106. Fiz z,d,w € Z~q. For all (n,£) € J,4, k, k' € Z¢,, and m € 73,
where s = len(n), satisfying k| = w — z, |m| < len(n) +d — 2 and k; > k} > 1 for
alll1 <j<d, m|+|K|=s+ k|, wt(Wnm) + wt(We ) = w, we have

C;( ( (wl‘lm)*T Wek/ Z FllgDs’VZl[+s wZ :

1<s'<s

(2 )

In particular, we have S ax C F.dw-
Let us consider an example for illustration of Lemma 2.106.

Example 2.107. Denote w = k] + k5 + k§ + 2 in the following and choose
n=(1), m=(2), £=(1,1,1), k' = ( llak;évké) GZ?;O
in the notation of Lemma 2.106. First, we see that Wy m * Wpxr = ug * U Uy Ugy, € F,

where F = Fﬂa’f ;UW QU)°+F ﬂ%:?? 1’UVK1 Q(U)°. Furthermore, we have

7(7(ug2) * T(Uk/lukguk' )

k=1  kh—1 k-1
=T uluo*uluo u1u0 ’LL1U0

% T T Ky—1 K k-1
=T (l{:gu2u0“u1u02 Uy + k2u2u0 u1u02u1u01
-1 Kk K, — S T
/
+houiug® uguy urugt + kluguo uuy’ u1
kl—1 kl—1 kl—1 kl—1 k!
+k'1u1u03 uguy® up + k'lulu(f’ Uy’ uzuol) mod F

— 1./ / /
= kgukll Uk/2 uké+1u0 + k2uk/1 Uk/2+lukéu0 + ]CQkal uk12+1uouké

+ k’lukflJrluk/Qukéuo + k,luk’lJrluk’QuOuké + kgukrﬁluoukéuké mod F.
Hence,
! £ ! £ ! £
k3¢, (Uk; Uk»gukgHUo) + k5 (uk; Uk;+1uk5Uo) + k5¢, (uk;ukgﬂuw%)
1 ~f 1 ~f ! ~f
+ K16y (uk/1+1uk/2ukgu0> + k1Gq (uk’1+1uk/2u0ukg) + k1¢q (Uk’1+1u0uk/2uk_g> €EFa3u.

(1)

Compared to the linear combinations in S ;,, it stands out that the latter linear com-
bination is not a linear combination of words with the same multiplicity and the same
non-ug letters in the same order. Nevertheless, all occurring words wg, ug! w, Ug* Uk, UG’

3
satisfy k; > kj and 3 (kj — k) =1=|m|-s=d— 2.
j=1

Furthermore, we have the following.

Lemma 2.108. Fizx z,d,w € Z~q with z < d and assume that Fllz,?i,w ZJ CFu g is
proven already for 2’ < z, d' < d, w' < w. Then, for every index k = (ki,...,kq) € Z%,
and for all permutations o on {k1,...,kq}, 1 < s <d—1, and e = (e1,...,eq) € Zéo

satisfying le| = z, we have

f e eyl €s/4+1 eq
Cq (ua(kl)ul)l T U (kU K Uo(ky )Y T Uo(kg) o ) €Fduw-

In particular, we have SS’; xk CF.dw.

With the proofs of Theorems 2.8 and 2.12, we gave evidence for the following conjec-
ture for d < 4.
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Conjecture 2.109. Fiz z,d,w € Z~q with z < d and assume that Fllz,?l,w/ Zg CFu g
is proven already for all 2’ < z, d' < d, w' < w. Then, for every k = (ki,...,kq) € Zio
and for every word W = up ug' - - - ug,uy’ € UH° satisfying zero(W) = z, depth(W) = d,
and wt(W) = w, we have

¢4 (W) € spangy (S, USE) L) + Fug € P (2.109.1)

In particular, then we have FilZD:W Zg CF.aw-

z,d,w

Remark 2.110. Note that the inclusion in (2.109.1) follows from Lemmas 2.106 and 2.108.

Remark 2.111. We can refine our approach to Conjecture 2.109 as follows. First, we
will use for k € Z2, satisfying #{k; > 1} > d — z the linear combinations from Sfik
only to show (2.109.1). For the remaining cases, we then may assume without loss of
generality that #{k; = 1} > 2 and use both, 5’( )k and S’( )k to prove (2.109.1). More
precise, we consider the cases of jo := #{k; = 1} with 1ncreas1ng jo = z. The intuitive
reason for this is that, for given jg, on the one hand we may assume that the cases
for smaller values of jg are proven, making the linear combinations from Sg},k easier to
handle since parts of them are in F, 4,, already. On the other hand, the more entries of k
are the same (for our purposes: one), the less formal Multiple Zeta Values of different
3)

words occur in the linear combinations from S Ak
b b

Conclusion. For z < d, our strategy also works in the small cases 1 < d < 4 as shown,
but there is still much to do for the general proof. More concretely, we conclude with
the following open questions:

(i) How can one prove Conjecture 2.39 in general?
(ii) Conjecturally, Conjecture 2.39 can be proven via induction on z, d, or z + d.

(iii) Regarding Conjecture 2.39, we conjecturally have 3, g = 44, for all z,d € Z~. Can
one prove this equality?

(iv) How to prove Conjecture 2.47 in general?

(v) How can one prove Filf’?ﬁv Z({ C F, g4 for z < d in general?

(vi) Similar to Proposition 2.21, our approach for showing Fllz b W Zf C F, g4 is suit-
able to obtain for all words W € &/*° an explicit formula (q( ) = Cq( ), where £
is a linear combination of products of elements in ZCJ; °. With some engagement
following our calculations, this already can be done now for all words W € U*°
satisfying zero(W) + depth(W) < 6. What do they look like? Can one find some
systematics such that one can derive such formulas also for zero(W) + depth(W) > 6
(which would prove Bachmann’s Conjecture 2.4 in particular)?

2.8 Code of the calculations in Chapter 2

The numerical calculations of Chapter 2 were done using Python. In this appendix, the
original source code is presented.



N

N

S N

2.8. Code of the calculations in Chapter 2 93

2.8.1 Computations regarding Lemma 2.42
Setup and basic functions

We begin with the required packages.

import numpy as np

import itertools

import math

from ast import literal_eval

The first definitions were elementary for the main calculations.

Function 2.112. The function d(z,d,s) returns (z+d_1) for integers z,d,s € Zsg

zZ—S8
with s < z < d, which is conjecturally 3, 4 s (see Conjecture 2.58).

def d(z,d,s):
if (z <= d) and (s <= z):
return(math.comb(z+d-1,z-s))
elif (z <= d) and (s > z):
return (0)

Function 2.113. The function part(r,s) returns the list of all ordered partitions of r
into exactly s non-negative integers.

def part(r,s):
if s<=0:
return ([[11)

else:

for S in set(itertools.combinations(range(r+s-1), s-1)):
p = []
I = [-1] + 1ist(S8) + [r+s-1]
for i in range(len(I)):
if i > O:
p.append (I[i]-I[i-1]-1)
P.append (p)
return (P)

Function 2.114. The function ppart(r,s) returns the list all ordered partitions into
exactly s positive integers.

def ppart(r,s):
if s<=0 or r<s:

return ([[1])
AILEE §

P =[]

for p in part(r-s,s):
qQ =P
for j in range(len(p)):

qlj]l += 1

P.append(q)

P.sort ()

return (P)

Function 2.115. The function Indices(z,d) returns the list of all indices u € Z%,
with |p| =z + d.

def Indices(z,d):
if z==0:
return ([d*[1]])
else:

I =[]
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for index in Indices(z-1,d):
for k in range(d):
indi = index[:k] + [index[k]+1] + index[k+1:]
if indi not in I:
I.append(indi)
I.sort ()
return (I)

The box product

In this section, we implement the box product as linear combination of u, € (U\{uo})".
Furthermore, for a set of box products, we implement the adjacency matrix whichs rows
will correspond to the linear combinations and the columns to the words wy, i.e., the
entries are the coefficient of a word in a linear combination of box products.

We begin with the box product.

Function 2.116. The function box(index1,index2) returns ujpndexi ® Uindex?2 S
follows. It returns a dictionary D containing as keys the indices ind satisfying that uinqg
occurs in the box product uingex1 ® Uindex2 With multiplicity # 0; the value D[ind]
then is the multiplicity of ujpnq in %index1 ® Uindex?2-

def box(index1,index2):

D = {}

s = len(index1)

d = len(index2)

if s>d:
return (D)

elif index1 == []:
D[str(index2)] = 1

else:

for S in set(itertools.combinations(range(d), s)):
L = list(S)
L.sort ()
ind = []
for k in range(d):
if k in L:
ind.append (index2[k]+index1 [L.index(k)])
RILEE 8
ind.append (index2[k])
Dlstr(ind)] = 1
return (D)

Based on box, we introduce the following function representing uindex1 ® %index?2

len(index?2)

as dictionary D with keys ind € Z_,, , satisfying

|ind| = |index1| 4 |index2|,

and with D[ind] being the multiplicity of uipq in the box product uingex1 ¥ Uindex?2-

def BOX(index1,index2):
s = len(index1)
= len(index2)
= sum(index1)+sum(index2)-d
= Indices(z,d)
= {}
or ind in I:
D[str(ind)] = 0
if s>d or sum(indexl)+sum(index2) != z+d:
return (D)
elif indexl == [] and sum(index2) == z+d:

H O HN Q
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D[str(index2)] = 1
else:
for ind in box(indexl,index?2):
D[ind] = box(index1,index2) [ind]
return (D)

Let us consider an example to see the difference between the functions box and BOX.

Example 2.117. We have
U2 BB U1ULU] = U3UTUT + UTU3UT + UTUTUS.

Now, box([2],[1,1,1]) returns
{3, 1, 11°: 1, °[1, 3, 11°: 1, °[1, 1, 3]1’: 1}

and BOX([2],[1,1,1]) returns

{°[1, 1, 3]°: 1,
>[1, 2, 21°: 0,
>[1, 3, 11°: 1,
’[2, 1, 2]1°: 0,
’[2, 2, 11°: 0,
’[3, 1, 1]1°: 1}.

Dimension of spaces spanned by box products

We considered in the paper the dimension of spaces spanned by several box products
(in particular, S, 4). Numerically, we will obtain such dimensions as the rank of the
coefficient matrix of the box products that span the space we consider, interpreted as
linear combination of words u, € (U\{uo})". For this, we introduce the function MATR.

Function 2.118. The function Dim(P) takes a list P of box products, given in shape
of BOX (index1,index2), and returns the dimension of the space they span. This is done
via computing the rank of the coefficient matrix (as list of lists) of these box products
with rows corresponding to the box products, columns corresponding to the coefficient
of words uy, € (U\{uo})".

def Dim(P):
M = []
for prod in P:
I =1

for index in prod:
I.append(prod[index])
M.append(I)
rk = np.linalg.matrix_rank (M)
return (rk)

EBTEX-Output

We will consider subspaces of S, 4 for several z,d € Z~q. Usually, we skip the cases
of z =1 or d = 1 since we already know the dimension of the corresponding subspace
in these cases. The function MatLatex produces the IXTEX-code of a table in which we
collect our calculations.

Function 2.119. The function MatLatex (M, cap) gives the IXTEX-code of the table with
caption cap and three entries in each cell. Here, M is a list of lists with four entries each.
They are all of shape

[2,d, rk, dim],
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where z defines the column, d defines the row, rk is the (numerical) dimension of the
subspace of S, ; we consider, while dim is the corresponding conjectured dimension each.
Every cell consists of two numbers, where the first one in black is the (numerically
obtained) dimension of the subspace of S, ; we consider and the second number is in
blue the conjectured dimension of the subspace of S, ;4 we consider.

def MatLatex (M, cap):
dmin = M[0][0]

dmax = M[-1]1[0]

zmin = M[0][1]

zmax = M[-1][1]

B = "\\begin{figure}[h]\n \\centering\n \\caption{"+cap+"}\n \\begin{
tabular}{|" + "c|".join("" for j in range(zmin,zmax+2)) + "c|}\n \\
hline\n"

E = "\\end{tabular}\n \\end{figurel}"

newM = (dmax - dmin + 1)*[(zmax - zmin + 1)x*["&-"]]

S = "d$\\backslash$ z&" + "&".join(str(j) for j in range(zmin,zmax+1))

+ "\\\\ \\hline\n"
for result in M:

helpstr = "&" + str(result[2]) + "\\ \\textcolor{bluel}{"+str(
result [3])+"}

dact = result[0] - dmin

zact = result[1] - zmin

rowact = newM[dact]

newM = newM[:(result[0] - dmin)] + [rowact[:zact] + [helpstr] +
rowact [zact+1:]] + newM[(result[0] - dmin+1) :]
for j in range(dmax - dmin + 1):

S =S + str(dmin + j)

for k in range (zmax-zmin+1):

S =S + newM[j][k]

S =S + "\\\\ \\hline\n"

return (B+S+E)

Next, we produce the function giving the desired table for the dimension of S, 4, .
for some spyin and 2 < z,d up to an upper bound we declare in the input.

Function 2.120. Choosing zmax,dmax, smin € Zsg, the following function returns
the tabular according to Function 2.119 where in black the computed dimension of the
space Smaz,dmaz,smin 1S displayed, while in blue the conjectured dimension (coming from
Conjecture 2.58) appears.

def Tabular (zmax,dmax,smin):
M= []
for z in range(2,zmax+1):
for d in range(2,dmax+1):
P = []
for k in range(smin,min(d,z)+1):
S = ppart(d+z,d+k)
for partition in S:
P.append (BOX(partition[:k],partition[k:]))
rk = Dim(P)
M.append([d,z,rk,d(z,d,smin)])

if smin != 1:

cap = "Dimension of $\\mathcal{S}_{z,d,"+str(smin)+"}$."
else:

cap = "Dimension of $\\mathcal{S}_{z,d}$."

return(MatLatex (M, cap))
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Results

In the following, we present several results of our calculations. Recall that every cell of the
following tables consists of two numbers, where the first one in black is the (numerically
obtained) dimension of the subspace of S, ; we consider and the second number is in
blue the conjectured dimension from Conjecture 2.58.

Remark 2.121. (i) Using Tabular(8,8,1), we obtain that Conjecture 2.58 is true
for 2 < z < d < 8 and spin = 1, i.e., Conjecture 2.39 is true for z,d < 8:

FIGURE 2.1: Dimension of S, 4.

d\z| 2 3 4 ) 6 7 8
2 33 - - - - - -
3 4411010 - - - - -
4 5950|1515 | 3535 - - - -
5 66|2121 | 5656 | 126 126 - - -
6 77| 2828 | 8484 | 210210 | 462 462 - -
7 | 883636 | 120120 | 330 330 | 792 792 | 1716 1716 -
8 99| 4545 | 165 165 | 495 495 | 1287 1287 | 3003 3003 | 6435 6435

(ii) Using Tabular(8,8,2), we obtain that Conjecture 2.58 is true for 2 < z < d < 8
and Spip = 2:

FIGURE 2.2: Dimension of S, 4,2.

d\z| 2 3 4 ) 6 7 8
2 11 - - - - - -
3 11] 55 - - - - -
4 11 66 |2121 - - - -
) 11 77 | 2828 | 8484 - - -
6 11| 88 |3636 | 120120 | 330 330 - -
7 111 99 |4545 | 165 165 | 495 495 | 1287 1287 -
8 1111010 | 5555 | 220220 | 715 715 | 2002 2002 | 5005 5005

(iii) Using Tabular(8,8,3), we obtain that Conjecture 2.58 is true for 2 < z < d < 8
and Spip = 3:

FIGURE 2.3: Dimension of S, 43.

d\Nz| 2 | 3] 4 5 6 7 8
2 (00| - - - - - -
3 (00|11 - - - - -
4 (o011 77 - - - -
5 |00|11] 88 | 3636 - - -
6 |00 11| 99 |4545 ] 165 165 - -
7 |00 |11]1010 |5555 | 220220 | 715715 -
8 |00 |11 1111|6666 | 286286 | 1001 1001 | 3003 3003

(iv) Using Tabular(8,8,4), we obtain that Conjecture 2.58 is true for 2 < z < d < 8
and Sy, = 4:
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FIGURE 2.4: Dimension of S; 4.4.

d\z| 2 3 4 ) 6 7 8
2 00| - - - - - -
3 00|00 - - - - -
4 00]00(|11 - - - -
5 0000|111} 99 - - -
6 00[00 |11 1010 | 5555 - -
7 |00100]11] 1111|6666 | 286 286 -
8 0000 |11 1212 | 78 78 | 364 364 | 1365 1365

(v) Using Tabular(8,8,5), we obtain that Conjecture 2.58 is true for 2 < z < d <8
and Spin = 5:

FIGURE 2.5: Dimension of S, 45.

2 1 3] 475 6 7 8
00| - | - | - - _ _
0000 - | - - _ _
00/00[00]| - - - _
00000011 - ; _
000000111111 - :
000000 1112127878 :
000000 11] 1313|9191 | 455 455

N

O || U x| W DN

(vi) Using Tabular(8,8,6), we obtain that Conjecture 2.58 is true for 2 < z < d < 8
and Spip = 6:

FIGURE 2.6: Dimension of S, 4.

2 3 4 5 6 7 8
00| -
00({00| - - - - -
0000|100 | - - - -
0000|0000 - - -
000010010011 - -
000010000 |11]1313 -
0000|0000 |11 1414 | 105105

N

ol || U Ix| W N

(vii) Using Tabular(8,8,7), we obtain that Conjecture 2.58 is true for 2 < z < d < 8
and Spip = 7:
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FIGURE 2.7: Dimension of S, 47.

d\z| 2 3 4 ) 6 7 8
2 00| - - - - - -
3 00|00 | - - - - -
4 00]00|00]| - - - -
) 0000|0000 - - -
6 00(00|00|00]00]| - -
7 00({00|00|100|00]|11 -
8 00(00|00|00|00]11]|1515

(viii) Using Tabular(8,8,8), we obtain that Conjecture 2.58 is true for 2 < z < d < 8

and Spip = 8:

FIGURE 2.8: Dimension of S, 4.

d\z| 2] 3] 45]6]7]8
2 (00| - | - | - [ -1 -71-
3 [00|00] - | - [ - -71-
4 [o0l00|00] - | - [ - -
5 |00]00]00[00] - | - | -
6 |00/00]|00[00]00] - | -
7 |00]|00][00[00[00|00] -
8 [00/00/00[00[00[00|11L

2.8.2 Computations regarding Lemma 2.48

Setup and basic functions

We use the same setup as in Section 2.8.1 and the functions part and ppart from there.

Stuffle product and box product

We define the stuffle product on index level and call the function stuffleprod.

Function 2.122. For indices L1 and L2 (input as lists), the function stuffleprod(L1,L2)
returns a list of indices (as lists) with the property that their formal sum is exactly the

stuffle product L1 x L2.

def stuffleprod(L1,L2):
if len(L1) == O0:
return ([L2])
elif len(L2) ==
return ([L1])
L =[]

for L3 in stuffleprod(L1[1:],L2):
L.append ([L1[0]]+L3)

for L3 in stuffleprod(L1,L2[1:]):
L.append ([L2[0]]1+L3)

for L3 in stuffleprod(L1[1:],L2[1:]):
L.append ([L1[0]+L2[0]]+L3)

return (L)

Furthermore, we define the box product on index level and call the function boxprod.
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Function 2.123. For two indices L1 and L2 (input as lists), the function boxprod(L1,L2)
returns a list of indices (as lists) with the property that their formal sum is exactly the
box product L1 % L2.

def boxprod(L1,L2):

s = len(L1)
d = len(L2)
if s>d:
return ([])
elif s==0:
return ([L2])
L = []

for L3 in boxprod(L1[1:],L2[1:]):
L.append ([L1[0]+L2[0]]1+L3)

for L3 in boxprod(L1,L2[1:]1):
L.append ([L2[0]]+L3)

return (L)

The numbers dimg spang K, 4

First, we implement for given 1 < z < d the conjectured dimension of spang K, 4.
Following Conjecture 2.39, (2.42.1), and (2.42.2), this number is

XZ: <Zif: 1) (2.123.1)

Jj=2

Function 2.124. For z,d € Z~¢ with z < d, the function kerneldimconj returns the
conjectured dimension of spang K. 4, which is given by (2.123.1).

def kerneldimconj(z,d):
S =0
for j in range(d+1,z+d):
S = S + math.comb(z+d-1,j)
return (8S)

The next function returns for given 1 < z < d the number dimg spang K, 4.

Function 2.125. Let be z,d € Z~o with z < d. The function kerneldim(z,d) returns
the number dimg spang K, 4 via computing ranks of matrices.

def kerneldim(z,d):
Rel = []
for s in range(d+2,z+d+1):
for partition in ppart(z+d,s):
for t in range(d+1,s):
Mind = partition[t:]
Lind = partition[:d]
Nind = partition[d:t]
D = {}
for s in range (d+1,z+d+1):
for ppartition in ppart(z+d,s):
D[str (ppartition)] = 0O
for P in boxprod(Mind,Lind):
D[str(Nind+P)] = D[str(Nind+P)] + 1
for P in stuffleprod(Nind,Mind):
D[str(P+Lind)] = D[str(P+Lind)] - 1
R = []
for key in D:
R.append (D[key])
Rel.append (R)
return(np.linalg.matrix_rank (Rel))
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Results

Via

for

d in range(2,9):
for z in range(2,d+1):
print (z,d, (kerneldim(z,d) ,kerneldimconj(z,d)))

we obtain in the following in each row four entries, the first one corresponding to z,

the second to d, the third to the numerical result for dimg spang K, 4, and the fourth is
the value we expect for dimg spang K, 4:

(1,
(1,
(6,
(1,
(7,
(29,
(1,
(8,
(37,

(1)
9,
(46,

(562
1,

(10,
(56,

(130,

(176,

1)
1)
6)
1)
7)
29)
1)
8)
37)
130)
1)
9)
46)
176)
, 562)
1)
10)
56)

00 ~NO Ok WNNO O WNOO O PR WNOOE WN P WNDWNDN
0 0 00 0 W0 00 NNNNNNOOOOOO OO oo DD WwwN

(232,
(794,
(2380,
(1, 1)
(11, 11)
(67, 67)
(299, 299)
(1093, 1093)
(3473, 3473)
(9949, 9949)

232)
794)
2380)

Remark 2.126. Regarding our results, Lemma 2.48 is proven.
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Abstract. We show how the quasi—shuffle product, Schlesinger—Zudilin Multiple g¢—Zeta
Values (SZ-gMZVs) satisfy, behaves on the level of partitions. For this, we work with
marked partitions, which are partitions in whose Young—Tableau rows and columns are
marked in some way. Together with the description of duality using marked partitions
(see [4]) and the conjecture by Bachmann [1] that all linear relations among ¢MZVs
are implied by duality and the stuffle product, this paper completes conjecturally the
description of the structure of ¢MZVs using marked partitions.

3.1 Introduction

Multiple g-Zeta Values, gMZVs for short, can be seen as generalizations of MZVs as well
as (quasi-)modular forms or as generating functions of particular types of partitions.
They are g-series giving back a Multiple Zeta Value (or a Q-linear combination of them)
in the limit ¢ — 1, often after modifying the series via multiplicating with some power
of 1—¢q. In this paper, we focus on ¢MZVs introduced by Schlesinger [7] and Zudilin [10].
For an overview of gMZVs, see, e.g., [4].

In the following, we consider U := {u; | j € Z>o}. We call U also an alphabet, and
elements of U are referred to as letters. Furthermore, monomials of elements in ¢ (with
respect to concatenation) are called words. Usually, the neutral element with respect to
concatenation is denoted by 1 and called the empty word. Let U* denote the set of words
with letters in U, then we write Q(U) for the Q-vector space spangpU*, equipped with
the non-commutative, but associative multiplication, given by concatenation. We define
the stuffle product to be the Q-bilinear map *: Q(U) x Q(U) — Q(U) recursively via

Wy W g, W o= gy (Wi g, W2) 4wy (g, Wy % Wa) + gy 4y (W1 % Wo)

for all ji,j2 € Z>o and Wi,Wo € U* with initial condition 1 * W = W1 = W for all
words W € U*. By Hoffman ([5]), (Q(U), %) is an associative and commutative Q-algebra.
For a word W = wy, ---ug, € U*, we associate the length, len(W) := r and the depth,
which is depth(W) := #{k; # 0 | 1 < j < r}. Furthermore, we write U*° := U*\uold* for
the set of words in U* not starting with ug and we denote by Q(U/)° the corresponding
subspace of Q(U), i.e., the Q-vector space generated by words not starting in ug. Note
that Q(U)° is closed under x which gives rise to a commutative Q-algebra (Q(U)°, x)

Benjamin Brindle
benjamin.brindle@Quni-hamburg.de

Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
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(see [5]). The map ¢5%: (QU)°, %) — (Q[q], -) is the Q-algebra homomorphism (see [6])
defined via ng(l) = 1, Q-linearity, and, with mg41 := 0,

d m;k;
m; —mjigp; — 1 g%
o (gt cugugt) = Y0 ] ( o >1mk
=T~ L G K i
for any k1,...,kq € Zso and z1, ..., 24 € Z>o where d € Z~ (note that this definition is

not the usual one, like in [8], but equivalent to it; this statement can be deduced, e.g.,
from [4, Theorem 2.18]). We denote by Z, the image of CSZ and call elements in Z,
(Schlesinger—Zudilin)-qMZVs ((SZ-)gMZVs for short). Remarkable is that SZ-¢MZVs
are invariant under the involution 7 : Q(U)° — Q(U)° , defined by Q-linearity, 7(1) := 1,
and
T (uklugl o 'ukdu(z)d) = u2d+1ugd71 T u2’1+1ul(§1_1

foralld € Z~q, k1,...,kqg > 1, and z1,...,24 > 0 (see [9, Theorem 8.3]; 7 is often referred
to as duality). Note at this point the following folklore conjecture by Bachmann (see [1];
a published version can be found in [11, Conjecture 1]) about the structure of Z,.

Conjecture 3.1 (Bachmann). All Q-linear relations among elements in Z, are obtained
by the stuffle product * and duality T.

Furthermore, the space Z; contains all quasi-modular forms via their g-expansion

2 =" wn ()",

N2>0

where ¥ (W) denotes the N-th Fourier coefficient of CqSZ (W) for any W € U*° (see [2]).
The Fourier coefficients of modular forms have been a key feature of their study. This
paper gives a combinatorial approach to the Fourier coefficients of gMZVs, interpreted as
finite sums over so-called marked partitions (they were introduced in [4]). In particular,
we will describe the stuffle product as a pairing on marked partitions.

We will use the following combinatorial interpretation of 1)x developed in [4]. Let p
be a partition of N with d distinct parts m; with multiplicities n;, meaning that we have

mp>--->mg>0, ny,...,nqg € Z~g, N =mini+- -+ mgng.

We shall mark rows with a dot in the Young Tableau of p. If for k; rows of length m;
are marked, we call k = (ki,...,kq) the type of this row marking. A row marking is
called distinct if the lowest row for each length m; is marked. Furthermore, a distinct
column marking of p is an d-tupel z = (21 + 1,...,24 + 1), such that (z4+1,...,21 + 1)
is a distinct row marking of the conjugate partition of p. A pair (k;z) of such distinct
markings is identified with W = wug, ug' - - - ug,ug® € U*° and called for short a W-marking
of p.

Definition 3.2. (i) We interpret () as the unique marked partition (of N = 0) of
type 1.

(ii) For any W € U*°, we define MPy as the set of all marked partitions of type W.

(iii) We denote by MP := |J MPy the set of all marked partitions.
wEu*,o

(iv) Given a (marked) partition, we call the union of all rows in the Young Tableau
having a given length a horizontal block (of the partition/Young Tableau).
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Example 3.3. The following is a marked partition of type W = usuguguiuiug of the
integer N =9-3+5-2+2-2=141.

It consists of three horizontal blocks in the notation of Definition 3.2.

One has the following connection of marked partitions and the Fourier coefficient of
SZ-gMZVs.

Proposition 3.4 ([4]). For all N € Z>¢ and W € U™°, we have
N (W) = #MPy.

For the main theorem about the combinatorial interpretation of the product of SZ-
qMZVs, we need the following pairing ® on the set of marked partitions.

Definition 3.5. The map ®: MP x MP — MP is defined as follows: Given marked
partitions p; of Ny and ps of N, then p = ®(p1, p2) is the marked partition of Ny + No
obtained by the following rules:

(i) We set ®(0,p3) := p2 and ®(p1,0) := p1.

(ii) The Young Tableau of p is obtained by cutting the Young Tableau of p; and pa
horizontally below the rows containing corners into their horizontal blocks and
glueing them (horizontally again) together to a new Young Tableau. If both, py
and p2, have horizontal blocks of same length, the ones of p1 will occur above the
ones of py in the new partition.

(iii) Keep the markings of the rows.

(iv) If there was a marking in the j-th leftmost column of p; or py, the j-th leftmost
column of p will be marked as well.

Remark 3.6. Note that the map ® is associative but not commutative. The underlying
Young Tableau of ®(p1,p2) is the same as the one of ®(pz,pr) and also the column
markings match but the row markings, in general, do not if p; and ps have blocks of
same length.

Example 3.7. Consider the following pair of marked partitions.

p1 P2
° ° L1 1]

We slice them into their horizontal blocks.
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e o ® ° e ¢ o e o
° ol [TTTTTTT]
e o e
° ()
o o o
o
[} e o
e e
o
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®

Following the definition of ®, we obtain ®(py, p2) after sorting the horizontal blocks
as the following marked partition:

Horizontal blocks ordered

ol ITTTTTIT]
o.. ° ° @(ﬁ’@)
° o o ° o o o
. . |
°
° o °
°
e o L °
° °
° —>°
°o o
o o °
°

Definition 3.8. (i) For Wi,Ws,W € U™°, we set my, w,.w € Z>0 to be the multiplicity
of W in Wy % Wo, i.e., to be the unique integer satisfying

W1 * WQ = Z mwl,wg;ww.
weld*:°

(ii) For Wy,Wo,W € U*° and p € MPy, we define
My wap = # {(Z/ﬁ’@) € MPy, x MPy, ’ (I)(]/QI,]/?E) = 16}

Note that, for fixed Wy, Wo € U™°, almost all my, w,.w are zero.

Statement of results. The main result of this paper states how the stuffle product
can be interpreted combinatorially using marked partitions.
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Theorem 3.9 (Theorem 3.17). Let be Wi, Wo,W € U*°. For all p € MPy, we have

Mgy igip = T W2

In particular, given Wy, W, my, W only depends on the word W but not on the marked
partition p € MPy.

Remarkable about Theorem 3.9 is that now, conjecturally, all linear relations among
Multiple g-Zeta Values can be described combinatorially using marked partitions. This is
due to Conjecture 3.1 and since duality already can be described using marked partitions,
see [4]; Theorem 3.9 now gives the combinatorial interpretation of the stuffle product
using marked partitions.

Example 3.10. Let be Wy = ujuguiug, Wo = usugug, and W = uguguouiug. Note that
we have my, w,.w = 4. Furthermore, let be

p= € MPy.
The (p1,p2) € MPy, x MPy, satisfying ®(p1,p2) = p are

In particular, the claim of Theorem 3.9 in this case is true since we have

Moy iaip = 4 = iy -

Organization of the paper. In Section 3.2, we consider a recursion of the stuffle
product. This will be the key for proving the main theorem in Section 3.3 where we
show that the numbers Mo, Vo and my, w,:w satisfy the same recursion.
Acknowledgements. The author thanks Henrik Bachmann, Annika Burmester, Niclas
Confurius, and Ulf Kiihn for valuable discussions and their comments on an earlier ver-
sion of this paper.

3.2 About the stuffle product

Note the following characterization of the stuffle product, which is equivalent to the
definition of the stuffle product.
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Proposition 3.11. Let be W,Wo € U™ and j1,j2 € Z>o. Then,
Wywj, * Wawj, = (W1 % Wawgy) wjy + (Wiwjy * Wo) ujy + (Wr o W2) )y 45,

Proof. The proof is obtained by induction on len(W;) + len(Ws) where one uses the defi-
nition of the stuffle product in the induction step. O

In preparation for proving Theorem 3.9, we need the following recursion the stuffle
product satisfies.

Lemma 3.12. Let be W,, W, € U*, j1, 2 € Z~q, and ni,no € Z>g. Consider
1> W2 J15J >
Wi = Wlluj'l ugl, Wy = WIQUJ‘2U82.

We have

n+k n i
Wi * Wy = Z < lnl )( 1k> (w’l * Wotj,up® 7 6) uj1u81+k

0<k<j<ns J =
0<e<min{1l,n2—j}

n2 + k n2 / . ’nlfj*E / . no+k
T > ( g ) <j _ k:) (Wluﬁuo *WQ) gy Uy

0<k<j<m
0<e<min{l,n1—75}

+ i ni + k ni (w/ * w/ )U . unl-‘rk
Pt ny ng — ]’C 1 2)%51+72 %0 :

Proof. We first prove the statement for n; = 0 by induction on ny. Note that we have
to show for ny = 0 and ny € Z>o that

/o /o mg / /. n2—j—¢ .
Wig, * Wouj,ug™ = Z (wl*w2“32“0 )uh“
0<j<na
0<e<min{1l,n2—j}

+ (Wywj,  Wo) ujyug® + (W) W) wj, 45, ug”.
The statement for the base case no = 0 reduces to the equivalent definition of the stuffle
product of Wy * Wo, which is deduced from Proposition 3.11, and hence, the claim follows
in this case. Therefore, let be ny € Z~( and assume that the claim holds for n; = 0 and
all smaller values of ns. Then, by Proposition 3.11, we have
Wi % W = Wyujy * Wouj,ug?
= (W Wouug?) wy, + (Wi, Wougug? ™ ) wo + (W« Whugpug? ™)

Using the induction hypothesis for the second summand, we obtain

/ / n / / na—1
Wy x Wy = (wl * w2uj2u02) uj; + (wl * ""2“]‘2“02 ) Ujy

! / no—j—1—e j
+ ) (wl * Wouj,ug® ? ) g, u
0<j<na—1
0<e<min{l,na—1—3}

! ! o, m2—1 / / ., na—1
+ (wluj1 * w2) Uy U + (wl * WZ) Ujy 442 U0 up
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= Z (w’l * W’QUj2u82_j_E) wj,
0<j<ns
0<e<min{l,n2—j}
+ (Wywj, * Wo) wjyul? 4+ (W) * Wo) wj4+4,u02,
completing the induction step. Next, for n; € Z>o and ny = 0, the proof follows similarly
by induction on n;.

For the remaining cases n1,ny € Zsg, we prove by induction on n; +ng (with already
proven base case n1 + ny = 1). Hence, fix ni,ny € Z~o and assume that the claim holds
for all smaller values of ny + no. We have, by Proposition 3.11,

W1 * Wy
v, N1 /.12
- wlun Uy * w2ujzu0
/ np—1 / n / n / ng—1 / ny—1 / ng—1
= (Wlujluo1 * WQUJQUO2 + Wlujluo1 * ""2“]’2“02 + Wiuyj, “01 * ""2”]‘2“02 ) Uug-

Applying the induction hypothesis for each of the three summands, we obtain

/ X nyp—1 / . no
(wlu]luO * W, ug ) Uo

n—14+k\(n —1 i
= > ( o )( - k) (W Wy g™ ) gt
0<k<j<ns 1 J
0<e<min{1l,n2—j5}

ng + k no 11— k+1
+ Z ( > <] _ k) (w,lujlugl e * WIQ) uj2ug2+ *

0<k<j<ni—1 2
0<e<min{1l,n1—1—35}

22y —14+k\(n —1
+ Z ( ' ' (wll *WIQ)uj1+j2u6Ll+k

=0 nog — k

n—1+k\[(n —1 il
= Z ( 1n 1 ) ( -1_ k) (wll *w/2uj2u32 ! 6) ujlugl+k
0<k<j<ny 1 J
0<e<min{1l,n2—j5}

no +k— N9 i k
oy )(;72,) (o)t

1<k<j<mi
0<e<min{l,n1—j}

n2
ny — 1 + k ny — 1 k
+) ( ) ( )(W'l * Wh)ug, 4 pupt T

nog — k
and

/ . ni / . no—1
(Wluﬂuo * Wo ks, Uy )uO

ni+k n i
- Z < ! )( 1k> (W’l>|<W’2uj2ug2 1= 5) Uj1u81+k+1

0<k<j<ns—1 2 J =
0<e<min{l,no—1—j}

no—14+k\ (ny—1 i
+ > < 2n . ) ( 2 k) (Wﬁujlugl e *W'z) ujug
0<k<j<n 2 J
0<e<min{1l,n1—3}

n2—1 ny +k ni k4l
T S G B B T

k=0 ny nog — 1—
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n+k—1 ny , / no—j—e ni+k
= Z ( n ik (wl * Wotlj, Ug ) Ujy Uy
1<k<j<ns 1 J

0<e<min{1l,n2—j}

no—14+k\ [ ng—1 i
S VR G [ [T
0<k<j<n 2 J

0<e<min{1l,n1—j}

na
n+k—1 n1 i
+ Z ( > ( k) (wll * w,2>uj1+j2ugl+ )

=1 ni n2 —

and

/! . nyp—1 ! . na—1
(wlujl Ug * Wotl gy Ug ) uo

ni—14+k\[(n —1 i
= Z ( ln _ 1 ) ( '1_ k) (w/l * w/2u32u82 ! ! E) uj1u6Ll+k
0<k<j<na—1 1 J
0<e<min{l,na—1—35}

ng—1+k\ [ ny—1 —l=j=
+ > ( iz-;: )( 3_k> (o g =5 ) g
0<k<j<ni—1 2 !
0<e<min{l,n1—1—j}

no—1
ny—1+ k ny —1 , , ok
W5 x W L 1
* kZ:%) < ny — 1 ) <n2 — 1= k>( 1 2)u]1+]2u0

n—1+k ny —1 i
= (M) 6 )
0<k<j<ns 1 J
0<e<min{l,n2—j}

ng—1+k ng — 1 —j— +k
S I Gy [ (R P
0<k<j<ni 2 J
0<e<min{l,n1—j}

no—1
n1—1+]€ n1—1 k
+ gg% ( -1 ) ( k)(w3>kw§)uﬁ4j2ugl+ :

ng—l—

Now, using the identity

ey i) G 1 B ) [ s I VA 4

for ¢1,05,03 € Z>(, we obtain

nm—14+k\(n —1 i
Z ( 171 -1 ) < ~1_ k) (wll *w/2uj2u32 ! 5) ujlugl+k
0<k<j<ns 1 J

0<e<min{1l,n2—j}

ni+k—1 ny —j— k
+ Z ( ) <] _ k) (wll * wl2uj2u82 ! 6) ujlug1Jr

1<k<j<ns
0<e<min{1l,n2—j}

ny— 1+ k ny —1 —J= k
+ Z ( ny—1 ><'_1—k’> (wll*wéuﬁugz ’ 5) ujlugﬁ
0<k<j<na ! J
0<e<min{1,na—j}
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ni—1+k ny —1 —
T () e
0<k<j<ns !

0<e<min{1l,n2—j}

k—1
+ Z (nl y ) ( ) wl *w2uj2 32 7 6) quugl+k

0<k<j<ng
0<e<min{1l,n2—j}

ny — 1 -+ k ny — 1 k
DY ( ny -1 )( 1k )(wl*wﬂﬂz (e KO
0<k<j<na ! J
0<e<min{1l,n2—j}

ny +k ni —Jj= +k
> ( m )(j—k> (W g™ 7)™

0<k<j<nao
0<e<min{1,na—j}

and
ng+k—1 n
2 < 2 )( 2k> (W ™7 5 ) g™
1<k<j<ns "2 a
0<e<min{1,n;—j5}
neg—1+k\[(ny—1
+ ( 2 >< ; )(W’luﬂugl )
- ng — 1 J—k
0<k<j<n
0<e<min{1l,n1—j}
ng —1+k ng —1
SO (e [ [ P
0<k<j<mi 2 ST
0<e<min{1l,n1—j}
n k-1 n —j—
- ¥ ( 2t )( 2 )(wguﬁugl I ) gt
0<k<j<ny 2 J-k
0<e<min{1,n;—j}
no — 1 k’ ng — 1
- > (2 I >< ; )(W’luﬁugl ) g
. ng — 1 j—k
0<k<j<ni
0<e<min{1,n;—j}
no—1+k ng — 1
+ Z < 2 * )( 21 k‘) <w’1uhu81 - E*WIZ) uj2u82+k
0<k<j<mi nz =1 ST
0<e<min{1l,n1—j}
ng + k
= () G e
0<k<j<ni 2 ]
0<e<min{1,n;—j5}
and

na
ni—1+k\[(n -1 ™
Z ( ) <n2 — k‘) (wl * w2)“]1+]2 +k

=0 ny — 1
n2
n+k—1 ni k
i Z ( ni ) <7”L2 - k‘) (W/l ) w,2)“j1+J2ug B
k=1

no—1
n—1+k np—1 PR n1+k
i Z Wi * Wo)w, i un?



114 Chapter 3. Paper 1I: Combinatorial interpretation of the stuffle product

n2
n—14+k\[(n —1 k
=> ( ) (n B k:) (W W)y 4 jpugt

k=0 ny — 1
na
ny+k—
+ Z ( ' ) ( > wl *w2)u]1+]2u0 R
no —
k=0
n2
ng—1+k / / ni+k
W7 % Wo )i, iU
n+k ny Tk
= z_: ( ) <n2 B k:) (Wy o Wo ), 4o ug
Hence, we have
Wi * Wy

_ / 1— D ) VN 51 / no—1
= (wluhuo * Wotlj, U ) ug + (wluhuo * Wotlj, Ug ) n

+ (w/lujluglfl * w’2uj2u701271> Up
ny+k ny / no—j— +k
= Z < ny ) <j o k') (wll * W2Uj2U02 ) u]lug1

0<k<j<ns
0<e<min{l,no—j}

ng +k N Tk
+ Z < N9 ) <] _ k) (wllujl (T)Ll e * w/2> u]2u6L2

0<k<j<ni
0<e<min{l,n1—j}

n2
n+k n1
+> ( ) < k:) (Wh # Wh)uj, 4o ug T,

k=o \ "1 n2 —
completing the induction step and providing proof of the lemma. O

We write in the following

5. 1, if e istrue,
7 lo, if e is false

for the Kronecker Delta, as usual. Using Lemma 3.12, we obtain the following recursion
for the numbers muy, w,u-

Proposition 3.13. Let be Wi, Wo, W € U*°.
(1) If Wy =1, we have my, wyw = Oy=s, -
(77) If Wo = 1, we have my, wyw = Oy=w, -
(1i7) If W= 1, we have my, yom = Ow,=wy=1-
(iv) If Wi, Wo, W # 1, write
Wi = Wiujugt,  Wo = Wouj,ug?,  W=Wujug®
with unique Wy, W, W € U*°, ji, jo, j3 € Zso, and n1,na,ng € Z>o. Then,

. nq + k ni 5 .
o Waib = Z ny )\ G — k) T g2 e 1=,

0<k<j<na n1+k=n3
0<e<min{1l,n2—75}
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na + k ng
-+ Z < N9 ><] . k>mw/luj1ugl—j—8’w,2;w,(5 ja=ja,

0<k<j<n na+k=ns
0<e<min{1l,n1—35}

na
ny+k ny
+> Jo | 7t 0 O 2=, -
k=0 ni ng — n1+k=ns

Proof. While (i), (ii), and (iii) are evident following the definition of the stuffle prod-
uct, (iv) is an immediate consequence of Lemma 3.12. O

3.3 Proof of our main theorem

After we have shown the recursion for the stuffle product in Lemma 3.12, we can now
prove our main theorem. The idea is relatively simple: We show combinatorially that
the numbers My, iy satisfy the same recursion as the numbers my, y,.w such that the
claim will follow by induction on depth(W). First, we need some notion to clarify our
combinatorial arguments in the proof of the main theorem.

Definition 3.14. Let be W € U*° and p € MPy.

(i) We denote by sm (p) the minimal length of the parts of p.

(ii) We denote by C(p) C {1,...,sm(p)} the column markings of p of columns that
occur in the horizontal block of minimal length of p, i.e., j € C(p) if and only if
the j-th leftmost column in p has a marking and j < sm (p).

(iii) We denote by (p)_1 the marked partition arising from p when removing from p the
horizontal block of minimal length sm (p) and the corresponding row markings and
all column markings from the j-th leftmost column if j € C (p).

(iv) We denote by (p);1 the marked partition arising from p as the horizontal block of
minimal length sm (p) of p by keeping the row markings and with a column marking
in the j-th leftmost column if and only if j € C (p).

Note that we will use sometimes the phrase that “m is column marking of p” when
meaning that the m-th column of p is marked.

Let us consider an example towards the notation from Definition 3.14.

Example 3.15. Consider

)
I

Using the notation from Definition 3.14, we have sm (p) = 2 and C (p) = {1,2}.
Furthermore, we have

(P)-1= and (P)1 =

°
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Remark 3.16. (i) For all W € 4*° and p € MPy, we have
p=2((p)-1, (D))
(i) For W € U*° with depth(W) > 1, write W = Wujuf with W € U™°, j € Zso,
and n € Z>o uniquely determined. For all p € MPy, we have (p)_1 € MPy.

With the additional notation from Definition 3.14, we are now ready to prove our main
theorem stating that ® describes the stuffle product on the level of marked partitions.

Theorem 3.17 (Theorem 3.9). Let be Wi, Wo, W € U*°. For all p € MPy, we have

iy igp = T W3-

In particular, given Wi,Wa, my, Wi only depends on the word W but not on the marked
partition p € MPy.

Proof. We begin with the three special cases Wi =1, Wo =1, W= 1. First, if W; = 1, we
note that

Wi *xWo =1x%xWy = Wo,
i.e., for all W € U*°, by Proposition 3.13(i), we have

miwsw = 5w:w2-

Furthermore, we have MPy, = MP; = {0}. Hence, for all W € U*° and p € MPy, we
have

Mg 5= # LT, 73) € MPy, x MPy, | ®(57,73) = 7}
=#{(0,p2) € MP1 x MPy, | (0,p2) = p}
=#1{(0,p2) € MPy x MPy, | p2 = p}
= du=v,
= M0y WosW-
Le., if W3 = 1, the claim follows. Similarly (using Proposition 3.13(ii)), we obtain the

claim for Wo = 1. Next, consider the special case of Wi,Ws € U™° arbitrary and W = 1.
Then,

mwl,WQ;l — 5W1=W2=1'
Furthermore, we have MPy = MP1 = {0} and so
My, a0 = # {(P1,P2) € MPyy X MPy, | @(p1,p2) = 0}
:#{(Ea@) € MPy, x MPy, | pr=Dp2= (D}

— 6W1 =Wo=1

= My Wa;1,

where the last step follows from Proposition 3.13(iii). ILe., the claim follows also for
all Wy, Wy € U*° when W= 1.
Therefore, we may assume Wi, Wa, W £ 1 in the following. We write

_ 1y n1 _ 1/ n _ 1/ n3
Wi =Wujuy, Wo=Woujug~, W=Wuju,”,
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where W}, Wo,W € U™, j1,j2,j3 € Z0, and ni,n2,ng € Z>o are uniquely determined.
We prove the claim of the theorem by induction on depth(W) and note that the base
case depth(W) = 0 has already been proven since then W = 1. Therefore, we may as-
sume depth(W) > 0 and that the claim holds for all smaller values of depth(W). Let
be p € MPy arbitrary. Particularly, in ()i, there are exactly js rows marked and ng+ 1
columns, including the row and column, respectively, containing the corner. To ob-
tain my, y o we need to count the pairs (p1,p2) € MPy, x MPy, of marked partitions
such that ®(p1,p2) = p. In particular, we have

(®(p1,p2)); = (Ph-
There are three distinct cases we will study.

(i) sm(p1) < sm(p2): ILe., the horizontal block of minimal length of p; (neglecting
the column markings) builds the whole horizontal block of minimal length of p
(neglecting the column markings).

(ii) sm(p1) > sm(p2): ILe., the horizontal block of minimal length of ps (neglecting
the column markings) builds the whole horizontal block of minimal length of p
(neglecting the column markings).

(iii) sm (pr) = sm (p2): Le., the horizontal block of minimal length of p is the horizontal
block of minimal length of p7 above horizontal block of minimal length of p3, in

particular (p); = ®((p1)1, (P2)1)-
Case (i). Let us consider (i) first. We want to find the number
# {(P1.p2) € MPuy X MPy, | sm (pr) <sm (p2), ®(p1,p2) =}
Note that for (pr, p2) € MPy, x MPy, with sm (p1) < sm (p2) and (p1, p2) = P, we have
p=®(p1,p2) = ®((2(p1,p2)) -1, (D)1)-

Furthermore, we have
(@(F1,72)-1 = @ ((B1)-1.72) € MPy,

where p3 is the marked partition p3 without column markings in C (p) \{sm (p)}. Note
that we have

(]/?D_l S MPw’l and ]/)5 € MPW’Zuhu?_j_E’

where j = # ((C (5) \{sm (5)}) N C (72)) and

5:{0, it sm () ¢ C (7).

).

Now, fix 0 < j < ng, 0 <& <min{l,ng — j} and marked partitions

3) 8

1, if sm(p) € C(

Gi € MPy and @ €MP,, i

2Ujo Ug
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such that sm (p) < sm (q:g) and

(/]\:: 0} ((ﬁ,(fg) = (ﬁ)_l c MPW/.

Hence, we are interested in the number of pairs (¢',q) € Mpuj urt X MPy, such
1
that sm (') < sm (¢2),

and such that ¢ without column markings in C (p)\{sm (p)} is ¢ (in accordance with
the notation above). Note that the underlying Young Tableau of ¢’ consists of exactly
one horizontal block and is uniquely determined by (p)1, as well as the row markings of ¢'.
In particular, this is possible only if j; = j3, and implies sm (¢') = sm (p). Furthermore,
since

#(C () \{sm (7)}) =n1, #(C(P)\{sm(p)}) =ns, and C(7)CcC(H),

we have (Zi’) choices to determine C(q') and so to determine ¢’. Now, for fixed ¢, ¢
is determined up to the column markings in C(p) by definition. The other ng — ng
column markings of C(p) \{sm (p)} have to be column markings of ¢a. Moreover, by
definition of ng, therefore j — (n3 — n1) column markings of ¢» that do not belong to (j\~2
are column markings of ¢’ as well, which is possible in (jf(nzlfm)) ways, determining ¢o
finally. Hence, we have proven that

# {(p1,p2) € MPu, x MPy, | sm (p1) <sm (p2), ®(p1,p2) = P}

= E 3 " m ; Oy —i
= . —j—¢ =
ny J\j— (ng—mny)) WiMbugug® @)y IS

0<j<n2
0<e<min{l,n2—j}

— ns ni | | |
B > <n1> (j — (n3 — n1)>mw/1’w’2“j2ug2jE;W’éﬂ_ﬂ-‘i’ (3.17.1)

0<j<n2
0<e<min{l,n2—j}

where the last step follows from the induction step since depth(W') = depth(W) — 1.

Case (ii). Now, considering (ii), analogously, we obtain

#{(p1,p2) € MPy; x MPy, | sm (p1) > sm (p2), ®(p1,p2) = b}

n3 ’[’1,2
- My, ni—j—e o Oja=is- 3.17.2
O<§<:n1 (”2> (j —(n3 — nz)) Wy gy 2 ( )

0<e<min{1,n;—j}
Case (iii). We want to find the number
# {(p1,p2) € MPu, x MPy, | sm (p1) = sm (p2) , ®(p1,p2) = b} -
Note that for (p1,p2) € MPy, x MPy, with sm (p1) = sm (p2) and (p1,p2) = p, we have

(P)-1 = @((p1)-1,(P2)-1) and  (P)1 = ®((p1)1, (P2)1)-
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Furthermore, for h € {1,2}, we have

(Pr)-1 € MPy, . (Pr)1 € MP, s (p)-1 € MPy, and (P € MP, ns.

U

Now, for h € {1,2}, fix marked partitions g, € MPw’h such that

®(q1,¢2) = (P)-1-

. . . ~/ ~/
We are interested in the number of pairs (1", %') € ./\/lPujlug1 X MPuj2 ul? such that

Note that the underlying Young Tableau of both ¢’ and ¢’ are uniquely determined
by (p)1, as well as the row markings of ¢’ and ¢’. In particular, this is possible only
if j3 = j1 + jo, and implies sm (¢1") = sm (¢') = sm (p).

Now, since

#(C (@) \{sm (@)}) =n1, #(C(B)\{sm(p)}) =ns, and C(@') cC(H),

we have (1)) choices to determine the column markings of ¢i" which determines ;. Fur-
thermore, since C (1) UC (") = C ((p)1), we have that ng — (ng —n) column markings

of @', different from sm (¢3"), belong to ¢i’ as well, which is possible in (. (Z;_m)) ways

when ¢i’ is already determined, determining ¢’ finally.
Hence, by using p = ®((p)-1, (p)1), we have proven

#{(p1,p2) € MPy, x MPy, | sm(p1) = sm (p2), ®(p1,p2) = Db}

(73 st m S
== ! /. =
ny ) \n2 — (n3 —ny) W) Wi (p)—1 OF3=T1+72

ns ni
= <n1> <n2 — (n3 — nl)>mw’1,w’2;w’5j3=j1+jza (3.17.3)

where the last step follows from the induction hypothesis since depth(W') = depth(Ww) — 1.
Conclusion. Now, (3.17.1), (3.17.2), and (3.17.3) yield by definition of my . - that

Moy, Wop
=#{(p1,p2) € MPy, X MPy, | sm(p1) < sm (p2), ®(p1,p2) = p}
+# {(F1.7) € MPy, x MPy, | s (7) > sm (7). ®(7.75) = 7}
+#{(F1.73) € MPuy X MPy, | sm (51) = sm (53) . $(55.73) = 7}
ni+k ny
= Z ( ny ) <] _ k) mwll’wéuj?ugrj_g;w/énfjiji;%

0<k<j<na
0<e<min{1l,n2—j5}

no + k N9
+ B m. ny—j (5 o —14
Z na Jj—k Wiy ugt W W njikj:&h
0<k<j<ny 2 3
0<e<min{l,n1—j}

n2
ni+k n1
+) o ) T O =i,
k=0 ni n2 — ni1+k=ns3

= T W3
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where the last step immediately follows from Proposition 3.13(iv). This completes the
induction step, so the theorem is proven. ]

Remark 3.18. Marked partitions seem a powerful tool for studying the coefficients in
the g-expansion of gMZVs. With them, we give the (algebraic) behaviour of gMZVs a
combinatorial interpretation. In this paper, we did this for the stuffle product. In [4],
we already did this for duality in the Schlesinger-Zudilin model of gMZVs (and in the
Bradley—Zhao model for an involution similar to 7). For future works, it would be
interesting, for example, to describe problems like Bachmann’s conjecture (bi-brackets
and brackets span the same Q-vector space, see [3, Conjecture 4.3]) combinatorially with
marked partitions and making progress in proving them.
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Abstract. Recently, Debruyne and Tenenbaum proved asymptotic formulas for the
number of partitions with parts in A C N (ged(A) = 1) and good analytic properties
of the corresponding zeta function, generalizing work of Meinardus. In this paper, we
extend their work to prove asymptotic formulas if A is a multiset of integers and the zeta
function has multiple poles. In particular, our results imply an asymptotic formula for
the number of irreducible representations of degree n of s0(5). We also study the Witten
zeta function (go(5), which is of independent interest.

4.1 Introduction and statement of results

4.1.1 The Circle Method

In analytic number theory and combinatorics, one uses complex analysis to better under-
stand properties of sequences. Suppose that a sequence (¢(n))nen, has moderate growth

and the generating function
F(q):=)_ c(n)q",

n>0

is holomorphic in the unit disk with radius of convergence 1. Via Cauchy’s integral
formula one can then recover the coefficients from the generating function

o(n) = — /C 51 9 44, (4.0.1)

"~ 2mi

for any simple closed curve C contained in the unit disk orientated counterclockwise.
The so-called Circle Method uses the analytic behavior of F'(¢) near the boundary of the

! Walter Bridges
wbridges@uni-koeln.de

Benjamin Brindle
bbrindle@Quni-koeln.de

Kathrin Bringmann
kbringma@math.uni-koeln.de

Johann Franke
jfrank12@uni-koeln.de

Department of Mathematics and Computer Science, University of Cologne, Weyertal 86-90, 50931
Cologne, Germany



Chapter 4. Paper III: Asymptotic expansions for partitions generated by infinite

124
products

unit circle to obtain asymptotic information about ¢(n). In fact for “nice” examples this
method is automatic and there is a long history for example with the Prime Number The-
orem. For instance, if the ¢(n) are positive and monotonically increasing, it is expected
that the part close to ¢ = 1 provides the dominant contribution to (4.0.1) (Tauberian
Theorems then show this). This part of the curve is the major arc and the complement
is the minor arc. To obtain an asymptotic expansion for ¢(n), one then evaluates the
major arc to some degree of accuracy and bounds the minor arc. Depending on the
function F'(q), both of these tasks present a variety of difficulties.

In the present paper, we are interested in infinite product generating functions of the

form
1

Such generating functions are important in the theory of partitions, but also arise, for
example, in representation theory. If the Dirichlet series for f(n) has a single simple
pole on the positive real axis and F is “bounded” away from ¢ = 1, then Meinardus [30]
proved an asymptotic expression for ¢(n). Debruyne and Tenenbaum [17] eliminated
the technical growth conditions on F' by adding a few more assumptions on the f(n),
which made their result more applicable. Our main results, Theorems 4.5 and 4.29,
yield asymptotic expansions given mild assumptions on f(n) and have a variety of new
applications.

4.1.2 The classical partition function

Let n € N. A weakly decreasing sequence of positive integers that sum to n is called a
partition of n. The number of partitions is denoted by p(n). If Ay + ...+ A\, = n, then
the \; are called the parts of the partition. The partition function has no elementary
closed formula, nor does it satisfy any finite order recurrence. However, setting p(0) := 1,
its generating function has the following product expansion

1

> )" =] -

TL’
n>0 n>1 q

(4.0.2)

where |¢| < 1. In [23], Hardy and Ramanujan used (4.0.2) to show the asymptotic

formula
p(n) ~ ! e”\/g, n — oo,
4v/3n
which gave birth of the Circle Method. Using modular transformations one can describe
with high precision the analytic behavior of the product if ¢ is near a root of unity. One
further sees directly from the infinite product that dominant singularities occur at such
roots of unity with small denominator. These ideas culminate in Rademacher’s exact
formula for p(n) [33].
With Theorem 4.5 we find, for certain constants B; and arbitrary N € N,

eV E N B; N+1
n)=———:11+ 2 4+O0n(n2)]. 4.0.3
) = (R w () (4.0.3)

Similarly, one can treat the cases for k-th powers (in arithmetic progressions), see [17].
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4.1.3 Plane partitions

Another application is an asymptotic formula for plane partitions. A plane partition of
size n is a two-dimensional array of non-negative integers ;5 for which >, 7, = n,
such that m;, > 7 x11 and 7, > 741 for all j, & € N. We denote the number of plane
partitions of n by pp(n). MacMahon [25] proved that

Z pp(n)q" = H m

n>0 n>1

Using Theorem 4.5, we recover Wright’s asymptotic formula? [38]

C 2 N+l B, _2(N+1)
pp(n) = —z e’ <1+ > sy 0N (n ’ ) ;

736 j=2n" 3

where the constants B; are explicitly computable,

with ¢ the Riemann zeta function.

4.1.4 Partitions into polygonal numbers

The n-th k-gonal number is given by> (k € Nx3)

Pu(n) == % (k=20 + (4~ k)n). (4.0.4)

The study of representations of integers as sums of polygonal numbers has a long history.
Fermat conjectured in 1638 that every n € N may be written as the sum of at most k k-
gonal numbers which was finally proved by Cauchy. Let pi(n) denotes the number of
partitions of n into k-gonal numbers. We have the generating function

n 1

n>0 n>1

The pr(n) have the following asymptotics.*

Theorem 4.1. We have, for all® N € N,

1
C(k A(k)n3 N B.

pr(n) = Clkje™ ™ )Sk—ﬁ 1+> 7J}k + On (n_N;I) 7
n 6(k—2) j=1 ns3

where the Bjj can be computed explicitly and

6—k %
(k'—2)6(k12)r(k%2><'(%> 3(k—2) 5 - N
C(k) = 3k_2 1k—9 ) A(k) =3 ( _ ¢ ()) .
22(k=2) /37 3(k—2) 2\VEk—-2>\2

2Note the well-known typographic error in Wrights asymptotic, he is off by a factor v/3.

3Note that these count points in polygons.

4Note that asymptotics for polynomial partitions were investigated in a more general setting by Dunn—
Robles [19].

SExplicit asymptotic formulas for ps(n), ps(n), and ps(n) are given in Corollary 4.33.
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Remark 4.2. Theorem 4.1 strengthens an asymptotic formula of Brigham for log(px(n))
(see page 191 of [7] part D).

4.1.5 Numbers of finite-dimensional representations of Lie algebras

The special unitary group su(2) has (up to equivalence) one irreducible representation V
of each dimension k£ € N. Each n-dimensional representation @g-; V) corresponds to
a unique partition

n=MA=+X+--4+ A, AM>X>... >N >1 (4.2.1)

such that r counts the number of k in (4.2.1). As a result, the number of representations
equals p(n). It is natural to ask whether this can be generalized. The next case is the
unitary group su(3), whose irreducible representations W ; indexed by pairs of positive
integers. Note that (see Chapter 5 of [22]) dim(W;y) = 3jk(j + k). Like in the case
of su(2), a general n-dimensional representation decomposes into a sum of these W,
again each with some multiplicity. So analogous to (4.0.2), the numbers 74,3)(n) of n-
dimensional representations, have the generating function

n 1
eru(S)(n)q = H L JkG+R)

n>0 J,k>1 1- q 2
again with r4,(3)(0) := 1. In [34], Romik proved that, as n — oo,

C
Tou(3) (1) ~ 72 xp (Aln% + Agnio + Agns + A4n%> ;
ns

with explicit constants® Cy, A1, ..., A4 expressible in terms of zeta and gamma values.
Two of the authors [8] improved this to an analogue of formula (4.0.3), namely, for
any N € Ny, we have

C
Tsu(3) (1) :—g exp (Aln% + Agnl% + Ag,n% + A4n%>

ns
N (4.2.2)
X (1+Z ¢ +OnN (angl)),

g
j=1mn1o

as n — oo, where the constants C; do not depend on N and n and can be calculated
explicitly. The expansion (4.2.2) with explicit values for 4; (1 < j <4) and Cj, can also
be obtained using Theorem 4.29.

This framework generalizes to other groups. For example, one can investigate the
Witten zeta function for so(5), which is (for more background to this function, see [27]

and [28]) . 3 )
Coo(3)(8) =D dim(p) Y e (m 4 1) (m + 2n)°

4 n,m>1

(4.2.3)

where the ¢ are running through the finite-dimensional irreducible representations of s0(5).
We prove the following; for the more precise statement see Theorem 4.43.

Theorem 4.3. The function (5(5) has a meromorphic continuation to C whose positive
11

poles are simple and occur for s € {5, 5}

5Note that Romik used different signs for the constants in the exponential.
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It is well-known that the finite-dimensional representations of so(5) can be doubly
indexed as (¢;k)jkeny With dim(p; ) = %jk:(j+k:)(j+2k‘), which explains the last equality
in (4.2.3). A general n-dimensional representation decomposes as a sum of these ¢; ,
each with some multiplicity. Therefore, as in the case su(3), we find that

1
E Ts0(5) (n)q" = I | TEG+R) G2k
6

n>0 jk>11—¢q

We prove the following.

Theorem 4.4. As n — oo, we have, for any N € N,

C 1 2 1 N+1 Bj v
7’50(5)(”) - 77€Xp (A1n§ + AQ’]’L@ + A3n§ + A4) 1 + Z L + ON (n T) ’

niz j=2 n 9

where C, Ay, Az, Az, and Ay are given in (4.45.6)—(4.45.7) and the B; can be calculated
explicitly.

4.1.6 Statement of results

The main goal of this paper is to prove asymptotic formulas for a general class of partition
functions. To state it, let f : N — Ny, set A := N\ f~1({0}), and for ¢ = e * (2 € C
with Re(z) > 0), define

G = Y pslng = T —— L= ga

n>0 ns1 (1— Q">f(n) n>1

We require the following key properties of these objects:

(P1) All poles of Ly are real. Let o > 0 be the largest pole of L. There exists L € N,
such that for all primes p, we have [A\ (pNNA)| > L > 5.

(P2) Condition (P2) is attached to R € R™. The series L¢(s) converges for some s € C,
has a meromorphic continuation to {s € C : Re(s) > —R}, and is holomorphic on
the line {s € C: Re(s) = —R}. The function L}(s) := I'(s)((s + 1)L(s) has only
real poles 0 < a := 1 > 72 > ... that are all simple, except the possible pole
at s = 0, that may be double.

(P3) For some a < 7, in every strip o1 < 0 < 02 in the domain of holomorphicity, we
uniformly have, for s = o + it,

Ly(s) = Ogys (M), [t > o0.

Note that (P1) implies that [A\ (B(NNA)| > L > § for all b > 2. The analytic properties
of Ly are a major ingredient needed to prove the following theorem, as analytic contin-
uation in (P2) gives rise to asymptotic expansions of " Log(G(z)) and (P3) assists with
vertical integration.

Theorem 4.5. Assume (P1) for L € N, (P2) for R > 0, and (P3). Then, for
some M, N € N,

C _o M N B, — min{ 2L—a _R_
pf(n) = EGXP (Alna+l +ZAJnaJ) (1—}-21137]4—0[/7}% (n {2(a+1)’a+1})> ,
j=2

=2

"Throughout we use the principal branch of the logarithm.



Chapter 4. Paper III: Asymptotic expansions for partitions generated by infinite

12
8 products

where 0 < ay < apy-1 < rag < o = 95 are given by L (defined in (4.6.1)),
and 0 < By < B3 < ... are given by M + N, where M and N are defined in (4.6.2)
and (4.6.3), respectively. The coefficients Aj and Bj can be calculated explicitly; the
constants Ay, C, and b are provided in (4.6.4) and (4.6.5). Moreover, if o is the only
positive pole of Ly, then we have M = 1.

Remark 4.6.

(1) Debruyne and Tenenbaum [17] proved Theorem 4.5 in the special case that f is the
indicator function of a subset A of N. They also assumed that the associated L-
function can be analytically continued except for one pole in 0 < a < 1. In (P1),
the assumption that |A\ (pNNA)| > L is used in Lemma 4.17 to bound minor arcs,
whereas the additional assumption L > §, that was automatically satisfied in [17],
ensures that the bounds for the minor arcs are sufficient.

(2) The complexity of the exponential term depends on the number and positions of the
positive poles of Ly. Theorem 4.29 is more explicit and covers the case of exactly
two positive poles. This case has importance for representation numbers of su(3)
and so(5).

In Section 4.2, we collect some analytic tools, properties of special functions and
useful properties of asymptotic expansions that are heavily used throughout the paper.
In Section 4.3, we apply the Circle Method and calculate asymptotic expansions for the
saddle point g, and the value of the generating function Gf(g,). In Section 4.4, we
complete the proof of Theorem 4.5, and we also state and prove a more explicit version
of Theorem 4.5 in the case that Ly has two positive poles (Theorem 4.29). The proofs
of Theorems 4.1, 4.3, and 4.4 are given in Section 4.5; this includes a detailed study of
the Witten zeta function (4o(5) which is of independent interest.
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Notation

For 5 € R, we denote by {f} := 8 — | 5] the fractional part of 5. As usual, we
set H:= {7 € C:Im(7) >0} and E:={z € C: |z] < 1}. For § > 0, we define

Cs:={zeC:|Arg(z)| <5 -0},

where Arg uses the principal branch of the complex argument. For » > 0 and z € C, we
set
By (z) ={weC:|lw—z <r}.

8We can enlarge the discrete exponent sets at will, since we can always add trivial powers with
vanishing coefficients to an expansion. Therefore, from now on we always use this expression, even if the
set increases tacitly.
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For a,b € R, we let R,k be the rectangle with vertices a £iK and b £ iK, and we
let OR . be the path along the boundary of R, 4.k, surrounded once counterclockwise.
For —oo < a < b < oo, we denote S, := {z € C: a < Re(z) < b}. We also set, for
real o1 < o9 and § > 0,

So1,005 :={5€C:01 <Re(s) < 02}\ (35 <;) U | O Bs (‘;)) .

j=—00

For k € Nand s € C, the falling factorialis (s)g := s(s—1)---(s—k+1). For f : N — N,
we let P be the set of poles of L%, and for R > 0 we denote by Pr the union of the poles
of L} greater than —R with {0}. We define

1 pw+1
HEPR
o w1 ) { R—i—a)
= — —1 4.6.2
M 04+1N0+( u;;R(Oé"i‘l N())ﬂ O’Oz—l-l , ( 6 )

N

"a+1

{ibj@j (b, K € No,ej € (—E) N (0 R )} . (4.6.3)

We set, with w, := Ress—q Ly (s),

1 L,(0) w
A (1 n ;) (wal'(@ + 1)C(a + 1)) 71, c .= ! (waf(a;zc))i(ralj 1)) 5
(4.6.4)
_1=L(0)+ 3
SRS (4.6.5)

4.2 Preliminaries

In this section, we collect and prove some tools used in this paper.

4.2.1 Tools from complex analysis

We require the following results from complex analysis. The first theorem describes Tay-
lor coefficients of the inverse of a biholomorphic function; for a proof, see Corollary 11.2
on p. 437 of [11].

Proposition 4.7. Let ¢ : B.(0) — D be a holomorphic function such that ¢(0) = 0
and ¢'(0) # 0, with ¢(z) =: X,>1 an2™. Then ¢ is locally biholomorphic and its local
inverse of ¢ has a power series expansion ¢~ (w) =: > k>1 bpw”, where

b :L (_1)€1+€2+€3+-.‘k"'(k_1+€1+€2+---) az & a3 52.”
P kb IATRTARE
a1 01 ,02,05...>0 1:42:£3- ai al

0 +209+303+=k—1

To deal with certain zeros of holomorphic functions, we require the following result
from complex analysis, the proof of which is quickly obtained from Exercise 7.29 (i)
in [10].
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Proposition 4.8. Let r > 0 and let ¢, : B (0) — C be a sequence of holomorphic func-
tions that converges uniformly on compact sets to a holomorphic function ¢ : B.(0) — C,
with ¢'(0) # 0. Then there exist r > K1 > 0 and k2 > 0 such that, for all n sufficiently
large, the restrictions ¢n|p, (0) : Br:(0) = ¢n(Bs,(0)) are biholomorphic

and By, (0) C ¢n (B, (0)). In particular, the restrictions ¢7’:1|Br@2 (0) By (0) = ¢, (Bx, (0))
are biholomorphic functions.

4.2.2 Asymptotic expansions

We require two classes of asymptotic expansions.
Definition 4.9. Let R € R.

(1) Let g : R — C be a function. Then g € K(R) if there exist real
numbers g1 < Vg2 < Vg3 < --- < Vg N < R and complex numbers a4 ; such that

g(x) = Z % + Or (x_R) , (x — 00).
j=1

(2) Let ¢ be holomorphic on the right half-plane. Then ¢ € H(R) if there are real
numbers vy 1 < Vga < Vg3 < -+ <vgn < R and ay; € C such that, for all £ € Ny
and 0 < 4§ < 3,

Ny

6®)(2) = 3 (o ks 27075 + Os i (|2157F) (20,2 €C5). (49.1)
j=1

If there is no risk of confusion, then we write IV, v;, and a; in the above. The R-
dependence of the error only matters if R varies, for instance, if we can choose it to be
arbitrarily large.

Note that any sequence g(n) with
N,
gln) =Y nfujj + Or (n_R> ; (n — 00), (4.9.2)

can be extended to a function g in K(R). Conversely, each function in /C(R) can be
restricted to a sequence {g(n)}nen satisfying (4.9.2). In addition, we include functions
in C(R) that have asymptotic expansion as in (1), but are initially defined only on
intervals (r,00) for some large r > 0. The reason for this is that it does not matter
how the function is defined up to r, and therefore it can always be continued to (0, 00).
If g € K(R) for all R > 0, then we write

py
g(x) = Z L, (x — o00). (4.9.3)
— Vi
gzl
We use the same abbreviation if ¢ € H(R) for all R > 0. In this case we write g € K(00)
and ¢ € H(o0), respectively. In some situations, we write for R € R U {o0}

N

9(@) =Y 4L 4 Op (+ 1),
j=1
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where R might depend on the choice of the function g. If R = oo, then one may ignore
the error Og(z~f) and use the notation (4.9.3) instead. We have the following useful
lemmas, that can be obtained by a straightforward calculation.

Lemma 4.10. Let R1,Ry € R, A € C, g € K(R1), and h € K(R2). Then we have the
following:

1) We have A\g € K(R1) and g+h € K(min{R1, R2}). The exponents v,y i Tun through
g+h,j

({rgj: 1< < Nop U{vng: 1< j < Nib) 0 (=00, min{Ry, Ro}).

(2) We have gh € K(min{Rq + vp 1, Ra + vg.1}). The exponents vy j run through

({vg,j: 1 <j < Ng}t+{vp;: 1 <7< Np})N(—oo,min{Ry + vp1,Ra + vg1}).

We next deal with compositions of asymptotic expansions with holomorphic functions.

Lemma 4.11. Let 0 < R < o0, g € K(R) with vg1 = 0 and h holomorphic at ag ;.
Then (ho g)(z) is defined for all x > 0 sufficiently large, and we have ho g € K(R) with

Ny
{Vhog,j 1 <5< Nhog} = (Z Vg,jN0> N [O, R).
j=1

We need a similar result for general asymptotic expansions.

Lemma 4.12. Let 0 < Ry, Ry <00, ¢ € H(R1), g € K(R2),
and R := min{Ry — vy 1,v41R1}. Assume vy1 > 0 and g(z) > 0 for x sufficiently large.
Then ¢ o g € K(R), apog1 = a¢,1ag‘fl’1, and

Ng

{Vpogj:i 1 < J < Npog} = (Vg,l{l/qﬁ,la e Vg Ny b+ Z(V!ij - ngl)No) N (—oo, R).
=2

4.2.3 Special functions
The following theorem collects some facts about the Gamma function.
Proposition 4.13 (see [1, 35]). Let v denote the Euler—Mascheroni constant.

(1) The gamma function T' is holomorphic on C\ (—Ngy) with simple poles in —Ny.
For n € Ny we have Ress—_, I'(s) = (Gl il

n!

(2) For s=o0+it € C with o € I for a compact interval I C [%, 00), we uniformly have

uild]
2

m|t|
max {1, ’t|0—%} e 7 < |T(s)] <5 max {17 WJ_%}e_

The bound also holds for compact intervals I C R if [t| > 1.

(3) Near s =0, we have the Laurent series expansion I'(s) = % — 5+ 0(s).

(4) For all s € C\ Z, we have I'(s)I'(1 — s) = Sin?ﬂs)~

For s,z € C with s ¢ —N, the generalized Binomial coefficient is defined by

s\ I'(s+1)
z)] T T(+DI(s—z+1)
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We require the following properties of the Riemann zeta function.
Proposition 4.14 (see [2, 9, 35]).

(1) The (-function has a meromorphic continuation to C with only a simple pole at s =1
with residue 1. For s € C we have (as identity between meromorphic functions)

C(s) = 2°7° Lsin (”23) T(1— s)¢(1 — s).

(2) For I :=og,01] and s = o + it € C, there exists my € Z, such that for o € I
Cls) < @+1[eh™,  (t] = o00).

(3) Near s =1, we have the Laurent series expansion ((s) = 22 +~+ O(s — 1).
For the Saddle Point Method we need the following estimate.

Lemma 4.15. Let p, be an increasing unbounded sequence of positive real
numbers, B > 0, and P a polynomial of degree m € Ny. Then we have

Hn _Bg?2 o _ B2 m—1 _Bu2
/ P(x)e "% dx :/ P(x)e 7" dx + Op.p (u,ﬂ e “n) :
—Hn —0o0

Finally, we require the following in our study of the Witten zeta function (s (5)-

Lemma 4.16. Let n € Ny. The function g : R — R defined
as g(u) := el¥l [ |oremlVI=lvHul gy satisfies g(u) = O (u") as |u| — .

Proof. Let u > 0. Then we have

n+1 ny

2n+1 z% j! 1T QnJ'rl =On (unﬂ) ’

The lemma follows, since g is an even function. O

4.3 Minor and major arcs

4.3.1 The minor arcs

For z € C with Re(z) > 0, we define, with G given in (4.4.1),

P (z) := Log(G¢(2)).

Note that we assume throughout, that the function f grows polynomially, which is im-
plicitly part of (P2). We apply Cauchy’s Theorem, writing

1

pr(n) = 5= [ exp(nlen+it) + @ f(en + it)) de.

where 0, — 07 is determined in Subsection 4.3.3. We split the integral into two parts,
the major and minor arcs, for any g > 1

onM

2

e@nn ) .
pr(n) = / exp (int + ®¢(on +it)) dt +
lt<on

exp (int + @ +it)) dt.
5 /ﬂ<|t<ﬂ P ( flon +1t))

(4.16.1)
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The first integral provides the main terms in the asymptotic expansion for p¢(n), the
second integral is negligible, as the following lemma shows.

Lemma 4.17. Let 1 < 8 < 1+ § and assume that f satisfies the conditions of Theo-
rem 4.5. Then

/Qﬁ ezmnth(Qn + 27Tit)dt < Q7Ll+1Gf(gn).
E<It<3

Sketch of proof. The proof may be adapted from [17, Lemma 3.1]. That is, we estimate
the quotient,

f(m)

G + 2mit 16||mt|]? \ %
Gson +2mit) _ (., 16llm )"
Gf(Qn) m21 € .Qnm Q

n

where ||z|| is the distance from z to the nearest integer. We then throw away m-th
5

factors depending on the location of ¢t € [£2, %] The proof follows [17, Lemma 3.1]

mutatis mutandis; key facts are hypotheses (P1) and (P3) of Theorem 4.5 and that

(which follows from [35, Theorem 7.28 (1)])

S0 flm) RS e, 0

1<m<z @

4.3.2 Inverse Mellin transforms for generating functions

We start this subsection with a lemma on the asymptotic behavior of the function @
near z = 0.

Lemma 4.18. Let f : N — Nq satisfy (P2) with R > 0 and (P3). Fiz some0 < § < §—a.
Then we have, as z — 0 in Cy,

Op(z)= Y. Ress—, Lj(s)2" — Ly(0)Log(2) + L}(0) + O (|2I").
I/G*’PR\{O}

For the k-th derivative (k € N), we have

—“1k(k —
( 1) (k kl)'Lf(O)JFOR,k (|Z|R_k>.

o) = 3 eResi L)

ve—Pr\{0} z

Proof. With Jy(s;z) := L;‘c(s)z*s, we obtain, for k¥ € Ng,

(x) dr —R+i00 —R—iK a+1+iK
2mi®;7 (2) = — / + lim / + +/ J¢(s;z)ds.
dz" \ J-R—ico K=o \JOR_poay1x Jotl—iK J-R+iK

(4.18.1)

Here we use (P2), giving that there are no poles of J¢(s;2) on the path of integration.
By Proposition 4.14 (2), [8, Theorem. 2.1 (3)], and (P3), we find a constant ¢(R, k) such
that, as |v| — oo,

us

Lj(—R+iv)| <g (14 o) R0 (E )l
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This yields, with Leibniz’s integral rule and 0 < < § — a,

dr —R+ioc0
/ J¢(s;z)ds

o ) ps <Rk ]z\R*”.
—R—i00

For the second integral in (4.18.1), applying the Residue Theorem gives

dr 1
— lim —/ Jy(s; 2)ds
dz" K—00 270 JOR_p ayr1ii
dli

- ¥ (V)HRess:_,,L;(s)zV*uﬂ(—Lf(O)Log(zHL}(O)),
ve—Pr\{0} o

since s = 0 is a double pole of J¢(s; z). For the last two integrals in (4.18.1) we have, for

some m(I) € Ny, depending on I := [-R, o + 1],

a+1tiK
|/ Jr(s;2)ds| < (1+ K[y max{]z|a+1, |Z|—R} e~ (0-a)lK|
—R+tiK

which vanishes as K — oo and thus the claim follows by distinguishing x = 0
and xk € N. O
4.3.3 Approximation of saddle points

We now approximately solve the saddle point equations

—®%(0) =n = —P%(0n). (4.18.2)
The following proposition provides an asymptotic formula for certain functions.

Proposition 4.19. Let ¢ € H(R) with R > 0, vy1 < 0, and ap1 > 0. Assume
that p(RT) C R. Then we have the following:

(1) There exists a positive sequence (on)nen, such that for all n sufficiently
large, ¢(0n) = n holds.

1

(2) We have® ¢ € K(1 — L), Qo1 = Gy ;W , and the corresponding exponent set

Vg1
Ny
1 ; R+1
(o 1< <Ny =[——+3 [1-24 )Ny | 0 —o00.1 - o).
Vd):l j:1 ]/¢71 ]/¢71

In particular, we have g, — 07.

Proof. In the proof we abbreviate v, := vy, and a, = ag -

(1) For n € N, set
1 n\ o
wn(w) =14 ﬁﬁb <<a1) w) .

As ¢ is holomorphic on the right-half plane by assumption, so are the v,. Using (4.9.1),
write
Up(w) =W — 1+ E,(w), (4.19.1)

9Recall that we can consider the sequence g, as a function on R.
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where the error satisfies

Ny Vi

E,(w) =— Zaj (n) " w + Op (nﬁl\wﬁ) .

We next show that, for all n sufficiently large, the 1, only have one zero near w = 1. We
argue with Rouché’s Theorem. First, we find that, for n sufficiently large, the inequality

|En(w)] < |1 —w"”| + |w"? — 14 E,(w)| = |1 — w"| + [t (w)] (4.19.2)

holds on the entire boundary of B,,,)(1), with 0 < x(v1) < 3 sufficiently small such
that w + 1 — w" only has one zero in B,,,)(1). By Rouché’s Theorem and (4.19.2),
for n sufficiently large 1, also has exactly one zero in By ,,)(1). We denote this zero
of ¥, by w,. It is real as ¢ is real-valued on the positive real line and a holomorphic

function. One can show that g, = (a—”l)%wn > 0 satisfies ¢(0n) = n.
(2) We first give an expansion for w,. By Proposition 4.8, there exists k£ > 0, such that
for all n sufficiently large and all z € B,(0), the inverse functions 1! of 9, are defined
and holomorphic in B (1). Using this, we can calculate wy,, satisfying ¢, (w,) = 0. For
this, let

() 1= om0+ 1) — o (1).

We have hy,(0) = 0, and we find, with Theorem 4.7,

wn = 1= hyt (=a(1) = Y (= 1)"bm(n)n(1)™,

m>1

where the b, can be explicitly calculated. First, 1,,(1)"™ (m € Np) have expansions in n
by (4.19.1) and Lemma 4.11. They have exponent set > o<, (1 — %)No n[o,1— V—F‘;)
We find, for k € N,

Ny vj

e () =~ E(Vj)kaj (Z:l) "4 og (nvj:i*) . (4.19.3)

Again by Lemma 4.11, and (4.19.3), wgk)(l) (k € Np) has expansions in n, with exponent
set (Xa<jen, (1 — %)NO) N[o,1— %) By Lemma 4.11 we have the following expansion
inn

, 1 Ne n r% L£_q o
ﬂ)n(l)—m =|v + E Zyjaj <a) + OR <nV1 >
=2 !

with exponent set (3 o<j<n, (1 — Z—{)Ng) N[0,1 — £). By the formula in Theorem 4.7,

vy
the b,,(n) are essentially sums and products of terms v/,(1)~! and 1[17(Lk)(1), where k > 2.
Hence, b (n) has an expansion in n, with exponent set (3 o< ;< (1— %)NO) n[0,1— %)
and according to Proposition 4.10, the same holds for finite linear
vy _
combinations > 1 <., <pr(—1)" b (n)Pn(1)™. As ¢, (1) = O(n™ 1) for n — oo, one has,

for M sufficiently large and not depending on n,

S (=) b () (1)™ = O (n) |

m>M+1

1
Now, as wy, ~ 1, we conclude the theorem recalling that o, = (%) "1 wp. ]
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/

We next apply Theorem 4.19 to — 7 For the proof one may use Corollary 4.18
with k = 1.
Corollary 4.20. Let o, solve (4.18.2). Assume that f: N — Ny satisfies the conditions
1
of Theorem 4.5. Then o € /C(O%1 + 1) with agy = a® | = (wal'(a 4+ 1)¢(a + 1))&#1
f7
and we have

1 w1 1 R
i1 <3< N,}= — E -1 Ng|N|——, ———+1).
o511 <5< Noj (a—i—l = (a—i—l ) O) [a+1’a+1+ >

4.3.4 The major arcs
In this subsection we approximate, for some 1+ § <8 <1+ g,

I, := / exp(Ps(on + it) + int)dt,
lt|<on

n

where « is the largest positive pole of Ly. The following lemma can be shown us-
ing [17, §4].

Lemma 4.21. Let f : N — Ny satisfy the conditions of Theorem 4.5, o, solve (4.18.2),
and N € N. Then we have

1 2k) ok (on
In=V2rGylon) | —=—=—=+ ) %‘FON (in) ,
+(on) 2<k< BH (N +a) 2FE1R (0n) 2

where H := [3_#_%] +1 and

(B-1-%
H 1 h (p;mj)(g)
Aai(e) = (=1)F 37 o > 1=
h=1 sNta) j=1 Y

3<ma, . my <20
mi+---+mp=2k

The following lemma shows that the first term in Lemma 4.21 dominates the others;
its proof follows with Lemma 4.12, Corollary 4.18, and Corollary 4.20 by a straightforward
calculation.

Lemma 4.22. Let k > 2 and assume the conditions as in Lemma 4.21. Then we have

alen) _§n b (e (e %) )
1 ; 3
q>,;(é’n)k+2 =1 n'

where the n; run through

+ 2
a + alNo—l-(—

1
Z<“+ —1>N0 m[o,R+O‘>.
2a+1)  a+ a+1 a+1

nEPR

We next use Lemma 4.12 and Corollary 4.20 to give an asymptotic expansion for G ¢(op).
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Lemma 4.23. Assume that f : N — Ny satisfies the conditions of Theorem 4.5. Then,
we have

L(0) M
n a+1 1 1 o .
Gylon) = W oxp | = (wal (@ + 1)¢(a + 1)) 7T na+t + 3 " Cjn/
a a—+1 a ]:2
@/

’” (o3 2 confoe).

whereO§6M<-~-<62<aL+1 run through £ and 0 < §1 < dg < --- < N
through M + N

Proof. Let ¢(z) := ®5(2)+Ls(0)Log(z) and F' := ¢op. By Lemma 4.18, Proposition 4.19,
and Lemma 4.12 we find that

Np

ar __R_
®f(0n) + Lf(0)log(on) = L(0) + nfpjj +Og (7541, (4.23.1)
j=1

where vg; run through (the inclusion follows by Corollary 4.20)
N,
1 2 1 R
(_a 1R +jZ:2 (Ug’j a+ 1) No) <_oo’ a+1>

(ratimn B (S5 -1)m) 0 (m ) o

HEPR
Note that, again by Lemma 4.12 and Corollary 4.18, we obtain
v 1 1
a1 = 0510, = —(wal (o + 1)¢(a + 1)1

We split the sum in (4.23.1) into two parts: one with nonpositive vp1,...,vr ., say,
and the one with positive vp; < %. Note that M is bounded and independent of R.
Exponentiating (4.23.1) yields

Np M
—L+(0 ’ ag,j __R_ arj
exp(®f(on)) = on 7(0) L7 (0) exp ( Z nVF?j + Ogr (n a+1)) exp (Z nVF?j) .
J=M+1 J=1

Note that the positive vf ; run through (4.23.2) with —oo replaced by 0. By Lemma 4.11,
we have

eXP( % SF»J +OR<n a+l)):1+i1£g+01%(n_ail)
j=

j=M+1

for some K € N and with exponents ¢; running through N. Recall that, by Corol-
1 _ L@
lary 4.20, we have g, ~ a,1n” a+1. Now set h(n) :=n" ¥ g, L),
A straightforward calculation using Corollary 4.20 shows that h € K(ﬁ) with exponent
Ly (0)

set (— ZMGPR(% —1)Np) N0, g—i‘f‘) C Mandap; =a_ oic“ By Proposition 4.10 (2),
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we obtain, for some N € N, B; € C, and §; running through M + N,

(1+Z L4 0r(n a+1>)_ah1(1+z L4 On (n” +))

Setting Cj := ap; for 1 < j < M, the lemma follows. O
Another important step for the proof of our main theorem is the following lemma.

Lemma 4.24. Let f : N — Ny satisfy the conditions of Theorem 4.5. Then we have,
as n — oo,

M
el = exp ((waf‘(a + 1)¢(a+ 1))%+1n%+1 + Z awn”f) (1 + Z

j=2

)

for some 1 < M < N,, with ;55 > m2 > -+ > nu = 0 running through £ and the p;
through N .

Proof. Let g(n) := no,. By Corollary 4.20 we have g € IC(%) with exponent set

1 1 R
(£ )] s R,
a+1 a+1l a+1
€Pr

Hence, for some 1 < M < N,, we obtain

Ny
R AR I R

J=M+1

with —a%rl < yge < - <yyym <0< yypyp <0 < ygn,. By Lemma 4.18 we
1

4 1
obtain afg}’l = (wal'(a+ 1)¢(a+ 1))a+T.
Note that the exponents 0 < vy 41 < -+ < vy N, run through

1 R
<“+ —1)N0 m(o,).
= a+1 a+1
By Lemma 4.11, exp(3_,* M+1 —#L + Ogr(n~ a+1)) is in K(%), with exponent set

<M+1—1)N0 m(o,R1> .
P o+ o+

As a € Pg, this is a subset of A/, so the above exponents are given by A, proving the
lemma. O

Jj=1

K
ijej : K,bj € Np, 9]‘ S

The following corollary is very helpful to prove our main theorem.

Corollary 4.25. Let f: N — Ny satisfy the conditions of Theorem 4.5. Then we have

, Lz(0)
n eLf(O)n af‘H o M s R
" Gron) = — 1 &XP Aine+i —i—ZAjn J 1+Z—+OR (n a+1) ,
ot =2 j=1

a—cb},1
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with Ay defined in (4.6.4)
through M + N .

;T > az > - > apy > 0 running through L, and n;

o
) ot

4.4 Proof of Theorem 4.5

4.4.1 The general case

The following lemma follows by a straightforward calculation, using (4.16.1) and Lem-
mas 4.17, 4.21, and 4.22.

Lemma 4.26. Let f: N — Ny satisfy the conditions of Theorem 4.5. Then we have

enenG (o M a4 . (L4l Rta, a+2
py(n) = &2 Cylen) (Z nfij +OLr (n e s RS AP ICER Y ))

V2 =
1
for some M €N, di = 2= (waI'(a + 1)¢(a + 1)) 2@ | and the vj Tun through

vVa+1
o+ 2 @ w1 ) [ R—I—a)
— —1)Ng|n|o )
+ No+( > (4 ) =

20a+1) a+1

a+2

In particular, we have v1 = Nt D) -

We prove the following lemma.

Lemma 4.27. Assume that f satisfies the conditions of Theorem 4.5 and that Ly has
only one positive pole a. Then we have

1 _a
non + ®4(on) = (wal (o 1)¢(a+ 1) (14 1) n#5 — Ly(0)log(en) + L(0) +o(1).
Proof. By Lemma 4.18, we have

wal(@)¢(ar+1)

on

Dt(0,) = — L;(0)1og(0n) + L}(0) + O (950) . (4271

where

vEPRN(—R,0) (4.27.2)
R otherwise.

—maxv if PN (—R,0) #0,
Ry :=

To show the lemma, we need an expansion for g,. We have, by (4.18.2) and again by
Corollary 4.18,

- TN 1O o ()

By Corollary 4.20, we have an expansion for g, with an error o(1). We iteratively find
1

a+1

i 1
the first terms. By Corollary 4.20 we have g, ~ a®y, n ¥, as n — oo. We next
f?

! 1
a+
: : a7¢9’1 K. —K 1
determine the second order term in g, = I + % + o(n™"?) for some Ky < T
na+1
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and K9 € C. We choose ~ in

—a—1 -1

K L¢(0) _1_ K
a”% e a®t! a1 pfTaE
—@/,1 —/,1 —/,1

as small as possible. One finds that

CEL YRR 1) Jy

aaj;, afﬂ;}’l
and hence

1
aa+1
—2/,1 L(0) ( 1 )
f f
= + +ol—]). 4.27.3

Q?’L na+1 (O{ + 1)n n ( )

Plugging (4.27.3) into ®¢ leads, by (4.27.1), to
1 1
A%y Ly(0) 1 e L4(0)
o | —L L () Bl L0 o Ls(0)+o(1).
Al i el 2 “IE)  14(0)logon) + L) 0) +o(1)

As a result, using (4.27.3), we conclude the claim. O

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. Corollaries 4.20 and 4.25 with Lemmas 4.26 and 4.27 give the
asymptotic for ps(n). We use Lemma 4.23 to calculate the exponents and (4.6.4) as
well as (4.6.5) for the constants. Throughout we use Lemma 4.10 (2) to deal with the
expansions of products of functions. O

4.4.2 The case of two positive poles of Ly

If a > 0 is the only positive pole of Ly, then we can calculate the single term in the
exponential in the asymptotic of py(n) explicitly, by Theorem 4.5. In this subsection we
assume that Ly has exactly two positive simple poles, a and 3. In this case, Corollary 4.18

with k =1 gives
1

/
—P%(2) = 51

=R O (E

with Ry from (4.27.2). Above we set ¢j :=a —, s for 1 <7 <3,ie., by Lemma 4.18
a1 =wl'(a+1){(a+1), c2=wgl'(B+1)((B+1), c3=Ls(0). (4.27.4)
In the next lemma, we approximate the saddle point in this special situation.

Lemma 4.28. Let f satisfy the conditions of Theorem 4.5. Addz’tionally assume that Ly
has exactly two positive poles o and 3 that satisfy ”16 <a< 16 for some £ € N,

where we treat the case £ = 1 simply as 28 < «. Then there exists 0 <r<- 1 such that

0+1 K. e :

J e
= + +Opgr(n 4.28.1
0= 2 s T (et w (v (4.28.1)
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for some constants K; independent of n and c3 as in (4.27.4). In particular, we have

T c cAla—2
K1:Cf+17 K2:72i7 K3:2(—§B)+17
(a+ 1) 2o+ 1)2¢, 7
e (202 — 9aB — 2a + 982 + 3p)
K4 = 3842 )
6(cr +1)%¢,™"
K _ (60 — 4408 — 1507 + 9603° + 5603 + 6 — 645° — 4862 — 85)
5= ‘

45+3

24 (o + 1)de T

Proof. By Corollary 4.20, the exponents of p,, that are at most 1 are given by combina-

tions ) 511 .
i—1)(1— —— 1-— <1
a+1+(] )< a+1)+m< a+1>_ ’

with j € N and m € Ny. A straightforward calculation shows that ”715 <a< %ﬁ if
and only if

+(j—1)<1—6+1)§1

a+1 a+1

forall 1 < 5 < /41 but not for j > £+ 1. Together with the error term induced by
Corollary 4.20, (4.28.1) follows. Assuming ¢ > 5, K;—K5 and the term (04—7-731)71 can be
determined iteratively. O

0<

We are now ready to prove asymptotic formulas if L; has exactly two positive poles.

Theorem 4.29. Assume that f : N — Ny satisfies the conditions of Theorem 4.5 and
that Ly has exactly two positive poles o > (3, such that ”Tlﬁ <a< K_Llﬁ for some £ € N.
Then we have

/+1
C o B (h=1)B | k=2 o
pf(n) = —; exp <A1na+1 + Agnott + E Agn ot + o +2 k)
" k=3

My . wf2L—a _R

x (1 +j§ f—f +OLR (n‘mm{zmww}» L (> o),

with

Ay = (waf(a—i-l)g“(a—kl))a%l (1 + 1) ; Ag = NCSCRD) 7 (4.29.1)
2 (wal(a+ 1)¢(a+ 1))7+1

and for all k > 3

1 . .
cott L —a m Kgl o Kzl )
Ak = Kk + L . 7m+
)y ) )

m=1 m Ogjl’”.yjegm ]17]2)""]
J1Febig=m
J1+2j2+...+Hj=k—1

K ;. .
mx(a) LT Y B
5 " 0<d1,..,Je<m J1, 0245 Je

Ji+-.+je=m
j1+2j2+...+£jg=k72

Here, C and b are defined in (4.6.4) and (4.6.5), the v; run through M + N, the K; are
given in Lemma 4.28, and c1, c2, and c3 run through (4.27.4).
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Proof. Assume that g : N — C has an asymptotic expansion as n — oo and denote
by [g(n)]« the part with nonnegative exponents. With Lemmas 4.18 and 4.26 we obtain,
using that L has exactly two positive poles in o and 3,

. 2L—« R
n9n+cla+c25D 1+Z +OLR( m‘“{w’ﬂﬂ})

with the ¢; running through M. With the Binomial Theorem and Lemma 4.28, we find

C
pr(n) = EGXP <

1 1 m
c Ca+1 /+1 K.c T at1 c Cirﬂ e
o= st (13 () (8 oy o ()
agy « m>1 j=2 n(J_l)(l a+1) (a+1)na+1
(4.29.2)

By definition, [Ofgla]* is the part of the expansion of Of? involving nonnegative powers
of n, i.e., for m > 2 in the sum on the right of (4.29.2) we can ignore the term

C3

(a+1)c a}”na%l +0(”_“L+1)-

Applying the Multinomial Theorem to (4.29.2) gives

1 cf“ a3 cf“ £ (—a m K3 - K€+1
G d 5 (o K
C¥+1 m Ge<m y JO

Qop o R 0< 51 ,j2,-.. J15925 - - et
Jite+je=m
(G1+2dp+-4Ljp)B | jit+2jo+ +Ejp—1 el —
< n atl + atl (G1+2j24+Lje—1) +o(1). (4.29.3)

Similarly, we have

V4 1
2 _ B o - m K- Kﬁ_l
= ) | > o : -
0<1, gz, je<m N1 Iy w5 0t cf+
i
(11+212+'~<+2je+1)5+j1+2j2+~-+fjg
X n a+1 a+1

~UHZRtth) 4 o(1). (4.29.4)

Finally, we obtain, with Lemma 4.28,

¢
mp _ c3
[non)s = Kina+t + mzl Kpyneti tat ) + —7 (4.29.5)
Combining (4.29.3), (4.29.4), and (4.29.5), we find that
non + 071 + 672 (1 + 1) a+1na+1 4 025 noﬁl + ZAk+1nf¥kfl+ —(k— 1)
aga B B @ a+1
n On | 4« 5C1+ k=2

where

1 . .

a+1 l _ Kjl o K”

o m 2 i+1

Ay = Kj, + & Z ( ) 3 ( , . >m+
m=1 \"" 0<J1,J2;--,Je<m J1525 -5 00 c

Jit-tje=m
J1+2jo+-+Llje=k—1
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c2 ¢ - m K%i o KZil
+ B Z m Z jl j2 je e —
0<41,925--000<m 2 )25 e

Jit-+je=m
G142+l =k—2

Note that we have by definition of ¢1, ¢a (see (4.27.4)), K1, and Ky (see Lemma 4.28),

A= (1427 = (14 ) @lla+ Dgla+ )7,
N\ S CR)

2 = B B

5T (@al(a+ ¢(a+ )7

)

which gives (4.29.1). Hence we indeed obtain, as n — oo, for suitable M; € N

C _a_ B8 s, (k=1 | k=2 (.
pf(n) — 7exp (Alna+l +A2na+1 + ZAkn a1 +a+1 (k—2)

n
k=3
M . . —a

. <1 20, (nm{}>) |
— nYi
Jj=2
where the v; run, as in Theorem 4.5, through M + N. This proves the theorem. O

4.5 Proofs of Theorems 4.1, 4.3, and 4.4

We require the zeta function associated to a polynomial P,
Zp(s) = Z 1
U & Py

n>1

with P(n) > 0 for n € N. In particular, we consider P = Py, (see (4.0.4)). The following
lemma ensures that all the Py satisfy (P1) with L arbitrary large.

Lemma 4.30. Let k > 3 be an integer and let
A .= {Py,(n) :n e N}.
For every prime p, we have |AF\ (A 0 pN)| = oco.
We next show that (P2) and (P3) hold.
Proposition 4.31. Let k € N with k > 3.

(1) The function Zp, has a meromorphic continuation to C with at most simple poles

n % — Ny. The positive pole lies in s = %

(2) We have Zp,(s) < Qr(|Im(s)|) as | Im(s)| = oo for some polynomial Q.
Proof. (1) The meromorphic continuation of Zp, to C follows by [29, Theorem B].
By [29, Theorem A (ii)] the only possible poles (of order at most one) are located

at % — %NO. Holomorphicity in —Nj is a direct consequence of [29, Theorem C]. Fi-
nally, note that Py(n) < n?. Thus, as x — 0o,

1

1
1<n<z Py(n)2 1<n<z
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This proves the existence of a pole in s = %, completing the proof.

(2) This result follows directly by [29, Proposition 1 (iii)]. O

To apply Theorem 4.5, it remains to compute Zp, (0) and Zp, (0), as well as Res,_1 Zp, (s).
2

Proposition 4.32. Let k € N with k > 3.

(1) We have Zp,(0) = 57 and

_ e ()

Zp, (0) = 5t log <F (ki2>> — log(2m).
Zp,

k(s) = \/m'

Proof. (1) Since the roots of P are not in R>q, we may use [29, Theorem D] to obtain
that Zp, (0) = 1. For the derivative, one applies [29, Theorem E] yielding

20 = 2] 1 (1 (2,)) - tstom.

(2) We have Res,

=1
2

k—2

(2) Since Zp, (s) = (:%5)° > (n— %)7%75’ the result follows as the sum has residue 3
n>1

at s = 1 by equation (16) of [29]. O
The previous three lemmas are used to prove Theorem 4.1.

Proof of Theorem 4.1. We may apply Theorem 4.5 as Lemma 4.30 and Lemma 4.31 en-
sure that conditions (P1)—(P3) are satisfied. Hence, one obtains an asymptotic formula
for pr(n). The constants occurring in Theorem 4.5 are computed using (4.6.4), (4.6.5),
and Lemma 4.32. That the exponential consists only of the term Aln% follows by The-
orem 4.5, since Zp, (s) has exactly one positive pole, lying in s = % Note that we are
allowed to choose L and R arbitrarily large due to Lemma 4.30 and Lemma 4.31 (1). O

We consider some special cases of Theorem 4.1.

Corollary 4.33. For triangular numbers, squares, and pentagonal numbers, respectively,
we have

2%\/371'71 2 2%\/?;%%71 2 2
5
SN O e
n)~ g X T =
P st 20 0 \2

k(G +k)(G+2k)
6

The next lemma shows that []; ;~;(1 — ¢ )~! satisfies (P1) for L arbitrarily

large.
Lemma 4.34. Let f: N — Ny be defined by

jk(j + k:()j(j +2k) n}’ |

fo) i=|{ .0y e 2

Then, for all primes p, we have |A\ (AN pN)| = co.
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For investigating the function (s,(5), we need the Mordell-Tornheim zeta function,
defined by

(ur2(s1,82,83) == > m~*'n" % (m +n) "%,
m,n>1

By [27], for Re(s) > 1 and some —Re(s) < ¢ < 0 we get a relation between (v 2
and C50(5) via

63 c+ioco
C50(5)(8) = m /C_ioo I(s+ 2)I'(—2z)Cmr2(s, 8 — 2,25 + 2)dz.  (4.34.1)
We have the following theorem.

Theorem 4.35 ([26, Theorem 1]). The function (v,2 has a meromorphic continuation
to C3 and its singularities satisfy s +s3 = 1 — €, 50+ 53 = 1 —{,51 + 9 + $3 = 2,
with £ € Ny.

Fix M € Ny and 0 < ¢ < 1. Let Re(s1),Re(s3) > 1, Re(s2) > 0, and sy ¢ N. Then,
for Re(s2) < M + 1 — ¢, we have (see equation (5.3) in [26])

CmT,2(51, 52, 53)
D(sy + 83 — 1)I(1 — s0)
— —_ ]_
T(s9) C(s1+s2+s3—1)
M1

+ Z <_:Lg>§(51 + 83 +m)((s2 —m)
m=0

1 pMeetioo Psy +w)l(—w)
278 J M —e—ico I'(s3)

C(s1+ s3+w)((s2 —w)dw. (4.35.1)

The first two summands on the right-hand side of (4.35.1) extend meromorphically
to C3, so to show that (4.34.1) extends meromorphically, we consider (4.35.1). Note
that Re(w) = M — e. To avoid poles on the line of integration, we assume that

Re(ss + w) > 0 < Re(sz) > e — M, (4.35.2)
Re(s1 +s3+w) > 1< Re(s1) + Re(sg) >1— M +¢, (4.35.3)
Re(sy —w) <1< Re(s2) <1+ M —e. (4.35.4)

Note that the final condition is already assumed above.

By Propostition 2.6 (2), the integral converges compactly and the integrands are
locally holomorphic. Thus, the integral is a holomorphic function in the region defined
by (4.35.2), (4.35.3), and (4.35.4).

Recalling (4.34.1), we are interested in (ur2(s,s — 2,25 + z). By Theorem 4.35, this
function is meromorphic in C? and holomorphic outside the hyperplanes defined
by 3s+2z2=1—/,3s=1—/{, and 4s = 2, where ¢ € Ny. With (4.35.1), we obtain

I'Bs—1)I'(z+1—ys)
I'(2s + z)

C(4s—1)

Cvr2(s,s — 2,25+ 2) =

e ) PR
+ Z( m )C(3S+Z+m)C(s—z—m)—i—IM(s;z), (4.35.5)
m=0
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where s € C\ {3, 177@}, and

In(s;2) : 1 /MEHOO [@2s+z+ w)F(—w)C(?)S +z4+w)((s — 2z — w)dw.

27 M —e—ioo T(2s+ 2)

The following lemma shows that I/(s; z) is holomorphic in z. To state it let
p=ppme =max{—1+0c—-M+e,1-30c—-M+e,—20— M +c}.

Lemma 4.36. Let s = o+ it € C, M € Ny, and 0 < € < 1. Then z — Ip(s;2) is
holomorphic in S, .

Proof. If z € S, o, then Re(2s+ 2z +w) > 0, Re(3s+24+w) > 1, and Re(s —z —w) < 1
for w € C satisfying Re(w) = M —¢, so I'(2s+z+w), ((3s+z+w), and ((s—z—w) have
no poles on the path of integration. As 0 < e < 1, we have M — ¢ ¢ Ny, so w — I'(—w)
has no pole if Re(w) = M —e. As a result, no pole is located on the path of integration,
and by Proposition 4.13 (2) and the uniform polynomial growth of the zeta function
along vertical strips we find that the integral converges uniformly on compact subsets
of S} 00- O

The next lemma shows, that In; is bounded polynomially in certain vertical strips.
A proof is obtained using Propositions 4.13 (2) and 4.14 (2).

Lemma 4.37. Let 01 < 02 and 03 < 04, such that Syy5, C S, 00 for all s € Sy, 4,
and fix 0 < e < 1 sufficiently small. In Sy, 5o X Soy.04 the function (s,z) — Iy(s;2) is
holomorphic and satisfies |In(s;2)| < Py gg,04,04,m (| Im(s)], | Im(z)|) for some polyno-
mial Py, 590500, M(X,Y) € RIX,Y].

Next we investigate (yr2(s, s — z,2s + z) for fixed s more in detail.

Lemma 4.38. Let s € (C\{%, % — %No}. Then z — (v 2(s, s — 2,25+ z) is holomorphic

in the entire complex plane except for possibly simple poles in z =1 — £ — 3s with £ € Ny.

Proof. As holomorphicity is a local property, it suffices to consider arbitrary right half-
planes. By Lemma 4.36, for M sufficiently large, Is is holomorphic in an arbitrary right
half-plane. By (4.35.1), possible poles of (v 2(s, s — 2,25 + 2) therefore lie in z = s — £

and in z = —3s—m — £, £ € N. A direct calculation shows that the residue at z = s — ¢
vanishes if £ < M — 1. Consequently, for a fixed pole s — ¢, we can choose M sufficiently
large such that we only have to consider the of (4.35.1). This gives the claim. O

We are now ready to prove growth properties of (yr,2. As we need to avoid critical
singular points, we focus on incomplete half-planes of the type Sy, 5,5 (With 6 > 0
arbitrarily small).

Lemma 4.39. Let 01 < 09, 03 < o4 with 1 — 301 < o3 and § > 0 arbitrarily small.
For (s5,2) € So, 53,6 X Soy.04, we have, for some polynomial Py, 5, 55 045 0nly depending
on S, 505 and Soy 54,

|<MT,2(5a s—2z,25+ Z)| < P01702703,U4,5(‘ Im(8)|a |Im(z)|)
If o1 <0, for all s € U with U C Sy, 4,, a sufficiently small neighborhood of 0, we have

Cvr2(s, s — 2,25 + 2)
[(s)

é Pa'3,0'4,U(| Im(z)|),

where the polynomial Py, 5, v only depends on o3, o4, and U.
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We need another lemma dealing with the poles of the Mordell-Tornheim zeta function.

Lemma 4.40. Let k € Ng. Then the meromorphic function s — (ur2(s,s — k,2s + k)
is holomorphic for s = —{ with { € Ny and has possible simple poles at s = { € Ny
=2

with 0 < € < 5. In particular, s — T'(s + k)CQur,2(s, s — k, 25 + k)['(s)~* is holomorphic
at s = —f with £ € Ny.

Proof. Let s lie in a bounded neighborhood of —¢. We use (4.35.5) with s = k. Analogous
to the proof of Lemma 4.36, the function s — Ips(s; k) is holomorphic in a neighborhood
of s = —{¢. The analysis of the remaining terms is straightforward, and the lemma
follows. O

The next lemma states where the integral of (4.34.1) defining (5 is a meromorphic
function.

Lemma 4.41. Let € > 0 be sufficiently small and let K € N. Then the function

1 K—e+ioco
St — =~ s+ 2)I'(—= $,8 — 2,25 + 2)dz 4411
2mil(s) /K—e—z‘oo ( )T (—2) v 2( ) ( )

is meromorphic on the half plane {s € C : Re(s) > #} with at most simple poles
in {1,4 — INg}\ (—No) (with Re(s) > =5+ ) and grows polynomially on vertical strips
with finite width.

Proof. We first show holomorphicity in Sy, 4, 5 with FTKJFE <oy <ogand 0 <6 < 1.
Since Re(s) > 177?“ > —K + ¢, there are no poles of I'(s + z)I'(—z) on the path of
integration Re(z) = K —e. By Lemma 4.38, z — (ur2(S, 5 — 2,25 + z) has no poles
for s € Sy, 055, as Re(z +3s — 1) = K — e+ 3Re(s) — 1 > 0. By Proposition 4.13 (2),
Lemma 4.39, and Lemma 4.16, the integral is holomorphic away from singularities and
grows polynomially on vertical strips of finite width.

We are left to show that (4.41.1) has at most a simple pole at s = s,

where s € {3,1 — %NO} \ (—Np) with sg > PTK*E Recall the representation of (v 2

273
in (4.35.5). By Lemma 4.37

K—e+ioco
/ D(s+ 2)I'(—2)Ip(s;2)dz
K—e—ioco

converges absolutely and uniformly on any sufficiently small compact subset C' contain-
ing sg for M sufficiently large. Similarly, by Propositions 4.14 (2) and 4.13 (2),

K—e+ico M1/ 90
/ (s + 2)I'(—2) Z ( >C(3s+z—|—m)((s—z—m)dz
K—e—ioco m=0 m

converges absolutely and uniformly in C. In particular, both integrals continue holomor-

phically to sg. As s+ ﬁ is entire, it is sufficient to study

dz

I'(3s—1)¢(4s—1) /KEHOO T(s+2)0(—2)T(1+2z—s)
F(S) K—e—ioco F(QS + Z)

around sg. Again, by Proposition 4.13 (2), the integral converges absolutely and uni-
formly in C. As % has at most a simple pole in sy and a removable singularity
if s9 € —Ng, the proof of the lemma is complete. O

The following lemma is a refinement of Lemma 4.41 for the specific case that z € Z
and follows from Lemma 4.37, by using Propositions 4.13 and 4.14.



Chapter 4. Paper III: Asymptotic expansions for partitions generated by infinite

14
8 products

Lemma 4.42. Let k € Ny with 0 < k < K — 1. Then, for all 01 < 09, there exists a
polynomial Pk o, »,, such that, uniformly for all o1 < Re(s) < o2 and |Im(s)| > 1,

[Cura(s, s — K, 28 + k)| < Pre.oy 0, (| Im(s)])-

The following theorem shows that the function (s, (5) satisfies the conditions of The-
orem 4.5 and gives the more precise statement of Theorem 4.3.

Theorem 4.43. The function Cg(5) extends to a meromorphic function in C and is
holomorphic in Ng. For K € N and 0 <& <1, we have, on Si-kte ,
5,

6° '~ (—DT(s + k)

Coo(5)(8) = > Cur2(s,s — k,2s + k)
I(s) = k!
65 K—e+ico
+ il (s) /K_E_ioo I'(s+ 2)I'(—2)Cvr,2(s, s — 2,25 + z)dz. (4.43.1)
All poles of (so(5) are simple and contained in {%, %,—%,—%,...}. Furthermore, for

all o9 < o < o1 as |Im(s)| — oo, for some polynomial depending only on oy and o1,

[Cso(5) (8)] < Pog,o0 (| Tm(s)]).

Proof. Assume Re(s) > 1. By Lemma 4.38, the only poles of the integrand in (4.34.1)
in S_Re(s),00 lie at 2 € No. By shifting the path to the right of Re(z) = M — ¢, we
find, with Lemma 4.39 and the Residue Theorem, that (4.43.1) holds on Si . By
Lemma 4.41 the right-hand side is a meromorphic function on S 1Kre o By Theo-

rem 4.35, the functions s — (ur2(s,s — k,2s + k) only have possible (simple) poles
for s +s3 = 3s+k =1—¥ s9+583 =35 =1—4, s1+ 8+ 83 = 4s = 2,
with £ € Ny, ie., for s € {%,%,0,—%,—%,—1,...}. However, by Lemma 4.40 the
sum in (4.43.1) continues holomorphically to —Np, so the sum only contributes pos-
sible poles s € § := {%, %, —%, —%, —%, ... }. Note that this argument does not depend
on the choice of K. On the other hand, if we choose K sufficiently large, then the integral
in (4.43.1) is a holomorphic function around s = —m for fixed but arbitrary m € Ny,
and it only contributes poles in S in S@,oo by Lemma 4.41, where 0 < € < 1. So the
statement about the poles follows if K —>3 0.

We are left to show the polynomial bound. With Lemma 4.42 we obtain the bound for
the finite sum, as we chose K in terms of g and o;. Lemma 4.41 implies the polynomial

bound for the integral. O
To apply Theorem 4.5 we require (s (5)(0).

Proposition 4.44. We have (55 (0) = 3

Proof. Since Ip(s; z) is holomorphic in s for z € S, oo by Lemma 4.37 and I'(s) has a
pole in s = 0,

Dalsiz) (4.44.1)

Let K € N. For z € C with Re(z) = K — 3 and m € Ny, we have £(z +m) # 1.
Hence, s (72;172)((35 + 2+ m)((s — z—m) is holomorphic at s = 0. This implies that

for z € C with Re(z) = K — 4, we have

=0.

s—0

lim (28 - z) (Bs+z+m){(s—z—m)
m I'(s)
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Using this, (4.43.1) with ¢ = 3, (4.44.1), Proposition 4.13 (4), and Lebesgue’s dominated
convergence theorem, we obtain, for integers K > 3,

65 K—§+zoo 7 K—%—i—ioo 1
lim ———— r I'(— 2 dz dz.
550 2mil'(s) ~/K—§—ioo (s +2)T(=2)Cura(s, s = 2,25+ 2) -7 K—1—ico sin(7z) N
Since sin(m(z + 1)) = —sin(7z) and
K+i-iL 1 K—L14iL 1
lim : ———dz = lim ’ ——dz =0,
L—oo Jg—L1iL sin(7z) L—oo J k41 4iL sin(7z)
the Residue Theorem implies that
Kf%Jrioo 1 . (—I)K
ll—m 2mr(s) P (s +2)['(—2)¢uT,2(5,5 — 2,25 + 2)dz = =5 Res,—k e =7
2
(4.44.2)

In the following we use that ((s) does not have a pole in s = £m for m € N>q, implying
that s — (72°71)¢(3s + m)(( — m) is holomorphic at s = 0.

Moreover s — D(s + k)(7% - “M((3s + k 4+ m)((s — k — m) is holomorphic at s = 0
for (k,m) € (N x No)\{(1,0)}. Thus, using Propositions 4.13 (3) and 4.14 (3) and the
fact that ((—1) = —75 and!® ((0) = —3, we obtain, with (4.35.5),

6° "~ (—DT(s + k)

li_% I(s) Z k! Cvr2(s, s — k,2s+ k)
k=0 :
_3 (_1)K+1 - In(s; k)
=gt 5 T lm u(s;0) 2:: g% T(s) (4.44.3)

Since, by Lemma 4.37, s — Ip/(s; k) is holomorphic at s = 0 for every k € Ny and ﬁ
vanishes in s = 0, we have

Applying the Lebesgue dominated convergence theorem gives lin%] Iy (s;0) = 0, yielding
5—
the claim with (4.43.1), (4.44.2), and (4.44.3). O

Furthermore, we need certain residues of (g, (5)-

Proposition 4.45. The poles of (5(5) are precisely {$1u {g ¢7:d<1 odd}. We have

Var (1)°
Res,_1 Co(5)() = 8\;;)~

Moreover for d € Z<1 \ (—3Ny),

I () () 0
=4 Go)() 2811 — ) (4)°1 (4) <3) (1+257). (4.45.1)

'%In the published version, ¢(0) = % was written; the sign was corrected here. Note that the (corrected)

sign does not affect the calculation since ¢(0) occurs squared only.
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In particular, we have

1
25 +1 (1
Resszé Cso(f))(s) = 7 (3> ’
3

Proof. With Lemma 4.41, near s = %, we can choose K = 1 in (4.43.1) and obtain

6° 3+ioo
x | 6°Cura(s, s, 25) + 2l (5) /éioo I(s+ 2)I'(—z)Cur2(s,s — 2,25 + z)dz | .

Now, we have

V3

1
li ——)6° ,5,25) = ——.
11m (S 2) CMT,Q(S S S) 2\/5

1
53

On the other hand, we find

1\  6° ot
lim (s — 2) it () /; [(s+ 2)I'(=2)Cur2(s, s — 2,25 + 2)dz

5—)% —100
L 1\ 6°T'(3s — 1)C(4s — 1) [a+ie
= 1in (s - 2) i) / (s TN+ 1 s)dz (1452)
2 2

Since $ F(s+z)F(*ZIZ%LE:)Ss+z)C(sfz) and s F(S+Z)FF((;')Z)II(S;Z) are holomorphic if Re(z) = %

Shifting the path to the left and using [21, 9.113], Proposition 4.13 (1), 15.4.26 of [31],
and Proposition 4.13 (4) we obtain that (4.45.2) equals

2
L S S, B VAL (3) v
2v22 T\2727 7 2v/2 8T 2v2
This proves the first part of the proposition.

Now, let d € Z<; \ (—3Np) and choose 0 < € < %, and also K, M > 1 —d. We have,
by (4.43.1),

~/~
»
|
wle.
—
D

s K—1 k
N (—1)*T(s + k)
Res,_g Coo(5)(5) = Shjng I(s) f &

3

CMT,Q(Sa s — ka 2s + k)

<s — %) 6° K—etico
im ~———— — — . A45.
+ Slgn ST (5) /K_s_ioo I'(s+ 2)['(—z)Cur2(s, s — 2,25 + 2)dz. (4.45.3)

1S9

3

Note that lirr}l (s — %)I M (s;k) = 0 because of holomorphicity of Ip; by Lemma 4.37 and

5=

lim (8 — ;l) C(?)S +k+ m) = 1(STrL:1,(1,]€.

s—4 3
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Thus we obtain, by (4.35.5) and (15.4.26) of [31],

(s- %)6” LMDk + 5)
I'(s)

11_1)1’1 S il CMT,Z(Sy S — k, k+ 28)
§73 k=0
6 (4 1) (K ()M (k1 - )T (k9
“si—ar(d) \ X o (i + %)

G4 (4 1) (1 (MR (k1 - )T (k4 )
P —Y (M BT (k -+ 24)

+T(1- )R (g,d_1;2g;_1))
6%( (%d — 1) K-1 (_1)I~c+d+1r (k:+1 . %1) F(k+ %>
31-d)r (4) iz N
3¢ (4 -1)r(1-2)r(
25(1 — d)IT (g)zr(g

_|_

For the integral in (4.45.3), we obtain that

(- f)or puenn
i S e Tl D) rman s — 5 204 2
ot 2mil(s) Jroemioe (s + 2)T(=2)¢ur.( )

- (—1)d+16%<(4§d —1) 1 K76+iool—‘(z—|—%)l—‘(2+l—%l) I'(—=z)
3 -ar(4) 2w /me%@ Pzt )

dz. (4.45.5)

By shifting the path of integration to the left such that all poles
of F(% +2)I'(1— % + 2z)I'(—%) except the ones in Ny lie left to the path of integration, we
obtain with formula (9.113) of [21]

1 /K—s+z‘oo r (z — g)

27

K—e—ic0

)
K-1 (—1)k+1T (k: + %) r (k +1-— g)
' ,;O BT (k+ %)
r(1-9)T(d) Ko (k)T (k1)
I O =" BT (k -+ 24) ’

where the final equality is due to (15.4.26) of [31]. Equation (4.45.1) follows by this
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calculation together with (4.45.3), (4.45.4), (4.45.5), and Proposition 4.13 (4). Finally
note that (4.45.1) vanishes for even d < 1. O

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Note that by Lemma 4.34 and Theorem 4.43 all conditions of
Theorem 4.5 are satisfied (with L and R ¢ %N arbitrary large). As (5(5) has, by Propo-
sition 4.45, exactly two positive poles o := % > % =: 3, Theorem 4.29 applies with £ = 3,
and we obtain

T's0(5) (n)

C 1 2 1 B N1
:Eexp(A1n3+A2n9+A3n9+A4) 1—1—2 g—i—ON(n 9) , (n — o00).

j:2n9

So we are left to calculate c, b, A1, A2, Az, and A4. By Proposition 4.44, (55 (0) = %

and by Proposition 4.45, Res__1 (;o(5)(8), w1 = VBI(3)” and w1 = 2%“4(1) Hence
y p . ? 5:% 50(5) ) % - Sﬁ é — 3/ 5

2
33
by (4.27.4), we get

RCAOKI O A (e (2)e(d).

16

Moreover, by Lemma 4.28, we have

2c9 c
K2 - T2 K3 = - 2& .
3¢y 27c)’

Now, we compute Ay, C, and b by (4.6.4) and Ay, A3, A4 by Theorem 4.29 and obtain

L () O R OR1 O

b=5  C= 2§3;ﬁ 2 A= 42§ 2 (4.45.6)

28 (28 1)1 (5) ¢ (3) < (5) MCEDRIORIORION

Ay = - 1 2 ) Az =— " 20 10 )

() (1) SONION
ECE ' (;,4)3 ¢ (;,2)34 (4)° .
()<

This proves the theorem. O

4.6 Open problems
We are led by our work to the following questions:
(i) Is there a simple expression for (] lJ(5)(0)?

(ii) Can one weaken the hypothesis that f(n) > 0 for all n in Theorem 4.5?7 An important
application would be that the r(n) are eventually positive. There are many special
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(iii)

(v)

(vi)

cases in the literature (see [12, 13, 14, 15, 16]), but to the best of our knowledge no
general asymptotic formula has been proved.!!

In [20], Erdds proved by elementary means that if S C N has natural density d and 1g

is the indicator function of S, then log(pi4(n)) ~ = QdT”. Referring to Theorem 4.5,

can one prove by elementary means that for any £ > 0

M
log (r(n)) = Ainatt + > A;n® 4+ O(n)?
=2

Can one “twist” the products in Theorem 4.5 by w € C and prove asymptotic
formulas for the (complex) coefficients of

1

—"7
ns1 (1 — qu)f(n)
If f(n) =nor f(n) = 1, then such asymptotics were shown to determine zero attrac-
tors of polynomials (see [3, 4]) and equidistribution of partition statistics see [5, 6]),
and the general case of |w| # 1 was treated by Parry [32]. Nevertheless, all of these
results require that L(s) has only a single simple pole with positive real part.

In Theorem 4.5, can one write down explicit or recursive expressions for the con-
stants A; in the exponent, say in the case that L (s) has three positive poles?

Can one prove limit shapes for the partitions generated by (4.4.1) in the sense
of [18, 37]7
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Abstract

In this dissertation we investigate objects from number theory, g-analogues of Multiple
Zeta Values, with respect to their algebraic structure.

Multiple Zeta Values are real numbers that appear in various areas of mathematics
and theoretical physics. Apart from this, the simple zeta values, i.e. the values of the
Riemann zeta function ¢ at integer digits greater than or equal to 2, are also widely used.
Little is known about the algebraic properties of the latter values. For example, only one
such value of the form ((2n + 1) for n € Z is known to be irrational - namely for (3)
(for ¢(2n) more is known). If you are now interested in the algebraic structure of these
single zeta values, it is in a way natural to consider the so-called Multiple Zeta Values
as a generalization, since the product of two Multiple Zeta Values is in turn an integer
linear combination of Multiple Zeta Values. For the investigation of their (algebraic)
structure, for example, it is natural to study Q-linear relations between Multiple Zeta
Values due to various known representations of the product as a linear combination of
Multiple Zeta Values.

An g-analogue of a Multiple Zeta Value is an g-series, which (after possible modification)
results in a Multiple Zeta Value in the limit ¢ — 1. Just like the Multiple Zeta Values,
their g-analogues also fulfill many linear relations in analogy to the Multiple Zeta Values.
It is often practical to consider the algebraic structure of Multiple Zeta Values in order
to avoid unwanted effects of real numbers. This paper is devoted to the structure of
these g-analogues. We present different approaches for this purpose: An algebraic, a
combinatorial and an analytic one.

The algebraic approach investigates the Q-algebra of g-analogues, Z,, using well-known
methods such as duality and the stuffle product representation of the product of ¢-
analogues. Here, a special class of linear relations is systematically exploited to obtain
new results, in particular with regard to a conjecture from Bachmann’s dissertation. For
this purpose, so-called formal multiple g-zeta values, as introduced in Burmester’s dis-
sertation, are used, which algebraically abstract the considered ¢g-analogues with respect
to the considered class of relations. Bachmann’s conjecture states that the algebra of
formal multiple g-zeta values Z({ corresponds to the subalgebra Zg °, where Z({ *© initially
appears much ’smaller’ than Z, due to its definition. We will further refine this conjec-
ture and give a more precise approach than previously known to a (hopefully) general
proof of the conjecture, which still remains open.

The combinatorial approach, on the other hand, leads via so-called marked partitions,
which are partitions in whose Young diagram rows and columns are marked in a certain
way. All g-analogues of Multiple Zeta Values are the generating series of special marked
partitions, as is already known from my master thesis. Having clarified in the latter how
duality can be described by labeled partitions, we now give an explicit description of
the stuffle product at the level of labeled partitions. This is innovative as it allows us
to derive a deeper understanding of the stuffle product. Moreover, any linear relation
between Multiple g-Zeta Values can now presumably be described by labeled partitions,
since duality and stuffle product presumably imply all such linear relations. A seminal
question is how labeled partitions can be used to prove algebraic conjectures about
Multiple (g-)Zeta Values.

Finally, the analytical approach deals with the asymptotic behavior of g-analogues. There
are two different asymptotic behaviors to investigate: By setting ¢ = e=* (t > 0) and
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looking at the asymptotic evolution of the g-analogue for ¢ — 0. Or by examining the
asymptotic behavior of the coefficients of ¢ of the corresponding g-series for n — oo.
Both turn out to be difficult, so that both approaches in this work provide the asymptotic
evolution only of special g-analogues and leave the evolution for general g-analogues of
Multiple Zeta Values open as a further subject of research. However, the chosen approach
via the asymptotic development of the Fourier coefficients by means of Wright’s circle
method provides the asymptotic development of many other g-series relevant in number
theory and beyond.

Each of the three approaches to the algebraic structure of g-analogues of Multiple Zeta
Values raises new questions and at the same time shows ways to continue.
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Zusammenfassung

In dieser Dissertation untersuchen wir Objekte aus der Zahlentheorie, ¢-Analoga Multi-
pler Zetawerte, hinsichtlich ihrer algebraischen Struktur.

Multiple Zetawerte sind reelle Zahlen, welche in verschiedenen Gebieten der Mathematik
und der theoretischen Physik auftauchen. Davon abgesehen finden die einfachen Zeta-
werte, also die Werte der Riemann’schen Zeta-Funktion ¢ an ganzzahligen Stellen grofler
oder gleich 2, ebenfalls breite Anwendung. Von dem letztgenannten Werten ist wenig
iiber ihre algebraischen Eigenschaften bekannt. Zum Beispiel weifl man lediglich von
genau einem solchen Wert der Form {(2n + 1) fiir n € Z~(, dass er irrational ist - ndm-
lich fir ¢(3) (fir {(2n) ist mehr bekannt). Interessiert man sich nun fir die algebraische
Struktur dieser einfachen Zetawerte, ist es in gewisser Weise natiirlich, als Verallge-
meinerung die sogenannten Multiplen Zetawerte zu betrachten, da das Produkt zweier
Multipler Zetawerte wiederum eine ganzzahlige Linearkombination Multipler Zetawerte
ist. Fiir die Untersuchung derer (algebraischer) Struktur ist es zum Beispiel aufgrund
verschiedener bekannter Darstellungen des Produkts als Linearkombination Multipler
Zetawerte wiederum natiirlich, Q-Linearrelationen zwischen Multiplen Zetawerten zu
studieren.

Ein ¢-Analogon eines Multiplen Zetawerts ist eine ¢-Reihe, welche (nach eventueller
Modifikation) im Grenzwert ¢ — 1 einen Multiplen Zetawert ergibt. Ebenso wie die
Multiplen Zetawerte erfiillen auch deren ¢-Analoga viele Linearrelationen in Analogie zu
den Multiplen Zetawerten. Oftmals ist es praktisch, fiir die Untersuchung der algebrais-
chen Struktur Multipler Zetawerte deren ¢-Analoga zu betrachten, um nicht gewollte
Effekte reeller Zahlen zu umgehen. Diese Arbeit widmet sich nun der Struktur dieser
g-Analoga. Wir stellen hierfiir unterschiedliche Zugangsmoglichkeiten vor: Einen alge-
braischen, einen kombinatorischen und einen analytischen.

Der algebraische Zugang untersucht die Q-Algebra der g-Analoga, Z;, mit altbekan-
nten Mitteln wie der Dualitdt und der stuffle-Produkt-Darstellung des Produkts von ¢-
Analoga. Hierbei werden eine spezielle Klasse von Linearrelationen systematisch aus-
genutzt, um neue Resultate, insbesondere hinsichtlich einer Vermutung aus Bachmanns
Dissertation, zu erlangen. Hierfiir werden sogenannte formale Multiple g-Zetawerte, wie
in Burmesters Dissertation eingefiihrt, verwendet, welche die betrachteten g-Analoga
hinsichtlich der betrachteten Klasse von Relationen algebraisch abstrahiert. Die genann-
te Vermutung von Bachmann sagt aus, dass die Algebra der formalen Multiplen g¢-
Zetawerte Zg mit der Unteralgebra Z,{ '° {ibereinstimmt, wobei Z{ *° durch ihre Definition
zunachst wesentlich ’kleiner’ als Z, erscheint. Wir werden diese Vermutung weiter ver-
feinern und geben einen préziseren Ansatz als bislang bekannt zu einem (hoffentlich)
allgemeinen Beweis der Vermutung, welcher nach wie vor offen bleibt.

Der kombinatorische Zugang hingegen fithrt iiber sogenannte markierte Partitionen,
welche Partitionen sind, in deren Young-Diagramm Zeilen und Spalten auf gewisse Weise
markiert sind. Samtliche ¢g-Analoga Multipler Zetawerte sind die Erzeugendenreihe von
speziellen markierten Partitionen, wie aus meiner Masterarbeit bereits bekannt ist. Nach-
dem in letzterer geklart wurde, wie Dualitdt durch markierte Partitionen beschrieben
werden kann, geben wir nun eine explizite Beschreibung des stuffle-Produkts auf dem
Level der markierten Partitionen. Dies ist innovativ, da sich hieraus ein tieferes Ver-
stdndnis des stuffle-Produkts ableiten ldsst. Zudem kann nun vermutungsweise jede Lin-
earrelation zwischen Multiplen g-Zetawerten durch markierte Partitionen beschrieben
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werden, da Dualitdt und stuffle-Produkt vermutungsweise alle solche Linearrelationen
implizieren. Eine zukunftsweisende Frage ist, wie sich markierte Partitionen zum Beweis
algebraischer Vermutungen tiber Multiple (¢-)Zetawerte einsetzen lassen.

Der analytische Zugang zuletzt beschéftigt sich mit dem asymptotischen Verhalten von g-
Analoga. Hierbei gibt es zwei unterschiedliche asymptotische Verhalten zu untersuchen:
Indem man ¢ = e~* (¢ > 0) setzt und die asymptotische Entwicklung des g-Analogons
fir ¢ — 0 betrachtet. Oder indem man das asymptotische Verhalten der Koeffizien-
ten von ¢" der entsprechenden ¢-Reihe fiir n — oo untersucht. Beides stellt sich als
schwierig heraus, sodass beide Ansétze in dieser Arbeit die asymptotische Entwicklung
nur von speziellen ¢-Analoga liefern und die Entwicklung fiir allgemeine g-Analoga von
Multiplen Zetawerten als weiteren Forschungsgegenstand offen ldsst. Jedoch gibt der
gewahlte Ansatz iiber die asymptotische Entwicklung der Fourierkoeffizienten mittels
der Kreismethode nach Wright die asymptotische Entwicklung sehr vieler weiterer, in
der Zahlentheorie und dariiber hinaus, relevanter g-Reihen.

Durch jede der drei Herangehensweise an die algebraische Struktur von g-Analoga Mul-
tipler Zetawerte werden neue Fragestellungen aufgeworfen und zugleich Wege zur Fort-
setzung aufgezeigt.
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Publications related to this dissertation

i) Section 1.3 is based on a revised version of

[15] Benjamin Brindle. “Combinatorial interpretation of the Schlesinger-Zudi-
lin stuffle product”. Preprint, arXiv:2409.16966 (2024).

The revised version of this preprint builds Chapter 3.

ii) Section 1.4 is based on

[12] Walter Bridges et al. “Asymptotic expansions for partitions generated
by infinite products”. In: Math. Ann. 390.2 (2024), pp. 2593-2632.

The paper builds Chapter 4.
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Section 1.4.1 is to motivate the results of Section 1.4.3 and Chapter 4. All results
in Chapter 1 besides those from Section 1.4.1 are due to the candidate with no
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obtained in a discussion with A. Burmester; both A. Burmester and the candidate
contributed equally to Lemma 2.64. The entire work [16] is reproduced in this
dissertation with permission of A. Burmester for Lemma 2.64. Some parts of the
text are taken verbatim from that work for Section 1.2. The work [16] is intended
to submit to a journal.

Chapter 3 (revised version of [15]): Chapter 3 corresponds to a revised version of
the preprint [15]. The candidate wrote it, and all results are due to the candidate.
The motivation for the project has its origin in a question by H. Bachmann who
asked whether the quasi-shuffle product similar to the stuffle product, that so-called
balanced Multiple q-Zeta Values (introduced in [21, 23]) satisfy, can be described
using marked partitions. Some parts of the text are taken verbatim from that
preprint for Section 1.3.

Chapter 4 ([12]): Chapter 4 corresponds to the paper [12], co-authored by W.
Bridges, K. Bringmann, and J. Franke. The four authors contributed equally to
the work. The entire paper [12] is reproduced in this dissertation with permission
of all authors. Some parts of the text are taken verbatim from that paper for
Section 1.4.3.
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