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A B S T R A C T

Atmospheric fronts are a widely used conceptual model in meteorology, most
encountered as two-dimensional (2-D) front lines on surface analysis charts. The
three-dimensional (3-D) dynamical structure of fronts has been studied in the
literature by means of “standard” 2-D maps and cross-sections and is commonly
sketched in 3-D illustrations of idealised weather systems in atmospheric science
textbooks. However, only recently has the feasibility of the objective detection
and visual analysis of 3-D frontal structures and their dynamics within numerical
weather prediction (NWP) data been proposed, and such approaches are not yet
widely known in the atmospheric science community. In this thesis, I investigate
the benefit of objective 3-D front detection for case studies of extra-tropical
cyclones and for comparison of frontal structures between different NWP models.
I build on a recent gradient-based detection approach, combined with modern 3-D
interactive visual analysis techniques, and adapt it to handle data from state-of-
the-art NWP models including those run at convection-permitting kilometre-scale
resolution. The parameters of the detection method (including data smoothing
and threshold parameters) are evaluated to yield physically meaningful structures.
I illustrate the benefit of the method by presenting two case studies of frontal
dynamics within mid-latitude cyclones. Examples include joint interactive visual
analysis of 3-D fronts and Warm Conveyor Belt (WCB) trajectories, as well as
identification of the 3-D frontal structures characterising the different stages of a
Shapiro–Keyser cyclogenesis event. The 3-D frontal structures show agreement
with 2-D fronts from surface analysis charts and augment the surface charts by
providing additional pertinent information in the vertical dimension. A second
application illustrates the relation between convection and 3-D cold-front structure
by comparing data from simulations with parametrised and explicit convection.
Investigation into “secondary fronts” that are commonly shown in UK Met Office
surface analysis charts shows that for this event the secondary front is not a
temperature-dominated but a humidity-dominated feature.

Building on this 3-D front detection approach, I extend the detection of indi-
vidual 3-D fronts towards front-feature-based time series analysis and ensemble
clustering. Ensemble simulations have become a standard in NWP. However,
ensemble simulations generate large amounts of data and their analysis remains
a challenge. In this thesis, I develop a manual and automated front-tracking
algorithm based on geometric and physical characteristics to derive time series
of frontal attributes from a selected cyclone system. These frontal attributes
characterise the 3-D front by one-dimensional (1-D) physical properties, such as
the average slope of the 3-D frontal structure. By tracking a selected front over
successive time steps, time series of frontal attributes are derived to provide a
compact view of the development of frontal attributes. To order and cluster en-
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semble simulations according to frontal attributes, a selected front automatically
tracked across all ensemble members and front attribute time series are derived
for each member. These feature time series are then ordered and clustered using
time series distance measures in combination with k-means clustering, resulting
in distinct clusters that represent different patterns of frontal evolution across
ensemble members.

Integrated into the 3-D interactive visual analysis framework Met.3D, my
approach allows a comprehensive analysis of the spatio-temporal evolution of
3-D atmospheric fronts and thus contributes to the challenge of rapid analysis of
large ensemble weather forecasts, as well as having great potential for operational
weather forecasting.
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Z U S A M M E N FA S S U N G

Atmosphärische Fronten sind ein weit verbreitetes konzeptionelles Modell in der
Meteorologie, das meist als zweidimensionale (2-D) Frontlinien auf Bodenana-
lysekarten dargestellt wird. Die dynamische, dreidimensionale (3-D) Struktur
von Fronten wurde in der Literatur mit Hilfe von „standard“ 2-D Karten und
Querschnitten erforscht und wird in der Meteorologie häufig in 3-D Illustrationen
idealisierter Wettersysteme in Lehrbüchern dargestellt. Kürzlich wurde jedoch
die Möglichkeit der objektiven Detektion und visuellen Analyse von 3-D Front-
strukturen und ihrer Dynamik in numerischen Wettervorhersagedaten (NWP)
vorgeschlagen, allerdings sind solche Ansätze in der Meteorologie noch nicht
weit verbreitet. In dieser Arbeit untersuche ich den Nutzen der objektiven 3-D
Fronterkennung für Fallstudien extratropischer Zyklonen und für den Vergleich
von Frontstrukturen zwischen verschiedenen NWP-Modellen. Ich baue auf einem
kürzlich entwickelten gradientenbasierten Detektionsansatz auf, der mit moder-
nen interaktiven 3-D Visualisierungstechniken kombiniert wird, und passe ihn an,
um Daten von hochmodernen NWP-Modellen zu verarbeiten, einschließlich derer,
die mit einer Konvektionsauflösung im Kilometerbereich arbeiten. Die Parameter
der Detektionsmethode (einschließlich Datenglättung und Schwellwertparame-
ter) werden evaluiert, um physikalisch sinnvolle Strukturen zu erhalten. Zwei
Fallstudien zur Frontdynamik von Zyklonen in mittleren Breiten illustrieren
die Vorteile dieser Methode. Beispiele hierfür sind die gemeinsame interaktive
visuelle Analyse von 3-D Fronten und Trajektorien warmer Transportbänder
sowie die Identifizierung von 3-D Frontstrukturen, die die verschiedenen Phasen
eines Shapiro-Keyser-Zyklogeneseereignisses charakterisieren. Dabei entsprechen
die 3-D Frontstrukturen den 2-D Fronten aus den Bodenanalysekarten und er-
gänzen die Bodenanalysekarten durch zusätzliche relevante Informationen in
der vertikalen Dimension. Eine zweite Anwendung illustriert die Beziehung
zwischen Konvektion und der 3-D Kaltfrontstruktur durch den Vergleich von
Daten aus Simulationen mit parametrisierter und expliziter Konvektion. Die Un-
tersuchung von „Sekundärfronten“, die üblicherweise in den Bodenanalysekarten
des britischen Wetterdienstes (UK Met Office) dargestellt werden, zeigt, dass die
Sekundärfront bei diesem Ereignis nicht von der Temperatur, sondern von der
Feuchte dominiert wird.

Aufbauend auf diesem Ansatz zur 3-D Fronterkennung erweitere ich die
Detektion einzelner 3-D Fronten in Richtung einer merkmalsbasierten Fron-
tenzeitreihenanalyse und Ensemblegruppierung. Ensemble-Simulationen sind
mittlerweile Standard in der NWP. Allerdings erzeugen Ensemble-Simulationen
große Datenmengen, deren Analyse nach wie vor eine Herausforderung darstellt.
In dieser Arbeit entwickle ich einen manuellen und automatischen Frontverfol-
gungsalgorithmus, basierend auf geometrischen und physikalischen Eigenschaf-
ten, um Zeitreihen von Frontmerkmalen aus einem ausgewählten Zyklonsystem

vii



zu extrahieren. Diese Frontmerkmale charakterisieren die 3-D Front durch 1-D
physikalische Eigenschaften, wie z. B. die mittlere Neigung der 3-D Frontstruktur.
Um Ensemble-Simulationen nach Frontattributen zu ordnen und zu gruppieren,
verfolge ich dieselbe Front durch alle Ensemble-Mitglieder und extrahiere Merk-
malszeitreihen für jedes Mitglied. Diese Merkmalszeitreihen werden dann mit
Hilfe von Zeitreihenabstandsmessungen in Verbindung mit k-Means-Clustering
geordnet und gruppiert, wodurch verschiedene Gruppen entstehen, die unter-
schiedliche Muster der Frontenentwicklung über die Ensemblemitglieder reprä-
sentieren.

Integriert in das 3-D interaktive Visualisierungs-Framework Met.3D ermöglicht
mein Ansatz eine umfassende Analyse der räumlich-zeitlichen Entwicklung von
3-D atmosphärischen Fronten und trägt somit zur schnellen Analyse großer
Ensemble-Wettervorhersagen bei.

viii



C O N T E N T S

1 introduction 1
1.1 Motivation 2
1.2 Objectives and research questions 4
1.3 Outline 6

2 visualisation and computer science background 7
2.1 Visualisation in weather forecasting and atmospheric science 9
2.2 Met.3D - Interactive 3-D visualisation of meteorological simula-

tions 11
2.2.1 Data processing pipeline 12
2.2.2 Graphics pipeline 14

2.3 Visualisation techniques for time series analysis 15
2.3.1 Violin plot 16
2.3.2 Horizon graph 17

2.4 Foundations of Algorithms 18
2.4.1 Data Representations 18
2.4.2 Triangular Meshes 20
2.4.3 Clustering techniques 24
2.4.4 Distance measures 26
2.4.5 The concept of normal curves 29

3 meteorological background 31
3.1 Atmospheric structure and Motion 31
3.2 Numerical weather prediction and ensemble simulations 35
3.3 Extratropical cyclones and atmospheric fronts 36
3.4 Front detection and feature tracking methods 41

4 data basis of case studies 47
4.1 Vladiana 48
4.2 Friederike 49
4.3 Otto 51

5 three-dimensional front analysis of mid-latitude weather
systems 53
5.1 Method and implementation 54

5.1.1 Conceptual and mathematical basis 54
5.1.2 Filtering 55
5.1.3 Supported data and methodological details 57

5.2 Thermal quantity, smoothing length scale, and filter parame-
ters 63
5.2.1 Choice of thermal quantity 63
5.2.2 Recommendations for filter thresholds and sensitivity of

fronts to different smoothing length scales 64
5.2.3 Impact on reduced vertical resolution 67

ix



x acronyms

5.3 Case studies 69
5.3.1 Meteorological theory 69
5.3.2 The 3-D examination of conceptual model: fronts and warm

conveyor belt 70
5.3.3 Cold-front structure in the vicinity of convection 72
5.3.4 The 3-D examination of conceptual model: Shapiro–Keyser

cyclone 74
5.3.5 Secondary fronts 78

6 feature-based ensemble analysis and clustering 81
6.1 Methodology: Feature tracking and feature time series analy-

sis 82
6.1.1 Manual front tracking 82
6.1.2 Characterising 3-D fronts by frontal attributes 85
6.1.3 Automated front tracking 88
6.1.4 Architecture and implementation details in Met.3D 89
6.1.5 Example of front-tracking workflow 90
6.1.6 Postprocessing of frontal attribute time series 91

6.2 Case Study: Frontal attribute distributions and tracking 93
6.2.1 Distribution of frontals attributes 93
6.2.2 Time Resolution 94
6.2.3 Vertical Resolution 97
6.2.4 Ensemble Tracking 99

6.3 Case study: Feature-based time series similarities and cluster-
ing 99
6.3.1 Feature-based time series similarities 102
6.3.2 Feature-based time series clustering 104

7 summary and conclusion 113
7.1 Conclusions and answers to research questions 114
7.2 Outlook 118

8 publication, availability of code , data and additional
materials 121

list of figures 123
list of tables 134
bibliography 135
versicherung an eides statt 153



A C R O N Y M S

1-D one-dimensional

2-D two-dimensional

3-D three-dimensional

COSMO Consortium for Small-scale Modeling

CNN Convolutional Neural Network

CT computed tomography

DWD Deutscher Wetterdienst

DTW Dynamic Time Warping

ECMWF European Centre for Medium-Range Weather Forecasts

EPS Ensemble Prediction System

EMD Earth Mover’s Distance

ENS enseble

ERA5 Fifth Generation ECMWF Reanalysis for the Global Climate and Weather

GPU Graphics Processing Unit

GRIB General Regularly-distributed Information in Binary form

HRES Atmospheric Model high resolution 10-day forecast

ICAO International Civil Aviation Organization

ICON ICOsahedral Nonhydrostatic

ISA International Standard Atmosphere

ITCZ Intertropical Convergence Zone

IVA Interactive Visual Analysis

MC Marching Cubes

ML Machine Learning

MR magnetic resonance

NAWDEX North Atlantic Waveguide and Downstream Impact Experiment

NC normal curve

NetCDF Network Common Data Form

NWP numerical weather prediction

SCAFET Scalable Feature Extraction and Tracking

TFP thermal front parameter

xi



xii acronyms

UK United Kingdom

WCB Warm Conveyor Belt



1
I N T R O D U C T I O N
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1.1 Motivation 2

1.2 Objectives and research questions 4

1.3 Outline 6

Imagine going for a bike ride every weekend and recording metrics such as speed,
time, or even position coordinates. You might wonder if your speed fluctuates
along the route or if you tend to improve over time. While you could analyse
the raw numbers from your tracked data, after a few rides you might lose the
overview by just looking at the numbers. Would it not be more convincing to
have some form of graphical representation, such as charts or maps, to turn those
numbers into meaningful insights? With visual aids such as charts and time series
or maps, patterns emerge, trends become apparent, and anomalies are easily
spotted. Not only does it allow you to understand your progress more quickly,
it also makes the tracking process more engaging and intuitive. Visualisation is
the key to turning mere data points into actionable information. The importance
of visualisation extends far beyond personal data tracking; it is a fundamental
aspect of scientific data analysis. Scientific data visualisation transforms data sets
into understandable forms, enabling researchers to identify complex patterns,
trends, and anomalies that would otherwise be hidden in the raw data. It is
multidisciplinary, combining mathematics and computer science to efficiently
manage and process large amounts of data, cognitive and perceptual sciences to
ensure that visualisations are aligned with the way the human brain interprets
visual information, and engineering techniques to build the robust software and
hardware tools needed to create and display visualisations (Telea, 2015).

Scientific visualisation is widely used in the analysis and interpretation of
numerical weather prediction (NWP) data (Rautenhaus et al., 2018). Modern
NWP models generate enormous amounts of data, including variables such as
temperature, pressure, humidity, and wind speed at different elevations and
locations, which are visualised, for example, through colour-coded maps or
contour plots. However, scientific visualisation goes beyond the visualisation of
colour-coded weather maps and contour plots; it also involves the development
of methods to represent trends, clusters, or to detect and visualise features (Telea,
2015) such as atmospheric fronts.
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2 introduction

The concept of atmospheric fronts, first introduced by Bjerknes (1919), plays a
prominent role in meteorology. They are thought of as an interface separating
two air masses of different densities, mostly caused by temperature differences
(Front - Glossary of Meteorology 2012). Fronts are atmospheric features represented
as imaginary surfaces in three-dimensional (3-D) space; however, most commonly
they are encountered as two-dimensional (2-D) lines on surface analysis charts,
where they still frequently originate from manual analysis of different atmo-
spheric variables. Despite the prevalence of 2-D surface fronts in meteorological
practice, several studies have highlighted the impact of the vertical structure of
fronts on surface weather (Aemisegger et al., 2015; Bader et al., 1996; Browning
and Monk, 1982; Locatelli et al., 1994, 2005).

The atmosphere is a chaotic system, and describing and predicting its behaviour
is a major challenge for meteorologists and scientists. NWP models address this
challenge by encapsulating the fundamental physical processes that govern the
atmosphere. These models are based on the principles of conservation of mass,
momentum, and energy, implemented through a specific set of mathematical
formulations and numerical solutions, resulting in a system of equations. The
objective of NWP models is to represent the physical processes within the at-
mosphere and, consequently, the time evolution of key atmospheric variables,
including pressure, temperature, wind, humidity, cloud cover, and precipitation
(Wetter Und Klima 2023). NWP models cannot provide an exact representation of
the atmospheric state due to uncertainties in the initial conditions, model assump-
tions, and parametrisations. Given the chaotic nature of the atmosphere, even
small deviations in the initial state of NWP predictions can lead to significantly
different results (Wilks, 2019). To account for such uncertainties, NWP predictions
are based on ensemble simulations, where the initial conditions are systematically
perturbed for each member of the ensemble. As a result, the ensemble provides a
spectrum of possible weather events. The objective of ensemble forecasting is to
predict the true state of the atmosphere within the range of the ensembles and to
represent forecast uncertainties. Ensemble simulations generate large datasets,
which pose a major challenge for analysis, where visualisation plays an important
role (Wang et al., 2019).

1.1 motivation

Algorithms for 2-D objective front detection have been developed since the 1960s
(e.g. Huber-Pock and Kress, 1989; Jenkner et al., 2009; Renard and Clarke, 1965).
A widely cited method based on the third derivative of a thermal variable was
introduced by Hewson (1998) and recently extended from 2-D to 3-D by Kern
et al. (2019). Kern et al. (2019) integrated the objective detection algorithm into
the open-source meteorological interactive 3-D visualisation framework “Met.3D”
(Met3d.documentation, 2024; Met3d.homepage, 2024; Rautenhaus, 2015; Raut-
enhaus et al., 2015a,b) and demonstrated the feasibility of interactive 3-D visu-
alisation of frontal surfaces detected in NWP data from the European Centre for
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Medium-Range Weather Forecasts (ECMWF) and Deutscher Wetterdienst (DWD).
In this thesis, I address open issues such as parameter settings, its application to
NWP datasets with different spatial resolutions, and demonstrate and evaluate its
use for the analysis of atmospheric dynamics.

The methods based on Hewson (1998) and Kern et al. (2019) (as well as further
detection methods proposed in the literature) build on extracting frontal feature
candidates from fields of the third derivative of a thermal variable (cf. Thomas
and Schultz, 2019b) that typically are smoothed to some extent to remove high-
frequency fluctuations. The feature candidates are then filtered according to some
filter criteria (most prominently, a so-called thermal front parameter (TFP) and
the frontal strength) to yield the final frontal features. Two challenges arise when
applying such an approach to modern NWP data. First, the current trend towards
convection-permitting kilometre-scale resolution in NWP models leads to more
small-scale fluctuations in the gradient fields. The question arises whether the
existing approaches still extract meaningful structures that represent a frontal
surface. A related issue is that smaller numerical differences between the values
of neighbouring grid cells (caused by smaller grid-point spacing) require care to
avoid numerical artefacts when computing higher-order derivatives (see Jenkner
et al., 2009). Second, threshold values for the filtering of feature candidates
need to be selected carefully to yield physically interpretable structures. In the
literature addressing 2-D front detection, such thresholds have been set to “hard”
thresholds, i.e. fixed values suitable for the data and elevation level used. Such
thresholds may not be generalized across different model resolutions and vertical
elevations (Hewson, 1998). Furthermore, hard thresholds can lead to undesired
“holes” in the resulting frontal surfaces, e.g. where frontal strength or TFP is only
slightly below the chosen threshold. Therefore, Kern et al. (2019) proposed a
fuzzy filtering method with upper and lower filter thresholds, between which
the frontal features are gradually faded. However, past literature focused little on
the filtering process and how to select suitable thresholds.

Analysing the complete 3-D temporal evolution of atmospheric frontal surfaces
presents a promising opportunity for improving weather forecasting and advanc-
ing atmospheric research. However, this potential is linked to the challenge of
tracking these features over time. In tracking, we can think of a frontal surface as a
distinctive atmospheric feature. Numerous techniques exist to track atmospheric
phenomena, yet many concentrate solely on 2-D characteristics. Manual tracking,
where forecasters follow the movement of the feature, is one option. However, this
method is time-consuming and unsuitable for operational weather forecasting,
where time is of the essence. An automated feature tracking method presents a
more efficient solution. Such approaches utilise feature detection and sequentially
filtering algorithms to preserve the best matching features as they evolve over
time. Filtering is based on specific criteria such as size and feature properties, and
is fine-tuned to accurately identify the feature in the next time step. Combining
objective methods of identifying and tracking features with statistical analysis of
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these features can provide a valuable framework for studying climate patterns
and seasonal variations (Hodges, 1999).

Feature analysis methods have evolved into feature-based ensemble analysis as
ensemble simulations have become the standard in weather forecasting. Ensemble
simulations generate vast amounts of data, and current research concentrates
on overcoming the challenges tied to processing, utilising, and visualising this
wealth of information. In operational weather forecasting, it is common practice
to use ensemble analysis and clustering methods to assess forecast uncertainty.
Traditionally, ensemble analyses and clustering methods have concentrated on
clustering 2-D fields, specifically the 500 hPa geopotential height (Ferranti and
Corti, 2011). Such approaches are well established in the literature, with the
ECMWF and other institutions widely using these techniques. Wilks (2019) pro-
vides an overview of ensemble clustering. The primary technique utilised in
2-D field clustering is principal component analysis, which has demonstrated
successful outcomes in identifying commonalities in phenomena such as trop-
ical cyclones (Anwender et al., 2008; Harr et al., 2008; Keller et al., 2011) and
heatwaves (Quandt et al., 2017). For these clustering results, researchers have
developed visual representations of clusters and their uncertainties (Kumpf et al.,
2018). As highlighted by (Schultz et al., 2019), the development of specialised
tools and methods dedicated to the ensemble analysis of atmospheric features is
needed to better exploit ensemble simulations for cyclones and related weather
impacts.

1.2 objectives and research questions

For the analysis of 3-D features, recent advances in 3-D computer graphics and
visualisation bear large potential for intuitive, rapid interpretation in the context
of the underlying atmospheric situation. Such techniques are not yet widely used
in weather forecasting and research, with reasons including a lack of suitable
software tools and a lack of literature demonstrating the benefit of 3-D visual
analysis (Rautenhaus et al., 2018). An overview of the current state of the art
in visualisation in meteorology has been provided by Rautenhaus et al. (2018);
recent examples of 3-D visual analysis being applied to meteorological research
include the studies by Bader et al. (2020), Bösiger et al. (2022), Fischer et al. (2022),
Kern et al. (2018, 2019), Meyer et al. (2021), Orf et al. (2017), and Rautenhaus et al.
(2015a).

The first part of this thesis builds on the 3-D front detection method presented
by Kern et al. (2019), focusing on its shortcomings and demonstrating the benefits
of 3-D visual analysis for NWP data. The investigations include case studies and
comparisons of frontal structures between simulations from different numerical
models. In this analysis, I further contribute to the literature on the benefits of
atmospheric feature detection and address the following objectives:

1a: Advance the Kern et al. (2019) approach to objectively detect 2-D and 3-D
frontal structures independently of the grid-point spacing of the input
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NWP data to be able to compare frontal structures between, for instance,
different model resolutions (e.g. in convection-permitting vs. convection-
parametrised simulations), different ensemble members, or different cases.
My goal is to shed light on the smoothing and filtering processes in the
detection method and to study the sensitivity of changing smoothing pa-
rameters on the resulting detected fronts: which smoothing parameters
yield meaningful 3-D structures, and how do filtering thresholds need to be
chosen accordingly?

1b: Evaluate the benefit of 3-D Interactive Visual Analysis (IVA) of the detected
frontal structures for the analysis of mid-latitude cyclones. I focus on two
case studies (Cyclone Vladiana, crossing the North Atlantic in Septem-
ber 2016, and Cyclone Friederike, hitting Germany in January 2018) and
address the following questions: can I confirm known knowledge about the
3-D dynamical structure of fronts and related warm conveyor belts (WCBs)
by means of 3-D IVA? How can the characteristic frontal development stages
of a Shapiro–Keyser cyclone be distinguished in 3-D? How do 3-D frontal
structures differ in (higher-resolution) convection-permitting vs. (lower-
resolution) convection-parametrising simulations? How do the detected 3-D
structures compare to official analyses by the UK Met Office, in particular
with respect to “secondary warm fronts” often observed in UK Met Office
charts?

The second part of this thesis focuses on a feature-based perspective of IVA in the
context of NWP ensemble forecasts. The proposed approach develops a method
to track 3-D fronts and to characterise the tracked fronts by feature attributes.
This feature-based ensemble analysis approach is evaluated in two case studies.
To ensure broad applicability to different ensemble NWP data, the developed
methods are adaptable to common ensemble simulations and data formats. The
main objective is to systematically organise and cluster ensemble simulations
based on derived 3-D frontal attributes and to present the results in clear and
comprehensible visualisations. For this analysis, I address the following research
questions:

2a: Can 3-D atmospheric fronts be effectively isolated and characterised by as-
signing one-dimensional (1-D) frontal attributes? What are the key physical
attributes of fronts that enhance meteorological analysis? How can the
tracking of isolated 3-D fronts be automated using feature attributes?

2b: What are effective visualisation methods for displaying the evolution of
frontal attributes over time? How can feature-based ensemble analysis be
successfully performed on 3-D atmospheric fronts? What techniques can be
used to perform feature-based ensemble similarity ordering and clustering,
and how can these approaches be effectively visualised?

2c: How sensitive are clusters derived from 3-D fronts considering different
frontal attributes and variations in filter thresholds applied to the detected
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3-D frontal surfaces? What insights do these variations provide for under-
standing the behaviour and characteristics of 3-D atmospheric fronts within
ensemble simulations?

1.3 outline

The structure of this thesis is as follows: Chapter 2 delves into the field of
visualisation and computer science fundamentals relevant to this thesis. It focuses
on the field of visualisation in meteorology, interactive 3-D visualisation software,
data representations, and the essential algorithms that support this work.

Chapter 3 serves as an introduction to the meteorological background and basic
atmospheric science concepts. This chapter provides a comprehensive overview
of relevant meteorological background information, focusing on aspects such as
NWP model simulations and the detection of atmospheric features, with particular
attention to cyclones and fronts.

Chapter 4 introduces the cases and NWP data used throughout this thesis and
provides background information on the meteorological situation in each case.

Chapter 5 introduces the front detection approach developed by Hewson
(1998), its extension to 3-D by Kern et al. (2019), and develops improvements
to enable front detection in high-resolution kilometre-scale data. This chapter
also considers the selection of the appropriate thermal variable for the approach,
and examines the sensitivity of detected fronts to different data resolutions and
smoothing parameters. Furthermore, the benefits of 3-D front analysis for both
weather forecasting and research are examined.

Chapter 6 introduces and describes the front tracking and feature-based en-
semble analysis approach developed in this thesis. The methodology part of this
chapter describes the front isolation and front-tracking algorithms and introduces
the characterisation of fronts by frontal attributes. The results section evaluates
the proposed feature-based NWP ensemble analysis approach in two case studies.
The evaluation of this framework is carried out by examining the sensitivity of
the clusters.

Chapter 7 concludes this thesis by addressing the research questions, sum-
marising the key findings, and providing an outlook.
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Data visualisation is a multidisciplinary field at the intersection of mathematics,
computer science, cognitive and perceptual sciences, and engineering. Its primary
purpose is to provide insight into various aspects of the processes of interest, such
as scientific simulations or real-world phenomena (Telea, 2015). The definition of
visualisation encompasses its essential role in understanding data and extracting
knowledge from simulation results, computations, or measurements (McCormick
et al., 1987). The visualisation process involves the generation of one or more
images that provide valuable insight into the process under consideration. Fur-
thermore, visualisation can be seen as a cognitive process performed by humans,
in which mental images of a domain space are formed. In the context of com-
puter and information science, it involves the visual representation of a domain
space through graphics, images, animated sequences, and sound augmentation.
This enables the representation of large, complex data sets representing systems,
events, processes, objects, and concepts (Williams and Others, 1995).

By using visualisation techniques, researchers and analysts can ask specific
questions, explore data in an interactive way, and potentially discover novel pat-
terns, trends, or relationships that might otherwise remain hidden. Visualisation

7
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(a) (b)

(c)

Figure 2.1: Example representations of the three visualisation disciplines. (a) Scientific
visualisation of the Rayleigh-Taylor instability caused by the mixing of two
fluids. (b) Information visualisation of a graph from a network analysis.
(c) Visual analytics represented by a dashboard. Figures from (a) Lawrence
Livermore National Laboratory (2009), (b) Grandjean (2014), used under CC
BY-SA 3.0, and (c) HelicalInsight OpenSourceBI (2015), used under CC BY-SA
4.0.

enables data to be transformed into meaningful visual representations that can
be understood and interpreted by humans, leading to improved decision-making,
problem-solving and knowledge discovery. Following Telea (2015), the field of
visualisation is divided into three distinct subfields: scientific visualisation (scivis),
information visualisation (infovis), and visual analytics. Figure 2.1 shows example
representations of each visualisation discipline.

Scientific visualisation focuses on the development of visualisation solutions
to gain insight into scientific simulations. It specialises in the visualisation
of 3-D phenomena and data sets that have a natural spatial embedding.

Information visualisation is dedicated to visualising relational datasets using
trees, graphs, and networks. As the prevalence of big data continues to
grow, the visualisation of data relations becomes increasingly important,
considering the rising number, size, and variety of digital artefacts.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Visual analytics provides techniques and tools that support users in their
analytical reasoning through interactive visual interfaces. It is characterised
by a tight integration of data analysis, data mining, and visualisation
technologies and tools. However, the boundary between visual analytics
and the more traditional fields of information visualisation and scientific
visualisation is not clearly defined, as they often overlap and share similar
principles. As a result, the division into three distinct fields of visualisation
has become blurred in recent years (New VIS Conference 2021).

The following sections discuss the role of visualisation in meteorology and
introduce computer science and visualisation algorithms used in this thesis. First,
Section 2.1 examines the role of visualisation in meteorology and for weather
forecasting, as well as state-of-the-art visualisation tools. Second, Section 2.2
introduces the 3-D and interactive visualisation framework Met.3D, as well as the
foundations of the visualisation and data pipelines. Most of the methods used in
this thesis are implemented in Met.3D. Third, the foundations of visualisation
and computer science algorithms are introduced in Section 2.4.

2.1 visualisation in weather forecasting and atmospheric sci-
ence

The Earth’s atmosphere is a complex and chaotic system, spanning three dimen-
sions and governed by a multitude of interconnected variables. This complexity
makes it a major challenge to gain a comprehensive understanding of atmo-
spheric behaviour from raw data and numerical values alone. In meteorology, the
use of visualisation techniques has become a powerful and indispensable tool for
exploring this complex system.

Visualisation serves as a tool to interpret the vast amount of data derived from
NWP models, measurements, and other sources. It performs the essential task of
translating these numbers into intuitive, graphical representations that promote a
deeper understanding of the dynamic nature of the atmosphere. By using visuali-
sation, meteorologists aim to gain an insightful perspective within the numbers,
uncover hidden relationships and correlations, and gain a comprehensive view
of the data. The overall goal of visualisation of meteorological data is to facilitate
the understanding, analysis, and communication of complex weather patterns,
ensuring that meteorologists can uncover the underlying trends and patterns that
govern atmospheric phenomena.

Weather forecasts play a crucial role in providing valuable information for
various sectors and ensuring public safety. These forecasts are typically computed
at national or international weather centres, such as the DWD, ECMWF, and Meteo
France (the French national weather service). Weather forecasts generate large
amounts of data, with approximately 150GB of data processed and simulated
daily at the DWD (Wetter und Klima - Deutscher Wetterdienst - NinJo - Meteorologischer
Arbeitsplatz). After computing a NWP simulation, it is the forecaster’s task to
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analyse the data. Bosart (2003) outlined essential questions, leading the forecaster
to understand the current and future weather situation:

• What happened and why? (diagnostic)

• What is happening and why? (diagnostic)

• What will happen and why? (prognostic)

To process the large amounts of data and support forecasters in understanding
the weather situation and extracting the important information, weather services
use a dedicated software. A detailed survey of visualisation in meteorology can
be found in Rautenhaus et al. (2018), and a summary is given below.

The historical development of meteorological visualisation techniques has
achieved several important milestones. It began with the creation of hand-drawn
charts and diagrams, which represented the earliest methodology of visualising
weather data. However, in the 1960s, a notable shift took place with the emergence
of essential computer-based visualisations, exemplified by the work of Washing-
ton et al. (1968), which introduced 2-D line contours displayed on cathode ray
tubes. Developments driven by the introduction of powerful workstations with
dedicated Graphics Processing Units (GPUs) led to the development of 3-D visual-
isation tools. “Vis5D” (Hansen and Johnson, 2005) for instance, demonstrated the
ability to render various meteorological variables and features through horizontal
and vertical sections, 3-D isosurfaces, volumes, vector glyphs, streamlines, and
trajectories, effectively expanding the dimensionality of weather visualisation.
Continuous increase in computing power and the accessibility of high-end GPU
hardware, have provided the foundation for powerful interactive 3-D visualisation.
While general-purpose visualisation tools like Paraview (Ayachit, 2015) and VTK
(Schroeder et al., 2018) have become integral to visualising NWP data in scientific
research. However, conventional two-dimensional visualisation still remains the
standard for operational weather forecasting, as exemplified by widely used
software such as Metview (ECMWF, 2023b) and NinJo (NinJo Workstation: NinJo
Workstation).

The DWD uses for example the NinJo Workstation Software (NinJo Workstation:
NinJo Workstation), which is capable of processing a wide range of different data
types such as NWP, radar, satellite, observations, and sounding data. The infor-
mation is then visualised on 2-D maps and horizontal cross-sections, meteograms,
or diagrams. Such software tools like Ninjo support the forecaster in making
informed decisions and improving the forecasting ability. Once the forecast anal-
ysis is complete, weather centres communicate the current weather forecasts to
the public through various channels, including apps, internet pages, videos, and
other forms of communication.
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Figure 2.2: Example analysis plot of ECMWF ensemble forecast from 13. July 2023. The
ensemble meteogram shows the high-resolution (9 km) and ensemble spread
for the following 10 days. Figure from ECMWF (2023a), used under CC BY
4.0.

2.2 met.3d - interactive 3-d visualisation of meteorological sim-
ulations

Figure 2.3 shows the open-source and interactive 3-D visualisation tool for NWP
data, Met.3D (Rautenhaus, 2015). Originally developed for airborne field cam-
paigns to improve detailed research flight planning using ensemble forecasts,
it can be applied in various fields, such as weather forecasting, atmospheric
research (see: Fischer et al., 2022; Meyer et al., 2021; Neuhauser et al., 2023), and
educational purposes. Met.3D is designed as a "bridge" between common 2-D
and new 3-D visualisation techniques in the field of weather forecasting and is
intended to facilitate the introduction to 3-D visualisation.

The main objective of Met.3D is to provide a seamless and interactive analysis
of different NWP data. Therefore, the software has been designed to directly
read in a wide range of NWP data without the need for (vertical) regridding. For
example, data from the ECMWF on a hybrid sigma-pressure grid or data from the

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 2.3: Screenshots of the interactive visualisation software Met.3D. Figure from
Rautenhaus (2015), used under CC BY 3.0.

ICOsahedral Nonhydrostatic (ICON) model on an auxiliary pressure grid can be
directly imported. Met.3D visualises data in a cylindrical projection by default,
with vertical levels displayed on the commonly used logarithmic pressure scale.

The core visualisation components of the tool are a base map, graticules,
horizontal and vertical cross-sections, 3-D isosurfaces, direct volume rendering,
and trajectories. In Met.3D, these elements are called actors. A 3D field can be
plotted on a horizontal or vertical slice, showing, for example, temperature as
a texture or contour lines. Several 3D fields can be combined on an actor. 3-D
isosurfaces can be used to represent areas of high wind speed, for example, and
direct volume rendering can be used to represent clouds. The user can interact
with the actors, e.g., move a horizontal or vertical cross-section through the scene
to find an area of interest.

Met.3D is mainly developed in C++ and the OpenGL shader language. The
architecture follows the data and graphics pipeline approach described above.
A more detailed description of Met.3D can be found in Rautenhaus (2015) and
Rautenhaus et al. (2015b). In this thesis, I use Met.3D for interactive visualisation
and to develop and implement novel algorithms for feature extraction, feature
characterisation, and feature tracking.

2.2.1 Data processing pipeline

Figure 2.4: Illustration of the conceptual data pipeline in visualisation. Figure from
Rautenhaus (2015), his figure 3.1., used with permission.

https://creativecommons.org/licenses/by/3.0/
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The visualisation process involves the concept of data flow and data represen-
tation through a data pipeline, which describes the sequence of steps from raw
input data to the resulting images.

At the implementation level, this approach enables the construction of vi-
sualisations by assembling reusable and modular data processing operations.
Each module in the pipeline is designed for a specific data transformation or
manipulation task, with the aim of encoding the features of interest from the raw
dataset required for analysis and visualisation.

The data pipeline typically consists of four stages: data import, data manipu-
lation or filtering, data mapping, and data rendering. Figure 2.4 shows a visual
representation of this data pipeline and how the different pipeline modules are
connected. The data pipeline can be found in many textbooks, here I follow the
descriptions and concept of Telea (2015), which is also illustrated in Figure 2.4.

Data import: The first stage involves obtaining raw data from simulations or
measurements. This process involves reading the data from external storage
and translating it from different data formats. For example, in the context
of NWP data, this may involve translating data from Network Common
Data Form (NetCDF) (Russ et al., 1989) or General Regularly-distributed
Information in Binary form (GRIB) (Dey et al., 2007) formats into the internal
data format of the visualisation program.

Data manipulation: The aim of the data manipulation pipeline module is
to extract important aspects or features of interest. Since these aspects
are usually not directly modelled in the raw data, data filtering or data
enrichment techniques are applied. Filtering operations produce enriched
datasets that represent the desired features for specific exploration tasks.
The output of data manipulation consists of datasets that may have the same
data format as the input dataset. An example of data manipulation is the
computation of atmospheric fronts. Atmospheric fronts are not simulated
directly, but the temperature field is simulated, which can be used to
compute the desired atmospheric fronts.

Data mapping: In the data mapping stage, the manipulated dataset is mapped
to a dataset of visual features. This process transforms invisible data into
visible representations. For example, a gridded 2-D horizontal data field
can be mapped to a 3-D elevation model. The 2-D data field contains ele-
vation information for each grid point, which is then mapped to the 3-D
representation of the elevation model. The output is a 3-D scene.

Rendering: The rendering stage combines the 3-D model from the mapping
stage with additional viewing parameters such as viewpoint, lighting, and
horizontal or vertical scaling. Viewing parameters are considered part of the
rendering process. The rendered results can be interactively navigated and
examined without recomputing the mapping stage operations. Section 2.2.2
describes the rendering stage and the rendering process in more detail.
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In Met.3D, the data processing pipeline consists of various pipeline modules
that are responsible for creating, reading, or manipulating data and storing it in
internal data items. These data items are associated with a memory manager that
caches all the intermediate results produced by the pipeline modules. The actor,
responsible for visualising the final data item, is positioned at the end of the data
processing pipeline. It communicates data requests to retrieve specific data items.
These data requests then propagate backwards through the data modules from
the final pipeline module to the input pipeline module.

Each pipeline module within the data processing pipeline interprets its data
request. These data requests are combined into a task graph, which is then passed
to a task scheduler. As computing resources become available, the scheduler
initiates the execution of the task graph by propagating it from the first pipeline
module to the last pipeline module. Each pipeline module computes its resulting
data element and forwards it to the next pipeline module until the final data item
is computed. If a data module’s result is already cached in the data manager
from prior computations, no further computation is needed and the cached result
is returned. This setup enables the asynchronous execution of data requests and
modulation of the data processing pipeline (Rautenhaus, 2015). For a detailed
description of the data processing pipeline, see (Rautenhaus, 2015; Rautenhaus
et al., 2015b).

2.2.2 Graphics pipeline

The graphics rendering pipeline is a fundamental component of real-time com-
puter graphics rendering. This is the process of transforming 3-D geometric data
into 2-D images that are displayed on the screen. Descriptions of the graphics
pipeline can be found in many textbooks. Here, I follow the textbook of Akenine-
Möller et al. (2018). The graphics pipeline is highly parallelised, allowing efficient
processing of multiple vertices and fragments. Each stage of the pipeline builds
on the output of the previous stage, leading to the final rendering of the scene.
The core stages of the graphics pipeline include application, geometry processing,
rasterisation, and pixel processing.

Application stage: The application stage is typically executed on the CPU and
serves as the data pipeline for rendering. Its primary function is to generate
the geometry for rendering. The geometry, known as rendering primitives,
can be points, lines, or triangles. Once generated, the application sends
these primitives to the geometry stage, which is implemented on the GPU,
for further processing.

Geometry stage: The geometry stage operates either per vertex or per triangle
and consists of several sub-stages, vertex shading, projection, clipping,
and screen mapping. The vertex shading sub-stage is programmable and
manipulates vertex positions while producing additional outputs such as
normals and texture coordinates. Vertex shading transforms vertex positions
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from model space (e.g. latitude, longitude, and pressure coordinates) to
clip space using the Model-View-Projection (MVP) matrix. The MVP matrix
performs three transformations: first, from model space to world space,
unifying primitives from different model spaces into a single world space;
second, from world space to view space, positioning the camera at the origin
of the coordinate system; and third, projection transformation, converting
vertices from view space to the desired projection, usually orthographic or
perspective projections.

The geometry stage provides optional sub-modules, including tessellation,
geometry shading, and stream output. Tessellation allows the dynamic ad-
dition of scene detail, particularly useful when zooming in on objects.
Geometric shading generates additional vertices from given primitives, allow-
ing for more realistic representations, such as rendering trajectories as tubes.
Material properties, light sources, and colours can be modelled during
geometry shading if used, or during vertex shading otherwise. The stream
output stage controls the output and can save the generated geometries for
further processing.

The clipping sub-stage evaluates which geometries are fully or partially
inside the view volume and discards those outside. Partially visible geome-
tries are clipped to separate the part inside the viewing volume from the
rest. The screen mapping sub-stage transforms the projected coordinates of
the geometries into screen coordinates.

Rasterisation: Rasterisation is the transformation of geometry elements into
screen pixels, which involves converting the screen space into the pixel
space. The z-value of the geometry is used as a depth value to determine
the visibility of overlapping elements.

Pixel Processing: The pixel processing stage consists of two sub-stages: pixel
shading and merging. Pixel shading is performed by programmable GPU
cores using the fragment shader. It operates on a per-pixel basis and involves
texturing, i.e. ’gluing’ one or more images onto objects, e.g., mapping a
colour onto a 3D surface. The result is a colour value for each pixel. The
following merging sub-stage is not programmable but configurable, and
resolves pixel visibility using z-buffer algorithms. After merging, the final
image is rendered on the screen.

2.3 visualisation techniques for time series analysis

A time series is a common form of data presentation, characterised by its 1-D
nature, that illustrates the evolution of a particular quantity over time. An example
of a time series is the presentation of temperature trends at a particular location,
showing how this parameter evolves over different time intervals. However, when
looking at ensemble simulations, the analysis often extends beyond individual
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time series to include the evolution of a quantity across different ensemble
members.

In scenarios where multiple ensemble members contribute to the overall trend,
it can be challenging to plot the evolution of each member over time on a
single plot, resulting in cluttered visualisations that are difficult to interpret. One
approach to overcome this problem is to plot the ensemble spread using a box
plot, as shown in Figure 2.2, to provide an overview of the variation between
members over time. An alternative to the box plot is the violin plot (Hintze and
Nelson, 1998), which combines the traditional box plot with smoothed histograms.
The violin plot is used in this thesis in Chapter 6 to visualise the evolution of
distributions over time. A detailed description of the violin plot is given in the
following Section 2.3.1. However, such methods may sacrifice the individual
insights provided by the time series of each ensemble member.

In order to effectively visualise the evolution of multiple ensemble members
and to preserve detailed insights into individual ensemble members, the horizon
graph of Saito et al. (2005) is used in this thesis in Chapter 6. The components
and structure of the horizon graph are explained in Section 2.3.2.

2.3.1 Violin plot

Figure 2.5: Example visualisations of Box Plot and Violin Plot show the total compensa-
tion for all academic ranks. Figure used with permission of Taylor & Francis
Informa UK Ltd - Journals, from Hintze and Nelson (1998); permission con-
veyed through Copyright Clearance Center, Inc.

The violin plot, a statistical data visualisation tool introduced by Hintze and
Nelson (1998), combines elements of box plots and smoothed histograms into
a single plot. Figure 2.5 shows a comparison between the violin plot and the
traditional box plot. This visualisation enhances the box plot by providing ad-
ditional details about the data distribution without taking up more space. The
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violin plot is a powerful tool for comparing distributions over different variables
or different time steps and for identifying clusters within the data (Hintze and
Nelson, 1998). In this thesis, a basic version of the violin plot is used, which
displays the distribution (violin) and marks only the first quantile, median, and
third quantile.

2.3.2 Horizon graph

(a)

(b)

(c)

(d)

Figure 2.6: Construction of a horizon plot: (a) line plot, (b) segmented line plot, (c)
layering, and (d) final horizon plot with visual differentiation. Figure adapted
from Heer et al. (2009).

The horizon plot, initially referred to as "two-tone pseudo-colouring" by Saito
et al. (2005), is a visualisation technique specifically designed for effectively
representing large one-dimensional datasets, such as time series, with high
detail and precision in a compact manner (Saito et al., 2005). A comprehensive
example of a horizon plot showcasing multiple time series can be found in Few’s
(2008) work. Heer et al. (2009) conducted a thorough investigation and user
study into the benefits of using a horizon plot, including improved processing
speed, accuracy, visualisation quality, and data interpretation, in comparison to
traditional line charts. The process of constructing a horizon plot involves the
following steps:

Segmentation: The line chart is divided into non-overlapping bands of equal
size along the y-axis (vertical axis).

Layering: These bands are stacked on top of each other, with negative values
reflected around zero.

Visual Differentiation: To distinguish between negative and positive values as
well as different band levels, various techniques such as colour, saturation,
and intensity can be employed.

This technique significantly reduces the vertical space required to represent a
classical line chart with both positive and negative values, achieving a vertical
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compression ratio of 2 times the number of bands (Heer et al., 2009). Consequently,
the horizon plot proves to be highly suitable for visualising numerous time series,
allowing for detailed and efficient representations of data while conserving space.

2.4 foundations of algorithms

This section serves as an introduction to a collection of mathematical back-
ground and computer algorithms, laying the foundation for their subsequent
application in this thesis. The aim is to provide the reader with the necessary
background knowledge. Topics covered include data representation and coor-
dinate transformations required for NWP simulation, data representation and
further processing of such data (Section 2.4.1); triangular meshes for representing,
e.g., 2-D or 3-D atmospheric features (Section 2.4.2); distance measurement algo-
rithms (Section 2.4.4) for computing distances, e.g., in time series of atmospheric
features, which are essential for the application of data clustering (Section 2.4.3).

2.4.1 Data Representations

(a) (b) (c)

Figure 2.7: Representation of different coordinate systems and data grids. (a) Cartesian
coordinate system, (b) spherical coordinate system, and (c) unstructured grid.
Figures from (a) Stolfi (2009), (b) Ag2gaeh (2015), used under CC BY-SA 4.0,
and (c) Slffea and Mysid (2006), used under CC BY-SA 3.0.

A coordinate system, or data grid, is a way of representing continuous data, such
as data from numerical simulations. A coordinate system serves as a fundamental
framework for specifying the position of a data point or object within a given
space. It provides a systematic and standardised way to describe both the location
and, when applicable, the orientation of an object relative to a reference point or
axis. Coordinate systems play an important role in many fields, including NWP
and computer graphics, where they are used to precisely define the position of
objects and mathematical operations. The following list contains some common
coordinate systems:

Cartesian coordinate system: Also known as the rectangular or Cartesian
grid, uses a set of orthogonal axes (typically labelled x, y, and z in three-

https://creativecommons.org/licenses/by-sa/4.0/
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dimensional space) to define points by their distances along each axis. This
system is widely used in mathematics and engineering for its simplicity
and versatility. Figure 2.7a shows an example of a Cartesian coordinate
system.

Spherical Coordinate System: In spherical coordinates, points are defined by
their radial distance (r), polar angle (l), and azimuthal angle (j). This
system is especially useful for describing positions in three-dimensional
space when dealing with spherical objects or coordinates defined on the
surface of a sphere. Figure 2.7b shows an example of a spherical coordinate
system.

Geographic Coordinate System: This system is used to specify locations on the
Earth’s surface and is a special case of a spherical coordinate system. It
uses latitude and longitude angles to define positions relative to the Earth’s
equator and prime meridian, respectively.

Unstructured grids: In addition to these structured coordinate systems, there
are unstructured grids or meshes. These grids do not adhere to a regular
pattern of points or elements and offer enhanced flexibility for discretising
complex domains and geometries in computational simulations. Figure 2.7c
shows an example of an unstructured grid.

When working with data on coordinate systems it might be necessary to transform
coordinates into another coordinate system or to rotate the coordinate system. In
the following these processes are described.

Coordinate transformation

The transformation from a geographical coordinate system to a Cartesian coordi-
nate system is a useful process for various calculations, such as determining the
area of a triangular mesh. The transformation equations can be found in many
textbooks. The description provided by Hofmann-Wellenhof et al. (2001) is used
below to describe the transformation from ellipsoidal to Cartesian coordinates.
However, the transformation equations are slightly simplified and only valid
for the case of a spherical coordinate system. NWP data are typically given in
geographical coordinates, which is a spherical coordinate system.

The relation between the spherical (l, j, h) and Cartesian (x, y, z) coordinate
systems is defined as follows:

x = (r + h) ⇤ cos (j) ⇤ cos (l)
y = (r + h) ⇤ cos (j) ⇤ cos (l)

z = (r + h) ⇤ sin (j)

(2.1)

With r the radius of the spherical coordinate system, for geographical coordinates
this is the Earth radius, h the height or elevation, j the latitude in radians, and l
the longitude in radians.
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Figure 2.8: Example of a dolphin represented by triangular meshes. Figure from Chrschn
(2007).

This coordinate transformation is used in this thesis to compute the geometric
area of triangles as well as a preparation step to compute the geometric slope of
a triangle.

Rotation of a Cartesian coordinate system

After the transformation of a triangle from the geographical coordinate system
into a global Cartesian coordinate system, the position of the z-axis of the
Cartesian coordinate system equals the Earth rotation axis (south pole - north pole
orientation). In order to compute the slope of a triangle in the global Cartesian
coordinate system, the global Cartesian coordinate system must be rotated, so
that the z-axis of the coordinate system is perpendicular to the Earth surface at
the location of the triangle. Neglecting the Earth curvature, it is sufficient if the
z-axis of the rotated coordinate system crosses one vertex of the triangle.

This rotation is done in two steps. First, the x-axis is rotated around the z-axis,
so that in the new rotated coordinate system, the y-axis goes through the point
to which the coordinate system is rotated to (Hofmann-Wellenhof et al., 2001).

2.4.2 Triangular Meshes

A triangle mesh is a type of polygon mesh used in computer graphics, computa-
tional geometry and numerical simulation. It is a representation of a 2-D or 3-D
surface or domain composed of connected triangles. In a triangular mesh, the
surface or domain is divided into a collection of triangles, each triangle being
defined by three vertices or corner points. These vertices are connected by edges
to form the triangular elements. The connectivity information, which specifies
which vertices are connected to form triangles, is essential in defining the overall
geometry and topology of the mesh (see: Akenine-Möller et al., 2018; Telea, 2015).
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Figure 2.8 shows an example of a dolphin represented by triangles. Triangular
meshes have several benefits:

Simplicity: Triangles are the simplest polygonal shape, making triangular
meshes easy to work with, both in terms of representation and compu-
tation.

Uniformity: Unlike irregular polygons, triangles have a consistent geometry,
which simplifies many computational tasks.

Flexibility: Triangular meshes can accurately represent a wide range of shapes
and surfaces, including complex and irregular geometries.

Numerical efficiency: Triangular meshes are computationally efficient and well
suited for numerical simulations, allowing easy calculation of areas, nor-
mals, and other geometric properties.

Interpolation: Triangular meshes facilitate the interpolation of data values across
the surface or within the domain, which is useful for various applications
such as rendering, visualisation, and physical simulation.

Triangular meshes are commonly used in computer graphics for rendering 3-D
models, in finite element analysis for structural and mechanical simulations, and
in computational fluid dynamics for modelling fluid flow over surfaces.

Marching cubes

The Marching Cubes (MC) algorithm is a method for generating a triangular mesh
of constant density from scalar volumetric data and was developed by Lorensen
and Cline (1987). The algorithm was originally developed for medical data, such
as 3-D computed tomography (CT) and magnetic resonance (MR) scans. Today,
the MC is widely used in various visualisation applications, including computer
graphics, medical imaging, and scientific visualisation. In short, the algorithm
works as follows:

1. Derive scalar volumetric data into a grid of cubes. Each cube consists of
eight vertices, each of which contains the corresponding scalar value of the
scalar field.

2. The configuration of the cube is determined by comparing the scalar values
of the vertices with the given constant density value. Each vertex can have
two possible combinations, either above or below the constant density value.
With eight vertices per cube, there are 28 (256) possible configurations.

3. Compare the resulting configuration with a pre-computed lookup table.
The pre-computed table indicates which of the 14 possible triangulated
cubes are present (see Figure 2.9).
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4. When applicable, use the scalar values at the vertices of the cube to calculate
the positions of the triangle vertices at the edge of the cube by linear
interpolation.

5. Compute the normals at each vertex and interpolate the normal to the
triangle vertices using linear interpolation.

The final surface mesh of constant density is constructed by rendering all the
resulting triangles from the MC algorithm.

Figure 2.9: Triangulated cubes. Figure used with permission of ACM (Association for
Computing Machinery), from Lorensen and Cline (1987); permission conveyed
through Copyright Clearance Center, Inc.

Connected triangle sorting algorithm

After generating triangular meshes using the MC algorithm, the information
about which triangles form a connected surface is not readily available. It might
be possible to implement the MC algorithm in such a way as to obtain this infor-
mation, but it will not be useful if triangles are subsequently filtered out. This
would cause previously connected surfaces to be split, making this information
useless. In this work, however, the information about connected triangles becomes
essential. In the following, an algorithm is presented to obtain such batches of
connected triangles. One triangle is considered connected to another triangle if
they share one edge.

I would like to point out the following before diving into the algorithm. The avail-
able literature on this particular algorithm is limited and, to the best of my knowledge, I
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could not find literature that explicitly describes the following algorithm. However, in gen-
eral purpose 3-D computer graphics software, such as Blender (2024), similar algorithms
are implemented. Therefore, I want to emphasize that I do not claim it as my original work.

The algorithm is divided into three stages:

First stage: A list is created for each vertex, containing information about which
triangles share this vertex.

Second stage: Each triangle is tested to determine if it shares an edge with
another triangle. If this condition is met, the information is stored in a list.
Subsequently, the algorithm checks if any other triangle connected to one
of the vertices of the current triangle shares an additional vertex with the
current triangle. If such a connection is found, that triangle is also added to
the list.

Third stage: Batches of connected triangles are created by looping over each
triangle and checking if it has a connection to another triangle. The result
is a list of triangle batches, each batch describing a connected mesh of
triangles.

Möller-Trumbore intersection algorithm

To interactively select certain features, such as frontal surfaces, it is necessary
to determine the intersection points between a ray and geometries generated
from a triangular mesh grid. The goal is to determine the exact location where a
ray originating from the mouse cursor intersects a frontal surface in the scene.
This information is crucial for selecting individual frontal surfaces with a simple
mouse click. Once the intersected triangle is identified, it is trivial to find the
corresponding triangle batch of the selected frontal surface.

The ray-triangle intersection algorithm introduced by Möller and Trumbore
(1997) is a fast, efficient, and memory-sparing method for testing whether a
ray intersects a triangle. The algorithm is designed to compute the intersection
without precomputing of the plane equations as in earlier approaches.

Möller and Trumbore (1997) describe their ray triangle intersection algorithm
as follows. A ray R (t) is defined as:

R (t) = O + tD (2.2)

Where D is the normalized direction with distance t from the ray origin O.
A triangle is defined by three vortices: V1, V2, and V3. The Möller-Trumbore
intersection algorithm constructs a transformation to obtain if a ray intersects a
triangle or not. It is even possible to compute the intersection point (u, v) as well
as the distance t from the ray origin O to the intersection point (u, v). A point on
a triangle T (u, v) is defined in barycentric coordinates as:

T (u, v) = (1 � u � v)V0 + uV1 + vV2 (2.3)
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where u � 0, v � 0, and u = v  1. The intersection between the ray R (t) and
the triangle T (u, v) can be computed by equating Equation 2.2 and Equation 2.3:

O + tD = (1 � u � v)V1 + uV2 + vV3 (2.4)

Rearranging the terms gives:

h
�D, V2 � V1, V3 � V1

i
2

64
t
u
v

3

75 = O � V1 (2.5)

This system of linear equations can now be solved to obtain u, v, and t. A
graphical solution can be found in Möller and Trumbore (1997), their Figure 1.
Equation 2.5 has a solution if and only if the triangle vertices are not collinear
and the ray is not parallel to the triangle’s plane. This condition holds true if the
matrix has three linearly independent column vectors in R and is invertible. To
determine whether the ray intersects with the triangle, and to solve the linear
equation system, Cramer’s rule can be applied.

2.4.3 Clustering techniques

Clustering is a data analysis and machine learning technique used to identify
patterns, group similar data points, and organise complex datasets (Steinley,
2006). Clustering is used to divide data into subsets, or clusters, where data
points within the same cluster share similarities based on certain features or
characteristics. By revealing such structures within data, clustering can help to
gain valuable insights into the dataset. This section introduces a collection of
algorithms and techniques for clustering time series. The objective is to provide
the reader with the necessary background knowledge for the clustering of fea-
ture attribute time series. These include k-means clustering (Section 2.4.3), the
silhouette score (Section 2.4.3), and the Rand index (Section 2.4.3). Ali et al. (2019)
provide an extensive review focused on time series clustering, delving into the
application of various distance measures for clustering purposes.

k-means clustering

K-means (MacQueen, 1967) is a clustering algorithm that aims to divide a dataset
into k distinct clusters by iteratively assigning data points to the nearest centroid
and updating the centroids based on the mean of the assigned points. Although
the algorithm was originally developed by Lloyd in 1957, it was not published
until 25 years later (Lloyd, 1982). It should also be noted that a similar algorithm
was published independently by Forgy (1965). Later in this thesis (see Chapter 6),
I employ k-means clustering combined with various distance metrics (Euclidean,
Dynamic Time Warping (DTW), and soft-DTW) to cluster time series of feature
attributes. For this purpose, I utilise the kernel from the ts-learn Python package



2.4 foundations of algorithms 25

(Tavenard et al., 2020), which is based on a modified version of the kernel
presented by Dhillon et al. (2004). In general, the k-means algorithm works as
follows:

Define the number of clusters. The optimal number of clusters could be deter-
mined by the silhouette coefficient (Rousseeuw, 1987).

Initialize the cluster centroids. This is achieved by randomly assigning data
points as the initial positions of the centroids.

Assign each data point to a cluster. Calculate for each data point the distance to
the cluster centroids. Assign the data points to the cluster with the nearest
centroid point. The distance can be calculated using a simple Euclidean
distance measure.

Update the cluster centroid position based on the mean of each data point
assigned to the cluster. This moves the cluster centroid towards the centre
of the data assigned to this cluster.

Repeat the assign and update step until the convergence criteria are met. A
convergence criterion is typically met after a predefined number of iterations
or if the centroids of the clusters do not change significantly.

The k-means algorithm is designed to minimize the variance within clusters by
selecting similar data points while maximizing the dissimilarity between different
clusters.

Silhouette score

When applying k-means clustering, the number of clusters needs to be predefined.
The silhouette score (Rousseeuw, 1987) can be a useful metric for determining
the optimal number of clusters. In this thesis, I use the silhouette score not only
to determine the optimal number of clusters, but also to evaluate the optimal
distance metrics for time series clustering. The silhouette score measures the
similarity of each data point within a cluster A to the cluster’s centroid (coherence)
and compares it to the data points of the nearest cluster B (separation). The
silhouette score Si for one data point i of cluster A is calculated as follows:

Si =
bi � ai

max(bi, ai)
(2.6)

Where ai is the average dissimilarity of point i to all other data points in cluster
A and bi is the average dissimilarity of point i to all data points of the nearest
cluster B. When computing the silhouette score, the difference between bi and
ai is normalized with the largest difference of the two distances. This results
always in a silhouette score Si between [�1, 1]. Where 1 can be interpreted as well
separated, 0 as overlapping, and �1 as arbitrary cluster (Shahapure and Nicholas,
2020). The overall silhouette of the clustering can be calculated by taking the
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arithmetic mean over all individual silhouette scores. This provides an aggregate
measure of how well-separated the clusters are on average.

Rand index

The Rand index (Rand, 1971), also known as Rand measure or Rand score, is a
statistical measure used to evaluate the similarity or agreement between two data
clustering results or partitions. It quantifies the degree of similarity between the
data points assigned to the same clusters in two different clustering solutions.
Let X and Y be the two clusters to be compared. a is the number of data pairs
that are correctly clustered together in the clustering solutions X and Y. b is the
number of data pairs that are correctly not clustered together in the clustering
solutions X and Y. c is the number of data pairs that are incorrectly clustered
together in one clustering solution but not in the other. d is the number of data
pairs that are incorrectly not clustered together in one clustering solution but are
clustered together in the other. The Rand index is then calculated as follows:

R =
a + b

a + b + c + d
(2.7)

A score of 1 indicates that the two clustering solutions are identical, and all data
points are correctly clustered in both solutions. A score of 0 indicates that the
two clustering solutions are completely dissimilar, and there is no agreement
between them. The Rand index was employed by Kumpf et al. (e.g., 2018) to
assess cluster robustness by comparing clusters generated with varying input
parameters. In this thesis, I adopt the approach outlined by Kumpf et al. (2018)
to test the sensitivity of my resulting time series clusters of feature attributes.
This evaluation examines the sensitivity across various feature attributes and
varying input parameters used to derive the features and, subsequently, the
feature attributes.

2.4.4 Distance measures

Euclidean distance is a commonly used and effective measure for quantifying
the dissimilarity or similarity between objects, data points, or distributions. In
two dimensions, it represents the length of the line segment connecting the two
points. In higher dimensions, it generalises to the square root of the sum of the
squared differences in coordinates (Dokmanic et al., 2015). However, for time
series similarity analysis, Euclidean distance is not well-suited because it cannot
account for variations such as compression or stretching of elements (Ali et al.,
2019). In the following sections, two distance measures – DTW and soft-DTW – are
introduced, which address this limitation of Euclidean distance when applied to
time series similarity analysis.
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Dynamic Time Warping

DTW (Sakoe and Chiba, 1978) is a widely used technique employed to mea-
sure the similarity between two sequences that may differ in length or contain
temporal distortions. Its applications span various fields, including music and
signal processing (e.g., Müller, 2007; Müller et al., 2006) and time series analysis
(e.g., Bahlmann and Burkhardt, 2004; Kahveci et al., 2002; Niennattrakul and
Ratanamahatana, 2007). The foundation of DTW dates back to the 1970s when it
was initially developed for speech and word recognition (Sakoe and Chiba, 1971;
Velichko and Zagoruyko, 1970).

The fundamental concept underlying DTW involves determining an optimal
alignment between the elements of two sequences, denoted as x = (x1, ..., xn) and
y = (y1, ..., ym), with respective lengths of n and m. This alignment is achieved
through the warping and stretching of the time axis, allowing for a non-linear
alignment that can handle differences in the speed or timing of events in the
sequences.

This work employs the DTW algorithm implemented in the Python package
called ts-learn (Tavenard et al., 2020). The optimisation function is defined as
follows:

DTW(x, y) = min
p

s
Â

(i,j)2p

d
�
xi, yj

�2 (2.8)

Let p = [p1, . . . , pK] denote the paths between the points of the two time se-
quences, each p subjects to the following conditions:

• pk = (ik, jk) with 1  ik  n and 1  jk  m

• p1 = (1, jk) or p1 = (ik, 1) and pK = (n, jk) or pK = (ik, m)

• for all k > 1, pk = (ik, jk) is related to the previous pair pk�1 = (ik�1, jk�1)
with ik�1  ik  ik�1 + 1 and jk�1  jk  jk�1 + 1

p represents a temporal alignment of the two sequences, where the objective is
to minimise the Euclidean distance between the aligned. Figure 2.10 shows a
comparison between the paths p using Euclidean matching (matching same time
steps in both sequences) and DTW.

Soft-DTW

Soft-DTW (Cuturi and Blondel, 2017) is a smoothed version of the original DTW
algorithm. The key advantage of soft-DTW is its differentiability, allowing for
the computation of both the loss function and its gradient. This differentiability
property enables more efficient optimisation and analysis compared to the non-
differentiable original DTW. Soft-DTW is particularly suitable for time series
clustering tasks and has been shown to outperform the original DTW (Cuturi and
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Figure 2.10: Difference in matching between Euclidean and DTW distance measures for
time series analysis. Figure from XantaCross (2011), used under CC BY-SA
3.0.

Blondel, 2017). In soft-DTW, the non-differentiable min operator is replaced with
a differentiable function, which facilitates gradient-based computations.

soft-min (a1, . . . , ak) = �g log Â
i

e�ai/g (2.9)

Soft-DTW uses a hyper-parameter g to control the smoothing of the resulting
metric. As g increases, the metric becomes smoother, approaching the limit case
of squared DTW when g approaches 0. g allows for a trade-off between alignment
flexibility and the desired level of smoothing.

Earth Mover’s Distance

The Earth Mover’s Distance (EMD) (Rubner et al., 2000) is a metric used to
calculate the dissimilarity between two probability distributions. It quantifies the
minimum "work" or effort required to transform one distribution into the other.
Originally invented for image processing applications, EMD can be applied to
measure the similarity between distributions. In image analysis, it allows images
to be compared by considering the amount of ’mass’ that needs to be moved from
one image to match the distribution of another, providing a meaningful measure
of image similarity. Beyond image analysis, EMD has applications in several fields,
including transportation and logistics, where it can be used to measure the cost
or effort required to transform one distribution of goods into another, aiding
optimisation and planning processes (Ji and Shen, 2006). The EMD is more robust

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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than other matching techniques because it tolerates a certain amount of feature
deformation, resulting in greater accuracy (Rubner et al., 2000).

Ji and Shen (2006) apply the EMD to track time-varying features by comparing
the distributions of geometric properties. Building on this approach, I have
developed a methodology for tracking atmospheric features in NWP simulations.
Unlike Ji and Shen (2006), my method does not use EMD to compare the geometric
properties of features. Instead, I use the EMD as a cost function to evaluate feature
similarities based on their physical properties. My feature tracking technique uses
EMD to evaluate the minimum cost between distributions of physical quantities
of atmospheric features, such as the distribution of thermal properties on feature
surfaces.

2.4.5 The concept of normal curves

The concept of normal curves (NCs) is not a conventional distance measure and
was introduced as a means of estimating distances within a scalar field that
undergoes temporal displacement (Pfaffelmoser et al., 2011). These NCs traverse
the surface orthogonally, following the direction of the surface’s temporal gradi-
ent. Rautenhaus (2015) uses NCs to visualise the internal structure of isosurfaces,
aiding in the identification of local extrema within the isosurface by observing
the convergence of NCs towards these points.

A NC is defined as a path along the gradient direction of a scalar field. In the
previously mentioned visualisation (Rautenhaus, 2015), where NCs are used to
visualise the internal structures of isosurfaces, NCs start from predefined points
on an isosurface. The end points of the NCs are defined by the isovalue of the
isosurface. The NCs follow the gradient of the scalar field within the isosurface
and end at the point where they would leave the isosurface. The definition of NCs
from Kern et al. (2019) is adopted in this work.

The difference S of a scalar field Y along a NC is defined as follows:

SY ⌘
Z

NC
|rhY| ds (2.10)
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This chapter introduces the reader to the fundamentals of meteorology. It provides
information on the current state of meteorological science, as well as some
historical developments in the field, particularly with regard to atmospheric
fronts and feature detection.

3.1 atmospheric structure and motion

The vertical structure of the Earth’s atmosphere is a fundamental aspect of
atmospheric science. Starting at the surface and extending up to an altitude of
around 11 kilometres, depending on the latitude, we encounter the troposphere.
This layer is characterised by a steady decrease in temperature with increasing
altitude. In particular, the troposphere is the primary domain in which the
vast majority of weather phenomena and cloud formations occur. Beyond the
troposphere is the stratosphere, ranging from approximately 11 to 47 kilometres
of height. In this region, the temperature increases with height, which is caused
by the ozone layer.

The height of the tropopause, a layer between the troposphere and stratosphere,
and the troposphere varies considerably due to temperature differences from the
equator to the poles. At the equator, the tropopause and troposphere extend to
about 18 kilometres, while at the poles they are limited to about 8 kilometres.
In the mid-latitudes, the tropopause typically occurs at an altitude of about 11
kilometres. The tropospheric structure is not static, it varies both temporally and
spatially due to ever-changing weather conditions and solar activity, making it a
dynamic and complex system that continually shapes the weather of our planet.

Figure 3.1 illustrates the global, large-scale circulation patterns within the Earth’s
troposphere. The tropospheric circulation is driven by the solar radiative heat-
ing imbalance caused by variable levels of solar radiation received at different

31
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Figure 3.1: Illustration of idealized large-scale tropospheric circulation. Figure from
Kaidor (2013), used under CC BY-SA 3.0.

latitudes. Strong solar radiation at the equator creates an energy surplus, while
relatively weak solar radiation and constant radiative cooling at the poles create
an energy deficit. The differential radiative energy is balanced by horizontal heat
transport associated with the large-scale circulation. This circulation also has a
strong zonal component due to the Earth’s rotation. Focusing on the northern
hemisphere for simplification, the general atmospheric circulation is defined by
three primary bands of circulation.

The first of these bands, also known as the Hadley cell, extends from the equator
to around 30 degrees north. In this cell, the predominant surface winds are the
north-east trade winds. At the equator, the south-easterly and north-easterly
trade winds converge, forming the Intertropical Convergence Zone (ITCZ), where
the air rises. At around 30 degrees north, an area of high pressure known as the
subtropical high prevails. These areas are characterised by subsidence, dry air,
calm winds, clear skies, and the absence of precipitation.

The second band, the Ferrel or mid-latitude cell, develops between 30 and 60
degrees north. Within this cell, transient centres of low and high pressure develop.
Low-pressure regions or cyclones typically bring severe weather conditions such
as heavy rain, high humidity, and strong winds. In contrast, high-pressure regions,
typified by fair weather conditions, are marked by clear skies, dry air, and the
absence of precipitation. These pressure systems move from west to east, resulting
in fluctuating but generally westerly winds and unstable weather. There is a
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region around 60 degrees north where a band of sub-polar lows forms near the
surface. In this region, the weather is unstable with widespread cloud cover and
precipitation.

The third band, the polar cell, forms between 60 degrees north and the pole. In
the vicinity of the poles, the polar high, a region of high pressure in climatology,
develops. Here, the sky stays clear, and the air is cold and dry.

In summary, the large scale circulation is driven by radiation imbalances and
the Earth’s rotation resulting in different characteristic regimes.

The description of atmospheric motion can be found in many textbooks. Here
I follow the description of Etling (2008) and the summary by Rautenhaus (2015)
and give a brief overview of the quantitative description of the atmosphere and its
equations of motion. The state of the dry atmospheric is quantitatively described
by the velocity vector ~v, the pressure p, the density r, and the temperature T.
The motion of the atmosphere can be described by the following six prognostic
equations.

Conservation of momentum

Conservation of momentum is a fundamental principle that describes the motion
of air particles under the influence of forces. This principle of conservation of
momentum is derived from Newton’s axiom, which states that the application of
force to a body results in its acceleration.

When considering an air particle, it is subject to several forces that affect
its motion. These forces are described by three prognostic equations and are
summarised in Equation 3.1. First, the Coriolis force, which is caused by the
rotation of the Earth; second, the gravitation force, which pulls particles towards
the Earth’s centre of mass, accelerating them downwards; third, the pressure
gradient force, which results from pressure differences within the atmosphere.

∂~v
∂t|{z}

Local wind speed tendencies

+ ~v ·r~v| {z }
Advection

+ 2W ⇥~v| {z }
Coriolis force

= � �rF| {z }
Gravitation force

� �1
r
rp

| {z }
Pressure gradient force

(3.1)

Conservation of mass

The principle of conservation of mass states that, within a unit volume, the
outflow or divergence of mass from the volume is equal to the loss of mass within
the volume. In a unit volume, the change in the local mass content is the result
of advection. According to the conservation of mass (Equation 3.2), the sum of
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advection and local mass changes must equal the negative divergence of mass
within the volume.

∂r

∂t|{z}
Local density tendencies

+ ~v ·rr| {z }
Advection

= � rr ·~v| {z }
Divergence

(3.2)

Conservation of energy

The first law of thermodynamics is a fundamental principle that describes the
conservation of energy in a system. According to the law of conservation of
energy, the change in internal energy of a closed system is equal to the sum of
the heat supplied to the system and the thermodynamic work performed by the
system. Equation 3.3 describes the conservation of energy, where cp denotes the
specific heat capacity at constant pressure and Q̇ the energy input per unit mass.

∂T
∂t|{z}

Local temperature tendencies

+ ~v ·rT| {z }
Advection

� 1
rcp

dp
dt

| {z }
Adiabatic processes

=
Q̇
cp|{z}

External heat exchange

(3.3)

Ideal gas equation

The equation for an ideal gas in a closed system can be derived from two
fundamental laws of physics. First, for an ideal gas at constant pressure p,
the ratio of volume V to temperature T is constant. Second, for an ideal gas
at constant temperature T, the product of pressure p and volume V remains
constant. Combining these two fundamental properties of gases, the ideal gas
equation (Equation 3.4) can be derived, where R is the specific gas constant and
may vary depending on the gas.

p = RrT (3.4)

The six fundamental equations describing atmospheric motion have certain
limitations and simplifications. They are generally valid only for dry air, which
means that the equations do not take water vapour into account. However,
water vapour plays a crucial role in many atmospheric processes, such as cloud
formation and precipitation, and its omission limits the system’s ability to fully
capture these phenomena. Another simplification in the equations above is the
absence of friction. Friction plays an important role in atmospheric dynamics,
particularly at smaller scales and in interaction with the surface, where it affects
the movement of air masses and the development of weather systems. Despite
these limitations, the equation system is capable of describing a wide range of
atmospheric phenomena. It can capture processes such as gravity waves, cyclones,
and sound waves. For practical weather forecasting purposes, the equations are
further simplified. Some processes, such as sound waves, are filtered out because
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their effect on the weather is considered negligible. This simplification allows
for more efficient calculation and facilitates the use of the equations in real-
time weather forecasting. For numerical weather prediction on the synoptic
scale, the equations are transformed into the p-system and into a spherical
coordinate system. The p-system uses pressure as the vertical coordinate instead
of geometric height. This choice of coordinate is advantageous for the description
of synoptic processes, as pressure is closely related to the large-scale dynamics
of the atmosphere. The p-system provides a more convenient framework for the
analysis and prediction of synoptic-scale weather patterns (Etling, 2008).

However, for some applications, it can be useful to convert pressure levels to
geometric height. This is typically done using geopotential height. If geopotential
height is not available then the height can be approximately calculated using the
barometric formula and typical values of the International Standard Atmosphere
(ISA) (DWD, 2014).

3.2 numerical weather prediction and ensemble simulations

To utilise Equations 3.1 - 3.4 for NWP prediction, they are approximated using
finite difference methods. This approximation transforms the fundamental equa-
tions into an algebraic system of equations that can be solved numerically. The
numerical solution is computed on a discrete grid.

In the horizontal plane, the grid spacing, denoted as Dx and Dy, determines the
horizontal resolution of the numerical model. Smaller grid spacing leads to higher
spatial resolution, allowing for more detailed representation of atmospheric
features and processes. The vertical dimension can also be discretised with
different methods. A common representation is vertical pressure coordinates,
where the vertical levels are defined based on pressure levels in the atmosphere.
The pressure levels are usually logarithmically spaced, with higher resolution in
the lower atmosphere where most weather phenomena occur.

Modern NWP models often use hybrid vertical coordinates that follow the
terrain in the lower troposphere. With increasing altitude, they become more and
more similar to the geometric or pressure altitude isosurfaces. Above a certain
altitude, they follow the iso-pressure or iso-geometric surfaces. The ECMWF
models use so-called hybrid sigma-pressure coordinates, while the ICON model
uses hybrid geometric coordinates.

NWP models run operationally on high-performance computers and are up-
dated frequently with the latest weather observations, in a process called data
assimilation, to produce the most accurate forecasts possible.

The accuracy of NWP diminishes substantially beyond a certain time range.
These limitations arise from the non-linear nature of the equations of atmospheric
motion and the imperfect knowledge of the initial state. Nearly similar initial
conditions can produce different results. Furthermore, NWP simulations rely on
approximations and parametrisations to represent complex atmospheric pro-
cesses, such as cloud formation and dynamics. These parametrisations introduce
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Ensembles

Figure 3.2: Schematic illustration of an ensemble forecast. Cropped figure from Met
Office (2023), © British Crown copyright, Met Office, used with permission.

additional sources of uncertainty into the forecast. The predictability limit varies,
but generally increases with the spatial and temporal scales of the meteorological
phenomena. For synoptic scales (approx. 1000 km), the predictability limit is
typically about four to five days (Coiffier, 2011).

To account for this uncertainty, ensemble simulations are used to estimate
uncertainties in the forecast. The ensemble simulation is essentially a set of
forecasts for the same area and time, but each forecast differs slightly in its initial
conditions. The ensemble forecast can be thought of as a probability density
function. Figure 3.2 illustrates an ensemble forecast schematically. When the
forecast is initialised, the difference between the individual ensemble members is
small, as it represents the perturbations of the initial forecast state. Over time, the
divergence between the individual members of the ensemble gradually increases.
An ideal ensemble forecast would represent the full range of possible weather
events, and therefore the true weather state will always be somewhere within the
ensemble spread.

3.3 extratropical cyclones and atmospheric fronts

Extratropical cyclones are a prominent and important feature of the atmosphere
and are described in many meteorology textbooks. Here I follow the comments
of Wallace and Hobbs (2006) and Stull (2017) and concentrate on extratropical
cyclones in the Northern Hemisphere. In these cyclone systems, the primary
force balance is maintained between the pressure gradient force and the Coriolis
force, as expressed by Equation 3.1. Extratropical cyclones are large-scale weather
systems characterised by low pressure near the surface, and are often associated
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Figure 3.3: Illustration of an extratropical cyclone and accompanying cyclonic features:
clouds (grey shaded areas), pressure isolines (black solid lines), near-surface
wind direction (blue arrows), and fronts. Figure from Stull (2017), used under
CC BY-NC-SA 4.0

with mesoscale fronts, strong winds, and heavy precipitation. The wind in
extratropical cyclones rotates cyclonically around the cyclone centre, while the
whole cyclone system typically moves from west to east and slightly poleward,
driven by the jet stream. Figure 3.3 illustrates an extratropical cyclone, including
features such as cloud formations, wind direction, pressure isobars, and fronts.

There is a wide variety of extratropical cyclones, and their development de-
pends on factors such as the background flow, moisture availability, and surface
characteristics, including surface temperature and roughness length (mainly
differences between land and sea). Winter conditions are favourable for the
development of strong extratropical cyclones.

Extratropical cyclones can last from a few days to about two weeks. The forma-
tion of a cyclone, called cyclogenesis, is characterised by an increase in vorticity
(spinning motion), updraft, and a decrease in surface pressure. Cyclogenesis
is controlled by three main factors. First, the updraft over the synoptic scale
causes a decrease in surface pressure. Second, pressure differences between the
cyclone centre and the surrounding regions generate strong horizontal winds
that attempt to equalise the pressure gradients. These winds blow along the
isobars, balancing the pressure gradient force and the Coriolis force. Third, sur-
face friction counteracts the Coriolis force, resulting in spiral winds near the
surface blowing towards the cyclone centre. These winds counteract the removal
of air by the updrafts. The state of cyclolysis is reached when the horizontal
convergence of spiral winds near the surface is larger than the divergence caused
by the updraft. As a result, the centre of the cyclone fills, causing the horizontal
pressure gradients to decrease and the cyclone to dissipate. Extratropical cyclones
contribute up to 85-90% of annual precipitation (Hawcroft et al., 2012) and up to
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Figure 3.4: Idealised cyclone presented by the Bergen school (Bjerknes and Solber, 1922).
Figure used with permission of the Norwegian Geophysical Society.

80% of intense precipitation events (Pfahl and Wernli, 2012) in some mid-latitude
regions.

Extratropical cyclones are accompanied by atmospheric features called fronts.
Fronts arise from baroclinic zones, which are long and narrow regions charac-
terised by strong temperature gradients over a short horizontal distance. A strong
baroclinic zone occurs in the mid-latitudes, driven by global circulations. This
is where the warm air of the Ferrel cell meets the cold air of the Polar cell (see
Section 3.1). Under certain conditions, the jet stream, strong westerly winds near
the tropopause, can cause a perturbation in the baroclinic zone, leading to the
formation of a small low-pressure system within the baroclinic zone. This phase
is known as the spin-up phase of an atmospheric front.

During the spin-up phase, warm air from the south of the baroclinic zone is
advected to the north, east of the centre of the low. Meanwhile, cold air from
the north of the baroclinic zone is advected towards the equator, west of the
centre of the low. This baroclinic zone takes on a wavy shape, called a frontal wave.
The western part of the baroclinic zone, where warm air is advected towards
colder regions, is called the warm front. The eastern part of the low centre of the
baroclinic zone, where cold air is advected towards warmer regions, is called the
cold front.

With favourable conditions in the jet stream, the low-pressure system continues
to deepen. As the warm air is forced to rise above the colder air, cloud formation
occurs. The pressure continues to drop as cyclogenesis progresses, leading to an
intensification of winds and clouds around the centre of the cyclone, forming a
vortex-shaped cloud layer. The cold front typically moves faster than the warm
front. The most intense phase of the cyclone is reached when the pressure
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Figure 3.5: Conceptual models of cyclone evolution showing lower-tropospheric geopo-
tential height and fronts (top), and lower-tropospheric potential temperature
(bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and
(III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model:
(I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-
back front, (IV) frontal T-bone and warm seclusion. Figure from Schultz
et al. (1998), their Figure 15. © American Meteorological Society. Used with
permission.

minimum at the centre of the cyclone is reached. At this point, the cold front
catches up with the warm front and forms an occluding front near the centre of
the cyclone. The dry, cold air begins to wrap around the centre of the cyclone
and the occluded front, marking the start of cyclolysis. As cyclolysis progresses,
the cyclone vorticity weakens and the central pressure begins to rise.

Frontal systems in mid-latitude cyclones were first comprehensively studied by
Jacob Bjerknes (Bjerknes, 1919; Bjerknes and Solber, 1922), a Norwegian-American
meteorologist and pioneer in weather analysis and forecasting. Bjerknes made
significant contributions to the understanding of the dynamics of mid-latitude
weather systems, including the development of the concept of atmospheric
fronts. Figure 3.4 illustrates his work in describing the general structure of
frontal systems, which is remarkably detailed given the limited availability
of observational data and the lack of modern simulated numerical weather
prediction methods at the time.

In the next decades, the study of extratropical cyclones and atmospheric
fronts continued (e.g. Anderson et al., 1955; Berggren, 1952; Bjerknes, 1930,
1935; Bjerknes and Palmén, 1937; Nyberg et al., 1942). From Bjerknes (1919) and
Bjerknes and Solber (1922), a general front model is derived, also known as the
Norwegian cyclone model (Figure 3.5a). The Norwegian cyclone model describes
the frontal development with four characteristic frontal stages:

I. Incipient frontal cyclone: A small perturbation along the polar front or
baroclinic zone initiates the formation of a frontal wave as a depression



40 meteorological background

forms. This perturbation causes a kink in the polar front, leading to the
development of warm and cold fronts.

II. Intensification: The frontal wave continues to intensify and the surface
pressure of the depression decreases. Temperature gradients become more
pronounced and changes in wind direction can be observed at the warm
front.

III. Mature stage: The frontal wave continues to intensify, accompanied by a
further decrease in pressure. At this stage, the cold front begins to catch up
with the warm front, resulting in the formation of an occluded front. The
occluded front is where the cold front overtakes the warm front and marks
the most mature stage of the cyclone.

IV. Occlusion: As the cold front continues to catch up with the warm front, the
occlusion process intensifies. The low-pressure system begins to weaken as
the cyclone and the frontal system starts to dissipate. This stage marks the
beginning of the end of the cyclone’s life.

The Norwegian cyclone model was further developed and supplemented by
Shapiro and Keyser (1990), resulting in the Shapiro-Keyser cyclone model (Fig-
ure 3.5b). Unlike the original Norwegian cyclone model, the Shapiro-Keyser
model introduces additional features as it develops. In Stage II of the Shapiro-
Keyser model, the frontal waves break, leading to significant changes in the
cyclone structure. Stage III is characterised by the formation of a T-bone structure,
where the cold front is perpendicular to the warm front. Finally, in Stage IV,
the occluded front wraps-up around the centre of the cyclone, resulting in the
formation of a warm core seclusion.

Hewson and Titley (2010) added four stages to the cyclone model proposed by
Shapiro and Keyser (1990), resulting in a total of eight stages. The first two stages,
Stage 0 and Stage 1, come before the stages of the Shapiro-Keyser cyclone model.
Stage 0 represents the initial state where the baroclinic zone is unperturbed. Stage
1, the diminutive frontal wave stage, represents the initial perturbation of the
baroclinic zone. After the first two stages, stages 2 to 5 correspond to the cyclone
stages I-IV of the Shapiro-Keyser cyclone model. The other two additional stages
follow after the stages of the Shapiro and Keyser cyclone model. Stage 6, the
mature cyclone state, is characterised by a pronounced wrap-up of the occluded
front around the cyclone centre. Stage 7, the decay stage, represents the filling of
the depression and frontolysis, leading to the dissipation of the cyclone and the
weakening of the fronts.

The cyclone models can be accompanied by coherent circulation features called
conveyor belts. The cold conveyor belt occurs ahead of the warm and occluded
fronts, usually remaining below 850 hPa. It is often associated with high wind
speeds in later stages, typically south-west of the cyclone centre. The Warm
Conveyor Belt (WCB) (see Eckhardt et al., 2004; Madonna et al., 2014) occurs
ahead of the cold front near the surface in the early stages and is also associated
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with high wind speeds. It typically ascends at least 600 hPa in the warm sector
and over the warm front, and often splits into anti-cyclonically and cyclonically
turning branches (Martínez-Alvarado et al., 2014).

The study of extratropical cyclones, their cyclonic features, and their weather
impacts continues to be a major area of investigation in current scientific research
(Dacre and Pinto, 2020; Kumler-Bonfanti et al., 2020; Raible et al., 2021; Schultz
and Vaughan, 2011; Sinclair et al., 2020; Thomas and Schultz, 2019a,b). Schultz et
al. (2019) provides a comprehensive and detailed review of a century of research
on extratropical cyclones.

3.4 front detection and feature tracking methods

Atmospheric front detection methods aim to objectively identify and locate
boundaries between air masses with distinct thermal properties. Since Renard
and Clarke (1965) introduced the first front detection algorithm, different objective
front detection methods have been developed and published. Based on Hewson
(1998, their Table 1) and supplemented with recent approaches, Table 3.1 shows
a selection of objective front detection methods. Most of the detection methods
utilise gradient-based approaches, with the TFP being the most prominent and
widely used. The TFP is employed both as a detection method and as a filter. A
filter in the context of feature detection removes features that have been detected
but are unwanted, such as a weak front. When the TFP is used as a detection
method, it identifies narrow bands of high thermal gradients rather than detecting
a frontal line directly. Manual drawing of frontal lines using the assistance of
the TFP has been employed by Renard and Clarke (1965) and Zwatz-Meise and
Mahringer (1988). Another approach, introduced by Jenkner et al. (2009), involves
further filtering the TFP to narrow the band of strong thermal gradients. With
T the temperature, q the potential T, qw the wet-bulb q, qe the equivalent q,
qv the specific humidity, u the zonal wind component, v the meridional wind
component, w the vertical wind component.

Recent advancements in front detection include the work by Niebler et al. (2022),
who utilises a Convolutional Neural Network (CNN) with a U-Net architecture
(Ronneberger et al., 2015). The CNN is trained on Fifth Generation ECMWF
Reanalysis for the Global Climate and Weather (ERA5) data and labelled polygons
of frontal lines serving as ground truth. The polygon fronts are provided by
weather services (National Weather Service of the United States) or extracted from
surface analysis charts (DWD). The CNN is trained on two distinct regions: North
America and Europe. A notable advantage of the CNN approach over traditional
thermal variable methods is its ability to handle multiple input variables, such as
temperature, specific humidity, zonal and meridional wind speed, and upward
wind speed. This allows for a more comprehensive understanding of front
dynamics. According to Niebler et al. (2022), the CNN demonstrates a critical
success rate of approximately 66.9% and an object detection rate of about 77%.
The authors claim that their approach outperforms traditional TFP front detection
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Table 3.1: Overview and summary of selected objective front detection methods.
Scheme /
Name

Vertical
level

Variable Equation Method Filter /
Masking

Renard and
Clarke (1965)

850 hPa
2-D

Potential
tempera-
ture (q)

TFP(t) =
�r|rt| · rt

|rt|

Maximum
ridge of TFP

TFP > small
positive
value

Clarke and
Renard (1966)

850 hPa
2-D

Tempera-
ture (T)

rt · r(TFP(t))
|r(TFP(t))| Zero contour Where TFP

> 0
Cahir and
Lottes (1982)

Surface
2-D

Wet-bulb
potential
tempera-
ture (qw)

|r|rt| Discard
gridboxes
with x or y
maximum

r2t < 0
r2PMSL >
0

Zwatz-Meise
and
Mahringer
(1988)

500-
850 hPa
2-D

Layer
mean
tempera-
ture

TFP(t) Maximum
ridge of TFP

Evaluation
of cloud
bands in
satellite
images

Hewson
(1998)

⇠1km
2-D

qw L(t) =
∂(|rh|rht||)s

∂s

Zero contour
of L(t)

TFP and
ABZ small
positive
value

Jenkner et al.
(2009)

700
hPa
2-D

Equivalent
potential
tempera-
ture (qe)

TFP(t) Zero contour
of TFP

r(t) >
4.5K

Kern et al.
(2019)

All
3-D

qw L(t) Zero contour TFP > 0 ,
Gradient
within
frontal
zone

Niebler et al.
(2022)

Surface
2-D

T, specific
humidity,
wind

CNN with
U-Net
architecture
(Ronneberger
et al., 2015).

Trained on
surface
analysis
charts.

-

Niebler et al.
(2023)

500 hPa
to
1000 hPa
3-D

T, specific
humidity,
wind

CNN with
U-Net
architecture
(Ronneberger
et al., 2015).

Trained on
surface
analysis charts
and extended
to various
height level.

-

Nellikkattil
et al. (2024)

All
3-D

Thermal
variable

SCAFET Geometric
shape
descriptors

Small and
weak object
filter
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methods. However, it should be noted that the network’s transferability to regions
other than those it was trained on is not straightforward, as highlighted in their
study. Building upon their 2-D front detection method, Niebler et al. (2023) extend
their approach to 3-D. The authors demonstrate that the CNN trained on surface
fronts reliably detects fronts at pressure levels ranging from 500 hPa to 1000 hPa.

Scalable Feature Extraction and Tracking (SCAFET) (Nellikkattil et al., 2024) is a
framework designed for generalised feature detection and feature tracking. This
framework relies on feature shape descriptors, allowing it to be applied to a wide
range of numerical datasets and grid structures. The authors of the framework
demonstrate that SCAFET can detect various atmospheric features, such as jet
streams, atmospheric rivers, tropical and extratropical cyclones, and sea surface
temperature fronts. The desired feature is described by a feature shape index,
which provides a quantitative description of the geometric shapes. Although
SCAFET has not yet been specifically utilised for atmospheric fronts, the initial
findings from Nellikkattil et al. (2024) are promising. Given its demonstrated
capability to detect 2-D sea surface temperature fronts and 3-D atmospheric jet
streams, it can be reasonably expected that the detection of 3-D atmospheric fronts
is within its reach. With its scalable feature extraction and tracking capabilities,
the authors claim that SCAFET can be effectively applied to a range of applications.

Feature tracking methods have been developed to understand the evolution of
features and monitor their changes over time. Feature tracking is generally done
by detecting features independently over consecutive time steps. Once the features
of two time steps are detected, feature tracking is applied. Feature tracking is a
key aspect of understanding time-varying datasets (Saikia and Weinkauf, 2017),
particularly in the field of meteorology where such time-varying datasets are
commonly generated and used. Feature tracking allows one to focus on specific
regions of interest and to systematically monitor their transformations and
interactions over time. In recent years, the field of feature tracking has developed
several approaches tailored to its specific application in meteorology (Nellikkattil
et al., 2024; Shields et al., 2018; Ullrich and Zarzycki, 2017). Feature tracking
is usually a combination of a matching algorithm and a filter. The matching
algorithm can be distance-based, or it can compare feature characteristics to
match features from the previous time step that have very similar characteristics
to features of the current time step. A filter can be some kind of region filter,
because features can only move a certain distance between consecutive time steps.
Features outside this region can then be excluded from the matching process.
The following is a brief overview of a selection of these methods, highlighting
their relevance and utility in a meteorological context.

Ji and Shen (2006) present a methodology for tracking 3-D time-varying ellip-
soids in a force field dataset using the EMD. The EMD algorithm, discussed in
detail in Section 2.4.4, facilitates the comparison of two distributions and the
computation of the matching cost between them. In their study, Ji and Shen (2006)
present a global optimisation algorithm specifically designed for tracking time-
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varying features. This algorithm is versatile, allowing the tracking of features
represented by spatial cell distributions or other forms of distributional data. In
particular, it uses the EMD as a metric to evaluate feature dissimilarity, ensur-
ing precise computation of matching costs between source and target feature
components.

Hewson and Titley (2010) present a framework that focuses on tracking cyclones
and their associated features. Their approach is designed to track features at
intervals of 12 hours or less, and introduces the concept of "half-time tracking" in
combination with feature vectors. The algorithm works by linking root features
at a given time to candidate features at the next time step. The process involves
two checks: Check 1 discards certain candidate features based on a "half-time
separation". Half-time separation interpolates feature positions between two
consecutive time steps, and features that are too far away from the interpolated
position are discarded. For the retained candidate features, Check 2 computes
a "likelihood score" derived from a 3-D feature vector. This score quantifies
the likelihood that candidate features match the root features, thus facilitating
accurate feature pairing.

Neu et al. (2013) conduct a comprehensive study evaluating various cyclone
detection and tracking algorithms. They find that most detection methods are
based on mean sea level pressure minima. An intercomparison experiment
with 15 commonly used detection and tracking algorithms highlights cyclone
characteristics that remain robust between different schemes, as well as those that
show marked discrepancies. Different tracking approaches, including nearest-
neighbour and extrapolation-based methods, are investigated. They conclude
that different methods of cyclone detection and tracking are most consistent
for the intense phase of a cyclone’s life. However, the methods diverge for the
development and dissipation phases of a cyclone.

Ullrich and Zarzycki (2017) introduce an automated pointwise feature tracking
technique that contributes to the objective identification and tracking of meteoro-
logical features, including extratropical and tropical cyclones and tropical easterly
waves. The pointwise feature tracking is designed to work on both structured
and unstructured grids. The proposed framework includes generalised kernels
inspired by existing trackers. Ullrich et al. (2021) extend this framework to include
areal feature tracking, increasing its versatility.

Shields et al. (2018) conduct a comprehensive review and comparison of
atmospheric river identification and tracking methods. Their main focus is to
examine the implications of different methods for climate studies, particularly
in terms of the climatological, hydrological, and extreme impacts attributed to
atmospheric rivers. This effort aims to elucidate the uncertainties associated with
different identification methods, thus contributing to a more comprehensive
understanding of atmospheric river behaviour.

Nellikkattil et al. (2024) develop a tracking approach similar to Hewson and
Titley’s (2010) method, but without "half-time tracking". Using positional infor-
mation for the object centre, maximum and minimum values, objects are tracked
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Figure 3.6: Illustration of a vertical cross-section from west to east through a frontal
system to illustrate the computation of the frontal slope. Sketch not to scale.

over time. The algorithm clusters objects within a pre-defined (based on physical
reasoning) radius and identifies them as the same moving object in subsequent
time steps.

The frontal slope is often cited as an important parameter in frontal analysis
(Hewson, 1998; Ward, 2020). The analysis of the frontal slope is usually carried
out visually on plots of 2-D fronts at different heights (cf. Hewson (1998), super-
position of frontal lines on a 2-D plot) or on vertical cross-sections of a thermal
variable.

The frontal slope is quantitatively defined as the ratio of the vertical extent
(lower edge, and upper edge of the front at a given location) to the horizontal
component of the distance between the upper and lower edges of the front
(Figure 3.6). The frontal slope is on average 0.01 for warm fronts and 0.03 for
cold fronts, but can vary widely (Stull, 2017). The slope is calculated relative
to the position of the frontal zone. The frontal zone is the area adjacent to the
front where the temperature changes abruptly. The slope is positive when the
front is tilted towards the frontal zone and negative when the front is tilted away
from the frontal zone. However, this definition has a decisive disadvantage: the
frontal inclination becomes infinitely large if the front is exactly perpendicular
to the ground. Under this definition, calculating the average slope of a 3-D front
surface is meaningless because there may be locations where the surface is exactly
perpendicular to the ground, resulting in an infinitely large slope.

Therefore, we calculate the average of the slope angles to estimate the average
inclination in Chapter 5. The slope of a front perpendicular to the ground is
defined as 0�, for a front parallel to the ground and tilted towards the frontal
zone as 90�, and for a front parallel to the ground and tilted away from the frontal
zone as -90�.
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This chapter introduces the three storm cases used for the application, illustration,
analysis, and evaluation of the proposed methods for front detection, front
tracking, and feature-based ensemble analysis. The purpose of this chapter is to
provide the reader with the essential context of these storm cases and a concise
overview of their impact. Where available, references to other case studies related
to these storms are included.

In addition to introducing the storm cases, this chapter also provides a detailed
description of the NWP datasets used throughout this thesis. The following three
severe storm cases are analysed throughout this thesis:

Vladiana: Cyclone Vladiana, which occurred over the Atlantic in September
2016 and is being studied extensively studied because of its connection to the
North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX)
(Schäfler et al., 2018).

Friederike: Cyclone Friederike occurred in January 2018, had a significant
impact on Europe and Germany, and stands out as one of the strongest
winter storms in recent years.

Otto: Cyclone Otto is the most recent winter storm analysed in this thesis and
occurred over Western Europe in February 2023.

In the following sections, each of these cyclones is discussed in detail, providing
relevant background information and details of the data sources used in this
thesis.

47
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4.1 vladiana

Datasets

For the analysis of the Vladiana storm, ECMWF Atmospheric Model high resolu-
tion 10-day forecast (HRES) analysis data with parameterised convection are used.
The analysis data cover the period from 23 September 2016, starting at 00:00 UTC
and ending at 18:00 UTC on the same day. The output is available at 6-hourly
intervals with a horizontal grid spacing of 0.15�. The study area is focused on the
North Atlantic region (see Figure 4.1), with 137 vertical levels defined on hybrid
sigma-pressure coordinates. To match the rotated grid of the following COSMO
simulations, the data grid is rotated to centre the North Pole at 51�N and 160�E.

In addition, convection-permitting simulations of the COSMO NWP model are
utilised. The data used in this thesis span from 23 September 2016, starting
at 00:00 UTC to 18:00 UTC. The output is available at hourly intervals with a
horizontal grid spacing of 0.02�. The study area remains consistent, covering
the North Atlantic region. Vertical levels are defined on Gal-Chen coordinates
(Gal-Chen and Somerville, 1975) with a vertical grid spacing of 60 levels. The
COSMO model output is computed on a rotated grid with the North Pole centred
at 51�N and 160�E. The initial and lateral boundary conditions are taken from
the ECMWF HRES analysis (see Oertel et al., 2019, 2020, for a detailed description
of the simulation setup). The COSMO simulation includes online trajectories
(see Miltenberger et al., 2013), which were used to select strongly ascending
trajectories with ascent rates of at least 600 hPa in 48 h, here referred to as WCB
trajectories (Oertel et al., 2019, 2020). For the evaluation of the conceptual model

Figure 4.1: Cyclone Vladiana on 23 September 2016 at 06:00 UTC. (a) Detected 2-D warm
(red line) and cold (blue line) fronts at 850 hPa, qw at 950 hPa (colours, in
K), and mean sea level pressure (black contour lines, every 2 hPa) from a
Consortium for Small-scale Modeling (COSMO) simulation (black frame shows
domain boundaries; green frame shows the selected sub-region for studying
convection in the vicinity of the cold front; see Section 5.3.3). (b) Detected 3-D
warm (red) and cold (blue) fronts between 950 hPa and 500 hPa, on top of
a horizontal map showing qw at 950 hPa and mean sea level pressure (black
contour lines, every 2 hPa). Warm- and cold-front classification is computed
according to warm- and cold-air advection at the front (following Hewson,
1998).
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of 3-D fronts and WCBs, WCB trajectories ascending at least 25 hPa in 2 h at
06:00 UTC on 23 September 2016 were selected.

Atmospheric conditions

The extra-tropical cyclone Vladiana occurred during the NAWDEX (Schäfler et al.,
2018). Vladiana formed near Newfoundland on 22 September 2016, and the
frontal wave intensified as it moved eastward across the North Atlantic. As
the cyclone continued to move north-eastward, it intensified until it reached its
pressure minimum of 975 hPa at 18:00 UTC on 23 September. On 24 September,
the cyclone reached Iceland and became stationary.

Figure 4.1 shows a horizontal section of qw with detected 2-D fronts at 850 hPa,
as well as 3-D fronts on 23 September 2016 at 06:00 UTC. The frontal analysis
of this case study builds on previous studies of Vladiana and its associated WCB
ascent (Choudhary and Voigt, 2022; Kern et al., 2019; Oertel et al., 2019, 2020).

Based on the results of Oertel et al. (2019), I examine the conceptual model
of WCB ascent in the vicinity of fronts (Section 5.3.2) and show how frontal
surfaces from convection-permitting NWP simulations compare to those found in
simulations in which convection is parametrised (Section 5.3.3).

4.2 friederike

Datasets

For the analysis of this case I use ERA5 reanalysis data from 16 January 2018, 12:00
UTC to 19 January 2018, 00:00 UTC. ERA5 data are available at hourly intervals
with a horizontal grid spacing of 0.25� and 137 vertical levels defined on hybrid
sigma-pressure coordinates. This analysis focuses on a region spanning from
eastern North America across the North Atlantic towards Europe (see Figure 4.2).

In addition to the ERA5 data, ECMWF HRES forecast data initialized on 18 January
2018, 00:00 UTC and run for 36 hours are utilised. The forecast data are provided
at hourly intervals with a horizontal grid spacing of 0.15� and 137 vertical
levels defined on hybrid sigma-pressure coordinates. The forecast area covers
eastern North America, the North Atlantic, and Europe. For the analysis of the
frontal attributes within ensemble simulations, the ECMWF enseble (ENS) forecast
initialised on 16 January 2018, 12:00 UTC, with 51 ensemble members, is used.
All members have a horizontal grid spacing of 0.25�, include 12 vertical pressure
levels, and are available in hourly resolution for the first 90 hours. In addition,
the control run (ensemble member 0) is provided with a higher vertical grid
spacing, consisting of 91 levels defined on hybrid sigma-pressure coordinates.
The ECMWF ENS forecast covers an area that includes eastern North America, the
North Atlantic, and Europe.

For the analysis of secondary frontal structures, fronts extracted from the UK
Met Office surface analysis charts supplement the ECMWF HRES forecast.
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Atmospheric conditions

The extra-tropical cyclone Friederike (named David in the United Kingdom (UK))
crossed Western Europe on 17 and 18 January 2018. The cyclone had formed
east of Florida on 15 January 2018 and then moved north along the coast of
Newfoundland before crossing the North Atlantic and making its first landfall
in Europe on the west coast of Ireland on 17 January 2018. During its passage
across the North Atlantic, the cyclone intensified, and its core pressure decreased
to 985 hPa. The cyclone moved from Ireland across northern England and the
North Sea, reaching the northern Netherlands on 18 January 2018 at 09:00 UTC
with a core pressure of 976 hPa. From there, the cyclone moved east across
northern Germany until it reached the Polish border at 18:00 UTC and dissipated
in the following days. The cyclone caused high wind speeds with gusts of up to
203 km h�1 in the Harz Mountains, 144 km h�1 on the North Sea coast of the
Netherlands, and 138 km h�1 in the lowlands of the Netherlands and central
Germany (Wandel et al., 2018). Surface analysis charts from the UK Met Office
indicate that this was a Shapiro–Keyser cyclone (Shapiro and Keyser, 1990). The
2-D front algorithm detects some of the characteristic frontal features of the
Shapiro–Keyser cyclone, including the frontal wave stage, frontal fracture, and T-
bone structure (Figure 4.2). This case allows for the first time (to my knowledge)
the extraction and visualisation of 3-D frontal structure of a Shapiro–Keyser
cyclone directly from NWP data, and enables the evaluation of time evolution
in comparison with the conceptual model (Section 5.3.4). In Section 5.3.5, I
analyse the occurrence of secondary warm frontal structures, as often seen in
surface analysis charts from the UK Met Office. I also use this case to analyse the
distribution and temporal evolution of derived frontal attributes in Section 6.2.
This analysis considers different temporal and vertical grid spacings and how
the front tracking responds to them.

Figure 4.2: Successive time steps of objective 2-D frontal structures show the temporal
development of Friederike (17 and 18 January 2018), as detected in ERA5
reanalysis data at 750 hPa and surface pressure (black lines). The displayed
time steps are approximately assigned to the four ideal development stages of
the Shapiro–Keyser cyclone model (Shapiro and Keyser, 1990). We find that
not all characteristics of the individual stages can be observed in 2-D. As shown
in Figure 5.13, 3-D front detection is required to observe all characteristics.
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4.3 otto

Datasets

For the analysis of this case I use ICON-EU-Ensemble Prediction System (EPS)
and ICON-EU NWP data provided by the DWD. The ICON-EU-EPS is the ensemble
forecast with 40 members, providing probabilistic information for the European
region. The 40 ensemble members are also referred to as ensemble members 1 to
40. In addition, the ICON-EU represents the deterministic forecast for the same
region and is referred to as ensemble member 0. This forecast was initialised on
16 February 2023, 00:00 UTC, and runs for a period of 5 days. For the first 52
hours, all variables are available in hourly time steps. After that, only a 3-hourly
output with reduced variables is provided. This forecast covers an area between
23.5°W to 23.5°E and between 29.5°N to 70.5°N. For my analysis, the forecast
data was regridded from its original unstructured triangular grid to a regular
grid with a grid spacing of 0.1°in both longitude and latitude.
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Figure 4.3: Track of the cyclone centre of winter storm Otto according to the University
of Berlin. Figure from RandomInfinity17 (2023), used under CC BY-SA 4.0.
The original image has been edited by adding date and timestamps to the
storm track.

Atmospheric conditions

The low-pressure system Otto (UK Met Office 2023, named Ulf in Germany
Wetterpate 2023) affected Europe between 16 February and 21 February 2023.
Figure 4.3 shows the track of the cyclone centre. The storm originated in the
North Atlantic and moved towards Europe, crossing Scotland in the northern
region. It then moved east across the North Sea before making landfall on the
Norwegian coast near the city of Bergen. Several weather warnings were issued

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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by national weather services for Scotland and northern England (UK Met Office
2023), Denmark (Wenande, 2023), and Germany (RBB 2023). With a maximum
wind speed of 193 km/h measured on 17 February 2023 in Cairngorm, Scotland
(Kachelmannwetter 2023), it was one of the strongest winter storms of 2023. The
winter storm Otto caused significant damage and disruption in Scotland and
northern England. Around 30,000 homes lost power and many schools were
forced to close. High winds brought down trees and damaged vehicles and
buildings (BBC News 2023).

Chapter 6 uses this case to conduct a case study on feature-based ensemble
analysis. In the case study, the cold front of Cyclone Otto is tracked and feature
attributes are derived. Based on these feature attributes, ensemble similarity
analysis in Section 6.3 and ensemble clustering in Section 6.3.2 are performed for
a period of one day.
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This chapter focuses on atmospheric front detection and its 3-D visual analysis in
weather forecasting and research. While a detailed description of the objectives
and research questions are presented in Section 1.2, a brief overview of the
primary objectives follows:

The first objective is to advance the methodology proposed by Kern et al.
(2019) for detecting 2-D and 3-D frontal structures independently of the grid
point spacing of the NWP data, facilitating cross-comparisons across different
model resolutions and scenarios. In addition, the study investigates the impact
of smoothing and filtering procedures and investigates the effects of varying
parameters on the identification of 3-D frontal structures.
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The second objective is to assess the benefits of 3-D IVA of the detected frontal
structures for the analysis of mid-latitude cyclones. The main research objectives
are to validate existing insights into 3-D dynamical structures, to identify 3-D
frontal development stages in a Shapiro-Keyser cyclone, to contrast 3-D structures
at different NWP simulation resolutions, and to compare detected 3-D frontal
structures with official UK Met Office analyses.

The chapter is structured as follows: Section 5.1 describes the methodology and
implementation of the 2-D and 3-D front detection method. Section 5.2 examines
the choice of thermal quantity, filter thresholds, and the effects of different vertical
resolutions on front detection. Finally, Section 5.3 applies the proposed front
detection method in two severe mid-latitude cyclone case studies, focusing on
3-D frontal structures.

5.1 method and implementation

Our algorithm follows the 2-D detection algorithm originally introduced by
Hewson (1998) and extended to 3-D by Kern et al. (2019). We briefly explain the
basics of the algorithm and focus on the parts that have been adapted for this
study. For further details we refer to Hewson (1998) and Kern et al. (2019). In
the following, we describe and illustrate the conceptual and mathematical basis
(Section 5.1.1), the required filtering process for frontal candidates (Section 5.1.2),
and implementation details we consider important (Section 5.1.3).

5.1.1 Conceptual and mathematical basis

Figure 5.1 illustrates the method. The goal is to detect the horizontal warm-air
“boundaries” of frontal zones, i.e. regions with a strong horizontal gradient of a
thermal variable t (black line). In the simplified 1-D example shown in Figure 5.1,
the first partial derivative of t with respect to the spatial dimension x(∂t/∂x)
changes rapidly on both the warm- and cold-air boundaries of the frontal zone,
with a maximum in between. Hence, the third derivative ∂3t/ ∂x3 can be used
to detect the locations of maximum gradient change; the locations where it is
zero and the second derivative ∂2t/∂x2 is negative coincide with the warm-air
boundary of the frontal zone (Hewson, 1998). In the general 2-D case, points on
a frontal line need to fulfil the “front location equation” (see Hewson, 1998) to
account for curved fronts and corresponding along-front thermal gradients:

Lt⌘
∂(|rh|rht||)s

∂ŝ
= 0, (5.1)

with

ŝ = ± rh |rht|
|rh |rht| | .
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Figure 5.1: Illustration of the thermal-gradient-based detection method, using a simplified
straight front and following Hewson (1998) and Kern et al. (2019). The goal
is to determine the warm-air boundary of the frontal zone (i.e. the region of
increased thermal gradient; see the yellow line). This boundary corresponds
to the third derivative (red line) of a thermal variable t (black line) being zero,
under the condition that the second derivative of t (blue line) is negative. The
cold-front typing shown assumes air masses are moving from left to right
across the figure.

Here, rh denotes the horizontal derivative, and ŝ is a unit axis (which possesses
an orientation but no direction) oriented along rh |rht|. To derive 3-D frontal
surfaces the approach is extended to 3-D as proposed by Kern et al. (2019). In
short, the front location equation Equation 5.1 is computed at every grid point
of the gridded dataset; then “candidates” of frontal features are obtained by
computing 3-D isosurfaces of Lt = 0 using a contouring algorithm such as
marching cubes (Lorensen and Cline, 1987). This results in a large number of
potential frontal surfaces; to obtain meaningful structures the feature candidates
need to be filtered according to additional diagnostics including the strength
of the thermal gradient within the frontal zone. For details, we refer the reader
to Kern et al. (2019, their Sect. 4) . Note that only the horizontal gradient of
the thermal variable is considered in this process; see Kern et al. (2019) for a
discussion on the inclusion of vertical contributions.

5.1.2 Filtering

To obtain meaningful frontal surfaces (or frontal lines in the 2-D case), the feature
candidates need to be filtered. Hewson (1998), following Renard and Clarke
(1965), suggested to filter according to the thermal front parameter TFP , as well
as to a frontal strength value estimated by the local thermal gradient at the frontal
feature. The latter was improved by Kern et al. (2019) to estimate frontal strength
by computing an average thermal gradient along “normal curves” traced through
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the frontal zone (basically streamlines computed on the gradient vector field).
Here, we generalise these two filters to more generic types of filter mechanisms
that can be interactively modified and combined during the analysis to investigate
different aspects of the data.

a. Masking. The feature candidates are filtered according to an arbitrary 3-
D scalar field that is sampled (i.e. interpolated) at all feature locations
(e.g. if isosurfaces are extracted using marching cubes, at all vertices of the
isosurface). User-defined thresholds of the scalar field are used to keep or
discard features.

b. Frontal zone traversal. The frontal zone is traversed along “normal curves”
started at feature candidate vertices and computed on the thermal gradient
field (Kern et al., 2019); an arbitrary 3-D scalar field is sampled along the
normal curves, and filtering thresholds are based on the obtained samples.

The generalization allows us, in addition to filtering with respect to TFP and
frontal strength, to add filters that facilitate focus on the contribution of further
quantities, including, for example, humidity and elevation. In this way, we can
eliminate, for example, pure “humidity fronts” by tracing the changes in (dry)
potential temperature (q) along the normal curves. TFP and frontal strength,
however, remain as the core filters.

TFP masking

TFP is a masking filter. Note that computing isosurfaces of Lt = 0 results in front
feature candidates at both the cold and the warm sides of the frontal zone. Since
we are interested in the warm side only (see Renard and Clarke, 1965), cold side
feature candidates need to be discarded. We follow the approach of Hewson
(1998) and use the TFP filter, first introduced by Renard and Clarke (1965). The
TFP filter is defined as follows:

TFPt⌘ �rh |rht| · rht

|rht|>K1, (5.2)

where K1 is a used-defined threshold. This equation can also be interpreted as
the “negative curvature” of the thermal front parameter field (Kern et al., 2019),
being positive at the warm side of the frontal zone and negative at the cold side.
To obtain only frontal feature candidates at the warm side of the frontal zone, K1
must be at least zero. Hewson (1998) suggested a slightly positive value for K1 to
eliminate spurious frontal pieces.

Frontal strength

Filters based on normal curves are evaluated for the remaining warm-air-side
frontal candidates. We follow Kern et al. (2019) and estimate the frontal strength
of the filter variable as “the average thermal gradient along a curved path through
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the frontal zone from the warm to the cold-air side”. The frontal strength filter St

is defined as follows:

St|frontal zone ⌘
Z

NC
|rht|ds > K2. (5.3)

The integration through the frontal zone starts at the warm side of the frontal
zone and stops once a “normal curve” reaches the cold side of the frontal zone
(where Lt again is zero). The threshold K2 is used to eliminate weak fronts below
a user-defined frontal strength.

Fuzzy filtering

The usage of distinct threshold values for K1 and K2 results in “hard” boundaries
of the generated features. Such visualization can be misleading since a viewer
can interpret distinct feature boundaries into the depiction (including, for ex-
ample, “holes” in the front surfaces where, for example, frontal strength is just
below the chosen threshold). For fronts, however, this is not the case, as thermal
gradients are gradually decreasing in space. Kern et al. (2019) suggested a “soft”
(or “fuzzy”) filtering by providing two thresholds for each filter, between which
opacity is faded from zero (completely transparent) to one (completely opaque).
The feature candidates are subsequently rendered using the obtained opacity,
resulting in “fuzzy” edges that visually indicate, , for example, a decreasing ther-
mal gradient. The approach can also facilitate a visual distinction between weak
fronts and strong fronts. When multiple filters are used in our implementation,
every filter has individual threshold interval settings, and opacity information is
accumulated accordingly.

5.1.3 Supported data and methodological details

The presented algorithm supports gridded data on horizontally regular and
rotated latitude–longitude grids. In the vertical, the implementation can handle
both pressure levels and model levels. For this study, we use data from the
operational ECMWF high-resolution (HRES) forecast with 137 vertical model
levels, horizontally interpolated to a regular grid with a grid-point spacing
of 0.15� in both latitude and longitude; data from the global reanalysis ERA5
(Hersbach et al., 2020) (also 137 vertical model levels, interpolated to a horizontal
grid spacing of 0.25�); and data from the COSMO model (Baldauf et al., 2011;
Doms and Baldauf, 2018), available on a rotated latitude–longitude grid with
60 vertical model levels and a horizontal grid-point spacing of 0.02�, in both
dimensions. The algorithm has been integrated into the interactive visualization
framework Met.3D (Rautenhaus et al., 2015b) and is being made available as
open-source.

In the following, we describe methodological details we deem important for
understanding our approach. Figure 5.2 illustrates the main steps of the front
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detection process. For simplicity, the process is described for 2-D frontal lines
(letters correspond to panels in Figure 5.2):

a. choice of a thermal input field t (e.g. wet-bulb potential temperature;
Figure 5.2a)

b. smoothing of t (and further input fields used for filtering) to a user-defined
length scale (Figure 5.2b)

c. computation of the magnitude of horizontal gradients |rht| (Figure 5.2c)

d. computation of the horizontal gradient of the magnitude of horizontal
gradients rh |rht| (Figure 5.2d)

e. evaluation of the front location equation Equation 5.1 and computation of
the zero isolines to obtain feature candidates (Figure 5.2e)

f. computation and application of the TFP masking filter (Figure 5.2f)

g. application of frontal strength and further “normal curve” filters (Fig-
ure 5.2g)

h. obtain final frontal structures (Figure 5.2h).

In the 2-D example in Figure 5.2, the 850 hPa pressure level is used. One important
design decision for the 3-D variant of the algorithm is the choice of the vertical
coordinate, as the numerical computations need to be implemented accordingly.
For this study, we consistently use pressure as the vertical coordinate, i.e. all
horizontal computations are evaluated on levels of constant pressure. This is also
consistent with Met.3D’s use of pressure as the vertical coordinate.

Smoothing

NWP data, especially at kilometre-scale resolution, include convective and ther-
mal processes that are much smaller in scale than atmospheric fronts (Keyser
and Shapiro, 1986). To obtain frontal features that meaningfully represent a scale
of interest (e.g. synoptic-scale fronts), it is advisable to smooth small-scale ther-
mal fluctuations in the thermal input field. Previous studies have used simple
smoothing filters like a weighted moving average of neighbouring grid points
(eg. Jenkner et al., 2009), well-known from image processing (Davies, 2017). Kern
et al. (2019) point out that for data on a regular latitude–longitude grid, however,
geometric distance between grid points varies with latitude, requiring the usage
of a smoothing filter that considers all grid points based on a specified geometric
smoothing distance. They propose the usage of a 2-D Gaussian smoothing kernel.

In our implementation, the smoothing distance is a user-defined method pa-
rameter that can be interactively changed in the analysis process. A disadvantage
of a Gaussian smoothing filter, however, is its computational complexity that
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Figure 5.2: Step-by-step illustration of the 2-D front detection method. In the example,
objective fronts are based on the 850 hPa wet-bulb potential temperature
field (qw) from the ECMWF HRES forecast (horizontally regular grid-point
spacing of 0.15� in both longitude and latitudes) initialised on 18 January 2018
at 00:00 UTC and valid on 18 January 2018 at 12:00 UTC. Fronts are “fuzzy
filtered” using a fade-out range for TFP of 0.2–0.4 K (100 km)�2 and for frontal
strength of 0.6–1 K (100 km)�1. See Sect. 2.3 for a description of panels (a)–(h).

increases quadratically with smoothing distance – an important aspect for in-
teractive use. We hence also provide an approximative smoothing method, the
“fast almost-Gaussian filtering” presented by Kovesi (2010). The method uses
a specified number of averaging passes. More averaging passes increase the
accuracy of the approximative algorithm compared to Gaussian smoothing but
at the cost of increasing computation time. Another important aspect to consider
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is that with an increased number of averaging passes the effect of “smoothing
over the data field edges” propagates further into the data field centre (Kovesi,
2010). In our implementation, the smoothing computation complexity depends
linearly on the averaging passes and the smoothing distance. We find that three
averaging passes are a reasonable trade off between accuracy, computation time,
and keeping the edged effect small. For illustration, we measured the perfor-
mance of both smoothing algorithms on six cores of an AMD EPYC 7542 32-core
processor at 2.9 GHz. In this set-up, it takes about 29.5 s to apply a horizontal
Gaussian smoothing with a smoothing distance of 100 km to a 3-D data field of
1800 ⇥ 1800 horizontal grid points with a horizontal grid spacing of 0.02�, and
31 vertical level. For the same data field, the approximative algorithm requires
3.9 s. Both algorithms are optimised for OpenMP (OpenMP Architecture Review
Board, 2015) and run in parallel.

Numerical implementation

For the computation of horizontal gradients, we use first-order finite central
differences and at boundaries first-order finite right and left differences. As
described above, we use pressure as the vertical coordinate and hence need to
adapt the computations for data available on hybrid sigma pressure model levels
or geometric altitude model levels. This leads to an additional coordinate trans-
formation term (see Etling, 2008, pp. 129–131) in the derivatives. The horizontal
gradient in pressure coordinates |p of the thermal variable t is obtained from
the partial derivative in the longitudinal direction on the original coordinate
system |s and an additional transformation term. The gradient component in the
longitudinal direction hence becomes

∂t

∂long

����
p
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∂t

∂long

����
s
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and the latitudinal component
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Care needs to be taken for the numerical implementation of Equations 5.1–5.5.
For numerical stability reasons, Hewson (1998) computed ŝ as a “five-point-mean
axis” – an average orientation axis derived from the gradient at the corresponding
grid point and at the four surrounding grid points (for details see Hewson, 1998).
We encountered challenges with this approach:

a. The studies by Hewson (1998) and Kern et al. (2019) used gridded data
with a regular horizontal grid-point spacing on the order of 50 km (0.5�) to
100 km (1�). At the time of writing, current (e.g. limited-area) NWP models
use finer grid spacings; e.g. the regional forecast model of the German
Weather Service (DWD) runs with a horizontal grid spacing of 0.02�. At
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such resolutions and depending on the smoothing distance of previously
applied smoothing, the differences between data values at neighbouring
grid cells tend to be very small – in such cases, no numerically stable
orientation of the five-point-mean axis can be obtained.

b. Analogous to the above reasons for the use of a distance-based Gaussian
smoothing filter, the dependence of geometric distance between neigh-
bouring grid points on latitude leads to inconsistent calculations of the
five-point-mean axis.

c. The distance between neighbouring grid cells depends on the grid-point
spacing of the specific dataset used. To compare fronts in different model
simulations with a different grid-point spacing it is inconvenient to use a
grid-point-based approach because the distance of the neighbouring grid
cell changes with changing model resolutions.

Instead of taking the neighbouring grid points to calculate the five-point-mean
axis, we propose using interpolated values at a specified distance to the consid-
ered central grid point. This improves numerical stability, makes the computation
independent of geographic location, and facilitates objective comparison of frontal
features obtained from NWP datasets with different grid-point spacings. From
our experiments, we find that using a distance for the five-point-mean axis
computation of half of the smoothing distance works well.

Front detection pipeline in Met.3D

The front detection algorithm is implemented in the data processing pipeline of
Met.3D described in section 2.2.1. The extension of the data processing pipeline
is shown in Figure 5.3, which illustrates the integration of additional pipeline
modules and data structures to detect objective fronts in a thermal input field. The
data pipeline modules are connected sequentially, with each module designed
to take at least one input data representation and produce at least one output
data representation that flows seamlessly into the next pipeline module. The
final representation is then passed to the renderer, which further refines the
3-D geometries through additional filtering, e.g. fuzzy filtering, resulting in the
visualisation of objective fronts. The front detection pipeline implementation
in Met.3D includes the eight pipeline modules listed below, and the data flow
between these pipeline modules is illustrated in 5.3. Filter pipeline modules are
pipeline modules that modify the input field without changing the data structure.
Source pipeline modules return data in a different structure to their input field.

1. Smooth filter: A horizontal low-pass filter that refines the input scalar
field Y by applying a specified length scale for smoothing and returns the
smoothed scalar field Y.

2. Partial derivative filter: Computes a horizontal partial derivatives of the
input field Y and returns its partial derivative e.g. ∂Y/∂x.
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Figure 5.3: Illustration of the extended data pipeline in Met.3D for objective front de-
tection. The existing pipeline module is shown in a blue box and new data
pipeline modules are shown in green boxes. Data structures are represented
by oval circles. Y represents the scalar input data field.

3. Vector magnitude filter: Computes the vector magnitude from two scalar
fields e.g. from ∂Y/∂x and ∂Y/∂x and returns its magnitude |rhY|.

4. TFP filter: Computes the TFP from the following four specified scalar input
fields: ∂Y/∂x, ∂Y/∂y, |rhY|/∂x, and |rhY|/∂y.

5. Front location equation filter: Derives and returns the front location equa-
tion scalar field FLE from the following two specified scalar input fields:
|rhY|/∂x and |rhY|/∂y.

6. Marching cubes source: Computes a triangular mesh [M] representation
of frontal surface candidates using FLE as data source.

7. Normal curves source: Computes normal curves [V] from horizontal partial
derivatives ∂Y/∂x and ∂Y/∂y.

8. Front candidates source: Aggregates the triangular mesh [M] representa-
tion of the frontal surface candidates, along with the normal curves [V],
before passing this combined data to the renderer for visualisation.
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5.2 thermal quantity, smoothing length scale , and filter param-
eters

To successfully apply front detection for case studies, three important aspects
need to be considered: which thermal quantity should be used for detection,
which smoothing distance should be applied to the data, and how do filter
thresholds need to be adjusted (also with respect to the smoothing distance)?

5.2.1 Choice of thermal quantity

We first discuss the role of the chosen thermal quantity. Three candidates have
frequently been used in the literature: (dry) potential temperature (q), wet-bulb
potential temperature (qw), and equivalent potential temperature (qe). There is
an ongoing discussion in the scientific community regarding which thermal
quantity is best suited to detect fronts (Berry et al., 2011; Hewson, 1998; Sanders
and Doswell, 1995; Schemm et al., 2018; Thomas and Schultz, 2019a,b, e.g.). The
following provides a brief overview of the potential thermal quantities and their
advantages and disadvantages.

The dry potential temperature q reflects the original, purely temperature-
dominated definition of fronts and is most convenient from a rigorous dynamical
point of view (Hewson, 1998). However, it is not conserved in moist processes,
which often occur along fronts (Browning and Roberts, 1996). Alternative ther-
mal quantities are qw or qe,which are both conserved in the reversible diabatic
processes of evaporation and condensation (Thomas and Schultz, 2019b). Since
both quantities have a one-to-one relationship (each qw value matches a unique
qe value and vice versa; Bindon, 1940), they share the same advantages and
disadvantages for front detection (Thomas and Schultz, 2019b). In the following,
we consider only qw; the arguments are similar for qe (to detect similar struc-
tures, however, the filter thresholds need to be adjusted due to the non-linear
relationship between qw and qe). The inclusion of humidity can help to better
diagnose weak temperature gradients because humidity and temperature gra-
dients are usually correlated, resulting in stronger qw gradients compared to
q gradients (Jenkner et al., 2009). However, if humidity and temperature are
not correlated, gradients of qw could be weaker than gradients of q. This may
result in qw fronts being weaker than q fronts, up to not being detected at all.
Furthermore, in regions with humidity gradients but without temperature gra-
dients, purely humidity-dominated fronts can be detected. Therefore, Thomas
and Schultz (2019b) recommended examining the temperature and moisture
fields separately when analysing frontal structures. On the other hand, Berry
et al. (2011) found that in their study qw provided the closest match to manually
prepared front analysis. In our experience, qw is best suited to detect continuous
fronts and closely matches the frontal analysis provided by the UK Met Office
(Figure 5.15). Note that some of the previously mentioned disadvantages of qw
can be eliminated in our front algorithm. To facilitate the distinction between
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humidity- and temperature-dominated fronts, the implementation allows the
mapping of different quantities on frontal surfaces, as well as the filtering of
fronts according to multiple variables. Mapping the total change in q or specific
humidity within the frontal zone could help to distinguish between humidity-
and temperature-dominated fronts. If desired, fronts can be filtered according
to q or humidity gradients within the frontal zone, which can help to eliminate
purely temperature- or humidity-dominated fronts (Hewson and Titley, 2010).

5.2.2 Recommendations for filter thresholds and sensitivity of fronts to different smooth-
ing length scales

The number of detected frontal features depends on filter thresholds and the
smoothing length scale applied to the input fields. Depending on the scale of
interest for the analysis, the horizontal smoothing length scale is chosen. The
question arises of which filter thresholds for TFP and frontal strength filters should
be recommended and how these values depend on the smoothing length scale.
In this section, we explore these method parameters and provide recommenda-
tions. We first investigate how smoothing length scale affects the magnitude and
distribution of TFP values, and then we consider the magnitude and distribution
of frontal strength |rhqw|. We present distributions of TFP and frontal strength
obtained from 24 consecutive time steps of hourly ECMWF HRES forecast data
on 18 January 2018 (initialised at 00:00 UTC) in a geographic region encompassing
30� N–70� N in latitude and 60� W–30� E in longitude (slightly larger than the
region shown in Figure 5.2). The presented distributions provide guidance on
the choice of suitable values for different smoothing length scales.

Dependence of filter thresholds K1 and K2 on smoothing length scale

Figure 5.4 shows the relative frequency of TFP values in the analysed area and for
three different horizontal smoothing length scales of 100, 50, and 30 km. Large

Figure 5.4: Distribution (relative frequencies) of thermal front parameter (TFP ) values
computed from hourly ECMWF HRES forecast data (horizontal grid-point
spacing of 0.15�) from 18 January 2018, in the region 30� N–70� N, 60� W–30� E
and between 950–500 hPa for different smoothing length scales: (a) 100 km,
(b) 50 km, and (c) 30 km.
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horizontal smoothing length scales result, in general, in lower TFP values and vice
versa. With large smoothing applied, strong horizontal gradients are weakened,
resulting in smaller horizontal gradients. The magnitude of the horizontal gra-
dients is inversely proportional to the length scale of the horizontal smoothing,
and the filter thresholds need to be adjusted accordingly. Table 1 provides our
recommendations for fuzzy TFP filter thresholds for the discussed smoothing
scales.

Figure 5.5 shows the relative frequency of |rhqw| for the same smoothing
length scales as above, although this time only considering values at grid points
within the frontal zone (i.e. where Lt (Equation 5.1) > 0). The same effect en-
countered for TFP can be observed, and the horizontal smoothing length scale
alters the relative frequency of |rhqw| as well. In general, |rhqw| decreases with
increasing horizontal smoothing length scale. As for TFP , it is necessary to adapt
frontal strength filter thresholds to the chosen horizontal smoothing length scale.
Table 5.1 provides guidance.

Figure 5.5: Distribution (relative frequencies) of |rhqw| within frontal zones between 950–
500 hPa (same data, time, and region as in Figure 5.4) for different smoothing
length scales: (a) 100 km, (b) 50 km, and (c) 30 km.

Example: impact of filtering and smoothing on detected frontal features

As mentioned above, NWP data at kilometre-scale resolution includes convective
and thermal processes that are much smaller in scale than atmospheric fronts
(Keyser and Shapiro, 1986). If the focus of an analysis is on large-scale frontal fea-
tures, e.g. for large-scale weather analysis, the thermal variable can be smoothed
with a distance between 50 and 100 km. If smaller-scale frontal surface phenom-
ena, e.g. surface precipitation, are of interest, the smoothing distance can be
reduced to a few kilometres. However, it should not be less than the grid spacing
of the thermal input variable. In the following, we demonstrate how different
smoothing length scales and filter thresholds impact the resulting frontal features.
In particular, we show how different frontal strength filters can help distinguish
between different front types (temperature- and humidity-dominated fronts).

Figure 5.6a extends the 2-D visualization of Figure 5.2h to 3-D, depicting the
full 3-D structure of the frontal surfaces. We would also like to point the reader to
the Video supplement (Beckert et al., 2022c). We consider the interactive use of
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Figure 5.6: From 2-D to 3-D objective fronts. Same data as in Figure 5.2 (18 January 2018,
12:00 UTC) but showing the full 3-D structure of frontal surfaces in the lower
and middle atmosphere. All circles and arrows denote features discussed
in text. (a) 850 hPa frontal lines from Figure 5.2h with 3-D frontal surfaces
between surface and 500 hPa, viewed from the top. (b) Same as (a) but from
a tilted viewpoint looking north. (c) Same as (b) but with additional fuzzy
normal curve filter of q between 0.6–1 K (100 km)�1. (d) Same as (c) but
viewed from west. Cross section shows q and |rhq|. (e) Same as (b) but with
additional fuzzy normal curve filter of specific humidity between 0.1–0.2 g
(kg 100 km)�1. (f) Same as (e) but viewed from west. Cross section shows
q and |rhq|. (g) Input field smoothed to a horizontal length scale of 30 km
with same filtering applied as in (a). (h) Same as (g) but with adapted filter
settings for TFP between 1.5–2.5 K (100 km)�2 and frontal strength between
1.2–2.2 K (100 km)�1.

the presented method as a key aspect of 3-D analysis, and the video provides an
impression of the additional benefit gained through interaction.

The 3-D depiction in Figure 5.6a reveals further frontal structures such as the
large-scale frontal surface in the north (marked with a black arrow in Figure 5.6b),
which is located above the 850 hPa level and could easily be missed in a 2-D
analysis. Not missing such potentially interesting structures is a key benefit of
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3-D front detection compared to 2-D detection. Figure 5.1c–d show temperature-
dominated fronts, obtained by applying an additional normal curve filter of q with
a fuzzy threshold interval of 0.6–1.0 K (100 km)�1, the same value range used for
qw (see Figure 5.2). This filter discards all humidity-dominated fronts. Note that
the interactive adjustment of the filter is also illustrated in the Video supplement
(Beckert et al., 2022c). The blue circle in Figure 5.6c highlights an area of the
cold front – note how upper-level parts (lighter green, towards the south) are
discarded when the humidity contribution is filtered. The vertical cross-section in
Figure 5.6d shows q and |rhq|, with the black arrow pointing at the area of the
filtered-out upper-level humidity-dominated front. The vertical cross-section also
shows no temperature gradients, consistent with the interpretation that this is a
humidity-dominated front. In Figure 5.6e–f a normal curve filter using a specific
humidity filter is applied instead, shifting focus to humidity contribution and
discarding temperature-dominated gradients in qw. In other words, temperature-
dominated fronts are filtered out. The black circle in Figure 5.6e marks an area
where a large-scale upper-level front is almost entirely discarded.

Finally, Figure 5.6g shows the impact of decreasing the smoothing length
scale from 100 to 30 km. This reveals frontal features on a different length scale.
However, without adjusting the filter thresholds, the resulting fronts become
cluttered. Figure 5.6h shows the same fronts as in Figure 5.6g but with adapted
filter thresholds to compensate for the reduced horizontal smoothing length scale.
Due to reduced smoothing, the smoothness of the frontal surfaces is reduced.
Especially at the cold front, fluctuations in qw cause less-continuous fronts (red
circle). In addition, the reduced smoothing reveals other frontal features on
smaller scales; for example, the wrap-up of the occluded front around the cyclone
centre is more pronounced (orange arrow). Our recommendations for appropriate
filter parameter intervals for different smoothing scales are summarised in Table 1
and are used throughout the paper, except where noted.

Table 5.1: Fuzzy frontal filter threshold recommendations for different smoothing
length scales.

Smoothing length TFP Frontal strength Scale of detected
scale (km) (K (100 km)�2) |rhqw| and frontal features

|rhq| (K (100 km)�1)
100 0.2–0.4 0.6–1.0 ⇠ larger than 500 km
50 0.4–0.8 1.0–1.6 ⇠ 200–500 km
30 1.5–2.5 1.2–2.2 ⇠ below 200 km

5.2.3 Impact on reduced vertical resolution

An estimation of the minimum vertical level in NWP data for front detection may
be helpful, as in some cases only limited vertical levels are available. Therefore,
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Figure 5.7: Impact of the vertical resolution on detected fronts. (a) original vertical reso-
lution of ECMWF with 137 vertical level. (b) vertical level retained to 68 level.
(c) vertical levels retained to 28 levels.

the effect of different vertical levels on the detected fronts is illustrated by an
example. Figure 5.7 replicates Figure 5.6, showing the impact of decreasing verti-
cal resolution in the ECMWF forecast data, which originally included 137 vertical
levels. As expected, a reduction in vertical resolution results in reduced visibility
of detail. The interconnected frontal surfaces visible at 137 levels (Figure 5.7a)
become fragmented as the vertical resolution decreases. In particular, the blue
encircled fronts in Figure 5.7c illustrate this effect: while halving the vertical
resolution (from 137 to 68) has little effect, a further reduction to 28 levels (Fig-
ure 5.7c) leads to a breakdown of structures. Note that, similar to other figures
in this thesis, only fronts in the lower troposphere (900 to 500 hPa) are shown,
corresponding to about 24 vertical levels of the original 137. Halving the vertical
resolution results in about 12 vertical levels between 900 hPa and 500 hPa, and at
the lowest resolution shown in Figure 5.7c, only 5 vertical levels remain for front
detection.
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5.3 case studies

We illustrate how meteorological analysis can be performed using 2-D and 3-D
front detection by investigating two case studies of extra-tropical cyclones. The
first case, Cyclone Vladiana, occurred in the North Atlantic in September 2016. In
Section 4.1 of Chapter 4 describes the synoptic situation and the data used for our
analysis. For Vladiana, we examine the conceptual model of WCB ascent in the
vicinity of fronts (Section 5.3.2) and show how frontal surfaces from convection-
permitting NWP simulations compare to those found in simulations in which
convection is parametrised (Section 5.3.3). The second case, Cyclone Friederike,
took place in western Europe in January 2018 (introduced in Section 4.2 of
Chapter 4). For Friederike, we examine the development stages of a Shapiro–
Keyser cyclone in 3-D (Section 5.3.4). Additionally, we compare our results to
fronts analysed by the UK Met Office to discuss secondary fronts as often shown
in surface analysis charts of the UK Met Office (Section 5.3.5). Before introducing
our case studies, we briefly revisit the underlying meteorological theory in
Section 5.3.1.

5.3.1 Meteorological theory

The frontal structure of extra-tropical cyclones is a key feature for the analysis
of their development. Typically, extra-tropical cyclones are classified as either
classical Norwegian cyclones (Bjerknes, 1919) or (the later proposed) Shapiro–
Keyser cyclones (Shapiro and Keyser, 1990). The development of both cyclone
types is classified into four characteristic stages. A cyclone first develops along
a frontal wave as a small disturbance near the surface (stage I in both models).
Meanwhile, this disturbance strengthens and extends to higher elevations, and
the cyclone starts to rotate cyclonically and forms a warm sector (stage II). In
stage II the warm sector has its maximum size and maximum energy conversion.
For Norwegian cyclones the displacement speed of the cold front is faster than of
the warm front, and the warm sector diminishes (stage III). The fronts occlude
forcing the air to rise before the cyclone finally dissipates (stage IV). In contrast,
a Shapiro–Keyser cyclone develops a frontal fracture in stage II separating the
cold front from the warm front. While the cold front is usually weaker than in
Norwegian cyclones (Schultz et al., 1998), the warm front is north of the cyclone
centre and starts wrapping around it bending backwards and hence is also called
bent-back front (stage III). This stage is also called “T-bone structure”. With the
warm front wrapping around the cyclone centre, a warm seclusion occurs (stage
IV) before the cyclone decays. More recent literature proposes an extension of
the four stages by three additional stages: the diminutive frontal wave stage and
frontal wave stage which occur before stage I and a decay stage after stage IV
(Hewson and Titley, 2010). However, in this publication we focus on the initially
proposed four stages of the Shapiro–Keyser cyclone model.
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Both cyclone models can be accompanied by coherent circulation features called
conveyor belts. The cold conveyor belt occurs ahead of the warm and occlusion
front, usually remaining below 850 hPa. It is often associated with high wind
speeds in later stages, typically south-west of the cyclone centre. The WCB (see
Eckhardt et al., 2004; Madonna et al., 2014) occurs ahead of the cold front near the
surface in early stages and is also associated with high wind speeds. It typically
ascends at least 600 hPa in the warm sector and over the warm front and often
splits into anticyclonically and cyclonically turning branches (Martínez-Alvarado
et al., 2014).

5.3.2 The 3-D examination of conceptual model: fronts and warm conveyor belt

Figure 5.8: Conceptual model of fronts and WCB showing large-scale ascending and
descending air in the vicinity of an extra-tropical cyclone. Figure adapted
from Stull (2017), used under CC BY-NC-SA 4.0.

Conceptual models and simplified illustrations are frequently used to explain
the relation and dynamics of fronts and the WCB. Figure 5.8 shows an example
of such an illustration in 2-D, but a more sophisticated 3-D representation can be
found, for example, in Martínez-Alvarado et al. (2014, their Figure 1). However,
subsequent studies of these 3-D atmospheric features are usually conducted
by means of horizontal or vertical 2-D slices through NWP data, and it is less
common to use a 3-D representation of 3-D atmospheric features (Rautenhaus
et al., 2018). In this section, we demonstrate the use of 3-D front detection to
visualise such conceptual models against NWP data by directly representing
these features in 3-D.

Figure 5.9a–c show the evolution of 3-D fronts from 03:00 to 09:00 UTC on
23 September 2016 of Vladiana, together with a selection of WCB trajectories

https://creativecommons.org/licenses/by-nc-sa/4.0/
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that ascend at the selected times. During this period the frontal system moves
eastwards. At 03:00 UTC the selected WCB trajectories are located in the lower
troposphere near the surface in the warm sector and move along the cold front
in a north-eastward direction (Figure 5.9a). At 06:00 UTC most of the WCB
trajectories are in their ascent phase (Figure 5.9b), and at 09:00 UTC the majority

Figure 5.9: (a–c) Temporal evolution of 3-D frontal structures and WCB trajectories of
Vladiana on 23 September 2016. (d) Same time as (b) but only fast-ascending
WCB trajectories (minimum 200 hPa within 2 h) are displayed for a period
of 48 h. (e) Same as (d) but only slow-ascending WCB trajectories (less than
200 hPa within 2 h) are displayed. (f) Same time as (c), jet stream (yellow
isosurface of 50 m s�1 wind speed) and WCB trajectories are displayed for a
period of 48 h. For the full temporal development of this scene, see the Video
supplement (Beckert et al., 2022a).
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of the WCB trajectories have risen above 500 hPa (Figure 5.9c). The selected
trajectories have different pathways for their ascent: some rise directly at or ahead
of the cold front, and others rise above the warm front. While trajectories rapidly
increase in altitude when lifted spontaneously at the cold front, trajectories at the
warm front ascend more slowly and gradually. In Figure 5.9d–e the difference
between cold-frontal and warm-frontal ascent is emphasised. Figure 5.9d shows
frontal surfaces at 06:00 UTC, together with 48 h WCB trajectories with maximum
ascent rates faster than 200 hPa within 2 h. Most of these fast-ascending WCB
trajectories ascend at the cold front. In contrast, trajectories at the warm front
ascend more slowly, with maximum ascent rates below 200 hPa in 2 h (Figure 5.9e).
In the upper troposphere, the WCB splits into two outflow branches: a cyclonic
branch which turns westward and an anticyclonic branch which turns eastwards.
WCB trajectories ascending ahead of the cold front tend to take the anticyclonic
outflow, while warm-frontal WCB trajectories tend to take the cyclonic outflow.
We hypothesise that trajectories that rapidly ascend at the cold front experience
jet wind speeds earlier following the anticyclonically turning jet stream and are
thus deflected into the downstream ridge (see Figure 5.9f). The 3-D visualization
corroborates the conceptual model of how WCB ascent relates to fronts and
highlights the presence of smaller-scale convective ascent structures embedded
in the WCB discussed in recent studies (see Blanchard et al., 2020; Oertel et al.,
2019, 2020; Rasp et al., 2016). The 3-D visualization of rapidly and more slowly
ascending high-resolution WCB trajectories further shows their similarity to the
so-called “escalator–elevator” concept of WCB-embedded convection which was
proposed by Neiman et al. (1993) to distinguish between fast ascent and more
gradual frontal upglide. By looking at the 3-D structure of the trajectories, this
concept appears suitable for this case study.

5.3.3 Cold-front structure in the vicinity of convection

Here we compare fronts of convection-permitting NWP simulations with fronts
in simulations where convection is parametrised, using Vladiana as an example.
We focus on the southern end of the cold front (green box in Figure 4.1) where
mid- and small-scale convection occurs in this WCB. Oertel et al. (2019) highlight
(embedded) convection with lightning near the trailing edge of the cold front on
23 September 2016 at 06:00 UTC. To detect mid-scale frontal features induced by
convection the input field qw is smoothed to a horizontal length scale of 50 km
and filtered according to TFP , qw, and q (see Table 5.1). Figure 5.10 shows detected
2-D fronts at 850 hPa together with fronts of UK Met Office surface charts, at
700 hPa and at 500 hPa. The yellow dot at the southern end of the cold front
marks the position of the observed embedded moist convection. The COSMO
simulation shows strong ascending motion in this region at all plotted vertical
levels (Figure 5.10d–f). In contrast, in the ECMWF data (Figure 5.10a–c) where
convection is parametrised, the vertical velocity field shows no significant local
maximum. The detected cold front of both simulations follows the cold front of
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Figure 5.10: Convection and frontal structure on 23 September 2016 at 06:00 UTC. Region
corresponds to green sub-area in Figure 4.1. ECMWF analysis (a, b, c) and
COSMO analysis (d, e, f) at (a, d) 850 hPa, (b, e) 700 hPa, and (c, f) 500 hPa.
Objective 2-D fronts (blue tubes) are shown along with UK Met Office fronts
(red tubes), qw (colour), |rhqw| (grey shades), and upward air velocity
(contour lines: orange is upwards, black is zero, and green is downwards;
contour line spacing is 0.02 m s�1).

the UK Met Office surface analysis chart. However, in the vicinity of convection
and at 850 hPa the cold front of the COSMO simulation breaks apart, while the
cold front detected in ECMWF is a continuous line. At 700 hPa the cold front
detected in ECMWF data is weak and broken, while the cold front detected in
COSMO data is a continuous line. At 500 hPa the cold front is shifted towards
north and is less continuous in the COSMO data compared to ECMWF data.

Figure 5.11 shows the corresponding 3-D frontal structures. In the area where
convective vertical motion differs between the two simulations, a gap can be
observed in the frontal surface between 700–600 hPa in the ECMWF data, whereas
the frontal surface is present in the COSMO simulation (red circle in Figure 5.11a–
b). These kinds of gaps in the cold front have been observed in earlier studies
(Geerts et al., 2006) and were associated with weaker temperature gradients at
this elevation range. The time evolution of the COSMO 3-D front (Figure 5.12)
suggests that the intensification of the mid-level cold front is a transient feature
that occurs at the time of convection, which is associated with strong horizontal
convergence (Figure 5.11c–d), and disappears as soon as the convection weakens
again. In simulations where convection is parametrised, however, the convection
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Figure 5.11: The 3-D view of the 2-D frontal structures from Figure 5.10. (a) 2-D objective
fronts (blue tubes) at 850, 700, and 500 hPa (see Figure 5.10) in the context of
full 3-D frontal structures, as found in ECMWF data. (b) Same as (a) but for
COSMO data. Red circles in (a) and (b) mark the differences in the frontal
surfaces. Contour lines on all surface maps represent upward air velocity at
700 hPa (orange is upwards, black is zero, and green is downwards; contour
line spacing 0.02 m s�1). (c) ECMWF 3-D fronts and vertical section of wind
divergence (colour), qw (coloured contour lines, spacing 1 K), and q (black
contour lines, spacing 5 K). (d) Same as (c) but for COSMO data.

scheme may not activate at that time and location. Additionally, the feedback
of the convection scheme on the grid-scale variables may differ from their ex-
plicit model representation (as shown in this example). We hypothesise that the
model representation of convection and/or simulation grid spacing influences
the feedback and interaction between convection, frontogenesis, and detailed
frontal structures. The investigation of this relation between frontal structure,
qw gradient, and convective ascent, however, will require more detailed and
systematic analyses that are beyond the scope of this study.

5.3.4 The 3-D examination of conceptual model: Shapiro–Keyser cyclone

Figure 5.13 extends the 2-D frontal analysis of Friederike shown in Figure 4.1
and shows the temporal development of the 3-D structure. In 3-D, the typical
characteristics of a Shapiro–Keyser cyclone (Shapiro and Keyser, 1990) with its
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Figure 5.12: Temporal evolution of 3-D frontal structures in Figure 5.11, detected from
(left) ECMWF analysis and (right) COSMO analysis. Contour lines projected
onto the surface show upward air velocity at 700 hPa (orange is upwards,
black is zero, and green is downwards; contour line spacing of 0.02 m s�1).
The yellow pole marks the centre of the convective updraft at 06:00 UTC,
and the red arrow points northward.
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Figure 5.13: Temporal evolution of 3-D frontal structures of Friederike (16 to 19 January
2018), as detected in ERA-5 reanalysis data. (a) Different cyclone stages
encountered along the cyclone track. Yellow poles mark centres of surface
low, and front colours distinguish time steps. (b) The six stages from (a),
approximately centred around the cyclone centres for comparison of frontal
structures. Blue arrows mark frontal fracture, yellow arrows mark warm-core
frontal seclusion, and contour lines show surface pressure (spacing 2 hPa).

distinctive frontal T-bone structure and the four cyclone stages can be observed
well. However, at different elevations the four stages, as described in Schultz and
Vaughan (2011), occur at different times.

• Red and orange front: stage I, incipient frontal cyclone. A perturbation of the
frontal structure is already present in the upper atmosphere. This distur-
bance will later develop into the frontal wave. However, the frontal surface
in the lower atmosphere is unperturbed.

• Orange, yellow, green front: stage II, frontal fracture. The timing of frontal
fracture strongly depends on the vertical level. In the lower troposphere the
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Figure 5.14: Temporal evolution of 3-D frontal structures of Egon (12 to 13 January 2017),
as detected in ERA-5 reanalysis data. (a) Different cyclone stages encountered
along the cyclone track. Yellow poles mark centres of surface low, and front
colours distinguish time steps. (b) The six stages from (a), approximately
centred around the cyclone centres for comparison of frontal structures.
Contour lines show surface pressure (spacing 2 hPa).

cold front is separating from the main front. In the upper troposphere, a
connection between the cold front and the main part of the frontal surface
still exists.

• Green and blue front: stage III, bent-back warm front and frontal T-bone structure.
At lower levels, the cold front lies almost perpendicular to the warm front,
showing the typical Shapiro–Keyser T-bone structure. Interestingly, the
upper part of the cold front also bends slightly towards the south, following
the lower part of the cold front, but a connection to the warm front remains.
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• Blue and purple front: stage IV, warm-core frontal seclusion. The warm front
wraps up around the warm air near the cyclone centre. The separated
lower part of the cold front moves further south, and the upper cold front
dissipates.

In this example, uniquely assigning the 3-D frontal structure at specific time steps
to the Shapiro and Keyser stages is not possible. As described, frontal evolution
does not occur synchronously at all elevations, creating a temporal offset of the
stages at different elevations. We could also not find a height level where the 2-D
fronts could be uniquely assigned (see Figure 4.2). It is important, however, that
the 3-D front detection can detect all the characteristic structures of the Shapiro–
Keyser model, even though a one-to-one assignment to the stages is not possible.
Another example of the 3-D frontal development with typical characteristics of a
Shapiro–Keyser cyclone, Cyclone Egon (11–13 January 2017; Eisenstein et al., 2020,
is shown in Figure 5.14. Again, the visual analysis shows that frontal evolution
does not occur synchronously at all elevations, creating a temporal offset. For
example, frontal fracture does not occur at all elevations simultaneously. The time
step on 13 January 2017 at 00:00 UTC shows the development of the bent-back
warm front in upper levels, whereas the frontal fracture is not yet complete near
the surface. These examples suggest a more nuanced view of the Shapiro–Keyser
model, where there is a significant 3-D component to the evolution of a cyclone
through the different stages of the conceptual model.

5.3.5 Secondary fronts

Secondary fronts are commonly analysed by the UK Met Office and seen in
their surface analysis charts. Beside other variables, the UK Met Office uses the
wet-bulb potential temperature as the primary thermal variable for their front

Figure 5.15: Comparison of UK Met Office fronts with objective fronts for case Friederike
(18 January 2018, 12:00 UTC). (a) UK Met Office surface analysis chart. Blue
box marks analysed area. (b) Objective 850 hPa 2-D fronts (blue lines) as
detected from ECMWF HRES qw (colour; grey shading shows |rhqw|), UK
Met Office fronts (red lines), and mean sea level pressure (black contour lines,
spacing 2 hPa). (c) Same as (b) but objective 2-D fronts (green lines) based on
q. The secondary front (black arrow) is only detected when using qw. When
based on q, the cold front (blue arrow) breaks up and is less continuous
compared to the cold front based on qw.



5.3 case studies 79

Figure 5.16: The 3-D view of Figure 5.15b–c. Red tubes show UK Met Office fronts, and
3-D objective fronts are coloured according to pressure elevation. Objective
fronts based on (a) qw and (b) q. The secondary front (black arrow) is a
feature of qw and only occurs around 850 hPa. Yellow poles are to aid spatial
perception. Compare the animated version in the Video supplement (Beckert
et al., 2022b).

detection in surface analysis charts (Neil Armstrong, UK Met Office, personal
communication, 2022). In this section, we consider a secondary front which
occurs ahead of the warm front of Friederike. We investigate if the front detection
algorithm can detect such secondary fronts and how secondary fronts depend
on the detection variable. Red tubes in Figure 5.15 show the positions of fronts
analysed by the UK Met Office for 18 January 2018 at 12:00,UTC. The most
eastward front, extending from north-east Italy up to the southern border of
Denmark, is a typical secondary warm front as often analysed by the UK Met
Office. Figure 5.15b shows fronts detected in qw at 850 hPa (blue tubes). In general,
the structure of fronts detected in qw agrees well with fronts of the UK Met Office,
despite some smaller differences. In particular, the secondary front detected in qw
is shorter in its horizontal extent, and the wrap-up of the occluded front around
the cyclone centre is more pronounced.

Figure 5.15c shows fronts detected in q at 850 hPa (green tubes). There is no
indication for secondary fronts in this analysis, as no strong horizontal gradients
of q are present in this area. Hence, the presence of the secondary front detected
by qw results from moisture gradients. Furthermore, the structure of the primary
fronts is less continuous and deviates more from the UK Met Office analysis.
Figure 5.16 shows the 3-D frontal surfaces of qw (Figure 5.16a) and q (Figure 5.16b).
The 3-D frontal structure illustrates that the secondary front detected in qw is
a shallow atmospheric feature and is only present in the lower troposphere at
around 850 hPa. For this case study we conclude that the lower-atmospheric
secondary front is a moisture feature and thus can only be detected in a variable
that includes humidity formation. Furthermore, qw as the detection variable
results in more-continuous fronts compared to q. We again would like to point
the reader to the Video supplement (Beckert et al., 2022c), which illustrates
the benefit of interactive exploration and analysis of the detected fronts within
Met.3D.
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Impact on surface weather from secondary front

In the ECMWF HRES forecast data, a total column rainwater content signature is
observed near the secondary cold front, as indicated in Figure 5.17. Additionally,
a review of a UK radar image, though not displayed here due to copyright con-
straints, reveals a fragmented convective rain band in the vicinity of the secondary
cold front over the UK. Although significant surface weather is observable, there
is no conclusive evidence to establish a direct link between this convective rain
band and the secondary cold front. Therefore, further investigation is considered
necessary to confirm any possible link between the two phenomena.

Figure 5.17: Total column rain water and 3-D fronts of ECMWF HRES simulation on 18
January 2018, 12:00 UTC, initialised on 18 January 2018, 00:00 UTC. (a) 3-D
fronts and total column rain water. (b) Total column rain water. The orange
circle highlights the position of the secondary cold front shown in (a).
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Clustering of NWP ensemble simulations is a widely used tool in weather fore-
casting and atmospheric research to derive representative weather scenarios and
to analyse forecast uncertainties based on scalar fields (e.g. Ferranti and Corti,
2011; Kumpf et al., 2018). A review of common ensemble analysis and clustering
techniques in atmospheric science can be found in Wilks (2019). In this chapter,
I design, develop and apply an approach to order and cluster ensemble simu-
lations based on similarities of 3-D atmospheric fronts. 3-D atmospheric fronts
are represented by 3-D surfaces. To my knowledge, an approach of using 3-D
atmospheric features, in particular 3-D fronts represented by 3-D surfaces, to
cluster ensemble simulations has not been proposed yet. The objectives of this
method are described in detail in Section 1.2. However, a brief summary of the
main objectives is given here. The objective is to design and develop a method for
isolating and tracking 3-D atmospheric fronts. From the tracked 3-D fronts, time
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series of 1-D feature attributes are generated for each ensemble member of NWP
ensemble simulations. These feature attribute time series are then ordered and
clustered based on their similarities. Can such an approach lead to meaningful
clusters and enhance the meteorological analysis of ensemble simulations?

This chapter is structured as follows: Section 6.1 describes methods developed to
isolate, track, and characterise 3-D fronts based on feature attributes. Section 6.2
analyses the derived frontal attributes and examines their suitability for automatic
front tracking. Based on two case studies of NWP ensemble simulations, a feature-
based ensemble time series similarity analysis and a feature-based clustering of
ensemble simulations are presented in Section 6.3 and Section 6.3.2, respectively.

6.1 methodology : feature tracking and feature time series anal-
ysis

To generate time series of frontal attributes and subsequently sort and cluster
these time series based on their similarities, it is necessary to track the front
of interest over time. To track objectively detected 3-D fronts, the previously
presented objective front detection method (see Section 5.1) is slightly adapted.
Subsequently, 1-D feature attributes are derived that characterise the physical
and geometrical properties of 3-D fronts. These 1-D frontal attributes are then
computed for each time step of a manually tracked 3-D front and represent the
temporal evolution of the frontal characteristics.

This section is structured as follows: a manual front tracking method, including
adaptations of the objective front detection method, is presented in Section 6.1.1.
The computation of frontal attributes is described in Section 6.1.2 and an auto-
mated front tracking method is proposed in Section 6.1.3. A detailed workflow
example is presented in Section 6.1.5.

6.1.1 Manual front tracking

To implement front tracking, the objective 3-D front detection method introduced
in Section 5.1 is adapted and extended by three additional data pipeline mod-
ules. First, the fuzzy front filtering (see Section 5.1.2) is replaced by hard filter
thresholds. Second, the computation of contiguous 3-D front surfaces. Third, the
implementation of an interactive front selection method, including the handling
of front splitting and merging events. The implementation details for all four
adaptations and extensions of front detection are given below.

3-D front filter

The initial implementation for filtering front candidates includes fuzzy filtering
of the 3-D front. Unwanted front geometries are not filtered out, but are made
transparent or semi-transparent based on fuzzy filter thresholds applied during
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(a) (b)

Figure 6.1: Comparison of 3-D fronts with (a) fuzzy-filter thresholds and (b) hard filter
thresholds.

the rendering process. In addition, the filtering process for the most prominent
front filters (TFP and frontal strength filter) is implemented on the GPU. The
GPU implementation significantly improves filter efficiency while maintaining
interactivity.

However, this filtering technique has two disadvantages when implementing
the selection of individual fronts and the definition of frontal attributes. Firstly,
a frontal surface is not defined with a clear boundary and its geometry is not
separated from other frontal surfaces. The transparency mapping during the
rendering process causes fronts to appear only as separate structures, but fronts
removed by filters are not removed from the underlying triangle mesh, only
rendered fully transparent. Secondly, it is unclear how to handle fuzzy frontal
areas (areas between the lower and upper fuzzy filter thresholds) where fronts
are rendered semi-transparent. Imagine calculating the frontal area of a cold front.
How can such semi-transparent areas be taken into account?

For the above reasons, an additional 3-D front filter (front hard borders filter)
implements hard filter thresholds that are applied prior to rendering. These
hard filter thresholds ensure that the boundaries of frontal surfaces are precisely
defined and that the geometries of frontal surfaces are separated from different
fronts by deleting all previously transparent and semi-transparent surfaces. The
algorithm is implemented in a new pipeline module in Met.3D, which checks
for each vertex of the triangle whether the individual threshold criteria are met
or not; if any of the three vertices do not meet the threshold criteria, the entire
triangle is discarded. All triangles that pass this filter are passed to the next
pipeline module. Figure 6.1 compares fuzzy-filtered fronts and fronts filtered
with hard filter thresholds.

3-D front orderer source

The front orderer source is a new data pipeline module that determines which tri-
angles belong to a contiguous 3-D front surface. The input of arbitrarily arranged
triangles originates from the MC algorithm and is filtered in the previous pipeline
module. In the initial front detection pipeline, each triangle is rendered separately,
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and the information about which triangles form a contiguous 3-D front surface is
not required. The 3-D front orderer source pipeline module structures the triangle
mesh by computing batches of contiguous frontal surfaces. The filter uses an
algorithm described in Section 2.4.2. A triangle is considered connected to another
triangle if they share at least one edge. The algorithm is briefly described below.
A detailed description can be found in Section 2.4.2. The algorithm consists of
the following three steps:

1. Compute for each vertex a list of surrounding triangles.

2. Compute for each triangle a list of surrounding triangles.

3. Create batches of contiguous triangles.

On completion, the filter returns a list of contiguous triangle batches, where each
batch represents a contiguous frontal surface. The frontal batches are rendered
as frontal surfaces, similar to the original front detection pipeline. However,
the ordered representation allows further analysis and processing of the frontal
surfaces in subsequent stages of the pipeline.

3-D front selector source

The objective of the front selector source pipeline module is to interactively select
individual contiguous 3-D front surfaces. It provides a direct interaction between
the user and the interactive visualisation software Met.3D. Its purpose is to
allow the user to select specific front surfaces using the computer mouse. By
positioning the mouse pointer over a desired frontal surface and clicking the left
mouse button, a ray is cast from the mouse pointer position perpendicular to the
plane of the monitor into the scene. The intersection of this ray with the frontal
surfaces is determined using the Möller-Trumbore (Möller and Trumbore, 1997)
intersection algorithm, which is described in detail in Section 2.4.2. In addition,
the centroid of the selected 3-D front is rendered as a point in the scene. Fronts
can now be manually tracked by selecting a front in successive time steps. To
illustrate the temporal displacement of a front during tracking, the centroids of
selected fronts are connected by lines. To enhance the visual distinction between
different ensemble members, the colour of the line connecting the centroids varies
between ensemble members, allowing them to be distinguished and compared.
Figure 6.2 shows an example of interactive front selection.

split and merge event : During the selection process, it is possible to
encounter front split events, which involve the splitting of a front that was once
a continuous surface at the previous time step. These events can occur in two
different ways. Firstly, a front split event may occur temporarily, where the
separated fronts reconnect to form a continuous surface after a few time steps.
Secondly, the front separation event can persist for all subsequent time steps,
resulting in permanently separated fronts.
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Figure 6.2: Example of the 3-D front selection process. Selected fronts remain in colour,
unselected fronts are shaded light grey. The path lines show the evolution of
the frontal centroids of the current and other ensemble members. The path
lines of the current ensemble member are annotated with a timestamp.

To address this issue, the user has the option to select multiple fronts from
the same time step. In this case, the split fronts are still treated as a single front
when assigning frontal attributes. This allows the user to consider several divided
fronts as a cohesive structure. Figure 6.3 shows an example of a split followed by
a merge event.

6.1.2 Characterising 3-D fronts by frontal attributes

To characterise fronts based on their physical and geometric properties, the
following frontal attributes are computed for each selected and tracked 3-D front:

Centroid x, y, z: The area-weighted centre of the selected front. The centroids
are also rendered as dots during the selection process. The centroids of
successive time steps from the same ensemble member are connected by
lines, giving the user a visual feedback regarding the displacement of
selected fronts.

Front area: The area of the selected front in square metres or square kilometres.
To compute the area of a front, the original geographic coordinates of the
triangles, with pressure as the height coordinate, are transformed to a
Cartesian coordinate system using the coordinate transformation described
in Section 2.4.1. The conversion from pressure altitude to metric altitude uses
the geopotential as the geometric altitude, if available. If the geopotential
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(a)

(b)

(c)

Figure 6.3: Example of a temporarily split cold front event during frontal tracking. (a)
The cold front is compact and forms a contiguous surface. (b) The red circle
marks the location of a cold front split. (c) The cold front is compact and
contiguous again.

height is not available, the International Civil Aviation Organization (ICAO)
Standard Atmosphere is used as an approximation for this conversion. The
following equations are used to calculate the area of a triangle given by the
points ac, bc, and cc, where c indicates the Cartesian coordinate system:

�!
AB = bc � ac
�!
AC = cc � ac

Area = 0.5 · k�!AB ⇥�!
ACk

(6.1)

The total area of a front is the sum of the area of each triangle of the selected
surface.
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Mean and maximum TFP: The maximum and area-weighted mean TFP. The
mean TFP is calculated as the area-weighted average over each triangle of a
frontal surface.

Mean and maximum frontal strength: The maximum and area-weighted mean
frontal strength. The mean frontal strength is calculated as the area-weighted
average over each triangle of a frontal surface.

Mean, minimum negative and positive slope: The slope is defined in Sec-
tion 3.4 as the ratio of the vertical extent, lower edge and upper edge of the
front at a given location, to its horizontal extent, which is the horizontal
component of the distance between the upper and lower edges of the front.
To compute the slope of a front, the original geographical coordinates of
the triangles, with pressure as the height coordinate, are transformed to
a local Cartesian coordinate system using the coordinate transformation
described in Section 2.4.1. Subsequently, and for each triangle of the frontal
mesh, the Cartesian coordinate system is rotated so that the z-axis of the
Cartesian coordinate system intersects one of the triangle’s vertices. In the
local Cartesian coordinate system, the horizontal sh and the vertical sv of a
triangle are calculated. The slope is calculated as follows:

Slope =

0

@arccos

0

@ shq
s2

h + s2
v

1

A⇥ 180
p

� 90

1

A ⇤ �1 (6.2)

The mean slope is calculated as an area-weighted average over each triangle
of the frontal surface.

For each selected frontal surface, the frontal attributes are computed accordingly.
The frontal attributes are stored in a dictionary-like structure and are computed
for each selected time step and ensemble member. Due to some front splitting
events, it may be necessary to select multiple frontal surfaces from the same
ensemble member and time step. The frontal attributes of such multi-selected
fronts are computed using area-weighted averages for mean values, and the
minimum or maximum for minimum or maximum values.

Once all the fronts required for analysis have been selected and the frontal
attributes have been calculated, the frontal attributes can be transferred to Python
for further analysis. The data structure of the frontal attributes is based on the
structure of the trajectories according to the NetCDF Climate and Forecast (CF)
Metadata Conventions (short NetCDF conventions, Hassell et al. (2017)).

Data interfaces for frontal attributes

The frontal attributes are stored in a trajectory-like structure. Each trajectory
corresponds to an ensemble member and each time step corresponds to a tra-
jectory time step. The longitude, latitude and vertical coordinate represent the
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computed centroid of a selected frontal surface. Frontal attributes are represented
as auxiliary trajectory variables.

Storing frontal attributes in a trajectory structure has the following advantages:
The file format and structure of the file are known and defined by NetCDF conven-
tions. It can be imported into other programmes as a trajectory file. This means
that stored frontal attributes can be re-imported into Met.3D and other mete-
orological applications without further modification. This allows, for example,
frontal attributes to be displayed along the frontal displacement paths (example
shown in Figure 6.5e) using the multi-parameter trajectory display of Neuhauser
et al. (2023). In addition, with the Python interface built into Met.3D, Python
packages can be used directly to perform further analysis on frontal attributes
and send the results back to Met.3D.

6.1.3 Automated front tracking

Manual tracking can be time-consuming, especially when analysing ensemble
simulations. For example, tracking fronts for a 24-hour period in a ICON-EU-EPS
forecast that includes 40 ensemble members would require the selection of 40 x
24 (=960) fronts. As this approach is impractical for ensemble analysis, I have
developed a front-tracking system that automatically tracks a front of interest
over a given period of time.

The automated front tracking process starts with a manual selection of a front
at time step 0 (t), which serves as a reference front to be tracked over successive
time steps. The subsequent automatic front tracking consists of two steps.

First, all fronts in the next time step (t + 1) of the NWP simulation are detected,
and then fronts whose centroids (see Section 6.1.2) are located too far away from
the reference front (t) are filtered out. Second, from the remaining fronts, the
TFP distributions on each front surface are calculated and compared with the
TFP distribution from the reference front at time step t. The front for which the
distribution at time step t + 1 is most similar to the distribution at time step
t is then identified as the target and serves as the reference front for the next
time step (t + 2) of the NWP simulation. These two steps are repeated until front
tracking is complete for the entire period.

The two steps of the front tracking are implemented as follows:

Distance-based filter: A distance-based filter is used to exclude fronts in the
next time step whose centroid is unreasonably far from the centroid of
the reference front. Based on the case study in Section 6.2, a centroid can
vary by about 500 km between two successive time steps. This is caused
by segments of the tracked front surface being disconnected or connected
within a time step. As a result, the centroid can shift over a range of less than
500 km. In addition, the displacement speed of the front is also considered
with 100 km to 150 km per hour. The true displacement of cyclones and
thus also of fronts is notably slower than 150 km (cf. Nellikkattil et al., 2024).
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Attribute distribution matching: From the remaining potential front matches
at the next time step (t + 1), the distributions of TFP of each remaining front
candidate are compared with the distribution of the reference front. The
distance between these distributions is measured using EMD, an algorithm
that finds the minimum cost to transform one distribution into the other.
A detailed description of the EMD algorithm can be found in Section 2.4.4.
The front at time t + 1 with the smallest EMD is then identified as the target
front and used as the reference front for the next time step (t + 2).

In Section 6.2, the feasibility of this approach is evaluated through a case study
that examines different vertical grid spacings and time resolutions of NWP.

6.1.4 Architecture and implementation details in Met.3D

The above-proposed manual and automated front tracking is implemented into
the interactive visualisation framework Met.3D. The implementation details in
Met.3D, including changes to the front detection method introduced in Section 5.1,
are outlined below. Four additional data pipeline modules are introduced to
enable manual and automated front tracking and feature attribution computation.

1. 3-D front hard borders filter: Implements hard filter thresholds to isolate
3-D fronts.

2. 3-D front orderer source: Orders triangular frontal meshes into individual
contiguous frontal surfaces.

3. 3-D front selector source: Allows the manual selection of individual 3-D
fronts.

4. 3-D front attribute source: Derives frontal characteristics by computing
frontal attributes.

Figure 6.4 shows the adapted front detection data pipeline to enable front se-
lection and front characterisation by frontal attributes. Three additional data
pipeline modules have been added to the processing data pipeline. The fourth
module, the front attribute source, is not a pipeline module in the context of
the data processing pipeline (see Section 2.2.1). This module is executed after
the rendering process and does not feed back into the visualisation during the
rendering process. However, as it is an essential component for feature-based
attribute analysis and has the same structure as a normal pipeline module, it will
be treated as part of the data processing pipeline in the following.

In the front detection pipeline of Section 5.1, the MC algorithm computes a
triangular mesh of frontal candidates. The resulting triangular mesh consists of
two datasets: First, a list of all vertex positions, where each vertex position is
a 3-D vector containing its x, y, z coordinates. Second, a list of vertex indices,
where each triangle contains a list of three vertex indices (i, j, k), identifying the
three vertices that form the corresponding triangle. In this data structure, it is
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not known which triangles form a contiguous frontal surface. In order to select a
single contiguous frontal surface, this information becomes relevant.

As mentioned above, four additional data pipeline modules are introduced,
extending the data pipeline to allow feature-based ensemble analysis. The new
pipeline modules are placed after the front candidates source module. The first
module is the front hard borders filter, which filters 3-D front candidates according
to TFP, frontal strength, and pressure thresholds. The second module is the front
orderer source, which orders the 3-D triangular meshes into contiguous mesh
batches. This pipeline module implements an algorithm to compute batches of
triangles following the algorithm introduces in Section 2.4.2. A triangle batch is a
data structure that describes a mesh of adjacent triangles, where each triangle
shares at least one edge with another triangle. The third module is the front selector
source, which allows the interactive selection of contiguous frontal surfaces (e.g.
a warm front from a particular cyclone system). This module implements the
Möller-Trumbore intersection algorithm introduced in Section 2.4.2 to select
a single frontal surface. The fourth module is the front attribute source, which
computes the attributes of the previously selected front.

For automatic front detection (introduced in Section 6.1.3), the distance-based
filtering and TFP distribution matching are computed in Python, utilising the
Met.3D Python interface.

6.1.5 Example of front-tracking workflow

First, fronts are computed regularly, but with hard filter thresholds to obtain
sharp-edged frontal surfaces. Figure 6.5a shows the resulting fronts coloured
according to warm and cold air advection. The fronts can then be further filtered
according to warm air (warm front) and cold air (cold front) advection. In this
example, warm fronts are filtered out, leaving only cold fronts. Once the warm
fronts have been filtered out, the front of interest is selected and the front-tracking
process begins. The selected front is highlighted, unselected fronts are grey (Fig-
ure 6.5b). Figure 6.5c shows the front tracking over a period of one day. The black
annotated dots indicate the position of the centroid of the front at the selected
time steps. The dots are connected by black lines, indicating the movement of
the front over multiple time steps. In the case of front tracking over multiple
ensemble members, multiple front paths are shown, each path representing the
front evolution for one ensemble member (Figure 6.5d). Figure 6.5e shows an
example visualisation of frontal attribute evolution using the multi-parameter
trajectory display of Neuhauser et al. (2023). This can facilitate the analysis of
frontal attributes and the identification of ensemble members with, for example,
rapid increases or decreases in mean TFP, mean frontal strength, or mean frontal
slope.
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Figure 6.4: Adapted data pipeline for the feature selection framework. Additional
pipeline modules and data input/output formats are illustrated in darker
colours.

6.1.6 Postprocessing of frontal attribute time series

After successfully tracking frontal surfaces across different ensemble members
and computing the frontal attribute time series, the aim is to provide analysis
techniques for these time series of frontal attributes. For this, I developed a time
series similarity analysis, which provides resources for exploring ensemble time
series in Python.

The first objective of time series similarity analysis is to present ensemble time
series data in a clear and comprehensive format. To achieve this goal, I chose to
graphically represent time series in a horizon plot, which is specifically designed
to effectively represent large one-dimensional data sets, such as time series, with
high detail and precision in a compact manner (Saito et al., 2005). For a detailed
description of the horizon plot, see Section 2.3.2.

The second objective of time series similarity analysis is to order and cluster
ensemble members based on time series of frontal attributes. To achieve this,
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(a) (b)

(c) (d)

(e)

Figure 6.5: Example of the interactive front selection workflow. (a) Frontal surfaces
filtered with hard thresholds and coloured according to front type (blue =
cold front, red = warm front). (b) Warm fronts are filtered out, the selected
cold front is highlighted in blue, and non-selected cold fronts are grey. The
text indicates the ensemble member, date and the time of the selected front.
(c) 24-hour front track together with the cold front of the last tracking time
step. (d) Front tracks of multiple ensemble members and the cold front of
the currently selected member. (e) Example of front tracks of five selected
ensemble members. Front tracks are presented using the multi-parameter
trajectory display of Neuhauser et al. (2023). The band of each front track
shows the evolution of the mean TFP, mean frontal strength and mean frontal
slope attributes, including a highlighted time step annotated as a pie chart.

similarities are assessed by measuring the distances between the time series data.
Three different metrics are used to calculate these distances: Euclidean distance,
DTW and soft-DTW. A detailed description of these distance metrics is given in
Section 2.4.4. Based on these calculated distances, the ensemble members can
be sorted according to a reference member. Additionally, these distance metrics
are used to cluster the ensemble members using k-means clustering (MacQueen,
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1967). The different distance metrics for sorting and clustering ensemble attribute
time series are evaluated in a case study in Section 6.3 and Section 6.3.2.

To test the sensitivity of the clusters between different frontal attributes as well
as different frontal filter settings, I follow the idea of (Kumpf et al., 2018) and
use the Rand index (Rand, 1971). The Rand index is a statistical measure used
to evaluate the similarity or agreement between two data clustering results or
partitions. A detailed description of the Rand index can be found in Section 2.4.3.
The full source code of this time series analysis can be found in Beckert et al.
(2024).

6.2 case study : frontal attribute distributions and tracking

Using Storm Friederike as a case study, I analyse the capabilities and limitations of
the automated front-tracking method presented in Section 6.1. For this evaluation,
I use NWP data from the ECMWF ENS forecast initialised on 16 January 2018,
12:00 UTC, with 51 ensemble members. The front tracking is evaluated from
16 January 2018, 12:00 UTC until 19 January 2018, 12:00 UTC. Afterwards, the
cyclone and the fronts are almost completely dissipated (cf. Figure 5.13). All
objectively detected 3-D fronts for this analysis are defined between 900 hPa and
600 hPa, with a hard TFP filter threshold of 0.4 K(100km)2 and a hard frontal
strength filter threshold of 1.0 K(100km)1.
I concentrate my analysis on four key aspects:

1. How do the distributions of frontal attributes compare at different times for
a tracked front at?

2. What temporal resolution is required for successful automated front track-
ing?

3. Can automated front tracking be used in NWP simulations with limited
vertical grid spacing?

4. How similar are the frontal attributes from the same front but from different
ensemble members, at the initial time steps of a NWP simulation?

6.2.1 Distribution of frontals attributes

The distribution of three frontal attributes from the cold front of Cyclone Friederike
is visualised as violin plots (for more details on violin plots, see Section2.3.1) in
Figure 6.6 for a tracking period of 73 hours. This figure provides an overview of
how these attribute distributions develop over time for a tracked frontal surface.

The thermal-based frontal attribute distributions (TFP and frontal strength)
follow a similar pattern, showing a slight increase from the initial time step on 16
January at 12:00 UTC for 24 hours, followed by a decrease over the next 48 hours.
The evolution of these distributions is characterised by gradual changes with no
abrupt differences between successive time steps, indicating a smooth transition.
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(a)

(b)

(c)

Figure 6.6: Distribution of (a) TFP, (b) frontal strength, and (c) frontal slope of the tracked
3-D cold front of Storm Friederike, shown as a violin plot. The front is tracked
in ECMWF ENS forecast, initialised on 16 January 2018, 12:00 UTC, with 91
vertical levels defined on hybrid sigma-pressure coordinates. The distributions
are shown for 73 time steps of the tracked front and for ensemble member 0.
While the distributions of TFP and frontal strength have similar characteristics,
the frontal slope has a dipole structure. Individual parts of the front are either
steeply sloped forwards (close to 90�) or backwards (close to -90�).

In contrast, the slope attribute distributions show a dipole pattern, with parts
of the front either positively or negatively tilted near +90� and -90�. While the
interpretation of these attributes may not be immediately obvious when looking
at 3-D representations of fronts, it is important to note that the vertical axis is
significantly stretched in all 3-D visualisations, causing the fronts to appear less
tilted and more vertical. As shown in Figure 3.6, the typical angles for a positive
frontal slope are in the range of 89.4� to 89.8�.

6.2.2 Time Resolution

The automatic front-tracking algorithm developed in section 6.1.3 compares the
EMD of the TFP distributions between a reference front and all potential front
matches. The front from the potential matches with the lowest EMD is selected as
the target front. Therefore, successful automatic front tracking requires, at most,
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(a) 1 hour (b) 3 hours

(c) 6 hours

(d) 12 hours

Figure 6.7: Distribution of TFP of the reference front and potential front matches for
different time intervals. Manually selected target TFP distributions are marked
with a red arrow. For (a) 1 hour and (b) 3 hour intervals, the smallest EMD
distance between the TFP distributions of the reference and target fronts is
correct and automatic front tracking is successful. For (c) 6 hour and (d) 12
hour intervals, the minimum EMD distance between the TFP distribution of
the reference does not represent the correct target front and automatic front
tracking fails. Figure 6.8 shows the corresponding 3-D fronts. Fronts detected
in ensemble member 0 of ECMWF ENS forecast, initialised on 16 January
2018, 12:00 UTC, with 91 vertical levels defined on hybrid sigma-pressure
coordinates.
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(a) 1 hour (b) 3 hours

(c) 6 hours (d) 12 hours

Figure 6.8: Illustration of automated front tracking for different time intervals. The
reference front is shown in dark blue, the target front obtained by automated
tracking is shown in light blue. As shown in Figure 6.7, automated tracking
is successful for time intervals of (a) 1 and (b) 3 hours. Tracking fails for
time intervals of (c) 6 and (d) 12 hours. The manually selected target front is
marked with a red arrow and the front selected by automated front tracking
is marked with a red circle in (c) and (d), where automated front tracking
fails. All fronts are detected in ensemble member 0 of ECMWF ENS forecast,
initialised on 16 January 2018, 12:00 UTC, with 91 vertical levels defined on
hybrid sigma-pressure coordinates.

gradual changes in the distribution of TFP between successive time steps, so that
the EMD is low. As shown in Figure 6.6, the development of TFP distributions
is characterised by gradual changes between successive time steps. Figure 6.7
quantifies these changes in EMD between possible front matches and the reference
front for different time intervals. For a time interval of 1 hour and 3 hours
(Figure 6.7a and b), the front with the lowest EMD corresponds to the manually
selected target front (marked with a red arrow). All other fronts have a higher
EMD. However, for the higher time intervals of 6 hours and 12 hours (Figure 6.7c
and d), the front with the lowest EMD does not correspond to the manually
selected target front (marked with a red arrow). In these cases, the automatic
front-tracking algorithm does not agree with the manually selected target front.

Figure 6.8 shows the 3-D structure of the reference front, the front with the
smallest EMD to the reference front, and the manually selected target front. For
a time interval of 1 hour (Figure 6.8a) and 3 hours (Figure 6.8b), the manually
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selected target and the target front selected by automatic front tracking are
identical. For 6 hours (Figure 6.8c) and 12 hours (Figure 6.8d), the front selected
by the automatic front-tracking algorithm (marked with a red circle) differs from
the manually selected front (marked with a red arrow).

In the case presented, the automatic front-tracking algorithm successfully
tracks fronts when the time interval between consecutive time steps is 3 hours
or less. For larger time intervals (6 and 12 hours), the front-tracking algorithm
selects unreasonably small fronts. A possible factor for this behaviour is the
normalisation of distributions by the EMD algorithm before determining the
minimum cost of transforming one distribution into another. This means that
the size of the 3-D frontal surface is not taken into account. For tracking fronts
over successive time steps greater than 3 hours, it may be beneficial to implement
an additional pre-filter based on the size of the 3-D frontal surface to eliminate
unreasonably small frontal surfaces.

6.2.3 Vertical Resolution

(a)

(b)

Figure 6.9: Distribution of (a) TFP on model level and (b) on pressure level on a frontal
surface, shown as violin plots. The front is tracked in the ECMWF ENS forecast,
initialised on 16 January 2018, 12:00 UTC. Model levels consist of 91 vertical
levels defined on hybrid sigma-pressure coordinates. Pressure levels consist
of 12 vertical levels defined on pressure coordinates. Distributions are shown
for 73 time steps of the tracked front and for ensemble member 0. The TFP
distributions in both model levels (a) and pressure levels (b) have a similar
structure. However, the distributions in the model level data show an anomaly
around 17 January 2018, 00:00 UTC, with an accumulation of low TFP values
(red circle).
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(a) (b)

Figure 6.10: Comparison of fronts detected in (a) model level and (b) pressure level data
on 17 January 2018, using the same data as used in Figure 6.9. The red
circle indicates a part of the frontal surface with low TFP values in the model
level data, which is not present in the pressure level data. This leads to
the anomalies of low TFP in the model level data shown in Figure 6.9. Red
arrows in (b) point to "spikes" in the frontal surface detected in the pressure
level data due to the low vertical grid spacing.

To evaluate the effect of different vertical grid spacing on frontal attributes,
Figure 6.9 shows the evolution of the TFP distribution over a tracked front for two
different vertical resolutions. As discussed in Section 6.1.3, the TFP distribution
plays a central role in front tracking by identifying the front in the next time step.
However, in this case study, the full ensemble data of the ECMWF ENS simulation
is only available for 12 vertical pressure levels. Can the automatic front detection
algorithm successfully track fronts in data with low vertical resolution, and how
comparable are the derived frontal attributes from the tracked front in data with
low and higher vertical grid spacing?

Figure 6.9 shows that for both scenarios, full vertical grid spacing (91 vertical
levels on hybrid sigma-pressure coordinates) and reduced vertical grid spacing
(12 levels on pressure coordinates), the pattern and characteristics of the TFP
distributions are analogous, although the two distributions show differences
when examined in detail. For example, in Figure 6.9a, TFP distributions of fronts
detected in model level data show an anomaly around 17 January 2018, 00:00
UTC, characterised by an aggregation of low TFP values (marked with a red
circle). This anomaly is not present in TFP distributions of fronts detected in the
pressure level data. Comparing the structure of the 3-D fronts between model
and pressure level data, shown in Figure 6.10, the front in the model level data
includes a subset of the frontal surface with low TFP values (marked with a red
circle) that is not present in the pressure level data. This results in the low TFP
anomalies shown in Figure 6.9a in the model level data. Due to the reduced
vertical resolution in the pressure level data, the fronts are smaller in vertical
extent and are characterised by "spikes" at the top and bottom of the front
(marked with red arrows in Figure 6.10b). Although a lower vertical resolution
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preserves the basic characteristics of the TFP distributions on the 3-D front, details
may be lost.

6.2.4 Ensemble Tracking

Figure 6.11: Distribution of TFP detected in the same front across all 51 ensemble members
at the simulation initialisation time step. Annotated on the x-axis is the
EMD relative to the reference ensemble member (member 0) for each TFP
distribution. 3-D fronts detected in ECMWF ENS forecast data, initialised on
16 January 2018, 12:00 UTC, with 12 vertical levels defined on pressure
coordinates.

For front tracking in ensemble simulations, it may be useful to select only one
front from the first time step of an ensemble member and track the front across
all ensemble members. To do this, I evaluate the differences in the EMD of the
TFP distributions of the first time step for a selected front across all ensemble
members. If the EMD is small, it is expected that selecting a single front from
one ensemble member would be sufficient to identify the same front in all
other ensemble members. Figure 6.11 shows the TFP distributions over the same
front but different ensemble members and the EMD to a reference front. The
distributions and EMD relative to the reference front show only small differences,
with the highest EMD being 0.23 (cf. Figure 6.7). This suggests that it is reasonable
that frontal tracking could be initialised based on only one specific front at the
initialisation time step of the simulation. This front is then identified in all other
ensemble members and can be tracked over the desired time steps.

6.3 case study : feature-based time series similarities and clus-
tering

Computer simulations are used to study complex real-world phenomena. The
output of simulations is influenced by a number of parameters, such as initial
conditions and the parametrisation of physical processes. A single run is not suf-
ficient to account for such uncertainties in the configuration. Therefore, scientists
often employ ensemble simulations with slightly different model configurations
(Wang et al., 2019), as seen in ensemble weather prediction (see Section 3.2).
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Figure 6.12: (a) Spaghetti plot of mean TFP frontal attribute development over a 25-
hour period. Each black line represents an ensemble member, the red line
represents the reference member (member 0). (b) Horizon plot of TFP mean
frontal attribute time series. Each row represents an ensemble member. The
frontal attributes are computed from tracked 3-D cold fronts of Cyclone Otto
using the DWD ICON-EU-ENS forecast, initialised on 16 February 2023 at 00:00
UTC.
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Figure 6.13: DTW distances of each ensemble member to the reference member (mem-
ber 0). Ensemble members are sorted by distance in ascending order.

Ensemble simulations generate large amounts of data, making the analysis
of such complex data challenging, and visualisation plays a crucial role in the
analysis (Wang et al., 2019). Visualisation of uncertainties and clustering in ensem-
ble simulations facilitates the analysis of these large datasets to identify trends,
clusters, and outliers. Various visualisation approaches have been proposed in
the literature to characterise uncertainties of ensemble simulations in 2-D and 3-D,
such as contour box plots (Whitaker et al., 2013) and streamline visualisation to
represent uncertainties in vector fields (Ferstl et al., 2016b). For the representation
of uncertainty in 3-D surfaces, (Pfaffelmoser et al., 2011) presents a direct volume
rendering approach that visualises the variability of isosurfaces in colour-coded
form. Further advances in the visualisation of uncertainties for NWP ensemble
simulations have been made by (Kumpf et al., 2018). Their approach focuses on
the analysis of cluster robustness and representativeness. The recently published
work by Chaves-de-Plaza et al. (2024) focuses on the visualisation of outliers in
contour ensemble data. However, to my knowledge, feature-based time series
similarity ordering and clustering of 3-D atmospheric features, such as objectively
detected 3-D fronts, has not yet been proposed in the literature.

In the following, I present a case study for my ensemble ordering and clustering
approach presented in 6.1. This approach is based on objectively identified 3-D
fronts and derived frontal attributes. The objective of the feature-based time
series similarity analysis is to compare time series of feature attributes and derive
feature-based ensemble clusters.

For the following case study, I use the ICON-EU-EPS and ICON-EU NWP forecasts,
initialised on 16 February 2023, 00:00 UTC, where ensemble member 0 refers to
the deterministic ICON-EU forecast and ensemble members 1 to 40 refer to the
ensemble members of the ICON-EU-EPS forecast. For a detailed description of the
datasets and the weather situation, see section 4.3. To derive feature attributes
of 3-D fronts, the cold front of cyclone Otto is tracked for 25 hours starting on 17
February 2023, 00:00 UTC. This period is chosen because the ICON-EU forecast is
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a limited-area simulation and the cold front does not enter the simulation area of
the ICON-EU forecast until 17 February 2023, 00:00 UTC. After 18 February 2023,
00:00 UTC, the front dissipates. Unless explicitly stated otherwise, all objectively
detected 3-D fronts for this analysis are defined between 850 hPa and 500 hPa
with a hard TFP filter threshold of 0.4 K(100km)2 and a hard frontal strength filter
threshold of 1.0 K(100km)1.

6.3.1 Feature-based time series similarities

Figure 6.12a shows the ensemble time series of the mean TFP frontal attribute.
The time series spaghetti plot provides an overview of the overall development
and the ensemble spread. However, extracting specific information about the
evolution of a particular ensemble member relative to others can be challenging,
as this plot is cluttered with the superimposed lines of individual ensemble
members. In addition, there is no assignment of lines to ensemble members. To
provide additional information about the evolution of individual time series,
Figure 6.12b shows the frontal attribute time series in a horizon plot, with each
ensemble member represented in a row. The composition of the horizon plot is
described in detail in Section 2.3.2. The horizon plot facilitates the identification
of differences between ensemble members. This allows a precise assessment of
how the frontal attribute of one member evolves relative to others. For example,
compared to members 18, 19 and 33, members 11 and 38 have high mean TFP
values throughout the period.

As shown, the horizon plot can be used to visually identify differences between
ensemble members. To quantify the differences between ensemble members and
to quantitatively compare the time series differences, DTW is used to compute
the similarity between a reference member time series and all other ensemble
member time series of a selected frontal attribute. The DTW algorithm is described
in section 2.4.4. The advantage of using DTW instead of e.g. Euclidean distance
is that it takes into account temporal distortions in time series. For example,
if the mean TFP in the reference member at time step t and in the compared
ensemble member at time step t+ 2 change in a similar way, the distance between
these time series calculated using DTW instead of Euclidean distance would be
significantly smaller.

A user-defined reference member is used as the "ground truth". For each
ensemble member, the distance to the reference member is calculated using DTW.
Here the reference member is ensemble 0. Figure 6.13 shows the distances between
the ensemble members and the reference member. As already mentioned after
the visual interpretation of Figure 6.12b, ensemble members 11, 18, 19, 33 and
38 are among the most different ensemble members compared to the reference
member 0. Figure 6.20 shows a visual representation of the tracked cold front of
reference member 0, member 11 and member 18.

Using the calculated distance between the ensemble members and the reference
member, the horizon plot is rearranged, and the ensemble members are ordered
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Figure 6.14: Horizon plot of the mean TFP frontal attribute. Ensemble members are sorted
by similarity to the reference member (member 0) using DTW, from most
similar member (bottom) to most different member (top).

according to their similarity to the reference member. Figure 6.14 shows the
horizon plot with rearranged ensemble members. Ensemble members with similar
characteristics to the reference member are at the bottom of the plot. The further
up the plot the ensemble member is, the more it differs from the reference
member. For ensemble members with similar characteristics to the reference
member, the mean TFP first increases slightly and then decreases until the end of
the analysed period.
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6.3.2 Feature-based time series clustering

The presented time series clustering builds on 3-D frontal attributes and the time
series distance measures previously described and used in Section 6.3.1. The aim
is to categorise ensemble members based on the time series feature attributes and
to explore potential similarity patterns and clusters in a case study.

Following (Kumpf et al., 2018), the clustering itself is done with k-means,
which is described in detail in section 2.4.3. To apply k-means to time series,
the distance between time series must be calculated using a distance metric. In
addition to the previously applied distance metric (DTW), two other distance
metrics are evaluated: Euclidean distance and soft-DTW (for more details on these
distance metrics, see Section 2.4.4).

Before applying the k-means algorithm, the number of desired clusters must
be specified. Here, I follow Shahapure and Nicholas (2020) and use the silhouette
score to determine the optimal number of clusters. The silhouette score measures
how well clusters are separated relative to their internal coherence. A brief
description of the silhouette score and the algorithm is given in Section 2.4.3.
Based on the silhouette score, I evaluate the optimal number of clusters and
which distance metric performs best.

(a) (b)

Figure 6.15: Silhouette score for k-means clustering of (a) mean TFP and (b) mean frontal
slope for different numbers of clusters. The silhouette score shows the
highest intra-cluster coherence and inter-cluster separation for the DTW and
soft-DTW distance function and 2 to 4 clusters. Overall, the silhouette score
is significantly lower for mean TFP compared to mean frontal slope.

Figure 6.15 shows the silhouette scores for k-means clustering for 2 to 10 cluster
centres of the frontal attributes mean TFP (Figure 6.15a) and mean frontal slope
(Figure 6.15b). For both frontal attributes, the silhouette score is highest for a
small number of cluster centres (2 to 4) and for DTW and soft-DTW. This means
that intra-cluster coherence and inter-cluster separation are highest for a small
number of clusters and when using DTW or soft-DTW. At least, for a small number
of cluster centres, the Euclidean distance is outperformed by DTW or soft-DTW.
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Figure 6.16: Spaghetti plots of clustered frontal attribute mean frontal slope using the
k-means algorithm for 3 cluster centres. The figure shows cluster results
for different distance metrics: (a) - (c) Euclidean, (d) - (f) DTW, and (g) - (i)
soft-DTW. Red lines highlight the cluster centres.

Figure 6.16 shows a spaghetti plot of an example of k-means clustering for
the mean frontal slope attribute using 3 cluster centres and the three different
distance metrics. For the Euclidean distance, cluster 1 (17 members) and cluster
3 (18 members) represent the dominant time series structure. For DTW and soft-
DTW, only cluster 1 (34 members) represents the dominant time series structure.
For cluster 1 and all distance metrics, the mean frontal slope attribute is positive
(90�) in the early stages and transitions sharply to a negative slope (-90�) around
14 UTC. Note that the mean frontal slope is either strongly positive or strongly
negative, i.e. the front is predominantly positively or negatively sloped. Cluster
2 also represents the same structure for all three distance metrics, where all
ensemble members are characterised by a positive frontal slope over the whole
time. Cluster 3 represents a cluster similar to cluster 1 for the Euclidean distance
metric, but with a later sharp transition from positive to negative slope. While
the different distance metrics did not lead to significantly different clusters for
clusters 1 and 2, for cluster 3 the cluster centre using soft-DTW and DTW differs
significantly from that using Euclidean distance. For DTW and soft-DTW, the
cluster centre has three sharp transitions, from positive to negative, from negative
to positive, and from positive to negative again. This pattern represents the
pattern of the frontal slope attribute of the two ensemble members in this cluster.
Both ensemble members follow this distinct pattern, but at different times. Unlike
using the Euclidean distance, DTW and soft-DTW detect these patterns and group
them into a separate cluster. This also reflects the characteristics of DTW and
soft-DTW because, as mentioned above, these distance metrics consider temporal
shifts differently than the Euclidean distance metric. For DTW and soft-DTW, time
series with the same characteristics, e.g. an abrupt transition from positive to
negative values, but shifted in time, are still considered similar (small distance).
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Figure 6.17: Horizon plot visualisation of mean frontal slope attribute time series clus-
tered by k-means. K-means clustering was performed using DTW as the
distance metric. Mean frontal slope attribute time series are derived from
tracked 3-D cold fronts of Cyclone Otto using the DWD ICON-EU-ENS forecast,
initialised on 16 February 2023 at 00:00 UTC.

This results in clusters of time series with similar patterns but with temporal
distortion.

In addition to the previously discussed spaghetti plot of the clustered time
series, an alternative representation of the clusters can be obtained using the
horizon plot. As shown in Figure 6.17, the horizon plot provides a visual repre-
sentation of the clusters obtained by using DTW as the distance metric.
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Figure 6.18: 3-D fronts of a sample member for each cluster. The tracked cold front is
colour-coded according to the frontal slope. All other fronts are shown
in grey. Fronts detected in ensemble member 0 (right row) and ensemble
member 35 (left row) follow the Norwegian cyclone model, and the cold
front wraps up around the cyclone centre (see red arrows on 17 February
2023, 12:00 UTC). Fronts detected in ensemble member 3 (middle row) are
more similar to the Shapiro-Keyser cyclone model. The front is structured in
a straight line from west to east (horizontal red arrow on 17 February, 12:00
UTC, 18:00 UTC and 18 February 2023, 00:00) and perpendicular is to the
warm front. All fronts are detected in the ICON-EU-ENS forecast, initialised
on 16. February 2023 at 00:00 UTC.

The variability of 3-D fronts between clusters is represented by selected ensem-
ble members in Figure 6.18. Comparing the frontal structure of representative
ensemble members, ensemble member 0 (representing cluster 1) and ensemble
member 35 (representing cluster 3), the cold front in both begins to wrap up
around the cyclone centre during the course of 17 February 2023 (see vertical red
arrow on 17 February 2023, 12:00 UTC, in Figure 6.18). The structure of the cold
front follows the structure of the Norwegian cyclone model. In contrast, the cold
front in ensemble member 3 (representing cluster 2) is structured in a straight line
from west to east (see horizontal red arrow on 17 February, 12:00 UTC, 18:00 UTC,
and 18 February 2023, 00:00 UTC in Figure 6.18), perpendicular to the warm
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front, and does not show the wrap-up process as in the other representative
ensemble members. The structure of the cold front follows the structure of the
Shapiro–Keyser cyclone model (see Figure 3.5).

In addition to the analysis of the frontal slope attribute, Figure 6.19 shows
the clustered horizon plot for the development of the mean TFP. In analogy to
the previous clustering, the number of clusters is also set to 3, but here only
the DTW distance metric is analysed. Cluster 1 is characterised by a transition

Figure 6.19: Horizon plot visualisation of mean TFP frontal attribute time series clustered
by k-means. K-means clustering was performed using DTW as the distance
metric. Mean TFP frontal attribute time series are derived from tracked 3-D
cold fronts of Cyclone Otto using the DWD ICON-EU-ENS forecast, initialised
on 16 February 2023 at 00:00 UTC.
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Figure 6.20: 3-D fronts of a sample member for each cluster. The tracked cold front is
colour coded according to TFP. All other fronts are shown in grey. Fronts
detected in ensemble member 0 (left row) are characterised by a transition
from high TFP values between 17 February 2023, 12:00 UTC, to low TFP values
at 18:00 UTC (marked with red circles in both time steps). Fronts detected
in ensemble member 2 (middle row) are characterised by low TFP values
throughout the period shown. Fronts detected in ensemble member 11 (right
row) are characterised by high TFP values throughout the period shown, with
a slight decrease after 17 February 2023, 12:00 UTC (marked with blue circles
in both time steps). All fronts are detected in the ICON-EU-ENS forecast,
initialised on 16. February 2023 at 00:00 UTC.

from high to low mean TFP frontal attribute values, cluster 2 is characterised by
consistently low mean TFP frontal attribute values and cluster 3 is characterised
by consistently high mean TFP frontal attribute values. Analogous to the analysis
of the mean frontal slope attribute, the variability of 3-D fronts between clusters is
illustrated by selected ensemble members in Figure 6.20. For ensemble member 0
(representing cluster 1), TFP transitions from high values between 17 February
2023, 12:00 UTC, to low TFP values at 18:00 UTC (marked with a red circle
for both time steps in Figure 6.20). This coincides with the transition of the
frontal slope from positive to negative values in the same periods (cf. Figure 6.17
and Figure 6.18). For ensemble member 18 (representing cluster 2), the TFP
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Figure 6.21: Sensitivities of clusters derived from 3-D frontal attribute time series using
different distance metrics.

values are below 1 K(100km)�2 throughout the period. For ensemble member
11 (representing cluster 3), the TFP are higher compared to ensemble members
0 and 18, and the 3-D cold front appears larger. The TFP decreases slightly after
17 February 2023, 12:00 UTC (marked with blue circles in Figure 6.20), but more
moderately than in ensemble member 0. Are high TFP values associated with a
positive frontal slope? This question arises because the frontal slope for ensemble
member 11 remained positive throughout the period analysed (cf. Figure 6.17).
In the following analysis, I will examine the sensitivity between these clusters
and clusters of other frontal attributes in order to derive possible relationships
between clusters.

Attribute sensitivity analysis

To assess the sensitivity of the clusters to different frontal attributes, I follow
Kumpf et al. (2018) and use the Rand index. The Rand index is a statistical
measure used to assess the similarity or agreement between two data clustering
results or partitions, where a score of 1 represents identical clusters and a score
of 0 indicates no relationship between clusters. See Section 2.4.3 for a detailed
description of the Rand index. The cluster sensitivity analysis is performed for
the three previously used distance metrics: Euclidean, DTW and soft-DTW, as
well as the previously used filter thresholds for TFP 0.4 K(100km)�2 and frontal
strength of 0.4 K(100km)�2 to detect the 3-D fronts.

The results shown in Figure 6.21 indicate that using the DTW or soft-DTW dis-
tance metrics results in an increased similarity between the mean frontal strength
and maximum frontal strength attributes compared to using the Euclidean dis-
tance metric. DTW shows a Rand index of 0.61, while soft-DTW shows a Rand
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index of 0.7. The Euclidean distance metric identifies the most similarities in
clusters between the TFP maximum and mean frontal strength attributes, with
a Rand index of 0.67. On the other hand, the clusters of the mean frontal slope
attribute consistently show a lower level of similarity with clusters derived from
the thermal variable (TFP and frontal strength). Overall, and compared to the
Rand indices in Kumpf et al. (2018), the clusters in this case study tend to be
independent of each other. However, these results cannot be generalised, as this
would require statistics from several case studies.

Cluster sensitivities across filter thresholds

Figure 6.22: Cluster sensitivities for different filter thresholds for mean TFP (top) and
mean frontal slope (bottom).

To test how sensitive the clusters are when altering the filter thresholds of
detected 3-D fronts, clusters are derived for different front filter thresholds. For
the previous analysis, the front filter TFP was set to 0.4 K (100 km)�2 and the
frontal strength filter to 1 K (100 km)�2 (abbreviated as TFP0.4 FS1.00). For this
sensitivity analysis, the frontal attributes are again derived from 3-D fronts, but the
3-D fronts are computed using different filter criteria: once with less strict filters
(TFP: 0.3 K (100 km)�2, front strength: 0.75 K (100 km)�2, abbreviated as TFP0.3
FS0.75), and once with stricter filters (TFP: 0.5 K (100 km)�2, frontal strength: 1.25
K (100 km)�2, abbreviated as TFP0.5 FS1.25).

Figure 6.21 shows the sensitivity of the clusters, quantified by the Rand index.
This sensitivity analysis covers all three different distance metrics: Euclidean, DTW
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and soft-DTW, and considers two different frontal attributes, the mean TFP and
the mean frontal slope. Overall, clusters with the lowest sensitivity to changes in
filter thresholds are computed using Euclidean distance, with an average Rand
score of 77.8. The average Rand score of clusters computed with DTW is 65.2
and with soft-DTW is 73.3. Furthermore, clusters based on mean frontal slope are
less sensitive to changes in filter thresholds than those based on mean TFP. In
addition, clusters tend to be less sensitive to less strict filter thresholds, but more
sensitive to stricter filter thresholds. This may be due to the fact that stricter filter
thresholds typically result in fewer and smaller detected 3-D fronts. Therefore, it
is possible that stricter filtering may exclude certain frontal features, resulting in
significantly different frontal attributes and consequently different clusters.
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7.2 Outlook 118

This thesis explored and investigated how objective 2-D and 3-D front detection
and visualisation, integrated into an interactive 3-D visual analysis environment
for atmospheric data, can be used to study frontal dynamics within mid-latitude
cyclones and thus be useful for weather forecasting and research. The method pre-
sented builds on approaches previously introduced by Hewson (1998) and Kern
et al. (2019) and is applicable to gridded data from state-of-the-art NWP models. It
facilitates rapid analysis of 3-D frontal dynamics, including objective comparison
of detected frontal structures between data sets from different numerical models
or ensemble members, even at different model resolutions. The integration of
3-D front detection with 3-D IVA (in this case the open-source visual analysis
framework Met.3D) facilitates rapid analysis of complex weather situations, as
the detected fronts can be visualised jointly with interactively placed depictions
of other meteorological quantities.

Furthermore, a feature-based ensemble analysis approach based on objectively
detected 3-D atmospheric fronts has been developed and applied in case studies.
This methodology consists of the following three key elements: First, an atmo-
spheric front of interest is isolated from a group of fronts, e.g. a cold front of a
particular cyclone system from all other detected fronts. This isolated front is
characterised by physical frontal attributes such as frontal slope or mean frontal
strength and can be tracked using two different approaches: manual and au-
tomated tracking. Automated tracking uses a two-pass filtering mechanism. A
distance-based filter is applied to narrow down potential matches. Next, a filter
that compares frontal attribute distributions is applied to identify the target front.
Second, time series of frontal attributes are computed to characterise the tracked
front. These data provide a dynamic representation of the physical and geomet-
ric characteristics of the tracked front and their evolution over time. Third, the
development and application of feature-based ensemble analysis. This analysis
compares time series of frontal attributes across different ensemble members.
It provides a means of ordering and clustering ensemble simulations based on
derived frontal attribute time series.

113
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In summary, this methodology provides a core framework for conducting
feature-based ensemble analysis in the context of atmospheric fronts. By sys-
tematically detecting, tracking, and analysing these features across ensemble
members, this approach provides a novel method for ensemble simulation analy-
sis. Details of obtaining the code and datasets necessary to replicate the analysis
and results presented in this thesis are provided in Section 8.

7.1 conclusions and answers to research questions

Here, I revisit and answer the research questions and objectives presented in the
introduction to conclude the thesis.

1a: Identifying appropriate detection parameters, including data smoothing
and filtering thresholds, to ensure objective comparability between dif-
ferent model resolutions, different ensemble members, or different cases.

The choice of the thermal variable is essential for the presented approach.
For the cases presented in this thesis, I show that qw is most suitable, since,
in contrast to q, it considers reversible moist processes in the atmosphere.
The resulting fronts are longer and more continuous. A disadvantage of
qw is that it also detects purely humidity-dominated fronts. Separately fil-
tering frontal feature candidates according to humidity and q gradients,
however, allows one to distinguish humidity-dominated from temperature-
dominated fronts. The choice of filter parameters and filter thresholds to
obtain meaningful frontal structures is challenging. These settings depend
on the thermal input variable’s horizontal smoothing length scale, which de-
termines the “spatial scales” of detected frontal features (large-scale smooth-
ing of the thermal input field results in the detection of large-scale frontal
features and vice versa). The distribution of gradient magnitudes shows
that different smoothing length scales require different filter thresholds to
obtain meaningful fronts. Large-scale smoothing requires less restrictive
filter thresholds compared to small-scale smoothing. We present recommen-
dations to future users on how to tune filter thresholds according to the
previously applied smoothing length scale (Table 5.1).

1b: Evaluation of the benefit of 3-D IVA of frontal surfaces through case study
investigations, including interpretations based on conceptual models,
and comparison of frontal structures between different numerical mod-
els and with manually produced surface analysis charts.

The application of the proposed approach to case studies of mid-latitude
cyclones provides detailed information about the temporal evolution of
3-D front characteristics. I demonstrate the use of 3-D front detection to
visualise dynamic relations of features in the context of fronts in NWP data
by directly representing these features in 3-D. In a case study of Cyclone
Vladiana (September 2016), I examine the conceptual model of the WCB as
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represented by NWP data. At the cold front, WCB trajectories ascend quickly,
experience jet wind speeds early, and follow the anticyclonically turning
jet stream. In contrast, WCB trajectories ascending at the warm front show
a slower ascent rate and tend to take the cyclonic outflow branch in the
upper troposphere. These observations agree well with conceptual models
of fronts and WCB as proposed in the literature. The next example considers
the relation between convection and cold-front structure. For Vladiana, the
cold front at mid-tropospheric levels is temporarily strengthened in the
vicinity of resolved convection; I hypothesize that the model representa-
tion of convection and/or simulation grid spacing influences the feedback
and interaction between convection, frontogenesis, and detailed frontal
structures. In a second case study of Cyclone Friederike (January 2018), I
visually analyse the 3-D temporal evolution of fronts in a Shapiro–Keyser
cyclone and compare these results to the conceptual model proposed in
the literature. I observe that the different Shapiro–Keyser cyclone stages
do not occur simultaneously at all elevations. However, all characteristic
stages of the conceptual model of the Shapiro–Keyser cyclone could be ob-
served in NWP data. Finally, I compare the objective 3-D frontal structures
with 2-D fronts in UK Met Office surface analysis charts and investigate
the occurrence of secondary fronts often present in UK Met Office surface
analyses. The objective 3-D fronts are consistent with the UK Met Office
fronts if qw is used for front detection. This is no coincidence, as qw is the
primary thermal variable used for the manual front detection by the UK
Met Office. For the storm case Friederike, I show that the secondary front
corresponds to a humidity-dominated rather than a temperature-dominated
front. An, in parts, similar front detection approach – only two-dimensional
but also applicable to kilometre-scale resolution data – was proposed by
Jenkner et al. (2009). Because of high sensitivity to local noise in higher
derivatives, their approach uses the zero lines of the TFP (second derivative)
as frontal candidates, which correspond to the steepest gradient within the
frontal zone. However, this does not match the most common definition of
a front as the boundary of the frontal zone located on the warm-air side
(see Renard and Clarke, 1965). I argue that an advantage of my approach,
in particular for case studies, is that also in kilometre-scale data fronts are
detected at this warm-air side, albeit at the cost of potential smoothing
artefacts.

2a: Can 3-D atmospheric fronts be effectively isolated and characterised by
assigning 1-D frontal attributes? What are the key physical attributes of
fronts that enhance meteorological analysis? How can the tracking of
isolated 3-D fronts be automated using feature attributes?

While fuzzy filtering allows for a visual representation of frontal strength
and other filter criteria, the challenge lies in the visual fading of the 3-D
front at its boundaries, causing difficulties in assigning well-defined frontal
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attributes. To address this issue, a shift from fuzzy filtering to the imple-
mentation of hard filter thresholds is proposed, resulting in the generation
of well-defined 3-D frontal surfaces characterised by sharp boundaries. The
analysis shows that meaningful frontal attributes, including thermal prop-
erties such as mean TFP and mean frontal slope, can be computed on these
distinct surfaces. These attributes serve to characterise the 3-D frontal sur-
face, effectively reducing its dimensionality and facilitating comprehensive
analysis. The study shows that the unique signature of the frontal attribute
distributions for individual fronts enables effective frontal tracking. In par-
ticular, the application of the EMD to compute a distance between individual
TFP distributions of frontal surfaces in combination with a distance filter is
shown to be an effective approach for automatic 3-D frontal tracking. The
automated tracking of a front over time facilitates the generation of time
series of frontal attributes, providing a robust basis for a comprehensive
analysis of the evolution of frontal characteristics.

2b: What are effective visualisation methods for displaying the evolution of
frontal attributes over time? How can feature-based ensemble analysis
be successfully performed on 3-D atmospheric fronts? What techniques
can be used to perform feature-based ensemble similarity ordering and
clustering, and how can these approaches be effectively visualised?

To comprehensively analyse time series of derived frontal attributes, a clear
visualisation method is crucial. In the context of ensemble analysis, the
horizon plot proves to be an effective tool for displaying similarities and
differences in time series of feature attributes. However, ordering these
time series based on similar characteristics is challenging, as conventional
Euclidean distance measures may inaccurately emphasise time offsets of
characteristic events between two series. This limitation is particularly
evident when events with identical characteristics occur at different times,
leading to an overestimation of the distance between time series. Such a
characteristic event could be, for example, a drop in the mean TFP attribute
occurring in two time series but at different time steps. To address this
issue, the study proposes the use of DTW and soft-DTW as suitable distance
measures between attribute time series. The application of DTW and soft-
DTW allows time series to be ordered according to their similarity, taking
into account characteristic developments while allowing for time shifts. This
methodology allows the production of similarity-based ordered horizon
plots, supports a comprehensive analysis of feature-based ensemble clusters,
and provides precise and condensed insights into the temporal evolution of
frontal attributes.

2c: How sensitive are clusters derived from 3-D fronts, considering different
frontal attributes and variations in filter thresholds applied to the de-
tected 3-D frontal surfaces? What insights do these variations provide
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for understanding the behaviour and characteristics of 3-D atmospheric
fronts within ensemble simulations?

The sensitivity of the proposed clustering method is systematically evalu-
ated across different frontal attributes and by varying the frontal detection
filter thresholds, including variations in both directions, more and less strict
filter thresholds. Following Kumpf et al. (2018), the sensitivity analysis uses
the Rand index, a metric that ranges from 1 (indicating no sensitivity) to 0
(indicating high sensitivity).

The results show that the derived clusters are generally sensitive between
different frontal attributes. The differences in sensitivity values derived from
the different distance metrics for k-means clustering show almost similar
results, with the Euclidean distance metric having the highest overall Rand
index. For this case study, I conclude that clusters derived from different
frontal attributes have a degree of independence. This means that clustering
different frontal attributes leads to different clusters. However, with only one
case study, the sample size is too small to derive generally valid sensitivity
statistics.

To test the sensitivity of clusters to front filter thresholds, the filter thresh-
olds for the detected 3-D fronts were adjusted, resulting in slightly larger
fronts for less strict filter thresholds and smaller fronts for more strict filter
thresholds. The resulting sensitivity analysis shows that clusters generated
from frontal attributes are generally not very sensitive to small changes
in the filter thresholds of the underlying 3-D fronts. However, clusters are
slightly less sensitive when less strict filter thresholds are used, whereas
they show more sensitivity when stricter filter thresholds are used. This may
be due to the fact that more restrictive filter thresholds typically result in
fewer and smaller detected 3-D fronts, and therefore it is possible that such
restrictive filtering may exclude certain frontal features, creating different
clusters and, consequently, higher sensitivities due to cluster dissimilarity.

As a final remark, the feature-based ensemble analysis and visualisation approach
presented here has the potential to be used operationally. Being integrated in
Met.3D, other meteorological variables can be analysed in conjunction with the
3-D frontal structures. This facilitates the rapid analysis of complex weather
situations, as required in operational settings (see Rautenhaus et al., 2018). The
results suggest that the use of a feature-based ensemble analysis technique, which
automates 3-D feature tracking and characterisation by feature attributes, has
potential in both research and operational weather forecasting. The method’s
stability and adaptability make it a valuable tool for weather forecasting and
weather analysis, enhancing the ability to analyse and comprehend the variability
of fronts and frontal dynamics in ensemble simulations. Further possible fields of
application include climatological studies of frontal characteristics derived from
the 3-D features, and investigation of the relation of frontal structures to other
physically meaningful features in the 3-D atmosphere, including the jet stream –
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this will be beneficial for studies that contribute to the understanding of complex
dynamical processes in the atmosphere.

7.2 outlook

The present study introduces a novel approach to ensemble analysis through the
examination of feature attributes, and provides valuable insights into selected
cases. However, the scope of my analysis is currently limited, suggesting the need
for further research to explore broader applications and improve the methodology.
This outlook highlights potential paths for future investigation.

Machine Learning (ML) for 3-D feature detection: Opportunities for future
novel feature detection methods may be facilitated by recent advances in
ML. For example, an approach using artificial neural networks to detect
2-D fronts (Niebler et al., 2022) and its 3-D extension (Niebler et al., 2023)
has recently been proposed. Their approach learns from fronts depicted on
analysis charts issued by national weather services and hence mimics the
approaches of human forecasters. One advantage over the objective 2-D and
3-D front detection presented here is that there is no need for parameter
configuration and adjustments, as the fronts are detected directly in NWP
model data output. However, their ML approach learns from fronts that
are, to some extent, subjectively depicted by human forecasters. Can such
a ML approach identify objective fronts based on statistics of subjectively
depicted fronts? Their 3-D approach to front detection is represented by
2-D horizontal and vertical slices, lacking the geometric 3-D representation
of fronts. However, exploring the feasibility of obtaining a comprehensive
3-D representation and comparing the results with my proposed 3-D objec-
tive front detection method could provide insights into the accuracy and
capabilities of such an ML approach.

3-D visualisation of cluster uncertainties: Visualisation of uncertainties and
clustering in ensemble simulations facilitates the analysis of large datasets
to identify trends, clusters, and outliers. Various visualisation approaches
have been proposed in the literature to characterise uncertainties of ensem-
ble simulations in 2-D, such as contour box plots (Whitaker et al., 2013),
variability plots of iso-contour lines (Ferstl et al., 2016a) and visualisation
of outliers in contour ensemble data (Chaves-de-Plaza et al., 2024) and in
3-D for iso-surfaces (Pfaffelmoser et al., 2011) and clusters of streamlines
(Ferstl et al., 2016b). Combining such approaches to represent clusters and
their uncertainties of 3-D fronts would open new possibilities for visualis-
ing, analysing, and interpreting clusters of 3-D fronts derived from frontal
attributes.

Climatologies of feature attributes: The proposed feature-based ensemble anal-
ysis approach could be extended to produce climatologies of feature at-
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tributes, providing a comprehensive understanding of the temporal (sea-
sonal) and spatial (location) variations in these attributes. The use of ex-
tensive datasets, such as ERA5 data, holds promise for evaluating the
effectiveness of the approach under different climatic conditions. My results
indicating a successful application to ERA5 data suggest that this extension
is both feasible and promising.

Collections of ensembles and intercomparison: Extending the analysis to col-
lections of ensembles provides a novel opportunity to study specific me-
teorological phenomena, such as severe winter storms over Europe. By
comparing the characteristics of similar storms, researchers can explore the
existence of common patterns, clusters, and footprints. This comparative
analysis can reveal hidden relationships and contribute to a deeper under-
standing of the dynamics underlying these high-impact weather events.

Characterisation of additional atmospheric features and measures of feature
relationships: Beyond storm-related investigations, future research should
aim to characterise other key atmospheric features, including the jet core,
tropopause, and polar vortex. Applying the feature-attribute methodology
to these features opens opportunities to derive geometric and physical
measurements, providing valuable insights into their behaviour and po-
tential interactions. Such an extension could contribute significantly to
our knowledge of atmospheric dynamics. Investigating the relationships
between feature attributes and the geometric and physical properties of at-
mospheric features is a critical next step. By establishing these relationships,
researchers can gain a deeper understanding of the underlying processes
that drive atmospheric phenomena. This approach has the potential to
contribute to improved predictive modelling and forecasting capabilities.

In conclusion, the presented front detection and ensemble analysis approach pro-
vides a promising foundation for future research. By extending the methodology
to climatologies, collections of ensembles, and additional atmospheric features,
researchers can gain new insights into the complexity of the Earth’s atmosphere.
This perspective encourages interdisciplinary collaboration to advance the field
of ensemble analysis towards more comprehensive applications.
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Video supplement
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• Development of 3-D frontal structures, jet stream, and WCB trajectories of
Vladiana Beckert et al. (2022a).

• Interactive front analysis of storm Friederike using the open-source meteo-
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Figure 4.1 Cyclone Vladiana on 23 September 2016 at 06:00 UTC.
(a) Detected 2-D warm (red line) and cold (blue line) fronts
at 850 hPa, qw at 950 hPa (colours, in K), and mean sea level
pressure (black contour lines, every 2 hPa) from a COSMO
simulation (black frame shows domain boundaries; green
frame shows the selected sub-region for studying convec-
tion in the vicinity of the cold front; see Section 5.3.3).
(b) Detected 3-D warm (red) and cold (blue) fronts between
950 hPa and 500 hPa, on top of a horizontal map showing
qw at 950 hPa and mean sea level pressure (black contour
lines, every 2 hPa). Warm- and cold-front classification is
computed according to warm- and cold-air advection at
the front (following Hewson, 1998). 48
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As shown in Figure 5.13, 3-D front detection is required to
observe all characteristics. 50

Figure 4.3 Track of the cyclone centre of winter storm Otto according
to the University of Berlin. Figure from RandomInfinity17
(2023), used under CC BY-SA 4.0. The original image has
been edited by adding date and timestamps to the storm
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Figure 5.1 Illustration of the thermal-gradient-based detection method,
using a simplified straight front and following Hewson
(1998) and Kern et al. (2019). The goal is to determine
the warm-air boundary of the frontal zone (i.e. the region
of increased thermal gradient; see the yellow line). This
boundary corresponds to the third derivative (red line)
of a thermal variable t (black line) being zero, under the
condition that the second derivative of t (blue line) is neg-
ative. The cold-front typing shown assumes air masses are
moving from left to right across the figure. 55
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Figure 5.2 Step-by-step illustration of the 2-D front detection method.
In the example, objective fronts are based on the 850 hPa
wet-bulb potential temperature field (qw) from the ECMWF
HRES forecast (horizontally regular grid-point spacing of
0.15� in both longitude and latitudes) initialised on 18 Jan-
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at 12:00 UTC. Fronts are “fuzzy filtered” using a fade-
out range for TFP of 0.2–0.4 K (100 km)�2 and for frontal
strength of 0.6–1 K (100 km)�1. See Sect. 2.3 for a descrip-
tion of panels (a)–(h). 59
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shown in a blue box and new data pipeline modules are
shown in green boxes. Data structures are represented by
oval circles. Y represents the scalar input data field. 62
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eter (TFP ) values computed from hourly ECMWF HRES
forecast data (horizontal grid-point spacing of 0.15�) from
18 January 2018, in the region 30� N–70� N, 60� W–30� E
and between 950–500 hPa for different smoothing length
scales: (a) 100 km, (b) 50 km, and (c) 30 km. 64

Figure 5.5 Distribution (relative frequencies) of |rhqw| within frontal
zones between 950–500 hPa (same data, time, and region
as in Figure 5.4) for different smoothing length scales:
(a) 100 km, (b) 50 km, and (c) 30 km. 65

Figure 5.6 From 2-D to 3-D objective fronts. Same data as in Fig-
ure 5.2 (18 January 2018, 12:00 UTC) but showing the full
3-D structure of frontal surfaces in the lower and middle at-
mosphere. All circles and arrows denote features discussed
in text. (a) 850 hPa frontal lines from Figure 5.2h with 3-D
frontal surfaces between surface and 500 hPa, viewed from
the top. (b) Same as (a) but from a tilted viewpoint looking
north. (c) Same as (b) but with additional fuzzy normal
curve filter of q between 0.6–1 K (100 km)�1. (d) Same as
(c) but viewed from west. Cross section shows q and |rhq|.
(e) Same as (b) but with additional fuzzy normal curve
filter of specific humidity between 0.1–0.2 g (kg 100 km)�1.
(f) Same as (e) but viewed from west. Cross section shows
q and |rhq|. (g) Input field smoothed to a horizontal
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Figure 5.7 Impact of the vertical resolution on detected fronts. (a)
original vertical resolution of ECMWF with 137 vertical
level. (b) vertical level retained to 68 level. (c) vertical
levels retained to 28 levels. 68

Figure 5.8 Conceptual model of fronts and WCB showing large-scale
ascending and descending air in the vicinity of an extra-
tropical cyclone. Figure adapted from Stull (2017), used
under CC BY-NC-SA 4.0. 70

Figure 5.9 (a–c) Temporal evolution of 3-D frontal structures and WCB
trajectories of Vladiana on 23 September 2016. (d) Same
time as (b) but only fast-ascending WCB trajectories (mini-
mum 200 hPa within 2 h) are displayed for a period of 48 h.
(e) Same as (d) but only slow-ascending WCB trajectories
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as (c), jet stream (yellow isosurface of 50 m s�1 wind speed)
and WCB trajectories are displayed for a period of 48 h.
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Video supplement (Beckert et al., 2022a). 71

Figure 5.10 Convection and frontal structure on 23 September 2016
at 06:00 UTC. Region corresponds to green sub-area in
Figure 4.1. ECMWF analysis (a, b, c) and COSMO analysis
(d, e, f) at (a, d) 850 hPa, (b, e) 700 hPa, and (c, f) 500 hPa.
Objective 2-D fronts (blue tubes) are shown along with UK
Met Office fronts (red tubes), qw (colour), |rhqw| (grey
shades), and upward air velocity (contour lines: orange is
upwards, black is zero, and green is downwards; contour
line spacing is 0.02 m s�1). 73

Figure 5.11 The 3-D view of the 2-D frontal structures from Figure 5.10.
(a) 2-D objective fronts (blue tubes) at 850, 700, and 500 hPa
(see Figure 5.10) in the context of full 3-D frontal structures,
as found in ECMWF data. (b) Same as (a) but for COSMO
data. Red circles in (a) and (b) mark the differences in
the frontal surfaces. Contour lines on all surface maps
represent upward air velocity at 700 hPa (orange is up-
wards, black is zero, and green is downwards; contour
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(d) Same as (c) but for COSMO data. 74
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Figure 5.12 Temporal evolution of 3-D frontal structures in Figure 5.11,
detected from (left) ECMWF analysis and (right) COSMO
analysis. Contour lines projected onto the surface show
upward air velocity at 700 hPa (orange is upwards, black
is zero, and green is downwards; contour line spacing
of 0.02 m s�1). The yellow pole marks the centre of the
convective updraft at 06:00 UTC, and the red arrow points
northward. 75

Figure 5.13 Temporal evolution of 3-D frontal structures of Friederike
(16 to 19 January 2018), as detected in ERA-5 reanalysis
data. (a) Different cyclone stages encountered along the
cyclone track. Yellow poles mark centres of surface low,
and front colours distinguish time steps. (b) The six stages
from (a), approximately centred around the cyclone centres
for comparison of frontal structures. Blue arrows mark
frontal fracture, yellow arrows mark warm-core frontal
seclusion, and contour lines show surface pressure (spac-
ing 2 hPa). 76

Figure 5.14 Temporal evolution of 3-D frontal structures of Egon (12
to 13 January 2017), as detected in ERA-5 reanalysis data.
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for case Friederike (18 January 2018, 12:00 UTC). (a) UK
Met Office surface analysis chart. Blue box marks analysed
area. (b) Objective 850 hPa 2-D fronts (blue lines) as de-
tected from ECMWF HRES qw (colour; grey shading shows
|rhqw|), UK Met Office fronts (red lines), and mean sea
level pressure (black contour lines, spacing 2 hPa). (c) Same
as (b) but objective 2-D fronts (green lines) based on q. The
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Figure 5.16 The 3-D view of Figure 5.15b–c. Red tubes show UK Met
Office fronts, and 3-D objective fronts are coloured accord-
ing to pressure elevation. Objective fronts based on (a) qw
and (b) q. The secondary front (black arrow) is a feature
of qw and only occurs around 850 hPa. Yellow poles are to
aid spatial perception. Compare the animated version in
the Video supplement (Beckert et al., 2022b). 79

Figure 5.17 Total column rain water and 3-D fronts of ECMWF HRES
simulation on 18 January 2018, 12:00 UTC, initialised on 18
January 2018, 00:00 UTC. (a) 3-D fronts and total column
rain water. (b) Total column rain water. The orange circle
highlights the position of the secondary cold front shown
in (a). 80

Figure 6.1 Comparison of 3-D fronts with (a) fuzzy-filter thresholds
and (b) hard filter thresholds. 83

Figure 6.2 Example of the 3-D front selection process. Selected fronts
remain in colour, unselected fronts are shaded light grey.
The path lines show the evolution of the frontal centroids
of the current and other ensemble members. The path
lines of the current ensemble member are annotated with
a timestamp. 85

Figure 6.3 Example of a temporarily split cold front event during
frontal tracking. (a) The cold front is compact and forms a
contiguous surface. (b) The red circle marks the location
of a cold front split. (c) The cold front is compact and
contiguous again. 86

Figure 6.4 Adapted data pipeline for the feature selection framework.
Additional pipeline modules and data input/output for-
mats are illustrated in darker colours. 91
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Figure 6.5 Example of the interactive front selection workflow. (a)
Frontal surfaces filtered with hard thresholds and coloured
according to front type (blue = cold front, red = warm
front). (b) Warm fronts are filtered out, the selected cold
front is highlighted in blue, and non-selected cold fronts
are grey. The text indicates the ensemble member, date
and the time of the selected front. (c) 24-hour front track
together with the cold front of the last tracking time step.
(d) Front tracks of multiple ensemble members and the
cold front of the currently selected member. (e) Example
of front tracks of five selected ensemble members. Front
tracks are presented using the multi-parameter trajectory
display of Neuhauser et al. (2023). The band of each front
track shows the evolution of the mean TFP, mean frontal
strength and mean frontal slope attributes, including a
highlighted time step annotated as a pie chart. 92

Figure 6.6 Distribution of (a) TFP, (b) frontal strength, and (c) frontal
slope of the tracked 3-D cold front of Storm Friederike,
shown as a violin plot. The front is tracked in ECMWF
ENS forecast, initialised on 16 January 2018, 12:00 UTC,
with 91 vertical levels defined on hybrid sigma-pressure
coordinates. The distributions are shown for 73 time steps
of the tracked front and for ensemble member 0. While
the distributions of TFP and frontal strength have similar
characteristics, the frontal slope has a dipole structure.
Individual parts of the front are either steeply sloped for-
wards (close to 90�) or backwards (close to -90�). 94

Figure 6.7 Distribution of TFP of the reference front and potential front
matches for different time intervals. Manually selected tar-
get TFP distributions are marked with a red arrow. For (a)
1 hour and (b) 3 hour intervals, the smallest EMD distance
between the TFP distributions of the reference and target
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For (c) 6 hour and (d) 12 hour intervals, the minimum
EMD distance between the TFP distribution of the reference
does not represent the correct target front and automatic
front tracking fails. Figure 6.8 shows the corresponding 3-D
fronts. Fronts detected in ensemble member 0 of ECMWF
ENS forecast, initialised on 16 January 2018, 12:00 UTC,
with 91 vertical levels defined on hybrid sigma-pressure
coordinates. 95
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Figure 6.8 Illustration of automated front tracking for different time
intervals. The reference front is shown in dark blue, the
target front obtained by automated tracking is shown in
light blue. As shown in Figure 6.7, automated tracking
is successful for time intervals of (a) 1 and (b) 3 hours.
Tracking fails for time intervals of (c) 6 and (d) 12 hours.
The manually selected target front is marked with a red
arrow and the front selected by automated front tracking
is marked with a red circle in (c) and (d), where automated
front tracking fails. All fronts are detected in ensemble
member 0 of ECMWF ENS forecast, initialised on 16 January
2018, 12:00 UTC, with 91 vertical levels defined on hybrid
sigma-pressure coordinates. 96

Figure 6.9 Distribution of (a) TFP on model level and (b) on pressure
level on a frontal surface, shown as violin plots. The front
is tracked in the ECMWF ENS forecast, initialised on 16 Jan-
uary 2018, 12:00 UTC. Model levels consist of 91 vertical
levels defined on hybrid sigma-pressure coordinates. Pres-
sure levels consist of 12 vertical levels defined on pressure
coordinates. Distributions are shown for 73 time steps of
the tracked front and for ensemble member 0. The TFP
distributions in both model levels (a) and pressure levels
(b) have a similar structure. However, the distributions in
the model level data show an anomaly around 17 January
2018, 00:00 UTC, with an accumulation of low TFP values
(red circle). 97

Figure 6.10 Comparison of fronts detected in (a) model level and (b)
pressure level data on 17 January 2018, using the same
data as used in Figure 6.9. The red circle indicates a part of
the frontal surface with low TFP values in the model level
data, which is not present in the pressure level data. This
leads to the anomalies of low TFP in the model level data
shown in Figure 6.9. Red arrows in (b) point to "spikes" in
the frontal surface detected in the pressure level data due
to the low vertical grid spacing. 98

Figure 6.11 Distribution of TFP detected in the same front across all
51 ensemble members at the simulation initialisation time
step. Annotated on the x-axis is the EMD relative to the
reference ensemble member (member 0) for each TFP dis-
tribution. 3-D fronts detected in ECMWF ENS forecast data,
initialised on 16 January 2018, 12:00 UTC, with 12 vertical
levels defined on pressure coordinates. 99
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Figure 6.12 (a) Spaghetti plot of mean TFP frontal attribute develop-
ment over a 25-hour period. Each black line represents
an ensemble member, the red line represents the reference
member (member 0). (b) Horizon plot of TFP mean frontal
attribute time series. Each row represents an ensemble
member. The frontal attributes are computed from tracked
3-D cold fronts of Cyclone Otto using the DWD ICON-EU-
ENS forecast, initialised on 16 February 2023 at 00:00 UTC.
100

Figure 6.13 DTW distances of each ensemble member to the reference
member (member 0). Ensemble members are sorted by
distance in ascending order. 101

Figure 6.14 Horizon plot of the mean TFP frontal attribute. Ensemble
members are sorted by similarity to the reference mem-
ber (member 0) using DTW, from most similar member
(bottom) to most different member (top). 103

Figure 6.15 Silhouette score for k-means clustering of (a) mean TFP and
(b) mean frontal slope for different numbers of clusters.
The silhouette score shows the highest intra-cluster coher-
ence and inter-cluster separation for the DTW and soft-DTW
distance function and 2 to 4 clusters. Overall, the silhou-
ette score is significantly lower for mean TFP compared to
mean frontal slope. 104

Figure 6.16 Spaghetti plots of clustered frontal attribute mean frontal
slope using the k-means algorithm for 3 cluster centres.
The figure shows cluster results for different distance met-
rics: (a) - (c) Euclidean, (d) - (f) DTW, and (g) - (i) soft-DTW.
Red lines highlight the cluster centres. 105

Figure 6.17 Horizon plot visualisation of mean frontal slope attribute
time series clustered by k-means. K-means clustering was
performed using DTW as the distance metric. Mean frontal
slope attribute time series are derived from tracked 3-D cold
fronts of Cyclone Otto using the DWD ICON-EU-ENS fore-
cast, initialised on 16 February 2023 at 00:00 UTC. 106
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Figure 6.18 3-D fronts of a sample member for each cluster. The tracked
cold front is colour-coded according to the frontal slope.
All other fronts are shown in grey. Fronts detected in
ensemble member 0 (right row) and ensemble member 35
(left row) follow the Norwegian cyclone model, and the
cold front wraps up around the cyclone centre (see red
arrows on 17 February 2023, 12:00 UTC). Fronts detected
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