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Abstract

Modern condensed matter theory increasingly draws on topological ideas to explain phenomena that
defy purely local descriptions. While the theoretical foundations of topology in quantum matter are
well established, much can still be learnt about how topological properties interact with other aspects
of physical systems. This thesis explores the interplay between topology and competing physical effects
through a series of quantum and quantum-classical case studies. We cover systems with coexisting
topological orders, quantum-classical dynamics, and small-scale quantum information platforms.

The first study addresses the implications of coexisting topological orders in a quantum-classical
hybrid system formed by classical impurity spins coupled to a spinful Haldane model on a periodic
honeycomb lattice. In this setting, the configuration space of the classical impurity spins constitutes
a parameter manifold that enables an extrinsic monopole-like classification complementing the intrinsic
Chern classification of the Haldane host. The additional monopole-like topological order explains the
emergence of a spectral flow of bound-state energies bridging the host’s energy gap as a function of
the exchange-coupling strength. The form of this spectral flow, however, is determined by the Chern
topology of the host system, which dictates whether or not impurity-bound in-gap states appear in the
limit of infinitely large exchange coupling strengths between impurity spins and host. The coexistence of
the conventional Chern momentum-space topology and the monopole-like configuration-space topology
enables the numerical construction of topological phase diagrams that provide valuable insights into the
interrelations between the two topological structures.

The second study demonstrates how the topological edge states of a quantum spin Hall system can
be harnessed to control the real-time dynamics of a magnetic impurity. To this end, a classical impurity
spin is coupled to one edge of a Kane–Mele model on a finite ribbon segment. The real-time evolution of
the resulting quantum-classical hybrid system is obtained by numerically solving the full set of coupled
equations of motion for the classical spin and the electronic system. In order to enable the simulation of
long-time dynamics, dissipative boundary conditions are imposed on all but the impurity-hosting edge.
Spin density injections into the spin-momentum locked Kane–Mele edge modes propagate unidirectionally
and with minimal loss, enabling remote manipulations of the impurity spin dynamics. Iterated protocols
of spin injection, unidirectional propagation, and scattering off the impurity spin allow the implementation
of a complete and reversible spin switching process.

The third study employs superconducting phase rotations in small networks of weakly-linked Kitaev
chains to realise logical braiding operations for topological quantum computation without exchanging
anyonic Majorana quasiparticles. Braiding protocols are verified by numerically evaluating the non-
Abelian Wilczek–Zee phase of the low-energy many-body subspace H0(φ) using the Bertsch–Robledo
overlap formula. The parameter space of two weakly linked Kitaev chains divides into two regions
characterised by distinct braiding outcomes, i.e. projective σx- or σz-type braiding operations. A selection
of representative phase diagrams reveal that the σx and σz phases are separated by a continuous crossover.
Moreover, this crossover regime is centred on a sharp transition hypersurface derived from a minimal
model of the four involved Majorana modes. The study demonstrates the robustness of anyonic properties
against finite-size effects and weak couplings between Kitaev chains.
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Kurzzusammenfassung

Die moderne Theorie der kondensierten Materie greift zunehmend auf topologische Ideen zurück,
um Phänomene zu erklären, die sich rein lokalen Beschreibungen entziehen. Während die theoretischen
Grundlagen der topologischen Quantenmaterie gut etabliert sind, kann noch viel darüber gelernt wer-
den, wie topologische Eigenschaften mit anderen Aspekten physikalischer Systeme interagieren. In dieser
Dissertation wird das Zusammenspiel zwischen Topologie und konkurrierenden physikalischen Effekten
anhand einer Reihe von quantenmechanischen und quantenklassischen Fallstudien untersucht. Diese um-
fassen Systeme mit koexistierenden topologischen Ordnungen, quantenklassische Dynamik und kleine
Quanteninformationsplattformen.

Die erste Studie befasst sich mit den Auswirkungen koexistierender topologischer Ordnungen in einem
quantenklassischen Hybridsystem, in dem klassische Störstellenspins an ein Haldane-Modell von Elektro-
nen mit Spin-1/2 auf einem periodischen Honigwabengitter gekoppelt sind. In diesem Rahmen stellt der
Konfigurationsraum der klassischen Störstellenspins eine Parametermannigfaltigkeit dar, die eine extrinsi-
sche monopolartige Klassifizierung ermöglicht, welche die intrinsische Chern-Klassifizierung des Haldane
Trägersystems ergänzt. Die zusätzliche monopolartige topologische Ordnung erklärt das Auftreten ei-
nes spektralen Flusses von Energien gebundener Zustände, welche die Energielücke des Haldane-Modells
als Funktion der Austauschkopplungsstärke überbrücken. Die Form dieses spektralen Flusses wird der-
weil durch die Chern-Topologie des Trägersystems bestimmt, die festlegt, ob im Grenzfall unendlich
großer Austauschkopplungsstärken zwischen den Störstellenspins und dem Trägersystem gebundene In-
Gap-Zustände auftreten oder nicht. Die Koexistenz der konventionellen Chern Impulsraumtopologie und
der monopolartigen Konfigurationsraumtopologie ermöglicht die numerische Konstruktion topologischer
Phasendiagrammen, die wertvolle Einblicke in die wechselseitigen Beziehungen zwischen den beiden to-
pologischen Strukturen liefern.

Die zweite Studie zeigt, wie die topologischen Randzustände eines Quanten-Spin-Hall-Systems zur
Steuerung der Echtzeitdynamik einer magnetischen Störstelle genutzt werden können. Zu diesem Zweck
wird ein klassischer Störstellenspin an eine Kante eines Kane–Mele-Modells auf einem endlichen Streifen-
segment gekoppelt. Die Echtzeitentwicklung des resultierenden quantenklassischen Hybridsystems wird
ermittelt, indem der vollständige Satz gekoppelter Bewegungsgleichungen des klassischen Spins und des
elektronischen Systems numerisch gelöst wird. Um eine Simulation der Langzeitdynamik zu ermöglichen,
werden dissipative Randbedingungen für alle Ränder mit Ausnahme des Randes, der den Störstellenspin
trägt, eingeführt. Die feste Kopplung zwischen Spin- und Impulsrichtung in den Kane–Mele-Randmoden
führt dazu, dass sich Spindichte-Injektionen unidirektional und nahezu verlustfrei ausbreiten, was ei-
ne gezielte Manipulation der Störstellenspindynamik aus der Ferne ermöglicht. Iterierte Protokolle aus
Spininjektion, unidirektionaler Ausbreitung und Streuung am Störstellenspin ermöglichen die Implemen-
tierung eines vollständigen und reversiblen Spinschaltprozesses.

Die dritte Studie nutzt Rotationen der supraleitenden Phase in kleinen Netzwerken aus schwach ver-
knüpften Kitaev-Ketten, um logische Braidingoperationen für topologisches Quantencomputing zu rea-
lisieren, ohne die anyonischen Majorana-Quasiteilchen auszutauschen. Die Braidingprotokolle werden
numerisch verifiziert, indem die nicht-abelsche Wilczek–Zee-Phase des niederenergetischen Vielteilchen-
Unterraums H0(φ) unter Verwendung der Bertsch–Robledo-Überlappformel ausgewertet wird. Der Pa-
rameterraum von zwei schwach verknüpften Kitaev-Ketten teilt sich in zwei Regionen, die durch unter-
schiedliche Braidingresultate gekennzeichnet sind, nämlich projektive σx- oder σz-artigen Braidingpera-
tionen. Eine Auswahl repräsentativer Phasendiagramme zeigt, dass die σx- und σz-Phasen durch einen
kontinuierlichen Übergang voneinander getrennt sind. Dieser kontinuierliche Übergang ist darüber hinaus
auf einer scharfen Übergangs-Hyperfläche zentriert, welche aus einem Minimalmodell der vier beteilig-
ten Majorana-Moden abgeleitet wird. Die Studie zeigt, dass die anyonischen Eigenschaften selbst bei
endlichen Systemgrößen und schwacher Kopplung zwischen den Kitaev-Ketten erhalten bleiben.
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1 – Introduction

Long before humanity formalised its pursuit of knowledge through empiricism, rationalism, and later
the scientific method, it entertained an obsessive fascination with patterns – carved into cave walls to
capture the archetypical features of predator and prey; shaped into the sounds and symbols of language;
recorded in the early calendars charting the celestial cycles of the sun, the moon, and the stars. The
human interest in such regularities is hardly surprising: faced with the overwhelming complexity of
nature, patterns have always created a sense of order, something to hold on to amid the chaos.

From this viewpoint, one might argue that the development of mathematics as a formal system to
describe and abstract patterns was more or less inevitable. Likewise, it is perfectly intuitive that such
a system would find application in the modern natural sciences. What is much less intuitive, is the
consistency with which mathematics assumes a role that goes far beyond mere utility: shaping not only
how we describe the world, but how we discover it. This remarkable effectiveness inspired Wigner’s
now-famous essay, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”, in which he
expressed his astonishment, even disbelief, at how uncannily well mathematics fits the natural world [1].
Wigner illustrated his argument with some of the most-prevalent applications of mathematics in physics
at the time: differential calculus in classical mechanics, functional analysis in quantum mechanics, and
group theory in quantum electrodynamics. Had he written his essay a couple of decades later, he might
have featured another branch of mathematics: the late 20th-century rise of topology – subtle, slippery,
and suddenly everywhere in physics – would have fit his case perfectly.

A Minimal Taxonomy of Topology in Physics. In hindsight, topology has been lurking in
physics since Dirac’s magnetic monopole in 1931 [2], the Aharonov–Bohm effect in 1959 [3], and nuclear
skyrmions in the early 1960s [4, 5]. Yet, it was not until the 1970s and 1980s, with the first explicit
mentions of topological solitons in field theory [6–8], the topological characterisation of the quantum
Hall effect [9–11], and the introduction of topological quantum field theories [12, 13], that the scientific
community recognised “topological effects” as a distinct class of physical phenomena. While the details of
such topological effects may vary greatly, they all share a simple unifying theme: they possess a quality
that is in some sense global and invariant under continuous transformations. This could be a twist in the
Bloch states over reciprocal space, but also a winding of a classical field configuration in real space, or
an obstruction in a gauge bundle over spacetime. Since the already long list of topological phenomena
continues to grow at a remarkable pace, devising a comprehensive list of topology-related physical effects
is a hopelessly difficult task. For this reason, we content ourselves with assembling a collection of the
most prevalent flavours, a minimal taxonomy, of topology in physics.

Quantum Matter. Topological quantum matter is generally concerned with the topological prop-
erties of quantum states in macroscopic lattice systems of free fermions. The translational invariance in
the bulk of such systems endows its quantum states with a (Bloch-)bundle structure, which enables an
extensive topological classification in terms of characteristic classes and K-theory [14,15]. In its simplest
form, this classification tells us how the occupied Bloch bands of a band insulator twist as a function of
quasi-momentum. The resulting phase of matter is known as a topological insulator (TI) and is usually
characterised by a single Z, Z2, or 2Z number known as its topological invariant. Importantly, the topol-
ogy, that the many-body ground state of a TI inherits from its occupied Bloch bands, can only change
when the insulating band gap closes. In this sense, the band gap of a TI protects the topological properties
of its ground state. The same line of reasoning can be applied to ground states of Bogoliubov–de Gennes
(BdG) superconductors, giving rise to topological superconductors (TSCs) whose ground state topology is
then protected by the superconducting gap. Another example of topological matter are Weyl semimetals
(WSMs). Unlike TIs and TSCs, these arise from gapless bulk band structures where conduction and
valence bands touch at isolated Weyl points that carry a topological charge. Depending on whether the
topological properties of a given phase of matter depend on the presence of symmetries, it is further
distinguished between symmetry-protected and intrinsic topological phases. Notably, the topological
classification of Bloch bundles in periodic lattice models can be generalised through non-commutative
geometry to encompass more realistic, disordered crystals [16–18].
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Many topological phases feature boundary modes, such as edge states of two-dimensional TIs [19–21]
or surface Fermi arcs of three-dimensional WSMs [22–24]. These often possess exotic properties and can
serve as signatures of the bulk topology. The existence of such boundary modes is typically guaranteed by
a principle called bulk-boundary correspondence [14, 25]. More generally, the tenfold way of topological
quantum matter with symmetries [14] classifies the bulk-defect correspondence of free-fermion topological
phases of matter. It is based on the ten Altland-Zirnbauer classes X of fundamental symmetries (time-
reversal, particle-hole, chiral), the system dimensions d, and the defect codimensions D [26,27]. For each
of these combinations, the classification scheme specifies whether a generic codimension-D defect in a
system of spatial dimension d and symmetry class X supports topological zero modes, and if so, which
type of bulk topological order (Z, Z2, 2Z) protects them via bulk-defect-correspondence.

Exemplary models that will be discussed in this thesis include the Kitaev chain, a one-dimensional
TSC with particle-hole symmetry and Majorana zero modes, the Haldane model, a two-dimensional
TI without symmetries and chiral edge modes, and the Kane–Mele model, a two-dimensional TI with
time-reversal symmetry and helical edge modes.

Solitons. The first documented evidence of solitonic behaviour dates back to the early 19th century,
when Scottish naval architect John Scott Russell reported a puzzling type of water wave that maintained
its shape over surprisingly long distances and even through collisions with other waves [28]. Russell’s
fascination with what he called the “solitary wave of translation” was way ahead of its time. In fact, its
broader significance for physics was not recognised until about a century later, when American physicist
Norman J. Zabusky introduced the term soliton to describe stable, localised waves in one-dimensional
non-linear dispersive media [29]. Zabusky chose the name as a blend of “solitary” and the particle suffix
“-on”, reflecting the wave’s unusual ability to propagate in isolation and without changing its shape; much
like a stable particle. Russell’s solitary wave of translation and Zabusky’s one-dimensional solitons have
since evolved into the much more general and surprisingly universal concept of topological solitons.

In the spirit of the original phenomena, modern topological solitons refer to stable, particle-like config-
urations of classical fields φ : Rd → E, which are defined over d-dimensional Euclidean space Rd and take
values in some manifold or linear space E. They occur in many non-linear classical field theories all across
physics [30]. More concretely, solitonic field solutions are characterised by a strong spatial localisation
and a striking resilience against dispersion, distortion, and annihilation. Remarkably, this stability comes
from a topological obstruction: a soliton exhibits a non-trivial global winding that distinguishes it from
the trivial vacuum of the theory. Since this winding cannot be undone by any continuous deformation,
the soliton cannot continuously decay into that vacuum. In more technical terms, the vacuum and soli-
tons belong to different homotopy classes. Each homotopy class corresponds to an equivalence class of
continuous maps from the field domain Rd into the codomain E. The most fundamental requirement for
the existence of topological solitons is therefore a partial-differential equation that possesses topologically
distinct homotopy classes of solutions. In many cases, these classes arise because the topologically triv-
ial field domain Rd can be given the topologically non-trivial structure of a sphere, either by one-point
compactification Rd∪{∞} ' Sd or by identifying its asymptotic boundary as ∂∞Rd ' Sd−1

∞ [30]. This is
possible because one is typically interested in fields φ that fulfil physical boundary conditions at infinity,
i.e. approach a direction-independent constant value e ∈ E or realise direction-dependent values in a
vacuum manifold V ⊂ E [30]. In either case, the homotopy classes of compactified or asymptotic fields
φ̄ : Sd → E or φ∞ : Sd−1

∞ → V define elements of so-called homotopy groups πd(E) or πd−1(V), providing
the topological structure needed to distinguish field solution classes.

The resulting soliton sectors of the field theory are thus characterised by an element of the relevant
homotopy group. Often, this homotopy group is isomorphic to Z or Z2 and the group elements charac-
terising the soliton sectors are called soliton numbers N or, for reasons that will become clear shortly,
topological charges. It is worth noting that the asymptotic homotopy classification via πd−1(V) requires a
non-trivial vacuum manifold V ⊂ E. Such a manifold corresponds to a continuum of degenerate vacuum
states, indicating spontaneous symmetry breaking. For this reason, soliton physics is often associated
with spontaneous symmetry breaking.
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Due to their great conceptual generality, topological solitons appear in numerous areas of physics. In
quantum field theory they manifest as skyrmions of non-linear sigma models [4,5] and instantons in some
gauge theories [7, 30–32].1 In condensed matter theory, they emerge in the form of magnetic skyrmion
textures [33], topological lattice defects like dislocations [34,35], and vortices in superfluid phases [36–38].
Beyond this, solitons describe monopoles like the magnetic Dirac monopole [2, 30, 39] or the ’t Hooft–
Polyakov monopole [6,40], domain walls in magnetism [41,42] and optics [43,44], as well as solitary waves
in fluid dynamics [28,45].

In the present work, solitons appear only implicitly, in the form of half-quantum flux vortices hosting
Majorana zero modes in two-dimensional px + ipy superconductors.

Conservation Laws. The standard route to conservation laws in physics is via Noether’s theorem:
given a continuous symmetry of an action S, one obtains a Noether current j built from the fields φ and
their derivatives ∂µφ. This current is conserved on-shell, meaning ∂µjµ = 0 whenever φ satisfy the Euler–
Lagrange equations. The Noether charge q =

∫
Σ
j0d3x is then conserved, dq/dt = 0, on all constant-time

slices Σ. Now, the existence of solitons demonstrates that topology can also conserve certain features of
a field theory. Indeed, there exists a second type of physical conservation laws that is closely related the
notion of both Noether conservation laws and topological solitons [46]. These topological conservation
laws are not tied to symmetries of an action, but to the global topology of the solution space of its Euler–
Lagrange equations. The conserved topological charge, Q =

∫
S3 j

0d3x = 4πN , is essentially determined by
the soliton number N mentioned in the previous section. It can be used to define a conserved topological
current J satisfying ∂µJµ = 0. Note that unlike Noether currents and charges, topological currents and
charges are invariant under continuous deformations of φ, and consequently hold even off-shell [46].

Index Theorems. Index theorems establish deep connections between the analytical and topological
properties of certain differential operators D : Γ(E1) → Γ(E2), where Ei

πi−→ M are vector bundles over
a compact manifold M and Γ(Ei) denotes the set of smooth sections of Ei. More concretely, they equate
an analytical index, which measures the net imbalance between the number of solutions and the number
of constraints, to a topological index, which is defined purely in terms of global topological data [39]. The
most prominent index theorems are the Atiyah–Singer index theorem [47] and its extension to manifolds
with boundary, the Atiyah–Patodi–Singer index theorem [48–50]. Some topological phenomena in physics
emerge when an index theorem ensures the existence of zero-energy solutions to a given (often Dirac-type)
differential equation, thereby giving them a topological character.

For instance, the bulk topological order of a condensed matter system can give rise to defect-bound zero
modes through the aforementioned bulk–defect correspondence [14]. Mathematically, this correspondence
can be formalised using index theorems like the Atiyah–Singer or Atiyah–Patodi–Singer theorems, which
relate the existence of such zero modes to global topological invariants of the bulk system [14, 25]. The
chiral edge modes of the quantum Hall effect, the helical edge modes of the quantum spin Hall effect, and
the Majorana zero modes of topological superconductors are prominent examples of this.

In a strikingly similar fashion, oceanic Kelvin waves can be understood as topological edge modes. In
Ref. [51], Delplace et al. draw a surprising parallel between Kelvin waves and the chiral edge modes of the
integer quantum Hall effect: in a rotating shallow-water system, the Coriolis force acts like a magnetic
field, breaking time-reversal symmetry and enabling a Chern classification of the bulk Poincaré wave
modes. Perhaps counterintuitively, this shallow-water model provides a good approximation of oceanic
fluid dynamics. The reason for this is that the ocean is a fluid layer whose horizontal extent vastly exceeds
its vertical height. As a result, one can effectively treat it as a two-dimensional “Chern fluid” on a sphere.
From this perspective, the equator represents an interface between regions of opposite Coriolis forces and
Chern numbers, hosting chiral edge modes, i.e. equatorial Kelvin waves, which propagate eastward with
opposite chiralities in each hemisphere. The opposite chiralities of the northern and southern hemispheres
edge modes also manifests along topographic boundaries such as coastlines, where coastal edge modes
propagate in counterclockwise (clockwise) direction in the northern (southern) hemisphere. A particularly
elegant way of making the topological nature of the Kelvin waves manifest is to reduce the shallow water
equations to a relativistic Maxwell–Chern–Simons gauge theory, as was done in Ref. [52].

1Skyrmions are named after Tony Skyrme, who first proposed them as a model for the nucleon in 1961 [4]. Instantons
are named for being localised in both space and time, effectively describing an event confined to a point in space and an
instant in time.
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Finally, index theorems form the mathematical basis of quantum anomalies, i.e. the anomalous non-
conservation of classically conserved currents in quantum field theories [53–56]. A well-known example is
the Adler–Bell–Jackiw chiral anomaly in quantum electrodynamics, which explains the anomalous decay
rate of the neutral pion via the non-conservation of the axial or chiral current [57,58]. Conceptually, this
non-conservation is a result of tunneling between topologically distinct vacua [59], a process generated
by instantons of the gauge field [59].

Topology: Use, Abuse, and Beyond. The above exposition places us in the midst of a veritable
zoo of topological effects in physics, raising the question of what we can do with these. While the
topological classification of physical phenomena is a considerable achievement in its own right, we are,
from a physicists’ perspective, compelled to look for concrete physical use cases and implications. Of
course, the preceding taxonomy of topological phenomena already included several useful implications of
this kind: bulk-boundary correspondence in topological quantum matter, quantum anomalies in gauge
theories, and soliton solutions in fluid dynamics clearly constitute tangible physical effects of specific
practical or theoretical value.

Yet, the promises of topology do not come without peril either: so seductive is the notion of topological
order that it is in constant danger of devolving into a fashion label worn more for flair than substance. In
this light, it is also the task of physicists to remain critical and, if necessary, to resist the allure of topology
in order to preserve the grounds for meaningful discourse. Not every global property is topological, and
not every defect mode owes its existence to bulk-defect correspondence.

Here, we set out to explore a variety of concrete use cases for topology that build upon and go beyond
the aforementioned foundational applications. In doing so, we take particular care to continually address
and scrutinise the role of topology. Specifically, we examine three distinct frontiers of topology:

∗ the Topology and Topology frontier, which characterises systems with coexisting or competing topo-
logical structures,

∗ the Topology and Dynamics frontier, which addresses the influence of topological defect modes on
the dynamics of local impurities, and

∗ the Topology and Quantum Computation frontier, which concerns the persistence and operability
of topological qubits in small-scale quantum systems.

Organisation of this Thesis. As a foundation, Chapter Two provides a compact but thorough
mathematical review of the topological, algebraic and geometrical concepts underlying the phenomena
studied throughout the thesis. Aimed at readers with a background in physics, most of the material is
reviewed from the ground up. It covers basic notions from general and algebraic topology, the theory of
fibre bundles, and characteristic classes, culminating in an excursion to the Atiyah–Singer index theorem.
The mathematical groundwork discussed in this chapter enables a rigorous exploration of the topological
structure of quantum matter, while maintaining a clear focus on the physical content throughout the
remainder of the thesis.

The mathematical review is followed by a series of chapters presenting more specialised concepts and
methods from theoretical physics. As a start, Chapter Three provides a brief guide to time-reversal and
particle-hole symmetry, facilitating the discussion of time-reversal protected quantum spin Hall systems
and particle-hole symmetric BdG superconductors. Following that, Chapter Four gives an overview of
Abelian and non-Abelian geometric phases. These supply the technical foundation for the later analysis
of braiding between anyonic Majorana zero modes. Chapter Five offers an in-depth discussion of the
BdG formalism, laying the groundwork for the numerical implementation and analysis of topological
superconductivity in the Kitaev chain. Finally, Chapter Six gives an introduction to the theory of
algebraic anyons. preparing a rigorous description of Majorana zero mode statistics.

Chapter Seven is the first of three chapters centred on numerical results. It is dedicated to the
Topology and Topology frontier, presenting a numerical study concerning the interplay and conceptual
value of coexisting topological structures. This is done by exchange-coupling a small number of R classical
impurity spins to a two-dimensional topological Chern insulator with periodic boundary conditions. The
configuration space of the R impurity spins forms a closed 2R-dimensional parameter manifold and enables
a topological classification in terms of what we call the R-th spin-Chern number Ch(S)

R , complementing
the conventional bulk classification of the translationally invariant host system by means of the first
k-Chern number C(k)

1 . The results of this chapter are published in [RQ1].
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The subsequent Chapter Eight explores the frontier of Topology and Dynamics. Based on a quantum-
classical hybrid system in which a classical impurity spin is coupled to the edge of a two-dimensional
quantum spin Hall insulator, we investigate how helical boundary modes affect the impurity spin dynam-
ics. A macroscopic half-space geometry is simulated by exchange-coupling the classical impurity spin(s)
to one edge of a finite ribbon segment and applying absorbing boundary conditions along the remaining
edges. This makes it possible to analyse the long-time dynamics of both the electronic host system and
the classical impurity spin by solving the coupled equations of motion of the quantum-classical hybrid
system. The results of this chapter are published in [RQ2].

Chapter Nine and Chapter Ten are concerned with the Topology and Quantum Computation fron-
tier. Methodologically, both chapters focus on a numerical analysis of “Sombrero” Wilczek–Zee phases
characterising the geometric evolution of superconducting many-body states under full rotations of the
superconducting phase. Chapter Nine addresses the Abelian Sombrero Wilczek–Zee phases, i.e. the
Sombrero Berry phases, associated with the unique ground states of conventional s-wave and topological
p-wave superconductors. Chapter Ten builds on this by examining the non-Abelian Sombrero Wilczek–
Zee phases associated with the almost degenerate ground states of a topological p-wave superconductor
hosting Majorana zero modes. This analysis allows us to decode the anyonic statistics of the Majorana
zero modes. The results of this chapter are published in [RQ3].

A full list of the publications supporting this work, together with a detailed explanation of the author’s
contributions, can be found in the Declaration of Publications.
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2 – Mathematical Background

In an insight far ahead of its time, Galileo famously described mathematics as the language in which
the universe is written [60]. He claimed that without mathematics, one was left to wander about in a
dark labyrinth. Even if Galileo’s artful prose may not have stood the test of time,1 it is safe to say that
the ideas he put forward have. In modern theoretical physics, mathematics has long advanced from a
mere framework for rigour to a guiding light that reveals new patterns and sparks unexpected insights.
One area for which this is particularly true is that of topological phenomena in physics.

This chapter introduces the mathematical concepts underlying the physical phenomena considered in
the following thesis. Specifically, we cover the fundamental definitions and notions from topology, fibre
bundles, and characteristic classes. The presentation closely follows Refs. [15, 39,61].

2.1 Topology

Mathematics is often associated with intricate detail and sophistication. In a sense, topology goes
against this notion: it adopts a deliberately blurred perspective, asking which structural details can
be ignored to get to the most fundamental properties. This principle is often visualised as rubber-
sheet geometry, where objects can be stretched and deformed like rubber, but can never be torn or
glued. Under these conditions, detailed geometric features like the local curvature or volume lose their
significance, leaving only topological properties such as the famous number of holes in an object.

In this chapter we give an introduction to topology, covering concepts from both general and algebraic
topology. This part is largely based on Refs. [39] and [61].

2.1.1 Topological Spaces

The name topology is a compound term made up of the Greek topos meaning place and logos meaning
“reason”. Accordingly, topology is the study of location or proximity. Indeed, all of the fundamental
concepts of general topology, like continuity and connectedness, revolve around a notion of proximity.
The most essential task of general topology is to provide a purely set-theoretical foundation for it [39].

Definition 2.1.1. Let I, J ⊆ N denote suitable index sets. Let X be some set. A topology T on X is
a family T = {Ui ⊆ X | i ∈ I} of subsets of X that satisfies the following requirements

1. ∅, X ∈ T .
2. T is closed under union: any (possibly infinite) union ∪j∈JUj of elements Uj ∈ T is again an

element of T , i.e. (∪j∈JUj) ∈ T .
3. T is closed under finite intersection: any finite intersection ∩j∈JUj of elements Uj ∈ T is again an

element of T , i.e. (∩j∈JUj) ∈ T .
The elements Ui of the topology T are called the open sets of X. The tuple (X, T ) of X and T is called
a topological space. In this context, the set X is often referred to as the underlying set of (X, T ). Note
that we will frequently denote the topological space by X as well.

For any given set X there are two particularly simple topologies. The first one is T0 := {X, ∅} consisting
only of the set itself and the empty set. It is called the trivial topology. The second one is the power set
TΩ := ΩX of X, i.e. the collection of all subsets of X, and called the discrete topology. Another important
example arises when we turn to a class of spaces with which we are quite familiar: metric spaces. To
see how these form a subset of topological spaces, recall that a metric is a function d : X ×X → R that
is (i) symmetric d(x, y) = d(y, x), (ii) positive definite, d(x, y) ≥ 0 where equality holds iff x = y, and
(iii) satisfies the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). A metric space is then an ordered pair
(X, d) of an underlying set X endowed with a metric d. Importantly, every metric space (X, d) is also a

1At least as far as scientific publications are concerned.
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topological space (X, Td) with the topology Td of open balls

Br(x) = {y ∈ X | d(x, y) < r} ∀x ∈ X (2.1)

and all their possible unions. The metric axioms that d satisfies ensure that Td is indeed a topology as
defined in Def. 2.1.1. A topology Td that is defined in this way by a metric d is called a metric topology.
Every metric space is therefore also a topological space. The converse is not true: a topological space
does not necessarily support a compatible metric. Thus, the class of metric spaces forms a strict subset
of the class of topological spaces.

Let us briefly mention that there is a natural way of defining topological subspaces. Given a topological
space (X, T ) and any subset S ⊆ X. We can endow S with the subspace topology

TS := {S ∩ U |U ∈ T } (2.2)

to make it into a topological subspace (S, TS) of (X, T ). Properties of a topological space (X, T ) that
are inherited by topological subspaces (S, TS) are called hereditary.

2.1.2 Continuity

At the beginning of this section, we described topology as rubber-sheet geometry. In more mathematical
terminology, one would say that topology is geometry up to continuous transformation. In physics it is
quite natural to think of continuity in terms of ε-δ continuity which tells us that a function f : X → Y

is continuous at x0 ∈ X if

∀ ε > 0 ∃ δ > 0 | dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε∀x ∈ X . (2.3)

Note that this is naturally based on some metrics dX and dY of the underlying spaces X and Y . Having
established that a topological space need not be metric, we require a purely topological definition of
continuity. This definition is remarkably simple [39].

Definition 2.1.2. Let (X, TX) and (Y, TY ) be topological spaces. A map f : X → Y is continuous if
the inverse image of an open set in Y is an open set in X, i.e. if ∀A ∈ TY ∃B ∈ TX |B = f−1(A).

Importantly, Def. 2.1.2 reproduces ε-δ-continuity for maps between topological spaces carrying a metric
topology. Let us consider some examples to illustrate how non-metric topologies work with this definition
of continuity.

Example 2.1.1. Let (X, TX) and (Y, TY ) be topological spaces and let f : X → Y be a function. There
are the following special cases.

1. If f is constant, i.e. if f(x) = y for all x ∈ X and some y ∈ Y , then f is continuous for all possible
topologies TX on X and TY on Y because for any open set U ∈ TY we either have f−1(U) = ∅ if
y /∈ U or f−1(U) = X if y ∈ U , both of which are always open in any topology TX on X.

2. If TX = ΩX , i.e. if X carries the discrete topology, then f is continuous regardless of the topology
TY on Y because for any open set U ∈ TY the preimage f−1(U) ∈ TX = ΩX by definition of the
power set.

3. If TY = {∅, Y }, i.e. if Y carries the trivial topology, then f is continuous regardless of the topology
TX on X because the only open sets on Y are ∅ and Y the preimages of which are f−1(∅) = ∅ and
f−1(Y ) = X, both of which are always open in any topology TX on X.

4. If TY = ΩY or if TX = {∅, X}, then the only functions that are always continuous are constant
functions (see above).

As a more concrete example, consider the function f : X → Y, x 7→ x2 where X = Y = R. We know
that f is continuous when X and Y are both equipped with the standard metric topology Td of R. For
instance, the inverse image of the open interval (0, 1) ⊂ Y is the set (−1, 0) ∪ (0, 1) ⊂ X, which is open
in Td on X even though it appears to be split at zero. Importantly, this example demonstrates why the
naive definition of continuity – “a map f is continuous if it maps an open set to an open set” – does
not work: the open interval (−1, 1) in X is mapped to the half-closed interval [0, 1) in Y , which is not
open in the standard metric topology on Y . Note, that according to Ex. 2.1.1, even the familiar function
f(x) = x2 would cease to be continuous if we equipped Y = R with the discrete topology or X = R with
the trivial topology, while keeping the metric topology for the respective other copy of R.
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2.1.3 Separation

In order to further analyse the proximity structure that the open sets of a topology impose on an
underlying set, we require some additional concepts. Let (X, T ) be a topological space and let S ⊆ X

be a subset of X. Then S is said to be closed if its complement is open, i.e. if (X − S) ∈ T . Note that
according to this definition, X and ∅ are both open and closed,2 so openness and closedness of a set are
not mutually exclusive properties. Furthermore, whether a set S ⊆ X is open or closed depends not only
on the topology T but also on the underlying set X. For any (open or closed) subset S ⊆ X we can
continue to define its closure S̄ as the smallest closed set containing S. Similarly, we define the interior
S̊ of S as the largest open subset contained in S. The boundary b(S) of S is then the complement of S̊
in S, i.e. b(S) := (S − S̊). These definitions already give us a rudimentary idea of how the subsets of a
topological space relate to one another. To further refine this idea, we follow Ref. [39] and introduce the
concept of neighbourhoods first.

Definition 2.1.3. Let (X, T ) be a topological space and let S ⊆ X be a subset in X. A neighbourhood
of S is a subset N ⊆ X that includes an open set U ∈ T that contains S, that is

S ⊆ U ⊆ N ⊆ X .

This is equivalent to saying that S is in the interior No of N . A neighbourhood need not be an open set
itself. If it is, we call it an open neighbourhood.

Intuitively speaking, a neighbourhood N of a set S is a collection of points that contains S, but still
allows one to move away from S by a certain amount in any direction without leaving N . In this sense,
the family of all neighbourhoods of a given subset S indicates how well the topology can distinguish it.
In the trivial topology every non-trivial subset has precisely one neighbourhood, namely the entire space,
so it is essentially incapable of distinguishing non-trivial subsets. In particular, it cannot distinguish
between any two distinct points p1 6= p2 of X. In a discrete topological space, on the other hand, every
non-trivial subset can be distinguished arbitrarily well. Accordingly, the discrete topology even allows
for perfect distinction between any two distinct points. Since subsets of individual points represent the
smallest possible class of non-trivial subsets, the ability of a topology to distinguish between them is
of particular importance in general topology. In fact, it is the concept of point distinguishability that
forms the basis of the separation axioms – a comprehensive framework for assessing the distinguishing
capacities of topologies. In order to explore the idea of point distinguishability and separation axioms
further, we first introduce a formal version of the topological distinguishability of points.

Definition 2.1.4. Let (X, T ) be a topological space and let p1, p2 ∈ X be points in X with neigh-
bourhoods Ni = {N ⊆ X | N is neighbourhood of pi}. Then p1 and p2 are said to be topologically
indistinguishable, p1 ≡ p2, if and only if they have the same neighbourhoods N1 = N2.

Accordingly, two points p1, p2 ∈ X of a topological space (X, T ) that do not have the same neighbourhoods
are called topologically distinguishable. In that case, at least one of the points has a neighbourhood that
is not a neighbourhood of the other point. Note that it is entirely possible for both points to possess
such exclusive neighbourhoods, but it is not required to be so by topological distinguishability alone.
Tightening the conditions in this respect leads to the definition of separability of points.

Definition 2.1.5. Let (X, T ) be a topological space and let p1, p2 ∈ X be points in X with neighbour-
hoods Ni = {N ⊆ X |N is neighbourhood of pi}. Then p1 and p2 are said to be separable if there exist
neighbourhoods n1 ∈ N1 and n2 ∈ N2 such that

n1 /∈ N2 and n2 /∈ N1 . (2.4)

Note that Def. 2.1.5 naturally extends to larger subsets S1, S2 ⊆ X of the underlying set X, i.e. one
can replace the points p1, p2 in Def. 2.1.5 by any subsets S1, S2 to define their separability. However, we
will focus on point separability here. Based on Def. 2.1.5 one can conceive increasingly powerful types
of point separability. For example, two points p1, p2 ∈ X are even separable by neighbourhoods if they
have disjoint neighbourhoods, i.e. neighbourhoods N1 of p1 and N2 of p2 such that N1 ∩ N2 = ∅. Now

2Such subsets are sometimes called clopen.
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p1 6≡ p2 p1 6= p2

S symmetric Fréchet
SN preregular Hausdorff

Table 2.1: Names of topological spaces allowing the separation (S) or separation by neighbourhoods (SN)
of any two distinct (p1 6= p2) or topologically distinguishable (p1 6≡ p2) points.

one can ask the following kind of questions. Are any two distinct points p1 6= p2 in X separable? How
about separable by neighbourhoods? How about any two topologically distinguishable points p1 6≡ p2,
are those separable or even separable by neighbourhoods? Each combination of such properties is called a
separation axiom and has, of course, its own name. The ones outlined before are summarised in Tab. 2.1.
Further separation axioms arise when one applies the separability conditions not to pairs of distinct and
topologically distinguishable points but to disjoint pairs made up of one point and one closed set or
disjoint pairs of closed sets.

Of the many conceivable separation axioms, the Hausdorff axiom is by far the most frequently used.
This is because a topological space satisfying the Hausdorff axiom is, in many ways, a nice space: its
topology can distinguish points in a strong sense, ensuring they are not too close together. This imposes
a certain regularity on the space. For instance, it implies the uniqueness of important objects like limits
and sequences. For this reason, the Hausdorff axiom is often required in topological construction schemes
and proofs. A topological space that satisfies the Hausdorff axiom is called a Hausdorff space and the
Hausdorff property is hereditary. Importantly, all metric spaces are Hausdorff spaces, such that the
Hausdorff criterion is readily satisfied in most physics contexts.

2.1.4 Connectedness

Earlier, in the discussion of f(x) = x2 and its continuity, we found that f−1((0, 1)) = (−1, 0)∪ (0, 1). We
argued that this set is open in the standard metric topology on R even though it is clearly different from
a naive open set like (−1, 1) in some way. Visually, the difference between (−1, 1) and (−1, 0) ∪ (0, 1) is
that the former is connected, whereas the latter is not. In fact, they differ with respect to a fundamental
topological concept that is, in line with this simple observation, called connectedness [39].

Definition 2.1.6. Let (X, T ) be a topological space. Then X is said to be connected if it cannot be
written as X = X1 ∪X2 with non-trivial open sets X1, X2 fulfilling X1 ∩X2 = ∅. Otherwise it is called
disconnected.

The notion connectedness depends heavily on the choice of topology. For instance, in the trivial topology,
every space is connected because the only non-trivial open set is all of X, whereas in the discrete topology,
every space is totally disconnected because every single point of X is open by itself. There is a slightly
stronger notion of connectedness that is based on continuous functions.

Definition 2.1.7. Let (X, T ) be a topological space. Then X is said to be path connected if for any
points p0, p1 ∈ X there exists a continuous function f : [0, 1]→ X such that f(0) = p0 and f(1) = p1.

Path-connectedness always implies connectedness, while the converse is not true, making path-connectedness
a stronger notion than connectedness. Accordingly, the topological subspace (−1, 0) ∪ (0, 1) from before
is indeed disconnected by definition. This shows that connectedness is not a hereditary property.

2.1.5 Compactness

So far we have discussed how topology organises a space in terms of proximity, separability and connect-
edness. Another important aspect of a topological space is its extent, which is captured by a fundamental
notion called compactness. The meaning of compactness can be difficult to appreciate, which is why we
will explore its basic idea before presenting its formal definition. Again, we follow Ref. [39] and start
with the definition of a cover.

Definition 2.1.8. Let (X, T ) be a topological space. A family A of subsets of X is called a cover of X
if it fulfils

X =
⋃
S∈A

S . (2.5)
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If all sets of a cover A are open sets then A is said to be an open cover. We are predominantly interested in
such open covers. It is not particularly difficult to come up with a simple example: the family A0 = {X}
constitutes a trivial open cover of any topological space X. However, A0 is so simple that we can hardly
learn anything worth knowing from it. For example, it is impossible for us to decide whether X is
connected based on A0 alone. This is because X is disconnected if and only if there exists an open cover
that splits into disjoint subcovers and the trivial cover A0 cannot be split in this way. In order to test
connectedness we would therefore need more complex covers consisting of larger numbers of subsets. In
particular, we would have to examine all possible covers to make a final decision. Intuitively, the analysis
of connectedness in a topological space with n connected components would only really require covers
containing n subsets and all the finer covers are redundant. However, depending on the topological space
under consideration, the investigation of some properties may even require covers consisting of an infinite
number of subsets. The idea of compactness is to associate the extent of a topological space with the
need for such infinitely large covers: a space is called compact if every question about its properties can
be answered in terms of finite covers. The formal definition reads as follows.

Definition 2.1.9. Let (X, T ) be a topological space and let C be the collection of all covers of X. Then
X is said to be compact if every open cover of X has a finite subcover, i.e. if for every cover A there
exists a finite subcover F such that

X =
⋃
C∈F

C . (2.6)

In many ways, compact topological spaces can be thought of as finite-like spaces and they have many
desirable properties reflecting this finiteness. For instance, continuous functions on compact spaces always
attain their extrema, and every infinite sequence of points in a compact space has a limit point within
the space. The latter is the reason why compact spaces are sometimes described as spaces where there is
“nowhere to escape to”. A subset Y ⊂ X of a topological space is compact if it is compact as a subspace
in the subspace topology. That is, Y is compact if for every family A of open subsets of X that covers
Y , i.e. Y ⊆

⋃
S∈A S, there exists a finite subfamily F ⊆ A that still covers Y , i.e. Y ⊆

⋃
S∈F S. With

this we can see that individual points p ∈ X are always compact since every cover can be reduced to a
cover consisting of just one single open subset U with p ∈ U ⊆ X. In Hausdorff spaces, compact subsets
are necessarily closed. One of the most important examples of this is Rn where subsets are compact if
and only if they are closed and bounded, as stated in the famous Heine–Borel theorem. There is another
interesting interplay between compactness and Hausdorff-ness: if a topological space (X, T ) is compact
and Hausdorff, then no finer topology on X is compact and no coarser topology on X is Hausdorff.

2.1.6 Homeomorphisms

The idea of topology as geometry up to continuous deformation raises another important question: how
can we determine whether two topological objects can be continuously deformed into one another? In
more technical terms, this evolves into the much bigger question of how we can partition the set of all
topological spaces into equivalence classes of spaces that are topologically identical. To address this
problem, we need one final concept, namely that of a homeomorphism [39].

Definition 2.1.10. Let X and Y be topological spaces. A map f : X → Y is called a homeomorphism
if it is continuous and has an inverse f−1 : Y → X that is continuous.

If there is a homeomorphism between two topological spaces X and Y , they are said to be homeomorphic.
The notion of homeomorphisms enables the definition of many fundamental objects. One of the most
relevant for theoretical physics is that of a topological manifold.

Definition 2.1.11. An n-dimensional topological manifold M is a topological Hausdorff space
(X, T ) that is locally Euclidean. A topological space is locally Euclidean if each point in X has an
open neighbourhood that is homeomorphic to an open subset of Rn, i.e. if for each x ∈ X we can find

1. an open neighbourhood U ∈ T with x ∈ U ,
2. an open subset Û ⊆ Rn, and
3. a homeomorphism ϕ : U → Û .
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(a) (b)

Figure 2.1: Examples of homeomorphic spaces: (a) doughnut and cup, (b) interlinked and separated rings.
Illustration created by the author, inspired by Ref. [39].

Note that it is not unusual to include additional requirements,such as compactness, in the definition
of a topological manifold. The definition we give above can be considered the minimal definition of a
topological manifold that most authors agree on. Manifolds generalise Euclidean geometry to less regular
objects. Importantly, these need not be embedded in a higher-dimensional Euclidean space. The fact
that a manifold is locally Euclidean means that we can borrow many of the established notions about
calculus from Euclidean space. If this is done in a consistent fashion, one arrives at the definition of a
Ck differentiable structure which implements differential calculus of k-times differentiable functions on a
given manifold. A differentiable manifold is then a topological manifold with a compatible differentiable
structure. The manifolds we encounter in theoretical physics are usually smooth differentiable manifolds
with a C∞ differentiable structure.

Being homeomorphic provides an equivalence relation ∼ on the set X = {X |X is a topological space}
of all topological spaces, as it naturally satisfies reflexivity X ∼ X, symmetry X ∼ Y ⇒ Y ∼ X, and
transitivity X ∼ Y, Y ∼ Z ⇒ X ∼ Z.3 Picture (a) of Fig. 2.1 shows the most prominent example
of topological equivalence: a coffee cup is equivalent to a doughnut. Picture (b) shows a less intuitive
example: the separated rings are homeomorphic to the interlinked rings. Our intuition tends to suggest
that these cannot be deformed into one another without cutting and glueing. However, this is due to
our habit of visualising objects as embedded in R3, where such a homeomorphism does indeed not exist.
However, embeddings of the separated and interlinked rings in R3 are not the same as the separated and
interlinked rings themselves: they are only instantiations, or realisations, of the separated and interlinked
rings and as such subject to restrictions imposed by the embedding itself.4 This failure of intuition is a
recurring theme in topology and serves as a cautionary tale for us. It also illustrates that it is impractical
to go over all topological spaces and try to put down pairwise homeomorphisms let alone a proof of their
non-existence for topologically distinct spaces. How then can we characterise the homeomorphism classes
of topological spaces? The fact that a complete answer to this question is not yet known tells us how
hard a problem it is.

Facing the overwhelming difficulty of the complete homeomorphism classification, we turn to a more
feasible strategy. By shifting our focus to quantities of topological spaces that remain unchanged under
homeomorphisms, we can at least identify situations in which two topological spaces cannot be homeo-
morphic. Quantities that remain invariant under homeomorphisms are called topological invariants and
even though a distinction based on topological invariants is a far less profound classification scheme than
the full homeomorphism classification, it is extremely useful in practice.

2.1.7 (The Hole Truth About) Topological Invariants

One can show that the topological properties that we have discussed so far – connectedness, compactness
or being Hausdorff – are invariant under homeomorphisms. Accordingly, they serve as simple examples
of topological invariants. Let us provide a generic definition.

Definition 2.1.12. A topological invariant of a topological space (X, T ) is any quantity of the un-
derlying space that is left invariant by homeomorphisms.

3Reflexivity is ensured by the trivial homeomorphism f = idX , symmetry is fulfilled automatically because if f : X → Y

is a homeomorphism then so is f−1 : Y → X by definition, and transitivity follows from the fact that the composition
g ◦ f : X → Z of homeomorphisms f : X → Y and g : Y → Z inherits the homeomorphism properties from f and g.

4There are other familiar examples of such embedding artefacts: the self-penetration of the Klein bottle in R3 or the
non-vanishing local curvature of the two-torus in R3.
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If we knew all the topological invariants of a given topological space, we could specify its homeomorphism
equivalence class. However, as long as we only now a partial list of topological invariants, the best we
can do is the following:

Two topological spaces that differ in at least one topological invariant cannot be homeomorphic.

Strikingly, there exist topological invariants that take the form of a mere number. For a disconnected
topological space this might be the number of connected components. However, there are much more
profound number invariants than this. For instance, being locally Euclidean is a topological invariant
which makes the dimension d of a manifold a topological number invariant too.

Another famous topological invariant of this type was discovered by Riemann when he was thinking
about connectedness: he wondered how many types of one-dimensional simple,5 non-intersecting closed
curves γ1 : S1 → M could be simultaneously removed from a two-dimensional manifold M without
disconnecting it [62]. The result leads to the number of holes in M that we call the genus of M today.

The notion of detecting and utilising the holes of a topological space to classify it became a popular
approach. Betti, for example, realised that one-dimensional simple closed curves can only detect holes of
codimension one in M . In particular, they cannot capture zero-dimensional holes in three dimensions.
Based on this realisation he expanded the concept to include the n-dimensional equivalent of simple closed
curves, i.e. injective and continuous maps γn : Sn → M . The number of distinct equivalence classes of
n-dimensional simple closed curves that can be removed from a space without disconnecting it is called
the n-th Betti number βn. Note that the simple closed curves that give rise to the Betti numbers may
intersect, whereas the curves that generate the genus may not.

The basic idea of holes in topological spaces inspired the development of an entirely new field of
mathematics called algebraic topology. Roughly speaking, algebraic topology uses algebraic tools to study
topological spaces. This allows one to recast statements about topological spaces into statements about
algebraic structures like groups. These come with a lot of extra structure and often make claims easier
to prove and results easier to grasp. Among the major disciplines of algebraic topology are homotopy
and (co-)homology theory. For certain types of topological spaces, algebraic topology provides us with a
particularly beautiful framework for generating topological number invariants. These topological spaces
are known as fibre bundle spaces and their topological number invariants are called characteristic numbers.
We will cover some of the fundamental ideas of algebraic topology in the following and we will come back
to the notion of fibre bundles and their characteristic numbers in a later section. In particular, we will
encounter a class of complex bundle spaces that naturally arise in the mathematical description of certain
condensed matter systems. These spaces are associated with a characteristic number that became famous
for its immediate physical significance: the Chern number of a ground state bundle, which represents the
quantised Hall conductance [10].

2.1.8 Homotopy

We are closely following Ref. [39]. The genus of a two-dimensional manifold M is the maximum number
of one-dimensional simple, non-intersecting closed curves that can be simultaneously removed from M

without disconnecting it. In some simple cases, this imagery is enough for us to obtain a concrete result.
For example, Fig. 2.2 shows three simple closed curves a, b and c on the two-sphere S2 and the two-torus
T 2, respectively. We see that removing any one of the three loops from S2 will disconnect it, while T 2

remains connected if a or b is removed. Interestingly, the removal of a (b) from T 2 cuts b (a), such that
it is no longer a closed curve afterwards. In fact, the only closed curves that remain are of type c and
will disconnect the space upon their removal. Accordingly, we count a maximum number of gS2 = 0

loops that can be removed without disconnecting S2 and a maximum number of gT 2 = 1 loop that can
be removed without disconnecting T 2. Clearly, these values for the genera of S2 and T 2 coincide with
the numbers of holes we count if we just stare at the geometrical objects. However, there seem to be two
distinct types of loops, namely a and b type loops, that can be removed from T 2 without disconnecting
it. The fact that this observation does not appear to be accounted for by the genus gT 2 = 1 indicates
that there is more to learn here. The natural way to approach this is to ask whether a and b are actually

5A continuous curve is called simple if it is not self-intersecting.
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Figure 2.2: Different closed curves in (a) a two-sphere S2 and (b) a two-torus T 2. Illustrations created
by the author, based on Refs. [63, 64].

distinct curves in T 2. If we reinstate the rubber-sheet picture we used before and apply it to the loops,
we find that no amount of pushing and pulling is going to deform loop a into loop b within T 2 – they
do seem to be distinct. In fact, neither loop a nor loop b can be deformed into loop c within T 2 either.
Consequently, all three types of loops seem to be distinct. In contrast, any pair of loops in S2 can be
deformed into one another. What we need in order to investigate this idea further is a formal way of
comparing pairs of loops f, g : S1 → X. More generally, we are interested in a comparison of continuous
maps between any two topological spaces X and Y . The missing concept is that of a homotopy [39].

Definition 2.1.13. Let (X, TX) and (Y, TY ) be topological spaces and let g, h : X → Y be continuous
functions. A homotopy between g and h is a continuous map

F : X × [0, 1]→ Y

(x, t) 7→ F (x, t) = ft(x) , (2.7)

such that F (x, 0) = f0(x) = g(x) and F (x, 1) = f1(x) = h(x). The family {ft}t∈[0,1] of continuous maps
ft : X → Y is called a continuous family of maps.

The existence of a homotopy tells us that f0 : X → Y and f1 : X → Y can be continuously deformed
into one another. Two continuous maps g, h : X → Y between topological spaces X and Y are said
to be homotopic, g ∼ h, if there exists a homotopy between them. Being homotopic is an equivalence
relation on the continuous functions from X to Y . The homotopy equivalence class of a continuous
function f : X → Y is denoted by [f ] = {g : X → Y | f ∼ g} and is called its homotopy class. Homotopy
allows us to relax the notion of homeomorphism classes of topological spaces and get a coarser but more
manageable classification.

Definition 2.1.14. Let X ≡ (X, TX) and Y ≡ (Y, TY ) be topological spaces. We say X and Y are
homotopy equivalent or homotopic, written as X ∼ Y , if there exist continuous maps f : X → Y

and g : Y → X such that (f ◦ g) ∼ idY and (g ◦ f) ∼ idX .

Being homeomorphic is a stronger notion than being homotopic. For example, a point p and the real line
R are of the same homotopy type, whereas p is clearly not homeomorphic to R. A topological space X
that is homotopic to a point is said to be contractible. Being contractible is an example of a topological
homotopy invariant. Note that homotopy invariants form a stronger class of topological invariants than
homeomorphism invariants, precisely because the homotopy type provides a weaker equivalence relation
than the homeomorphism type. Every topological homotopy invariant is therefore a topological homeo-
morphism invariant, while the converse is not necessarily the case. In order to use homotopy theory to
explore the notion of topological holes, we recall the formal definition of loops.

Definition 2.1.15. Let I = [0, 1] denote the unit interval and let X = (X, TX) be a topological space.
Any map α : I → X with α(0) = α(1) = x0 ∈ X is called a loop at x0. Due to the identification
α(0) = α(1) this is equivalent to a map α : S1 → X.

Of course, loops are just special classes of maps between topological spaces so we can partition them
according to their homotopy classes. Given any loop α in X, its homotopy class is denoted by [α]. We
will see that the set of homotopy classes of loops acquires a group structure when it is endowed with the
product of path concatenation.
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Definition 2.1.16. Let (X, TX) be a topological space. The set of homotopy classes of loops

{[αj ]j∈J |αj : I → X with αj(0) = αj(1) = x0} (2.8)

at any given point x0 ∈ X together with the path concatenation has group structure and is called the
fundamental group π1(X,x0) of X based at x0.

In order to convince ourselves that the fundamental group has a group structure under path concatenation
we first define the concatenation of homotopy classes as

[α] ∗ [β] = [α ∗ β] . (2.9)

We note that Eq. (2.9) is well-defined; it does not depend on the choice of representatives. The set of
loops at x0 is also closed under loop concatenation because any concatenation of loops α, β : I → X with
α(0) = α(1) = β(0) = β(1) = x0 yields

(α ∗ β) : I → X with x 7→

{
α(2x) x ≤ 1

2

β(2x) x > 1
2 ,

(2.10)

which clearly describes another loop at x0. The associativity of ∗ follows from the associativity of map
concatenation and the identity element is given by the constant map cx0(x) = x0. Finally, the inverse of
a loop α(t) is simply α−1(t) ≡ α(1− t), i.e. the same loop traversed in the opposite direction.

In general, the fundamental group is a local property: it is attached to every base point x0 ∈ X

independently. However, there is a way to get rid of this locality in some cases. To see this, consider two
base points x0, x1 ∈ X with fundamental groups π1(X,x0) and π1(X,x1) and suppose that there exists
a continuous path h : I → X with h(0) = x0 and h1 = x1. Then h induces a map

ηh : π1(X,x1)→ π1(X,x0)

[f ] 7→ [(h ∗ f) ∗ h−1] , (2.11)

which is a group isomorphism with inverse map ηh−1 ≡ η−1
h : π1(X,x1) → π1(X,x0). Thus, in any

path-connected topological space the fundamental group is independent of the base point and we can
simply write

π1(X,x0) ≡ π1(X) (2.12)

for all x0 ∈ X. In a disconnected space the fundamental groups of its connected components may very well
differ. Finally, we call a topological space X simply connected if it is path-connected and has a trivial
fundamental group π1(X) = {e}. Importantly, the fundamental group is invariant under homotopies
which makes it our first example of an algebraic topological homotopy invariant.

Let us consider an important example: the fundamental group π1(S1) of the circle. The basic idea
for constructing it is that every loop α : S1 → S1 can be uniquely lifted to R. To show this, we take

S1 =
{
z ∈ C

∣∣ |z| = 1
}
⊂ C , (2.13)

and define a projection map

p : R→ S1 ⊂ C

x 7→ eix , (2.14)

that wraps R around S1 ⊂ C as illustrated in Fig. 2.3. Note that any x, y ∈ R fulfilling x − y = 2πn

for some n ∈ Z are mapped to the same point in S1 by the projection map. Such pairs of points are
therefore equivalent with respect to p and we can write x ∼ y. Consequently, the equivalence class

[x] =
{
y ∈ R ∈ C

∣∣x− y = 2πn, n ∈ Z
}

(2.15)

is identified with the same point p(x) = eix in S1. Equation (2.15) tells us that a curve

ω : I → S1

s 7→ ei2πf(s) (2.16)
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Figure 2.3: Sketch of R as a covering space of S1 ⊂ C by the projection map p. Black dots and red
intervals in R mark the preimages of the black dot and red interval in S1 under p.

is closed if and only if f(s) satisfies f(0) = 0 and f(1) = n for some n ∈ Z. Accordingly, every loop can
be uniquely labeled by an integer n ∈ Z and its equivalence class [ωn] can be represented by the simple
map ωn(s) = ei2πns where f(s) = ns. Since S1 ⊂ C is path-connected, the map

Φ : Z→ π1(S1, 1)

n 7→ [ωn] (2.17)

from the integers to the fundamental group π1(S1, 1) at x0 = 1 defines a group isomorphism between Z

and π1(S1), giving

π1(S1) ' Z . (2.18)

When we analysed the genera of S2 and T 2 before, we speculated that there might be more to learn from
the different types of closed curves because the genus of T 2 did not account for the two distinct ways in
which the torus tolerated the removal of either loop a or loop b in Fig. 2.2. Does the fundamental group
resolve this missing information? We established earlier that there is only a single equivalence class of
loops in S2 so its fundamental group is bound to be trivial, i.e. π1(S2) ' {e}. In order to determine the
fundamental group of the two-torus we use the following theorem about topological product spaces.

Theorem 2.1.1. Let X = (X, TX) and Y = (Y, TY ) be path-connected topological spaces. Then the
fundamental group of the product space X ×Y is isomorphic to the direct sum of the fundamental groups
of the individual topological spaces, i.e.

π1(X × Y ) ' π1(X)⊕ π1(Y ) .

We can use this to determine π1(T 2) by writing T 2 ' S1 × S1 which immediately gives

π1(T 2) ' π1(S1 × S1) ' π1(S1)⊕ π1(S1) ' Z⊕ Z = Z2. (2.19)

Importantly, π1(T 2) features two copies of Z, which does seem to reflect the existence of two distinct
types of closed curves that can be removed without disconnecting it. What is more, we find that the first
Betti number β1(T 2), i.e. the maximum number of simple and possibly intersecting closed curves that
can be simultaneously removed from T 2 without disconnecting it, is precisely two, namely the type a and
type b curves in Fig. 2.2. This is no coincidence, as the first Betti number β1(X) of a two-dimensional
closed orientable topological manifold M can be defined as the rank6

β1(M) = rank(π1(M)) , (2.20)

of the fundamental group π1(M), cf. e.g. Ref. [65]. Consequently, there exists the general relation

rank(π1(M)) = β1(M) = 2 g(M) (2.21)

between the fundamental group π1(M), the first Betti number β1(M) and the genus g(M) of any two-
dimensional closed orientable manifold M . Indeed, Eq. (2.21) gives the correct genera

g(S2) =
1

2
rank({e}) =

1

2
· 0 = 0 and g(T 2) =

1

2
rank(Z⊕ Z) =

1

2
· 2 = 1 (2.22)

6The rank of a group G is the smallest cardinality of a generating set for G.
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where we plugged in the fundamental groups π1(S2) ' {e} and π1(T 2) ' Z ⊕ Z we have determined
before. Equation (2.21) tells us that the fundamental group, the Betti number and the genus ultimately
detect the same kind of topological hole in a two-dimensional closed orientable manifold, but with a
decreasing level of detail. The fundamental group provides the most refined information, encoding all
possible non-trivial homotopy types of loops in terms of directed concatenations of fundamental loops.
In contrast, the Betti number only remembers how many different fundamental loop types there are,
forgetting about their concatenation. Finally, the genus surrenders even that information in favour of a
more visual interpretation: by discarding half the fundamental loop types, it captures the literal number
of handles that the respective manifold has when it is embedded7 in R3.

What is Wrong with the Fundamental Group?

The fundamental group is great. It is an accessible algebraic topological invariant with a natural graphic
interpretation. Still, there are problems that cannot be solved using the fundamental group alone. Take,
for example, the problem of distinguishing S2 from Sn for n > 2. At the moment, we can distinguish S1

but all of the higher Sn are simply connected so π1 does not notice any difference. In order to fix this, it
seems obvious to turn to higher homotopy groups πn, i.e. the homotopy classes of maps

ω : Sn → X (2.23)

together with the concatenation of maps. Note that the properties of π1, which ensure its group structure
with concatenation, can easily be generalised to these higher homotopy classes, so that they also have a
group structure with concatenation. The higher homotopy groups are therefore well-defined. Handling
these groups is not difficult either because it can be shown that all higher homotopy groups are commu-
tative and thus Abelian. All of this sounds wonderful – so what is wrong with these higher homotopy
groups? There are several answers to this. The first one is that although higher homotopy groups are
really easy to define, they are generally very hard to compute. The second, and even more troubling one,
is that higher homotopy groups tend to deviate from our geometric expectations. Take, for example, the
two-sphere S2. We have seen that the fundamental group is trivial, π1(S2) ' {e}. The second homotopy
group π2(S2) is, quite reassuringly, again the integers, π2(S2) = Z. This seems plausible, given that
we found π1(S1) = Z before: the n-th homotopy group seems to detect n-dimensional holes, i.e. holes
that can be captured with an n-dimensional sphere. Things look promising, but then π3(S2) = Z is also
the integers. How can there be three-dimensional holes in the two-dimensional sphere? This is rather
disturbing and it gets even worse. If we go on, we find π4(S2) = π5(S2) = Z2, π6(S2) = Z12 and, my
personal favourite, π14(S2) = Z84 × Z2

2 [66]. So higher homotopy groups are not only hard to compute,
but also hard to understand: they simply do not detect what we had hoped they would. Of course, this
is a severe problem. One important strategy to circumvent it is provided by the theory of homology.

2.1.9 Homology

One of the biggest problems with higher homotopy groups is that they detect strange high-dimensional
holes that cannot be reconciled with our visual conception of holes. In a way, homology groups are
designed to fix this: for a d-dimensional topological space X the higher homology groups Hn(X) naturally
stop counting at n = d. This section is based on Refs. [39] and [61].

The fundamental idea of homology is already present in the guiding principle of expendable closed
curves that inspired Riemann’s and Betti’s work on the genus and the Betti numbers. Specifically, it
is the realisation that the closed n-dimensional curves, or n-cycles, that can safely be removed from
a topological space X without disconnecting it, seem to be those that are not themselves boundaries

7Note that this is only possible because we assumed orientability. Non-orientable two-dimensional closed manifolds
cannot be embedded in R3 and the whole argument changes. Take, for instance, the Klein bottle K2. It has a non-trivial
fundamental group, π1(K2) ' ZoZ, where the semi-direct product encodes the non-orientability of K2 and renders π1(K2)

non-Abelian. Moreover, the non-orientable genus g(K2) = 2 of the Klein bottle is directly equal to the rank π1(K2) = 2 of
its fundamental group and does not correspond to one half of the first Betti number, β1(K2) = 1. The latter is not related
to rank(π1(K2)) by Eq. (2.20) because K2 is not orientable. This substantially alters the threefold relation from Eq. (2.21).
We also observe that the number of handles in the immersion of K2 into R3 is most naturally identified with N = 1, cf.
Fig. 2.7, which is still equal to β(K2), but no longer directly captured by g(K2).
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of (n + 1)-dimensional regions in X. Extending this notion, the n-th homology group Hn(X) of a
topological space X takes all the n-dimensional closed things in X and then removes those that are
boundaries of (n+ 1)-dimensional things. This starting point is a fair bit more complicated than the one
we assumed for homotopy. By allowing arbitrary n-dimensional cycles, we include objects that are much
more general than simple images of n-spheres, say, things like the disjoint union of two simple cycles.
However, we also consider a much coarser equivalence relation than being homotopic, namely that of
being homologous: specifically, two n-cycles A and B are called homologous if they form the boundary
∂W of some (n+ 1)-dimensional region W , i.e. if they differ by ∂W . Importantly, two homotopic cycles
are always homologous, while two homologous cycles may not be homotopic. A rigorous definition of
homology groups will have to formalise the notion of

Hn(X) = (n-dim things without boundary)/(boundaries of (n+ 1)-dim things) , (2.24)

where the quotient symbolises a suitable identification of n-cycles with respect to the equivalence relation
of being homologous.

There are two main approaches to a homology: simplicial homology and singular homology. Simpli-
cial homology works by partitioning a space X into simple building blocks – simplices like points, line
segments, and triangles – which are then organised into a so-called simplicial complex. As we will see,
this triangulation procedure requires a highly regularised collection of continuous maps from the set of
standard simplices into our topological space. Finding such a triangulation can be a challenge, but the
extra effort pays off because it makes simplicial homology an intuitive and easy-to-navigate theory that
is especially useful for explicit calculations. The problem is, of course, that it is limited to spaces that
can be triangulated or reasonably well approximated by simplicial complexes. Since this is not possible
for all topological spaces, we need something more. Singular homology generalises the concept of simpli-
cial homology to arbitrary topological spaces by considering unregularised, or singular, continuous maps
from the set of standard simplices into the respective topological space. Its unregularised nature makes
singular homology a versatile and powerful tool for proving things.

The basic constructions of simplicial and singular homology are very similar, so we discuss them
for both theories simultaneously in the following. Afterwards, we use simplicial homology to explicitly
compute the homology of two simple triangularisable spaces.

Preliminary Considerations

Let us start with some preliminary considerations based on the two-sphere. According to Eq. (2.24), the
zeroth homology group H0(S2) of S2 consists of the zero-dimensional cycles in S2 modulo those that
form boundaries of one-dimensional regions in S2. In order to make sense of statements like this, we
have to impose some algebraic structure first. Namely, we will base the n-th homology group not on the
n-dimensional things themselves, but on the free Abelian group generated by them. The free Abelian
group FAb(B) of a collection B = {Bi}i∈I of objects is the Abelian group that has B for a basis, i.e. it is
the group of all formal finite sums of those objects with integer coefficients. Each element G ∈ FAb(B)

is of the form

G =

N∑
n=1

gnBin , (2.25)

where N < ∞, gn ∈ Z and Bin ∈ B.8 Accordingly, the free Abelian group of any one object B1 = {B}
is isomorphic to the integers, i.e. FAb(B1) ' Z. In fact, the free Abelian group of any finite number of
N objects BN = {B1, . . . , BN} is isomorphic to the N -fold direct sum of the integers as FAb(BN ) ' ZN .
Following this, the zeroth homology group of S2 is based on the free Abelian group generated by the
zero-dimensional things in S2. Intuition tells us that the zero-dimensional things in S2 are precisely the
individual points x ∈ S2, so we take FAb(x ∈ S2) as an initial building block for H0(S2). Since all
individual points are closed, the subgroup of zero-cycles is all of FAb(x ∈ S2), too. In order to arrive at
H0(S2), we have to take the quotient of FAb(x ∈ S2) with respect to the homology equivalence relation.

8The free Abelian group is free because it has no relations other than those required by the Abelian group axioms.
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Figure 2.4: The standard two-simplex ∆2 = [v0, v1, v2] in R3. The interior ∆̊2 is shaded in light grey and
the vertices v0, v1, v2 are shown as solid black circles. The faces F 2

0 , F
2
1 , F

2
2 making up the boundary ∂∆2

are drawn in solid black colour with arrows indicating their induced orientation.

The latter determines that two points x, y ∈ S2 are homologous if they differ by the boundary ∂c of some
one-dimensional curve c, so the homology equivalence class [x] of any given point x ∈ S2 reads

[x] =
{
y ∈ S2

∣∣x− y = ∂c for some one-dimensional curve c ⊂ S2
}
. (2.26)

Note that the condition x− y = ∂c makes sense because within the framework of the free Abelian group
the points in S2 are allowed to have integer coefficients. The equivalence class Eq. (2.26) of any point
x ∈ S2 contains all points that can be connected to it by a one-dimensional curve within S2. But since
S2 is path-connected, this means that after factoring out the homologous points there is only a single
equivalence class with integer coefficients left and we get

H0(S2) ' Z . (2.27)

More generally, we will find that the zeroth homology group H0(X) of a topological space X is equal to

H0(X) = ZNc(X) , (2.28)

where Nc(X) is the number of connected components of X.

Singular and Simplicial Homology

In the previous section, we presented a graphic construction of the zeroth homology group of the two-
sphere. In doing so, we relied on our intuition for low-dimensional objects: it is easy to see that zero-
dimensional objects without boundary are just points, and that the boundaries of one-dimensional objects
are pairs of points. In order to generalise these ideas, we now need a formal framework that applies to
higher-dimensional objects. Specifically, we need a systematic way to define n-cycles and n-boundaries
in a topological space X. Both singular homology and simplicial homology rely on a geometric structure
called n-simplices to achieve this.

Definition 2.1.17. An n-simplex is the convex hull of any generic n+ 1 points in Rn+1 where generic
means that they do not sit in a subspace of smaller dimension. The standard n-simplex is

∆n =

{
n∑
i=0

tivi

∣∣∣∣ ∑
i

ti = 1 , ti ≥ 0

}
:= [v0, . . . , vn] , (2.29)

where the vertices {v0, . . . , vn} of ∆n are the canonical basis vectors of Rn+1.

In more graphical terms, an n-simplex is a generalised n-dimensional triangle: a 0-simplex is a point, a
1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on. Importantly,
there is a natural definition for the faces and the boundary of an n-simplex. Let ∆n be an n-simplex,
then the j-th face Fnj of ∆n is the subsimplex spanned by all vertices but the j-th one, i.e.

Fnj =


n∑
i 6=j

tivi

∣∣∣∣ ∑
i 6=j

ti = 1 , ti ≥ 0

 . (2.30)
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From this, we can define the boundary as the union ∂∆n = ∪nj=0F
n
j of all faces, and the interior as

∆̊n = ∆n\∂∆n. Figure 2.4 shows how the above definitions apply to ∆2 ⊂ R3. Note that every standard
simplex ∆n is defined with respect to the standard ordering [v0, . . . , vn] of its vertices. This determines
an orientation for the simplex. This orientation is hereditary, which means that it induces an orientation
on the faces of the original simplex, cf. the arrows in Fig. 2.4. The key idea of singular and simplicial
homology is to use continuous maps

σn : ∆n → X (2.31)

from the standard n-simplex into a given topological space X to define the simple n-dimensional things9

in X and then exploit the natural notion of boundaries for n-simplices to arrive at a sensible definition of
n-cycles and n-boundaries in X. In the preliminary considerations, we based the definition of H0(S2) on
the free Abelian group of zero-dimensional things. Accordingly, the formal definition of the n-th singular
and simplicial homology groups is based on the free Abelian group

Cn(X) := FAb (σnα : ∆n → X) (2.32)

generated by a family σ := {σnα} of n-simplices in X. The fundamental difference between singular and
simplicial homology lies in the particular family of n-simplices that is being used. We will equip objects of
singular homology with a subscript or superscript “s”, while we will furnish objects of simplicial homology
with a subscript or superscript “∆”. The reasons for this will soon become apparent.

Singular homology puts no restrictions on the maps in σns := {σns,α} – they must be continuous, but
they need not be injective and there may even be non-equivalent simplices with the same image in X.
For example, the constant map

σ2
s : ∆2 → X

s 7→ x0 (2.33)

is always continuous, even though it is clearly not injective. This makes the constant map an example of
a singular map. Note that Eq. (2.33) also has the same image as the map

σ0
s : ∆0 → X

s 7→ x0 , (2.34)

which is both continuous and injective. The fact that the n-simplices are allowed to be singular in this
way is what gives singular homology its name.

In contrast, simplicial homology deploys a highly regularised set σn∆ := {σn∆,α} of n-simplices. It
originates from the notion of replacing a potentially complicated topological space X with a much simpler
triangulated space that is homeomorphic to it. To find such an equivalent triangulated space, we use a
structure called a ∆-complex.10 A ∆-complex structure on a topological space X can be thought of as a
well-behaved partition of X into a simple network of simplices.

Definition 2.1.18. Let X be a topological space. A ∆-complex structure on X is a collection

σn∆ := {σnα : ∆n → X} (2.35)

of continuous attaching maps σnα, such that
a) the images of interiors cover X, i.e. each σnα|∆̊n , is injective and every point of X is in the image of

exactly one of these restrictions,
b) if F is a face of ∆n then σnα|F is one of the maps σn−1

β : ∆n−1 → X after identifying F with ∆n−1

by the canonical homomorphism that preserves the vertex ordering, and
c) a subset U ⊆ X is open if and only if (σnα)−1(U) is open for all σnα.

For a given topological space X, the family σn∆ of n-simplicies in simplicial homology is then defined as a
suitable ∆-complex structure on X. Note once more that not every space admits a ∆-complex structure.
Those that do are called triangularisable and usually admit many distinct ∆-complex structures.

9These n-dimensional things, the images σn(∆n) ⊆ X of n-simplices in X, are often called the n-simplices of X.
10The “∆” in ∆-complex is a pictogram of a simplex, indicating that ∆-complexes are constructed from simplices.
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LetX be a topological space. The free Abelian group Cn(X) in Eq. (2.32) is called the n-th chain group
of X and the elements of Cn(X) are generally called the n-chains of X. The n-cycles and n-boundaries
form normal Abelian subgroups of Cn(X) that can be defined using the natural notion of a boundary on
the level of n-simplices. Specifically, we introduce a boundary homomorphism ∂n : Cn(X) → Cn−1(X)

that generalises intuitive results like the boundary

∂1

(
v0 v1

)
= v1 − v0 (2.36)

of a one-chain that we discussed in the preliminary considerations on the zeroth homology group of S2.

Definition 2.1.19. Let X be a topological space and let Cn(X) = FAb(σn) denote the n-th singular
(σn ≡ σns ) or simplicial (σn ≡ σn∆) chain group. An n-chain C ∈ Cn(X) is by definition a finite formal
sum C =

∑
α cασ

n
α with cα ∈ Z and σnα ∈ σn. We define the n-th boundary homomorphism

∂n : Cn(X)→ Cn−1(X) by specifying its values on the basis elements σnα of Cn(X) as

∂n (σnα) :=

n∑
i=0

(−1)i σα|[v0,...,v̂i,...,vn] , (2.37)

where v̂i means that vi is omitted in the domain of the attaching map σnα.

Based on the boundary homomorphisms we can uniquely define the subgroups of n-cycles and n-boundaries
in Cn(X). The n-cycles are defined as the elements C ∈ Cn(X) with zero boundary

∂n(C) = 0 . (2.38)

Thus, the n-cycles are precisely the kernel of the n-th boundary map. We define

Zn(X) := ker(∂n) = {C ∈ Cn(X) | ∂n(C) = 0} . (2.39)

Since the kernel of any group homomorphism is a normal subgroup, the n-cycles form a normal subgroup
Zn(X) / Cn(X). Furthermore, Zn(X) is Abelian because every subgroup of an Abelian group is Abelian.
Similarly, the n-boundaries are defined as the images of the (n+ 1)-th boundary map, i.e.

Bn(X) := im(∂n+1) = {∂n+1(C) | C ∈ Cn+1(X)} . (2.40)

Since the image of any group homomorphism is a subgroup, and every subgroup of an Abelian group
is Abelian and normal, the n-boundaries form a normal Abelian subgroup Bn(X) / Cn(X). In order to
see that Bn(X) is also a normal subgroup of Zn(X), i.e. Bn(X) / Zn(X), we note that the boundary
homomorphisms between chain groups satisfy the essential property

∂n ◦ ∂n+1 = 0 , (2.41)

which is often stated as ∂2 = 0 in the literature. Crucially, Eq. (2.41) tells us that the image of ∂n+1 is
contained in the kernel of ∂n, i.e.

im(∂n+1) ⊆ ker(∂n) , (2.42)

or, equivalently, that Bn(X) ⊆ Zn(X). This allows us to consider the (n+ 1)-th boundary map ∂n+1 as
a homomorphism

∂n+1 : Cn+1(X)→ Zn(X) , (2.43)

which immediately shows us that Bn(X) / Zn(X) by the same reasoning as before. Since Bn(X) is a
normal subgroup of Zn(X), the definition

Hn(X) = Zn(X)/Bn(X) = ker(∂n)/im(∂n+1) (2.44)

of the n-th singular or simplicial homology group of X is always well-defined and always results in another
Abelian group. It is worth pausing to appreciate that this is why we specifically use Abelian groups for
this construction. In Abelian groups, every subgroup is normal by definition so every subgroup gives rise
to a well-defined quotient group. Furthermore, all subgroups, quotients and direct sums of Abelian groups
are again Abelian. A given topological space X usually accommodates simplices of many different orders
so it makes sense to come up with a language that allows for a comprehensive study of the homology of
X. This is done in terms of chain complexes.
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Figure 2.5: The minimal ∆-complex structure of S1 consisting of a single vertex v and a single edge a
that connects v to itself.

Definition 2.1.20. A chain complex (A•, d•) is a sequence A• = {Ai}i∈I of Abelian chain groups Ai
connected by a family d• = {di : Ai → Ai−1} of homomorphisms di called boundary maps such that
the composition of any two consecutive maps always is the zero map, i.e. di ◦ di−1 = 0 for all i ∈ I. We
write

...
dn+2

−−−→ An+1

dn+1

−−−→ An
dn
−−−→ An−1

dn−1

−−−→ ... (2.45)

and define its chain homology as

Hn(A•, d•) = ker dn/im dn+1 . (2.46)

For a given topological space X, the sequence of singular or simpicial chain groups C• = {Ci}i∈I together
with the boundary homomorphisms ∂• = {∂i : Ci → Ci−1} forms a singular or simplicial n-chain complex
(C•, ∂•) with a well-defined chain homology. We can therefore define singular and simplicial homology of
X as follows.

Definition 2.1.21. Let X be any topological space and let (Cs•, ∂•) be its singular n-chain complex. The
n-th singular homology group Hs

n(X) is defined as the chain homology

Hs
n(X) := Hn(Cs•(X), ∂•) (2.47)

of the singular chain complex.

Definition 2.1.22. LetX be a triangularisable topological space and let (C∆
• , ∂•) be its simplicial n-chain

complex. The n-th simplicial homology group H∆
n (X) is defined as the chain homology

H∆
n (X) := Hn(C∆

• (X), ∂•) (2.48)

of the simplicial chain complex.

Note once more that the unregulated nature of singular homology makes it applicable to any topological
space X while the definition of simplicial homology requires X to be triangularisable. In a way, this
makes singular homology a superior homology theory. However, for triangularisable spaces X the singular
homology groups and the simplicial homology groups are equivalent. Simplicial homology may therefore
be understood as a tool for computing singular homology for triangularisable spaces. In the following,
we explicitly compute the simplicial homology groups of two important low-dimensional manifolds.

Simplicial Homology: Examples

Earlier we determined the fundamental group π1(S1) of the circle S1 to get an idea of homotopy groups.
Let us return to this example and determine the simplicial homology of X = S1. We can represent S1

by a minimal ∆-complex structure that consists of a single vertex v and a single edge a connecting v to
itself, cf. Fig. 2.5. This results in the simplicial chain complex

0
ι−→ C1(S1)

'

Z

∂1−→ C0(S1)

'

Z

P0−→ 0 , (2.49)
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where we added trivial maps ∂2 =: ι and ∂0 =: P0 from and to the trivial group 0 ≡ {0} because the
definitions of the zeroth and first homology groups require knowledge of im(∂2) and ker(∂0). Specifically,
the leftmost homomorphism ∂2 =: ι is the trivial inclusion map of 0 into the highest non-trivial chain
group C1(S1) of the simplicial chain complex, and the map ∂0 =: P0 is the trivial projection map from
lowest non-trivial chain group C0(S1) of the simplicial chain complex to the trivial group. The only
potentially non-trivial homomorphism in the simplicial chain complex is the boundary map ∂1, which
maps any one-simplex to the difference between its end vertex and its beginning vertex. However, our
∆-complex structure of S1 only features a single one-simplex and a single vertex. Accordingly, we have
∂1a = v − v = 0, so that ∂1 is trivial as well, i.e. ∂1 = 0. Both C1(S1) = FAb(σ1 : ∆1 → a) and
C0(S1) = FAb(σ0 : ∆0 → v) are free Abelian groups on a single object so they are both isomorphic to
the integers as C0(S1) ' C1(S1) ' Z. With this we compute

H∆
0 (S1) = ker(∂0)/im(∂1) = ker(P0)/im(∂1) . (2.50)

Now the kernel of P0 is all of C0(S1) ' Z by definition. The image of ∂1 = 0 is of course {0} ∈ C0(S1) ' Z,
so we get

H∆
0 (S1) = Z/0 ' Z . (2.51)

Note that although the quotient of the integers by 0 might seem alarming at first glance, it is perfectly
well-defined. This is because the quotient is taken in the sense of cosets of the normal subgroup {0} /Z,
which simply recovers Z itself. Analogously, we compute

H∆
1 (S1) = ker(∂1)/im(∂2) = ker(∂1)/im(ι) . (2.52)

Again, the kernel of ∂1 = 0 trivially gives all of C0(S1) ' Z while the image of ∂2 = ι is equal to
{0} ∈ C0(S1) ' Z by definition, and we find

H∆
1 (S1) = Z/0 ' Z . (2.53)

Combined, the homology groups of S1 are

H∆
n (S1) = ker ∂n/im ∂n+1 =

{
Z n = 0, 1

0 else .
(2.54)

This result is in line with our initial considerations regarding the zeroth homology group and its relation
to the number of connected components. It also reproduces the earlier result for the fundamental group
of the circle, namely

π1(S1) ' H∆
1 (S1) ' Z . (2.55)

In fact, the latter is a special case of a more general statement, namely that the first homology group is
always equal to (an Abelianisation of) the fundamental group if X is connected. Yet, our analysis of the
simplicial homology of S1 has provided us with some additional insights, too. In particular, it tells us
that H0(S1) and H1(S1) are the only non-trivial simplicial homology groups of S1, so there are no strange
higher-dimensional holes that could be detected by higher simplicial homology groups. Importantly, the
result in Eq. (2.54) can be generalised to all higher-dimensional spheres Sd as

H∆
n (Sd) =

{
Z n = 0, d

0 else .
(2.56)

The homology of the d-sphere plays an important role in defining orientability for topological manifolds.
The concept of orientablity will become important later on, so we briefly outline its general idea here.
Let M be a closed, connected n-dimensional manifold. By definition, every point x ∈ M has an open
neighbourhood Ux ⊂ M that is homeomorphic to Rn. To study the topological structure around x, we
focus on how x interacts with the surrounding space. This is done by removing x from M as M \ {x}.
After removing x, the neighbourhood Ux \ {x} becomes homeomorphic to Rn \ {0}, which is in turn
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Figure 2.6: The minimal ∆-complex structure of T 2 consisting of two separate 2-simplices U and L
(leftmost picture) that are glued together along one edge to give five 1-simplices a, b, c, d, e and four
vertices w0, w1, w2, w3 (right part of left picture). Upon identification, the edge a is glued to e, the edge
b is glued to d and all vertices are glued toegther. The resulting ∆-complex structure of T 2 features two
2-simplices U and L, three distinct edges a, b, c and a single vertex w (rightmost picture).

homotopic to the (n−1)-sphere Sn−1. In this sense, the local structure of M near x is characterised11 by
Sn−1. The homology of Sn−1 then serves as a tool to define a local orientation of M at x as a choice of
generator µx ∈ {−1,+1} of Hn−1(Sn−1) ' Z. If it is possible to consistently choose the same generator
for all x ∈M , we say that M is orientable and an orientation of M is defined as a function x 7→ µx that
assigns a local orientation to all x ∈M in a consistent way. If a closed, connected n-dimensional manifold
M is orientable, its top homology group Hn(M) is isomorphic to the integers, i.e. Hn(M) ' Z, and the
n-th homology class that represents the chosen global generator of Hn(M) is called the fundamental class
or orientation class [M ] of M .

The one-sphere is an especially accessible textbook example, which is further distinguished by the
fact that it has a certain relevance for physical theories. It appears, for instance, as the one-dimensional
Brillouin zone in the theory of condensed matter. Another simple topological manifold that has a similar
significance for physical theories is the manifold that serves as a two-dimensional Brillouin zone: the
two-torus T 2. We will discuss its homology as a final example in the following.

The basis for the minimal ∆-complex structure of T 2 consists of two two-dimensional patches U and L,
five one-dimensional edges a, b, c, d, e and four zero-dimensional vertices w0, w1, w2, w3. In order to turn
this ∆-complex structure into a space that is homeomorphic to T 2 we need to identify w ∼ w0 ∼ w1 ∼
w2 ∼ w3, a ∼ e and b ∼ d. As a consequence, the original building blocks of the ∆-complex structure
reduce to two distinct two-dimensional patches U and L, three distinct one-dimensional edges a, b, c and
only one zero-dimensional vertex w, cf. Fig. 2.6. The non-trivial n-chain groups Cn(T 2) are therefore the
free Abelian groups

C0(T 2) = FAb(σ0 : σ0 → w) ' Z ,

C1(T 2) = FAb(σ1
1 : σ1 → a, σ1

2 : σ1 → b, σ1
3 : σ1 → c) ' Z3 ,

C2(T 2) = FAb(σ2
1 : σ2 → U , σ2

2 : σ2 → L) ' Z2 . (2.57)

and the associated simplicial chain complex is

0
ι−→ C2(T 2)

'

Z2

∂2−→ C1(T 2)

'

Z3

∂1−→ C0(T 2)

'

Z

P0−→ 0 (2.58)

with the same meaning of symbols as before. In order to determine the simplicial homology groups we
have to sort out the boundary maps. Once more there is only a single zero-simplex so we have ∂1 = 0

with

ker(∂1) = C1(T 2) ' Z3 and im(∂1) = {0} . (2.59)

11The link between the local structure and the homology of Sn−1 is provided by the concept of relative singular homology,
which goes beyond the scope of this thesis but can, for instance, be found in Ref. [15].
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For ∂2 we have to work a little bit harder. First, we explicitly compute the boundary maps of U and L
separately as

∂2 U = +σU |[v1,v2] − σU |[v0,v2] + σU |[v0,v1] = +a− c+ b (2.60)

and

∂2 L = +σL|[v1,v2] − σL|[v0,v2] + σL|[v0,v1] = +a− c+ b , (2.61)

where we followed the leftmost and the rightmost pictures in Fig. 2.6. This may seem a bit counter-
intuitive at first because usually the “positive” mathematical direction is counter-clockwise. Going
counter-clockwise around the L patch on the right of Fig. 2.6 and adding up the boundary edges with
their orientation sign produces b− c+ a just like in Eq. (2.61). However, repeating the same procedure
for patch U yields −a − b + c, i.e. the opposite result of the one in Eq. (2.60). So why does assuming
the standard positive “counter-clockwise” orientation give the wrong result here? The reason for this is
that the original U two-simplex is not in its standard orientation. This can be seen as follows. Going
counter-clockwise around the individual L on the left of Fig. (2.6) gives v0 → v1 → v2, which corresponds
to the standard vertex order that defines the orientation of the L patch. Doing the same for the individual
U yields v0 → v2 → v1, which is an odd permutation of the standard vertex order producing the opposite
orientation for the U patch. Note that reversing the orientation of either U or L in Fig. (2.6) is required
to unambiguously glue them together along the c edge, which connects w0 = v0 to w2 = v2. The fact
that the boundaries of U and L are the same, ∂2 U = ∂2 L, tells us that

ker ∂2 = {j U + kL | j + k = 0} ' Z , (2.62)

because the boundary map is linear. The middle expression is isomorphic to the integers Z because the
constraint j + k = 0 removes one degree of freedom and thus reduces Z2 ' {jU + kL | j, k ∈ Z} to Z.
The image of ∂2 is simply the free Abelian group of a single generator, namely

im ∂2 = FAb(a+ b− c) = Z . (2.63)

The three simplicial homology groups of T 2 are therefore

H∆
2 (T 2) = ker ∂2/im ι = Z/0 = Z ,

H∆
1 (T 2) = ker ∂1/im ∂2 = Z

3/Z = Z2 ,

H∆
0 (T 2) = kerP0/im ∂1 = Z/0 = Z . (2.64)

The two-torus is path-connected, which is readily confirmed by H∆
0 (T 2) ' Z. Furthermore, the first

simplicial homology group H∆
1 (T 2) ' Z2 matches the fundamental group π1(T 2) ' Z2 that we computed

earlier. As was mentioned before, the first homology group of a connected topological space X is always
equal to the Abelianisation of its fundamental group, so this is expected as well. Finally, H∆

2 (T 2) ' Z

signifies that T 2 is an orientable topological manifold, which is also a well-established fact. Note that the
n-th Betti number βn is really defined as the rank

βn := rank(Hn(X)) (2.65)

of the n-th homology group, rather than the n-th homotopy group as suggested in Eq. (2.20). The
definition of the first Betti number via the fundamental group that we gave in Eq. (2.20) poses a very
delicate special case: it holds only because rank(π1(M)) = rank(H1(M)) for two-dimensional closed
orientable manifolds M [65]. Usually, the Abelianisation process relating π1(X) to H1(X) eliminates
generators and reduces the rank. One example of this is the non-orientable Klein bottle K2, where
rank(π1(K2)) = 2, but rank(H1(K2)) = 1.

Overall, we find that the topological information provided by the homology groups corresponds well to
our natural notion of the respective manifolds. Still, it is natural to ask how much of simplicial homology
depends on the chosen ∆-complex structure on X as opposed to X itself. Above, we used the minimal
∆-complex structures to compute the simplicial homology of S1 and T 2. Of course, one can always add
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more simplices to the description. For example, we could use a ∆-complex structure for S1 that consists
of two vertices v0 and v1 connected by two edges a and b such that the initial non-trivial n-chain groups
would be C0(S1) ' C1(S1) ' Z2 resulting in a simplicial chain complex

0
ι−→ C1(S1)

'

Z2

∂1−→ C0(S1)

'

Z2

P0−→ 0 . (2.66)

However, the two vertices v0 and v1 in the new ∆-complex structure mean that the boundary map ∂1

is no longer trivial. Instead, its image and kernel can be shown to be isomorphic to the integers, i.e.
ker(∂1) ' im(∂1) ' Z, such that we still get

H∆
0 (S1) = ker(P0)/im(∂1) = Z

2/Z ' Z

H∆
1 (S1) = ker(∂1)/im(ι) = Z/0 ' Z . (2.67)

Indeed, singular homology can be used to show that the simplicial homology theory of a triangularisable
topological space X does not depend on the choice of ∆-complex structure.

There is a natural generalisation of the homology theory we have discussed so far that can offer certain
technical advantages in some cases. It involves a simple modification of the underlying simplicial chain
complexes. Up to this point, the n-chain groups Cn(X) were taken to be free Abelian groups on the
n-simplices, i.e. their elements were finite formal sums

∑
α gασ

n
α with integer coefficients gα ∈ Z. Now,

there is no compelling reason to restrict homology theory to integer coefficients. The generalisation occurs
when we allow coefficients from any Abelian group G so the n-chain groups become the Abelian groups

Cn(X;G) :=
{∑

α

gασ
n
α | σnα : ∆n → X, gα ∈ G

}
(2.68)

of finite formal G-sums of n-simplices in X. All subsequent machinery carries over so we can define
the homology theory with coefficients in the same way as before. The resulting homology groups with
coefficients in G are denoted by Hn(X;G). Common coefficient groups include Zp, Q, and R. There is an
important theorem called the universal coefficient theorem that tells us that the integral homology groups
Hn(X) = Hn(X;Z) completely determine the homology groups Hn(X;G) with coefficients. Nonetheless,
some notions depend strongly on the coefficient group. Orientability, for example, becomes redundant
with Z2 coefficients because the two possible distinct generators {−1,+1} of Z are identified in Z2. As a
consequence, every topological manifold is Z2-orientable. For this reason, orientability is often noted as
G-orientability, highlighting the respective coefficient group for clarity. If G is not explicitly mentioned,
one is usually referring to Z-orientability.

2.1.10 Cohomology

As its name suggests, cohomology is a theory that results from a dualisation of homology. Accordingly,
the cohomology groups Hn(X) of a topological space X fulfil very similar axioms and capture largely the
same topological information as the homology groupsHn(X). In fact, the homology groups of a space fully
determine its cohomology groups. The reason why we are still interested in cohomology is that it comes
with an extra layer of algebraic structure, namely a natural product map Hn(X)×Hm(X)→ Hn+m(X),
that is extremely useful in many situations. Furthermore, there are various topological contexts where
cohomology arises naturally. One of these is the theory of characteristic classes of fibre bundles that is very
important for topological condensed matter theory. As with homology, there are different cohomology
theories. In particular, there are the directly dualised versions of simplicial and singular homology that
are known as simplicial and singular cohomology, respectively. For this part, we closely follow Ref. [61].

We have mentioned that cohomology results from homology through dualisation. So what does this
mean? Duality in mathematics is less a fixed concept than a general principle, a recurring theme that
manifests across nearly every branch of the field. As such, it lacks a single unambiguous definition.
Yet, at its core, duality always describes a deep correspondence between mathematical objects that
appear unrelated, but somehow encode the same underlying structure – as if viewed from different
perspectives. Familiar examples include the duality between open and closed sets in topological spaces
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X or that between a finite-dimensional inner product space (V, 〈·, ·〉) over a field F and its dual vector
space V ∗ := hom(V, F ) of linear maps from V to F . The concrete duality operation that connects the
open and closed sets is the operation of taking the complement, while the concrete duality operation
between vectors and linear functions in the inner product space is the operation of applying the canonical
isomorphism that maps v 7→ 〈v, ·〉. To understand the duality operation that takes us from the homology
of a topological space to its cohomology, we first discuss how the algebraic dualisation the underlying
chain-complex works. To this end, consider a general chain-complex (A•, d•) of free Abelian groups An
connected by boundary maps dn as

... −→ An+1

dn+1

−−−→ An
dn
−−−→ An−1 −→ ... (2.69)

To dualise this chain-complex we first replace each chain group An by its dual group, the cochain group

A∗n(R) = hom(An, R) , (2.70)

where R denotes any ring12 of coefficients. Common coefficient rings include R = Zp,Q,R, but a standard
choice for R is again the integers R = Z. Unless otherwise stated, we will use R = Z and no longer
mention R explicitly in the following. Next, we replace the boundary map dn : An → An−1 by its dual
map

d∗n : A∗n−1 → A∗n , (2.71)

which we call the coboundary map. Note that the coboundary map d∗n is a homomorphism from A∗n−1

to A∗n rather than a homomorphism from A∗n to A∗n−1. This is a direct consequence of the definition of
a dual homomorphism: given any homomorphism ϕ : A → B its dual homomorphism ϕ∗ is defined by
composition

ϕ∗ : hom(B,R)→ hom(A,R)

ψ 7→ ϕ∗(ψ) := ψ ◦ ϕ . (2.72)

As a consequence, ϕ∗ maps a function ψ : B → R to a new function ψ ◦ ϕ : A → R, which effectively
reverses the direction of ϕ. For the boundary map, this implies that d∗n : A∗n−1 → A∗n is now labelled by
the codomain A∗n rather than the domain A∗n−1. In order to simplify general statements about homology
and cohomology we define the dual map

δn := d∗n+1 , (2.73)

that is in line with the notation we know from homology, i.e. δn is a homomorphism from A∗n to A∗n+1

labelled by its domain. With the coboundary maps δn the cochain groups A∗n form a chain-complex

...←− A∗n+1

δn
←−−− A∗n

δn−1

←−−− A∗n−1 ←− ... (2.74)

which is of the same form as the original chain complex in Eq. (2.69) and that is called the cochain
complex (A∗•, δ•) of (A•, d•). Duality ensures that the important property of ∂2 = 0 is directly inherited
as δ2 = 0 by the coboundary map. The chain cohomology of (A•, d•) can therefore be defined as the
chain homology of the cochain complex.

Definition 2.1.23. Let (A•, d•) be a chain complex of free Abelian groups and let (A∗•, δ•) denote its
cochain complex. The chain cohomology of (A•, d•) is defined as the chain homology of the cochain
compelx (A∗•, δ•), i.e. the n-th chain cohomology group Hn(A) is defined as

Hn(A•, d•) = ker δn/im δn−1 . (2.75)

With this, the singular and simplicial cohomology groups Hn
s (X) and Hn

∆(X) of a topological space X
can be defined as follows.

12Technically the coefficient ring could be relaxed to an Abelian coefficient group, but the most common choices for R
are rings so we use this slightly specialised definition.
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Definition 2.1.24. Let X be any topological space with a singular n-chain complex (Cs•, ∂•) and let
Hs
n(X) := Hn(Cs•(X), ∂•) denote its singular homology groups. The singular cohomology groups

Hn
s (X) of X are defined as the chain cohomology

Hn
s (X) := Hn(Cs•(X), ∂•) = ker δn/im δn−1 . (2.76)

Definition 2.1.25. Let X be any triangularisable topological space with a simplicial n-chain complex
(C∆
• , ∂•) and let H∆

n (X) := Hn(C∆
• (X), ∂•) denote its simplicial homology groups. The simplicial

cohomology groups Hn
∆(X) of X are defined as the chain cohomology

Hn
∆(X) := Hn(C∆

• (X), ∂•) = ker δn/im δn−1 . (2.77)

Just as in homology theory, singular cohomology can be used to show that the simplicial cohomology
does not depend on the specific choice of ∆-complex structure of a triangularisable topological space.

In the following, we will discuss some general properties of cohomology that do not depend on the
specific cohomology type. For this reason, we will omit sub- and superscripts referencing the cohomology
type whenever possible. The duality of cohomology and homology is captured by the pairing map

Hn(X)×Hn(X)→ R

([α], [σ]) 7→ [α]([σ]) , (2.78)

that assigns a scalar from the coefficient ring R to any pair ([α], [σ]) of the n-th cohomology and homology
classes. Importantly, the cohomology groups are completely determined by the coefficient ring R and the
homology groups. Despite this, cohomology has an additional piece of algebraic structure that homology
lacks. Specifically, there exists a natural bilinear map

^ : Hn(X)×Hm(X)→ Hm+n(X)

([α], [β]) 7→ [α] ^ [β] , (2.79)

called the cup product, which is directly induced by a cup product of cochains. There are some subtleties
in the definition of the cup product that occur when the coefficient ring R is only an Abelian G group
but we will not discuss such cases here [15].

Definition 2.1.26. Let Cn(X) and Cm(X) denote the n-th andm-th cochain group of a topological space
X. For α ∈ Cn(X) and β ∈ Cm(X) we define the cup product α ^ β ∈ Cn+m(X) as the cochain whose
value on an (n+m)-simplex σ : ∆n+m = [v0, . . . , vn+m]→ X is given by

(α ^ β)(σ) = α(σ|[v0,...,vn]) · β(σ|[vn,...,vn+m]) , (2.80)

where the · denotes the multiplication of the coefficient ring.

In order to understand how this cup product of cochains induces a cup product of cohomology classes,
we have to relate it to the coboundary map δn. The idea is to define δn+m(α ^ β) such that

δn+m(α ^ β)(σ)
!
= (α ^ β)(∂n+mσ) (2.81)

for every (n+m)-simplex σ. One can show that this is precisely the case when

δn+m(α ^ β) = δnα ^ β + (−1)nα ^ δmβ . (2.82)

From Eq. (2.82) it is immediately clear that the cup product α ^ β of two cocycles is again a cocycle,
i.e. that δn+m(α ^ β) = 0 for every α and β with δnα = δmβ = 0. Furthermore, the cup product of a
cocycle α and a coboundary δmβ is again a coboundary because δn+m(α ^ β) = (−1)nα ^ δmβ where
we used that δnα = 0. Consequently, there is an induced cup product Eq. (2.79) that is associative and
distributive. The latter allows us to promote the direct sum

H∗(X) :=
⊕
n

Hn(X) (2.83)
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to a graded ring (H∗(X),^) by endowing it with the cup product. The ring structure of the cohomology
groups under the cup product has important implications for the analysis of topological spaces. For
example, it can sometimes be used to show that two spaces with isomorphic (co)homology groups are
different because they have different cohomology rings. Another application is that the cohomology ring
can be used to generate rich algebraic invariants. This is crucial for the field of characteristic classes and
characteristic numbers of bundle spaces.

Cohomology and homology theories can be generalised using an axiomatic approach: the so-called
Eilenberg–Steenrod axioms, specify a list of properties that all (co)homology theories must have in com-
mon. Singular (co)homology is the prime example of a theory that satisfies these axioms, making it the
prototypical theory for defining and comparing new (co)homology theories. However, there are other
important (co)homology theories that extend or specialise singular (co)homology, often to adapt it to a
particular class of topological spaces.

de Rham Cohomology

There are many different ways to define cohomology theories for topological spaces. Examples include
simplicial and singular cohomology that we discussed earlier, but also various other cohomology theories
that are tailored to specific classes of topological spaces. For some exotic spaces, the different cohomology
theories yield different answers. However, there is also a large class of topological spaces on which they all
agree. Within this class of spaces, some of the more specialised cohomology theories can be understood
as tools for computing the singular cohomology for a particular type of space. For example, simplicial
cohomology can be used to compute singular cohomology on triangularisable topological spaces. Another
very relevant example that we will discuss in the next section is the theory of de Rham cohomology
which allows the computation of singular cohomology for smooth manifolds: if a topological space M is
a smooth manifold, its cohomology can be naturally defined in terms of differential forms on M . The
following part is mostly based on Ref. [39].

Let us start by refreshing some of the general definitions about differential forms. Let V be an
n-dimensional real vector space. A type (p, k) tensor is a multi-linear map

T :

p⊕
V ∗

k⊕
V → R

(ω1, . . . , ωp, v1, . . . , vk) 7→ T (ω1, . . . , ωp, v1, . . . , vk) , (2.84)

that maps p dual vectors w1, . . . , wp and k vectors v1, . . . , vk to a real number T (w1, . . . , wp, v1, . . . , vk).
The integers p and k indicate the number of contravariant and covariant indices, respectively. This
terminology refers to the behaviour of the tensor under a basis transformation A: while the vectors
vi ∈ V transform covariantly, via A itself, the dual vectors wi ∈ V ∗ transform contravariantly, via the
inverse transformation A−1. The definition of differential forms builds on the notion of covariant k-
tensors, i.e. tensors of type (0, k). Specifically, it requires the concept of alternating covariant k-tensors
ϕ, for which a permutation of the arguments multiplies the value by the sign of the permutation, i.e.

ϕ(vπ(1), . . . , vπ(k)) = sign(π)ϕ(v1, . . . , vk) . (2.85)

Here, π ∈ Sk is a permutation in the k-th symmetric group and the sign of π is defined as

sign(π) = (−1)Nπ (2.86)

with the minimal number Nπ of transpositions that make up π. Alternating covariant k-tensors are called
exterior k-forms and the space of all exterior k-forms on V is denoted by

∧k
(V ∗). For dim(V ) = n the

dimension of
∧k

(V ∗) is dim(
∧k

(V ∗)) =
(
n
k

)
so the direct sum

∧
(V ∗) =

n⊕
k=0

k∧
(V ∗) (2.87)

is a vector space of dimension dim(
∧

(V ∗)) =
∑n
k=0

(
n
k

)
= 2n. Now, the space

∧
(V ∗) becomes an algebra
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when equipped with the so-called wedge (or exterior) product

∧ :

k∧
(V ∗)×

l∧
(V ∗)→

k+l∧
(V ∗)

(ϕ,ψ) 7→ ϕ ∧ ψ , (2.88)

where

(ϕ ∧ ψ)(v1, . . . , vk+l) :=
∑

π∈Sk+l

sign(π)ϕ(vπ(1), . . . , vπ(k))ψ(vπ(k+1), . . . , vπ(k+l)) (2.89)

is the antisymmetrised tensor product of ϕ and ψ. The wedge product is bilinear, associative and
anticommutes as

ϕ ∧ ψ = (−1)kl ψ ∧ ϕ . (2.90)

Let M be an n-dimensional smooth manifold. As we will soon discuss in greater detail, the tangent
bundle TM of M is based on the disjoint collection of tangent spaces at all points p ∈ M and smooth
vector fields X on M are defined as smooth maps X : M → TM . We may repeat this construction for
exterior k-forms to get the exterior k-form bundle

k∧
(T ∗M) =

⊔
p∈M

k∧
(T ∗pM) , (2.91)

which can be used to define differential forms by analogy to the definition of vector fields.

Definition 2.1.27. Let M denote a smooth manifold. A continuous section

ω : M →
k∧

(T ∗M) (2.92)

of the exterior k-form bundle
∧k

(T ∗M) is called a k-form on M . The integer k is called the degree of
the k-form.

By definition, a k-form ω is a tensor field that assigns an alternating tensor to every point of M . The
vector space of all k-forms on a smooth manifold M is denoted Ωk(M) and the wedge product of two
k-forms is defined pointwise, i.e.

(ω ∧ η)p := ωp ∧ ηp , (2.93)

such that the wedge product of a k-form and an l-form is a (k + l)-form. The direct sum

Ω(M) :=

n⊕
k=0

Ωk(M) (2.94)

of the Ωk(M) is a vector space which also forms an associative anticommutative graded algebra (Ω(M),∧)

with the wedge product. In any smooth chart (U,ϕ) of a smooth manifold M , a k-form ω ∈ Ωk(M) can
locally be written as

ω =
∑

i1,...,ik

ωi1,...,ik
(
x1, . . . , xn

)
dxi1 ∧ ... ∧ dxik , (2.95)

where the coefficients ωi1,...,ik
(
x1, . . . , xn

)
are smooth functions on the

(
x1, . . . , xn

)
-coordinate patch.

One can show that for each smooth manifold M there exists a differential operator [39]

dk : Ωk(M)→ Ωk+1(M) , (2.96)

called the exterior derivative, that satisfies

d2 := dk+1 ◦ dk = 0 , (2.97)

and is given by

dω =
∑

i1,...,ik

dωi1,...,ik ∧ dxi1 ∧ ... ∧ dxik =
∑

j,i1,...,ik

(∂jωi1,...,ik)dxj ∧ dxi1 ∧ ... ∧ dxik . (2.98)

on any chart of M . The exterior derivative allows us to define the closed and exact differential forms.
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Definition 2.1.28. Let M be an n-dimensional smooth manifold. A differential k-form ω ∈ Ωk(M) on
M is called closed if dω = 0 and exact if there exists a (k − 1)-form η ∈ Ωk−1(M) such that ω = dη.

The set of closed k-forms constitutes a group called the k-th cocycle group Zk(M) and the set of exact
k-forms constitutes a group called the k-th coboundary group Bk(M). Due to Eq. (2.97), we find

Bk(M) / Zk(M) . (2.99)

The de Rham cohomology groups Hn
dR(M) of an n-dimensional smooth manifold M can therefore be

defined as the homology of the cochain complex

...←− Ωk+1(M)
dk
←−−− Ωk(M)

dk−1

←−−− Ωk−1(M)←− ... (2.100)

Definition 2.1.29. Let M be an n-dimensional smooth manifold. The k-th de Rham cohomology
group Hk

dR(M) of M is defined as

Hk
dR(M) = ker(dk)/im(dk−1) = Z

k
(M)/Bk(M) . (2.101)

Note that the de Rham cohomology groups are naturally defined with real coefficients because the under-
lying alternating covariant k-tensors are maps into the real numbers by definition. For every ω ∈ Zk(M)

the equivalence class [ω] ∈ Hk
dR(M) is defined as

[ω] =
{
η ∈ Zk(M) | η = ω + dα for α ∈ Ωk−1(M)

}
, (2.102)

i.e. two forms are equivalent, or cohomologous, if they differ by an exact form. Just like singular
cohomology, de Rham cohomology is equipped with a cup product: it is directly induced by the wedge
product in Eq. (2.88) as

∧ : Hn
dR(X)×Hm

dR(X)→ Hm+n
dR (X)

([α], [β]) 7→ [α] ∧ [β] := [α ∧ β] . (2.103)

The above construction shows that de Rham cohomology is a well-defined cohomology theory. However,
it is not immediately clear which homology theory it is dual to. It turns out that de Rham cohomology
is a dualisation of singular homology. This dual relationship is captured by the natural de Rham pairing

〈·, ·〉 : Ck(M)× Ωk(M)→ R

(α, ω) 7→ 〈α, ω〉 :=

∫
α

ω . (2.104)

between singular k-chains α ∈ Csk(M) and de Rham k-cochains ω ∈ Ωk(M) of an n-dimensional smooth
manifold M . In another important step, one can use Eq. (2.104) to show that de Rham cohomology
is in fact isomorphic to singular cohomology with real coefficients. To do this, we define a familiy
φ = {φk}k=1,...,n of homomorphisms

φk : Ωk(M)→ C∗k(M)

ω 7→ φk(ω) := 〈 · , ω〉 , (2.105)

which take de Rham k-cochains ω ∈ Ωk(M) to singular k-cochains φk(ω) ∈ C∗k(M) of M . The idea is
that the φk naturally induce homomorphisms

Φk : Hk
dR(M)→ Hk

s (M ;R)

[ω] 7→ Φk([ω]) := [φk(ω)] (2.106)

between the k-th de Rham cohomology group and the k-th singular cohomology group with real co-
efficients. However, this is not trivially the case. For one thing, we have to make sure that the Φk
are well-defined. Furthermore, the φk from Eq. (2.105) have to survive the cohomology construction in
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Def. (2.1.29) so they must take cycles to cycles and boundaries to boundaries. The striking insight by de
Rham was that all of this is guaranteed by Stokes theorem∫

∂α

ω =

∫
α

dω . (2.107)

This can be seen as follows. First, we note that we can use Eq. (2.104) to rewrite Stokes theorem as

〈∂α, ω〉 = 〈α,dω〉 , (2.108)

which is readily compatible with the inner product Eq. (2.104) that gives rise to the φk in Eq. (2.105).
In order to show that Eq. (2.106) is well-defined we have to prove two things: the well-definedness
of the maps Φk : Hk

dR(M) → Hk
s (M ;R) and the well-definedness of the Φk([ω]) ∈ Hk

s (M) as maps
Φk([ω]) : Hs

k(M)→ R themselves. The latter means that

(Φk([ω])) ([α]) := (φk(ω))(α) (2.109)

does not depend on the representative α of [α] ∈ Hs
k(M). To show this, we take two representatives α

and α′ of the equivalence class [α]. By definition [α] contains cycles that are homologous, i.e. all k-cycles
α with ∂α = 0 that differ bei a k-boundary β = ∂ξ for a suitable (k + 1)-chain ξ. This means we can
write

α′ = α+ ∂ξ . (2.110)

If we plug this into the right-hand side of Eq. (2.109) we get

(φk(ω))(α′) = (φk(ω))(α+ ∂ξ)

= 〈α+ ∂ξ, ω〉
(�)
= 〈α, ω〉+ 〈∂ξ, ω〉
(?)
= 〈α, ω〉+ 〈ξ,dω〉
(∗)
= 〈α, ω〉
= (φk(ω))(α) , (2.111)

where we used the bilinearity of 〈 · , · 〉 in (�), Stokes theorem Eq. (2.108) in (?), and the fact that
ω is a cocycle, i.e. that dω = 0, in (∗). The calculation in Eq. (2.111) shows that Eq. (2.109) is
independent of the choice of representative α ∈ [α] and therefore well-defined. The well-definedness of
Φk : Hk

dR(M)→ Hk
s (M ;R) works analogously but this time we take two representatives ω and ω′ of the

equivalence class [ω]. By definition [ω] contains cocycles that are cohomologous, i.e. all k-forms ω with
dω = 0 that differ bei an exact form ε = d η. This means we can write

ω′ = ω + d η (2.112)

for a suitable (k− 1)-form η and repeat the calculation we did in Eq. (2.111). Next we have to show that
the φk are “compatible” with the boundary maps d• and δ• of the de Rham cochain complex (Ω•(M),d•)

and the singular cochain complex (C∗•(M ;R), δ•). Mathematically, we say that φ is compatible with the
boundary maps if it is a chain map, i.e. if it is a family of homomorphisms that commutes with the
boundary maps ∂• and d• of the chain complexes. This is the case if the diagram

... Ωk+1(M) Ωk(M) ...

... C∗k+1(M ;R) C∗k(M ;R) ...

dk+1

φk+1

dk

φk

dk−1

δk+1 δk δk−1

(2.113)

commutes, i.e. if

φk+1 ◦ dk = δk ◦ φk (2.114)
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for every k in the chain complexes. Since Eq. (2.114) is a rather abstract relation between two maps

φk+1 ◦ dk : Ωk(M)→ C∗k+1(M) and δk ◦ φk : Ωk(M)→ C∗k+1(M) , (2.115)

we plug in a test k-cochain ωk ∈ Ωk(M) to get

(φk+1 ◦ dk)(ωk) ∈ C∗k+1(M) (2.116)

and a test (k + 1)-chain αk+1 ∈ Ck+1(M) to get(
(φk+1 ◦ dk)(ωk)

)
(αk+1) ∈ R . (2.117)

With this we can write (
(φk+1 ◦ dk)(ωk)

)
(αk+1) =

(
φk+1(dk ω

k)
)

(αk+1)

= 〈αk+1,dk ω
k〉

(�)
= 〈∂k+1αk+1, ω

k〉
=
(
φk(ωk)

)
(∂k+1αk+1)

=
(
φk(ωk) ◦ ∂k+1

)
(αk+1)

(?)
=
(
∂∗k+1

(
φk(ωk)

))
(αk+1)

(∗)
=
(
δk
(
φk(ωk)

))
(αk+1)

=
(
(δk ◦ φk)(ωk)

)
(αk+1) , (2.118)

where we used Stokes theorem from Eq. (2.108) in (�), the definition Eq. (2.72) of the dual homomorphism
in (?), and the definition δk := d∗k+1 of the coboundary map from Eq. (2.73) in (∗). The calculation
Eq. (2.118) proves that the diagram in Eq. (2.113) commutes. Accordingly, φ is a chain map and
induces a family of cohomology homomorphisms as in Eq. (2.106). The de Rham theorem then asserts
that Eq. (2.106) is an isomorphism for every smooth manifold M . We formally state it for the sake of
completeness [39].

Theorem 2.1.2. de Rham Theorem. For every smooth manifold M the map

Φk : Hk
dR(M)→ Hk

s (M ;R)

[ω] 7→ [〈 · , ω〉] (2.119)

is a well-defined isomorphism that establishes the equivalence of de Rham cohomology and singular coho-
mology with real coefficients.

The de Rham theorem tells us that we can use the rather tangible machinery of de Rham cohomology, i.e.
differential forms and integration on manifolds, to compute the singular cohomology with real coefficients
for smooth manifolds. This makes de Rham cohomology a very powerful tool. One of its applications,
which is particularly relevant for physics, is its appearance in the theory of characteristic classes.
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2.2 Fibre Bundles

An n-dimensional manifold is a topological space that locally looks like Rn. Similarly, a fibre bundle
is a topological space that locally looks like a direct product of two topological spaces. The interesting
thing about both manifolds and fibre bundles is that their global structure is usually more complicated
than their simple local structure would suggest. Therefore, answers to questions will generally differ
depending on whether they are asked at a local or global level: while local questions can be answered
based on the simpler structures of a Euclidean space or a product space, answering global questions
requires the complete information of the manifold or fibre bundle, respectively. This indicates that
manifolds and fibre bundles are particularly relevant when it comes to “global” questions. The following
section is mostly based on Refs. [39] and [15].

The importance of manifolds for theoretical physics has been appreciated at least since the introduction
of general relativity, where they provide a natural framework for the description of curved spacetime [39].
The significance of fibre bundles is a little bit more subtle, but very closely related. It shows when we
ask follow-up questions like “How do electromagnetic fields spread over spacetime?” The inclusion of the
electromagnetic fields means that we require a mathematical structure that takes into account not only
the spacetime manifold itself, but also the electromagnetic fields on it: at each point in space and time
we have to store the local geometric data of the electromagnetic field vectors. Fibre bundles formalise
the attachment of local geometric data (fibres) to an underlying manifold (base) and thus provide the
natural mathematical framework for all theories of this general type.

One prominent class of such theories are gauge theories which are concerned with the organisation
of a Lie group, called the gauge group, over an underlying manifold [39]. The preceding example of
electromagnetism is a special case of a gauge theory. Other examples are Lagrangian systems where
the phase space is realised as the tangent bundle of the configuration space [67], as well as classical
and quantum field theories where fields are vector-valued and operator-valued sections over spacetime,
respectively [39]. Formally, these theories cover much of modern theoretical physics. Since fibre bundles
capture the global properties of many physical theories, and topology is generally concerned with global
properties, fibre bundles also control many of the topological phenomena in physics. These include the
tenfold way of topological insulators and superconductors [14], instantons in gauge theories [7, 30–32],
vortices in superfluids [36–38], and skyrmions in both quantum field theory and condensed matter theory
[4, 5, 33]. As was mentioned in the introduction of this thesis, instantons, monopoles, vortices and
skyrmions can be understood as special cases of a more general class of objects called topological solitons,
which ultimately correspond to non-perturbative, localised and topologically stable solutions to field
equations [30]. For this reason, the relevance of fibre bundles in physics is sometimes associated with
the non-perturbative aspects of (quantum) field theories. Since several of these topological phenomena
will appear later, we briefly review the fundamentals of fibre bundle theory below. Let us begin with a
definition [39].

Definition 2.2.1. Fibre Bundle. A fibre bundle is a structure (E,B, F, π) consisting of
1. a topological space E called the total space,
2. a topological space B called the base space,
3. a topological space F called the typical fibre, and
4. a surjective continuous map π : E → B called the projection map,

satisfying the following condition: for every p ∈ B there exists an open neighbourhood U ⊂ B of p with
a homeomorphism φ : U × F → π−1(U) that is compatible with the projection map as (π ◦ φ)(p, f) = p.
Such a map φ is called a local trivialisation of the bundle over U .

The existence of a local trivialisation around every p ∈ B means that the preimage π−1(p) =: Fp of the
projection map over every p ∈ B is homeomorphic to the typical fibre F as Fp ' F . For this reason, it is
appropriate to picture a fibre bundle, at least locally, as a brush or a strand of hair. The important thing
is that these local strands can be twisted and warped as we go around the base space, thus breaking with
this simple picture on the global scale.
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It is common practice to denote a fibre bundle (E,B, F, π) by E
π−→ B or simply E for brevity.

The latter can serve as a gentle reminder that, despite the considerable complexity of Def. 2.2.1, a
fibre bundle is ultimately just a topological space E that can, but need not, be described in the rich
way of a fibre bundle. The above definition solely relies on topological concepts like topological spaces,
continuous functions, and homeomorphisms – no differentiability or explicit choice of coordinates is
required for the construction of the bundle. Of course, one can modify Def. 2.2.1 in these regards. If
we require all topological spaces and maps of to be differentiable or smooth we call the resulting fibre
bundle a differentiable or smooth fibre bundle. Similarly, we can choose a specific atlas {(Ui, φi)}, i.e.
a collection of local trivialisation charts (Ui, φi) whose open neighbourhoods Ui cover B. The resulting
bundle (E,B, F, π, {Ui}, {φi}) is called a coordinate bundle. A fibre bundle as per Def. 2.2.1 is then an
equivalence class of coordinate bundles under a simple equivalence relation where two coordinate bundles
(E,B, F, π, {Ui}, {φi}) and (E,B, F, π, {Vi}, {ψi}) are equivalent if (E,B, F, π, {Ui} ∪ {Vi}, {φi} ∪ {ψi})
is again a coordinate bundle. In physics, we usually work with smooth coordinate bundles.

Consider a smooth coordinate bundle (E,B, F, π, {Ui}, {φi}). It is natural to wonder how the transi-
tions between overlapping trivialisation charts (Ui, φi) and (Uj , φj) work. After all, only these transitions
can account for any non-trivial twisting of the bundle. To examine this, we consider a trivialisation chart
(Ui, φi) and use the local trivialisation φi : Ui × F → π−1(Ui) to define a map

φi,p(f) : F → F

f 7→ φi,p(f) := φi(p, f) , (2.120)

which is a diffeomorphism for every p ∈ Ui ⊂ B. If two trivialisation charts (Ui, φi) and (Uj , φj) have a
non-trivial overlap Ui ∩ Uj 6= ∅ we demand that

φj,p(f)
!
= φi,p(tij,p(f)) (2.121)

for all p ∈ (Ui ∩ Uj). Here, the tij,p are smooth maps

tij,p : F → F

f 7→ tij,p(f) := (φ−1
i,p ◦ φj,p)(f) , (2.122)

called the transition functions between the charts (Ui, φi) and (Uj , φj). The transition functions of a fibre
bundle are often required to live in some group G of symmetry transformations, which determines the
matching conditions between overlapping trivialisation charts. In such cases, the group G is required to
act continuously and faithfully on the fibre F on the left, which means that there exists a group action

ρ : G→ Aut(F )

g 7→ ρ(g) (2.123)

with ker(ρ) = {e}, such that the map

Φ : G× F → F

(g, f) 7→ Φ(g, f) := ρ(g)(f) ≡ g · f (2.124)

is continuous.13 Here, Aut(F ) is the group of all diffeomorphisms from F to itself and the trivial kernel
of ρ means that ρ is injective and hence faithful. The continuity of Φ defines the continuity of the group
action and we often use the symbolic notation g · f of left multiplication to describe the left action of
g ∈ G on f ∈ F . In fibre bundles with a symmetry group G it is then required that the transition
functions tij,p : F → F correspond to a representation ρ(g) : F → F for some g ∈ G as

tij,p = ρ(g) , (2.125)

13Note that the continuity of Φ is only well-defined when G is understood as a topological group, i.e. a group that
is equipped with a topology that is compatible with the group operation in the sense that the group operation map
· : G×G→ G, (x, y) 7→ x · y and the inversion map −1 : G→ G, x 7→ x−1 are made continuous. Every group can be made
into a topological group by considering it in the discrete topology. Lie groups are important topological groups with the
standard manifold topology inherited from metric topology of Rn via the charts.
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which is often casually stated as tij,p
!
∈ G. The group G is then called the structure group of the fibre

bundle. In physics, we typically use smooth coordinate bundles with a Lie group G for a structure group
and with smooth manifolds for the topological spaces E, B and F .

Definition 2.2.2. Physics Fibre Bundle. A smooth coordinate G-bundle or (physics) fibre
bundle is a structure (E,B, F, π, {Ui}, {φi}, G) consisting of

1. a smooth manifold E called the total space,
2. a smooth manifold B called the base space,
3. a smooth manifold F called the typical fibre,
4. a surjective smooth map π : E → B called the projection map,
5. a collection of open charts {Ui} that cover the base space B together with a collection {φi} of

diffeomorphisms φi : Ui×F → π−1(Ui) that establish the coordinates and the local trivialisation
of the bundle,

6. a Lie group G called the structure group, that acts on F on the left and that supplies the
transition functions tij,p : F → F for all p ∈ (Ui∩Uj) 6= ∅ between overlapping trivialisation charts.

A fibre bundle of this kind is also often called a smooth fibre bundle to stress its differentiable structure.
Importantly, a smooth fibre bundle as per Def. 2.2.2 is itself a smooth manifold so it possesses a dimension
dimR(E) which is related to the dimension dimR(B) of the base manifold and the dimension dimR(F )

of the fibre manifold via dimR(E) = dimR(B) + dimR(F ). Let us consider some simple examples of
topological spaces that form smooth fibre bundles as defined in Def. 2.2.2.

Example 2.2.1. Let S1 denote the unit one-sphere and let I = (0, 1) denote the open unit interval. The
following topological spaces are fibre bundles that can be constructed using S1 and I.

1. The cylinder C is a product space C = S1 × I and therefore a trivial fibre bundle with base space
B = S1 and fibre F = I.

2. The Möbius strip M is a non-trivial fibre bundle with base space B = S1 and fibre F = I. Even
though M looks like a product I × I locally, it exhibits a twist that distinguishes it from the trivial
cylinder globally. The Möbius strip is a non-orientable topological space.

3. The two-torus T 2 is a product space C = S1 × S1 and therefore a trivial fibre bundle with base
space B = S1 and fibre F = S1. It can be obtained from the cylinder by glueing together the
boundary ∂I = {0} ∪ {1} of I.

4. The Klein bottle K2 is a non-trivial fibre bundle with base space B = S1 and fibre F = S1. Even
though K2 looks like a product S1 × S1 locally, it exhibits a twist that distinguishes it from the
trivial two-torus globally. The Klein bottle is a non-orientable topological space.

Figure 2.7 shows three-dimensional instantations of the four fibre bundles in Ex. 2.2.1. In the sketch of
the Klein bottle K2, the size of the fibre F = S1 varies along the base manifold. There is no profound
reason for this; it is simply the established strategy for illustrating the twist of the Klein bottle in three
dimensions. In particular, the modification of the tube circumference has no topological significance as
it constitutes a continuous deformation. Another feature of the standard depicition of K2 in Fig. 2.7
is its self-intersection. Importantly, this self-intersection is not an intrinsic property of K2 as a fibre
bundle, but rather an artefact of the explicit instantation of K2 in R3. It can be resolved in R4 much
like the situation with the two interlinked rings we encountered in Fig. 2.1. The immersion of K2 in
R3 is instructive nonetheless. It clearly shows that K2 is closed and non-orientable. The latter can be
recognised by the fact that K2, like the Möbius strip M , has only one surface instead of the “inner” and
“outer” surfaces of orientable manifolds like the two-torus T 2 or the cylinder C. Another thing shown
in Fig. 2.7 are sections of the cylinder and the Möbius bundle. These are represented as red lines. The
formal definition of sections is as follows.

Definition 2.2.3. Sections of Fibre Bundles. Let E π−→ B be a fibre bundle. A (smooth) section
σ of E π−→ B is a continuous (smooth) map σ : B → E which satisfies π ◦ σ = idB .

The condition π ◦ σ = idB tells us that σ(p) is an element of the fibre Fp = π−1(p) for every p ∈ B. The
idea of a section is therefore to attach a particular element of the fibre, rather than the entire fibre, to
every point of the base manifold. Importantly, this must be done in a continuous (smooth) fashion, which
effectively means that the specific choices of elements over neighbouring points in B may only differ by
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Figure 2.7: Three-dimensional sketches of four simple fibre bundles over S1. From left to right: a cylinder
C with fibre F = (0, 1), a Möbius strip M with fibre F = (0, 1), a torus T 2 with fibre F = S1, and a
Klein bottle K2 with fibre F = S1. The four identical bottom circles portray the shared base manifold
B = S1, the red lines in the pictures of C and M indicate sections (see text), and the dotted circle in the
picture of K2 marks the self-intersection of the Klein bottle in R3. The three-dimensional instantations
of C, M , and T 2 are embeddings into R3, while that of K2 is only an immersion. Illustration created by
the author, inspired by Ref. [68].

a small amount. In this sense, a section is like a selected hairstyle on a head of (infinitely) long hair. If
there exists a section σ that is well-defined for all of B at the same time, we call it a global section. The
set of all global sections of a fibre bundle E π−→ B is often denoted by Γ(E,B). However, fibre bundles
do not in general admit (non-trivial) global sections. The non-existence of (non-trivial) global sections is
a result of the twistedness of the bundle and deeply rooted in topology. In fact, the obstruction to the
existence of (non-trivial) global sections can often be measured by certain cohomology classes of the base
space. The study of these obstruction cohomology classes is part of the theory of characteristic classes in
algebraic topology. One particularly well-known example is at the heart of the hairy-ball theorem, where
a characteristic class known as the Euler class obstructs the existence of a nowhere vanishing section of
the tangent bundle over S2. We will go into more detail about characteristic classes and obstructions
later on. Since not every fibre bundle admits (non-trivial) global sections, it makes sense to define local
sections as continuous maps σU : U → E for open subsets U ⊂ B. The local triviality of fibre bundles
ensures that local sections always exist. This makes them crucial tools in the study of fibre bundles.

There are some important special cases of fibre bundles that are characterised by the nature of the
typical fibre. The most relevant ones for our purposes are called vector bundles and principal bundles.

2.2.1 Vector Bundles

Let E be a fibre bundle. We call E a vector bundle if its typical fibre F is a vector space over a field K.
The dimension dimK(F ) of the fibre is then called the rank or sometimes dimension of the vector bundle
and the structure group G is necessarily G = GL(m,K). Typically, we encounter K = R,C in physics.

Example 2.2.2. The tangent bundle TM over an m-dimensional manifold M is a vector bundle with
base space B = M and fibre F = Rm. Using the more detailed tuple notation from Def. 2.2.2 we can
therefore write TM as a vector bundle (E,B, F, π,G) = (TM,M,Rm, π,GL(m,R)) where we omitted
the choice of trivialisation atlas. The global sections Γ(TM,M) of TM are the vector fields on M .

A vector bundle whose fibre is a one-dimensional vector space over a field K is called a K-line bundle or
simply a line bundle. The cylinder and the Möbius strip from Ex. 2.2.1 can be realised as trivial and non-
trivial R-line bundles over S1, respectively. Both of these bundles come with the Abelian structure group
GL(1,R) = R \ {0}. The difference between them is that the cylinder bundle has no negative transition
functions tij < 0, resulting in no twists, while the Möbius bundle has one negative transition function,
producing a single twist. This raises the question of whether the cylinder and the Möbius bundle are
the only two R-line bundles over S1. Once more, the answer is provided by the theory of characteristic
classes, which confirms that this is the case based on a characteristic class called the first Stiefel–Whitney
class w1(S1) of S1. However, it feels like there is something peculiar going on here. Our intuition tells
us that there is no way to continuously deform a Möbius strip with say two twists into a Möbius strip
with one twist or a cylinder with no twists. In fact, it seems to be impossible to continuously deform any
two Möbius strips with a different number or direction of twists into one another without tearing and
glueing. This leads us to expect Z classes of distinct R-line bundles, characterised by the number and
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direction of twists, instead of the two classes identified by the first Whitney class. Again, the culprit is
that our intuition is so attuned to three dimensions: when we attempt to picture distinct R-line bundles
as different configurations of Möbius strips, we are prone to visualising embeddings of R-line bundles
in R3 instead. Mathematically, this corresponds to the distinction between isomorphism classes and
isotopy classes of R-line bundles. Isomorphism classes are concerned with the number of distinct R-line
bundles as fibre bundles – there is no reference to embedding spaces and there are precisely two such
classes characterised by the first Stiefel–Whitney class w(S1) of the base space S1. Isotopy classes, on the
other hand, examine the number of distinct embeddings of R-line bundles into some higher dimensional
embedding space A. In A = R3 there are Z isotopy classes of R-line bundles, just like our intuition
suggests. The difference between the isotopy classes and isomorphism classes of fibre bundles vanishes
when the embedding space becomes sufficiently high-dimensional.14

Consider a vector bundle with fibre F = Rm. Over every trivialisation chart U , the vector bundle
looks like a trivial product, i.e. π−1(U) ' U × Rm, so we may choose m linearly independent local
sections {σU,1, . . . , σU,m} over U . Such a collection of linearly independent local sections is called a local
frame. The existence of a global frame is closely related to the topological class of a vector bundle. This
is captured by the following theorem.

Theorem 2.2.1. A vector bundle E π−→ B is trivial if and only if it admits a global frame.

A proof of this theorem can, for instance, be found in Ref. [39].

2.2.2 Principal Bundles

Say we have some base space B and structure group G in mind and we want to construct a simple fibre
bundle out of them. Every possible typical fibre has to admit a left action of G so it seems natural to start
thinking in terms of representation theory and vector bundles. However, there is a somewhat simpler
typical fibre immediately available: the structure group G itself. Recall that G has to be a topological
group, so it qualifies as a topological space. Furthermore, G readily comes with a left (and right) action
on itself by definition. The result of such a construction is known as a principal G-bundle.

Definition 2.2.4. Principal G-Bundle. A principal G-bundle P π−→ B is a fibre bundle whose fibre
F is identical to the structure group G. A principal G-bundle over B is also often denoted by P (B,G).

By definition, the left (and right) action of G on itself is transitive, i.e. for every g1, g2 ∈ G there exists a
group element l ∈ G (and r ∈ G) such that g2 = lg1 (and g2 = g1r). It is common to use the right action
of G in the construction of principal bundles, so we will adopt this convention in the following as well.
The fibres of a principal G -bundle then correspond to the orbit of the G-action, i.e. for u ∈ P (B,G)

and π(u) = p we can construct the fibre Fp = π−1(p) as

Fp = {ug | g ∈ G} . (2.126)

This insight will be important for the construction of connections on principal bundles. Given a principal
bundle P (B,G) we can use the representation theory of G to generate associated fibre bundles.

Definition 2.2.5. Let P = P (B,G) be a principal G-bundle and let G act on a manifold F on the left.
The associated fibre bundle P ×G F is a fibre bundle over the same base space B as P , but with
typical fibre F . It is constructed as the quotient (P × F )/G in which two points (u, f), (v, h) ∈ P × F
are identified if there exists a g ∈ G such that

(u, f) = g · (v, h) , (2.127)

where g · (v, h) denotes the induced left action

g · (v, h) := (vg, g−1h) (2.128)

of G on P × F .
14This is related to the Whitney embedding theorem which states that every m-dimensional manifold can be embedded

in R2m [69]. An isotopy version of this theorem reveals that for m ≥ 2 any two embeddings of an m-dimensional manifold
into R2m+1 are isotopic. Note that the Whitney embedding theorem and its isotopy version only determine an upper bound
for the smallest dimension in which the embedding/isotopy is guaranteed to work. Often, one can do better.
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Principal Bundle Theory in Mathematics Gauge Theory in Physics
Principal bundle Charge sector
Structure group Local gauge group

Local trivialisation Gauge
Choice of local trivialisation Fixing a gauge
Change of local trivialisation Local gauge transformation

Local section of associated vector bundle Matter field
Induced connection on associated vector bundle Minimal coupling

Connection Gauge field/potential
Curvature Gauge field strength

Table 2.2: A translation of concepts between the mathematical theory of principal bundles and physical
gauge theory. White rows indicate properties of principal bundles while light gray rows signify properties
of associated vector bundles. Table adapted from Ref. [70].

The fibre bundle structure of E = P ×G F is given as follows. Let π : P → B denote the projection
map of the original principal bundle P . The projection map πE : E → B of E is simply defined as
πE(u, f) = π(u) which is compatible with the equivalence relation because π(u) = π(ug) for all g ∈ G.
The latter is ensured by the fact that the fibres Fp correspond to the orbit of the G-action, cf. Eq. (2.126).
The local trivialisations are then given by φi : Ui × F → π−1(Ui). Note that the induced left action in
Eq. (2.128) is not unique – there exist many other valid left actions on the product P × F . The reason
for choosing this one is that it equips the new bundle P ×G F with the same transition functions of the
original bundle P (B,G) [39]. Since the transition functions encode the twisting of a bundle, this ensures
that the new bundle P ×G F is twisted in the same way as the original principal bundle P (B,G). It is in
this sense that the new bundle is associated to the original one. A particularly useful class of associated
fibre bundles are associated vector bundles where we choose a vector space V carrying a representation
ρ of G for the new fibre. The concept of associated fibre bundles allows us to translate back and forth
between statements about vector bundles and statements about principal bundles.

Principal bundles and associated (vector) bundles form the mathematical basis for gauge theory in
physics. The structure group of the principal bundle becomes the local gauge group of the gauge theory;
a choice of local trivialisation in the principal bundle amounts to fixing a gauge in the gauge theory.
A more detailed translation of concepts between principal bundle theory and physical gauge theory is
summarised in Tab. 2.2. While the principal bundles implement the physical gauge fields, the associated
vector bundles appear as matter fields in the gauge theory. The bottom rows of Tab. 2.2 show two rather
important concepts that we have not yet discussed, namely the connection and curvature of a (principal)
bundle representing the gauge potential and the gauge field strength, respectively.

2.2.3 Pullback Bundles and Classifying Spaces

Let E π−→ B be a fibre bundle with typical fibre F . Every continuous function f : B′ → B induces a new
fibre bundle over B′ with the same typical fibre F .

Definition 2.2.6. Pullback Bundle. Let E π−→ B be a fibre bundle with typical fibre F and let
f : B′ → B be a continuous map. The pullback bundle f∗E of E by f is defined as

f∗E := {(b′, e) ∈ B′ × E | f(b′) = π(e)} ⊆ B′ × E (2.129)

with the subspace topology and the projection map π′ : f∗E → B′ sending (b′, e) 7→ b′.

The fiber of f∗E over a point b′ ∈ B is precisely the fiber of E over f(b′), so the pullback bundle copies
the fibres of E and attaches them to a new base manifold B′ by the continuous map f . Any section
σ : B → E induces a pullback section

f∗σ : B′ → f∗E

b′ 7→ (b′, (σ ◦ f)(b′)) (2.130)
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on f∗E. Similarly, a trivialisation atlas {(Ui, φi)} of E induces a trivialisation atlas {(Vi, ψi)} of f∗E
where Vi = f−1(Ui) and where ψi(b′, h) = (b′, u) if φi(u) = (f(b′), h), i.e.

ψi : Vi × F → π′ −1(Vi)

(b′, h) 7→ (b′, φ−1
i (f(b′), h)) . (2.131)

Accordingly, the transition functions tij : Ui ∩ Uj → G with respect to the trivialisation atlas {(Ui, φi)}
of E induce the transition functions

f∗tij : B′ → f∗E

b′ 7→ (tij ◦ f)(b′) (2.132)

with respect to the trivialisation atlas {(Vi, ψi)} on f∗E. It is in this sense that the function f : B′ → B

is used to pull back a bundle E π−→ B over B to a bundle f∗E π′−→ B′ over B′.
Pullback bundles play an important role in the classification of principal G-bundles and vector bundles.

Specifically, every rank-n vector bundle E π−→ B over a compact base space B is isomorphic to a pullback
of a universal vector bundle En

πEn−−−→ Gn over a so-called classifying space Gn. For real vector bundles,
Gn is the real Grassmannian15

Gn ≡ Gn(R∞) , (2.133)

i.e. the smooth manifold of all n-dimensional real linear subspaces of R∞. Every point p ∈ Gn corresponds
to an n-dimensional linear subspace Wp ⊂ R∞ so we can define a tautological bundle En

πVn−−→ Gn which
attaches to every p ∈ Gn the particular linear subspace Wp it represents. The tautological bundle
En

πVn−−→ Gn is then the universal real vector bundle of all real rank-n vector bundles. Similarly, we can
define the Stiefel manifold

Vn := Vn(R∞) (2.134)

of all orthonormal n-frames in R∞. There is a natural projection Vn
πVn−−→ Gn that sends every n-frame

in Vn to the subspace it spans in Gn. The projection Vn
πVn−−→ Gn defines a principal O(n)-bundle, where

the natural right action of O(n) rotates each n-frame of Vn within the subspace it spans. The Stiefel
manifold with its natural projection is the universal principal O(n)-bundle. These constructions extend
to complex vector bundles and principal U(n)-bundles. Here, the universal complex vector bundle is the
tautological bundle of the complex Grassmannian Gn := Gn(C∞) and the universal principal U(n)-bundle
is the complex Stiefel manifold Vn := Vn(C∞) with its natural projection to Gn(C∞).

More generally, one can show that every principal G-bundle P πP−−→ B is isomorphic to a pullback
bundle f∗EG π′−→ B of a universal principal G-bundle EG πEG−−−→ BG over a so-called classifying space BG
by some continuous function f : B → BG. The names EG and BG play on the usual notation of E and
B for the total and base space, highlighting the distinguished role of the universal principal G-bundle
EG over the classifying space BG. In this terminology, the classifying spaces of principal O(n)- and
U(n)-bundles we discussed before are called BO(n) = Gn(R∞) and BU(n) = Gn(C∞), while the total
spaces are denoted EO(n) = Vn(R∞) and EU(n) = Vn(C∞), respectively.

The theory of universal bundles and classifying spaces allows us to understand the topology of all
principal O(n)- and U(n)-bundles and all real and complex vector bundles in terms of the topology of
their respective universal bundles.

15The real Grassmannian is defined as Gn(R∞) :=
⋃∞
k=nGn(Rk) with the weak limit topology where a set of Gn(R∞)

is open iff it intersects every Gn(Rk) in an open set. The finite-dimensional Grassmannians Gn(Rk) represent the n-
dimensional linear subspaces of Rk and are often defined as Gn(Rk) = O(k)/(O(n)× O(k − n)). To understand this construc-
tion, take an arbitrary, but fixed n-frame Fn that spans a linear subspace Vn ⊂ Rk. The set of all n-frames in Rk is then
the orbit of Fn under the orthogonal group O(k) of the ambient space. However, that orbit also contains frames that span
the same linear subspace Vn and are in this sense equivalent to Fn. To get rid of these, we have to take the quotient of O(k)

by the subgroup O(Vn) that stabilises Vn. That stabiliser subgroup is precisely O(Vn) = O(n) × O(k − n), i.e. the direct
product of the O(n) rotations within the n-dimensional subspace Vn with the O(k− n) rotations in its (k− n)-dimensional
complement V ⊥n within Rk. The complex Grassmannian is defined analogously with U(n) instead of O(n).
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2.2.4 Connections on Fibre Bundles

A connection on a fibre bundle E π−→ B determines how the local geometric data of the fibres is distributed
over the base space B by identifying which points of nearby fibres correspond to one another. The need
for such a notion becomes evident considering the following question:

Given a vector bundle π : E
π−→ B with typical fibre V , a section σ : B → E and a vector X ∈ TpB.

What is meant by the directional derivative dσX?

If E is the trivial vector bundle E = B × V it makes sense to understand the section σ : B → B × V as
a map σ : B → V and we can simply write

dσX =
d

ds
σ(γ(s))|s=0 = lim

s→0

σ(γ(s))− σ(γ(0))

s
(2.135)

for any smooth path γ : [−1, 1]→ B with γ′(0) = X, thus defining a linear derivative map

dσ : TpB → Fp ' V . (2.136)

However, Eq. (2.135) is only well-defined because σ(γ(s)) and σ(γ(0)) both belong to V and can therefore
be added and subtracted. This, in turn, relies on the fact that E is the trivial vector bundle where σ
can be viewed as a map σ : B → V . If E is a non-trivial vector bundle, this is no longer the case and
Eq. (2.135) ceases to be well-defined. Yet even in a non-trivial vector bundle, the fibres Fp and Fq over
different points p 6= q ∈ B are isomorphic so the definition of dσ as a linear map TpB → Fp should still be
possible. The problem is that there is no natural isomorphism between Fp and Fq for p 6= q in non-trivial
bundles. We are missing a piece of extra structure that connects these fibres in a unique way, at least if
p and q are sufficiently close. That missing piece of extra structure is called a connection.

There are various ways to define a connection, but one in particular stands out for its conceptual
generality: an Ehresmann connection establishes the desired relation between neighbouring fibres by
purely geometrical means. Let E π−→ B be a smooth fibre bundle. The basic idea of an Ehresmann
connection is to identify so-called vertical and horizontal directions in E that are pointing along and across
fibres, respectively. At any point u ∈ E, moving in the vertical direction means to stay within the current
fibre while moving in the horizontal direction means to smoothly change between neighbouring fibres.
The latter allows us to identify points between neighbouring fibres as those elements that are horizontally
connected. In a local trivialisation around a point p ∈ U ⊂ B we may write any u ∈ π−1(U) ⊂ E as
u ' (p, f) ∈ U × F and identify f ∈ Fp with all h ∈ Fq that can be reached by spreading out from (p, f)

in the horizontal direction. The notion of a horizontal layer of equivalent points across fibres has a rather
similar flavour to the idea of a section. So what is the difference? A section is a “static” slice through the
bundle, providing a fixed choice of points in each fibre. In contrast, the horizontal identification of points
provided by an Ehresmann connection is a “dynamic” process that involves the transport of elements
between distinct fibers. This “dynamic” nature of the connection is captured by defining the Ehresmann
connection in terms of vectorial objects – namely elements of the tangent bundle of the original fibre
bundle. In the following, we prepare the formal definition of the Ehresmann connection.

In differential geometry, any smooth map f : M → N between smooth manifolds induces two mutually
dual maps, the push-forward f∗ : TM → TN and the pullback f∗ : T ∗N → T ∗M by f , where the names
signify whether the respective maps point in the same (push-forward) or in the opposite (pullback)
direction of f . Note that the pullback of differential geometry is related, but not equivalent to the
pullback of fibre bundles we discussed before. Let M,N be smooth manifolds and let f : M → N be a
smooth map. The push-forward f∗ of f is a map

f∗ : TM → TN , (2.137)

sending elements of the tangent bundle TM πTM−−−→M ofM to elements of the tangent bundle TN πTN−−−→ N

of N . It is defined pointwise as

f∗ : TpM → Tf(p)N

X 7→ f∗(X) . (2.138)
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The elements X ∈ TpM are tangent vectors of M at p. They can be defined as equivalence classes [γ]

of smooth curves γ : [−1, 1]→ M with γ(0) = p and coinciding derivatives in M . In that case, we write
X = [γ] ≡ γ′(0) and f∗(X) ∈ Tf(p)N is given by

f∗(γ
′(0)) := (f ◦ γ)′(0) , (2.139)

i.e. the push-forward of a tangent vector X ≡ γ′(0) to the curve γ(s) at s = 0 in M is a tangent vector
f∗(X) ≡ (f ◦ γ)′(0) to the curve (f ◦ γ)(s) at s = 0 in N . The pullback f∗ of f is a map

f∗ : T ∗N → T ∗M , (2.140)

sending elements of the cotangent bundle T ∗N πT∗N−−−−→ N of N to elements of the cotangent bundle
T ∗M

πT∗M−−−−→M of M . It is defined pointwise as

f∗ : T ∗f(p)N → T ∗pM

ω 7→ f∗(ω) . (2.141)

The elements ω ∈ T ∗f(p)N are linear functions ω : Tf(p)N → R. Therefore, it is natural to take a test
vector X ∈ TpM and define the pullback f∗(ω) ∈ T ∗pM of ω ∈ T ∗f(p)N via its dual, the push-forward, as

(f∗(ω)) (X) = ω(f∗(X)) , (2.142)

or, more compactly, as

〈f∗ω,X〉 = 〈ω, f∗X〉 , (2.143)

using a bracket notation ω(X) = 〈ω,X〉 for the dual pairing of linear forms and vectors and omitting the
argument brackets for better readability.

A formal definition of the Ehresmann connection can then be given in terms of the push-forward π∗ of
the projection map. Let E π−→ B be a smooth fibre bundle and let π∗ : TE → TB be the push-forward
of the projection map π of E. The kernel

V E := ker(π∗ : TE → TB) (2.144)

of π∗ defines a fibre bundle called the vertical bundle V E πV E−−−→ E over E. The vertical bundle V E is
canonically defined for every fibre bundle E. It forms a smooth subbundle of the tangent bundle TE and
consists of vectors X ∈ TE that are tangent to the fibres in that they are collapsed by π∗.

Definition 2.2.7. Ehresmann Connection. Let E π−→ B be a smooth fibre bundle. An Ehresmann
connection on E is a smooth subbundle HE πHE−−−→ E of the tangent bundle TE πTE−−−→ E, called the
horizontal bundle of the connection, which is complementary to the canonical vertical bundle V E πV E−−−→
E in the sense that

TE = V E ⊕HE . (2.145)

The projection maps πHE and πV E are the restrictions of the canonical projection map πTE of the tangent
bundle.

Equation (2.145) requires that the tangent bundle TE splits as the direct sum of its smooth subbundles
V E and HE. For a smooth fibre bundle E π−→ B with fibre F this essentially means that at each point
u ∈ E the tangent space TuE can be written as the direct sum

TuE = VuE ⊕HuE (2.146)

of a dimR(F )-dimensional linear subspace VuE ⊂ TuE called the vertical subspace and a dimR(B)-
dimensional linear subspace HuE ⊂ TuE called the horizontal subspace. While Eq. (2.144) shows that
the vertical subspace VuE is uniquely defined by the projection map, there is a considerable degree of
freedom in the choice of the horizontal subspace HuE and, by extension, the Ehresmann connection.
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Figure 2.8: Possible choices of horizontal subspaces complementing the vertical subspaces at different
points u ∈ π−1(p) = Fp and w ∈ π−1(q) = Fq in two simple fibre bundles. The left picture shows
horizontal subspaces of two different Ehresmann connections HE (red) and H ′E (orange) on the two-
dimensional cyilinder bundle E π−→ S1, while the right picture illustrates the concept for a more generic
three-dimensional bundle E π−→ B with two-dimensional base manifold B and one-dimensional typical
fibre F . Illustration created by the author, based on Ref. [71].

This is illustrated in the left picture of Fig. 2.8 for the trivial cylinder bundle E = S1×R. Embedded
in R3 we can write every point u ∈ E as u = (z, eiϕ) ≡ (z, ϕ) using standard cylinder coordinates.
Elements of the tangent space TuE at any u ∈ E are then vectors

X = Xz
∂

∂z
+Xϕ

∂

∂ϕ
(2.147)

with coefficientsXz, Xϕ ∈ R. The vertical subspace VuE at any u ∈ E is then given by VuE = span(∂/∂z).
For the horizontal subspace we may choose the canonic option HuE := span(∂/∂ϕ), shown as red lines
in the left picture of Fig. 2.8. Clearly, an element of the direct sum VuE⊕HuE is of the form Eq. (2.147)
which makes the canonic option HuE a valid choice for a horizontal subspace. However, we may also
choose H ′uE := span(∂/∂ϕ+f(z, ϕ)∂/∂z) for any smooth function f : E → R, (z, ϕ) 7→ f(z, ϕ). Elements
of the direct sum VuE ⊕H ′uE are of the form

X = XV eV +XH′eH′

= XV
∂

∂z
+XH′

(
∂

∂ϕ
+ f(z, ϕ)

∂

∂z

)
= (XV +XH′f(z, ϕ))

∂

∂z
+XH′

∂

∂ϕ
, (2.148)

where XV , XH′ ∈ R denote the coefficients in the basis vectors eV of VuE and eH′ of H ′uE. Since
the coefficients are arbitrary real numbers, this is equivalent to Eq. (2.147) as well. The horizontal
spaces of such an Ehresmann connection are illustrated as orange lines in the left picture of Fig. 2.8.
Since the tangent bundle TE πTE−−−→ E of a given bundle E π−→ B is a smooth manifold of dimension
dimR(TE) = 2 dimR(E), the degree of freedom in the definition of an Ehresmann connection becomes
large quickly. This can be recognised from the right picture of Fig. 2.8, which visualises a local chunk of
a three-dimensional bundle E π−→ B with two-dimensional base manifold B and one-dimensional typical
fibre F . The degree of freedom in defining the horizontal subspaces HuE and HwE is even larger than
in the cylinder example.

Another, equivalent way to define an Ehresmann connection is by using a projection map Φ onto the
vertical bundle V E. Such a projection map is a vector bundle endomorphism Φ : TE → TE satisfying
the two properties Φ2 = Φ and Φ|V E = idV E . The former makes Φ a projection, while the latter ensures

im(Φ) = V E and ker(Φ) = HE , (2.149)

which reproduces the Ehresmann separation TE = im(Φ)⊕ ker(Φ) = V E ⊕HE of TE into vertical and
horizontal subbundles. At each point u ∈ E, the projection map Φ : TuE → TuE is a linear mapping from
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TuE to itself. In this sense, Φ acts like a TuE-valued linear form at every u ∈ E. Since Φ defines a smooth
distribution of such TuE-valued linear forms over E, it may be regarded as a TE-valued one-form on E.
For this reason, Φ is often called the connection form of the Ehresmann connection. This perspective
on the (Ehresmann) connection is very useful in many situations and often present in the description of
topological phenomena in physics.

There are various types of connections for different kinds of fibre bundles. Examples include linear
(or Koszul) connections on vector bundles, metric connections, like the Riemannian and the Levi-Civita
connection, on metric vector bundles, and principal connections on principal bundles. Although these
different connection types are generally defined in different ways, they can often be regarded as special
cases of certain Ehresmann connections. Due to its great importance for physics, we will take a closer
look at one such special case in the following: the principal connection of a principal bundle.

Definition 2.2.8. Principal Connection. Let E = P (B,G) be a principal G-bundle. An Ehresmann
connection HE on E is called a principal connection if it is invariant under the G-action on E.

This means the following. Remember that a principal G-bundle E admits a right action of G which is
formally a map

Rg : E → E

u 7→ Rg(u) := ug , (2.150)

where g ∈ G is arbitrary and fixed. The right action induces a push-forward

Rg∗ : TuE → TλuE

X 7→ Rg∗(X) (2.151)

between the tangent spaces at every point u ∈ E. In Eq. (2.126) we identified the fibres of E as the
orbits of the G-action. Therefore, u ∈ E and ug ∈ E correspond to the same fibre, i.e. π(u) = π(ug), for
every g ∈ G. The Ehresmann connection HE of E is said to be invariant under the G-action on E if the
horizontal subspaces HuE and HugE on the same fibre are related by

HugE = Rg∗HuE (2.152)

for all g ∈ G and u ∈ E. As a consequence, a horizontal subspace HuE at any u ∈ E generates all the
horizontal subspaces on the same fibre. If G is a Lie group, which it usually is in physical applications,
we can use the fact that G acts vertically on E to show that the connection form Φ of the Ehresmann
connection can be viewed as a one-form ω on E with values in the Lie algebra g of G.16 Formally, we
write ω ∈ Γ(T ∗E ⊗ g, E), which means that ω is a smooth section of the bundle T ∗E ⊗ g over E, i.e. of
the cotangent bundle T ∗E over E with values in g. The latter is signified by the tensor product between
T ∗E and g. Based on ω we can define an important object called the local connection form Ai of the
connection. The important difference between Ai and ω is that Ai is a g-valued one-form on a open
neighbourhood Ui ⊂ B of the base manifold B of E, rather than one on the entire bundle E itself. In
practice, this makes Ai much more accessible than ω or Φ. In fact, the local gauge potential from gauge
theory corresponds to neither Φ nor ω, but to a local connection form Ai. A general definition of Ai can
be given in terms of the pullback σ∗i : T ∗E → T ∗Ui of a local section σi : Ui → E.

Definition 2.2.9. Local Connection Form of a Principal Bundle. Let E = P (B,G) be a principal
G-bundle with an Ehresmann connection HE and let ω ∈ Γ(T ∗E ⊗ g, E) be the connection one-form of
HE. The local connection form Ai is defined as the pullback

Ai = σ∗i (ω) (2.153)

of ω by a local section σi : Ui → E of E, making it an element Ai ∈ Γ(T ∗Ui ⊗ g, Ui).

Note that the tensor product with g does not affect the construction. Strikingly, a local connection form
Ai on a trivialisation chart Ui ⊂ B completely determines the connection form ωi on π−1(Ui) ⊂ E

π−→ B,
16This is done using the push-forward Rϕ∗ of the action Rϕ of the one-parameter subgroups ϕ : R→ G of G [39].
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although it does depend on the particular local section σi : Ui → E. Consider an open cover {Ui} of the
base space B of our principal bundle E together with local sections {σi} and local connection forms {Ai}
defined on the open neighbourhoods of that cover. The local sections {σi} and local connection forms
{Ai} on the {Ui} patches uniquely determine local connection one-forms {ωi} on the chunks {π−1(Ui)}
of E located above these patches. For ω to be uniquely defined on all of E, the local forms ωi and ωj
must agree on all nonempty overlaps Ui ∩ Uj 6= ∅, ensuring that the collection {ωi} pieces together into
a single well-defined global form ω with ω|Ui = ωi. To fulfil this condition, the local connection forms Ai
have to satisfy the transformation property [39]

Aj = t−1
ij Aitij + t−1

ij dtij , (2.154)

where tij : Ui ∩ Uj → G denote the transition functions between the local sections σi over Ui and σj
over Uj . The first term on the right-hand side of Eq. (2.154) corresponds to the standard adjoint action
Adg : g → g, µ 7→ g−1µg of the Lie group G on its Lie algebra g. The second term is best understood
remembering that at each point p ∈ Ui ∩Uj the local connection forms Ai are maps Ai : Tp(Ui ∩Uj)→ g

taking a vector X ∈ Tp(Ui ∩ Uj) to an element µ ∈ g of the Lie algebra. Acting on a test vector
X ∈ Tp(Ui ∩ Uj) at p ∈ Ui ∩ Uj it becomes

(
t−1
ij (p)dtij

)
(X) = t−1

ij (p)
d

ds
tij(γ(s))

∣∣∣
s=0

=
d

ds

[
t−1
ij (p)tij(γ(s))

] ∣∣∣
s=0

, (2.155)

where γ : [−1, 1] → Ui ∩ Uj is a curve with γ(0) = p and γ′(0) = X. Note that γ(0) = p ensures that
Eq. (2.155) is an element of the tangent space TeG ' g of G at the identity e since it corresponds to a
derivative at the identity t−1

ij (p)tij(γ(0)) = t−1
ij (p)tij(p) = e by definition.

As a consequence, we can construct ω over E from any open cover {Ui} of B with local sections
{σi} and local connection forms {Ai} given the Ai satisfy Eq. (2.154). However, there is an important
caveat here, namely that non-trivial principal bundles do not admit a global section. So while Ai = σ∗i ω

always exists locally, it may not be defined globally. These observations have immediate implications
for physics. We mentioned earlier that the local connection form Ai corresponds to the gauge potential
in physical gauge theories. Consequently, the compatibility condition in Eq. (2.154) becomes a gauge
transformation in gauge theory (cf. Tab. 2.2) and the non-triviality of a principal bundle manifests in
the form of topological gauge field configurations, such as instantons or monopoles.

An Ehresmann connection on a smooth fibre bundle E also determines a generalised notion of parallel
transport known as the horizontal lift. The horizontal lift specifies how a curve γ : [0, 1]→ B in the base
space B of a fibre bundle E can be lifted to a curve γ̃ : [0, 1]→ E in E.

Definition 2.2.10. Horizontal Lift. Let E π−→ B be a smooth fibre bundle with an Ehresmann con-
nection HE πHE−−−→ E and let γ : [0, 1]→ B be a smooth curve in B. A horizontal lift γ̃ of γ is a curve
γ̃ : [0, 1]→ E satisfying (π ◦ γ̃) = γ and γ̃′(s) ∈ Hγ̃(s)E for all s ∈ [0, 1].

The first condition (π ◦ γ̃) = γ means that γ̃ is projected onto the original curve γ so it is indeed a version
of γ that has only been “lifted upwards”. The second condition asks that γ̃′(s) ∈ Hγ̃(s)E everywhere so
the tangent vectors to γ̃ are required to be always horizontal. In terms of the connection form Φ, the
requirement γ̃′(s) ∈ Hγ̃(s)E becomes

Φ(γ̃′(s)) = 0 . (2.156)

Since Φ can be understood as a differential one-form, Eq. (2.156) constitutes an ordinary differential
equation (ODE) and the fundamental theorem of ODEs guarantees the local existence and uniqueness of
the horizontal lift [39].

Theorem 2.2.2. Uniqueness of Horizontal Lifts. Let γ : [0, 1] → B be a smooth curve in the base
space B of a smooth fibre bundle E π−→ B with an Ehresmann connection and let u0 ∈ π−1(γ(0)) be an
arbitrary, but fixed element of the fibre over γ(0). Then there exists a unique horizontal lift γ̃(s) in E

such that γ̃(0) = u0.

The requirement that all tangent vectors must be horizontal means that γ̃ follows a path in E that only
connects elements of neighbouring fibres that are considered equivalent by the Ehresmann connection.

44



Figure 2.9: Parallel transport of tangent vectors to the punctured plane R2
∗ := R2 \ {0} along the closed

path S1 ⊂ R2
∗ according to two different Levi-Civita connections on the tangent bundle TR2

∗. The
parallel transport in the left picture is defined using the Levi-Civita connection of the standard metric
ds2 = dx2 + dy2 = dr2 + r2dθ2, while the right picture is defined using the Levi-Civita connection of the
modified metric ds2 = dr2 + dθ2.

In this sense, the horizontal lift γ̃ describes a transport of γ̃(0) without change, i.e. a parallel transport
of γ̃(0) similar to the familiar parallel transport of vectors in tangent bundles. For this reason we call
γ̃(1) ∈ π−1(γ(1)) the parallel transport of γ̃(0) ∈ π−1(γ(0)) along γ. The uniqueness of horizontal lifts
ensures that for any given curve γ : [0, 1]→ B and u0 ∈ π−1(γ(0)) there exists a unique parallel transport
u1 ∈ π−1(γ(1)) of u0 along γ that we obtain by lifting up γ(0) to γ̃(0) := u0 and setting u1 := γ̃(1). This
naturally defines a map

Pγ : π−1(γ(0))→ π−1(γ(1))

u0 7→ u1 , (2.157)

called the parallel transport Pγ along γ. Note that Pγ does not only depend on the path γ, but also
on the specific connection chosen on the bundle. This is illustrated in Fig. 2.9, which shows the parallel
transport of tangent vectors to the punctured plane R2

∗ := R2 \ {0} along the unit circle S1 ⊂ R2
∗ for two

different Levi-Civita connections on the tangent bundle TR2
∗. Levi-Civita connections are a special class

of metric connections that are uniquely defined for any given (pseudo-)Riemannian metric on a smooth
Riemannian manifold. The two metrics that give rise to the two distinct Levi-Civita connections on TR2

∗
illustrated in Fig. 2.9 are the standard metric ds2 = dx2 +dy2 = dr2 +r2dθ2 on the left, and the modified
metric ds2 = dr2 + dθ2 on the right. The latter is singular at the origin, which is why we consider R2

∗
instead of R2. Even though Levi-Civita connections are rather important for physics, we are not going
to go into more detail about them.

In a principal G-bundle E = P (B,G), we can use a version of the compatibility condition Eq. (2.154)
to determine the parallel transport u1 explicitly. Recall that Eq. (2.154) describes the transformation
behaviour of local connection forms Ai and Aj on overlapping neighbourhoods Ui ∩ Uj 6= ∅ with local
sections σi and σj . Since E is a principal bundle, σi and σj are related as

σj(p) = σi(p)tij(p) (2.158)

with tij(p) ∈ G for all p ∈ Ui ∩ Uj . In fact, this is why the transition functions tij appear in Eq. (2.154)
to begin with. If we take a chart Ui ⊂ B that supports a given curve γ : [0, 1] → Ui ⊂ B and a local
section σi : Ui → π−1(Ui) ⊂ E, we may write the horizontal lift γ̃i : [0, 1] → π−1(Ui) ⊂ E in a similar
way, namely as

γ̃(s) = σi(γ(s))gi(γ(s)) , (2.159)

where gi(γ(s)) ∈ G everywhere. Therefore, γ̃ behaves just like a section σj and we can understand the
compatibility condition Eq. (2.154) as a relation between Aj = σ∗j (ω) = γ̃∗(ω) and Ai = σ∗i (ω). If we
plug Aj = γ̃∗(ω) into Eq. (2.154) and apply it to X = γ′(s) we get

(γ̃∗(ω))(X) = g−1
i (s)Ai(X)gi(s) + (g−1

i (s)dgi)(X) , (2.160)

where we wrote g(−1)
i (s) ≡ g(−1)

i (γ(s)). The dual relationship between the pullback and the push-forward
as defined in Eq. (2.142) allows us to rephrase this as

ω(γ̃∗(X)) = g−1
i (s)Ai(X)gi(s) + (g−1

i (s)dgi)(X) . (2.161)
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Figure 2.10: Parallel transport of tangent vectors on S2. The black tangent vector at the north pole p0

is parallel transported to p1 at the equator along two different paths indicated by red and blue arrows,
respectively. The mismatch between the red and blue tangent vectors at p1 is a holonomy of the tangent
bundle TS2 of S2 and famously attributed to the curvature of S2.

Now, the push-forward X̃ = γ̃∗(X) of the tangent vector X = γ′(0) to γ by the horizontal lift γ̃ is itself a
tangent vector to γ̃. By definition of the horizontal lift, X̃ is horizontal and hence collapsed as ω(X̃) = 0

by the connection form ω on E, cf. Eq. (2.156). With this, Eq. (2.161) becomes

0 = g−1
i (s)Ai(X)gi(s) + (g−1

i (s)dgi)(X) . (2.162)

If we rewrite the second term on the right-hand side according to the middle expression of Eq. (2.155)
we end up with

0 = g−1
i (s)Ai(X)gi(s) + g−1

i (s)
d

ds
gi(γ(s))

∣∣
s=0

, (2.163)

which immediately rearranges into

d

ds
gi(γ(s)) = −Ai(X)gi(s) (2.164)

after multiplying by gi(s) from the left. For gi(0) := e the formal solution to Eq. (2.164) reads

gi(γ(s)) = P exp

[
−
∫ γ(1)

γ(0)

Ai,µ(γ(s))dxµ
]
, (2.165)

where P is the path ordering operator along γ(s) and where Ai,µ are the components of Ai in local
coordinates xµ on Ui ⊂ B. Using this expression for gi(γ(s)) and the definition Eq. (2.159) of the
horizontal lift, we find that the parallel transport u1 takes the form

u1 = σi(γ(1))P exp

[
−
∫ γ(1)

γ(0)

Ai,µ(γ(s))dxµ
]
. (2.166)

Versions of this formula are ubiquitous in the physics literature. Most notably, it appears in the form of
an observable called the Berry phase, which is a special case of an important notion called holonomy.

2.2.5 Holonomy

Let E π−→ B be a smooth fibre bundle with Ehresmann connection HE. Say we take two distinct curves
α : [0, 1] → B and β : [0, 1] → B with α(0) = β(0) = p0 and α(1) = β(1) = p1 and determine their
horizontal lifts α̃ : [0, 1]→ E and β̃ : [0, 1]→ E such that α̃(0) = β̃(0) = u0 ∈ π−1(p0). Then α̃(1) is not
always equal to β̃(1). Figure 2.10 shows a prominent example of this: the parallel transport of tangent
vectors on S2 leads to very different results depending on the specific path of transport. Generally, if we
have two curves α and β with α(0) = β(0) = p0 and α(1) = β(1) = p1 we may concatenate them as

γ(s) =

{
α(1− 2s) for s ∈

[
0, 1

2

)
β(2s− 1) for s ∈

[
1
2 , 1
] (2.167)
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to get a loop in B. Since we chose α̃(0) = β̃(0) = u0, the horizontal lift γ̃ of γ can be written as

γ̃(s) =

{
α̃(1− 2s) for s ∈

[
0, 1

2

)
β̃(2s− 1) for s ∈

[
1
2 , 1
]
,

(2.168)

which connects γ̃(0) = α̃(1) =: uα and γ̃(1) = β̃(1) =: uβ . The start point uα and end point uβ of γ̃ are
still in the same fibre as π(uα) = π(uβ) = p1, but whenever uα 6= uβ the lift γ̃ is no longer a loop. In
this sense, every loop γ in the base space B defines a non-trivial map

τγ : π−1(p)→ π−1(p)

u 7→ γ̃u , (2.169)

that takes an element u ∈ Fp to another element γ̃u ∈ Fp defined as the end point γ̃u := γ̃u(1) of the
unique horizontal lift γ̃u that starts at γ̃u(0) = u. The τγ is completely determined by the loop γ in B
and the connection HE on E. The fact that u, τγ(u) ∈ Fp means that they are related as

τγ(u) = ugγ(u) (2.170)

for some gγ(u) ∈ G. This motivates the following definition.

Definition 2.2.11. Holonomy Group. Let E π−→ B be a smooth fibre bundle with structure group
G and Ehresmann connection form Φ. Take an element u ∈ E with π(u) = p and consider the set
Cp(B) = {γ : [0, 1]→ B | γ(0) = γ(1) = p} of loops in B based at p. The set

Holu(Φ) = {g ∈ G | ∃ γ ∈ Cp(B) : τγ(u) = ug} (2.171)

defines a subgroup of the structure group G that is called the holonomy group of Φ at u ∈ E.

Note that the order in which we concatenate α and β in Eq. (2.167) only changes the orientation of
the resulting loop, but not its end point. In contrast, the order in which we concatenate the horizontal
lifts α̃ and β̃ in Eq. (2.168) does have an impact on the respective end point. The holonomy group
therefore measures the failure of parallel transport to commute. This indicates that the holonomy group
generally contains sensitive geometrical information – its elements depend strongly on the connection
of the fibre bundle and the geometric details of the underlying loops in the base manifold. However,
there is also some topological information to be found in the holonomy group. To see this, recall that we
used homotopy-equivalence classes of the same kind of one-dimensional loops to define the fundamental
group π1 of a topological space earlier. For example, we found that the identity of the fundamental
group corresponds to contractible loops, i.e. loops that can be shrunk down to a point representing the
trivial constant loop there. We can translate this idea to the holonomy group. In fact, we find that the
subset Hol0u(Φ) of the holonomy group that comes from contractible loops in B forms a connected normal
subgroup Hol0u(Φ) / Holu(Φ) that is called the restricted holonomy group of Φ at u ∈ E. As such it
contains the identity element of Holu(Φ), namely the constant loop γ0(s) = π(u), which makes Hol0u(Φ)

the identity component of Holu(Φ). Since Hol0u(Φ) is a normal subgroup of Holu(Φ), the quotient

Holu(Φ)/Hol0u(Φ) = {gHol0u(Φ) | g ∈ Holu(Φ)} (2.172)

has a group structure describing a partition of Holu(Φ) with respect to Hol0u(Φ). A more comprehensive
understanding of the topological information contained in Holu(Φ) is then provided by a natural surjective
group homomorphism

H : π1(B)→ Holu(Φ)/Hol0u(Φ) (2.173)

between the fundamental group π1(B) of the base manifold and the quotient Holu(Φ)/Hol0u(Φ) of the
bundle holonomy group by its restricted holonomy group. The fact that H is surjective tells us that
it takes at least one element of π1(B) to each element of Holu(Φ)/Hol0u(Φ). This allows us to identify
two extreme cases. The first one arises when π1(B) = {e}, i.e. when the fundamental group of the
base manifold B is trivial so B is simply connected. In that case, the surjectivity of H tells us that
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Holu(Φ)/Hol0u(Φ) ' {e}, which immediately implies that Holu(Φ) = Hol0u(Φ). The holonomy group over
simply connected manifolds is therefore guaranteed to be connected (only has the connected component
of the identity). According to Eq. (2.173), a trivial fundamental group also suggests that the holonomy
group stores purely geometrical information. The second extreme case is realised when Hol0u(Φ) = {e},
i.e. when the restricted holonomy group of the bundle is trivial. In this case, Eq. (2.173) tells us that
for Holu(Φ) to be non-trivial, we require a non-trivial fundamental group π1(B) of the base manifold.
After all, π1(B) = {e} implies Holu(Φ) = Hol0u(Φ) so if additionally Hol0u(Φ) = {e} we immediately have
Holu(Φ) = {e}. The size of the holonomy group is thus determined by the size of the fundamental group
in this scenario. As a consequence, a trivial restricted holonomy group suggests that the holonomy group
contains purely topological information. It seems that situations with a trivial fundamental group and
those with a trivial restricted holonomy group represent extremes where holonomy reflects only geometric
and topological information, respectively. Accordingly, every other combination of a fundamental group
and a restricted holonomy group will interpolate between these two extremes. While it appears logical
that the size of the fundamental group π1(B) should control the amount of topological information in the
holonomy group, it may be less clear why the size of the restricted holonomy group Hol0u(Φ) should do
the same for geometric information. To illustrate why this is the case, we observe that Hol0u(Φ) captures
the local structure of Holu(Φ) in the sense that all local loops, i.e. all loops within local charts U ⊂ B, are
contractible and thus contribute specifically to Hol0u(Φ). If we understand topology as being concerned
with global properties, we find that the only possible “cause” for holonomy on these local charts is of a
geometric nature. More precisely, the local origin for holonomy is a geometric property that we call the
curvature R of the bundle. It is the direct generalisation of the literal curvature of surfaces like the sphere.
In fact, the latter corresponds to the example shown in Fig. 2.10, where the concatenation of the red and
blue transport curves results in a contractible loop in S2 that lifts to an open curve in the tangent bundle
TS2 (mismatch between the red and blue arrow at p1), generating a holonomy that is famously attributed
to the curvature of S2. Since there are many local neighbourhoods U ' Rn in anm-dimensional manifold,
the curvature is often regarded as the primary source for holonomy. For this reason, it is often said that
the smaller the holonomy group, the flatter the bundle. Indeed, one can show that Hol0u(Φ) = {e} if and
only if R = 0, i.e. the restricted holonomy group is trivial if and only if the curvature vanishes. In this
way, the curvature R serves as a measure for the amount of geometric information in Holu(Φ) much like
the fundamental group serves as a measure for the amount of topological information.

2.2.6 Curvature

In the previous section we introduced curvature as the source of local holonomy and local holonomy as a
measure for the non-commutativity of parallel transport. A rigorous definition of curvature therefore has
to formalise the idea that curvature is the failure of parallel transport to commute. To make this precise,
consider a smooth fibre bundle E π−→ B with fibre F and an Ehresmann connection HE. The notion of
parallel transport under HE is based on the horizontal lift of curves from the base manifold B to the
total space E. The lift of a curve is said to be horizontal if its tangent vector is horizontal at all times.
Therefore, a horizontal curve γ̃ can be regarded as an integral curve d

ds γ̃(s) = X(γ̃(s)) of a horizontal
vector field X by definition. Here, a horizontal vector field denotes a vector field that is a (local) section
X ∈ Γ(HE,E) of the horizontal subbundle HE over E. In this way, the parallel transport of an element
u ∈ E is naturally associated to a horizontal vector field. If we consider the parallel transport along
two distinct lifted curves, we get two distinct horizontal vector fields X,Y ∈ Γ(HE,E) and it becomes
natural to ask about the flow of either vector field along the other. In particular, do horizontal vector
fields remain horizontal if they flow along other horizontal vector fields? If they stay horizontal, the
horizontal subspaces at different u,w ∈ E are said to be compatible and there is no local holonomy.17

If they fail to stay horizontal, the horizontal subspaces at different u,w ∈ E are not compatible and the
horizontal flow of the local horizontal subspaces develops a vertical component that generates holonomy
effects. Determining whether horizontal vector fields remain horizontal under horizontal flow reduces to

17In this case HE is called integrable because it can be integrated into TE in the sense that we can find a smooth
dimR(B)-dimensional submanifold I of TE that has the horizontal subbundle for a tangent bundle, i.e. TI = HE. Moving
around in I corresponds to traversing the aforementioned “horizontal layer” of equivalent points in different fibres of E,
which leaves no room for holonomy effects to take place.
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an analysis of their closure under the Lie bracket. The Lie bracket [·, ·] is an operator that assigns to any
two vector fields X,Y : M → TM on a smooth manifold M another vector field [X,Y ] : M → TM that
is defined via its action

[X,Y ](f) = X(Y (f))− Y (X(f)) (2.174)

on a smooth function f ∈ C∞(M) onM . Here, the action of a vector fieldX ∈ Γ(M) on a smooth function
f ∈ C∞(M) gives another smooth function X(f)(·) ≡ Xµ ∂f

∂xµ (·) where xµ denote local coordinates.
Importantly, the Lie bracket [X,Y ] is the derivative of Y along the flow generated by X, i.e. the
infinitesimal flow of Y along X. The closure of the horizontal vector fields under the Lie bracket is then
measured by the expression

R(X,Y ) := [Ψ(X),Ψ(Y )]−Ψ([Ψ(X),Ψ(Y )]) , (2.175)

where [·, ·] is the Lie bracket and Ψ := (id − Φ) : TE → HE denotes the projection map onto the
horizontal subbundle, defined via the aforementioned Ehresmann projection Φ : TE → V E onto the
vertical subbundle. The operator R takes any two vector fields X,Y : E → TE on E, projects them onto
their horizontal components Ψ(X),Ψ(Y ) : E → HE, and returns the vertical part of the infinitesimal
flow [Ψ(X),Ψ(Y )] of Ψ(Y ) along Ψ(X) as the discrepancy between the Lie bracket [Ψ(X),Ψ(Y )] and its
horizontal part Ψ([Ψ(X),Ψ(Y )]). We define the curvature of an Ehresmann connection as the extent of
horizontal non-closure that is captured by R.

Definition 2.2.12. Ehresmann Curvature. Let E π−→ B be a smooth fibre bundle with an Ehresmann
connection HE and let Φ denote the vertical projection map of HE. We denote the complementary
horizontal projection map of Φ by Ψ = (id − Φ). The curvature R of Φ is defined as the vertical
component

R(X,Y ) = [Ψ(X),Ψ(Y )]−Ψ([Ψ(X),Ψ(Y )])

= Φ ([(id− Φ)(X), (id− Φ)(Y )])

≡ [XH , YH ]V (2.176)

of the Lie bracket between the horizontal vector field projections XH , YH : E → HE of any two vector
fields X,Y : E → TE.

In the second line of Eq. (2.176) we plugged in Ψ = (id − Φ) to arrive at an expression for R that
only depends on the Ehresmann projection map Φ. The last line of Eq. (2.176) introduces a shorthand
notation of R that will be useful later on. Previously, we showed that Φ can be regarded as a TE-valued
one-form on E. As a consequence, R can be understood as a TE-valued two-form on E.

In a principal G-bundle E = P (B,G), the Ehresmann connection form Φ defines a connection one-
form ω with values in the Lie algebra g of G. If we apply the above definition Eq. (2.176) of the curvature
to ω instead of Φ, we get a g-valued two-form Ω that is called the curvature two-form of the connection
one-form ω. To do this, we express R(X,Y ) as

R(X,Y ) = Φ([XH , YH ]) , (2.177)

where we took the last line of Eq. (2.176) and wrote out the vertical part [·, ·]V of the Lie bracket as
[·, ·]V = Φ([·, ·]) using the original Ehresmann projection map Φ. Substituting Φ and R with ω and Ω

then yields

Ω(X,Y ) = ω([XH , YH ]) . (2.178)

Since ω implements the projection on the vertical subspace, we have ω(XH) = 0 for every horizontal
vector field XH and we can add two zero terms to arrive at

Ω(X,Y ) = ω([XH , YH ])−XHω(YH) + YHω(XH) , (2.179)

which, using the invariant formula

dη(X,Y ) = Xη(Y )− Y η(X)− η([X,Y ]) (2.180)
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for the exterior derivative dη of a one-form η, becomes

Ω(X,Y ) = −dEω(XH , YH) , (2.181)

where dE denotes the exterior derivative on the total space E. Note that dEω(XH , YH) is precisely the
definition of the covariant derivative

Dωω(X,Y ) = dEω(XH , YH) (2.182)

of ω capturing its horizontal variation. This means that Ω(X,Y ) can be brought into the compact form
Ω(X,Y ) = −Dωω(X,Y ), where the minus sign is often absorbed to arrive at the definition

Ω(X,Y ) := Dωω(X,Y ) . (2.183)

Although this definition of Ω is very elegant, it is not quite as useful for practical applications. To get
a more functional expression for Ω, we note that the exterior derivative dEω(XH , YH) of the horizontal
vector field projections XH , YH of any two vector fields X,Y can be rewritten as

dE(XH , YH) = dEω(X,Y ) + [ω(X), ω(Y )] , (2.184)

such that we arrive at the expression

Ω(X,Y ) = dEω(X,Y ) + [ω(X), ω(Y )] (2.185)

for the g-valued two-form Ω on E. Finally, one can show that Eq. (2.185) is equivalent to the familiar
definition

Ω = dEω + ω ∧ ω (2.186)

of the curvature two-form Ω in terms of the exterior derivative dEω of ω and the wedge product of
connection one-form ω with itself. The advantage of the formulas Eq. (2.185) and Eq. (2.186) is that they
only require explicite knowledge of the connection one-form ω since they no longer contain horizontal
projections of vector fields. Recall that in Def. 2.2.9 we defined the local connection form Ai as the
pullback Ai = σ∗i (ω) of the g-valued connection one-form ω by a local section σi. The local curvature
form Fi of the g-valued two-form Ω is defined analogously.

Definition 2.2.13. Local Curvature Form of a Principal Bundle. Let E = P (B,G) be a principal
G-bundle with a g-valued Ehresmann connection one-form ω and let Ω = dEω + ω ∧ ω be its g-valued
curvature two-form. The local curvature form F i is defined as the pullback

Fi = σ∗i (Ω) (2.187)

of Ω by a local section σi : Ui → E of E.

Specifically, the pullback of Ω from Eq. (2.186) by a local section σi : Ui → E becomes

Fi = dBAi +Ai ∧ Ai , (2.188)

where Ai is the local g-valued connection one-form and where dB denotes the exterior derivative on the
base space B. The action of Fi on vectors fields X,Y : B → TB on the base manifold B is accordingly
given by

Fi(X,Y ) = dBAi(X,Y ) + [Ai(X),Ai(Y )] . (2.189)

If we consider a local chart Ui ⊂ B with coordinates xµ, we can write the local connection one-form Ai
in components

Ai ≡ A = Aµdxµ , (2.190)
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where we dropped the subscript i for better readability. From this, we get the component expression

Fi ≡ F = dBA+A ∧A

=
∂Aν
∂xµ

dxµ ∧ dxν +AµAνdxµ ∧ dxν

=
1

2

(
∂µAν − ∂νAµ + [Aµ,Aν ]

)
dxµ ∧ dxν

=: Fµν dxµ ∧ dxν (2.191)

of the local curvature form F on U ⊂ B. Note that in the third line of Eq. (2.191) we wrote ∂µ = ∂
∂xµ

and used the antisymmetry of the wedge product to explicitly antisymmetrise the components Fµν . On
overlapping charts Ui ∩ Uj 6= ∅ the field strengths Fi and Fj have to be related as

Fj = t−1
ij Fi tij , (2.192)

where tij : Ui∩Uj → G are the transition functions between the sections σi over Ui and σj over Uj . If we
compare the transformation condition of the curvature two-form in Eq. (2.192) to that of the connection
one-form in Eq. (2.154), we find that for an Abelian gauge group G, only the connection transforms
non-trivially while the curvature remains invariant.

Recall that the connection one-form Ai is identified with the gauge potential in gauge theory. Ac-
cordingly, the curvature two-form Fi corresponds to the field strength, cf. Tab. 2.2. Equation (2.192)
then describes the covariant nature of the field strength under gauge transformations. The fact that
Eq. (2.192) becomes trivial for Abelian gauge groups tells us that the field strength becomes gauge in-
variant in such cases. An important class of princpal G-bundles to which this applies is the class of
principal U(1)-bundles that naturally appear in the topological description of many quantum theories
due to the U(1) degree of freedom in the definition of a quantum state.
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2.3 Characteristic Classes and Numbers

Characteristic classes are cohomology classes that are naturally associated to vector bundles. As such,
they are topological invariants measuring the extent to which the global structure of the bundle deviates
from a product structure. Throughout this section we closely follow Ref. [15].

Definition 2.3.1. Characteristic Classes. A characteristic class x is a natural assignment of a
cohomology class x(E) ∈ H∗(B)18 to each vector bundle E π−→ B. A characteristic class x(E) of a bundle
E is called stable if it is invariant under taking the direct sum with a trivial vector bundle T , i.e. if
x(E ⊕ T ) = x(E).

Note that the naturality of the assignment means that the characteristic classes x satisfy

x(f∗E) = f∗(x(E)) (2.193)

for every continuous map f : M → B, i.e. that they commute with the notion of pullback. This
has various consequences. An important one is that it allows us to compute the characteristic classes
of all real and complex vector bundles in terms of the characteristic classes of their classifying spaces
BO(n) = Gn(R∞) and BU(n) = Gn(C∞). Following Ref. [15], one may identify four main types of
characteristic classes:

1. The Euler class e(E) ∈ Hn(B,Z) for oriented, rank-n, real vector bundles E π−→ B.
2. The Stiefel–Whitney classes wi(E) ∈ Hi(B,Z2) for real vector bundles E π−→ B.
3. The Chern classes ci(E) ∈ H2i(B,Z) for complex vector bundles E π−→ B.
4. The Pontryagin classes pi(E) ∈ H4i(B,Z) for real vector bundles E π−→ B.

Except for the Euler class, these classes are universal in that they generate the cohomology rings
H∗(BO(n),Z2), H∗(BU(n),Z) and H∗(BSO(n),Z) of the respective classifying spaces. We will fur-
ther address this later on. First, some comments are in order. Although these classes are characteristic
of the vector bundles E π−→ B, they correspond to cohomology classes of the respective base manifolds B.
Furthermore, only the Stiefel–Whitney classes are defined with Z2 coefficients and only the Chern classes
are defined for complex vector bundles. The other classes are defined with Z coefficients and for real
vector bundles. It is also worth mentioning that there is only one Euler class associated to a real vector
bundle. In contrast, the other classes come as sequences of i = 0, 1, . . . , N (possibly) non-trivial classes,
where the maximal non-trivial index N depends on the specific characteristic class under consideration.19

One of the most notable features of characteristic classes is that, despite their abstract definition, they
often hold remarkably practical meaning. Take for example a real vector bundle E π−→ B. A first check of
the non-triviality of E could be to analyse whether it is orientable or not. One way to do this is by means
of a homomorphism OE : π1(B)→ Z2 that assigns 0 or 1 to each loop γ ∈ π1(B) depending on whether
the orientation of the fibre is preserved or reversed as one goes around γ. Under the Abelianisation
of the fundamental group π1(B) to the first homology group H1(B), the homomorphism OE becomes
a map OE : H1(B) → Z2, which readily defines an element of the first cohomology group H1(B,Z2)

with coefficients in Z2. That element is precisely the first Stiefel–Whitney class, i.e. [OE ] = w1(E). By
construction, w1(E) is equal to zero if and only if E is orientable. Thus, non-triviality of w1(E) prevents
E from being orientable. For this reason we call w1(E) an obstruction (class) to orientability. Most
characteristic classes allow an interpretation in terms of obstructions to certain geometric structures.
Another striking example of the utility of characteristic classes is the existence of characteristic numbers
that can be defined from the characteristic classes as follows. Consider a vector bundle E π−→ B over
an n-dimensional base manifold B. If B is closed and oriented, then there exists a unique homology
class [B] ∈ Hn(B) called the fundamental or orientation class of B that can be naturally paired against
elements ω ∈ Hn(B,R) of the n-th cohomology group with coefficients in R to give an element of the
coefficient ring R of Hn(B,R), i.e.

〈[ω], [B]〉 ≡ ω(B) ∈ R . (2.194)

18H∗(B) denotes the cohomology ring of the base manifold B as defined in Eq. (2.83).
19The cohomology groups Hn(B) of the base manifold B become trivial once n > dimR(B). The maximal index of the

Stiefel–Whitney/Chern/Pontryagin classes is therefore the maximal number N such that N/2N/4N ≤ dimR(B).
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In a vector bundle with characteristic classes {xi}, the cup product of cohomology then allows us compute
products xi1xi2 ...xip := xi1 ^ xi2 ^ ... ^ xip of characteristic classes of total degree

∑p
k=1 deg(xik) = n

and pair them against the orientation class [B] to get an element (xi1xi2 ...xip)(B) ∈ R of the coefficient
ring that is called a characteristic number and that may acquire a geometric or even physical meaning in
some cases.20

Definition 2.3.2. Characteristic Numbers. A characteristic numberX of a vector bundle E π−→ B

over an oriented closed n-dimensional manifold B is the result of any pairing

X := (xi1 ...xip)(B) (2.195)

between a cup product (xi1 ...xip) of characteristic classes xik of total degree
∑p
k=1 deg(xik) = n and the

orientation class B ≡ [B] ∈ Hn(B) of B.

More generally, one can pair an element ω ∈ Hn(B,R) of the n-th cohomology group with coefficients
in R against any orientable n-cycle C ⊂ B of dimension dimR(C) = n ≤ dimR(B) to get an element
〈[ω], [C]〉 ∈ R. For C 6= B, the resulting ring elements are simply not considered “characteristic” of the
bundle, as they depend not only on the bundle but on the specific connection and sub-cycle C ⊂ B.

In the following, we will give a brief overview over some of the characteristic classes most relevant to
physics, namely the Euler, Stiefel–Whitney, and Chern classes.

2.3.1 The Euler Class

In 1758, Euler famously discovered that the alternating sum of the number of vertices V , edges E and
faces F of a convex polyhedron P ⊂ R3 always gives

V − E + F = 2 . (2.196)

This equation is now known as Euler’s polyhedron formula and the sum of vertices, edges and faces
is called the Euler characteristic χ(P ) of P . A modern version of the Euler characteristic generalises
this surprising result to general topological spaces: the Euler characteristic χ(X) of an n-dimensional
topological space X is defined as the alternating sum

χ(X) =

n∑
i=0

(−1)iβi (2.197)

of its Betti numbers βi = rank(Hi(X)), making it a topological homotopy invariant of X. Since every
convex polyhedron is homotopic to the two-sphere, Eq. (2.196) is a special case of Eq. (2.197) for X = S2.
Indeed, we can read off the Betti numbers β0 = β2 = 1 and β1 = 0 in Eq. (2.56) and find

χ(S2) = β0 − β1 + β2 = 1− 0 + 1 = 2 . (2.198)

Based on Eq. (2.197), we can extend this formula to higher-dimensional spheres. For example, with
Eq. (2.56) the Euler characteristic of the three-dimensional sphere S3 becomes

χ(S3) = β0 − β1 + β2 − β3 = 1− 0 + 0− 1 = 0 , (2.199)

and we arrive at the closed expression

χ(Sd) = 1 + (−1)d (2.200)

for the Euler characteristic of the d-sphere. Historically, the Euler characteristic was the first example
of a characteristic number. It can be used to define the Euler class e(E) of a real oriented rank-n vector
bundle E π−→ B over an oriented closed manifold B as the unique cohomology class e(E) ∈ Hn(B,Z) that
satisfies

〈e(E), [B]〉 = χ(E) , (2.201)

20There are subtleties when products involve characteristic classes from cohomology groups with different coefficients.
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i.e. that results in the Euler characteristic χ(E) of the bundle E π−→ B when paired with the orientation
class [B] ∈ Hn(B) of the base manifold B.21 Equation (2.201) immediately implies that the Euler class
e(E) changes sign when the opposite orientation is chosen for E, i.e. that

e(Ē) = −e(E) , (2.202)

where Ē is E with reversed orientation. This has an important consequence for the Euler class of real
oriented vector bundles of odd rank, in which the fibre inversion isomorphism I : F → F, f 7→ −f reverses
the orientation22 of the fibre so that it induces a vector bundle isomorphism Ī : E → Ē between Ē and
E. It follows, that the Euler class of real oriented vector bundles of odd rank satisfies

e(E)
Ī
= e(Ē) = −e(E) , (2.203)

which leads to the equation

e(E) + e(E) = 2e(E) = 0 . (2.204)

Note that Eq. (2.204) does not necessarily imply that e(E) = 0 since the cohomology group Hn(B,Z)

may contain torsion elements, i.e. elements g ∈ Hn(B,Z) for which there exists a finite integer m such
that m · g = 0. Therefore, Eq. (2.204) only tells us that the Euler class of real oriented vector bundles
of odd rank is 2-torsion. This has some implications for the Chern–Weil perspective on the Euler class
which we will address in greater detail shortly.

Unlike most other characteristic classes, the Euler class is unstable, meaning that e(E⊕T ) 6= e(E) for
the direct sum E ⊕ T between a given vector bundle E and a trivial vector bundle T . In fact, it satisfies

e(E ⊕ T ) = e(E) ^ e(T ) = 0 . (2.205)

Note that the instability of the Euler class is by no means a flaw. In fact, it makes the Euler class one
of the few characteristic classes that have any chance of detecting the non-triviality of so-called stably
trivial vector bundles, i.e. vector bundles E for which there exists a trivial vector bundle TE such that
the direct sum E⊕TE is again a trivial bundle T , i.e. E⊕TE = T . Stable characteristic classes of stably
trivial vector bundles are therefore necessarily trivial themselves, as x(E) = x(E ⊕ TE) = x(T ) = 0.

Conceptually, the Euler class is an obstruction to finding a nowhere vanishing global section on a vector
bundle. This means that e(E) = 0 is a necessary condition for the existence of a nowhere vanishing global
section. Importantly, e(E) = 0 is not sufficient – there may be situations where e(E) = 0 and no nowhere
vanishing global sections exist. Recall that a rank-n vector bundle E is trivial if and only if it admits a
global frame, i.e. a collection of n linearly independent (orthonormal) nowhere vanishing sections. The
Euler class is therefore an obstruction to finding a trivial rank-one subbundle of E. From this perspective,
Eq. (2.200) tells us that there exist no nowhere vanishing global sections on the tangent bundles of even-
dimensional spheres, which is precisely the statement of the hairy ball theorem. The modern textbook
definition of the Euler class formalises the idea of obstructing nowhere vanishing sections by means of the
so-called Thom isomorphism [61]. This isomorphism is used to translate the twisting of the zero-section
E0 within E π−→ B into a concrete cohomology class e(E) ∈ Hn(B) by relating the orientation class of
the total bundle E to the complement E −E0 of E0 in E, i.e. the domain of nowhere vanishing sections
of E.

21The Euler characteristic χ(M) of a smooth manifold M is the Euler class e(TM) of its tangent bundle TM .
22The fibre inversion is implemented by the negative identity matrix 1n which has determinant det(1n) = (−1)n which

equals plus one (preserves orientation) for even n and minus one (reverses orientation) for odd n.
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2.3.2 The Stiefel–Whitney Classes

Just like the Euler class, the Stiefel–Whitney classes are defined for real vector bundles E π−→ B. However,
the Stiefel–Whitney classes do not require orientability because they are defined in cohomology with Z2

coefficients. The following list of properties of the Stiefel–Whitney classes can be regarded as their
axiomatic definition [15].

Definition 2.3.3. Stiefel–Whitney Classes. The Stiefel–Whitney classes are a unique non-trivial
sequence of functions {wi} that assign cohomology classes wi ∈ Hi(B,Z2) to every real vector bundle
E

π−→ B with tpical fibre F such that
1. wi(f∗E) = f∗(wi(E)) for every continuous function f : M → B.
2. w(E1 ⊕ E2) = w(E1) ^ w(E2) where w =

∑
i wi ∈ H∗(B,Z2) .

3. wi(E) = 0 if i > dimR(F ) or i > dimR(B).
The sum w =

∑
i wi is called the total Stiefel–Whitney class of E.

The first condition in the above list makes the Stiefel–Whitney classes natural in the aforementioned
sense. The second condition yields the relation

wn(E1 ⊕ E2) =
∑
i+j=n

wi(E1) ^ wj(E2) , (2.206)

which is sometimes called the Whitney sum formula. Equation (2.206) readily establishes the stability
of the Stiefel–Whitney classes: the n-th Stiefel–Whitney class wn(E ⊕ T ) of the direct sum E ⊕ T of a
given vector bundle E and a trivial vector bundle T is

wn(E ⊕ T ) =
∑
i+j=n

wi(E1) ^ wj(E2) = wn(E) ^ w0(T ) = wn(E) ^ 1 = wn(E) , (2.207)

since wj(T ) = 0 for all j > 0. The third condition of Def. 2.3.3 ensures that only finitely many terms
of the total Stiefel–Whitney class are non-zero. The Stiefel–Whitney classes do not require orientability.
Nonetheless, there is a connection to the Euler class that is unique for orientable vector bundles.

Theorem 2.3.1. Let E π−→ B be an orientable rank-n real vector bundle. The top Stiefel–Whitney class
wn(E) and the Euler class e(E) of E are related as

e(E) = wn(E) mod 2 . (2.208)

This relationship is not accidental. One way to construct the Stiefel–Whitney classes is to take Thm. 2.3.1
as a starting point and define the other Stiefel–Whitney classes by induction. This construction scheme
draws on the history of characteristic classes, telling a story about the stabilisation and extension of the
Euler class to non-orientable spaces.

We mentioned earlier that the first Stiefel–Whitney class w1(E) is an obstruction to the orientability
of a given vector bundle E. The second Stiefel–Whitney class provides a refinement of this notion that is
of particular interest to physicists: it obstructs the existence of spin structures on a given vector bundle.
To see how this is similar to an obstruction to orientability, take a generic real rank-n vector bundle
E with the general linear group GL(n) for a structure group. If E is equipped with a metric we can
reduce GL(n) to the orthogonal group O(n) which preserves the metric – this is a typical starting point
for physical theories. Orientability of E then allows us to further reduce O(n) to the special orthogonal
group SO(n) which preserves orientation. Finally, E is said to admit a spin structure if the structure
group SO(n) can be lifted to its double cover, the spin group Spin(n), in a consistent fashion. While the
first Stiefel–Whitney class w1(E) obstructs orientability, i.e. the reduction to SO(n), the second Stiefel–
Whitney class w2(E) further obstructs the lift of SO(n) to Spin(n). Therefore, a real vector bundle
E

π−→ B admits a spin structure if and only if w1(E) = w2(E) = 0 [15].
Finally, the Stiefel–Whitney classes are universal classes of real vector bundles. Specifically, the

Stiefel–Whitney classes generate the cohomology ring H∗(BO(n),Z2) of the aforementioned classifying
space BO(n) = Gn(R∞) of all real rank-n vector bundles and associated principal O(n)-bundles. This
means that every characteristic class of a real vector bundle that is defined with Z2 coefficients is a
polynomial in the Stiefel–Whitney classes. The reason we care most about cohomology classes with Z2

coefficients for real vector bundles is that real vector bundles, unlike their complex counterparts, may not
be orientable and Z2 coefficients work for both orientable and non-orientable spaces equally.
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2.3.3 The Chern Classes

The Chern classes are defined for complex vector bundles E π−→ B, i.e. for vector bundles whose typical
fibre F is a complex vector space. Accordingly, the structure group of a generic complex rank-n vector
bundle is the complex general linear group GL(n,C), which, unlike the real general linear group GL(n,R),
is a connected topological manifold. One immediate consequence of this is that every complex vector
bundle admits a canonical orientation. In contrast to the Euler class and the Stiefel–Whitney classes,
the Chern classes therefore do not require any mention of orientability and can be defined as cohomology
classes with Z coefficients, extending the Euler class to complex spaces. The following list of properties
of the Chern classes can be regarded as their axiomatic definition [15].

Definition 2.3.4. Chern Classes. The Chern classes are a unique non-trivial sequence of functions
{ci} that assign cohomology classes ci ∈ H2i(B,Z) to every complex vector bundle E π−→ B with typical
fibre F such that

1. ci(f∗E) = f∗(ci(E)) for every continuous function f : M → B.
2. c(E1 ⊕ E2) = c(E1) ^ c(E2) where c =

∑
i ci ∈ H∗(B,Z) .

3. ci(E) = 0 if i > dimC(F ) or 2i > dimR(B).
The sum c =

∑
i ci is called the total Chern class of E.

Again, the first condition in the above list makes the Chern classes natural in the aforementioned sense
and again the second condition yields the Whitney sum formula

cn(E1 ⊕ E2) =
∑
i+j=n

ci(E1) ^ cj(E2) (2.209)

for the Chern classes, establishing their stability as

cn(E ⊕ T ) =
∑
i+j=n

ci(E) ^ cj(T ) = cn(E) ^ c0(T ) = cn(E) ^ 1 = cn(E) , (2.210)

since cj(T ) = 0 for all j > 0. Just like with the Stiefel–Whitney classes, the third condition of Def. 2.3.4
ensures that only finitely many terms of the total Chern class are non-zero.

We mentioned in the beginning that every complex vector bundle E comes with a canonic orientation.
This canonic orientation induces an orientation on the rank-2n real vector bundle ER

π−→ B that is
associated to any rank-n complex vector bundle E π−→ B by viewing the typical fibre F ' Cn as a real
real vector space FR ' R2n. The Chern classes are designed such that there is a strong relation between
the top Chern class cn(E) and the Euler class e(ER).

Theorem 2.3.2. Let E π−→ B be a rank-n complex vector bundle and let ER
π−→ B be the orientable

rank-2n real vector bundle associated to it. The top Chern class cn(E) is equal to the Euler class e(ER),

e(ER) = cn(E) . (2.211)

Again, this relationship is not accidental. Just like the Stiefel–Whitney classes, the Chern classes can be
defined by taking Thm. 2.3.2 as a starting point and defining the lower Chern classes by induction [72].
This construction scheme of the Chern classes represents the stabilisation and extension of the Euler class
to complex spaces.

Theorem (2.3.2) tells us that the top Chern class cn(E) of a rank-n complex vector bundle E obstructs
the existence of a nowhere vanishing global section, i.e. of a trivial complex rank-1 subbundle of E. The
lower Chern classes then extend this notion to trivial subbundles of higher and higher rank. Specifically,
the obstruction to finding k orthonormal global sections in a complex vector bundle of rank n is measured
by the (n− k + 1)-th Chern class cn−k+1(E).

Finally, the Chern classes are universal classes of complex vector bundles: they generate the cohomol-
ogy ring H∗(BU(n),Z) of the classifying space BU(n) = Gn(C∞) of all complex rank-n vector bundles
and associated principal U(n)-bundles. This means that every characteristic class of a complex vector
bundle that is defined with Z coefficients is a polynomial in the Chern classes. We can afford to focus
on the richer cohomology with Z coefficients here because of the aforementioned canonic orientation of
complex vector bundles.
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2.3.4 The Pontryagin Classes

The Chern classes and their universality for complex vector bundles can be used to define universal
characteristic classes with Z coefficients for real vector bundles. This is done by complexifying a given
real vector bundle E π−→ B of real rank n as EC := E ⊗ C = E ⊕ iE to get a complex vector bundle
EC

π−→ B of complex rank n, but real rank 2n. Based on the complexification of E, one can then define
the so-called Pontryagin classes

pi(E) := (−1)ic2i(EC) ∈ H4i(B,Z) (2.212)

of the initial real vector bundle E. There are some things worth mentioning about Eq. (2.212). First
of all, it defines a characteristic class pi(E) of a real vector bundle, which may lack orientability, via
a characteristic class ci(EC) of a canonically oriented complex vector bundle. As we will see shortly,
this discrepancy in orientability introduces some subtleties to the Pontryagin classes. Furthermore,
the relation pi(E) ∝ c2i(EC) ∈ H4i(B,Z) and c2i(EC) = 0 for 2i > n means that there are at most
bn2 c Pontryagin classes p1, . . . , pbn2 c associated to a given real rank-n vector bundle E. An important
consequence of this is that only real vector bundles E of even rank have a Pontryagin class pn

2
(E) that

corresponds to the top degree Chern class cn(EC) of the complexified bundle. By Thm. 2.3.2 we then
have

pn
2

(E)
(2.212)
=== cn(EC)

(2.211)
=== e(E ⊕ E) , (2.213)

where E⊕E is the oriented real bundle associated to the complexified bundle EC = E⊕iE of E. However,
the Whitney sum formula e(E ⊕ E) = e(E) ^ e(E) = e(E)2 that would relate the highest Pontryagin
class pn

2
(E) to the Euler class e(E) as

pn
2

(E) = e(E)2 (2.214)

is only valid if the original real vector bundle E is oriented. The fact that the relation between the
highest Pontryagin class and the Euler class depends on the rank and the orientability of a vector bundle
suggests that the universality of the Pontryagin classes for real vector bundles requires more careful
consideration. Indeed, we explicitly have to distinguish between oriented and unoriented vector bundles
of even and odd rank.23 In practice, this means that we have to consider different classifying spaces,
namely BSO(n) = G̃n(R∞) for oriented real rank-n bundles and BO(n) = Gn(R∞) for unoriented real
rank-n bundles.24

In the unoriented case, the Euler class e is not defined. One can show that the Pontryagin classes
[p1, . . . , pbn2 c] generate the torsion free part H∗Free(BO(n),Z) = H∗(BO(n),Z)/torsion of the cohomology
ring H∗(BO(n),Z), while torsion is generated by (the Bockstein) images of the Stiefel–Whitney classes in
H∗(BO(n),Z). Therefore, the integral cohomology H∗(BO(n),Z) is fully determined by the Pontryagin
classes and the Stiefel–Whitney classes. Notably, this is true for all n, so that every integral characteristic
class of an unoriented real rank-n vector bundle is a polynomial in the Pontryagin classes and (the
Bockstein) images of the Stiefel–Whitney classes in H∗(BO(n),Z) irrespective of the whether n is odd
or even.

In the oriented case, the Euler class e is defined and the situation becomes a bit more intricate. The
torsion part of H∗(BSO(n),Z) is again captured by (the Bockstein) images of the Stiefel–Whitney classes
in H∗(BSO(n),Z). However, the free part H∗Free(BSO(n),Z) of the cohomology ring H∗(BSO(n),Z)

requires a distinction between even and odd ranks. For odd ranks, there is no relation between the
Pontryagin classes and the Euler class and H∗Free(BSO(2m+1),Z) is generated by the Pontryagin classes
[p1, . . . , pm]. For even ranks, the highest Pontryagin class pm equals the square of the Euler class e
as pm = e2 and H∗Free(BSO(2m),Z) is instead generated by [p1, . . . , pm−1, e]. Therefore, the integral
cohomology H∗(BSO(n),Z) is completely determined by the Pontryagin classes and the Stiefel–Whitney
classes for odd ranks, while the only additional characteristic class required for even ranks is the Euler
class [15].

23So far we did not have to explicitly take orientability into account because we were either dealing with Z2 cohomology
which ignores orientation or with complex bundles that are canonically oriented to begin with.

24The classifying space for oriented real rank-n vector bundles is BSO(n) = G̃n(R∞) where G̃n(R∞) = limk→∞ G̃n(Rk)

denotes the limit of real oriented Grassmannians G̃n(Rk) = SO(k)/(SO(n)× SO(k − n)).
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2.3.5 Chern–Weil Theory

There is one approach to the theory of characteristic classes that is distinguished by its practical utility.
Chern–Weil theory is based on the insight that certain polynomials in the curvature two-form F of
principal G-bundles P π−→ B define elements of the de Rham cohomology ring H∗dR(B) of their base
spaces. In this way, Chern–Weil theory provides a method for computing some characteristic classes of
principal G-bundles using only their curvature. In the following, we sketch the fundamental ideas of
Chern–Weil theory for principal G-bundles. This part is based on Ref. [39].

As a preliminary consideration, we introduce the notion of invariant polynomials. Let G be a Lie
group and let g be its Lie algebra. An invariant polynomial of degree k is a symmetric k-linear function

f :
k
⊗ g→ R that satisfies

f(AdgA1, . . . ,AdgAk) = f(A1, . . . , Ak) (2.215)

for all g ∈ G and Ai ∈ g. Here, AdgAi = g−1Aig is the adjoint action of G on g. The invariant
polynomials of degree k form a vector space Ik(g) and the direct sum I∗(g) =

⊕∞
k=0 I

k(g) is called the
algebra of invariant polynomials. We can extend the domain of invariant polynomials I∗(g) from g to
g-valued differential forms by defining

f(η1A1, . . . , ηkAk) := η1 ∧ ... ∧ ηkf(A1, . . . , Ak) , (2.216)

where Ai ∈ g and ηi are ki-forms. The result of Eq. (2.216) is an R-valued k =
∑
i ki form. If we take

a particular g-valued k-form η and an invariant polynomial f ∈ Ip(g) ⊂ I∗(g) of degree p we call the
R-valued kp-form f(η) := f(η, . . . , η) the diagonal combination of f in η.

Consider a principal G-bundle P π−→ B whose structure group G is a Lie group with Lie algebra g. Any
connection on P allows us to define a g-valued connection one-form A on B and its g-valued curvature
two-form F as shown in Eq. (2.188). The Chern–Weil theorem states the following important result
about invariant polynomials in the curvature two-form.

Definition 2.3.5. Chern–Weil Theorem. Let P π−→ B be a principal G-bundle where G is a Lie
group and g its Lie algebra. The diagonal combination f(F) := f(F , . . . ,F) of any invariant polynomial
f ∈ I∗(g) in a curvature two-form F on B satisfies

1. df(F) = 0

2. f(F ′)− f(F) is exact for any two curvature two-forms F ′ and F on P

The first condition makes f(F) a closed R-valued differential form on B, while the second condition
ensures that f(F) and f(F ′) are cohomologous. Combined, the Chern–Weil theorem asserts, that
[f(F)] ∈ H∗dR(B), i.e. that f(F) is a well-defined representative of a de Rham cohomology group of
the base space B. In this way, the Chern–Weil theorem defines a homomorphism

φ : I∗(g)→ H∗dR(B) ' H∗(B,R)

f 7→ [f(F)] , (2.217)

that is sometimes called the Chern–Weil homomorphism [39]. Recall that the de Rham theorem estab-
lishes an equivalence H∗dR(B) ' H∗(B,R) between de Rham cohomology and singular cohomology with
real coefficients. In contrast, all of the characteristic classes we discussed before are defined with Z or
Z2 coefficients. The Chern–Weil homomorphism becomes applicable to the integral characteristic classes
because the inclusion map ι : Z ↪→ R naturally induces a map ι∗ : H∗(B,Z) → H∗(B,R) between
integral and real cohomology. In terms of characteristic classes, the Chern–Weil homomorphism is often
stated as follows.

Definition 2.3.6. Chern–Weil Homomorphism. Consider a principal G-bundle P π−→ B whose struc-
ture group is a Lie group G with Lie algebra g. Let F denote its g-valued curvature two-form on B and
let xR(P ) ∈ H∗(B,R) denote the image of an integral characteristic class x(P ) ∈ H∗(B,Z) of P , induced
by the inclusion ι : Z ↪→ R. Then there exists an invariant polynomial f ∈ I∗(g) and a homomorphism
φ : I∗(g)→ H∗(B,R) such that

φ(f) = [f(F)] = xR(P ) . (2.218)
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In the following, we briefly address the invariant polynomials that give rise to the Chern classes, the
Pontryagin classes, and the Euler class.

Consider a complex vector bundle E π−→ B with typical fibre F ' Cn. The structure group G of E
is U(n), and every (local) connection one-form A and curvature two-form F take their values in the Lie
algebra g = u(n). The total Chern class is defined via the invariant polynomial [39]

c(F) := det

(
1+

iF
2π

)
. (2.219)

Since F is a two-form, c(F) is direct sum of forms of even degree, i.e.

c(F) = 1 + c1(F) + c2(F) + ... , (2.220)

where the [ci(F)] ∈ H2i(B,R) are the images of the integral Chern classes ci(E) ∈ H2i(B,Z) induced by
the inclusion ι : Z ↪→ R.

Similarly, let E π−→ B be a real vector bundle with typical fibre F ' Rn. The structure group G of E
is O(n), and every (local) connection one-form A and curvature two-form F take their values in the Lie
algebra g = o(n). According to Eq. (2.212), the Pontryagin classes of E are defined via the Chern classes
of its complexification EC. This is captured by the invariant polynomial

p(F) := det

(
1+

F
2π

)
(2.221)

capturing the total Pontryagin class. Recall that the generators of g = o(n) are the skew-symmetric n×n
matrices. Since F takes its values in o(n), it is skew-symmetric as well and we find

p(F) := det

(
1+

F
2π

)
= det

(
1ᵀ +

Fᵀ

2π

)
= det

(
1− F

2π

)
= p(−F) , (2.222)

so p(F) is an even polynomial in F . As a result, the polynomials pi(E) in the expansion

p(F) = 1 + p1(F) + p2(F) + ... (2.223)

are of order 4i and define elements [pi(F)] ∈ H4i(B,R) that correspond to the images of the integral
Pontryagin classes pi(E) ∈ H4i(B,Z) induced by the inclusion ι : Z ↪→ R.

The invariant polynomial of the Euler class can be deduced from the Pontryagin classes. Based on
Eqs. (2.221) and (2.223) one can show that the highest Pontryagin class pbn2 c of a given rank-n vector
bundle takes the form

pbn2 c = det

(
F
2π

)
. (2.224)

We explained earlier that for even n, the highest Pontryagin class pn
2
fulfills

pn
2

(E) = e(E)2 , (2.225)

which suggests the invariant polynomial

e(F) = Pf
(
F
2π

)
(2.226)

for the Euler class. Indeed, we find that the Pfaffian yields a class [e(F)] ∈ Hn(B,R) that corresponds to
the image of the integral Euler class e(E) ∈ Hn(B,Z) induced by the inclusion ι : Z ↪→ R. Importantly,
the inclusion of integral cohomology into real cohomology removes torsion. This means that e(E) is sent
to zero whenever it is of finite order. The fact that the Pfaffian of a skew-symmetric matrix of odd size
vanishes identically therefore captures the torsion nature of the Euler class in odd rank bundles mentioned
in Eq. (2.204).

The characteristic classes x(F) of Chern–Weil theory correspond to de Rham cohomology classes
constructed from the curvature two-form. As a result, the characteristic number pairing from Eq. (2.194)
can be expressed via the de Rham pairing from Eq. (2.104), yielding the simple formula

X(E) := 〈[x(E)], [B]〉 =

∮
B

x(F) (2.227)

for the characteristic numbers of a given vector bundle E π−→ B.
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2.3.6 Chern Numbers and a Glimpse of the Atiyah–Singer Index Theorem

When it comes to topological invariants of vector bundles, characteristic numbers stand out for at least
two reasons: their conceptual simplicity and practical utility. The latter extends well beyond pure
mathematics. This is impressively illustrated by the integer quantum Hall effect, whose quantised Hall
conductance is directly determined by a characteristic number known as the first Chern number. This
connection was established in 1982 by Thouless, Kohmoto, Nightingale, and den Nijs [10], and proved
influential enough to earn Thouless a share of the 2016 Nobel Prize in Physics [73]. Today, Chern
numbers are among the most prominent characteristic numbers in theoretical condensed matter physics.
In particular, they appear as principal topological invariants in the celebrated tenfold classification of
topological quantum matter with symmetries [14]. Considering their ubiquity, it is all the more surprising
that an exact definition of Chern numbers remains somewhat ambiguous.

Mathematically, Chern numbers are typically defined as pairings between top-degree products of Chern
classes and the orientation class of a base manifold B. Consider, for instance, a complex vector bundle
E

π−→ B over an orientable, closed base manifold B of real dimension dimR(B) = 6. There are in principle
three independent Chern numbers

C1(E) = 〈[c31(E)], [B]〉 , C2(E) = 〈[c1c2(E)], [B]〉 , C3(E) = 〈[c3(E)], [B]〉 (2.228)

associated with the three top degree products c31, c1c2, c3 ∈ H6(B,Z) of Chern classes. By definition of the
Chern classes, the pairings in Eq. (2.228) (and integer linear combinations thereof) yield integer-valued
characteristic numbers of E.

In the physics literature, on the other hand, the term Chern numbers is frequently used for pairings
involving a related, but different type of characteristic classes: the so-called Chern characters. To motivate
the definition of the (total) Chern character, recall that the (total) Chern class is multiplicative under
direct sums of vector bundles, i.e.

c(E1 ⊕ E2) = c(E1) ^ c(E2) . (2.229)

Thus, the (total) Chern class translates addition of bundles into multiplication in cohomology. As a
consequence, the total Chern class does not induce a natural ring homomorphism between the semi-ring
(Vect(B),⊕,⊗) of (complex) vector bundles over B (K-theory) and the ring (H∗(B),+,^) of cohomology
groups of B [15].

The (total) Chern character [ch] ∈ H∗(B) is designed to remedy this by considering an algebraic
combination of Chern classes that takes direct sums to sums and tensor products to cup products, i.e.

ch(E1 ⊕ E2) = ch(E1) + ch(E2) and ch(E1 ⊗ E2) = ch(E1) ^ ch(E2) . (2.230)

Specifically, the (total) Chern character may be defined as

ch(E) = rank(E) +
∑
k>0

sk(c1(E), . . . , ck(E))/k! , (2.231)

where

sk(c1(E), . . . , ck(E)) =

k∑
j=1

sk−j(c1(E), . . . , ck−j(E))cj(E) (2.232)

denotes the recursively defined Newton polynomials [15]. The first terms of Eq. (2.231) are

ch1(E) = c1(E)

ch2(E) =
1

2

[
c1(E)2 − 2c2(E)

]
ch3(E) =

1

6

[
c1(E)3 − 3c1(E)c2(E) + 3c3(E)

]
(2.233)

and called the first, second and third Chern character of E, respectively. Note that without the 1/k!

prefactor, the k-th Chern character chk(E) ∝ sk(c1(E), . . . , ck(E)) is an integer linear combination of
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degree-k products of Chern classes. In particular, ch3(E) contains exactly the combinations of Chern
classes that we anticipated in our example Eq. (2.228) for integral “mathematical” Chern numbers. This
means that, aside from the 1/k! prefactor, the k-th Chern character chk(E) defines an integral cohomology
class. However, the presence of the fractional 1/k! prefactor disrupts this notion: the full Chern characters
can only take integer values if the linear combination sk(c1(E), . . . , ck(E)) of Chern classes happens to
be divisable by k!. This is not always the case. In fact, this is precisely the sacrifice required to make the
construction of the Chern character work: one must work with rational rather than integer coefficients.
Consequently, we generally have

[ch(E)] ∈ H∗(B,Q) and [chk(E)] ∈ H2k(B,Q) . (2.234)

Note that ch1(E) ∈ H2(B,Z) is always integral because ch1(E) = c1(E) as shown in Eq. (2.233).
In Chern–Weil theory, the total Chern character [ch(F)] ∈ H∗(B,Q) is defined using the invariant
polynomial

ch(F) = tr
(

exp

[
iF
2π

])
=

∞∑
k=1

1

k!
tr
(
iF
2π

)k
, (2.235)

giving the expression

chk(F) =
1

k!
tr
(
iF
2π

)k
(2.236)

for the k-th Chern character [chk(F)] ∈ H2k(B,Q). This allows us to identify the definition

Chn(E) =

(
i

2π

)n ∮
B

tr(F)n , (2.237)

that the authors of Ref. [14] give for the n-th Chern number Chn(E) of a vector bundle E π−→ B as the
de Rham duality pairing

Chn(E) = 〈[chn(E)], [B]〉 ∈ Q (2.238)

between the n-th Chern character chn ∈ H2n(B,Q) and the orientation class of B.25 We just argued
that, by definition of the Chern characters alone, this expression is only guaranteed to be rational for
n > 1. Yet, Chern numbers are consistently advertised as integral topological invariants. One particularly
beautiful reason for this is the following.

In condensed matter physics we are often concerned with principal U(N)-bundles P πP−−→ B associated
with complex rank-N state bundles Ψ

πΨ−−→ B over base spaces B that are spin manifolds, i.e. that admit
a global lift of the structure group SO(dimR(B)) to the Spin group Spin(dimR(B)) on their tangent
bundle TB πTB−−−→ B.26 Such a lift allows for the definition of a spinor bundle S πS−−→ B over B. For even-
dimensional base manifolds, dimR(B) = 2n, this spinor bundle decomposes as a direct sum S = S+⊕S−

of left- and right-handed spinor bundles S+
πS+−−−→ B and S−

πS−−−−→ B, and one can define a Dirac operator

/∂ : Γ(S+)→ Γ(S−) , (2.239)

which acts as a first-order differential operator on the sections of S. Now the principal U(N)-bundle
P

πP−−→ B from a condensed matter problem can be used to define the twisted spinor bundle S⊗P , whose
sections describe spinor fields interacting with an external U(N) gauge degree of freedom captured by
the (local) connection (form) A of P . The Dirac operator

/DA : Γ(S+ ⊗ P )→ Γ(S− ⊗ P ) (2.240)

25The authors are clearly aware of this: they call their Chern number Chn instead of Cn, hinting the relation to the n-th
Chern character rather than the n-th Chern class.

26Recall that a manifold M is spin if and only if w1(TM) = w2(TM) = 0, i.e. if the first and second Stiefel–Whitney
classes of its tangent bundle vanish identically. Important examples include all spheres Sn and tori Tn.
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on this twisted spinor bundle is called the Dirac operator twisted by P . We write /DA to highlight that
/D is twisted by P via A. In local coordinates, /DA takes the familiar form

/DA = /∂ + i /A = γµ (∂µ + iAµ) , (2.241)

where the γµ ∈ Cl(2n) are gamma matrices generating the Clifford algebra associated with the base
manifold B. When B is compact, the twisted Dirac operator /DA is elliptic [39]. In that case, one can
define its analytical index as

ind( /DA) = dim ker( /DA)− dim ker( /D†A) , (2.242)

and its topological index as

top( /DA) =

∮
B

(
Â(TB) ch(P )

)∣∣∣
vol
, (2.243)

where ch(P ) denotes the (total) Chern character of P and Â(TB) is a characteristic class of the tangent-
bundle TB πTB−−−→ B called the Â-genus or Dirac-genus of B.27 The restriction |vol of the integrand to
the volume ensures that only top-degree forms are picked up so that the integration makes sense. The
famous Atiyah–Singer index theorem [47,74] then states that

ind( /DA) = top( /DA) , (2.244)

i.e. that the analytical and the topological indices of /DA are the same. Suppose B has a trivial Dirac
genus28 of Â(TB) = 1, so that the topological index, Eq. (2.243), becomes

top( /DA) =

∮
B

chn(P ) . (2.245)

If we additionally identify the numbers ν+ = dim ker( /DA) and ν− = dim ker( /D†A) of positive and negative
chirality zero-energy modes of /DA [39] to rewrite the analytical index, Eq. (2.242), as

ind( /DA) = ν+ − ν− , (2.246)

the Atiyah–Singer index theorem from Eq. (2.244) takes the simple form

ν+ − ν− =

∮
B

chn(P ) . (2.247)

Now, since ν+ and ν− count the numbers of positive and negative chirality zero-energy modes of /DA, they
are clearly natural numbers, i.e. ν+, ν− ∈ N. The analytical index, Eq. (2.246), is therefore obviously an
integer.29 Consequently, Eq. (2.247) ensures that the top Chern number, Eq. (2.237), of a U(N) bundle
over a closed, compact spin manifold B of even dimension dim(B) = 2n is always an integer. In the
special case of U(N)=U(1), this quantisation corresponds to the Adler–Bell–Jackiw chiral anomaly on
the even-dimensional manifold B [39, 57,58,75].

Variants of the Atiyah–Singer index theorem, most notably the Atiyah–Patodi–Singer index theorem
[25,48–50] for fibre bundles over base manifolds with boundary, provide the mathematical foundation for
the much-cited bulk-boundary correspondence of topological insulators [14, 25, 47], relating topological
bulk indices to the spectral flow of boundary Dirac operators [39].

27Similar to how the Chern character ch(B) is a rational combination of Chern classes ci ∈ H2i(B,Z), the Dirac genus is
a Q-valued polynomial Â(TB) = 1 +− 1

24
p1 + 1
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(4p2− 7p21) + ... in the Pontryagin classes pi ∈ H4i(B,Z). Consequently,

Â(TB) can only be paired against the fundamental class [B] of B to produce a characteristic number Â(B) =
∮
B Â(TB) if

dimR(B) = 4n, i.e. if the dimension of B is divisible by four. Unfortunately, the characteristic number Â(B) is commonly
referred to as the Dirac genus as well.

28The Dirac genus is trivial, Â(TB) = 1, if all Pontryagin classes of the tangent bundle TB
πTB−−−→ B vanish, cf. first few

terms of Â(TB) in the previous footnote. This situation is not overly exotic. For instance, Eq. (2.223) shows that this holds
if TB is flat, i.e. there exists a connection with zero curvature F = 0 on TB. Moreover, the Pontryagin classes are stable
so that pi(TB) = 0 if TB is stably trivial, i.e. if there exists a trivial bundle TTB such that TB ⊕ TTB is again trivial, cf.
Eq. (2.205) and discussion. The first argument, for example, shows that Â(TB) = 1 for all n-tori B = Tn, while the latter
ensures the same for all n-spheres B = Sn.

29The Atiyah–Singer index theorem is often regarded as the conceptual origin of integral topological indices of differential
operators [39].
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3 – Time Reversal and Particle Hole Symmetry

In quantum mechanics, a normalised quantum state |ψ〉 is an equivalence class

[ψ] =
{
eiφ |ψ〉 , φ ∈ R

}
(3.1)

of complex rays in a Hilbert space H. The space of these equivalence classes is called the projective
Hilbert space P(H). In this framework, a symmetry transformation is an automorphism

S : P(H)→ P(H) , [ψ] 7→ S[ψ] , (3.2)

that preserves the ray product [φ] · [ψ] := |〈φ|ψ〉| between all states [φ], [ψ] ∈ P(H) as

[φ] · [ψ] = [Sψ] · [Sψ] . (3.3)

Wigner’s theorem [76] states that every symmetry transformation S : P(H)→ P(H) comes either from a
unitary operator US : H → H satisfying

〈USφ|USψ〉 = 〈φ|U†SUS |ψ〉 = 〈φ|ψ〉 (3.4)

or an antiunitary operator AS : H → H satisfying

〈ASφ|ASψ〉 = 〈φ|A†SAS |ψ〉
∗

= 〈φ|ψ〉∗ = 〈ψ|φ〉 . (3.5)

In second quantisation, a non-interacting, particle-number conserving quantum system is characterised
by a Hamiltonian operator

H = hαβ c
†
αcβ , (3.6)

where cα and c†α with α = 1, . . . , d are fermionic annihilation and creation operators satisfying the
canonical anticommutation relations

{cα, c
†
β} = δαβ and {cα, cβ} = {c†α, c

†
β} = 0 . (3.7)

Note that we used an Einstein notation (implicite summation of double indices) in Eq. (3.6) to aid
readability. The indices α, β are multi-indices accounting for a basis of the Hilbert spaceH, e.g. α = (j, σ)

where j is a site index and σ is a spin index. A generic unitary symmetry S of H is then implemented by
a unitary operator US that transforms the elementary fermionic annihilation and creation operators as

U†ScαUS = uαβcβ and U†Sc
†
αUS = u∗αβc

†
β , (3.8)

while preserving the anticommutator relations

US{cα, c
†
β}U

†
S = {cα, c

†
β} , (3.9)

and the system Hamiltonian

USHU
†
S = H ⇐⇒ [H,US ] = 0 . (3.10)

The unitary symmetries of a system form a group GS , whose irreducible representations can be used to
bring H into a block-diagonal form.1 In this sense, unitary symmetries allow for a systematic reduction
of the problem’s full dimension to that of a single irreducible block.

1This is an application of Schur’s lemma, see e.g. Ref. [77].
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In Ref. [14] the authors present an exhaustive classification of these irreducible blocks in terms of
three additional “non-standard” symmetries. These symmetries are time reversal symmetry (TRS) T ,
particle-hole symmetry (PHS) C, and their combination, chiral symmetry S = T · C. The latter has to be
included because some systems are only invariant under the combined transformation S, but not under
T and C individually. Both TRS and PHS can square as

T 2 = ±1 and C2 = ±1 , (3.11)

which gives rise to ten possible ways in which a given Hamiltonian H can transform under T , C and S.
To see this, we write T = 0 (C = 0) if H is not invariant under TRS (PHS), and T = ±1 (C = ±1) if
it invariant with T 2 = ±1 (C2 = ±1). Thus, there are 3 · 3 = 9 possible ways in which H can transform
under combinations of T and C. In all these cases, S is determined as S = T ·C. The tenth possibility
is then T = C = 0 but S = 1. The tenfold way of condensed matter theory corresponds to a tenfold
classification of so-called real super division algebras in mathematics – a very brief excursion is included
in App. A.1 for fun. In the following, we outline some details about TRS and PHS that will be needed
later.

3.1 Time Reversal Symmetry

Time reversal symmetry (TRS) is an involutive symmetry transformation, i.e. it is an automorphism
T : P(H) → P(H) that squares to the identity T 2 = 1. On the underlying Hilbert space H, TRS
is implemented by an antiunitary operator T : H → H, which transforms the fermionic annihilation
operators as

T cαT † = UTαβcβ and T iT † = −i , (3.12)

where UTαβ are elements of a unitary matrix UT representing the linear part UT of T in the cα-basis.
This means that we can write T as a product

T = UT K (3.13)

of the unitary operator UT and the complex conjugation operator K in the cα-basis, which implements
the antilinearity of T . In the generic case of fermions on a discrete lattice with sites j = 1, . . . , L, TRS
acts as

T cjT † = δjkck , (3.14)

if the fermions are spinless and as

T cjγT † = δjk (iσy)γδ ckδ , (3.15)

if they have spin one-half. Here, γ, δ ∈ {↑, ↓} label the spin indices of the elementary annihilation and
creation operators. A system with Hamiltonian H is called TRS invariant if

T HT † = H . (3.16)

Since T : P(H) → P(H) fulfils T 2 = 1, the operator T implementing it on H must satisfy T 2 = eiϕ1.
Invoking the antilinearity T eiα = e−iϕT of T together with

T eiϕ = T eiϕ1 = T T 2 = T 2T = eiϕ1T = eiϕT (3.17)

yields the constraint eiϕ = e−iϕ, i.e. eiϕ = ±1. We can express this constraint in terms of the unitary
matrix representation UT of UT by substituting Eq. (3.6) into Eq. (3.16). This yields

U†Th
∗UT = h . (3.18)
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If we take the complex conjugate Uᵀ
ThU

∗
T = h∗ of this and plug it back into Eq. (3.18), we obtain(
U∗TUT

)†
h
(
U∗TUT

)
= h . (3.19)

Thus, U∗TUT commutes with the Hamiltonian matrix h. Since we are working within an irreducible
representation of the symmetry class of all TRS-invariant Hamiltonians, Schur’s lemma implies that [14]

U∗TUT = eiϕ1 . (3.20)

Using the unitarity of UT , we can multiply this by Uᵀ
T from the left and by U†T from the right to get

1 = eiϕUᵀ
TU
†
T =⇒ Uᵀ

TU
†
T = e−iϕ1 , (3.21)

the transpose of which is

U∗TUT = e−iϕ1 . (3.22)

Thus, we find

eiϕ = e−iϕ =⇒ eiϕ = ±1 , (3.23)

and, accordingly,

U∗TUT = ±1 . (3.24)

As a result, we get

T 2cαT †2 = T UTαβcβT
† = U∗TαβUTβγcγ = ±δαγcγ = ±cα (3.25)

and, more generally,

T 2OT †2 = (±1)nO (3.26)

for an operatorO consisting of n fermionic annihilation and creation operators. Consider a non-interacting
particle-number conserving Hamiltonian as in Eq. (3.6). The Fock space F(H) of H is formed by the
action of polynomials in the single-fermion creation operators c†α on the vacuum state |0〉, which is defined
via cα |0〉 = 0 for all α = 1, . . . , d. A generic Fock state in F(H) takes the form

|n1, . . . , nd〉 =

d∏
α=1

(
c†α
)nα |0〉 . (3.27)

With T |0〉 = |0〉 we then find

T 2 |n1, . . . , nd〉 = T 2

[
d∏

α=1

(
c†α
)nα] T †2 T 2 |0〉 = (±1)N |0〉 , (3.28)

where N =
∑d
α=1 nα is the total number of fermions in |n1, . . . , nd〉. We can therefore use the total

fermion number operator N =
∑d
α=1 c

†
αcα to write T 2 as

T 2 = (±1)N . (3.29)

An important consequence in systems with U∗TUT = −1 and T 2 = (−1)N is that TRS invariance
[T , H] = 0 leads to a degeneracy of the spectrum. To see this, we consider a single-particle energy
eigenstate |n〉 of a TRS invariant Hamiltonian H,

H |n〉 = En |n〉 , (3.30)

and note that its time-reversed partner |T n〉 ≡ T |n〉 is an eigenstate with the same energy

H |T n〉 = HT |n〉 = T H |n〉 = T En |n〉 = EnT |n〉 = En |T n〉 . (3.31)
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The pair {|n〉 , |T n〉} is called a Kramers pair. A celebrated theorem by Kramers states that the two
states of a Kramers pair are orthogonal if T 2 = −1. This follows from

T 2 = −1 =⇒ T = −T † , (3.32)

with which

〈n|T n〉 = 〈n|T |n〉 (�)
= 〈n|T †|n〉 = −〈n|T |n〉 = −〈n|T n〉 =⇒ 〈n|T n〉 = 0 . (3.33)

In (�) we used that T is an antilinear operator, so it satisfies 〈ψ|T |φ〉 = 〈φ|T †|ψ〉. An important class of
systems with T 2 = (−1)N are spin one-half fermions on a discrete lattice. We can show this directly by
using UT (jγ)(kξ) = δjk(iσy)γξ from Eq. (3.15) to determine the matrix elements of U∗TUT as(

U∗TUT

)
(jγ)(kξ)

= U∗T (jγ)(fη)U(fη)(kξ)

= δjf (iσy)γηδfk(iσy)ηξ

= [δjfδfk] [(iσy)γη(iσy)ηξ]

= δjk [−δγξ]
= −δ(jγ)(kξ)

= (−1)(jγ)(kξ) , (3.34)

which readily confirms U∗TUT = −1 and hence T 2 = (−1)N for these systems. Similarly, we note that
we trivially have U∗TUT = 1 in systems of spinless fermions on a discrete lattice, cf. Eq. (3.14).

3.2 Particle Hole Symmetry

Particle hole symmetry (PHS) is an involutive symmetry transformation C : P(H) → P(H) that
satisfies C2 = 1. On the underlying Hilbert space H, PHS is implemented by an antiunitary operator
C : H → H that transforms the elementary fermionic annihilation operators as

CcαC† = UCαβc
†
β and CiC† = −i , (3.35)

where UCαβ are elements of a matrix UC , which represents a projective involution operator UC : H → H
with U2

C = eiϕ1 in the cα-basis. The central aspect of the PHS transformation is that annihilation
operators are mapped to creation operators and vice versa. We can implement this via an antiunitary
particle hole conjugation (PHC) operation, which is defined via

Ξ̄cαΞ̄† = δαβc
†
β and Ξ̄iΞ̄† = −i . (3.36)

PHC is also called charge conjugation because it flips the sign, ΞQΞ† = −Q, of the U(1) charge operator
Q = N − d/2 where N =

∑d
α=1 c

†
αcα is the fermion number operator and d/2 is half the single-particle

Hilbert space dimension. The PHC operator Ξ̄ is antiunitary because it comes from the antilinear Fréchet-
Riesz isomorphism H 3 |ψ〉 7→ 〈ψ| ∈ H∗ on the single particle Hilbert space H. With Ξ̄, we can write C
as a product

C = UCΞ̄ = UC ΞK (3.37)

of the involution operator UC and the antiunitary PHC operator Ξ̄, or, alternatively, the involution
operator UC , the unitary part of the PHC operator Ξ and the complex conjugation operator K in the
cα-basis. For trivial UC = 1, the PHS operator C is simply given by the antiunitary PHC operator Ξ̄.
However, C = Ξ̄ can never be a meaningful symmetry of non-interacting quadratic Hamiltonians2 like the
one given in Eq. (3.6). In fact, any such Hamiltonian is odd under the antiunitary PHC transformation

Ξ̄HΞ̄†
(∗)
= −H , (3.38)

2This includes all BdG Hamiltonians, cf. Sec. 5.
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so H and Ξ̄ anticommute as {H, Ξ̄ } = 0. Moreover, this transformation behaviour is a direct result of the
canonical anticommutation relations of the c†α and cβ . For this reason, some authors refer to Eq. (3.38)
as a tautological PHC symmetry property [78]. A meaningful PHS invariance

CHC† = H (3.39)

therefore requires a non-trivial unitary operator UC . Indeed, we find that

CHC† = UCΞ̄H Ξ̄†U†C = −UCHU
†
C

!
= H =⇒ {H,UC}

!
= 0 , (3.40)

i.e. that UC has to undo the sign reversal due to the bare particle hole conjugation. It follows that, UC
swaps the positive and negative energy eigenstates of H. In condensed matter, UC typically comes from
a (sub)lattice transformation in real space or a momentum shift in k-space. A simple example is the
tight-binding Hamiltonian

H = t

L−1∑
j=1

(
c†jcj+1 + c†j+1cj

)
(3.41)

of spinless fermions cj on a one-dimensional chain of L sites, which is invariant under a PHS transformation

CcjC
† = (−1)jc†j , (3.42)

with the involution matrix UCjk = (−1)jδjk. Just like with TRS, the involutive property C2 = 1 of
C : P(H) → P(H) means that C : H → H squares to C2 = eiϕ1 for some phase factor eiϕ and again the
antiunitarity of C restricts the possible phase factors to eiϕ = ±1. Thus, we have

C2 = ±1 . (3.43)

The particle-hole operator from Eq. (3.42) satisfies C2 = +1.
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4 – Geometric Phases

Whenever a physical system depends on parameters λ from a parameter manifold Λ, a cyclic evolution
of these parameters may induce a phase shift that depends solely on the path traversed in Λ. This
phenomenon is known as a geometric phase. Mathematically, geometric phases are closely related to
the concept of holonomy in fibre bundles, which we addressed in Sec. 2.2.5. The fibre-bundle perspective
enables the unification of a wide range of physical phenomena and provides a natural link between physics,
differential geometry, and topology.

In this section, we discuss the fundamental concepts of Abelian and non-Abelian geometric phases
in physics, with a particular emphasis on quantum mechanical applications. Throughout, we will draw
on the terminology of fiber bundle theory developed in Sec. 2.2. We begin with a brief excursion into
classical physics and review the Foucault pendulum as an introductory example. After that, we give a
quantum mechanical derivation of Berry’s adiabatic phase and identify it as an Abelian U(1) holonomy.
As a natural progression, we then extend the notion of an Abelian geometric U(1) phase to that of
a non-Abelian geometric U(N) phase known as Wilczek–Zee phase. Finally, we discuss a generalised
perspective on geometric phases that is due to Aharonov and Anandan [79]. Throughout this chapter we
closely follow Refs. [80] and [39].

4.1 The Foucault Pendulum

The Foucault pendulum is an experiment that was devised to demonstrate the rotation of earth.
Foucault observed that a rotating earth would cause the plane in which a pendulum swings to precess
over time. At a given latitude α, it would only return to its original orientation after T = 24/| sin(α)|
hours. This is most obvious at the poles (α = ±π/2), where the pendulum, and hence its plane of
oscillation, trivially rotates around its own suspension axis by 2π every 24 hours. Note that the formula
for T diverges at the equator, where α = 0 and T → ∞. This reflects the fact that the precession rate
(angular speed), |ω| = 2π/T , of the Foucault pendulum vanishes at the equator, meaning that the swing
plane there remains fixed and does precess at all.

To understand this effect in terms of parallel transport, we adopt an alternative but equivalent view-
point. Instead of a rotating earth with a stationary pendulum, we imagine a stationary earth on which
the pendulum is transported around the latitude circle `(α) at constant speed, completing one full cirle
after 24 hours. For conceptual clarity, we represent earth as a two-sphere S2 and assume that the pen-
dulum is infinitely long, so that the plane in which its tip moves is locally flat and always tangent to
the earth’s surface at the point of suspension. Each swing direction can then be regarded as a tangent
vector to a two-sphere S2 representing earth. By consistently orienting these swing vectors we obtain a
vector field X describing the pendulum’s swing directions at each point. As the pendulum moves along
`(α), its swing direction evolves according to parallel transport: the swing vector X is moved along the
latitude circle without twisting relative to the sphere’s surface. Figure 4.1 illustrates how the parallel
transport of the swing direction vector X(t) along a latitude of S2 can change its orientation. Applying
this analysis to the Foucault pendulum yields the anticipated phase shift of 2π sin(α) after one complete
circuit around the earth.

The geometric precession of the Foucault pendulum only becomes dominant if there is an adiabatic
separation of time scales. It is often said, that the rotation speed must be slow compared to the pen-
dulum’s oscillation time scale. This may sound a bit curious. After all, the earth is rotating very fast –
hundreds of meters per second at most latitudes. So how is the Foucault setup adiabatic enough to be
observable? The answer is that the relevant time scale separation is between the pendulum’s rapid oscil-
lation speed, completing a swing in a few seconds, and the much slower precession of its swing direction
due to earth’s rotation, which happens over the course of many hours.1

1Recall that the shortest possible period T of the swing direction is realised at the poles where T = 24 hours.
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Figure 4.1: Parallel transport of the Foucault pendulum’s swing direction X along the latitude circle `(α)

for α = π/6 = 30◦.

4.2 The Berry Phase

The state of a quantum mechanical system is represented by a ray in a Hilbert space H, i.e. it
corresponds to an equivalence class

[|ψ〉] ≡ {|φ〉 = c |ψ〉 , c ∈ C∗} (4.1)

of all states |φ〉 that differ from |ψ〉 only by a non-zero complex prefactor c ∈ C∗. Of course, we usually
work with normalised quantum states, so that the equivalence class is reduced to

[|ψ〉] ≡
{
|φ〉 = eiφ |ψ〉 , φ ∈ R

}
, (4.2)

and we say that quantum states are only defined up to a global phase. Since that phase cancels out
in expectation values, it is generally considered unphysical. However, Berry demonstrated in Ref. [81]
that this phase may have observable consequences when a quantum system undergoes a cyclic adiabatic
evolution. For the next part we closely follow Ref. [39].

Consider a quantum system with a Hamiltonian H(λ) that depends on a set of parameters λ from
some parameter manifold Λ. If λ = λ(t) change as a function of time, the time evolution of an isolated
quantum state |ψ(t)〉 is determined by the Schrödinger equation

i
d
dt
|ψ(t)〉 = H(λ(t)) |ψ(t)〉 . (4.3)

Here, a quantum state is called isolated if it is non-degenerate for all λ ∈ Λ, or at least for all λ(t)

along the trajectory in Λ. If we assume that the parameters λ(t) change slowly enough for the adiabatic
theorem to apply, then a system initially in the n-th eigenstate,

|ψ(0)〉 = |n(λ(0))〉 , (4.4)

remains in the instantaneous n-th eigenstate at all later times. Let us take Eq. (4.4) as an initial state
and determine its time evolution under Eq. (4.3). The implicit time-dependence of the instantaneous
eigenstates |n(λ(t))〉 means that the naive ansatz

|ψ(t)〉 = exp

[
−i
∫ t

0

En(λ(τ)) dτ
]
|n(λ(t))〉 (4.5)

does not work because

i
d
dt
|ψ(t)〉 = i

d
dt

exp

[
−i
∫ t

0

En(λ(τ))dτ
]
|n(λ(t))〉

= En(λ(t)) exp

[
−i
∫ t

0

En(λ(τ))dτ
]
|n(λ(t))〉+ i exp

[
−i
∫ t

0

En(λ(τ))dτ
]

d
dt
|n(λ(t))〉

= En(λ(t)) |ψ(t)〉+ exp

[
−i
∫ t

0

En(λ(τ))dτ
]
i
d
dt
|n(λ(t))〉 , (4.6)
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whereas

H(λ(t)) |ψ(t)〉 = En(λ(t)) |ψ(t)〉 , (4.7)

so the left-hand side of Eq. (4.3) has an extra term

exp

[
−i
∫ t

0

En(λ(τ)) dτ
]
i
d
dt
|n(λ(t))〉 . (4.8)

To compensate for this term, we introduce an additional time-dependent phase η(t) to our ansatz, so that

|ψ(t)〉 = exp

[
−i
(∫ t

0

En(λ(τ)) dτ − η(t)

)]
|n(λ(t))〉 . (4.9)

The updated |ψ(t)〉 still satisfies Eq. (4.7), but the left-hand side of Eq. (4.3) changes to

i
d
dt
|ψ(t)〉 = i

d
dt

exp

[
−i
(∫ t

0

En(λ(τ))dτ − η(t)

)]
|n(λ(t))〉

=

(
En(λ(t))− dη(t)

dt

)
|ψ(t)〉+ i exp

[
−i
(∫ t

0

En(λ(τ))dτ − η(t)

)]
d
dt
|n(λ(t))〉 . (4.10)

For Eq. (4.9) to satisfy the time-dependent Schrödinger equation, we must choose η(t) such that

En(λ(t)) |ψ(t)〉 !
=

(
En(λ(t))− dη(t)

dt

)
|ψ(t)〉+ i exp

[
−i
(∫ t

0

En(λ(τ))dτ − η(t)

)]
d
dt
|n(λ(t))〉 , (4.11)

which, upon cancelling En(λ(t)) |ψ(t)〉, becomes

dη(t)

dt
|ψ(t)〉 !

= i exp

[
−i
(∫ t

0

En(λ(τ)) dτ − η(t)

)]
d
dt
|n(λ(t))〉 . (4.12)

We can multiply this from the left by 〈ψ(t)| as given in Eq. (4.9) to get

dη(t)

dt
!
= i 〈n(λ(t))| d

dt
|n(λ(t))〉 , (4.13)

so that integration yields

η(t)
!
= i

∫ t

0

〈n(λ(τ))| d
dτ
|n(λ(τ))〉 dτ

(�)
= i

∫ t

0

〈n(λ(τ))|

∑
j

∂

∂λj
|n(λ(τ))〉 dλj(τ)

dτ

dτ

= i

∫ λ(t)

λ(0)

∑
j

〈n(λ)| ∂

∂λj
|n(λ)〉 dλj

(?)
= i

∫ λ(t)

λ(0)

〈n(λ)| ∂λ |n(λ)〉dλ

(∗)
= i

∫ λ(t)

λ(0)

〈n(λ)| d |n(λ)〉 . (4.14)

Here, we have spelled out the derivative in (�) to show that η(t) is independent of time as long as
the adiabatic theorem applies. In (?) we introduced the notation ∂λ for the gradient in the parameter
manifold Λ, and in (?) we identified the total derivative

d |n(λ)〉 = ∂λ |n(λ)〉 dλ . (4.15)

Note that η(t) is real so it defines a proper phase. This can be seen using

〈n(λ(τ))|n(λ(τ))〉 = 1 =⇒ d
dτ
〈n(λ(τ))|n(λ(τ))〉 = 0 , (4.16)
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with which

0 =
d
dτ
〈n(λ(τ))|n(λ(τ))〉

=

(
d
dτ
〈n(λ(τ))|

)
|n(λ(τ))〉+ 〈n(λ(τ))| d

dτ
|n(λ(τ))〉

=

[
〈n(λ(τ))|

(
d
dτ
|n(λ(τ))〉

)]∗
+ 〈n(λ(τ))| d

dτ
|n(λ(τ))〉

= 2Re
(
〈n(λ(τ))| d

dτ
|n(λ(τ))〉

)
, (4.17)

such that the integrand of Eq. (4.17) satisfies

Im(i 〈n(λ(τ))| d
dτ
|n(λ(τ))〉) = Re(i 〈n(λ(τ))| d

dτ
|n(λ(τ))〉) = 0 . (4.18)

To see whether η(t) can be observable, we test its transformation behaviour under gauge transformations

|n(λ)〉 7→ |n′(λ)〉 := |n(λ)〉 eiχ(λ) , (4.19)

where χ(λ) is a smooth function of λ. As a preparation, we determine the transformation behaviour of
the integrand

〈n′(λ)| d |n′(λ)〉 = 〈n′(λ)| ∂λ |n′(λ)〉 dλ

= e−iχ(λ) 〈n(λ)| ∂λ |n(λ)〉 eiχ(λ)dλ

= e−iχ(λ) 〈n(λ)|
[
(∂λ |n(λ)〉) eiχ(λ) + |n(λ)〉

(
i∂λχ(λ)

)
eiχ(λ)

]
dλ

=
[
〈n(λ)| ∂λ |n(λ)〉+ i

(
∂λχ(λ)

)
〈n(λ)|n(λ)〉

]
dλ

=
[
〈n(λ)| ∂λ |n(λ)〉+ i∂λχ(λ)

]
dλ , (4.20)

which yields

η′(t) = i

∫ λ(t)

λ(0)

〈n′(λ)| d |n′(λ)〉

= i

∫ λ(t)

λ(0)

[
〈n(λ)| ∂λ |n(λ)〉+ i∂λχ(λ)

]
dλ

= i

∫ λ(t)

λ(0)

〈n(λ)| ∂λ |n(λ)〉 dλ−
∫ λ(t)

λ(0)

(
∂λχ(λ)

)
dλ

= η(t)− [χ(λ(t))− χ(λ(0))] , (4.21)

where we used that dχ = ∂λχdλ is a total derivative. Now, suppose the system evolves slowly for a
time T . When λ(0) 6= λ(T ), i.e. when the final parameter configuration is different from the initial one,
Eq. (4.21) tells us that the additional phase η(T ) can be removed by a gauge transformation with

χ(λ(T ))− χ(λ(0)) = η(T ) . (4.22)

However, this is not possible for λ(0) = λ(T ), because in that case we get

χ(λ(T ))− χ(λ(0)) = χ(λ(0))− χ(λ(0)) = 0 , (4.23)

and the phase η(T ) becomes observable. Moreover, η(T ) depends only on the closed trajectory C ⊂ Λ,
so we write η = η(C). The geometric phase factor

u(C) ≡ exp [iη(C)] = exp

[
−
∮
C

〈n(λ)|d |n(λ)〉
]
, (4.24)

is called a Berry phase factor. The phase η(C) is accordingly known as Berry phase. But why would we
expect a non-trivial Berry phase? And even if we find a non-trivial Berry phase – what does it signify?
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The answer to these questions lies in the inherent geometrical structure of the quantum system: the Berry
phase reflects the way in which the quantum states are organised over the parameter manifold Λ. The
natural framework to describe such structures is that of fibre bundles. In the language of fibre bundles,
the equivalence classes of parameter-dependent normalised states

[|n(λ)〉] = {u |n(λ)〉 |u ∈ U(1)} (4.25)

define a principal U(1)-bundle P π−→ Λ over the parameter manifold Λ. This bundle captures the U(1)

degree of freedom of the states in Eq. (4.25). The projection map of P is naturally defined as

π(u |n(λ)〉) := λ , (4.26)

and the canonical local trivialisation of P is

φ : V ×U(1)→ π−1(V ) , ( λ, u |n(λ)〉) 7→ u |n(λ)〉 . (4.27)

Fixing the phase of |n(λ)〉 at each point in Λ amounts to choosing a global2 section

σ : Λ→ P , λ 7→ σ(λ) = u(λ) |n(λ)〉 , (4.28)

as specified in Tab. 2.2. Note that we often write

|n(λ)〉 ≡ u(λ) |n(λ)〉 , (4.29)

because we usually work with a fixed gauge anyway. Furthermore, global section above takes the familiar
form

u(λ) |n(λ)〉 = eiφ(λ) |n(λ)〉 , (4.30)

if we explicitly spell out u(λ) ∈ U(1) as a phase factor. Moving forward we follow the above convention
and write

|n(λ)〉 ≡ σ(λ) = u(λ) |n(λ)〉 (4.31)

for better readability. Having identified the bundle structure of P , we may equip it with a connection.
Specifically, we define the Berry connection

A := 〈n(λ)| d |n(λ)〉 =: Aµ(λ) dλµ , (4.32)

where d = (∂/∂λµ)dλµ denotes the exterior derivative in Λ. To show that Eq. (4.32) defines an Ehres-
mann connection on P we first note that A is skew-Hermitian,

0 = d (〈n(λ)|n(λ)〉) = (d 〈n(λ)|) |n(λ)〉+ 〈n(λ)| d |n(λ)〉 = 〈n(λ)| d |n(λ)〉∗ + 〈n(λ)| d |n(λ)〉 , (4.33)

and therefore an element of the Lie algebra u(1) of U(1). This makes A a u(1)-valued one-form on Λ, cf.
Def. 2.2.9. Next, we must show that A satisfies the compatibility condition given in Eq. (2.154). To this
end, we consider two overlapping charts Uj , Uk ⊂ Λ with local sections

|n(λ)〉j ≡ σj(λ) and |n(λ)〉k ≡ σk(λ) , (4.34)

that are related by

|n(λ)〉k = |n(λ)〉j tjk(λ) , (4.35)

where tjk(λ) ∈ U(1) are the transition functions between the two sections σj and σk. With this, we find

Ak = 〈n(λ)| d |n(λ)〉k k

= tjk(λ)−1 〈n(λ)| d |n(λ)〉j j tjk(λ)

= tjk(λ)−1 〈n(λ)|j

[
d |n(λ)〉j tjk(λ) + |n(λ)〉j dtjk(λ)

]
= tjk(λ)−1Aj tjk(λ) + tjk(λ)−1dtjk(λ) , (4.36)

2Note that this bundle need not admit a global section, in that case we have to work in local sections and make use of
transition functions as explained in Sec. (2.2).
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which readily reproduces Eq. (2.154). Moreover, we may spell out the tjk(λ) ∈ U(1) as tjk(λ) = eiχ(λ)

and utilise the fact that U(1) is Abelian to get

Ak = e−iχ(λ)Aj eiχ(λ) + e−iχ(λ)deiχ(λ) = Aj + i∂λχ(λ)dλ , (4.37)

replicating Eq. (4.20) upon identifying A = 〈n(λ)| d |n(λ)〉 = 〈n(λ)| ∂λ |n(λ)〉 dλ. In terms of the Berry
connection A, the geometric phase in Eq. (4.14) takes the form

η(t) = i

∫ λ(t)

λ(0)

〈n(λ)| d |n(λ)〉 = i

∫ λ(t)

λ(0)

Aµ(λ)dλµ , (4.38)

where we wrote

〈n(λ)| d |n(λ)〉 = 〈n(λ)| ∂λ |n(λ)〉 dλ = 〈n(λ)| ∂λµ |n(λ)〉dλµ = Aµ(λ)dλµ . (4.39)

With this, the geometric phase factor from Eq. (4.24) becomes

u(t) = exp [iη(t)] = exp

[
−
∫ λ(t)

λ(0)

Aµ(λ)dλµ

]
. (4.40)

A comparison between Eq. (4.40) and the general expression for parallel transport in Eq. (2.166) allows
us to identify the geometric phase factor as parallel transport in the U(1) state bundle, governed by the
Berry connection. The Berry phase then corresponds to parallel transport along closed curves, C ⊂ Λ,
and thus to an element of the holonomy group Hol(A) of the Berry connection A. Based on the previous
discussion of holonomy, we can predict that non-trivial Berry phases may arise whenever the parameter
manifold Λ is not simply connected, i.e. when π1(Λ) 6= {e}, or the Berry connection is non-flat, i.e. when
the Berry curvature two-form F ≡ dA = Fµν(λ)dλµ ∧ dλν is not vanishing.

It is worth noting that the physics and mathematics literature frequently adopt different conventions
when defining the Berry connection. In the physics literature, the Berry connection is often written as

Ap ≡ i 〈n(λ)|d |n(λ)〉 ∈ R , (4.41)

so that the Berry phase factor from Eq. (4.24) takes the form

u(C) = exp

[
−
∫
C

〈n(λ)| d |n(λ)〉
]

= exp

[
i

∫
C

Ap

]
. (4.42)

With u(C) ≡ exp[iη(C)] from Eq. (4.24), the Berry phase η(C) then becomes

η(C) =

∫
C

Ap . (4.43)

In contrast, the mathematical literature prefers the definition

Am ≡ 〈n(λ)|d |n(λ)〉 ∈ iR , (4.44)

with which Eq. (4.24) takes the form

u(C) = exp

[
−
∫
C

〈n(λ)| d |n(λ)〉
]

= exp

[
−
∫
C

Am

]
, (4.45)

and the Berry phase becomes

η(C) = i

∫
C

Am , (4.46)

as in Eq. (4.14). Comparing Eqs. (4.45) and (4.40) shows that we have adopted the mathematical
definition of the Berry connection above. While we will typically follow this convention to ease the
mathematical interpretation, both definitions are equivalent and may be used interchangeably.
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4.3 The Wilczek–Zee Phase

The Berry phase is limited to adiabatic evolutions of isolated states, i.e. states that are non-degenerate
everywhere on the parameter manifold. A natural generalisation of Berry’s adiabatic phase arises when
we consider degenerate subspaces of instantaneous eigenstates. For this part, we follow Ref. [80].

Let H(λ) be a parameter-dependent Hamiltonian with a degenerate spectrum of dn-fold degenerate
eigenvalues En(λ). Suppose that the degeneracy dn of the eigenspaces

Hn(λ) = span (|n1(λ)〉 , . . . , |ndn(λ)〉) (4.47)

is parameter-independent, i.e. that dimC(Hn) = dn for all parameter configurations λ of the parameter
manifold Λ. In particular, we assume that there is no level-crossing between the eigenvalues En(λ) and
Em(λ), so that degenerate subspaces Hn(λ) and Hm(λ) do not intersect for n 6= m. Let us select a
degenerate eigenvalue En(λ) with dn > 1 and prepare the system in a generic initial state

|ψ(0)〉 =

dn∑
j=1

cj(0) |nj(λ(0))〉 . (4.48)

If the parameters λ = λ(t) change slowly as a function of time, the adiabatic theorem still ensures that
the system remains in the eigenspace Hn but now there is more than one state to account for within this
eigenspace. To do this, we choose a generic ansatz

|ψ(t)〉 =

dn∑
j=1

cj(t) |nj(λ(t))〉 . (4.49)

With this, the time-dependent Schrödinger equation from Eq. (4.3) reads

i

dn∑
j=1

(
dcj(t)
dt

|nj(λ(t))〉+ cj(t)
d
dt
|nj(λ(t))〉

)
= En(λ(t))

dn∑
j=1

cj(t) |nj(λ(t))〉 , (4.50)

which reduces to a set of differential equations

dcj(t)
dt

= −
dn∑
k=1

(
iEn(λ(t))δjk + 〈nj(λ(t))| d

dt
|nk(λ(t))〉

)
ck(t) (4.51)

for the coefficients cj(t). The solutions of Eq. (4.51) are given by

cj(t) =

dn∑
k=1

(
T exp

[
−
∫ t

0

(
iEn(λ(τ))1dndτ +Adn(λ(τ))

)])
jk

ck(0)

(�)
= exp

[
−i
∫ t

0

En(λ(τ))dτ
] dn∑
k=1

(
P exp

[
−
∫ λ(t)

λ(0)

Adn(λ(τ))

])
jk

ck(0) , (4.52)

where T and P denote the time-ordering and the path-ordering operators, and where 1dn represents the
dn × dn identity matrix. In (�), we used that exp

[
−i
∫ t

0
En(λ(τ))1dndτ

]
commutes with everything and

merely acts as a global phase factor. Moreover, we have identified the non-Abelian Berry connection
Adn of the n-th degenerate eigenspace Hn. It is a skew-Hermitian dn × dn matrix defined in terms of its
elements

Adn,jk(λ) = 〈nj(λ(τ))| d
dτ
|nk(λ(τ))〉 dτ = 〈nj(λ)| ∂λµ |nk(λ)〉 dλµ . (4.53)

If we substitute Eq. (4.52) into Eq. (4.49) we obtain

|ψ(t)〉 =

dn∑
j,k

|nj(λ(t))〉 exp

[
−i
∫ t

0

En(λ(τ))dτ
](
P exp

[
−
∫ λ(t)

λ(0)

Adn(λ)

])
jk

ck(0) . (4.54)
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Note that Adn(λ) is called non-Abelian because it is a one-form with values in the skew-Hermitian dn×dn
matrices. For dn > 1 these matrices do not commute and the path ordered matrix exponential

Udn(P ) = P exp

[
−
∫ λ(t)

λ(0)

Adn(λ)

]
= P exp

[
−
∫
P

Adn(λ)

]
(4.55)

defines an element of the non-Abelian unitary group U(dn) that depends only on the geometric properties
of the path P : [0, t]→ Λ , τ 7→ λ(τ) in the parameter manifold. The U(dn) matrix

Udn(C) = P exp

[
−
∮
C

Adn(λ)

]
≡ P exp [iWdn(C)] (4.56)

that arises after traversing a closed curve C : [0, t]→ Λ , τ 7→ λ(τ) with λ(0) = λ(t) is usually called the
Wilczek–Zee phase factor and constitutes a generalisation of the U(1) Berry phase [39,80]. The Hermitian
dn × dn matrix

Wdn(C) = i

∮
C

Adn(λ) (4.57)

is called the Wilczek–Zee phase and readily generalises Eq. (4.14). Unlike the Berry phase factor, which
is invariant under gauge transformations, the Wilczek–Zee phase factor is only gauge covariant. This is
an immediate consequence of dimC(Hn) > 1, due to which the generic gauge transformations among the
eigenstates spanning Hn(λ) take the form

|n′j(λ)〉 =
∑
k

|nk(λ)〉Ukj(λ) , (4.58)

where U(λ) ∈ U(dn) implements some unitary rotation of eigenstates within Hn(λ). Repeating the
calculation in Eq. (4.20) yields the transformation behaviour

A′dn(λ)jk = 〈n′j(λ)| ∂λµ |n′k(λ)〉 dλµ

=

dn∑
r,s=1

U†jr(λ) 〈nr(λ)| ∂λµ |ns(λ)〉Usk(λ)dλµ

=

dn∑
r,s=1

U†jr(λ) 〈nr(λ)|
[ (
∂λµ |ns(λ)〉

)
Usk(λ) + |ns(λ)〉

(
∂λµUsk(λ)

) ]
dλµ

=

dn∑
r,s=1

[
U†jr(λ) 〈nr(λ)|

(
∂λµ |ns(λ)〉

)
Usk(λ) + U†jr(λ) 〈nr(λ)|ns(λ)〉

(
∂λµUsk(λ)

) ]
dλµ

=

dn∑
r,s=1

[
U†jr(λ) 〈nr(λ)|

(
∂λµ |ns(λ)〉

)
Usk(λ) + U†jr(λ)δrs

(
∂λµUsk(λ)

) ]
dλµ

=

dn∑
r,s=1

U†jr(λ)An(λ)rsUsk(λ) +

dn∑
r=1

U†jr(λ)
(
∂λµU(λ)

)
rk

dλµ

=
(
U†(λ)An(λ)U(λ)

)
jk

+
(
U†(λ)∂λµU(λ)

)
jk

dλµ , (4.59)

which, in matrix notation, reads

A′dn(λ) = U†(λ)Adn(λ)U(λ) + U†(λ)∂λµU(λ) dλµ . (4.60)

Since Adn(λ) and U(λ) do not generally commute, this expression cannot be further simplified. If we
plug Eq. (4.60) into the definition of the Wilczek–Zee phase factor given in Eq. (4.56), we find that it
transforms as

U ′dn(C) = U†(C)Udn(C)U(C) , (4.61)
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so that Udn(C) turns out gauge covariant rather than gauge invariant. As a result, the Wilczek–Zee phase
factor is typically not observable and one has to rely on related gauge invariant quantities like the Wilson
loop

w(C) = tr
(
Udn(C)

)
(4.62)

of Udn(C), which is manifestly gauge invariant due to the cyclic property of the trace.
Just like in the Abelian case, we can translate the above considerations to the language of fibre bundles.

Specifically, the parameter-dependent eigenspaces Hn(λ) define a principal U(dn)-bundle P π−→ Λ over
the parameter manifold Λ. The non-Abelian Berry connection An with elements

Adn,jk = 〈nj(λ)|d |nk(λ)〉 (4.63)

defines an Ehresmann connection. As before, this follows from its skew-Hermiticity

0 = d (〈nj(λ)|nk(λ)〉) = (d 〈nj(λ)|) |nk(λ)〉+ 〈nj(λ)|d |nk(λ)〉
= 〈nk(λ)| d |nj(λ)〉∗ + 〈nj(λ)| d |nk(λ)〉
= A∗dn,kj +Adn,jk
= A†dn,jk +Adn,jk , (4.64)

which tells us that Adn takes values in the Lie algebra u(dn) of U(dn), and the transformation behaviour
from Eq. (4.60), which replicates the transformation behaviour Eq. (2.154) of an Ehresmann connection.
The unitary matrix Udn(T ) from Eq. (4.55) then corresponds to the parallel transport specified by the
non-Abelian Berry connection Adn , and the Wilczek–Zee phase factor Udn(C) from Eq. (4.56) captures
its U(dn) holonomy. For the sake of completeness, we note that the non-Abelian Berry curvature Fdn
takes the form

Fdn = dAdn +Adn ∧ Adn , (4.65)

as specified in Eq. (2.188). In contrast to the Abelian case, the wedge product Adn ∧ Adn is generally
not equal to zero because the commutator [Adn,µ,Adn,ν ] between the u(dn)-valued components Adn,µ of
Adn = Adn,µ dλµ is usually non-trivial.

4.4 Berry, Aharonov and Anandan

Berry’s interpretation of the geometric phase is based on an adiabatic constraint for parameter-
dependent families of Hamiltonians H(λ), which ensures that the time-evolved quantum state |ψ(t)〉 of
the system H(λ) clings to the dn-dimensional instantaneous eigenspace Hn(λ) if |ψ(0)〉 ∈ Hn(λ(0)).
As a result, the adiabatic time evolution |ψ(t)〉 acquires a purely geometric contribution that can be
understood in terms of parallel transport in the vector bundle of instantaneous eigenspaces Hn(λ) or,
equivalently, the associated principal U(dn)-bundle over the parameter manifold Λ. Both the Berry phase
and the Wilczek–Zee phase arise from this description for dn = 1 and dn > 0 respectively.

In Ref. [79], Aharonov and Anandan present an alternative perspective that allows for a generalisation
of this concept beyond the adiabatic regime. They propose to shift the focus away from the cyclic evolution
of Hamiltonians and towards the direct cyclic evolution of quantum states. The central idea is that every
cyclic evolution of quantum states |ψ(t)〉 ∈ H defines a closed curve in the projective Hilbert space P(H)

of H. To see this, recall that physical states are equivalence classes [|ψ〉] of rays, as given in Eq. (4.1).
An evolution |ψ(0)〉 → |ψ(T )〉 of state representatives is therefore cyclic if

|ψ(T )〉 = c |ψ(0)〉 (4.66)

for some c ∈ C, since then

[|ψ(T )〉] = [|ψ(0)〉] . (4.67)
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Moreover, the projective Hilbert space P(H) is precisely the complex manifold formed by the equivalence
classes of quantum states. For a d-dimensional Hilbert space H with d <∞, it can be constructed as the
quotient

P(H) = S2d−1/U(1) ' CPd−1 (4.68)

of normalised states {|ψ〉 ∈ H , ||ψ||2 = 1} ' S2d−1 modulo phase factors eiϕ ∈ U(1). As a consequence,
every cyclic evolution |ψ(0)〉 → |ψ(T )〉 = c |ψ(0)〉 defines a closed curve

C : [0, T ]→ P(H) , t 7→ [|ψ(t)〉] ≡ |ψ(t)〉 〈ψ(t)| (4.69)

in the projective Hilbert space P(H). For later reference, we have included the rather common notation
[|ψ(t)〉] ≡ |ψ(t)〉 〈ψ(t)|, where equivalence classes [|ψ(t)〉] of physical states are represented by manifestly
gauge-independent projectors |ψ(t)〉 〈ψ(t)|. Note that apart from the cyclicity condition there are no
constraints for |ψ(t)〉. In particular, it need not be an energy eigenstate.

So what are the implications of this? Following Ref. [80], we consider a time-dependent Hamiltonian
H(λ(t)), whose time-dependence is determined by some (not necessarily closed) curve

Γ : [0, T ]→ Λ , t 7→ λ(t) (4.70)

in a parameter manifold Λ. The time evolution |ψ(t)〉 of every quantum state |ψ〉 ∈ H defines a curve

Ψ : [0, T ]→ P(H) , t 7→ [|ψ(t)〉] (4.71)

in the projective Hilbert space. In particular, every cyclic state defines a closed curve. The time evolution
of any cyclic state |ψ〉 must be of the form

|ψ(T )〉 = exp [−iα(T )] |ψ(0)〉 . (4.72)

Using an argument analogous to that used in the derivation of the Berry phase, one can show that the
overall phase α(T ) separates as

α(T ) = γ(T )− ζ(C) (4.73)

into a dynamical phase γ(T ) and a geometric phase ζ(C), which depends only on the closed curve C ⊂ P(H)

traced by |ψ(t)〉. Since |ψ(t)〉 is not necessarily an energy eigenstate, the dynamical phase takes the form

γ(T ) =

∫ T

0

〈ψ(τ)|H(λ(τ)) |ψ(τ)〉 dτ . (4.74)

Meanwhile, the geometric phase is given by

ζ(C) = i

∫ T

0

〈φ(τ)| ∂τ |φ(τ)〉dt = i

∮
C

〈φ(τ)|dP |φ(τ)〉 , (4.75)

where |φ(τ)〉 is defined via a section

σ : P(H)→ E , [|ψ〉] 7→ σ([|ψ〉]) := |φ〉 (4.76)

of the so-called tautological line bundle E π−→ P(H), whose fibre F[|ψ〉] over every point [|ψ〉] ∈ P(H) is
exactly the one-dimensional subspace of H spanned by |ψ〉, i.e.

F[|ψ〉] = {c |ψ〉 , c ∈ C∗} . (4.77)

Note that the total differential dP in Eq. (4.75) is the total differential of P(H) rather than that of the
parameter manifold Λ. One can define the Aharonov–Anandan connection

AAA := 〈φ(τ)| dP |φ(τ)〉 (4.78)
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to show that the Aharonov–Anandan phase in Eq. (4.75) corresponds to the U(1) holonomy of the
tautological line bundle E π−→ P(H). This holonomy is often discussed in terms of the so-called Aharonov–
Anandan principal U(1)-bundle PAA

πAA−−−→ P(H), which is precisely the principal U(1)-bundle associated
to E π−→ P(H). Note that the Aharonov–Anandan phase replicates the Berry phase if the parameter
evolution λ(t) is closed, i.e. λ(0) = λ(T ), and [|ψ(t)〉] = [|n(λ(t))〉] parameterises a curve in P(H) that
corresponds to the n-th eigenstate of H(λ(t)). In this sense, the Aharonov–Anandan phase constitutes a
generalisation of the Berry phase.

Just like the Berry phase, the Aharonov–Anandan phase can be generalised to δ-dimensional cyclic
subspaces S(t) ⊂ H. The difference is that these subspaces need not be eigenspaces of H(λ(t)); they only
have to be cyclic under a given parameter evolution λ(t). Analogous to how a cyclic state |ψ(t)〉 defines
a closed curve in the projective Hilbert space P(H) of physical states, a cyclic δ-dimensional subspace
S(t) ' Cδ defines a closed curve

C : [0, T ]→ Gδ(H) , t 7→ [S(t)] , (4.79)

in the complex manifold Gδ(H) of equivalence classes [S] of δ-dimensional subspaces S ⊂ H, which is
known as the Grassmannian.3 Here, a cyclic subspace S(t) is any subspace that returns to itself, fulfilling
S(0)→ S(T ) = S(0). In the projector notation, this means that PS(0) → PS(T ) = PS(0) throughout the
cyclic evolution. If we choose to spell out

PS(0) =

δ∑
j=1

|φj(S(0))〉 〈φj(S(0))| (4.80)

in terms of an arbitrary but fixed δ-frame

f(PS(0)) =
{
|φ1(S(0))〉 , . . . , |φδ(S(0))〉

}
(4.81)

of δ orthonormal basis vectors |φj(S(0))〉 of S(0), then the cyclicity of PS(0) tells us that the |φj(S(T ))〉
can at most transform as

|φj(S(T ))〉 =

δ∑
k=1

|φk(S(0))〉 Ukj(S(T )) , (4.82)

with a unitary δ × δ transformation matrix U(S(T )) ∈ U(δ). Thus, it is not surprising that the general
time evolution of an initial state

|ψ(0)〉 =

δ∑
k=1

|φk(S(0))〉 ck(0) ∈ S(0) (4.83)

takes the form

|ψ(t)〉 =

δ∑
j,k

|φj(S(0))〉 Ujk(S(t)) ck(0) , (4.84)

where Ujk(S(t)) are the elements of a unitary δ × δ matrix

U(S(t)) := T exp

[
−
∫ t

0

(
iE(S(τ))dτ +Aδ(S(τ))

)]
, (4.85)

which is defined in terms of δ × δ Hermitian matrices E(S(τ)) and Aδ(S(τ)) with elements

E(S(τ))jk := 〈φj(S(τ))|H(λ(τ)) |φk(S(τ))〉 and Aδ(S(τ))jk := 〈φj(S(τ))| d
dτ
|φk(S(τ))〉 dτ ,

(4.86)

3We have encountered the Grassmannian Gn(C∞) as the classifying space of n-dimensional complex vector bundles and
their associated U(n)-principal bundles in Sec. 2.2.3. The Grassmannian is the natural generalisation of the projective
Hilbert space to equivalence classes of higher-dimensional subspaces.
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where E(S(t)) is the generalised non-Abelian dynamical phase, andAδ(S(t)) is the non-Abelian Aharonov–
Anandan connection of the tautological frame bundle E πAA−−−→ Gδ(H) of δ-frames over the Grassmannian
Gδ(H). Again, Eq. (4.84) is the non-adiabatic generalisation of Eq. (4.54) and reproduces it in the adia-
batic limit with degenerate eigenspaces S(t) = Hn(λ(t)). The important difference is that the matrices
E(S(τ)) and Aδ(S(τ)) from Eq. (4.85) do not generally commute. As a consequence, it is generally not
possible to write U(S(t)) as a product

U(S(t)) = Udyn.(S(t))Ugeom.(S(t)) (4.87)

of the generalised dynamical phase matrix

Udyn.(S(t)) := T exp

[
−i
∫ t

0

E(S(τ))dτ
]
, (4.88)

and the generalised geometric phase matrix

Ugeom.(C) := T exp

[
−
∫ t

0

Aδ(S(τ))

]
= P exp

[
−
∮
C
Aδ(S)

]
. (4.89)

Even though their product does not generally determine the unitary time evolution in Eq. (4.84), the two
unitary matrices Udyn.(S(t)) and Ugeom.(S(t)) are still defined independently. In fact, the non-Abelian
Aharonov–Anandan phase factor Ugeom.(S(t)) still captures the U(δ) holonomy of the tautological frame
bundle E πAA−−−→ Gδ(H). As before, this holonomy is often discussed in terms of the non-Abelian Aharonov–
Anandan principal U(δ)-bundle PAA

πAA−−−→ Gδ(H), which is precisely the associated principal U(δ)-bundle
to the tautological frame bundle E

π−→ Gδ(H). Just like Eq. (4.56), the geometric phase factor in
Eq. (4.89) is only gauge covariant under gauge transformations of the δ-frames f(PS(t)) so the only
observables associated to Ugeom.(S(t)) are quantities like its Wilson loop

w[C] = tr(Ugeom.(C)) . (4.90)

4.5 Geometric Features of Diabatic Dynamics

In previous sections, we have discussed geometric phases in the context of adiabatic dynamics: Berry’s
Abelian phase for non-degenerate eigenstates, and the non-Abelian Wilczek–Zee phase for degenerate
eigenspaces. We also addressed the Aharonov–Anandan generalisation, which extends these concepts
beyond the adiabatic limit and captures the geometry of cyclic subspaces that need not be eigenspaces
of a given parameter-dependent Hamiltonian.

There is a third regime that is of practical importance for physics: diabatic dynamics of systems
with slightly non-degenerate spectra, where small energy splittings arise, for example, due to proximity-
induced hybridisation between eigenstates with once-degenerate energies. Consider a system with a
dn-dimensional almost-degenerate eigenspace Hn(λ(t)) spanned by energy eigenstates, whose energies lie
within a narrow range ∆ε, but remain separated by at least ∆E � ∆ε from the rest of the spectrum.
Suppose this system evolves on a time scale θ satisfying

~
∆E

� θ .
~

∆ε
. (4.91)

While the separation ~/∆E � θ of time scales ensures that transitions out of S(t) are negligible and that
states |ψ〉 ∈ Hn(λ(t)) evolve approximately cyclically under periodic parameter variations, the similarity
θ . ~/∆ε implies that the dynamics within Hn(λ(t)) are fast enough to induce mixing between the
nearly-degenerate eigenstates. As a consequence, the evolution of states in Hn(λ(t)) can no longer be
described in terms of the original instantaneous eigenstates, and requires the non-Abelian non-adiabtic
Aharonov–Anandan description from Eq. (4.84) instead. In particular, the dynamical and geometric
contributions E and A to Eq. (4.85) do not commute and are inseparably intertwined in the resulting
unitary evolution matrix U .
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In such situations, diabatic dynamics can be used to probe the geometric evolution of the subspace
Hn(λ(t)) even in the presence of finite energy splittings. Specifically, if the system dynamics can be
accelerated such that typical time scale θ satisfies

~
∆E

� θ � ~
∆ε

, (4.92)

the dynamics become too fast to resolve the energy splittings within H0(φ) and their degeneracy is effec-
tively restored. If this is possible, the non-Abelian part of the unitary evolution U is once more effectively
determined by the holonomy of the principal U(dn)-bundle P π−→ Λ associated with the instantaneous
eigenspaces Hn(λ(t)), and the formalism by Wilczek and Zee remains applicable to leading order, despite
the lack of exact degeneracy.

Note that Eq. (4.92) requires a careful balance between the adiabatic and diabatic time scale separa-
tions. This can be very difficult in practice. In particular, it may not always be possible to assume time
scales that are short enough to render the system insensitive to the small splittings, but long enough to
suppress excitations beyond the nearly degenerate subspace.

4.6 Discretised Geometric Phases

While the geometric phases introduced above are generally defined for continuous (or even smooth)
bundles, their practical computation often relies on numerical methods that require discretised versions.
In the following, we briefly outline discretisations of the Abelian (Berry) and non-Abelian (Wilczek–Zee)
geometric phases for later use. Based on these, we are going to evaluate geometric phases for discrete
families of quantum states numerically. Concretely, we will apply them to non-degenerate BdG ground
states to determine Sombrero Berry phases in Chap. 9, and to nearly-degenerate low-energy BdG states
to study exchangeless braiding phenomena in Chap. 10.

The discretised expressions for the Berry and WZ phases will be derived from Eq. (4.56), with the
(Abelian) Berry phase appearing as the special case dn = 1. As a starting point, we discretise the closed
curve

C : [0, t]→ Λ , τ 7→ C(τ) ≡ λ(τ) , (4.93)

with λ(0) = λ(t) as

CI ≡ {λ0,λ1, . . . ,λI−1,λI = λ0} ⊂ C , (4.94)

where the parameter I ∈ N controls the resolution of the discretisation. Specifically, we define

λj = λ(τj) , (4.95)

using the discretised interval

[0, t]I ≡ {τ0 = 0, τ1, . . . , τI−1, τI = t} . (4.96)

While [0, t]I ⊂ [0, t] can in principle be any cardinality I subset, we typically choose a uniform partition

[0, t]I ≡
{

0,
t

I
, . . . ,

(I − 1)t

I
, t

}
, (4.97)

where τj = (jt)/I. Based on a uniform discretisation CI , the Wilczek–Zee phase Wn(C) from Eq. (4.57)
may be approximated by the (right) Riemann sum

Wn(C) = i

∮
C

Adn(λ) dλ ≈ i
∑
λj∈CI

Adn(λj) ∆λj , (4.98)

where ∆λj ≡
(
λj − λj−1

)
. Additionally, we can approximate the elements

Adn,kl(λ) = 〈nk(λ)| ∂λ |nl(λ)〉 (4.99)
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of Adn(λ) using the (backward) difference quotient

〈nk(λ)| ∂λ |nl(λ)〉 ≈
〈nk(λ)|

(
|nl(λ)〉 − |nl(λ−∆λ)〉

)
∆λ

=
δkl − 〈nk(λ)|nl(λ−∆λ)〉

∆λ
(4.100)

and introduce the overlap matrix adn(λ) with elements

adn,kl(λ) := 〈nk(λ)|nl(λ−∆λ)〉 (4.101)

to write

Adn(λ) ≈ 1dn − adn(λ)

∆λ
. (4.102)

Note that the difference quotient in Eq. (4.100), and hence the above expression for Adn(λ), only becomes
exact for ∆λ→ 0. If we instead choose ∆λ := ∆λj and plug the resulting approximation of Adn(λ) into
Eq. (4.98), we get

Wdn(C) ≈ i
I∑
j=1

(
1dn − adn(λj)

)
, (4.103)

where the ∆λj cancel out and the elements of adn(λj) take the simple form

adn,kl(λj) = 〈nk(λj)|nl(λj −∆λj)〉 = 〈nk(λj)|nl(λj−1)〉 (4.104)

due to λj−1 = λj −∆λj . With this, the WZ phase factor from Eq. (4.56) becomes

Udn(C) = P exp [iWdn(C)] ≈ P exp

− I∑
j=1

(
1dn − adn(λj)

) . (4.105)

Even though the overlap matrices adn(λj) do not generally commute, [adn(λj), adn(λk)] 6= 0 for j 6= k,
when dn > 1, the exponential in Eq. (4.105) can still be rewritten as

P exp

 I∑
j=1

(
adn(λj)− 1dn

) = P
I∏
j=1

exp
[
adn(λj)− 1dn

]
(4.106)

under the path ordering operator P. As evident from the middle expression in Eq. (4.104), we then have

lim
∆λj→0

adn(λj)→ 1dn , (4.107)

so that the individual exponents on the right-hand side of Eq. (4.106) satisfy

lim
∆λj→0

(adn(λj)− 1dn)→ 0 . (4.108)

For sufficiently high resolutions I and subsequently small ∆λj we can therefore approximate the individual
exponentials in Eq. (4.106) by

exp
[
adn(λj)− 1dn

]
≈ 1dn + adn(λj)− 1dn = adn(λj) (4.109)

and we get the formula

Udn(C) ≈ P
I∏
j=1

adn(λj)
(�)
≡

I∏
j=1

adn(λI+1−j) . (4.110)

For (�), we explicitly carried out the path ordering

P
I∏
j=1

adn(λj) = adn(λI)adn(λI−1) · · · adn(λ1) =

I∏
j=1

adn(λI+1−j) . (4.111)
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In Chaps. 9 and 10 we use Eq. (4.110) to analyse the Berry and WZ phase factors of (non-)degenerate
BdG vacua over the parameter manifold Λ ≡ S1

φ associated to the superconducting phase λ ≡ φ. Specif-
ically, Chap. 9 deals with the Abelian d0 = 1 “Sombrero” Berry phases computed via the overlaps

a1(φj) = 〈0(φj)|0(φj−1)〉p p
b b , (4.112)

between instantaneous BdG vacua |0(φj)〉pb for different superconducting phases φj ∈ S1
φ. In Chap. 10,

we extend this analysis to the non-Abelian d0 > 1 WZ phase factors, which are in turn based on the
overlap matrices

ad0,mn(φj) = 〈0m(φj)|0n(φj−1)〉 ≡ 〈m(φj)|n(φj−1)〉 (4.113)

between (almost) degenerate low-energy BdG Fock states |n(φj)〉 where n = 0, . . . , d0 − 1. Concretely,
we discuss d0 = 2 and d0 = 4. In both cases, the BdG vacua and Fock states are constructed as detailed
in Sec. 5.3 and the overlaps are computed using the Robledo Pfaffian formula reviewed in Sec. 5.4.
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5 – Bogoliubov–de Gennes Theory

Bogoliubov–de Gennes (BdG) theory was developed to find solutions in Bardeen–Cooper–Schrieffer (BCS)
theory, the first microscopic description of superconductivity. BCS theory famously explains supercon-
ductivity as a result of electron pairing due to an attractive electron-electron interaction at the Fermi
surface. Since solving the interacting-electron problem is very challenging, BCS theory introduces a mean-
field approximation to simplify it. The resulting mean-field BCS Hamiltonian can then be diagonalised
using BdG theory, which introduces coherent superpositions of particles and holes known as Bogoliubov
quasiparticles. In the BdG description, the superconducting ground state takes the form of a Bogoliubov
quasiparticle vacuum, which, due to the fact that the quasiparticles combine elementary particle and
hole excitations, is not an empty Fermi sea, but rather a macroscopic condensate of all states with even
particle numbers.

In the following, we first give a brief introduction to BCS theory to provide some context for BdG
theory as well as a reference for conventional and unconventional superconductivity. After that, we
discuss the general formalism of BdG theory, describing Bogoliubov transformations, the notion of the
Bogoliubov vacuum, and overlaps between Bogoliubov states. Finally, we discuss the possibility and
significance of Majorana modes in BdG theories. Throughout this chapter we follow Refs. [82] and [83].

5.1 Bardeen–Cooper–Schrieffer Theory of Superconductivity

Between 1911 and 1957, superconductivity was an experimentally observed phenomenon lacking a
proper theoretical descripction. This problem was partially solved when Bardeen, Cooper and Schrieffer
proposed a microscopical model that turned out to be so successful it is still taught today [84]. This part
is based on Ref. [82].

At its core, BCS theory shows that any attractive interaction between electrons near the Fermi surface
of an electron gas can cause a ground state instability that energetically prioritises the formation of
bound Cooper pairs of electrons with opposite momentum and spin. In conventional superconductors,
this attractive interaction is a result of electron-phonon interactions. The usual start Hamiltonian reads

H =
∑
k,α

ξkc
†
kαckα +

1

N

∑
k,k′

Vkk′ c
†
k↑c
†
−k↓c−k′↓ck′↑ , (5.1)

where c†kα creates an electron with momentum k and spin α ∈ {↑, ↓} and where ξk = εk − µ is the
electronic energy dispersion εk shifted by a chemical potential µ. The second term is a crude model
for the phonon-mediated attractive interaction causing the Cooper instability. It only takes into account
scattering between time-reversed single-particle states |k, ↑〉 and |−k, ↓〉 and is governed by an interaction
strength

Vkk′ =

{
−V for |ξk|, |ξk′ | . ωD

0 else ,
(5.2)

which is constant for electrons with energies |ξk| . ωD relative to the Fermi energy and vanishes otherwise.
Here, ωD denotes the Debye frequency of the system.1 The standard BCS Hamiltonian results when we
apply the mean-field approximation

〈c†k↑c
†
−k↓c−k′↓ck′↑〉 ≈ 〈c

†
k↑c
†
−k↓〉 c−k′↓ck′↑ + c†k↑c

†
−k↓ 〈c−k′↓ck′↑〉 − 〈c

†
k↑c
†
−k↓〉 〈c−k′↓ck′↑〉 , (5.3)

giving

HBCS =
∑
k,α

ξkc
†
kαckα −

∑
k

(
∆kc

†
k↑ c

†
−k↓ + H.c.

)
+ E0 , (5.4)

1The Debye frequency is the typical frequency of the phonon modes mediating the attractive electron-electron interaction
in conventional superconductors.
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where

∆k := − 1

N

∑
k′

Vkk′ 〈c−k↓ck↑〉 and E0 := − 1

N

∑
k,k′

Vkk′ 〈c
†
k↑c
†
−k↓〉 〈c−k↓ck↑〉 (5.5)

have to be determined self-consistently using the BCS ground state that we will introduce shortly. The
anomalous expectation values 〈c†k↑c

†
−k↓〉 and 〈ck↑c−k↓〉 are non-zero only in the superconducting state.

In that case, 〈ck↑c−k↓〉 is interpreted as the momentum-spin representation of the Cooper pair created
by c†k↑c

†
−k↓. As was mentioned in the introduction, HBCS can be diagonalised using a Bogoliubov trans-

formation. Anticipating a result presented later in this chapter, such a transformation takes the form

bk↑ := ukck↑ + vkc
†
−k↓ and b−k↓ := ukc−k↓ − vkc

†
k↑ . (5.6)

The complex coefficient functions uk and vk must satisfy |u2
k| + |v2

k| = 1 to ensure that the Bogoliubov
quasiparticle operators in Eq. (5.6) obey fermionic anticommutator relations. The standard choice is

uk =

√√√√1

2

(
1 +

ξk√
ξ2
k + |∆k|2

)
and vk =

√√√√1

2

(
1−

ξk√
ξ2
k + |∆k|2

)
eiφ , (5.7)

where the complex phase factor eiφ of vk is given by the complex phase factor of the complex gap function
in polar coordinates, i.e. ∆k = ∆0(k)eiφ. We verify that Eq. (5.6) diagonalises HBCS by plugging its
inverse transformation

ck↑ = u∗k bk↑ + vk b
†
−k↓ and c†−k↓ = uk b

†
−k↓ − v

∗
k bk↑ (5.8)

into Eq. (5.4), yielding

HBCS =
∑
k,α

Ek b
†
kαbkα + E0 (5.9)

with

Ek =
√
ξ2
k + |∆k|2 and E0 =

∑
k

(ξk − Ek + E0 ) . (5.10)

This shows why ∆k is (usually) called the BCS gap function: it gaps the Bogoliubov quasiparticle
spectrum even when the electronic energy dispersion vanishes. It also makes clear that the Bogoliubov
quasiparticles themselves do not correspond to the Cooper pairs, but rather to excitations from the
superconducting ground state. To see how this ground state emerges, we note that the Bogoliubov
quasiparticle spectrum indicated in Eq. (5.10) is positive semi-definite. As a consequence, we can write
the ground state of Eq. (5.9) as a Bogoliubov quasiparticle vacuum

|GS〉BCS := |0〉b , (5.11)

in which no Bogoliubov quasiparticle is occupied. One way to determine |0〉b is as a product state

|0〉b =
∏
k

bk↑b−k↓ |0〉

=
∏
k

(
ukck↑ + vkc

†
−k↓

)(
ukc−k↓ − vkc

†
k↑

)
|0〉

=
∏
k

(−ukvkck↑c
†
k↑ + u2

k��
��H

HHH
ck↑c−k↓ − v

2
kc
†
−k↓c

†
k↑ + vkuk��

���XXXXXc†−k↓c−k↓) |0〉

=
∏
k

(−ukvk(1−��
�H
HHc†k↑ck↑)− v

2
kc
†
−k↓c

†
k↑) |0〉

=
∏
k

(−vk)
∏
k

(uk + vkc
†
−k↓c

†
k↑) |0〉 , (5.12)

where |0〉 denotes the electronic vacuum and where N :=
∏
k(−vk) determines the norm 〈0|0〉b b = N 2.

A normalised BCS ground state is therefore given by

|GS〉BCS =
∏
k

(uk + vkc
†
−k↓c

†
k↑) |0〉 , (5.13)

which is a coherent superposition of all available even-parity states – a condensate of Cooper pairs.
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So far, we have assumed that Cooper pairs are always formed by two electrons of opposite momentum
and spin. As a result, the total spin S of the Cooper pair vanishes and it forms a spin singlet. Importantly,
this assumption becomes questionable in the vicinity of ferromagnetic order, which favours parallel spin
alignment and therefore triplet Cooper pairs with a total spin of S = 1. Such situations are very likely
to exist in nature. One prominent example is the superfluidity of 3He, which is generally attributed to
triplet Cooper pairs of charge-neutral 3He atoms, rather than electrons [82]. In order to describe these
more exotic types of superconductivity, one has to generalise the BCS approach to superconductivity.
This is done by allowing for arbitrary spin couplings, starting with

H =
∑
k,α

ξk c
†
kαckα +

1

N

∑
k,k′

α,β,γ,δ

Vkk′αβγδ c
†
kαc
†
−kβc−k′γck′δ , (5.14)

in which the only generic symmetries of Vkk′αβγδ are imposed by the fermionic anticommutation relations:

Vkk′αβγδ = −Vk−k′αβδγ = −V−kk′βαγδ = V−k−k′βαδγ . (5.15)

In particular, Eq. (5.14) does not exclude Cooper pairs of electrons with the same spin. In a weak-coupling
approach with an interaction that is attractive, i.e. Vkk′αβγδ < 0 in an energy range EF ± εc defined by a
finite cutoff-energy |εc| � |EF |, we can repeat the above construction and get a mean-field Hamiltonian

HBCS =
∑
k,α

ξkc
†
kαckα −

1

2

∑
k,α,β

[
∆kαβc

†
kαc
†
−kβ + ∆∗kαβckαc−kβ

]
+ E0 , (5.16)

where the generalised gap equation

∆kαβ = − 1

N

∑
k′,γ,δ

Vkk′αβγδ 〈c−k′γck′δ〉 (5.17)

and the offset energy

E0 = − 1

N

∑
k,k′

α,β,γ,δ

Vkk′αβγδ 〈c
†
kαc
†
−kβ〉 〈c−k′γck′δ〉 (5.18)

have to be determined self-consistently. In order to analyse the type of superconductivity that a given
pairing mechanism Vkk′αβγδ produces, we characterise the structure of the resulting Cooper pairs based
on their expectation values 〈c−kαckβ〉. As mentioned earlier, the 〈c−kαckβ〉 are usually interpreted as the
momentum-spin representation of the Cooper pair wave functions, motivating the notation

ψk,αβ ≡ 〈c−kαckβ〉 . (5.19)

By definition, ψk,αβ is odd under an exchange of electrons within the Cooper pair, i.e.

ψk,αβ = −ψ−k,βα , (5.20)

and one can use this antisymmetry to analyse the symmetry properties of ψk,αβ under the individual
exchange of momentum- and spin-quantum numbers in Eq. (5.19). Specifically, we can formally separate
the Cooper pair wave function as

ψk,αβ ≡ φk · χαβ (5.21)

into an orbital part φk and a spin part χαβ . If the orbital angular momentum L of the Cooper pair wave
function is a good quantum number, their orbital parity is given by (−1)L and we can write

φk = φ−k ⇐⇒ χαβ = −χβα giving L = 0, 2, 4, . . . and S = 0

φk = −φ−k ⇐⇒ χαβ = χβα giving L = 1, 3, 5, . . . and S = 1 , (5.22)

where S = 0 means that the Cooper pairs form (antisymmetric) spin singlets and S = 1 means that the
Cooper pairs form (symmetric) spin triplets. Generally, superconductivity with L = 0 Cooper pairs is
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referred to as conventional superconductivity, while superconductivity with L > 0 Cooper pairs is called
unconventional. In combination with the fundamental symmetries of the interaction given in Eq. (5.15),
the Cooper pair symmetries in Eq. (5.22) fully determine the symmetry properties of the BCS gap function
from Eq. (5.17). We get

∆kαβ

(5.15)
= −∆−kβα

(5.22)
=

{
∆−kαβ = −∆kβα for L = 0, 2, 4, . . . and S = 0

−∆−kαβ = ∆kβα for L = 1, 3, 5, . . . and S = 1 .
(5.23)

Generally, the gap function can be written as as a complex 2× 2 matrix

∆k ≡

(
∆k↑↑ ∆k↑↓
∆k↓↑ ∆k↓↓

)
(5.24)

in the spin indices. We can find generic parametrisations of ∆k using the symmetry relations in Eq. (5.23).
For even L and S = 0, we only need one function f(k) satisfying f(k) = f(−k) to write

∆S=0
k ≡

(
0 f(k)

−f(k) 0

)
= if(k)σy , (5.25)

where σy denotes the y-Pauli matrix. For odd L and S = 1 we need three functions d1(k), d2(k), d3(k)

satisfying di(k) = −di(−k) each. If we combine these as d(k) = (d1(k), d2(k), d3(k))ᵀ we can write

∆S=1
k ≡

(
−d1(k) + id2(k) d3(k)

d3(k) d1(k) + id2(k)

)
= i (d(k)σ)σy , (5.26)

where σ denotes the vector of Pauli matrices. The most general BCS gap matrix is therefore given by

∆k = ∆S=0
k + ∆S=1

k = i (f(k)12 + d(k)σ)σy (5.27)

with f(k) and d(k) as before. However, in most cases, either singlet or triplet pairing dominates this
expression and it is valid to speak of singlet or triplet superconductivity.

The self-consistent gap equation of the conventional BCS Hamiltonian with phonon-mediated at-
tractive interaction given in Eq. (5.4) turns out k-independent, so that conventional superconductivity
corresponds to L = 0 and S = 0 Cooper pairs [82,85]. Borrowing from the naming conventions of atomic
orbitals, this type of singlet superconductivity is also known as s-wave superconductivity. In fact, most
known superconductors are singlet superconductors, including all conventional s-wave superconductors,
cuprates (d-wave) and the pnictides (s±-wave) [86].2 In comparison, spin-triplet superconductors are
relatively rare. The strongest candidate is the aforementioned 3He. Other candidates include UPt3 and
Sr2RuO4, which are also prominent contenders for a special type of superconductivity known as chi-
ral superconductivity [86]. Chiral superconductors are characterised by a complex superconducting gap
function ∆k, whose phase winds around some axis on the Fermi surface. The direction of this winding
gives these systems a definite handedness, or chirality, for which they are named. The simplest example
is a so-called kx + iky gap function, whose phase winds up by ±2π as k follows a closed path around the
kz-axis. As loosely suggested by the presence of a characteristic winding number, chiral superconductiv-
ity is a topological state of matter, supporting topological zero modes at certain defects. For instance,
there are boundary modes, which disperse across the superconducting gap for k parallel to the boundary.
Another example are non-dispersive vortex-bound zero modes, which may exist in some triplet chiral su-
perconductors. These arise at cores of superfluid vortices, topological defects where the phase of the order
parameter winds by 2π in real space, and can be understood as Majorana quasiparticles, i.e. excitations
that are their own antiparticles. The same applies to the dispersive boundary mode for the specific k at
which it passes through zero energy. Even more striking than their formal Majorana property is the fact
that the vortex-bound Majorana zero modes obey non-Abelian Ising anyon statistics. This makes triplet
chiral superconductors a promising platform for topological quantum computing, as we will discuss in
greater detail later on.

2An s±-wave gap has an s-wave symmetry, but changes its sign as a function of k [82].
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5.2 The Bogoliubov–de Gennes Formalism

The Bogoliubov–de Gennes (BdG) formalism introduces a special class of unitary transformations
called Bogoliubov transformations. These are characterised by their compatibility with a symmetry-like
particle-hole structure that distinguishes a certain class of quadratic fermionic Hamiltonians known as
BdG Hamiltonians. A BdG Hamiltonian is usually written as

HBdG =
1

2
Ψ†hBdGΨ , (5.28)

where Ψ =
(
c1 . . . cd c

†
1 . . . c

†
d

)ᵀ
=:
(
c c†

)ᵀ is called a Nambu spinor, and where

hBdG =

(
T ∆†

∆ −T ∗

)
(5.29)

denotes the 2d × 2d BdG matrix, whose blocks are the d × d single-particle hopping matrix T and the
d × d anomalous gap matrix ∆. In terms of the unitary PHC operator Ξ from Sec. 3, the particle-hole
structure of HBdG and hBdG is given by

ΞHBdGΞ = −H∗BdG and ΞhBdGΞ = −h∗BdG , (5.30)

cf. Eq. (3.38). A Bogoliubov transformation is then a unitary 2d× 2d matrix

B =

(
U V ∗

V U∗

)
, (5.31)

which fulfils the particle-hole compatibility condition

ΞBΞ = B∗ (5.32)

and diagonalises hBdG as

B†hBdGB = EBdG , (5.33)

where EBdG = σz ⊗ E with E = diag(E1, . . . , Ed) and Ei ≥ 0. Thus, it provides a transformation

HBdG =
1

2
Ψ†hBdGΨ =

1

2
Ψ†BEBdGB

†Ψ =:
1

2
Φ†EBdGΦ =

d∑
j=1

Ejb
†
jbj (5.34)

of the BdG Hamiltonian HBdG. Here, we defined Bogoliubov-transformed Nambu spinors

Φ =:

(
b

b†

)
=

(
U† V †

V ᵀ Uᵀ

)(
c

c†

)
= B†Ψ , (5.35)

which give rise to Bogoliubov quasiparticle creation and annihilation operators b†j and bj . The main
practical features of Bogoliubov transformations are twofold. The most important one is that the resulting
Bogoliubov quasiparticle operators obey the usual fermionic anticommutation relations

{bj , b
†
k} = δjk and {bj , bk} = {b†j , b

†
k} = 0 . (5.36)

The second noteworthy feature is that the quasiparticles associated to b†j and the quasiholes associated
to bj are naturally related through particle-hole conjugation and have opposite energies +Ej and −Ej .
The fact that Ej ≥ 0 in Eq. (5.34) allows us to write the many-body BdG ground state as a vacuum

|GS〉BdG = |0〉b (5.37)

of the Bogoliubov quasiparticles. One way to obtain this vacuum is as a simple product state

|0〉b =

d∏
j=1

bj |0〉 ≡ |0〉
p
b , (5.38)

where |0〉 denotes the true electronic vacuum, which serves as a canonic reference state.
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In the following, we will discuss the BdG formalism in more detail. We start by addressing the setting
of Nambu space and the shortcomings of naive unitary diagonalisation procedures therein. Next, we
analyse how particle-hole conjugation Ξ can be used to resolve these issues, giving rise to Bogoliubov
transformations. Finally, we provide a construction guide for these transformations, including definitions
of the Bogoliubov vacuum and a formula for many-body overlaps between Bogoliubov states.

Given an d-dimensional single-particle Hilbert spaceH spanned by d single particle states |ψ1〉 , . . . , |ψd〉,
we will understand the associated 2d-dimensional Nambu space H as the generalised Hilbert space

H := H⊕H∗ , (5.39)

spanned by both the single-particle states |ψ1〉 , . . . , |ψd〉 ∈ H and their duals 〈ψ1| , . . . , 〈ψd| ∈ H∗, the
“single-hole” states. In second quantisation, this corresponds to a basis

B = {c1, . . . , cd, c
†
1, . . . , c

†
d} (5.40)

of all elementary annihilation and creation operators, respectively. We will stick to the language of
creation and annihilation operators from now on. A BdG Hamiltonian is then a quadratic Hermitian
operator

HBdG =
∑
i,j

hij di dj (5.41)

on H, where di, dj ∈ B. This formulation naturally incorporates anomalous terms ∝ c†i c
†
j and ∝ ci cj

that are present in mean-field Hamiltonians like the BCS Hamiltonian we discussed earlier. In particular,
the BdG formulation in Nambu space only adds value if such anomalous terms are present. Note that we
can specify Eq. (5.41) as

HBdG =
∑
i,j

(
Aij c

†
i cj +Bij ci c

†
j + Cij ci cj +Dij c

†
i c
†
j

)
, (5.42)

where we introduced four auxiliary N × N matrices A,B,C,D governing the four types of quadratic
terms that are possible in Eq. (5.41). The only restrictions on A,B,C,D come from the Hermiticity of
HBdG, which requires

A = A† , B = B† , C = −D∗ (5.43)

and the fermionic anticommutation relations of the creation and annihilation operators, which require

A = −Bᵀ , C = −Cᵀ , D = −Dᵀ (5.44)

for a consistent and non-trivial definition of HBdG. Combining Eqs. (5.43) and (5.44), we get conditions

B = −A∗ and D = C† . (5.45)

If we substitute Eq. (5.45) into Eq. (5.42) and rename A = T and C = ∆ we get

HBdG =
∑
i,j

(
Tij c

†
i cj − T

∗
ij ci c

†
j + ∆ij ci cj −∆∗ij c

†
i c
†
j

)
=
∑
i,j

(
Tij c

†
i cj − T

∗
ij ci c

†
j + ∆ij ci cj + ∆†ij c

†
i c
†
j

)
, (5.46)

which readily aligns with the usual notation from mean-field BCS theory, where T represents the single-
particle hopping matrix and ∆ denotes anomalous gap matrix. As mentioned in the beginning, a defining
feature of these Hamiltonians is their symmetry-like particle-hole structure. To formulate this, we use
the unitary PHC operator Ξ from before. It swaps the single-particle creation and annihilation operators
as

ΞcjΞ
−1 = c†j and Ξc†jΞ

−1 = cj . (5.47)
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Note that Ξ defines an involution, since repeating the transformation twice is equivalent to the identity
transformation. This shows that Ξ is self-inverse, meaning Ξ−1 = Ξ. For this reason, we will simply write
Ξ for both the PHC transformation and its inverse from now on. The transformation of HBdG under Ξ

is then given by

ΞHBdGΞ = Ξ
∑
i,j

(
Tij c

†
i cj − T

∗
ij ci c

†
j + ∆ij ci cj −∆∗ij c

†
i c
†
j

)
Ξ

=
∑
i,j

(
Tij Ξc†iΞ ΞcjΞ− T

∗
ij ΞciΞ Ξc†jΞ + ∆ij ΞciΞ ΞcjΞ−∆∗ij Ξc†iΞ Ξc†jΞ

)
=
∑
i,j

(
Tij ci c

†
j − T

∗
ij c
†
i cj + ∆ij c

†
i c
†
j −∆∗ij ci cj

)
= −H∗BdG , (5.48)

where we defined the complex conjugate Hamiltonian H∗BdG as the original Hamiltonian HBdG with
complex conjugate coefficients. The particle-hole relation

ΞHBdGΞ = −H∗BdG (5.49)

is often referred to as a symmetry in the literature. We avoid this terminology for a number of reasons.
Most notably, Eq. (5.49) relates HBdG to its complex conjugate H∗BdG rather than to HBdG itself. This
makes the interpretation of Ξ as a quantum symmetry operation very difficult. One way to fix this is to
resort to the antiunitary PHC operator Ξ̄ from Eq. (3.36), which turns Eq. (5.49) into a relation

Ξ̄HBdGΞ̄ = −HBdG (5.50)

between HBdG and itself. However, even if we accept the now unusual antilinearity of Ξ̄, we are still left
with an unconventional symmetry because Eq. (5.50) tells us that Ξ̄ anticommutes with HBdG, whereas
typical symmetry operators commute with it. Finally, both Eqs. (5.49) and (5.50) are a direct result
of the Hermiticity of HBdG and the fermionic algebra of the c-operators and thus not related to an
additional symmetry of the system in the traditional sense. For this reason, Eq. (5.50) is sometimes
called a “tautological” particle-hole symmetry as well. For a an in depth discussion of this see [78]. Even
though the interpretation of the particle-hole structure given in Eqs. (5.49) and (5.50) is a bit subtle, it
is far from useless. For instance, Eq. (5.50) tells us that if |ψ〉 is an eigenstate of HBdG with energy E,
then its PHC counterpart |φ〉 = Ξ̄ |ψ〉 is also an eigenstate of HBdG but with energy −E. This can be
seen by

HBdG |φ〉 = HBdGΞ̄ |ψ〉
(�)
= −Ξ̄HBdG |ψ〉
(?)
= −Ξ̄E |ψ〉
= −E Ξ̄ |ψ〉
= −E |φ〉 , (5.51)

where we first utilised Eq. (5.49) in (�) and then HBdG |ψ〉 = E |ψ〉 in (?). The result of the particle-
hole structure of HBdG is therefore not a degeneracy of eigenstates, but a particle-hole pairing between
eigenstates of opposite energies. One advantage of the BdG setting is that it allows us to discuss HBdG

and Ξ in terms of their matrix representations. Specifically, the Hamiltonian matrix hBdG is defined via

HBdG = Ψ† hBdG Ψ =
(
c† c

)(T ∆†

∆ −T ∗

)(
c

c†

)
, (5.52)

where hBdG can be extracted from Eq. (5.46), while the matrix representation of Ξ reads

Ξ = σx ⊗ 1d =

(
0 1d

1d 0

)
, (5.53)
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which is given in the standard Nambu basis Eq. (5.40). Here, 1d denotes the d × d identity matrix. A
quick sanity check shows that

ΞhBdGΞ =

(
0 1d

1d 0

)(
T ∆∗

∆ −T ∗

)(
0 1d

1d 0

)
=

(
−T ∗ ∆

−∆∗ T

)
= −h∗BdG , (5.54)

where we have used ∆ᵀ = −∆ to write ∆† = −∆∗ to make the relation more obvious. Note also that the
definition of HBdG that we gave in Eq. (5.28) has an overall prefactor of one half compared to Eq. (5.52).
This prefactor is a matter of “bookkeeping” – it represents a correction of the Nambu redundancy, which
arises from the fact that every physical degree of freedom is taken into account twice, once as a particle
and once as a hole. It appears naturally when one starts with a quadratic mean-field Hamiltonian and
brings it into Nambu space.

The powerful thing about Eq. (5.52) is that it allows us to diagonalise HBdG by diagonalising its
matrix representation hBdG. Thus, we look for a unitary 2d× 2d matrix U , transforming

U†hBdGU = diag(E1, . . . , E2d) =: EBdG , (5.55)

where the columns of U correspond to the eigenvectors of hBdG as usual. At this point, the Nambu
redundancy, which allowed us to translate the diagonalisation procedure of HBdG into a linear algebra
problem, causes some subtleties that have to be taken care of. In a regular fermionic single-particle
Hilbert space, every unitary diagonalisation of a particle-number conserving Hamiltonian H guarantees
that the resulting eigenstates form another basis of the Hilbert space. Specifically, we can write H as

H =
∑
i,j

Tijc
†
i cj =

(
c†1 . . . c

†
d

)
T

c1...
cd

 =: ψ† T ψ (5.56)

and find unitary matrices U that diagonalise T as

U†TU = diag(E1, . . . , Ed) =: ET (5.57)

to get a diagonalisation

H = ψ† T ψ = ψ†U ET U
†ψ = φ† ET φ =

∑
j

Ejλ
†
jλj (5.58)

of H. The unitarity of U is now necessary and sufficient to ensure that the new fermionic creation and
annihilation operators

λi := U†ijcj and λ†i := Ujic
†
j , (5.59)

defined via Eq. (5.58), satisfy the usual fermionic anticommutation relations

{λj , λ†k} = δjk and {λj , λk} = {λ†j , λ
†
k} = 0 . (5.60)

This property is lost for BdG Hamiltonians on Nambu space because unitary diagonalisation matrices
are generally going to mix particle and hole states. To see this, we write a generic unitary transformation
of the Nambu basis as

λ(i,x) :=

d∑
j=1

(
U†(i,x)(j,1)cj + U†(i,x)(j,2)c

†
j

)
, (5.61)

where we introduced multi-indices (i, x) with i = 1, . . . , d and x = 1, 2 that reflect the Nambu redundancy.
Concretely, (1, 1), . . . , (d, 1) refer to the single-particle part of the Nambu basis, while (1, 2), . . . , (d, 2)

refer to its single-hole part. Even though such a unitary transformation produces an orthonormal basis
of 2d energy eigenstates in Nambu space, the underlying physical theory can only accomodate d distinct

90



eigenstates. We will come back to this later. For now we convince ourselves that unitarity still partly
ensures fermionicity of the λ(i,x) since

{
λ(i,x), λ

†
(j,y)

}
=

d∑
n,k=1

{(
U†(i,x)(n,1)cn + U†(i,x)(n,2)c

†
n

)
,
(
Uᵀ

(j,y)(k,1)c
†
k + Uᵀ

(j,y)(k,2)ck

)}

=

d∑
n,k=1

(
U†(i,x)(n,1)U

ᵀ
(j,y)(k,1)

{
cn, c

†
k

}
+ U†(i,x)(n,1)U

ᵀ
(j,y)(k,2)

{
cn, ck

}
+U†(i,x)(n,2)U

ᵀ
(j,y)(k,1)

{
c†n, c

†
k

}
+ U†(i,x)(n,2)U

ᵀ
(j,y)(k,2)

{
c†n, ck

})
=

d∑
n,k=1

(
U†(i,x)(n,1)U

ᵀ
(j,y)(k,1)δnk + U†(i,x)(n,2)U

ᵀ
(j,y)(k,2)δnk

)

=

d∑
n=1

(
U†(i,x)(n,1)U

ᵀ
(j,y)(n,1) + U†(i,x)(n,2)U

ᵀ
(j,y)(n,2)

)
=

d∑
n=1

(
U†(i,x)(n,1)U(n,1)(j,y) + U†(i,x)(n,2)U(n,2)(j,y)

)
=
∑
(n,z)

U†(i,x)(n,z)U(n,z)(j,y)

=
(
U†U

)
(i,x)(j,y)

= δ(i,x)(j,y) . (5.62)

This tells us that the unitarity of U continues to guarantee the correct anticommutation relations between
the new annihilation and creation operators. However, the anticommutators among the new annihilation
operators (and analogously among the new creation operators) are given by

{
λ(i,x), λ(j,y)

}
=

d∑
n,k=1

{(
U†(i,x)(n,1)cn + U†(i,x)(n,2)c

†
n

)
,
(
U†(j,y)(k,1)ck + U†(j,y)(k,2)c

†
k

)}

=

d∑
n,k=1

(
U†(i,x)(n,1)U

†
(j,y)(k,1)

{
cn, ck

}
+ U†(i,x)(n,1)U

†
(j,y)(k,2)

{
cn, c

†
k

}
+U†(i,x)(n,2)U

†
(j,y)(k,1)

{
c†n, ck

}
+ U†(i,x)(n,2)U

†
(j,y)(k,2)

{
c†n, c

†
k

})
=

d∑
n,k=1

(
U†(i,x)(n,1)U

†
(j,y)(k,2)δnk + U†(i,x)(n,2)U

†
(j,y)(k,1)δnk

)

=

d∑
n=1

(
U†(i,x)(n,1)U

†
(j,y)(n,2) + U†(i,x)(n,2)U

†
(j,y)(n,1)

)
=
∑
(n,z)

U†(i,x)(n,z)U
†
(j,y)(n,z̄) . (5.63)

Here, we introduced a shorthand notation z̄ in the last line that refers to the opposite particle-hole index
of z, i.e. 1̄ = 2 and 2̄ = 1, for a more compact notation. The problem is, that the unitarity of U is not
enough to ensure that these vanish. Of course, salvation lies in the only other structure at hand, namely
the particle-conjugation structure of the BdG Hamiltonian. It allows us to transform Eq. (5.55) as

ΞU†hBdGUΞ = ΞEBdGΞ

⇐⇒ ΞU†ΞΞhBdGΞΞUΞ = ΞEBdGΞ

⇐⇒ −V †h∗BdGV = ẼBdG , (5.64)

where we used Ξ2 = 12d, plugged in the particle-hole conjugation of hBdG from Eq. (5.54), and finally
defined

V := ΞUΞ and ẼBdG := ΞEBdGΞ . (5.65)
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The particle-hole conjugation matrix Ξ transforms any 2d× 2d matrix M as

ΞMΞ =

(
0 1d

1d 0

)(
A B

C D

)(
0 1d

1d 0

)
=

(
D C

B A

)
, (5.66)

i.e. it swaps the d × d diagonal and off-diagonal blocks of M . It follows that ẼBdG is again a diagonal
matrix that contains the eigenvalues of hBdG, only in a different order. Moreover, Eq. (5.51) ensures that
the same holds for −ẼBdG. Thus, there exists a real orthogonal permutation matrix R such that

−ẼBdG = R†EBdGR , (5.67)

where we wrote R† = Rᵀ = R−1 to make the upcoming expression a bit simpler. Taking the complex
conjugate of the final line of Eq. (5.64) therefore yields the relation

V ∗ †hBdGV
∗ = −ẼBdG = R†EBdGR

(�)
= R†U†hBdGUR , (5.68)

where we used that Ẽ∗BdG = ẼBdG is a real matrix and where we plugged in Eq. (5.55) in (�). The
definition Eq. (5.65) of V then yields the relation

UR = V ∗ = ΞU∗Ξ (5.69)

between the unitary diagonalisation matrix U and its complex conjugate U∗. We can use this relation to
further analyse the problematic anticommutators between annihilation operators from Eq. (5.63). To do
this, we first note that the multi-index notation allows us to write the matrix elements of Ξ as

Ξ(i,x)(j,y) = δ(i,x̄)(i,y) = δ(i,x)(i,ȳ) = δij(1− δxy) , (5.70)

such that

(ΞAΞ)(i,x)(j,y) =
∑
(l,m)

∑
(p,q)

Ξ(i,x)(l,m)A(l,m)(p,q)Ξ(p,q)(j,y)

=
∑
(l,m)

∑
(p,q)

δ(i,x̄)(l,m)A(l,m)(p,q)δ(p,q)(j,ȳ)

= A(i,x̄)(j,ȳ) (5.71)

for any 2d× 2d matrix A. With this, we can use Eq. (5.69) to relate the matrix elements of U and U∗ as

U∗(i,x)(j,y) = (ΞURΞ)(i,x)(j,y) = (UR)(i,x̄)(j,ȳ) . (5.72)

If we plug this into Eq. (5.63) we obtain{
λ(i,x), λ(j,y)

}
=
∑
(n,z)

U†(i,x)(n,z)U
†
(j,y)(n,z̄)

=
∑
(n,z)

U†(i,x)(n,z)U
∗
(n,z̄)(j,y)

=
∑
(n,z)

U†(i,x)(n,z)(UR)(n,z)(j,ȳ)

=
∑
(n,z)

∑
(p,q)

U†(i,x)(n,z)U(n,z)(p,q)R(p,q)(j,ȳ)

=
∑
(p,q)

(U†U)(i,x)(p,q)R(p,q)(j,ȳ)

=
∑
(p,q)

δ(i,x)(p,q)R(p,q)(j,ȳ)

= R(i,x)(j,ȳ) . (5.73)
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Taking the adjoint of this equation then tells us that{
λ(i,x), λ(j,y)

}
=
{
λ†(i,x), λ

†
(j,y)

}
= R(i,x)(j,ȳ) . (5.74)

Since R = 0 is not an allowed permutation matrix, there is no way to obtain the usual fermionic anti-
commutators {

λ(i,x), λ(j,y)

}
=
{
λ†(i,x), λ

†
(j,y)

}
= 0 . (5.75)

However, this is expected due to the Nambu redundancy. In fact, even the original fermions only fulfil

{d(i,x), d(j,y)} = {d†(i,x), d
†
(j,y)} = δ(i,x)(j,ȳ) (5.76)

for di,1 = ci and di,2 = c†i , where the only anomalous anticommutators

{d(i,x), d(i,x̄)} = {d†(i,x), d
†
(i,x̄)} = 1 (5.77)

are the ones between the particle and hole representatives of the same fermion, e.g.

{d(i,1), d(i,1̄)} = {d(i,1), d(i,2)} = {ci , c
†
i} = 1 . (5.78)

In order to realise the anticommutation relations from Eq. (5.76) for the λ(i,x) and λ†(i,x) operators, the
permutation matrix R has to be precisely the identity matrix

R(i,x)(j,y) = δ(i,x)(j,y) , (5.79)

since then Eq. (5.74) becomes{
λ(i,x), λ(j,y)

}
=
{
λ†(i,x), λ

†
(j,y)

}
= δ(i,x)(j,ȳ) , (5.80)

which tells us that the λ(i,x) are ordinary fermions as long as we restrict their indices to either Nambu
sector, i.e. to the particle sector (x = 1) or the hole sector (x = 2). Strictly speaking we could run sensible
physics with any collection C = {λ(i1,x1), . . . , λ(id,xd)} of d particle-hole independent fermion operators,
where particle-hole independence refers to the property that C cannot contain both the particle- and
the hole-version of one and the same fermion. We conclude that a diagonalisation transformation yields
proper quasi-fermions if and only if its unitary matrix representation U satisfies a much stricter version
of Eq. (5.69), namely

U
!
= ΞU∗Ξ . (5.81)

We define Bogoliubov transformations as the class of unitary transformations that satisfy this condition.
This leaves us with the problem of how to construct a Bogoliubov transformation for a given BdG
Hamiltonian. One possible starting point reveals itself upon closer inspection of Eq. (5.81). It provides
us with a strikingly simple relation between U and U∗. In particular, it almost looks like U = U∗, which
would make U a real unitary and therefore orthogonal matrix. Even though Eq. (5.81) does not quite
make U itself an orthogonal matrix, it can still be used to establish a unitary equivalence between U

and an orthogonal matrix, identifying the Bogoliubov transformations as the orthogonal subgroup O(2d)

of the unitary group U(2d). Specifically, one can find a unitary matrix U with which the particle-hole
conjugation matrix Ξ can be decomposed as

Ξ = UUᵀ . (5.82)

If we plug this into Eq. (5.81) we get

U
!
= UUᵀU∗U∗U† ⇐⇒ U†UU !

= UᵀU∗U∗ =
(
U†UU

)∗ ⇐⇒ O
!
= O∗ , (5.83)

where we defined

O = U†UU . (5.84)
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The basic idea is then the following. Maybe we can find the desired Bogoliubov diagonalisation

U†hBdGU = EBdG (5.85)

of a given BdG matrix hBdG by determining the orthogonal transformation O that solves the U-related
problem

OᵀaBdGO = CBdG , (5.86)

which results from Eq. (5.85) via

U† U† U U† hBdG U U† UU = U†EBdG U (5.87)

upon defining

aBdG = U†hBdGU and CBdG = U†EBdGU . (5.88)

This may sound like a bold hope, but it turns out to be quite a workable solution. The reason is that
the matrix aBdG comes out imaginary, skew-symmetric and Hermitian, and the orthogonal similarity
transformation O that brings the associated real, skew-symmetric and Hermitian matrix

a′BdG := iaBdG (5.89)

into the required form CBdG can be found by established algorithms. Let us go through this procedure
in more detail. For a start, we show that the unitary matrix U from Eq. (5.82) exists. The simple form
Ξ = σx ⊗ 1d of the particle-hole conjugation matrix Ξ suggests the ansatz

U =
∑
i∈I

ai σi ⊗ 1d , (5.90)

where ai ∈ C and where we introduced the index set I = {x, y, z} for a more convenient notation. The
unitarity of U requires

UU† =
∑
i,j∈I

aia
∗
jσiσ

†
j ⊗ 1d,

=
∑
i,j∈I

aia
∗
jσiσj ⊗ 1d,

(�)
=
∑
i,j∈I

aia
∗
j (δij12 + iεijkσk)⊗ 1d,

!
= 12d , (5.91)

where we have used the product identity σiσj = (δij12 + iεijkσk) of the Pauli matrices in (�).3 This
yields the simple constraints

1
!
=
∑
i∈I
|ai|2 and 0

!
=
∑
i,j∈I

aia
∗
j εijk (5.92)

for all k = x, x, z. The latter is equivalent to aia∗j
!
= a∗i aj , which can be further simplified to aia∗j

!
∈ iR.

Similarly, we get

UUᵀ =
∑
i,j∈I

aiajσiσ
ᵀ
j ⊗ 1d

=
∑
i,j∈I

aiaj(−1)δjy (δij12 + iεijkσk)⊗ 1d

!
= σx ⊗ 1d , (5.93)

3Here, the Levi-Civita symbol εijk refers to the standard order ijk = xyz, i.e. we have εxyz = εyzx = εzxy = 1 and
εyxz = εxzy = εzyx = −1.
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where we wrote

σᵀ
j = (−1)δjyσj (5.94)

to capture the symmetry (skew-symmetry) of the x and z (the y) Pauli matrix. From this, we obtain the
condition

σx
!
=
∑
i,j∈I

aiaj(−1)δjy (δij12 + iεijkσk) , (5.95)

which translates to

0
!
=
∑
i∈I

a2
i (−1)δiy and i

∑
i∈I

aiaj(−1)δjyεijk
!
=

{
1 k = x

0 else .
(5.96)

Once more, we are only interested in a particular solution for this. We can choose ax = 0, which
immediately ensures that the only non-zero term in the right-hand condition above is the k = x term
that we are interested in. With ax = 0, the left-hand condition becomes 0

!
= a2

y − a2
z, so we need ay = az

to satisfy it. In order to determine the particular value of ay and az, we look at the k = x condition

1
!
= i(ayaz + azay) =⇒ ayaz

!
= − i

2
, (5.97)

which is readily satisfied by

ay = az =
e−iπ/4√

2
. (5.98)

A quick check confirms that these coefficient choices are in line with Eq. (5.92), so the result is going to
be unitary. Combined we get the solution

U =
e−iπ/4√

2
(σy + σz)⊗ 1d =

e−iπ/4√
2

(
1d −i1d
i1d −1d

)
. (5.99)

Thus, we can always decompose the particle-hole conjugation matrix Ξ as given in in Eq. (5.82), allowing
us to identify the subgroup of Bogoliubov transformations as the orthogonal subgroup O(2d) of the
unitary group U(2d) via the isomorphism

O : U(2d)→ O(2d) < U(2d)

U 7→ U†UU , (5.100)

defined as the conjugation with U . Note that this identification tells us that all Bogoliubov transfor-
mations B satisfy det(B) = ±1, allowing a distinction between proper (det(B) = +1) and improper
(det(B) = −1) Bogoliubov transformations. With Eq. (5.99) at hand we can determine the aforemen-
tioned auxiliary matrix

aBdG = U†hBdGU (5.101)

and consider its properties. Namely, we find that it fulfils

a∗BdG = (U†hBdG U)∗

= Uᵀh∗BdGU∗

= Uᵀ(−ΞhBdG Ξ)U∗

= −Uᵀ(U∗U†)hBdG (UUᵀ)U∗

= −(UᵀU∗)U†hBdG U(UᵀU∗)
= −U†hBdG U
= −aBdG , (5.102)
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where we used Eq. (5.54) in the third line, the defining relation UUᵀ = Ξ = Ξ† = U∗U† of U in the
fourth line, and the usual unitarity U†U = 12d giving UᵀU∗ = 1∗2d = 12d in the sixth line. An analogous
calculation shows that

aᵀBdG = (U†hBdG U)ᵀ

= UᵀhᵀBdGU
∗

= Uᵀh∗BdGU∗

= −aBdG , (5.103)

where we used the Hermiticity of hBdG to rewrite hᵀBdG = h∗BdG, allowing us to reuse the previous
calculation. Thus, the conjugation of the BdG matrix hBdG by U yields an imaginary, skew-symmetric
and Hermitian matrix aBdG. As mentioned in the beginning, we can use aBdG to define a real and
skew-symmetric matrix

a′BdG := iaBdG . (5.104)

Real skew-symmetric 2d×2d matrices like a′BdG are unitarily diagonalised and possess an imaginary point
spectrum of pairwise conjugate eigenvalues

sp(a′BdG) = {±iλ1, . . . ,±iλd} . (5.105)

Furthermore, it is a well-known fact that there exists an orthogonal transformation

Oᵀa′BdGO = N , (5.106)

which brings a′BdG into the canonical form

N =


0 λ1 . . . 0 0

−λ1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 λd
0 0 . . . −λd 0

 = Λ⊗ (iσy) , (5.107)

where we defined the diagonal matrix

Λ := diag(λ1, . . . , λd) (5.108)

of non-negative4 eigenvalues of a′BdG. Note that this form of N exploits that a′BdG is always even-
dimensional. As a consequence, any zero eigenvalues appear also in pairs and can be incorporated into
the 2 × 2 block-diagonal structure in the form of 2 × 2 zero blocks. Furthermore, the tensor product
structure of Eq. (5.107) looks a bit unfamiliar because the first factor is d-dimensional and the second
factor is two-dimensional. This is precisely the opposite order of the tensor structure of Ξ and U , where
the first factor is two-dimensional and the second factor is d-dimensional. Indeed, the above form of N
corresponds to a different choice of Nambu basis, namely

B̃ = {c1, c
†
1, . . . , cd, c

†
d} . (5.109)

Nambu spinors Ψ̃ given in this basis are related to Nambu spinors Ψ given in the canonical basis from
Eq. (5.40) via

Ψ̃ = Y Ψ , (5.110)

where Y is another simple real orthogonal permutation matrix. We are going to use this transformation
to change between Nambu bases whenever the discussion in basis B̃ is beneficial, for example when

4Of course, the eigenvalues of aBdG and a′BdG = iaBdG only differ by a factor of i. Also, technically this definition of Λ

is only correct if there are no zero eigenvalues. If there are, they are going to come in even numbers and Λ will only contain
one half of them.
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the standard algorithms from linear algebra provide us with a matrix of the form Eq. (5.107). With
Eq. (5.110) we can then turn Eq. (5.106) into

Y ᵀOᵀa′BdGOY = Y ᵀNY =⇒ W ᵀa′BdGW = M , (5.111)

where we defined W := OY and M := Y ᵀNY , which is given by

M = (iσy)⊗ Λ . (5.112)

Now M matches our canonical particle-hole tensor product structure. If we multiply the right-hand
expression in Eq. (5.111) by U from the left and by U† from the right we get

UMU† = UW ᵀa′BdGWU†

= UW ᵀ
(
U†U

)(
iaBdG

)(
U†U

)
WU†

= i
(
UW ᵀU†

) (
UaBdGU†

) (
UWU†

)
= i
(
UWU†

)† (UaBdGU†) (UWU†) , (5.113)

which, using Eq. (5.101), gives (
UWU†

)†
hBdG

(
UWU†

)
= −iUMU† , (5.114)

and hence

B†hBdGB = D , (5.115)

where we defined

B = UWU† and D = −iUMU† . (5.116)

We can determine the matrix D by plugging in the definition Eq. (5.99) of U as

D = −i
(
e−iπ/4√

2

(
σy + σz

)
⊗ 1d

)(
(iσy)⊗ Λ

)(eiπ/4√
2

(
σy + σz

)
⊗ 1d

)
=

1

2

(
(σy + σz)⊗ 1d

)(
σy ⊗ Λ

)(
(σy + σz)⊗ 1d

)
=

1

2

(
(σy + σz)σy(σy + σz)

)
⊗ Λ

=
1

2

(
(σy + σz)(12 + iσx)

)
⊗ Λ

= σz ⊗ Λ , (5.117)

which is a diagonal matrix

D =

(
Λ 0

0 −Λ

)
≡ EBdG (5.118)

with the eigenvalues of hBdG on its diagonal. In particular, Λ was constructed such that it held only
eigenvalues Ei ≥ 0 so the two blocks of D readily group the positive and negative eigenenergies that we
assigned to particle and hole states in the beginning. Thus, it is valid to write

B†hBdGB = EBdG , (5.119)

highlighting that B is indeed a Bogoliubov transformation that diagonalises hBdG as desired. The problem
of finding a Bogoliubov transformation B that diagonalises a given BdG Hamiltonian hBdG is therefore
reduced to finding an orthogonal transformation O that brings a′BdG = iU†hBdGU into the canonical form
given in Eq. (5.107).
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One reliable way to achieve this is by means of a fundamental result from linear algebra known as
Schur decomposition. The Schur decomposition is a matrix decomposition algorithm that allows one to
write any real (complex) square matrix M as

M = QSQ−1 , (5.120)

where S is a real (complex) upper triangular matrix called the Schur form of M and where Q is an
orthogonal (unitary) transformation matrix. The Schur decomposition is of great methodical and com-
putational value because upper triangular matrices are generally much easier to handle than full square
matrices. In case of the complex Schur decomposition, the matrix S has another very neat feature: its
diagonal is made up of its eigenvalues, which, since S and M are similar, are also the eigenvalues of M .
Here, we are going to be concerned with the real Schur decomposition, which is a little bit more subtle.
The reason for this is that a general real square matrix M may have both real and complex eigenvalues,
although the latter must appear as conjugate pairs. If a real square matrix M does have at least one
conjugate pair of complex eigenvalues, there is no way to reduce it to an upper triangular form by means
of a real (orthogonal) similarity transformation. Thus, the real Schur decomposition generally produces
a matrix S, which is not quite in an upper triangular form. Instead, S has an upper block-triangular
form

S =


K1 × · · · ×
0 K2 · · · ×
...

...
. . .

...
0 · · · 0 Kd

 , (5.121)

where the Kj making up the diagonal are either real 1× 1 matrices

Kj = mj (5.122)

containing a real eigenvalue mj of M , or real 2× 2 matrices of the form

Kj =

(
aj bj
−bj aj

)
, (5.123)

representing a conjugate pair aj±ibj of complex eigenvalues ofM . A proof of the real Schur decomposition
theorem is included in App. A.2.

The utility of the Schur decomposition lies in its generality: any real (or complex) square matrix
has a Schur form, that can be used to reduce the computational effort in numerical settings or improve
efficiency in linear algebra problems. For example, the spectral theorem for real symmetric matrices,
which states that every real symmetric matrix A = Aᵀ is diagonalisable by an orthogonal transformation,
may be regarded as a direct consequence of the Schur decomposition: the Schur decomposition theorem
states that A is similar, through an orthogonal transformation, to an upper triangular block matrix S.
Since S is similar to A, it has to have the same symmetries as A. In particular, Sᵀ !

= S, such that the only
non-zero elements in S are the elements of the diagonal blocks. Since real symmetric matrices only have
real eigenvalues, all diagonal blocks of S are 1 × 1 blocks of eigenvalues, such that A is diagonalised by
the orthogonal transformation. Similarly, the Schur form S of a real, skew-symmetric matrix A = −Aᵀ

must also be real and skew-symmetric. As a result, the diagonal of S is bound to be zero and the only
possibly non-zero elements are occupying the off-diagonals of its 2 × 2 blocks, i.e. all 1 × 1 blocks are
equal to zero and the 2× 2 blocks of the form Eq. (5.123) simplify to

Kj =

(
0 kj
−kj 0

)
. (5.124)

Note, that this immediately allows us to read off a few things we already know about the spectra of real,
skew-symmetric matrices. Namely, the only real eigenvalues they can have are equal to zero, and their
only non-zero eigenvalues are conjugate pairs of imaginary numbers, as can be seen from the eigenvalues
±ikj of Kj in Eq. (5.124). Furthermore, the fact that the imaginary eigenvalues come in pairs tells us
that all odd-dimmensional real, skew-symmetric matrices must have an odd number5 of zero eigenvalues,

5In particular, at least one.
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making them necessarily singular. Fortunately, the real skew-symmetric matrix a′BdG that we obtain from
a BdG matrix hBdG is even by construction, so its Schur form is precisely a matrix

S =


0 λ1 · · · 0 0

−λ1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λd
0 0 · · · −λd 0

 = Λ⊗ (iσy) , (5.125)

where Λ = diag(λ1, . . . , λd) is a diagonal matrix with the imaginary parts of independent eigenvalues
of A on its diagonal. Since a′BdG is even-dimensional, the number of zero eigenvalues has to be even as
well, i.e. they too come in pairs and we can essentially treat them in the same way we treat the pairs of
imaginary eigenvalues, allowing us to write S as in Eq. (5.125).

We conclude that the real Schur decomposition can be used to obtain the orthogonal similarity trans-
formation O and the canonic form N , as defined in Eq. (5.106). Thus, the Schur decomposition provides
us with everything we need to determine a Bogoliubov transformation B and spectral matrix EBdG for a
given BdG Hamiltonian. This is particularly useful for numerical purposes, as it enables us to build on
well-established and stable implementations of the real Schur decomposition algorithm.

There is one last subtlety regarding the numerical output of a Schur decomposition algorithm, that we
need to consider: a numerical implementation of the Schur decomposition may produce a Schur matrix
S lacking the uniform structure we implied in Eq. (5.125). There are two reasons for this. The first is
that zero eigenvalues appear as 1× 1 blocks that may and generally will be arbitrarily positioned on the
diagonal of S. In particluar, zero blocks are not necessarily grouped together as in Eq. (5.125). The
second is that there generally is no uniform sign convention for the 2 × 2 blocks of S. This means that
S may feature 2× 2 blocks of both the forms

Kj =

(
0 kj
−kj 0

)
and Kj =

(
0 −kj
kj 0

)
, (5.126)

simultaneously. Both of these irregularities translate to an ambiguity in the definition of the auxiliary
matrix Λ, cf. e.g. Eq. (5.125), holding half of the eigenvalues of our BdG matrix hBdG. We have mentioned
before, that we want to choose Λ such that it is positive-semidefinite because then the eigenvalue matrix
EBdG from Eq. (5.118) readily manifests the understanding of (U, V )ᵀ as the positive energy Bogoliubov
eigenvectors in B, allowing us to understand the many-body ground state in terms of a Bogoliubov
vacuum state. Thus, we have to process the numerical Schur form accordingly. Say we get a numerical
Schur decomposition

Qᵀa′BdGQ = S (5.127)

of our auxiliary BdG matrix. Then we have to determine an appropriate orthogonal transformation Z,
such that

N := ZᵀSZ = |Λ| ⊗ (iσy) , (5.128)

where

|Λ| = diag(|λ1|, . . . , |λd|) with 0 ≤ |λ1| ≤ · · · ≤ |λd| (5.129)

is the diagonal matrix of sorted individual eigenvalues that we wished for in Eq. (5.108). The block
structure Eq. (5.125) of S tells us that

Z =


F1 0 0 . . . 0

0 F2 0 . . . 0

0 0 F3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Fd

 with Fi =

{
12 if λi > 0

σx if λi < 0 ,
(5.130)
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i.e. that Z is precisely the orthogonal transformation that flips the columns and rows of a 2× 2 block if
the corresponding superdiagonal element of S is negative, and does nothing otherwise. If we transform
Eq. (5.127) using Z we get

ZᵀQᵀa′BdGQZ = ZᵀSZ , (5.131)

which eventually gives

Oᵀa′BdGO = N , (5.132)

where we defined

O = QZ and N = |Λ| ⊗ (iσy) =


0 |λ1| · · · 0 0

−|λ1| 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 |λd|
0 0 · · · −|λd| 0

 , (5.133)

which is precisely the form we looked for in Eq. (5.107). From here, we can obtain the desired Bogoliubov
transformation as outlined above.

5.3 The Bogoliubov Vacuum

Let HBdG be a BdG Hamiltonian and let B be a Bogoliubov transformation diagonalising it as

HBdG =
∑
j

Ejb
†
jbj , (5.134)

where Ej ≥ 0 and where the Bogoliubov quasiparticle operators b†j and bj are defined via

Φ =

(
b

b†

)
=

(
U† V †

V ᵀ Uᵀ

)(
c

c†

)
= B†Ψ . (5.135)

Here, Ψ (Φ) denotes the Nambu spinor of elementary (Bogoliubov) fermion operators defined in terms
of the column vectors c (b) of elementary (Bogoliubov) annihilation operators and the corresponding
column vectors c† (b†) of elementary (Bogoliubov) creation operators. Due to Ej ≥ 0 in Eq. (5.134), we
can express the many-body ground state of HBdG as a vacuum state of Bogoliubov quasiparticles, i.e.

|GS〉BdG = |0〉b . (5.136)

The Bogoliubov vacuum |0〉b is naturally defined via

bj |0〉b
!
= 0 (5.137)

for all annihilation operators bj of Bogoliubov quasiparticles. So how do we come by such a Bogoliubov
vacuum state? We are going to outline two approaches to defining a Bogoliubov vacuum. The first one
stands out for its formal elegance. It is rooted in the representation theory of Lie groups and provides
an insightful yet technical perspective. The second one covers simplified expressions that are well-known
for their utility and established across many fields of application. The second approach will be the focus
of this work. Before turning to it, however, it is instructive to first consider a more formal perspective.

From a group theoretical point of view, a Bogoliubov vacuum state |0〉b can be obtained using the
representation theory of the Lie group O(2d). We have previously shown that the group of unitary
Bogoliubov transformations acting on a Nambu space H = H⊕H∗ of an d-dimensional complex Hilbert
space H is isomorphic to the orthogonal group O(2d) in 2d real dimensions, providing a partition of the
Bogoliubov group into proper (det(B) = 1) and improper (det(B) = −1) Bogoliubov transformations.
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The exponential map from Lie group theory allows us to express every proper Bogoliubov transformation
B ∈ SO(2d) < O(2d) as

B = exp [X] , (5.138)

where X ∈ o(2d) is a suitable skew-symmetric real 2d× 2d matrix from the Lie algebra o(2d) of SO(2d).
For a given B, the matrix X is formally determined6 by the matrix logarithm, i.e. X = log(B). The
Bogoliubov vacuum we are looking for is a distinguished state in the fermionic BdG Fock space. Generally,
the Fock space F(H) of a single-particle Hilbert space H is formed by the action of polynomials in the
single-particle creation operators c†j on a state |0〉 that is annihilated by all single-particle annihilation
operators cj – the state |0〉 is usually called the vacuum state of the Fock space. Formally, the fermionic
Fock space of a given single-particle Hilbert space H is given by the exterior algebra

F(H) =

∞⊕
n=1

H∧n, (5.139)

where H∧n denotes the antisymmetrised n-fold tensor power of H. The algebra of operators on F(H) is
generated by the fermionic creation and annihilation operators c†j and cj satisfying

{cj , c
†
k} = δjk and {cj , ck} = {c†j , c

†
k} = 0 (5.140)

for all j, k = 1, . . . , d. One can combine the creation and annihilation operators into Hermitian operators

γj1 = c†j + cj and γj2 = i(c†j − cj) , (5.141)

that satisfy

{γjs, γkr} = {γjs, γ
†
kr} = {γ†js, γ

†
kr} = 2δjs,kr . (5.142)

These operators still generate the algebra of operators on F(H). Furthermore, they still provide a basis for
Nambu spaceH due to the Nambu redundancy. We will come back to this shortly. The anticommutation
relations shown in Eq. (5.142) correspond to the anticommutation relations characterising the real Clifford
algebra Cl2d(R) of 2d generators, which illustrates that the operators on F(H) form an algebra that is
isomorphic to Cl2d(R). A Bogoliubov vacuum can then be defined by

|B 〉 = R(B) |ref〉 = eρ(x) |ref〉 , (5.143)

where R(B) denotes a unitary representation of a given proper Bogoliubov matrix B ∈ SO(2d) < O(2d)

and where |ref〉 is some reference state. The second equality expresses B through the exponential map
and uses the relation

R(B) = eρ(X) for B = eX (5.144)

between a unitary representation R of SO(2d) and the corresponding representation ρ of o(2d) on the
Fock space. The orthogonal group O(2d) has a double-valued unitary representation

R : SO(2d)→ Spin(2d) ⊂ Cl2d(R)

G 7→ ±R(G) (5.145)

on the fermionic Fock space F(H) that is known as the spin-representation of O(2d). As indicated in
Eq. (5.145), the double-valuedness of the spin representation means that the spin representation maps
every G ∈ O(2d) to a pair of Fock space operators ±R(G) ∈ Spin(2d). Neergård shows that the Fock
space representation of the Bogoliubov group is precisely this spin representation [87]. He chooses the
elementary fermion vacuum |0〉 as the reference state and defines the Bogoliubov vacuum as

|B 〉 = ±R(B) |0〉 = ± eρ(X) |0〉 , (5.146)

6Given that the exponential map is invertible at B.
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where R(B) now denotes the spin representation of a proper Bogoliubov matrix B ∈ SO(2d) < O(2d)

and where ρ(X) is the spin representation of the Lie algebra element X ∈ o(2d) generating B via the
exponential map. The sign ambiguity in Eq. (5.146) is a direct consequence of the double-valuedness of
Eq. (5.145). For B ∈ SO(2d), he arrives at the evocative form

|B 〉 = ± exp

[
1

2
Ψ† log(B)Ψ

]
|0〉 , (5.147)

where Ψ is the same Nambu spinor as before. When the reference state |ref〉 = |0〉 is fixed, the double-
valuedness of the spin representation translates to a double-valuedness of the Bogoliubov vacuum |B〉
that may cause sign problems in overlap formulas between BdG Fock states that require taking the square
root. In Ref. [87], Neergård demonstrates in detail how this understanding of the Bogoliubov vacuum
state can be used to determine and explain many of the established BdG overlap formulas.

Elegant as it is, the above formalism is not always the most convenient in practice. The main reason
for this is that the exponential involves non-commuting field operators, which generally require careful
tracking using a suitable normal ordering relation. Thus, practical applications often require simplified
expressions. In the following, we will present the two most prominent variants known as the product
state and the Thouless state. The product state can be defined as

|0〉pb =

d∏
j=1

bj |0〉 , (5.148)

where |0〉 denotes the elementary fermion vacuum determined by cj |0〉
!
= 0. In this form, the state is not

normalised and its norm Np is given by

Np = (−1)
d(d−1)

2 Pf
(
V ᵀU V V ∗

−V †V U†V ∗

)
, (5.149)

which we will discuss in more detail shortly. The nice thing about the product state is that its form
makes it obvious that it satisfies Eq. (5.137). However, this simplicity does not come for free. As we will
soon see, the product state as defined in Eq. (5.148) can only exist when the matrix V of the underlying
Bogoliubov transformation B is invertible. The other simplified variant of the Bogoliubov vacuum we
mentioned is the Thouless state. It can be defined as

|0〉Tb = exp

[
1

2

(
c†
)ᵀ
Sc†

]
|0〉 , (5.150)

where

S =
(
V U−1

)∗ (5.151)

is an auxiliary skew-symmetric matrix. The definition of S immediately shows that the Thouless state
comes with a similar limitation: it is only defined when U is invertible. The norm of |0〉Tb is

NT = (−1)
d(d+1)

2 Pf
(
S −1d
1d −S∗

)
, (5.152)

which we will derive along with the norm of the product state in the next section. Compared to the
product state, it is less straightforward to recognise the Thouless state as a Bogoliubov vacuum. Therefore,
we provide a proof of its validity as a Bogoliubov vacuum state in App. A.3. Furthermore, a quick proof
of the skew-symmetry of the auxiliary matrix S is presented in App. A.4.

Note that the form of the Thouless state |0〉Tb is reminiscent of the formal Bogoliubov vacuum |B 〉
given in Eq. (5.147). Indeed, Ref. [87] states the relation

|0〉Tb =
|B 〉
〈0|B 〉

(5.153)

between them. Still, there are a few important differences between |0〉Tb and |B 〉 that we have to be aware
of. The vacuum state |B 〉 is defined by a unitary exponential operator, which is constructed according
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to quite general principles as the spin representation of O(2d) on the BdG Fock space. As a result, it
inherits a sign ambiguity from the double-valuedness of the spin representation, as shown in Eqs. (5.145)
and (5.147). In contrast, the Thouless state arises from a non-unitary exponential operator, which only
exists when U is invertible. However, if it does exist, the Thouless state has no sign ambiguity because
the arbitrary sign of |B 〉 cancels out in the division, as evident from Eq. (5.153). Another thing that is
clear from Eq. (5.153) is that |0〉Tb is only defined when 〈0|B 〉 6= 0. Its uniqueness therefore comes at the
expense of generality. One may wonder whether 〈0|B 〉 6= 0 and the invertibility of U are two independent
conditions. This is not the case. As we shall discuss later on, the overlap between |B 〉 and |0〉 is given by

〈0|B 〉 =
√

det(U) , (5.154)

showing that 〈0|B 〉 6= 0 and the invertibility of U capture the same underlying constraint. On a more prac-
tical note, the formal Bogoliubov vacuum |B 〉 is based on an operator exponential with non-commuting
operators, so that it generally requires a normal ordering procedure. In contrast, the operator exponen-
tial defining |0〉Tb is built form pairs of fermionic creation operators, which commute among themselves,
eliminating the need for normal ordering. If both the product state and the Thouless state exist, they
are related by

|0〉pb = Pf
(
U†V ∗

)
|0〉Tb . (5.155)

A proof of this relation is included in App. A.6. However, recall that |0〉pb and |0〉Tb can only exist
simultaneously when both U and V are invertible. This is not always the case. In fact, there are quite
general circumstances that prevent U and V from being invertible. To find these, we first exploit the
unitarity

B†B =

(
U† V †

V ᵀ Uᵀ

)(
U V ∗

V U∗

)
=

(
1d 0

0 1d

)
=

(
U V ∗

V U∗

)(
U† V †

V ᵀ Uᵀ

)
= BB† (5.156)

of B to arrive at a collection

U†U + V †V = 1d = UU† + V ∗V ᵀ

U†V ∗ + V †U∗ = 0 = UV † + V ∗Uᵀ

V ᵀU + UᵀV = 0 = V U† + U∗V ᵀ

V ᵀV ∗ + UᵀU∗ = 1d = V V † + U∗Uᵀ (5.157)

of conditions for the matrices U and V . Using Schur’s determinant identity

det

(
A B

C D

)
= det(A) det(D − CA−1B) , (5.158)

we can then show that

det(B) = det(U) det(U∗ − V U−1V ∗)

(�)
= det(U) det(U∗ + V V †U−1 ᵀ)

(?)
= det(U) det(U∗ +

(
1d − U∗Uᵀ)U−1 ᵀ)

= det(U) det(U−1 ᵀ)

= 1 , (5.159)

where we have used U−1V ∗ = −
(
U−1V ∗

)ᵀ for (�) and V V † = 1d − U∗Uᵀ for (?). Both of these can be
obtained from Eqs. (5.157). Concretely, (?) is a rearranged version of the bottom right equation, while
(�) is obtained by multiplying V ∗Uᵀ + UV † = 0 by Uᵀ−1 from the right and by U−1 from the left, so
that

U−1V ∗ = −V †U−1 ᵀ = −
(
U−1V ∗

)ᵀ
. (5.160)

Equation (5.159) tells us that U invertible =⇒ det(B) = 1. The contraposition of this statement is
det(B) 6= 1 =⇒ U not invertible, which, given that the only possible determinants of Bogoliubov tran-
formations are det(B) = ±1, can be refined

det(B) = −1 prevents U from being invertible.
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det(B) = +1 det(B) = −1

d even — det(U) = det(V ) = 0

d odd det(V ) = 0 det(U) = 0

Table 5.1: Invertibility conditions for U and V . Entries indicate which matrices are forced to be singular.

To get a similar statement for V we note that Eqs. (5.157) are invariant under an exchange of U and V ,
whereas the determinant of B transforms as

det(B) = det

(
U V ∗

V U∗

)
= (−1)d det

(
V U∗

U V ∗

)
=: (−1)d det(B′) (5.161)

under the same exchange. For odd d, we can therefore map an improper Bogoliubov matrix B with
det(B) = −1 to a proper Bogoliubov matrix B′ with det(B′) = 1 by exchanging U and V . Since
Eqs. (5.157) are left invariant under this exchange, we can repeat the above argument for B′ and find
that V invertible =⇒ det(B′) = 1. If we plug in the odd-d relation det(B′) = − det(B) from Eq. (5.161)
backwards, we obtain det(B) 6= 1 =⇒ V not invertible, showing that

det(B) = −1 prevents V from being invertible when d is odd.

When d is even, the exchange of U and V does not change the determinant sign and det(B) = −1

obstructs invertiblity of both U and V . A summary of these constraints is given in Tab. 5.1. These
limitations are quite severe. For odd d, the product state and the Thouless state can never coexist,
while for even d, it is possible that neither state exists. In addition to these categorical restrictions, U
and V may always become singular by coincidence. So even though the ground state of a given BdG
Hamiltonian always exists, the simple Bogoliubov vacuum form in Eq. (5.136) is not going to be available
in every situation.

This is a problem. Fortunately, there is a quite elegant solution. To appreciate it, we must first
understand the “physical” reason why the construction of the product and Thouless state may fail. That
reason, as it turns out, is an accidental annihilation of the reference state. Generally, the construction of
every quasiparticle vacuum |0〉b as defined via Eq. (5.137) ultimately amounts to a systematic removal of
bj quasiparticles from some reference reference state |ref〉. The product state and the Thouless state use
the elementary vacuum |0〉 of the c-fermions as a reference state. This is most apparent in the definition
of the product state in Eq. (5.148), where we take the elementary fermion vacuum |0〉 and remove all
Bogoliubov quasiparticles from it by successively acting on it with every Bogoliubov annihilation operator.
The key observation is that

d∏
j=1

bj |0〉 = 0 (5.162)

means that there is at least one Bogoliubov quasiparticle mode, which is already empty in |0〉. It seems
natural to simply exclude these empty modes from the product – after all, they are already empty – and
proceed as usual. The problem with this strategy is, that it is not at all obvious, which Bogoliubov modes
are empty in |0〉. We would require a systematic way of identifying empty Bogoliubov modes to make this
work. In a favourable turn of events, there exists a decomposition algorithm that accomplishes exactly
this. The Bloch–Messiah decomposition (BMD) may be described as a singular value decomposition
(SVD) that is compatible with the particle-hole conjugation structure of Bogoliubov transformations [88].
For a given 2d× 2d Bogoliubov transformation matrix B, it is a factorisation

B =

(
U V ∗

V U∗

)
=

(
C† 0

0 Cᵀ

)(
Ū V̄

V̄ Ū

)(
D 0

0 D∗

)
= CB̄D† (5.163)

of B into a product of a block diagonal unitary 2d× 2d matrix C, which is defined in terms of a unitary
d × d matrix C, a real 2d × 2d matrix B̄, which is composed of two real d × d matrices Ū and V̄ , and
another unitary 2d × 2d matrix D†, which is determined by a unitary d × d matrix D. The two d × d
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blocks of B̄ are given by the diagonal and block-diagonal matrices

Ū =

0F ⊕dP
p=1 up12

1E

 and V̄ =

1F ⊕dP
p=1 ivpσy

0E

 . (5.164)

Here, we have introduced three index sets

IF := {1, . . . , dF} , IP := {1, 1̄, . . . , dP, d̄P} , IE := {1, . . . , dE} , (5.165)

that partition the original index J = {1, . . . , d} set as

IF = {1, . . . , dF} 7→ {1, . . . , dF} =: JF ⊂ J
IP = {1, 1̄, . . . , dP, d̄P} 7→ {dF + 1, dF + 2, . . . , dF + 2dP − 1, dF + 2dP} =: JP ⊂ J

IE = {1, . . . , dE} 7→ {dF + 2dP + 1, . . . , d} =: JE ⊂ J , (5.166)

and we write

J = JF ∪ JP ∪ JE . (5.167)

Note that we have d = dF + 2dP + dE by construction. The new index sets are named in anticipation of
the so-called filled, paired, and empty states to which they correspond. This will become clear shortly.
The cardinalities

|IF| = |JF| = dF , |IP| = |JP| = 2dP , |IE| = |JE| = dE (5.168)

are given in terms of the “dimensions” dF, dP, and dE of the filled, paired, and empty BMD sectors,
respectively. Note that we will usually sum over p = 1, . . . , dP and implicitly account for the paired
indices p̄. For instance, in Eq. (5.164), the P paired blocks are 2× 2 matrices in the paired indices. Each
of these blocks is characterised by two numbers up and vp that fulfil

u2
p + v2

p = 1 and up, vp > 0 (5.169)

for all p = 1, . . . , dP. Finally, we wrote 0F and 0E for the dF- and the dE-dimensional zero matrix, and
1F and 1E for the dF- and the dE-dimensional unit matrix in Eq. (5.164). The actual construction of
the BMD is rather lengthy, occasionally tedious, and often conspicuously absent in the literature. The
interested reader may refer to App. A.5 for a comprehensive discussion.

It is worth mentioning that the form of the BMD in Eq. (5.163) differs from the standard form found
in much of the literature, cf. e.g. Ref. [83]. The main difference is that Eq. (5.163) is asymmetric in the
unitary matrices C and D, combining C and D† instead of C and D or C† and D†. The reason why we
define C and D† in this way is because it makes the following definitions more symmetrical. Concretely,
if we plug Eq. (5.163) into the definition of the Bogoliubov–Nambu spinor from Eq. (5.35), we get(

D 0

0 D∗

)(
b

b†

)
=

(
Ūᵀ V̄ ᵀ

V̄ ᵀ Ūᵀ

)(
C 0

0 C∗

)(
c

c†

)
, (5.170)

which, using Ūᵀ = Ū , takes the simple form(
b̄

b̄†

)
=

(
Ū V̄ ᵀ

V̄ ᵀ Ū

)(
c̄

c̄†

)
(5.171)

upon defining new fermionic (quasi-)particle modes

c̄j =

d∑
m=1

Cjmcm and b̄j =

d∑
m=1

Djmbm . (5.172)

Note that this transformation only mixes the elementary and Bogoliubov annihilation operators amongst
themselves, so the new fermion modes have the same vacuum as the original ones, i.e.

c̄j |0〉 = 0 and b̄j |0〉b = 0 (5.173)
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for all j = 1, . . . , d. The new elementary fermion annihilators c̄n correspond to a basis of single-particle
states that is known as the “canonical” single-particle basis because it diagonalises the one-particle reduced
density matrix ρ [83]. While this is quite useful in its own right, our primary interest lies in the new
Bogoliubov quasiparticle operators. Specifically, the (block-)diagonal structure of the matrices Ū and V̄
from Eq. (5.164) allows us to identify three types of new Bogoliubov quasiparticles:

i) the f = 1, . . . , dF “filled” modes, where vf = 1 and uf = 0, such that

b̄f = c̄†f . (5.174)

ii) the p = 1, . . . , dP “paired” modes, where up, vp > 0, such that

b̄p = upc̄p − vpc̄
†
p̄ and b̄p̄ = upc̄p̄ + vpc̄

†
p . (5.175)

iii) the e = 1, . . . , dE “empty” modes, where ve = 0 and ue = 1, such that

b̄e = c̄e . (5.176)

If we plug the inverse transformation bj =
∑d
n=1D

†
jnb̄n of the b̄n from Eq. (5.172) into Eq. (5.148) we

end up with

|0〉pb =
d∏
j=1

bj |0〉

=

d∏
j=1

∑
nj

D†jnj b̄nj

 |0〉
=

d∑
n1=1

· · ·
d∑

nd=1

 d∏
j=1

D†jnj b̄nj

 |0〉
(�)
=

∑
π∈Sd

sign(π)

 d∏
j=1

D†jπ(j)

 b̄1 · · · b̄d |0〉
(?)
= det(D†)

d∏
j=1

b̄j |0〉 . (5.177)

In (�) we exploited that b̄2j = 0 for all j so that

d∑
n1=1

· · ·
d∑

nd=1

 d∏
j=1

D†jnj b̄nj

 (5.178)

only contains terms where each b̄j appears exactly once. As a result, the whole expression reduces to a
sum over all permutations of operator products, i.e.

d∑
n1=1

· · ·
d∑

nd=1

 d∏
j=1

D†jnj b̄nj

 −→
∑
π∈Sd

D†1π(1)· · ·D
†
dπ(d)b̄π(1)· · · b̄π(d) , (5.179)

where π(i) denotes the image of the index i under the permutation π ∈ Sd of the symmetric group of
d elements. Using {b̄j , b̄k} = 0 we can bring each permutation in a fixed reference order if we account
for the anticommutator sign b̄j b̄k = −b̄k b̄j that comes with every transposition. We chose the natural
reference order b̄1· · · b̄d, with which we get[∑

π∈Sd

sign(π)D†1π(1)· · ·D
†
dπ(d)

]
b̄1· · · b̄d , (5.180)
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where we took the operator string out of the sum because it no longer depends on the summation over
permutations. The convenient choice of reference order means that the anticommutator signs are precisely
the permutation signs sign(π) = (−1)Nπ with the number Nπ of neighbouring transpositions generating
the elements π ∈ Sd of the d-th permutation group. This allows us to plug in the definition

det(D†) :=
∑
π∈Sd

sign(π)D†1π(1)· · ·D
†
dπ(d) (5.181)

of the determinant of D† in (?) and get the final expression. Now, D is a unitary matrix so det(D†) is
only a phase factor. This shows that |0〉b and |0〉b̄ do indeed correspond to the same quantum state. For
now, we disregard this additional phase factor and use the definitions of the empty and filled Bogoliubov
quasiparticle modes to write

|0〉pb ∝
d∏
j=1

b̄j |0〉

=

dF∏
f=1

b̄f

dP∏
p=1

b̄pb̄p̄

dE∏
e=1

b̄e |0〉

=

dF∏
f=1

c̄†f

dP∏
p=1

b̄pb̄p̄

dE∏
e=1

c̄e |0〉 . (5.182)

Clearly, this expression vanishes whenever dE > 0. However, we already knew this, because Eq. (5.164)
tells us that dE > 0 makes V̄ and hence V singular, giving the same condition as before. What we did not
know before was how to isolate and remove the troublesome empty Bogoliubov modes from the equation.
This is what Eq. (5.182) allows us to do. We can simply leave out the empty Bogoliubov modes and
define the truncated product state as

|0̄〉pb :=

dP∏
p=1

b̄pb̄p̄

dF∏
f=1

c̄†f |0〉 , (5.183)

where we moved the filled modes to the right, using that c̄†f = b̄f and {b̄j , b̄k} = 0 so that commuting
the c̄†f past the even number of paired Bogoliubov annihilation operators

∏
p b̄pb̄p̄ does not yield an extra

sign. The truncation of the product state can be reinterpreted in terms of the reference state. Namely,
the truncation procedure is equivalent to choosing the reference state |ref〉 as

|ref〉 := |0′〉 =

dE∏
e=1

b̄†e |0〉 , (5.184)

in which the Bogoliubov modes that are empty in |0〉 are manually occupied beforehand. With this, the
product state becomes

|0′〉pb =

dF∏
f=1

b̄f

dP∏
p=1

b̄pb̄p̄

dE∏
e=1

b̄e |0′〉

=

dF∏
f=1

b̄f

dP∏
p=1

b̄pb̄p̄

dE∏
e=1

b̄e

dE∏
e=1

b̄†e |0〉

= εE

dF∏
f=1

b̄f

dP∏
p=1

b̄pb̄p̄

dE∏
e=1

b̄eb̄
†
e |0〉

= εE

dF∏
f=1

b̄f

dP∏
p=1

b̄pb̄p̄

dE∏
e=1

(
1−�

�Z
Zb̄
†
eb̄e

)
|0〉

= εE

dF∏
f=1

b̄f

dP∏
p=1

b̄pb̄p̄ |0〉

= εE |0̄〉
p
b , (5.185)
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where we defined the combinatorial sign

εE = (−1)
dE(dE−1)

2 , (5.186)

that results form the dE(dE − 1)/2 transpositions that implement the permutation

b̄1· · · b̄dE
b̄†1· · · b̄

†
dE

−→ b̄1b̄
†
1· · · b̄dE

b̄†dE
, (5.187)

and cancelled all terms with b̄e-annihilation operators on the right because b̄e |0〉 = 0 for the empty
Bogoliubov modes. Up to an irrelevant global sign, this reproduces the truncated product state.

The key advantage of Eq. (5.183) is that it is well-defined and constitutes a ground state of the
underlying BdG Hamiltonian, regardless of whether V is singular (dE > 0) or not (dE = 0). Finally, we
note that one can bring |0̄〉pb into the practical form

|0̄〉pb =: N̄p

dP∏
p=1

(
up + vpc̄

†
p̄c̄
†
p

) dF∏
f=1

c̄†f |0〉 (5.188)

by plugging in the paired Bogoliubov modes from Eq. (5.175) and rewriting their product as

dP∏
p=1

b̄pb̄p̄ =

dP∏
p=1

(
upc̄p − vpc̄

†
p̄

)(
upc̄p̄ + vpc̄

†
p

)

=

dP∏
p=1

(
u2
p�
�Z
Zc̄pc̄p̄ + upvpc̄pc̄

†
p − vpup�

�Z
Zc̄
†
p̄c̄p̄ − v2

p c̄
†
p̄c̄
†
p

)

=

dP∏
p=1

(
upvp

(
1−�

�Z
Zc̄
†
pc̄p

)
+ v2

p c̄
†
pc̄
†
p̄

)

=

dP∏
p=1

vp

(
up + vpc̄

†
pc̄
†
p̄

)

=: N̄p

dP∏
p=1

(
up + vpc̄

†
pc̄
†
p̄

)
, (5.189)

where we defined the truncated norm factor

N̄p :=

dP∏
p=1

vp (5.190)

and cancelled all the terms with c̄-annihilation operators on the right because the whole expression acts
on the c̄-vacuum |0〉 afterwards. Thus, we obtain a normalised truncated product state

|0̄〉pb =

dP∏
p=1

(
up + vpc̄

†
pc̄
†
p̄

) dF∏
f=1

c̄†f |0〉 , (5.191)

which is distinctly reminiscent of the BCS vacuum state we stated in Eq. (5.13), although the paired
indices do not (necessarily) refer to quasi-momentum. Based on the normalised truncated product form
of the quasiparticle vacuum from Eq. (5.191) we can construct the excited energy eigenstates as BdG
Fock states as

|n1, . . . , nd〉b :=

d∏
m=1

(b†m)nm |0̄〉pb , (5.192)

where nm = 0, 1 denotes the occupation of the m-th quasiparticle state.
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5.4 Bogoliubov Overlaps

For many practical purposes, we are interested in overlaps between BdG Fock states. It turns out that
finding a reliable overlap formula is a surprisingly hard problem. In Ref. [87], Neergård demonstrated that
this is related to the fact that the Fock space representation of Bogoliubov transformations corresponds to
the spin representation of an orthogonal group. The inherent double-valuedness of the spin representations
then leads to a sign-ambiguity for all overlap formulas involving a square root. Let us go through this in
more detail.

The simplest BdG overlaps of interest are overlaps between different vacua. This includes things like
the overlaps 〈0|0〉pb and 〈0|0〉Tb between the Bogoliubov vacua |0〉pb and |0〉Tb and their reference vacuum
|0〉, but also norm squares like 〈0|0〉p p

b b and 〈0|0〉T T
b b . Most BdG overlap formulas were first developed for

the Thouless state. For example, Ref. [83] presents the Onishi formula

〈0|0̃〉Tb =
√

det(U∗) (5.193)

for the overlap between a renormalised Thouless state

|0̃〉Tb = 〈0|0̃〉Tb exp

[
1

2

(
c†
)ᵀ
Sc†

]
|0〉 (5.194)

and the elementary vacuum, and the expression

〈0̃′|0̃〉T T

b b =
√

det(U†U ′ + V †V ′) (5.195)

for the overlap between two distinct renormalised Thouless states

|0̃〉Tb = 〈0|0̃〉Tb exp

[
1

2

(
c†
)ᵀ
Sc†

]
|0〉 and |0̃′〉Tb = 〈0|0̃′〉Tb exp

[
1

2

(
c†
)ᵀ
S′c†

]
|0〉 . (5.196)

Above, the matrices S and S′ are given by S = (V U−1)∗ and S′ = (V ′U ′ −1)∗, respectively. Equation
(5.195) is sometimes called an Onishi formula in the literature as well. Both of the Onishi formulas above
refer to a paper [89] by Onishi and Yoshida, in which they use a Thouless state of the form

|0〉Tb =
1

〈0|0̃〉Tb
|0̃〉Tb = exp

[
1

2

(
c†
)ᵀ
Sc†

]
|0〉 (5.197)

with 〈0|0〉Tb = 1, and presented the overlap formula

〈0′|0〉T T
b b = exp

[
1

2
tr
(
log(1 + S′ †S)

)]
=
√

det(1 + S′ †S) . (5.198)

Note that Eq. (5.198) can be used to reproduce Eq. (5.195), since

〈0̃′|0̃〉T T

b b

(�)
= 〈0̃′|0〉T

b 〈0|0̃〉Tb 〈0′|0〉T T
b b

=
√

det(U ′)
√

det(U∗)
√

det(1 + S′ †S)

(?)
=
√

det(U ′)
√

det(U∗)
√

det(1 + U ′ ᵀ−1V ′ ᵀV ∗U∗−1)

=
√

det(U ′)
√

det(U∗)
√

det(U ′ ᵀ−1)
√

det(U ′ ᵀU∗ + V ′ ᵀV ∗)
√

det(U∗−1)

(∗)
=

√
det(U ′)

√
det(U∗)√

det(U ′ ᵀ)
√

det(U∗)

√
det(U ′ ᵀU∗ + V ′ ᵀV ∗)

(4)
=
√

det(U†U ′ + V †V ′) , (5.199)

where we plugged in Eq. (5.197) in (�), inserted the definitions of S′ † and S in (?), and finally used
det(A−1) = 1/ det(A) in (∗) as well as det(Aᵀ) = det(A) in (4).
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The renormalised Thouless state in Eqs. (5.194) and (5.196) is essentially the formal Bogoliubov
vacuum |B 〉 from Eq. (5.147), but with the full Nambu-spinor exponential reduced to one involving only
creation operators. The contractions of the mixed creation-annihilation terms required for this reduction
precisely yield the normalisation factor in Eqs. (5.194) and (5.196). As a result, Eqs. (5.194) and (5.196)
inherit a sign ambiguity from the double-valuedness of the spin representation of O(2d). Neergård argues
that this sign ambiguity manifests as the intrinsic sign ambiguity of the square root in Eqs. (5.193)
and (5.195). In contrast, the Thouless state in Eq. (5.197) is unique because the arbitrary sign of |0〉Tb
cancels out in the division by 〈0|0〉Tb . Of course, this is only possible when 〈0|0〉Tb 6= 0, in which case it is
equivalent to fixing the sign of |0〉Tb by demanding 〈0|0〉Tb

!
= 1. The sign ambiguity of the square root in

Eq. (5.198) can then be resolved defining

|0(τ)〉Tb := exp
[τ

2

(
c†
)ᵀ
Sc†

]
|0〉 (5.200)

and requiring that

〈0′|0(τ)〉T T
b b =

√
det(1 + τS′ †S) (5.201)

be a continuous function of τ ∈ [0, 1]. Since the limit of τ → 0 is well-defined it can be used to choose a
sign of the square root. This is not an option for the overlap formulas based on |0〉Tb ∝ |B 〉 mentioned
before. A comprehensive discussion of these ideas is given in Ref. [87].

Here, we are going to focus on an overlap formula that is due to Robledo [90]. In contrast to the
above formulas, the Robledo formula does not require taking a square root. Instead, it is given by

〈0′|0〉T T
b b = (−1)

d(d+1)
2 Pf

(
S −1d
1d −S′ ∗

)
. (5.202)

One way to derive this result is through fermionic coherent states, which allow us to exploit the underlying
Grassmann algebra and the associated Berezin integral techniques. Specifically, we can write

〈0′|0〉T T
b b = 〈0| exp

[
−1

2
S′ ∗jkcjck

]
exp

[
1

2
Sjkc

†
jc
†
k

]
|0〉

(�)
= 〈0| exp

[
−1

2
S′ ∗jkcjck

](∫ ( d∏
i=1

dξ∗i dξi

)
exp [−ξ∗i ξi ] |ξ〉 〈ξ|

)
exp

[
1

2
Sjkc

†
jc
†
k

]
|0〉

=

∫ ( d∏
i=1

dξ∗i dξi

)
exp [−ξ∗i ξi ] 〈0| exp

[
−1

2
S′ ∗jkcjck

]
|ξ〉 〈ξ| exp

[
1

2
Sjkc

†
jc
†
k

]
|0〉

(?)
=

∫ ( d∏
i=1

dξ∗i dξi

)
exp [−ξ∗i ξi] 〈0|ξ〉 exp

[
−1

2
S′ ∗jkξj ξk

]
exp

[
1

2
Sjkξ

∗
j ξ
∗
k

]
〈ξ|0〉

(∗)
=

∫ ( d∏
i=1

dξ∗i dξi

)
exp [−ξ∗i ξi ] exp

[
−1

2
S′ ∗jkξj ξk

]
exp

(
1

2
Sjkξ

∗
j ξ
∗
k

)
(4)
= (−1)

d(d+1)
2

∫
dµ exp

[
1

2
µᵀMµ

]
(•)
= (−1)

d(d+1)
2 Pf(M) , (5.203)

where we used an Einstein notation to improve readability: indices that appear twice are implicitly
summed over unless they are explicitly included in a product. In (�), we inserted the completeness
relation

1 =

∫ ( d∏
i=1

dξ∗i dξi

)
exp [−ξ∗i ξi ] |ξ〉 〈ξ| (5.204)

of fermionic coherent states

|ξ〉 := e−ξi c
†
i |0〉 . (5.205)
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Note that 〈0|ξ〉 = 1 according to this definition. Furthermore, ξi and ξ∗i are mutually conjugate complex
Grassmann numbers, i.e. elements of the exterior algebra over the complex numbers satisfying

{ξj , ξk} = {ξ∗j , ξ∗k} = {ξ∗j , ξk} = 0 , (5.206)

and, as a direct consequence, ξ2
j = ξ∗ 2

j = 0 for all j, k = 1, . . . , d. Next, we plugged in the eigenvalue
equations

ci |ξ〉 = ξi |ξ〉 and 〈ξ| c†i = ξ∗i 〈ξ| (5.207)

of fermionic coherent states in (?) and used that 〈0|ξ〉 = 1 in (∗). Finally, we took advantage of the fact
that the even products of the Grassmann numbers commute, which allowed us to combine the exponentials
in (∗) and rewrite the resulting exponent as a vector-matrix-vector product between vectors

µ := (ξ∗1 · · · ξ∗d ξ1 · · · ξd)
ᵀ (5.208)

and a skew-symmetric matrix

M :=

(
S −1d
1d −S′ ∗

)
(5.209)

in (4). Additionally, we transformed the integral measure as

d∏
i=1

dξ∗i dξi = (−1)
d(d+1)

2 dξd . . . dξ1dξ
∗
d . . . dξ

∗
1 = (−1)

d(d+1)
2 dµ2d . . . dµ1 =: (−1)

d(d+1)
2 dµ , (5.210)

where the sign prefactor is a consequence of the d(d+ 1)/2 transpositions that are necessary to rearrange
the initial integral measure into the new one, i.e.

d∏
i=1

dξ∗i dξi = (−1)d
d∏
i=1

dξi dξ
∗
i

= (−1)ddξddξ
∗
d . . . (dξ2dξ

∗
2)dξ1dξ

∗
1

= (−1)ddξddξ
∗
d . . . dξ1 (dξ2dξ

∗
2)dξ∗1

= (−1)ddξ1 . . . dξddξ
∗
d . . . dξ

∗
1

= (−1)d(−1)
d(d−1)

2 dξd . . . dξ1dξ
∗
d . . . dξ

∗
1

= (−1)
d(d+1)

2 dξd . . . dξ1dξ
∗
d . . . dξ

∗
1 . (5.211)

Here, we first flipped all pairs of mutually conjugate differentials, which requires d transpositions and
produces a sign factor of

N(flip d pairs) = (−1)d . (5.212)

Then we successively moved the pairs of mutually conjugate Grassmann differentials to the proper position
on the right as indicated between the second and third line of equation. Once more, this does not produce
any signs because pairs of Grassmann objects commute with everything else. Finally, we reverse the order
of dξ1 . . . dξd which requires

∑d−1
k=1 k = d(d− 1)/2 transpositions and therefore yields an additional sign

factor of

N(reverse order) = (−1)
d(d−1)

2 , (5.213)

giving the overall sign factor of

N(flip d pairs)N(reverse order) = (−1)d(−1)
d(d−1)

2 = (−1)
d(d+1)

2 . (5.214)

in the final line of Eq. (5.211). We chose to explicitly rearrange the initial integral measure because it
allows us to immediately plug in the following Berezin–Grassmann integration results in the final line (•)
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of Eq. (5.203): let θ1 , . . . , θ2n be the 2n generators of a Grassmann algebra and let A be a skew-symmetric
2n× 2n matrix, then ∫

dθ2n . . . dθ1e
1
2 θiAijθj = Pf(A) . (5.215)

The formula given in Eq. (5.202) determines the overlap between two Thouless Bogoliubov vacuum states
without having to take a square root. It is natural to wonder whether we can find a similar result for the
product form of the Bogoliubov vacuum. It turns out that this is possible using the relation Eq. (5.155)
between the Thouless and the product state, with which Eq. (5.202) becomes

〈0′|0〉p p
b b = (−1)

d(d+1)
2 Pf

(
V ′ ᵀU ′ V ′ ᵀV ∗

−V †V ′ U†V ∗

)
. (5.216)

The full calculation required to show this is given in App. A.7. The above Pfaffian formula for the
overlap between product state representations of different Bogoliubov vacua can be generalised to overlaps
between all BdG Fock states. This was done by Bertsch and Robledo [90–93], who showed that

〈n′r|ns〉b b = ± 1

NN ′
Pf (M) , (5.217)

where

|ns〉b := b†m1
· · · b†ms |0̄〉

p
b (5.218)

denotes a BdG Fock state with s excitations specified by the index set s ≡ {m1, . . . ,ms} ⊂ [1, N ], and
where

M =


V̄ ′ ᵀŪ ′ V̄ ′ ᵀC ′ †V ′ ∗r V̄ ′ ᵀC ′ †Us V̄ ′ ᵀC ′ †CV̄

· U ′ †r V
′ ∗
r U ′ †r Us U ′ †r CV̄

· · V ᵀ
s Us V ᵀ

s CV̄

· · · Ū V̄

 , (5.219)

is a skew-symmetric matrix given in terms of the Bogoliubov matrices (U, V ) associated to |ns〉b and
(U ′, V ′) associated to |n′r〉b [93, 94]. The matrices Ū , V̄ , C and Ū ′, V̄ ′, C ′ denote the BMD components
of (U, V ) and (U ′, V ′), respectively. All of the BMD matrices are truncated to omit empty modes,
accounting for the fact that we based the construction of the BdG Fock states given in Eq. (5.218) on
the truncated product states. The r and s matrix subscripts indicate a restriction of the column index
set to the respective index set, r or s. For instance, Ur is a d×R matrix

Ur :=

U1m1
· · · U1mr

...
. . .

...
Udm1

· · · Udmr

 , (5.220)

formed by the columnsm1, . . . ,mr of U . The restriction to the specified index set is always applied before
any other matrix operations, such as taking the transpose, adjoint or complex conjugate. The sign ± in
Eq. (5.217) is given by

± = (−1)
(o(o−1)+s(s−1))

2 , (5.221)

where o = dF + 2dP is the number of non-empty BdG modes in the vacuum |0′〉pb and r is the number of
excitations in |n′r〉b. The normalisation factors in Eq. (5.217) are given by

N =

dP∏
p=1

vp and N ′ =

dP′∏
p′=1′

vp′ . (5.222)
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5.5 Majorana Modes in BdG Theories

In quantum field theory, Majorana fermions are particles associated with a special kind of quantum
field. These Majorana type quantum fields are exotic in that they are real, which famously means that
Majorana particles are their own antiparticles. In condensed matter theory, and in particular in BdG
theories, the redundant structure of Nambu space allows us to rewrite BdG Hamiltonians in terms of
certain quasi-fermionic operators that are self-adjoint and in this sense reminiscent of Majorana fermions.
We encountered this before when we illustrated that the algebra of operators on the fermionic Fock space
F(H) of an d-dimensional single-particle Hilbert spaceH resembles the Clifford algebra Cl2d(R). However,
the special thing about BdG theories is not merely their formulation in Nambu space, which admits a
Majorana basis, but their potential for Majorana eigenstates. To see this, consider a BdG Hamiltonian

HBdG = Ψ† hBdG Ψ =
(
c† c

)(T ∆†

∆ −T ∗

)(
c

c†

)
, (5.223)

where Ψ = (c1 . . . cd c
†
1 . . . c

†
d)

ᵀ denotes the Nambu spinor of the d elementary fermion annihilation and
creation operators cj and c

†
j . A Bogoliubov diagonalisation

HBdG = Φ†EBdG Φ =
(
b† b

)(E 0

0 −E

)(
b

b†

)
(5.224)

of HBdG yields 2d complex Bogoliubov eigenstates b1, . . . , bd, b
†
1, . . . , b

†
d, where the bj and the b†j are

understood as the quasiparticle and quasihole eigenstates, respectively. Now, we may unitarily combine
particle-hole conjugate pairs of Bogoliubov state operators into new operators

γ(j,1) = b†j + bj and γ(j,2) = i(b†j − bj) . (5.225)

In this way, we can express the BdG problem that was originally stated in terms of d particle-hole
conjugate pairs of complex Bogoliubov fermions through 2d operators that are self-adjoint

γ†(j,1) = (b†j + bj)
† = bj + b†j = γ(j,1) and γ†(j,2) =

[
i(b†j − bj)

]†
= −i(bj − b

†
j) = γ(j,2) (5.226)

and fulfil {
γ(j,k), γ(l,m)

}
=
{
i(k−1)(b†j + (−1)(k−1)bj), i

(m−1)(b†l + (−1)(m−1)bl )
}

= i(k+m−2)
({
b†j , b

†
l

}
+ (−1)(m−1)

{
b†j , bl

}
+(−1)(k−1)

{
bj , b

†
l

}
+ (−1)(k+m−2)

{
bj , bl

})
= i(k+m−2)

(
(−1)(m−1)δjl + (−1)(k−1)δjl

)
= i(k+m−2)

(
(−1)(m−1) + (−1)(k−1)

)
δjl

=

{
2 for j = l, k = m

0 else ,
(5.227)

where j, l = 1, . . . , d and k,m = 1, 2. If we introduce multi-indices α = (j, k) and β = (l,m), the Majorana
algebra simplifies to the Clifford algebra of 2d generators

{γα, γβ} = 2δαβ . (5.228)

The self-adjointness of the γ operators is what earns them the name of Majorana operators. However,
the anticommutation relations in Eq. (5.228) are not quite the same as the fermionic anticommutation
relations: even though different γ operators anticommute properly as

{γα, γβ} = {γ†α, γβ} = {γα, γ
†
β} = {γ†α, γ

†
β} = 0 , (5.229)
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for α 6= β, the anticommutators for α = β are highly irregular. To begin with, the anticommutators

{γ†α, γα} = {γα, γ†α} = 2 (5.230)

deviate from the canonic fermionic anticommutator relations by a factor of two. This factor could of
course be removed by simply renormalising the γ operators by a factor of 1/

√
2, but this is not usually

done. We will soon see why. On top of that, the self-adjointness of the γ operators means that the
formally sensible relations in Eq. (5.230) are also equivalent to

{γα, γα} = {γ†α, γ†α} = 2 , (5.231)

as indicated in Eq. (5.228). These anticommutator relations are not even formally fermionic anymore.
They tell us that the individual γ operators fail to square to zero. Instead, they square to one since

{γα, γα} = γαγα + γαγα = 2γ2
α = 2 =⇒ γ2

α = 1 . (5.232)

Note that a renormalised version of the γ operators that satisfies {γα, γβ} = δαβ would square to one
half instead. However, one half is an inconvenient value for γ2

α because it makes expressions like operator
exponentials

eCγαγβ (5.233)

a fair bit harder to evaluate. For such purposes it is far more practical to choose the γ operators such
that γ2

α
!
= 1, i.e. if {γα, γβ} = 2δαβ instead of {γα, γβ} = δαβ . In a sense, we sacrifice a measure of

resemblence to the fermionic algebra for better manageability. This is a favourable deal for us because
said resemblence was only ever formal to begin with. The mere fact that the γ operators square to a
non-zero constant presents a far more serious problem: it means that the γ number operator

nγ := γ†γ = γγ = 1 (5.234)

is constant. As a result, there are no number states available for the γ operators and they cannot be
accomodated as proper quasiparticle states in a fermionic Fock space. This is an important difference to
the Majorana fermions from quantum field theory, which are of course real fermions.7

Now, the Majorana states usually fail to be eigenstates of the BdG Hamiltonian. To see this, we
consider the matrix representation of the BdG eigenvalue equations for quasiparticle and quasihole Bo-
goliubov modes. These read

hBdGβj = +Ejβj and hBdGηj = −Ejηj , (5.235)

where hBdG denotes the BdG Hamiltonian matrix and where βj and ηj denote the coefficient column
vectors of the quasiparticle and quasihole Bogoliubov modes, i.e.

βj =



U1 j
...

Ud j
V1 j
...
Vd j


and ηj =



V ∗1 j
...
V ∗d j
U∗1 j
...

U∗d j


, (5.236)

with which

bj = β†jΨ =

d∑
k=1

(
U∗kjck + V ∗kjc

†
k

)
and b†j = η†jΨ =

d∑
k=1

(
Vkjck + Ukjc

†
k

)
. (5.237)

In terms of the coefficient vectors, Eq. (5.225) can be written as

γ(j,1) = (η†j + β†j )Ψ =: γ†(j,1)Ψ and γ(j,2) = i(η†j − β
†
j )Ψ =: γ†(j,2)Ψ , (5.238)

7In every sense of the word “real”.
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which motivates the interpretation of the coefficient vectors

γ(j,1) = βj + ηj and γ(j,2) = i(βj − ηj) (5.239)

as representatives of the Majorana modes. With these, we get

hBdGγ(j,1) = hBdG(βj + ηj) and hBdGγ(j,2) = hBdG i(βj − ηj) (5.240)

= Ej(βj − ηj) = Ej i(βj + ηj) (5.241)

= −iEj γ(j,2) = iEj γ(j,1) (5.242)

so the pair of Majorana vectors γ(j,1) and γ(j,2) is swapped and equipped with an imaginary prefactor of
±iEj under the action of hBdG. These equations can only ever be understood as eigenvalue equations if
Ej = 0, i.e. if the Majorana operators are made up of Bogoliubov quasiparticle and quasihole operators
that belong to zero energy eigenstates. We will call Majorana modes that correspond to zero energy
eigenstates Majorana zero modes (MZMs) and their operators MZM operators.

Note that zero energy Bogoliubov states are quite rare in BdG systems and appear only on special
occasions. This is why the general narrative regarding Majorana modes in condensed matter systems is
often summarised as follows: while it is always possible to rewrite a given BdG Hamiltonian in terms of
Majorana operators, it is rare that these Majorana operators correspond to eigenstates of the Hamiltonian.
That is to say, we can always formulate a BdG problem in terms of inseparably paired finite energy
Majorana states, but we seldom encounter unpaired zero energy Majorana modes. Moreover, we note
that in general there is no natural prescription on how to form complex fermion operators out of a given
set of Majorana operators, so there is no natural way to rewrite a given Majorana Hamiltonian in the
form of a BdG Hamiltonian.

The construction scheme for Majorana operators that we put forth in Eq. (5.225) is of course not
unique. Since the combination of complex Bogoliubov operators into self-adjoint Majorana operators
is usually a purely mathematical endeavour without immediate physical relevance, we are free to write
down other, more involved schemes as long as the quasi-fermionic anticommutation relations remain
intact. Of course, there is little to no reason to make things even more complicated for finite energy
pairs of Majorana modes. However, this changes in the presence of complex Bogoliubov modes with zero
energy. As we have seen, the MZMs that are constructed from such zero energy Bogoliubov modes are
eigenstates of the Hamiltonian. Thus, the remaining degree of freedom in their construction becomes
interesting. Let us consider a general BdG system with n complex Bogoliubov modes b1, . . . , bn at zero
energy. We want to find all possible sets of 2n MZM operators γ1, . . . , γ2n that satisfy

{γj , γk} = 2δjk and γj = γ†j , (5.243)

and are constructed from the n pairs of Bogoliubov creation and annihilation operators of the zero energy
quasiparticle and quasihole Bogoliubov modes. To do this, we consider the most general ansatz for such
operators,

γj =

n∑
k=1

(αjkbk + βjkb
†
k) , (5.244)

with coefficients αjk, βjk ∈ C for all j, k = 1, . . . , n. The self-adjointness requirement γj = γ†j immediately

tells us that βjk
!
= α∗jk, so we get

γj =

n∑
k=1

(αjkbk + α∗jkb
†
k) . (5.245)

Additionally, we have to ensure the Clifford algebra requirement

{γj , γl }
!
= 2δjl , (5.246)
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which, in terms of Eq. (5.245), becomes

{γj , γl } =

{
n∑
k=1

(
αjkbk + α∗jkb

†
k

)
,

n∑
m=1

(
αlmbm + α∗lmb

†
m

)}

=

n∑
k,m=1

(
αjkαlm��

��XXXX{bk, bm}+ αjkα
∗
lm{bk, b

†
m}+ α∗jkαlm{b

†
k, bm}+ α∗jkα

∗
lm��

��XXXX{b†k, b
†
m}
)

=

n∑
k,m=1

(
αjkα

∗
lm + α∗jkαlm

)
δkm

=

n∑
k=1

(
αjkα

∗
lk + α∗jkαlk

)
= 2

n∑
k=1

Re
(
αjkα

∗
lk

)
!
= 2δjl , (5.247)

where Re( · ) denotes the real part. These conditions can be reduced to

1
!
=

n∑
k=1

|αjk|2 and 0
!
=

n∑
k=1

Re
(
αjkα

∗
lk

)
(5.248)

for all j 6= l ∈ {1, . . . , n}. The second condition ensures that different MZM operators anticommute, while
the first one guarantees that the individual MZM operators square to one. If we use these conditions in
a system with n = 1 zero energy Bogoliubov mode b1, we get two MZMs

γ1 = α11b1 + α∗11b
†
1 and γ2 = α21b1 + α∗21b

†
1 (5.249)

with constraints

|α11|2 = |α21|2
!
= 1 and Re (α11α

∗
21)

!
= 0 . (5.250)

The first equation tells us that the αj are phase factors

αj1 = eiφj , (5.251)

where φj ∈ R. If we plug this into the second condition, we get

Re (α11α
∗
21)

!
= Re

(
ei(φ1−φ2)

)
!
= 0 , (5.252)

which tells us that the relative phase ∆φ between α11 and α21 must be

∆φ := φ1 − φ2
!
= ±π

2
. (5.253)

With this, we can write

φ ≡ φ1 and φ2 = φ1 −∆φ = φ± π

2
, (5.254)

and determine the general coefficient sets

(α11, α
∗
11) = (eiφ, e−iφ) and (α21, α

∗
21) = (ei(φ±π/2), e−i(φ±π/2)) . (5.255)

Substituting these into Eq. (5.249) then yields the general form

γ1 = eiφb+ e−iφb† and γ2 = ei(φ±π/2)b+ e−i(φ±π/2)b† (5.256)

of the two MZM operators in a system with one complex Bogoliubov zero mode. Of course, this can be
simplified to

γ1 = eiφb+ e−iφb† and γ2 = ±i
(
eiφb− e−iφb†

)
, (5.257)
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which, for φ = 0, reproduces the canonic definition of Majorana operators given in Eq. (5.225). However,
it is easy to come up with other valid Majorana operators like

γ1 = ei
π
4 b+ e−i

π
4 b† and γ2 = ei

3π
4 b+ e−3iπ4 b† . (5.258)

This particular version of Majorana coefficients is distinguished by the fact that it represents the most
“symmetric” family of Majorana coefficients: if we draw

C ⊃ S1
C := {z ∈ C : |z| = 1} (5.259)

into the complex plane and mark the positions of the four MZM coefficients on it, then the set

(α1, α
∗
1, α2, α

∗
2) = (ei

π
4 , e−i

π
4 , ei

3π
4 , e−i

3π
4 ) (5.260)

of coefficients is the only one that evenly partitions S1
C into quadrants. Later, we will find that this

maximally symmetric coefficient family is the one that is usually preferred by numeric solvers in systems
with a single zero energy Bogoliubov mode. Overall, the above construction scheme provides us with
a continuous family of possible Majorana operators that are qualitatively the same, because they are
constructed from the same two Bogoliubov operators b and b†. This changes when there is more than
one zero energy Bogoliubov mode.

Let us consider a BdG system with n = 2 Bogoliubov modes b1 and b2 at zero energy. The most
natural way to write down four MZM operators

γ1 = α11b1 + α∗11b
†
1 + α12b2 + α∗12b

†
2 , γ2 = α21b1 + α∗21b

†
1 + α22b2 + α∗22b

†
2

γ3 = α31b1 + α∗31b
†
1 + α32b2 + α∗32b

†
2 , γ4 = α41b1 + α∗41b

†
1 + α42b2 + α∗42b

†
2 (5.261)

is to repeat the n = 1 construction for b1 and b2 individually, i.e. to choose

(α11, α
∗
11, α12, α

∗
12) = (eiφ1 , e−iφ1 , 0, 0) , (α21, α

∗
21, α22, α

∗
22) = (ei(φ1±π/2), e−i(φ1±π/2), 0, 0)

(α31, α
∗
31, α32, α

∗
32) = (0, 0, eiφ2 , e−iφ2) , (α41, α

∗
41, α42, α

∗
42) = (0, 0, ei(φ2±π/2), e−i(φ2±π/2)) , (5.262)

such that

γ1 = eiφ1b1 + e−iφ1b†1 , γ2 = ei(φ1±π/2)b1 + e−i(φ1±π/2)b†1

γ3 = eiφ2b2 + e−iφ2b†2 , γ4 = ei(φ2±π/2)b2 + e−i(φ2±π/2)b†2 . (5.263)

One can verify that the coefficients in Eq. (5.262) readily satisfy the conditions from Eq. (5.248), so that
the naive definition of two “independent” pairs of MZMs does indeed produce valid Majorana operators.
However, these are by far not the only Majorana constructions allowed. In particular, we could have
based the independent Majorana pair scheme on unitarily rotated zero energy Bogoliubov operators(

b̃1
b̃2

)
=

1√
2

(
1 1

1 −1

)(
b1
b2

)
=

1√
2

(
b1 + b2
b1 − b2

)
. (5.264)

Due to the previous analysis, we know that the new Majorana operators

γ̃1 =
(
eiφ1 b̃1 + e−iφ1 b̃†1

)
, γ̃2 =

(
ei(φ1±π/2)b̃1 + e−i(φ1±π/2)b̃†1

)
γ̃3 =

(
eiφ2 b̃2 + e−iφ2 b̃†2

)
, γ̃4 =

(
ei(φ2±π/2)b̃2 + e−i(φ2±π/2)b̃†2

)
(5.265)

are still well-defined.
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6 – Anyons

In the vast landscape of quantum particles, there exists one particularly curious species known as
anyons. A utilitarian definition of anyons is as follows: while fermions obey Fermi–Dirac exchange statis-
tics and bosons obey Bose–Einstein exchange statistics, anyons obey any exchange statistics. Clearly,
these kinds of particles are nowhere near as common in nature as fermions and bosons, otherwise they
would be as familiar to everyone as fermions and bosons. As we will soon see, the reason for this is
that anyons can only occur in two spatial dimensions and we just so happen to live in a world of three
spatial dimensions. Thus, it is only under rather specific circumstances – when the motion in one spatial
dimension is somehow “frozen out” – that anyons may emerge as quasiparticle excitations.

Consider a quantum state of some number of identical particles. The exchange statistics of the particles
refers to the phase picked up by the state when two of the identical particles are exchanged. However, this
definition is ambiguous. Does it refer to the phase acquired under a formal, instantaneous permutation
of the particles, or does it refer to the phase that results when any two particles are adiabatically moved
around each other such that they swap positions in the process? There is a philosophical debate to
be had about which of these notions offers a more accurate description of nature. Fortunately, both
interpretations turn out to be equivalent in three or more spatial dimensions and we do not have to
concern ourselves with this distinction there. However, this is not the case in two dimensions. In
the following, we will show how the concepts formal instantaneous and adiabatic real-space exchange
statistics differ in two spatial dimensions. In particular, we will address the phases that result from
adiabatic exchanges. This part is mainly based on Ref. [95].

The most natural way to understand statistics under adiabatic exchange of particles is to think about
it in terms of path integrals. Recall that in the path integral formulation of quantum mechanics, the
probability amplitude for a single particle to go from point x to point y is given by

A [x→ y] =

∫ y

x

Dr eiS[r,ṙ] , (6.1)

where Dr denotes integration over all possible paths from x to y, and where

S[r, ṙ] :=

∫
dtL[r(t), ṙ(t)] (6.2)

is the action given in terms of the Lagrangian L[r(t), ṙ(t)] of the system. Note that the integration over
all possible paths explicitly includes discontinuous paths. However, if the position x of a particle changes
discontinuously, the position derivative ẋ and hence the Lagrangian L[r(t), ṙ(t)] become singular. As a
result, the action S[r, ṙ] along discontinuous paths is usually argued to be giant. A giant action leads
to a rapidly rotating path contribution eiS[r,ṙ] in Eq. (6.1), which, in the spirit of the stationary phase
approximation, is assumed to interfere destructively and can therefore be omitted. For this reason, we
may limit the following considerations to continuous paths.

Now consider a system of N identical particles in an n spatial dimensions. For N > 1, the indistin-
guishability of the particles makes the construction of probability amplitudes a bit more subtle. Since
permutations of identical particles produce physically equivalent states, the probability amplitude of a
transition from a state with N particles at positions (x1, . . . ,xN ) to a state with N particles at positions
(y1, . . . ,yN ) must account for permutations of the particles in the final state. Thus, we have

A [(x1, . . . ,xN )→ (y1, . . . ,yN )] =
∑
π∈SN

∫ (yπ(1),...,yπ(N))

(x1,...,xN )

D(r1, . . . , rN ) eiS[r1,ṙ1,...,rN ,ṙN ] , (6.3)

where the extra sum extends over the elements π of the symmetric group SN of N elements in order to
include all possible permutations of end points. Before we use Eq. (6.3) to analyse the possible adiabatic
exchange statistics of particles in n spatial dimensions, we impose one more constraint on the paths
included in Eq. (6.3). By invoking a hard-core repulsion between the particles, we effectively exclude
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Figure 6.1: Exchangeless and single exchange paths in (n + 1) dimensional spacetime. The n spatial
dimensions are depicted as a plane.

intersecting paths along which any two particles can occupy the same region in space. This additional
restriction can be justified in several ways. Physically, pairs of identical particles often experience a strong
repulsive interaction that keeps them separated. Philosophically, one could argue that the very concept
of adiabatic exchange statistics essentially requires the particles to remain well-separated, as otherwise
their real-space exchange cannot be tracked in a meaningful way. Note that by including the hard-
core constraint, we exclude cases with n = 1 spatial dimension from the discussion, since an adiabatic
exchange of hard-core particles is impossible there. Accepting this caveat, the probability amplitude for
an adiabatic exchange of N = 2 identical particles in n ≥ 2 spatial dimensions becomes

A [(x1,x2)→ (x2,x1)] =

∫ (x1,x2)

(x1,x2)

D(r1, r2) eiS[r1,ṙ1,r2,ṙ2] +

∫ (x2,x1)

(x1,x2)

D(r1, r2) eiS[r1,ṙ1,r2,ṙ2] , (6.4)

where the path integral takes into account all continuous, non-intersecting paths from (x1,x2) to (x2,x1)

and (x1,x2). Two simple examples of such paths are sketched in Fig. 6.1. The key observation is that the
exchange statistics of identical particles should not depend on the geometric details of exchange paths:
if two exchange paths can be continuously deformed into one another, they should give rise to the same
statistical phases. This suggests that the possible exchange statistics of identical particles in n spatial
dimensions are somehow related to the homotopically distinct exchange paths, giving their classification
a distinctly topological flavour. In fact, the challenge of counting distinct exchange paths is closely
reminiscent of the problem that led to the definition of the fundamental group. If we consider the relative
position x = x2 − x1 of the two particles, then every path γ : (x1,x2) → (x1,x2) that returns both
particles to their initial positions naturally defines a closed path Γ : x→ x in the configuration space

Cn2 ≡ Rn \ {0} (6.5)

of the relative position x in n spatial dimensions. Note, that we remove the origin from Rn because the
hard-core constraint means that paths cannot intersect. Every path γ : (x1,x2)→ (x1,x2) can therefore
be naturally associated with an element [Γ : x→ x] of the fundamental group π1(Cn2 ). Unfortunately, the
second class of paths, λ : (x1,x2)→ (x2,x1), where the particles end up in each other’s initial position,
correspond to open paths Λ : x → −x in Cn2 that are not directly classified by π1(Cn2 ). However, the
indistinguishability of the particles tells us that all physical states characterised by x and −x are actually
equivalent. To obtain the configuration space Cn2 of the relative position x of two identical particles in n
spatial dimensions, we must therefore identify the relative positions x and −x in Cn2 , yielding

Cn2 ≡ (Rn \ {0}) /Z2 , (6.6)

i.e. the punctured n-dimensional Euclidean space Cn2 ≡ Rn \ {0} modulo the group action of Z2 that
identifies x ' −x for all x ∈ Cn2 . Now all paths considered in Eq. (6.4) define closed paths in Cn2 .
Accordingly, every path also belongs to some equivalence class of the fundamental group π1(Cn2 ). This
indicates that the possible statistics of identical particles in n spatial dimensions are determined by the
fundamental group π1(Cn2 ). We can compute these fundamental groups by noting that the configuration
spaces Cn2 in Eq. (6.6) are homotopy equivalent to the real projective spaces RPn−1 of one lower dimension,
i.e.

Cn2 ' RPn−1 . (6.7)
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This follows from the fact that Rn \ {0} deformation-retracts to the sphere Sn−1 and the Z2 quotient of
Sn−1 immediately yields

Sn−1/Z2
∼= RPn−1 (6.8)

by definition. Note that Eq.(6.7) expresses a homotopy equivalence, indicated by the symbol ', whereas
Eq.(6.8) establishes a homeomorphism, denoted by ∼=. Equation (6.8) shows that Sn−1 constitutes a
double cover

π : Sn−1 → RPn−1

x 7→ [x] (6.9)

of RPn−1, where [x] denotes the equivalence class [x] = {x,−x} of antipodal points. In the language
of fibre bundles, Eq. (6.9) defines a fibre bundle with base manifold B = RPn−1 and discrete fiber
F = {x,−x}.1 For n ≥ 3, Eq. (6.9) can be used to determine the fundamental groups π1(Cn2 ) = π1(RPn−1)

via the following theorem.

Theorem 6.0.1. Deck Group Isomorphism. Let π : D → X be a double cover. The deck group G
is the group of homeomorphisms d : D → D that preserve the covering structure, satisfying

π ◦ d = π . (6.10)

If the double cover is universal (simply connected), the deck group G is isomorphic to the fundamental
group π1(X) of the base space X, i.e.

G ' π1(X) . (6.11)

Intuitively speaking, the deck transformations of a covering space permute the discrete fibres in a way
that is compatible with the bundle structure. Since the covering space Sn−1 of Cn2 is simply connected
for n ≥ 3, Thm. 6.0.1 tells us that

π1(Cn2 ) ≡ π1(RPn−1) ' Gn−1 for n ≥ 3 , (6.12)

where Gn−1 denotes the deck group of π : Sn−1 → RPn−1 as a discrete fibre bundle. In that case, the deck
groups Gn are directly determined by the group Z2 that defines the covering in Eq. (6.9) in the first place.
Indeed, the only two homeomorphisms d : Sn → Sn fulfilling Eq. (6.10) for the double cover Eq. (6.9) are
the identity map id : Sn−1 → Sn−1, x 7→ x and the antipodal map a : Sn−1 → Sn−1, x 7→ −x, so that
we have

Gn−1 = {id, a} ' Z2 , (6.13)

and hence

π1(Cn2 ) ≡ π1(RPn−1) ' Z2 (6.14)

for all n ≥ 3. For n = 2, we cannot apply Thm. 6.0.1 as S1 is not simply connected and therefore not
a universal cover of C2

2 ≡ RP1. The fundamental group π1(RP1) is still easy to find because the real
projective line RP1 is itself homeomorphic to the circle S1, i.e. RP1 ' S1, such that

π1(RP1) ' π1(S1) ' Z . (6.15)

Combined, we therefore get

π1(Cn2 ) ≡ π1(RPn−1) =

{
Z for n = 2

Z2 for n ≥ 3 .
(6.16)

1An analogous notion is true for all covering spaces.
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In particular, we have π1(C3
2) ' Z2 in n = 3 spatial dimensions, telling us that there are just two classes

of homotopically distinct closed paths in C3
2 , namely the direct and the single exchange paths. This means

that every higher order exchange path can be continuously deformed into one of the two elementary paths
shown in Fig. 6.1. For example, a double exchange of particles in (3 + 1) dimensions is homotopically
equivalent to the direct path: picturing a double exchange path in the style of Fig. 6.1, one can imagine
sliding the first particle’s doubly intertwined world line off the world line of the second particle. The
probability amplitude in Eq. (6.3) for particles in (3 + 1) dimensions can then be written as

A [(x1,x2)→ (x2,x1)] =

∮
0

DR eiS0[R,Ṙ] + eiφ
∮

1

DR eiS1[R,Ṙ] , (6.17)

where we defined R := (r1, r2) and Ṙ := (ṙ1, ṙ2) for convenience and wrote
∮
n
for the path integrals over

the two classes of direct and single exchange paths. We also explicitly included a relative phase factor eiφ

that accounts for a possible topological phase difference between the two two types of exchange paths.
As was mentioned before, the statistical properties of the identical particles under adiabatic exchange
must not depend on the geometrical details of the exchange paths, so only the relative phase factor
eiφ can encode the possible exchange statistics. The fact that a double exchange path of particles is
homotopically equivalent to the direct path then yields the constraint

e2iφ !
= 1 , (6.18)

which implies that φ ∈ {0, π} giving rise to the familiar Bose–Einstein and Fermi–Dirac statistics available
for identical particles in (3+1) dimensional spacetime. This analysis carries over to all spatial dimensions
of n ≥ 3, showing that the only possible statistics in n ≥ 3 spatial dimensions are of the Bose–Einstein
and Fermi–Dirac types.

The special thing about n = 2 spatial dimensions is that π1(C2
2) ' Z. This means that there is an

infinite number of homotopically distinct closed paths in C2
2 ' RP1. Every exchange path is labelled by

an integer N indicating the number and direction (sign) of exchanges it involves, and any two exchange
paths with N 6= M are homotopically distinct. The probability amplitude in Eq. (6.3) for particles in
(2 + 1) dimensions can therefore be written as

A [(x1,x2)→ (x2,x1)] =
∑
n∈Z

eiφn
∮
n

DR eiSn[R,Ṙ] , (6.19)

where we introduced a sum over the classes of distinct exchange paths labelled by n ∈ Z ' π1(C2
2) and

wrote
∮
n
for the path integrals over the n-th class of exchange paths. Unlike before, Eq. (6.19) imposes no

constraint on the relative phase factor eiφ between equivalence classes of exchange paths: larger numbers
of particle exchanges are no longer topologically required to yield the same statistical phase factor as the
direct path. While φ ∈ {0, π} are still valid choices – it is possible to have bosons and fermions in two
spatial dimensions – these are by far not the only choices allowed. In principle, any real phase φ ∈ R is
possible. Accordingly, we conclude that particles n = 2 spatial dimensions may have any statistics, and
refer to them anyons.

Observe that the fundamental group π1(Cn2 ) ' Z2 determining the adiabatic exchange statistics of
two identical particles in n ≥ 3 spatial dimensions is the same as the symmetric group S2 ' Z2 describing
their formal permutation statistics, i.e.

π(Cn2 ) ' Z2 ' S2 for n ≥ 3 . (6.20)

In n = 2 spatial dimensions, on the other hand, the adiabatic exchange statistics of identical particles
is determined by π1(C2

2) ' Z. Thus, they differ from the formal permutation statistics described by
S2 ' Z2, and we have

π(C2
2) ' Z 6' Z2 ' S2 . (6.21)

The above discussion is limited to the minimum number of N = 2 identical particles required for the
definition of quantum statistics. For larger numbers ofN identical particles, an analysis of the independent
relative position vectors is less intuitive. Instead, one defines the so-called ordered configuration space

ConfN (Rn) :=
{

(x1, . . . ,xN ) ∈ (Rn)
N |xi 6= xj for all i 6= j

}
, (6.22)
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which contains all ordered N -tuples of pairwise distinct points (particle positions) in Rn. To account for
the indistinguishabilty of particles, we introduce an equivalence relation

(x1, . . . ,xN ) ∼ (y1, . . . ,yN ) if (x1, . . . ,xN ) = (yπ(1), . . . ,yπ(N)) , (6.23)

for some element π ∈ SN of the symmetric (permutation) group SN of N elements. Note that

π · (x1, . . . ,xN ) = (xπ(1), . . . ,xπ(N)) , (6.24)

defines the natural action of SN on ConfN (Rn). The equivalence relation in Eq. (6.23) removes the order-
ing of the N -tuples by identifying all ordered N -tuples that contain the same N particle postitions. The
quotient of the ordered configuration space by the symmetric group then yields the so-called unordered
configuration space

UConfN (Rn) := ConfN (Rn)/SN . (6.25)

For N = 2, ConfN (Rn) is homotopy equivalent to Cn2 from Eq. (6.5), while UConfN (Rn) is homotopy
equivalent to Cn2 from Eq. (6.6) – in this sense, Eqs. (6.22) and (6.25) generalise Eqs. (6.5) and (6.6). Any
adiabatic exchange among the N identical particles corresponds to a continuous path

(x1, . . . ,xN ) = (xπ(1), . . . ,xπ(N)) , (6.26)

which readily defines a closed path in UConfN (Rn). The exchange statistics of N identical particles in n
spatial dimensions is therefore captured by the fundamental group

π1(UConfN (Rn)) =: BN (Rn) , (6.27)

which is called the N -strand braid group BN (Rn) of Rn in the mathematical literature. Analogous to
the previous discussion, Eq. (6.25) makes ConfN (Rn) a covering space of UConfN (Rn) but this time
with deck group G = SN . Moreover, the ordered configuration space ConfN (Rn) turns out to be simply
connected for n ≥ 3, so that the covering becomes universal and we have

π1(UConfN (Rn)) = BN (Rn) ' SN for n ≥ 3 . (6.28)

For n = 2, we instead find

π1(UConfN (R2)) = BN (R2) ' BN , (6.29)

where BN is the Artin braid group of N strands. Combined we get

π1(UConfN (Rn)) = BN (Rn) =

{
BN for n = 2

SN for n ≥ 3 ,
(6.30)

which, noting that B2 ' Z and S2 ' Z2, readily generalises Eq. (6.16). This result tells us that in
n ≥ 3 spatial dimensions both the adiabatic exchange statistics and the formal permutation statistics
are governed by the symmetric group and are therefore equivalent. In (2 + 1) dimensions, the adiabatic
exchange statistics are determined by the braid group and the equivalence with the formal permutation
statistics is lost.

Some comments are in order. In the mathematical literature, the study of configuration spaces and
their fundamental groups is not limited to Rn – instead, one considers arbitrary topological spaces X. As
part of this generalisation, the term N -strand braid group of X was introduced to mean the fundamental
group BN (X) ≡ π1(UConfN (X)). Historically, the Artin braid group BN ≡ BN (R2) from before was the
first N -strand braid group to be studied, although the definition that Artin gave was much more rooted
in algebra than in topology [96, 97]. In fact, the visual representaion of BN (R2) is what inspired the
terminology of “braids” in the first place. For these reasons, BN ≡ BN (R2) is still known as the braid
group today and caution is advised when navigating the literature on this subject.
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6.1 Anyons and Spin

One of the more powerful results of quantum field theory is that it provides a framework to understand
not only the emergence of spin but also its connection to quantum statistics: the spin-statistics theorem
states that fields with half-integer spin must be quantised as fermions, while fields with integer spin
must be quantised as bosons. So how does the spin-statistics theorem deal with anyonic statistics? In
two spatial dimensions there is only one generator of angular momentum Jz – the projection of angular
momentum onto the “missing” z-axis. An immediate consequence of this is that there is no helicity in
(2 + 1) dimensions, as the projection of Sz onto the xy-plane is always trivial. Since helicity is the only
meaningful notion of spin for massless particles, it follows that massless particles in (2 + 1) dimensions
must be spinless. For particles with invariant mass M , spin can be unambiguously defined as

S = MSz , (6.31)

where Sz is the spin part of Jz. However, since there is only one generator of angular momentum, there
is no non-Abelian Lie algebra that can restrict its possible eigenvalues s ∈ R and the spin of a massive
particle in (2 + 1) dimensions can in principle be anything. A particle ψ with any spin s ∈ R then
transforms as

ψ 7→ ei2πsψ , (6.32)

under full 2π rotations. This recovers bosons for s ∈ Z and fermions for s ∈ Z/2, but yields a new
type of particle for any other s ∈ R. This is awfully similar to the conclusion that particles in (2 + 1)

dimensions can have any statistics, and for good reason. In fact, there is another way to arrive at the
conclusion that anyons may exist in two spatial dimensions. It starts from the observation that particles
in (2 + 1) dimensions can have any spin and concludes that they must be allowed to obey any statistics
by invoking the spin-statistics theorem. The beauty of this argument is that it appreciates the weight of
the spin-statistics theorem: a (2 + 1) dimensional particle with some non-(half-)integer spin s ∈ R has
to obey an accordingly exotic “continuous” statistics in order to remain in line with the spin-statistics
theorem. In this sense, anyons smoothly interpolate between bosons and fermions both in the spin and
the quantum statistical sense. For more Details, see, for instance, Refs. [98, 99].

6.2 Topological Quantum Computation with Anyons

Quantum computation is a method of information processing that utilises the superposition principle
of quantum mechanics. The basic idea is simple: take the fundamental information unit of a classical
computer, a bit which can be either 1 or 0, and turn it into a quantum object, so that it can exist not
only as 1 or 0 but also as any superposition of these. The result is called a quantum bit, or qubit for
short. In principle, every two-level system of states |0〉 and |1〉 that allows for coherent superpositions

|ψ〉 = α |0〉+ β |1〉 , (6.33)

with α, β ∈ C can be used to represent a qubit. Here, |ψ〉 is called the qubit state and the two states
|0〉 and |1〉 are called the logical states. Coherence means that the relative phase between the logical
states |0〉 and |1〉 is well-defined and stable over time. It is essential because it enables the constructive
and destructive interference necessary for quantum algorithms. Without coherence, the qubit loses its
quantum behavior, and quantum computations become meaningless. In practice, coherence is a fragile
property and is often compromised by noise or interactions with the environment. A logical gate on a
qubit is implemented by a unitary operator U ∈ U(2) that acts on the qubit state |ψ〉. For example, a
NOT-gate UNOT swaps the two logical states |0〉 and |1〉 in |ψ〉 as

UNOT |0〉 = |1〉 and UNOT |1〉 = |0〉 . (6.34)

In this sense, it implements the quantum analogue of a classical bit flip operation. In the basis of the
logical states, a generic qubit state |ψ〉 as in Eq. (6.33) takes the form |ψ〉 = (α, β)ᵀ and UNOT is
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represented by the x-Pauli matrix UNOT = σx, giving

UNOT |ψ〉 = UNOT

(
α

β

)
=

(
0 1

1 0

)(
α

β

)
=

(
β

α

)
≡ |ψ̄〉 , (6.35)

where |ψ̄〉 denotes the “flipped” qubit state. The NOT-gate is also called an X-gate for this reason.
Topological quantum computation is an approach to quantum computing that is based on the exotic

statistics of anyons. It builds on the observation that in some quantum systems, the presence of anyons
leads to a degenerate coherent subspace H0, in which the state can only be evolved by adiabatically
moving the anyons around each other. During such a sequence of adiabatic anyon exchanges, the anyon
world lines tie up into so-called braids, that cannot be untangled due to the exotic statistical properties
of the anyons. When a qubit is encoded in the degenerate coherent subspace H0 of the anyons, their
adiabatic exchange can be used to implement quantum gates on H0 and the topology of the resulting
anyonic world line knots provides powerful protection against local perturbations.

In the following, we give a brief overview over the theory behind topological quantum computation. To
this end, we first introduce the algebraic theory of anyons, which provides a formal basis for the description
of anyons and the unitary transformations realised by their braiding. After that, we discuess the definition
and braiding of anyonic quasiparticles in the physical model of a topological p-wave superconductor.

6.3 Algebraic Theory of Anyons

Formally, a model of anyons is determined by a pair (S, T ) of matrices called its modular data. These
matrices encode essential physical properties of anyonic systems. The diagonal twist matrix T captures
the so-called topological spin of the individual particles, specifying their transformation behaviour under
2π rotations. The elements Tij = δijθj must be roots of unity, i.e. θj = exp (i2πk/Nj) for k,Nj ∈ Z, such
that a 2π rotation of the j-th anyon type ψj is described by ψj 7→ θjψj , cf. Eq. (6.32). The S matrix
determines the quantum statistics of the particles, detailing the braiding between them. Together, the
S and T matrices can be used to derive a set of anyon-combination rules known as fusion rules. Note
that the converse is not true; there exist scenarios, such as in the well-known Ising and Fibonacci models,
where the same set of fusion rules can correspond to multiple S and T matrices. This complexity gives rise
to the concept of modular tensor categories (MTCs) and it is MTCs that provide a complete description
of the algebraic properties for a given model of anyons [100]. Nonetheless, discussions of anyon models
typically begin by stating the fusion rules in practice. This is what we will do in the following.

In condensed matter physics, anyons emerge as quasiparticles in some two-dimensional systems. There
are two types of such anyon excitations: Abelian and non-Abelian anyons. In the much simpler case
of Abelian anyons, the physical ground state is non-degenerate and an adiabatic exchange of anyonic
quasiparticles can only furnish it with a U(1) phase exp (iφ). Abelian anyons are then called Abelian
because U(1) is an Abelian group. The much more interesting and challenging case is that of non-Abelian
anyons, where the ground state is d-fold degenerate and we are dealing with a d-dimensional subspace
H0 of ground states. The adiabatic exchange of anyonic quasiparticles will then induce a unitary U(d)

transformation on H0 that is no longer Abelian. For this part we closely follow Refs. [95, 101–103].
To describe a system of anyons, we first state the types of anyons in the system. We will represent

the anyon types as a = {xi}N−1
i=0 and use A = {Xi}N−1

i=0 to denote a representative set of anyons; the type
of an anyon representative Xi is then xi. Every anyonic system has a trivial anyon type that is usually
denoted by 1. It represents the ground or vacuum state(s) of the system. In the list of anyon types above,
we always set x0 = 1. The fusion of two anyons is a process that is similar to the combination of two
quantum spins to form a new total spin. In formula, we denote the fusion of two anyons X1 and X2 by

X1 ⊗X2 . (6.36)

Here, the ⊗ operation is both commutative and associative. Generally, the fusion of two anyons X1

and X2 with types x1 and x2 does not result in an anyon of a single, well-defined type xi. Instead,
the resulting anyons may be of several anyon types each with certain probabilities determined by the
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aforementioned fusion rules. If the fusion of an anyon X1 with every other anyon X2 (including X1 itself)
always produces an anyon of the same type, then X1 is called an Abelian anyon. The trivial particle 1 is
Abelian as its fusion with any other particle X does not change the type of X, i.e. 1 ⊗ x = x for every
type x. If X1 and X2 are not Abelian, their fusion will produce anyons of more than one type and we say
that the fusion has multiple fusion channels. We formally write the fusion result of any pair of anyons
Xi and Xj as

Xi ⊗Xj =

N−1⊕
k=0

Mk
ijXk . (6.37)

The Mk
ij are non-negative integers called the fusion rules of the anyonic system. The fusion result of any

pair of anyon types xi, xj is analogous to Eq. (6.37). Now, the coefficients in Eq. (6.37) that determine
the fusion rules of an anyonic system can in principle be any non-negative integer. However, for most
physical realisations of anyonic systems we have Mk

ij ∈ {0, 1}. If Mk
ij = 0 then fusing Xi with Xj can

never yield Xk. If for all Xi, Xj ∈ A there is only one Mk
ij that is different from zero, then the fusion

outcome of each pair of anyons is unique and the model is Abelian. On the other hand, if for some pair
Xi and Xj of anyons there are two or more fusion coefficients Mk

ij 6= 0 then the model is non-Abelian.
Every anyon particle Xi has an antiparticle X∗i defined by

Xi ⊗X∗i = 1 . (6.38)

Note that an anyon particle Xi of type xi may have an antiparticle X∗i of a different anyon type xj 6= xi.
If Xi and X∗i are of the same type xi, we call Xi self-dual. It is possible to view the integer coefficients
Mk
ij as matrix entries (Mi)jk of a matrix with row and column indices j and k. The largest eigenvalue of

this matrix is called the quantum dimension dxi of the anyon type xi.
The term “quantum dimension” is a bit suspicious, so we will elaborate on it briefly. The key charac-

teristic of non-Abelian anyons is that the fusion channels imply the existence of a subspace of degenerate
ground states spanned by the different fusion outcomes. Consider a system with N = 2 anyons Xi and
Xj of the same anyon type xi = xj ≡ x. Say Xi and Xj can fuse to several Xk ∈ A. Then we can
formally define fully fused orthonormal states

|(XiXj);Xk〉 with 〈(XiXj);Xka |(XiXj);Xkb〉 = δkakb , (6.39)

where (XiXj) := Xi ⊗ Xj is a shorthand notation for the fusion of Xi and Xj and where ka, kb label
all the possible fusion outcomes.2 If there are d distinct fusion channels, then the system exhibits a
d-dimensional subspace H0[X1, X2] of degenerate ground states, which is spanned by the fully fused
states. This subspace is accordingly called the fusion space. The fusion-space dimension typically grows
when the number of non-Abelian anyons is increased. Indeed, in a system with N non-Abelian anyons
Xi1 , . . . , XiN of type x, the dimension of the fusion space H0[Xi1 , . . . , XiN ] roughly scales as

dim (H0[Xi1 , . . . , XiN ])
N→∞−−−−→ dNx , (6.40)

where dx is a number that depends on the anyon type x. This scaling law is similar to the dimensional
scaling of a tensor product of dx-dimensional Hilbert spaces. For this reason, dx is called the quantum
dimension of the anyon type x. Conceptually, the quantum dimension is the asymptotic degeneracy per
anyon of type x. For Abelian anyons the dimension of the space of ground states is equal to one no
matter how many anyons there are in the system. Thus, all Abelian anyons have a quantum dimension
of one. Even though we used the analogy to a tensor product of Hilbert spaces, note that the dimension
of each Hilbert space is always an integer, while the quantum dimension is in general not. This is an
important property of non-Abelian anyons that sets them apart from a simple set of particles inhabiting
local Hilbert spaces.

2Note that in a system of N > 2 anyons we usually choose a basis of fully fused states that is obtained by successively
fusing the two left-most anyons with respect to a fixed reference order X1X2 · · ·XN . For N = 3 we would, for instance,
write |(X1X2)X3; (XkX3);Xl〉, where k labels the all the possible fusion outcomes between X1 and X2 and where l labels
all the possible fusion outcomes from XkX3 for every k, respectively.
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F

Figure 6.2: The two fusion diagrams associated with the fixed total charge D subspace of the fusion space.

The fusion space of ground states H0 is a collective non-local property of the non-Abelian anyons. Its
non-locality means that no local perturbation can lift the degeneracy of H0, making it an ideal place to
encode quantum information. It is important to note that the coherent superposition required for encoding
a qubit is only possible within subspaces of the fusion space that belong to the same total topological
charge sector, i.e. to subspaces spanned by fully fused states of the same total topological charge. For
example, the fusion space of a pair X1 and X2 of non-Abelian anyons satisfying X1 ⊗ X2 = 1 ⊕ X3

cannot directly be used to encode a qubit because the two states |(X1X1); 1〉 and |(X1X2);X3〉 belong
to different total topological charge sectors 1 and X3. Encoding quantum information thus requires
not only a two-dimensional fusion space, but a fusion space with at least two-dimensional total charge
sectors. By extension, this means that we need more than two non-Abelian anyons for topological
quantum computation. The basis of higher dimensional fusion spaces is given by the fully fused states
obtained by successively fusing neighbouring anyons in a fixed reference order. A different fusion order
is then equivalent to a change of basis. For every anyon model there exists a set of matrices that relate
different bases. These so-called F -matrices result from the aforementioned modular data that defines the
respective anyon model.3 In practice, they are obtained as the solutions to a set of consistency equations
called the pentagon equations that we will not discuss in detail here. In order to illustrate how the
F -matrices give structure to the fusion space, we consider a system of three anyons X1, X2, X3 that are
constrained always to fuse to X4. In the following, we relabel the anyons Xi as X1 = A, X2 = B, X3 = C,
and X4 = D to avoid clutter and improve readability. Fixing the reference order X1X2X3 = ABC, there
are two alternative fusion bases

|(AB)C;EC;D〉 and |A(BC);AG;D〉 , (6.41)

corresponding to first-fusing (AB) into E followed by (EC) into D, and first-fusing BC into G followed
by (AG) into D, respectively.4 The fusion diagram representation of these two bases is illustrated in
Fig. 6.2. The unitary transformation F that implements the basis change between them acts as

|(AB)C;EC;D〉 =
∑
G

(FDABC)EG |A(BC);AG;D〉 , (6.42)

where (FDABC)EG denote the matrix elements of the matrix FDABC which describes the fixed total charge
D fusion subspace of the system of the three anyons A,B and C. Given the F -matrices of an anyon
model, the possible statistics are described by a collection of compatible interchange operators R. These
can be obtained by solving another set of consistency equations known as hexagon equations [104].
In our example, a clockwise5 exchange of the first-fused anyons A and B corresponds to the unitary
transformation

|(BA)C;EC;D〉 =
∑
H

(RAB)EH |(AB)C;HC;D〉 =:
∑
H

RHABδEH |(AB)C;HC;D〉 , (6.43)

where H covers all the possible fusion outcomes of A and B and δGE is the Kronecker delta. The numbers
RHAB describe the exchange of the first-fused anyons A and B in the fusion channel where they fuse to
H next. The Kronecker delta δEH makes RAB a diagonal unitary matrix. Accordingly, R merely assigns
phase factors RHAB = exp

(
iϕHAB

)
depending only on the respective fusion channel H. This is a general

3The modular data of some known models can be found in Ref. [104].
4Of course, we assume that the fusion rules are compatible with these processes.
5If R is understood as a clockwise interchange of anyons, R† corresponds tp the counter-clockwise exchange.
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theme in the R-matrices: when two anyons A and B are exchanged in a basis |(AB)C;EC;D〉 where they
are fused first, the R-matrix acts as a diagonal matrix of fusion channel dependent phase factors. The
exchange of two anyons in a basis where they are not fused first can be described using a combination
of F and R matrices. Take, for example, the exchange of B and C in the basis from Eq. (6.41). We
may implement this by first applying the FD †ABC matrix to change the basis from |(AB)C;EC;D〉 to
|A(BC);AG;D〉, then acting with the diagonal matrix RBC to exchange the now first-fused anyons B
and C, and finally returning to the original basis using FDABC . In formula, this process takes the form

FDABC RBC F
D †
ABC |(AB)C;EC;D〉 (�)

=
∑
X,Y,Z

(
FDABC

)
EX

(RBC)XY

(
FD †ABC

)
Y Z
|(AB)C;ZC;D〉

=
∑
X,Y

(
FDABC

)
EX

(RBC)XY |A(BC);AY ;D〉

=
∑
X,Y

(
FDABC

)
EX

RXBCδXY |A(BC);AY ;D〉

=
∑
Y

(
FDABC

)
EY
|A(CB);AY ;D〉

= |(AC)B;EB;D〉 . (6.44)

In the first line, we spelled out the F and F † transformations. Then we inverted the F transformation
given in Eq. (6.42) to carry out the action of F † in the second line. Finally, we inserted in the explicit form
of (RBC)XY from Eq. (6.43) in the third line and simplified the resulting expression as far as possible. All
unitary braiding transformations that arise due to the pairwise interchange of anyons can be constructed
in a similar fashion from the elementary F - and R-matrices.

6.3.1 Fibonacci Anyons

In order to describe a non-trivial anyonic model, we need at least one more anyon type besides the trivial
anyon type 1. The Fibonacci anyonic system is one of the simplest possible anyonic models, as it has
precisely that minimum number of two anyon types: the trivial type 1, and the non-trivial type τ . We
get the (very short) list

{1, τ} (6.45)

of anyon types. The anyons of type τ are called Fibonacci anyons – the reason for this name will
soon become clear. Fibonacci anyons are self-dual, i.e. a particle of type τ has an antiparticle that is
also of type τ . This tells us that for Fibonacci anyons, the distinction between anyon type and anyon
representative is redundant. We will therefore write τ for both the Fibonacci anyon representative and
type. The fusion rules of a Fibonacci anyonic system are

1⊗ 1 = 1 , τ ⊗ 1 = τ , τ ⊗ τ = 1⊕ τ , (6.46)

where the ⊕ in the final line reflects the two possible fusion channels between τ and itself. Say we have
three (well-separated) τ anyons in a plane. We would like to know the possible fusion outcomes when
all three anyons are brought together. When the first two τ ’s are combined, we may get a type 1 or τ
anyon. If the resulting anyon is of type 1, then the fusion with the third τ yields yield another anyon of
type τ . If the resulting anyon is of type τ , then fusion with the third τ can produce an anyon of either
type, 1 or τ . Hence the fusion result is not unique and even if we fix the total charge to τ , there are still
two distinct fusion paths to get there. To analyse this, we write down the possible fusion paths of the
three anyons in the form of fusion diagrams, in which the fusion happens one by one from left to right.
Using the same notation as before, we get

|(ττ)τ ; ττ ; 1〉 , |(ττ)τ ; 1τ ; τ〉 , |(ττ)τ ; ττ ; τ〉 . (6.47)

As anticipated, there are two total charges for this system: in the first we end up in 1 and in the second
we end up in τ . We can see that the fusion sector with fixed total charge 1 is one-dimensional, while the
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N 0 1 2 3 4 5 6

F 1
N 1 1 1 1 2 3 5
F τN 0 1 1 2 3 5 8

Table 6.1: Sector dimensions F 1
N and F τN of fixed total charge 1 and τ for N Fibonacci anyons.

fusion sector with fixed total charge τ is two-dimensional. It is going to be instructive to see how these
fixed total charge sectors evolve when we add another Fibonacci anyon to the system. A system of four
Fibonacci anyons has the fusion paths

|(ττ)ττ ; (1τ)τ ; (ττ); 1〉 , |(ττ)ττ ; (ττ)τ ; (ττ); 1〉
|(ττ)ττ ; (1τ)τ ; (ττ); τ〉 , |(ττ)ττ ; (ττ)τ ; (1τ), τ〉 , |(ττ)ττ ; (ττ)τ ; (ττ); τ〉 , (6.48)

so the fixed total charge 1 sector is now two-dimensional, while the fixed total charge τ sector turns
out three-dimensional. If we denote the different fixed total charge sector dimensions in a system of N
Fibonacci anyons by F 1

N and F τN , we inductively find that F τN+1 = F τN +F τN−1 for all N ∈ N with N ≥ 1

and F 1
N+1 = F 1

N + F 1
N−1 for all N ∈ N with N ≥ 3. Table (6.1) lists the first few sector dimensions to

illustrate the induction. After an appropriate index offset of N = 1 (N = 3) in the fixed total charge τ
(1) sector, both sector dimensions evolve in accordance with the Fibonacci sequence. It is this feature to
which Fibonacci anyons owe their name. Note that the Fibonacci evolution of sector dimensions suggests
that the quantum dimension dτ of the Fibonacci anyons is related to the golden ratio: the ground-state
degeneracy F τN of the fixed total charge τ sector in the presence of N Fibonacci anyons is given by the
N -th element of the regular Fibonacci sequence, which is known to be asymptotic to φN/

√
5, i.e. it fulfils

F τn
N→∞−−−−→ φN√

5
∝ φN . (6.49)

We can explicitly determine the quantum dimension dτ of τ from the fusion rules in Eq. (6.46) as the
largest6 eigenvalue of the τ fusion matrix (Mτ )jk = Mk

τj with j, k ∈ {τ,1}. That fusion matrix reads

Mτ =

(
1 1

1 0

)
, (6.50)

so its eigenvalues are

λ± =
1

2
±
√

1 + 4

4
=

(1±
√

5)

2
. (6.51)

The quantum dimension of τ is therefore

dτ :=
(1 +

√
5)

2
, (6.52)

which is precisely the golden ratio φ. Importantly, the Fibonacci evolution of sector dimensions also
points to a peculiarity of the Fibonacci fusion space: it lacks a natural tensor product structure in the
sense that its dimensionality grows by an additive constant per τ anyon, rather than by a multiplicative
one. As we will discuss shortly, this property of Fibonacci anyons causes some problems for their use in
quantum computation. In order to encode a qubit in the fusion space of a system of Fibonacci anyons,
we need to figure out a suitable fusion subspace. A qubit can be realised in any coherent two-dimensional
subspace, which suggests we choose either the three anyon fusion subspace spanned by the fixed total
charge τ states

|(ττ)τ ; 1τ ; τ〉 and |(ττ)τ ; ττ ; τ〉 (6.53)

or the four anyon fusion subspace spanned by the fixed total charge 1 states

|(ττ)ττ ; (1τ)τ ; (ττ); 1〉 and |(ττ)ττ ; (ττ)τ ; ττ ; 1〉 . (6.54)

6This eigenvalue is also called the Perron-Frobenius eigenvalue.
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Both Eq. (6.53) and Eq. (6.54) span coherent two-dimensional Hilbert spaces, which may be used to
accommodate a qubit. Within each subspace, the basis transformation matrix F and exchange matrix R
of first-fused anyons take the form

F =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
and R =

(
ei4π/5 0

0 e−i3π/5

)
. (6.55)

Here, φ is the again golden ratio. Finally, let us stress that the distinct simplicity of Fibonacci anyons is
somewhat deceiving. Most importantly, and by far most amazingly, it turns out that arbitrary unitary
transformations on the fusion subspaces can be implemented by braiding the Fibonacci anyons, which is
why the Fibonacci anyon model is said to be universal for quantum computation. Looking at Eq. (6.55),
this may come as a surprise: after all, we can easily tell that R10 = 1, i.e. that R is of finite order ten.
Still, the braid group generated by R and F−1RF is dense in SU(2), ensuring that the above statement
is in fact true. Their universality makes Fibonacci anyons something like the Holy Grail of topological
quantum computation.

Yet, Fibonacci quantum computation also has some limitations. Most importantly, the lack of a tensor
product structure usually means that only subspaces of a given fixed total-charge sector are used to encode
quantum information. For example, if three τ anyons are used to encode one qubit, then we would like
to use twice that to encode two qubits. However, the fusion space for six τ anyons is eight-dimensional
in the τ sector and five-dimensional in the 1 sector, so the logical qubit would only reside in a subspace
of either sector. The second problem is that approximating even the simplest gates through repeated
braiding is very complicated: even the NOT-gate requires thousands of braiding operations in a specific
order [103]. Finally, Fibonacci anyons are difficult to find in nature. Until now, few microscopic systems
were shown to support Fibonacci anyons at all and for the few systems that have been found in theory,
it remains unclear whether they can ever be realised in a laboratory. For more details see Ref. [103].

6.3.2 Ising Anyons

The Fibonacci anyon model features two types of anyons, representing a minimal non-trivial anyon model.
By contrast, the Ising anyon model adds complexity by considering a total three particle types: the trivial
type 1, the non-trivial type ψ (fermion type) and the non-trivial type σ (Ising anyon type). This leaves
us with the set

{1, ψ, σ} (6.56)

of anyon types. As a consequence, the fusion rules of an Ising anyon model are a bit more extensive.
They read

1⊗ 1 = 1 , 1 ⊗ σ = σ , 1 ⊗ ψ = ψ

ψ ⊗ ψ = 1 , ψ ⊗ σ = σ , σ ⊗ σ = 1⊕ ψ , (6.57)

where the ⊕ once more reflects the two possible fusion channels between σ and itself. The fusion rule
ψ ⊗ ψ = 1 indicates that, when brought together, two fermions behave the same as if there were no
particle. Accordingly, ψ ⊗ σ = σ tells us that a ψ with a σ is indistinguishable from a single σ. The
non-Abelian nature of the Ising anyons σ is encoded in the last fusion rule, which states that two Ising
anyons can either behave as the trivial type 1 or as a fermion type ψ. Physically, these fusion rules can,
for example, be realised in terms of topological p-wave superconductors. In that context, the trivial type
1 corresponds to the Bogoliubov vacuum, i.e. a condensate of Cooper pairs. The fermions ψ are complex
Bogoliubov quasiparticles, which can combine into a Cooper pair and merge into the Bogoliubov vacuum.
Finally, the Ising anyons σ emerge as defect-bound Majorana zero modes. As we will soon explain, there
is a way in which a Majorana zero mode corresponds to half a complex Bogoliubov fermion. Since the
actual physics happens in terms of these complex fermions, Majorana zero modes can only appear in even
numbers in nature. A pair of defects can then carry a single non-local Bogoliubov fermion ψ that can
either be unoccupied, which corresponds to the fusion channel σ⊗σ = 1, or occupied, which corresponds
to the fusion channel σ ⊗ σ = ψ. We will come back to this in more detail later on. In a system of two
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Ising anyons σ, we get fusion diagram basis states

|(σσ); 1〉 and |(σσ);ψ〉 , (6.58)

so the fusion space for two Ising anyons is two-dimensional. However, either fixed total charge sector is
only one-dimensional, so that, as before, we need at least three Ising anyons σ to encode a qubit. Since
physical Ising anyons can only exist in pairs, we consider a system of four Ising anyons σ, finding

|(σσ)σσ; (1σ)σ; (σσ); 1〉 , |(σσ)σσ; (ψσ)σ; (σσ); 1〉
|(σσ)σσ; (1σ)σ; (σσ);ψ〉 , |(σσ)σσ; (ψσ)σ; (σσ);ψ〉 , (6.59)

where the two fusion channels at the top correspond to fixed total charge 1, while the two fusion channels
at the bottom correspond to fixed total charge ψ. We can surmise that the fusion space of Ising anyons has
a natural tensor space structure: its dimension doubles for every added pair of Ising anyons σ. Hence, 2N

Ising anyons σ yield a total fusion space of dimension 2N . Equation (6.40) then allows us to immediately
determine the Ising quantum dimension as

d2N
σ

!
= 2N =⇒ dσ

!
=
√

2 . (6.60)

Indeed, explicit calculation shows that the eigenvalues of the Ising fusion matrix

Mσ =

0 1 0

1 0 1

0 1 0

 , (6.61)

given in the basis {1, σ, ψ}, are

λ1 = 0 , λ2 = −
√

2 , λ3 =
√

2 , (6.62)

such that dσ = max
(
0,−
√

2,
√

2
)

=
√

2 confirms out initial guess. Now there is another non-trivial anyon
type in the Ising anyon model, namely the fermion type ψ. If we calculate its quantum dimension dψ via
the ψ fusion matrix

Mψ =

0 0 1

0 1 0

1 0 0

 , (6.63)

and its eigenvalues

λ1 = λ2 = 1 and λ3 = −1 , (6.64)

we find that the fermion type has quantum dimension dψ = 1 and is therefore Abelian. The only non-
Abelian anyon in the Ising anyon model is the therefore Ising anyon itself. Of course, this information is
already baked into the nomenclature of the model: the fermion type is called the fermion type because its
anyonic statistics are doubly trivial in the sense that it is an Abelian mode with exchange phase θ = π.
We can encode a qubit in either one of the fusion subspaces with fixed total charge shown in Eq. (6.59). In
both of these subspaces, the basis transformation matrix F and exchange matrix R of first-fused anyons
take the form

F =
1√
2

(
1 1

1 −1

)
and R = e−iπ/8

(
1 0

0 eiπ/2

)
. (6.65)

Importantly, we find that a double exchange of the first-fused anyons becomes

R2 = e−iπ/4
(

1 0

0 −1

)
, (6.66)

which, up to the global phase factor of exp (−iπ/4), represents the z-Pauli matrix σz. This allows us to
identify the double exchange of first-fused Ising anyons as an implementation of a logical quantum Z-gate.
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One can ask whether the double exchange of two anyons that do not form a first-fused pair results in
something else. Following Eq. (6.44), we can examine this by calculating the the corresponding exchange
matrix explicitly. For example, the double exchange of the second and third Ising anyons corresponds to
the matrix

FR2F † =
e−iπ/4

2

(
1 1

1 −1

)(
1 0

0 −1

)(
1 1

1 −1

)
=
e−iπ/4

2

(
1 1

1 −1

)(
1 1

−1 1

)
= e−iπ/4

(
0 1

1 0

)
, (6.67)

which, up to the global phase factor of exp (−iπ/4), represents the x-Pauli matrix σx, rather than the
z-Pauli matrix we found before. The double exchange of anyons that do not form a first-fused pair
therefore implements a logical quantum X-gate instead of a Z-gate. We conclude that the choice of the
fusion basis, which corresponds to a choice of the Hilbert space basis in physical theories, determines
the effect that elementary braiding processes between anyons have on the qubit subspace. Moreover, the
braiding protocols for implementing the Z- and X-gates are remarkably simple, promising manageable
experimental control requirements.

Alas, it turns out that the logical Z- and X-gates are the only logical gates, that can be implemented
on a single Ising anyon qubit. This means that Ising anyons, in contrast to Fibonacci anyons, are far from
universal for topological quantum computation. Despite this, Ising anyons are still the most promising
candidates for testing topological quantum computation experimentally, as they are relatively easy to
realise using defect bound Majorana zero modes in p-wave superconducting systems.

6.4 Emergent Anyons in Topological Superconductors

Consider a two-dimensional chiral px + ipy superconductor. A Φ = hcN/2e vortex is a topological
defect in the superconducting order parameter ∆(r) = ∆0(r)eiφ(r) [86,105–107]. Around the vortex, the
superconducting phase φ(r) winds by 2πN , and this non-trivial winding enforces a phase singularity at
the vortex core. To maintain a single-valued order parameter, the amplitude ∆0(r) must vanish at the
core, i.e. ∆(rcore) = 0. This local vanishing of the gap allows single quasiparticle states to appear in
the core. The phase winding also induces a circulating supercurrent, which in turn traps the quantised
flux Φ = hcN/2e and gives the Φ vortex its name. If the chiral px + ipy superconductor is either
spinless, fully spin-polarised, or exhibits strong spin-orbit coupling, a quantum flux vortex can carry a
self-adjoint Majorana zero mode (MZM) – a single quasiparticle state pinned to zero energy by particle-
hole symmetry [86]. In the framework of the tenfold way of topological condensed matter [14], these
MZMs emerge as topological defect modes, whose existence is guaranteed by the bulk topology of the
ambient superconductor. Beyond their topological protection, MZMs also obey non-Abelian Ising anyon
statistics. This property will be the focus of the following discussion.

For the next part we closely follow Refs. [95,108,109]. Take a two-dimensional chiral spinless px + ipy
superconductor with two well-separated vortex-bound MZMs γA and γB . As before, the two MZM
operators satisfy the Clifford algebra

γi = γ†i and {γi , γj} = 2δij , (6.68)

for i, j ∈ {A,B} and combine into a single complex fermion

b0 =
1

2
(γA + iγB) (6.69)

that sits at zero energy. As a consequence, we get a two-dimensional subspace

H0 = span(|0〉 , |1〉) (6.70)

131



of degenerate many-body ground states spanned by

|0〉 and |1〉 ≡ b†0 |0〉 . (6.71)

Since |0〉 and |1〉 differ by one complex fermion, they have opposite fermion parities P0 and P1. We
will assume that the vortex-bound MZMs are exchanged when the vortices are interchanged. Thus, the
exchange of vortex-bound MZMs amounts to a unitary transformation

UγAU
† = ζAγB and UγBU

† = ζBγA , (6.72)

where the exchange phases ζi necessarily fulfill ζi ∈ {−1,+1} because of γi = γ†i and because the
anticommutation relations must be preserved. However, the only unitary operators that exchange γA
and γB while leaving everything else unchanged are of the form

U± = e±
π
4 γAγB

=
∑
n

(
±π4
)

n!

n

(γAγB)
n

=
∑
n

(
±π4
)

(2n)!

2n

(γAγB)
2n

+
∑
n

(
±π4
)

(2n+ 1)!

2n+1

(γAγB)
2n+1

=
∑
n

(
±π4
)

(2n)!

2n

(−1)b
2n
2 c +

∑
n

(
±π4
)

(2n+ 1)!

2n+1

(−1)b
2n+1

2 cγAγB

=
∑
n

(
±π4
)

(2n)!

2n

(−1)n +
∑
n

(
±π4
)

(2n+ 1)!

2n+1

(−1)nγAγB

= cos
(
±π

4

)
+ sin

(
±π

4

)
γAγB

=
1√
2

(1± γAγB) , (6.73)

where we repeatedly used γ2
i = 1 and the anticommutation relations Eq. (6.68). The ± sign indicates

the direction of the MZM exchange. Accordingly, the adjoint of U± is given by

U†± =
(
e±

π
4 γAγB

)†
= e±

π
4 γBγA = e∓

π
4 γBγA = U∓ . (6.74)

Under U± the MZM operators transform as

U±γAU
†
± = e±

π
4 γAγBγAe

∓π4 γAγB

=

[
1√
2

(1± γAγB)

]
γA

[
1√
2

(1∓ γAγB)

]
=

1

2
(1± γAγB)(γA ∓ γ2

AγB)

=
1

2
(1± γAγB)(γA ∓ γB)

=
1

2
(γA ∓ γB ± γAγBγA − γAγ2

B)

=
1

2
(γA ∓ γB ∓ γ2

AγB − γA)

=
1

2
(∓γB ∓ γB)

= ∓γB , (6.75)
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and

U±γBU
†
± = e±

π
4 γAγBγBe

∓π4 γAγB

=

[
1√
2

(1± γAγB)

]
γB

[
1√
2

(1∓ γAγB)

]
=

1

2
(1± γAγB)(γB ∓ γBγAγB)

=
1

2
(1± γAγB)(γB ± γAγ2

B)

=
1

2
(γB ± γA ± γAγ2

B + γAγBγA)

=
1

2
(γB ± γA ± γA − γ2

AγB)

=
1

2
(±γA ± γA)

= ±γA , (6.76)

where we once again used γ2
i = 1 and the anticommutation relations Eq. (6.68). Combined, we get

γA
U±7−−→ ∓γB and γB

U±7−−→ ±γA . (6.77)

The important thing to notice is that γA and γB always acquire opposite signs under U±, which is
precisely the transformation behaviour of Ising anyons [101, 106]. To demonstrate that this is, in fact,
the case, we use b0 and b†0 from Eq. (6.69) and write

γA = b†0 + b0 and γB = i(b†0 − b0) . (6.78)

If we plug this into Eq. (6.73) we get

U± = e±
π
4 γAγB

= e±
π
4 (b†0+b0)i(b†0−b0)

= e±i
π
4 (b†0b

†
0−b

†
0b0+b0b

†
0−b0b0)

= e±i
π
4 (b0b

†
0−b

†
0b0)

= e±i
π
4 ([1−b†0b0]−b†0b0)

= e±i
π
4 e∓i

π
2 b
†
0b0 , (6.79)

which we can write as

U± = e±i
π
4 e∓i

π
2 n0 , (6.80)

where n0 = b†0b0 is the number operator of the complex zero mode associated to b0. The two degenerate
ground states |0〉 and |1〉 therefore transform as

U± |0〉 = e±i
π
4 |0〉 and U± |1〉 = e±i

π
4 e∓i

π
2 |1〉 . (6.81)

Accordingly, the matrix representation of U± in the basis {|0〉 , |1〉} reads

U± = e±i
π
4

(
1 0

0 e∓i
π
2

)
. (6.82)

Up to an overall phase factor, Eq. (6.82) is equal to the braiding matrix R of two first-fused algebraic
Ising anyons given in Eq. (6.65). This suggests the identification

|0〉 ' |(σσ),1〉 , |1〉 ' |(σσ), ψ〉 (6.83)

of the two physical ground states |0〉 and |1〉 of the topological superconductor with the fusion basis
states |(σσ),1〉 and |(σσ), ψ〉 of an algebraic two-Ising-anyon system, indicating an equivalence between
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γA γB b0 b†0 |0〉 |1〉 ∆φ

U± ∓γB ±γA ±i b0 ∓i b†0 e±i
π
4 |0〉 e∓i

π
4 |1〉 ∓π2

U2
± −γA −γB −b0 −b†0 e±i

π
2 |0〉 e∓i

π
2 |1〉 ∓π

U3
± ±γB ∓γA ∓i b0 ±i b†0 e±i

3π
4 |0〉 e∓i

3π
4 |1〉 ∓ 3π

2

U4
± γA γB b0 b†0 e±iπ |0〉 e∓iπ |1〉 ∓2π

Table 6.2: Transformation behaviour under multiple exchanges of γA and γB .

the vortex-bound MZMs and the algebraic Ising anyons themselves. However, the fact that Eqs. (6.82)
and (6.65) differ by an overall phase factor seems to weaken this equivalence. Indeed, one can show that
vortex-bound MZMs are only projectively equivalent to algebraic Ising anyons, which precisely means that
the unitary braiding matrices U describing the anyon exchange in physical models are only equivalent
to the algebraic braiding matrices up to a global, physically irrelevant phase factor [110–112]. The
identification in Eq. (6.83) shows that the total charge 1 sector of the algebraic fusion space corresponds
to the P0 parity sector H(0)

0 = span(|0〉) of H0, while the total charge ψ sector corresponds to the P1

parity sector H(1)
0 = span(|1〉).

Based on the unitary transformation induced by a single exchange of γA and γB , we can compute
the outcomes for multiple exchanges. The results are listed in Tab. 6.2. Note that in this system the
unitary exchange operator U± only causes an additional U(1) phase factor for the physical states |0〉
and |1〉. Since U(1) factors are Abelian, this mode of braiding is often called Abelian, even though
the vortex-bound MZMs correspond to non-Abelian anyons. In order to fully access their non-Abelian
statistics, we need a system with at least four MZMs γA, γB , γC , γD corresponding to two complex zero
energy fermions. Importantly, the way in which four MZMs combine into two complex fermionic states
is no longer unique. In fact, this is true for every even number of 2N > 2 MZMs, as discussed in greater
detail in Sec. (5.5). For now, we choose a basis in which γA, γB , γC , γD combine into complex fermion
operators

b0,1 =
1

2
(γA + iγB) and b0,2 =

1

2
(γC + iγD) . (6.84)

Both b0,1 and b0,2 correspond to a complex fermion mode at zero energy, so we get a four-dimensional
subspace

H0 = span (|0, 0〉 , |1, 0〉 , |0, 1〉 , |1, 1〉) , (6.85)

spanned by degenerate many-body ground states

|n1, n2〉 = b†0,1
n1
b†0,2
n2 |0〉 , (6.86)

which can be identified with fusion basis states

|0, 0〉 ' |(σσ)(σσ), (11), 1〉 , |1, 1〉 ' |(σσ)(σσ), (ψψ), 1〉
|1, 0〉 ' |(σσ)(σσ), (ψ1), ψ〉 , |0, 1〉 ' |(σσ)(σσ), (1ψ), ψ〉 . (6.87)

Note that the fusion order of the above fusion basis states is different from the one we used before: instead
of fusing successively from left to right we now fuse from the outside in. This is tied to the basis choice
we made in Eq. (6.84) because it prescribes (γA γB) and (γC γD) as the first-fused pairs of anyons. As
before, the total charge 1 sector of the algebraic anyon model corresponds to the P0 parity sector of the
physical model, while the total charge ψ sector corresponds to the P1 parity sector. Again, the exchange
operator that implements an exchange of the MZMs γA and γB is given by

U
(AB)
± = e±

π
4 γAγB = e±i

π
4 e∓i

π
2 n1 , (6.88)

and it is easy to convince ourselves that it transforms

γA
U

(AB)
±7−−−−→ ∓γB , γB

U
(AB)
±7−−−−→ ±γA , γC

U
(AB)
±7−−−−→ γC , γD

U
(AB)
±7−−−−→ γD , (6.89)
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exchanging γA and γB , while leaving γC and γD unchanged. Of course, the exchange of γC and γD,
which is implemented by

U
(CD)
± = e±

π
4 γCγD = e±i

π
4 e∓i

π
2 n2 , (6.90)

works analogously, transforming

γA
U

(CD)
±7−−−−→ γA , γB

U
(CD)
±7−−−−→ γB , γC

U
(CD)
±7−−−−→ ∓γD , γD

U
(CD)
±7−−−−→ ±γC . (6.91)

The matrix representations of U (AB)
± and U (CD)

± on the subspace

H0 = span (|0, 0〉 , |1, 0〉 , |0, 1〉 , |1, 1〉) (6.92)

of degenerate eigenstates

|n1, n2〉 = b†0,1
n1
b†0,2
n2 |0〉 (6.93)

are therefore

U (AB)
± =


e±i

π
4 0 0 0

0 e∓i
π
4 0 0

0 0 e±i
π
4 0

0 0 0 e∓i
π
4

 and U (CD)
± =


e±i

π
4 0 0 0

0 e∓i
π
4 0 0

0 0 e∓i
π
4 0

0 0 0 e±i
π
4

 , (6.94)

which are given in the parity-sorted basis {|0, 0〉 , |1, 1〉 , |0, 1〉 , |1, 0〉}. Recall that the requirement of
coherent superpositions forces us to focus on fixed-parity sectors of H0 in topological quantum compu-
tation [102, 113]. If we restrict Eq. (6.94) to the fixed-parity subspaces H(0)

0 = span(|0, 0〉 , |1, 1〉) with
parity P0 and H(1)

0 = span(|0, 1〉 , |1, 0〉) with parity P1 we get

U (AB)
± |P0 =

(
e±i

π
4 0

0 e∓i
π
4

)
and U (CD)

± |P0 =

(
e±i

π
4 0

0 e∓i
π
4

)
(6.95)

and

U (AB)
± |P1

=

(
e±i

π
4 0

0 e∓i
π
4

)
and U (CD)

± |P1
=

(
e∓i

π
4 0

0 e±i
π
4

)
, (6.96)

given in the bases {|0, 0〉 , |1, 1,〉} and {|0, 1〉 , |1, 0〉}, respectively. As expected, Eqs. (6.95) and (6.96) are
again projectively equivalent to the double braiding matrix R of first-fused anyons, as given in Eq. (6.65).
Accordingly, a double exchange of γA and γB induces a unitary transformation(

U (AB)
± |P0

)2

=
(
U (AB)
± |P1

)2

= e±i
π
2

(
1 0

0 −1

)
= e±i

π
2 σz (6.97)

on H(0)
0 and H(1)

0 that is projectively equivalent to R2 from Eq. (6.66). The double exchange of γC and
γD works analogously, the only difference being an inconsequential global phase factor of eiπ on the P1

parity sector: (
U (CD)
± |P0

)2

= e±i
π
2 σz and

(
U (CD)
± |P1

)2

= e∓i
π
2 σz . (6.98)

The fact that these braiding transformations are projectively equivalent to the z-Pauli matrix, tells us
that a double exchange of γA and γB (γC and γD) can be used to implement a Z-gate on a qubit
encoded in the fixed-parity subspaces. So far, we have only discussed the aforementioned Abelian mode
of braiding, in which we exchange first-fused anyons and obtain diagonal transformations like the ones
given in Eq. (6.94). In order to get non-Abelian braiding transformations, we have to consider exchanges
of Ising anyons from different fusion pairs. Consider, for example, the exchange of γA and γD. As before,
it is implemented by the unitary operator

U
(AD)
± = e±

π
4 γAγD . (6.99)

135



Figure 6.3: Two different modes of braiding MZMs. Left: “Abelian” braiding of two MZMs from the same
complex fermion. Right: “non-Abelian” braiding of two MZMs from different complex fermions.

Using Eqs. (6.73) and (6.84), we can rewrite U (AD)
± as

U
(AD)
± =

1√
2

(1± γAγD) =
1√
2

(1± i(b†0,1 + b0,1)(b†0,2 − b0,2)) , (6.100)

which acts on a general |n1, n2〉 as

U
(AD)
± |n1, n2〉 =

1√
2

(1± i(b†0,1 + b0,1)(b†0,2 − b0,2)) |n1, n2〉

=
1√
2

(1± i(b†0,1b
†
0,2 − b

†
0,1b0,2 + b0,1b

†
0,2 − b0,1b0,2)) |n1, n2〉

=
1√
2


(|1, 1〉 ± i |0, 0〉) for |n1, n2〉 = |1, 1〉
(|1, 0〉 ∓ i |0, 1〉) for |n1, n2〉 = |1, 0〉
(|0, 1〉 ∓ i |1, 0〉) for |n1, n2〉 = |0, 1〉
(|0, 0〉 ± i |1, 1〉) for |n1, n2〉 = |0, 0〉

=:
1√
2

(|n1, n2〉 ± i(−1)N |1− n1, 1− n2〉) , (6.101)

where we have used the standard action

ci |n1, . . . , ni, . . .〉 = (−1)
∑
j<i nj

√
ni |n1, . . . , ni − 1, . . .〉

c†i |n1, . . . , ni, . . .〉 = (−1)
∑
j<i nj

√
1− ni |n1, . . . , ni + 1, . . .〉 (6.102)

of fermionic annihilation and creation operators on Fock states and defined N := n1 +n2 in the last line.
The matrix representation of U (AD)

± is

U (AD)
± =

1√
2


1 ±i 0 0

±i 1 0 0

0 0 1 ∓i
0 0 ∓i 1

 , (6.103)

which is given in the usual basis {|0, 0〉 , |1, 1〉 , |0, 1〉 , |1, 0〉}. The restrictions of Eq. (6.103) to H(0)
0 with

parity P0 and H(1)
0 with parity P1 take the form

U (AD)
± |P0

=
1√
2

(
1 ±i
±i 1

)
and U (AD)

± |P1
=

1√
2

(
1 ∓i
∓i 1

)
. (6.104)

Consequently, a double exchange of γA with γD produces braiding transformations(
U (AD)
± |P0

)2

= ±i
(

0 1

1 0

)
and

(
U (AD)
± |P1

)2

= ∓i
(

0 1

1 0

)
, (6.105)

both of which are projectively equivalent to the x-Pauli matrix, such that a double exchange of γA and
γD can be used to implement an X-gate on a qubit encoded in the fixed-parity subspaces. Note that
there are four possible ways in which we can exchange MZMs from different complex fermions: we can
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exchange γA and γC , γA and γD, γB and γC , and finally γB and γD. Simple symmetry considerations
reveal, that the exchange of γC and γB is equivalent to the exchange of γA and γD. However, the exchange
of γA and γC or that of γB and γD may produce different results. We test this explicitly, starting with
the exchange of γA and γC . It is implemented by

U
(AC)
± =

1√
2

(1± γAγC) =
1√
2

(1± (b0,1 + b†0,1)(b0,2 + b†0,2)) , (6.106)

which results in a braiding transformation

U
(AC)
± |n1, n2〉 =

1√
2

(|n1, n2〉 ± (−1)n1 |1− n1, 1− n2〉) (6.107)

with a matrix representation

U (AC)
± =

1√
2


1 ±1 0 0

∓1 1 0 0

0 0 1 ±1

0 ∓1 1

 . (6.108)

given in the same basis as before. The restrictions of U (AC)
± to H(0)

0 and H(1)
0 are

U (AC)
± |P0 =

1√
2

(
1 ±1

∓1 1

)
and U (AC)

± |P1 =
1√
2

(
1 ±1

∓1 1

)
, (6.109)

which square to (
U (AC)
± |P0

)2

= ∓iσy and
(
U (AC)
± |P1

)2

= ∓iσy . (6.110)

The double exchange of these MZMs therefore implements a projective Y -gate. The exchange of γB and
γD is analogous to that of γA and γC . The exchange operator in that case is

U
(BD)
± =

1√
2

(1∓ (b0,1 − b
†
0,1)(b0,2 − b

†
0,2)) , (6.111)

which results in a braiding transformation

U
(BD)
± |n1, n2〉 =

1√
2

(|n1, n2〉 ∓ (−1)n2 |1− n1, 1− n2〉) (6.112)

with a matrix representation

U (BD)
± =

1√
2


1 ∓1 0 0

±1 1 0 0

0 0 1 ±1

0 0 ∓1 1

 , (6.113)

The restrictions of U (BD)
± to H(0)

0 and H(1)
0 are

U (BD)
± |P0

=
1√
2

(
1 ∓1

±1 1

)
and U (BD)

± |P1
=

1√
2

(
1 ±1

∓1 1

)
, (6.114)

which square to (
U (BD)
± |P0

)2

= ±iσy and
(
U (BD)
± |P1

)2

= ∓iσy . (6.115)

The double exchange of these MZMs therefore presents another way to implement a projective Y -gate.
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6.5 Topological Quantum Computation with Anyons Revisited

In the limit of infinite anyon separation, anyon-anyon interactions become negligible and the fusion
subspaceH0 constitutes a truly degenerate subspace of the total Hilbert space. As a result, all states ofH0

evolve according to the same unitary time evolution and there is no dynamical dephasing compromising its
coherence. In combination with the topological protection against local perturbations and control errors,
this inherent dynamical coherence makes topological quantum computation with anyons an exceptionally
robust quantum computation scheme [114].

Of course, these ideal conditions are never quite met in the real world. In fact, the same microscopic
mechanisms that give rise to anyonic quasiparticles in the first place also furnish them with interactions,
introducing some degree of decoherence and perturbation-induced energy splitting to the system. Gen-
erally, these interactions decay exponentially in the separation between anyons, so it is important to
keep anyonic quasiparticles “sufficiently far away” from one another in the laboratory. How far exactly
“sufficiently far away” is, is determined by a coherence length l that is characteristic to the system. When
two anyons A and B with two possible degenerate fusion channels |(AB);X〉 and |(AB);Y 〉 are within
a distance L of each other, the pairwise interaction between A and B lifts the degeneracy of |(AB);X〉
and |(AB);Y 〉 by

∆ε ∼ e−L/l , (6.116)

where l denotes the parameter-dependent coherence length of the system. In practice, this lifting of the
fusion channel degeneracy is always present to some extent. This leads to several subtleties for topological
quantum computation. To begin with, the states of H0 will dephase over time, requiring a certain level
of error correction despite the persistent topological protection [115]. The time after which substantial
dephasing sets in is directly determined by the energy splitting ∆ε, highlighting once more the importance
of anyon separation, even in finite-size limited environments. Next, a finite splitting of fusion channels
means that the adiabatic exchange must not only be slow enough to avoid excitations beyond H0, but
also fast enough to ensure that the fusion channels appear degenerate, see Sec. 4.5 and Refs. [116, 117].
Specifically, in finite-size systems there exist two characteristic time scales

τ =
~

∆ε
and T =

~
∆E

(6.117)

associated to the largest energy splitting ∆ε among the low-energy fusion channels and the energy gap
∆E between the highest energy state of H0 and the rest of the spectrum. Generally, we have ∆ε� ∆E

such that T � τ , i.e. the time scale τ that governs excitations within H0 is much larger (slower) than
the time scale T that determines excitations from H0 to higher energy states. The time scale θ required
for the adiabatic exchange of anyons with non-degenerate fusion channels must therefore satisfy

T � θ � τ , (6.118)

i.e. it must be much faster than τ and much slower than T , cf. Sec. 4.5. Maintaining a balance between
these two time scales generally leads to small errors in the implementation of quantum gates, which
need to be corrected to avoid error accumulation and decoherence in the long run. Finally, interactions
between anyons can even cause topological phase transitions, that destroy the topological protection and
exotic statistical properties altogether [118–120]. The conditions under which such interaction-induced
topological phase transitions occur have been the subject of several studies [121–124]. The severity and
inevitability of these finite-size induced problems call for theoretical treatments and simulations that
explicitly account for them. This will be one of the main topics in Chap. 10.
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7 – Spectral Impurity Responses in Systems with
Coexisting Topological Structures

It is one of the most remarkable insights in modern condensed matter physics, that the bulk topology
of an insulator can enforce the existence of conducting states at its boundary. This profound connection
is formalised in the celebrated tenfold way of topological quantum matter, which identifies entire sym-
metry classes of such materials [14]. The topology of these phases of matter is characterised by abstract
invariants that capture the global properties of the underlying quantum states and may even manifest
as experimentally accessible physical observables. The most famous example of the latter is the integer
quantum Hall effect (IQHE), where the Hall conductivity, σxy = − e

2

h C1, is determined by the first Chern
number C1 of the electronic Bloch bundle, allowing a direct experimental measurement of the system’s
topological invariant and boundary modes [9, 10].

However, the immediate accessibility of topological invariants can vary greatly, so that alternative
methods for the identification of topological states of matter become important. Apart from angle-
resolved photoemission spectroscopy (ARPES), which can be used to image the surface band structure
of three-dimensional topological materials [125], a particularly promising tool for the development of
such methods could be local impurities. The possibility of probing the topology of a given quantum
system using local impurities has been addressed in a number of studies [126–135]. These analyse the
electronic structure near various types of impurities and impurity lattices in SPT systems across different
Altland-Zirnbauer symmetry classes. The main goal of these works is to identify the general conditions
under which the eigenenergies of the Hamiltonian robustly cross zero energy or traverse the band gap
as external parameters are varied. In several lattice models, including the Kane–Mele [126], BHZ [131],
and Haldane model [135], it was found that impurity-bound states appear in the topologically non-trivial
phase but not in the trivial one.

In the following chapter, we study a two-dimensional lattice electron system with magnetic impurities
at selected sites. To begin with, we consider a single magnetic impurity at an impurity site i0. It is
modelled as a classical spin S and interacts with the local magnetic moment si0 of the electron system
via a local exchange interaction Jsi0S. For the electron model we choose the spinful Haldane model,
which gives rise to a Bloch bundle over the Brillouin torus T 2

k that is characterised by the first Chern
number C(k)

1 ∈ Z, capturing the essential topological features of the integer quantum anomalous Hall
effect (IQAHE). Additionally, the space of classical spin configurations forms a closed manifold S ≡ S2

S

that enables a second, coexisting topological classification, but this time in terms of the first Chern
number Ch(S)

1 ∈ Z over S2
S : if the Hamiltonian H(S) depends smoothly on S and has a gapped,

non-degenerate ground state for every S ∈ S2
S , the associated U(1) bundle of ground states admits a

topological classification via the first Chern number [39,136]. To distinguish between the Chern numbers
of “k-space” and “S-space”, we denote them by C(k)

1 and Ch(S)
1 , and call the latter the spin-Chern number.

Just like in the conventional Bloch bundle topology, the spin-Chern number takes integer values and can
change only when the gap closes, i.e. when ground-state degeneracies appear on a submanifold of S2

S .
The main goal of this work is to utilise the additional S-space topology to complement the conventional

k-space classification. The interplay between both perspectives is expected to offer valuable insights into
the behaviour of impurities within otherwise translationally invariant systems. This becomes particularly
clear in the limit of strong exchange coupling, J → ∞, where the local impurity physics is effectively
governed by a magnetic-monopole model [2, 81, 137], Hmono = JSsi0 , which exhibits a non-trivial S-
space topology characterised by a non-trivial first spin-Chern number of Ch(S)

1 = ±1. Since the first
spin-Chern number is trivially equal to zero for J = 0, it follows that there must be a spectral flow of
impurity-bound in-gap states that crosses the chemical potential as a function of J . Moreover, we show
that the inclusion of S-space topology gives rise to a non-trivial topological phase diagram in the critical
interaction strength Jcrit marking the S-space topological phase transition. This diagram reflects the
coexisting k-space topology through its dependence on the parameters of the Haldane model.
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Finally, we extend our study to the case of several impurity spins S0, . . . ,SR−1, i.e. to a multi-
impurity Kondo-Haldane model but with classical spins instead of localised quantum spins. With this
modification, we focus on a regime where quantum-spin fluctuations and Kondo-screening effects can be
disregarded. The configuration space of R classical impurity spins coupled to R distinct sites of the lattice
is now the R-fold direct product SR ≡ S2

S0
×· · ·×S2

SR−1
and we characterise the topology of ground state

bundles over this 2R-dimensional manifold SR by a characteristic number Ch(S)
R , which we call the R-th

spin-Chern number. As before, we trivially have Ch(S)
R = 0 at J = 0, while we get Ch(S)

R = 1 for J →∞.
We find that the two distinct S-topological phases are separated by a finite range of coupling strengths,
Jcrit,1 < J < Jcrit,2, in which the system is gapless for at least one configuration S0, . . . ,SR−1 ∈ SR. The
critical interactions Jcrit,1 and Jcrit,2 strongly depend on the parameters of the Haldane model and are
found to be roughly one order of magnitude larger in the k-space topologically non-trivial phase than in
the trivial phase. Systems with R = 1 and R = 2 impurity spins are studied numerically.

The remainder of this chapter is organised as follows. In Sec. 7.1 we introduce the concept of the
spin-Chern number for electronic systems with classical spin impurities. Following this, we review the
Haldane model and its k-space topology in Sec. 7.2. In the next section, Sec. 7.3, we present our results
for the low-energy electronic structure in the presence of a single impurity spin. Section 7.4 provides
an analysis of the spin-Chern number in the strong-J limit. This is followed by a discussion of the S-
topological phase transition in Sec. 7.5. In Sec. 7.6 we examine how the S-space topological transition is
affected by k-space topology. Finally, we evaluate numerical results for two impurity spins in the k-space
trivial and non-trivial phases in Sec. 7.7.

Throughout this chapter, we closely follow our original presentation in [RQ1].

7.1 Multi-Impurity Kondo Model with Classical Spins

A multi-impurity Kondo model with R classical spins S0, . . . ,SR−1 of fixed lengths |Si| = 1 for all
i = 0, . . . , R− 1 is described by a quantum-classical hybrid Hamiltonian

H(S0, . . . ,SR−1) = Hel +Hint(S0, . . . ,SR−1) , (7.1)

where Hel characterises any non-interacting lattice electron system, and

Hint(S0, . . . ,SR−1) = J

R−1∑
m=0

Smsim (7.2)

models the interactions between the Sm and the local magnetic moments sim at the impurity sites im
of the electronic lattice system via a local exchange coupling of strength J . Here, we choose an antifer-
romagnetic coupling J > 0. In second quantisation, Hel is constructed from the elementary fermionic
creation and annihilation operators c†iα and ciα satisfying the canonical anticommutation relations

{ciα, c
†
jβ} = δijδαβ and {ciα, cjβ} = {c†iα, c

†
jβ} = 0 . (7.3)

Here, i and j refer to sites of the underlying lattice and α, β ∈ {↑, ↓} labels the electron spin projection.
The components of the local magnetic moments sim are given by

simµ =
1

2

∑
α,β

σαβµ c†imαcimβ , (7.4)

where µ = x, y, z. The configuration space SR of the R classical spins Sm ∈ S2
m is given by the R-fold

direct product

SR ≡ S2
S0
× · · · × S2

SR−1
(7.5)

and serves as an extrinsic parameter manifold for the model Eq. (7.1). Note that SR is a simply-connected,
closed, compact and orientable manifold of real dimension dimR(SR) = 2R.
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7.1.1 S-Space Topology of the Multi-Impurity Kondo Model with Classical Spins

The instantaneous eigenstates of Eq. (7.1) form complex vector bundles over SR that may be analysed
in terms of their characteristic classes. In particular, the many-body ground state |Ψ0(S0, . . . ,SR−1)〉 of
H(S0, . . . ,SR−1) defines a complex line bundle Ψ0

π−→ SR whenever |Ψ0(S0, . . . ,SR−1)〉 is non-degenerate
and gapped on the entire parameter manifold SR.

We characterise this ground-state bundle based on a characteristic class chR ∈ H2R(SR,Q) which is
known as the R-th Chern character of Ψ0

π−→ SR, cf. Sec. 2.3.6. Recall that in Chern–Weil theory, chR
is determined by the invariant polynomial

chR(F) =
1

R!
tr
(
iF
2π

)R
(7.6)

in the Berry curvature two-form

F =

(
∂ 〈Ψ0|
∂Sµ

)(
∂ |Ψ0〉
∂Sν

)
dSµ ∧ dSν , (7.7)

where µ and ν run over some choice of coordinates of the R impurity spins. Here, we wrote |Ψ0〉 ≡
|Ψ0(S0, . . . ,SR−1)〉 for better readability. Since chR(F) ∈ H2R(SR,Q) defines an element of the 2R-th
rational cohomology group H2R(SR,Q) of SR, and SR itself represents an element SR ∈ H2R(SR) of
the 2R-th homology group H2R(SR), we can pair chR(F) against SR to obtain a characteristic rational
number [39,136]

Ch
(S)
R ≡ 〈[chR(F)], [SR]〉 =

∮
SR
chR(F) =

1

R!

(
i

2π

)R∮
SR

tr(F)R , (7.8)

called the R-th spin-Chern number Ch(S)
R ∈ Q of Ψ0

π−→ SR. Let us emphasise once more that the Chern
character defines a cohomology class with rational coefficients. By this definition alone, Ch(S)

R ∈ Q is
therefore only guaranteed to be a rational number. The fact that Eq. (7.8), and more generally the
top-degree Chern number Chm = 〈[chm], [M ]〉 of any principal U(1)-bundle over a 2m-dimensional basis
manifold M , still yields an integer is a non-trivial result related to a deeper connection captured by the
famous Atiyah–Singer index theorem. This was briefly addressed in Sec. 2.3.6.

We introduce coordinates λ = (λ0, . . . , λ2R−1) ≡ (ϑ0, φ0, . . . , ϑR−1, φR−1) on SR, where each pair
(ϑj , φj) denotes the polar and azimuthal angles on the j-th factor S2

j of the product manifold. In these
coordinates, the R-th spin-Chern number given in Eq. (7.8) can be computed as

Ch
(S)
R =

1

R!

(
i

2π

)R ∑
π∈S2R

sign(π)

∫
dλ0 · · · dλ2R−1

∂〈Ψ0|
∂λπ(0)

∂|Ψ0〉
∂λπ(1)

· · · ∂〈Ψ0|
∂λπ(2R−2)

∂|Ψ0〉
∂λπ(2R−1)

, (7.9)

where the sum runs over all permutations π ∈ S2R of the symmetric group of 2R elements. A few more
details are presented in the appendix of [RQ1].

7.2 The Haldane Model

The Haldane model is an extended tight-binding model of graphene that captures the physics of the
integer quantum anomalous Hall effect (IQAHE) [19]. It is based on the realisation that the only necessary
condition for realising a topological QHE state is the breaking of TRS. Unlike conventional QHE systems,
which rely on strong exterenal magnetic fields to achieve this, Haldane designed his model to break TRS
intrinsically. To achieve this, he introduced a periodic magnetic flux density B(r) = B(r)ez with the full
symmetry of the graphene lattice and zero flux through the unit cell. Before we move on to a discussion
of the second-quantised Haldane Hamiltonian, we briefly go over the structural basics of the graphene
lattice.
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Figure 7.1: Sketches of the (a) real-space and (b) reciprocal honeycomb lattice. The blue and red dots
label the sites of the two distinct sublattices A and B. The primitive lattice translation vectors v1 and
v2 (w1 and w2) of the real-space (reciprocal) lattice are shown in grey colour. In the real-space lattice,
the three nearest-neighbour positions a1,a2 and a3 are displayed and the interatomic distance a0 and
lattice constant a are indicated. In the reciprocal lattice, the positions the high-symmetry points Γ,K

and K ′ are marked.

7.2.1 The Graphene Lattice

Graphene is a single layer of carbon atoms on a honeycomb lattice, as shown in Fig. 7.1. The honeycomb
lattice Λh is not a Bravais lattice because its unit cell contains two carbon atoms, giving rise to two distinct
sublattices A and B. For a honeycomb lattice in the xy-plane, the two primitive lattice translations are

v1 =
a

2

(
−1√

3

)
and v2 =

a

2

(
1√
3

)
, (7.10)

where a =
√

3 a0 ≈ 2.46Å the lattice constant given interms of the interatomic distance a0 ≈ 1.42Å.
The nearest-neighbour (NN) coordination number is three, while the next-nearest neighbour (NNN)
coordination number is six. On sublattice A, the positions of the three NN sites are given by

a1 = a0

(
0

1

)
, a2 =

a0

2

(√
3

−1

)
, a3 = −a0

2

(√
3

1

)
, (7.11)

while those of the six NNN sites are take the form

b1 = −b4 = v1 , b2 = −b5 = v2 , b3 = −b6 = v2 − v1 . (7.12)

By definition, the honeycomb lattice is invariant under the action of the free Abelian group

T ' FAb(v1,v2) =
(
T ∈ R2 | T = n1v1 + n2v2 , n1, n2 ∈ Z

)
' Z2 (7.13)

of lattice translations along v1 and v2. Its crystal structure is characterised by the point group D6h [138].
For us, the most relevant subgroups of D6h are a C6 ' Z6 symmetry of rotations by φn = 2πn

6 (n ∈ Z)

around the center of each hexagon, a I2 ' Z2 sublattice inversion symmetry of reflections about the
center of each unit cell, and a z → −z reflection symmetry R2 ' Z2 about the xy-plane.

In second quantisation, the periodic magnetic flux density of the Haldane model enters via a complex
NNN Peierls hopping,

tMFe
ie
h

∫Rj
Rk

A(r)dr ≡ tMFe
iξjk , (7.14)

where Rj and Rk denote the positions of the two NNN sites involved in the hopping process, A(r) is a
suitable vector potential for B(r), and ξjk ≡ e

h

∫Rj
Rk
A(r)dr is the resulting Peierls phase. With this, the

spinful Haldane Hamiltonian reads

HH = −thop

∑
〈j,k〉
α

c†jαckα + V
∑
j,α

εjc
†
jαcjα + tMF

∑
〈〈j,k〉〉
α

eiξjkc†jαckα , (7.15)
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h0(k) 2tMF cos ξ (2 cosx cos 3y + cos 2x) hx(k) −thop (2 cosx cos y + cos 2y)

hy(k) −thop (2 cosx sin y − sin 2y) hz(k) V − 2tMF sin ξ (2 sinx cos 3y − sin 2x)

Table 7.1: Non-zero coefficients of Eq. (7.17), with x =
√

3a0kx/2 and y = a0ky/2. For details see
App. A.8.

where j and k label the L sites of a honeycomb lattice Λh in the xy-plane, 〈j, k〉 and 〈〈j, k〉〉 indicate
summation over pairs of NN and NNN sites, and α, β ∈ {↑, ↓} denote the spin projection of the electrons
along the z-axis. The first term of Eq. (7.15) is the generic tight-binding hopping of graphene. It is
governed by the real NN hopping amplitude thop (in graphene t = 2.8 eV) and preserves all spatial
(lattice and z-reflection) symmetries and the SU(2) spin symmetry of the electrons. Moving forward,
the lattice constant a ≡ 1 sets the length unit, while the NN hopping amplitude thop ≡ 1 sets the
energy unit. The second term is a staggered sublattice potential. It is characterised by the real on-site
potential strength V and the sign εj = ±1, which is negative (positive) when when j belongs to the A
(B) sublattice. For V 6= 0, this term breaks the I2 sublattice inversion symmetry (I2 ⇁ 1) and reduces
the six-fold rotational symmetry C6 to a three-fold rotational symmetry (C6 ⇁ C3). The SU(2) spin
symmetry and the z-reflection symmetry R2 are left invariant. The last term describes the coupling of
the electrons to the periodic magnetic flux density. It is determined by the real NNN spin-orbit hopping
amplitude tMF and the real phase ξjk = ±ξ, which is positive (negative) for anticlockwise (clockwise)
hopping k → j within a hexagon of the lattice. Due to the complex phase factor, this term transforms as

T tMF

∑
〈〈j,k〉〉
α

eiξjkc†jαckα T
† = −tMF

∑
〈〈j,k〉〉
α

e−iξjk c†jαckα , (7.16)

under TRS. As a consequence, this term breaks TRS for ξ 6= (2n+ 1)π/2, allowing for a non-trivial QSH
insulating state. A proof of Eq. (7.16) is given in App. A.8. We set tMF = 0.1 throughout this chapter.

The Haldane Hamiltonian HH can be diagonalised in k-space. Specifically, the Fourier transform
cjα = 1/

√
L
∑
k e

ikRjckα of the elementary field operators allows us to write HH as

HH =
∑
k

φ(k)† hH(k) φ(k) , (7.17)

where we introduced the spinor φ(k) = (ak↑ bk↑ ak↓ bk↓)
ᵀ of annihilation operators akα and bkα for Bloch

states with quasi-momentum k and spin projection α on the A and B sublattices, respectively. Note that
the A and B sublattices form a two-component degree of freedom that behaves mathematically like a
spin. For this reason, it is often referred to as sublattice pseudospin. The spinors in Eq. (7.17) are then
given in an σ ⊗ τ tensor basis where σ is associated with the {↑, ↓} components of electron spin, while
τ describes the {a, b} components of sublattice pseudospin sector. The Hermitian 4 × 4 Bloch matrix
hKM(k) from Eq. (8.3) takes the form (for details see App. A.8)

hH(k) = 1σ2 ⊗
[
h0(k)1τ2 + h(k)τ

]
, (7.18)

which is given in terms of the electron-spin (sublattice-pseudospin) identity matrix 1σ2 (1τ2) and the vector
τ of sublattice-pseudospin Pauli matrices. The coefficient functions h0(k) and h(k) ≡

(
hx(k)hy(k)hz(k)

)
are listed in Tab. 7.1. The diagonalisation of Eq. (7.17) amounts to a diagonalisation

U(k)†hH(k)U(k) = EH(k) = diag(E+
↑ (k), E+

↓ (k), E−↑ (k), E−↓ (k)) , (7.19)

of the 4× 4 Bloch matrix hH(k) from Eq. (7.18). The four energy bands

E±α (k) = h0(k)±
√
hx(k)2 + hy(k)2 + hz(k)2 ≡ h0(k)± |h(k)| , (7.20)

exhibit a degeneracy between the spin-up (α = ↑) and spin-down (α = ↓) sectors. Thus, we get two
doubly degenerate bands, a conduction band E+(k) and a valence band E−(k). These are symmetric
around zero so the energy gap of the system is defined as

∆E := min
k

(E+(k)− E−(k)) = 2 ·min
k
|h(k)| . (7.21)

143



We find that the minimum is attained at the Dirac points

K± = ± 4π

3
√

3a0

(
1

0

)
, (7.22)

where hx(K±) = hy(K±) = 0 and hz(K±) = V ∓ 3
√

3tMF sin(ξ) so that

∆E := 2 ·min
K±
|V ∓ 3

√
3tMF sin(ξ)| . (7.23)

Note that V 6= 0 opens the gap symmetrically at both Dirac points, whereas tMF 6= 0 modifies the
gap size at K± in opposite directions. Furthermore, the bulk gap ∆E closes along the nodal surface
|V | = 3

√
3|tMF sin(ξ)| in the three-dimensional parameter space spanned by tMF, ξ and V . This nodal

surface divides the parameter space into two separate types of regions with finite gaps ∆E > 0: one
dominated by the onsite potential (|V | > 3

√
3|tMF sin(ξ)|), and one dominated by the intrinsic spin-

orbit coupling (|V | < 3
√

3|tMF sin(ξ)|). It turns out that these two regions are closely related to the
topologically trivial and non-trivial phases of the Haldane model. For this reason, the onsite potential V
is often used to tune between the topologically distinct phases in practice.

At half-filling, i.e. for every chemical potential µ with |µ| < ∆E/2, the ground state |GS〉 of the
Haldane model is a Slater determinant

|GS〉 =
∏
k∈T 2

k
α= ↑,↓

d− †kα |0〉 =
∧
k∈T 2

k
α= ↑,↓

|u−α (k)〉 (7.24)

of all valence Bloch states |u−α (k)〉 ≡ d−†kα |0〉 ∈ H ⊂ F . Here, H ⊂ F indicates the natural inclusion
of the single-particle Hilbert space H into the many-particle Fock space F , and |0〉 denotes the vacuum
state of F defined by ckα |0〉 = 0 for all k ∈ T 2

k and α ∈ {↑, ↓}. The creation operators d−†kα of the valence
Bloch states are defined along with creation operators d+ †

kα of the conduction Bloch states via(
d+ †
k↑ , d

+ †
k↓ , d

−†
k↑ , d

−†
k↓
)

:= φ(k)†U(k) , (7.25)

i.e. via the diagonalisation transformation U(k) of hH(k). The topology of the valence Bloch states
therefore determines the topological properties of the many-body ground state.

7.2.2 Topology of the Haldane Model

The family {H(k)}k∈T 2
k
of Bloch spaces

H(k) := span
(
|u+
↑ (k)〉 , |u+

↓ (k)〉 , |u−↑ (k)〉 , |u−↓ (k)〉
)

(7.26)

defines a rank-four Bloch bundle BH
π−→ T 2

k over the two-dimensional Brillouin torus T 2
k . For ∆E > 0,

this Bloch bundle can be split as

BH = B−H ⊕ B
+
H , (7.27)

where B±H
π±−−→ T 2

k are the two rank-two subbundles of BH that are determined by the families {H±(k)}k∈T 2
k

of valence and conduction subspaces

H±(k) := span
(
|u±↑ (k)〉 , |u±↓ (k)〉

)
. (7.28)

These are called the valence and conduction subbundles, accordingly. Since the spin-up and spin-down
sectors of the spinful Haldane model in Eq. (7.15) are completely uncoupled, the rank-two valence and
conduction subbundles can be further decomposed into a direct sum of rank-one line bundles

B±H = B±H,↑ ⊕ B
±
H,↓ , (7.29)

so that the total Bloch bundle can be written as a direct sum

BH = B−H,↑ ⊕ B
−
H,↓ ⊕ B

+
H,↑ ⊕ B

+
H,↓ (7.30)
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Figure 7.2: Phase diagram showing the first k-Chern number C(k)
1 ≡ C(k)

1,(−,↑) of the spin-up valence bundle

in the V/tMF and ξ plane. Light grey and white colour highlight the trivial (C(k)
1 = 0) and non-trivial

(C(k)
1 = 1) regions; red and blue lines mark gap closures at K+ and K−, see Ref. [19]. Reproduced with

minor modifications from Ref. [RQ1].

of complex line bundles B±H,α
π±α−−→ T 2

k . We can characterise each of these rank-one subbundles using the
Chern class c1 ∈ H2(T 2

k ,Z). In Chern–Weil theory, c1 is determined by the invariant polynomial

c1(F±H,α) = tr

(
iF±H,α

2π

)
(7.31)

in the Berry curvature two-form

F±H,α =

(
∂〈u±α (k)|
∂kµ

)(
∂|u±α (k)〉
∂kν

)
dkµ ∧ dkν , (7.32)

where µ and ν denote any coordinates on T 2
k and |u(k)±α 〉 is the Bloch state defining the valence (−) or

conduction (+) subbundle with spin α ∈ {↑, ↓}. Since c1(F±H,α) ∈ H2(T 2
k ,Z) defines an element of the

second integral cohomology group H2(T 2
k ,Z) of T 2

k , and T 2
k itself represents an element T 2

k ∈ H2(T 2
k) of

the second homology group H2(T 2
k), we can pair c1(F±H,α) against T 2

k to obtain a characteristic integer [39]

C
(k)
1,(±,α) ≡ C

(k)
1 (B±H,α) = 〈[c1(F±H,α)], [T 2

k ]〉 =

∮
T 2
k

c1(F±H,α) =
i

2π

∮
T 2
k

tr(F±H,α) ∈ Z , (7.33)

called the first k-Chern number C(k)
1,(±,α) of B±H,α

π±α−−→ T 2
k . As we are dealing with Abelian U(1) bundles,

the trace in Eq. (7.33) is redundant and we arrive at the familiar expression

C
(k)
1,(±,α) ≡

i

2π

∮
T 2
k

F±H,α . (7.34)

The low dimensionality of the rank-one bundles makes it possible to compute these Chern numbers
analytically. An exemplary calculation is included in App. A.8. Eventually, we get

C
(k)
1,(−,↑) = C

(k)
1,(−,↓) = −C(k)

1,(+,↑) = −C(k)
1,(+,↓) =


+1 for |V | < 3

√
3|tMF sin(ξ)| , sin(ξ) > 0

0 for |V | > 3
√

3|tMF sin(ξ)|
−1 for |V | < 3

√
3|tMF sin(ξ)| , sin(ξ) < 0 ,

(7.35)

which is illustrated in Fig. 7.2 for C(k)
1 ≡ C(k)

1,(−,↑). Equation (7.35) confirms that the total Bloch bundle
BH is always trivial, as

C
(k)
1 (BH) = C

(k)
1,(−,↑) + C

(k)
1,(−,↓) + C

(k)
1,(+,↑) + C

(k)
1,(+,↓) = 0 . (7.36)

Meanwhile, the rank-two valence and conduction subbundles are non-trivial with

C
(k)
1 (B±H) = C

(k)
1,(±,↑) + C

(k)
1,(±,↓) = ±2 (7.37)

in the topological phases. Finally, we use Eqs. (7.23) and (7.35) to define the critical sublattice potential
strength

Vcrit ≡ Vcrit(tMF, ξ) = 3
√

3|tMF sin(ξ)| , (7.38)

at which the band gap closes and the k-Chern number becomes ill-defined.
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7.2.3 Spin Haldane Model with Classical Spin Impurities

By adding the interaction term Hint(S0, . . . ,SR−1) to the Haldane model, we break the translational
symmetries. For J 6= 0, the k-space Chern number is therefore no longer well defined. Moreover, the
classical spins act as local magnetic fields so that TRS is broken for J 6= 0 even if tMF = 0. Note that the
interaction term couples the two spin projections of the spinful Haldane Hamiltonian from Eq. (7.15).
We also add a chemical-potential term −µN to the Hamiltonian Eq. (7.15), where N is the total-particle
number. Any value of the chemical potential µ inside the bulk band gap ensures a half-filled system. Its
exact position within the gap, however, is relevant for the occupation of in-gap impurity states induced
by the exchange interaction with the classical spins. As the impurity concentration R/L (here R ≤ 3) is
thermodynamically irrelevant, we set µ to its zero-temperature bulk value, i.e. µ lies exactly in the center
of the bulk band gap. A different choice of µ will not qualitatively change the phase diagrams discussed
later on. The total Hamiltonian from Eq. (7.1) can be cast into the form

H(S0, . . . ,SR−1) =
∑
j,k,α,β

T eff
(j,α)(k,β)(S0, . . . ,SR−1)c†jαckβ , (7.39)

where

T eff
(j,α)(k,β)(S0, . . . ,SR−1) = T(jα)(kβ) +

J

2

R−1∑
m=0

(Smσ)
αβ
δjimδkim (7.40)

are the elements of the effective hopping matrix T eff(S0, . . . ,SR−1), given in terms of the elements

T(jα)(kβ) = −thopδ〈j,k〉δαβ + V εjδjkδαβ + tMFe
iξjkδ〈〈j,k〉〉δαβ (7.41)

of the hopping matrix of the pristine Haldane T model and the vector σ of electron-spin Pauli matrices.
The single-particle energies εn(S0, . . . ,SR−1) are obtained by numerical diagonalisation of T eff(S0, . . . ,SR−1)

for arbitrary spin configurations.

7.3 Low-Energy Electronic Structure with a Single Impurity Spin

As a start, we consider a model with a single impurity spin, introducing the notation S ≡ S0 for
better readability. We determine the energy spectrum via exact diagonalisation of the full hopping
matrix T eff(S), Eq. (7.40), and analyse it as a function of the local exchange-coupling strength J . Due
to periodic boundary conditions, the results are independent of the choice of the unit cell. However,
they still differ depending on whether the impurity spins are coupled to sites of sublattice A or B. The
calculations presented here were done for a system, where the impurity spin is coupled to a sublattice A
site i0 of the honeycomb lattice.

Figure 7.3 shows the single-particle energies εn for generic parameters ξ = π/4 and tMF = 0.1 within
a narrow window of width W0 = 1.2 around µ ≈ −0.21. For comparison, the valence and conduction
bands are much broader, with widths Wval ≈ 2.2 and Wcond ≈ 3.5, respectively. The total width of the
electronic band structure, including the band gap of about ∆E ≈ 0.37, is given by W ≈ 6.1. Aside from
the bulk band gap,

∆E = 2|V − 3
√

3tMF sin(ξ)| = 2|V − Vcrit| , (7.42)

and numerous small gaps caused by the finite lattice size L = 2 · 392 = 3042, Fig. 7.3 highlights the
presence of in-gap states and their dependence on the exchange-coupling strength J . We have considered
three different sublattice potential strengths V to illustrate that the energies of the in-gap states depend
strongly on the model of the underlying electron system. To facilitate direct comparison, the three
sublattice potential strengths were chosen such that the bulk band gap ∆E is identical in all cases. Note
that the ground states for V = −0.5Vcrit and V = +0.5Vcrit differ in the occupation of the impurity site,

ni0 =
∑
α=↑,↓

c†i0αci0α , (7.43)

giving 〈ni0〉 > 1 and 〈ni0〉 < 1, respectively. Importantly, the systems with V = ±0.5Vcrit, shown in the
left and middle panel, are in a k-space topologically non-trivial state with C(k)

1 = +1, whereas the system
with V = 1.5Vcrit, shown in the right panel, is in the k-space topologically trivial state with C(k)

1 = 0.
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Figure 7.3: Single-particle energies as a function of J , as obtained by diagonalisation of the effective
hopping matrix from Eq. (7.40) for a periodic honeycomb lattice with of 39× 39 unit cells. A single spin
S is coupled to sublattice A at a site i0. Calculations for sublattice potentials V = ±0.5Vcrit (k-space
topologically non-trivial) and V = 1.5Vcrit (k-space topologically trivial), where Vcrit = 3

√
3tMF sin ξ.

Further parameters are thop = 1, ξ = π/4, tMF = 0.1. The chemical potential µ ≈ −0.21 is located in
the middle of the bulk band gap (gray line). Only the low-energy electronic structure is displayed with
occupied (red) and unoccupied states (blue). In-gap bound states are labelled by (a) – (e). For each of the
three considered sublattice potentials, an S-space topological transition occurs at a critical interaction
strength Jcrit, where an in-gap state, namely (b), (c), or (e), crosses the chemical potential, indicated by
a colour change from red to blue or vice versa. Note that the middle panel displays a larger J-range to
illustrate the convergence of the Zeeman pair inside the gap. Adapted with minor modifications from
Ref. [RQ1].

Additionally, the R = 1 spin-Chern number was computed numerically from Eqs. (7.8) and (7.9). For
J = 0, it vanishes in all configurations, Ch(S)

1 = 0, as the classical spin manifold S1 = S2 is entirely
decoupled from the electron system. Increasing J eventually induces a topological transition, marked
by a sudden jump to Ch(S)

1 = 1 at a critical exchange coupling Jcrit. The system remains in this phase
until the strong-coupling limit, J → ∞, is realised. At J = Jcrit, an in-gap single-particle state crosses
the chemical potential, causing the many-body energy gap to close and the many-body ground state
to become degenerate. Since Hel + Hint(S) lacks two-electron interaction terms, the two degenerate
many-electron ground states |Ψ0,1〉 and |Ψ0,2〉 are Slater determinants,

|Ψ0,1〉 =
∏
εn<µ

d†n |0〉 =
∧
εn<µ

|εn〉 and |Ψ0,2〉 =
∏
εn≤µ

d†n |0〉 =

[ ∧
εn<µ

|εn〉

]
∧ |µ〉 , (7.44)

differing in the occupation of the in-gap single-particle state |µ〉. Accordingly, a different choice of µ
would also shift the value of Jcrit.

The quantum-classical Hamiltonian in Eq. (7.1) is SO(3) symmetric. It is invariant under simultaneous
rotations of the classical spins and the quantum spin degrees of freedom about an arbitrary axis n by an
angle ϕ. In the classical sector, an SO(3) rotation is represented by a matrix

On(ϕ) = exp(Tnϕ) , (7.45)

acting in the spin-configuration space S1 = S2. Here, T = (Tx Ty Tz) is the vector of real and skew-
symmetric 3× 3 matrices Ti generating the Lie algebra o(3) of SO(3). Consequently, the Ti satisfy

[Ti, Tj ] = εijk Tk , (7.46)

where we used an Einstein notation (implicit sum over k) for better readability. A common choice of
generators is

Tx =

0 0 0

0 0 −1

0 1 0

 , Ty =

 0 0 1

0 0 0

−1 0 0

 , Tz =

0 −1 0

1 0 0

0 0 0

 . (7.47)
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In the quantum sector, the rotation is represented by a unitary operator Un(ϕ) = exp(−istotnϕ) with
the total electron spin stot =

∑
i si. An immediate consequence of the invariance

Un(ϕ)H(On(ϕ)S)U†n(ϕ) = H(S) (7.48)

is a continuous degeneracy of the eigenenergies. Specifically, the single-particle energies, and by extension
the N -particle Fock state energies, are independent of the explicit orientation of the classical impurity
spin S. In particular, the single-particle energy of an in-gap state actually represents the energy of all
single-particle states on the entire configuration manifold S1 = S2. As a result, one can assign a single-
particle spin-Chern number χ(S)

1 to each individual in-gap state. The total spin-Chern number C(S)
1 of

the ground state corresponds to the sum of the single-particle spin-Chern numbers χ(S)
1 of the occupied

states. Consequently, C(S)
1 changes at Jcrit when the in-gap state crossing the chemical potential carries

a finite χ(S)
1 6= 0. As J increases, the total spin-Chern number changes by ∆Ch

(S)
1 = −χ(S)

1 if the in-gap
state crosses the chemical potential from below (becomes unoccupied), and by ∆Ch

(S)
1 = +χ

(S)
1 if it

crosses from above (becomes occupied). With this, we find χ(S)
1 = +1 for state (a), χ(S)

1 = −1 for state
(b), χ(S)

1 = +1 for state (c), χ(S)
1 = −1 for state (d), and χ(S)

1 = +1 for state (e) in Fig. 7.3. All these
configurations result in a net change of ∆Ch

(S)
1 = +1 in the total spin-Chern number. Note that the

change ∆Ch
(S)
1 is independent of the explicit choice of µ. For instance, lowering µ would cause state

(d) with χ
(S)
1 = −1 (middle panel) to cross from below, while state (c) with χ

(S)
1 = +1 would remain

unoccupied, instead of crossing from above. Accordingly, this configuration would result in the same net
change of ∆Ch

(S)
1 = +1.

7.4 Strong-J Limit: The Magnetic Monopole

In the strong-J limit, the electronic system forms two impurity-bound high-energy states that can be
viewed as the spin-down and spin-up states, |εi0↓〉 and |εi0↑〉, of a local Zeeman pair.1 As J → ∞, the
energy of |εi0↓〉 approaches negative infinity, εi0↓ → −∞, and the state becomes fully occupied. At the
same time, the energy of |εi0↑〉 grows indefinitely, εi0↑ → +∞, and the state is effectively removed from
the system. As a result, the local occupation, ni0 = ni0↑+ni0↓, tends towards half-filling, ni0 → 1, and the
local magnetic moment 〈s2

i0
〉 increasingly resembles that of a rigid quantum spin-1/2 with 〈s2

i0
〉 → 3/4.

The local physics for J →∞ is therefore effectively governed by the Hamiltonian

Hmono(S) = JSsi0 , (7.49)

describing a rigid spin-1/2 si0 in an external magnetic field JS. Remarkably, this system provides a
paradigmatic realisation of a magnetic monopole [2, 81,137]. To see this, we plug in the definition

si0 :=
1

2
σi0 (7.50)

of the quantum spin-1/2 operator si0 in terms of the Pauli vector σi0 and write

H(B) = Bσi0 =

(
Bz Bx − iBy

Bx + iBy −Bz

)
, (7.51)

where we defined the rescaled magnetic field

B :=
J

2
S (7.52)

to tidy up the notation. Equation (7.51) constitutes a generic two-level system with eigenvalues

E± = ±|B| ≡ ±B , (7.53)

1Note that, in this case, spin-up (↑) and spin-down (↓) refer to the local quantisation axis determined by the orientation
of the classical impurity spin.
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and normalised eigenstates (for details see App. A.9)

|ψ±(B)〉 =
1√

2(±B)(Bz ±B)

(
Bz ±B
Bx + iBy

)
. (7.54)

For B 6= 0, these states define two independent principal U(1) bundles ψ±
π±−−→ R3 \ {0}. As an example,

consider the bundle ψ−
π−−−→ R3 \{0} associated with the negative energy eigenstate. Straightforward but

tedious calculation yields the Berry connection

A−(B) = 〈ψ−(B)|d|ψ−(B)〉 =
i

2

BydBx −BxdBy
B(Bz −B)

. (7.55)

and the Berry curvature

F−(B) = dA−(B) = − i
2

BzdBx ∧ dBy +BydBz ∧ dBx +BxdBy ∧ dBz
B3

. (7.56)

The detailed calculations can be found in App. A.9. One can rewrite Eqs. (7.55) and (7.56) as

A−(B) = − i

2B2

[ez ×B]

(ezB/B − 1)

dBx
dBy
dBz

 =: A−(B)dB , (7.57)

and

F−(B) = − iB
B3

dBy ∧ dBz
dBz ∧ dBx
dBx ∧ dBy

 =: F−(B)dS . (7.58)

Note that we have

F−(B) = curlA−(B) = ∇×A−(B) (7.59)

by definition, cf. App. A.9. Moreover, the coefficient field F−(B) of the Berry curvature in Eq. (7.58)
readily resembles the magnetic field

~B(B) =
µ0 qmag

4π

B

|B|3
, (7.60)

of a magnetic point charge, ρmag = qmagδ(B), situated at the origin B = 0 in B-space. The spin-Chern
number of the U(1) subbundle ψ−

π−−−→ S over a closed two-dimensional submanifold S ⊂ R3 \ {0} is
given by the total spin-Berry flux

Ch
(S)
1 (F−(B)) =

i

2π

∮
S

F−(B) =
1

2π

∮
S

B

B3
dS (7.61)

through S. In particular, we find that any surface S that encloses the magnetic charge at the origin gives
(for details see App. A.9)

Ch
(S)
1 (F−(B)) = 1 . (7.62)

The magnetic monopole analogy will be helpful below. Note that we largely follow the mathematical
convention, treating the Berry connection A−(B) as a one-form and the Berry curvature F−(B) as a
two-form. In contrast, the physics literature often focuses on the associated coefficient fields A−(B) and
F−(B), treating them as vector fields over B-space. Further aspects of how the physics notation can be
reconciled with the underlying mathematical concepts are addressed in App. A.9.

In the J →∞ limit, the rest of the system, i.e. the “punctured” Haldane model without the impurity
site i0, does not couple to the impurity-spin manifold S1 at all, so it carries no spin-Chern number. For a
single impurity spin in the limit J →∞, we may therefore analytically compute the spin-Chern number
of the full model Eq. (7.1) using the simplified monopole model described above. This yields a total
spin-Chern number of Ch(S)

1 = 1. Since the full model has Ch(S)
1 = 0 at J = 0 and Ch(S)

1 = 1 for J →∞,
there must be a topological transition at some intermediate J = Jcrit. This change is driven by a localised
impurity and necessarily involves a gap closure caused by an in-gap state crossing the chemical potential.
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7.5 Topological Transition at Jcrit

The simple monopole model from Eq. (7.49) yields Ch(S)
1 = 1 for every J > 0, and an ill-defined

spin-Chern number at J = 0, where the ground state of Hmono becomes twofold degenerate. This shows
that the topological transition occurs exactly at J = 0. Intuitively, the spin-Chern number becomes
ill-defined when the integration contour itself contains magnetic charge. This interpretation locates the
magnetic monopole charge at Bcrit = JS/2 = 0, precisely as built into the model from the start.

In contrast, the S-space topological phase transition of the full model in Eq. (7.1) occurs at a finite
critical exchange coupling Jcrit > 0. As a consequence, the accompanying gap closure is not constrained
to a single Bcrit ∈ R3 \ {0} either. Instead, it takes place across an entire critical surface

Scrit = {B ∈ R3 \ {0} |B = |B| = JcritS/2} , (7.63)

defined solely by the critical exchange interaction strength Jcrit. The accompanying infinite degeneracy
of the ground state energy at Jcrit is caused by the aforementioned SO(3) rotation symmetry of the total
Hamiltonian in Eq. (7.1): at J = Jcrit, we obtain two degenerate many-body ground states of the form
given in Eq. (7.44) for each fixed S ∈ S2. For the monopole analogy [81, 137], this implies that the
magnetic charge qmag is uniformly distributed over the critical two-sphere S2

crit ⊂ R3 \ {0} with radius
Bcrit = JcritS/2, i.e. we have a generalised monopole charge density

ρmag(B) = σmagδ(B − JcritS/2) (7.64)

with the magnetic surface charge density

σmag =
qmag

4πJ2
critS

2
. (7.65)

Solving divF (B) = µ0ρmag(B) using the divergence theorem and exploiting the SO(3) symmetry yields
the magnetic field

~B(B) =
µ0qmag

4π

B

|B|3
Θ(B − JcritS/2) , (7.66)

and hence the Berry curvature coefficient field

F−(B) = − iB
B3

Θ(B − JcritS/2) . (7.67)

Here, Θ is the Heaviside step function. Due to B = JS/2, it follows that Θ(B−JcritS/2) = Θ(J −Jcrit).
Accordingly, the curvature coefficient field F−(B) vanishes inside the critical sphere, J < Jcrit, while it
coincides with the field of the magnetic point charge outside the critical sphere, i.e. for J > Jcrit.

As before, the spin-Chern number characterising the subbundle ψ−
π−−−→ S2

JS/2 over a two-sphere S2
JS/2

with radius B = JS/2 is defined as

Ch
(S)
1 (F−(B)) =

1

2π

∮
S2
JS

F−(B) dS = Θ(J − Jcrit) , (7.68)

where F−(B) is now the Berry curvature two-form associated with the coefficient field F−(B) from
Eq. (7.66). Interestingly, the Chern number in Eq. (7.68) jumps from Ch

(S)
1 = 0 for J < Jcrit to

Ch
(S)
1 = 1 for J > Jcrit. The connection to the curvature from Eq. (7.67) is once more given by [2]

A(B) = − i

2B2

[ez ×B]

(ezB/B − 1)
Θ(J − Jcrit) . (7.69)

The z-unit vector ez in Eq. (7.69) determines the direction of the Dirac string singularity, which, in this
case, appears along the negative z-axis for |z| > JcritS/2. While this singularity can be displaced by gauge
transformationsA(B) 7→ A(B)+∇Λ(B) with an arbitrary scalar field Λ, it cannot be eliminated entirely.
This accounts for the fact that a non-trivial first Chern number Ch(S)

1 6= 0 obstructs the definition of a
nowhere vanishing global section, cf. e.g. the discussion following Thm. 2.3.2 in Sec. 2.3 and App. A.9.
Inside the critical sphere we find F (B) = rotA(B) = 0, so there exists a local gauge choice in which
A(B) = 0. The Berry connection is discontinuous on the critical sphere and along the Dirac string
stretching from the point −JcritS/2ez on the critical sphere to infinity.
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7.6 Relation to k-Space Topology
The topological transition at Jcrit is driven by the electronic structure around the impurity spin S.

As we have seen earlier, JS acts as a local magnetic field, which polarises the local magnetic moment
of the electron system and results in the formation of two high-energy Zeeman states |εi0↓〉 and |εi0↑〉.
Irrespective of the other parameters of the electronic model, the spin-down (spin-up) state moves down-
wards (upwards) in energy as J increases, and eventually separates from the lower (upper) edge of the
valence (conduction) band at a coupling strength roughly set by the width of the valence band J ∼Wval

(conduction band J ∼Wcond). Note that the energies of these two states are not visible in Fig. 7.3. Both
high-energy states are exponentially localised in the vicinity of the impurity site i0 and become fully
localised at i0 for J →∞, at which point they realise the magnetic-monopole model from Eq. (7.49).

The physical origin of the low-energy states within the bulk band gap is more subtle. We find that
these states are strongly influenced by the k-space topological phase of the electron system, characterised
by the first k-space Chern number C(k)

1 . In the k-space topologically non-trivial electron system with
C

(k)
1 = ±1, we always obtain two in-gap states for sufficiently strong J . These states remain isolated

from the bulk continuum and stay within the gap for all J , cf. states (a), (b) and (c), (d) in Fig. 7.3.
As J →∞, their energies eventually become degenerate. For C(k)

1 = 0, on the other hand, there is only
one in-gap state, which fully crosses the gap as function of J . In particular, this state merges with the
conduction or valence-band continuum at some finite J . As a result, there is no in-gap state present in
the J →∞ limit in this case, cf. state (e) in the right panel of Fig. 7.3.

For J → ∞, the classical impurity spin coupled to i0 becomes a hard zero-dimensional defect in
both spin sectors of the Haldane model. According to the tenfold way, codimension-two defects in
two-dimensional Altland-Zirnbauer class A systems are topologically trivial [14, 139]. Accordingly, the
bulk–defect correspondence does not predict a topologically protected defect mode localised at i0 in the
non-trivial C(k)

1 = ±1 phase. On the other hand, for a soft defect with finite impurity strength, it
is well-known that impurity bound states can serve as a local signature of the bulk topological phase.
This has, for instance, been demonstrated explicitly for codimension-two defects in two-dimensional Z2

insulators [126, 131]. In the present case of a magnetic point impurity in a Chern insulator, one might
expect a strong connection between the k-space Chern number and the existence of in-gap impurity
bound states as well. Indeed, such states have been observed for the Haldane model with various types
of spinless local impurity potentials [135].

Here, we present numerical evidence and an intuitive argument that, in the strong-J limit, a localised
spin-up and spin-down in-gap state must emerge if and only if the electronic bulk structure is topologically
non-trivial. To see this, recall that for J →∞, the impurity-bound spin-down state |εi0↓〉 becomes fully
occupied, while its spin-up partner |εi0↑〉 is pushed so far up in energy that it is effectively removed. As
a result, hopping to and from the impurity site is suppressed, and the electronic structure of Eq. (7.1)
becomes equivalent to that of a spinful Haldane model with a single-site sized hole at i0. Let us imagine
that we can inflate this hole up to macroscopic size, cf. Ref. [129]. The edge of the resulting macroscopic
hole constitutes a one-dimensional defect in the periodic Haldane model, which, due to the conventional
bulk-boundary correspondence, supports one chiral mode per spin projection if C(k)

1 6= 0. This mode
traverses the bulk band gap and disperses with quasi-momentum parallel to the edge of the hole. For
a hole with a finite circumference, the quasi-momentum along its edge becomes discretised, leading to a
finite number of Nedge in-gap states localised along the edge. Here, Nedge = q Cedge is a fraction q ∈ Q

of the total number of edge sites Cedge around the circumference of the hole. Consequently, shrinking
the large hole back to its original single-site size gradually coarsens the quasi-momentum discretisation,
decreasing the number of in-gap edge modes until only a single impurity-bound state per spin projection
remains. It is worth mentioning that for J →∞, the two super-discretised bound states associated with
the two spin projections have the same energy because the only available mechanism capable of lifting
their degeneracy – coupling to the impurity spin – affects only the impurity site in that case. For finite
but large J , we may invoke a perturbative argument: the correction to the bound-state energies due to
second-order virtual-hopping processes to the impurity site i0 and back is of the order of t2hop/J . Indeed,
the energies of the in-gap states (a), (b) and of (c), (d) in Fig. 7.3 are approximately proportional to 1/J

for strong J , and the correction is negative (positive) for spin-up (spin-down) states.
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V Vcrit

Figure 7.4: Single-particle energies
as a function of sublattice poten-
tial V (left panels) for the Haldane
model with holes of different radii
r = 0, 1, 2, 9 (from top to bottom),
all centred on site i0. See main text
for the definition of r. The holes
(right panels) are created by delet-
ing all hoppings between the hole
sites (green) and the surrounding
lattice, effectively removing them.
Violet sites mark the first shell out-
side the hole. Dark and light grey
colours indicate sites of sublattice
A and B sublattices, respectively.
Parameters as in Fig. 7.3. The
straight red and blue lines repre-
sent the V -dependent bulk band
gap. All energies εn are twofold
spin degenerate. Adapted with mi-
nor modifications from Ref. [RQ1].

The previously described coarsening of the in-gap edge-bound states is demonstrated in Fig. 7.4,
which shows the discrete low-energy spectrum of the electron system as a function of V/Vcrit for periodic
Haldane models with holes of three different sizes. The holes are created by removing clusters

Cr = {j ∈ Λh | dh(i0, j) ≤ r} (7.70)

of lattice sites j ∈ Λh, whose graph distance dh(i0, j) to a distinguished site i0 does not exceed r. Here,
the honeycomb lattice Λh is treated as an undirected graph Λh = (Vh, Eh), in which the vertex set Vh

corresponds to the lattice sites and the edge set Eh contains unordered pairs of nearest-neighbour sites
(NN bonds). In this description, a path from i to j is defined as a finite subgraph γ = (Vγ , Eγ) ⊂ Λh

with vertex set

Vγ = {v1 = i, v2, . . . , vn = j} ⊂ Vh (7.71)

of adjacent lattice sites, and edge set

Eγ = {(v1, v2), (v2, v3), . . . , (vn−1, vn)} ⊂ Eh (7.72)

of pairwise NN bonds connecting them. The length |γ| of a path γ is given by the number of edges it
contains, i.e. |γ| = |Eγ |. If we denote the set of all paths from site i to site j by Γij , we may define the
graph distance as a function

dh : Λh × Λh → N0 , (i, j) 7→ min
γ∈Γij

(|γ|) , (7.73)

which assigns to each pair (i, j) of lattice sites (vertices) the length of the shortest path connecting
them. The function dh defines a graph metric on Λh that we call the honeycomb metric. With this, the
parameter r in Eq. (7.70) determines the radius of a spherical hole in the honeycomb metric dh.
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Figure 7.5: Critical interaction strengths Jcrit (colour bar) marking the S-space topological transition
between the Ch(S)

1 = 0 phase J < Jcrit and the Ch(S)
1 = 1 phase for J > Jcrit, as a function of V and ξ.

Results are for a single classical spin (R = 1); other parameters match those in Fig. 7.3. Adapted with
minor modifications from Ref. [RQ1].

For the largest considered hole radius of r = 9 (bottom panel), the hole consists of 136 removed sites
(green dots), while the first outer shell (violet dots) at distance r = 10 from i0 is formed by 3r = 30 sites
of sublattice A (dark dots). We see that for any sublattice potential with −Vcrit < V < Vcrit (light orange
in Fig. 7.4) that puts the Haldane model in the topologically non-trivial phase, there are states inside
the V -dependent band gap at nearly equidistant energies. This equidistance reflects the almost linear
dispersion of the boundary modes in the Haldane model. In the r → ∞ limit, the in-gap states would
completely fill the band gap. For smaller r, e.g. r = 2 (second panel from the bottom), the spectral
flow with V shows no qualitative change, except that the number of in-gap states is reduced due to the
smaller number of edge sites.

The in-gap states are exponentially localised at the edge, i.e. on the first outer shell (violet sites).
Beyond this shell, their weight decays rapidly with increasing r. The bipartiteness of the honeycomb
lattice ensures that the edge sites belong exclusively to sublattice A (B) when r is even (odd). Accordingly,
the energies of the in-gap states are expected to increase (decrease) linearly with V for even (odd) r.
This is nicely confirmed by the numerical calculations shown in Fig. 7.4.

By gradually shrinking the hole, we eventually get a single (spin-degenerate) impurity mode that is
exponentially localised on the three nearest neighbours of the impurity site i0, cf. top panel of Fig. 7.4.
This corresponds to the in-gap mode shown in Fig. 7.3 (left and middle) for strong J , where it is
slightly spin-split, see states (a), (b) and (c), (d). As described, this state is a super-discretised remnant
of a topologically protected chiral mode localised on the one-dimensional boundary of a hypothetical
macroscopic hole. In this sense, it is rooted in the k-space topological state of the host system and in the
bulk-boundary correspondence for a codimension-one defect.

On the other hand, its existence cannot be fully explained within the tenfold way classification alone.
A topologically protected defect state, as enforced by the bulk-defect correspondence, would be pinned
to the chemical potential µ. Yet, as seen in Fig. 7.4 (top), the energy of the r = 0 mode varies with V ,
contradicting an interpretation in terms of a codimension-two topological mode. While this behaviour is
fully consistent with the tenfold way – which does not predict topological zero modes at point-like defects
in the symmetry class (A) of the Haldane model [14, 139] – it highlights the need for an alternative
explanation for the emergence of this localised in-gap state.

To further clarify the role of k-space topology, we briefly examine the case with C(k)
1 = 0, where the

k-space topology is trivial. In this regime, no in-gap state appears around i0 for strong J , see the ranges
V < −Vcrit and V > Vcrit in Fig. 7.4. This is consistent with the lack of a dispersive edge mode at the
one-dimensional boundary of a trivial Chern insulator. However, the change of the spin-Chern number
from Ch

(S)
1 = 0 at J = 0 to Ch(S)

1 = 1 at J =∞ continues to enforce the appearance of an in-gap state
in some intermediate coupling-strength range. This state must bridge the band gap as function of J , see
state (e) in Fig. 7.3 (right). Although this mode is also localised in the vicinity of i0 it has much less
weight close to i0 than the high-energy bound states.
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The critical interaction Jcrit, at which the spin-Chern number jumps from Ch
(S)
1 = 0 to Ch(S)

1 = 1, is
determined by the electronic bulk of the host system. Figure 7.5 shows numerical results for the critical
coupling strength Jcrit as a function of the model parameters ξ and V for fixed NNN hopping strength of
tMF = 0.1. The asymmetry of the phase diagram with respect to V arises from the fact that the impurity
is coupled to a site on sublattice A. Coupling it to a site of sublattice B would reverse the role of V → −V
and mirror the phase diagram about the V = 0 axis.

Generally, the local topological transition to a finite spin-Chern number requires a strong exchange
coupling, typically on the order of the band width or stronger. Based on the previous discussion, one
would expect Jcrit to be larger when the host system is in a k-space topologically non-trivial phase, as in
this case the spin-split in-gap states remain within the gap for J →∞. By contrast, the in-gap states of
the k-space topologically trivial phase only appear in an intermediate region, where they “quickly” bridge
the bulk gap and vanish into the bulk states for greater coupling strengths.

This expectation is corroborated by the results shown in Fig. 7.5, where the k-space topological phase-
transition line of the pristine Haldane model is indicated by the thick grey lines (see also Fig. 7.2). The
critical coupling strength Jcrit in the non-trivial Chern insulating phase is roughly an order of magnitude
larger than in the trivial phase. For certain parameters, Jcrit appears to diverge, see the white curve in
Fig. 7.5. On this curve, the Zeeman pair of spin-up and spin-down in-gap states that emerges for strong J
in the k-space topological phase is located symmetrically around the chemical potential, so that neither
state crosses µ as a function of J . Consider, for instance, ξ = π/2 and V = 0. There, particle-hole
symmetry requires µ = 0 and a symmetric spin splitting of the in-gap states around µ for all J , implying
Jcrit =∞. For ξ 6= π/2, there is a unique V <∞, for which the in-gap states never cross µ.

7.7 Two Impurity Spins

For R = 2 classical spins, the configuration space manifold becomes S2 = S2 × S2, which is a simply-
connected, closed, compact and orientable manifold of real dimension dimR(S2) = 4. As before, we use
coordinates λ = (λ0, λ2, λ2, λ3) ≡ (ϑ0, φ0, ϑ1, φ1) on S2, where each pair (ϑj , φj) denotes the polar and
azimuthal angles on the j-th factor S2

j of the product manifold SR. The second spin-Chern number
Ch

(S)
2 is obtained from Eq. (7.9). Once more, Ch(S)

2 must vanish for J = 0, since the manifold of spin
configurations S2 is completely decoupled from the electron degrees of freedom in that case. Similarly,
the local physics at the two sites i0 and i1, to which S0 and S1 are coupled, is again captured by

H2−mono = JS0si0 + JS1si1 . (7.74)

for J → ∞. In this limit, the ambient system becomes a doubly-punctured Haldane model with holes
at i0 and i1. Since this system is not coupled to S2, it carries no spin-Chern number. Meanwhile, the
second spin-Chern number of the two isolated magnetic monopoles in Eq. (7.74) is simply the product

Ch
(S)
2 = Ch

(S)
1 · Ch

(S)
1 = 1 (7.75)

of the two respective first spin-Chern numbers associated with the isolated monopoles. For J → ∞, we
therefore have a second spin-Chern number of

Ch
(S)
2 = 1 (7.76)

for the entire quantum-classical hybrid system. As before, this indicates that there must be a transition
between two topologically different local phases as a function of J . Note that the same factorisation of
the second spin-Chern number occurs at finite J provided the impurity sites i0 and i1 are sufficiently
far apart, in which case the two-impurity problem decouples into two separate single-impurity problems
regardless of the explicit strength of J .

For the numerical calculations, we use the same model parameters as in the single-spin (R = 1) case;
see caption of Fig. 7.3. The two impurity spins are coupled to NNN sites i0 and i1 of sublattice A. Due
to the SO(3) symmetry of the Hamiltonian, the single-particle spectrum εn(S0,S1) depends only on the
relative orientations of S1 and S2 captured by their scalar product S0S1 = cos(ϕ), where ϕ denotes the
relative angle between the impurity spins S0 and S1. This allows us to write εn(S0,S1) = εn(ϕ).
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Figure 7.6: Low-energy single-particle spectrum as a function of J . Analogous to Fig. 7.3, but for two
impurity spins S0 and S1 coupled to next-nearest-neighbour sites belonging to sublattice A of the hon-
eycomb lattice. Calculations performed for various on-site potentials V and angles ϕ between S0 and S1

as indicated. Further parameters are thop = 1, ξ = π/4, tMF = 0.1, 39 × 39 unit cells, and µ ≈ −0.21

in the middle of the bulk band gap (gray line). In-gap bound states are labelled by (a) – (e). State (f)
is part of the bulk continuum. In the k-space trivial phase, states (a) and (b) cross the gap within a
finite J range. Their energy splitting decreases with increasing ϕ and vanishes for ϕ = π. In the k-space
non-trivial phase, states (c) and (d), as well as states (e) and (f), form Zeeman-split pairs whose energies
become degenerate for J →∞. Adapted with minor modifications from Ref. [RQ1].

Figure 7.6 shows the low-energy spectrum of single-particle energies εn around µ ≈ −0.21 as a function
of J for two different sublattice potentials V . The top panels present results for V = 1.5Vcrit (k-space
topologically trivial) with spin configurations ϕ = 0 (left) and ϕ = 3π/4 (right), while the bottom panels
correspond to V = 0.5Vcrit (k-space topologically non-trivial) with ϕ = 0 (left) and ϕ = π/4 (right).

We first discuss the k-space topologically trivial phase of the host system where C(k)
1 = 0, shown in

the upper panels. In contrast to the single-impurity case (R = 1), the system now hosts two in-gap states
that fully bridge the bulk band gap as a function of J , see states (a) and (b) in Fig. 7.6. For ϕ = 0, these
states cross the chemical potential at critical couplings

J1(ϕ = 0) ≈ 6.0 and J2(ϕ = 0) ≈ 12.3 . (7.77)

As ϕ increases (upper right panel of Fig. 7.6 for ϕ = 3π/4), the critical coupling J1(ϕ) increases, while
J2(ϕ) decreases until they coincide at ϕ = π, where J1(ϕ = π) = J2(ϕ = π).

The equality of J1(ϕ) and J2(ϕ) at ϕ = π can be understood as follows. At ϕ = π the impurity spins
are precisely antiparallel. As a result, the z-component stot,z of the total electron spin is conserved, and
the two impurity bound states have well-defined and opposite spin-projection quantum numbers. This
prevents hybridisation among the bound states. Moreover, since the states are related by a symmetry
transformation – specifically, a spin flip (↑ ←→ ↓) combined with a reflection about the bond-centered
mirror axis passing through the shared NN site on sublattice B – their energies must be degenerate
for all J . Consequently, they cross the chemical potential µ at the same critical coupling strength
J1(ϕ = π) = J2(ϕ = π).

While the antiparallel impurity-spin configuration (ϕ = π) corresponds to minimal hybridisation,
and hence minimal ∆J(ϕ = π) ≡ J2(ϕ = π) − J1(ϕ = π) = 0, the parallel configuration (ϕ = 0)
yields maximal hybridisation, resulting in the maximal difference ∆J(ϕ = 0) = maxϕ{∆J(ϕ)} of critical
coupling strengths. For intermediate angles ϕ with 0 < |ϕ| < π, the hybridisation among bound states
and the critical coupling difference ∆Jcrit(ϕ) vary continuously between these extremes. This is illustrated
in the left panel of Fig. 7.7 for the k-space topologically trivial system. We find that for every Jcrit,1 <

J < Jcrit,2 there exists exactly one 0 < ϕ < π, for which the system becomes gapless, see boundaries
between areas of different colours in the left panel of Fig. 7.7. Accordingly, the overall critical couplings
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Figure 7.7: Transition of the second spin-Chern number Ch(S)
2 as a function of the exchange coupling

strength J . Boundaries between coloured areas correspond to critical exchange couplings, J1(ϕ) and
J2(ϕ), at which an in-gap state crosses µ as function of the angle ϕ enclosed by S0 and S1. The host
system is a spinful Haldane model with tMF = 0.1 and ξ = π/4, defined on a periodic honeycomb
lattice of 27 × 27 unit cells. The two impurities couple to next-nearest neighbour sites of sublattice A.
Left: V/Vcrit = 1.5 (k-space trivial phase), Ch(S)

2 = 0 for J < Jcrit,1 ≈ 6.0 (green line), Ch(S)
2 = 1

for J > Jcrit,2 ≈ 12.3 (red line). Right: V/Vcrit = 0.5 (k-space non-trivial phase), Ch(S)
2 = 0 for

J < Jcrit,1 ≈ 14.2 (green line), Ch(S)
2 = 1 for J > Jcrit,2 ≈ 20.3 (red line). Adapted with minor

modifications from Ref. [RQ1].

are given by

Jcrit,1 ≡ J1(ϕ = 0) ≈ 6.0 and Jcrit,2 ≡ J2(ϕ = 0) ≈ 12.3 . (7.78)

Note that the second spin-Chern number is ill-defined for every J in this critical range. In this sense, the
critical range separates the trivial phase at J < Jcrit,1 ≈ 6.0 with Ch(S)

2 = 0 from the non-trivial phase at
J > Jcrit,2 ≈ 12.3 with Ch(S)

2 = 1. Notably, the critical interval [Jcrit,1, Jcrit,2] of the two-impurity (R = 2)
system is roughly centred around the critical coupling Jcrit of the single-impurity (R = 1) case; as seen
by comparing the top panels of Fig. 7.6 to the right panel of Fig. 7.3. This can be understood in the limit
of large impurity separation: as the distance between i0 and i1 is increased, the electronic environments
around the two spins decouple, the in-gap states become degenerate, and the critical coupling becomes
independent of the relative angle ϕ.

We now turn to the k-space topologically non-trivial case where C(k)
1 = 1, shown in the bottom

panels of Fig 7.6. In the limit of infinite impurity separation, the strong-J regime features four in-gap
states: two states localised around i0 and two states localised around i1. Both state pairs constitute
super-discretised remnants of topologically protected chiral modes localised at the edges of two perfectly
separated macroscopic holes centered at i0 and i1, as described above. The energies of the in-gap states
localised around different i0 and i1 are degenerate in this limit. With decreasing inter-impurity distance,
and increasing overlap between the in-gap states, their degeneracy is lifted by the formation of bonding
and anti-bonding superpositions. This results in two Zeeman-split pairs of in-gap states that appear at
distinct energies in the bulk gap for strong but finite coupling strengths J . At the minimal non-trivial
inter-impurity distance, i.e. when i0 and i1 are nearest-neighbour sites of opposite sublattices, they
effectively combine into a single two-site hole. As illustrated in Fig. 7.4, a single four-site hole (r = 1) at
V/Vcrit = 0.5 yields a single pair of in-gap states. By analogy, one expects a single pair of in-gap states
in case of a NN two-site hole, too. This indicates that decreasing the inter-impurity distance, causes one
pair of in-gap states to merge with the continuum of delocalised bulk states. The configuration, in which
the impurity sites i0 and i1 occupy next-nearest-neighbour sites of the same sublattice, constitutes an
intermediate case between the adjacent (single two-site hole) and the infinitely separated (two single-site
holes) impurity limits. As shown in the bottom panels of Fig. 7.6, there are three in-gap states for large
but finite J . For both spin configurations, ϕ = 0 and ϕ = π/4, the energies of the Zeeman pair formed by
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Figure 7.8: Functional dependence of the critical coupling strength on the model parameters V and ξ.
Numerical results for a spinful Haldane model with tMF = 0.1 defined on a periodic honeycomb lattice
of 9 × 9 unit cells. The two impurities are coupled to next-nearest neighbour sites of sublattice A. The
chemical potential is located in the middle of the bulk band gap. Thick gray lines mark the k-space
topological phase boundaries of the Haldane model. Left: Lower critical interaction Jcrit,1 (colour bar)
for the S-space topological transition from the trivial Ch(S)

2 = 0 phase at weak J to the gapless phase
with undefined spin-Chern number. Right: Upper critical interaction Jcrit,2 (colour bar) for the S-space
topological transition from the gapless phase at intermediate J to the non-trivial Ch(S)

2 = 1 phase at
strong J . Note the different scales on the two colour bars. Adapted with minor modifications from
Ref. [RQ1].

states (c) and (d) remain within the gap and become degenerate for J →∞. In the other Zeeman pair,
only state (e) remains inside the gap, while state (f) stays part of the bulk continuum as J → ∞. For
weaker couplings J . 30 and for ϕ = 0, only the spin-up state (d) (spin-down state (e)) remains within
the gap and decreases (increases) in energy with decreasing J . For parallel impurity-spin alignment
(ϕ = 0), we observe a level crossing around J ≈ 16. For the non-parallel configuration (ϕ = π/4),
this crossing is avoided, indicating a finite hybridisation between the involved states. This hybridisation
stems from the relative orientation of the local spin quantisation axes. In the parallel case, the impurity-
induced bound states at S0 and S1 are fully spin-polarised along a common axis. Expressed in either
local quantisation frame, the spin-up state at S0 and spin-down state at S1 remain orthogonal, leading
to a level crossing without hybridisation. In contrast, any non-parallel configuration of S0 and S1 defines
two different local quantisation axes: in the S0 quantisation frame, the spin-up and spin-down states at
S1 become superpositions of both S0 spin projections, and vice versa. The resulting non-orthogonality
of the spin-polarised bound states at S0 and S1 enables their mixing, leading to hybridisation and the
observed avoided crossing. Just like in the k-space topologically trivial case, there must be a gap closure
in a critical-J range on the spin-configuration manifold S2, supporting the transition region between the
S-space topologically trivial phase with Ch(S)

2 = 0 at J = 0 to the S-space topologically non-trivial phase
with spin-Chern number Ch(S)

2 = 1 at J →∞.
As shown in the right panel of Fig. 7.7, there is a gap closure for Jcrit,2 ≡ J2(ϕ = 0) ≈ 20.3. When

J is decreased past Jcrit,2, the gap closes at J2(ϕ) ≤ J2(0) for increasing angle ϕ = arccos(S0S1) until
the angle reaches ϕ ≈ 0.11π. For even smaller J , as described by the function J1(ϕ), the gap closure
on S2 moves back to ϕ = 0 at Jcrit,1 ≡ J1(ϕ = 0) ≈ 14.2. Note that due to the SO(3) symmetry and
for a coupling strength Jcrit,1 < J < Jcrit,2, the gap closes on the whole three-dimensional submanifold
of S2 determined by a critical ϕcrit = ϕ(J). In summary, the system is gapless within the critical range
Jcrit,1 < J < Jcrit,2, given by

Jcrit,1 ≡ J1(ϕ = 0) ≈ 14.2 and Jcrit,2 ≡ J2(ϕ = 0) ≈ 20.3 . (7.79)

The S-space topologically trivial phase is realised for J < Jcrit,1, while the S-space topologically non-
trivial phase is found for J > Jcrit,2.
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Figure 7.8 shows the functional dependence of the critical couplings Jcrit,1 and Jcrit,2 on the Haldane
model parameters ξ and V . Specifically, the left panel displays the parameter dependence of Jcrit,1, while
the right panel shows that of Jcrit,2. Note that both diagrams use the same colour map, but apply it to
substantially different data ranges. This is necessary because Jcrit,2 exhibits much greater variations than
Jcrit,1. In particular, Jcrit,2 can diverge when the corresponding Zeeman pair of in-gap states approaches
µ symmetrically for J →∞; compare to the discussion of the white curves in Fig. 7.5. The rescaled colour
map in the right panel of Fig. 7.8 helps to resolve parameter configurations with diverging Jcrit,2 → ∞
(white areas) in greater detail.

Another consequence of the rescaled colour maps is that similar values of Jcrit,1 and Jcrit,2 appear in
quite different colours. To facilitate a direct comparison between the two panels, we recall that there
is a level crossing of in-gap states for ϑ = 0. When this level crossing occurs precisely at the chemical
potential µ, the critical couplings coincide, i.e.

Jcrit,1 = Jcrit,2 . (7.80)

With µ located in the middle of the bulk band gap, this degeneracy of in-gap states arises when V = 0

and ξ = ±π/2. The corresponding points in the diagrams of Fig. 7.8 appear in white (left panel) and
dark green (right panel), providing a visual anchor between the two colour scales.

Consistent with the single-impurity case, we observe that the topological transition characterised by
the second spin-Chern number C(S)

2 typically occurs at stronger exchange couplings Jcrit,1 and Jcrit,2

when the host system is in the k-space topologically non-trivial phase.
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8 – Long-Range Helical Spin Control

Boundary states arising from topological bulk-boundary correspondence have a number of highly de-
sirable properties: they bridge the insulating bulk gap at the boundary, are protected against (symmetry-
preserving) perturbations, and often exhibit anomalous physical properties. A prominent example of this
are the topological edge states of the quantum spin Hall effect (QSHE), which are protected by TRS and
exhibit spin-momentum locking. Given this unique combination of features, it becomes natural to ask
how they can be harnessed for practical applications.

One area where this is particularly relevant is topological quantum computation [140, 141], which
utilises, for example, fractional quantum Hall states [101] or Majorana zero modes [142] of topological
superconductors. In these systems, the topological protection and the associated robustness are decisive
factors. In the field of spintronics [143], examples include one-dimensional spin transport in inverted-gap
semiconductor-based devices [144], and spin-dependent reflection with control of the spin rotation in
trilayer junctions consisting of QSH and metallic materials [145]. The QSHE can be utilised to create
nearly fully spin-polarised charge currents, controlled via magnetic defects [146], and fully electrical routes
have been suggested to manipulate the spin of a magnetic adatom at the edge of a QSH insulator [147,148].

Another approach is to focus on the interaction between the topological boundary states and suitable
perturbations. A particularly promising type of perturbations are local impurities that intentionally break
the protective symmetry [149]. This symmetry breaking allows the edge modes to interact non-trivially
with the perturbation [150,151], while the locality ensures that the topological protection and properties
are preserved away from it. By exciting the boundary modes in a way that exploits their unique transport
properties – such as spin-momentum locking in the QSHE or chirality in the QHE – one may establish
control over the dynamics of such a symmetry-breaking impurity. Crucially, the topological protection of
the boundary states would allow this control to be exerted over mesoscopic distances, as the excitations
can propagate to the impurity with minimal loss.

In this chapter, we discuss the interaction between a TRS breaking impurity and the topological
boundary states of a QSH model. Specifically, we couple a classical impurity spin S(t) to the boundary
of a two-dimensional Kane–Mele (KM) model [20,21]. The Kane–Mele model has originally been proposed
for graphene [20] but turned out to be relevant for certain quantum-well systems [152,153] too. It can also
be understood to describe a class of graphene-like two-dimensional monolayer honeycomb materials that
feature significant spin-orbit interaction, such as silicene and related systems [154, 155]. An interacting
Kane–Mele model emerges as an effective low-energy theory in stacked 1T-TaSe2 bilayers [156]. The
idea of probing TRS protected topological states by means of TRS breaking local perturbations [149]
has been pursued in various studies. For example, by doping TRS invariant systems, such as Bi2Te3,
Bi2Se3 or Sb2Te3, with magnetic transition-metal atoms [157, 158] or by depositing magnetic adatoms
at the surface [159, 160]. Locally breaking TRS may also lead to rather exotic phenomena like an image
magnetic monopole [161].

Another intriguing aspect is the interaction between two magnetic adatoms mediated by the helical
edge states. For weak exchange couplings J between adatoms and substrate, standard RKKY theory
[162] can be adapted to tight-binding or continuum models describing helical QSH boundary states.
Near a classical magnetic impurity, the local (spin) density of states is suppressed at low energies [163].
When the chemical potential places the Fermi level such that the resulting Fermi wavelength exceeds the
impurity separation, the RKKY interaction between two impurities becomes ferromagnetic. In general,
the coupling is non-collinear, confined to the plane, and decays spatially as a power law [164]. In addition,
there exists a Bloembergen–Rowland-type [165] bulk contribution that decays exponentially with distance
[166]. A weak breaking of time-reversal symmetry gaps the Dirac cones and induces a strongly anisotropic
RKKY coupling, which also decays exponentially and includes Dzyaloshinskii–Moriya terms alongside in-
plane and out-of-plane Ising components [167]. The validity of RKKY theory is further limited by strong
electron interactions and the Doniach competition between indirect exchange and Kondo screening in
helical Luttinger liquids [168].
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The real-time dynamics of magnetic impurities at the surfaces of topological insulators has been
studied less extensively. Recent studies have employed time-dependent density-functional theory [169]
and, for periodically driven impurities, Floquet theory [170]. Scattering theory has been applied to study
the influence of individual TRS-breaking magnetic impurities on the transport properties of the helical
edge states of Kane–Mele zigzag ribbons [171]. Apart from the study in Ref. [172], which investigates
the long-time dynamics of a single classical spin exchange-coupled to the edge of a Su–Schrieffer–Heger
model, the full microscopic real-time dynamics beyond the linear-response regime [173–175] remains
largely unexplored.

In the following, we numerically study the real-time dynamics of a classical “read-out” spin S(t) as it
interacts with the helical boundary states of the Kane–Mele model. The dynamical state of the read-out
spin is affected by another impurity at a distant site on the same edge, which is used to inject a local spin
excitation. The time-dependent transport of injected spin density through the helical edge states and its
effect on the classical spin are analysed. The goal is to exploit the topological protection of the helical
QSH edge state to achieve dynamical control over the classical spin state across mesoscopic distances.
We demonstrate that this can be achieved by iterating the spin-injection and transport processes.

Our setup is in part motivated by the progress of experimental techniques, such as detecting states of
magnetic adatoms [176] and measuring indirect magnetic RKKY interactions on a nanoscale [177]. The
spin-momentum-locked transport explored here could, for instance, be experimentally accessed using
scanning-tunnelling microscopy with multiple tips. Such setups would enable initiation, probing, and
control of the dynamics, provided they can be spaced down to nanometer scales and are equipped with
magnetic, spin-resolved capabilities. We aim to advance the understanding of the dynamical manipulation
of local magnetic states via topological surface states. However, since current time-dependent STM
techniques [178, 179] operate on the microsecond rather than picosecond timescale, the focus here is on
the initial and final spin configurations.

In general, a numerically exact solution of the coupled set of equations of motion describing the
classical read-out spin and the electronic system can only be achieved for systems of finite size. Here, we
demonstrate that a ribbon-shaped geometry with only 8 sites perpendicular and about 100 sites parallel
to the zigzag edg is sufficient to achieve long-time propagation of electronic excitations of up to ∼ 103

inverse hoppings. This is made possible by applying Lindblad-type absorbing boundaries, as introduced
in [172,180], along three out of the four edges to suppress reflections.

The remainder of this chapter is organised as follows. In Sec. 8.1, we review the Kane–Mele model,
concentrating on the fundamental band structure, its topological properties, and the bulk-boundary
correspondence that gives rise to the helical edge states. Afterwards, in Sec. 8.2, we outline the equations
of motions governing the dynamics of the quantum-classical hybrid system. Subsequently, we introduce a
numerical model for simulating macroscopic edge dynamics in Sec. 8.3, and analyse the helical propagation
of spin density injections in the presence and absence of a read-out spin in Secs. 8.4 and 8.5, respectively.
Having discussed the electronic dynamics, we then turn to the dynamics of the classical read-out spin
in Sec. 8.6. In Sec. 8.7, we present the numerical results demonstrating how elementary spin density
injections effect the classical spin and how iterating these elementary injections can be used to implement
a helical spin switch protocol.

Throughout this chapter, we closely follow our original presentation in [RQ2].

8.1 The Kane–Mele Model

The Kane–Mele model provides the first microscopic description of the QSH effect [20]. It extends the
tight-binding model of graphene by including spin-orbit interactions. These open up a gap and enable
a topologically non-trivial insulating phase: the quantum spin Hall (QSH) phase. The second-quantised
Kane–Mele Hamiltonian reads

HKM = −thop

∑
〈j,k〉
α

c†jαckα + V
∑
j,α

εjc
†
jαcjα + itSO

∑
〈〈j,k〉〉
α,β

νjkσ
αβ
z c†jαckβ , (8.1)
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where j and k label the L sites of a honeycomb lattice in the xy-plane, cf. Sec 7.2.1. The expressions
〈j, k〉 and 〈〈j, k〉〉 indicate summation over pairs of NN and NNN sites, and α, β ∈ {↑, ↓} denote the
spin projection of the electrons along the z-axis. The first term of Eq. (8.1) is the generic tight-binding
hopping of graphene. It is governed by the real NN hopping amplitude thop and preserves all spatial
(lattice and z-reflection) symmetries and the SU(2) spin symmetry of the elctrons. In the following, the
lattice constant a ≡ 1 sets the length unit, while the NN hopping amplitude thop ≡ 1 sets the energy unit
and, together with ~ ≡ 1, also the time unit. The second term is a staggered sublattice potential. It is
characterised by the real on-site potential strength V and the sign εj = ±1, which is positive (negative)
when when j belongs to the A (B) sublattice. For V 6= 0, this term breaks the I2 sublattice inversion
symmetry (I2 ⇁ 1) and reduces the six-fold rotational symmetry C6 to a three-fold rotational symmetry
(C6 ⇁ C3). The SU(2) spin symmetry and the z-reflection symmetry R2 are left invariant. The third
term describes intrinsic spin-orbit coupling of the electrons. It is determined by the real NNN spin-orbit
hopping amplitude tSO, the sign νjk = ±1, which is positive (negative) for anticlockwise (clockwise)
hopping k → j within a hexagon of the lattice, and the z-Pauli matrix σz, whose elements mediate the
coupling between the spin projections. If tSO 6= 0, this term reduces the electronic SU(2) spin symmetry
to U(1) rotations around the z-axis (SU(2) ⇁ U(1)). Furthermore, the symmetry under R2 is preserved
since σz → −σz is compensated by νjk → −νjk, which happens because z → −z reverses the orientation
of the xy-plane.1

Note that the total hopping amplitude itSOνjkσαβz of the intrinsic NNN spin-orbit hopping is always
imaginary. In this respect, the Kane–Mele model is similar to the Haldane model, which adds complex
hoppings to the tight-binding model of graphene to induce an intrinsic breaking of TRS and implement
a quantum anomalous Hall phase [19]. However, unlike the Haldane model, the Kane–Mele model is
invariant under TRS, fulfilling

T HKMT † = HKM , (8.2)

where T denotes the TRS transformation of spin one-half fermions given in Eq. (3.15). A proof of
Eq. (8.2) is provided in App. A.10. Recall that the TRS operator T of spin one-half fermions satisfies
T 2 = −1, so that Eq. (8.2) causes the single-particle eigenstates of the Kane–Mele model to be Kramers
degenerate. This has profound consequences for the topological properties of the Kane–Mele model, as
we will see shortly. The Kane–Mele Hamiltonian HKM can be diagonalised in k-space. Specifically, the
Fourier transform cjα = 1/

√
L
∑
k e

ikRjckα of the elementary field operators allows us to write HKM as

HKM =
∑
k

φ†(k) hKM(k) φ(k) , (8.3)

where we introduced the spinor φ(k) = (ak↑ ak↑ bk↓ bk↓)
ᵀ of annihilation operators akα and bkα for Bloch

states with quasi-momentum k and spin projection α ∈ {↑, ↓} on the A and B sublattices, respectively.
Again, the A and B sublattices form a two-component degree of freedom that behaves mathematically
like a spin and called a sublattice pseudospin in the following. The spinors in Eq. (8.3) are then given
in a σ ⊗ τ tensor basis where σ describes the {↑, ↓} components of electron spin, while τ represents the
{a, b} components of sublattice pseudospin.

The Hermitian 4× 4 Bloch matrix hKM(k) from Eq. (8.3) takes the form (for details see App. A.10)

hKM(k) = h0(k)σz ⊗ τz + 12 ⊗
[
h(k)τ

]
= h0(k)σz ⊗ τz +

∑
µ=x,y,z

hµ(k)1σ2 ⊗ τµ , (8.4)

which is given in terms of the electron-spin identity matrix 1σ2 , the electron-spin z-Pauli matrix σz and
the vector τ of sublattice-pseudospin Pauli matrices. The functions h0(k) and hµ(k) with µ = x, y, z are
presented in Tab. 8.1. Note that the basis matrices in Eq. (8.4) transform as (for details see App. A.10)

T
(
σz ⊗ τz

)
T † = −

(
σz ⊗ τz

)
, T

(
12 ⊗ τx

)
T † =

(
12 ⊗ τx

)
T
(
12 ⊗ τy

)
T † = −

(
12 ⊗ τy

)
, T

(
12 ⊗ τz

)
T † =

(
12 ⊗ τz

)
(8.5)

1This can be seen by writing νjk = 2(n1 ×n2)z/
√

3 where n1 and n2 are the unit vectors along the two NN bonds the
electron traverses to get from site k to site j. Clearly (n1 × n2)z → −(n1 × n2)z , and thus νjk → −νjk under z → −z.
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h0(k) −2tSO(2 sinx cos 3y − sin 2x) hx(k) −thop (2 cosx cos y + cos 2y)

hy(k) −thop (2 cosx sin y − sin 2y) hz(k) V

Table 8.1: Non-zero coefficients of Eq. (8.3), with x =
√

3a0kx/2 and y = a0ky/2.

under TRS, so that the TRS invariance of the Kane–Mele Hamiltonian demands that

h0(k) = −h0(−k) , hx(k) = hx(−k) , hy(k) = −hy(−k) , hz(k) = hz(−k) (8.6)

under the TRS-induced involutive transformation

ϑ : T 2
k → T 2

k , k 7→ −k (8.7)

on the two-dimensional Brillouin torus T 2
k . It can easily be verified that the coefficient functions from

Tab. 8.1 readily satisfy these TRS constraints. The diagonalisation of the Bloch matrix hKM(k) in
Eq. (8.4) yields four energy bands

E±α (k) = ±
√
hx(k)2 + hy(k)2 +

(
hz(k) + ηαh0(k)

)2
, (8.8)

where ηα = ±1 is positive for spin-up (α = ↑) and negative for spin-down (α = ↓). For each spin
projection α ∈ {↑, ↓} we therefore get two bands, a conduction band E+

α (k) and a valence band E−α (k),
which are symmetric around zero. As a result, the energy gap of the system is defined as

∆E := min
α,k

(
E+
α (k)− E−α (k)

)
= 2 ·min

α,k
(E+

α (k)) , (8.9)

and we find that the minimum is attained at the Dirac points

K± = ± 4π

3
√

3a0

(
1

0

)
, (8.10)

where hx(K±) = hy(K±) = 0 and h0(K±) = ∓3
√

3tSO, so that

∆E = 2 ·min
K±
|V ∓ 3

√
3tSO| . (8.11)

Note that the bulk gap ∆E closes along the nodal line |V | = 3
√

3|tSO| in the two-dimensional parameter
space spanned by tSO and V . This nodal line divides the parameter space into two separate regions with
finite gaps ∆E > 0: one dominated by the onsite potential (|V | > 3

√
3|tSO|) and one dominated by the

intrinsic spin-orbit coupling (|V | < 3
√

3|tSO|). It turns out that these two regions correspond directly
to the topologically trivial and non-trivial phases of the Kane–Mele model. For this reason, the onsite
potential V is often used to tune between the topologically distinct phases in practice. Here, we typically
choose tSO and ∆E freely and then define

V = 3
√

3tSO ±∆E/2 (8.12)

to generate a topologically trivial (positive sign) or a topologically non-trivial (negative sign) band struc-
ture with the same chosen bulk band gap of ∆E > 0.

At half-filling, i.e. for every chemical potential µ with |µ| < ∆E/2, the ground state |GS〉 of the
Kane–Mele model is a Slater determinant

|GS〉 =
∏
k∈T 2

k
α= ↑,↓

d−†kα |0〉 =
∧
k∈T 2

k
α= ↑,↓

|u−α (k)〉 (8.13)

of all valence Bloch states |u−α (k)〉 ≡ d−†kα |0〉 ∈ H ⊂ F . Here, H ⊂ F indicates the natural inclusion
of the single-particle Hilbert space H into the many-particle Fock space F and |0〉 denotes the vacuum
state of F defined by ckα |0〉 = 0 for all k ∈ T 2

k and α ∈ {↑, ↓}. The topology of the valence Bloch states
therefore determines the topological properties of the many-body ground state.
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8.1.1 Topology of the Kane–Mele Model

The family {H(k)}k∈T 2
k
of Bloch spaces

H(k) := span
(
|u+
↑ (k)〉 , |u+

↓ (k)〉 , |u−↑ (k)〉 , |u−↓ (k)〉
)

(8.14)

defines a rank-four Bloch bundle BKM
π−→ T 2

k over the two-dimensional Brillouin torus T 2
k . For ∆E > 0,

this Bloch bundle can be split as

BKM = B−KM ⊕ B
+
KM , (8.15)

where B±KM
π±−−→ T 2

k are the two rank-two valence and conduction subbundles of BKM that are determined
by the families {H±(k)}k∈T 2

k
of valence and conduction subspaces

H±(k) := span
(
|u±↑ (k)〉 , |u±↓ (k)〉

)
. (8.16)

This is again similar to the spinless Haldane model, where the rank-two Bloch bundle BH splits into two
rank-one valence and conduction subbundles B±H , whose topology is ultimately characterised by the first
Chern number C(k)

1 , cf. Eq. (7.33). Based on these parallels, it is natural to wonder whether an analogous
topological classification is possible for the Kane–Mele Bloch bundle BKM and its valence and conduction
subbundles B±KM. It turns out that this is not the case. For one thing, the indispensable inclusion of spin
in the Kane–Mele model promotes B±KM to complex vector bundles of rank two. In order to repeat the
Chern classification of B±H for B±KM we would therefore have to further split the rank-two bundles B±KM
into two rank-one bundles B±KM,↑ and B±KM,↓ of spin-polarised valence and conduction bands. However,
this is not generally possible because Kramers degeneracy demands that

E±↑ (k) = E±↓ (−k) , (8.17)

i.e. that the energy E±↑ (k) of each Bloch state |u±↑ (k)〉 is the same as the energy E±↓ (−k) of its TRS
partner T |u±↑ (k)〉 = |u±↓ (−k)〉. A direct consequence of this is that the spin-up and the spin-down valence
and conduction bands are glued together,

E±↑ (κj) = E±↓ (κj) , (8.18)

at the four TR invariant (quasi-)momenta (TRIM)

(κ1,κ2,κ3,κ4) = (Γ,M ,M ′,M ′′) ≡ K , (8.19)

that are mapped to their own quasi-momentum equivalence class, ϑ(κj) = −κj ' κj , under the TRS-
induced involution ϑ from Eq. (8.7). Of course, one could simply attempt to base the bundle classification
on the second Chern number of the rank-two valence and conduction bundle instead. However, this does
not work either. The reason is that TRS with T 2 = −1 twists the Bloch bundle in a way that makes its
Chern numbers vanish [14]. To illustrate this, note that the TRS operator T permutes the fibres of the
valence and conduction subbundles as

T |u±↑ (k)〉 = |u±↓ (−k)〉 and T |u±↓ (k)〉 = − |u±↑ (−k)〉 , (8.20)

intertwining the spin-up and spin-down valence and conduction bands across the two-dimensional Bril-
louin torus. In the mathematical literature, TRS with T 2 = −1 is said to impose a quaternionic structure

I = i1 , J = T , K = iT with I2 = J2 = K2 = IJK = −1 (8.21)

on the Bloch bundle [181]. The complex rank-two valence and conduction subbundles B±KM can then be
understood as quaternionic rank-one bundles. These are classified within the framework of quaternionic
K-theory, or KQ-theory, and it is found that quaternionic line-bundles have a Z2 classification on the
two-dimensional (Brillouin) torus. This shows that the topology of the Kane–Mele Bloch bundle is
fundamentally different from that of the Haldane Bloch bundle, whose Chern number generates a Z

classification on the two-dimensional (Brillouin) torus.
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There are various formulas for the Z2 invariant ν characterising the topology of the Kane–Mele
valence subbundle B−KM. In their original publication [20,21], Kane and Mele propose a formula that can
be written as

(−1)ν =
∏
κj∈K

sign
[
Pf(ω(κj))

]
. (8.22)

Here, κj ∈ K are the four TRIM from Eq. (8.19), Pf(·) denotes the Pfaffian, and ω(κj) is a skew-
symmetric 2× 2 TRS scattering matrix with elements

ωrs(κj) = 〈ur(κj)|T |us(κj)〉 , (8.23)

where the indices r, s = 1, 2 label the two Bloch states |u1(κ)〉 = |u−↑ (κ)〉 and |u2(κ)〉 = |u−↓ (κ)〉 of the
valence Kramers pair [181]. A more detailed construction of Eq. (8.22) is given in App. A.10. Despite
the fact that Kramers degeneracy prevents a trivial splitting

B±KM = B±KM,↑ ⊕ B
±
KM,↓ (8.24)

of the rank-two bundles B±KM into spin-polarised rank-one subbundles B±KM,↑ and B
±
KM,↓ in general, such a

decomposition can still become possible in certain cases. Specifically, if there are no interactions between
the two spin projections, i.e. if the only spin interactions present in the model are spin-diagonal, like
the intrinsic spin-orbit term in Eq. (8.1), the spin-up and spin-down components of the valence and
conduction bundle decouple and can be treated as independent Haldane-like rank-one bundles after all.
In this case, their Chern numbers are defined as in Eq. (7.33) and may be non-zero because B±KM,↑ and
B±KM,↓ are not individually invariant under TRS. However, even if the Chern numbers of the spin-polarised
rank-one subbundles turn out non-zero, their values are not independent of each other: the Whitney sum
formula Eq. (2.209) of the Chern classes tells us that

c1
(
F±KM

)
= c1

(
F±KM,↑ ⊕F

±
KM,↓

)
= c1

(
F±KM,↑

)
+ c1

(
F±KM,↓

)
, (8.25)

and, hence, that

C
(k)
1,± = C

(k)
1,(±,↑) + C

(k)
1,(±,↓) . (8.26)

Since the TRS invariance of the full rank-two valence and conduction subbundle B±KM enforces

C
(k)
1,± = 0 , (8.27)

we find that C(k)
1,(±,↑) and C

(k)
1,(±,↓) must always cancel out, even if they are non-zero individually. This

constraint motivates the definition

ν :=
1

2

(
C

(k)
1,(±,↑) − C

(k)
1,(±,↓)

)
mod 2 (8.28)

of a topological Z2 invariant that distinguishes between even and odd Chern numbers C(k)
1,(±,↑) and C

(k)
1,(±,↓).

In the absence of interactions between the two spin projections, Eq. (8.28) provides another formula for
the Z2 invariant of the Kane–Mele model.

For the sake of completeness, we note that there exists a generic TRS preserving spin-orbit coupling
term that does mix different spin projections. Rashba spin-orbit coupling arises in the presence of electric
fields, which break structural inversion symmetry. Such fields usually appear at surfaces or interfaces, and
are especially relevant in monolayer materials like graphene. In these systems, a perpendicular electric
field couples to the electron spin through its in-plane motion, leading to a spin-orbit term of the form

HRSO = tRSO (p× σ)z = tRSO (pxσy − pyσx) , (8.29)

where tRSO is the Rashba spin-orbit coupling strength, p represents the electron momentum, and σ
denotes the vector of Pauli matrices describing electron spin. The non-trivial (ν = 1) QSH phase of
the Kane–Mele model remains stable under the inclusion of weak Rashba spin-orbit coupling [20, 21].
However, once tRSO > 0, the Z2 invariant can no longer be computed using Eq. (8.28).
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Figure 8.1: Left: Zigzag and armchair edges on a finite honeycomb tile. Right: Bandstructure of the
topological Kane–Mele model, Eq. (8.1), projected onto one edge of a zigzag ribbon. The projected bulk
bands, shown in grey, are obtained from a ribbon geometry calculation with a width of 20 unit cells in
the perpendicular direction. Dispersions ε↑(k) (yellow) and ε↓(k) (green) of the two helical edge states
outside the bulk continuum; edge states localised at the opposite edge are not shown. The NN hopping
amplitude thop = 1 sets the energy scale. The remaining parameters were set to tSO = 0.05, ∆E = 0.3

and V = 3
√

3tSO−∆E/2 with the negative sign. Reproduced with minor modifications from Ref. [RQ2].

8.1.2 Bulk-Boundary Correspondence in Zigzag Ribbons

Consider a Kane–Mele model on an infinite honeycomb lattice. In principle, we can introduce an edge to
the system by cutting it along any direction. However, due to the symmetry of the lattice, certain edge
directions are more natural than others. In the honeycomb lattice, the two canonical edge orientations
are known as zigzag and armchair edges, cf. Fig. 8.1.

A honeycomb model with a single edge is typically referred to as a honeycomb half-space model. The
edge breaks translation invariance in the direction perpendicular to it, but preserves translation invariance
along the parallel direction. As a result, there is a one-dimensional parallel crystal momentum k ∈ T 1

k

and we get an infinite number of energy bands dispersing over k. Half-space models capture the essential
physics of a single boundary in an otherwise infinite system, so they provide a good description of the
edges of macroscopic systems. A honeycomb half-space model that terminates on a zigzag (armchair)
edge is called a zigzag (armchair) half-space model, respectively.

If we introduce two parallel edges to a system, it takes on a so-called ribbon geometry : infinite
and periodic along the edge direction, but finite and open in the perpendicular direction. As before,
translational invariance parallel to the edge gives rise to a one-dimensional parallel crystal momentum
k ∈ T 1

k , while the finite width perpendicular to the edges determines the number of sites in the unit cell and
thus the local Hilbert space dimension d. Combined, we get d energy bands Ej(k) with j = 1, . . . , d that
disperse over the parallel momentum. Ribbons with zigzag (armchair) edges are called zigzag (armchair)
ribbons, respectively.

In zigzag ribbons, the parallel momentum always intersects the K and K ′ points of the projected bulk
Brillouin zone. These are the points where pristine graphene has its band closures. As a result, zigzag
ribbons are always metallic, whereas armchair ribbons can be metallic or semiconducting depending on
the width of the ribbon [182]. This poses a practical complication for our numerical treatment. In the
upcoming sections, we are going to be interested in ribbon and half-space Kane–Mele models. These are
obtained from finite Kane–Mele tiles through partial Fourier transform and absorbing boundary condi-
tions, respectively. The width of the finite tile in the direction perpendicular to the selected “physical”
edge then sets the width of the resulting geometry. The fact that the presence or absence of zero modes
in armchair ribbons depends on the ribbon width shows that the physics at armchair edges is quite sen-
sitive to the geometric details along the direction perpendicular to the edge. Thus, even small changes
in the tile geometry could have a big impact on the edge physics of the corresponding armchair ribbon
or armchair-terminated half-space model. This would force us to distinguish between cases. To avoid
elaborate case analyses and get generic results that are qualitatively independent of tile width, we focus
on zigzag ribbons and zigzag-terminated half-space models in the following.
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If we consider a Kane–Mele model with edges, the physical properties of the edges are, in part,
determined by the bulk-boundary correspondence of the Kane–Mele model. In particular, a non-trivial
bulk topology (ν = 1) gives rise to helical edge states whenever the ribbon interfaces with a topologically
trivial (ν = 0) region, such as the vacuum. However, not all edge states are topological. In order to
distinguish between accidental and topological edge states, we note that TRS forces any collection of
(topological or accidental) edge states to form (at least) twofold degenerate Kramers pairs at each TRIM.
Away from the TRIM, this degeneracy is generally lifted by the intrinsic spin-orbit coupling tSO. Now
there are two ways in which the edge states can connect Kramers pairs at distinct TRIM κ1 and κ2: (a)
each Kramers pair at κ1 connects back to itself at κ2, or (b) the partners switch and connect to one
another.2 In scenario (a), the edge states cross the Fermi energy EF an even number of times. In this
case, they can be continuously pushed out of the bulk gap without closing it, and the system describes
a trivial insulator. In scenario (b), the edge states cross the Fermi energy EF an odd number of times.
In this case, they are topologically protected and cannot be removed without closing the bulk gap. The
topological phases of the Kane–Mele model on a zigzag ribbon3 are therefore characterised by the number
of intersections NF between its edge states and the Fermi energy: if NF is even, the model is trivial, if
NF is odd, it is non-trivial. The bulk-boundary correspondence of the Kane–Mele model can therefore
be expressed as

∆ν = NF mod 2 , (8.30)

where ∆ν = |νribbon − νambient| is the difference between the topological Kane–Mele Z2 invariants of the
ribbon and the adjacent region [183]. The right picture in Fig. 8.1 shows an example of this. It displays
the band structure of a topological (ν = 1) Kane–Mele ribbon with zigzag edges in vacuum (ν = 0).
The projected bulk bands are indicated in grey and the spin-polarised edge states on one of the two
zigzag edges are shown in yellow (spin-down) and green (spin-up) respectively. The two edge states are
connected to each other at k = 0 and k = π, forming a Kramers pair that intersects the Fermi energy
EF an odd number of ∆ν = NF = 1 times. Another feature that can be determined from Fig. 8.1 is the
helicity, or spin-momentum locking, of the topological edge modes. To this end, we consider the Fermi
velocity

vF :=
∂ εα(k)

∂k

∣∣∣∣
k= kF

(8.31)

of the spin polarised edge states at the Fermi energy. It shows that the slope of the edge mode’s energy
dispersion εα(k) determines their direction of propagation: under the convention that a positive slope
corresponds to right-moving excitations, a negative slope indicates left-moving excitations. Figure 8.1
demonstrates that there are only right moving (positive slope) spin-down and left moving (negative slope)
spin-up states at the selected edge4 of the ribbon. For this reason, we call the topological edge states of the
QSH spin-momentum locked or helical. Note that we can even read off the Fermi velocities vF ≈ ±0.285

from Fig. 8.1, which is in good agreement with vF ≈ ±0.286 as obtained from an analytical expression
given in [184].

The helicity of the QSHE boundary modes distinguishes them from the chiral boundary modes of
the QHE. This is illustrated in Fig. 8.2. While the topological Z invariant characterising the integer
QHE gives rise to a chiral edge mode that carries charge in a fixed direction around the boundary,
the topological Z2 invariant of the QSHE produces no such a charge motion. Instead, it induces two
counterpropagating edge currents; one for each spin species. While the charge transport of these currents
cancels out exactly, they still generate non-trivial counterpropagating spin-currents. Thus, the helical
edge states of the Kane–Mele model transport spin rather than charge.

2The notion of switching partners at TRIM also plays a role in the derivation of the Kane–Mele Z2 invariant presented
in App. A.10.

3The same argument applies to the aforementioned setup of a half-space lattice, i.e. a system with just a single edge,
given the edge-termination is compatible with the topological lattice model [183].

4The situation is reversed on the other edge of the ribbon.
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Figure 8.2: Qualitative comparison between the integer quantum Hall effect (left) and the quantum spin
Hall effect (right) edge modes. The spin-up (spin-down) currents are sketched in green (yellow) colour.
The quantum Hall setup features a TRS-breaking magnetic field B (black �). The spin currents in the
quantum Hall (quantum spin Hall) system round the sample in the same (opposite) directions, giving
rise to charge (spin) currents.

8.2 Real-Time Dynamics in the Kane–Mele s-d-Model

In order to study the dynamical interaction between the helical QSH edge states and a locally TRS
breaking impurity, we first construct a suitable quantum-classical hybrid system based on the Kane–Mele
model. Specifically, we consider the Kane–Mele model on a finite honeycomb tile with armchair and
zigzag edges and add a Kondo-like perturbation term

HR = JSRsR , (8.32)

which implements a local exchange coupling between a classical (“read-out”) impurity spin SR and the
local magnetic moment sR of the electron system at some site R on one of the zigzag edges. The latter
is given in terms of its components

sRµ =
1

2

∑
α,β

c†Rασ
αβ
µ cRβ , (8.33)

where µ = x, y, z. The exchange coupling strength is denoted J and σ are the Pauli matrices describing
electron spin. Importantly, the Kondo-like perturbation from Eq. (8.32) breaks TRS, since

T sRµT †
(�)
=

1

2

∑
α,β

T c†RαT
†σ∗αβµ T cRβT

†

(?)
=

1

2

∑
α,β
γ,η

(−1)δµy (iσαγy )c†Rγσ
αβ
µ (iσβηy )cRη

(∗)
=

1

2

∑
α,β
γ,η

(−1)δµyc†Rγσ
γα
y σαβµ σβηy cRη

(4)
= −1

2

∑
γ,η

(−1)δµy (−1)δµyc†Rγσ
γη
µ cRη

= −1

2

∑
γ,η

c†Rγσ
γη
µ cRη

= −sRµ , (8.34)

so that

T HRT † = J
∑
µ

SRµT sRµT † = −J
∑
µ

SRµsRµ = −HR . (8.35)

In Eq. (8.34), we first used the antiunitarity of T to rewrite σαβµ = T †T σαβµ = T †σ∗αβµ T in (�). Then,
we plugged in the TRS transformation of spin one-half fermions from Eq. (3.15) and introduced the
shorthand notation σ∗µ = (−1)δµyσµ for the complex conjugate of the Pauli matrices σµ with µ = x, y, z
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in (?). Next, we cancelled i2 = −1 with the sign that the y-Pauli matrix acquires under transposition,
i.e. σαγy = −σγαy in (∗). Finally, we applied the transformation behaviour σγαy σαβµ σβηy = −(−1)δµyσγηµ
of the Pauli matrices σµ with µ = x, y, z under conjugation by σy in (4). It is worth mentioning that
even though Eq. (8.32) bears a formal resemblance of a Kondo impurity term, it describes a conceptually
different perturbation. In particular, the fact that SR is a classical spin means that there is no Kondo
screening and thus no Kondo effect [185]. Moreover, a conventional Kondo coupling to a quantum-spin
one-half sq would not break TRS since T sqT † = −sq, similar to Eq. (8.34). This makes the classical
impurity spin SR the most natural choice for the TRS breaking magnetic impurity. Physically, classical
spins provide a reasonable model for magnetic adatoms, i.e. adatoms with a well-defined spin moment
that remains stable over all other relevant timescales of the system.

Now, the classical “read-out” spin SR is susceptible to spin-density excitations propagating along
the edge in the helical edge states of the topological Kane–Mele model. In order to inject a local spin
excitation into the edge channels, we make use of another local TRS-breaking perturbation of the form
Eq. (8.32),

HI = −BIsI , (8.36)

where the local magnetic field BI is thought of as an externally aligned5 magnetic adatom. The injection
site I is chosen to be far away from the read out site R to avoid direct interaction. In practice, the
injection is facilitated by abruptly switching BI on and off.

The total Hamiltonian of the hybrid system, consisting of the Kane–Mele ribbon, the exchange-coupled
“read-out” spin SR at edge site R and the local magnetic “injection” field BI at edge site I, then reads

H = HKM +HR +HI , (8.37)

with the individual termsHKM,HR andHI as specified in Eq. (8.1), Eq. (8.32) and Eq. (8.36), respectively.
Note that the total Hamiltonian H represents a two-impurity s-d-type model [186].

Our goal is to fully determine the microscopic real-time dynamics of the hybrid system described by
Eq. (8.37). To achieve this, we introduce the one-particle reduced density matrix ρ(t) with elements

ρ(jα)(kβ)(t) = 〈Ψ(t)|c†kβcjα|Ψ(t)〉, (8.38)

where |Ψ(t)〉 is the N -particle quantum state of the electron system at time t. This immediately implies
trρ = N . We consider a half-filled system where N = L, with the number of lattice sites L. For quantum-
classical hybrid systems [187, 188] of the form in Eq. (8.37), there exists a closed system of equations of
motion [189], consisting of a Landau-Lifschitz-type equation,

dSR(t)

dt
= J 〈sR(t)〉 × SR(t) , (8.39)

with 〈sR(t)〉 = 1
2

∑
αβ ρ(Rα)(Rβ)(t)σ

βα for the read-out spin, and a von Neumann equation,

i
dρ(t)

dt
= [T eff(t), ρ(t)] , (8.40)

for the density matrix. Here, T eff(t) is the effective hopping matrix with elements given by

T eff
(jα)(kβ)(t) = T(jα)(kβ) + δjRδkRJ

1

2
(SR(t)σ)

αβ − δjIδkI
1

2
(BI(t)σ)

αβ
, (8.41)

where

T(jα)(kβ) = −thopδ〈j,k〉δαβ + V εjδjkδαβ + itSOδ〈〈j,k〉〉νjkσ
αβ
z (8.42)

are the elements of the hopping matrix T of the pristine Kane–Mele model from Eq. (8.1). Using standard
numerical methods for systems of ordinary differential equations, we can solve these equations of motion
for finite systems with up to L ≈ 103 sites [189,190].

5This may, for instance, be achieved by means of a spin-polarized STM tip.
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In a finite system with open boundary conditions, an edge excitation injected at a distance d from the
nearest corner will generally propagate along the edge with Fermi velocity vF and reflect off the corner
after a time tref ≈ d/|vF|. The backscattered excitations then travel back along the edge, potentially
interfering with the dynamics of an edge impurity. In order to avoid such finite-size induced interference,
we either have to limit ourselves to very short time scales, consider very large systems, or find a way
to suppress boundary reflections directly. Here, we follow the latter approach and adopt absorbing
boundary conditions of the type introduced in Ref. [180]. These have been shown to effectively eliminate
dynamical finite-size effects, enabling the study of real-time dynamics on long time scales even for systems
of moderate size. Following Ref. [180], we thus extend Eq. (8.40) as

dρ(t)

dt
= −i

[
T eff(t), ρ(t)

]
− {γ, ρ(t)− ρ(0)} , (8.43)

where {· , ·} denotes the anticommutator and where γ is a non-negative diagonal matrix that defines the
interaction between the system and an external dissipative bath. Here, the elements of γ are chosen as

γ(jα)(kβ) = δjkδαβγjα , (8.44)

and the vector of non-negative real numbers γiα fully determines the coupling strengths between the
individual single-particle states and the bath environment. In order to effectively simulate a half-space
model with a single zigzag edge, we choose γiα to be non-zero only for single-particle states associated
with sites in a thin shell located at three out of the four edges of the finite-size honeycomb tile, namely the
two armchair edges and one of the zigzag edges. A systematic comparison of the Lindblad dynamics with
short-time open-boundary dynamics showed that a uniform Lindblad shell of unit thickness and spin-
independent coupling (γjα = γj ≡ γ0) is sufficient to realise absorption without affecting the dynamics
in the impurity region. Consequently, the Lindblad bath is governed by a single scalar parameter γ0,
which is set γ0 = 0.2 throughout this study, cf. Refs. [172, 180]. A sketch of this Lindblad configuration
can be found in Fig 8.3, where the Lindblad sites are highlighted in grey colour. With this selective
bath coupling, we effectively simulate the dynamics of a zigzag-terminated half-space model using the
numerically much more accessible architecture of a finite Kane–Mele tile.

It is worth mentioning that Eq. (8.44) can be derived from a general Lindblad master equation [191,192]
by restricting the theory to non-interacting electrons. This results in an equation of motion involving only
the one-particle reduced density matrix, rather than the full many-body statistical operator. Furthermore,
Eq. (8.44) features an additional term proportional to the initial state ρ(0). This term is not present in the
standard Lindblad formalism, but required to prevent unwanted excitations generated by the Lindblad
bath. This was demonstrated in Refs. [172,180] for one-dimensional tight-binding systems with classical-
spin impurities. Here, we adapt the method to the two-dimensional geometry of the Kane–Mele model.
Importantly, the fact that Eq. (8.43) is rooted in Lindblad theory ensures that it respects total-probability
conservation. Energy and spin are only conserved locally and dissipated at the boundary.

8.3 Macroscopic Edge Dynamics in Ribbon Segments with Lindblad Boundaries

In the following sections, we aim to simulate the edge dynamics of a macroscopic Kane–Mele model,
i.e. a half-space model with a single physical zigzag edge. In order to achieve this, we consider a finite
Kane–Mele tile with selective Lindblad bath coupling at its boundary, as described above. Specifically,
we base our calculations on a ribbon-segment geometry. This is illustrated in Fig. 8.3, where the lower
zigzag edge represents the physical edge and the remaining three edges are coupled to the Lindblad bath
at the grey coloured sites. We call this tile geometry a ribbon segment geometry because its extent in
the physical (zigzag) x-direction is much greater than that in the perpendicular (armchair) y-direction.
The choice of a ribbon segment over a more symmetric tile is motivated by numerical efficiency: since
the numerical cost of simulating the full real-time dynamics scales as L2 for large L, we have to limit
our considerations to systems of about 500 . L . 600 sites. A zigzag ribbon segment can then be
used to maximise the length of the physical zigzag edge while keeping the overall system size L fixed.
Concretely, a zigzag ribbon segment is a tile with a large aspect ratio R = `x/`y, where `x and `y are
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Figure 8.3: Sketch of a ribbon segment with Lindblad boundaries. Red (blue) dots mark sublattice A
(B) sites. The grey dots indicate edge sites that are coupled to a Lindblad bath, shown as thick dashed
grey lines; the uncoupled bottom zigzag edge corresponds to the physical edge of a half-space model. The
green (yellow) lines at the bottom indicate the spin-up (spin-down) polarised helical edge modes, while
the green (yellow) arrow heads signify the direction of spin-up (spin-down) transport. Reproduced with
minor modifications from Ref. [RQ2].

the numbers of unit cells in the x- and y-directions. Since there are two sites per unit cell, the total
number of lattice sites is given by L = 2`x`y. Accordingly, we obtain minimal and maximal aspect ratios
of Rmin = 2/L and Rmax = L/2 for fixed L. While the maximal aspect ratio Rmax does yield the
longest possible physical zigzag edge, it cannot be used to simulate the edge dynamics of a half-space
model, as the resulting system effectively reduces to a one-dimensional isolated zigzag edge along the
x-direction with no perpendicular bulk dimension. In order to simulate a half-space model we therefore
need `y > 1. In fact, the minimal `y required for half-space simulations is determined by the interaction
between the helical edge modes on opposite zigzag edges: if the ribbon segment is too narrow, these
modes overlap, hybridise and gap out. Moreover, a significant overlap between opposite zigzag edge
states would allow the Lindblad bath – coupled to the top zigzag edge – to influence dynamics at the
physical (bottom) zigzag edge, cf. Fig. 8.3. We have determined that ribbon widths of about four unit
cells along the armchair y-direction are typically sufficient to suppress hybridisation between the zigzag
edge states in the topological phase. A total site count of 500 . L . 600 therefore allows ribbon segment
lengths of approximately 62.5 . `x . 75 unit cells along the zigzag x-direction. In practice, we choose
`x to be half-integer. The extra half unit cell in the x-direction ensures that the zigzag edges always
terminate on B-sublattice sites, cf. Fig. 8.3. Since the zigzag edge states are predominantly localised on
the A-sublattice sites, this configuration suppresses direct interactions between the Lindblad bath and
the helical edge modes at the two corners (bottom left and right corners in Fig. 8.3) where the physical
zigzag edge meets the adjacent Lindblad armchair edges.

8.4 Spin Injection and Helical Transport

We begin by verifying the existence of helical spin transport along the zigzag edge of a topological
Kane–Mele model. To this end, we consider a hybrid system

H = HKM +HI (8.45)

of an electronic Kane–Mele model HKM as given in Eq. (8.1) and a local magnetic injection term HI as
specified in Eq. (8.36). For the Kane–Mele model, we consider a ribbon segment of L = 572 sites with
`x = 71.5 unit cells along the zigzag direction and `y = 4 unit cells in the armchair direction. Figure 8.3
provides an illustration of this setup. As discussed above, the lower zigzag edge is the physical edge, while
the remaining three edges are coupled to a Lindblad bath to dissipate excitations. While increasing the
system size generally reduces finite-size artefacts, we have confirmed that the real-time dynamics remain
robust under both uniform scaling and more substantial modifications of the system geometry, such as
changes in aspect ratio R. This robustness implies that we are effectively considering the edge dynamics
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Figure 8.4: Sketch of a ribbon segment. Red (blue) dots mark the sites of sublattice A (B). The grey dots
indicate edge sites that are coupled to a Lindblad bath, shown as thick dashed grey lines; the uncoupled
bottom zigzag edge corresponds to the physical edge of a half-space model. The green � (yellow ⊗)
symbol represents an out-of-plane magnetic field BI in positive (negative) z-direction coupled (dotted
black line) to an “injection site” I of the physical zigzag edge. Here, I is chosen as the central site of
the physical zigzag edge. A finite BI = +|BI|ez (BI = −|BI|ez) induces a finite spin-up (spin-down)
z-polarised spin density. The excitation spin-up (spin-down) excitation propagates to the left (right)
once the injection field is switched off, cf. green (yellow) arrows at the bottom. Reproduced with minor
modifications from Ref. [RQ2].

of a Kane–Mele half-space model. For the magnetic injection term HI we use a z-polarised local magnetic
field BI = ±Bez. The injection site I is chosen to be the central site of the physical zigzag edge. The
complete setup is sketched in Fig. 8.4, with the injection site labelled by I. The green � (yellow ⊗)
symbols indicate an injection field pointing along the positive (negative) z-direction, respectively. The
injection fields in positive (negative) z-direction are shown in green (yellow) colour because they inject
spin-up (spin-down) density6 into the system, which is expected to be transported by the corresponding
spin-up (spin-down) polarised edge modes of the pristine Kane–Mele model represented by the green
(yellow) lines in Fig. 8.3. This expectation is based on the following observations. Recall that the
intrinsic SOC of the pure Kane–Mele model HKM reduces its SU(2) spin symmetry to a U(1) symmetry
around the z-axis. Despite this, the Kane–Mele ground state from Eq. (8.13) is an unpolarised Fermi
sea of the form, |GS〉 =

∏
k d
−†
k↑ d

−†
k↓ |0〉 and hence a non-degenerate SU(2)-symmetric spin singlet. Any

additional local magnetic field BI then reduces the ground state SU(2) symmetry to a U(1) symmetry,
although the former invariance under SU(2) ensures that the ground-state energy is independent of the
direction of the field. With the choice BI = ±BIez that we use here, we therefore have a U(1) spin-
rotation invariance around the z-axis for both the Hamiltonian and its ground state. A field in the positive
(negative) z-direction then induces a spin-up (spin-down) polarisation of the local magnetic moments in
the vicinity of the injection site I. Since the helical boundary modes dominate the local density of states
on the boundary sites, we expect this polarisation cloud to be predominantly supported by and propagate
within the spin-momentum-locked edge states.

To test this numerically, we fix the Kane–Mele model parameters as thop = 1, tSO = 0.05, ∆E = 0.3,
and choose V as defined in Eq. (8.12) for the topologically trivial and non-trivial cases, respectively. The
magnetic field strength is set to BI = 1, and the Lindblad parameter to γ0 = 0.2. In the topologically
trivial configuration, the resulting ground state has a local magnetic moment of 〈szI(t = 0)〉 ≈ 0.16 at
the injection site I. This ground state polarisation is shown as the t = 0 polarisation in panel (a) of
Fig. 8.5, where the upper-half (lower-half) purple data indicates the ground state polarisation induced by
a magnetic field pointing along the positive (negative) z-direction. Panel (b) of Fig. 8.5 shows the same
data for the topologically non-trivial configuration, where the ground state develops a significantly larger
local magnetic moment of 〈szI(t = 0)〉 ≈ 0.33 at the injection site I. Note that the local moment is not
fully polarised (〈szI(t = 0)〉 < 0.5) in either case. The key difference between the trivial and non-trivial
setup shown in Fig. 8.5 is the dynamics triggered by the magnetic field injection at t = 0. These dynamics
are visualised through snapshots of the local spin-polarisations 〈szi (t)〉 at selected instants of times.

6This is due to the antiferromagnetic coupling of HI from Eq. (8.36).
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(a) Topologically Trivial Setup (b) Topologically Non-Trivial Setup

Figure 8.5: Spatial distribution of spin-polarisations 〈szi (t)〉 at selected instants of time (colours). At
t = 0, the spin-injection field BI at edge site I = 36 is abruptly switched off, releasing the excitation;
A-sublattice edge sites are numbered from i = 1 to 71. The upper halves show a spin-up injection with
〈szi (t)〉 > 0, while the lower halves show a spin-down injection with 〈szi (t)〉 < 0. The time unit is set by
thop = 1 and ~ ≡ 1. The remaining parameters are tSO = 0.05, ∆E = 0.3 (as in Fig. 8.1), V as obtained
from Eq. (8.12) with positive (a) and negative (b) sign, respectively. The initial field strength is BI = 1,
and the Lindblad parameter γ0 = 0.2. Adapted with minor modifications from Ref. [RQ2].

In the topologically trivial case, shown in Fig. 8.5 (a), the polarisation cloud is tightly confined to the
injection site I at t = 0. Once the magnetic injection field is removed, it shows little to no propagation
along the edge. Instead, the polarisation cloud diminishes rapidly and essentially vanishes after about
10 inverse hoppings. This quick decay is due to the fact that almost the entire weight is immediately
dissipated into the bulk of the system. The dynamics are almost perfectly symmetric with respect to
the spin orientation: spin-up (upper half of the figure) and spin-down (lower half of the figure) injections
lead to identical outcomes after only t = 40 inverse hoppings.

In contrast, the topologically non-trivial setup, shown in Fig. 8.5 (b), exhibits pronounced and highly
asymmetric edge dynamics. At t = 0, the polarisation cloud is already spread over about five sites around
the injection site I. Following the removal of the magnetic injection field, the excitation does not decay
in place but propagates along the edge, broadening over time until it extends across roughly ten sites
after t = 100 inverse hoppings. Most importantly, the dynamics are no longer symmetric with respect
to the spin orientation. While the time-dependent shapes of the spin-up and spin-down polarisation
profiles are the same, the spin-up excitation predominantly propagates to the left, whereas the spin-
down counterpart propagates mostly to the right along the zigzag chain. This is clear evidence of the
spin-momentum locking in the topologically non-trivial state. It is also worth noting that, despite the
persistent and directional edge propagation, about half of the initial spin weight is lost within the first 10
inverse hoppings. This is attributed to the fact that about a half of the injected spin density is carried
by bulk states and thus quickly dissipated into the bulk.

The data for the topologically non-trivial state in panel (b) of Fig. 8.5 also demonstrate that, after
the initial dissipation of spin density into bulk states, the total weight of the remaining polarisation
cloud remains nearly constant over time. This is consistent with our expectations, since the residual spin
density is almost exclusively carried by the corresponding helical edge modes, which support lossless spin
transport. Furthermore, the propagation velocity of the spin density “wave packets” is approximately
v ≈ 0.29 sites per inverse hopping, as determined from the peak positions. This is in excellent agreement
with the Fermi velocity vF ≈ 0.285 of the helical edge states, as mentioned in the discussion of Fig. 8.1.

Finally, we note that there is a low-weight spin-down (spin-up) density peak around site i = 29

(i = 43) in the spin-up (spin-down) case at t = 20. This peak is located to the left (right) of the injection
site I = 36 and continues propagating in that direction at later times, as suggested by the wave packets
at t = 40. This reversal of the expected helical propagation direction indicates a partial breakdown of
spin-momentum locking. Importantly, this is not due to an explicit violation of TRS during the evolution,
but rather a remnant of the locally TRS-breaking initial state preparation. In fact, the TRS-transformed
dynamics of the spin-up dynamics – involving a simultaneous reversal of time (reflection across the y-axis
of the figure) and spin (reflection across the x-axis of the figure) – precisely match the observed spin-down
dynamics, confirming that the dynamics of the system are governed by a TRS invariant Hamiltonian.
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Figure 8.6: Same as Fig. 8.4, but with an additional classical read-out spin SR, shown as a black arrow,
which is antiferromagnetically coupled to the local spin at the central site R of the physical zigzag edge.
The coupling is illustrated as the wavy black line. Yellow ⊗ (green �) symbols mark “proper” (cf. main
text) locations I of spin-up (spin-down) injection fields BI = +BIez (BI = −BIez) half way between
R and the bottom left (bottom right) of the corners. The proper injection locations ensure that the
spin-momentum locked propagation of the injected spin-density in the helical boundary modes (green
and yellow lines at the bottom) predominantly moves it towards the read-out spin at R. Reproduced
with minor modifications from Ref. [RQ2].

8.5 Helical Transport in the Presence of the Read-Out Spin

Having demonstrated helical spin-density transport in the pristine Kane–Mele half-space model, we
now include the classical read-out spin and turn to the full dynamical setup described by Eq. (8.37). This
is sketched in in Fig. 8.6. In addition to the spin-up (spin-down) injection field – once more indicated
by the green � (yellow ⊗) symbols – a classical read-out spin SR (black arrow) with SR ≡ |SR| = 1/2

is exchange coupled to the central site R of the physical zigzag edge. We choose an antiferromagnetic
exchange coupling strength of J = 2 for the classical read-out spin, such that J |SR| = 1. The spin-up
(spin-down) injection field is again aligned along the positive (negative) z-axis, i.e. BI = ±BIez, and
positioned at a site I half way between R and the bottom right (left) corner of the ribbon segment.
This placement of the spin-up (spin-down) injection field ensures that the helical propagation of the
injected spin density will direct it towards the read-out spin, rather than away from it. Furthermore, we
initialise the classical read-out spin in-plane, e.g. SR = SRex, as this maximises the torque exerted by
the propagating spin excitation generated by BI. The initial state of the electron system is prepared as
the ground state for fixed orientations of BI and SR.

Before we move on to the discussion of the read-out spin dynamics, we examine the dynamics of the
injected spin-polarisation cloud in the presence of the read-out impurity spin. To this end, we consider
a Kane–Mele ribbon segment of the same size (L = 572) and dimensions (`x = 71.5 and `y = 4) as in
the previous section, and couple an x-polarised classical read-out spin SR = SRex to the former position
of the injection field BI at the central site R = 36 of the physical zigzag edge. Depending on whether
we wish to study a spin-down or a spin-up polarisation cloud, we then add a magnetic injection field
BI = −BIez or BI = +BIez to the injection site I = 18 or I = 54 half way between the central read-out
site R and the bottom left or bottom right corner of the ribbon segment. Once the electronic system
is initialised for a chosen configuration, we switch off the injection field to release the accumulated spin
density, allowing it to propagate freely and interact with the read-out spin.

Figure 8.7 visualises this process for a spin-down density injection. At t = 0, the polarisation cloud
is localised near site I = 18, located to the left of the read-out spin. Its profile is nearly identical to that
of the spin-down polarisation cloud formed in the absence of a read-out spin, cf. Fig. 8.5, indicating that
the spin injection process itself is largely unaffected by the reduced distance to the nearest armchair edge
and the presence of the read-out spin. For t > 0, the spin density propagates mainly to the right, which
is consistent with the spin-momentum locking we have seen earlier in the pristine Kane–Mele model.
This behaviour persists despite the fact that the presence of the read-out spin formally breaks the TRS
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Figure 8.7: Similar to the spin-down injection in Fig. 8.5, this setup includes the classical read-out spin,
which is antiferromagnetically coupled to edge site R = 36 with exchange coupling strength J = 2.
Accordingly, the injection site is relocated to I = 18, to the left of R, such that helical propagation
directs the spin-down injection towards the read-out spin. At t = 0, the electron system is in its ground
state for fixed BI(t = 0) = −BIez and SR = SRex. For t > 0, the injection field is switched off, i.e.
BI(t > 0) = 0. Other parameters: see Fig. 8.5. Adapted with minor modifications from Ref. [RQ2].

invariance of the total Hamiltonian, reaffirming that local TRS breaking is indeed a valid notion [150].
Note that the spin density profiles at t = 20 and t = 40 suggest that the polarisation cloud experiences
no significant perturbations due to the read-out spin prior to their direct interaction after about t ≈ 60

inverse hoppings. Following this interaction, the spin-down excitation scatters strongly off the read-out
spin. As a result, part of it is reflected as a backward-propagating spin-up excitation, another part
becomes bound by the deflected read-out spin, and a small fraction is transmitted through the impurity,
continuing in the spin-down channel. Combined, these observations corroborate the view that the TRS
protected helical boundary modes remain intact away from the vicinity of the locally TRS-breaking read-
out spin. Moreover, the spin-up polarisation cloud bound by the read-out spin shows minimal change
for t ≥ 80 (compare orange and red data points close to R = 36). This suggests that the read-out spin
dynamics responsible for “trapping” the spin-up density have effectively come to an end by t = 100. The
fact that these dynamics stabilise with a finite spin-up polarisation bound to the impurity site implies
that the read-out spin has acquired a finite z-component via the torque exerted by the polarisation cloud
during the scattering process.

8.6 Helical Control over a Read-Out Spin

This interpretation is in fact reinforced by the classical read-out spin dynamics. To see this, we
contrast the read-out spin dynamics following a “proper” injection process, where the injection field is
positioned (as described earlier and shown in Fig. 8.7) such that the helical propagation moves the injected
spin towards the read-out spin, with those following an “improper” injection process, where the injection
field is instead positioned such that helical propagation moves the spin injection away from the read-out
spin. Figure 8.8 compares the read-out spin dynamics resulting from “proper” and “improper” injection
processes by overlaying the trajectories traced out by the read-out spin tip throughout the dynamics.
These are visualised as curves A-D on the two-sphere S2

1/2 with radius SR = 1/2. Specifically, curves
A and B describe the read-out spin dynamics induced by “proper” and “improper” spin-down injections,
while curves C and D illustrate the same for “proper” and “improper” spin-up injections. As expected,
the “proper” spin-up (spin-down) injections (cf. high-weight polarisation clouds in Fig. 8.7) cause a
substantial deflection of the read-out spin towards the positive (negative) z-direction. The fact that the
helically suppressed “improper” spin injections (cf. low-weight polarisation clouds in Fig. 8.7) provoke a
much weaker response supports the interpretation that the read-out spin deflection is primarily driven
by the torque of the propagating spin polarisation clouds.
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Figure 8.8: Trajectories of the read-out spin tip on the S2 configuration space is shown for processes A-D,
each initiated by a static spin injection. The injection field BI is switched off at t = 0, and the system’s
state is propagated until t = 150. The read-out spin SR is located at the center R = 36 of the physical
edge and initially aligned along the +x-direction (black dot). A (deep red): “proper” spin-down injection
at site I = 18 to the left of site R. B (faint red): “improper” spin-down injection at site I = 54 to the
right of site R. C and D (deep and faint blue): “proper” and “improper” spin-up injection at I = 54

and I = 18, respectively. Parameters as in Fig. 8.7. The arrows indicate the direction of the spin-tip
deflection for each process. Adapted with minor modifications from Ref. [RQ2].

However, not all of the observed read-out spin dynamics can be attributed to the propagating spin
densities. In particular, all of the trajectories A-D exhibit a non-trivial in-plane dynamics that sets in
immediately after the injection field is switched off. The reason for this is that the initial state of the
electron system, i.e. ground-state Fermi sea for fixed orientations of BI and SR, is “stressed”, meaning it
differs from the ground state of the total system. The latter also minimises the total energy with respect
to the orientation of SR. Specifically, the total system ground state is realised when both, SR and BI, lie
in the xy-plane, enclosing a relative azimuthal angle ∆φ(r) that depends on the inter-impurity distance
r. According to Ref. [193], this angle is given by ∆φ(r) = π−α(r), where α(r) = 2EFr/vF with the inter-
impurity distance r, the Fermi energy EF, and the Fermi velocity vF. For EF = 0, the relative angle ∆φ(r)

becomes independent of the inter-impurity distance, and the impurities align antiferromagnetically with
∆φ = π for all impurity separations r. However, EF = 0 is only realised exactly in the thermodynamic
limit L → ∞. In finite systems, like the one considered here, EF typically deviates slightly from zero,
resulting in a small but finite distance-dependent deviation α(r) 6= 0 from the antiferromagnetic relative
angle ∆φ = π. Given that the injection field is aligned along the z-direction in our setup, the initial state
always constitutes a slightly excited state, whose local magnetic moments do not align7 with those of
the electronic ground state at BI = 0. The resulting magnetic stress initiates spin ralaxation dynamics,
which begin immediately after the injection field is removed, exerting a finite torque on SR. However,
this relaxation dynamics is rather weak. As shown in Fig. 8.8, the spin drifts only a few degrees on the
two-sphere, staying mostly within the xy-plane. A qualitative change of the dynamics only occurs when
the injected polarisation cloud arrives after about t ≈ 50 inverse hoppings. As previously mentioned, the
extent of this excitation-induced dynamics depends on the weight of respective polarisation cloud: it is
large for the helically propagating “proper” injections and small for the helically suppressed “improper”
injections. In both cases, the read-out spin dynamics slow to a halt after a total of about t ≈ 150 inverse
hoppings. Finally, it is worth mentioning that the initial electron ground states of setups with spin-up
and spin-down injection fields are stressed with opposite helicity. This results in a relative sign change of
the torque on SR, which explains the perfect symmetry between the curves A (B) and D (C) in Fig. 8.8.

7The extent of this discrepancy depends on the distance between I and R.
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Figure 8.9: Real-time evolution of the z-component 〈szi (t)〉 of the local magnetic moment at site I = 18

on the physical zigzag edge during a spin-down injection driven by an injection field BI applied in the
negative z direction for tinj = 50 inverse hoppings. Parameters correspond to the topologically non-trivial
case shown in Fig. 8.7. Adapted with minor modifications from Ref. [RQ2].

8.7 Iterated Injection Protocol: Building a Helical Spin Switch

The fact that the read-out spin dynamics comes to a halt once the injected polarisation cloud has
passed by shows that the system is, at least locally, in a state close to its ground state. We can use this
near-equilibrium state to initialise a subsequent dynamical process. This possibility raises a number of
natural questions: for instance, can we undo the deflection of the read-out spin by a suitable subsequent
process? Moreover, can we achieve a complete switching ±SRez → ∓SRez between the north and south
pole orientations of the read-out spin by iterating the sequence studied so far? If so, is it possible to undo
that process as well?

To start the discussion, we consider a single additional “basic injection-pump” (BIP) process. This
BIP process involves (i) a spin injection, which, in contrast to the injection processes discussed so far,
must be treated fully dynamically, and (ii) the subsequent pumping of the read-out spin dynamics driven
by the propagating spin injection. To distinguish the dynamically implemented spin injections from the
previously discussed spin injections via initial state preparation, we will henceforth refer to the former
as dynamic injection processes and the latter as static injection processes. A dynamic spin injection
starts from an arbitrary near-equilibrium state of the total system, i.e. a state where the electron system
is almost in the ground state for a given arbitrary orientation of the read-out spin SR. One could, in
principle, conceive a stricter construction scheme where the total system is in perfect equilibrium, i.e.
where the electron system is in the exact ground state for a given SR, rather than just close to it. However,
this is not practical for our purpose: since we are aiming to develop a workable dynamical protocol of
iterated BIP processes, we cannot afford to wait for full thermalisation after every dynamic injection. An
isolated dynamic spin injection then proceeds as follows. At t = 0, the spin-injection field BI = ±BIez
is switched on, causing an accumulation of local magnetic moment around the injection site I. The
built-up magnetic moment forms a polarisation cloud, which continues to develop until the injection
field is switched off after a specified “injection” time tinj. Unsurprisingly, the magnitude of the final
polarisation depends on tinj. This is demonstrated in Fig. 8.9, which shows the temporal evolution of the
local magnetic moment 〈szi (t)〉 at the injection site I during a dynamic spin-down injection (BI = −BIez)
performed on the electronic ground state for a fixed classical read-out spin oriented along the positive
x-direction. We observe that the formation of a local magnetic moment parallel to the injection field at
I happens very quickly. In fact, it takes only a few (t ≈ 2) inverse hoppings for |〈szi (t)〉| to reach a value
(|〈szi (t)〉| ≈ 0.3) close to its eventual saturation limit (|〈szi (t)〉| ≈ 0.33). After a brief rebound (2 . t . 5),
the local magnetic moment continues to converge monotonically (t > 5), approaching its limit within a
total of 40 to 50 inverse hoppings. The injection time tinj can then be determined as a point in time
at which |〈szi (t)〉| has converged to some sufficient degree. Here, the local magnetic moment essentially
converges within about tinj ≡ 50 inverse hoppings, after which we get 〈szi (tpump)〉 ≈ −0.33, showing that
the field strength of BI = 1 is not sufficient to fully polarise the magnetic moment. We will stick to
tinj = 50 in the following. Note that the results are practically independent of the choice of I, provided
that the distance to the corners and to R is large enough. A few sites have proven to be sufficient. Once
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Figure 8.10: Left: Trajectory of the read-out spin tip on the S2 configuration space. Process A (red),
as in Fig. 8.8, is a static spin-down injection at site I = 18 with read-out at R = 36. The injection
field is switched off at t = 0, and the system evolves until tpump = 150. Process B is a spin-up BIP
sequence with injection at I = 54 and read-out at R = 36, consisting of B1 (yellow), a dynamic injection
over tinj = 50 starting from the final state of A, and B2 (blue), the subsequent release and propagation
of the spin-up density, including scattering at SR, up to tpump = 150. The black dot marks the initial
orientation of SR(t = 0) = SRex. Right: the same process but starting, for better visibility, from
SR(t = 0) = SR
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2 (black square), and with A replaced by A′ consisting of a proper dynamic
spin-down injection A′1 and a pump part A′2. B′1 and B′2 are the same as B1 and B2 but starting from
the final state of process A′. Adapted with minor modifications from Ref. [RQ2].

the injection field BI is switched off at t = tinj, the formation of the spin polarisation cloud stops and it
is released into the electronic system. If the position of the injection site I relative to that of the read-out
site R is chosen properly, the polarisation cloud propagates towards and scatters from the read-out spin,
pumping its dynamics as described before. The backscattered and transmitted parts of the polarisation
cloud are eventually dissipated into the Lindblad bath, simulating total-energy-conserving dissipation in
a macroscopically large sample. As a result, the pump dynamics of the read-out spin come to an end
after a finite time tpump. In our case, a pump duration of tpump = 150 inverse hoppings was found to be
sufficient, see the discussion in Secs. 8.5 and 8.6. Generally, a sensible lower bound for tpump is given by
the distance between sites I and R divided by the Fermi velocity vF of the helical edge states. The BIP
process can be terminated after t ≈ tinj + tpump inverse hoppings and another BIP process may follow.

In order to determine whether a BIP process can undo the proper read-out spin deflection shown
in Fig. 8.8, we consider a concatenated process A+B consisting of a proper static spin-down injection
A (cf. Sec. 8.6) and a proper spin-up BIP process B = B1 + B2 involving a (proper) dynamic spin-up
injection B1 and the subsequent pump dynamics B2. The combined process A+B is illustrated on the
left side of Fig. 8.10. It starts at time t = 0 from an initial state given by the electronic ground state for a
fixed x-polarised (black dot) read-out spin at site R = 36 and a fixed spin-down (BI = −BIez) injection
field at site I = 18 (static spin injection setup). As described before, the deactivation of the injection
field triggers system dynamics, during which the read-out spin moves towards the south pole of the two-
sphere (red line) – this is the same as process A from Fig. 8.8. After about t = 150 inverse hoppings, the
dynamics of SR have essentially ceased and the physical (zigzag) edge of the electronic system has relaxed
to a “final” state close to the (local) ground state. Immediately after the static spin-down injection A is
terminated at t = 150, the spin-up BIP process begins with a dynamic spin-up injection B1 (yellow line)
applied to this nearly relaxed final state of the previous process. The dynamic spin-up injection B1 lasts
for tinj = 50 inverse hoppings (cf. Fig. 8.9), and Fig. 8.10 shows that it has only a minimal effect on
the orientation of the read-out spin. Once the dynamic injection is completed, the accumulated spin-up
polarisation cloud is released, and its helical propagation drives the pump dynamics B2 (blue line) of the
read-out spin. These last for another tpump = 150 inverse hoppings. After a brief continuation of the
downward motion in the early part of B2, the spin-up polarisation cloud scatters and drives the read-out
spin back towards the north pole of the two-sphere. Although it does not quite return to its original
position SR = SRex at the equator, we still observe that the spin-up BIP process B largely reverses the
preceding static spin-down process A. There are two main reasons why the reversal is incomplete.
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Figure 8.11: Trajectory of the read-out spin tip on the S2 configuration space throughout a process
consisting of 6 spin-down followed by 7 spin-up BIP processes starting from a state (open black dot) close
to the north pole, η = 0.05, as discussed in the text. The filled black dot marks the position SR ex for
reference. The yellow lines represent spin injections (50 inverse hoppings). The red (blue) lines indicate
proper spin-down (spin-up) pump (150 inverse hoppings). Parameters as in Figs. 8.5 and 8.7. Adapted
with minor modifications from Ref. [RQ2].

The first one is that the processes A and B are not constructed as exact inverses of one another: while
A starts from a static injection, B is based on a dynamic one. To quantify the impact of this discrepancy,
we repeated the whole cycle using two dynamic spin injection protocols A′=A′1+A′2 (spin-down BIP) and
B′=B′1+B′2 (spin-up BIP), both of which are executed as described above (tinj = 50, tpump = 150). This
is shown on the right side of Fig. 8.10. For a clearer visual representation, we chose a slightly rotated
initial orientation SR = SR
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2 (black square) for the read-out spin. The concatenated process
A′+B′ causes a significantly smaller deviation from its initial state than A+B, allowing us isolate which
part of the deviation is caused by the combination of different injection mechanisms.

The second reason for the incomplete inversion is that in all of the above protocols, the sub-processes
are terminated before the system has fully relaxed. This affects both the asymmetric (A+B) and the
symmetric (A′+B′) inversion protocol alike, and explains why the latter still fails to close, even though
the two sub-processes are exact inverses of one another. If each sub-process X was extended until the
electronic system is fully relaxed to its ground state, the final state of X would be equivalent to its initial
state, and one could perfectly undo A′ with B′. Here, equivalence of the initial and final states of sub-
process X means that they differ only by a rotation R(e, ϕ) through some angle ϕ around an axis ne.
Concretely, ne is defined by the normal vector e to the plane spanned by the initial and final orientations
of the classical read-out spin. Note that the electronic ground states |SR〉 and |S′R〉, corresponding to
two different orientations SR and S′R of the classical read-out spin, have the same energy and are related
by |S′R〉 = U(e, ϕ)|SR〉 where U(e, ϕ) is a unitary operator implementing R(e, ϕ). This is due to the
fact that, as discussed in Sec. 8.4, the ground state of the pristine Kane–Mele model (without coupling
to SR) is an SU(2)-invariant singlet, despite the SOC anisotropy.

A natural way to reduce the deviation caused by incomplete relaxation is to extend the pump duration
of the BIP processes. We therefore conclude that an inversion of a proper spin-up (spin-down) BIP process
by a proper spin-down (spin-up) BIP process is possible to arbitrary precision. This answers the first of
the two questions we asked at the beginning of this section in the affirmative. Thus, we move on to the
second question of whether it is possible to switch the read-out spin back and forth between the north
and south pole orientations by suitable sequences of proper BIP processes. We begin by noting that
incomplete relaxation of individual BIP processes is no longer a concern in this context, as it can always
be compensated for by further BIP processes. That said, a new challenge arises as well. Namely, if the
read-out spin is perfectly polarised along z-axis, i.e. if SR = ±SRez, it remains unaffected by a passing
spin-up or spin-down polarisation cloud, as the resulting torque JSR × 〈sR〉 vanishes in this case. For
this reason, we begin with an initial state, where the read-out spin is slightly tilted away from the z-
axis. Specifically, we choose an initial orientation for SR that is nudged towards the positive x-direction,
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Figure 8.12: Time evolution of SR,z throughout full switching protocols. Red data points show data for
the η = 0.05 switching protocol from Fig. 8.11. Labels 1, 2, 4 indicate start, reversal and termination
points of the switching cycle. Horizontal red lines highlight threshold levels ±SR(1−η). Blue data points
and lines use the same starting point (1) but η = 0.001 for the reversal and termination of the process,
see labels 3 and 5. Vertical lines separate the different BIP processes, each lasting 200 inverse hoppings.
Adapted with minor modifications from Ref. [RQ2].

writing
SR(t = 0) = SR

(√
1− (1− η)2 ex + (1− η) ez

)
, (8.46)

where η ∈ R is a small parameter controlling the deviation of the read-out spin from the z-axis for t = 0.
Figure 8.11 shows the trajectory traced by the tip of the classical read-out spin during an attempted
full switching process. This process begins with six proper spin-down BIP processes (red and in-between
yellow lines), which gradually reduce the z-component of SR until SzR(t) < −SR(1 − η). At this point,
S(t) is more closely aligned with −SRez than S(0) was with +SRez. Thus, the parameter η also provides
a natural termination criterion for the switching process. We find that within a 5% tolarance (η = 0.05),
a full switching process can, in fact, be achieved by only 6 BIP processes. Each BIP process involves 50
inverse hoppings of proper spin injection and 150 inverse hoppings of free time evolution, during which
the accumulated polarisation cloud propagates helically and pumps the dynamics of the read-out spin.
Figure 8.11 also shows that, at the same tolerance level of η = 0.05, a comparable number of opposite
BIP processes, in this case seven proper spin-up BIP processes (blue and in-between yellow lines), suffices
to reverse the switching and return the read-out spin to an orientation close to its initial orientation S(0).

In order to quantify the impact of the tolerance level on the switching process, we make a comparison
with a process using a stricter tolerance level. To this end, we overlay the time-dependent z-component
SR,z(t) of SR(t) for two switching processes of different tolerance levels. The red data in Fig. 8.12
corresponds to the η = 0.05 switching protocol discussed above. Each BIP process lasts for tinj + tpump =

50+150 = 200 inverse hoppings as indicated by the vertical lines. During the proper dynamic spin-up and
spin-down injections, the read-out spin drifts mostly along a latitude, giving rise the plateaus extending
over about tinj = 50 inverse hoppings. The subsequent helical spin-down (spin-up) propagation then
produces slow upwards (downwards) deflections which show up as moderate8 upwards (downwards) slopes
extending over roughly |R − I|/vF ≈ 62 inverse hoppings after each plateau. The scattering of the spin-
down (spin-up) polarisation cloud triggers a sharp downwards (upwards) deflection of the read-out spin.
These pump dynamics show up as steep9 downwards (upwards) slopes. Together, the moderate upwards
(downwards) slopes during the spin-down (spin-up) propagation and the steep downwards (upwards)
slopes during the scattering form the characteristic bumps (dips) in the SR,z(t) trajectories. The blue
curve in Fig. 8.12 shows a similar switching process but with η = 0.001. Concretely, the switching
process starts at the η = 0.05 initial point and then proceeds according to the stricter tolerance level of
η = 0.001. As a result, two additional (a total of eight) proper spin-down BIP processes are required
to take the read-out spin from the η = 0.05 initial orientation to an η = 0.001 final orientation, where
SR,z(t) < −SR(1 − η) for η = 0.001. The reversion of the downward switching process takes still more
effort, requiring a total of thirteen proper spin-up BIP processes to get from an η = 0.001 initial (down)
orientation to an η = 0.001 final (up) orientation.

8The moderate deflection speed is evident from the tight clustering of time-equidistant data points along the slopes.
9The higher speed is reflected in the sparser spacing of time-equidistant data points along the slope.
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9 – Sombrero Berry-Phases in BdG Vacuum Manifolds

An interacting microscopic model for superconductivity is described by a Hamiltonian H that is
invariant under U(1) gauge transformations corresponding to particle number conservation. The super-
conducting ground state of such a Hamiltonian spontaneously breaks this U(1) symmetry, giving rise to
a manifold of degenerate ground states. In the familiar image of the Sombrero-shaped energy landscape,
these spontaneously broken ground states are parametrised by the phase of the superconducting order
parameter, tracing the brim of the Sombrero.

Here, we do not address the spontaneously U(1)-breaking ground states of interacting models. In-
stead, we focus on the family of ground states arising from the explicitly U(1)-breaking BdG mean-field
Hamiltonians of such models. Specifically, we consider the bundle of instantaneous BdG ground states
(vacua) over U(1) ' S1, and formally determine the Berry phase acquired along closed paths in S1 using
the geometric constructions outlined in Sec. 4. In reference to the manifold of spontaneously broken
superconducting ground states, we refer to the resulting Berry phases as Sombrero Berry phases. This
analysis is appplied to the standard BCS model and the Kitaev chain model using the BdG formalism
developed in Sec. 5.

9.1 Bogoliubov Diagonalisation of Reduced BdG Hamiltonians

Some BdG Hamiltonians may be reduced to the form

H =
∑
k

(c†kα c−kβ)

(
ξ(k) ∆(k)

∆(k)∗ −ξ(k)

)(
ckα
c†−kβ

)
=:
∑
k

Ψ(k)† h(k) Ψ(k) , (9.1)

where ξ(k) = ε(k)−µ and ∆(k) are the single-particle energy dispersion relative to the chemical potential
and the gap function. The indices α 6= β account for distinct internal degrees of freedom like (pseudo-)spin
or orbitals. Equation (9.1) does not constitute a generic BdG Hamiltonian because the “Nambu” spinors
Ψ(k) contain no redundant single-particle information: the α-flavoured single particle states appear only
as annihilation operators, while the β-flavoured ones appear only as creation operators. Still, Eq. (9.1)
can be diagonalised by a Bogoliubov transformation,

U(k)†h(k)U(k) = E(k) , (9.2)

where

U(k) =

(
u(k) −v(k)

v(k)∗ u(k)

)
(9.3)

is a unitary Bogoliubov matrix with elements

u(k) =

√
1

2

(
1 +

ξ(k)

E(k)

)
and v(k) =

√
1

2

(
1− ξ(k)

E(k)

)
∆(k)

|∆(k)|
=: v0(k) eiδ , (9.4)

and where

E(k) :=

(
E(k) 0

0 −E(k)

)
(9.5)

is a real diagonal matrix of eigenenergies

E(k) =
√
ξ(k)2 + |∆(k)|2 . (9.6)

The functions u(k) and v(k) from Eq. (9.4) satisfy

|u(k)|2 + |v(k)|2 = u(k)2 + v0(k)2 = 1 , (9.7)

with u(k), v0(k) ∈ R and v(k) ∈ C. Note that v(k) carries the same complex phase as the superconducting
gap ∆(k) and we wrote v(k) = v0(k)eiδ to tidy up the notation. A proof of Eq. (9.2) is given in App. A.11.
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9.2 The Sombrero Berry-Phase of the BCS Ground State

The standard BCS chain Hamiltonian reads

HBCS =
∑
j,α

(
−t
(
c†jαcj+1α + c†j+1αcjα

)
− µc†jαcjα

)
−
∑
j

(
∆c†j↓c

†
j↑ + ∆∗cj↑cj↓

)
. (9.8)

Upon Fourier transforming the electronic field operators, this becomes (see App. A.11 for details)

HBCS =
∑
k

(c†k↑ c−k↓)

(
ξ(k) ∆(k)

∆(k)∗ −ξ(k)

)(
ck↑
c†−k↓

)
+
∑
k

ξ(k) , (9.9)

with

ξ(k) = −2t cos(k)− µ and ∆(k) = ∆ = ∆0 e
iδ , (9.10)

where k ≡ |k|. Note that this captures the essential features of the mean-field BCS Hamiltonian Eq. (5.4)
for a one-dimensional chain. If we ignore the constant energy offset E0 =

∑
k ξ(k), Eq. (9.9) readily takes

the reduced BdG form Eq. (9.1), where the additional indices α =↑ and β =↓ label spin projections.
Accordingly, Eq. (9.9) can be diagonalised as

HBCS =
∑
k

(c†k↑ c−k↓)

(
ξ(k) ∆

∆∗ −ξ(k)

)(
ck↑
c†−k↓

)

=
∑
k

(c†k↑ c−k↓)

(
u(k) −v(k)

v(k)∗ u(k)

)(
E(k) 0

0 −E(k)

)(
u(k) v(k)

−v(k)∗ u(k)

)(
ck↑
c†−k↓

)

≡
∑
k

(b†k↑ b−k↓)

(
E(k) 0

0 −E(k)

)(
bk↑
b†−k↓

)
, (9.11)

where we defined Bogoliubov quasiparticle operators(
bk↑
b†−k↓

)
≡
(

u(k) v(k)

−v(k)∗ u(k)

)(
ck↑
c†−k↓

)
, (9.12)

and where E(k), u(k), v(k) take the form defined in Eqs. (9.6) and (9.4), respectively. In particular, note
that we get u(k) = u(−k) and v(k) = v(−k) due to the form of ξ(k) and ∆(k) given in Eq. (9.10). From
Eq. (9.12) we obtain the Bogoliubov quasiparticle annihilators

bk↑ = u(k)ck↑ + v(k)c†−k↓ and b−k↓ = −v(k)c†k↑ + u(k)c−k↓ , (9.13)

both of which are needed in the construction of the fermionic Fock space of the theory. It should be
noted that the notation for the Bogoliubov field operators in Eq. (9.13) is largely symbolic: each operator
involves both electronic creation and annihilation operators, spin-up and spin-down projections, and
positive and negative quasi-momentum quantum numbers. A Bogoliubov annihilation operator with
quasi-momentum k and spin projection α is therefore neither an actual annihilation operator of any
physical particle nor is it associated with quasi-momentum k or spin projection α in the original sense
of these quantum numbers. Still, the notation in terms of the original quantum numbers accounts for
the fact that both field operators in Eq. (9.13) are needed to capture the full fermionic complexity of the
theory. Indeed, we can rewrite Eq. (9.11) as

HBCS =
∑
k,α

E(k)b†kαbkα + E′0 , (9.14)

where E′0 =
∑
k E(k) is another insignificant energy offset. Following Sec. 5.3, we write the BCS ground

state as a normalised product state (see App. A.11 for details)

|0〉pb =
1

N
∏
k,α

bkα |0〉 =
∏
k

(u(k)e−iδ + v0(k)c†−k↓c
†
k↑) |0〉 , (9.15)
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where N =
∏
k v(k) is a normalisation prefactor and |0〉 denotes the electronic vacuum defined via

cjα |0〉 = 0. If we choose to understand the phase δ ∈ R/2πZ ' S1 of the superconducting gap ∆ as a
parameter of the BCS theory, we may construct the Berry connection one-form

A = i 〈0|∂δ|0〉p p
b b dδ = Aδ dδ (9.16)

and compute the Berry phase

γ(C) =

∮
C

A = i

∮
C

〈0|∂δ|0〉p p
b b dδ (9.17)

of |0〉b along any closed path C in S1, cf. Sec. 4. To arrive at an analytical expression for this, we first
determine the coefficient Aδ of the Berry connection. Using

∂δ |0〉pb = ∂δ
∏
k

(u(k)e−iδ + v0(k)c†−k↓c
†
k↑) |0〉

= −i
∑
p

u(p)e−iδ
∏
k 6=p

(
u(k)e−iδ + v0(k)c†−k↓c

†
k↑

)
|0〉 (9.18)

and

〈0|
∏
k 6=p

(
u(k)eiδ+ v0(k)ck↑c−k↓

)(
u(k)e−iδ+ v0(k)c†−k↓c

†
k↑

)
|0〉 = 〈0|

∏
k 6=p

(
u(k)2 + v0(k)2

)
|0〉 = 1 , (9.19)

we get

Aδ = i 〈0|∂δ|0〉p p
b b

(�)
=
∑
p

u(p)e−iδ 〈0|
∏
k′

(
u(k′)eiδ+ v0(k′)ck′↑c−k′↓

) ∏
k 6=p

(
u(k)e−iδ+ v0(k)c†−k↓c

†
k↑

)
|0〉

(?)
=
∑
p

u(p)e−iδ 〈0|
∏
k 6=p

(
u(k)eiδ+ v0(k)ck↑c−k↓

)(
u(k)e−iδ+ v0(k)c†−k↓c

†
k↑

)(
u(p)eiδ+ v0(p)���

�XXXXcp↑c−p↓

)
|0〉

=
∑
p

u(p)2 〈0|
∏
k 6=p

(
u(k)eiδ+ v0(k)ck↑c−k↓

)(
u(k)e−iδ+ v0(k)c†−k↓c

†
k↑

)
|0〉

(∗)
=
∑
p

u(p)2 , (9.20)

where we plugged in Eq. (9.18) in (�), used that
[
cp↑c−p↓, c

†
−k↓c

†
k↑
]

= 0 for all k 6= p in (?), and finally
applied Eq. (9.19) in (∗). Now, inserting in Eq. (9.4) into the final line of Eq. (9.20) yields∑

p

u(p)2 =
∑
p

1

2

(
1 +

ξ(p)

E(p)

)
=
L

2
+

1

2

∑
p

ξ(p)

E(p)
, (9.21)

where we used that the number of quasi-momenta equals the number lattice sites, i.e.
∑
p 1 = L. For

µ = 0, we additionally have ξ(k ± π) = −ξ(k) and E(k ± π) = E(k), such that
π∑

p=−π

ξ(p)

E(p)
=

π∑
p=0

(
ξ(p)

E(p)
+
ξ(p− π)

E(p− π)

)
=

π∑
p=0

(
ξ(p)

E(p)
− ξ(p)

E(p)

)
= 0 . (9.22)

By definition, the closed paths C in S1 ' R/2πZ are of the form

CN : [0, 1]→ S1 , s 7→ 2πNs (9.23)

for some integer winding N ∈ Z, cf. Sec. 2.1.8. With this, we may write the Berry phase γ(CN ) along a
closed curve CN as

γ(CN ) =

∮
CN

Aδ dδ =
∑
p

u(p)2

[∫ 2πN

0

dδ

]
= 2πN

∑
p

u(p)2 , (9.24)

which, using Eqs. (9.21) and (9.22), simplifies to

γ(CN ) = πNL (9.25)

for µ = 0.
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9.3 The Sombrero Berry-Phase of the Kitaev Chain Ground State

The Kitaev chain Hamiltonian reads

HKit =

L−1∑
j=1

[
− t
(
c†j+1cj + c†jcj+1

)
+ ∆ cjcj+1 + ∆∗ c†j+1c

†
j

]
− µ

L∑
j=1

(
c†jcj −

1

2

)
. (9.26)

Upon Fourier transforming the electronic field operators, this becomes (see App. A.11 for details)

HK =
1

2

∑
k

(c†k c−k)

(
ξ(k) ∆(k)

∆(k)∗ −ξ(k)

)(
ck
c†−k

)
+ E0 (9.27)

with

ξ(k) = −2t cos(k)− µ and ∆(k) = −2i∆ sin(k) , (9.28)

where k ≡ |k|. Unlike the BCS gap, the Kitaev gap is not constant, but disperses as a function of
quasi-momentum. In particular, it vanishes for kc = 0, π, which is something we must keep in mind. For
future reference, we define the polar form

∆(k) = −2i∆0e
iδ′ sin(k) =: 2∆0 sin(k)eiδ ≡ ∆0(k)eiδ (9.29)

of the superconducting gap function. Here, we plugged in ∆ = ∆0e
iδ′ and absorbed the prefactor of

−i = e−i
π
2 , defining δ ≡ δ′ − π/2. Note that, upon omitting the constant energy offset E0 =

∑
k ξ(k),

Eq. (9.27) assumes the standard BdG form, see Eq. (5.28). In particular, the absence of distinct single-
particle indices α 6= β in Eq. (9.27) gives rise to the characteristic redundancy of fermionic degrees of
freedom. The standard Bogoliubov diagonalisation of Eq. (9.27) then yields

HK =
1

2

∑
k

(b†k b−k)

(
E(k) 0

0 −E(k)

)(
bk
b†−k

)
, (9.30)

where we defined Bogoliubov quasiparticle operators(
bk
b†−k

)
≡
(

u(k) v(k)

−v(k)∗ u(k)

)(
ck
c†−k

)
, (9.31)

and where E(k), u(k), v(k) take the form defined in Eqs. (9.6) and (9.4). Recall that in the BCS model
both the u(k) and v(k) coefficients satisfy u(k) = u(−k) and v(k) = v(−k). Here, we find that
u(k) = u(−k) but v(k) = −v(−k), because ∆(k) ∝ sin(k). We can use this to show that the two
Bogoliubov quasiparticle annihilation operators

bk = u(k)ck + v(k)c†−k and b−k = −v(k)c†k + u(k)c−k (9.32)

resulting from Eq. (9.31) describe the same fermionic degrees of freedom: if we take the second Bogoliubov
operator b−k and invert the momentum k 7→ −k, we simply recover the first Bogoliubov operator bk,

b− (−k) = −v(k)c†k + u(k)c−k = −v(−k)c†−k + u(−k)ck = v(k)c†−k + u(k)ck = bk , (9.33)

exposing their redundancy. From Eq. (9.30), we therefore get (see App. A.11 for details)

HK =
∑
k

E(k)b†kbk + E′0 , (9.34)

where E′0 =
∑
k E(k) is another insignificant energy offset. Following Sec. 5.3, we may write the KC

ground state as a normalised product state (see App. A.11 for details)

|0〉pb =
∏
k

bk |0〉 . (9.35)
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Figure 9.1: Numerical results for the Sombrero Berry phase of the Kitaev ground states as a function of
system size L, with model parameters t = ∆0 = 1 and µ = 0. Left: data obtained from the analytical
expression Eq. (9.41) for N = 1. Right: data obtained using the discretised Berry phase algorithm,
Eq. (4.110) with Eq. (4.112), of the BdG vacua, cf. Sec. 5.

However, recall that there exist critical quasi-momenta kc = 0,π, where

∆(kc) = 2i∆ sin (kc) = 0 , (9.36)

so that

E(kc) = ξ(kc) , u(kc) = 1 , v(kc) = 0 . (9.37)

Accordingly, we find that

bkc = u(kc)ckc + v(kc)c
†
−kc = ckc . (9.38)

i.e. that the Bogoliubov annhilation operators coincide with the electronic annihilation operators at the
critical quasi-momenta. If these critical operators were included in the naive product state definition of
the ground state, Eq. (9.35), they would annihilate the electronic vacuum. To avoid this, the critical
quasi-momenta must be excluded from the construction, and we find (see App. A.11 for details)

|0〉pb =
1

N
∏

k 6=0,±π

bk |0〉 =
1

N
∏

0<k<π

bkb−k |0〉 =
∏

0<k<π

(u(k)e−iδ + v0(k)c†−k↓c
†
k↑) |0〉 , (9.39)

where N =
∏

0<k<π v(k) is a normalisation prefactor, and |0〉 denotes the electronic vacuum once more.
Note that we exclude the critical momenta kc = 0,π and restrict the product over the (punctured)
Brillouin zone to its positive half by pairing each bk with its negative-momentum counterpart b−k. Apart
from the restriction of the product to half of the punctured Brillouin zone, Eq. (9.39) reproduces the form
of Eq. (9.15) exactly. Consequently, the expressions for the Kitaev Berry connection and Berry phase
take the same form as Eqs. (9.20) and (9.24), except that all quasi-momentum sums are restricted to the
positive half of the punctured Brillouin zone, i.e. we get

A = Aδ dδ with Aδ =
∑

0<p<π

u(p)2 (9.40)

and

γ(CN ) = 2πN
∑

0<p<π

u(p)2 . (9.41)

Using Eqs. (9.21) and (9.22), the latter simplifies to

γ(CN ) = πNL/2 (9.42)

for µ = 0. The analytical expressions for the Sombrero Berry phases of the BCS and Kitaev chain ground
states provide a benchmark for testing the numerical algorithm for the discretised WZ and Berry phases
of Bogoliubov vacua introduced in Sec. (4.6). Figure 9.1 shows that the discretised Berry phase of the
Kitaev ground states, Eq. (4.110) with Eq. (4.112), are in perfect agreement with the analytical prediction
from Eq. (9.41).
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10 – Exchangeless Braiding with Non-Degenerate Anyons

Topological quantum computation (TQC) is one of the most promising frameworks for fault-tolerant
quantum computation (QC) [101, 114, 142, 194–203]. It is based on the exotic statistics of non-Abelian
anyons, which provides topological protection against local perturbations and control errors [95, 101,
194, 204, 205]. Concretely, certain quantum systems support anyonic quasiparticles that give rise to a
degenerate low-energy subspaceH0 suitable for encoding quantum information [114]. Due to their anyonic
statistics, the adiabatic exchange of these quasiparticles can be used to induce unitary transformations on
H0. The resulting transformations are topological in that they depend only on the topological properties
of the braids formed by the quasiparticle world lines during the exchange. Sequences of adiabatic anyon
exchanges can then be applied to implement robust quantum gates on any qubit state |ψ〉 encoded in H0.
As a result, TQC with anyons integrates error correction on a hardware level, making it a compelling
architecture for robust QC applications.

In recent decades, TQC has attracted growing interest. This rise in attention is partly due to the
discovery of anyonic defect modes in certain topological superconductors [14, 106, 108, 206–209]. These
defect modes exhibit a range of distinctive characteristics. First, their existence is guaranteed by the bulk-
defect correspondence of the underlying topological superconductor. This correspondence protects them
against symmetry-preserving perturbations and pins them at zero energy [14]. As a result, the many-
body ground-state energy becomes degenerate, introducing the degenerate subspace H0 of ground states
essential for QC. Second, the defect-bound zero-energy quasiparticle excitations of the superconducting
state can be understood as self-adjoint quasiparticle modes, i.e. Majorana-type fermion modes. For this
reason, they are usually referred to as Majorana zero modes (MZMs). Finally, and most crucially for TQC,
they are equivalent to a specific type of non-Abelian anyons known as Ising anyons [95,101,114,195]. Even
though Ising anyons are not universal for quantum computing – not every unitary transformation on H0

can be approximated to arbitrary precision by braiding transformations – their experimental accessibility
and low braiding complexity1 make the study of Ising anyons a valuable endeavour.

Proposals for concrete physical realisations include MZMs bound to vortex cores in two-dimensional
px + ipy superconductors [106, 207, 210, 211] and to the boundaries of one-dimensional topological p-
wave superconductors [108, 206, 212–222]. Further progress towards practical TQC faces a number of
experimental and theoretical challenges. Experimental efforts aim to refine engineering techniques for
topological superconductors and achieve the microscopic control required to prepare and manipulate
MZMs, for a review see Refs. [223–231]. On the theory side, simulations must account for real-world
limitations to provide more realistic expectations for experiments. Advances have been made through
various methods and methodological approaches. Exact diagonalisation is effective but limited to small
systems [217,232,233]. Studies focusing on single-particle states [216,221] or low-energy theories [234–237]
can achieve larger system sizes, but at the cost of neglecting contributions of extended bulk-states to
the many-body ground state. Other efforts concentrate on time-evolving quasiparticles [117, 211, 238],
applications of the Onishi determinant formula [239], and covariance matrix techniques [240–242].

Here, we consider many-body simulations for weakly coupled, finite-size Kitaev chains and propose an
exchangeless braiding protocol, in which the unitary braiding transformation is driven not by an adiabatic
exchange of MZMs, but by 2π rotations of the superconducting phase φ that keep them stationary in real
space [200,243–246]. This was originally proposed by Kitaev [206] and later picked up by others, including
Fu, Teo and Kane [247, 248], Chiu et al. [14], and Sanno et al. [211]. The Kitaev chain model [206] has
recently attracted renewed attention because it was found to provide a suitable low-energy description of
some semi-conductor/superconductor and spin-chain/superconductor hybrid systems [210,213].

1In the end of Sec. 6.3.2, specifically in Eqs. (6.66) and (6.67), we saw that a simple double exchange of Ising anyons is
enough to implement X- and Z-gates. This is what we mean by low braiding complexity – simple gates can be achieved
through simple braiding protocols. Compare, in particular, to the high braiding complexity of (the universal class of)
Fibonacci anyons that we mentioned in the final paragraph of Sec. 6.3.1.
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Local manipulations of the superconducting phase are generally difficult to carry out. Here, their use
is motivated by Yu-Shiba-Rusinov (YSR) realisations of topological superconductivity [213,249–253]. In
such setups, a ferromagnetically aligned classical spin array is exchange-coupled to a conventional s-wave
superconductor, creating low-energy YSR bands that reside inside the host’s superconducting gap and
inherit a topological p-wave superconducting order by proximity to the s-wave host [213,249]. A collective
rotation of the classical spin array then translates into a local phase rotation of the proximity-induced
p-wave order parameter in the YSR bands, as suggested in Ref. [213].

In order to detect Ising-anyon type MZM braiding, we analyse the non-Abelian Wilczek–Zee (WZ)
phase matrix [254] of the low-energy subspace H0(φ) under cyclic evolutions φ 7→ φ + 2π of the super-
conducting phase. That is, we explicitly evaluate a U(n) holonomy associated to the n-dimensional space
H0(φ), focusing solely on the geometric phase and neglecting dynamical contributions. Methodologically,
we follow Ref. [94] and use the Bertsch–Robledo-Pfaffian overlap formula [87, 90–93] to circumvent the
Onishi sign problem in the computation of many-body overlaps between zero-energy (low-energy) Fock
states in the numerical computation of WZ phases [94,210].

Based on a numerical analysis of the WZ phase, we demonstrate that the MZMs of the Kitaev
chain retain their anyonic properties even in the presence of finite-size induced MZM-interactions that
lift their degeneracy significantly. This stability enables the implementation of an exchangeless double-
braiding protocol driven by cyclic rotations of the superconducting phase. Our main focus is on composite
systems of two weakly linked Kitaev chains. There, we find that the relative strength of couplings between
MZMs within the same subchain and between different subchains controls whether an exchangeless double
braiding within either subchain produces a unitary Z- or X-gate transformation.

The remainder of this chapter is organised as follows. In Secs. 10.1 and 10.2, we introduce the model
and describe the technical framework behind our numerical approach. Subsequently, Sec. 10.3 presents a
numerical analysis of the Wilczek–Zee phase to demonstrate exchangeless double braiding and quantify
finite-size effects in a single Kitaev chain. In the final section, Sec. 10.4, we extend this analysis to a
simple two-Kitaev chain network, where the exchangeless double braiding process is shown to induce Z-
or X-gate transformations, depending on the parameters of the model.

Throughout this chapter, we closely follow our original presentation in [RQ3].

10.1 The Kitaev Chain Model

The Kitaev chain is a minimal model for a topological superconductor. Proposed by Alexei Kitaev
in 2001 [206], it describes a one-dimensional lattice of itinerant spinless fermions with a superconducting
p-wave pairing. In the topologically non-trivial phase, it features unpaired Majorana zero modes (MZMs)
at its boundary. The second-quantised Kitaev chain Hamiltonian reads

HKit =

L−1∑
j=1

[
− t
(
c†j+1cj + c†jcj+1

)
+ ∆ cjcj+1 + ∆∗ c†j+1c

†
j

]
− µ

L∑
j=1

(
c†jcj −

1

2

)
, (10.1)

where the index j labels the sites of a one-dimensional chain of length L. The first term of Eq. (10.1) is
the generic tight-binding hopping. It is governed by the NN hopping strength t, which we set to t ≡ 1 to
fix the energy unit. The third term in Eq. (10.1) implements a chemical potential of strength µ and can be
used to tune between topologically distinct phases. The remaining terms represent the superconducting
p-wave pairing determined by a complex gap parameter

∆ = ∆0e
iφ = ∆0

(
cos(φ) + i sin(φ)

)
, (10.2)

where ∆0 and φ denote the real amplitude and phase, respectively. The pairing term explicitly breaks
the U(1) charge symmetry, such that the total number N =

∑
j c
†
jcj of spinless fermions is no longer

conserved. Fermion parity (−1)N remains a good quantum number.
The beauty of the Kitaev chain is that it provides a simple, instructive argument for the existence

of unpaired boundary MZMs. To see this, we consider the special case with φ = 0, so that ∆ = ∆0.
Following Sec. 5.5, we may introduce self-adjoint Majorana operators

γAj = c†j + cj = γA †j and γBj = i
(
c†j − cj

)
= γA †j , (10.3)
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which allow us to rewrite Eq. (10.1) with ∆ = ∆0 as (for details see App. A.12)

HKit =
i

2

(
L−1∑
j=1

[(
∆0 + t

)
γBj γ

A
j+1 +

(
∆0 − t

)
γAj γ

B
j+1

]
− µ

L∑
j=1

γAj γ
B
j

)
. (10.4)

Based on this Majorana representation of HKit we may identify two special phases of the model. In the
first phase (A) we have ∆0 = t = 0 and µ 6= 0. This yields

HKit = − iµ
2

L∑
j=1

γAj γ
B
j , (10.5)

which, by Eq. (10.3), is equivalent to

HKit = −µ
L∑
j=1

(
c†jcj −

1

2

)
. (10.6)

Note that Eq. (10.5) only couples Majorana operators γAj and γBj from the same lattice site j to one
another. If µ < 0, Eq. (10.6) reveals that ground state |GS〉 must satisfy cj |GS〉 = 0 for all j = 1, . . . , L,
i.e. it is simply given by the trivial fermion vacuum

|GS〉 = |0〉 . (10.7)

For µ > 0, an analogous argument applies to the fermionic anti-vacuum |0̄〉 defined via c†j |0̄〉 = 0 for all
j = 1, . . . , L. The second phase (B) turns out much more interesting. It is distinguished by ∆0 = t > 0

and µ = 0, with which Eq. (10.4) becomes

HKit = it

L−1∑
j=1

γBj γ
A
j+1 . (10.8)

This configuration of the model only couples Majorana operators γBj and γAj+1 from different lattice sites.
In particular, the Majorana operators γA1 and γBL remain unpaired – they do not enter the Hamiltonian
in Eq. (10.8) at all. This means that they constitute self-adjoint zero energy modes, i.e. MZMs, that are
perfectly localised on the chain boundary sites j = 1 and j = L. As a consequence, we can combine γA1
and γBL into a single non-local complex fermion

b0 :=
1

2

(
γA1 + iγBL

)
. (10.9)

which is perfectly localised on the opposite ends of the chain and has strictly zero energy. The latter is
evident from the fact that b0 does not appear in the Hamiltonian

HKit = 2t

L−1∑
j=1

(
b†jbj −

1

2

)
, (10.10)

that we obtain from Eq. (10.8) upon defining

bj =
1

2

(
γAj+1 + iγBj

)
and b†j =

1

2

(
γAj+1 − iγBj

)
. (10.11)

If t > 0, the ground state |GS〉 of Eq. (10.10) is given by the b-vacuum,

|GS〉 = |0〉b , (10.12)

defined by bj |0〉b = 0 for all j = 1, . . . , L − 1. However, the existence of the unpaired mode b0 means
that there is a second ground state, namely b†0 |0〉b, which has the same energy as |GS〉 and causes all
states of the system to be doubly degenerate. Note that the complex fermion associated with b0 is a
peculiar object: it is perfectly localised at the two boundary sites j = 1 and j = L, but at the same time
extremely non-local if the chain length L becomes large. We are soon going to identify the two boundary
MZMs of phase (B) as the topological edge modes of the model.
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The Kitaev chain Hamiltonian from Eq. (10.1) constitutes a BdG Hamiltonian,

HKit =
1

2
Ψ†hKitΨ , (10.13)

where Ψ = (c c†)ᵀ denotes the Nambu spinor of fermionic annihilation and creation operators, and

hKit =

(
T ∆†

∆ −T ∗

)
(10.14)

is given in terms of the single-particle hopping matrix T and the superconducting gap matrix ∆ with
elements

Tjk = −t
(
δ(j+1)k + δj(k+1)

)
− µδjk and ∆jk = ∆

(
δ(j+1)k − δj(k+1)

)
. (10.15)

As such, HKit possesses the tautological particle-hole structure

Ξ̄HKitΞ̄
† = −HKit , (10.16)

that was discussed around Eq. (5.50) in Sec. 5.2. Here, Ξ̄ with Ξ̄2 = +1 is the anti-unitary tautological
particle-hole conjugation operator from Eq. (3.36). Beyond this, the Kitaev chain Hamiltonian also
exhibits a genuine particle-hole symmetry2

CHKitC† = HKit , (10.17)

implemented by the anti-unitary PHS operator C with C2 = +1, that was defined in Eq. (3.42). It
transforms the elementary fermionic annihilation and creation operators as

CcjC
† = (−1)jc†j , CiC† = −i . (10.18)

As we have seen in Sec. (9.3), the Kitaev chain Hamiltonian HKit can be diagonalised in k-space by
means of a Bogoliubov transformation. Concretely, the Fourier transform cj = 1/

√
L
∑
k e
−ikRjck of the

elementary field operators allows us to write HKit as

HKit =
∑
k

φ†(k)hKit(k)φ(k) , (10.19)

where we defined the Nambu spinor φ(k) = (ck c
†
−k)ᵀ of Fourier transformed annihilation and creation

operators with quasi-momenta k and −k, respectively. The 2× 2 Bloch matrix in Eq. (10.19) takes the
form

hKit(k) = h(k)σ , (10.20)

where σ denotes the vector of Pauli matrices σj acting on particle and hole components of the Nambu
spinors. The coefficient functions h(k) =

(
hx(k) hy(k) hz(k)

)
are given by (for details see App. A.12)

hx(k) = 2∆0 sin(φ) sin(k) , hy(k) = −2∆0 cos(φ) sin(k) , hz(k) = µ+ 2t cos(k) , (10.21)

where k ≡ |k|. The Bogoliubov diagonalisation

HK =
1

2

∑
k

(b†k b−k)

(
E(k) 0

0 −E(k)

)(
bk
b†−k

)
(10.22)

2The Kitaev chain is often said to possess a TRS T with T 2 = +1, acting as T cjT
† = cj and T iT † = −i. While

this interpretation mathematically consistent, it clashes with the physical interpretation of the cj as real fermions: physical
fermions carry spin, leading to T 2 = (−1)N , so for single-particle physics (N = 1) we expect T 2 = −1. In SU(2) symmetric
systems, one may recover single-particle TRS with T 2 = +1 after an SU(2) symmetry reduction. However, this is not
possible in spinless models like the Kitaev chain. One must therefore either (i) interpret the cj as spinless “toy” fermions
and retain the TRS perspective, or (ii) view them as spin-polarised fermions in an SU(2)-broken setting and reinterpret the
symmetry properties in terms of a PHS instead. Details on this are provided in Ref. [78]).
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of Eq. (10.19) yields Bogoliubov quasiparticle operators(
bk
b†−k

)
≡
(

u(k) v(k)

−v(k)∗ u(k)

)(
ck
c†−k

)
, (10.23)

where u(k), v(k) take the form defined in Eq. (9.4), and energy bands

E±(k) = ±
√
hx(k)2 + hy(k)2 + hz(k)2 = ±|h(k)| , (10.24)

separated by an energy gap

∆E := min
k

(E+(k)− E−(k)) = 2 ·min
k
|h(k)| . (10.25)

In contrast to the previously discussed honeycomb models, where the lattice symmetry guarantees that
the smallest band gap appears at the high symmetry Dirac points, the quasimomentum minimising
Eq. (10.25) depends on the model parameters. Specifically, we find (for details see App. A.12) energy
gaps

∆E = 2 ·min

(
|µ+ 2t| , |µ− 2t| , |∆0|

√
4 +

µ2

(∆2
0 − t2)

)
. (10.26)

with

∆E =


2|µ+ 2t| attained at k = 0

2|µ− 2t| attained at k = ±π
2|∆0|

√
4 + µ2

(∆2
0−t2)

attained at k = ± arccos
(

tµ
2(∆2

0−t2)

)
,

(10.27)

respectively. Of course, the solution at k = ± arccos
(

tµ
2(∆2

0−t2)

)
only exists if∣∣∣ tµ

2(∆2
0 − t2)

∣∣∣ ≤ 1 . (10.28)

For ∆0 > 0, the energy gap vanishes at k = 0 (k = ±π) when µ = −2t (µ = 2t). If ∆0 = 0, we
additionally get gap closures at

k = ± arccos
(
− µ

2t

)
, (10.29)

whenever |µ| ≤ 2|t|. As before, the nodal surfaces defined by |µ| = 2|t| divide the three-dimensional
parameter space spanned by t, µ and ∆0 into separate regions with finite band gaps ∆E > 0. These
regions are again closely related to the topologically trivial and non-trivial phases of the Kitaev model.
Since the NN hopping strength t usually sets the energy scale, the onsite potential µ is often used to tune
between the topologically distinct phases.

Following Sec. 9.3, we may write the Kitaev chain ground state |GS〉 as a normalised product state
(see App. A.11 for details)

|GS〉 =
1

N
∏

0<k<π

bk |0〉 ≡
1

N
∧

0<k<π

|b(k)〉 , (10.30)

in which all positive-energy quasiparticle modes associated with bk are empty. Here, N =
∏

0<k<π v(k) is
a normalisation prefactor, |0〉 denotes the fermionic reference vacuum defined by ck |0〉 = 0 for all k ∈ T 1

k ,
and |b(k)〉 ≡ bk |0〉. Note that the form of the BdG ground state in Eq. (10.30) looks very similar to that
of the tight-binding ground states given in Eqs. (7.24) and (8.13). In fact, we may reinterpret Eq. (10.30)
as the state

|GS〉 =
1

N
∏

0<k<π

d†k |0〉 ≡
1

N
∧

0<k<π

|d†(k)〉 , (10.31)
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in which all negative-energy quasi-hole modes associated with b†k ≡ dk are occupied. This representation
directly mirrors the familiar Slater determinant structure of Eqs. (7.24) and (8.13), in which the valence
single-particle modes are filled. Recall, however, that the physical meaning here is quite different: the
bk are coherent superpositions of creation and annihilation operators, so the BdG vacuum is not a filled
valence band in the usual sense, but rather the unique state of Cooper pairs annihilated by all positive-
energy quasiparticles, or equivalently, filled with all negative-energy ones.

Despite this distinction, the form of Eq. (10.30) still makes it clear that the topology of the Bogoliubov
quasiparticle states bk encodes the topological properties of the many-body ground state.

10.1.1 Topology of the Kitaev Chain

The Bogoliubov quasiparticle states |b(k)〉 form a complex line bundle B π−→ S1
k over the one-dimensional

Brillouin torus S1
k = T 1

k . Typically, we would base the topological characterisation of a complex vector
bundle E π−→ B on its universal Chern classes ci ∈ H2i(B,Z), cf. Sec. 2.3.3. However, in the present case,
the base manifold B = S1

k is odd -dimensional, which limits the utility of the Chern classes.
Generally, Chern numbers – cf. Sec. 2.3.6 – cannot be defined for complex vector bundles over

odd-dimensional base manifolds. The reason for this is simply that Chern classes live in even-degree
cohomology groups, while the orientation class of an odd-dimensional base manifold belongs to an odd-
degree homology group. For dimR(B) = 1, the situation is even more restrictive: the total Chern class
c(B) becomes trivial, c(B) = 1, since all of its components ci(B) vanish for i > 1, cf. Def. 2.3.4.

This difficulty motivates the consideration of another type of characteristic classes, known as secondary
characteristic classes. These are called so because they capture topological information precisely in
situations where the primary classes, such as the Chern classes, become trivial. To see this, we adopt the
perspective of Chern–Weil theory, where characteristic classes are represented in de Rham cohomology by
invariant polynomials applied to the curvature F of a connection A, cf. Sec. 2.3.5. Consider an arbitrary
characteristic class xj(F) ∈ H2j(B,R) defined as the degree-j component of a characteristic polynomial
x(F). Since xj(F) is closed, it can locally, i.e. on a chart Uk ⊂ B, be written as an exact form

xj(F)
∣∣
Uk

= dQx2j−1(Ak) , (10.32)

where Qx2j−1(Ak) ∈ Γ(T ∗Uk ⊗ g, Uk) is a Lie-algebra valued (2j − 1)-form known as the Chern–Simons
form of xj(F) [39]. If the underlying “primary” characteristic class xj(F) vanishes,3 Eq. (10.32) shows
that Qx2j−1(Ak) itself becomes closed. In this case, it defines a new cohomology class in one degree lower,
Qx2j−1(A) ∈ H2j−1(B,R), which is often called Chern–Simons secondary characteristic class associated
with xj(F). This characteristic class can then be paired against the base manifold B to give a secondary
characteristic number

CSx2j−1[A] ≡ 〈[Qx2j−1(A)], [B]〉 =

∮
B

Qx2j−1(A) , (10.33)

that is referred to as the Chern–Simons invariant CSx2j−1[A] of x(F). Consider, for example, the Chern–
Simons form of the j-th Chern character chj(F) ∈ H2j(B,Q). It reads [14,39]

Qch2j−1(A) =
1

(j − 1)!

(
i

2π

)j ∫ 1

0

dt tr
(
AF j−1

t

)
, (10.34)

where Ft := tF + (t2 − t)A2. In the first few cases j = 1 and j = 2, this gives

Qch1 (A) =
i

2π
tr
(
A
)

and Qch3 (A) =
1

2

(
i

2π

)2

tr
(
AkdA+

2

3
A3

)
. (10.35)

In the tenfold classification of topological quantum matter with symmetries [14], the ground state of the
Kitaev chain is characterised by the Chern–Simons invariant

CSch1 [A] =
i

2π

∫ π

−π
tr
(
A(k)

)
(10.36)

3Reasons for vanishing primary characteristic classes include (i) a vanishing curvature F = 0, say due to symmetry
constraints like TRS, and (ii) exceeding dimensional restrictions, like ci(E) = 0 if i > dimC(F ) or 2i > dimR(B) for Chern
classes, cf. Def. 2.3.4.
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of the first Chern character ch1(F). Here, A(k) = 〈b(k)|∂kb(k)〉 denotes the Berry connection of the
Bogoliubov quasiparticle states from Eq. (10.30). This gives rise to the Z2 Kitaev chain invariant [14]

ν = exp
[
2πiCSch1 [A]

]
=

{
+1 for |µ| > 2|t| (trivial)

−1 for |µ| < 2|t| (non-trivial) .
(10.37)

There exists a powerful alternative formulation of this invariant. Namely, it can be expressed as the
“degree” of the map (for details see App. A.12)

m : S1
k → S1

m ⊂ R3 , k 7→ h(k)

|h(k)|
, (10.38)

where h(k) is the vector of coefficient functions Eq. (10.21) defined in Eq. (10.20). Note that Eq. (10.38)
is well-defined if and only if |h(k)| > 0 for all k. Since the band gap Eq. (10.25) is directly determined
by |h(k)|, Eq. (10.38) is well-defined if and only if the system is gapped, reflecting the conventional
understanding of topological phases of matter. The existence of m(k) is therefore directly tied to the
presence of a bulk energy gap.

The degree of a continuous map like m : S1
k → S1

m is an integer that counts, roughly speaking, how
many times the domain manifold winds around the target manifold. More generally, consider two closed,
connected, orientable n-manifolds X and Y . Any continuous map f : X → Y induces a homomorphism
f∗ : Hn(X) → Hn(Y ) between their top homology groups. By orientability of X and Y , we have
Hn(X) ' Hn(Y ) ' Z, so that f∗ is a group homomorphism f∗ : Z→ Z. Thus, it must be of the form

f∗(x) = αx , (10.39)

where α ∈ Z is some fixed integer. This integer is a homotopy invariant known as the degree deg f ≡ α

of f : X → Y . For continuous maps from the n-sphere to itself, like the map m(k) defined in Eq. (10.38),
the degree is a complete homotopy invariant, meaning that two maps f, g : Sn → Sn are homotopic if and
only if deg f = deg g. The completeness of the degree degm of m(k) as a homotopy invariant is what
makes this formulation of the invariant so valuable. It tells us that two Kitaev systems are topologically
equivalent if and only if their topological invariants are the same.

In order to determine the degree of a map in practice we turn to de Rham cohomology, which provides
us with the relation

deg f ·
∫
Y

ω =

∫
X

f∗ω , (10.40)

where ω is some n-form on Y and f∗ω is an n-form on X called the pullback of ω to by f . Being interested
in the value of deg f , it is natural to compute this for a normalised volume form η with

∫
Y
η = 1, since

this immediately yields

deg f =

∫
X

f∗η . (10.41)

If we use the above formula to compute the degree of m : S1
k → S1

m from Eq. (10.38), we find (for details
see App. A.12)

|degm| =

{
0 for ∆0 = t = 0, µ 6= 0

1 for ∆0 = t 6= 0, µ = 0
(10.42)

in the two prototypical phases (A) and (B) that we discussed in Eqs. (10.5) and (10.8), respectively. Since
the degree remains invariant under continuous parameter changes that keep the energy gap open, the Z2

Chern–Simons invariant from Eq. (10.37) can be expressed as

ν = (−1)|degm| =

{
+1 for |µ| > 2|t| (trivial)

−1 for |µ| < 2|t| (non-trivial) .
(10.43)
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We have seen in Eq. (10.8) that the topologically non-trivial Kitaev chain features zero-energy Ma-
jorana modes on its boundary. In the special parameter configuration (B), these modes are perfectly
localised on the boundary sites j = 1 and j = L of the chain. As a result, they are exactly degenerate
at zero energy, regardless of the chain length L. For different parameter choices within the topological
phase, the modes are only exponentially localised at the boundary sites and therefore hybridise in chains
with finite lengths L <∞. Specifically, the Majorana zero modes take the form [206]

ΓA =

L∑
j=1

(α+x
j
+ + α−x

j
−)γAj and ΓB =

L∑
j=1

(β+x
j
+ + β−x

j
−)γBL+1−j , (10.44)

where α± and β± are real coefficients and xj± is the j-th power of the so-called “decay parameters” [206]

x± = x±(t, µ,∆0) =
−µ±

√
µ2 − 4(t2 −∆2

0)

2(t+ ∆0)
. (10.45)

The interaction between ΓA and ΓB is described by an effective two-mode Hamiltonian

Heff =
i

2
K ΓAΓB , (10.46)

where the interaction strength K is roughly given by

K ≡ K(t, µ,∆0;L) ∝ exp

[
− L

`(t, µ,∆0)

]
(10.47)

with the characteristic length [206]

` ≡ `(t, µ,∆0) =

[
min

{
| ln(|x+|)|, | ln(|x−|)|

}]−1

. (10.48)

A motivation of Eqs. (10.44) and (10.45) is given in App. A.12. Note how the “perfect” topological
parameter configuration with ∆0 = t 6= 0 and µ = 0 yields decay parameters x± = 0, so that ` = 0

and, accordingly, K = 0. In fact, we also get ΓA = ΓB = 0, which accounts for the fact that the
boundary MZMs at ∆0 = t 6= 0 and µ = 0 are perfectly localised on the boundary sites, rather than
“only” exponentially, so that Eq. (10.44) does not apply. Conversely, the “perfect” trivial parameter
configuration with ∆0 = t = 0 and µ 6= 0 leaves the decay parameters ill-defined instead.

In order to gain an understanding of the (presumed) boundary MZMs across the extended topologically
trivial and non-trivial phases, we compare the expressions in Eqs. (10.44) and (10.45) for more general
parameter sets from the trivial (|µ| > 2|t|) and non-trivial (|µ| < 2|t|) parameter regimes, respectively.
We find:

(A) For 2|t| < |µ|, we either get

|x−| < 1 < |x+| or |x+| < 1 < |x−| . (10.49)

Since Eq. (10.44) must remain normalisable in the macroscopic limit L → ∞, this implies that
only one pair of coefficients, (α−, β+) or (α+, β−), can be non-zero. Consequently, the boundary
conditions (for details see App. A.12)

α+x
0
+ + α−x

0
− = 0 and β+x

0
+ + β−x

0
− = 0 , (10.50)

which guarantee that boundary modes cannot leave the system, reduce to

α−x
0
− = 0 and β+x

0
+ = 0 or α+x

0
+ = 0 and β−x

0
− = 0 . (10.51)

The fact that these can only be satisfied by trivial coefficients, tells us that the supposed boundary
zero modes cannot exist in the extended topologivally trivial phase.

(B) For 2|t| > |µ|, on the other hand, we get

|x−|, |x+| < 1 , (10.52)

which does allow for non-trivial boundary conditions, Eqs. (10.50), of the coefficients (α+, α−) and
(β+, β−). This means that the boundary zero modes can, and generally will, exist in the extended
topologically non-trivial phase. In particular, ΓA is localised near site j = 1, while ΓB is localised
near site L.

192



10.2 Computational Methodology

The Kitaev chain Hamiltonian in Eq. (10.1) can be understood as a continuous family HKit(φ) of
Hamiltonians parameterised by the phase φ ∈ S1

φ of the superconducting gap parameter ∆ = ∆0e
iφ.

From HKit(φ) |n(φ)〉 = En(φ) |n(φ)〉 we also obtain a continuous family of instantaneous many-body
energy eigenstates |n(φ)〉, which form a vector bundle over the parameter manifold S1

φ. In the topologically
non-trivial phase, the Kitaev chain features boundary MZMs that obey (projective) non-Abelian Ising
anyon statistics, cf. Sec. 6.3.2. As described in Sec. 6.4, the presence of these boundary MZMs results
in a twofold degeneracy of the many-body ground state energy. Naturally, this ground-state degeneracy
will be higher when networks of more than one Kitaev chain are considered. Note that we will continue
to refer to the low-energy Majorana modes as MZMs even if they acquire a finite energy splitting due to
hybridisation in finite-length chains or weakly coupled chain segments.

Rather than adiabatically exchanging MZMs in real space [94,214–217,220–222] we consider exchange-
less braiding driven by continuous changes of the superconducting phase φ by integer multiples of 2π.
To demonstrate this, we consider the d0-dimensional subspace H0(φ) spanned by the instantaneous zero-
energy (low-energy) many-body states |n(φ)〉, which are constructed as BdG Fock states

|n(φ)〉 ≡
M−1∏
k=0

b†k(φ)
nk |0(φ)〉pb (10.53)

through Bogoliubov diagonalisation of HKit(φ), as outlined in Secs. 5 and 5.3. Here, the b†k(φ) are the
(φ-dependent) creation operators of the M complex zero-energy (low-energy) Bogoliubov quasiparticle
modes associated with the M pairs of MZMs in the system, |0(φ)〉pb denotes the product form of the
(φ-dependent) Bogoliubov vacuum discussed in Sec. 5.3, and nk is the occupation numbers of the k-th
zero-energy (low-energy) Bogoliubov mode in |n(φ)〉. In the following we will use a binary notation

n =

M−1∑
k=0

nk 2k (10.54)

to enumerate our zero-energy (low-energy) states, i.e. |0(φ)〉 = |0, . . . , 0〉, |1(φ)〉 = |1, 0, . . . , 0〉 and so
on. The non-Abelian statistics of the boundary MZMs is encoded in the non-Abelian Wilczek–Zee (WZ)
phase matrix [197,254]

UWZ(C) = P exp

[
−
∮
C

Ad0(φ)

]
, (10.55)

described in Sec. 4.3. Here, the non-Abelian Berry connection A(φ) has elements

Ad0,mn(φ) = 〈m(φ)|∂φ|n(φ)〉 dφ , (10.56)

and the closed paths are continuous maps

C : [0, 1]→ S1
φ , t 7→ φ = C(t) (10.57)

satisfying C(0) = C(1). Numerically, we determine the WZ phase using the discretised version

UWZ(C) ≈
I−1∏
j=0

ad0(φI−j) (10.58)

of Eq. (10.55) that was introduced in Sec. 4.6. Here, the φj are taken from a discretised version

CI = {φ0, φ1, . . . , φI−1, φI = φ0} (10.59)

of the original continuous loop C, and the elements of the of the d0×d0 matrices ad0
(φj) are BdG overlaps

ad0,mn(φj) = 〈m(φj)|n(φj−1)〉 , (10.60)

which we compute by means of the Bertsch–Robledo formula Eq. (5.217) in Sec. 5.4. The parameter I
controls the resolution of the discretised approximation.
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Recall from Sec. 4.3 that the WZ phase matrix is generally gauge covariant, i.e. it transforms as

UWZ(C) 7→ U†(C)UWZ(C)U(C) (10.61)

under U(C) ∈ U(d0) gauge transformations

|n(φ)〉 7→
∑
m

|m(φ)〉Umn(φ) (10.62)

of the basis states |n(φ)〉 of H0(φ). It is therefore important to address the “spectral structure” of the
subspace H0(φ). Generally, two cases can be distinguished. In case (i) the energies of the eigenstates
|n(φ)〉 spanning H0(φ) are degenerate for all parameters φ ∈ S1

φ. Accordingly, H0 has the full U(d0)

gauge symmetry and the only gauge-invariant observables are related quantities like the Wilson loop
tr(UWZ(C)) or the determinant det(UWZ(C)). In what follows, we are concerned with case (ii), where the
energies of the eigenstates |n(φ)〉 spanning H0(φ) are non-degenerate almost everywhere along S1

φ with
potential degeneracies occurring only at isolated points. Hence, the physical gauge-freedom of H0(φ) is
greatly reduced: the eigenstates are only fixed up to individual U(1) phase factors, and the gauge group
reduces to the maximal torus subgroup

T = U(1)× · · · ×U(1) < U(d0) . (10.63)

In the minimal example with d0 = 2, an element T (C) ∈ T takes the form

T (C) =

(
eiα(C) 0

0 eiβ(C)

)
, (10.64)

and we obtain the transformation

T †(C)UWZ(C)T (C) =

(
U11(C) U12(C)e−iγ(C)

U21(C)eiγ(C) U22(C)

)
, (10.65)

where γ(C) = α(C) − β(C). The reduced gauge-freedom means that more properties of the WZ phase
matrix can be physically distinguished. For instance, Eq. (10.65) shows that UWZ(C) ' 12, UWZ(C) ' σz
and UWZ(C) ' σx are not gauge-equivalent. At the same time, UWZ(C) ' σx is related to UWZ(C) ' σy
by a torus gauge-transformation.

Finally, note that the numerical implementation adopts a random gauge, so that all numerically
obtained WZ phase matrices come out in a random gauge as well. For clarity, we clean up the numerical
results and present gauge-fixed representatives in the following. Most notably, we are going to subsume
all WZ matrices U with |U11| = |U22| = 0 and |U12| = |U21| = 1 under U ≡ σx, since all (unitary)
superpositions of σx and σy are gauge-equivalent under torus gauge-transformations of the form given in
Eq. (10.65).

10.3 Exchangeless Braiding in One Kitaev Chain

In the next sections we apply the comprehensive many-body framework outlined in Sec. 10.2 to
demonstrate non-Abelian exchangeless braiding in networks of finite-size Kitaev chains. Specifically, we
aim to showcase the persistence of simple topological quantum gates in scenarios where finite interactions
between boundary MZMs – arising from short chain lengths or significant inter-subchain couplings – lift
the degeneracy of the many-body ground states.

As a starting point, we consider the Kitaev model on a finite chain of length L as described by HKit

from Eq. (10.1). In the topologically non-trivial phase, the system hosts a pair of MZMs, ΓA and ΓB ,
localised at the left and right ends of the chain, respectively. As detailed in Sec. 6.4, the two MZM
operators can be combined into a single complex zero-energy Bogoliubov operator

b0 =
1

2

(
ΓA + iΓB

)
, (10.66)
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which allows us to construct two orthogonal many-body ground states

|0〉b and |1〉b = b†0 |0〉b , (10.67)

where |0〉b ≡ |0̄〉
p
b denotes the truncated product form of the quasiparticle vacuum defined in Eq. (5.183).

Both |0〉b and |1〉b are eigenstates of the Bogoliubov quasiparticle number operator

Nb =
∑
m

b†mbm , (10.68)

satisfying

Nb |0〉b = 0 and Nb |1〉b = |1〉b , (10.69)

respectively. By extension, they are also eigenstates of the Bogoliubov quasiparticle parity operator

Pb = (−1)Nb , (10.70)

with which

Pb |0〉b = (−1)0 |0〉b = + |0〉b and Pb |1〉b = (−1)1 |1〉b = − |1〉b , (10.71)

showing that |0〉b and |1〉b have opposite Bogoliubov quasi-fermion parities.4 The span

H0 = span
{
|0〉b , |1〉b

}
(10.72)

of |0〉b and |1〉b defines the (almost) degenerate d0 = 2 dimensional zero-energy (low-energy) subspace H0

that we are interested in going forward.
If the interaction Eq. (10.47) between the boundary MZMs ΓA and ΓB is sufficiently weak, they are

projectively equivalent to Ising anyons [110, 111]. As a result, an adiabatic exchange of MZMs in real
space induces a unitary transformation UAB on the subspace H0 of degenerate many-body ground states
that matches the Ising anyon braiding matrix [255]

RIsing = e−iπ/8
(

1 0

0 eiπ/2

)
, (10.73)

up to a global phase factor, i.e.

UAB = eiαRIsing . (10.74)

This was reviewed in Sec. 6.4. Here, we consider exchangeless braiding [206, 256]. With a complex
superconducting (SC) gap parameter ∆ = ∆0e

iφ, the Kitaev-chain Hamiltonian in Eq. (10.1) defines a
continuous family of Hamiltonians HKit(φ) parameterised by the phase φ ∈ S1

φ of ∆. For given φ, the
instantaneous many-body ground states |0(φ)〉b and |1(φ)〉b span the φ-dependent subspace H0(φ) from
Eq. (10.72). The geometric evolution of H0(φ) along closed curves C ⊂ S1

φ is described by the WZ phase
matrix UWZ(C), see Eq. (10.55) and Sec. 4.3 for details. Below, we explicitly determine UWZ(CN ) for
closed curves

CN : [0, 1]→ S1
φ , t 7→ 2πNt , (10.75)

that cover the S1
φ parameter manifold an integer number of N times. As explained in Sec. 10.2, we use

a discretisation of UWZ(CN ) to calculate it numerically. Concretely, we choose a resolution I � 1 and
discretise CN as

CNI =
{
CN0 , C

N
1 , . . . , C

N
I−1, C

N
I

}
=
{

0, 2πN/I, . . . , 2πN(I − 1)/I, 2πN
}
. (10.76)

4Note that |0〉b and |1〉b are both eigenstates of the Bogoliubov b-fermion parity operator Pb = (−1)Nb and the elementary
c-fermion parity operator Pc = (−1)Nc . In either case, |0〉b and |1〉b have opposite fermion parities. However, while |0〉b and
|1〉b are eigenstates of the Bogoliubov quasi-fermion number operator Nb , cf. Eq. (10.69), they fail to be eigenstates of the
elementary c-fermion number operator Nc, as discussed in Sec. 5.3 and, for instance, evident from Eqs. (5.183) and (9.39).
Concretely, the Bogoliubov vacuum is a superposition of all (accessible) states of either even or odd c-parity – depending
on whether or not there exist filled single-particle states in the Bloch–Messiah decomposition Eq. (5.182). While it is clear
that |0〉b (|1〉b) has even (odd) b-parity, it is therefore not per se evident whether |0〉b and |1〉b have even or odd c-parity.
The only thing that is guaranteed is that they have opposite c-parities.

195



Figure 10.1: Difference ∆θ between the phases acquired by |0〉b and |1〉b during a 2π rotation of the
superconducting phase φ as a function of the chemical potential µ for different system sizes L. Chemical
potential strengths of µ < 2 (µ > 2) correspond to the topologically non-trivial (trivial) phase. Parameters
are t = ∆0 = 1. Adapted with minor modifications from Ref. [RQ3].

Based on this, we compute the 2× 2 overlap matrices

a2(φj) =

(
〈0(φj)|0(φj−1)〉b b 〈0(φj)|1(φj−1)〉b b

〈1(φj)|0(φj−1)〉b b 〈1(φj)|1(φj−1)〉b b

)
(10.77)

between “adjacent” states |n(φj)〉b and |m(φj−1)〉b along C
N
I using the Bertsch–Robledo formula given in

Eq. (5.217). The path-ordered product Eq. (10.58) of matrices Eq. (10.77) then gives an approximation
of UWZ(CN ) the accuracy of which can be controlled using the resolution parameter I.

Let us first consider a Kitaev model with a “perfect” topological parameter configuration,

t = ∆0 = 1 and µ = 0 , (10.78)

on a finite chain with L = 20 sites. As discussed towards the end of Sec. 10.1.1, the boundary MZMs
of a perfect topological Kitaev chain are perfectly localised on the boundary sites and do not interact,
regardless of the system size. Consequently, the energies of the two states |0〉b and |1〉b are exactly degen-
erate and the MZMs should exhibit flawless Ising anyon behaviour even for small chain lengths L. This
makes “perfect” parameter configurations such as Eq. (10.78) particularly well-suited for benchmarking
the numerical implementation. As a first test, we choose the simplest possible closed curve C1 with
winding number N = 1, and a resolution of I = 103. The latter is sufficient to reduce the element-wise
numerical error of the WZ phase matrix to less than 1%. For the Kitaev chain defined by the param-
eter configuration in Eq. (10.78), the WZ phase matrix computed over the single-winding loop C1 with
resolution I = 103 is given by

UWZ
(
C1
)
≈ eiα

(
1 0

0 −1

)
=

(
eiθ0 0

0 eiθ1

)
. (10.79)

Up to a global parameter-dependent phase factor, this corresponds precisely to the square of the Ising
anyon braiding matrix from Eq. (10.73). Consequently, a 2π rotation of the superconducting phase in
a topological Kitaev chain with anyonic boundary MZMs can be identified with a double exchange of
these anyons in real space, realising a braiding process without physical exchange.5 This is what we call
exchangeless braiding.

In the following, we will demonstrate that the form of UWZ
(
C1
)
in Eq. (10.79) is quite generic and

robust against perturbations lifting the ground-state degeneracy. To this end, we first observe that the
Ising anyon statistics of the MZMs is encoded in the difference

∆θ
(
UWZ(C1)

)
= (θ0 − θ1)mod 2π = π (10.80)

5Accordingly, a closed path CN , as given in Eq. (10.75), that implements N full rotations of the SC phase, generates a
unitary evolution on the subspace H0 that can be understood as a 2N -fold exchangeless braiding process between ΓA and
ΓB , if the system is in the topologically non-trivial phase and sufficiently large (depending on the model parameters t,∆0

and µ).
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Figure 10.2: Logarithmic deviation of the phase difference ∆θ from π, see Eq. (10.80), as a function of
L for a single Kitaev chain. Parameters are t = ∆0 = µ = 1. Adapted with minor modifications from
Ref. [RQ3].

between the phases θ0 and θ1 acquired by the states |0〉b and |1〉b during the exchangeless braiding in
Eq. (10.79).6 Thus, we may discard the physically insignificant global phase factor eiα in Eq. (10.79) and
focus our analysis on ∆θ

(
UWZ(C1)

)
for now.

We expect exchangeless braiding, as expressed by Eq. (10.80), to persist as long as the model supports
topological Majorana boundary modes of sufficiently low energy. This requires that the Kitaev chain (i)
remains in the non-trivial topological phase, and (ii) is long enough to suppress the interaction between
the boundary MZMs.

To demonstrate (i), we fix the chain length L and vary the chemical potential µ. Since the nearest-
neighbour hopping amplitude is set to t = 1, the topological class of the model is completely determined
by the local potential µ: For |µ| < 2 the system is topologically trivial; for |µ| > 2 it is non-trivial.
Accordingly, exchangeless braiding should be stable for any

−2 < µ < 2 . (10.81)

Figure 10.1 shows the phase difference ∆θ as function of the chemical potential µ for different values of
L at t = ∆0 = 1. We find that ∆θ gradually changes from ∆θ = π to ∆θ = 0 as µ increases and passes
the topological phase boundary at µc = 2. The formation of a gradual transition regime is plausible since
increasing µ simultaneously increases the MZM interaction strength K of the two-mode model Eq. (10.46)
for any finite chain length L. This is corroborated by the observation that the width of the transition
region decreases with increasing L, approaching a discontinuous step at µc = 2 as L → ∞. Notably,
Fig. 10.1 also shows that even a relatively small system of L = 30 sites supports a substantial region in
which ∆θ = π is stable.

In order to address point (ii), we consider an “imperfect” topological parameter configuration

t = ∆0 = µ = 1 , (10.82)

for which the decay parameters x± from Eq. (10.45), and hence the interaction length ` from Eq. (10.48)
and the two-mode interaction strength K from Eq. (10.47), become non-trivial, so that the boundary
MZMs experience a finite L-dependent interaction. In this setup, we proceed to vary the chain length L
and track the deviation of ∆θ from ∆θ = π. The result is shown Fig. 10.2. It suggests that ∆θ−π can be
made arbitrarily small by increasing L. In particular, even a chain of moderate length L ≈ 13 is sufficient
to get |∆θ−π| < 10−2 for the parameter configuration in Eq. (10.82). As L→∞, the deviation |∆θ−π|
vanishes exponentially. This is consistent with the exponentially decreasing energy splitting between the
states |0〉b and |1〉b.

6It is worth mentioning that the opposite parities of |0〉b and |1〉b impose a superselection rule, so that 〈0|A|1〉b b = 0

for all physical observables A. This superselection rule forbids coherent superpositions between |0〉b and |1〉b and makes
it possible to understand the phases θ0 and θ1 from Eq. (10.79) as individual Berry phases even though the degenerate
energies of |0〉b and |1〉b would generally require an analysis in terms of the U(2) WZ phase.
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Figure 10.3: Individual geometric phases θ0 (solid circles) and θ1 (crosses) of ground state pairs |0〉b and
|1〉b for different chemical potential strengths µ as indicated in the figure. Parameters are t = ∆0 = 1

and L = 30. Adapted with minor modifications from Ref. [RQ3].

It is worth mentioning that variations of L and µ within the stable region of Fig. 10.1 only affect
the global phase α of UWZ in Eq. (10.79), while preserving the anyonic phase difference of ∆θ = π. In
particular, α scales linearly with L and, for large L, approaches the Sombrero Berry phase

α ≈ Lπ

2
, (10.83)

that we determined for the Kitaev vacuum in Eq. (9.42) of Sec. 9.3. The µ-dependence of α close to
µ = 1 is shown in Fig. 10.3 for a Kitaev chain with ∆0 = t = 1 and L = 30. Again, the global phase α is
very sensitive to small changes of µ and increases linearly with increasing µ.

The above considerations show that a single, spatially fixed Kitaev chain is enough to observe non-
Abelian anyon physics. Despite this, it cannot be used directly for topological quantum computing
(TQC). The reason for this is that qubits can only be realised in coherent two-dimensional Hilbert
spaces, and the opposite fermion parities of the states |0〉b and |1〉b impose a superselection rule which
precludes coherent superposition between them [102, 113]. As described in Sec. 6.3.2, the minimal setup
for TQC with Ising anyons instead requires four anyonic MZMs. These give rise to a four-dimensional
zero-energy (low-energy) space H0, whose two-dimensional even and odd parity sectors are then capable
of accommodating a topological qubit.

10.4 Exchangeless Braiding in Two Kitaev Chains

One possibility to realise a minimal setup for TQC using Kitaev chains is to consider two separate
chains that are weakly coupled at one boundary site. This is illustrated in Fig. 10.4 and captured by the
Hamiltonian

H = H1 +H2 +HW , (10.84)

where H1 and H2 describe two Kitaev (sub-)chains of lengths L1 and L2, see Eq. (10.1), and

HW = −W
(
c†L1

cL1+1 + c†L1+1cL1

)
(10.85)

implements a coupling of strength W between the last site j = L1 of the first subchain and the first site
j = L1 + 1 of the second subchain. To aid the discussion, we define the total length L = L1 + L2 of the
combined system and introduce an index j = 1, . . . , L covering the sites of both subchains. Throughout
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Figure 10.4: Sketch of two coupled Kitaev chains. Adapted with minor modifications from Ref. [RQ3].

this section, we use the same model parameters

t ≡ t1 = t2 = 1 , ∆0 ≡ ∆0,1 = ∆0,2 , µ ≡ µ1 = µ2 (10.86)

for H1 and H2, but allow different superconducting phases φ1 and φ2. For configurations of the model
parameters t,∆0 and µ that place H1 and H2 in the topologically non-trivial phase, the system features
a total of four MZMs {

ΓA1 ,Γ
B
1 ,Γ

A
2 ,Γ

B
2

}
, (10.87)

located on the four boundary sites {
1, L1, L1 + 1, L

}
(10.88)

of the two subchains, as illustrated in Fig. 10.4. To ensure that these MZMs are well-defined, L1 and L2

must be large enough to suppress the interaction of MZMs within the subchains, and W must be weak
enough to suppress the interaction of MZMs between them.

Analogous to the single Kitaev chain, Eq. (10.84) defines a continuous family of HamiltoniansH(φ1, φ2)

parameterised by the two independent SC phases (φ1, φ2) ∈ S1
φ1
×S1

φ2
' T 2

φ1,φ2
of ∆1 and ∆2. According

to the scheme presented in Sec. 10.3, an exchangeless double braiding of the MZMs ΓA1 and ΓB1 of H1 or
ΓA2 and ΓB2 of H2 can be induced by rotating the corresponding SC phase φ1 or φ2 by 2π. In preparation
for a WZ-phase based analysis of such exchangeless braiding transformations, we extend the notion of
the closed curves in S1

φ introduced in Eq. (10.75) to closed curves

CN1,N2 : [0, 1]× [0, 1]→ S1
φ1
× S1

φ2
, (t1, t2) 7→ (2πN1t1, 2πN2t2) (10.89)

in the parameter manifold T 2
φ1,φ2

= S1
φ1
× S1

φ2
of the two-chain system. The integers N1 and N2 indicate

how often CN1,N2 winds around S1
φ1
⊂ T 2

φ1,φ2
and S1

φ2
⊂ T 2

φ1,φ2
, respectively. In this notation, the WZ

phase along the closed curve C1,0 describes the exchangeless double braiding of the MZMs ΓA1 and ΓB1 of
the first subchain, whereas the WZ phase along the closed curve C0,1 captures the exchangeless double
braiding of the MZMs ΓA2 and ΓB2 of the second subchain. As before, the numerical computation of the
WZ phase is based on a resolution-I discretisation CN1,N2

I of CN1,N2 , which in this case is defined as the
component-wise pairing (or zipping)

CN1N2

I ≡ CN1

I × C
N2

I :=
{

(CN1
0 , CN2

0 ), (CN1
1 , CN2

1 ), . . . , (CN1

I−1, C
N2

I−1), (CN1

I , CN2

I )
}
, (10.90)

where CN1

I and CN2

I take the form defined in Eq. (10.76). Importantly, the presence of four MZMs makes
the effect of an exchangeless braiding process on H0 more nuanced. This can be understood as follows.
While a system with precisely two MZMs ΓA and ΓB admits a single unique7 complex fermionic zero
mode b0 = 1

2 (ΓA + iΓB), there is an ambiguity in the definition of the two complex fermionic zero modes
b0,1 and b0,2 supported by a system with four MZMs ΓA,ΓB ,ΓC ,ΓD, cf. Sec. 5.5. For instance, both

b0,1 =
1

2
(ΓA + iΓB) , b0,2 =

1

2
(ΓC + iΓD) (10.91)

and

b′0,1 =
1

2
(ΓA + iΓD) , b′0,2 =

1

2
(ΓC + iΓB) (10.92)

7Up to a complex phase factor, see Sec. 5.5.
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represent valid choices. Either pair of complex fermion modes spans the same zero-energy (low-energy)
subspace

H0 = span
{
|0, 0〉b , |1, 0〉b , |0, 1〉b , |1, 1〉b

}
= span

{
|0, 0〉′b , |1, 0〉

′
b , |0, 1〉

′
b , |1, 1〉

′
b

}
, (10.93)

where {
|0, 0〉b , |1, 0〉b , |0, 1〉b , |1, 1〉b

}
≡
{
|0〉b , b

†
0,1 |0〉b , b

†
0,2 |0〉b , b

†
0,1b
†
0,2 |0〉b

}
(10.94)

and {
|0, 0〉′b , |1, 0〉

′
b , |0, 1〉

′
b , |1, 1〉

′
b

}
≡
{
|0〉b , b

′ †
0,1 |0〉b , b

′ †
0,2 |0〉b , b

′ †
0,1b
′ †
0,2 |0〉b

}
, (10.95)

respectively. Accordingly, Eqs. (10.91) and (10.92) correspond to different basis choices of H0. This is
important because the unitary transformation UXY on H0 that is induced by exchanging any two

ΓX 6= ΓY ∈
{

ΓA,ΓB ,ΓC ,ΓD
}

(10.96)

depends strongly on the way in which the four topological MZM operators ΓA, ΓB , ΓC , ΓD combine into
the two complex fermionic zero-mode operators b0,1 and b0,2 used in the construction of H0. In particular,
the formal exchange of MZMs ΓX and ΓY results in a qualitatively different unitary transformation
depending on whether ΓX and ΓY belong to the same complex fermion mode or not.

To illustrate this, consider a system with four MZMs ΓA, ΓB , ΓC , ΓD, which are paired into two
complex fermionic zero-energy modes b0,1 and b0,2 as in Eq. (10.91). Following Eqs. (6.79) and (6.80) of
Sec. 6.4, the unitary operator UAB that exchanges ΓA and ΓB reads

UAB = eπΓAΓB/4 = eiπ/4e−iπn0,1/2 , (10.97)

where n0,1 = b†0,1b0,1 is the quasiparticle number operator associated to b0,1. We showed in Eqs. (6.75)
and (6.76) of Sec. 6.4 that UAB exchanges ΓA and ΓB like Ising anyons,

UABΓAU†AB = −ΓB and UABΓBU†AB = ΓA , (10.98)

while transforming ΓC and ΓD trivially,

UABΓCU
†
AB = ΓC and UABΓDU

†
AB = ΓD . (10.99)

Thus, the matrix representation UAB of Eq. (10.97) with respect to the basis Eq. (10.94) is given by

UAB =


eiπ/4 0 0 0

0 e−iπ/4 0 0

0 0 eiπ/4 0

0 0 0 e−iπ/4

 , (10.100)

cf. Eq. (6.94) of Sec. 6.4. Consequently, a double exchange of ΓA and ΓB is described by the diagonal
U(4) matrix

U2
AB = eiπ/2


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 . (10.101)

If instead the four MZMs ΓA, ΓB , ΓC , ΓD are paired into two complex fermionic zero-energy modes b′0,1
and b′0,2 as in Eq. (10.92), the unitary operator UAB exchanging ΓA and ΓB becomes

UAB = eπΓAΓB/4 =
1√
2

(
1 + i(b′ †0,1 + b′0,1)(b′ †0,2 − b

′
0,2)
)
, (10.102)
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see Eq. (6.100) of Sec. 6.4. The matrix representation U ′AB of Eq. (10.102) with respect to the basis
Eq. (10.95) then reads

U ′AB =
1√
2


1 i 0 0

i 1 0 0

0 0 1 −i
0 0 −i 1

 . (10.103)

A double exchange of ΓA and ΓB in the alternative basis of H0 therefore results in the non-diagonal U(4)
matrix

U ′ 2AB =


0 i 0 0

i 0 0 0

0 0 0 −i
0 0 −i 0

 , (10.104)

cf. Eqs. (6.101) and (6.103) of Sec. 6.4. In a system with perfectly degenerate MZMs, this basis de-
pendence of the braiding outcome UXY is compensated for by the covariance of UXY under U(4) basis
(gauge) transformations within H0: the braiding matrices of different basis choices transform into one
another under the respective basis transformation. As was pointed out earlier, this changes when the
degeneracy of the MZMs, and hence that of H0 as a whole, is lifted.

For a chain of fixed length L <∞ and fixed ∆0 = t = 1, the ratio between the weak-link strength W
and the local potential µ controls the relative strength of inter- and intra-subchain interactions between
the MZMs. In the following, we show that this relative strength in turn determines how the MZMs
combine into the complex fermionic low-energy modes. Specifically, dominant intra-subchain interaction
leads to pairings

b0,1 =
1

2
(ΓA1 + iΓB1 ) , b0,2 =

1

2
(ΓA2 + iΓB2 ) , (10.105)

while dominant inter-subchain interaction instead produces

b′0,1 =
1

2
(ΓA1 + iΓB2 ) , b′0,2 =

1

2
(ΓB1 + iΓA2 ) . (10.106)

Varying the ratio between W and µ therefore allows us to tune between Eqs. (10.105) and (10.106), so
that we can control whether the exchangeless braiding between ΓAs and ΓBs induced by a 2π rotation of
the SC phase in the s-th subchain (s = 1, 2) results in a braiding transformation of Z-type, Eq. (10.101),
or a braiding transformation of X-type, Eq. (10.104).

We first discuss the trivial case of two disconnected chains described by W = 0. Here, the MZMs of
either subchain can only combine into a complex fermion mode locally, yielding complex fermionic zero
modes of the form Eq. (10.105). A 2π phase rotation in either subchain induces an exchangeless braiding
between MZMs from the same complex fermion, giving a U(4) WZ phase matrix of the form Eq. (10.101)
resembling a Z-gate on either fixed-parity subspace, cf. Eqs. (6.97) and (6.98) of Sec. 6.4.

For a finite but sufficiently weak linkW > 0 between the two subchains, we expect essentially the same
result. In a generic system with subchains of different lengths, L1 6= L2, there are two interaction strengths
K1 and K2 associated with the intra-subchain interactions between the MZMs of either subchain, see
Eqs. (10.45) – (10.48). It appears reasonable to expect that Z-type braiding persists with increasing
W , provided the stronger of the two intra-subchain couplings K1 and K2 remains greater than W .
Accordingly, a deviation from Z-type braiding is expected to occur roughly when

W ' Kmax ≡ max{K1,K2} , (10.107)

where K1 and K2 are defined as in Eq. (10.47). Only once W exceeds the dominant intra-subchain
coupling, i.e. when W > Kmax, does the inter-subchain pairing from Eq. (10.106) become energetically
favourable over the intra-subchain pairing of Eq. (10.105), and the expected braiding type changes from
Z to X.
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To test this numerically, we consider systems with fixed model parameters

t = ∆0 = 1 , µ = 0.8 , (10.108)

but varying system sizes L and weak-link strengths W . Specifically, we choose to work with even system
sizes L and minimally asymmetric subchain lengths

L1 = L/2− 1 , L2 = L/2 + 1 . (10.109)

The latter ensures that L1 and L2 have the same parity8 and helps to avoid unwanted degeneracies.
The chemical potential strength of µ = 0.8 is chosen to remain clearly separated from both the perfect
topological parameter configuration (µ = 0) and the topological phase boundary (µ = 2).9 With this,
we select the closed curve C0,1 as defined in Eq. (10.89) and compute the associated WZ phase matrices
UWZ(C0,1) for a range of values

10 ≤ L ≤ 30 , 10−5 ≤W ≤ 10−1 . (10.110)

A comparison between the resulting WZ phase matrices and the Z- and X-type braiding matrices from
Eqs. (10.101) and (10.104) then allows for a detailed analysis of the expected transition between Z- and
X-type quantum gates.

Analogous to the numerical treatment of the single Kitaev chain, the individual WZ phase matrices
are obtained via the path-ordered product Eq. (10.58) of the 4× 4 overlap matrices

a4(φj) =


〈0(φj)|0(φj−1)〉b b 〈0(φj)|1(φj−1)〉b b 〈0(φj)|2(φj−1)〉b b 〈0(φj)|3(φj−1)〉b b

〈1(φj)|0(φj−1)〉b b 〈1(φj)|1(φj−1)〉b b 〈1(φj)|2(φj−1)〉b b 〈1(φj)|3(φj−1)〉b b

〈2(φj)|0(φj−1)〉b b 〈2(φj)|1(φj−1)〉b b 〈2(φj)|2(φj−1)〉b b 〈2(φj)|3(φj−1)〉b b

〈3(φj)|0(φj−1)〉b b 〈3(φj)|1(φj−1)〉b b 〈3(φj)|2(φj−1)〉b b 〈3(φj)|3(φj−1)〉b b

 , (10.111)

between “adjacent” BdG Fock states |n(φj)〉b and |m(φj−1)〉b along a fine (I � 1) discretisation

C0,1
I =

{
(0, 0), (0, 2π/I), . . . (0, 2π(I − 1)/I), (0, 2π)

}
, (10.112)

of C0,1 as defined in Eq. (10.90). Note that we have used the shorthand notation φj ≡ (φ1
j , φ

2
j ) ∈ C

0,1
I

and adopted the binary naming convention{
|0〉b , |1〉b , |2〉b , |3〉b

}
≡
{
|0, 0〉b , |1, 0〉b , |0, 1〉b , |1, 1〉b

}
(10.113)

from Eq. (10.54) to improve readability in Eq. (10.111). The individual overlaps between BdG Fock
states in Eq. (10.111) are again computed using the Bertsch–Robledo formula given in Eq. (5.217).

The comparison between the WZ phase matrices U ≡ UWZ(C0,1) and the Z- and X-type quantum
gates from Eqs. (10.101) and (10.104) is based on the Frobenius norm ‖A‖ =

√
tr(A†A) of a matrix A,

which we use to define the distance

dZ(U) =
∥∥|U| − |Z|∥∥ (10.114)

of U from Z, see Eq. (10.101), and the distance

dX(U) =
∥∥|U| − |X|∥∥ (10.115)

of U from X, see Eq. (10.104). Here, |A| is the matrix with elements |Aij |. With this, the transition
between the Z- and the X-gate regimes can be quantified by the interpolation parameter

d(U) =
dZ(U)√

d2
X(U) + d2

Z(U)
, (10.116)

which yields d(U) = 0 if dZ(U) = 0, i.e. U ' Z, and d(U) = 1 if dX(U) = 0, i.e. U ' X. Additionally, we
have to verify that in the deep Z- and X-gate phases, the WZ phase matrix, including the phase factors
of the matrix elements, approaches the form given in Eqs. (10.101) and (10.104), respectively.

8In this case, parity refers to the number parity of an integer, i.e. to its property of being even or odd.
9The analysis was repeated for various values of 0 < µ < 1, yielding the same qualitative results.
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Figure 10.5: Phase diagram showing the braiding type of the WZ phase matrix as a function of the
weak-link strength W and the total system size L for ∆0 = t = 1 and µ = 0.8. The resolution I of
the discretisation is set to I = 1000, which has proven sufficient to obtain converged results. The colour
code shows d = d(UWZ(C0,1)), see Eqs. (10.114) – (10.116) and surrounding discussion. In particular, we
have d = 0 (purple) for a Z-type WZ phase, Eq. (10.120), and d = 1 (yellow) for an X-type WZ phase,
Eq. (10.126). The cyan line corresponds to W = Kmax = 0.4L/2−1, cf. Eq. (10.119). Adapted with minor
modifications from Ref. [RQ3].

Figure 10.5 shows the interpolation parameter d = d(UWZ(C0,1)) from Eq. (10.116) evaluated for WZ
phase matrices UWZ(C0,1) of various two-Kitaev-chain systems with parameters as given in Eq. (10.108)
and different combinations of weak link strengths W and system sizes L taken from the ranges specified
in Eq. (10.110). The values of d = d(UWZ(C0,1)) are represented as a colour gradient, ranging from
purple (d = 0 and U ' Z) to yellow (d = 1 and U ' X). The “critical” weak link strength W = Kmax,
as obtained from Eqs. (10.107) and (10.47), is shown as a cyan line. By definition, W = Kmax decreases
exponentially with increasing L. Specifically, the decay parameters x± from Eq. (10.45) evaluate to

x±(1, µ, 1) =
−µ± µ

4
=⇒ x+ = 0 and x− = −µ

2
(10.117)

for topological parameter choices with t = ∆0 = 1 and 0 < µ < 2, such as Eq. (10.108). The corresponding
characteristic length from Eq. (10.48) then becomes

`(1, µ, 1) =
∣∣∣ln(µ

2

)∣∣∣−1

, (10.118)

giving the interaction strength

Kmax(1, µ, 1) ∝ exp
[
− L1

∣∣∣ln(µ
2

)∣∣∣ ] =
(µ

2

)L1

, (10.119)

where we plugged in |ln(µ/2)| = − ln(µ/2) using 0 < µ/2 < 1, and where L1 = L/2 − 1 is the shorter
of the two subchain lengths. The latter appears as a result of the maximum in Eq. (10.107). Notably,
W = Kmax also marks the approximate location of the transition between Z-type and X-type braiding,
which is in line with the argument presented around Eq. (10.107). However, instead of a sharp transition
between the Z- and X-gate phases at W = Kmax, we observe a smooth crossover in its vicinity. In order
to verify that the d ' 0 and d ' 1 regions in Fig. 10.5 actually correspond to Z- and X-type gates, we
analyse the deep Z- and X-phases in greater detail.

We begin with the deep Z-gate phase for small L and weak W , see Fig. 10.5. There, we find WZ
phase matrices of the form

UWZ(C0,1) ≈ eiθ


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 ≡ Z , (10.120)
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given in the basis {|0, 0〉b , |1, 1〉b , |0, 1〉b , |1, 0〉b}. Up to an irrelevant global parameter-dependent phase
factor eiθ, this matches the expected result Eq. (10.101) for a system of disconnected subchains. Following
Sec. 6.4, a restriction of the WZ phase matrix Eq. (10.120) to the even and odd parity sectors H0|P0 and
H0|P1

of the (almost) degenerate subspace H0 yields

UWZ(C0,1)|P0 = UWZ(C0,1)|P1 ≈ eiθ
(

1 0

0 −1

)
, (10.121)

where UWZ(C0,1)|P0
and UWZ(C0,1)|P1

are given in the bases {|0, 0〉b , |1, 1〉b} and {|0, 1〉b , |1, 0〉b}, respec-
tively. As for W = 0, see Eq. (10.80), we find

∆θ
(
UWZ(C0,1)|P0

)
= ∆θ

(
UWZ(C0,1)|P0

)
≈ π . (10.122)

for the phase differences of UWZ(C0,1)|P0 and UWZ(C0,1)|P1 .
In the deep X-gate phase, i.e. for large L and strong W in Fig. 10.5, the numerical calculations yield

WZ-phase matrices of the form

UWZ(C0,1) ≈ eiθ


0 e−iα 0 0

eiα 0 0 0

0 0 0 e−iβ

0 0 eiβ 0

 , (10.123)

which is again given in the basis {|0, 0〉b , |1, 1〉b , |0, 1〉b , |1, 0〉b}. Up to a global parameter-dependent
phase factor eiδ and a suitable gauge-transformation

UWZ(C0,1) 7→ U UWZ(C0,1)U† , (10.124)

with a unitary matrix U ∈ T < U(4) of the form

U = diag(eiγ1 , eiγ2 , eiγ3 , eiγ4) , (10.125)

the WZ phase matrix UWZ(C0,1) in Eq. (10.123) is equivalent to the expected result from Eq. (10.104).
This can, for example, be seen using the global phase δ = π/2 − θ and a gauge transformation U

characterised by ϕ1 = −ϕ2 = α/2 and ϕ3 = −ϕ4 = (β − π)/2, see App. A.12 for details. A similar
calculation (for instance δ = −θ combined with ϕ1 = −ϕ2 = α/2 and ϕ3 = −ϕ4 = β/2) shows that
Eq. (10.123) is also gauge-equivalent to the braiding transformation

UWZ(C0,1) ≈ eiθ


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ≡ X . (10.126)

Thus, the restrictions of the WZ phase matrix in Eq. (10.123) to the even and odd parity sectors H0|P0

and H0|P1 of H0 are both equivalent to

UWZ(C0,1)|P0
= UWZ(C0,1)|P1

' eiθ
(

0 1

1 0

)
, (10.127)

where UWZ(C0,1)|P0
and UWZ(C0,1)|P1

are given in the bases {|0, 0〉b , |1, 1〉b} and {|0, 1〉b , |1, 0〉b}, respec-
tively. For strong W and large L, the unitary transformation induced by exchangeless double braiding
between the MZMs of either subchain can therefore be understood as an X-gate on the fixed-parity
sectors of H0.

The above computation scheme enables an analysis of the transition between Z- and X-type WZ
phase matrices as a function of the weak link strength W and the total system size L. Here, the total
system size L effectively controls the intra-subchain interaction strengths K1 and K2. Unsurprisingly,
longer chains reduce intra-subchain interactions, favouring inter-subchain pairing and X-type braiding,
while shorter chains enhance intra-subchain interactions, promoting intra-subchain pairing and Z-type
braiding instead.
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Figure 10.6: Phase diagram showing the braiding type of the WZ phase matrix as a function of the
weak-link strength W and the chemical potential µ for ∆0 = t = 1 and L = 10. The resolution I of the
discretisation is set to I = 1000, which has proven sufficient to obtain converged results. The colour code
shows d = d(UWZ(C0,1)) with d = 0 (purple) for a Z-type WZ phase, Eq. (10.120), and d = 1 (yellow) for
an X-type WZ phase, Eq. (10.126). The cyan line corresponds to W = Kmax = (µ/2)4, cf. Eq. (10.119)
with L1 = 10/2− 1 = 4. Adapted with minor modifications from Ref. [RQ3].

However, Eqs. (10.45) – (10.48) show that the intra-subchain interaction strengths are not solely
determined by the total system size L: variations of the other model parameters t, µ, and ∆0 are expected
to have a similar influence. In fact, the critical weak link strength W = Kmax = Kmax(t, µ,∆0;L) defines
a holonomic constraint on the parameter space spanned by (t, µ,∆0, L), which gives rise to a critical
hypersurface of codimension one. This is in line with Fig. 10.5, where we regard Kmax as a function
Kmax = Kmax(W ;L) of only two parameters W and L, giving the one-dimensional hypersurfaces shown
as the cyan line. It seems natural to explore the impact of the other model parameters on the Z- to
X-type braiding transition. Here, we focus on variations of the chemical potential strength µ. To this
end, we repeat the previous analysis for fixed parameters

t = ∆0 = 1 , L = 10 , (10.128)

and a range of values

10−4 ≤ µ ≤ 1 , 10−8 ≤W ≤ 10−2 . (10.129)

The resulting phase diagram is shown in Fig. 10.6. As expected from Eq. (10.119), weaker chemical
potentials reduce intra-subchain interactions, facilitating inter-subchain pairing and X-type braiding,
while stronger chemical potentials enhance intra-subchain interactions, favouring intra-subchain pairing
and Z-type braiding. Although it is difficult to recognise in Fig. 10.6, the “critical” weak link strength
W = Kmax varies as a power law ( 2

µ )−L1 with exponent L1 = L/2− 1, cf. Eq. (10.119).
Both, Figs. 10.5 and 10.6 show that the transition between the Z- and X-type braiding WZ phase

matrices involves a crossover region, in which the braiding type of the WZ phase matrix is not defined.
In either case, this region is quite accurately centered around the transition line W = Kmax (cyan lines)
of the four-mode model discussed around Eq. (10.107). Moving away from the W = Kmax line – either
towards weak W , small L, large µ, or towards strong W , large L, small µ – the system exits the finite
crossover regime, and the WZ phase matrix rapidly approaches the Z- or X-type, respectively.

Importantly, Figs. 10.5 and 10.6 indicate that small systems of about L = O(101) sites are sufficient
to realise Z or X quantum gates through exchangeless braiding. For instance, with L = 12 and µ = 0.8,
one can switch between Z and X by switching the weak-link strength between W < 10−3 and W > 10−1,
see Fig. 10.5. For L = 10 and µ = 0.2, a tiny change from W ∼ 10−6 to W ∼ 10−2 induces a transition
from Z to X gates, see Fig. 10.6. We note that the location of the crossover parameter regime itself
is reliably described by the four-mode model Eq. (10.107), whereas the width of the crossover is only
captured by the WZ phase matrix of the full many-body theory.
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11 – Conclusion and Outlook

This thesis aimed to advance our understanding of how geometric and topological properties inform
the behaviour of quantum and quantum-classical systems. Through a sequence of case studies, we arrived
at three key insights: (i) Coexisting topological structures can offer an explanation for the existence and
form of spectral responses that quantum systems have to local impurities, (ii) helical boundary modes can
reliably be harnessed to control the time-dependent state of magnetic impurities across mesoscopic length
scales, and (iii) topological Majorana zero modes (MZMs) can be braided without physical exchange and
retain most of their anyonic characteristics despite significant degeneracy-lifting perturbations.

Mathematical and Theoretical Preliminaries. To facilitate the overall discussion, the early
chapters give a thorough review of the relevant concepts from mathematics and theoretical physics.
With the goal of assembling a largely self-contained and physicist-friendly introduction to a technically
demanding field, the mathematical part is reviewed from the ground up, while the physical material
concentrates on specialised topics and methods. Notably, an overlap formula for Bogoliubov–de Gennes
(BdG) vacua, originally proposed by Robledo in Ref. [92] and independently rediscovered during this
work, is presented as part of this foundational segment in Sec. 5.4.

Spectral Impurity Responses in Systems with Coexisting Topological Structures. The
first study [RQ1] explored how topological properties affect the spectral response of the spinful Haldane
model to a small number of R magnetic impurities. By treating the magnetic impurities as classical
spins of fixed lengths, their configuration space SR is reduced to a 2R-dimensional parameter manifold
SR = S2

0 × · · · × S2
R−1, enabling a topological classification in terms of the R-th spin-Chern number

Ch
(S)
R ∈ Z. This spin-topological classification complements the conventional k-space topology of the

Haldane model, which is classified by the first k-Chern number C(k)
1 ∈ Z, characterising the bulk Bloch

states over the two-dimensional Brillouin torus T 2
k . The coexistence of the intrinsic k-space topology

and the extrinsic SR-space topology opens up novel perspectives and facilitates insights that are not
readily attainable through either structure alone. Here, we use it to explain a robust spectral flow of
single-particle energies that emerges when the exchange coupling J between the magnetic impurities and
the Haldane host is varied from zero to infinity. This flow bridges the insulating gap of the Haldane
host in the sense that for every chemical potential µ within the gap, there exists an exchange-coupling
Jcrit(µ) and a single-particle energy εn(J) such that a single particle energy at this coupling is equal to
the chemical potential, i.e. εn(Jcrit(µ)) = µ. Importantly, the phenomenon occurs independently of the
k-topological phase of the Haldane model. Its existence can, however, be linked to the SR-topology of
the hybrid model: at zero exchange-coupling strength the spin-Chern number vanishes trivially, giving
Ch

(S)
R = 0, while for infinitiely strong coupling strength the system resembles a generalised magnetic

monopole with spin-Chern number Ch(S)
R = 1.

For a single magnetic impurity, this spin-topological phase transition implies the existence of some
intermediate exchange-coupling strength 0 < Jcrit <∞, at which the energy gap between the many-body
ground state and a state with one more or less electron must close. This gap closure in turn requires a
single-particle state |εn(J)〉 with εn(Jcrit) = µ. Since the same reasoning applies to every value of the
chemical potential, the spin-topological phase transition provides a natural explanation for the observed
spectral flow of single-particle energies bridging the gap. The spin-topology also gives a conceptual
meaning to the critical exchange-interaction strength. Namely, it sets the radius of the magnetically
charged two-sphere, which serves as the generalised (two-dimensional) magnetic monopole in the infinite
coupling-strength limit. Since the total Hamiltonian is invariant under simultaneous SO(3) rotations of
the classical impurity spin and the quantum spin-degrees of freedom, the magnetic charge is distributed
uniformly over the magnetic monopole sphere.

Our topological analysis of the spectral flow corroborates essential conclusions of earlier studies on
spinless models with a single impurity [126, 131, 132, 135]. In particular, Slager et al. [131] highlight
a diagnostic capacity of impurity-induced spectral responses in the context of local signatures of bulk
topological order. Similar to their results [131] for a potential impurity in the k-topologically non-
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trivial phase of the Bernevig–Hughes–Zhang (BHZ) model, we find that a magnetic impurity in the k-
topologically non-trivial phase of the spinful Haldane model consistently induces a Zeeman pair of in-gap
states whenever the exchange-coupling strength exceeds a finite threshold value Jmin. The energy splitting
of the in-gap Zeeman pair decreases for increasing coupling strength and vanishes in the infinite coupling-
strength limit, leaving two in-gap states with degenerate energies. In contrast, the k-topologically trivial
phases of both the BHZ [131] and spinful Haldane models only support in-gap states within finite ranges
of impurity strengths. Although the k-topology of the host systems does not affect the existence of the
spectral flow, this difference shows that it still has a significant influence on its qualitative structure. In
the trivial phase, the in-gap states quickly traverse the gap and vanish for J →∞, while in the non-trivial
phase they enter the gap at Jmin and remain inside the gap for J →∞. Consequently, the spectral flow
for a k-topologically non-trivial host system only bridges the gap fully in the limit of J → ∞. In this,
our results for a magnetic impurity coupling to a single orbital in the unit cell of a spinful Haldane model
are also in line with those obtained for a spinless impurity coupling to both orbitals in the unit cell of
the spinless Haldane model [135]. In order to exploit this qualitative difference between topological and
trivial spectral flows in practice, experimental methods are required to vary the potential strength. In
Ref. [131], it was proposed that the impurity potential may be controlled experimentally by applying a
tunable local gate voltage so that the presence or absence of in-gap states, and thereby the bulk topology,
could be probed via scanning tunnelling spectroscopy. This applies to spin-resolved scanning tunneling
microscope techniques as well [176]. Other experimental ways to realise and to control local impurities
are discussed in Ref. [135].

The qualitative difference between the spectral flows of host systems with trivial and non-trivial k-
space topology suggests an explanation rooted in bulk-boundary correspondence. Indeed, we were able
to numerically verify an insightful argument for this. Based on the observation that for an infinitely
strong coupling strength the impurity site is effectively removed from the host system, we interpret the
J → ∞ in-gap state as a super-discretised chiral edge mode living on the rudimentary boundary of the
one-site impurity hole. This interpretation is supported by first considering a macroscopic hole, whose
one-dimensional edge carries a genuine chiral boundary mode, and then gradually shrinking it to a single
site. The resulting limiting process successively thins the edge-mode spectrum and links the dispersive
chiral mode of the macroscopic hole to the super-discretised mode around the one-site impurity hole. In
fact, even this super-discretised J → ∞ in-gap impurity mode can be shown to carry a chiral current
flowing around the impurity site. This analysis does not apply to the k-topologically trivial phase of the
Haldane host system, explaining why the J →∞ in-gap modes persist only in the non-trivial phase.

The results for a spinful Haldane model with R = 2 impurity spins are similar to those obtained with
R = 1 impurity spin. If the Haldane model is in the k-space topologically non-trivial phase, we observe
at least one Zeeman pair of in-gap states, whose energies start out spin-split and become degenerate
in the limit of infinite exchange coupling. For J → ∞, these in-gap states can again be understood as
super-discretised chiral edge modes. The occasional deviation from the naive expectation of four in-gap
states for two holes can be explained geometrically: when the two impurity spins couple to nearby sites,
the system may effectively form either one two-site hole (yielding two states), two one-site holes (yielding
four states), or something in between, causing the number of pairs to vary with details of the electronic
structure; at larger separations, the impurities behave as two distinct one-site holes, resulting in exactly
two pairs. If the Haldane model is in the k-space topologically trivial phase, we find two in-gap modes fully
bridging the bulk band gap within an intermediate range of coupling strengths. Again, this is explained
by a spin-topological phase transition between Ch(S)

2 = 0 at J = 0, where the spin-configuration manifold
S2 is decoupled from the electronic system, and Ch

(S)
2 = 1 for J → ∞, where there are two magnetic

monopoles with Ch(S)
1 = 1 each.

An important difference between the models with one and two impurity spins becomes apparent
when the spin-topological transition is studied near the critical coupling strength Jcrit. This results from
an extensive numerical analysis of the critical exchange-coupling strengths in systems with a chemical
potential in the middle of the bulk band gap. In the k-space topologically trivial case, we find that the
transition takes place at a critical coupling of the order of the band width. In the non-trivial case, the
critical coupling strength is typically larger because the in-gap modes correspond to super-discretised
chiral impurity-boundary modes that converge to an energy within the band gap and therefore usually
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only pass the mid-gap chemical potential at stronger couplings. In the exceptional case when the energies
of the in-gap states converge exactly to µ for J →∞, there is no transition at all and we have Jcrit =∞.
However, this scenario requires fine-tuning of the model parameters. Notably, the dependence of the
typical magnitude of Jcrit on the topological phase of the host system establishes a surprising correlation
between the SR-space and k-space topological phases. With two impurity spins, the spin-topological
phase transition generally takes place in a finite range Jcrit,1 < J < Jcrit,2 of coupling strengths. In
this range the system is gapless on some subset of the spin configuration space S2 that depends on the
coupling strength. Accordingly, the spin-topologically non-trivial phase is found for J > Jcrit,2, while the
trivial phase is realised for J < Jcrit,1. In the transition range, the second spin-Chern number remains
undefined. We also note that the gap closures at Jcrit,1 and Jcrit,2 take place for highly symmetric
ferro/antiferromagnetic spin configurations.

Our findings point to a range of open problems and directions for future studies. The observed
correlation between the k-space and SR-space topological phases suggests that a similar connection
might exist in other systems with non-trivial bulk topology, such as Chern insulators with k-Chern
numbers greater than one, topological Z2 insulators, or topological superconductors. Moreover, it would
be interesting to consider systems with a large number ofR� 1 classical impurity spins and finally Kondo-
lattice-type systems with R ∼ L as well. These also raise the question of how to compute high-order spin-
Chern numbers Ch(S)

R with R � 1 in practice. Yet, even for small numbers of classical-spin impurities,
there are interesting variations of our setup that are worth studying. This includes impurities with spin-
anisotropic coupling, which reduces the symmetry of the gap-closure subset of the spin-configuration
space. It might also be possible to realise and investigate larger spin-Chern numbers using impurity spins
with short-range but non-local exchange couplings. Finally, methodological developments are needed to
study bound states induced by quantum-spin impurities or impurities in correlated systems, including
interacting topological insulators [257,258].

Long-Range Helical Spin Control. While the first study [RQ1] concerned the static spectral
response of a time-reversal symmetry (TRS) breaking Haldane model to magnetic impurities in the bulk,
the second study [RQ2] addressed the dynamics of a magnetic impurity coupled to the helical boundary
modes of a TRS invariant Kane–Mele model. The core motivation for this is simple: the protected edge
modes of many topological quantum materials exhibit exotic and often desirable properties. While these
properties have been studied extensively, their full potential for practical applications – especially at the
microscopic level – continues to require detailed investigation.

Here, we have performed a comprehensive numerical analysis to demonstrate that the time-dependent
state of a magnetic impurity can be controlled to a large extent by exploiting the helical character of the
topological Kane–Mele edge modes. To this end, we have used a simple model consisting of a classical
spin coupled to the zigzag edge of a Kane–Mele ribbon segment and studied various control protocols
in detail. The key technical ingredient for the numerical treatment are dissipative Lindblad boundary
conditions, which were set up to suppress reflections on all but the physically relevant edge of the ribbon
segment. This allowed us to study the coupled microscopic real-time dynamics of the classical spin and
the electronic system up to time scales of thousands of inverse hoppings without disturbing interference
with reflected wave packets. In order to design a spin-switching protocol, we chained together several
so-called basic injection-pump (BIP) processes. These consist of a dynamic spin injection at an injection
site I of the physical zigzag edge and a subsequent pump phase during which the dynamics of the read-out
spin at a site R of the physical zigzag edge is driven by the injected spin density. This process consists
of four stages (A) – (D), all of which were designed to exploit the topological properties of the system:

(A) Local spin-up or spin-down excitations at an injection site I will induce a spin-polarised excitation
that is predominantly carried by the edge states. The presence and helical character of these edge states
is ensured by the bulk-boundary correspondence of the Kane–Mele model. Although the local magnetic
field used to implement the injection also couples to the bulk states, the resulting bulk-state supported
part of the injected spin-polarisation cloud is negligible and quickly dissipated into the bulk of the system.
The remaining part of the spin-polarisation cloud is fully carried by the helical edge states and does not
dissipate into the bulk. Importantly, we found that this edge-state supported spin-polarisation cloud
saturates within a femtosecond time scale of a little more than 50 inverse hoppings. This makes the
dynamic spin injection procedure a reproducible preparation step.
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(B) By switching off the injection field, the spin excitation is released to propagate along the edge.
Due to the helical nature and topological protection of the edge modes, this propagation is unidirectional
and largely lossless. The group velocity of the propagating spin-polarisation cloud is naturally given
by the Fermi velocity of the respective edge state. The fact that the edge-state propagation is mostly
lossless ensures that the spin-polarisation cloud broadens, but does not lose volume. Consequently, the
full volume of the injected spin-density cloud is available to drive the read-out spin dynamics even if the
latter is located a mesoscopic distance away form the injection site.

(C) While TRS is intact in the pristine Kane–Mele ribbon segment, the classical spin at the read-out
site R explicitly breaks TRS locally. This is important, because it facilitates a non-trivial interaction
between the read-out spin and the propagating spin-polarisation cloud. Since TRS is largely restored away
from the read-out site, the scattered spin-polarisation cloud is bound to split into two parts, namely one
onwards-propagating part with the initial spin-polarisation, and one backwards-propagating part with
the opposite spin polarisation. This means that the read-out spin exerts a finite spin torque on the
polarisation cloud. The counter-torque, in turn, deflects the read-out spin towards the ±z-direction. The
extent of this deflection depends on the initial alignment of the read-out spin. If the pump phase of the
BIP process is sufficiently long, the process is reversible, and one may return to the initial spin state via
the opposite spin-injection. We found that about 150 inverse hoppings, i.e. a few hundred femtoseconds,
are needed to reach the fully relaxed, reversible final state.

(D) BIP processes can be concatenated to create a dynamical protocol. We have demonstrated that
such a protocol can achieve a complete switching of the read-out spin orientation between the north
and south poles within arbitrarily strict tolerances. Specifically, five to ten BIP processes are sufficient
to switch a read-out spin within a tolerance of 1%. The full switching process can be inverted by
reversing the polarisation of the spin in the dynamic injection part (A) of the BIP processes. Assuming a
nearest-neighbor hopping energy of about 100 meV, the full switching process takes roughly a picosecond.
However, this should be regarded as a lower limit. Since the system approaches a fully relaxed state
after each BIP process, subsequent injection processes can be delayed. This implies that, in principle,
the intermediate relaxed states during the switching process can be experimentally controlled even by
techniques lacking pico- or sub-picosecond time resolution.

It is understood that our study describes an idealised model. A meaningful extension to real topological
Z2 insulators must account for additional effects, including the impact of realistic multi-band electronic
structures or electron-electron correlations. Another very interesting question is to which extent the
conclusions remain valid for time-reversal-symmetric Kondo-type magnetic impurities, which can be
modelled, for instance, by quantum spins [259, 260]. Systems featuring TRS-invariant Kondo impurities
pose a challenging correlation problem, requiring treatment in the non-equilibrium regime and at long
timescales. Even though the non-trivial topology is expected to largely protect the qualitative physics,
it will also be interesting to examine the effects of surface imperfections and the specific placement and
coupling-type of the magnetic impurities. More realistic descriptions of materials should also account for
magnetic anisotropies, such as Dzyaloshinskii-Moriya interactions and Rashba spin-orbit coupling.

Exchangeless Braiding with Non-Degenerate Anyons. The third study [RQ3] presents a many-
body analysis of exchangeless braiding that focusses on braiding-robustness against degeneracy-lifting
hybridisations between anyons. In doing so, two major challenges in practical topological quantum com-
putation (TQC) were addressed simultaneously. The first is the need for high-precision experimental
control over physical anyon exchanges, which complicates exchange-based TQC schemes and is avoided
here by adopting an exchangeless braiding protocol. The second concerns proximity-induced hybridis-
ations between anyons. These inevitably arise in real-world experiments and are explicitly taken into
account here by considering small systems featuring significant degeneracy-lifting hybridisations. Finally,
the many-body treatment ensures that bulk contributions to the ground state are fully incorporated.

In order to explore hybridisation-impaired exchangeless braiding in a concrete and controllable envi-
ronment, we considered a paradigmatic model system of weakly linked topological Kitaev chains. Specif-
ically, we examined a single isolated Kitaev chain and a minimal network of two weakly-linked Kitaev
chains. Since TQC with MZMs requires systems with at least four MZMs [101], we used the single-Kitaev-
chain model (two MZMs) mainly as a proof of principle and regarded the two-Kitaev-chain network (four
MZMs) as a minimal setup for TQC.
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We started with the simple case of a single Kitaev chain of finite length. In the topological phase, the
model features two boundary MZMs, which combine into a single complex Bogoliubov quasiparticle mode
of (nearly) zero energy. This low-energy Bogoliubov quasiparticle mode gives rise to a two-dimensional
subspace H0 of nearly degenerate many-body ground states. The MZMs of the topological Kitaev chain
are known to be projectively equivalent to Ising anyons, and they are predicted to undergo an effective
double exchange when the superconducting phase φ is advanced by 2π [14, 206]. Using the full many-
body framework, we numerically confirmed this prediction by demonstrating that the U(2) Wilczek–Zee
(WZ) phase UWZ[0 → 2π], which describes the geometric evolution of the two-dimensional low-energy
many-body subspace H0(φ) throughout a full rotation of the superconducting phase φ, is projectively
equivalent to the square of the Ising anyon exchange matrix. The main technical component for the
numerical evaluation of the WZ phase is the Bertsch–Robledo formula [92], which enables an efficient
computation of overlaps between BdG Fock states. Since the WZ phase can be reliably evaluated in
networks of small chains with significant inter-chain coupling, we were able to confirm that the MZMs
largely retain their anyonic properties despite the degeneracy-lifting hybridisations that occur under such
conditions. Specifically, it is found that even short chains of about 30 sites support anyon physics across
most of the topological phase. Surprisingly, it is precisely this deviation from the hybridisation-free ideal
system that opens up access to a parameter regime with tunable braiding outcomes in the two-Kitaev
chain network.

This hybridisation-supported regime emerges naturally upon extending the single-Kitaev-chain anal-
ysis to the minimal network of two weakly coupled Kitaev chains of finite length. The introduction of
a second Kitaev chain has several immediate consequences. First, it doubles the number of MZMs, and
with it the dimension of the low-energy subspace, from two to four. Additionally, it introduces two in-
dependent superconducting phases φ1 and φ2, and three independent interaction strengths, namely the
strength W of the weak link between the subchains and the two intra-subchain hybridisation strengths
K1 and K2 that result from the finite lengths of the individual subchains. Upon studying the unitary
WZ phase UWZ[0→ 2π] describing the geometric evolution of the low-energy subspace H0(φ1, φ2) under
a full rotation of either superconducting phase φj , we find that the competition between W , K1, and K2

controls a transition between two distinct parameter regimes: one in which UWZ[0 → 2π] resembles a
projective X gate, and one in which it resembles a projective Z gate. Specifically, we find a projective
X gate when the weak-link strength dominates over the intra-subchain hybridisation strengths, and a
projective Z gate when the intra-subchain hybridisation strengths dominate over the weak link.

Our study invites further exploration and development. We focussed on the non-Abelian WZ phase de-
scribing the geometry of the instantaneous low-energy many-body eigenstates. Although this is expected
to constitute a tenable approximation in situations where the anyon braiding happens on timescales
that are slow (adiabatic) compared to the superconducting gap, but fast (diabatic) compared to the
hybridisation-induced energy-splitting between the low-energy many-body eigenstates, it will be interest-
ing to repeat the many-body implementation of exchangeless braiding in networks of Kitaev chains using
a time-dependent approach like the time-dependent BdG formalism [211]. Another very interesting possi-
bility is to address the full quantum-classical real-time dynamics [172,261] of more realistic hybrid systems.
A particularly promising line of research concerns systems in which arrays of magnetic moments, modelled
as classical spins, are locally exchange-coupled to a conventional s-wave superconductor to form so-called
Yu-Shiba-Rusinov (YSR) chains. These YSR chains give rise to effectively one-dimensional dispersive
YSR bands, which reside within the s-wave gap of the host system and may inherit a proximity-induced
unconventional p-wave superconducting order. The spin-polarised p-wave superconducting YSR bands
are then predicted to resemble Kitaev-chain physics. One expects that global rotations of the classical-
spin chain configuration are equivalent to global rotations of the phase of the p-wave superconducting
gap of the YSR bands [213]. In such quantum-classical models, the classical degrees of freedom used to
control the exchangeless braiding process are themselves promoted to dynamic variables similar to those
considered in [RQ2]. Moreover, the configuration space of these dynamic variables also provides a param-
eter manifold that enables an analysis of coexistent topological structures in the sense of [RQ1]. These
setups therefore open up new fascinating problems at the interface between quantum-classical real-time
dynamics, coexisting topological structures, and TQC with Ising MZMs.
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A – Appendix

A.1 The Tenfold Way and Real Division Algebras

We are closely following [262] and materials [263]. Consider a Hilbert space H. A normalised quantum
state with representative |ψ〉 ∈ H is an equivalence class

[ψ] =
{
eiφ |ψ〉 , φ ∈ R

}
(A.1)

of complex rays in H. The space of these equivalence classes is called the projective Hilbert space P(H).
In this framework, a symmetry transformation is an automorphism

S : P(H)→ P(H), [ψ] 7→ S[ψ] (A.2)

that preserves the ray product [φ] · [ψ] := |〈φ|ψ〉| as

[φ] · [ψ] = [Sψ] · [Sψ] (A.3)

between all states [φ], [ψ] ∈ P(H). Wigner’s theorem states that every symmetry transformation S :

P(H)→ P(H) comes either from a unitary operator US : H → H satisfying

〈USφ|USψ〉 = 〈φ|U†SUS |ψ〉 = 〈φ|ψ〉 (A.4)

or an antiunitary operator AS : H → H satisfying

〈ASφ|ASψ〉 = 〈φ|A†SAS |ψ〉
∗

= 〈φ|ψ〉∗ = 〈ψ|φ〉 . (A.5)

Suppose we have a symmetry transformation S : P(H) → P(H) that squares to the identity as S2 = 1.
Such a symmetry transformation is called involutive. By Wigner’s theorem, S comes either from a
unitary transformation US : H → H with U2

S = eiφ1 or an antiunitary transformation AS : H → H with
A2
S = eiφ1. In the unitary case, we may multiply US by a phase,

U ′S := e−iφ/2US , (A.6)

to obtain a unitary operator U ′S that satisfies

U ′ 2S := e−iφ/2USe
−iφ/2US = e−iφU2

S = e−iφeiφ1 = 1 (A.7)

and also corresponds to S. This is not possible in the antiunitary case, where

A′ 2S := e−iφ/2ASe
−iφ/2AS = e−iφ/2eiφ/2A2

S = eiφ1 (A.8)

because of the antilinearity ASc = c∗AS of AS . However, combining ASeiφ = e−iφAS with

ASe
iφ = ASA

2
S = A2

SAS = eiφAS (A.9)

yields the constraint

eiφ = e−iφ =⇒ eiφ = ±1. (A.10)

So if a symmetry S : P(H)→ P(H) with S2 = 1 is implemented by a unitary operator US we can always
choose US such that U2

S = 1, while an antiunitary implementation AS of S always fulfills either A2
S = +1

or A2
S = −1. Now, one can show that an antiunitary implementation AS with A2

S = 1 acts like a complex
conjugation operator. That is, one can define a real Hilbert subspace

HR := {|ψ〉 ∈ H |AS |ψ〉 = |ψ〉} ⊂ H (A.11)
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containing only those vectors that are invariant under AS . The original Hilbert space H is then simply
the complexification

H = C⊗R HR. (A.12)

Given an antiunitary implementation AS with A2
S = −1 we can instead identify operators

I = i , J = AS , K = IJ = iAS (A.13)

that obey the quaternion relations

I2 = J2 = K2 = IJK = −1. (A.14)

Any given state |ψ〉 ∈ H can therefore be multiplied by a quaternionic scalar q ∈ H as

q |ψ〉 = (a+ bI + cJ + dK) |ψ〉 (A.15)

where a, b, c, d ∈ R. Accordingly, we can understand H as a quaternionic Hilbert space HH, i.e. a Hilbert
space whose scalars come from the quaternions H instead of the complex numbers C. The original Hilbert
space H is then the underlying complex space

H = C⊗C HH. (A.16)

This demonstrates that quantum theory naturally accomodates instantiations of R, C and H in the
presence of involutive symmetry transformations. Mathematically, R, C and H are special because they
correspond to the only finite-dimensional associative division algebras over the real numbers (Frobenius
theorem). A finite-dimensional associative algebra over the real numbers is a finite-dimensional real
vector space V with an associative product · : V × V → V and a unit 1 ∈ V . Such an algebra is called
a division algebra if every non-zero element v ∈ V has a multiplicative inverse v−1 ∈ V with which
v−1 · v = v · v−1 = 1.
Now consider a group G of symmetry transformations and a Hilbert space H. A unitary representation
ρ of G on H consists of unitary operators ρ(g) : H → H that satisfy

ρ(gh) = ρ(g)ρ(h) and ρ(e) = 1. (A.17)

We call ρ irreducible if the only invariant subspaces, i.e. the only subspaces I ⊂ H for which ρ(g) : I → I

for all g ∈ G, are the trivial subspace I = {1} and the entire Hilbert space I = H. Schur’s lemma states
that the only unitary operators U : H → H that commute as

Uρ(g) = ρ(g)U (A.18)

with all ρ(g) are of the form

U = eiφ 1. (A.19)

Dyson showed that if ρ is an irreducible unitary representation of a symmetry group G on a Hilbert space
H, then precisely one of the following holds:

1. There exists an antiunitary operator A with A2 = −1 commuting with all ρ(g). This endows H
with a quaternionic structure and we call ρ a quaternionic representation.

2. There is no antiunitary operator A commuting with all ρ(g) and we call ρ a complex representaiton.
3. There exists an antiunitary operator A with A2 = +1 commuting with all ρ(g). This endows H

with a real structure and we call ρ a real representation.
This classification scheme is known as Dyson’s threefold way and it is clear from the previous con-
siderations that it corresponds to the threefold way of real division algebras. The threefold way has
profound implications for physics. For instance, consider the spin-n representations of SU(2) that we use
to describe the spin of (elementary) particles. These correspond to the (2n+ 1)-dimensional irreducible
complex representation of SU(2). For all spin-n representations of SU(2) there exists an antiunitary
involutive symmetry transformation A that commutes with all SU(2) transformations. Now, when n is
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T C S Super Division Algebra

0 0 0 Cl0(C) ' C

0 0 1 Cl1(C) ' C⊕ C

1 0 0 Cl0,0(R) ' R

1 -1 1 Cl0,1(R) ' C

0 -1 0 Cl0,2(R) ' H

-1 -1 1 Cl0,3(R) ' H⊕ H

-1 0 0 Cl0,4(R) 'M2(H)

-1 1 1 Cl3,0(R) 'M2(C)

0 1 0 Cl2,0(R) 'M2(R)

1 1 1 Cl1,0(R) ' R ⊕R

Table A.1: The symmetry classes of the tenfold way and the corresponding Morita equivalence classes of
super division algebras. The symbol ' means Morita equivalent.

an integer, A satisfies A2 = 1 and the spin-n representation on C2n+1 is the complexification of a real
representation on R2n+1. If n is a half-integer, A fulfils A2 = −1 and the spin-n representation on C2n+1

is the underlying complex representation of a quaternionic representation on H(2n+1)/2.
The tenfold way extends Dysons threefold way based on a construction that is known as super Hilbert
spaces. A super Hilbert space H is simply a Hilbert space can be written as a direct sum

H = H0 ⊕H1 (A.20)

of an “even” Hilbert spaceH0 and an “odd” Hilbert spaceH1. There are many ways in which super Hilbert
spaces may arise. For example, one can choose H0 to accomodate bosonic states and H1 to accomodate
fermionic states. In condensed matter theory, we can write the Fock space F as a super Hilbert space

F = F0 ⊕F1 (A.21)

consisting of the particle Hilbert space F0 and the hole Hilbert space F1. In this setting, we can have
antiunitary operators T : F → F that are even in the sense that they map

T : F0 → F0 and T : F1 → F1 (A.22)

and antiunitary operators C : F → F that are odd in the sense that they map

C : F0 → F1 and C : F1 → F0. (A.23)

For physical reasons we call T the time-reversal symmetry (TRS) operator and C the particle-hole symme-
try (PHS) operator. In a given condensed matter system we may then have T -symmetry with T 2 = ±1
or no T -symmetry. Independently, we may have C-symmetry with C2 = ±1 or no C-symmetry as well.
This gives rise to nine out of ten Altland-Zirnbauer symmetry classes [26]. The final class corresponds
to systems that are neither TRS nor PHS symmetric, but still symmetric under the combined unitary
transformation S = T · C called chirality.
Just like Dyson’s threefold way corresponds to the set of distinct associative real division algebras, the
tenfold way corresponds to the set of distinct associative real super division algebras, of which there are
precisely ten. Surprisingly, all of these are Morita1 equivalent to complex or real Clifford algebras. This
is rather exciting for a number of reasons. A physical one is that representations of real Clifford algebras
are used to describe the spinful elementary particle fields so they are ubiquitous in the standard model
and beyond. On the mathematical side, this allows for an intertwining of concepts: the Clifford algebras
give Lie groups and symmetric spaces, establishing connections to Riemannian geometry and classifying
spaces for vector bundles.

1Essentially, two superalgebras A and B are called Morita equivalent, A ' B, if they have equivalent representations on
super vector spaces.
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A.2 The Real Schur Decomposition Theorem

To prove the real Schur decomposition theorem we first prove a lemma identifying the eigenspace of a
pair of mutually conjugate complex eigenvalues of a real matrix as an invariant two-dimensional subspace.
A subspace V of Rn is said to be invariant with respect to a matrix A, and we write AV = V , if for any
x ∈ V we have that Ax ∈ V . Let A be a real n× n matrix with a complex eigenvalue λ1 = a+ ib (with
b 6= 0) and let z = x + iy be an eigenvector belonging to λ1. Then span(x,y) =: V fulfills dimR(V ) = 2

and AV = V , i.e. V is a two-dimensional subspace of Rn that is invariant under A. This can be seen as
follows. Since we assumed λ to be complex with non-zero imaginary part b the imaginary part y of its
associated eigenvector z has to be non-zero as well. The fact that A is a real matrix tells us that λ = a−ib
is also an eigenvalue of A and that z = x − iy is an eigenvector belonging to λ. Now we can use that
z and z are eigenvectors belonging to distinct eigenvalues λ and λ to show that there exists no complex
scalar c such that x = cy because if there was such a scalar c we could write z = (c+ i)y and z = (c− i)y
which would make z and z linearly dependent thus contradicting the guaranteed linear independence of
eigenvectors belonging to distinct eigenvalues. Therefore x and y are linearly independent and span a
two-dimensional subspace V = span(x,y) of Rn. In order to show that V is invariant under A we note
that Az = λz gives

Ax + iAy = (ax− by) + i(bx + ay) (A.24)

and hence

Ax = ax− by and Ay = bx + ay. (A.25)

If w = kx + ly is any vector in V , then

Aw = kAx + lAy = kax− kby + lbx + lay = (ka+ lb)x + (la− kb)y (A.26)

is clearly just another vector in V .
With this lemma at hand we can prove the real Schur decomposition as stated before by induction. Let
n = 2. If the eigenvalues of A are real we can take q1 to be a unit eigenvector of the first real eigenvalue
λ1 and then q2 to be any unit vector that is orthogonal to q1. Then the matrix Q = (q1,q2) is orthogonal
by construction and the matrix T := QᵀAQ is in upper triangular form with 1× 1 eigenvalue blocks on
its diagonal. This can be seen writing down the first column of T as

QᵀAq1 = λ1Q
ᵀq1 = λ1e1, (A.27)

which immediately yields the upper triangular form as well as the first 1 × 1 eigenvalue block on its
diagonal. The second diagonal entry of T necessarily has to be the second eigenvalue of A because we
can Laplace expand the determinant of the characteristical polynomial with respect to the first column
of T and get

0
!
= det (T − λ12)

= det

(
λ1 − λ T12

0 T22 − λ

)
= (λ1 − λ)(T22 − λ). (A.28)

Of course, Laplace expansion is rather overkill for n = 2 but we will use it as part of the induction so
bear with me. If the eigenvalues of A are complex we may set T = A and Q = 12 and be done. This last
bit may seem like a trivial statement, and it somewhat is, but it still is an important point to make. The
upper triangular block Schur form features 1× 1 blocks on its diagonal for its real eigenvalues and 2× 2

blocks for its pairs of mutually conjugate complex eigenvalues. In case of a 2 × 2 matrix A this means
that we only have to do stuff if the two eigenvalues of A are real because only then do we have to massage
A into the Schur form with 1 × 1 eigenvalue blocks on its diagonal and all that. If the eigenvalues of a
2× 2 matrix A are a pair of mutually conjugate complex numbers the Schur decomposition is not going
to do anything to A because A itself already is a 2 × 2 block on its diagonal, and therefore already has
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the Schur upper triangular block form. So in either case we end up with an upper tiangular block matrix
of the Schur type for our n = 2 induction initial case. Now let A be a real k × k matrix with k ≥ 3

and assume that every real m × m matrix with 2 ≤ m ≤ k has a Schur decomposition. Let λ1 be an
eigenvalue of A. If λ1 is real, let q1 be a uni eigenvector of λ1 and choose (k − 1) unit vectors q2, ...,qk
spanning the orthogonal complement of q1 in Rk then Q1 = (q1, ...,qk) is an orthogonal k × k matrix.
As in the initial case it follows that the first column of T1 = Qᵀ

1AQ1 is equal to λ1e1 giving

T1 =

(
λ1 X

0 A1

)
(A.29)

with a real (k − 1)× (k − 1) matrix A1 and some (k − 1) row vector X. By our induction hypothesis A1

has a Schur decoposition T2 := Oᵀ
2A1O2 with a (k − 1)× (k − 1) orthogonal matrix O2. We may define

the k × k orthogonal matrix

Q2 :=

(
1 0

0 O2

)
(A.30)

which together with Q1 transforms A as

T : = Qᵀ
2Q

ᵀ
1AQ1Q2

= Qᵀ
2T1Q2

=

(
1 0

0 Oᵀ
2

)(
λ1 X

0 A1

)(
1 0

0 O2

)
=

(
λ1 XO2

0 Oᵀ
2A1O2

)
=

(
λ1 XO2

0 T2

)
(A.31)

which has the desired upper triangular block form of the Schur decomposition. This proves that the
k × k orthogonal transformation Q := Q1Q2 brings A into Schur block form T , i.e. T := QᵀAQ. If
λ1 is complex, the argument proceeds analogously: we find an eigenvector z = x + iy and compute the
span V := span(x,y). In the preceeding lemma we convinced ourselves that V is a two-dimensional
subspace of Rk and that V is invariant under A. Next we choose any orthonormal basis {q1,q2} of
V along with (k − 2) unit vectors spanning the orthogonal complement of V in Rk. Then the matrix
Q1 = (q1,q2, ...,qk) is again an orthogonal matrix and the first two columns of T1 = Qᵀ

1AQ1 are

Qᵀ
1Aq1 = B11q1 +B21q2 and Qᵀ

1Aq2 = B12q1 +B22q2, (A.32)

due to the invariance AV = V of V under A. We therefore find

T1 =

(
B X

0 A1

)
where B =

(
B11 B12

B21 B22

)
(A.33)

is the coefficient matrix from Eq. (A.32) and A1 is now a (k − 2) × (k − 2) matrix.2 Now we can apply
our induction hypothesis on A1 and proceed in exactly the same way as before to show that A may be
Schur decomposed. This concludes the proof of the real Schur decomposition theorem.

2For the sake of completeness note that in this case 0 and X are, of course, no (k − 1) column and row vectors but
(k − 2)× 2 and 2× (k − 2) matrices instead.
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A.3 Validity of the Thouless Vacuum

To see that the Thouless state defines a Bogoliubov vacuum, we have to show that

bn |0〉Tb
!
= 0 (A.34)

for all Bogoliubov annihilation operators bn. As a preparation, we first write the Thouless state as

|0〉Tb = exp

[
1

2
Sijc

†
i c
†
j

]
|0〉 , (A.35)

using Einstein notation for better readability. With this, we note that exp
[

1
2Sijc

†
i c
†
j

]
fulfils

exp

[
1

2
Sijc

†
i c
†
j

]
exp

[
−1

2
Sijc

†
i c
†
j

]
= 1N , (A.36)

because even products of c† operators commute, so we can treat the operator exponentials like ordinary
number exponentials. Equation (A.36) allows us to rewrite Eq. (A.34) as

bn |0〉Tb = exp

[
1

2
Sijc

†
i c
†
j

]
exp

[
−1

2
Sijc

†
i c
†
j

]
bn exp

[
1

2
Sijc

†
i c
†
j

]
|0〉 !

= 0 . (A.37)

The interesting part of this expression is

exp

[
−1

2
Sijc

†
i c
†
j

]
bn exp

[
1

2
Sijc

†
i c
†
j

]
= exp

[
−1

2
Sijc

†
i c
†
j

]
(U∗knck + V ∗knc

†
k) exp

[
1

2
Sijc

†
i c
†
j

]
, (A.38)

where we plugged in the definition bn = (U∗knck + V ∗knc
†
k) from Eq. (5.135). Since the c†k commute with

the even products of c† operators, Eq. (A.38) reduces to

U∗kn exp

[
−1

2
Sijc

†
i c
†
j

]
ck exp

[
1

2
Sijc

†
i c
†
j

]
+ V ∗knc

†
k , (A.39)

where the non-trivial transformation of the ck can be computed as

exp

[
−1

2
Sijc

†
i c
†
j

]
ck exp

[
1

2
Sijc

†
i c
†
j

]
=

∞∑
n=0

1

n!

[(
−1

2
Sijc

†
i c
†
j

)
, ck

](n)

(A.40)

using the Hadamard lemma

eABe−A =
∑
n

1

n!
[A,B](n) (A.41)

from the Baker-Campbell-Hausdorff formula. Here, we use the notation

[A,B]
(n)

:= [A, [A, ...[A,︸ ︷︷ ︸
n times

B]...]] (A.42)

for the n-fold nested commutator between operators A and B. Explicit calculation shows that[(
−1

2
Sijc

†
i c
†
j

)
, ck

](1)

= −1

2
Sij

[
c†i c
†
j , ck

]
= −1

2
Sij

(
c†i c
†
jck − ckc

†
i c
†
j

)
= −1

2
Sij

(
c†i (δjk − ckc

†
j)− (δik − c†i ck)c†j

)
= −1

2
Sij

(
c†i δjk − δikc

†
j

)
= −1

2

(
Sikc

†
i − Skjc

†
j

)
(�)
= −1

2

(
Sikc

†
i + Sikc

†
i

)
= −Sikc†i (A.43)
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where we used the skew-symmtery Ski = −Sik and renamed summation indices in (�). With this, we
immediately find [(

−1

2
Sijc

†
i c
†
j

)
, ck

](2)

=
1

4
SijSmn

[
c†i c
†
j ,
[
c†mc

†
n, ck

]]
=

1

4
SijSmk

[
c†i c
†
j , c
†
m

]
= 0, (A.44)

such that

exp

[
−1

2
Sijc

†
i c
†
j

]
ck exp

[
1

2
Sijc

†
i c
†
j

]
= ck − Sikc†i . (A.45)

We can substitute this back into Eq. (A.39) and find

U∗kn

(
ck − Sikc†i

)
+ V ∗knc

†
k

(�)
= U∗knck − SikU∗knc

†
i + V ∗knc

†
k

= U∗knck − V ∗imU∗−1
mk U∗knc

†
i + V ∗knc

†
k

= U∗knck − V ∗imδmnc
†
i + V ∗knc

†
k

(?)
= U∗knck − V ∗knc

†
k + V ∗knc

†
k

= U∗knck , (A.46)

where we plugged in the matrix elements Sik = V ∗imU
∗−1
mk of the S matrix in (�) and renamed the

summation index i→ k in (?). Combined, we therefore have

exp

[
−1

2
Sijc

†
i c
†
j

]
bn exp

[
1

2
Sijc

†
i c
†
j

]
= U∗knck . (A.47)

If we plug this into Eq. (A.37) we finally get

bn |0〉Tb = exp

[
1

2
Sijc

†
i c
†
j

]
exp

[
−1

2
Sijc

†
i c
†
j

]
bn exp

[
1

2
Sijc

†
i c
†
j

]
|0〉

= exp

[
1

2
Sijc

†
i c
†
j

]
U∗knck |0〉

= 0 , (A.48)

identifying the Thouless state as a valid Bogoliubov vacuum state.
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A.4 Skew-Symmetry of the S-Matrix

The proof of the Robledo overlap formula in Eq. (5.202) and the construction of the Thouless state
itself – in particular, the calculation done in Eq. (A.43) – make heavy use of the skew-symmetry of S.
Here, we show that if S exists, it is always skew-symmetric. To do this, we take U†V ∗ + V †U∗ = 0 from
Eqs. (5.157) and multiply it by U†−1 from the left, which yields

U†−1U†V ∗ + U†−1V †U∗ = 0 =⇒ V ∗ = −U†−1V †U∗. (A.49)

Here, we made use of the assumption that S exists, in which case U−1 and hence U†−1 exist by definition
of S. With this we compute

Sᵀ
ij = Sji

= V ∗jαU
∗−1
αi

(�)
=
(
−U†−1

jβ V †βγU
∗
γα

)
U∗−1
αi

= −U†−1
jβ V †βγδγi

= −U†−1
jβ V †βi

(?)
= −V ∗iβU

−1 †
jβ

= −V ∗iβU−1 ∗
βj

(∗)
= −V ∗iβU∗−1

βj

= −Sij , (A.50)

where we plugged in Eq. (A.49) in (�) and used that taking the adjoint and complex conjugate of an
inveritible matrix M commute with taking its inverse, i.e. that M†−1 = M−1 † and M∗−1 = M−1 ∗ in
(?) and (∗). This shows that S is always skew-symmetric if it exists.
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A.5 The Bloch–Messiah Decomposition

The Bloch–Messiah decomposition (BMD) of an 2L× 2L Bogoliubov transformation matrix

B =

(
U V ∗

V U∗

)
(A.51)

is a factorisation

B =

(
U V ∗

V U∗

)
=

(
C 0

0 C∗

)(
U V

V U

)(
D† 0

0 Dᵀ

)
= CBD† (A.52)

of B into a product of block diagonal unitary matrices C and D†, which are defined in terms unitary L×L
matrices C and D, and a real block matrix B, the blocks of which are (block) diagonal real matrices of
the form

U =

0F ⊕
p∈P up12

1E

 and V =

1F ⊕
p∈P ivpσy

0E

 (A.53)

where u2
p + v2

p = 1 and up, vp ∈ R for all p ∈ P . Note that we have F + 2P + E = L by construction.3

Getting rid of the particle hole redundancy we may compactly rewrite Eq. (A.52) as

U = C U D†

V = C∗ V D†. (A.54)

This formulation of the BMD is frequently encountered in literature. Perhaps, its popularity stems
from the fact that in this form it is most natural to identify the BMD algorithm as a particle-hole
compatible simultaneous singular value decomposition (SVD) of U and V . For those familiar with SVD
and its applications in physics, this viewpoint immediately suggests that BMD may be a powerful tool for
analysing, partitioning and truncating B to speed up or even enable some kinds of computations involving
it.4 However, regardless of what SVD veterans may infer about the usefulness of BMD, the understanding
of BMD as simultaneous and particle-hole compatible SVDs of U and V provides a powerful construction
scheme for the explicit BMD matrices of a given Bogoliubov matrix B. We will now discuss this SVD
based construction scheme. As a starting point we have some Bogoliubov matrix B as in Eq. (A.51).
First, we use its unitarity

B†B =

(
U† V †

V ᵀ Uᵀ

)(
U V ∗

V U∗

)
=

(
1L 0

0 1L

)
=

(
U V ∗

V U∗

)(
U† V †

V ᵀ Uᵀ

)
= BB† (A.55)

to get the conditions

U†U + V †V = 1L = UU† + V ∗V ᵀ

U†V ∗ + V †U∗ = 0 = UV † + V ∗Uᵀ

V ᵀU + UᵀV = 0 = V U† + U∗V ᵀ

V ᵀV ∗ + UᵀU∗ = 1L = V V † + U∗Uᵀ . (A.56)

Next we construct the auxiliary matrices P = U†U and Q = V †V which are Hermitian and positive semi-
definite by construction. Using some of the identites (indicated by parenthesis placement) in Eq. (A.56)

3The exact labels E,P, F of the subscripts anticipate a result about the physical meaning of the corresponding blocks
that we will soon obtain.

4This is, in fact, why we care about BMD too: we need it to define the Bogoliubov ground state in a trouble-free manner!
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we can then show that P and Q commute:

P +Q = 1L

⇐⇒ PQ+QQ = Q

⇐⇒ U†UV †V + V †
(
V V †

)
V = V †V

⇐⇒ U†UV †V + V † (1L − U∗Uᵀ)V = V †V

⇐⇒ U†UV †V − V †U∗ (UᵀV ) = 0

⇐⇒ U†UV †V − V †U∗ (−V ᵀU) = 0

⇐⇒ U†UV †V + V †
(
−V U†

)
U = 0

⇐⇒ U†UV †V − V †V U†U = 0

⇐⇒ PQ−QP = 0. (A.57)

As a consequence, P and Q can be simultaneously diagonalised as

P = ADP A
† and Q = ADQA

† (A.58)

with a unitary transformation matrix A and diagonal matrices

DP = diag(p1, ..., pL) and DQ = diag(q1, ..., qL) (A.59)

where pi, qi ∈ R≥0 for all i = 1, ..., L. Note that the simultaneous diagonalisation of P and Q combined
with P +Q = 1L tells us that

DP +DQ = 1L. (A.60)

Next we briefly discuss a practical solution to the simultaneous diagonalisation problem.

Simultaneous Diagonalisation Scheme for Commuting Hermitian Matrices

In practice, the simultaneous diagonalisation matrix A can be obtained as follows. First one diagonalises
either P or Q. Say we choose to diagonalise P and find

P = BDP B
†. (A.61)

The next step is to compute

Q′ = B†QB. (A.62)

Due to the fact that P and Q are simultaneously diagonalisable, we know that Q′ is bound to be block
diagonal with blocks the size of eigenvalue degeneracies of P . This is because if v is an eigenvector of P
with eigenvalue p then

P (Qv) = QP v = Qpv = p (Qv) , (A.63)

tells us that for every eigenvector v with eigenvalue p the vector w := Qv is also an eigenvector of P
with eigenvalue p. Therefore, Q maps the eigenspaces of P to themselves. Recall that the columns of B
are just the normalised eigenvectors of P with eigenvalues given by the diagonal of DP so the invariance
of the eigenspaces of P with respect to Q means that the worst Q can do to the transformation matrix
B is to mix those column eigenvectors that belong to the same eigenvalue. More explicitly, say P has m
distinct eigenvalues pi with degeneracies ni naturally satisfying

∑m
i=1 ni = L and we write the eigenvalue

equations as

Pvjpi = pi v
j
pi (A.64)

for j = 1, ..., ni and i = 1, ...,m then

QB = Q

v
1
p1,1 . . . vn1

p1,1
. . . vnmpm,1

...
. . .

...
. . .

...
v1
p1,L

. . . vn1

p1,L
. . . vnmpm,L

 =

w
1
p1,1 . . . wn1

p1,1
. . . wnmpm,1

...
. . .

...
. . .

...
w1
p1,L

. . . wn1

p1,L
. . . wnmpm,L

 (A.65)
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where the column vectors wj
pi still satisfy

P wj
pi = pi w

j
pi . (A.66)

Since distinct eigenspaces are mutually orthogonal with respect to the inner product, the inner products
between v’s and w’s may be spelled out as

vj†pi wl
pk

= δjk cijl (A.67)

with an i, j, l dependent complex number cijl and we get

Q′ = B†QB

=



v1 ∗
p1,1 . . . v1 ∗

p1,L
...

. . .
...

vn1 ∗
p1,1

. . . vn1 ∗
p1,L

...
. . .

...
vnm ∗pm,1

. . . vnm ∗pm,L


w

1
p1,1 . . . wn1

p1,1
. . . wnmpm,1

...
. . .

...
. . .

...
w1
p1,L

. . . wn1

p1,L
. . . wnmpm,L



=


Q1 0 . . . 0

0 Q2 . . . 0
...

...
. . .

...

0 0 . . . Qm

 (A.68)

with the Qi being Hermitian ni × ni matrices. In a final step we diagonalise those Qi that are not yet
diagonal, i.e. we find matrices Ci with i = 1, ...,m such that

Qi = CiDQi C
†
i (A.69)

with DQi real diagonal matrices. Defining the block diagonal unitary matrix

C =

m⊕
i=1

Ci, (A.70)

we can finally define a mutual diagonalisation matrix A of P and Q as

A = BC. (A.71)

Importantly, the additional application of C does not undo the diagonalisation of P since C only uni-
tarily stirs up the eigenspaces of P . It is worth mentioning that in practice it is the rule rather than
the exception that the matrix Q′ is readily diagonal so more often than not the only thing that needs
to be done in order to find a simultaneous diagonalisation for two commuting Hermitian matrices is to
diagonalise either one of them.

The fact that P and Q are positive semi-definite allows us to rewrite DP and DQ from Eq. (A.59)
as

DP =: Γ2 and DQ =: Λ2 (A.72)

with

Γ := diag(γ1, ..., γL) and Λ := diag(λ1, ..., λL) (A.73)

where

pi =: γ2
i and qi =: λ2

i (A.74)
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and γi, λi ∈ R>0 which combined with Eq. (A.58) promotes SVD’s

U = WUΓA† and V = WV ΛA† (A.75)

of U and V since

P = U†U = AΓ†W †UWUΓA† = AΓΓA† = AΓ2A† = ADPA
†

Q = V †V = AΛ†W †VWV ΛA† = AΛΛA† = AΛ2A† = ADQA
† (A.76)

gives the correct simultaneous diagonalisation due toWU ,WV unitary and Γ,Λ Hermitian. Now Eq. (A.75)
uniquely defines the left unitary transformation matrices

WU = UAΓ−1 and WV = V AΛ−1 (A.77)

whenever Γ and Λ are invertible. The invertibility of Γ (Λ) is lost if (and only if) there exist zero
eigenvalues of P (Q) that appear again as zero singular values of U (V ). The physical situations in which
the BMD creates significant added value are precisely such situations in which V does have singular
values of zero and it turns out that such situations occur rather commonly in our models of nature, too.
So we are very much interested in creating a BMD algorithm that can function even in the presence of
non-invertible Λ and Γ. We can approach a solution to this problem by noting that in the presence of l
(m) zero and k = L − l (n = L −m) non-zero singular values of U (V ) the diagonal matrices Γ and Λ

take the form

Γ =

(
0l×l 0l×k
0k×l Γ̃k×k

)
and Λ =

(
˜̃Λn×n 0n×m
0m×n 0m×m

)
(A.78)

where we assumed WLOG that the positive semi-definite singular values on the diagonal of Γ are sorted
in ascending order while those on the diagonal of Λ are sorted in descending order. For convenience, we
denote the total index set by I = [1, ..., L] and define the invertible index subsets as Ĩ = [l+ 1, ..., L] and
˜̃I = [1, ..., n]. We can then find solutions

W̃U,L×k = UL×LÃL×kΓ̃−1
k×k and ˜̃WV,L×n = VL×L

˜̃AL×n
˜̃Λ−1
n×n (A.79)

for rectangular left unitary matrices. Here we defined the invertible submatrices Γ̃k×k = Γ|Ĩ×Ĩ of Γ and
˜̃Λn×n = Λ| ˜̃I× ˜̃I

of Λ, i.e. those diagonal submatrices accounting for the non-zero singular values, and

the corresponding rectangular simultaneous diagonalisation matrices ÃL×k = A|I×Ĩ and ˜̃AL×n = A|
I× ˜̃I

that are obtained by removing those columns of AL×L that correspond to zero singular values of Γ and
Λ respectively. Note that the restricted invertible index sets Ĩ and ˜̃I do not coincide. Their overlap
contains the fully paired indices Ip = Ĩ ∩ ˜̃I = [l + 1, ..., n] that are signified by singular values strictly
greater than zero and strictly smaller than one and that will become important later on.5 Now we
can extend the rectangular left unitary matrices W̃U and ˜̃WV to quadratic left unitary matrices by
adding the respectively required number of l and m appropriate columns them. Of course there is a
considerable degree of freedom in this precedure: any collection of l (m) column vectors that constitutes
an orthonormal basis of the orthogonal complement of the sub Hilbert space spanned by the k (n) existing
column vectors will yield a viable left unitary matrix. Another way to put this is that any orthonormal
basis of the nullspaces ker(W̃ †U ) and ker( ˜̃W †V ) constitutes a viable extension of the rectangular unitary left
matrices. The computation of nullspaces is therefore one systematic way of obtaining such an extension.
However, it is also a rather resource-intensive endeavour in practice. Luckily, Eqs. (A.56) allow us to
obtain a particularly efficient and convenient solution. To see this, we note that while the right singular
vectors A† of the the SVDs in Eq. (A.75) incorporate the simoultaneous diagonalisation of P and Q via
Eq. (A.76) the left singular vectors WU and WV provide diagonalisations

UU† = WUΓA†AΓ†W †U = WUΓΓW †U = WUDPW
†
U

V V † = WV ΛA†AΛ†W †V = WV ΛΛW †V = WVDQW
†
V (A.80)

5As an exception, we included subscripts indicating the matrix dimensions to aid the discussion in this paragraph. We
will drop these subscripts asap because they hurt the eyes.
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of the Hermitian matrices UU† and V V †. Then

(UU†)WU = WUDP

⇐⇒ (UU†)∗W ∗U = W ∗UD
∗
P

⇐⇒ (U∗Uᵀ)W ∗U = W ∗UDP

⇐⇒ (1L − V V †)W ∗U = W ∗UDP

⇐⇒ −V V †W ∗U = W ∗UDP −W ∗U
⇐⇒ V V †W ∗U = W ∗U (1L −DP )

⇐⇒ V V †W ∗U = W ∗U (1L −DP ) (A.81)

tells us that if v is an eigenvector of UU† associated with an eigenvalue ν ∈ [0, 1] then its complex
conjugate v∗ is an eigenvector of V V † associated with the eigenvalue (1− ν) ∈ [0, 1]. Accordingly, if v is
a left singular vector of U that is associated with a singular value σ ∈ [0, 1] then its complex conjugate
v∗ is a left singular vector of V associated with a singular value (1 − σ) ∈ [0, 1]. Thus, we may simply
choose the complex conjugate of the left singular column vectors associated with unity singular values of
U for the missing left singular column vectors associated with zero singular values of V and vice versa,
i.e. we define

WU,L×L : =
[
( ˜̃WV,L×n)|∗Iλi=1

]
L×l

? W̃U,L×k

WV,L×L : = ˜̃WV,L×n ?
[
(W̃U,L×k)|∗Iγi=1

]
L×m

(A.82)

where the restriction onto Iλi=1 = [1, ..., l] and Iγi=1 = [n+ 1, ..., L] signifies the restriction on the index
subsets associated with the respective unity singular values and where the operator ? simply attaches
one L× x matrix to another L× y matrix along the second axis, i.e. the column axis. Note that due to
l + k = m + n = L the result of this procedure is in fact two L × L matrices. Furthermore, we have to
attach the missing columns for the unitary left singular transformation matrix of U (V ) on the left (right)
because we assumed the singular values U (V ) to be ordered in ascending (descending) order. Now in
order for Eq. (A.75) to properly resemble our desired BMD equations in Eq. (A.54) we still have to put
in some work. The shared right unitary transformation matrix A† seems to be neatly in place and the
singular value matrices Γ and Λ are already real, although both are still diagonal instead of one being in
diagonal and the other in canonical form. We will consider this to be a minor issue. The most serious
deviation from the intended BMD form is the lack of a mutual relationship

WU = W ∗V (A.83)

between the left unitary matrices. Let us accept the issue of the diagonal/canonical form of Γ and Λ for
the time being and concentrate on the more pressing absence of the conjugation relation Eq. (A.83).6 To
solve this problem, we follow the idea of [DIG UP] and promote Eq. (A.83) to a balancing condition

WU
!
= W ∗V (A.84)

by sticking an exclamation mark on top of the equal sign. We will see that the implementation of this
condition will, indeed, involve a necessary manipulation of (either Γ or) Λ that readily puts it into the
wanted “canonic” form.7 Note that our specific extension strategy in Eq. (A.82) conveniently ensures
that Eq. (A.83) is automatically fulfilled everywhere but in the paired index sector Ip = [l + 1, ..., n] so
we only need to work out the paired index sector now. Let us outline the overall balancing strategy in
advance to make it easier to follow. The idea is to find a unitary matrix G of the same block diagonal
structure as Γ and Λ such that

W ∗U = WVG (A.85)

6As is good scientific practice, we will secretly hope that the smaller (diagonal/canonic form) problem will resolve itself
in the course of solving the bigger, but related (conjugation relation) problem. (It will.)

7Following the canonic way of doing things, we will choose to manipulate Λ such that V will be the one given in canonic
real rather than diagonal real form.
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and

V = WV ΛA† = WVGG
†ΛA† = W ∗UG

†ΛA† = W ∗UΛG†A† (A.86)

where we used that Λ and G have the same block diagonal structure for the last equality. At this point
V has the correct left unitary matrix W ∗U in its BMD but only at the expense of the right unitary matrix
changing to G†A†. To make up for this, we need to find a factorisation of the unusual form

G = XKXᵀ (A.87)

with another block diagonal unitary matrix X and some well-behaved auxiliary block diagonal matrix K
such that

V = W ∗UΛG†A† while U = WUΓA†

= W ∗UΛ(XKXᵀ)†A† = WUXX
†ΓA†

= W ∗UΛX∗K†X†A† = (WUX) Γ
(
X†A†

)
= (W ∗UX

∗)
(

ΛK†
)(

X†A†
)

= CUD†

= C∗V D† (A.88)

where we used that [Λ, X] = [Γ, X] = 0 due to the shared block diagonal form of all these matrices and
where we defined

C = WUX and D = AX (A.89)

along with

V = ΛK† and U = Γ. (A.90)

Note that the we require the peculiar combination of unitary X and Xᵀ to incorporate the complex
conjugation relation. For this to be a useful scheme we would of course need a systematic a way to come
up with the required unitary matrix G and its factorisation Eq. (A.87) - so how do we do this in practice?
From Eq. (A.85) we may naively guess G as

G = W †VW
∗
U , (A.91)

which clearly satisfies Eq. (A.85). For a start this definition of G is readily unitary because

GG† = W †VW
∗
U (W †VW

∗
U )† = W †VW

∗
UW

ᵀ
UWV = 1L

G†G = (W †VW
∗
U )†W †VW

∗
U = W ᵀ

UWVW
†
VW

∗
U = 1L (A.92)

due to the unitarity of WU and WV . Furthermore, we can show that it has the same block diagonal
structure as WV and WU too. To achieve this, we once again rely on the fact that if v is a left singular
vector of V associated with a singular value σ ∈ [0, 1] of V then v∗ is a left singular vector of U
associated with the singular value

√
1− σ2 ∈ [1, 0]. This tells that even if the σ column vectors of WV

are not generally going to be equal to the complex conjugate (1 − σ) column vectors of U they still
span the same sub Hilbert space, i.e. if σ is a 2N fold degenerate singular value of V with left singular
vectors vσ,1, ...,vσ,2N spanning a sub Hilbert space H|σ = span(vσ,1, ...,vσ,2N ) and if µ =

√
1− σ2 is the

associated 2N fold degenerate singular value of U with left singular vectors wσ,1, ...,wσ,2N spanning a
sub Hilbert space H|µ=

√
1−σ2 = span(wµ=

√
1−σ2,1, ...,wµ=

√
1−σ2,2N ) then

H|
µ=
√

1−σ2 = span(w
µ=
√

1−σ2,1
, ...,w

µ=
√

1−σ2,2N
) = span(v∗σ,1, ...,v

∗
σ,2N ) = H|∗σ. (A.93)

We may therefore expand each wµ=
√

1−σ2,i in the v∗i as

w
µ=
√

1−σ2,i
=

2N∑
j=1

ci,jv
∗
σ,j (A.94)
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and vice versa. Thus, we can write the matrix elements of G from Eq. (A.91) as vector products

Gil = v†σi,nσiw
∗
µl,mµl

= v†σi,nσiw
∗√

1−σ2
l
,mµl

= v†σi,nσi

(
2Nl∑
j=1

cmµl ,jv
∗
σl,j

)∗

=

2Nl∑
j=1

c∗mµl ,jv
†
σi,nσi

vσl,j

=

2Nl∑
j=1

c∗mµl ,jδσi,σlδnσi ,j

= c∗mµl ,nσi δσi,σl (A.95)

where we used a multi index notation i = (σi, nσi) with σi ∈ {σ1, ..., σL} refers to the complete collection
of singular values (including degeneracies) while nσi labels the distinct left singular vectors of σi to keep
track of degeneracies. The δσi,σl in the final line of Eq. (A.95) reveals that G has indeed the same block
diagonal structure asWU andWV . Note again that due to our construction ofWU andWV , the matrix G
is equal to the identity everywhere but on the blocks corresponding to paired singular values σ, µ ∈ (0, 1).
Finally, without assuming anything other about G than its unitarity we get

V = WV ΛA†

= WVGG
†ΛA†

= W ∗UG
†ΛA† (A.96)

so we have

V ᵀU = A∗ΛG∗W †UWUΓA† and UᵀV = A∗ΓW ᵀ
UW

∗
UG
†ΛA†

= A∗ΛG∗ΓA† = A∗ΓG†ΛA† (A.97)

which together with 0 = UᵀV + V ᵀU from Eqs. (A.56) tells us that

0 = A∗ΓG†ΛA† +A∗ΛG∗ΓA†

= ΓG†Λ + ΛG∗Γ

= ΓGᵀΛ + ΛGΓ. (A.98)

If we use Einstein summation notation to write this in components we get

0 = ΓijG
ᵀ
jkΛkl + ΛijGjkΓkl

= ΓiδijG
ᵀ
jkδklΛl + ΛiδijGjkδklΓl

= ΓiG
ᵀ
ilΛl + ΛiGilΓl

= ΓiΛlG
ᵀ
il + ΓlΛiGil

(∗)
= 2DilG

ᵀ
il + 2DliGil

= 2DilG
ᵀ
il + 2DliGil +DliG

ᵀ
il −DliG

ᵀ
il +DilGil −+DilGil

= (Dil +Dli)(G
ᵀ
il +Gil) + (Dil −Dli)(G

ᵀ
il −Gil)

= �il(G
ᵀ
il +Gil) + ∆il(G

ᵀ
il −Gil) (A.99)

where we used that Γ and Λ are diagonal, then for convenience multiplied the whole equation by 2 in (∗)
and finally defined an auxiliary matrix Dil = ΓiΛl along with its symmetric and skew-symmetric parts
�il = (Dil +Dli) = (Dil +Dᵀ

il) and ∆il = (Dil −Dli) = (Dil −Dᵀ
il).
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Now we differentiate between two cases:
1. Dil = Dli =: D :

(a) D > 0 : 2D(Gᵀ
il +Gil) = 0 =⇒ Gᵀ

il = −Gil
(b) D = 0 : always fulfilled =⇒ Gil arbitrary

2. Dil 6= Dli where WLOG we assume that Dil > Dli so �il > 0 and ∆il > 0:

0 = �il(G
ᵀ
il +Gil) + ∆il(G

ᵀ
il −Gil)

=⇒ 0 = (Gᵀ
il +Gil) = (Gᵀ

il −Gil)
=⇒ 0 = Gᵀ

il = Gil = −Gil. (A.100)

Usinig the definitions Dil = ΓiΛl and Γ2
i + Λ2

i = 1 we may rewrite Dil = Dli as

ΓiΛl = ΓlΛi ⇐⇒ Γi

√
1− Γ2

l = Γl

√
1− Γ2

i ⇐⇒
Γi√

1− Γ2
i

=
Γl√

1− Γ2
l

(A.101)

which for Γi,Γl ∈ [0, 1) only admits the solution8

Γi = Γl. (A.102)

With this the 2. case where Dil 6= Dli just becomes another argument to show that Gil = 0 whenever
Γi 6= Γl, i.e. that G = W †VW

∗
U has the same block diagonal structure as WU and WV . However, the 1.

case where Dil = Dli = D tells us something new. While for D = 0, i.e., for Γi,Λl ∈ {0, 1}, we only find
that G is arbitrary, the D > 0 case, i.e., for Γi,Λl ∈ (0, 1), shows that G is nexessarily skew-symmetric on
the possibly degenete fully paired blocks. In summary, the matrix G as defined in Eq. (A.91) is unitary,
has the same block diagonal structure as WU and WV , is equal to the identity on the singular value
blocks associated with singular values σ, µ ∈ {0, 1} and is skew-symmetric on the fully paired blocks. We
may write

G = 1l ⊕G1 ⊕ · · · ⊕Gp ⊕ 1m (A.103)

where 1l and 1m are the unity blocks associated with the zero and one singular values and where theGi are
2Ni×2Ni skew-symmetric blocks associated with the Ni-fold degenerate i-th singular value respectively.9

Having found a legitimate matrix G we are now in a position to think about how to factorise it in the
desired fashion of Eq. (A.87). The unity blocks of G are of course trivial and pose no problem. The skew-
symmetric blocks do need some treatment but due to the block diagonal structure of G we can fix them
one at a time. Therefore, the problem of factorising all of G at once becomes the much smaller problem of
factorising the individual blocks Gi. This is rather useful because the Gi blocks are not only much smaller
and easier to handle, but also have the strong symmetric property of being skew-symmetric, which is a
significant advantage over G as a whole. For example there is a pretty elegant and wel-known solution
of the factorisation problem Eq. (A.87) for symmetric matrices which is called the Takagi factorisation.
It asserts that any complex symmetric matrix M may be written as

M = UDUᵀ (A.104)

where D is diagonal and where U is unitary. Luckily, there is an analogous version of Takagi’s symmetric
matrix factorisation that works for skew-symmetric matrices. It is called the Youla decomposition of a
skew-symmetric matrix and it states that any complex skew-symmetric matrix S can be factorised as

S = UKUᵀ (A.105)

with a unitary matrix U and a skew-symmetric matrix

K = 0⊕ · · · ⊕K1 ⊕ · · · ⊕Kn (A.106)

8The domain [0, 1) of these functions does of course not cover all possible values of the Γ ∈ [0, 1] but this issue is easily
resolved: either one changes from Γ to Λ =

√
1− Γ2 which accounts for Γ = 1 through Λ = 0 or one rewrites the functions

as Λi/Γi the domain of which is (0, 1] and which support the same line of argument.
9In this notation we therefore have L = l +m+

∑p
i=1Ni.
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where the Ki are blocks are of the form

Ki =

(
0 zi
−zi 0

)
= zi (iσy) (A.107)

and zi ∈ C. Like the Takagi factorisation of symmetric matrices, the Youla decomposition combines a
unitary transformation matrix U with its transposed counterpart Uᵀ rather than its adjoint partner U†

which is why we can absorb the complex phase of the zi into U and thus make the Ki into real matrices.
In our case the skew-symmetric start matrices Gi are not only skew-symmetric but also unitary which
means that the Youla decomposition provides us with a factorisation

Gi = XiKiX
ᵀ
i (A.108)

where Xi is unitary and where Ki is a skew-symmetric matrix

Ki = Ki,1 ⊕ · · · ⊕Ki,2n (A.109)

without zero blocks and with two by two diagonal blocks

Ki =

(
0 zi
−zi 0

)
(A.110)

where zi ∈ U(1) ⊂ C such that an absorption of the complex phases into X produces even simpler blocks

Ki =

(
0 −1

1 0

)
= −iσy. (A.111)

These properties are a direct consequence of the Gi’s unitarity which can be seen as follows. Let S be
skew-symmetric and unitary then

1 = S†S

= U∗K†U†UKUᵀ

= U∗K†KUᵀ

= U∗diag
(
|z1|2, |z1|2, ..., |zn|2, |zn|2

)
Uᵀ

= diag(|z1|2, |z1|2, ..., |zn|2, |zn|2). (A.112)

The Youla decomposition of G as a whole therefore reads

G = 1l ⊕G1 ⊕ · · · ⊕Gp ⊕ 1m
= (1l ⊕X1 ⊕ · · · ⊕Xp ⊕ 1m) (1l ⊕K1 ⊕ · · · ⊕Kp ⊕ 1m)

(
1l ⊕Xᵀ

1 ⊕ · · · ⊕Xᵀ
p ⊕ 1m

)
= XKXᵀ. (A.113)

If we plug in this K into the definition Eq. (A.90) of V that we anticipated earlier we get

V = ΛK†

=

1l 0 0

0 ΛP 0

0 0 0m

1l 0 0

0 KP 0

0 0 1m



=

1l 0 0

0
⊕p

j=1 Λj12 0

0 0 0m


1l 0 0

0
⊕p

j=1 iσy 0

0 0 1m


=

1l 0 0

0
⊕p

j=1 iΛjσy 0

0 0 0m

 (A.114)

which is precisely the canonic form of V that is part of the BMD statement. Numerically, the Youla
decomposition of the Gi blocks can be efficiently achieved using the pfapack package subroutine pfa-
pack.pfaffian.skew_tridiagonalize which yields the unitary matrix U and a complex matrix K. The
complex phases of the K blocks have to be removed by hand but once that is done we are left with the
desired decomposition of G that finally gives us the matrices C,D,V and U as defined in Eq. (A.89) and
Eq. (A.90).
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A.6 The Relation Between the Product State and the Thouless State

To prove Eq. (5.155), recall that the product and the Thouless state are only simultenaously defined
when both U and V are invertible. According to the BMD algorithm, this is only possible when the
Bogoliubov vacuum is fully paired, i.e. if dE = dF = 0 and 2dP = N . In that case, we know that the
product state of the Bogoliubov vacuum takes the form

|0〉pb = det(D†)

N/2∏
p=1

b̄pb̄p̄ |0〉

(�)
= det(D†)

N/2∏
p=1

vp

N/2∏
p=1

(
up + vpc̄

†
pc̄
†
p̄

)
|0〉

(?)
= det(D†)

N/2∏
p=1

vpup

N/2∏
p=1

(
1 +

vp
up

c̄†pc̄
†
p̄

)
|0〉

(∗)
= det(D†)

N/2∏
p=1

vpup

N/2∏
p=1

exp

[
vp
up

c̄†pc̄
†
p̄

]
|0〉

(4)
= det(D†)

N/2∏
p=1

vpup

 exp

N/2∑
p=1

vp
up

c̄†pc̄
†
p̄

 |0〉 , (A.115)

where we plugged in Eq. (5.189) in (�) and used that up, vp > 0 for all p in (?). After that, we utilised
that (

c̄†pc̄
†
p̄

)2

= 0, (A.116)

such that

exp

[
vp
up

c̄†pc̄
†
p̄

]
= 1 +

vp
up

c̄†pc̄
†
p̄ (A.117)

in (∗). Finally, we made use of the fact that pairs c̄†pc̄
†
p̄ of creation operators commute such that

exp

[
vp
up

c̄†pc̄
†
p̄

]
= exp

N/2∑
p=1

vp
up

c̄†pc̄
†
p̄

 (A.118)

in (4). Now, we can use the BMD to show that

exp

[
1

2

(
c†
)ᵀ
Sc†

]
= exp

[
1

2

(
c†
)ᵀ
V ∗U∗−1 c†

]
(•)
= exp

[
1

2

(
c†
)ᵀ
C†V̄ D∗Dᵀ Ū−1C∗ c†

]
(O)
= exp

[
1

2

(
c̄†
)ᵀ
V̄ Ū−1 c̄†

]
(�)
= exp

N/2∑
p=1

vp
up
c̄†pc̄
†
p̄

 , (A.119)

where we plugged in the BMD U = C†ŪD and V = CᵀV̄ D in (•), used that D is unitary so that
D∗Dᵀ = 1N in (O), and finally spelled out the matrix product in elements, using that Ūpk = 1

up
δpk and

V̄pk = vp(δpk̄ − δp̄k) in (�). Combined, we get

|0〉pb = det(D†)

N/2∏
p=1

vpup

 exp

[
1

2

(
c†
)ᵀ
Sc†

]
|0〉 . (A.120)
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The only thing left to show is that

Pf(U†V ∗)
(�)
= Pf(D†ŪCC†V̄ D∗)

= Pf(D†Ū V̄ D∗)
(?)
= det(D∗)Pf(Ū V̄ )

(∗)
= det(D∗)

N/2∏
p=1

upvp, (A.121)

where we once more plugged in the BMD of U and V in (�), and used the Pfaffian identity

Pf(BABᵀ) = det(B)Pf(A) (A.122)

in (?). For (∗) we used that the Pfaffian of a 2n× 2n skew-symmetric tridiagonal matrix is given as

Pf



0 a1 0 0

−a1 0 0 0

0 0 0 a1

0 0 −a1 0
. . .

0 an
−an 0


=

n∏
p=1

ap (A.123)

and that Ū V̄ is precisely of that form with ap = upvp. If we plug Eq. (A.121) into Eq. (A.120) we get
the desired relation

|0〉pb = Pf(U†V ∗) exp

[
1

2

(
c†
)ᵀ
Sc†

]
|0〉 = Pf(U†V ∗) |0〉Tb (A.124)

we claimed in Eq. (5.155).
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A.7 The Robledo Overlap Formula for Product States

In order to prove the Robledo overlap formula for product states, we substitute the relation Eq. (5.155)
between the Thouless and the product state into Eq. (5.202). This gives

〈0′|0〉p p
b b = Pf(U ′ ᵀV ′)Pf(U†V ∗) 〈0′|0〉T T

b b

= (−1)
N(N+1)

2 Pf(U ′ ᵀV ′)Pf(U†V ∗)Pf
(
S −1N
1N −S′ ∗

)
. (A.125)

To bring this into a more convenient form similar to that of Eq. (5.202) we follow the supplemental
material of [93] and write

Pf
(
S −1N
1N −S′ ∗

)
= Pf

((
1N 0

S−1 1N

)(
S 0

0 −S′ ∗ + S−1

)(
1N −S−1

0 1N

))
(4)
= det

(
1N −S−1

0 1N

)
Pf
(
S 0

0 −S′ ∗ + S−1

)
(•)
= Pf(S)Pf(−S′ ∗ + S−1), (A.126)

where used the Pfaffian identity Eq. (A.122) together with the skew-symmetry Sᵀ = −S in (4), and
computed the determinant

det

(
1N 0

S−1 1N

)
= det(1N ) det(1N ) = 1 (A.127)

in (•). This allows us to write

〈0′|0〉p p
b b = (−1)

N(N+1)
2 Pf(U ′ ᵀV ′)Pf(U†V ∗)Pf(S)Pf(−S′ ∗ + S−1). (A.128)

Next, we use the relation

Pf(U ′ ᵀV ′) = Pf
((
V ′ −1V ′

)ᵀ
U ′ ᵀV ′

(
V ′ −1V ′

))
= Pf

(
V ′ ᵀV ′ ᵀ−1U ′ ᵀV ′V ′ −1V ′

)
= Pf

(
V ′ ᵀV ′ ᵀ−1U ′ ᵀV ′

)
(�)
= det(V ′)Pf

(
V ′ ᵀ−1U ′ ᵀ

)
(?)
= det(V ′)Pf

(
S′ †−1

)
(∗)
=

det(V ′)

Pf(S′ ∗)
, (A.129)

where we have used Eq. (A.122) in (�) and

S†−1 =
(
V ∗U∗ 1

)†−1
=
(
Uᵀ 1V ᵀ

)−1
= V ᵀ−1Uᵀ (A.130)

in (?). The final equality (∗) is achieved using the identities

Pf(−A) = (−1)n Pf(A) and Pf(A−1) =
(−1)n

Pf(A)
(A.131)

for an n× n skew-symmetric matrix A. Specifically, we rewrite

Pf(S′ †−1) = Pf(−S′ ∗−1) = (−1)N Pf(−S′ ∗−1) =
(−1)2N

Pf(S′ ∗)
=

1

Pf(S′ ∗)
(A.132)
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using the skew-symmetry to substitute S′ † = −S′ ∗. We can plug Eq. (A.129) into Eq. (A.128) to get

〈0′|0〉p p
b b = (−1)

N(N+1)
2

det(V ′)

Pf(S′ ∗)
det(V ∗)

Pf(S)
Pf(S)Pf(−S′ ∗ + S−1)

= (−1)
N(N+1)

2 det(V ′) det(V ∗)
1

Pf(S′ ∗)
Pf(−S′ ∗ + S−1)

(4)
= (−1)

N(N+1)
2 det(V ′) det(V ∗)

(
(−1)NPf(S′ ∗−1)

) (
(−1)NPf(S′ ∗ − S−1)

)
(•)
= (−1)

N(N+1)
2 det(V ′) det(V ∗) det

(
1N S′ ∗

0 1N

)
Pf
(
S′ ∗−1 0

0 S′ ∗− S−1

)
(O)
= (−1)

N(N+1)
2 det

(
V ′ 0

0 V ∗

)
Pf
((

1N 0

−S′ ∗ 1N

)(
S′ ∗−1 0

0 S′ ∗− S−1

)(
1N S′ ∗

0 1N

))
= (−1)

N(N+1)
2 det

(
V ′ 0

0 V ∗

)
Pf
(
S′ ∗−1 1N

−1N −S−1

)
(�)
= (−1)

N(N+1)
2 Pf

((
V ′ ᵀ 0

0 V †

)(
S′ ∗−1 1N

−1N −S−1

)(
V ′ 0

0 V ∗

))
= (−1)

N(N+1)
2 Pf

((
V ′ ᵀ 0

0 V †

)(
U ′V ′ −1 1N

−1N V ′U ′ −1 − U∗V ∗−1

)(
V ′ 0

0 V ∗

))
= (−1)

N(N+1)
2 Pf

(
V ′ ᵀU ′ V ′ ᵀV ∗

−V †V ′ U†V ∗

)
, (A.133)

where we used Eqs. (A.131) in (4), and combined

Pf(S′ ∗−1)Pf(S′ ∗ − S−1) = Pf
(
S′ ∗−1 0

0 S′ ∗− S−1

)
, (A.134)

while inserting a one of the form

1 = det

(
1N 0

−S′ ∗ 1N

)
(A.135)

in (•). In (O) we wrote the product of det(V ′) and det(V ∗) as the determinant of a suitable block matrix

det(V ′) det(V ∗) = det

(
V ′ 0

0 V ∗

)
. (A.136)

Then, we used Eq. (A.123) to write

det

(
1N S′ ∗

0 1N

)
Pf
(
S′ ∗−1 0

0 S′ ∗− S−1

)
= Pf

((
1N 0

−S′ ∗ 1N

)(
S′ ∗−1 0

0 S′ ∗− S−1

)(
1N S′ ∗

0 1N

))
(A.137)

in (O) and

det

(
V ′ S′ ∗

0 V ∗

)
Pf
(
S′ ∗−1 0

0 S′ ∗− S−1

)
= Pf

((
V ′ ᵀ 0

0 V †

)(
S′ ∗−1 1N

−1N −S−1

)(
V ′ 0

0 V ∗

))
(A.138)

in (�). In summary, we arrive at the neatly arranged formula

〈0′|0〉p p
b b = (−1)

N(N+1)
2 Pf

(
V ′ ᵀU ′ V ′ ᵀV ∗

−V †V ′ U†V ∗

)
(A.139)

for the overlap between two distinct product states that Robledo presented in [90].
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A.8 TRS, Fourier Transform and Topology of the Haldane Model

Here, we provide a collection of explicit calculations for Chap. 7.

TRS Transformation of the spinful Haldane Term

The TRS transformation of the spinful Haldane term in Eq. (7.15) transforms as

T tMF

∑
〈〈j,k〉〉
α

eiξjkc†jαckα T
† = tMF

∑
〈〈j,k〉〉
α

e−iξjkT c†jαT
†T ckα T †

(�)
= tMF

∑
〈〈j,k〉〉
α,γ,η

e−iξjkσαγy σαηy c†jγckη

(?)
= −tMF

∑
〈〈j,k〉〉
α,γ,η

e−iξjk
(
σγαy σαηy

)
c†jγckη

(∗)
= −tMF

∑
〈〈j,k〉〉
α,γ,η

e−iξjkδγη c
†
jγckη

= −tMF

∑
〈〈j,k〉〉
γ

e−iξjk c†jγckγ (A.140)

where we plugged in Eq. (3.15) in (�), applied the skew-symmetry σᵀ
y = −σy of the y-Pauli matrix in (?),

and used the relation σjσk = δjk + iεjklσl for the product of Pauli matrices in (∗).

Diagonalisation of the Haldane Model in k-Space

We explicitly diagonalise Eq. (7.15) using the Fourier transform cj = 1/
√
L
∑
k e

ikRck of the elementary
annihilation and creation operators. Since the spin degree of freedom factors in trivially, we consider only
one spin projection of Eq. (7.15), i.e. we transform the original spinless Haldane Hamiltonian

HH = −thop

∑
〈j,k〉

c†jck + V
∑
j

εjc
†
jcj + tMF

∑
〈〈j,k〉〉

eiξjkc†jck ≡ H
NN
Hal +Hpot

Hal +HNNN
Hal . (A.141)

Note that the honeycomb lattice structure causes some subtleties in combination with the chiral complex
hopping tMFe

iξjk of the Haldane model. To deal with this, we formally separate the elementary field
operators into sublattice-A operators aj and sublattice-B operators bj , writing

HH = −thop

L∑
j=1

3∑
k=1

[
a†jbj+νk + b†j+νkaj

]
+ V

∑
j

[
a†jaj − b

†
jbj
]

+ tMF

L∑
j=1

3∑
k=1

[
eiξ
[
a†j+µkaj + b†jbj+µk

]
+ e−iξ

[
a†jaj+µk + b†j+µkbj

]]
, (A.142)

where j + νk denotes the index of the k-th NN site of j and j + µk labels the index of the k-th NNN site
in counterclockwise direction. Specifically, we have

Rj+νk = Rj + ak and Rj+µk = Rj − (−1)kbk ≡ Rj + b′k , (A.143)

with ak and k as given in Eqs. (7.11) and (7.12) respectively. We also introduced the three counterclock-
wise NNN vectors b′k ≡ −(−1)kbk for better readability. Note that k = 1, 2, 3 for both NNs and NNNs
because the remaining three NNNs lie in clockwise direction and are treated separately in Eq. (A.228).
This makes it easier to account for the chiral phase ξjk = ±ξ which is positive (negative) if the hopping
vector ∆Rjk = Rj − Rk. Here, we choose to account for the three clockwise NNNs as illustrated in
Fig. A.1. With this choice, the NNN at Rj+µk is located in counterclockwise direction (ξjk = +ξ) if
j ∈ A, whereas it is located in clockwise direction (ξjk = −ξ) if j ∈ B. We determine the Fourier
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Figure A.1: The blue and red dots label the sites of the two distinct sublattices A and B. Green and
pink arrows indicate counterclockwise (ξjk = +ξ) and clockwise (ξjk = −ξ) complex hoppings on both
sublattices, while cyan (yellow) arrows mark the three counterclockwise (clockwise) NNN hoppings along
b1, −b2 and b3 from a given site in sublattice A (B).

transform of the NN hopping-, sublattice potential- and complex NNN hopping-terms of Eq. (A.228)
individually. The NN hopping term yields

HNN
Hal = −thop

L∑
j=1

3∑
k=1

[
a†jbj+νk + b†j+νkaj

]
= −thop

L∑
j=1

3∑
k=1

1

L

∑
k,k′

[
e−ikRjeik

′(Rj+ak)a†kbk′ + e−ik(Rj+ak)eik
′Rj b†kak′

]

= −thop

3∑
k=1

∑
k,k′

[[ 1

L

L∑
j=1

ei(k
′−k)Rj

]
eik
′aka†kbk′ +

[ 1

L

L∑
j=1

ei(k
′−k)Rj

]
e−ik

′akb†kak′
]

(�)
= −thop

3∑
k=1

∑
k

(
eikaka†kbk + e−ikakb†kak

)
= −thop

3∑
k=1

∑
k

(
a†k b

†
k

)( 0 eikak

e−ikak 0

)(
ak
bk

)

= −thop

3∑
k=1

∑
k

(
a†k b

†
k

)( 0 cos(kak) + i sin(kak)

cos(kak)− i sin(kak) 0

)(
ak
bk

)

= −thop

3∑
k=1

∑
k

(
a†k b

†
k

)(
cos(kak)τx − sin(kak)τy

)(ak
bk

)
, (A.144)

while the sublattice potential-term becomes

Hpot
Hal = V

L∑
j=1

[
a†jaj − b

†
jbj
]

= V

L∑
j=1

1

L

∑
k,k′

[
e−ikRjeik

′Rja†kak′ − e
−ikRjeik

′Rj b†kbk′
]

= V
∑
k,k′

[[ 1

L

L∑
j=1

ei(k
′−k)Rj

]
a†kak′ −

[ 1

L

L∑
j=1

ei(k
′−k)Rj

]
b†kbk′

]
(�)
= V

∑
k

(
a†kak − b

†
kbk

)
= V

∑
k

(
a†k b

†
k

)
τz

(
ak
bk

)
, (A.145)
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and the complex NNN hopping-term gives

HNNN
Hal = tMF

L∑
j=1

3∑
k=1

[
eiξ
[
a†j+µkaj + b†jbj+µk

]
+ e−iξ

[
a†jaj+µk + b†j+µkbj

]]

= tMF

L∑
j=1

3∑
k=1

1

L

∑
k,k′

[
eiξ
[
e−ik(Rj+b

′
k)eik

′Rja†kak′ + e−ikRjeik
′(Rj+b

′
k)b†kbk′

]

+ e−iξ
[
e−ikRjeik

′(Rj+b
′
k)a†kak′ + e−ik(Rj+b

′
k)eik

′Rj b†kbk′
]]

= tMF

3∑
k=1

∑
k,k′

[
eiξ
[[ 1

L

L∑
j=1

ei(k
′−k)Rj

]
e−ikb

′
ka†kak′ +

[ 1

L

L∑
j=1

ei(k
′−k)Rj

]
eik
′b′kb†kbk′

]

+ e−iξ
[[ 1

L

L∑
j=1

ei(k
′−k)Rj

]
eik
′b′ka†kak′ +

[ 1

L

L∑
j=1

ei(k
′−k)Rj

]
e−ikb

′
kb†kbk′

]]

(�)
= tMF

3∑
k=1

∑
k

[
eiξ
[
e−ikb

′
ka†kak + eikb

′
kb†kbk

]
+ e−iξ

[
eikb

′
ka†kak + e−ikb

′
kb†kbk

]]

= tMF

3∑
k=1

∑
k

[[
ei(ξ−kb

′
k) + e−i(ξ−kb

′
k)
]
a†kak+

+
[
ei(ξ+kb

′
k) + e−i(ξ+kb

′
k)
]
b†kbk

]

= 2tMF

3∑
k=1

∑
k

[
cos(ξ − kb′k)a†kak + cos(ξ + kb′k)b†kbk

]

= 2tMF

3∑
k=1

∑
k

[[
cos(ξ) cos(−kb′k)− sin(ξ) sin(−kb′k)

]
a†kak +

[
cos(ξ) cos(kb′k)− sin(ξ) sin(kb′k)

]
b†kbk

]

= 2tMF

3∑
k=1

∑
k

[[
cos(ξ) cos(kb′k) + sin(ξ) sin(kb′k)

]
a†kak +

[
cos(ξ) cos(kb′k)− sin(ξ) sin(kb′k)

]
b†kbk

]

= 2tMF

3∑
k=1

∑
k

(
a†k b

†
k

)(cos(ξ) cos(kb′k) + sin(ξ) sin(kb′k) 0

0 cos(ξ) cos(kb′k)− sin(ξ) sin(kb′k)

)(
ak
bk

)

= 2tMF

3∑
k=1

∑
k

(
a†k b

†
k

)(
cos(ξ) cos(kb′k)12 + sin(ξ) sin(kb′k)τz

)(ak
bk

)
. (A.146)

Here we denoted the Pauli matrices on sublattice pseudospin by τj to distinguish them from the Pauli ma-
trices σj describing electron spin. Combined, the total Fourier transformed spinless Haldane Hamiltonian
takes the form

HHal =
∑
k

(
a†k b

†
k

)(
h0(k)12 + h(k)τ

)(ak
bk

)
(A.147)

where

h0(k) = 2tMF

3∑
j=1

cos(ξ) cos(kb′j) (A.148)

and

hx(k) = −thop

3∑
j=1

cos(kaj) , hy(k) = thop

3∑
j=1

sin(kaj) , hz(k) = V + 2tMF

3∑
j=1

sin(ξ) sin(kb′j) .

(A.149)
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We can further simplify this expression by defining

x ≡
√

3a0kx
2

and y ≡ a0ky
2

(A.150)

with which

ka1 = 2y , ka2 = x− y , ka3 = −x− y (A.151)

and

kb′1 = kb1 = −x+ 3y , kb′2 = −kb2 = −x− 3y , ka′3 = kb3 = 2x (A.152)

so that

h0(k) = 2tMF cos(ξ)

3∑
j=1

cos(kb′j)

= 2tMF cos(ξ)

[
cos(−x+ 3y) + cos(−x− 3y) + cos(2x)

]

= 2tMF cos(ξ)

[
cos(−x) cos(3y)− sin(−x) sin(3y) + cos(−x) cos(−3y)− sin(−x) sin(−3y) + cos(2x)

]

= 2tMF cos(ξ)

[
cos(x) cos(3y) +((((

((sin(x) sin(3y) + cos(x) cos(3y)−(((((
(

sin(x) sin(3y) + cos(2x)

]

= 2tMF cos(ξ)

[
2 cos(x) cos(3y) + cos(2x)

]
(A.153)

and

hx(k) = −thop

3∑
j=1

cos(kaj)

= −thop

[
cos(2y) + cos(x− y) + cos(−x− y)

]

= −thop

[
cos(2y) + cos(x) cos(−y)− sin(x) sin(−y) + cos(−x) cos(−y)− sin(−x) sin(−y)

]

= −thop

[
cos(2y) + cos(x) cos(y) +((((

((sin(x) sin(y) + cos(x) cos(y)−(((((
(

sin(x) sin(y)

]

= −thop

[
2 cos(x) cos(y) + cos(2y)

]
(A.154)

hy(k) = thop

3∑
j=1

sin(kaj)

= thop

[
sin(2y) + sin(x− y) + sin(−x− y)

]

= thop

[
sin(2y) + sin(x) cos(−y) + cos(x) sin(−y) + sin(−x) cos(−y) + cos(−x) sin(−y)

]

= thop

[
sin(2y) +((((

((sin(x) cos(y)− cos(x) sin(y)−(((((
(

sin(x) cos(y)− cos(x) sin(y)

]

= −thop

[
2 cos(x) sin(y)− sin(2y)

]
(A.155)
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hz(k) = V + 2tMF sin(ξ)

3∑
j=1

sin(kb′j)

= V + 2tMF sin(ξ)

[
sin(−x+ 3y) + sin(−x− 3y) + sin(2x)

]

= V + 2tMF sin(ξ)

[
sin(−x+ 3y)− sin(x+ 3y) + sin(2x)

]

= V + 2tMF sin(ξ)

[
sin(−x) cos(3y) + cos(−x) sin(3y)− sin(x) cos(3y)− cos(x) sin(3y) + sin(2x)

]

= V + 2tMF sin(ξ)

[
− sin(x) cos(3y) +(((

((((cos(x) sin(3y)− sin(x) cos(3y)−(((((
((

cos(x) sin(3y) + sin(2x)

]

= V − 2tMF sin(ξ)

[
2 sin(x) cos(3y)− sin(2x)

]
. (A.156)

Chern Number of the Haldane Model

The Haldane model is characterised by the first Chern number, which, as pointed out in Sec. 2.3, obstructs
nowhere vanishing global sections. Here we will utilise the (im)possibility of finding nowhere vanishing
global sections to compute the Chern number explicitly. The diagonalisation of Eq. (7.17) yields the two
valence (−) and conduction (+) eigenstates

u±(k) =
1

N±

(
hz(k)± |h(k)|
hx(k) + ihy(k)

)
, (A.157)

where N± is the normalising factor and |h(k)| =
√
hx(k)2 + hy(k)2 + hz(k)2. These correspond to

(local) sections of the valence and conduction subbundles. Note that these sections are only locally
defined because we find

u±(Kη) =
1

N±

(
hz(Kη)± |hz(Kη)|

0

)
=:

1

N±

(
f±(Kη)

0

)
(A.158)

the Dirac points Kη, which vanishes as soon as

f±(Kη) = hz(Kη)± |hz(Kη)| = 0 . (A.159)

In the conduction bundle, f±(Kη) vanishes for hz(Kη) < 0. In the valence bundle it vanishes for
hz(Kη) > 0. Exploiting the gauge freedom of the states, we construct an alternative, phase-shifted
eigenstate u2

±(k) that avoids vanishing at the critical points where the original section fails. The original
eigenstate will be denoted by u1

±(k) from now on. Each valid gauge, including u2
±(k), corresponds to

another section of the subbundle. We now suggestively choose the following U(1) gauge transformation:

eiϕ±(k) :=

hz(k)∓|h(k)|
hx(k)+ihy(k)

| hz(k)∓|h(k)|
hx(k)+ihy(k) |

. (A.160)

With this, the alternative eigenstate becomes

u2
±(k) = eiϕ±(k) · u1

±(k) =
1

N2
±

(−hx(k)2+hy(k)2

hx(k)+ihy(k)

hz(k)∓ |hz(k)|

)
(A.161)

with an according normalising factor N2
±. At the Dirac points this simplifies to

u2
±(Kη) =

1

N2
±

(
0

hz(Kη)∓ |hz(Kη)|

)
. (A.162)

By construction, u2
±(Kη) displays the opposite behaviour of u1

±(Kη): in the conduction band u2
+(Kη)

vanishes when hz(Kη) > 0 while in the valence band u2
−(Kη) it vanishes for hz(Kη) < 0. Since the value
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parameters hz(Kτ ) u+(k) u−(k)

V > 3
√

3tMF sin(ξ) > 0 u1
+(k) u2

−(k)

V < −3
√

3tMF sin(ξ) < 0 u2
+(k) u1

−(k)

−3
√

3tMF sin (ξ) < V < 3
√

3tMF sin (ξ) ? ? ?

Table A.2: Global phase choices of u±(k) for different parameter regions.

and most notably the sign of hz(Kη) depend solely on the parameters V and tMF, we may perform a case
analysis in their respect. Using hz(k) from Tab. 7.1 we can easily identify three cases; these are listed in
Tab. A.2. In the first two cases the respective choice is unique and good for the entire Brillouin torus.
The only configuration of parameters that does not allow for a unique phase choice is given in the third
and last case. For ξ ∈ (0, π] we have

hz(Kη=+1) > 0

hz(Kη=−1) < 0

}
if − 3

√
3tMF sin (ξ) < V < 3

√
3tMF sin (ξ), (A.163)

which is reversed for ξ ∈ (−π, 0] as then the sign of sin(ξ) is negative. In either parameter range it
is impossible to put down a frame of the subbundle by globally assigning a phase to the state vectors.
We have to cut the Brillouin zone into two disjoint parts KI and KII such that Kτ=+1 ∈ KI and
Kτ=−1 ∈ KII . Then we define sections uI(k) on KI and uII(k) on KII . For ξ > 0 we assign the state
vectors according to regions as follows

uI±(k) =

{
u1

+(k)

u2
−(k)

and uII± (k) =

{
u2

+(k)

u1
−(k)

. (A.164)

For ξ < 0 the assignment is reversed. Note that the valence and conduction sections are oppositely
defined on both regions. While the conduction bundle is cut in the fashion of u1(k) in region I, the
valence bundle takes the form of u2(k) there. The converse situation arises on region II. Our I and II
versions of the wave function give rise to a Berry connection each:

As±(k) = −i 〈us±(k)|∂k|us±(k)〉 with s ∈ {I, II}. (A.165)

We observe that uI(k) and uII(k) are related by a “gauge transformation” that is defined according to
Eq. (A.161). Due to the inverse assignment of u1/2(k) to the conduction and valence bundle on both
regions, however, their phases differ by a sign. Their relation is inherited by the Berry connection as well
so we end up with

uII± (k) := e±iϕ±(k) · uI±(k) , AII± (k) := AI±(k)± ∂kϕ±(k) . (A.166)

Remember that, other than the Berry connection, the Berry curvature F±(k) is not gauge dependent. It
is given by

FI±(k) = FII± (k) =: F±(k). (A.167)

Using Eqs. (A.167) and (A.166) in Eq. (2.237) we arrive at a straightforward expression for the Chern
number:

C± = − 1

2π

∫
T 2

dS(k) F±(k)

(�)
= − 1

2π

[∫
∂KI

dk AI±(k) +

∫
∂KII

dk AII± (k)

]
(?)
= − 1

2π

∫
∂KI

dk (AI±(k)−AII± (k))

= ± 1

2π

∫
∂KI

dk ∂kϕ±(k) . (A.168)
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For (�) we split the integral over T 2 into two integrals over KI/II and used Stokes’ theorem to recover the
boundary integrals over the respective Berry connections. In (?) we utilised that the region boundaries
∂KI and ∂KII coincide on T 2 and differ only in their opposite orientation, i.e. ∂KI = −∂KII .

We seek to parameterise ∂KI as simply as possible. One practical choice is to set up ∂KI to be a
small circle aroundKτ=+1 such that we can Taylor expand h0 and h for small deviations δk fromKτ=+1:

h0(δk) ≈ −3tMF cos (ξ), hx(δk) ≈ t1
3a

2
δkx, (A.169)

hy(δk) ≈ t1
3a

2
δky, hz(δk) ≈ V + τ3

√
3tMF sin (ξ). (A.170)

It is natural to parameterise our circular ∂KI in polar coordinates. Accordingly, it will come in handy to
have a polar coordinate parameterisation of the integrand ϕ±(k) at our disposal. This may be obtained
following Eq. (A.170) and Eq. (A.161):

eiϕ±(δk) =
hz(δk)∓ |h(δk)|
|hz(δk)∓ |h(δk)||

· |hx(δk) + ihy(δk)|
hx(δk) + ihy(δk)

=:
R(δk)

|R(δk)|
· |δkx + iδky|
δkx + iδky

= sign (R(δk)) · |δk||e
iθ|

|δk|eiθ

= sign (R(δk)) · e−iϑ. (A.171)

The second to last equality formally adapts polar coordinates in the complex k-plane. Also, we defined
R(δk) := hz(δk) ∓ |h(δk)| and utilised that it is real such that R(δk)

|R(δk)| is the sign of R(δk). Obviously,
|h(δk)| ≥ |hz(δk)|. The parameters V and tMF are bigger than or equal to zero such that the sign of
hz(δk) is determined by the values of the valley index τ and angle ξ. For now, we shall discuss τ = +1

and ξ > 0. This choice makes hz(δk) positive and a subsequent closer look reveals that the sign of R(δk)

only depends on whether the phase belongs to the valence band or to the conduction band.
At this point we may absorb the respective sign in the form of a constant, band-dependent term added

to the exponent:

exp{iϕ±(δk)} = exp

{
i

(
−ϑ+

(1± 1)

2
π

)}
. (A.172)

It is easily confirmed that this construction does, in fact, make up for the sign, depending on whether the
valence (−) or conduction (+) band is considered. Most importantly it allows us to compare exponents
and find that

ϕ±(δk) = −θ +X± with θ ∈ [0, 2π) , (A.173)

is independent of δk. Note that we defined a band dependent constant X± = (1±1)
2 π. Since we designed

∂K to be a small circle, we employ polar coordinates and find

C± = ± 1

2π

∫
∂K

dδk∂kϕ±(δk)

= ± 1

2π

∫ 2π

0
�r dθ(@@∂r +

�
��1

r
∂θ)ϕ±(θ)

= ± 1

2π

∫ 2π

0

dθ ∂θ ϕ±(θ)

= ± 1

2π
[ϕ±(θ) ]2π0

= ± 1

2π
[−θ ±X±]

2π
0

= ∓1. (A.174)

In the second line we transformed to polar coordinates and explicitly parametrised the small circular
boundary ∂K. In the next-to-last line we plugged in Eq. (A.173) and used that the constant term
vanishes due to definite integration.
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The above computation was done for τ = +1 and ξ > 0. We saw that for ξ < 0 the choice of state
vectors is reversed such that, for fixed τ = +1, this change gives a global sign for ϕ±(δk) and hence for
C. The choice of τ = +1 in itself is a more technical issue as it is really only a matter of computing the
invariant. We have chosen to integrate around the K(τ = +1) point but we could have performed the
calculation around K′K′K′(τ = −1) just as well. Choosing τ = −1 instead of τ = +1 reverses the direction
of the oriented boundary between KI and KII which results in a global sign for C. This sign, however,
is compensated by the simultaneously reversed phase convention for the valence and conduction states.
Importantly, the above computation shows that for any fixed configuration of parameters, the Chern
numbers of the conduction and valence bundle differ by a sign, that is

C+ = −C− ⇐⇒ C+ + C− = 0. (A.175)

This result is consistent with an important fact that we have mentioned before: the total Bloch bundle
is always bound to be trivial.
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A.9 The Magnetic Monopole

A spin-1/2 degree of freedom s coupled via an exchange interaction J to a local magnetic field S is
described by the two-level Hamiltonian

H(S) = JSs =
J

2
Sσ =

J

2

(
Sz Sx − iSy

Sx + iSy −Sz

)
, (A.176)

given in the basis {|↑〉 , |↓〉} of spin-up and spin-down eigenstates. For convenience we define B := JS/2

and write

H(B) =

(
Bz Bx − iBy

Bx + iBy −Bz

)
. (A.177)

The eigenenergies of Eq. (A.177) are then defined via

0 = det

(
Bz − E Bx − iBy
Bx + iBy −Bz − E

)
= E2 −B2

x −B2
y −B2

z , (A.178)

which yields

E± = ±
√
B2
x +B2

y +B2
z =: ±B . (A.179)

Note that these two eigenenergies become degenerate only for B = 0. The eigenvectors of E± are
determined by (

H(B)− E±
)
|ϕ±(B)〉 =

(
H(B)− E±

)(
ϕ±,↑(B) |↑〉+ ϕ±,↓(B) |↓〉

) !
= 0 . (A.180)

In the {|↑〉 , |↓〉} basis this becomes(
Bz − E± Bx − iBy
Bx + iBy −Bz − E±

) (
ϕ±,↑(B)

ϕ±,↓(B)

)
!
=

(
0

0

)
, (A.181)

which provides us with the condition

ϕ±,↓(B) =
(Bx + iBy)

(Bz + E±)
ϕ±,↑(B) (A.182)

for the coefficients. We choose

|ϕ±(B)〉 =
1

(Bz + E±)

(
Bz + E±
Bx + iBy

)
. (A.183)

These eigenvectors are not yet normalised, so we compute their norm

|ϕ±(B)| =

√
1

(Bz + E±)2
((Bz + E±)2 + (Bx − iBy)(Bx + iBy))

=

√
1

(Bz + E±)2

(
B2
z + 2BzE± + E2

± +B2
x +B2

y

)
=

√
1

(Bz + E±)2

(
2BzE± + E2

± +B2
)

=

√
1

(Bz + E±)2

(
2BzE± + E2

± + E2
±
)

=

√
2E±

(Bz + E±)2
(E± +Bz)

=

√
2E±

Bz + E±
, (A.184)

241



and define the normalised eigenvectors

|ψ±(B)〉 =
1

|ϕ±(B)|
|ϕ±(B)〉

=

√
(Bz + E±)

2E±

1

(Bz + E±)

(
Bz + E±
Bx + iBy

)
=

1√
2E±(Bz + E±)

(
Bz + E±
Bx + iBy

)
. (A.185)

For B 6= 0, these states define two independent principal U(1) bundles ψ±
π±−−→ (R3 \ {0}). We can use

Eq. (A.185) to determine the Berry connections

A±(B) = 〈ψ±(B)|d|ψ±(B)〉 (A.186)

of ψ±
π±−−→ (R3 \ {0}) explicitly. In components, they read

A±(B) =
(
〈↑|ψ±,↑(B)∗ + 〈↓|ψ±,↓(B)∗

)∑
µ∈I

(
(∂µψ±,↑(B)) |↑〉+ (∂µψ±,↓(B)) |↓〉

)
dBµ


=
∑
µ∈I

(
ψ±,↑(B)∗(∂µψ±,↑(B)) + ψ±,↓(B)∗(∂µψ±,↓(B))

)
dBµ, (A.187)

where we introduced the index set I = {x, y, z} to aid readability. We break this down in steps. To
avoid clutter, we suppress explicit B-dependencies throughout the calculation, writing, for example, E±
instead of E±(B). First, we compute

∂µE± = ±∂µ
√
B2
x +B2

y +B2
z = ± 2Bµ

2
√
B2
x +B2

y +B2
z

=
Bµ
E±

, (A.188)

where µ ∈ I. Next, we find

∂µ
√

2E±(Bz + E±) =
2
Bµ
E±

(Bz + E±) + 2E±
Bµ
E±

2
√

2E±(Bz + E±)
=

Bµ(Bz + 2E±)

E±
√

2E±(Bz + E±)
(A.189)

for µ = x, y and

∂z
√

2E±(Bz + E±) =
2 BzE± (Bz + E±) + 2E±

(
1 + Bz

E±

)
2
√

2E±(Bz + E±)
=

(
Bz + E±

)2
E±
√

2E±(Bz + E±)
(A.190)

for the partial derivative in z-direction. With these auxiliary results, we determine the derivatives of ψ±,↑
and ψ±,↓ separately. We begin with ψ±,↑ and get

∂µψ±,↑ = ∂µ
(Bz + E±)√

2E±(Bz + E±)

= ∂µ

√
(Bz + E±)

2E±

=
1

2

√
2E±

(Bz + E±)

Bµ
E±

2E± − (Bz + E±)2
Bµ
E±

4E2
±

=

√
2E±

(Bz + E±)

Bµ −Bµ − BµBz
E±

4E2
±

= −

√
2E±

(Bz + E±)

BµBz
4E3
±

= − BµBz

2E2
±
√

2E±(Bz + E±)
(A.191)
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for µ = x, y and

∂zψ±,↑ = ∂z
(Bz + E±)√

2E±(Bz + E±)

= ∂z

√
(Bz + E±)

2E±

=
1

2

√
2E±

(Bz + E±)

(
1 +

Bµ
E±

)
2E± − (Bz + E±)2

Bµ
E±

4E2
±

=

√
2E±

(Bz + E±)

Bz −Bz − B2
z

E±
+ E±

4E2
±

=

√
2E±

(Bz + E±)

E2
± −B2

z

4E3
±

=
B2
x +B2

y

2E2
±
√

2E±(Bz + E±)
(A.192)

for the partial derivative in z-direction. Analogously, the partial derivatives of the ψ±,↓ component yield

∂xψ±,↓ = ∂x
(Bx + iBy)√

2E±(Bz + E±)

=

√
2E±(Bz + E±)− (Bx + iBy) Bx(Bz+2E±)

E±
√

2E±(Bz+E±)

2E±(Bz + E±)

=
2E±(Bz + E±)E± − (Bx + iBy)Bx(Bz + 2E±)

E± (2E±(Bz + E±))
3/2

=
2(B2

z +B2
y)(E± +Bz) +B2

xBz − iBxBy(Bz + 2E±)

E± (2E±(Bz + E±))
3/2

(A.193)

in the x-direction,

∂yψ±,↓ = ∂y
(Bx + iBy)√

2E±(Bz + E±)

=
i
√

2E±(Bz + E±)− (Bx + iBy)
By(Bz+2E±)

E±
√

2E±(Bz+E±)

2E±(Bz + E±)

=
i2E±(Bz + E±)E± − (Bx + iBy)By(Bz + 2E±)

E± (2E±(Bz + E±))
3/2

=
i2(B2

z +B2
x)(E± +Bz) + iB2

yBz −BxBy(Bz + 2E±)

E± (2E±(Bz + E±))
3/2

(A.194)

in the y-direction, and

∂zψ±,↓ = ∂z
(Bx + iBy)√

2E±(Bz + E±)

= −
(Bx + iBy) (Bz+2E±)2

E±
√

2E±(Bz+E±)

2E±(Bz + E±)

= − (Bx + iBy)(Bz + 2E±)2

E± (2E±(Bz + E±))
3/2

(A.195)

in the z-direction. If we plug these into Eq. (A.187) we get
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A±(B) =
∑
µ∈I

(
ψ±,↑(B)∗(∂µψ±,↑(B)) + ψ±,↓(B)∗(∂µψ±,↓(B))

)
dBµ

=

(
− (Bz + E±)√

2E±(Bz + E±)

BxBz

2E2
±
√

2E±(Bz + E±)

+
(Bx − iBy)√

2E±(Bz + E±)

2(B2
z +B2

y)(E± +Bz) +B2
xBz − iBxBy(Bz + 2E±)

E± (2E±(Bz + E±))3/2

)
dBx

+

(
− (Bz + E±)√

2E±(Bz + E±)

ByBz

2E2
±
√

2E±(Bz + E±)

+
(Bx − iBy)√

2E±(Bz + E±)

2i(B2
z +B2

x)(E± +Bz) + iB2
yBz −BxBy(Bz + 2E±)

E± (2E±(Bz + E±))3/2

)
dBy

+

(
(Bz + E±)√

2E±(Bz + E±)

B2
x +B2

y

2E2
±
√

2E±(Bz + E±)

− (Bx − iBy)√
2E±(Bz + E±)

(Bx + iBy)(Bz + E±)2

E± (2E±(Bz + E±))3/2

)
dBz

=

(
−(Bz + E±)2BxBz + (Bx − iBy)

(
2(B2

z +B2
y)(E± +Bz) +B2

xBz − iBxBy(Bz + 2E±)
)

4E3
±(Bz + E±)2

)
dBx

+

(
−(Bz + E±)2ByBz + (By + iBx)

(
2(B2

z +B2
x)(E± +Bz) +B2

yBz + iBxBy(Bz + 2E±)
)

4E3
±(Bz + E±)2

)
dBy

+

(
((((

(((
(((

(Bz + E±)2(B2
x +B2

y)−
((((

(((
(((

(Bz + E±)2(B2
x +B2

y)

4E3
±(Bz + E±)2

)
dBz

=: A±,x(B)dBx +A±,y(B)dBy , (A.196)

where we defined the coefficients

A±,x(B) :=
−(Bz + E±)2BxBz + (Bx − iBy)

(
2(B2

z +B2
y)(E± +Bz) +B2

xBz − iBxBy(Bz + 2E±)
)

4E3
±(Bz + E±)2

A±,y(B) =:
−(Bz + E±)2ByBz + (By + iBx)

(
2(B2

z +B2
x)(E± +Bz) +B2

yBz + iBxBy(Bz + 2E±)
)

4E3
±(Bz + E±)2

(A.197)

of the Berry connection. Note that the A±,x(B) and A±,y(B) are the same up to a coordinate rotation Bx 7→ By
and By 7→ −Bx. This allows us to compute A±,x(B) and A±,y(B) simultaneously. Specifically, we compute
A±,x(B) first,

A±,x(B) =
−(Bz + E±)2BxBz + (Bx − iBy)

(
2(B2

z +B2
y)(E± +Bz) +B2

xBz − iBxBy(Bz + 2E±)
)

4E3
±(Bz + E±)2

=

(
−2i(E± +Bz)B

3
y + (−���BxBz +XXXX2BxE± +���2BxBz −���BxBz −XXXX2BzE±)B2

y

4E3
±(Bz + E±)2

+
(−2iB2

xBz − 2iB2
xE± − 2iB2

zE± − 2iB2
zBz)By

4E3
±(Bz + E±)2

+
(−���B3

zBx −
XXXXX2B2

zBxE± −��
�HHHB3

xBz −���BxB
3
z +
XXXXX2BxB

2
zE± +���2BxB

3
z +��

�HHHB3
xBz)

4E3
±(Bz + E±)2

)

= −
2i(E± +Bz)

(
B3
y + (B2

x +B2
z)By

)
4E3
±(Bz + E±)2

= −
i
(
(B2

y +B2
x +B2

z)By
)

2E3
±(Bz + E±)

(�)
= − iE2

±By
2E3
±(Bz + E±)

= − iBy
2E±(Bz + E±)

, (A.198)
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where we have used E2
± = B2 = B2

x + B2
y + B2

z in (�). Then we perform the coordinate rotation Bx 7→ By and
By 7→ −Bx on the result to get

A±,y(B) = +
iBx

2E±(Bz + E±)
, (A.199)

where we used that E± only features B2
y so that E± 7→ E± under the coordinate transformation. Com-

bined, we find

A±(B) = A±,x(B)dBx +A±,y(B)dBy

= − i
2

BydBx −BxdBy
E±(Bz + E±)

. (A.200)

If we plug in Eq. (A.179) we get

A±(B) = ∓ i
2

BydBx −BxdBy
B(Bz ±B)

. (A.201)

This tells us that in the current gauge choice, i.e. in the current choice Eq. (A.185) of eigenstates, the
Berry connections A±(B) of the ψ±

π±−−→ (R3\{0}) bundles are only well-defined if B 6= ∓Bz. Specifically,
A+(B) is only well-defined away from the negative z-axis, while A−(B) is only well-defined away from
the positive z-axis. This singularity in the Berry connection is famously known as the Dirac string [2].
The location of the Dirac string can be manipulated through gauge transformations. However, it can
never be removed. This is a prototypical example of a topological obstruction: as we will see shortly, the
first Chern number of the principal U(1) bundles ψ±

π±−−→ (R3\{0}) is non-zero. We mentioned in Sec. 2.3
that a non-zero first Chern number obstructs the definition of a nowhere-vanishing global section. In the
associated principal U(1) bundle this manifests as a singularity because the U(1) phase of the zero vector
(which necessarily exists somewhere as no nowhere-vanishing global sections exist) is ill-defined. To see
that the Chern numbers of the ψ±

π±−−→ (R3 \ {0}) bundles are non-zero, we compute the Berry curvature

F±(B) = dA±(B)

=
∑
µ,ν∈I

∂µA±,ν(B)dBµ ∧ dBν

= ∂xA±,y(B)dBx ∧ dBy + ∂yA±,x(B)dBy ∧ dBx
+ ∂zA±,x(B)dBz ∧ dBx + ∂zA±,y(B)dBz ∧ dBy

= ∂x

(
iBx

2E±(Bz + E±)

)
dBx ∧ dBy + ∂y

(
− iBy

2E±(Bz + E±)

)
dBy ∧ dBx

+ ∂z

(
− iBy

2E±(Bz + E±)

)
dBz ∧ dBx + ∂z

(
iBx

2E±(Bz + E±)

)
dBz ∧ dBy

(�)
=

[
∂x

(
iBx

2E±(Bz + E±)

)
+ ∂y

(
iBy

2E±(Bz + E±)

)]
dBx ∧ dBy

+ ∂z

(
−iBy

2E±(Bz + E±)

)
dBz ∧ dBx − ∂z

(
iBx

2E±(Bz + E±)

)
dBy ∧ dBz

=: F±,xy(B)dBx ∧ dBy + F±,zx(B)dBz ∧ dBx + F±,yz(B)dBy ∧ dBz , (A.202)

where we defined the Berry curvature coefficients F±,µν(B) with respect to the standard order xyz of
indices. In (�) we used dBy ∧dBx = −dBx ∧dBy to combine the first two terms into F±,xy(B). In order
to compute this explicitly, we first use Eq. (A.188) to compute the auxiliary result

∂µ
Bν

2(±B)(Bz ±B)
= ±

δµν2B(Bz ±B)−Bν
(

2
Bµ
B (Bz ±B) + 2B(δµz ± Bµ

B )
)

4B2(Bz ±B)2

= ±δµν2B2(Bz ±B)−Bν (2Bµ(Bz ±B) + 2B(δµzB ±Bµ))

4B3(Bz ±B)2

= ±
δµν2B2(Bz ±B)−Bν

(
2Bµ(Bz ± 2B) + 2δµzB

2
)

4B3(Bz ±B)2
. (A.203)
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With this we get

∂xA±,y(B) = ∂x

(
iBx

2E±(Bz + E±)

)
= ±i

[
2B2(Bz ±B)− 2B2

x(Bz ± 2B)

4B3(Bz ±B)2

]
= ±i

[(
2B2 − 2B2

x

)
(Bz ±B)∓ 2B2

xB

4B3(Bz ±B)2

]

= ±i

[(
2B2

y + 2B2
z

)
(Bz ±B)∓ 2B2

xB

4B3(Bz ±B)2

]
, (A.204)

and

∂yA±,x(B) = ∂y

(
−iBy

2E±(Bz + E±)

)
= ∓i

[
2B2(Bz ±B)− 2B2

y(Bz ± 2B)

4B3(Bz ±B)2

]

= ∓i

[(
2B2 − 2B2

y

)
(Bz ±B)∓ 2B2

yB

4B3(Bz ±B)2

]

= ∓i

[(
2B2

x + 2B2
z

)
(Bz ±B)∓ 2B2

yB

4B3(Bz ±B)2

]
, (A.205)

for the partial derivatives in the x- and y-directions. The partial derivatives in the z-direction immediately
yield the corresponding coefficients of the Berry curvature – they become

F±,yz(B) = −∂zA±,y(B) = −∂z
(

iBx
2E±(Bz + E±)

)
= ±i

[
Bx
(
2Bz(Bz ± 2B) + 2B2

)
4B3(Bz ±B)2

]

= ±i

[
Bx
(
2B2

z ± 4BzB + 2B2
)

4B3(Bz ±B)2

]

= ±i

[
2Bx (Bz ±B)

2

4B3(Bz ±B)2

]

= ± iBx
2B3

, (A.206)

and

F±,zx(B) = ∂zA±,x(B) = ∂z

(
−iBy

2E±(Bz + E±)

)
= ±i

[
By
(
2Bz(Bz ± 2B) + 2B2

)
4B3(Bz ±B)2

]

= ±i

[
By
(
2B2

z ± 4BzB + 2B2
)

4B3(Bz ±B)2

]

= ±i

[
2By (Bz ±B)

2

4B3(Bz ±B)2

]

= ± iBy
2B3

, (A.207)

respectively. Next, we determine the combined coefficient F±,xy(B) of dBx ∧ dBy in Eq. (A.202).
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We find

F±,xy(B) = ∂x

(
iBx

2E±(Bz + E±)

)
+ ∂y

(
iBy

2E±(Bz + E±)

)
= ±i

[(
2B2

y + 2B2
z

)
(Bz ±B)∓ 2B2

xB

4B3(Bz ±B)2
+

(
2B2

x + 2B2
z

)
(Bz ±B)∓ 2B2

yB

4B3(Bz ±B)2

]

= ±i

[(
2B2

y + 2B2
z

)
(Bz ±B)∓ 2B2

xB +
(
2B2

x + 2B2
z

)
(Bz ±B)∓ 2B2

yB

4B3(Bz ±B)2

]

= ±i

[(
2B2

x + 2B2
y + 2B2

z

)
(Bz ±B)∓ 2B2

xB + 2B2
z (Bz ±B)∓ 2B2

yB

4B3(Bz ±B)2

]
(�)
= ±i

[
2B2(Bz ±B)∓ (2B2

x + 2B2
y + 2B2

z )B + 2B2
z (Bz ± 2B)

4B3(Bz ±B)2

]

= ±i
[

2B2(Bz ±��B)∓���2B2B + 2B2
z (Bz ± 2B)

4B3(Bz ±B)2

]
= ±i

[
2B2Bz + 2B2

zBz ± 4B2
zB

4B3(Bz ± 2B)2

]
= ±i

[
2Bz

(
B2 +B2

z ± 2BzB
)

4B3(Bz ±B)2

]

= ±i

[
Bz2 (Bz ±BB)

2

4B3(Bz ±B)2

]

= ±i Bz
2B3

. (A.208)

If we plug Eqs. (A.208), (A.207), and (A.206) into Eq. (A.202) we arrive at the simple expression

F±(B) = ± i
2

BzdBx ∧ dBy +BydBz ∧ dBx +BxdBy ∧ dBz
B3

(A.209)

for the Berry curvature of the magnetic monopole, cf. e.g. Ref. [39]. Several remarks are in order.
The first one is that one can rewrite the Berry connection A±(B) from Eq. (A.201) as

A±(B) = ∓ i
2

BydBx −BxdBy
B(Bz ±B)

= ∓ i

2B2

(
By −Bx 0

)
(BzB ± 1)

dBx
dBy
dBz


= ∓ i

2B2

[B × ez]ᵀ

(ezB/B ± 1)
dB

= ± i

2B2

[ez ×B]ᵀ

(ezB/B ± 1)
dB

=: A±(B)ᵀdB , (A.210)

where we identified the numerator as an inner product between the two vectors [B×ez]ᵀ =
(
By −Bx 0

)
and dB ≡

(
dBx dBy dBz

)ᵀ
and defined the coefficient field

A±(B) = ± i

2B2

ez ×B
(ezB/B ± 1)

. (A.211)

This form of the Berry connection A±(B) is more familiar to most physicists and makes the analogy
with the electromagnetic gauge potential more transparent. Note that it is usually the coefficient field
A±(B) that is quoted as the electromagnetic gauge potential.
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Along the same lines one can rewrite the Berry curvature F±(B) from Eq. (A.209) as

F±(B) = ± i
2

BzdBx ∧ dBy +BydBz ∧ dBx +BxdBy ∧ dBz
B3

= ±
i
(
Bx By Bz

)
B3

dBy ∧ dBz
dBz ∧ dBx
dBy ∧ dBz


= ± iB

ᵀ

B3
[?dB]

=: F±(B)ᵀdS , (A.212)

where we used the hodge operator ? :
∧p

T ∗M →
∧n−p

T ∗M to translate the vector dB of one-forms
into a vector

dS := ?dB ≡

?dBx?dBy
?dBz

 =

dBy ∧ dBz
dBz ∧ dBx
dBy ∧ dBz

 (A.213)

of two-forms. We also defined a coefficient field

F±(B) = ± iB
B3

(A.214)

of the Berry curvature. By definition, this is equal to the curl

F±(B) = curlA±(B) = ∇×A±(B) (A.215)

of the coefficient field A±(B) associated with the Berry connection. This can be seen through explicit
calculation (see above) or via the fundamental definition of the exterior derivative: if we write

A±(B) = A±(B)ᵀdB = A±,x(B)dBx +A±,y(B)dBy +A±,z(B)dBz , (A.216)

then we automatically get

F±(B) = dA±(B)

= (∂xA±,y(B)− ∂yA±,x(B)) dBx ∧ dBy
+ (∂zA±,x(B)− ∂xA±,z(B)) dBz ∧ dBx
+ (∂yA±,z(B)− ∂zA±,y(B)) dBy ∧ dBz

= F±(B)ᵀdS , (A.217)

and hence the coefficient vector

F±(B) =

∂xA±,y(B)− ∂yA±,x(B)

∂zA±,x(B)− ∂xA±,z(B)

∂yA±,z(B)− ∂zA±,y(B)

 = curlA±(B) , (A.218)

by the skew-symmetry of the wedge product. The curvature F±(B), and in the physics literature often its
coefficient field F±(B), is then usually compared to the magnetic field. The form of the gauge potential in
Eq. (A.211) and the curvature vector field in Eq. (A.214) are strongly reminiscent of the gauge potential
and magnetic field of a magnetic Dirac monopole.

It is worth conceding that the vector of two-forms in Eq. (A.213) is an unusual sight. In physics, we
are accustomed to expressions like

∫
S
FdS representing the flux of a magnetic field F through a surface

S. This leads to shorthand statements like “integrating a magnetic field over a surface.” However, the
mathematical theory of integration on manifolds does not assign meaning to the integration of vector
fields over surfaces. The proper objects for integration over two-dimensional manifolds are two-forms. To
translate these kinds of shorthand statements into the language of differential forms, we typically rely on
two central tools: the musical isomorphism [ : TM → T ∗M , which maps vector fields X = Xµ∂µ on an
n-dimensional manifold M to one-forms x = Xµdxµ, and the Hodge star, which maps p-forms on M to
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(n − p)-forms. If we choose to understand the curvature coefficient field F±(B) from Eq. (A.214) as a
vector field

F±(B) = F±,x(B)∂x + F±,y(B)∂y + F±,z(B)∂z =
iBx
B3

∂x +
iBy
B3

∂y +
iBz
B3

∂z , (A.219)

then its integral over a two-dimensional manifold S ∈ R3 \ {0} corresponds to the expression∫
S

?F±(B)[ =

∫
S

?

(
iBx
B3

∂x +
iBy
B3

∂y +
iBz
B3

∂z

)[
=

∫
S

?

(
iBx
B3

dBx +
iBy
B3

dBy +
iBz
B3

Bz

)
=

∫
S

(
iBx
B3

dBy ∧ dBz +
iBy
B3

dBz ∧ dBx +
iBz
B3

dBx ∧ dBy
)

=

∫
S

F±(B)ᵀdS , (A.220)

and hence the integral of the Berry curvature two-form from Eq. (A.212).
The second remark is that one can integrate the Berry curvature F±(B) over any closed two-

dimensional surface S ⊂ R3 \ {0} to get a Chern characterising the principal U(1) bundle over S.
Choose, for instance, the standard embedding {B ∈ R3 \ {0} | |B| = 1} of two-sphere S2 ⊂ R3 \ {0}. To
compute the Chern number over S2 we assume spherical coordinates

Bx = B sin θ cosφ

By = B sin θ sinφ

Bz = B cos θ , (A.221)

where φ ∈ [0, 2π] and θ ∈ [0, π]. With this, we find

dBx = sin θ cosφdB +B cos θ cosφdθ −B sin θ sinφdφ

dBy = sin θ sinφdB +B cos θ sinφdθ +B sin θ cosφdφ , (A.222)

such that the Berry connection becomes

A±(B) = ∓ i
2

BydBx −BxdBy
B(Bz ±B)

=
i

2

[
(B sin θ sinφ)([sin θ cosφdB +B cos θ cosφdθ]−B sin θ sinφdφ)

(±B)(±B +B cos θ)

− (B sin θ cosφ)([sin θ sinφdB +B cos θ sinφdθ] +B sin θ cosφdφ)

B2(1±B cos θ)

]

=
i

2

B2(sin2 θ sin2 φ+ sin2 θ cos2 φ)

B2(1± cos θ)
dφ

=
i

2

sin2 θ

(1± cos θ)
dφ

=
i

2

(1− cos2 θ)

(1± cos θ)
dφ

=
i

2

(1 + cos θ)(1− cos θ)

(1± cos θ)
dφ

=
i

2
(1∓ cos θ)dφ . (A.223)

If we compute the Berry curvature from this we obtain a similarly simple expression

F±(B) = d
[
i

2
(1∓ cos θ)dφ

]
= ± i

2
sin θ dθ ∧ dφ . (A.224)
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The first Chern number of the principal U(1) bundle over S2 ⊂ R3 \ {0} is then

C1(F±(B)) = 〈[c1(F±(B))], [S2]〉 =
i

2π

∫
S2

F±(B)

=
i

2π

∫ π

0

∫ 2π

0

[
± i

2
sin θ dθ ∧ dφ

]
= ∓ 1

4π

∫ π

0

sin θ dθ dφ

= ∓2π

4π

∫ π

0

sin θ dθ

= ∓1

2

[
− cos θ

]π
0

= ∓1 . (A.225)

Note that the first Chern number is also equal to the first Chern character, i.e.

C1(F±(B)) = Ch1(F±(B)) . (A.226)

The fact that this Chern number is non-trivial tells us that there exists no nowhere-vanishing global
section. There always has to be at least one point where the section is zero and the phase is ill-defined.
Intuitively speaking, this point is where the Dirac string of the monopole that sits at 0 ∈ R3 punctures
the enveloping two-dimensional surface S ⊂ R3 \ {0}, here: S = S2.
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A.10 TRS, Fourier Transform and Topology of the Kane–Mele Model

Here, we provide a collection of explicit calculations for Chap. 8.

TRS Invariance of the Kane–Mele Hailtonian

First we show that the Kane–Mele Hamiltonian from Eq. (8.1) is invariant under the TRS transformation
Eq. (3.15) of spin one-half fermions:

T HKMT † = T
(
− thop

∑
〈j,k〉
α

c†jαckα + V
∑
j,α

εjc
†
jαcjα + itSO

∑
〈〈j,k〉〉
α,β

νjkσ
αβ
z c†jαckβ

)
T †

= −thop

∑
〈j,k〉
α

T c†jαT T
†ckαT † + V

∑
j,α

εjT c†jαT
†T cjαT † − itSO

∑
〈〈j,k〉〉
α,β

νjkσ
αβ
z T c

†
jαT

†T ckβT †

(�)
= thop

∑
〈j,k〉
α,β,γ

σαβy σαγy c†jβckγ − V
∑
j

α,β,γ

εjσ
αβ
y σαγy c†jβcjγ + itSO

∑
〈〈j,k〉〉
α,β,γ,η

νjkσ
αβ
z σαγy σβηy c†jγckη

(?)
= −thop

∑
〈j,k〉
α,β,γ

σβαy σαγy c†jβckγ + V
∑
j

α,β,γ

εjσ
βα
y σαγy c†jβcjγ − itSO

∑
〈〈j,k〉〉
α,β,γ,η

νjkσ
γα
y

(
σαβz σβηy

)
c†jγckη

(∗)
= −thop

∑
〈j,k〉
β,γ

δβγc
†
jβckγ + V

∑
j
β,γ

εjδβγc
†
jβcjγ − itSO

∑
〈〈j,k〉〉
α,γ,η

νjkσ
γα
y (−iσαηx ) c†jγckη

= −thop

∑
〈j,k〉
β

c†jβckβ + V
∑
j,β

εjc
†
jβcjβ − tSO

∑
〈〈j,k〉〉
α,γ,η

νjk
(
σγαy σαηx

)
c†jγckη

= −thop

∑
〈j,k〉
α

c†jαckα + V
∑
j,α

εjc
†
jβcjβ − tSO

∑
〈〈j,k〉〉
γ,η

νjk (−iσγηz ) c†jγckη

= −thop

∑
〈j,k〉
α

c†jαckα + V
∑
j,α

εjc
†
jαcjα + itSO

∑
〈〈j,k〉〉
α,β

νjkσ
αβ
z c†jαckβ

= HKM . (A.227)

Here, we plugged in Eq. (3.15) in (�), applied the skew-symmetry σᵀ
y = −σy of the y-Pauli matrix in (?),

and made repeated use of the relation σjσk = δjk + iεjklσl for the product of Pauli matrices from (∗)
onwards.

Diagonalisation of the Kane–Mele Model in k-Space

We explicitly diagonalise Eq. (8.1) using the Fourier transform cjα = 1/
√
L
∑
k e

ikRckα of the elementary
annihilation and creation operators. Like in the Haldane model, the honeycomb lattice structure causes
some subtleties in combination with the SOC hopping ∝ itSO of the Kane–Mele model. To deal with
this, we formally separate the elementary field operators into sublattice-A operators aj and sublattice-B
operators bj , writing

HKM = −thop

∑
j,α

3∑
k=1

[
a†jαbj+νkα + b†j+νkαajα

]
+ V

∑
j,α

[
a†jαajα − b

†
jαbjα

]
+ itSO

∑
j,α,β

3∑
k=1

σαβz

[[
a†j+µkαajβ + b†jαbj+µkβ

]
−
[
a†jαaj+µkβ + b†j+µkαbjβ

]]

≡ HNN
KM +Hpot

KM +HSO
KM , (A.228)
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where j + νk denotes the index of the k-th NN site of j and j + µk labels the index of the k-th NNN site
in counterclockwise direction. Specifically, we have

Rj+νk = Rj + ak and Rj+µk = Rj − (−1)kbk ≡ Rj + b′k , (A.229)

as in Eq. (A.143). Apart from the extra spin index in the Kane–Mele model, we find that

HNN
KM ' HNN

Hal and Hpot
KM ' H

pot
Hal (A.230)

so we can adapt Eq. (A.144) to get

HNN
KM = −thop

3∑
k=1

∑
k,α

(
a†kα b

†
kα

)(
cos(kak)τx − sin(kak)τy

)(akα
bkα

)
, (A.231)

and Eq. (A.145) to get

Hpot
KM = V

∑
k,α

(
a†kα b

†
kα

)
τz

(
akα
bkα

)
. (A.232)

Similarly, we may modify HNNN from Eq. (A.146) to obtain

HSO
KM = 2tSO

3∑
k=1

∑
k,α,β

σαβz
(
a†kα b

†
kα

)
sin(kb′k)τz

(
akβ
bkβ

)
. (A.233)

Note once more that we write τj for the Pauli matrices associated with sublattice pseudospin and σj
for the Pauli matrices describing electron spin. Combined, the total Fourier-transformed Kane–Mele
Hamiltonian takes the form

HKM =
∑
k

(
a†k↑ b

†
k↑ a

†
k↓ b

†
k↓
)(
h0(k)σz ⊗ τz + 12 ⊗

[
h(k)τ

])
ak↑
bk↑
ak↓
bk↓

 (A.234)

where

h0(k) = 2tSO

3∑
j=1

sin(kb′j) (A.235)

and

hx(k) = −thop

3∑
j=1

cos(kaj) , hy(k) = thop

3∑
j=1

sin(kaj) , hz(k) = V . (A.236)

Analogous to Eqs. (A.153) and (A.154 - A.156) we can use Eq. (A.150) to simplify Eqs. (A.235) and
(A.236) as

h0(k) = −2tSO

[
2 sin(x) cos(3y)− sin(2x)

]
(A.237)

and

hx(k) = −thop
[
2 cos(x) cos(y) + cos(2y)

]
, hy(k) = −thop

[
2 cos(x) sin(y)− sin(2y)

]
, hz(k) = V . (A.238)

As the two spin projections in Eq. (A.234) do not mix we can diagonalise the spin-up and spin-down
blocks separately. This yields the familiar energy dispersions

E↑±(k) = ±
√
hx(k)2 + hy(k)2 +

(
hz(k) + h0(k)

)2
,

E↓±(k) = ±
√
hx(k)2 + hy(k)2 +

(
hz(k)− h0(k)

)2
, (A.239)

which may be combined as

Eσ±(k) = ±
√
hx(k)2 + hy(k)2 +

(
hz(k) + ησh0(k)

)2 (A.240)

where ησ = ±1 is positive (negative) for σ =↑ (σ =↓).
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The Fourier transformed Kane–Mele Hamiltonian in Eq. (A.234) is given in terms of the four tensor
basis matrices

σz ⊗ τz , 12 ⊗ τx , 12 ⊗ τy , 12 ⊗ τz . (A.241)

In this basis, the TRS operator takes the form T = (iσy⊗12)K and the individual matrices transform as

T
(
σz ⊗ τz

)
T † =

(
iσy ⊗ 12

)
K
(
σz ⊗ τz

)
K
(
(−iσy)⊗ 12

)
=
(
σy ⊗ 12

) (
σz ⊗ τz

) (
σy ⊗ 12

)
(�)
=
(
σyσzσy ⊗ τz

)
(�)
=
(
iσxσy ⊗ τz

)
=
(
i2σz ⊗ τz

)
= −

(
σz ⊗ τz

)
T
(
12 ⊗ τx

)
T † =

(
iσy ⊗ 12

)
K
(
12 ⊗ τx

)
K
(
(−iσy)⊗ 12

)
=
(
σy ⊗ 12

) (
12 ⊗ τx

) (
σy ⊗ 12

)
=
(
σ2
y ⊗ τx

)
=
(
12 ⊗ τx

)
T
(
12 ⊗ τy

)
T † =

(
iσy ⊗ 12

)
K
(
12 ⊗ τy

)
K
(
− iσy ⊗ 12

)
=
(
σy ⊗ 12

) (
12 ⊗ (−τy)

) (
σy ⊗ 12

)
=
(
σ2
y ⊗ τy

)
= −

(
12 ⊗ τy

)
T
(
12 ⊗ τz

)
T † =

(
iσy ⊗ 12

)
K
(
12 ⊗ τz

)
K
(
(−iσy)⊗ 12

)
=
(
σy ⊗ 12

) (
12 ⊗ τz

) (
σy ⊗ 12

)
=
(
σ2
y ⊗ τz

)
=
(
12 ⊗ τz

)
, (A.242)

where we repeatedly used σjσk = δkl + iεjklσl in (�) and KτyK = −τy while KτxK = τx and KτzK = τz.

The Z2 Invariant of the Kane–Mele Model

Here we closely follow Ref. [181] to determine an explicit formula for the Z2 invariant of the Kane–
Mele model. The TRS invariance of the Kane–Mele model means that we must consider “TRS-smooth”
sections, i.e. sections |un(k)〉 fulfilling

|un(k)〉 = T |un(θ(k))〉 = T |un(−k)〉 , (A.243)

with the base space time-reversal involution θ : k 7→ −k. Just like the Chern number constitutes an
obstruction to global sections, the Z2 invariant constitutes an obstruction to define global TRS-smooth
sections. In order to construct TRS-smooth sections we introduce the so-called effective Brillouin zone
E2, which is pictured in Fig. A.2. Generally, the effective Brillouin zone Ed is a fundamental domain
of time-reversal symmetry, i.e. it contains exactly one representative from each pair k and θ(k) = −k
of momenta related by TRS, up to points Γα that are invariant under TRS (time-reversal invariant
momenta, or TRIMs). The boundary ∂Ed of Ed still supports a non-trivial action of TRS and we can
again consider a fundamental domain Fd−1 of ∂Ed. In the present case, we have d = 2 and E2 is a
cylinder S1 × [0, 1] ⊂ T 2 while F1 is the interval [0, π]. The concept of the effective Brillouin zone is
crucial for the definition of the Z2 invariant.
Recall that the Kane–Mele Bloch bundle decomposes into a direct sum of two rank-two valence and
conduction subbundles. At any TRIM Γα the time reversal operator T therefore acts as a skew-symmetric,
anti-linear map on the rank-two fibre over Γα. In a local basis, this map is represented by a 2× 2 skew-
symmetric matrix. There are several natural quantities associated with such matrices, including their
rank, determinant, and Pfaffian. The latter, though less commonly encountered, is particularly relevant
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Figure A.2: Stylised two-dimensional effective Brillouin zone E2 (shaded) and the fundamental domain of
its boundary F1 (red). Illustration created by the author, inspired by Ref. [181].

here. We have seen in Sec. 2.3.5 that the Pfaffian is an invariant polynomial and can therefore be used to
generate topological invariants of a given vector bundle. For a 2× 2 skew-symmetric matrix, the Pfaffian
is especially simple: it equals the upper right entry.

if A =

(
0 a

−a 0

)
then Pf(A) = a. (A.244)

Note that the actual choice of basis does matter because the sign of the Pfaffian changes for instance when
two basis states are interchanged. The Kane–Mele invariant can be understood as a way of normalising
and comparing these choices of Pfaffians at all four fixed points simultaneously. To see this, we utilise
the fact that the Kramers pairs {|u1

n(Γα)〉 , |u2
n(Γα)〉} are linearly independent for any fixed point Γα so

that we can choose them to satisfy

T |u1
n(Γα)〉 = |u2

n(Γα)〉 and T |u2
n(Γα)〉 = − |u1

n(Γα)〉 . (A.245)

We noted earlier that we would have to make sure that the sections |ujn(k)〉 are TRS-smooth, i.e. properly
related between regions that are “time-reversed counterparts” of one another. To rigorously identify and
connect these regions we make use of the notion of time-reversal stable, or θ-stable, regions. A subset
V ⊂ T 2 of the Brillouin torus is said to be stable under θ if it fulfils θ(V ) = V . Let us denote those
θ-stable regions V that do not contain fixed points Γα by V̄ , i.e. V̄ ∩ {Γα} = ∅. Over every V̄ we then
have

|u1,2
n (−k)〉 = eiχ

1,2
n (−k)T |u1,2

n (k)〉 (T 2=−1)
=⇒ eiχ

1,2
n (−k) = −eiχ

1,2
n (k), (A.246)

with phase functions χ1,2
n (k). One can show that these sections do not continuously extend to stable

regions Ṽ that do contain fixed points, cf. Ref. [181]. However, it is possible to patch up a section using
both |u1

n(k)〉 and |u2
n(k)〉 to bridge the TRIMs. To see this, we take some stable path P containing a

fixed point Γα and decompose it as P = P−ΠP+ where θ(V −) = V + and V − ∩ V + = Γα. We then fix
local sections over P− and P+ independently and continuously extend both sections to Γα from either
side. Importantly, these combined sections can be chosen such that they match over Γα, such that the
sections over P− and P+ can be “glued together” at Γα. In this way we can find two TRS-smooth sections
that extend past Γα. Specifically, we denote the two combined sections by Roman numbers |uIn(k)〉 and
|uIIn (k)〉 and define

|uIn(k)〉 =

{
|u1
n(k)〉 on P+

|u2
n(k)〉 on P−

and |uIIn (k)〉 =

{
|u2
n(k)〉 on P+

|u1
n(k)〉 on P−

(A.247)

where we glue together the functions χ1
n(−k) and χ2

n(k) at Γα to form a function χn(k). With this we
get

|uIIn (−k)〉 = eiχn(−k)T |uIn(k)〉 and |uIn(−k)〉 = −eiχn(k)T |uIIn (k)〉 . (A.248)
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In this basis, the U(2) matrix representation of T reads

ωn(k) = (〈usn(−k)|T |utn(k)〉)s,t=I,II =

(
0 −e−iχn(k)

e−iχn(−k) 0

)
, (A.249)

which is skew-symmetric over the fixed point Γα. Its Pfaffian is Pf(ωn(Γα)) = −e−iχn(Γα). From
|usn(k)〉s=I,II we may define Berry connections

Asn(k) = i 〈usn(k)|∂k|usn(k)〉 . (A.250)

With these we can compute so-called partial polarisations

P s :=

∮
C

Asn(k)dk (A.251)

over every closed curve C ⊂ T 2. We can use the partial polarisations to define the charge polarisation
PC = P I + P II and the time-reversal polarisation PT = P I − P II . Now, the effective Brillouin zone
boundary ∂E2 = {(k, 0) | k ∈ [−π, π]} ⊂ T 2 corresponds to a closed curve C ⊂ T 2, which is also a
fundamental domain for the time-reversal involution θ. As a closed curve, ∂E2 contains two fixed points
Γ1 = (0, 0) and Γ2 = (π, 0). Its time-reversal polarisation takes the form [181]

PT =
1

2π

∫ π

−π
(AIn(k)−AIIn (k))dk =

1

2πi

[
ln

det(ωn(π))

det(ωn(0))
− 2 ln

Pf(ωn(π))

Pf(ωn(0))

]
. (A.252)

Exponentiating both sides and using eiπ = −1 gives

(−1)PT =
∏

Γα=Γ1,Γ2

√
det(ωn(Γα))

Pf(ωn(Γα))
=
∏

Γα=Γ1,Γ2

sign (Pf(ωn(Γα))) . (A.253)

The Kane–Mele invariant is then a mod two reduction

ν := PT mod 2 (A.254)

of the time-reversal polarisation PT .10 There is are mode formulas for the Kane–Mele invariant available
in the literature, that highlight different properties. One wide-spread formula is

ν :=
1

2π

(∮
∂E2

A dk −
∫
E2

F dk
)

mod 2 (A.255)

with the Berry connection A and Berry curvature F , see e.g. [181]. This formula is reminiscent of those
yielding the Chern number as it solely depends on the Berry connection and curvature.

10It is important to point out that this is based on a continuous choice of the square root along the considered path.
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A.11 Diagonalisation and Product Vacuum of BCS and Kitaev Chain Hamiltonians

Here, we provide a collection of explicit calculations for Chap. 9.

Bogoliubov Diagonalisation of Reduced BdG Hamiltonian

To begin with, we prove that the reduced BdG Hamiltonian Eq. (9.1) is diagonalised by the Bogoliubov
diagonalisation Eq. (9.2). First, we show that the transformation matrix

U(k) =

(
u(k) −v(k)

v(k)∗ u(k)

)
(A.256)

is actually unitary. This is a direct consequence of Eq. (9.7), as(
u(k) −v(k)

v(k)∗ u(k)

)(
u(k) v(k)

−v(k)∗ u(k)

)
=

(
u(k)2 + |v(k)|2 u(k)v(k)− v(k)u(k)

v(k)∗u(k)− u(k)v(k)∗ |v(k)|2 + u(k)2

)
=

(
1 0

0 1

)
. (A.257)

Second, U(k) actually diagonalises the reduced BdG matrix as indicated which we will show by brute
force in the following. For this, we drop the functional dependence on crystal momentum k to make the
whole experience more readable and less painful. We get

U† hU =

(
u v

−v∗ u

)(
ξ ∆

∆∗ −ξ

)(
u −v
v∗ u

)
=

(
u v

−v∗ u

)(
ξu+ ∆v∗ −ξv + ∆u

∆∗u− ξv∗ −∆∗v − ξu

)
=

(
ξu2 + ∆v∗u+ v∆∗u− ξ|v|2 −ξuv + ∆u2 −∆∗v2 − ξuv
−ξuv∗ −∆v∗ 2 + ∆∗u2 − ξv∗u ξ|v|2 −∆v∗u− v∆∗u− ξu2

)
=

(
A B

B∗ −A

)
. (A.258)

For A and B we find

A = ξu2 + ∆v∗u+ ∆∗vu− ξ|v|2

= ξ
1

2

(
1 +

ξ

E

)
+ ∆

√
1

2

(
1− ξ

E

)
∆∗

|∆|

√
1

2

(
1 +

ξ

E

)

+ ∆∗

√
1

2

(
1− ξ

E

)
∆

|∆|

√
1

2

(
1 +

ξ

E

)
− ξ 1

2

(
1− ξ

E

)
|∆|2

|∆|2

=
ξ

2

(
1 +

ξ

E
− 1 +

ξ

E

)
+ 2
|∆|2

|∆|

√
1

2

(
1− ξ

E

)
1

2

(
1 +

ξ

E

)

=
ξ2

E
+ 2|∆|

√
1

4

(
1− ξ2

E2

)

=
ξ2

E
+ |∆|

√
E2 − ξ2

E2

=
ξ2

E
+ |∆|

√
|∆|2
E2

=
ξ2 + |∆|2

E

= E (A.259)
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and

B = −ξuv + ∆u2 −∆∗v2 − ξuv
= −2ξuv + ∆u2 −∆∗v2

= −2ξ

√
1

2

(
1 +

ξ

E

)√
1

2

(
1− ξ

E

)
∆

|∆|
+ ∆

1

2

(
1 +

ξ

E

)
−∆∗

1

2

(
1− ξ

E

)
∆2

|∆|2

= −2
∆ξ

|∆|

√
1

4

(
1 +

ξ

E

)(
1− ξ

E

)
+

∆

2

(
1 +

ξ

E

)
− ∆

2

(
1− ξ

E

)
|∆|2

|∆|2

= −2
∆ξ

|∆|

√
1

4

(
1 +

ξ

E

)(
1− ξ

E

)
+

∆

2

(
1 +

ξ

E

)
− ∆

2

(
1− ξ

E

)

= −∆ξ

|∆|

√
1− ξ2

E2
+

∆

2

(
1 +

ξ

E
− 1 +

ξ

E

)
= −∆ξ

|∆|

√
E2 − ξ2

E2
+

∆

2

2ξ

E

= −∆ξ

|∆|

√
|∆|2
E2

+
ξ∆

E

= −∆ξ

|∆|
|∆|
E

+
ξ∆

E

= −ξ∆
E

+
ξ∆

E

= 0. (A.260)

so Eq. (A.258) becomes

U† hU =

(
u v

−v∗ u

)(
ξ ∆

∆∗ −ξ

)(
u −v
v∗ u

)
=

(
A B

B∗ −A

)
=

(
E 0

0 −E

)
. (A.261)

Fourier Transforming the BCS Chain Hamiltonian

Next, we explicitly Fourier transform the BCS tight-binding Hamiltonian from Eq. 9.8 using

cjσ =
1√
L

∑
k

eikRjckσ (A.262)

to get

HBCS =
∑
j,σ

−t
 1

L

∑
k,l

ei(lRj+1−kRj)c†kσclσ +
1

L

∑
k,l

ei(kRj−lRj+1)c†lσckσ


−µ

 1

L

∑
k,l

ei(lRj−kRj)c†kσclσ


−
∑
j

∆

 1

L

∑
k,l

e−i(lRj+kRj)c†k↓c
†
l↑

+ ∆∗

 1

L

∑
k,l

ei(lRj+kRj)ck↑cl↓


=
∑
k,l,σ

−t
 1

L

∑
j

ei(l−k)Rj

 eilac†kσclσ +

 1

L

∑
j

ei(l−k)Rj

 e−ilac†lσckσ


−µ

 1

L

∑
j

ei(l−k)Rj

 c†kσclσ


−
∑
k,l

∆

 1

L

∑
j

e−i(l+k)Rj

 c†k↓c
†
l↑

+ ∆∗

 1

L

∑
j

ei(l+k)Rj

 ck↑cl↓

 , (A.263)
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which, using 1
L

∑
j e
−i(l+k)Rj = δkl can be simplified to

HBCS =
∑
k,σ

(
−t
[
eikac†kσckσ + e−ikac†kσckσ

]
− µc†kσckσ

)
−
∑
k

(
∆c†k↓c

†
−k↑ + ∆∗ck↑c−k↓

)
=
∑
k,σ

(
−t
[
eika + e−ika

]
− µ

)
c†kσckσ −

∑
k,l

(
∆c†k↓c

†
−k↑ + ∆∗ck↑c−k↓

)
=
∑
k,l,σ

(−2t cos(ka)− µ) c†kσckσ −
∑
k

(
∆c†k↓c

†
−k↑ + ∆∗ck↑c−k↓

)
=
∑
k

(
ξ(k)(c†k↑ck↑ + c†−k↓c−k↓)−∆c†k↓c

†
−k↑ −∆∗ck↑c−k↓

)
=
∑
k

(
ξ(k)(c†k↑ck↑ + 1− ck↓c†k↓) + ∆c†k↑c

†
−k↓ + ∆∗c−k↓ck↑

)
=
∑
k

(c†k↑, c−k↓)

(
ξ(k) ∆

∆∗ −ξ(k)

)(
ck↑
c†−k↓

)
+
∑
k

ξ(k) . (A.264)

Note that we are considering a one-dimensional chain so that ka = |k||a|. Moreover, we usually set
a ≡ |a| = 1 so that ka = |k| = k. As a result, we have

ξ(k) = −2t cos(ka)− µ = −2t cos(k)− µ . (A.265)

Product Form of the BCS Vacuum

Moving on, we briefly show that the BCS product vacuum does indeed take the form given in Eq. (9.15):

|0〉b =
∏
k,σ

bkσ |0〉

=
∏
k

(
u(k)ck↑ + v(k)c†−k↓

)(
−v(k)c†k↑ + u(k)c−k↓

)
|0〉

=
∏
k

(−u(k)v(k)ck↑c
†
k↑ +���

���
�:0

u(k)2ck↑c−k↓ − v(k)2c†−k↓c
†
k↑ +

��
���

���
�:0

v(k)u(k)c†−k↓c−k↓) |0〉

=
∏
k

(−u(k)v(k)(1−��
��*

0
c†k↑ck↑)− v(k)2c†−k↓c

†
k↑) |0〉

=
∏
k

(−v(k))
∏
k

(u(k) + v0(k)eiδc†−k↓c
†
k↑) |0〉

=
∏
k

(−v(k)eiδ)
∏
k

(u(k)e−iδ + v0(k)c†−k↓c
†
k↑) |0〉 (A.266)

where

N :=
∏
k

(−v(k)eiδ) (A.267)

is the norm since

〈0|0〉b b =
∏
k

|v(k)|2
(
〈0|
∏
k

(
u(k)eiδ + v0(k)ck↑c−k↓

))(∏
k

(
u(k)e−iδ + v0(k)c†−k↓c

†
k↑

)
|0〉

)
= |N |2 〈0|

∏
k

((
u(k)eiδ + v0(k)ck↑c−k↓

)(
u(k)e−iδ + v0(k)c†−k↓c

†
k↑

))
|0〉

= |N |2 〈0|
∏
k

u(k)2 +
��

���
���

�:0

u(k)eiδv0(k)c†−k↓c
†
k↑ +
���

���
���

�:0

v0(k)u(k)e−iδck↑c−k↓ + v0(k)2ck↑c−k↓c
†
−k↓c

†
k↑

 |0〉
= |N |2

∏
k

(
u(k)2 + v0(k)2

)
= |N |2. (A.268)
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Fourier Transforming the Kitaev Chain Hamiltonian

The Kitaev chain Hamiltonian from Eq. (9.26) Fourier transforms as

HK =
∑
j

−t
 1

L

∑
k,l

ei(lRj+1−kRj)c†kcl +
1

L

∑
k,l

ei(kRj−lRj+1)c†l ck


− µ

 1

L

∑
k,l

ei(lRj−kRj)c†kcl


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∆

2

 1

L
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†
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1

L
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†
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∆∗

2
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L

∑
k,l
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1

L

∑
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
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L

∑
j

ei(l−k)Rj
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L

∑
j
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
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 1

L

∑
j

ei(l−k)Rj

 c†kcl


+

∆

2

 1

L

∑
j

e−i(l+k)Rj

 e−ilac†l c
†
k −

 1

L

∑
j

e−i(k+l)Rj

 e−ikac†l c
†
k


+

∆∗

2

 1

L

∑
j

ei(l+k)Rj

 eilackcl −

 1

L

∑
j

ei(k+l)Rj

 eikackcl


=
∑
k

([
−t
(
eika + e−ika

)
− µ

]
c†kck

+
∆

2

(
eika − e−ika

)
c†−kc

†
k +

∆∗

2

(
e−ika − eika

)
ckc−k

)
=
∑
k

(
[−2t cos(ka)− µ] c†kck + i∆ sin(ka)c†−kc

†
k − i∆

∗ sin(ka)ckc−k

)
(�)
=

1

2

∑
k

(
ξ(k)

(
c†kck + c†kck

)
− 2i∆ sin(ka)c†kc

†
−k + 2i∆∗ sin(ka)c−kck

)
(?)
=

1

2

∑
k

(
ξ(k)

(
c†kck + 1− ckc†k

)
+ ∆(k)c†kc

†
−k + ∆(k)∗c−kck

)
=

1

2

∑
k

(
ξ(k)c†kck − ξ(k)ckc

†
k + ∆(k)c†kc

†
−k + ∆(k)∗c−kck

)
+

1

2

∑
k

ξ(k)

=
1

2

∑
k

(
ξ(k)c†kck − ξ(−k)c−kc

†
−k + ∆(k)c†kc

†
−k + ∆(k)∗c−kck

)
+ E0

=
1

2

∑
k

(
ξ(k)c†kck − ξ(k)c−kc

†
−k + ∆(k)c†kc

†
−k + ∆(k)∗c−kck

)
+ E0

=
1

2

∑
k

(c†k, c−k)

(
ξ(k) ∆(k)

∆(k)∗ −ξ(k)

)(
ck
c†−k

)
+ E0 , (A.269)

where we defined ξ(k) = −2t cos(ka)− µ in (�), ∆(k) = −2i∆ sin(ka) in (?), and made repeated use of
the fermionic anticommutator relations throughout.
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Rearranging the Diagonalised Kitaev Chain Hamiltonian

The rearrangement of Eq. (9.30) into Eq. (9.34) reads

HK =
1

2

∑
k

(b†k, b−k)

(
E(k) 0

0 −E(k)

)(
bk
b†−k

)

=
1

2

∑
k

E(k)
(
b†kbk − b−kb

†
−k

)
=

1

2

∑
k

E(k)
(
b†kbk − (1− b†−k b−k)

)
=

1

2

∑
k

E(k)
(
b†kbk + b†−k b−k

)
+
∑
k

E(k)

=
1

2

∑
k

E(k)
(
b†kbk + b†k bk

)
+ E′0

=
∑
k

E(k)b†kbk + E′0 (A.270)

Product Form of the Kitaev Vacuum

The product vacuum of the Kitaev chain can be written as

|0〉b =
∏

000<k<πππ

bkb−k |0〉

=
∏

000<k<πππ

(
u(k)ck↑ + v(k)c†−k↓

)(
−v(k)c†k↑ + u(k)c−k↓

)
|0〉

=
∏

000<k<πππ

(−u(k)v(k)ck↑c
†
k↑ +���

���
�:0

u(k)2ck↑c−k↓ − v(k)2c†−k↓c
†
k↑ +

��
���

���
�:0

v(k)u(k)c†−k↓c−k↓) |0〉

=
∏

000<k<πππ

(−u(k)v(k)(1−��
��*

0
c†k↑ck↑)− v(k)2c†−k↓c

†
k↑) |0〉

=
∏

000<k<πππ

(−v(k))
∏
k

(u(k) + v(k)c†−k↓c
†
k↑) |0〉

=
∏

000<k<πππ

(−v(k)eiδ)
∏
k

(u(k)e−iδ + v0(k)c†−k↓c
†
k↑) |0〉 (A.271)

where

|N | :=
∏

000<k<πππ

(−v(k)eiδ) (A.272)

is once again the norm because

〈0|0〉d d =
∏

000<k<πππ

|v(k)|2
〈0| ∏

000<k′<πππ

(
u(k
′
)e
iδ

+ v0(k
′
)ck′c−k′

) ∏
000<k<πππ

(
u(k)e

−iδ
+ v0(k)c

†
−kc

†
k

)
|0〉


= |N |2 〈0|

∏
000<k<πππ

((
u(k)e

iδ
+ v0(k)ckc−k

)(
u(k)e

−iδ
+ v0(k)c

†
−kc

†
k
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|0〉

= |N |2 〈0|
∏
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u(k)
2

+
��

���
���:

0

u(k)e
iδ
v0(k)c

†
−kc

†
k +
���

���
��: 0

v0(k)u(k)e
−iδ

ckc−k + v0(k)
2
ckc−kc

†
−kc

†
k

 |0〉
= |N |2

∏
000<k<πππ

(
u(k)

2
+ v0(k)

2
)

= |N |2. (A.273)

One normalised Kitaev ground state is therefore

|0〉d =
∏

000<k<πππ

(u(k)e−iδ + v0(k)c†−kc
†
k). (A.274)
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A.12 Technical Aspects of the Kitaev Chain Model

Here, we provide a collection of explicit calculations for Chap. 10.

Majorana Representation of the Kitaev Chain

Following Sec. 5.5, we may introduce self-adjoint Majorana operators

γAj = c†j + cj = γA †j and γBj = i
(
c†j − cj

)
= γA †j , (A.275)

which give

cj =
1

2

(
γAj + iγBj

)
and c†j =

1

2

(
γAj − iγBj

)
. (A.276)

If we plug these into Eq. (10.1) we get

HKit =
1

4

(
L−1∑
j=1

[
− t
(
(γAj+1 − iγBj+1)(γAj + iγBj ) + (γAj − iγBj )(γAj+1 + iγBj+1)

)
+ ∆0 (γAj + iγBj )(γAj+1 + iγBj+1) + ∆0 (γAj+1 − iγBj+1)(γAj −+iγBj )

]
− µ

L∑
j=1

(
(γAj − iγBj )(γAj + iγBj )− 2

))

=
1

4

(
L−1∑
j=1

[
− t
(
��

��γAj+1γ
A
j − iγBj+1γ

A
j + iγAj+1γ

B
j +��

��XXXXγBj+1γ
B
j +
��

��γAj γ
A
j+1 + iγAj γ

B
j+1 − iγBj γAj+1 +���

�XXXXγBj γ
B
j+1

)
+ ∆0

(
��

��γAj γ
A
j+1 + iγBj γ

A
j+1 + iγAj γ

B
j+1 +���

�XXXXγBj γ
B
j+1

)
+ ∆0

(
��

��γAj+1γ
A
j − iγAj+1γ

B
j − iγBj+1γ

A
j +��

��XXXXγBj+1γ
B
j

)]
− µ

L∑
j=1

(
γAj γ

A
j + iγAj γ

B
j − iγBj γAj + γBj γ

B
j )− 2

))

=
1

4

(
L−1∑
j=1

[
− 2it

(
γAj γ

B
j+1 − iγBj γAj+1

)
+ 2i∆0

(
γBj γ

A
j+1 + γAj γ

B
j+1

)]
− µ

L∑
j=1

(
2iγAj γ

B
j + �2− �2

))

=
i

2

(
L−1∑
j=1

[(
∆0 + t

)
γBj γ

A
j+1 +

(
∆0 − t

)
γAj γ

B
j+1

]
− µ

L∑
j=1

γAj γ
B
j

)
, (A.277)

where we have repeatedly used
{
γXj , γ

Y
k

}
= 2δjkδXY .

Energy Gap in the Kitaev Chain Model

From

∂

∂k
|h(k)|2 =

∂

∂k

(
4∆2

0 sin2(k) + (µ+ 2t cos(k))2
)

= 8∆2
0 cos(k) sin(k)− 4t sin(k)

(
µ+ 2t cos(k)

)
= 4 sin(k)

[
2∆2

0 cos(k)− t
(
µ+ 2t cos(k)

)]
!
= 0 (A.278)

we get two types of extrema, namely

4 sin(k)
!
= 0 =⇒ kc,1(n) = nπ with n ∈ Z , (A.279)

which exists for all values of t, µ and ∆0, and

2∆2
0 cos(k)− t

(
µ+ 2t cos(k)

) !
= 0 =⇒ kc,2 = ± arccos

(
tµ

2(∆2
0 − t2)

)
, (A.280)
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which only exists if ∣∣∣ tµ

2(∆2
0 − t2)

∣∣∣ ≤ 1 . (A.281)

With

|h(kc,1(n))|2 = 4∆2
0 sin2(kc,1) + (µ+ 2t cos(kc,1))2

= (µ+ (−1)n2t)2 (A.282)

and

|h(kc,2)|2 = 4∆2
0 sin2(kc,2) + (µ+ 2t cos(kc,2))2

= 4∆2
0(1− cos2(kc,2)) + (µ+ 2t cos(kc,2))2

= 4∆2
0

(
1−

∣∣∣ tµ

2(∆2
0 − t2)

∣∣∣2)+
(
µ+ 2t

[ tµ

2(∆2
0 − t2)

])2

=
16∆2

0(∆2
0 − t2)2 − 4∆2

0t
2µ2 + (2µ(∆2

0 − ��t2) +�
��2t2µ)2

4(∆2
0 − t2)2

=
16∆2

0(∆2
0 − t2)2 − 4∆2

0t
2µ2 + 4µ2∆4

0

4(∆2
0 − t2)2

=
16∆2

0(∆2
0 − t2)2 + 4∆2

0µ
2(∆2

0 − t2)

4(∆2
0 − t2)2

=
4∆2

0(∆2
0 − t2) + ∆2

0µ
2

(∆2
0 − t2)

= ∆2
0

(
4 +

µ2

(∆2
0 − t2)

)
(A.283)

we then get a band gap of

∆E = 2 ·min

(
|µ+ 2t| , |µ− 2t| , |∆0|

√
4 +

µ2

(∆2
0 − t2)

)
. (A.284)

Depending on which of these is realised, the band gap is situated at

∆E =


2|µ+ 2t| at k = 0

2|µ− 2t| at k = ±π
2|∆0|

√
4 + µ2

(∆2
0−t2)

at k = ± arccos
(

tµ
2(∆2

0−t2)

)
.

(A.285)

For ∆0 > 0 we get band closures at k = 0 (k = ±π) when µ = −2t (µ = 2t). If ∆0 = 0, we additionally
get band closures at

k = ± arccos
(
− µ

2t

)
(A.286)

when |µ| ≤ 2|t|.

Degree Invariant of the Kitaev Chain Model

To compute the degree of m : S1
k → S1

m from Eq. (10.38), we first need to determine a normalised volume
form on the target manifold S1

m ⊂ R3. To this end, we observe that m(k) traces out a circle lying in the
two-dimensional plane

P = span


sin(φ)

cos(φ)

0

 ,

0

0

1

 ⊂ R3 . (A.287)
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We may therefore set φ = 0, noting that (i) |h(k)| is independent11 of φ, and (ii) the vector

h(k) =

 2∆0 sin(φ) sin(k)

−2∆0 cos(φ) sin(k)

µ+ 2t cos(k)

 (A.288)

from Eqs. (10.20) and (10.21) itself induces a homotopy between m(k) at φ = 0 and m(k) at any other
value of φ. Taken together, (i) and (ii) ensure that the map m remains well-defined and that its degree
degm remains invariant under variations of φ. For φ = 0 we get

m : S1
k → S1

m ⊂ R2 , k 7→ h(k)

|h(k)|
, (A.289)

with

h(k) =

(
−2∆0 sin(k)

µ+ 2t cos(k)

)
. (A.290)

This allows us to limit our calculation to the target manifold S1
m ⊂ R2. The canonical normalised volume

form of S1 ⊂ R2 reads

η =
1

2π
(x1 dx2 − x2 dx1) =

1

2π
εab xadxb (A.291)

where we introduced the totally antisymmetric tensor εab = −εba for convenience. Now for the pullback.
The pullback of a differential form by some map is something us physicists tend to be rather wary of.
Let me break down the rough pullback recipe before we actually plunge into business and use it. Let
X be a one-dimensional space and let by Y a two-dimensional space like in our case. Given a smooth
map m : X → Y and a one form ω ∈ Ω1(Y ) then the pullback m∗(ω) of ω by m is a one form of X, i.e.
m∗ω ∈ Ω1(X). We call m∗ a pullback map with respect to m because it points the opposite direction of
m: while m goes from X to Y the pullback m∗ points from Ω1(Y ) to Ω1(X). A one form ω ∈ Ω1(Y )

evaluated at y = (y1, y2) ∈ Y reads

ω[y] = ω1(y)dy1 + ω2(y)dy2 (A.292)

where (ω1(y), ω2(y)) ∈ R2 and dy1, dy2 ∈ Ty(Y )∗ form the dual basis to the basis {∂/∂y1, ∂/∂y2} of Ty(Y ).
Recall that ω[y] ∈ Ty(Y )∗ eats one vector v ∈ Ty(Y ) (a tangent vector at y ∈ Y ) as

ω[y](v) = ω[y](v1 ∂

∂y1
+ v2 ∂

∂y2
)

= ω1(y)v1 + ω2(y)v2 (A.293)

which is a real number, i.e. ω[y](v) ∈ R. The pullback is going to be our solution to the problem of
associating a one form m∗ω ∈ Ω1(X) to any given ω ∈ Ω1(Y ) by our map m : X → Y . So what could be
a natural course of action facing this? Given a point x ∈ X and a vector u ∈ Tx(X), the natural idea is
to use the point y = (m1(x),m2(x)) ∈ Y and to push forward the vector u as m∗(u) ∈ Tm(x)(Y ). This is
exactly how the pullback is defined, i.e.

(m∗ω)[x](u) := ω[m(x)](m∗(u)). (A.294)

Now we “only” have to compute the push forward m∗(u) which is a much easier problem. It is defined as

m∗(u) = dm1[m(x)](u)
∂

∂y1
+ dm2[m(x)](u)

∂

∂y2
(A.295)

which yields

(m∗ω)[x](u) = ω1(m(x))dy1dm1[m(x)](u)
∂

∂y1
+ ω2(m(x))dy2dm2[m(x)](u)

∂

∂y2
. (A.296)

11As |h(k)| =
√

4∆2
0 sin2(k)(sin2(φ) + cos2(φ)) + (µ+ 2t cos(k))2 =

√
4∆2

0 sin2(k) + (µ+ 2t cos(k))2.
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By definition, the terms dyi ∂/∂yi cancel out and we get

(m∗ω)[x](u) = ω1(m(x))dm1[m(x)](u) + ω2(m(x))dm2[m(x)](u) (A.297)

and since we are interested in what happens for the one form itself we can drop the test argument
u ∈ Tx(X) and end up with

(m∗ω)[x] = ω1(m(x))dm1[m(x)] + ω2(m(x))dm2[m(x)]. (A.298)

In our case we have the mapping m : k 7→ (m1(k),m2(k)) and the normalised volume form η =
1

2π (−x2, x1) of S1 ⊂ R2 which is given in the {dx1, dx2} basis of Tx(S1 ⊂ R2)∗. Let us compute
the individual parts of Eq. (A.298). Namely, we get

(η1[m(k)], η2[m(k)]) = (− 1

2π
m2(k),

1

2π
m1(k)) (A.299)

as well as

dm1[m(x)] =
∂m1(k)

∂k
dk and dm2[m(x)] =

∂m2(k)

∂k
dk (A.300)

which gives

(m∗η)[k] = − 1

2π
m2(k)

∂m1(k)

∂k
dk +

1

2π
m1(k)

∂m2(k)

∂k
dk

=
1

2π
εabma(k)

∂mb(k)

∂ k
dk. (A.301)

The degree of m is then the integral

degm =

∫
S1

m∗η

=
1

2π

∫
S1⊂R2

εabma(k)
∂mb(k)

∂ k
dk (A.302)

In order to efficiently compute this integral we will use a trick: we will rewrite Eq. (A.302) as a complex
integral and use Cauchy’s argument principle for meromorphic12 functions. To do this consider

εabma(k)
∂mb(k)

∂ k
= m1(k)

∂ m2(k)

∂ k
−m2(k)

∂ m1(k)

∂ k
. (A.303)

With Eq. (A.289) we get

m1
∂ m2

∂ k
=

h1√
h2

1 + h2
2

(
h′2√
h2

1 + h2
2

+ h2
∂

∂ k

[
1√

h2
1 + h2

2

])

m2
∂ m1

∂ k
=

h2√
h2

1 + h2
2

(
h′1√
h2

1 + h2
2

+ h1
∂

∂ k

[
1√

h2
1 + h2

2

])
. (A.304)

Here we dropped the k-dependence for better readability. We will stick to that convention for most of
the remainder of the paragraph. When taking the difference between both terms in Eq. (A.304) to get
to Eq. (A.303) the terms with derivatives on 1/

√
h2

1 + h2
2 cancel out and we get

εabma(k)
∂mb(k)

∂ k
=
h1h

′
2 − h2h

′
1

h2
1 + h2

2

. (A.305)

Note that denominator equals the squared energy dispersion from Eq. (10.24) as

h2
1 + h2

2 = 4∆2
0 sin2(k) + (µ+ 2t cos(k))2 ≡ E(k)2. (A.306)

12A meromorphic function f on an open set U is a function that is holomorhpic on all of U except for a set of isolated
points {p} which are poles of f . A holomorhpic function is a complex valued function that is complex differentiable in an
open neighbourhood of each point in its complex domain.
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This already tells us that the degree of m is only going to be well-defined for as long as the bulk spectrum
remains gapped. In order to enter the realm of complex analysis we convince ourselves that the following
equality holds:

∂

∂ k
[(h1 ± ih2)] (h1 ∓ ih2) = h′1h1 + h2h

′
2 ∓ i(h′1h2 − h′2h1) (A.307)

where the derivative with respect to k acts on the first factor only and where the ± and ∓ signs signify
that there is an ambiguity in our description. Namely, the notation is supposed to show that there are
two versions of the equation: we could either choose plus in the first factor and minus in the second factor
or minus in the first factor and plus in the second. Above, we claimed that this choice is but a description
ambiguity so we should be able to use either version of Eq. (A.307) and obtain the same result eventually.
We will put up with the notational overhead in order to show that this is, indeed, the case. Comparing
Eq. (A.307) to Eq. (A.305) we find

εabma(k)
∂mb(k)

∂ k
= ±i

[
∂

∂ k
[(h1 ± ih2)] (h1 ∓ ih2)− h′1h1 − h2h

′
2

]
(A.308)

which gives

degm = ± i

2π

∫
S1
k

∂
∂ k [(h1 ± ih2)] (h1 ∓ ih2)− (h′1h1 + h2h

′
2)

h2
1 + h2

2

dk. (A.309)

The second term is easily evaluated as

∓ i

2π

∫
S1
k

(h′1h1 + h2h
′
2)

h2
1 + h2

2

dk = ∓ i

4π

[
ln
(
h2

1 + h2
2

)]2π
k=0

= 0 (A.310)

because the bulk dispersion h2
1 + h2

2 = E(k)2 is 2π periodic. This leaves us with

degm = ± i

2π

∫
S1
k

∂
∂ k [(h1 ± ih2)] (h1 ∓ ih2)

h2
1 + h2

2

dk

= ± i

2π

∫
S1
k

∂
∂ k [(h1 ± ih2)] (h1 ∓ ih2)

(h1 ± ih2)(h1 ∓ ih2)
dk

= ± i

2π

∫
S1
k

∂
∂ k [(h1 ± ih2)]

(h1 ± ih2)
dk. (A.311)

where in the second line we added a bit of trivial notation for the denominator to clarify that the spare
∓ terms cancel out to yield the last line of the equation. Let us reintroduce the k-dependence and define
the complex valued function

M±(k) := h1(k)± ih2(k) (A.312)

and use it to evaluate Eq. (A.311) as

degm = ± i

2π

∫
S1
k

∂
∂ kM

±(k)

M±(k)
dk

= ± i

2π

∫
S1
k

∂

∂ k
lnM±(k) dk (A.313)

This expression for the degree of m is a complex contour integral of the form

i

2π

∮
C

f ′(z)

f(z)
dz (A.314)

where f(z) is any meromorphic function on C
⋃
Co and where C is a simple13 contour. The sweet thing

about complex contour integrals of the type in Eq. (A.314) is that for them Cauchy’s argument principle
applies. It states that

i

2π

∮
C

f ′(z)

f(z)
dz = Pf − Zf (A.315)

13A simple contour is a counterclockwise oriented contour without self-intersections. In our case, we deal with the contour
S1 ⊂ C ∼ {z ∈ C| |z| = 1} which is the stereotypical example of a simple contour.
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where Pf and Zf denote the number of poles and zeros of f(z) inside the contour C with each pole and
zero counted as many times as its order and multiplicity indicate. Using Cauchy’s argument principle on
Eq. (A.313) we get

degm = ± i

2π

∫
S1
k

∂

∂ k
lnM±(k)dk

= ± i

2π

∮
C

∂

∂ z
lnM±(z) dz

= ± (PM± − ZM±) (A.316)

where we embedded S1
k ↪→ C as k 7→ z = eik to parameterise the contour

C := {z ∈ C : |z| = 1} ⊂ C (A.317)

and where PM and ZM denote the number of poles and zeros ofM±(z) inside the complex unit circle.
We can now write down our functionM±(z) as

M±(k) = h1(k)± ih2(k)

= −2∆0 sin k ± i(µ+ 2t cos k)

= −2∆0
1

2i

(
eik − e−ik

)
± i(µ+ 2t

1

2

(
eik + e−ik

)
)

z=eik
= i∆0

(
z − 1

z

)
± i(µ+ t

(
z +

1

z

)
)

= i

[
(∆0 ± t)z − (∆0 ∓ t)

1

z
± µ

]
(A.318)

and examine its poles and zeros for its analytic continuation to the embedding z ∈ C|z|≤1 of the unit disc
into the complex plane. Clearly, the zeros and poles of M±(z) are dependent on the parameters t,∆0

and µ. In order to explicitly determine them, we first take

M+(z) = i

[
(∆0 + t)z − (∆0 − t)

1

z
+ µ

]
(A.319)

and find that it has a pole at z = 0 iff t 6= ∆0 and that it has no zeros iff t = −∆0. For t 6= −∆0 we can
determine the zeros via

0 = i

[
(∆0 ± t)z − (∆0 ∓ t)

1

z
± µ

]
⇔ 0 = (∆0 + t)z2 − (∆0 − t) + µz

= z2 − (∆0 − t)
(∆0 + t)

+
µ

(∆0 + t)
z (A.320)

which gives

z± =
−µ±

√
µ2 + 4(∆2

0 − t2)

2(∆0 + t)
. (A.321)

For µ = 0 we can simplify this further and get

z± = ±

√
(∆2

0 − t2)

(∆0 + t)2

= ±

√
(∆0 − t)
(∆0 + t)

. (A.322)

With this we can compute degm for the two special points associated to phases (A) and (B)

(A) : ∆0 = t = 0, µ 6= 0 =⇒ PM+ = 0, ZM+ = 0 =⇒ degm = 0

(B) : ∆0 = t 6= 0, µ = 0 =⇒ PM+ = 0, ZM+ = 1 =⇒ degm = −1. (A.323)
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Figure A.3: Location of the zero (white plus) of the analytic continuation of M(z) := M+(z) in the
square region [−1, 1]× [−i, i] ⊂ C. Parameters are listed in the top of each panel. Critical poles and zeros
that are located on the unit circle are indicated by red markers of the respective type. The values of the
degree and topological invariant of the Kitaev chain are shown in the top right corner. The contour of
integration, the unit circle, is shown in black and the background heatmap shows the absolute |M(z)| on
the unit square.

If we take

M−(z) = i

[
(∆0 − t)z − (∆0 + t)

1

z
− µ

]
(A.324)

instead ofM+(z) we find that it has a pole at z = 0 iff t 6= −∆0 and that it has no zeros iff t = ∆0. For
t 6= ∆0 we can determine the zeros in the same fashion as before obtaining

z± =
µ±

√
µ2 + 4(∆2

0 − t2)

2(∆0 − t)
(A.325)

which for µ = 0 becomes

z± = ±

√
(∆0 + t)

(∆0 − t)
. (A.326)

Using this we get

(A) : ∆0 = t = 0, µ 6= 0 =⇒ PM− = 0, ZM− = 0 =⇒ degm = 0

(B) : ∆0 = t 6= 0, µ = 0 =⇒ PM+ = 1, ZM− = 0 =⇒ degm = −1. (A.327)

for the two special points associated to phases (A) and (B). This is the same result that we got when we
usedM+(z) instead ofM−(z), namely

(A) : ∆0 = t = 0, µ 6= 0 =⇒ PM± = 0, ZM± = 0 =⇒ degm = 0

(B) : ∆0 = t 6= 0, µ = 0 =⇒

{
PM+ = 0, ZM+ = 1

PM− = 1, ZM− = 0
=⇒ degm = −1. (A.328)

which shows that the degree is in fact independent of the arbitrary sign we introduced earlier. The
above considerations identify phase (A) to be topologically trivial and phase (B) to be topologically
non-trivial. Note that our embedding S1 ↪→ C determines the global sign of the degree. For example,
using k 7→ z∗ = e−ik clearly reverses the unit circle direction and, indeed, we find that

M±(z∗) = i

[
(∆0 ± t)

1

z∗
− (∆0 ∓ t)z∗ ± µ

]
(A.329)

produces an overall sign yielding degm = +1 in the topologically non-trivial region. This is expected
because the embedding is an inherent part of the map m itself. Different embeddings define different
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Figure A.4: Diagram of degm in the (t, µ) plane for ∆0 = +1 (left) and ∆0 = −1 (right).

maps with (potentially) different degrees.14 In case of the Kitaev chain, the presence of an antilinear
particle hole symmetry (PHS) induces a relation z ↔ z∗ between a complex number and its complex
conjugate so the two solutions degm = +1 and degm = −1 correspond to the same topological phase.
The topological index ν of the physical Kitaev model is therefore not determined by the degree degm

of the map m itself, but rather by its modulus |degm|. If we continuously move away from the special
phase (A) and (B) points in the parameter space

P = span {t, µ,∆0} , (A.330)

we effectively push around the locations of zeros or poles ofM±(z) in the interior Co = {z ∈ C : |z| < 1}
of C. According to Cauchy’s argument principle, this cannot change the value of the integral, and hence
the degree degm of m. Conversely, the only way to change the value of degm is to tune parameters
such that a zero or a pole leaves the region enclosed by our contour C. However, the only way to
continuously push a zero or a pole out of that region is to make it cross the contour C at some point.
This is shown in Fig. A.3. Recall that the absolute value of our complex valued function M±(z) from
Eq. (A.312) equals the absolute value of the bulk energy dispersion E(k = i ln z) for all z on the contour
C = {z ∈ C : |z| = 1}. A parameter configuration p ∈ P for which there exist z ∈ C where |M±(z)| = 0,
like the one in the middle panel of Fig. A.3, therefore signifies a band closure of the physical model. At the
same time, the degree becomes ill-defined at such a parameter configuration because Cauchy’s argument
principle forbids the function to have zeros or poles on the contour of integration. Fig. A.4 shows the
degree of the map m(k) in the (t, µ) plane for ∆0 = +1 and ∆0 = −1. As expected, we find degm = 0

for 2|t| < |µ| and degm = ±1 for 2|t| > |µ|. Any two regions with different degm are separated by a
gap closure either due to |µ| = 2|t| or ∆0 = 0, cf. Eq. (A.285). There are two noteworthy subtleties
to consider here. The first one is that there are parameter regions, such as 2t > |µ| at ∆0 = +1 and
−2t > |µ| at ∆0 = −1, that have the same degree degm = +1, but are still discontinuously separated
by an energy gap closure. At first glance, this seems to conflict with the completeness of the degree as
a homotopy invariant, which ensures that any two maps f, g : Sn → Sn are homotopic if and only if
deg f = deg g. The resolution lies in the fact that our maps m(k) : S1 → S1 are far from arbitrary: they
arise from specific parameter-dependent Hamiltonians and are therefore fully determined by points p in
our parameter space P. The existence of discontinuously (by gap closure) separated parameter regions
with the same degree does not contradict the completeness of the degree as a homotopy invariant because
it only precludes the existence of a continuous path within the highly specialised family of Hamiltonian
maps m(k). In particular, the matching degree still guarantees that f0(k) = mp0(k) and f1(k) = mp1(k)

are homotopic as abstract maps f : S1 → S1 – just not through any homotopy confined to the “physical”
subset of Hamiltonian maps.

The second subtlety in Fig. A.4 is that degm 7→ −degm under ∆ 7→ −∆. This appears to contradict
the fact that mφ=0(k) for φ = 0 is homotopic to mφ(k) for any other value of φ, which should render the
sign of the superconducting gap ∆ irrelevant, since ∆φ=0 = −∆φ=π while degmφ=0(k) = degmφ=π(k).
To resolve this, we note that, despite being closely related, the “two-dimensional” mappingm : S1

k → S1
m ⊂

R2 from Eq. (A.289) and the “three-dimensional” mapping m : S1
k → S1

m ⊂ R3 from Eq. (10.38) define
distinct maps. In particular, either map is based on a specific choice of orientations for S1

k and S1 ⊂ Rn,
14In contrast, the choice of whether we useM± to compute the integral is a technical one that does not effect the result

as is seen in Eq. (A.328).
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μ μ

Figure A.5: Location of pole (black cross marker) and zeros (white plus markers) of the analytic contin-
uation ofM(z) :=M+(z) in the square region [−1, 1]× [−i, i] ⊂ C. Parameters are listed in the top of
each panel. Critical poles and zeros that are located on the unit circle are indicated by red markers of
the respective type. The values of the degree and topological invariant of the Kitaev chain are shown in
the top right corner. The contour of integration, the unit circle, is shown in black and the background
heatmap shows the absolute |M(z)| on the unit square.

which has to be carefully accounted for in any comparison between them. To see this, we point out that
at any arbitrary but fixed value of φ, the associated three-dimensional mapping mφ : S1

k → S1
m ⊂ R3

can be restricted to a two-dimensional mapping m : S1
k → S1

m ⊂ R2. Specifically, each three-dimensional
map is actually a map

mφ : S1
k → S1

m ⊂ Pφ ⊂ R3 (A.331)

from S1
k to the φ-dependent plane Pφ ⊂ R3 from Eq. (A.287). Using that Pφ is readily isomorphic to R2,

we then get a two-dimensional map

mφ : S1
k → S1

m ⊂ R2 , (A.332)

where the φ subscript indicates that the orientation of S1
m ⊂ Pφ ⊂ R3 is taken into account. The subtlety

arises precisely for pairs (φ, φ+ π) where Pφ = Pφ+π, but with opposite orientations. This is easily seen
considering P from Eq. (A.287) for φ = 0 and φ = π,

P0 = span


0

1

0

 ,

0

0

1

 and Pπ = span


 0

−1

0

 ,

0

0

1

 , (A.333)

whose canonic orientations

Oφ = vφ,1 × vφ,2 (A.334)

as subspaces of R3 are

O0 =

0

1

0

 ×
0

0

1

 =

1

0

0

 and Oπ =

 0

−1

0

 ×
0

0

1

 =

−1

0

0

 , (A.335)

readily satisfying

O0 = −Oπ . (A.336)

The relative sign flip of the degree between ∆0 = +1 and ∆0 = −1 in Fig. A.4 does not contradict the
homotopy equivalence between mφ=0(k) and mφ=π(k) because it is undone by taking into account the
reversal of orientation between mφ=0(k) and mφ=π(k). This is illustrated by Fig. A.5, which shows how
the two zeros of the Kitaev map first lie inside the unit circle contour C for ∆0 = 0.1, then cross C at
z = ±i at ∆0 = 0 and eventually lie outside C at ∆0 = −0.1. Throughout this transition, the degree
changes from degm = −1 (ν = 1) over degm = ν = n.d. to degm = 1 (ν = 1) in the process. The
relative sign between degm = −1 at ∆0 = 0.1 and degm = +1 at ∆0 = −0.1 can be undone by reversing
the orientation of the integration contour, cf. Eq. (A.315).
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The Form of the Topological Majorana Boundary Modes

Here we motivate the form Eq. (10.44) of the topological Majorana boundary modes in the Kitaev chain.
Following [264], we start with the Majorana representation of HKit from Eq. (A.277). For now we assume
the translationally invariant limit L→∞ such that we can Fourier transform the Majorana field operators
as

γ
A/B
j =

1√
L

∑
k

e−ikRjγ
A/B
k . (A.337)

Note that due the Majorana reality condition γj = γ†j in real space we get

γ
A/B †
k =

1√
L

L∑
j=1

e−ikRjγ
A/B †
j =

1√
L

L∑
j=1

e−ikRjγ
A/B
j = γ

A/B
−k (A.338)

in (quasi-)momentum representation. With this the Kitaev chain Hamiltonian in Eq. (10.4) becomes

HKit =
i

2

(
L−1∑
j=1

[(
∆0 + t

)
γBj γ

A
j+1 +

(
∆0 − t

)
γAj γ

B
j+1

]
− µ

L∑
j=1

γAj γ
B
j

)

=
i

2L

∑
j,k,k′

[
− µe−i(k+k′)RjγAk γ

B
k′ + (∆0 + t)ei(k+k′)Rjeik

′aγBk γ
A
k′ + (∆0 − t)ei(k+k′)Rjeik

′aγAk γ
B
k′

]
(�)
=

i

2

∑
k

[
− µγAk γB−k + (∆0 + t)e−ikaγBk γ

A
−k + (∆0 − t)e−ikaγAk γB−k

]
=
i

2

∑
k

[
− µ

2

(
γAk γ

B
−k + γAk γ

B
−k
)

+
(∆0 + t)

2
e−ika

(
γBk γ

A
−k + γBk γ

A
−k
)

+
(∆0 − t)

2
e−ika

(
γAk γ

B
−k + γAk γ

B
−k
) ]

=
i

2

∑
k

[
− µ

2

(
γAk γ

B
−k + γA−kγ

B
k

)
+

(∆0 + t)

2

(
e−ikaγBk γ

A
−k + eikaγB−kγ

A
k

)
+

(∆0 − t)
2

(
e−ikaγAk γ

B
−k + eikaγA−kγ

B
k

) ]
=
i

4

∑
k

[
µ
(
γB−kγ

A
k − γA−kγBk

)
+ ∆0

(
e−ikaγBk γ

A
−k + eikaγB−kγ

A
k + e−ikaγAk γ

B
−k + eikaγA−kγ

B
k

)
+ t
(
e−ikaγBk γ

A
−k + eikaγB−kγ

A
k − e−ikaγAk γB−k − eikaγA−kγBk

) ]
=
i

4

∑
k

[
µ
(
γB−kγ

A
k − γA−kγBk

)
+ ∆0

([
eika − e−ika

]
γB−kγ

A
k +

[
eika − e−ika

]
γA−kγ

B
k

)
+ t
([
eika + e−ika

]
γB−kγ

A
k −

[
eika + e−ika

]
γA−kγ

B
k

) ]
=
i

4

∑
k

[
µ
(
γB−kγ

A
k − γA−kγBk

)
+ ∆0

(
2i sin (ka) γB−kγ

A
k + 2i sin (ka) γA−kγ

B
k

)
+ t
(
2 cos (ka) γB−kγ

A
k − 2 cos (ka) γA−kγ

B
k

) ]
=
i

4

∑
k

[
µ
(
γB−kγ

A
k − γA−kγBk

)
+ 2i∆0 sin(ka)

(
γB−kγ

A
k + γA−kγ

B
k

)
+ 2t cos(ka)

(
γB−kγ

A
k − γA−kγBk

) ]
(?)
=

i

4

∑
k

(
γA−k , γ

B
−k
)
hKit(k)

(
γAk
γBk

)
≡ i

4

∑
k

φ†(k)hKit(k)φ(k) , (A.339)
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where we repeatedly used the general delta summation identity

1

L

∑
j

ei(k−k
′)Rj = δ(k − k′) (A.340)

in (�), and deployed the anticommutation relation of Majorana operators along with a renaming of
k 7→ −k in some parts of the expression to arrive at a form where we may define a 2× 2 BdG matrix

hKit(k) = −2∆0 sin(ka)σx + (µ+ 2t cos(ka))σy (A.341)

in (?). Note that because of Eq. (A.338) we can indeed understand Eq. (A.339) in the usual BdG sense.
Now, we are interested in exponentially localised MZMs of HKit that appear when we consider large but
finite instances of the topological Kitaev chain. Following [264], we can find such localised modes by
looking for non-oscillatory solutions ΨA/B(k) of

hKit(k)ΨA/B(k) = 0 (A.342)

where A/B refers to the two Majorana species in the system. To probe for such solutions, we simply
replace the plane-wave factor eika by

eika 7→ e−ka =: e−q . (A.343)

This means that we are effectively attempting to diagonalise a Hamiltonian without translation invariance
using eigenstates of the translation-invariant problem. As we will see shortly, this is possible but only if
suitable boundary conditions can be satisfied. Namely, we have to ensure that the wave function cannot
leave the lattice.

If we substitute Eq. (A.343) into Eq. (A.341) we get

hKit(q) = 2i∆0 sinh(q)σx +
(
µ+ 2t cosh(q)

)
σy (A.344)

the zero solutions of which are easiest obtained by squaring the BdG matrix hKit(q) first. Due to the
algebra of the Pauli matrices we get

hBdG(q)2 = −4∆2
0 sinh2(q)σ2

x − 2i∆0 sinh(q)
(
µ+ 2t cosh(q)

)
((((

((((
σxσy + σyσx

)
+
(
µ+ 2t cosh(q)

)2
σ2
y

=
(
− 4∆2

0 sinh2(q) +
(
µ+ 2t cosh(q)

)2)
1 (A.345)

so we need to solve

0
!
= −4∆2

0 sinh2(q) +
(
µ+ 2t cosh(q)

)2
, (A.346)

which, after rearranging and taking the square root, reads(
µ+ 2t cosh(q)

) !
= ±2∆0 sinh(q). (A.347)

If we choose the positive solution and spell out the hyperbolicals we get

µ+ t
(
eq + e−q

) !
= ∆0

(
eq − e−q

)
. (A.348)

Now we may solve this equation for either eq or e−q. We settle for e−q and get

0
!
= (t+ ∆0)e−2q + µe−q + (t−∆0)

= e−2q +
µ

(t+ ∆0)
e−q +

(t−∆0)

(t+ ∆0)

=: x2 +
µ

(t+ ∆0)
x+

(t−∆0)

(t+ ∆0)
, (A.349)

which is readily solved by

x± = − µ

2(t+ ∆0)
±

√
µ2

4(t+ ∆0)2
− (t−∆0)

(t+ ∆0)
=
−µ±

√
µ2 − 4(t2 −∆2

0)

2(t+ ∆0)
. (A.350)
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These are precisely the decay parameters we encountered in Eq. (10.45). In order to motivate the solutions
given in Eq. (10.44) we first note that Eq. (A.350) defines “quasi-momenta”

q± := −i ln(x±) . (A.351)
with which

γA/Bq± =
1√
2L

L∑
j=1

eq±Rj γ
A/B
j =

1√
2L

L∑
j=1

x
Rj
± γ

A/B
j

(�)
=

1√
2L

L∑
j=1

xj± γ
A/B
j (A.352)

where we plugged in Rj = a · j a=1
= j at (�). Using this, make an ansatz

ΨA/B(q±) = ψ
A/B
+ γA/Bq+ + ψ

A/B
− γA/Bq− , (A.353)

for ΨA/B(k) from Eq. (A.342). Here, (ψ+, ψ−) are real coefficients. To arrive at a general solution, we
will have to consider superpositions of the form

ΨA(q±) = ψA+γ
A
q+ + ψA−γ

A
q−

= ψA+
1√
2L

L∑
j=1

xj+ γ
A
j + ψA−

1√
2L

L∑
j=1

xj− γ
A
j

=

L∑
j=1

(
ψA+x

j
+ + ψA−x

j
−

)
γAj

ΨB(q±) = ψB+γ
B
q+ + ψB−γ

B
q−

= ψB+
1√
2L

L∑
j=1

xj+ γ
B
j + ψB−

1√
2L

L∑
j=1

xj− γ
B
j

=

L∑
j=1

(
ψB+x

j
+ + ψB−x

j
−

)
γBj , (A.354)

where we have absorbed the prefactors 1√
2L

into the real coeffiecients ψA/B± for better readability. Now,
we are looking for two Majorana zero modes that are localised on opposite ends of the chain. Thus, we
make the ansatz

ΓA ≡
L∑
j=1

(
α+x

j
+ + α−x

j
−

)
γAj and ΓB ≡

L∑
j=1

(
β+x

j
+ + β−x

j
−

)
γBL+1−j (A.355)

for our boundary Majorana zero modes ΓA and ΓB . These are normalisable for L → ∞, and therefore
viable solutions, if |x±| < 0. In that case ΓA is localised near j = 1 and ΓB is localised near j = L. The
coefficients (α+, α−) and (β+, β−) can be determined via the zero-mode constraint

[HKit,Γ
A/B ]

!
= 0 . (A.356)

Specifically, we find

[HKit,Γ
A] =

L−1∑
j=1

L∑
k=1

(α+x
k
+ + α−x

k
−)
(

(∆0 − t)[γAj γBj+1, γ
A
k ] + (∆0 + t)[γBj γ

A
j+1, γ

A
k ]
)

− µ
L∑

j,k=1

(α+x
k
+ + α−x

k
−)[γAj γ

B
j , γ

A
k ]

(?)
= 2

[ L−1∑
j=1

L∑
k=1

(α+x
k
+ + α−x

k
−)
(
(t−∆0)δjkγ

B
j+1 + (t+ ∆0)δj+1 kγ

B
j

)
+ µ

L∑
j,k=1

(α+x
k
+ + α−x

k
−)δjkγ

B
j

]
(∗)
= 2

[ L∑
j=1

{
(α+x

j−1
+ + α−x

j−1
− )(t−∆0) + (α+x

j+1
+ + α−x

j+1
− )(t+ ∆0) + (α+x

j
+ + α−x

j
−)µ

}
γBj

− (α+x
0
+ + α−x

0
−)(t−∆0)γB1 − (α+x

L+1
+ + α−x

L+1
− )(t+ ∆0)γBL

]
, (A.357)
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where we have used {γXj , γYk } = 2δjkδXY and {A,B} = [A.B]− 2BA to rewrite[
γXj γ

Y
k , γ

Z
l

]
= γXj

[
γYk , γ

Z
l

]
+
[
γXj , γ

Z
l

]
γYk

= γXj
({
γYk , γ

Z
l

}
− 2γZl γ

Y
k

)
+
({
γXj , γ

Z
l

}
− 2γZl γ

X
j

)
γYk

= γXj
{
γYk , γ

Z
l

}
+
{
γXj , γ

Z
l

}
γYk − 2

(
γZl γ

X
j + γXj γ

Z
l

)
γYk

= γXj
{
γYk , γ

Z
l

}
+
{
γXj , γ

Z
l

}
γYk − 2

{
γXj , γ

Z
l

}
γYk

= γXj
{
γYk , γ

Z
l

}
−
{
γXj , γ

Z
l

}
γYk

= 2
(
δklδY Zγ

X
j − δjlδXZγYk

)
(A.358)

such that[
γAj γ

B
j+1, γ

A
k

]
= −2δjkγ

B
j+1 ,

[
γBj γ

A
j+1, γ

A
k

]
= 2δj+1 kγ

B
j ,

[
γAj γ

B
j , γ

A
k

]
= −2δjkγ

B
j (A.359)

in (?). For (∗), we included additional terms ∝ γB1 and ∝ γBL to get a simpler sum over all the sites
j = 1, . . . , L of the chain. For Eq. (A.357) to vanish, i.e. for Eq. (A.356) to be satisfied for ΓA, we
therefore require

0
!
= (α+x

j−1
+ + α−x

j−1
− )(t−∆0) + (α+x

j+1
+ + α−x

j+1
− )(t+ ∆0) + (α+x

j
+ + α−x

j
−)µ

0
!
= (α+x

0
+ + α−x

0
−)(t−∆0)

0
!
= (α+x

L+1
+ + α−x

L+1
− )(t+ ∆0) (A.360)

separately. If we rearrange the first constraint as

0
!
= (α+x

j−1
+ + α−x

j−1
− )(t−∆0) + (α+x

j+1
+ + α−x

j+1
− )(t+ ∆0) + (α+x

j
+ + α−x

j
−)µ

= α+

[
(t+ ∆0)xj+1

+ + µxj+ + (t−∆0)xj−1
+

]
+ α−

[
(t+ ∆0)xj+1

− + µxj− + (t−∆0)xj−1
−

]
(A.361)

we find that it is automatically satisfied because

0
!
= (t+ ∆0)xj+1

± + µxj± + (t−∆0)xj−1
±

⇐⇒ 0
!
= (t+ ∆0)x2

± + µx± + (t−∆0)

⇐⇒ 0
!
= x2

± +
µ

(t+ ∆0)
x± +

(t−∆0)

(t+ ∆0)
(A.362)

is readily solved by x± from Eq. (A.350). The coefficients can then be determined by the remaining
constraints from Eq. (A.360). Concretely, since

0
!
= α+x

L+1
+ + α−x

L+1
− (A.363)

is trivially satisfied for L→∞ when |x±| < 1, the coefficients are determined by

0
!
= α+x

0
+ + α−x

0
− . (A.364)

An analogous calculation shows that the coefficients (β+, β−) of ΓB are determined by

0
!
= β+x

0
+ + β−x

0
− . (A.365)
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Torus Gauge-Equivalence to the X-Gate

Here we demonstrate the validity of Eq. (10.124) through explicit calculation:

U UWZ(C0,1)U†eiδ =


eiϕ1 0 0 0

0 eiϕ2 0 0

0 0 eiϕ3 0

0 0 0 eiϕ4

eiθ


0 e−iα 0 0

eiα 0 0 0

0 0 0 e−iβ

0 0 eiβ 0



e−iϕ1 0 0 0

0 e−iϕ2 0 0

0 0 e−iϕ3 0

0 0 0 e−iϕ4

eiδ

(�)
=


eiϕ1 0 0 0

0 e−iϕ1 0 0

0 0 eiϕ3 0

0 0 0 e−iϕ3

eiθ


0 e−iα 0 0

eiα 0 0 0

0 0 0 e−iβ

0 0 eiβ 0



e−iϕ1 0 0 0

0 eiϕ1 0 0

0 0 e−iϕ3 0

0 0 0 eiϕ3

eiδ

(∗)
=


0 e−i(α−2ϕ1) 0 0

ei(α−2ϕ1) 0 0 0

0 0 0 e−i(β−2ϕ3)

0 0 ei(β−2ϕ3) 0

ei(δ+θ)

(?)
=


0 e−i(α−α) 0 0

ei(α−α) 0 0 0

0 0 0 e−i(β−β+π)

0 0 ei(β−β+π) 0

eiπ2

=


0 i 0 0

i 0 0 0

0 0 0 −i
0 0 −i 0

 , (A.366)

where we used ϕ1 = −ϕ2 and ϕ3 = −ϕ4 in (�) and plugged in δ = π/2− θ, ϕ1 = α/2 and ϕ3 = (β−π)/2

in (?). If we instead plug in δ = −θ, ϕ1 = −ϕ2 = α/2 and ϕ3 = −ϕ4 = β/2 in (∗) we readily get

U UWZ(C0,1)U†eiδ =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (A.367)
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