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Abstract

Shape optimization problems arise in many engineering applications of fluid dynamics,
acoustics, and other fields. In such problems, one aims to find a shape that optimizes
a certain objective while satisfying a given set of constraints. A persistent challenge is
maintaining mesh quality during the optimization process. Poor mesh quality, such as
distorted or overlapping elements, can lead to numerical instability and ultimately
tailure of the algorithm. Hence, it is of great importance to develop a robust method
that produces meshes of high quality. Most importantly, one wants to ensure that the
solvability of the problem itself is not lost in the process.

I consider the problem of minimizing drag in a flow tunnel, which is a typical shape
optimization problem with partial differential equation constraints. In order to in-
crease the set of reachable shapes, an extension operator is used — a mapping from
the control variable on the boundary to the deformation field defined over the entire
domain. Both linear and nonlinear formulations of the extension equation are inves-
tigated and their influence on the solution quality and robustness is assessed. The
results demonstrate that appropriate extension strategies can significantly improve
mesh quality without compromising the fidelity of the optimization process. It is
shown that nonlinear extensions outperform linear ones in preserving element quality
under large deformations.



Zusammenfassung

Optimierungsprobleme geometrischer Formen treten in vielen ingenieurwissenschaft-
lichen Anwendungen der Stromungsmechanik, Akustik und anderer Fachgebiete auf.
Ziel solcher Probleme ist es, eine Geometrie zu finden, die ein gegebenes Zielkriterium
optimiert und gleichzeitig eine Reihe von Nebenbedingungen erfiillt. Eine zentrale
Herausforderung besteht darin, wahrend des Optimierungsprozesses die Qualitat des
Gitters aufrechtzuerhalten. Eine schlechte Qualitat des Gitters — etwa durch verzerrte
oder sich uberlappende Elemente — kann zu numerischen Instabilitaten und letztlich
zum Versagen des Algorithmus fihren. Daher ist es von grofSer Bedeutung, eine robus-
te Methode zu entwickeln, die Gitter von hoher Qualitat erzeugt. Insbesondere muss
sichergestellt werden, dass die Losbarkeit des zugrunde liegenden Problems wahrend
der Optimierung nicht verloren geht.

Ich analysiere in dieser Dissertation das Problem der Minimierung des Stromungswi-
derstands in einem Stromungskanal — ein typisches Optimierungsproblem geometri-
scher Formen mit Nebenbedingungen in Form partieller Differentialgleichungen. Um
die Menge der erreichbaren Formen zu vergrofiern, verwende ich einen Erweiterungs-
operator — eine Abbildung von der Steuerungsgrofie am Rand auf das Verschiebungs-
feld im gesamten Gebiet. Dazu untersuche ich sowohl lineare als auch nichtlineare
Formulierungen der Erweiterungsgleichung und analysiere deren Einfluss auf die
Losungsgiite und die Robustheit des Verfahrens. Die Ergebnisse zeigen, dass geeignete
Erweiterungsstrategien die Qualitat des Gitters deutlich verbessern konnen, ohne die
Gute des Optimierungsprozesses zu beeintrachtigen. Insbesondere erweisen sich nicht-
lineare Erweiterungen bei grofSen Deformationen als Uberlegen, da sie die Qualitat
der Gitterelemente besser erhalten.
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1. Introduction

1.1. Motivation

Shape optimization is a fundamental problem in applied mathematics and engineering,
where the objective is to determine an optimal shape of a domain to minimize or
maximize a given functional subject to constraints.

These problems arise naturally in many physical and engineering contexts, where the
performance or efficiency of a system depends on its shape. In general terms, a shape
optimization problem seeks the best possible shape such that a given cost functional,
which may represent energy, drag, compliance, or any other relevant physical quantity,
is minimized or maximized under certain constraints. The domain itself becomes the
variable in the optimization, and its influence is often indirect, described through the
solution of a partial differential equation defined on it.

There is a wide range of problems which can be formulated in this framework from
different fields and industries. In fluid dynamics, for instance, the objective might
be to minimize drag acting on a solid body immersed in a flow, or to maximize lift
in an airfoil configuration. In structural mechanics, one may aim to reduce stress
concentrations or optimize stiffness for a given load, leading to more efficient and
durable mechanical components. Problems involving thermal conduction may seek
shapes that promote uniform temperature distributions or minimize heat loss. Shape
optimization is also relevant in wave propagation and acoustics, where the geometry
of a cavity or a waveguide affects resonance patterns or the reflection of sound. In
electromagnetics, it is used in designing antennas and optical devices, where the shape
determines the distribution and direction of electromagnetic fields.

Many of the most compelling applications of shape optimization are found in indus-
trial contexts. In the aerospace industry, for example, the design of aircraft components
such as wings, fuselages, or engine nacelles is highly dependent on aerodynamic per-
formance. Optimizing the shape of a wing involves balancing lift and drag, ensuring
structural integrity, and complying with manufacturing constraints. Simulations of
compressible or incompressible flow, often governed by the Navier-Stokes equations,
are used to evaluate performance metrics, and gradient-based optimization methods
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iteratively refine the geometry. The same principles apply in rocket design, where
nozzle shapes are optimized to maximize thrust efficiency while managing the thermal
and mechanical stresses arising from extreme conditions.

In the automotive industry, shape optimization is used to reduce drag in vehicle bodies,
thereby improving fuel economy and lowering emissions. Engineers also apply similar
techniques to the internal flow design of engine components, aiming to improve flow
efficiency or reduce noise and vibration. Structural aspects of vehicle design are also
influenced by shape optimization: crash safety standards, for instance, require vehicle
frames to deform in a controlled way during impact. This can be formulated as an
optimization problem where the objective is to maximize energy absorption while
minimizing weight and material use.

In biomedical engineering, it is used for designing implants and prosthetics that
conform better to anatomical structures, leading to improved patient outcomes. In
structural mechanics, shape optimization aids in designing lightweight and high-
strength components for buildings and mechanical structures. In material science, it
is applied to optimize the microstructure of composite materials to enhance their me-
chanical and thermal properties. Additionally, shape optimization plays an essential
role in optics and photonics, where it is used to design lenses and waveguides with
specific light propagation characteristics. In the field of energy systems, shape opti-
mization is applied to improve the efficiency of heat exchangers and turbine blades,
directly impacting energy savings and sustainability.

These examples all follow a similar mathematical structure: a shape-dependent PDE
describes the system’s behavior, and the optimization process explores geometric vari-
ations to achieve a better performance with respect to a given objective. This approach
enables engineers and scientists to move beyond empirical adjustments and instead
make informed decisions based on physical models and numerical simulations.

However, the methodology is not without challenges. From mathematical point of
view, solving a shape optimization problem typically involves repeated evaluations of
expensive numerical simulations on evolving geometries, leading to high computa-
tional costs. Further, the problems are frequently nonlinear and non-convex, which
complicates the search for global optima. Even in case the problem is well posed, there
is often no guarantee of converging to global solution. Representing and updating
the geometry in a flexible and efficient way, whether through mesh deformation, level
set methods, or parameterized CAD models, is itself a nontrivial task. Additionally,
the optimal shapes must not only be high-performing in simulation but also manu-
facturable and robust with respect to uncertainties in loading conditions or material
properties.

The mathematical formulation of shape optimization typically involves a physical
setting often given by PDEs where the domain boundary itself is considered as a
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design variable. Furthermore, the objective functional, which depends on the domain,
also depends on the solution operator of the PDEs.

In this thesis I consider only the subset of the boundary to be deformed, representing
an object inside a flow tunnel, which we will call an obstacle. The fluid flow in the
tunnel is governed by Navier-Stokes equations, which is the physical setting of the
problem. The surface of the obstacle is to be optimized for a given flow of the fluid.

This problem is well studied and its solution is investigated in [67, 68]. It is known,
that the optimal configuration is a shape with two tips formed. However, this optimal
setting is known to be not easily reached by solvers in case of large deformations. The
main reason for this is mesh degradation or even mesh degeneration during iterative
design updates. The obvious way to overcome this issue would be mesh refinement.
In particular, one could refine specific areas of the mesh as the mesh quality gets
worse. However, remeshing at every solution step leads to even higher computational
complexity for already computationally challenging structure of the nonlinear system
of the equations. Therefore, it is challenging to model mesh deformation in a way that
is both not too computationally demanding and flexible enough to be applied to a
range of problems without too much parameter-tuning.

To model mesh deformation in classical shape optimization, two predominant ap-
proaches exist for this problem: boundary variation methods and domain deformation
methods. The former relies on the Hadamard-Zolésio structure theorem to compute
shape derivatives by considering variations of the domain boundary [91]. This method
is particularly useful if the changes in shape are small. The latter approach treats
shape transformations as mappings of the entire domain, effectively translating the
optimization problem into an optimal control problem in function spaces. The method
of mappings, where an admissible transformation is applied to a reference domain,
has been widely used for problems involving large deformation.

Therefore, in this thesis I follow this approach and reformulate the problem as an
optimization over the set of transformations. In this case the problem is solved for
the fixed reference domain for a sequence of transformations which depend on the
deformation field.

In this framework, there is still an investigation required on how to effectively describe
the mapping that propagated the deformation from the boundary to the whole domain.
Traditionally, one uses linear-elasticity-based extension models. However, they can fail
to preserve mesh quality over successive deformations, leading to element degenera-
tion and numerical instabilities [38]. In addition to maintaining mesh quality, robust
optimization algorithms must also handle constraints such as volume preservation,
symmetry conditions, and manufacturing limitations, ensuring practical feasibility of
the optimized designs.
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To address this, there were proposed nonlinear extension operators that better accom-
modate large deformations by incorporating advection-like terms into the deformation
process. The nonlinear extension ensures better mesh uniformity and prevents ex-
cessive element distortion, making this approach particularly suitable for problems
in fluid dynamics and aerodynamic. Therefore, in this thesis I focus on the study of
nonlinear equations to model deformations and show the effects of extension equation
parameters on mesh quality.

1.2. General Problem Statement

In this thesis, I consider a class of shape optimization problems arising in fluid
dynamics, in particular the minimization of drag acting on an obstacle placed in a
flow tunnel governed by the Navier—Stokes equations. The surface of the obstacle,
which represents the design boundary, is to be optimized while keeping the outer flow
domain fixed. This problem is written in the following form:

min j(y,Q
omin j(v.Q) .

st. E(1Q)=0

In (1.1) j is a shape functional depending on a state variable y and the shape of the
domain Q. Thereby, v is a solution to the PDE E, which constraints the problem
and itself depends on Q. G4, is a set of admissible shapes, i.e. shapes that satisfy
constraints. The boundary of Q) is itself an optimization variable.

One of the main questions is an appropriate choice of the set of admissible shapes G,4m,
in which optimization takes place. The existence theory for (1.1) is quite involved and
complex. It is known that, in general, it admits a minimizer only if some geometrical
or topological restrictions on the shapes are enforced.

This problem is discussed in more detail for a particular case of Navier-Stokes flow in
Section 4.2.

Many approaches can be used to solve such problems. In this work, I use the method of
mappings (see Section 3.3) to obtain an optimal control problem on a fixed reference
domain. First, the optimization problem (1.1) is reformulated as an optimization
problem over a set of admissible transformations F,4,, as follows
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Fgggm j(v, F(Q)) 12)

st.  E(y,F(Q))=0.

Starting with some fixed reference domain () and optimize using transformations
F(Q) yet without explicitly performing mesh deformations. Further, the choice of the
set of admissible shapes is now a choice of spaces in which we defined the deformation
from reference to optimal domain: G,q, := {F(Q): F € Fagm}

For more details about method of mappings please refer to [50, 80, 17].

1.3. Contributions

This thesis makes several contributions to the field of shape optimization, particularly
in the context of stationary Navier—Stokes flow.

Firstly, it provides a detailed formulation of the optimality system for shape opti-
mization problem in stationary Navier-Stokes flow, incorporating nonlinear extension
operators for mesh deformation. The influence of different parameters in the nonlinear
extension equation on the solution process is analyzed.

Secondly, the thesis presents a comparative analysis of linear and nonlinear extension
strategies, highlighting their impact on mesh quality and solver performance. This
analysis demonstrates the advantages of nonlinear extensions in handling complex
geometries and large deformations.

Thirdly, the thesis includes a numerical implementation using the FEniCS framework,
with extensive simulations that validate the effectiveness of the proposed approach.
The implementation showcases the practical applicability of the theoretical contri-
butions and provides insights into the computational aspects of shape optimization.
Also advantages and drawbacks of the software are discussed.

Lastly, the thesis explores the influence of extension parameters and geometric con-
straints on optimization outcomes, offering a comprehensive study of how these
factors affect the performance and results of shape optimization algorithms. Overall,
the contributions of this thesis advance the understanding and application of shape
optimization techniques in various engineering and scientific domains.

1.4. Thesis Structure

The outline of this thesis is as follows.
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Chapter 2 reviews the literature on shape optimization, including classical methods,
applications, and recent advances.

Chapter 3 introduces the mathematical background of shape optimization, including
key concepts such as shape derivatives, domain variations, and the formulation of
optimization problems constrained by partial differential equations.

I begin by recalling fundamental notions of differentiability and the basics of shape
calculus. This is followed by an overview of the underlying physical model of fluid
dynamics, its properties, and a brief discussion of the well-posedness of the governing
equations. Next, a general constrained optimization problem is formulated and
necessary and sufficient optimality conditions are presented. I introduce the control-to-
state mapping, derive the adjoint formulation, and describe the Lagrangian approach.
The chapter concludes with a discussion of discretization techniques, including finite
element methods, and classical optimization algorithms such as gradient-based and
Newton-type methods.

Chapter 4 addresses the investigation of a shape optimization problem governed by
Navier—Stokes flow. I begin by deriving the weak formulation of the problem, which
includes the flow model, the equations governing mesh deformation, and the geometric
constraints. I then derive the optimality system and reformulate the problem in the
reference domain.

I introduce the deformation operator S which maps the boundary control to the
deformation field in the domain and explain the possible approaches to model mesh
deformation and choices of this operator. Futher, some existence results for cases
when S is linear and nonlinear conclude this chapter.

In Chapter 5 numerical realizations the the problem are discussed. I first introduce
the software we used and different approaches how one could tackle the problem
using it. It is explained why I chose the particular software and what limitations are
coming with this decision. Next, the basic solution algorithm is introduced and its
improvement based on decoupling the system is proposed. In final sections of this
chapter I present numerical examples for different cases of extension operator, meshes
and starting geometries and compare linear and nonlinear extension strategies.

Finally, Chapter 6 concludes the thesis by summarizing the main findings and outlin-
ing possible directions for future research.



2. Literature Review

In this chapter an overview of the research conducted in the areas of optimal design
and shape optimization is presented. It is a brief look at the history of research
related to a shape optimization problem of domain variation type as well as popular
underlying physical models and industrial applications with a focus on fluid dynamic
applications.

In addition, in this section, commonly used methodologies and the associated chal-
lenges are highlighted, and explanations for the choice of certain approaches are
provided.

Design and specifically shape optimization are at the core of many engineering ap-
plications ranging from optimizing musical instruments and vehicles to electrical
devices.

In acoustics, shape optimization is used to improve the design of acoustic horns
for better impedance matching with the surrounding air [7, 73, 85], to optimize
loudspeaker shapes for desired sound directivity [24], to control acoustic pressure
in specific spatial regions [36], and to design brasswind instruments with enhanced
performance [47].

In the context of fluid dynamics, shape optimization under steady Stokes flow is widely
used in the design of microchannel structures and biomedical devices such as DNA
chips [88], blood pumps [18, 20, 90], dielectrophoretic devices [51], and microfluidic
nanoliter mixers [22].

In aeronautics and marine engineering, shape optimization plays a critical role in
designing aircraft and spacecraft components [45, 2], as well as in the optimization of
hull forms and control surfaces for marine vehicles [21, 43, 87, 31].

Unlike geometric shape optimization, where the topology of the domain remains fixed,
structural shape optimization seeks the optimal form of a domain whose topology is
not known a priori [62]. This distinguishes it from problems in classical geometry
processing, as the optimization is formulated over domains subject to physical and
structural constraints.
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For comprehensive reviews of structural topology optimization, please refer to [10, 78,
23, 62,9, 72]. Among notable contributions, the homogenization method proposed
in [11] interprets topology optimization as a problem of optimal material distribution.
Another widely adopted approach is the density-based method, introduced by Yang
and Chuang [89], where the material density is treated as a continuous design variable.
Moreover, black-and-white topology optimization methods, particularly for elasticity
and multiphysics problems, have been extensively studied in [12].

The foundations of shape optimization for aerodynamic flows can be traced back
to early 20th-century pioneers in fluid dynamics, such as Ludwig Prandtl, whose
boundary layer theory (1904) and Theodore von Karman, known for his work on
turbulence in the 1930s, established essential conceptual frameworks for analyzing
fluid—structure interactions. These theoretical advances coincided with significant
experimental developments. One notable example is the emergence of wind tunnels
in the 1930s, which enabled empirical testing of aerodynamic shapes, particularly in
the context of aircraft and automotive design. The post—World War II jet age and the
advent of supersonic flight in the 1950s introduced new challenges in aerodynamic
optimization, as traditional design methods proved inadequate for handling high-
speed flows and the thermal stresses encountered in missile and rocket development
[28].

In a classical paper, Pironneau demonstrated that, for a three-dimensional body in a
low Reynolds number flow, the unit-volume body with the smallest drag, obtained
using variational methods in optimal control, has uniform vorticity [68]. The optimal
shape is symmetric with respect to the axis aligned with the flow direction and
resembles a rugby ball, featuring conical front and rear ends with an angle of 120°.

This study was later extended to higher Reynolds numbers in [67], where the authors
considered laminar flow governed by the Navier—Stokes equations. These theoretical
results for Stokes flow were subsequently confirmed numerically by Bourot [15] using
quadratic minimization techniques, and the drag of the optimized body was computed.
Following the arguments in [68], the problem of determining the optimal profile of a
cylinder placed perpendicular to a uniform Stokes flow at low Reynolds numbers was
addressed in [71].

When modeling shape optimization problems, it is often necessary to exclude trivial
or degenerate solutions. A commonly imposed constraint is the preservation of the
obstacle’s volume, as employed in [67].

Concurrently, Hicks and Henne developed parametric airfoil shape parameterization
methods that became industry standards, enabling systematic exploration of design
spaces through control point adjustments [70]. The 1980s witnessed the rise of
computational fluid dynamics capabilities, with Jameson pioneering adjoint-based
optimization techniques that improved gradient calculation efficiency for Navier-



Stokes flows.

Further, in [76] a smoothing method for the surface mesh was used to satisfy the
constant volume condition and the biharmonic equation was chosen as mesh relo-
cation technique. In chemistry and colloidal science applications i.e drug delivery,
biomimetic microrobots, one often needs to fix a particle surface area. This demon-
strates the necessity to consider a fixed surface area as another important geometrical
constraint.

By changing the geometrical constraint from Pironneau’s fixed volume to fixed surface
area in [59] was computed the "alternative’ optimal shape that has a surface vorticity
proportional to the mean surface curvature. This optimal shape was shown to be
almost twice as slender as the fixed-volume shape with the front and rear ends tangent
to a cone of semi-angle 30.8°. In studies of the shape optimization for fluid dynamical
applications, shape optimization algorithms to minimize the drag on an object under
a constant volume condition have also been studied in [58, 38, 77].

While shape optimization has been actively researched in numerical methods and
simulations, the theoretical foundations of the field have also been rigorously de-
veloped, particularly in areas such as elliptic PDEs, and structural mechanics. In
the context of fluid—structure interaction and unsteady flow problems, however, the
theoretical analysis remains quite challenging. Notable contributions in this direction
include the work of Raymond and Vanninathan [69], who studied the existence and
regularity of solutions to an unsteady FSI problem. Furthermore, Haubner et al. [39]
investigated the continuity and Fréchet differentiability of solutions to an unsteady
Navier-Stokes—Lamé system.

The problem of minimizing drag in Stokes flow using the adjoint variable method has
been studied extensively in a series of foundational works [68, 15, 4], which laid the
groundwork for modern shape optimization techniques. While much of the research
in the field has focused on numerical simulations and computational strategies, several
monographs provide a comprehensive theoretical background and survey of available
methods [56, 37, 58, 81, 4]. Multiple approaches have been developed to address shape
optimization problems, each with its own mathematical structure, computational
requirements, and applicability to specific problem classes.

Domain transformation methods rely on mapping the physical domain onto a fixed
reference domain via a family of transformations, which are updated throughout the
optimization process. This allows for efficient treatment of complex geometries and
constraints while simplifying computations and boundary conditions. This approach
follows the framework originally introduced by Murat and Simon [60], in which
the computational domain remains fixed and the design is represented through a
deformation mapping from a reference domain. This reformulation naturally lends
itself to the application of optimal control techniques.
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The Hadamard-Zolésio method is one of the most classical tools in shape optimization.
It is based on the concept of shape derivatives, which describe how small perturbations
of the domain boundary affect a given objective functional. A key result in this theory is
the Hadamard structure theorem, which shows that the shape derivative depends only
on the normal component of the boundary variation. This insight greatly simplifies
the analysis and computation of shape gradients, particularly in boundary-sensitive
problems such as drag reduction and thermal optimization. In cases involving PDE
constraints, the Eulerian derivative of the objective functional typically depends
on the shape derivative of the state, which can be expressed in terms of an adjoint
variable [56].

An alternative formulation is the method of mappings, also known as the pertur-
bation of identity method. Here, the domain is parameterized by a bi-Lipschitz
homeomorphism from a reference configuration, transforming the shape optimization
problem into an optimal control problem in Banach spaces. Shape sensitivities can
be computed through adjoint equations or via direct sensitivity analysis. Interest-
ingly, Hadamard-Zolésio calculus can be rigorously derived from this mapping-based
approach through integration by parts, thereby unifying the two perspectives [38,
17].

In contrast to these explicit deformation methods, level-set approaches represent the
domain implicitly as the zero level of a scalar function defined in a higher-dimensional
space. The evolution of the shape is governed by Hamilton—Jacobi-type equations,
which allow for natural handling of topological changes such as merging and splitting
of domains. This makes level-set methods well suited for problems where the optimal
domain topology is unknown in advance [19]. Parametric methods, on the other hand,
describe the domain explicitly via a finite number of parameters, such as control
points of Bézier curves or splines. These methods provide high geometric fidelity and
computational efficiency but are less flexible in dealing with topology changes.

Phase-field methods provide another powerful approach by representing the domain
using a diffuse interface model. The transition between material and void is captured
by a smooth phase-field function, making these methods particularly effective for
topology optimization problems. They provide a stable numerical framework and
are well suited to problems requiring smooth transitions and regularized formula-
tions [14].
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3.1. Preliminaries

I first set up the environment of the discussion: Lipschitz domains, some basic func-
tional spaces, and a common notation for differentiation. The definitions and results
in this section are primarily based on the monographs [41, 58, 27].

I start by formally defining Lipschitz continuity and Lipschitz domains. Lipschitz
domains are commonly considered in shape optimization due to their well-behaved
geometric and analytical properties. In particular perturbations of Lipschitz domains
remain Lipschitz, preserving the structure of the problem.

In the following sections, I will consider shape optimization problems constrained by
PDEs, such as the Laplace equation, the Navier—Stokes equations, and the equations of
linear elasticity. The existence and stability of solutions under domain perturbations
typically rely on certain regularity assumptions, such as Lipschitz continuity of the
domain. Without such regularity, fundamental tools from PDE theory such as well-
posedness of results and Sobolev space embeddings may no longer apply.

Definition 3.1.1. The function ¢ is Lipschitz continuous, meaning there exists a constant
L >0 such that for all x,y € V,

lp(x) = @)l < Lllx -l
where || - ||, denotes Euclidean norm on IR™.

A domain Q) CIR" is called a Lipschitz domain if its boundary dQ) can be locally repre-
sented as a graph of a Lipschitz continuous function.

11
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3.1.1. Lebesgue and Integer Order Sobolev Spaces

Let () C IR". I denote by LP((2),1 < p < oo the space of absolutely integrable with p-th
power real functions on () endowed with the norm

[l (Q) =| | ()l dx
I

Further, I denote by L*>(Q)) the space of essentially bounded real functions with the
norm

[ll(00) = esssup (lv(x)).

Definition 3.1.2. The Sobolev space of index (k,p), where 1 <p < oo and k € N is defined
by

whr ()Y (v e 1P(Q): D € IP(Q)  V|a| < k)

with a norm

—_

def
[vllkp0 =

p
) ”Dav”iwm] ,

|al<k

where D® is denoting the a-th weak partial derivative.

When p = 2, Wb2(Q) = H*(Q) is a Hilbert space with the inner product

(u, V)Hk(ﬂ) = Z(Dau, Dav)Lz(Q)

lal<k

and the corresponding norm |||, o := [[v|| 2.0

Theorem 3.1.3 (Sobolev embedding). Let QO C RN be an open bounded set with Lipschitz
continuous boundary. Then the following continuous embeddings hold:

1. if p<N,WLP(Q) < LP(Q), for I% _ %_ %’
2. ifp=N, W' (Q) = LI(Q), for 1 <q < +oo,

3. if p> N, WhP(Q) — c* 7 (Q).

12
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3.1.2. Gateaux- and Fréchet Differentiability

Let X,Y be Banach spaces, U C X be an open nonempty set. Then for an operator
F:U — Y I define the following derivatives:

Definition 3.1.4. The directional derivative of F at u € U in the direction h € X is given

by:
dF(u;h) = lim LT =) (3.3)

T—0% T

provided the limit exists.

Definition 3.1.5. The function F is said to be Gateaux differentiable at u € U if the
directional derivative dF(u;h) exists for all h € X and is bounded and linear, i.e.

F(u)e L(X,Y) for F'(u):hw> dF(u;h).

Definition 3.1.6. The function F is said to be Fréchet differentiable at u € U if there
exists a bounded linear operator A € L(X,Y) such that:

[[F(u+h)— F(u) - Ahlly _
lIhllx—0 llAllx

0. (3.4)

In this case, A is called the Fréchet derivative of F at u, denoted by F'(u).

I mention some further properties of Fréchet derivative which are going to be used in
the further sections.

Let F : X; x X, — Y be a mapping between Banach spaces. For a fixed u; € X, the
partial Fréchet derivative of F with respect to u; at (uy,u;) is given by:

DMIP(ul,uz) Eﬁ(Xl, Y), (35)
provided the limit

lim |F(uy + by, up) = Fuy, up) = Dy F(uy, up)hlly

N1 llx, —0 hllx,

0 (3.6)

exists. A similar definition holds for the partial derivative D,,, F(u,u,) with respect to
uy. Then, it holds

F'(uy, up)(hy,hy) = Dy, F(uy, up)hy + Dy, F(uy, up)hy, (3.7)

13
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for all (hy,hy) € X7 x X5.

Let F: X > Y and G: Y — Z be Fréchet differentiable operators between Banach
spaces. Then the composition Go F : X — Z is also Fréchet differentiable, and its
derivative satisfies the chain rule:

(GoF)(u) = G'(F(u)) o F'(u). (3.8)

Here, G’(F(u)) € L(Y,Z) and F'(u) € L(X,Y), so their composition is a bounded linear
operator in £(X,Z).

3.1.3. General Optimization Problem

I consider a general optimization problem with PDE constraints as given in [41]:

min](%“)y
S. t. €(y,u) =0. (39)

[ assumethatJ: Y xU — Rand e: Y x U — Z are continuously Fréchet differentiable
and that the following condition is satisfied:

ey(9,u) € L(Y,Z) is a bijection. (3.10)

From implicit function theorem it follows that there exists (locally) a unique solution
to the state equation e(y, u) = 0 in the neighbourhood of (9, &) and that the solution
operator is continuously Fréchet differentiable (see e.g. [25]).

I first define the Lagrange function L: Y xU xZ* — R.

Definition 3.1.7. The Lagrangian associated with the general optimization problem given
by (3.9) is defined as

L(y,u,p) = J(y,u) +{p,e(y, )z z, (3.11)
where p € Z" is a Lagrange multiplier, and (:,-)- ; denotes the duality pairing between
Z"and Z.

This formulation allows one to treat the objective and constraint in a unified frame-
work. The central importance of the Lagrangian lies in the derivation of first-order
necessary conditions for optimality, extending classical Karush-Kuhn-Tucker (KKT)
theory to infinite-dimensional settings.

In the present PDE-constrained optimization setting, the Lagrangian framework is
essential for deriving adjoint equations as described in the next subsection.

14
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3.1.4. Optimality Conditions

By differentiating the Lagrangian with respect to the state variable and enforcing
stationarity, one obtains the adjoint problem, which provides an efficient way to
compute derivatives of the cost functional with respect to the design or control
variables. This adjoint-based approach decouples the derivative computation from the
dimensionality of the state space and is fundamental in large-scale applications [41,
83].

Theorem 3.1.8. Let (9, 1) be a local minimizer of the optimization problem (3.9). Assume
that all involved mappings are Fréchet differentiable and that the partial derivative e, (9, 1) :
Y — Z is surjective. Then there exists a unique adjoint variable p € Z* such that the
first-order necessary optimality conditions are given by the system

e(p,i)=0,
Ly(}_},ﬂ,p) =0, (3.12)
Lu(}_}’ﬂlp): 0.

Proof. Because (9,1i) is a local minimizer and all mappings are Fréchet differentiable,
the first-order necessary condition for optimality implies

Ly(9,u,p)w =0, L,9,i,p)h=0

for all w e Y and h € U. Differentiating the Lagrangian L(y, u, p) with respect to y in
the direction w yields

Ly(y,u,p)w =J,(y, u)w +{p,e,(y, u)w)z- z (3.13)
=y u)w+{e,(y,u)’p,w)y-y.
The stationarity condition Ly(9,#,p) = 0 then leads to the adjoint equation
ey (9, #)'p =Jy(9,).
Surjectivity of e, (9, i) guarantees that this equation admits a unique solution p € Z,
see [41] or [83].

Analogously, differentiating L(y, u, p) with respect to u in the direction h leads to

Ly(y,u,p)h = Ju(y, u)h +(p, eu(y, u)h) 2,z

i (3.14)
= ]u(% u)h + <eu (% Ll) P, h>U*,U‘
The stationarity condition L, (9, ,p) = 0 then yields
ey (9, u)'p=Ju(9, ).
Together with the state equation e(9, i) = 0, this completes the system (3.12). ]

15
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The Lagrangian formulation is particularly useful for nonlinear PDE-constrained
optimization problems, where the adjoint equation is not straightforward to identify
directly, see [27] for examples.

3.1.5. Reduced Formulation

An alternative and widely used method is the reduced formulation, which avoids
introducing Lagrange multipliers explicitly. Assume that for every u in a neighborhood
of ii the state equation

e(y,u)=0

admits a unique solution y(u), and that e,(y(u), u) is continuously invertible. By the
implicit function theorem this defines the control-to-state map

G:U-Y, u—y(u)=G(u), (3.15)
see [41, Sec. 1.6] or [83, Thm. 3.8].
The optimization problem (3.9) then reduces to

I;leiélf(u)::](G(u),u). (3.16)

Differentiating the state equation with respect to u yields

ey(p(@), )y’ (it)h + e, (y(i), it)h = 0,

where y’(u)h denotes the derivative of G. If @ is a local minimizer of (3.16), then the
first-order necessary optimality condition gives

fl@h=TJ,(y(@),a)y"(@h+],(y(@),a)h=0  Vhel, (3.17)
see [27].

Definition 3.1.9. An element p € Z* is called the adjoint state corresponding to i if it
satisfies the adjoint equation

ey(y(a), u)'p =Jy(y(a), ). (3.18)

Using this definition and the linearized state equation, the derivative representation
(3.17) implies the following optimality system.

16
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Theorem 3.1.10. Let i be a local minimizer of the reduced problem (3.16), and let y(it) be
the associated state. If (3.18) admits a solution p € Z*, then the following conditions hold:

e(y(i), ) =0,
ey(y( ),ﬂ)*PZIy(})( ), it), (3.19)
eu(?(ﬂ)ﬂ)*P :]u(y(ﬂ),ﬂ).

NI et
<[y
ing|

System (3.19) is called the optimality system for ii.

For complete proofs and further details, see [41, 83, 27]. The system (3.19) is analogous
to the system derived earlier using Lagrangian given by (3.12). The reduced approach
is implemented as a part of dolfin-adjoint package, which I use in some examples in
Chapter 5.

3.2. Shape Optimization Problems

In this section, I give a brief overview of the basic notions and methods developed for
shape optimization problems [52, 56, 81].

Informally, I consider the shape optimization problem which reads as follows: find a
domain Q € R? that minimizes an objective function J, where Q) is restricted to a set
of admissible domains G,4,, which may model geometric constraints. Formally, this
problem can be written in the following way.

Problem 3.2.1. Let d € {2,3} and G,4,, C {Q cRY | Q is in a bounded domain} be a set of

admissible domains. Furthermore, for arbitrary () € Gz, let Y (QQ) and Z (Q)) be Banach
spaces of functions defined on Q). Let | be the objective function

J:A@,Q)19eY(Q),Q€Gun} > R, (3.20)
and E be an operator between the sets of admissible function spaces
E:A(3,Q) |9€Y(Q),Q€Guum —{212€Z(Q)}. (3.21)

Then
min J (§,Q) s.t. E(§,Q) =0, Q € G, (3.22)

is called the shape optimization problem.

In Problem 3.2.1, the expression E (§,Q) = 0 typically means that the state § solves
a partial or ordinary differential equation with the operator E including initial and
boundary conditions.

17
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In order to proceed with the analytical investigation of Problem 3.2.1 new theoretical
concepts are needed, in particular the shape derivative and the reference domain.

3.3. Method of Mappings

The method of mappings for shape optimization problems was originally proposed in
[79] and [60].

There are two common approaches to define shape derivatives in the context of the
reference domain transformation:

* the velocity (speed) method [91];
* the perturbation of identity method ([60, 52] and references therein).

These to methods are shown to be equivalent in certain sense [52, 56].

In what follows, I give a general idea of the reference domain transformation approach
and the perturbation of the identity method which I utilize later on to analyze the
shape optimization problem for Navier-Stokes flow given in (4.59).

Firstly, I fix a bounded domain Q .t € G,4m, called the reference domain [52]. I assume
that an admissible domain Q) € G,g4,,, can be characterized by a suitable associated
transformation 7 € T,qg C T (Q;ef) s.t. T(Qper) = Q. There

T(Quer) = {r: R > R?| (T—id)ES} (3.23)

is an affine space of transformations defined on (),.f and S is a suitable Banach space.
Further, the transformations 7 € T (Q,¢) are restricted to a set T,q of bi-Lipschitz
functions where (t —id) € D € S and D is open in S. To link this approach to the set of
admissible domains it is assumed that

Tad = {T € T(Qref) | T(Qref) € Gadm}- (3-24)
Hence, Problem 3.2.1 takes the following form:

Problem 3.3.1. Letd €{2,3}and T,; C T (Qref) be a set of admissible transformations of
a reference domain Q) or € Gogyy. Furthermore, for all T € Tyq let Y (t) and Z (t) be Banach

spaces of functions defined on T(Q,.). Let | be the objective function
p ef ]

J: (@0 [9eY (1), te Ty >R, (3.25)

18



3.3. Method of Mappings

and E be an operator between the sets of admissible function spaces
E:{(§,1)|9eY (1), teTy}—>{z|zeZ(1). (3.26)

Then the problem
min ] (9,7) s.t. E(§,7) =0, 1€ Tyy (3.27)

is called the shape optimization problem with transformations.

In order to make this approach well-defined, the following is also required. Let 11,7, €
Taq with 71 (Qref) = T2 (Qref) =: Q. Then for the solutions y; and y, of E(y;,7;) = 0 and
E(y,,1,) = 0 it holds y; o Tl_l =9, orz‘l = 9.

For the complete reference on the construction of a suitable transformation space
T (Qcf) as well as the conservation of boundary smoothness and regularity of trans-
formed functions I refer to [52] and references therein.

Finally, one can reformulate the optimization problem on a fixed domain Q¢ by
transforming the underlying PDE onto the domain Q¢ [52].

Suppose the state equation is given in a variational form

(E,7),P)z(0)2(c) =0 VP €Z (1), (3.28)

where Z ()" is a suitable space of test functions defined on Q = 7(Q ) for 7 € T,q. I
show how the state equation can be transformed in this setting to obtain a variational
formulation with state and test functions defined on a fixed domain.

By defining the pullback ¢ (x) := (qB o ’L’) (x), x € Q, with ¢ being the test function for
the problem defined on () = 7(Q,¢¢) the test function in the variational formulation
can be transported from Q to Q... Further, for all § € Y (1), ¢ € Z(1)" and 7 € T,
E(y,7) is defined as

(E(§ort,1), (i) ° T>Zref,Zref* = <E (&,7), (P)Z(T),Z(T)*' (3.29)

Now denote Tt := T (Q;f) and suppose that the following holds

* Y.ris a Banach spaces. t. VT € T,q and then Y,.s C{fot |9 €Y (7)}.
* Z.fis a Banach spaces. t. V7 € T,4 and then Z7, {q3 ot|Pe Z(T)*}.

ref —

 The solution 7 (7) of

E(@(r),7)=0 (3.30)

satisfies Jo T € Yo VT € Tpg.
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Now let 7 € T,4 and define y(7) := 9 o 7. Then the transformed state equation in
variational form

<E (y, T)’¢>Zrefizref* =0 V(P c Z;ef (331)
is equivalent [52] to Eq. (3.28).

Hence, for the operator E : Yief X Tref = Zief 5. t. VT € Tog, VP € Y (7) it holds that
E(y,1)=0 < E(§,7)=0. (3.32)

Similarly, for y = 9 o T € Y, and 7 € T,4 the objective function J : Yief x Trof — R is

defined with J (y,7) = J (9, 7).

Thus, Eq. (3.27) can be rewritten in Problem 3.3.1 as

Problem 3.3.2. The problem of the form
min [ (y,7) s.t. E(y,7) =0, T € Ty, (3.33)

where | 1 Ypopx Trop = Rand E : YiopX Tyor — Zf, is called the shape optimization problem
with transformations on a fixed domain.

In this formulation the optimal control problem posed on fixed function spaces where
7 is the control. This setup allows to apply standard tools from optimal control theory
to derive first-order optimality conditions and to employ gradient-based optimization
algorithms to solve the problem [52].

The approach described in this section can also be extended to compute shape deriva-
tives of functionals defined over variable domains governed by partial differential
equations. In such non-stationary settings, one typically maps functions from Sobolev
spaces defined on a varying domain to corresponding Sobolev spaces on a fixed holdall
domain. This parameterization enables the application of differential calculus on a
fixed reference configuration as discussed in [56].

In particular, when the state equations are given by non-stationary incompressible
Navier-Stokes equations, the admissible state space consists of vector-valued Sobolev
functions that are divergence-free. To preserve the divergence-free condition under
domain transformations, the Piola transformation is employed. This transformation
ensures that volume-preserving properties are maintained when mapping vector fields
between domains.

For a rigorous treatment and formal definition of the Piola transformation, I refer
to [32] and [26].
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3.4. Numerical Optimization Methods

I now recall some standard methods for solving general optimization problem before
combining all previous considerations and formulating a method for solving shape
optimization problem.

Consider again the most general optimization problem with PDE constraints on
Hilbert space

min J(y, u
uet (94 (3.34)
s. t. e(y,u) =0.

In Eq. (3.34) U is a Hilbert space, e(y, ) - PDE constraint, y(-) is a solution operator of
the constraint. Further, it is assumed that ] is smooth enough. At this point I do not
consider any special type of constraints, i.e. geometric and shape constraints or other
constraints on the control or state variables.

Most of the optimization methods rely on first and second derivative of the cost
functional to find directions that lead to the decreased objective function values.
Hence, the core questions are the choice of good initial guess for second order methods,
step size and the directions. In this section, I am going to consider some basic strategies
for selecting the suitable search directions and solving the problem (3.34).

3.4.1. Descent Method

I start with rewriting the optimization problem (3.34) in the reduced form:
min f(u), (3.35)
uel

where U is a Hilbert space and f : U — IR is continuously Fréchet differentiable.
Starting from the initial #, one wants to construct an iterative process. The main idea
of descent methods is to find a descent direction dy that would satisfy the following

f g+ agdy) < f (ug) (3.36)

for some ay > 0. In order to find the steepest direction, one can approximate the the
cost functional f via a first-order Taylor expansion:

fug + agedy) = f (ug) + ar(Vf (ug), did)y (3.37)
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3. Theoretical Background

Since U is a Hilbert space, in Eq.(3.37) Riesz representation theorem is used to obtain
a gradient of f. Hence, the direction that minimizes the cost functional is obtained
from the following optimization problem

dy = argmin(Vf(ug),d)y (3.38)
ldlly=1

Depending on the definition of the norm and associated inner product in Eq. (3.38),
one gets different algorithms. Using Cauchy-Schwarz inequality, for d € U, for ||d||;; =
1 one gets

(Vf(ug), d)y 2 =V f (ui)llylldlly = =V (ully

with equality only if d = —%. Since the aim is to minimize the functional f,
which decreases in the direction -V f (1), I choose

di =~V f (i) (3.39)

as the direction. So I obtain the iterative method

Uper = U — V[ (ug), (3.40)

where ay is some step size. Method given by Eq. (3.40) is called steepest descent method
(or gradient descent method).

Remark 3.4.1. I assume that descent direction dy satisfies the angle condition

~(Vf(u) di)u 2 nlIVf (wliglldlly  forn € (0,1). (3.41)

This condition requires that the angles between the chosen search directions dy and the
directions of steepest descent =V f (uy) are uniformly bounded away from 90°.

To ensure that the sequence of search directions {d}} is admissible, it is required that this
condition holds [27].

When descent direction is chosen, another issue to address is how far one can move
in this direction, i.e. one needs to determine a step size ay (also called a line search
parameter). In general, one obtains step size by solving the problem

ay = argmin f (uy + ady) (3.42)

a>0

which might be quite challenging in practice, hence usually one chooses different
strategies to selecting step size.
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3.4. Numerical Optimization Methods

Remark 3.4.2. The sequence {ay}i of step sizes is called admissible if the following two
conditions hold

f(uk + akdk) < f(uk) Yk = 1,2,.. (343)

Flug+ apdy) - fug) 70 = V() di)y koo (3.44)
k|l

A globally convergent descent method is given by Algorithm 1.

Algorithm 1 A descent method.
1: Choose uy € U and set k = 0.

2: repeat

3: Choose descent direction d that satisfies (3.41).
4: Determine ay such that (3.43) to (3.44) hold.

5: Set up,1 =up+ardyand k =k+1.

6: until stopping criteria.

7: return u.

For further details on convergence, strategies to select step size and other details I
refer to [27, 41, 16].

I now formulate the steepest descent algorithm for the general PDE-constrained
optimization problem given in (3.9). Based on the expression for the derivative of the
reduced cost functional provided in (3.17), the complete steepest descent algorithm
can be stated as follows:
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3. Theoretical Background

Algorithm 2 A gradient descent method for PDE-constrained problem.

1: Choose uy e U.
2: Compute (g, pg) by solving

e(y,ug) =0, ey(yo, uo)'p =Jy (Yo, to)-

3: Set k=0.

4: repeat

5: Choose the descent direction dy = =V f (u).
6: Determine ¢ such that (3.43) to (3.44) hold.
7: Set Uy, = Uy + aydy.

8: Compute (v, 1, pk+1) by sequentially solving

ey, urs1) =0, ey(ykﬂ; Uge)'p = ]y(yk+1’ Uks1)-

9: Setk=k+1.
10: until stopping criteria.
11: return uy.

3.4.2. Newton Method

In contrast to the steepest descent method, which is based only on gradient informa-
tion, the Newton method incorporates second-order derivative (Hessian) information
to determine search directions, typically leading to faster local convergence.

Using second-order Taylor’s expansion one gets

ald) = £ ) + (Vf (), )y + 5 (V2 F (), )y, (3.45)

where V2 f(u;)d is a Riesz representative of f”(uy)d. The first order optimality condi-
tion for the minimizer of g(d) reads as follows:

V() + V2 f (i) di = 0
Assuming that second derivative is smooth enough and invertible, one gets

di = ~(V? f ()" V f (1), (3.46)

Therefore, the iterative method is obtained

Uger = g — (V2 (k)" Vf (ug). (3.47)
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3.4. Numerical Optimization Methods

Algorithm 3 Newton’s method.
1: Choose uy e U, set k =0.

2: repeat

3 Setupyy = up— (V2 (uge)) "V f ().
4: Setk=k+1.

5: until stopping criteria.

6: return uy.

Consider now again a constrained optimization problem given by Eq.(3.9):

min J(y, u)
s. t.e(y,u) =0.

Let (p,i) be the local optimal solution to the problem, V(it) - neighborhood of i.
Further, it is assumed that / : Y xU — Rand e: Y x U — Z are twice continuously
Fréchet differentiable with Lipschitz continuous second derivatives, and that

ey(9, 1) is a bijection in a neighbourhood of (9, it).

Now I formulate Newton’s method for PDE-constrained optimization problem as
derived in [27] as given in Algorithm 4.

Remark 3.4.3 (Stopping Criteria). A critical component of Algorithms 1 to 4 is the choice
of a stopping criterion, which determines when the iteration is considered sufficiently close
to an optimal solution. Common stopping criteria include:

* Gradient norm tolerance: ||V f (uy)|| < e

* Relative gradient reduction: ||V f (up)|l/|IV f (1)l < €e1
* Small update norm: |[ug 1 — ugl| < &gtep

* Objective stagnation: |f (uj,1) — f(up)l < €op;

* Maximum number of iterations: k > k.

In the numerical examples in Chapter 5, used a combination of these conditions to
ensure efficient termination.

Depending on the discretization level, I used objective stagnation or bound on max-

imum number of iterations. For a comprehensive discussion of stopping criteria in
optimization algorithms, I refer to [61].
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3. Theoretical Background

Algorithm 4 Newton’s method for PDE-constrained optimization problem.
1: Choose ugy € V(it).
2: Compute (yg, ug) by solving

e(y,ug) =0, ey(yo, uo)'p =7y (Yo, to)-

3: Set k=0.
4: repeat
5: Solve Newton system for (9y, 6, 0r):
Ly (W o Pk) - Ly (i i i) € (Vi i)\ (6 0
Liy (Wi o i) Loy (Vi o Pi) - €0 (Wi )" || 04 | = | €0 (v w)'p = Ju(Wo uk) | (3.48)
e, (Vx, k) e, (Vk, Uk) 0 O 0
6: Set uyp,q = u+0,.

7: Compute (v, 1,Pr+1) by sequentially solving

e urs1) =0, ey(Vir1, Uke1)'P = Ty (Vhs1, Uks1)-

Setk=k+1.
until stopping criteria.
10: return uy.

o ®

3.5. Discretization with Finite Elements and Mesh
Quality

Optimization problems, and especially shape optimization problems, are challenging
to solve, due to the nonlinearity of shape spaces. Furthermore in general, they are
formulated on infinite dimensional spaces. I overcome this by first reformulating the
problems from the shape space to standard Hilbert spaces, and then by discretizing
the problem. There are two known approaches for discretizing optimization problems:
the ’first-optimize-then-discretize’ approach and the ’first-discretize-then-optimize’
approach. In this thesis, I focus on the former one and refer to Section 5.2 and [56, 13]
for further information on the latter one.

In “first-optimize-then-discretize’ approach one starts with the first order necessary
optimality conditions for the optimization problem. Then all variables in the system
are discretized, including state and adjoint variable, control variable and integrals.
One is also free to choose different ansatz spaces for discretization of state and adjoint
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3.5. Discretization with Finite Elements and Mesh Quality

variables. Please note that by choosing the same ansatz spaces for the state and the
adjoint variable will lead to an optimality condition identical to the one obtained with
"first-discretize-then-optimize’ method.

The optimality system derived from an optimization problem given by (3.12) consists
of differential equations and algebraic conditions describing the necessary conditions
for optimality. To be able to solve the problem numerically, one has to first rewrite
this system from the continuous formulation to a discrete one. This process involves
discretization of partial differential equations, where the domain of the problem is
divided into a finite number of elements to approximate the solution, converting the
continuous problem into a system of algebraic equations.

Through FEM, the continuous domain is represented by a mesh, consisting of in-
terconnected elements (e.g., triangles, quadrilaterals, or tetrahedra), over which the
equations are solved approximately. Consequently, transitioning from the continuous
optimality system to practical numerical computation requires both the derivation
of a discrete formulation via FEM and the preservation of mesh quality, which is
crucial for accurately resolving the geometry and capturing the solution’s behavior.
A high-quality mesh ensures numerical stability, accuracy, and convergence of the
solution. Once the problem is discretized, iterative optimization methods such as
gradient descent or Newton-type algorithms can be applied efficiently to solve the
resulting system.

The accuracy and efficiency of the solution depend heavily on the quality of the mesh
used for discretization. A well-constructed mesh ensures that the solution captures
the behavior of the system while minimizing computational effort. Mesh quality is
influenced by factors such as element size, shape, and distribution, which must align
with the problem’s geometry and physical properties. Balancing computational cost
with solution accuracy is critical in this step, as it directly impacts the reliability of
the results.

3.5.1. Mesh Quality

One of the key challenges in shape optimization is maintaining mesh quality through-
out the iterative optimization process, since geometric updates are intrinsic to shape
optimization.

This issue becomes especially critical in problems involving large deformations, which
are the primary focus of this thesis. In such settings, mesh quality can deteriorate
significantly, and in some cases, elements may even become degenerate. The approach
proposed in Section 4.6 is designed to address this challenge by preserving mesh
quality throughout the optimization. To assess the effectiveness of such techniques, it

27



3. Theoretical Background

is essential to have appropriate metrics for evaluating mesh quality, which allow both
qualitative and quantitative comparisons.

Since in the numerical experiments I use triangular and tetrahedral elements, I am fo-
cusing only on quality measures for evaluating triangular and tetrahedral elements.

3.5.2. Mesh Quality Measures

To quantify a mesh quality, I choose the metric that determines how far the element is
from an ideal cell shape. For each measure, the highest values of the quality measure
correspond to the best elements. These measures provide quantitative metrics for
evaluating and improving the geometric quality of elements, resulting in more accurate
and reliable numerical results. I am going to focus on one quality measure within
this thesis to evaluate quality of meshes in the section with numerical examples
(Section 5.2). For further information about other mesh quality measures and their
comparison and evaluation please refer to [75].

Among various mesh quality measures, the radius ratio is commonly used to assess
the geometric quality of elements, especially in triangular and tetrahedral meshes.
The radius ratio is a dimensionless quantity that compares the inradius (radius of
the largest inscribed circle or sphere) to the circumradius (radius of the smallest
circumscribed circle or sphere) of an element.

Definition 3.5.1. The radius ratio R, for an element is defined as:

Tin
R, = ,
Teire

where:

* 1i, is the inradius of the element.
* Tcirc 1S the circumradius of the element.

For high-quality elements, the radius ratio approaches 1, whereas for poor-quality
elements, often with sharp angles or highly skewed geometry, it approaches 0.

In addition to the radius ratio, other commonly used mesh quality measures include:
* Aspect Ratio: Measures the ratio of the longest to the shortest edge.

» Skewness: Evaluates the deviation of an element from an ideal shape.
* Jacobian Determinant: Ensures that the element is non-inverted and well-scaled.
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3.6. Condition number

The radius ratio is crucial in mesh generation and refinement, ensuring well-
conditioned stiffness matrices, reducing numerical errors, and improving solver
convergence and efficiency in FEM simulations.

3.6. Condition number

Since at the core of the optimization solution process is the FEM-based solver, it is
reasonable to account typical issues and intricacies natural for solvers of such type.

In particular, one aims to keep the solver as accurate as possible while minimizing
computational efforts. It translates to the goal of keeping the condition number of
the stiffness matrix as small as possible. Matrices which are poorly conditioned are
affecting linear equation solvers. Namely, bad condition number of the FEM stiffness
matrix slows down solvers or often leads to large round-off errors into the results.

The condition number of the stiffness matrix is highly sensitive to the quality of the
discretization mesh. Both the shape and size of the finite elements strongly influence
matrix conditioning. In particular, triangular elements with small internal angles tend
to produce large eigenvalues in the stiffness matrix, degrading both the numerical
stability and the accuracy of the solution.

To mitigate this, it is critical to ensure that the internal angles of triangles in the mesh
are well-behaved. As shown in [5], it is not sufficient to control only the element size;
maintaining a lower bound on the minimum angle and avoiding angles approaching
180° are also essential. In fact, the accuracy of finite element solutions deteriorates
when the mesh contains elements with excessively large or small angles.

3.6.1. Condition Number for Linear Systems

In this subsection I consider the condition number strictly from the perspective of
solving linear systems of equation, i.e. the condition number of Jacobian. I define the
condition number of a matrix and discuss how it is linked to solving linear systems.

Consider a standard n x n linear system of equations

Ax =1, (3.49)

where A € R, b € R",x € R". The question I aim to answer is: How sensitive is the
solution to Ax = b with respect to changes in b?
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The condition number of a square invertible matrix A € R"*" is defined as follows

K(A) = |A]l-[|A™], (3.50)

where ||-|| is some chosen matrix norm. Alternatively one can represent condition
number of a matrix A in terms of its largest and smallest singular values 0,,,y, 0},i, as

follows A)
o
K(A) = (3.51)
amin(A)
If further matrix A is symmetric and positive definite, then
_ /\max(A)
K(A) = 1 (A) (3.52)

where A,,,.(A), Ain(A) are the largest and smallest eigenvalues of A. In the following
I will use the notion of a condition number given by Eq. (3.52).

From Eq. (3.52) it is known, that if matrix A is singular then its condition number is
infinite, i.e k(A) = co.

With regards to the problem (3.49), if A is a singular matrix and a solution x exists,
then one can change the solution without changing b.

Therefore, a large condition number of a system indicates that the solution is highly
sensitive to perturbations in data b.

3.6.2. Condition Number for Optimization Problems

When it comes to the optimization poor conditioning affects the quality of the direction
and step size. Consider the simple minimization problem for quadratic function

J(x)=bTx+ %xTAx,

where A is a positive definite matrix. The behaviour of ] in the neighbourhood of a
local minimum is given by the eigenvalues of matrix A, in particular, by condition
number x(A).

Consider the level set of the function J(x). The smallest and largest eigenvalues
correspond to the principal axes of the ellipses. When «(A) = 1, the contours of J(x)
are circular and as x(A) increases they become more elongated. So when «(A) is large,
the cost function will be highly affected by the relative change with respect to the
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3.6. Condition number

norm of x. The directions that produce the largest and smallest changes in the function
value are the eigenvectors corresponding to A,,,, and A,,;,,, respectively.

Hence, by using the Hessian matrix at the solution one can measure the sensitivity, or
conditioning, of the function value with respect to changes in x [35].

As condition number increases, the contours become more elongated, as shown in the
second figure. If x(A) is large, the relative change in the objective function due to a
perturbation of constant norm in the variables will vary radically depending on the

direction of the perturbation.

Figure 3.1.: Contours of a quadratic function with «(A) =1 and x(A) = 10.

In general, one would have to compute all eigenvalues and corresponding eigenvectors
to obtain full information about a Hessian matrix. However, many algorithms compute
the Cholesky factorization of the matrix [35], which can be used to estimate A,,,, and
Amin and their corresponding eigenvectors.

3.6.3. Condition Number Effects for Newton Method Convergence

If one examines the proof of quadratic convergence for Newton’s method, it becomes
clear that convergence relies on the non-singularity of the Hessian at the solution.
Moreover, the size of the region in which quadratic convergence is guaranteed de-
creases as the condition number of the Hessian increases [35]. Therefore the con-
vergence of a Newton-type solver will be degraded if the Hessian at the solution is
ill-conditioned.

In the context of FEM, the Hessian of the objective function is often closely related
to the stiffness matrix—particularly when the underlying problem involves energy
minimization or PDE-constrained optimization. Therefore, the condition number of
the stiffness matrix directly affects the condition number of the Hessian. Since mesh
quality has a strong influence on the conditioning of the stiffness matrix, it follows that
poorly shaped or highly distorted elements can lead to an ill-conditioned Hessian. This,
in turn, reduces the effectiveness of Newton-type solvers by shrinking the region of
rapid convergence and increasing the sensitivity of the solution to numerical errors.

31



3. Theoretical Background

Thus, careful mesh design is not only important for the accuracy of FEM discretization,
but also plays a critical role in ensuring the robust and efficient convergence of
Newton-based optimization algorithms. I illustrate this by numerical examples in
Chapter 5.

32



4. Shape Optimization Problem in
Navier-Stokes Flow

In this section I discuss Navier-Stokes equations and show how they can be transformed
to the reference domain.

4.1. Navier-Stokes Equations

The incompressible Navier-Stokes equations represent one of the most fundamental
models in fluid dynamics, which describe the velocity field and pressure distribution
of a fluid with uniform density. In this section, I consider both two- and three-
dimensional formulations, as the numerical results presented in Chapter 5 include
simulations in both settings. Further, for simplicity, I restrict this work to the stationary
equations.

Let () be a bounded Lipschitz domain in RY,d = 2,3 with a Lipschitz continuous
boundary dQ. I consider the stationary NS equations

—vAv+(v-V)v+Vp=0 in Q
divv =0 in Q)

V=Vo onli (4.53)
v=0 on Iy U Lyan
%
pn— VQ_Z =0 on I -

In (4.53) v = v(x) : Q — IR? is the velocity field, p = p(x) : Q — R is the pressure of the
flow at a point x, n:I' — RY - outward-facing unit normal vector to I, v - kinematic
viscosity, v, describes the velocity profile at the inflow boundary.

Since within this thesis I consider only laminar flows, I assume strong viscous effects
modeled by high values of v. As is known, v = %, where Re is Reynolds number.
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Figure 4.1.: Sketch of the holdall domain G = Q U Q.

Therefore, in the present setting I consider only low Re.

Together with [} ,s the fluid domain () is allowed to change, but the outer boundaries,
i.e. iy, Iout and I, a1, of the experiment are fixed.

Here I assume that [, and I, have positive Lebesgue measure, Iy, N (L, ULyan Ulout) =
0 holds during the entire optimization.

4.1.1. Weak Formulation

A classical solution for (4.53) is such that v € C2(Q) N C(Q) and p € C'(Q). In order to
require less regularity and proceed with discretization, I derive weak formulation of
the coupled Navier-Stokes (4.99).

Remark 4.1.1. Consider a vector-valued function f : R* — R?. By Df € R¥*? [ denote the
Jacobian matrix with the ordering defined as follows

_(2%
b= (axf )i,jzl,.“,d (o4

To define weak formulation of the problem given by (4.53) I consider

Vi={weH Q,RY): div(v) = 0,v[g, = Voo, VIr, UL, = 0 2.,
Vo = v e H(Q,RY): div(v) = 0,vIr_ur,,un,. = 0a.e.), (4.55)
Q:={peL*Q)
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Then the weak formulation of the PDE constraint (4.53) reads as

Find (v,p) € V x Q such that

J vDv: D6, +(Dvv)-0,—pTr(Do,)dx =0,
Q (4.56)
—J;) 0, Tr(Dv) dx =0

for all test functions (6,,0,) € Vo x Q.

Note that within this thesis, I am using the symbol o, to denote test functions associated
with a given variable *.

Remark 4.1.2. In (4.56), the notation A : B stands for the Frobenius inner product of two
d x d matrices A and B, i.e.

d
i,j=1
In what follows, I also denote by
1
[All=(A:A)

the associated Frobenius norm, where d = 2, 3.

4.1.2. Optimization Problem Statement

I consider a classical problem of optimal shape design for a viscous, incompressible
fluid flow given by Navier-Stokes equations described in [58].

Let () be a d-dimensional, bounded domain with Lipschitz boundary illustrated in
Fig. 4.1 for d = 2. I consider the minimization of the following energy dissipation
functional

d

v

in j ;ros:_
min j0 T =3 [ )

obs Z,jZl

avi )2
dx. (4.58)
(aX]

In (4.58) the boundary I, of the obstacle (), serves as the design variable. Addi-
tionally, I assume Q) is non-empty, connected set and [, is a smooth and compact
Riemannian manifold without boundary.
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Since I assume the absence of gravity, there are only drag and lift forces present in
the system. As mentioned in [58], for a symmetric body if its axis is aligned with the
velocity at infinity then there is no lift and only drag is generated due to the velocity
difference between the solid body and the fluid [44]. Therefore, one can alternate
minimization of the energy of the system and minimization of the drag on the surface
of the obstacle[34],[57]. In the case of non-symmetric body, I will choose the energy
dissipation minimization as the objective function. I will refer to the objective function
as either the drag or the energy dissipation interchangeably.

So the problem can now be formulated in a form (1.1) as follows

Problem 4.1.3.

d 2
o v a'l/l'
min (v, Lops) = 2 J;) .Z(ax.) dx (4.59)

In (4.59) the velocity v is a solution to Navier-Stokes equations given by (4.53), which
is a part of constraints denoted by E. I will describe in detail the rest of the constraints
which are part of the (4.59) in the further sections.

One class of constraints to consider is geometric constraints, which in case of the

selected Navier-Stokes flow based problem make sure that trivial solutions are ex-
cluded.

4.1.3. Geometrical Constraints

Two classical and widely used examples for this are the bound on the change of the
volume and constraint on the location of the barycenter of the shape, which I am going
to discuss in more details further. Among others, the constraint on the surface of the
shape is often considered as an alternative for the constraint on the volume. Another
common constraint which often comes from design specifications or other regulations
is that a shape should be located within a feasible region. However it is commonly
implemented in a parametric sense, by bounding the location of nodes [64].

In case of the problem discussed in this work, i.e., for the shape optimization of a
specimen (), with respect to functionals of type given by (4.58), it is essential to
exclude trivial solutions. The obvious design improvement would be movement of
the obstacle toward the walls [}, or shrinking of an (), to a point which would
represent undesired descent directions.
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Since the considered problem is to find optimal shapes of an obstacle of a certain
volume located in the flow tunnel it is natural to use geometrical constraints to fulfill
these requirements. So the barycenter and volume of the obstacle () are fixed using
the constraints

vol(Qyps) = J 1dx = const, (4.60)
Qobs

1
Q = dx = . 4.61
bc(Qyps) vol( QObS)JQObe X = const (4.61)

Since the computation for the barycenter involves the volume of Q. itself, these

conditions are coupled in principle. Yet, if (4.60) is fulfilled, the term vol(Qgs)~! in

(4.61) is constant and can thus be factored out. By further assuming that the barycenter
of the specimen Q. is 0 € IR?, it is thus sufficient to require fQ ) xdx = 0.

4.2. Admissible Boundary Deformations

Consider again the shape optimization problem with transformations on a fixed
domain. Motivated by [38], I choose Banach spaces X, Y such that

Dy CX & ClTpe)?, Y ClQ)Y,
and assume that the extension operator S : X — Y is linear and continuous.

Further, I consider continuous extension mapping S : X — Y. Then the problem (3.33)
can be written as follows

. . o
min j(y, F(Q)) + = lcll%

CEDad 2

s.t. E(y,F(Q))=0 (4.62)
F=id+w in Q
w = S(c),

where E(y, F(Q))) represents a PDE constraint, c is a control variable and F =id+w is a
perturbation of identity mapping. I choose D,4 and S such that the following holds
[38]:

A1l There exists 11 > 0 and an open neighbourhood U of () such that for all admissible
controls ¢ € D,q, there exists a C!-diffeomorphism F : U — U such that F|g =

id + S(c) and DF(x) has a condition number bounded by 7 for all x € U.

A2 Let cy,cy € D,ag. Then (id + S(c1)) (Q) = (id + S(c3)) (Q) iff ¢; = ¢ on [,
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Assumption Al leads to the following lemma:

Lemma 4.2.1. Let Q C R%,d € (2,3} be a smooth domain and assumption A1 is fulfilled.
Then (id+ S(c))(Q) is a Lipschitz domain for all admissible c € D,,.

Proof. Follows from [42, Thm. 4.1]. N

Remark 4.2.2. In the framework of Lemma 4.2.1 one can even claim that id + S(c) is a C!
domain for all admissible c € D,.

I present here sufficient conditions for assumption Al to be fulfilled.

Theorem 4.2.3. Let d € {2,3}, Q) be a bounded Lipschitz domain, 1; € (0,1), X,Y be
Banach spaces such that Y < CY(Q)%. Further, it is assumed S : X — Y is linear and
continuous. Then there exists 11, > 0 and

Dyq:={c e X : det(D(id + 5(c))) = 1, llcllx < 77}-

Then assumption A1 holds true.

Proof. For proof and more details I refer to [38]. O

Furthermore, Theorem 4.2.3 can be extended to the case of nonlinear mapping S.
Following [38] I consider the additional Banach space X.

Theorem 4.2.4. Let d € {2,3}, O, U be bounded Lipschitz domains, with (3 C U, 111 € (0,1),
and 11, >0, X, X, Y be Banach spaces such that Y < CL(U)?. Let further X be compactly
embedded into X. Further, it is assumed S : X — Y is continuous with §(0) = 0 and that S
can be extended to a continuous mapping S : X — CY(U)?. Then for

D,y :={ce X :det(D(id + S(c))) = 11, |lcllx < 12}

the assumption A1 holds true.

Proof. For proof I refer to [38]. N
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4.3. Transformation to the Reference Domain

In order to reformulate the optimization problem (4.58) to (4.61) as an optimal control
problem in appropriate function spaces, I fix the domain () as a reference configuration
following the methodology described in Section 3.3. In the following I use the subscript
(*),, to denote the deformed state via the mapping F, i.e. (Q,, := F(Q).

Let
F:QO—Q,, F=id+w (4.63)

such that F results in an admissible deformation for Q. In (4.63) w € WL (Q,RY)
denotes the domain displacement.

I parameterize the domain () via the mapping given in (4.63) for some given suffi-
ciently small displacement field w:

Q, ={x+w:xeQ} (4.64)

So the set of admissible shapes G,qm := {F(QQ): F € F,qm} can now be defined in terms
of the perturbation of identity mapping as follows

Gadm = {F(Q): F =id +w,w € W' (Q,RY)) (4.65)

So now I can formulate (4.59) on the reference domain as an optimal control problem.
I use the method of mappings [60] by writing down the state (4.56), objective (4.58)
and the corresponding state variable v in terms of F(()) and obtain

. . a
min ](y,F(Q))+§||C||%2(robs)

c€L?(Tobs)
s.t. E(y,F(Q))=0
F =id+w in Q (4.66)
det(DF) > #qet in Q)
w = S(c).

In (4.66), I add the L?-regularization term to the cost functional with regularization
parameter a > 0 to get a smoother optimal control, following the classical Tikhonov
approach. This naturally raises the question of how the solution to the overall problem
depends on the choice of a. I will explore this dependency in detail in Section 5.2.2.
While this term helps stabilize the optimization problem and penalizes large control
amplitudes, it does not directly enforce higher regularity such as continuity or differ-
entiability of the control. Since the control c enters through a smoothing operator S
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4. Shape Optimization Problem in Navier-Stokes Flow

into the deformation w = S(c), the overall regularity of w may still be ensured. Never-
theless, if higher control regularity is indeed necessary — for instance, to guarantee
w € W and w = c on I, — then a stronger regularization (e.g., H!- or H?-based)
or domain-specific assumptions on S may be required. The precise role of @ and the
interplay between control regularization and deformation regularity will be explored
further in Section 5.2.2.

4.3.1. Navier-Stokes on Reference Domain

Let Q C R? be the reference domain and F : Q — Q,, := F(Q) be a sufficiently smooth
invertible deformation mapping defining the current domain Q,,,.

Let (v, pw) denote the velocity and pressure fields on the current domain Q),,, which
satisfy the Navier-Stokes equations there. Their counterparts on the reference domain
Q) are denoted by (v, p).

The fields on the two domains are related by pullback and pushforward via F as
follows:
v=v,0F, p=py,oF, (4.67)

or equivalently,
v,=voF, p,=poFL (4.68)
More explicitly, the mappings are
v,:Q, >R, v:Q->RY, (4.69)
Pw:Qy—-R p: Q>R (4.70)

The spatial derivatives transform according to the chain rule:
Dv,(v) = Dv(x)(DF(x))™! for y = F(x), (4.71)
and similarly for the pressure gradient,
Dpy(v) = Dp(x)(DF(x))™". (4.72)
Since the divergence is the trace of the velocity gradient, it holds

Vs, - Vw = Tr(Dvy,) = Tr(Dv(DF) ™).

Therefore, the incompressibility constraint pulled back to the reference domain Q)
reads
Tr(Dv(DF)™") = 0. (4.73)
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4.3. Transformation to the Reference Domain

Using the relations (4.69) to (4.72) and standard computations, the weak formulation
of the shape optimization problem pulled back to the reference domain Q) reads:

erlgzlm i(v, F(Q)) = %L (Dv(DF)™): (Dv(DF)™")det(DF) dx (4.74)
st [ [v (Dv(DF)™'): (D5, (DF)™') + (Dv(DF)'v)- 5,
JQ
~pTr(Ds,(DF)™)|det(DF)dx =0, (4.75)
_J; 3, Tr(Dv(DF)™")det(DF)dx = 0, (4.76)
[ det(DF)-1dx =0, (4.77)
JQobs
o det(DF)dx =0 (4.78)
J Qs

for all test functions (6,,6,) € V x Q.

The shape optimization problem (4.74) to (4.78) is formulated as optimization over a
set of admissible mappings. In order to reformulate as the optimal control problem
of form (4.66) the data on admissible transformation is needed. Thus, following the
same approach as in [38] and further reformulating the constraint det(DF) > 4. as a
penalty term.

Problem 4.3.1 (Optimal control problem for Navier-Stokes equations).

min J(v,c):=j(v,F)+ % J;Dbs c?ds+ g JQ (M et — det(DF))+)2 dx

CELz(robs)
s.t. (4.75) to (4.78) (4.79)
F=id+w
w = S(c),

where (-), denotes the positive-part function.

To complete Problem 4.3.1 the extension equation has to be specified, namely the
mapping S which links a scalar valued boundary control ¢ to admissible deforma-

tion fields w. Several possible ways to model this are presented in the next section
(Section 4.4).
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4.4. Approaches to Choose the Extension Operator S

In transformation-based shape optimization, one typically controls the deformation
of a reference domain () via a vector-valued displacement field w. However, since
optimization is often carried out with scalar-valued design parameters defined only
on a subset of the boundary (the design boundary I), a crucial modeling step is
to construct a suitable extension operator S that maps scalar boundary controls to
domain-wide deformations.

This section discusses several strategies for defining the extension operator S, follow-
ing the framework proposed in [38]. The central idea is to use a sequence of classical
PDE-based operators to gradually lift a scalar-valued control variable ¢ defined on
Iops to a vector-valued displacement field w € Q). The construction of S must ensure
sufficient regularity and injectivity of the resulting transformation, while also allowing
for flexibility in boundary deformation (e.g., enabling tangential or normal displace-
ments). This is particularly relevant in practical applications where mesh quality and
numerical stability are critical.

The mapping is typically realized through the following chain:

cribgzgw, (4.80)

where:

* I. The scalar control ¢ is smoothed by solving a Laplace-Beltrami equation on
Iops, yielding a scalar-valued function b.

e II. This function b is extended to the interior of () by solving an elliptic PDE,
producing either a scalar field z or directly a vector field.

e III. If needed, a mapping from scalar to vector field is performed to obtain the
final deformation field w.

Let Q c IR? be a smooth domain with boundary T, and let Qs C Q be a fixed obstacle
with boundary [ps C T, such that I' \ [, # 0. The following construction assumes

sufficient smoothness of () and I, and that Section 4.2 is satisfied to guarantee
admissible deformations.

Auxiliary Operators

I first present some PDE-based operators which are needed later for the definition of
an extension operator S.
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4.4. Approaches to Choose the Extension Operator S

Laplace-Beltrami smoothing on [:
b—Ar, b=f on [, (4.81)

where Ar, denotes the Laplace-Beltrami operator. The associated solution operator
is denoted by Sr, in the scalar case and Sfib in the vector-valued case.

obs

Scalar elliptic extension in ():
Az=0 in Q,
z=0 on T\, (4.82)
Vz-n=0>b on Iy,

where n denotes the outward unit normal vector on I'. The corresponding solution
operator is denoted Sqy. In (4.82) both b and z are scalar-valued.

Vector-valued elliptic extension in ():
V:(Dz+Dz")=0 inQ,

z=0 onT\Iy,, (4.83)
Vz-n=>b on Iy,

where Dz denotes the Jacobian matrix of z. The associated solution operator Sé maps
a vector-valued b to a vector-valued z.

The extension operator S can be constructed by composing the auxiliary operators
defined above in different ways. Each approach begins with a scalar control c on the
design boundary I, which is first smoothed using the Laplace—Beltrami operator
and then extended into the interior of the domain Q) via an elliptic PDE. The point
at which the control becomes vector-valued, as well as the method by which this
transition occurs, influences both the nature of the resulting deformations and the
complexity of the implementation.

In the following, three distinct strategies for defining S are presented. These differ in
the placement of the scalar-to-vector transition, the directional restrictions imposed
on the deformation field, and the regularity of the resulting transformations.

Strategy 1 (S1): Scalar Extension with Normal Projection

This strategy constructs the displacement field using only scalar-valued intermediate
fields. The final vector field is obtained by projecting the scalar result onto a smoothly
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4. Shape Optimization Problem in Navier-Stokes Flow

extended normal direction:

Si(c):= SQ(SFObS(C))neth (4.84)

where 1.,; denotes a smooth extension of the unit normal vector from [}, into Q.

The operator S;(c) in a weak form is given via the following weak formulation of
operators Sr, :

J b6b+Vrobsb-Vrobsébds:j cébds, (485)
Tobs

robs
and Sq:

J Vz-Vo,dx :j b-o,ds,
Q I‘obs

where 6, and 6, are test functions from the corresponding spaces. Finally, since z is
still a scalar-valued variable, it is mapped to vector-valued w following step III. as
follows:

f w-Vo,dx = f ZN oyt * Oy AX, (4.86)
Q T

for all corresponding test functions 9,,.

Displacements are limited to the normal direction of [, which simplifies the model-
ing and is consistent with the structure of the shape derivative in many classical shape
optimization formulations (like Hadamard-Zolésio theorem [91]).

Strategy 2 (S2): Vector-Valued Elliptic Extension

In this strategy, scalar operators are used in the initial stages, but the final deformation
field is obtained directly by solving a vector-valued ellipticPDE, thereby avoiding the
need for an explicit normal extension (step III.). An extension operator is defined as
follows

Sy(c) =S4 (Sr,.(c) ), (4.87)
with the corresponding weak formulation
J (Dw—i—DwT):Déwdx:J bn-o,dx. (4.88)
Q Lobs

for all suitable test functions ¢,, together with the weak Laplace-Beltrami equation
given in (S1) by (4.85). I am going to discuss the motivation behind this equation
in Section 4.5. Further, in comparison with (S1) the equation (4.86) is not needed
anymore.
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4.4. Approaches to Choose the Extension Operator S

This approach results in a smoother displacement field and enables more stable
deformations, while still aligning the deformation with the normal direction through
the scaled right-hand side.

Strategy 3 (S3): Fully Vector-Valued Extension

This strategy lifts the scalar control to a vector field at the earliest stage by interpreting
the control as a scaled normal vector field:

S3(c):= S& (S8

obs

(Ci’l)), (4:89)

Hence, as in the previous case then the deformation field w is obtained directly at a
step I1I without using (4.86). In (4.89) n is the outward unit normal vector to [,
and Sf‘i o denotes the solution operator to the vector-valued Laplace-Beltrami equation
given by the following variational formulation:

J b-oy+Dr, b:Dr, 6pds = J cn-Opds. (4.90)
I‘obs

1‘obs

In (4.90) 6y is a test function corresponding to b from the suitable space. Further, Sé
is a solution operator to vector-valued elliptic extension equation defined as before by
(4.88) which now doesn’t have to be scaled on the right-hand side by n:

j (Dw+DwT):D5wdx:J b-5,dx. (4.91)
Q

1—vobs

This formulation offers the most general setting, allowing both normal and tangential
displacements. It also removes the need for any artificial normal projection, potentially
resulting in more flexible deformations.

Table 4.1.: Comparison of extension strategies for operator S. In all cases c is scalar.

# | Interm. Fields | Projection Direction Regularity
S1 Scalar b, z Yes (Mext) Normal only High

S2 Scalar b No Normal (RHS) Higher than S1
S3 Vector b No Normal + Tangential Highest
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4.5. Linear Extension Equation

Following the approaches described in Section 4.4 I use the coupling of elliptic equa-
tion and Laplace-Beltrami equation to define the extension equation. As already
discussed, some of the common linear choices of an elliptic equations are Laplace
equation, linear elasticity equations [74, 29] or its modifications.

In this section I am going to discuss one of the exmples of the extension equation: the
equation based on the linear elasticity equations as well as its simplifications which I
already briefly mentioned in Section 4.4. In [74], motivated by physical considerations
mesh deformation was suggested to be modeled by solving a linear elasticity problem
with variable second Lamé parameter ple|,s.

div(o (w)) =0 in Q
=0 on Lyap Ul Ulhyt (4.92)
o(w)-n=-c on Iy,

where
0 = Aelas IT(€) I + 2Uelas €,

e= 1 (Vo+ Vo), (4.93)

are the stress and strain tensors, respectively. Here A¢,5 and p,j,5 denote the Lamé
parameters, which are defined via Young’s modulus E and Poisson’s ratio v as follows

vE

/\elas - (1 n V)(l _ 21/)’ (4.94)
E

Helas = 20 +v) (4.95)

I derive weak form of elasticity problem (4.92) using sufficiently smooth test functions
r:

Problem 4.5.1. Find w € U such that

Ja(w):Vrdx—jd-rds:O, VreU, (4.96)
Q robs
where
U:={ueH(Q):u=0 onTLy,; UL, UL} (4.97)
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4.6. Nonlinear Extension Equation

In [74] some results are presented for Aej,s = 0 and pejas € [Mrextmins Hrextmax] = [1,500]
smoothly decreasing from [},5 to the outer boundaries. Therefore, it was required to
solve an additional Poisson equation to determine y as an initial step:

Apeas =0 in Q
Helas = 1 on I‘wall U I‘in U I‘out (4'98)
Helas = 500 on IﬂobS'

Remark 4.5.2. In [74] the linear elasticity equation was used as a Riesz-representation of
the shape derivative, whereas in [29] a slight modification of this method was suggested to
use the stresses as the design parameters for the problem. One can simplify it further and
use Riesz representation of the control ¢ € L*(T,s), since the mesh deformation is a function
of the control variable as given in (4.92).

Despite this approach to be leading to quite robust results, a lot of parameter tuning
and adjustments to the setting of the problem was required. Apart from the above
mentioned additional solve of Poisson, the problem was heavily dependent on the
geometric dimension. Therefore, it was later proposed to further simplify this model
and choose y to be of a constant value, namely p = 1.

This way, I obtain a simple elliptic equation with the symmetrized derivative
(Dw + DwT) which leads to better mesh qualities in comparison to using only Dw, as
was illustrated in [38].

4.6. Nonlinear Extension Equation

It is clear, that the structure of a shape space is highly nonlinear, since one can not
easily define sums of shapes or linear combinations of them. Nevertheless, I am using
the method of mappings with linear extension equation described in Section 4.5 to
locally approximate the set of admissible shapes by linear function space of admissible
deformations. Whereas linear extension equation successfully preserves mesh quality
for many problems it is not suitable for solving optimization problems admitting large
deformations. It turns out that the linearity of the approximation is a limiting factor
for the linear extension equation. Therefore one aims to find such extension equation,
and therefore the extension operator S that would extend the set of admissible shapes.
The nonlinear operator suitable for modelling of large deformations was proposed in
[63]. In this section I am going to explain the idea behind nonlinear extension operator
and different modification of it.
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I start by adopting the Strategy 1 (S1) described in Section 4.4 but instead of a linear
elliptic equation I introduce an equation with a nonlinear advection term. Therefore, I
define S in terms of the solution operator of the following coupled PDEs

b—Ar, b=cn on Iy,
—div(Vw+ V") + fe(w-VIw=0 inQ,
(Vw+Vw")-n=b  on I,
w=0 on LUl Uy

(4.99)

In the equation above Ar, denotes the vector-valued Laplace-Beltrami operator,
Hext = 0 a scalar which controls how much influence has the nonlinear term. A detailed
discussion about the choice of #. follows in Section 5.2.5. By solving (4.99) the
scalar-valued control ¢ € L?(I},) is mapped to a vector-valued quantity b € H?(I).

The main idea is that having an advective term in the extension equation allows for
larger deformation, as it admits the movement of the nodes on the boundary in the
direction of the flow, as shown in Section 5.2.5.

4.6.1. Weak Form

The weak formulation of Laplace-Beltrami equation, i.e. the first equation of (4.99) is
given by (4.90).

For the second equation in (4.99), which specifies the mapping from vector-valued
function b to the domain deformation, I follow the argumentation in [38] and obtain
the weak formulation in the space

W = {w € H%(Q,IR”I) WL, UL, Uy = Oa.e.}

as follows:
Find w € W such that

f (Dw+Dw"): D6y, + Hext(Dww) - 6, dx = J‘ bo,, ds (4.100)
0

robs

for all 6, € W and in terms of #j¢ > 0.

Here Dr, denotes the derivative tangential to [, In (4.90) the scalar-valued bound-
ary control c is multiplied with the outer normal vector field n to () at I|;,s. Then
a vector-valued Laplace-Beltrami equation is solved over Ij,s. This is coupled with
(4.100) where the influence of the advection term is controlled via #ey;.
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4.6. Nonlinear Extension Equation

It is important to emphasize that the deformation field w, used to define the do-
main transformation F = id + w, must possess sufficient regularity to ensure that the
transformed domain F(Q)) remains a valid computational domain. Specifically, the
transformation F must be at least C'-smooth in order for the Jacobian determinant
det(D.F) to be well-defined and continuous. This is essential for enforcing geomet-
ric constraints such as volume and barycenter preservation, and for avoiding mesh
degeneration during the optimization process.

To ensure Cl—regularity of F, it is required that w € HS(Q)d for some s > % +1, where
d € {2,3} denotes the spatial dimension. By Sobolev embedding (Theorem 3.1.3),
this guarantees w € C!(Q)%. Choosing s = 7 satisfies this condition in both two
and three dimensions and provides a sufficient regularity margin. This justifies the
use of the space H”/?(Q)¢ in the formulation, as proposed in [38]. Moreover, this
choice is compatible with elliptic regularity theory, which underpins the PDE-based

construction of the deformation field from lower-regularity control variables.

In the setting of the method of mappings, the intermediate variable b arises as the
solution to a Laplace-Beltrami equation on the design boundary I};. Since the control
variable c is taken from L?(I};), elliptic regularity results on smooth, compact manifolds
imply that the corresponding solution satisfies b € H?(I;). This additional regularity
is crucial because b serves as boundary data for an elliptic extension equation in the

domain (), used to generate the deformation field w. In order to obtain w € H %(Q)d ,
and thereby ensure that the transformation F is at least C!, it is necessary that b lies
in H?(I;). This approach provides a practical way to achieve the required smoothness
while avoiding the use of H?-conforming finite elements, which are computationally
demanding. Instead, regularity is introduced through elliptic smoothing via PDEs,
enabling an efficient and flexible implementation.

4.6.2. Optimality System

In this section I derive the optimality system using the Lagrangian approach. I start
with defining the Lagrangian of Problem 4.3.1 on the reference domain and then
derive corresponding optimality conditions.

I proceed utilizing the optimize-then-discretize approach. I am following Jameson [46]
in adopting the Lagrange multiplier viewpoint for design optimization because of its
connection to constrained optimization and optimal control theory.

I am using nonlinear extension equation for the computations in this section since, as
mentioned earlier, it would also include linear case, if extension factor is zero.
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Following the discussion of Section 3.1.4, I now define the Lagrangian for the system:

L'(v,p, w,bc, by, ¢P’ Yuwr Vb, Yyols lpbc) =
% L (Dv(DF)™): (Dv(DF)™")det(DF) dx + % J 2 ds

Lobs

N f (et - det(DE)), )2 dx

J_[ (Dv(DF)™): (D, (DF)™) + (Dv(DF)™'v) -,
— pTr(Dy,(DF)™") ]det DF)dx

- (4.101)
+ | ¢, Tr(Dv(DF)™")det(DF)dx
JQ
("
- (Dw+DwT):D¢w+next(wa)-¢wdx+f b-1,ds
JQ Tobs
("
- b-¢b+Dr0bsb:DrobS¢bds+J cn-Pyds
I s Tobs

— P - L(x +w) det(DF)dx — thyq) L det(DF) - 1dx,

where 1. are the Lagrange multipliers. For simplicity, in the following derivations
I will use the notation L for L(v,p,w, b, ¢, ¥y, ¥, Yo, ¥y, Yyol, Proc)- L also denote by L,
the Gateaux derivative of Lagrangian £ in the direction .

Note that for barycenter and volume condition (4.60) and (4.61) the multipliers are
Pyl € Rand ¢, € R?. However there is no associated variable with them since they
are finite dimensional.

Further, I calculate directional derivatives with respect to all variables in Lagrangian.
Denote (- : -) the Frobenius inner product of two matrices, (-,-) the inner product of
two vectors, and (-,-) the H Linner product.

Lemma 4.6.1. The first-order optimality system associated with the Lagrangian L defined in
(4.101), at the point (v,p,w, b, ¢, {,, Vs Y Y, Yols Yy) is characterized by the derivatives
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,Cv, LP’ ﬁw, ﬁb, ‘Cl,l)v’ﬁl,bp’ﬁl,bw’ ‘Cl#blﬁc’ ‘Clpvol"c%bbc anOZIOWS
L£,5, :vj (Do, (DF)™): (Dv(DF)™")det(DF) dx
Q

—v L (Dé,,(DP)—l) : (D%(DP)—l)det(DP)dx

— | Dé&,(DF)'v) ¢, det(DF)dx
Q

r

— | (Dv(DF)'s,)- 4, det(DF)dx

.
Rie)

+ | 4, Te(Ds,(DF)™)det(DF)dx
JQ
Ly 6y, = v.f (Dv(DF)™): (Déy, (DF)™")det(DF)dx
Q
- J (Dv(DF)'v)- oy, det(DF)dx
Q

+ JQ pTr(D(S%(DF)—l)det(DF) dx

r

Ly, == | 6,Tr(Dy,(DF)™")det(DF)dx
Q

-
Ly 0y = | oy Tr(Dv(DF)™)det(DF)dx

JQ
£b5b=J
T

=0,
obs
=0,

Ly, 0y, = —J b-0y, +Dr, b:Dr, 6y, ds +J cn- Oy, ds

Iwabs robs

6b : 170'!11 dS - J; 6b ) 17bb + Drabséb : Drobs 170b dS

obs

=0,

L0, = aJ
)

obs

£¢v015¢val = _64}1)01 f() det(DF) -1 dx

-0,

cécds+J Ocn-Ppds =0,
)

obs

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)

(4.109)
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Ly, 0w = =0y, L(x +w) det(DF)dx

=0,
I derive the derivatives of Lagrangian with respect of w term by term:
v -1 -1
<Dw—j (Dv(DF)™): (Dv(DF)™")det(DF)dx, &)
2Jo
=—v j (Dv(DF)™!): (Dv(DF)"'Dé,(DF)~)det(DF)dx
Q

+ KJ (Dv(DF)™): (Dv(DF)™) Tr((DF) ™' D&, ) det(DF) dx
Q

D5 [ (Oa=derDR). P d, 00)

= - J (114t — det(DF)), Tr((DF) ™' D&, ) det(DF) dx
Q

<ij —v(Dv(DF)™): (D, (DF)™" )det(DF)dx, 6,)
Q

- (Dv(DE)™Y): (Dlp,,(DP)—l)Tr((DP)—lDéw)det(DF) dx
JQ
—v [ (Dv(DF)™) : (=D, (DF)™' D6, (DF)™!)det(DF)dx
JQ
o (Dv(—(DF) )D&, (DF)™Y) : (D, (DF)')det(DF)dx
JQ

(D, L —(Dv(DF)™'v) -, det(DF)dx, &,)

(Dv(DF)™v) -, Tr((DF)™' D6, ) det(DF) dx

(Dv(—(DF) )D&, (DF) ' v) -, det(DF)dx

Jo
Jo
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-1
<DwLpTr(D¢,,(DF) )det(DF)dx, &)
:J pTr(Dy,(DF)™ ) Tr((DF)™' D6, ) det(DF) dx
Q

—J pTr(D,(DF)™' D6, (DF)™ ) det(DF)dx
Q

(D, JQ ¥, Tr(Dv(DF)_l)det(DF)dx, 5,)
:J y, Tr(Dv(DF)™" ) Tr((DF)™' D&, ) det(DF) dx
Q

—j , Tr(Dv(DF) ™' D&, (DF)™" ) det(DF) dx
Q

(D, | =(Dw+Dw"): Dy, dx, &)

J.
- _J (DS, + Do, ) : Db, dx
Q

<Dw o _Uext(wa) ’ lzbw dx, 5w>

- _JQ(Uext((Déww) + (DW6w)) ’ wa dx

(D, (—zpbc . JQ(x + w) det(DF) dx), Ow)

= —Ppc JQ 5, det(DF) + (x + w) Tr((DF)—1 Déw) det(DF)dx

<Dw (_¢vol J‘Q det(DP) -1 dx), 5w>

= 0l L Tr((DF)™' Dé,, ) det(DF) dx

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)
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vj (Dv(DF)™!): (Dv(DF)"'Dé,(DF)~)det(DF)dx
Q

y
2
~B | (Maet —det(DF)), Tr((DF) ™' D6, )det(DF) dx

JQ
r

+v | (Dv(DF)™' D, (DF)™): (D, (DF)™')det(DF)dx
JQ
v [ (Dv(DF)™Y): (D¢, (DF) D&, (DF)™')det(DF)dx
JQ

—v | (Dv(DF)™"): (D, (DF)™") Tx((DF) ™' D5, ) det(DF) dx

JQ

+ [ (Dv(DF)™'Dé,(DF)"'v) -, det(DF)dx

JQ

- (Dv(DF)'v)- ¢, Tr((DF)—lDéw)det(DF)dx

JQ

[ pTr(D,(DF)™ Dé,,(DF)™ ) det(DF)dx
Q

r

+ | pTr(Dyy(DF))Tr((DF)™' D6, ) det(DF) dx
Q

L y, Tr(Dv(DF)™ D&, (DF)™" ) det(DF) dx
JQ

— | ,Tx(Dv(DF)™")Tx((DF)™' Ds,, ) det(DF) dx
JQ

- (D5w+D6wT):Dl;bw""?ext((Déww)"'(DW5w))'¢wdx
JQ

+B L(qdet —det(DF)), Tr((DF)™' D3, ) det(DF) dx

— Ppc- J;) 0, det(DF) + (x + w) Tr((DF)_lDéw) det(DF)dx

- %ﬂf Tr((DF)™ D3, ) det(DF) dx
Q
=0,
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J (Dv(DF)™): (Dv(DF)™) Tr((DF) ™ D&, ) det(DF) dx
Q
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4.6. Nonlinear Extension Equation

Ly, 0p, =~ L(Dw +Dw"): Doy, + Hexr(Dww)- 6y, dx

+f b5y, ds (4.124)
r w

obs

=0,

for all test functions 6, € W, &, € V, 8, € Q, 8, € H*(L,ps), oy, €W, oy, €V, 5% €Q,
S, € H?(Typs), 8¢ € L*(Tps), Oy, € R, and 6, € RY.

Proof. Firstly, I derive some basic auxiliary derivatives, using some of the properties
listed in Appendix A

([det(DF)],,,6,) = Meat—gméw = det(DF) Tr ((DF)™' D&,,), (4.125)
([DFy)y»6u) = Dby, (4.126)
<[(DF)_1]w,6w> = a(g—i)_léw =—(DF)"(D s,)(DF)", (4.127)

T
( 1) (4.128)
-T

(| ((DF)™ Déw)]w,yw> =-D&,": (DF) ' Dy, (DF)™!
= Tr(~D&, (DF)™' Dpy,(DF) ™) (4.129)
= Tr(~(DF)™' D, (DF) ™' D).

Further, to derive the derivative of the penalty term I use the following

) J
5 ((1der = det(DF)),)*(w) 6y = 2(1]get — det(DF)) X (o >det(DF)) 5 detDF) W)y
= 2(1)det — det(DF)), Tr((DF)™' 6, ) det(DF).

(4.130)
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4. Shape Optimization Problem in Navier-Stokes Flow

Using expressions (4.125) to (4.130), standard rules of differentiation and applying
definition of a domain transformation mapping F = id +w following Section 3.3, I
obtain the derivatives given by Eqs. (4.102) to (4.124).

O

As aresult of Lemma 4.6.1, I obtain a system of nonlinear partial differential equations
characterizing the stationary points of the Lagrangian. This system can then be
discretized and solved using a suitable numerical method. In this thesis, I employ
the FEM for discretization and numerical solution due to its flexibility in handling
complex geometries and boundary conditions.

The theoretical framework developed in this chapter provides the foundation for the
computational approach that follows. In particular, it establishes the structure of the
optimization problem, the necessary optimality conditions, and the analytical tools
required to ensure well-posedness and consistency.

In the next chapter, I focus on the numerical implementation of the proposed model.
I describe the discretization strategy, discuss software choices, and present simula-
tion results that illustrate the practical performance of the method. Through these
numerical experiments, I aim to validate the theoretical insights and demonstrate
the effectiveness of the approach in solving shape and control optimization problems
governed by PDEs.
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Optimization Problems

5.1. FEniCS Project

In this section, I describe the key components of the FEniCS Project and give a brief
overview of its main features. For a comprehensive introduction, I refer the reader to
the FEniCS book [55] and the UFL documentation [1].

The FEniCS Project is a widely used open-source platform for solving PDEs using
the FEM. One of its distinguishing features is the seamless integration of automatic
differentiation (AD), enabling efficient and accurate computation of derivatives of
variational forms. This capability is particularly valuable in applications such as
PDE-constrained optimization, inverse problems, and sensitivity analysis.

As noted by the developers [53], the FEniCS Project was founded in 2003 with the
ambitious goal of automating the entire finite element pipeline for computational
modeling. This includes:

e Discretization of variational forms,

* Numerical solution of discrete systems,

* A posteriori error estimation and control,

* High-level modeling of PDEs, and

* Optimization and control of PDE-constrained systems.

Figure 5.1 displays the most important components of FEniCS and their relations.
Solid lines denote dependencies and dashed lines represent data flow. The workflow
is the following: Variational forms written in UFL are passed to the compiler FFC and
then generated into UFC code based on C++ code, which is then used by DOLFIN for
assembly of linear systems. Further, for FFC the code generation is done using finite
element backend FIAT.

DOLFIN has two interfaces: One is implemented as a traditional C++ library, and
another interface is implemented as a standard Python module. Both interfaces
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Applications
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Figure 5.1.: FEniCS system architecture with DOLFIN as the main user interface
component[53]

support parallel computations using multiple threads on a single node, using multiple
nodes communicating via MPI and their combination.

Further, DOLFIN incorporates calls to external linear algebra software libraries such
as PETSc [6], SCOTCH [65], uBLAS[84], etc.

DOLFIN provides a range of linear algebra objects and functionality, including vectors,
dense and sparse matrices, direct and iterative linear solvers and eigenvalues solvers,
and does so via a simple and consistent interface. It provides classes such as Matrix,
Vector, Mesh, FiniteElement, FunctionSpace and Function.

5.1.1. Unified Form Language

At the core of FEniCS Project is the Unified Form Language (UFL)- a domain specific
language for defining variational forms of differential equations in a notation similar
to the standard analytical derivation [1]. It provides a level of abstraction that allows
quickly and effortlessly translating underlying mathematics into the source code.

UFL consists of a set of operators and atomic expressions that can be used to represent
variational forms and functionals. The library allows creating abstract syntax tree
representations of variational problems, which enables automatic differentiation of
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5.1. FEniCS Project

forms and expressions and allows other software libraries to generate concrete low-
level implementations.

It is built on top of the Python language, and any Python code is valid in the definition
of a form. UFL is a part of the FEniCS Project and is usually used in combination with
other components from this project to compute solutions to PDEs. Since UFL does not
provide a problem solving environment, it is tightly linked with the form compiler,
e.g FFC or SFC [8] for generation of low-level code using UFL as its end-user interface,
producing implementations of the UFC interface as an output.

UFL has been developed as a richer form language, especially for expressing nonlinear
PDEs which would allow automatic differentiation of expressions and forms. Further
it inherits the typical mathematical operations that are performed on variational
forms, as well as basic algebraic operators such as transpose, determinant, inverse,
trigonometric functions and elementary functions.

Additionally, UFL has already predefined names for the most common finite elements
and allows to represent general hierarchies of mixed finite elements. Finite elements
are defined by a family, cell or mesh and polynomial degree. The argument family is a
string which defines the type of basis used, i.e. “Lagrange” or “CG” represent standard
scalar Lagrange elements. UFL also supports notation from the Periodic Table of
Finite Elements [3]. Apart from a scalar FinitreELemenT, UFL supports a vector-valued
VectorELEMENT and a TENsoRELEMENT for rank 2 tensors. Further one can combine
standard elements to create mixed elements, since DOLFIN allows the generation
of arbitrarily nested mixed function spaces. Some examples are given in Listing 5.1,
Listing 5.2.

V = VectorElement("CG", mesh.ufl_cell(), 2)
P = FiniteElement ("CG", mesh.ufl_cell(), 1)
5 TH = FunctionSpace(mesh, MixedElement([V, P]))

Listing 5.1: Examples of UFL standard finite elements declarations and definition of a
mixed finite element.

element = FiniteElement("Lagrange", triangle, 1)
> v = TestFunction(element)
5 u = TrialFunction(element)

f = Coefficient(element)

dot(grad(v), grad(u))*dx #bilinear form
vxf+dx #linear form

o)

Listing 5.2: UFL definition of variational form for Poisson equation.
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5.1.2. FIAT

The Finite element Automatic Tabulator (FIAT) [49, 48] is a Python library for the
automatic tabulation of finite element basis functions over polynomial function spaces
up to three spatial dimensions. Basically it allows finite elements with very compli-
cated bases to be constructed automatically. FIAT automatically tabulates the basis
functions required for finite element discretizations at given sets of points. Further,
FIAT provides the basis function back-end for FFC and enables high-order H!, H(div)
and H(curl) elements.

Also FIAT evaluates the basis functions and their derivatives at points, associates the
basis functions (or degrees of freedom) with topological facets of the domain such
as its vertices, edges and its placement on the edges, provides rules for evaluating
the degrees of freedom applied to arbitrary functions (needed for Dirichlet boundary
conditions), computes quadrature schemes. [53].

5.1.3. Dolfin

DOLFIN (Dynamic Object-oriented Library for Finite element computation) is a
C++/Python library that functions as the main user interface of FEniCS [54]. It hosts a
large part of the computational infrastructure, making it the central problem-solving
environment for finite element simulations.

It is a core component of FEniCS that contains the essential functionality for the
FEM-based simulations of PDEs. It serves as the problem-solving environment within
FEniCS, enabling users to define and solve complex mathematical models described
by PDEs in an efficient and user-friendly manner.

DOLFIN defines and manages data structures required for handling computational
meshes, geometries, and finite element assembly. It provides the necessary tools for
assembling the discrete linear and nonlinear forms that arise during the finite element
discretization of PDEs. Moreover, DOLFIN manages communication between FEniCS
components, wrapping low-level functionality behind a clean, consistent interface.
This enables users to focus on modeling and analysis rather than the underlying
computational complexity.
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5.1.4. Automatic Differentiation and Dolfin-adjoint

Since the optimization procedure is often dependent on gradient-based algorithms,
one always needs to compute derivatives. However in case of complex problems,
deriving the shape derivative manually can become very complicated and error-prone,
especially for time-dependent or nonlinear PDEs. To overcome this issue one often
utilizes the automated differentiation techniques. The idea is to consider a model as
a sequence of elementary linear algebra operation (in case of low level AD tools) or
consider each variational problem in the model as a single operation, which is the
strategy adopted by Dolfin-adjoint.

Dolfin-Adjoint is a computational framework designed for the efficient solution of
PDE-constrained optimization problems, leveraging algorithmic differentiation within
the FEniCS Project. This tool uses pyadjoint to differentiate FEM models written in
Dolfin and Firedrake [30]. The tool is automatically deriving adjoint models through
high-level algorithmic differentiation, where the forward model is considered as a
sequence of variational problems. Starting with the model represented in UFL, dolfin-
adjoint computes first and second order shape derivatives, using the adjoint method
for first-order derivatives, and a combination of the tangent linear method and the
adjoint method for the second order derivatives.

Dolfin-Adjoint constructs a computational graph representing the sequence of opera-
tions used to solve a PDE problem which includes assembly of finite element matrices,
application of boundary conditions, solver calls for obtaining the state variable.

5.1.5. Preconditioners

When solving linear systems arising from PDE-constrained optimization for incom-
pressible flow problems, one frequently encounters saddle point problems of the

form:
A BT f
[B Onil:lg]’ 3.131)

where A € R™" is typically symmetric positive-definite, B € R"*" encodes constraints
(e.g. divergence-free condition), and the block structure corresponds to a constrained
optimization or incompressible flow setting. These systems are often indefinite and
poorly conditioned, particularly as the mesh is refined or parameters vary, making
preconditioning essential for efficient iterative solvers.

A common strategy is to use block preconditioners that exploit the structure of the
saddle point system. One classical choice is the block diagonal or block triangular
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preconditioner:

A 0
r=lo 5] o [5 %
where S = BA7!BT is the (negative) Schur complement. If A is large, assembling or
inverting S exactly is usually infeasible, and approximations are used instead. A
common approximation for S in incompressible flow problems is the pressure mass
matrix or scaled Laplacian.

[A BT], (5.132)

The FEniCS Project provides basic support for block-structured preconditioners
through PETSc and external packages like Hypre and MUMPS. However, custom
preconditioners, particularly ones targeting the Schur complement, are not natively
supported without modifying the solver stack.

In the experiments, I observed that applying GMRES with the default PETSc precon-
ditioners leads to slow convergence due to poor conditioning and lack of structural
awareness. In contrast, direct solvers like MUMPS perform better for moderately sized
problems, as they handle the full coupling between blocks implicitly. However, they
are not scalable to very large systems due to memory and computational demands.
For more details I refer to Section 5.2.

The choice of preconditioner has a critical impact on the convergence rate of iterative
solvers such as GMRES or MINRES. Without a tailored preconditioner, these solvers
suffer from stagnation or slow convergence due to the indefiniteness of the system and
the presence of near-zero eigenvalues.

In saddle point problems, effective preconditioning reduces the condition number
of the system and clusters eigenvalues, enabling rapid convergence. For large-scale
problems, the development of scalable and structure-aware preconditioners, espe-
cially those approximating the inverse of the Schur complement, is an active area of
research.

For the problem investigated in this thesis, one could utilize the block structure not
once, but two times: the forward system and the adjoint system, since the smooth part

(4.123) is split from the other equations and therefore the solver can be tailored for
this structure.

5.2. Numerical Results

In this section I will present numerical simulations for the Navier-Stokes shape op-
timization problem stated in the Section 3.2. The idea is to illustrate the proposed
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approach to model mesh deformation using a non-trivial case study, without requir-
ing excessive parameter tuning. This example is challenging because of a coupling
between the velocity and pressure field and nonlinearity of the equation.

For each deformation of the domain F((2), the stationary incompressible Navier—Stokes
equations described in Section 4.1 are solved using a finite element discretization.
The analytical properties of the stationary Navier-Stokes equations (existence of weak
solutions, uniqueness for sufficiently small data, and regularity) are classical, see [33,
82].

I will start by presenting the well-know results for the benchmark shape optimization
problem for large deformations obtained with the usage of linear elasticity equation
and discuss what challenges usually arise while employing the strategy of modelling
deformation field using linear equation.

Then I will demonstrate the results for nonlinear extension operator and show how
the optimal solution differs depending on the choice of parameters of the extension
operator. In particular, I will vary the nonlinear factor to demonstrate how it affects
the mesh and allows to reach shapes which were not easily accessible for the system
with the linear operator.

To prove this point I will present the study of the mesh quality of the result for
different initial shapes and parameters.

I will further discuss how the solution process of the overall system was affected by
introducing this additional nonlinearity in the system.

Finally, I explain how the local injectivity can be extended to globally injective trans-
formation mappings by adding an artificial volume to the aerodynamic specimen
based on the examples given in [63].

5.2.1. General Setting

I consider flows in Q = {€),4,Q)3,} corresponding to 2-dimensional and 3-dimensional
(2D and 3D) settings, respectively, with the obstacle in the tunnel as described in
Section 4.1.

To reduce the effect of the boundary on the obstacle, it is located far enough from the
walls of the tunnel. As a result of preliminary simulations, the chosen setting was
found to be suitable:

Qo = [-14,14] x [-14,14],
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)1/2

Q3d:{XEIR3Z—7SX1S7;<X§+x§ S3}'

In all examples the initial velocity of the inlet I}, is a parabolic flow:

|1x[13 J
Voo = (Vynax — ?,0,...,0) cR%, (5.133)

where v,,,, = 1.0, 0 is a diameter of the flow tunnel (). The obstacle [}, is a circle
of radius r = 1 or a sphere of radius r = 0.5 located in the centre of the tunnel, i.e.
bc(Qyps) =0 € RY.

The kinematic viscosity, unless stated otherwise, is set to v = 0.02, which corresponds
to the Reynolds number

v 1 2.
Re = —nean :5’ ~ 67, (5.134)

taking a fluid density of p = 1.0 into account. There, the characteristic length of the
flow configuration is the diameter of the object perpendicular to the flow direction:
L=2-r=2.Talso consider gravity-free setting in all examples.

5.2.2. Optimization Approach

To solve the problem, I follow the so-called ’first-optimize-then-discretize” approach.
Based on the finite element discretization, in this approach one starts with deriving
first-order necessary optimality conditions for the problem. Then the discretization of
every variable related to state, control and functionals is performed. In comparison
with the ’first-discretize-then-optimize’ approach, where the discretization of the
adjoint variable is determined by the test space of the discrete state [40], following
the "first-optimize-then-discretize’ approach I am free to choose the discretization for
the adjoint variable. However, since I aim to have symmetry property, I nevertheless
choose the same test spaces for state and adjoint variables, leading eventually to the
same optimality system as in the ’first-discretize-then-optimize” approach. Therefore,
I start with the earlier-derived optimality conditions (4.102) to (4.124) and discretize
it.

The optimality system (4.123) to (4.110) is solved for a sequence of different val-
ues of Tikhonov regularization parameter a. Consider again the nonlinear shape
optimization problem (4.79). As I already mentioned in (4.79) a is a regulariza-
tion parameter. I consider a decreasing sequence of ay, starting from ag =
until the desired level ayge is reached. This way I approximate the problem by a
sequence of simpler nonlinear optimization problems for each k, where every solu-
tion k — 1 serves as initial guess to the problem k. This procedure is carried until
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the desirable very small value of « is reached. The information of the known val-
ues v = (w,v,p, b, ¢, ¥y, Yo, Pp, P, Yol Yoo )k is passed through the sequence of k + 1
iterations starting from a linear problem for k = 0. I summarize this method in
Algorithm 5.

Depending on the structure of the problem, physical properties and mesh size one
needs to adjust parameters Qjnit, ddec aNd Aiarger- | describe the strategies and consider-
ation about how they are chosen in Section 5.2.4 and illustrate their influence on the
solution of the problem.

Since parts of the optimality system are non-differentiable, in particular the ones
corresponding to the determinant condition (4.66) the semismooth Newton’s method
is applied. For the details about the method, please refer to [41, 86].

Algorithm 5 Direct optimization algorithm

Require: 0 < aiarget < Qinit, 0 < Agec <1
Vo< 0
k<0
O < Ainit
while aj > a4 do
Solve (4.123) to (4.110) for yi,; with semismooth Newton’s method
with y; as initial guess and regularization parameter ay
Af+1 < Adec Tk
k—k+1
8: end while

RSN

5.2.3. Iterative Optimization Algorithm

Whereas direct optimization algorithms like the one given by Algorithm 5 work well
for most of the problems, they require a large number of solves for nonlinear, non-
smooth optimality system. In addition, at every solution step one would need to
solve a large system of linear equations arising from discretized PDEs. A common
challenge encountered is their substantial memory consumption, especially for three-
dimensional problems or fine discretizations. One would often need to factorize
large matrices (especially when applying direct linear solvers, like MUMPS), which
can lead to memory requirements that exceed the available resources, resulting in
out-of-memory exceptions. This issue becomes particularly critical in high-resolution
simulations or while considering time-dependent models.

Hence, it was proposed in [63] to utilize the structure of the problem and decouple
the optimality system (4.123) to (4.110) as described in Algorithm 6.
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The idea is to separate the solution process of the parts of the problem corresponding
to state (4.103) and (4.105), adjoint (4.102) and (4.104) and deformation (4.106)
to (4.110), (4.123) and (4.124) and solve them independently.

Algorithm 6 Iterative optimization algorithm
Require: 0 < aiarget < Ainit, 0 < gec <1, 0<€
11 yg <« 0
22 k0,0
3: Q< Qinit
4: while ap > aarger do
5 repeat
6: Set y as initial guess
7: Solve (4.103) and (4.105) for (v,p),,,
8
9

Solve (4.102) and (4.104) for ('Pw¢p)€+1

Solve (4.106) to (4.110), (4.123) and (4.124) for
(w, b, ¢, Yoy, Y, Pyol, Pooc)p,; With semismooth Newton’s method
and regularization parameter a;

10: £ T + 1”
. Ce+1=Cellr2
11: until — L7Mobs) ¢
||C€+1||L2(r0bs)
12: Aft1 < Adec Pk

13: k—k+1
14: end while

I remark that, although the subproblems are solved sequentially, they are not entirely
independent due to the coupling inherent in the problem structure. As a result, the
subproblem solves cannot be executed in parallel without affecting correctness. As
outlined in Algorithm 6, the procedure begins with the solution of the direct and
adjoint systems. The information obtained from these solves is then used to compute
the update to the geometry.

However, the decoupling allows us to reuse existing solvers for the state equation
and embed them into the shape optimization framework. Further, since now the
underlying linear systems of each of the subproblems are much smaller, the memory
requirement for linear solvers is significantly reduced. Moreover, in some cases,
the subproblems can now be solved using iterative solvers with preconditioners as
discussed in Section 5.1.5 since they do not require as good of initial guess as the
general large problem.

The idea of Algorithm 6 is to have a fixed-point like approach. Analogously to
Algorithm 5 I iterate over a regularization parameter « decreasing it by age. at every
step and the solutions for the optimization problem k are used as the initial guess
for the nonlinear solver in iteration k + 1. However, whereas in the direct approach I
solved each of the problem k directly, now I approximate each of them by a fixed-point
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iteration. So now, for each problem k I construct an approximation which consists of
three subproblems (corresponding to each part of the decoupled optimality system)
and solve them one by one.

The numerical experiments and comparisons of the computational times for both full
system obtained via Algorithm 5 and decoupled one from Algorithm 6 are presented
in Section 5.2.

5.2.4. Linear Elasticity

As discussed in Section 4.5, one of the common ways to represent shape derivative is
by using the linear elasticity equation as its Riesz representation.

Following the procedure in Algorithm 5, I aim to solve the problem described in Sec-
tion 5.2.1 starting from the "simplest" optimization problem with a large regularization
parameter ;. I choose ajni = 1, agec = 0.5, = 0.

For the numerical experiment the domain is discretized into 5136 elements. The
problem is then solved for the stationary Navier-Stokes flow with v = 0.04. The
velocity field of the state equation over the reference and final domains are shown in
Figure 5.2.

Figure 5.2.: Magnitude of velocity v computed on reference () (left) and final F(Q)
(right) domains for linear elasticity extension equation, Section 5.2.4.

The objective is to solve the Problem 3.3.2 for large deformation, i.e. small v. However,
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if the viscosity is chosen to be small, the problem becomes more advection-dominated,
which results in more elongated shape of the obstacle. So with every iteration, bound-
ary nodes move significantly, causing boundary triangles to deform, which is then
propagated to the rest of the domain with the linear elasticity equation. This results
in highly compressed triangles at the tips of the obstacle. Finally, at some point the
mesh degenerates to the point the solver can not proceed with the iteration process
anymore.

Figure 5.3.: Domain Q for each F using the linear extension equation, Section 5.2.4.

The solution process was terminated after 7 iterations (0-6) without reaching the
desired tolerance of 107> due to mesh degeneration, as shown in Figure 5.4. The left
figure shows the mesh at the last iteration, with elongated triangles near the tip, and
the right figure shows the corresponding element quality. The deformations at each
iteration step are shown in Figure 5.3.

Figure 5.4.: Mesh and mesh quality on the last iteration step (it = 6) for the linear
extension equation, Section 5.2.4.

It is known that the optimal solution for this problem features two kinks, which are
not visible in Figure 5.2, as the optimization process was terminated prematurely
before reaching the optimal shape.

Nevertheless, the drag was successfully reduced from 6.461945 x 10~! to 5.583938 x
107! during the optimization, corresponding to a relative improvement of 13.59%,
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as detailed in Table 5.1. At each iteration, a halving step size & = 27 was applied,
and the computational time per iteration stabilized around 10 seconds after the first
iteration.

The mesh quality, quantified by the minimum radius ratio (RR), gradually deteriorated
as the optimization progressed, as expected for this case of large deformation. The
RR increased from 1.6241 in the initial mesh to 9.4018 by the final iteration, at which
point element distortion became significant and overlapping at the tip of the obstacle
began to occur.

Table 5.1.: Cost functional values for each optimization step using the linear extension
equation, Section 5.2.4.

it [a=27" ] Improvement (%) | Time (s) | RR

0 20 6.461945¢e-01 0.00 15.77 | 1.6241
1 2-1 6.287758¢e-01 2.70 10.76 | 1.6250
2 272 6.098816e-01 5.62 10.55 | 1.6262
3 273 5.922243e-01 8.35 10.45 | 1.8967
4 24 5.774753e-01 10.63 10.38 | 2.1064
5 2-° 5.662434e-01 12.37 10.41 | 3.5385
6 26 5.583938¢-01 13.59 10.47 | 9.4018

This loss in mesh quality ultimately limited the number of admissible optimization
steps and prevented convergence to the true optimal shape. To address this issue
and allow for larger shape updates while maintaining mesh integrity, the nonlinear
extension equation was introduced as an improved mesh deformation strategy. The
following section presents the corresponding results and highlights the improvements
achieved in terms of both mesh quality and optimization performance.

5.2.5. Nonlinear Equation

This subsection investigates how the solution is affected by introducing a nonlinear
term into the extension equation.

The nonlinear term to the extension equation is added as described in Section 4.4 using
the extension factor of 7., = 3.0. All other parameters are kept consistent with the
setting outlined in Section 5.2.4: the computational domain consists of 5136 elements,
Qinit = 1, agec = 0.5, = 0, and a viscosity coefficient of v = 0.04.

The results obtained under this setting are presented below. Figure 5.5 shows the mag-

nitude of the velocity field v computed on both the initial and the deformed domains.
Since the viscosity coefficient is sufficiently small to allow for large deformations, yet
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large enough to ensure a laminar flow regime, the resulting velocity field is consistent
with classical solutions to the Navier—Stokes benchmark problem.

0.8

- — _, L
(a) Initial domain Q) (b) Deformed domain F(Q)

Velocity Magnitude Velocity Magnitude
04 06 0. 04 06

0.0e+00

Figure 5.5.: Magnitude of velocity v computed on reference domain Q) (left) and de-
formed F(Q) (right) using the nonlinear extension equation, Section 5.2.5.

The corresponding initial and final meshes are shown in Figure 5.6. Unlike in the
linear extension case presented in Section 5.2.4, the characteristic kinks at the tip
and rear of the obstacle clearly form in the final optimized shape, indicating that the
nonlinear extension approach allows the optimization to progress further toward the
expected optimal configuration.

It is important to note that all meshes presented in this thesis are generated in a post-
processing step. Specifically, the mapping operator F, which is computed during the
optimization procedure, is applied to the initial domain to obtain the final, deformed
mesh. This strategy eliminates the need to recompute and remesh the domain at each
iteration of the solution process, thereby significantly reducing computational cost
and complexity.

As a consequence, the mesh deformations shown on Figure 5.3, Figure 5.8, Figure 5.19
do not represent a sequence of shape optimization iterates, as is common in clas-
sical approaches that apply the descent direction iteratively to the mesh. Instead,
this methodology produces no intermediate shapes between the initial and final do-
mains. The final deformed configuration is obtained directly by applying the mapping
operator and the corresponding displacement field w.

Starting from an initially circular domain, the shape becomes increasingly elongated
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(a) Reference grid (b) Deformed grid in F(Q)

Figure 5.6.: Mesh deformation associated with the nonlinear extension equation, Sec-
tion 5.2.5.

with each optimization iteration, similar to the behavior observed in the case of
linear deformation. However, in the present setting, tangential displacements of
boundary nodes are permitted. This is achieved by incorporating a nonlinear term
in the extension equation, which effectively introduces an advection-like behavior
into the mesh deformation process. As a result, boundary nodes are allowed to slide
along the surface and accumulate near the tip and rear of the domain. This adaptive
redistribution helps preserve mesh quality, particularly in regions with high curvature
or sharp features, and prevents element distortion as the shape evolves.

In case of this experiment, the optimization procedure converged after 20 iteration
steps of Algorithm 5. The value of the cost functional was reduced from 0.646194
to 0.546801 which corresponds to the improvement of 15.61%. The details about
objective function value at every iteration step are given in Figure 5.7.

Figure 5.9 illustrates the difference in the final configurations for examples of linear
vs nonlinear extension equation. Starting from the same initial configuration, the
solution process for the linear case stops before reaching the optimum, whereas in the
mesh corresponding to the last iteration of the nonlinear extension, the desired kinks
at the front and back of the shape were generated.

A closer look at the problematic area around the tip of the shape for the final shape of
nonlinear case is shown on Figure 5.10.
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(a) Convergence plot illustrating the decrease in the cost func- (b) Tabulated values at each it-
tional. eration step.

Figure 5.7.: Convergence analysis of the cost functional during the shape optimization
using the nonlinear extension equation, Section 5.2.5.

Figure 5.8.: Domain Q) for each of F with nonlinear extension equation, Section 5.2.5.
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Figure 5.9.: Comparison of the meshes for linear (red, Section 5.2.4) and nonlinear
(black, Section 5.2.5) extension equation at the final iteration.

Figure 5.10.: Closeup for mesh at the tip of the shape in the final grid, Section 5.2.5.
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Furthermore, the meshes at the final iteration step for linear case and for the same
iteration step for the nonlinear case are given on Figure 5.11 and Figure 5.12, respec-
tively.

The corresponding to these examples values of radius ratio mesh quality measure are
given in Table 5.2

Table 5.2.: Values of RR for optimization steps for linear (e = 0, , Section 5.2.4) and
nonlinear (1 = 3, Section 5.2.5) extension equations.

it RRlin RRnonlin
1.6241 1.5723
1.6250 1.5984
1.6262 1.6288
1.8967 1.8663
2.1064 2.2781
3.5385 3.0084
9.4018 4.2616

QN Ul = W N~ O

To assess the impact of spatial discretization on the quality and stability of the opti-
mization results, a mesh refinement study was performed and the results for coarser
and finer meshes and different values of 7, are provided in Appendix C. Several
meshes with increasing resolution were considered, ranging from a coarse mesh with
962 cells to a refined mesh with over 13000 elements. For each mesh, the optimization
procedure was executed using the same solver settings and stopping criteria, allowing
direct comparison of objective values, convergence rates, and mesh quality metrics.
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tion 5.2.4.
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Figure 5.12.: Mesh for nonlinear extension equation at it = 6, Section 5.2.5.

5.2.6. Influence of the Extension Factor

Following the introduction of the nonlinear term in the extension equation, the
question arises how much nonlinearity would be optimal for such problems, i.e. what
would be the most feasible value of the extension factor #ey;.

To investigate this, I conduct a comparative study illustrated in Table 5.3, examin-
ing how the optimal shape evolves as the extension factor 7., varies. All primary
parameters are kept consistent with the previous example discussed in Section 5.2.4:
Qinit = 1, @gec = 0.5 and a viscosity coefficient of v = 0.04. One important modification
in this setup is the mesh: to better observe the influence of different extension factors,
a finer mesh with a higher density of boundary elements is used. The refinement is
concentrated around the obstacle to ensure comparability of results, resulting in a
mesh with 7928 elements.

Moreover, unlike in the previous example in Section 5.2.5, where the determinant
condition was inactive, this case includes a moderately active determinant penalty to
discourage excessive tangential motion of boundary elements. Specifically, the param-
eters are set to 17gey = 0.2 and g = 5. For reference, results for a similar configuration
with inactive determinant condition disabled are provided in Appendix D.

The mesh deformations, resulting from the optimal solution F =id +w, are visualized
in Figure 5.13. Each of the subfigures illustrates the impact of the extension factor
Hext ON the deformation of the mesh, focusing on the tip of the shape during the
optimization process. One can observe that by increasing extension factor 7., I get the
decrease in the value of the objective function | as shown in Table 5.3. For more details
about objective function values for all iteration steps please refer to Appendix B.
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5. Numerical Simulation of Shape Optimization Problems

In the following paragraphs I analyse the results illustrated on Table 5.3. For #ey = 0,
the deformation led to the compression of triangles around the tip of the shape. One
can observe the deformation of elements further from the tip is minimal since the
deformation equation in this setting is linear.

As 1oyt increases to 0.25 and 0.3, subtle improvements of the mesh become visible,
with slight stretching and adjustments in the mesh a bit further from the tip allowing
more movement for boundary elements in the direction opposite to the fluid flow. The
elements are still highly compressed around the tip. However, the degeneration is
less prominent indicating the onset of nonlinear deformation which comes with the
addition of the nonlinear term in the mesh deformation equation. Nevertheless, as I
observe, this factor is still too small to overcome the effects of the large deformation of
the shape.

For #ext = 0.5 and #jey¢ = 1.0, the mesh undergoes more pronounced adjustments, with
the mesh becoming more and more regular around the tip.

For higher values of the extension parameter, such as 7,,; = 2 and 7,,; = 3, the de-
formations become extensive, with substantial stretching of the tip and surrounding
regions, demonstrating the robustness of the nonlinear extension operator in main-
taining mesh quality and avoiding mesh collapse. By avoiding mesh entanglement
during the early stages of optimization, the method enables the continuation of the
optimization process toward more complex and sharper shapes, allowing convergence
to a solution that is closer to the true optimal configuration. The tip of the shape
deforms significantly more, allowing the shape to become more elongated. Despite
these large deformations, the mesh elements remain well-distributed, confirming the
method’s capacity to preserve mesh quality. These results emphasize the efficacy of
the nonlinear extension approach in accommodating significant geometric changes
while maintaining computational stability and accuracy.

Finally, I check the deformation for #ey = 4.0. As shown on Figure 5.13h, the further
increase of the extension factor does not bring further improvement, as triangles
around the tip become more elongated in the direction of the flow. This way I can
deduce that the best choice of the 7. for the current setting is 7, = 3.0.

I also remark that even though the choice of the extension factor depends on the
physical setting of the problem, it is not sensitive w.r.t. initial discretization. As
I solved this problem on a range of meshes with different coarseness, the optimal
choice of extension factor remained at around #. = 3.0. For details about numeri-
cal experiments for different mesh coarseness I refer to the supporting material in
Appendix C.

So the extension factor directly influences mesh quality. In particular, employing the
nonlinear extension equation leads to significantly improved preservation of mesh
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Figure 5.13.: Comparison of the front tip of the shape for different extension factors,
Section 5.2.6.
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Table 5.3.: Optimal objective function values ], relative objective value with respect to
the initial configuration and radius ratio depending on #y, Section 5.2.6.

J

Mext  J Jinit RR
0 0.279034 0.801264 13
0.25 0.278867 0.800785 9.2
0.3 0.278837 0.800698 8.6
0.5 0.278722 0.800368 6.6
1.0 0.278504 0.799742 4.0
2.0 0.278323 0.799222 2.9
3.0 0.278291 0.799131 2.2
4.0 0.278286 0.799116 2.2

quality throughout the deformation process.

In Figure 5.14, I quantify this effect by evaluating the mesh quality for the deforma-
tions shown in Figure 5.13. The visualizations display the radius ratio quality measure,
previously introduced in Section 3.5, using a color scale to highlight local variations
in element quality across the domain.

5.2.7. Influence of the Determinant Condition

In shape optimization, admissible domain deformations are typically constrained by
enforcing a lower bound on the Jacobian determinant of the transformation. This con-
dition ensures that the mapping remains locally injective and orientation-preserving.
Mathematically, for a deformation mapping F, the constraint

det(DF) > Ndet

is imposed to avoid self-intersections and to guarantee that the transformed domain
remains a valid shape. This lower bound serves as a safeguard against mesh degener-
ation and topological changes by limiting the amount of local volume compression
in (), especially when large deformations are involved. The constraint is commonly
incorporated into the definition of the admissible set of transformations or penalized
via a regularization term in the optimization functional.

In this section, the influence of the parameter #4,; on the optimization process is
investigated. Starting with a relatively strict lower bound, the value of #4; is grad-
ually reduced, thereby relaxing the constraint and allowing for increasingly flexible
deformations.

In the underlying experiment the viscosity is again chosen to be v = 0.02 and I fix
Hext = 3.0 in all examples. The discretized domain () consists of 7928 triangles. Further,
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(C) MNext = 0.3 (d) MNext = 0.5

(8) Mext = 3.0 (h) Hext = 4.0

Figure 5.14.: Comparison of the mesh quality of front wedge of the meshes for different
extension factors, Section 5.2.6.

79



5. Numerical Simulation of Shape Optimization Problems

I choose @iy = 10, a4ec = 0.5 and fix the penalty term for determinant condition

B=2.

Starting with 774, = 0.6, I decrease the value of the parameter and investigate how this
change affects the set of admissible shapes F,q4,,. For reference, the initial value of the
cost functional, i.e. | evaluated for the reference shape with ¢ = 0, and thus F =id, is
Jinit = 0.348256.

Table 5.4.: Optimal objective function values depending on 74, Section 5.2.7.

Tdet 0.6 0.5 0.3 0.25 0.2 0.1
J 1 0.283454 | 0.280542 | 0.278430 | 0.278330 | 0.278291 | 0.278277
I 170.813926 | 0.805562 | 0.799498 | 0.799210 | 0.799098 | 0.79905

Jinit

In this experiment it turns out that in the last computation with 774, = 0.1 the condition
is inactive.

With decreasing #4.; one can observe a decrease in the objective function J as shown
in Table 5.4. T also remark that despite the shape looking more elongated with the
decreasing value of #4e, the volume remains unchanged according to the geometrical
constraint (4.60).

5.2.8. Case of Non-convex Shapes with Large Deformations

Let us consider a case in which the underlying initial domain is not convex. I demon-
strate the behavior of the solution process with the linear and nonlinear extension
equations for large deformations.

I choose the domain () with an obstacle given by a B-spline curve [}, given by 7
control points, as illustrated by Figure 5.16.

The associated meshes are illustrated on Figure 5.17. I would like to remark again
that there was no actual mesh deformation between the iterations, the meshes were
computed in post-processing for better visual interpretation of the results.

In this experiment the viscosity of the fluid is chosen as v = 0.02, the domain () consists
of 11653 triangles with the barycenter and volume of () in the reference config-
uration given by bc(Qps) = (—0.214979,0.022546)" and vol(Qps) = 783.678335.
Since in the experiments the optimal shape is fixed to be located in the origin, i.e.
be(F(Qeps)) = 0, the optimal shape also shifted a bit during the optimization proce-
dure.
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Figure 5.15.: Comparison of the shape for different values of #4., Section 5.2.7.
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Figure 5.16.: Magnitude of velocity v computed on concave reference domain () (left)
and deformed F(Q) (right) for nonlinear extension equation as described
in Section 5.2.8.

Figure 5.17.: Reference and deformed grids for concave domain, Section 5.2.8.

Figure 5.18.: Closeup at a tip of the concave shape: mesh and radius ratio values,
Section 5.2.8.
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Figure 5.19.: Domain Q) for each of F with nonlinear extension equation, Section 5.2.8.

This case is interesting to investigate since there is no symmetry of the initial shape
anymore. So unlike in previously considered cases with the geometry of the reference
domain being circular or ellipse, the normal vector field n to the boundary of the
obstacle is not pointing homogeneously in all directions. It is relevant for out approach
with extension equation mapping scalar-valued control variable to the deformation
field variable via n as discussed in (4.99). So it is expected that in comparison with
the experiment with the homogeneously distributed vector field n one might observe
changes in the way different discretization elements are deformed during the iterations
process.

The magnitude of velocity v, computed in the undeformed reference domain Q (i.e.
when ¢ = 0), is shown on the left-hand side of Figure 5.16. The right-hand side
illustrates the velocity field after deformation, where the domain is mapped according
to the optimized shape transformation F = id +w. The corresponding meshes for this
experiment are depicted in Figure 5.17 with the initial mesh, corresponding to the
undeformed configuration, shown on the left and the deformed mesh, associated with
the final optimized shape, on the right.

Despite the asymmetry in the initial configuration, the optimal mapping F results
in a well-distributed and relatively uniform mesh. Notably, even in the absence of
explicit geometric information such as the surface normal vector 7, the optimization
process successfully resolves sharp features, such as the kinks at the front and rear
tips of the shape. This indicates the capability of the method to capture and preserve
important geometric features purely through the optimization dynamics, without
requiring additional constraints or enhancements.

Figure 5.18 shows a detailed view of the mesh around the tip along with the mesh
quality visualization.
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5.2.9. Effects on Condition Number of Hessian

An important aspect in the analysis of the optimization problem is the numerical
conditioning of the reduced Hessian. The condition number provides a measure
of how sensitive the solution of the linearized system is to perturbations in data
or discretization errors. In particular, in gradient-based methods or second-order
optimization schemes, a poorly conditioned Hessian can lead to slow convergence,
inaccurate search directions, or numerical instability. By investigating the condition
number of the reduced system’s Hessian, insights can be gained into the regularity
of the problem and the influence of modeling choices, such as the lower bound #4e,
the choice of extension operator S, and mesh quality. Moreover, understanding the
conditioning behavior helps in designing appropriate preconditioning strategies or
regularization terms to improve robustness and efficiency of the numerical solution

process.
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Figure 5.20.: Condition Number of Hessian «x(H) for different #.,, Section 5.2.9.

In this work, the computation of the Hessian of the reduced objective functional
with respect to the shape deformation was carried out using the dolfin-adjoint library
which is briefly described in Section 5.1.4. The overall approach involved two main
steps: first, the reduced optimization problem was defined and solved, obtaining the
solution of the state equations for a given deformation; second, the Hessian of the
reduced functional was computed using automatic differentiation tools provided by
dolfin-adjoint.
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One can observe on the results in Figure 5.20, that there is some correlation between
mesh quality and the computed condition number. However, it is important to note
that the computed Hessians are highly sensitive to the underlying mesh. In particular,
it was observed that small changes in mesh resolution or quality lead to significant
variations in the spectrum and structure of the Hessian.

5.2.10. Decoupling NS Equations from Elasticity Equations

Let us illustrate the performance of the algorithm given by Algorithm 6.

Let’s consider the basic example again, for v = 0.02, #jext = 3, Qinit = 10, dgec = 0.5, fget =
0.01, 8 = 2 solved on a mesh with 7928 elements.

The computational time comparison is given in Table 5.5, where the first column is
number of iteration, Ty, is the solution time of the undecoupled system, jg,; corre-
sponding to Ty, value of the objective function, jgecoupled - Value of the objective
function at the iteration step it in case of solving the decoupled problem, Ty ward,
Tadjoint> Tdeformation - time solving the forward system, the adjoint system and deforma-
tion part correspondingly. These results were obtained by using Newton solver and
MUMPS for linear solve steps.

In this example for the classical case, i.e. without using the decoupling technique, the
problem converged after 35 iterations with value jg,;; = 0.2782, and already after the
iteration it = 17 there was almost no change to the objective function (see Table B.1).
However, for the case of the decoupled problem, after reaching the shape close to the
optimal at iteration it = 14, the problem started to diverge.

I remark that this behavior can be avoided by choosing a larger decrement of regular-
ization parameter age. such that the transition between problems would have been
smoother. For the sake of this experiment, I decided against increasing ag.. to better
highlight differences in computational time for a smaller amount of iterations.

However, for the completeness of the study, it is important to notice that solving the
decoupled problem with ay4e. = 0.8 ended up diverging at it = 55 with a = 4.6768e—-05
and jdecoupled ~0.2619.

Having all three parts of the system partially decoupled from each other allows the
use of different solvers for each part and have more control over the procedure. This
provides an opportunity to build preconditioners for each part and parallelize the
code. I tested this approach by using GMRES as a linear solver for both direct and
adjoint solve while keeping the non-iterative MUMPS for the deformation part.
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Table 5.5.: Comparison of the solution time for standard vs decoupled problem and
corresponding values of the objective function, Section 5.2.10.

H it Ttann Jtunl ]decoupled Ttorward Tadj Tieformation H
1 36.2062 0.3457 0.3440 8.7618 2.5853 6.2197
2 36.4930 0.3412 0.3401 1.8739 0.7498 1.9727
3 49.8679 0.3341 0.3378 1.8379 0.7734 2.1034
4 49.4882 0.3243 0.3337 1.9061 0.8178 2.7456
5 48.2206 0.3132 0.3267 1.7950 0.7485 2.6282
6 47.7823 0.3027 0.3160 1.8145 0.7565 2.608
7 48.0959 0.2943 0.3038 1.8005 0.7690 2.6112
8 48.0532 0.2882 0.2945 1.8577 0.7753 2.5990
9 48.0943 0.2842 0.2875 1.8471 0.7656 2.6106
10 48.2612 0.2816 0.2830 1.8014 0.7499 2.5858
11 36.1988 0.2800 0.2788 1.8045 0.7620 2.5934
12 36.6835 0.2792 0.2774 1.8210 0.7560 1.9862
13 36.9373 0.2787 0.2728 1.8124 0.7466 1.9788
14 36.6471 0.2785 0.2656 1.7894 0.7683 2.5829

The results are illustrated in Table 5.6. Note that at every iteration step, Newton
converges in one step, the amount of linear solves for forward and adjoint problem
solves are given in a table. Further, after it = 14 the optimal solution is found.

It is important to note that the underlying PDE-constrained optimization problem
exhibits a saddle-point structure, which is known to be challenging for iterative solvers.
As a result, the performance of GMRES is noticeably inferior to that of the direct solver
in this case. The relatively slow convergence can be attributed to the use of the default
preconditioning strategy provided by FEniCS, which does not exploit the specific
block structure of the system. Ideally, a preconditioner that incorporates knowledge of
the coupled state-adjoint system, such as a block-diagonal or Schur complement-based
approach, would significantly improve convergence behavior. Unfortunately, due to
limitations in the FEniCS Project, particularly in the 2019.1.0 version used for this
work, it was not feasible to integrate such customized preconditioning techniques.
As a result, the reported results reflect the raw performance of GMRES without
advanced acceleration strategies, and should be interpreted as a baseline rather than
an optimized implementation.

Future work could address these limitations by extending the solver infrastructure to
allow for more flexible preconditioning, potentially leveraging external libraries such
as PETSc or incorporating low-rank or multigrid-based preconditioners tailored to the
structure of the optimization problem.
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Table 5.6.: Solution time for each part of the decoupled problem, Section 5.2.10.

H it Jdecoupled Trorward #lin.it. forward — T,g  #lin.it. adj. Tyeformation H
1 1.3969 24.7836 19266 9.0757 6698 2.2256
2 1.3870  5.9759 4288 4.7917 3649 2.1914
3  1.3823  5.5065 4034 4.4535 3522 2.0808
4 13743  5.9576 4729 4.8456 3861 2.6999
5 1.3626  7.0433 5349 5.3718 4242 2.7035
6 1.3488  7.6503 6100 5.9274 4660 2.7298
7 1.3365  8.3769 6899 6.2753 5122 2.0918
8 1.3276  9.8563 7456 7.3688 5563 2.2141
9 1.3215 10.8034 7913 7.2341 5850 2.0175
10 1.3153 10.5097 8319 8.0357 5913 2.1541
11 1.3140 10.8879 8402 7.0239 5578 2.1104
12 1.3130 10.3100 8189 5.9287 4836 2.0939
13 1.3133  9.5354 7811 4.9920 4076 2.0366
14 1.3127  7.6287 5683 4.7020 3156 2.1349
15 1.3126 5.7633 4599 3.6120 2772 2.0790
16 13126 4.7676 3607 3.1449 2265 2.1897

5.2.11. Results for 3-Dimensional Case

Now let me present some results for a 3D domain. In this section I do not aim to
present a comprehensive study. These results are added for completeness but are not
necessary for analyzing the performance and setup of presented algorithms.

I start by considering the mesh with 57481 tetrahedral elements. I choose the a;,;; =
10,1get = 0.01,7cx¢ = 20 and B = 2. Further, to ensure the smooth change between
iterations, I choose ag4e. = 0.8. In this experiment the aim is to observe the behavior
for moderate deformation, so the viscosity coefficient is chosen to be v = 1.

Initially, the objective was to compute the solution for both the full coupled system
using Algorithm 5 and the decoupled system using the proposed iterative method (see
Algorithm 6) and compare the computational times. However, already the computa-
tion of the first linear solve for the full system on this mesh exceeded the available
memory resources. In this case, the direct linear solver MUMPS was employed. Due
to these memory limitations, I proceed by solving only the decoupled system in the
following analysis.

The initial and final meshes are presented on Figure 5.21. One can observe that in
this case the kinks at tip and back of the obstacle got formed. The optimal shape was
reached after it = 37 iterations. The corresponding value of the objective function at
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the final iteration step is ] = 136.5173.
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Figure 5.21.: Mesh deformation for v = 1, #ey = 20, Section 5.2.11.

Next, I choose larger deformation: v = 0.04. I compute this for different values of
extension factor #e = 10,20, 30. In case of 7., = 10, the effect of extension factor was
not prominent enough, and the mesh degenerated. The solution process stopped at
iteration step it = 24 with value of cost functional | = 6.8332. Since in 3D geometry it
is difficult to illustrate which exact element caused the issue, I only comment that the
radius ratio mesh quality value for the final mesh is RR = 250.1929. The closeup on
the tip of the shape is illustrated on Figure 5.22.

One can notice that the problematic element causing solver infeasibility is indeed
around the tip for #¢, = 10. The elements are stacked around this area - the behavior
which I have already observed and discussed for the 2D case. In the case of ey = 20
the shape became more elongated and even at the later iteration steps one can observe
regular elements around the tip. The worst element in radius ratio is not even at the
tip, but a bit further to the side of the shape which is rather the effect of the initial
meshing, than of the deformation. I note that the mesh quality at the first iteration
step was RR = 3.2554.

The final shape is presented in Figure 5.23.

In two other cases with higher extension factor the optimal shape was reached after
55 iterations for the chosen earlier stopping criterion - a difference between objective
function value of order 10°. The corresponding value of the objective function at the
final iteration step is | = 6.8132 for both cases.

However, one may notice that the resulting meshes are not exactly the same, especially
in the area around tips. To illustrate the differences, I compute mesh quality for these
two cases. The radius ratio value for #e, = 20 is RR = 98.2741 and for ., = 30 is
RR = 45.7205. Further, the visualization of mesh quality for the whole shape in the
same scale is given on Figure 5.24.
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5.2. Numerical Results

(a) Deformed grid for #ey; = 10. (b) Deformed grid for 7, = 20.

Figure 5.22.: Closeup on the tip of the obstacle with visualized mesh quality for
v = 0.04, Section 5.2.11.
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(a) Deformed grid for #ey; = 10. (b) Deformed grid for 7y = 20.

Figure 5.23.: Mesh deformation for v = 0.04, Section 5.2.11.

(a) Deformed grid for 7y = 20. (b) Deformed grid for 7, = 30.

Figure 5.24.: Mesh quality for v = 0.04, Section 5.2.11.
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5. Numerical Simulation of Shape Optimization Problems

|||||||||

(a) Computation times (in seconds) of the de-(b) Values of the objective function ], Sec-

coupled system.

tion 5.2.11.

Figure 5.25.: Solution details of the decoupled problem for the 3D case.

To provide insight into the performance of the optimization process, the objective
function value and the computational times (in seconds) for the main components
of the decoupled system are reported at every 5th iteration in Table Table 5.7. This
selection offers a representative overview of the convergence behavior and computa-
tional cost without overwhelming the main text. The complete iteration data for all
iteration steps is included in Appendix Appendix B for reference. Furthermore, the
visualization of these results is presented in Figure 5.25.

Table 5.7.: Objective value and computational times (in seconds) for selected iterations,
Section 5.2.11.

it ] decoupled Trorward Tadj Tdeformation
0 69174 219.3453 47.8397 61.6476
5 69104 72.1228 39.8750  59.5125
10 6.9000 80.4657 45.7105  59.1582
15 6.8777 116.8806 41.9680 62.2114
20 6.8500 125.0129 45.0961 60.4684
25 6.8319 83.0466 45.0646  58.1354
30 6.8217 84.3168 44.4146  58.6313
35 6.8166 79.7923 42.9408 58.1470
40 6.8145 79.8686 43.2621  58.6021
45 6.8136 78.0026 42.1939  40.2766
50 6.8133 83.5745 45.1225  40.7086
55 6.8132 83.2357 45.1982  40.9755

These results demonstrate the effectiveness and robustness of the proposed optimiza-
tion framework, even when applied to complex domains and nonlinear extensions.
The convergence of the objective function, along with manageable computational
times and acceptable mesh quality, confirms the usability of the method for practical
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5.2. Numerical Results

applications. While some sensitivity to mesh quality and regularization parameters
was observed, the overall performance remains consistent.
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6. Conclusion

In this thesis, shape optimization problems arising in aerodynamics were investigated,
with a particular focus on minimizing drag in a flow governed by the Navier—Stokes
equations. The central mathematical and computational challenge in such problems
lies in controlling the deformation of the domain in a way that preserves mesh quality,
ensures numerical stability, and allows for efficient optimization.

To address this, the method of mappings was adopted, the problem was reformulated
on a fixed reference domain and shape changes were interpreted as transformations
governed by deformation fields. This approach enabled the application of optimal con-
trol theory and the derivation of optimality conditions using adjoint-based methods.
A key aspect of the work has been the modeling of the extension operator, which maps
boundary variations to deformations of the entire domain. In this work, I explored
both linear elasticity-based and nonlinear formulations of this operator, highlighting
their respective advantages and limitations.

Through numerical experiments, I demonstrated the impact of the extension operator
on mesh quality, condition number and therefore on convergence behavior, and the
overall effectiveness of the optimization process. The results clearly showed that
nonlinear extensions offer improved robustness for handling large deformations and
preserving mesh regularity. These findings are particularly relevant for practical
applications involving complex shapes and flow conditions, such as those encountered
in aerodynamics.

This work contributes to the ongoing development of reliable and flexible tools for
PDE-constrained shape optimization. Several challenges remain open for future
investigation. For instance, extending the method to unsteady flows or incorporating
more complex geometrical and physical constraints (e.g., multi-objective optimization
or uncertainty quantification) would be natural next steps. Furthermore, exploring
adaptive remeshing strategies or alternative formulations that allow for topological
changes could significantly broaden the range of feasible applications.

Overall, the results presented in this thesis emphasize the importance of robust

numerical strategies for shape optimization and provide a foundation for further
developments in both theory and computational practice.
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A. Some Basic Properties from Linear
Algebra

We list here some matrix properties used in optimality system derivation in Sec-
tion 4.6.2 following [66].

A.l. Trace Properties

tr(A) = ZA,-Z- (A.135)

tr(A) = tr(AT) ( )

tr(AB) = tr(BA) ( )

tr(A+B) = tr(A) + tr(B) ( )
tr(ABC) = tr(BCA) = tr(CAB) (A.139)
tr(ATB) = tr(ABT) = tr(BT A) = tr(BAT) ( )
tr(ATB)= ) A;jB;;=A:B (A.141)

1]

V-v=tr(Vv) (A.142)
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B. Full Ilteration Data

In this appendix detailed iteration data is presented including computational times for
each part of the decoupled system (in seconds) and corresponding objective function
values.

Table B.1.: Objective value and computational times for each step.

it ‘ ]decoupled ‘ Ttorward ‘ Tadj ‘ Teformation
0 6.9174 | 219.3453 | 47.8397 61.6476
1 6.9139 | 86.4915 | 43.1424 40.9045
2 6.9133 | 79.4681 | 39.0287 59.1328
3 6.9125 | 71.8218 | 40.2373 59.6379
4 6.9116 | 74.1993 | 39.0814 58.8134
5 6.9104 | 72.1228 | 39.8750 59.5125
6 6.9090 | 81.3479 | 41.9643 58.8368
7 6.9073 | 77.9746 | 45.9022 58.4707
8 6.9053 | 82.4753 | 43.3966 58.9726
9 6.9029 | 80.3163 | 43.5412 58.2152
10 6.9000 | 80.4657 | 45.7105 59.1582
11 6.8967 | 84.1600 | 44.0309 60.1306
12 6.8928 | 81.2566 | 44.0041 60.2926
13 6.8884 | 121.3217 | 44.3280 59.9097
14 6.8833 | 118.1391 | 44.8157 58.7214
15 6.8777 | 116.8806 | 41.9680 62.2114
16 6.8717 | 125.1917 | 44.9868 60.6111
17 6.8658 | 124.3994 | 44.8892 60.6674
18 6.8601 | 121.7516 | 43.8240 58.7118
19 6.8549 | 115.9715 | 44.3876 59.2415
20 6.8500 | 125.0129 | 45.0961 60.4684
21 6.8456 | 122.3874 | 44.2438 59.1351
22 6.8416 | 121.2346 | 44.0721 60.9719
23 6.8380 | 87.8530 | 45.4095 59.5046
24 6.8348 | 85.2886 | 44.9677 58.9555
25 6.8319 | 83.0466 | 45.0646 58.1354
26 6.8293 | 85.9797 | 44.7734 58.3160
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Table B.1 (continued)

it ‘ ]decoupled ‘ Tforward ‘ Tadj ‘ Tdeformation
27 6.8270 | 81.6487 | 44.0026 58.2990
28 6.8250 | 89.2347 | 44.4301 62.0060
29 6.8233 | 87.3411 | 46.4493 60.5530
30 6.8217 | 84.3168 | 44.4146 58.6313
31 6.8204 | 81.7492 | 43.3198 59.2677
32 6.8192 | 79.9852 | 43.2334 59.1725
33 6.8182 | 79.8351 | 43.4047 58.5886
34 6.8174 | 79.7598 | 43.2929 58.7345
35 6.8166 | 79.7923 | 42.9408 58.1470
36 6.8160 | 78.9464 | 43.0196 58.0318
37 6.8155 | 79.9051 | 43.4114 58.2669
38 6.8151 | 80.0231 | 43.2831 58.4604
39 6.8147 | 79.9634 | 43.2290 58.4723
40 6.8145 | 79.8686 | 43.2621 58.6021
41 6.8142 | 79.9647 | 43.2233 57.8892
42 6.8140 | 81.8038 | 42.3478 58.5844
43 6.8139 | 78.0834 | 41.8317 58.3429
44 6.8137 | 79.3760 | 42.1270 40.9863
45 6.8136 | 78.0026 | 42.1939 40.2766
46 6.8135 | 82.9558 | 43.7580 40.2956
47 6.8135 | 82.0389 | 44.6704 40.5828
48 6.8134 | 84.1096 | 46.7270 40.8303
49 6.8134 | 85.7828 | 45.4007 40.7723
50 6.8133 | 83.5745 | 45.1225 40.7086
51 6.8133 | 83.5048 | 45.0677 40.5782
52 6.8133 | 83.5398 | 44.9390 40.7221
53 6.8133 | 83.6664 | 45.0158 41.2605
54 6.8133 | 83.3793 | 45.0176 40.8760
55 6.8132 | 83.2357 | 45.1982 40.9755
56 6.8132 | 83.8058 | 45.3337 41.3179
57 6.8132 | 46.3062 | 46.8132 41.6292
58 6.8132 | 47.0310 | 45.9425 41.1458
59 6.8132 | 46.3632 | 45.3195 41.7410
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C. Numerical Experiments for Different
Meshes

In this section the results for meshes of different coarseness are presented for various
values of 7].,. The improvement percentage reported in the table is computed relative
to the initial objective value at iteration 0 as follows:

Jo—Jk
Jo

where ] is the objective value at iteration 0 and J; is the objective value at iteration

k.

Improvement (%) =100 -

Although the primary stopping criterion is based on the convergence of the objective
function, I also enforce a maximum number of iterations. This safeguard ensures the
algorithm terminates within a bounded number of steps in cases where convergence is
slow or the problem becomes numerically stiff. In practice, the method often converges
well before reaching this upper bound.

The mesh quality is measured in terms of radius ratio measure (RR).

C.1. Coarse Mesh

The mesh used in this example was loaded from mesh/coarse_final_mesh.xml, con-
taining 962 cells and 520 vertices, with a total volume of approximately 780.87. Key
simulation parameters included:

* Viscosity v = 0.04

* Initial regularization parameter a = 1.0
* Decay factor age. = 0.5

* Stopping tolerance of 107>

e Determinant bound 71g4e; = 0.2
 Penalty parameter = 5.0

* Maximum iterations: 80

98



C.1. Coarse Mesh

Table C.1.: Optimization results for 7, = 3 and coarse mesh over 19 iterations show-
ing the evolution of the objective functional, improvement, and mesh
quality for a decreasing sequence of a = 27", with initial a = 1.0.

it [a=271 J Improvement (%) | Time (s) RR

0 20 6.509132e-01 0.00 2.77 | 1.4512
1 271 6.346553e-01 2.50 1.90 | 1.4978
2 272 6.172352e-01 5.17 1.98 | 1.5141
3 23 6.011632e-01 7.64 1.94 | 1.5589
4 24 5.871795e-01 9.79 1.86 | 1.6042
5 273 5.754807e-01 11.59 1.89 | 1.6501
6 276 5.661876e-01 13.02 1.88 | 1.7427
7 277 5.592918e-01 14.08 1.83 | 2.0790
8 28 5.545630e-01 14.80 1.89 | 2.4676
9 279 5.515759e-01 15.26 1.84 | 2.9876
10| 2710 | 5.498270e-01 15.53 1.83 | 3.6045
11| 271 | 5.488633e-01 15.68 1.84 | 6.0945
12| 2712 | 5.483539¢-01 15.76 2.63 6.2185
13| 2713 | 5.480914e-01 15.80 1.84 | 7.4617
14| 271% | 5.479580e-01 15.82 1.45 | 8.3010
15| 2715 | 5.478908e-01 15.83 1.45 | 8.7940
16 | 2716 | 5.478571e-01 15.83 1.05 | 9.0622
17| 2717 | 5.478402e-01 15.84 1.05 9.2021
18| 2718 | 5.478317e-01 15.84 1.05 9.2736
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C. Numerical Experiments for Different Meshes

Table C.2.: Optimization results for #. = 1 and coarse mesh. The table reports the
objective functional, improvement vs. initial objective, computational time,
and mesh quality.

it |a=27" ] Improvement (%) | Time (s) | RR

0 20 6.495636e-01 0.00 2.75 | 1.4512
1 2-1 6.313526e-01 2.80 1.92 | 1.5186
2 272 6.104021e-01 6.03 1.94 | 1.5383
3 273 5.910127e-01 9.01 1.88 | 1.5432
4 24 5.757809e-01 11.36 1.86 | 1.5475
5 27> 5.649708e-01 13.02 1.89 | 1.6019
6 276 5.578068e-01 14.13 1.88 | 1.6996
7 277 5.533321e-01 14.81 1.84 | 1.8087
8 28 5.506940e-01 15.22 1.44 | 1.9070
9 279 5.492186e-01 15.45 1.45 | 1.9951
10| 2710 | 5.484273e-01 15.57 1.44 | 2.0629
11| 2711 | 5.480151e-01 15.63 1.50 | 2.1143
12| 2712 | 5.478042e-01 15.67 1.45 2.1479
13| 2713 | 5.476975e-01 15.68 1.44 | 2.1676
14| 2714 | 5.476438e-01 15.69 1.05 | 2.1785
15| 2715 | 5.476168e-01 15.69 1.04 | 2.1842
16 | 2716 | 5.476033e-01 15.70 1.05 | 2.1871
17 | 2717 | 5.475966e-01 15.70 1.09 | 2.1886

Table C.3.: Optimization results for 7.,y = 0 and coarse mesh. Objective value, im-
provement from initial, and mesh quality are reported. After 6 iteration
the mesh started overlapping.

it | a=27" ] Improvement (%) | Time (s) | RR

0 20 6.496366e-01 0.00 2.74 1.4512
1 21 6.325293e-01 2.63 1.93 1.5278
2 272 6.134500e-01 5.57 1.90 1.5593
3 23 5.953279e-01 8.36 1.87 1.5841
4| 2% | 5.800564e-01 10.71 1.86 | 1.5983
5 2-5 5.683698e-01 12.51 1.87 1.7728
6 276 5.601777e-01 13.77 1.89 3.3677
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C.2. Fine Mesh

C.2. Fine Mesh

The following results were obtained using a high-resolution mesh loaded from mesh/-
final_mesh_13350.xml. The mesh consists of 13350 cells and 7175 vertices, with a
total volume of approximately 780.86. The optimization process employed the FEniCS
default Newton solver, and the regularization parameter a was initialized at 1.0 and
halved at each iteration. The following parameters were used:

* Viscosity v = 0.04

* Initial « = 1.0

* Decay factor age. = 0.5

« Stopping tolerance 107>

* Determinant bound #/ger = 0.2
* Penalty parameter  =5.0

* Maximum iterations: 80

Table C.4.: Optimization results using a fine mesh for 7.,; = 3. Objective value, im-
provement, runtime, and mesh quality are reported per iteration.

it |[a=2"" ] Improvement (%) | Time (s) RR

0 20 6.482732e-01 0.00 41.57 1.5753
1 2-1 6.322408e-01 2.47 28.85 1.5724
2 272 6.156521e-01 5.03 28.53 1.5973
3 273 6.002533e-01 7.41 28.28 1.7546
4 24 5.865731e-01 9.52 28.27 2.1189
5 27> 5.749514e-01 11.31 28.26 2.7573
6 276 5.656424e-01 12.75 28.66 3.7958
7 277 5.586919e-01 13.82 28.81 5.3675
8 278 5.538973e-01 14.56 28.47 7.4805
9 29 5.508516e-01 15.03 28.40 | 10.3389
10| 2710 | 5.490590e-01 15.30 28.20 13.0817
11| 271 | 5.480668e-01 15.46 28.39 | 35.2375
12| 2712 | 5.475405e-01 15.54 28.73 69.1369
13| 2713 | 5.472688e-01 15.58 34.45 | 123.6280
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C. Numerical Experiments for Different Meshes

Table C.5.: Optimization results using a fine mesh for 7, = 1. Objective value, im-
provement, runtime, and mesh quality are reported per iteration.

it [a=27" ] Improvement (%) | Time (s) | RR

0 20 0.6463987 0.00% 41.68 | 1.7530
1 2-1 0.6277301 2.89% 28.95 | 1.8560
2 272 0.6070405 6.09% 28.74 | 1.8906
3 273 0.5884704 8.96% 28.98 | 1.9105
4 24 0.5740639 11.19% 28.60 | 2.1420
5 27> 0.5638123 12.78% 28.21 | 2.3989
6 276 0.5569522 13.84% 28.20 | 2.6668
7 277 0.5526187 14.51% 28.32 | 3.0681
8 278 0.5500380 14.91% 28.95 | 3.4883
9 279 0.5485845 15.13% 22.82 | 3.8351
10| 2719 | 0.5478021 15.25% 22.30 | 4.0806
11| 2711 | 0.5473941 15.32% 22.36 | 4.2332
12| 2712 ] 0.5471854 15.35% 22.36 | 4.3197
13| 2713 | 0.5470798 15.36% 22.22 | 4.3660
14| 271% | 0.5470267 15.37% 22.89 | 4.3899
15| 2715 |0.5470001 15.38% 22.79 | 4.4022
16 | 2716 | 0.5469867 15.38% 16.75 | 4.4083
17| 2717 | 0.5469801 15.38% 17.12 | 4.4114

Table C.6.: Optimization results using a fine mesh for 7, = 0. Objective value, im-
provement, runtime, and mesh quality are reported per iteration. After 6
iteration the mesh started overlapping.

it [a=27" ] Improvement (%) | Time (s) | RR

0 20 0.6464806 0.00% 41.48 1.7530
1 271 0.6290544 2.70% 28.88 1.8683
2 272 0.6101465 5.62% 28.48 1.9197
3 273 0.5924685 8.35% 28.37 1.9625
4 274 0.5776974 10.64% 28.63 2.0040
5 P 0.5664470 12.38% 28.77 2.6633
6 276 0.5585836 13.60% 29.12 | 4.2838
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D. Case of Inactive Bound on
Determinant

This section presents the results for the shape optimization problem using the non-
linear extension equation on a circular domain. All primary parameters are kept
consistent with the example described in Section 5.2.6, ensuring comparability of the
results.

The computational mesh, loaded from mesh/circle_domain.xml, consists of 7928
cells and 4084 vertices. The key simulation parameters are listed below:

* Viscosity v = 0.04

* Initial regularization parameter a = 1.0
* Decay factor agec. = 0.5

* Stopping tolerance of 107>

* Determinant bound 774 = 0.1

* Penalty parameter § = 0.0

* Maximum iterations: 80

Since the penalty parameter f is set to zero, the determinant constraint is inactive in
this configuration.

In the next tables information about mesh quality, objective function value and com-
putation time per iteration is given for different extension factors. RR denotes radius
ratio measure. The initial mesh quality is 1.5583. For cases Tables D.1 to D.4 the opti-
mization procedure was interrupted due to mesh degeneration. For cases Tables D.5
to D.7 the procedure converged to the optimal solution with the tolerance of 107>.
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D. Case of Inactive Bound on Determinant

Figure D.1.: Comparison of the front wedge of the meshes for different extension
factors.
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(C) Hext = 0.3 (d) Hext = 0.5

(e) Hext = 1.0

(8) Mext = 3.0

Figure D.2.: Comparison of the mesh quality of front tip of the shape for different
extension factors.
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D. Case of Inactive Bound on Determinant

Table D.1.: Values of cost functional and mesh quality for each optimization step using
the nonlinear extension equation with #e,; = 0.

it [a=27" ] Improvement (%) | Time (s) RR

0 20 4.884440e-01 0.00 25.58 1.7010
1 271 4.777717e-01 2.18 17.46 | 1.7617
2 272 4.670459%9¢e-01 4.38 17.36 1.8179
3 273 4.575949¢-01 6.32 17.14 1.9709
4 24 4.501066e-01 7.85 17.20 2.1974
5 2-° 4.447062e-01 8.95 17.41 2.5869
6 276 4.411439e-01 9.68 17.45 12.1432

Table D.2.: Values of cost functional and mesh quality for each optimization step using

the nonlinear extension equation with 7y = 0.25.

it |a=27" ] Improvement (%) | Time (s) | RR

0 20 4.884068e-01 0.00 25.54 1.7015
1 271 4.776568e-01 2.20 17.53 1.7507
2 272 4.668362e-01 4.42 17.21 1.8009
3 273 4.573207e-01 6.36 17.02 1.9790
4 274 4.498250e-01 7.90 17.32 | 2.2091
5 273 4.444680e-01 9.00 17.55 2.4879
6 276 4.409724e-01 9.71 17.29 7.7085

Table D.3.: Values of cost functional and mesh quality for each optimization step using

the nonlinear extension equation with #., = 0.5.

it | a=27" ] Improvement (%) | Time (s) RR

0 20 4.883713e-01 0.00 25.63 1.7020
1 21 4.775449¢-01 2.22 17.56 1.7642
2 272 4.666315e-01 4.45 17.43 1.8219
3 273 4.570548e-01 6.41 17.45 1.9871
4 24 4.495558e-01 7.95 17.39 2.2207
5 2-5 4.442443e-01 9.04 17.11 2.4642
6 276 4.408142e-01 9.74 17.02 5.2468
7 27 4.387734e-01 10.16 17.09 64.2224
8 28 4.376364e-01 10.39 35.82 | 239.0493
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Table D.4.: Values of cost functional and mesh quality for each optimization step using
the nonlinear extension equation with #jey = 1.

it |a=2"" Improvement (%) | Time (s) RR

0 20 4.883056e-01 0.00 25.60 | 1.7029
1 271 4.773318e-01 2.25 17.46 | 1.7664
2 272 | 4.662416e-01 452 17.42 | 1.8254
3 273 4.565572e-01 6.50 17.44 | 2.0028
4| 27% | 4.490664e-01 8.04 17.24 | 2.2426
5 273 4.438511e-01 9.10 16.95 | 2.4874
6 276 | 4.405449e-01 9.78 17.02 | 2.9626
7 277 | 4.386096e-01 10.18 13.39 | 7.4149
8 278 | 4.375440e-01 10.40 16.94 | 49.8104

Table D.5.: Values of cost functional and mesh quality for each optimization step using
the nonlinear extension equation with #ey; = 2.

it | a=271 ] Improvement (%) | Time (s) RR

0 20 4.881986e-01 0.00 25.70 1.7042
1 271 4.769626e-01 2.30 17.49 1.7695
2 272 4.655814e-01 4.63 17.26 1.8300
3 273 4.557734e-01 6.64 17.00 | 2.0284
4 24 4.483698e-01 8.16 17.01 2.2748
5 275 4.433491e-01 9.19 13.20 | 2.5212
6 276 4.402324e-01 9.83 13.23 | 2.7324
7 277 4.384325e-01 10.19 13.28 | 2.8879
8 278 4.374487e-01 10.40 13.28 | 2.9882
9 279 4.369309¢-01 10.50 13.26 | 3.0466
10 2-10 4.366645e-01 10.56 13.27 3.7274
11 211 4.365293e-01 10.58 13.30 4.7534
12 2712 4.364611e-01 10.60 13.35 5.6590
13 2-13 4.364269e-01 10.60 13.25 | 6.3055
14 214 4.364098e-01 10.61 13.20 | 6.7016
15 2715 4.364012e-01 10.61 9.63 6.9225
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D. Case of Inactive Bound on Determinant

Table D.6.: Values of cost functional and mesh quality for each optimization step using
the nonlinear extension equation with #e, = 3.

it a =271 ] Improvement (%) | Time (s) RR

0 20 4.881297e-01 0.00 25.65 1.7047
1 21 4.766989¢-01 2.34 17.53 1.7704
2 272 4.651631e-01 4.71 17.34 1.8301
3 273 4.553943¢-01 6.71 17.10 | 2.0395
4 24 4.481512e-01 8.19 17.04 | 2.2856
5 275 4.432730e-01 9.19 13.45 2.5390
6 276 4.402284e-01 9.81 13.29 | 2.7694
7 277 4.384487e-01 10.18 13.76 | 2.9512
8 278 4.374638e-01 10.38 13.76 | 3.0756
9 279 4.369404e-01 10.49 13.53 3.1511
10 2710 4.366697e-01 10.54 13.39 3.1933
11 2~ 4.365318e-01 10.57 13.32 3.2157
12 2-12 4.364622e-01 10.58 13.36 3.2273
13 2713 4.364272e-01 10.59 13.79 3.2332
14 214 4.364097e-01 10.60 9.92 3.2361
15 2715 4.364009¢-01 10.60 9.62 3.2376

Table D.7.: Values of cost functional and mesh quality for each optimization step using
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the nonlinear extension equation with #ey = 4.

it | a=27" ] Improvement (%) | Time (s) | RR

0 | 1.000000 | 4.881052e-01 0.00 25.63 1.7044
1 | 0.500000 | 4.765739e-01 2.36 17.45 1.7686
2 | 0.250000 | 4.650559e-01 4.72 17.24 1.8273
3 1 0.125000 | 4.554610e-01 6.69 17.10 2.0356
4 1 0.062500 | 4.483765e-01 8.14 17.18 2.2819
5 10.031250 | 4.435446e-01 9.13 17.43 2.5516
6 | 0.015625 | 4.404581e-01 9.76 13.65 2.8171
7 10.007812 | 4.386066e-01 10.14 13.41 3.0438
8 | 0.003906 | 4.375587e-01 10.36 13.36 3.2097
9 |0.001953 | 4.369928e-01 10.47 13.30 3.3156
10 | 0.000977 | 4.366972e-01 10.53 13.25 3.3767
11 | 0.000488 | 4.365458e-01 10.56 13.21 3.4097
12 | 0.000244 | 4.364691e-01 10.58 13.28 3.4269
13 |1 0.000122 | 4.364306e-01 10.59 13.44 | 3.4357
14 | 0.000061 | 4.364112e-01 10.59 9.64 3.4401
15| 0.000031 | 4.364015e-01 10.59 9.56 3.4423
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