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Zusammenfassung

Diese theoretische Arbeit beschaftigt sich mit dem Eladin-Transport in einem eindimension-
alen System mit Rashba Spin-Bahn Kopplung.

Als erstes Ergebnis dieser Arbeit haben wir die Manifestaginer Spin-Orbit Berry Phase in

der Leitfahigkeit eines mesoscopischen Ringes mit RaSipiaBahn Kopplung und externem

Magnetfeld senkrecht zur Ringebene. Speziell wurden démdmissionswarscheinlichkeiten
fur einen geraden Quantendraht und fur einen Quantemtiisgdemselben Material berechnet
und miteiander verglichen. Der Unterschied zwieschen d@delm wurde untersucht und als
Manifestation einer Spin-Orbit Berry Phase indentifieziEbenso wurde die Manifestation

einer nicht adiabatischen Aharonov-Anandan Phase baidddRingdurchmessern gefunden.

Als zweites Ergebnis haben wir festgestellt, dass ein ggakkiimmter, eindimensionaler, bal-
listischer Draht mit intrinsischer Spin-Bahn Wechselwimky in der Lage ist, die Stromdichte
zwischen zwei Spin-aufgespaltenen Moden zu verteilen onditsdie Moglichkeit bietet, die
Spinpolarization zu andern ohne ferromagnetische Kaetdkinnelbarieren, externe Felder oder
dergleichen zu verwenden. Unter Verwendung der fur InAevemten Parameter, schlagen wir
auf Grundlage dieses Effekts ein reflektionslosen Spirahaor.

Als drittes Ergebnis beschreiben wir ein eindimension8letem, in dem die Fermigeschwindigkeit
wie auch die Zustandsdichte fuir die sich nach links und machts bewegenden Elektronen un-
gleich sind. Ein solches System kann sich in einem isolhe@Qaantenring mit Spin-Bahn Kop-
plung und senkrechtem magnetischen Feld herausbilden.ddriitfluss der Elektron-Elektron
Wechselwirkung auf die chirale Asymmetrie der Zustands@ideschreiben zu kdénnen, wird
das Tomonaga-Luttinger Model angewandt. Wie sich herallisdtihrt die Elektron-Elektron
Wechselwirkung zu einer Ausrichtung der Zustandsdichtesad nach links und nach rechts
bewegenden Elektronen. Zusatzlich wurde der Landauéik®i Formalismus fur ein System
mit chiraler Asymmetrie der Zustandsdichte veralgemeiner



Abstract

This is a theoretical study of electron transport in oneadtisional systems with spin-orbit cou-
pling of Rashba type.

First, we have found a manifestation of spin-orbit Berry gghan the conductance of a meso-
scopic loop with Rashba spin-orbit coupling placed in areedl magnetic field perpendicular
to the loop plane. In detail, the transmission probabdifer a straight quantum wire and for a
guantum loop made of the same wire have been calculated amplaced with each other. The
difference between them has been investigated and identiib a manifestation of spin-orbit

Berry phase. The manifestation of a non-adiabatic Aharghmandan phase at small radii of
the loop has been found as well.

Second, we have found that a strongly curved one-dimenidiatiastic wire with intrinsic spin-
orbit interactions can redistribute the current densityeen the two spin-split modes and, thus,
makes it possible to change the spin-polarization withsurtgiferromagnetic contacts, tunneling
barriers, external radiation etc. Assuming parameteevael for InAs we propose a scheme of
a reflectionless spin-switch based on this effect.

Third, we have described a one-dimensional system, wherEdimi velocities (as well as the
densities of states) for the left- and right-moving elecsrare not equal to each other. Such a
system can be formed in an isolated quantum loop with spit-ooupling placed into a mag-
netic field perpendicular to the loop plane. The Tomonagiiiger model has been applied in
order to describe the influence of electron-electron itéas on the chiral asymmetry of the
density of states. We have found, that electron-electrtaractions lead to the alignment of the
densities of states for the left- and right- moving elecstom addition, the Landauer-Buttiker
formalism has been generalized for systems with chiral asgtry of the density of states.
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1 Spintronics and spin-orbit coupling Iin
semiconductors

Spintronics is one of the most promising fields of moderndsetate physics in view of its
possible applications in commercial electronic devicascdntrast to mainstream electronics in
which the spin of the electron is ignored, the basic concégpmtronics is the combination
of standard microelectronics and spin-dependent effaatsarise from the interaction between
spin of the carrier, its orbital degree of freedom and magmebperties of the material. One of
such spin-dependent effects found in many semiconduatactstes is the so-called spin-orbit
coupling (in particular, Rashba spin-orbit coupling). kengral, the effect is due to the spatial
inverse symmetry breaking that occurs in some crystalsmaf ziende type structure as well as
in low dimensional systems with asymmetric confinement.

Adding the spin degree of freedom to conventional semicotwmiicharge-based electronics or
using the spin degree of freedom alone will add substaytiadire capability and performance to
electronic products. The advantages of these new deviaalslwe their non-volatility, increased
data processing speed, decreased electric power consmngitid increased integration densi-
ties compared with conventional semiconductor devicesThg foregoing example is meant to
illustrate that the switching speed of an ideal device basetthe Rashba spin-orbit coupling ef-
fectin InAs structure is much higher than the charactergtieeds of nowadays microelectronics
elements.

In order to switch any of conventional semiconductor dev{ee g. transistor), one has to remove
(or add) a huge amount of electrons from (or to) the condandiend by means of the external
electric field. All manipulations of that kind bring about aste of time and energy. Therefore,
the switching speed of modern transistors tops out at a ¢ynke of between 2.5 and 10 GHz
[2]. Moreover, the overheating of the chip can be a big proble

In contrast, a spintronics element operates not with anreledself, but with its spin orientation.
It is not necessary to transfer all the electrons from oneepta another for each cycle; it is
enough just to change their spin-orientation. (The el@estrof course, must be spin-polarized.)
Let us estimate the switching speed of the spintronic dédvased on Rashba effect in the ballistic
transport regime. We take the parameters relevant for InAss,the characteristic length of the
“active” region necessary to rotate the electron spin topsosite direction is equal to 10-°cm
(spin precession length), whereas the characteristiciglis 5- 10’'cm/s. Then we have, that
the cycle time is @ps that corresponds to 5 THz. Thus, hypothetical spintrommputers might
be one thousand times faster than conventional ones!

In view of the importance of the Rashba effect in spintronitcsas become necessary to inves-



tigate properties related to the spin-orbit coupling in4dimensional systems. This will be the
main topic addressed in this work.

This thesis is organized as follows. In the Chapter 2, wearghe origin of the Rashba ef-
fect using very general solutions of the Dirac equation. hiea $ame Chapter we give a brief
overview of recent work concerning the geometrical phasesoiid state physics and progress
in spin-manipulation. The introduction to the Tomonagdtinger model in connection with
spin-dependent effects is given as well.

In the next three Chapters, we focus on the interplay betRasessiba spin-orbit coupling, Zee-

man effect, electron-electron interactions in one-dirare systems of non-zero curvature. The
spin-orbit Berry phase in a quantum loop will be investigdtethe Chapter 3. In the Chapter 4,

we show how curved one-dimensional wires with intrinsicispibit interactions can redistribute

the current density between two spin-split modes. In agldjtihe spin-switching device based
on this effect is proposed.

The results of Chapter 5 are more fundamental. The chirahamtry of electron density
of states is found in a curved one-dimensional wire with Rastoupling and Zeeman spin-
splitting. The influence of electron-electron interacian the chiral asymmetry is studied as
well. The Landauer-Buttiker formalism is generalized pply to systems with the chiral asym-
metry of the density of states.

At the end of the beginning, we wish the reader to enjoy thsishe



2 Rashba effect in low-dimensional
systems: origin and manifestations

In this chapter we show how the Rashba spin-orbit coupling terises in the Hamiltonian of
an electron gas placed in an external electric field. Thréeg- and one-dimensional cases are
considered. Itis shown that the Rashba effect in one-diiealsings leads to the effective mag-
netic field crown-like texture and in that way makes it pdssib observe the spin-orbit Berry’s
phase. Moreover, the applications of Rashba effect in fp@ring technique are discussed. Fi-
nally, we give an introduction to the Tomonaga-Luttingerdelcand discuss its applications to
one-dimensional systems with spin-dependent effects ésuRashba and Zeeman ones).

2.1 Spin-orbit interactions in a bulk sample

It has been established both theoretically and experirigrtkat in electron gases of narrow-
gap semiconductors there is an energy splitting betweespupand down-spin electrons even
when there is no magnetic field. The dominant mechanism fer“dero-field spin-splitting”
is believed to be spin-orbit interactions. We focus herelendpin-orbit coupling of Rashba
form. Other mechanisms for bulk structures such as the lowrsion asymmetry term (spin-
orbit interactions of Dresselhaus form) also contribut¢hi® zero-field spin splitting; however
we ignore these here as they are usually smaller in narrgnsgaiiconductors.

The problem of an electron moving in a solid is usually trdatsing the stationary Schrodinger
equation

o (0= SA) y+egr)w = B @)

om\P ¢ v S '
where@(r) is a given electrostatic potentigl,is the electron momenturd is the vector po-
tential, ande =| e |, m are the electron charge and mass respectively. The elegpiarhas,
however, essentially relativistic origin. Therefore, then-relativistic stationary Schrodinger
equation (2.1) could not be used for the description of gpbit interactions in the electron
motion.

In order to introduce the appropriate spin-orbit inter@etierm into (2.1), we start with the four-
component Dirac equation

. 0W(r,t)
h
5

=HpW(r,t). (2.2)

Here e
HD:o(c<p—EA> +BmcE + Laeq(r), (2.3)



where

. o O B 0 I, B > O
a_<0 _0-)7 B_<|2 0)7 |4_<0 |2)7 (24)
I is the unit matrix 2< 2
10
I2_<O 1), (2.5)
ando are the Pauli matrices

GX:(Cl) é), Gy:(? Bi), ozz(é _01>. (2.6)

The usual way [3] to solve the Dirac equation (2.2) is to redii¢co two components using the
substitution

W(r,t) =W (r,t)e tme/h, (2.7)
where /
Wit = < 3,2;3 ) : (2.8)

Then we have the following system of equations

ihd+mS—eq(r) )¢’ = mc +co(p—EA)0, 29
ihd+mc—ep(r) )8 = mcy —co(p—EA)9d.
Performing a second substitution
,_¢/+~3/ ~,_¢/—3/
¢’ = > V= (2.10)
we arrive at
ih%—ecp(r)) o’ = co(p-2SA)¥, 211)
ih%—i—chz—ecp(r))é’ = co(p-2A)§. '
From the second equation of (2.11) we have
§ = (in2 1 2me - eqlr) _1co<p—§A> &' (2.12)
ot c ) '

The electron energy in solid state physics is much smaleriin. Therefore, one can approx-

imate (2.12) as
i 12 — eq _e
§ - [1_ (3 r)>] wolP—A)y (2.13)

2mc 2mc



Using this approximate expression and the first equatio.aflj we finally arrive at

(i ﬁ% —ecp(r)) ¢ = %n o(p- §A>] o(p- EA)} L

vz [7(o )] (1)) [o (- GA)] (2.14)
This is the basic equation for description of spinfull etentmotion. We find it necessary to
make several remarks concerning (2.14). First of all, uigcommutation relation between
momentum and coordinate operators as well as relationseeetwauli matricesyoy = i0y,
0x0; = —i0y, Oy0; = i0x one can show, that the first term on the right-hand side of 24§
is nothing else than the sum of ordinary kinetic and Zeemamngees. The second term on the
right-hand side of eq. (2.14) gives actually two contribnt. The first one is the negligible
first-order ofE/2me relativistic correction for kinetic and Zeeman energiebjlethe second
one explicitly represents spin-orbit interactions. Lefinally note, that equation (2.14) is still
time-dependent, while we are going to study stationarysa3éen, performing the standard
substitutiond’(r,t) = Y(r) exp(—iEt/ k) in (2.14), we arrive at the stationary Schrodinger equa-
tion [cf. (2.1)] with relativistic corrections

o (p—A) v s (o B

+W1c2 [o(p—gAﬂecp(r) [o<p—§A>] W+ ep(r)p = Ey. (2.15)
Herepg = efi/(2mc) is the Bohr magneton.

As from now, we call these relativistic corrections “spirib coupling in general form” and use
the notation L o o

Heo= 2z |9 (P = A) o0 [0 (p—A) | (2.16)
In the following, we study the effects of this term in sometjgatar cases.

2.2 Rashba spin-orbit coupling in a two-dimensional electr on
gas

Let us consider the relativistic spin-orbit correctidthso in the case of a two-dimensional elec-
tron gas confined in they plane by a given electrostatic potenti4lz). Then the potential
¢(r) in (2.15), (2.16) is nothing else than the confining g{® = \(z) /e and the coresponding
electric fieldE(z) reads

09(2)
E(z) = ——.
2 3
It is important to note, that if the confining potential is ayietric ¢(z) = ¢(—z), then the total
electric fieldE; experienced by the electrons in the 2D gas (see fig. 2.1) & Zercontrast,

E; # 0 as soon a®(z) # ¢(—2z).

10



Figure 2.1: The coordinate system used throughout thisstii@sthe description of the 2D electron gas
placed in the electric field.

We restrict ourselves to the case of a homogeneous magmdti¢sj = B, perpendicular to the
electron gas plane. The gauge is chosen so, that

1 1
AX - —éBzy, Ay - éBzx, AZ - O (217)

Then, neglecting the terms of order

1 e \2| ep(2)
[fn (P-~) } 2me’
we rewrite the spin-orbit coupling term (2.16) in the morexaentional form

Hso:% [if)z-l-ox(ﬁy—gAy)—0y<ﬁx—§Ax>]. (2.18)

As a final step, we assume, that the size quantizatiandinection is so strong, that only one
subband is occupied by electrons. Thereforepgthéependent term in (2.18) gives just a constant
(which is usually set to zero). Thus, the spin-orbit intéactterm takes a form (the original
Rashba fornHg [4, 5]) often encountered in the literature, namely

Hso=Hr=a [O'Xk]z, (2.19)
where the Rashba constant is
o — ethZ (2 20)
- AmPc?’ '
and 1 .
k=7 (P 2A)

is the electron wave vector. The Rashba constdrds the dimension of lengienergy, and can
not be measured directly. There are, however, severabcidinethods (e. g. using Shubnikov-de
Haas oscillations [6, 7, 8]) that allow to determime

11



Let us emphasize, that the spin-orbit coupling of Rashba ty@ssociated with the interfacial
electric fieldg; in the quantum well that confines the two-dimensional etectyas. This electric
field can be governed by the voltage applied to metallic gaesp of the heterojunction. Thus,
such an internal property of semiconductor structures as@pit coupling is experimentally
tunable. This is a distinct feature of the 2D electron gadioed in a heterojunction compared
to the bulk case. Of course, the spin-orbit interactionspeesent in bulk semiconductors as
well (e. g. Dresselhaus spin-orbit coupling). Howeverstheffects arise essentially from the
particular (internal!) properties of the zinc-blende ¢taydattice structure. The external tuning
of bulk spin-orbit effects is, therefore, rather difficulia contrast, the Rashba effect is much
more promising in this sense. Indeed, tuning of the Rashimampit coupling by means of an
external gate voltage was recently demonstrated in diffesemiconductors by Nitta et al. [9]
and others [6, 10, 7] and more recently by Grundler [11] aipglya back gate voltage while the
carrier density was kept constant. It has also been achiaveg-type InAs semiconductor by
Matsuyama et al. [8].

2.3 Rashba spin-orbit interactions in one-dimensional
structures

The results given in the previous section suggest, thatmogfielectrons from bulk semicon-
ductors with spin-orbit interactions to the two-dimensiblimit is very useful since it allows the
tunability of the Rashba constant. In this section, we agiltlee question what new effects can
be reached by further restriction of the dimensionalitynaf €lectron gas. Namely, we consider
the one-dimensional case. In particular, we focus on thalsaterm (2.19) in the following two
limits: (i) 1D wire (see fig. 2.2a), and (ii) 1D arc that is, ither words, aurved1D wire (see
fig. 2.2Db).

The first limit is rather trivial. Indeed, assuming that thec&ron gas is confined in direction
so, that thek,-dependent term in eq. (2.19) represents just a constamti{jvidset to zero) we
arrive at the following simple form for the Rashba term

1Dwire __ 0 iO(&x
HR _<—iakx A (2.21)

L
whereky = —ig .

The solutions of the Schrodlnger equation for a 1D wire withHamiltoniarH 1PWire — H1Dwire .
HAPWIre, whereHPwire — — 12K /2m, read

1 . 1 —i
llJwaireO() = TZGIWX ( i ) ) quDWII’e< X) = Telk § ( 1 ) ) (2.22)
wherek™ satisfy the dispersion relation
h? h? k3
B = 5 (ktkso)? — 5 >C. (2.23)

12



(@) y (b)

A

Figure 2.2: The solution of the Schrodinger equation (gf. 2i3 and fig. 2.4) for a 1D wire in the presence
of Rashba coupling depends strongly on whether the wirgaggit (a) or curved (b). The arrows depict
two possible spin directions in the eigen states of the syste

Here we have introduced the following constant charadtegiRashba spin-splitting (see fig. 2.3)

ma
kso= <7 (2.24)
Equation (2.23) always has two solutions with respeck tworresponding to left- and right-
moving particles for a given spin index-" or “ —". Let us make some important comments on
the eigen functions (2.22) and the dispersion relation3(2.2

First, both elements of spinors (2.22) are not equal to z€&hos reflects the fact, that the spin
guantization axis does not coincide with thdirection. In contrast, the electron spin in eigen
states (2.22) is directed along thaxis (see fig. 2.2a). Thus, the electrons injected into a B wi
in their eigen states (2.22) keep constant direction of thgins along that axis. If an electron
is not in its eigen stat® ... OF W1puirer then the Rashba effect rotates the spin while it moves
through the 1D wire. This particular fact is utilized in sospntronic devices such as spin field
effect transistors (see section 5 of this Chapter).

Second, the Rashba coupling shifts the dispersion cureag dhe momentum axis by the value
+ hkso (depending on spin index)ndalong the energy axis byh?k3,/(2m). Notice, that the
shift along the energy axis changes the Fermi velocity invilre (if the Fermi level is fixed).
However, in contrast to the Zeeman effect, this “verticaliftsdoes not depend on spin index.
Let us turn to the case of a wire with finite curvature (see figb®2 This case is not so trivial as
one might think.

The conventional way to obtain the Hamiltonian for a 1D arcrijog) from the Hamiltonian in
2D consists of two steps. The Hamiltonian operator is tianséd into cylindrical coordinates
and¢. Adoptingx =r cosp, y = r sind, the momenta operators read

0 0 sinp 0
—Iha—x——lh<COS¢a—T%),

13
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Figure 2.3: Typical dispersion law for a 1D wire with Rashlipénsorbit coupling given by the relation
(2.23) (solid line). The dashed line corresponds to the o&gero spin-orbit coupling, i. eEki = p?/2m,

p being momentum. The signst™ denote the spin indices. Note, that there is no spin-spudjitat zero
momentum.

0 cosp 0
—|h®_—|h<sm¢ +— , a¢) (2.25)

and the Rashba operator acquires the following form

0 '¢< ¢)+e'¢a

r—1gt (_.a¢> _é¢§ (2.26)

Hr =

Then, naively one could seto a constanR and discard all terms proportional to derivatives with
respect ta. This procedure works perfectly in simple cases, such &sdiectrons or electrons
in the presence of a uniform (or textured [12]) magnetic fieldwever, it does not work in the
presence of Rashba spin-orbit interactions!

Indeed, let us have a closer look on the Rashba operator feedl D system obtained by the

14



conventional procedure described above

= & a ( y <0 a¢> g it (()—'%) ) . (2.27)

We introduce two different probe functiod®¢) andW¥(¢)

o= (gt ) wer=(4!). (228)

which are defined in the interval,,¢$2) (arc geometry) or0,2m) (ring geometry) so, that
D(p1.2) = W(d12) = 0 (arc geometry) ofd(0) = d(2m), W(0) = W(2m) (ring geometry). Then,
we calculate the matrix elements

/dqaq:*(q))[ /dq){d)*[ '¢< ad))wz%qaz{éd’( a‘l)wl}}. (2.29)

The following equalities can be derived straightforwaydly

/d(l)q) ( )Wz—/d(bWz( ig? ¢¢1+¢1€'¢)

. 9 *
/d¢¢§e‘¢( ¢)w1—/d¢w1< e '¢a¢q>2—q>2e '¢) . (2.30)
Substituting (2.30) into (2.29) we find, that
[ oo (@) [Hw(6)] # [ dow(e) [HrD(@)]'" @23

The inequality (2.31) shows that, in general, the opertifpis not Hermitian. Note, that per-
forming the same verification procedure for the initial @ier (2.26) we conclude thair as a
whole is (of course) Hermitian (because of the térfdr). However, ifr is set to a constarR
then all terms proportional to derivatives with respeat tib not give a contribution, and (2.26)
becomes non-Hermitian, which results in an imaginary enspgctrum at low energies [13].

There are a couple of methods how to deal with (2.26) in olget its correct 1D form in polar
coordinates. The first one is very direct [14]. Let us add apilV (r) to this Hamiltonian
(2.26), which forces the electron wave functions to be laedl on the arc (ring) in the radial
direction. Specifically/(r) is small in a narrow region around= R and large outside this
region. For a narrow arc (ring) the confining energy in thaaladirection is much larger than
the spin-orbit coupling energy and the kinetic energy inahienuthal direction. This allows us
to solve the Hamiltonian for the radial wave function firstiareatHg (as well as kinetic term) as
a perturbation. However, in order to obtain the 1D Hamilaonexplicitly, we have to calculate
the lowest radial mode for a given confining potential. Tht#hats of [14] assume a harmonic
confining potential foW (r) and find that the expectation valuesredependent terms are

<Ro<r> -

r

Ro(f)> =— (2.32)

15



and, most surprisingly,
9
or

1
=——. 2.33
(Rol®)| | Rulr)) =~ 233
Here |Ro(r)) is ther-dependent part of the normalized solution for the lowedialanode. The
relation (2.33) shows, that we cannot safely disregard tde term in order to obtain the correct
Hamiltonian for curved 1D systems with spin-orbit interans.

Of course, itis not essential to choose a very harmonic piateiio show this, the authors of [14]

give the following general reasonings. L (r)) be the lowest radial mode for arbitrary
confining potential. Now, let us find the expectation valuéhefoperatod/or + 1/2r that reads

(R0 |35+ 5 |Ran) ) = (Ro(r) [ 5| Rétr) ). (239
where|Ry(r)) = v/r [Ro(r)). From direct calculations it follows that
10 CRED|T R |T
(Rotn) [/ Rotr)) = 57 =80 o
We then obtain
(Ro®)| | Rotr)) = = (Rt 3 Rutr)) =~ 3 2.35)

The term (2.35) is neglected if we follow the conventionadgadure. It is only recovered by
the projection of the original Rashba operator (2.26) defime the Hilbert space of spinors in
two dimensions on a restricted Hilbert subspace, spanngtidogomplete set of the spinors,
which are functions of thé coordinate only. In the simple cases mentioned earlier (¢. g
free electrons), there are no terms present in the Hamaltoproportional to botl@/dr and
some function ofp (i. e. the two-dimensional Hamiltonian is separable). lesthcases the
conventional procedure produces the correct result. loth#r cases it is necessary to take into
account properly the confinement of the wave function in #tial direction as it has been shown
above.

Having established the generality of relation (2.35), we waew write down the Rashba operator
for the 1D arc (or ring) explicitly in the form

0 a it (Gy— 1)
Ha"° = ( 0/ R 72/ ), (2.36)
LR (G +3) 0
wheredqy = —i% is the angular momentum operator. This is the the Rashbatgpéor electrons

in a 1D arc (or ring) that we shall use throughout the thesis.

It is interesting to note that the Rashba operator in suclomgéy is not symmetric. (In contrast
to (2.21),Hi3+# —H2L here.) This property of the operator (2.36) leads to a ceasymmetry of
the electron eigen states in 1D arcs (or in 1D rings as wethempresence of spin-orbit coupling.

16
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Figure 2.4: The solid line is the typical dispersion law ¢oirved1D wires R is the radius of curvature)
with Rashba spin-orbit coupling. The dashed line corredpdo the case dR — o, i. e. the curved
wire goes towards a line. One can see, that the finite raditlseofvire increases the spin-splitting along
momentum axis and, as a consequence, changes the Fermi taonfdre Fermi velocities, however,
remain constant.

Indeed, the eigenfunctions of the Hamiltonidf'® = H3/°+ H3", whereH® = h?G3 / (2mR),
read

cosy [Cf €@ 20 L Cfei(ztane

Wi (0) =
arc(9) siny Cl+e|(§+q )0 _|_C2+e—|( q-—2)o )
- siny |C; (@ ~2)% 4 Cye (At .

where

tany——Rﬂll (SOGR), (2.38)

g0 = 1?/(2mR®) is the confinement energy, agd have to satisfy the following dispersion rela-

17



tions

+_ %o 2 g /(%) 4gn2
Eq = 4+eoq +q (R) + &0°. (2.39)

Similar to (2.23), the equation (2.39) has two solutionshwéspect tay corresponding to the
left- and right-moving particles for a given spin index™or “—". In contrast to (2.22), the
spinors (2.37) are not symmetric in the sense that their tmoponents have different weights:
cosy and siry. These weights depend on the arc (ring) radius®, that in the limit oR — 0 the
difference between them is maximgk£ 11/2). Of course, in the opposite limiR — c we arrive
at the symmetric solution (2.22).

The effect of the finite radius on the dispersion law (2.38hiswn in fig. 2.4. One can easily see,
that the change of arc radius shifts the dispersion cureegdhe momenta axis, while the tuning
of the Rashba constant (by using external electric fields) shifts them aldmgth momentum
and energy axes. The bending of 1D wires with spin-orbit ogmlemonstrates, therefore, an
intriguing effect: the spin-splitting increases, whilethermi velocities remain constant. As it
will be shown in the present thesis, this interesting feattan be used ireflectionlessspin-
switch (see Chapter 4). One can find a review of previous gamated to this topic in the
present Chapter, section 5.

The system discussed above becomes even more interestwegpiface the curved 1D wire in
the magnetic field perpendicular to its plane. In particullais makes it possible to find the
manifestation of spin-orbit Berry’s phase in a quantum I¢gg®e the next section for a review or
the next Chapter for our results). Moreover, the couplinigveen Rashba and Zeeman effects
in a curved 1D wire (in a straight 1D wire this feature doesaoumur!) produces a deformation
of the dispersion curves in such a way, that the Fermi veéscior left- and right- moving
electrons become unequal. The chiral densities of stagesharefore, not equal as well. Thus,
such a system gives us at least the theoretical possilldistinguish somehow the chiral states.
(Here, “left” is not equal to “right” in a certain sense.) Theestion is, however, how stable this
effect is. What happens if, for example, the electron-ebecinteractions are switched on? The
answer will be given in the framework of a Tomonaga-Luttiniggauid description in Chapter 5
of this thesis. For an introduction to the Tomonaga-Lugingiodel see sections 6 and 7 of the
present Chapter.

2.4 Introduction to the spin-orbit Berry phase

The beauty of the topological Berry phase concept [15] nespinuch theoretical and experimen-
tal activity aimed at finding its manifestations in diffetemeas of modern physics [16]. Berry
describes a quantal system in an eigenstate, slowly traesparound a circuit by varying a

parametel in its Hamiltonian so, that

Ainitial = Afinal = Ao,

and
H(Ao) = H(Ainitiat) = H(A1) = H(A2) — ... = H(An) — H(Afinal) = H(Ao).-
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According to the adiabatic theorem, if the Hamiltonian tsireed to its original form, the system
will return to its original state, apart from a phase factor

W(Ag) — €®BT®Iw()\y).

In addition to the familiar dynamical phage, such a state can acquire a geometrical, circuit-
dependent phase fact@g, which is the result of the adiabatic variation of the exé¢param-
eters. This phaseg is known as Berry’s phase. (See also a fundamental gerarahzof this
idea for non-adiabatic evolution [17].)

A possible candidate for the role of such a paramatar solid state physics is the external
magnetic fieldB that interacts with the electron spin via the Zeeman effébis interaction is
described by the following Hamiltonian

Hy — %0- B, (2.40)

whereo = {0y, 0y, 0} are the Pauli matrices (2.6), apgd, g are Bohr magneton and g-factor
respectively. When the value of the magnetic field is constad its direction follows adiabati-
cally a closed trajectory, the spin wave function acquihestopological phase factgg which

is proportional to the solid angle subtended in a space byntgmetic field [15].

The possibility to control the Berry phase by means of thezaeeffect is the central issue ex-
plored in the pioneering [12, 18, 19] and recent [20, 21, & 224, 25, 26] papers. In particular,
the authors consider the adiabatic as well as non-adiatmation of electrons through a meso-
scopic ring in the presence of a static, inhomogeneous niadigdd. It is shown that the Berry
phase, accumulated by the spins of electrons encirclingnige leads to persistent equilibrium
charge and spin currents [12, 18] or affects the conductahtee ring [19, 21, 25] in a way
similar to the Aharonov-Bohm effect [27].

The latter point is of particular interest to the topic. ledesince Aharonov-Bohm and Berry
phases can be varied individually, the interplay of the tivages yields a rich variety of behavior.
In particular, the amplitudes of the Aharonov-Bohm ostitlas are strongly affected by the
Berry phase [21]. Moreover, the authors of [21] show thas¢hamplitudes can be completely
suppressed at certain magic tilt angles of the externakfield

As was noted above, in order to observe the geometric phaaeétectronic system with spin,
the application of an orientationally inhomogeneous (eraglial) magnetic field is necessary.
However, the manner in which the magnetic field is varied @&, [18, 19, 20, 21, 22, 23, 24,
25, 26] leads to rather difficult experiments. Fortunattig desired magnetic field texture can
be experimentally implemented via fabricating the loopr{eg) from a material with spin-orbit
interactions of Rashba type (2.19). Indeed, the Rashbatmpeor 1D rings (2.36) derived in
the previous section can be rewritten in the quasi-clastanci g > 1 as

Hr = %(oxcosq)-l—oysinq))%. (2.41)
At the same time, in the presence of a radial in-plane magfietd B, the Zeeman term (2.40)
can be rewritten in polar coordinates as

— 98 (5, cosp + 0y sind) Bin. (2.42)

Hz >
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Figure 2.5: The in-plane radial effective magnetic fiBlgl (which stems from the Rashba effect) and the
real external ondgy; form in the ring the effective magnetic field crown-like tes¢ which is shown in
the lower part of the figure. The total magnetic field changesdirection adiabatically while an electron
moves in a circle, and, therefore, the electron wave funditquires a geometrical phase.

Now, the effect of Rashba spin-orbit coupling on the electrmtion in the ring is seen clearly by

comparing eq. (2.41) and (2.42): namely, the electronsc¢h suring experience a radial built-in

Zeeman-like magnetic field

_ 2aq
9eR’

hereqis the characteristic angular wave vector. In other wotdsRashba effect in the quasiclas-
sical limit represents the effective Zeeman-like magnigtid B;,. It is important to emphasize,
that this in-plane magnetic fieldbes notelate to the real external magnetic fi#gk;, but stems
from the internal properties of the substance (spin-orbéractions). Most important, however,
the externaBgy; and in-planeB;, components form the desired inhomogeneous magnetic field
texture shown in fig. 2.5 and in that way can provide the geomphase indications through
interference patterns in the conductance of the ring. Ttatyidea is attracting both theoretical
[13, 28, 29, 30, 31] and experimental [32, 33, 34, 35, 36jditd@. In what follows, we review
the problems and advantages of spin-orbit Berry’s phasefesaations in low-dimensional sys-
tems.

Let us consider the geometric phase that the wave functi@abfargedand spin-full particle

(2.43)

in
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acquires as it travels around the ring structure with Raspbmorbit coupling (2.41). The system
is placed in the external magnetic fidBdy;, which is perpendicular to the ring plane (see the
magnetic field configuration in fig. 2.5). Firstly, since thetcle carries a charge, it picks up an
Aharonov-Bohm phase [27]

(o}

QaB = 2T[—7 (2.44)

®o
wheredy is the flux quantum, an® = T1R?Bey; is the magnetic flux enclosed by the ring. Sec-
ondly, if the particle carries a spin of/2 and its motion is adiabatic, then the spin geometric
phase, according to Berry’s definition [15], reads

Bext

gg=m|1l-——-r—],
\/ngt'i‘B%

and the full geometric phase is a sum of both: @s + Pag. Note that the adiabaticity requires
comparatively large values &, andBegy; SO that the electron spin precesses few times within a
cycle.

In [13], the authors established a one-particle Hamiltoriaa electrons moving on a 1D ring
in the presence of Rashba spin-orbit coupling and Zeemaitirsgpl Furthermore, the ballistic
motion of electrons in the absence of scattering and spnpfiocesses has been studied. In
the spirit of the seminal papers by Biuttiker, Landauerylmzbel and Pinhas [37, 38, 39], the
transmission amplitude of the ring has been derived anddhductance oscillations have been
investigated. We should note, however, that authors ofi$8H a non-Hermitian operator (2.27)
in the Hamiltonian. Zhou, Li, and Xue [28] noticed this faadaderived a different (Hermitian)
Hamiltonian operator. However, in their Hamiltonian thénsprbit coupling originates from an
electric field pointing in the radial direction and not in ttieection perpendicular to the plane
of the ring. This is not the correct Rashba term for inverdeyers [5]. The procedure for
obtaining the correct Hamiltonian has been described ihds4vell as in the previous section
of this Chapter.

In spite of the mentioned shortcoming, [13] has been theudtisfor the subsequent studies. In
particular, topological transitions in the ring condudearnterference pattern subject to Berry’s
phase have been studied in [29]. It manifests itself in aligegonductance-magnetic field
and conductance-gate voltage characteristics. The ti@m$akes place when the Berry phase
is dropped by an additional static magnetic fiélg; from odd ofrtto zero as it follows from
equation (2.45). The non-adiabatic spin-orbit geomethage (of non-Berry, but Aharonov-
Anandan type [17]) in quantum rings has been investigatg®0j It has been shown that such a
phase becomes the spin-orbit Berry phase in the adiabaiitc In order to analyse the structure
of the Aharonov-Bohm oscillations influenced the by spibhi#oBerry phase, the Fourier spectra
of conductance has been calculated [31]. Note that the rdeth&ourier analysis is the only
suited one for comparison of the theoretical results withekperimental data discussed below.

In pioneering observations of Berry’s phase [32, 33], thamhov-Bohm oscillations were stud-
ied in InAs two-dimensional two-contact quantum rings wstlong spin-orbit interaction. The
Fourier transforms of over 30 traces of oscillations wereraged and a small splitting of the

(2.45)
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Figure 2.6: AFM images of two-contact (left) and one-cohfaight) rings used for Berry’s phase obser-
vations. The images are taken from the corresponding pajsrsssed in the text.

main peak in the final Fourier spectrum was interpreted assailple manifestation of the spin
Berry phase. (See [40, 41] for subsequent discussions.)

An attempt has been made to observe Berry’s phase in quaimgsfabricated in a GaAs/AlGaAs
heterostructure with a 2D hole system [34] (see fig. 2.6 plaftel). In such a setup, the inversion
asymmetry results from the GaAs zinc blende crystal strecig well as from an electric field,
which is perpendicular to the 2D plane. Along with the maialpehose frequency corresponds
to the magnetic flux enclosed by the ring, there are some pgtlks in the Fourier spectra of the
measured Aharonov-Bohm oscillations. A qualitative corgme of the Fourier transforms with
its simple simulation provides a striking demonstratiothef Berry phase. (See also subsequent
Comments and Replies [42, 43, 44, 45])

In contrast to earlier work, the authors of [35, 36] furnisioael configuration, in which the bal-
listic ring formsonecollimating contact with the tangential current lead (sgedi6, right panel).
Beside the absence of unknown asymmetry in the arm lengihgtWays gave an uncertainty in
a two-contact configuration) and additional spin rotatibeantacts, such a setup allows to let
only one transverse mode with a small longitudinal momergater the ring through the contact
(see fig. 2.7a). In what follows, we provide a descriptionhaf momentum-filtering mechanism
used in this configuration.

Since the tangential lead is quite narrow the electron masistrongly quantized in the transver-
sal direction. According to the conductance quantizati@asurements, there are only four sub-
bands occupied (Zeeman spin-splitting included). fiyet= ke be a characteristic value of the
Fermi longitudinal momentum in the upper subband. Notd ttteupper subbands have smaller
Fermi longitudinal momenta than the lower ones. The coomedmg Fermi velocity and Fermi
vector arevi, ke respectively, and the latter can be estimated via georaéparameters of the
contact. Let, d be the contact length and width respectively (see fig. 2.@0pa, is the trans-
verse shift of an electron while it moves through the leachandontact region. On one hand, if
the electron is going to enter the ring then the inequaty> d should be satisfied. On the other
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Figure 2.7: (a) Trajectories of electrons in the one-cdllimg-contact ring. The green curve corresponds
to the trajectory of electrons from the upper mode in theeatigl lead, while the red ones are related to
the lower modes with comparatively large tangential Fermimanta. This picture is taken from [36]. (b)
Geometrical parameters of the one-collimating-contawy tised in text.

hand, the shifdx,; is nothing else than the transverse component of the toajettat was ac-
quired by the electron with velocity, = p, /m(heremis theeffectiveelectron mass) during the
period of timet = | /vg of its passage through the contact region so, &kat= (p,/m)(I /vg).
The transverse component of the electron’s momergurman be estimated from the uncertainty
relationp, ~ f/d. Thus, if we want only a single (upper) mode to enter the fiirentthe electron
Fermi vectorke = mw /A of that mode should be as smalllgs < I/dz. The lower modes are
much faster so, tha®"e" > | /d2. As a result of such momentum filtering by the contact, the
interference pattern in the conductance is determinedysbyea singletransverse mode. It is
therefore possible to apply a 1D model for emulation of thiédtie electron transport through
such a system.

There are, however, some parameters related to one-ctiigreontact rings that look rather
problematic. For instance, the estimated wave vektois as small as B x 1®m~! which
makes the electron motion very sensitive to the potentraldaape. The samples must, there-
fore, be perfectly clean. Nevertheless, the authors of38phave managed somehow to solve
the problems, and the observed beating in the Aharonov-Baminductance oscillations was in-
terpreted as conclusive evidence of the spin-orbit Bergsphn the conductance of quantum
rings.

In this thesis we study theoretically a system similar tq 4. The distinct feature between our
model and the real device in [35, 36] is as follows. We degcailpurely 1D case, and, therefore,
we do not take into account the electrons which bypass tlge(red trajectories in fig. 2.7a). In
other words, our system is rather a quantoop than a quantum ring. The detailed description
and solution of the model as well as the discussion of itsiptesapplications is given in the
Chapter 4.
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Figure 2.8: Schematics of the spin-valve device. Red regawa ferromagnetics that serve as a polariser
and analyser of the electron spin. The yellow region in betwis the ballistic semiconductor (e. g. p-
InAs) with spin-orbit coupling. The spins are injected ieitheigen states in the semiconductor element,
therefore, they keep constant orientation. We can openr(elpse (b) the spin-valve by switching the
polarization in one of the ferromagnetic contacts.

2.5 Introduction to spin manipulation

In the past few years the idea to use electron spin in mesmsdepices has generated a lot of
interest. In [46], Datta and Das describe how Rashba sgit-@yupling can be used to modulate
the current. The underlying idea is to drive a modulated-poilarized current entirely electri-
cally, combining just ferromagnetic metals and semicotmlumaterials. One of the simplest
solutions is the spin-valve setup (see fig. 2.8) where thputwurrent is governed by switching
of the spin-polarization in one of the ferromagnetic cotdsad he second possibility is the so-
called spin field effect transistor (see fig. 2.9). Here, thia-polarized current is injected from
a ferromagnetic material into the region with Rashba spbit@oupling (formed at a semicon-
ductor heterojunction) and then collected by the secorrdrigagnetic material. In basic terms,
the idea is that the Rashba effect will induce a spin precessi the electrons moving parallel
to the interface, rotating them with respect to the maga#tn direction of the second ferro-
magnet (collector). Then by adding a gate voltage the net®¥e electric field (and hence, the
spin-orbit interaction) at the interface can be modifiedjnig the spin precession, and therefore,
the transmitted spin-polarized current is modulated atingty.

The problem of the spin-filtering contacts is still attragtiboth experimental [47, 48, 49, 50]
and theoretical [51, 52, 53, 54, 55, 56, 57, 58, 59, 60] atianfThe conventional approach [46]
employs contacts made of a ferromagnetic material like iAdrthe Fermi level in such materials
the density of states for electrons with one spin greatlgess that for the other spin direction, so
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Figure 2.9: Schematics of the Datta-Das spin-modulatoicddgpin field effect transistor). The blue plate
is the metallic gate which allows to tune the Rashba cougtrength. In contrast to spin-valve geometry,
the spins injected areot in their eigen states in the semiconductor region, but imeali combination

of them (the initial polarization is along axis). Therefore, the spin rotation governed by the Rashba
coupling strength occurs while the electrons flow throughgbmiconductor. Changing the gate voltage,
we are able to tune the speed of spin rotation and in that wagritrol the output current: (a) device is
closed (b) device is opened.

that the contact preferentially injects and detects edastwith a particular spin. In the seminal
paper [46] there was a brief discussion about whether sugim@slariser (as well as an analyser)
can be well implemented in a two-dimensional electron gdtholigh great progress has been
achieved in theoretical understanding [53, 57, 59] and exyantal realization [47, 48] of the
magnetized contacts, fabrication of these structures ocse further material-science challenges
and may require rather complicated chip design. Achievpig Bltering and spin manipulation
by means of intrinsic spin-dependent effects in semicotwtads, therefore, highly desirable.

One of the treatments is to use optical excitations from-spiit hole subbands in asymmetric
quantum wells. In [49, 61], a non-equilibrium populationspiin-up and spin-down states in
guantum well structures has been experimentally estaaliapplying circularly polarized radi-
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ation. The spin polarization results in a directed motiofreé carriers in the plane of a quantum
well perpendicular to the direction of light propagatioredduse of the spin selection rules, the
direction of the current is determined by the helicity of light and can be reversed by switching

the helicity from right to left handed. In [55], Mal'shukond Chao show theoretically that spin

polarization can be created in the well by radiative elettnole recombination.

The literature concerning spin filtering using intrinsiarsprbit interactions suggests many solu-
tions of the problem [51, 52, 54, 56, 58, 62, 60]. (Note, thatantrast to the spin-orbit splitting,

use of the Zeeman splitting is not the most practical way toese spin polarization, as needed
magnetic field strengths are often large [63] and on-chipegfeent of micromagnets is required.)

In [52], Kiselev and Kim have published very impressive fesbased on the Rashba effect.
Their structure consists of a T-shaped quasi-one-dimeakithannel and an electrode placed
near the channel intersection to control the spin-orbérenttion of electrons. The calculations
demonstrate that the proposed device can redirect elsctvith opposite spins from an unpo-
larized source to left and right output leads, respectjahg, thus, serve as a spin filter. The
stronger spin-orbit coupling improves the spin-polaigatefficiency [64]. Depending on pa-
rameters of the system, the polarization approaches n@oksp.

There are further examples. The spin-dependent electsonaat tunneling through non-magnetic
asymmetri@doublebarriers is studied theoretically in [51]. It is shown, thatunpolarized beam
of conduction band electrons can be strongly polarizecerat magnetic field, by spin-dependent
resonant tunneling, due to the Rashba spin-orbit intemactlhe spin-dependent resonant tun-
neling is also used in [54]. The authors propose an elecspin-filter device that consists of a
non-magnetidriple barrier and combines the spin-split resonant tunnelingléemduced by the
Rashba spin-orbit interaction and the spin blockade phenmanbetween two regions separated
by the middle barrier in the structure. Detailed calculagiaising the InAlAs/InGaAs material
system show, that the filtering efficiency exceeds 90% at ¢ad positions.

A lateral interface connecting two regions with differetreagths of the Rashba spin-orbit in-
teraction can also be used as a spin polarizer of electrohsardimensional semiconductor
heterostructures [60, 62]. A beam with a nonzero angle aflercce is split after transmission
into two spin polarized components propagating at diffeeggles. In contrast to [62], the case
when one of the two regions is ballistic, while the other omaliffusive, is the central issue
explored in the recent paper [60]. The technique developethe solution of the problem of
diffuse emission [65] is generalized to the case of spinreddpnt scattering at the interface and
the distribution of electrons emitted from the diffusivgin is determined. It has been shown
that the emission in the diffusive regime is an effective waget electrons propagating at small
angles to the interface that are most appropriate for the fijpriation and a subsequent spin
manipulation.

Another original device proposed in [56] to achieve spirefitig without using ferromagnets is
based on the interplay of the Rashba effect and the wave-euselectivity due to the momentum-
resolved tunneling between two parallel electron wave ggi{@ne-dimensional quantum wires,
fig. 2.10). One of the wires has intrinsic coupling of elentspin to its momentum, while in
the other wave guide spin-orbit interactions are assumée @bsent (see fig. 2.11). Due to the
wave-number selectivity, tunneling can only occur for &l@e states with wave numbers close
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Figure 2.10: Schematic picture of the spin-filtering deyiceposed by Governale et al.[56]: two parallel

1D quantum wires, labelled “U” and “L”", are each connecteddparated reservoirs. The upper wire has
intrinsic coupling of electron spin to its momentum, whitetihe lower one the spin-orbit interactions are
assumed to be absent. The wires are coupled via tunneliogghran extended uniform barrier.

to the point where the dispersion curves of two wires croghatthe conservation of energy and
momentum is fulfilled. Because of the Rashba effect, dispersurves for spin-up and spin-
down electrons in one of the wires are split along the monmmardxis. Thus, the momentum
resolved tunneling current is always spin-polarized. Suatent can be created by applying

B=0 B+0 B=0
eV=0 eV=0 eV«0
AE AE \ +E

t t

tunneling
wave humbers

»K » Kk
Polarizer Splitter
a b C

Figure 2.11: lllustration of device operation depicted g £.10 as spin polarizer or spin splitter (a) Due
to the Rashba effect, dispersion curves for spin-up anddpim electrons in the upper wire are shifted
horizontally by Xso (see eq. 2.24). In the lower wire, where spin-orbit coupligssumed to be absent,
energy dispersion curves are spin degenerate. (b) Tunimgnuanber selectivity by a magnetic fiehj
tunneling is selectively enabled for right-moving eleasawith spin up. (c) At a certain value of voltage
V, tunneling becomes possible for left-moving spin-dowrcetns and right-moving spin-up electrons.
Note that parabolicity of electron bands is not essentiattueve coincidences and, hence, spin-polarized
currents. This figure is taken from cond-mat/0105066.
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Figure 2.12: AFM micrograph of a sampleu® x 5um) showing two point contacts. Light lines are the
oxide which separates different regions of a 2D hole gas.dGatance of the quantum point contacts is
controlled via voltages applied to the detector, injectwd the central gates. Semicircles show schemat-
ically the trajectories for two spin orientations. The rateccorresponds to the spin-split branch (see
fig. 2.3) with lower momenta. The image is taken from [50].

voltages (shifting of the energy band bottom) or small mégrieelds (momentum shifting). It
looks so, that switching between opposite spin polarizatie easily achieved.

The fact that due to the strong spin-orbit interaction theiglas at the Fermi energy have differ-
ent momenta for two possible spin states traveling in theesdimection (and, correspondingly,
different cyclotron orbits) is also utilized in [50]. In thaxperimental work, two point contacts
designed oiaAsand a narrow detector arranged in the magnetic focusing gegrre demon-
strated to work as a tunable spin filter (see fig. 2.12). Nbtg,the phenomenon is not restricted
to holes inGaAsbut is generic to any system with intrinsic spin-orbit irietions (e. g. InSb
[66]).

The investigation presented in this thesis also focusef@spin manipulation using intrinsic
spin-orbit interactions. We show in Chapter 4, that the gpageometry of ballistic 1D quantum
channels with Rashba spin-orbit coupling can change thialispin-polarization of the current
and serve as an effective spin-switch.

2.6 Introduction to the Tomonaga-Luttinger liquid

A Tomonaga-Luttinger liquid is the analytically solvabledel! for interacting fermions in one
dimension. The key point of this approach is the so-callesonization a technique for repre-
senting one-dimensional fermion fieldig (x), wheren is a species (e.g. spin or chirality) index,

28



@ o), O Fl2)y=13), © Fpflo,= b 1),

oV at F o = ~opns FT . — AU

Figure 2.13: (a) The vacuum stafﬁa>o; (b) the action of the Klein factdf on a(—2)-particle ground state

|—-2),, which yields|—3),; (c) the action of the Klein factoF " on the O-particle excited Staté |0)g =
iclco|0), (one boson is one particle-hole excitation), which yietdisl),. The wavy lines indicate the
Fermi level. These figures are taken from [67].

in terms of bosonic fieldgy, (x) through a relation of the form
Wn () = Fna’l/ze‘y(’(‘”‘%éb)e’i“h("). (2.46)

HerelL is the wire lengtha > 0 is an infinitesimal regularization parameters neededda-re
larize ultraviolet divergent momentum sums, ands the parameter determined by boundary
conditions for the fermion fieldgy, (x). The boundary condition leads to the quantization of the
fermionic momentunk in the form

21T 1
=2 (nk— éab) , (2.47)

wheren are integers. In the following, we choose (for definitenes®)-periodic boundary
conditionsyn(L/2) = —Wn(—L/2). Note, that that the specific choice of boundary condition
becomes unimportant in the continuum lirhit— co.

The operatoKIn counts the number af-electrons relative to the so-called vacuum state (or Fermi
sea)‘6>0 defined by such a way, that the highest filled Ieve.@)‘o is labelled byny = 0 and

the lowest empty level by = 1 (see fig. 2.13a). Finally, is a Klein factor which lowers the
number ofn-fermions by one (see fig. 2.13b).

The boson fieldg, (x) are defined via bosonic creation and annihilation operd{fﬁarandbqn

w00 = 3 (e + 0] 2, @49
o> q

whereq = 2"ng is thebosonicmomentum, which is, of course, also quantized as soon agiboun
ary conditions are imposed. In our model, bosonic creatmmheanihilation operators create and
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annihilate the particle-hole excitations in the Fermi sese(fig. 2.13c). The latter is defined as a
state that does not contain any particle-hole excitationthat

ban N>O:o, v oq.n. (2.49)

The particle-hole excitations subject to electron-etatinteractions are often called plasmons.

Tomonaga [68] was the first to identify boson-like behaviorartain elementary excitations in a
one-dimensional theory of interacting fermions. A precisénition of these bosonic excitations
in terms of bare fermions was given by Mattis and Lieb [69]ovibok the first step towards a
correct solution of a model of interacting one-dimensideahions earlier proposed by Luttinger
[70]. A bosonic representation of a fermion field at a singianp essentially of the formp,, (x =

0) ~ e '™ (=0 'was firstintroduced by Schotte and Schotte [71] to calematy edge transition
rates. The extension of their relation to arbitramyas discovered simultaneously by Mattis [72]
and by Luther and Peschel [73], which made the systematiulegion of general correlation
functions very simple. However, they did not discuss the peirtowering Klein factords,.
The first completely precise bosonization relation in thikdsstate literature (though from a
field-theoretical viewpoint) was given by Heidenreich [.7%he first explicit construction of the
Klein factorsk, in terms of bare fermionic operators was given by Haldang [¥bose detailed
discussion in [76] essentially completed the developmétitebosonization formalism.

Originally, the Tomonaga-Luttinger model was treated foinkess fermions. The inclusion of
spin still leads to an exactly solvable model [77, 78]. Thieon of that model shows, however,
drastic differences from the spinless case. It is commonb, that the spectral function is
generally broadened in any interacting system. Howevex,Farmi liquid (even if quasiparticle
spin is taken into account), the spectral function stilliekk a distinct single-electron-like peak,
making it possible to represent the system of interactiegtedns as a system of noninteracting
guasiparticles that carry the same quantum numbers asléeteoms. Such a quasiparticle peak
is absent in the spectral function of a spinfull Tomonagé#ihger liquid. Instead, a characteristic
double-peak structure appears. The existence of the twis peaose energy dispersions follow
those of the elementary charge and spin-density excigtian be interpreted as the dynamical
breakup of the electron into two independent entities igEng its spin and charge degrees of
freedom. This is the most striking feature of a Tomonagathger liquid.

All the abovementioned work relates to the simplest case HD anteracting electron system
without Zeeman splitting and spin-orbit coupling. The miestent publications proceed with
further generalizations of the Tomonaga-Luttinger modelliD wires taking into account Zee-
man [79, 80] and Rashba [56, 81, 82] effects. In particulaingeracting spinfull 1D electron
gas placed in the magnetic field may be described as a Tom«dnatyager model comprising
two components withlifferentFermi velocities due to the Zeeman splitting [80]. This dmst
the spin-charge separation mentioned above, and eventipgstich as the density-density cor-
relation involve the spins. In [79], the authors demonstthat the tunneling density of states in
a Tomonaga-Luttinger liquid is singular at energiag usB, where the effective Lande factgt

is renormalized by the interaction.

Let us focus on the paper by A. V. Moroz, K. V. Samokhin and CWA Barnes [81] (and its
extended version [82]) as closely related to the resultsgoried in Chapter 5 of this thesis. The
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Figure 2.14: Lowest and the first excited spin-split subkaofda quasi 1D quantum wire with strong
Rashba spin-orbit coupling. Here, the characteristic-spiit interaction energy?iZkéo/(Zm) is compa-
rable with interband spacing subject to confinement. Tleeefthe dispersion curves are deformed as
compared to the ones for “ideal” 1D systems (fig. 2.3). Thisrigs taken from [82].

authors studieduasione-dimensional wires with Rashba spin-orbit couplingsuch quasi-1D
systems (i. e. in the presence of a confining potential) testrerse single-particle wave func-
tions are not plane waves like (2.22). Since the exact analytolution of the corresponding
Schrodinger equation is rather difficult in this case, ydyation theory is usually applied. As
a result, along with the horizontal splitting of the spinfxhes, spin-orbit coupling leads to a
deformation of each branch of the single-particle disperselations (see fig. 2.14). The most
important feature of this deformation is that each branskddts vertical symmetry axis and the
electron Fermi velocities become different for differeiredtions of motion. In other words, a
breakdown of chiral symmetry occurs. Since this effect wasligted only recently [83, 56],
an experimental measurement of its strength is not availdl. Nevertheless, the mentioned
calculations indicate that the difference of the Fermi gles monotonically increases as the
spin-orbit coupling is enhanced, and in some quasi-1D samdigctor systems may reach 20%
[82]. Since the strength of the Rashba spin-orbit couplimdj e carrier concentration can be
changed independently, it appears possible to create ragbtrimteracting (i. e. with small car-
rier concentration) quasi-1D electron system whose sipglécle energy spectrum lacks chiral
symmetry as in fig. 2.14. In this case one faces the follomimglamental question: how does
such an interacting system respond to the asymmetry of tiggeselectron spectrum? The au-
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thors have solved analytically the problem and found thiefohg: First, the spin-charge sep-
aration of the traditional Tomonaga-Luttinger liquid isstteyed by the spin-orbit coupling in a
quasi-1D wire (cf. [80]). The independent bosonic spin amakge excitations of the Tomonaga-
Luttinger model are replaced by two independent bosoniethspin and charge excitations.
As the strength of the spin-orbit coupling increases, thecity of one of these excitations de-
creases to zero where it becomes predominantly a spin ga&nitaSecond, the single-particle
characteristics, such as the spectral function and thetgesfsstates, are essentially modified
and controlled by the strength of the spin-orbit couplingorbbver, varying the spin-orbit cou-
pling with the external electric field can be used to extraet inicroscopic parameters of the
guantum wires.

In this section, we presented the basic ideas of the bod@mnzachnique and gave a brief review
of pioneering and recent papers related to the topic of @ndpt We did not aim to describe
all the technical details of the Tomonaga-Luttinger modefa. Furthermore, the complete
textbook-like introduction and historical overview foretlibosonization technique partly cited
here can be found in the very instructive paper by Jan vont@eli Herbert Schoeller [67].

Nevertheless, in order to demonstrate our progress in gl ie shall often refer to the very
details of the conventional solution for Tomonaga-Luténgnodel. In the next section, we,
therefore, solve the model for the simplest case of spirgéssrons and derive the plasmon
density of states in such a system.

2.7 Density of states in the Tomonaga-Luttinger model

Over the years, the bosonization technique has becomeea patpular tool for treating strongly-
correlated electron systems in one dimension. The reass fwopularity is that some problems
which appear intractable when formulated in terms of femaiturn out to become easy, when
formulated in terms of boson fields. For example, the bosmepecesentation of the Hamilto-
nian describing interacting one-dimensional electrangughbiquadraticin the fermion field,

is quadraticin bosonic variables, and, therefore, the Hamiltonian cadibgonalized straight-
forwardly.

As an illustration, let us consider a quantum wire of freanigss left- and right-moving one-
dimensional electrons, labelled by the inditeandR respectively, with dispersiog(p) that is
bounded from below. We begin by linearizing the initial disgion relation close to the Fermi
points+pg (see fig. 2.15)

eL/r(K) = €(0) F hve (K+ k). (2.50)
Herek € [—kr, o) is the electron wave vector counted from the Fermi one, and
_ 0e(p)
op
is the Fermi velocity. Then the standard definition for thggatal fermion field is
om\ /2 e e .
Wphys(X) = (T) kuk (e ke Hhixg | + ket )XCK,R) , (2.51)
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g(p < 0) =&(k) g(p > 0) = €4(k)

;Tc:>|{lT

Figure 2.15: The dispersion relati@(p) of a 1D wire containing left- and right-moving electrons hwit
p < 0 andp > 0 respectively. This figure is taken from [67].

where
Ck.L/R = C(kike)- (2.52)

Note, however, that the natural definition of wave vectordrbQ) (wherek is bounded from
below) contradicts the definition (2.47) used in the bosatiin technique (wheree (—o, ©)).

To remedy this, we introduce (following Haldane [76] or voald & Schoeller [67]) additional
unphysical positron states at the bottom of the Fermi seasimply extend the range &

to be unbounded by takinge (—o,©), and define the corresponding energies in such a way
that they all lie belowe(p = 0) (see fig. 2.13). The inclusion of positron states in the singl
particle Hilbert space and the imposing of definite boundanyditions (in order to quantize
should be viewed merely as formal tricks that make the praldmenable to bosonization. Itis
important, that the introduction of those extra unphysstates does not change the low-energy
physics of the system, since by construction they requirg lagh energies* €¢) for their
excitation. (However, they would be excited if a perturbatsuch as an electric field or impurity
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potential were sufficiently strong. Therefore, strong perations cannot be dealt with using
bosonization.)

Now, we rewritelphys (Which is actually nophysicalany more, because the additional unphys-
ical states are included) in the form including positroriesta

Wohys(X) = € MY (x) + K- Xyg(x), (2.53)
where
o\ 12 @ y
lIJL/R(X) = (T) k_Z et XCkyL/R. (2.54)

Since the fieldsp, and g formally differ from each other only by the factor®, the only
change needed in the bosonization identity (2.46)ligrelative toy is to replacex by —x

WL /R= |:|_/Ra—1/2e4E 2 (N /r—35b) e 1ARM). (2.55)
where 1
@ /r(X) = Z()f( " by R+ VD! o ) e au2 (2.56)
Ng>

In order to study the electron-electron interactions in @-dmensional wire, we shall consider
the following Hamiltonian

H = Huin + Hint, (2.57)
where L2
Hian = v L//Z o W00 (15 J w0+ koo (<1 Jueto] . (258
L/2
= [ S (02 (9w (WL OOwR() +
)
+300 [W 0]+ [whoowmco] } ). (259)

The kinetic termHy;, assumes a linear dispersioa- hvek, whereadin; describes local (point-
like) electron-electron interactions, parameterized lxy dimensionless coupling strengtiys
andgy [67]. The interaction constanty andg, can be determined via the Fourier transform
of a given inter-electron potential [84], but in practiceyrare treated as adjustable parameters.
Note, that all products af’s in (2.58) and (2.59) are fermion normal ordered with respethe

vacuum stat#6> Using the bosonization identity (2.55) and the boundaryddmns forg_r
we arrive at the bosonlzed form B, andHint

n “? dx [0 x)1?

VE x [oQ,

i — T [ oS (2.60)
in= "5 VIR e 2| ox
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Hint = > L (94NE + g4N§+ 292N|_NR) +
e dx [ 0gL(x) dgr(x) 0oL (x)\2 [ 0g=(x)\?
F
T / ﬁ{zgz X X +g4[< ax ) +< ox )]} (2.61)

—L/2

Now, the tremendous advantage of the bosonic represamasiclearH is quadratic in bosonic
variables and can be rewritten in the conveniert2matrix form

L/2 2. (x)

_ Ve AX a0 0 dgr() 1+ @ L
=3 [ (o, a0 ) (2P & sty |- (262)

—L/2 X

The Hamiltonian (2.62) can be diagonalized straightfodiyausing a Bogoljubov transforma-
tion [85, 67] of theb, | r's or just introducing so-called dual fields [86, 87]

1
O(x) = 73 (OL(X) — (X)),
1
®(x) = 73 (QL(X) +@=(X)) - (2.63)
In the latter case we have fbt the following expression
hv ¥ dx 00(X) 2 0P (X) 2
H:TF // o (1+ 04+ 02) <—6x ) +(1+g4—92)< ™ )] (2.64)
—L/2

Finally, let us rescale the boson fieldi$x) and®(x) in a way which leads the Hamiltonian (2.62)
to the canonical, non-interacting-like form (2.60). It mportant, however, that the rescaling
procedure must preserve the duality of the boson fields. eftwe, the transformation from the
old boson fields to the new ones mustdmnformal[84]. In our particular case, the relations
between®(x),©(x)) and canonical fields read

Oual) = (2% ) Yo,

1+0a—0
1+ 3
O4—02
Pean(X) = [ ———— ) D(x), 2.65
) = (7222 ) o (2.6
and the Hamiltonian takes the form
w7 dx [ /a0 X)\? [ 0Dcan(X) )
_nd ua can can
H=7 2T[< ox )+< ox )]’ (2.66)
—L/2
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where the renormalized velocityreads

U=Ve/(1404)%2— 5. (2.67)

Here, we arrive at a very interesting point of this sectiore. Wave started from the rather compli-
cated Hamiltonian (2.57) and, after some manipulationsionbd the much simpler form (2.66)
which looks like the non-interacting one (2.60). The prdigsrof free bosons described by (2.60)
are, of course, very well known. Thus, the interacting casele easily described in terms of
free boson field§®can(X) , Ocan(X)) With a certain renormalized velocity. To illustrate the last
statement, we shall calculate something measurable, gathel density of states in the one-
dimension wire described by the Hamiltonian (2.57) or (2.€6he density of states for such a
simple system will be compared with the more complicate@ aagestigated in Chapter 5.)

The density of states in the case of interacting electron®ealerived via corresponding fermionic

Green’s functlonSSVLe/tR (x,1) [88]

pP%S(w) D / -G (x = 0,1), (2.68)

where hw is the excitation energy, and the Green’s functions are dhelators
1
GloR 06t = T { (T WL/ROCOW] (0.0)) i 10—

~(TYL RO 2(0,0)) it o) O(1): (2.69)

Heret is the Matsubara time, an@(t) is the Heaviside theta function of the real titneThe
fermionic correlators in (2.69) can be calculated via basones using the bosonization identity
(2.55). The following relation can be obtained straightfardly

<T LIJL/R<X7 T)LIJI/R(Q O)> =
= S ({1l 1) (0.0) — (0. 0)0] (0.0))). (2.70)

where signis simply the sign of.

The free bosonic correlation function for one-dimensianags of the length. has been derived,
for example, in [67]. The expression has the form

21, . .
<‘T Pean(X, T) DL (0, 0)> =—In {TH(SIQFI[VFT—HSIQFIE X+ a)} . (2.71)

Using (2.71) and the relations (2.65), (2.63) betweggpk and the canonical boson fields we
come to the following formula for thmteractingbosonic correlation functions

<,[ (H_/R(X,T)(pE/R(O, O)> =—vin [Z%T(sign[ ut +isign X+ a)} , (2.72)
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0 t

Figure 2.16: The contoZ for the integral ovet (2.76) in the density of states.

wherev is the interaction parameter relatedgoandg, as

1 1+04+02 1+oa—
=~ + : 2.73
2 (\/1+94—92 \/1+94+92 (2.73)
It is interesting to note, that the interactions betweentebas with opposite chiralities (param-
eterized bygy) play a significant role here. Indeed, g is zero, therv =1 (as if it was a

non-interacting case), though # 0. Note, however, that the velocityis renormalized (com-
pared tovr) in both casesg, =0, g4 # 0 andgo 4 # 0.

Substituting (2.72) into (2.70), we obtain the followingefid relation

signa’ 1
(sign ut +isign x+a)’

(7w ROW] £(0,0)) = (2.74)

Now we are ready to deri\ﬁfg(w). Using (2.74), (2.69) and (2.68) we get

v v-1 7 ,
pE;’RS(w):_}DG) 2 dt o {( L L ] (2.75)

2\ w ) 2 t—i0)V  (t+i0)V
The integral ovet can be rewritten as
rodt 1 1 Vi1 e?
—u - = dz——— 2.76
/ 2nh {(t—IO)V (t+|O)V} 2mh J Z(—z)V’ (2.76)

where the contout is depicted in fig. 2.16.

At this point, it is convenient to utilize the definition ofelif -function [89]. Then the density of
states reads

v—1
PPoS(w) = —anhu (%") sin(rv) [ (1—v). 2.77)
For the free-fermion casgy 4 = 0 we havev = 1, i. e. in this case we recover the standard
Fermi-liquid propert;pE/ORS = (2mhve )~ for any value ofw. However, for anyg, # 0 we have
v>1i e. pE/OS — 0 for w — 0. Thus, the interactions cause the density of states tsani
at the Fermi energy [67]. This property is one of the most suedar differences between a

Tomonaga-Luttinger liquid and a Fermi one.
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In view of the results given in Chapter 5, it is also importemémphasize here, that the density
of states is equal for both left- and right-moving electrofise index. /R in (2.77) is, therefore,
not really important. However, this is not the case as sodhespin-orbital effects are in play.
Then pEOS can not be equal thOS even forv = 1, and the solution of the Tomonaga-Luttinger
model becomes very non-trivial. The problem will be disedss Chapter 5 of this thesis.
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3 Spin-orbit Berry phase in a quantum
loop

In this Chapter, we find a manifestation of a spin-orbit Beptyase in the conductance of a
mesoscopic loop with Rashba spin-orbit coupling placednregternal magnetic field which is
perpendicular to the loop plane. The transmission probgbdt different radii and potential
profiles of the loop is calculated as a function of the extemagnetic field. In addition, the
non-adiabatic regime (at small loop radii) is investigated

3.1 Description of the system

As it was discussed in the introductory Chapter 2, the adi@Barry phase (as well as its non-
adiabatic generalization — the Aharonov-Anandan geomptrase) is a key aspect of electronic
transport in inhomogeneous magnetic fields. In spite of gelamriety of implementations, all
schemes mentioned in the review involve Aharonov-Bohnllasicins as a necessary component
for Berry phase investigations. In the present work, we fimgsaifestation of Berry’s phase in
the conductance oscillations that stem directly from therference between two spin states with
different dynamical phases, and the Aharonov-Bohm osicitia do not occur. We concentrate
on the theoretical investigation of the setup similar to, [36] (see the detailed description in
Chapter 2). There are, however, some important differences

First, the possibility for electrons to bypass the ring isuesed to be negligible in our system.
Therefore, the electron beam does not split while it entedgeaves the ring. Thus, we study
rathera quantum loogfig. 3.1) thana quantum ringconnected to the tangential lead [36, 35].
That is why, the Aharonov-Bohm effect does not occur here.

Second, we consider a modulation of the potential profildélbdop region by means of a gate
voltage applied to the structure. Although the fabricatidrsuch a setup may require rather
complicated design, the authors of [36, 35] let us know oirtla¢est development, where they
have managed to solve the technological problems and gatexkings have been fabricated.
And finally, our system is purely one-dimensional, whilestisinot the case in [36, 35]. However,
as long as a gate voltage can be applied, the upper bands easibedepopulated so that only
a single band is occupied. Therefore, the one-dimensiyradithe quantum loop is not a big
problem anymore.

In order to find the transmission probability through suclystesm we have to solve the corre-
sponding Schrodinger equation. To this end we divide tis¢esy in three parts: input channel,
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©B y

Vgate

Figure 3.1: Geometry of the system. The photo below illisgrahe important difference between the
guantum ring connected to a tangential lead [36, 35] and tlamtgm loop studied here. Our setup is a
kind of roller coaster for electrons: they do not collidets trossing point!
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(a) l00p . (b) loop
O<@<2m 0 O<@<2m  op
0 211 lead lead
lead lead %<0 V x>0
x<0 x>0

Figure 3.2: Two variants of the potential profile adoptedhia $olution. The bottom of the bands can be
lifted (a) or pulled down (b) in the loop region M.

the loop itself (which is actually the arc ofrdength in our case) and output channel. The
Hamiltonians describing the propagation of electrons @itiput/output channels read

"2 12 "

»—KZ+ € ok

Hwire: ( zm*—l)((XR z FL—ZRZEE )7 (31)
X 2me "X Z

whereas the propagation through the loop of railisgoverned by the Hamiltonian

Hioon — ( soCA_I2 +ez+V e (Gy—3) ) (3.2)
oop %e’ (Qq;-l-%) 806]42)—82+V
Hereky = —i 2 — ok G0 = —i% — % are momentum and angular momentum operators re-

spectively® = TiR?B;, is the magnetic fluxgpg is the flux quantumgg = 12/ (2m*R?) is the size
confinement energy with the effective electron massez = g*pgB;/2 is the Zeeman energy,
andV denotes the energy shift determined by the gate voltagéegiiol the loop (see fig. 3.2 for
the examples of the profile studied below).

We adopt the vector potentiAl to be tangential to the direction of the current. Thus, inltiop
we chooseA(x,y) = 2B, (xj —yi), or, in cylindrical coordinatesiy () = ®/2mR, whereas the
vector potential in the input and output channels is deteechby the continuity condition at the

junction point with the loop itself{= 0,y = —R); hence we havéy, = ®/21R.

We denote the wave functions for each par#s,,(¢) for the loop Wi (x) andWg,(x) for input
and output channels respectively. In order to find the wametfan describing the whole system,
we impose the boundary conditions that warrant the corfiraiithe wave function and its first

derivative at the boundaries between the loop and inpytichannels

Winleo+ Winlx=0 = Wigoplo=—1/2 + Wigoplo=—m/2:

qJF;op‘¢:3n/2 + LIJE)op|¢:3rr/2 = LIJo+ut|X=0 + LIJ(;ut‘x=07 (3.3)
DLPWX:O + 0¥ x=0 = DqJIJ(Sop‘CI):—T[/Z + DLPI?)op“b:—”/z’ .
OW 00plo=3m/2 + OWj00pl9=3m72 = IWaudx=0 + OWoux=0;
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The operator] is given by = %% in the loop region, and] = %( in the input and output
channels.

In the next section, we find the electron eigen states forabye, linput, output channels, and solve
the system of equations (3.3). The solution gives us thestngsion and reflection amplitudes
(and, as consequence, the transmission/reflection pildle)ifor each spin mode.

3.2 Solution of the problem

Let us start from the input channel. The Hamiltonian (3.1% &t SU(2) spin space. The corre-
sponding Schrodinger equation allows two solutions

io cosy*™ (e‘k+X+A+e*i"+X>

T (X) = e®R*
¥inlX) =€ —isiny* (ék+x—A+e‘ik+x> ’ G4
V- () — —isiny” (¢ X— AT kX 35
—(X) =€e% . . , :
n cosy™ <e|k X4y A-e ik x)
where
- €z €z 2
tanyi = _ﬁ +4/1+ <ﬁ> ) (36)

and “+” are the spin indices.

Since the main contribution to the current is given by thetetes at the Fermi level, we consider
the eigen states (3.4) and (3.5) at the fixed endgy Thus, the wave vectoils™ in (3.4) and
(3.5) are the Fermi ones, and they satisfy the dispersiatioak

2kt
Er = + 1/ 02kt 4 €2, (3.7)

This equation has two solutions with respectktéor each spin index. These two solutions
correspond to the Fermi wave vectors for electrons with sjgpeahirality. The absolute values

of the Fermi wave vectors with a given spin index for the laeftd right-moving electrons are

equal in the straight channels.

Each line in (3.4) and (3.5) consists of two parts: the incideave and the reflected one. The
coefficientsA* are the reflection amplitudes that have to be found imposiagoundary con-
ditions (3.3). For the output channel the reflection amgbitiare assumed to be zero, and the
corresponding spinors read

" (Kt + g2g)X
D" cosyte 0 ) , (3.8)

i(kt P
_iD*sinyte® TaR)

LIJ(J)rut<x) = (
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)
. —iD~ siny-e Teor)
Wou(X) = yi_(kf+&)x : (3.9)
D~ cosy e ®oR
HereD* are the transmission amplitudes.
The eigenfunctions of the Hamiltonian (3.2) are of the form
| o B"‘Cogj"‘ei(qg*%)q’ Ctco "‘e*i(%“ﬂ)q)
Wi () =e? osare’m Pt e SB S : (3.10)
P Bt sina*e(zt%®)® _CtsinBte(a —2)¢
_ i2¢ [ —B~sina—€R—2)¢ 4+ C-sinpei(z+a )
Wigop(9) =€@0® [ —5 ST B " T pre "2mL ), (3.11)
B~ cosa—€(zt%)¢ 4 C~cospe (A —2)¢
where
+ +\ 2
Eo0r — €z €z —&€o0R
tana®t = —R——= 4 \/1+ <7> : (3.12)
dr /R gz /R
+ +\ 2
&g, t+€z \/ <Sz—|—80q|_ )
tanB* = — -2 414+ | S ), (3.13)
o a/R o a/R

andq:,Lj.L are the Fermi angular momenta in the curved part of the waedhe found from the
conditions which explicitly include the height of the banV/

+ 2
€ o
Er :V+Zo+eoqﬁ§zi\/<q%) S so—ez)z, (3.14)
£ 2 gra)’ 2
Er :V+Z°+eoqf + (L?) +(qF eo+£2)°. (3.15)

It is interesting to note, that Fermi angular momenta foctetens with opposite chiralitie?qi't

and quE) are not equal to each other. This effect stems from thequéati geometry of the sys-
tem. Indeed, as soon as we assuiRe « the relations (3.14) and (3.15) both become equal to
(3.7), wherek,;t = kf Thus, the chiral asymmetry of Fermi angular momenta isrdisdly of
geometrical origin as the Berry phase itself.

The imposing of the boundary conditions (3.3) on the wavetions (3.4), (3.5), (3.8) — (3.11)
gives us a system of eight equations (7.1) — (7.8). (The engstan be found in Appendix A.)
That system definitely has an analytical solution with resp@A*, B*, C* andD*. However,
the formulae for the amplitudes are extremely cumbersorhereéfore, we do not adduce them
here.
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3.3 Current densities in 1D wires with spin-orbit coupling

At this point it is pertinent to turn to the current densityatdations. The conventional formula
for the current density flowing in a given modé¥(x) reads [90]

h

s [POORW? () + W (x)kP(¥)] (3.16)

j:

This formula is derived for a Hamiltonian of the fotth= p?/(2m*) +V (x), where the spin and
orbital degrees of freedom are separable. This is not theiogsresence of spin-orbit interac-
tions. In what follows, we derive the correct formula for therent density in one-dimensional
wires with Rashba coupling described by the Hamiltoniah)(3.

Let W(x) be a spinor with the elementig; (x) andW»(X) so, that

_( ¥1(¥)
W(x) = ( W (x) ) (3.17)
On one hand, we have the continuity equation for the current fl
0 5 -
a/dx\% = —/dXdIVj. (3.18)

On the other hand, we have the time-dependent Schrodiggatienis(dW/dt) = HW that gives
us the relation

%/dx\%z _ %/dx(wH*LP* _WrHY). (3.19)
The right-hand side of (3.19) can be rewritten explicitetyng (3.1)

i * k *

ne O\ 12k2 o -
(—LIJ1> —kIJj<2 XKIJ1>+LIJ1(|0(kkuJ2) — W (iakeWs) +

/dx

PO - 12k2 12Kk2
+¥, (—Idkxwl) -4 (—I(XkXLI-’l) + W, oy Y| —4¥ oy Y,

(3.20)

Note, that the Zeeman term vanishes in (3.20).
Using the equations (3.18) and (3.20) we can findl sivaightforwardly,

—divj =

y
2m- 1

ih (L0 2 aw*+ PP 20 oW
1ax2 RD, ' ox  LTox2 R®p ! ox

—Z "y,

Wy 2id oWy 0%W, 20 P W,
Y252 Y2052 TRon T2 ax
ox R ®g ox ox R ®g ox
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Then, the desired formula fpreads

h
2m*

+h <w10w2 Lpla;v _y, 2N +wzagpl) (3.21)

j= (WikiWs + WikeWy + Wok W5 + WikWy) —

ia . .
Using the general relation (3.22) one can easily find thetimgfiected and transmitted current
densities for our particular system. Note, that each ctiglensity is given as a sum of its two
spin componentg= j© + j~, and each component can be found using the following forsnula

jféz%[ “,,.[2* i (ZVi)], (3.23)
j;léﬂ = ——|Ai|2 {kii 72 S|n(2yi)} , (3.24)
o= —|Di|2 [kii sin(2y®) } (3.25)

Here, we have used the elementary trigonometric formulay?siosy™ = sin 2y*.

3.4 Results and discussion

Now, we have everything ready to study the propagation ofrttil states given by (3.4) and
(3.5) through the loop. We define the transmission prolslzb

T — Jout (3.26)
Jin
while the reflection one reads )
R— Jrefl (3.27)

Jin
The plots of the transmission probability as a function & éxternal magnetic field are shown
in fig. 3.3 (solid lines) for different radii of the loop. Thelditional dotted lines correspond
to the transmission probabilities through the wire of lénigt= 21R separated from the input
and output channels by barriers of the same height as theidasgparated from its leads. The
dependencies in fig. 3.3 exhibit the following characterifgatures.
First, the transmission probability oscillates as a fuorctf the external magnetic fiel,. The
oscillating factors appear in the transmission probabhibecause of the interference between
propagated states at the input and output of the loop. It Iskmewn, that the transmission
probability for the quantum particle propagating acrosggle rectangular potential barrier of
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Figure 3.3: Transmission probabilities for the loop of tedr (solid lines) and corresponding straight

wire of lengthL = 21R (dotted lines) versus external magnetic field. Each pameésponds to different

loop radii: (a)R= 10"%cm, (b))R=5-10"5cm, (c)R= 10"°cm, and (d)R=5-10"%cm. The barrier

heightV is taken equal to 185meV. The other parameters are taken relevant for laAs:2- 10~ tevVm,

m* = 0.033me, g* = —12,Er = 30meV.

lengthL contains the oscillating factor gilk), wherek is the wave vector of the particle [90].
Our case is a bit more complicated since we have two spihsmdes with different wave

vectors. Moreover, the absolute values of the Fermi angutanenta for the left- and right-

moving electrons with the same spin index differ from eadient Therefore, we have many
oscillating factors with different periods determineddy, o, dr, g, and their combinations.

These angular momenta depend on the external magnetic fid|dttzerefore, the oscillations
T(B;) occur. We emphasize, that the fundamental origin of thdlasons depicted in fig. 3.3 is

exactly the same as in the simple single-mode model [90]tHaravords, our system is a kind
of quantum interferometer with the characteristic lengtR.2

Second, there is a strong difference between transmissmbapilities for the loop and the
straight wire at certain intermediate values of the magrfetld (see fig. 3.3), while at higher
values and aB; = 0 both curves just coincide. This is a particular maniféstadf the Berry
phase that we explain in what follows. First of all note, tiiat Berry phase is always zero in the
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Figure 3.4: The geometrical phase as a function of the eattenagnetic field at different loop radii: (a)
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heightV is taken equal to zero, and other parameters are taken melfmralnAs: o = 2-10-tevm,
m* = 0.033m, g* = —12,EF = 30meV.

straight wire. In contrast to that simple case, an additiBeary phase dependent interference
factor sinpg occurs while an electron wave function propagates throhghdop. The Berry
phase (2.45) is negligible &4 = B, > Bj, and equal tatat B, = 0 (see fig. 3.4). Therefore,
the factor simpg does not show up in these cases. At certain intermediatevaliB, the dif-
ference between straight wire and loop geometry is essentigparticular, at certain special
values of the external magnetic field the Berry phase is dlosg2 and the difference between
transmission probabilities for the loop and the straighevis maximal. We find it necessary to
estimate such a magnetic field using the quasi-classiaaldiar (2.45) and assuming parameters
relevant for InAs:a = 2-10~eVm,g* = —12,k = 10°cm™L. Then, the Berry phase valug?2
corresponds t@, = |Bj,|/v/3 or, numerically~ 3T that is in good agreement with the plots.

The influence of the barrier height on the interference paiteshown in figs. 3.5— 3.8. First of
all, one can easily see, that the transmission probabditytfe loop can also exceed its charac-
teristic value for the straight wire. Most importantly, hewer, the critical value of the magnetic
fields (where the difference between transmission proibaiilfor the loop and straight wire is
maximal) is very sensitive to the barrier heightThis is explained in what follows.

It is obvious, that the potential profile changes the Fermimaota in the loop. Since the Berry
phase explicitly depends on the characteristic wave vexttire particle (2.45), we have a pos-
sibility to change the Berry phase by tuning the potentiafif@. In detail,B;, is proportional
to the wave vector of the particle, whereas the Fermi mommeiitu a given mode is larger for
a deeper potential profile (i. e. for smaller or even negafiyeThus, the critical value of the
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Figure 3.5: Transmission probabilities for the loop of tedR = 5-10~>cm (solid lines) and corresponding
straight wire of lengthL = 21R (dotted lines) versus external magnetic field. Each paneksponds
to different heights of the barrier: (a) V = 6.25meV, (b)V = 125meV, (c)V = 18.75meV, and (d)
V = 25meV. The other parameters are the same as for fig. 3.3

external magnetic fiel8, = By, /+/3 (which corresponds tps = 11/2) is shifted to higher values
when the electron bands are pulled down\hy Moreover, at certain negative values\bfthe
Fermi wave vectors are so large, that the critical vaiye By, /+/3 exceeds 10T, and, therefore,
the point, where Berry’s phase vanishBg £ Bj,) leaves the reasonable range of magnetic fields
depicted in fig. 3.7. Note, that this effect becomes even mooaounced in the non-adiabatic

case (see fig. 3.8).

At the end of the discussion, let us make some important cartsom the role of the loop radius
in the effect studied. Indeed, the further questions arieenmve compare the plots in figs.
3.3a,b,dand 3.3d, 3.5 and 3.6, 3.7 and 3.8. Itis clearly,skatthe maximum of the difference
between transmission probabilities of the loop and a ditaigre is shifted to higher magnetic
fields. However, the Berry phase does not depend on the rafltigvature. Nevertheless, we
can explain the effect if we remember, that the formula (R(dBd the Berry concept as well) is
valid only for the adiabatic motion. The latter means, that'R/%? must be lager than one, so
that the electron spin precesses a few times while it is ngpthrough the loop. This is not the
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Figure 3.6: Transmission probabilities for the loop radiis- 5- 10 5cm in the non-adiabatic regime

(solid lines), and corresponding straight wire of length: 2rR (dotted lines) versus external magnetic

field. Each panel corresponds to different heights of thedrav: (a)V = 6.25meV, (b)V = 125meV,
(c)V =1875meV, and (dY = 25meV. The other parameters are the same as for fig. 3.3.

case depicted in figs. 3.3d, 3.6, 3.8, whare*R/%:? ~ 0.5 and the spin evolution is definitely
not adiabatic.

Note, that our general approach is valid for both adiabatdt reon-adiabatic cases, because we
use a direct solution of the Schrodinger equation. Theeefwe are able to see the Aharonov-
Anandan geometric phase [17] effects in figs. 3.3d, 3.6, Blis kind of geometrical phase is
the non-adiabatic generalization of Berry’s, and in ouedaseads

Qop = T[LF (0 — )] - (3.28)
(Here, the index “top” means “topological”.)

In the introduction given in Chapter 2, we have learnt, tlna finite curvature of the one-
dimensional wire with spin-orbit interactions increaske spin-splitting between dispersion
curves along the momentum axis (recall fig. 2.4). We beligvat, this is true in the presence
of an external magnetic field as well. If the index™ corresponds to the upper mode, then
the differenceq,” — g5 decreases, wheregs — dy increases as long as the spin-splitting be-
comes larger (for smaller radiuses of curvature). Thusgdmmetric phase is radius dependent

49



[y

[y

(a) (b)
0.999
> 2 0.995
S 0998+ 3
3 8 0.99 F
© 0997+ [ '
o o
c c
S 0.996 S  0.985f
(2] 2]
8 )
£ 0.995 | IS
% % 0.98 -
= 0.994 + = oo
975+
0.993
0.992 L L L L L L L L L 0‘97 L L L L L L L L L
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Magnetic Field (T) Magnetic Field (T)
(c) - (d) -
0.99 -
> 0.99 2
3 S 098f..
3 0.98 8
<] ' S 097+
o o
c c
S 097+ S 0.96
(2] 2]
i) B
IS € 095}
% 0.96 %
= oo = 0.94f
.95
. . 0.93
0.94 L L L o L L b L o 0.92 L L L L L L n L L
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Magnetic Field (T) Magnetic Field (T)

Figure 3.7: Transmission probabilities for the loop of texk = 5- 10-°cm in the adiabatic regime (solid
lines) and corresponding straight wire of lengtk: 2mR (dotted lines) versus external magnetic field. The
parameters are the same as for fig. 3.5, but the height of thietbia taken negative: (&) = —6.25meV,
(b)V = —-125meV, (c)V = —1875meV, and (dY = —25meV.

in the non-adiabatic regime/ (2m*aR) > 1. Of course, the expression (3.28) and its adiabatic
analogue (2.45) give close results in the appropriate reggee fig. 3.4).

In conclusion of this section, we have studied quantum parisn a mesoscopic loop with
Rashba coupling and Zeeman splitting. Here, we have fouaictkile Berry phase gives a well
pronounced interference effect in form of a deviation of tt@smission probability from its
value for the straight wire of the same lendgith- 21R at some specific external magnetic fields.
Moreover, we have investigated our system in the non-atiategime and found, that the char-
acteristic magnetic fields, which provide the strong déemtare shifted to higher values. And

finally, these specific values of the magnetic field are vengisige to the potential profile in the
loop.
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to very high values.
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4 Spin manipulation by means of curved
one-dimensional wires

In this Chapter, we describe a semiconductor structure taat rotate and switch the electron
spin without using ferromagnetic contacts, tunneling g, external radiation etc. The struc-
ture consists of a strongly curved one-dimensional badlsire with intrinsic spin-orbit inter-
actions of Rashba type. Our calculations and analyticahfolae show that the proposed device
can redistribute the current densities between the two-split modes without backscattering
and, thus, serve as a reflectionless and high-speed spiarexitUsing parameters relevant for
InAs we investigate the projection of current density smlapzation on the spin-quantization
axis as a function of the Rashba constant, external magfieli; and radius of the wire’s cur-
vature.

4.1 The basic idea

In the introductory Chapter 2 we have discussed some of lpesspin-filtering devices. The
second necessary component of the desired spin field effestistor is the spin-rotator (or spin-
switch).
The schematic of the “conventional” spin-rotator based o Rashba effect is depicted in
fig. 4.1a. The straight quantum wire (or just a two-dimenaiatripe) is divided into three
regions. In the middle region of length the spin-orbit interactions are finite, whereas in the
input and output channels the spin-orbit coupling is setto zIn other words, the semiconduc-
tor region in which the Rashba effect occurs does not extaiodie spin source and drain [91].
The angle of the spin rotation depends explicitely on thgtlerf the stripe between the input
and output contacts, namely oo

m oL
AS = 5z
wherem* is the effective electron mass,is the Rashba constant. The spin-switching speed of
this device (i. e. the minimal time necessary to rotate the fgp the angle ofAS = 1) has been
estimated in the Introduction. It reaches the value .@ffis for InAs in the ballistic transport
regime.
In spite of impressive advantages, the “conventional” sehévolves propagation of electrons
across borders separating the media with different sgat-ooupling strength. A reflection on
the border is thus a necessary complement that diminisiee®thl current through the device
and even might compromise the feasibility of the proposathis Chapter, we propose a scheme

(4.1)
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of areflectionlesspin-rotator made of material with Rashba spin-orbit iat&pn such as InAs.
We consider @urvedwire consisting of a semicircle with radit&attached to the infinite straight
one-dimensional channels, as shown in fig. 4.1b. The charamelmade of theamematerial
as the semicircle itself, thus, the electron backscatiesmegligible. Moreover, because of
the specific geometry of the system, the speed of responsevesmexceed the one for the
“conventional” spin-rotator discussed above. The devigelaced in a perpendicular magnetic
field B, which can be used to control the spin-rotation (in additttmne Rashba constant tuned by
the external electric field). Curved one-dimensional quan¢channels in InAs [92] are expected
to be used for the experimental check of the present propoBa¢ spin polarized electrons
necessary for such experiments can be generated diredthAsby circularly polarized light
[49, 61]. Note, that the recombination of spin polarizedrged carriers results in the emission
of circularly polarized light. It is possible, therefore, use optical methods for the detection of
the electron spin-polarization as well.

On the face of it, the device depicted in fig. 4.1b is similathte one investigated by Bulgakov
and Sadreev [93]. However, there is an essential differem@pproaches used here and in
[93]. In that work, the authors assuragriory an adiabatic regime: the radius of the curvature
is so large that the electrons do not feel the junction betvike curved part of the wire and
input/output channels. In contrast, we start from the vesgegal solution of Schrodinger’s
equation for thevholesystem (i. e. input channel — semi-circle — output channad) fend that
though the electron backscattering is still negligible, tedistribution between current densities
with opposite spin indices can occur at certain compargtismall radii of curvature (that is
forwardscattering in some sense).

Before we proceed the description of our model, it is neagggsamention the reference [94],
where the geometrically induced potentials have beeniigatsed in curved mesoscopic systems.
In particular, flexing the quantum wire leads to a potentidhe form

h2
Ug=———= 4.2

97 8mrR2’ (4.2)
whereR is the radius of curvature at the point of the wire’s bend. Weleasize, that our
approach includes the change of the geometrical potentiah@atically. However, the effect of
Ug on the electron motion is negligible in real systems [92]Wadl as in our model) since the
geometrical potential is much smaller than the Fermi en€uyyEr < 1073 for curved InAs
wires [35, 36, 92]).
In order to describe the degree of the current density mialiston between modes with opposite
spin indices we introduce the following quantity

oIt
A

(4.3)

wherej* denote the current densities with a given spin orientatiod, 4" are the spin indices.
Note, that the usual definition for the spin polarizationalves densitiesof particles with op-
posite spin orientation. However, definition (4.3) withirrent densitiess more relevant for the
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Figure 4.1: (a) Schematic of the “conventional” spin-rotatn the central region of the wire the spin-orbit
interaction is finite, whereas in the input and output chéntie Rashba effect vanishes. (b) Schematic of
the reflectionless and high-speed spin-rotator. The quamtiie is made of just one material so, that the
Rashba constant in the curved part is the same as in the ingutuaput channels.

transport measurements. It seems essential to emphaatzabehquantityP is controllable ex-
perimentally since the curren}$ andj~ can be generated and detected independently by means
of absorption of two circularly polarized light beams withpmsite helicity [49, 61].

If one prefers to controP by means of magnetized contacts then the situation is a hie mo
complicated. Indeed, the quanti®/has the meaning of projection of the current density spin-
polarization on the spin-quantization axis. The orientabf the spin-quantization axis is deter-
mined by the relation between the external magnetic ietohd in-plane Zeeman-like magnetic
field Bj, generated by the Rashba spin-orbit interactions

~ 20kg
g8’
Hereky is the characteristic Fermi wave vector, whergaandpg are the g-factor and the Bohr

(4.4)

in
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Figure 4.2: Spin dynamics in a slightly curved wire with spmit coupling. The electron spin follows
adiabatically the electron trajectory, and the angle beitbe direction of the motion and the spin does
not change.

magneton respectively. The field,Bs orthogonal to the direction of the electron motion, there
fore the spin-quantization axis lies in thieplane (for the input and output channels). The angle
Yo between the axis and the spin-quantization can be estimated from thplsitigonometric
formula

Bin

tanyp = —. (4.5)

B
If the external magnetic fieldB| = B, is much larger than the in-plane one, then the spin-
guantization axis coincides with ttmaxis. In contrast, if the external magnetic field is absent
then the spin-quantization axis is orthogonal to the dioeadf the electron motion at each point
of its trajectory. In the following, we call the quantiB/defined by (4.3) just spin-polarization.

The basic idea of the device depicted in fig. 4.1b can be exgiieas follows. The spin dynamics
in a media with spin-orbit interactions depends essewtallthe form of electron trajectory. If
the trajectory changes adiabatically (i. e. the radius efwire is quite large), then the angle be-
tween the direction of the motion and the spin remains comgtaeach point of a trajectory as it
is shown in fig. 4.2. However, the electron spin in laboratmgrdinates changes its orientation.
In contrast, if 100% spin-polarized electron beam is refié@dtty an infinite barrier (as it is shown
in fig. 4.3), then the angle between the direction of the nmogied the spin changes. This regime
is strongly non-adiabatic. Here, the electron spin doeshahge, however, its orientation in
laboratory coordinates.

The transition between these two (adiabatic and non-ati@lvagimes can give us some addi-
tional possibilities for spin manipulation in semiconducstructures. Both of these regimes can
be realized in the proposed device depicted in fig. 4.1b. dddg we assume the radius of the
curved partin fig. 4.1b to be zero, then we arrive at the ongedsional wire with an infinite bar-
rier and the regime is non-adiabatic. In contrast, if theusdf the curved part is large enough,
then we have the adiabatic regime depicted in fig. 4.2. Tmsitian between these two regimes
will be studied in this Chapter.

In the next sections, we study the output polarization ddfing(4.3) in two different cases. First,
we assume, that the electrons in the input wire are in thgnia'resi;tateﬁﬁ andW¥, given by (3.4)
and (3.5) respectively. Then, we study the current densifystribution between+" and “—”
modes at different parameters of the system: external ntiagiredd and radius of curvature.
Moreover, we show, that the initial phase difference betv\!téﬁ andW¥; plays a significant role

for the output polarization. We call such a setup “spin iatat
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Figure 4.3: The reflection of left-hand spin-polarized &fams (i. e. the angle between the direction of the
motion and the spin is-90°) from an infinite barrier in a media with spin-orbit interacts. The electrons
do not have enough time to change the direction of their sphite the direction of motion is changed.
Therefore, the left-hand polarization is changed to riggatid one (i. e. the angle between the direction of
the motion and the spin become®(°). This figure is expected to give an intuitive explanatiorwbiat
happens in fig. 4.1 if the radius of the curved part is infigitghall.

The second case corresponds to the setup that we call a Ygipain’s The electrons in the input
wire are assumed to be only in the eigen st#fe i. e. the electron beam is 100% spin-polarized.
Then, we demonstrate the possibility to switch the spinnma#ion P to its opposite value by
means of the device depicted in fig. 4.1b.

4.2 Curved 1D wire as a spin rotator

First, we calculate single particle spin-split states Ffa $ystem shown in fig. 4.1b. To this end
we use the same approach as in the previous Chapter. Agadiyide the wire into three parts:
the input channel, the semi-circle (curved part of the quantire) and the output channel. We
use cartesian coordinates to describe the input and outpuanels (the regior < 0 in fig. 4.1b)
and the polar coordinates for the description of the curved pf the wire (the semi-circle).
The Hamiltonians describing the propagation of electronthée input/output wires are exactly
the same as in the Chapter 3, whereas the propagation thtbagturved part of the wire is
governed by the Hamiltonian

([ w@re act(@GobR
Hioop = ( o gt (6o + %) /R 50@42) &y : (4.6)

In contrast to (3.2), there is no additional barrier at thigaece into the curved part. This is the
most important difference between the setup depicted id fidh and the system discussed in the
Chapter 3.
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Similar to the previous Chapter, the vector poterfiad assumed to be tangential to the direction
of the current:Ay(¢) = ®/2nR in the curved part andy = ®/21R in the leads so, that the
continuity conditions at the junction poirts= 0,y = £R are preserved.

We keep the notations introduced in the previous Chapteth‘erwave functions in the in-
put/output channels and curved part of the wHE: (x), W5 (X) andWloop(¢) respectively. The
following boundary conditions warrant the continuity oétivave function and its first derivative
on the boundaries between the three parts of the system

qut] (X) ‘X:O + LIJ|;<X) |X—0 = qutop( )‘(b —T11/2 + LIJIZ)Qp( )|¢=fT[/27
‘“fgop(@ |¢:T[/2 + LIJl?)op( o= 2= Waut(X) [x=0 + Wout(X) [x=olx=o,
OWin (9 x=0+ 0% (X) =0 = DWi505(9) lg——ry2+ DWi0p(9) lg——ry/2;
OWi50p(®)lo=ry2 + D%i00p(®) lp—ry2 = OWgue(X) lx=0 + DWou(X) Ix=0-

(4.7)

The solution of Schrodinger’'s equations for HamiltonigBsl), (4.6) gives the desired wave
functions for the input, output and curved parts of the systEor the input channel we have a
similar solution as for the loop-like structure studiedlre tChapter 3. However, in contrast to
(3.4), (3.5), the initial phase&" of the incident waves are included explicitly for each mode

N o cosy™ (ei9++ik+x+A+efik+x>
LIJin( ) €70 —isiny+ <ei9++ik+x A+ _ikFx ) ) (48)
o _isiny— ei9’+ik’X_Afefik*x
W (x) = e%R <.e N ) 4.9)
Cosy— <é +I X+A e | X)

For the output channel the eigen functions read

D+ cosy*te (K Toor)x
Wau(x) = ( o4 - o ; (4.10)

iD+siny+e ™ oor )

i(K™+gor)X
_ ID”siny"e a0
Wout(X) = ( o cosre(k RN ) : (4.112)

Here, in contrast to (3.8) and (3.9), the signydfis changed since the electron motion changes
its direction to the opposite one. It is useful to write dowa Fermi momenta explicitely in the
form

2 2 202 204 14
ki:\/ﬁ\/h Er +m*a i\/Zm*E,:h a2+ m2a4+h EZ

" (4.12)
In the case of zero magnetic fielek (= 0), the expression (4.12) reduces to
k=M 2k, (4.13)
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whereko = \/ (o /2)? 4 207 E: /1.
The eigenfunctions of the Hamiltonian (4.6) have the samm fas for the loop described in the
previous Chapter

B B+ cosate(@—2)¢ 1 CtcosBte1(3+a)¢
wl00p<¢):el%¢ +aingtd (3T _ ot SE ) (4.14)
B* sinate(zt)® — Ctsinpte (@ -
. ® 4 B~ sina e'qR )0 1 Csinp-e (3 +a )¢
¥ =e® 4.1
Ioop(¢> e (B cosa—é 5+0R % 4 C- cosp—e —i(o.—3)0 (4.15)

However, the Fermi angular momenta in the curved part of jfstequvL do not contain the
barrier heigh¥. They can be found from the conditions

£ 2 gga\’ 2

Er :Z+soq§ + (—F;{ ) + (gz €0 —€2)", (4.16)
£ 2 gra)’ 2

Er :Z+soqf + (L?) + (0 e0+€2)°. (4.17)

If the Zeeman effect is negligible, then the equations (4dl®w an analytical solution with

respect tajg,
ok h2 2
fR=F0 41 . 4.1
0 /R=F |1+ | g | THo (4.18)

Note, that the chirality index is omitted in (4.18), sirge= .

Imposing the boundary conditions (4.7) on the wave fundti¢gh8) — (4.11), (4.14) — (4.15)
we get a system of eight equations (7.9) — (7.16) given in AgpeA. If one has a solution of
that system with respect #&*, B*, C*, D*, then using the formulae (3.23), (3.24) and (3.25)
given in Chapter 3 one can easily find the input, reflected artgud current densities. The
general solution obtained blathematica 5.Ghows, that the transmission probability defined
asT = (jgu+ jouw)/(Jih + i) is equal to 1, and the reflection oRe= (j tq+ jran)/ (i + i)

is zero. This means that there is no particle backscatteHuogvever, there is a current density
redistribution betweefy,,; and j,;, Which leads to some interesting effects.

To show that, let us find the analytical solution of equatiGh8) — (7.16) in two limiting cases.
First, we assume zero external magnetic field=€ 0, ® = 0) and a deeply adiabatic regime for
the spin precessiol?/(2m‘Ra) < 1. In this case, one can adogt= a* = * = /4, and the
equations (7.9) — (7.16) take the much simpler form

(€% +AT) i (d7 —A7) =

_ ei1't/4 (B+efinq§/2+c+ei ng /2 _ Bfefinq,;/Z_f_Cfei th[/z) : (4.19)
GEYSEICEE
T4 <B—e—inq§/2+c—einq[/2+8+ e iMOR/2 _ ot /2) (4.20)
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IT[/4 <B+elan/2+C+ |thL/2 B—einq§/2+c—e—inq[/2) _ D++iD7, (4_21)

g1 (B—é“qﬁ/2+c—e—‘"qf/2+B+ei"qﬁ/z—c+e—‘"qﬁ/2) —D +iD", (4.22)
(a8 ) i (w0 o ac) € [ (LY ingi2
k(é A) ik (e' +A)—R B (dr—5)e'™*

—C* ( ) dmi/2_p- (qR - %) e R/2_C~ <% +qL> é”qL/Z} , (4.23)

_ g —iT/4
k(9 A7) —ikt (&% +At) =2 {B <1+q ) e iMGR /2,

R
+C™ (5 —q[) e /24 B* ( ) e 'MR/2_Ct (% —qt) é”“f/z} , (4.24)

%ein/4 [B* <q$ _ %) TR /2 _ ( ) —img./2_

-B” (qR_%)émR/Z—C ( +Q) '”qt/z} DYkt +iD k-, (4.25)
%ein/4 {B <%+qR)eian/2+C (%_qL) e—inq[/2+
+B7* (%Hﬁ) gni/2_C* @ —qf) eiﬂqt/Z} =D k +iD"k". (4.26)

Note, thatk* = g&/R = ¢ /R as long agh?/(2m*Ra) < 1, as it follows from the relations
(4.13), (4.18) or from the plots in fig. 2.4. Therefore, théugon of (4.19) — (4.26) is rather
trivial

AT —0. A =0 Bt=dbt-imating/2 g- _ J0 +im/4tingg/2

Ct=0, C =0, D" =i eie++inq§, D™ —igf +mnk:

(4.27)
and, thus|A*|? = |A~|>=0,|D*|?> = D~ |? = 1. Then, the current densities read
it h + i+ .
o= <k £ ) =0 (4.28)
and the output polarization is
Pout = " — K+ 20w /2 (4.29)

kt+k-

Recall, thak™ — k™ = 20(m*/h2 atB, = 0. Thus,Pyt = 0 for anya.

In contrast to that, if we assume a strongly non-adiabagjome for the spin precession so, that
h?/(2m*Ra) > 1, then at zero external magnetic field we still hg¥e= 11/4, buta™ = 11/2 and
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B* = 0. In this case, the system of equations (7.9) — (7.16) tdlesform

L (@ )L (& a) e (crem i pe ) 430

2
\% (eie’ +A—) - I_fz (eie+ —A+) — g i/ (c—é"qf/2+B+e—i"q$/2), (4.31)
e 14 (Cre /2 Bd R /2) = }ZDHFTZD (4.32)
é"/“(ce‘"qL/2+B+é“q$/2)_\ifD +— f (4.33)
i + (407 A+ D 0~
75K (e' A) Sk (é +A)
_ e'|r_;/4 [—C+ (% ) gmal/2 _ < ) —|Tqu/2] (4.34)
\%k‘ (eie’ —A—) k+ (ée* +A+) (4.35)
G e ], e
1 . 1 Ry _ B L
_ \ifzm k*+% D k-, (4.37)
1l (1 1 -
ﬁe|Tr/4 {C (__q ) e i /2 gt <§+Q$)e'ﬁqR/2} _
\1f2D k™ Jrﬁmk+ (4.38)

The approximate solution (assuming tlgit = +1/2R+ kg, kt = ko, i. e. the characteristic
spin-orbit interaction energy is much smaller than the Femme) reads

At =0, A =0,

1 O T T o R 1 g+ in 1
Br= (ée _id® )eT(?”‘R) - (ée _id® ) e?(®-2)

V2 ’ V2 ’
Ct=0, C =0,

0~ | ;i A0T i~ ;40T
D+ — %m—;) n %eﬁt(%%),

| |
jo+ 0 | i 6T

D — %é m(g%+3) _ %éﬂ(%%),

(4.39)

Thus,|D*[2 = 1+ cos(6" — 67 )sin[m (gg —q%)], and the spin components of the output cur-
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rent density read
. h N _
= _ko{licos(9+—9 )sin[mt(gg —ag)] }- (4.40)

The spin components of the reflection current denggyare still equal to zero. ThuR= 0 and
T = 1, whereas the output polarization reads

Pour = cos(8" —67) sin[m (dg — g )] (4.41)

The relation (4.41) shows, that in strongly curved one-disi@nal wires a current density re-
distribution between two spin-split modes is achievablee flesults of numerical calculations at
0+ = 0 are summarized in figs. 4.4, 4.5. The dependeRgeR) andP,(B;) are given by solid
curves. The dotted lines correspond to the factor (4.418.Sktong correlation between the spin
polarization and the interference factor is clearly visilllevertheless, a few words of comment
are necessary here.

First, the polarization is not zero B = 0. One can see it from the figs. 4.4, 4.5 or directly from
(4.41). Second, a plot d%,; as a function oB; or R yields an oscillating curve. The oscilla-
tions have a natural explanation if one follows the evolutd the wave function as a particle
propagates through the wire. Namely, after the passagaeghre curved part of the wire, the
component of the input wave functi®¥), propagates as a linear combination of the mdd%g,p

and Wioop with the wave vectors, andgy respectively [see the approximate solution (4.39)].

The same is true for the propagation of the stdfe Due to the interference between two propa-
gating states at the output of the curved part, a facto[rrsﬁqg — q;g)} appears in the output spin
polarization, which shows up as the oscillation®ig:(B) andPyyi(R). Note, that in contrast to
the system discussed in Chapter 3 there is no barrier hedetharinterference factor does not
appear in the transmission probability(which is equal to 1) but in the spin-polarizatibn

Now we must say a few words about the influence of the initialgghdifferenc&6 =6-— 0" on

the abovementioned effect. In general, the electron stattbe reservoirs are not coherent and,
therefore, the output current densitigs, have to be averaged over the distribution of random
initial phased™. In order to model the degree of decoherence we use rectargjstributions

of width w, 0 < 8% < w for 8* (see fig. 4.6). The results are summarized in figs. 4.7, 4.& On
can easily see, that an initial decoherence hampers thazatian. A tiny polarization at strong
magnetic fields for the completely decoherent case is dugetdéeman effect only.

Finally, we find it necessary to focus on the distinct feagwrour system that lead to the effects
shown above. Let us first prove that the curvature of the emerksional wire itself does not
lead to the current density redistribution between two spiles. To do that, we need to modify
the definition of current density (3.22) for the case of the-spmmetric Hamiltonian (4.6). The
equation (3.20) has to be rewritten as

ii; / do (wH,;opw* - w*H|OOpL|J) - %R / do [wl (eok?p%)* g (eokgwl) +

+Wq (%e_iq)&q)‘#'z) T Wi <%e_i¢&¢q*'2> +4¥; (So%WZ)* -5 <80R$W2> +
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Figure 4.4: Polarization (solid line) versus radius of teenscircle atB, = 0. The interference factor
sin[m(gg — g&)] is depicted by the dashed line. The initial pha8ésboth are equal to zer®, = 0,
and the other parameters are taken relevant for liAs:2- 10~ eVm, m* = 0.033me, g* = —12,Ef =
30meV.

W, (%é%qﬁ) Ty (%é’%wl) — W e WY, (4.42)

Note, that in contrast to (3.20) the additional%-dependent terms occur. The formula for
current densities in a curved wire is, therefore, more carafgd than the previous one for the
straight channel (3.22). Using the continuity equatiod83.we arrive (after some algebra) at
the following relation foj

 Reg /- X X X
= 2 (Wakg Wi + Wik + Walg wh + Wik W2 ) +
+% (VW36 — Wigoe i0). (4.43)

Now, let us apply formula (4.43) to the spinors (4.14) and®#which describe the spin-split
states in the curved part of the wire. Straightforward dakions lead to the following formula
for right-moving current densities

- h[gg  mha/_ 2
J|00p:|B | o [ERi 2 <S|n2u ~ SRamr cos )} (4.44)

Equation (4.44) is still not very clear since it contains #eeman effect which can lead to a
tiny polarization and, therefore, diminish the obviousnekthe picture. Thus, we set =0

62



10—
08
06}
0.4}
0.2}

ok
-0.2 [
04}
-0.6 [
08

-1 L L -A‘u:": L \ L A L L -1 L L L RO L LS L
o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Magnetic Field (T) Magnetic Field (T)

(d) oa

—~
£
~
O
~
i

Polarization (solid line)
Polarization (solid line)

~—~
O
~
[

0.8
0.6 r

Polarization (solid line)
Polarization (solid line)

04|
-0.6

-0.8 | | | | | | | | | K3 -1 L] | | | | |
0 1 2 3 4 5 6 4 5 6 7 8 9 10
Magnetic Field (T) Magnetic Field (T)

~
®
©
)
o
-
N
w

Figure 4.5: Polarization (solid lines) and interferenaﬂdasin[n(qg — qg)] (dashed lines) versus exter-
nal magnetic field at different radii of the semi-circle: R 10-*cm, (b)R=5-10"°cm, (c)R= 10"°cm,
(d) R=5-10"%cm. The input current is spin-unpolarized. The initial pF=&" both are equal to zero,
and the other parameters are taken relevant for Inés= 2-10~eVm, m* = 0.033n, g* = —12,
Er = 30meV.

/

N

0 0

Figure 4.6: The rectangular distribution f&t used for decoherence simulations.
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Figure 4.7: Total polarization vs. magnetic field for diéfat distribution widthw = max{6*} that cor-
responds to the different degree of decoherence. Curvev(A)2rt (completely decoherent states), (B)
w=T (C)w=T/2, (D) w= 0 (completely coherent states). The radius of the semlecisctaken as

5.10°% cm, the other parameters are the same as for previous figures.
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Figure 4.8: Total polarization vs. magnetic field for diéfat distribution widthw = max{6*}. The radius
of the semi-circle is taken ten times smaller {®>cm) than for the previous figure. Curve ()= 0
(completely coherent states), (&)= 1/2, (C)w = 11, (D) W = 21t (cCompletely decoherent states).
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and study the interplay of spin-orbit coupling and non-zemnvature without additional Zeeman
spin-splitting. As soon asz = 0, we have immediately from (3.12)

20m‘R
tant =tan” = - (4.45)
Then, using the general trigonometric relation
. . b
asina +bcosa = /a2 + b?sin (0( + arctga> , (4.46)

(wherea > 0) we arrive at the next formula fq'fgop forB,=0

] i q:I: mta A2 2 .
Jlioop:|Bi‘2ﬁ ﬁRi 72 \/1+ (2m*ch) sin[2a™ +arctg(cot20)] 5. (4.47)

Notice, it is easy to check that §Ra* + arctg(cot2n)] = 1. Now, adopting the relations (4.18)
for g, we get

. hko
fioop = |Bi|2W’ (4.48)

and
B2 B |2

Hoop — W. (4.49)

Note, thatPoop depends only on the transmission amplituBés i. e. on the properties of the
junction between the regions with different curvature. Lefind|B*|? explicitely from (4.39).
Straightforward calculations lead B*|? = 1+ sin(6" —87) and the polarization reads

Poop =sin(87—67). (4.50)

As one can see from this formula, the current density pa#on in the curved part of the
system depends only on the phase difference of the iniaést Thus, these initial states must
be specially prepared in order to observe the factor (4b@)e polarization measurements. If
the phase differenc@™ — 0~ is not fixed in the electron beam (or just equal to zero), then t
observed polarization is zero.

We would like to emphasize, that the current density reihistion between the two spin-split
modes in the curved part of the wire does not stem from theefoutvature itself. In contrast,
the changeof curvature gives rise to the difference between the anqgis|B* |2 and|B~|2 (or
IDT|? and|D~|?) and, therefore, leads to the current density redistidinuietween the two spin-
split modes. Indeed, consider the electron momenta at tmei fevel for the straight and curved
regions of the wire in the simplest case of zero external raagfield. The momenta™ and
q™ /R are given by (4.13) and (4.18) respectively. The esserifiarence between the electron
momenta for the straight wire and the loop lies in the radiegesdent ternk?/(2a m‘R) in
q-/R. Notice, thatk* = g~ /R if R= o (no wire bending). In contrasi" /R decreasegas
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Figure 4.9: The output polarization using the geometry obmpletdoop shown in fig. 3.1: polarization
(solid line) and the interference factor @m(qg — qg)] (dashed line) versus magnetic field. The radius
of the loop is taken as (a) t6cm, (b) 5 10~°cm, (c) 10°°cm and (d) 510 cm. The parameters are
taken relevant for InAs, the height of the barrier is zero.

compared withk™) andq~ /R increasegas compared with~) as long as the loop goes towards
a kink of the wire aR — 0. For all that, the Fermi velocity: = 71%ko/m* keeps the same value
in any part of the system, and the electron momentum changés icurved part of the wire in
such a way, thaflorward scattering from one spin-split mode to another occurs. @tterlleads
to the interference between them and shows up as the cuessityl redistribution betweejj,;
and j,,+ One can think about the wire bending as a changing of thialifiteshba parameter

a to a\/1-|— [h2/ (20 m*R)]2 in the loop region. Note, however, that in contrast to theialct
change ofx, the change of the wire’s curvature does not affect the meatensity of states and
results directly in the difference betwegh andq~ so, that there is no problem with reflection.
This is a very particular property of the system: there is awibr at the junction between the
straight and curved parts of the wire, but the Fermi momentgj and, thus, the current density
redistribution between the spin-split modes takes place.

At the end of this section we would like to note, that a sim#é#fiect can be found in one-
dimensional wires bentinto a loop as well. Such a quantum kas been studied in the previous
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Chapter and shown in fig. 3.1. The output polarization of suskistem aP,, = 0 is depicted in
fig. 4.9.

The results obtained suggest that curved one-dimensiafiadtic quantum wires with intrinsic
spin-orbit interactions can be utilized in spintronic dm& as reflectionless spin rotators. The
phase coherence of electron states is, however, necessary.

4.3 Curved 1D wire as a spin switch
In this section we propose to use a strongly curved 1D wireudised above as a spin switch. In
contrast to the previous case, the phase coherence ofoslestates is not necessary here. Now,
the initial state¥;’ (x) in the input wire is given by

" cosyt (eie++ik+x n A+efik+x>

+(y) — @®oRX
Win(X) = e% isinyt (ée++ik+x_A+e_ik+x) : (4.51)
whereas the incident wave is absent in the sp#q(x)
i iSi — ik x
W-(x) — e®R ISInTA_ e_.ki . (4.52)
cosy A e ' X

Thus, the input spin polarizatid®, is assumed to be 1, i. e. the incident electron beam is 100%
left-hand polarized (aB, = 0).

The wave functionSPﬁgop(d)) andWZ ,(x) describing the electron propagation through the curved
and output parts of the the system are the same as in the psesase. The system of equations
(7.17) — (7.24) describing the propagation of the statel{4larough the curved wire is given in

Appendix A.

The general solution of the system of equations (7.17) -4{foBtained byMathematica 5.0s
used for plotting the curves in figs. 4.10 — 4.12. This solutlemonstrates zero backscattering
(R=0andT = 1), while the polarization curves exhibit the followingenésting features: First,
the plots ofPoyui(B;) and Poyt(R) yield oscillating curves. Second, the efficiency of the spin
switching depends strongly on the direction of the extemadnetic field. Third, although the
polarization can be switched to its opposite valuBat 0, a relatively small radius of the wire’s
curvature is necessary. In order to explain the featuresdlisbove, we solve the system (7.17) —
(7.24) in two cases again: the deeply adiabafi2m*Ra) < 1 and the strongly non-adiabatic
h?/(2m‘Ra) > 1 limits.

The first limit is, however, not really interesting. As in theevious section, no current density
redistribution between the two spin-split modes occurghere. [D¥|2 =1 and|D~|> = 0.
Intuitively it is clear, that the curved wire does not diffeo much from the straight one as long
ash?/(2m*Ra) < 1. Therefore, the polarization keeps its +100% initial ealvhile the current
flows through the system.
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Figure 4.10: The curved wire as a spin switch: Polarizatiersws radius of the semi-circle at zero
magnetic field. The initial polarization i$100%. The parameters are taken relevantlfgks o =
2-107 1 eVm,m" = 0.0331, g* = —12,Er =30 meV.

In the opposite, strongly non-adiabatic limit, the sitaatchanges drastically. Indeed, the system
of equations (7.17) — (7.24) at* = 11/2, * = 0 and zero magnetic field reads

% <ei9+ +A+) + %A —cte 24 -3) _ge 7 (®R"2), (4.53)
%A _ \sz (eie+ —A*) —c e ?Ga) L pte F(3+mw) (4.54)
cref(-ai-3) pef(®w-1) - %D*Jr%D, (4.55)
i — in 1 |
ce?(-u+3) y gre? (®+2) — —_p~ 4 __D*, 4.56
7 7 (4.56)
1/ i
— k(¥ —AT) - —Kk A =
<) - 5
i Tt/4
L ™
1 i o+
——k A - —kt (¥ +AT) =
A5 (¢ AT
—iT/4 o )
_© = [C— <% —q[) ena/2 gt (:—2L+q‘,-§> e—'”qé/z} : (4.58)
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1, 1 it 1\ ine

1

i
— —Dtkt+—D k, 4.59
7 7 (4.59)
1; (1 \ _ing 1 i T
Ee|Tr/4 {C (é_qL> e |nqL/2_|_B+ (é_'—qE) elan/Z} _
1 i
=-—D k +—=D"k". 4.60
7 7 (4.60)

The approximate solution of this system reads

AT =0, A =0,
i g+ il + l g+ i — 1
Bt = —— g8 +7(t®R), B = __—_ ¥ +7(k2)
V2 V2
(4.61)
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Figure 4.12: Spin switching by means of a strongly curvecakiaced in a magnetic field perpendicular
to the semicircle plane. Polarizati®g,; versus radius of the semi-circle. The initial polarizatistaken
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parameters are the same as for the previous figures. Not@dlaaization is very sensitive to the sign of
the magnetic field.

Ct=0, C =0,
D+ — %ew* [dn-d) _dr®+3)], D= %é‘e* d(Gr-3) 4 dm(e+3)]
|
(4.62)

(Here, we assume the same approximations as in the pre\gotisrsfor (4.62), namelyg™ =
+1/2R+ ko, k* =ko.) Then,

1 1 -
ID*2 = éiécos[ﬁ(cﬁg —ar)],

and the spin components of the output current density read

= e {1:+ cos[n (o — )]} (4.63
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Figure 4.13: Schematics of the spin field effect transisésel on strongly curved one-dimensional wires
with spin-orbit coupling. The thick arrows depict the spimeatation in the polariser and analyser. (a)
The system is closed. (b) The system is opened.

Thus, in the strongly non-adiabatic regime current densitiystribution occurs, and the polar-
ization is
Pout = cos[Tt(gz — 0] - (4.64)

Note, that if the radius of the curvaturedgactlyequal to zero, then the difference between the
Fermi angular momenta reads

2m*Ra Ro\?
o — + = — =
Or — OR& 72 \/ 1+ <20( R) 1 (4.65)

Thus, the output polarizatioR,,;; = —1, whereas the initial one wa%, = +1. Therefore, the
polarization is switched to its opposite value as expeatethie case of zero radius. (The expla-
nation of this effect was given in the introductory sectidtihis Chapter.)

The difference between the Fermi angular momegtandgy; depends not only on the Rashba
coupling and radius of the semi-circle, but on the Zeemaittisygj as well. Therefore, the critical
values ofgg — o, when the polarizatiof,: changes the sign, are tunable by means of the
external magnetic field. Unfortunately, we do not have aidyformulae forgg, at non-zero
magnetic fields, but one can see the effect in figs. 4.11, 1@ most interestind of them are the
figs. 4.11d, 4.12b where almost -100% output spin polaomas achieved at non-zero radius of
the curvature.

Such a spin-switch can be used in spin-valves or spin fiegtetfansistors similar to the ones
described in Chapter 2, figs. 2.8, 2.9. To complete the spuh déffect transistor we assume a
spin polarizer and a spin analyzer at the ends of the inpubatglit channels. For the sake of
simplicity, let the spin polarizer and spin analyzer be s@arent for the same spin orientation
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Figure 4.14: Polarizatio®,; versus Rashba constamtat zero external magnetic field. The input po-
larization isP, = 1, m* = 0.033me, Er = 30meV, and the radius of curvature is (R)= 2-10-°cm, (B)
R=105cm, (c)R=5-10 %cm. Such values af andR are achievable experimentally in InAs [8, 11, 92].

as it is shown in fig. 4.13. The basic principle of the devicgpmsed is similar to the “conven-
tional” one. The transistor is closed as long as the transpgime is adiabatia?/(2am‘R) < 1,
and the electron spin changes its orientation with respettte spin-orientation in the contacts
(fig. 4.13a). In contrast, the spin-switching occurs as sa®the electron spin does not have
enough time to follow the electron trajectory (the non-adiéc regime, fig. 4.13b). Thus, the
spin-valve is opened wheif/(2am*R) > 1. The relatiorh?/(2am*R) can be tuned by the gate-
voltage dependent Rashba constards it is discussed in [8, 11]. The plots Bfy(a,Pn = 1)
are shown in fig. 4.14 for different radii of curvature. Théwas ofa are taken in accordance
with the experimental situation in InAs [8, 11].

In contrast to the “conventional” spin-rotators made adigfint semiconductor stripes, the device
proposed is expected to operate faster since it works in dineadiabatic regime. Indeed, the
switching speed is determined by the time needed for arrelettd propagate through the curved
part of the system which can be very short as long as our devicethe non-adiabatic regime
h?/(2am‘R) > 1. Thus, the switching time can be even smaller than the diraisd in the
Introduction for, let us say, a “conventional” spintronievite in the adiabatic regime.

In conclusion of this Chapter, we propose a semiconducatoctsire that can switch the electron
spin direction without using ferromagnetic contacts, elmg barriers, external radiation etc.
Moreover, the alteration can be governed by external étemtrmagnetic fields. The results ob-
tained suggest that curved 1D ballistic quantum wires withnsic spin-orbit interactions can be
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utilized in spintronic devices as reflectionless spin siats. Calculations based on typical pa-
rameters for InAs show that the desired regime is accesgibtairrent experimental techniques
[92]. Note, that the initial left- or right-hand spin-poized electron beam in InAs quantum wires
can be obtained by applying circularly polarized radiaf® 61].
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5 The properties of the asymmetric
Tomonaga-Luttinger liquid

In this Chapter, we describe a particular one-dimensioryatsm, where the Fermi velocities (as
well as the densities of states) for left- and right-movitextons are not equal to each other.
Such a system can be formed in an isolated quantum loop wiithospit coupling placed into
a magnetic field perpendicular to the loop plane. The Tomaragtinger model is applied in
order to describe the influence of electron-electron intéicms on the chiral asymmetry of the
density of states. We find, that electron-electron intéoastlead to an alignment of the density
of states for the left- and right- moving electrons. In agtdif the possible manifestation of the
chiral asymmetry in ballistic transport phenomena is dssad.

5.1 Interplay between Rashba and Zeeman effect in curved
one-dimensional wires

It is well known, that the electron spectrum in 1D systemdauitt spin-orbit interactions and
Zeeman effect demonstrates spatial inversion symntet(k) = E°(—k) as well as time in-
version symmetniE®(k) = E~°(—k). (Hereo andk are the spin and orbital quantum num-
bers respectively.) The spin-orbit coupling as well as Zae®ffect splits every electron spin-
degenerate energy band into two branches correspondihg tepin-up and spin-down projec-
tions on a certain axis. In detail, the Rashba effect shiiésdispersion curves along the mo-
mentum axis (let us say, spin-up band is moving to the righit spin-down one to the left),
whereas the Zeeman term splits them along the energy axia. cAssequence, the spatial and
time inversion symmentry can be broken.

Actually, the space and time inversion asymmetry in theatsipn law stems from three factors:
(i) the presence of spin-orbit interactions, which break ¢patial inversion symmetry, (ii) the
Zeeman effect, which breaks the time inversion symmetny, (@) a non-zero curvature of the
wire, which makes possible the manifestation of both spaddiene inversion asymmetry in the
electron spectrum.

Indeed, let us have a precise look on the dispersion law éeléctrons in a curved 1D wire with
Rashba spin-orbit coupling placed in a magnetic field pedjpertar to the plane as it is depicted
in fig. 2.2b. If the radius of curvature is constant and eqo&, tthen the energy spectrum reads

E*(@ 5, 1 a? AN
o 0Tt el +(q 80) , (5.1)
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whereq € (—o,) is the angular momentursz is the Zeeman energy, asg = 72/(2m‘R?).
The dispersion law (5.1) has a peculiar property:

E°(q) #E°(—q), E°(q)#E °(-q), (5.2)

i. e. both spatial and time inversion symmetries are broken.
If the Zeeman effect is absent then the dispersion law tdieotrm

2
E*(q) 1 | a2 a?

Here,E°(q) = E79(—q) andE®°(q) # E°(—q), i. e. the spatial inversion symmetry is broken,
while the time inversion symmetry is kept. Note, that thecspen (5.3) coincides with the
dispersion law for a straight 1D quantum wire (of the lengtRPata /egR >> 1. In the opposite
case of vanishing Rashba coupling and non-zero Zeematirgptite spectrum is

+
B0 _p 22 (5.4)
€0 €0

Here the spatial inversion symmetry is kept, while the timersion symmetry is broken.

Note, that the notation% in the formulae (5.3) and (5.4) correspond to spin projecitup”
and "down” on different axis, namely, on the radial axis r3) and on the polar one for (5.4).
Moreover, due to the coupling between the Rashba and Zeeffemtsea rotation of the spin
guantization axis occurs and, therefore, the sigimn (5.1) does not have the sense of spin
projections orz or r axes.

If we have both Zeeman effect and Rashba spin-orbit couptingthe wire is not curved, then
the spatial inversion symmetry is recovered, as it can be fsem the spectrum

R N e

Thus, it is only if all the three abovementioned conditioresfalfilled that both time and spatial
inversion symmetries are broken.

The time and spatial inversion asymmetry gives rise to soreeasting effects. First, the Fermi
momenta for right- and left-moving electrons of the samenbinaare not equal anymore. Such
an asymmetry leads, in particular, to the Aharonov-Ananuaase discussed in the Chapter 3.
Second, the Fermi velocities are different for electronthwipposite chiralities (see fig. 5.1),
which leads to a chiral asymmetry of the density of statess paculiarity of curved 1D wires
with Zeeman effect and Rashba coupling will be studied inpttesent Chapter.

5.2 Solution of the asymmetric Tomonaga-Luttinger model

The one-partical solution of Schrodinger’s equation fquantum loop shows, that the Fermi ve-
locities (and, therefore, the densities of states) for kaitd right-moving electrons are not equal.
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Figure 5.1: Dispersion law for free electrons in a 1D loogwiRiashba coupling, placed into a perpendicu-
lar magnetic field. The asymmetry of the parabola is cleadiple. The straight lines on the left and right
sides are the linear approximations of the dispersion surlase to Fermi the points. The parameters are
taken relevant for InAsa = 2- 1011 eVm, m* = 0.033me, g* = —12. The radius of the loop is 50~°cm,
external magnetic field is.2T, and the Fermi level is chosen so, that only a single subisaoccupied.

The question is what happens with the density of states ielbetron-electron interactions are
switched on? We give the answer in the framework of the Tomanaittinger model, assuming
that only a single subband is occupied as it is shown in fig. 5.1

We begin by linearizing the dispersion law for the lowestdalose to the Fermi points as it is
depicted in fig. 5.1. The expansion reads

hv n
EL/R(A) = Er F— (a—Gp) - (5.6)
The Fermi velocities can be found from
_ 2 _
&R O Rt %QL/Ri €z/€0

(5.7)

VirR= 7 |29 R
h 0o 2 } N
&R ) T <qL/R + 82/50)

The Fermi angular momentﬁ‘/R are the roots of equations (4.16), (4.17) taken with thexnde

“—". Unfortunately, these equations do not allow reasonah#dydical solutions with respect
to g atez # 0. However, a numerical treatment is applicable, and thenFeelocities (5.7)
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Figure 5.2: The influence of the external magnetic field apatthrvature of the wire on the chiral asymme-
try of the density of states. The relation between the Feegtuoaities for left- and right-moving electrons
Vi /Vr is chosen as a degree of the asymmetry. The parameters areréagvant for InAso = 2-10-11
eVm, m* = 0.033n, g* = —12, Er = 30meV. The radius of the curvature is @)= 5-10%cm, (b)
R=1-10"°cm, (c)R=5-10"°cm.

can easily be found. As a degree of their chiral asymmetry seethie relation between and
Vg. The dependences of /v; on the magnetic field for different radii of the loop are given
in fig. 5.2. The Fermi level is taken to be equal 30meV. Howewecontrast to the situation
depicted in fig. 5.1, both spin-split subbands are occupielis Fermi energy. In fig. 5.3, the
Fermi energy is taken ten times smaller so, that it is possdempty the upper band in fig. 5.1
by means of Zeeman splitting. Note, that the chiral asymynsteven stronger in this case.

Let us turn to the electron-electron interactions. The Toaga-Luttinger model suggests the
following Hamiltonian for the description of electron-eteon interactions in the system with
chiral asymmetry

H = Hiin + Hint, (5:8)
uhere o Ot (i fof .
kin = /E[ {QJL(X) (' hvi &) WL (X) + Wgr(X) (—' hvg &) qJR(X)} ) (5.9)
= [ o (a0l OUL OO WR() +
50e{ [l 0w 09] "+ [whoowno] ] ) (5.10)
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Figure 5.3: The same as for fig. 5.2, but the Fermi energy entakore relevant for the situation depicted
in fig. 5.1, i. e. Ex = 3meV. The radius of the curvature is @)= 5-10%cm, (b)R=1-103cm, (c)
R=5-10"°cm. The other parameters are the same as for fig. 5.2.

Herey (x), Yr(x) are the fermion fields for left- and right-moving electroespectivelygs 4
are interaction constants, amds the coordinate along the wire. The Fermi velocitigsand
VR are taken as their absolute values. They are assumed to ¢rébeesby (5.7). The electron
energy is counted from its Fermi value.

Note, that in contrast to the introductory Chapter 2, thapeatersy, andg, have dimension of
energy/length here. Indeed, if we omit the exchange terr84ij then the interaction constants
are

g4 = V1(0), (5.11)
for electrons with the same chirality
Vi(—q +0g
g2 =V1(0) — Vil=G %) qu Ie) ,
for electrons with opposite chiralities. Hevg(q) is the Fourier transform of a given interelectron
potential. (Coulomb, in the simplest case.)

Using the bosonization identity [95], the Hamiltonian (bc&n be written in a bosonized form
often encountered in the literature (see Chapter 2), namely

(5.12)

1O/ g x o) v+ Q2 o
H=3 Ex( X 10X ) G  hVg+0s oot} ] * (5.13)

Hereq_(x) andgr(x) are bosonic fields, and the terms with quadratic number tmerNER are
omitted.
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The standard way to diagonalize the Hamiltonian of any ading system in the framework of
the Tomonaga-Luttinger model is to introduce so-calledaidields”. The standard couple of
“dual fields” is defined as the difference and sum betweenrbbstuls with opposite chiralities
(see Chapter 2). However, the application of this standapdaach is not so trivial here because
of the different Fermi velocities for right- and left-mogrelectrons. The “dual fields” are not
really dual here, since the chiral symmetry is completebkbn.

In order to solve the problem, we introduce additional fiatis bosonic fieldgi(x) and g (x)

in a way which does not change the dynamics of the system. ff@eHamiltonian (5.13) can
be rewritten as

HoH+H =
0gR(9/0x \ | [ We+s G 0 0 Ogr(x)/0x
1 / dx | o (x)/ox o2 v +0a 0 0 0@ (x)/0x
2 0gR(x)/0x 0 0 v, +0a 02 ogx(x)/ox |’
o (x)/0x 0 0 g2 hVg + 04 o (x)/0x

Note, that these additional bosonic fielfl$x) andgi(x) extend the basis:22 to 4x 4, whereas
the given symmetry between them allows us to introduaecoupleof “dual fields” correctly.

In order to simplify the subsequent calculations, we reatiis Hamiltonian ones more in the
dimensionless form

H=
dgr(X)/0x \ T / 1+gs O 0 0 o=(X) /X
hvg [ dx| 0@ (x)/0x 2 g9g+g4 O 0 (x)/ax (5.15)
2 ) 2| ogk(x)/ox 0 0 g+ o 6¢fR(x) '
0 (x)/0x 0 0 9 1+04 o (X /GX

Here we redefined the interaction constamts — g24/hvg to be dimensionless. The constant
g=V, /VR is assumed to be a measure of the dispersion law asymmetry.

Using the fact of chiral symmetry between the “original” &fidtitious” branches we define the
couples of “dual fields{®1,01) and (P2, O7) in the following way

dgr(x) 1 (adJl ael> g (x) 1 (6¢1+a®1);

X /2 0X ox \/Z Ox
a(ﬁ?(X) . 1 0(1)2 0@2 a(ﬂ_( ) 1 0(1)2 0@2
ox 2 ( X ) ox 2 ( +W) ' (5-16)

Substituting (5.16) into the Hamiltonian (5.15) we have

hvg [ dx

H==F [ o [(0x®7)Mo(3x®) + (907)Me(3x0)] (5.17)
where .
_ +04 02
M‘D_( % g+g4>’ (5.18)
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1494 -0
Ma = 5.19
© ( % 9+ ) (5.19)

and® = (b1, d,)T, 0 = (01,0,)7.

First of all, we diagonalize the matrM¢ in the standard way. Its eigenvalues, can be found
from

(1+ga—N)(g+gs—A)—g5=0, (5.20)

1+ 1
A2 = 5 J +04F 5y (1-9)%+4g5. (5.21)

The corresponding transformation matrix reads

and they are

~—

_ /% /9
\ vD vD
Po = ( 1-g+vD 1-g-/D ) ’ (5.22)
2/vD  2y/gvD
and the inverse one is
1-g-vD g_\/z_
-1 20/g \/B D
Pyt = ( g—1—2\/5 Ve )7 (5.23)
2v/g2vD vD
whereD = (1—g)?+ 4g3.
In the next step we first rescale the basis so, that
Mo = Ay Py *MoPoAgt (5.24)
is the unit matrix, and, secondly, preserve the duality efftelds®; and®; so, that
Mo = AoPp *MoPoAo. (5.25)
The matriced\o and/\g,l are given by
(VA0 a_(LYVA 0
/\q;—( 0 UN ) Nt = 0 1A ) (5.26)
The elements of the matrix o
~ a
Mo = ( A ) (5.27)
can be found after some simple algebra
1+g (1—g>2—4g%]
a=A|——+Qg——F—F——%|,
1[ > 04 2/D
(1—9)2]
b=+vAA2|(1—9g) — ,
1N2 |:( g) \/5
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vD

(1-9g)*— 49%}
2D '
Note, that a further unitary transformations can not chahgematrlxM¢ (which is equal to the

unit onely). For this reason we can dlagonaIM@ and do not care dflp. The eigen values of
Mo can be easily found from the obvious equation

=m{<1—g>+“‘g>2},

1
d=A2 [%4‘94-1-

(a—¢)(d—¢)—bc=0, (5.28)

and they are

a+d++/(a—d)2+4bc
€12 = (2 ) . (5.29)

The corresponding transformation matrix reads

/b b
vD,  \/ VD2
Po = ( dfa+\/I23*2 afd+\/D*22 ) ’ (5.30)
2v/byD;  2y/byD;
and the invers@g* is
a—d++y/Dy b
-1 _ 2v/by/D> VD2
Po = ( a_\é_w—zz . ) (5.31)
2v/byD3 vD2

whereD, = (a—d)? +4bc.

Finally, we have diagonalized botle andMg matrices. But the form of the Hamiltonian is
still non-canonical. To arrive at the canonical form, we én&w rescale again botfle andMe
by using the matrices

_ ()Yt 0 a_ ()t 0
/\8_< Y (32)1/4)’ ,\81_( ) (82)1/4) (5.32)

The desired form oM¢ andMg can be obtained by the following transformations (which-pre
serve, as usual, the duality of the fiellsand©;)

Mcanonlcal /\SP 1A61P51M¢P¢A61P@/\5’ (533)
M(caanonicalz A;lpélAq)Pq;lMOPdJAGJPO/\;l, (5.34)

and
Mcanonlcal Mcanonlcal ( \/571 \/(;_2 ) X (5.35)
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For the following notation it is convenient to introduce thatrices
So =PoAg'Pol\e,  Spt=NAePy A Py, (5.36)

So=PoMoPo\s Y, St=A P AP (5.37)
Their elements are given in Appendix B.
The Hamiltonian (5.17) takes now the canonical form, namely

hup [ dx huo [ dx
T2 /) on 2 Jon

where the new dual fields = (nl,nz) & = (&1,&2) are related to the original ones by transfor-
mations® = NSyt ®7 = Sen’, 0 =S, O = Su&T, and new renormalized velocities can be
found in two ways. The first is rather direst = v /€1 andup = vz /€2, whereas the second
one uses the elements of matriGsandSy as following

H = (0xnT+0x&7) + (0xn3+0xE3) , (5.38)

v = (She) "Mio(Sho) + (S Co(Sho)+

(Se) M&o(Spo) + (S ‘o(Shi0): (5.39)
—F_i 55:1 - q:,e(Sg:l,e)'*‘(Sél,e)_ qu,e(séz,e)‘i‘

(SFo) MEo(SFe) + (SPe) "M&o(SKo)- (5.40)

The velocities can also be written explicitely in the form

(14
ULZZVR{ 29 +04(1+9g+0s)— 3

ol (1-9)? }
+[9+0(1+9+0s) —g3] |1 (1= g7+ 42
(5.41)

At the end of this section, we consider two limiting cases.e Tirst one is the case of weak
electron-electron interactions. It is interesting to riegee, that in the case of negligible backscat-
tering @2 = 0) the plasmon velocities have extremely simple dependeanethe interaction
constant, namely

[(1+9)/2+04?(1—g)?
s g)\/ (1-0)%+4g3

Up=Vg(1+04), U2=VR(9+0a). (5.42)
As soon as both, andg, are equal to zero, the non-interacting result is recoveredp; = v
andup = v .
In the opposite limit, the electron-electron interactians assumed to be strong enough so, that
024> 1. Then, itis possible to make the following estimations

A12 ~ Q4 F 02, (5.43)

82



1 1
anz( Y2 _£>, (5.44)
2 V2
1 1
Pq;1:< 2 Vi ) (5.45)
V2 V2
Then
a=g;—g=d, (5.46)
b=(1-g)\/&-=c (5.47)
and
11__(51>‘_1‘ 1 1\ -1 12:(32)‘_1‘ 1 1\ _ @1
= (o) e = ()
()i 1 1 _ (21 2__(82)% 1 1\ _ @21
g1 -1 a2 1L _ _ @11
= (281)%(m+ﬁz) CORIES (2@%(@ Viz) = ()7,
1 1 B -1 o2 1 _ (@21
%7281)&(”7 Vie) = () & (282>‘11<\/>\>1+\/7\>2) ()™

whereg1» = g3 — g5+ (1—0),/02 — 5.

Recall, that the plasmon velocities are determinedidyasu; » = Vg/€12. Therefore, if the
electron-electron interactions are so strong, that

e12~ 0% — 03, (5.48)
then both plasmon velocities are just equal. Moreover, lgr@ents of matriceSy andSg satisfy
the following relations ) - - )

S(l)@ = Sg,qn S@‘@ = Sg,qa- (5.49)

5.3 Electron-electron interactions and chiral asymmetry o f the
density of states

In this section, we study the influence of the electron-etecinteractions on the chiral density
of states. The latter can be derived via retarded Greentiuns as it has been done for the
symmetric case in the introductory Chapter 2. The basic titamare (2.68), (2.69) and (2.70).
Thus, we must find the following two-point bosonic corredatfunctions

(O=(x 1)9=(0,0)) = (¢ (x 1)¢(.(0,0)) =
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Figure 5.4: The alignment of the density of states for lafid @aght- moving electrons in the curved wire
subject to electron-electron interactions. The constgn®ndg, are assumed to be equal. In order to
create the initial asymmetry, the external magnetic field Dfis applied. The Fermi energy is taken to
be equal to 3meV. The other parameters are taken relevatiifsr a = 2- 1011 eVm, m* = 0.033m,

g* = —12. Different curves correspond to different radius of thevature: (aR=5-10"°cm, (b)R=
10-°cm, (c)R=5-10%cm.

5 [(10¢1N(0,0)) ()25 + (n2(x T)N2(0,0)) (1) 62
+(&1(%,1)€1(0,0)) (S5) 'S5 + (€2(x, 1)€2(0,0)) (SF) 'S5 (5.50)
<<dR<x,r><dR<o,0>> (O (x1)9.(0,0)) =
! [(ﬂl(x )N1(0,0)) (S¥) 1S5 + (N2(x,1)n2(0,0)) (SF) 1SF
+(€1(x,1)€1(0,0)) 18531 (E2(x,T)€2(0,0)) ()18 . (5.51)

The correlators of the fictitious bosonic fiel¢tg (x,T)@ (0,0)) and(@k(X,T)(0,0)) are given
only for the sake of completeness, we do not need them foraihrelation functions of the “real”
fermionic fields.

The fieldsn; and¢; are canonical, i. e. they describe free bosons. For thimsnedise two-point
correlation functions of them are given by formulae simita(2.71), namely

(Ni(x,Ni(0,0)) = (& (x,1)&i(0,0)) = —In an(sigrwawisigrpwa) , (5.52)

wherey; are given by (5.39) and (5.40).
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Figure 5.5: Plasmon velocities in units @ versus interaction constant. Curve (a) corresponds to the
velocity up, and (b) —u,. The parameters of the system are exactly the same as indig. 5.

bjj

0 1 2 3 4 5 6 7 8 9 10
interaction strength

Figure 5.6: Coefficients;; versus interaction constant. Curve (a) correspondstcand (b) —bio. The
parameters of the system are exactly the same as in fig. 5.4.
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In the following let us use the notation

by = % [(S]:bl)_lalbl‘i‘ (%1)—1%1] , by = % [(%1)—13]1.)2_‘_ (%1)—1%2] , (553)

o= (S 1+ () D). b= ()R IF] 659

Substituting the bosonic correlators (5.50) and (5.519 the fundamental formula (2.70), we
obtain the desired correlation functions for fermionicdgl

; b11+b1o—1
<T LUR(X,T)quq(O, O)> = .. Slgn[ba . .. [ (555)
(sign uiT +isign x4+ a) -t (sign upT +isign x+a) 2
; bo1+bpo—1
(T W (0.0)) = — I — 6 (5:56)
(sign urT +isign x+a) 2 (sign. uxT +isign x+a) 2
Then, the retarded real-time Green functions for left- aghtrmoving particles read
b11+bio—1
ot (x=0.0) = S {0 -0 P e, (557)
1%
bo1+hoo—1
G¥(x=0,t) = a.ut’ZW {lit=i0) ™%~ [i t+i0)) "} e(t). (5.58)
1 %

Now, the density of states can be derived straightforwabglgubstituting the relations (5.57)
and (5.58) into formula (2.68). The integral ovetan be taken using the definition of the
function, while the path of integration is depicted in figl@. After some algebra we arrive at
the final formulae for the density of states

oS 1 (aw) b11+bip—1 .
PR (W) = I g sin[m(b11+b12)] I (1 —b11—bi2), (5.59)
1 Y2

DoS 1 (aw) bo1+bp0—1 _
PL(w) = 5 P sin[rt(bz1+b22)] I (1 — b2 — bp2). (5.60)
1 Uz

The relationpR°S/pP°S is shown in fig. 5.4 as a function of the electron-electroeriattion
strength parameterized loy = g>. The corresponding behavior of the plasmon velocities and
coefficientshyj is depicted in figs. 5.5 and 5.6 respectively. One can easgy that electron-
electron interactions lead to an alignment of the chirakies of states. This is the main result
of this section. Note, that the effect is not very sensitoséhe relation betweegy andg,. That

is why we have adopted the simplest @ae= ga.

As in the previous section, we study the expressions (5.88)(8.60) in two limits: (i) weak
and (ii) strong electron-electron interactions. The fiedecis rather simple. Indeed,gi =0
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thenbi2 = by1 = 0, b11 = byo = 1, and the plasmon velocities are given by (5.42). The densit
of states reads 11 11
DoS DoS

PR = onhuy pL = (5.61)
Let us make a comment on the relations (5.61). Althoggts still not zero, the standard Fermi
liquid propertypP°S £ 0 atw = 0 is already recovered. However, the alignment of the dgps$it
states by means of interactions does not vanish yet, g% pP°S = (g+0g4)/(1+94) — 1 as
long asgs — . Of course, ifgs is equal to zero as well, then = vg, U, = v and

PR%S/PP%% = VL /Vr. (5.62)

Let us consider the opposite case of strong electron-eleatteractions. Note, that gp4 > 1
the following estimates fdp;; are valid

1 04

bii=2 |1+ —22— | =by, 5.63
=7 T 22 (5.63)
01—9;
1 04
bo=2 [ 22— 1| =by, 5.64
12= 3 —— 21 (5.64)
02—05
and, as consequence,
b11+b12 = b2+ 021 = L, (5.65)
/2 _ 2
01—9;
b11—bo1=boo—bio=1 (5.66)
Therefore, the relation between the densities of statdsapiposite chirality reads
DoS P22—Db1>
PR __ Y% ~ _ W (5.67)

pEOS u1i>11*b21 up

As we have found in the previous section, the relatipfu; goes to 1 as long as the electron-
electron interactions increase [see the estimation (b.4B)us, we have proven analytically,
that strong electron-electron interactions remedy theatkymmetry of a Tomonaga-Luttinger
liquid.

It is interesting to note, that the plasmon density of stegedways equal to zero at the Fermi
level for both left- and right- moving electrons. [This cas®responds too = 0 in (5.59) and
(5.60).] Therefore, the plasmon density of states at themHewel is always chirally symmetric
(PROS = pPoS = 0). In the vicinity of the Fermi level the dependence of thesphon density of
states on the energyw is determined by two factors. First, the electron-elecirgaractions
increase the plasmon excitation energy, and, therefaeglttsmon density of states is negligible
(and chirally symmetric!) at larger energy interval in theiwnity of the Fermi level. Second,
the interaction between left- and right-moving electragedls to the energy exchange between
them and, therefore, to the alignment of their density destan other words, the plasmons with
opposite chiralities start to talk with each other in a darsense, and, thus, the abovementioned
alignment takes place.

87



5.4 Chiral asymmetry and Landauer—Biittiker formalism

There is a large variety of transport theories in solid stateysics developed for the description
of the electron motion in different regimes: general Keldf@amalism, Kubo formula for linear
responce (small bias voltage), Landauer-Buttiker forsmalfor coherent transport with elastic
scattering, quasiclassical Boltzman equation, and Druelery for the diffusive regime. The chi-
ral asymmetry of the density of states could bring somethew into the description of electron
transport. In this section, we study the influence of the abwntioned chiral asymmetry on the
Landauer-Bittiker formula [37, 38, 39, 96].

The latter has actually two modifications. In detail, the doductance of a 1D system at zero
temperature equals eith&r= 2GoT or G = 2GoT /(1— T), depending on whether the system is
connected to perfect 1D conductors (where the phase raadans absent) or to classical wires
(non-coherent baths) respectively. (H&g = €?/21: is the conductance quantur,is the
transmission probability, and the factor 2 occurs becatifeespin degeneracy.) Both formulae
do not contain the density of states, therefore, they arenflaenced by its chiral asymmetry. In
the case of non-zero temperature the situation changetcadibs

The conductance of a system with perfect 1D leads reads

G:ZGo/dE_d—?EfT(E), (5.68)
whereas
[dEX (—d—)
JdERRE) (-5t)
as soon as reservoirs are connected [39]. He(E) = 1— T(E) is the reflection probability,

on/oE is the density of states in the 1D leads, difé&) is the Fermi—Dirac distribution (in the
equilibrium) given by

(5.69)

G:ZGO/dE_ddf

f(E) = = (5.70)
+1
Note, that formula (5.69) contains the density of statedietgly. That is why we find it in-
teresting to generalize the conductance expression (5068p systems which lack the chiral
symmetry in the density of states.

The scheme proposed is depicted in fig. 5.7. The sample isecteuhto perfect and identical 1D
leads where the density of states for left-moving electdongdE is not equal t@ng/dE for the
right-moving ones. The leads are connected to electromv@sg with chemical potentialg
andpp (see fig. 5.7). The sample is characterized by the transmnissid reflection coefficients
T(E) andR(E). Thus, we could apply the Landauer-Buttiker formalismtfoe description of
electron transport through this system.

Let us find the conductance of the system given in fig. 5.7. Vieviothe Buttiker—Imry—
Landauer—Pinhas derivation of the conductance formul [38e current emitted by the left
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Figure 5.7: The system under consideration. The obstactmisected to two incoherent reservoirs (baths)
by ideal 1D conductors where the densities of states fot-ragid left-moving electrons are not equal. The
reservoir 1 emits electrons up to the chemical potentiglg&nd the reservoir 2 emits electrons up to the
chemical potentialg,, whereagua and g are the chemical potentials in the perfectly conductingldea
between reservoirs and the obstacle. The voltage dropsattiessample is, thereforeY = pa — ps. A
flow of particles hits the barrier from the left. (Singeis assumed to be larger thas)

reservoir in the energy range betwgarandyy is

—df
2nh/dE< i )T(E)Au, (5.71)

whereAu = Wy — 2. Note, that in our system we have no spin degeneracy, theteafe factor 2
does not enter (5.71). As the next step, we have to deteriméneetation between the difference
in the chemical potentialg;, 2 and the voltage drop across the sample (i. e. the obstacle).

The carriers in the leads can be characterized by the chepatentialspa andpg (see fig. 5.7).
Their respective levels are determined by the conditionadf-tilling [39]. This condition as-
sumes that the number of occupied states alpavgls) is equal to the number of empty states
belowpa (MB). Now, let us find the relation between the chemical poté&inthe leadsifa, Ug)
and in the reservoirgug, [o).

Below the energy, all states are fully occupied and we need to consider theggmange from
K2 to pp only. The total numbers of states in this range is

df anR 6n|_

Consider now the perfect wire on the right-hand side in fig. Since carriers have a transmission
probability T, the number of occupied states in the energy range betuesnd g is

Ncl)?cgﬁp /dE( ) (E )%?(Ul—HB% (5.73)
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and the number of unoccupied states betwgeandy, is

anR anL anR
NERS— | dE( )( +5g ~T(E) aE)(uB bo). (5.74)
Thus, the chemical potentigg to the right of the sample is determined by the equation

NRHS _ \RHS (5.75)

empty — Noccup

and reads
e [ dE (L) T(E) %8 + 1o f dE (G2 ) (RE)ZE+ %)

HB = de<_d—E) (anR+6nL>

To the left of the barrier we have both incident carriers agftected carriers. The number of
occupied states between andpa is

(5.76)

on on
Noceop= /dE< ) ( = +R(E) 6EL) (M1 — Ma), (5.77)
and the number of unoccupied states betwgeand is
ong dn.  0dn on
NLHS R L R L
Nempty = /dE ( ) < T3 " E R(E)== 3E ) (Ha—L2). (5.78)

Therefore, the chemical potentja to the left of the sample is determined by
Nempty = Noceup (5.79)

and reads
i () (3 +RER) +res e () TR

@)

Charge neutrality does not allow different densities toléifieand to the right of the sample over
the distances large compared to the screening length [BRis, The conduction-band bottoms of
the perfect wires are displaced against each other by atmitdifference

(5.80)

eV = Pa — Us. (5.81)

Therefore, the equations (5.76), (5.80) and (5.81) can bd tesdetermine the relation between
the chemical potentials; andup and the voltage across the sample. The result of this caloala

yields ( ) < )
de —df ( ) anR 6nL
eV =Au de< ) (%——l—%) . (5.82)
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Thus, the total current between the reservoirs reads

— [dE ong 4 o\ (_df
| = Go [ dE o E)IdE(aaéaj %%TR)(E() (d_Ezi;)V (5.83)

The conductance of the sample can be easily obtained frandimula using the relatio® =
l/V.

We find it necessary to emphasize that formula (5.83) dessmlectron transport between two
reservoirs If we exclude the reservoirs from our consideration thenvibitage drop occurs only
at the sample, anfiin (5.71) is just equal teV.

The current (5.83) explicitly depends on the density ofestatHowever, the chiral densities of
state9)n_ /0E anddngr/0E are incorporated in (5.83) as a sum. The current from thedeérvoir

to the right one (as it is shown in fig. 5.7) is still equal to tuerent at the inversal bias voltage,
wherepy < P, and the current flows from theght to the left. Thus, transport measurements are
not very effective for the detection of the chiral asymmetiyhe density of states.

Nevertheless, there are definitely some other possilsiliti@letect the chiral asymmetry of den-
sity of states. One of them could be optical measurementsO}7 (See the theoretical work
[99] as well.) Indeed, the optical absorption in a quanturi isgroportional to the density of
states. Therefore, we believe, that the observation oftilralasymmetry is possible in optical
measurements using the current experimental techniquerev, this goes beyond the scope
of the thesis.
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6 Conclusions

In this thesis we analyzed some important characteristics@dimensional quantum wires with
Rashba spin-orbit coupling, especially related to their-mero curvature.

The major points covered by this thesis may be summarizeollasvé

e We studied the conductance of a quantum loop made of an omendional wire with
Rashba spin-orbit interactions and found that

- the conductance dependences on the external magnetipdigidndicular to the loop
plane can demonstrate a manifestation of the geometrigalsspit Berry phase

- in order to extract the manifestation of the geometricalgah the comparison with
the conductance of a straight wire is, however, necessary

- the solution obtained suggests its application to the adiabatic regime (small loop
radius) as well.

e We studied electron transport in a strongly curved one-dsioal wire with Rashba spin-
orbit coupling and found the following

- the system demonstrates current density redistribugwden two spin-split modes

- a strongly curved wire with Rashba spin-orbit coupling change the spin-polarization
of the input electron beam to the opposite one, and, thuge s a reflectionless spin-
switch.

e We studied the chiral asymmetry of the electron densityatestinduced by Rashba cou-
pling and Zeeman effect in a curved one-dimensional wire

- the Tomonaga-Luttinger model has been solved for the lbmasparabolic Zeeman-
split band (the upper bands are assumed to be unoccupied® WigeFermi velocities for
left- and right-moving electrons are not equal

- it has been found that strong electron-electron intesastremedy the chiral symme-
try of the density of states

- the Landauer-Buttiker formalism has been generalizegstems with a chiral asym-
metry of the density of states.

In our opinion, the main outcome of this thesis is relatechdtrongly curved 1D wires with

Rashba spin-orbit coupling: namely, such wires can serthdrcapacity of reflectionless and
high-speed spin-switchers. Indeed, the switching speddtermined by the time needed for an
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electron to propagate through the curved part of the systaiohwis very short as long as our
device is in the non-adiabatic regimé/(20m‘R) > 1. Thus, the switching time can be even
smaller than one estimated in the Chapter 1 for, let us saywéntional” spintronic devices in
the adiabatic regime.

We believe that the situations treated in this thesis cordimoe more how diverse the phenomena
related to the Rashba spin-orbit coupling can be. In ordstudy the great variety of effects we
combined spin-orbit interactions in 1D quantum wires whkit non-zero curvature, Zeeman
splitting and, at the end, with electron-electron intamatd. Our main expectation is that the
interplay between Rashba spin-orbit coupling and nonalrgeometry of the system can find
especially fruitful applications in spintronics.
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7

Appendices

7.1 Appendix A

The following system of eight equations describes the maainotion in the quantum loop (see
the Chapter 3 for details)
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i ¢ 1

(L+Ag) cosy™ —i (L—Ap) siny” = e ? (%-3) (Bl cosat e 1 MR/2 4

1Cy cosp ™ /2 B, sina~ e 1M®R/2 1-C, sinp™ e‘“qf/2> , (7.1)
_in(® 1 N

(L+Ap)cosy —i(1—Aq)siny" =e 2 (%+3) <Bz cosa~ e "M% /2

+C, cosp~ €™ /2 1By sinat e ™R/2 _C; sinp* ej”qf/2> , (7.2)

e%"(a%—%) (Bl cosa* €3 /2 4 G, cost e 3 /2

—By sina~ €8™R/2 L C, sinf~ e*3i"qf/2) = Dy cosyt —iDysiny, (7.3)
sin (o

¢ 1 P P
e’ <¢’0+7) (Bz cosa~ e ™R/2 4 C) cosBe 3 /21

+B;y sinat ¥ R/2 _Cy sinpt e*3i"qf/2) —= Dy cosy” —iDysiny", (7.4)

) O ) )
+ ., et e e v —
[k +R(DO+A1< Kk +R¢o)}cosy |[k +R<Do A2< k +R¢o)}smy
1 J?“(c%—%) @ 1 + o iTIOh /2 o 1 jTig;"
_ = B[ — _ = O/ = _ At +aT /2
e 0 1 q>O+qR 5 ) cosa”e +C o 2 q | cosp™ €
) O

_ P 1) sing- e imR/2 P 1 ) sing-dma /2
Bz(% 2+qR)sma e R4+ Co Dy 2 q_ | sinB-e™/e|, (7.5)

-, @ -, @ - i @ +, @ inyt —
{k +R¢0+A2< “ +F«Doﬂ o '{k " Rag Al( ‘ +R"’0)} T
1) [, (L £ 2 ) cosu e R 24 (L g+ 2 cospm g 2
= e 0 B> 2+qR+(Do cosa~ e TRE+C | 5 CIL+¢O cosp™ €™ "+

1 o\ | 1 o\
+ B (E +0g + CFO) sinat e MR/2_¢, (é —q + 30) SlnBJre'T[qi/z] : (7.6)



1 sim(o_1 e 1 e 1 i
e2 \% 2) {Bl (——§+q$) cosat 3|an/2+C (__é_qir) COSB+e—3|Trqi/2_

R ®g Do

— By (% — % +Q§) sina~ e¥R/2 4G, (% - % - QE) sinB~ e‘3i”qt/2} =

=Dy (kT + R%;o cosy” —iD; (k + R%;o) siny, (7.7)
%e%T (%+3) [Bz (% +0g + c;%) cosa~ e¥™R/2 4 C, <— —o + (DO) cosp~e M /2y
+B (% +% + c;%) sinat e3™R/2_C, (% —q + c;%) sinpt e 3im /2}

=D, (k‘ + R%;o) cosy” —iD; (k+ - R%;o) siny™. (7.8)

The system of equations describing the electron motion enctirved, half-loop shaped one-
dimensional wire, reads

<eje+ +A+> cosy" —i (eje* —A‘) siny =e ? (&-3) (B+ cosot e 1MIR/2 1

+CT cosBT €™ /2 B~ sina~ e '™R/2 1. C™ sinp™ ej”qf/z) , (7.9)
<e‘ef +A‘> cosy —i (e‘e+ —A+) siny™ = ¢ 2(F+h) (B cosa e TURr/24

+C cosp~d™L/2 4 Bt singt e MR/2 _Ct sinB*ej”qf/z) , (7.10)
e%(%—%) <B+ cosot @™R/2 ¢ C* cosBt e T /2

—B~ sina~ €™&/2 4 C~ sinp™ e—inq[/2> = D" cosy" +iD " siny™, (7.11)
o (%+3) (B* cosa~ €™R/2 4 C™ cospe /24

+B* sinatd™R/2_Ct sinp" e‘i”qf/2> =D cosy” +iD* siny", (7.12)

(1) on (o
e o (o

LB (&) g (P e L teimag2 or (P L +gma /2
= g8 0 B q>0+qR 5 )| cosuTe RIC+C o 2 q | cospt e
(% 1N g2~ (P 1 N o ing 2
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., P Njo A (@ _
() + ()| oo -

i [(kﬂr%) o At <Rc$ k+)} sinyt =
0

1 _in(o 1\[_ /1 ® I /1 o o
= g8 7 (&+3) {B <—+qR+50) coso~ e 'MR/2 L C <§—qL +¢To) cosB~ €™ /24
1 (o) P 1 () P
+ [ = + +aiMOgy/2 _~+ (= _ ot o inR+ A TI0 /2
+B <2+qR+¢O) sina"e” C (2 q"+¢o) sing™ ¢ }, (7.14)
L@ [pr (P 1 rdngg2 o (P01 +emimal/2_
SRR B & é-l—qR cosa " e™RrR/ 4+ C o 5O cosBre '™
o 1 o 1 —
B = _z g /2 = A4 iNR— eI /2|
((DO 2+q )sma e +C™ (d)o 5 qL)smB e
—D" (K + -2 cosyt +iD (K + —> ) siny~ (7.15)
R®, R®, ’ '
1r(@d)[p-(1, . @ g (1 _ ® I
T a2 \ Py T2 - o Qg /2 - s imq_ /2
=R B <2+qR+¢O) cosa~ €™Rr/ 4+ C (2 qL+¢O) cosB e 'M/et
1 O\ i ® —
+B* <§+q§+$o) sina™ € ™R/2 — C+( —a + g )smB*e qu/z] =
=D~ k‘—l—i cosy +iDT (kT + — b siny™ (7.16)
RCDO RCDO ’ '

As soon as the initial electron state is +100% spin-poldritee equations (7.9) — (7.16) take the
form
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+C cosBT ™ /2 B~ sina~ e ™R/2 4. C sinB~ ei”qf/2> , (7.17)
A~ cosy” —i (eie+ —A+> sinyt = e ? (%+3) (B‘ cosa~ e 'T9R/2

+C cosB €™ /2 B sinat e R/2_Ct sinB*ei”qu) , (7.18)
e%n (o%*%) <B+ cosaTéR/2 |t cosB* et /2_

—B~ sina” €™%&/2 4 C~ sinp™~ e‘i”qf/z) = D" cosy" +iD~ siny™, (7.19)
o? (%+3) <B’ cosa~ €™R/2 4 C™ cospe A2

1B sinat d™®R/2_C* sinp" e‘i”qf/z) =D~ cosy” +iD* siny", (7.20)



o () o (o

Rdg Rdg

= %e‘i; (%‘9 {B+ (3 o — }) cosat e 1 MIR/2 L CF (3 _ % _ qt) Cosg+éan/2_

®g 2 O

—B~ (3 L +q§) sina~ e "R/2 4 C™ (3 1 —q[) sinBei”qL/z} ,
0

e 2 il (ke Y At (P | si
A<k+R¢0)cosy |{e' (k +R¢o) A<k+R¢O siny

1 _%r(%_%) (1 _ @ — o—iTigR /2 (1 . — g
= _ 0 B (=2 — R/ Z_ — nq /2
e 2+qR+¢O cosu~ € +C 5 qL+cDO cosB™ € +
1 O\ it 1 I
+B" <§+qg+ao) sinaTe 1 ™R/2 _C* (E—qf-l—c?o) sinBt e/ },
1 i_n(gf;> o 1 S )
TaZ\® 2 +( - = + + A TR /2 +(
S B <¢o 2+qR) cosa ' € +C (¢o
o 1 . i Tia= )
— B <$—§+QR> sina~ €™R/2 yC~ (cF_E_qL) sinB~ e '”qt/z}
0 0
) O
=D (kM +—— D (k=
( +R<D0 cosy" +1 < +R<Do) siny™,

@9

_ % _ qﬂ”) COSB+ e*inqi/z_

in( & 1 P P
1.7 (d+3) [B <%+qR+2) coso~ €™R/2 4. C™ (}—qLJr—) cosB~e M /24

1
o 2

()
- D (K ~1int [kt iyt
= (k + )cosy +iD <k +R¢o) siny™.

R
+ . @ ing+ o MR /2 + @ inRt i T /2|
+B" (S +0g+— ) sinaT€™R/“—C" (= —q +— ) sinpre'™/7| =

(7.24)

The initial phase®™ of the incident waves are explicitely included into the dopres (7.9) —

(7.24). (See the Chapter 4 for details.)

7.2 Appendix B

The explicit expressions for the elements of the matr&esSo, S;*, o' read
Qo Qb /&1 d-a+yD2 g2 [ &
A1 |/ DD> 2v/b A2\ DDy’
2 b /& a-d+vD; [g | &
A1\ DD, 2vb A2\ DDy’

1
Sélzl—g+\/5 b & +(1—g—\/5)(d—a+\/D_2)< €1 )Z‘
2,/%2 A1\ DD> 4. /No00b DD,/ ’

(7.25)

(7.26)

(7.27)
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, 1-g+VD |b [& (1—g—\5)(a—d+\/D_z)<s2)%
S-"%5 \|n\Voo " 43/hagsb oo;) Y

1 (@-d+VDa)(1-g-vD) [ &1 \¥ (g-1-VD)Wb [ & \
(S = (DDZ) + (DDZ) (7.29)

I

4\/bgpAy 21/goh2
12 -1 (@a=d+vD2) /32 [ & i g2b
S 2v/bA1 <DD2) A2 DD2 (7.30)
1-1_ (a—d—yDp)(1-g-vD) i (g-1-VD)VB ([ & \?
() 4/ogohs (DDZ) P (DDZ) o (131)
2 (a—d—+/D2)/02 i g2b
() 2\/oh; <DD2) . \/ DD, DD2 (7.32)
11 _ Algzb _ d —a+\/D_2 gz)\z
% = v/€1DD> 2vb V€1DD5’ (7.33)
12 | Mgb  a-d+vD2 | g2
S = /5,00, NG NGOT (7.34)
@ 1-g+vD | bAp \/7(1 g—vD)(d— a+\/_) (7.35)
2\/Q2 /&b, 4/gob\/€1DD, '
5(292:_1—9+\/5 bA1 \/7(1 g—vD)(a— d+\/_) (7.36)
2/% || VeDD; 41/gzby/e2DD; '
(Sél)fl: (a—d+\/D_2)(l—g—\/5)\/_+(g 1- \/7>\/—, (7.37)
4./bgp/€1DD> elDD
121 (@=d+vD2)yv/gA1 | gobA;
(8) =", N Novir Ny (7.38)
1 (a—d—+D2)(1-g— \/7)\/_ g 1- \/7
)" 4+/bg\/e,0D; /92/€2DD3 (7.39)
2 (a—d—vD2)\/OA1 | g2bA;
() > /o005 et (7.40)
Here,
2
a=»MA %4—94 C 33/7 492]
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hiea-0-E75]
l )

d=A\, [ +d 23/5 492}
a+d++/D>
Blo=——5

1+ 1
Ao = — 9 +g43F§\/5,

andD, = (a—d)2+4bc, D = (1—g)%+4g3, g=V| /Vg, andg 4 being the interaction constants.

99



Bibliography

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughta®, von Molnar, M. L.
Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintroniasspin-based electronics
vision for the future.Science294:1488, 2001.

[2] G. Gilder. Fiber keps its promise. Technical report,déil Technology Report, 1997.
[3] A. L. Chudnovskiy. Spintronics, 2004. Lectures giverHamburg University.

[4] Yu.A. Bychkov and E.I. Rashba. Properties of 2D electgas with lifted spectral degen-
eracy.JEPT Letters39:78, 1984.

[5] Yu.A. Bychkov and E.l. Rashba. Oscillatory effects ameé tmagnetic susceptibility of
carriers in inversion layersl. Phys. C17:6039—-6045, 1984.

[6] G. Engels, J. Lange, Th. Schapers, and H. Luth. Expemiad and theoretical approach to
spin splitting in modulation-dopelthyGay —xAs/InP quantum wells foB — 0. Phys. Rev.
B, 55:1958, 1997.

[7] C.-M. Hu, J. Nitta, T. Akazaki, H. Takayanagi, P. Pfeffand W. Zawadzki. Zero-field spin
splitting in an invertedng s3Gag 47AS/ Ing 52Al 0 4gAsheterostructure: Band nonparabolicity
influence and the subband dependeriigys. Rev. B60:7736, 1999.

[8] T. Matsuyama, R. Kursten, C. Meissner, and U. Merkt. HRasspin splitting in inversion
layers on p-type bulk InAsPhys. Rev. B61:15588, 2000.

[9] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki. Gatetrol of spin-orbit interaction
in an invertedng 53Gag 47AS/1ng 52Alp.48As heterostructure Phys. Rev. Letters8:1335,
1997.

[10] J. P. Heida, B. J. van Wees, J. J. Kuipers, and T. M. Klgpwspin-orbit interaction in a
two-dimensional electron gas in a InAs/AISb quantum wethvwgate-controlled electron
density.Phys. Rev. B57:11911, 1998.

[11] D. Grundler. Large Rashba splitting in InAs quantumIg/elue to electron wave function
penetration into the barrier layerBhys. Rev. Letter84:6074, 2000.

[12] D. Loss, Paul M. Goldbart, and A.V. Balatsky. Berry’sgsie and persistent charge and spin
currents in textured mesoscopic ring#dys. Rev. Letter$5:1655-1658, 1990.

100



[13] A.G. Aronov and Y.B. Lyanda-Geller. Spin-orbit Berrhase in conducting ringsPhys.
Rev. Letters70:343—-346, 1993.

[14] F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk. One-densional ring in the presence
of Rashba spin-orbit interaction: Derivation of the cotrelamiltonian. Phys. Rev. B
66:033107, 2002.

[15] M.V. Berry. Quantal phase factors accompanying adialidanges.Proc. Soc. Lond. A
392:45-57,1984.

[16] A. Shapere and F. Wilczek, editoiGeometric Phases in Physidd/orld Scientific, Singa-
pore, 1989.

[17] Y. Aharonov and J. Anandan. Phase change during a agahotum evolutionPhys. Rev.
Letters 58:1593-1596, 1987.

[18] D. Loss and P. Goldbart. Persistent currents from Beiphase in mesoscopic systems.
Phys. Rev. B45:13544-13561, 1990.

[19] A. Stern. Berry’s phase, motive forces, and mesoscopi@luctivity. Phys. Rev. Letters
68:1022-1025, 1992.

[20] Y. Lyanda-Geller, I.L. Aleiner, and Paul M. Goldbart.obain walls and conductivity of
mesoscopic ferromagnetBhys. Rev. Letter81:3215-3218, 1998.

[21] H.-A.Engel and D. Loss. Conductance fluctuations ifudiie rings: Berry phase effects
and criteria for adiabaticityPhys. Rev. B62:10238-10254, 2000.

[22] Diego Frustaglia, Martina Hentschel, and Klaus Rich@uantum transport in nonuniform
magnetic fields: Aharonov-Bohm ring as a spin switdPhys. Rev. Lettey87:256602,
2001.

[23] D. Frustaglia and K. Richter. Spin interference efédotring conductors subject to Rashba
coupling.Phys. Rev. B69:235310, 2004.

[24] Markus Popp, Diego Frustaglia, and Klaus Richter. Gomals for adiabatic spin transport
in disordered system®&hys. Rev. B68:041303, 2003.

[25] M. Hentschel, H. Schomerus, D. Frustaglia, and K. RichAharonov-Bohm physics with
spin i: Geometric Phases in One-dimensional Ballistic Ringhys. Rev. B69:155326,
2004.

[26] M. Hentschel, D. Frustaglia, and K. Richter. Aharor®ehm physics with spin ii: Spin-flip
effects in two-dimensional ballistic systent3hys. Rev. B69:155327, 2004.

[27] Y. Aharonov and D. Bohm. Significance of electromagngtotentials in the quantum
theory.Phys. Rey.115:485-491, 1959.

101



[28] Yi-Chang Zhou, Hua-Zhong Li, and Xun Xue. Spin-orbitugbing in one-dimensional
conducting ringsPhys. Rev. B49:14010-14011, 1994.

[29] Y. Lyanda-Geller. Topological transitions in Berryfase interference effectBhys. Rev.
Letters 71:657—-661, 1993.

[30] Tie-Zheng Qian and Zhao-Bin Su. Spin-orbit interactand Aharonov-Anandan phase in
mesoscopic ringsPhys. Rev. Lettey§2:2311-2315, 1994.

[31] A.G. Mal'shukov, V.V. Shlyapin, and K.A. Chao. Effect the spin-orbit geometric phase
on the spectrum of Aharonov-Bohm oscillations in a semicatal mesoscopic rindg2hys.
Rev. B60:R2161-R2164, 1999.

[32] A. F. Morpurgo, J. P. Heida, T. M. Klapwijk, B. J. van Weesd G. Borghs. Ensemble-
average spectrum of Aharonov-Bohm conductance osciiati&cvidence for spin-orbit-
induced Berry’s phasd?hys. Rev. Letter80:1050-1053, 1998.

[33] J. Nitta, H. Takayanagi, and S. Calvet. Magnetoresaoscillations in an Aharonov-
Bohm ring using two-dimensional electron gas InMicroelectron. Eng.47:85, 1999.

[34] Jeng-Bang Yau, E. P. De Poortere, and M. Shayegan. AbarBohm oscillations with
spin: Evidence for Berry s phasBhys. Rev. Lettey88:146801-146804, 2002.

[35] M.J. Yang, C.H. Yang, and Y.B. Lyanda-Geller. Quantueating in the conductance of
ballistic rings.Physica E 22:304-307, 2004.

[36] M.J. Yang, C.H. Yang, and Y.B. Lyanda-Geller. Quantugating in the conductance:
observation of spin chiral states and Berry’s ph&seophysics Letter$6:826—832, 2004.

[37] M. Bittiker, Y. Imry, and M. Ya. Azbel. Quantum oscilians in one-dimensional normal-
metal rings.Phys. Rev. A30:1982-1989, 1984.

[38] R. Landauer and M. Bittiker. Resistance of small niietdbops. Phys. Rev. Letters
54:2049-2052, 1985.

[39] M. Bittiker, Y. Imry, R. Landauer, and S. Pinhas. Geatieed many-channel conductance
formula with application to small ring$?hys. Rev. B31:6207-6215, 1985.

[40] Hans De Raedt. Comment on “Ensemble-average spectfuxharonov-Bohm conduc-
tance oscillations: Evidence for spin-orbit-induced B&riphase”. Phys. Rev. Letters
83:1700, 1999.

[41] A. F. Morpurgo, J. P. Heida, T. M. Klapwijk, B. J. van Weesid G. Borghs. Reply to De
Raedt.Phys. Rev. Lettey83:1701, 1999.

[42] A.G. Mal'shukov and K. A. Chao. Comment on “Aharonov+Bo oscillations with spin:
Evidence for Berry’s phasePhys. Rev. Lettey90:179701, 2003.

102



[43] Jeng-Bang Yau, E. P. De Poortere, and M. Shayegan. Repal’'shukov et al.Phys. Rev.
Letters 90:179702, 2003.

[44] A. G. Wagh and V. Ch. Rakhecha. Comment on “AharonoviBascillations with spin:
Evidence for Berry’s phasePhys. Rev. Lettey90:119703, 2003.

[45] Jeng-Bang Yau, E. P. De Poortere, and M. Shayegan. Replyagh et al. Phys. Rev.
Letters 90:119704, 2003.

[46] S. Datta and B. Das. Electronic analog of the electrbeapodulator.Appl. Phys. Letters
56:665—667, 1990.

[47] A. Hirohata, S. J. Steinmueller, W. S. Cho, Y. B. Xu, C.Glertler, G. Wastlbauer, J. A. C.
Bland, and S. N. Holmes. Ballistic spin filtering across demagnet/semiconductor inter-
faces at room temperaturBhys. Rev. B66:035330, 2002.

[48] S. E. Andresen, S. J. Steinmuller, A. lonescu, G. Wasidi, C. M. Guertler, and J. A. C.
Bland. Role of electron tunneling in spin filtering at ferragmet/semiconductor interfaces.
Phys. Rev. B68:073303, 2003.

[49] S. D. Ganichey, E. L. Ivchenko, S. N. Danilov, J. Eroms,Wégscheider, D. Weiss, and
W. Prettl. Conversion of spin into directed electric cutrenquantum wells.Phys. Rev.
Letters 86:4358—-4361, 2001.

[50] L. P. Rokhinson, V. Larkina, Y. B. Lyanda-Geller, L. Nfd#fer, and K. W. West. Spin
separation in cyclotron motioRhys. Rev. Lettey93:146601, 2004.

[51] Erasmo A. de Andrada e Silva and Giuseppe C. La Roccactriglespin polarization by
resonant tunneling?hys. Rev. B59:R15583—-R15585, 1999.

[52] A. A. Kiselev and K. W. Kim. T-shaped ballistic spin filte Applied Physics Letters
78:775-777,2001.

[53] Al L. Efros, E. I. Rashba, and M. Rosen. Paramagnetiedoped nanocrystal as a voltage-
controlled spin filterPhys. Rev. Letter87:206601-206604, 2001.

[54] Takaaki Koga, Junsaku Nitta, Hideaki Takayanagi, andriyo Datta. Spin-filter device
based on the Rashba effect using a nonmagnetic resonaetinghdiode.Phys. Rev. Let-
ters 88:126601-126604, 2002.

[55] A. G. Mal'shukov and K. A. Chao. Optoelectric spin injen in semiconductor het-
erostructures without a ferromagn@hys. Rev. B65:R241308, 2002.

[56] M. Governale, D. Boese, U. Zilicke, and C. Schroll. téiing spin with tunnel-coupled
electron wave guidef?hys. Rev. B65:140403, 2002.

[57] O. Wunnicke, Ph. Mavropoulos, R. Zeller, P. H. Dedesicind D. Grundler. Ballistic spin
injection from Fe(001) into ZnSe and GaABhys. Rev. B65:R241306, 2002.

103



[58] S. Bellucci and P. Onorato. Rashba effect in two-din@ms mesoscopic systems with
transverse magnetic fiel®hys. Rev. B68:245322, 2003.

[59] M. Zwierzycki, K. Xia, P. J. Kelly, G. E. W. Bauer, and luflek. Spin injection through an
Fel/lnAs interfacePhys. Rev. B67:092401, 2003.

[60] A. Shekhter, M. Khodas, and A. M. Finkel'stein. Diffugenission in the presence of
an inhomogeneous spin-orbit interaction for the purposgpai filtration. Phys. Rev. B
71:125114, 2005.

[61] S. D. Ganichev, V. V. Bel'kov, Petra Schneider, E. L. heoko, S. A. Tarasenko,
W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and WttPrResonant inversion
of the circular photogalvanic effect mdoped quantum wellsPhys. Rev. B68:035319,
2003.

[62] M. Khodas, A. Shekhter, and A. M. Finkel'stein. Spin @otation of electrons by nonmag-
netic heterostructures: The Basics of Spin Optijisys. Rev. Lettey92:086602, 2004.

[63] R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. Willsman Beveren, J. M. Elz-
erman, and L. P. Kouwenhoven. Zeeman energy and spin relaxat a one-electron
quantum dotPhys. Rev. Letter91:196802, 2003.

[64] M. Yamamoto. priv. comm.

[65] M. C. W. van Rossum and Th. M. Nieuwenhuizen. Multiplatsering of classical waves:
microscopy, mesoscopy, and diffusidRev. Mod. Phys71:313-371, 1999.

[66] A. R. Dedigama, D. Deen, Sh. Murphy, N. Goel, M. SantosSKzuki, S. Miyashita, and
Y. Hirayama. Current focusing in InSb heterostructured.@mH International Conference
on Electronic Properties of Two-Dimensional Systems: Hitagram and Abtsract2005.

[67] Jan von Delft and Herbert Schoeller. Bosonization fegibners - refermionization for
experts.Annalen der Physik7:225, 1998.

[68] S. Tomonaga. Remarks on Bloch’s method of sound wavelsegito many-fermion prob-
lems. Prog. Theor. Phys5:544, 1950.

[69] D. C. Mattis and E. H. Lieb. Exact solution of a many feomisystem and its associated
boson field.J. Math. Phys.6:304, 1965.

[70] J. M. Luttinger. An exactly soluble model of a many-féeom system. J. Math. Phys.
4:1154, 1963.

[71] K. D. Schotte and U. Schatte. Tomonaga’s model and treshold singularity of X-ray
spectra of metals?hys. Rey.182:479, 1969.

[72] D. C. Mattis. New wave-operator identity applied to #tady of persistent currents in 1D.
J. Math. Phys.15:609, 1974.

104



[73] A. Luther and I. Peschel. Single-particle states, Kahomaly, and pairing fluctuations in
one dimensionPhys. Rev. B9:2911, 1974.

[74] R. Heidenreich, B. Schroer, R. Seiler, and D. Uhlenkrothe sine-Gordon equation and
the one-dimensional electron gd&hys. Lett.54A:119, 1975.

[75] F. D. M. Haldane. Coupling between charge and spin =g freedom in the one-
dimensional Fermi gas with backscatteridgPhys. C12:4791, 1979.

[76] F. D. M. Haldane. 'Luttinger liquid theory’ of one-dimsional quantum fluids. i. Properties
of the Luttinger model and their extension to the generahteracting spinless Fermi gas.
J. Phys. C14:2585, 1981.

[77] V. Meden and K. Schonhammer. Spectral functions fer Tomonaga-Luttinger model.
Phys. Rev. B46:15753-15760, 1992.

[78] J. Voit. Charge-spin separation and the spectral ptgseof Luttinger liquids.Phys. Rev.
B, 47:6740-6743, 1993.

[79] A.V. Shytov, L.I. Glazman, and O.A. Starykh. Zeemanitsiplg of zero-bias anomaly in
Luttinger liquids.Phys. Rev. Lettey91:046801, 2003.

[80] T. Kimura, K. Kuroki, and H. Aoki. Generation of spin-famized currents in Zeeman-split
Tomonaga-Luttinger model®hys. Rev. B53:9572-9575, 1996.

[81] A.V. Moroz, K.V. Samokhin, and C.H.W. Barnes. Spin-ibdpupling in interacting quasi-
one-dimensional electron systenihys. Rev. Letter84:4164, 2000.

[82] A.V. Moroz, K.V. Samokhin, and C.H.W. Barnes. Theorygqfasi-one-dimensional elec-
tron liquids with spin-orbit couplingPhys. Rev. B62:16900-16911, 2000.

[83] A.V. Moroz and C.H.W. Barnes. Effect of the spin-orbiteraction on the band structure
and conductance of quasi-one-dimensional systéthgs. Rev. B60:14272-14285, 1999.

[84] A.O. Gogolin, A.A. Nersesyan, and A.M. TsvelikBosonization in Strongly Correlated
SystemsCambridge University Press, 1998.

[85] S. Coleman. Quantum sine-Gordon equation as the nea$bkivring model.Phys. Rev. D
11:2088, 1975.

[86] C. L. Kane and M. P. A. Fisher. Transport in a one-chatngtinger liquid. Phys. Rev.
Letters 68:1220, 1992.

[87] C. L. Kane and M. P. A. Fisher. Transmission throughieasrand resonant tunneling in an
interacting one-dimensional electron g&hys. Rev. B46:15233, 1992.

[88] G. Mahan.Many-Particle PhysicsPlenum Press, New York, 1981.

105



[89] I. S. Gradstein and |. M. Ryzhik.Tables of integrals, series and product§&izmatgiz,
Moscow, 1962.

[90] L.D. Landau and E.M. LifshitzQuantum Mechanics: Non-relativistic Theorffergamon
Press, 1958.

[91] F. Mireles and G. Kirczenow. Ballistic spin-polarizednsport and Rashba spin precession
in semiconductor nanowire®hys. Rev. B64:024426, 2001.

[92] C. H. Yang, M. J. Yang, K. A. Cheng, and J. C. Culbertsonhafcterization of one-
dimensional quantum channels in InAs/AISRhys. Rev. B66:115306, 2002.

[93] E. N. Bulgakov and A. F. Sadreev. Spin-rotation for iséilt electron transmission induced
by spin-orbit interactionPhys. Rev. B66:075331, 2002.

[94] A. V. Chaplik and R. H. Blick. On geometric potentialsnanomechanical circuits, cond-
mat/0308040.

[95] J. von Delft and H. Schoeller. Bosonization for begirsne- refermionization for experts.
Ann. der Phys.4:225-305, 1984.

[96] M. Buttiker. Quantized transmission of a saddle-pawnstriction.Phys. Rev. B41:7906—
7909, 1990.

[97] D. Gammon. Electrons in artificial atomNature 405:899, 2000.

[98] R. J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. ker J. M. Garcia, W. Schoenfeld,
and P. M. Petroff. Optical emission from a charge-tunabkndum ring.Nature 405:926,
2000.

[99] T. V. Shahbazyan, |. E. Perakis, and M. E. Raikh. Spettractions for the Tomonaga-
Luttinger model.Phys. Rev. B64:115317, 2001.

106



Acknowledgments

At the end of this work | would like to express my gratitude toestain amount of people.

First, 1 would like to thank Prof. Daniela Pfannkuche for imgyvgiven me the possibility of
studying such interesting areas of modern physics and wgriki such friendly, informal and
collaborative atmosphere. Although leaving me a greatraurtty, she always kept supporting
me at any moment of my scientific life. Thank you, Daniela!

There are definitely more people at thelnstitut {ir Theoretische Physikwould like to thank.

Clearly, above all, Dr. Alexander Chudnovskiy, my livelypguvisor. It is a big pleasure to know
and work together with such an exemplar person, from mangtmgiviews. | thank him for
all he taught me in physics and for the exceptional examptgtimism that he shared with me
during the work.

| would also like to thank the following people from our Irtgte for their friendly attitude to-
wards me: Prof. Kurt Scharnberg, Prof. Alexander LichteinstDr. Stefan Kettemann, Evgeny
Gorelov, Frank Hellmuth, Daniel Bezecny, Christian Mijllandreas Rothe, Hosnieh Safaei-
Katoli, Bernhard Wunsch, Frank Deuretzbacher...

There are other people at the Physical Department withoonwimy stay in Hamburg could
not have taken place. In this sense | would like to express @eyp @ratitude to Prof. Wolfgang
Hansen from thénstitut fur Angewandte Physiénd Prof. Bernhard Kramer from the Institut
fur Theoretische Physjikvho organized my first visit to the University of Hamburg.

| acknowledgeGraduiertenkolleg “Physik nanostrukturierter Festiper” for financial support
and the excellent discussions with the members belong to.

On a more private level let me thank several people beyontliinersity of Hamburg: Moritz
Helias, Riccardo Mazzarello, Jana Busygina, Anika Vogedl, 2specially, Miki Sawai.

Finally, I want to thank, above all, my family. You were alvgdyere, although by long distance!
Thank you all!

107



