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Zusammenfassung

Diese theoretische Arbeit beschäftigt sich mit dem Elektronen-Transport in einem eindimension-
alen System mit Rashba Spin-Bahn Kopplung.

Als erstes Ergebnis dieser Arbeit haben wir die Manifestation einer Spin-Orbit Berry Phase in
der Leitfähigkeit eines mesoscopischen Ringes mit RashbaSpin-Bahn Kopplung und externem
Magnetfeld senkrecht zur Ringebene. Speziell wurden die Transmissionswarscheinlichkeiten
für einen geraden Quantendraht und für einen Quantenringaus demselben Material berechnet
und miteiander verglichen. Der Unterschied zwieschen den beiden wurde untersucht und als
Manifestation einer Spin-Orbit Berry Phase indentifieziert. Ebenso wurde die Manifestation
einer nicht adiabatischen Aharonov-Anandan Phase bei kleinen Ringdurchmessern gefunden.

Als zweites Ergebnis haben wir festgestellt, dass ein starkgekrümmter, eindimensionaler, bal-
listischer Draht mit intrinsischer Spin-Bahn Wechselwirkung in der Lage ist, die Stromdichte
zwischen zwei Spin-aufgespaltenen Moden zu verteilen und somit die Möglichkeit bietet, die
Spinpolarization zu ändern ohne ferromagnetische Kontakte, Tunnelbarieren, externe Felder oder
dergleichen zu verwenden. Unter Verwendung der für InAs relevanten Parameter, schlagen wir
auf Grundlage dieses Effekts ein reflektionslosen Spinschalter vor.

Als drittes Ergebnis beschreiben wir ein eindimensionalesSystem, in dem die Fermigeschwindigkeit
wie auch die Zustandsdichte für die sich nach links und nachrechts bewegenden Elektronen un-
gleich sind. Ein solches System kann sich in einem isolierten Quantenring mit Spin-Bahn Kop-
plung und senkrechtem magnetischen Feld herausbilden. Um den Einfluss der Elektron-Elektron
Wechselwirkung auf die chirale Asymmetrie der Zustandsdichte beschreiben zu können, wird
das Tomonaga-Luttinger Model angewandt. Wie sich herausstellt, führt die Elektron-Elektron
Wechselwirkung zu einer Ausrichtung der Zustandsdichte der sich nach links und nach rechts
bewegenden Elektronen. Zusätzlich wurde der Landauer-B¨uttiker Formalismus für ein System
mit chiraler Asymmetrie der Zustandsdichte veralgemeinert.
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Abstract

This is a theoretical study of electron transport in one-dimensional systems with spin-orbit cou-
pling of Rashba type.

First, we have found a manifestation of spin-orbit Berry phase in the conductance of a meso-
scopic loop with Rashba spin-orbit coupling placed in an external magnetic field perpendicular
to the loop plane. In detail, the transmission probabilities for a straight quantum wire and for a
quantum loop made of the same wire have been calculated and compared with each other. The
difference between them has been investigated and identified with a manifestation of spin-orbit
Berry phase. The manifestation of a non-adiabatic Aharonov-Anandan phase at small radii of
the loop has been found as well.

Second, we have found that a strongly curved one-dimensional ballistic wire with intrinsic spin-
orbit interactions can redistribute the current density between the two spin-split modes and, thus,
makes it possible to change the spin-polarization without using ferromagnetic contacts, tunneling
barriers, external radiation etc. Assuming parameters relevant for InAs we propose a scheme of
a reflectionless spin-switch based on this effect.

Third, we have described a one-dimensional system, where the Fermi velocities (as well as the
densities of states) for the left- and right-moving electrons are not equal to each other. Such a
system can be formed in an isolated quantum loop with spin-orbit coupling placed into a mag-
netic field perpendicular to the loop plane. The Tomonaga-Luttinger model has been applied in
order to describe the influence of electron-electron interactions on the chiral asymmetry of the
density of states. We have found, that electron-electron interactions lead to the alignment of the
densities of states for the left- and right- moving electrons. In addition, the Landauer-Büttiker
formalism has been generalized for systems with chiral asymmetry of the density of states.
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1 Spintronics and spin-orbit coupling in
semiconductors

Spintronics is one of the most promising fields of modern solid state physics in view of its
possible applications in commercial electronic devices. In contrast to mainstream electronics in
which the spin of the electron is ignored, the basic concept of spintronics is the combination
of standard microelectronics and spin-dependent effects that arise from the interaction between
spin of the carrier, its orbital degree of freedom and magnetic properties of the material. One of
such spin-dependent effects found in many semiconductor structures is the so-called spin-orbit
coupling (in particular, Rashba spin-orbit coupling). In general, the effect is due to the spatial
inverse symmetry breaking that occurs in some crystals of zinc blende type structure as well as
in low dimensional systems with asymmetric confinement.

Adding the spin degree of freedom to conventional semiconductor charge-based electronics or
using the spin degree of freedom alone will add substantially more capability and performance to
electronic products. The advantages of these new devices would be their non-volatility, increased
data processing speed, decreased electric power consumption, and increased integration densi-
ties compared with conventional semiconductor devices [1]. The foregoing example is meant to
illustrate that the switching speed of an ideal device basedon the Rashba spin-orbit coupling ef-
fect in InAs structure is much higher than the characteristic speeds of nowadays microelectronics
elements.

In order to switch any of conventional semiconductor devices (e. g. transistor), one has to remove
(or add) a huge amount of electrons from (or to) the conduction band by means of the external
electric field. All manipulations of that kind bring about a waste of time and energy. Therefore,
the switching speed of modern transistors tops out at a cycletime of between 2.5 and 10 GHz
[2]. Moreover, the overheating of the chip can be a big problem.

In contrast, a spintronics element operates not with an electron itself, but with its spin orientation.
It is not necessary to transfer all the electrons from one place to another for each cycle; it is
enough just to change their spin-orientation. (The electrons, of course, must be spin-polarized.)
Let us estimate the switching speed of the spintronic devicebased on Rashba effect in the ballistic
transport regime. We take the parameters relevant for InAs,i. e. the characteristic length of the
“active” region necessary to rotate the electron spin to itsopposite direction is equal to∼ 10−5cm
(spin precession length), whereas the characteristic velocity is 5·107cm/s. Then we have, that
the cycle time is 0.2ps that corresponds to 5 THz. Thus, hypothetical spintronic computers might
be one thousand times faster than conventional ones!

In view of the importance of the Rashba effect in spintronics, it has become necessary to inves-

6



tigate properties related to the spin-orbit coupling in low-dimensional systems. This will be the
main topic addressed in this work.

This thesis is organized as follows. In the Chapter 2, we explain the origin of the Rashba ef-
fect using very general solutions of the Dirac equation. In the same Chapter we give a brief
overview of recent work concerning the geometrical phases in solid state physics and progress
in spin-manipulation. The introduction to the Tomonaga-Luttinger model in connection with
spin-dependent effects is given as well.

In the next three Chapters, we focus on the interplay betweenRashba spin-orbit coupling, Zee-
man effect, electron-electron interactions in one-dimensional systems of non-zero curvature. The
spin-orbit Berry phase in a quantum loop will be investigated in the Chapter 3. In the Chapter 4,
we show how curved one-dimensional wires with intrinsic spin-orbit interactions can redistribute
the current density between two spin-split modes. In addition, the spin-switching device based
on this effect is proposed.

The results of Chapter 5 are more fundamental. The chiral asymmetry of electron density
of states is found in a curved one-dimensional wire with Rashba coupling and Zeeman spin-
splitting. The influence of electron-electron interactions on the chiral asymmetry is studied as
well. The Landauer-Büttiker formalism is generalized to apply to systems with the chiral asym-
metry of the density of states.

At the end of the beginning, we wish the reader to enjoy the thesis.
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2 Rashba effect in low-dimensional
systems: origin and manifestations

In this chapter we show how the Rashba spin-orbit coupling term arises in the Hamiltonian of
an electron gas placed in an external electric field. Three-,two- and one-dimensional cases are
considered. It is shown that the Rashba effect in one-dimensional rings leads to the effective mag-
netic field crown-like texture and in that way makes it possible to observe the spin-orbit Berry’s
phase. Moreover, the applications of Rashba effect in spin-filtering technique are discussed. Fi-
nally, we give an introduction to the Tomonaga-Luttinger model and discuss its applications to
one-dimensional systems with spin-dependent effects (such as Rashba and Zeeman ones).

2.1 Spin-orbit interactions in a bulk sample

It has been established both theoretically and experimentally that in electron gases of narrow-
gap semiconductors there is an energy splitting between up-spin and down-spin electrons even
when there is no magnetic field. The dominant mechanism for this “zero-field spin-splitting”
is believed to be spin-orbit interactions. We focus here on the spin-orbit coupling of Rashba
form. Other mechanisms for bulk structures such as the bulk inversion asymmetry term (spin-
orbit interactions of Dresselhaus form) also contribute tothe zero-field spin splitting; however
we ignore these here as they are usually smaller in narrow-gap semiconductors.

The problem of an electron moving in a solid is usually treated using the stationary Schrödinger
equation

1
2m

(
p− e

c
A
)2

ψ+eφ(r)ψ = Eψ, (2.1)

whereφ(r) is a given electrostatic potential,p is the electron momentum,A is the vector po-
tential, ande =| e |, m are the electron charge and mass respectively. The electronspin has,
however, essentially relativistic origin. Therefore, thenon-relativistic stationary Schrödinger
equation (2.1) could not be used for the description of spin-orbit interactions in the electron
motion.

In order to introduce the appropriate spin-orbit interaction term into (2.1), we start with the four-
component Dirac equation

i ~
∂Ψ(r, t)

∂t
= HDΨ(r, t). (2.2)

Here
HD = αc

(
p− e

c
A
)

+βmc2+ I4eφ(r), (2.3)
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where

α =

(
σ 0
0 −σ

)
, β =

(
0 I2
I2 0

)
, I4 =

(
I2 0
0 I2

)
, (2.4)

I2 is the unit matrix 2×2

I2 =

(
1 0
0 1

)
, (2.5)

andσ are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.6)

The usual way [3] to solve the Dirac equation (2.2) is to reduce it to two components using the
substitution

Ψ(r, t) = Ψ′(r, t)e−itmc2/~, (2.7)

where

Ψ′(r, t) =

(
ϕ′(r, t)
ϑ′(r, t)

)
. (2.8)

Then we have the following system of equations





(
i ~ ∂

∂t +mc2−eφ(r)
)

ϕ′ = mc2ϑ′ +cσ
(
p− e

cA
)

ϕ′,(
i ~ ∂

∂t +mc2−eφ(r)
)

ϑ′ = mc2ϕ′−cσ
(
p− e

cA
)

ϕ′.
(2.9)

Performing a second substitution

ϕ̃′ =
ϕ′+ϑ′

2
, ϑ̃′ =

ϕ′−ϑ′

2
, (2.10)

we arrive at 




(
i ~ ∂

∂t −eφ(r)
)

ϕ̃′ = cσ
(
p− e

cA
)

ϑ̃′,(
i ~ ∂

∂t +2mc2−eφ(r)
)

ϑ̃′ = cσ
(
p− e

cA
)

ϕ̃′.
(2.11)

From the second equation of (2.11) we have

ϑ̃′ =

(
i ~

∂
∂t

+2mc2−eφ(r)
)−1

cσ
(

p− e
c

A
)

ϕ̃′. (2.12)

The electron energy in solid state physics is much smaller thanmc2. Therefore, one can approx-
imate (2.12) as

ϑ̃′ =


1−

(
i ~ ∂

∂t −eφ(r)
)

2mc2


 cσ

(
p− e

cA
)

2mc2 ϕ̃′. (2.13)
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Using this approximate expression and the first equation of (2.11) we finally arrive at
(

i ~
∂
∂t

−eφ(r)
)

ϕ̃′ =
1

2m

[
σ
(

p− e
c

A
)][

σ
(

p− e
c

A
)]

ϕ̃′

− 1
4m2c2

[
σ
(

p− e
c

A
)](

i ~
∂
∂t

−eφ(r)
)[

σ
(

p− e
c

A
)]

ϕ̃′. (2.14)

This is the basic equation for description of spinfull electron motion. We find it necessary to
make several remarks concerning (2.14). First of all, usingthe commutation relation between
momentum and coordinate operators as well as relations between Pauli matricesσxσy = iσz,
σxσz = −iσy, σyσz = iσx one can show, that the first term on the right-hand side of eq. (2.14)
is nothing else than the sum of ordinary kinetic and Zeeman energies. The second term on the
right-hand side of eq. (2.14) gives actually two contributions. The first one is the negligible
first-order ofE/2mc2 relativistic correction for kinetic and Zeeman energies, while the second
one explicitly represents spin-orbit interactions. Let usfinally note, that equation (2.14) is still
time-dependent, while we are going to study stationary cases. Then, performing the standard
substitutionϕ̃′(r, t) = ψ(r)exp(−iEt/~) in (2.14), we arrive at the stationary Schrödinger equa-
tion [cf. (2.1)] with relativistic corrections

1
2m

(
p− e

c
A
)2

ψ−µB (σ ·B)ψ+

+
1

4m2c2

[
σ
(

p− e
c

A
)]

eφ(r)
[
σ
(

p− e
c

A
)]

ψ+eφ(r)ψ = Eψ. (2.15)

HereµB = e~/(2mc) is the Bohr magneton.

As from now, we call these relativistic corrections “spin-orbit coupling in general form” and use
the notation

HSO=
1

4m2c2

[
σ
(

p− e
c

A
)]

eφ(r)
[
σ
(

p− e
c

A
)]

. (2.16)

In the following, we study the effects of this term in some particular cases.

2.2 Rashba spin-orbit coupling in a two-dimensional electr on
gas

Let us consider the relativistic spin-orbit correctionsHSO in the case of a two-dimensional elec-
tron gas confined in thexy plane by a given electrostatic potentialVc(z). Then the potential
φ(r) in (2.15), (2.16) is nothing else than the confining oneφ(z) = Vc(z)/eand the coresponding
electric fieldE(z) reads

E(z) = −∂φ(z)
∂z

.

It is important to note, that if the confining potential is symmetricφ(z) = φ(−z), then the total
electric fieldEz experienced by the electrons in the 2D gas (see fig. 2.1) is zero. In contrast,
Ez 6= 0 as soon asφ(z) 6= φ(−z).
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x0

y

2D

z

E(z)

Figure 2.1: The coordinate system used throughout this thesis for the description of the 2D electron gas
placed in the electric fieldE.

We restrict ourselves to the case of a homogeneous magnetic field |B| = Bz perpendicular to the
electron gas plane. The gauge is chosen so, that

Ax = −1
2

Bzy, Ay =
1
2

Bzx, Az = 0. (2.17)

Then, neglecting the terms of order
[

1
2m

(
p− e

c
A
)2
]

eφ(z)
2mc2 ,

we rewrite the spin-orbit coupling term (2.16) in the more conventional form

HSO=
e~Ez

4m2c2

[
i p̂z+σx

(
p̂y−

e
c
Ay

)
−σy

(
p̂x−

e
c
Ax

)]
. (2.18)

As a final step, we assume, that the size quantization inz direction is so strong, that only one
subband is occupied by electrons. Therefore, thepz-dependent term in (2.18) gives just a constant
(which is usually set to zero). Thus, the spin-orbit interaction term takes a form (the original
Rashba formHR [4, 5]) often encountered in the literature, namely

HSO≡ HR = α [σ×k]z, (2.19)

where the Rashba constant is

α =
e~

2Ez

4m2c2 , (2.20)

and

k =
1
~

(
p− e

c
A
)

is the electron wave vector. The Rashba constantα has the dimension of length×energy, and can
not be measured directly. There are, however, several indirect methods (e. g. using Shubnikov-de
Haas oscillations [6, 7, 8]) that allow to determineα.
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Let us emphasize, that the spin-orbit coupling of Rashba type is associated with the interfacial
electric fieldEz in the quantum well that confines the two-dimensional electron gas. This electric
field can be governed by the voltage applied to metallic gateson top of the heterojunction. Thus,
such an internal property of semiconductor structures as spin-orbit coupling is experimentally
tunable. This is a distinct feature of the 2D electron gas confined in a heterojunction compared
to the bulk case. Of course, the spin-orbit interactions arepresent in bulk semiconductors as
well (e. g. Dresselhaus spin-orbit coupling). However, these effects arise essentially from the
particular (internal!) properties of the zinc-blende crystal lattice structure. The external tuning
of bulk spin-orbit effects is, therefore, rather difficult.In contrast, the Rashba effect is much
more promising in this sense. Indeed, tuning of the Rashba spin-orbit coupling by means of an
external gate voltage was recently demonstrated in different semiconductors by Nitta et al. [9]
and others [6, 10, 7] and more recently by Grundler [11] applying a back gate voltage while the
carrier density was kept constant. It has also been achievedin a p-type InAs semiconductor by
Matsuyama et al. [8].

2.3 Rashba spin-orbit interactions in one-dimensional
structures

The results given in the previous section suggest, that confining electrons from bulk semicon-
ductors with spin-orbit interactions to the two-dimensional limit is very useful since it allows the
tunability of the Rashba constant. In this section, we address the question what new effects can
be reached by further restriction of the dimensionality of the electron gas. Namely, we consider
the one-dimensional case. In particular, we focus on the Rashba term (2.19) in the following two
limits: (i) 1D wire (see fig. 2.2a), and (ii) 1D arc that is, in other words, acurved1D wire (see
fig. 2.2b).

The first limit is rather trivial. Indeed, assuming that the electron gas is confined iny direction
so, that theky-dependent term in eq. (2.19) represents just a constant (which is set to zero) we
arrive at the following simple form for the Rashba term

H1Dwire
R =

(
0 iα k̂x

−iα k̂x 0

)
, (2.21)

wherek̂x = −i ∂
∂x.

The solutions of the Schrödinger equation for a 1D wire withthe HamiltonianH1Dwire= H1Dwire
kin +

H1Dwire
R , whereH1Dwire

kin = ~
2 k̂x

2
/2m, read

ψ+
1Dwire(x) =

1√
2

eik+x
(

1
−i

)
, ψ−

1Dwire(x) =
1√
2

eik−x
(

−i
1

)
, (2.22)

wherek± satisfy the dispersion relation

E±
k =

~
2

2m
(k±kSO)2− ~

2k2
SO

2m
. (2.23)
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x

y(a)

R x

(b)

Figure 2.2: The solution of the Schrödinger equation (cf. fig. 2.3 and fig. 2.4) for a 1D wire in the presence
of Rashba coupling depends strongly on whether the wire is straight (a) or curved (b). The arrows depict
two possible spin directions in the eigen states of the system.

Here we have introduced the following constant characterizing Rashba spin-splitting (see fig. 2.3)

kSO =
mα
~2 . (2.24)

Equation (2.23) always has two solutions with respect tok corresponding to left- and right-
moving particles for a given spin index “+” or “−”. Let us make some important comments on
the eigen functions (2.22) and the dispersion relation (2.23).

First, both elements of spinors (2.22) are not equal to zero.This reflects the fact, that the spin
quantization axis does not coincide with thez direction. In contrast, the electron spin in eigen
states (2.22) is directed along they axis (see fig. 2.2a). Thus, the electrons injected into a 1D wire
in their eigen states (2.22) keep constant direction of their spins along that axis. If an electron
is not in its eigen stateψ+

1Dwire or ψ−
1Dwire, then the Rashba effect rotates the spin while it moves

through the 1D wire. This particular fact is utilized in somespintronic devices such as spin field
effect transistors (see section 5 of this Chapter).

Second, the Rashba coupling shifts the dispersion curves along the momentum axis by the value
±~kSO (depending on spin index)andalong the energy axis by−~

2k2
SO/(2m). Notice, that the

shift along the energy axis changes the Fermi velocity in thewire (if the Fermi level is fixed).
However, in contrast to the Zeeman effect, this “vertical” shift does not depend on spin index.

Let us turn to the case of a wire with finite curvature (see fig. 2.2b). This case is not so trivial as
one might think.

The conventional way to obtain the Hamiltonian for a 1D arc (or ring) from the Hamiltonian in
2D consists of two steps. The Hamiltonian operator is transformed into cylindrical coordinatesr
andϕ. Adoptingx = r cosϕ, y = r sinϕ, the momenta operators read

−i ~
∂
∂x

= −i ~

(
cosϕ

∂
∂r

− sinϕ
r

∂
∂ϕ

)
,

13



-40

-20

0

20

40

60

80

100

-10 -5 0 5 10

E
ne

rg
y 

(a
rb

. u
ni

ts
)

Momentum (arb. units)

+

-

2~kSO

Figure 2.3: Typical dispersion law for a 1D wire with Rashba spin-orbit coupling given by the relation
(2.23) (solid line). The dashed line corresponds to the caseof zero spin-orbit coupling, i. e.E±

k = p2/2m,
p being momentum. The signs “±” denote the spin indices. Note, that there is no spin-splitting at zero
momentum.

−i ~
∂
∂y

= −i ~

(
sinϕ

∂
∂r

+
cosϕ

r
∂

∂ϕ

)
; (2.25)

and the Rashba operator acquires the following form

HR = α


 0 r−1e−iϕ

(
−i ∂

∂ϕ

)
+e−iϕ ∂

∂r

r−1eiϕ
(
−i ∂

∂ϕ

)
−eiϕ ∂

∂r 0


 . (2.26)

Then, naively one could setr to a constantRand discard all terms proportional to derivatives with
respect tor. This procedure works perfectly in simple cases, such as free electrons or electrons
in the presence of a uniform (or textured [12]) magnetic field. However, it does not work in the
presence of Rashba spin-orbit interactions!

Indeed, let us have a closer look on the Rashba operator for curved 1D system obtained by the
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conventional procedure described above

H ′
R =

α
R


 0 e−iϕ

(
−i ∂

∂ϕ

)

eiϕ
(
−i ∂

∂ϕ

)
0


 . (2.27)

We introduce two different probe functionsΦ(ϕ) andΨ(ϕ)

Φ(ϕ) =

(
Φ1

Φ2

)
, Ψ(ϕ) =

(
Ψ1

Ψ2

)
, (2.28)

which are defined in the interval(ϕ1,ϕ2) (arc geometry) or(0,2π) (ring geometry) so, that
Φ(ϕ1,2) = Ψ(ϕ1,2) = 0 (arc geometry) orΦ(0) = Φ(2π), Ψ(0) = Ψ(2π) (ring geometry). Then,
we calculate the matrix elements

Z

dϕΦ∗(ϕ)
[
H ′

RΨ(ϕ)
]
=

Z

dϕ
{

Φ∗
1

[
e−iϕ

(
−i

∂
∂ϕ

)
Ψ2

]
+Φ∗

2

[
eiϕ
(
−i

∂
∂ϕ

)
Ψ1

]}
. (2.29)

The following equalities can be derived straightforwardly,
Z

dϕΦ∗
1e−iϕ

(
−i

∂
∂ϕ

)
Ψ2 =

Z

dϕΨ2

(
−ieiϕ ∂

∂ϕ
Φ1 +Φ1eiϕ

)∗
,

Z

dϕΦ∗
2eiϕ

(
−i

∂
∂ϕ

)
Ψ1 =

Z

dϕΨ1

(
−ie−iϕ ∂

∂ϕ
Φ2−Φ2e−iϕ

)∗
. (2.30)

Substituting (2.30) into (2.29) we find, that
Z

dϕΦ∗(ϕ)
[
H ′

RΨ(ϕ)
]
6=

Z

dϕΨ(ϕ)
[
H ′

RΦ(ϕ)
]∗

. (2.31)

The inequality (2.31) shows that, in general, the operatorH ′
R is not Hermitian. Note, that per-

forming the same verification procedure for the initial operator (2.26) we conclude thatHR as a
whole is (of course) Hermitian (because of the term∂/∂r). However, ifr is set to a constantR
then all terms proportional to derivatives with respect tor do not give a contribution, and (2.26)
becomes non-Hermitian, which results in an imaginary energy spectrum at low energies [13].

There are a couple of methods how to deal with (2.26) in order to get its correct 1D form in polar
coordinates. The first one is very direct [14]. Let us add a potentialV(r) to this Hamiltonian
(2.26), which forces the electron wave functions to be localized on the arc (ring) in the radial
direction. SpecificallyV(r) is small in a narrow region aroundr = R and large outside this
region. For a narrow arc (ring) the confining energy in the radial direction is much larger than
the spin-orbit coupling energy and the kinetic energy in theazimuthal direction. This allows us
to solve the Hamiltonian for the radial wave function first and treatHR (as well as kinetic term) as
a perturbation. However, in order to obtain the 1D Hamiltonian explicitly, we have to calculate
the lowest radial mode for a given confining potential. The authors of [14] assume a harmonic
confining potential forV(r) and find that the expectation values ofr-dependent terms are

〈
R0(r)

∣∣∣∣
1
r

∣∣∣∣R0(r)

〉
=

1
R

, (2.32)
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and, most surprisingly, 〈
R0(r)

∣∣∣∣
∂
∂r

∣∣∣∣R0(r)

〉
= − 1

2R
. (2.33)

Here |R0(r)〉 is ther-dependent part of the normalized solution for the lowest radial mode. The
relation (2.33) shows, that we cannot safely disregard the∂/∂r term in order to obtain the correct
Hamiltonian for curved 1D systems with spin-orbit interactions.

Of course, it is not essential to choose a very harmonic potential. To show this, the authors of [14]
give the following general reasonings. Let|R0(r)〉 be the lowest radial mode for anarbitrary
confining potential. Now, let us find the expectation value ofthe operator∂/∂r +1/2r that reads

〈
R0(r)

∣∣∣∣
∂
∂r

+
1
2r

∣∣∣∣R0(r)

〉
=

〈
R′

0(r)

∣∣∣∣
1
r

∂
∂r

∣∣∣∣R
′
0(r)

〉
, (2.34)

where
∣∣R′

0(r)
〉

=
√

r |R0(r)〉. From direct calculations it follows that

〈
R′

0(r)

∣∣∣∣
1
r

∂
∂r

∣∣∣∣R
′
0(r)

〉
=

R′2
0 (r)

2

∣∣∣∣
∞

0
=

rR2
0(r)

2

∣∣∣∣
∞

0
= 0.

We then obtain 〈
R0(r)

∣∣∣∣
∂
∂r

∣∣∣∣R0(r)

〉
= −

〈
R0(r)

∣∣∣∣
1
2r

∣∣∣∣R0(r)

〉
= − 1

2R
. (2.35)

The term (2.35) is neglected if we follow the conventional procedure. It is only recovered by
the projection of the original Rashba operator (2.26) defined on the Hilbert space of spinors in
two dimensions on a restricted Hilbert subspace, spanned bythe complete set of the spinors,
which are functions of theϕ coordinate only. In the simple cases mentioned earlier (e. g.,
free electrons), there are no terms present in the Hamiltonian proportional to both∂/∂r and
some function ofϕ (i. e. the two-dimensional Hamiltonian is separable). In these cases the
conventional procedure produces the correct result. In allother cases it is necessary to take into
account properly the confinement of the wave function in the radial direction as it has been shown
above.

Having established the generality of relation (2.35), we can now write down the Rashba operator
for the 1D arc (or ring) explicitly in the form

Harc
R =

(
0 α

R e−iϕ (q̂ϕ − 1
2

)
α
R eiϕ (q̂ϕ + 1

2

)
0

)
, (2.36)

whereq̂ϕ =−i ∂
∂ϕ is the angular momentum operator. This is the the Rashba operator for electrons

in a 1D arc (or ring) that we shall use throughout the thesis.

It is interesting to note that the Rashba operator in such a geometry is not symmetric. (In contrast
to (2.21),H12

SO 6=−H21
SOhere.) This property of the operator (2.36) leads to a certain asymmetry of

the electron eigen states in 1D arcs (or in 1D rings as well) inthe presence of spin-orbit coupling.
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Figure 2.4: The solid line is the typical dispersion law forcurved1D wires (R is the radius of curvature)
with Rashba spin-orbit coupling. The dashed line corresponds to the case ofR→ ∞, i. e. the curved
wire goes towards a line. One can see, that the finite radius ofthe wire increases the spin-splitting along
momentum axis and, as a consequence, changes the Fermi momenta. The Fermi velocities, however,
remain constant.

Indeed, the eigenfunctions of the HamiltonianHarc = Harc
kin +Harc

R , whereHarc
kin = ~

2 q̂2
ϕ/(2mR2),

read

Ψ+
arc(ϕ) =



 cosγ
[
C+

1 ei(q+− 1
2)ϕ +C+

2 e−i( 1
2+q+)ϕ

]

sinγ
[
C+

1 ei( 1
2+q+)ϕ +C+

2 e−i(q+− 1
2)ϕ
]



 ,

Ψ−
arc(ϕ) =



 sinγ
[
C−

1 ei(q−− 1
2)ϕ +C−

2 e−i( 1
2+q−)ϕ

]

cosγ
[
C−

1 ei( 1
2+q−)ϕ +C−

2 e−i(q−− 1
2)ϕ
]



 , (2.37)

where

tanγ =
ε0R
α

+

√

1+

(
ε0R
α

)2

, (2.38)

ε0 = ~
2/(2mR2) is the confinement energy, andq± have to satisfy the following dispersion rela-
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tions

E±
q =

ε0

4
+ ε0q2±q

√(α
R

)2
+ ε0

2. (2.39)

Similar to (2.23), the equation (2.39) has two solutions with respect toq corresponding to the
left- and right-moving particles for a given spin index “+” or “−”. In contrast to (2.22), the
spinors (2.37) are not symmetric in the sense that their two components have different weights:
cosγ and sinγ. These weights depend on the arc (ring) radiusR so, that in the limit ofR→ 0 the
difference between them is maximal (γ = π/2). Of course, in the opposite limitR→ ∞ we arrive
at the symmetric solution (2.22).

The effect of the finite radius on the dispersion law (2.39) isshown in fig. 2.4. One can easily see,
that the change of arc radius shifts the dispersion curves along the momenta axis, while the tuning
of the Rashba constantα (by using external electric fields) shifts them alongboth momentum
and energy axes. The bending of 1D wires with spin-orbit coupling demonstrates, therefore, an
intriguing effect: the spin-splitting increases, while the Fermi velocities remain constant. As it
will be shown in the present thesis, this interesting feature can be used inreflectionlessspin-
switch (see Chapter 4). One can find a review of previous papers related to this topic in the
present Chapter, section 5.

The system discussed above becomes even more interesting ifwe place the curved 1D wire in
the magnetic field perpendicular to its plane. In particular, this makes it possible to find the
manifestation of spin-orbit Berry’s phase in a quantum loop(see the next section for a review or
the next Chapter for our results). Moreover, the coupling between Rashba and Zeeman effects
in a curved 1D wire (in a straight 1D wire this feature does notoccur!) produces a deformation
of the dispersion curves in such a way, that the Fermi velocities for left- and right- moving
electrons become unequal. The chiral densities of states are, therefore, not equal as well. Thus,
such a system gives us at least the theoretical possibility to distinguish somehow the chiral states.
(Here, “left” is not equal to “right” in a certain sense.) Thequestion is, however, how stable this
effect is. What happens if, for example, the electron-electron interactions are switched on? The
answer will be given in the framework of a Tomonaga-Luttinger liquid description in Chapter 5
of this thesis. For an introduction to the Tomonaga-Luttinger model see sections 6 and 7 of the
present Chapter.

2.4 Introduction to the spin-orbit Berry phase

The beauty of the topological Berry phase concept [15] inspires much theoretical and experimen-
tal activity aimed at finding its manifestations in different areas of modern physics [16]. Berry
describes a quantal system in an eigenstate, slowly transported around a circuit by varying a
parameterλ in its Hamiltonian so, that

λinitial = λfinal = λ0,

and
H(λ0) = H(λinitial) → H(λ1) → H(λ2) → ... → H(λn) → H(λfinal) = H(λ0).
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According to the adiabatic theorem, if the Hamiltonian is returned to its original form, the system
will return to its original state, apart from a phase factor

Ψ(λ0) → ei(φB+φD)Ψ(λ0).

In addition to the familiar dynamical phaseφD, such a state can acquire a geometrical, circuit-
dependent phase factorφB, which is the result of the adiabatic variation of the external param-
eters. This phaseφB is known as Berry’s phase. (See also a fundamental generalization of this
idea for non-adiabatic evolution [17].)

A possible candidate for the role of such a parameterλ in solid state physics is the external
magnetic fieldB that interacts with the electron spin via the Zeeman effect.This interaction is
described by the following Hamiltonian

HZ =
gµB

2
σ ·B, (2.40)

whereσ = {σx,σy,σz} are the Pauli matrices (2.6), andµB, g are Bohr magneton and g-factor
respectively. When the value of the magnetic field is constant and its direction follows adiabati-
cally a closed trajectory, the spin wave function acquires the topological phase factorφB which
is proportional to the solid angle subtended in a space by themagnetic field [15].

The possibility to control the Berry phase by means of the Zeeman effect is the central issue ex-
plored in the pioneering [12, 18, 19] and recent [20, 21, 22, 23, 24, 25, 26] papers. In particular,
the authors consider the adiabatic as well as non-adiabaticmotion of electrons through a meso-
scopic ring in the presence of a static, inhomogeneous magnetic field. It is shown that the Berry
phase, accumulated by the spins of electrons encircling thering, leads to persistent equilibrium
charge and spin currents [12, 18] or affects the conductanceof the ring [19, 21, 25] in a way
similar to the Aharonov-Bohm effect [27].

The latter point is of particular interest to the topic. Indeed, since Aharonov-Bohm and Berry
phases can be varied individually, the interplay of the two phases yields a rich variety of behavior.
In particular, the amplitudes of the Aharonov-Bohm oscillations are strongly affected by the
Berry phase [21]. Moreover, the authors of [21] show that these amplitudes can be completely
suppressed at certain magic tilt angles of the external fields.

As was noted above, in order to observe the geometric phase inan electronic system with spin,
the application of an orientationally inhomogeneous (e. g.radial) magnetic field is necessary.
However, the manner in which the magnetic field is varied in [12, 18, 19, 20, 21, 22, 23, 24,
25, 26] leads to rather difficult experiments. Fortunately,the desired magnetic field texture can
be experimentally implemented via fabricating the loop (orring) from a material with spin-orbit
interactions of Rashba type (2.19). Indeed, the Rashba operator for 1D rings (2.36) derived in
the previous section can be rewritten in the quasi-classical limit q≫ 1 as

HR =
α
R

(σxcosϕ+σysinϕ) q̂ϕ. (2.41)

At the same time, in the presence of a radial in-plane magnetic field Bin the Zeeman term (2.40)
can be rewritten in polar coordinates as

HZ =
gµB

2
(σxcosϕ+σysinϕ)Bin. (2.42)
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Bin

. Bext

Figure 2.5: The in-plane radial effective magnetic fieldBin (which stems from the Rashba effect) and the
real external oneBext form in the ring the effective magnetic field crown-like texture which is shown in
the lower part of the figure. The total magnetic field changes its direction adiabatically while an electron
moves in a circle, and, therefore, the electron wave function acquires a geometrical phase.

Now, the effect of Rashba spin-orbit coupling on the electron motion in the ring is seen clearly by
comparing eq. (2.41) and (2.42): namely, the electrons in such a ring experience a radial built-in
Zeeman-like magnetic field

Bin =
2αq
gµBR

, (2.43)

hereq is the characteristic angular wave vector. In other words, the Rashba effect in the quasiclas-
sical limit represents the effective Zeeman-like magneticfield Bin. It is important to emphasize,
that this in-plane magnetic fielddoes notrelate to the real external magnetic fieldBext, but stems
from the internal properties of the substance (spin-orbit interactions). Most important, however,
the externalBext and in-planeBin components form the desired inhomogeneous magnetic field
texture shown in fig. 2.5 and in that way can provide the geometric phase indications through
interference patterns in the conductance of the ring. This pretty idea is attracting both theoretical
[13, 28, 29, 30, 31] and experimental [32, 33, 34, 35, 36] attention. In what follows, we review
the problems and advantages of spin-orbit Berry’s phase manifestations in low-dimensional sys-
tems.

Let us consider the geometric phase that the wave function ofa chargedand spin-full particle
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acquires as it travels around the ring structure with Rashbaspin-orbit coupling (2.41). The system
is placed in the external magnetic fieldBext, which is perpendicular to the ring plane (see the
magnetic field configuration in fig. 2.5). Firstly, since the particle carries a charge, it picks up an
Aharonov-Bohm phase [27]

φAB = 2π
Φ
Φ0

, (2.44)

whereΦ0 is the flux quantum, andΦ = πR2Bext is the magnetic flux enclosed by the ring. Sec-
ondly, if the particle carries a spin of 1/2 and its motion is adiabatic, then the spin geometric
phase, according to Berry’s definition [15], reads

φB = π


1− Bext√

B2
ext+B2

in


 , (2.45)

and the full geometric phase is a sum of bothφ = φB +φAB. Note that the adiabaticity requires
comparatively large values ofBin andBext so that the electron spin precesses few times within a
cycle.

In [13], the authors established a one-particle Hamiltonian for electrons moving on a 1D ring
in the presence of Rashba spin-orbit coupling and Zeeman splitting. Furthermore, the ballistic
motion of electrons in the absence of scattering and spin-flip processes has been studied. In
the spirit of the seminal papers by Büttiker, Landauer, Imry, Azbel and Pinhas [37, 38, 39], the
transmission amplitude of the ring has been derived and the conductance oscillations have been
investigated. We should note, however, that authors of [13]used a non-Hermitian operator (2.27)
in the Hamiltonian. Zhou, Li, and Xue [28] noticed this fact and derived a different (Hermitian)
Hamiltonian operator. However, in their Hamiltonian the spin-orbit coupling originates from an
electric field pointing in the radial direction and not in thedirection perpendicular to the plane
of the ring. This is not the correct Rashba term for inversionlayers [5]. The procedure for
obtaining the correct Hamiltonian has been described in [14] as well as in the previous section
of this Chapter.

In spite of the mentioned shortcoming, [13] has been the stimulus for the subsequent studies. In
particular, topological transitions in the ring conductance interference pattern subject to Berry’s
phase have been studied in [29]. It manifests itself in a steplike conductance-magnetic field
and conductance-gate voltage characteristics. The transition takes place when the Berry phase
is dropped by an additional static magnetic fieldBext from odd ofπ to zero as it follows from
equation (2.45). The non-adiabatic spin-orbit geometric phase (of non-Berry, but Aharonov-
Anandan type [17]) in quantum rings has been investigated in[30]. It has been shown that such a
phase becomes the spin-orbit Berry phase in the adiabatic limit. In order to analyse the structure
of the Aharonov-Bohm oscillations influenced the by spin-orbit Berry phase, the Fourier spectra
of conductance has been calculated [31]. Note that the method of Fourier analysis is the only
suited one for comparison of the theoretical results with the experimental data discussed below.

In pioneering observations of Berry’s phase [32, 33], the Aharonov-Bohm oscillations were stud-
ied in InAs two-dimensional two-contact quantum rings withstrong spin-orbit interaction. The
Fourier transforms of over 30 traces of oscillations were averaged and a small splitting of the

21



Figure 2.6: AFM images of two-contact (left) and one-contact (right) rings used for Berry’s phase obser-
vations. The images are taken from the corresponding papersdiscussed in the text.

main peak in the final Fourier spectrum was interpreted as a possible manifestation of the spin
Berry phase. (See [40, 41] for subsequent discussions.)

An attempt has been made to observe Berry’s phase in quantum rings fabricated in a GaAs/AlGaAs
heterostructure with a 2D hole system [34] (see fig. 2.6, leftpanel). In such a setup, the inversion
asymmetry results from the GaAs zinc blende crystal structure as well as from an electric field,
which is perpendicular to the 2D plane. Along with the main peak whose frequency corresponds
to the magnetic flux enclosed by the ring, there are some extrapeaks in the Fourier spectra of the
measured Aharonov-Bohm oscillations. A qualitative comparison of the Fourier transforms with
its simple simulation provides a striking demonstration ofthe Berry phase. (See also subsequent
Comments and Replies [42, 43, 44, 45])

In contrast to earlier work, the authors of [35, 36] furnish anovel configuration, in which the bal-
listic ring formsonecollimating contact with the tangential current lead (see fig. 2.6, right panel).
Beside the absence of unknown asymmetry in the arm length (that always gave an uncertainty in
a two-contact configuration) and additional spin rotation at contacts, such a setup allows to let
only one transverse mode with a small longitudinal momentumenter the ring through the contact
(see fig. 2.7a). In what follows, we provide a description of the momentum-filtering mechanism
used in this configuration.

Since the tangential lead is quite narrow the electron motion is strongly quantized in the transver-
sal direction. According to the conductance quantization measurements, there are only four sub-
bands occupied (Zeeman spin-splitting included). LetpF = ~kF be a characteristic value of the
Fermi longitudinal momentum in the upper subband. Note, that the upper subbands have smaller
Fermi longitudinal momenta than the lower ones. The corresponding Fermi velocity and Fermi
vector arevF , kF respectively, and the latter can be estimated via geometrical parameters of the
contact. Letl , d be the contact length and width respectively (see fig. 2.7b) and δx⊥ is the trans-
verse shift of an electron while it moves through the lead in the contact region. On one hand, if
the electron is going to enter the ring then the inequalityδx⊥ ≥ d should be satisfied. On the other
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Figure 2.7: (a) Trajectories of electrons in the one-collimating-contact ring. The green curve corresponds
to the trajectory of electrons from the upper mode in the tangential lead, while the red ones are related to
the lower modes with comparatively large tangential Fermi momenta. This picture is taken from [36]. (b)
Geometrical parameters of the one-collimating-contact ring used in text.

hand, the shiftδx⊥ is nothing else than the transverse component of the trajectory that was ac-
quired by the electron with velocityv⊥ = p⊥/m (herem is theeffectiveelectron mass) during the
period of timeτ = l/vF of its passage through the contact region so, thatδx⊥ = (p⊥/m)(l/vF).
The transverse component of the electron’s momentump⊥ can be estimated from the uncertainty
relationp⊥ ≈ ~/d. Thus, if we want only a single (upper) mode to enter the ring then the electron
Fermi vectorkF = mvF/~ of that mode should be as small askF ≤ l/d2. The lower modes are
much faster so, thatklower

F > l/d2. As a result of such momentum filtering by the contact, the
interference pattern in the conductance is determined solely by a singletransverse mode. It is
therefore possible to apply a 1D model for emulation of the ballistic electron transport through
such a system.

There are, however, some parameters related to one-collimating-contact rings that look rather
problematic. For instance, the estimated wave vectorkF is as small as 7.5× 106m−1 which
makes the electron motion very sensitive to the potential landscape. The samples must, there-
fore, be perfectly clean. Nevertheless, the authors of [35,36] have managed somehow to solve
the problems, and the observed beating in the Aharonov-Bohmconductance oscillations was in-
terpreted as conclusive evidence of the spin-orbit Berry phase in the conductance of quantum
rings.

In this thesis we study theoretically a system similar to [35, 36]. The distinct feature between our
model and the real device in [35, 36] is as follows. We describe a purely 1D case, and, therefore,
we do not take into account the electrons which bypass the ring (red trajectories in fig. 2.7a). In
other words, our system is rather a quantumloop than a quantum ring. The detailed description
and solution of the model as well as the discussion of its possible applications is given in the
Chapter 4.

23



yz

x

yz

x

L

L

(a)

(b)

Figure 2.8: Schematics of the spin-valve device. Red regions are ferromagnetics that serve as a polariser
and analyser of the electron spin. The yellow region in between is the ballistic semiconductor (e. g. p-
InAs) with spin-orbit coupling. The spins are injected in their eigen states in the semiconductor element,
therefore, they keep constant orientation. We can open (a) or close (b) the spin-valve by switching the
polarization in one of the ferromagnetic contacts.

2.5 Introduction to spin manipulation

In the past few years the idea to use electron spin in mesoscopic devices has generated a lot of
interest. In [46], Datta and Das describe how Rashba spin-orbit coupling can be used to modulate
the current. The underlying idea is to drive a modulated spin-polarized current entirely electri-
cally, combining just ferromagnetic metals and semiconductor materials. One of the simplest
solutions is the spin-valve setup (see fig. 2.8) where the output current is governed by switching
of the spin-polarization in one of the ferromagnetic contacts. The second possibility is the so-
called spin field effect transistor (see fig. 2.9). Here, the spin-polarized current is injected from
a ferromagnetic material into the region with Rashba spin-orbit coupling (formed at a semicon-
ductor heterojunction) and then collected by the second ferromagnetic material. In basic terms,
the idea is that the Rashba effect will induce a spin precession of the electrons moving parallel
to the interface, rotating them with respect to the magnetization direction of the second ferro-
magnet (collector). Then by adding a gate voltage the net effective electric field (and hence, the
spin-orbit interaction) at the interface can be modified, tuning the spin precession, and therefore,
the transmitted spin-polarized current is modulated accordingly.

The problem of the spin-filtering contacts is still attracting both experimental [47, 48, 49, 50]
and theoretical [51, 52, 53, 54, 55, 56, 57, 58, 59, 60] attention. The conventional approach [46]
employs contacts made of a ferromagnetic material like iron. At the Fermi level in such materials
the density of states for electrons with one spin greatly exceeds that for the other spin direction, so
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Figure 2.9: Schematics of the Datta-Das spin-modulator device (spin field effect transistor). The blue plate
is the metallic gate which allows to tune the Rashba couplingstrength. In contrast to spin-valve geometry,
the spins injected arenot in their eigen states in the semiconductor region, but in a linear combination
of them (the initial polarization is alongx axis). Therefore, the spin rotation governed by the Rashba
coupling strength occurs while the electrons flow through the semiconductor. Changing the gate voltage,
we are able to tune the speed of spin rotation and in that way tocontrol the output current: (a) device is
closed (b) device is opened.

that the contact preferentially injects and detects electrons with a particular spin. In the seminal
paper [46] there was a brief discussion about whether such a spin polariser (as well as an analyser)
can be well implemented in a two-dimensional electron gas. Although great progress has been
achieved in theoretical understanding [53, 57, 59] and experimental realization [47, 48] of the
magnetized contacts, fabrication of these structures can pose further material-science challenges
and may require rather complicated chip design. Achieving spin filtering and spin manipulation
by means of intrinsic spin-dependent effects in semiconductors is, therefore, highly desirable.

One of the treatments is to use optical excitations from spin-split hole subbands in asymmetric
quantum wells. In [49, 61], a non-equilibrium population ofspin-up and spin-down states in
quantum well structures has been experimentally established applying circularly polarized radi-
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ation. The spin polarization results in a directed motion offree carriers in the plane of a quantum
well perpendicular to the direction of light propagation. Because of the spin selection rules, the
direction of the current is determined by the helicity of thelight and can be reversed by switching
the helicity from right to left handed. In [55], Mal’shukov and Chao show theoretically that spin
polarization can be created in the well by radiative electron-hole recombination.

The literature concerning spin filtering using intrinsic spin-orbit interactions suggests many solu-
tions of the problem [51, 52, 54, 56, 58, 62, 60]. (Note, that in contrast to the spin-orbit splitting,
use of the Zeeman splitting is not the most practical way to achieve spin polarization, as needed
magnetic field strengths are often large [63] and on-chip placement of micromagnets is required.)

In [52], Kiselev and Kim have published very impressive results based on the Rashba effect.
Their structure consists of a T-shaped quasi-one-dimensional channel and an electrode placed
near the channel intersection to control the spin-orbit interaction of electrons. The calculations
demonstrate that the proposed device can redirect electrons with opposite spins from an unpo-
larized source to left and right output leads, respectively, and, thus, serve as a spin filter. The
stronger spin-orbit coupling improves the spin-polarization efficiency [64]. Depending on pa-
rameters of the system, the polarization approaches nearly100%.

There are further examples. The spin-dependent electron resonant tunneling through non-magnetic
asymmetricdoublebarriers is studied theoretically in [51]. It is shown, thatan unpolarized beam
of conduction band electrons can be strongly polarized, at zero magnetic field, by spin-dependent
resonant tunneling, due to the Rashba spin-orbit interaction. The spin-dependent resonant tun-
neling is also used in [54]. The authors propose an electronic spin-filter device that consists of a
non-magnetictriple barrier and combines the spin-split resonant tunneling levels induced by the
Rashba spin-orbit interaction and the spin blockade phenomena between two regions separated
by the middle barrier in the structure. Detailed calculations using the InAlAs/InGaAs material
system show, that the filtering efficiency exceeds 90% at the peak positions.

A lateral interface connecting two regions with different strengths of the Rashba spin-orbit in-
teraction can also be used as a spin polarizer of electrons intwo-dimensional semiconductor
heterostructures [60, 62]. A beam with a nonzero angle of incidence is split after transmission
into two spin polarized components propagating at different angles. In contrast to [62], the case
when one of the two regions is ballistic, while the other one is diffusive, is the central issue
explored in the recent paper [60]. The technique developed for the solution of the problem of
diffuse emission [65] is generalized to the case of spin-dependent scattering at the interface and
the distribution of electrons emitted from the diffusive region is determined. It has been shown
that the emission in the diffusive regime is an effective wayto get electrons propagating at small
angles to the interface that are most appropriate for the spin filtration and a subsequent spin
manipulation.

Another original device proposed in [56] to achieve spin filtering without using ferromagnets is
based on the interplay of the Rashba effect and the wave-number selectivity due to the momentum-
resolved tunneling between two parallel electron wave guides (one-dimensional quantum wires,
fig. 2.10). One of the wires has intrinsic coupling of electron spin to its momentum, while in
the other wave guide spin-orbit interactions are assumed tobe absent (see fig. 2.11). Due to the
wave-number selectivity, tunneling can only occur for electron states with wave numbers close
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tunnelling

U

L

1D wire

1D wire

Figure 2.10: Schematic picture of the spin-filtering deviceproposed by Governale et al.[56]: two parallel
1D quantum wires, labelled “U” and “L”, are each connected toseparated reservoirs. The upper wire has
intrinsic coupling of electron spin to its momentum, while in the lower one the spin-orbit interactions are
assumed to be absent. The wires are coupled via tunneling through an extended uniform barrier.

to the point where the dispersion curves of two wires cross sothat the conservation of energy and
momentum is fulfilled. Because of the Rashba effect, dispersion curves for spin-up and spin-
down electrons in one of the wires are split along the momentum axis. Thus, the momentum
resolved tunneling current is always spin-polarized. Suchcurrent can be created by applying

Figure 2.11: Illustration of device operation depicted in fig. 2.10 as spin polarizer or spin splitter (a) Due
to the Rashba effect, dispersion curves for spin-up and spin-down electrons in the upper wire are shifted
horizontally by 2kSO (see eq. 2.24). In the lower wire, where spin-orbit couplingis assumed to be absent,
energy dispersion curves are spin degenerate. (b) Tuning wavenumber selectivity by a magnetic fieldB,
tunneling is selectively enabled for right-moving electrons with spin up. (c) At a certain value of voltage
V, tunneling becomes possible for left-moving spin-down electrons and right-moving spin-up electrons.
Note that parabolicity of electron bands is not essential toachieve coincidences and, hence, spin-polarized
currents. This figure is taken from cond-mat/0105066.
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Figure 2.12: AFM micrograph of a sample (5µm×5µm) showing two point contacts. Light lines are the
oxide which separates different regions of a 2D hole gas. Conductance of the quantum point contacts is
controlled via voltages applied to the detector, injector and the central gates. Semicircles show schemat-
ically the trajectories for two spin orientations. The red one corresponds to the spin-split branch (see
fig. 2.3) with lower momenta. The image is taken from [50].

voltages (shifting of the energy band bottom) or small magnetic fields (momentum shifting). It
looks so, that switching between opposite spin polarizations is easily achieved.

The fact that due to the strong spin-orbit interaction the particles at the Fermi energy have differ-
ent momenta for two possible spin states traveling in the same direction (and, correspondingly,
different cyclotron orbits) is also utilized in [50]. In that experimental work, two point contacts
designed onGaAsand a narrow detector arranged in the magnetic focusing geometry are demon-
strated to work as a tunable spin filter (see fig. 2.12). Note, that the phenomenon is not restricted
to holes inGaAsbut is generic to any system with intrinsic spin-orbit interactions (e. g. InSb
[66]).

The investigation presented in this thesis also focuses on the spin manipulation using intrinsic
spin-orbit interactions. We show in Chapter 4, that the specific geometry of ballistic 1D quantum
channels with Rashba spin-orbit coupling can change the initial spin-polarization of the current
and serve as an effective spin-switch.

2.6 Introduction to the Tomonaga-Luttinger liquid

A Tomonaga-Luttinger liquid is the analytically solvable model for interacting fermions in one
dimension. The key point of this approach is the so-calledbosonization: a technique for repre-
senting one-dimensional fermion fieldsψη(x), whereη is a species (e.g. spin or chirality) index,
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Figure 2.13: (a) The vacuum state
∣∣∣~0
〉

0
; (b) the action of the Klein factorF on a(−2)-particle ground state

|−2〉0, which yields|−3〉0; (c) the action of the Klein factorF† on the 0-particle excited stateb†
1 |0〉0 =

ic†
1c0 |0〉0 (one boson is one particle-hole excitation), which yieldsb†

1 |1〉0. The wavy lines indicate the
Fermi level. These figures are taken from [67].

in terms of bosonic fieldsφη(x) through a relation of the form

ψη(x) = Fηa−1/2e−
2πix

L (N̂η− 1
2δb)e−iφη(x). (2.46)

HereL is the wire length,a > 0 is an infinitesimal regularization parameters needed to regu-
larize ultraviolet divergent momentum sums, andδb is the parameter determined by boundary
conditions for the fermion fieldsψη(x). The boundary condition leads to the quantization of the
fermionic momentumk in the form

k =
2π
L

(
nk−

1
2

δb

)
, (2.47)

wherenk are integers. In the following, we choose (for definiteness)anti-periodic boundary
conditionsψη(L/2) = −ψη(−L/2). Note, that that the specific choice of boundary condition
becomes unimportant in the continuum limitL → ∞.

The operatorN̂η counts the number ofη-electrons relative to the so-called vacuum state (or Fermi

sea)
∣∣∣~0
〉

0
defined by such a way, that the highest filled level of

∣∣∣~0
〉

0
is labelled bynk = 0 and

the lowest empty level bynk = 1 (see fig. 2.13a). Finally,Fη is a Klein factor which lowers the
number ofη-fermions by one (see fig. 2.13b).

The boson fieldsφη(x) are defined via bosonic creation and annihilation operatorsb†
qη andbqη

φη(x) = − ∑
q>0

1
√

nq

(
e−iqxbqη +eiqxb†

qη

)
e−aq/2, (2.48)

whereq = 2π
L nq is thebosonicmomentum, which is, of course, also quantized as soon as bound-

ary conditions are imposed. In our model, bosonic creation and annihilation operators create and
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annihilate the particle-hole excitations in the Fermi sea (see fig. 2.13c). The latter is defined as a
state that does not contain any particle-hole excitations so, that

bqn

∣∣∣~N
〉

0
= 0, ∀ q,η. (2.49)

The particle-hole excitations subject to electron-electron interactions are often called plasmons.

Tomonaga [68] was the first to identify boson-like behavior of certain elementary excitations in a
one-dimensional theory of interacting fermions. A precisedefinition of these bosonic excitations
in terms of bare fermions was given by Mattis and Lieb [69], who took the first step towards a
correct solution of a model of interacting one-dimensionalfermions earlier proposed by Luttinger
[70]. A bosonic representation of a fermion field at a single point, essentially of the formψη(x=

0)∼ e−iφη(x=0), was first introduced by Schotte and Schotte [71] to calculate x-ray edge transition
rates. The extension of their relation to arbitraryx was discovered simultaneously by Mattis [72]
and by Luther and Peschel [73], which made the systematic calculation of general correlation
functions very simple. However, they did not discuss the number-lowering Klein factorsFη.
The first completely precise bosonization relation in the solid-state literature (though from a
field-theoretical viewpoint) was given by Heidenreich [74]. The first explicit construction of the
Klein factorsFη in terms of bare fermionic operators was given by Haldane [75], whose detailed
discussion in [76] essentially completed the development of the bosonization formalism.

Originally, the Tomonaga-Luttinger model was treated for spinless fermions. The inclusion of
spin still leads to an exactly solvable model [77, 78]. The solution of that model shows, however,
drastic differences from the spinless case. It is commonly known, that the spectral function is
generally broadened in any interacting system. However, ina Fermi liquid (even if quasiparticle
spin is taken into account), the spectral function still exhibits a distinct single-electron-like peak,
making it possible to represent the system of interacting electrons as a system of noninteracting
quasiparticles that carry the same quantum numbers as free electrons. Such a quasiparticle peak
is absent in the spectral function of a spinfull Tomonaga-Luttinger liquid. Instead, a characteristic
double-peak structure appears. The existence of the two peaks whose energy dispersions follow
those of the elementary charge and spin-density excitations can be interpreted as the dynamical
breakup of the electron into two independent entities representing its spin and charge degrees of
freedom. This is the most striking feature of a Tomonaga-Luttinger liquid.

All the abovementioned work relates to the simplest case of a1D interacting electron system
without Zeeman splitting and spin-orbit coupling. The mostrecent publications proceed with
further generalizations of the Tomonaga-Luttinger model for 1D wires taking into account Zee-
man [79, 80] and Rashba [56, 81, 82] effects. In particular, an interacting spinfull 1D electron
gas placed in the magnetic field may be described as a Tomonaga-Luttinger model comprising
two components withdifferentFermi velocities due to the Zeeman splitting [80]. This destroys
the spin-charge separation mentioned above, and even quantities such as the density-density cor-
relation involve the spins. In [79], the authors demonstrate that the tunneling density of states in
a Tomonaga-Luttinger liquid is singular at energies±g∗µBB, where the effective Lande factorg∗

is renormalized by the interaction.

Let us focus on the paper by A. V. Moroz, K. V. Samokhin and C. H.W. Barnes [81] (and its
extended version [82]) as closely related to the results presented in Chapter 5 of this thesis. The
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Figure 2.14: Lowest and the first excited spin-split subbands of a quasi 1D quantum wire with strong
Rashba spin-orbit coupling. Here, the characteristic spin-orbit interaction energy~2k2

SO/(2m) is compa-
rable with interband spacing subject to confinement. Therefore, the dispersion curves are deformed as
compared to the ones for “ideal” 1D systems (fig. 2.3). This figure is taken from [82].

authors studiedquasione-dimensional wires with Rashba spin-orbit coupling. Insuch quasi-1D
systems (i. e. in the presence of a confining potential) the transverse single-particle wave func-
tions are not plane waves like (2.22). Since the exact analytical solution of the corresponding
Schrödinger equation is rather difficult in this case, perturbation theory is usually applied. As
a result, along with the horizontal splitting of the spin branches, spin-orbit coupling leads to a
deformation of each branch of the single-particle dispersion relations (see fig. 2.14). The most
important feature of this deformation is that each branch loses its vertical symmetry axis and the
electron Fermi velocities become different for different directions of motion. In other words, a
breakdown of chiral symmetry occurs. Since this effect was predicted only recently [83, 56],
an experimental measurement of its strength is not available yet. Nevertheless, the mentioned
calculations indicate that the difference of the Fermi velocities monotonically increases as the
spin-orbit coupling is enhanced, and in some quasi-1D semiconductor systems may reach 20%
[82]. Since the strength of the Rashba spin-orbit coupling and the carrier concentration can be
changed independently, it appears possible to create a strongly interacting (i. e. with small car-
rier concentration) quasi-1D electron system whose single-particle energy spectrum lacks chiral
symmetry as in fig. 2.14. In this case one faces the following fundamental question: how does
such an interacting system respond to the asymmetry of the single electron spectrum? The au-

31



thors have solved analytically the problem and found the following: First, the spin-charge sep-
aration of the traditional Tomonaga-Luttinger liquid is destroyed by the spin-orbit coupling in a
quasi-1D wire (cf. [80]). The independent bosonic spin and charge excitations of the Tomonaga-
Luttinger model are replaced by two independent bosonic mixed spin and charge excitations.
As the strength of the spin-orbit coupling increases, the velocity of one of these excitations de-
creases to zero where it becomes predominantly a spin excitation. Second, the single-particle
characteristics, such as the spectral function and the density of states, are essentially modified
and controlled by the strength of the spin-orbit coupling. Moreover, varying the spin-orbit cou-
pling with the external electric field can be used to extract the microscopic parameters of the
quantum wires.

In this section, we presented the basic ideas of the bosonization technique and gave a brief review
of pioneering and recent papers related to the topic of Chapter 5. We did not aim to describe
all the technical details of the Tomonaga-Luttinger model so far. Furthermore, the complete
textbook-like introduction and historical overview for the bosonization technique partly cited
here can be found in the very instructive paper by Jan von Delft and Herbert Schoeller [67].
Nevertheless, in order to demonstrate our progress in this field we shall often refer to the very
details of the conventional solution for Tomonaga-Luttinger model. In the next section, we,
therefore, solve the model for the simplest case of spinlesselectrons and derive the plasmon
density of states in such a system.

2.7 Density of states in the Tomonaga-Luttinger model

Over the years, the bosonization technique has become a rather popular tool for treating strongly-
correlated electron systems in one dimension. The reason for its popularity is that some problems
which appear intractable when formulated in terms of fermions turn out to become easy, when
formulated in terms of boson fields. For example, the bosonicrepresentation of the Hamilto-
nian describing interacting one-dimensional electrons, thoughbiquadraticin the fermion field,
is quadraticin bosonic variables, and, therefore, the Hamiltonian can be diagonalized straight-
forwardly.

As an illustration, let us consider a quantum wire of free, spinless left- and right-moving one-
dimensional electrons, labelled by the indicesL andR respectively, with dispersionε(p) that is
bounded from below. We begin by linearizing the initial dispersion relation close to the Fermi
points±pF (see fig. 2.15)

εL/R(k) = ε(0)∓~vF (k+kF) . (2.50)

Herek∈ [−kF ,∞) is the electron wave vector counted from the Fermi one, and

vF =
∂ε(p)

∂p

is the Fermi velocity. Then the standard definition for the physical fermion field is

ψphys(x) =

(
2π
L

)1/2 ∞

∑
k=−kF

(
e−i(kF+k)xck,L +ei(kF+k)xck,R

)
, (2.51)
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Figure 2.15: The dispersion relationε(p) of a 1D wire containing left- and right-moving electrons with
p < 0 andp > 0 respectively. This figure is taken from [67].

where

ck,L/R = c∓(k+kF ). (2.52)

Note, however, that the natural definition of wave vector in (2.50) (wherek is bounded from
below) contradicts the definition (2.47) used in the bosonization technique (wherek∈ (−∞,∞)).
To remedy this, we introduce (following Haldane [76] or von Delft & Schoeller [67]) additional
unphysical positron states at the bottom of the Fermi sea: wesimply extend the range ofk
to be unbounded by takingk ∈ (−∞,∞), and define the corresponding energies in such a way
that they all lie belowε(p = 0) (see fig. 2.13). The inclusion of positron states in the single-
particle Hilbert space and the imposing of definite boundaryconditions (in order to quantizek)
should be viewed merely as formal tricks that make the problem amenable to bosonization. It is
important, that the introduction of those extra unphysicalstates does not change the low-energy
physics of the system, since by construction they require very high energies (> εF ) for their
excitation. (However, they would be excited if a perturbation such as an electric field or impurity
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potential were sufficiently strong. Therefore, strong perturbations cannot be dealt with using
bosonization.)

Now, we rewriteψphys (which is actually notphysicalany more, because the additional unphys-
ical states are included) in the form including positron states

ψphys(x) = e−ikF xψL(x)+eikFxψR(x), (2.53)

where

ψL/R(x) =

(
2π
L

)1/2 ∞

∑
k=−∞

e∓ikxck,L/R. (2.54)

Since the fieldsψL andψR formally differ from each other only by the factor e∓ikx, the only
change needed in the bosonization identity (2.46) forψR relative toψL is to replacex by −x

ψL/R = FL/Ra−1/2e∓
2πix

L (N̂L/R− 1
2δb)e−iφL/R(x), (2.55)

where

φL/R(x) = − ∑
nq>0

1
√

nq

(
e∓iqxbq,L/R+e±iqxb†

q,L/R

)
e−aq/2. (2.56)

In order to study the electron-electron interactions in a one-dimensional wire, we shall consider
the following Hamiltonian

H = Hkin +Hint, (2.57)

where

Hkin = ~vF

L/2
Z

−L/2

dx
2π

[
ψ†

L(x)

(
i

∂
∂x

)
ψL(x)+ψ†

R(x)

(
−i

∂
∂x

)
ψR(x)

]
, (2.58)

Hint = ~vF

L/2
Z

−L/2

dx
2π

(
g2ψ†

L(x)ψL(x)ψ†
R(x)ψR(x) +

+
1
2

g4

{[
ψ†

L(x)ψL(x)
]2

+
[
ψ†

R(x)ψR(x)
]2
})

. (2.59)

The kinetic termHkin assumes a linear dispersionε = ~vFk, whereasHint describes local (point-
like) electron-electron interactions, parameterized by the dimensionless coupling strengthsg4

andg2 [67]. The interaction constantsg4 andg2 can be determined via the Fourier transform
of a given inter-electron potential [84], but in practice they are treated as adjustable parameters.
Note, that all products ofψ’s in (2.58) and (2.59) are fermion normal ordered with respect to the

vacuum state
∣∣∣~0
〉

0
. Using the bosonization identity (2.55) and the boundary conditions forφL,R

we arrive at the bosonized form ofHkin andHint

Hkin =
~vF

2 ∑
ν=L,R





2π
L

Nν +

L/2
Z

−L/2

dx
2π

[
∂φν(x)

∂x

]2





, (2.60)
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Hint =
~vF

2
2π
L

(
g4N2

L +g4N2
R+2g2NLNR

)
+

+
~vF

2

L/2
Z

−L/2

dx
2π

{
2g2

∂φL(x)
∂x

∂φR(x)
∂x

+g4

[(
∂φL(x)

∂x

)2

+

(
∂φR(x)

∂x

)2
]}

. (2.61)

Now, the tremendous advantage of the bosonic representations is clear:H is quadratic in bosonic
variables and can be rewritten in the convenient 2×2 matrix form

H =
~vF

2

L/2
Z

−L/2

dx
2π

(
∂φL(x)

∂x ,
∂φR(x)

∂x

)( 1+g4 g2

g2 1+g4

)( ∂φL(x)
∂x

∂φR(x)
∂x

)
. (2.62)

The Hamiltonian (2.62) can be diagonalized straightforwardly using a Bogoljubov transforma-
tion [85, 67] of thebq,L/R’s or just introducing so-called dual fields [86, 87]

Θ(x) =
1√
2

(φL(x)−φR(x)) ,

Φ(x) =
1√
2

(φL(x)+φR(x)) . (2.63)

In the latter case we have forH the following expression

H =
~vF

2

L/2
Z

−L/2

dx
2π

[
(1+g4+g2)

(
∂Θ(x)

∂x

)2

+(1+g4−g2)

(
∂Φ(x)

∂x

)2
]

. (2.64)

Finally, let us rescale the boson fieldsΦ(x) andΘ(x) in a way which leads the Hamiltonian (2.62)
to the canonical, non-interacting-like form (2.60). It is important, however, that the rescaling
procedure must preserve the duality of the boson fields. Therefore, the transformation from the
old boson fields to the new ones must beconformal[84]. In our particular case, the relations
between(Φ(x) ,Θ(x)) and canonical fields read

Θcan(x) =

(
1+g4+g2

1+g4−g2

)1
4

Θ(x),

Φcan(x) =

(
1+g4−g2

1+g4+g2

)1
4

Φ(x), (2.65)

and the Hamiltonian takes the form

H =
~u
2

L/2
Z

−L/2

dx
2π

[(
∂Θcan(x)

∂x

)2

+

(
∂Φcan(x)

∂x

)2
]

, (2.66)
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where the renormalized velocityu reads

u = vF

√
(1+g4)2−g2

2. (2.67)

Here, we arrive at a very interesting point of this section. We have started from the rather compli-
cated Hamiltonian (2.57) and, after some manipulations, obtained the much simpler form (2.66)
which looks like the non-interacting one (2.60). The properties of free bosons described by (2.60)
are, of course, very well known. Thus, the interacting case can be easily described in terms of
free boson fields(Φcan(x) ,Θcan(x)) with a certain renormalized velocityu. To illustrate the last
statement, we shall calculate something measurable, namely, the density of states in the one-
dimension wire described by the Hamiltonian (2.57) or (2.66). (The density of states for such a
simple system will be compared with the more complicated case investigated in Chapter 5.)

The density of states in the case of interacting electrons can be derived via corresponding fermionic
Green’s functionsGret

L/R(x, t) [88]

ρDoS
L/R(ω) = −1

2
ℑ

∞
Z

−∞

dt
2π~

eiωtGret
L/R(x = 0, t) , (2.68)

where ~ω is the excitation energy, and the Green’s functions are the correlators

Gret
L/R(x, t) =

1
i

{〈
T ψL/R(x,τ)ψ†

L/R(0,0)
〉
|τ=i(t−i0)−

−
〈
T ψL/R(x,τ)ψ†

L/R(0,0)
〉
|τ=i(t+i0)

}
Θ(t). (2.69)

Hereτ is the Matsubara time, andΘ(t) is the Heaviside theta function of the real timet. The
fermionic correlators in (2.69) can be calculated via bosonic ones using the bosonization identity
(2.55). The following relation can be obtained straightforwardly

〈
T ψL/R(x,τ)ψ†

L/R(0,0)
〉

=

=
signτ

a
exp
(〈
T φL/R(x,τ)φ†

L/R(0,0)−φL/R(0,0)φ†
L/R(0,0)

〉)
, (2.70)

where signτ is simply the sign ofτ.

The free bosonic correlation function for one-dimensionalwires of the lengthL has been derived,
for example, in [67]. The expression has the form

〈
T Φcan(x,τ)Φ†

can(0,0)
〉

= − ln

[
2π
L

(signτ vFτ+ isignτ x+a)

]
. (2.71)

Using (2.71) and the relations (2.65), (2.63) betweenφL/R and the canonical boson fields we
come to the following formula for theinteractingbosonic correlation functions

〈
T φL/R(x,τ)φ†

L/R(0,0)
〉

= −ν ln

[
2π
L

(signτ uτ+ isignτ x+a)

]
, (2.72)
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0 t
Figure 2.16: The contourC for the integral overt (2.76) in the density of states.

whereν is the interaction parameter related tog2 andg4 as

ν =
1
2

(√
1+g4+g2

1+g4−g2
+

√
1+g4−g2

1+g4+g2

)
. (2.73)

It is interesting to note, that the interactions between electrons with opposite chiralities (param-
eterized byg2) play a significant role here. Indeed, ifg2 is zero, thenν = 1 (as if it was a
non-interacting case), thoughg4 6= 0. Note, however, that the velocityu is renormalized (com-
pared tovF ) in both cases:g2 = 0, g4 6= 0 andg2,4 6= 0.

Substituting (2.72) into (2.70), we obtain the following useful relation

〈
T ψL/R(x,τ)ψ†

L/R(0,0)
〉

=
signτ aν−1

(signτ uτ+ isignτ x+a)ν . (2.74)

Now we are ready to deriveρDoS
L/R(ω). Using (2.74), (2.69) and (2.68) we get

ρDoS
L/R(ω) = −1

2
ℑ
(

1
i

)1+ν aν−1

uν

∞
Z

0

dt
2π~

eiωt
[

1
(t − i0)ν −

1
(t + i0)ν

]
. (2.75)

The integral overt can be rewritten as

∞
Z

0

dt
2π~

eiωt
[

1
(t− i0)ν −

1
(t + i0)ν

]
=

iν+1ων−1

2π~

Z

C

dz
e−z

(−z)ν , (2.76)

where the contourC is depicted in fig. 2.16.

At this point, it is convenient to utilize the definition of the Γ-function [89]. Then the density of
states reads

ρDoS
L/R(ω) = − 1

2π~u

(aω
u

)ν−1
sin(πν)Γ(1−ν) . (2.77)

For the free-fermion caseg2,4 = 0 we haveν = 1, i. e. in this case we recover the standard
Fermi-liquid propertyρDoS

L/R = (2π~vF)−1 for any value ofω. However, for anyg2 6= 0 we have

ν > 1, i. e. ρDoS
L/R → 0 for ω → 0. Thus, the interactions cause the density of states to vanish

at the Fermi energy [67]. This property is one of the most spectacular differences between a
Tomonaga-Luttinger liquid and a Fermi one.
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In view of the results given in Chapter 5, it is also importantto emphasize here, that the density
of states is equal for both left- and right-moving electrons. The indexL/R in (2.77) is, therefore,
not really important. However, this is not the case as soon asthe spin-orbital effects are in play.
ThenρDoS

L can not be equal toρDoS
R even forν = 1, and the solution of the Tomonaga-Luttinger

model becomes very non-trivial. The problem will be discussed in Chapter 5 of this thesis.
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3 Spin-orbit Berry phase in a quantum
loop

In this Chapter, we find a manifestation of a spin-orbit Berryphase in the conductance of a
mesoscopic loop with Rashba spin-orbit coupling placed in an external magnetic field which is
perpendicular to the loop plane. The transmission probability at different radii and potential
profiles of the loop is calculated as a function of the external magnetic field. In addition, the
non-adiabatic regime (at small loop radii) is investigated.

3.1 Description of the system

As it was discussed in the introductory Chapter 2, the adiabatic Berry phase (as well as its non-
adiabatic generalization — the Aharonov-Anandan geometric phase) is a key aspect of electronic
transport in inhomogeneous magnetic fields. In spite of a large variety of implementations, all
schemes mentioned in the review involve Aharonov-Bohm oscillations as a necessary component
for Berry phase investigations. In the present work, we find amanifestation of Berry’s phase in
the conductance oscillations that stem directly from the interference between two spin states with
different dynamical phases, and the Aharonov-Bohm oscillations do not occur. We concentrate
on the theoretical investigation of the setup similar to [35, 36] (see the detailed description in
Chapter 2). There are, however, some important differences.

First, the possibility for electrons to bypass the ring is assumed to be negligible in our system.
Therefore, the electron beam does not split while it enters or leaves the ring. Thus, we study
rathera quantum loop(fig. 3.1) thana quantum ringconnected to the tangential lead [36, 35].
That is why, the Aharonov-Bohm effect does not occur here.

Second, we consider a modulation of the potential profile in the loop region by means of a gate
voltage applied to the structure. Although the fabricationof such a setup may require rather
complicated design, the authors of [36, 35] let us know of their latest development, where they
have managed to solve the technological problems and gated InAs rings have been fabricated.

And finally, our system is purely one-dimensional, while this is not the case in [36, 35]. However,
as long as a gate voltage can be applied, the upper bands can beeasily depopulated so that only
a single band is occupied. Therefore, the one-dimensionality of the quantum loop is not a big
problem anymore.

In order to find the transmission probability through such a system we have to solve the corre-
sponding Schrödinger equation. To this end we divide the system in three parts: input channel,
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Figure 3.1: Geometry of the system. The photo below illustrates the important difference between the
quantum ring connected to a tangential lead [36, 35] and the quantum loop studied here. Our setup is a
kind of roller coaster for electrons: they do not collide at the crossing point!
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Figure 3.2: Two variants of the potential profile adopted in the solution. The bottom of the bands can be
lifted (a) or pulled down (b) in the loop region byV.

the loop itself (which is actually the arc of 2π-length in our case) and output channel. The
Hamiltonians describing the propagation of electrons in the input/output channels read

Hwire =

(
~

2

2m∗ k̂2
x + εZ iα k̂x

−iα k̂x
~

2

2m∗ k̂2
x − εZ

)
, (3.1)

whereas the propagation through the loop of radiusR is governed by the Hamiltonian

Hloop =

(
ε0 q̂2

ϕ + εZ +V α
R e−iϕ (q̂ϕ − 1

2

)
α
R eiϕ (q̂ϕ + 1

2

)
ε0 q̂2

ϕ − εZ +V

)
. (3.2)

Here k̂x = −i ∂
∂x −

Φ
Φ0

1
R, q̂ϕ = −i ∂

∂ϕ − Φ
Φ0

are momentum and angular momentum operators re-

spectively,Φ = πR2Bz is the magnetic flux,Φ0 is the flux quantum,ε0 = ~
2/(2m∗R2) is the size

confinement energy with the effective electron massm∗, εZ = g∗µBBz/2 is the Zeeman energy,
andV denotes the energy shift determined by the gate voltage applied to the loop (see fig. 3.2 for
the examples of the profile studied below).

We adopt the vector potentialA to be tangential to the direction of the current. Thus, in theloop
we chooseA(x,y) = 1

2Bz(xj−yi), or, in cylindrical coordinates,Aϕ(ϕ) = Φ/2πR, whereas the
vector potential in the input and output channels is determined by the continuity condition at the
junction point with the loop itself (x = 0, y = −R); hence we haveAx = Φ/2πR.

We denote the wave functions for each part asΨ±
loop(ϕ) for the loop,Ψ±

in(x) andΨ±
out(x) for input

and output channels respectively. In order to find the wave function describing the whole system,
we impose the boundary conditions that warrant the continuity of the wave function and its first
derivative at the boundaries between the loop and input/output channels





Ψ+
in|x=0+Ψ−

in|x=0 = Ψ+
loop|ϕ=−π/2 +Ψ−

loop|ϕ=−π/2,

Ψ+
loop|ϕ=3π/2+Ψ−

loop|ϕ=3π/2 = Ψ+
out|x=0 +Ψ−

out|x=0,

∇Ψ+
in|x=0+∇Ψ−

in|x=0 = ∇Ψ+
loop|ϕ=−π/2+∇Ψ−

loop|ϕ=−π/2,

∇Ψ+
loop|ϕ=3π/2+∇Ψ−

loop|ϕ=3π/2 = ∇Ψ+
out|x=0 +∇Ψ−

out|x=0;

(3.3)
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The operator∇ is given by∇ = 1
R

d
dϕ in the loop region, and∇ = d

dx in the input and output
channels.

In the next section, we find the electron eigen states for the loop, input, output channels, and solve
the system of equations (3.3). The solution gives us the transmission and reflection amplitudes
(and, as consequence, the transmission/reflection probabilities) for each spin mode.

3.2 Solution of the problem

Let us start from the input channel. The Hamiltonian (3.1) acts in SU(2) spin space. The corre-
sponding Schrödinger equation allows two solutions

Ψ+
in(x) = e

iΦ
Φ0Rx


 cosγ+

(
eik+x +A+e−ik+x

)

−i sinγ+
(

eik+x−A+e−ik+x
)

 , (3.4)

Ψ−
in(x) = e

iΦ
Φ0Rx


 −i sinγ−

(
eik−x−A−e−ik−x

)

cosγ−
(

eik−x +A−e−ik−x
)

 , (3.5)

where

tanγ± = − εZ

k±α
+

√
1+
( εZ

k±α

)2
, (3.6)

and “±” are the spin indices.

Since the main contribution to the current is given by the electrons at the Fermi level, we consider
the eigen states (3.4) and (3.5) at the fixed energyEF . Thus, the wave vectorsk± in (3.4) and
(3.5) are the Fermi ones, and they satisfy the dispersion relations

EF =
~

2k±2

2m∗ ±
√

α2k±2 + ε2
Z. (3.7)

This equation has two solutions with respect tok for each spin index. These two solutions
correspond to the Fermi wave vectors for electrons with opposite chirality. The absolute values
of the Fermi wave vectors with a given spin index for the left-and right-moving electrons are
equal in the straight channels.

Each line in (3.4) and (3.5) consists of two parts: the incident wave and the reflected one. The
coefficientsA± are the reflection amplitudes that have to be found imposing the boundary con-
ditions (3.3). For the output channel the reflection amplitudes are assumed to be zero, and the
corresponding spinors read

Ψ+
out(x) =

(
D+ cosγ+e

i(k++ Φ
Φ0R)x

−iD+ sinγ+e
i(k++ Φ

Φ0R)x

)
, (3.8)
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Ψ−
out(x) =

(
−iD− sinγ−e

i(k−+ Φ
Φ0R)x

D−cosγ−e
i(k−+ Φ

Φ0R)x

)
. (3.9)

HereD± are the transmission amplitudes.

The eigenfunctions of the Hamiltonian (3.2) are of the form

Ψ+
loop(ϕ) = e

i Φ
Φ0

ϕ
(

B+ cosα+ei(q+
R− 1

2)ϕ +C+ cosβ+e−i( 1
2+q+

L )ϕ

B+ sinα+ei( 1
2+q+

R)ϕ −C+ sinβ+e−i(q+
L − 1

2)ϕ

)
, (3.10)

Ψ−
loop(ϕ) = e

i Φ
Φ0

ϕ
(

−B− sinα−ei(q−R− 1
2)ϕ +C−sinβ−e−i( 1

2+q−L )ϕ

B−cosα−ei( 1
2+q−R)ϕ +C−cosβ−e−i(q−L − 1

2)ϕ

)
, (3.11)

where

tanα± =
ε0q±R − εZ

q±R α/R
+

√

1+

(
εZ− ε0q±R
q±R α/R

)2

, (3.12)

tanβ± = −ε0q±L + εZ

q±L α/R
+

√

1+

(
εZ + ε0q±L
q±L α/R

)2

, (3.13)

andq±R,L are the Fermi angular momenta in the curved part of the wire that are found from the
conditions which explicitly include the height of the barrierV

EF = V +
ε0

4
+ ε0q±R

2±

√(
q±R α

R

)2

+
(
q±R ε0− εZ

)2
, (3.14)

EF = V +
ε0

4
+ ε0q±L

2±

√(
q±L α

R

)2

+
(
q±L ε0+ εZ

)2
. (3.15)

It is interesting to note, that Fermi angular momenta for electrons with opposite chiralities (q±L
andq±R) are not equal to each other. This effect stems from the particular geometry of the sys-
tem. Indeed, as soon as we assumeR→ ∞ the relations (3.14) and (3.15) both become equal to
(3.7), wherek±R = k±L . Thus, the chiral asymmetry of Fermi angular momenta is essentially of
geometrical origin as the Berry phase itself.

The imposing of the boundary conditions (3.3) on the wave functions (3.4), (3.5), (3.8) – (3.11)
gives us a system of eight equations (7.1) – (7.8). (The equations can be found in Appendix A.)
That system definitely has an analytical solution with respect to A±, B±, C± andD±. However,
the formulae for the amplitudes are extremely cumbersome. Therefore, we do not adduce them
here.
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3.3 Current densities in 1D wires with spin-orbit coupling

At this point it is pertinent to turn to the current density calculations. The conventional formula
for the current densityj flowing in a given modeΨ(x) reads [90]

j =
~

2m∗
[
Ψ(x)k̂∗xΨ∗(x)+Ψ∗(x)k̂xΨ(x)

]
. (3.16)

This formula is derived for a Hamiltonian of the formH = p̂2/(2m∗)+V(x), where the spin and
orbital degrees of freedom are separable. This is not the case in presence of spin-orbit interac-
tions. In what follows, we derive the correct formula for thecurrent density in one-dimensional
wires with Rashba coupling described by the Hamiltonian (3.1).

Let Ψ(x) be a spinor with the elementsΨ1(x) andΨ2(x) so, that

Ψ(x) =

(
Ψ1(x)
Ψ2(x)

)
. (3.17)

On one hand, we have the continuity equation for the current flow

∂
∂t

Z

dx|Ψ|2 = −
Z

dxdivj. (3.18)

On the other hand, we have the time-dependent Schrödinger equationi~(∂Ψ/∂t)= HΨ that gives
us the relation

∂
∂t

Z

dx|Ψ|2 =
i
~

Z

dx(ΨH∗Ψ∗−Ψ∗HΨ) . (3.19)

The right-hand side of (3.19) can be rewritten explicitely using (3.1)

i
~

Z

dx(ΨH∗
wireΨ∗−Ψ∗HwireΨ) =

=
i
~

Z

dx

[
Ψ1

(
~

2k̂2
x

2m∗ Ψ1

)∗

−Ψ∗
1

(
~

2k̂2
x

2m∗ Ψ1

)
+Ψ1

(
iαk̂xΨ2

)∗−Ψ∗
1

(
iαk̂xΨ2

)
+

+Ψ2
(
−iαk̂xΨ1

)∗−Ψ∗
2

(
−iαk̂xΨ1

)
+Ψ2

(
~

2k̂2
x

2m∗ Ψ2

)∗

−Ψ∗
2

(
~

2k̂2
x

2m∗ Ψ2

)]
. (3.20)

Note, that the Zeeman term vanishes in (3.20).

Using the equations (3.18) and (3.20) we can find divj straightforwardly,

−divj =
i ~

2m∗

(
−Ψ1

∂2Ψ∗
1

∂x2 − 2i
R

Φ
Φ0

Ψ1
∂Ψ∗

1

∂x
+Ψ∗

1
∂2Ψ1

∂x2 − 2i
R

Φ
Φ0

Ψ∗
1

∂Ψ1

∂x
−

−Ψ2
∂2Ψ∗

2

∂x2 − 2i
R

Φ
Φ0

Ψ2
∂Ψ∗

2

∂x
+Ψ∗

2
∂2Ψ2

∂x2 − 2i
R

Φ
Φ0

Ψ∗
2

∂Ψ2

∂x

)
+
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+
iα
~

(
Ψ1

∂Ψ∗
2

∂x
−Ψ∗

1
∂Ψ2

∂x
−Ψ2

∂Ψ∗
1

∂x
+Ψ∗

2
∂Ψ1

∂x

)
. (3.21)

Then, the desired formula forj reads

j =
~

2m∗
(
Ψ1k̂∗xΨ∗

1 +Ψ∗
1k̂xΨ1+Ψ2k̂∗xΨ∗

2+Ψ∗
2k̂xΨ2

)
−

− iα
~

(Ψ1Ψ∗
2−Ψ∗

1Ψ2) . (3.22)

Using the general relation (3.22) one can easily find the input, reflected and transmitted current
densities for our particular system. Note, that each current density is given as a sum of its two
spin componentsj = j+ + j−, and each component can be found using the following formulas

j±in =
~

m∗

[
k±± αm∗

~2 sin(2γ±)

]
, (3.23)

j±refl = − ~

m∗ |A
±|2
[
k±± αm∗

~2 sin(2γ±)

]
, (3.24)

j±out =
~

m∗ |D
±|2
[
k±± αm∗

~2 sin(2γ±)

]
. (3.25)

Here, we have used the elementary trigonometric formula 2sinγ± cosγ± = sin2γ±.

3.4 Results and discussion

Now, we have everything ready to study the propagation of theinitial states given by (3.4) and
(3.5) through the loop. We define the transmission probability as

T =
jout

j in
, (3.26)

while the reflection one reads

R=
jrefl

j in
. (3.27)

The plots of the transmission probability as a function of the external magnetic field are shown
in fig. 3.3 (solid lines) for different radii of the loop. The additional dotted lines correspond
to the transmission probabilities through the wire of length L = 2πR separated from the input
and output channels by barriers of the same height as the loopis separated from its leads. The
dependencies in fig. 3.3 exhibit the following characteristic features.

First, the transmission probability oscillates as a function of the external magnetic fieldBz. The
oscillating factors appear in the transmission probability, because of the interference between
propagated states at the input and output of the loop. It is well known, that the transmission
probability for the quantum particle propagating across a single rectangular potential barrier of
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Figure 3.3: Transmission probabilities for the loop of radius R (solid lines) and corresponding straight
wire of lengthL = 2πR (dotted lines) versus external magnetic field. Each panel corresponds to different
loop radii: (a)R = 10−4cm, (b)R = 5 ·10−5cm, (c) R= 10−5cm, and (d)R= 5 ·10−6cm. The barrier
heightV is taken equal to 18.75meV. The other parameters are taken relevant for InAs:α = 2·10−11eVm,
m∗ = 0.033me, g∗ = −12,EF = 30meV.

lengthL contains the oscillating factor sin(Lk), wherek is the wave vector of the particle [90].
Our case is a bit more complicated since we have two spin-split modes with different wave
vectors. Moreover, the absolute values of the Fermi angularmomenta for the left- and right-
moving electrons with the same spin index differ from each other. Therefore, we have many
oscillating factors with different periods determined byq+

R, q+
L , q−R, q−L and their combinations.

These angular momenta depend on the external magnetic field and, therefore, the oscillations
T(Bz) occur. We emphasize, that the fundamental origin of the oscillations depicted in fig. 3.3 is
exactly the same as in the simple single-mode model [90]. In other words, our system is a kind
of quantum interferometer with the characteristic length 2πR.

Second, there is a strong difference between transmission probabilities for the loop and the
straight wire at certain intermediate values of the magnetic field (see fig. 3.3), while at higher
values and atBz = 0 both curves just coincide. This is a particular manifestation of the Berry
phase that we explain in what follows. First of all note, thatthe Berry phase is always zero in the
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Figure 3.4: The geometrical phase as a function of the external magnetic field at different loop radii: (a)
adiabatic approximation (2.45), (b)R= 10−5cm, (c)R= 5 ·10−6cm, and (d)R= 10−6cm. The barrier
heightV is taken equal to zero, and other parameters are taken relevant for InAs: α = 2 · 10−11eVm,
m∗ = 0.033me, g∗ = −12,EF = 30meV.

straight wire. In contrast to that simple case, an additional Berry phase dependent interference
factor sinφB occurs while an electron wave function propagates through the loop. The Berry
phase (2.45) is negligible atBext ≡ Bz ≫ Bin and equal toπ at Bz = 0 (see fig. 3.4). Therefore,
the factor sinφB does not show up in these cases. At certain intermediate values ofBz the dif-
ference between straight wire and loop geometry is essential. In particular, at certain special
values of the external magnetic field the Berry phase is closeto π/2 and the difference between
transmission probabilities for the loop and the straight wire is maximal. We find it necessary to
estimate such a magnetic field using the quasi-classical formula (2.45) and assuming parameters
relevant for InAs:α = 2 ·10−11eVm,g∗ = −12,k = 106cm−1. Then, the Berry phase valueπ/2
corresponds toBz = |Bin|/

√
3 or, numerically,∼ 3T that is in good agreement with the plots.

The influence of the barrier height on the interference pattern is shown in figs. 3.5– 3.8. First of
all, one can easily see, that the transmission probability for the loop can also exceed its charac-
teristic value for the straight wire. Most importantly, however, the critical value of the magnetic
fields (where the difference between transmission probabilities for the loop and straight wire is
maximal) is very sensitive to the barrier heightV. This is explained in what follows.

It is obvious, that the potential profile changes the Fermi momenta in the loop. Since the Berry
phase explicitly depends on the characteristic wave vectorof the particle (2.45), we have a pos-
sibility to change the Berry phase by tuning the potential profile. In detail,Bin is proportional
to the wave vector of the particle, whereas the Fermi momentum for a given mode is larger for
a deeper potential profile (i. e. for smaller or even negativeV). Thus, the critical value of the
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Figure 3.5: Transmission probabilities for the loop of radiusR= 5·10−5cm (solid lines) and corresponding
straight wire of lengthL = 2πR (dotted lines) versus external magnetic field. Each panel corresponds
to different heights of the barrierV: (a) V = 6.25meV, (b)V = 12.5meV, (c)V = 18.75meV, and (d)
V = 25meV. The other parameters are the same as for fig. 3.3

external magnetic fieldBz = Bin/
√

3 (which corresponds toφB = π/2) is shifted to higher values
when the electron bands are pulled down byV. Moreover, at certain negative values ofV the
Fermi wave vectors are so large, that the critical valueBz = Bin/

√
3 exceeds 10T, and, therefore,

the point, where Berry’s phase vanishes (Bz≫Bin) leaves the reasonable range of magnetic fields
depicted in fig. 3.7. Note, that this effect becomes even morepronounced in the non-adiabatic
case (see fig. 3.8).

At the end of the discussion, let us make some important comments on the role of the loop radius
in the effect studied. Indeed, the further questions arise when we compare the plots in figs.
3.3a, b, d and 3.3d, 3.5 and 3.6, 3.7 and 3.8. It is clearly seen, that the maximum of the difference
between transmission probabilities of the loop and a straight wire is shifted to higher magnetic
fields. However, the Berry phase does not depend on the radiusof curvature. Nevertheless, we
can explain the effect if we remember, that the formula (2.45) (and the Berry concept as well) is
valid only for the adiabatic motion. The latter means, thatαm∗R/~

2 must be lager than one, so
that the electron spin precesses a few times while it is moving through the loop. This is not the
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Figure 3.6: Transmission probabilities for the loop radiusR = 5 · 10−6cm in the non-adiabatic regime
(solid lines), and corresponding straight wire of lengthL = 2πR (dotted lines) versus external magnetic
field. Each panel corresponds to different heights of the barrier V: (a)V = 6.25meV, (b)V = 12.5meV,
(c) V = 18.75meV, and (d)V = 25meV. The other parameters are the same as for fig. 3.3.

case depicted in figs. 3.3d, 3.6, 3.8, whereαm∗R/~
2 ∼ 0.5 and the spin evolution is definitely

not adiabatic.

Note, that our general approach is valid for both adiabatic and non-adiabatic cases, because we
use a direct solution of the Schrödinger equation. Therefore, we are able to see the Aharonov-
Anandan geometric phase [17] effects in figs. 3.3d, 3.6, 3.8.This kind of geometrical phase is
the non-adiabatic generalization of Berry’s, and in our case it reads

φtop = π
[
1∓ (q±L −q±R)

]
. (3.28)

(Here, the index “top” means “topological”.)

In the introduction given in Chapter 2, we have learnt, that the finite curvature of the one-
dimensional wire with spin-orbit interactions increases the spin-splitting between dispersion
curves along the momentum axis (recall fig. 2.4). We believe,that this is true in the presence
of an external magnetic field as well. If the index “+” corresponds to the upper mode, then
the differenceq+

L − q+
R decreases, whereasq−L − q−R increases as long as the spin-splitting be-

comes larger (for smaller radiuses of curvature). Thus, thegeometric phase is radius dependent
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Figure 3.7: Transmission probabilities for the loop of radiusR= 5·10−5cm in the adiabatic regime (solid
lines) and corresponding straight wire of lengthL = 2πR (dotted lines) versus external magnetic field. The
parameters are the same as for fig. 3.5, but the height of the barrier is taken negative: (a)V = −6.25meV,
(b) V = −12.5meV, (c)V = −18.75meV, and (d)V = −25meV.

in the non-adiabatic regime~2/(2m∗αR) ≫ 1. Of course, the expression (3.28) and its adiabatic
analogue (2.45) give close results in the appropriate regime (see fig. 3.4).

In conclusion of this section, we have studied quantum transport in a mesoscopic loop with
Rashba coupling and Zeeman splitting. Here, we have found that the Berry phase gives a well
pronounced interference effect in form of a deviation of thetransmission probability from its
value for the straight wire of the same lengthL = 2πR at some specific external magnetic fields.
Moreover, we have investigated our system in the non-adiabatic regime and found, that the char-
acteristic magnetic fields, which provide the strong deviation, are shifted to higher values. And
finally, these specific values of the magnetic field are very sensitive to the potential profile in the
loop.
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Figure 3.8: Transmission probabilities for the loop of radiusR= 5 ·10−6cm in the non-adiabatic regime
(solid lines) and corresponding straight wire of lengthL = 2πR (dotted lines) versus external magnetic
field. The other parameters are the same as for fig. 3.5, but theheight of the barrier is taken negative: (a)
V = −6.25meV, (b)V = −12.5meV, (c)V = −18.75meV, and (d)V = −25meV. Note, that the region of
the magnetic fields, whereBz≫ Bin (and the difference between solid and dotted lines vanishes) is shifted
to very high values.
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4 Spin manipulation by means of curved
one-dimensional wires

In this Chapter, we describe a semiconductor structure thatcan rotate and switch the electron
spin without using ferromagnetic contacts, tunneling barriers, external radiation etc. The struc-
ture consists of a strongly curved one-dimensional ballistic wire with intrinsic spin-orbit inter-
actions of Rashba type. Our calculations and analytical formulae show that the proposed device
can redistribute the current densities between the two spin-split modes without backscattering
and, thus, serve as a reflectionless and high-speed spin switcher. Using parameters relevant for
InAs we investigate the projection of current density spin polarization on the spin-quantization
axis as a function of the Rashba constant, external magneticfield, and radius of the wire’s cur-
vature.

4.1 The basic idea

In the introductory Chapter 2 we have discussed some of possible spin-filtering devices. The
second necessary component of the desired spin field effect transistor is the spin-rotator (or spin-
switch).

The schematic of the “conventional” spin-rotator based on the Rashba effect is depicted in
fig. 4.1a. The straight quantum wire (or just a two-dimensional stripe) is divided into three
regions. In the middle region of lengthL, the spin-orbit interactions are finite, whereas in the
input and output channels the spin-orbit coupling is set to zero. In other words, the semiconduc-
tor region in which the Rashba effect occurs does not extend into the spin source and drain [91].
The angle of the spin rotation depends explicitely on the length of the stripe between the input
and output contacts, namely

∆ϑ =
2m∗αL

~2 , (4.1)

wherem∗ is the effective electron mass,α is the Rashba constant. The spin-switching speed of
this device (i. e. the minimal time necessary to rotate the spin for the angle of∆ϑ = π) has been
estimated in the Introduction. It reaches the value of 0.2 ps for InAs in the ballistic transport
regime.

In spite of impressive advantages, the “conventional” scheme involves propagation of electrons
across borders separating the media with different spin-orbit coupling strength. A reflection on
the border is thus a necessary complement that diminishes the total current through the device
and even might compromise the feasibility of the proposal. In this Chapter, we propose a scheme
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of a reflectionlessspin-rotator made of material with Rashba spin-orbit interaction such as InAs.
We consider acurvedwire consisting of a semicircle with radiusRattached to the infinite straight
one-dimensional channels, as shown in fig. 4.1b. The channels are made of thesamematerial
as the semicircle itself, thus, the electron backscattering is negligible. Moreover, because of
the specific geometry of the system, the speed of response caneven exceed the one for the
“conventional” spin-rotator discussed above. The device is placed in a perpendicular magnetic
field B, which can be used to control the spin-rotation (in additionto the Rashba constant tuned by
the external electric field). Curved one-dimensional quantum channels in InAs [92] are expected
to be used for the experimental check of the present proposal. The spin polarized electrons
necessary for such experiments can be generated directly inInAs by circularly polarized light
[49, 61]. Note, that the recombination of spin polarized charged carriers results in the emission
of circularly polarized light. It is possible, therefore, to use optical methods for the detection of
the electron spin-polarization as well.

On the face of it, the device depicted in fig. 4.1b is similar tothe one investigated by Bulgakov
and Sadreev [93]. However, there is an essential differencein approaches used here and in
[93]. In that work, the authors assumea priory an adiabatic regime: the radius of the curvature
is so large that the electrons do not feel the junction between the curved part of the wire and
input/output channels. In contrast, we start from the very general solution of Schrödinger’s
equation for thewholesystem (i. e. input channel — semi-circle — output channel) and find that
though the electron backscattering is still negligible, the redistribution between current densities
with opposite spin indices can occur at certain comparatively small radii of curvature (that is
forwardscattering in some sense).

Before we proceed the description of our model, it is necessary to mention the reference [94],
where the geometrically induced potentials have been investigated in curved mesoscopic systems.
In particular, flexing the quantum wire leads to a potential of the form

Ug = − ~
2

8m∗R2 , (4.2)

whereR is the radius of curvature at the point of the wire’s bend. We emphasize, that our
approach includes the change of the geometrical potential automatically. However, the effect of
Ug on the electron motion is negligible in real systems [92] (aswell as in our model) since the
geometrical potential is much smaller than the Fermi energy(Ug/EF . 10−3 for curved InAs
wires [35, 36, 92]).

In order to describe the degree of the current density redistribution between modes with opposite
spin indices we introduce the following quantity

P =
j+− j−

j+ + j−
, (4.3)

where j± denote the current densities with a given spin orientation,and “±” are the spin indices.
Note, that the usual definition for the spin polarization involvesdensitiesof particles with op-
posite spin orientation. However, definition (4.3) withcurrent densitiesis more relevant for the
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Figure 4.1: (a) Schematic of the “conventional” spin-rotator. In the central region of the wire the spin-orbit
interaction is finite, whereas in the input and output channels the Rashba effect vanishes. (b) Schematic of
the reflectionless and high-speed spin-rotator. The quantum wire is made of just one material so, that the
Rashba constant in the curved part is the same as in the input and output channels.

transport measurements. It seems essential to emphasize that the quantityP is controllable ex-
perimentally since the currentsj+ and j− can be generated and detected independently by means
of absorption of two circularly polarized light beams with opposite helicity [49, 61].

If one prefers to controlP by means of magnetized contacts then the situation is a bit more
complicated. Indeed, the quantityP has the meaning of projection of the current density spin-
polarization on the spin-quantization axis. The orientation of the spin-quantization axis is deter-
mined by the relation between the external magnetic fieldB and in-plane Zeeman-like magnetic
field Bin generated by the Rashba spin-orbit interactions

Bin =
2αk0

g∗µB
. (4.4)

Herek0 is the characteristic Fermi wave vector, whereasg∗ andµB are the g-factor and the Bohr
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Figure 4.2: Spin dynamics in a slightly curved wire with spin-orbit coupling. The electron spin follows
adiabatically the electron trajectory, and the angle between the direction of the motion and the spin does
not change.

magneton respectively. The field Bin is orthogonal to the direction of the electron motion, there-
fore the spin-quantization axis lies in theyzplane (for the input and output channels). The angle
γ0 between thez axis and the spin-quantization can be estimated from the simple trigonometric
formula

tanγ0 =
Bin

|B| . (4.5)

If the external magnetic field|B| = Bz is much larger than the in-plane one, then the spin-
quantization axis coincides with thez axis. In contrast, if the external magnetic field is absent
then the spin-quantization axis is orthogonal to the direction of the electron motion at each point
of its trajectory. In the following, we call the quantityP defined by (4.3) just spin-polarization.

The basic idea of the device depicted in fig. 4.1b can be explained as follows. The spin dynamics
in a media with spin-orbit interactions depends essentially on the form of electron trajectory. If
the trajectory changes adiabatically (i. e. the radius of the wire is quite large), then the angle be-
tween the direction of the motion and the spin remains constant in each point of a trajectory as it
is shown in fig. 4.2. However, the electron spin in laboratorycoordinates changes its orientation.
In contrast, if 100% spin-polarized electron beam is reflected by an infinite barrier (as it is shown
in fig. 4.3), then the angle between the direction of the motion and the spin changes. This regime
is strongly non-adiabatic. Here, the electron spin does notchange, however, its orientation in
laboratory coordinates.

The transition between these two (adiabatic and non-adiabatic) regimes can give us some addi-
tional possibilities for spin manipulation in semiconductor structures. Both of these regimes can
be realized in the proposed device depicted in fig. 4.1b. Indeed, if we assume the radius of the
curved part in fig. 4.1b to be zero, then we arrive at the one-dimensional wire with an infinite bar-
rier and the regime is non-adiabatic. In contrast, if the radius of the curved part is large enough,
then we have the adiabatic regime depicted in fig. 4.2. The transition between these two regimes
will be studied in this Chapter.

In the next sections, we study the output polarization defined by (4.3) in two different cases. First,
we assume, that the electrons in the input wire are in their eigen statesΨ+

in andΨ−
in given by (3.4)

and (3.5) respectively. Then, we study the current density redistribution between “+” and “−”
modes at different parameters of the system: external magnetic field and radius of curvature.
Moreover, we show, that the initial phase difference between Ψ+

in andΨ−
in plays a significant role

for the output polarization. We call such a setup “spin rotator”.
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Figure 4.3: The reflection of left-hand spin-polarized electrons (i. e. the angle between the direction of the
motion and the spin is+90◦) from an infinite barrier in a media with spin-orbit interactions. The electrons
do not have enough time to change the direction of their spinswhile the direction of motion is changed.
Therefore, the left-hand polarization is changed to right-hand one (i. e. the angle between the direction of
the motion and the spin becomes−90◦). This figure is expected to give an intuitive explanation ofwhat
happens in fig. 4.1 if the radius of the curved part is infinitely small.

The second case corresponds to the setup that we call a “spin switch”. The electrons in the input
wire are assumed to be only in the eigen stateΨ+

in, i. e. the electron beam is 100% spin-polarized.
Then, we demonstrate the possibility to switch the spin polarization P to its opposite value by
means of the device depicted in fig. 4.1b.

4.2 Curved 1D wire as a spin rotator

First, we calculate single particle spin-split states for the system shown in fig. 4.1b. To this end
we use the same approach as in the previous Chapter. Again, wedivide the wire into three parts:
the input channel, the semi-circle (curved part of the quantum wire) and the output channel. We
use cartesian coordinates to describe the input and output channels (the regionx < 0 in fig. 4.1b)
and the polar coordinates for the description of the curved part of the wire (the semi-circle).
The Hamiltonians describing the propagation of electrons in the input/output wires are exactly
the same as in the Chapter 3, whereas the propagation throughthe curved part of the wire is
governed by the Hamiltonian

Hloop =

(
ε0 q̂2

ϕ + εZ αe−iϕ (q̂ϕ− 1
2

)
/R

αeiϕ (q̂ϕ + 1
2

)
/R ε0 q̂2

ϕ − εZ

)
. (4.6)

In contrast to (3.2), there is no additional barrier at the entrance into the curved part. This is the
most important difference between the setup depicted in fig.4.1b and the system discussed in the
Chapter 3.
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Similar to the previous Chapter, the vector potentialA is assumed to be tangential to the direction
of the current:Aϕ(ϕ) = Φ/2πR in the curved part andAx = Φ/2πR in the leads so, that the
continuity conditions at the junction pointsx = 0, y = ±R are preserved.

We keep the notations introduced in the previous Chapter forthe wave functions in the in-
put/output channels and curved part of the wire:Ψ±

in(x), Ψ±
out(x) andΨ±

loop(ϕ) respectively. The
following boundary conditions warrant the continuity of the wave function and its first derivative
on the boundaries between the three parts of the system





Ψ+
in(x)|x=0 +Ψ−

in(x)|x=0 = Ψ+
loop(ϕ)|ϕ=−π/2+Ψ−

loop(ϕ)|ϕ=−π/2,

Ψ+
loop(ϕ)|ϕ=π/2+Ψ−

loop(ϕ)|ϕ=π/2 = Ψ+
out(x)|x=0+Ψ−

out(x)|x=0|x=0,

∇Ψ+
in(x)|x=0 +∇Ψ−

in(x)|x=0 = ∇Ψ+
loop(ϕ)|ϕ=−π/2+∇Ψ−

loop(ϕ)|ϕ=−π/2,

∇Ψ+
loop(ϕ)|ϕ=π/2+∇Ψ−

loop(ϕ)|ϕ=π/2 = ∇Ψ+
out(x)|x=0+∇Ψ−

out(x)|x=0.

(4.7)

The solution of Schrödinger’s equations for Hamiltonians(3.1), (4.6) gives the desired wave
functions for the input, output and curved parts of the system. For the input channel we have a
similar solution as for the loop-like structure studied in the Chapter 3. However, in contrast to
(3.4), (3.5), the initial phasesθ± of the incident waves are included explicitly for each mode

Ψ+
in(x) = e

iΦ
Φ0Rx


 cosγ+

(
eiθ++ik+x +A+e−ik+x

)

−i sinγ+
(

eiθ++ik+x−A+e−ik+x
)

 , (4.8)

Ψ−
in(x) = e

iΦ
Φ0Rx



 −i sinγ−
(

eiθ−+ik−x−A−e−ik−x
)

cosγ−
(

eiθ−+ik−x +A−e−ik−x
)



 . (4.9)

For the output channel the eigen functions read

Ψ+
out(x) =

(
D+ cosγ+e

i(k++ Φ
Φ0R)x

iD+ sinγ+e
i(k++ Φ

Φ0R)x

)
, (4.10)

Ψ−
out(x) =

(
iD−sinγ−e

i(k−+ Φ
Φ0R)x

D−cosγ−e
i(k−+ Φ

Φ0R)x

)
. (4.11)

Here, in contrast to (3.8) and (3.9), the sign ofγ± is changed since the electron motion changes
its direction to the opposite one. It is useful to write down the Fermi momenta explicitely in the
form

k± =
√

2m∗

√
~2EF +m∗ α2±

√
2m∗EF ~2α2+m∗2 α4 +~4εZ

2

~4 . (4.12)

In the case of zero magnetic field (εZ = 0), the expression (4.12) reduces to

k± = ∓m∗ α
~2 +k0, (4.13)
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wherek0 =

√
(m∗ α/~2)2 +2m∗EF/~2.

The eigenfunctions of the Hamiltonian (4.6) have the same form as for the loop described in the
previous Chapter

Ψ+
loop(ϕ) = e

i Φ
Φ0

ϕ
(

B+ cosα+ei(q+
R− 1

2)ϕ +C+ cosβ+e−i( 1
2+q+

L )ϕ

B+ sinα+ei( 1
2+q+

R)ϕ −C+ sinβ+e−i(q+
L − 1

2)ϕ

)
, (4.14)

Ψ−
loop(ϕ) = e

i Φ
Φ0

ϕ
(

−B− sinα−ei(q−R− 1
2)ϕ +C−sinβ−e−i( 1

2+q−L )ϕ

B−cosα−ei( 1
2+q−R)ϕ +C−cosβ−e−i(q−L − 1

2)ϕ

)
. (4.15)

However, the Fermi angular momenta in the curved part of the systemq±R,L do not contain the
barrier heightV. They can be found from the conditions

EF =
ε0

4
+ ε0q±R

2±

√(
q±R α

R

)2

+
(
q±R ε0− εZ

)2
, (4.16)

EF =
ε0

4
+ ε0q±L

2±

√(
q±L α

R

)2

+
(
q±L ε0 + εZ

)2
. (4.17)

If the Zeeman effect is negligible, then the equations (4.16) allow an analytical solution with
respect toq±R,L

q±/R= ∓m∗ α
~2

√

1+

(
~2

2αm∗R

)2

+k0. (4.18)

Note, that the chirality index is omitted in (4.18), sinceq±R = q±L .

Imposing the boundary conditions (4.7) on the wave functions (4.8) – (4.11), (4.14) – (4.15)
we get a system of eight equations (7.9) – (7.16) given in Appendix A. If one has a solution of
that system with respect toA±, B±, C±, D±, then using the formulae (3.23), (3.24) and (3.25)
given in Chapter 3 one can easily find the input, reflected and output current densities. The
general solution obtained byMathematica 5.0shows, that the transmission probability defined
asT = ( j+out+ j−out)/( j+in + j−in) is equal to 1, and the reflection oneR= ( j+refl + j−refl)/( j+in + j−in)
is zero. This means that there is no particle backscattering. However, there is a current density
redistribution betweenj+out and j−out, which leads to some interesting effects.

To show that, let us find the analytical solution of equations(7.9) – (7.16) in two limiting cases.
First, we assume zero external magnetic field (εZ = 0, Φ = 0) and a deeply adiabatic regime for
the spin precession~2/(2m∗Rα) ≪ 1. In this case, one can adoptγ± = α± = β± = π/4, and the
equations (7.9) – (7.16) take the much simpler form

(
eiθ+

+A+
)
− i
(

eiθ− −A−
)

=

= ei π/4
(

B+e−i πq+
R/2+C+ei πq+

L /2−B−e−i πq−R/2 +C−ei πq−L /2
)

, (4.19)
(

eiθ− +A−
)
− i
(

eiθ+ −A+
)

=

= e−i π/4
(

B−e−i πq−R/2+C−ei πq−L /2+B+e−i πq+
R/2−C+ei πq+

L /2
)

, (4.20)
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e−i π/4
(

B+ei πq+
R/2 +C+e−i πq+

L /2−B−ei πq−R/2 +C−e−i πq−L /2
)

= D+ + iD−, (4.21)

ei π/4
(

B−ei πq−R/2+C−e−i πq−L /2 +B+ei πq+
R/2−C+e−i πq+

L /2
)

= D− + iD+, (4.22)

k+
(

eiθ+ −A+
)
− i k−

(
eiθ− +A−

)
=

ei π/4

R

[
B+

(
q+

R − 1
2

)
e−i πq+

R/2−

−C+

(
1
2

+q+
L

)
ei πq+

L /2−B−
(

q−R − 1
2

)
e−i πq−R/2−C−

(
1
2

+q−L

)
ei πq−L /2

]
, (4.23)

k−
(

eiθ− −A−
)
− ik+

(
eiθ+

+A+
)

=
e−i π/4

R

[
B−
(

1
2

+q−R

)
e−i πq−R/2+

+C−
(

1
2
−q−L

)
ei πq−L /2+B+

(
1
2

+q+
R

)
e−i πq+

R/2−C+

(
1
2
−q+

L

)
ei πq+

L /2
]
, (4.24)

1
R

e−i π/4
[
B+

(
q+

R − 1
2

)
ei πq+

R/2−C+

(
1
2

+q+
L

)
e−i πq+

L /2−

− B−
(

q−R − 1
2

)
ei πq−R/2 −C−

(
1
2

+q−L

)
e−i πq−L /2

]
= D+ k+ + iD−k−, (4.25)

1
R

ei π/4
[
B−
(

1
2

+q−R

)
ei πq−R/2 +C−

(
1
2
−q−L

)
e−i πq−L /2+

+ B+

(
1
2

+q+
R

)
ei πq+

R/2−C+

(
1
2
−q+

L

)
e−i πq+

L /2
]

= D−k− + iD+ k+. (4.26)

Note, thatk± = q±R/R = q±L /R as long as~2/(2m∗Rα) ≪ 1, as it follows from the relations
(4.13), (4.18) or from the plots in fig. 2.4. Therefore, the solution of (4.19) – (4.26) is rather
trivial

A+ = 0, A− = 0, B+ = eiθ+−i π/4+i πq+
R/2, B− = eiθ−+i π/4+i πq−R/2,

C+ = 0, C− = 0, D+ = −i eiθ++i πq+
R , D− = i eiθ−+i πq−R ;

(4.27)

and, thus,|A+|2 = |A−|2 = 0, |D+|2 = |D−|2 = 1. Then, the current densities read

j±out =
~

m∗

(
k±± αm∗

~2

)
, j±refl = 0; (4.28)

and the output polarization is

Pout =
k+−k− +2αm∗/~

2

k+ +k−
. (4.29)

Recall, thatk−−k+ = 2αm∗/~
2 at Bz = 0. Thus,Pout = 0 for anyα.

In contrast to that, if we assume a strongly non-adiabatic regime for the spin precession so, that
~

2/(2m∗Rα)≫ 1, then at zero external magnetic field we still haveγ± = π/4, butα± = π/2 and
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β± = 0. In this case, the system of equations (7.9) – (7.16) takes the form

1√
2

(
eiθ+

+A+
)
− i√

2

(
eiθ− −A−

)
= ei π/4

(
C+ei πq+

L /2−B−e−i πq−R/2
)

, (4.30)

1√
2

(
eiθ− +A−

)
− i√

2

(
eiθ+ −A+

)
= e−i π/4

(
C−ei πq−L /2 +B+e−i πq+

R/2
)

, (4.31)

e−i π/4
(
C+e−i πq+

L /2−B−ei πq−R/2
)

=
1√
2

D+ +
i√
2

D−, (4.32)

ei π/4
(
C−e−i πq−L /2+B+ei πq+

R/2
)

=
1√
2

D− +
i√
2

D+, (4.33)

1√
2

k+
(

eiθ+ −A+
)
− i√

2
k−
(

eiθ− +A−
)

=

=
ei π/4

R

[
−C+

(
1
2

+q+
L

)
ei πq+

L /2−B−
(

q−R − 1
2

)
e−i πq−R/2

]
, (4.34)

1√
2

k−
(

eiθ− −A−
)
− i√

2
k+
(

eiθ+
+A+

)
= (4.35)

=
e−i π/4

R

[
C−
(

1
2
−q−L

)
ei πq−L /2+B+

(
1
2

+q+
R

)
e−i πq+

R/2
]
, (4.36)

1
R

e−i π/4
[
−C+

(
1
2

+q+
L

)
e−i πq+

L /2−B−
(

q−R − 1
2

)
ei πq−R/2

]
=

=
1√
2

D+ k+ +
i√
2

D−k−, (4.37)

1
R

ei π/4
[
C−
(

1
2
−q−L

)
e−i πq−L /2 +B+

(
1
2

+q+
R

)
ei πq+

R/2
]

=

=
1√
2

D−k− +
i√
2

D+ k+. (4.38)

The approximate solution (assuming thatq± = ∓1/2R+ k0, k± = k0, i. e. the characteristic
spin-orbit interaction energy is much smaller than the Fermi one) reads

A+ = 0, A− = 0,

B+ =
1√
2

(
eiθ− − i eiθ+

)
e

i π
2 ( 1

2+q+
R), B− = − 1√

2

(
eiθ+ − i eiθ−

)
e

i π
2 (q−R− 1

2),

C+ = 0, C− = 0,

D+ =
eiθ− + i eiθ+

2i
ei π(q−R− 1

2) +
eiθ− − i eiθ+

2i
ei π(q+

R+ 1
2),

D− =
eiθ− − i eiθ+

2
ei π(q+

R+ 1
2)− eiθ− + i eiθ+

2
ei π(q−R− 1

2).

(4.39)

Thus,|D±|2 = 1±cos(θ+−θ−)sin
[
π
(
q−R −q+

R

)]
, and the spin components of the output cur-
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rent density read

j±out =
~k0

m∗
{

1±cos
(
θ+−θ−

)
sin
[
π
(
q−R −q+

R

)]}
. (4.40)

The spin components of the reflection current densityj±refl are still equal to zero. Thus,R= 0 and
T = 1, whereas the output polarization reads

Pout = cos
(
θ+−θ−

)
sin
[
π
(
q−R −q+

R

)]
. (4.41)

The relation (4.41) shows, that in strongly curved one-dimensional wires a current density re-
distribution between two spin-split modes is achievable. The results of numerical calculations at
θ± = 0 are summarized in figs. 4.4, 4.5. The dependencesPout(R) andPout(Bz) are given by solid
curves. The dotted lines correspond to the factor (4.41). The strong correlation between the spin
polarization and the interference factor is clearly visible. Nevertheless, a few words of comment
are necessary here.

First, the polarization is not zero atBz = 0. One can see it from the figs. 4.4, 4.5 or directly from
(4.41). Second, a plot ofPout as a function ofBz or R yields an oscillating curve. The oscilla-
tions have a natural explanation if one follows the evolution of the wave function as a particle
propagates through the wire. Namely, after the passage through the curved part of the wire, the
component of the input wave functionΨ+

in propagates as a linear combination of the modesΨ+
loop

andΨ−
loop with the wave vectorsq+

R andq−R respectively [see the approximate solution (4.39)].

The same is true for the propagation of the stateΨ−
in. Due to the interference between two propa-

gating states at the output of the curved part, a factor sin
[
π(q−R −q+

R)
]

appears in the output spin
polarization, which shows up as the oscillations inPout(B) andPout(R). Note, that in contrast to
the system discussed in Chapter 3 there is no barrier here, and the interference factor does not
appear in the transmission probabilityT (which is equal to 1) but in the spin-polarizationP.

Now we must say a few words about the influence of the initial phase difference∆θ = θ−−θ+ on
the abovementioned effect. In general, the electron statesin the reservoirs are not coherent and,
therefore, the output current densitiesj±out have to be averaged over the distribution of random
initial phasesθ±. In order to model the degree of decoherence we use rectangular distributions
of width w, 0≤ θ± ≤ w for θ± (see fig. 4.6). The results are summarized in figs. 4.7, 4.8. One
can easily see, that an initial decoherence hampers the polarization. A tiny polarization at strong
magnetic fields for the completely decoherent case is due to the Zeeman effect only.

Finally, we find it necessary to focus on the distinct features of our system that lead to the effects
shown above. Let us first prove that the curvature of the one-dimensional wire itself does not
lead to the current density redistribution between two spinmodes. To do that, we need to modify
the definition of current density (3.22) for the case of the non-symmetric Hamiltonian (4.6). The
equation (3.20) has to be rewritten as

iR
~

Z

dϕ
(

ΨH∗
loopΨ∗−Ψ∗HloopΨ

)
=

iR
~

Z

dϕ
[
Ψ1

(
ε0k̂2

ϕΨ1

)∗
−Ψ∗

1

(
ε0k̂2

ϕΨ1

)
+

+Ψ1

(α
R

e−i ϕk̂ϕΨ2

)∗
−Ψ∗

1

(α
R

e−i ϕk̂ϕΨ2

)
+Ψ2

(
ε0k̂2

ϕΨ2

)∗
−Ψ∗

2

(
ε0k̂2

ϕΨ2

)
+
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Figure 4.4: Polarization (solid line) versus radius of the semi-circle atBz = 0. The interference factor
sin
[
π(q−R −q+

R)
]

is depicted by the dashed line. The initial phasesθ± both are equal to zero,Pin = 0,
and the other parameters are taken relevant for InAs:α = 2·10−11eVm,m∗ = 0.033me, g∗ = −12,EF =
30meV.

+Ψ2

(α
R

ei ϕk̂ϕΨ1

)∗
−Ψ∗

2

(α
R

ei ϕk̂ϕΨ1

)
−eiϕΨ∗

2Ψ1 +e−iϕΨ∗
1Ψ2

]
. (4.42)

Note, that in contrast to (3.20) the additional e±iϕ–dependent terms occur. The formula for
current densities in a curved wire is, therefore, more complicated than the previous one for the
straight channel (3.22). Using the continuity equation (3.18) we arrive (after some algebra) at
the following relation forj

j =
Rε0

~

(
Ψ1k̂∗ϕΨ∗

1 +Ψ∗
1k̂ϕΨ1 +Ψ2k̂∗ϕΨ∗

2+Ψ∗
2k̂ϕΨ2

)
+

+
α
~

(
Ψ1Ψ∗

2eiϕ −Ψ∗
1Ψ2e−iϕ) . (4.43)

Now, let us apply formula (4.43) to the spinors (4.14) and (4.15) which describe the spin-split
states in the curved part of the wire. Straightforward calculations lead to the following formula
for right-moving current densities

j±loop = |B±|2 ~

m∗

[
q±R
R

± m∗α
~2

(
sin2α±− ~

2

2Rαm∗ cos2α±
)]

. (4.44)

Equation (4.44) is still not very clear since it contains theZeeman effect which can lead to a
tiny polarization and, therefore, diminish the obviousness of the picture. Thus, we setεZ = 0
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Figure 4.5: Polarization (solid lines) and interference factor sin
[
π(q−R −q+

R)
]

(dashed lines) versus exter-
nal magnetic field at different radii of the semi-circle: (a)R= 10−4cm, (b)R= 5·10−5cm, (c)R= 10−5cm,
(d) R= 5 ·10−6cm. The input current is spin-unpolarized. The initial phasesθ± both are equal to zero,
and the other parameters are taken relevant for InAs:α = 2 · 10−11eVm, m∗ = 0.033me, g∗ = −12,
EF = 30meV.
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Figure 4.6: The rectangular distribution forθ± used for decoherence simulations.
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Figure 4.8: Total polarization vs. magnetic field for different distribution widthw= max{θ±}. The radius
of the semi-circle is taken ten times smaller (5·10−5cm) than for the previous figure. Curve (A)w = 0
(completely coherent states), (B)w = π/2, (C)w = π, (D) w = 2π (completely decoherent states).
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and study the interplay of spin-orbit coupling and non-zerocurvature without additional Zeeman
spin-splitting. As soon asεZ = 0, we have immediately from (3.12)

tan2α+ = tan2α− = −2αm∗R
~2 . (4.45)

Then, using the general trigonometric relation

asinα+bcosα =
√

a2+b2sin

(
α+arctg

b
a

)
, (4.46)

(wherea > 0) we arrive at the next formula forj±loop for Bz = 0

j±loop = |B±|2 ~

m∗





q±R
R

± m∗α
~2

√

1+

(
~2

2m∗αR

)2

sin
[
2α±+arctg

(
cot2α±)]



 . (4.47)

Notice, it is easy to check that sin[2α± +arctg(cot2α±)] = 1. Now, adopting the relations (4.18)
for q±R, we get

j±loop = |B±|2~k0

m∗ , (4.48)

and

Ploop =
|B+|2−|B−|2
|B+|2+ |B−|2 . (4.49)

Note, thatPloop depends only on the transmission amplitudesB±, i. e. on the properties of the
junction between the regions with different curvature. Letus find|B±|2 explicitely from (4.39).
Straightforward calculations lead to|B±|2 = 1±sin(θ+−θ−) and the polarization reads

Ploop = sin
(
θ+−θ−

)
. (4.50)

As one can see from this formula, the current density polarization in the curved part of the
system depends only on the phase difference of the initial states. Thus, these initial states must
be specially prepared in order to observe the factor (4.50) in the polarization measurements. If
the phase differenceθ+ −θ− is not fixed in the electron beam (or just equal to zero), then the
observed polarization is zero.

We would like to emphasize, that the current density redistribution between the two spin-split
modes in the curved part of the wire does not stem from the finite curvature itself. In contrast,
thechangeof curvature gives rise to the difference between the amplitudes|B+|2 and|B−|2 (or
|D+|2 and|D−|2) and, therefore, leads to the current density redistribution between the two spin-
split modes. Indeed, consider the electron momenta at the Fermi level for the straight and curved
regions of the wire in the simplest case of zero external magnetic field. The momentak± and
q±/R are given by (4.13) and (4.18) respectively. The essential difference between the electron
momenta for the straight wire and the loop lies in the radius dependent term~

2/(2αm∗R) in
q±/R. Notice, thatk± = q±/R if R = ∞ (no wire bending). In contrast,q+/R decreases(as
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Figure 4.9: The output polarization using the geometry of acompleteloop shown in fig. 3.1: polarization
(solid line) and the interference factor sin

[
2π(q−R −q+

R)
]

(dashed line) versus magnetic field. The radius
of the loop is taken as (a) 10−4cm, (b) 5·10−5cm, (c) 10−5cm and (d) 5·10−6cm. The parameters are
taken relevant for InAs, the height of the barrier is zero.

compared withk+) andq−/R increases(as compared withk−) as long as the loop goes towards
a kink of the wire atR→ 0. For all that, the Fermi velocityvF = ~

2k0/m∗ keeps the same value
in any part of the system, and the electron momentum changes in the curved part of the wire in
such a way, thatforward scattering from one spin-split mode to another occurs. The latter leads
to the interference between them and shows up as the current density redistribution betweenj+out
and j−out. One can think about the wire bending as a changing of the initial Rashba parameter

α to α
√

1+[~2/(2αm∗R)]
2 in the loop region. Note, however, that in contrast to the actual

change ofα, the change of the wire’s curvature does not affect the electron density of states and
results directly in the difference betweenq+ andq− so, that there is no problem with reflection.
This is a very particular property of the system: there is no barrier at the junction between the
straight and curved parts of the wire, but the Fermi momenta jump, and, thus, the current density
redistribution between the spin-split modes takes place.

At the end of this section we would like to note, that a similareffect can be found in one-
dimensional wires bent into a loop as well. Such a quantum loop has been studied in the previous
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Chapter and shown in fig. 3.1. The output polarization of sucha system atPin = 0 is depicted in
fig. 4.9.

The results obtained suggest that curved one-dimensional ballistic quantum wires with intrinsic
spin-orbit interactions can be utilized in spintronic devices as reflectionless spin rotators. The
phase coherence of electron states is, however, necessary.

4.3 Curved 1D wire as a spin switch

In this section we propose to use a strongly curved 1D wire discussed above as a spin switch. In
contrast to the previous case, the phase coherence of electron states is not necessary here. Now,
the initial stateΨ+

in(x) in the input wire is given by

Ψ+
in(x) = e

iΦ
Φ0Rx


 cosγ+

(
eiθ++ik+x +A+e−ik+x

)

−i sinγ+
(

eiθ++ik+x−A+e−ik+x
)

 , (4.51)

whereas the incident wave is absent in the spinorΨ−
in(x)

Ψ−
in(x) = e

iΦ
Φ0Rx

(
i sinγ−A−e−ik−x

cosγ−A−e−ik−x

)
. (4.52)

Thus, the input spin polarizationPin is assumed to be 1, i. e. the incident electron beam is 100%
left-hand polarized (atBz = 0).

The wave functionsΨ±
loop(ϕ) andΨ±

out(x) describing the electron propagation through the curved
and output parts of the the system are the same as in the previous case. The system of equations
(7.17) – (7.24) describing the propagation of the state (4.51) through the curved wire is given in
Appendix A.

The general solution of the system of equations (7.17) – (7.24) obtained byMathematica 5.0is
used for plotting the curves in figs. 4.10 – 4.12. This solution demonstrates zero backscattering
(R= 0 andT = 1), while the polarization curves exhibit the following interesting features: First,
the plots ofPout(Bz) andPout(R) yield oscillating curves. Second, the efficiency of the spin-
switching depends strongly on the direction of the externalmagnetic field. Third, although the
polarization can be switched to its opposite value atBz = 0, a relatively small radius of the wire’s
curvature is necessary. In order to explain the features listed above, we solve the system (7.17) –
(7.24) in two cases again: the deeply adiabatic~

2/(2m∗Rα) ≪ 1 and the strongly non-adiabatic
~

2/(2m∗Rα) ≫ 1 limits.

The first limit is, however, not really interesting. As in theprevious section, no current density
redistribution between the two spin-split modes occurs here, i. e. |D+|2 = 1 and|D−|2 = 0.
Intuitively it is clear, that the curved wire does not differtoo much from the straight one as long
as~

2/(2m∗Rα) ≪ 1. Therefore, the polarization keeps its +100% initial value while the current
flows through the system.
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Figure 4.10: The curved wire as a spin switch: Polarization versus radius of the semi-circle at zero
magnetic field. The initial polarization is+100%. The parameters are taken relevant forInAs: α =
2·10−11 eVm,m∗ = 0.033me, g∗ = −12,EF = 30 meV.

In the opposite, strongly non-adiabatic limit, the situation changes drastically. Indeed, the system
of equations (7.17) – (7.24) atα± = π/2, β± = 0 and zero magnetic field reads

1√
2

(
eiθ+

+A+
)

+
i√
2

A− = C+e−
i π
2 (−q+

L − 1
2)−B−e−

i π
2 (q−R− 1

2), (4.53)

1√
2

A−− i√
2

(
eiθ+ −A+

)
= C−e−

i π
2 (1

2−q−L ) +B+e−
i π
2 (1

2+q+
R), (4.54)

C+e
i π
2 (−q+

L − 1
2)−B−e

i π
2 (q−R− 1

2) =
1√
2

D+ +
i√
2

D−, (4.55)

C−e
i π
2 (−q−L + 1

2) +B+e
i π
2 (q+

R+ 1
2) =

1√
2

D− +
i√
2

D+, (4.56)

1√
2

k+
(

eiθ+ −A+
)
− i√

2
k−A− =

=
ei π/4

R

[
−C+

(
1
2

+q+
L

)
ei πq+

L /2−B−
(

q−R − 1
2

)
e−i πq−R/2

]
, (4.57)

− 1√
2

k−A−− i√
2

k+
(

eiθ+
+A+

)
=

=
e−i π/4

R

[
C−
(

1
2
−q−L

)
ei πq−L /2 +B+

(
1
2

+q+
R

)
e−i πq+

R/2
]
, (4.58)
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Figure 4.11: Spin switching by propagation through a strongly curved wire placed in a magnetic field
perpendicular to the loop plane. PolarizationPout versus magnetic field. The initial polarization is taken
+100%. Radius of the semicircle: (a) 10−4cm, (b) 5·10−5cm, (c) 10−5cm and (d) 5·10−6cm. The other
parameters are the same as for the previous figure (non-adiabatic regime).

1
R

e−i π/4
[
−C+

(
1
2

+q+
L

)
e−i πq+

L /2−B−
(

q−R − 1
2

)
ei πq−R/2

]
=

=
1√
2

D+ k+ +
i√
2

D− k−, (4.59)

1
R

ei π/4
[
C−
(

1
2
−q−L

)
e−i πq−L /2 +B+

(
1
2

+q+
R

)
ei πq+

R/2
]

=

=
1√
2

D−k− +
i√
2

D+ k+. (4.60)

The approximate solution of this system reads

A+ = 0, A− = 0,

B+ = − i√
2

ei θ++ i π
2 (1

2+q+
R), B− = − 1√

2
ei θ++ i π

2 (q−R− 1
2),

(4.61)
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Figure 4.12: Spin switching by means of a strongly curved wire placed in a magnetic field perpendicular
to the semicircle plane. PolarizationPout versus radius of the semi-circle. The initial polarizationis taken
+100%. The external magnetic field is taken as: (a)−10T, (b)−5T, (c) +5T and (d)+10T. The other
parameters are the same as for the previous figures. Note, that polarization is very sensitive to the sign of
the magnetic field.

C+ = 0, C− = 0,

D+ =
1
2

ei θ+
[
ei π(q−R− 1

2)−ei π(q+
R+ 1

2)
]
, D− =

1
2i

ei θ+
[
ei π(q−R− 1

2) +ei π(q+
R+ 1

2)
]
.

(4.62)

(Here, we assume the same approximations as in the previous section for (4.62), namely:q± =
∓1/2R+k0, k± = k0.) Then,

|D±|2 =
1
2
± 1

2
cos
[
π
(
q+

R −q−R
)]

,

and the spin components of the output current density read

j±out =
~k0

2m∗
{

1±cos
[
π
(
q−R −q+

R

)]}
. (4.63)
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Figure 4.13: Schematics of the spin field effect transistor based on strongly curved one-dimensional wires
with spin-orbit coupling. The thick arrows depict the spin orientation in the polariser and analyser. (a)
The system is closed. (b) The system is opened.

Thus, in the strongly non-adiabatic regime current densityredistribution occurs, and the polar-
ization is

Pout = cos
[
π
(
q−R −q+

R

)]
. (4.64)

Note, that if the radius of the curvature isexactlyequal to zero, then the difference between the
Fermi angular momenta reads

q−R −q+
R =

2m∗Rα
~2

√

1+

(
~2

2αm∗R

)2
∣∣∣∣∣∣
R=0

= 1. (4.65)

Thus, the output polarizationPout = −1, whereas the initial one wasPin = +1. Therefore, the
polarization is switched to its opposite value as expected for the case of zero radius. (The expla-
nation of this effect was given in the introductory section of this Chapter.)

The difference between the Fermi angular momentaq−R andq+
R depends not only on the Rashba

coupling and radius of the semi-circle, but on the Zeeman splitting as well. Therefore, the critical
values ofq−R − q+

R, when the polarizationPout changes the sign, are tunable by means of the
external magnetic field. Unfortunately, we do not have analytical formulae forq±R,L at non-zero
magnetic fields, but one can see the effect in figs. 4.11, 4.12.The most interesting of them are the
figs. 4.11d, 4.12b where almost -100% output spin polarization is achieved at non-zero radius of
the curvature.

Such a spin-switch can be used in spin-valves or spin field effect transistors similar to the ones
described in Chapter 2, figs. 2.8, 2.9. To complete the spin field effect transistor we assume a
spin polarizer and a spin analyzer at the ends of the input andoutput channels. For the sake of
simplicity, let the spin polarizer and spin analyzer be transparent for the same spin orientation
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Figure 4.14: PolarizationPout versus Rashba constantα at zero external magnetic field. The input po-
larization isPin = 1, m∗ = 0.033me, EF = 30meV, and the radius of curvature is (A)R= 2·10−5cm, (B)
R= 10−5cm, (c)R= 5·10−6cm. Such values ofα andRare achievable experimentally in InAs [8, 11, 92].

as it is shown in fig. 4.13. The basic principle of the device proposed is similar to the “conven-
tional” one. The transistor is closed as long as the transport regime is adiabatic~2/(2αm∗R)≤ 1,
and the electron spin changes its orientation with respect to the spin-orientation in the contacts
(fig. 4.13a). In contrast, the spin-switching occurs as soonas the electron spin does not have
enough time to follow the electron trajectory (the non-adiabatic regime, fig. 4.13b). Thus, the
spin-valve is opened when~2/(2αm∗R)≫ 1. The relation~2/(2αm∗R) can be tuned by the gate-
voltage dependent Rashba constantα as it is discussed in [8, 11]. The plots ofPout(α,Pin = 1)
are shown in fig. 4.14 for different radii of curvature. The values ofα are taken in accordance
with the experimental situation in InAs [8, 11].

In contrast to the “conventional” spin-rotators made of straight semiconductor stripes, the device
proposed is expected to operate faster since it works in the non-adiabatic regime. Indeed, the
switching speed is determined by the time needed for an electron to propagate through the curved
part of the system which can be very short as long as our deviceis in the non-adiabatic regime
~

2/(2αm∗R) ≫ 1. Thus, the switching time can be even smaller than the one estimated in the
Introduction for, let us say, a “conventional” spintronic device in the adiabatic regime.

In conclusion of this Chapter, we propose a semiconductor structure that can switch the electron
spin direction without using ferromagnetic contacts, tunneling barriers, external radiation etc.
Moreover, the alteration can be governed by external electric or magnetic fields. The results ob-
tained suggest that curved 1D ballistic quantum wires with intrinsic spin-orbit interactions can be
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utilized in spintronic devices as reflectionless spin switchers. Calculations based on typical pa-
rameters for InAs show that the desired regime is accessiblefor current experimental techniques
[92]. Note, that the initial left- or right-hand spin-polarized electron beam in InAs quantum wires
can be obtained by applying circularly polarized radiation[49, 61].
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5 The properties of the asymmetric
Tomonaga-Luttinger liquid

In this Chapter, we describe a particular one-dimensional system, where the Fermi velocities (as
well as the densities of states) for left- and right-moving electrons are not equal to each other.
Such a system can be formed in an isolated quantum loop with spin-orbit coupling placed into
a magnetic field perpendicular to the loop plane. The Tomonaga-Luttinger model is applied in
order to describe the influence of electron-electron interactions on the chiral asymmetry of the
density of states. We find, that electron-electron interactions lead to an alignment of the density
of states for the left- and right- moving electrons. In addition, the possible manifestation of the
chiral asymmetry in ballistic transport phenomena is discussed.

5.1 Interplay between Rashba and Zeeman effect in curved
one-dimensional wires

It is well known, that the electron spectrum in 1D systems without spin-orbit interactions and
Zeeman effect demonstrates spatial inversion symmetryEσ(k) = Eσ(−k) as well as time in-
version symmetryEσ(k) = E−σ(−k). (Hereσ and k are the spin and orbital quantum num-
bers respectively.) The spin-orbit coupling as well as Zeeman effect splits every electron spin-
degenerate energy band into two branches corresponding to the spin-up and spin-down projec-
tions on a certain axis. In detail, the Rashba effect shifts the dispersion curves along the mo-
mentum axis (let us say, spin-up band is moving to the right and spin-down one to the left),
whereas the Zeeman term splits them along the energy axis. Asa consequence, the spatial and
time inversion symmentry can be broken.

Actually, the space and time inversion asymmetry in the dispersion law stems from three factors:
(i) the presence of spin-orbit interactions, which break the spatial inversion symmetry, (ii) the
Zeeman effect, which breaks the time inversion symmetry, and (iii) a non-zero curvature of the
wire, which makes possible the manifestation of both space and time inversion asymmetry in the
electron spectrum.

Indeed, let us have a precise look on the dispersion law for the electrons in a curved 1D wire with
Rashba spin-orbit coupling placed in a magnetic field perpendicular to the plane as it is depicted
in fig. 2.2b. If the radius of curvature is constant and equal to R, then the energy spectrum reads

E±(q)

ε0
= q2+

1
4
±
√

α2

ε2
0R2

q2+

(
q− εZ

ε0

)2

, (5.1)
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whereq∈ (−∞,∞) is the angular momentum,εZ is the Zeeman energy, andε0 = ~
2/(2m∗R2).

The dispersion law (5.1) has a peculiar property:

Eσ(q) 6= Eσ(−q), Eσ(q) 6= E−σ(−q), (5.2)

i. e. both spatial and time inversion symmetries are broken.

If the Zeeman effect is absent then the dispersion law takes the form

E±(q)

ε0
=

(
q± 1

2

√
α2

ε2
0R2

+1

)2

− α2

4ε2
0R2

. (5.3)

Here,Eσ(q) = E−σ(−q) andEσ(q) 6= Eσ(−q), i. e. the spatial inversion symmetry is broken,
while the time inversion symmetry is kept. Note, that the spectrum (5.3) coincides with the
dispersion law for a straight 1D quantum wire (of the length 2πR) atα/ε0R>> 1. In the opposite
case of vanishing Rashba coupling and non-zero Zeeman splitting the spectrum is

E±(q)

ε0
= q2± εZ

ε0
. (5.4)

Here the spatial inversion symmetry is kept, while the time inversion symmetry is broken.

Note, that the notations± in the formulae (5.3) and (5.4) correspond to spin projections ”up”
and ”down” on different axis, namely, on the radial axis for (5.3) and on the polar one for (5.4).
Moreover, due to the coupling between the Rashba and Zeeman effects a rotation of the spin
quantization axis occurs and, therefore, the sign± in (5.1) does not have the sense of spin
projections onz or r axes.

If we have both Zeeman effect and Rashba spin-orbit coupling, but the wire is not curved, then
the spatial inversion symmetry is recovered, as it can be seen from the spectrum

E±(k) =
~

2k2

2m∗ ±
√

α2k2 + ε2
Z. (5.5)

Thus, it is only if all the three abovementioned conditions are fulfilled that both time and spatial
inversion symmetries are broken.

The time and spatial inversion asymmetry gives rise to some interesting effects. First, the Fermi
momenta for right- and left-moving electrons of the same branch are not equal anymore. Such
an asymmetry leads, in particular, to the Aharonov-Anandanphase discussed in the Chapter 3.
Second, the Fermi velocities are different for electrons with opposite chiralities (see fig. 5.1),
which leads to a chiral asymmetry of the density of states. This peculiarity of curved 1D wires
with Zeeman effect and Rashba coupling will be studied in thepresent Chapter.

5.2 Solution of the asymmetric Tomonaga-Luttinger model

The one-partical solution of Schrödinger’s equation for aquantum loop shows, that the Fermi ve-
locities (and, therefore, the densities of states) for left- and right-moving electrons are not equal.
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Figure 5.1: Dispersion law for free electrons in a 1D loop with Rashba coupling, placed into a perpendicu-
lar magnetic field. The asymmetry of the parabola is clearly visible. The straight lines on the left and right
sides are the linear approximations of the dispersion curves close to Fermi the points. The parameters are
taken relevant for InAs:α = 2·10−11 eVm,m∗ = 0.033me, g∗ =−12. The radius of the loop is 5·10−5cm,
external magnetic field is 1.3T, and the Fermi level is chosen so, that only a single subband is occupied.

The question is what happens with the density of states if theelectron-electron interactions are
switched on? We give the answer in the framework of the Tomonaga-Luttinger model, assuming
that only a single subband is occupied as it is shown in fig. 5.1.

We begin by linearizing the dispersion law for the lowest band close to the Fermi points as it is
depicted in fig. 5.1. The expansion reads

E−
L/R(q) = EF ∓

~v−L/R

R

(
q−q−L/R

)
. (5.6)

The Fermi velocities can be found from

v−L/R =
ε0R
~




2q−L/R−
q−L/R+ α2

ε2
0R2q−L/R± εZ/ε0

√(
αq−L/R

ε0R

)2

+
(

q−L/R± εZ/ε0

)2




. (5.7)

The Fermi angular momentaq−L/R are the roots of equations (4.16), (4.17) taken with the index
“−”. Unfortunately, these equations do not allow reasonable analytical solutions with respect
to q at εZ 6= 0. However, a numerical treatment is applicable, and the Fermi velocities (5.7)
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Figure 5.2: The influence of the external magnetic field and the curvature of the wire on the chiral asymme-
try of the density of states. The relation between the Fermi velocities for left- and right-moving electrons
vL/vR is chosen as a degree of the asymmetry. The parameters are taken relevant for InAs:α = 2·10−11

eVm, m∗ = 0.033me, g∗ = −12, EF = 30meV. The radius of the curvature is (a)R = 5 · 10−6cm, (b)
R= 1·10−5cm, (c)R= 5·10−5cm.

can easily be found. As a degree of their chiral asymmetry we use the relation betweenv−L and
v−R. The dependences ofv−L /v−R on the magnetic field for different radii of the loop are given
in fig. 5.2. The Fermi level is taken to be equal 30meV. However, in contrast to the situation
depicted in fig. 5.1, both spin-split subbands are occupied at this Fermi energy. In fig. 5.3, the
Fermi energy is taken ten times smaller so, that it is possible to empty the upper band in fig. 5.1
by means of Zeeman splitting. Note, that the chiral asymmetry is even stronger in this case.

Let us turn to the electron-electron interactions. The Tomonaga-Luttinger model suggests the
following Hamiltonian for the description of electron-electron interactions in the system with
chiral asymmetry

H = Hkin +Hint, (5.8)

where

Hkin =
Z

dx
2π

[
ψ†

L(x)

(
i ~v−L

∂
∂x

)
ψL(x)+ψ†

R(x)

(
−i ~v−R

∂
∂x

)
ψR(x)

]
, (5.9)

Hint =

Z

dx
2π

(
g2ψ†

L(x)ψL(x)ψ†
R(x)ψR(x) +

+
1
2

g4

{[
ψ†

L(x)ψL(x)
]2

+
[
ψ†

R(x)ψR(x)
]2
})

. (5.10)

77



0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

-10 -5 0 5 10

Magnetic Field (T)

(a)
(b)
(c)

v− L
/
v− R

Figure 5.3: The same as for fig. 5.2, but the Fermi energy is taken more relevant for the situation depicted
in fig. 5.1, i. e. EF = 3meV. The radius of the curvature is (a)R= 5 ·10−6cm, (b)R= 1 ·10−5cm, (c)
R= 5·10−5cm. The other parameters are the same as for fig. 5.2.

HereψL(x), ψR(x) are the fermion fields for left- and right-moving electrons respectively,g2,4

are interaction constants, andx is the coordinate along the wire. The Fermi velocitiesv−L and
v−R are taken as their absolute values. They are assumed to be described by (5.7). The electron
energy is counted from its Fermi value.

Note, that in contrast to the introductory Chapter 2, the parametersg2 andg4 have dimension of
energy/length here. Indeed, if we omit the exchange term in [84], then the interaction constants
are

g4 = V1(0), (5.11)

for electrons with the same chirality

g2 = V1(0)−V1(−q−L +q−R)

2
, (5.12)

for electrons with opposite chiralities. HereV1(q) is the Fourier transform of a given interelectron
potential. (Coulomb, in the simplest case.)

Using the bosonization identity [95], the Hamiltonian (5.8) can be written in a bosonized form
often encountered in the literature (see Chapter 2), namely

H =
1
2

Z

dx
2π

(
∂φL(x)

∂x , ∂φR(x)
∂x

)(
~v−L +g4 g2

g2 ~v−R +g4

)( ∂φL(x)
∂x

∂φR(x)
∂x

)
. (5.13)

HereφL(x) andφR(x) are bosonic fields, and the terms with quadratic number operatorsN2
L,R are

omitted.
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The standard way to diagonalize the Hamiltonian of any interacting system in the framework of
the Tomonaga-Luttinger model is to introduce so-called “dual fields”. The standard couple of
“dual fields” is defined as the difference and sum between boson fields with opposite chiralities
(see Chapter 2). However, the application of this standard approach is not so trivial here because
of the different Fermi velocities for right- and left-moving electrons. The “dual fields” are not
really dual here, since the chiral symmetry is completely broken.

In order to solve the problem, we introduce additional fictitious bosonic fieldsφ′R(x) andφ′L(x)
in a way which does not change the dynamics of the system. Thenthe Hamiltonian (5.13) can
be rewritten as

H → H +H ′ =

1
2

Z

dx
2π




∂φR(x)/∂x
∂φL(x)/∂x
∂φ′R(x)/∂x
∂φ′L(x)/∂x




T


~v−R +g4 g2 0 0
g2 ~v−L +g4 0 0
0 0 ~v−L +g4 g2

0 0 g2 ~v−R +g4







∂φR(x)/∂x
∂φL(x)/∂x
∂φ′R(x)/∂x
∂φ′L(x)/∂x


 ,

(5.14)
Note, that these additional bosonic fieldsφ′L(x) andφ′R(x) extend the basis 2×2 to 4×4, whereas
the given symmetry between them allows us to introducetwo couplesof “dual fields” correctly.

In order to simplify the subsequent calculations, we rewrite this Hamiltonian ones more in the
dimensionless form

H =

~v−R
2

Z

dx
2π




∂φR(x)/∂x
∂φL(x)/∂x
∂φ′R(x)/∂x
∂φ′L(x)/∂x




T


1+g4 g2 0 0
g2 g+g4 0 0
0 0 g+g4 g2

0 0 g2 1+g4







∂φR(x)/∂x
∂φL(x)/∂x
∂φ′R(x)/∂x
∂φ′L(x)/∂x


 . (5.15)

Here we redefined the interaction constantsg2,4 → g2,4/~v−R to be dimensionless. The constant
g = v−L /v−R is assumed to be a measure of the dispersion law asymmetry.

Using the fact of chiral symmetry between the “original” and“fictitious” branches we define the
couples of “dual fields”(Φ1,Θ1) and(Φ2,Θ2) in the following way

∂φR(x)
∂x

=
1√
2

(
∂Φ1

∂x
− ∂Θ1

∂x

)
,

∂φ′L(x)
∂x

=
1√
2

(
∂Φ1

∂x
+

∂Θ1

∂x

)
;

∂φ′R(x)
∂x

=
1√
2

(
∂Φ2

∂x
− ∂Θ2

∂x

)
,

∂φL(x)
∂x

=
1√
2

(
∂Φ2

∂x
+

∂Θ2

∂x

)
. (5.16)

Substituting (5.16) into the Hamiltonian (5.15) we have

H =
~v−R
2

Z

dx
2π
[
(∂xΦT)MΦ(∂xΦ)+(∂xΘT)MΘ(∂xΘ)

]
, (5.17)

where

MΦ =

(
1+g4 g2

g2 g+g4

)
, (5.18)
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MΘ =

(
1+g4 −g2

−g2 g+g4

)
, (5.19)

andΦ = (Φ1,Φ2)
T , Θ = (Θ1,Θ2)

T .

First of all, we diagonalize the matrixMΦ in the standard way. Its eigenvaluesλ1,2 can be found
from

(1+g4−λ)(g+g4−λ)−g2
2 = 0, (5.20)

and they are

λ1,2 =
1+g

2
+g4∓

1
2

√
(1−g)2+4g2

2. (5.21)

The corresponding transformation matrix reads

PΦ =




−
√

g2√
D

−
√

g2√
D

1−g+
√

D

2
√

g2
√

D

1−g−
√

D

2
√

g2
√

D


 , (5.22)

and the inverse one is

P−1
Φ =




1−g−
√

D

2
√

g2
√

D

√
g2√
D

g−1−
√

D

2
√

g2
√

D
−
√

g2√
D


 , (5.23)

whereD = (1−g)2+4g2
2.

In the next step we first rescale the basis so, that

M̃Φ = Λ−1
Φ P−1

Φ MΦPΦΛ−1
Φ (5.24)

is the unit matrix, and, secondly, preserve the duality of the fieldsΦi andΘi so, that

M̃Θ = ΛΦP−1
Φ MΘPΦΛΦ. (5.25)

The matricesΛΦ andΛ−1
Φ are given by

ΛΦ =

( √
λ1 0
0

√
λ2

)
, Λ−1

Φ =

(
1/

√
λ1 0

0 1/
√

λ2

)
. (5.26)

The elements of the matrix

M̃Θ =

(
a b
c d

)
(5.27)

can be found after some simple algebra

a = λ1

[
1+g

2
+g4−

(1−g)2−4g2
2

2
√

D

]
,

b =
√

λ1λ2

[
(1−g)− (1−g)2

√
D

]
,
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c =
√

λ1λ2

[
(1−g)+

(1−g)2
√

D

]
,

d = λ2

[
1+g

2
+g4+

(1−g)2−4g2
2

2
√

D

]
.

Note, that a further unitary transformations can not changethe matrixM̃Φ (which is equal to the
unit oneI2). For this reason we can diagonalizẽMΘ and do not care of̃MΦ. The eigen values of
M̃Θ can be easily found from the obvious equation

(a− ε)(d− ε)−bc= 0, (5.28)

and they are

ε1,2 =
a+d±

√
(a−d)2+4bc

2
. (5.29)

The corresponding transformation matrix reads

PΘ =




√
b√
D2

−
√

b√
D2

d−a+
√

D2

2
√

b
√

D2

a−d+
√

D2

2
√

b
√

D2


 , (5.30)

and the inverseP−1
Θ is

P−1
Θ =




a−d+
√

D2

2
√

b
√

D2

√
b√
D2

a−d−√
D2

2
√

b
√

D2

√
b√
D2


 , (5.31)

whereD2 = (a−d)2+4bc.

Finally, we have diagonalized both̃MΦ andM̃Θ matrices. But the form of the Hamiltonian is
still non-canonical. To arrive at the canonical form, we have to rescale again both̃MΦ andM̃Θ
by using the matrices

Λε =

(
(ε1)

1/4 0
0 (ε2)

1/4

)
, Λ−1

ε =

(
(ε1)

−1/4 0
0 (ε2)

−1/4

)
. (5.32)

The desired form ofMΦ andMΘ can be obtained by the following transformations (which pre-
serve, as usual, the duality of the fieldsΦi andΘi)

Mcanonical
Φ = ΛεP

−1
Θ Λ−1

Φ P−1
Φ MΦPΦΛ−1

Φ PΘΛε, (5.33)

Mcanonical
Θ = Λ−1

ε P−1
Θ ΛΦP−1

Φ MΘPΦΛΦPΘΛ−1
ε , (5.34)

and

Mcanonical
Φ = Mcanonical

Θ =

( √
ε1 0
0

√
ε2

)
. (5.35)
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For the following notation it is convenient to introduce thematrices

SΦ = PΦΛ−1
Φ PΘΛε, S−1

Φ = ΛεP
−1
Θ Λ−1

Φ P−1
Φ , (5.36)

SΘ = PΦΛΦPΘΛ−1
ε , S−1

Θ = Λ−1
ε P−1

Θ ΛΦP−1
Φ . (5.37)

Their elements are given in Appendix B.

The Hamiltonian (5.17) takes now the canonical form, namely

H =
~u1

2

Z

dx
2π
(
∂xη2

1 +∂xξ2
1

)
+

~u2

2

Z

dx
2π
(
∂xη2

2+∂xξ2
2

)
, (5.38)

where the new dual fieldsη = (η1,η2), ξ = (ξ1,ξ2) are related to the original ones by transfor-
mationsΦ = ηS−1

Φ , ΦT = SΦηT , Θ = ξS−1
Θ , ΘT = SΘξT , and new renormalized velocities can be

found in two ways. The first is rather directu1 = v−R
√

ε1 andu2 = v−R
√

ε2, whereas the second
one uses the elements of matricesSΦ andSΘ as following

u1

v−R
= (S11

Φ,Θ)−1M11
Φ,Θ(S11

Φ,Θ)+(S11
Φ,Θ)−1M12

Φ,Θ(S21
Φ,Θ)+

(S12
Φ,Θ)−1M21

Φ,Θ(S11
Φ,Θ)+(S12

Φ,Θ)−1M22
Φ,Θ(S21

Φ,Θ), (5.39)

u2

v−R
= (S21

Φ,Θ)−1M11
Φ,Θ(S21

Φ,Θ)+(S21
Φ,Θ)−1M12

Φ,Θ(S22
Φ,Θ)+

(S22
Φ,Θ)−1M21

Φ,Θ(S12
Φ,Θ)+(S22

Φ,Θ)−1M22
Φ,Θ(S22

Φ,Θ). (5.40)

The velocities can also be written explicitely in the form

u1,2 = v−R

{
1+g2

2
+g4(1+g+g4)−g2

2

±(1−g)

√
[(1+g)/2+g4]

2(1−g)2

(1−g)2+4g2
2

+
[
g+g4(1+g+g4)−g2

2

][
1− (1−g)2

(1−g)2+4g2
2

]



1
2

.

(5.41)

At the end of this section, we consider two limiting cases. The first one is the case of weak
electron-electron interactions. It is interesting to notehere, that in the case of negligible backscat-
tering (g2 = 0) the plasmon velocities have extremely simple dependences on the interaction
constant, namely

u1 = v−R(1+g4), u2 = v−R(g+g4). (5.42)

As soon as bothg2 andg4 are equal to zero, the non-interacting result is recovered,i. e. u1 = v−R
andu2 = v−L .

In the opposite limit, the electron-electron interactionsare assumed to be strong enough so, that
g2,4 ≫ 1. Then, it is possible to make the following estimations

λ1,2 ≈ g4∓g2, (5.43)
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PΦ =

(
− 1√

2
− 1√

2
1√
2

− 1√
2

)
, (5.44)

P−1
Φ =

(
− 1√

2
1√
2

− 1√
2

− 1√
2

)
. (5.45)

Then
a = g2

4−g2
2 = d, (5.46)

b = (1−g)
√

g2
4−g2

2 = c, (5.47)

and

S11
Φ = −(ε1)

1
4

2

(
1√
λ1

+
1√
λ2

)
= (S11

Φ )−1, S12
Φ =

(ε2)
1
4

2

(
1√
λ1

− 1√
λ2

)
= (S21

Φ )−1,

S21
Φ =

(ε1)
1
4

2

(
1√
λ1

− 1√
λ2

)
= (S12

Φ )−1, S22
Φ = −(ε2)

1
4

2

(
1√
λ1

+
1√
λ2

)
= (S22

Φ )−1,

S11
Θ = − 1

(2ε1)
1
4

(√
λ1+

√
λ2

)
= (S11

Θ )−1, S12
Θ =

1

(2ε2)
1
4

(√
λ1−

√
λ2

)
= (S21

Θ )−1,

S21
Θ =

1

(2ε1)
1
4

(√
λ1−

√
λ2

)
= (S12

Θ )−1, S22
Θ = − 1

(2ε2)
1
4

(√
λ1+

√
λ2

)
= (S22

Θ )−1,

whereε1,2 = g2
4−g2

2± (1−g)
√

g2
4−g2

2.

Recall, that the plasmon velocities are determined byε1,2 asu1,2 = v−R
√ε1,2. Therefore, if the

electron-electron interactions are so strong, that

ε1,2 ≃ g2
4−g2

2, (5.48)

then both plasmon velocities are just equal. Moreover, the elements of matricesSΦ andSΘ satisfy
the following relations

Sii
Θ,Φ = Sj j

Θ,Φ Si j
Θ,Φ = Sji

Θ,Φ. (5.49)

5.3 Electron-electron interactions and chiral asymmetry o f the
density of states

In this section, we study the influence of the electron-electron interactions on the chiral density
of states. The latter can be derived via retarded Green’s functions as it has been done for the
symmetric case in the introductory Chapter 2. The basic formulae are (2.68), (2.69) and (2.70).
Thus, we must find the following two-point bosonic correlation functions

〈φR(x,τ)φR(0,0)〉 =
〈
φ′L(x,τ)φ

′
L(0,0)

〉
=
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Figure 5.4: The alignment of the density of states for left- and right- moving electrons in the curved wire
subject to electron-electron interactions. The constantsg2 andg4 are assumed to be equal. In order to
create the initial asymmetry, the external magnetic field of4T is applied. The Fermi energy is taken to
be equal to 3meV. The other parameters are taken relevant forInAs: α = 2 ·10−11 eVm, m∗ = 0.033me,
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1
2

[
〈η1(x,τ)η1(0,0)〉(S11

Φ )−1S11
Φ + 〈η2(x,τ)η2(0,0)〉(S21

Φ )−1S12
Φ

+〈ξ1(x,τ)ξ1(0,0)〉(S11
Θ )−1S11

Θ + 〈ξ2(x,τ)ξ2(0,0)〉(S21
Θ )−1S12

Θ
]
, (5.50)

〈
φ′R(x,τ)φ′R(0,0)

〉
= 〈φL(x,τ)φL(0,0)〉 =

1
2

[
〈η1(x,τ)η1(0,0)〉(S12

Φ )−1S21
Φ + 〈η2(x,τ)η2(0,0)〉(S22

Φ )−1S22
Φ

+〈ξ1(x,τ)ξ1(0,0)〉(S12
Θ )−1S21

Θ + 〈ξ2(x,τ)ξ2(0,0)〉(S22
Θ )−1S22

Θ
]
. (5.51)

The correlators of the fictitious bosonic fields〈φ′L(x,τ)φ′L(0,0)〉 and〈φ′R(x,τ)φ′R(0,0)〉 are given
only for the sake of completeness, we do not need them for the correlation functions of the “real”
fermionic fields.

The fieldsηi andξi are canonical, i. e. they describe free bosons. For this reason, the two-point
correlation functions of them are given by formulae similarto (2.71), namely

〈ηi(x,τ)ηi(0,0)〉= 〈ξi(x,τ)ξi(0,0)〉= − ln

[
2π
L

(signτ uiτ+ isignτ x+a)

]
, (5.52)

whereui are given by (5.39) and (5.40).
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In the following let us use the notation

b11 =
1
2

[
(S11

Φ )−1S11
Φ +(S11

Θ )−1S11
Θ
]
, b12 =

1
2

[
(S21

Φ )−1S12
Φ +(S21

Θ )−1S12
Θ
]
, (5.53)

b21 =
1
2

[
(S12

Φ )−1S21
Φ +(S12

Θ )−1S21
Θ
]
, b22 =

1
2

[
(S22

Φ )−1S22
Φ +(S22

Θ )−1S22
Θ
]
. (5.54)

Substituting the bosonic correlators (5.50) and (5.51) into the fundamental formula (2.70), we
obtain the desired correlation functions for fermionic fields

〈
T ψR(x,τ)ψ†

R(0,0)
〉

=
signτ ab11+b12−1

(signτ u1τ+ isignτ x+a)b11 (signτ u2τ+ isignτ x+a)b12
, (5.55)

〈
T ψL(x,τ)ψ†

L(0,0)
〉

=
signτ ab21+b22−1

(signτ u1τ+ isignτ x+a)b21 (signτ u2τ+ isignτ x+a)b22
. (5.56)

Then, the retarded real-time Green functions for left- and right-moving particles read

Gret
R (x = 0, t) =

ab11+b12−1

iub11
1 ub12

2

{
[i (t− i0)]−b11−b12− [i (t + i0)]−b11−b12

}
Θ(t), (5.57)

Gret
L (x = 0, t) =

ab21+b22−1

iub21
1 ub22

2

{
[i (t− i0)]−b21−b22− [i (t + i0)]−b21−b22

}
Θ(t). (5.58)

Now, the density of states can be derived straightforwardlyby substituting the relations (5.57)
and (5.58) into formula (2.68). The integral overt can be taken using the definition of theΓ-
function, while the path of integration is depicted in fig. 2.16. After some algebra we arrive at
the final formulae for the density of states

ρDoS
R (ω) =

1
2π~

(aω)b11+b12−1

ub11
1 ub12

2

sin[π(b11+b12)]Γ(1−b11−b12) , (5.59)

ρDoS
L (ω) =

1
2π~

(aω)b21+b22−1

ub21
1 ub22

2

sin[π(b21+b22)]Γ(1−b21−b22) . (5.60)

The relationρDoS
R /ρDoS

L is shown in fig. 5.4 as a function of the electron-electron interaction
strength parameterized byg4 = g2. The corresponding behavior of the plasmon velocities and
coefficientsbi j is depicted in figs. 5.5 and 5.6 respectively. One can easily see, that electron-
electron interactions lead to an alignment of the chiral densities of states. This is the main result
of this section. Note, that the effect is not very sensitive to the relation betweeng4 andg2. That
is why we have adopted the simplest oneg2 = g4.

As in the previous section, we study the expressions (5.59) and (5.60) in two limits: (i) weak
and (ii) strong electron-electron interactions. The first case is rather simple. Indeed, ifg2 = 0
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thenb12 = b21 = 0, b11 = b22 = 1, and the plasmon velocities are given by (5.42). The density
of states reads

ρDoS
R =

1
2π~

1
u1

, ρDoS
L =

1
2π~

1
u2

. (5.61)

Let us make a comment on the relations (5.61). Althoughg4 is still not zero, the standard Fermi
liquid propertyρDoS 6= 0 atω = 0 is already recovered. However, the alignment of the density of
states by means of interactions does not vanish yet, sinceρDoS

R /ρDoS
L = (g+g4)/(1+g4) → 1 as

long asg4 → ∞. Of course, ifg4 is equal to zero as well, thenu1 = v−R , u2 = v−L and

ρDoS
R /ρDoS

L = vL/vR. (5.62)

Let us consider the opposite case of strong electron-electron interactions. Note, that atg2,4 ≫ 1
the following estimates forbi j are valid

b11 =
1
2


1+

g4√
g2

4−g2
2


= b22, (5.63)

b12 =
1
2



 g4√
g2

4−g2
2

−1



= b21, (5.64)

and, as consequence,

b11+b12 = b22+b21 =
g4√

g2
4−g2

2

, (5.65)

b11−b21 = b22−b12 = 1. (5.66)

Therefore, the relation between the densities of states with opposite chirality reads

ρDoS
R

ρDoS
L

=
ub22−b12

2

ub11−b21
1

≡ u2

u1
. (5.67)

As we have found in the previous section, the relationu2/u1 goes to 1 as long as the electron-
electron interactions increase [see the estimation (5.48)]. Thus, we have proven analytically,
that strong electron-electron interactions remedy the chiral symmetry of a Tomonaga-Luttinger
liquid.

It is interesting to note, that the plasmon density of statesis always equal to zero at the Fermi
level for both left- and right- moving electrons. [This casecorresponds toω = 0 in (5.59) and
(5.60).] Therefore, the plasmon density of states at the Fermi level is always chirally symmetric
(ρDoS

R = ρDoS
L = 0). In the vicinity of the Fermi level the dependence of the plasmon density of

states on the energy~ω is determined by two factors. First, the electron-electroninteractions
increase the plasmon excitation energy, and, therefore, the plasmon density of states is negligible
(and chirally symmetric!) at larger energy interval in the vicinity of the Fermi level. Second,
the interaction between left- and right-moving electrons leads to the energy exchange between
them and, therefore, to the alignment of their density of states. In other words, the plasmons with
opposite chiralities start to talk with each other in a certain sense, and, thus, the abovementioned
alignment takes place.
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5.4 Chiral asymmetry and Landauer–Büttiker formalism

There is a large variety of transport theories in solid states physics developed for the description
of the electron motion in different regimes: general Keldysh formalism, Kubo formula for linear
responce (small bias voltage), Landauer-Büttiker formalism for coherent transport with elastic
scattering, quasiclassical Boltzman equation, and Drude theory for the diffusive regime. The chi-
ral asymmetry of the density of states could bring somethingnew into the description of electron
transport. In this section, we study the influence of the abovementioned chiral asymmetry on the
Landauer-Büttiker formula [37, 38, 39, 96].

The latter has actually two modifications. In detail, the dc conductance of a 1D system at zero
temperature equals eitherG = 2G0T or G = 2G0T/(1−T), depending on whether the system is
connected to perfect 1D conductors (where the phase randomizing is absent) or to classical wires
(non-coherent baths) respectively. (HereG0 = e2/2π~ is the conductance quantum,T is the
transmission probability, and the factor 2 occurs because of the spin degeneracy.) Both formulae
do not contain the density of states, therefore, they are notinfluenced by its chiral asymmetry. In
the case of non-zero temperature the situation changes drastically.

The conductance of a system with perfect 1D leads reads

G = 2G0

Z

dE
−d f
dE

T(E), (5.68)

whereas

G = 2G0

Z

dE
−d f
dE

T(E)

R

dE ∂n
∂E

(
− d f

dE

)

R

dE ∂n
∂ER(E)

(
− d f

dE

) , (5.69)

as soon as reservoirs are connected [39]. Here,R(E) = 1−T(E) is the reflection probability,
∂n/∂E is the density of states in the 1D leads, andf (E) is the Fermi–Dirac distribution (in the
equilibrium) given by

f (E) =
1

e
E−EF

T +1
. (5.70)

Note, that formula (5.69) contains the density of states explicitely. That is why we find it in-
teresting to generalize the conductance expression (5.69)to 1D systems which lack the chiral
symmetry in the density of states.

The scheme proposed is depicted in fig. 5.7. The sample is connected to perfect and identical 1D
leads where the density of states for left-moving electrons∂nL/∂E is not equal to∂nR/∂E for the
right-moving ones. The leads are connected to electron reservoirs with chemical potentialsµ1

andµ2 (see fig. 5.7). The sample is characterized by the transmission and reflection coefficients
T(E) andR(E). Thus, we could apply the Landauer-Büttiker formalism forthe description of
electron transport through this system.

Let us find the conductance of the system given in fig. 5.7. We follow the Büttiker–Imry–
Landauer–Pinhas derivation of the conductance formula [39]. The current emitted by the left
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Figure 5.7: The system under consideration. The obstacle isconnected to two incoherent reservoirs (baths)
by ideal 1D conductors where the densities of states for right- and left-moving electrons are not equal. The
reservoir 1 emits electrons up to the chemical potentialsµ1, and the reservoir 2 emits electrons up to the
chemical potentialsµ2, whereasµA andµB are the chemical potentials in the perfectly conducting leads
between reservoirs and the obstacle. The voltage drop across the sample is, therefore,eV = µA−µB. A
flow of particles hits the barrier from the left. (Sinceµ1 is assumed to be larger thanµ2.)

reservoir in the energy range betweenµ1 andµ2 is

I =
e

2π~

Z

dE

(−d f
dE

)
T(E)∆µ, (5.71)

where∆µ= µ1−µ2. Note, that in our system we have no spin degeneracy, therefore, the factor 2
does not enter (5.71). As the next step, we have to determine the relation between the difference
in the chemical potentialsµ1, µ2 and the voltage drop across the sample (i. e. the obstacle).

The carriers in the leads can be characterized by the chemical potentialsµA andµB (see fig. 5.7).
Their respective levels are determined by the condition of half-filling [39]. This condition as-
sumes that the number of occupied states aboveµA (µB) is equal to the number of empty states
belowµA (µB). Now, let us find the relation between the chemical potentials in the leads (µA, µB)
and in the reservoirs (µ1, µ2).

Below the energyµ2 all states are fully occupied and we need to consider the energy range from
µ2 to µ1 only. The total numbers of states in this range is

Ntotal =
Z

dE

(−d f
dE

)(
∂nR

∂E
+

∂nL

∂E

)
∆µ. (5.72)

Consider now the perfect wire on the right-hand side in fig. 5.7. Since carriers have a transmission
probabilityT, the number of occupied states in the energy range betweenµ1 andµB is

NRHS
occup=

Z

dE

(−d f
dE

)
T(E)

∂nR

∂E
(µ1−µB), (5.73)
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and the number of unoccupied states betweenµB andµ2 is

NRHS
empty=

Z

dE

(−d f
dE

)(
∂nR

∂E
+

∂nL

∂E
−T(E)

∂nR

∂E

)
(µB−µ2). (5.74)

Thus, the chemical potentialµB to the right of the sample is determined by the equation

NRHS
empty= NRHS

occup, (5.75)

and reads

µB =
µ1

R

dE
(
−d f
dE

)
T(E)∂nR

∂E +µ2
R

dE
(
−d f
dE

)(
R(E)∂nR

∂E + ∂nL
∂E

)

R

dE
(
−d f
dE

)(
∂nR
∂E + ∂nL

∂E

) . (5.76)

To the left of the barrier we have both incident carriers and reflected carriers. The number of
occupied states betweenµ1 andµA is

NLHS
occup=

Z

dE

(−d f
dE

)(
∂nR

∂E
+R(E)

∂nL

∂E

)
(µ1−µA), (5.77)

and the number of unoccupied states betweenµA andµ2 is

NLHS
empty=

Z

dE

(−d f
dE

)(
∂nR

∂E
+

∂nL

∂E
− ∂nR

∂E
−R(E)

∂nL

∂E

)
(µA−µ2). (5.78)

Therefore, the chemical potentialµA to the left of the sample is determined by

NLHS
empty= NLHS

occup, (5.79)

and reads

µA =
µ1

R

dE
(
−d f
dE

)(
∂nR
∂E +R(E)∂nL

∂E

)
+µ2

R

dE
(
−d f
dE

)
T(E)∂nL

∂E
R

dE
(
−d f
dE

)(
∂nR
∂E + ∂nL

∂E

) . (5.80)

Charge neutrality does not allow different densities to theleft and to the right of the sample over
the distances large compared to the screening length [39]. Thus, the conduction-band bottoms of
the perfect wires are displaced against each other by a potential difference

eV = µA−µB. (5.81)

Therefore, the equations (5.76), (5.80) and (5.81) can be used to determine the relation between
the chemical potentialsµ1 andµ2 and the voltage across the sample. The result of this calculation
yields

eV = ∆µ

R

dE
(
−d f
dE

)
R(E)

(
∂nR
∂E + ∂nL

∂E

)

R

dE
(
−d f
dE

)(
∂nR
∂E + ∂nL

∂E

) . (5.82)
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Thus, the total current between the reservoirs reads

I = G0

Z

dE
−d f
dE

T(E)

R

dE
(

∂nR
∂E + ∂nL

∂E

)(
− d f

dE

)

R

dE
(

∂nR
∂E + ∂nL

∂E

)
R(E)

(
− d f

dE

)V (5.83)

The conductance of the sample can be easily obtained from this formula using the relationG =
I/V.

We find it necessary to emphasize that formula (5.83) describes electron transport between two
reservoirs. If we exclude the reservoirs from our consideration then the voltage drop occurs only
at the sample, and∆µ in (5.71) is just equal toeV.

The current (5.83) explicitly depends on the density of states. However, the chiral densities of
states∂nL/∂E and∂nR/∂E are incorporated in (5.83) as a sum. The current from the leftreservoir
to the right one (as it is shown in fig. 5.7) is still equal to thecurrent at the inversal bias voltage,
whereµ1 < µ2, and the current flows from theright to the left. Thus, transport measurements are
not very effective for the detection of the chiral asymmetryof the density of states.

Nevertheless, there are definitely some other possibilities to detect the chiral asymmetry of den-
sity of states. One of them could be optical measurements [97, 98]. (See the theoretical work
[99] as well.) Indeed, the optical absorption in a quantum well is proportional to the density of
states. Therefore, we believe, that the observation of the chiral asymmetry is possible in optical
measurements using the current experimental technique. However, this goes beyond the scope
of the thesis.
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6 Conclusions

In this thesis we analyzed some important characteristics of one-dimensional quantum wires with
Rashba spin-orbit coupling, especially related to their non-zero curvature.

The major points covered by this thesis may be summarized as follows

• We studied the conductance of a quantum loop made of an one-dimensional wire with
Rashba spin-orbit interactions and found that

- the conductance dependences on the external magnetic fieldperpendicular to the loop
plane can demonstrate a manifestation of the geometrical spin-orbit Berry phase

- in order to extract the manifestation of the geometrical phase, the comparison with
the conductance of a straight wire is, however, necessary

- the solution obtained suggests its application to the non-adiabatic regime (small loop
radius) as well.

• We studied electron transport in a strongly curved one-dimensional wire with Rashba spin-
orbit coupling and found the following

- the system demonstrates current density redistribution between two spin-split modes

- a strongly curved wire with Rashba spin-orbit coupling canchange the spin-polarization
of the input electron beam to the opposite one, and, thus, serve as a reflectionless spin-
switch.

• We studied the chiral asymmetry of the electron density of states induced by Rashba cou-
pling and Zeeman effect in a curved one-dimensional wire

- the Tomonaga-Luttinger model has been solved for the lowest non-parabolic Zeeman-
split band (the upper bands are assumed to be unoccupied) where the Fermi velocities for
left- and right-moving electrons are not equal

- it has been found that strong electron-electron interactions remedy the chiral symme-
try of the density of states

- the Landauer-Büttiker formalism has been generalized tosystems with a chiral asym-
metry of the density of states.

In our opinion, the main outcome of this thesis is related to the strongly curved 1D wires with
Rashba spin-orbit coupling: namely, such wires can serve inthe capacity of reflectionless and
high-speed spin-switchers. Indeed, the switching speed isdetermined by the time needed for an
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electron to propagate through the curved part of the system which is very short as long as our
device is in the non-adiabatic regime~

2/(2αm∗R) ≫ 1. Thus, the switching time can be even
smaller than one estimated in the Chapter 1 for, let us say, “conventional” spintronic devices in
the adiabatic regime.

We believe that the situations treated in this thesis confirmonce more how diverse the phenomena
related to the Rashba spin-orbit coupling can be. In order tostudy the great variety of effects we
combined spin-orbit interactions in 1D quantum wires with their non-zero curvature, Zeeman
splitting and, at the end, with electron-electron interactions. Our main expectation is that the
interplay between Rashba spin-orbit coupling and non-trivial geometry of the system can find
especially fruitful applications in spintronics.
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7 Appendices

7.1 Appendix A

The following system of eight equations describes the electron motion in the quantum loop (see
the Chapter 3 for details)

(1+A1) cosγ+− i (1−A2) sinγ− = e
− i π

2

(
Φ

Φ0
− 1

2

)(
B1 cosα+ e−i πq+

R/2+

+C1 cosβ+ ei πq+
L /2−B2 sinα−e−i πq−R/2 +C2 sinβ−ei πq−L /2

)
, (7.1)

(1+A2) cosγ−− i (1−A1) sinγ+ = e
− i π

2

(
Φ

Φ0
+ 1

2

)(
B2 cosα−e−i πq−R/2+

+C2 cosβ−ei πq−L /2 +B1 sinα+ e−i πq+
R/2−C1 sinβ+ ei πq+

L /2
)

, (7.2)

e
3i π
2

(
Φ

Φ0
− 1

2

)(
B1 cosα+ e3i πq+

R/2 +C1 cosβ+ e−3i πq+
L /2−

−B2 sinα−e3i πq−R/2 +C2 sinβ−e−3i πq−L /2
)

= D1 cosγ+− iD2 sinγ−, (7.3)

e
3i π
2

(
Φ

Φ0
+ 1

2

)(
B2 cosα−e3i πq−R/2 +C2 cosβ−e−3i πq−L /2+

+B1 sinα+ e3i πq+
R/2−C1 sinβ+ e−3i πq+

L /2
)

= D2 cosγ−− iD1 sinγ+, (7.4)
[
k+ +

Φ
RΦ0

+A1

(
−k+ +

Φ
RΦ0

)]
cosγ+− i

[
k−+

Φ
RΦ0

−A2

(
−k− +

Φ
RΦ0

)]
sinγ− =

=
1
R

e
− i π

2

(
Φ

Φ0
− 1

2

)[
B1

(
Φ
Φ0

+q+
R − 1

2

)
cosα+ e−i πq+

R/2 +C1

(
Φ
Φ0

− 1
2
−q+

L

)
cosβ+ ei πq+

L /2−

−B2

(
Φ
Φ0

− 1
2

+q−R

)
sinα−e−i πq−R/2 +C2

(
Φ
Φ0

− 1
2
−q−L

)
sinβ−ei πq−L /2

]
, (7.5)

[
k− +

Φ
RΦ0

+A2

(
−k− +

Φ
RΦ0

)]
cosγ−− i

[
k+ +

Φ
RΦ0

−A1

(
−k+ +

Φ
RΦ0

)]
sinγ+ =

=
1
R

e
− i π

2

(
Φ

Φ0
+ 1

2

)[
B2

(
1
2

+q−R +
Φ
Φ0

)
cosα−e−i πq−R/2 +C2

(
1
2
−q−L +

Φ
Φ0

)
cosβ−ei πq−L /2+

+ B1

(
1
2

+q+
R +

Φ
Φ0

)
sinα+ e−i πq+

R/2−C1

(
1
2
−q+

L +
Φ
Φ0

)
sinβ+ ei πq+

L /2
]
, (7.6)
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1
R

e
3i π
2

(
Φ

Φ0
− 1

2

)[
B1

(
Φ
Φ0

− 1
2

+q+
R

)
cosα+ e3i πq+

R/2 +C1

(
Φ
Φ0

− 1
2
−q+

L

)
cosβ+ e−3i πq+

L /2−

− B2

(
Φ
Φ0

− 1
2

+q−R

)
sinα−e3i πq−R/2 +C2

(
Φ
Φ0

− 1
2
−q−L

)
sinβ−e−3i πq−L /2

]
=

= D1

(
k+ +

Φ
RΦ0

)
cosγ+− iD2

(
k− +

Φ
RΦ0

)
sinγ−, (7.7)

1
R

e
3i π
2

(
Φ

Φ0
+ 1

2

)[
B2

(
1
2

+q−R +
Φ
Φ0

)
cosα−e3i πq−R/2 +C2

(
1
2
−q−L +

Φ
Φ0

)
cosβ−e−3i πq−L /2+

+ B1

(
1
2

+q+
R +

Φ
Φ0

)
sinα+ e3i πq+

R/2−C1

(
1
2
−q+

L +
Φ
Φ0

)
sinβ+ e−3i πq+

L /2
]

=

= D2

(
k− +

Φ
RΦ0

)
cosγ−− iD1

(
k+ +

Φ
RΦ0

)
sinγ+. (7.8)

The system of equations describing the electron motion in the curved, half-loop shaped one-
dimensional wire, reads

(
eiθ+

+A+
)

cosγ+− i
(

eiθ− −A−
)

sinγ− = e
− i π

2

(
Φ

Φ0
− 1

2

)(
B+ cosα+ e−i πq+

R/2+

+C+ cosβ+ ei πq+
L /2−B− sinα−e−i πq−R/2+C− sinβ−ei πq−L /2

)
, (7.9)

(
eiθ− +A−

)
cosγ−− i

(
eiθ+ −A+

)
sinγ+ = e

− i π
2

(
Φ

Φ0
+ 1

2

)(
B− cosα−e−i πq−R/2+

+C− cosβ−ei πq−L /2+B+ sinα+ e−i πq+
R/2−C+ sinβ+ ei πq+

L /2
)

, (7.10)

e
i π
2

(
Φ

Φ0
− 1

2

)(
B+ cosα+ ei πq+

R/2 +C+ cosβ+ e−i πq+
L /2−

−B− sinα−ei πq−R/2 +C− sinβ−e−i πq−L /2
)

= D+ cosγ+ + iD− sinγ−, (7.11)

e
i π
2

(
Φ

Φ0
+ 1

2

)(
B− cosα−ei πq−R/2 +C− cosβ−e−i πq−L /2+

+B+ sinα+ ei πq+
R/2−C+ sinβ+ e−i πq+

L /2
)

= D− cosγ− + iD+ sinγ+, (7.12)
[(
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Φ

RΦ0

)
eiθ+

+A+

(
Φ

RΦ0
−k+

)]
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[(
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RΦ0

)
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(
Φ

RΦ0
−k−

)]
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=
1
R

e
− i π

2

(
Φ

Φ0
− 1

2
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B+

(
Φ
Φ0

+q+
R − 1

2

)
cosα+ e−i πq+

R/2+C+

(
Φ
Φ0

− 1
2
−q+

L

)
cosβ+ ei πq+
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−B−
(

Φ
Φ0

− 1
2

+q−R

)
sinα−e−i πq−R/2+C−

(
Φ
Φ0

− 1
2
−q−L

)
sinβ−ei πq−L /2

]
, (7.13)

95



[(
k− +

Φ
RΦ0

)
eiθ− +A−

(
Φ

RΦ0
−k−

)]
cosγ−−

−i

[(
k+ +

Φ
RΦ0

)
eiθ+ −A+

(
Φ

RΦ0
−k+

)]
sinγ+ =

=
1
R

e
− i π

2

(
Φ

Φ0
+ 1

2

)[
B−
(

1
2

+q−R +
Φ
Φ0

)
cosα−e−i πq−R/2+C−

(
1
2
−q−L +

Φ
Φ0

)
cosβ−ei πq−L /2+

+ B+

(
1
2

+q+
R +

Φ
Φ0

)
sinα+ e−i πq+

R/2−C+

(
1
2
−q+

L +
Φ
Φ0

)
sinβ+ ei πq+

L /2
]
, (7.14)

1
R

e
i π
2

(
Φ

Φ0
− 1

2

)[
B+

(
Φ
Φ0

− 1
2

+q+
R

)
cosα+ ei πq+

R/2 +C+

(
Φ
Φ0

− 1
2
−q+

L

)
cosβ+ e−i πq+

L /2−

− B−
(

Φ
Φ0

− 1
2

+q−R

)
sinα−ei πq−R/2 +C−

(
Φ
Φ0

− 1
2
−q−L

)
sinβ−e−i πq−L /2

]
=

= D+

(
k+ +

Φ
RΦ0

)
cosγ+ + iD−

(
k− +

Φ
RΦ0

)
sinγ−, (7.15)

1
R

e
i π
2

(
Φ

Φ0
+ 1

2

)[
B−
(

1
2

+q−R +
Φ
Φ0

)
cosα−ei πq−R/2 +C−

(
1
2
−q−L +

Φ
Φ0

)
cosβ−e−i πq−L /2+

+ B+

(
1
2

+q+
R +

Φ
Φ0

)
sinα+ ei πq+

R/2−C+

(
1
2
−q+

L +
Φ
Φ0

)
sinβ+ e−i πq+

L /2
]

=

= D−
(

k− +
Φ

RΦ0

)
cosγ− + iD+

(
k+ +

Φ
RΦ0

)
sinγ+. (7.16)

As soon as the initial electron state is +100% spin-polarized, the equations (7.9) – (7.16) take the
form

(
eiθ+

+A+
)

cosγ+ + iA− sinγ− = e
− i π

2

(
Φ

Φ0
− 1

2

)(
B+ cosα+ e−i πq+

R/2+

+C+ cosβ+ ei πq+
L /2−B− sinα−e−i πq−R/2 +C− sinβ−ei πq−L /2

)
, (7.17)

A− cosγ−− i
(

eiθ+ −A+
)

sinγ+ = e
− i π

2

(
Φ

Φ0
+ 1

2

)(
B− cosα−e−i πq−R/2+

+C− cosβ−ei πq−L /2 +B+ sinα+ e−i πq+
R/2−C+ sinβ+ ei πq+

L /2
)

, (7.18)

e
i π
2

(
Φ

Φ0
− 1

2

)(
B+ cosα+ ei πq+

R/2+C+ cosβ+ e−i πq+
L /2−

−B− sinα−ei πq−R/2 +C− sinβ−e−i πq−L /2
)

= D+ cosγ+ + iD− sinγ−, (7.19)

e
i π
2

(
Φ

Φ0
+ 1

2

)(
B− cosα−ei πq−R/2+C− cosβ−e−i πq−L /2+

+B+ sinα+ ei πq+
R/2−C+ sinβ+ e−i πq+

L /2
)

= D− cosγ− + iD+ sinγ+, (7.20)
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Φ
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)
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(

Φ
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2
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)
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(
Φ
Φ0

− 1
2
−q−L

)
sinβ−ei πq−L /2

]
, (7.21)
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(
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2
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+ B+

(
1
2
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(
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2
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L +
Φ
Φ0

)
sinβ+ ei πq+
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]
, (7.22)
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)
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=

= D+

(
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Φ
RΦ0

)
cosγ+ + iD−

(
k− +

Φ
RΦ0

)
sinγ−, (7.23)
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i π
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(
1
2

+q+
R +
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Φ0

)
sinα+ ei πq+
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2
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=

= D−
(

k− +
Φ

RΦ0

)
cosγ− + iD+

(
k+ +

Φ
RΦ0

)
sinγ+. (7.24)

The initial phasesθ± of the incident waves are explicitely included into the equations (7.9) –
(7.24). (See the Chapter 4 for details.)

7.2 Appendix B

The explicit expressions for the elements of the matricesSΦ, SΘ, S−1
Φ , S−1

Θ read

S11
Φ = −

√
g2b
λ1

√
ε1

DD2
− d−a+

√
D2

2
√

b

√
g2

λ2

√
ε1

DD2
, (7.25)

S12
Φ =

√
g2b
λ1

√
ε2

DD2
− a−d+

√
D2

2
√

b

√
g2

λ2

√
ε2

DD2
, (7.26)
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1−g+
√

D
2
√
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√
b
λ1

√
ε1

DD2
+

(1−g−
√

D)(d−a+
√

D2)

4
√

λ2g2b

(
ε1

DD2

)1
4

, (7.27)
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, (7.29)
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, (7.32)
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Here,

a = λ1

[
1+g

2
+g4−

(1−g)2−4g2
2

2
√

D

]
,
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b =
√

λ1λ2

[
(1−g)− (1−g)2

√
D

]
,

c =
√

λ1λ2

[
(1−g)+

(1−g)2
√

D

]
,

d = λ2

[
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2
+g4+
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√
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]
,

ε1,2 =
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√
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2
,
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1+g

2
+g4∓

1
2

√
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andD2 = (a−d)2+4bc, D = (1−g)2+4g2
2, g= v−L /v−R, andg2,4 being the interaction constants.
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