Modular Models for Multi-Phase Robotic
Manipulation Tasks

Dissertation
zur Erlangung des akademischen Grades
Dr. rer. nat.
an der Fakultat
fiir Mathematik, Informatik und Naturwissenschaften

der Universitat Hamburg

Eingereicht beim Fachbereich Informatik

von Michael GOrner

April 2025

Erstgutachter:
Prof. Dr. Jianwei Zhang

Zweitgutachter:
Prof. Dr. Michael Beetz

Vorsitz der Priifungskommission:
Prof. Dr. Janick Edinger

Stellvertretender Vorsitz der Priifungskommission:
Prof. Dr. Stefan Wermter

Tag der Disputation:
6.10.2025

Document Identifier:
urn:nbn:de:gbv:18-ediss-133898

Abstract

The research literature on trajectory generation for robotics comprises a plethora of methods
in different scenarios — each with their respective advantages and disadvantages in terms of
algorithmic complexity, computational cost, dynamic constraints, adaptivity, and predictability.
However, in actual robotic use, individual motions seldom stand on their own. Instead, they
are part of larger manipulation sequences which are necessary to interact with the environment
and complete a given task. Such prototypical sequences include object relocation, navigating
a mobile robot to a different location (potentially opening and passing through doors along the
way), constraint manipulation actions, such as opening hinged doors or drawers, or achieving
other multimodal effects of a wide variety through physical interaction, such as pouring liquids
from containers, torch welding, or pressing buttons.

This thesis contributes a framework to formulate and solve such manipulation sequences through
segment factorization by relying on non-invasive information forwarding between dedicated
modules. The framework, named Task Construction, features (1) explicitly modularized sub-
problems, isolating different motion phases during manipulation tasks and enabling specialized
solvers and expert knowledge to affect them individually, (2) accounting for inter-dependencies
that arise between different motions, e.g., grasping a tool and subsequent tool-use, through struc-
tured information propagation, and (3) comprehensive introspection to identify problems in sep-
arate motion phases — supporting users in setting up manipulation tasks. After considering a
series of example uses, the thesis further investigates how a robotic system can acquire special-
ized effect models for motion phases. To this end, it investigates the example of haptic interaction
with chordophones, where motions to produce individual musical sounds can be isolated and pa-
rameterized in a small number of parameters. Self-supervised exploration in the physical world
is demonstrated through explicit constraints on observed effects. The thesis presents a Gaussian
Process-based active exploration strategy which emphasizes observable validity as a constraint.
Robot experiments demonstrate the system’s ability to characterize instrument interactions after

sufficient self-exploration.

Zusammenfassung

Die Forschungsliteratur zur Trajektoriengenerierung in der Robotik umfasst eine Vielzahl von
Methoden fiir unterschiedliche Szenarien — jede mit spezifischen Vor- und Nachteilen im Hin-
blick auf algorithmische Komplexitit, Rechenaufwand, dynamische Randbedingungen, Adapti-
vitidt und Vorhersagbarkeit. In der praktischen Anwendung stehen einzelne Bewegungen jedoch
selten allein. Stattdessen sind sie Teil lingerer Manipulationssequenzen, die erforderlich sind,
um mit der Umgebung zu interagieren und eine Aufgabe zu erfiillen. Solche typischen Abldufe
beinhalten etwa das Umplatzieren von Objekten, das Navigieren eines mobilen Roboters an ei-
nen anderen Ort (gegebenenfalls inklusive Offnen und Passieren von Tiiren), die Manipulation
unter Nebenbedingungen wie etwa das Offnen von Tiiren mit Scharnieren oder Schubladen, oder
das Auslosen verschiedener multimodaler Effekte durch physische Interaktion — beispielsweise
das Ausgieflen von Fliissigkeiten, das robotische Schweillen, oder das Betitigen von Schaltern.
Diese Dissertation tragt ein Framework namens 7Task Construction bei, das solche Manipulati-
onssequenzen durch die Faktorisierung von Phasen formuliert und 16st, indem es sich auf nicht-
invasive Informationsweiterleitung zwischen dedizierten Modulen stiitzt. Das Framework zeich-
net sich durch (1) explizit modularisierte Teilprobleme aus, die verschiedene Bewegungsphasen
wihrend Manipulationsaufgaben isolieren und spezialisierte Losungsansitze sowie Experten-
wissen gezielt in diesen Phasen zur Wirkung kommen lassen, (2) die Beriicksichtigung von Ab-
hingigkeiten, die zwischen unterschiedlichen Bewegungen entstehen — etwa beim Greifen eines
Werkzeugs und dessen anschlieBender Verwendung — durch eine strukturierte Informationswei-
tergabe, und (3) umfassende Introspektion, um Probleme in den einzelnen Bewegungsphasen zu
identifizieren und so Anwender bei der Einrichtung von Manipulationsaufgaben zu unterstiitzen.
Nach der Betrachtung verschiedener Anwendungsbeispiele wird weiterhin untersucht, wie ein
robotisches System spezialisierte Wirkmodelle fiir einzelne Bewegungsphasen erwerben kann.
Hierfiir dient das Beispiel der haptischen Interaktion mit Chordophonen, bei denen die Bewe-
gungen zur Erzeugung einzelner musikalischer Tone isoliert ist und in wenige Parameter gefasst
werden konnen. Selbstiiberwachtes Explorieren in der physischen Welt wird unter Berticksichti-
gung expliziter Beschridnkungen der beobachteten Effekte untersucht. Die Arbeit stellt eine auf
Gauf3-Prozess Methodik basierende Strategie zur aktiven Exploration vor, die die erwartete Va-
liditdt von Explorationsversuchen als Nebenbedingung hervorhebt. In Roboterversuchen wird
schlieBlich demonstriert, dass das System nach hinreichender Selbstexploration in der Lage ist,

die Effekte von Interaktionen mit dem Instrument erfolgreich zu charakterisieren.

Acknowledgements

I wish to thank my supervisor for the rare opportunity to work with a diverse array of advanced
robotic hardware and for involving me in important ongoing cross-cultural and cross-disciplinary
dialog. Both are experiences I deeply treasure that enhanced my understanding of the field and its
social implications. Thank you to my senior and longtime room neighbor Norman Hendrich who
always presented me with challenges beyond my capabilities — accompanied by well-thought-
out insights I appreciate. Thank you to the Movelt maintainer team and specifically Robert
Haschke with whom I share years of discussions to get things right. Thank you to the Movelt user
community for their interest and continuous stream of feedback. Thank you to my colleagues
and work group. They provided endless streams of technical questions to resolve and trivia to

research when distractions were urgently needed. Thank you Sarah. I am beyond grateful.

10

Contents

1 Introduction

I.1 Motivation o e e e e e
1.2 Scientific Contributions L
1.3 Structure of the Thesis
2 Background
2.1 Geometric World Models
2.2 Motion Description e e
2.3 Approaches to Trajectory Generation
2.4 Software Frameworks for Trajectory Planning
2.5 Taskand Motion Planning
3 Task Construction
3.1 Manipulation Phases
3.2 Modularization of Manipulation Planning
3.2.1 Propagators e e e
322 Connectorso e e e
323 Generatorso u e e e e e
3.2.4 Instantaneous Stageso e e e
325 Properties e e
3.2.6 Decoupling WhereandHow
3.277 On Alternative Modeling Choices
3.3 Containerizationo e e e e
3.3.1 Serial Container e
3.3.2 Container Properties
3.3.3 Parallel Containers,
3.4 Wrapperso e e
3.4.1 Path Reparameterization
3.4.2 Inverse Kinematics Wrapper
3.5 CostTerms L

13
13
15
16

17
17
20
20
27
29

CONTENTS

3.6

3.7
3.8
39

Compute Graph Exploration
3.6.1 Planning Parallelization
Task Specification L
Task Execution
Exemplary Task Applications
39.1 Pick&Place
39.2 BottlePouring
3.9.3 Retract—Transit— Approach

3.10 Whole-Stack Benchmarking

4 Validity-Constraint Motion Primitive Exploration

4.1

4.2

4.3

4.4

Physical Self-Supervised Exploration
4.1.1 Scenarioo e e e e
Multimodal Manipulation of Chordophones
42.1 Background
422 Problem Formulation
423 Modality Analysiso
Model Reconstruction
4.3.1 Geometric Exploration
Active Motion Primitive Exploration (AMPE)
4.4.1 Experimental Validation
442 Summaryo e e e e e

5 Conclusion

References

Online-References

A Prior Publications

B Task Specification Example

Eidesstattliche Erklarung

12

105

107

125

127

131

137

Chapter 1

Introduction

1.1 Motivation

Robots are built to move. But rather than moving in isolation, they are expected to manipu-
late their environment. Across the literature, many planning and trajectory generation methods
can be found to compute trajectories that define motions of robotic systems between different
target states, according to specific motion profiles, all the while possibly respecting additional
constraints. Generated trajectories can eventually be executed through trajectory tracking con-
trollers on physical robots. Research on trajectory planning for extended manipulation actions,
in contrast though, is often limited to few scenarios and simplified in one of several ways due to
the inherently increased complexity.

In grasp prediction systems, e.g., PointNetGPD [87], full grasping actions are simplified to a
single grasp pose, leaving all other aspects of the involved motions, including reaching the grasp
point and actually retrieving the grasped object to the engineer. Where specific grasp types
are required for subsequent actions, predicted grasp poses are further classified into affordance
categories to select compatible grasps.

Multi-Modal Planning (MMP) approaches, as introduced by Hauser et al. [54], build on path and
motion planning algorithms to include manipulation motions, but require sufficient abstraction
of individual motion phases to sample from and thus trade individual generation of phases for
alignment. The execution of the resulting trajectories is challenging, and requires significant
work to support the required abstractions on the robot meant to execute the trajectories.

Lastly, Task and Motion Planning (TAMP) approaches which explicitly target extended manip-
ulation scenarios, such as for example presented by Srivastava et al. [135], rely on higher-level
action abstractions, such as a modular directive for object pick-up to allow the combination of
motions on the abstraction level. These approaches aim for ontology-guided solving of artificial
puzzle-like scenarios and their plans tend to be less predictable in mundane tasks.

This thesis addresses the gap between MMP and TAMP approaches by proposing a modular and
highly-customizable framework termed Task Construction for offline planning of feasible ma-

13

CHAPTER 1. INTRODUCTION

Figure 1.1 — Four different physical robots executing a manipulation plan which involves picking up

a target bottle, pouring into a target container, and eventually placing the bottle on a table again. All

four systems utilize the same designed manipulation sequence with adapted parameterization.

nipulation trajectories with unspecified action parameters. It allows for the explicit separation
of different aspects of manipulation planning while reusing various methods within modules.
By explicitly limiting the framework to pre-specified manipulation sequences, instead of cover-
ing all sequences of applicable actions, the structure of generated solution trajectories remains
predictable and can be tailored to the specific requirements of individual tasks at hand.

Manipulation designs are robot-agnostic and designs can be reused with adjusted parameter-
ization on different robots. Generated manipulation plans can be executed successfully on phys-
ical hardware. Figure 1.1 demonstrates the physical execution of manipulation plans generated
from a designed task structure for multiple independent robotic systems with only parameter
adjustment. The complete structure of this task is discussed in detail in subsection 3.9.2 and

involves generic object manipulation as well as a task-specific local motion phase.

The second part of this thesis investigates the data-driven acquisition of trajectory profiles for
local motion phases in task-specific manipulation. Many approaches to data-driven motion gen-
eration either utilize data from human demonstration or teleoperation [38, 49, 157, 166], or rely
on simulation-based training [141, 161]. By contrast, this work focuses on the autonomy of the
physical robotic system, which is excluded from consideration in the aforementioned lines of
research. Instead, it turns towards a third available avenue of physical self-exploration [67, 117,
127]. While online exploration by the physical robot offers the unique opportunity to perceive
real-world effects across modalities under the real dynamic behavior of commanded actions, it

comes with substantial hurdles in terms of safety and efficiency.

14

1.2. ScientiFic CONTRIBUTIONS

Human demonstration of example behaviors enforces the desired behavior a-priori through the
human operator, who explicitly limits the covered state space to adequate actions during data
collection. Approaches for simulation-based training embrace an unrestricted exploration space
through primitive actions and there is no risk of breaking the robot or parts of its environment.
Due to the basic nature of individual actions, the resulting space of trajectories exceeds real-
istic exploration times on a real system and low sample efficiency is usually compensated by
parallelization and increased real-time factors in the simulation.

Building on the results of the first part of this work, which demonstrate global manipulation
planning with modular generators for motion phases, the described methodology for physical
self-exploration focuses on the exploration of local motions through motion primitive parameter-
ization. In this manner, well-defined motion ranges can be explored with functional coverage
in an anytime manner. As the set of acceptable motions within this range is still unknown, the
method suggests to apply a validity measure on the observed effects of each action as perceived
across modalities. Through an incremental extension of trust regions in the parameter space,
modelled in a Gaussian Process setting, the exploration can be guided towards the most infor-
mative regions of the parameter space while maintaining constraints on the estimated validity
measure. To exemplify the methodology, experiments demonstrate the successful exploration
of plucking interactions with a Chinese stringed musical instrument, where effects are perceived
in the proprioceptive, auditory, and haptic modalities.

1.2 Scientific Contributions

The thesis contributes to the following two research areas:

Modular Planning Representations: What are effective modular representations and plan-
ning strategies for manipulation planning in semi-controlled robotics? The thesis proposes the
concept of Task Construction, isolating different phases of manipulation in separate modules.
These modules support phase-specific and adjustable planning strategies while remaining robot
agnostic. Various aspects of the concept are demonstrated through the Movelt Task Construc-
tor (MTC) framework implementation and exemplary use cases.

Physical Self-Exploration in Vulnerable Environments: How can a robotic system acquire
models of motion-phase trajectory primitives and their multimodal effects through constraint ac-
tive exploration on the physical platform? This work demonstrates an active exploration strategy
for robotic motion primitive exploration that explicitly models action validity through constraints
on the observed effects and can thus reduce constraint violations during the exploration process.
The method is validated on the physical exploration of plucking interactions with a stringed

musical instrument.

15

CHAPTER 1. INTRODUCTION

1.3 Structure of the Thesis

Chapter 2 presents a background for robot motion and manipulation planning approaches pro-
viding a basis for all involved areas which are built on in the rest of the work. It briefly defines
basic terminology and robot modeling approaches. An overview of approaches to trajectory gen-
eration and motion planning is given, exemplarily discussing various common techniques with
their capabilities and trade-offs. A number of well-known publicly available software frame-
works for trajectory generation and manipulation planning are discussed, focusing on the frame-
work Movelt utilized in this work. As the main component of this thesis focuses an interme-
diate level between the fields of Motion Planning and Task and Motion Planning, dominant
approaches in those fields are structured and discussed.

Chapter 3 presents the main concept of Task Construction and details the implementation in
the Movelt Task Constructor framework. The chapter discusses the major components as well
as planning dynamics, and several advanced mechanisms applicable to the structure. Multiple

exemplary scenarios are used to illustrate the concept’s various capabilities in applications.

Focusing on a particular motion type which can be part of a wider manipulation sequence,
the subsequent Chapter 4 investigates the above-mentioned second research question of phys-
ical robotic self-exploration in vulnerable environments. This chapter presents the proposed
methodology using the example of plucking interactions with a musical chordophone instrument.
Required model definitions and exploration steps are formulated and a multi-stage approach to
exploration is detailed which focuses on model reconstruction and dynamics exploration. The

approach is validated through a series of experiments.

Eventually Chapter S summarizes the achievements of the thesis and discusses promising

future directions for research in the investigated fields.

16

Chapter 2

Background

The capabilities and applications of the Task Constructor framework interface with various as-
pects of robotic motion generation. To provide a basis for the work, this chapter provide a
general background over related areas, prominently Robot and Motion Models (section 2.1),
approaches to Trajectory Generation and Planning (section 2.3), Frameworks for Robotic Tra-
Jjectory Planning (section 2.4), and methods for TAMP as well as the closely related field of
MMP (section 2.5).

2.1 Geometric World Models

Robot Models To plan and evaluate any motion on a robotic system without directly interact-
ing with the physical world, a representation of the robot is required. Such representations can
be defined with regards to different aspects and for different purposes.

Simple kinematic reasoning is already enabled with a minimal set of Denavit-Hartenberg param-
eters [30] and joint limits describing the geometric relationship between joints. These parameters
are sufficient to reason about the pose of geometric frames on a robot, such as the end effector,
but they do not describe the volumetric information required to reason about physical contacts.
Such volumetric information can be represented at different levels of detail and some examples
are depicted in Figure 2.1. The right illustration shows a sphere approximation of a PR2 robot
barely recognizable from the image. While such primitive representations do not represent the
real object shape, they are designed as application-specific over-approximations and are a typ-
ical means to accelerate computation. When a representation of the robot surface is required,
meshes or convex mesh approximations, such as the Panda robot model illustrated in the center
of the figure, provide a middle ground between primitive and detailed geometry. Lastly, visu-
alization and photorealistic rendering require a detailed appearance of the robot model which
is often described through textured meshes. Such a photorealistic representation is illustrated
for the Sawyer robot on the left side of the figure. For motion planning, in contrast to visualiza-
tion, simpler descriptions are preferred to enable fast detection of collisions between different

geometries and systems commonly use mixtures of representation types.

17

CHAPTER 2. BACKGROUND

Figure 2.1 — Geometric robot models illustrating shape approximations of varying complexity:
(left to right) a Rethink Robotics Sawyer [W24], a Franka Emika Panda [W9], and a PR2 [106].

Figure 2.2 — (left) Articulated environment model with semantic object labels and appearance for

forward simulation and reasoning [6]. (center) Tabletop geometric object representations as task-
specific model in a collection scenario. (right) Uniform volumetric voxel representation without

scene semantics [69].

Another level of description, which is mostly independent of the volumetric representation, is the
dynamic model of the robot. To generate motions that can be actuated by the robot’s motors and
gear system, the joint torques required for the motion must be limited accordingly. In practice,
it often suffices to consider box constraints on the velocity and acceleration of each joint as long
as use-cases remain inside the usual operating ranges of the physical system.

When robot motions should not just be planned, but simulated under plausible physics, all forces
and joint torques need to be considered and the robot model needs to define explicit torque limits,
the mass and inertia of individual robot links, as well as friction properties for potential contacts.
Identifying accurate parameters for each model aspect can be challenging. The robot link geom-
etry is often available through the manufacturer in the form of CAD files and can be simplified
as needed. Most dynamics parameters beyond velocity limits, however, are not directly avail-
able and adequate values are difficult to obtain. The process of identifying sufficiently accurate

parameters for each aspect is described as calibration and system identification.

Environment Models When the robot should act in its physical environment, relevant aspects
of this environment must be described as well. Depending on the intended use of the environ-

ment representation, the level of detail can vary here as well and ranges from simple volumetric

18

2.1. GEoMETRIC WORLD MODELS

representations, as illustrated through a voxel grid model shown in Figure 2.2 (right), over spe-
cific modeling of manipulation-related objects (center), to detailed general-purpose ontologies
with articulated object models, such as shown on the left side of the figure.

There are multiple crucial differences between robot and environment models: While model
parameters for the robot are often calibrated offline and the robot model can be described com-
pactly, the environment model might contain a varying set of object categories, depending on
the intended application. As individual category instances can vary significantly in parameters,
offline calibration is not feasible. In addition to unknown and possibly varying dynamics param-
eters such as an object’s inertia, there is usually no ground truth for the geometric description of
objects and their position in the model available and the estimates generated through perception
systems are subject to epistemic uncertainty. Lastly, the semantics within a robot model are
defined by design, but the environment constitutes an open world where any level of semantics
might be relevant. To this end, semantic annotation can be added to the environment model,
reaching from simple object labels to complex ontologies, involving relations between object

categories and manipulation affordances of individual object instances.

Definition. In the context of this work, the robot and environment models will be collectively
referred to as the world model. A world model with concrete parameters for all relevant model

aspects, especially the positions of all objects and movable joints, is referred to as a world state.

There are various established formats to describe world models. The Unified (former Universal)
Robot Description Format (URDF) format [W21] is the most common format for robot models
and static environment elements which in many cases can be considered to be part of the model
geometry. Many formats beyond URDF are bound to specific simulators and describe world
models adjusted to the focus and the capabilities of the simulator. The Gazebo simulator utilizes
the Simulation Description Format (SDF) [W18], which evolves over time as new capabilities
become available. The MJCF model, native to the MuJoCo simulator [W12], is a world model
format for articulated objects and robots with a focus on physics simulation. The Universal
Scene Description format, prominently supported by the Nvidia Omniverse platform [W13], was
originally developed for computer graphics and character animation, but was later extended to
support physical aspects relevant for robotics. In addition to their direct application as geometric
world models, information can also be extracted from them for ontological reasoning [110].

Beyond explicitly specified world models, a recently successful robotic paradigm aims to learn
world models from direct world interaction [97, 156]. These models usually do not provide ex-
plicit geometric information, but can be used given actions to predict world states in the domain
of the learned model, e.g. camera images. As they do not represent feasible state spaces ex-
plicitly, they are not directly applicable for the task planning and motion generation approaches
described in this work. However, any system exploring such learned models also requires a ge-
ometric world model as described above to ensure feasibility of physically attempted motions

and to provide a basis for different action representations and reward structures.

19

CHAPTER 2. BACKGROUND

2.2 Motion Description

Based on a geometric robot model, one can consider the description of motions of the robot next.
In planning contexts, robot motion generation is often decomposed into path finding — where

to go — and trajectory parameterization — when to be there.

Definition. A path is a continuous function vy : [0, 1] — S which maps a domain parameter to
a state space S. A trajectory is a path domain-parameterized in time, such that v : [0,7] — S
is indexed through time until an end time 'T'. In contrast to paths, trajectories thus provide a

physical interpretation of their derivatives such as velocity and acceleration.
There are two state spaces S particularly relevant for robot motion planning:

* The Cartesian pose space SF(3), Special Euclidean Group 3, describes all possible poses
in 3D space in a reference frame with position and orientation. Trajectories which map
onto this space describe the intuitive motion of physical objects and links of the robot,

including the end effector, in the world.

* The Joint Space J C R", where each dimension corresponds to the position of a Degree
of Freedom (DOF) of the robot. The individual dimensions are restricted to the valid joint

ranges of the robot.

In order to describe continuous trajectories in few uniform parameters, they are usually repre-
sented as a series of waypoints which parametrize a spline function, such as B-splines or Hermite
splines [27]. In robotics, the quintic Hermite spline is a common choice to represent trajecto-
ries as it provides continuous acceleration profiles along the path and is explicitly based on the
position, velocity, and acceleration.

The computation of a feasible trajectory for execution given a joint path and a robot model esti-
mates the time, velocity and acceleration for the path, defined for each waypoint. This process
is referred to as time parameterization. As this step already involves explicit higher-order con-
straints on the motion to satisfy dynamics limits, might include modifications of the path within
permissible bounds, and in some cases also supports constraints in both Cartesian and joint space
together, it is sometimes considered a part of trajectory planning and will be discussed in the

next section.

2.3 Approaches to Trajectory Generation

Generating feasible robot trajectories in an environment is among the most general problems in
robotics and a wide variety of approaches has been implemented over time to compute applicable
trajectories in different contexts, under varying constraints, and with different requirements w.r.t.

smoothness, computational cost, and optimality.

20

2.3. APPROACHES TO TRAJECTORY GENERATION

Lo PTP Trajectory Lo Multi-Waypoint Trajectory

R) | : — Joint 1
8 | B Joint 2
Z 0.5 — Joint 3
5 — Joint 4
-‘u;; 0.0 {4 — Joint 5
3 : — Joint 6

-0.5 4

0.0
0 l
ko] |
© 0.0
= I
NG
= —05 T
O
ke l
g 107!
0.0 0.5 1.0
Time (s)

Figure 2.3 — Comparison of time parameterization for a path segment between two waypoints (left)
and a path through 5 waypoints (vertical lines) (right). Both paths use the same start and end points.
The top plots show joint positions, the bottom plots joint velocities; (bottom left) s-curve velocity

profile for path segment, (bottom right) time-optimal velocity profile for multi-waypoint path.

Primitive Industrial Motions Most industrial robots support different primitive motion types
for standard path specification. The most basic of these are PTP (Point-to-Point) motions de-
scribing line segments between two points in joint space. The path between these points is
usually time-parameterized with an s-curve velocity profile as shown in Figure 2.3 (left), jerk-
limited with continuous acceleration, or a trapezoidal velocity profile, acceleration-limited with
continuous velocity [92]. Both types accelerate in all joints in the direction of the target, maintain
a constant travel velocity, decelerate towards the end.

The complementary LIN (Cartesian Linear) motion type describes a straight-line path from the
Cartesian pose of a given robot configuration, to a pose in Cartesian space. As many industrial
applications, such as welding or painting, require constant velocities along the tool path, these
motions are time-parameterized with profiles similar to PTP motions, but apply to Cartesian
velocities. A similar Cartesian motion type is the CIRC (Circular) motion, which describes an
arc towards a target pose. In this case, the path itself is parameterized in a via point.

But in contrast to PTP trajectories, Cartesian motions represent highly non-linear paths in joint
space for most common robot kinematic structures, especially so in the vicinity of joint sin-
gularities. As such, the corresponding joint trajectories do not follow a simple time profile in
joint space anymore, require additional checks to ensure feasibility with respect to dynamics

constraints, and are implemented through multi-waypoint joint space path planning.

21

CHAPTER 2. BACKGROUND

Time-Parameterization Going beyond s-curve parameterization between two position way-
points, one can consider joint dynamics and parameterize paths with non-zero velocities and
accelerations in both waypoints. Algorithms have been developed for time-optimal jerk-limited
parameterization where goal states can specify velocities [80] and accelerations [10]. An im-
portant aspect of these generalizations is the synchronization of all active joints required for the
coordinated motion of a kinematic chain.

These approaches consider a single path segment and do not readily generalize to paths defined
through multiple waypoints. While it is possible to chain trajectory segments with zero velocity
and acceleration at the waypoints, or blend between them, most sequences of waypoints can be
traversed significantly faster with higher velocities and accelerations at intermediate waypoints.
The coupling of these intermediate values under second-order constraints (in the form of dy-
namics limits) adds computational complexity to the problem and, while optimization problem
formulations perform well, no general analytical solution is known. Kunz et al. [82] introduced
a time-optimal algorithm based on forward integration with continuous velocities and bounded
acceleration. Later, Pham et al. [116] presented a more efficient algorithm TOPP-RA based on
a two-pass scheme on the discretized trajectory. Figure 2.3 (right) shows a prototypical time
parameterization for a path composed of five waypoints with a time-optimal parameterization
generated through TOPP-RA. Discontinuous acceleration can be observed at switching points

as sharp changes in slope in the velocity profile.

Collision and Feasibility Checking The aforementioned trajectory generation approaches
only consider the kinematic and dynamic properties of the robot and ignore geometric con-
straints. However, an essential requirement of practical motion generation is that the robot must
avoid unwanted contact with the environment and between its own links. To this end, volumet-
ric world models, as described in section 2.1, are commonly used: By assuming a candidate
world state, the Cartesian poses of all shapes can be determined and tested for unwanted inter-
sections [45, 101], commonly referred to as collision checking. In addition to individual world
states, motions between two states can also be validated individually through continuous colli-
sion detection [120, 121]. Beyond collision detection, feasibility checks can also involve further
aspects depending on the scenario, such as distances to human operators [93] or constraints on

end effector orientation for welding tasks or container transport.

Sampling-Based Planning Relying on the path parameterization and feasibility testing meth-
ods above, motion planning problems can be reframed as search problems for feasible joint
space paths instead of trajectories and time-parameterize them in a second step. In this regard,
sampling-based approaches form a broad category of general-purpose path planners which are
robust across different planning spaces. Fundamentally, such approaches utilize sets of sam-
ples in the planning space, i.e. world states, to approximate and explore the continuous feasible

state space in order to connect given start and goal configurations. Approaches differ in their

22

2.3. APPROACHES TO TRAJECTORY GENERATION

Figure 2.4 — Examples for planning trees generated through RRT-Connect: (left) abstract green

sphere moving in a 2D labyrinth, (right) Franka Emika Panda robot with a 7D joint space in a ware-
house scenario. The full initial world state is shown. Search trees are visualized in end effector space
in pink (start tree) and turquoise (goal tree). Successful solutions after shortcutting are illustrated

through consecutive coordinate frames.

exact strategies to sample the space, connect selected samples, and eventually refine or optimize
discovered solutions.

The most traditional algorithm in this category is Probabilistic Roadmaps (PRM) [74] which
builds a search graph by randomly sampling the space and connecting feasible samples in a
neighborhood. The growing (or pre-generated) discrete graph is then used to find a path between
start and goal configurations through regular A* graph search and can be reused with different
start and goal configurations in the same space as long as these states can be directly connected
to other graph nodes.

By contrast, the Rapidly-exploring Random Trees (RRT) [84] algorithm exploits the individ-
ual start and goal configurations during the sampling process. Each sampling step proceeds by
selecting a random sample in the space. But instead of incorporating it directly into a search
graph, the algorithm locates the nearest node in the current search tree (initially only the start
configuration) and extends it towards the random sample by a maximum step size. This process
asymptotically covers the full feasible state space reachable from the start configuration and
generates tree branches which represent feasible paths from the start. To bias the search towards
the goal, the goal configuration itself can be selected as random sample with an adjustable bias
probability. The equally established expansive-spaces tree (EST) algorithm [61] extends com-
parable search trees through a different expansion strategy, where random samples are selected

in low-density neighborhoods of existing nodes in the tree.

23

CHAPTER 2. BACKGROUND

RRT-Connect [81] further extends the RRT approach and improves its efficiency through two
major modifications: First, the algorithm utilizes a bi-directional formulation: It generates sep-
arate start and goal trees and attempts to connect them in each expansion step. This adaptation,
originally proposed with EST, became a common feature in many sampling algorithms over
time [61, 125, 136, 138, 139]. Second, while RRT originally extends the tree with a maximum
step size, RRT-Connect extends the tree “aggressively” by repeatedly expanding new branches
towards the random sample as long as the branch remains collision-free. These choices lead to
drastically faster connections in practice. Figure 2.4 illustrates RRT-Connect planning trees for
a 2D and a 7D scenario.

The planner remains a popular choice for path planning due to its comparably sparse trees and fast
runtime in practical use and it also remains a well-performing competitor, when comparing the
planning time to first solution, in current research benchmarks [40, 138, 153]. The contributions
described in this thesis trivially generalize to arbitrary concrete path planners and thus most path

planning examples in this work utilize RRT-Connect with shortcut refinement, detailed below.

Shortcutting Initial feasible paths from sampling-based planners directly connect random
samples from the space and are thus very inefficient in almost all cases. As a simple post-
processing step, one can shorten most solution paths significantly through simple approaches:
In the case of partial shortcut [44], the algorithm repeatedly samples two random points on the
path — which are not necessarily original waypoints — and checks the feasibility of a directly
connecting path between them. If found feasible, the intermediate path is removed from the solu-
tion in favor of the new direct connection and the process repeats. The solution paths visualized
in Figure 2.4 are produced through this process. Additionally, it can also happen that sampled
points cannot be shortcut directly, but can still shortcut in multiple dimensions. By optionally
sampling also a subset of dimensions for each pair, these cases can be at the cost of an overall
increased runtime due to more required attempts. The rope shortcut [115] algorithm provides a

deterministic alternative to partial shortcutting at the cost of an explicit path discretization.

Optimal Sampling-Based Planning Beyond simple post-processing of initial solutions, which
are proven to be almost-surely suboptimal for the planners mentioned above [73], various plan-
ners were developed that integrate optimization strategies during the exploration process, ensur-
ing almost-surely asymptotically optimal (ASAO) solutions. The RRT* algorithm [73] extends
regular RRT by maintaining the path cost from the start node to each tree node. For every new
sample added to the tree, the algorithm attempts to connect it through the node with the lowest
cost and additionally updates all nodes in the neighborhood of the new sample whenever the new
connection results in a lower path cost. The FMT* and BEMT* algorithms [66, 136], as exam-
ples of non-incremental planners, assume a set of valid sampled states and implement a dynamic
wavefront expansion on them, guaranteeing ASAO solutions as the sample size is increased over

multiple planning attempts.

24

2.3. APPROACHES TO TRAJECTORY GENERATION

As acombination and generalization of both approaches, BIT* [40] alternates between incremen-
tally sampling batches of states and exploring each batch for improved solutions paths. By ad-
ditionally exploiting a user-provided heuristic function, the algorithm evaluates sample batches
by their potential solution cost. To improve the efficiency of exploration beyond the initial solu-
tion, further sampling is restricted to regions of the space which might support better solutions
according to the heuristic.

Lastly, the AIT* and EIT* planning algorithms [138] further build on the scheme of BIT* and in-
troduce the concept of asymmetric bidirectional planning. Instead of building two equal search
trees and aiming to connect them, the goal planning tree is expanded without dense edge valida-
tion and computes heuristic estimates to inform the search process during expansion of the start
tree. The goal tree is maintained beyond computation of the heuristic values, and can be effi-
ciently updated when invalid edges are detected during the forward search. EIT*, additionally
introduces effort heuristics, estimating the amount of computation required to validate paths, as
well as inadmissible but informative heuristics that can be used to guide the forward search.

As most optimization-based planners are based on an anytime improvement scheme, all uses of
such planners as black-box invocations pose the additional question of when to stop the search
and report the final trajectory. Best practices to resolve this challenge are predetermined timeouts
or a convergence test on the solution cost during planner iterations [139].

All sampling-based planners operate in well-defined world models, and several of the required
steps can be modelled through data-parallel operations. Thus performance of these algorithms
can be significantly improved through parallelization and vectorization of key methods, notably
feasibility testing of samples and connections between samples. Several recent projects inde-
pendently demonstrated drastic speedups of established as well as novel planning algorithms
through CPU parallelization [106], GPU offloading [140], and SIMD adaptation [142, 153].

Optimization-Based Planning The second established category of motion planning algo-
rithms is based on numeric optimization of trajectory parameters. Contrasting the strength of
sampling-based planners to quickly find valid global paths of a-priori unknown length, opti-
mization methods excel at gradient-based local improvement of paths at the cost of susceptibil-
ity towards local minima. While the underlying optimization methods can differ significantly,
most variety in approaches lies is the design of the problem space and the scope of the problem
to be solved. The remainder of this section reviews several scopes at which optimization-based
planning is applied.

Inverse Kinematics The most common use of optimization found in robotics is its applica-
tion to find solutions for the Inverse Kinematics (IK) problem [154]. Formally, it describes the
problem to invert forward kinematics equations and, given a desired Cartesian end effector pose,
characterize joint space configurations which realizes this Cartesian pose. While various specific

IK problems can be addressed analytically [146], optimization based methods support arbitrary

25

CHAPTER 2. BACKGROUND

kinematic structures, additional constraints for feasibility testing and redundancy resolution, and
facilitate approximate solutions when facing infeasible poses.

While individual kinematic solutions do not constitute robot motions, the optimization of joint
configurations can be iterated to roll out complete paths or trajectories. To this end, dense incre-
mental Cartesian waypoints can be solved to track Cartesian paths [5], regularization constraints
such as minimal displacement terms for paths can be added to converge on goal poses over
multiple iterations [123], or one can add the assumption that each solved iteration corresponds
to a fixed trajectory time step, such that explicit higher-order constraints on velocity, accelera-
tion, and jerk can be supported through numeric differentiation of past states [149]. A major
shortcoming of these latter approaches however is that such higher-order constraints are only
optimized for the current state while the effect of this state diminishes with the constraint order
and the constraint function becomes mostly determined by previously computed states.

Model Predictive Control While single-state rollouts exhibit low problem complexity per
instance because the requested solutions are very close to the initial guess, they also involve an
inherent tradeoff between a preferably low step size to ensure consistent behavior between the
steps for a given dynamics model and a preferably high forethought along the future trajectory
to optimize on the effects of considered motions. One way to circumvent this inconsistency
is to optimize multiple states together over several time steps into the future and increase the
investigated planning horizon to short multi-waypoint trajectories. By optimizing over a fixed
horizon for each step in turn, but only fixing the current step in the final trajectory, one arrives
at a model predictive control scheme.

These schemes can be rolled out offline for trajectory generation, as implemented for example
in the Giskard framework [137]. Alternatively, many implementations aim at online use in reac-
tive scenarios. This becomes especially relevant with stochastic system dynamics and dynamic
motions, where low step sizes are necessary for better physics approximations, but effects such
as breaking motions and future environment contacts can only be evaluated at a longer horizon.
Typical approaches in this area include Quadratic Programming on linear MPC formulations [56,
137] and model predictive path integral approaches exploiting fast sampled rollouts [11].

Global Trajectory Optimization This last class of optimization approaches aims to solve for
globally optimal trajectories over the full trajectory at once. Such approaches come at the cost
of much higher computational complexity with high vulnerability to local minima in constraint
collision environments.

Among these, CHOMP [168] leverages functional gradient descent to iteratively refine a trajec-
tory under smoothness and collision cost objectives. STOMP [70] employs Monte Carlo updates
to reduce the risk of getting stuck in poor local minima, sampling noisy trajectory perturbations
and favoring paths that lower user-defined costs. TrajOpt [130] formulates trajectory planning

as a sequence of convex subproblems, allowing for efficient collision handling through con-

26

2.4. SOFTWARE FRAMEWORKS FOR TRAJECTORY PLANNING

vex relaxation of obstacle constraints. In contrast, GPMP2 [105] models motion planning via
Gaussian processes and factor graphs, offering continuous-time trajectory representations and
probabilistic reasoning over collisions. The recent Graph of Convex Sets (GCS) approach [95]
assumes a partition of the feasible motion space into a finite set of convex feasible regions and
connects them in a graph structure. This decomposition enables globally optimal solutions by
combining convex trajectory optimization with mixed-integer graph search problems, which can
still be solved through tight convex relaxations.

As sampling- and optimization-based planning techniques complement each other’s strengths
in finding global solutions and optimizing costs, their integration in combined approaches can
improve planning speed and solution quality, prominently demonstrated in the BITKOMO plan-
ner [71].

2.4 Software Frameworks for Trajectory Planning

Any use of the described approaches to generate executable trajectories for a physical robotic
system hinges on a software implementation and the eventual performance of such use depends
on the accessibility and quality of the specific implementation. For many proposed algorithms,
software implementations are provided together with their respective publication, but these im-
plementations do not necessarily integrate well with a regular robotic software ecosystem. To
facilitate this integration with many common as well as with new systems, a number of groups
maintain robotics frameworks that bundle various methods in a common software stack.
Multiple commercial robot vendors provide frameworks for their specific robot family, includ-
ing Universal Robot’s Polyscope [W16] and KUKA’s KSS [W7]. Beyond these, software so-
lutions for general process automation which aim for multi-vendor support include Optonic
Mikado [W8], Energid Actin [W1], Intrinsic FlowState [W6], and PickNik Movelt Pro [W10],
among others.

Orthogonal to such systems targeting solution deployment, various OpenSource frameworks
are available for research with different foci and levels of abstraction. These include low-level
libraries, such as Orocos KDL [W?20] and Pinocchio [19], for efficient computation of kinemat-
ics and dynamics, educational frameworks such as PyRoboplan [W4] emphasizing comprehen-
sive implementation over efficiency, and frameworks specifically focused on optimization, such
as Horizon [124], Crocoddyl [96], and EXOTica [65], for efficient definitions of optimization
problems, VAMP [142] for SIMD parallelized sampling-based planning, and cuRobo [140] for
GPU-accelerated planning.

Beyond these intermediate-level frameworks, there are several projects which aim for more gen-
eral applicability across the robot motion planning and control domain. Prominent systems in
this area include Movelt [24], Drake [W19], Tesseract [W2], Klamp’t [52], HPP [99], and further
wrapper systems like the Robowflex project [77].

27

CHAPTER 2. BACKGROUND

Eile Panels Help
drmteract | @Move Camera [lseiect E@ieyTool | & = @

2 pisplays]

» ¥ Global Status: Ok
Grid

» |y RobotModel v

0
M 150; 50; 150

panda_am

v

0.2
Wo: 255: 0
1
Go 250 128;0
Goal State Alpha 1
Add

% MotionPlanning [

Context | Planning | Manipulation | Scene Objects Stored Scenes | Stoi |+

Commands Query options

Planning Time (s): |5.0
Planning Attempts: 10

MotionPlanning - Trajectory Slider [

Waypoint: 15— o PTS

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options. 31fps

Figure 2.5 — Movelt user interface as part of the rviz visualization framework [W17].

The work presented in chapter 3 was implemented in Movelt [24] and constitutes a major part
of the frameworks’s current manipulation capabilities. Movelt is one of the largest OpenSource
frameworks for robot path and manipulation planning and it provides a robot-agnostic abstraction
from concrete robot controllers based on Robot Operating System (ROS) communication as well
as general interfaces for planning with world models. While the framework is designed as a set
of software libraries, it also provides a graphical user interface integrated in the rviz visualization
framework [W17], as shown in Figure 2.5. The general framework supports alternative backend
libraries implementing different methods required for path and motion planning. The core of the
system is designed around a robot model based on URDF together with a flexible environment of
explicit objects around the robot. This combined world model is termed planning scene within
Movelt. The core model description is augmented by the concept of planning groups, which
constitute groups of actively controllable DOF of the robot considered together in kinematic
chains and motion planning problems.

Another annotation, common across other frameworks as well, explicitly enumerates allowed
collisions between links of the world model. Concerning planner performance, this explicit
formulation foregoes a significant burden of computation during planning. Usually, many pairs
of bodies in a model can never be in collision due to geometric constraints or will never be in
collision without other pairs colliding. Such pairs can be explicitly neglected during collision
checking through inductive priors. Additionally, the dynamic definition of allowed collisions
between links can modify the feasibility of object contact as part of the world model state. For
example, the annotations can describe whether a grasped object is permitted to come into contact

with a specific surface or not — a decision which depends on the intention of the planned motion.

28

2.5. Task AND MoTION PLANNING

2.5 Task and Motion Planning

Task Planning Contrasting individual motions, where clear start and goal regions in the state
space are specified, robot action generation can also consider sequences of actions for long-term
action plans. On a symbolic level, such plans combine abstract actions such as pick object X,
place held object on X, and move to location X. Given a target objective, such as move the apple
onto the table, or prepare dinner, and an ontology describing the preconditions and effects of
individual actions, Task Planners can generate a sequence of instantiated action symbols, such
as (pick object apple, move to table, place held apple on table) to achieve the requested high
level objective.

Various models to specify and solve such problems were proposed in the past, dating back to the
pioneering STRIPS planner [34], and involving popular specifications such as Hierarchical Task
Networks [33] and Planning Description Domain Language (PDDL) [37].

A representative example for a formal action definition in PDDL, relying on assumed logical

predicates near, on, gripper_free, and holds, is shown in the following.

(
:action pick_object
:parameters (7obj - pickable 7loc - location)
:precondition (and (near ?loc) (on 7obj 7loc) (gripper_free))
:effect (and (holds 7obj) (not (on 7obj 7loc)) (not (gripper_free)))
)

In this example, the definition of the action pick_object is formally parameterized in an object
7obj to be picked and the location 71oc of the object, where both parameters are instantiated in
each applied action. The action can only be applied in a world state where the robot is near the
location of the object, and the robot’s gripper is currently available, as determined by boolean
predicates. Within the symbolic world model, applying the action will modify the truth val-
ues of the predicates holds, on, and gripper_free in the world state to reflect the intuitive
consequences of picking up the object: The robot now holds the object, the gripper becomes
unavailable for further grasps, and the object does not reside at its location anymore.

Since the recent proliferation of Large Language Models (LLMs) in generating intuitive se-
quences, different research directions proposed to generate task plans directly through natural
language prompting without explicit model verification [63, 155], or to translate natural language
goals into PDDL descriptions [90, 131].

Task and Motion Planning (TAMP) In general, all task planners are limited in their applica-
tion with actual robotic systems where they have to ensure the downward refinement property [3]:
While the abstract world model used for planning supports generated action sequences, the gen-

eration of robot trajectories to actuate these actions can fail due to kino-dynamic constraints that

29

CHAPTER 2. BACKGROUND

Figure 2.6 — Examples for TAMP scenarios [28, 135]. (left) Implementation of a blocks-world
scenario with a robotics setting: To arrange blocks A—C as an ordered stack on the tray, the system
must plan multiple symbolic actions to stack individual blocks and generate motion plans to lift and
place the blocks. (right) With the goal to retrieve the marked (red) cylinder from the cluttered table,
multiple cylinders block the direct path to reach the target and various pick and place operations need

to be considered to rearrange the table and eventually retrieve the target object without collisions.

are not described in the symbolic model. One example of this limitation is the potential for a
pick_object action to fail due to environment clutter: Collision-aware inverse kinematics to
realize potential Cartesian grasps for the target object can fail due to infeasible robot collisions
with the world model. To circumvent this limitation, the field of TAMP considers approaches to
integrate motion planning within the task planning process [42]. Figure 2.6 illustrates represen-
tative example problems in this area.

A traditional and intuitive approach to combine solvers for both aspects lies in lazy satisfiabil-
ity modulo theory solving [4]. In these approaches, as for example demonstrated by Srivastava
et al. [135], task planners are invoked to solve the symbolic planning problem. The resulting
action sequences, which are also called plan skeletons, are then further mapped to executable
trajectories by solving motion planning problems that aim to instantiate the abstract actions with
concrete robot motions. Upon planning failure for a motion, planners might backtrack and con-
sider alternative motion parameters. When no instantiation for an action sequence can be found
even with parameter backtracking, the task planner is informed that the provided solution is in-
feasible, possibly providing hints to guide the task planner towards better symbolic plans. Dan-
tam et al. [28] add an iterative deepening approach to this scheme over the coupled symbolic plan
length and the duration of planning attempts for sampling-based planners to achieve probabilis-
tic completeness. PDDLStream [43] extends the pddl specification through additional stream
predicates which enumerate motion parameters, such as object grasps, and planning proceeds in

a similar iterative deepening fashion over found symbolic plan skeletons.

The main shortcomings of TAMP approaches in general are their overall complexity, imprac-
tical runtimes, and various crucial method parameters. These parameters are often treated as

implementation details but strongly affect whether approaches might yield solutions in practice.

30

2.5. Task AND MoTION PLANNING

Figure 2.7 — Schematic illustrations of multiple intersecting planning modes as manifolds in the
complete system state space [54, 78]. (left) Intersecting manifolds F,, F,.. Both manifolds intersect
in a well-defined subspace containing state ¢'. (right) Modes with continuous parameters, such as an
object pose, can characterize an infinite amount of manifolds as mode foliations £Z. Two manifolds

are shown for two intersecting mode foliations =1, =s.

They include determining when to backtrack to investigate different task plans, when to consider
alternative choices for continuous parameters, when to assume (only asymptotically complete)
motion planning attempts failed, how to configure planners to find feasible mode transitions,
as well as what concrete feedback to provide to the task planner to guide the symbolic plan-
ning process and what aspects of the considered problem class to encode within the symbolic
theory. Additionally, the entangled nature of TAMP algorithms hinders introspection when
designing problems and critical modelling mistakes can be overshadowed by other attempted

solution branches and heuristics.

Multi-Modal Planning (MMP) The field of MMP provides a complementary view to prob-
lem domains similar to TAMP, but it approaches the field from the perspective of motion plan-
ning. Under its interpretation, the planning spaces of each individual motion in a multi-step plan
describe mode manifolds in the complete system state space. These manifolds are set up to in-
tersect in well-defined subspaces, where a solution path can transition between different modes
through states in the intersection. Figure 2.7 (left) illustrates the concept. Two often-examined
modes are planning (/) with a free gripper and (2) with an object held in the gripper [78, 108,
126]. Each individual connection state in the intersection of these manifolds implicitly describes
the complete process of the gripper grasping the stationary object and achieving a stable grasp
(or releasing the gripper to place the object).

As start and goal regions are simply defined in the union of mode manifolds, the planning prob-
lem can be treated like any other motion planning problem with the additional scope extension
that all relevant modes must be considered. Hauser et al. [54] introduce an intuitive approach
Multi-Modal-PRM for finite sets of manifolds: The algorithm extends traditional PRM to sam-
ple each mode manifold and each mode intersection in a round-robin fashion which guarantees
probabilistic completeness.

31

CHAPTER 2. BACKGROUND

Beyond finite sets of manifolds, most manipulation problems actually involve continuous param-
eters, such as the set of gripper poses that can be used to grasp an object. These co-parameters
can be seen to index an infinite family of manifolds, a mode foliation, where elements are leaf
manifolds and only vary in their characterized co-parameters [55]. Leaf manifolds for the same
foliation do not intersect in prehensile manipulation planning, as for example a grasp on an ob-
ject cannot be modified without first releasing the held grasp, thus switching to a different mode
before regrasping. Consequently, a main challenge in MMP is to identify promising foliation
co-parameter values to explore, as only a finite subset of leaf manifolds can be considered.
Hauser [53] proposes a tree-of-roadmaps structure where they explore mode sequences through
EST-inspired exploration of an infinitely-branching tree, each branch constitutes a PRM planning
problem in itself. Schmitt et al. [126] globally sample a set of co-parameters together with
intersection states while creating a PRM* graph across modes, altogether foregoing forward
search through manifold sequences.

Thomason et al. [143] build on the iterative deepening structure of Dantam’s TAMP approach,
but treat planning as MMP. They generalize the optimal sampling approach of AIT* path plan-
ning to explore different manifolds once samples close to an intersection state can be reached.
Kingston et al. [78] propose a single-mode planning approach for mode foliations that permits
connections between samples of different leaf manifolds in an augmented foliated space. Dur-
ing actual planning in a concrete manifold, many samples from this space can be projected to
the manifold at hand, and inform the search process. Additionally, a second method guides
the selection of concrete manifold sequences and co-parameters through statistics on previous
attempts to plan through modes.

A shortcoming of all discussed approaches to Multi-Modal Planning is their simplistic repre-
sentation of the semantics in mode intersections. While it can serve as a plausible abstraction for
the considered problems to assume a single state space sample characterizes a transition, espe-
cially grasping and placing remain complex actuation domains in autonomous robotics even with
simple parallel grippers [83] and generated solution paths in MMP approaches fall short to rep-
resent them. Additionally, all methods enforce motion planning through a single homogeneous
mechanism across modes, which complicates plan adaptations for physical robotic hardware as
well and does not exploit the potential for specialized motion planning algorithms for different
modes. Chapter 3 contributes to this field through a modular and customizable architecture for
solving given plan skeletons with known alternative paths and explicit mode-specific introspec-

tion capabilities.

32

Chapter 3

Task Construction

I presented the original design of the Movelt Task Constructor at two PhD student schools
(Interdisciplinary College 2017 and CITEC Summer School 2017). Afterwards the
project was further developed in collaboration with Dr. Robert Haschke, who introduced
containers, local ranking of Interface States during planning, pruning, and rviz Task in-
trospection. Eventually, we presented the further developed framework together in a con-

ference publication [46] at multiple conferences. The chapter is based on the conference

publication with major additions to the original content.

This chapter presents the concept of Task Construction as implemented in the MTC software
framework [46]. The concept provides means for the specification, planning, and introspection

of manipulation trajectories in a modular fashion.

3.1 Manipulation Phases

Task Construction draws heavily on the definition of separable motion phases in manipulation
actions. The concept of such phases is intuitive and prevalent in the literature of various research
fields. Still, its definition and use differs significantly between fields with some overlap. For
example, research in mammal and human prehensile manipulation [41, 68] characterizes modes
of neural activity with task stages such as Approach, Contact, Grasp, Lift, Hold, Lower, and
Relax. Studies in human reaching motions, such as Nieuwenhuizen et al. [111], split up reaching
motions into at least a Ballistic and a Correction phase — introducing additional fine-
grained phases as needed. Motion perception studies, such as De Stefani et al. [29], characterize
phases such as Initial Finger Opening, Maximal Finger Aperture, and Final Finger
Closing. For control in robotic grasping, fine-grained motion phases during finger closing are
useful to adjust controller behavior for phases such as Closing, Establish Force Closure,

and Grasp Force Stabilization used by Lach et al. [83].

33

CHAPTER 3. TAsk CONSTRUCTION

In contrast, research in manipulation planning tends to split phases between different planning
modes. Hauser et al. [55] distinguish phases by which DOFs are activate during trajectories and
Kingston et al. [78] essentially describe only two parameterized modes for object interaction,
which are Held and Placed.

Work in optimization-based trajectory generation, such as the Crocodyll framework [96], aims
to solve for joint torques along fixed time steps assuming known inverse-dynamics models. As
additional constraints are active for each physical contact between bodies, these methods define
phases by the set of currently active contacts. The phase structure and duration of each phase is
typically determined before optimization as predefined contact sequence and is not part of the
optimization.

In all cases, the exact decomposition of phases depends on the aspects relevant to the individual
research and focus points and there is no unique level of abstraction.

As there is no unique phase decomposition and useful decompositions highly depend on the
required manipulation actions, the framework does not enforce any specific motion structure.
Instead, it provides the means to specify motion phases and their characteristics in terms of
computable units, providing introspection and the implicit propagation of solutions throughout
these units.

3.2 Modularization of Manipulation Planning

As presented in section 2.3, the robotics research field provides a multitude of methods to gener-
ate feasible trajectories for any concrete motion. To allow for manipulation planning with hybrid
methods, the driving design criterion of Task Construction is the black-box abstraction of motion
phases in Stages.

Concept. A Stage represents a computable motion phase of any duration that is part of a ma-
nipulation action. It comprises (1) a Method to compute robot trajectories and expected world
model changes for the represented phase, (2) an Interface describing what information is re-
quired to apply the method, (3) a set of method parameters described in Stage-specific Prop-
erties, and (4) it associates with each generated trajectory relevant Introspection objects in
the form of motion-specific geometric annotations. Computed trajectories, together with world

model changes and Introspection objects, are collectively referred to as Stage solutions.

In this formulation, each Stage encapsulates an isolated expert solver (a parameterized method)
that is able to generate solutions for its motion phase. While the alternative design choice to
utilize a homogeneous method to yield all phase trajectories can benefit from a uniform repre-
sentation and partly shared inference, it also limits the compositionality of the complete system
to utilize the chosen method. The investigated black-box abstraction of Stages chosen in this
work allows for the integration of any expert solver, as long as it can provide an Interface and

yields trajectories for a designated phase.

34

3.2. MODULARIZATION OF MANIPULATION PLANNING

A focus of Task Construction lies in the local introspectability of each Stage. To this end, Stages
usually generate additional Introspection objects together with computed trajectories. This intro-
spection can include text annotations, but prominently includes geometric visualization objects!
to highlight key aspects of a Stage parameterization, such as goal poses, waypoints, or selected
link frame, which can be inspected together with the generated trajectories. Additionally, Stages
can explicitly yield failed trajectories, together with further Introspection objects. While failures
are not considered in further computation, they are essential for the introspection of unexpected
failures.

Separate motion phases for a single manipulation action of course interrelate and in order to
generate consistent trajectories for the whole manipulation action, information has to propagate

between the individual solvers. To this end, the Task orchestrates all Stages.

Concept. A Task represents a well-specified structured manipulation action and comprises a
set of child Stages, representing motion phases of the action. During planning, the Task ex-
plores solution paths by scheduling its children to generate trajectory samples and providing a
structured information flow between these children. A Task solution is a connected sequence
of Stage solutions, reaching from the initial to the final Stage of the Task.

A major framework design decision addresses the potential structure of a Task to exchange in-
formation between Stages. As the Stage concept presupposes solvers without intermediate com-
munication, Stages do not affect each other during computation, but only through completed
solving attempts.

To allow for maximum flexibility in a heterogenous environment, any kind of information might
be shared among any expert through a blackboard or noSQL database format. Such approaches
are common in cognitive architectures such as the Cognitive Robot Abstract Machine [7, 8], the
ArmarX memory system [114], or the RACE blackboard [59], which act over long time horizons
and support generic extensions for research projects.

This flexibility comes at great costs though. Passing unstructured information drastically limits
composability of Stages. As every Stage needs to extract the relevant information from passed
data, any Task instantiation would decide per communication on their own data types and con-
tents. As a result, Stages cannot be directly reused for different Tasks.

Secondly, modularity and the ability to introspect plan generation degrade due to global side
effects. As information in a global state can affect any expert, the planning problem cannot be
reliably decomposed along the different Stages and the full current planning state of all Stages

is required to explain the behavior of a single Stage.

Instead, Task Construction relies on a concept similar to manifold intersections or mode tran-
sitions which describe an established concept in the domain of multi-modal planning (see sec-

tion 2.5). Following the observation that temporally adjunct motion phases relate to each other

'MTC utilizes visualization_msgs: :Marker ROS messages

35

CHAPTER 3. TAsk CONSTRUCTION

Structure Compoundability Flexibility Locality
Blackboard No Full No
Local World State Passing Yes Flow-Structured Yes

Table 3.1 — Comparison of information passing schema for black-box modules.

only through a single world state within a low-dimensional manifold in which the state can be
considered an element of both motion phases, Stages can be limited to communicate explicit
world state samples from this manifold.

By communicating only these states to designated other Stages, locality is established, as each
Stage computation can be understood in isolation given the received individual states the com-
putation is based on. As another consequence, Task structures are directly compoundable, as
only interfaces between different compounds need to be specified without risking global side
effects. Table 3.1 summarizes these aspects.

Additionally, a small amount of information not represented in the world state can be relevant
for general manipulation strategies. Considering a manipulation scenario of a bimanual system
picking up a small object, an initial Stage of a Task could consider picking the object with either
arm and would generate trajectories to move the selected arm towards the object. The decision
which arm is moved in each trajectory constitutes a planning commitment not explicitly repre-
sented in the world state. Such decisions are referred to as (local) plan commitment, because
continuations of the generated solution path should commit to the same decision. Alternative
considered trajectories within the same global planning attempt might stray from this commit-
ment though. As the type of such decisions varies between Task structures, the concept of typed
Properties can be reused here.

Put together, the information communicated between neighboring states is defined as follow:

Concept. An Interface State comprises (1) the kinodynamic state of a world model including
the robot and objects and (2) a set of typed Properties defining non-geometric aspects of manip-

ulation actions. Interface States mark both end points of robot trajectories generated by Stages.

Using this concept, one can consider the structure of Stage communication. The Task Con-
struction framework aims to abstract over various methods to generate trajectories in a Stage.
To support any computational approach without custom additions, all Stage interaction happens
through directed passing of explicit Interface States. Thus, the only assumption on applicable
approaches is that, given a set of inputs, they can produce a number of trajectories.

Stages that generate trajectories associate these trajectories with Interface States representing
their respective temporal start and end. Moving forward, these Interface States are referred to as
start state and end state of the respective phase. Interface States which are newly generated in

this process are passed on to their neighboring Stages. As new states arrive in other Stages, these

36

3.2. MODULARIZATION OF MANIPULATION PLANNING

Forward Propagator | Backward Propagator 1
Connector 8 Generator
External
Solutzon

Figure 3.1 — The four Stage Interface types. Each Stage supports at least one type. Arrows indicate
from which temporal direction an Interface State is available (either of the start or end state for the
represented phase might be provided) for computation and which world states are generated as part

of computed trajectories.

will initiate further planning steps to generate trajectories for their respective phase extending
from the received Interface States.

Crucially, it does not suffice to pass Interface States forward in time, as this can leave Stages
with insufficient information to compute trajectories. A simple example of this restriction can
be observed with motion generation based on grasp planning systems [87, 109]. The basic
framing of these systems is to compute Cartesian grasp positions for a gripper from perception
independent of the rest of the robot system. Integrating such an approach into a Task structure
and starting the planned motion from the current state of the system, the subsequent transit
trajectory can only be computed after a grasp has been selected in the later part of the Task.
Once the grasp -and the finger motions related to it- are determined though, the start state of a
grasping trajectory can propagate backwards in time such that the transit can be computed based
on the current robot state as start and the passed Interface State as end of the transit trajectory.
The decision to direct the communication between Stages entails a set of four potential types of
interfaces, as illustrated in Figure 3.1. These are detailed with their respective use-cases in the
following sections.

3.2.1 Propagators

The most intuitive interface type is the Forward Propagator | which describes goal-guided
computation forward in time. It assumes a start state and computes trajectories resulting in
different end states. As the concrete end state is not known in advance, this covers many use-
cases where the Stage defines the end state through constraints, such as the motion towards a

Cartesian goal pose, and solution trajectories can be computed based on these constraints.

37

CHAPTER 3. TAsk CONSTRUCTION

Additionally, it encompasses motion primitives which can be rolled out from an initial state. In
such a case, the relevant part of the motion phase is not the reached end state, but the motion
profile itself. Examples include affordance templates [50] and motions to pour liquid from a
held container into a target container. This later example is further detailed in subsection 3.9.2.
Propagators are generally not limited to compute a single trajectory from each start state, but
can also fork trajectories to multiple new end states. This way, Tasks can consider multiple
alternative trajectories within a Stage, such as different ways to approach a goal pose and multi-
modal goal constraint specifications. In this way Stages are not bound to a single continuation
of each initial Interface State.

In addition to trajectory generation, Propagators can also describe semantic changes in the world

model, as they can freely modify the new world states they yield based on the received state.

While forward inference agrees in execution direction and the direction of inference, the Back-
ward Propagator T explicitly inverts this relationship, rendering it much less intuitive at first. It
models situations where the end state of the motion phase is known and the motion itself together
with the start state can be inferred. The final solution of the Stage will nevertheless be executed
from the start to the end state. Although seemingly rare, it is quite common in manipulation
planning, as approach motions towards a known goal pose are a common use-case:

In many systems, end effector grasp poses to manipulate objects are directly determined from
visual perception and robot motions towards these poses are considered fransit motions. The
validity of the transit trajectory, however, is determined in the known or perceived environment
model, and thus validity can only be guaranteed up to the accuracy of the model to describe
the real robot workspace. As this model gap can span between few millimeters up to few cen-
timeters?, transit motions computed using generic motion planning methods often do not yield
sufficient clearance with the actual environment to allow for successful execution and are likely
to get the end effector in contact with the object which should be approached. To provide more
robustness and predictability for execution of these approach motions, it is often beneficial to
compute a short linear Cartesian motion approaching the goal pose. An additional benefit of such
a well-defined approach motion is the increased predictability of the robot for observers which
is often a requirement in human-robot co-working spaces. This motion phase is well-modeled
through the Backward Propagator, as the Cartesian motion can only be computed based on the
targeted goal pose and the trajectory yields the temporal start of the approach phase, which can
be used as the end of a generic transit motion preceding the Stage.

Although the mirrored direction of inference is a crucial difference between both Propagator
types, the underlying computation of the trajectory can often be generalized between them by
simple inversion of the generated trajectory and inverting the effects on generated Interface

States. In the case of a Cartesian motion Stage computing an approach motion, it suffices to

Discrepancies arise from perception accuracy, robot calibration, robot trajectory following behavior, and the

overall efforts of the responsible engineers to improve the model quality for the requirements of the respective task.

38

3.2. MODULARIZATION OF MANIPULATION PLANNING

plan a retract path v, which starts in the end state and follows a Cartesian path for a specified
distance. The resulting path (or time-parameterized trajectory) can be inverted afterwards to

yield the final approach ~y,pp:

'Yapp(t) = Yret(1 — 1)

When Propagators implement invertible unidirectional logic, such as in this case, implemen-
tations can generalize them to bidirectional interface types, where the second direction inverts
the trajectory generation process and effects on the model state. Task structures can infer the

required direction of bidirectional Propagators from context during initialization.

3.2.2 Connectors

The Connector 8 interface characterizes the most common type of motion planning problem:
Given a start and an end state, the Stage has to generate a robot trajectory connecting them.
As Interface States always include a complete robot state with all joint positions, this request
constitutes regular (constraint-aware) motion planning between joint space targets.

Its functions in the context of the Task structure come with additional considerations. As it
provides the bridge between forward and backward inference directions, it will collect various
Interface States from both directions during planning. Structure-wise, any pair of these states can
be combined to form a valid planning problem. However, all states constitute different planning
attempts, and state pairs can differ significantly beyond traditional joint space planning. For
example in scenarios involving the consecutive movement of multiple objects, a Connect Stage
may encounter state pairs in which not just the robot joint state differs, but the pose of objects
unrelated to the current motion phase as well. Considering the problem to move between such
state pairs, it — in itself — describes a separate manipulation planning problem where objects at
different positions have to be moved around through a connecting robot trajectory. To circumvent
such a recursive problem decomposition, Connectors introduce compatibility checks between
state pairs to ensure that states which might be connected coincide in all aspects which cannot
be derived through traditional joint space planning. This includes the existence and pose of all
environment objects, but also the current poses of all joints which are not expected to move in
the current motion phase. The exact requirements for compatibility can differ depending on the
concrete Task. For example, in scenarios with rotationally-invariant objects, object poses that
differ only around its axis might be considered compatible. In these cases, custom compatibility
criteria can be specified.

In practice, Connectors often represent transit motions, i.e., motions that do not directly engage
the robot in manipulation with its environment, but instead move the robot between relevant
poses at which manipulation actions are executed. In this role, there are two implicitly different
types of Connectors: (/) In the situation where both Interface States are computed independent of

each other in the same environment state, essentially all M/ x N state pairs are compatible. This is

39

CHAPTER 3. TAsk CONSTRUCTION

the case in the example later presented in subsection 3.9.3. (2) In many other situations Interface
States on one side are effectively computed from individual states on the other side. When there
are essential differences between the different source states, such as the grasp applied to an object,
these differences propagate to the other side as well. This effectively reduces the amount of
compatible state pairs to a much smaller subset M x N’, where N’ describes the average number
of states produced for each of the M source states. This applies to the transit motions in pick
and place tasks, which are detailed in subsection 3.9.1. In either case, the Connector constitutes
the main bottleneck in exhaustive Task planning, as the combinatorial explosion between state
pairs leads to a significant increase in required planning attempts. Consequently, good heuristics
need to be employed to attempt promising state pairs first.

Lastly, it can happen that planning requests between compatible states are intrinsically infeasi-
ble. That is to say, there exists no feasible path between these states that could be found by a
motion planner. This can happen in scenarios where the model geometry entails disjoint fea-
sible subspaces of the joint space, such as in the case of the UR5 robot arm [W14]. But more
commonly paths between states can become infeasible in the context of additional path con-
straints. An orientation constraint on the end effector, for example, renders all state pairs in-
feasible, which intrinsically require the end effector to rotate. This example is further detailed
in subsection 3.9.2. In the general case these situations are part of the intrinsic complexity of
motion planning. For theoretical guarantees, complete planning approaches resort to semi-finite
planning strategies to ensure paths for all feasible state pairs are found eventually. As Tasks
in practice utilize finite resources and individual Stage computations are expected to complete,
this approach is not feasible for Task Construction. While a technical alternative can implement
interruptible Stage computations or iterative deepening of planning attempts with incremental
timeout parameters, these techniques introduce additional parameters and more computational
overhead when reattempting infeasible planning problems. Instead, the MTC implementation
balances completeness with attempt-wise runtime and utilizes user-configurable timeouts for

individual planning attempts and marks unsolved planning problems as failures.

3.2.3 Generators

In contrast to the other interface types, the Generator | interface does not describe a traditional
type of motion planning problem. Instead, it represents the situation where neither the start nor
the end of a Stage phase are required to compute a complete trajectory with associated Interface
States. As Task planning forwards Interface States between Stages, Generators act as local seeds
for Interface States which initiate the planning process.

Initially, Generators within a Task can only perform computation based on information provided
to them outside the Task Construction framework. Such information can prominently include
specific world states to assume at some point during the manipulation, including the current

state as start state in an online planning system, as well as perceived object poses or perception

40

3.2. MODULARIZATION OF MANIPULATION PLANNING

data. They are thus restricted to either generate fixed Stage solutions, or sample solutions from
available information.

While multiple Generators can be initialized independently, it simplifies the use of a Task to
instead restrict external information seeding to few Generators and provide another information
source for others. To this end, Task Construction enhances Generator Stages with the ability to
monitor another designated Stage within the Task and receive all generated external solutions.
This additional information channel also allows to forward planning commitments, such as the
end effector used in a previous phase, or the exact grasp used to pick up an object, beyond
Connectors (which connect states, but do not yield new information) to subsequent steps.

Three crucial Generators regularly used in Task Construction are introduced in the next section.

Task Interfaces Notably, as complete Tasks are composed of individual connected Stages,
where each Stage possesses a designated Interface type, the Task itself will also possess an In-
terface. There is no strict formal reason to designate a specific Interface for the Task structure,
as all Interface types provide their respective use-cases in general manipulation planning. How-
ever, Task Construction aims for a uniform structural representation of Tasks. To this end, it
simplifies Task interfaces to avoid leaking the concept of Interface States beyond the Task struc-
ture. As the only Interface that does not require Interface States to be passed into the structure is
the Generator J, the Task Interface is, without loss of generality, defined to expose a Generator

Interface.

3.2.4 Instantaneous Stages

In general, solutions generated by Stages describe robotic trajectories connected to world states.
The special case of instantaneous trajectories, representing only a single moment in time, is of
particular interest for reasoning here. Utilizing this concept, Generators within Task Construc-
tion can isolate computation on individual model states instead of extended trajectories. Such
Stages are referred to as instantaneous Generators. They often determinate key decisions along
individual planning attempts about joint space regions by generating an individual world state
along a Task plan and passing it on to neighboring Stages to plan the motion around this point
of the final manipulation plan.

Relevant instantaneous Generator semantics include the following:

* Assume a fixed robot model state. To provide the Task with a model state to plan with,
it is possible to assume a fixed state in an instantaneous Generator. Examples for these
include potential start states during Task evaluation and well-defined end states such as

the robot’s home position at the end of a motion plan.

* Acquire a model of the running system’s current state. As most Tasks are planned for ex-

ecution on a real robot system, the trajectories have to relate to the current system state.

41

CHAPTER 3. TAsk CONSTRUCTION

They will usually start in this Current State or optimize states for minimal displacement
from it. In the context of Movelt planning scenes, updating the model requires reading
the system’s proprioceptive joint state as well as externally estimated visually-estimated
transformations of environment objects. While this Generator may be fully implemented
through the fixed Generator above, both differ sufficiently in semantics to warrant sepa-
rate definitions for intuitive bridging between off-robot analysis and online planning for

execution, avoiding explicit data structure handling outside the Task.

* Inverse Kinematics. Arguably the most essential type of reasoning about instantaneous
robot states during manipulation planning is the computation of joint poses from Cartesian
target poses or constraints. Such reasoning is required, for example, to reach Cartesian
grasps with a kinematic chain. Generally in robotics application, the inverse kinematics
problem is often solved in a separate step from trajectory generation. Task Construction
encapsulates this logic as an instantaneous Generator. However, inverse kinematics can be
decomposed beyond the Generator concept and Task Construction models it as a Wrapper

Container. This structure will be detailed in the respective section subsection 3.4.2.

Additionally, instantaneous Stages model a second important aspect of manipulation planning:
In multi-modal planning, motion phases often neighbor in states which change the behavior or
interpretation of the geometric world model. When a robot grasps an object, the kinematic model
has to be adjusted to account for the object’s presence in the gripper and avoid unwanted col-
lisions of the object with the environment in the follow-up motion. Instead of capturing these
changes implicitly or outside of the framework, as is typically done in multi-modal planning
(compare review in section 2.5), Task Construction explicitly models them through instanta-
neous Propagators. In the context of Movelt’s planning scene used with the MTC framework,
they include the following:

* Attach and detach objects. In order to represent the successful grasp or release of an object
from a manipulator, environment objects can be set to maintain a fixed transformation
relative to a specific link in the robot’s structure. Attaching an object to a link in the
robot’s end effector thus allows to continue planning with the object as part of the robot’s
kinematic model, while detaching the object will remove it from the robot model again,

assuming it is placed in the environment again.

* Update permissible collisions between model bodies. Traditionally, most contacts be-
tween robot links and the environment are considered hazardous and should be avoided
by generic motions. Before key motion phases such as closing an end effector for grasp-
ing, however, the intended individual contacts need to be permitted. To this end, Movelt
provides an annotation (the allowed collision matrix) to represent allowed contacts be-

tween individual bodies as part of the model. These contacts are not limited to the robot’s

42

3.2. MODULARIZATION OF MANIPULATION PLANNING

links, as for example placing an object on the table requires an allowed contact between

the pair, while likely no robot links should be involved in contact.

» Update collision geometry. Generally, it can also be useful to adjust the model geometry
instead of only the model state’s collision matrix. In manipulation planning, most transit
motions can be validated with coarse collision geometries to speed up feasibility checks
and increase the minimal distance between the environment and the moving robot. For
precise approach motions though, the robot’s end effector has to be represented with its
full geometry to ensure a safe approach. To implement this, intermediate Stages can adjust
environment padding or provide simpler object models for transit phases. An example for
this use-case will be discussed in subsection 3.9.3.

3.2.5 Properties

As described in section 3.2, methods implemented in Stages often expose parameters, which vary
between different instantiations of the same Stage. Such parameters can include (/) declarative
aspects, such as the name of the Stage within the Task structure or the reference to a monitored
Stage in Generators, (2) geometric parameters, such as which object to grasp, or how far to move,
as well as (3) algorithmic parameters, such as how long to attempt planning, how many solutions
to consider per attempt, or how many intermediate waypoints to include in solution trajectories.
To formalize these parameters in Task Construction, they are introduced as Stage Properties

which affect the Stage’s computation.

Properties are explicitly declared by each Stage and can support values from a set of predeter-
mined types. In this way, a Stage MoveTo can, for example, support a goal property which is
either a Cartesian pose or a Joint pose. It is the Stage implementation’s responsibility to interpret

the property values and adjust the computation accordingly.

All required properties of Stages must be explicitly specified during Task initialization, to pro-
vide all information required for Task inference. However, this leads to a significant amount
of redundant specification as many Stages utilize the same parameters, such as the set of joints
which should be controlled during parts of a Task. Additionally, not all properties can be uni-
formly specified for all attempts within a Stage as they might differ between different plans.
Assuming one of several objects can be grasped to fulfill the Task, there is no unique object for
which grasps should be proposed and different planning attempts might vary in this Property.
To enable these cases, Properties might also be specified with different initialization sources.
Specifics on these initialization sources are presented with their respective context of use in
subsection 3.3.2 and section 3.4.2.

43

CHAPTER 3. TAsk CONSTRUCTION

3.2.6 Decoupling Where and How

Many relevant target trajectories modelled by Propagators specify motion goals relative to co-
ordinate systems in a given world state (which can be either start or end state), and either define
the motion’s goal pose, or a constraint on the motion. Examples for these include moving a link
along a vector or twist in some reference frame, or moving joints to offset positions. To avoid
redundancy, these specifications can be condensed into two common stages MoveTo, for target
goal poses, and MoveRelative, for movement directions.

Similarly, Connectors match incoming Interface States on both ends, and generate planning prob-
lems with model states that should be connected through a trajectory.

While all of these Stages describe where the robot should move, many of them do not specify
how the robot should move there and none specify how, as in by which method, the trajectory
should be generated.

To decouple the latter aspects from the Stage specification, Task Construction utilizes a separate
planner property associated with them, which can be specified as any expert planner. De-
pending on the Stage, the selected planning method must either support generating connecting
trajectories given two compatible world states or trajectories to a Cartesian goal given an initial
world state. Planners are expected to determine the validity of their generated trajectories in-
ternally, as they act as black-box experts, but are explicitly allowed to return relevant infeasible
solution attempts marked as failures. Returning such infeasible, or approximate, plans strongly
supports introspection into the planning process, as these planning failures often indicate con-
straints violated in the goal specification.

The MTC implementation provides several default planners derived from the Movelt subsystem
which are available for direct use:

* Direct Joint Interpolation implements a simple joint-space stepped waypoint path, which
is time-parameterized. While computationally very efficient and optimal in joint space

distance, it obviously does not adapt trajectories to the robot environment.

* Cartesian Path generation, which steps Cartesian waypoints and utilizes configured IK
solvers for the specified joint model group to project the resulting path to a consistent

joint space path.

* A Movelt-specific Pipeline Planner which utilizes configured Movelt planning pipelines
to generate trajectories. Available planners that have been used include various sampling-
based planners available through OMPL [139], such as RRTConnect [81] and RRT* [73],
implementations of CHOMP [168], and STOMP [70], as well as industry-endorsed PTP and

LIN planner implementations.

While either one-shot or optimizing planners can be selected for individual Stages, each planning

problem will only be considered once throughout Task planning and the resulting trajectories can

44

3.2. MODULARIZATION OF MANIPULATION PLANNING

1 Current State | MoveTo

1 Current State 8 Connect 1IK T 8 0 8 T

2 2,

j)

Figure 3.2 — Illustrations of alternative Task layouts. (left) A trajectory to reach a Cartesian pose

can be generated by a MoveTo Stage parameterized in the target pose or through independent IK
computation connected through joint space planning in a Connect Stage. (right) In a Task with
multiple independent Generators, Monitoring Generators can either monitor the preceding Stage or

the first relevant Stage in the sequence.

contribute to the final Task solution. As one-shot sampling planners return suboptimal paths with
probability one [73], this leaves room for potential further improvements.

3.2.7 On Alternative Modeling Choices

As the framework does not ordain a specific method to solve Tasks, it also enables different
structures to achieve similar manipulation trajectories depending on the utilized methods. The
simplest example of such a choice is how to design a Task for the elementary request to move
the end effector to a Cartesian pose. Some methods, guided by local gradients from the sys-
tem’s current state, support this as a native query (e.g., Jacobian-based steering), but many other
approaches (such as PRM and RRT) rely on IK and only solve for trajectories between joint
poses.

For the first group, it suffices to model a MoveTo Stage which receives the current state as its
start joint position and reads the Cartesian target pose as a parameter, forwarding it to the utilized
method. The respective structure is shown in Figure 3.2 (top-left).

The second group of methods can be modeled as Tasks by adding an explicit monitoring IK Stage
which computes joint poses for the end of the trajectory, such that a Connect Stage can compute
trajectories based on known start and goal states, as illustrated in Figure 3.2 (bottom-left).
Neither approach is strictly superior to the other. Methods with the former approach can exploit
the explicitly passed Cartesian pose, e.g., to optimize the joint values for the Cartesian pose in the
kinematic chain’s null space with respect to the last part of the trajectory. The latter approach,

on the other hand, allows for explicit reasoning over considered joint space targets, directly

45

CHAPTER 3. TAsk CONSTRUCTION

supports target introspection and a potentially parallel search for trajectories with different global
kinematics solutions. As the joint values in the IK Stage are computed based on the joint pose
in Current State, kinematic optimization w.r.t. the start state of the trajectory (in contrast to
the whole trajectory) is still possible in the second structure.

A second notable design choice in structuring Tasks is specific to Monitoring Generators, as their
corresponding monitored Stages have to be defined. In Tasks where multiple phases of a motion
sequence are mostly independent—such as for reaching multiple waypoints in succession—and
each phase is built around a Monitoring Generator, different monitoring strategies can be em-
ployed. The right sketches in Figure 3.2 illustrate this scenario. Each involved Monitoring
Generator can either monitor a Stage from the preceding phase (illustrated in the top-right) —
effectively serializing most of the solving process —, or monitor the first applicable Stage in
the sequence (illustrated in the bottom-right). And again, neither approach is strictly superior to
the other. The former approach retains a more natural branching structure and can profit from
local information of the preceding motion phase, e.g., to seed IK from a state that is reached in
at least one solution in the preceding motion phase. The latter approach, in contrast, can paral-
lelize planning of phases and utilizes the respective interweaved Connectors to generate transit

motions between close compatible solutions.

3.3 Containerization

While basic structures can be represented well with sequences of individual Stages, Task expres-
siveness and modularity can be increased by combining multiple Stages into Container struc-
tures, which represent complex Stages themselves. The Task Constructor framework provides
three fundamental ways to containerize Stages, namely Serial, Parallel, and Wrapper structures.

The following sections detail the semantics of these containers and their respective use-cases.

3.3.1 Serial Container

Up until now, this chapter considered Tasks as connected sequences of Stages which split a
manipulation action into temporally separated motion phases. In the context of containeriza-
tion, this composition can be expressed through a Serial Container, rephrasing the structure of
previously discussed Tasks as a Generator-Interface Serial Container.

A Serial Container primarily serves to group consecutive Stage sequences into a single, seman-
tically meaningful module — such as a complete Task, or a high-level motion like pick object
which is composed of multiple Stages within a Task. Within the Container, every child gener-
ates its own solutions based on its respective specification, and these partial solutions are then
aggregated to form complete overall solution paths for the Container.

From the perspective of Stage Interfaces, the Serial Container maps its interface based on the

46

3.3. CONTAINERIZATION

respective Interfaces of its first and last child. As such, a Container’s Interface type is not pre-
determined, but inferred from the composition of the Task and the Container’s children.

Because child Stages feed directly into one another, the Serial Container produces fully con-
nected solution paths: the end state of one child Stage becomes the start state of the next. In this
way, every possible path from a start state of the first child to an end state of the last child repre-
sents an individual solution for the container as a whole. Thus, a single new child solution can
also lead to multiple new Serial Container solutions if multiple diverging paths become avail-
able through the new solution. An example for this situation might be a new partial solution to
place an object at a location, when the preceding part of the container already maintains multiple
partial solutions to pick the object. While different geometric object grasps will usually lead to
incompatible solution paths in this situation, the same grasp with different joint space solutions
can be compatible. As both solutions to pick and place the object represent significantly differ-
ent robot manipulation trajectories, with different characteristics, they are considered separate

solutions in the Container.

3.3.2 Container Properties

As Serial Containers combine multiple Stages into a single semantic unit, their children fre-
quently share common Properties. Multiple child Stages might for example consistently use
the same robotic end effector, the same reference frames, or the same object identifiers. While
Task Construction enforces the explicit definition of all required Properties during specification,
this leads to excessive repetition when specifying identical Properties for each Stage and risks
mismatching configurations upon changes.

Container-level Property definitions address these complications by allowing a Container to cen-
tralize repeated Properties. When a Stage is instantiated, it can declare that a particular Property
(e.g., joint_group, planner, or table) should be initialized from its parent Container. As
a result, any child Stage that requires the same parameter inherits the single, consistent parent
definition while all parameters are still explicitly specified.

In many cases, it is not the exact Property name that is shared between Stages though, but the
value which is reused in different Properties. For example, one Stage might utilize a robotic fin-
ger link identifier, e.g., index_finger as a target frame for an inverse kinematics computation,
while another Stage uses the same identifier as part of a collision body pair for which geometric
collisions should be allowed. To accommodate this use, the framework allows to initialize Prop-
erties from different names and, more generally, through arbitrary functions of parent properties.
For example, a Container might declare a transit_planner Property from which the planner
property of relevant transit Stages can be initialized — effectively sharing the planning method,
its timeout configuration, and other planner settings between these Stages.

In other cases, it is also not the exact value that is shared between Stages, but the values are

semantically related. For example, a Stage might require the name of an end effector to eval-

47

CHAPTER 3. TAsk CONSTRUCTION

uate potential grasps, while another Stage requires the names of that end effector’s finger links
for kinematics computations. While it is possible to include the relevant mapping logic in a
Task-specific implementation of the utilized Stage which uses the given value, the functional
initialization mechanism instead facilitates reuse of more general Stages through a shallow in-
terpretation layer.

These mechanisms ensure that even when common parameters share a single source, each Stage
can receive the exact form or name required for its internal computation.

Lastly, more advanced Container structures can include several layers of nested Containers with
parent-initialized properties. To avoid excessive re-declaration of shared Properties on each
Container level, Properties will be searched upwards through the Container hierarchy when they
are explicitly marked to be initialized from a parent Container and the immediate parent does
not declare the required Property name.

3.3.3 Parallel Containers

In addition to the Serial Container described above which concatenates child Stage solutions, one
can further consider Container structures that instead interpret multiple child Stages in parallel.
In contrast to the Serial Container interpretation of children though, parallel Stages will not
directly correspond to temporal motion phases anymore, leaving room for at least three different

semantics useful in manipulation planning.

Alternatives

The first Interpretation of parallel Stages replicates the role of sets of Stage solutions on the
level of the Task structure. As each solution produced by a Stage represents a valid trajectory for
the corresponding manipulation phase, they already represent a natural parallel interpretation
as competing alternatives. The Alternatives Container structure thus lifts this interpretation to
Containers and interprets all solutions of children Stages as valid alternatives, independent of
their underlying structure. Many discrete choices, such as which object to grasp, can be mod-
elled within a single Serial Container structure through forwarded Properties and compatibility
checking. Alternatives offer a second simpler way to model choices where different solution
branches can be clearly described during Task specification. This is for example the case in bi-
modal grasping scenarios where either of two robot arms can be used to grasp an object, with no
specific preference. Additionally, Container children can again be Serial Containers, thus sup-

porting independent Stage structures and Stage parameterizations between solution branches.

Fallbacks

While the Alternatives Container treats all child solutions as equally valid, in some scenarios a

clear ordering of preference among solution paths is more desirable. Consider, for example, the

48

3.3. CONTAINERIZATION

hook task investigated by Toussaint et al. [144] where a robot must retrieve an object placed at
some distance. The robot can either reach and pick the object directly —if it is within feasible
range— or resort to a more complex solution of first picking an additional “hook” tool and
using it to pull the object closer before picking. Using an Alternatives structure for such a Task
explores both approaches in parallel, supporting the tool-based hooking strategy even when a
simpler direct grasp might suffice.

For these situations, Fallbacks provide a specialized variant of the Alfernatives Container that
interprets the order of children as unique preference. By design, only the first child Stage that can
produce a valid solution for each attempt contributes its solution as a Container solution, while
subsequent children only attempt planning if the preceding child failed to produce a successful
motion. Thus, if direct picking is feasible in the hook scenario and the respective motion is
described as the first child of a Fallbacks container, the system will never attempt to plan a motion
involving the hook, described in a second child. If, on the other hand, direct picking proves
infeasible —conceptually because the object is out of the arm’s reach, technically because the
involved Inverse Kinematics Stage fails to produce a solution—, the hook strategy is planned as a
fallback. A similar Task concept, involving single or multi-step motions, is given in Appendix B.
Notably, Fallbacks is thus the only type of a Container that constrains whether a child Stage may
contribute to a Container solution at all: In contrast to Serial Containers, which enable new
planning attempts through forwarding Interface States of successful child solutions, Fallbacks
enable new planning attempts of children not just through newly-received InterfaceStates, but
also through failed child planning attempts.

The fallback mechanism applies to any Interface type with slightly different semantics:

* Generator Fallback: The only possibility for a Generator to fail is to produce no solution
at all. Only in this case, the next child Generator is attempted.

* Propagator Fallback: As Propagators initiate a planning attempt for each received Inter-
face State, fallbacks apply to each Interface State separately.

* Connector Fallback: For each state pair that must be connected, one child Stage attempts
direct motion planning. If that fails, the next child attempts the hooking approach.

This leaves the question when to attempt planning for each Fallback child when attempts are
available for multiple children. While the general structure of planning in Tasks is further ad-
dressed in section 3.6 and the abstract Task Construction structure does not specify a unique
planning order, the MTC implementation for the Fallback container utilizes different strategies
for different Interface types. For the Propagator Interface, planning attempts are ordered per
available Interface State. Thus, the Propagator will attempt planning of all possible fallbacks
for a single Interface State before considering the next Interface State. The Connector Interface,
on the other hand, inverts this logic and always prioritizes the first child Stage in order with

unattempted Interface State pairs. The rationale behind this inversion lies in the computational

49

CHAPTER 3. TAsk CONSTRUCTION

complexity of the different Interface fallbacks: Propagator Fallbacks typically describe different
geometric approaches to continue a received Interface State and the number of attempts is lin-
ear in the number of incoming Interface States. Connector Fallbacks, on the other hand, often
utilize methods with increasing complexity and an expected longer solution duration, such as ini-
tially attempting direct joint-space point-to-point motions, and falling back to generic sampling-
based planning strategies with increasing timeouts. As the number of planning attempts can
grow quadratically in the number of Interface States, these fallback planners constitute an in-
creasingly large proportion of open computation nodes over time but are also more expensive to

compute.

Merging Independent Components

A last potential interpretation of trajectories described in parallel is to consider them as executing
in parallel, which effectively combines them to a single solution trajectory. In this interpretation,
child Stages plan trajectories for disjoint sets of robot joints independent of each other, and the
Container merges solutions from all children for each Container planning attempt into a new
Container solution.

Naturally, this approach is only feasible if planning for different sets of joints is indeed indepen-
dent. As e.g., moving two arms in parallel in the same workspace will often lead to collisions.
This limits the use of this structure in manipulation planning and merged trajectories need to be
validated. However, for specific motions, such as moving a left and a right arm in the same mo-
tion phase to spatially separated locations, this structure provides a useful model. For additional
consideration, there are different options available to merge robotic trajectories. While syn-
chronous resampling and synchronization of the trajectories by time warping are possible, the de-
fault MTC implementation combines trajectory waypoints followed by path-reparameterization
for simplicity. If direct merging in this way proofs infeasible, a second interpretation acts as a
Serial Container instead. Depending on the exact planning problems, this approach might still
yield infeasible (i.e., failure) trajectories because each executed trajectory modifies the geomet-
ric context of subsequent trajectories.

Thus far, the Merger Container is the only Container structure that does not directly reference
the solutions of its children, but instead generates a new solution based on the solutions of its

children.

3.4 Wrappers

The Wrapper container constitutes a special case of the Serial and Parallel Containers. It is de-
signed to encapsulate a single child Stage only, addressing the ability to modify child solutions, as
mentioned above. While the main purpose of Containers is to structure the relationship between

their children and their solutions, their structure also allows to receive and modify the solutions

50

3.4. WRAPPERS

of their children before propagating them to the parent Task. In order not to convolve these dif-
ferent aspects beyond the capabilities of the Merger container, the Wrapper structure provides

an explicit mechanism to reevaluate (and potentially modify) the solutions of a wrapped Stage.

A simple modification a Wrapper can perform is to reject solutions based on specific criteria, or
predicates, such as to ensure assumptions on the robot’s state or the environment are met in the
initial world state through a Predicate Filter. This includes, for example, the requirement that
an object which is designated to be grasped is actually available in the model state. Other direct
modifications through Wrappers might include the addition of further Introspection Objects or

additional Properties to the solution.

Two advanced specialized Wrapper implementations which significantly modify child solutions
are detailed in the following subsections.

3.4.1 Path Reparameterization

The dynamics of the Interface States communicated between Stages pose a general challenge in
the independent computation of motion phases. While these states do encompass the dynamic
state of the system in terms of the velocities and accelerations of all actuated robot joints, the
effects of non-zero dynamics are not considered beyond the phase boundaries and add com-
plexity and potential failures to neighboring Stages in the sample-based Task planning approach
presented here. Additionally many methods for path generation assume a stationary start/goal
state and do not necessarily respect dynamics at the boundaries. When computing multi-phase
trajectories using these methods, the final trajectory returns to resting states with zero velocities

between different motion phases as illustrated in the velocity plot in Figure 3.3 (top).

To remove such artificial stops eventually, Container solutions can be reparameterized in a Wrap-
per using a path parameterization technique (compare chapter 2). Two additional considerations
are necessary for reparameterization though. First, such an approach slightly modifies valid paths
which were generated by the expert Stages, and the modified trajectories need to be validated
again. Secondly, key states such as the arm pose to reach before the closing motion of an end

effector during grasping should be reached exactly to ensure robust grasping in practice.

To this end, the process splits the full plan into groups of phases which are processed together,
keeping their respective boundaries fixed. Crucially, these groups do not correspond to the pre-
viously discussed grouping through Serial Containers: While Containers usually group Stages
around manipulation-centric aspects, such as grasping an object, the phase grouping here im-
poses an orthogonal association based on semantic model changes and may for example merge

a motion lifting an object with a successive transit motion.

51

CHAPTER 3. TAsk CONSTRUCTION

Effects of Multi-Stage Path Reparameterization

() (©)

—— panda_joint1
panda_joint2
—— panda_joint3
—— panda_joint4
—— panda_joint5
—— panda_joint6
panda_joint7
—— finger_joint1
——— full stops

Velocity (rad/s)
o

O e e {

2 4 6 8 10

Velocity (rad/s)
N o
o --(NI =

o N e

Time (s)

Figure 3.3 — Comparison of reparameterized velocity profiles for pick and place trajectories of a
panda robot arm generated by the Task further detailed in subsection 3.9.1. The original trajectory
(top) contains clear halting points between all generated Stage solutions. The reparameterized trajec-
tory (bottom) avoids full stops within grouped motion phases, i.e., (1) reaching the object, (2) porting
the grasped object, and (3) retracting after object placement, while retaining the original trajectory
profile to an adjustable degree.

An example reparameterization of a multi-phase plan, generated using the previously discussed
Time-Optimal Trajectory Generation approach [82], can be seen in Figure 3.3 (bottom). While
the concrete parameterization depends on method parameters, prominently the application-specific
maximum deviation from the original path and the resulting velocity limit curves for the trajec-
tory, the shown processed trajectory profile explicitly avoids full stops within phase groups and
exhibits typical time-optimal velocity profiles near constraints through maximum path devia-
tion. Consequently, the resulting plan is shortened by 10 % in execution time over the originally
generated plan.

3.4.2 Inverse Kinematics Wrapper

The second specialized use-case for a Wrapper structure is the dedicated computation of inverse
kinematics solutions. While IK is a well-defined inverse function definition and robotics sys-
tems typically isolate it from other computation steps, its representation in Task Construction
as described above does not provide the same level of isolation. As Stages always receive and

reason with complete Interface States, there is no dedicated method interface to provide a logic

52

3.4. WRAPPERS

module that computes Cartesian target poses (or other kinematic constraints) during planning.
Consequently, each IK-specific Generator, as for example depicted in Figure 3.2, would convolve

inverse kinematics computations with methods to generate target poses, such as grasp points.

As Wrappers are expected to yield new Container solutions based on their child’s solutions,
the separation of Cartesian target pose generation from world states in a child and the following
joint space computation from these poses in a Wrapper is a plausible instantiation of the Wrapper
structure. In combination, both modules provide an Instantaneous Generator with separated
concerns. This leaves the question of how to represent the intermediate Cartesian poses as part of
the child solutions and leads to the last specification of Properties mentioned in subsection 3.2.5.

Property Initialization from Interface States

As already argued for in the concept descriptions in the beginning of the chapter, it does not
suffice to communicate only world model states between Stages. Additional planning commit-
ments can be necessary to ensure a consistent planning process beyond individual Stages and
these are explicitly modelled as Properties in the sense of Stage Properties. As such, planning
commitments are a viable source for Property initialization in Stages, similar to the initialization
from parent Containers described in subsection 3.3.2, and Stages can explicitly define Properties
to be initialized from the Interface State (or States) that enable the respective Stage computation
which uses these Properties. In contrast to all other definitions though, these initializations are
explicitly dynamic and depend on the implementation of pose generators to provide the correct
Interface Properties. This cannot be verified before planning without code analysis of the utilized
Stages, adding complexity to the Task design.

IK Wrapper Structure

Applying this Interface initialization for the IK Wrapper yields the structure shown in Figure 3.4.
In order to propose Cartesian reaching poses in a given Task context, a Pose Generator Stage
can monitor solutions from a different phase of the Task, e.g., successful manipulation plans
picking up a tool for manipulation. For each candidate (as there might be many candidate poses
for each received solution context), the Generator will yield a new Stage solution, representing
either the world state received or an adapted one. Each such solution additionally contains the
estimated parameters required for the IK computation. Continuing the tool scenario, the Stage
might infer the tool’s operation frame, e.g., a screwdriver tip, specifying it as target frame for
the IK computation, and a target pose for the tool tip, e.g., on a screw head.

While both properties can be used dynamically, either or both of them might also be declared
statically in Task structures when their variability is not required. This is the case in regular
robotics application were the robot end effector and its tool frame are fixed in a Task but the

target pose varies.

33

CHAPTER 3. TAsk CONSTRUCTION

Wrapper Properties

Inverse Kinematics 1 defines: e.g., max_ik_solutions
Wrapper from interface:

target pose, ik_frame

Generator Interface Properties
Solutions defines: target_pose, ik_frame
Pose Generator 1 Generator Properties
Child defines: e.g., grasp_tool
Monitored]
Solutions

Figure 3.4 — Conceptual structure of a Generator Wrapper for Inverse Kinematics wrapping a Gener-
ator that yields compatible solutions. The Inverse Kinematics Wrapper is specified to utilize dynamic

Properties for the computation defined in the child solution’s Interface State Properties.

The generated solutions are then passed to the Wrapper, which extracts the required Properties
for each computation and utilizes the provided world state as initial kinematic reference and en-
vironment for validating the feasibility of potential solutions. Eventually, the resulting complete

world states generated by the Wrapper are passed to neighboring Stages for further planning.

Inverse Kinematics in Task Construction

Stages in Task Construction yield sets of discrete solutions representing individual robot states
and this particularly affects the requirements of IK computation. As is the nature of inverse
function problems in general, IK problems can yield either (1) no solutions, (2) a finite set of
solutions, or (3) describe a manifold of infinite solutions. In the first case, the IK Wrapper will
yield no successful solution, though potentially failures for introspection. In the second case,
the Wrapper can enumerate all generated solutions separately. As a maximum relevant number
of solutions can often be specified in this case, a Property can be used to limit searching for
solutions per request beyond this limit.

In the third case though, manifolds of solutions can not be communicated through Interface State
samples of individual world states. But these emerge when kinematic chains with 7 or more DOF
are considered. A simple mechanism to handle the redundancy is discrete sampling of IK solu-
tions®. Given a limit on relevant solutions and a minimal weighted joint space distance between
solutions, this approach can represent the solution space effectively at the cost of discretization.
An advanced alternative to this approach can exploit additional inductive biases and consider op-
timization of IK solutions within different discrete null-spaces in the kinematic structure, such as

those investigated by Bongardt [14]. Thus, an informed IK solver can effectively represent each

3also used in some contexts within Movelt under the term of locked redundant joints

54

3.5. Cost TERMS

such discrete subspace through few well-defined samples when auxiliary objectives can resolve
each discrete null-space locally to few samples, e.g., by enforcing a specific elbow direction or

requiring the closest joint space solution from each discrete manifold.

3.5 Cost Terms

With Stages generating many solutions over the course of planning, it is essential to rank them.
Such a ranking is required to select the final solution from a planned Task for execution. But even
more so, it is essential during the planning process itself to guide exploration towards promising
solutions and delay the full computation of less promising partial paths.

There is no unique way to rank plans and any choice of ranking expresses an application-specific
preference. For many motions in intelligent automation, it is reasonable to prefer plans with a
shorter overall execution time for high throughput. When the world model state includes sig-
nificant geometric uncertainty, or human observers should be considered, the minimal distance
between the robot and obstacles in its environment can be a relevant criterion. When picking
up an object in a tool-use Task, trajectories with minimal tool motion might be preferred over
trajectories optimized for shortest joint path or shortest execution time, e.g., enabling longer
preparatory motions without penalties before grasping.

Instantaneous Stage solutions, in contrast to trajectories, cannot be ranked by trajectory-criteria
as they do not represent a motion. Still, they can be evaluated in the kinematic state they describe,
for example by favoring results closer to a specific known state, or through the use of one of
various manipulability measures [147] which estimate the flexibility of individual robot joint
configurations.

To meet these varying requirements, Stages can be associated with user-specified functions to
evaluate the cost of each generated solution. Cost terms, as used within the concepts of this
thesis, do not inform the Stage-internal planning process — as configured Stage methods are
considered to be black box expert solvers — but are used for solution ranking within the Task
structure. As Stages directly compute the associated cost terms with each solution they generate,
there is no need for differentiable function implementations with this approach.

The MTC implementation provides several prepared cost terms for convenience:
 Path Length, describing the total joint space L, distance spanned by a solution,

* End Effector Distance, describing the total Cartesian path length of a link moving with
the robot during the plan,

* Trajectory Duration which is the full estimated execution time of the solution as deter-
mined through dynamics profiles, time parameterization, and the decision of the expert
method,

55

CHAPTER 3. TAsk CONSTRUCTION

* Trajectory Clearance, which computes the minimum — or path-aggregated minimal —

distance between robot links and the environment anywhere along the trajectory,

* Distance to Reference, which measures the path-aggregated weighted distance of a solu-
tion to an application-specific reference state,

¢ the trivial Constant and ConstantOffset terms, which can be used to prioritize solutions of
different parallel Stages, either considering or neglecting the cost child Stages associated
with it,

 as well as a Uniform Random cost term with randomization seed, which effectively im-
plements a permute-by-sorting variant [26] and shuffles solutions available at the same
time, thus supporting an unbiased exploration of the search space locally around ranked

solutions.

As user-definable functions, cost terms can be combined and weighted for further configuration.
The cost of a solution s, Of a Serial Container, unless explicitly specified through a different

cost term, is defined as the sum of the costs of all its child solutions.

COSt(Sserial) = Z Ccost(Schila)

Schild € Sserial

Lastly, all Stage computation is initiated from Interface States, which are connected to a graph of
Stage solutions, and not from complete solutions. In order to rank Interface States and provide
heuristics for their further exploration, costs need to be associated to states based on the costs
of the solutions they connect to. This assignment is based on cost aggregation, similar to Serial
Container solutions. But the solution graph can branch and merge along the Task structure,
e.g., after connecting to multiple solutions in a Connector. To represent only the best solution
attempt, the cost is restricted to the minimum sum of solution costs along a single path in the set
of directional paths P (i) connecting to ¢ through the graph.

In addition, solution paths of different states will often exhibit different lengths during Task
planning. This entails a bias towards shorter paths getting assigned lower costs, whereas longer
paths are closer to complete Task solutions and should be preferred. To overcome this bias, the
cost of an Interface State is eventually defined as a prioritized pair of values, where the first value
describes the inverse of the maximum solution path length from the state and the second is the

minimum cost sum over all maximum length paths connecting to it:

cost(i) = (min [pl ", min)7 cost(s)

vp'€P(i). |p|>=[p']
The ordering of Interface State costs then follows the lexicographic order of the pair and ensures

long solution paths are always preferred over shorter paths with lower cost sum.

56

3.6. CoMmpPUTE GRAPH EXPLORATION

Figure 3.5 — Conceptual illustration of Task planning by graph exploration. Each Stage in the repre-
sentative Task structure at the top yields solutions as planning progresses (vertical axis). Initially the
first Generator computes a solution s; which is monitored by the second Generator and used to gen-
erate multiple solutions there so, s3. Afterwards both Generators might compute additional attempts
(dashed solutions). Planning failures such as f; effectively reduce the search space. A complete Task
solution (orange) connects a solution of the first Stage through the whole Task to the end of the last

Stage.

3.6 Compute Graph Exploration

Stages within a Task structure represent individual compute locations and each unit can be solved
independently in a particular instance as soon as the required Interface States become available.
Interpreting each compute instance as a node in a graph, and each passed Interface State (or
monitored solution) that triggers new compute instances in other Stages as an edge, any Task
planning attempt can thus be interpreted as a directed acyclic graph, with depth bounded by the
number of Stages in the Task. In contrast to the graph depth, its width is not always bounded as

Stages per se are unrestricted in the number of solutions they generate.

During Task planning this compute graph expands through each computation, similar to tradi-
tional search trees. But in contrast to regular graph search, a Task solution is not defined as a
walk from a root node to a terminal node. Instead, there can be many root nodes, as any solution
from a non-monitoring Generator constitutes its own root. The Task solution is defined as a
connected path of solutions from the start of its first child Stage to the end of its last child Stage.
This progress of Task Planning and a complete solution are illustrated in Figure 3.5.

While the perspective of compute graphs, or task graphs (where the traditional use of task refers
to a single compute unit in a graph), is useful to consider Task Constructor planning behavior,
the graph structure in this work expands dynamically as Stages can generate multiple (or no) so-
lutions. Existing frameworks for task graph modelling, such as TaskFlow [62], on the other hand

are designed around static task definitions and thus not directly applicable models for planning.

57

CHAPTER 3. TAsk CONSTRUCTION

The compute graph is updated with available compute nodes to expand at each step in the form of
Stage-bound Interface States and their costs. These represent a regular search frontier and search
policies for node selection can be defined to guide the planning process. Early Stages can gener-
ate many initial solutions which may fail to expand into a full Task solution though, but Stages
may also generate an infinite number of solution candidates in each local step. Consequently,
neither depth-first nor breadth-first can be meaningfully applied in this structure.

Instead, the search policy in the MTC implementation utilizes a round-robin selection of all
Stages with available compute nodes, where lower-cost Interface States (and pairs of such states
for Connectors) are preferred. This results in a form of iterative deepening in the search graph,
which readily overcomes bad initial expansions and infinite child branching. Alternative explo-
ration heuristics may be considered. As one example, Toussaint et al. [145] recently proposed
a heuristic based on the expected computational effort required for each node, which can be
used to guide the search process. While this approach was proposed independent of the Task
Construction framework, it is sufficiently abstract to be applicable here as well.

As another native aspect of the compute graph structure, many compute nodes can be pruned
over the course of Task planning, once they will never become part of a full solution path through
the Task. As planning can continue both forward and backward for a single solution sequence,
a failure on one end, e.g., to retract an end effector during a placement motion, implies that
placement in this configuration is not feasible and no transit motion or approach towards this
placement configuration needs to be computed. The failed planning attempt f; in Figure 3.5
illustrates this pruning behavior. Assuming no alternative path from s, to the end of the Task is
possible, further computation of a connecting solution from s, to s; is not necessary.

Lastly, while the main limitation of Task Construction lies in its explicit sampling of solution
trajectories, the explicit control over sampled approaches is also where its main strength can be
found. The explicit specification of Task planning spaces can be tailored to the needs of the
scenario. To this end, instantaneous Generators can be parameterized through Properties and in-
dividual IK computation can restrict the number of attempted solutions per considered Interface
State. A noteworthy parameterization here to point out is a single IK solution per Interface State.
Assuming regular behavior of the selected IK implementation, this parameterization implies the
unique solution found by gradient-projection of the reference state, if one exists. Utilizing this
strategy for a selected part of a Task effectively prunes solution paths already early on when
(unwanted) large motions would become necessary to reach the current target pose.

In addition to this Stage-internal tuning, solution commitment can be enforced for individual
Stages (or Containers) on the Task level, by restricting the maximum number of solutions this
Stage might generate throughout the planning process. While this artificially prunes the search
space and can even lead to planning failures for otherwise feasible Tasks, it also allows to direct
resources during planning towards different parts as planning progresses. Assuming for example
a Task which should rearrange multiple objects, it can be beneficial to restrict the number of

considered solutions to pick and place the first object and afterwards focus on the second object.

58

3.6. CoMmpPUTE GRAPH EXPLORATION

Worker Parallelization

1 worker
]
=<
o: 1T T
=
4workers
BB I Wi
=< i . !
(@]
SINNEE B (R EE I
0.2 0

3 0.4 O 5 0.6
Time [s]

0.0 0.1

Figure 3.6 — Initial 600 ms of computation traces for sequential and parallelized Task planning. Col-
ors indicate different Stages. (top) Sequential planning as described in section 3.6. (bottom) Round-
based parallelization with four workers, dashed lines indicate synchronization points between rounds.
The shown parallelized trace computed 1 300 ms in the time window with higher speedup after an

initial bootstrapping phase.

3.6.1 Planning Parallelization

With the clean separation of computation units in separate Stages comes the opportunity to par-
allelize the planning process. In addition to the default sequential expansion of compute nodes
in the MTC software implementation, a second parallel expansion strategy was implemented
and is demonstrated to reduce planning times for multiple solutions in section 3.9.

Given a pool of workers, planning attempts in all Stages can be processed without dependencies
between them. However, the required compute time for each Stage varies drastically and con-
tinuous computation of fast planning Stages leads to a strongly imbalanced solution set between
Stages when complete solutions still need to connect to the slowest Stage as well. To balance
the amount of exploration between Stages explicitly, the parallelization strategy retains the iter-
ative deepening behavior discussed before through round-based synchronization. Within each
scheduling round, the strategy distributes all Stages with open compute nodes to the available
workers. As such, the upper limit on the maximum speedup within a round can be determined as
the number of Stages active during planning, but severely lower due to the very different compute
times between Stages.

An optional exception to the synchronization balancing was made for Connectors. As explained

in subsection 3.2.2, these constitute the main bottleneck for exhaustive Task planning (assuming

59

CHAPTER 3. TAsk CONSTRUCTION

finite branching in all Stages) and clearly dominates the later part of the planning process. As
they are usually also the slowest Stages, this effectively reduces the number of active workers in
the later planning stages to the number of Connectors. To facilitate better exploitation of workers
in the later part of planning, it can thus be useful to increase the amount of compute nodes from
Connectors per synchronization round to match the number of idle workers.

Figure 3.6 illustrates an exemplary compute trace of a sequential and 4-worker parallelized plan-
ning process for a Pick and Place scenario with 20 Stages. Initially, during the first 300 ms only
few compute nodes are available in the graph and there is very little parallelization possible. The
speedup in this particular scenario and phase is limited to approximately 1.4. After this point,
the search frontier expanded to include more available compute nodes in different Stages and a
speedup of up to 3.4 is achieved.

3.7 Task Specification

All functional planning aspects of a Task are implemented in an established programming lan-
guage* and complete Tasks can be composed through dynamic instantiation of Stages and Con-
tainers in this style as well. The Task structure itself, as well as the Property definitions for
all Stages, are static information, however, and can be mostly structured in a declarative format
as well. A YAML-based [W23] implementation for Task specifications was demonstrated as a
proof of concept with the MTC implementation, and is further detailed below.

A single Stage can be readily represented through a map block, as illustrated in this example:

stage:

name: "approach object"
stage: [library/]MoveRelative
group: left_arm
direction:

frame: 1_gripper_tool_frame

vector: [1.0, 0.0, 0.0]
distance:

min: 0.01

max: 0.05
planner:

CartesianPath:

step_size: 0.005

Two basic keys are required for each Stage: a name key, which provides a human-readable refer-
ence for the Stage, and a stage key to reference the functional software implementation through
a plugin mechanism. As MTC is designed for ROS, plugins from custom libraries can be refer-
enced through an optional prefix and can be loaded at runtime through ROS’s class_loader

mechanism. Additional parameters are specific to the respective Stage, and interpreted by the

4MTC utilizes mostly C++ with Python Task instantiations also supporting Python.

60

3.7. TASK SPECIFICATION

Stage implementation. In the example, the properties specify a relative motion of the left_arm
Movelt joint model group towards the positive x-axis of the 1 _gripper_tool_frame reference

frame, with a distance of at least 1 cm and ideally 5 cm.

Additionally, as described in subsection 3.2.6, in some cases motion specification and planner
implementation can be decoupled and the planner key is reserved in the relevant Stages MoveTo
and MoveRelative to describe the applied planning method and its parameters, in this case

describing a Cartesian path solver with a step size of 5 mm.

Sequences of Stages are simply represented as a list of Stage maps. The YAML specification
also readily generalizes to container structures by introducing another dedicated key stages
(and wrapped for Wrappers) which contain such lists. A fallback structure with different solving

strategies to reach a pre-specified end effector pose goal might thus be described as follows:

name: "move to goal pose"
stage: Fallbacks
stages:
- name: "Cartesian linear"
stage: MoveTo
planner: pilz_industrial motion_planner:LIN
group: left_arm
goal: &goal
frame: base_link
position: [0.5, 0.15, 0.5]
orientation: [0.0, 0.0, 3.14159]
- name: "point-to-point joint space"
stage: MoveTo
planner: pilz_industrial motion_planner:PTP
group: left_arm
goal: *goal
- name: '"sampling-based planning"
stage: MoveTo
planner: ompl:RRTConnect
group: left_arm
goal: xgoal

As used above, YAML anchors (&goal) and aliases (*goal) can avoid verbose repetition of the
goal specification [W22]. The thus shortened structure nevertheless contains redundancy and the
repeated properties can be considered as part of the fallback container. To condense parameters
into the container, subsection 3.3.2 introduced alternative property initialization from parent
containers and the following example specification uses a novel syntax <PARENT : property> to

reference parent properties.

61

CHAPTER 3. TAsk CONSTRUCTION

name: "move to goal pose"
stage: Fallbacks
group: left_arm
target_pose:
frame: base link
position: [0.62, 0.15, 0.57]
orientation: [0.0, 0.0, 1.5708]
stages:
- name: "Cartesian linear"
stage: MoveTo
planner: pilz_industrial motion_planner:LIN
group: <PARENT>
goal: <PARENT:target_pose>

Property initialization from interfaces (subsection 3.4.2) is similarly supported through the aligned
syntax <INTERFACE: property>. Property initialization in Task Construction is not strictly lim-
ited to properties with different names, but as described in subsection 3.3.2 actually supports
arbitrary functions based on other Properties. While this is possible to implement in addition
to the custom notation through another scheme of referencing user-provided functions, such as,
group: <INTERFACE:arm_of (gripper)>, this is not implemented in the MTC prototype and
would add substantial complexity to the specification beyond the YAML definition, as it intro-
duces another code referencing scheme beyond Stages.

The notion of container properties becomes even more prominent in the declarative specifica-
tion, as it allows to fully specify the Task structure, but forward the necessary input parameters
of a Task, e.g., which object to grasp, how many Task solutions to consider, in what order to
manipulate objects, to the Task’s top-level container, where they can be readily specified after a
Task is instantiated from the specification.

A last essential addition that is required for full Task specification is the definition of Monitors.
As Generators often rely on the solutions of specific other Stages, they need to refer to them
in the specification. While YAML anchors might be exploited as absolute references for this
purpose, they are explicitly not part of the semantics in a YAML specification, but an imple-
mentation detail of the parser. Instead, the specification supports relative local referencing of
Stages through a Unix-style path syntax in a new property monitors:. Using “. .”, to raise to
the parent container scope and the Stage names as references, an example specification looks
like monitors: "../attach cube". This style of local referencing supports modular defini-
tion such that the same specification can be reused (and YAML-referenced) in multiple parts of

a specification.

An example of a complete Task specification for a custom manipulation Task can be found in
Appendix B.

62

3.8. Task ExecuTtioN

3.8 Task Execution

The explicit focus of Task Construction lies in the design of the Task structure and the plan-
ning process. Nevertheless, the framework generates robot trajectories (and expected changes
to the semantic world model) that are meant to actuate a physical robot. Trajectories can be
adjusted in detail in each Stage through the Task structure to adhere to hardware requirements,
just as robotics engineers can traditionally adapt individual motions. Executing solutions online
requires the initial Stage of the Task to be the Current State described in subsection 3.2.4, as
execution prominently relies on trajectory following controllers starting from the initial way-
point of a solution. As planning progresses, applications receive feedback on solutions and can
decide to stop planning and forward the lowest-cost solution (or any other) to the lower-level
controllers for immediate execution. When planning approaches are utilized for online planning
and execution, the open question remains at which point the additional waiting time required for
a better solution does not justify the potential improvement in execution quality. In practice, it
is often beneficial to plan beyond the first solution before starting execution, but the decision is
application-specific and also relies heavily on the heuristic effect of the utilized cost terms.
Another aspect of robotic execution for manipulation is that different motion phases often re-
quire different low-level controller behavior. While a transit motion will usually rely on position
control and a well-calibrated trajectory-following implementation, an interaction motion which
for example should press a button, requires Cartesian force or Impedance control. To this end
the motion phase specification of MTC Tasks can be annotated with controller parameters, such
that the correct controller for each phase can be selected during execution based on the Stage
specification. This approach was demonstrated in two external Task scenarios [118, 132].

An orthogonal approach to direct execution of solutions is to focus on reactive policy training
instead and utilizes imitation learning approaches. In such a paradigm, online policies can be
trained based on large sets of offline solutions used as expert demonstrations [22, 36].

Except for this last approach, a major concern for any system that plans complete motions before
execution is the handling of execution failures. In practical applications, there are various poten-
tial failure sources, from mechanical and electric safety of the system, over assumed passivity
of the system and Cartesian force limitations, insufficient calibration accuracy, to safe behav-
ioral responses on human interruption or unexpected changes in the environment. Depending on
the concrete failure, relevant resolution strategies can include state machine and behavior tree-
based [25] flow control, plan repair and replanning [58], online system identification [1, 134],
failure analysis based on language models [91], and others. In contrast to single-trajectory ex-
ecution, the phase decomposition of solutions with explicit low-level controller references and
the involved model changes applied to the monitored world state provide additional structure
that can be utilized during failure handling. In general, the exact handling of failures consti-
tutes a heterogenous variety of approaches which clearly extends beyond the scope of the Task

Constructor framework and individual mechanisms are beyond the scope of this work.

63

CHAPTER 3. TAsk CONSTRUCTION

3.9 Exemplary Task Applications

Task Construction provides building blocks for custom Task structures following different ob-
jectives. To illustrate multiple use cases, the following sections present three concrete Tasks
implemented through the MTC implementation and evaluate them under different aspects. All
planning-time evaluations discussed in this section were performed on an AMD Ryzen PRO
5965WX CPU Desktop system.

The presented Tasks were chosen and designed to demonstrate different aspects of the frame-
work with different analyses. In multiple independent works, researchers presented advanced
integration scenarios for Tasks with longer time horizons, e.g., for food preparation [132] and
laboratory automation [118]. With increasing time horizon of manipulation Tasks the number
of potential solutions grow exponentially with the number of concatenated “subtasks” and the
heuristics and exploration techniques discussed in sections 3.5 and 3.6 gain prominence to ex-
plore relevant Task solution spaces.

3.9.1 Pick & Place

Following the original release of the MTC framework, it was adopted as the default system for
Movelt’s pick and place planning stack with an extended Pick & Place Task structure. Many
industry applications for adaptive robotics are fundamentally composed of object picking fol-
lowed by either an object drop in a specific Cartesian location (“pick and drop”) or a more
fine-grained requirement to place the object in specific poses in the environment. Accordingly,
this Task specification represents a wide range of applications and was often requested by the

Movelt user community.

Task Visualization An earlier implementation of pick and place functionality was provided
as a parameterized black-box C++ library interface [W11]. As its implementation constitutes a
monolithic pipeline design, it could not reasonably be extended to other use cases. Additionally,
while demonstrated in integration scenarios with a PR2 robot, most user feedback pointed out
missing introspection facilities and attempts to integrate it with different robotic setups suffered
from unguided parameter choices made by the user.

In contrast, an exemplary application of the pick and place Task implemented through Task
Construction is shown in Figure 3.7. The scenario is based on a Franka Emika Panda robot
picking up a cylindrical object from a table in front, moving it to a different location, and placing
it on the table again. Any implementation for a pick and place scenario must provide a method to
compute grasp candidates for the target object. As the target object in the demonstration example
is a geometric cylinder and the scenario is meant to provide a simple demonstration, grasps are
sampled uniformly around the object’s vertical axis, following a prototype reference grasp. In

general, any grasp generation method can be applied here and more elaborate generators based

64

3.9. EXEMPLARY TASK APPLICATIONS

Figure 3.7 — Task application for Movelt’s default pick and place pipeline modeled in MTC. (rop
left) A successfully planned trajectory, shown as partial waypoints of the end effector for the generated
trajectory. (others) Failure introspection: Illustrations of different representative Stage failures during
Task planning. Further explanations are provided in the text.

65

CHAPTER 3. TAsk CONSTRUCTION

on DexNex 4 [94] and GPD [113] were demonstrated with MTC Tasks separately [WS5].

Task solutions for the scenario are visualized in RViz [W17]. The top left part of the figure shows
a successful Task plan. While only the end effector trajectory is shown in the figure for better
visibility, usually the full joint trajectory is inspected over time. During dynamic inspection,
respective motion phases are highlighted and phase-specific introspection information, such as
approach and retract directions and the Cartesian end effector pose, are displayed.

In addition to inspecting successful Task solutions, succeeded and failed attempts for each Stage
can be investigated separately with introspection support. The top right part shows a failed at-
tempt to find a valid IK solution for a particularly inaccessible grasp attempt on the opposite
side of the object, and the failure condition is visible through the additional visualization of
the red end effector in the grasp attempt. The bottom left part shows a successful IK solution
for a different grasp which is however in collision with the object to be grasped. Again the
adequate introspection information is provided through the red visualization of the collision to
indicate the failure. Lastly, the bottom right part of the figure shows a failure of the Cartesian
approach trajectory (planned backwards), where the arm cannot reach far enough to provide a
minimum clearing distance to the object, indicated by the approach vector being coded red for
the unsolvable part of the path. These visualizations are essential for developing and adapting
Tasks to new scenarios and provide guidance for adapting Property definitions. Due to the na-
ture of MTC Properties, all relevant parameters of the pipeline, including planner parameters,
frame offsets, object approaches, target objects and end effector grasp configuration can thus be

adjusted to the scenario requirements.

Task Structure To illustrate the fine-grained level of detail supported in Task Construction,
the complete structure of the pick and place Task is shown in Figure 3.8. For better overview,
a more concise notation is used to outline Task structures in the example Tasks, leaving out
individual property definitions. Individual Stages are presented in separate lines and indentations
indicate the nesting of Stages in Containers. Each Stage is specified through its Interface type by
symbol, the Stage name, and optionally an outgoing arrow indicating that solutions of the Stage
are forwarded to the pointed-to monitoring Stage.

To elaborate on the semantics of each Stage, a single planning attempt for a successful Task
solution in the given scenario is detailed below. As explained before, many such attempts are
explored in the complete compute graph, and can partially affect each other.

The Task structure does not directly start with a Current State Stage, but instead wraps the Stage
in a predicate filter to validate applicability of the Task with regards to the current model state.
For the scenario, the only checks validated are the presence of the object to be grasped in the
world model and whether the end effector might already hold it. While both checks are tech-
nically not necessary as the Task will fail planning if the object is not present or the gripper is
currently holding it, these sanity checks are included to provide more informative failure mes-

sages in these cases. After this start Stage, the robot’s gripper will be opened.

66

3.9. EXEMPLARY TASK APPLICATIONS

Pick Place Task
1 Applicability Test
1 Current State
J Open End Effector
8 Move to Pick Approach
1 Pick Object
T Approach Object Grasp
1 Grasp Pose IK
1 Cartesian Grasp Generator «——

J Permit End Effector-Object Contact

4 Close End Effector

J Permit Object-Support Surface Contact
1 Attach Object to End Effector Link

| Lift Object from Support Surface

J Forbid Object-Support Surface Contact

8 Move to Place Location
1 Place Object
1 Allow Object-Support Surface Contact
T Lower Object to Surface
1 Place Pose IK
1 Cartesian Place Pose Generator +——

J Detach Object from End Effector Link
1 Forbid Object-Support Surface Contact
4 Open End Effector

| Forbid Object-End Effector Contact

J Retract End Effector

J} Move to Home Position

Figure 3.8 — Task structure of Movelt’s Pick&Place pipeline.

67

CHAPTER 3. TAsk CONSTRUCTION

As the next motion phase towards a pick approach cannot be planned by the Connector without a
valid approach direction and no end states are available initially, the only Stage that can continue
to plan is the Cartesian Grasp Generator which monitors an early Stage. As stated above, the
grasp generator for this scenario samples a grasp prototype around the object’s vertical axis.
The cost of generated grasp proposals could be guided to specific directions if preferences are
given, but is randomized for this the demonstration scenario. The grasp poses are forwarded
through the target_pose Interface Property to its inverse kinematics Wrapper, which attempts
to solve the individual kinematics requests and provides sets of up to 8 solutions (excluding
additionally reported failures). As the Panda robot has 7 degrees of freedom and a continuous
solution manifold for most Cartesian poses, an additional minimal solution distance of 1.0 (L4
norm in joint space) is enforced for a representative sample set of the manifold.

Individual solutions of this Grasp Pose IK Stage are assigned costs based on their L; norm to
the monitored solution from which they were generated, leading to faster exploration of grasp
solutions close to the initial configuration of the robot. From this point, exploration within the
Pick Object Container branches slightly and planning attempts for approach trajectories towards
the individual robot state for a grasp are planned backwards, while the actual grasping motion
of the gripper is computed forwards.

In order to support semantic collision avoidance during the manipulation, grasping the object
and lifting it off the table adjust feasible collisions between model geometry. Before closing
the fingers, contacts between the gripper geometry and the object are explicitly allowed. As
Movelt’s world model does not consider physics interaction between the gripper and the object,
but further planning should consider the object to be held in the gripper, the next two Stages
rearrange the model geometry accordingly. The object is rigidly attached to the gripper link
through their current relative transform and allowed to contact the table surface. Afterwards a
lifting motion is planned to raise the object from the table surface, followed by another explicit
change in feasible collisions, as the object is not allowed to contact the table surface during
subsequent transit motions.

When forward and backward inference within the Pick Object Container are successful for a
single grasp attempt, the Container eventually yields a complete serial solution for the (object-
local) pick motion. This solution, on the one hand, provides an end state for the intermediate
transit motion Move to Pick Approach which can now be planned through a general collision-
aware motion planner (in the scenario RRT-Connect), and on the other hand, is forwarded to
the monitoring Cartesian Place Pose Generator. The later Stage utilizes the known world state
after successfully picking, and in particular the object pose inside the gripper, to generate a world
model state in which the object is placed in a particular pose on the other side of the table. As
the object is expected to be placed in contact with the table, the Generator must also adjust the
allowed contacts between the object and the table to allow for this. In the general case, final object
poses often vary between attempts or are sampled on unoccupied surfaces and the Stage can be

readily adapted for this. This target object pose is again forwarded to the inverse kinematics

68

3.9. EXEMPLARY TASK APPLICATIONS

Wrapper which computes joint state solutions for the pose. Based on the resulting world states
in which the robot holds the grasped object on the table, planning can proceed forward, adapt
the semantic model again to release the object from the gripper, and retract the gripper from it.
Additionally, planning from the place model state also proceeds backwards, generating a motion
to approach the table. Once the local placement motion is successfully planned, the Place Object
Container yields a serial solution for it, providing an end state for the Move to Place Location
transit motion. This end state will not only match the monitored solution from which the place
pose was generated, but also any other kinematic solution for the same grasp pose.

Lastly, the demonstration scenario includes a final transit motion back to a predefined home
position, as is common in many industrial applications.

While the above description details the inference for a single Task solution, interpretation of
the resulting solution—and thus its execution—instead proceeds in the reading direction of the

entire Task structure Figure 3.8.

Planning Performance To investigate the planning behavior of this scenario, the default setup
is evaluated with regards to planning time and relative solution cost with different numbers of
target solutions and parallel workers. Conditions were set to plan for 1, 10, and 100 different Task
solutions with increasing numbers of workers, as well as with the default sequential planning
mode (seq), without parallelization overhead. For parallel evaluation, Connector computation
attempts per round were kept at one and statistics were computed over 15 Task planning attempts.
The analyzed solution cost for complete Task solutions in this case evaluates the total duration
of the generated trajectories, while intermediate costs for the solutions of the IK Stages (not
shown) used joint displacement of the solution w.r.t. the monitored state as explained above. As
any analysis of absolute values concerning the planning process depends heavily on the exact
model description, configured planners and the detailed Task Property definitions, further results
are at best indicative for different scenarios.

A benchmark evaluation is shown in Figure 3.9. As most partial plans can be successfully ex-
tended to Task solutions, the Task can quickly find an initial solution within 200 ms, by complet-
ing a full inference cycle as described above. Parallel solving attempts incur additional delays,
partly because of data structure overhead, but predominantly because synchronization between
rounds enforces the planning time of the slowest Stage per round. For the first solution in this
scenario, this leads to an average time to the first solution of 350 ms, independent of the number
of parallel workers. In contrast, when planning continues to enumerate more solutions, which
vary in grasp pose or the joint space poses for grasp and object release, parallelization signifi-
cantly speeds up planning, enumerating 10 solutions in less than 800 ms (over 1.12 sec for the
sequential case). With the investigated Task structure and parallelization approach, a maximum
speedup of 1.5 is achieved enumerating 10 solutions and a maximum speedup of 2.3 for 100 so-
lutions. As parallelization is limited by the maximum amount of computation available in each

round, no significant improvement can be observed beyond four workers.

69

CHAPTER 3. TAsk CONSTRUCTION

Task Planning Time

1 solution 10 solutions 100 solutions

1.1 * =

0:3 ﬁﬁii-!ﬁ_i 1o)

0.9 6
i —_
0.2 ; 0.8 ;!QTEﬁTT N ——— e —m——

0.7
seq2 3 4 5 6 7 8 910 seq2 3 4 56 7 8 910 seq2 3 4 5 6 7 8 910
Workers Workers Workers

Time (s)

Solution Cost

13

12 1

11 A

10 1

Minimal Trajectory Duration (s)

0 2'5 5'0 7'5 1(')0 léS léO 1%5 2(')0

Number of Considered Solutions
Figure 3.9 — Planning time and solution cost of the default pick and place pipeline for a Franka
Emika Panda robot setup, with varying number of parallel workers. (fop) Planning times for 1/10/100

different Task solutions. (bottom) Minimum trajectory duration cost among generated solutions. As

more solution paths are explored, the expected best cost decreases from initially 12.25 sec to 9.5 sec.

From the perspective of solution quality, one can investigate the expected minimum cost, here
trajectory duration, among the generated solutions as a function of enumerated Task solutions.
As sampled Cartesian grasp attempts are randomized, the initial solution path is unlikely to
consider the best grasp pose among sampled poses. Additionally, while Inverse Kinematics
Stages heuristically prioritize solutions closer to the previous state, better complete plans might
be achieved with more distant solutions whenever subsequent motions are restricted by joint
limits. Indeed, the expected solution duration for the first solution evaluates to approximately
12.25 sec, but as more solutions become available, the best observed plan duration decreases to
around 60% with 9.5 sec.

While the grasp pose and joint space solutions determined by the Generator describe key con-
straints on the plan duration, for this experiment all transit motions in the Task are planned
through a simple uninformed RRT-Connect planner, which yields suboptimal paths between
joint space solutions. As such, while the initial improvement of the best observed cost is due to
the exploration of different grasp poses, the tail improvement of the cost curve mainly describes

the stochastic minimum over solutions sampled for the involved transit motions.

Summary The described Pick and Place Task application illustrates the flexibility of Task
Construction to modularly adjust details in the structure of a manipulation action and inspect in-

70

3.9. EXEMPLARY TASK APPLICATIONS

Figure 3.10 — Visualized phases of a manipulation sequence for a URS robot. The Task is composed
of (a) picking up a bottle from the table (in the center), (b) pouring liquid from it into a cup (on
the left), and (c) placing the bottle in a different location (on the right). Colored arrows, coordinate
frames, and end effector phantoms indicate key aspects of a planned sequence, including approach
and lift directions during (a), bottle poses for (a) and (c), and the upright direction of the bottle during
(b). Motions between picking the bottle and placing it are orientation-constraint in the bottle pose to

avoid spillage.

dividual planning attempts through comprehensive introspection support. The associated perfor-
mance evaluation demonstrates that, with sufficient heuristic costs or unrestricted Tasks, whole
manipulation actions can be planned fast (through single or few inference runs through the com-
plete Task structure), while the exploration of alternative solutions leaves room for large im-
provements on user-selected cost functions. When exploring a larger part of the planning space,
the proposed parallelization scheme can yield a significant speedup, with good parallelization

parameters depending on the specific Task structure.

3.9.2 Bottle Pouring

Adding complexity to the previous Task, one can introduce more unspecified degrees of freedom
than only the applied grasp and kinematic place pose. This section details a scenario around a
URS5-based robot setup manipulating a bottle and pouring from it, illustrated in Figure 3.10. The
Task opens with the same grasp container as before, using the same horizontally-rotating grasp
generator, to pick up the bottle. It proceeds with an orientation-constraint transit motion above a
target cup and produces a specified Cartesian pouring motion. Following the actual pouring, the
Task ends with placing the bottle in a specified position on the table, but leaves the horizontal
orientation of the bottle unspecified and samples it instead. The corresponding Task structure is

presented in Figure 3.11.

71

CHAPTER 3. TAsk CONSTRUCTION

Bottle Pouring Task
1 Applicability Test
1 Current State
J Open End Effector
8 Move to Pick Approach
1 Pick Bottle

8 Move Above Cup
1 Pre-Pour IK
1 Cartesian Pose Above Cup +———

J Pour
8 Move to Place Location
1 Place Bottle

Figure 3.11 — Structure of the Bottle Pouring Task. Ellipses shorten variants of their corresponding

container from the Pick Place Task structure in Figure 3.8 for brevity.

Although the illustration in Figure 3.10 suggests an intuitive solution through a straight Carte-
sian end effector path between the key poses, such a path does not necessarily exist in joint space.
Different constraints, including joint limits, self-collisions, and the respective initial robot state
render many attempts to map these paths into joint space infeasible. In practice-guided robotics
applications, robotics engineers resolve these cases through workspace modifications and ex-
plicitly selected joint-space solutions — taking into account the feasibility of pouring in a later
step and knowledge on potential self-collisions arising in the wrist during bottle placement. In-
stead, Task Construction supports the specification of different solution space complexities, and

can rely on the planning process to yield successful Task solutions in complex spaces.

Kinematic Solution Space The Universal Robots URS robot design utilized in the scenario
uses a variation on the well-studied 6-revolute joints, ortho-parallel-basis offset-wrist structure,
which is known to yield up to eight analytically solvable discrete joint space solutions for the
inverse kinematics problem within its core workspace [57, 146]. The URS system comprises
a notable extension over this structure in that all six joints support an operating range of 2 7,
resulting in a total of up to 512 theoretical joint space solutions for a given Cartesian pose and
an equally expanded search space for trajectory planning. For the utilized setup this set is signif-
icantly reduced. Due to inherent self-collisions of the robot links and the mounted end effector,
the third and fifth joint are effectively limited to a range of 1 7. Additionally, the first two joints
in the chain (base pan and lift) are limited to [—7/2, 7/2] and [—7/2, 7/30], respectively. These

72

3.9. EXEMPLARY TASK APPLICATIONS

choices avoid full revolutions of the base joint which cannot provide additional flexibility in the
scenario, as well as require the lift link to point upwards. These restrictions effectively limit the
set of potential joint solutions to 16, with 4 different Cartesian robot link poses. For the concrete
Task instantiation, 20 grasp angles are sampled for the initial grasp attempt. The pose above the
cup before pouring is given as a single Cartesian pose, which yields another 16 potential joint
solutions. Eventually, the demonstration evenly samples 20 orientations for the bottle to place
it on the table again. This contrasts the first exemplary Task, which defined a single place pose.
These considerations are crucial, as the Task structure can consider global planning solutions,
potentially evaluating all paths between the described joint space solutions where feasible transit
motions between them can be found. An effective upper limit of solution paths for this Task on

the level of discrete choices discussed above can thus be given as

U(Tpour) = 20 x 2% x 2% x 20 x 2* = 1638 400.

Directly enumerating these alternatives is not feasible online and Task planning prunes solution
paths where possible through collision checking of inverse kinematics solutions and evaluating
the feasibility of Cartesian motions. Nevertheless the remaining valid space exceeds realistic
online evaluation and Task planning relies on the incremental graph search for described in

section 3.6 to explore many solutions through anytime search.

Pouring Path The Pour Stage illustrates the use of a custom engineered Cartesian motion
profile as part of a Task. The pouring motion is specified through an analytical Cartesian path
Ypour Of the bottle tip in the plane (x,y,0) : SE(2) orthogonal to a specified tilting axis, with
y and = 0 pointing up. It is parameterized to achieve a collision-free interpolation motion
between the starting pose (s, ys, 85) and an application-specific tilted pouring pose (z,, ¥, 6,)
of the bottle lid, with the lid close to the rim of the cup.

zs+ ("2 +(1—t)-t-c) - (xp—x5)
’Ypour(t € [07 1]) = ys+ t2 ' (yp - ys)
0+ t - (6, — 05)

An example of the described path can be seen in Figure 3.10 in the tip of the purple waypoint
arrows. The custom z term in this definition can explicitly overshoot depending on a constant
c to avoid collisions between the bottle and the cup and the y term uses quadratic interpolation
to move the tilted bottle lid closer to the cup and avoid spillage when the bottle is almost full.
The complete pouring trajectory is then computed by concatenating the resulting parameterized
trajectory with the reverse motion after a custom pause, which controls the pouring duration.

As demonstrated in further work [51], a data-driven alternative approach to the discussed ana-
lytical path definition can also rely on recorded human pouring demonstrations and utilize the

smoothened Cartesian paths of the tracked bottle.

73

CHAPTER 3. TAsk CONSTRUCTION

Additionally, (/) the end effector orientation above the cup before pouring and (2) the horizontal
axis orientation around which the bottle is tilted can be considered free parameters as well.
However, most orientations result in slow and inefficient joint-space trajectories, unintuitive to
human observers, and the volume of valid solutions in these parameters drastically changes with
slightly changing cup positions due to self-collisions [51]. For more predictable behavior during
pouring and to limit further expansions of the solution space detailed above, the Task is restricted

to one fixed orientation for both parameters.

Orientation-Constraint Transit As the Task describes handling of an open bottle with liquid,
transit motions while the bottle is held must be subject to an orientation constraint rejecting
upside-down handling of the bottle to avoid spillage. To this end, RRTConnect planning is
performed in the Cartesian space of the end effector, where each sampled pose is projected to
the joint space seeded from the extended sample’. The utilized constraint rejects states where
the orientation of the bottle deviates by more that %T from an upright world frame.

In practice, almost all unconstrained path planning problems between robot states are designed
to have solutions, as most utilized planners are unable to proof the absence of a solution. As
such, problems are considered ill-designed if their robot states live in two disjoint sets of feasible
states in the joint space. As a consequence of the constraint however, planning attempts between
independently generated robot states are not guaranteed to be solvable because robot states might
require explicit wrist rotations which violate the constraint. In these cases, the planning Stages
will always return after exhausting the full allocated planning time, slowing down the overall
planning process. In the case of the experiments below, both affected Connectors, Move Above
Glass and Move to Place Location use an empirically-determined explicit timeout of 500 ms
to avoid severe impact on the planning time, while retaining solutions for almost all solvable

instances.

Task Variants The following analysis discusses the effects of minor variations in Task speci-
fication and different strategies to design appropriate solution spaces. To this end, three different
variations of the Task illustrated in Figure 3.10 are considered:

* (pour left): In contrast to the illustration, the first variant specifies the bottle to tilt towards

the left of the image, with no other modification.
* (pour right): This represents the original illustration.

* (with obstacle): A small block is placed between the bottle and the cup, intuitively re-
stricting grasps and lengthening transit motions between the two.

The three variants are visualized in Figure 3.12 along with representative solutions.

74

3.9. EXEMPLARY TASK APPLICATIONS

Figure 3.12 — Three visualized Task variants of the bottle pouring Task with representative solutions.

Only the end effector trajectory is shown for better visibility. Results illustrate how small changes
can entail the need for different global solutions. (left) pour left: The tilt direction for pouring is
specified towards the left of the image, leading to short transit motions. (center) pour right: With
a tilt direction towards the right, a long preparatory transit motion is necessary before grasping the
bottle. (right) with obstacle: A small obstacle between the bottle and cup restricts feasible grasps
and necessitates a global transit motion after grasping the bottle.

IK strategies There are various Task properties that can be adjusted to significantly affect
Task planning. These include the choice of planners, maximum planning times, intermediate
cost terms, number of workers, the number and sampling strategy for Grasp and Place poses,
and the choice of Inverse Kinematics solutions. For this evaluation all but the last aspect are
kept constant, utilizing Cartesian-space RRTConnect planning, randomized Grasp and Place
pose costs, 10 workers with 5 compute nodes per Connector, and 20 evenly spaced Cartesian
grasp and place poses. The following investigates different possible strategies for resolving the
space of inverse kinematics solutions across the IK Stages of the Task.

The complexity of the solution space for the variants increases, as illustrated in the solution
trajectories in Figure 3.12, and increasingly large solution spaces need to be considered to solve
them. To start out, none of the three variants can be solved through direct Cartesian gradient
following. Already the first motion to approach the bottle requires a large gripper rotation in two
wrist joints to reach grasp poses without collisions with the table.

(Closest) To extend the set of solvable motions, one can instead utilize an advanced IK solver
to compute the closest feasible joint space solution for each of the Cartesian poses. In this case
the first scenario variant can be solved: A single outstretched grasp pose, from the sampled 20
poses, yields a joint solution that can be extended throughout the Task and can be combined
with different place poses. The other two scenarios, however, only succeed to grasp (through the
same pose), but fail to map the successive pouring motion into joint space due to a link collision
in the wrist.

(All Grasps) Going one step further, one can widen the search space to consider all feasible
initial joint space solutions for the first grasp, while still keeping the subsequent Inverse Kine-

SThis is Movelt’s default implementation for Constraint-based sampling planning through OMPL [139].

75

CHAPTER 3. TAsk CONSTRUCTION

Task Planning Time Observed Cost
to first solution of first solution
15 - E Task Variant
G 2 20 B pour left
£ O I pour right
= 10 - = 15 - .
= 5 B with obstacle
(@)} [a
£ ke,
[] 4
£ s £ 10 ,,; %l
[a
S
e S 5- 1l
Closest All All Closest All All
Grasps Grasps
IK Strategy IK Strategy

Figure 3.13 — Planning times and solution costs for the first solution in the three Task variants under
different IK strategies. Whiskers indicate absolute spread of solutions. Additionally, colored bars
next to each boxplot indicate the overall range of solution costs for each condition, evaluated through

randomized planning of up to 1000 solutions for Tasks.

matics requests to utilize only the closest feasible joint space solution. In this way, the problem
becomes a global search problem for a single kinematic state, rating grasp states as feasible if
they can be extended to a full Task solution without further branching. This approach can be
seen as an automatic search for feasible initial robot poses for the Task with direct continuation.
Through this technique, the second scenario variant can be solved as well, with the first two vari-
ants yielding over 100 solutions through exhaustive Task planning. However, the third scenario
variant remains without solutions.

(All) Whereas the introduced obstacle between the bottle and the cup appears to be a minor
change, it significantly restricts the set of feasible grasp poses through new potential collisions
with the gripper and wrist geometry. As a consequence only a single joint space manifold for
grasping remains feasible. But solutions from this manifold cannot be extended through the Pour
Stage when only close-by robot poses above the cup are considered. By including alternative
joint space solutions for all inverse kinematics Stages in the Task, the third scenario can be solved
by exploring the full previously described solution space. The resulting solutions require global

transit motions with the bottle in hand, as illustrated in Figure 3.12 (right).

Planning Performance The evaluation of planning to the first full Task solution for the three
variants under the different IK strategies is shown in Figure 3.13. Box statistics were computed
over 30 planning attempts. To assess the quality of the generated solutions, costs are computed
as the traveled distance of the robotic end effector. To additionally penalize long transit mo-
tions while holding the bottle, compared to long motions without the bottle before grasping, the

traveled distance of the bottle during manipulation is added to the cost.

76

3.9. EXEMPLARY TASK APPLICATIONS

Each IK strategy supports an additional variant and only the All strategy can solve all three. The
Closest strategy outperforms the others in planning time for the first pour left variant, as almost
no combinatorial search is necessary, and it computes an initial full solution in 1.4 s on average.
As no global transit is considered at all, the expected solution cost for the first solution, as well as
the full range of solution costs for this condition, are also low compared to the other strategies.
In contrast, the All Grasps strategy requires 6.5s on average to find the first solution, as it ex-
plores the significantly larger space of joint space poses for all grasps through iterative deepen-
ing. Additionally, initial global transit motions are considered towards the grasp and the range of
solution costs for this condition consequently increases dramatically, with many solutions con-
taining long transit motions towards the grasp, which are feasible, but not required in the first
variant. As the intermediate cost terms of the IK Stages still prioritize local motions between
the key states, the expected solution cost for the first solution remains low. However, longer
solutions can be generated as well, depending on stochastic exploration and they constitute a
significant tail of the expected cost distribution for the first solution.

Trading off the increased planning time and solution cost on the first Task variant, the All Grasps
strategy can solve the second variant pour right as well, which requires long preparatory motions
before grasping the bottle. While planning times between the two Task variants are comparable
for this strategy, the range of solution costs for the second variant is systematically higher, as the
variant requires solutions with long preparatory transit motions towards the grasp.

Lastly, the All strategy, which considers all IK solutions for the three 1K Stages of the Task,
produces solutions for all variants, with comparable planning times and solutions costs increas-
ing by variant. Again, the range of solution costs for the variant with obstacle systematically
increases due to the necessity of global transit motions with the bottle in hand.

An obvious conclusion to drawn from the results is that single-solution exploration through a
Closest IK strategy significantly reduces the planning time and ensures a low solution cost when
the strategy supports solutions for the modelled scenario. Additionally, a trade-off can be ob-
served between the All Grasps and All strategies: Where the former yields initial solutions with
significantly lower costs in easier Task variants due to the local continuity of solutions after
grasping, the latter strategy can resolve a more complex Task variant at comparable planning
times without compromising on the solution quality for the pour right scenario. This can be at-

tributed to the intermediate cost term heuristics which remain unchanged between the strategies.

Summary The described scenario demonstrates the use of specific Cartesian motion profiles
in Tasks and investigates planning performance with an extended number of free variables.
Whereas manipulation actions which require large transit motions are usually avoided in robotic
setups, the described scenario variants demonstrate that such trajectories can quickly become
necessary with minor changes to easily-solvable scenarios. Explicitly considering the set of
supported solutions can significantly affect planning performance and the expected quality of

generated solutions.

77

CHAPTER 3. TAsk CONSTRUCTION

—

Figure 3.14 — (left) An example trajectory for a Mitsubishi PA10-based robot setup between two
poses in close proximity to the central object with an undesirably low object clearance during transit.
(right) Related Task visualization: Two opposing Cartesian poses are in close proximity to the object.
The Task includes a Cartesian retract from one pose, a transit around the object, and a Cartesian
approach to the other pose. A blue padding cylinder can be added during transit to enforce higher
clearance during the phase.

3.9.3 Retract — Transit — Approach

This example represents a common motion pattern found in many domains, including industrial
welding and surface blending, as well as mundane object manipulation. In such scenarios the
robot regularly performs motions between different poses where an end effector is close to an ob-
ject of interest. To avoid accidental interactions of the robot with the environment, such motions
are often implemented to include an initial retraction motion away from the object, followed
by a transit closer to the new pose and a final well-defined approach ending at the target pose.
Whereas these trajectories are usually defined for known joint space regions, the presented struc-
ture encapsulates the idea in a Task structure, allowing for the automatic generation and analysis
of such motions in arbitrary contexts.

Additionally, the transit phase can involve global trajectory planning with potential self- and ob-
stacle collisions. In contrast to the precise approach/retract motions, where detailed environment
geometry should be considered, the transit phase is a free-space motion and is not expected to
get close to the known environment, although paths close to the environment are not a-priori ex-
cluded. Figure 3.14 (left) illustrates an exemplary transit trajectory passing in closed proximity
to the central object which is feasible from the perspective of path planning.

The closest distance between robot links and the environment during a trajectory is referred to
as the trajectory’s clearance. To enforce sufficient clearance, one can either rely on optimizing
trajectory planners to yield solutions above a certain clearance — trading generic definitions for

computational complexity and potential local-minima —, or specify intuitive padding volumes

78

3.9. EXEMPLARY TASK APPLICATIONS

Padded Retract-Transit-Approach
1 First Pose IK
1 Scene Definition

J Retract

8 Padded Transit
J Apply Padding Geometry
8 Transit
1 Apply Detailed Geometry

T Approach
1 Second Pose IK
1 Monitored Scene

Figure 3.15 — Generic Task structure of Retract—Transit—Approach motions with padded transit.

as auxiliary collision bodies for the transit. Depending on the intended level of control, these
volumes can either be specified by hand or computed, in the case of Figure 3.14 as 5 cm inflated
bounding cylinders. As the added bodies are considered during state validity checks, they render
trajectories which pass through them infeasible during the initial global path search, leaving
planners to search the reduced feasible space. This latter approach is described in the Task
structure presented in Figure 3.15 and an instantiation of the Task for a 6 DOF PA10 robot setup
including a blue padding object considered only during transit is shown in Figure 3.14 (left).

Structure In contrast to the previous examples, the Task opens with an externally provided
scene definition, wrapped in an inverse kinematics Stage. While tasks meant for direct actuation
on the robot need to start from the current state of the system, the approach used here can be
used to reason over solutions starting from different robot states. The IK wrapper is parame-
terized in a target pose, thus generating the different discrete null-space solutions as different
joint space states. This is followed up by a forward-planned relative Cartesian retract motion.
Mirroring these first Stages, the Task ends in a second IK Stage utilizing the same scene, and
a backward-planned relative Cartesian approach motion. To connect both parts, the Padded
Transit container is introduced. In addition to the expected connecting Stage Transit which
employs an RRT-Connect planner, the container bookends the Stage with two instantaneous
Stages to adapt the collision geometry, where Apply Padding Geometry replaces the detailed
geometry with larger padding geometry and Apply Detailed Geometry reverts the change.
As explained before, only solutions to the Stage actually revert the change when interpreted in
the temporal direction, whereas the Stage is planned backwards and thus causally applies the

same modification as the prior Stage to provide compatible Interface States for the transit Stage.

The relevant parameters of the Task to be adapted as necessary are thus the application-specific

79

CHAPTER 3. TAsk CONSTRUCTION

Clearance of Transit Motions [m]

Without Padding

Custom Padding A o.'

0.00 0.01 0.02 0.03 0.04 0.05

Figure 3.16 — Minimum object clearance for representative trajectories from sampling-based plan-
ning over all 96 combinations of joint space start and end transits for the Task shown in Figure 3.14.
Without custom padding no clearance to the object is enforced and planners can generate solution
paths in close proximity. The additional custom padding ensures a safe transit around the object with
at least 5 cm clearance.

Cartesian poses, their approach/retract directions and the padding geometry. In many cases the
approach poses can be specified in the end effector’s frame per scenario, leaving the Cartesian

poses of interest and the scene geometry as the only free parameters.

Evaluation To demonstrate the effect of the additional padding, consider the concrete scenario
with fixed object and targe poses illustrated in Figure 3.14 (right). With this concrete geometry,
the PA10 robot kinematic structure and the configured joint limits support 12 different joint
space solutions for the first Cartesian pose and 8 for the second pose, resulting in a total of 96
potential planning queries between the different joint states. Figure 3.16 illustrates the minimum
object clearance for all solutions with and without the custom padding after exhaustive Task
planning. Adhering to the specification, the padded transit ensures a minimum clearance of
5cm, while 23 % of the solution trajectories for the unpadded transit pass in close proximity
of less than 1.5 cm to the object. The visible clusters of solutions with minimum clearance of
5.1cm corresponds to the pre-determined poses after retract/before approach, indicating that
stochastically many solutions move around the object with more clearance than is determined
by the fixed Cartesian end effector poses.

Table 3.2 shows the planning times for the Task with and without custom padding. Although the
padding cylinder slightly simplifies individual collision checks over the detailed object mesh, it
also reduces the feasible space for the transit planner, requiring significantly more samples to

find valid solutions in some cases.

Discrete Kinematic Evaluation of Motions Considering different initial joint states for a
Cartesian pose and the multi-Stage motion to a second Cartesian pose, the Task relates dif-
ferent joint space solutions for the two poses. The combinatorial space can be evaluated offline
for analysis. While this strategy does not apply to extended Tasks due to the exponential growth
of the solution space with each variable, it can provide insights into relevant plan segments.

80

3.9. EXEMPLARY TASK APPLICATIONS

second pose joint state second pose joint state second pose joint state

second pose joint state

Cost analysis of solutions by start and end poses

Duration [s]

first pose joint state

Path Length [L;-norm in rad]

124 13.3
129 13.8
10.3 10.3
12.2 11.3

1.1
1.1
1.9
1.9
1.4
1.3
1.3
1.5

0.4
0.4
1.0
1.0
0.0
0.0
0.0
0.2

11
11
2.0
1.9
1.2
1.4

1.5
1.4

0.4
0.4
1.0
1.0
0.0
0.0
0.0
0.0

first pose joint state

End Effector Path Length [m]
26 25 25
25 25 25
1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1

1.2 0.9 1.2 1.1 1.1 1.1 1.1

1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.4 1.4 1.5 1.3 1.9 2.0 2.0 1.9 1.1 1.1

1.3 1.3 1.4 1.5 1.9 1.9 1.9 1.8 1.1 1.1
first pose joint state

End Effector Path Length above Object [m]
1.4 1.3 1.3 1.4
1.4 1.3 1.3 1.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.0 0.0 0.0 0.0 0.4 0.4 0.4 0.4 1.3 1.4
0.0 0.0 0.0 0.0 0.4 0.4 0.4 0.4 1.3 1.4
0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.4 0.4
0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.7 0.4 0.4

first pose joint state

12

11

16

14

12

- 10

-0

Figure 3.17 — Cost grid analysis between sampled solutions of the padded Retract—Transit—Approach

Task starting and ending in the different discrete joint space poses. Different cost terms illustrate

potential trade-offs.

81

CHAPTER 3. TAsk CONSTRUCTION

First Solution Exhaustive Planning (10 workers)

Without Padding 0.154s £ 0.011 1.047s £ 0.081
Custom Padding 0.314s + 0.082 3.385s £ 0.404

Table 3.2 — Benchmark of planning durations for the Retract—Transit—Approach Task with and with-

out custom padding.

This evaluation relies on an uninformed sampling-based RRT-Connect planner, thus the exact
solution trajectories differ between runs and are not optimized. However, much larger variations
in trajectories can be observed between different IK solution pairs than between multiple invo-
cations of sampling-based planning for individual pairs. In the following, transit motions were
planned through uninformed RRT-Connect to the first solution and the best cost out of 10 at-
tempts is considered. While this approach can only provide an upper bound for a cost-optimized
path between the poses, it nonetheless provides insights into the trade-offs between different
cost functions when selecting joint space targets. Depending on the Task, optimizing planners
informed through the respective cost function can be used to refine estimated values. In the gen-
eral case, this involves a trade-off between refined transit motions for all considered paths and
a higher per-attempt computation time — leading to accumulating Stage timeouts in case the
explored Task includes infeasible planning requests, such as observed in subsection 3.9.2.

Figure 3.17 illustrates exemplary analyses for multiple contradictory cost terms that can be rel-
evant in different applications. First, it can be noted that the pairwise solution space splits into
two subspaces, where traveling between these spaces takes around 40 % longer. This dichotomy
is due to two distant solution types for the robot’s two base joints (S7 and S2) which use sig-
nificantly slower velocity limits. Within each subspace, the joint space path length analysis
indicates several clearly preferable solutions. Investigating the end effector path length reveals
more comparable solutions. Finally, application-specific cost terms such as objectives to keep
the end effector at the level of the object, can fully conflict with an objective to minimize the
trajectory duration. Such competing objectives are not uncommon in practice and the analysis

can help with informed decision-making.

Summary The example Task design illustrates functionality in Task Construction to model
varying planning spaces throughout Task solutions, which apply to complex planning Stages.
Adapted models can add guarantees to generated solutions, such as forcing clearance from rel-
evant parts of the environment. Independently, Task structures can be used to relate different
solutions for joint states to each other, allowing for offline analysis of the modelled solution

space with regards to different objectives.

82

3.10. WHOLE-STACK BENCHMARKING

3.10 Whole-Stack Benchmarking

This section is based on a workshop publication [48] I presented together with David Pivin
at the IROS2022 workshop for Evaluating Motion Planning Performance. The Movelt
Benchmark Suite software implementation was written by David Pivin with close supervi-

sion by me and Felix von Drigalski during a Google Summer of Code 2021 project [W15].

Beyond the type of kinematic analysis presented in the previous section, the Task Construction
framework can also be used to evaluate the performance of a whole motion planning stack. In the
context of software development and maintenance for a complete planning system, it is crucial
to assess performance changes over time across different system configurations and between
competing feature implementations, in order to identify bottlenecks and regressions.

Many approaches have been proposed in the past to assess the performance of motion planning
systems. These include prominent examples, such as the PlannerArena [100], Robowflex [77],
and the MotionBenchMaker [21], as well as specific analysis approaches, such as investigated by
Liu et al. [89]. Noteworthy to single out, the Box and Blocks Test for robotic systems [102] even
targets an established rehabilitation benchmark for assessing the manual dexterity of humans
and adapts it for complete robotic systems, including motion planning, but also the kinodynamic
design of the robot.

However, all but the last of these solutions focus on the integrative performance analysis of a
range of motion planning tasks and thus only address a subset of the complete planning stack
required for manipulation actions with a robot. Many motion planning systems utilize various
modularized routines, prominently including collision checking (and more generally feasibility
checking), and inverse kinematics, but also projection operators, constraint solvers, time para-
meterization algorithms, kinematic datastructure operations, and dynamic environment repre-
sentations such as voxel grids and octrees [60], among others.

Seemingly minute changes in any of these operations, which are often provided through stan-
dalone software dependencies, can have strong effects on the complete framework performance
in specific situations. While traditional unit testing and microbenchmarks, as for example avail-
able through the Benchmark [W3] project, can generate detailed insights into the performance of
individual components, including low-level significance testing and code path warm-ups, their
coverage is typically limited to artificial and reduced cases and by their very nature, in isolation
from the complete system the component is used in.

The Movelt Benchmark Suite [48] fills the resulting gap between pure motion planning bench-
marks and low-level microbenchmarks specifically for the Movelt framework. Along with sev-
eral Movelt-specific benchmark categories, including the initialization of datastructure and per-
formance of collision checks between different object representations, the suite also prominently
includes benchmarking through Tasks. As the Task structure is a modular representation of the

83

CHAPTER 3. TAsk CONSTRUCTION

planning process, it can be used to evaluate the performance of the planning stack on complete
manipulation actions as a whole as well as providing performance characteristics for many op-
erations in isolated modules. Given a Task specification and a world model state, in a similar
but extended scheme as the one used with MotionBenchMaker, Task benchmarks can plan and
benchmark complete manipulation actions. At the same time, they maintain Stage-wise statistics
for the planning time as well as the cost of yielded Stage solutions.

Figure 3.18 illustrates exemplary measurements generated in a Task benchmark. These charac-
terize the performance of the complete planning stack and can be compared between versions,
where data is either inspected visually, or automatically evaluated through statistical signifi-
cance testing. As benchmark statistics in software are likely to change distribution properties
under logic changes, e.g., spread of runtime measurements might increase for partial failures in
caching mechanisms, non-parametric tests, such as the Mann—Whitney U test are usually pre-
ferred over parametric significance tests [W3]. For the purpose of framework benchmarking,
the exact values of these statistics are not as important as the relative changes between different
configurations or versions. Indeed, it actually enhances the representational value of assessed
modules if Stages are explicitly parameterized to utilize different planner configurations and
other module settings as more code paths are relevant between different modules.

The Movelt Benchmark Suite has been effectively used to evaluate performance differences of
different build configurations and versions of the Movelt framework and supports the investiga-

tion of introduced regressions.

84

3.10. WHOLE-STACK BENCHMARKING

whole task

pick container

place container

current state

open hand

move to pick

approach object

grasp pose IK

generate grasp pose

allow collision
(hand,object)

close hand

allow collision
(object,support)

attach object

lift object

forbid collision
(object,surface)

move to place

lower object

place pose IK

generate place pose

re-open hand

forbid collision
(hand,object)

detach object

retreat after place

Stage-wise Manipulation Benchmark

L. 1.
b A
] A
|
1
+_|+
#
B |
+ L
| ¥
i
!
Ii .
f
|
|
|
1
t L
¢
t
|4.
il ¢
107* 1073 1072 1071 100 0 5 10 15 20
Time (s) Cost

Figure 3.18 — Planning characteristics for a Pick and Place Task similar to subsection 3.9.1. Plotted

statistics are computed over 25 planning attempts to the first solution with planning time and reported

solution costs of all involved Stages.

85

25

CHAPTER 3. TAsk CONSTRUCTION

86

Chapter 4

Validity-Constraint Motion Primitive
Exploration

This section is based on the conference publication “Pluck and Play: Self-supervised Ex-
ploration of Chordophones for Robotic Playing” [47] presented at the IEEE International
Conference on Robotics and Automation in 2024.

4.1 Physical Self-Supervised Exploration

Based on the framework detailed in the third chapter, it is possible to design complete manip-
ulation sequences where different parts can be easily specified. For many applications a core
challenge that remains is the design and implementation of key stages, which are typically dif-
ficult to engineer by hand. In the context of object bin picking, for example, the crucial aspect
to select a successful grasp pose in the workspace has seen decades of research [13, 79]. To
this end, data driven methods provide good solutions, but require significant amounts of data
to be trained. A common approach to generate this data is the procedural analysis of offline
datasets [87], optionally augmented by synthetic scenes [94]. While the obvious benefit of such
an approach is the automatic generation of large datasets through parallel computation, the data
often does not correctly represent the real-world setting and integration efforts on the physical
system can suffer from sim-to-real artifacts.

An alternative approach to data collection is the paradigm of self-supervised exploration where
data is generated through motion attempts on the physical robot. Pioneering such an approach
at a larger scale, Pinto et al. [117] demonstrate a software system for a Baxter robot in a table-
top scenario. The robot autonomously explored 50 000 top-grasp attempts on various objects,
labeling each attempt based on whether the robot could lift the object.

In a reinforcement learning paradigm, Zeng et al. [163] demonstrate a system to push and sub-

87

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

sequently grasp objects on a tabletop, demonstrating combined action parameter learning.
Berscheid [9] further extends these approaches to include autonomous training of grasp poses
in SE(3) and utilizes the trained models to subsequently collect data for complete pick and
place sequences. They prominently generalize the concept of Motion Primitive to complete
manipulation sequences parameterized in few trained parameters. While this general scope suits
their examples, this thesis focuses the notion of Motion Primitive on the local motion generation
of a single motion, which might be modularly integrated into larger sequences.

Lastly, Schneider et al. [127] focus on dynamic motions involving ball balancing on a robotic
end effector. They could demonstrate drastic reductions in training time for a reinforcement
learning paradigm by including an Active Exploration strategy: Instead of optimizing motions
to maximize only the reward given their current model, they include an additional information
gain term, steering the system behavior to explore actions which are uncertain in the current
model.

A common aspect of all mentioned self-exploration approaches is their design of an inherently
safe action space that can be explored almost without human intervention. However, such a
design is not always feasible. Focusing on a multi-modal scenario where such a definition is
not feasible, this chapter investigates autonomous exploration of a fragile musical instrument,
combining the self-supervised exploration paradigm with methods from the field of safe active

learning.

4.1.1 Scenario

Numerous robotic setups were demonstrated playing musical instruments, such as piano, guitar,
and drums [16]. Approaches for this tend to focus on the higher-level programming/composing
layer, whereas the actual actuation happens through precise servo motors or custom-built special-
purpose hardware [107]. Other approaches augment musical instruments to enhance human
playing or track the system’s physical state [112]. The emphasis is often put on intelligent mu-
sical behavior with the declared vision for competent robotic musicians to interact with others
using musical theory as a common ground [16, 151].

Stringed instruments, chordophones, in particular are challenging for robots: they afford many
different and expressive playing techniques, triggered through slight variations of playing mo-
tions and fully pre-programming motions for varying compositions is not realistic, as discussed
below.

The scenario in this chapter considers a Guzheng ({%#) depicted in Figure 4.1, a traditional
Chinese chordophone from the family of zithers. The predominant variant features 21 strings
in pentatonic tuning, with the strings spaced approximately 1.5 cm apart. Human performers
usually manipulate the strings through four plectra taped to all except the little finger of each
hand [39, 148]. Figure 4.2 illustrates the mounted plectra on the anthropomorphic hand of the

utilized robot.

88

4.1. PHYSICAL SELF-SUPERVISED EXPLORATION

af® !
A5 FissES V5 Ba A1 Fisd g D4
5

B3 A3/
krsS o

ok

D3g3

Figure 4.1 — (left) Modified PR2 robot with Shadow Dexterous Hand and SynTouch BioTac finger-
tip sensors in front of a Chinese Guzheng. (right) Projected audio note onsets (spheres) and recon-
structed string representation (lines and coordinate systems) generated by self-supervised geometry

exploration. Colors encode the musical note recognized from the audio channel.

Compared to most other chordophones, which usually feature strings running in parallel and
equidistant on a plane, the Guzheng features a more complicated geometry. The strings are
mounted on a wooden body with a doubly curved surface and run over bridges at different dis-
tances from the instrument head, changing the height and angle of each string. As the bridges are
mobile and moved during tuning, the strings are not positioned identically in different instances.
Different artists also prefer different levels of string tension, which affects the placement of the
bridges as well as the produced sound [31].

Lastly, the scenario utilizes the modified PR2 robot also shown in Figure 4.1 (left) which features
spring-compensated shoulder joints and belt transmissions behind the position sensors of the arm
joints. This kinematic structure reduces the force necessary to move the joints but impedes pre-
cise position control and calibration. During operation, significant systematic end effector path
errors above 5 mm are common. As these can strongly impede the quality of motion primitive
models, the learning process must be able to incorporate them.

Overall, this chapter presents a three-stage approach to actively explore the instrument:

* Assuming an initial estimate of the string positions, the first stage estimates a stable envi-

ronment model of the instrument geometry through repeated heuristic motion attempts.

89

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

Figure 4.2 — Close-up view of the Shadow Hand fingertips with SynTouch BioTac tactile sensors

(turquoise), prepared with traditional fingernail plectra for Guzheng playing. Each plectrum is taped
to the fingertip to reach several millimeters beyond the tip with stable contact to the sensor surface.
The thumb is taped with a regular curved thumb plectrum for a more relaxed hand posture during

playing; little finger without a plectrum, as traditional in Guzheng playing.

* Based on the refined model, active exploration strategies are presented to estimate the au-
dio response of plucking motions based on audio, tactile, and proprioceptive feedback by
growing trust regions around valid motion parameters. A Gaussian Process based model

formulation implicitly accounts for controller behavior and physical string characteristics.

* Lastly, an inverse model formulation can utilize the explored models to play intended notes
with specified loudness.

4.2 Multimodal Manipulation of Chordophones

4.2.1 Background

Robot Musicians Kapur [72] discusses the early history of robotic instrument playing, cov-
ering robots playing standard musical instruments as well as instruments explicitly designed for
robotic actuation. Similarly, Sobh and Wang [133] discuss the development of a full band of
robot musicians that perform on real musical instruments.

Several works have concentrated on piano playing. Zhang et al. [164] describe both the “robotic”
and “musical” playing of (entry-level) piano pieces with the highly complex Anatomically Cor-
rect Testbed hand. A much simpler robot, designed to mimic the soft skeleton and elastic prop-

erties of a human finger, was presented more recently by Hughes et al. [64].

90

4.2. MurLtTIMODAL MANIPULATION OF CHORDOPHONES

Expressive Play “Musical” playing aims to invoke a large variety of emotions and impressions
through the multifarious use of playing techniques. The scenario investigated here focuses on
exploring the dynamic range of plucking strings, but expressive play also encompasses various
other techniques such as damping and modulation of notes as described by Murphy et al. [107].

Guzheng Despite the important role of the Guzheng in Chinese musical tradition, only com-
paratively few scientific studies of the instrument and its playing style have been published. A
vibroacoustic study of the Guzheng soundboard was presented by Xiaowei et al. [159]. Zhang
et al. [165] presents a detailed modal sound synthesis model of the Guzheng. Recent work by
Mazurek et al. [98] describes an optical sensor setup to track string plucking and vibration on the
Guzheng. The harp is generally considered the closest Western-style equivalent to the Guzheng.
The properties of a harp-plucking robotic finger were studied by Chadefaux et al. [20], with
detailed motion and vibration analysis as a function of fingertip material, shape, and reference

trajectory.

Audio Analysis In the context of this chapter, algorithms are needed for automatic and robust
detection of note onset and note pitch as presented for example by Duxbury and Zhou [23, 167].
As with other stringed musical instruments, this is complicated by the transient vibration pat-
terns of the instrument until a stable vibration with distinct spectrum is reached, as discussed
by Mounir [103, 104]. Wang and Cao [150] present an algorithm to match Guzheng audio data

with a musical score based on dynamic time warping.

Deep Learning Beyond the earlier analytical and physics-based works, deep-learning systems
demonstrate advanced performance. For example, Byambatsogt et al. [18] presented a deep
neural network for automatic guitar chord detection and classification. The network was pre-
trained on a human-played but highly biased dataset [158] and a self-supervised exploration
setup was constructed to collect a larger augmented robotic dataset including all possible chords.

Reinforcement Learning for Instrument Playing Xu et al. [160] proposed a Bullet-based
simulation setup with an Allegro hand model for learning to play short sequences of notes on a
piano from music notation with fingering. The trained agents can control the model in a four-
dimensional action space to press multiple keys with specific attack velocities from online input.
Zakka et al. [162] presented a MuJoCo-based piano simulation with two Shadow Dexterous
Hand models. Agents need to be trained on individual music scores with fingering but demon-
strate impressive advanced skills in playing well-known Western piano compositions. Neither
work investigates a physical instrument, though sim-to-real transfer might be within reach with
sufficient engineering. Additionally, both works forego raw audio signals through explicit MIDI

note_on events.

91

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

4.2.2 Problem Formulation

A fundamental requirement of the presented approach is the ability to detect and characterize
plucks of tuned strings in the audio and tactile modality. To this end, the developed setup utilizes
dedicated unimodal detectors. Aligned multimodal detections are then integrated to estimate
the geometric model S. After introducing a motion primitive P for plucking motions and its
associated action space P, the chapter details the exploration stages to autonomously estimate
and refine the model components (S, V), D) over time.

Given a chordophone with unknown geometry located in the reachable environment of the robot,

the objectives pursued by the discussed approach are to

1. reconstruct the instrument geometry as part of the environment model using mostly self-

supervised motions,

2. explore the action space of plucking motions with estimated strings to characterize and

model the produced audio responses, and

3. reduce unwanted robot motions that might damage or wear out the instrument and robot.

To isolate the first two objectives and to achieve a stable exploration of the valid action space,
these objectives are implemented through two decoupled exploration stages.

The first stage reconstructs the relevant geometry of the instrument. As a generic formulation for
chordophones, the model describes a set of strings that can be manipulated. Each such physical
instrument string s € &* is described through a reachable string segment of length /, between
the Cartesian pose 7, € SE(3) and T, - [{,, 0,0, I]T
(a musical scale element) in a set S:

and annotated with its fundamental note NV

§={(N, 1.0} |s €57},

The size of the ground-truth set of strings is a-priori unknown and thus initial information needs
to be provided to bootstrap the estimation of the set S.
The action space ¢ of the system is defined relative to the individual estimated strings s and

utilizes a parameterized motion primitive P that describes Cartesian trajectories I'.

P:(T,: SE3)) x (bs : R) x (¢: D) = (72 : 1),

The system assumes that at least one parameter vector ¢ € & can be heuristically inferred for
each element in S such that the execution of the associated trajectory ’yfi"h yields the expected
audio note onset N,. Once a stable geometry S is reconstructed, the second exploration stage
proceeds to explore the action space and audio onset responses of the instrument as two related

functions:

V:Sx®—0;1], and
D:SXxd— V.

92

4.2. MurLtTIMODAL MANIPULATION OF CHORDOPHONES

In this formulation V estimates a probability of ¢ to be valid. Any criteria observable during the
execution of the motion primitive might define validity in the general case. For the purposes of
the scenario, a parameter vector ¢ is determined to be valid, if and only if the physical execution
of ¢ causes a single string pluck observable in multiple modalities, where the observed musical
note onset matches the note /N, associated with the string s € S. D estimates the audio onset
characteristics ¢ € WU assuming ¢ were valid. This investigation defines ¥ as the measured
loudness of the fundamental note of an audio onset in A-weighted decibels [dBA]. The general
approach supports any measurable metric on note onsets, though, including overtone profiles
and temporal envelope, both related to the timbre of the instrument and playing technique.
This decomposition into functional and discriminative functions originates in the field of Safe
Active Exploration approaches using Gaussian processes (used, e.g., by Schreiter and Li [85,
129]) and facilitates reasoning over a set of safe action parameters ®¢ = {¢ € ®|V(s, ¢) > a},
where 1 — « describes the remaining risk of an invalid action. As there is no concept of safety
involved in the scenario, the term validity is used instead.

Eventually, the combined system model (S, V, D), which comprises all three data-driven com-
ponents, is utilized to infer motion parameters that produce audio onsets for note N* with charac-
teristics close to ¢. Parameters can be derived through an inverse model approach on D within

the estimated valid action space through loss optimization of the forward model:

¢! =argmin (D(s, ¢) — ¥")*
e

s.t. Ny = N' and ¢ € O

4.2.3 Modality Analysis

Audio Analysis

The audio noise floor near the PR2 robot reaches 60—-68 dBA SPL, caused mainly by cooling
fans. As audio onsets should be captured from around 40 dBA SPL, the physical setup includes
a contact microphone attached to the resonating body of the instrument. However, this yields
an uncalibrated audio signal, without a direct interpretations as sound pressure level. Audio

evaluation instead considers dB above signal noise floor.

Because the audio signal originates from a tuned musical instrument, the frequency analysis
can be limited to frequencies associated with the western music scale. A well-established way
for fast spectrum analysis in this field is described by the constant Q-transform (CQT) [17,
128], which can be computed based on the classical Fast-Fourier transform. The guzheng,
known for its complex timbre [86], usually encompasses a playing range from D2 (73.42 Hz)

to D6 (= 1.17kHz). To include essential harmonics for all notes, the applied CQT considers

93

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

two additional octaves above yielding 84 semitones above D2. The microphone signal is sam-
pled with 44.1 kHz and the analysis uses 512 samples per hop, yielding an effective temporal
resolution of 12 ms for further analysis.

To locate note onsets, the detector builds on Bock et al.’s work [12] and extracts maxima in the
spectral flux envelope of the CQT in overlapping processing windows of 500 ms. The magnitude
representation of the CQT exhibits maxima at the fundamental frequencies associated with each
string. However, with instrument resonance, simple maximum detection yields several system-
atic false positives to classify onsets by note. For more robust classification in the required range,
the CREPE network [75] is applied to estimate the fundamental note of each onset.

Tactile Pluck Detection

The PR2 robot used with this scenario is equipped with a right Shadow Robotic Hand and BioTac
tactile fingertips [152] (Figure 4.2). Because the plectra are directly taped to the sensor, contact
of a plectrum with a string of the instrument clearly reflects in the measured tactile feedback.
The fingertip sensor provides a number of signals that can be used to evaluate contact position
and state. For the purpose of perceiving plucking events and plucking strength, the absolute
pressure values reported by the BioTac at 100 Hz suffices to estimate deflection and release of
the string. A plucking event is detected as a sudden drop in pressure, detected through a tunable
threshold on the numeric derivative. To filter noise and invalid burst detections during onset

transients, a 100 ms suppression time after each detection is enforced.

Pluck Validation

All plucking attempts by the system are assigned a binary validity score v € {1, —1} as labels
for the subsequent online exploration. To evaluate the performance and location of an attempted
pluck and reduce ambiguities in either detector, the two modalities are aligned and used to eval-

uate events together.

Audio onsets are associated with detected tactile plucks if they occur in a short time frame of
50 ms after the tactile pluck event. Any audio onset that does not match a tactile pluck is assumed
to be unintentional or externally caused and yields a negative score. Additionally, plucking at-
tempts that fail to trigger any onset at all, trigger multiple onsets, or multiple tactile events, yield
negative scores as they either missed the intended string, or unintentionally made contact with
other parts of the instrument. To avoid excessive stress on individual strings, observed plucks
are additionally assigned negative scores if they exceed fixed pressure thresholds perceived by
the tactile sensors. Lastly, a plucking attempt that aims to trigger a specific note onset through
a targeted string receives a positive score v = 1 if and only if a single tactile-grounded audio
onset is observed during the pluck.

94

4.3, MopEL RECONSTRUCTION

4.3 Model Reconstruction

Kinematic Projection

Assuming a known position of the plectrum tip w.r.t. the finger it is attached to, each audio onset
event, which is grounded in a tactile detection, can be associated with a Cartesian position of
this tip using the known forward kinematics of the robot. While the exact plectrum positions are
usually unknown, the described exploration stages are robust enough to cope with discrepancies
of several millimeters.

The resulting point projections of haptically-validated audio onsets can be seen in Figure 4.1
(right). Relevant sources for the observable noise in this projection include (1) uncertainties
in the plectrum position, (2) the deflection of the string during the plucking motion that differs
per pluck, (3) an unmeasured deformation of the plectrum itself, (4) temporal skew between the
different modalities, and (5) systematic errors in joint measurements and robot calibration.

String Fitting

To estimate the string coordinate frames T, and length (, for all elements of S, the projected
pluck events grouped by observed note N, provide evidence for line models fitted through Ran-
dom Sample Consensus (RANSAC) [35]. Model fitting utilizes an inlier threshold of 1 cm. An
outlier-resistant line fitting is required because in practice false-positive detections still occur
sporadically due to harmonics, and background noise. To yield a stable frame estimate, the
coordinate frame 7 for each string is defined to originate at the RANSAC model’s right- and
bottom-most inlier projection and points along the string in its x- and upwards in its z-axis.

Lastly, one can optionally assume a planar bridge for the mounting of all strings on the instru-
ment and fit a 2D line on the regression plane of all inliers of string models that fits the origins
of the computed coordinate systems. To align all frame origins, they can be redefined at the
intersections of the string model and the 3D plane associated with the fitted bridge line that is
orthogonal to the regression plane. The resulting frames and fitted string segments can be seen

in Figure 4.1 as well.

Motion Primitive for Plucking

There are various plucking techniques for chordophones depending on the intended dynamic
expression and musical context. Exemplary techniques for a modern playing style were re-
viewed by Fu [39]. As a formal definition of the described motions must essentially include
unconstrained motion profiles, the respective action space ¢ to parameterize plucks via a mo-
tion primitive P is effectively intractable, and the automatic evaluation of their execution safety
in the partially unknown physical world is very limited.

Instead, the scenario in this chapter considers a strongly reduced parametrization for P that can

be specified as a position on the string and a trajectory of the plectrum tip in the two-dimensional

95

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

O — \
- —

Figure 4.3 — (left) A finger of the Shadow Dexterous Hand with BioTac sensor in playing position,
with the plectrum between the 11th and 10th string tuned to D4 and E4, respectively. (right) Planar
sketch of the parameterized pluck primitive in the local coordinate frame of a string. Each motion
starts on one side of the string at a fixed position, dives between two strings, and accelerates upwards
to reach the waypoint § with velocity p. The last waypoint specifies a position above and behind the

string to achieve the actual pluck.

Cartesian coordinate system orthogonal to the string. This primitive connects fixed 2D start- and
end poses for either plucking direction d (inward or outward) with a parameterized intermediate
position/velocity waypoint (9, p) close to the string, as illustrated in Figure 4.3. Note that any
such pluck model includes an implicit spring component, as the string is deflected. In the case
of the Shadow Dexterous Hand, the finger joints exhibit sufficient controlled spring compliance
to store all additional potential energy until the plectrum releases the string. The fixed start
position is selected closer to the string and the goal position slightly further away to allow for
a broader range of transit motions to smoothly reach the start point and have more flexibility in
continuing the trajectory after the physical pluck occurs. To generate smooth trajectory profiles
with intuitive dynamics limits, the Ruckig trajectory generator [10] is applied in Cartesian space.
In summary, this primitive defines action parameters ¢ € ¥ as

(d,n,8,p) € {in,out} x [0;1] x R? x R?,

where 7 - {, defines the string position to pluck.

To actuate the described Cartesian trajectory v, it needs to be mapped to the robot’s joint space.
Various analytical and optimization methods can be applied here, as discussed in chapter 2. The
experimental implementation utilizes an IK-based iterative tracking loop based on the bio_ik
solver [123]. The solver tightly integrates with the Movelt system [24] and can thus avoid colli-

sions with the modeled environment also for longer motions when moving between strings.

96

44. Active MoTtioN PriMITIVE ExpLORATION (AMPE)

4.3.1 Geometric Exploration

Combining the reconstruction system for S, and the pluck parametrization P, the system gath-
ers spatial evidence autonomously and refines S over time. Still, P relies on estimates Ts, Es
for the string geometry as Cartesian reference space. Such initial estimates may originate from
a previous reconstruction, visual estimations without associated fundamental note annotations,
or kinesthetic demonstrations. In the performed experiments, the latter approach is adopted by
demonstrating plucks at the reachable ends of the strings. Thus, these initial demonstrations de-
termine the length of reconstructed string models {, and autonomous samples can be collected
between them. During autonomous operation during this phase, the framework repeatedly sam-
ples a direction, a string s € S, and a string position 7 - (,, executes the associated pluck with
predetermined J, p and evaluates the validity of the attempt. On invalid plucks, attempts are
repeated with heuristically-modified parameters up to a fixed number of tries, where J is sys-
tematically lowered and moved along the pluck direction on missing onsets, and moved opposite
the direction with p step-wise rotated upwards on invalid detected onsets. Valid plucks are inte-
grated to update S.

Experimentally, Halton sampling for 7 improved model stability over uniform sampling, as the
latter is known to yield spatial clusters in few samples. Such clusters effectively cause model
fitting to diverge as not enough spatially spread evidence initially exists. While the best geomet-
ric sampling points to ground the string geometry are near the ends, these points are also most
prone to invalid detections due to the stronger excitation of harmonics. Attempted plucks along
the whole length of the string remain more robust.

To account for long transit motions, samples from S are taken with a shaped distribution with
the motivation to encourage strings closer to the current finger position and penalize strings
with sufficient gathered evidence. While accelerating overall exploration, this choice is entirely
optional, and target strings might also be determined by sheet music at the cost of a less balanced

overall exploration.

4.4 Active Motion Primitive Exploration (AMPE)

After successful geometric construction of S, the second exploration stage actively selects in-
formative and likely-valid parameters from ® to improve approximations of)V and D. The esti-
mated model S acts as a basis for both functions and remains fixed as reference geometry for the
string-centric pluck primitive. To allow for exhaustive exploration of the parameter space ¢ in
the evaluation, the number of free parameters ¢ are further reduced by freezing ¢, and p in the
respective direction. Thus, the motion primitive effectively describes actions through a rarget
string s, a binary direction d, a normalized string position 1), and 6,;, labelled the deflection offset.
Given sufficient priors, plucks can theoretically contribute information on other strings and the

opposite plucking direction through through model transfer. However, no clear data association

97

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

could be recovered during experimental analysis as controller responses of the PR2 robot arm
vary significantly between directions. Thus, independence is assumed in s and d, and V, D are
modelled as independent functions V;, /Dy, Vi / Diwe PET string s.

With each attempted pluck with parameters ¢, the collected datapoint describes the validity and

audio response for this attempt:
<¢7Va¢> € P x {17_1} x W.

The tuple (¢,) is added to a set X3, collecting evidence for the validity landscape V. Whenever
v =1, (¢,) is additionally added to a set X, providing evidence for D within the set of valid
action parameters. Following existing safe active learning paradigms, as proposed for example
by Schreiter et al. [129], both functions are independently modelled as a Gaussian Process (GP)
with stationary squared exponential kernel and zero mean with normalized X3,.

D is directly modelled through GP regression over X;:

D(s,¢) = Elg|Xg(9)]; g ~ GP(rbf(Aa))
= E[N(2; g, 04)] = oy

As V describes a probability space, it is modelled through probit regression [119] over X3,

assuming noisy measurements:

V(s,¢) = p(E[g|X3(¢)] > 0); g ~ GP(rbf(\))

= N (z; py, 0,)dx

— inf

1 Lo

()
The kernel scale for the validity A\, remains fixed. This step is required to avoid unsafe extra-
polation of trust regions because the regression, by the nature of the safe exploration paradigm,
is based on unstratified sample sets. To determine the next action parameters in each exploration
step, an information criterion is required which indicates plausible areas of the parameter space
for exploration. While Bottero et al. [15] recently proposed a mutual information criterion on
the discriminative function, this work uses the simpler differential entropy of the onset charac-
teristics Gaussian Process modelling D, which can be maximized through its posterior predicted
variance o, and can be optimized well through Monte Carlo methods. Thus, the next best pluck
to execute for a given string and direction is iteratively selected as

¢" =argmax H[g| Xy (9)]; g ~ GP(rbf(As))
ped
st.V(s,0) >«

Parameter selection could also include an optimization over all strings s, at the cost of an in-

creased computational burden. However, this definition would not consider time for transit

98

44. Active MoTtioN PriMITIVE ExPLORATION (AMPE)

Deflection Offset [mm]
Loudness [dBA]

-10.0 M Invalid

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
String Position [m] String Position [m]

Figure 4.4 — (left) Exemplary pluck dynamics (V, D) fit for 1500 explored Ff4 plucks. Contours
indicate ®%-% and ®%-%5. (right) All associated explored plucks, including those evaluated as invalid
highlighted in purple.

motions and thus lead to significantly increased exploration times. Instead, the target string
to explore in each step is selected through the same shaped sampling distribution used in sub-
section 4.3.1. To accelerate exploration at the cost of slightly more invalid plucking attempts, a
lower validity threshold of o« = 0.7 is applied during active exploration. An exemplary (V, D)
model and the underlying dataset are illustrated in Figure 4.4 and 4.5.

4.4.1 Experimental Validation

This section presents an evaluation of the high-level exploration stages.

Typical error conditions of the lower-level modules include (a) soft onsets being missed or mis-
classified when strong overtones are present or the audio-tactile modalities are misaligned, ()
false positive pluck detections when a plectrum slides along the string, (c) temporal drift be-
tween the robot sensor data and the audio channels due to drifting clocks. This last problem was
mitigated through occasional manual recalibration.

To illustrate the behavior of the exploration stages, several representative experiments are de-
tailed below, each limited to one finger and a subset of instrument strings.

Geometric Reconstruction

The quality and efficiency of the string reconstruction stage was evaluated as follows. A series of
five individual strings were repeatedly initialized through two kinesthetic demonstrations while

varying the instrument position within the reachable workspace of the robot arm. Subsequently,

99

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

°
60 - °
oo b 09¢ .o LN R alod
[NGy DX XY o (50,86%
AW) " 550, St €005y O&"
@ ...‘C. e ‘ S ;0'.’) “¢o' .. e s’ @ ()
— 55 - 0800 (g8%2 :."c.:, Te®e s CeeedTisge’ 3000,
< .,‘9‘ 2 0:.(0’. 0..0.‘ g0 o o.- ® ° % @ o, :‘” e
om "0‘0.(. e ,:, on)g © O° ° e o0 O
o o’.‘. &% o o‘ . % ® ¢
— 0L e ggmete o o oo ® o°
N 50 @8 o08 S0 0 °
n [) ~J] [H e % 2 0. &
] « ° ° o 0% o © 6% (®
c ([] @ ° ° o o -~
o o o @
>
o 45 1 ¢
— &

0.00 0.05 0.10 0.15 0.20 0.25
Position Along String [m]

0.30

8.0
6.0 €
£
4.0 O
)
2.0 §
©
ks
0.0 %
()]
-2.0

Figure 4.5 — Dynamic range of valid explored pluck motions for F{{4 along the string. As expected,

plucks at the center of the string can produce significantly louder onsets with similar deflection off-

sets.

Expected Model Projection Error [mm]

A5
D5
F#4
B3
E3

o

T

10 20 30
Plucks

o

40 50

60

Figure 4.6 — Expected Euclidean model error between kinematic onset projections p and their pro-

jection m(p) onto the current RANSAC line fit as the number of attempted plucks increases. Expec-

tations are approximated through the next 30 plucks at each point. Five episodes were collected per

string.

100

44. Active MoTtioN PriMITIVE ExpLORATION (AMPE)

1.0 <38
%‘é A —— AMPE
— 0.81 § —— Random
3 5 6
= k] 5
i E 41
S 0.4 v
=) o
®) 0 2
— 0.21 — AMPE | <
—— Random § 1
00 T T T T T E O T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Plucks Plucks

Figure 4.7 — (left) IoU of valid action space volumes ®-7 after each new pluck and the final valid
volume. Volumes were estimated through Monte Carlo integration. (right) Mean absolute error of

D on test set over number of recorded plucks. Both compare AMPE and a random baseline.

the stage explored each string autonomously through 90 plucks. For the analysis the expected
Euclidean projection error for new plucks onto the current string model m;: E[||m;(p) — p||2]
was utilized and estimated through the next 30 valid plucks after each point. Figure 4.6 illustrates
the results over five episodes per string. All models converge to an expected projection error of
about 1 mm. This limit corresponds to the kinematic inaccuracies of the utilized robot system,
limited reproducibility of trajectory execution, and the unaccounted deflection of plectrum and
string. Almost all episodes converge between 10 and 20 exploratory plucks, where the exact
behavior does not strictly depend on the length of the string. As basis for the motion primitive
exploration in the next section, each string was plucked at least 15 times during the geometric

exploration stages to balance the best achievable precision and swift exploration.

Pluck Exploration

To access the success of the described active valid pluck exploration process, the growth and
evolution of the valid parameter set throughout the exploration is determined through an inter-
section over union (IoU) measure with the corresponding final valid parameter set. As shown in
Figure 4.7, a significant portion of the final set is approximated within the first 70 samples where
IoU exceeds 0.5. Progress near the border regions takes significantly more attempted plucks.
A hypothetical baseline exploration, which integrates random samples from the same dataset,
performs significantly worse, because it does not systematically grow the initial valid set. As it
is not bound by the unknown validity of sampled plucks, it provides global information on D
with less sampled plucks, but the mean absolute test set error still falls below 3 dBA for both
policies within 50 plucks.

101

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

Observed Loudness Across Strings 5(_rgontroller Performance Across Strings

70
° Pluck Direction — D6
& e inwards 1 F#5
—_ — 50
< 607 e outwards | — B4
[]
D, i ' o, — E4
0 n 45 1
$ 50- . ’ g | M
S é z S
3 3 40 A
3 I . 3 —
8407 v, 3
> ‘ H s 2 351
] ®) Q A
(7] (%]
830t *® (R 1R /\/
© ¢ ’ ¢ %S 30 -
[] : [
[] L]) ’ .
e © P
Zoémvvvvvmmmmmm 25 ! ' ' ' '
<o oQWXFILodAWF OO 25 30 35 40 45 50 55
String Target Loudness [dBA]

Figure 4.8 — (left) Loudness distribution of evaluated plucks for 13 strings after 1300 plucks of au-
tonomous exploration. All reconstructed strings could be plucked within a dynamic range of at least
20dBA, corresponding to a four- to eightfold subjective doubling of the loudness. (right) Experi-
mental performance curve of predicted pluck parameters to achieve a target loudness.

System-Level Integration

In a final integration test, estimates for the 13 upper strings of the instrument are initialized
kinesthetically and the system is left to explore both stages for two hours. The switch between
the two exploration stages was heuristically determined to happen after 200 successful plucks
during the first stage. Figure 4.8 (left) presents the observed loudness distribution of note onsets
in the collected set of samples. All strings were successfully explored with a dynamic range
of 20—40dBA. The significant shift in measured loudness between central notes appears as an

artifact of the instrument’s resonance and the contact microphone.

Eventually, the generated model can be utilized to infer parameters for a target loudness the
plucking motion should achieve. To this end, a motion parameter set can be optimized within
P09 of the explored model through Monte Carlo methods as described in subsection 4.2.2.
Testing reproducibility, 20 evenly spaced loudness responses across the range of previously ob-
served values for each string were evaluated in five attempts each through physical execution.
As shown in Figure 4.8 (right), response predictions are usually accurate within 3 dB, but flatten
out where weak onsets could not be reproduced sufficiently well due to stochastic system noise.

102

44. Active MoTtioN PriMITIVE ExpLORATION (AMPE)

4.4.2 Summary

This chapter investigates a two-stage active exploration approach that allows a physical robot
to reconstruct the geometry of chordophones and explore associated plucking motions for ex-
pressive play through motion primitive exploration. As the musical instrument and the dexter-
ous robot components are prone to break through repeated inappropriate contacts, a validity-
constraint exploration paradigm was derived. Validity of attempted motions was determined
through observed effects across multiple modalities. Starting from a weak prior of the instru-
ment geometry provided through kinesthetic demonstrations, the robot autonomously and suc-
cessfully explored the doubly-curved geometry of a Chinese Guzheng, refining an environment
model, and explores the action space of a motion primitive formulation to interact with the in-
strument. The effects of motion primitives to generate note onsets could be characterized with
a small margin of error and the generated model can be utilized to generate local motions to

manipulate the instrument and yield desired note onsets.

103

CHAPTER 4. VALIDITY-CONSTRAINT MOTION PRIMITIVE EXPLORATION

104

Chapter 5
Conclusion

Summary This dissertation advances both the fields of description and planning of manip-
ulation actions, as well as the field of data-oriented self-exploration for local motions during
manipulation. It introduces a modular, phase-based approach to robotic manipulation design
and planning and demonstrates its effectiveness and versatility using the Movelt Task Construc-
tor software framework, supported by experimental studies.

By segmenting complex manipulation tasks into distinct motion phases — each solvable by a
dedicated planning module — the methods can be adapted to different scenarios, robots, and
application domains. This approach combines modular reuse of solvers with special-purpose
trajectory generation, while facilitating introspection and debugging: failures can be localized in
individual phases and traced back to the corresponding solver or planning request. This modular,
phase-oriented structure simplifies integration in real-world deployments.

In straightforward motion-planning contexts, dedicated planners generate collision-free transit
motions, while separate logic identifies and evaluates multiple inverse-kinematics solutions. In
more advanced settings, such as tool use, the framework cleanly delimits subproblems — includ-
ing approach, tool attachment, and specialized object handling — so that each can incorporate
task-specific computation. A key advantage of this phase-based delineation is the explicit han-
dling of phase transitions, allowing the system to define and adjust the expected world state and
possibly switch trajectory controllers between phases.

A complementary contribution of this work is a method for physical self-exploration of multi-
modal motion-phase primitives, demonstrated through robotic interactions with a Chinese chor-
dophone. By limiting the exploration to a constrained set of motion parameters and tracking
feedback across multiple sensing modalities, the robot can efficiently map the range of achiev-
able effects. To minimize risk in environments where inappropriate movements may cause dam-
age, the approach employs a validity-constrained exploration strategy, growing a trust region
through attempted motions. Applied in an anytime fashion, the system collects sufficient expe-
rience to build predictive models of expected motion outcomes and can then reproduce desired

effects through model inversion.

105

CHAPTER 5. CONCLUSION

Impact beyond publications During the development of the software implementations for this
dissertation, substantial contributions were made to the global Open Source robotics community.
Numerous software patches were contributed to community projects in the ROS ecosystem, in-
cluding over 1000 patches to software repositories directly related to maintenance efforts for the
Movelt manipulation framework. The released core package of Movelt received over 1.3 mil-
lion binary package downloads from between 2020 and 2025. The released software framework
Movelt Task Constructor, developed in collaboration with Robert Haschke, received over 19000
binary package downloads between 2023 and 2025. Further enhancing exposure in the com-
munity, an early version of the framework was utilized as part of a significantly larger system
in the winning entry of the Mobile Manipulation Hackathon Competition at the International
Conference on Intelligent Robots and Systems (IROS) 2018 [122].

Outlook The primary goal of this work is to enable planning and exploration of local mo-
tions, providing essential building blocks and planning schemas for complex manipulation tasks.
While the Task Construction design philosophy simplifies the overall planning structure and sup-
ports black-box methods for subproblems, information propagation between phases remains a
challenge for further research. In contrast to the purely local approach developed in this work,
fully optimization-based methods for complete manipulation sequences — such as the recent
Shadow Program approach by Alt et al. [2] — aim to optimize entire manipulation processes,
but demand significant offline computation and are sensitive to hyperparameter selection. Open
potential remains in the sample selection for co-parameters through integration of information
over alternative planning attempts. Informed sampling strategies for phase parameters, such as
cross-entropy methods and scene-conditioned discrete parameter prediction inspired by Driess
et al. [32], might provide a feasible approach for faster selection of performant parameters and
learning of heuristics beyond individual manipulation planning attempts.

Task Construction with standard Stage and Container structures explicitly accommodates tex-
tual task specifications which are tied to clear stage definitions and properties. Research into
automatically generating and adapting these specifications for new scenarios holds promise for
future work.

With the recent success of imitation learning through diffusion mechanisms [22, 88] and vision—
language—action model training [76], Task Construction provides an adaptable mechanism for
the synthetic generation of expert demonstrations, generalizing the approach of the Motion-
BenchMaker system [21] to extended manipulation tasks.

Finally, as a middle ground between motion planning and TAMP with a practical focus, Task
Construction could contribute to introspectable TAMP approaches through an additional inter-
face layer for task planning. Initial ideas in this direction where presented by Siburian et al. [132]
through integration with PDDLStream [43].

106

References

[1] Sina Aghli and Christoffer Heckman. “Online System Identification and Calibration
of Dynamic Models for Autonomous Ground Vehicles”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018, pp. 4933-4939. por: 10.1109
/ICRA.2018.8460691.

[2] Benjamin Alt, Claudius Kienle, Darko Katic, Rainer Jékel, and Michael Beetz. Shadow
Program Inversion with Differentiable Planning: A Framework for Unified Robot Pro-
gram Parameter and Trajectory Optimization. 2025. por: 10.48550/arXiv.2409.08678.

[3] Fahiem Bacchus and Qiang Yang. “The downward refinement property”. In: Proceed-
ings of the 12th International Joint Conference on Artificial Intelligence - Volume 1.
IJCATI'91. Sydney, New South Wales, Australia: Morgan Kaufmann Publishers Inc.,
1991, pp. 286-292. 1sBN: 1558601600.

URL: https://dl.acm.org/doi/10.5555/1631171.1631214.

[4] Clark Barrett and Cesare Tinelli. “Satisfiability Modulo Theories”. In: Handbook of
Model Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem. Cham: Springer International Publishing, 2018, pp. 305-343. 1sBN:
978-3-319-10575-8. por: 10.1007/978-3-319-10575-8_11.

[S] Patrick Beeson and Barrett Ames. “TRAC-IK: An open-source library for improved
solving of generic inverse kinematics”. In: 2015 IEEE-RAS 15th International Confer-
ence on Humanoid Robots (Humanoids). 2015, pp. 928-935. por: 10.1109/HUMANOIDS.
2015.7363472.

[6] Michael Beetz, Daniel BeBler, Andrei Haidu, Mihai Pomarlan, Asil Kaan Bozcuoglu,
and Georg Bartels. “Know Rob 2.0 — A 2nd Generation Knowledge Processing Frame-
work for Cognition-Enabled Robotic Agents”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). 2018, pp. 512-519. por: 10.1109/ICRA.2018.84
60964.

[7]1 Michael Beetz, Gayane Kazhoyan, and David Vernon. The CRAM Cognitive Architec-
ture for Robot Manipulation in Everyday Activities. 2023. por: 10.48550/arXiv.2304.1
4119.

[8] Michael Beetz, Lorenz Mosenlechner, and Moritz Tenorth. “CRAM — A Cognitive
Robot Abstract Machine for everyday manipulation in human environments”. In: 2010

107

https://doi.org/10.1109/ICRA.2018.8460691
https://doi.org/10.1109/ICRA.2018.8460691
https://doi.org/10.48550/arXiv.2409.08678
https://dl.acm.org/doi/10.5555/1631171.1631214
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1109/HUMANOIDS.2015.7363472
https://doi.org/10.1109/HUMANOIDS.2015.7363472
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.48550/arXiv.2304.14119
https://doi.org/10.48550/arXiv.2304.14119

REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2010,
pp- 1012-1017. por: 10.1109/IROS.2010.5650146.

Lars Berscheid. “Self-supervised Learning of Primitive-based Robotic Manipulation”.
PhD thesis. Karlsruher Institut fiir Technologie (KIT), 2023. 181 pp. por: 10.5445/IR/1
000164562.

Lars Berscheid and Torsten Kroger. “Jerk-limited Real-time Trajectory Generation with
Arbitrary Target States”. In: Robotics: Science and Systems XVII (2021). por: arXiv:2
105.04830.

Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan D. Ratliff,
Dieter Fox, Fabio Ramos, and Byron Boots. “STORM: An Integrated Framework for
Fast Joint-Space Model-Predictive Control for Reactive Manipulation”. In: Proceed-
ings of the 5th Conference on Robot Learning. Ed. by Aleksandra Faust, David Hsu,
and Gerhard Neumann. Vol. 164. Proceedings of Machine Learning Research. PMLR,
Nov. 2022, pp. 750-759.

Sebastian Bock and Gerhard Widmer. “Maximum filter vibrato suppression for onset
detection”. In: Proc. of the 16th Int. Conf. on Digital Audio Effects (DAFx). Maynooth,
Ireland (Sept 2013). Vol. 7. 2013, p. 4.

URL: https://www.dafx.de/paper-archive/2013/papers/09.dafx2013_submission_12
.pdf.

Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. “Data-Driven
Grasp Synthesis—A Survey”. In: IEEE Transactions on Robotics 30.2 (2014), pp. 289—
309. por: 10.1109/TR0O.2013.2289018.

Bertold Bongardt. “Inverse Kinematics of Anthropomorphic Arms Yielding Eight Co-
inciding Circles”. In: Computational Kinematics. Ed. by Said Zeghloul, Lotfi Romd-
hane, and Med Amine Laribi. Cham: Springer International Publishing, 2018, pp. 525-
534. 1sBN: 978-3-319-60867-9.

Alessandro Bottero, Carlos Luis, Julia Vinogradska, Felix Berkenkamp, and Jan R Pe-
ters. “Information-Theoretic Safe Exploration with Gaussian Processes”. In: Advances
in Neural Information Processing Systems 35 (2022), pp. 30707-30719. por: 10.4855
0/arXiv.2212.04914.

Mason Bretan and Gil Weinberg. “A Survey of Robotic Musicianship”. In: Commun.
ACM 59.5 (Apr. 2016), pp. 100-109. por: 10.1145/2818994.

Judith C. Brown and Miller S. Puckette. “An efficient algorithm for the calculation of a
constant Q transform”. In: The Journal of the Acoustical Society of America 92.5 (Nov.
1992), pp. 2698-2701. 1ssn: 0001-4966. por: 10.1121/1.404385.

108

https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.5445/IR/1000164562
https://doi.org/10.5445/IR/1000164562
https://doi.org/arXiv:2105.04830
https://doi.org/arXiv:2105.04830
https://www.dafx.de/paper-archive/2013/papers/09.dafx2013_submission_12.pdf
https://www.dafx.de/paper-archive/2013/papers/09.dafx2013_submission_12.pdf
https://doi.org/10.1109/TRO.2013.2289018
https://doi.org/10.48550/arXiv.2212.04914
https://doi.org/10.48550/arXiv.2212.04914
https://doi.org/10.1145/2818994
https://doi.org/10.1121/1.404385

REFERENCES

[18] Gerelmaa Byambatsogt, Lodoiravsal Choimaa, and Gou Koutaki. “Guitar Chord Sens-
ing and Recognition Using Multi-Task Learning and Physical Data Augmentation with
Robotics”. In: Sensors 20.21 (2020). por: 10.3390/s20216077.

[19] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent Lami-
raux, Olivier Stasse, and Nicolas Mansard. “The Pinocchio C++ library : A fast and
flexible implementation of rigid body dynamics algorithms and their analytical deriva-
tives”. In: 2019 IEEE/SICE International Symposium on System Integration (SII). 2019,
pp. 614-619. por: 10.1109/S11.2019.8700380.

[20] Delphine Chadefaux, Jean-Loic Le Carrou, Marie-Aude Vitrani, Sylvere Billout, and
Laurent Quartier. “Harp plucking robotic finger”. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2012, pp. 4886—4891. por: 1
0.1109/IROS.2012.6385720.

[21] Constantinos Chamzas, Carlos Quintero-Peia, Zachary Kingston, Andreas Orthey, Daniel
Rakita, Michael Gleicher, Marc Toussaint, and Lydia E. Kavraki. “MotionBenchMaker:
A Tool to Generate and Benchmark Motion Planning Datasets”. In: IEEE Robotics and
Automation Letters 7.2 (2022), pp. 882—-889. por: 10.1109/LRA.2021.3133603.

[22] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin CM Burch-
fiel, and Shuran Song. “Diffusion Policy: Visuomotor Policy Learning via Action Dif-
fusion”. In: Proceedings of Robotics: Science and Systems. Daegu, Republic of Korea,
July 2023. por: 10.15607/RSS.2023.XIX.026.

[23] Chris Duxbury and Mark Sandler and Mike Davies. “A Hybrid Approach to Musical
Note Onset Detection”. In: Proc. of the 5th Int. Conference on Digital Audio Effects
(DAFx-02), Hamburg, Germany. Sept. 2002, pp. 33-38.

URL: https ://dafx . de/papers/ DAFX02 _Duxbury _ Sandler _Davis _note _ onset _
detection.pdf.

[24] David Coleman, Ioan A. Sucan, Sachin Chitta, and Nikolaus Correll. “Reducing the
barrier to entry of complex robotic software: A Movelt! case study”. In: Journal of
Software Engineering for Robotics 5.1 (May 2014), pp. 3—16. por: 10.6092/JOSER_2
014_05_01_P3.

[25] Michele Colledanchise and Petter Ogren. Behavior trees in robotics and Al: An intro-
duction. CRC Press, 2018. 1sBN: 978-1138593732.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. 3rd. Cambridge, MA, USA: MIT Press, 2009. 1sBn: 978-0-262-
03384-8.

[27] John J. Craig. Introduction to Robotics: Mechanics and Control. 3rd. Pearson, 2013.
ISBN: 978-1-292-04004-2.

109

https://doi.org/10.3390/s20216077
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/IROS.2012.6385720
https://doi.org/10.1109/IROS.2012.6385720
https://doi.org/10.1109/LRA.2021.3133603
https://doi.org/10.15607/RSS.2023.XIX.026
https://dafx.de/papers/DAFX02_Duxbury_Sandler_Davis_note_onset_detection.pdf
https://dafx.de/papers/DAFX02_Duxbury_Sandler_Davis_note_onset_detection.pdf
https://doi.org/10.6092/JOSER_2014_05_01_P3
https://doi.org/10.6092/JOSER_2014_05_01_P3

REFERENCES

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Neil T. Dantam, Zachary Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. “An In-
cremental Constraint-Based Framework for Task and Motion Planning”. In: The Inter-

national Journal of Robotics Research, Special Issue on the 2016 Robotics: Science and
Systems Conference 37.10 (2018), pp. 1134-1151. por: 10.1177/0278364918761570.

Elisa De Stefani, Alessandro Innocenti, Doriana De Marco, and Maurizio Gentilucci.
“Concatenation of Observed Grasp Phases with Observer’s Distal Movements: A Be-
havioural and TMS Study”. In: PLOS ONE 8.11 (Nov. 2013), null. por: 10.1371/
journal.pone.0081197.

Jacques Denavit and Richard S. Hartenberg. “A Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices”. In: Journal of Applied Mechanics 22.2 (June 1955),
pp- 215-221. 1ssn: 0021-8936. por: 10.1115/1.4011045.

Hailei Ding, Hao Zhang, Bingqiang Yan, Junjun Jiang, Min Huang, and Zhongzhe
Xiao. “Automatic Recognition of Basic Guzheng Fingering Techniques”. In: Proceed-
ings of the 8th Conference on Sound and Music Technology. Springer Singapore, 2021,
pp. 66-77. por: 10.1007/978-981-16-1649-5_6.

Danny Driess, Jung-Su Ha, and Marc Toussaint. “Deep Visual Reasoning: Learning to
Predict Action Sequences for Task and Motion Planning from an Initial Scene Image”.
In: Proceedings of Robotics: Science and Systems. Corvalis, Oregon, USA, July 2020.
por: 10.15607/RSS.2020.XVI.003.

Kutluhan Erol, James Hendler, and Dana S. Nau. “HTN planning: complexity and ex-
pressivity”. In: Proceedings of the Twelfth AAAI National Conference on Artificial In-
telligence. AAAT’94. Seattle, Washington: AAAI Press, 1994, pp. 1123-1128.

Richard E. Fikes and Nils J. Nilsson. “Strips: A new approach to the application of
theorem proving to problem solving”. In: Artificial Intelligence 2.3 (1971), pp. 189—
208. 1ssn: 0004-3702. por: 10.1016/0004-3702(71)90010-5.

Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography”. In:
Commun. ACM 24.6 (June 1981), pp. 381-395. por: 10.1145/358669.358692.

Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron Boots,
and Dieter Fox. “Motion Policy Networks”. In: Proceedings of The 6th Conference on
Robot Learning. Ed. by Karen Liu, Dana Kulic, and Jeff Ichnowski. Vol. 205. Proceed-
ings of Machine Learning Research. PMLR, Dec. 2023, pp. 967-977. por: 10.48550
farXiv.2210.122009.

Maria Fox and Derek Long. “PDDL2.1: An extension to PDDL for expressing temporal
planning domains”. In: Journal of Artificial Intelligence Research 20 (2003), pp. 61—
124. por: 10.1613/jair.1129.

110

https://doi.org/10.1177/0278364918761570
https://doi.org/10.1371/journal.pone.0081197
https://doi.org/10.1371/journal.pone.0081197
https://doi.org/10.1115/1.4011045
https://doi.org/10.1007/978-981-16-1649-5_6
https://doi.org/10.15607/RSS.2020.XVI.003
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1145/358669.358692
https://doi.org/10.48550/arXiv.2210.12209
https://doi.org/10.48550/arXiv.2210.12209
https://doi.org/10.1613/jair.1129

REFERENCES

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. Mobile ALOHA: Learning Bimanual Mo-
bile Manipulation with Low-Cost Whole-Body Teleoperation. 2024. por: 10.48550/
arXiv.2401.02117.

Zixuan Fu. “A Brief Analysis of the Performance Skills and Treatment of Guzheng’s”.

In: Proceedings of the 2021 3rd International Conference on Literature, Art and Human
Development (ICLAHD 2021). 2021, pp. 733-741. por: 10.2991/assehr.k.211120.134.

Jonathan D. Gammell, Timothy D. Barfoot, and Siddhartha S. Srinivasa. “Batch In-
formed Trees (BIT*): Informed asymptotically optimal anytime search”. In: The In-
ternational Journal of Robotics Research (IJRR) 39.5 (Apr. 2020), pp. 543-567. por:
10.1177/0278364919890396.

Esther P. Gardner, K. Srinivasa Babu, Shari D. Reitzen, Soumya Ghosh, Alice S. Brown,
Jessie Chen, Anastasia L. Hall, Michael D. Herzlinger, Jane B. Kohlenstein, and Jin Y.
Ro. “Neurophysiology of Prehension. I. Posterior Parietal Cortex and Object-Oriented
Hand Behaviors”. In: Journal of Neurophysiology 97.1 (2007). PMID: 16971679, pp. 387—
406. por: 10.1152/jn.00558.2006.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver,
Leslie Pack Kaelbling, and Tomds Lozano-Pérez. “Integrated Task and Motion Plan-
ning”. In: Annual Review of Control, Robotics, and Autonomous Systems 4.Volume 4,
2021 (2021), pp. 265-293. 1ssN: 2573-5144. por: 10.1146/annurev-control-091420-0
84139.

Caelan Reed Garrett, Tomds Lozano-Pérez, and Leslie Pack Kaelbling. “PDDLStream:
Integrating Symbolic Planners and Blackbox Samplers via Optimistic Adaptive Plan-
ning”. In: Proceedings of the International Conference on Automated Planning and

Scheduling 30.1 (June 2020), pp. 440-448. por: 10.1609/icaps.v30i1.6739.

Roland Geraerts and Mark H. Overmars. “Creating High-quality Paths for Motion Plan-
ning”. In: The International Journal of Robotics Research 26.8 (2007), pp. 845-863.
por: 10.1177/0278364907079280.

Elmer G. Gilbert, Daniel W. Johnson, and Sathiya S. Keerthi. “A fast procedure for
computing the distance between complex objects in three-dimensional space”. In: IEEE
Journal on Robotics and Automation 4.2 (1988), pp. 193-203. por: 10.1109/56.2083.

Michael Gorner, Robert Haschke, Helge Ritter, and Jianwei Zhang. “Movelt! Task Con-
structor for Task-Level Motion Planning”. In: 2019 IEEE International Conference on
Robotics and Automation (ICRA). 2019, pp. 190-196. por: 10.1109/ICRA.2019.8793
898.

Michael Gorner, Norman Hendrich, and Jianwei Zhang. “Pluck and Play: Self-supervised
Exploration of Chordophones for Robotic Playing”. In: 2024 IEEE International Con-

111

https://doi.org/10.48550/arXiv.2401.02117
https://doi.org/10.48550/arXiv.2401.02117
https://doi.org/10.2991/assehr.k.211120.134
https://doi.org/10.1177/0278364919890396
https://doi.org/10.1152/jn.00558.2006
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1609/icaps.v30i1.6739
https://doi.org/10.1177/0278364907079280
https://doi.org/10.1109/56.2083
https://doi.org/10.1109/ICRA.2019.8793898
https://doi.org/10.1109/ICRA.2019.8793898

REFERENCES

ference on Robotics and Automation (ICRA). 2024, pp. 18286—18293. por: 10.1109
/ICRAS57147.2024.10610120.

[48] Michael Gorner, David Pivin, Francois Michaud, and Jianwei Zhang. “The Movelt
Benchmark Suite for Whole-Stack Planner Evaluation”. In: Workshop on Evaluating
Motion Planning Performance at IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2022.

URL: https://motion-planning- workshop.kavrakilab.org/papers/moveit- benchmark.
pdf.

[49] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang, Yu-Wei Chao, Qian Wan, Stan
Birchfield, Nathan Ratliff, and Dieter Fox. “DexPilot: Vision-Based Teleoperation of
Dexterous Robotic Hand-Arm System”. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). 2020, pp. 9164-9170. por: 10.1109/ICRA40945.20
20.9197124.

[50] Stephen Hart, Paul Dinh, and Kimberly Hambuchen. “The Affordance Template ROS
package for robot task programming”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). 2015, pp. 6227-6234. por: 10.1109/ICRA.2015
.71140073.

[51] Jeremias Hartz. “Adaptive Pouring of Liquids Based on Human Motions Using a Robotic
Arm”. MA thesis. University of Hamburg.

[52] Kiris Hauser. “Robust Contact Generation for Robot Simulation with Unstructured Meshes”.
In: Robotics Research: The 16th International Symposium ISRR. Ed. by Masayuki Inaba
and Peter Corke. Cham: Springer International Publishing, 2016, pp. 357-373. 1sBN:
978-3-319-28872-7. por: 10.1007/978-3-319-28872-7_21.

[53] Kris Hauser. “Task planning with continuous actions and nondeterministic motion plan-
ning queries”. In: Proc. of AAAI Workshop on Bridging the Gap between Task and
Motion Planning. 2010.

[54] Kris Hauser and Jean-Claude Latombe. “Multi-modal Motion Planning in Non-expansive
Spaces”. In: The International Journal of Robotics Research 29.7 (2010), pp. 897-915.
por: 10.1177/0278364909352098.

[55] Kris Hauser and Victor Ng-Thow-Hing. “Randomized multi-modal motion planning
for a humanoid robot manipulation task™. In: The International Journal of Robotics
Research 30.6 (2011), pp. 678—698. por: 10.1177/0278364910386985.

[56] Jesse Haviland and Peter Corke. “NEO: A Novel Expeditious Optimisation Algorithm

for Reactive Motion Control of Manipulators™. In: IEEE Robotics and Automation Let-
ters 6.2 (2021), pp. 1043—-1050. por: 10.1109/LRA.2021.3056060.

112

https://doi.org/10.1109/ICRA57147.2024.10610120
https://doi.org/10.1109/ICRA57147.2024.10610120
https://motion-planning-workshop.kavrakilab.org/papers/moveit-benchmark.pdf
https://motion-planning-workshop.kavrakilab.org/papers/moveit-benchmark.pdf
https://doi.org/10.1109/ICRA40945.2020.9197124
https://doi.org/10.1109/ICRA40945.2020.9197124
https://doi.org/10.1109/ICRA.2015.7140073
https://doi.org/10.1109/ICRA.2015.7140073
https://doi.org/10.1007/978-3-319-28872-7_21
https://doi.org/10.1177/0278364909352098
https://doi.org/10.1177/0278364910386985
https://doi.org/10.1109/LRA.2021.3056060

REFERENCES

[57] Kelsey P. Hawkins. Analytic Inverse Kinematics for the Universal Robots UR-5/UR-
10 Arms. Technical Report. Institute for Robotics and Intelligent Machines (IRIM).
Georgia Institute of Technology, 2013.

UrL: http://hdl.handle.net/1853/50782 (visited on 11/17/2024).

[58] Frederik W. Heger and Sanjiv Singh. “Robust robotic assembly through contingencies,
plan repair and re-planning”. In: 2010 IEEE International Conference on Robotics and
Automation (ICRA). 2010, pp. 3825-3830. por: 10.1109/ROBOT.2010.5509274.

[59] Joachim Hertzberg, Jianwei Zhang, Liwei Zhang, Sebastian Rockel, Bernd Neumann,
Jos Lehmann, Krishna S. R. Dubba, Anthony G. Cohn, Alessandro Saffiotti, Federico
Pecora, Masoumeh Mansouri, Stefan Kone¢ny, Martin Giinther, Sebastian Stock, Luis
Seabra Lopes, Miguel Oliveira, Gi Hyun Lim, Hamidreza Kasaei, Vahid Mokhtari,
Lothar Hotz, and Wilfried Bohlken. “The RACE Project”. In: K1 - Kiinstliche Intelligenz
28.4 (Nov. 2014), pp. 297-304. 1ssn: 1610-1987. por: 10.1007/s13218-014-0327-y.

[60] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Bur-
gard. “OctoMap: an eflicient probabilistic 3D mapping framework based on octrees”.
In: Autonomous Robots 34.3 (Apr. 2013), pp. 189-206. 1ssn: 1573-7527. por: 10.100
7/s10514-012-9321-0.

[61] David Hsu, Jean-Claude Latombe, and Rajeev Motwani. “Path Planning in Expansive

Configuration Spaces”. In: International Journal of Computational Geometry & Ap-
plications 09.04n05 (1999), pp. 495-512. por: 10.1142/50218195999000285.

[62] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. “Taskflow: A Lightweight
Parallel and Heterogeneous Task Graph Computing System”. In: IEEE Transactions on
Farallel and Distributed Systems 33.6 (2022), pp. 1303—-1320. por: 10.1109/TPDS.20
21.3104255.

[63] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. “Language Mod-
els as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents”.
In: Proceedings of the 39th International Conference on Machine Learning. Ed. by
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato. Vol. 162. Proceedings of Machine Learning Research. PMLR, July 2022,
pp- 9118-9147. por: 10.48550/arXiv.2201.07207.

[64] Josie A. E. Hughes, Perla Maiolino, and Fumiya lida. “An anthropomorphic soft skele-
ton hand exploiting conditional models for piano playing”. In: Science Robotics 3.25
(2018), eaau3098. por: 10.1126/scirobotics.aau3098.

[65] Vladimir Ivan, Yiming Yang, Wolfgang Merkt, Michael P. Camilleri, and Sethu Vi-
jayakumar. “EXOTica: An Extensible Optimization Toolset for Prototyping and Bench-
marking Motion Planning and Control”. In: Robot Operating System (ROS): The Com-
plete Reference (Volume 3). Ed. by Anis Koubaa. Cham: Springer International Pub-

113

http://hdl.handle.net/1853/50782
https://doi.org/10.1109/ROBOT.2010.5509274
https://doi.org/10.1007/s13218-014-0327-y
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1142/S0218195999000285
https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.48550/arXiv.2201.07207
https://doi.org/10.1126/scirobotics.aau3098

REFERENCES

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

lishing, 2019, pp. 211-240. 1sBN: 978-3-319-91590-6. por: 10.1007/978-3-319-9159
0-6_7.

Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. “Fast marching
tree: A fast marching sampling-based method for optimal motion planning in many
dimensions”. In: The International Journal of Robotics Research 34.7 (2015). PMID:
27003958, pp. 883-921. por: 10.1177/0278364915577958.

Shuo Jiang and Lawson L.S. Wong. “Active Tactile Exploration using Shape-Dependent
Reinforcement Learning”. In: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2022, pp. 8995-9002. por: 10.1109/IROS47612.2022.99
82266.

Roland S. Johansson and J. Randall Flanagan. “Coding and use of tactile signals from
the fingertips in object manipulation tasks”. In: Nature Reviews Neuroscience 10.5
(May 2009), pp. 345-359. 1ssn: 1471-0048. por: 10.1038/nrn2621.

Christian Juelg, Andreas Hermann, Arne Roennau, and Riidiger Dillmann. “Efficient,
Collaborative Screw Assembly in a Shared Workspace”. In: Intelligent Autonomous
Systems 15. Ed. by Marcus Strand, Riidiger Dillmann, Emanuele Menegatti, and Stefano
Ghidoni. Cham: Springer International Publishing, 2019, pp. 837-848. 1sBN: 978-3-
030-01370-7. por: 10.1007/978-3-030-01370-7_65.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan
Schaal. “STOMP: Stochastic trajectory optimization for motion planning”. In: 2011
IEEE International Conference on Robotics and Automation (ICRA). 2011, pp. 4569—
4574. por: 10.1109/ICRA.2011.5980280.

Jay Kamat, Joaquim Ortiz-Haro, Marc Toussaint, Florian T. Pokorny, and Andreas Or-
they. “BITKOMO: Combining Sampling and Optimization for Fast Convergence in
Optimal Motion Planning”. In: 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 2022, pp. 4492-4497. por: 10.1109/IROS47612.202
2.9981732.

Ajay Kapur. “A History of robotic Musical Instruments”. In: Proceedings of the 2005
International Computer Music Conference, ICMC 2005, Barcelona, Spain, September
4-10, 2005. Michigan Publishing, 2005.

UrL: http://hdl.handle.net/2027/spo.bbp2372.2005.162.

Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion
planning”. In: The International Journal of Robotics Research 30.7 (2011), pp. 846—
894. por: 10.1177/0278364911406761.

Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars. “Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces”. In: IEEE

114

https://doi.org/10.1007/978-3-319-91590-6_7
https://doi.org/10.1007/978-3-319-91590-6_7
https://doi.org/10.1177/0278364915577958
https://doi.org/10.1109/IROS47612.2022.9982266
https://doi.org/10.1109/IROS47612.2022.9982266
https://doi.org/10.1038/nrn2621
https://doi.org/10.1007/978-3-030-01370-7_65
https://doi.org/10.1109/ICRA.2011.5980280
https://doi.org/10.1109/IROS47612.2022.9981732
https://doi.org/10.1109/IROS47612.2022.9981732
http://hdl.handle.net/2027/spo.bbp2372.2005.162
https://doi.org/10.1177/0278364911406761

REFERENCES

Transactions on Robotics and Automation 12.4 (1996), pp. 566-580. por: 10.1109/70
.508439.

[75] Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. “Crepe: A Convolu-
tional Representation for Pitch Estimation”. In: 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2018, pp. 161-165. por: 10.11
09/ICASSP.2018.8461329.

[76] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna,
Suraj Nair, Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas
Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang,
and Chelsea Finn. “OpenVLA: An Open-Source Vision-Language-Action Model”. In:
Proceedings of The 8th Conference on Robot Learning. Ed. by Pulkit Agrawal, Oliver
Kroemer, and Wolfram Burgard. Vol. 270. Proceedings of Machine Learning Research.
PMLR, June 2025, pp. 2679-2713. por: 10.48550/arXiv.2406.09246.

[77] Zachary Kingston and Lydia E. Kavraki. “Robowflex: Robot Motion Planning with
Movelt Made Easy”. In: 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2022, pp. 3108-3114. por: 10.1109/IROS47612.2022.9981698.

[78] Zachary Kingston and Lydia E. Kavraki. “Scaling Multimodal Planning: Using Experi-
ence and Informing Discrete Search”. In: IEEE Transactions on Robotics 39.1 (2023),
pp- 128-146. por: 10.1109/TR0O.2022.3197080.

[79] Kilian Kleeberger, Richard Bormann, Werner Kraus, and Marco F. Huber. “A Survey
on Learning-Based Robotic Grasping”. In: Current Robotics Reports 1.4 (Dec. 2020),
pp- 239-249. 1ssn: 2662-4087. por: 10.1007/s43154-020-00021-6.

[80] Torsten Kroger. “Opening the door to new sensor-based robot applications—The Re-
flexxes Motion Libraries”. In: 2011 IEEE International Conference on Robotics and
Automation (ICRA). 2011, pp. 1-4. por: 10.1109/ICRA.2011.5980578.

[81] JamesJ. Kuffner and Steven M. LaValle. “RRT-connect: An efficient approach to single-
query path planning”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat. No.OOCH370635).
Vol. 2. 2000, 995-1001 vol.2. por: 10.1109/ROBOT.2000.844730.

[82] Tobias Kunz and Mike Stilman. “Time-Optimal Trajectory Generation for Path Follow-
ing with Bounded Acceleration and Velocity”. In: Robotics: Science and Systems VIII.
The MIT Press, July 2013. 1sBN: 9780262315722. por: 10.7551/mitpress/9816.003.00
32.

[83] Luca Lach, Séverin Lemaignan, Francesco Ferro, Helge Ritter, and Robert Haschke.
“Bio-Inspired Grasping Controller for Sensorized 2-DoF Grippers™. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2022, pp. 11231
11237. por: 10.1109/IROS47612.2022.9981819.

115

https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/ICASSP.2018.8461329
https://doi.org/10.1109/ICASSP.2018.8461329
https://doi.org/10.48550/arXiv.2406.09246
https://doi.org/10.1109/IROS47612.2022.9981698
https://doi.org/10.1109/TRO.2022.3197080
https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1109/ICRA.2011.5980578
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.7551/mitpress/9816.003.0032
https://doi.org/10.7551/mitpress/9816.003.0032
https://doi.org/10.1109/IROS47612.2022.9981819

REFERENCES

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Steven LaValle. “Rapidly-exploring random trees: A new tool for path planning”. In:
Research Report 9811 (1998).

Cen-You Li, Barbara Rakitsch, and Christoph Zimmer. “Safe active learning for multi-
output gaussian processes”. In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2022, pp. 4512-4551. por: 10.48550/arXiv.2203.14849.

Ning Li and Dandan Li. “Acoustic Measurement and Modeling of the Traditional Chi-
nese Instrument Guzheng in Digital Transformation: A Case Study of Spectral and
Resonance Analysis of Standard Pitch A440”. In: Open Journal of Acoustics 12 (Jan.
2024), pp. 17-30. por: 10.4236/0ja.2024.122002.

Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Gorner, Song Tang, Bin Fang,
Fuchun Sun, and Jianwei Zhang. “PointNetGPD: Detecting Grasp Configurations from
Point Sets”. In: 2019 International Conference on Robotics and Automation (ICRA).
2019, pp. 3629-3635. por: 10.1109/ICRA.2019.8794435.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew
Le. “Flow Matching for Generative Modeling”. In: The Eleventh International Confer-
ence on Learning Representations. 2023. por: 10.48550/arXiv.2210.02747.

Shuai Liu and Pengcheng Liu. “Benchmarking and optimization of robot motion plan-
ning with motion planning pipeline”. In: The International Journal of Advanced Man-
ufacturing Technology 118.3 (Jan. 2022), pp. 949-961. 1ssn: 1433-3015. por: 10.1007
/s00170-021-07985-5.

Yuchen Liu, Luigi Palmieri, Sebastian Koch, Ilche Georgievski, and Marco Aiello.
“Delta: Decomposed efficient long-term robot task planning using large language mod-
els”. In: 2025 IEEE International Conference on Robotics and Automation (ICRA). To
Appear. May 2025. por: 10.48550/arXiv.2404.03275.

Zeyi Liu, Arpit Bahety, and Shuran Song. “REFLECT: Summarizing Robot Experi-
ences for Failure Explanation and Correction”. In: 7th Annual Conference on Robot
Learning. 2023.

URL: https://openreview.net/forum?id=8yTS_nAILxt.

Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Con-
trol. 1st. USA: Cambridge University Press, 2017. 1sBn: 1107156300.

Jianzhi Lyu, Philipp Ruppel, Norman Hendrich, Shuang Li, Michael Gorner, and Jian-
wei Zhang. “Efficient and Collision-Free Human—Robot Collaboration Based on Inten-
tion and Trajectory Prediction”. In: IEEE Transactions on Cognitive and Developmen-
tal Systems 15.4 (2023), pp. 1853-1863. por: 10.1109/TCDS.2022.3215093.

116

https://doi.org/10.48550/arXiv.2203.14849
https://doi.org/10.4236/oja.2024.122002
https://doi.org/10.1109/ICRA.2019.8794435
https://doi.org/10.48550/arXiv.2210.02747
https://doi.org/10.1007/s00170-021-07985-5
https://doi.org/10.1007/s00170-021-07985-5
https://doi.org/10.48550/arXiv.2404.03275
https://openreview.net/forum?id=8yTS_nAILxt
https://doi.org/10.1109/TCDS.2022.3215093

REFERENCES

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Jeffrey Mahler, Matthew Matl, Vishal Satish, Michael Danielczuk, Bill DeRose, Stephen
McKinley, and Ken Goldberg. “Learning ambidextrous robot grasping policies”. In:
Science Robotics 4.26 (2019), eaaud984. por: 10.1126/scirobotics.aau4984.

Tobia Marcucci, Mark Petersen, David von Wrangel, and Russ Tedrake. “Motion plan-
ning around obstacles with convex optimization”. In: Science Robotics 8.84 (2023),
eadf7843. por: 10.1126/scirobotics.adf7843.

Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Hammoud,
Maximilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayakumar, and Nico-
las Mansard. “Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Op-
timal Control”. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). 2020, pp. 2536-2542. por: 10.1109/ICRA40945.2020.9196673.

Yutaka Matsuo, Yann LeCun, Maneesh Sahani, Doina Precup, David Silver, Masashi
Sugiyama, Eiji Uchibe, and Jun Morimoto. “Deep learning, reinforcement learning,
and world models”. In: Neural Networks 152 (2022), pp. 267-275. 1ssn: 0893-6080.
por: https://doi.org/10.1016/j.neunet.2022.03.037.

Przemyslaw Mazurek and Dorota Oszutowska-Mazurek. “String Plucking and Touch-
ing Sensing using Transmissive Optical Sensors for Guzheng”. In: 16th International
Conference on Control, Automation, Robotics and Vision (ICARCV). 2020, pp. 1143-
1149. por: 10.1109/ICARCV50220.2020.9305480.

Joseph Mirabel, Steve Tonneau, Pierre Fernbach, Anna-Kaarina Seppild, Myléne Cam-
pana, Nicolas Mansard, and Florent Lamiraux. “HPP: A new software for constrained
motion planning”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2016, pp. 383-389. por: 10.1109/IROS.2016.7759083.

Mark Moll, Ioan A. Sucan, and Lydia E. Kavraki. “Benchmarking motion planning al-
gorithms: An extensible infrastructure for analysis and visualization”. In: IEEE Robotics
& Automation Magazine 22.3 (Sept. 2015), pp. 96-102. por: 10.1109/MRA.2015.244
8276.

Louis Montaut, Quentin Le Lidec, Vladimir Petrik, Josef Sivic, and Justin Carpentier.
“Collision Detection Accelerated: An Optimization Perspective”. In: Proceedings of
Robotics: Science and Systems. New York City, NY, USA, June 2022. por: 10.15607
/RSS.2022.XVIII.039.

Andrew S. Morgan, Kaiyu Hang, Walter G. Bircher, Fadi M. Alladkani, Abhinav Gandhi,
Berk Calli, and Aaron M. Dollar. “Benchmarking cluttered robot pick-and-place ma-
nipulation with the box and blocks test”. In: IEEE Robotics and Automation Letters 5.2
(2020), pp. 454-461. por: 10.1109/LRA.2019.2961053.

Mina Mounir, Peter Karsmakers, and Toon van Waterschoot. “CNN-based Note Onset
Detection using Synthetic Data Augmentation”. In: 2020 28th European Signal Pro-

117

https://doi.org/10.1126/scirobotics.aau4984
https://doi.org/10.1126/scirobotics.adf7843
https://doi.org/10.1109/ICRA40945.2020.9196673
https://doi.org/https://doi.org/10.1016/j.neunet.2022.03.037
https://doi.org/10.1109/ICARCV50220.2020.9305480
https://doi.org/10.1109/IROS.2016.7759083
https://doi.org/10.1109/MRA.2015.2448276
https://doi.org/10.1109/MRA.2015.2448276
https://doi.org/10.15607/RSS.2022.XVIII.039
https://doi.org/10.15607/RSS.2022.XVIII.039
https://doi.org/10.1109/LRA.2019.2961053

REFERENCES

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

cessing Conference (EUSIPCO). 2021, pp. 171-175. por: 10.23919/Eusipco47968.20
20.9287621.

Mina Mounir, Peter Karsmakers, and Toon van Waterschoot. “Musical note onset de-
tection based on a spectral sparsity measure”. In: EURASIP Journal on Audio, Speech,
and Music Processing 2021 (July 2021), p. 30. por: 10.1186/s13636-021-00214-7.

Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots. “Continuous-
time Gaussian process motion planning via probabilistic inference”. In: The Interna-
tional Journal of Robotics Research 37.11 (2018), pp. 1319-1340. por: 10.1177/0278
364918790369.

Shohin Mukherjee, Sandip Aine, and Maxim Likhachev. “MPLP: Massively Paral-
lelized Lazy Planning”. In: IEEE Robotics and Automation Letters 7.3 (2022), pp. 6067—
6074. por: 10.1109/LRA.2022.3157544.

Jim Murphy, James McVay, Paul Mathews, Dale A. Carnegie, and Ajay Kapur. “Ex-
pressive Robotic Guitars: Developments in Musical Robotics for Chordophones”. In:
Computer Music Journal 39.1 (2015), pp. 59-73. por: 10.1162/COMJ_a_00285.

Sankaranarayanan Natarajan and Frank Kirchner. “Multi-Modal Manipulation Plan-
ning for an Upper-Torso Humanoid System”. In: 2022 IEEE-RAS 21st International
Conference on Humanoid Robots (Humanoids). 2022, pp. 134-140. por: 10.1109/
Humanoids53995.2022.10000144.

Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan Mousavian, Clemens Epp-
ner, Jiirgen Leitner, Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic,
Dieter Fox, and Akansel Cosgun. “Deep Learning Approaches to Grasp Synthesis: A
Review”. In: IEEE Transactions on Robotics 39.5 (2023), pp. 3994—-4015. por: 10.110
9/TR0O.2023.3280597.

Giang Hoang Nguyen, Daniel BeBler, Simon Stelter, Mihai Pomarlan, and Michael
Beetz. “Translating Universal Scene Descriptions into Knowledge Graphs for Robotic
Environment”. In: 2024 IEEE International Conference on Robotics and Automation

(ICRA). 2024, pp. 9389-9395. por: 10.1109/ICRA57147.2024.10611691.

Karin Nieuwenhuizen, Lei Liu, Robert van Liere, and Jean-Bernard Martens. “Insights
from Dividing 3D Goal-Directed Movements into Meaningful Phases”. In: IEEE Com-
puter Graphics and Applications 29.6 (2009), pp. 44-53. por: 10.1109/MCG.2009.12
1.

Takumi Ogata and Gil Weinberg. “Robotically Augmented Electric Guitar for Shared
Control”. In: Proceedings of the International Conference on New Interfaces for Musi-
cal Expression. Copenhagen, Denmark: Aalborg University Copenhagen, 2017, pp. 487—
488. por: 10.5281/zenodo.1176326.

118

https://doi.org/10.23919/Eusipco47968.2020.9287621
https://doi.org/10.23919/Eusipco47968.2020.9287621
https://doi.org/10.1186/s13636-021-00214-7
https://doi.org/10.1177/0278364918790369
https://doi.org/10.1177/0278364918790369
https://doi.org/10.1109/LRA.2022.3157544
https://doi.org/10.1162/COMJ_a_00285
https://doi.org/10.1109/Humanoids53995.2022.10000144
https://doi.org/10.1109/Humanoids53995.2022.10000144
https://doi.org/10.1109/TRO.2023.3280597
https://doi.org/10.1109/TRO.2023.3280597
https://doi.org/10.1109/ICRA57147.2024.10611691
https://doi.org/10.1109/MCG.2009.121
https://doi.org/10.1109/MCG.2009.121
https://doi.org/10.5281/zenodo.1176326

REFERENCES

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. “Grasp Pose De-
tection in Point Clouds”. In: The International Journal of Robotics Research 36.13-14
(2017), pp. 1455-1473. por: 10.1177/0278364917735594.

Fabian Peller-Konrad, Rainer Kartmann, Christian R.G. Dreher, Andre Meixner, Fabian
Reister, Markus Grotz, and Tamim Asfour. “A memory system of a robot cognitive
architecture and its implementation in ArmarX”. In: Robotics and Autonomous Systems
164 (2023), p. 104415. 1ssn: 0921-8890. por: https://doi.org/10.1016/j.robot.2023.10
4415.

Louis Petit and Alexis Lussier Desbiens. “RRT-Rope: A deterministic shortening ap-
proach for fast near-optimal path planning in large-scale uncluttered 3D environments”.
In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
2021, pp. 1111-1118. por: 10.1109/SM(C52423.2021.9659071.

Hung Pham and Quang Cuong Pham. “A New Approach to Time-Optimal Path Para-
meterization Based on Reachability Analysis”. In: IEEE Transactions on Robotics 34
(June 2018), pp. 645-659. por: 10.1109/TRO.2018.2819195.

Lerrel Pinto and Abhinav Gupta. “Supersizing self-supervision: Learning to grasp from
50K tries and 700 robot hours”. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA). 2016, pp. 3406-3413. por: 10.1109/ICRA.2016.7487517.

David Pivin. “Pipette automatisée et pince comme effecteurs d’un bras robotique col-
laboratif pour I’automatisation de procédés expérimentaux en biologie synthétique”.
MA thesis. Université de Sherbrooke, 2022.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-
chine Learning. The MIT Press, Nov. 2005. 1sBN: 9780262256834. por: 10.7551/
mitpress/3206.001.0001.

Stéphane Redon, Abderrahmane Kheddar, and Sabine Coquillart. “Fast Continuous
Collision Detection between Rigid Bodies”. In: Computer Graphics Forum 21.3 (2002),
pp- 279-287. por: https://doi.org/10.1111/1467-8659.t01-1-00587.

Stephane Redon, Ming C. Lin, Dinesh Manocha, and Young J. Kim. “Fast Continuous
Collision Detection for Articulated Models”. In: Journal of Computing and Information
Science in Engineering 5.2 (Feb. 2005), pp. 126—137. 1ssn: 1530-9827. por: 10.1115
/1.1884133.

Maximo A. Roa, Mehmet R. Dogar, Jordi Pages, Carlos Vivas, Antonio Morales, Niko-
laus Correll, Michael Gorner, Jan Rosell, Sergi Foix, Raphael Memmesheimer, and
Francesco Ferro. “Mobile Manipulation Hackathon: Moving into Real World Appli-
cations”. In: IEEE Robotics & Automation Magazine 28.2 (2021), pp. 112-124. por:
10.1109/MRA.2021.3061951.

119

https://doi.org/10.1177/0278364917735594
https://doi.org/https://doi.org/10.1016/j.robot.2023.104415
https://doi.org/https://doi.org/10.1016/j.robot.2023.104415
https://doi.org/10.1109/SMC52423.2021.9659071
https://doi.org/10.1109/TRO.2018.2819195
https://doi.org/10.1109/ICRA.2016.7487517
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/https://doi.org/10.1111/1467-8659.t01-1-00587
https://doi.org/10.1115/1.1884133
https://doi.org/10.1115/1.1884133
https://doi.org/10.1109/MRA.2021.3061951

REFERENCES

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Philipp Ruppel, Norman Hendrich, Sebastian Starke, and Jianwei Zhang. “Cost Func-
tions to Specify Full-Body Motion and Multi-Goal Manipulation Tasks”. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). 2018, pp. 3152-3159.
por: 10.1109/ICRA.2018.8460799.

Francesco Ruscelli, Arturo Laurenzi, Nikos G. Tsagarakis, and Enrico Mingo Hoffman.
“Horizon: A Trajectory Optimization Framework for Robotic Systems”. In: Frontiers
in Robotics and AI 9 (2022). 1ssN: 2296-9144. por: 10.3389/frobt.2022.899025.

Gildardo Sanchez and Jean-Claude Latombe. “A Single-Query Bi-Directional Proba-
bilistic Roadmap Planner with Lazy Collision Checking”. In: Robotics Research. Ed.
by Raymond Austin Jarvis and Alexander Zelinsky. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 403—417. 1sBN: 978-3-540-36460-3. por: 10.1007/3-540-36460
-9_27.

Philipp S. Schmitt, Werner Neubauer, Wendelin Feiten, Kai M. Wurm, Georg V. Wichert,
and Wolfram Burgard. “Optimal, sampling-based manipulation planning”. In: 2017
IEEE International Conference on Robotics and Automation (ICRA). 2017, pp. 3426—
3432. por: 10.1109/ICRA.2017.7989390.

Tim Schneider, Boris Belousov, Georgia Chalvatzaki, Diego Romeres, Devesh K. Jha,
and Jan Peters. “Active Exploration for Robotic Manipulation”. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2022, pp. 9355—
9362. por: 10.1109/IROS47612.2022.9982061.

Christian Schorkhuber and Anssi Klapuri. “Constant-Q transform toolbox for music

processing”. In: 7th sound and music computing conference, Barcelona, Spain. 2010,
pp. 3-64.

Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts, Bastian Bischoff, Heiner Markert,
and Marc Toussaint. “Safe Exploration for Active Learning with Gaussian Processes”.
In: Machine Learning and Knowledge Discovery in Databases. Ed. by Albert Bifet,
Michael May, Bianca Zadrozny, Ricard Gavalda, Dino Pedreschi, Francesco Bonchi,
Jaime Cardoso, and Myra Spiliopoulou. Cham: Springer International Publishing, 2015,
pp- 133-149. 1sBN: 978-3-319-23461-8. por: 10.1007/978-3-319-23461-8_9.

John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia
Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. “Motion planning with sequential
convex optimization and convex collision checking”. In: The International Journal of
Robotics Research 33.9 (2014), pp. 1251-1270. por: 10.1177/0278364914528132.

Keisuke Shirai, Cristian C. Beltran-Hernandez, Masashi Hamaya, Atsushi Hashimoto,
Shohei Tanaka, Kento Kawaharazuka, Kazutoshi Tanaka, Yoshitaka Ushiku, and Shin-
suke Mori. “Vision-Language Interpreter for Robot Task Planning”. In: 2024 IEEE
International Conference on Robotics and Automation (ICRA). 2024, pp. 2051-2058.
por: 10.1109/ICRAS57147.2024.10611112.

120

https://doi.org/10.1109/ICRA.2018.8460799
https://doi.org/10.3389/frobt.2022.899025
https://doi.org/10.1007/3-540-36460-9_27
https://doi.org/10.1007/3-540-36460-9_27
https://doi.org/10.1109/ICRA.2017.7989390
https://doi.org/10.1109/IROS47612.2022.9982061
https://doi.org/10.1007/978-3-319-23461-8_9
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1109/ICRA57147.2024.10611112

REFERENCES

[132] Jeremy Siburian, Cristian C. Beltran-Hernandez, and Masashi Hamaya. “Practical Task
and Motion Planning for Robotic Food Preparation”. In: 2025 IEEE/SICE International
Symposium on System Integration (SII). 2025, pp. 1229-1234. por: 10.1109/S1159315
.2025.10870896.

[133] Tarek M. Sobh, Bei Wang, and Kurt W. Coble. “Experimental Robot Musicians”. In:
Journal of Intelligent and Robotic Systems 38.2 (Oct. 2003), pp. 197-212. 1ssn: 1573-
0409. por: 10.1023/A:1027319831986.

[134] Junlin Song, Pedro J. Sanchez-Cuevas, and Miguel Olivares-Mendez. “Towards Online
System Identification: Benchmark of Model Identification Techniques for Variable Dy-
namics UAV Applications”. In: 2022 International Conference on Unmanned Aircraft
Systems (ICUAS). 2022, pp. 590-598. por: 10.1109/ICUAS54217.2022.9836134.

[135] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and
Pieter Abbeel. “Combined task and motion planning through an extensible planner-
independent interface layer”. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). 2014, pp. 639-646. por: 10.1109/ICRA.2014.6906922.

[136] Joseph A. Starek, Javier V. Gomez, Edward Schmerling, Lucas Janson, Luis Moreno,
and Marco Pavone. “An asymptotically-optimal sampling-based algorithm for Bi-directional
motion planning”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2015, pp. 2072-2078. por: 10.1109/IROS.2015.7353652.

[137] Simon Stelter, Georg Bartels, and Michael Beetz. “An open-source motion planning
framework for mobile manipulators using constraint-based task space control with lin-
ear MPC”. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2022, pp. 1671-1678. por: 10.1109/IROS47612.2022.9982245.

[138] Marlin P Strub and Jonathan D Gammell. “Adaptively Informed Trees (AIT*) and Ef-
fort Informed Trees (EIT*): Asymmetric bidirectional sampling-based path planning”.
In: The International Journal of Robotics Research 41.4 (2022), pp. 390-417. por: 10
1177/02783649211069572.

[139] Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning Li-
brary”. In: IEEE Robotics & Automation Magazine 19.4 (Dec. 2012), pp. 72-82. por:
10.1109/MRA.2012.2205651.

[140] Balakumar Sundaralingam, Siva Kumar Sastry Hari, Adam Fishman, Caelan Garrett,
Karl Van Wyk, Valts Blukis, Alexander Millane, Helen Oleynikova, Ankur Handa,
Fabio Ramos, Nathan Ratliff, and Dieter Fox. “CuRobo: Parallelized Collision-Free
Robot Motion Generation”. In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). 2023, pp. 8112-8119. por: 10.1109/ICRA48891.2023.10160765.

[141] Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan,
Chen Bao, Xinsong Lin, Yulin Liu, Tse-kai Chan, Yuan Gao, Xuanlin Li, Tongzhou

121

https://doi.org/10.1109/SII59315.2025.10870896
https://doi.org/10.1109/SII59315.2025.10870896
https://doi.org/10.1023/A:1027319831986
https://doi.org/10.1109/ICUAS54217.2022.9836134
https://doi.org/10.1109/ICRA.2014.6906922
https://doi.org/10.1109/IROS.2015.7353652
https://doi.org/10.1109/IROS47612.2022.9982245
https://doi.org/10.1177/02783649211069572
https://doi.org/10.1177/02783649211069572
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/ICRA48891.2023.10160765

REFERENCES

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Mu, Nan Xiao, Arnav Gurha, Zhiao Huang, Roberto Calandra, Rui Chen, Shan Luo,
and Hao Su. ManiSkill3: GPU Parallelized Robotics Simulation and Rendering for
Generalizable Embodied Al. 2024. por: 10.48550/arXiv.2410.00425.

Wil Thomason, Zachary Kingston, and Lydia E. Kavraki. “Motions in Microseconds
via Vectorized Sampling-Based Planning”. In: 2024 IEEE International Conference on
Robotics and Automation (ICRA). 2024, pp. 8749-8756. por: 10.1109/ICRAS57147.20
24.10611190.

Wil Thomason, Marlin P. Strub, and Jonathan D. Gammell. “Task and Motion Informed
Trees (TMIT#*): Almost-Surely Asymptotically Optimal Integrated Task and Motion
Planning”. In: IEEE Robotics and Automation Letters 7.4 (2022), pp. 11370-11377.
por: 10.1109/LRA.2022.3199676.

Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua Tenenbaum. “Differentiable
Physics and Stable Modes for Tool-Use and Manipulation Planning”. In: Proceedings
of Robotics: Science and Systems. Pittsburgh, Pennsylvania, June 2018. por: 10.15607
/RSS.2018.X1V.044.

Marc Toussaint, Joaquim Ortiz-Haro, Valentin N. Hartmann, Erez Karpas, and Wolf-
gang Honig. “Effort Level Search in Infinite Completion Trees with Application to
Task-and-Motion Planning”. In: 2024 IEEE International Conference on Robotics and
Automation (ICRA). 2024, pp. 14902-14908. por: 10.1109/ICRAS57147.2024.106117
22.

Cuong Trinh, Dimiter Zlatanov, Matteo Zoppi, and Rezia Molfino. “A Geometrical Ap-
proach to the Inverse Kinematics of 6R Serial Robots With Offset Wrists™. In: vol. 5C:
39th Mechanisms and Robotics Conference. International Design Engineering Tech-
nical Conferences and Computers and Information in Engineering Conference. Aug.
2015, VOSCTO8AO016. por: 10.1115/DETC2015-47950.

Nikolaus Vahrenkamp, Tamim Asfour, Giorgio Metta, Giulio Sandini, and Riidiger
Dillmann. “Manipulability analysis”. In: 2012 12th IEEE-RAS International Confer-
ence on Humanoid Robots (Humanoids 2012). 2012, pp. 568-573. por: 10.1109/
HUMANOIDS.2012.6651576.

Christopher Waltham. “An Acoustical Comparison of East Asian and Western String
Instruments”. In: Proceedings Intl. Symposium on Musical Acoustics (ISMA 2014), Le
Mans, France. 2014, pp. 375-380.

URL: http://www.conforg.fr/isma2014/cdrom/data/articles/000144.pdf.

Yeping Wang, Pragathi Praveena, Daniel Rakita, and Michael Gleicher. “RangedIK:
An Optimization-based Robot Motion Generation Method for Ranged-Goal Tasks”.
In: 2023 IEEE International Conference on Robotics and Automation (ICRA). 2023,
pp- 9700-9706. por: 10.1109/ICRA48891.2023.10161311.

122

https://doi.org/10.48550/arXiv.2410.00425
https://doi.org/10.1109/ICRA57147.2024.10611190
https://doi.org/10.1109/ICRA57147.2024.10611190
https://doi.org/10.1109/LRA.2022.3199676
https://doi.org/10.15607/RSS.2018.XIV.044
https://doi.org/10.15607/RSS.2018.XIV.044
https://doi.org/10.1109/ICRA57147.2024.10611722
https://doi.org/10.1109/ICRA57147.2024.10611722
https://doi.org/10.1115/DETC2015-47950
https://doi.org/10.1109/HUMANOIDS.2012.6651576
https://doi.org/10.1109/HUMANOIDS.2012.6651576
http://www.conforg.fr/isma2014/cdrom/data/articles/000144.pdf
https://doi.org/10.1109/ICRA48891.2023.10161311

REFERENCES

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Ziyi Wang and Yin Cao. “An On-line Algorithm for Music-to-Score Alignment of
Guzheng Performance”. In: 2018 IEEE 23rd International Conference on Digital Sig-
nal Processing (DSP). 2018, pp. 1-5. por: 10.1109/ICDSP.2018.8631834.

Gil Weinberg, Mason Brean, Guy Hoffman, and Scott Driscoll. Robotic Musicianship:
Embodied Artificial Creativity and Mechatronic Musical Expression. Springer, 2020,
p- 270. por: 10.1007/978-3-030-38930-7.

Nicholas Wettels, Jeremy A. Fishel, and Gerald E. Loeb. “Multimodal Tactile Sensor”.
In: The Human Hand as an Inspiration for Robot Hand Development. Ed. by Ravi Bal-
asubramanian and Veronica J. Santos. Cham: Springer International Publishing, 2014,
pp- 405-429. 1sBN: 978-3-319-03017-3. por: 10.1007/978-3-319-03017-3_19.

Tyler S Wilson, Wil Thomason, Zachary Kingston, Lydia E Kavraki, and Jonathan D
Gammell. “Nearest-neighbourless asymptotically optimal motion planning with Fully
Connected Informed Trees (FCIT*)”. In: 2025 IEEE International Conference on Robotics
and Automation (ICRA). To Appear. May 2025. por: 10.48550/arXiv.2411.17902.

William A. Wolovich and Howard Elliott. “A computational technique for inverse kine-
matics”. In: The 23rd IEEE Conference on Decision and Control. 1984, pp. 1359—-1363.
por: 10.1109/CDC.1984.272258.

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jean-
nette Bohg, Szymon Rusinkiewicz, and Thomas Funkhouser. “TidyBot: personalized
robot assistance with large language models”. In: Autonomous Robots 47.8 (Dec. 2023),
pp- 1087-1102. 1ssn: 1573-7527. por: 10.1007/s10514-023-10139-z.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg.
“DayDreamer: World Models for Physical Robot Learning”. In: Proceedings of The
6th Conference on Robot Learning. Ed. by Karen Liu, Dana Kulic, and Jeff Ichnowski.
Vol. 205. Proceedings of Machine Learning Research. PMLR, Dec. 2023, pp. 2226-
2240. por: 10.48550/arXiv.2206.14176.

Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, and Pieter Abbeel. “GELLO: A
General, Low-Cost, and Intuitive Teleoperation Framework for Robot Manipulators”.
In: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2024, pp. 12156-12163. por: 10.1109/IROS58592.2024.10801581.

Qingyang Xi, Rachel M. Bittner, Johan Pauwels, Xuzhou Ye, and Juan P. Bello. “Gui-
tarset: A dataset for guitar transcription”. In: Proceedings of the 19th International
Society for Music Information Retrieval Conference, ISMIR 2018. 2018, pp. 453—460.

Deng Xiaowei, Yu Zhengyue, Yao Weiping, and Chen Minjie. “Simulation Analysis
of Vibro-Acoustic Characteristics of Traditional Guzheng”. In: Journal of Shanghai
Jiaotong University 50.02, 300 (2016), p. 300. por: 10.16183/j.cnki.jsjtu.2016.02.024.

123

https://doi.org/10.1109/ICDSP.2018.8631834
https://doi.org/10.1007/978-3-030-38930-7
https://doi.org/10.1007/978-3-319-03017-3_19
https://doi.org/10.48550/arXiv.2411.17902
https://doi.org/10.1109/CDC.1984.272258
https://doi.org/10.1007/s10514-023-10139-z
https://doi.org/10.48550/arXiv.2206.14176
https://doi.org/10.1109/IROS58592.2024.10801581
https://doi.org/10.16183/j.cnki.jsjtu.2016.02.024

REFERENCES

[160] Huazhe Xu, Yuping Luo, Shaoxiong Wang, Trevor Darrell, and Roberto Calandra. “To-
wards Learning to Play Piano with Dexterous Hands and Touch”. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2022, pp. 10410—
10416. por: 10.1109/IROS47612.2022.9981221.

[161] Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, Jing
Yuan Luo, Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carmelo
Sterrazza, Yuval Tassa, and Pieter Abbeel. “MuJoCo Playground”. In: arXiv preprint
(2025). por: 10.48550/arXiv.2502.08844.

[162] Kevin Zakka, Philipp Wu, Laura Smith, Nimrod Gileadi, Taylor Howell, Xue Bin Peng,
Sumeet Singh, Yuval Tassa, Pete Florence, Andy Zeng, and Pieter Abbeel. “RoboPi-
anist: Dexterous Piano Playing with Deep Reinforcement Learning”. In: Proceedings of
The 7th Conference on Robot Learning. Ed. by Jie Tan, Marc Toussaint, and Kourosh
Darvish. Vol. 229. Proceedings of Machine Learning Research. PMLR, Nov. 2023,
pp- 2975-2994. por: arXiv:2304.04150.

[163] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. “Learning Synergies Between Pushing and Grasping with Self-Supervised
Deep Reinforcement Learning”. In: 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2018, pp. 4238-4245. por: 10.1109/IROS.2018.85
93986.

[164] Ada Zhang, Mark Malhotra, and Yoky Matsuoka. “Musical piano performance by the
ACT Hand”. In: 2011 IEEE International Conference on Robotics and Automation
(ICRA). 2011, pp. 3536-3541. por: 10.1109/ICRA.2011.5980342.

[165] EndaZhang, Gopal Gupta, Charles Greif, and Andrew Paplinski. “An Efficient Modal-
based Approach Towards Guzheng Sound Synthesis”. In: arXiv preprint (2019). por:
10.48550/arXiv.1910.05447.

[166] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and
Pieter Abbeel. “Deep Imitation Learning for Complex Manipulation Tasks from Vir-
tual Reality Teleoperation”. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). 2018, pp. 5628-5635. por: 10.1109/ICRA.2018.8461249.

[167] RuohuaZhou and Josh D. Reiss. “Music Onset Detection”. In: Machine Audition: Prin-
ciples, Algorithms and Systems. Ed. by Wenwu Wang. Hershey, PA, USA: IGI Global,
2011, pp. 297-316. 1sBN: 9781615209194. por: 10.4018/978-1-61520-919-4.ch012.

[168] Matt Zucker, Nathan Ratliff, Anca D. Dragan, Mihail Pivtoraiko, Matthew Klingen-
smith, Christopher M. Dellin, J. Andrew Bagnell, and Siddhartha S. Srinivasa. “CHOMP:
Covariant Hamiltonian optimization for motion planning”. In: The International Jour-
nal of Robotics Research 32.9-10 (2013), pp. 1164-1193. por: 10.1177/02783649134
88805.

124

https://doi.org/10.1109/IROS47612.2022.9981221
https://doi.org/10.48550/arXiv.2502.08844
https://doi.org/arXiv:2304.04150
https://doi.org/10.1109/IROS.2018.8593986
https://doi.org/10.1109/IROS.2018.8593986
https://doi.org/10.1109/ICRA.2011.5980342
https://doi.org/10.48550/arXiv.1910.05447
https://doi.org/10.1109/ICRA.2018.8461249
https://doi.org/10.4018/978-1-61520-919-4.ch012
https://doi.org/10.1177/0278364913488805
https://doi.org/10.1177/0278364913488805

Online-References

[W1]

[W2]

[W3]

[W4]

[W5]

[W6]

[W7]

[WE]

[WI]

[W10]

[W11]

Actin: Software for Robotics Simulation and Control.
URL: https://outgoing.energid.info/documentation/actin_7.1.x/ (visited on 02/20/2025).

Levi Armstrong and the Tesseract Development Team. Tesseract - Motion Planning
Environment.
URL: https://github.com/tesseract-robotics/tesseract (visited on 08/13/2024).

Benchmark: a microbenchmark support library. 2022.
URL: https://github.com/google/benchmark (visited on 09/23/2022).

Sebastian Castro. PyRoboPlan: Educational Python library for manipulator motion
planning.
URL: https://github.com/sea-bass/pyroboplan (visited on 09/27/2024).

Boston Cleek. Deep Grasp Pose.
URL: https://github.com/PickNikRobotics/deep_grasp_demo (visited on 12/04/2024).

Intrinsic Flowstate.
URL: https://www.intrinsic.ai/flowstate (visited on 02/20/2025).

KUKA.SystemSoftware.
URL: https://www .kuka.com/en - de/products/robot - systems / software / system -
software/kuka_systemsoftware (visited on 03/03/2025).

MIKADO: camera-guided robotics.
URL: https://www.optonic.com/en/brands/mikado/ (visited on 02/20/2025).

Movelt Maintainer Group. The Movelt planning framework. 2024.
URL: http://moveit.ros.org (visited on 01/15/2024).

Movelt Pro: Robotics Developer Platform.
URL: https://picknik.ai/pro/ (visited on 02/20/2025).

moveit_ros_manipulation - Components of Movelt used for manipulation.
URL: https://github.com/moveit/moveit/tree/master/moveit_ros/manipulation (visited
on 11/03/2024).

125

https://outgoing.energid.info/documentation/actin_7.1.x/
https://github.com/tesseract-robotics/tesseract
https://github.com/google/benchmark
https://github.com/sea-bass/pyroboplan
https://github.com/PickNikRobotics/deep_grasp_demo
https://www.intrinsic.ai/flowstate
https://www.kuka.com/en-de/products/robot-systems/software/system-software/kuka_systemsoftware
https://www.kuka.com/en-de/products/robot-systems/software/system-software/kuka_systemsoftware
https://www.optonic.com/en/brands/mikado/
http://moveit.ros.org
https://picknik.ai/pro/
https://github.com/moveit/moveit/tree/master/moveit_ros/manipulation

ONLINE-REFERENCES

[W12]

[W13]

[W14]

[W15]

[W16]

[W17]

[W18]

[W19]

[W20]

[W21]

[W22]

[W23]

[W24]

MuJoCo - Advanced Physics Simulation.
URL: http://www.mujoco.org (visited on 01/04/2025).

Omniverse Platform for OpenUSD.
URL: https://www.nvidia.com/en-us/omniverse/ (visited on 01/17/2025).

Scott Paulin. Elbow joint self-collisions break path planning when full joint space is
used on URS.
URL: https :// github.com/ros - industrial / universal _ robot/issues /265 (visited on
12/18/2024).

David Pivin. Google Summer of Code - Creation of a Benchmark Suite.
URL: https://summerofcode.withgoogle.com/archive/2021/projects/666280105712025
6 (visited on 06/10/2024).

Polyscope 5.
URL: https://www .universal-robots.com/products/polyscope-5/ (visited on 03/03/2025).

rviz - 3D visualization tool for ROS.
URL: http://wiki.ros.org/rviz (visited on 11/03/2024).

SDFormat: Simulation Description Format.
URL: http://sdformat.org (visited on 01/04/2025).

Russ Tedrake and the Drake Development Team. Drake: Model-based design and ver-
ification for robotics.
URL: https://drake.mit.edu (visited on 01/15/2024).

The Orocos Project.
URL: https://orocos.org (visited on 09/23/2024).

urdyf.
URL: http://wiki.ros.org/urdf (visited on 02/16/2025).

YAML: Anchors and Aliases.
URL: https://yaml.org/spec/1.2.2/#3222-anchors-and-aliases (visited on 12/18/2024).

YAML: YAML Ain’t Markup Language.
URL: https://yaml.org (visited on 12/18/2024).

Kevin Zakka, Yuval Tassa, and MuJoCo Menagerie Contributors. MuJoCo Menagerie:

A collection of high-quality simulation models for MuJoCo.
URL: http://github.com/google-deepmind/mujoco_menagerie (visited on 12/18/2024).

126

http://www.mujoco.org
https://www.nvidia.com/en-us/omniverse/
https://github.com/ros-industrial/universal_robot/issues/265
https://summerofcode.withgoogle.com/archive/2021/projects/6662801057120256
https://summerofcode.withgoogle.com/archive/2021/projects/6662801057120256
https://www.universal-robots.com/products/polyscope-5/
http://wiki.ros.org/rviz
http://sdformat.org
https://drake.mit.edu
https://orocos.org
http://wiki.ros.org/urdf
https://yaml.org/spec/1.2.2/#3222-anchors-and-aliases
https://yaml.org
http://github.com/google-deepmind/mujoco_menagerie

Appendix A

Prior Publications

This dissertation is partly based on prior publications, with each relevant publication cited in the
individual chapters. For a complete overview, the following lists all my peer-reviewed publica-

tions, sorted chronologically, over the course of this dissertation.

Journal Papers

 Jianzhi Lyu, Alexander Maye, Michael Gérner, Philipp Ruppel, Andreas K. Engel and
Jianwei Zhang, Coordinating human-robot collaboration by EEG-based human intention
prediction and vigilance control, Frontiers in Neurorobotics, 2022.

¢ Jianzhi Lyu, Philipp Ruppel, Norman Hendrich, Shuang Li, Michael Gorner, and Jianwei
Zhang, Efficient and Collision-Free Human-Robot Collaboration Based on Intention and

Trajectory Prediction, IEEE Transactions on Cognitive and Developmental Systems, 2022.

* Lin Cong, Hongzhuo Liang, Philipp Ruppel, Yunlei Shi, Michael Gorner, Norman Hen-
drich, and Jianwei Zhang, Reinforcement Learning with Vision-Proprioception Model for
Robot Planar Pushing, Frontiers in Neurorobotics, Vol 16, 2022.

* Méaximo A. Roa, Mehmet Dogar, Jordi Pages, Carlos Vivas, Antonio Morales, Nikolaus
Correll, Michael Gorner, Jan Rosell, Sergi Foix, Raphael Memmesheimer, and Francesco
Ferro, Mobile Manipulation Hackathon: Moving Into Real-World Applications, IEEE
Robotics & Automation Magazine, March 2021, p. 2-14.

* Focko L. Higgen, Philipp Ruppel, Michael Gorner, Matthias Kerzel, Norman Hendrich,
Jan Feldheim, Stefan Wermter, Jianwei Zhang, and Christian Gerloff, Crossmodal Pattern
Discrimination in Humans and Robots: A Visuo-Tactile Case Study, Frontiers in Robotics
and AI 2020, Volume 7.

127

APPENDIX A. PrRIOR PUBLICATIONS

Conference Publications

* Manuel Gomes, Michael Gorner, Miguel Riem Oliveira, Jianwei Zhang, Sensor-agnostic
Visuo-Tactile Robot Calibration Exploiting Assembly-Precision Model Geometries, In-
ternational Conference on Intelligent Robots and Systems, IROS 2024, Abu Dhabi.

* Michael Gorner, Norman Hendrich, Jianwei Zhang, Pluck and Play: Self-supervised Ex-
ploration of Chordophones for Robotic Playing, International Conference on Robotics and
Automation, ICRA 2024, Yokohama, Japan. Reference [47]

e Bjorn Sygo, Shang-Ching Liu, Fabian Wieczorek, Mykhailo Koshil, Michael Gorner,
Norman Hendrich, Jianwei Zhang, Multi-Stage Book Perception and Bimanual Manip-
ulation for Rearranging Book Shelves, The 18th International Conference on Intelligent

Autonomous Systems, IAS-18 2023, Suwon, Korea.

* Niklas Fiedler, Jasper Giildenstein, Theresa NalB}, Michael Gorner, Norman Hendrich,
Jianwei Zhang, A Multimodal Robotic Blackjack Dealer: Design, Implementation, and
Reliability Analysis, The 18th International Conference on Intelligent Autonomous Sys-
tems, IAS-18 2023, Suwon, Korea.

* Philipp Ruppel, Michael Gérner, Norman Hendrich, and Jianwei Zhang, Detection and
Reconstruction of Transparent Objects with Infrared Projection-based RGB-D Cameras,
International Conference on Cognitive Systems and Information Processing, ICCSIP 2020,
Zhuhai, China.

* Lin Cong, Michael Gorner, Philipp Ruppel, Hongzhuo Liang, Norman Hendrich, and
Jianwei Zhang, Self-Adapting Recurrent Models for Object Pushing from Learning in
Simulation, International Conference on Intelligent Robots and Systems, IROS 2020, Las
Vegas, USA.

* Ronja Giildenring, Michael Gérner, Norman Hendrich, Niels Jul Jacobsen, and Jianwei
Zhang, Learning Local Planners for Human-aware Navigation in Indoor Environments,
International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, USA.

* Michael Gorner”, Robert Haschke”, Helge Ritter, and Jianwei Zhang, Movelt! Task Con-
structor for Task-Level Motion Planning, International Conference on Robotics and Au-
tomation, ICRA 2019, Montreal, Canada. Reference [46]

» Hongzhuo Liang", Xiaojian Ma", Shuang Li, Michael Gérner, Song Tang, Bin Fang,
Fuchun Sun, and Jianwei Zhang, PointNetGPD: Detecting Grasp Configurations from
Point Sets, International Conference on Robotics and Automation, ICRA 2019, Montreal,
Canada. Reference [87]

128

* Shuang Li", Xiaojian Ma", Hongzhuo Liang, Michael Gérner, Philipp Ruppel, Bin Fang,
Fuchun Sun, and Jianwei Zhang, Vision-based Teleoperation of Shadow Dexterous Hand
using End-to-End Deep Neural Network, International Conference on Robotics and Au-
tomation, ICRA 2019, Montreal, Canada.

* Dennis Krupke, Frank Steinicke, Paul Lubos, Yannick Jonetzko, Michael Gorner and Jian-
wei Zhang, Comparison of Multimodal Heading and Pointing Gestures for Co-Located
Mixed Reality Human-Robot Interaction, International Conference on Intelligent Robots
and Systems, IROS 2018, Madrid, Spain.

* Philipp Ruppel, Yannick Jonetzko, Michael Gorner, Norman Hendrich and Jianwei Zhang,
Simulation of the SynTouch BioTac Sensor, The 15th International Conference on Intel-

ligent Autonomous Systems, [AS-15 2018, Baden-Baden, Germany.

Other Publications

» Michael Gérner”, David Pivin®, Francois Michaud, and Jianwei Zhang, The Movelt Bench-
mark Suite for Whole-Stack Planner Evaluation, Workshop on Evaluating Motion Plan-
ning Performance at International Conference on Intelligent Robots and Systems, IROS
2022, Kyoto, Japan. Reference [48]

e Michael Gorner, What’s Past the End? The Future of ROS One, ROSCon-2022, October
19-21, 2022, Kyoto, Japan.

* Focko Higgen, Philipp Ruppel, Michael Gorner, Matthias Kerzel, Sven Magg, and Nor-
man Hendrich, Crossmodal Pattern Discrimination in Humans and Robots: A Visuo-
Tactile Case Study, Workshop on Crossmodal Learning for Intelligent Robotics at In-
ternational Conference on Intelligent Robots and Systems, IROS 2018, Madrid, Spain.

o Michael Gorner”, Lars Henning Kayser*, Matthias Kerzel, Stefan Wermter and Jianwei
Zhang, Planning to Poke: Sampling-based Planning with Self-Explored Neural Forward
Models, Workshop on Machine Learning in Robot Motion Planning at International Con-
ference on Intelligent Robots and Systems, IROS 2018, Madrid, Spain.

¢ Hadi Beik-Mohammadi, Matthias Kerzel, Michael Gorner, Mohammad Ali Zamani, Man-
fred Eppe, and Stefan Wermter, Neural End-to-End Learning of Reach for Grasp Ability
with a 6-DoF Robot Arm, Workshop on Machine Learning in Robot Motion Planning at
International Conference on Intelligent Robots and Systems, IROS 2018, Madrid, Spain.

* Michael Gorner, Robert Haschke, Movelt! Task Planning, ROSCon-2018, September 29—
30, 2018, Madrid, Spain.

129

APPENDIX A. PrRIOR PUBLICATIONS

* Hongzhuo Liang, Shuang Li, Michael Gorner and Jianwei Zhang, Generating Robust
Grasps for Unknown Objects in Clutter Using Point Cloud Data, Shanghai International
Symposium on Human-Centered Robotics (HCR), 2018, Shanghai.

* Michael Gorner, Philipp Ruppel, Norman Hendrich. Upgrading Movelt!, ROSCon-2017,
September 21-22, 2017, Vancouver, Canada.

* Sven Albrecht, Michael Gérner, Joachim Hertzberg, and Jianwei Zhang, Autonomous
Transparent Object Reconstruction, DGR Days (Deutsche Gesellschaft fiir Robotik), 2016,
Leipzig, Germany.

130

Appendix B

Task Specification Example

Figure B.1 — PR2 robot model turning a cube (red with apriltag markers) to turn a target face (blue)
up, illustrating the Task modelled in the section.

This section lists a complete advanced example for a Task specification in YAML format, as
described in section 3.7. The Task specifies a manipulation scenario where the PR2 robot has
to turn a cube on the table in front of it over to a specified face, as illustrated in Figure B.1. The
setting explicitly considers quasi-static prehensile actions and must carefully lift and place the

cube during manipulation. In this setting, turning the cube to the right face can require up to two

131

ApPPENDIX B. TAsk SPECIFICATION EXAMPLE

pick-and-place operations — due to the small dimensions of the cube and kinematic reachability
of grasping poses — or no motion at all if the correct face is already up.

The main Task structure utilizes a Fallback container to attempt potential solution sequences (no
motion, turning the cube once, or turning it twice) in order of increased complexity. Domain-
specific Stages in the scenario (referenced with the mtc_turn_cube/ prefix) are used to verify
whether the correct face is up already, generate adequate grasp poses to turn the cube to another
face, and generate placement poses for the cube on the table.

The Task is parameterized in the target face of the cube (implemented as a detected frame id), the
cube itself (implemented as the id of the object model), and the geometry of the table surface on
which to place the cube. Notable, the definition of the "turn twice" Container simply reuses
the "turn once" sequence of Stages. The same Task can be reparameterized for other robot

systems, such as the PA10 robot described in subsection 3.9.3.

name: pr2_turn_cube
timeout: 20.0

1

2

3 max_solutions: 25

4+ properties:

5 - target_face

6 - target_cube

7 - table_surface_geometry

s stages:

o — stage: CurrentState

10 name: "current state"

i — stage: Fallbacks

12 name: "fallbacks"

13 stages:

14 - stage: mtc_turn_cube/TargetFaceUpPredicateFilter
15 name: "solved without motion"
16 target_face: <PARENT>

17 wrapped:

18 stage: mtc_turn_cube/Wait

19 name: '"no motion"

2 duration: 0.0

21 - stage: SerialContainer

2 name: "turn once"

23 grasp_face_to_turn: <PARENT:target_face>
24 place_face: <PARENT:target_face>
25 stages: &turn_once

2 - stage: MoveTo

27 name: "open gripper"

28 group: left gripper

29 goal: open

30 planner: JointInterpolation
31 - stage: Connect

n name: '"move to pre-grasp"

3 group: left_arm

34 planner: ompl:RRTConnect

132

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

stage: MoveRelative

name: "approach grasp"

group: left_arm

direction:
frame: 1_gripper_tool_frame
vector: [1.0, 0.0, 0.0]

distance:
min: 0.01
max: 0.05

planner: CartesianPath

stage: ComputelK

name: '"grasp pose IK"

group: left_arm

ik_frame: 1_gripper_tool_frame

max_ik_solutions: 200

wrapped:
name: '"grasp pose"
stage: mtc_turn_cube/CubeGraspFace
face: <PARENT:grasp_face_to_turn>
cube: <PARENT:grasp_cube_to_turn>
canonical_only: true
gripper_flip_axis: [1,0,0]
canonical_grasp:

position: [-0.015, 0.0, 0.0]
orientation: [0.0, 1.1, 0.0]

monitors: '../open gripper'

stage: mtc_turn_cube/AllowCollision

name: "allow collision with gripper"

linkl: <PARENT:target_cube>

group2: left_gripper

stage: MoveTo

name: '"close gripper"

group: left_gripper

goal: closed

planner: JointInterpolation

stage: mtc_turn_cube/Attach

name: "attach cube"

object: <PARENT:target_cube>

end_effector: left_gripper

stage: mtc_turn_cube/AllowCollision

name: "allow collision with support surface"

linkl: <PARENT:target_cube>

link2: <PARENT:table_surface_geometry>

stage: MoveRelative
name: "lift cube"
group: left_arm
direction:
frame: table_top
vector: [0.0, 0.0, 1.0]

distance:
min: 0.01
max: 0.05

133

ApPPENDIX B. TAsk SPECIFICATION EXAMPLE

87 planner: CartesianPath

88 - stage: mtc_turn_cube/ForbidCollision
89 name: "forbid collision with support surface"
90 linkl: <PARENT:target_cube>

o1 link2: <PARENT:table_surface_geometry>
92 - stage: Connect

93 name: "turn"

94 group: left_arm

05 planner: ompl:RRTConnect

9 - stage: mtc_turn_cube/AllowCollision

07 name: "allow collision with support surface"
o8 linkl: <PARENT:target_cube>

9 link2: <PARENT:table_surface_geometry>
100 - stage: MoveRelative

101 name: "put down cube"

102 group: left_arm

103 direction:

104 frame: table_top

105 vector: [0.0, 0.0, -1.0]

106 distance:

107 min: 0.01

108 max: 0.03

109 planner: CartesianPath

110 - stage: ComputelK

1 name: '"place pose IK"

12 group: left_arm

113 ik_frame: <INTERFACE:target_face_up>
114 max_ik_solutions: 3

115 wrapped:

116 name: 'cube place pose"

17 stage: mtc_turn_cube/CubeFaceUpPlacePose
118 face_up: <PARENT:place_face>

19 cube: <PARENT:place_cube>

120 table_surface_geometry: <PARENT:table_surface_geometry>
121 table_top_frame: table_top

122 monitors: "../attach cube"

123 - stage: MoveTo

124 name: '"open gripper"

125 group: left_gripper

126 goal: open

127 planner: JointInterpolation

128 - stage: mtc_turn_cube/Detach

129 name: "detach cube"

130 object: <PARENT:target_cube>

131 end_effector: left_gripper

132 - stage: mtc_turn_cube/ForbidCollision
133 name: "forbid collision with support surface"
134 linkl: <PARENT:target_cube>

135 1link2: <PARENT:table_surface_geometry>
136 - stage: mtc_turn_cube/ForbidCollision
137 name: "forbid collision with gripper"
138 linkl: <PARENT:target_cube>

134

139
140
141
142

143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

group2: left_gripper
- stage: MoveRelative
name: "lift gripper"
group: left_arm
direction:
frame: table_top

vector: [0.0, 0.0, 0.01]

distance:
min: 0.02
max: 0.03

planner: CartesianPath
- stage: SerialContainer
name: "turn twice"
stages:
- stage: SerialContainer
name: "turn first time"

grasp_cube_to_turn: <PARENT:target_cube>
place_cube: <PARENT:target_cube>

stages: *turn_once
- stage: SerialContainer
name: "turn second time"

grasp_face_to_turn: <PARENT:target_face>
place_face: <PARENT:target_face>

stages: *turn_once

135

ApPPENDIX B. TAsk SPECIFICATION EXAMPLE

136

Eidesstattliche Erklarung

Hiermit erklidre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Sofern im Zuge
der Erstellung der vorliegenden Dissertationsschrift generative Kiinstliche Intelligenz (gKI) ba-
sierte elektronische Hilfsmittel verwendet wurden, versichere ich, dass meine eigene Leistung
im Vordergrund stand und dass eine vollstindige Dokumentation aller verwendeten Hilfsmittel
gemil der Guten wissenschaftlichen Praxis vorliegt. Ich trage die Verantwortung fiir eventu-
ell durch die gKI generierte fehlerhafte oder verzerrte Inhalte, fehlerhafte Referenzen, Verstof3e
gegen das Datenschutz- und Urheberrecht oder Plagiate.

Hamburg, den 16. April 2025

Unterschrift

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Scientific Contributions
	1.3 Structure of the Thesis

	2 Background
	2.1 Geometric World Models
	2.2 Motion Description
	2.3 Approaches to Trajectory Generation
	2.4 Software Frameworks for Trajectory Planning
	2.5 Task and Motion Planning

	3 Task Construction
	3.1 Manipulation Phases
	3.2 Modularization of Manipulation Planning
	3.2.1 Propagators
	3.2.2 Connectors
	3.2.3 Generators
	3.2.4 Instantaneous Stages
	3.2.5 Properties
	3.2.6 Decoupling Where and How
	3.2.7 On Alternative Modeling Choices

	3.3 Containerization
	3.3.1 Serial Container
	3.3.2 Container Properties
	3.3.3 Parallel Containers

	3.4 Wrappers
	3.4.1 Path Reparameterization
	3.4.2 Inverse Kinematics Wrapper

	3.5 Cost Terms
	3.6 Compute Graph Exploration
	3.6.1 Planning Parallelization

	3.7 Task Specification
	3.8 Task Execution
	3.9 Exemplary Task Applications
	3.9.1 Pick & Place
	3.9.2 Bottle Pouring
	3.9.3 Retract – Transit – Approach

	3.10 Whole-Stack Benchmarking

	4 Validity-Constraint Motion Primitive Exploration
	4.1 Physical Self-Supervised Exploration
	4.1.1 Scenario

	4.2 Multimodal Manipulation of Chordophones
	4.2.1 Background
	4.2.2 Problem Formulation
	4.2.3 Modality Analysis

	4.3 Model Reconstruction
	4.3.1 Geometric Exploration

	4.4 Active Motion Primitive Exploration (AMPE)
	4.4.1 Experimental Validation
	4.4.2 Summary

	5 Conclusion
	References
	Online-References
	A Prior Publications
	B Task Specification Example
	Eidesstattliche Erklärung

