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1 Introduction 

The diffusion MRI (dMRI) technique enables the possibility to measure tissue 

microstructure parameters, which is done by acquiring multiple measurements which 

estimate the diffusion along different spatial directions (Callaghan et al., 1988; Le Bihan et 

al., 1988; Stejskal and Tanner, 1965). So far, most of the research focus is on brain dMRI 

(e.g., brain development (Dubois et al., 2014; Miller et al., 2002), aging (Draganski et al., 

2011; Sullivan et al., 2010)); however, other regions of the human body like the spinal cord 

are experiencing a growing interest (Cohen et al., 2017; Martin et al., 2016). Also, ex vivo 

DWI studies which enable the possibility to measure dedicated parts of the body at a sub-

millimeter resolution and thereby bridge the spatial gap to other measurement techniques 

(e.g., electron microscopy) are increasingly becoming the focus of attention (Barazany et al., 

2009; Kelm et al., 2016; Papazoglou et al., 2024). 

dMRI measurements are affected by artifacts like motion (Andersson and Sotiropoulos, 

2016), eddy currents (Mohammadi et al., 2010), noise (Becker et al., 2014; Veraart et al., 

2016), Rician bias (Oeschger et al., 2023a), or susceptibility artefacts (Gu and Eklund, 2019; 

Ruthotto et al., 2012) which can be corrected retrospectively with software tools based on 

physical models via preprocessing. There are several software applications to correct these 

types of artefacts (e.g., the FMRIB Software Library (FSL1) (Jenkinson et al., 2012), MRtrix2 

(Tournier et al., 2019), DESIGNER3 (Ades-Aron et al., 2018)). Most of the developed tools 

are made only for brain dMRI datasets.  

 

1 https://fsl.fmrib.ox.ac.uk/fsl 

2 https://www.mrtrix.org/ 

3 https://github.com/NYU-DiffusionMRI 
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For the interpretation of the results and the estimation of diffusion parameters, different 

model fit approaches like diffusion tensor imaging (DTI) (Basser et al., 1994) or diffusion 

kurtosis imaging (DKI) (Hansen et al., 2016; Jensen et al., 2005) are used. These models use 

the different diffusion gradient strengths/directions to estimate the diffusion tensor or 

kurtosis tensor via cumulant development of the logarithmic diffusion weighted signal in 

dependence of the diffusion strength (Kiselev, 2017). 

Furthermore, biophysical models have been developed for the white and gray matter, 

allowing a deeper characterization of the tissue properties. These approaches link the 

diffusion parameter maps to biological microstructure. For this, the biophysical models 

NODDI-DTI (Edwards et al., 2017) or WMTI-Watson (Alexander et al., 2019; Novikov et 

al., 2019) are often used approaches to estimate biophysical parameters like axonal water 

fraction (𝐴𝑊𝐹/𝑓) or extra-axonal diffusivities (𝐷!,#$% and 𝐷!,#!%#). Typically, biophysical 

modelling toolboxes like NODDI (Zhang et al., 2012) or SMI (Coelho et al., 2022) do not 

provide preprocessing options or pipelines. 

Therefore, it is necessary to use additional preprocessing tools to analyze a whole dataset 

from raw data to diffusion or biophysical parameters. For optimal performance, each of these 

tools has to be optimized for the specific body part being measured. In addition, existing 

software packages often have their own input syntax, data structure, or own data formats 

(e.g., “.mif” file format in FSL). This implies a high amount of work to make the output of 

each single tool compatible with the next (e.g., when biophysical modelling toolboxes are 

used after preprocessing), is error-prone, and reduces the reproducibility in the field of 

diffusion MRI. Moreover, the different formats make it more difficult to structure the output 

of the processing steps, which complicates the analysis of, e.g., a high number of different 

datasets in one study. This results in low flexibility, as for example, the addition of a 

preprocessing tool could require manual interaction in the whole analysis code and data 

structuring script.  
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In this thesis, a toolbox was developed that is the first to solve these weaknesses in analysis 

pipelines and open the possibility to analyze in vivo brain as well as in vivo spinal cord and 

ex vivo datasets in a way which is automatable and applicable for big data analyses. This 

was achieved by adding additional tissue type-specific preprocessing options via code 

extensions and new modules to an existing brain dMRI analysis toolbox named now “A 

Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal Cord, and Ex 

Vivo Diffusion MRI Data” (ACID4) (David et al., 2024). In particular, the specific types of 

artifacts in spinal cord dMRI (Barker, 2001; Stroman et al., 2014), as well as the highly 

variable geometry and diffusion properties in ex vivo dMRI ((Sébille et al., 2019) provides 

a list of ex vivo/ postmortem dMRI studies), are addressed. ACID is an open-source 

extension to the MATLAB5 based Statistical Parametric Mapping (SPM6) (Penny et al., 

2011) software and therefore benefits from a GUI and strong, well-established statistical 

analysis functions and modules from the SPM framework (e.g., (Ashburner and Friston, 

2011)). The ACID toolbox includes state-of-the-art image preprocessing and artefact 

correction tools, the model fitting approaches DTI and DKI, as well as the biophysical 

parameter estimation methods NODDI-DTI and WMTI-Watson. As one of the strengths of 

ACID is the modularized code structure, external tools like FSL’s eddy7 (Andersson and 

Sotiropoulos, 2016) have been easily implemented. ACID offers a fully modularizable 

software which enables an easy creation of analysis pipelines consisting of several modules. 

The implementation of additional processing/modelling methods is possible without a high 

amount of work or the need for major changes in analysis pipelines or data structuring 

 

4 http://diffusiontools.com/ 

5 https://www.mathworks.com 

6 https://www.fil.ion.ucl.ac.uk/spm/ 

7 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy 
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scripts. In addition, other SPM extensions (e.g., the hMRI-toolbox8,9 (Tabelow et al., 2019)) 

can be directly integrated into analysis pipelines without changes on the code level. 

Furthermore, ACID includes the Brain Imaging Data Structure (BIDS) standard 

(Gorgolewski et al., 2016; Karakuzu et al., 2022) and is therefore applicable to big data 

analysis, which is required for, e.g., machine learning applications (e.g., Clinica (Routier et 

al., 2021)). The parameters of the ACID modules can be easily adjusted to support required 

tissue type. The use of the SPM-provided GUI as well as the modular organization of ACID 

and additional comfort utility functions (e.g., automatic metadata readout), make the toolbox 

user-friendly for unexperienced users. To ensure ACID is valuable and reusable academic 

software, the FAIR  principles (Barker et al., 2022; Wilkinson et al., 2016) are harmonized 

with the toolbox. 

To show the capabilities ACID provides, the analyses of example datasets for the three 

supported body regions are presented, while each processing step is shown. Furthermore, the 

effect of different artefacts (Kurtosis bias (Edwards et al., 2017), Rician bias) on parameter 

estimation is presented. 

To investigate the performance of different denoising methods, a comparison via a synthetic 

dMRI dataset is presented, in which all denoising methods which are integrated in ACID 

(even methods from external sources like FSL) have been compared. 

The capability of ACID to process and analyze multiple datasets (group analysis) BIDS-

conform is demonstrated by the processing of an example study containing four datasets and 

the comparison of parameter estimates when different biophysical model approaches are 

used. 

  

 

8 https://www.cbs.mpg.de/abteilungen/neurophysik/software/hmri-toolbox 

9 https://github.com/hMRI-group/hMRI-toolbox 



 

 12 

2 Structure of the thesis 

In addition to the introduction (section 1) and this section, this thesis consists of six further 

sections. The following list provides an overview for each of these sections: 

• Section 3 gives an overview of the theoretical background. The goal of this section 

is to give the reader an introduction of the required knowledge to understand the need 

for a toolbox for preprocessing and interpreting diffusion MRI data. First, the theory 

behind an MRI measurement is explained and how diffusion can be acquired. Also, 

models for fitting the acquired diffusion signals and how parameters can be estimated 

are described. Furthermore, biophysical models are introduced. On the technical side, 

the MRI sequence for a diffusion measurement is explained and typical artefacts for 

dMRI measurements are introduced and explained. 

• Section 4 focuses on the concept changes and developments which were performed 

for ACID. The organization of the ACID code is explained, and the benefits ACID 

features through its integration into SPM are discussed. The refactoring of the ACID 

toolbox is presented in the beginning with a description of the initial state of ACID 

at the beginning of the PhD project, and the changes which are performed are 

explained in several sections like conceptual changes, the implementation of the 

BIDS structure, and the harmonization with the FAIR principles. 

• Section 5 is based on the toolbox paper published during this PhD project (David et 

al., 2024) (see section 14 for details) and has the goal of presenting all modules 

implemented in ACID and their usage. 

• Section 6 is partially based on the toolbox paper published during this PhD project 

(David et al., 2024) (see section 14 for details; the specific parts are named in section 

6) and provides exemplary investigations and use cases for ACID. The section 

explains the settings of the three ACID-supported tissue types: in vivo brain, in vivo 
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spinal cord, and ex vivo specimen. Also, this section shows, for example, how a user 

can decide which biophysical model should be used for a specific dataset. In addition, 

an exemplary group analysis is presented showing a comparison of biophysical 

parameter estimations over different estimation models. Furthermore, the group 

analysis demonstrates the possibilities ACID provides now for large dataset analyses 

through, e.g., BIDS integration or pipeline generation. 

• Sections 7 and 8 provide a general discussion, summarizing the results, and give a 

conclusion and outlook. 

The development of ACID is an ongoing process, and updates are released continuously. 

The current commit for this thesis is “[132b548c]10” and can be found on the git repository 

website11. 

 

 

 

  

 

10 132b548ccb895b2000a59092ceb9edb693edb44e 

11 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/src/master/ 
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3 Theoretical background 

In this section, the fundamental principles of magnetic resonance imaging (see section 3.1), 

the principles of diffusion MRI (see section 3.2), a description of biophysical models (see 

section 3.3), as well as the challenges for diffusion MRI datasets (see section 3.4) are 

explained. 

3.1 Fundamentals of Magnetic Resonance Imaging (MRI) 

This section highlights the general fundamentals an MRI is based on, containing the basic 

principles (see section 3.1.1; structure is based on (Fricke, 2020)), how the excitation and 

echo are generated (see section 3.1.2), the spatial encoding techniques (see section 3.1.4), 

and an explanation of the k-space (see section 3.1.5).  

3.1.1 Basic principles of Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology which uses the 

physical principles of Nuclear Magnetic Resonance (NMR), where the nuclear spin (usually 

hydrogen nuclei; because the human body consists largely of it) interacts with external 

magnetic fields. The main static magnetic field is named 𝐵& field. 

The hydrogen nuclei consist of one proton with nuclear spin '
(
. This leads to a magnetic 

moment which interacts with the 𝐵& field, usually oriented along the 𝑧-axis. Due to the rules 

of spin algebra, the spins align parallel- or anti-parallel to this field and precess around this 

axis because of their behavior as a magnetic dipole in a magnetic field (Dössel, 2016). The 

vector sum of all magnetic dipoles in one volume element (voxel) is named magnetization 

𝑀**⃗  and can be described as (Dössel, 2016):  

𝑀**⃗ =
𝑑𝑚**⃗
𝑑𝑣 =

𝑣𝑒𝑐𝑡𝑜𝑟	𝑠𝑢𝑚	𝑜𝑓	𝑎𝑙𝑙	𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐	𝑑𝑖𝑝𝑜𝑚𝑜𝑚𝑒𝑛𝑡𝑠	𝑖𝑛	𝑑𝑣
𝑣𝑜𝑙𝑢𝑚𝑒	𝑑𝑣 . 

(1) 

 

In MRI acquisitions, the spatial density of this magnetization is measured. 
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The precessing spins are not phase coherent (thermal equilibrium), and no transversal 

magnetization builds up (because 𝐵& is here in 𝑧-direction (longitudinal), the magnetization 

can be simplified to 𝑀**⃗ 	= 	𝑀)). The frequency of the precession movement is dependent on 

the strength of the magnetic field and named Larmor frequency  

𝜔*$%+,% = 𝛾 ∙ 𝐵&, (2) 

where 𝛾 is the gyromagnetic ratio and 𝐵& is the magnetic field strength (e.g., 3T). The 

gyromagnetic ratio for hydrogen is 𝛾- = 42,576.-)
/

.  

The two different spin states (parallel and anti-parallel) have two different energy levels due 

to the Zeeman-Effect  

𝐸 = 	±
1
2 ∙ 	𝛾ℏ ∙ 𝐵& (3) 

 (positive sign is anti-parallel, negative sign is parallel alignment) (Dössel, 2016; Zeeman, 

1897). This leads to a difference between both energy states  

ΔE = 	𝛾ℏ ∙ 𝐵& (4) 

As the parallel state has a lower energy, more spins are in this alignment. The difference in 

the number of spins of both states can be described via the Boltzmann-Distribution  

𝑁0 = 𝑁& ∙ 𝑒
1 ∆3
4!/ , 

(5) 

where 𝑁& is the number of spin states, 𝜅5 is the Boltzmann constant, and 𝑇 is the temperature 

(Dössel, 2016). The number of spin states can be described by the sum of both 𝑁 =

𝑁#$%$66!6 + 𝑁$780#$%$66!6. Together with the formula of the Boltzmann distribution, the 

number of spins in the antiparallel state can be described as  

𝑁$780#$%$66!6 =	𝑁#$%$66!6 ∙ 𝑒
1 ∆3
4!/ =	𝑁#$%$66!6 ∙ 𝑒

1	:ℏ∙5"4!/ . 
(6) 

With the approximation that 𝛾ℏ ∙ 𝐵& is much smaller than 𝜅5𝑇, the formula can be simplified 

to  
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𝑁$780#$%$66!6 ≈	𝑁#$%$66!6 ∙ S1 −	
𝛾ℏ ∙ 𝐵&	
𝜅5𝑇

U. (7) 

The formula of the difference between both states, therefore, is  

∆𝑁 = 𝑁#$%$66!6 − 𝑁$780#$%$66!6 ≈	𝑁#$%$66!6 ∙
𝛾ℏ ∙ 𝐵&	
𝜅5𝑇

. (8) 

With the assumption that 𝑁#$%$66!6 ≈
=
(
 follows that  

∆𝑁 ≈
𝑁
2 ∙

𝛾ℏ ∙ 𝐵&	
𝜅5𝑇

 (9) 

This difference is the reason for a longitudinal magnetization 𝑀) (Liang and Lauterbur, 

2000), which is used in MRI measurements. 

3.1.2 Excitation of the spin system and echo 

The phenomena described in the section 3.1.1 make it possible to excite the spin system with 

an oscillatory electromagnetic high frequency (HF, 𝐵') wave which is perpendicular to the 

𝐵& field (commonly 𝐵& field in 𝑧-direction, 𝐵' wave in 𝑥𝑦-plane). To excite the spin system, 

the frequency must be the Larmor frequency to be in resonance with the spin system, which 

is necessary to be able to perturb the spin system (Dössel, 2016). The Larmor frequency is, 

e.g., 127.728	𝑀𝐻𝑧 for hydrogen in a 3 Tesla magnetic field. This frequency can be 

described as “radio frequency” (RF), which shows that no ionizing radiation is used for MRI 

measurements. If a spin system is excited this way, the longitudinal magnetization (here, 

e.g., 𝑀)) is flipped into the 𝑥-𝑦 plane. The angle of the flip (𝛼) is dependent on the amplitude 

of the transversal field (𝐵') and duration (𝜏) of the HF pulse: 

𝛼 = 𝛾 ∙ 𝐵' ∙ 𝜏. (10) 

Figure 1 shows a visualization of this phenomenon. 
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Figure 1: Net Magnetization, rf pulses and flip angle. a) At equilibrium, the net 

magnetization, 𝑀# is at equilibrium, aligned along the 𝑧-axis. b). When a rf pulse is 

applied, 𝑀# makes an angle with the 𝑧-axis, known as the flip angle, and rotates around 

the axis in the direction of the curved arrow. At any instant the magnetisation can be 

split into two components, 𝑀$ and 𝑀%&. The rotating 𝑀%& component generates the 

detectable MR signal. c) The maximum detectable signal amplitude after a single rf pulse 

occurs when 𝑀# l ies entirely in the plane of the 𝑥 and 𝑦 axes as this gives the largest 𝑀%& 

component. This pulse has a 90° flip angle and is referred to as a 90° rf pulse or 

saturation pulse. d) A 180° rf refocusing pulse is usually applied while there is transverse 

magnetisation already rotating in the 𝑥𝑦 plane and is used to instantaneously flip the 

transverse component of magnetisation through 180° about an axis also rotating in the 

𝑥𝑦 plane. e) A 180° inversion pulse is usually applied at equilibrium and is used to rotates 

the net magnetization through 180° from the positive to the negative 𝑧-axis. This is also 

known as a magnetization preparation pulse and is used is the preparation scheme for 

black blood imaging techniques. Source: Figure and modified caption reproduced from 

(Ridgway, 2010), published under CC BY 2.0 license. 

During this process 𝑀) decreases while the transverse magnetization 𝑀>? increases. This 

𝑀>? magnetization precedes in phase and also with the Larmor frequency. Through this 

pulse, an energy transfer is performed, which results not only in the excitation of the spin 
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system but also in a heating of the specimen/subject. Therefore, the duration and amplitude 

of the HF pulses are limited to the allowed heating of the subject. Immediately after the 

excitation pulse, the spin system starts to relax back to its ground state magnetization (𝑀>? 

decreases while the longitudinal magnetization 𝑀) increases). The underlying relaxation 

process consists of two parts:  

(1) The longitudinal magnetization 𝑀) which is flipped due to excitation in the 𝑥𝑦-plane, 

relaxes back to the ground state (𝑧-axis). This happens because of interactions of the 

spin system with, e.g., other atoms (often named: spin-lattice-relaxation), which 

result in an energy loss (e.g., heating). The longitudinal relaxation time 𝑇' (e.g., 

680 ± 120 ms for white matter) is defined via the formula (assuming 𝑀) = 0 for 

𝑡 = 0): 

𝑀)(𝑡) = 𝑀& ∙ S1 − 𝑒
1 8
/' 	U, 

(11) 

where 𝑀& is the magnetization of the ground state (before excitation) (Dössel, 2016).  

(2) The spins within the 𝑥𝑦-plane lose their coherence with increasing time due to their 

own magnetic fields which interact with each other or local differences in the 

magnetic field of the measured volume element which result in precession of 

different Larmor frequencies. This results in a decrease of the length of the transverse 

magnetization 𝑀>?. This relaxation type (often named: spin-spin-relaxation) is 

defined via the formula: 

𝑀8%$7@A!%@$6(𝑡) = 𝑀8%$7@A!%@$6(0) ∙ 𝑒
1 8
/( 	, 

(12) 

where 𝑇(  (e.g., 92 ± 22 ms for white matter) is the transversal relaxation time 

(Dössel, 2016). 

The precessing spins in the 𝑥𝑦-plane can be defined as a time-varying magnetic field which 

induces a voltage (which can be defined as an echo or signal 𝑆) in, e.g., detector coils placed 
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around the measured object, due to Faraday’s law of induction (Griffiths, 2013). This type 

of echo, which can be measured directly after the excitation of the spin system, is named 

“free induction decay” (FID). However, the FID is not usable for MRI applications as the 

relaxation times are in general shorter than 𝑇(. Due to inhomogeneities of the 𝐵& field, an 

acceleration of the dephasing of the spins is caused. The therefore modified spin–spin 

relaxation time 𝑇( is named 𝑇(∗ and is defined as: 

1
𝑇(∗
=
1
𝑇(C

+
1
𝑇(
		, (13) 

where 𝑇(C defines the additional acceleration in relaxation. 

3.1.3 Echo generation 

As described in section 3.1.2, the FID signal is not usable for MRI applications. But there 

are several techniques using gradients and/or RF pulses to generate an acquirable echo. 

One of these techniques is named gradient echo. For this method, a gradient is applied after 

the excitation, which results in an additional (faster) dephasing of the spins and a faster 

vanishing of the FID. After that, a second gradient is applied with the same amplitude but 

double length and opposite direction. The additional dephasing of the first gradient is 

therefore neglected, and the FID re-appears as a measurable echo limited for its maximum 

by the 𝑇(∗ relaxation. The time from the excitation to the point where the echo reaches its 

maximum is named generally echo time (𝑇𝐸). Figure 2 provides a visualization of the 

gradient echo sequence principle. 
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Figure 2: Generating a gradient echo. This diagram shows how the reversal of a magnetic 

field gradient is used to generate a gradient echo. The application of the 1st positive 

magnetic field gradient causes rapid de-phasing of the transverse magnetization, 𝑀%&, 

and therefore the FID signal to zero amplitude. The application of the 2nd negative 

magnetic field gradient reverses the de-phasing caused by the first gradient pulse, 

resulting in recovery of the FID signal to generate a gradient echo at the echo time, TE. 

Extension of the time duration of the second gradient to twice that of the first gradient 

causes the FID to then de-phase to zero. The maximum amplitude of the echo depends 

on both the 𝑇)∗ relaxation rate and the chosen 𝑇𝐸. Source: Figure and modified caption 

reproduced from (Ridgway, 2010), published under CC BY 2.0 license. 

Another technique is named spin echo. The technique uses an 180° RF pulse after the 

relaxation time 𝑇(∗ which changes the signs of all spins within the spin ensemble. This results 

in a rephasing of the spin ensemble, and the FID re-appears as a measurable echo. One 

advantage of this technique is that the 180° pulse compensates for the inhomogeneities of 

the magnetic field, due to the spins perceiving the same inhomogeneities on their return path 
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with the opposite sign. As a result, the relaxation only occurs with 𝑇( instead of 𝑇(∗. Figure 

3 provides a visualization of the spin echo sequence principle. 

 

Figure 3: Generating a spin echo. The presence of magnetic field inhomogeneities causes 

additional de-phasing of the proton magnetic moments. The Larmor frequency is slower 

where the magnetic field is reduced and faster where the field is increased resulting in 

a loss or gain in relative phase respectively. After a period of half the echo time, 𝑇𝐸/2, 

the application of a 180° rf pulse causes an instantaneous change in sign of the phase 

shifts by rotating the spins (in this example) about the y axis. As the differences in Larmor 

frequency remain unchanged, the proton magnetic moments the move back into phase 

over a similar time period, reversing the de-phasing effect of the magnetic field 

inhomogeneities to generate a spin echo. In addition to the effect of the 180° refocusing 

pulse, gradients are applied to de-phase and re-phase the signal for imaging purposes. 

Note that for spin echo pulse sequences, the second gradient has the same sign as the 

first, as the 180° pulse also changes the sign of the phase shifts caused by the first 
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gradient. Source: Figure and caption reproduced from (Ridgway, 2010), published under 

CC BY 2.0 license. 

This procedure can be repeated with an additional 180° RF pulse. This results in a so-called 

“Echo-Train” where multiple echoes are generated for one excitation and is used for, e.g., 

echo planar imaging (EPI) readout approaches. 

3.1.4 Spatial encoding 

The further described excitation would result in a signal without any spatial information as 

all spin systems in the 𝐵& would precess with the same Larmor (resonance) frequency and 

would be excited when an RF pulse is applied. Therefore, a spatial encoding is used to enable 

the possibility to combine the spatially encoded signals into one image. To spatially encode 

in three dimensions, three different encoding techniques are needed: 

(1) For the z-direction, typically an additional magnetic gradient 𝐺D is added to the 𝐵& 

field. As the strength of the magnetic field varies, therefore, along the 𝑧-axis, the 

Larmor frequency becomes spatially dependent along this direction. This enables the 

possibility to only excite a single slice of the measured subject by applying an RF 

pulse with the corresponding Larmor frequency (slice selection). Figure 4 shows a 

visualization of the slice selection technique. 
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Figure 4: Image formation, Step 1 - Selecting a slice. For step 1 of image formation 

process, a slice of tissue is selected by applying a magnetic field gradient GS  at the same 

time as the rf excitation pulse. The position along the gradient (in this example along the 

𝑧 axis) determines the Larmor frequency and resonance only occurs where this matches 

the frequency of the rf pulse, f0, defining a plane (slice) of tissue perpendicular to the 𝑧-

axis. In practice the rf pulse is applied over a small range of frequencies, thus defining 

the thickness of the slice. Source: Figure and modified caption reproduced from 

(Ridgway, 2010), published under CC BY 2.0 license. 

(2) To encode along the 𝑦-direction in the excited slice, phase encoding is used. This 

encoding technique uses an additional gradient 𝐺E after the slice selection but before 

the echo. This makes the phase of the spins linearly dependent along the 𝑦-direction. 

To use this phase shift for spatial encoding, this step has to be repeated with different 

phase encoding gradient strengths. Figure 5 shows a visualization of this encoding 

technique. 



 

 24 

(3) To encode the 𝑥-direction, an additional gradient 𝐺F during the echo (readout) is 

applied. This makes the acquired frequencies linearly dependent along this direction 

as the Larmor frequencies are now spatially dependent. Figure 5 shows a 

visualization of this encoding technique. 

 

Figure 5: Image formation, Steps 2 & 3 - Phase and frequency encoding. For step 2 of the 

image formation process, a phase encoding gradient, GP, is applied in a direction along 

the selected image plane (in this case the phase encoding direction is along the 𝑦-

direction). This causes a range of phase shifts of the proton magnetic moments 

dependent on their position along the gradient as well as the slope and duration of the 

gradient. For step 3, following the phase encoding gradient, the frequency encoding 

gradient, GF, is applied also in the plane of the selected slice but perpendicular to the 

phase encoding direction. The MR signal echo is measured during this period. The 

frequency encoding gradient determines the Larmor frequency according to position 

along its direction (in this case, the 𝑥 direction). The detected MR signal from the slice 

of tissue is therefore comprised of many different frequencies. The field of view is 

predefined and matched to a specific range of frequencies, referred to as the receiver 
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bandwidth. Source: Figure and modified caption reproduced from (Ridgway, 2010), 

published under CC BY 2.0 license. 

These three encoding techniques make it possible to acquire the signal for several separated 

volume element (voxel).  

3.1.5 k-Space 

As described in section 3.1.4, the signal of an MRI acquisition is a spatially encoded 

electromagnetic echo. This represents a sampling of discrete areas in a reciprocal space 

(named 𝑘-space) which can be seen as the Fourier transformation of the acquired image. 

This matrix is filled with frequency values during the MRI measurement. After the 

acquisition, the filled matrix can be inverse Fourier transformed to calculate the acquired 

image. An MRI can only acquire spatially discrete areas in the 𝑘-space; therefore, the image 

quality depends on the sampling of the acquired 𝑘-space area. 

The 𝑘-space is symmetric; therefore, it is only mandatory that more than 50% are sampled. 

Also, the location of the acquired 𝑘-space area influences the resulting image. The center of 

the 𝑘-space includes predominantly the intensity values, as the outer regions include 

retrospectively predominantly the tissue structure. An exemplary visualization of this 

phenomenon is shown in Figure 6 (last sentence in captions belongs to the presented work 

in (Li et al., 2018)). 
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Figure 6: Illustration of tissue-boundary sparsity variation with a brain image. A central 

and an outer k-space region may each generate an image by inverse Fourier transform. 

The image generated from outer k-space data have higher tissue-boundary sparsity than 

that from central k-space data. Correspondingly, the correlation function shows a 

stronger spread-out pattern around the k-space center, indicating more neighboring data 

are correlated in the outer than in the central k-space. This k-space variant data 

correlation associated with tissue-boundary sparsity is used to improve correlation 

imaging in the presented work. Source: Figure and caption reproduced from (Li et al., 

2018). Published online 7 July 2017 in Wiley Online Library (wileyonlinelibrary.com). © 

2017 International Society for Magnetic Resonance in Medicine. 

3.2 Diffusion MRI  

The in section 3.1 described operating principles for an MRI can be used within sequences 

(see section 3.2.2 for details) to perform measurements. One of these sequences enables the 

measurement of diffusion (see section 3.2.1 for details) within the measured subject. 

Furthermore, the interpretation of the diffusion signal is described (see section 3.2.3 for 

details). 

3.2.1 Diffusion 

Diffusion can be explained as microscopic arbitrary motion (Brownian motion) (Einstein, 

1956) of molecules if a concentration gradient is present. This phenomenon is 
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mathematically described by Fick’s laws of diffusion (Meschede, 2010). As in an MRI 

measurement, only hydrogen atoms are acquired, there is initially no concentration gradient. 

The concentration gradient is created during the diffusion-weighted measurement (see 

section 3.2.2) because there, hydrogen molecules are “labeled”, which results in a 

concentration gradient of labeled and unlabeled molecules. 

3.2.2 Diffusion MRI sequence 

A diffusion-weighted sequence consists of additional gradients which are named diffusion 

gradients. After the excitation pulse (90° flip angle, combined with a slice selective 

gradient), a diffusion gradient is applied which applies an additional phase shift (similar to 

the in section 3.1.3 discussed gradient echo). After the application, a 180° slice selective 

(same slice as for the 90° pulse) HF pulse is applied followed by a second diffusion gradient 

with the same length and strength as the first. As the 180° HF pulse switches the signs of the 

phases (similar to the in section 3.1.3 discussed spin echo), the second gradient neglects the 

phase shift of the first diffusion gradient for spins which have not moved. Spins which have 

moved do not collect the same phase shift during the application of the second reversed 

gradient compared to the first one. Therefore, these spins are not in phase after the 

application of both diffusion gradients and do not contribute to the following acquirable 

echo. This principle makes it possible to measure the strength of the diffusion as the 

measured echo depends on the strength of water diffusion inverted (higher diffusion à 

weaker echo (Stejskal and Tanner, 1965). 

A widely used diffusion sequence is a combination of a pulsed-gradient spin-echo (PGSE) 

sequence for diffusion weighting with a spin echo planar imaging (SE-EPI) approach for 

spatial encoding. An example of this pulse sequence is displayed in Figure 7. As for diffusion 

signal models, multiple acquisitions with different	𝑏-values and 𝑏-vectors are required (see 
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section 3.2.3 for details); this allows the measurement of a whole DWI dataset in a suitable 

time for a human subject (< 1	ℎ).  

 

Figure 7: Simplified spin-echo dMRI pulse sequence (PGSE + SE-EPI). First, a slice 

selective 90° RF pulse is applied. Two trapezoidal diffusion lobes (Gd i f f) are applied with 

the same hardware polarity; the 180° RF pulse is placed midway between their effective 

centers (including ramps). Readout and phase-encoding begin after the second lobe, and 

the readout is centered at the peak of TE. The RF panel overlays an echo train whose 

amplitudes follow a T2* envelope (peak at TE) with global T2  scaling. Plotting code, and 

caption was created by the use of ChatGPT5 (https://chatgpt.com/). 

3.2.3 Interpretation of the diffusion signal 

Diffusion MRI (dMRI) investigates the thermally driven, random motion of water 

molecules. A molecule’s displacement 𝑥	 −	𝑥& over a diffusion time 𝑡 can be modeled as 

the sum of many short, uncorrelated steps. The mathematical construct to describe this 

behavior is called Green’s function or diffusion propagator (Kiselev, 2017). The diffusion 
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propagator 𝒢(𝑡, 𝑥, 𝑥&) is the probability density that a molecule moves from position 𝑥& to 𝑥 

during time 𝑡. In free, homogeneous media, 𝒢 is Gaussian with a variance equal to the sum 

of the variances of the underlying elementary steps. The diffusion propagator describes the 

behavior for each molecule in a voxel and is therefore not tractable practically (Kiselev, 

2017). Therefore, a frequently used quantity is the medium-averaged propagator 𝐺(Δ	𝑥, 𝑡), 

which describes only the net displacement Δ	𝑥	 = 	𝑥	 −	𝑥& and is obtained by averaging over 

all starting positions of molecules in the voxel. Under standard assumptions (constant spin 

density within a voxel and negligible relaxation differences across diffusion encodings), the 

measured diffusion-weighted signal 𝑆(𝑡, 𝑞) is the Fourier transform of the medium-averaged 

propagator: 

𝑆(𝑡, 𝑞) = ∫ 	𝐺(Δ	𝑥, 𝑡) 	 ∙ 𝑒10	∙G∙H	>	𝑑IΔ𝑥, (14) 

where 𝑞 defines the area under a single diffusion-encoding gradient lobe, often called the 

“wave vector” of the sequence, which sets the spatial direction and strength of the 

displacement encoding (Kiselev, 2017). 

The strength of the diffusion gradient is mathematically expressed via the 𝑏 value which 

describes the sensitivity of the acquisition to movement of water molecules (diffusion). A 𝑏-

value of 0 results in no diffusion sensitivity (𝑏& image). These images are needed for the 

interpretation of the signal profile but are also acquired to include images without diffusion-

related artefacts (see section 3.4 for details) to the measured datasets. Higher 𝑏-values result 

in a weaker echo due to the higher sensitivity to diffusion. Therefore, the SNR is reduced as 

the higher the 𝑏-value is, which limits the maximum 𝑏-value which can be acquired. The 

signal can be mathematically expressed as:  

𝑆(𝑏) 	= 𝑆& ∙ 	 𝑒1J∙K ,  (15) 

where	𝑏	 = 	 𝑞( ∙ 𝑡 , 𝐷 is the diffusion coefficient and 𝑆& is the non-diffusion-weighted signal 

(Kiselev, 2017). 
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For the interpretation of the diffusion-weighted signal, several diffusion signal models exist 

like Diffusion Tensor Imaging (DTI) or Diffusion Kurtosis Imaging (DKI).  

In the DTI approach, the diffusion is assumed to be Gaussian in a homogeneous fluid. 

Therefore, the logarithm of the normalized signal decay can be approximated linearly with 

𝑏: 

𝑙𝑛
𝑆(𝑏)
𝑆&

≈	−	𝑏	 ∙ 𝐷. (16) 

This linear relation is obtained by Taylor expanding the signal at low 𝑞 (equivalently, low 

𝑏) under the condition 𝑞 ⋅ Δ	𝑥 ≪ 	1. This very short movement can be treated as Gaussian 

which is described by 𝐷 and where higher orders of the Taylor expansion vanish (Kiselev, 

2017). Therefore, DTI is only valid for 𝑏 values up to 𝑏 ≈ 1000 @
++( (in vivo). 

As the signals 𝑆& and 𝑆 are acquired during a diffusion measurement, the diffusion 

coefficient 𝐷 can be calculated by solving the formula transformed from equation (16): 

𝐷 =
𝑙𝑛 𝑆&
𝑆(𝑏)
𝑏 .	 

(17) 

To solve this formula, two measurements would be sufficient. One diffusion weighted image 

(𝑆(𝑏)) and one image without diffusion weighting (𝑆&). The result would be the diffusion 

coefficient for one direction or, when the diffusion is isotropic, for all directions. As the 

diffusion is, e.g., in tissue not isotropic, multiple measurements with different diffusion 

directions are necessary to calculate the diffusion coefficient.  

The definition of the diffusion coefficient depends on the medium for which the coefficient 

is calculated. Differently than for an isotropic medium, for an anisotropic medium, where 

the diffusion coefficient depends on the direction of diffusion, 𝐷 can be expressed as a 3 × 3 

symmetric matrix: 
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𝐷 = o
𝐷>> 𝐷>? 𝐷>)
𝐷>? 𝐷?? 𝐷?)
𝐷>) 𝐷?) 𝐷))

p,  
 

(18) 

where the diagonal values 𝐷>>, 𝐷??, and 𝐷))	are the expressions of diffusion along the 

named axis. The off-diagonal values 𝐷>?, 𝐷?), and 𝐷>) represent correlations between the 

two named directions. The diffusion coefficient matrix is symmetric for, e.g., water due to 

the reciprocity theorem and principle of microscopic reversibility of nonequilibrium 

thermodynamics (Basser et al., 1994). As the diffusion coefficient (18) consists of six 

independent elements, the minimum number of measurements to estimate the diffusion 

coefficient are six linearly independent directions (and one measurement without diffusion 

weighting for 𝑆&). 

When the diffusion coefficient is calculated, all matrix elements of Equation (18) are filled 

(see section 5.3 for exemplary algorithms). As the diffusion tensor is symmetric and positive 

(semi)-definite (because it is determined by the mean squared displacement of molecules 

(Kiselev, 2017)), it can be diagonalized. 

𝐷L0$M,7$6 = 𝑄/𝐷	𝑄, (19) 

where 𝑄 is an orthogonal matrix containing the eigenvectors. 

The diagonalized diffusion tensor has then the form 

𝐷L0$M,7$6 = r
𝜆' 0 0
0 𝜆( 0
0 0 𝜆I

t, 
(20) 

where 𝜆', 𝜆(,and 𝜆I are the eigenvalues; commonly assuming 𝜆' > 𝜆( ≥ 𝜆I. 

Eigenvalues and eigenvectors can be seen as the parameters of a diffusion ellipsoid where 

the eigenvalues define the length along the three orthogonal axes, and the eigenvectors 

define the orientation. Note that the orientation is aligned with the 𝑥, 𝑦, and 𝑧-axis after 

diagonalization. A visualization of the diffusion ellipsoid and the effect of diagonalization 

is shown in Figure 8. 
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Figure 8: Visualization of the diffusion ellipsoid before (left) and after (right) 

diagonalization. Diagonalization does not affect the size of the ellipsoid but align the 

axes with the reference frame. 

The eigenvalues are rotational invariant, as a rotation of the ellipsoid would not shrink or 

stretch the ellipsoid (length of eigenvalues would be unchanged). Therefore, it is possible to 

estimate invariant diffusion metrics out of the eigenvalues of the diffusion tensor. The typical 

DTI metrics are mean diffusivity (MD), axial- and radial diffusivity (AD/RD), and fractional 

anisotropy (FA). These metrics can be calculated via the following formulas: 

𝑀𝐷 =
𝜆' + 𝜆( + 𝜆I

3  (21) 

 

𝐴𝐷 = 𝜆' (22) 

 

𝑅𝐷 =
𝜆( + 𝜆I
2  (23) 

 

𝐹𝐴 = x
3
2 ∙ y

(𝜆' −𝑀𝐷)( + (𝜆( −𝑀𝐷)( + (𝜆I −𝑀𝐷)(

𝜆'( + 𝜆(( + 𝜆I(
z 

(24) 
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The DTI model assumes a linear signal decay, which is not valid as an approximation for 

higher 𝑏-values where the assumption 𝑞 ⋅ Δ	𝑥 ≪ 	1 is not valid and Gaussian diffusion can 

no longer be assumed. Departures from this strict Gaussian diffusion regime require a further 

term of the cumulant expansion. Writing the fourth cumulant of displacement in terms of a 

diffusion kurtosis 𝐾 yields a second-order approximation: 

𝑙𝑛
𝑆(𝑏)
𝑆&

≈	−	𝑏 ∙ 𝐷	 +	
1
6 	 ∙ 𝑏

( 	 ∙ 𝐷( 	 ∙ 𝐾 + ⋯, (25) 

where odd powers are not existent due to the symmetry of the propagator (Kiselev, 2017). 

This diffusion-kurtosis model captures non-Gaussian features arising from restrictions and 

heterogeneity of tissue compartments. Therefore, DKI is valid for measured b-values up to 

𝑏+$> ≈ 2000 @
++( (in vivo). The DKI model is an expansion of the DTI model. Therefore, 

the DTI metrics are estimated by DKI as well as additional kurtosis metrics like mean 

kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK). For a detailed explanation of 

the DKI formalism and definitions of the DKI metrics, see, e.g., (Tabesh et al., 2011). 

For a complete interpretable DWI dataset, a sufficient number of directions have to be 

measured. For DTI, at least six linearly independent directions for one nonzero b-value are 

required to estimate the diffusion tensor. DKI requires at least 15 linearly independent 

directions for two different nonzero b-values to estimate the additional kurtosis tensor 

(Tabesh et al., 2011). In practice, more directions are acquired as this increases the 

robustness against, e.g., noise.  

3.3 Biophysical models 

The results of DTI and DKI can be used for biophysical models, which enables a connection 

to the tissue microstructure (Jelescu et al., 2020). For this connection, the dMRI signal is 
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split into distinguishable components, which can be linked to specific tissue compartments. 

There are several biophysical models with different approaches.  

For example, the NODDI-DTI model was developed to estimate biophysical parameters out 

of DTI datasets. This is done by excluding CSF compartments out of the NODDI model, 

which results in a restriction of application to voxels without CSF partial volume 

contamination (see (Edwards et al., 2017) for further details). 

Another example is the white matter tract integrity (WMTI)-Watson model, which is based 

on the Standard Model (Alexander et al., 2019; Novikov et al., 2019). This approach assumes 

two non-exchanging water compartments in tissue water (intra-axonal / extra-axonal), where 

the intra-axonal part is characterized as zero radius “sticks” (Alexander et al., 2019; Novikov 

et al., 2019). The model uses the DKI tensor outputs (see (Jespersen et al., 2018; Novikov et 

al., 2018) for details), which makes the module require a DKI-compatible dataset. 

3.4 Typical artefacts in diffusion MRI 

The EPI-based DWI sequence has some challenges and diffusion-related artefacts which 

occur typically during an acquisition. In this section, the most important challenges like 

motion (see section 3.4.1), eddy currents (see section 3.4.2), susceptibility artefacts (see 

section 3.4.3), as well as noise and rician bias (see section 3.4.4) are presented. 

These artefacts of DWI measurements are often corrected during preprocessing before the 

modelling of the data is performed. 

3.4.1 Motion 

For a full DWI dataset, many diffusion directions have to be acquired (see section 3.2.3 for 

details), which is typically done via EPI readout approaches (see section 3.2.2 for details). 

Therefore, the full dataset is strongly sensitive to motion (Andersson and Sotiropoulos, 

2016). If, e.g., a subject moves or cardiac pulsation happens during the measurement, this 

can result in signal loss or/and can be seen as a shift over the single images of the dataset. 
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This can corrupt the parameter estimation and introduce blurring artefacts. Movement shifts  

can be corrected before all DWI images are mathematically “merged” into diffusion 

parameter maps (via, e.g., DTI or DKI).  

3.4.2 Eddy currents 

Due to the diffusion gradients and the rapidly changing gradients during the EPI readout, 

eddy currents (EC) can be induced in the coils, which can also cause artefacts like geometric 

distortions (Jezzard et al., 1998; Mohammadi et al., 2013, 2010). The magnitude of the 

induced additional EC-field 𝐵)3N  can be described in a first-order approximation as: 

𝐵)3N(𝑟) ≈ 𝐵)
3N,& + 𝒓*⃗ ∙ 𝑮**⃗ 3N , (26) 

where 𝑟 is the position, 𝐵)
3N,& is the homogeneous linear part of the EC field, 𝑮**⃗ 3N  the gradient 

of the linear part of the EC field, and the time dependence is neglected (Mohammadi et al., 

2010). 

The EC parameters 𝐵)
3N,& and 𝑮**⃗ 3N  can be expressed in the following linear relation: 

𝐵)
3N,&(𝚤) = 𝜶**⃗ & ∙ 𝑮**⃗ K(𝑖) (27) 

𝐺73N(𝚤) = 𝜶**⃗ 7 ∙ 𝑮**⃗ K(𝑖), (28) 

with 𝑛 = 𝑥, 𝑦, 𝑧, 𝑮**⃗ K is the diffusion gradient, and 𝜶**⃗ & is the coefficient vector of the 

homogeneous part of the EC field, 𝜶**⃗ 7 are the coefficient vectors of the three components of 

the EC gradient, and 𝑖 is the index of the diffusion gradient which runs from 1 to the number 

of diffusion directions (Mohammadi et al., 2010). The complete formalism and derivation 

of the formulas (26), (27) and (28) can be found in (Mohammadi et al., 2010). 

A visualization of the 3D EC distortions is displayed in Figure 9. 
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Figure 9: Three in-plane  EC distortions are corrected by the affine, slicewise registration 

approach: translation, shearing, scaling. In this slicewise  representation, the translation 

parameter depends on the homogenous part of the EC-field and on the z-component of 

the EC gradient. If the EC distortions as revealed by whole-brain  registrations are 

evaluated in three dimensions, a fourth, additional affine deformation (through-plane  

shearing 𝜅&$) can be related to first-order eddy-current effects, leading to a unique 

correspondence between EC field components and EC distortions (c is a proportionality 

constant, involving sequence parameters). Source: Figure and caption reproduced from 

(Mohammadi et al., 2010). Published online 22 June 2010 in Wiley Online Library 

(wileyonlinelibrary.com). © 2010 Wiley-Liss, Inc. 

A correction of these algorithms can be done, e.g., retrospectively via a model which links 

the spatial distortions to the EC-field (Haselgrove and Moore, 1996).  

For example, established methods are eddy (Andersson and Sotiropoulos, 2016) and 

ECMOCO (Mohammadi et al., 2015, 2013, 2010), which are also correcting for motion 

artefacts (section 3.4.1). 

3.4.3 Susceptibility artefacts  

In addition, an EPI sequence can introduce geometric distortions in the acquired data at 

regions where different tissues (e.g., bones, fat, or cerebrospinal fluid) with different 

magnetic susceptibilities come together. These susceptibility changes can lead to local 

inhomogeneities in the magnetic field (Ruthotto et al., 2013, 2012). As mentioned in section 
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3.1.4, the magnetic field is manipulated for spatial encoding during an MRI session. This 

encoding assumes a homogeneous magnetic field as a base, and inhomogeneities can 

therefore lead to spatial distortions as the spatial encoding is corrupted.  

To correct this type of artefact retrospectively, an image with the opposite phase encoding 

direction can be acquired. The images of both phase encoding directions can be combined 

to estimate the warping field and correct the geometrical distortions by applying the 

estimated warping field to the DWI dataset. To estimate the field inhomogeneity, the 

distance functional of both oppositely distorted images 𝐼! and 𝐼" have to be minimized: 

𝐷[𝐵] =
1
2� �𝐼'(𝑥	 + 	𝐵(𝑥)𝑣)�1	 +	𝜕A𝐵(𝑥)�

	

Ω

−	𝐼((𝑥	 − 	𝐵(𝑥)𝑣)�1	 −	𝜕A𝐵(𝑥)��
(
𝑑𝑥,	

 

(29) 

where 𝐵 ∶ Ω	 → 	ℝ,𝑤ℎ𝑒𝑟𝑒	Ω ⊂ 	ℝI is a field inhomogeneity and 𝑣 is the unit vector of the 

phase encoding direction (Ruthotto et al., 2013, 2012). 

The unwarping of the images applies two changes. First, the correction of the distortions 

along the phase encoding direction and second, a correction of the intensities corrupted by 

the geometrical distortions (Ruthotto et al., 2013).  

The field inhomogeneity is estimated by solving:  

min
5
𝐽	[𝐵] ∶= 	𝐷[𝐵] + 	𝛼𝑆L0PP[𝐵] + 	𝛽𝑆Q$R[𝐵],	 (30) 

where 𝑆L0PP is a diffusion-, and 𝑆Q$R is a nonlinear regularization term that ensures 

 −1	 < 	∂AB	 < 	1, which translates to invertible geometrical transformations and positive 

intensity modulations (Ruthotto et al., 2013). 𝛼 and 𝛽 are both > 0 and balance between the 

regularization functionals and the minimization of the distance (Ruthotto et al., 2013). The 

complete formalism and derivation of the formulas (29) and (30) can be found in (Ruthotto 

et al., 2012). 
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For example, established methods are topup (Smith et al., 2004), or HySCO (Macdonald and 

Ruthotto, 2018; Ruthotto et al., 2013, 2012). 

3.4.4 Noise and Rician bias 

dMRI datasets have a noise overlay which is higher than for other measurement techniques 

due to the exponential decay of the diffusion-weighted signal (Stejskal and Tanner, 1965). 

Noise in dMRI data has a Rician distribution if the acquisition is performed using a single 

coil receiver (Gudbjartsson and Patz, 1995) and has a noncentral χ-distribution for multiple 

receiver coils (Aja-Fernández et al., 2014). For example, the signal 𝑆 of this noncentral χ-

distribution with 2𝐿 degrees of freedom can be described as 

𝑆
𝜎 	∼ 	𝜒(* S

𝜁
𝜎U ,	

(31) 

where 𝐿 is the number of receiver coils, ζ is the true noiseless signal, and σ is the standard 

deviation of the complex Gaussian distribution of the k-space data (Polzehl and Tabelow, 

2016). 

If a diffusion signal model is fitted to a DWI dataset that is corrupted with noise out of these 

distributions, this results in a bias, which is described as the Rician bias and has an impact 

on the diffusion tensor (Basser and Pajevic, 2000; Gudbjartsson and Patz, 1995; Jones and 

Basser, 2004), the kurtosis parameters (Veraart et al., 2011, 2013a), and the biophysical 

modelling parameters (Andersson et al., 2022; Fan et al., 2020; Howard et al., 2022) 

estimates. The highest impact of this bias is visible in low SNR datasets (Polzehl and 

Tabelow, 2016), where the noise has a higher proportion to the magnitude intensity. 

The EPI sequence uses short echo and fast readout times. This limits the possible measurable 

SNR. Also, if high 𝑏 values are acquired, this results in a reduced SNR due to the weaker 

echo. This can introduce noise to the DWI dataset, which can blur or result in incorrect 

parameter estimation in addition to the above-mentioned Rician bias. 
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There are several denoising methods to reduce variance in DWI datasets. For example, 

established methods are: Local Principal Component Analysis (LPCA) (Manjón et al., 

2013), Marchenko-Pastur Principal Component Analysis (MP-PCA) (Veraart et al., 2016), 

and multi-shell Position-Orientation Adaptive Smoothing (msPOAS) (Becker et al., 2014). 
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4 Concept and development of the ACID Toolbox 

This section describes the software and developments for the ACID toolbox. This includes 

an overview of the architecture and organization of ACID (section 4.1), the benefits of the 

integration into SPM and MATLAB (section 4.2), how the refactoring was done (section 

4.3), the usage of the FAIR principles for ACID (section 4.4), the test system (section 4.5), 

the implementation of the BIDS standard (section 4.6), and how pipelines can be set up 

(section 4.7). 

4.1 Architecture and organization of ACID 

The ACID toolbox is fully integrated into the batch system of the Statistical Parametric 

Mapping (SPM) Software. As an integrated part of it, the functions and modules of ACID 

can be combined with SPM functions and modules (e.g., for segmentation (Ashburner and 

Friston, 2005)). Therefore, ACID uses several SPM functions for, e.g., data handling but 

also uses modified or own functions to enable additional features such as native 4D data 

handling or generation of BIDS-conform filenames. In addition to the SPM functions and 

modules, SPM also offers a GUI which is also used by ACID. For a detailed organigram of 

ACID and its integration into SPM, see Figure 10. 
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Figure 10: Structure of SPM and the integration of ACID into it visualized via an 

organigram. The SPM Software provides three parts: The SPM functions, the SPM Batch, 

and the SPM GUI. The ACID toolbox provides the main configuration file, the module 

configuration file, the module functions, and additional ACID functions. ACID is 

integrated into the SPM Batch system via the main configuration file. Every ACID module 

has its own module configuration file which is named for initialization in the main file. 

The module configuration file calls the module functions with the in the batch/GUI 

defined parameters. The module functions are using ACID functions (e.g., for data 

import) and both have also the possibility to use SPM functions (e.g., spm_coreg for 

coregistration or spm_vol for import of 3D NIfTI headers). This organization makes it easy 

to implement new modules (e.g., from external sources), as the module functions only 

need a few adaptations via ACID functions (e.g., for data handling/naming) and can be 

linked to a new ACID module configuration file which directly enables an integration into 

the ACID/SPM batch ecosystem. 

The modular organization of ACID and SPM makes it easy to implement new modules and 

functionalities because the new code files can be added to the existing files, and changes in 

the existing files are only needed for additions in the main file. This reduces the risk of 
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damaging existing code and ensures that no error is introduced to the already existing 

modules.  

On the code level, ACID has a main configuration file acid_tbx_cfg.m which is initialized 

by the SPM batch system. To find the configuration files from external toolboxes, a 

dedicated toolbox folder exists in the SPM folder structure, in which all configuration main 

files are identified and initialized. The configuration main file initializes the ACID toolbox, 

which includes the steps of adding the folder paths of the ACID subfolders to the MATLAB 

search path and loading all module configuration files. The file also contains the batch syntax 

for the structure of the modules, which results in the user-selectable drop-down menu and 

possibility of selecting modules for the “Module List” (see Figure 11, left side). The module 

configuration files contain the batch structure for each dedicated module (e.g., 

tbx_cfg_acid_ecmoco.m for ECMOCO) which defines the required inputs for each module 

and selectable options (see Figure 11, right side). Also, the help instructions for the input 

parameters are defined on this level (see Figure 11, bottom). The module configuration file 

calls the module functions (e.g., acid_ecmoco.m for ECMOCO) with the user-defined inputs 

and starts the module processing. After processing, the module configuration file creates 

dependencies by saving the locations and parameters (e.g., b-values or processed images) of 

needed files for following modules in a from the batch system provided structure variable. 

This whole structure ensures flexibility through modularization and allows the addition of a 

new module into the batch system by adding a new module configuration file to the main 

configuration file. 

The setup of the modules benefits also from the GUI provided by SPM as all needed 

parameters are displayed, and additional information can be provided for each parameter 

(see Figure 11) in one window. 
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Figure 11: The image shows the SPM Batch Editor with the ACID module Diffusion 

Kurtosis Imaging (DKI) selected. The mandatory inputs are indicated by “<-X”. For the 

most parameters (e.g., “b-values”), additional information is provided in the lower box. 

All ACID modules can work on their own. As it can be seen in Figure 11, e.g., the DKI 

module shows all required inputs and can be started directly if all inputs are filled in. But the 

modules can also be combined with additional modules. For example, preprocessing 

modules can be executed before the model fit is done. This allows users to create pipelines 

in which the data are computed by the first module of the pipeline and will be directly handed 

to the next. Figure 12 shows an example in which the results of msPOAS are used for the 

DKI fit. 
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Figure 12 : The image shows the SPM Batch Editor with the ACID modules msPOAS, and 

Diffusion Kurtosis Imaging (DKI) selected. For the first mandatory input of DKI, “Input 

images”, the dependency “DEP msPOAS: Denoised images” is selected. This has the 

effect that the denoised output images of msPOAS are handed directly to the DKI module 

without any user interaction needed. 

Also, the combination with modules from other toolboxes (e.g., hMRI toolbox) is possible.  

SPM also allows the user to save and modify scripts of constructed batches containing one 

or more modules. This gives the possibility to apply the same batch to different datasets or 

to modify one or more parameters within a batch for a single analyzed dataset (see Figure 

13 for an example script). 
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Figure 13: Example of a saved batch script. In this script, the modules msPOAS and DKI 

are executed one after another. The fields “MATLAB_CODE_TO_FILL_INPUT” have to be 

filled with the corresponding input parameter. This enables the possibility to execute 

this batch script with different datasets and/or parameters through a “for” loop. If the 

dependency in Figure 12 would be set before saving the script, the DKI Input “Input 

Images” would not appear in the saved script as it is internally set. 

 

4.2 Benefits of integration into MATLAB and SPM 

ACID benefits from the integration into SPM and MATLAB in several ways: MATLAB is 

a widely used analysis software which is well established in many institutions. It is also 

available for the three most popular operating systems Windows, Mac, and Linux, which 

make SPM and ACID independent of the platform used by the user. This also ensures that, 

for example, a free-of-charge Linux distribution can be used to process data with ACID. For 

users who have no access to commercial MATLAB licenses, SPM provides the possibility 

to generate standalone versions. These include ACID if the standalone version is compiled 

using a SPM version containing ACID. This allows the use of ACID without any costs for 
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licenses of OS or MATLAB. The only requirement is the MATLAB Runtime, which is 

freely available12.  

MATLAB also offers general statistical functions and visualization tools which can be used 

directly in SPM and ACID. This makes further analyses of ACID results easier for the users 

as they can directly use functions for advanced statistics or visualization. 

SPM provides a complete ecosystem containing statistical functions, analysis modules, and 

a user-friendly GUI. The software is developed for the spatial analysis of structural and 

functional MRI data and was therefore ideal for the integration of ACID as, e.g., for ACID 

required file formats for dMRI are the same (NIfTI), and SPM functions can be directly used 

for the ACID results.  

4.3 Refactoring of ACID 

In this section the refactoring of ACID is explained. This includes a description of the initial 

state of ACID (section 4.3.1), the conceptual changes through the refactoring (section 4.3.2), 

the changes on code level (section 4.3.3), the new organization of the file structure (section 

4.3.4), the ways ACID guides unexperienced users (section 4.3.5), and how the extraction 

of metadata is implemented (section 4.3.6). 

4.3.1 Initial state 

The in Figure 10 presented modular organigram structure was not implemented in the initial 

stage of ACID at the beginning of the PhD project. The initial existing modules were 

implemented all for their own. They had their own syntax and were designed to work without 

the use of the SPM batch system (e.g., manual selection or hardcoding of input parameters). 

Default values were hardcoded, and parts of the code (e.g., data import) were redundant for 

each module or implemented in different ways (e.g., different functions for the same task or 

 

12 https://www.mathworks.com/products/compiler/mcr/index.html 
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different output formats for different modules (3D or 4D NIfTIs)). Also, the naming of 

output files was not BIDS compliant (prefix instead of module name in “_desc” field) or 

consistent (e.g., “poas_” for msPOAS and “u” for HySCO). Also, different (and outdated) 

versions for some modules were included in the folders (e.g., msPOAS versions 2, 3, and 4 

as well as the HySCO versions 1 and 2). The functions were not clearly named (e.g., sub-

functions of modules did not include the module name) and it was not visible if all existing 

functions belong to the latest module version or were part of an outdated version. Also, the 

modular batch structure was not implemented as all module batch configuration code parts 

were included in the ACID main configuration file which made the code hardly to maintain 

(2624 lines). The main file contained also several dummy options (which were not used 

anymore) to load only a part of the tools to the batch system and which would need a change 

of hardcoded variables in the file. Some modules which were not part of ACID anymore 

were also implemented in the main file but deactivated via hardcoded dummy variables. 

Furthermore, the batch dependencies were not working for all modules as the 

implementation was inconsistent and unnecessarily complicated. For example, a module 

function creates new files with a specific name, but the name is not directly handed to the 

dependency. Instead, an additional function loads the files again and reads out the file names 

which are then handed to the dependency.  

In addition, the C files which should enable the possibility to compile own .mex files were 

too old to be compiled with actual versions of MATLAB. 

4.3.2 Conceptual changes 

To implement a modular organization, the ACID main file was recreated, and all module 

configuration parts were outsourced to dedicated module configuration files (e.g., 

tbx_cfg_acid_ecmoco.m for ECMOCO). Also, all unnecessary and outdated code parts were 

deleted e.g., unused dummy variables or no longer supported deactivated modules). This 

reduced the number of lines from 2624 to 577. The acid main file contains now only the in 
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section 4.1 described parts. These changes implemented a modular structure on batch level 

as now only one line of additional code and an insertion into the batch module list is 

necessary to integrate a new module config file and therefore a new module into ACID. 

The batch configuration for the modules was harmonized by using the same inputs and 

names for identical parameters (e.g., “b-vectors” instead of “Diffusion Directions”). In order 

to be compliant with the BIDS standard (see section 4.6 for details) ACID generates 4D 

NIfTIs for the DWI datasets. To provide an option to handle 3D datasets and convert them 

into a BIDS usable 4D dataset, a startup module was developed which provides a structured 

storage for imported 3D/4D NIfTIs as well as for imported or extracted from metadata b-

values and b-vectors (see section 5.1 for details). 

4.3.3 Code changes 

To improve the stability of the code, several changes were performed, like fixing code errors, 

cleaning up the code, and enabling, e.g., error-free dependencies for all modules. Exemplary 

tasks are presented in section 4.3.1. 

Also, the C files were updated, and support now compilation on newer systems (e.g., 

MacBooks using ARM CPUs). 

Multicore support was implemented for ECMOCO to accelerate the processing when the 

multi-target correction is performed (see section 5.2.1 for details).  

To reduce the number of redundancies, also changes on the code level for different functions 

were performed. For example, the code for Diffusion Tensor Imaging (DTI) and Diffusion 

Kurtosis Imaging (DKI) was similar in their structure. Additionally, the NLLS algorithm, 

which can be used in DTI as well as DKI, had its own function with the mostly identical 

code structure as the DKI function. To solve these redundancies, both diffusion signal 

models as well as all available fitting algorithms for them were integrated into one file. This 

results in the creation of only one main function file for model fitting (444 lines) instead of 

three single function files (DTI: 477 lines, DKI: 421 lines, NLLS: 258 lines). Also, the batch 
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configuration files were merged into one file. The same was done in combining the 

ECMOCO versions “Single Target” and “Multi Target” into one config and one function 

file.  

Several functions (e.g., data import) were merged through the development of one function 

which features all possible use cases for their task. For example, the import function now 

supports compressed and uncompressed 4D NIfTIs and is integrated and used in all ACID 

modules. This reduces the amount of maintenance work, as a potential fix in the input 

function takes effect for all modules using it. 

4.3.4 File structure 

To prepare ACID for further developments, a refactoring of the file structure was done. The 

aim was that every part of the code and files should be named clearly and structured. This 

makes the code more robust as it reduces the risk of redundancies and gives a better 

possibility to solve errors as every part of the code can be found easily. For ACID, the most 

task to implement this aspect was to rename almost all code files and restructure the folders 

of ACID. One example of the renaming of the files is shown in Figure 14. 
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Figure 14: Example of renamed files which are part of the ACID toolbox. In the left panel, 

the old unstructured filenames are displayed. In the right panel, the renamed files are 

shown. A structured naming system is implemented based on “acid” as a prefix followed 

by the module name the file is contributing to (e.g., ecmoco, or tbx_cfg for main files). 

4.3.5 Guidance for unexperienced users 

The goal of ACID is to be usable for unexperienced users. To ensure this, the ACID 

repository contains a wiki13 (actual 23 sites) in which the modules and functionalities are 

described in more detail and instructions for e.g., the standalone version are provided. 

Furthermore, to reduce the risk of unintended use of ACID, warnings are implemented which 

appear when basic assumptions of the underlying models are not fulfilled, e.g., a diffusion 

shell contains less than three diffusion directions, which could make the fitting of the 

available diffusion signal models to the data bad conditioned. 

 

13 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/wiki/Home 
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4.3.6 Extraction of metadata 

The ACID toolbox uses NIfTI files which contain not only the acquired image but also 

metadata. A processing of dMRI data requires the inclusion of metadata information, e.g., 

b-values or b-vectors. However, these metadata are often not easily accessible and require 

manual interaction from the user (e.g., for creating b-value/vector matrices in MATLAB), 

which leads to a risk of mistakes. To solve this, ACID has the possibility to extract 

automatically b-values and b-vectors from the DICOM header. This reduces the risk of errors 

compared to manual generation of b-values and b-vectors. Furthermore, in this extraction 

step, a text file is generated containing the most important acquisition parameters (see Figure 

15). 

 

Figure 15: Example of JSON file extraction in ACID. On the left, a part of the JSON file 

from an example dataset is shown. The parameter fields of Echo Time (TE) (yellow) and 

protocol name (red) are marked. These are extracted among other values in a dedicated 

.txt file, which is formatted in a format easy for humans to understand. 

This text file provides a documentation of the acquisition parameters and is therefore a good 

solution for big data analysis, as the documentation of acquisition parameters is done in an 

automated and structured way. For example, the text file can be used to structure data based 
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on their imaging parameters such as echo time or repetition time. If in a large study, some 

of the acquisition protocol parameters varied due to mistakes by the radiographers or due to 

scanner updates, this is automatically noted by this text file. 

4.4 FAIR principles in ACID 

To develop ACID to a reusable and valuable academic software, the FAIR principles  

Findable (section 4.4.1), Accessible (section 4.4.2), Interoperable (section 4.4.3), and 

Reusable (section 4.4.4)) were used. This section gives an overview of how these four 

principles are used in ACID.  

4.4.1 Findable 

The first aspect of FAIR ensures the findability of software. To fulfill these requirements, 

ACID has its own website14 and is located in a git repository15 containing also a wiki (section 

4.3.5). This enables full source control with the possibility to identify each version and 

change in the code via the git hash number. Furthermore, ACID has a publication which is 

uniquely identifiable via the DOI number16. 

4.4.2 Accessible 

The second aspect of FAIR guarantees the availability of the software and code. As git is an 

open-source and free available code management system, it fulfills the requirements of this 

FAIR principle. The localization of ACID on a git repository15 makes the download and 

update of the toolbox possible in a standardized way (e.g., HTTPS or SSH connections, and 

git commands). Additionally, the code is fully available through this git located hosting 

(open source). 

 

14 http://diffusiontools.com/ 

15 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/src/master/ 

16 https://doi.org/10.1162/imag_a_00288 
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4.4.3 Interoperable 

The third aspect of FAIR is interoperability. This means that the output data of ACID must 

be usable for other toolboxes and software. Also, the requirements for the input data should 

be as low as possible, to allow the usage of ACID for as many data sources (e.g., MRI 

scanner types) as possible. To make the usage of different scanner types for metadata 

extraction possible, ACID contains a routine to analyze the scanner type and read out the 

JSON files in the corresponding syntax to the scanner. This is mainly developed and 

implemented for SIEMENS scanner types (e.g., Siemens PRISMA or different syngo MR 

software types). The structure of the code can easily extend to support additional/new 

scanner types which provide the needed metadata in JSON files. 

For the interoperability of the output files, the BIDS standard is implemented. This ensures 

that output files are stored in a standardized way and can be used directly in other (BIDS-

compliant) tools. In addition, the BIDS standard enables a structured storage for large 

datasets, which improves the usability for machine learning tools which often require BIDS 

compliant stored datasets for machine learning analyses (e.g., Clinica). See section 4.6 for 

details on how the BIDS standard is implemented in ACID. 

Furthermore (as mentioned in section 4.2), ACID (as well as SPM) can be used on the most 

popular operating systems (Windows, Mac, and Linux).  

4.4.4 Reusable 

The last aspect of FAIR is reusability. For this, the code of the ACID toolbox is available 

open-source. The open-source availability ensures the highest transparency and gives 

everyone the possibility to control the code, which enhances confidence in the code. 

Furthermore, this makes it possible to use the complete code for any new project or module.  
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4.5 Test system 

ACID contains a test system for the most important processing modules (ECMOCO, 

msPOAS, HySCO, DTI/DKI, and WMTI-Watson). For a test of a module, a dataset is 

processed, and the result is compared to a previously generated ground truth. This ensures 

that the output of a module has not changed due to, e.g., the implementation of new 

functionalities. Also, it indicates that previously results could be wrong if the test failed after, 

e.g., conceptual changes or bug fixes. 

4.6 Implementation of the Brain Imaging Data Structure (BIDS) 

ACID uses the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016; Karakuzu 

et al., 2022) standard on two levels: the folder structure and the file naming.  

The results of the several ACID modules are stored in a dedicated “derivatives” folder. 

Within this folder, each module has its own subfolder (e.g., “ECMOCO” or “msPOAS”). In 

each subfolder, the output of the corresponding module is stored.  

The filename is changed after using an ACID module in a BIDS-compliant way. For this, in 

the file name, a “_desc” field is added (if it is not existing) and the module name is added 

behind that. If more than one ACID module is used for the analysis, the module names are 

concatenated in the desc field (e.g., “_desc-ECMOCO-msPOAS”). To make the 

identification of the output type BIDS-compliant, a suffix is added for each file containing 

the name of the data type (e.g., “_dwi” for diffusion-weighted images or “_map” for e.g., 

DKI-maps). Figure 16 shows an example of the BIDS-compliant output of ACID. 
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Figure 16: Example of the output structure of ACID. On the left, the folder names are 

displayed, showing the name for each module that was used in the executed pipeline. If 

a module is executed again in the same run, a new folder with the extension “-Run_#” is 

created. On the right side, the content of the “WMTI-WATSON-PLUS” is shown. The 

“_desc” field in the filename shows all used modules in the executed order. This makes 

it easier for the user to recognize which modules have been applied to this data and in 

which order. 

4.7 Pipeline generation 

As described in section 4.1, the modules of ACID can be combined in pipelines via 

dependencies, enabling the possibility to bring all processing steps (e.g., DICOM to NIfTI 

conversion, preprocessing, model fitting) into one executable batch script (see section 4.2). 

This opens up the potential to use ACID for big data analysis where a huge number of 

datasets must be processed in the same structured way. To give this a higher flexibility and 

structure, a startup module is integrated in ACID, which offers the option to set up a specific 

individual output directory if needed or set a specific filename. Also, it is possible to define 

defaults that ensure optimal usage of the processing steps for dedicated usage (see section 

5.1 for details). 

  



 

 56 

5 ACID modules 

As described in section 4.1 ACID has a modular structure. This section explains all modules 

of ACID and its functionality. The modules of the ACID toolbox include the startup module 

(section 5.1), the preprocessing modules (section 5.2), the diffusion signal model fitting 

modules (section 5.3), biophysical modelling modules (section 5.4), external modules 

(section 5.5) as well as utility tools (section 5.6). This section is based on the publication 

(David et al., 2024), published under CC BY 4.0 license. 

Many of the in the ACID toolbox used modules have already been published in the scientific 

dMRI literature (Table 1). 
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Table 1: Peer-reviewed methods used in the ACID toolbox. Source: Table and caption 

based on (David et al., 2024), published under CC BY 4.0 license. 

Method Publication 
ECMOCO: Eddy-current and motion 
correction 

(Mohammadi et al., 2015, 2013, 2010) 

HySCO: Susceptibility artifact 
corrections 

(Macdonald and Ruthotto, 2018; Ruthotto et al., 
2013, 2012) 
 

HySCO: Combine blip-up and blip-
down 
 

(Clark et al., 2021) 

msPOAS: Adaptive denoising (Becker et al., 2014; Tabelow et al., 2015) 
 

RBC: Rician bias correction 
 

(Oeschger et al., 2023a) 

DTI using robust fitting (Mohammadi et al., 2013) 
 

DKI and axisymmetric DKI using 
NLLS 
 

(Oeschger et al., 2023a, 2023b) 
 

NODDI-DTI (Edwards et al., 2017) 
 

WMTI-Watson (Oeschger et al., 2023b)* 
 

Reliability masking (David et al., 2017) 
DKI, diffusion kurtosis imaging; DTI, diffusion tensor imaging; NLLS, nonlinear least 

squares; NODDI, neurite orientation dispersion and density imaging; WMTI, white matter 

tract integrity. *The ACID implementation is based on the method introduced by (Jespersen 

et al., 2018). 

5.1 Startup 

MRI scanners normally generate dMRI datasets in DICOM format. This format is not well 

suited for the use in ACID as every slice of each DWI volume is stored separately. To make 

the data useable for ACID a conversion to the NIfTI format is required. However, there are 

several conversion tools which save the data in individual NIfTI formats (3D, 4D or 

compressed 4D NIfTI) and storage systems (e.g., different folder structures). To enable the 

handling of these different data storage situations, ACID includes a startup module in which 
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the user can import the NIfTI files as well as the b-values and b-vectors. The module supports 

the import of existing 3D/4D NIfTI (also if they are compressed) and b-values/b-vectors as 

well as the import from 3D NIfTIs with corresponding JSON files (only if they are converted 

via the SPM DICOM import module). In the second case, the b-values and b-vectors as well 

as a text file which contains the acquisition parameters (see section 4.3.6 for details) are 

extracted out of the JSON file. 

In addition, the module allows setting up a (BIDS compliant) file name for the output NIfTI 

file and to set an output directory in which the further processing steps are done. In this 

directory, the 4D NIfTI file (either directly imported or generated out of selected 3D NIfTIs) 

as well as the b-values and b-vectors and the parameter text file are stored. The further 

processing steps are then performed in the derivatives folder at this location. This enables a 

structured analysis as the raw data, and the derivatives are in one directory unit. If a large 

number of datasets (big data) is analyzed, each of them has its own folder and derivatives 

subfolder and can be therefore found easily. 

The startup module can also be used to load individual defaults (see section 5.1.1 for details). 

5.1.1 ACID defaults 

The ACID modules have several parameters which have an influence on the performance of 

the modules. This allows the user to choose optimal parameter settings for each module, 

which can vary depending on the input data. For example, for the DTI or DKI module, 

additional outputs (e.g., diffusion tensor, kurtosis tensor) can be activated in the ACID 

defaults. This can be done in the GUI (e.g., see Figure 11) or, respectively, in the saved batch 

script (e.g., see Figure 13). However, there are several parameters which are not 

recommended to change, and which are therefore not displayed in the GUI. Advanced users 

can change these parameters, if necessary, by modifying the acid_local_defaults.m file. For 

the changes to become effective, the defaults file has to be loaded via the startup module 

(see section 5.1). The implementation of the ACID defaults is based on those used in the 
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hMRI toolbox. This makes it also possible to create individual default files for different 

datasets which can be loaded then automatically via a batch script in the processing pipeline.  

5.2 Image preprocessing in ACID 

The preprocessing of images is a substantial step in analyzing dMRI data. This section 

provides an overview of the preprocessing methods implemented. The ACID toolbox 

corrects different artefacts like motion and eddy currents (see section 5.2.1), noise (see 

section 5.2.2 and 5.2.3), Rician bias (see section 5.2.4), or susceptibility artefacts (see section 

5.2.5).  

5.2.1 Eddy current and motion correction (ECMOCO) 

In ACID, the Eddy Current and MOtion COrrection (ECMOCO (Mohammadi et al., 2010)) 

method is implemented to correct motion and eddy current artifacts in dMRI datasets. In 

ECMOCO, two registration types are implemented. A single target mode which registers all 

images to one specified target image and a multi target mode in which a registration is 

performed for each diffusion shell to an individual shell target image (see Figure 17). 

 

 

Figure 17: Registration scheme for an example dMRI dataset, which consists of two sets 

of non-diffusion-weighted (b0) volumes (n volumes each) and two sets of diffusion-
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weighted (DW) volumes (N volumes each) interspersed with each other. The b0 and DW 

volumes form separate registration groups and are registered to their corresponding 

target volumes. First, the b0 volumes are registered using the rigid-body components of 

the specified degrees of freedom (DOF), followed by the registration of the DW volumes 

using all specified DOF. The parameter iteration for a given b0 or DW can be initialized 

using previously obtained transformation parameters (initialized registration). Source: 

Figure and caption reproduced from (David et al., 2024), published under CC BY 4.0 

license. 

The eddy current artefacts are corrected for first-order displacements. The correction is 

normally performed for the whole volume (3D, “volume wise”). 

To address the special requirements for spinal cord datasets (e.g., lower number of voxels, 

low SNR), an initialized registration and exclusion mode is implemented in ACID. 

The initialized registration uses the b0 images first to obtain the start parameters for the rigid 

body registration for the interspersed DW images. This is done by interpolating the rigid-

body parameters of the b0 images. These images are used due to their high SNR. This method 

can improve the correction because slow spatial drifts can be identified, and the rigid body 

start parameters for low SNR DW volumes are therefore more accurate. 

An exclusion option provides the possibility to exclude volumes which are not possible to 

register due, e.g., artefacts or a too low SNR (see section 5.6.7 for details). These images are 

corrected with the use of the rigid body parameters of the preceding non-excluded volume. 

For spinal cord dMRI datasets, the subject movement is mostly along the rostro-caudal axis 

(Yiannakas et al., 2012). For this spinal cord specific behavior, ACID has a slice wise (2D) 

registration mode implemented. This additional correction aligns each slice independently 

and therefore corrects displacements on a slice level (Mohammadi et al., 2013).  
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For ex vivo data, no subject movement can be assumed but the presence of eddy currents. 

To address this behavior, ACID provides an option to correct a dataset only for the effects 

of eddy currents without performing a rigid body registration. 

5.2.2 Noise estimation 

A correct estimation of the noise standard deviation (σ) is crucial for the proper working of 

several preprocessing modules like denoising (see section 5.2.3) or Rician bias correction 

(see section 5.2.4). For this, ACID contains a noise estimation module. Two approaches are 

integrated in the module:  

An approach named “Standard Method” calculating the noise standard deviation based on 

the formula σ = �∑ D+
(

(∙*∙70∈+$@T , where 𝑆0 is the voxel intensity within a background mask 

defined outside the body, 𝐿 is the number of voxels within the background mask, and 𝑛 is 

the effective number of coil elements that contributed to the measured signal (Constantinides 

et al., 1997). 

The second approach named “Repeated measures method” is based on (Dietrich et al., 2007) 

and calculates the noise standard deviation in the dimension of repetitions and voxels. The 

therefore used formula is: σ = 𝑚𝑒𝑎𝑛0	07	UVW(𝑠𝑡𝑑T�𝑆(𝑖, 𝑘)�), where 𝑆(𝑖, 𝑘) is the voxel 

intensity at voxel 𝑖 in the 𝑘th repeated image (Dietrich et al., 2007). For this, either the b0 

images or the images with the highest b-value (bmax) can be used for the 𝑘 dimension 

(repeated images). The decision should be made based on the analyzed tissue type. For in 

vivo datasets, a physiological noise has to be assumed and therefore the use of the bmax 

images is recommended. The region should be mostly outside the tissue (no signal, only 

noise floor) but as next to the image center as possible to avoid an influence of the g-factor 

on the noise estimation. For brain datasets, the ventricle can be used as an estimation region 

because both recommendations are fulfilled. ACID creates a ventricle mask automatically 

within the brain mask creation module (see section 5.6.5 for details). For spinal cord datasets, 
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cerebro spinal fluid compartments can be used as noise estimation region. For ex vivo 

datasets, where the absence of physiological noise can be assumed, the recommendation is 

to use the b0 images and the use of the entire tissue as noise estimation region. To be able to 

use this option, a measurement of multiple b0 images is required which is has to be 

considered as it requires possibly the acquisition of additional images. Figure 18 shows 

example tissues and recommended noise estimation regions for the three discussed tissue 

types. 

 

Figure 18: Definition of noise regions of interest (ROI) for the repeated measures noise 

estimation method. Binary noise ROIs are outlined in red. For in vivo brain and spinal 

cord dMRI, we recommend creating a noise ROI within the cerebrospinal fluid (CSF), 

such as the lateral ventricles in the brain and the subarachnoid space in the spinal cord, 

on the 𝑏# images. Subsequently, we recommend estimating the noise on the images with 

the highest 𝑏-value (ideally above 1500 ,
--!) within the CSF mask. For ex vivo dMRI, the 

noise ROI is recommended to encompass the specimen itself, but noise estimation 

should be applied only on the 𝑏# images. Since ex vivo dMRI is not affected by 
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physiological artifacts, signal variations across the 𝑏# images are considered noise. 

Source: Figure and modified caption reproduced from (David et al., 2024), published 

under CC BY 4.0 license. 

For the tissue types “In vivo brain”, “In vivo spinal cord” or “Ex vivo specimen”, the 

recommendation is to use the “repeated measures” method because the “Standard Method” 

uses a background mask which is usually outside the tissue at the image edges. These regions 

can be influenced by e.g. ghost artefacts which can corrupt the noise estimation in 

background regions through their additional ghost signal. It is highly recommended to use 

the raw dMRI volumes for noise estimation to avoid a corruption of the true noise value 

through, e.g., interpolations introduced from preprocessing modules. 

5.2.3 Denoising (msPOAS) 

Denoising is necessary for precise diffusion parameter estimation. For this, the multi-shell 

Position-Orientation Adaptive Smoothing (msPOAS (Becker et al., 2014, 2012; Tabelow et 

al., 2015)) denoising algorithm is implemented in ACID. The algorithm uses the information 

provided by the distance in spherical space of the diffusion directions in addition to the 

information provided by the voxel space. This enables denoising only in homogeneous 

regions of the dataset, without blurring tissue boundaries. As msPOAS requires only the raw 

dMRI data, and b-values/vectors as inputs, it is compatible with all diffusion models. 

For a correct performance of msPOAS, a precise estimation of the noise (𝜎) is necessary 

(see Section 5.2.2 for details of noise estimation). When the noise estimation is correct, 

msPOAS should work without any further parameter changes. However, if the denoising 

result is not sufficient, there are three parameters that can be adjusted. First, the parameter 

kstar, which is the number of iterations performed for denoising. A higher kstar results in a 

stronger denoising/smoothing in areas identified from the algorithm as homogeneous. If the 

adaptation of the tissue edges is not sufficient, the parameter lambda can be adjusted. A 

lower lambda results in a stronger adaptation. Also, the parameter kappa can be adjusted 
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according to the number of diffusion directions, which defines the initial ratio of smoothing 

between the local space of neighboring voxels and the spherical space of diffusion gradients 

(Tabelow et al., 2015). 

An example of the performance of msPOAS for an example ex vivo dataset is provided in 

Figure 19. 

 

Figure 19: Comparison of maps obtained from fitting the diffusion kurtosis model (ex vivo 

dataset; refer to Table 2 for details on the dataset), including fractional anisotropy (𝐹𝐴), 

axial diffusivity (𝐴𝐷), mean kurtosis tensor (𝑀𝑊), axial kurtosis tensor (𝐴𝑊), and radial 

kurtosis tensor (𝑅𝑊) with and without applying adaptive denoising (msPOAS). The 

msPOAS-corrected maps appear less noisy while preserving tissue edges. Source: Figure 

and caption reproduced from (David et al., 2024), published under CC BY 4.0 license. 

5.2.4 Rician Bias correction (RBC) 

To eliminate the Rician bias in dMRI datasets, two approaches are implemented in ACID. 

Both methods require an accurate estimation of the noise (σ) (see section 5.2.2 for details). 

The first approach, named “M2”, developed by (Miller and Joseph, 1993), was first 

applicable only for single receiver coil datasets and later extended to be compatible with 

multichannel receiver coils (André et al., 2014). The algorithm works on the dMRI dataset 

providing the measured intensities and uses the estimated noise (σ) for calculating the real 

voxel intensities by the use of the second moment of the noncentral χ distribution.  
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The second approach operates on the model fitting level and adjusts the parameter estimation 

by accounting for the predicted noncentral χ distribution for the Rican bias (Oeschger et al., 

2023a; Polzehl and Tabelow, 2016). 

5.2.5 Susceptibility-Induced artifact correction (HySCO) 

To correct susceptibility artifacts, ACID features the Hyperelastic Susceptibility Artifact 

COrrection (HySCO) (Ruthotto et al., 2012, 2013; Macdonald and Ruthotto, 2018). To 

perform this artefact correction, HySCO requires at least one image measured with the 

reversed phase encoding (blip) direction. This provides two complementary data types 

named “blip-up” and “blip-down,” which can be used in HySCO to estimate a bias field map 

including the spatial information of the geometric distortions. This map is then applied to 

the whole dMRI dataset, which results in the correction of the geometric distortions in the 

outcoming dataset. 

When full datasets of both blip directions are acquired, they can be combined additionally 

via the “HySCO: combine blip-up and blip-down images” module which can provide a more 

precise susceptibility artifacts correction (Clark et al., 2021). 

5.3 Diffusion signal models 

To estimate diffusion parameters out of a dMRI dataset, ACID has the two most popular 

mathematical fitting models implemented, which are Diffusion Tensor Imaging (DTI 

(Basser et al., 1994), section 5.3.1) and Diffusion Kurtosis Imaging (DKI (Hansen et al., 

2016; Jensen et al., 2005), section 5.3.2).  

5.3.1 Diffusion Tensor Imaging (DTI)  

Diffusion tensor imaging (DTI) estimates the anisotropic water diffusion in the white matter 

(Basser et al., 1994). This is done by a diffusion tensor consisting of six independent 

diffusion parameters. From the eigenvalues of this tensor, the rotationally invariant DTI 

scalar metrics can be estimated, which are axial (𝐴𝐷), radial (𝑅𝐷), and mean (𝑀𝐷) 
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diffusivities as well as the fractional anisotropy (𝐹𝐴). See Figure 22 for example DTI maps. 

However, the approach of DTI assumes that the direction of axial diffusivity aligns with the 

white matter tracts, which is not valid for, e.g., crossing fibers. 

There are different model fitting approaches to fit this diffusion tensor. The ACID toolbox 

features four of them: The ordinary least squares (OLS) (Koay et al., 2006) algorithm 

minimizes the sum of squares model fit error to obtain the diffusion tensor. The weighted 

least squares (WLS) algorithm is an extension of the OLS method, adding a weight which 

takes distortion in the noise distribution in the logarithmic data into account (Basser et al., 

1994; Koay et al., 2006; Salvador et al., 2005; Veraart et al., 2013b). The third model fitting 

algorithm is Robust fitting (Mangin et al., 2002). The method is a similar extension like 

WLS but categorizes the weights for local and slice-specific artefacts and also for outliers, 

which can occur especially in spinal cord data (Mohammadi et al., 2013). The in ACID 

implemented version of robust fitting is based on the “Patching  ArTefacts from Cardiac and 

Head motion” (PATCH) processing method (Zwiers, 2010). A visualization of how the 

robust fitting algorithm improves the model fit quality is shown in Figure 20. 

 

Figure 20: Schematic illustration of how robust fitting down-weights outliers in the model 

fit. The scatter plot shows the logarithm of diffusion-weighted voxel intensities against 
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the squared cosine of the angle ψ between the diffusion gradient direction (bvec) and 

the direction of the first eigenvector in a corpus callosum voxel (see blue crosshairs for 

location). Blue crosses in the scatter plot indicate data points not affected by artifacts 

(“No outliers”), while cyan crosses indicate data points affected by strong artifacts 

(“Outliers”). Outliers were generated by removing the center of the k-space of the 

original image to illustrate the effect of strong motion artifacts. Two example images 

corresponding to a nonartifactual (“No outlier,” top image) and an artifactual data point 

(“Outlier,” bottom image) are shown on the right. During the model fit, a linear curve is 

fitted to the logarithmic voxel intensities. The presence of outlier data points leads to a 

biased model fit (red line) and consequently biased tensor estimates when using 

ordinary least squares (OLS) model fitting. In contrast, robust fitting down-weights the 

influence of outliers, leading to a more accurate model fit  (orange line) which is closer 

to the ground truth (green line) obtained by an OLS fit to the nonartifactual data points 

(blue crosses) only. Source: Figure and caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. 

Additional to these three linearized models, a nonlinear least squared (NLLS) algorithm 

based on an implementation (Modersitzki, 2009) of the Gauss-Newton algorithm is 

implemented in ACID. This method works on the nonlogarithmic data and avoids, therefore, 

the distortion of the noise distribution. 

5.3.2 Diffusion Kurtosis Imaging (DKI) 

An expansion of DTI is Diffusion Kurtosis Imaging (DKI) (Hansen et al., 2016; Jensen et 

al., 2005). This approach uses a fourth-order tensor (kurtosis tensor) consisting of 15 

independent parameters. This enables the consideration of non-Gaussian water diffusion. 

DKI allows a more accurate estimation of diffusion parameters as higher shells (𝑏+$> 	>

	1000) can be used. An example of the otherwise (e.g., when a DTI fit is performed) possibly 

existent kurtosis bias (Edwards et al., 2017) and the reduction through the use of DKI is 

shown in Figure 21. 
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Figure 21: Kurtosis bias in the mean diffusivity (𝑀𝐷) maps in an in vivo brain and in vivo 

spinal cord dataset (refer to Table 2 for details on the dataset). This bias, shown in the 

right column, refers to the difference in the estimated diffusivity values when using the 

lower diffusion shells only (𝑀𝐷𝐷𝑇𝐼, tensor model, left column) or both the lower and 

higher diffusion shells (𝑀𝐷𝐷𝐾𝐼, kurtosis model, middle column). On average, the kurtosis 

bias was 12% and 54% within the brain white matter and the whole spinal cord, 

respectively. Source: Figure and modified caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. 

The output includes the DTI maps but consists additionally of the axial kurtosis (𝐴𝐾), radial 

kurtosis (𝑅𝐾), and mean kurtosis (𝑀𝐾). Also, the kurtosis tensor maps (𝐴𝑊, 𝑅𝑊, 𝑀𝑊) can 

be computed optionally (Tabesh et al., 2011). See Figure 22 for example DKI maps. 
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Figure 22: Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo 

brain, in vivo spinal cord, and ex vivo dMRI dataset (refer to Table 2 for details on the 

dataset). Shown are maps of fractional anisotropy (𝐹𝐴), mean diffusivity (𝑀𝐷), axial 

diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), mean kurtosis (𝑀𝐾), axial kurtosis (𝐴𝐾), and radial 

kurtosis (𝑅𝐾). Source: Figure and modified caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. 

In addition to the DKI model, ACID features the axisymmetric DKI model. This approach 

uses 8 independent parameters and reduces the number of free parameters compared to DKI 

(15 parameters) (Hansen et al., 2016).  

To perform the model fit, the OLS and NLLS algorithms are implemented for DKI, and the 

NLLS algorithm for performing an axisymmetric DKI fit (Oeschger et al., 2023b). 

5.4 Biophysical modeling 

In ACID, two biophysical models for white matter are implemented (NODDI-DTI (section 

5.4.1) and WMIT-Watson (section 5.4.2).  
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5.4.1 NODDI-DTI 

The NODDI-DTI (Edwards et al., 2017) approach implemented in ACID assumes fixed 

diffusivities (𝐷$ , 𝐷0@,) and neglect CSF volume fractions for white matter. As fixed ex vivo 

tissue at room temperature has a reduced diffusivity compared to in vivo tissue (Schilling et 

al., 2025), two different fixed value sets can be selected in the NODDI-DTI module for in 

vivo (𝐷$ = 	1.7 ∙ 101I 	XX
(

Y
	, 𝐷0@, = 	3.0 ∙ 101I XX

(

Y
) or ex vivo (𝐷$ = 	0.6 ∙ 101I XX

(

Y
, 

𝐷0@, = 	2.0 ∙ 101I 	XX
(

Y
) datasets. For tissues with different diffusivities, the value can be set 

by the user manually. For example, in (West et al., 2018) a 𝐷$ of 0.35 ∙ 101I 	XX
(

Y
	and a 𝐷0@, 

of 2.0 ∙ 101I XX
(

Y
 was estimated. In contrast to WMTI-Watson (see section 5.4.2), NODDI-

DTI can be used on DTI results (e.g., single shell datasets or if 𝑏+$> 	< 	1000). To correct 

for the kurtosis bias, a correction can be performed for DTI datasets within the module.  

The output parameters are the intraneurite (𝑓) and extraneurite signal fraction (1	 − 	𝑓), the 

Watson concentration parameter 𝜅, and the mathematically related anisotropy parameter 𝑝( 

(Jespersen et al., 2018). For consistency, also the orientation dispersion index (𝑂𝐷𝐼) is 

calculated, which is mathematically related to 𝜅 (Mollink et al., 2017). 

5.4.2 WMTI-Watson 

The white matter tract integrity (WMTI)-Watson model assumes two no exchanging water 

compartments (intra- and extra axonal tissue water) (Alexander et al., 2019; Novikov et al., 

2019). The outputs created by ACID for WMTI-Watson are the intra-axonal diffusivity (𝐷$), 

for parallel (𝐷!,#$%) and perpendicular (𝐷!,#!%#)	extra-axonal diffusivity. In addition, the 

axonal water fraction (f), the Watson concentration parameter 𝜅 and, respectively, the 

mathematically related 𝑂𝐷𝐼 (Mollink et al., 2017) and anisotropy parameter (𝑝() (Jespersen 

et al., 2018) are calculated. See Figure 23 for example WMTI-Watson maps. As WMTI-

Watson is based on the Standard Model, the results are degenerated, which results in two 
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solutions where 𝐷$  < 𝐷!,#$%  (Plus-Branch) or 𝐷$  > 𝐷!,#$% (Minus-Branch). In accordance 

with the literature (Jelescu et al., 2020; Jespersen et al., 2018), the plus branch is set as the 

default in ACID as the minus branch is typically the physically invalid solution. 

 

Figure 23: Maps of biophysical parameters derived from the WMTI-Watson model using 

an in vivo brain, in vivo spinal cord, and ex vivo dMRI dataset (refer to Table 2 for details 

on the dataset). Shown are maps of Watson concentration parameter (𝜅), axonal water 

fraction (𝑓), parallel and perpendicular extra-axonal diffusivities (𝐷2,456  and 𝐷2,4264), and 

intra-axonal diffusivity (𝐷5). Note that for the in vivo spinal cord dataset, the maximum 

𝑏-value (𝑏 = 1500 ,
--!)) was probably too low for an accurate estimation of 𝐷2,456, resulting 

in voxels with negative (hence unphysical) values within the spinal cord. Since WMTI-

Watson is a white matter biophysical model, the parameter maps were masked for the 

white matter in the brain dataset. For the spinal cord and ex vivo specimen, we refrained 

from masking for the white matter due to the difficulty of obtaining an accurate white 
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matter mask. Source: Figure and modified caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. 

5.5 External modules 

As one of the strengths of ACID is the modularized code structure, external tools can be 

easily implemented, and several external methods and tools are integrated so far. They are 

fully integrated in the batch system and therefore use the same GUI, which makes it possible 

to integrate them in pipelines via dependencies or use them for their own in scripts for 

processing multiple datasets in one execution step. Actually, several external modules are 

integrated in ACID. FSL modules: eddy17 (Andersson and Sotiropoulos, 2016), topup18 

(Smith et al., 2004), applytopup19, mrdegibbs20 (implementation of MRtrix) (Kellner et al., 

2016), dwidenoise21 (MPPCA implementation of MRtrix) (Veraart et al., 2016), LPCA 

denoising22 (implementation of the DWI Denoising software) (Manjón et al., 2013), Koays 

Rician bias correction23 (Koay and Basser, 2006), Real Diffusion Reconstruction24 (Eichner 

et al., 2015), SMI25 (Coelho et al., 2022; Novikov et al., 2018; Reisert et al., 2017), and the 

wmti26 (Fieremans et al., 2011) implementation of the DESIGNER toolbox. 

 

17 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy 

18 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup 

19https://ftp.nmr.mgh.harvard.edu/pub/dist/freesurfer/tutorial_packages/centos6/fsl_507/doc/wiki/topup(2f)A

pplyTopupUsersGuide.html 

20 https://mrtrix.readthedocs.io/en/dev/reference/commands/mrdegibbs.html 

21 https://mrtrix.readthedocs.io/en/dev/dwi_preprocessing/denoising.html 

22 https://sites.google.com/site/pierrickcoupe/softwares/denoising/dwi-denoising/dwi-denoising-software 

23 https://github.com/jan-martin-mri/koays-inversion 

24 https://github.com/cornelius-eichner/real-diffusion 

25 https://github.com/NYU-DiffusionMRI/SMI 

26 https://github.com/NYU-DiffusionMRI/DESIGNER-v1 
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The modules based on FSL, MRtrix, and DESIGNER require a dedicated installation of the 

tools on a Unix-based system (e.g., Linux or Mac), as ACID calls the thereby installed 

functions, which is not possible on Windows-based systems. In addition, it is necessary to 

start MATLAB within a terminal because only then the environment variables are set 

correctly, and ACID can call the external required functions. 

5.6 Utility tools 

ACID features several utility tools which offer additional functionalities to improve or 

simplify the analysis. This includes modules for masking, quality assessment, or manual 

correction of data. 

5.6.1 Cropping 

To improve the performance of, e.g., motion correction for spinal cord data, it is helpful to 

crop the image to reduce the fraction of background regions which can lead the motion 

correction algorithm to wrong results if, e.g., background artifacts are included in the 

correction.  

For this, ACID includes a cropping module. As inputs, the images to be cropped as well as 

the new matrix size and the voxel coordinate of the new center of the image have to be 

provided by the user. If no center coordinate is provided, the center can be selected manually 

via a pop-up window which appears after executing the module in this case. For 

reproducibility, the cropping parameters are provided as well as the cropped images as 

outputs. 

5.6.2 Resampling 

For situations where it is necessary to bring two datasets to the same resolution (e.g., voxel-

wise analysis), ACID includes a resampling module which allows the user to resample 

datasets to a desired resolution. The interpolation type can be selected by the user and is the 

same as defined in spm_slice_vol because the resampling module is based on this function. 
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The default value is -7, which represents a 7th-order sinc interpolation. The sinc order can be 

selected from 1 to 127 (in the module, the variable has to be selected from -1 to 127). Other 

interpolation types are nearest neighbor (0), trilinear (1), and high-order Lagrange 

polynomial (2 to 127). 

5.6.3 Slice-wise realignment 

When performing motion correction for spinal cord, the slice-wise functionality is 

recommended in ECMOCO (see section 5.2.1 for details). However, a possibility of 

misalignment of single slices in single volumes can occur. To correct them, ACID offers a 

slice-wise realignment module in which the user can search for misaligned slices and correct 

them manually in a GUI framework. The correction for each slice can be done by translation 

in the x- and y-directions. To visualize the alignment quality, the contour lines of the target 

image are displayed on the source images.  

5.6.4 Fusion 

The fusion module enables the possibility to merge two images acquired in different regions 

(e.g., brain, spinal cord). Figure 24 shows an example application. This can be helpful if a 

warping field is obtained from a structural image acquired with a large field of view 

containing both merged regions. 
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Figure 24: Merging of two fractional anisotropy (𝐹𝐴) maps, covering the brain and cervical 

cord, respectively, into a unified 𝐹𝐴 map using the Fusion utility function. The two images 

should ideally share an overlapping region, but they may have different geometric 

properties such as resolution and number of slices. In the overlapping region, the voxel 

intensity values are computed as the average of the intensity values from the two images. 

The merging process requires a structural image as the registration target. The combined 

𝐹𝐴 map is resampled onto the higher resolution structural image, resulting in a smoother 

appearance. Source: Figure and modified caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. 

5.6.5 Create brain mask 

For brain datasets, it is recommended to use a brain mask. This improves the visibility of the 

results (e.g., parameter maps which only contain the brain and no background). In addition, 

the computation time can be reduced drastically, as for example, only voxels within the brain 

are model fitted. The module implemented in ACID uses SPM12’s segmentation function 

(Ashburner and Friston, 2005) and thresholds the tissue probability maps (TPMs) provided 

by the segmentation. The TPMs of white- and gray-matter as well as CSF are summed up, 

which results in a binary mask of the entire brain. The threshold for the TPMs can be changed 

by the user in the defaults. 
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ACID uses its own TPM template based on the TPM of the hMRI toolbox. The TPM is 

extended by a ventricle TPM. This allows the automated segmentation of the ventricle and 

the generation of a binary ventricle mask, which can then be used for noise estimation (see 

section 5.2.2).  

5.6.6 Reliability masking 

To identify voxels which are irreversible corrupted by, e.g., artefacts, ACID features a 

reliability masking module. The module uses the root-mean-square model-fit error rms(ε) 

map (David et al., 2017) which can be estimated by the model fitting modules. Combined 

with a threshold, a map of unreliable voxels is generated. To estimate the optimal threshold, 

a submodule named “Determine threshold” is provided. For datasets with many corrupted 

voxels, e.g., spinal cord datasets, this module can be used to generate a reliability mask which 

can be used in a region of interest (ROI) analysis as the mask identifies the voxels which 

contain reliable tensor estimates (David et al., 2017). 

5.6.7 DWI series browser/movie 

For quality assessments, two modules for visual inspection are implemented.  

First, a series browser module with which the user can browse through the slices of dMRI 

data. Slices with artefacts or a too low SNR can be labeled and then skipped in ECMOCO 

to make the motion correction more stable and based on true signals. This is done by creating 

a list as output which contains the labeled slice numbers. The list can then be loaded into 

ECMOCO, and the defined slices are skipped for processing. 

Second, to compare multiple datasets, a series movie module is implemented. As inputs, a 

reference image and up to three dMRI datasets can be loaded in the module. A movie will 

be created which contains all volumes of the selected datasets.  
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5.6.8 Rician bias simulation module 

To estimate the required SNR for a measurement and to decide which RBC method should 

be used, a Rician bias simulation module is implemented which offers the opportunity to use 

one of 27 predefined voxels (details are described in (Oeschger et al., 2023a) and the 

repository27) to simulate different SNRs for the selected voxel by contaminating it with 

noise. This noise-contaminated voxel is then Rician bias corrected (details are described in 

(Oeschger et al., 2023a)), and the result is compared to the initial voxel without noise as 

ground truth. This allows an estimation of the performance of the Rician bias methods for 

different SNRs. As noise contamination is a statistical process, the selected voxel is 

contaminated multiple times with noise and analyzed to ensure reproducibility. 

5.6.9 ROI analysis 

For ROI-based analysis a ROI analysis, module is integrated. This module offers the 

calculation of mean and standard deviation for global or subject-specific voxels. Also, a 

reliability mask (see section 5.6.6 for details on how to generate a reliability mask) can be 

specified to avoid the influence of corrupted voxels on the calculated metrics.  

  

 

27https://github.com/quantitative-mri-and-in-vivo-

histology/axisymmetric_dki_with_rician_bias_correction_simulation_study 
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6 Results 

This section shows various examples of the use of ACID. The sections 6.1 to 6.5 provide a 

demonstration of possibilities ACID features based on three exemplary datasets and were 

publicized in the ACID toolbox paper (David et al., 2024), published under CC BY 4.0 

license. First, the three used datasets are introduced, and the acquisition parameters are 

presented (section 6.1). In section 0 the processing pipelines for each dataset are presented 

and discussed. Section 6.3 provides a comparison of NODDI-DTI and WMTI-Watson and 

gives recommendations which methods should be selected for a specific dataset. The effect 

of Rician bias correction on biophysical parameters is presented in section 6.4. A comparison 

of the in ACID implemented denoising methods is shown in section 6.5. The section 6.6 

demonstrates how a group analysis in ACID can be performed and how the processed data 

would be stored BIDS compliant. Furthermore, a comparison of different biophysical 

modelling methods is investigated. 

6.1 Experimental datasets (in vivo Brain, in vivo Spinal Cord, ex vivo Specimen) 

The ACID modules depend on specific parameters. The optimal choice depends on the 

acquired dataset (e.g., tissue type). ACID has pre-defined optimal settings for the tissue types 

of in vivo brain, in vivo spinal cord, and ex vivo specimen. 

For a demonstration of the performance of ACID, datasets of the three mentioned tissue 

types were used and processed. Table 2 shows the acquisition parameters of the three 

datasets. The distribution of the diffusion directions (𝑏-vectors) for the MRI acquisition were 

defined using the configuration proposed in (Caruyer et al., 2013)28. 

 

28 http://www.emmanuelcaruyer.com/q-space-sampling.php 
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Table 2: Scan parameters of the in vivo brain, in vivo spinal cord, and ex vivo dMRI 

datasets. Source: Table and caption based on (David et al., 2024), published under CC 

BY 4.0 license. 

Dataset In vivo brain In vivo spinal cord Ex vivo specimen 
Imaged body part or 
tissue 

entire brain (including 
cerebellum) of a 34-
year-old healthy 
volunteer 

upper cervical cord 
(appr. C1-C4) of a 43-
year-old healthy 
volunteer 

ex vivo specimen of the 
temporal lobe from a 46-
year-old patient 
diagnosed with drug-
resistant temporal lobe 
epilepsy; specimen 
embedded in glucose for 
2 h and fixed with 4% 
paraformaldehyde for 12 
h before measurement 

Scanner 3T Siemens Prisma Fit 3T Siemens Prisma Fit 3T Siemens Prisma Fit 
Receive coils 64-channel 

Head/Neck 
64-channel 
Head/Neck 

16-channel Hand/Wrist 

Sequence 2D single-shot spin-
echo EPI 

2D single-shot spin-
echo EPI 

pulse gradient spin echo 

Volumes and b-values 
[s/mm2] (number of 
gradient directions) 

b = 0 (18); b = 600 
(30); b = 1100 (45); b 
= 2500 (60) 

b = 0 (11); b = 500 
(30); b = 1000 (30); b 
= 1500 (30) 

b = 0 (36); b = 550 (30); 
b = 1100 (75); b = 2200 
(45); b = 2500 (60); b = 
5000 (60) 

Cardiac gating -- 2 slices per cardiac 
cycle, trigger delay of 
260 ms 

- 

Number of slices 100 (interleaved, no 
gap) 

14 (interleaved, no 
gap) 

160 

Resolution [mm3] 1.7 x 1.7 x 1.7 1.0 x 1.0 x 5.0 0.8 x 0.8 x 0.8 
Field of view [mm3] 204 x 170 x 201 128 x 36 x 70 128 x 48 x 48 
Echo time 75 ms 73 ms 99 ms 

Repetition time 5800 ms pulse-dependent 
(cardiac gated) 

8700 ms 

Parallel imaging 2x (GRAPPA) - - 

Multi-band imaging - - - 

Phase partial Fourier 7/8 - 7/8 

Phase-encoding dir. A-P A-P A-P 

Readout bandwidth  1842 Hz/pixel 1396 Hz/pixel 802 Hz/pixel 
EPI spacing 0.77 ms 0.93 ms 1.37 ms 
EPI factor 120 36 60 

Acquisition time 
[min:sec] 

17:46 06:51 (nominal) 93:10 

Additional data with 
reversed phase-
encoding direction 

a single b0 volume 
acquired with reversed 
phase-encoding 
direction 

full blip-reversed 
acquisition (reversed 
phase-encoding 
available for each 
volume) 

full blip-reversed 
acquisition (reversed 
phase-encoding 
available for each 
volume) 
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6.2 Application of the ACID Toolbox on three datasets 

Figure 25 visualizes the capabilities and expectable results for three exemplary datasets 

which represent the three tissue types for which ACID offers dedicated processing options 

(in vivo brain, in vivo spinal cord, and ex vivo specimen). The pipeline for each tissue type 

has a similar structure, but the settings differ for several processing steps. 
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Figure 25: Standard processing pipelines for typical (A) in vivo brain, (B) in vivo spinal 

cord, and (C) ex vivo dMRI datasets (refer to Table 2 for details on the datasets and Table 

3 for details on the pipeline settings). Example batches for each type of dMRI data are 

stored in the Example_Batches folder of the toolbox. The positions of the displayed 

slices of the dMRI data are indicated in purple on the corresponding structural images. 

For the ex vivo specimen (C), the brain region from which the sample was extracted is 

highlighted in an orange box. Although not explicitly shown here, noise estimation should 

be performed on the unprocessed data (see Appendix C), which serves as input for 

msPOAS, Rician bias correction, and diffusion tensor fitting (for fitting methods WLS and 

robust fitting). However, in case of substantial misalignments across volumes, and when 

using the repeated measures noise estimation method, it might be beneficial to perform 

this step after ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-

in visual comparison is shown between a diffusion-weighted (DW) image before (middle 

row) and after applying msPOAS (bottom row); the msPOAS-corrected image appears 

less noisy while preserving tissue edges. For HySCO, contour lines of the corresponding 

structural image (displayed as red lines) are overlaid on a zoomed-in DW image both 

before (middle row) and after applying HySCO (bottom row). HySCO improves the 

alignment between the DW and the structural image. For the in vivo brain dMRI dataset 

(A), an inferior slice is shown that presents high susceptibility-related distortions, 

making the effect of HySCO more visible. For the ex vivo dMRI dataset (C), the effect of 

HySCO is shown in a slice (illustrated in yellow) orthogonal to the original one 

(illustrated in purple) to better visualize susceptibility-related distortions and their 

correction. Note that HySCO is applied as the final preprocessing step, that is, after 

applying msPOAS; however, the HySCO field map used for “unwarping” the diffusion-

weighted images is estimated on the ECMOCO-corrected datasets, that is, before 

applying msPOAS. Rician bias correction (not explicitly shown here) should be applied 

either before (recommended: between msPOAS and HySCO, using the RBC module) or 

during model fitting (using the Rician bias correction option in NLLS). Diffusion signal 

models are fitted on the processed dataset; here, we display the maps of fractional 
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anisotropy (𝐹𝐴) and mean kurtosis tensor (𝑀𝑊) from diffusion kurtosis imaging (DKI). The 

output from DKI can be used to compute biophysical parameters of the white matter; 

shown here is the map of Watson concentration parameter (𝜅) from the WMTI-Watson 

biophysical model. Note that for the in vivo brain dMRI dataset, the inferior slice 

displayed contains relatively little white matter; hence, we refrained from using a white 

matter mask. The less smooth appearance of the κ map is due to the low values in the 

gray matter. Source: Figure and modified caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. 

The tissue type-specific individual settings are listed in Table 3.  

Table 3: Settings of selected modules for in vivo brain, in vivo spinal cord, and ex vivo 

dMRI datasets. Source: Figure and caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. 

Module Adjustable 
parameter 

In vivo 
brain dMRI 

In vivo 
spinal cord dMRI 

Ex vivo 
dMRI 

ECMOCO 

type of registration 
degrees of freedom 
  
  
  
mask 

volume-wise 
9 [transl. x, y, 
z ; rotation x, y, z ; 
scaling y; 
shearing x-y, y-z] 
- 

volume- and slice-wise 
volume-wise: 4 
[transl. x, y, z; scaling y] 
slice-wise: 3 per slice 
[transl. x, y; scaling y] 
mask around the spinal 
cord 

volume-wise 
4 [transl. y; 
scaling y; shearing x-
y, y-z] 
  
  
- 

msPOAS kappa automatically 
determined 

increase default for low 
SNR data (e.g., +20%) 

automatically 
determined 

RBC   defaults defaults defaults 
HySCO   defaults defaults defaults 
DTI Fitting algorithm robust fitting or NLLS robust fitting or NLLS NLLS 
DKI/axDKI Fitting algorithm NLLS NLLS NLLS 
NODDI-DTI Fixed diffusivities In vivo parameters In vivo parameters Ex vivo parameters 
WMTI-Watson   defaults defaults defaults 

 

In this section, the preprocessing steps (Motion- and Eddy Current Correction in section 

6.2.1, denoising in section 6.2.2, and susceptibility artefact correction in section 6.2.3), the 

physical diffusion models (section 6.2.4), and the application to biophysical diffusion 

models (section 6.2.5) are explained. 
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6.2.1 Preprocessing I: Motion- and eddy current correction 

The motion- and eddy current correction are performed for all tissue types as the first step 

because the following modules like msPOAS or HySCO assume the absence of, e.g., motion 

artefacts. For this the ACID module ECMOCO can be used (see section 5.2.1 for details) 

The type of motion that can be assumed is different for each tissue type:  

For in vivo brain datasets, the motion is possible in 6 different directions (translation and 

rotation along 𝑥-, 𝑦-, 𝑧-direction). In addition, eddy currents, which occur often during the 

measurement, can be corrected by ACID using a first-order approximation. This is 

performed as a translation and scaling along the phase-encoding direction as well as in-plane 

and through-plane shearing (Mohammadi et al., 2010). Therefore, 9 degrees of freedom are 

recommended (the translation along the phase-encoding direction for eddy currents 

correction is the same degree of freedom for the algorithm as for the translation correction). 

For spinal cord datasets, ACID features an additional slice-wise correction in which the 

correction is performed on a 2D (slice) level. This improves the correction of artefacts 

occurring from e.g., cardiac pulsation which are not sufficiently corrected via a volume-wise 

correction (Mohammadi et al., 2013). Due to the smaller field of view and the location next 

to the scanner isocenter, eddy-current artifacts are less strong compared to brain datasets. 

Therefore, the first-order approximation for correction of eddy currents, that ACID features, 

is generally sufficient. The recommendation is therefore to perform a volume-wise 

correction with four degrees of freedom (𝑥-, 𝑦-, 𝑧-translation and scaling in y-direction) to 

correct displacements of the whole spine through e.g., subject movement followed by a slice-

wise correction with 3 degrees of freedom (𝑥-, 𝑦-translation and scaling in 𝑦-direction). The 

combined correction techniques result in a higher SNR as well as in a better test-retest 

variability in DTI maps (Mohammadi et al., 2013). Other degrees of freedom like shearing 

or rotation can be omitted as the expected misalignment is very small. The correction of 

these artefacts leads to the risk of overcompensation and a less accurate result compared to 
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no correction. As the structures around the spinal cord (e.g., bones) are also often part of the 

DWI image and have a different motion profile, it is recommended to use a mask defining 

the spinal cord region which is then only used to estimate the motion correction parameter. 

To ensure that the correction of slice-wise motion artefacts is sufficient, the slice-wise 

realignment module (see section 5.6.3) can be used to check and, if necessary, correct 

displacements manually. 

For ex vivo datasets, subject movement can be neglected if the specimen is spatially fixed 

(e.g., paraffin embedded (Absinta et al., 2014)). As a result of this approach, only the eddy 

currents are recommended to be corrected along the phase encoding direction (in most cases 

the y-direction (y-scaling/translation and 𝑥-𝑦- and 𝑧-𝑦-shearing)). Similar to spinal cord 

datasets, the first-order correction of eddy currents is sufficient for small specimens which 

are next to the scanner isocenter. 

6.2.2 Preprocessing II: Denoising and RBC correction 

For the denoising performed by msPOAS (see section 5.2.3 for details), no special tissue-

related settings are needed to be set. However, the denoising is a crucial step for the 

estimation of accurate DTI/DKI parameter maps (see Figure 19 for an example of ex vivo 

parameter maps). The default settings can be used for in vivo brain/spinal cord as well as ex 

vivo datasets. If the SNR of the dataset is generally high, denoising can lead to an additional 

error and can be omitted in this case (see section 6.5 for details). In low SNR situations, the 

denoising results could be insufficient due to still existing noise in the denoised data. In this 

case, the parameter kappa can be increased manually for a stronger denoising. In addition, 

Rician Bias correction (RBC) is recommended for low-SNR datasets (see section 6.4 for an 

example demonstration). ACID features two implemented RBC approaches (see section 

5.2.4 for details). The required noise value can be estimated via the noise estimation module 

(see section 5.2.2 for details).  
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6.2.3 Preprocessing III: Susceptibility artefact correction 

The correction of susceptibility artefacts is recommended for datasets acquired via, e.g., 

multiband EPI sequences or when a structural image needs to be combined with an acquired 

EPI image (e.g., the dMRI axonal water fraction parameter map and the magnetization 

transfer saturation maps can be used for g-ratio mapping (Mohammadi and Callaghan, 

2021)). For this, HySCO (see section 5.2.5 for details) can be used in ACID as it is 

demonstrated for the three exemplary datasets in Figure 25. HySCO uses two images with 

different phase encoding directions and assumes them as registered. Therefore, it is 

recommended to acquire both images in close successive order. The default settings should 

provide sufficient results for all three tissue types. 

6.2.4 Physical diffusion models 

ACID includes the two physical diffusion models DTI (see section 5.3.1 for details) and DKI 

(see section 5.3.2 for details). The selection of the recommended approach depends normally 

on the acquired b-values. For both models, several fitting algorithms are implemented. In 

general, the NLLS algorithm is recommended for each tissue type if the acquired SNR is 

sufficiently high (see (Oeschger et al., 2023a) for the recommended minimum SNR).  

For DTI datasets, such as spinal cord datasets where high b-values are challenging to be 

measured for DKI analyses and often lack a significant number of outliers, the robust fitting 

algorithm is recommended. This algorithm downweights voxels identified as outliers, 

thereby enhancing the robustness of the diffusion model fit. A visualized example of this is 

provided in Figure 20. 

For situations where the SNR is low and the number of outliers is high, msPOAS and RBC 

can reach their limits, and in this situation, the use of reliability masking (see section 5.6.6 

for details) might be useful to extract the reliable voxels out of the dataset (David et al., 

2017).  
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It is also recommended to use a mask (e.g., by using the create brain mask module (section 

5.6.5)) as well as the multicore option, if possible, to reduce the computation time.  

6.2.5 Biophysical diffusion models 

The selection of most precise biophysical diffusion model for a given dataset depends on 

several characteristics. If a multi-shell dataset was performed and the b-values are high 

enough to perform a DKI fit, the WMTI-Watson approach is recommended as the number 

of assumptions is lower compared to NODDI-DTI (e.g., no fixed diffusivities) and therefore 

the algorithm has more flexibility in fitting the biophysical parameter out of the DKI 

parameter maps. However, the higher flexibility and lower number of assumptions increase 

the need for a proper estimation of the diffusion parameters via DKI. This can be difficult to 

achieve for e.g., spinal cord datasets where the SNR is typically lower, especially for higher 

diffusion shells which are needed for DKI. In this case, the NODDI-DTI approach could 

provide better results as it requires a DTI fit and therefore lower acquired b-values. But this 

approach can lead to additional problems as the in NODDI-DTI assumed fixed diffusivities 

are estimated for brain datasets. Therefore, they might not be valid for e.g., spinal cord 

datasets and require manual adjustment or investigation to estimate proper values. For ex 

vivo datasets where e.g., diffusivity in white matter is described in literature as 85% lower 

compared to in vivo (Roebroeck et al., 2019), a dedicated fixed diffusivity set can be selected 

in ACID providing these values. 

Also, due to the DTI fit, a kurtosis bias could be introduced, which could corrupt the 

parameter estimation, e.g., for the MD map, and result in not realistic values which are not 

usable for NODDI-DTI estimations (see Figure 21 for an example). 

An analysis demonstrating the performance of WMTI-Watson compared to NODDI-DTI is 

shown in section 6.3, and an analysis of the impact of Rician bias correction on biophysical 

parameter estimation for WMTI-Watson and NODDI-DTI is shown in section 6.4.  
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A third option is the as external tool integrated white matter tract integrity (WMTI) model, 

which assumes highly aligned fibers (idealized as infinitely long cylinders) but has no fixed 

diffusivity assumptions (Fieremans et al., 2011). 

6.3 Comparison of NODDI-DTI and WMTI-Watson 

For a comparison of ACIDs implemented biophysical parameter estimation methods, the 

Watson concentration parameter (𝜅) and axonal water fraction (𝐴𝑊𝐹) were estimated for 

the exemplary brain and spinal cord dMRI datasets (see section 6.1 for details). As discussed 

in section 6.2.5, the selection of the best biophysical estimation method can be different 

depending on the given dataset and data quality. To show that the choice of the most precise 

biophysical model can depend on the acquired dataset, both parameters were estimated via 

NODDI-DTI and WMTI-Watson (see Figure 26). For the brain dataset, both estimated 

values were more consistent with the literature values if they were estimated via WMTI-

Watson. In contrast, for the spinal cord dataset, the via WMTI-Watson estimated parameters 

were highly overestimated, and for NODDI-DTI only 𝜅 could be estimated but within 

correspondence to the literature values. 

The numerical values of the estimated parameters and literature values can be found in the 

figure caption of Figure 26, and the reasons for the different results of the biophysical 

modules are discussed in section 6.2.5.  
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Figure 26: Bar plots displaying the Watson concentration parameter (𝜅) and axonal water 

fraction (𝐴𝑊𝐹) within the five central slices of the corpus callosum and the lateral 

corticospinal tracts in the spinal cord (refer to Table 2 for details on the datasets). The 

corpus callosum was manually segmented, while the lateral corticospinal tracts were 

segmented using the PAM50 spinal cord white matter atlas. The regions of interest are 

highlighted as red segmentation lines on the images. In the box plots, red horizontal lines 

represent literature values obtained from histology, while the red dotted line represents 

a literature value from the brain due to the absence of a corresponding value for the 

spinal cord. Values of orientation dispersion index reported in the literature were 

converted to 𝜅 using Equation (1) in (Mollink et al., 2017). Within the corpus callosum, 𝜅 

values were (mean ± std) 10.82 ±  10.31 and 8.14 ±  5.13 when derived from the NODDI-

DTI (single shell) and WMTI-Watson model (two shells), respectively. These values fall 

within the range of literature values obtained post-mortem using polarized light imaging 

(Mollink et al., 2017). 𝐴𝑊𝐹 values derived from NODDI-DTI (0.40 ±  0.24) and WMTI-

Watson model (0.47 ±  0.13) were similar to literature values obtained using electron 

microscopy in a cynomolgus macaque (Stikov et al., 2015). Within the lateral 

corticospinal tracts, 𝜅 values derived from NODDI-DTI were notably lower than those 

derived from WMTI-Watson (2.53 ±  0.19 vs. 6.04 ±  1.84) and were consistent with 
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literature values obtained in a post-mortem specimen (Grussu et al., 2017). 𝐴𝑊𝐹 values 

derived from the WMTI-Watson model in the spinal cord were substantially higher (0.81 

±  0.03) compared to a literature value obtained in the brain (red dotted line). The 

estimation of 𝐴𝑊𝐹 for the spinal cord was not feasible using the NODDI-DTI model, as 

DTI-derived mean diffusivity (𝑀𝐷) values fell below the range where the NODDI-DTI 

model provides a valid representation (refer to Equation (4) in (Edwards et al., 2017)). 

This discrepancy could be attributed to either the underestimation of 𝑀𝐷 due to kurtosis 

bias (Figure 21) or the invalidity of fixed compartmental diffusivities in the NODDI-DTI 

model. These results indicate that WMTI-Watson yields more accurate estimation of 𝜅 

and 𝐴𝑊𝐹 for the brain, while NODDI-DTI yields a more accurate estimation of 𝜅 for the 

spinal cord. This could be a consequence of non-optimal 𝑏-values for kurtosis estimation 

in the spinal cord. Source: Figure and modified caption reproduced from (David et al., 

2024), published under CC BY 4.0 license. 

6.4 Effect of Rician bias correction on biophysical parameter estimates 

To demonstrate the impact Rician bias correction can have on biophysical parameter maps, 

the exemplary in vivo brain and in vivo spinal cord datasets (see section 6.1 for details) were 

computed with the full recommended analysis pipeline (see section 0 for details) with and 

without the use of Rician bias correction. From these results, the biophysical parameters 

Watson concentration parameter (𝜅) and axonal water fraction (𝐴𝑊𝐹) were estimated via 

WMTI-Watson and NODDI-DTI. For the estimation via NODDI-DTI, only the lower shell 

was used as this model assumes a DTI dataset. WMTI-Watson was performed with all 

available diffusion shells as this model assumes a DKI dataset. 

As RBC slightly decreased the mean of the kurtosis tensor in the brain and spinal cord DKI 

maps, the Watson concentration parameter is increased. The estimation of 𝐴𝑊𝐹 using the 

NODDI-DTI model was not feasible in the spinal cord, as the mean diffusivity (𝑀𝐷) values 

derived from DTI fell below the range where the NODDI-DTI model provides a valid 

representation (Edwards et al., 2017). This discrepancy could be attributed to either the 
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underestimation of 𝑀𝐷 due to kurtosis bias (see Figure 21 for an example) or the invalidity 

of fixed compartmental diffusivities in the NODDI-DTI model (see section 6.2.5). 

 

Figure 27: The impact of Rician bias correction (RBC) on maps of biophysical parameter 

estimates, derived from the NODDI-DTI and WMTI-Watson models, including Watson 

concentration parameter (𝜅) and axonal water fraction (𝐴𝑊𝐹), in an in vivo brain and 

spinal cord dataset (refer to Table 2 for details on the datasets). Being derived from white 

matter biophysical models, the parameter maps were masked for the white matter in the 

brain dataset. For the spinal cord, we refrained from masking due to the difficulty of 

obtaining an accurate white matter mask. These maps were computed both without (left 

column) and with (middle column) RBC; their voxel-wise difference, referred to as the 

Rician bias, is shown in the right column. RBC slightly decreased the mean of the 

kurtosis tensor in both the brain and spinal cord, which resulted in an increase in 𝜅. The 

estimation of 𝐴𝑊𝐹 using the NODDI-DTI model was not feasible in the spinal cord, as the 

mean diffusivity (𝑀𝐷) values derived from DTI fell below the range where the NODDI-DTI 

model provides a valid representation (refer to Equation (4) in (Edwards et al., 2017)). 
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This discrepancy could be attributed to either the underestimation of MD due to kurtosis 

bias (Figure 21) or the invalidity of fixed compartmental diffusivities in the NODDI-DTI 

model. Source: Figure and modified caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. 

6.5 Comparison of different denoising methods 

ACID provides the denoising method msPOAS (Becker et al., 2014), which was used for 

the processing of the example datasets (see section 0 for details). Due to the in ACID 

implemented modular organization, it was possible to integrate additional denoising 

methods from external sources into ACID. Two popular denoising approaches are now 

additionally integrated into the ACID toolbox, named local principal component analysis 

(LPCA) (Manjón et al., 2013) and the Marchenko-Pastur principal component analysis 

(MPPCA) (Veraart et al., 2016) (see section 5.5 for the specific requirements for the 

operating system).  

To compare the performance of these three denoising methods, an analysis based on 

simulated data were performed. The estimated kurtosis parameters (Figure 22 shows the 

parameter maps) for the in vivo brain dataset (see Table 2 for details) were used to generate 

a synthetic dMRI dataset which was used as a quasi-noise-free ground truth. This dataset 

was then contaminated with synthetic noise taken out of a circularly symmetric complex 

normal distribution 𝐶𝑁(0, 𝜎(), where 𝜎	 = D"
D=U

 and several 𝑆𝑁𝑅	 = 	5, 15, 30, 39, 52, 100 

which are the values that were used also in (Oeschger et al., 2023b). For these different SNR 

datasets, the denoising was performed for each method followed by a kurtosis fit using the 

NLLS algorithm. In addition, the DKI fit was performed without the previous use of 

denoising. Figure 28 shows exemplary slices of the axial diffusivity (𝐴𝐷), radial diffusivity 

(𝑅𝐷), mean kurtosis tensor (𝑀𝑊), axial kurtosis tensor (𝐴𝑊), and radial kurtosis tensor 

(𝑅𝑊) which were calculated using the SNR 5 (highest noise contamination) dataset. To 
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quantify the denoising performance, the normalized root-mean-square error (NRMSE) was 

calculated to quantify the deviation of the estimated DKI parameters (one noise realization) 

from the ground truth (see Figure 29 for the visualization of the results). The NRMSE can 

be defined as: 

𝑁𝑅𝑀𝑆𝐸 = 	
�1𝑁∑ (𝜌0 − 𝑝0)(=

0Z'

1
𝑁∑ 𝜌0=

0Z'

, 

(32) 

where 𝜌0 is the ground truth and 𝑝0 the estimated parameter per voxel. The values were 

calculated within a ROI containing the white matter voxels (see red circled area in Figure 28 

first line). The results show that the NRMSE is reduced by using denoising in general if the 

SNR is low but not for all parameters in the same way: The NRMSE was reduced for RD 

and RW clearly visible for SNRs of 15 and lower. For 𝐴𝑊, this effect was visible for SNRs 

below 30. In contrast, the parameters the NRMSE of 𝐴𝐷 was not reduced and for the 𝑀𝑊 

the trend is unstable. Another outcome of this analysis was that the NRMSE is increased if 

the SNR is higher (30-40) for all estimated DKI parameters compared to the dataset that was 

processed without denoising. The only exception was the MPPCA processed data, meaning 

that there is no “denoising” bias introduced when using MPPCA and the results are mostly 

similar to the not-denoised data. For a further interpretation of the results, the relative 

difference between the DKI parameters that are obtained with the use of denoising to the 

parameters estimated without denoising was calculated and visualized in Figure 30. The 

results imply that denoising is only beneficial when used for low SNR datasets. For high 

SNRs, denoising has no benefit for the dataset (MPPCA) or introduces an additional bias 

(msPOAS and LPCA) which can also be seen for the NRMSE results (see Figure 29). 
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Figure 28: Qualitative illustration of the effect of denoising on maps derived from 

diffusion kurtosis imaging (DKI). Shown are maps of axial diffusivity (𝐴𝐷), radial 

diffusivity (𝑅𝐷), mean kurtosis tensor (𝑀𝑊), axial kurtosis tensor (𝐴𝑊), and radial 

kurtosis tensor (𝑅𝑊). The maps were obtained by fitting the kurtosis model to simulated 

noisy dMRI data (signal + noise) with a signal-to-noise ratio (SNR) of 5, both before (no 

denoising) and after employing different denoising methods (msPOAS, LPCA, MP-PCA). 

The DKI metric maps obtained from the simulated noise-free dMRI data (signal only) are 

also shown for comparison (ground truth). The white matter mask used for calculating 

the normalized root-mean-square error (NRMSE) between the obtained DKI metrics and 

the ground truth is overlaid as a red segmentation line on the ground truth maps. Source: 

Figure and modified caption reproduced from (David et al., 2024), published under CC 

BY 4.0 license. 
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Figure 29: Quantitative illustration of the effect of denoising on maps derived from 

diffusion kurtosis imaging (DKI) (one noise realization). The plots show the normalized 

root-mean-square error (NRMSE) between (i) DKI metrics obtained from simulated noisy 

dMRI data (signal + noise) with varying signal-to-noise ratios (SNR), both before (no 

denoising) and after employing different denoising methods (msPOAS, LPCA, MP-PCA), 

and (ii)  DKI metrics obtained from noise-free dMRI data (signal only). NRMSE was 

computed across white matter voxels (see Figure 28 for the white matter mask) for the 

following DKI metrics: axial diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), mean kurtosis tensor 

(𝑀𝑊), axial kurtosis tensor (𝐴𝑊), and radial kurtosis tensor (𝑅𝑊). Denoising methods 

reduced NRMSE from the ground truth compared with the “no denoising” scenario only 
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in the low-SNR domain, although not consistently for all DKI metrics. At high SNRs (above 

30–40), denoising increased NRMSE for all DKI metrics, except for the MP-PCA method, 

which yielded results comparable with the “no denoising” scenario. Source: Figure and 

modified caption reproduced from (David et al., 2024), published under CC BY 4.0 

license. 

 

Figure 30: Quantitative illustration of the effect of denoising on maps derived from 

diffusion kurtosis imaging (DKI). The plots show the relative difference in DKI metrics 

obtained from simulated noisy dMRI data (signal + noise) with varying signal-to-noise 
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ratios (SNR) after employing different denoising methods (msPOAS, LPCA, MP-PCA) to 

those obtained without denoising (one noise realization). The relative difference was 

computed across white matter voxels (see Figure 28 for the white matter mask) for the 

following DKI metrics: axial diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), mean kurtosis tensor 

(𝑀𝑊), axial kurtosis tensor (𝐴𝑊), and radial kurtosis tensor (𝑅𝑊). Denoising introduced 

substantial improvements in the investigated DKI metrics only in the low-SNR domain, 

although not consistently across all DKI metrics. When using msPOAS and LPCA, the 

relative differences were greater compared with using MP-PCA, with msPOAS 

introducing the highest bias. At high SNRs (above 30–40), the relative difference to the 

“no denoising” scenario was negligible for MP-PCA. Source: Figure and modified caption 

reproduced from (David et al., 2024), published under CC BY 4.0 license. 

6.6 Example group analysis 

To show the benefits of the in ACID implemented BIDS compliant storage system and 

workflow for group analyses, an analysis of four brain dMRI datasets was done beginning 

from the raw DICOM data. For acquisition details see Table 4.  

Table 4: Scan parameters for the four in vivo brain dMRI datasets. 

Parameter  Parameter  
Imaged body part or 

tissue 
entire brain (including 
cerebellum) of four 
healthy volunteer 

Multi-band imaging 3 

Scanner 3T Siemens Prisma Fit Phase partial Fourier 7/8 
Receive coils 64-channel 

Head/Neck 
Phase-encoding dir. A-P 

Sequence 2D single-shot spin-
echo EPI 

Readout bandwidth 
[Hz/pixel] 

1934 

Volumes and b-values 
[s/mm2] (number of 
gradient directions) 

b = 0 (11); b = 500 (7); 
b = 1000 (29); b = 
2000 (64) 

EPI spacing [ms] 0.64 

Number of slices 81 (interleaved, no 
gap) 

EPI factor 134 

Resolution [mm3] 1.7 x 1.7 x 1.7 Acquisition time 
[min:sec] 

7:58 

Field of view [mm3] 232 x 138 x 229 Additional data with 
reversed phase-

encoding direction 

a single b0 volume 
acquired with reversed 
phase-encoding direction 
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Echo time [ms] 74,60   
Repetition time [ms] 3100   

Parallel imaging 2x (GRAPPA)   

    

    

To convert the raw DICOM data to BIDS-compliant NIfTI data, the open available 

conversion software BIDSCOIN29 (Zwiers et al., 2022) was used. However, any other 

software which provides BIDS-compliant NIfTI output should be sufficient. The converted 

dMRI datasets were then processed via an overall four subject scripted analysis pipeline (see 

section 0 for details), including all recommended processing steps for in vivo brain dMRI 

datasets (ECMOCO, MPPCA, RBC, HySCO). For the generation of parameter maps, the 

modules DKI, SMI, WMTI-Watson, WMTI, and NODDI-DTI were used. The structure of 

the BIDS-compatible ACID-storage system during the processing steps is visualized in 

Figure 31. 

 

29 https://bidscoin.readthedocs.io/en/latest/ 
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Figure 31: Visualization of the BIDS-compliant folder structure ACID generates for BIDS-

compliant input datasets. The BIDS storage structure of the raw data is recreated within 

the derivatives/ACID folder. This ensures a clear and easy-to-script data storage of the 

processed dMRI data or parameter maps. 

ACID generates a BIDS-compliant derivatives structure in which a dedicated folder is 

created for each subject, session, modality (here “dwi”), and in addition a “START“ folder 

which separates each pipeline run. This makes it possible to analyze the results of all subjects 

easily in one script as only the subject number and/or session number has to be modified, 

which can be done via a “for” loop. 

To generate the coefficient of variation (COV) and group mean maps across all four subjects 

together, a registration was performed via SPM (Penny et al., 2011). The shoot modules 

(Ashburner and Friston, 2011) were used as they provide nonlinear registration to the MNI 

space with high precision and less additional smoothing. This is important to avoid partial 

volume effects across and within tissue classes (i.e., white matter, grey matter, and CSF). 

For the template creation of shoot, the segment function of SPM was used. After registering 

all computed parameter maps and segments, these were transformed to the MNI space.  
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Figure 32 shows the generated white and gray matter masks for each subject in native space. 

 

Figure 32: Visualization of the white and gray matter masks which were used for the 

further analysis. The fractional anisotropy (𝐹𝐴) map of all subjects is shown on the upper 

row. The red circled area displays the analyzed white matter region (middle row) and gray 

matter region (bottom row) for each subject. 

For the results of each parameter estimation method within the white matter mask, the mean 

and standard deviation over the four subjects in subject space were plotted, and the across-

subject COV was calculated. For DKI, the gray matter region was analyzed as well. The 

results are displayed in Figure 33 (white matter) and Figure 34 (gray matter) for DKI, Figure 

37 for SMI, Figure 40 for NODDI-DTI, Figure 43 for WMTI-Watson, and Figure 46 for 

WMTI. 

The calculated COV maps in MNI space are shown in Figure 35 for DKI, Figure 38 for SMI, 

Figure 41 for NODDI-DTI, Figure 44 for WMTI-Watson, and Figure 47 for WMTI. 
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The group mean maps in MNI space were calculated and are shown in Figure 36 for DKI, 

Figure 39 for SMI, Figure 42 for NODDI-DTI, Figure 45 for WMTI-Watson, and Figure 48 

for WMTI. 

 

 

Figure 33: Quantitative illustration of the statistical analysis of the four via DKI in white 

matter analyzed subjects. The mean and standard deviation (black) as well as the 

subject-specific values (colored dots) were computed across white matter voxels (see 

Figure 32 for the white matter mask) for the following DKI metrics: axial diffusivity (𝐴𝐷), 

radial diffusivity (𝑅𝐷), mean diffusivity (𝑀𝐷), axial kurtosis tensor (𝐴𝑊), radial kurtosis 

tensor (𝑅𝑊), mean kurtosis tensor (𝑀𝑊), and fractional anisotropy (𝐹𝐴). The across-

subject COV was estimated for 𝐹𝐴 (25.3%), 𝐴𝐷 (4.6%), 	 𝑅𝐷 (16.5%), 	 𝑀𝐷 (6.8%), 	 𝐴𝑊 

(17.8%), 	𝑅𝑊 (4.1%), and 	𝑀𝑊 (10.0%). 
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Figure 34: Quantitative illustration of the statistical analysis of the four via DKI in gray 

matter analyzed subjects. The mean and standard deviation (black) as well as the 

subject-specific values (colored dots) were computed across gray matter voxels (see 

Figure 32 for the gray matter mask) for the following DKI metrics: fractional anisotropy 

(𝐹𝐴), axial diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), mean diffusivity (𝑀𝐷), axial kurtosis 

tensor (𝐴𝑊), radial kurtosis tensor (𝑅𝑊), and mean kurtosis tensor (𝑀𝑊). The results 

showed a relatively high consistency over all DKI parameters; the across-subject COV 

was estimated for 𝐹𝐴 (8.6%), 𝐴𝐷 (10.9%), 	𝑅𝐷 (11.8%), 	𝑀𝐷 (10.9%), 	𝐴𝑊 (5.2%), 	𝑅𝑊 (6.0%), 

and 	𝑀𝑊 (3.5%). 

The DKI parameter results showed an across-subject COV up to 25.3% (𝐹𝐴) for white matter 

(see Figure 33) and up to 11.8% (𝑅𝐷) for gray matter (see Figure 34) over all parameters. 

The highest non-fraction across-subject COV was estimated in white matter for 𝐴𝑊 (17.8%) 

and in gray matter for 𝑅𝐷 (11.8%). The lowest across-subject COV value was estimated for 

white matter for 𝑅𝑊 (4.1%) and for gray matter for 𝑀𝑊 (3.5%). 
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Figure 35: Across-subject coefficient of variation maps of the DKI parameter for the four 

subjects. Upper row: fractional anisotropy (𝐹𝐴), axial diffusivity (𝐴𝐷), radial diffusivity 

(𝑅𝐷), and mean diffusivity (𝑀𝐷). Lower row: axial kurtosis tensor (𝐴𝑊), radial kurtosis 

tensor (𝑅𝑊), and mean kurtosis tensor (𝑀𝑊). The maps are mostly homogeneous; 

however, for 𝑅𝐷 and 𝑅𝑊, the values are higher in the corpus callosum, which indicates a 

higher variability in this area. 
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Figure 36: : Group mean maps of the DKI parameter for the four subjects. Upper row: 

fractional anisotropy (𝐹𝐴), axial diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), and mean 

diffusivity (𝑀𝐷). Lower row: axial kurtosis tensor (𝐴𝑊), radial kurtosis tensor (𝑅𝑊), and 

mean kurtosis tensor (𝑀𝑊). The maps are mostly homogeneous; however, for 𝐴𝑊, the 

values are higher in the corpus callosum, which could indicate an overestimation in this 

area. 

The across-subject COV (see Figure 35) and group mean maps (see Figure 36) are mostly 

homogeneous; however, for 𝐴𝑊, the values are higher in the corpus callosum group mean 

map, which could indicate an overestimation in this area. For 𝑅𝐷 and 𝑅𝑊, the values are 

higher in the corpus callosum across-subject COV map, which indicates a higher variability 

in this area. 
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Figure 37: Quantitative illustration of the statistical analysis of the four via SMI analyzed 

subjects. The mean and standard deviation (black) as well as the subject-specific values 

(colored dots) were computed across white matter voxels (see Figure 32 for the white 

matter mask) for the following SMI metrics: axonal water fraction (AWF/𝑓), intra-axonal 

diffusivity (𝐷5), parallel and perpendicular extra-axonal diffusivities (𝐷2,456  and 𝐷2,4264), 

free water volume fraction (𝑓7), and anisotropy (𝑝)). The results show a relatively high 

consistency across all subjects for all SMI parameters; the across-subject COV was 

estimated for 𝑓 (4.0%), 𝐷5 (1.1%), 	𝐷2,456  (2.9%), 	𝐷2,4264 (3.3%), 	𝑓7  (3.6%), and 	𝑝) (6.9%). 

The SMI parameter results show a relatively low across-subject COV (< 	7%) over all 

parameters estimated in white matter (see Figure 37). The highest across-subject COVs were 

estimated for anisotropy 𝑝( (6.9%) and diffusivity 𝐷!,#!%# (3.3%). The lowest across-subject 

COVs were estimated for fraction 𝑓[ (3.6%) and diffusivity 𝐷$ (1.1%). 
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Figure 38: Across-subject coefficient of variation maps for the estimated SMI parameter 

for the four subjects. Upper row: axonal water fraction (AWF/𝑓), intra-axonal diffusivity 

(𝐷5), and parallel extra-axonal diffusivity (𝐷2,456). Lower row: perpendicular extra-axonal 

diffusivity 𝐷2,4264,  free water volume fraction (𝑓7), and anisotropy (𝑝)). The maps are 

mostly homogeneous; however, for 𝐷2,456, the values are higher in the corpus callosum, 

which indicates a higher variability in this area. 
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Figure 39: Group mean maps for the estimated SMI parameter for the four subjects. 

Upper row: axonal water fraction (AWF/𝑓), intra-axonal diffusivity (𝐷5), and parallel extra-

axonal diffusivity (𝐷2,456). Lower row: perpendicular extra-axonal diffusivity 𝐷2,4264,  free 

water volume fraction (𝑓7), and anisotropy (𝑝)). The maps are mostly homogeneous. 

The across-subject COV (see Figure 38) and group mean maps (see Figure 39) are mostly 

homogeneous. However, for 𝐷!,#$%, the across-subject COV values are higher in the corpus 

callosum, which indicates a higher variability in this area. 
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Figure 40: Quantitative illustration of the statistical analysis of the four via NODDI-DTI 

analyzed subjects. The mean and standard deviation (black) as well as the subject-

specific values (colored dots) were computed across white matter voxels (see Figure 32 

for the white matter mask) for the following NODDI-DTI metrics: axonal water fraction 

(𝐴𝑊𝐹/𝑓) and anisotropy (𝑝)). The results show a high consistency over both NODDI-DTI 

parameters; the across-subject COV was estimated for 𝐴𝑊𝐹/𝑓 (1.5%) and 𝑝) (2.5%). 

The NODDI-DTI parameter results showed a relatively low across-subject COV (< 	2.5%) 

over both parameters estimated in white matter (see Figure 40); the higher across-subject 

COV was estimated for 𝑝( (2.5%). 
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Figure 41: Across-subject coefficient of variation (COV) maps for the estimated NODDI-

DTI parameters for the four subjects. Shown are the COV maps: axonal water fraction 

(𝐴𝑊𝐹/𝑓), and anisotropy (𝑝)). The 𝐴𝑊𝐹/𝑓 map is mostly homogeneous; however, for 𝑝), 

many voxels (especially in the corpus callosum) are missing, and the values in the region 

where the fit was able to estimate values are relatively high, which indicates a higher 

variability in this area. A reason for the missing values could be the invalidity of fixed 

compartmental diffusivities in the NODDI-DTI model (see section 5.2.5). 

 

Figure 42: Group mean maps for the estimated NODDI-DTI parameters for the four 

subjects. Shown are the group mean maps: axonal water fraction (𝐴𝑊𝐹/𝑓), and 

anisotropy (𝑝)). The 𝐴𝑊𝐹/𝑓 map is mostly homogeneous; however, for 𝑝), many voxels 

(especially in the corpus callosum) are missing. A reason for the missing values could 
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be the invalidity of fixed compartmental diffusivities in the NODDI-DTI model (see 

section 5.2.5). 

The 𝐴𝑊𝐹/𝑓 across-subject COV (see Figure 41) and group mean maps (see Figure 42) are 

mostly homogeneous; however, for 𝑝(, many voxels (especially in the corpus callosum) are 

missing, and the COV values in the region where the fit was able to estimate values are 

relatively high, which indicates a higher variability in this area. A reason for the missing 

values could be the invalidity of fixed diffusivities in the NODDI-DTI model (see section 

5.2.5 for details). 

 

Figure 43: Quantitative illustration of the statistical analysis of the four via WMTI-Watson 

analyzed subjects. The mean and standard deviation (black) as well as the subject-

specific values (colored dots) were computed across white matter voxels (see Figure 32 

for the white matter mask) for the following WMTI-Watson metrics: axonal water fraction 

(𝐴𝑊𝐹/𝑓), intra-axonal diffusivity (𝐷5), parallel and perpendicular extra-axonal 

diffusivities (𝐷2,456  and 𝐷2,4264), and anisotropy (𝑝)). The results show a relatively high 

consistency across all WMTI-Watson parameters; the across-subject COV was 

estimated for AWF/𝑓 (17.2%), 𝐷5 (7.4%), 	𝐷2,456  (14.6%), 	𝐷2,4264 (7.0%), and 	𝑝) (21.9%). 

The WMTI-Watson parameter results show a COV up to 22% over all parameters estimated 

in white matter (see Figure 43). The highest across-subject COVs were estimated for 
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anisotropy 𝑝( (21.9%) and diffusivity 𝐷!,#$% (14.6%). The lowest COVs were estimated for 

fraction AWF/𝑓 (17.2%) and diffusivity 𝐷!,#!%# (7.0%). 

 

 

Figure 44: Across-subject coefficient of variation maps for the estimated WMTI-Watson 

parameter for the four subjects. Shown are the COV maps: axonal water fraction (𝐴𝑊𝐹), 

intra-axonal diffusivity (𝐷5), parallel and perpendicular extra-axonal diffusivities (𝐷2,456  

and 𝐷2,4264), and anisotropy (𝑝)). The maps are mostly homogeneous; however, for 𝐷2,456  

the values are higher in the corpus callosum, which indicates a higher variability in this 

area. 

 

Figure 45: Group mean maps for the estimated WMTI-Watson parameter for the four 

subjects. Shown are the group mean maps: axonal water fraction (𝐴𝑊𝐹), intra-axonal 

diffusivity (𝐷5), parallel and perpendicular extra-axonal diffusivities (𝐷2,456	and 𝐷2,4264), 

and anisotropy (𝑝)). The maps are mostly homogeneous; however, for 𝐷2,456  the values 

are lower in the corpus callosum, which could indicate a not sufficient parameter 

estimation in this area. 

The across-subject COV (see Figure 44) and group mean maps (see Figure 45) are mostly 

homogeneous; however, for 𝐷!,#$%, the across-subject COV values are higher and the group 



 

 112 

mean values are lower in the corpus callosum, which indicates a higher variability and a 

possible underestimation in this area. 

 

Figure 46: Quantitative illustration of the statistical analysis of the four via WMTI 

analyzed subjects. The mean and standard deviation (black) as well as the subject-

specific values (colored dots) were computed across white matter voxels (see Figure 32 

for the white matter mask) for the following WMTI metrics: axonal water fraction (𝑓), 

intra-axonal diffusivity (𝐷5), parallel and perpendicular extra-axonal diffusivities (𝐷2,456  

and 𝐷2,4264), free water volume fraction (𝑓7), and anisotropy (𝑝)). The across-subject COV 

was estimated for 𝑓 (9.4%), 𝐷5 (15.0%), 	 𝐷2,456  (16.8%), 	 𝐷2,4264 (25.5%), 	 𝑓7  (2.5%), and 	 𝑝) 

(4.9%). 

The WMTI parameter results show a relatively high consistency over all parameters 

estimated in white matter (see Figure 46). The highest across-subject COVs were estimated 

for fraction 𝑓 (9.4%) and diffusivity 𝐷!,#!%# (25.5%). The lowest across-subject COVs was 

estimated for fraction 𝑓[ (2.5%) and diffusivity 𝐷$ (15.0%).  
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Figure 47: Across-subject coefficient of variation maps for the estimated WMTI 

parameter for the four subjects. Upper row: axonal water fraction (𝑓), intra-axonal 

diffusivity (𝐷5), and parallel extra-axonal diffusivity (𝐷2,456). Lower row: perpendicular 

extra-axonal diffusivity 𝐷2,4264,  free water volume fraction (𝑓7), and anisotropy (𝑝)). The 

maps are mostly homogeneous; however, for 𝐷2,4264, the values are higher in the corpus 

callosum, which indicates a higher variability in this area. 
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Figure 48: Group mean maps for the estimated WMTI parameter for the four subjects. 

Upper row: axonal water fraction (𝑓), intra-axonal diffusivity (𝐷5), and parallel extra-

axonal diffusivity (𝐷2,456). Lower row: perpendicular extra-axonal diffusivity 𝐷2,4264,  free 

water volume fraction (𝑓7), and anisotropy (𝑝)). The maps are mostly homogeneous with 

slightly higher values in the corpus callosum (except for 𝐷2,4264). 

The across-subject COV (see  Figure 47) and group mean maps (see Figure 48) are mostly 

homogeneous; however, for 𝐷!,#!%#, the across-subject COV values are higher and the group 

mean values are lower in the corpus callosum compared to the other parameter maps, which 

indicates a higher variability and a possible underestimation in this area. 
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Figure 49: Comparison of the four biophysical parameter estimation models (black: SMI, 

red: WMTI-Watson, blue: NODDI-DTI, green: WMTI). The mean and standard deviation 

were computed across white matter voxels (see Figure 32 for the white matter mask) for 

the following biophysical metrics: axonal water fraction (AWF/𝑓), intra-axonal diffusivity 

(𝐷5), parallel and perpendicular extra-axonal diffusivities (𝐷2,456  and 𝐷2,4264), free water 

volume fraction (𝑓7), and anisotropy (𝑝)). 

As a summary, the comparison of all biophysical parameters is shown in Figure 49. The 

results indicate parameter-specific dependencies of the biophysical parameters on the 

estimation method. For example, for the axonal water fraction (AWF/𝑓), the estimations are 

mostly stable across all estimation methods and are similar to the values of WMTI-Watson 

and NODDI-DTI compared in section 6.3. For the diffusivity parameters, the results show a 

dependence on the parameter estimation method. The highest discrepancy was found for 𝐷$ 

where WMTI-Watson estimated a diffusivity value of 3.38 ± 0.25 \+
(

+@
 and WMTI a value 

of 0.63 ± 0.09 \+
(

+@
. To improve the estimation stability for both methods, a solution could 

be to threshold the ROI for 𝐹𝐴 values above 0.4 to restrict the analysis on voxels consisting 

of single fiber orientations, which was done, e.g., in (Benitez et al., 2014). For SMI, the 

estimated 𝐷$ value of 2.29 ± 0.03 \+
(

+@
 is in the range reported by literature for this method 
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of 2.13 ± 0.15 \+
(

+@
 (Table S 1 in (Coelho et al., 2022); the mean over all ROIs was 

calculated). It has to be noted that the diffusivity estimations for SMI may be biased due to 

the supervised machine learning regression (Coelho et al., 2022), which might shift the 

results to the method-specified range/value (Coelho et al., 2021). 

The across-subject COV maps indicate homogeneous variations for all subjects. However, 

for example, the COV was generally increased for the via SMI (Figure 38) estimated 

parameter 𝑝( and higher in the corpus callosum for the via WMTI-Watson (Figure 44) 

estimated parameter 𝐷!,#$%. The reason for SMI could be that, due to the usage of a data-

driven machine learning regression, SMI might not have the best conditions for this specific 

measurement protocol of this group analysis (Coelho et al., 2022). The WMTI-Watson 

model contains an additional dispersion parameter compared to WMTI  (where this behavior 

in the corpus callosum was not visible; see Figure 47), which could indicate that the 

additional degree of freedom might introduce instabilities in this area. Also, a reason could 

be the influence of cardiac pulsation (resulting in brain motion) during the measurement for 

this specific region, which was found in (Skare and Andersson, 2001). 

For the NODDI-DTI 𝑝( parameter (Figure 41), many voxels could not be estimated, 

especially in the corpus callosum, and the variance is high for the voxels where NODDI-

DTI was able to generate values. A reason for the missing values could be the invalidity of 

fixed compartmental diffusivities in the NODDI-DTI model (see section 6.2.5). 

The registration to the group space was performed using the SPM shoot modules, but there 

are also other processing pipelines for registration, including post-registration smoothing 

compensation approaches like “tissue-specific, smoothing-compensated” T-SPOON (Lee et 

al., 2009) and “voxel-based quantification” VBQ (Draganski et al., 2011), which can be used 

to compensate for smoothing and partial volume artefacts. These apply a tissue-aware 

smoothing compensation (T-SPOON), reduce partial volume effects by using tissue classes 
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(VBQ), and therefore try to reduce blurring/partial volume artefacts. However, as the shoot 

modules use multiple tissue channels to align the subjects, the inter-subject correspondence 

is typically high, which reduces the need for post-registration smoothing or partial volume 

effect correction. 
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7 Discussion 

In this section the limitations of the ACID toolbox and possible solutions are discussed in 

section 7.1. Furthermore, the relevance of ACID for clinical applications and neuroscientific 

research is described in section 7.2. 

7.1 Limitations and potential mitigations 

The analysis of the three exemplary datasets shows the possibility of ACID to process and 

analyze in vivo brain, in vivo spinal cord, and ex vivo specimens. However, the performance 

of each module is dependent on the dataset, which is to be processed, and not in each case 

do the in-house modules of ACID provide the best result. For example, the first-order eddy 

currents approximation of ECMOCO was not sufficient for correcting them in the dMRI 

data of the Human Connectome Project (Van Essen et al., 2012). This limitation of eddy 

currents correction via ECMOCO was solved by integrating the FSL eddy current and 

motion correction method eddy. This method corrects dMRI datasets also for higher-order 

eddy currents (Andersson and Sotiropoulos, 2016), which can become relevant artefacts for 

dMRI datasets (Andersson and Sotiropoulos, 2016; Rohde et al., 2004). For datasets where 

HySCO provides not the best results compared to FSL topup (see (Clark et al., 2021) 

especially Figure 3 for details) and also the “HySCO: combine blip-up and blip-down 

images” module provides not sufficient results compared to FSL, the FSL method topup is 

implemented.  

These examples show that a found limitation of an ACID module can be solved by 

implementing a method or approach from another toolbox (e.g., topup from FSL) which can 

be used to circumvent this limitation. 

The mandatory usage of MATLAB and SPM can be seen as a limitation but the benefits of 

both predominate the disadvantages. So provides the integration in MATLAB and SPM a 
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whole software and statistical analysis framework. The need of a MATLAB license was 

made obsolete with the availability of a standalone version.  

7.2 Relevance for clinical applications and neuroscientific research 

The ACID toolbox is not certified and tested for diagnosis in clinical applications. However, 

there is a growing number of publications which use ACID for scientific studies for which 

ACID is made. For example, ACID was used in dMRI studies to investigate how multiple 

sclerosis affects changes in the cerebrum (Deppe et al., 2016a, 2016b; Dossi et al., 2018; 

Kugler and Deppe, 2018) and also for developments to improve, e.g., the NODDI model in 

white matter (Alsameen et al., 2023). For spinal cord dMRI analyses, ACID was also used 

in different studies to, e.g., examine the white matter of the spinal cord after a spinal cord 

injury (Büeler et al., 2024; David et al., 2022, 2021, 2019; Grabher et al., 2016; Huber et al., 

2018; Seif et al., 2020; Vallotton et al., 2021). For an overview of the publicized studies 

which used ACID, a non-comprehensive list is available on the toolbox website30. It is 

evident that the number of studies using ACID for processing and analyzing dMRI data has 

increased in the last three years. This trend suggests that the refactoring and extending of 

ACID has proven its worth, as it is now more widely used by researchers. 

  

 

30 http://diffusiontools.com/sidebar/studies-using-acid.html 
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8 Conclusions and outlook 

This section provides a summary of key findings that were outcome in this thesis. The 

findings are sorted regarding software developments (section 8.1), scientific research results 

(section 8.2), and suggestions and ideas for further investigations and developments (section 

8.3). 

8.1 Summary of key developments 

ACID consists of many state-of-the-art preprocessing and modeling methods for dMRI data. 

Due to its integration into SPM, it benefits from, e.g., statistical analysis methods and a large 

user community. The now implemented modular organization of the ACID modules 

provides a flexible and easy-to-update framework. This also solves the possible limitations 

of ACID modules (see section 7.1 for examples). Also, completely new processing modules 

can now be integrated easily due to the modular organization, which enables new processing 

and analysis possibilities for existing ACID analysis pipelines (see section 8.3 for examples). 

This demonstrates that ACID has now the possibility to stay up to date permanently with the 

latest scientific findings and not only be state-of-the-art at the time of publication until new 

scientific methods and algorithms are developed. If limitations are identified, the 

implementation of alternative or new modules, even from external sources, provides a 

solution and completely flexible adjustment of pipelines.  

The harmonization with the FAIR principles and the compliance with the BIDS standard 

provide a framework for large analysis studies with many datasets and also enable the 

comparability with other scientific toolboxes, which often require (especially for deep 

learning  methods, e.g., Clinica) a BIDS-compliant data storage. 

Also, new options for specific tissue types were implemented (e.g., new selectable fixed 

diffusivity values in NODDI-DTI for ex vivo specimens based on literature values, see 

section 5.4.1 for details) to enable the tissue-specific pipeline creation. 
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8.2 Summary of key findings 

Alongside the development of the now reworked ACID toolbox, several analyses were 

performed. The three pipelines developed for the three tissue types of in vivo brain, in vivo 

spinal cord, and ex vivo specimen were tested on exemplary datasets and showed the 

different approaches which have to be implemented into the specific pipeline (e.g., 

appearance of motion and eddy currents).  

Furthermore, for example, the comparison of NODDI-DTI and WMTI-Watson presented in 

section 6.3 demonstrated the different use cases for each method and how the performance 

depends on the given dataset. The results implied that the use of WMTI-Watson provided 

better quality parameter maps if a high SNR dataset (e.g., in vivo brain) was analyzed. In 

contrast, if a low-SNR dataset (e.g., a spinal cord dataset) was used, WMTI completely 

failed, whereas NODDI-DTI was able to estimate at least one biophysical parameter with 

reasonable accuracy.  

In section 6.4, the influence of Rician Bias correction was investigated for the exemplary in 

vivo brain and in vivo spinal cord datasets, comparing the results of NODDI-DTI and 

WMTI-Watson with and without the use of RBC. The results demonstrate the influence of 

RBC for biophysical parameter estimation, especially for the Watson concentration 

parameter (κ), which was increased for both tissue types.  

A comparison of the different denoising methods implemented into ACID was performed 

(section 6.5). The analysis showed the importance of denoising for low SNR datasets but 

also pointed out that some denoising methods can introduce a bias for high SNR datasets. 

Additionally, the results indicated that the parameters benefit not consistently through 

denoising. 

A group analysis over four subjects was performed in section 6.6 to compare the parameter 

estimation when different analysis methods are used. In addition, it was demonstrated how 

ACID enables BIDS-compliant data processing and how group analyses benefit from this 
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advanced data handling. The results indicated a dependency of the estimated biophysical 

parameters on the different estimation methods. For example, 𝐷$ seemed to be overestimated 

when it was estimated via WMTI-Watson, underestimated if it was estimated via WMTI, 

and most precisely estimated via SMI. The reason for this model-specific discrepancies 

could lie in the individual model-specific assumptions (e.g., different numbers of fitting 

parameters for WMTI and WMTI-Watson or an introduced bias due to the supervised 

machine learning regression). 

8.3 Suggestions for future research and further development of ACID  

The ACID toolbox now provides a complete framework to pre-process and analyze dMRI 

datasets. However, due to the modular organization, the implementation of new methods 

which involve, e.g., phase data could be an interesting opportunity. In ACID, for example, 

the Real Diffusion Reconstruction method is already implemented, which uses the phase 

data to extract the “real” part of the complex signal, e.g., to ensure Gaussian noise properties.  

Also, denoising has become relevant and an actual research topic in dMRI (e.g., (Manzano 

Patron et al., 2024)). Therefore, new denoising algorithms which use, for example, phase 

data (e.g., NORDIC (Moeller et al., 2021)) could become relevant and worth to be 

implemented into ACID.  

From the code development side, a reimplementation of ACID from MATLAB to python 

could become an interesting future project as it would allow the use of ACID without any 

need for MATLAB. Alternatively, the standalone version of ACID can be used, although it 

does not allow a direct connection to the used code (compiled black box). However, this 

change would also require detaching from the SPM framework, which would lead to the loss 

of the SPM community and additional work for replicating the in ACID used SPM functions 

and GUI in python.  
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Another development project could be expanding the test system as it currently checks for 

the identity of test output and ground truth but not for all option combinations. However, 

implementing a system that checks all option combinations iteratively would require 

significant additional work. Before embarking on such an endeavor, it is crucial to determine 

if the current system is already sufficient, as it ensures general functionality. 
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9 Zusammenfassung auf Englisch 

Diffusion MRI (dMRI) has emerged as a significant imaging technique in neuroscience, 
gaining increasing clinical relevance due to its ability to non-invasively detect diffusion 
changes in the microstructure. While most research still focuses on the brain, there is an 
increasing interest in utilizing dMRI to investigate the spinal cord and ex vivo tissue 
specimens. These types of measurements are particularly relevant for studying spinal cord 
injuries and validating biophysical models using ex vivo tissues. Also, the scientific use of 
big data and machine learning applications for investigating, for example, large numbers of 
dMRI datasets to estimate novel biomarkers by merging all tissue structure information, is 
becoming increasingly relevant.  
In this thesis, a toolbox was developed that is the first to fulfill all these demands of analyzing 
brain, spinal cord, and ex vivo specimens in a way which is automatable and applicable for 
big data analyses. This was achieved by adding additional tissue type-specific preprocessing 
options via code extensions and new modules to an existing brain dMRI analysis toolbox 
named ACID. Analysis pipelines were created for each type of tissue to provide automated 
analyses for large numbers of datasets. Additional modules were implemented, which enable 
ACID to now cover the entire processing chain from raw DICOM data to group-level 
statistics within a single software package. To implement this in a standardized way, the 
Brain Imaging Data Structure (BIDS) was integrated into ACID. This ensures compatibility 
with other BIDS-compliant software and aligns with the growing availability of large 
databases utilizing the BIDS format. The code structure of ACID was completely 
reorganized, and the modules of ACID are now fully modularized to enable a flexible and 
easy-to-extend code framework. The FAIR principles are now harmonized with ACID to 
fulfill the standards for a valuable and reusable academic software.  
Comparisons of several modules and methods (e.g., biophysical parameter estimation 
methods, influence of Rician bias correction (RBC) on parameter estimation, or denoising 
methods) were performed to analyze the best module selection in dependence on the 
acquired tissue type/SNR.  
The comparison of the two biophysical models NODDI-DTI and WMTI-Watson showed 
that NODDI-DTI performs better for spinal cord and WMTI-Watson better for brain 
datasets, which indicates a SNR dependency for both methods. 
The results for the influence of RBC on the estimation of biophysical parameters showed 
that RBC slightly decreases the mean kurtosis for the brain and spinal cord datasets, which 
resulted in an increase of the biophysical Watson concentration parameter κ. 
Due to its now implemented modularity, several denoising methods, even from other 
toolboxes, could be integrated into ACID. Therefore, it was possible to perform a 
comparison of the now in ACID implemented denoising methods LPCA, MPPCA, and 
msPOAS, which indicated a general improvement through denoising for low SNR data but 
no improvement for high SNR data. For msPOAS, even an additional bias became noticeable 
for high SNR data. 
To demonstrate the new in ACID implemented processing workflow starting from raw 
DICOM data to, e.g., statistical analysis via SPM, an exemplary group analysis of four brain 
dMRI datasets acquired on the same scanner was performed to compare the implemented 
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biophysical parameter estimation methods. The results showed that the biophysical 
parameter estimation is not stable over the different used estimation methods (SMI, NODDI-
DTI, WMTI, and WMTI-Watson) in white matter for all parameters. This indicates that the 
biophysical estimates were dependent on the different model assumptions. 
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10 Zusammenfassung auf Deutsch 

Diffusionsgewichtete Magnetresonanzspektroskopie (dMRI) hat sich als signifikante 
Bildgebungstechnik für Neurowissenschaften erwiesen, welche eine wachsende klinische 
Relevanz durch die Möglichkeit, nicht-invasiv Diffusionsänderungen in Mikrostrukturen zu 
detektieren, erhält. Während sich die meiste Forschung nur auf das Gehirn fokussiert, erfährt 
die Untersuchung von Rückenmark und ex vivo Proben mittels dMRI ein wachsendes 
Interesse. Diese Arten von Messungen sind insbesondere interessant, um Verletzungen des 
Rückenmarks zu untersuchen oder zur Validierung von biophysikalischen Modellen mittels 
ex vivo Gewebe. Auch der wissenschaftliche Nutzen für „Big Data“ und maschinelles 
Lernen zur Untersuchung von beispielsweise großen dMRI-Datensätzen zur Bestimmung 
von neuartigen Biomarkern durch das Kombinieren aller Gewebeinformationen erfährt eine 
zunehmende Relevanz.  
In dieser Doktorarbeit wurde eine Toolbox entwickelt, welche als erste all diese 
Anforderungen zur automatisierbaren und für „Big Data“ nutzbaren Analyse von Gehirn, 
Rückenmark und ex vivo Proben erfüllt. Dies wurde erreicht durch das Hinzufügen von 
gewebetypspezifischen Vor-Verarbeitungsoptionen durch Erweiterungen des Codes und das 
Hinzufügen neuer Module in eine bereits existierende Gehirn dMRI Toolbox namens ACID. 
Analyse Pipelines wurden für jeden Gewebetyp generiert, um eine automatisierte Analyse 
von großen Datensätzen zu ermöglichen. Zusätzliche Module wurden integriert, damit ACID 
die vollständige Datenverarbeitungskette von DICOM Rohdaten zu Gruppenstatistik 
innerhalb eines einzigen Softwarepaketes anbieten kann. Um dies in einer standardisierten 
Weise zu ermöglichen, wurde die Brain Imaging Data Structure (BIDS) in ACID integriert. 
Dies stellt eine Kompatibilität zu anderer BIDS konformer Software sicher und ermöglicht, 
dass ACID damit zu der wachsenden Zahl an großen Datenbanken kompatibel ist, die den 
BIDS-Standard nutzen. Die Codestruktur von ACID wurde vollständig reorganisiert und die 
Module von ACID wurden vollständig modularisiert, um eine flexible und einfach zu 
erweiternde Codeumgebung zu ermöglichen. Die FAIR Prinzipien wurden mit ACID 
harmonisiert, um den Standard einer nützlichen und wiederverwendbaren akademischen 
Software zu erfüllen. 
Es wurden Vergleiche verschiedener Module und Methoden durchgeführt (bspw. Methoden 
zur Bestimmung biophysikalischer Parameter, Einfluss der Rician-Bias-Korrektur (RBC) 
auf die Parameterbestimmung oder ein Vergleich von verschiedenen 
Entrauschungsmethoden), um zu analysieren, welches Modul die beste Wahl darstellt, in 
Abhängigkeit des Gewebetyps und/oder SNR. 
Der Vergleich der beiden biophysikalischen Methoden NODDI-DTI und WMTI-Watson 
zeigte, dass NODDI-DTI bessere Ergebnisse für Rückenmarksdaten lieferte, während 
WMTI-Watson bessere Ergebnisse für Gehirndaten zeigte. Dies deutet auf eine SNR-
Abhängigkeit beider Methoden hin.  
Die Ergebnisse für den Einfluss der Rician-Bias-Korrektur (RBC) auf die Bestimmung von 
biophysikalischen Parametern zeigten, dass RBC die Werte der mittleren Kurtosis für 
Gehirn- und Rückenmarksdaten leicht senkte, was in einer Erhöhung des biophysikalischen 
Watson-Konzentrationsparameters κ resultierte. 
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Aufgrund der nun implementierten Modularität konnten verschiedene 
Entrauschungsmethoden (sogar von anderen Toolboxen) in ACID integriert werden. Daher 
war es möglich, einen Vergleich aller nun in ACID integrierten Entrauschungsmethoden 
(LPCA, MPPCA und msPOAS) durchzuführen, welcher einen generellen Nutzen für 
Datensätze mit niedrigem SNR, aber keinen Nutzen für Datensätze mit hohem SNR 
aufzeigte. Für msPOAS wurde ein zusätzlicher Bias für Datensätze mit hohem SNR sichtbar.  
Um den in ACID neu implementierten Arbeitsablauf, beginnend bei den DICOM Rohdaten 
bis zu bspw. statistischen Analysen mittels SPM, zu demonstrieren, wurde eine beispielhafte 
Gruppenanalyse für vier Gehirn-dMRI Datensätze, welche am selben Scanner aufgenommen 
wurden, durchgeführt, um ein Vergleich der implementierten biophysikalischen 
Parameterbestimmungsmethoden durchzuführen. Die Ergebnisse zeigten, dass die 
biophysikalische Parameterbestimmung nicht stabil über alle untersuchten Methoden (DKI, 
SMI, NODDI-DTI, WMTI und WMTI-Watson) und Parameter in weißer Gehirnsubstanz 
war. Dies deutet darauf hin, dass die biophysikalischen Schätzungen in Abhängigkeit zu den 
verschiedenen Modellannahmen stehen. 
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11 List of abbreviations  

• ACID   A Comprehensive Toolbox for Image Processing and 

Modeling of Brain, Spinal Cord, and Ex Vivo Diffusion MRI Data 

• 𝐴𝐷    Axial Diffusivity 

• 𝐴𝐾    Axial Kurtosis  

• 𝐴𝑊    Axial Kurtosis Tensor  

• 𝐴𝑊𝐹/𝑓   Axonal Water Fraction 

• BIDS   Brain Imaging Data Structure 

• COV   coefficient of variation 

• 𝐷$    Intra-axonal Diffusivity  

• 𝐷!,#$%    Parallel Extra-axonal Diffusivity 

• 𝐷!,#!%#   Perpendicular Extra-axonal Diffusivity 

• DKI    Diffusion Kurtosis Imaging  

• dMRI   diffusion Magnetic Resonance Imaging 

• DTI    Diffusion Tensor Imaging  

• DWI   Diffusion Weighted Imaging 

• EC   Eddy Currents 

• ECMOCO   Eddy-Current and Motion Correction  

• 𝐹𝐴    Fractional Anisotropy  

• FOV   Field Of View 

• FSL   FMRIB Software Library 

• GUI   Graphical User Interface 

• HF   High frequency 

• HySCO   Hyperelastic Susceptibility Artifact Correction  
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• 𝜅   Watson Concentration Parameter  

• LPCA   Local Principal Component Analysis 

• 𝑀𝐷    Mean Diffusivity  

• 𝑀𝐾    Mean Kurtosis  

• MP-PCA  Marchenko-Pastur Principal Component Analysis 

• msPOAS   Multi-shell Position-Orientation Adaptive Smoothing   

• 𝑀𝑊    Mean Kurtosis Tensor  

• NLLS    Non-linear Least Squares  

• NODDI  Neurite Orientation Dispersion and Density 

• ODI    Orientation Dispersion Index 

• OLS    Ordinary Least Squares  

• 𝑝(   Anisotropy 

• RBC    Rician Bias Correction  

• 𝑅𝐷    Radial Diffusivity  

• RF   Radio frequency 

• 𝑅𝐾    Radial Kurtosis  

• ROI   Region of interest 

• 𝑅𝑊    Radial Kurtosis Tensor  

• SMI   Standard Model Imaging 

• SNR   Signal-to-Noise Ratio 

• SPM   Statistical Parametric Mapping 

• TE   Echo Time 

• WLS   Weighted Least Squares 

• WMTI-Watson  White Matter Tract Integrity - Watson  
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12 Tools 

DeepL, was used for the following purpose: 

− Grammar and spelling checks 

Apple Intelligence (MacBook M1), was used for the following purposes: 

− Improving sentences and passages for their readability and flow 

− Grammar and spelling checks 

ChatGPT version 5, OpenAI (https://chatgpt.com), was used for the following purposes: 

− Creating code and caption for Figure 7 

− Literature search 
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15 Table of figures 

Figure 1: Net Magnetization, rf pulses and flip angle. a) At equilibrium, the net 

magnetization, 𝑀0 is at equilibrium, aligned along the 𝑧-axis. b). When a rf pulse is applied, 

𝑀0 makes an angle with the 𝑧-axis, known as the flip angle, and rotates around the axis in 

the direction of the curved arrow. At any instant the magnetisation can be split into two 

components, 𝑀𝑧 and 𝑀𝑥𝑦. The rotating 𝑀𝑥𝑦 component generates the detectable MR 

signal. c) The maximum detectable signal amplitude after a single rf pulse occurs when 𝑀0 

lies entirely in the plane of the 𝑥 and 𝑦 axes as this gives the largest 𝑀𝑥𝑦 component. This 

pulse has a 90° flip angle and is referred to as a 90° rf pulse or saturation pulse. d) A 180° rf 

refocusing pulse is usually applied while there is transverse magnetisation already rotating 

in the 𝑥𝑦 plane and is used to instantaneously flip the transverse component of magnetisation 

through 180° about an axis also rotating in the 𝑥𝑦 plane. e) A 180° inversion pulse is usually 

applied at equilibrium and is used to rotates the net magnetization through 180° from the 

positive to the negative 𝑧-axis. This is also known as a magnetization preparation pulse and 

is used is the preparation scheme for black blood imaging techniques. Source: Figure and 

modified caption reproduced from (Ridgway, 2010), published under CC BY 2.0 license.

 ............................................................................................................................................. 17 

Figure 2: Generating a gradient echo. This diagram shows how the reversal of a magnetic 

field gradient is used to generate a gradient echo. The application of the 1st positive magnetic 

field gradient causes rapid de-phasing of the transverse magnetization, 𝑀𝑥𝑦, and therefore 

the FID signal to zero amplitude. The application of the 2nd negative magnetic field gradient 

reverses the de-phasing caused by the first gradient pulse, resulting in recovery of the FID 

signal to generate a gradient echo at the echo time, TE. Extension of the time duration of the 

second gradient to twice that of the first gradient causes the FID to then de-phase to zero. 
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The maximum amplitude of the echo depends on both the 𝑇2 ∗ relaxation rate and the chosen 

𝑇𝐸. Source: Figure and modified caption reproduced from (Ridgway, 2010), published 

under CC BY 2.0 license. .................................................................................................... 20 

Figure 3: Generating a spin echo. The presence of magnetic field inhomogeneities causes 

additional de-phasing of the proton magnetic moments. The Larmor frequency is slower 

where the magnetic field is reduced and faster where the field is increased resulting in a loss 

or gain in relative phase respectively. After a period of half the echo time, 𝑇𝐸/2, the 

application of a 180° rf pulse causes an instantaneous change in sign of the phase shifts by 

rotating the spins (in this example) about the y axis. As the differences in Larmor frequency 

remain unchanged, the proton magnetic moments the move back into phase over a similar 

time period, reversing the de-phasing effect of the magnetic field inhomogeneities to 

generate a spin echo. In addition to the effect of the 180° refocusing pulse, gradients are 

applied to de-phase and re-phase the signal for imaging purposes. Note that for spin echo 

pulse sequences, the second gradient has the same sign as the first, as the 180° pulse also 

changes the sign of the phase shifts caused by the first gradient. Source: Figure and caption 

reproduced from (Ridgway, 2010), published under CC BY 2.0 license. ........................... 21 

Figure 4: Image formation, Step 1 - Selecting a slice. For step 1 of image formation process, 

a slice of tissue is selected by applying a magnetic field gradient GS at the same time as the 

rf excitation pulse. The position along the gradient (in this example along the 𝑧 axis) 

determines the Larmor frequency and resonance only occurs where this matches the 

frequency of the rf pulse, f0, defining a plane (slice) of tissue perpendicular to the 𝑧-axis. In 

practice the rf pulse is applied over a small range of frequencies, thus defining the thickness 

of the slice. Source: Figure and modified caption reproduced from (Ridgway, 2010), 

published under CC BY 2.0 license. .................................................................................... 23 
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Figure 5: Image formation, Steps 2 & 3 - Phase and frequency encoding. For step 2 of the 

image formation process, a phase encoding gradient, GP, is applied in a direction along the 

selected image plane (in this case the phase encoding direction is along the 𝑦-direction). This 

causes a range of phase shifts of the proton magnetic moments dependent on their position 

along the gradient as well as the slope and duration of the gradient. For step 3, following the 

phase encoding gradient, the frequency encoding gradient, GF, is applied also in the plane of 

the selected slice but perpendicular to the phase encoding direction. The MR signal echo is 

measured during this period. The frequency encoding gradient determines the Larmor 

frequency according to position along its direction (in this case, the 𝑥 direction). The 

detected MR signal from the slice of tissue is therefore comprised of many different 

frequencies. The field of view is predefined and matched to a specific range of frequencies, 

referred to as the receiver bandwidth. Source: Figure and modified caption reproduced from 

(Ridgway, 2010), published under CC BY 2.0 license. ...................................................... 24 

Figure 6: Illustration of tissue-boundary sparsity variation with a brain image. A central and 

an outer k-space region may each generate an image by inverse Fourier transform. The image 

generated from outer k-space data have higher tissue-boundary sparsity than that from 

central k-space data. Correspondingly, the correlation function shows a stronger spread-out 

pattern around the k-space center, indicating more neighboring data are correlated in the 

outer than in the central k-space. This k-space variant data correlation associated with tissue-

boundary sparsity is used to improve correlation imaging in the presented work. Source: 

Figure and caption reproduced from (Li et al., 2018). Published online 7 July 2017 in Wiley 

Online Library (wileyonlinelibrary.com). © 2017 International Society for Magnetic 

Resonance in Medicine. ....................................................................................................... 26 

Figure 7: Simplified spin-echo dMRI pulse sequence (PGSE + SE-EPI). First, a slice 

selective 90° RF pulse is applied. Two trapezoidal diffusion lobes (Gdiff) are applied with the 
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same hardware polarity; the 180° RF pulse is placed midway between their effective centers 

(including ramps). Readout and phase-encoding begin after the second lobe, and the readout 

is centered at the peak of TE. The RF panel overlays an echo train whose amplitudes follow 

a T2* envelope (peak at TE) with global T2 scaling. Plotting code, and caption was created 

by the use of ChatGPT5 (https://chatgpt.com/). .................................................................. 28 

Figure 8: Visualization of the diffusion ellipsoid before (left) and after (right) 

diagonalization. Diagonalization does not affect the size of the ellipsoid but align the axes 

with the reference frame. ..................................................................................................... 32 

Figure 9: Three in-plane EC distortions are corrected by the affine, slicewise registration 

approach: translation, shearing, scaling. In this slicewise representation, the translation 

parameter depends on the homogenous part of the EC-field and on the z-component of the 

EC gradient. If the EC distortions as revealed by whole-brain registrations are evaluated in 

three dimensions, a fourth, additional affine deformation (through-plane shearing 𝜅𝑦𝑧) can 

be related to first-order eddy-current effects, leading to a unique correspondence between 

EC field components and EC distortions (c is a proportionality constant, involving sequence 

parameters). Source: Figure and caption reproduced from (Mohammadi et al., 2010). 

Published online 22 June 2010 in Wiley Online Library (wileyonlinelibrary.com). © 2010 

Wiley-Liss, Inc. ................................................................................................................... 36 

Figure 10: Structure of SPM and the integration of ACID into it visualized via an 

organigram. The SPM Software provides three parts: The SPM functions, the SPM Batch, 

and the SPM GUI. The ACID toolbox provides the main configuration file, the module 

configuration file, the module functions, and additional ACID functions. ACID is integrated 

into the SPM Batch system via the main configuration file. Every ACID module has its own 

module configuration file which is named for initialization in the main file. The module 

configuration file calls the module functions with the in the batch/GUI defined parameters. 

The module functions are using ACID functions (e.g., for data import) and both have also 
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the possibility to use SPM functions (e.g., spm_coreg for coregistration or spm_vol for 

import of 3D NIfTI headers). This organization makes it easy to implement new modules 

(e.g., from external sources), as the module functions only need a few adaptations via ACID 

functions (e.g., for data handling/naming) and can be linked to a new ACID module 

configuration file which directly enables an integration into the ACID/SPM batch 

ecosystem. ............................................................................................................................ 41 

Figure 11: The image shows the SPM Batch Editor with the ACID module Diffusion 

Kurtosis Imaging (DKI) selected. The mandatory inputs are indicated by “<-X”. For the most 

parameters (e.g., “b-values”), additional information is provided in the lower box. .......... 43 

Figure 12 : The image shows the SPM Batch Editor with the ACID modules msPOAS, and 

Diffusion Kurtosis Imaging (DKI) selected. For the first mandatory input of DKI, “Input 

images”, the dependency “DEP msPOAS: Denoised images” is selected. This has the effect 

that the denoised output images of msPOAS are handed directly to the DKI module without 

any user interaction needed. ................................................................................................ 44 

Figure 13: Example of a saved batch script. In this script, the modules msPOAS and DKI 

are executed one after another. The fields “MATLAB_CODE_TO_FILL_INPUT” have to 

be filled with the corresponding input parameter. This enables the possibility to execute this 

batch script with different datasets and/or parameters through a “for” loop. If the dependency 

in Figure 12 would be set before saving the script, the DKI Input “Input Images” would not 

appear in the saved script as it is internally set. ................................................................... 45 

Figure 14: Example of renamed files which are part of the ACID toolbox. In the left panel, 

the old unstructured filenames are displayed. In the right panel, the renamed files are shown. 

A structured naming system is implemented based on “acid” as a prefix followed by the 

module name the file is contributing to (e.g., ecmoco, or tbx_cfg for main files). ............. 50 

Figure 15: Example of JSON file extraction in ACID. On the left, a part of the JSON file 

from an example dataset is shown. The parameter fields of Echo Time (TE) (yellow) and 
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protocol name (red) are marked. These are extracted among other values in a dedicated .txt 

file, which is formatted in a format easy for humans to understand. .................................. 51 

Figure 16: Example of the output structure of ACID. On the left, the folder names are 

displayed, showing the name for each module that was used in the executed pipeline. If a 

module is executed again in the same run, a new folder with the extension “-Run_#” is 

created. On the right side, the content of the “WMTI-WATSON-PLUS” is shown. The 

“_desc” field in the filename shows all used modules in the executed order. This makes it 

easier for the user to recognize which modules have been applied to this data and in which 

order. .................................................................................................................................... 55 

Figure 17: Registration scheme for an example dMRI dataset, which consists of two sets of 

non-diffusion-weighted (b0) volumes (n volumes each) and two sets of diffusion-weighted 

(DW) volumes (N volumes each) interspersed with each other. The b0 and DW volumes 

form separate registration groups and are registered to their corresponding target volumes. 

First, the b0 volumes are registered using the rigid-body components of the specified degrees 

of freedom (DOF), followed by the registration of the DW volumes using all specified DOF. 

The parameter iteration for a given b0 or DW can be initialized using previously obtained 

transformation parameters (initialized registration). Source: Figure and caption reproduced 

from (David et al., 2024), published under CC BY 4.0 license. ......................................... 59 

Figure 18: Definition of noise regions of interest (ROI) for the repeated measures noise 

estimation method. Binary noise ROIs are outlined in red. For in vivo brain and spinal cord 

dMRI, we recommend creating a noise ROI within the cerebrospinal fluid (CSF), such as 

the lateral ventricles in the brain and the subarachnoid space in the spinal cord, on the 𝑏0 

images. Subsequently, we recommend estimating the noise on the images with the highest 

𝑏-value (ideally above 1500 𝑠mm2) within the CSF mask. For ex vivo dMRI, the noise ROI 

is recommended to encompass the specimen itself, but noise estimation should be applied 

only on the 𝑏0 images. Since ex vivo dMRI is not affected by physiological artifacts, signal 
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variations across the 𝑏0 images are considered noise. Source: Figure and modified caption 

reproduced from (David et al., 2024), published under CC BY 4.0 license. ...................... 62 

Figure 19: Comparison of maps obtained from fitting the diffusion kurtosis model (ex vivo 

dataset; refer to Table 2 for details on the dataset), including fractional anisotropy (𝐹𝐴), axial 

diffusivity (𝐴𝐷), mean kurtosis tensor (𝑀𝑊), axial kurtosis tensor (𝐴𝑊), and radial kurtosis 

tensor (𝑅𝑊) with and without applying adaptive denoising (msPOAS). The msPOAS-

corrected maps appear less noisy while preserving tissue edges. Source: Figure and caption 

reproduced from (David et al., 2024), published under CC BY 4.0 license. ...................... 64 

Figure 20: Schematic illustration of how robust fitting down-weights outliers in the model 

fit. The scatter plot shows the logarithm of diffusion-weighted voxel intensities against the 

squared cosine of the angle ψ between the diffusion gradient direction (bvec) and the 

direction of the first eigenvector in a corpus callosum voxel (see blue crosshairs for location). 

Blue crosses in the scatter plot indicate data points not affected by artifacts (“No outliers”), 

while cyan crosses indicate data points affected by strong artifacts (“Outliers”). Outliers 

were generated by removing the center of the k-space of the original image to illustrate the 

effect of strong motion artifacts. Two example images corresponding to a nonartifactual 

(“No outlier,” top image) and an artifactual data point (“Outlier,” bottom image) are shown 

on the right. During the model fit, a linear curve is fitted to the logarithmic voxel intensities. 

The presence of outlier data points leads to a biased model fit (red line) and consequently 

biased tensor estimates when using ordinary least squares (OLS) model fitting. In contrast, 

robust fitting down-weights the influence of outliers, leading to a more accurate model fit 

(orange line) which is closer to the ground truth (green line) obtained by an OLS fit to the 

nonartifactual data points (blue crosses) only. Source: Figure and caption reproduced from 

(David et al., 2024), published under CC BY 4.0 license. ................................................. 66 
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Figure 21: Kurtosis bias in the mean diffusivity (𝑀𝐷) maps in an in vivo brain and in vivo 

spinal cord dataset (refer to Table 2 for details on the dataset). This bias, shown in the right 

column, refers to the difference in the estimated diffusivity values when using the lower 

diffusion shells only (𝑀𝐷𝐷𝑇𝐼, tensor model, left column) or both the lower and higher 

diffusion shells (𝑀𝐷𝐷𝐾𝐼, kurtosis model, middle column). On average, the kurtosis bias was 

12% and 54% within the brain white matter and the whole spinal cord, respectively. Source: 

Figure and modified caption reproduced from (David et al., 2024), published under CC BY 

4.0 license. ........................................................................................................................... 68 

Figure 22: Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo 

brain, in vivo spinal cord, and ex vivo dMRI dataset (refer to Table 2 for details on the 

dataset). Shown are maps of fractional anisotropy (𝐹𝐴), mean diffusivity (𝑀𝐷), axial 

diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), mean kurtosis (𝑀𝐾), axial kurtosis (𝐴𝐾), and radial 

kurtosis (𝑅𝐾). Source: Figure and modified caption reproduced from (David et al., 2024), 

published under CC BY 4.0 license. .................................................................................... 69 

Figure 23: Maps of biophysical parameters derived from the WMTI-Watson model using an 

in vivo brain, in vivo spinal cord, and ex vivo dMRI dataset (refer to Table 2 for details on 

the dataset). Shown are maps of Watson concentration parameter (𝜅), axonal water fraction 

(𝑓), parallel and perpendicular extra-axonal diffusivities (𝐷𝑒, 𝑝𝑎𝑟 and 𝐷𝑒, 𝑝𝑒𝑟𝑝), and intra-

axonal diffusivity (𝐷𝑎). Note that for the in vivo spinal cord dataset, the maximum 𝑏-value 

(𝑏 = 1500 𝑠mm2)) was probably too low for an accurate estimation of 𝐷𝑒, 𝑝𝑎𝑟, resulting in 

voxels with negative (hence unphysical) values within the spinal cord. Since WMTI-Watson 

is a white matter biophysical model, the parameter maps were masked for the white matter 

in the brain dataset. For the spinal cord and ex vivo specimen, we refrained from masking 

for the white matter due to the difficulty of obtaining an accurate white matter mask. Source: 
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Figure and modified caption reproduced from (David et al., 2024), published under CC BY 

4.0 license. ........................................................................................................................... 71 

Figure 24: Merging of two fractional anisotropy (𝐹𝐴) maps, covering the brain and cervical 

cord, respectively, into a unified 𝐹𝐴 map using the Fusion utility function. The two images 

should ideally share an overlapping region, but they may have different geometric properties 

such as resolution and number of slices. In the overlapping region, the voxel intensity values 

are computed as the average of the intensity values from the two images. The merging 

process requires a structural image as the registration target. The combined 𝐹𝐴 map is 

resampled onto the higher resolution structural image, resulting in a smoother appearance. 

Source: Figure and modified caption reproduced from (David et al., 2024), published under 

CC BY 4.0 license. .............................................................................................................. 75 

Figure 25: Standard processing pipelines for typical (A) in vivo brain, (B) in vivo spinal 

cord, and (C) ex vivo dMRI datasets (refer to Table 2 for details on the datasets and Table 3 

for details on the pipeline settings). Example batches for each type of dMRI data are stored 

in the Example_Batches folder of the toolbox. The positions of the displayed slices of the 

dMRI data are indicated in purple on the corresponding structural images. For the ex vivo 

specimen (C), the brain region from which the sample was extracted is highlighted in an 

orange box. Although not explicitly shown here, noise estimation should be performed on 

the unprocessed data (see Appendix C), which serves as input for msPOAS, Rician bias 

correction, and diffusion tensor fitting (for fitting methods WLS and robust fitting). 

However, in case of substantial misalignments across volumes, and when using the repeated 

measures noise estimation method, it might be beneficial to perform this step after 

ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-in visual 

comparison is shown between a diffusion-weighted (DW) image before (middle row) and 

after applying msPOAS (bottom row); the msPOAS-corrected image appears less noisy 
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while preserving tissue edges. For HySCO, contour lines of the corresponding structural 

image (displayed as red lines) are overlaid on a zoomed-in DW image both before (middle 

row) and after applying HySCO (bottom row). HySCO improves the alignment between the 

DW and the structural image. For the in vivo brain dMRI dataset (A), an inferior slice is 

shown that presents high susceptibility-related distortions, making the effect of HySCO 

more visible. For the ex vivo dMRI dataset (C), the effect of HySCO is shown in a slice 

(illustrated in yellow) orthogonal to the original one (illustrated in purple) to better visualize 

susceptibility-related distortions and their correction. Note that HySCO is applied as the final 

preprocessing step, that is, after applying msPOAS; however, the HySCO field map used for 

“unwarping” the diffusion-weighted images is estimated on the ECMOCO-corrected 

datasets, that is, before applying msPOAS. Rician bias correction (not explicitly shown here) 

should be applied either before (recommended: between msPOAS and HySCO, using the 

RBC module) or during model fitting (using the Rician bias correction option in NLLS). 

Diffusion signal models are fitted on the processed dataset; here, we display the maps of 

fractional anisotropy (𝐹𝐴) and mean kurtosis tensor (𝑀𝑊) from diffusion kurtosis imaging 

(DKI). The output from DKI can be used to compute biophysical parameters of the white 

matter; shown here is the map of Watson concentration parameter (𝜅) from the WMTI-

Watson biophysical model. Note that for the in vivo brain dMRI dataset, the inferior slice 

displayed contains relatively little white matter; hence, we refrained from using a white 

matter mask. The less smooth appearance of the κ map is due to the low values in the gray 

matter. Source: Figure and modified caption reproduced from (David et al., 2024), published 

under CC BY 4.0 license. .................................................................................................... 82 

Figure 26: Bar plots displaying the Watson concentration parameter (𝜅) and axonal water 

fraction (𝐴𝑊𝐹) within the five central slices of the corpus callosum and the lateral 

corticospinal tracts in the spinal cord (refer to Table 2 for details on the datasets). The corpus 

callosum was manually segmented, while the lateral corticospinal tracts were segmented 
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using the PAM50 spinal cord white matter atlas. The regions of interest are highlighted as 

red segmentation lines on the images. In the box plots, red horizontal lines represent 

literature values obtained from histology, while the red dotted line represents a literature 

value from the brain due to the absence of a corresponding value for the spinal cord. Values 

of orientation dispersion index reported in the literature were converted to 𝜅 using Equation 

(1) in (Mollink et al., 2017). Within the corpus callosum, 𝜅 values were (mean ± std) 10.82 

± 10.31 and 8.14 ± 5.13 when derived from the NODDI-DTI (single shell) and WMTI-

Watson model (two shells), respectively. These values fall within the range of literature 

values obtained post-mortem using polarized light imaging (Mollink et al., 2017). 𝐴𝑊𝐹 

values derived from NODDI-DTI (0.40 ± 0.24) and WMTI-Watson model (0.47 ± 0.13) 

were similar to literature values obtained using electron microscopy in a cynomolgus 

macaque (Stikov et al., 2015). Within the lateral corticospinal tracts, 𝜅 values derived from 

NODDI-DTI were notably lower than those derived from WMTI-Watson (2.53 ± 0.19 vs. 

6.04 ± 1.84) and were consistent with literature values obtained in a post-mortem specimen 

(Grussu et al., 2017). 𝐴𝑊𝐹 values derived from the WMTI-Watson model in the spinal cord 

were substantially higher (0.81 ± 0.03) compared to a literature value obtained in the brain 

(red dotted line). The estimation of 𝐴𝑊𝐹 for the spinal cord was not feasible using the 

NODDI-DTI model, as DTI-derived mean diffusivity (𝑀𝐷) values fell below the range 

where the NODDI-DTI model provides a valid representation (refer to Equation (4) in 

(Edwards et al., 2017)). This discrepancy could be attributed to either the underestimation 

of 𝑀𝐷 due to kurtosis bias (Figure 21) or the invalidity of fixed compartmental diffusivities 

in the NODDI-DTI model. These results indicate that WMTI-Watson yields more accurate 

estimation of 𝜅 and 𝐴𝑊𝐹 for the brain, while NODDI-DTI yields a more accurate estimation 

of 𝜅 for the spinal cord. This could be a consequence of non-optimal 𝑏-values for kurtosis 
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estimation in the spinal cord. Source: Figure and modified caption reproduced from (David 

et al., 2024), published under CC BY 4.0 license. ............................................................. 89 

Figure 27: The impact of Rician bias correction (RBC) on maps of biophysical parameter 

estimates, derived from the NODDI-DTI and WMTI-Watson models, including Watson 

concentration parameter (𝜅) and axonal water fraction (𝐴𝑊𝐹), in an in vivo brain and spinal 

cord dataset (refer to Table 2 for details on the datasets). Being derived from white matter 

biophysical models, the parameter maps were masked for the white matter in the brain 

dataset. For the spinal cord, we refrained from masking due to the difficulty of obtaining an 

accurate white matter mask. These maps were computed both without (left column) and with 

(middle column) RBC; their voxel-wise difference, referred to as the Rician bias, is shown 

in the right column. RBC slightly decreased the mean of the kurtosis tensor in both the brain 

and spinal cord, which resulted in an increase in 𝜅. The estimation of 𝐴𝑊𝐹 using the 

NODDI-DTI model was not feasible in the spinal cord, as the mean diffusivity (𝑀𝐷) values 

derived from DTI fell below the range where the NODDI-DTI model provides a valid 

representation (refer to Equation (4) in (Edwards et al., 2017)). This discrepancy could be 

attributed to either the underestimation of MD due to kurtosis bias (Figure 21) or the 

invalidity of fixed compartmental diffusivities in the NODDI-DTI model. Source: Figure 

and modified caption reproduced from (David et al., 2024), published under CC BY 4.0 

license. ................................................................................................................................. 91 

Figure 28: Qualitative illustration of the effect of denoising on maps derived from diffusion 

kurtosis imaging (DKI). Shown are maps of axial diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), 

mean kurtosis tensor (𝑀𝑊), axial kurtosis tensor (𝐴𝑊), and radial kurtosis tensor (𝑅𝑊). 

The maps were obtained by fitting the kurtosis model to simulated noisy dMRI data (signal 

+ noise) with a signal-to-noise ratio (SNR) of 5, both before (no denoising) and after 

employing different denoising methods (msPOAS, LPCA, MP-PCA). The DKI metric maps 
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obtained from the simulated noise-free dMRI data (signal only) are also shown for 

comparison (ground truth). The white matter mask used for calculating the normalized root-

mean-square error (NRMSE) between the obtained DKI metrics and the ground truth is 

overlaid as a red segmentation line on the ground truth maps. Source: Figure and modified 

caption reproduced from (David et al., 2024), published under CC BY 4.0 license. ......... 94 

Figure 29: Quantitative illustration of the effect of denoising on maps derived from diffusion 

kurtosis imaging (DKI) (one noise realization). The plots show the normalized root-mean-

square error (NRMSE) between (i) DKI metrics obtained from simulated noisy dMRI data 

(signal + noise) with varying signal-to-noise ratios (SNR), both before (no denoising) and 

after employing different denoising methods (msPOAS, LPCA, MP-PCA), and (ii) DKI 

metrics obtained from noise-free dMRI data (signal only). NRMSE was computed across 

white matter voxels (see Figure 28 for the white matter mask) for the following DKI metrics: 

axial diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), mean kurtosis tensor (𝑀𝑊), axial kurtosis 

tensor (𝐴𝑊), and radial kurtosis tensor (𝑅𝑊). Denoising methods reduced NRMSE from the 

ground truth compared with the “no denoising” scenario only in the low-SNR domain, 

although not consistently for all DKI metrics. At high SNRs (above 30–40), denoising 

increased NRMSE for all DKI metrics, except for the MP-PCA method, which yielded 

results comparable with the “no denoising” scenario. Source: Figure and modified caption 

reproduced from (David et al., 2024), published under CC BY 4.0 license. ...................... 95 

Figure 30: Quantitative illustration of the effect of denoising on maps derived from diffusion 

kurtosis imaging (DKI). The plots show the relative difference in DKI metrics obtained from 

simulated noisy dMRI data (signal + noise) with varying signal-to-noise ratios (SNR) after 

employing different denoising methods (msPOAS, LPCA, MP-PCA) to those obtained 

without denoising (one noise realization). The relative difference was computed across white 

matter voxels (see Figure 28 for the white matter mask) for the following DKI metrics: axial 
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diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), mean kurtosis tensor (𝑀𝑊), axial kurtosis tensor 

(𝐴𝑊), and radial kurtosis tensor (𝑅𝑊). Denoising introduced substantial improvements in 

the investigated DKI metrics only in the low-SNR domain, although not consistently across 

all DKI metrics. When using msPOAS and LPCA, the relative differences were greater 

compared with using MP-PCA, with msPOAS introducing the highest bias. At high SNRs 

(above 30–40), the relative difference to the “no denoising” scenario was negligible for MP-

PCA. Source: Figure and modified caption reproduced from (David et al., 2024), published 

under CC BY 4.0 license. .................................................................................................... 96 

Figure 31: Visualization of the BIDS-compliant folder structure ACID generates for BIDS-

compliant input datasets. The BIDS storage structure of the raw data is recreated within the 

derivatives/ACID folder. This ensures a clear and easy-to-script data storage of the processed 

dMRI data or parameter maps. ............................................................................................ 99 

Figure 32: Visualization of the white and gray matter masks which were used for the further 

analysis. The fractional anisotropy (𝐹𝐴) map of all subjects is shown on the upper row. The 

red circled area displays the analyzed white matter region (middle row) and gray matter 

region (bottom row) for each subject. ............................................................................... 100 

Figure 33: Quantitative illustration of the statistical analysis of the four via DKI in white 

matter analyzed subjects. The mean and standard deviation (black) as well as the subject-

specific values (colored dots) were computed across white matter voxels (see Figure 32 for 

the white matter mask) for the following DKI metrics: axial diffusivity (𝐴𝐷), radial 

diffusivity (𝑅𝐷), mean diffusivity (𝑀𝐷), axial kurtosis tensor (𝐴𝑊), radial kurtosis tensor 

(𝑅𝑊), mean kurtosis tensor (𝑀𝑊), and fractional anisotropy (𝐹𝐴). The across-subject COV 

was estimated for 𝐹𝐴 (25.3%), 𝐴𝐷 (4.6%),	𝑅𝐷 (16.5%),	𝑀𝐷 (6.8%),	𝐴𝑊 (17.8%),	𝑅𝑊 
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Figure 34: Quantitative illustration of the statistical analysis of the four via DKI in gray 

matter analyzed subjects. The mean and standard deviation (black) as well as the subject-

specific values (colored dots) were computed across gray matter voxels (see Figure 32 for 

the gray matter mask) for the following DKI metrics: fractional anisotropy (𝐹𝐴), axial 

diffusivity (𝐴𝐷), radial diffusivity (𝑅𝐷), mean diffusivity (𝑀𝐷), axial kurtosis tensor (𝐴𝑊), 

radial kurtosis tensor (𝑅𝑊), and mean kurtosis tensor (𝑀𝑊). The results showed a relatively 

high consistency over all DKI parameters; the across-subject COV was estimated for 𝐹𝐴 

(8.6%), 𝐴𝐷 (10.9%),	𝑅𝐷 (11.8%),	𝑀𝐷 (10.9%),	𝐴𝑊 (5.2%),	𝑅𝑊 (6.0%), and	𝑀𝑊 (3.5%).
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Figure 35: Across-subject coefficient of variation maps of the DKI parameter for the four 

subjects. Upper row: fractional anisotropy (𝐹𝐴), axial diffusivity (𝐴𝐷), radial diffusivity 

(𝑅𝐷), and mean diffusivity (𝑀𝐷). Lower row: axial kurtosis tensor (𝐴𝑊), radial kurtosis 

tensor (𝑅𝑊), and mean kurtosis tensor (𝑀𝑊). The maps are mostly homogeneous; however, 

for 𝑅𝐷 and 𝑅𝑊, the values are higher in the corpus callosum, which indicates a higher 
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Figure 36: : Group mean maps of the DKI parameter for the four subjects. Upper row: 
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Figure 37: Quantitative illustration of the statistical analysis of the four via SMI analyzed 

subjects. The mean and standard deviation (black) as well as the subject-specific values 

(colored dots) were computed across white matter voxels (see Figure 32 for the white matter 

mask) for the following SMI metrics: axonal water fraction (AWF/𝑓), intra-axonal 
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diffusivity (𝐷𝑎), parallel and perpendicular extra-axonal diffusivities (𝐷𝑒, 𝑝𝑎𝑟 and 

𝐷𝑒, 𝑝𝑒𝑟𝑝), free water volume fraction (𝑓𝑤), and anisotropy (𝑝2). The results show a 
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diffusivity 𝐷𝑒, 𝑝𝑒𝑟𝑝, free water volume fraction (𝑓𝑤), and anisotropy (𝑝2). The maps are 

mostly homogeneous; however, for 𝐷𝑒, 𝑝𝑎𝑟, the values are higher in the corpus callosum, 
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Figure 39: Group mean maps for the estimated SMI parameter for the four subjects. Upper 

row: axonal water fraction (AWF/𝑓), intra-axonal diffusivity (𝐷𝑎), and parallel extra-axonal 
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analyzed subjects. The mean and standard deviation (black) as well as the subject-specific 
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where the fit was able to estimate values are relatively high, which indicates a higher 
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