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1 Introduction

The diffusion MRI (dMRI) technique enables the possibility to measure tissue
microstructure parameters, which is done by acquiring multiple measurements which
estimate the diffusion along different spatial directions (Callaghan et al., 1988; Le Bihan et
al., 1988; Stejskal and Tanner, 1965). So far, most of the research focus is on brain dMRI
(e.g., brain development (Dubois et al., 2014; Miller et al., 2002), aging (Draganski et al.,
2011; Sullivan et al., 2010)); however, other regions of the human body like the spinal cord
are experiencing a growing interest (Cohen et al., 2017; Martin et al., 2016). Also, ex vivo
DWI studies which enable the possibility to measure dedicated parts of the body at a sub-
millimeter resolution and thereby bridge the spatial gap to other measurement techniques
(e.g., electron microscopy) are increasingly becoming the focus of attention (Barazany et al.,
2009; Kelm et al., 2016; Papazoglou et al., 2024).

dMRI measurements are affected by artifacts like motion (Andersson and Sotiropoulos,
2016), eddy currents (Mohammadi et al., 2010), noise (Becker et al., 2014; Veraart et al.,
2016), Rician bias (Oeschger et al., 2023a), or susceptibility artefacts (Gu and Eklund, 2019;
Ruthotto et al., 2012) which can be corrected retrospectively with software tools based on
physical models via preprocessing. There are several software applications to correct these
types of artefacts (e.g., the FMRIB Software Library (FSL') (Jenkinson et al., 2012), MRtrix?
(Tournier et al., 2019), DESIGNER? (Ades-Aron et al., 2018)). Most of the developed tools

are made only for brain dMRI datasets.

Uhttps://fsl.fmrib.ox.ac.uk/fsl
2 https://www.mrtrix.org/

3 https:/github.com/NYU-DiffusionMRI



For the interpretation of the results and the estimation of diffusion parameters, different
model fit approaches like diffusion tensor imaging (DTI) (Basser et al., 1994) or diffusion
kurtosis imaging (DKI) (Hansen et al., 2016; Jensen et al., 2005) are used. These models use
the different diffusion gradient strengths/directions to estimate the diffusion tensor or
kurtosis tensor via cumulant development of the logarithmic diffusion weighted signal in
dependence of the diffusion strength (Kiselev, 2017).

Furthermore, biophysical models have been developed for the white and gray matter,
allowing a deeper characterization of the tissue properties. These approaches link the
diffusion parameter maps to biological microstructure. For this, the biophysical models
NODDI-DTI (Edwards et al., 2017) or WMTI-Watson (Alexander et al., 2019; Novikov et
al., 2019) are often used approaches to estimate biophysical parameters like axonal water
fraction (AWF /f) or extra-axonal diffusivities (D pqr and D ,erp). Typically, biophysical
modelling toolboxes like NODDI (Zhang et al., 2012) or SMI (Coelho et al., 2022) do not
provide preprocessing options or pipelines.

Therefore, it is necessary to use additional preprocessing tools to analyze a whole dataset
from raw data to diffusion or biophysical parameters. For optimal performance, each of these
tools has to be optimized for the specific body part being measured. In addition, existing
software packages often have their own input syntax, data structure, or own data formats
(e.g., “.mif” file format in FSL). This implies a high amount of work to make the output of
each single tool compatible with the next (e.g., when biophysical modelling toolboxes are
used after preprocessing), is error-prone, and reduces the reproducibility in the field of
diffusion MRI. Moreover, the different formats make it more difficult to structure the output
of the processing steps, which complicates the analysis of, e.g., a high number of different
datasets in one study. This results in low flexibility, as for example, the addition of a
preprocessing tool could require manual interaction in the whole analysis code and data

structuring script.



In this thesis, a toolbox was developed that is the first to solve these weaknesses in analysis
pipelines and open the possibility to analyze in vivo brain as well as in vivo spinal cord and
ex vivo datasets in a way which is automatable and applicable for big data analyses. This
was achieved by adding additional tissue type-specific preprocessing options via code
extensions and new modules to an existing brain dMRI analysis toolbox named now “A
Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal Cord, and Ex
Vivo Diffusion MRI Data” (ACID?) (David et al., 2024). In particular, the specific types of
artifacts in spinal cord dMRI (Barker, 2001; Stroman et al., 2014), as well as the highly
variable geometry and diffusion properties in ex vivo dMRI ((Sébille et al., 2019) provides
a list of ex vivo/ postmortem dMRI studies), are addressed. ACID is an open-source
extension to the MATLAB? based Statistical Parametric Mapping (SPM®) (Penny et al.,
2011) software and therefore benefits from a GUI and strong, well-established statistical
analysis functions and modules from the SPM framework (e.g., (Ashburner and Friston,
2011)). The ACID toolbox includes state-of-the-art image preprocessing and artefact
correction tools, the model fitting approaches DTI and DKI, as well as the biophysical
parameter estimation methods NODDI-DTI and WMTI-Watson. As one of the strengths of
ACID is the modularized code structure, external tools like FSL’s eddy’ (Andersson and
Sotiropoulos, 2016) have been easily implemented. ACID offers a fully modularizable
software which enables an easy creation of analysis pipelines consisting of several modules.
The implementation of additional processing/modelling methods is possible without a high

amount of work or the need for major changes in analysis pipelines or data structuring

4 http://diffusiontools.com/
5 https://www.mathworks.com
® https://www.fil.ion.ucl.ac.uk/spm/

7 https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
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scripts. In addition, other SPM extensions (e.g., the hMRI-toolbox®° (Tabelow et al., 2019))
can be directly integrated into analysis pipelines without changes on the code level.
Furthermore, ACID includes the Brain Imaging Data Structure (BIDS) standard
(Gorgolewski et al., 2016; Karakuzu et al., 2022) and is therefore applicable to big data
analysis, which is required for, e.g., machine learning applications (e.g., Clinica (Routier et
al., 2021)). The parameters of the ACID modules can be easily adjusted to support required
tissue type. The use of the SPM-provided GUI as well as the modular organization of ACID
and additional comfort utility functions (e.g., automatic metadata readout), make the toolbox
user-friendly for unexperienced users. To ensure ACID is valuable and reusable academic
software, the FAIR principles (Barker et al., 2022; Wilkinson et al., 2016) are harmonized
with the toolbox.

To show the capabilities ACID provides, the analyses of example datasets for the three
supported body regions are presented, while each processing step is shown. Furthermore, the
effect of different artefacts (Kurtosis bias (Edwards et al., 2017), Rician bias) on parameter
estimation is presented.

To investigate the performance of different denoising methods, a comparison via a synthetic
dMRI dataset is presented, in which all denoising methods which are integrated in ACID
(even methods from external sources like FSL) have been compared.

The capability of ACID to process and analyze multiple datasets (group analysis) BIDS-
conform is demonstrated by the processing of an example study containing four datasets and
the comparison of parameter estimates when different biophysical model approaches are

used.

8 https://www.cbs.mpg.de/abteilungen/neurophysik/software/hmri-toolbox

? https://github.com/hMRI-group/hMRI-toolbox

11



2 Structure of the thesis

In addition to the introduction (section 1) and this section, this thesis consists of six further

sections. The following list provides an overview for each of these sections:

Section 3 gives an overview of the theoretical background. The goal of this section
is to give the reader an introduction of the required knowledge to understand the need
for a toolbox for preprocessing and interpreting diffusion MRI data. First, the theory
behind an MRI measurement is explained and how diffusion can be acquired. Also,
models for fitting the acquired diffusion signals and how parameters can be estimated
are described. Furthermore, biophysical models are introduced. On the technical side,
the MRI sequence for a diffusion measurement is explained and typical artefacts for
dMRI measurements are introduced and explained.

Section 4 focuses on the concept changes and developments which were performed
for ACID. The organization of the ACID code is explained, and the benefits ACID
features through its integration into SPM are discussed. The refactoring of the ACID
toolbox is presented in the beginning with a description of the initial state of ACID
at the beginning of the PhD project, and the changes which are performed are
explained in several sections like conceptual changes, the implementation of the
BIDS structure, and the harmonization with the FAIR principles.

Section 5 is based on the toolbox paper published during this PhD project (David et
al., 2024) (see section 14 for details) and has the goal of presenting all modules
implemented in ACID and their usage.

Section 6 is partially based on the toolbox paper published during this PhD project
(David et al., 2024) (see section 14 for details; the specific parts are named in section
6) and provides exemplary investigations and use cases for ACID. The section

explains the settings of the three ACID-supported tissue types: in vivo brain, in vivo
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spinal cord, and ex vivo specimen. Also, this section shows, for example, how a user
can decide which biophysical model should be used for a specific dataset. In addition,
an exemplary group analysis is presented showing a comparison of biophysical
parameter estimations over different estimation models. Furthermore, the group
analysis demonstrates the possibilities ACID provides now for large dataset analyses
through, e.g., BIDS integration or pipeline generation.
e Sections 7 and 8 provide a general discussion, summarizing the results, and give a
conclusion and outlook.
The development of ACID is an ongoing process, and updates are released continuously.
The current commit for this thesis is “[132b548¢]!?” and can be found on the git repository

website!!.

10°132b548ccb895b2000a59092ceb9edb693edbdde

! https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/src/master/
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3 Theoretical background

In this section, the fundamental principles of magnetic resonance imaging (see section 3.1),
the principles of diffusion MRI (see section 3.2), a description of biophysical models (see
section 3.3), as well as the challenges for diffusion MRI datasets (see section 3.4) are

explained.
3.1 Fundamentals of Magnetic Resonance Imaging (MRI)

This section highlights the general fundamentals an MRI is based on, containing the basic
principles (see section 3.1.1; structure is based on (Fricke, 2020)), how the excitation and
echo are generated (see section 3.1.2), the spatial encoding techniques (see section 3.1.4),
and an explanation of the k-space (see section 3.1.5).

3.1.1 Basic principles of Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology which uses the
physical principles of Nuclear Magnetic Resonance (NMR), where the nuclear spin (usually
hydrogen nuclei; because the human body consists largely of it) interacts with external

magnetic fields. The main static magnetic field is named B, field.
The hydrogen nuclei consist of one proton with nuclear spin % This leads to a magnetic

moment which interacts with the B, field, usually oriented along the z-axis. Due to the rules
of spin algebra, the spins align parallel- or anti-parallel to this field and precess around this
axis because of their behavior as a magnetic dipole in a magnetic field (Ddssel, 2016). The

vector sum of all magnetic dipoles in one volume element (voxel) is named magnetization

M and can be described as (Dossel, 2016):

W= dm _ vector sum of all magnetic dipomoments in dv (1)
Cdv volume dv '

In MRI acquisitions, the spatial density of this magnetization is measured.
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The precessing spins are not phase coherent (thermal equilibrium), and no transversal
magnetization builds up (because B, is here in z-direction (longitudinal), the magnetization
can be simplified to M = M,). The frequency of the precession movement is dependent on
the strength of the magnetic field and named Larmor frequency

Wrarmor =V " Bo, (2)

where y is the gyromagnetic ratio and B, is the magnetic field strength (e.g., 3T). The

MHz
T -

gyromagnetic ratio for hydrogen is yy = 42,576

The two different spin states (parallel and anti-parallel) have two different energy levels due

to the Zeeman-Effect

1
F= sl )

(positive sign is anti-parallel, negative sign is parallel alignment) (Dossel, 2016; Zeeman,
1897). This leads to a difference between both energy states

AE = yh- B, 4)
As the parallel state has a lower energy, more spins are in this alignment. The difference in

the number of spins of both states can be described via the Boltzmann-Distribution

AE
N, = Ny - e *sT, )

where N, is the number of spin states, k is the Boltzmann constant, and T is the temperature
(Dossel, 2016). The number of spin states can be described by the sum of both N =

N.

paratiel T Nantiparaiier- Together with the formula of the Boltzmann distribution, the

number of spins in the antiparallel state can be described as

AE _Yh'By (6)

T — . T
gl = Nparallel e "Bl .

Nantiparallel = Nparallel e
With the approximation that yh - B, is much smaller than k5T, the formula can be simplified

to
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yh- By ) (7)

Nantiparallel ~ Nparallel ' <1 -
kgT

The formula of the difference between both states, therefore, is

yh - By 8
AN = Nparallel - Nantiparallel ~ Nparallel T ( )
kgT
With the assumption that Npgrqiier = g follows that
ANzﬁ.”h'BO 9)

2  kgT

This difference is the reason for a longitudinal magnetization M, (Liang and Lauterbur,
2000), which is used in MRI measurements.
3.1.2 Excitation of the spin system and echo
The phenomena described in the section 3.1.1 make it possible to excite the spin system with
an oscillatory electromagnetic high frequency (HF, B;) wave which is perpendicular to the
B, field (commonly B, field in z-direction, B; wave in xy-plane). To excite the spin system,
the frequency must be the Larmor frequency to be in resonance with the spin system, which
is necessary to be able to perturb the spin system (Dossel, 2016). The Larmor frequency is,
e.g., 127.728 MHz for hydrogen in a 3 Tesla magnetic field. This frequency can be
described as “radio frequency” (RF), which shows that no ionizing radiation is used for MRI
measurements. If a spin system is excited this way, the longitudinal magnetization (here,
e.g., M,) is flipped into the x-y plane. The angle of the flip (@) is dependent on the amplitude
of the transversal field (B;) and duration (7) of the HF pulse:

a=y'B;-t. (10)

Figure 1 shows a visualization of this phenomenon.
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Figure 1: Net Magnetization, rf pulses and flip angle. a) At equilibrium, the net
magnetization, M, is at equilibrium, aligned along the z-axis. b). When a rf pulse is
applied, M, makes an angle with the z-axis, known as the flip angle, and rotates around
the axis in the direction of the curved arrow. At any instant the magnetisation can be
split into two components, M, and M,,. The rotating M,, component generates the
detectable MR signal. c) The maximum detectable signal amplitude after a single rf pulse
occurs when M, lies entirely in the plane of the x and y axes as this gives the largest M,,
component. This pulse has a 90° flip angle and is referred to as a 90° rf pulse or
saturation pulse. d) A 180°rfrefocusing pulse is usually applied while there is transverse
magnetisation already rotating in the xy plane and is used to instantaneously flip the
transverse component of magnetisation through 180° about an axis also rotating in the
xy plane. e) A180°inversion pulse is usually applied at equilibrium and is used to rotates
the net magnetization through 180° from the positive to the negative z-axis. This is also
known as a magnetization preparation pulse and is used is the preparation scheme for
black blood imaging techniques. Source: Figure and modified caption reproduced from

(Ridgway, 2010), published under CC BY 2.0 license.

During this process M, decreases while the transverse magnetization M,,, increases. This
M,,, magnetization precedes in phase and also with the Larmor frequency. Through this

pulse, an energy transfer is performed, which results not only in the excitation of the spin
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system but also in a heating of the specimen/subject. Therefore, the duration and amplitude
of the HF pulses are limited to the allowed heating of the subject. Immediately after the
excitation pulse, the spin system starts to relax back to its ground state magnetization (M,,,
decreases while the longitudinal magnetization M, increases). The underlying relaxation
process consists of two parts:

(1) The longitudinal magnetization M, which is flipped due to excitation in the xy-plane,
relaxes back to the ground state (z-axis). This happens because of interactions of the
spin system with, e.g., other atoms (often named: spin-lattice-relaxation), which
result in an energy loss (e.g., heating). The longitudinal relaxation time T; (e.g.,
680 + 120 ms for white matter) is defined via the formula (assuming M, = 0 for
t =0):

M) = M- (1- e T ) (11)

where M, is the magnetization of the ground state (before excitation) (Dossel, 2016).
(2) The spins within the xy-plane lose their coherence with increasing time due to their
own magnetic fields which interact with each other or local differences in the
magnetic field of the measured volume element which result in precession of
different Larmor frequencies. This results in a decrease of the length of the transverse
magnetization M,,. This relaxation type (often named: spin-spin-relaxation) is

defined via the formula:

L (12)
Mtransversal(t) = Mtransversal(o) e 'z,

where T, (e.g., 92 £ 22 ms for white matter) is the transversal relaxation time
(Dossel, 2016).
The precessing spins in the xy-plane can be defined as a time-varying magnetic field which

induces a voltage (which can be defined as an echo or signal S) in, e.g., detector coils placed

18



around the measured object, due to Faraday’s law of induction (Griffiths, 2013). This type
of echo, which can be measured directly after the excitation of the spin system, is named
“free induction decay” (FID). However, the FID is not usable for MRI applications as the
relaxation times are in general shorter than T,. Due to inhomogeneities of the B, field, an
acceleration of the dephasing of the spins is caused. The therefore modified spin—spin
relaxation time T, is named T, and is defined as:

1 1 1 (13)

o

where T, defines the additional acceleration in relaxation.

3.1.3 Echo generation

As described in section 3.1.2, the FID signal is not usable for MRI applications. But there
are several techniques using gradients and/or RF pulses to generate an acquirable echo.
One of these techniques is named gradient echo. For this method, a gradient is applied after
the excitation, which results in an additional (faster) dephasing of the spins and a faster
vanishing of the FID. After that, a second gradient is applied with the same amplitude but
double length and opposite direction. The additional dephasing of the first gradient is
therefore neglected, and the FID re-appears as a measurable echo limited for its maximum
by the T, relaxation. The time from the excitation to the point where the echo reaches its
maximum is named generally echo time (TE). Figure 2 provides a visualization of the

gradient echo sequence principle.
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Figure 2: Generating a gradient echo. This diagram shows how the reversal of a magnetic
field gradient is used to generate a gradient echo. The application of the 1st positive
magnetic field gradient causes rapid de-phasing of the transverse magnetization, M,,,
and therefore the FID signal to zero amplitude. The application of the 2nd negative
magnetic field gradient reverses the de-phasing caused by the first gradient pulse,
resulting in recovery of the FID signal to generate a gradient echo at the echo time, TE.
Extension of the time duration of the second gradient to twice that of the first gradient
causes the FID to then de-phase to zero. The maximum amplitude of the echo depends
on both the T, relaxation rate and the chosen TE. Source: Figure and modified caption

reproduced from (Ridgway, 2010), published under CC BY 2.0 license.

Another technique is named spin echo. The technique uses an 180° RF pulse after the
relaxation time T, which changes the signs of all spins within the spin ensemble. This results
in a rephasing of the spin ensemble, and the FID re-appears as a measurable echo. One
advantage of this technique is that the 180° pulse compensates for the inhomogeneities of

the magnetic field, due to the spins perceiving the same inhomogeneities on their return path
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with the opposite sign. As a result, the relaxation only occurs with T, instead of T,. Figure

3 provides a visualization of the spin echo sequence principle.
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=
b
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Figure 3: Generating a spin echo. The presence of magnetic field inhomogeneities causes
additional de-phasing of the proton magnetic moments. The Larmor frequency is slower
where the magnetic field is reduced and faster where the field is increased resulting in
a loss or gain in relative phase respectively. After a period of half the echo time, TE/2,
the application of a 180° rf pulse causes an instantaneous change in sign of the phase
shifts by rotating the spins (in this example) about the y axis. As the differences in Larmor
frequency remain unchanged, the proton magnetic moments the move back into phase
over a similar time period, reversing the de-phasing effect of the magnetic field
inhomogeneities to generate a spin echo. In addition to the effect of the 180° refocusing
pulse, gradients are applied to de-phase and re-phase the signal for imaging purposes.
Note that for spin echo pulse sequences, the second gradient has the same sign as the

first, as the 180° pulse also changes the sign of the phase shifts caused by the first
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gradient. Source: Figure and caption reproduced from (Ridgway, 2010), published under

CC BY 2.0 license.

This procedure can be repeated with an additional 180° RF pulse. This results in a so-called
“Echo-Train” where multiple echoes are generated for one excitation and is used for, e.g.,
echo planar imaging (EPI) readout approaches.

3.1.4 Spatial encoding

The further described excitation would result in a signal without any spatial information as
all spin systems in the By, would precess with the same Larmor (resonance) frequency and
would be excited when an RF pulse is applied. Therefore, a spatial encoding is used to enable
the possibility to combine the spatially encoded signals into one image. To spatially encode
in three dimensions, three different encoding techniques are needed:

(1) For the z-direction, typically an additional magnetic gradient Gs is added to the B,
field. As the strength of the magnetic field varies, therefore, along the z-axis, the
Larmor frequency becomes spatially dependent along this direction. This enables the
possibility to only excite a single slice of the measured subject by applying an RF
pulse with the corresponding Larmor frequency (slice selection). Figure 4 shows a

visualization of the slice selection technique.
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Figure 4: Image formation, Step 1 - Selecting a slice. For step 1 of image formation
process, a slice of tissue is selected by applying a magnetic field gradient Gs at the same
time as the rf excitation pulse. The position along the gradient (in this example along the
z axis) determines the Larmor frequency and resonance only occurs where this matches
the frequency of the rf pulse, fo, defining a plane (slice) of tissue perpendicular to the z-
axis. In practice the rf pulse is applied over a small range of frequencies, thus defining
the thickness of the slice. Source: Figure and modified caption reproduced from

(Ridgway, 2010), published under CC BY 2.0 license.

(2) To encode along the y-direction in the excited slice, phase encoding is used. This
encoding technique uses an additional gradient Gp after the slice selection but before
the echo. This makes the phase of the spins linearly dependent along the y-direction.
To use this phase shift for spatial encoding, this step has to be repeated with different
phase encoding gradient strengths. Figure 5 shows a visualization of this encoding

technique.
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(3) To encode the x-direction, an additional gradient Gy during the echo (readout) is
applied. This makes the acquired frequencies linearly dependent along this direction
as the Larmor frequencies are now spatially dependent. Figure 5 shows a

visualization of this encoding technique.
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Figure 5: Image formation, Steps 2 & 3 - Phase and frequency encoding. For step 2 of the
image formation process, a phase encoding gradient, Gp, is applied in a direction along
the selected image plane (in this case the phase encoding direction is along the y-
direction). This causes a range of phase shifts of the proton magnetic moments
dependent on their position along the gradient as well as the slope and duration of the
gradient. For step 3, following the phase encoding gradient, the frequency encoding
gradient, G¢, is applied also in the plane of the selected slice but perpendicular to the
phase encoding direction. The MR signal echo is measured during this period. The
frequency encoding gradient determines the Larmor frequency according to position
along its direction (in this case, the x direction). The detected MR signal from the slice
of tissue is therefore comprised of many different frequencies. The field of view is

predefined and matched to a specific range of frequencies, referred to as the receiver
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bandwidth. Source: Figure and modified caption reproduced from (Ridgway, 2010),

published under CC BY 2.0 license.

These three encoding techniques make it possible to acquire the signal for several separated
volume element (voxel).

3.1.5 k-Space

As described in section 3.1.4, the signal of an MRI acquisition is a spatially encoded
electromagnetic echo. This represents a sampling of discrete areas in a reciprocal space
(named k-space) which can be seen as the Fourier transformation of the acquired image.
This matrix is filled with frequency values during the MRI measurement. After the
acquisition, the filled matrix can be inverse Fourier transformed to calculate the acquired
image. An MRI can only acquire spatially discrete areas in the k-space; therefore, the image
quality depends on the sampling of the acquired k-space area.

The k-space is symmetric; therefore, it is only mandatory that more than 50% are sampled.
Also, the location of the acquired k-space area influences the resulting image. The center of
the k-space includes predominantly the intensity values, as the outer regions include
retrospectively predominantly the tissue structure. An exemplary visualization of this
phenomenon is shown in Figure 6 (last sentence in captions belongs to the presented work

in (Li et al., 2018)).
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Figure 6: Illustration of tissue-boundary sparsity variation with a brain image. A central
and an outer k-space region may each generate an image by inverse Fourier transform.
The image generated from outer k-space data have higher tissue-boundary sparsity than
that from central k-space data. Correspondingly, the correlation function shows a
stronger spread-out pattern around the k-space center, indicating more neighboring data
are correlated in the outer than in the central k-space. This k-space variant data
correlation associated with tissue-boundary sparsity is used to improve correlation
imaging in the presented work. Source: Figure and caption reproduced from (Li et al.,
2018). Published online 7 July 2017 in Wiley Online Library (wileyonlinelibrary.com). ©

2017 International Society for Magnetic Resonance in Medicine.

3.2 Diffusion MRI

The in section 3.1 described operating principles for an MRI can be used within sequences
(see section 3.2.2 for details) to perform measurements. One of these sequences enables the
measurement of diffusion (see section 3.2.1 for details) within the measured subject.
Furthermore, the interpretation of the diffusion signal is described (see section 3.2.3 for
details).

3.2.1 Diffusion

Diffusion can be explained as microscopic arbitrary motion (Brownian motion) (Einstein,

1956) of molecules if a concentration gradient is present. This phenomenon is
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mathematically described by Fick’s laws of diffusion (Meschede, 2010). As in an MRI
measurement, only hydrogen atoms are acquired, there is initially no concentration gradient.
The concentration gradient is created during the diffusion-weighted measurement (see
section 3.2.2) because there, hydrogen molecules are “labeled”, which results in a

concentration gradient of labeled and unlabeled molecules.
3.2.2 Diffusion MRl sequence

A diffusion-weighted sequence consists of additional gradients which are named diffusion
gradients. After the excitation pulse (90° flip angle, combined with a slice selective
gradient), a diffusion gradient is applied which applies an additional phase shift (similar to
the in section 3.1.3 discussed gradient echo). After the application, a 180° slice selective
(same slice as for the 90° pulse) HF pulse is applied followed by a second diffusion gradient
with the same length and strength as the first. As the 180° HF pulse switches the signs of the
phases (similar to the in section 3.1.3 discussed spin echo), the second gradient neglects the
phase shift of the first diffusion gradient for spins which have not moved. Spins which have
moved do not collect the same phase shift during the application of the second reversed
gradient compared to the first one. Therefore, these spins are not in phase after the
application of both diffusion gradients and do not contribute to the following acquirable
echo. This principle makes it possible to measure the strength of the diffusion as the
measured echo depends on the strength of water diffusion inverted (higher diffusion =
weaker echo (Stejskal and Tanner, 1965).

A widely used diffusion sequence is a combination of a pulsed-gradient spin-echo (PGSE)
sequence for diffusion weighting with a spin echo planar imaging (SE-EPI) approach for
spatial encoding. An example of this pulse sequence is displayed in Figure 7. As for diffusion

signal models, multiple acquisitions with different b-values and b-vectors are required (see
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section 3.2.3 for details); this allows the measurement of a whole DWI dataset in a suitable
time for a human subject (< 1 h).

Simplified PGSE + SE-EPI DWI sequence
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Figure 7: Simplified spin-echo dMRI pulse sequence (PGSE + SE-EPI). First, a slice
selective 90° RF pulse is applied. Two trapezoidal diffusion lobes (Gqitr) are applied with
the same hardware polarity; the 180° RF pulse is placed midway between their effective
centers (including ramps). Readout and phase-encoding begin after the second lobe, and
the readout is centered at the peak of TE. The RF panel overlays an echo train whose
amplitudes follow a T,* envelope (peak at TE) with global T, scaling. Plotting code, and

caption was created by the use of ChatGPT5 (https://chatgpt.com/).

3.2.3 Interpretation of the diffusion signal

Diffusion MRI (dMRI) investigates the thermally driven, random motion of water
molecules. A molecule’s displacement x — x, over a diffusion time t can be modeled as
the sum of many short, uncorrelated steps. The mathematical construct to describe this

behavior is called Green’s function or diffusion propagator (Kiselev, 2017). The diffusion
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propagator G(t, x, xo) is the probability density that a molecule moves from position x, to x
during time t. In free, homogeneous media, G is Gaussian with a variance equal to the sum
of the variances of the underlying elementary steps. The diffusion propagator describes the
behavior for each molecule in a voxel and is therefore not tractable practically (Kiselev,
2017). Therefore, a frequently used quantity is the medium-averaged propagator G (A x, t),
which describes only the net displacement A x = x — x, and is obtained by averaging over
all starting positions of molecules in the voxel. Under standard assumptions (constant spin
density within a voxel and negligible relaxation differences across diffusion encodings), the
measured diffusion-weighted signal S(t, q) is the Fourier transform of the medium-averaged
propagator:

S(t,q)=J G(Ax,t) -e L TA* d3Ax, (14)
where g defines the area under a single diffusion-encoding gradient lobe, often called the
“wave vector” of the sequence, which sets the spatial direction and strength of the
displacement encoding (Kiselev, 2017).

The strength of the diffusion gradient is mathematically expressed via the b value which
describes the sensitivity of the acquisition to movement of water molecules (diffusion). A b-
value of 0 results in no diffusion sensitivity (b, image). These images are needed for the
interpretation of the signal profile but are also acquired to include images without diffusion-
related artefacts (see section 3.4 for details) to the measured datasets. Higher b-values result
in a weaker echo due to the higher sensitivity to diffusion. Therefore, the SNR is reduced as
the higher the b-value is, which limits the maximum b-value which can be acquired. The
signal can be mathematically expressed as:

S(b) =S, e7bP, (15)

where b = g2 - t, D is the diffusion coefficient and S, is the non-diffusion-weighted signal

(Kiselev, 2017).
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For the interpretation of the diffusion-weighted signal, several diffusion signal models exist
like Diffusion Tensor Imaging (DTI) or Diffusion Kurtosis Imaging (DKI).

In the DTI approach, the diffusion is assumed to be Gaussian in a homogeneous fluid.
Therefore, the logarithm of the normalized signal decay can be approximated linearly with
b:

(16)

HOWN

l
nSO

—b -D.

This linear relation is obtained by Taylor expanding the signal at low q (equivalently, low
b) under the condition g - A x < 1. This very short movement can be treated as Gaussian

which is described by D and where higher orders of the Taylor expansion vanish (Kiselev,

S

2017). Therefore, DTI is only valid for b values up to b =~ 1000 (in vivo).

mm?2
As the signals S, and S are acquired during a diffusion measurement, the diffusion
coefficient D can be calculated by solving the formula transformed from equation (16):

So_ (17)

To solve this formula, two measurements would be sufficient. One diffusion weighted image
(S(b)) and one image without diffusion weighting (Sy). The result would be the diffusion
coefficient for one direction or, when the diffusion is isotropic, for all directions. As the
diffusion is, e.g., in tissue not isotropic, multiple measurements with different diffusion
directions are necessary to calculate the diffusion coefficient.

The definition of the diffusion coefficient depends on the medium for which the coefficient
is calculated. Differently than for an isotropic medium, for an anisotropic medium, where
the diffusion coefficient depends on the direction of diffusion, D can be expressed asa 3 X 3

symmetric matrix:
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Dxx ny sz
D = ny Dyy Dyz ,
Dy, D,, D, (18)

where the diagonal values Dy, D,,, and D,, are the expressions of diffusion along the

named axis. The off-diagonal values D,,, D,,, and D,, represent correlations between the

xy»
two named directions. The diffusion coefficient matrix is symmetric for, e.g., water due to
the reciprocity theorem and principle of microscopic reversibility of nonequilibrium
thermodynamics (Basser et al., 1994). As the diffusion coefficient (18) consists of six
independent elements, the minimum number of measurements to estimate the diffusion
coefficient are six linearly independent directions (and one measurement without diffusion
weighting for Sy).
When the diffusion coefficient is calculated, all matrix elements of Equation (18) are filled
(see section 5.3 for exemplary algorithms). As the diffusion tensor is symmetric and positive
(semi)-definite (because it is determined by the mean squared displacement of molecules
(Kiselev, 2017)), it can be diagonalized.

Daiagonar = Q"D Q, (19)
where Q is an orthogonal matrix containing the eigenvectors.

The diagonalized diffusion tensor has then the form

A4 0 0 (20)
Ddiagonal = [0 /12 0 ];
0 0 A

where 44, 4,,and A5 are the eigenvalues; commonly assuming 4; > 4, > 15.

Eigenvalues and eigenvectors can be seen as the parameters of a diffusion ellipsoid where
the eigenvalues define the length along the three orthogonal axes, and the eigenvectors
define the orientation. Note that the orientation is aligned with the x, y, and z-axis after
diagonalization. A visualization of the diffusion ellipsoid and the effect of diagonalization

is shown in Figure 8.
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Figure 8: Visualization of the diffusion ellipsoid before (left) and after (right)
diagonalization. Diagonalization does not affect the size of the ellipsoid but align the

axes with the reference frame.

The eigenvalues are rotational invariant, as a rotation of the ellipsoid would not shrink or
stretch the ellipsoid (length of eigenvalues would be unchanged). Therefore, it is possible to
estimate invariant diffusion metrics out of the eigenvalues of the diffusion tensor. The typical
DTI metrics are mean diffusivity (MD), axial- and radial diffusivity (AD/RD), and fractional

anisotropy (FA). These metrics can be calculated via the following formulas:

M+, +A1

Mp =2 2 3 (21)

3
AD = A, (22)
D :/12 + 15 (23)

2
2 2 2 (24)

]2 A2+ 22422
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The DTI model assumes a linear signal decay, which is not valid as an approximation for
higher b-values where the assumption q - A x < 1 is not valid and Gaussian diffusion can
no longer be assumed. Departures from this strict Gaussian diffusion regime require a further
term of the cumulant expansion. Writing the fourth cumulant of displacement in terms of a

diffusion kurtosis K yields a second-order approximation:

S(b)

1 (25)
~ —b-D —-p%2.D?2 .- K+ ...
S, *% T

In

where odd powers are not existent due to the symmetry of the propagator (Kiselev, 2017).
This diffusion-kurtosis model captures non-Gaussian features arising from restrictions and

heterogeneity of tissue compartments. Therefore, DKI is valid for measured b-values up to

S

Brnax ~ 2000

— (in vivo). The DKI model is an expansion of the DTI model. Therefore,

the DTI metrics are estimated by DKI as well as additional kurtosis metrics like mean
kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK). For a detailed explanation of
the DKI formalism and definitions of the DKI metrics, see, e.g., (Tabesh et al., 2011).

For a complete interpretable DWI dataset, a sufficient number of directions have to be
measured. For DTI, at least six linearly independent directions for one nonzero b-value are
required to estimate the diffusion tensor. DKI requires at least 15 linearly independent
directions for two different nonzero b-values to estimate the additional kurtosis tensor
(Tabesh et al., 2011). In practice, more directions are acquired as this increases the

robustness against, e.g., noise.
3.3 Biophysical models

The results of DTI and DKI can be used for biophysical models, which enables a connection

to the tissue microstructure (Jelescu et al., 2020). For this connection, the dMRI signal is
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split into distinguishable components, which can be linked to specific tissue compartments.
There are several biophysical models with different approaches.

For example, the NODDI-DTI model was developed to estimate biophysical parameters out
of DTI datasets. This is done by excluding CSF compartments out of the NODDI model,
which results in a restriction of application to voxels without CSF partial volume
contamination (see (Edwards et al., 2017) for further details).

Another example is the white matter tract integrity (WMTI)-Watson model, which is based
on the Standard Model (Alexander et al., 2019; Novikov et al., 2019). This approach assumes
two non-exchanging water compartments in tissue water (intra-axonal / extra-axonal), where
the intra-axonal part is characterized as zero radius “sticks” (Alexander et al., 2019; Novikov
et al., 2019). The model uses the DKI tensor outputs (see (Jespersen et al., 2018; Novikov et

al., 2018) for details), which makes the module require a DKI-compatible dataset.
3.4 Typical artefacts in diffusion MRI

The EPI-based DWI sequence has some challenges and diffusion-related artefacts which
occur typically during an acquisition. In this section, the most important challenges like
motion (see section 3.4.1), eddy currents (see section 3.4.2), susceptibility artefacts (see
section 3.4.3), as well as noise and rician bias (see section 3.4.4) are presented.

These artefacts of DWI measurements are often corrected during preprocessing before the
modelling of the data is performed.

3.4.1 Motion

For a full DWI dataset, many diffusion directions have to be acquired (see section 3.2.3 for
details), which is typically done via EPI readout approaches (see section 3.2.2 for details).
Therefore, the full dataset is strongly sensitive to motion (Andersson and Sotiropoulos,
2016). If, e.g., a subject moves or cardiac pulsation happens during the measurement, this

can result in signal loss or/and can be seen as a shift over the single images of the dataset.
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This can corrupt the parameter estimation and introduce blurring artefacts. Movement shifts
can be corrected before all DWI images are mathematically “merged” into diffusion
parameter maps (via, e.g., DTI or DKI).
3.4.2 Eddy currents
Due to the diffusion gradients and the rapidly changing gradients during the EPI readout,
eddy currents (EC) can be induced in the coils, which can also cause artefacts like geometric
distortions (Jezzard et al., 1998; Mohammadi et al., 2013, 2010). The magnitude of the
induced additional EC-field BE€ can be described in a first-order approximation as:

BEC(#) ~ BECO 4+ 7. GEC, (26)

BE©? is the homogeneous linear part of the EC field, GEC the gradient

where 7 is the position,
of the linear part of the EC field, and the time dependence is neglected (Mohammadi et al.,
2010).
The EC parameters BZ“° and GEC can be expressed in the following linear relation:
BECO (@) =@ - 6P (i) (27)
GEC(D) =@ - GP()), (28)
with n = x,y,2z, GP is the diffusion gradient, and @° is the coefficient vector of the
homogeneous part of the EC field, &” are the coefficient vectors of the three components of
the EC gradient, and i is the index of the diffusion gradient which runs from 1 to the number
of diffusion directions (Mohammadi et al., 2010). The complete formalism and derivation

of the formulas (26), (27) and (28) can be found in (Mohammadi et al., 2010).

A visualization of the 3D EC distortions is displayed in Figure 9.
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Figure 9: Three in-plane EC distortions are corrected by the affine, slicewise registration
approach: translation, shearing, scaling. In this slicewise representation, the translation
parameter depends on the homogenous part of the EC-field and on the z-component of
the EC gradient. If the EC distortions as revealed by whole-brain registrations are
evaluated in three dimensions, a fourth, additional affine deformation (through-plane
shearing k,,) can be related to first-order eddy-current effects, leading to a unique
correspondence between EC field components and EC distortions (c is a proportionality
constant, involving sequence parameters). Source: Figure and caption reproduced from
(Mohammadi et al., 2010). Published online 22 June 2010 in Wiley Online Library

(wileyonlinelibrary.com). © 2010 Wiley-Liss, Inc.

A correction of these algorithms can be done, e.g., retrospectively via a model which links
the spatial distortions to the EC-field (Haselgrove and Moore, 1996).

For example, established methods are eddy (Andersson and Sotiropoulos, 2016) and
ECMOCO (Mohammadi et al., 2015, 2013, 2010), which are also correcting for motion
artefacts (section 3.4.1).

3.4.3 Susceptibility artefacts

In addition, an EPI sequence can introduce geometric distortions in the acquired data at
regions where different tissues (e.g., bones, fat, or cerebrospinal fluid) with different
magnetic susceptibilities come together. These susceptibility changes can lead to local

inhomogeneities in the magnetic field (Ruthotto et al., 2013, 2012). As mentioned in section
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3.1.4, the magnetic field is manipulated for spatial encoding during an MRI session. This
encoding assumes a homogeneous magnetic field as a base, and inhomogeneities can
therefore lead to spatial distortions as the spatial encoding is corrupted.
To correct this type of artefact retrospectively, an image with the opposite phase encoding
direction can be acquired. The images of both phase encoding directions can be combined
to estimate the warping field and correct the geometrical distortions by applying the
estimated warping field to the DWI dataset. To estimate the field inhomogeneity, the
distance functional of both oppositely distorted images /; and I, have to be minimized:
D[B] = % f (11(x + B)v)(1 + 8,B(x))
’ (29)

- Lx - Bew)(1 - 8,B()) dx,
where B : Q - R,where Q c R3 is a field inhomogeneity and v is the unit vector of the
phase encoding direction (Ruthotto et al., 2013, 2012).
The unwarping of the images applies two changes. First, the correction of the distortions
along the phase encoding direction and second, a correction of the intensities corrupted by
the geometrical distortions (Ruthotto et al., 2013).
The field inhomogeneity is estimated by solving:

minJ [B] := D[B] + aST[B] + BS/*[B], (30)

where S#// is a diffusion-, and S/%¢ is a nonlinear regularization term that ensures

—1 < d,B < 1, which translates to invertible geometrical transformations and positive
intensity modulations (Ruthotto et al., 2013). a and [ are both > 0 and balance between the
regularization functionals and the minimization of the distance (Ruthotto et al., 2013). The

complete formalism and derivation of the formulas (29) and (30) can be found in (Ruthotto

et al., 2012).
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For example, established methods are topup (Smith et al., 2004), or HySCO (Macdonald and

Ruthotto, 2018; Ruthotto et al., 2013, 2012).
3.4.4 Noise and Rician bias

dMRI datasets have a noise overlay which is higher than for other measurement techniques
due to the exponential decay of the diffusion-weighted signal (Stejskal and Tanner, 1965).

Noise in dMRI data has a Rician distribution if the acquisition is performed using a single
coil receiver (Gudbjartsson and Patz, 1995) and has a noncentral y-distribution for multiple
receiver coils (Aja-Fernandez et al., 2014). For example, the signal S of this noncentral -

distribution with 2L degrees of freedom can be described as

p XZLO_'

S (Z ) 31)
where L is the number of receiver coils, { is the true noiseless signal, and o is the standard
deviation of the complex Gaussian distribution of the k-space data (Polzehl and Tabelow,
2016).

If a diffusion signal model is fitted to a DWI dataset that is corrupted with noise out of these
distributions, this results in a bias, which is described as the Rician bias and has an impact
on the diffusion tensor (Basser and Pajevic, 2000; Gudbjartsson and Patz, 1995; Jones and
Basser, 2004), the kurtosis parameters (Veraart et al., 2011, 2013a), and the biophysical
modelling parameters (Andersson et al., 2022; Fan et al., 2020; Howard et al., 2022)
estimates. The highest impact of this bias is visible in low SNR datasets (Polzehl and
Tabelow, 2016), where the noise has a higher proportion to the magnitude intensity.

The EPI sequence uses short echo and fast readout times. This limits the possible measurable
SNR. Also, if high b values are acquired, this results in a reduced SNR due to the weaker

echo. This can introduce noise to the DWI dataset, which can blur or result in incorrect

parameter estimation in addition to the above-mentioned Rician bias.
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There are several denoising methods to reduce variance in DWI datasets. For example,
established methods are: Local Principal Component Analysis (LPCA) (Manjon et al.,
2013), Marchenko-Pastur Principal Component Analysis (MP-PCA) (Veraart et al., 2016),

and multi-shell Position-Orientation Adaptive Smoothing (msPOAS) (Becker et al., 2014).
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4 Concept and development of the ACID Toolbox

This section describes the software and developments for the ACID toolbox. This includes
an overview of the architecture and organization of ACID (section 4.1), the benefits of the
integration into SPM and MATLAB (section 4.2), how the refactoring was done (section
4.3), the usage of the FAIR principles for ACID (section 4.4), the test system (section 4.5),
the implementation of the BIDS standard (section 4.6), and how pipelines can be set up

(section 4.7).
4.1 Architecture and organization of ACID

The ACID toolbox is fully integrated into the batch system of the Statistical Parametric
Mapping (SPM) Software. As an integrated part of it, the functions and modules of ACID
can be combined with SPM functions and modules (e.g., for segmentation (Ashburner and
Friston, 2005)). Therefore, ACID uses several SPM functions for, e.g., data handling but
also uses modified or own functions to enable additional features such as native 4D data
handling or generation of BIDS-conform filenames. In addition to the SPM functions and
modules, SPM also offers a GUI which is also used by ACID. For a detailed organigram of

ACID and its integration into SPM, see Figure 10.
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Figure 10: Structure of SPM and the integration of ACID into it visualized via an

A 4

organigram. The SPM Software provides three parts: The SPM functions, the SPM Batch,
and the SPM GUI. The ACID toolbox provides the main configuration file, the module
configuration file, the module functions, and additional ACID functions. ACID is
integrated into the SPM Batch system via the main configuration file. Every ACID module
has its own module configuration file which is named for initialization in the main file.
The module configuration file calls the module functions with the in the batch/GUI
defined parameters. The module functions are using ACID functions (e.g., for data
import) and both have also the possibility to use SPM functions (e.g., spm_coreg for
coregistration or spm_vol forimport of 3D NIfTlI headers). This organization makes it easy
to implement new modules (e.g., from external sources), as the module functions only
need a few adaptations via ACID functions (e.g., for data handling/naming) and can be
linked to a new ACID module configuration file which directly enables an integration into

the ACID/SPM batch ecosystem.

The modular organization of ACID and SPM makes it easy to implement new modules and
functionalities because the new code files can be added to the existing files, and changes in

the existing files are only needed for additions in the main file. This reduces the risk of
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damaging existing code and ensures that no error is introduced to the already existing
modules.

On the code level, ACID has a main configuration file acid tbx_cfg.m which is initialized
by the SPM batch system. To find the configuration files from external toolboxes, a
dedicated toolbox folder exists in the SPM folder structure, in which all configuration main
files are identified and initialized. The configuration main file initializes the ACID toolbox,
which includes the steps of adding the folder paths of the ACID subfolders to the MATLAB
search path and loading all module configuration files. The file also contains the batch syntax
for the structure of the modules, which results in the user-selectable drop-down menu and
possibility of selecting modules for the “Module List” (see Figure 11, left side). The module
configuration files contain the batch structure for each dedicated module (e.g.,
tbx cfg acid ecmoco.m for ECMOCO) which defines the required inputs for each module
and selectable options (see Figure 11, right side). Also, the help instructions for the input
parameters are defined on this level (see Figure 11, bottom). The module configuration file
calls the module functions (e.g., acid_ecmoco.m for ECMOCO) with the user-defined inputs
and starts the module processing. After processing, the module configuration file creates
dependencies by saving the locations and parameters (e.g., b-values or processed images) of
needed files for following modules in a from the batch system provided structure variable.
This whole structure ensures flexibility through modularization and allows the addition of a
new module into the batch system by adding a new module configuration file to the main
configuration file.

The setup of the modules benefits also from the GUI provided by SPM as all needed
parameters are displayed, and additional information can be provided for each parameter

(see Figure 11) in one window.
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[ ) [ ] Batch Editor
File Edit View SPM BasiclO
D HE P

Module List Current Module: Diffusion Kurtosis Imaging (DKI)

Help on: Diffusion Kurtosis Imaging (DKI)

DTI/DKI DKI
Input images <X
Select b-values and b-vectors input type

. Expression/Dependen

.. b-values <-X
.. b-vectors <X
Fitting method

.NLLS

.. Fitting method NLLS
.. Rician bias correction

...OFF

... Rician bias correction OFF
.. Write W maps NO
.. Number of workers (parallel programming) 1
Region of interest

Current Item: b-values

b-values

Specify the b-values (bval) of the N dMRI volumes.

Note: The expression should contain a1 x N vector, where b-values should appear in the same order as the
source images were entered (b-values: 1 x N, b-vectors: (2-4) x N). b-values are expected in units of s/mmA2.
Evaluated statements are entered.

An X-by-X array must be entered.

Figure 11: The image shows the SPM Batch Editor with the ACID module Diffusion
Kurtosis Imaging (DKI) selected. The mandatory inputs are indicated by “<-X”. For the

most parameters (e.g., “b-values”), additional information is provided in the lower box.

All ACID modules can work on their own. As it can be seen in Figure 11, e.g., the DKI
module shows all required inputs and can be started directly if all inputs are filled in. But the
modules can also be combined with additional modules. For example, preprocessing
modules can be executed before the model fit is done. This allows users to create pipelines
in which the data are computed by the first module of the pipeline and will be directly handed
to the next. Figure 12 shows an example in which the results of msPOAS are used for the

DKI fit.
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o o Batch Editor
File Edit View SPM BasiclO

D d P

Module List Current Module: Diffusion Kurtosis Imaging (DKI)

msPOAS . Help on: Diffusion Kurtosis Imaging (DKI)

Diffusion Kurtosis Imaging (DKI) DTI/DKI DKI
Input images DEP msPOAS: Denoised images
Select b-values and b-vectors input type
. Expression/Dependency
.. b-values <-X
.. b-vectors <-X
Fitting method
.OLS
.. Fitting method oLs
.. Write W maps NO

Region of interest

Current Item: Input images

msPOAS: Denoised images

Specify... Dependency

Select the dMRI data.

Figure 12 : The image shows the SPM Batch Editor with the ACID modules msPOAS, and
Diffusion Kurtosis Imaging (DKI) selected. For the first mandatory input of DKI, “Input
images”, the dependency “DEP msPOAS: Denoised images” is selected. This has the
effect that the denoised outputimages of msPOAS are handed directly to the DKI module

without any user interaction needed.

Also, the combination with modules from other toolboxes (e.g., hMRI toolbox) is possible.
SPM also allows the user to save and modify scripts of constructed batches containing one
or more modules. This gives the possibility to apply the same batch to different datasets or
to modify one or more parameters within a batch for a single analyzed dataset (see Figure

13 for an example script).
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List of open 1inputs

msPOAS: Input images - cfg_files

msPOAS: b-values - cfg_entry

msPOAS: b-vectors - cfg_entry

msPOAS: Expression/Dependency - cfg_entry

Diffusion Kurtosis Imaging (DKI): Input images - cfg_files

Diffusion Kurtosis Imaging (DKI): b-values - cfg_entry

Diffusion Kurtosis Imaging (DKI): b-vectors - cfg_entry

nrun = X; % enter the number of runs here

jobfile = {'PATH/TO/SCRIPT/example_script_job.m'};

jobs = repmat(jobfile, 1, nrun);

inputs = cell(7, nrun);

for crun = 1:nrun
inputs{1, crun}
inputs{2, crun}
inputs{3, crun}
inputs{4, crun}
inputs{5, crun}
inputs{6, crun}
inputs{7, crun}

end

spm('defaults', 'FMRI');

spm_jobman('run', jobs, inputs{:});

o o° o° o of of of off

MATLAB_CODE_TO_FILL_INPUT; % msPOAS: Input images - cfg_files
MATLAB_CODE_TO_FILL_INPUT; % msPOAS: b-values - cfg_entry

MATLAB_CODE_TO_FILL_INPUT; % msPOAS: b-vectors - cfg_entry

MATLAB_CODE_TO_FILL_INPUT; % msPOAS: Expression/Dependency - cfg_entry
MATLAB_CODE_TO_FILL_INPUT; % Diffusion Kurtosis Imaging (DKI): Input images - cfg_files
MATLAB_CODE_TO_FILL_INPUT; % Diffusion Kurtosis Imaging (DKI): b-values - cfg_entry
MATLAB_CODE_TO_FILL_INPUT; % Diffusion Kurtosis Imaging (DKI): b-vectors - cfg_entry

Figure 13: Example of a saved batch script. In this script, the modules msPOAS and DKI
are executed one after another. The fields “MATLAB_CODE_TO_FILL_INPUT” have to be
filled with the corresponding input parameter. This enables the possibility to execute
this batch script with different datasets and/or parameters through a “for” loop. If the
dependency in Figure 12 would be set before saving the script, the DKI Input “Input

Images” would not appear in the saved script as it is internally set.

4.2 Benefits of integration into MATLAB and SPM

ACID benefits from the integration into SPM and MATLAB in several ways: MATLAB is
a widely used analysis software which is well established in many institutions. It is also
available for the three most popular operating systems Windows, Mac, and Linux, which
make SPM and ACID independent of the platform used by the user. This also ensures that,
for example, a free-of-charge Linux distribution can be used to process data with ACID. For
users who have no access to commercial MATLAB licenses, SPM provides the possibility
to generate standalone versions. These include ACID if the standalone version is compiled

using a SPM version containing ACID. This allows the use of ACID without any costs for
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licenses of OS or MATLAB. The only requirement is the MATLAB Runtime, which is
freely available!?,

MATLAB also offers general statistical functions and visualization tools which can be used
directly in SPM and ACID. This makes further analyses of ACID results easier for the users
as they can directly use functions for advanced statistics or visualization.

SPM provides a complete ecosystem containing statistical functions, analysis modules, and
a user-friendly GUI. The software is developed for the spatial analysis of structural and
functional MRI data and was therefore ideal for the integration of ACID as, e.g., for ACID
required file formats for dIMRI are the same (NIfTI), and SPM functions can be directly used

for the ACID results.

4.3 Refactoring of ACID

In this section the refactoring of ACID is explained. This includes a description of the initial
state of ACID (section 4.3.1), the conceptual changes through the refactoring (section 4.3.2),
the changes on code level (section 4.3.3), the new organization of the file structure (section
4.3.4), the ways ACID guides unexperienced users (section 4.3.5), and how the extraction
of metadata is implemented (section 4.3.6).

4.3.1 Initial state

The in Figure 10 presented modular organigram structure was not implemented in the initial
stage of ACID at the beginning of the PhD project. The initial existing modules were
implemented all for their own. They had their own syntax and were designed to work without
the use of the SPM batch system (e.g., manual selection or hardcoding of input parameters).
Default values were hardcoded, and parts of the code (e.g., data import) were redundant for

each module or implemented in different ways (e.g., different functions for the same task or

12 https://www.mathworks.com/products/compiler/mer/index.html
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different output formats for different modules (3D or 4D NIfTIs)). Also, the naming of
output files was not BIDS compliant (prefix instead of module name in “ desc” field) or
consistent (e.g., “poas_” for msPOAS and “u” for HySCO). Also, different (and outdated)
versions for some modules were included in the folders (e.g., msPOAS versions 2, 3, and 4
as well as the HySCO versions 1 and 2). The functions were not clearly named (e.g., sub-
functions of modules did not include the module name) and it was not visible if all existing
functions belong to the latest module version or were part of an outdated version. Also, the
modular batch structure was not implemented as all module batch configuration code parts
were included in the ACID main configuration file which made the code hardly to maintain
(2624 lines). The main file contained also several dummy options (which were not used
anymore) to load only a part of the tools to the batch system and which would need a change
of hardcoded variables in the file. Some modules which were not part of ACID anymore
were also implemented in the main file but deactivated via hardcoded dummy variables.
Furthermore, the batch dependencies were not working for all modules as the
implementation was inconsistent and unnecessarily complicated. For example, a module
function creates new files with a specific name, but the name is not directly handed to the
dependency. Instead, an additional function loads the files again and reads out the file names
which are then handed to the dependency.

In addition, the C files which should enable the possibility to compile own .mex files were
too old to be compiled with actual versions of MATLAB.

4.3.2 Conceptual changes

To implement a modular organization, the ACID main file was recreated, and all module
configuration parts were outsourced to dedicated module configuration files (e.g.,
tbx cfg acid ecmoco.m for ECMOCO). Also, all unnecessary and outdated code parts were
deleted e.g., unused dummy variables or no longer supported deactivated modules). This

reduced the number of lines from 2624 to 577. The acid main file contains now only the in
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section 4.1 described parts. These changes implemented a modular structure on batch level
as now only one line of additional code and an insertion into the batch module list is
necessary to integrate a new module config file and therefore a new module into ACID.

The batch configuration for the modules was harmonized by using the same inputs and
names for identical parameters (e.g., “b-vectors” instead of “Diffusion Directions”). In order
to be compliant with the BIDS standard (see section 4.6 for details) ACID generates 4D
NIfTIs for the DWI datasets. To provide an option to handle 3D datasets and convert them
into a BIDS usable 4D dataset, a startup module was developed which provides a structured
storage for imported 3D/4D NIfTIs as well as for imported or extracted from metadata b-

values and b-vectors (see section 5.1 for details).
4.3.3 Code changes

To improve the stability of the code, several changes were performed, like fixing code errors,
cleaning up the code, and enabling, e.g., error-free dependencies for all modules. Exemplary
tasks are presented in section 4.3.1.

Also, the C files were updated, and support now compilation on newer systems (e.g.,
MacBooks using ARM CPUs).

Multicore support was implemented for ECMOCO to accelerate the processing when the
multi-target correction is performed (see section 5.2.1 for details).

To reduce the number of redundancies, also changes on the code level for different functions
were performed. For example, the code for Diffusion Tensor Imaging (DTI) and Diffusion
Kurtosis Imaging (DKI) was similar in their structure. Additionally, the NLLS algorithm,
which can be used in DTI as well as DKI, had its own function with the mostly identical
code structure as the DKI function. To solve these redundancies, both diffusion signal
models as well as all available fitting algorithms for them were integrated into one file. This
results in the creation of only one main function file for model fitting (444 lines) instead of

three single function files (DTI: 477 lines, DKI: 421 lines, NLLS: 258 lines). Also, the batch
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configuration files were merged into one file. The same was done in combining the
ECMOCO versions “Single Target” and “Multi Target” into one config and one function
file.

Several functions (e.g., data import) were merged through the development of one function
which features all possible use cases for their task. For example, the import function now
supports compressed and uncompressed 4D NIfTIs and is integrated and used in all ACID
modules. This reduces the amount of maintenance work, as a potential fix in the input
function takes effect for all modules using it.

4.3.4 File structure

To prepare ACID for further developments, a refactoring of the file structure was done. The
aim was that every part of the code and files should be named clearly and structured. This
makes the code more robust as it reduces the risk of redundancies and gives a better
possibility to solve errors as every part of the code can be found easily. For ACID, the most
task to implement this aspect was to rename almost all code files and restructure the folders

of ACID. One example of the renaming of the files is shown in Figure 14.
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EC_MO_VARTAR_correction.m

EC_MO_correction.m

EC_MO_write_function.m
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EC_MO_write_rFiles.m
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acid_coreg_slicew.m
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acid_ecmoco_main.m

acid_ecmoco_plot_params.m

acid_ecmoco_reslice.m

acid_ecmoco_write.m

acid_spm_coreg.m

acid_spm_coreg_freeze.m

acid_spm_coreg_freeze_bias.m

acid_spm_matrix.m

acid_spm_powell_VARTARG.m

acid_tbx_cfg_ecmoco_vi.m

acid_tbx_cfg_ecmoco_v2.m

acid_tbx_cfg_ecmoco_write.m

disp_ECMO.m

Figure 14: Example of renamed files which are part of the ACID toolbox. In the left panel,

the old unstructured filenames are displayed. In the right panel, the renamed files are

shown. A structured naming system is implemented based on “acid” as a prefix followed

by the module name the file is contributing to (e.g., ecmoco, or tbx_cfg for main files).

4.3.5 Guidance for unexperienced users

The goal of ACID is to be usable for unexperienced users. To ensure this, the ACID

repository contains a wiki!® (actual 23 sites) in which the modules and functionalities are

described in more detail and instructions for e.g., the standalone version are provided.

Furthermore, to reduce the risk of unintended use of ACID, warnings are implemented which

appear when basic assumptions of the underlying models are not fulfilled, e.g., a diffusion

shell contains less than three diffusion directions, which could make the fitting of the

available diffusion signal models to the data bad conditioned.

13 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/wiki/Home
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4.3.6 Extraction of metadata

The ACID toolbox uses NIfTI files which contain not only the acquired image but also
metadata. A processing of dMRI data requires the inclusion of metadata information, e.g.,
b-values or b-vectors. However, these metadata are often not easily accessible and require
manual interaction from the user (e.g., for creating b-value/vector matrices in MATLAB),
which leads to a risk of mistakes. To solve this, ACID has the possibility to extract
automatically b-values and b-vectors from the DICOM header. This reduces the risk of errors
compared to manual generation of b-values and b-vectors. Furthermore, in this extraction
step, a text file is generated containing the most important acquisition parameters (see Figure

15).

Acquisition parameters:
"MRAcquisitionType": "2D",

"'SequenceName": "xep_b@", Acquisition time: 76573.4575
"AngioFlag": "N ", MR acquisition type: 2D
"SliceThickness'": 1.6000000238419, Sequence name: *ep_b@
"RepetitionTime": 5500, Field of View: FoV 2301%2400

: 76, Slice thickness: 1.6
“NumberOfAverages": 1, Repetition Time (TR): 5500
"ImagingFrequency": 123.228079, Echo Time (TE): 76
"ImagedNucleus": "1H", Number of averages: 1
"EchoNumbers": 1, Echo numbers: 1
"MagneticFieldStrength": 3, Magnetic field strength: 3
"SpacingBetweenSlices": 1.5999999997342, Spacing between slices: 1.6
"NumberOfPhaseEncodingSteps": 121, Number of phase encoding steps: 121
"EchoTrainLength": 60, Echo train length: 60
"PercentSampling": 100, Percent sampling: 100
"PercentPhaseField0fView": 95.89041083333299, Percent phase field of view: 95,8904
"PixelBandwidth'": 1905, Protocol name: ep2d_diff_bval@dot5k_p2s2blipd_ldotémm_set3
"DeviceSerialNumber": "167015", Transmit coil name: Body
“SoftwareVersions": "syngo MR F11", Acquisition matrix: 146 0 0 140
"“ProtocolName": "ep2d_diff_bval@dot5k_p2s2blipd_1dotémm_set3 ", In plane phase encoding direction: COL
"TransmitCoilName™: "Body", Flip angle: 90
“AcquisitionMatrix": [146,0,0,140], SAR: 0.19452
"InPlanePhaseEncodingDirection": "COL ",

"FlipAngle": 90,

"VariableFlipAngleFlag": "N ",

"SAR": ©0.19451842520659, Measured shells: 9 500 1300 2500
Number of b-vectors for each shell: 16 30 60 60

Figure 15: Example of JSON file extraction in ACID. On the left, a part of the JSON file
from an example dataset is shown. The parameter fields of Echo Time (TE) (yellow) and
protocol name (red) are marked. These are extracted among other values in a dedicated

.txt file, which is formatted in a format easy for humans to understand.

This text file provides a documentation of the acquisition parameters and is therefore a good
solution for big data analysis, as the documentation of acquisition parameters is done in an

automated and structured way. For example, the text file can be used to structure data based
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on their imaging parameters such as echo time or repetition time. If in a large study, some
of the acquisition protocol parameters varied due to mistakes by the radiographers or due to

scanner updates, this is automatically noted by this text file.
4.4 FAIR principlesin ACID

To develop ACID to a reusable and valuable academic software, the FAIR principles
Findable (section 4.4.1), Accessible (section 4.4.2), Interoperable (section 4.4.3), and
Reusable (section 4.4.4)) were used. This section gives an overview of how these four
principles are used in ACID.

4.4.1 Findable

The first aspect of FAIR ensures the findability of software. To fulfill these requirements,
ACID has its own website!* and is located in a git repository! containing also a wiki (section
4.3.5). This enables full source control with the possibility to identify each version and
change in the code via the git hash number. Furthermore, ACID has a publication which is
uniquely identifiable via the DOI number!®.

4.4.2 Accessible

The second aspect of FAIR guarantees the availability of the software and code. As git is an
open-source and free available code management system, it fulfills the requirements of this
FAIR principle. The localization of ACID on a git repository!®> makes the download and
update of the toolbox possible in a standardized way (e.g., HTTPS or SSH connections, and
git commands). Additionally, the code is fully available through this git located hosting

(open source).

1 http://diffusiontools.com/
15 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/src/master/

16 https://doi.org/10.1162/imag_a_ 00288
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4.4.3 Interoperable

The third aspect of FAIR is interoperability. This means that the output data of ACID must
be usable for other toolboxes and software. Also, the requirements for the input data should
be as low as possible, to allow the usage of ACID for as many data sources (e.g., MRI
scanner types) as possible. To make the usage of different scanner types for metadata
extraction possible, ACID contains a routine to analyze the scanner type and read out the
JSON files in the corresponding syntax to the scanner. This is mainly developed and
implemented for SIEMENS scanner types (e.g., Siemens PRISMA or different syngo MR
software types). The structure of the code can easily extend to support additional/new
scanner types which provide the needed metadata in JSON files.

For the interoperability of the output files, the BIDS standard is implemented. This ensures
that output files are stored in a standardized way and can be used directly in other (BIDS-
compliant) tools. In addition, the BIDS standard enables a structured storage for large
datasets, which improves the usability for machine learning tools which often require BIDS
compliant stored datasets for machine learning analyses (e.g., Clinica). See section 4.6 for
details on how the BIDS standard is implemented in ACID.

Furthermore (as mentioned in section 4.2), ACID (as well as SPM) can be used on the most
popular operating systems (Windows, Mac, and Linux).

4.4.4 Reusable

The last aspect of FAIR is reusability. For this, the code of the ACID toolbox is available
open-source. The open-source availability ensures the highest transparency and gives
everyone the possibility to control the code, which enhances confidence in the code.

Furthermore, this makes it possible to use the complete code for any new project or module.
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4.5 Testsystem

ACID contains a test system for the most important processing modules (ECMOCO,
msPOAS, HySCO, DTI/DKI, and WMTI-Watson). For a test of a module, a dataset is
processed, and the result is compared to a previously generated ground truth. This ensures
that the output of a module has not changed due to, e.g., the implementation of new
functionalities. Also, it indicates that previously results could be wrong if the test failed after,

e.g., conceptual changes or bug fixes.
4.6 Implementation of the Brain Imaging Data Structure (BIDS)

ACID uses the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016; Karakuzu
et al., 2022) standard on two levels: the folder structure and the file naming.

The results of the several ACID modules are stored in a dedicated “derivatives” folder.
Within this folder, each module has its own subfolder (e.g., “ECMOCO” or “msPOAS”). In
each subfolder, the output of the corresponding module is stored.

The filename is changed after using an ACID module in a BIDS-compliant way. For this, in
the file name, a “ desc” field is added (if it is not existing) and the module name is added
behind that. If more than one ACID module is used for the analysis, the module names are
concatenated in the desc field (e.g., “ desc-ECMOCO-msPOAS”). To make the
identification of the output type BIDS-compliant, a suffix is added for each file containing

3

the name of the data type (e.g., “ dwi” for diffusion-weighted images or “ map” for e.g.,

DKI-maps). Figure 16 shows an example of the BIDS-compliant output of ACID.
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> [ SIGMA

> @ ECMOCO

> @ msPOAS B ACID-Pipieline-BU_desc-ECMOCO-msPOAS-HySCO-DKI-NLLS-RBC-WMTI-W-AWF_dwi.nii

> @ RBC B ACID-Pipieline-BU_desc-ECMOCO-msPOAS-HySCO-DKI-NLLS-RBC-WMTI-W-DA_dwi.nii

> [ BRAIN-MASK B ACID-Pipieline-BU_desc-ECMOCO-msPOAS-HySCO-DKI-NLLS-RBC-WMTI-W-DE-PARA_dwi.nii

> @ HySCO-Run_2 B ACID-Pipieline-BU_desc-ECMOCO-msPOAS-HySCO-DKI-NLLS-RBC-WMTI-W-DE-PER_dwi.nii
> B WMTI-WATSON-PLUS B ACID-Pipieline-BU_desc-ECMOCO-msPOAS-HySCO-DKI-NLLS-RBC-WMTI-W-KAPPA_dwi.nii
B ACID-Pipieline-BU_desc-ECMOCO-msPOAS-HySCO-DKI-NLLS-RBC-WMTI-W-OUTLIERS_dwi.nii

> @ BRAIN-MASK-Run_2
> B DKI-NLLS
> @ DKI-NLLS-Run_2

Figure 16: Example of the output structure of ACID. On the left, the folder names are
displayed, showing the name for each module that was used in the executed pipeline. If
a module is executed again in the same run, a new folder with the extension “-Run_#” is
created. On the right side, the content of the “WMTI-WATSON-PLUS” is shown. The
“ desc” field in the filename shows all used modules in the executed order. This makes
it easier for the user to recognize which modules have been applied to this data and in

which order.

4.7 Pipeline generation

As described in section 4.1, the modules of ACID can be combined in pipelines via
dependencies, enabling the possibility to bring all processing steps (e.g., DICOM to NIfTI
conversion, preprocessing, model fitting) into one executable batch script (see section 4.2).
This opens up the potential to use ACID for big data analysis where a huge number of
datasets must be processed in the same structured way. To give this a higher flexibility and
structure, a startup module is integrated in ACID, which offers the option to set up a specific
individual output directory if needed or set a specific filename. Also, it is possible to define
defaults that ensure optimal usage of the processing steps for dedicated usage (see section

5.1 for details).
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5 ACID modules

As described in section 4.1 ACID has a modular structure. This section explains all modules
of ACID and its functionality. The modules of the ACID toolbox include the startup module
(section 5.1), the preprocessing modules (section 5.2), the diffusion signal model fitting
modules (section 5.3), biophysical modelling modules (section 5.4), external modules
(section 5.5) as well as utility tools (section 5.6). This section is based on the publication
(David et al., 2024), published under CC BY 4.0 license.

Many of the in the ACID toolbox used modules have already been published in the scientific

dMRI literature (Table 1).
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Table 1: Peer-reviewed methods used in the ACID toolbox. Source: Table and caption
based on (David et al., 2024), published under CC BY 4.0 license.
Method Publication

ECMOCO: Eddy-current and motion (Mohammadi et al., 2015, 2013, 2010)
correction

HySCO: Susceptibility artifact (Macdonald and Ruthotto, 2018; Ruthotto et al.,
corrections 2013, 2012)

HySCO: Combine blip-up and blip-  (Clark et al., 2021)

down

msPOAS: Adaptive denoising (Becker et al., 2014; Tabelow et al., 2015)

RBC: Rician bias correction (Oeschger et al., 2023a)

DTI using robust fitting (Mohammadi et al., 2013)

DKI and axisymmetric DKI using (Oeschger et al., 2023a, 2023b)
NLLS

NODDI-DTI (Edwards et al., 2017)
WMTI-Watson (Oeschger et al., 2023b)*
Reliability masking (David et al., 2017)

DKI, diffusion kurtosis imaging; DTI, diffusion tensor imaging; NLLS, nonlinear least
squares; NODDI, neurite orientation dispersion and density imaging; WMTI, white matter
tract integrity. *The ACID implementation is based on the method introduced by (Jespersen

et al., 2018).
5.1 Startup

MRI scanners normally generate dMRI datasets in DICOM format. This format is not well
suited for the use in ACID as every slice of each DWI volume is stored separately. To make
the data useable for ACID a conversion to the NIfTT format is required. However, there are
several conversion tools which save the data in individual NIfTI formats (3D, 4D or
compressed 4D NIfTI) and storage systems (e.g., different folder structures). To enable the

handling of these different data storage situations, ACID includes a startup module in which
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the user can import the NIfTI files as well as the b-values and b-vectors. The module supports
the import of existing 3D/4D NIfTI (also if they are compressed) and b-values/b-vectors as
well as the import from 3D NIfTIs with corresponding JSON files (only if they are converted
via the SPM DICOM import module). In the second case, the b-values and b-vectors as well
as a text file which contains the acquisition parameters (see section 4.3.6 for details) are
extracted out of the JSON file.

In addition, the module allows setting up a (BIDS compliant) file name for the output NIfTI
file and to set an output directory in which the further processing steps are done. In this
directory, the 4D NIfTI file (either directly imported or generated out of selected 3D NIfTIs)
as well as the b-values and b-vectors and the parameter text file are stored. The further
processing steps are then performed in the derivatives folder at this location. This enables a
structured analysis as the raw data, and the derivatives are in one directory unit. If a large
number of datasets (big data) is analyzed, each of them has its own folder and derivatives
subfolder and can be therefore found easily.

The startup module can also be used to load individual defaults (see section 5.1.1 for details).

5.1.1 ACID defaults

The ACID modules have several parameters which have an influence on the performance of
the modules. This allows the user to choose optimal parameter settings for each module,
which can vary depending on the input data. For example, for the DTI or DKI module,
additional outputs (e.g., diffusion tensor, kurtosis tensor) can be activated in the ACID
defaults. This can be done in the GUI (e.g., see Figure 11) or, respectively, in the saved batch
script (e.g., see Figure 13). However, there are several parameters which are not
recommended to change, and which are therefore not displayed in the GUI. Advanced users
can change these parameters, if necessary, by modifying the acid local defaults.m file. For
the changes to become effective, the defaults file has to be loaded via the startup module

(see section 5.1). The implementation of the ACID defaults is based on those used in the
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hMRI toolbox. This makes it also possible to create individual default files for different

datasets which can be loaded then automatically via a batch script in the processing pipeline.
5.2 Image preprocessing in ACID

The preprocessing of images is a substantial step in analyzing dMRI data. This section
provides an overview of the preprocessing methods implemented. The ACID toolbox
corrects different artefacts like motion and eddy currents (see section 5.2.1), noise (see
section 5.2.2 and 5.2.3), Rician bias (see section 5.2.4), or susceptibility artefacts (see section
5.2.5).

5.2.1 Eddy current and motion correction (ECMOCO)

In ACID, the Eddy Current and MOtion COrrection (ECMOCO (Mohammadi et al., 2010))
method is implemented to correct motion and eddy current artifacts in dMRI datasets. In
ECMOCO, two registration types are implemented. A single target mode which registers all
images to one specified target image and a multi target mode in which a registration is

performed for each diffusion shell to an individual shell target image (see Figure 17).

(1) type of registration rigid body (6 DOF) affine (12 DOF) rigid body (6 DOF) affine (12 DOF)
(2) registration groups b0 group DW group b0 group DW group
b0, b0, bo, DW, DW,  DW, bOy.; bOpz b0y DWy,; DWy,  DWyy
AR arl - A% A AR /v Bl N BaAS M &
(3)-(4) registration to target
registration order 1 2 n 2n+1  2n+2  2n+N N+l n+2 2n 2n+N+1 2n+N+2 2n+2N
initialized by - b0; b0, interpolated from all b0 b0, b0y b0y, b0, b0y b0y,

\ ] | ]| ] J

(2) target creation

b0 target DW target

Figure 17: Registration scheme for an example dMRI dataset, which consists of two sets

of non-diffusion-weighted (b0) volumes (n volumes each) and two sets of diffusion-
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weighted (DW) volumes (N volumes each) interspersed with each other. The b0 and DW
volumes form separate registration groups and are registered to their corresponding
target volumes. First, the b0 volumes are registered using the rigid-body components of
the specified degrees of freedom (DOF), followed by the registration of the DW volumes
using all specified DOF. The parameter iteration for a given b0 or DW can be initialized
using previously obtained transformation parameters (initialized registration). Source:
Figure and caption reproduced from (David et al., 2024), published under CC BY 4.0

license.

The eddy current artefacts are corrected for first-order displacements. The correction is
normally performed for the whole volume (3D, “volume wise”).

To address the special requirements for spinal cord datasets (e.g., lower number of voxels,
low SNR), an initialized registration and exclusion mode is implemented in ACID.

The initialized registration uses the bp images first to obtain the start parameters for the rigid
body registration for the interspersed DW images. This is done by interpolating the rigid-
body parameters of the bp images. These images are used due to their high SNR. This method
can improve the correction because slow spatial drifts can be identified, and the rigid body
start parameters for low SNR DW volumes are therefore more accurate.

An exclusion option provides the possibility to exclude volumes which are not possible to
register due, e.g., artefacts or a too low SNR (see section 5.6.7 for details). These images are
corrected with the use of the rigid body parameters of the preceding non-excluded volume.
For spinal cord dMRI datasets, the subject movement is mostly along the rostro-caudal axis
(Yiannakas et al., 2012). For this spinal cord specific behavior, ACID has a slice wise (2D)
registration mode implemented. This additional correction aligns each slice independently

and therefore corrects displacements on a slice level (Mohammadi et al., 2013).
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For ex vivo data, no subject movement can be assumed but the presence of eddy currents.
To address this behavior, ACID provides an option to correct a dataset only for the effects
of eddy currents without performing a rigid body registration.

5.2.2 Noise estimation

A correct estimation of the noise standard deviation (o) is crucial for the proper working of
several preprocessing modules like denoising (see section 5.2.3) or Rician bias correction
(see section 5.2.4). For this, ACID contains a noise estimation module. Two approaches are
integrated in the module:

An approach named “Standard Method” calculating the noise standard deviation based on

s2 . . . -
the formula o = /Ziemask ﬁ, where S; is the voxel intensity within a background mask

defined outside the body, L is the number of voxels within the background mask, and n is
the effective number of coil elements that contributed to the measured signal (Constantinides
etal., 1997).

The second approach named “Repeated measures method” is based on (Dietrich et al., 2007)
and calculates the noise standard deviation in the dimension of repetitions and voxels. The
therefore used formula is: 0 = mean; ;, ror(Stdy (S (i, k))), where S(i, k) is the voxel
intensity at voxel i in the kth repeated image (Dietrich et al., 2007). For this, either the bo
images or the images with the highest b-value (bmax) can be used for the k dimension
(repeated images). The decision should be made based on the analyzed tissue type. For in
vivo datasets, a physiological noise has to be assumed and therefore the use of the bmax
images is recommended. The region should be mostly outside the tissue (no signal, only
noise floor) but as next to the image center as possible to avoid an influence of the g-factor
on the noise estimation. For brain datasets, the ventricle can be used as an estimation region
because both recommendations are fulfilled. ACID creates a ventricle mask automatically

within the brain mask creation module (see section 5.6.5 for details). For spinal cord datasets,
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cerebro spinal fluid compartments can be used as noise estimation region. For ex vivo
datasets, where the absence of physiological noise can be assumed, the recommendation is
to use the bo images and the use of the entire tissue as noise estimation region. To be able to
use this option, a measurement of multiple bo images is required which is has to be
considered as it requires possibly the acquisition of additional images. Figure 18 shows
example tissues and recommended noise estimation regions for the three discussed tissue
types.

In vivo Ex vivo
spinal cord specimen

In vivo brain

Mask generation

€5 = ot
Q'&_ .‘ >

b0 image b0 image

c
2
whd
©
€
=
(%]
)
)
2
o
2

images with the images with the b0 image
highest b-value highest b-value

Figure 18: Definition of noise regions of interest (ROI) for the repeated measures noise
estimation method. Binary noise ROIls are outlined in red. For in vivo brain and spinal
cord dMRI, we recommend creating a noise ROl within the cerebrospinal fluid (CSF),
such as the lateral ventricles in the brain and the subarachnoid space in the spinal cord,

on the b, images. Subsequently, we recommend estimating the noise on the images with

the highest b-value (ideally above 1500 ) within the CSF mask. For ex vivo dMRI, the

S
mm?2
noise ROl is recommended to encompass the specimen itself, but noise estimation

should be applied only on the b, images. Since ex vivo dMRI is not affected by
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physiological artifacts, signal variations across the b, images are considered noise.
Source: Figure and modified caption reproduced from (David et al., 2024), published

under CC BY 4.0 license.

For the tissue types “In vivo brain”, “In vivo spinal cord” or “Ex vivo specimen”, the
recommendation is to use the “repeated measures” method because the “Standard Method”
uses a background mask which is usually outside the tissue at the image edges. These regions
can be influenced by e.g. ghost artefacts which can corrupt the noise estimation in
background regions through their additional ghost signal. It is highly recommended to use
the raw dMRI volumes for noise estimation to avoid a corruption of the true noise value
through, e.g., interpolations introduced from preprocessing modules.

5.2.3 Denoising (msPOAS)

Denoising is necessary for precise diffusion parameter estimation. For this, the multi-shell
Position-Orientation Adaptive Smoothing (msPOAS (Becker et al., 2014, 2012; Tabelow et
al., 2015)) denoising algorithm is implemented in ACID. The algorithm uses the information
provided by the distance in spherical space of the diffusion directions in addition to the
information provided by the voxel space. This enables denoising only in homogeneous
regions of the dataset, without blurring tissue boundaries. As msPOAS requires only the raw
dMRI data, and b-values/vectors as inputs, it is compatible with all diffusion models.

For a correct performance of msPOAS, a precise estimation of the noise (o) is necessary
(see Section 5.2.2 for details of noise estimation). When the noise estimation is correct,
msPOAS should work without any further parameter changes. However, if the denoising
result is not sufficient, there are three parameters that can be adjusted. First, the parameter
kstar, which is the number of iterations performed for denoising. A higher kstar results in a
stronger denoising/smoothing in areas identified from the algorithm as homogeneous. If the
adaptation of the tissue edges is not sufficient, the parameter lambda can be adjusted. A

lower lambda results in a stronger adaptation. Also, the parameter kappa can be adjusted
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according to the number of diffusion directions, which defines the initial ratio of smoothing
between the local space of neighboring voxels and the spherical space of diffusion gradients
(Tabelow et al., 2015).

An example of the performance of msPOAS for an example ex vivo dataset is provided in

Figure 19.
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Figure 19: Comparison of maps obtained from fitting the diffusion kurtosis model (ex vivo
dataset; refer to Table 2 for details on the dataset), including fractional anisotropy (FA),
axial diffusivity (AD), mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial
kurtosis tensor (RW) with and without applying adaptive denoising (msPOAS). The
msPOAS-corrected maps appear less noisy while preserving tissue edges. Source: Figure

and caption reproduced from (David et al., 2024), published under CC BY 4.0 license.

5.2.4 Rician Bias correction (RBC)

To eliminate the Rician bias in dMRI datasets, two approaches are implemented in ACID.
Both methods require an accurate estimation of the noise (o) (see section 5.2.2 for details).
The first approach, named “M2”, developed by (Miller and Joseph, 1993), was first
applicable only for single receiver coil datasets and later extended to be compatible with
multichannel receiver coils (André et al., 2014). The algorithm works on the dMRI dataset
providing the measured intensities and uses the estimated noise (o) for calculating the real

voxel intensities by the use of the second moment of the noncentral  distribution.
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The second approach operates on the model fitting level and adjusts the parameter estimation
by accounting for the predicted noncentral y distribution for the Rican bias (Oeschger et al.,
2023a; Polzehl and Tabelow, 2016).

5.2.5 Susceptibility-Induced artifact correction (HySCO)

To correct susceptibility artifacts, ACID features the Hyperelastic Susceptibility Artifact
COrrection (HySCO) (Ruthotto et al., 2012, 2013; Macdonald and Ruthotto, 2018). To
perform this artefact correction, HySCO requires at least one image measured with the
reversed phase encoding (blip) direction. This provides two complementary data types
named “blip-up” and “blip-down,” which can be used in HySCO to estimate a bias field map
including the spatial information of the geometric distortions. This map is then applied to
the whole dMRI dataset, which results in the correction of the geometric distortions in the
outcoming dataset.

When full datasets of both blip directions are acquired, they can be combined additionally
via the “HySCO: combine blip-up and blip-down images” module which can provide a more
precise susceptibility artifacts correction (Clark et al., 2021).

5.3 Diffusion signal models

To estimate diffusion parameters out of a dMRI dataset, ACID has the two most popular
mathematical fitting models implemented, which are Diffusion Tensor Imaging (DTI
(Basser et al., 1994), section 5.3.1) and Diffusion Kurtosis Imaging (DKI (Hansen et al.,
2016; Jensen et al., 2005), section 5.3.2).

5.3.1 Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging (DTI) estimates the anisotropic water diffusion in the white matter
(Basser et al., 1994). This is done by a diffusion tensor consisting of six independent
diffusion parameters. From the eigenvalues of this tensor, the rotationally invariant DTI

scalar metrics can be estimated, which are axial (AD), radial (RD), and mean (MD)
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diffusivities as well as the fractional anisotropy (FA). See Figure 22 for example DTI maps.
However, the approach of DTI assumes that the direction of axial diffusivity aligns with the
white matter tracts, which is not valid for, e.g., crossing fibers.

There are different model fitting approaches to fit this diffusion tensor. The ACID toolbox
features four of them: The ordinary least squares (OLS) (Koay et al., 2006) algorithm
minimizes the sum of squares model fit error to obtain the diffusion tensor. The weighted
least squares (WLS) algorithm is an extension of the OLS method, adding a weight which
takes distortion in the noise distribution in the logarithmic data into account (Basser et al.,
1994; Koay et al., 2006; Salvador et al., 2005; Veraart et al., 2013b). The third model fitting
algorithm is Robust fitting (Mangin et al., 2002). The method is a similar extension like
WLS but categorizes the weights for local and slice-specific artefacts and also for outliers,
which can occur especially in spinal cord data (Mohammadi et al., 2013). The in ACID
implemented version of robust fitting is based on the “Patching ArTefacts from Cardiac and
Head motion” (PATCH) processing method (Zwiers, 2010). A visualization of how the

robust fitting algorithm improves the model fit quality is shown in Figure 20.
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Figure 20: Schematic illustration of how robust fitting down-weights outliers in the model

fit. The scatter plot shows the logarithm of diffusion-weighted voxel intensities against
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the squared cosine of the angle Y between the diffusion gradient direction (bvec) and
the direction of the first eigenvector in a corpus callosum voxel (see blue crosshairs for
location). Blue crosses in the scatter plot indicate data points not affected by artifacts
(“No outliers”), while cyan crosses indicate data points affected by strong artifacts
(“Outliers”). Outliers were generated by removing the center of the k-space of the
original image to illustrate the effect of strong motion artifacts. Two example images
corresponding to a nonartifactual (“No outlier,” top image) and an artifactual data point
(“Outlier,” bottom image) are shown on the right. During the model fit, a linear curve is
fitted to the logarithmic voxel intensities. The presence of outlier data points leads to a
biased model fit (red line) and consequently biased tensor estimates when using
ordinary least squares (OLS) model fitting. In contrast, robust fitting down-weights the
influence of outliers, leading to a more accurate model fit (orange line) which is closer
to the ground truth (green line) obtained by an OLS fit to the nonartifactual data points
(blue crosses) only. Source: Figure and caption reproduced from (David et al., 2024),

published under CC BY 4.0 license.

Additional to these three linearized models, a nonlinear least squared (NLLS) algorithm
based on an implementation (Modersitzki, 2009) of the Gauss-Newton algorithm is
implemented in ACID. This method works on the nonlogarithmic data and avoids, therefore,
the distortion of the noise distribution.

5.3.2 Diffusion Kurtosis Imaging (DKI)

An expansion of DTI is Diffusion Kurtosis Imaging (DKI) (Hansen et al., 2016; Jensen et
al., 2005). This approach uses a fourth-order tensor (kurtosis tensor) consisting of 15
independent parameters. This enables the consideration of non-Gaussian water diffusion.
DKI allows a more accurate estimation of diffusion parameters as higher shells (b4, >
1000) can be used. An example of the otherwise (e.g., when a DTI fit is performed) possibly
existent kurtosis bias (Edwards et al., 2017) and the reduction through the use of DKI is

shown in Figure 21.
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Figure 21: Kurtosis bias in the mean diffusivity (MD) maps in an in vivo brain and in vivo
spinal cord dataset (refer to Table 2 for details on the dataset). This bias, shown in the
right column, refers to the difference in the estimated diffusivity values when using the
lower diffusion shells only (MDprIi, tensor model, left column) or both the lower and
higher diffusion shells (MDpki, kurtosis model, middle column). On average, the kurtosis
bias was 12% and 54% within the brain white matter and the whole spinal cord,
respectively. Source: Figure and modified caption reproduced from (David et al., 2024),

published under CC BY 4.0 license.

The output includes the DTI maps but consists additionally of the axial kurtosis (AK), radial
kurtosis (RK), and mean kurtosis (MK). Also, the kurtosis tensor maps (AW, RW, MW) can

be computed optionally (Tabesh et al., 2011). See Figure 22 for example DKI maps.
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Figure 22: Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo
brain, in vivo spinal cord, and ex vivo dMRI dataset (refer to Table 2 for details on the
dataset). Shown are maps of fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), radial diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK), and radial
kurtosis (RK). Source: Figure and modified caption reproduced from (David et al., 2024),

published under CC BY 4.0 license.

In addition to the DKI model, ACID features the axisymmetric DKI model. This approach
uses 8 independent parameters and reduces the number of free parameters compared to DKI
(15 parameters) (Hansen et al., 2016).

To perform the model fit, the OLS and NLLS algorithms are implemented for DKI, and the
NLLS algorithm for performing an axisymmetric DKI fit (Oeschger et al., 2023b).

5.4 Biophysical modeling

In ACID, two biophysical models for white matter are implemented (NODDI-DTI (section

5.4.1) and WMIT-Watson (section 5.4.2).
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5.4.1 NODDI-DTI
The NODDI-DTI (Edwards et al., 2017) approach implemented in ACID assumes fixed
diffusivities (D, D;s,) and neglect CSF volume fractions for white matter. As fixed ex vivo

tissue at room temperature has a reduced diffusivity compared to in vivo tissue (Schilling et

al., 2025), two different fixed value sets can be selected in the NODDI-DTI module for in

2 2 2
vivo (D, = 1.7-1073 % , Dig, = 3.0-1073 %) or ex vivo (D, = 0.6-1073 %
2
D, = 2.0-1073 %) datasets. For tissues with different diffusivities, the value can be set
2
by the user manually. For example, in (West et al., 2018) a D, of 0.35 - 1073 % and a Dy,

2
of2.0-1073 % was estimated. In contrast to WMTI-Watson (see section 5.4.2), NODDI-

DTI can be used on DTI results (e.g., single shell datasets or if b,,,,,, < 1000). To correct
for the kurtosis bias, a correction can be performed for DTI datasets within the module.
The output parameters are the intraneurite (f) and extraneurite signal fraction (1 — f), the
Watson concentration parameter k, and the mathematically related anisotropy parameter p,
(Jespersen et al., 2018). For consistency, also the orientation dispersion index (ODI) is
calculated, which is mathematically related to k (Mollink et al., 2017).

5.4.2 WMTI-Watson

The white matter tract integrity (WMTI)-Watson model assumes two no exchanging water
compartments (intra- and extra axonal tissue water) (Alexander et al., 2019; Novikov et al.,
2019). The outputs created by ACID for WMTI-Watson are the intra-axonal diffusivity (D,),
for parallel (D, pqr) and perpendicular (De perp) €xtra-axonal diffusivity. In addition, the
axonal water fraction (f), the Watson concentration parameter x and, respectively, the
mathematically related ODI (Mollink et al., 2017) and anisotropy parameter (p,) (Jespersen
et al., 2018) are calculated. See Figure 23 for example WMTI-Watson maps. As WMTI-

Watson is based on the Standard Model, the results are degenerated, which results in two
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solutions where D, < D, ,qr (Plus-Branch) or Dy > D, 4, (Minus-Branch). In accordance

with the literature (Jelescu et al., 2020; Jespersen et al., 2018), the plus branch is set as the

default in ACID as the minus branch is typically the physically invalid solution.
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Figure 23: Maps of biophysical parameters derived from the WMTI-Watson model using
aninvivo brain, in vivo spinal cord, and ex vivo dMRI dataset (refer to Table 2 for details
on the dataset). Shown are maps of Watson concentration parameter (kx), axonal water
fraction (f), parallel and perpendicular extra-axonal diffusivities (D, @and D, erp), and
intra-axonal diffusivity (D,). Note that for the in vivo spinal cord dataset, the maximum

S

b-value (b=1500

mmz)) was probably too low for an accurate estimation of D, ,,,,, resulting
in voxels with negative (hence unphysical) values within the spinal cord. Since WMTI-
Watson is a white matter biophysical model, the parameter maps were masked for the

white matter in the brain dataset. For the spinal cord and ex vivo specimen, we refrained

from masking for the white matter due to the difficulty of obtaining an accurate white
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matter mask. Source: Figure and modified caption reproduced from (David et al., 2024),

published under CC BY 4.0 license.

5.5 External modules

As one of the strengths of ACID is the modularized code structure, external tools can be
easily implemented, and several external methods and tools are integrated so far. They are
fully integrated in the batch system and therefore use the same GUI, which makes it possible
to integrate them in pipelines via dependencies or use them for their own in scripts for
processing multiple datasets in one execution step. Actually, several external modules are
integrated in ACID. FSL modules: eddy'’ (Andersson and Sotiropoulos, 2016), topup'®
(Smith et al., 2004), applytopup'®, mrdegibbs?® (implementation of MRtrix) (Kellner et al.,
2016), dwidenoise?! (MPPCA implementation of MRtrix) (Veraart et al., 2016), LPCA
denoising?? (implementation of the DWI Denoising software) (Manjon et al., 2013), Koays
Rician bias correction?® (Koay and Basser, 2006), Real Diffusion Reconstruction®* (Eichner
et al., 2015), SMI?® (Coelho et al., 2022; Novikov et al., 2018; Reisert et al., 2017), and the

wmti?® (Fieremans et al., 2011) implementation of the DESIGNER toolbox.

17 https://fs].fimrib.ox.ac.uk/fsl/fslwiki/eddy

18 https://fsl.fimrib.ox.ac.uk/fsl/fslwiki/topup

Yhttps://ftp.nmr.mgh.harvard.edu/pub/dist/freesurfer/tutorial packages/centos6/fsl_507/doc/wiki/topup(2f)A
pplyTopupUsersGuide.html

20 https://mrtrix.readthedocs.io/en/dev/reference/commands/mrdegibbs.html

2L https://mrtrix.readthedocs.io/en/dev/dwi_preprocessing/denoising.html

22 https://sites.google.com/site/pierrickcoupe/softwares/denoising/dwi-denoising/dwi-denoising-software

23 https://github.com/jan-martin-mri/koays-inversion

24 https://github.com/cornelius-eichner/real-diffusion

25 https://github.com/NY U-DiffusionMRI/SMI

26 https://github.com/NY U-DiffusionMRI/DESIGNER-v1
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The modules based on FSL, MRtrix, and DESIGNER require a dedicated installation of the
tools on a Unix-based system (e.g., Linux or Mac), as ACID calls the thereby installed
functions, which is not possible on Windows-based systems. In addition, it is necessary to
start MATLAB within a terminal because only then the environment variables are set

correctly, and ACID can call the external required functions.
5.6 Utility tools

ACID features several utility tools which offer additional functionalities to improve or
simplify the analysis. This includes modules for masking, quality assessment, or manual
correction of data.

5.6.1 Cropping

To improve the performance of, e.g., motion correction for spinal cord data, it is helpful to
crop the image to reduce the fraction of background regions which can lead the motion
correction algorithm to wrong results if, e.g., background artifacts are included in the
correction.

For this, ACID includes a cropping module. As inputs, the images to be cropped as well as
the new matrix size and the voxel coordinate of the new center of the image have to be
provided by the user. If no center coordinate is provided, the center can be selected manually
via a pop-up window which appears after executing the module in this case. For
reproducibility, the cropping parameters are provided as well as the cropped images as
outputs.

5.6.2 Resampling

For situations where it is necessary to bring two datasets to the same resolution (e.g., voxel-
wise analysis), ACID includes a resampling module which allows the user to resample
datasets to a desired resolution. The interpolation type can be selected by the user and is the

same as defined in spm_slice vol because the resampling module is based on this function.
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The default value is -7, which represents a 7-order sinc interpolation. The sinc order can be
selected from 1 to 127 (in the module, the variable has to be selected from -1 to 127). Other
interpolation types are nearest neighbor (0), trilinear (1), and high-order Lagrange
polynomial (2 to 127).

5.6.3 Slice-wise realighment

When performing motion correction for spinal cord, the slice-wise functionality is
recommended in ECMOCO (see section 5.2.1 for details). However, a possibility of
misalignment of single slices in single volumes can occur. To correct them, ACID offers a
slice-wise realignment module in which the user can search for misaligned slices and correct
them manually in a GUI framework. The correction for each slice can be done by translation
in the x- and y-directions. To visualize the alignment quality, the contour lines of the target
image are displayed on the source images.

5.6.4 Fusion

The fusion module enables the possibility to merge two images acquired in different regions
(e.g., brain, spinal cord). Figure 24 shows an example application. This can be helpful if a
warping field is obtained from a structural image acquired with a large field of view

containing both merged regions.
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Fractional anisotropy

Fractional anisotropy Reference image

Spinal cord

Figure 24: Merging of two fractional anisotropy (FA) maps, covering the brain and cervical
cord, respectively, into a unified FAmap using the Fusion utility function. The two images
should ideally share an overlapping region, but they may have different geometric
properties such as resolution and number of slices. In the overlapping region, the voxel
intensity values are computed as the average of the intensity values from the two images.
The merging process requires a structural image as the registration target. The combined
FA map isresampled onto the higher resolution structural image, resulting in a smoother
appearance. Source: Figure and modified caption reproduced from (David et al., 2024),

published under CC BY 4.0 license.

5.6.5 Create brain mask

For brain datasets, it is recommended to use a brain mask. This improves the visibility of the
results (e.g., parameter maps which only contain the brain and no background). In addition,
the computation time can be reduced drastically, as for example, only voxels within the brain
are model fitted. The module implemented in ACID uses SPM12’s segmentation function
(Ashburner and Friston, 2005) and thresholds the tissue probability maps (TPMs) provided
by the segmentation. The TPMs of white- and gray-matter as well as CSF are summed up,
which results in a binary mask of the entire brain. The threshold for the TPMs can be changed

by the user in the defaults.
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ACID uses its own TPM template based on the TPM of the hMRI toolbox. The TPM is
extended by a ventricle TPM. This allows the automated segmentation of the ventricle and
the generation of a binary ventricle mask, which can then be used for noise estimation (see
section 5.2.2).

5.6.6 Reliability masking

To identify voxels which are irreversible corrupted by, e.g., artefacts, ACID features a
reliability masking module. The module uses the root-mean-square model-fit error rms(e)
map (David et al., 2017) which can be estimated by the model fitting modules. Combined
with a threshold, a map of unreliable voxels is generated. To estimate the optimal threshold,
a submodule named “Determine threshold” is provided. For datasets with many corrupted
voxels, e.g., spinal cord datasets, this module can be used to generate a reliability mask which
can be used in a region of interest (ROI) analysis as the mask identifies the voxels which
contain reliable tensor estimates (David et al., 2017).

5.6.7 DWI series browser/movie

For quality assessments, two modules for visual inspection are implemented.

First, a series browser module with which the user can browse through the slices of dMRI
data. Slices with artefacts or a too low SNR can be labeled and then skipped in ECMOCO
to make the motion correction more stable and based on true signals. This is done by creating
a list as output which contains the labeled slice numbers. The list can then be loaded into
ECMOCO, and the defined slices are skipped for processing.

Second, to compare multiple datasets, a series movie module is implemented. As inputs, a
reference image and up to three dMRI datasets can be loaded in the module. A movie will

be created which contains all volumes of the selected datasets.
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5.6.8 Rician bias simulation module

To estimate the required SNR for a measurement and to decide which RBC method should
be used, a Rician bias simulation module is implemented which offers the opportunity to use
one of 27 predefined voxels (details are described in (Oeschger et al., 2023a) and the
repository?’) to simulate different SNRs for the selected voxel by contaminating it with
noise. This noise-contaminated voxel is then Rician bias corrected (details are described in
(Oeschger et al., 2023a)), and the result is compared to the initial voxel without noise as
ground truth. This allows an estimation of the performance of the Rician bias methods for
different SNRs. As noise contamination is a statistical process, the selected voxel is
contaminated multiple times with noise and analyzed to ensure reproducibility.

5.6.9 ROl analysis

For ROI-based analysis a ROI analysis, module is integrated. This module offers the
calculation of mean and standard deviation for global or subject-specific voxels. Also, a
reliability mask (see section 5.6.6 for details on how to generate a reliability mask) can be

specified to avoid the influence of corrupted voxels on the calculated metrics.

Y"https://github.com/quantitative-mri-and-in-vivo-
histology/axisymmetric_dki with rician bias correction simulation study
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6 Results

This section shows various examples of the use of ACID. The sections 6.1 to 6.5 provide a
demonstration of possibilities ACID features based on three exemplary datasets and were
publicized in the ACID toolbox paper (David et al., 2024), published under CC BY 4.0
license. First, the three used datasets are introduced, and the acquisition parameters are
presented (section 6.1). In section 0 the processing pipelines for each dataset are presented
and discussed. Section 6.3 provides a comparison of NODDI-DTI and WMTI-Watson and
gives recommendations which methods should be selected for a specific dataset. The effect
of Rician bias correction on biophysical parameters is presented in section 6.4. A comparison
of the in ACID implemented denoising methods is shown in section 6.5. The section 6.6
demonstrates how a group analysis in ACID can be performed and how the processed data
would be stored BIDS compliant. Furthermore, a comparison of different biophysical

modelling methods is investigated.
6.1 Experimental datasets (in vivo Brain, in vivo Spinal Cord, ex vivo Specimen)

The ACID modules depend on specific parameters. The optimal choice depends on the
acquired dataset (e.g., tissue type). ACID has pre-defined optimal settings for the tissue types
of in vivo brain, in vivo spinal cord, and ex vivo specimen.

For a demonstration of the performance of ACID, datasets of the three mentioned tissue
types were used and processed. Table 2 shows the acquisition parameters of the three
datasets. The distribution of the diffusion directions (b-vectors) for the MRI acquisition were

defined using the configuration proposed in (Caruyer et al., 2013)%.

28 http://www.emmanuelcaruyer.com/q-space-sampling.php
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Table 2: Scan parameters of the in vivo brain, in vivo spinal cord, and ex vivo dMRI

datasets. Source: Table and caption based on (David et al., 2024), published under CC

BY 4.0 license.

Dataset

In vivo brain

In vivo spinal cord

Ex vivo specimen

Imaged body part or
tissue

Scanner
Receive coils

Sequence

Volumes and b-values
[s/mm?] (number of
gradient directions)

Cardiac gating

Number of slices
Resolution [mm’]
Field of view [mm’]

Echo time
Repetition time

Parallel imaging
Multi-band imaging

Phase partial Fourier

Phase-encoding dir.

Readout bandwidth
EPI spacing

EPI factor

Acquisition time
[min:sec]

Additional data with
reversed phase-

encoding direction

entire brain (including
cerebellum) of a 34-
year-old healthy
volunteer

3T Siemens Prisma Fit
64-channel
Head/Neck

2D single-shot spin-
echo EPI

b =0 (18); b = 600
(30); b=1100 (45); b
= 2500 (60)

100 (interleaved, no

gap)
1.7x1.7x 1.7
204 x 170 x 201
75 ms

5800 ms

2x (GRAPPA)
7/8

A-P

1842 Hz/pixel
0.77 ms

120

17:46

a single b0 volume
acquired with reversed
phase-encoding
direction

upper cervical cord
(appr. C1-C4) of a 43-
year-old healthy
volunteer

3T Siemens Prisma Fit
64-channel
Head/Neck

2D single-shot spin-
echo EPI

b =0 (11); b = 500
(30); b =1000 (30); b
= 1500 (30)

2 slices per cardiac
cycle, trigger delay of
260 ms

14 (interleaved,
gap)
1.0x1.0x5.0
128 x 36 x 70

73 ms

no

pulse-dependent
(cardiac gated)

A-P

1396 Hz/pixel
0.93 ms

36
06:51 (nominal)

full blip-reversed
acquisition (reversed
phase-encoding
available for
volume)

each

ex vivo specimen of the
temporal lobe from a 46-
year-old patient
diagnosed with drug-
resistant temporal lobe
epilepsy; specimen
embedded in glucose for
2 h and fixed with 4%
paraformaldehyde for 12
h before measurement
3T Siemens Prisma Fit
16-channel Hand/Wrist

pulse gradient spin echo

b =0 (36); b = 550 (30);
b = 1100 (75); b = 2200
(45); b = 2500 (60); b =
5000 (60)

160

0.8x0.8x0.8
128 x 48 x 48

99 ms

8700 ms

7/8

A-P

802 Hz/pixel
1.37 ms

60

93:10

full
acquisition
phase-encoding
available  for
volume)

blip-reversed
(reversed

each
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6.2 Application of the ACID Toolbox on three datasets

Figure 25 visualizes the capabilities and expectable results for three exemplary datasets
which represent the three tissue types for which ACID offers dedicated processing options
(in vivo brain, in vivo spinal cord, and ex vivo specimen). The pipeline for each tissue type

has a similar structure, but the settings differ for several processing steps.
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A) Pipeline for in vivo brain
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Figure 25: Standard processing pipelines for typical (A) in vivo brain, (B) in vivo spinal
cord, and (C) ex vivo dMRI datasets (refer to Table 2 for details on the datasets and Table
3 for details on the pipeline settings). Example batches for each type of dMRI data are
stored in the Example_Batches folder of the toolbox. The positions of the displayed
slices of the dMRI data are indicated in purple on the corresponding structural images.
For the ex vivo specimen (C), the brain region from which the sample was extracted is
highlighted in an orange box. Although not explicitly shown here, noise estimation should
be performed on the unprocessed data (see Appendix C), which serves as input for
msPOAS, Rician bias correction, and diffusion tensor fitting (for fitting methods WLS and
robust fitting). However, in case of substantial misalignments across volumes, and when
using the repeated measures noise estimation method, it might be beneficial to perform
this step after ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-
in visual comparison is shown between a diffusion-weighted (DW) image before (middle
row) and after applying msPOAS (bottom row); the msPOAS-corrected image appears
less noisy while preserving tissue edges. For HySCO, contour lines of the corresponding
structural image (displayed as red lines) are overlaid on a zoomed-in DW image both
before (middle row) and after applying HySCO (bottom row). HySCO improves the
alignment between the DW and the structural image. For the in vivo brain dMRI| dataset
(A), an inferior slice is shown that presents high susceptibility-related distortions,
making the effect of HySCO more visible. For the ex vivo dMRI dataset (C), the effect of
HySCO is shown in a slice (illustrated in yellow) orthogonal to the original one
(illustrated in purple) to better visualize susceptibility-related distortions and their
correction. Note that HySCO is applied as the final preprocessing step, that is, after
applying msPOAS; however, the HySCO field map used for “unwarping” the diffusion-
weighted images is estimated on the ECMOCO-corrected datasets, that is, before
applying msPOAS. Rician bias correction (not explicitly shown here) should be applied
either before (recommended: between msPOAS and HySCO, using the RBC module) or
during model fitting (using the Rician bias correction option in NLLS). Diffusion signal

models are fitted on the processed dataset; here, we display the maps of fractional
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anisotropy (FA) and mean kurtosis tensor (MW) from diffusion kurtosis imaging (DKI). The
output from DKI can be used to compute biophysical parameters of the white matter;
shown here is the map of Watson concentration parameter (k) from the WMTI-Watson
biophysical model. Note that for the in vivo brain dMRI dataset, the inferior slice
displayed contains relatively little white matter; hence, we refrained from using a white
matter mask. The less smooth appearance of the Kk map is due to the low values in the
gray matter. Source: Figure and modified caption reproduced from (David et al., 2024),

published under CC BY 4.0 license.

The tissue type-specific individual settings are listed in Table 3.
Table 3: Settings of selected modules for in vivo brain, in vivo spinal cord, and ex vivo
dMRI datasets. Source: Figure and caption reproduced from (David et al., 2024),

published under CC BY 4.0 license.

Adjustable In vivo In vivo Ex vivo
Module . .
parameter brain dMRI spinal cord dMRI dMRI
type of registration | . volume- and slice-wise volume-wise
degrees of freedom volume-wise volume-wise: 4 4 ltransl. y;
9 [transl. x, y, ) scaling y; shearing x-
tati [transl. x, y, z; scaling y]
z; rotationx,y, z; ) ) . .
ECMOCO ) v slice-wise: 3 per slice vyl
scaling y; .
) [transl. x, y; scaling y]
shearing x-y, y-z] .
mask around the spinal
mask cord )
automatically increase default for low automatically
msPOA kappa
sPOAS PP determined SNR data (e.g., +20%) determined
RBC defaults defaults defaults
HySCO defaults defaults defaults
DTI Fitting algorithm robust fitting or NLLS robust fitting or NLLS NLLS
DKI/axDKI Fitting algorithm NLLS NLLS NLLS
NODDI-DTI Fixed diffusivities In vivo parameters In vivo parameters Ex vivo parameters
WMTI-Watson defaults defaults defaults

In this section, the preprocessing steps (Motion- and Eddy Current Correction in section
6.2.1, denoising in section 6.2.2, and susceptibility artefact correction in section 6.2.3), the
physical diffusion models (section 6.2.4), and the application to biophysical diffusion

models (section 6.2.5) are explained.
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6.2.1 Preprocessing l: Motion- and eddy current correction

The motion- and eddy current correction are performed for all tissue types as the first step
because the following modules like msPOAS or HySCO assume the absence of, e.g., motion
artefacts. For this the ACID module ECMOCO can be used (see section 5.2.1 for details)
The type of motion that can be assumed is different for each tissue type:

For in vivo brain datasets, the motion is possible in 6 different directions (translation and
rotation along x-, y-, z-direction). In addition, eddy currents, which occur often during the
measurement, can be corrected by ACID using a first-order approximation. This is
performed as a translation and scaling along the phase-encoding direction as well as in-plane
and through-plane shearing (Mohammadi et al., 2010). Therefore, 9 degrees of freedom are
recommended (the translation along the phase-encoding direction for eddy currents
correction is the same degree of freedom for the algorithm as for the translation correction).
For spinal cord datasets, ACID features an additional slice-wise correction in which the
correction is performed on a 2D (slice) level. This improves the correction of artefacts
occurring from e.g., cardiac pulsation which are not sufficiently corrected via a volume-wise
correction (Mohammadi et al., 2013). Due to the smaller field of view and the location next
to the scanner isocenter, eddy-current artifacts are less strong compared to brain datasets.
Therefore, the first-order approximation for correction of eddy currents, that ACID features,
is generally sufficient. The recommendation is therefore to perform a volume-wise
correction with four degrees of freedom (x-, y-, z-translation and scaling in y-direction) to
correct displacements of the whole spine through e.g., subject movement followed by a slice-
wise correction with 3 degrees of freedom (x-, y-translation and scaling in y-direction). The
combined correction techniques result in a higher SNR as well as in a better test-retest
variability in DTI maps (Mohammadi et al., 2013). Other degrees of freedom like shearing
or rotation can be omitted as the expected misalignment is very small. The correction of

these artefacts leads to the risk of overcompensation and a less accurate result compared to
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no correction. As the structures around the spinal cord (e.g., bones) are also often part of the
DWI image and have a different motion profile, it is recommended to use a mask defining
the spinal cord region which is then only used to estimate the motion correction parameter.
To ensure that the correction of slice-wise motion artefacts is sufficient, the slice-wise
realignment module (see section 5.6.3) can be used to check and, if necessary, correct
displacements manually.

For ex vivo datasets, subject movement can be neglected if the specimen is spatially fixed
(e.g., paraffin embedded (Absinta et al., 2014)). As a result of this approach, only the eddy
currents are recommended to be corrected along the phase encoding direction (in most cases
the y-direction (y-scaling/translation and x-y- and z-y-shearing)). Similar to spinal cord
datasets, the first-order correction of eddy currents is sufficient for small specimens which
are next to the scanner isocenter.

6.2.2 Preprocessing ll: Denoising and RBC correction

For the denoising performed by msPOAS (see section 5.2.3 for details), no special tissue-
related settings are needed to be set. However, the denoising is a crucial step for the
estimation of accurate DTI/DKI parameter maps (see Figure 19 for an example of ex vivo
parameter maps). The default settings can be used for in vivo brain/spinal cord as well as ex
vivo datasets. If the SNR of the dataset is generally high, denoising can lead to an additional
error and can be omitted in this case (see section 6.5 for details). In low SNR situations, the
denoising results could be insufficient due to still existing noise in the denoised data. In this
case, the parameter kappa can be increased manually for a stronger denoising. In addition,
Rician Bias correction (RBC) is recommended for low-SNR datasets (see section 6.4 for an
example demonstration). ACID features two implemented RBC approaches (see section
5.2.4 for details). The required noise value can be estimated via the noise estimation module

(see section 5.2.2 for details).
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6.2.3 Preprocessing lll: Susceptibility artefact correction

The correction of susceptibility artefacts is recommended for datasets acquired via, e.g.,
multiband EPI sequences or when a structural image needs to be combined with an acquired
EPI image (e.g., the dMRI axonal water fraction parameter map and the magnetization
transfer saturation maps can be used for g-ratio mapping (Mohammadi and Callaghan,
2021)). For this, HySCO (see section 5.2.5 for details) can be used in ACID as it is
demonstrated for the three exemplary datasets in Figure 25. HySCO uses two images with
different phase encoding directions and assumes them as registered. Therefore, it is
recommended to acquire both images in close successive order. The default settings should

provide sufficient results for all three tissue types.
6.2.4 Physical diffusion models

ACID includes the two physical diffusion models DTI (see section 5.3.1 for details) and DKI
(see section 5.3.2 for details). The selection of the recommended approach depends normally
on the acquired b-values. For both models, several fitting algorithms are implemented. In
general, the NLLS algorithm is recommended for each tissue type if the acquired SNR is
sufficiently high (see (Oeschger et al., 2023a) for the recommended minimum SNR).

For DTI datasets, such as spinal cord datasets where high b-values are challenging to be
measured for DKI analyses and often lack a significant number of outliers, the robust fitting
algorithm is recommended. This algorithm downweights voxels identified as outliers,
thereby enhancing the robustness of the diffusion model fit. A visualized example of this is
provided in Figure 20.

For situations where the SNR is low and the number of outliers is high, msPOAS and RBC
can reach their limits, and in this situation, the use of reliability masking (see section 5.6.6
for details) might be useful to extract the reliable voxels out of the dataset (David et al.,

2017).

86



It is also recommended to use a mask (e.g., by using the create brain mask module (section
5.6.5)) as well as the multicore option, if possible, to reduce the computation time.

6.2.5 Biophysical diffusion models

The selection of most precise biophysical diffusion model for a given dataset depends on
several characteristics. If a multi-shell dataset was performed and the b-values are high
enough to perform a DKI fit, the WMTI-Watson approach is recommended as the number
of assumptions is lower compared to NODDI-DTI (e.g., no fixed diffusivities) and therefore
the algorithm has more flexibility in fitting the biophysical parameter out of the DKI
parameter maps. However, the higher flexibility and lower number of assumptions increase
the need for a proper estimation of the diffusion parameters via DKI. This can be difficult to
achieve for e.g., spinal cord datasets where the SNR is typically lower, especially for higher
diffusion shells which are needed for DKI. In this case, the NODDI-DTI approach could
provide better results as it requires a DTI fit and therefore lower acquired b-values. But this
approach can lead to additional problems as the in NODDI-DTI assumed fixed diffusivities
are estimated for brain datasets. Therefore, they might not be valid for e.g., spinal cord
datasets and require manual adjustment or investigation to estimate proper values. For ex
vivo datasets where e.g., diffusivity in white matter is described in literature as 85% lower
compared to in vivo (Roebroeck et al., 2019), a dedicated fixed diffusivity set can be selected
in ACID providing these values.

Also, due to the DTI fit, a kurtosis bias could be introduced, which could corrupt the
parameter estimation, e.g., for the MD map, and result in not realistic values which are not
usable for NODDI-DTI estimations (see Figure 21 for an example).

An analysis demonstrating the performance of WMTI-Watson compared to NODDI-DTTI is
shown in section 6.3, and an analysis of the impact of Rician bias correction on biophysical

parameter estimation for WMTI-Watson and NODDI-DTI is shown in section 6.4.
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A third option is the as external tool integrated white matter tract integrity (WMTI) model,
which assumes highly aligned fibers (idealized as infinitely long cylinders) but has no fixed

diffusivity assumptions (Fieremans et al., 2011).
6.3 Comparison of NODDI-DTI and WMTI-Watson

For a comparison of ACIDs implemented biophysical parameter estimation methods, the
Watson concentration parameter (k) and axonal water fraction (AWF) were estimated for
the exemplary brain and spinal cord dMRI datasets (see section 6.1 for details). As discussed
in section 6.2.5, the selection of the best biophysical estimation method can be different
depending on the given dataset and data quality. To show that the choice of the most precise
biophysical model can depend on the acquired dataset, both parameters were estimated via
NODDI-DTI and WMTI-Watson (see Figure 26). For the brain dataset, both estimated
values were more consistent with the literature values if they were estimated via WMTI-
Watson. In contrast, for the spinal cord dataset, the via WMTI-Watson estimated parameters
were highly overestimated, and for NODDI-DTI only x could be estimated but within
correspondence to the literature values.

The numerical values of the estimated parameters and literature values can be found in the
figure caption of Figure 26, and the reasons for the different results of the biophysical

modules are discussed in section 6.2.5.
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Figure 26: Bar plots displaying the Watson concentration parameter (k) and axonal water
fraction (AWF) within the five central slices of the corpus callosum and the lateral
corticospinal tracts in the spinal cord (refer to Table 2 for details on the datasets). The
corpus callosum was manually segmented, while the lateral corticospinal tracts were
segmented using the PAM50 spinal cord white matter atlas. The regions of interest are
highlighted as red segmentation lines on the images. Inthe box plots, red horizontal lines
represent literature values obtained from histology, while the red dotted line represents
a literature value from the brain due to the absence of a corresponding value for the
spinal cord. Values of orientation dispersion index reported in the literature were
converted to k using Equation (1) in (Mollink et al., 2017). Within the corpus callosum, k
values were (mean = std) 10.82 £ 10.31 and 8.14 £ 5.13 when derived from the NODDI-
DTI (single shell) and WMTI-Watson model (two shells), respectively. These values fall
within the range of literature values obtained post-mortem using polarized light imaging
(Mollink et al., 2017). AWF values derived from NODDI-DTI (0.40 £ 0.24) and WMTI-
Watson model (0.47 + 0.13) were similar to literature values obtained using electron
microscopy in a cynomolgus macaque (Stikov et al., 2015). Within the lateral
corticospinal tracts, k values derived from NODDI-DTI were notably lower than those

derived from WMTI-Watson (2.53 = 0.19 vs. 6.04 = 1.84) and were consistent with
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literature values obtained in a post-mortem specimen (Grussu et al., 2017). AWF values
derived from the WMTI-Watson model in the spinal cord were substantially higher (0.81
+ 0.03) compared to a literature value obtained in the brain (red dotted line). The
estimation of AWF for the spinal cord was not feasible using the NODDI-DTI model, as
DTI-derived mean diffusivity (MD) values fell below the range where the NODDI-DTI
model provides a valid representation (refer to Equation (4) in (Edwards et al., 2017)).
This discrepancy could be attributed to either the underestimation of MD due to kurtosis
bias (Figure 21) or the invalidity of fixed compartmental diffusivities in the NODDI-DTI
model. These results indicate that WMTI-Watson yields more accurate estimation of k
and AWF for the brain, while NODDI-DTI yields a more accurate estimation of k for the
spinal cord. This could be aconsequence of non-optimal b-values for kurtosis estimation
in the spinal cord. Source: Figure and modified caption reproduced from (David et al.,

2024), published under CC BY 4.0 license.

6.4 Effect of Rician bias correction on biophysical parameter estimates

To demonstrate the impact Rician bias correction can have on biophysical parameter maps,
the exemplary in vivo brain and in vivo spinal cord datasets (see section 6.1 for details) were
computed with the full recommended analysis pipeline (see section 0 for details) with and
without the use of Rician bias correction. From these results, the biophysical parameters
Watson concentration parameter (k) and axonal water fraction (AWF) were estimated via
WMTI-Watson and NODDI-DTI. For the estimation via NODDI-DTI, only the lower shell
was used as this model assumes a DTI dataset. WMTI-Watson was performed with all
available diffusion shells as this model assumes a DKI dataset.

As RBC slightly decreased the mean of the kurtosis tensor in the brain and spinal cord DKI
maps, the Watson concentration parameter is increased. The estimation of AWF using the
NODDI-DTI model was not feasible in the spinal cord, as the mean diffusivity (MD) values
derived from DTI fell below the range where the NODDI-DTI model provides a valid

representation (Edwards et al., 2017). This discrepancy could be attributed to either the
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underestimation of MD due to kurtosis bias (see Figure 21 for an example) or the invalidity
of fixed compartmental diffusivities in the NODDI-DTI model (see section 6.2.5).
AWF AWFgsc AWFggc- AWF

o 1 0
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NODDI-DTI

In vivo brain
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©
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NODDI-DTI

In vivo spinal cord

WMTI-Watson

Figure 27: The impact of Rician bias correction (RBC) on maps of biophysical parameter
estimates, derived from the NODDI-DTI and WMTI-Watson models, including Watson
concentration parameter (k) and axonal water fraction (AWF), in an in vivo brain and
spinal cord dataset (refer to Table 2 for details on the datasets). Being derived from white
matter biophysical models, the parameter maps were masked for the white matterin the
brain dataset. For the spinal cord, we refrained from masking due to the difficulty of
obtaining an accurate white matter mask. These maps were computed both without (left
column) and with (middle column) RBC; their voxel-wise difference, referred to as the
Rician bias, is shown in the right column. RBC slightly decreased the mean of the
kurtosis tensor in both the brain and spinal cord, which resulted in an increase in k. The
estimation of AWF using the NODDI-DTI model was not feasible in the spinal cord, as the
mean diffusivity (MD) values derived from DTI fell below the range where the NODDI-DTI

model provides a valid representation (refer to Equation (4) in (Edwards et al., 2017)).
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This discrepancy could be attributed to either the underestimation of MD due to kurtosis
bias (Figure 21) or the invalidity of fixed compartmental diffusivities in the NODDI-DTI
model. Source: Figure and modified caption reproduced from (David et al., 2024),

published under CC BY 4.0 license.

6.5 Comparison of different denoising methods

ACID provides the denoising method msPOAS (Becker et al., 2014), which was used for
the processing of the example datasets (see section 0 for details). Due to the in ACID
implemented modular organization, it was possible to integrate additional denoising
methods from external sources into ACID. Two popular denoising approaches are now
additionally integrated into the ACID toolbox, named local principal component analysis
(LPCA) (Manjon et al., 2013) and the Marchenko-Pastur principal component analysis
(MPPCA) (Veraart et al., 2016) (see section 5.5 for the specific requirements for the
operating system).

To compare the performance of these three denoising methods, an analysis based on
simulated data were performed. The estimated kurtosis parameters (Figure 22 shows the
parameter maps) for the in vivo brain dataset (see Table 2 for details) were used to generate
a synthetic dMRI dataset which was used as a quasi-noise-free ground truth. This dataset

was then contaminated with synthetic noise taken out of a circularly symmetric complex
normal distribution CN (0, 02), where 0 = ;V—OR and several SNR = 5,15,30,39,52,100

which are the values that were used also in (Oeschger et al., 2023b). For these different SNR
datasets, the denoising was performed for each method followed by a kurtosis fit using the
NLLS algorithm. In addition, the DKI fit was performed without the previous use of
denoising. Figure 28 shows exemplary slices of the axial diffusivity (AD), radial diffusivity
(RD), mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial kurtosis tensor

(RW) which were calculated using the SNR 5 (highest noise contamination) dataset. To
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quantify the denoising performance, the normalized root-mean-square error (NRMSE) was
calculated to quantify the deviation of the estimated DKI parameters (one noise realization)
from the ground truth (see Figure 29 for the visualization of the results). The NRMSE can

be defined as:

1 (32)
\/N §V=1(Pi —pi)?
1 )
NZ?::[ pl

NRMSE =

where p; is the ground truth and p; the estimated parameter per voxel. The values were
calculated within a ROI containing the white matter voxels (see red circled area in Figure 28
first line). The results show that the NRMSE is reduced by using denoising in general if the
SNR is low but not for all parameters in the same way: The NRMSE was reduced for RD
and RW clearly visible for SNRs of 15 and lower. For AW, this effect was visible for SNRs
below 30. In contrast, the parameters the NRMSE of AD was not reduced and for the MW
the trend is unstable. Another outcome of this analysis was that the NRMSE is increased if
the SNR is higher (30-40) for all estimated DKI parameters compared to the dataset that was
processed without denoising. The only exception was the MPPCA processed data, meaning
that there is no “denoising” bias introduced when using MPPCA and the results are mostly
similar to the not-denoised data. For a further interpretation of the results, the relative
difference between the DKI parameters that are obtained with the use of denoising to the
parameters estimated without denoising was calculated and visualized in Figure 30. The
results imply that denoising is only beneficial when used for low SNR datasets. For high
SNRs, denoising has no benefit for the dataset (MPPCA) or introduces an additional bias

(msPOAS and LPCA) which can also be seen for the NRMSE results (see Figure 29).
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Figure 28: Qualitative illustration of the effect of denoising on maps derived from
diffusion kurtosis imaging (DKIl). Shown are maps of axial diffusivity (AD), radial
diffusivity (RD), mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial
kurtosis tensor (RW). The maps were obtained by fitting the kurtosis model to simulated
noisy dMRI data (signal + noise) with a signal-to-noise ratio (SNR) of 5, both before (no
denoising) and after employing different denoising methods (msPOAS, LPCA, MP-PCA).
The DKI metric maps obtained from the simulated noise-free dMRI data (signal only) are
also shown for comparison (ground truth). The white matter mask used for calculating
the normalized root-mean-square error (NRMSE) between the obtained DKI metrics and
the ground truth is overlaid as ared segmentation line on the ground truth maps. Source:
Figure and modified caption reproduced from (David et al., 2024), published under CC

BY 4.0 license.
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Figure 29: Quantitative illustration of the effect of denoising on maps derived from
diffusion kurtosis imaging (DKI) (one noise realization). The plots show the normalized
root-mean-square error (NRMSE) between (i) DKI metrics obtained from simulated noisy
dMRI data (signal + noise) with varying signal-to-noise ratios (SNR), both before (no
denoising) and after employing different denoising methods (msPOAS, LPCA, MP-PCA),
and (ii) DKI metrics obtained from noise-free dMRI data (signal only). NRMSE was
computed across white matter voxels (see Figure 28 for the white matter mask) for the
following DKI metrics: axial diffusivity (AD), radial diffusivity (RD), mean kurtosis tensor
(MW), axial kurtosis tensor (AW), and radial kurtosis tensor (RW). Denoising methods

reduced NRMSE from the ground truth compared with the “no denoising” scenario only

95



inthe low-SNR domain, although not consistently for all DKI metrics. At high SNRs (above
30-40), denoising increased NRMSE for all DKI metrics, except for the MP-PCA method,
which yielded results comparable with the “no denoising” scenario. Source: Figure and

modified caption reproduced from (David et al., 2024), published under CC BY 4.0

license.
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Figure 30: Quantitative illustration of the effect of denoising on maps derived from
diffusion kurtosis imaging (DKI). The plots show the relative difference in DKl metrics

obtained from simulated noisy dMRI data (signal + noise) with varying signal-to-noise

96



ratios (SNR) after employing different denoising methods (msPOAS, LPCA, MP-PCA) to
those obtained without denoising (one noise realization). The relative difference was
computed across white matter voxels (see Figure 28 for the white matter mask) for the
following DKI metrics: axial diffusivity (AD), radial diffusivity (RD), mean kurtosis tensor
(MW), axial kurtosis tensor (AW), and radial kurtosis tensor (RW). Denoising introduced
substantial improvements in the investigated DKI metrics only in the low-SNR domain,
although not consistently across all DKI metrics. When using msPOAS and LPCA, the
relative differences were greater compared with using MP-PCA, with msPOAS
introducing the highest bias. At high SNRs (above 30-40), the relative difference to the

“no denoising” scenario was negligible for MP-PCA. Source: Figure and modified caption

reproduced from (David et al., 2024), published under CC BY 4.0 license.

6.6 Example group analysis

To show the benefits of the in ACID implemented BIDS compliant storage system and
workflow for group analyses, an analysis of four brain dMRI datasets was done beginning

from the raw DICOM data. For acquisition details see Table 4.

Table 4: Scan parameters for the four in vivo brain dMRI datasets.

Parameter Parameter
Imaged body part or  entire brain (including | Multi-band imaging 3
tissue cerebellum) of four
healthy volunteer
Scanner 3T Siemens Prisma Fit | Phase partial Fourier 7/8
Receive coils 64-channel Phase-encoding dir. ~ A-P
Head/Neck
Sequence 2D single-shot spin- | Readout bandwidth ~ 1934
echo EPI [Hz/pixel]
Volumes and b-values  b=0(11); b=1500 (7); EPI spacing [ms] 0.64
[s/mm’] (number of b = 1000 (29); b =
gradient directions) 2000 (64)
Number of slices 81 (interleaved, no EPI factor 134
gap)
Resolution [mm’] 1.7x1.7x 1.7 Acquisition time 7:58
[min:sec]
Field of view [mm®] 232 x 138 x 229 Additional data with  a single b0 volume
reversed phase- acquired with reversed

encoding direction

phase-encoding direction
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Echo time [ms] 74,60
Repetition time [ms] 3100

Parallel imaging 2x (GRAPPA)

To convert the raw DICOM data to BIDS-compliant NIfTI data, the open available
conversion software BIDSCOIN? (Zwiers et al., 2022) was used. However, any other
software which provides BIDS-compliant NIfTI output should be sufficient. The converted
dMRI datasets were then processed via an overall four subject scripted analysis pipeline (see
section 0 for details), including all recommended processing steps for in vivo brain dMRI
datasets (ECMOCO, MPPCA, RBC, HySCO). For the generation of parameter maps, the
modules DKI, SMI, WMTI-Watson, WMTI, and NODDI-DTI were used. The structure of
the BIDS-compatible ACID-storage system during the processing steps is visualized in

Figure 31.

29 https://bidscoin.readthedocs.io/en/latest/
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Figure 31: Visualization of the BIDS-compliant folder structure ACID generates for BIDS-
compliant input datasets. The BIDS storage structure of the raw data is recreated within
the derivatives/ACID folder. This ensures a clear and easy-to-script data storage of the

processed dMRI data or parameter maps.

ACID generates a BIDS-compliant derivatives structure in which a dedicated folder is
created for each subject, session, modality (here “dwi”), and in addition a “START* folder
which separates each pipeline run. This makes it possible to analyze the results of all subjects
easily in one script as only the subject number and/or session number has to be modified,
which can be done via a “for” loop.

To generate the coefficient of variation (COV) and group mean maps across all four subjects
together, a registration was performed via SPM (Penny et al., 2011). The shoot modules
(Ashburner and Friston, 2011) were used as they provide nonlinear registration to the MNI
space with high precision and less additional smoothing. This is important to avoid partial
volume effects across and within tissue classes (i.e., white matter, grey matter, and CSF).
For the template creation of shoot, the segment function of SPM was used. After registering

all computed parameter maps and segments, these were transformed to the MNI space.
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Figure 32 shows the generated white and gray matter masks for each subject in native space.

Subject 1 Subject 2 Subject 3 Subject 4

FA

o

FA
(white matter)

o -

1
FA
(gray matter)
0

Figure 32: Visualization of the white and gray matter masks which were used for the
further analysis. The fractional anisotropy (FA) map of all subjects is shown on the upper
row. The red circled area displays the analyzed white matter region (middle row) and gray

matter region (bottom row) for each subject.

For the results of each parameter estimation method within the white matter mask, the mean
and standard deviation over the four subjects in subject space were plotted, and the across-
subject COV was calculated. For DKI, the gray matter region was analyzed as well. The
results are displayed in Figure 33 (white matter) and Figure 34 (gray matter) for DKI, Figure
37 for SMI, Figure 40 for NODDI-DTI, Figure 43 for WMTI-Watson, and Figure 46 for
WMTL

The calculated COV maps in MNI space are shown in Figure 35 for DKI, Figure 38 for SMI,
Figure 41 for NODDI-DTI, Figure 44 for WMTI-Watson, and Figure 47 for WMTL.

100



The group mean maps in MNI space were calculated and are shown in Figure 36 for DKI,

Figure 39 for SMI, Figure 42 for NODDI-DTI, Figure 45 for WMTI-Watson, and Figure 48

for WMTIL.
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Figure 33: Quantitative illustration of the statistical analysis of the four via DKI in white
matter analyzed subjects. The mean and standard deviation (black) as well as the
subject-specific values (colored dots) were computed across white matter voxels (see
Figure 32 for the white matter mask) for the following DKI metrics: axial diffusivity (AD),
radial diffusivity (RD), mean diffusivity (MD), axial kurtosis tensor (AW), radial kurtosis
tensor (RW), mean kurtosis tensor (MW), and fractional anisotropy (FA). The across-
subject COV was estimated for FA (25.3%), AD (4.6%), RD (16.5%), MD (6.8%), AW

(17.8%), RW (4.1%), and MW (10.0%).
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Figure 34: Quantitative illustration of the statistical analysis of the four via DKl in gray
matter analyzed subjects. The mean and standard deviation (black) as well as the
subject-specific values (colored dots) were computed across gray matter voxels (see
Figure 32 for the gray matter mask) for the following DKI metrics: fractional anisotropy
(FA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), axial kurtosis
tensor (AW), radial kurtosis tensor (RW), and mean kurtosis tensor (MW). The results
showed a relatively high consistency over all DKI parameters; the across-subject COV
was estimated for FA (8.6%), AD (10.9%), RD (11.8%), MD (10.9%), AW (5.2%), RW (6.0%),

and MW (3.5%).

The DKI parameter results showed an across-subject COV up to 25.3% (FA) for white matter
(see Figure 33) and up to 11.8% (RD) for gray matter (see Figure 34) over all parameters.
The highest non-fraction across-subject COV was estimated in white matter for AW (17.8%)
and in gray matter for RD (11.8%). The lowest across-subject COV value was estimated for

white matter for RW (4.1%) and for gray matter for MW (3.5%).
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Figure 35: Across-subject coefficient of variation maps of the DKl parameter for the four
subjects. Upper row: fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity
(RD), and mean diffusivity (MD). Lower row: axial kurtosis tensor (AW), radial kurtosis
tensor (RW), and mean kurtosis tensor (MW). The maps are mostly homogeneous;
however, for RD and RW, the values are higher in the corpus callosum, which indicates a

higher variability in this area.
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Figure 36: : Group mean maps of the DKI parameter for the four subjects. Upper row:
fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean
diffusivity (MD). Lower row: axial kurtosis tensor (AW), radial kurtosis tensor (RW), and
mean kurtosis tensor (MW). The maps are mostly homogeneous; however, for AW, the
values are higher in the corpus callosum, which could indicate an overestimation in this

area.

The across-subject COV (see Figure 35) and group mean maps (see Figure 36) are mostly
homogeneous; however, for AW, the values are higher in the corpus callosum group mean
map, which could indicate an overestimation in this area. For RD and RW, the values are
higher in the corpus callosum across-subject COV map, which indicates a higher variability

in this area.
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Figure 37: Quantitative illustration of the statistical analysis of the four via SMIl analyzed
subjects. The mean and standard deviation (black) as well as the subject-specific values
(colored dots) were computed across white matter voxels (see Figure 32 for the white
matter mask) for the following SMI metrics: axonal water fraction (AWF/f), intra-axonal
diffusivity (D,), parallel and perpendicular extra-axonal diffusivities (D, e @and Deperp),
free water volume fraction (f,,), and anisotropy (p,). The results show a relatively high
consistency across all subjects for all SMI parameters; the across-subject COV was

estimated for f (4.0%), D, (1.1%), D¢ pqr (2.9%), D (3.3%), f,, (3.6%), and p, (6.9%).

e,perp

The SMI parameter results show a relatively low across-subject COV (< 7%) over all
parameters estimated in white matter (see Figure 37). The highest across-subject COV's were
estimated for anisotropy p, (6.9%) and diffusivity D, perp (3.3%). The lowest across-subject

COVs were estimated for fraction f,, (3.6%) and diffusivity D, (1.1%).
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Figure 38: Across-subject coefficient of variation maps for the estimated SM| parameter
for the four subjects. Upper row: axonal water fraction (AWF/f), intra-axonal diffusivity
(Dg), and parallel extra-axonal diffusivity (D,,,,). Lower row: perpendicular extra-axonal
diffusivity D, e, free water volume fraction (f,,), and anisotropy (p,). The maps are
mostly homogeneous; however, for De,par, the values are higher in the corpus callosum,

which indicates a higher variability in this area.
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Figure 39: Group mean maps for the estimated SMI parameter for the four subjects.
Upperrow: axonal water fraction (AWF/f), intra-axonal diffusivity (D,), and parallel extra-
axonal diffusivity (D,,qr). Lower row: perpendicular extra-axonal diffusivity D,,e.,, free

water volume fraction (f,,), and anisotropy (p,). The maps are mostly homogeneous.

The across-subject COV (see Figure 38) and group mean maps (see Figure 39) are mostly

homogeneous. However, for D, 4., the across-subject COV values are higher in the corpus

callosum, which indicates a higher variability in this area.
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Figure 40: Quantitative illustration of the statistical analysis of the four via NODDI-DTI
analyzed subjects. The mean and standard deviation (black) as well as the subject-
specific values (colored dots) were computed across white matter voxels (see Figure 32
for the white matter mask) for the following NODDI-DTI metrics: axonal water fraction
(AWF/f) and anisotropy (p;). The results show a high consistency over both NODDI-DTI

parameters; the across-subject COV was estimated for AWF/f (1.5%) and p, (2.5%).

The NODDI-DTI parameter results showed a relatively low across-subject COV (< 2.5%)
over both parameters estimated in white matter (see Figure 40); the higher across-subject

COV was estimated for p, (2.5%).
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Figure 41: Across-subject coefficient of variation (COV) maps for the estimated NODDI-
DTl parameters for the four subjects. Shown are the COV maps: axonal water fraction
(AWF/f), and anisotropy (p,). The AWF/f map is mostly homogeneous; however, for p,,
many voxels (especially in the corpus callosum) are missing, and the values in the region
where the fit was able to estimate values are relatively high, which indicates a higher
variability in this area. A reason for the missing values could be the invalidity of fixed

compartmental diffusivities in the NODDI-DTI model (see section 5.2.5).

AWF
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o

Figure 42: Group mean maps for the estimated NODDI-DTI parameters for the four
subjects. Shown are the group mean maps: axonal water fraction (AWF/f), and
anisotropy (p,). The AWF/f map is mostly homogeneous; however, for p,, many voxels

(especially in the corpus callosum) are missing. A reason for the missing values could
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be the invalidity of fixed compartmental diffusivities in the NODDI-DTI model (see

section 5.2.5).

The AWF/f across-subject COV (see Figure 41) and group mean maps (see Figure 42) are
mostly homogeneous; however, for p,, many voxels (especially in the corpus callosum) are
missing, and the COV values in the region where the fit was able to estimate values are
relatively high, which indicates a higher variability in this area. A reason for the missing
values could be the invalidity of fixed diffusivities in the NODDI-DTI model (see section
5.2.5 for details).
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Figure 43: Quantitative illustration of the statistical analysis of the four via WMTI-Watson
analyzed subjects. The mean and standard deviation (black) as well as the subject-
specific values (colored dots) were computed across white matter voxels (see Figure 32
for the white matter mask) for the following WMTI-Watson metrics: axonal water fraction
(AWF/f), intra-axonal diffusivity (D,), parallel and perpendicular extra-axonal
diffusivities (D,pqr @nd Dg,erp), @and anisotropy (p;). The results show a relatively high
consistency across all WMTI-Watson parameters; the across-subject COV was

estimated for AWF/f (17.2%), D, (7.4%), D¢ par (14.6%), Deperp (7.0%), and p, (21.9%).

The WMTI-Watson parameter results show a COV up to 22% over all parameters estimated

in white matter (see Figure 43). The highest across-subject COVs were estimated for
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anisotropy p, (21.9%) and diffusivity D¢ q, (14.6%). The lowest COVs were estimated for

fraction AWF/f (17.2%) and diffusivity De perp (7.0%).

Figure 44: Across-subject coefficient of variation maps for the estimated WMTI-Watson
parameter for the four subjects. Shown are the COV maps: axonal water fraction (AWF),
intra-axonal diffusivity (D,), parallel and perpendicular extra-axonal diffusivities (D, qr
and D, erp), @and anisotropy (p,). The maps are mostly homogeneous; however, for D, 4,
the values are higher in the corpus callosum, which indicates a higher variability in this

area.

AWF Da De,par De,perp P2

o

Figure 45: Group mean maps for the estimated WMTI-Watson parameter for the four
subjects. Shown are the group mean maps: axonal water fraction (AWF), intra-axonal
diffusivity (D,), parallel and perpendicular extra-axonal diffusivities (Depqr @nd Dgperp),
and anisotropy (p;). The maps are mostly homogeneous; however, for D,,,, the values
are lower in the corpus callosum, which could indicate a not sufficient parameter

estimation in this area.

The across-subject COV (see Figure 44) and group mean maps (see Figure 45) are mostly

homogeneous; however, for D, ; 4, the across-subject COV values are higher and the group
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mean values are lower in the corpus callosum, which indicates a higher variability and a

possible underestimation in this area.
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Figure 46: Quantitative illustration of the statistical analysis of the four via WMTI
analyzed subjects. The mean and standard deviation (black) as well as the subject-
specific values (colored dots) were computed across white matter voxels (see Figure 32
for the white matter mask) for the following WMTI metrics: axonal water fraction (f),
intra-axonal diffusivity (D,), parallel and perpendicular extra-axonal diffusivities (D,qr
and D, ), free water volume fraction (f,), and anisotropy (p,). The across-subject COV
was estimated for f (9.4%), D, (15.0%), D¢ par (16.8%), Deperp (25.5%), f,, (2.5%), and p,

(4.9%).

The WMTI parameter results show a relatively high consistency over all parameters
estimated in white matter (see Figure 46). The highest across-subject COVs were estimated

for fraction f (9.4%) and diffusivity D¢ perp (25.5%). The lowest across-subject COVs was

estimated for fraction f,, (2.5%) and diffusivity D, (15.0%).
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Figure 47: Across-subject coefficient of variation maps for the estimated WMTI
parameter for the four subjects. Upper row: axonal water fraction (f), intra-axonal
diffusivity (D,), and parallel extra-axonal diffusivity (D, ,,-). Lower row: perpendicular
extra-axonal diffusivity D, .., free water volume fraction (f,), and anisotropy (p,). The
maps are mostly homogeneous; however, for De_pmg, the values are higher in the corpus

callosum, which indicates a higher variability in this area.
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Figure 48: Group mean maps for the estimated WMTI parameter for the four subjects.
Upper row: axonal water fraction (f), intra-axonal diffusivity (D,), and parallel extra-
axonal diffusivity (D,,qr). Lower row: perpendicular extra-axonal diffusivity D,,e.,, free
water volume fraction (f,,), and anisotropy (p,). The maps are mostly homogeneous with

slightly higher values in the corpus callosum (except for Dg erp)-

The across-subject COV (see Figure 47) and group mean maps (see Figure 48) are mostly
homogeneous; however, for D, ;.. the across-subject COV values are higher and the group

mean values are lower in the corpus callosum compared to the other parameter maps, which

indicates a higher variability and a possible underestimation in this area.
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Comparison of estimation models
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Figure 49: Comparison of the four biophysical parameter estimation models (black: SMI,
red: WMTI-Watson, blue: NODDI-DTI, green: WMTI). The mean and standard deviation
were computed across white matter voxels (see Figure 32 for the white matter mask) for
the following biophysical metrics: axonal water fraction (AWF/f), intra-axonal diffusivity
(Dg), parallel and perpendicular extra-axonal diffusivities (D, qr and D, perp), free water

volume fraction (f,,), and anisotropy (p,)-

As a summary, the comparison of all biophysical parameters is shown in Figure 49. The
results indicate parameter-specific dependencies of the biophysical parameters on the
estimation method. For example, for the axonal water fraction (AWF/f), the estimations are
mostly stable across all estimation methods and are similar to the values of WMTI-Watson
and NODDI-DTI compared in section 6.3. For the diffusivity parameters, the results show a

dependence on the parameter estimation method. The highest discrepancy was found for D,

2
where WMTI-Watson estimated a diffusivity value of 3.38 &+ 0.25 % and WMTTI a value

2
of 0.63 £ 0.09 % To improve the estimation stability for both methods, a solution could

be to threshold the ROI for FA values above 0.4 to restrict the analysis on voxels consisting

of single fiber orientations, which was done, e.g., in (Benitez et al., 2014). For SMI, the
2
estimated D, value of 2.29 + 0.03 % is in the range reported by literature for this method
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of 2.13 £ 0.15 um—msz (Table S 1 in (Coelho et al., 2022); the mean over all ROIs was

calculated). It has to be noted that the diffusivity estimations for SMI may be biased due to
the supervised machine learning regression (Coelho et al., 2022), which might shift the
results to the method-specified range/value (Coelho et al., 2021).

The across-subject COV maps indicate homogeneous variations for all subjects. However,
for example, the COV was generally increased for the via SMI (Figure 38) estimated
parameter p, and higher in the corpus callosum for the via WMTI-Watson (Figure 44)
estimated parameter D, ,q4,. The reason for SMI could be that, due to the usage of a data-
driven machine learning regression, SMI might not have the best conditions for this specific
measurement protocol of this group analysis (Coelho et al., 2022). The WMTI-Watson
model contains an additional dispersion parameter compared to WMTI (where this behavior
in the corpus callosum was not visible; see Figure 47), which could indicate that the
additional degree of freedom might introduce instabilities in this area. Also, a reason could
be the influence of cardiac pulsation (resulting in brain motion) during the measurement for
this specific region, which was found in (Skare and Andersson, 2001).

For the NODDI-DTI p, parameter (Figure 41), many voxels could not be estimated,
especially in the corpus callosum, and the variance is high for the voxels where NODDI-
DTI was able to generate values. A reason for the missing values could be the invalidity of
fixed compartmental diffusivities in the NODDI-DTI model (see section 6.2.5).

The registration to the group space was performed using the SPM shoot modules, but there
are also other processing pipelines for registration, including post-registration smoothing
compensation approaches like “tissue-specific, smoothing-compensated” T-SPOON (Lee et
al., 2009) and “voxel-based quantification” VBQ (Draganski et al., 2011), which can be used
to compensate for smoothing and partial volume artefacts. These apply a tissue-aware

smoothing compensation (T-SPOON), reduce partial volume effects by using tissue classes
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(VBQ), and therefore try to reduce blurring/partial volume artefacts. However, as the shoot
modules use multiple tissue channels to align the subjects, the inter-subject correspondence
is typically high, which reduces the need for post-registration smoothing or partial volume

effect correction.
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7 Discussion

In this section the limitations of the ACID toolbox and possible solutions are discussed in
section 7.1. Furthermore, the relevance of ACID for clinical applications and neuroscientific

research is described in section 7.2.
7.1 Limitations and potential mitigations

The analysis of the three exemplary datasets shows the possibility of ACID to process and
analyze in vivo brain, in vivo spinal cord, and ex vivo specimens. However, the performance
of each module is dependent on the dataset, which is to be processed, and not in each case
do the in-house modules of ACID provide the best result. For example, the first-order eddy
currents approximation of ECMOCO was not sufficient for correcting them in the dMRI
data of the Human Connectome Project (Van Essen et al., 2012). This limitation of eddy
currents correction via ECMOCO was solved by integrating the FSL eddy current and
motion correction method eddy. This method corrects dMRI datasets also for higher-order
eddy currents (Andersson and Sotiropoulos, 2016), which can become relevant artefacts for
dMRI datasets (Andersson and Sotiropoulos, 2016; Rohde et al., 2004). For datasets where
HySCO provides not the best results compared to FSL topup (see (Clark et al., 2021)
especially Figure 3 for details) and also the “HySCO: combine blip-up and blip-down
images” module provides not sufficient results compared to FSL, the FSL method topup is
implemented.

These examples show that a found limitation of an ACID module can be solved by
implementing a method or approach from another toolbox (e.g., topup from FSL) which can
be used to circumvent this limitation.

The mandatory usage of MATLAB and SPM can be seen as a limitation but the benefits of

both predominate the disadvantages. So provides the integration in MATLAB and SPM a
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whole software and statistical analysis framework. The need of a MATLAB license was

made obsolete with the availability of a standalone version.
7.2 Relevance for clinical applications and neuroscientific research

The ACID toolbox is not certified and tested for diagnosis in clinical applications. However,
there is a growing number of publications which use ACID for scientific studies for which
ACID is made. For example, ACID was used in dMRI studies to investigate how multiple
sclerosis affects changes in the cerebrum (Deppe et al., 2016a, 2016b; Dossi et al., 2018;
Kugler and Deppe, 2018) and also for developments to improve, e.g., the NODDI model in
white matter (Alsameen et al., 2023). For spinal cord dMRI analyses, ACID was also used
in different studies to, e.g., examine the white matter of the spinal cord after a spinal cord
injury (Biieler et al., 2024; David et al., 2022, 2021, 2019; Grabher et al., 2016; Huber et al.,
2018; Seif et al., 2020; Vallotton et al., 2021). For an overview of the publicized studies
which used ACID, a non-comprehensive list is available on the toolbox website®. It is
evident that the number of studies using ACID for processing and analyzing dMRI data has
increased in the last three years. This trend suggests that the refactoring and extending of

ACID has proven its worth, as it is now more widely used by researchers.

30 http://diffusiontools.com/sidebar/studies-using-acid.html
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8 Conclusions and outlook

This section provides a summary of key findings that were outcome in this thesis. The
findings are sorted regarding software developments (section 8.1), scientific research results
(section 8.2), and suggestions and ideas for further investigations and developments (section

8.3).
8.1 Summary of key developments

ACID consists of many state-of-the-art preprocessing and modeling methods for dMRI data.
Due to its integration into SPM, it benefits from, e.g., statistical analysis methods and a large
user community. The now implemented modular organization of the ACID modules
provides a flexible and easy-to-update framework. This also solves the possible limitations
of ACID modules (see section 7.1 for examples). Also, completely new processing modules
can now be integrated easily due to the modular organization, which enables new processing
and analysis possibilities for existing ACID analysis pipelines (see section 8.3 for examples).
This demonstrates that ACID has now the possibility to stay up to date permanently with the
latest scientific findings and not only be state-of-the-art at the time of publication until new
scientific methods and algorithms are developed. If limitations are identified, the
implementation of alternative or new modules, even from external sources, provides a
solution and completely flexible adjustment of pipelines.

The harmonization with the FAIR principles and the compliance with the BIDS standard
provide a framework for large analysis studies with many datasets and also enable the
comparability with other scientific toolboxes, which often require (especially for deep
learning methods, e.g., Clinica) a BIDS-compliant data storage.

Also, new options for specific tissue types were implemented (e.g., new selectable fixed
diffusivity values in NODDI-DTI for ex vivo specimens based on literature values, see
section 5.4.1 for details) to enable the tissue-specific pipeline creation.
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8.2 Summary of key findings

Alongside the development of the now reworked ACID toolbox, several analyses were
performed. The three pipelines developed for the three tissue types of in vivo brain, in vivo
spinal cord, and ex vivo specimen were tested on exemplary datasets and showed the
different approaches which have to be implemented into the specific pipeline (e.g.,
appearance of motion and eddy currents).

Furthermore, for example, the comparison of NODDI-DTI and WMTI-Watson presented in
section 6.3 demonstrated the different use cases for each method and how the performance
depends on the given dataset. The results implied that the use of WMTI-Watson provided
better quality parameter maps if a high SNR dataset (e.g., in vivo brain) was analyzed. In
contrast, if a low-SNR dataset (e.g., a spinal cord dataset) was used, WMTI completely
failed, whereas NODDI-DTI was able to estimate at least one biophysical parameter with
reasonable accuracy.

In section 6.4, the influence of Rician Bias correction was investigated for the exemplary in
vivo brain and in vivo spinal cord datasets, comparing the results of NODDI-DTI and
WMTI-Watson with and without the use of RBC. The results demonstrate the influence of
RBC for biophysical parameter estimation, especially for the Watson concentration
parameter (k), which was increased for both tissue types.

A comparison of the different denoising methods implemented into ACID was performed
(section 6.5). The analysis showed the importance of denoising for low SNR datasets but
also pointed out that some denoising methods can introduce a bias for high SNR datasets.
Additionally, the results indicated that the parameters benefit not consistently through
denoising.

A group analysis over four subjects was performed in section 6.6 to compare the parameter
estimation when different analysis methods are used. In addition, it was demonstrated how

ACID enables BIDS-compliant data processing and how group analyses benefit from this
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advanced data handling. The results indicated a dependency of the estimated biophysical
parameters on the different estimation methods. For example, D, seemed to be overestimated
when it was estimated via WMTI-Watson, underestimated if it was estimated via WMTI,
and most precisely estimated via SMI. The reason for this model-specific discrepancies
could lie in the individual model-specific assumptions (e.g., different numbers of fitting
parameters for WMTI and WMTI-Watson or an introduced bias due to the supervised

machine learning regression).
8.3 Suggestions for future research and further development of ACID

The ACID toolbox now provides a complete framework to pre-process and analyze dMRI
datasets. However, due to the modular organization, the implementation of new methods
which involve, e.g., phase data could be an interesting opportunity. In ACID, for example,
the Real Diffusion Reconstruction method is already implemented, which uses the phase
data to extract the “real” part of the complex signal, e.g., to ensure Gaussian noise properties.
Also, denoising has become relevant and an actual research topic in dMRI (e.g., (Manzano
Patron et al., 2024)). Therefore, new denoising algorithms which use, for example, phase
data (e.g., NORDIC (Moeller et al., 2021)) could become relevant and worth to be
implemented into ACID.

From the code development side, a reimplementation of ACID from MATLAB to python
could become an interesting future project as it would allow the use of ACID without any
need for MATLAB. Alternatively, the standalone version of ACID can be used, although it
does not allow a direct connection to the used code (compiled black box). However, this
change would also require detaching from the SPM framework, which would lead to the loss
of the SPM community and additional work for replicating the in ACID used SPM functions

and GUI in python.
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Another development project could be expanding the test system as it currently checks for
the identity of test output and ground truth but not for all option combinations. However,
implementing a system that checks all option combinations iteratively would require
significant additional work. Before embarking on such an endeavor, it is crucial to determine

if the current system is already sufficient, as it ensures general functionality.
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9 Zusammenfassung auf Englisch

Diffusion MRI (dMRI) has emerged as a significant imaging technique in neuroscience,
gaining increasing clinical relevance due to its ability to non-invasively detect diffusion
changes in the microstructure. While most research still focuses on the brain, there is an
increasing interest in utilizing dMRI to investigate the spinal cord and ex vivo tissue
specimens. These types of measurements are particularly relevant for studying spinal cord
injuries and validating biophysical models using ex vivo tissues. Also, the scientific use of
big data and machine learning applications for investigating, for example, large numbers of
dMRI datasets to estimate novel biomarkers by merging all tissue structure information, is
becoming increasingly relevant.

In this thesis, a toolbox was developed that is the first to fulfill all these demands of analyzing
brain, spinal cord, and ex vivo specimens in a way which is automatable and applicable for
big data analyses. This was achieved by adding additional tissue type-specific preprocessing
options via code extensions and new modules to an existing brain dMRI analysis toolbox
named ACID. Analysis pipelines were created for each type of tissue to provide automated
analyses for large numbers of datasets. Additional modules were implemented, which enable
ACID to now cover the entire processing chain from raw DICOM data to group-level
statistics within a single software package. To implement this in a standardized way, the
Brain Imaging Data Structure (BIDS) was integrated into ACID. This ensures compatibility
with other BIDS-compliant software and aligns with the growing availability of large
databases utilizing the BIDS format. The code structure of ACID was completely
reorganized, and the modules of ACID are now fully modularized to enable a flexible and
easy-to-extend code framework. The FAIR principles are now harmonized with ACID to
fulfill the standards for a valuable and reusable academic software.

Comparisons of several modules and methods (e.g., biophysical parameter estimation
methods, influence of Rician bias correction (RBC) on parameter estimation, or denoising
methods) were performed to analyze the best module selection in dependence on the
acquired tissue type/SNR.

The comparison of the two biophysical models NODDI-DTI and WMTI-Watson showed
that NODDI-DTI performs better for spinal cord and WMTI-Watson better for brain
datasets, which indicates a SNR dependency for both methods.

The results for the influence of RBC on the estimation of biophysical parameters showed
that RBC slightly decreases the mean kurtosis for the brain and spinal cord datasets, which
resulted in an increase of the biophysical Watson concentration parameter K.

Due to its now implemented modularity, several denoising methods, even from other
toolboxes, could be integrated into ACID. Therefore, it was possible to perform a
comparison of the now in ACID implemented denoising methods LPCA, MPPCA, and
msPOAS, which indicated a general improvement through denoising for low SNR data but
no improvement for high SNR data. For msPOAS, even an additional bias became noticeable
for high SNR data.

To demonstrate the new in ACID implemented processing workflow starting from raw
DICOM data to, e.g., statistical analysis via SPM, an exemplary group analysis of four brain
dMRI datasets acquired on the same scanner was performed to compare the implemented
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biophysical parameter estimation methods. The results showed that the biophysical
parameter estimation is not stable over the different used estimation methods (SMI, NODDI-
DTI, WMTI, and WMTI-Watson) in white matter for all parameters. This indicates that the
biophysical estimates were dependent on the different model assumptions.
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10 Zusammenfassung auf Deutsch

Diffusionsgewichtete Magnetresonanzspektroskopie (dMRI) hat sich als signifikante
Bildgebungstechnik fiir Neurowissenschaften erwiesen, welche eine wachsende klinische
Relevanz durch die Moglichkeit, nicht-invasiv Diffusionsédnderungen in Mikrostrukturen zu
detektieren, erhdlt. Wéhrend sich die meiste Forschung nur auf das Gehirn fokussiert, erfahrt
die Untersuchung von Riickenmark und ex vivo Proben mittels dMRI ein wachsendes
Interesse. Diese Arten von Messungen sind insbesondere interessant, um Verletzungen des
Riickenmarks zu untersuchen oder zur Validierung von biophysikalischen Modellen mittels
ex vivo Gewebe. Auch der wissenschaftliche Nutzen fiir ,,Big Data* und maschinelles
Lernen zur Untersuchung von beispielsweise grolen dMRI-Datensitzen zur Bestimmung
von neuartigen Biomarkern durch das Kombinieren aller Gewebeinformationen erféhrt eine
zunehmende Relevanz.

In dieser Doktorarbeit wurde eine Toolbox entwickelt, welche als erste all diese
Anforderungen zur automatisierbaren und fiir ,,Big Data* nutzbaren Analyse von Gehirn,
Riickenmark und ex vivo Proben erfiillt. Dies wurde erreicht durch das Hinzufiigen von
gewebetypspezifischen Vor-Verarbeitungsoptionen durch Erweiterungen des Codes und das
Hinzufiigen neuer Module in eine bereits existierende Gehirn dMRI Toolbox namens ACID.
Analyse Pipelines wurden fiir jeden Gewebetyp generiert, um eine automatisierte Analyse
von groBBen Datensétzen zu ermdglichen. Zusitzliche Module wurden integriert, damit ACID
die vollstindige Datenverarbeitungskette von DICOM Rohdaten zu Gruppenstatistik
innerhalb eines einzigen Softwarepaketes anbieten kann. Um dies in einer standardisierten
Weise zu ermoglichen, wurde die Brain Imaging Data Structure (BIDS) in ACID integriert.
Dies stellt eine Kompatibilitét zu anderer BIDS konformer Software sicher und ermdglicht,
dass ACID damit zu der wachsenden Zahl an groen Datenbanken kompatibel ist, die den
BIDS-Standard nutzen. Die Codestruktur von ACID wurde vollstindig reorganisiert und die
Module von ACID wurden vollstindig modularisiert, um eine flexible und einfach zu
erweiternde Codeumgebung zu ermoglichen. Die FAIR Prinzipien wurden mit ACID
harmonisiert, um den Standard einer niitzlichen und wiederverwendbaren akademischen
Software zu erfiillen.

Es wurden Vergleiche verschiedener Module und Methoden durchgefiihrt (bspw. Methoden
zur Bestimmung biophysikalischer Parameter, Einfluss der Rician-Bias-Korrektur (RBC)
auf die Parameterbestimmung oder ein  Vergleich von  verschiedenen
Entrauschungsmethoden), um zu analysieren, welches Modul die beste Wahl darstellt, in
Abhidngigkeit des Gewebetyps und/oder SNR.

Der Vergleich der beiden biophysikalischen Methoden NODDI-DTI und WMTI-Watson
zeigte, dass NODDI-DTI bessere Ergebnisse fiir Riickenmarksdaten lieferte, wéhrend
WMTI-Watson bessere Ergebnisse flir Gehirndaten zeigte. Dies deutet auf eine SNR-
Abhiangigkeit beider Methoden hin.

Die Ergebnisse fiir den Einfluss der Rician-Bias-Korrektur (RBC) auf die Bestimmung von
biophysikalischen Parametern zeigten, dass RBC die Werte der mittleren Kurtosis fiir
Gehirn- und Riickenmarksdaten leicht senkte, was in einer Erhdhung des biophysikalischen
Watson-Konzentrationsparameters « resultierte.
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Aufgrund der nun  implementierten = Modularitit ~ konnten  verschiedene
Entrauschungsmethoden (sogar von anderen Toolboxen) in ACID integriert werden. Daher
war es moglich, einen Vergleich aller nun in ACID integrierten Entrauschungsmethoden
(LPCA, MPPCA und msPOAS) durchzufiihren, welcher einen generellen Nutzen fiir
Datensitze mit niedrigem SNR, aber keinen Nutzen fiir Datensdtze mit hohem SNR
aufzeigte. Fiir msPOAS wurde ein zusétzlicher Bias fiir Datensétze mit hohem SNR sichtbar.
Um den in ACID neu implementierten Arbeitsablauf, beginnend bei den DICOM Rohdaten
bis zu bspw. statistischen Analysen mittels SPM, zu demonstrieren, wurde eine beispielhafte
Gruppenanalyse fiir vier Gehirn-dMRI Datensétze, welche am selben Scanner aufgenommen
wurden, durchgefiihrt, um ein Vergleich der implementierten biophysikalischen
Parameterbestimmungsmethoden durchzufiihren. Die Ergebnisse zeigten, dass die
biophysikalische Parameterbestimmung nicht stabil iiber alle untersuchten Methoden (DKI,
SMI, NODDI-DTI, WMTI und WMTI-Watson) und Parameter in weiler Gehirnsubstanz
war. Dies deutet darauf hin, dass die biophysikalischen Schétzungen in Abhidngigkeit zu den
verschiedenen Modellannahmen stehen.
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11 List of abbreviations

e ACID A Comprehensive Toolbox for Image Processing and

Modeling of Brain, Spinal Cord, and Ex Vivo Diffusion MRI Data

o AD Axial Diffusivity

o AK Axial Kurtosis

o AW Axial Kurtosis Tensor

o AWF/f Axonal Water Fraction

e BIDS Brain Imaging Data Structure

e COV coefficient of variation

e D, Intra-axonal Diffusivity

* De¢par Parallel Extra-axonal Diffusivity

* Deperp Perpendicular Extra-axonal Diffusivity
e DKI Diffusion Kurtosis Imaging

e dMRI diffusion Magnetic Resonance Imaging
e DTI Diffusion Tensor Imaging

e DWI Diffusion Weighted Imaging

e EC Eddy Currents

¢ ECMOCO Eddy-Current and Motion Correction

e FA Fractional Anisotropy

e FOV Field Of View

e FSL FMRIB Software Library

e GUI Graphical User Interface

e HF High frequency

e HySCO Hyperelastic Susceptibility Artifact Correction
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LPCA

MD

MK

MP-PCA

msPOAS

MW

NLLS

NODDI

ODI

OLS

(%)

RD

RK

ROI

RW

SMI

SNR

SPM

TE

WLS

WMTI-Watson

Watson Concentration Parameter
Local Principal Component Analysis
Mean Diffusivity

Mean Kurtosis

Marchenko-Pastur Principal Component Analysis

Multi-shell Position-Orientation Adaptive Smoothing

Mean Kurtosis Tensor

Non-linear Least Squares

Neurite Orientation Dispersion and Density

Orientation Dispersion Index
Ordinary Least Squares
Anisotropy

Rician Bias Correction
Radial Diffusivity

Radio frequency

Radial Kurtosis

Region of interest

Radial Kurtosis Tensor
Standard Model Imaging
Signal-to-Noise Ratio
Statistical Parametric Mapping
Echo Time

Weighted Least Squares

White Matter Tract Integrity - Watson
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12 Tools

DeepL, was used for the following purpose:
— Grammar and spelling checks
Apple Intelligence (MacBook M1), was used for the following purposes:
— Improving sentences and passages for their readability and flow
— Grammar and spelling checks
ChatGPT version 5, OpenAl (https://chatgpt.com), was used for the following purposes:
— Creating code and caption for Figure 7

— Literature search
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15 Table of figures

Figure 1: Net Magnetization, rf pulses and flip angle. a) At equilibrium, the net
magnetization, M0 is at equilibrium, aligned along the z-axis. b). When a rf pulse is applied,
MO0 makes an angle with the z-axis, known as the flip angle, and rotates around the axis in
the direction of the curved arrow. At any instant the magnetisation can be split into two
components, Mz and Mxy. The rotating Mxy component generates the detectable MR
signal. ¢) The maximum detectable signal amplitude after a single rf pulse occurs when M0
lies entirely in the plane of the x and y axes as this gives the largest Mxy component. This
pulse has a 90° flip angle and is referred to as a 90° rf pulse or saturation pulse. d) A 180° rf
refocusing pulse is usually applied while there is transverse magnetisation already rotating
in the xy plane and is used to instantaneously flip the transverse component of magnetisation
through 180° about an axis also rotating in the xy plane. €) A 180° inversion pulse is usually
applied at equilibrium and is used to rotates the net magnetization through 180° from the
positive to the negative z-axis. This is also known as a magnetization preparation pulse and
is used is the preparation scheme for black blood imaging techniques. Source: Figure and

modified caption reproduced from (Ridgway, 2010), published under CC BY 2.0 license.

Figure 2: Generating a gradient echo. This diagram shows how the reversal of a magnetic
field gradient is used to generate a gradient echo. The application of the 1st positive magnetic
field gradient causes rapid de-phasing of the transverse magnetization, Mxy, and therefore
the FID signal to zero amplitude. The application of the 2nd negative magnetic field gradient
reverses the de-phasing caused by the first gradient pulse, resulting in recovery of the FID
signal to generate a gradient echo at the echo time, TE. Extension of the time duration of the

second gradient to twice that of the first gradient causes the FID to then de-phase to zero.
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The maximum amplitude of the echo depends on both the T2 * relaxation rate and the chosen
TE. Source: Figure and modified caption reproduced from (Ridgway, 2010), published
under CC BY 2.0 LICENSE. ..c..oouiiiieiiiiiiiieiinieeieeeetee ettt 20
Figure 3: Generating a spin echo. The presence of magnetic field inhomogeneities causes
additional de-phasing of the proton magnetic moments. The Larmor frequency is slower
where the magnetic field is reduced and faster where the field is increased resulting in a loss
or gain in relative phase respectively. After a period of half the echo time, TE /2, the
application of a 180° rf pulse causes an instantaneous change in sign of the phase shifts by
rotating the spins (in this example) about the y axis. As the differences in Larmor frequency
remain unchanged, the proton magnetic moments the move back into phase over a similar
time period, reversing the de-phasing effect of the magnetic field inhomogeneities to
generate a spin echo. In addition to the effect of the 180° refocusing pulse, gradients are
applied to de-phase and re-phase the signal for imaging purposes. Note that for spin echo
pulse sequences, the second gradient has the same sign as the first, as the 180° pulse also
changes the sign of the phase shifts caused by the first gradient. Source: Figure and caption
reproduced from (Ridgway, 2010), published under CC BY 2.0 license..........ccccecuvenneeneee. 21
Figure 4: Image formation, Step 1 - Selecting a slice. For step 1 of image formation process,
a slice of tissue is selected by applying a magnetic field gradient Gs at the same time as the
rf excitation pulse. The position along the gradient (in this example along the z axis)
determines the Larmor frequency and resonance only occurs where this matches the
frequency of the rf pulse, fo, defining a plane (slice) of tissue perpendicular to the z-axis. In
practice the rf pulse is applied over a small range of frequencies, thus defining the thickness

of the slice. Source: Figure and modified caption reproduced from (Ridgway, 2010),

published under CC BY 2.0 HCENSE.......eeoviiriiieiieiieeieesiie ettt 23
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Figure 5: Image formation, Steps 2 & 3 - Phase and frequency encoding. For step 2 of the
image formation process, a phase encoding gradient, Gp, is applied in a direction along the
selected image plane (in this case the phase encoding direction is along the y-direction). This
causes a range of phase shifts of the proton magnetic moments dependent on their position
along the gradient as well as the slope and duration of the gradient. For step 3, following the
phase encoding gradient, the frequency encoding gradient, Gr, is applied also in the plane of
the selected slice but perpendicular to the phase encoding direction. The MR signal echo is
measured during this period. The frequency encoding gradient determines the Larmor
frequency according to position along its direction (in this case, the x direction). The
detected MR signal from the slice of tissue is therefore comprised of many different
frequencies. The field of view is predefined and matched to a specific range of frequencies,
referred to as the receiver bandwidth. Source: Figure and modified caption reproduced from
(Ridgway, 2010), published under CC BY 2.0 [icense. .........cccceereeriienieniieieeieeiee e 24
Figure 6: Illustration of tissue-boundary sparsity variation with a brain image. A central and
an outer k-space region may each generate an image by inverse Fourier transform. The image
generated from outer k-space data have higher tissue-boundary sparsity than that from
central k-space data. Correspondingly, the correlation function shows a stronger spread-out
pattern around the k-space center, indicating more neighboring data are correlated in the
outer than in the central k-space. This k-space variant data correlation associated with tissue-
boundary sparsity is used to improve correlation imaging in the presented work. Source:
Figure and caption reproduced from (Li et al., 2018). Published online 7 July 2017 in Wiley
Online Library (wileyonlinelibrary.com). © 2017 International Society for Magnetic
Resonance in MEdICINE. ........c.uouiiiiiriniiniiiieiieteeeteee ettt s 26
Figure 7: Simplified spin-echo dMRI pulse sequence (PGSE + SE-EPI). First, a slice

selective 90° RF pulse is applied. Two trapezoidal diffusion lobes (Guifr) are applied with the

143



same hardware polarity; the 180° RF pulse is placed midway between their effective centers
(including ramps). Readout and phase-encoding begin after the second lobe, and the readout
is centered at the peak of TE. The RF panel overlays an echo train whose amplitudes follow
a T>* envelope (peak at TE) with global T> scaling. Plotting code, and caption was created
by the use of ChatGPT5 (https://chatgpt.cOm/). ......covuieviieiiiiiiieiieieeeee e 28
Figure 8: Visualization of the diffusion ellipsoid before (left) and after (right)
diagonalization. Diagonalization does not affect the size of the ellipsoid but align the axes
with the reference frame. ............ccooiiiiiiiiiii e 32
Figure 9: Three in-plane EC distortions are corrected by the affine, slicewise registration
approach: translation, shearing, scaling. In this slicewise representation, the translation
parameter depends on the homogenous part of the EC-field and on the z-component of the
EC gradient. If the EC distortions as revealed by whole-brain registrations are evaluated in
three dimensions, a fourth, additional affine deformation (¢through-plane shearing kyz) can
be related to first-order eddy-current effects, leading to a unique correspondence between
EC field components and EC distortions (c is a proportionality constant, involving sequence
parameters). Source: Figure and caption reproduced from (Mohammadi et al., 2010).
Published online 22 June 2010 in Wiley Online Library (wileyonlinelibrary.com). © 2010
WILEY-LUSS, INC. 1.ttt ettt et e et e e e et e e sateenseesnnas 36
Figure 10: Structure of SPM and the integration of ACID into it visualized via an
organigram. The SPM Software provides three parts: The SPM functions, the SPM Batch,
and the SPM GUI. The ACID toolbox provides the main configuration file, the module
configuration file, the module functions, and additional ACID functions. ACID is integrated
into the SPM Batch system via the main configuration file. Every ACID module has its own
module configuration file which is named for initialization in the main file. The module
configuration file calls the module functions with the in the batch/GUI defined parameters.

The module functions are using ACID functions (e.g., for data import) and both have also
144



the possibility to use SPM functions (e.g., spm_coreg for coregistration or spm_vol for
import of 3D NIfTI headers). This organization makes it easy to implement new modules
(e.g., from external sources), as the module functions only need a few adaptations via ACID
functions (e.g., for data handling/naming) and can be linked to a new ACID module
configuration file which directly enables an integration into the ACID/SPM batch
CCOSYSERITL. .. eeutteeeitieeeitieeeitte et teettee ettt e satteeeabeeesateeesabee e st eeensseesasseesnsbeesasteesaseeenaseeennbeeenneas 41
Figure 11: The image shows the SPM Batch Editor with the ACID module Diffusion
Kurtosis Imaging (DKI) selected. The mandatory inputs are indicated by “<-X”. For the most
parameters (e.g., “b-values™), additional information is provided in the lower box. .......... 43
Figure 12 : The image shows the SPM Batch Editor with the ACID modules msPOAS, and
Diffusion Kurtosis Imaging (DKI) selected. For the first mandatory input of DKI, “Input
images”, the dependency “DEP msPOAS: Denoised images” is selected. This has the effect
that the denoised output images of msPOAS are handed directly to the DKI module without
any user iNteraction NEEAEM. .........cceriiriiiiiiiiriee ettt 44
Figure 13: Example of a saved batch script. In this script, the modules msPOAS and DKI
are executed one after another. The fields “MATLAB _CODE TO FILL INPUT” have to
be filled with the corresponding input parameter. This enables the possibility to execute this
batch script with different datasets and/or parameters through a “for” loop. If the dependency
in Figure 12 would be set before saving the script, the DKI Input “Input Images” would not
appear in the saved script as it is internally Set..........coceeveriiniinieniiiniineeeeeeee 45
Figure 14: Example of renamed files which are part of the ACID toolbox. In the left panel,
the old unstructured filenames are displayed. In the right panel, the renamed files are shown.
A structured naming system is implemented based on “acid” as a prefix followed by the
module name the file is contributing to (e.g., ecmoco, or tbx_cfg for main files). ............. 50
Figure 15: Example of JSON file extraction in ACID. On the left, a part of the JSON file

from an example dataset is shown. The parameter fields of Echo Time (TE) (yellow) and
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protocol name (red) are marked. These are extracted among other values in a dedicated .txt
file, which is formatted in a format easy for humans to understand. ............c.ccoeeuverneennenne 51
Figure 16: Example of the output structure of ACID. On the left, the folder names are
displayed, showing the name for each module that was used in the executed pipeline. If a
module is executed again in the same run, a new folder with the extension “-Run_#” is
created. On the right side, the content of the “WMTI-WATSON-PLUS” is shown. The
“ desc” field in the filename shows all used modules in the executed order. This makes it

easier for the user to recognize which modules have been applied to this data and in which

Figure 17: Registration scheme for an example dMRI dataset, which consists of two sets of
non-diffusion-weighted (b0) volumes (n volumes each) and two sets of diffusion-weighted
(DW) volumes (N volumes each) interspersed with each other. The b0 and DW volumes
form separate registration groups and are registered to their corresponding target volumes.
First, the b0 volumes are registered using the rigid-body components of the specified degrees
of freedom (DOF), followed by the registration of the DW volumes using all specified DOF.
The parameter iteration for a given b0 or DW can be initialized using previously obtained
transformation parameters (initialized registration). Source: Figure and caption reproduced
from (David et al., 2024), published under CC BY 4.0 license...........cccceevueerirerueenreennens 59
Figure 18: Definition of noise regions of interest (ROI) for the repeated measures noise
estimation method. Binary noise ROIs are outlined in red. For in vivo brain and spinal cord
dMRI, we recommend creating a noise ROI within the cerebrospinal fluid (CSF), such as
the lateral ventricles in the brain and the subarachnoid space in the spinal cord, on the b0
images. Subsequently, we recommend estimating the noise on the images with the highest
b-value (ideally above 1500 smm2) within the CSF mask. For ex vivo dMRI, the noise ROI
is recommended to encompass the specimen itself, but noise estimation should be applied

only on the b0 images. Since ex vivo dMRI is not affected by physiological artifacts, signal
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variations across the b0 images are considered noise. Source: Figure and modified caption
reproduced from (David et al., 2024), published under CC BY 4.0 license....................... 62

Figure 19: Comparison of maps obtained from fitting the diffusion kurtosis model (ex vivo
dataset; refer to Table 2 for details on the dataset), including fractional anisotropy (FA), axial
diffusivity (AD), mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial kurtosis
tensor (RW) with and without applying adaptive denoising (msPOAS). The msPOAS-
corrected maps appear less noisy while preserving tissue edges. Source: Figure and caption
reproduced from (David et al., 2024), published under CC BY 4.0 license....................... 64
Figure 20: Schematic illustration of how robust fitting down-weights outliers in the model
fit. The scatter plot shows the logarithm of diffusion-weighted voxel intensities against the
squared cosine of the angle y between the diffusion gradient direction (bvec) and the
direction of the first eigenvector in a corpus callosum voxel (see blue crosshairs for location).
Blue crosses in the scatter plot indicate data points not affected by artifacts (“No outliers”),
while cyan crosses indicate data points affected by strong artifacts (“Outliers”). Outliers
were generated by removing the center of the k-space of the original image to illustrate the
effect of strong motion artifacts. Two example images corresponding to a nonartifactual
(“No outlier,” top image) and an artifactual data point (“Outlier,” bottom image) are shown
on the right. During the model fit, a linear curve is fitted to the logarithmic voxel intensities.
The presence of outlier data points leads to a biased model fit (red line) and consequently
biased tensor estimates when using ordinary least squares (OLS) model fitting. In contrast,
robust fitting down-weights the influence of outliers, leading to a more accurate model fit
(orange line) which is closer to the ground truth (green line) obtained by an OLS fit to the
nonartifactual data points (blue crosses) only. Source: Figure and caption reproduced from

(David et al., 2024), published under CC BY 4.0 license. ........cccceeveeenierciieneenieenieeeene 66
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Figure 21: Kurtosis bias in the mean diffusivity (M D) maps in an in vivo brain and in vivo
spinal cord dataset (refer to Table 2 for details on the dataset). This bias, shown in the right
column, refers to the difference in the estimated diffusivity values when using the lower
diffusion shells only (MDDTI, tensor model, left column) or both the lower and higher
diffusion shells (M DDK]I, kurtosis model, middle column). On average, the kurtosis bias was
12% and 54% within the brain white matter and the whole spinal cord, respectively. Source:
Figure and modified caption reproduced from (David et al., 2024), published under CC BY
4.0 LICEMISC. ..ttt ettt ettt ettt s eae st 68
Figure 22: Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo
brain, in vivo spinal cord, and ex vivo dMRI dataset (refer to Table 2 for details on the
dataset). Shown are maps of fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), radial diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK), and radial
kurtosis (RK). Source: Figure and modified caption reproduced from (David et al., 2024),
published under CC BY 4.0 HICENSE.......ocoviiiiieiieiieeieeciie ettt ettt 69
Figure 23: Maps of biophysical parameters derived from the WMTI-Watson model using an
in vivo brain, in vivo spinal cord, and ex vivo dMRI dataset (refer to Table 2 for details on
the dataset). Shown are maps of Watson concentration parameter (k), axonal water fraction
(f), parallel and perpendicular extra-axonal diffusivities (De, par and De, perp), and intra-
axonal diffusivity (Da). Note that for the in vivo spinal cord dataset, the maximum b-value
(b = 1500 smm2)) was probably too low for an accurate estimation of De, par, resulting in
voxels with negative (hence unphysical) values within the spinal cord. Since WMTI-Watson
is a white matter biophysical model, the parameter maps were masked for the white matter
in the brain dataset. For the spinal cord and ex vivo specimen, we refrained from masking

for the white matter due to the difficulty of obtaining an accurate white matter mask. Source:
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Figure and modified caption reproduced from (David et al., 2024), published under CC BY

4.0 LICEMISC. ..ottt ettt a e eae et 71
Figure 24: Merging of two fractional anisotropy (FA) maps, covering the brain and cervical
cord, respectively, into a unified FA map using the Fusion utility function. The two images
should ideally share an overlapping region, but they may have different geometric properties
such as resolution and number of slices. In the overlapping region, the voxel intensity values
are computed as the average of the intensity values from the two images. The merging
process requires a structural image as the registration target. The combined FA map is
resampled onto the higher resolution structural image, resulting in a smoother appearance.
Source: Figure and modified caption reproduced from (David et al., 2024), published under
CC BY 4.0 LICENSE. ...eeoniniiniitieiieieei ettt ettt ettt sbe st st 75
Figure 25: Standard processing pipelines for typical (A) in vivo brain, (B) in vivo spinal
cord, and (C) ex vivo dMRI datasets (refer to Table 2 for details on the datasets and Table 3
for details on the pipeline settings). Example batches for each type of dMRI data are stored
in the Example Batches folder of the toolbox. The positions of the displayed slices of the
dMRI data are indicated in purple on the corresponding structural images. For the ex vivo
specimen (C), the brain region from which the sample was extracted is highlighted in an
orange box. Although not explicitly shown here, noise estimation should be performed on
the unprocessed data (see Appendix C), which serves as input for msPOAS, Rician bias
correction, and diffusion tensor fitting (for fitting methods WLS and robust fitting).
However, in case of substantial misalignments across volumes, and when using the repeated
measures noise estimation method, it might be beneficial to perform this step after
ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-in visual
comparison is shown between a diffusion-weighted (DW) image before (middle row) and

after applying msPOAS (bottom row); the msPOAS-corrected image appears less noisy
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while preserving tissue edges. For HySCO, contour lines of the corresponding structural
image (displayed as red lines) are overlaid on a zoomed-in DW image both before (middle
row) and after applying HySCO (bottom row). HySCO improves the alignment between the
DW and the structural image. For the in vivo brain dMRI dataset (A), an inferior slice is
shown that presents high susceptibility-related distortions, making the effect of HySCO
more visible. For the ex vivo dMRI dataset (C), the effect of HySCO is shown in a slice
(illustrated in yellow) orthogonal to the original one (illustrated in purple) to better visualize
susceptibility-related distortions and their correction. Note that HySCO is applied as the final
preprocessing step, that is, after applying msPOAS; however, the HySCO field map used for
“unwarping” the diffusion-weighted images is estimated on the ECMOCO-corrected
datasets, that is, before applying msPOAS. Rician bias correction (not explicitly shown here)
should be applied either before (recommended: between msPOAS and HySCO, using the
RBC module) or during model fitting (using the Rician bias correction option in NLLS).
Diffusion signal models are fitted on the processed dataset; here, we display the maps of
fractional anisotropy (FA) and mean kurtosis tensor (MW) from diffusion kurtosis imaging
(DKI). The output from DKI can be used to compute biophysical parameters of the white
matter; shown here is the map of Watson concentration parameter (k) from the WMTI-
Watson biophysical model. Note that for the in vivo brain dMRI dataset, the inferior slice
displayed contains relatively little white matter; hence, we refrained from using a white
matter mask. The less smooth appearance of the k map is due to the low values in the gray
matter. Source: Figure and modified caption reproduced from (David et al., 2024), published
under CC BY 4.0 LICENSE. ..c..eouiiuiiiiiiiiiiiniinieeiteictee ettt 82
Figure 26: Bar plots displaying the Watson concentration parameter (k) and axonal water
fraction (AWF) within the five central slices of the corpus callosum and the lateral
corticospinal tracts in the spinal cord (refer to Table 2 for details on the datasets). The corpus

callosum was manually segmented, while the lateral corticospinal tracts were segmented
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using the PAMS50 spinal cord white matter atlas. The regions of interest are highlighted as
red segmentation lines on the images. In the box plots, red horizontal lines represent
literature values obtained from histology, while the red dotted line represents a literature
value from the brain due to the absence of a corresponding value for the spinal cord. Values
of orientation dispersion index reported in the literature were converted to k using Equation
(1) in (Mollink et al., 2017). Within the corpus callosum, k values were (mean =+ std) 10.82
+ 10.31 and 8.14 + 5.13 when derived from the NODDI-DTI (single shell) and WMTI-
Watson model (two shells), respectively. These values fall within the range of literature
values obtained post-mortem using polarized light imaging (Mollink et al., 2017). AWF
values derived from NODDI-DTI (0.40 £+ 0.24) and WMTI-Watson model (0.47 £ 0.13)
were similar to literature values obtained using electron microscopy in a cynomolgus
macaque (Stikov et al., 2015). Within the lateral corticospinal tracts, k values derived from
NODDI-DTI were notably lower than those derived from WMTI-Watson (2.53 £ 0.19 vs.
6.04 £ 1.84) and were consistent with literature values obtained in a post-mortem specimen
(Grussu et al., 2017). AWF values derived from the WMTI-Watson model in the spinal cord
were substantially higher (0.81 £ 0.03) compared to a literature value obtained in the brain
(red dotted line). The estimation of AWF for the spinal cord was not feasible using the
NODDI-DTI model, as DTI-derived mean diffusivity (MD) values fell below the range
where the NODDI-DTI model provides a valid representation (refer to Equation (4) in
(Edwards et al., 2017)). This discrepancy could be attributed to either the underestimation
of MD due to kurtosis bias (Figure 21) or the invalidity of fixed compartmental diffusivities
in the NODDI-DTI model. These results indicate that WMTI-Watson yields more accurate
estimation of k and AWF for the brain, while NODDI-DTI yields a more accurate estimation

of k for the spinal cord. This could be a consequence of non-optimal b-values for kurtosis
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estimation in the spinal cord. Source: Figure and modified caption reproduced from (David
et al., 2024), published under CC BY 4.0 JiCENSE. ..c..covuerrerieniiriiniieniiiienieeieeesieeee e 89

Figure 27: The impact of Rician bias correction (RBC) on maps of biophysical parameter
estimates, derived from the NODDI-DTI and WMTI-Watson models, including Watson
concentration parameter (k) and axonal water fraction (AWF), in an in vivo brain and spinal
cord dataset (refer to Table 2 for details on the datasets). Being derived from white matter
biophysical models, the parameter maps were masked for the white matter in the brain
dataset. For the spinal cord, we refrained from masking due to the difficulty of obtaining an
accurate white matter mask. These maps were computed both without (left column) and with
(middle column) RBC; their voxel-wise difference, referred to as the Rician bias, is shown
in the right column. RBC slightly decreased the mean of the kurtosis tensor in both the brain
and spinal cord, which resulted in an increase in k. The estimation of AWF using the
NODDI-DTI model was not feasible in the spinal cord, as the mean diffusivity (MD) values
derived from DTI fell below the range where the NODDI-DTI model provides a valid
representation (refer to Equation (4) in (Edwards et al., 2017)). This discrepancy could be
attributed to either the underestimation of MD due to kurtosis bias (Figure 21) or the
invalidity of fixed compartmental diffusivities in the NODDI-DTI model. Source: Figure
and modified caption reproduced from (David et al., 2024), published under CC BY 4.0
LICEIISE. ettt b ettt a e b st 91
Figure 28: Qualitative illustration of the effect of denoising on maps derived from diffusion
kurtosis imaging (DKI). Shown are maps of axial diffusivity (AD), radial diffusivity (RD),
mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial kurtosis tensor (RW).
The maps were obtained by fitting the kurtosis model to simulated noisy dMRI data (signal
+ noise) with a signal-to-noise ratio (SNR) of 5, both before (no denoising) and after

employing different denoising methods (msPOAS, LPCA, MP-PCA). The DKI metric maps
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obtained from the simulated noise-free dMRI data (signal only) are also shown for
comparison (ground truth). The white matter mask used for calculating the normalized root-
mean-square error (NRMSE) between the obtained DKI metrics and the ground truth is
overlaid as a red segmentation line on the ground truth maps. Source: Figure and modified
caption reproduced from (David et al., 2024), published under CC BY 4.0 license........... 94
Figure 29: Quantitative illustration of the effect of denoising on maps derived from diffusion
kurtosis imaging (DKI) (one noise realization). The plots show the normalized root-mean-
square error (NRMSE) between (i) DKI metrics obtained from simulated noisy dMRI data
(signal + noise) with varying signal-to-noise ratios (SNR), both before (no denoising) and
after employing different denoising methods (msPOAS, LPCA, MP-PCA), and (ii) DKI
metrics obtained from noise-free AMRI data (signal only). NRMSE was computed across
white matter voxels (see Figure 28 for the white matter mask) for the following DKI metrics:
axial diffusivity (AD), radial diffusivity (RD), mean kurtosis tensor (MW), axial kurtosis
tensor (AW), and radial kurtosis tensor (RW'). Denoising methods reduced NRMSE from the
ground truth compared with the “no denoising” scenario only in the low-SNR domain,
although not consistently for all DKI metrics. At high SNRs (above 30—40), denoising
increased NRMSE for all DKI metrics, except for the MP-PCA method, which yielded
results comparable with the “no denoising” scenario. Source: Figure and modified caption
reproduced from (David et al., 2024), published under CC BY 4.0 license............c......... 95
Figure 30: Quantitative illustration of the effect of denoising on maps derived from diffusion
kurtosis imaging (DKI). The plots show the relative difference in DKI metrics obtained from
simulated noisy dMRI data (signal + noise) with varying signal-to-noise ratios (SNR) after
employing different denoising methods (msPOAS, LPCA, MP-PCA) to those obtained
without denoising (one noise realization). The relative difference was computed across white

matter voxels (see Figure 28 for the white matter mask) for the following DKI metrics: axial
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diffusivity (AD), radial diffusivity (RD), mean kurtosis tensor (MW), axial kurtosis tensor
(AW), and radial kurtosis tensor (RW). Denoising introduced substantial improvements in
the investigated DKI metrics only in the low-SNR domain, although not consistently across
all DKI metrics. When using msPOAS and LPCA, the relative differences were greater
compared with using MP-PCA, with msPOAS introducing the highest bias. At high SNRs
(above 30—40), the relative difference to the “no denoising” scenario was negligible for MP-
PCA. Source: Figure and modified caption reproduced from (David et al., 2024), published
under CC BY 4.0 LICENSE. ..c..eouiiuiiiiiiiiiiiniiniceiteectee ettt 96
Figure 31: Visualization of the BIDS-compliant folder structure ACID generates for BIDS-
compliant input datasets. The BIDS storage structure of the raw data is recreated within the
derivatives/ACID folder. This ensures a clear and easy-to-script data storage of the processed
dMRI data Or Parameter MAPS. .....c.eeevieriieriiertieeieenieeeteeteesteesteessreeseessseeseessseenseesssesnseens 99
Figure 32: Visualization of the white and gray matter masks which were used for the further
analysis. The fractional anisotropy (FA) map of all subjects is shown on the upper row. The
red circled area displays the analyzed white matter region (middle row) and gray matter
region (bottom row) for each SUDJECt. ......coocviiiiiiiiiiiiiiie e 100
Figure 33: Quantitative illustration of the statistical analysis of the four via DKI in white
matter analyzed subjects. The mean and standard deviation (black) as well as the subject-
specific values (colored dots) were computed across white matter voxels (see Figure 32 for
the white matter mask) for the following DKI metrics: axial diffusivity (AD), radial
diffusivity (RD), mean diffusivity (MD), axial kurtosis tensor (AW), radial kurtosis tensor
(RW), mean kurtosis tensor (MW), and fractional anisotropy (FA). The across-subject COV
was estimated for FA (25.3%), AD (4.6%), RD (16.5%), MD (6.8%), AW (17.8%), RW

(8.1%), ANA MU (10.0%). . eeveeeeeeeeeeoeeeeeeeeeeeeseeeeeeeeseeeseee e eeseeseeees e eeseeeeseeseeeeeees 101
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Figure 34: Quantitative illustration of the statistical analysis of the four via DKI in gray
matter analyzed subjects. The mean and standard deviation (black) as well as the subject-
specific values (colored dots) were computed across gray matter voxels (see Figure 32 for
the gray matter mask) for the following DKI metrics: fractional anisotropy (FA), axial
diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), axial kurtosis tensor (AW),
radial kurtosis tensor (RW'), and mean kurtosis tensor (MW). The results showed a relatively
high consistency over all DKI parameters; the across-subject COV was estimated for FA

(8.6%), AD (10.9%), RD (11.8%), MD (10.9%), AW (5.2%), RW (6.0%), and MW (3.5%).

Figure 35: Across-subject coefficient of variation maps of the DKI parameter for the four
subjects. Upper row: fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity
(RD), and mean diffusivity (MD). Lower row: axial kurtosis tensor (AW), radial kurtosis
tensor (RW), and mean kurtosis tensor (MW). The maps are mostly homogeneous; however,
for RD and RW, the values are higher in the corpus callosum, which indicates a higher
Variability N thiS Qrea. .........ccieiiiiiieiiieiieee ettt e s e s e nae e 103
Figure 36: : Group mean maps of the DKI parameter for the four subjects. Upper row:
fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean
diffusivity (MD). Lower row: axial kurtosis tensor (AW), radial kurtosis tensor (RW), and
mean kurtosis tensor (MW). The maps are mostly homogeneous; however, for AW, the

values are higher in the corpus callosum, which could indicate an overestimation in this area.

Figure 37: Quantitative illustration of the statistical analysis of the four via SMI analyzed
subjects. The mean and standard deviation (black) as well as the subject-specific values
(colored dots) were computed across white matter voxels (see Figure 32 for the white matter

mask) for the following SMI metrics: axonal water fraction (AWF/f), intra-axonal
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diffusivity (Da), parallel and perpendicular extra-axonal diffusivities (De,par and
De,perp), free water volume fraction (fw), and anisotropy (p2). The results show a
relatively high consistency across all subjects for all SMI parameters; the across-subject
COV was estimated for f (4.0%), Da (1.1%), De, par (2.9%), De, perp (3.3%), fw (3.6%),
ANA P2 (6.990). .ottt 105
Figure 38: Across-subject coefficient of variation maps for the estimated SMI parameter for
the four subjects. Upper row: axonal water fraction (AWF/f), intra-axonal diffusivity (Da),
and parallel extra-axonal diffusivity (De,par). Lower row: perpendicular extra-axonal
diffusivity De, perp, free water volume fraction (fw), and anisotropy (p2). The maps are
mostly homogeneous; however, for De, par, the values are higher in the corpus callosum,
which indicates a higher variability in this area. ...........coocevveereriininieeceee 106
Figure 39: Group mean maps for the estimated SMI parameter for the four subjects. Upper
row: axonal water fraction (AWF/f), intra-axonal diffusivity (Da), and parallel extra-axonal
diffusivity (De,par). Lower row: perpendicular extra-axonal diffusivity De,perp, free
water volume fraction (fw), and anisotropy (p2). The maps are mostly homogeneous... 107
Figure 40: Quantitative illustration of the statistical analysis of the four via NODDI-DTI
analyzed subjects. The mean and standard deviation (black) as well as the subject-specific
values (colored dots) were computed across white matter voxels (see Figure 32 for the white
matter mask) for the following NODDI-DTI metrics: axonal water fraction (AWF/f) and
anisotropy (p2). The results show a high consistency over both NODDI-DTI parameters; the
across-subject COV was estimated for AWF/f (1.5%) and p2 (2.5%). cceevvvevveecvvenneanee. 108
Figure 41: Across-subject coefficient of variation (COV) maps for the estimated NODDI-
DTI parameters for the four subjects. Shown are the COV maps: axonal water fraction
(AWF/f), and anisotropy (p2). The AWF/f map is mostly homogeneous; however, for p2,

many voxels (especially in the corpus callosum) are missing, and the values in the region
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where the fit was able to estimate values are relatively high, which indicates a higher
variability in this area. A reason for the missing values could be the invalidity of fixed
compartmental diffusivities in the NODDI-DTI model (see section 5.2.5). ........cccuueee.. 109
Figure 42: Group mean maps for the estimated NODDI-DTI parameters for the four subjects.
Shown are the group mean maps: axonal water fraction (AWF/f), and anisotropy (p2). The
AWF /f map is mostly homogeneous; however, for p2, many voxels (especially in the
corpus callosum) are missing. A reason for the missing values could be the invalidity of
fixed compartmental diffusivities in the NODDI-DTI model (see section 5.2.5)............. 109
Figure 43: Quantitative illustration of the statistical analysis of the four via WMTI-Watson
analyzed subjects. The mean and standard deviation (black) as well as the subject-specific
values (colored dots) were computed across white matter voxels (see Figure 32 for the white
matter mask) for the following WMTI-Watson metrics: axonal water fraction (AWF/f),
intra-axonal diffusivity (Da), parallel and perpendicular extra-axonal diffusivities (De, par
and De, perp), and anisotropy (p2). The results show a relatively high consistency across
all WMTI-Watson parameters; the across-subject COV was estimated for AWF/f (17.2%),
Da (7.4%), De,par (14.6%), De, perp (7.0%), and p2 (21.9%)....c.ccoveereerereeniieiieene 110
Figure 44: Across-subject coefficient of variation maps for the estimated WMTI-Watson
parameter for the four subjects. Shown are the COV maps: axonal water fraction (AWF),
intra-axonal diffusivity (Da), parallel and perpendicular extra-axonal diffusivities (De, par
and De,perp), and anisotropy (p2). The maps are mostly homogeneous; however, for
De, par the values are higher in the corpus callosum, which indicates a higher variability in
EHIS ATEA. ...ueiieitiietect ettt st 111
Figure 45: Group mean maps for the estimated WMTI-Watson parameter for the four
subjects. Shown are the group mean maps: axonal water fraction (AWF), intra-axonal

diffusivity (Da), parallel and perpendicular extra-axonal diffusivities (De,par and
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De, perp), and anisotropy (p2). The maps are mostly homogeneous; however, for De, par
the values are lower in the corpus callosum, which could indicate a not sufficient parameter
eStIMAtion IN thiS ATEA. ......ccevuiiiiiiiiiiieeecce e 111
Figure 46: Quantitative illustration of the statistical analysis of the four via WMTI analyzed
subjects. The mean and standard deviation (black) as well as the subject-specific values
(colored dots) were computed across white matter voxels (see Figure 32 for the white matter
mask) for the following WMTI metrics: axonal water fraction (f), intra-axonal diffusivity
(Da), parallel and perpendicular extra-axonal diffusivities (De,par and De,perp), free
water volume fraction (fw), and anisotropy (p2). The across-subject COV was estimated

for f (9.4%), Da (15.0%), De, par (16.8%), De, perp (25.5%), fw (2.5%), and p2 (4.9%).

Figure 47: Across-subject coefficient of variation maps for the estimated WMTI parameter
for the four subjects. Upper row: axonal water fraction (f), intra-axonal diffusivity (Da),
and parallel extra-axonal diffusivity (De,par). Lower row: perpendicular extra-axonal
diffusivity De, perp, free water volume fraction (fw), and anisotropy (p2). The maps are
mostly homogeneous; however, for De, perp, the values are higher in the corpus callosum,
which indicates a higher variability in this area. ...........coccovveeveeiiniininecee 113
Figure 48: Group mean maps for the estimated WMTI parameter for the four subjects. Upper
row: axonal water fraction (f), intra-axonal diffusivity (Da), and parallel extra-axonal
diffusivity (De,par). Lower row: perpendicular extra-axonal diffusivity De, perp, free
water volume fraction (fw), and anisotropy (p2). The maps are mostly homogeneous with
slightly higher values in the corpus callosum (except for De, perp). ...cccoecvvevveevveneennen. 114
Figure 49: Comparison of the four biophysical parameter estimation models (black: SMI,
red: WMTI-Watson, blue: NODDI-DTI, green: WMTI). The mean and standard deviation

were computed across white matter voxels (see Figure 32 for the white matter mask) for the
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following biophysical metrics: axonal water fraction (AWF/f), intra-axonal diffusivity (Da),
parallel and perpendicular extra-axonal diffusivities (De,par and De, perp), free water

volume fraction (fw), and aniSOrOPY (D2). .eeeveereeerueeeieeriieeieeiie e eieeeteeaeesaeeeee e e 115
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