
Haematological Cell Image Classification using
Self-Supervised and Transfer Learning

Dissertation

zur Erlangung des akademischen Grades einer
Doktorin der Medizin (Dr. med.)

an der
Medizinischen Fakultät der Universität Hamburg

vorgelegt von

Laura Wenderoth

aus

Dortmund

2025



Betreuer:in / Gutachter:in der Dissertation: Prof. Dr. René Werner
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1 Presentation of the Publication

1.1 Introduction

Haematological malignancies, including leukaemia, lymphoma, and myeloma, repre-
sent a broad spectrum of diseases with complex cellular characteristics and numerous
subtypes. Accurate identification of the malignancies is crucial for precise diagno-
sis, treatment selection, and disease monitoring [1, 2]. In this regard, blood and
bone marrow smears, along with cell counting techniques, play an important role in
diagnostics, enabling the identification, subtyping, and monitoring of abnormal cell
populations [3].

In clinical settings, manual counting of blood and bone marrow cells from smears
is a fundamental procedure performed by skilled laboratory professionals [4]. The
process involves visually examining the smear under a microscope and counting
cells of various types manually to determine their frequency. This procedure is
time-consuming [4] and affected by variations between examiners as it depends on
their expertise [5, 6]. Automating the process - cell detection and classification -
using Deep Learning (DL) techniques significantly improves efficiency [7, 8].

However, there are three key shortcomings in the existing DL approaches: (1)
the need for huge labour-intensive, manually labelled datasets, (2) the requirement
of specialized and expensive hardware and training time, (3) limited transferability
between laboratories. First, large datasets requiring labour-intensive manual la-
belling are necessary to train supervised DL models. Second, training DL models
for classification requires specialised hardware, such as a Graphics Processing Unit
(GPU), and can take several days, consuming great amounts of energy. Third,
trained blood cell classification models cannot be easily transferred to classify blood
cell images acquired from different laboratories or scanners due to the lack of stan-
dardization in staining methods, optical magnifications, and colour representations
[9, 10]. Variations in sample preparation, staining protocols, colour intensity, and
imaging conditions can substantially affect classification performance and robustness
[11, 12, 13].

In our previous study [14], we demonstrated that Self-Supervised Learning (SSL)
can reduce the labelling requirement to approximately 250 labels per class while
achieving performance comparable to Supervised Learning (SL) on Bone Marrow
(BM) datasets. This approach holds promise for addressing the labelling bottle-
neck. However, the other outlined challenges remain unsolved. Each laboratory and
digitization method still requires training a new model on specialized hardware, such
as GPUs. For this reason, my research addresses all three challenges by developing
an approach that:

• Enables transferability across different blood datasets without requiring ex-
tensive training.

• Eliminates the need for large, labour-intensive manually labelled datasets –
approximately 50 labels per class are sufficient.

• Operates without specialised hardware – all computations can be performed
on typical consumer-grade laptops using only Central Processing Unit (CPU),
without the need for GPUs.
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Figure 1.1: Illustration of the proposed blood cell image classification approach.
Features are extracted for the entire dataset using a pretrained XCiT model on
bone marrow cell images with SSL - no additional training or specialized hardware
required. A lightweight classifier is trained on features from only 50 labelled cells per
class. Once fitted, it accurately classifies the remaining unlabelled dataset, reducing
labelling effort and computational demands.

As shown in Figure 1.1, the approach begins by extracting cell image features for
the whole dataset using a feature extractor pretrained on bone marrow data. For
a small labelled subset (50 cells per class), these extracted features and their labels
are used to train a lightweight classifier. Both steps can be performed on a typical
consumer-grade laptop using only CPUs. The trained classifier can then accurately
classify unlabelled cell images, making the method adaptable to various datasets
while minimizing labelling effort and hardware requirements.

1.2 Related Work

Traditionally, SL on large labelled datasets has been the dominant approach for
blood cell classification, achieving high performance in controlled settings. However,
this approach has notable limitations: it relies heavily on extensive manual labelling,
often requires specialized hardware for training, and struggles to generalize across
different datasets. While several studies have attempted to address one or two of
these challenges, as summarized in Table 1.1, none have fully addressed all three.

For example, Acevedo et al. [15] aimed to reduce hardware dependency by ap-
plying transfer learning with a deep neural network pretrained on ImageNet. They
utilised the pretrained network to extract image features, which were then used to
train a traditional supervised ML classifier. This approach achieved an unbalanced
accuracy of 90.5% on the Acevedo blood dataset [16], falling short of the 94.9%
achieved by standard supervised learning. Although it reduced computational costs,
it still required the entire labelled Acevedo blood dataset of over 17,000 images. This
suggests that transfer learning from non-medical images, such as natural objects, is
of limited use in highly specialised fields like haematology.

Long et al. [17] explored reducing the labelling burden by training on a sub-
set of the Acevedo blood dataset [16]. They randomly selected 1,000 samples from
a total of 17,092, using approximately 6% of the images and their labels. How-
ever, this resulted in a substantial accuracy drop from 99.3% to 82.2%, highlighting
the sensitivity of supervised methods to labelled data availability. This example
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Table 1.1: Overview of blood cell image classification studies addressing key lim-
itations: scarcity of labelled data (1), specialized hardware requirements (2), and
transferability (3) to unseen datasets.

Paper Dataset Year Adressed Shortcoming Description Results

Acevedo et al. [15] Acevedo Blood [16] 2019 Specialized Hardware (2) Used pretrained ImageNet to extract
features and trained an ML classifier
on the features using all labels; Trans-
fer Learning.

90.5% unbalanced accuracy - drop in
accuracy compared to training using
the cell images.

Long et al. [17] Acevedo Blood [16] 2021 Labelled Data (1) In one subexperiemt used only ∼ 6% of
labels (1000 random cell images with
labels of a 17,092 cell image dataset)
with fully supervised training on the
cell images.

82.2% accuracy - drop in accuracy com-
pared to training using all labels and
images.

Elhassan et al. [18]

Matek Blood [19],
Acevedo Blood [16]

2022 Specialized Hardware (2) Trained a CNN on Matek Blood to ex-
tract 128 features, then used these fea-
tures to train an ML classifier; applied
the trained CNN feature extractor to
Acevedo Blood and trained a super-
vised ML classifier; Generalizability.

Achieved SoTA accuracy: 97.5% on
Matek Blood, 96.4% on Acevedo Blood
showcasing generalizability of their fea-
ture extractor.

Chen et al. [13] Acevedo Blood [16],
their own blood cell
dataset (∼ 10% of the
size of Acevedo)

2023 Transferability (3) Employed a CNN trained through SSL
to recognize various image transforma-
tions (raw, colour jitter, grayscale, etc.)
for feature extraction without labelled
data. Classifiers were trained on the ex-
tracted features using the labelled tar-
get dataset.

Achieved 88.9% accuracy on Acevedo
and 71.8% on their own dataset when
training CNN and classifier on the re-
spective datasets. When using the
CNN trained on the other dataset for
feature extraction, accuracy dropped
to 67.1% on their own dataset but in-
creased to 91.3% on Acevedo. This sug-
gests that pretraining on larger, simi-
lar datasets can improve performance,
though not all datasets are suitable for
pretraining.

Nielsen et al. [14] Matek BM [20], two
other medical
datasets

2023 Labelled Data (1) Employed the DINO SSL framework
for feature extraction without la-
belled data, using a vision transformer
(XCiT). Conventional ML classifiers
(SVM, LR, KNN) were trained on the
extracted features with as few as 250
labelled samples per class. Evaluated
across three distinct medical imaging
modalities.

Achieved state-of-the-art performance
with only 1% to 10% of labelled
data compared to supervised baselines.
Demonstrated that SSL with limited la-
bels can achieve high accuracy while re-
ducing labelling requirements, but still
requires specialized hardware for SSL
pretraining.

Wenderoth et al. [21]
(Ours)

Acevedo Blood [16],
Raabin Blood [22],
Matek Blood [19],
Matek BM [20]

2025 Labelled Data (1),
Specialized Hardware (2),
Transferability (3)

Used a transformer-based encoder
trained through SSL on Matek BM
dataset without labelled data to ex-
tract features, followed by training
lightweight ML classifiers (SVM, LR,
KNN) with limited labelled samples (50
per class) for each target dataset. As-
sessed direct transfer and domain adap-
tation for three blood cell datasets.

Achieved superior transferability with
balanced accuracy up to 91% train-
ing the classifier with minimal labelled
data. Direct transfer (classifier trained
on BM dataset) without adaptation
yielded lower, but still competitive, ac-
curacies. Demonstrated that bone mar-
row datasets are well-suited for SSL-
based pretraining, effectively facilitat-
ing efficient cross-domain transfer to
blood cell datasets.

illustrates the challenge of maintaining high performance with limited annotations,
emphasizing the need for more data-efficient approaches.

To address these challenges, recent research has increasingly explored SSL as a
means to extract useful feature representations from unlabelled data. For example,
Chen et al. [13] used SSL to train a Convolutional Neural Network (CNN) to recog-
nise various image transformations, achieving 88.9% accuracy on the Acevedo blood
dataset [16] and 71.8% on their own, smaller dataset, which is approximately 10%
the size of the Acevedo blood dataset. However, the transferability of the learned fea-
tures was inconsistent, with performance depending heavily on the dataset used for
pretraining. These findings indicate that while SSL has potential, effective transfer
learning in haematology may require more carefully designed pretraining approaches.

In our previous research, we explored SSL in haematology to address challenges
related to extensive labelling. In Nielsen et al. [14], we applied the DINO SSL
method to three medical image datasets, including a public bone marrow dataset
containing over 170,000 images [20]. The extracted features enabled the training
of lightweight ML classifiers, such as Support Vector Machines (SVM), Logistic
Regression (LR), and K-Nearest Neighbours (KNN), using minimal labelled data.
For the classification of the BM dataset, we used only 250 samples per class.

The results show that SSL consistently outperforms SL when working with min-
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imal datasets. For the BM dataset, a balanced accuracy of 73% was achieved using
250 images per class. Our findings confirm that SSL can reduce labelling demands
while maintaining strong performance. However, our previous work did not explore
transfer learning, where pretraining on one dataset improves performance on an-
other while reducing hardware requirements. This gap motivated further research
into whether bone marrow cell images offer a better pretraining source than natural
image datasets, such as ImageNet for blood cell image classification.

In this work, we propose a novel approach combining SSL and transfer learning
specifically for haematology. By pretraining on bone marrow cell images — which
share morphological similarities with peripheral blood cells — we aim to create a
feature extractor that can generalize across different blood cell datasets. Unlike
previous studies, we minimize the labelling effort by requiring only 50 labelled cells
per class. Furthermore, our method is designed to be computationally efficient,
requiring no specialized hardware. This makes it accessible for routine laboratory
use, addressing all three of the identified limitations: labelling effort, hardware
dependency, and transferability.

1.3 Fundamentals

To understand why bone marrow is hypothesized to be well-suited for pretraining
feature extraction in blood cell image classification, we must examine the physio-
logical relationship between blood and bone marrow. In the following Section 1.3.1,
this relationship will be explained in detail. Additionally, for feature extraction, a
neural network is required - a structure capable of learning meaningful features from
images. In our case, it is achieved through the Vision Transformer (ViT), which is
briefly introduced in Section 1.3.2.

1.3.1 Haematological Maturation Process

Bone marrow and blood are intrinsically linked through the development and matu-
ration of haematopoietic cells, as Figure 1.2 illustrates. All blood and bone marrow
cells originate from a common stem cell, progressing through sequential differen-
tiation stages that involve precursor and progenitor populations primarily located
in the bone marrow. Immature precursor cells are abundant in the bone marrow,
where most differentiation occurs, while mature cells predominantly circulate in pe-
ripheral blood [10]. Haematopoietic cells can be categorized into five main lineages,
each giving rise to specific cell types. These lineages originate from a common
haematopoietic stem cell and follow distinct differentiation pathways, highlighting
the fundamental connection between bone marrow and peripheral blood.

Erythropoiesis is responsible for the production of red blood cells (erythro-
cytes), which are essential for oxygen transport. The process involves a series of
stages, including the formation of proerythroblasts and erythroblasts, culminating
in mature erythrocytes.

Granulopoiesis generates granulocytes, which include neutrophils, eosinophils,
and basophils. The developmental sequence involves several stages: myeloblast,
promyelocyte, myelocyte, metamyelocyte, band cell, and finally mature granulo-
cytes. Neutrophils are the most abundant granulocytes and are critical for innate
immunity, while eosinophils and basophils play key roles in allergic responses and
parasitic defence.
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Figure 1.2: Maturational sequence of haematopoietic cells, illustrating the differen-
tiation pathways of key lineages. Cells highlighted with a pink background (bottom)
represent those predominantly found in peripheral blood under normal physiological
conditions, while cells with a purple background (top) are primarily located in the
bone marrow. Adapted from Ward, Cherian, and Linden [23].

Monocytopoiesis produces monocytes, which are precursors to macrophages
and dendritic cells. The differentiation process starts with monoblasts, progresses to
monocytes, and leads to the formation of mature macrophages in tissues. Monocytes
are crucial for phagocytosis and immune regulation.

Megakaryopoiesis produces megakaryocytes, which are responsible for platelet
formation. Megakaryocytes undergo a process of endomitosis and cytoplasmic frag-
mentation to release platelets into circulation, essential for haemostasis.

Lymphopoiesis generates lymphocytes, including T cells, B cells, and natural
killer cells, which are fundamental to adaptive and innate immunity. Lymphocytes
develop in specialised environments such as the bone marrow and the thymus.

In summary, the strong physiological relationship between blood and bone mar-
row is evident, as all five lineages first develop in the bone marrow before releasing
mature cells into the bloodstream. The transferability of a model trained on bone
marrow cells to blood datasets holds significant promise due to the biological rela-
tionship between the two. Immature precursor cells in the bone marrow differentiate
into mature cells found in peripheral blood, meaning that features learned from bone
marrow data are inherently relevant for blood cell classification tasks. The shared
developmental origin provides a strong foundation for effective model transfer.
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1.3.2 Vision Transformer

Our classification method employs a modified Vision Transformer (ViT) [24] known
as the Cross-Covariance Image Transformer (XCiT) [25]. The following section
introduces the original ViT and outlines the advantages of XCiT over ViT.

ViT In recent years, deep learning has made great progress in the field of image
processing, with one being the ViT. This model has demonstrated high accuracy
in object recognition tasks [24]. To fully comprehend the functioning of ViTs, it is
essential to first understand the core principles that underpin these models.

Unlike humans, computers do not perceive images in the same way. Instead,
they represent images as grids of numbers, where each number corresponds to the
intensity or colour value of an individual pixel. To interpret an image, the ViT does
not process the entire image at once. Rather, it divides the image into smaller square
regions known as patches. Each patch is treated as a distinct unit of information.

Once the image is divided into patches as illustrated in Figure 1.3, each patch
is flattened into a one-dimensional vector of pixel values. These vectors are then
linearly projected through a trainable weight matrix, producing an embedding that
encapsulates significant features, such as textures and edges and ensures a consistent
embedding size.

The patch embeddings are then concatenated to form a sequence. To maintain
spatial information, a learned positional encoding is added to each embedding, as
ViT do not inherently capture the position of elements within a sequence. These
positional encodings represent the original spatial location of each patch, allowing
the model to recognise and preserve spatial relationships. The resulting sequence of
patch embeddings, now enriched with positional information, is subsequently input
into the ViT encoder.

To analyse the relationships between different image patches, ViTs utilise self-
attention, a mechanism that compares each patch with every other patch to com-
prehend the overall structure of the image [26]. To enable this comparison between
patches, the model uses three matrices: query (Q), key (K), and value (V ). The
query (Q) defines what a patch is seeking from other patches, much like a word
in a sentence searching for related words. The key (K) acts as a descriptor of the
patch’s content, allowing other patches to assess its relevance. Finally, the value (V )
contains the actual information of the patch, which is passed along if the query finds
a strong match with the key. In summary, the self-attention mechanism determines
the level of attention each patch should give to every other patch by calculating
attention scores using the following formula:

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
× V. (1.1)

The term QKT calculates the similarity between each patch’s query and all other
patches’ keys, effectively measuring their relevance to one another. The denomina-
tor,

√
dk, serves as a scaling factor, preventing excessively large values in the dot

product, which could destabilise training by causing extremely small gradients. The
softmax function then normalises these similarity scores into a probability distribu-
tion, ensuring that the attention weights assigned to all patches sum to one. Finally,
these weights are applied to the value matrix V , allowing the model to aggregate
information from the most relevant patches while downplaying less significant ones.
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H, W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, and N = HW/P 2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z0

0 = xclass), whose state at the output of the Transformer encoder (z0
L) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L. The classification head is implemented by a MLP with one hidden layer at pre-training
time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

3

Figure 1.3: Visualisation of Vision Transformer architecture. The image is first di-
vided into non-overlapping patches, which are then flattened and linearly embedded
into a fixed-size vector for each patch. These patch embeddings are augmented with
positional encodings to retain spatial information. The resulting sequence of embed-
dings is passed through a standard Transformer architecture, consisting of multiple
layers of self-attention and feed-forward networks, to model global dependencies
across the image. The output is passed through a classification head to produce the
final prediction. Copied from Dosovitskiy et al. [24].

By comparing the query and key vectors across patches, the model determines which
patches should influence each other, guiding its attention to the most significant im-
age regions.

Rather than computing attention once for each patch, ViTs use multiple at-
tention heads in parallel, a mechanism known as multi-head self-attention. Each
attention head learns different relationships within the image, allowing the model
to capture diverse aspects of the data.

The attention heads can be visualised by mapping the attention weights between
image patches, revealing how the model assesses the relevance of different regions.
These visualisations highlight the learned relationships and potentially show which
parts of the image focus on key features, such as edges or textures, illustrating the
model’s understanding of spatial relationships and dependencies.

After passing through multiple ViT layers, the model aggregates the informa-
tion from all image patches. The final representation, which captures the relevant
features of the image, is then passed through a Multi-Layer Perceptron (MLP). The
MLP processes the aggregated information to produce the final classification output,
such as identifying the object or category in the image.

Vision Transformers have demonstrated significant success due to their ability to
capture global dependencies across the entire image, enabling them to learn complex
relationships and contextual information.
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XCiT While the ViT achieves strong performance, its self-attention mechanism is
computationally expensive, with quadratic time complexity O(N2), where N is the
number of patches, making it impractical for high-resolution images. The Cross-
Covariance Image Transformer (XCiT) [25] addresses this by introducing Cross-
Covariance Attention (XCA), which shifts from patch-wise to channel-wise atten-
tion by switching and transposing the query and key matrices. Additionally, XCiT
normalises the query and key matrices so that their values lie within the range of
[−1, 1], a step that improves the stability of training. These normalised matrices
are referred to as K̂ and Q̂. As a result, the XCA formula is defined as:

Cross-Covariance Attention(Q,K, V ) = V × Softmax

(
K̂T Q̂

τ

)
. (1.2)

Here, τ is a temperature scaling factor, and the softmax function normalises the
cross-covariance matrix K̂T Q̂, producing the attention weights. These weights are
then applied to the value matrix V , determining how much each feature channel
contributes to the final output. This approach reduces computational complexity to
linear with respect to the number of patches, enabling more efficient processing of
high-resolution images, while maintaining strong performance and scalability.

1.4 Material and Methods

This section provides a detailed overview of the datasets used in the study, high-
lighting the significant differences in their digitisation and illustrating the challenges
in transferring our approach across datasets. We then introduce the SSL method
DINO and explain its application. Following this, the classification pipeline is pre-
sented, along with the experiments conducted. Visualisations of these can be found
in Figures 2 and 3 in the paper in Section 2.

1.4.1 Datasets

The chosen datasets consist of digitised, stained blood and bone marrow smears.
This study utilises one bone marrow dataset and three blood datasets. In the
original paper in Section 2, the different cell classes and their distributions within the
datasets are detailed in Tables 1 and 2. Therefore, this section focuses on a thorough
explanation of dataset creation to highlight the impact of digitisation methods on
potential deep learning classification algorithms.

Matek Bone Marrow Dataset [20]: The bone marrow dataset utilized in this
study comprises a collection of 171,374 single-cell images obtained from bone mar-
row smears of 961 patients diagnosed with a wide range of haematological diseases.
These diseases encompass myeloid and lymphoblastic malignancies, lymphomas, and
non-malignant and reactive changes. The dataset was sourced from the Munich
Leukaemia Laboratory MLL, spanning between 2011 and 2013. The image acqui-
sition process involved applying May-Grünwald-Giemsa/Pappenheim staining and
capturing using a CCD camera mounted on a brightfield microscope (Zeiss Axio
Imager Z2). A 40× oil immersion objective was employed, yielding images with a
size of 250 × 250 pixels.
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The dataset encompasses a total of 21 distinct classes, each representing a spe-
cific cell type or morphological category. These classes include band neutrophils,
segmented neutrophils, lymphocytes, monocytes, eosinophils, basophils, metamye-
locytes, myelocytes, promyelocytes, blasts, plasma cells, proerythroblasts, erythrob-
lasts, hairy cells, abnormal eosinophils, immature lymphocytes, smudge cells and
other cells, artefacts, and unidentifiable cells.

It is worth noting that the class ”artefacts” includes cells that are deemed uniden-
tifiable, while the class ”other cells” encompasses morphological classes not repre-
sented by the other specific cell types. Importantly, the dataset shows a highly
imbalanced distribution across the cell classes. Detailed information can be found
in Table 2 of the paper in Section 2.

Matek Blood Dataset [19]: The first blood cell dataset employed in this study
comprises a total of 18,365 single-cell images, each possessing a size of 400 × 400
pixels. These images were extracted from peripheral blood smears obtained from
100 patients diagnosed with different subtypes of Acute Myeloid Leukaemia (AML)
at the University Hospital Munich between 2014 and 2017.

The blood smears were scanned at ×100 optical magnification using an M8 dig-
ital microscope/scanner equipped with oil immersion. The cells were classified into
15 distinct categories by trained specialists. These categories include segmented
neutrophils, banded neutrophils, typical lymphocytes, atypical lymphocytes, mono-
cytes, eosinophils, basophils, myeloblasts, promyelocytes, bilobed promyelocytes,
myelocytes, metamyelocytes, monoblasts, erythroblasts, and smudge cells.

Acevedo Blood Dataset [16]: The second blood dataset utilized in this study
encompasses a publicly available compilation of 17,092 blood cell images acquired at
the Hospital Clinic of Barcelona over a span of four years, from 2015 to 2019. These
images were subjected to staining using the May-Grünwald-Giemsa technique and
possess a size of 360 × 363 pixels.

Two domain experts participated in the annotation and classification of these
images, resulting in the assignment of labels to eight distinct groups. These groups
comprise neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature
granulocytes (including promyelocytes, myelocytes, and metamyelocytes), erythrob-
lasts, as well as platelets or thrombocytes

Notably, the data collection for this dataset exclusively involved healthy patients
without any infections, haematological disorders, or oncological conditions.

Raabin Blood Dataset [22]: The third blood dataset used in this study consists
of 14,514 blood cell images from 56 peripheral blood smears and was obtained in
2021. Two domain experts classified the images into five categories: lymphocytes,
monocytes, neutrophils, eosinophils, and basophils. The blood smears were obtained
from healthy individuals, except for one case of Chronic Myeloid Leukaemia (CML),
which was specifically used for basophil extraction.

The smears were stained using the Giemsa technique and imaged at 100× mag-
nification using Olympus CX18 and Zeiss microscopes. Additionally, smartphone
cameras, including Samsung Galaxy S5 and LG G3, were used for image acquisition.
Due to the recording method, multiple images of the same cell may be present in the
dataset. However, a predefined split into training and test sets ensures a systematic
separation for evaluation.
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1.4.2 Self-Supervised Learning - DINO

In Machine Learning (ML), supervised and unsupervised learning are fundamental
paradigms. Supervised learning trains models on large labelled datasets, adjusting
parameters to minimize prediction errors and achieve high accuracy. While effec-
tive, it is resource-intensive due to the need for extensive human-annotated labels.
In contrast, unsupervised learning discovers patterns and structures in data without
relying on labelled examples, making it useful for clustering and anomaly detection.
Bridging these paradigms, SSL has emerged as a subset of supervised learning.
Rather than relying on external labels, SSL methods create auxiliary tasks, such as
rotation prediction, jigsaw puzzles (rearranging shuffled image patches), and predict-
ing context or missing information. Through these self-generated tasks, the model
builds representations that capture the underlying structure of the data, effectively
learning without direct human intervention. [27].

An example of SSL is Distillation with No Labels (DINO) [27], developed by
Facebook AI Research. DINO employs a teacher-student architecture, which in-
volves two networks with identical structures: the student network and the teacher
network. The core idea is that the student network learns to replicate the teacher’s
output, providing supervision without labelled data. Training minimises their rep-
resentation differences using temperature-weighted cross-entropy loss. The teacher
network receives a higher-information version of the input image, such as higher
resolution or larger patches, compared to the student network. To introduce vary-
ing levels of information, DINO uses a multi-crop strategy, where each image is
divided into multiple views at different resolutions. Both networks process the high-
resolution views, capturing global features, while only the student processes the
lower-resolution views, capturing local features. This approach helps the student
learn patterns across different image scales, making the model more robust to vari-
ations in size and location.

The teacher network can act as a supervisor despite not being explicitly trained
on the dataset, as it is updated continuously through a momentum-based mechanism
called Exponential Moving Average (EMA), allowing the teacher to evolve based on
the student’s learning. EMA smooths the teacher’s updates by weighting the most
recent student network parameters along with a decaying average of previous teacher
network values. This gradual update ensures that the teacher network remains stable
and reliable, incorporating the student’s learning without overreacting to short-term
changes.

A key issue in machine learning is data collapse (or representational collapse),
where the model’s outputs become excessively similar across different inputs. While
this may satisfy the learning objective, it leads to ineffective learning and poor
generalisation. Specifically, it means that both the teacher and student produce
identical outputs, regardless of variations in the input cell images.

DINO employs two key strategies to avoid data collapse: centring and output
sharpening. The centring mechanism stabilizes training by adding a bias term to
the teacher network’s output. This bias, updated via an EMA of the teacher’s
previous outputs, prevents representational collapse by maintaining variability in
the teacher’s outputs.

The second strategy, output sharpening, involves adjusting the teacher network’s
output distribution to make it more distinct. By lowering the temperature of the
teacher’s softmax function, the outputs become sharper, reducing the risk of overly
smooth or similar responses. This sharpening process encourages the model to focus
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on finer distinctions in the data, making it more robust and able to differentiate
between various inputs. Together, centring and output sharpening allow DINO to
maintain stability during training, preventing representational collapse and ensuring
the model learns useful and diverse feature representations.

DINO extends knowledge distillation to self-supervised learning through a com-
bination of multi-crop augmentations, momentum-based teacher updates, and tech-
niques such as centring and sharpening to prevent representational collapse. These
components enable DINO to learn high-quality, scalable representations without re-
quiring labelled data, demonstrating strong performance across various downstream
tasks. Additionally, its design enhances flexibility across different neural network
architectures, making it a versatile approach to pretraining.

1.4.3 Classification Pipeline

The cell image classification pipeline consists of two main stages: self-supervised
feature extraction and cell classification. In the first stage, the XCiT (see Section
1.3.2) is trained using the self-supervised approach DINO [27] and the sparsam
implementation [14] on the BM Matek dataset. We selected XCiT for its improved
computational efficiency over the original ViT and its demonstrated effectiveness in
self-supervised learning, particularly with DINO [25]. The SSL pertaining on BM
allows the model to extract meaningful features from cell images without requiring
annotations. Hyperparameters follow the settings defined in Caron et al. [27]. Once
trained, XCiT converts each image into a 384-dimensional feature vector.

In the second stage, the extracted features are used to train lightweight su-
pervised machine learning classifiers. We used three different classifiers: Support
Vector Machine (SVM), Logistic Regression (LR), and K-Nearest Neighbors (KNN).
Training with scikit-learn’s default hyperparameters ensures consistency and ease of
implementation. These classifiers often outperform deep learning models on small
labelled datasets, offering greater robustness and adaptability.

1.4.4 Experiments

We conducted two experiments to evaluate our classification pipeline. The first,
direct transfer, assesses how well the approach transfers from bone marrow to blood
without any fitting or fine-tuning on blood datasets. The second, domain adap-
tation, tests the generalization of SSL-extracted features across datasets by fitting
ML classifiers on a small number of labelled samples from target blood datasets.
The same SSL feature extractor, trained on the BM dataset, was used in both ex-
periments. Performance was measured using balanced accuracy and class-specific
sensitivity.

The SSL feature extractor was initially trained on the Matek BM dataset for 48
hours. For the direct transfer experiment, a small labelled subset (250 samples per
class) from the Matek BM dataset was used to fit the classifiers based on the ex-
tracted feature representations. To assess robustness, the classifiers were trained 100
times with randomly selected labelled samples. Their performance was then evalu-
ated on three blood test datasets, considering all shared classes between the blood
datasets and the Matek BM dataset while accounting for potential class discrep-
ancies. For comparison, a supervised benchmark model using XCiT for end-to-end
deep learning classification was trained three times on the same image data for 24h.
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For domain adaptation, the classifiers were trained on varying amounts of la-
belled samples from the target blood cell dataset (ranging from 5 to 2000 per class)
using the extracted feature representations. For comparison, supervised deep learn-
ing benchmark models from the literature, trained on over 10,000 labelled samples,
were used as a reference.

We also explored the transfer from blood to bone marrow by training the feature
extractor on the Matek Blood dataset and then transferring it to the Matek Bone
Marrow dataset. The process was evaluated using the same experimental setup,
encompassing both direct transfer and domain adaptation.

The experiments were performed on an Nvidia A40 GPU with 48GB of Random-
Access Memory (RAM) for model training and feature extraction. The AMD EPYC
7543 processor, equipped with 32 cores and 1TB of RAM, was used for the compu-
tational tasks involved in model fitting and evaluation.

For data splitting and evaluation, each dataset was divided into a training set
(70%) and a test set (30%), while preserving class distributions. The SSL feature
extractor was trained on the entire training set, while the classifiers were trained
using randomly selected stratified subsets of the training data. Evaluation was
performed on the test set. To assess performance consistency, the supervised deep
learning model was trained three times with random initialisations on the same
training set.

1.5 Results

The following section summarises the results for both direct transfer, where no adap-
tation to the target dataset is applied, and domain adaptation, where the classifier
is fine-tuned using varying sample sizes per class from the target dataset. A dis-
tinction is made between the transfer from bone marrow to blood and from blood
to bone marrow. A detailed presentation of the results, including visualisations, is
provided in Figure 4 and Tables 3 and 4 in the original paper in Section 2.

1.5.1 Transfer from Bone Marrow to Blood

Direct Transfer The results of direct transfer show that our approach, when ap-
plied from the Matek bone marrow dataset to three different blood cell datasets,
achieved substantial classification accuracy. For the Matek blood dataset, our ap-
proach reached a balanced accuracy of around 64% across 11 cell types, compared
to the SL model with a balanced accuracy of around 41%. The Acevedo dataset
showed a slightly lower accuracy of 53% for 7 cell types, compared to SL model
with around 46%, while the Raabin dataset achieved 63% accuracy for 5 cell types,
compared to SL model 46%. This demonstrates the superiority of our approach over
traditional SL methods in terms of transferability and generalizability.

Domain adaption The results of domain adaptation, where the ML classifier
was trained using varying sample sizes from the target blood dataset, demonstrated
performance comparable to or even surpassing state-of-the-art results, with only 50
labelled samples per class.

For the Matek blood dataset, using 50 labelled samples per class with the SVM
classifier, a balanced accuracy of 76% was achieved, compared to 66% with the
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baseline supervised learning method using the whole dataset [19]. The superior ac-
curacy compared to the state-of-the-art supervised baseline demonstrates that our
approach can match or exceed the performance in terms of accuracy. Our approach
outperformed supervised deep learning models, especially for smaller classes like ery-
throblasts, monoblasts, and bilobed promyelocytes, with accuracy exceeding 90%.
Logistic Regression (LR) achieved the highest accuracy of 78% with 100 samples per
class. However, accuracy decreased for larger sample sizes across all classifiers due
to class imbalance, with larger classes (>500 samples) benefiting from more data,
while smaller classes (<100 samples) were under-represented.

For the Acevedo blood dataset, both LR and SVM achieved similar performance,
reaching 91% accuracy with 50 samples per class and 97% accuracy with 2000 sam-
ples, surpassing the literature benchmark of 96% [15] with 500 samples per class.
The accuracy did not decrease with larger sample sizes due to the more balanced
class distribution. For 50 labelled samples per class, high accuracy (>90%) was
achieved for basophils, eosinophils, lymphocytes, neutrophils, and platelets, while
immature granulocytes showed 79% sensitivity.

For the Raabin blood dataset, LR and SVM achieved 95% accuracy with 50
samples per class and 97% with 2000 samples, not surpassing the literature bench-
mark of 98% [22]. Using our approach with 50 labelled samples, high accuracy
(>90%) was achieved for all classes. While the SL baseline was not exceeded, the
model’s performance trained using our approach could improve with more labelled
dataset-specific images.

Training Time and Efficiency In terms of computational performance, the
training of the ML classifiers takes approximately 1 second, with SSL pretraining
requiring a one-time 48-hour training for all datasets. In comparison, the benchmark
approach from the literature requires up to four days training per dataset [19].

1.5.2 Transfer from Blood to Bone Marrow

Applying our approach to transfer the model trained on the Matek blood dataset
to bone marrow cell classification resulted in a low accuracy of 43%. This result
represents an improvement over the supervised baseline model, which achieved only
20%. Using the blood feature extractor and fine-tuning the classifier on 50 labelled
bone marrow samples per class resulted in a slight increase in accuracy to 48%,
although it still fell short of the BM dataset benchmark of 51% [20]. SSL pretraining
on blood images did not provide an advantage for bone marrow classification.

1.6 Discussion

This thesis addressed three key shortcomings in existing blood cell classification
methods: the need for large amounts of manually labelled data, high computational
demands, and poor model transferability across different staining and digitalisation
conditions. By combining SSL with transfer learning, we overcame these limita-
tions, demonstrating a more efficient, resource-friendly, and adaptable approach to
haematological cell image classification.

Our approach achieved state-of-the-art results on the Matek blood dataset using
a classifier trained only on Matek bone marrow cells, surpassing supervised mod-
els trained on Matek blood with considerably shorter training time. While colour
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Figure 1.4: Visualization of attention from eight attention heads in the image trans-
former model for a basophilic granulocyte. The upper panel shows attention in the
SSL approach, while the lower panel represents the supervised DL baseline. In each
panel, high-attention areas (red; ≥ 80% of the maximum value) are overlaid on
the original image. The bottom row displays continuous attention values per head
(brighter colour = higher attention). The SSL model focuses on the cell, whereas the
supervised approach does not, suggesting SSL’s superior generalization capability.

similarities between the Matek datasets may have played a role, the strong direct
transfer performance underscores the effectiveness of our method. For the Acevedo
and Raabin blood datasets, direct transfer without using any fine-tuning on the
blood cell dataset did not exceed the performance of dataset-specific deep learning
models, but still outperformed supervised models trained on Matek bone marrow.
These findings demonstrate that our approach enhances robustness and generali-
sation by learning meaningful and transferable cell features for classification. As
shown in Figure 5 of the original paper in Section 2 and Figure 1.4, attention head
visualisations reveal that SSL-trained models focus on relevant cellular features,
whereas supervised models tend to overfit. This suggests that SSL does not sim-
ply memorise dataset-specific patterns but captures broader cellular characteristics,
improving generalisability.

While the accuracy of direct transfer alone was not optimal for medical applica-
tions, domain adaptation significantly improved performance. By fitting lightweight
ML classifiers with as few as 50 labelled samples per class from the target blood
dataset, accuracy reached state-of-the-art levels, particularly for smaller but clini-
cally relevant cell types. These results highlight the effectiveness of our approach,
showing that pretraining on bone marrow alone provides a strong foundation while
reducing computational demands, as the SSL-trained model only needs to be trained
once for all blood datasets.

We also explored pretraining with blood cell images and transferring to bone
marrow, although this approach did not achieve results meeting medical standards.
From a biological perspective, it is plausible that models trained on mature blood
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cells may not generalise effectively to precursor bone marrow cells. From a com-
putational viewpoint, one potential explanation is the considerable size disparity
between the datasets, with the Matek blood dataset being notably smaller than the
bone marrow dataset. This reduced size may have limited the model’s ability to
capture the full spectrum of features in peripheral blood images. Furthermore, dif-
ferences in image backgrounds could contribute to the observed difficulties. Blood
smears are predominantly composed of erythrocytes, whereas bone marrow smears
contain a higher density of nucleated cells, which may provide more informative
features for extraction. The greater heterogeneity of cell types and subtypes in bone
marrow, along with the inherent variability in staining, preparation methods, and
biological factors, likely contributes to the increased complexity and diversity of
the bone marrow images. While these factors strongly suggest the reasons for the
less successful transfer from blood to bone marrow, further studies are needed to
conclusively confirm these observations.

In summary, this thesis demonstrated that SSL combined with transfer learning
effectively addresses challenges in blood cell image classification, such as manual la-
belling, high computational demands, and poor transferability. By reducing reliance
on large labelled datasets, optimising computational resources, and improving model
transferability, our approach offers a more accessible, sustainable, and adaptable al-
ternative to traditional supervised DL approaches. However, areas for improvement
remain. Future work should focus on enhancing domain adaptation, particularly un-
der varying imaging conditions, and extending this approach to whole-slide images
to further minimise manual intervention.
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A B S T R A C T

Background and Objective: Classification of peripheral blood and bone marrow cells is critical in the diagnosis and
monitoring of hematological disorders. The development of robust and reliable automatic classification systems
is hampered by data scarcity and limited model generalizability across laboratories. The present study proposes
the integration of self-supervised learning (SSL) into cell classification pipelines to address these challenges.
Methods: The experiments are based on four public hematological single cell image datasets: one bone marrow
and three peripheral blood datasets. The cell classification pipeline consists of two parts: (1) SSL-based image
feature extraction without the use of image annotations, and (2) a lightweight machine learning classifier applied
to the SSL features and trained on only a small number of annotated images.
Results: Direct transfer of SSL models trained on bone marrow data to peripheral blood data resulted in higher
balanced classification accuracy than the transfer of supervised deep learning counterparts for all blood datasets.
After adaptation of the lightweight machine learning classifier with 50 labeled samples per class of the new
dataset, the SSL pipeline surpasses supervised deep learning classification performance for one dataset and
classes with rare or atypical cell types and performs similarly on the other datasets.
Conclusions: The results demonstrate that SSL enables (1) extraction of meaningful cell image features without
the use of cell class information; (2) efficient transfer of knowledge between bone marrow and peripheral blood
cell domains; and (3) efficient model adaptation to new datasets using only a few labeled data samples.

1. Introduction

Cytomorphological analysis of peripheral blood and bone marrow is
essential for diagnosing and classifying hematological disorders [1,2] as
well as subtyping and monitoring abnormal cell populations [3]. Central
analysis steps are currently performed by laboratory professionals [4].
The process involves visually examining the smear under a microscope,
identifying malignant or atypical cells, and manually counting cells of
various types to determine their frequency. This procedure is
time-consuming [4] and affected by variations between examiners [5,6].
Automating aspects of the process would significantly improve effi-
ciency and reliability. With the advances in artificial intelligence and

deep learning (DL)-based image analysis, especially automation of cell
detection and classification appear promising [7,8]. However, hemato-
logical cells, especially those in bone marrow, comprise >30 distinct
subcategories, each playing different roles in various physiological and
pathological processes. The complex morphological variations among
these cells make it challenging to automate their differentiation and
reliably identify rare or atypical cells.

A particular issue of automated cell classification systems is their
lack of generalizability and transferability to new laboratories [9,10].
Variations in sample preparation, staining protocols, and imaging con-
ditions significantly affect the classification performance and robustness
[11–13]. This is at least partly because current systems rely on
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supervised learning approaches using deep neural networks [14–18].
These algorithms learn from labeled datasets to classify cell images,
iteratively adjusting the network parameters to minimize the difference
between the network prediction and cell types assigned by the human
expert. Due to the large number of network parameters, thousands of
cells per class need to be manually labeled by experts, and each com-
bination of different staining standards and changed scanning processes
requires a labor-intensive time-consuming generation of a new specific
training dataset [9]. In addition, supervised training of cell classification
models suffers from the scarcity of annotated datasets that represent rare
or atypical cell populations [19–22], although these are often of high
clinical relevance.

To address issues presented by inadequate training data, domain
adaptation (DA) strategies, also referred to as transfer learning [23], are
applied [24]. The idea is to exploit established knowledge to solve new
problems [9]. Acevedo et al. [25] used image representations generated
by a deep neural network pretrained on ImageNet, a large-scale natural
image database, for subsequent blood cell classification by a classical
machine learning (ML) classifier. They achieved an average accuracy of
90.5 % across eight classes, but the ML classifier training required the
entire dataset of 17,092 labeled blood cell images. For the same dataset,
Long et al. [26] reported a classification accuracy of 99.3 % when
trained on the entire dataset. When they used only 1000 training data
points, the accuracy dropped to 82.2 %. This highlights the significant
impact of the number of labeled images to achieve high accuracy in
classifying hematological cells using current state-of-the-art DA and DL
approaches and underscores the importance of exploring alternative
approaches to alleviate the data labeling burden.

One approach that is currently attracting interest in the field of
artificial intelligence is the combination of self-supervised learning
(SSL) and open datasets [27,28]. SSL focuses on leveraging unlabeled
data to learn meaningful image representations. By formulating surro-
gate tasks that do not require expert annotations, SSL algorithms aim to
exploit an intrinsic structure within the unlabeled data. The learned
representations can then be input into lightweight ML algorithms to
solve the actual task [29]. Successful application of SSL for hemato-
logical cell classification in bone marrow datasets has been demon-
strated by Nielsen et al. [29]. Trained on a large public dataset of
approximately 170,000 cell images from bone marrow smears, image
representations were extracted and subsequently used to train a super-
vised ML classifier with a small set of 100 labeled images per class.
Despite the scarcity of training samples, the authors reported promising
performance, showcasing the potential of SSL in enhancing cell classi-
fication performance with minimal labeled data. Chen et al. [13] further
described SSL-based classification of blood cells using a larger (about 18,
000 images) and a smaller (about 1000 images) public blood cell data-
set. When they trained their SSL feature extractor on the smaller dataset
and fine-tuned the ML classifier using the features computed for a part of
the larger dataset, they achieved an average classification accuracy of
91.3 % (8 classes; classifier fitting still based on several thousand labeled
images). In contrast, unsupervised feature extraction on the larger
dataset and classifier training on the smaller dataset resulted in an
average accuracy of only 67.2 % (6 classes).

Given the currently unclear and preliminary results, the present
study investigates the ability of SSL for blood cell classification, with a
specific focus on the feasibility of transferring knowledge and learned
representations of cells in bone marrow smear images to cell classifi-
cation in peripheral blood smears. To simplify the notation, in the
following, the classification of cell images from bone marrow smears is
referred to as the classification of bone marrow cell images and the
classification of cell images from peripheral blood smears as the classi-
fication of blood cell images. The key contributions of the present study
are:

• Cross-domain model transferability. It will be shown that classi-
fiers trained on bone marrow images using SSL can be directly

applied to peripheral blood cell image classification, regardless of
staining or digitalization methods used in different laboratories and
with superior transferability compared to current state-of-the-art
supervised DL.

• Domain adaption with limited samples per class. It will be
demonstrated that SSL allows for efficient domain adaptation for
blood cell classification with only a minimal amount of labeled data.

• Reproducibility and transparency. The study emphasizes trans-
parency and reproducibility by using only public datasets and
providing the source code and the trained models without limitations
to promote rigorous scientific debate and support the continued
progress of the field.

2. Methods

2.1. Cell datasets

The study is based on four established, public hematological single
cell image datasets: one bone marrow dataset [30] and three peripheral
blood datasets [19–21]. Dataset details are listed in Table 1. All datasets
provide cropped single cell images and do not require application of cell
detection or segmentation algorithms. In the following, the datasets are
named after the first authors of the corresponding articles or according
to the dataset name given in the publications: Matek bone marrow (BM)
dataset; and Matek, Acevedo, and Raabin blood datasets. The Matek BM
and blood datasets can be assumed to be produced in the same labora-
tory. A summary of the cell classes and class distributions for the
different datasets is given in Table 2. To illustrate the varying staining
conditions, representative sample images for the five cell classes that
exist in the datasets are shown in Fig. 1.

2.2. Cell image classification pipeline

The cell image classification pipeline consisted of two independent
parts. First, a DL-based image encoder was trained through SSL, only
driven by the image data without any annotations, to extract relevant
cell features. Second, the obtained low-dimensional image representa-
tions were used to train a lightweight ML classifier, using a limited
labeled image subset for the classification task at hand. The source code
for the experiments and the trained models can be accessed at github.
com/IPMI-ICNS-UKE/cell-classification.

2.2.1. Self-supervised extraction of cell image features
The cell image features for subsequent classification were extracted

Table 1
General characteristics of the four hematologic image datasets used in this study.

Domain Bone marrow Peripheral blood

Dataset Matek [30] Matek [19] Acevedo
[21]

Raabin [20]

# cell images 171,374 18,365 17,092 17,965
# classes 21 15 8 5
# patients 945 100 N/A N/A
# smears N/A 200 N/A 72
Patients with
disease
included?

Yes Yes No Yes

Stain type May-
Grünwald-
Giemsa /
Pappenheim

N/A May-
Grünwald-
Giemsa

Giemsa

Image size
(pixels)

250 × 250 400 × 400 360 × 363 512 × 512

Digitalization Zeiss Axio
Imager Z2
(40 × oil
immersion)

M8 digital
microscope/
scanner (100
× oil
immersion)

CellaVision
DM96

Olympus
CX18 and
Zeiss (100 ×)
+

smartphone
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through a DL image encoder, utilizing the DINO algorithm by Caron
et al. [31] and the sparsam implementation by Nielsen et al. [29]. The
feature extraction utilized a student-teacher setup. Both the teacher and
student network had the same deep learning architecture, in our case a
cross-covariance image transformer (XCiT) architecture. The teacher
model weights were calculated as the exponential moving average of the
student model weights. During training, different heavily augmented
crops of the same cell image were passed through both networks, and the
student model was forced to produce a similar image representation to
the teacher using temperature-weighted cross-entropy. A peculiarity of
the DINO algorithm is the usage of multiple global and local crops
(smaller than 25 % of the original image) for the student, while the
teacher receives only global crops, see Fig. 2(a). This approach has been
shown to generate meaningful image representation for downstream
tasks like image classification [31]. The student model parameters were
updated with backpropagation using the Adam optimizer. Hyper-
parameters were chosen as proposed in the original work by Caron et al.
[31] and can be found in our github repository.

As a transformer-based encoder architecture, XCiT relies on an

intrinsic mechanism known as attention, which dynamically assigns
relative importance to different image areas with respect to other re-
gions and the model output. In turn, the attention weights of the last
network layer can be used to gain insight into the model by visualizing
the impact of an image region on the output, providing some explain-
ability for the otherwise opaque decision-making processes of the
model. In the present study, a multi-head attention with eight heads was
used, with each head offering an attention map that can be used for
model behavior visualization behavior. For technical details, please
refer to Dosovitskiy et al. [32].

2.2.2. Image feature-based cell classification
After learning to extract the presumably meaningful cell image

representations by SSL, the task of cell classification remains. In the
present study, three classifiers were fitted: support vector machine
(SVM), logistic regression (LR), and k-nearest neighbors (KNN). The
default values of the Python package scikit-learn were used as the
classifier hyperparameters. Compared to deep learning classifiers, all
three approaches usually offer better performance for a small number of
samples, while maintaining fast and robust adaptability to new data.

2.3. Experiments

Two sets of experiments were conducted: First, the capabilities of SSL
cell image representations and subsequent ML classifiers for direct
model transfer between datasets and domains were evaluated. The
second step involved testing the adaptability and performance of the ML
classifiers when trained with only a small number of labeled samples
from a new dataset. An overview of the performed experiments is given
in Fig. 3. Classification performance was evaluated by balanced accu-
racy and class-specific sensitivity. All experiments were performed on an
NvidiaA40 GPU with 48GB of RAM and an AMD EPYC 7543 with 32
cores and 1 TB of RAM.

2.3.1. Direct model transfer
The initial experiments involved training an SSL feature extractor on

the Matek BM dataset (Fig. 3, left; only trained once for all experiments,
and training took approximately 48 h). Then, the ML classifiers were
adapted using cell image representations obtained from the feature ex-
tractors using the BM dataset (Fig. 3, middle; approximately 1 s). The
number of labeled samples was limited to 250 per class, motivated by
the Nielsen et al. [29]. The composed model, an SSL feature extractor
and an ML classifier, was applied to all three blood test datasets to assess
the SSL generalization capabilities (Fig. 3, right). The same procedure
was repeated with the blood Matek dataset as base dataset.

The BM dataset and the three blood datasets have a different number
of classes, with some classes missing in some datasets and other classes
combined into a superclass. While the classifiers were trained using the
classes of the Matek BM dataset (the source domain), during the final
evaluation only the output probabilities for the classes of the target
dataset were considered. For superclasses like neutrophil granulocytes,
which are differentiated into banded and segmented neutrophils in the
Matek BM dataset, a blood cell was labeled as a neutrophil granulocyte if
the BM classifier assigned the cell to either a banded or a segmented
neutrophil. The same applied to immature granulocytes. If a cell was
classified as a metamyelocyte, myelocyte or promyelocyte, it was
labeled as an immature granulocyte.

For comparison purposes and to provide a supervised benchmark,
the same model architecture (XCiT) was trained as an end-to-end DL cell
image classification system (loss function: weighted cross entropy;
Fig. 2, lower panel; training time approximately 24 h). Model training
was based on the same image data that were used for training the SSL

Table 2
Overview of cell classes and sample numbers involved in haematopoiesis,
including myelopoiesis, lymphopoiesis, thrombopoiesis and of other cell types
for the used four datasets.

Bone
marrow

Peripheral blood

Matek [30] Matek
[19]

Acevedo
[21]

Raabin
[20]

Erythropoiesis
Proerythroblast 2740 ​ ​ ​
Erythroblast 27,395 78 1551 ​
Myelopoiesis
Blast 11,973 ​ ​ ​
Myeloblast ​ 3268 ​ ​
Fagott cell 47 ​ ​ ​
Immature granulocyte 21,606 145 2895 ​
Promyelocyte 11,994 70 ​ ​
Promyelocyte
(bilobed)

​ 18 ​ ​

Myelocyte 6557 42 ​ ​
Metamyelocyte 3055 15 ​ ​
Neutrophil
granulocyte

39,392 8593 3329 10,862

Segmented neutrophil 29,424 8484 ​ ​
Band neutrophil 9968 109 ​ ​
Basophil 441 79 1218 301
Eosinophil 5883 424 3117 1066
Abnormal eosinophil 8 ​ ​ ​
Monoblast ​ 26 ​ ​
Monocyte 4040 1789 1420 795
Lymphopoiesis
Lymphocyte 26,242 3937 1214 3609
Lymphocyte
(atypical)

​ 11 ​ ​

Lymphocyte
(immature)

65 ​ ​ ​

Plasma cell 7629 ​ ​ ​
Hairy cell 409 ​ ​ ​
Thrombopoiesis
Platelets ​ ​ 2348 ​
Other cell types
Smudge cell 42 15 ​ ​
Artefact 19,630 ​ ​ ​
Not identifiable 3538 ​ ​ ​
Other cells 294 ​ ​ ​
Total 171,374 18,365 17,092 17,965
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models. Hyperparameters and data augmentation strategies were
consistent with the SSL setting.

To investigate the robustness of the different pipelines, ML classifier
fitting was repeated 100 times with random labeled samples of the
training dataset (relative class frequencies maintained during sampling).
Due to long training times, the training of the supervised baselines was
only repeated three times.

2.3.2. Domain adaption
The second set of experiments investigated the adaptability of the

SSL pipeline to new datasets under the constraint of having only a small
number of labelled samples available. Cell image representations were
again extracted using the SSL feature extractor trained on the Matek BM
dataset. Different from the direct model transfer experiments, the clas-
sifier was now fitted with a small labeled subset of [5, 25, 50, 100, 250,
500, 1000, 2000] samples per class from the specific target blood
dataset. The classification performance was evaluated as a function of
the number of labeled samples. The classifier fitting was repeated 100
times to investigate the robustness of the classification performances.

For the domain adaptation experiments, the benchmark results for
supervised DL-based classification were directly extracted from the
publications of the datasets and associated articles [20,25,33]. All
benchmark models were pretrained on the ImageNet dataset and sub-
sequently trained on a part of the specific cell image dataset. In each
case, the training datasets consisted of >10,000 labeled samples.

2.3.3. Data split and evaluation protocol
All datasets were randomly split into a training set (70 %) and a test

set (30 %) while preserving relative class frequencies. The SSL encoder
was trained exclusively on the training set to prevent data leakage. For
evaluation of the 100 repeated runs of the SSL experiments, the ML
classifier was trained using random stratified subsets of the training set
and evaluated on the test set. The supervised DL benchmark model for
direct transfer was trained three times on the same training set but with
random initial states. Due to the computational cost, the DL experiment
was repeated only three times.

Fig. 1. Representative images of five different cell classes from the four datasets used in this study. From top to bottom: Matek bone marrow (BM), Matek blood,
Raabin blood, and Acevedo blood. The images show color variations due to the different staining conditions and magnification, resulting in a different appearance of
the cells. In the BM images, various additional cells are often visible around the central cell, whereas in the blood datasets, the central cell is typically surrounded only
by erythrocytes.
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3. Results

3.1. Direct model transfer

Before the model transfer experiments, the performance of the ML
classification approaches (SVM, LR, KNN) was evaluated for the test

datasets of the Matek BM and blood datasets. Best classification per-
formance was achieved by the SVM, and subsequent results refer to this
configuration.

3.1.1. Transfer of BM models to peripheral blood smear datasets
The results for the transfer of the SSL feature extractor and SVM

Fig. 2. Comparison of self-supervised learning (SSL, upper part) and supervised deep learning (DL) training processes (lower part). During SSL, random crops of an
input image are generated, resulting in global (large) and local (small) crops. Two global crops are then passed through the teacher network (XCiT: cross-covariance
image transformer, network architecture used in this study). At the same time, the student network receives the same global and additional five local crops. The
learning objective is that student and teacher models extract similar representations for the different crops of the image. During the training process, only the student
network is updated by backpropagation, while the teacher network weights are maintained as an exponential moving average of the student weights. The trained
teacher network is finally used to extract 384-dimensional feature representations of the images. These representations serve as the basis for the subsequent clas-
sification task, which is solved by fitting a lightweight machine learning (ML) classifier based on a limited amount of labeled training data. During SSL, no labels /
image annotations are used. In contrast, the supervised DL training process involves the use of a label for each input image. The learning objective is to directly solve
the classification task in an end-to-end manner, resulting in a task- and dataset-specific image representation.

Fig. 3. Overview of the experiments. The SSL feature extractor was trained on the Matek BM dataset. Based on the extracted features, lightweight ML classifiers were
fitted. Two types of experiments were conducted: direct model transfer experiments, which were based on the BM dataset, and domain adaptation experiments,
which used a limited amount of labeled data from the target dataset. The classification performance was then assessed using the evaluation datasets, specifically the
test data of the target dataset.
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classifier trained on the Matek BM dataset to the three peripheral blood
smear datasets are summarized in Table 3. The table also shows the
classification sensitivity for the supervised DL baseline trained on the
Matek BM dataset. Applying the SSL BM smear cell image classification
pipeline to theMatek blood dataset resulted in a balanced accuracy of 64
% for the 11 classes that were present in both the Matek BM and the
blood dataset. The Acevedo blood dataset yielded a balanced accuracy of
53 % (7 classes), and for the Raabin blood dataset, an accuracy of 63 %
(5 classes) was achieved. Furthermore, the transfer of the SSL BM
models led to a considerably higher balanced accuracy for all three
blood datasets than direct transfer of the DL counterpart that was trained
in an end-to-end supervised manner. The confusion matrices corre-
sponding to Table 3 and detailed information on the distributions of the
sensitivity values of the repeated experiment runs are given in the Ap-
pendix, Figs. A1 and A2. This indicates a higher degree of transferability

and generalizability of SSL models compared to standard supervised
deep learning approaches.

3.1.2. Transfer of peripheral blood smear models to bone marrow images
A transfer of the SSL feature extractor and ML classifiers trained on

the Matek blood dataset to the task of bone marrow cell image classi-
fication resulted in a low balanced accuracy of around 42 %. In com-
parison, the supervised baseline model trained on the same Matek blood
dataset achieved a balanced accuracy of 20 %. These findings under-
score the superior generalizability of the proposed SSL approach. In
addition, we employed the blood feature extractor and trained the ML
classifier using 50 labeled samples per class from the BM dataset. The
accuracy improved to 48 %. The corresponding benchmark article
published in conjunction with the BM dataset [34] reports a balanced
accuracy of approximately 69 %. The per-class sensitivity values can be

Table 3
Cell classification results comparing the SSL feature extractor and the SVM classifier (fitted with 250 labeled samples per class) with a supervised approach, both
trained on the Matek bone marrow datasets, for classification of the cell images of the three blood datasets (Matek, Acevedo, and Raabin). The values represent the
sensitivity (mean and standard deviation) in percentages for each cell class. If no number is given for a specific class, this class was not included in the Matek bone
marrow dataset or the specific peripheral blood dataset.

Dataset Matek [19] Acevedo [21] Raabin [20]

Learning approach Ours (SSL) supervised Ours (SSL) supervised Ours (SSL) supervised

Erythroblast 93.1 ± 2.2 94.2 ± 2.5 58.4 ± 3.6 73.9 ± 5.1 – –
Immature granulocyte 80.1 ± 5.1* 74.4 ± 8.9* 92.0 ± 3.0 16.9 ± 7.6 – –
Promyelocyte 60.0 ± 11.5 11.1 ± 5.9 – – – –
Myelocyte 79.8 ± 11.8 64.1 ± 14.5 – – – –
Metamyelocyte 61.0 ± 15.7 13.3 ± 9.4 – – – –
Neutrophil granulocyte 99.0 ± 0.4** 99.9 ± 0.0** 95.4 ± 1.6 99.9 ± 0.1 99.9 ± 0.1 99.9 ± 0.2
Segmented neutrophil 98.4 ± 0.5 99.7 ± 0.1 – – – –
Band neutrophil 20.0 ± 5.7 10.1 ± 3.8 – – – –
Basophil 34.8 ± 6.0 0.0 ± 0.0 23.4 ± 5.0 1.6 ± 0.2 86.1 ± 4.6 21.0 ± 14.5
Eosinophil 76.7 ± 4.4 38.1 ± 13.6 13.8 ± 5.6 51.9 ± 26.8 7.1 ± 2.8 19.5 ± 4.8
Monocyte 83.5 ± 3.3 30.6 ± 3.3 33.1 ± 6.9 0.0 ± 0.0 34.4 ± 10.5 0.1 ± 0.2
Lymphocyte 78.1 ± 2.7 87.9 ± 2.4 52.6 ± 10.8 77.6 ± 6.7 87.6 ± 3.5 90.2 ± 1.3
Smudge cell 21.0 ± 4.4 0.0 ± 0.0 – – – –
Total 64.3 ± 2.0 40.8 ± 2.9 52.7 ± 2.0 46.0 ± 4.6 63.0 ± 2.7 46.1 ± 3.4

* Cells are considered correctly assigned to the superclass immature granulocytes if they are assigned to one of the classes: promyelocyte, myelocyte, metamyelocyte. The
resulting sensitivity for the superclass is not taken into account when computing the balanced accuracy (i.e., the total values).

** Cells are considered correctly assigned to the superclass neutrophil granulocyte if they are assigned to one of the classes: segmented neutrophil, band neutrophil. The
resulting sensitivity for the superclass is not taken into account when computing the balanced accuracy.

Fig. 4. Balanced accuracy for the domain adaptation experiments as a function of the number of samples per class of the specific blood datasets that were used for the
classifier fitting. The data is shown for the three blood datasets and the different ML classifiers (support vector machine, SVM; logistic regression, LR; k-nearest
neighbours, KNN). The SSL cell image feature extractor was always the same, trained on the Matek bone marrow dataset. The literature benchmark line refers to the
accuracy given in the original dataset-specific publications (supervised end-to-end deep learning cell classification).
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found in the Appendix, Table A1. Thus, no advantage was observed from
SSL pretraining on blood cell images for bone marrow cell classification,
and subsequent experiments focus the transfer of bone marrow smear
image representations to the blood datasets.

3.2. Domain adaption

The results of training the ML classifier on a limited number of

labeled samples from the target domain are given in Fig. 4. The figure
shows the balanced accuracy for different sample sizes and classifiers
(SVM, LR, KNN) for the three blood datasets. For the Matek blood
dataset, LR achieved the highest accuracy and surpassed the perfor-
mance of the supervised deep learning baseline of the original paper by
Matek et al. [33] with only ten samples per class. The accuracy increased
up to 78 % with samples per class. With more samples per class, the
trend was reversed and the balanced accuracy dropped, which was due
to the strong class imbalance within the dataset. Larger classes (>500
samples) benefited frommore samples during the classifier fitting, while
smaller classes (<100 samples, therefore underrepresented in a larger
training set) were assigned less accurately. Similar trends were observed
in the Acevedo blood dataset, where LR and SVM performed comparably
well. With only 50 samples per class, a balanced accuracy of 91 % was
achieved, which increased up to 97 % with 2000 samples per class,
surpassing the accuracy of the literature baseline. The classification
accuracy did not decrease with even larger sample sizes, as this dataset
had roughly balanced class sizes. The Raabin blood dataset followed a
similar pattern, with both LR and SVM showing similar performance.
With 50 labeled samples per class, a classification accuracy of 95 % was
achieved, which increased up to 97 % with 2000 samples per class.

Corresponding quantitative results for the different classes and a
minimal training set of 50 labeled cell images per class, that is, a min-
imum effort setting in terms of data labeling, and the SVM classifier are
given in Table 4 and Fig. A2. For the Matek blood dataset, high accuracy
for the most common physiological cell types like segmented neutro-
phils, typical lymphocytes, monocytes, eosinophils, and myeloblasts
(crucial for diagnosing acute myeloid leukemia) was achieved by the SSL
pipeline (accuracy above 80 %). This is in good agreement with the
results of supervised deep learning approaches, which achieve a sensi-
tivity of over 90 % for classes with many training images [33]. Different
from the supervised DL approaches, also images of smaller classes were
well classified using the SSL pipeline. For instance, the classification
accuracy for erythroblasts, monoblasts, and bilobed promyelocytes was
above 90 % for the proposed SSL approach, while it was between 41 %
and 87 % for the supervised DL model. Some classes, like atypical
lymphocytes or metamyelocytes, remained challenging for both ap-
proaches, but a noticeable improvement in the accuracy was observed
for the SSL pipeline.

For the Acevedo blood dataset, a similar trend was observed,
although the class imbalance was not as pronounced. Basophils, eosin-
ophils, lymphocytes, neutrophil granulocytes, and platelets were all
identified with an accuracy of over 90 %. Immature granulocytes proved
to be more challenging for the SSL approach with a classification ac-
curacy of 79 %.

For the Raabin dataset, again, high classification accuracy was ob-
tained using the SSL bone marrow image 240 representation and the
minimal labeled dataset (accuracy of >90 % for all classes). Although
the balanced accuracy of the baseline supervised DL model was not
surpassed, Fig. 4 illustrates that additional labeled dataset-specific cell
images could improve the SSL pipeline classification accuracy.

4. Discussion

The present study demonstrated the effectiveness of SSL for hema-
tological cell classification and cross-domain adaption with only a
minimal labeled dataset. To the best of the authors’ knowledge, the
work was the first to show that SSL feature extractors trained on bone
marrow smear cell images without the use of any class labels provide
meaningful image representations to fit lightweight ML models for ac-
curate peripheral blood cell image classification.

For one of the public blood datasets that were used as target domain
data, the Matek blood dataset, it was even sufficient to directly transfer
the SSL BM classifier to blood image cell classification to achieve state-
of-the-art classification results of DL systems trained on the blood
dataset-specific image data. Thus, a successful direct model transfer

Table 4
Domain adaption: cell classification sensitivity using an SSL feature extractor
trained on theMatek bonemarrow dataset and a SVM classifier trainedwith only
50 labeled cell images of the corresponding blood dataset (format: mean and
standard deviation in percentages). The results are compared to the sensitivity
values reported in the original dataset publications or directly related articles
(Table 1 of Matek et al. [33]; Fig. 12 of Acevedo et al. [25], values for the
Vgg16-based model; Table 8, values of the ResNext50 run, of Kouzehkanan et al.
[20]; the Vgg16-based and the ResNext50 models showed the best balanced
accuracy in the respective publications), corresponding to supervised deep
learning systems trained with >10,000 labeled samples of the same dataset.

Matek Acevedo Raabin

Ours Ref. [33] Ours Ref. [25] Ours Ref. [20]

Erythroblast 99.5
± 1.4

87 ± 9 93.3
± 2.1

91.9 – –

Myeloblast 85.8
± 1.9

94 ± 2 – – – –

Immature
granulocytes

85.4
± 1.4
*

– 79.2
± 3.0

92.2 – –

Promyelocyte 65.6
± 2.2

54 ± 20 – – – –

Promyelocyte
bilobed

100
± 0.0

41 ± 37 – – – –

Myelocyte 84.9
± 1.5

43 ± 7 – – – –

Metamyelocyte 15.6
± 8.3

13 ± 27 – – – –

Neutrophil
granulocyte

94.4
±

1.1**

– 93.9
± 1.3

99.6 92.4
± 2.2

99.6

Segmented
neutrophil

85.6
± 1.7

96 ± 1 – – – –

Band
neutrophil

85.8
± 2.8

59 ± 16 – – – –

​ ​ ​ ​ ​ ​ ​
Basophil 73.9

± 4.9
82 ± 7 90.0

± 2.8
94.3 99.9

± 0.4
100

Eosinophil 85.1
± 2.7

95 ± 1 91.4
± 2.0

99.6 96.1
± 1.5

98.8

Monoblast 99.1
± 3.2

58 ± 26 – – – –

Monocyte 82.4
± 2.0

90 ± 5 86.7
± 3.3

95.3 90.7
± 2.4

91.5

Lymphocyte 90.0
± 2.1

95 ± 2 93.5
± 2.5

96.8 95.9
± 1.3

100

Lymphocyte
atypical

14.0
±

20.2

7 ± 13 – – – –

Platelet – – 97.0
± 0.9

99.6 – –

Smudge cell 80.0
± 0.0

77 ± 20 – – – –

Total 76.5
± 1.6

66.1 90.6
± 0.6

96.2 95.0
± 0.6

98.0

* Cells are considered correctly assigned to the superclass immature gran-
ulocytes if they are assigned to one of the classes: promyelocyte, promyelocyte
bilobed, myelocyte, metamyelocyte. The resulting sensitivity for the superclass is
not taken into account when computing the balanced accuracy.

** Cells are considered correctly assigned to the superclass neutrophil gran-
ulocyte if they are assigned to one of the classes: segmented neutrophil, band
neutrophil. The resulting sensitivity for the superclass is not taken into account
when computing the balanced accuracy.
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between the bone marrow smear and the blood smear image domain is
possible using SSL.

For the other two peripheral blood smear datasets, direct transfer of
the BM SSL models did not achieve classification accuracy close to
standard DL systems trained on the images of the specific blood datasets.
Nonetheless, a direct transfer of the SSL models outperformed the direct

transfer of BM-trained supervised DL counterparts. Thus, the experi-
ments demonstrated the advantage of SSL to improve the generaliz-
ability of learned image representations. Fig. 5 supports this hypothesis
by displaying the attention head information of the SSL trained (a) and
supervised-trained (b) bone marrow transformer models of a represen-
tative cell image. The attention head information indicates the image

Fig. 5. Visualization of the attention information of the eight attention heads of the image transformer model for a representative cell image from the bone marrow
dataset. Upper panel: attention for the SSL approach; lower panel: attention for the supervised DL baseline. For each panel, the areas with the highest attention (red;
threshold at 80 % of maximum value) are superimposed on the original image. The lower row visualizes the continuous attention values for each head (high values:
brighter color). The attention patterns differ notably for the two approaches: The SSL model shows a focused attention on the cell, whereas the supervised approach
does not. This observation suggests a potential explanation for superior generalization capabilities of SSL compared to the standard supervised DL.

Fig. 6. Two-dimensional embedding of the features of the Acevedo blood cell images. The embedding is computed by a UMAP transform. The features are extracted
using the SSL model that was trained on the Matek bone marrow dataset, without information about cell class labels. The visualization shows a clear clustering of
cells according to the eight classes of the Acevedo blood dataset, supporting the hypothesis that the SSL approach enables the learning of meaningful image and cell
representations.
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areas on which the models focus. The SSL approach focuses on the cell,
whereas the supervised approach does not. This suggests that the SSL
approach extracts meaningful cell features, while the supervised
approach appears to overfit to the specific training dataset. This may
explain the poor transferability of standard supervised DL model rep-
resentations to new domains.

Fitting the ML classifier with only a small number of dataset-specific
labeled samples substantially increased the SSL classification accuracy.
In particular, for smaller classes which are often clinically relevant, a
higher accuracy was observed than for the literature baseline DLmodels.
These findings further indicate that the SSL-extracted bone marrow
smear image representations capture relevant cellular patterns. This is
supported by Fig. 6, which shows a two-dimensional embedding of the
SSL cell image features of the Acevedo blood test dataset. A clustering of
the samples by cell class is apparent, although the representations were
obtained by a feature extractor trained on bone marrow cell images
without prior knowledge of any classes (neither blood nor bone marrow
cell classes) or blood cell images.

The model transfer from the blood to the bone marrow smear image
domain did not lead to the same favorable results. This could be due to
various factors. First, the Matek blood dataset is considerably smaller,
only about one-tenth of the size of the bone marrow dataset. This may
have limited the ability of the SSL model to effectively capture repre-
sentative cell features and patterns from the peripheral blood images.
Moreover, the background surrounding the central cell in the images
varies between bone marrow and peripheral blood cell smears. Blood
images mainly feature erythrocytes, whereas bone marrow images show
a high density of nucleated cells. In addition, bonemarrow cells exhibit a
wider variety of subcategories and greater variability in representation
due to differences in staining, preparation methods, and biological
characteristics of the cells. This disparity seems problematic for the
proposed SSL-DINO approach; the detailed background and variability
in appearance in the BM images seem advantageous to learn and extract
meaningful features of the cell of interest. However, the balanced clas-
sification accuracy reported in the corresponding dataset article [34] is
also relatively low, and the exact reason for this remains to be clarified
in follow-up studies.

From a clinical perspective, a direct model transfer between labo-
ratories and domains without loss of classification accuracy would be
the ideal setting. If not feasible, the time-consuming process of expert-
based data annotation should be minimized. The present work showed
that domain adaptation using SSL cell image representations achieves
high classification accuracy already with a small number of approxi-
mately 50 samples per class. This reduces the data labeling efforts by a
large amount compared to standard supervised deep learning systems
that are trained on >10,000 labeled cell images and up to 2000 labeled
images per class. The proposed approach is therefore suitable for
transferring it to other datasets. To foster this transfer, all described
models and the corresponding source code are provided publicly avail-
able, including the trained SSL cell image feature extractors. This means
that no specialized hardware is necessary to adapt the proposed
approach to the data of interested readers. Using the trained SSL
encoder, fitting of conventional ML classifiers by a limited amount of
their image data and the corresponding image representations can be
efficiently done using a standard computer. In our study, new fitting of
the SVM classifier took approximately 1s. This is in contrast to

supervised DL models, which typically demand extensive training time
on server-grade hardware (in our case approximately 24 h, which is
comparable to other publications [19]), rigorous experimental valida-
tion to mitigate overfitting, and substantial expertise to design and adapt
training pipelines. These requirements make the DL training process less
accessible, especially in terms of computational resources and expert
knowledge.

In conclusion, the present study demonstrated the capabilities of SSL
of cell image representation to improve the classification of hemato-
logical cell images. The reuse of learned, meaningful bone marrow
image representations enables domain adaptation with only a few
labeled cell images of the target dataset, reducing the effort and time of
clinical experts to label their image data. This in turn could accelerate
the automation of cell classification and thus the diagnosis and moni-
toring of hematological diseases.

However, the present study built on already cropped single cell im-
ages. For clinical application, the pipeline has to be extended to be able
to handle whole-slide images, for example by integration of an instance
segmentation step, and the resulting pipeline has to be benchmarked
against corresponding end-to-end approaches [35]. Additionally, with
advancements in tissue sectioning and staining techniques, it will be
interesting to explore how these approaches translate to liquid hema-
tological smears, potentially further reducing the need for manual
intervention.
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Appendix A

To complement the data summarized in Tables 3 and 4, the appendix contains the corresponding confusion matrices (Figs. A1 and A3) and a
comparison of the distribution of the sensitivity values for the repeated runs of the experiments belonging to Table 3. In addition, Table A1 summarizes
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the results of the experiments on the direct transfer of an SSL feature extractor and an SVM classifier trained and fitted on the Matek blood dataset for
single cell classification in the Matek BM dataset. The corresponding domain adaptation experiments results are also listed in the table and compared
with literature benchmark results.

Fig. A1. Confusion matrices for the results summarized in Table 3. Confusions matrices corresponding to the cell classification results displayed in Table 3,
comparing the SSL-based classification feature extractor and the SVM classifier (fitted with 250 labeled samples per class) with a supervised approach (SL), both
trained on the Matek bone marrow datasets, for classification of the cell images of the three blood datasets (Matek, Acevedo, and Raabin). The values represent mean
relative frequencies, normalized by class size, i.e., the numbers of each row sum up to 1. Please zoom in to read the details.
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Fig. A2. Distribution of the sensitivity values of the repeated runs belonging to Table 3. The figure shows the distribution of the repeated experiment runs for each of
the three blood datasets. The SSL distribution refers to the 100 repeated runs of each experiment performed using the self-supervised learning (SSL) pipeline. The
three orange points refer to the three corresponding runs for the supervised deep learning (SL) counterparts.

Table A1
Cell classification results comparing the performance of an SSL feature extractor trained on the Matek blood dataset
for classification of single cells of the Matek bone marrow dataset. For direct model transfer, an SVM classifier was
fitted using 250 labeled samples per class of the blood dataset and applied for classification of single cell images of the
bone marrow dataset. For the domain adaptation experiments, the SVMwas fitted with 50 labeled samples of the bone
marrow dataset. The literature benchmark values are taken from column Recallstrict of Table 1 of the corresponding
article [34]. The values represent the sensitivity (mean and standard deviation) in percentages for each cell class. If no
number is given for a specific class, the class was not part of the Matek blood dataset.

Dataset Matek Bone Marrow [30]

Direct transfer Domain adaption Ref. [34]

Proerythroblast – 62.0 ± 3.2 63 ± 13
Erythroblast 48.9 ± 3.6 67.0 ± 2.5 82 ± 1
Blast – 35.5 ± 2.8 65 ± 3
Fagott cell – 26.2 ± 5.4 63 ± 27
Promyelocyte 35.1 ± 2.4 46.4 ± 2.8 72 ± 8
Myelocyte 15.6 ± 1.4 38.6 ± 4.5 59 ± 6
Metamyelocyte 0.5 ± 0.1 28.7 ± 3.1 64 ± 8
Segmented neutrophil 76.9 ± 3.5 62.7 ± 2.9 71 ± 5
Band neutrophil 21.2 ± 4.0 50.8 ± 3.5 65 ± 4
Basophil 18.6 ± 1.5 38.8 ± 3.5 64 ± 7
Eosinophil 38.3 ± 2.5 46.5 ± 2.7 91 ± 3
Abnormal eosinophil - 0 ± 0 20 ± 40
Monocyte 51.1 ± 5.3 42.6 ± 2.6 70 ± 3
Lymphocyte 83.0 ± 3.4 46.5 ± 3.5 70 ± 3
Lymphocyte (immature) – 62.5 ± 6.2 53 ± 15
Plasma cell – 42.4 ± 2.5 84 ± 4
Hairy cell – 64.9 ± 3.0 80 ± 6
Other – 54.1 ± 3.8 84 ± 6
Smudge cell 76.3 ± 2.4 88.9 ± 4.1 90 ± 10
Artefact – 57.4 ± 2.1 74 ± 6
Not identifiable – 49.6 ± 2.9 63 ± 4
Total 42.3 ± 0.6 48.2 ± 0.6 68.9
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Fig. A3. Confusion matrices for the results summarized in Table 4. Table 4 contains the results of the domain adaptation experiments for the SSL feature extractor
trained on the Matek bone marrow dataset for single cell classification in the three blood datasets. The left column shows the actual cell numbers, illustrating the class
imbalance inherent to the datasets. The right column contains the corresponding relative numbers, normalized by the class size (format: mean and standard deviation
in percentages). Please zoom in to read the details.
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[8] J. Rodellar, S. Alférez, A. Acevedo, et al., Image processing and machine learning in
the morphological analysis of blood cells, Int. J. Lab. Hematol 40 (Suppl 1) (2018)
46–53.

[9] Y.Y. Baydilli, U. Atila, A. Elen, Learn from one data set to classify all – a multi-
target domain adaptation approach for white blood cell classification, Comput.
Methods Programs Biomed 196 (2020) 105645.

[10] R. Lüllmann-Rauch, E. Asan, Taschenlehrbuch Histologie, 6th ed., Georg Thieme
Verlag, Stuttgart, 2019.

[11] S.J. Wagner, C. Matek, S.S. Boushehri, et al., Make deep learning algorithms in
computational pathology more reproducible and reusable, Nat. Med. 28 (9) (2022)
1744–1746.

[12] S. Tavakoli, A. Ghaffari, Z.M. Kouzehkanan, R. Hosseini, New segmentation and
feature extraction algorithm for classification of white blood cells in peripheral
smear images, Sci. Rep 11 (1) (2021) 19428.

[13] X. Chen, G. Zheng, L. Zhou, Z. Li, H. Fan, Deep self-supervised transformation
learning for leukocyte classification, J. Biophoton 16 (3) (2023) e202200244.

[14] L. Boldu, A. Merino, A. Acevedo, A. Molina, J. Rodellar, A deep learning model
(ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell
images, Comput. Methods Programs Biomed 202 (2021) 105999.

[15] H. Chen, J. Liu, C. Hua, J. Feng, B. Pang, D. Cao, et al., Accurate classification of
white blood cells by coupling pre-trained ResNet and DenseNet with SCAM
mechanism, BMC Bioinform. 23 (1) (2022) 282.

[16] Q. Wang, S. Bi, M. Sun, Y. Wang, D. Wang, S. Yang, Deep learning approach to
peripheral leukocyte recognition, PLoS One 14 (6) (2019) e0218808.

[17] F. Qin, N. Gao, Y. Peng, Z. Wu, S. Shen, A. Grudtsin, Fine-grained leukocyte
classification with deep residual learning for microscopic images, Comput.
Methods Programs Biomed 162 (2018) 243–252.

[18] M.M. Alam, M.T. Islam, Machine learning approach of automatic identification and
counting of blood cells, Healthc. Technol. Lett 6 (4) (2019) 103–108.

[19] Matek C., Schwarz S., Marr C., Spiekermann K. A single-cell morphological dataset
of leukocytes from AML patients and non-malignant controls. https://www.ca
ncerimagingarchive.net/collection/aml-cytomorphology_lmu. Accessed 22 July
2024.

[20] Z.M. Kouzehkanan, S. Saghari, S. Tavakoli, P. Rostami, M. Abaszadeh, F. Mirzadeh,
et al., A large dataset of white blood cells containing cell locations and types, along
with segmented nuclei and cytoplasm, Sci. Rep 12 (1) (2022) 1123.

[21] A. Acevedo, A. Merino, S. Alferez, A. Molina, L. Boldu, J. Rodellar, A dataset of
microscopic peripheral blood cell images for development of automatic recognition
systems, Data Brief 30 (2020) 105474.

[22] T.A. Elhassan, M.S. Mohd Rahim, M.H. Siti Zaiton, T.T. Swee, T.A. Alhaj, A. Ali, et
al., Classification of atypical white blood cells in acute myeloid leukemia using a
two stage hybrid model based on deep convolutional autoencoder and deep
convolutional neural network, Diagnostics 13 (2) (2023) 196.

[23] K. Weiss, T.M. Khoshgoftaar, D. Wang, A survey of transfer learning, J. Big Data 3
(2016) 9.

[24] H.E. Kim, A. Cosa-Linan, N. Santhanam, M. Jannesari, M.E. Maros, T. Ganslandt,
Transfer learning for medical image classification: a literature review, BMC Med.
Imag. 22 (1) (2022) 69.

[25] A. Acevedo, S. Alferez, A. Merino, L. Puigvi, J. Rodellar, Recognition of peripheral
blood cell images using convolutional neural networks, Comput. Methods
Programs Biomed 180 (2019) 105020.

[26] F. Long, J.J. Peng, W. Song, X. Xia, Sang J. BloodCaps, A capsule network based
model for the multiclassification of human peripheral blood cells, Comput.
Methods Programs Biomed 202 (2021) 105972.

[27] R. Krishnan, P. Rajpurkar, E.J. Topol, Self-supervised learning in medicine and
healthcare, Nat. Biomed. Eng 6 (12) (2022) 1346–1352.

[28] E. Tiu, E. Talius, P. Patel, C.P. Langlotz, A.Y. Ng, P. Rajpurkar, Expert-level
detection of pathologies from unannotated chest X-ray images via self-supervised
learning, Nat. Biomed. Eng. 6 (12) (2022) 1399–1406.

[29] M. Nielsen, L. Wenderoth, T. Sentker, R. Werner, Self-supervision for medical
image classification: state-of-the-art performance with 100 labeled training
samples per class, Bioengineering 10 (8) (2023) 895.

[30] Matek C., Krappe S., Münzenmayer C., Haferlach T., Marr C. An expert-annotated
dataset of bone marrow cytology in hematologic malignancies. https://www.
cancerimagingarchive.net/collection/bone-marrow-cytomorphology_mll_helmhol
tz_fraunhofer. Accessed 22 July 2024.

[31] M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, et al., Emerging
properties in self-supervised vision transformers, in: IEEE/CVF International
Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021,
pp. 9630–9640.

[32] Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T.,
Dehghani M., Minderer M., Heigold G., Gelly S., Uszkoreit J., Houlsby N. An iamge
is worth 16x16 words: transformers for image recognition at scale. 2021;arXiv:
2010.11929v2.

[33] C. Matek, S. Schwarz, K. Spiekermann, C. Marr, Human-level recognition of blast
cells in acute myeloid leukemia with convolutional neural networks, Nat. Mach.
Intell. 1 (2019) 538–544.

[34] C. Matek, S. Krappe, C. Münzenmayer, T. Haferlach, C. Marr, Highly accurate
differentiation of bone marrow cell morphologies using deep neural networks on a
large image data set, Blood 138 (20) (2021) 1917–1927.

[35] S.A. Tarimo, M.-A. Jang, E.E. Ngasa, H.B. Shin, H. Shin, Woo J.WBC YOLO-ViT, 2
Way - 2 stage white blood cell detection and classification with a combination of
YOLOv5 and vision transformer, Comput. Biol. Med. 169 (2024) 107875.

L. Wenderoth et al. Computer Methods and Programs in Biomedicine 260 (2025) 108560 

13 

28



3 Summary

3.1 English

Accurate classification of peripheral blood and bone marrow cells is crucial for
diagnosing haematological disorders. Traditional supervised Artificial Intelligence
(AI) methods for blood cell image classification, which are trained on large labelled
datasets, have dominated the field, achieving high performance in controlled envi-
ronments. However, this approach has significant limitations: it depends heavily
on extensive manual labelling, often requires specialized hardware for training, and
struggles to generalise across different datasets. Although several studies have at-
tempted to address one or two of these challenges, none has fully overcome all three.

To address these challenges, transfer learning presents a promising solution by
transferring knowledge from a model trained on a large (annotated) dataset to a
smaller target dataset. This method makes efficient use of existing information,
enhancing performance with minimal additional annotation. Another effective ap-
proach is self-supervised learning (SSL), where algorithms can extract useful infor-
mation from data without the need for human-made annotations. In this study, I
combine SSL with transfer learning to improve blood cell classification, effectively
overcoming the three limitations identified earlier.

To further illustrate the approach, SSL-based feature extraction is combined with
a lightweight classifier trained on a small number of labelled samples. This strategy
allows for effective representation learning with minimal reliance on large labelled
datasets. Four datasets are used: one bone marrow and three peripheral blood
cell image datasets. The feature extractor is trained using SSL on the bone marrow
images. Two experiments are conducted: direct transfer, where classifiers are trained
on bone marrow images, and domain adaptation, where classifiers are trained using
a limited number of blood cell images. The performance of this pipeline is then
compared to traditional SL methods, which require extensive labelled datasets for
training.

The results demonstrate that this approach enhances the transferability of blood
cell image classification. In direct transfer, the SSL pipeline achieved an accuracy
between 53% to 64%, outperforming the supervised models, which achieved between
41% to 46%. In domain adaptation, the ML classifier, trained with approximately
50 labelled images per class, outperformed the supervised models, particularly in
classifying rare or atypical cell types. These results highlight the value of combining
transfer learning with SSL for knowledge transfer between bone marrow and pe-
ripheral blood. This study also tested transfer learning from blood to bone marrow,
but the results were not favourable, likely due to differences in dataset size, image
background, and domain variability.

In conclusion, transfer learning combined with SSL offers a promising alterna-
tive to traditional methods and provides a more efficient and scalable solution for
automated blood cell image classification. Future work could focus on extending
this approach to whole-slide images to further improve automation in cell image
classification and diagnosis.
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3.2 Deutsch

Die präzise Klassifikation von peripheren Blut- und Knochenmarkzellen ist von zen-
traler Bedeutung für die Diagnostik hämatologischer Erkrankungen. Traditionell
dominieren überwachte KI-Methoden zur Blutzellklassifikation, die auf großen, an-
notierten Datensätzen basieren und in kontrollierten Umgebungen eine gute Perfor-
manz erzielen. Diese Ansätze weisen jedoch signifikante Einschränkungen auf: Sie
sind stark auf die manuelle Annotation großer Datensätze angewiesen, erfordern oft
spezialisierte Hardware für das Training und haben Schwierigkeiten, die Generalisier-
barkeit auf unterschiedliche Datensätze sicherzustellen. Obwohl zahlreiche Studien
versucht haben, einzelne dieser Herausforderungen zu adressieren, konnte bislang
keine Methode alle drei Probleme vollständig lösen.

Um diese Herausforderungen zu bewältigen, stellt Transfer Learning eine vielver-
sprechende Lösung dar, bei der Wissen von einem Modell, das auf einem großen (an-
notierten) Datensatz trainiert wurde, auf einen kleineren Ziel-Datensatz übertragen
wird. Diese Methode nutzt somit bestehende Informationen effizient und verbes-
sert die Leistung mit minimalen zusätzlichen Annotationen. Ein weiterer effektiver
Ansatz ist das selbstüberwachte Lernen (self-supervised learning - SSL), bei dem
Algorithmen nützliche Informationen aus den Daten extrahieren können, ohne dass
menschliche Annotationen erforderlich sind. In dieser Thesis kombiniere ich SSL mit
Transfer Learning, um die Blutzellklassifikation zu verbessern und so die drei oben
identifizierten Einschränkungen effektiv zu überwinden.

Die SSL-basierte Merkmalsextraktion wird mit einem Klassifikator kombiniert,
der auf einer kleinen Anzahl von annotierten Bildern trainiert wird. Diese Stra-
tegie ermöglicht ein effektives Repräsentationslernen mit minimaler Abhängigkeit
von großen annotierten Datensätzen. Es werden vier Datensätze verwendet: ein
Knochenmark-Datensatz und drei Datensätze für periphere Blutzellbild-Datensätze.
Der Merkmalsextraktor wird mithilfe von SSL auf den Knochenmarkbildern trai-
niert. Zwei Experimente werden durchgeführt: direkter Transfer, bei dem Klassi-
fikatoren auf Knochenmarkbildern trainiert werden, und Domänenadaptation, bei
der Klassifikatoren unter Verwendung einer begrenzten Anzahl von Blutbildbil-
dern trainiert werden. Die Performanz dieser Pipeline wird dann mit traditionellen
überwachten Lernmethoden (supervised learning - SL) verglichen, die umfangreiche
annotierte Datensätze für das Training erfordern.

Die Ergebnisse zeigen, dass mein Ansatz die Übertragbarkeit der Blutzellklassifi-
kation verbessert. Beim direkten Transfer erzielte die SSL-Pipeline eine Genauigkeit
von 53% bis 64%, was die SL Modelle übertraf, die eine Genauigkeit von 41% bis
46% erreichten. Bei der Domänenadaptation übertraf der ML-Klassifikator, der mit
etwa 50 annotierten Bildern pro Klasse trainiert wurde, die überwachten Modelle,
insbesondere bei der Klassifikation seltener oder atypischer Zelltypen. Diese Er-
gebnisse unterstreichen den Wert der Kombination von Transferlernen mit SSL für
den Wissenstransfer zwischen den Domänen Knochenmark und peripherem Blut.
Diese Studie testete auch das Transferlernen von Blut zu Knochenmark, aber die
Ergebnisse waren nicht günstig, wahrscheinlich aufgrund von Unterschieden in der
Datensatzgröße, dem Bildhintergrund und der Domänenvariabilität.

Zusammenfassend lässt sich sagen, dass Transferlernen in Kombination mit SSL
eine vielversprechende Alternative zu traditionellen Methoden darstellt. Zukünftige
Arbeiten können diesen Ansatz auf Whole-Slide-Bilder erweitern, um die Automa-
tisierung der Zellklassifikation und Diagnose weiter zu verbessern.
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