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Abstract

Anthropogenic climate change creates a decision-making problem between near-term
mitigation costs and long-term risks of severe impacts. Traditional frameworks such as
cost-benefit analysis (CBA) and cost-effectiveness analysis (CEA) represent two ends of a
spectrum: the former trades off mitigation costs against expected damages, while the lat-
ter seeks the least-cost path to meet climate targets, assuming damages cannot be reliably
quantified. Cost-risk analysis (CRA) emerged to reconcile CEA’s temperature objectives
with utility-based flexibility; however, improved damage quantification calls for a more
integrated approach. This thesis develops Cost-Benefit-Risk Analysis (CBRA)—a novel
framework that integrates explicit (partial) damage estimates into a reduced-weight risk
function for temperature targets, bridging target-based and trade-off-based methods. The
thesis first examines the carbon budget concept, which posits a near-linear relationship
between cumulative COgy emissions and global temperature rise (TCRE)—a key condi-
tion for CRA-CEA equivalence. Scenario-dependent deviations are analyzed using an
optimization program, demonstrating maximal deviations of less than 10% of total tem-
perature rise, which rapidly diminish thereafter. Using FalRv2 and a one-box model, it
is shown that scenario dependence can be explained by the shape of the pulse response,
interpreted as Green’s function. This approach generalizes to models of any complexity
and helps characterize nonlinearity in the carbon budget. Combined with projections
for agriculture and mortality, and implemented in the CGE model GTAP-INT 2, the re-
sults reveal substantial regional disparities and significant global damages, particularly in
poorer, populous regions—with long-term GDP reductions of up to 50% for certain coun-
tries, while a few specific regions may experience marginal GDP gains (less than 1%) under
high-emission scenarios. Finally, CBRA is implemented within the MIND-L integrated
assessment model, incorporating hereby modified FalR climate module with probabilistic
climate sensitivity and a partial damage function derived from CGE-informed economic
damages. It confirms that, under a carbon budget-consistent module, CRA and CEA
yield equivalent outcomes. Moreover, we show that, by calibrating the CBRA framework

to meet the predefined temperature target, one can assess how much of the unknown



risks embodied in the climate target are explicitly quantified by the implemented damage
function. These findings position CBRA as a consistent, flexible tool for climate policy

design.

Zusammenfassung

Der anthropogene Klimawandel erzeugt ein Entscheidungsproblem zwischen kurzfristi-
gen Kosten fiir Klimaschutz und langfristigen Risiken schwerer Schiaden. Traditionelle
Entscheidungswerkzeuge wie die Kosten-Nutzen-Analyse (KNA/CBA) und die Kostenef-
fektivitatsanalyse (KEA/CEA) bilden dabei zwei Enden eines Spektrums: Erstere wagt
Kosten gegen erwartete Schaden ab, wahrend Letztere, unter der Annahme, dass Schaden
nicht verlasslich zu quantifizieren sind, den kostengiinstigsten Pfad zur Erreichung vorgege-
bener Klimaziele sucht. Die Kosten-Risiko-Analyse (KRA/CRA) entstand, um die tem-
peraturbasierten Zielvorgaben der KEA mit der Zeitkonsistenz unter Unsicherheit des
Nutzenmaximierungskonzepts zu verbinden; verbesserte Schadensquantifizierungen er-
fordern jedoch einen starker integrierten Ansatz. Diese Dissertation entwickelt daher die
Kosten-Nutzen-Risiko-Analyse (KNRA/CBRA) — ein neuartiges Entscheidungswerkzeug,
das explizite (partielle) Schadensschétzungen in eine abgeschwécht gewichtete Risikofunk-
tion fiir Temperaturziele integriert und damit zielbasierte und abwégende Methoden vere-

int.

Zunéachst wird das Kohlenstoff-Budget-Konzept untersucht, das eine nahezu lineare
Beziehung zwischen kumulativen COg-Emissionen und dem globalen Temperaturanstieg
(TCRE) postuliert — eine Schliisselbedingung fiir die Aquivalenz von KRA und KEA.
Szenarioabhéngige Abweichungen werden mittels eines Optimierungsprogramms analysiert;
sie betragen maximal weniger als 10% des gesamten Temperaturanstiegs und klingen
danach rasch ab. Mit FalRv2 und einem Ein-Box-Modell wird gezeigt, dass die Szenar-
ioabhéngigkeit durch die Form der Impulsantwort (als Greensfunktion interpretierbar)
erklart werden kann. Dieser Zugang lésst sich auf Modelle beliebiger Komplexitét verall-
gemeinern und hilft, Nichtlinearitdten in der Kohlenstoff-Budget-Temperatur-Beziehung

zu charakterisieren.

Projektionen von Auswirkungen des Klimawandels fiir Landwirtschaft und Mortalitét,
implementiert im CGE-Modell GTAP-INT 2, zeigen die Ergebnisse erhebliche regionale
Ungleichheiten und bedeutende globale Schaden, insbesondere in &rmeren und bevolkerung-
sreichen Regionen — mit langfristigen BIP-Riickgédngen von bis zu 50% fiir einzelne Lénder
(bei einer langfristigen Erwéarmung um 4 °C), wihrend wenige spezifische Regionen unter

hohen Emissionsszenarien BIP-Zuwachse unter 1% verzeichnen konnen.
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Zuletzt wird KNRA im integrierten Bewertungsmodell MIND-L implementiert. Hi-
erzu wird eine angepasste Version des FalR-Klimamodells mit probabilistischer Klimaun-
sicherheit und partieller Schadensfunktion eingesetzt. Letztere basiert auf den Ergeb-
nissen der im CGE-Modell bestimmten 6konomischen Schéden. FErgebnisse mit diesem
Modellaufbau bestétigen, dass KEA und KRA sich dquivalent verhalten. Dariiber hinaus
wird gezeigt, dass es moglich ist abzuschétzen, wie viel der in den Temperaturzielen im-
pliziten unbekannten Risiken durch die partielle Schadensfunktion quantifiziert werden.
Damit wird KNRA als transparentes und anpassungsfihiges Entscheidungswerkzeug fiir

die Klimapolitik demonstriert.



Declaration

Eidesstattliche Versicherung — Declaration on Oath

I hereby declare and affirm that this doctoral dissertation is my own work and that I

have not used any aids and sources other than those indicated.

If electronic resources based on generative artificial intelligence (gAI) were used in the
course of writing this dissertation, I confirm that my own work was the main and value-
adding contribution and that complete documentation of all resources used is available in
accordance with good scientific practice. I am responsible for any erroneous or distorted
content, incorrect references, violations of data protection and copyright law or plagiarism

that may have been generated by the gAl.

Additional declarations (University of Melbourne):

m the thesis comprises only my original work towards the joint doctoral degree (Doctor
of Philosophy);

m due acknowledgement has been made in the text to all other material used;

m the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices; and

m the thesis comprises 100% dissertation as agreed by the advisory committee.

Hamburg, 14.10.2025 ){'

vii



Preface

This joint thesis research was conducted at the Faculty of Mathematics, Informat-
ics and Natural Sciences, University of Hamburg, Germany, and the Faculty of Science,
University of Melbourne, Australia. The work was carried out under the supervision of
Prof. Hermann Held, Prof. Tom Kompas, Prof. Andreas Lange, and Dr. James Camac.
While the work presented in this thesis is largely my own, the use of “we” throughout the

chapters reflects standard academic writing conventions.

This thesis is presented in the form of a cumulative dissertation, comprising three pa-
pers—both published and unpublished—which constitute Chapters 2, 3, and 4. The
Introduction, along with the Discussion and Conclusion, does not only provide general
context and summarize the main findings, but also serve to establish the coherence be-
tween the individual papers—guiding the reader through the overarching narrative of the

thesis.
e Paper 1 (Published in Earth System Dynamics, 18. 04. 2024)

e Paper 2 (Submitted — currently under editorial consideration)

e Paper 3 (Invited to revise and resubmit — currently under revision)

viii



ix

All three articles included in this thesis were entirely written by me. Paper 1 is a single-
author publication, and both the research and the writing are solely my own (100 %).
For Paper 2, I contributed approximately 80 % of the research work, with the remaining
contributions made by Pham Van Ha and Tom Kompas. For Paper 3, my contribution
amounts to approximately 75 %, with the remainder contributed by Benjamin Blanz. In
all cases, the complete drafting and writing of the manuscripts were carried out exclusively

by me. Digital editorial assistance was used solely for language editing.
Funding.

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy — EXC 2037 “CLICCS —
Climate, Climatic Change, and Society” — project number 390683824. Additional institu-
tional support was provided by the University of Hamburg (President’s Office and Faculty
of Mathematics, Informatics and Natural Sciences (MIN)), including the Research Unit
Sustainability and Climate Risk. Further support came from the Centre for Environmen-

tal and Economic Research (CEER) at the University of Melbourne.



Acknowledgements

I would like to express my deepest gratitude to my Doktorvater, Prof. Hermann Held.
From the beginning of our interaction during my master’s studies until the end of this
thesis—developed around topics he generously proposed— he showed infinite patience and
provided guidance throughout my academic journey. With academic and non-academic
matters alike, he never hesitated to go the extra mile to offer support. For this and many

other things, thank you Hermann.

To Prof. Tom Kompas, for welcoming me into his group on the other side of the planet
with open arms; for teaching me how to be concise, to appreciate the value of shorter
meetings, and for showing me a different perspective on academia. Most importantly, for

ensuring that I always felt at home, even while being so far from home. Cheers, Tom!

This thesis also owes a great deal of gratitude to my panel chairs, Dr. David Grawe
and Prof. Brendan Cullen. David has been involved since the beginning of my PhD,
consistently ensuring that meetings were held regularly, while generously offering his time
whenever I needed support or simply someone to talk to. Brendan assumed the role
of my panel chair in Melbourne and ensured that everything proceeded smoothly and

effortlessly, helping me navigate the formal aspects of a joint PhD with clarity and ease.

To Benjamin, for discussions of many kinds, invaluable practical and theoretical help,
and continuous support in most difficult times. To Ha, for his patience, positive outlook,

and support throughout the writing and revisions.

Next, my family. To my mother, Tihana — thank you for always being just one phone
call away when things became overwhelming, and for your unwavering understanding even
when I wasn’t always available, caught up in thesis stress or other challenges. I promise
to do better. To my sister, Masa — thank you for your constant presence and support
during our time in Hamburg, and for offering me a second home here. This gratitude

extends to Lennard, and of course, to Lola.

Lastly — but most certainly not least — thank you to all the friends out there. There
are too many of you, and I have only one page. I love you all. Special thanks to Alex for
the final proofreading, and to Jihye and Nicole for checking in on me during the final weeks
of writing. Finally, heartfelt thanks to Benjamin for being full-time support throughout

the time of working on this thesis.

Vito Avakumovié

Sternschanze, Freie und Hansestadt Hamburg, Germany, April 2025



Contents

Abstract iv
Zusammenfassung v
Declaration vii
Preface viii
Acknowledgements X
List of Figures Xiv
List of Tables xviii
Nomenclature 1
1 Introduction 3
1.1 Thesis context: decision-making between trade-offs and targets . . . . . . 4
1.2 Mapping the thesis: topics across three papers . . . .. .. ... ... .. 9

1.2.1 Climate modeling: Exploring the carbon budget equation and its
deviations . . . . . . . .. 9

1.2.2  Economic damages: Impact quantification and GDP losses in the
general equilibrium (CGE) framework . . . . ... ... ... ... 11

1.2.3  Decision-making under uncertainty: A unified Cost-Benefit-Risk-
Assessment framework . . ... L0000 15
1.3 Thesisoutline . . . . . . . . .. L 18

2 Carbon Budget Concept and its Deviation Through the Pulse Response

Lens 19
2.1 Introduction . . . . . . . . . . .. e 20
2.2 Models . . . . . . e 24
221 FalRmodel . . . .. . . . . . .. . 25
2.2.2 Theone-boxmodel . . . . ... .. .. ... ... .. ..., 26
2.2.3 The Green’s function framework . . . . ... .. ... ... .... 26
2.2.3.1 The Green’s function formalism . . .. ... ... .. .. 26

xi



Contents xii

2.2.3.2  The pulse response as Green’s function . . . ... .. .. 27

2.3 Pulse response as carbon budget deviation indicator . . . . .. ... ... 28
2.3.1 The carbon budget equation in the context of Green’s formalism . 29
2.3.2  Pulse response shape as a scenario dependency indicator . . . . . . 30
2.3.3 Pulse response alteration as a state-dependency indicator . . . . . 31
2.3.3.1 State-dependent pulse response as a variable TCRE . . . 32

2.3.3.2  From pulse response to carbon budget equation . . . . . 34

2.3.4 Uncertainty in pulse response . . . . . . . .. ... 35

2.4 Numerical evaluation . . . . . .. .. .. . . o 37
2.4.1 State-dependent carbon budget equation . . . . . ... ... ... 38
2.4.2 Scenario-dependent deviations . . . . . ... ..o 39
2.4.2.1 Optimization scheme . . . . .. ... ... ... ..... 39

2.4.2.2  Transient budget deviation . . . . .. .. ... ... ... 40

2.4.2.3 Effect of negative emissions . . . . . . . . ... ... ... 42

2.4.2.4  Scenario-dependent deviation time evolution . . . . . .. 42

2.5 Discussion . . . .. ..o e 44

3 A Forward-Looking CGE Analysis of Climate Damages: Integrating
Labor Productivity, Agricultural Yields, and Heat-Related Mortality 52

3.1 Imtroduction . . . . . . . . . . . . .. 53
3.2 Labor productivity damage function . . . . .. ... ... ... ... ... o7
3.2.1 Methodology . . . . . .. . ..o 57
3.2.2 Country-level labor Productivity Loss . . . . . . .. ... ... .. 60
3.3 Other damages and simulation setup . . . . . . . . .. .. ... ... ... 62
3.3.1 Effects on agricultural yields . . .. ... ... ... .. ...... 62
3.3.2 Effects on human health . . . . .. ... ... ... ... ...... 63
3.3.3 Run specifications . . . . ... ... ... 0 0 65
3.4 Results. . . . . o 66
3.5 Discussion . . . . . . .. 76
3.6 Conclusion and outlook . . . . . ... ... ... ... ... ...... 80

4 Modified Cost-Risk Analysis as a Bridge Between Target-Based and

Trade-Off-Based Decision-Making Frameworks 82
4.1 Introduction . . . . . . . . . . . 83
4.2 Methodology . . . . . . . .. 86
4.2.1 Decision-making frameworks . . . .. ... ... 0oL 86
4.2.1.1 Cost-effectiveness analysis (CEA) . . ... .. ... ... 86

4.2.1.2  Cost-benefit analysis (CBA) . . .. ... ... .. .... 87

4.2.1.3 Cost-risk analysis (CRA) . . . ... ... ... ..... 88

4214 Cost-benefit-risk analysis (CBRA) . . . . ... ... ... 88

4.2.2 MIND Model . . . . . ... ... 89
4.2.3 Probabilistic FalR . . . . .. ... oo oo 91
4.2.4 Damage function specification . . . . . . . ... ... ... ... .. 93

4.3 Results. . . . . . o e 97
4.4 DIScussion . . . . . . ..o e e e e 100
5 Discussion & Outlook 106

5.1 Discussion . . . . . . .. 106



Contents xiii

5. 1.1 Paper 1 . . . . . . 106
5.2 Paper 2 . . . .. 109
5.2.1 Impact quantification: new heat-related labor productivity loss as-
Sessment . . ... oL .o e e e e e e e 110
5.2.2 GDP loss calculation: CGE estimates . . . ... ... ....... 112
5.3 Paper 3 . . . . . 114
5.4 Outlook . . . . . . . . e e 118
6 Conclusion 120
Supplementary Material 123
A1l GTAP-INT 2 overview . . . . . . . . . o v it e i e e 123
A.1.1 Why GTAP INT-27 . . . . . .. e 123
A.1.2 Structure of GTAP . . . . . . . . .. 124
A.1.3 Firm behavior in GTAP . . . ... .. ... ... ... ....... 127
A.1.4 Household behavior in GTAP . . . .. ... .. ... ... ..... 130
A.1.5 Investments, world bank and global transport . . . . .. ... ... 132
A.1.6 Forward-looking firms . . . .. . ... ... 133
A.1.7 Forward-looking household . . . . ... ... ... .. ... .... 135
A.2 GTAP-INT 2 simulation setup . . . . . . . . . . . .. ... ... ..... 136
S1.1 Scenario-dependent deviations - experimental setup . . . . . . . . . .. .. 140
S1.2 Optimization year sensitivity . . . . . . . . . .. ... oL 142
S2.1 Labor Productivity . . . . . . . . . ... 144
S2.2 Agricultural damage functions . . . . . . ... ... oL L. 154
52.3 Mortality rate damage functions . . . . . . . ... ... L. 158
S2.4 Country-specific temperature change . . . . . . .. . ... ... ... .. 160
S52.5 Modified temperature pathways . . . . . . . . .. .. ... 162
S2.6 Region aggregation and baseline values . . . . . .. .. .. ... ... ... 162
S2.7 Simulation results . . . . . . ... 163

Bibliography 169



List of Figures

1.1

2.1

2.2

2.3

2.4

Logical flows leading to the representation of climate change effects in CBA,
CEA, CRA, and CBRA frameworks. Economic impact modeling implic-
itly influences the negotiation and valuation processes involved in agreeing
climate targets, while explicitly influencing the calculation of the damage
function (see discussion in 1.2.2). The negotiation process encompasses all
recognized uncertainties and results in the formulation of a climate target.
CRA forms from the calibration of a risk metric in accordance with the
agreed climate targets. Finally, CBRA combines CBA and CRA by ob-
serving the target with reduced weight and incorporating a partial damage
function. . . . . . . oL

Temperature evolutions in response to 1 PgC emission pulse for different
climatic conditions, i.e., pulse responses (colored lines) for FaIR (left panel)
and one-box model (right panel), and the temperature response implied by
Equation (2.1) (black dashed line, left panel). The numbers correspond to
the year of an idealized RCP6.0 scenario in which the pulses were gener-
ated. Years 2020, 2055, 2078 and 2100 correspond to the FalR generated
background temperatures of 1, 1.5, 2 and 2.5 K, respectively, and 1860 to
preindustrial climatic conditions. Constant TCRE is equal to 1.53 K EgC~!
and corresponds to the central TCRE estimates in Leach et al (2021) and
ARG, respectively. . . . ...
Right graph: TCRE approximations A,(7") generated from pulse response
functions under different climatic conditions and emission scenarios. Scat-
ter plots are actual values of A, while the line is the result of linear re-
gression. The different colors represent the A,’s generated from different
RCPs, which are plotted in the left graph. . . . . ... ... ... ....
Pulse responses under different FalR calibrations: MIROC-ES2L, BCC-
CSM2-MR, MPI-ESM1-2-LR, ACCESS-ESM1-5, default parametrization,
and CNRM-ESM2-1, respectively. Different parameter sets are each tuned
to a specific ESM, with parameter values given in Tables 2 and 3 in Leach
et al. [1]. Note that graph (e) matches the left graph in Figure 2.1, included
here for comparison. . . . . . .. . ...
Top row: Temperature evolution under three RCP emission scenarios,
calculated by FalR model (blue), the derived non-linear carbon budget
equation (Equation (2.5)) (red), and the linear carbon budget equation
(Equation (2.1) with two different TCRE values) (yellow). Bottom row:
Corresponding relative deviations of generated temperatures from FalR-
generated temperature, in percentages. . . . . . . . . .. ... ...

Xiv



List of Figures

XV

2.5

2.6

2.7

2.8

3.1

3.2

3.3

3.4

Top row: Tiax (red) and Thpin (blue) generated by the optimization program
for the transient budget case, dependent on k, set up for different total
cumulative emissions levels Fi; and t* = 2090, with Fi, counted from
the initial optimization year ty = 2020. The graphs are ordered by the
magnitude of the associated Fi:. Y-axis domains all share the same relative
interval of 0.3 K, but different absolute values. Lower panels: corresponding
scenario-dependent deviations Ty plotted against the respective k values.
In all graphs, the solid lines represent the FalR output; the dashed lines
represent Green’s output. . . . . . ... L.
Scenario-dependent deviations, dependent on k, generated by the optimiza-
tion program for the transient budget case with the allowed negative emis-
sions, dependent on k, set up for different total cumulative emissions levels
Fiot and t* = 2090, with Fi,t counted from the initial optimization year
to=2020. . . . ..o
Graphs (a) and (b) show the temporal evolution of the net zero-case Ty(k)
following the optimization year t* = 2070, generated by FalR and the one-
box model respectively. The colors represent deviations corresponding to
the different k allowed, with the darkest red being the lowest allowed (0.4
PgC yr=2) and the brightest red being the highest (1 PgC yr ~2). The
generated emission pathways and absolute temperature evolutions corre-
sponding to the optimization runs (both min. & max.) under the same
setup for one value k = 1 PgC yr=2 are shown in graphs (c) and (d),
generated by FalR and one-box respectively. . . . . . .. ... .. ... ..
Temperature evolution run up to (RCP6.0 emission scenario) and following
the emission cessation at different years ¢,. The blue line represents Ties (1),
added to Green’s integral to compensate for the temperature evolution
leftover from prior to the optimization year tg = 2020. . . . ... .. ...

Labor productivity losses for four selected countries as a function of the
global mean temperature anomaly relative to the 1990-2019 baseline. The
colored scatter points depict results from 50 ensemble members, differenti-
ated by three workload domains and four CMIP6 emission scenarios. The
black line represents the quadratic fit across all outcomes, while the grey
shaded area indicates the 5th-95th percentile range. . . . . . . . .. . ..
Climate change-induced GDP effects for each region included in this analy-
sis. The upper panel provides four snapshots of annual GDP changes under
the RCP7.0 scenario for the years 2035, 2050, 2075, and 2100, respectively.

40

42

43

50

60

The lower panel shows long-term impacts under four different RCP scenarios. 70

Long-term regional GDP percentage losses under four RCP scenarios, plot-
ted against the baseline GDP per capita of the corresponding region. Each
circle represents a region included in the model run, with its size pro-
portional to the region’s population. The vertical dashed line indicates
the global average of regional baseline GDP per capita, while the yellow
and red horizontal dashed lines represent global GDP percentage losses,
weighted by GDP and population, respectively. . . . . .. .. .. .. ...
Globally aggregated GDP losses per degree of global mean temperature
change for all five adjusted RCP scenarios, using unweighted, population-
weighted, and GDP-weighted methods. The kink at the end of each slope
represents the system’s adjustment to long-term impacts at the constant
temperature. . . . ... L L0 oL Lo e

71



List of Figures

xvi

3.5

4.1

4.2

4.3

4.4

Decomposition of GDP-contributing impacts under labor-productivity dam-
ages only (RCP6.0). Contribution of demand components to the percent
change in GDP for Denmark (top) and Indonesia (bottom), with the dashed
line showing total GDP change (as reported in the rest of the Results sec-
tion). While labor-productivity losses are always negative, the figure shows
that positive (or less negative) GDP change amid climate change can come
from increased exports (Denmark case). We also see that international
transport margins decrease as the world economy slows. Indonesia experi-
ences losses across all components (imports buffer the loss only slightly).
Indonesia does not supply international transport services in GTAP-INT
2; hence its transport margin term remains zero. . . . . .. . ... .. ..

Left: The parameterized log-normal distribution and the N=20 sampled
values representing different climate sensitivity outcomes. The first (1.39
°C) and the last (7.55 °C) values correspond approximately to the 2.5th and
97.5th percentiles, respectively, of the log-normal distribution (u = 1.27412
and o = 0.371725). Right: Model run for an abrupt fourfold increase in
COy, with colors corresponding to the states of the world (i.e., climate
sensitivity outcomes) shown in the left panel. . . . . . .. ... ... ...
Globally aggregated GDP loss across five emission pathways (solid lines),
with regional contributions weighted by GDP. The black dashed line rep-
resents the derived quadratic damage function, estimated based on model-
simulated GDP losses under the SSP460 pathway. This function accounts
for the combined impacts of climate change on human health, agriculture,
and labor productivity. . . . . . . .. L L L
Comparative analysis of temperature pathways, emission trajectories, and
cumulative emissions across the decision-making frameworks: CEA, CRA,
CBRAy — g.42, CBAyg, and CBA.,. Each emission pathway corresponds to
20 possible temperature pathways per framework, reflecting the sampling
of 20 distinct climate sensitivity outcomes. CRA and CBRA are calibrated
to assess the weight of the risk function, while CBA., is calibrated to
evaluate the damage function itself, disregarding risk considerations. The
calibration for CRA, CBRA, and CBA., is performed to adhere to the
2 °C target under a 65% safety level, requiring 65% of the temperature
pathways to remain below 2 °C. Notably, CBAy}s cannot be calibrated in
this manner because the Howard and Sterner damage function inherently
results in more stringent emission reductions, making it incompatible with
the specified safety threshold. . . . . . . ... ... ... ... .......
Sensitivity analysis of the CBRA framework with respect to the risk-weighting
parameter k, incorporating CGE-generated, partial damage function. The
left and center panels display emission pathways and cumulative emissions,
respectively, for varying k values. The right panel illustrates corresponding
temperature pathways for three climate sensitivity levels: the lowest (2.5th
percentile), median (50th percentile), and the highest (97.5th percentile).
The temperature pathways cluster into three distinct groups, indicating
that uncertainty in climate sensitivity dominates over variations in k when
it comes to overall temperature outcomes. . . . . .. ... ... ... ...

73

94

96

97



List of Figures xvii
A.1 A schematic representation of the GTAP model. The diagram illustrates
the structure of economic flows for a single region, with the rest of the
world represented as an aggregate external region. Taken from Brockmeier
(2001) [2]. . . o 125
A.2 A schematic representation of production structure in GTAP. Taken from
Hertel (1997) [3]. . . . o o o o o 128
A.3 A schematic representation of the regional household expenditure structure
in GTAP. . . . . . o 130
S1.4 Maximal scenario dependent deviations for different optimization years and
total cumulative emission choices, under transient budget case. One can
detect that the optimization year choice does not affect the generated devi-
ations, except for feasibility limit that becomes more prominent the lesser
t*, or prominently, the higher Fiotis. . . . . . . . . . . . ... ... ... 143
S2.1 Heatmap showing country-level losses (high workload). . . . . . . ... .. 146
S2.2 Heatmap showing country-level losses (moderate workload). . . . . . . .. 148
S2.3 Heatmap showing country-level losses (low workload). Unaffected countries
are left out of this table. . . . . . . . . ... ... oo 150
S2.4 Example of linear dependency of the regional temperature on global mean
temperature, under 4 temperature pathways (Mexico). . . . . . . .. ... 160
S2.5 Pathways (RCPs) used in the analyses. Note that the temperatures are
adjusted so that they remain constant after the year 2150. . . . . . .. .. 162



List of Tables

3.1

S2.1

S2.2

S52.3

S2.4

S2.5

52.6

S52.7

52.8

Projected climate damages in (counterfactual) 2100 by region and RCP
scenario (% GDP) . . . . . L

Polynomial coefficients for country-level labour productivity damage func-
tion Loss(T) = ap+a1T +aT? . . . . .. i
Cereal/Grains sectoral output (yield) shock per country (average of maize
and soy from Li et al. (2025)[4]). These values correspond to the RCP8.5
scenario for four 20-year periods in the 21st century, showing percentage
changes in yield relative to global mean temperature rise. Column headers
denote the mean global temperature (°C) within each period. While yield
changes are case-specific, the general trend indicates decreasing yields. In
some countries, yields initially increase at lower temperatures and begin
to decline at higher temperatures. In certain cases (e.g., Indonesia), yield

66

151

changes remain positive across all temperature levels, albeit at varying rates.154

Paddy rice output (yield) shock per country from Li et al. (2025)[4]. Values
correspond to the RCP8.5 scenario for four 20-year periods, with columns
indicating the mean global temperature (°C) in each period. As in the
cereal/grains case, yield changes are case-specific. In some instances, a
large positive yield change (e.g., in Switzerland) does not imply a strong
economic response, since baseline rice yields are very low in these regions.

GTAP-INT 2 accounts for this by incorporating baseline yield information.

Wheat output (yield) shock per country from Li et al. (2025)[4]. Values
correspond to the RCP8.5 scenario for four 20-year periods, with columns
indicating the mean global temperature (°C) in each period. Wheat yields
exhibit an optimal temperature at which yield levels peak, followed by a
decline as temperatures continue to rise. In some cases, this “optimum” is
already exceeded at lower temperature increases, resulting in consistently
negative yield changes, while in others, yields initially increase before de-
clining at higher temperatures. . . . . . . ... .. ... ... ... ...
Linear coefficients for the mortality changes (shocks to regional population
and labor availability), in percentage change. Based on Bressler et al.
(2021), no-income-adaptation scenario. . . . . . . . ... ...
Country-specific temperature linear coefficients derived from regression anal-
ysis. Values represent the rate of warming relative to the global average
temperature increase. . . . . ... ..o oL oo e
Region aggregation and the corresponding baseline population and GDP.
The rightmost column is the list of sectors/commodities included in this
analysis. . . . . ..
GDP losses under RCP2.6 scenario, in percentages. The year 2200 stands
for long term damages. . . . . . . . . ...

155

157

158

161

162



List of Tables Xix

S52.9 GDP losses under RCP6.0 scenario, in percentages. The year 2200 stands

for long term damages. . . . . . . . ..o oo 165
S52.10GDP losses under RCP7.0 scenario, in percentages. The year 2200 stands
for long term damages. . . . . . . . ..o 167

S52.11GDP losses under RCP8.5 scenario, in percentages. The year 2200 stands
for long term damages. . . . . . . ... 168



Nomenclature

CBRA

CBA

CEA

CGE

CS

CRA

ESM

FalR

GDP

GHG

GTAP

Cost-Benefit-Risk Analysis — a decision-making framework integrat-

ing CBA and CRA principles.

Cost-Benefit Analysis — a trade-off-based decision-making framework

based on expected utility maximization.

Cost-Effectiveness Analysis — a target-based decision-making frame-

work for finding least-cost mitigation pathways.

Computable General Equilibrium — an economic modeling approach

used in TAMs.

Climate sensitivity — the equilibrium temperature response to a dou-

bling of atmospheric CO2 concentration.

Cost-Risk Analysis — a decision-making framework that embeds tar-

gets within a utility-maximizing framework.

Earth System Model — complex climate models representing coupled

physical, chemical, and biological systems.

Finite Amplitude Impulse Response — a climate model of reduced

complexity.
Gross Domestic Product — a measure of economic output.

Greenhouse Gases — gases that trap heat in the atmosphere, driving

global warming.

Global Trade Analysis Project — a multiregion, multisector CGE

model, with perfect competition and constant returns to scale.

1



Nomenclature

IAM

IPCC

MIND-L

TCR

TCRE

Integrated Assessment Model — tools that combine knowledge from

multiple disciplines to analyze climate policy.

Intergovernmental Panel on Climate Change — the UN body for as-

sessing climate science.

Model of Investment and Technological Development including Learn-

ing — a globally aggregated IAM.

Transient Climate Response — global temperature increase at the time

of CO2 doubling under a 1%/year increase scenario.

Transient Climate Response to Cumulative Emissions — the ratio of

global warming to cumulative carbon emissions.



Chapter 1

Introduction

Anthropogenic climate change demands societal trade-offs between near-term mitigation
costs and longer-term, uncertain but potentially severe costs from damages associated
with rising temperatures, changing precipitation patterns and increased frequency of ex-
treme events, to name a few. Numerous lines of evidence, including observed warming
trends, sea-level rise, and ocean acidification, point to the urgency of reducing greenhouse
gas (GHG) emissions if we are to meet internationally agreed temperature targets, which
were set to minimize uncertain adverse socio-economic future impacts [5, 6]. Yet, turn-
ing mitigation needs into practical economic policies is an exceedingly difficult challenge.
Climate economics tackles this complexity by assessing the costs of climate change and of-
fering frameworks that aim for optimal, intergenerationally fair policy solutions, ensuring
that while the current generation bears a portion of mitigation costs, future generations

are safeguarded from the most severe climate damages.

Various tools of climate economics can be used to strive toward designing an optimal
climate policy. However, at least three building blocks are essential: (1) understanding the
relationship between emissions and temperature rise, (2) quantifying the economic dam-
ages associated with increasing temperatures, and (3) designing rational decision-making
frameworks under uncertainty—where uncertainty, as defined by the IPCC, is “a state
of incomplete knowledge that can result from a lack of information or from disagreement
about what is known or even knowable” [7]. Building on these interconnected blocks, this
thesis presents three distinct yet complementary studies. The first paper refines our un-

derstanding of the emissions-temperature relationship by providing new perspectives on
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the carbon budget concept and its potential deviations. The second paper advances cli-
mate impact quantification by developing and integrating sector-specific damage functions
into a globally disaggregated economic model, translating them into regional and global
economic losses. Finally, drawing on the insights gained from the first two papers, the
third paper applies a unified decision-making framework that synthesizes trade-off-based

and target-based approaches to inform optimal climate policy design.

Taken together, these three contributions reinforce a central theme of this thesis: as
our understanding of climate modeling (Paper 1) and economic impacts improves (Paper

2), the rationale behind climate policy recommendations becomes more refined (Paper 3).

1.1 Thesis context: decision-making between trade-offs and

targets

Designing an optimal climate policy consists of deriving an optimal mitigation pathway
that aims to achieve an intergenerationally fair balance. This balance lies between the
economic sacrifices borne by the present-day generation in the form of mitigation costs and
the anticipated losses that future generations may face due to climate change. Given the
inherent uncertainties and the interdisciplinary nature of this challenge, an appropriate
tool and a well-founded decision-making framework to guide the mitigation choices under

uncertainty is paramount.

A standard tool of climate economics for deriving policy recommendations is the Inte-
grated Assessment Model (IAM). Broadly defined, TAMs are modeling frameworks that
integrate knowledge from multiple disciplines to simulate the complex interactions be-
tween human and natural systems [8, 9]. In climate economic analyses, IAMs consist of
two main structural elements: the climate system and the economic system. The climate
system is represented by a simplified climate model that translates GHG emissions into
global temperature rise. This condenses complex Earth System Model (ESM) behavior
into just a handful of equations (e.g. [1, 10]). Thus, the reduced climate complexity
enables computationally feasible coupling with the economic module [11]. The economic
models then simulate economic activities that generate GHG emissions, which feed back
into the climate module. In turn, the resultant temperature increases further affect eco-

nomic processes, creating a feedback loop between the two coupled systems, internalizing
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the economic externality of climate change, and thus allowing analysis of different miti-

gation scenarios.

The level of detail and degree of aggregation in IAMs shapes not only their structure
but also the range and feasibility of their applications, as highlighted by [12]. He differ-
entiates between two categories of IAMs in the field of climate economics: those focusing
on policy evaluation (e.g. [13-15]), and those designed for policy optimization (e.g. [16—
19]). In this thesis, we refer to IAMs as policy optimizers characterized by a high level
of sectoral and regional aggregation, often representing the whole climate and economic

system in one homogeneous unit.

Decision-making frameworks underpin the outputs of policy-optimizing TAMs, as they
define how normative pathways are generated and how optimality is evaluated. Following
a neoclassical economic approach, climate policy analysis typically assumes a rational
decision-maker [20]. Within this framework, intertemporal welfare optimization serves as
a central mechanism for generating policy scenarios. However, this approach does not,
by itself, unequivocally prescribe how to address climate change. Two complementary
schools of thought illustrate the range of decision-making approaches: (1) the trade-
off-based approach and (2) the target-based approach, which differ primarily in how they
account for climate externality. In addition to these approaches, the IPCC also recognizes
other decision-making tools, such as multi-criteria analysis, robust decision-making, and

real option analysis, which are not in the focus of this thesis [21, 22].

The trade-off based approach and a traditional economist’s first choice is cost-benefit
analysis (CBA). This is a well-established, axiomatically grounded method based on ex-
pected utility maximization [22-24]. In climate economics, CBA seeks to determine an
optimal trade-off between contemporary emission reduction costs and future economic
damages avoided by mitigation efforts [25]. However, the policy prescriptions arising
from CBA-based IAMs can differ significantly, depending on underlying model assump-
tions. For example, Nordhaus demonstrates, using the TAM he developed, DICE, a pre-
ferred policy of only modest mitigation later in the twenty-first century, with ‘optimal’
global warming reaching around 3°C by 2100 [19, 26, 27]. Yet, using the same model with
modified damage quantification and an improved climate model, Hansel et al. found that
the optimal mitigation strategy was more likely to align with Paris Agreement targets of

limiting warming to 2°C [28]. In compelling contrast, Weitzman highlighted the fat-tailed
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nature of climate sensitivity estimates and the structural uncertainty of climate-economy
feedbacks to justify immediate, total emissions cuts, because the potential for catastrophic

consequences far outweighs even the enormous mitigation costs [29].

These wildly divergent policy recommendations highlight the limitations of CBA, es-
pecially relating to damage function quantification. By design, CBA assumes a precise
knowledge of the functional representation of climate damages, an assumption widely crit-
icized as untenable [30, 31]. Moreover, critics like Pindyck argue that IAMs give a false
sense of precision and that “current methods and models are not fit for purpose”, urging
for better damage representation [32]. As repeatedly emphasized in IPCC [33, 34], more
research into impact models is required to address the issue of the damages on a sectoral

level and in individual regions, let alone for aggregate damage functions used in CBA.

In contrast to CBA, cost-effectiveness analysis (CEA) is a target-based approach that
does not attempt to explicitly quantify climate damages. Rather, it considers climate
externalities in terms of temperature guardrails [35]'!. CEA rests on the idea, that if
the policy-makers can agree on a climate target, then a tolerable window of emission
pathways adhering to the target can be established, from which the least costly option
can be selected [16, 37, 38]. If the costs are “sufficiently small”, the thinking goes, then this
should be enough of an argument for societal action to avoid uncertain future consequences
[39]. More broadly, the normative rationale of CEA can be seen through the lens of one of
the interpretations of precautionary principle as a justifiable response to deep uncertainty

about possible future climate impacts [40, 41].

While CEA can be considered to be a viable alternative to CBA until climate impact
quantification improves, Schmidt et al. highlight a critical flaw in how CEA handles
learning events [42]. That is, if the anticipation of future learning is introduced, CEA
can lead to infeasible solutions, or even result in negative expected values of information,
incentivizing decision-makers to reject learning [43, 44]. To address this conceptual issue,

Schmidt et al. introduced cost-risk analysis (CRA).

CRA is a hybrid decision-making framework that translates the target-based princi-

ples and underlying rationale of CEA into the trade-off based structural logic of CBA.

!Strictly defined, CEA branches into Chance-Constrained Programming (CCP) in its probabilistic
form [36]. It was invented to deal with decision-making under long probability distribution tails of climate
response, in case when traditional optimization tends to recommend extreme mitigation [37]. In this thesis,
however, we put it under the umbrella of CEA to keep the focus on the conceptual issues of target-based
approaches rather than on definitional distinctions
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As such, it salvages the precautionary approach from CEA, but it avoids its dynamical
inconsistencies by reinstating the utility maximization framework that underpins CBA
[23]. Tt achieves this by introducing a risk function that reduces utility when the tar-
get is breached, calibrated such that it reflects the preferences of the target formulation.
Risk function can be straightforwardly interpreted as a penalty for crossing the target,

representing the decision-maker’s aversion towards crossing the target.

While CRA’s mathematical structure makes it appear to be just another version of
CBA, in reality, CRA addresses the problem from a fundamentally opposite standpoint:
given the insufficiency of damage estimates for a valid assessment, the precautionary
principle should serve as the guiding rationale. For an in-depth discussion of CRA, see

[45], and for its applications, see [46—49].

As climate impacts research advances, the justification for strict target-based ap-
proaches is bound to be called into question. A growing body of literature attempts
to integrate the two approaches: incorporating damage quantifications, while still ob-
serving the guardrail [50, 51]. Held proposed an analytical framework that serves as a
foundation for the gradual, systematic integration of well-known impacts into the current
form of CRA [52]. Building on such integration efforts, this thesis set out to explore and
implement this new framework that we call Cost-Benefit-Risk Analysis (CBRA), which
explicitly integrates CRA and CBA. The mathematical formulation and more detailed
descriptions of each decision-making framework discussed above, including CBRA, are
formally introduced in Paper 3. This paper presents the first-ever operationalization
of CBRA and demonstrates its capability to bridge trade-off-based and target-based ap-
proaches. As such, Paper 3 builds on the findings from Paper 1 and Paper 2 and represents
a culmination of recent integration efforts, while also providing a springboard for future

research using the integrated CBRA approach.

The incorporation of well-known impacts into cost-risk analysis was the initial mo-
tivation for the thesis. However, the research ultimately evolved into a work on three
disjoint but decisive features underpinning climate economics. This thesis addresses: 1)
climate modeling (contributing new insights on one of the two modules in IAMs used for
mitigation analyses); 2) impact quantification and translation into the damage function
necessary for trade-off-based approaches, and 3) the integration of tools and insights from

these two domains into a novel CBRA decision-making framework.
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Paper 1 explores the domain of climate modeling by examining the functional rela-
tionship between cumulative emissions and the global mean temperature. We refer to
this as the carbon budget approach. In Paper 1, we investigate potential deviations from
the carbon budget approach, and from the approximately linear observed relationship be-
tween these two variables. We develop a method for deriving the deviations and include
potential non-linearities in a modified carbon budget equation. Besides being a relevant
concept in simplified climate economic models, the carbon budget approach provides a
crucial link in CRA. Held (2019) provides a theorem suggesting that under the condi-
tion that the carbon budget approach holds true, CEA and the dynamically consistent
target-based alternative, CRA, would yield equivalent policy recommendations. Paper 3

numerically proves this hypothesis.

Paper 2 addresses the overarching challenge of translating physical climate changes
into quantified monetary impacts and economic damages on the global and regional levels,
structured in two stages. In the first stage, the impact function on the labor sector is
calculated at a country-level resolution. These newly calculated functions, along with
two others from the recent literature, replace the older impact functions in a regionally
and sectorally disaggregated economic model, which then translates the revised sectoral
impacts into updated assessments of globally disaggregated GDP-related economic effects.
The results highlight regional disparities in losses while also providing globally aggregated

estimates.

Paper 3 synthesizes insights from Papers 1 and 2, and contributes to broader efforts at
integrating decision criteria in the field of climate economics. Firstly, Paper 3 augments
the climate model investigated in Paper 1 by including a tailored, reduced uncertainty
scheme for climate sensitivity that allows the user to conduct a probabilistic analysis,
for which both CRA and CBRA are designed to account. Meanwhile, Paper 3 also in-
tegrates partial global economic losses from climate change, derived in Paper 2, as a
global production damage function within a globally aggregated IAM. This is interpreted
as an incomplete damage function, which includes both the partial damage aspect while
keeping the target in the risk function of reduced weight. Thus, Paper 3 contributes by

formulating the first-ever operationalization of CBRA.

The subsequent section offers more detailed introductions to each of the papers dis-

cussed, and the issues that they tackle. While the titles of the subsections do not directly
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replicate those of the papers, they have been modified to more precisely reflect the relevant

subtopics within climate economics and the specific issues each paper addresses.

The next section introduces each of the papers in more detail.

1.2 Mapping the thesis: topics across three papers

1.2.1 Climate modeling: Exploring the carbon budget equation and its

deviations

In 2009, several climate modeling studies independently pointed toward a surprisingly
simple relationship with profound consequences for the behavior of the climate system:
the increase in global mean temperature appears to be roughly linearly dependent on the
cumulative emissions of COs [53-56]. This finding quickly received wider recognition,
initially included in IPCC AR5 as a natural science finding [57]. By IPCC ARG, this
relationship was a central tool for shaping mitigation policies because it could be used to
determine ’carbon budgets’. These budgets represent the permissible carbon emissions
in order to stay below a corresponding temperature target [58]. Hence, this link between
temperature increase and cumulative emissions is referred to as the ’carbon budget ap-
proach’ or, when referring to the mathematical formula describing this relationship, the
"carbon budget equation’. The key parameter in this equation—the proportionality fac-
tor that relates cumulative CO2 emissions to global temperature rise—is known as the

transient climate response to cumulative carbon emissions (TCRE).

The ability to directly quantify carbon budgets rests on a key assumption: cumulative
emissions uniquely determine temperature increase, implying that this relationship holds
regardless of the emission pathway (i.e., it is scenario independent). Studies using highly
complex climate models (ESMs) supports the notion of scenario independence [59, 60].
However, due to their high computational demands, ESMs can only be used to examine
a limited set of stylized emission scenarios, thereby providing incomplete evidence. This
issue was partially addressed in other studies using simpler models with a range of emis-
sion scenarios [61, 62], but a comprehensive test across a full range of possible scenarios
remains lacking. When describing the functional relationship between global tempera-

ture and cumulative emissions, relevant literature often vaguely represents it as “nearly
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linear”. Notably, natural science detected two non-linear mechanisms that counteract
each other to form this “near linearity”: the concave temperature dependency on the
atmospheric carbon content, stemming from the radiance efficiency saturation, and the
convex atmospheric carbon content dependency on cumulative emissions, stemming from
declining natural carbon sinks [54, 63, 64]. Moreover, more recent evidence suggests that
either of these two mechanisms could outweigh the other, leading to nonlinearities in the

carbon budget approach [65, 66].

The first paper of this thesis tests both the scenario-independency and the (non)linearity
assumptions, by introducing the concept of pulse response representation that reinterprets
the carbon budget equation through the lens of Green’s function. This novel approach
demonstrates that by examining the shape of the temperature response to emission pulse,
it is possible to quantify the maximum possible scenario-dependent carbon budget de-
viations that the model can produce. Using an optimization program that explores the
entire range of possible emission scenarios within given constraints, the results confirm
scenario dependency and indicate that these deviations diminish over time, if they ap-
pear at all. In addition, this study demonstrates that by observing the evolution of pulse
response dynamics as the system undergoes climatic changes, one can directly derive the
carbon budget equation in its non-linear form. In essence, this paper illustrates that by
examining how the model’s temperature responds to an emission pulse (pulse response),
one can derive all of the information on the carbon budget equation — including its degree
of (non)linearity and the potential for scenario (in)dependency. Moreover, the results in-
dicate that different parameterizations of the same climate emulator can exhibit varying
degrees of carbon budget deviations, thereby paving the way for future research. Since
the study explores the whole range of maximum possible deviations, the results are con-

strained by the use of simple climate emulators, where we use FaIR 2.0.0 model [1].

While this paper arguably belongs to the domain of natural sciences, its methods and
findings offer significant insights for the discipline of climate economics. In the analytic
climate economy (ACE) models that combine general production systems with climate
dynamics in an analytically tractable way, the carbon budget approach proves to be a
convenient tool that simplifies the analytical approach [67]. Since ACE models have a
similar structure as to their numerical counterparts, IAMs, this paper supports the no-
tion that if only carbon dioxide emissions are being considered in the economic analyses,

one could potentially bypass coupling the climate module with the economic module by
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simply introducing the carbon budget equation, directly linking the emissions to the tem-
perature increase. Moreover, Dietz et al. provide an overview of the climate emulators
used in various IAMs and compare their pulse response behavior [68]. When interpreted
through the pulse response representation, it is clear that most of the up-to-date IAMs
implement climate emulators that do not adhere to the carbon budget approach. This
finding therefore questions the validity of the conclusions stemming from many of these
analyses. For instance, examining the pulse response shape of the climate module devel-
oped by Geoffroy et al. [10], as incorporated into the DICE IAM model by Nordhaus
[69], reveals that this model does not adhere to the carbon budget approach. Similarly,
the one-box climate module [70], implemented in other IAMs such as PAGE [71], FUND
[17], and MIND [72], is explicitly calculated in the paper to show non-adherence as well,

as both of those climate emulators show scenario-dependency of carbon budget approach.

Recall from section 1.1 how Held analytically proved that if the climate system adheres
to the carbon budget approach, the different approaches of CEA and CRA should never-
theless arrive at equivalent results [73]. This provided a bridge between the target-based
and trade-off-based approaches. The findings from the first paper directly address Held’s
proof and thus serve as a further crucial step toward this theoretical synthesis. This point

will be conclusively demonstrated in the third and final paper of this thesis.

1.2.2 Economic damages: Impact quantification and GDP losses in the

general equilibrium (CGE) framework

The following subsection serves two purposes. First, it provides a condensed overview of
the challenges in quantifying economic damages and highlights why the debate on total cli-
mate damages remains unresolved. This overview underscores the need for a more robust
decision-making framework for climate policy, as outlined in 1.1. Second, this subsection
explains the rationale behind the climate damage quantification approach adopted in this
thesis and how this was applied in the second paper. Quantitative projections of future
economic impacts from climate change show considerable variation, reflecting differing
methodologies and impacts studied [74-76]. Curiously, advances in empirical and inter-
disciplinary research on climate and socioeconomic systems have further extended this
range of estimates [77, 78]. As a prominent example, the latest IPCC 6AR estimated po-

tential global changes in GDP for 3 °C global temperature change ranging from about -55%
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to modest GDP gains of 3%, depending on modeling method used (see IPCC AR6 WGII,
Cross-Working Group Box ECONOMIC, [33]). The underlying reason for the large variety
in economic impact assessments lies in how models translate sectoral impacts into quan-
tified damages. In particular, the impact assessment will depend on the analyst’s choice
between aggregate damage functions and more granular, sector-specific approaches. Due
to their highly simplified structure, IAMs often represent all temperature-related dam-
ages through a single, overarching damage function applied to total economic output (e.g.
[19, 71]). This approach implicitly combines a wide range of climate impacts, including
those on agriculture, labor productivity, health, and infrastructure, as well as other sec-
tors affected by rising temperatures. The simplicity of an aggregated damage formulation
makes them numerically capable of generating very large numbers of possible mitigation
pathways, which then facilitates optimization and sensitivity analyses. Nevertheless, this
approach to damage quantification has been criticized as potentially arbitrary, and sus-
ceptible to publication and replication biases [29, 30, 79]. This thesis aims to address this
modeling culture of high aggregation and the problems that flow from it. In particular,
regional and sectoral impacts become blurred, leading to transparency concerns and ren-
dering ‘invisible’ potentially drastic differences in regional economic consequences. Thus,
the second paper aims to assess economic damages with greater granularity, capturing
variation in both region and sector. It quantifies the complete impact chain, from the
bottom-up assessment of sectoral performance impacts to broader economic damages, as

sectoral impacts propagate through regionally disaggregated world economies.

The first step towards more tractable assessment is the identification and quantifica-
tion of sector-specific climate impacts. Roson and Sartori’s work exemplifies this approach
by providing a comprehensive set of country- and sector-specific damage functions 2,[1]
capable of reuse in other economic analyses. Building on these foundations, Kompas et al.
conduct a global assessment and apply these functions to estimate GDP impacts at the
national level across all countries [81]. However, closer examination reveals notable gaps
in Roson and Sartori’s work. In the second paper, we address some of these methodolog-

ical issues, refining the estimation of country-level heat-stress-induced labor productivity

2The term damage function in climate-economics represents a mathematical relationship between
changes in economic activity and temperature increase [80]. In globally aggregated models, damage
functions represent the change in total global economic activity, often in terms of GDP, as a response
to climate change. In quantifying sectoral impacts, damage functions represent the changes in sectoral
economic performance as a result of temperature changes.
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losses. For the purposes of this thesis, our refinement serves as a case study of how sectoral

damage functions are calculated.

Without revisiting methodological details here (see Paper 2, Section 2.1), our findings
reaffirm that tropical and subtropical countries are expected to be disproportionately
affected by future high humidity (e.g.,[82]). However, two significant sub-findings become
evident when we examine losses as a function of global temperature increases. Firstly,
losses are quadratically dependent on temperature increase, as opposed to the linear
relationship assumed by Roson and Sartori. Secondly, based on 50 ensemble outcomes
across four emissions scenarios, we explicitly demonstrate that the labor productivity
loss damage function depends solely on temperature and is independent of the preceding
emission pathway. As such, our findings contrast with previous studies, where scenario-

independence was either assumed or not explored at all [83].

Having quantified labor productivity losses, we identify two additional sectoral impacts
from recent literature to refine the country-level estimates by Roson and Sartori. These
include agricultural yield changes from Li et al. and increased mortality due to higher
temperatures from Bressler et al. [4, 84]. The final step is to translate these sector-specific
impacts into overall GDP effects. Piontek et al. describe two distinct methodological
approaches for this aggregation [85]. One approach is to assess GDP loss from each sector
individually, and then the total economic effect being given as a sum of its parts (e.g.
[17, 76, 86]). However, as Piontek et al. highlight, a key limitation of these approaches is
that they ignore indirect effects. These indirect effects capture economic feedbacks in the
form of endogenous economic adaptation (e.g., through labor force and capital relocation).
They also include cascade impacts, where a climate shock in one part of the world affects

other regions via global supply chains.

The second approach, which this thesis adopts, utilizes general equilibrium models
(CGEs) to address these limitations by capturing economic adjustments and explicitly

accounting for dynamics in international trade.

CGEs are economic models designed to simulate the complex global economy. CGEs
do this by modeling value flows between domestic and foreign agents, including private
firms and government entities, which represent countries and regions [87]. The use of
CGEs for assessing climate impacts is well documented in the literature (e.g. [88-90]).

However, as Cantele et al. showed [91], much of this literature relies on CGEs covering



Introduction 14

only a limited number of regions and rarely disaggregating the world into more than 25
units. This severely limits the utility and real-world relevance of CGE-derived results
about potential regional effects and inequalities in sharing the burden of climate change.
In addition, most assessments either lack temporal dynamics (e.g. [92]) or adopt a recur-
sively intertemporal approach with a limited time horizon, rarely exceeding the mid-21st
century [93]. Moreover, the latter approach assumes myopic agents and intratempo-
ral consumption optimization, making it inconsistent with IAMs that use intertemporal,
forward-looking optimization to generate optimal mitigation pathways. Although there
is some literature on the use of forward-looking CGEs, such studies typically represent
only a handful of regions and often focus on single country analyses [94, 95]. The main
limitation to wider use of CGEs in climate impact studies is the numerical challenges

involved in solving these large models.

Following a series of developments in solution methods [96, 97], Kompas et al. study the
above-mentioned limitations of CGE approaches. Using a partially forward-looking CGE
model (GTAP-INT) [81], they quantified GDP losses stemming from rising temperatures
for each country in the GTAP 9 database [98], incorporating the sectoral damage functions
provided by Roson and Sartori [80]. In this paper we identify and resolve two issues
in Kompas et al.’s work [81]. The first is the above-mentioned methodological issues in
Roson and Sartori’s study, which motivated the calculation of a revised labor productivity
damage function. The second is that in GTAP-INT, only producers are forward-looking,
meaning only producers could anticipate future conditions. For intertemporal consistency

with TAMs, consumers should also possess the same foresight.

In the second paper of this thesis, we employ GTAP-INT 2 that modifies the previous
version by enabling all economic agents to have forward-looking capabilities, thus pro-
viding a complete intertemporal CGE framework [99]. The Roson and Sartori damage
quantifications have been replaced with a newly developed heat-related labor productiv-
ity loss function and two additional functions from recent literature, affecting agricultural
yields and mortality changes due to climate change. After modeling a more complex world
economy, consisting of 60 regions and 30 commodity groups, our results reveal significant
disparities in regional GDP losses, with severe losses in some regions and potential benefits
in others. Our results suggest these disparities could widen with increasing temperatures.

This raises significant ethical concerns regarding the aggregation of these estimates into
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a single global GDP loss figure, raising questions about standard operating procedures in

TAM studies.

Some criticisms of using CGEs for calculating the effects of climate change refer to their
structural inflexibilities, such as the inability to model changes in technology, investment,
and consumption patterns. Furthermore, CGE models assume a perfect market response,
which implies that their results can be interpreted as 'best case scenarios’. Neverthe-
less, we favor the CGE framework in this thesis because of its significant transparency
benefits, with specific climate impacts and their integration into the economy rendered
more tractable in CGEs. In the second paper, we focus on three impact channels, while
openly acknowledging other channels we omit. This clarifies and qualifies the scope of
our analysis. Thus, our approach not only addresses the methodological issues identified
above, but also lays the groundwork for the application of a partial, temporally consistent,
globally aggregated damage function in CBRA; a decision-making framework bridging the
theoretical limitations discussed in Section 1.1. We demonstrate the practical feasibility

of this bridging framework in the third and final paper of this thesis.

1.2.3 Decision-making under uncertainty: A unified Cost-Benefit-Risk-

Assessment framework

Impact models Effects on Damage function
CBA economy
! Acknowledge
f K | z Incompleteness
In o_rmanon ‘e CBRA
basis E 5 Reduced
:' weight
CEA Negotation & Climate targets CRA | calibrated risk
valuation metric

FIGURE 1.1: Logical flows leading to the representation of climate change effects in
CBA, CEA, CRA, and CBRA frameworks. Economic impact modeling implicitly
influences the negotiation and valuation processes involved in agreeing climate targets,
while explicitly influencing the calculation of the damage function (see discussion in
1.2.2). The negotiation process encompasses all recognized uncertainties and results in
the formulation of a climate target. CRA forms from the calibration of a risk metric in
accordance with the agreed climate targets. Finally, CBRA combines CBA and CRA by
observing the target with reduced weight and incorporating a partial damage function.

The third and final paper encapsulates the essence of the thesis: the construction and

operationalization of CBRA, bringing its central premise into focus. Section 1.1 discussed
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the research gap addressed by this paper. In summary, we start from a stance that two
predominant, opposing schools of thought prevail in current IAM literature that focuses on
identifying societally optimal policies, in the form of global emission mitigation pathways.
Bridging the gap between target-based (CEA) and trade-off-based (CBA) approaches re-
quires a framework that preserves guardrail targets while explicitly accounting for the
economic damages caused by climate change [50, 51]. As discussed in 1.1, Cost-Risk
Analysis (CRA) takes a critical step in this direction. CRA reinforces the utility maxi-
mization framework by introducing a penalty for exceeding temperature thresholds, thus
mimicking the guardrail mechanisms of CEA [42, 43]. Yet, as climate damage quantifi-
cation continues to advance, the rationale behind purely precautionary approaches grows
less compelling. This emerging issue prompted Held to recently propose a bridging frame-
work [52]. We call this Cost-Benefit-Risk Analysis (CBRA), which aims to systematically
incorporate well-founded damage estimates into CRA. As such, CBRA represents a novel
decision-making framework, unifying precautionary principles with robust (yet unavoid-
ably incomplete) assessments of global economic damages. This unification is visualized
in Figure 1.1, which also represents the respective logical sequence inherent in each of the
above decision-making frameworks. The first and second papers in this thesis deal with
intermediate steps in this sequence. Meanwhile, the third and final paper builds on the
first two papers, but is directed at the consummation of the decision-making process; to

our knowledge, we pioneer the operationalization of CBRA.

In addition to this methodological innovation, the third paper makes two other signif-
icant contributions to the climate economics literature. The initial contribution revisits
fast and simple climate modeling by updating the central TAM used in CRA, MIND-L
(Model of Investment and Technological Development including Learning) [37, 100, 101].
We replace this one-box model, which violated the carbon budget approach, with an im-
proved climate module [70]. As in the first paper, we demonstrate the viability of the FalR
climate emulator as an efficient substitute in IAMs, vindicating an assertion by Dietz et
al. [68]. A significant advantage is that FalR adheres to the carbon budget approach.
To tailor FalR for use in CRA, traditionally based on decision-making under climate
uncertainty captured in equilibrium climate sensitivity (ECS) distribution [72, 101], we
have developed a probabilistic FalR that accounts for ECS uncertainty only, reducing the
whole uncertainty space into one parameter (ECS) (for details, see Section 2.3). With

our probabilistic FalR modification, we ensure that the analyses can be comparable with
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previous work in MIND-L.

Building on the integration of the modified FalR module—aligned with the carbon
budget approach—we numerically demonstrate that CRA and CEA produce identical
policy recommendations, consistent with the analytical prediction of Held (2019). More-
over, while this representation of uncertainty may be seen as oversimplified, since it does
not capture the full uncertainty ensemble across all model parameters (as in [102], for
example), we find the effect to be limited. It underestimates the temperature response
of the full ensemble from Leach et al. by approximately 2.5 percentiles [1]. As such, this
modified FalR could be used in other IAMs that deal with climate uncertainty in the

future.

A second contribution is the construction of a CGE-derived damage function. Building
on the results from the second paper, this paper explicitly translates the global economic
loss calculated in the second paper into a (partial) global damage function, implemented
as an impact on the gross net production function in MIND-L. Somewhat surprisingly,
studies employing this methodology remain scarce, despite recommendations by Piontek
et al. [85]. This is notable given the arguments made in Section 1.2.2 supporting the use of
CGE-based estimates to capture the global economic damage function, due to their ability
to account for both direct and indirect effects on the economy. Furthermore, the existing
CGE-derived damages come from either static or recursive CGE setups [103, 104]. In
contrast, identifying optimal mitigation policies through intertemporal welfare optimiza-
tion, as conducted in IAMs, assumes a forward-looking decision-maker, consistent with
the temporal dynamics of GTAP-INT 2. Moreover, by incorporating impacts individually,
we gain insight into the limitations and partial nature of global damage functions, which
strengthens the case for adopting the hybrid target-based and trade-off-based approach
embodied in CBRA.

The main, somewhat unexpected, discovery of the third paper is that CBRA can be
interpreted as a mediator (or a translator) between the target-based approach and trade-
off, damage assessment-based approach. More precisely, CBRA quantifies how many of
the unknown risks embedded in climate targets under the precautionary principle are
captured by explicitly (and potentially arbitrarily) quantified damage functions. We are
therefore very interested to see future applications of CBRA in other domains, particularly

other fields of decision-making under uncertainty.
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1.3 Thesis outline

The thesis follows the following outline. Chapter 1 introduces the background and context
of the thesis, and distinguishes the three themes addressed in the main body, which are
presented in the form of three standalone papers — Paper 1, 2, and 3 — included as
Chapters 2, 3, and 4, respectively. Chapter 5 discusses and summarizes the results from
each paper, and provides the outlook for future research. Chapter 6 brings the three parts
together, showing how they contribute to a common line of inquiry, and concludes the

thesis.



Chapter 2

Carbon Budget Concept and its
Deviation Through the Pulse

Response Lens

This chapter is derived from the following publication:

e Avakumovié, Vito. ”Carbon budget concept and its deviation through the pulse

response lens.” Earth System Dynamics 15.2 (2024): 387-404

The carbon budget concept states that the global mean temperature (GMT) increase is
roughly linearly dependent on cumulative emissions of COq. The proportionality is mea-
sured as the transient climate response to cumulative emissions of carbon dioxide (TCRE).
In this paper, the deviations of the carbon budget from the strict linear relationship im-
plied by the TCRE is examined through the lens of a temperature response to an emission
pulse (i.e., pulse response), and its relationship with a non-linear TCRE. Hereby, two
sources of deviation are distinguished: emission scenario and climate state-dependence.
The former stems from the scenario choice, i.e. the specific emission pathway for a given
level of cumulative emissions, and the latter from the change in TCRE with changing cli-
matic conditions. Previous literature argues for scenario independence using a stylized set
of emission scenarios, and offers a way to fit a non-linear carbon budget equation. This
paper shows how the pulse response, viewed as a Green’s function, gives a unifying perspec-
tive on both scenario and state-dependence. Moreover, it provides an optimisation program

19
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that tests the scenario independence under the full range of emission pathways for a given
set of constraints. In a setup chosen in this paper, the deviations stemming from emission
pathway choices are less than 10% of the overall temperature increase and gradually di-
minish. Moreover, using the pulse response as a Green’s function, the scenario-dependent
effects of a reduced-complexity climate model were replicated to a high degree, confirming
that the behavior of scenario-dependent deviations can be explained and predicted by the
shape of the pulse response. Additionally, it is shown that the pulse response changes
with climatic conditions, through which the carbon budget state-dependency is explained.
Using a pulse response as an approximation for a state-dependent TCRE, an alternative
method to derive a non-linear carbon budget equation is provided. Finally, it is shown
how different calibrations of a model can lead to different degrees of carbon budget non-
linearities. The analysis is done using FalRv2.0.0, a simple climate emulator model that
includes climate feedback modifying the carbon cycle, along with a one-box model used
for comparison purposes. The Green’s function approach can be used to diagnose both
models’ carbon budget scenario-dependency, paving the way for future investigations and

applications with other and more complex models.

2.1 Introduction

The carbon budget concept, or the carbon budget approach, has gained prominence over
the last decade due to its ability to determine allowable carbon dioxide emissions leading
to a specific global mean temperature (GMT) increase. In essence, it assumes a direct link
between the total cumulative carbon emissions and the temperature increase without the
need to know the preceding emission pathway. Following the concurrent initial discoveries
in the late 2000s (Allen et al. [53], Matthews et al. [54], Meinshausen et al. [55], Zickfeld
et al. [56]), the concept received wider recognition after being included in the ITPCC
AR5 WG1 ! [57], and after being presented as an explicit policy recommendation tool
for limiting future climate change in IPCC AR6 WG1 (Table SPM.2) [58], where the
‘remaining carbon budgets’ indicate how much carbon may be emitted while still reaching
low-temperature targets, assuming net-zero emissions afterward. By and large, since its
emergence, the carbon budget has become ‘a staple of climate policy discourse’, having

paved the way for various discourses, from policy proposals and international climate

It was not labeled explicitly as a budget but rather presented implicitly through the emphasis on
temperature dependency on cumulative emissions (see Figure AR5 SPM.10).
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justice discussions to financial recommendations and even climate activism arguments for

the immediate abandonment of fossil fuels, to name a few [105].

Formally, the carbon budget assumes the GMT increases nearly linearly with cumu-
lative emissions, regardless of the preceding carbon emission scenario. Hence, a linear

carbon budget equation:

T(t) = AF(t), (2.1)

where F(t) = fg E(7)dr stands for cumulative emissions, and A is the proportionality
constant, called the transient climate response to cumulative CO2 emissions (TCRE).
The (nearly) linear relationship emerges due to non-linearities cancelling each other out:
a concave temperature dependency on the atmospheric carbon content and a convex
atmospheric CO2 dependency on cumulative emissions (Matthews et al. [54], Raupach
[63]). The former stems from the radiative efficiency saturation of the atmospheric carbon,
the latter from the declining ocean heat uptake and the weakening of natural carbon sinks

[64].

When it comes to explicitly determining the remaining budget to reach a certain tem-
perature target, a segmented framework had been devised by Rogelj et al. [106]. In
essence, it determines what amount of cumulative emissions will lead to a given level of
peak warming, if historical, non-COg and Zero Emission Commitment (ZEC) warming are
subtracted. ZEC is another metric closely related to TCRE and measures the warming
(or cooling) that occurs after emission cessation [107]. MacDougall et al. [108] show that
different models perform differently, with an inter-model range of ZEC 50 years following
the emission cessation being -0.36 to 0.29 K. If ZEC were 0, then there would be no time
delay in temperature response, and emissions would directly map to temperature accord-
ing to TCRE. In reality, there is always some time lag between the input and the climate
system’s response (e.g., Ricke and Caldeira [109]). Regardless of ZEC, the linear seg-
mented framework concept itself has been revisited by Nicholls et al. [110], who show that
its assumption of a linear relationship between peak warming and cumulative emissions

leads to lower budgets, albeit this effect is small in context of other uncertainties.

Hence, there is evidence that the relationship between the temperature and cumula-

tive emissions (Equation (2.1)) can be non-linear, as either of the two (convex or concave)
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mechanisms mentioned above could hypothetically outweigh the other under higher cli-
matic stress (higher T'). Indeed, Gillett et al. [59] show that the linear relationship over-
estimates temperature response in most Earth System Models (ESMs). Using the FalR
simple climate model (SCM), Leach et al. [1] quantify the TCRE drop to approximately
10% per 1000 PgC. Additionally, Leduc et al. [65] have shown that constant TCRE is
a good approximation for temperature response under low-emission scenarios, while it
overestimates the model’s response to high-intensity scenarios; this reaffirms the need for
TCRE to decrease in order for the relationship in Equation (2.1) to hold true. In the
extant literature, Nicholls et al. [110] have derived the non-linear carbon budget equa-
tion by positing a logarithmic relationship between cumulative emissions and temperature
increase with a multiplying factor that allows the relationship to be both convex and con-
cave. In this paper, the change in TCRE with changing climatic conditions is referred to

as (climate) state-dependent carbon budget deviation.

Further on, an alternative source of deviation from the budget approach that stems
only from the choice of emission scenario, and not from the initial and final climate
conditions of the system, is possible. In this paper, this type of deviation is referred to
as an emission scenario-dependent carbon budget deviation. Previous literature, utilizing
high-complexity climate models (ESMs), tends to argue in favour of scenario independence
[59]. However, the problem with using ESMs to study the emission scenario effects is that
these models are very costly from a computational standpoint, which means only a limited
set of emission pathways are examined. Using a climate model of intermediate complexity,
Herrington and Zickfeld [61] tested the robustness of the scenario independence with a set
of 24 emission scenarios. Millar et al. [62] addressed this problem by forcing the simplified,
globally aggregated climate model under various emission scenarios. However, to the
best of the author’s knowledge at the time of writing, the entire portfolio of emission
scenarios that would yield the extreme cases of maximum possible scenario-dependent

carbon budget deviations has yet to be investigated and scrutinized.

There is evidence that state- and scenario-dependent deviations are conditional on the
model’s complexity [111], suggesting that models with low linearity have a higher path
dependence and vice versa. In this paper, the two effects are approached as separate en-
tities, as the emission scenario-dependent carbon budget deviation implies the possibility
of achieving a different temperature T' by following a different emission pathway with the

same total cumulative emissions F. On the other hand, it is exactly the change in F
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(and consequently T") that drives the state-dependency of TCRE. As will be shown in this
paper, with conclusions restricted to the model inspected, one can have one without the

other, with the conditions given explicitly.

At its core, this study is focused on conducting a thorough assessment of deviations
within the carbon budget approach, encompassing both scenario- and state-dependent
deviations. The study introduces a novel concept termed the ”pulse response represen-
tation”, referring to the analysis of a temperature response to an emission pulse, under
different climatic conditions. This conceptual framework proves to be a convenient and

effective tool for explaining the observed deviations.

A reinterpretation of the carbon budget equation is suggested using a pulse response
in the context of Green’s function equation. It is shown that the linear carbon budget
equation is only a special case of the Green’s function equation. More importantly, the
paper demonstrates that, by utilizing the pulse response as a Green’s function, one can
capture scenario-dependent deviation effects. Hence, it is revealed that, merely by assess-
ing the shape of the pulse response, one can directly deduce to which extent the model

adheres to carbon budget scenario independence.

The Green’s function’s validity is assessed through an optimization program func-
tioning as the generator of scenario-dependent deviations. Specifically, the optimization
program empowers users to assess the entire portfolio of emission scenarios, generating
extreme cases of maximum scenario-dependent deviations within user-defined constraints.
As such, the optimization program provides an enhanced approach in contrast to previous

literature that tests predefined scenario sets instead.

Moreover, the paper translates the changing pulse response under varying climatic
conditions into a state-dependent TCRE. The state-dependent TCRE, once explicitly
quantified, is used to develop a non-linear carbon budget equation. This equation is
capable of replicating the temperature dynamics seen in a reduced-complexity climate
model, also reffered to as a simple climate model (SCM). Therefore, it is shown that one
can deduce the model’s degree of carbon budget non-linearity, only by examining its pulse
response. Moreover, an alternative way of deriving the non-linear carbon budget equation
to that put forward by Nicholls et al. [110]. The novelty of the method given in this paper
is that a user does not assume any functional form but derives the change of TCRE from

the change of the pulse response under changing climatic conditions.
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Lastly, the paper shows how different parametrizations of the model lead to different be-
havior of the pulse response. Using the same logic as with inspecting the state-dependent
TCRE, it is explained how the pulse response representation reveals whether a specific
model’s parametrization leads to concave, convex or linear carbon budget equation. This
comes with a caveat since only a very limited parameter space has been inspected and
the equation has been derived for only one parameter set. While the indications are clear,

the validation across a larger parameter space is left for future work.

Overall, this paper offers a fresh perspective on how to approach the carbon budget and
its deviations through the pulse response lens. It presents the pulse response in the role
of Green’s function, providing a unifying view on both the scenario and state-dependence

of the carbon budget approach.

The paper is arranged as follows. In Section 2.2, the models are introduced and the
Green’s function framework is connected with the carbon budget equation. In Section
2.3, the pulse response representation in the context of Green’s function is inspected and
its implications for scenario and state-dependent deviations are revealed. Additionaly,
Section 2.3 provides a method to derive a non-linear carbon budget equation using a
changing pulse response as an approximation for state-dependent TCRE. In turn, Section
2.4 introduces the optimization program which generates the upper boundary scenario-
dependent deviations and validates Green’s approach; also, the non-linear budget equation
is tested against the corresponding SCM. In Section 2.5, the findings are discussed in a

broader context.

2.2 Models

The numerical optimization procedure introduced in Section 2.4. used to validate the
Green’s approach and generate carbon budget deviations requires a substantial number
of model runs, so a computationally efficient model is a necessary choice. Hence, we re-
strict this analysis to a class of simple climate models, also known as climate emulators.
We distinguish between and apply two approaches, the SCM approach and its correspond-
ing Green’s function approach. While the former is sufficient for numerical assessment

of the carbon budget deviations, the latter mathematically formalizes the carbon budget
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approach and offers a fresh perspective on the deviation through the pulse response repre-
sentation. All of the runs are executed in the GAMS programming language, and the code

for all models and runs is available online (https://doi.org/10.5281/zenodo.8314808).

2.2.1 FalR model

By FalR, I am referring to the FalRv2.0.0 model as provided by Leach et al. [1]. The
Cross-Chapter Box 7.1 in IPCC AR6 WG argues in favor of FalR’s value as a climate
emulator [112]. For the purposes of this paper, two features of FalR are crucial. The
first is its ability to correctly capture the temperature response following a single carbon
emission pulse, i.e., pulse response [113]; the second is its ability to incorporate climate
feedback on the carbon cycle, with one of the effects being the modification of the changing

pulse response with changing climatic conditions.

In essence, the FalR model is a SCM designed to emulate the gas dynamics of different
radiative forcers and their effect on the global mean temperature. Because we are inter-
ested only in the deviations from the carbon budget, the non-COs forcers are left out of
the analysis, utilizing only the carbon cycle system and its radiative forcing dynamics.

The model’s description and equations can be found in Leach et al. [1].

FalRv2.0.0 consists of four carbon and three temperature components. Each carbon
component has an associated decay timescale which dictates the dissipation of the carbon
content into the shared permanent pool that represents the natural global carbon sink.
Along with the global temperature increase, the sink’s increased content creates a feedback
mechanism, resulting in increased decay timescales and, therefore, increased atmospheric
CO2 retention time. The atmospheric concentration gives rise to radiative forcing by
combining a logarithmic and square root term, which translates into the temperature
increase distributed between the components. Unless explicitly stated otherwise, FalR
is implemented with its default parametrization, with the default thermal and carbon
cycle feedback parameters provided in [1], and with the default carbon cycle parameters

presented in [113].

The effect of parameter uncertainty is addressed via a set of six FalR calibrations. The
parameters can be found in Tables 2 and 3 in [1], representing the thermal and carbon

cycle feedback parameters tuned to CMIP6 models. Specifically, the sets used in this
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paper are tuned to the MIROC-ES2L [114], BCC-CSM2-MR [115], MPI-ESM1-5 [116],
CNRM-ESM2-1 [117], and ACCESS-ESM1-5 [118] models.

2.2.2 The one-box model

To see how drastically different pulse response affects the deviation, another SCM is in-
troduced into the analysis. Employed as a climate module in climate-economy integrated
assessment models like FUND [17], PAGE [119], and MIND [100], the one-box model
consists of only one carbon and one temperature compartment, and it does not include
any climate feedbacks. Since Joos et al. [120] have shown that three to four timescales
attributed to individual compartments are necessary to correctly approximate the redis-
tribution of CO4 in the atmosphere, the one-box model is not sufficient to imitate ESMs
fully. Nevertheless, Khabbazan and Held [121] have shown that different calibrations can
be found with which it can emulate the temperature response of ESMs under RCP scenar-
ios. The model’s description and equations can be found in Petschel-Held et al. [70]. In
this paper, the thermal parameters were chosen to fit the TCR and ECS values provided
by FalR’s default parametrization, with the conversion formulae given in Khabbazan and

Held [121].

Note that FalR and one-box are not on equal footing, as the former is considered a
state-of-the-art climate emulator, while the latter does not adhere to the carbon budget
approach, as will be shown. Hence, the one-box model’s pulse response should not be
considered a correct representation of climate response, but rather a comparison tool. It
is introduced in this article precisely because of its inexact pulse response behavior, in
order to underscore how the pulse response is connected to carbon budget deviations.

Also, it allows us to explore the effects of structural model uncertainty.

2.2.3 The Green’s function framework

2.2.3.1 The Green’s function formalism

Green’s model is one equation motivated by Green’s function formalism. Essentially,
a Green’s function f,(t — 7) is a specific function unique to a set of linear differential

equations Lx(t) = y(t), where y(t) is the input forcing and z(t) is the state variable that
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changes according to the forcing and the linear operator L. The advantage of Green’s
function is that it acts as a ‘propagator’ from the input variable (external forcing) to the
output variable (change in state variable), allowing us to replace differential equations

with just one equation, which reads as z(t) = ftz y(1) fe(t — 7)dT.

Using the same formalism, Green’s equation is proposed in the context of global mean
temperature dynamics with a climate model in lieu of a set of linear differential equations
(see Raupach [63]). Hence, we propose the following equation, imitating the Green’s

function formalism:

T(t) = /E(T)fg(t — 7)dT. (2.2)

The output variable is the global mean temperature change T'(¢), and the input (forcing)
variable is the emissions E(t). Green’s function f,(t — 7) modifies the contribution to a
current temperature 7T'(t) stemming from the past emissions E(7). According to Equation
(2.2), the temperature in time t will depend on each emission contributing at time 7
prior to ¢, with the effect modified by Green’s function f; dependent on how far the
emission year 7 is from t , hence fy(t — 7). Essentially, it is an integration scheme that
counts the temporarily modified temperature contributions to each emission pulse, going
backwards from moment ¢, with a resulting temperature being a superposition of modified
contributions. Similar approaches can be found in the literature in Shine et al. [122] and
Ricke and Caldeira [109]. The difference is that, in Equation (2.2), the temperature is
deduced directly from emissions, without the need for quantifying the radiative forcing

and/or atmospheric COg2 response.

2.2.3.2 The pulse response as Green’s function

To make use of Equation (2.2), one needs to choose an appropriate shape of Green’s func-
tion fy. Following the proposed definition, the chosen function is set to be a temperature
evolution response following the 1 PgC emission pulse, or simply, the ‘pulse response’.
Therefore, in this paper, the terms ‘Green’s function’, ‘pulse response’, and ‘temperature
evolution following the emission pulse’ are interchangeable. Pulse response experiments
are one of the generic experiments applied when evaluating climate models. As done in

previous literature (Joos et al. [120], Millar et al. [113]), the pulse response is generated
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by adding a unit emission pulse on prescribed emissions that keep a constant background

atmospheric concentration background, as follows.

The model is forced by the idealized RCP6.0 COs-only emission scenario provided by
the RCMIP protocol [66], starting from the year 1850. In the year of pulse response gen-
eration t,, the emission pathway necessary to keep the level of atmospheric concentration
Cq(tp) constant is generated. Using the derived emissions, two experiments are run: One
with the generated emissions only and one with 1 PgC extra added in ¢,. Thus, the pulse
response (Green’s function) is determined by subtracting the temperature evolution of

the two runs.

The pulse response functions generated for different years (and hence, different climatic
conditions) can be found in Figures 2.1 and 2.3, for the FalR model standard parametriza-
tion, one-box model, and different FalR parametrizations, respectively. In this paper, the
set of different pulse responses generated under different climatic conditions is named a
pulse response representation. Having a set of pulse responses (a representation) gives
us information on both scenario- and state-dependency of a particular model, as will be

discussed in the next section.

The Green’s functions f; utilized in Green’s model (Equation (2.2)), and used in the
optimization programs in Section 2.4, are generated at the year t, = 2020 and depicted

in blue in Fig 2.1, labeled ’'pulse2020’.

2.3 Pulse response as carbon budget deviation indicator

In this section, the theory behind the pulse representation in form of Green’s function and
its ability to explicate carbon budget deviations is explored. The scenario-dependency is
connected with the shape of the pulse response, whilst the state-dependency with changing
of the pulse response under changing climatic conditions. The conclusions are validated
numerically in Section 2.4. Firstly, the connection between Green’s function (Equation
(2.2)) and carbon budget equation as suggested by Equation (2.1) is examined, showing

that the latter is merely a special case of the former.
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FIGURE 2.1: Temperature evolutions in response to 1 PgC emission pulse for different
climatic conditions, i.e., pulse responses (colored lines) for FaIR, (left panel) and
one-box model (right panel), and the temperature response implied by Equation (2.1)
(black dashed line, left panel). The numbers correspond to the year of an idealized
RCP6.0 scenario in which the pulses were generated. Years 2020, 2055, 2078 and 2100
correspond to the FalR generated background temperatures of 1, 1.5, 2 and 2.5 K,
respectively, and 1860 to preindustrial climatic conditions. Constant TCRE is equal to
1.53 K EgC~! and corresponds to the central TCRE estimates in Leach et al (2021)
and ARG, respectively.

2.3.1 The carbon budget equation in the context of Green’s formalism

Essentially, the linear carbon equation (Equation (2.1)) suggests an immediate tempera-
ture response to (cumulative) emissions, with the response that does not change in time or
with climatic conditions. This implies that the pulse response introduced in the previous
subsection should also be a constant function. In Figure 2.1, it is plotted as a dashed
black line. Formally, a linear budget pulse response can be interpreted as a Heaviside

function ©(¢) multiplied by a constant equal to A representing TCRE:

0 t<r
, (2.3)
A t>T1

ft—7)=A0(t—7) =

where 7 is the timing of the emission pulse and is equal to the Oth year in Figure 2.1.

Proving that the Green’s formalism can be considered an analogue to the carbon budget
approach is simple. Inserting the idealized budget Green’s function into Equation (2.2),
one arrives precisely at the linear budget equation (Equation (2.1)):

t ¢

T(t) = E(T)f;](t —7)dr = E(T)AO(t —1)dr = A t E({"dt' = AF(t).

to to to



Carbon Budget Concept and its Deviation Through the Pulse Response Lens 30

Therefore, if the temperature response always had the same (constant) shape as the
dashed line in Figure 2.1, regardless of the underlying climatic conditions, the carbon
budget would not show deviations — each unit of carbon emission would immediately add
to the warming equally and regardless of when it was emitted. However, as shown in
Figure 2.1, the FalR-generated pulse responses are not a constant function, a fact that

has implications for the carbon budget deviations.

2.3.2 Pulse response shape as a scenario dependency indicator

For now, the focus is on the pulse response functions that is used in Green’s model (pulse
2020, Figure 2.1). In contrast to a constant step function, the initial response at the year
of the emission pulse is zero. Then it steeply increases until reaching a maximum value
of approximately 1.7 K, roughly 17 years following the pulse. Furthermore, following the
peak, there is a slow relaxation of the response, which slowly reaches a constant response

later in time.

To get a better feel for the deviations and how they are connected to the pulse, one
can consider an extreme example. Say that all of the emissions are injected in one year.
Total cumulative emissions will then amount to the value of the emissions injection only.
Due to the pulse response, the temperature response will depend on what point in time
the observer is at. Tracing the pulse response evolution, we can see a minimum magni-
tude of temperature in the first year of the pulse and the maximum temperature at the
peak of the response, ~17 years after the pulse. Effectively, these are two very different
temperatures for the same cumulative emissions. The difference between the two tem-
peratures is the maximum possible scenario-dependent carbon budget deviation. If the
cumulative emissions then amount to 100 PgC, the pulse response scales accordingly, and

the theoretical deviation between the minimum and maximum response is ~0.17 K.

Finally, because of the gradual relaxation of the response, if the year in question
is far enough from when we maximized the deviation, the deviation itself diminishes.
In the extreme case presented in the previous paragraph, this can be intuitively seen
as follows. Although there could have been a considerable difference in temperature
stemming from the same cumulative emissions between the Oth (the injection year) and
17th year (the peak year) following the pulse, going forward in time, the temperature

response difference between the 80th and 63rd year following the pulse (again, a 17-year
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difference) is virtually non-existent. Hence, the carbon budget deviation ‘fixes’ itself as
the system enters dynamic relaxation, i.e., the pulse response reaches a nearly constant
value. Once it reaches the relaxation phase, the pulse response becomes very similar to

the step-function response of the linear budget.

The Green’s function derived from the one-box model is shown in Figure 2.1 (blue).
Unlike its FaIR counterpart, the one-box model’s pulse response peaks much later (roughly
45 years after the pulse). Additionally, and more importantly, it never reaches the re-
laxation phase in the form of a constant response in later years; it starts permanently
decreasing after the peak instead. In the context of the discussion above, this means that,
aside from its magnitude, even the sign of the one-box model’s scenario-dependent devi-
ations can change depending on the relative time we observe it. Repeating the thought
experiment above, where we emit everything in one year, the observer will see a positive
deviation comparing the initial (injection) year and the peak year (~45 years difference).
If we go forward in time, specifically 45 years farther, the observer who was in the initial
year now sees their temperature response at the peak, while the observer who was in the
peak temperature year now sees a much lower temperature. Subtracting the two now

yields a negative value, even though the deviation was previously positive.

In summary, the pulse response shape dictates both the deviation and its evolution,
making it critical for the climate model’s adherence to the carbon budget approach and
its emission scenario independence. The FalR model shows small, scenario-dependent
deviations precisely because its pulse reaches an almost constant regime relatively quickly
following a peak. Moreover, if a model cannot emulate reaching the temperature re-
laxation, it will also show much higher and more importantly, time-dependent emission

scenario-dependent deviations.

2.3.3 Pulse response alteration as a state-dependency indicator

Until now, only a single pulse response (pulse2020) has been employed as Green’s function
and examined. However, the experiment shows that this pulse response changes with
changing climatic conditions: Following the same procedure described in 2.3.2, pulse

responses are generated later in the RCP emission run, for different ¢,’s accordingly. The
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generated pulses are depicted in different colors in Figure 2.1 for both the FalR and one-
box models. The further analysis considers only the FalR results, as the one-box model

fails at criteria of pulse response relaxation, explored in the previous subsection.

When comparing the pulses (Figure 2.1), a general trend can be recognized. As the
system is subjected to higher climatic stress in the form of higher cumulative emissions
and higher temperatures, both the shape and the magnitude of the pulse response change.
While all the pulse response variations show the aforementioned steep increase in the first
few years following the pulse, the magnitude of the peak and the corresponding relaxation
temperature level decrease with changing climatic conditions, with a visible 'flattening’

of the curve.

2.3.3.1 State-dependent pulse response as a variable TCRE

As discussed in the introduction, the previous literature suggests that TCRE is not a
constant value but slowly decreases with cumulative emissions. This can be interpreted as
the carbon budget’s state-dependency, which manifests in the non-linear carbon budget
equation (Nicholls et al., 2020). This non-linearity can be identified by examining the

change in pulse response shape with changing background climate conditions.

At the beginning of Section 2.3, it was shown how the step-function pulse response in
Green’s model translates into TCRE included in Equation (2.1). If the TCRE changes
with background conditions, the carbon budget step-function pulse (black dashed line,
Figure 2.1) should also change in magnitude following the climatic stress. Indeed, Figure
2.1 shows that the FalR-generated pulse response decreases in magnitude with background
conditions. If then the changing pulse is approximated with a changing step function, the
decrease of the pulse response can be directly linked to the decrease of TCRE. A method
for using a pulse response representation to explicitly quantify TCRE dependency on

climatic conditions is developed, as follows.

To generalize the analysis, the additional pulses are generated under RCP4.5 and
RCP8.5 emission scenarios, along with the already generated pulse responses under differ-
ent climatic conditions under RCP6 (Figure 2.1). The first pulse of each run is generated
at the benchmark year 2020 and the rest at the same temperature levels (1.5, 2 & 2.5 K),

where possible.
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FIGURE 2.2: Right graph: TCRE approximations A, (T") generated from pulse response
functions under different climatic conditions and emission scenarios. Scatter plots are
actual values of A, while the line is the result of linear regression. The different colors
represent the A,’s generated from different RCPs, which are plotted in the left graph.

Next, recalling the linear budget discussion, the generated pulses are to be approxi-
mated with the step function. Ignoring the temperature evolution dynamics in the early
years of the pulse response, the pulse is transformed into a constant A, by averaging it
between years 70 and 802. As shown in Figure 2.1, the pulse dynamics relax by that time,
reaching relative constancy. With that approximation, however,the ability to express the
time delay and scenario dependency is lost, as the shape of the pulse response function
dictates the scenario dependency (Section 3.2). As they will be shown to be small, this

aspect can be safely ignored.

After approximating the pulses, the corresponding cumulative emissions and temper-
ature values (i.e., the background climatic conditions under which the original pulse was
generated) are assigned to each value of generated A,. By doing so, the A, (T, F') depen-
dency is mapped, which, when reasoned in line with Equation (2.1)3, can be considered
a TCRE dependent on cumulative emissions and temperature increase, or simply, state-

dependent TCRE.

In this way, the carbon budget’s state dependency is made explicit: Examining each
RCP case separately shows that A, decreases linearly in 7" under the standard FalR
parametrization (Figure 2.2). Moreover, looking at the right figure, one can see that by
adding 1 EgC into the system, A, (F') drops by roughly 10%, which is in keeping with the
findings of Leach et al. [1].

2In this way, the approximation for each pulse resembles the black dashed line in relationship to the
blue line in Figure 2.1.

3Note that A and A, have the same function in the carbon budget equation. The difference is that A
is a constant, while A, is a function of temperature and cumulative emissions.
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2.3.3.2 From pulse response to carbon budget equation

The RCP6-generated A, (Figure 2.2, right panel, yellow dots) is chosen to derive the
carbon budget’s state dependency from the pulse response representation. The choice of
RCP scenario does not constrain the conclusions of this exercise. Figure 2.2 suggests a
linear relationship A,(T) = —a - T + b, with a = 0.1083 EgC~! and b = 1.646 K EgC~!
derived via linear regression. Therefore, TCRE (here A,) is reinterpreted through the
lens of T' dependency, as temperature is the main thermodynamic variable driving the
climate system change. This way, assuming any functional form for the state depenency
is avoided; rather, it is deducted from mapping A,(7T") (Figure 2.2, right). The assumed
linear relationship between TCRE and T suggests that TCRE can go to very low, and
even negative values due to the negative linear coefficient. However, the linear form is
derived and holds true for the values below 2400 PgC (approximately the cumulative
emissions in RCP&.5 scenario at the year 2100). Hence, its domain of applicability is
constrained within the theoretical TCRE bounds of 2000 PgC. Additionally, one can see
that the assumed linear relationship suggests TCRE would reach zero at roughly T'= 15

K, well above any projected future temperature increase.

Since A, is, by definition, a temperature response to an emission pulse, the temperature
change following the approximated pulse is interpreted as AT = A(T') - Epyise- In words,
the temperature change is equal to one unit of pulse emission scaled by temperature
response to a pulse A,. Given the fact that the emission pulse brings about a change in

cumulative emissions, the aforementioned relation is rewritten in differential form as:

dT = (—a- T + b)dF. (2.4)

By integrating Equation (2.4), one arrives at:
b b

T(F) = =+ (Tp — —)e *F~F0), (2.5)
a a

with Ty and Fj being the initial values at the time of the first pulse (pulse2020). Es-
sentially, Equation (2.5) represents a non-linear carbon budget equation under a default

FalR parametrization. The validity of the equation is tested in Section 2.4.
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FIGURE 2.3: Pulse responses under different FalR calibrations: MIROC-ES2L,
BCC-CSM2-MR, MPI-ESM1-2-LR, ACCESS-ESM1-5, default parametrization, and
CNRM-ESM2-1, respectively. Different parameter sets are each tuned to a specific
ESM, with parameter values given in Tables 2 and 3 in Leach et al. [1]. Note that
graph (e) matches the left graph in Figure 2.1, included here for comparison.

When plotted, one can see that T'(F') is a closely linear, slightly concave function
within the F' domain of interest. Concavity comes from the (linearly) decreasing A, (T)
(Figure 2.2, right). If, conversely, A,(T) increases with increasing 7', the same derivation
method as presented above would lead to a convex carbon budget equation. As will be
shown in the next subsection, this is possible as pulse response, and subsequently A, (7),

evolves differently under different FalR parametrizations.

2.3.4 Uncertainty in pulse response

By considering the pulse response representation and its implications on the carbon budget
framework under one FalR parametrization, the effects of different model calibrations on
pulse response and, thereby the carbon budget are evaluated in the final part of this

section.

Figure 2.3 shows pulse responses generated as described in 2.2.3.2 under six different
sets of FalR parameters, each tuned to a different CMIP6 model, with Figure 2.3e being

the default parametrization used in the rest of the analyses. We can see that every

4Note that here F' represents the total cumulative emissions from the preindustrial era. One could
rewrite the equation with AF = F — Iy to derive the temperature increase relative to the initial year
to = 2020.
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calibration yields a distinct pattern of behavior. Using the framework introduced in the
previous parts of this section, one can deduct how each calibration affects FalR’s adherence

to the carbon budget approach.

To examine scenario dependency, one must examine pulse response shape (Section
2.3.2). Looking at Figure 2.3, we can see that all of the parametrizations show a relatively
small scenario dependency, as all of them show pulse responses that peak in 10-20 years,
followed by some degree of relaxation in the time domain of interest. In other words,
one can imagine approximating them with a step function. Two parametrizations that
stand out are MIROC-ES2L, and ACCESS-ESM1-5. The former reaches a peak and then
continually decreases just like the one-box model, although at a much slower rate (Figure
2.1b). Hence, the scenario-dependent deviations will not fully diminish and are likely to
change sign. The same holds true for the latter, although in the other direction as the
pulse response of ACCESS-ESM1-5, as the temperature gradually increases following the

pulse.

In the context of state-dependent deviations, Figure 2.3 reveals an interesting effect of
different FalR parametrizations on the non-linearity type of carbon budget equation. In
Section 2.3.4, it was shown that the changing TCRE under different climatic conditions
can be reinterpreted as the changing pulse response through A, (7). Additionally, it was
shown that a decreasing A,(T") (Fig 2.2b) leads to a concave non-linear carbon budget
equation (Egs. (2.4) and (2.5)). The opposite also holds true: If A,(T"), and hence the
pulse response increases in magnitude with higher temperatures, it results in a convex
non-linear carbon budget equation. Ultimately, if the pulse response magnitude does
not change with changing background conditions, the carbon budget equation is indeed
linear®. With that in mind, one can easily deduct that not all the combinations of FalR
parameters lead to the concave carbon budget equation, as derived in Equation (2.5).
For example, MIROC-ES2L tuned to FalR indicates a slightly convex budget equation,
while BCC-CSM2-MR and CNRM-ESM2-1 are closest to the linear carbon budget, while
ACCESS-ESM1-5 shows larger concavity than the default FalR setup inspected in the

previous subsection.

Due to the constrained set of fully accessible parameter sets given in Leach et al.

[1], only six calibrations are presented here. A larger set would provide some insights

®Note that a pulse relaxation is still a necessary requirement.
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into which parameters in FalR drive which types of behavior. Additionally, it would be
interesting to see to which extent FalR tuned to a CMIP6 model reproduces the pulse
response representation behavior of its corresponding ESM under the same setup. To do
so, one needs to run the pulse response experiments (Figure 2.3) with ESMs. If it were
found to do so, one could potentially extend the pulse response framework with FalR
tuned to ESMs to analyze carbon budget deviations as produced by the corresponding

ESM.

2.4 Numerical evaluation

In the previous section a theoretical background for inspecting carbon budget deviation
through the lens of pulse response was established. The shape of the pulse response
function is assumed to give information about the model’s scenario-dependent deviations,
and the method for deriving the non-linear carbon budget equation from the changing
pulse response with changing climatic conditions is provided. In the first, brief part of
this section, the state-dependent (non-linear) carbon budget equation is tested against its
linear counterpart and FalR. For the rest of this section the results of using an optimization
scheme are presented. Using the optimization scheme in this context has a twofold role.
Firstly, the pulse response’s ability to capture scenario-dependent effects in a role of
Green’s function is confirmed with comparison to the corresponding SCM, validating the
hypotheses given in the previous section. Secondly, the optimization scheme tests the full
portfolio of possible emissions, providing the highest possible scenario-dependent deviation

under given constraints.

The appendix introduces a modification to the Green’s function approach that is nec-
essary to compare diagnosed temperatures in the upper panels of Figure 2.5 (but not
scenario-dependent deviations, lower panels) between the Green’s approach and the FalR
model. The modification is a temperature leftover from emissions prior to an optimization

year and is, in fact, ZEC (Appendix, Ch 3.).
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FIGURE 2.4: Top row: Temperature evolution under three RCP emission scenarios,
calculated by FalR model (blue), the derived non-linear carbon budget equation
(Equation (2.5)) (red), and the linear carbon budget equation (Equation (2.1) with two
different TCRE values) (yellow). Bottom row: Corresponding relative deviations of
generated temperatures from FalR-generated temperature, in percentages.

2.4.1 State-dependent carbon budget equation

To check if Equation (2.5) yields correct temperature dynamics, it is tested against the
FalR model under the aforementioned RCP scenarios. The resulting temperature path-
ways are plotted in the top row of Figure 2.4 (red) alongside the FalR output (blue)
and the linear carbon budget Equation (2.1) with two values of constant TCRE (yel-
low), while the bottom row shows the corresponding relative deviations from the FalR-
generated temperature pathway. The two TCRE values are TCRE,;=1.6-10"6 K PgC~*,
and TCRE,;=1.53-107% K PgC~L.

Choosing a larger constant TCRE (v1) results in a more accurate temperature diagnosis
in the first half of the century under lower cumulative emissions, with deviations increasing
in step with rising emissions. The opposite is true for a smaller TCRE. In this sense,
Equation (2.1) with a constant TCRE is a linearized version of FalR in a similar way
as the Green’s function model but without the ability to generate scenario-dependent
effects. Additionally, we can see that the state-dependent deviations are not transient like
their scenario-dependent counterparts, but ever-increasing with the changing cumulative
emissions. The highest detected absolute deviation is around ~ 0.5 K for the end-of-
the-century temperatures in the RCP8.5 run, which amounts to ~ 15% relative deviation

from the FalR-generated temperature.
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Unlike constant TCRE, Equation (2.5) replicates the FalR generated temperatures
in RCP2.6, RCP4.5, and RCP6 runs relatively well, with the relative deviation from
FalR being less than ~ 2% throughout the century. The largest absolute drift from the
FalR-generated temperature is around 0.1 K at the end of the century under the RCP8.5
scenario. However, this degree of drift is less than 3% in relative terms. Since RCP8.5
is arguably somewhere in the upper bound for possible emission pathways (and RCP2.6
arguably a very optimistic lower bound scenario), one can conclude that Equation (2.5)
is a good emulator of FalR under the single, default parametrization. The incorporation

of different climate parameters in Equation (2.5) lies beyond the scope of this paper.

2.4.2 Scenario-dependent deviations
2.4.2.1 Optimization scheme

To test upper-bound scenario-dependent carbon budget deviations, the optimization pro-
gram is formulated as follows:

t*

(Max, Min)[T'(t*)] s.t. /E(t)dt = Fiot,
{E1)}

dE(t)

dt | —
to

The program maximizes (or minimizes) the temperature variable in a given optimiza-

tion year t*. The minimum T, (t*) and maximum Ty, (t*) temperatures generated

provide the upper and lower bounds for possible temperatures under given constraints.

The maximum possible scenario-dependent carbon budget deviation Ty is then calculated

by subtracting the two boundary temperatures, Tq(t*) = Tiax(t*) — Tiin (t¥).

In the optimization program (Equation (2.6)), the emission pathway assumes the role
of the free control variable, except in the fixed initial condition E(tp) = Fy. Hence, the
novelty of testing scenario independence with the optimization program is that the emis-
sion pathway is generated, instead of being assumed as an input by the user. This way,
the analysis does not rely on a limited number of emission scenarios but systematically
runs through the whole portfolio of possible scenarios under given constraints. Three
boundary conditions are implemented, whose values are subjectively chosen by the au-
thor, so that they provide a set of possible (not necessarily plausible) emission pathways.

Restriction on total cumulative emissions Fiy ensures the same amount of cumulative
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FIGURE 2.5: Top row: Tiax (red) and T, (blue) generated by the optimization
program for the transient budget case, dependent on k, set up for different total
cumulative emissions levels Fio and t* = 2090, with Fi.; counted from the initial
optimization year tg = 2020. The graphs are ordered by the magnitude of the
associated Fio. Y-axis domains all share the same relative interval of 0.3 K, but
different absolute values. Lower panels: corresponding scenario-dependent deviations Ty
plotted against the respective k values. In all graphs, the solid lines represent the FalR
output; the dashed lines represent Green’s output.

emissions at the end of the each run, so that deviations stem only from scenario choice.
The slope restriction k provides a bound on allowed emission change per year. The choice
of boundary conditions and run configuration is further described in the supplementary

material (S1,1).

Additionally, two different cases of scenario-dependent deviations are diagnosed and
described in the supplementary. The ”net-zero” case assumes that the emissions reach
zero and that there are no emissions following the optimization year, while the ”transient
budget” case allows for emissions to evolve freely afterwards and allows for emissions to

take any value in the optimization year.

2.4.2.2 Transient budget deviation

In Figure 2.5, the results of the optimizer in t* = 2090 for four different Fi,4 choices
in a transient budget setup are presented, explicitly showing the generated Ti,ax(t*) and
Tmin(t*) dependent on k in the top row and and their corresponding Ty(t*) values in
the bottom row. Note that Fi.t are counted from the year tg = 2020, and not from
preindustrial times like the variable F'. For example, Fiy of 416 PgC, in addition to the
pre-2020 emitted CO9, amounts to 1000 PgC, which approximately corresponds to the



Carbon Budget Concept and its Deviation Through the Pulse Response Lens 41

carbon budget allowed for adhering to 2 K increase with 67% probability, as suggested by
the IPCC (Masson-Delmotte et al. (2021), Table SPM.2)S.

Comparing the dashed and solid lines reveals that Green’s approach using the pulse re-
sponse as a Green’s function diagnoses both Tinax and Timin”, as well as scenario-dependent
deviations, exhibiting deviations of the same order of magnitude as FalR, with the Green’s

function approach being especially close to FalR for lower cumulative emissions.

When comparing the effect of increasing cumulative emissions in Figure 2.5, some

notable effects can be identified.

First, Tq(k) increases with higher cumulative emissions, in combination with the in-
crease due to increasing allowed emission slope k. A comparison of the top to bottom
graphs shows that the deviation increases by roughly 60%, in connection with the Fiq
increase from 416 PgC to 1000 PgC. In the most extreme case with associated Fior = 1000

PgC, a deviation of ~0.15 K, roughly 6.3% of overall temperature increase, is produced.

Next, as seen in the top row, the gap between FalR’s and its Green’s counterpart’s

generated Tyax and Tinin steadily increases with higher cumulative emissions Fyot®.

Furthermore, as shown in the bottom row, the difference in T4(k) between the two
models also increases with higher Fi.:, albeit to a lesser extent. This effect can be at-
tributed to the widening gap between the maximum and minimum temperature of the
FalR approach, which increases its T4 (k) to a larger extent than does Green’s model (due
to the constancy of Green’s function). Both effects can be understood through the change
of pulse response with changing climatic conditions. Namely, Green’s approach uses one
single pulse response as a Green’s function throughout the run, albeit the pulse response
changes under changing climatic conditions, i.e., higher cumulative emissions. The change
in magnitude of the pulse response affects the drift between the FalR and Green’s gen-
erated Tinax and Tiyin, while the flattening of the response peak causes the drift between

the diagnosed deviations T}’s.

5The generated temperatures are lower due to exclusion of non-CO: forcers and the choice of
parametrization.

"Refer to the appendix for modification of Green’s function to make this comparison possible.

8Note that the y-axis domains all share the same relative interval of 0.3 K, but different absolute
values. In this way, the focus is shifted to the changing difference between the Green’s model-generated
and FalR-generated temperature with increasing Fiot.
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FIGURE 2.6: Scenario-dependent deviations, dependent on k, generated by the
optimization program for the transient budget case with the allowed negative emissions,
dependent on k, set up for different total cumulative emissions levels Fio; and

t* = 2090, with Fi.; counted from the initial optimization year t, = 2020.

2.4.2.3 Effect of negative emissions

The effect of allowing negative emissions on the transient budget’s scenario-dependent
deviation is shown in Figure 2.6. The figure shows four different combinations of total
allowed cumulative emissions Fiqt, this time including a choice of Fioy = 196 PgC, which,
when added to the cumulative pre-optimization emissions, reflects the carbon budget
allowed for adhering to 1.5 K with 67% probability, as suggested by the IPCC (Masson-
Delmotte et al. [58], Table SPM.2). Including negative emissions increases the generated
T, by roughly 0.04 K compared to the zero negative emissions scenario, in the highest &

case for all Fio combinations.

2.4.2.4 Scenario-dependent deviation time evolution

Because the optimization program, when set up as net-zero case, does not allow for
emissions following the optimization year, it makes it possible to inspect the time evolution
of the generated scenario-dependent deviation Ty(t*), as there are no further emissions to

further modify the temperature.

Figures 2.7a and 2.7b show net-zero generated Ty(t*) with an additional, temporal
dimension, instead of only k& dependence in one year (Figure 2.5 (lower panels) and Figure
2.6). In this case, the optimization year is chosen to be t* = 2070. The different shades
of red depict the k range and their respective scenario-dependent deviations. The chosen

Fiot for the run shown in Figure 2.7 is 416 GtC.

The net-zero budget case shows a significantly smaller initial Tyj(k) than its transient
budget counterpart. The difference is due to lower minimum generated temperatures

in the transient budget case, as a result of a non-constrained E(t*) and hence allowing
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FIGURE 2.7: Graphs (a) and (b) show the temporal evolution of the net zero-case
Tu(k) following the optimization year t* = 2070, generated by FalR and the one-box
model respectively. The colors represent deviations corresponding to the different k
allowed, with the darkest red being the lowest allowed (0.4 PgC yr—2) and the brightest
red being the highest (1 PgC yr ~2). The generated emission pathways and absolute
temperature evolutions corresponding to the optimization runs (both min. & max.)
under the same setup for one value k = 1 PgC yr~2 are shown in graphs (c) and (d),
generated by FalR and one-box respectively.

emissions to ‘stack up’ at the optimization year, while they are required to reach zero
in the net zero counterpart. The pulse response discussion (Section 2.3) shows that if
one wants to maximize the temperature response in a given year, they should stack the
emissions ~17 years before that year; conversely, to minimize the temperature response,

they should stack the emissions as close as possible (within given constraints).

Further inspecting Figure 2.7a one can notice that, in FalR, already small scenario-
dependent deviations ultimately disappear if no additional carbon dioxide is added to the
system; hence, the maximum deviations generated by the optimization program are only
temporary. In contrast to FalR, the one-box model’s deviations (Figure 2.7b) do not 'die

out’ over time but decrease only to change sign, as predicted in Section 2.3.2.

The deviations’ evolutions for &k = 1 can be backtracked by examining the max. (red)
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and min. (blue) generated temperature evolutions shown in Figures 2.7c and 2.7d, as the
subtraction of the two yields the Ty(k). The FalR-generated min. and max. temperature
pathways are separated at t* but eventually coincide, translating to a diminishing carbon
budget deviation. Even though two temperatures are generated, they eventually reach
the same level, just as the pulse relaxation discussed in the previous section suggests
they should. Additionally, their cumulative emissions are equal, meaning that their pulse
response is the same, so they reach the same level of constancy following the peak tem-
perature response. The opposite is true for the one-box model counterpart. Because the
one-box model’s pulse response never reaches relaxation phase, i.e., keeps on decreasing

following the peak, it makes a difference when we emit.

2.5 Discussion

To reiterate, this study focuses on evaluating deviations within the carbon budget ap-
proach, encompassing both its scenario- and state-dependent aspects. A novel method
of analyzing these deviations is proposed in the form of a pulse response representation
that explicates and distinguishes both forms of deviations by inspecting the evolution of
temperature response to an emission pulse under different climatic conditions. The valid-
ity of examining the deviations through the lens of the pulse response has been tested by
reinterpreting the pulse response as a Green’s function of a set of differential equations
that constitute a climate model [63]. Consequently, the introduced optimization program
serves a dual role. It supplements the concurrent carbon budget literature by testing a full
portfolio of possible, but not necessarily plausible, scenarios for scenario-dependent devi-
ations under given constraints. Additionally, it confirms the ability of Green’s function

to capture scenario-dependent effects.

The analysis utilizes FalR, the one-box model, and the associated Green’s function
models. The non-linearities appear in FalR in both the carbon cycle feedback and in
the temperature response saturation. As pointed out in the introduction, the interplay
between the changing carbon cycle and temperature response produces the near-linearity
of the carbon budget equation, with the former being convex and the latter a concave

driver of the budget equation.



Carbon Budget Concept and its Deviation Through the Pulse Response Lens 45

The second model used in the analysis is the one-box model, introduced as an example
of a model with a dramatically different pulse response than FalR, which facilitates com-
parison in the context of the pulse response behavior effect on the carbon budget approach
deviations. In contrast to FalR, the one-box model does not include climate feedbacks
on the carbon cycle, so non-linearities arise only through the saturation in temperature

response, which means that non-linearities are solely concave.

Moreover, the inclusion (or lack) of climate feedbacks has an effect on how the pulse
response changes with changing climatic conditions. In the one-box model, the carbon
cycle response stays the same regardless of background conditions, so the pulse response is
modified only by logarithmic temperature response saturation. This manifests in the pulse
changing magnitude but not shape. Conversely, including climate feedbacks changes the
shape of the response function and modifies its magnitude. For a more detailed discussion
on how the climate feedback changes the carbon cycle in FalR in the context of decreased
atmospheric COq decay, see Millar et al. [113]. The effect of convex and concave drivers
in context of pulse response representation and the non-linearities of the carbon budget

equation (2.1) has been examined in Section 2.3.4.

To test whether pulse response behavior offers a trustworthy framework for explaining
carbon budget deviations, it is employed as a Green’s function in Equation (2.2). However,
by proposing Equation (2.2) and using a FalR-generated (or one-box-generated) Green’s
function, we assume that the climate model is a set of linear differential equations. Hence,
although Green’s model has been proven to capture scenario-dependent effects, the effects
of climate change on the carbon budget approach cannot be explicitly captured with
Equation (2.2). This effect is visible when comparing the FalR’s and Green’s model
optimization runs, as the two sets of generated temperatures have an ever-increasing gap
with higher cumulative emissions (Figure 2.5, top row). One could modify Equation
(2.2) so as to include a changing pulse response instead of a fixed f4, but this remains

theoretical; the implementation is unclear.

Regardless of Green’s model’s inability to correctly forecast (or hindcast, for the same
reasons) temperature evolution, Section 2.4 shows that it is indeed capable of mimicking
the scenario-dependent deviations of both FalR and the one-box model. Even though
there is an ever-increasing gap between temperatures generated by the SCM model and

Green’s model, the scenario-dependent deviations are well represented by Green’s function
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even for higher Fi,. Hence, one concludes that state and scenario dependencies can arise

independently.

The distinction is crucial because non-linearities in the carbon budget and scenario-
dependent deviations are distinct concepts, yet both contribute to carbon budget devi-
ations individually. The key proposition is that state-dependent deviations manifest as
non-linearities in the carbon budget equation, while scenario-dependent deviations could
equally influence both linear and non-linear carbon budget equations. This distinction
becomes intuitively evident when viewed through the pulse response lens, where these
two effects are independent. In light of the findings in Section 2.4, we can consider two
scenarios: one where the model, observed through the pulse response function, exhibits
only state-dependent deviations (resulting in a non-linear carbon budget equation), and
another where it exclusively displays scenario-dependent deviations while maintaining
a linear carbon budget equation. In the case of state-dependent deviations, the pulse
response resembles a step function that varies in magnitude with changing climatic con-
ditions. Moreover, as illustrated through the derivation of Equation (2.5), if the pulse
response (in this case, a step function) decreases in magnitude, the carbon budget equa-
tion becomes concave; conversely, if it increases in magnitude, the carbon budget equation
becomes convex. On the contrary, for scenarios with scenario-dependency only (without
non-linearities), the pulse response must not be a step function. Instead, it needs to ex-
hibit some form of dynamic evolution that eventually leads to the relaxation of the pulse.
The example would be the case when the pulse response (e.g., pulse2020) in Fig 2.1a
would not change, thus always retaining the same shape regardless of climatic conditions.
In that case the carbon budget equation would be linear (when viewed at the same point)

even though it shows scenario-dependent deviations.

When it comes to validation of using pulse response as Green’s function, the results
show that the changing of the pulse under changing background conditions does not affect
Green’s model’s ability to predict scenario dependency to a high degree. By combining
these elements, the paper introduces the possibility of approximating the maximum sce-
nario dependency of ESM models. This is achieved by utilizing their pulse response (acting
as Green’s function) and subjecting it to the optimization program, overcoming computa-
tional cost challenges that would otherwise render such an analysis infeasible. This claim

remains to be validated in future work in a separate toolset, since the computational costs
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also prevent the user from validating ESM’s Green’s function approach the same way it

was done in this article.

When it comes to purely numerical findings in the context of scenario-dependent devi-
ations, it was shown that how much we emit after the optimization year can dramatically
affect the generated deviations. For FalR, the largest possible deviation we acquire is
approximately 0.15 K for the transient budget case. In the net-zero case, the largest devi-
ation is well below 0.1 K. From the policy-relevant carbon budget viewpoint, this is good
news, as it keeps the carbon budget approach resistant to scenario choice while complying
with specific temperature targets and net-zero commitments. Regardless of the interpre-
tation, the carbon budget scenario-dependent deviations identified are not permanent but
a result of the optimization program in one year. The arguably small deviation dimin-
ishes relatively quickly if no further emissions are added to the system. Furthermore,
scenario-dependent deviations increase with the higher cumulative emissions cap but do
not depend on the optimization year (supplementary material S1.2). Moreover, allowing
the system to produce negative emissions does not drastically increase scenario-dependent
deviations. This shows us that the carbon budget approach is robust to scenario choice

in FalR.

The same conclusion cannot be made for the one-box model. As was shown, the one-
box model produces up to 10 times larger scenario-dependent deviations, which evolve in
time but do not disappear. The reasons for the dramatically different generated deviations
are explained in detail in Section 2.3.2. Besides the one-box model discussed here, the
shape comparison of pulse responses presented in Figure 1 in Dietz et al. (2001) Dietz
et al. [68] shows that most simple climate models that are being used in climate-economic
assessments have some potential for carbon budget scenario dependency — adding weight
to the argument for replacing climate emulators with FalR or any other model whose
pulse response shows the right properties, if carbon budget adherence is of importance

(presumably, it is).

Moving on, let us consider the connection between the ZEC metric and the pulse
response. If ZEC is 0, as the central estimate in MacDougall et al. [108] suggests, this
implies that temperature does not decrease or increase following the cessation of emissions.
In the pulse response context, this requires that the pulse response is a step function, or

close to it. Plotting the temperature leftover terms (Figure 2.8) explicitly shows the FalR’s
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generated ZEC’s under different climatic conditions (i.e., later in RCP run). FalR initially
produces a relatively small negative ZEC (t, = 2020) that actually increases with changing
climatic conditions, becoming slightly positive in ¢, = 2100. This raises the question as
to whether ZEC itself is a state-dependent value, i.e., whether the background climatic
conditions dictate ZEC’s value and to which extent. This question is left to be explored

in more advanced models.

Concluding that the carbon budget is indeed unaffected by emission scenario choice
confirms the carbon budget approach’s value as a tool for directly mapping cumulative
emissions to temperature increase. However, the question remains as to the functional
form of the carbon budget equation. Section 2.4 provides a method as to how to deduct
it from the pulse response representation. Namely, if TCRE is a constant, the carbon
budget equation is linear. In Section 2.3, it was shown that the pulse response can be
used as a proxy for TCRE, and that the pulse response decreases under changing climatic
conditions in the default FalR parametrization. A method was provided for deriving
the non-linear carbon budget deviation from the changing pulse — a general method,
which can be used for different models and different model calibrations. This offers an
alternative approach to the non-linear carbon budget equation derived in Nicholls et al.
(2020), as it does not assume a functional form of the non-linear carbon budget equation
in advance, but derives it from TCRE dependency, building on Taylor expansion with
respect to temperature, a key thermodynamic variable of the system investigated. As
such, the method holds potential to be employed under different parametrizations and

different models.

To address the lack of uncertainty in the analysis, Figure 2.3 shows different pulse
response representations for different FalR calibrations. Following the methodology ex-
plained above, one can deduct that under different parameter sets, FalR can mimic var-
ious levels of carbon budget non-linearity and even full linearity, while keeping scenario-
independence robust, as TCRE, which approximates the corresponding pulse responses,
can change its magnitude in either direction. This is possible because of the inclusion
of both feedbacks on the carbon cycle and the temperature saturation, which counteract
each other and can be tuned separately, as mentioned at the beginning of the discussion
section. Deriving the carbon budget equation explicitly for each calibration isn’t pursued
here, as doing so would not yield any new information, and the set is too small to make

generalized conclusions on, e.g., how each FalR parameter affects the (non)linearity of the
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carbon budget approach. Among other questions raised, this is an interesting aspect for

future research.

Finally, the tools used in this paper open a venue to inspect the deviations in other
simple models. One promising candidate for developing the research further is the the
Model for the Assessment of Greenhouse Gas Induced Climate Change (MAGICC), as it
provides more detailed information about carbon cycle processes compared to FaIR. [123].
Given its relative simplicity, MAGICC presents an opportunity to be included in the
optimization program, complementing the scenario-independence insights derived from
the use of predefined emission scenario sets ([62], [110]). Even without the optimization
program, the enhanced resolution of MAGICC in the context of the carbon cycle suggests
that examining its pulse response representation under different parametrizations could
potentially offer a more comprehensive understanding of the drivers of non-linearities in

the carbon budget equation, in comparison to FalR.

Conclusions

This article focuses on deviations from the carbon budget approach, seen as a linear map-
ping from cumulative emissions and temperature increase, and draws a clear distinction
between carbon budget emission scenario-dependent and climate state-dependent devia-
tion. Scenario-dependent deviations are the possible differences in resulting temperature
that are solely due to the preceding emission choice. In contrast, state-dependent devia-
tions underline the change in TCRE value, which depends on the change of background
climatic conditions — specifically, the cumulative emissions and global mean tempera-
ture increase. Importantly, state-dependent TCRE leads to a non-linear carbon budget

equation.

The innovative perspective towards inspecting the carbon budget deviations is pro-
vided in the form of inspecting the pulse response representation of a model, i.e., the
changing temperature response to an emission pulse (pulse response) under changing cli-
matic conditions. The shape of the pulse response dictates scenario dependency. On
the other hand, the change of pulse response with background climatic conditions can be
reinterpreted as the state-dependent TCRE, leading to the state-dependent deviations in

the form of a non-linear carbon budget equation. The method used to derive the carbon
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FIGURE 2.8: Temperature evolution run up to (RCP6.0 emission scenario) and
following the emission cessation at different years ¢,. The blue line represents Tieg (t),
added to Green’s integral to compensate for the temperature evolution leftover from
prior to the optimization year t; = 2020.

budget equation from pulse response is universal and can be applied under different FalR
calibrations to see how individual climate drivers affect the non-linearity of the carbon
budget. This, in combination with employing more complex models’ pulse responses as

Green’s functions, opens a promising avenue for further research.

Finally, this article provides an optimization program that tests an entire portfolio of
emission scenarios and diagnoses the maximal temperature differences under the same
cumulative emissions within the user-defined constraints. As suggested by inspecting
its pulse response, FalR shows small and diminishing deviations compared to the total
temperature increase, confirming the carbon budget’s robustness when it comes to scenario

choice.

Appendix: Temperature leftover in Green’s function

When it comes to the magnitudes of Tinax and T, the Green’s function approach re-
quires an additional modification to make it (2), Green’s approach responds only to emis-
sions within the integral. That means that in the optimization run, which starts at
to, it cannot capture the temperature response stemming from emissions predating tg.
Conversely, this is not a problem for the full SCM, since that ‘leftover’ temperature re-
sponse is fed into the initial conditions of the run. To overcome this in Green’s approach,
the ‘temperature leftover’ parameter Tieg(t) to Equation (2.2), so it takes the form of

T(t*) = ftf: E(7) fo(t* — 7)d7 + Tief (t*). Notice that the Tie(t) term gets cancelled when
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the deviation is calculated. The temperature leftover term is generated by feeding FalR
with RCP6.0 emissions until the year ¢,, and then setting emissions to zero at the mo-
ment of pulse response generation. Tieg(t) is assessed as the temperature evolution after
emission cessation. Hence, Ti(t) is de facto ZEC by definition. Various temperature
leftover values corresponding to different ¢, years are shown in Figure 2.8. Note that the
emission pathways and the years of emission cessation ¢, correspond to those of pulse

response generation (Figure 2.1).



Chapter 3

A Forward-Looking CGE Analysis
of Climate Damages: Integrating

Labor Productivity, Agricultural

Yields, and Heat-Related
Mortality

In this study, we examine the regional and sectorally disaggregated economic impacts of cli-
mate change on GDP, extending previous CGE assessments through more refined damage
quantifications. First, we derive a new, country-level function for heat-related labor pro-
ductivity, finding that losses follow a quadratic polynomial relationship with global mean
temperature—independent of the emission pathway—and can become disproportionately
large in tropical areas compared to cooler, drier regions. Next, we integrate these esti-
mates with recent assessments of agricultural yield changes and heat-related mortality in
the forward-looking CGE model GTAP-INT 2. Drawing on the GTAP 11 database (60
regions, 30 sectors), we run five emission scenarios out to 2200, revealing stark regional
inequalities. The results reveal major regional inequalities, with poorer and more populous
regions disproportionately affected, although certain countries experience modest benefits;

emissions mitigation reduces both total economic losses and regional disparities. At the

52
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global level, we estimate a cumulative GDP loss of about 18 trillion dollars by 2100 un-
der a mid-range emission scenario. Weighing global GDP loss by the population affected,
rather than by economic output, nearly doubles the estimated damages. Heat-related la-
bor productivity losses alone account for approrimately half of these total GDP damages.
As our analysis includes only three major climate impact channels, our estimates remain
conservative and incomplete, highlighting the need for further refinement and inclusion of

additional climate impacts in future work.

3.1 Introduction

Earth’s climate is changing at an unprecedented pace. From June 2023 to September 2024,
global mean temperature surpassed all recorded levels for 16 consecutive months, alongside
notable increases in ocean acidity, ice sheet loss, and sea level rise [124, 125]. Despite the
Paris Agreement’s ambition to keep warming below 2 °C [126], 2024 temperatures have
already averaged about 1.5 °C above pre-industrial levels, and 2023 marked another record

year for fossil fuel emissions [127].

These trends bring economic concerns. The top five greenhouse gas emitters alone have
caused around $6 trillion climate-related damages since 1990 [128]. In 2010, heat-induced
labor productivity losses cost the economy an estimated $311 billion [129], while natural
disasters rose by 70% in 2000-2019 compared to the previous two decades, adding $1.34
trillion in damages [130]. Regionally, health-related costs of heatwaves in France reached
$25.5 billion over 2015-2019 [131], whereas Nigeria’s 2012 floods incurred $396 billion in
losses through infrastructure damage, disease spread, and the resulting food insecurity

[132].

Looking forward, however, projections of economic impacts of climate change vary
significantly due to differing methodologies and impact coverages[77, 133]. According to
the latest IPCC assessments, under 3 °C warming, global GDP outcomes can range from

more than 50% losses to modest gains [33].

The IPCC identifies two distinct methodological approaches: statistical and struc-
tural. The statistical method implies identifying ”economic impacts in a given sector or
in aggregate, inferred from observed changes in economic factors, weather and climate,

with responses and net results constrained by available data.” [33]. In general, statistical
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approaches project (in some cases substantially) higher losses [74, 86, 134, 135], compared
to their methodological counterpart. However, we believe that they can overestimate the
losses as they fail to account for economic readjustments following a climatic shock, since
they simply sum assumed-to-be-independent sectoral impacts. For example, Burke et al.
[86] assumes the economy to be made of separated (atomistic) industries that do not mod-
ify capital or labor in response to climate change, or that trade patterns within countries
are not changing either; this means that the economy is kept under constant suboptimal
performance leading to accumulation of losses that could be avoided (a part of it, at least)
by allocating the workforce or investing in different industries that are more suitable to
the new climate conditions, as one would expect to see in real-world economies. In this
paper, we contribute to the literature on estimating the impacts of climate change through
structural modeling [136, 137]. This approach simulates the economy by capturing cli-
mate impacts on production and its inputs, household consumption, investments, and,
depending on the degree of spatial and sectorial aggregation, trade between sectors and
regional economies. It accounts for feedback between the economy and climate impacts,
as well as the interplay between different impacts and sectors, which captures indirect as

opposed to direct costs only obtained by aggregating the damages independently [85].

In our view, the models that address these challenges fall within the category of com-
putable general equilibrium (CGE) models, a subclass of economic models (EMs) designed
to represent the global economy by simulating value flows among domestic and foreign
agents, including households, private firms, and government entities representing coun-
tries or regions [87, 138]. Further strength of the CGE approach is its ability to treat
each regional sector independently while capturing their interactions through transmis-
sion channels. This structure allows modelers to incorporate economic impacts that have
been specifically calculated for individual sectors/regions, making them ideal for evaluat-

ing heterogeneous climate effects in a global economic framework [90].

Temporal dynamics in CGE models can be either static or dynamic. In the static
setup, the shock is introduced in a single (baseline) year, with the resulting effects of the
shock being a new equilibrium in that year, without exhibiting temporal evolution (e.g.,
[139]). The use of static CGE models in the context of climate change is well-documented
in the literature [3, 103, 140]. However, static models cannot trace adjustment paths over

time.
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In contrast, dynamic models capture the temporal evolution of shocks, which can be
addressed using either a recursive or an intertemporal (forward-looking) approach. Re-
cursive dynamic models, often preferred for their lower computational requirements and
greater numerical tractability, solve the model sequentially for each time step. Each
period is treated as a separate static equilibrium, with information communicated in-
tratemporally between neighboring time steps through linking variables such as savings
and investment [141]. A systematic review conducted in 2023 [142] highlights that re-
cursive models are by far the most commonly used temporal dynamics model setups in
climate policy analyses, with static models ranking second. For instance, [104] revis-
its a study previously conducted using a static setup, demonstrating that the recursive
approach reveals greater regional disparities in the results. However, the overall median
aggregated global damage remains small (0.5% on roughly 2 °C increase). In recent times,
a CGE model had been successfully integrated with a climate model for policy analysis
[93]. However, this integration was limited in its time horizon (until 2060), likely due to
computational challenges. While the recursive setup represents an improvement over the
static counterpart for long-term policy evaluation, it applies deviations from the baseline
as shocks to exogenous variables only at the current time step, with no influence from
future shocks on present agent behavior. This assumes fully myopic agents who fail to

anticipate future climate change—a simplification that, in our view, is not realistic.

This brings us to the final candidate: the intertemporal, forward-looking CGE frame-
work. In contrast to the recursive approach, the intertemporal model solves for all time
steps simultaneously, optimizing decisions across the entire time horizon while accounting
for all future shocks. This approach enables forward-looking agents with perfect foresight
but comes at a significantly higher computational cost. In this sense, the intertemporal
CGE model functions similarly to a standard IAM, albeit without the integration of a
climate module (as of yet). Experimentally, [143] explores the differences between the two
approaches by setting up the same CGE model in both intertemporal and recursive forms,
aiming to compare them. Their findings suggest that while the intertemporal framework
is better suited for climate policy evaluations (e.g, borrowing and of GHG allowances),
the recursive framework, with its lower computational costs, offers greater flexibility in
representing system details, providing strong justification for its use. However, recent de-

velopments cast this conclusion in a new light. [91] systematically reviews the literature
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on CGE models, comparing temporal dynamic approaches by analyzing their time hori-
zons and the number of model components, such as regions and sectors, captured in their
simulations. Contrary to the notion that recursive models offer superior flexibility and
representation, this review reveals that one intertemporal model, GTAP-INT, stands out
[144], including by far the most components and extending to the longest time horizon
among the models examined, accounting for 139 countries, over 50 sectors and a time

horizon past 2200.

The GTAP-INT model builds on the Global Trade Analysis Project (GTAP) static
CGE model [3], with a series of technical modifications [96, 97], including an improved
solving technique that enhances simulation speed and stability [144]. Its forward-looking
nature stems from allowing producers to optimize capital investment decisions over time
to maximize long-term profits, governed by capital accumulation equations and shadow
pricing [97] (see Appendix A.l for details). Using this advanced modeling framework
[81], the damage functions for health impacts, sea-level rise, agricultural yield losses, and
heat stress effects on labor productivity—estimated in [80]—are implemented to evaluate
the economic consequences of different temperature pathways. These calculations assess
climate-induced impacts across all countries included in the GTAP database, leveraging
GTAP’s highest level of regional resolution to date. However, two limitations motivate our
update: (i) households are myopic in GTAP-INT (only producers are forward-looking),

and (ii) the damage functions can be modernized using newer evidence and methods.

In this paper, we address both issues. We utilize GTAP-INT 2, an upgrade from
GTAP-INT that incorporates a forward-looking household, completing the transition to a
fully forward-looking GTAP model [99]. Moreover, we incorporate state-of-the-art climate
impact assessments examining the effects of three distinct biophysical impacts of climate
change, using damage functions that capture changes in agricultural yields, heat stress
on labor productivity, and the effects of a changing climate on human health. For the
overview of GTAP-INT 2 structure, and the specific modifications that extend GTAP

from a static to an intertemporal (forward-looking) model—see Appendix A.1.

The paper’s structure is as follows. In Section 3.2, we develop an improved country-
level, heat-related labor productivity damage function. In Section 3.3, we provide a brief

overview of additional impact channels, and outline the simulation setup. Section 3.4
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presents the main results, followed by a discussion of their broader implications in Section

3.5.

3.2 Labor productivity damage function

labor is a fundamental driver of total production, playing a critical role in overall economic
output. However, as climate change drives global temperatures upward, excessive heat
exposure increasingly leads to fatigue, dehydration, and cognitive decline, thereby reduc-
ing workers’ efficiency and labor productivity [145]. Sectors heavily reliant on outdoor
labor, such as agriculture and construction, are particularly vulnerable, disproportion-
ately affecting lower-income populations employed in these industries [146]. Consequently,
heat-induced impacts on labor productivity act as a catalyst for deepening economic in-

equalities.

Previous studies within the GTAP intertemporal framework have utilized heat-related
labor productivity damage functions from Roson and Sartori [80, 81]. Among various
other climate change impacts, their work provides ready-to-use country-level labor pro-
ductivity damage functions, formulated as linear functions of temperature. However,
closer inspection of their methodology raises several concerns, including the use of base
data at a monthly resolution, missing climate data on relative humidity, unclear country
specifications, the absence of specific climate model projections, and an arbitrary choice

of o linear upscaling of base results when constructing a damage function.

In this study, we revise their estimates by deriving updated country-level labor pro-
ductivity assessments. Using daily climate projections, we demonstrate that the damage
function follows a quadratic rather than a linear form and explicitly show that it is inde-
pendent of the preceding emission pathway, supporting a purely temperature-dependent

relationship.

3.2.1 Methodology

The climate variables used in the analysis are daily average gridded temperature and
relative humidity levels, obtained from the Max Planck Institute for Meteorology Earth
System Model (MPI-ESM 1.2) [147]. These data are provided under four different CMIP6
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projection scenarios (SSPs) as well as a historical run serving as the baseline scenario.
To account for uncertainty, we analyze 50 ensemble members of MPI-ESM model runs
separately. By incorporating the full range of ensemble members, we capture the internal
variability of the climate system. Unlike relying on multi-model means, which can ob-
scure important variability and extreme events, this approach preserves the full spectrum
of potential future scenarios, offering a more realistic risk assessment—albeit at the cost of
potential model biases. As a compromise between the available data and an effort to cap-
ture more emission scenarios with a full uncertainty ensemble, the chosen grid resolution
is 250 km. The model output is publicly available and distributed by the World Cli-
mate Research Program [148]. Population data are sourced from NASA’s Socioeconomic
Data and Applications Center [149], using gridded world population estimates for the
year 2020. We opted for 30 arc-minute resolution (approximately 40 km grid length)and
upscaled it to match the climate data resolution, ensuring spatial consistency necessary
for country-level population weighting. Since we are upscaling population counts within
grids, a natural choice was to set each upscaled grid’s value as the sum of its finer-scale
components. The country-level data is represented as the sum of the population-weighted
grids within each country’s borders. First, we generate separate grids for each country,
preserving original population values within national boundaries while setting values out-
side to zero. Given the high temperature gradient between coastal and maritime grids,
we adopt a conservative approach in delineating borders, ensuring that the selected grids
predominantly capture land areas. Out of the 177 countries distinguishable by region
masking python package!, 25 were omitted in the analysis due to their size being smaller
than the grid size (e.g., Palestine or Taiwan). Once the countries are separated, we assign
a population-based weight to each grid within a country, calculated as the grid’s popula-
tion count divided by the total national population (i.e., the sum of all grids within the
country’s borders). These ”weighting masks” are applied to the climate data, generat-
ing separate population-weighted grid datasets for each country. Country-level variables
are then derived by summing all population-weighted climate data within each country’s

borders, ensuring a more accurate representation of population heat exposure.

The method of acquiring the labor productivity losses from the daily average temper-
ature and relative humidity data is motivated by Kjellstrom et al.[150]. Before doing the
country masking, daily Wet-Bulb Globe Temperature (WBGT) values are calculated for

'"Documentation available at https://regionmask.readthedocs.io/en/stable/, accessed 23/09/2024.
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each grid following the approximation given by the Australian Bureau of Meteorology

[151], such that

RH 17.27- T,
WBGT = 0.567 - T, + 3.94 + 0.393 - 100 6.105 - ea;p(m>, (3.1)

where T, is the average daily surface temperature (in °C), and RH the average daily
relative humidity (in %). This WBGT measure does not, however, account for sun ex-
posure or wind speed, both of which influence human heat stress. Nevertheless, due to
data limitations, we adopt this as the best available approximation. The WBGT grids are
then population-weighted and aggregated as described earlier, yielding daily country-level

WBGT values.

After preprocessing the country-level WBGT data, the next step is getting a daily
WBGT frequency distribution in the baseline period (1990-2009) and five projected time
periods (years 2015-2034, 2035-2054, 2055-2074, 2075-2094 and 2094-2100). For each
country and each timeslice, the daily occurrences of WBGT values are counted with a
precision of two decimal places and grouped into bins, yielding the WBGT frequency
distribution. Using these frequency distributions, we calculate the productivity decrease

relative to baseline for each timeslice, as follows.

To estimate work ability from WBGT, we adopt a WBGT-based work ability metric
as a pragmatic choice, balancing methodological robustness with practical applicability.
While advanced physiological models, such as Predicted Heat Strain (PHS) or Universal
Thermal Climate Index (UTCI), can account for cumulative physiological strain and pro-
vide more detailed assessments, they require significantly more data and computational
resources. In contrast, WBGT-based metrics are well-established and widely used in oc-
cupational heat stress assessments, offering a straightforward and empirically validated
approach to estimating heat-related productivity losses [152]. WBGT is translated into

ability to work using an approximated Hothaps work ability function

0.9
1+ (WBGT/OQ)O‘Q '

f(WBGT) = 0.1 + (3.2)

Three different parameter sets (ap,a2) are equal to (34.64, 16.64) for low, (32.93, 17.81)
for moderate, and (30.94, 16.64) for high workload, as given by [152]. Then, the total

workability W), within a a given time period is calculated using the sum of daily work
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ability values, determined by the frequency WBGT occurrances and their corresponding

work ability estimates:

Wh _ Z ng - fh(WBGTz) (3'3)

N )
i

where N is the total number of days in the time period, and n; the count of the days with

corresponding WBGT value W BGT;. Finally, productivity loss is quantified as a relative

change in total work ability compared to the baseline period (total) work ability. By mea-

suring workability loss relative to the baseline, we account for historical, endogenous, and

country-specific adaptations to higher WBGT conditions, ensuring that the assessment

reflects existing resilience to heat stress in different regions.

3.2.2 Country-level labor Productivity Loss
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FI1GURE 3.1: Labor productivity losses for four selected countries as a function of the
global mean temperature anomaly relative to the 1990-2019 baseline. The colored
scatter points depict results from 50 ensemble members, differentiated by three
workload domains and four CMIP6 emission scenarios. The black line represents the
quadratic fit across all outcomes, while the grey shaded area indicates the 5th—95th
percentile range.
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Figure 3.1 presents the relative change in productivity loss as a function of the global
mean temperature anomaly for four selected countries representing different world regions
and distinct climatic zones. In this figure, we aggregate data from all SSPs and workload
domains into a single plot for each country, shifting the time dependence to a dependence
on global temperature anomaly. The global mean anomaly refers to the temperature

increase relative to the baseline period (1990-2009).

Each point in the scatter plot represents the productivity loss calculated from an in-
dividual ensemble member for a specific SSP and workload domain. These points cluster
around certain temperature values, reflecting the average global temperature of the en-
semble member during the time period of calculation. Due to internal climate variability,
each ensemble member exhibits slight deviations in the corresponding global tempera-
ture anomaly within a given time period. As a result, the data points are spread rather
than aligning along a single vertical line. This dispersion contrasts with a time-based
plot, where calculations performed for five distinct time periods would appear as discrete

vertical groupings.

Aligning the results to a temperature-based x-axis reveals that labor productivity loss
follows a purely quadratic function of temperature, independent of the preceding emission
scenario and consistent across all countries. In this paper, we define emission pathway
dependency as a variable that not only exhibits a relationship with temperature but also
varies depending on the emission pathway under which it is observed. For each country,
we fit a quadratic (second-degree polynomial) regression of productivity loss on global
temperature anomaly, pooling across SSPs and ensemble members. The resulting coeffi-
cients form the country-level damage function, provided in the supplementary materials.
These coefficients can be directly applied as damage functions in country-level economic
assessments that are interested in linking labor productivity loss to climate change. Addi-
tionally, the supplementary materials include a heatmap that illustrates the labor produc-
tivity loss for each country per incremental 1-degree increase in global mean temperature
across all three workload domains. Our results indicate a drastic impact on tropical coun-
tries, generally much higher than previous assessments at elevated temperatures. This
greater loss under higher temperatures is due to the quadratic, rather than previously
assumed linear, relationship of losses with temperature. However, in contrast to their

tropical and subtropical counterparts, countries located at latitudes higher than those of
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the subtropical belt, or at high altitudes like Bhutan, experience relatively negligible labor

productivity losses.

In our study, we categorize the agriculture and construction sectors as high workload
domains, manufacturing and industry as medium workload domains, and the service sector
as a low workload domain, following definitions from the International labor Organization
[153]. We apply these categorizations and corresponding damage functions to the sectors

in GTAP-INT 2 [99].

Alongside the labor productivity loss damage function, we incorporate two additional

damage functions sourced from recent literature to ensure the most up-to-date assessment.

3.3 Other damages and simulation setup

Implementation details of the climate impacts as economic shocks, and their propagation

through the GTAP-INT 2 system, are provided in Appendix (A.2).

3.3.1 Effects on agricultural yields

The impacts of climate change on agriculture is incorporated as changes in yields, seen
as changes in productivity, in the agricultural sectors of examined regions. Changes on
agricultural yields are based on a study done by Li et al. [4]. The authors conducted
a meta-analysis to understand how climate factors affect crop yields, focusing on four
main crops (maize, rice, soy and wheat) and the effects of temperature, rainfall, and COq
on crop productivity. The study evaluated the performance of statistical models in crop
yield damage prediction, taking into account the correlation between different studies and
quantifying the magnitude of both modeling, sampling and missing data uncertainty. In
this study, we consider only the average calculated values for each crop’s yield in selected
regions due to the deterministic nature of GTAP-INT 2. The yield changes are calculated
as average changes in crops’ productivity for 20-year periods in 21st century, under 3
different emission scenarios (RCP2.6, RCP4.5 and RCP8.5), which we then interpret as
regional yield changes dependent on global mean temperature corresponding to the 20-

year averages.
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In general, the findings reveal a pronounced and consistent decline in maize production,
projected to be the largest and most uniform globally throughout the 21st century. In
contrast, trends in rice, soy, and wheat yields exhibit substantial regional variability, with
production losses differing by region and timing across these crops. Additionally, certain
regions and crops show an initial increase in production under climate change up to an
optimal temperature threshold, followed by a decline. Moreover, when analyzing the yield
change dependency on average global temperature levels, we noticed a recurring emission
pathway dependency pattern for all four crops. This emission pathway dependent behavior
is in stark contrast with the labor productivity loss damage function counterpart. Namely,
while yield changes show relatively similar temperature dependency between RCP4.5 and
RCP8.5, they are more adversely affected by climate change at the same temperatures
under RCP2.6. Hence, when incorporating the yield losses as damage function in GTAP-
INT 2, we opt for a functional form that connects yield loss with temperature under
RCP8.5 scenario as a conservative estimate, with (piecewise) linear interpolation of given
discrete estimates. Finally, the damages (yield changes) on agricultural products that are

not assessed by Li et al. are taken from the older estimates given by [80].

3.3.2 Effects on human health

We interpret the impact of climate change on human health as an increase of mortality
rate in regions of interest due to increase in global (and hence, regional) temperatures.
The mortality rate change is incorporated in the model as a change in both the population,
effecting the welfare through the household module, and the labor force availability, which
directly effects the productivity of every sector examined. We base our quantification of
the impact on human health on the study conducted by Bressler et al. [84]. This study
builds upon the foundational work of Gasparrini et al. [154], which originally projected
the effects of climate change on heat- and cold-related mortality for a selected set of
countries. Bressler et al. extend these projections to a global scale, allowing for a more

comprehensive assessment of climate-related health impacts worldwide.

Gasparrini et al. assess country-specific statistical relationships between daily temper-
ature and mortality using a 21-day nonlinear distributed lag model[155], over a baseline
period 1984-2015. The countries are selected based on data availability, capturing a whole

spectrum of climatic and economic conditions and roughly 40% of global population. The
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obtained statistical relationships (i.e., response functions) are then combined with future
projections of daily temperatures for two time periods and four RCPs in order to estimate
future projections of mortality changes for the countries available by data. Bressler et al.
use this set of projections to extrapolate mortality changes in countries not included in
the initial sample, using each country’s specific wealth and regional climate characteris-
tics as a basis for this extrapolation. Finally, the heat- and cold-related mortalities are
assessed separately, and the resulting net mortality serves as a basis damage function,

which incorporate in GTAP-INT 2.

The damage function is based on a linear interpolation that links country-level temper-
atures with net mortality changes. Bressler et al. calculate mortality rates for two time
slices—the mid-century and the end of the century—across four Representative Concen-
tration Pathway (RCP) scenarios: RCP 2.6, 4.5, 6.0, and 8.5. These mortality estimates,
paired with the associated country-level temperature projections for each scenario and
time period, form the basis for the interpolation in the damage function. We use the the
calculated country-specific temperature coefficients (supplementary material, Table S2.5)

to link the global mean temperature with country-level temperature.

It is important to note that Bressler et al. conduct two distinct assessments of future
mortality changes: one that includes assumptions about future income growth and the
endogenous adaptation resulting from this growth, and one that does not. This approach
contrasts with the original calculations by Gasparrini et al., which did not account for po-
tential adaptation from income growth. In our study, we choose the no-income-adaptation

scenario for two main reasons.

Firstly, our model is designed to assess the impacts on the economy assuming constant
population and GDP, making it logically consistent to evaluate mortality impacts without
considering income-driven adaptation. Secondly, we believe that incorporating future
income-based adaptation could yield misleading results, as it relies solely on a single
socio-economic pathway, which may not represent the broader range of possible future
outcomes. With this assumptions, most countries, with a few exceptions in Northern

European, experience an increase in mortality as a result of climate change.

Finally, our damage function provides a conservative estimate of climate change im-
pacts on human health, as it does not include extreme events or additional health threats.

While we assess the direct effects of local temperature variability on mortality, impacts on
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morbidity and the spread of disease vectors—considered in some prior assessments—are
excluded. By focusing on well-substantiated effects, we aim to maintain a rigorous stan-

dard, even with this more limited scope.

3.3.3 Run specifications

In this paper, we assess damages relative to the baseline economy, which we define as
the present-day economy. This means that baseline population and GDP remain fixed at
their current values, independent of any predefined socio-economic pathway. Economic
changes occur solely due to shocks from damage functions driven by the concurrent global
mean temperature anomaly, measured relative to the present day. The baseline model

data, including GDP and population, is sourced from the GTAP 11 database [156].

Economic pathways are thus determined by global temperature dynamics. We shock
the model using five different emission scenarios (RCP2.6, RCP4.5, RCP6.0, RCP7.0,
and RCP8.5)2, capping temperature increases after 2150 to maintain a constant climate
thereafter. This choice prevents forward-looking agents, as defined in GTAP-INT 2, from
anticipating what we consider to be highly uncertain and potentially extreme temper-
atures in high-emission scenarios by the late 22nd century, which would be difficult to
account for meaningfully. Since the GTAP database reflects real-world economic condi-
tions, it inherently accounts for damages accrued to date. By using this as a baseline,
we introduce temperature pathways so that anomalies are relative to the present day
(supplementary, Figure S2.5). This ensures consistency with the damage functions, which
are also formulated as anomalies from present-day conditions (1990-2009 for the labor

productivity function).

The model divides the world into 60 regions, encompassing individual countries and
aggregated country groups, with economic activity captured across 30 sectors. A full list
of represented sectors and regions, along with their corresponding baseline population and
GDP, is provided in the supplementary material. The regional aggregation was determined
for computational efficiency rather than normative considerations, as this configuration
was found to be optimal in the present setup, with future work intended to expand the

coverage.

2Note that here we switch from SSP to RCP definitions to align with the fact that we utilize temperature
pathways rather than socio-economic scenarios.
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For regions consisting of multiple countries, we apply regional damage functions based
on the average impact across all included countries for each of the three damage types,

ensuring consistency with the country-scale nature of the damage functions.

3.4 Results

TABLE 3.1: Projected climate damages in (counterfactual) 2100 by region and RCP
scenario (% GDP)

Country RCP2.6 RCP4.5 RCP6.0 RCP7.0 RCP8.5 Damage Type
Argentina -0.60 -2.01 -2.59 -3.78 -5.45 All Damages
Argentina -0.05 -0.14 -0.20 -0.35 -0.64 Labour Product.
Australia -0.13 -0.59 -0.73 -0.85 -1.32 All Damages
Australia -0.06 -0.24 -0.34 -0.54 -0.83 Labour Product.
Austria -0.09 0.39 0.70 1.63 2.17 All Damages
Austria -0.00 0.07 0.13 0.37 0.55 Labour Product.
Belgium -0.09 0.34 0.62 1.48 1.90 All Damages
Belgium -0.01 0.02 0.06 0.25 0.36 Labour Product.
Brazil -1.05 -3.58 -4.68 -7.07 -10.29 All Damages
Brazil -0.26 -0.91 -1.29 -2.26 -3.82 Labour Product.
Canada -0.10 -0.66 -0.82 -0.95 -1.52 All Damages
Canada -0.02 -0.00 -0.00 0.05 -0.01 Labour Product.
Caribbean -2.94 -8.76 -11.19 -16.52 -23.54 All Damages
Caribbean -2.25 -7.14 -9.28 -14.12 -20.47 Labour Product.
China and Hong Kong -1.22 -3.95 -5.12 -7.67 -11.08 All Damages
China and Hong Kong -0.24 -0.91 -1.28 -2.28 -3.74 Labour Product.
Costa Rica -1.78 -6.02 -8.03 -12.89 -19.81 All Damages
Costa Rica -1.25 -4.49 -6.17 -10.48 -16.72 Labour Product.
Croatia -0.64 -1.75 -2.28 -3.51 -5.61 All Damages
Croatia -0.05 -0.10 -0.13 -0.19 -0.41 Labour Product.
Czechia -0.11 0.20 0.43 1.16 1.51 All Damages
Czechia 0.02 0.12 0.20 0.45 0.67 Labour Product.
Denmark -0.06 0.31 0.57 1.41 1.88 All Damages
Denmark -0.02 -0.02 0.00 0.16 0.26 Labour Product.
Ethiopia -1.37 -4.56 -5.93 -8.74 -12.41 All Damages
Ethiopia -0.05 -0.02 -0.04 -0.07 -0.29 Labour Product.
Finland 0.22 0.72 1.03 1.95 2.52 All Damages
Finland 0.01 0.10 0.18 0.46 0.71 Labour Product.
France -0.20 -0.06 0.09 0.70 0.88 All Damages

Continued on next page
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Country RCP2.6 RCP4.5 RCP6.0 RCP7.0 RCP8.5 Damage Type
France -0.01 0.04 0.07 0.26 0.36 Labour Product.
Gabon -1.56 -4.87 -6.26 -9.36 -14.29 All Damages
Gabon -0.72 -2.75 -3.73 -6.11 -9.90 Labour Product.
Germany -0.07 0.23 0.43 1.09 1.42 All Damages
Germany -0.00 0.04 0.07 0.24 0.35 Labour Product.
Ghana -3.37 -12.07 -15.79 -23.82 -32.78 All Damages
Ghana -1.78 -6.93 -9.32 -14.90 -21.69 Labour Product.
India -3.18 -11.27 -14.70 -22.14 -30.35 All Damages
India -1.24 -4.80 -6.45 -10.36 -15.13 Labour Product.
Indonesia -1.54 -8.63 -11.96 -19.98 -30.83 All Damages
Indonesia -1.67 -6.67 -9.16 -15.59 -24.79 Labour Product.
Iran (Islamic Republic of) -1.42 -4.29 -5.43 -7.78 -11.04 All Damages
Iran (Islamic Republic of) -0.17 -0.54 -0.74 -1.22 -2.01 Labour Product.
Ireland 0.01 0.40 0.65 1.40 1.85 All Damages
Ireland -0.02 -0.05 -0.05 0.01 0.04 Labour Product.
Italy -0.46 -0.89 -1.01 -1.13 -1.73 All Damages
Italy -0.01 0.04 0.07 0.16 0.13 Labour Product.
Japan -0.81 -2.01 -2.52 -3.61 -5.62 All Damages
Japan -0.33 -1.09 -1.48 -2.41 -3.84 Labour Product.
Malaysia -1.81 -6.53 -8.88 -14.82 -23.28 All Damages
Malaysia -1.04 -4.28 -6.10 -11.09 -18.47 Labour Product.
Netherlands -0.07 0.39 0.68 1.52 1.97 All Damages
Netherlands -0.04 -0.04 -0.03 0.09 0.13 Labour Product.
Portugal -0.57 -1.29 -1.57 -2.12 -3.24 All Damages
Portugal -0.05 -0.14 -0.20 -0.32 -0.66 Labour Product.
Republic of Korea -0.75 -2.14 -2.75 -4.14 -6.45 All Damages
Republic of Korea -0.34 -1.23 -1.68 -2.75 -4.26 Labour Product.
Rest of EFTA 0.17 0.70 1.00 1.91 2.55 All Damages
Rest of EFTA -0.02 -0.05 -0.05 0.03 0.08 Labour Product.
Rest of EU25 -0.26 -0.51 -0.57 -0.57 -1.01 All Damages
Rest of EU25 -0.01 0.02 0.03 0.10 0.08 Labour Product.
Rest of East Asia -0.51 -1.73 -2.28 -3.49 -5.39 All Damages
Rest of East Asia -0.23 -0.82 -1.16 -2.02 -3.31 Labour Product.
Rest of Eastern Africa -2.35 -7.86 -10.23 -15.36 -21.41 All Damages
Rest of Eastern Africa -0.51 -2.05 -2.85 -4.84 -7.56 Labour Product.
Rest of Eastern Europe -0.19 -0.72 -0.93 -1.32 -2.14 All Damages
Rest of Eastern Europe 0.02 0.12 0.17 0.29 0.34 Labour Product.
Rest of Europe -0.79 -1.98 -2.40 -3.14 -4.30 All Damages

Continued on next page
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Country

RCP2.6 RCP4.5 RCP6.0 RCP7.0 RCPS8.5

Damage Type

Rest of Europe

Rest of Former Soviet Union
Rest of Former Soviet Union
Rest of North Africa

Rest of North Africa

Rest of North and Central America
Rest of North and Central America

Rest of Oceania

Rest of Oceania

Rest of South America
Rest of South America
Rest of South and SE
Rest of South and SE

Rest of Southern African Custo

Rest of Southern African Custo

Rest of Western Africa
Rest of Western Africa
Rest of Western Asia
Rest of Western Asia
Rest of World

Rest of World
Russian Federation
Russian Federation
Saudi Arabia

Saudi Arabia
Slovakia

Slovakia

Slovenia

Slovenia

South Africa

South Africa
South-Central Africa
South-Central Africa
Spain

Spain

Sweden

Sweden

Switzerland

-0.01 0.04 0.07 0.19

-1.15 -3.23 -4.04 -5.63
-0.05 -0.17 -0.24 -0.40
-1.49 -4.80 -6.19 -9.15
-0.26 -0.94 -1.32 -2.27
-0.89 -2.50 -3.16 -4.51
-0.21 -0.77 -1.06 -1.76
-0.38 -1.15 -1.53 -2.47
-0.22 -0.79 -1.08 -1.77
-0.84 -3.28 -4.33 -6.65
-0.35 -1.51 -2.09 -3.47
-2.58 -8.70 -11.37 -17.32
-1.22 -4.64 -6.29 -10.24
-1.11 -3.35 -4.26 -6.15
-0.08 -0.28 -0.41 -0.75
-2.06 -7.60 -10.08 -15.64
-0.73 -3.03 -4.24 -7.36
-1.60 -5.11 -6.58 -9.74
-0.63 -2.24 -3.00 -4.76
0.06 0.66 0.96 1.73

-0.01 0.00 0.03 0.17

-0.55 -1.45 -1.74 -2.19
-0.01 -0.02 -0.02 0.02

-1.68 -5.56 -7.21 -10.80
-0.71 -2.65 -3.58 -5.81
-0.15 -0.05 0.08 0.53

0.03 0.15 0.22 0.43

-0.45 -0.82 -0.91 -0.91
-0.06 -0.14 -0.18 -0.24
-0.80 -2.36 -2.99 -4.25
-0.02 -0.02 -0.03 -0.03
-2.01 -7.09 -9.34 -14.43
-0.56 -2.48 -3.47 -5.98
-0.56 -1.25 -1.51 -1.99
-0.05 -0.11 -0.17 -0.27
0.08 0.64 1.02 2.20

-0.00 0.07 0.14 0.46

-0.11 0.27 0.53 1.36

0.24
-7.80
-0.68

-12.93
-3.68
-6.74
-2.91
-4.21
-2.76
-9.75
-5.38

-24.69

-15.42
-8.68
-1.28

-22.25

-11.46

-13.62
-7.02

2.17

0.27
-2.97

0.05

-15.43
-8.83

0.64

0.63
-1.40
-0.45
-5.93
-0.11

-20.91
-9.42
-3.00
-0.60

2.92

0.73

1.82

Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.
All Damages
Labour Product.

All Damages

Continued on next page



Chapter 3 69

Table 3.1 — Continued from previous page

Country RCP2.6 RCP4.5 RCP6.0 RCP7.0 RCP8.5 Damage Type
Switzerland -0.03 -0.05 -0.04 0.09 0.16 Labour Product.
Thailand -1.64 -5.49 -7.24 -11.33 -16.83 All Damages
Thailand -0.85 -2.89 -3.96 -6.73 -10.64 Labour Product.
Ttirkiye -0.60 -1.72 -2.26 -3.57 -6.13 All Damages
Tiirkiye 0.01 0.11 0.16 0.36 0.43 Labour Product.
Ukraine -0.31 -1.91 -2.59 -3.92 -5.80 All Damages
Ukraine -0.00 0.05 0.07 0.15 0.14 Labour Product.
United Arab Emirates -2.08 -6.28 -7.97 -11.48 -16.01 All Damages
United Arab Emirates -1.49 -4.89 -6.33 -9.50 -13.34 Labour Product.
United Kingdom of Great Britain 0.02 0.39 0.61 1.26 1.65 All Damages
United Kingdom of Great Britain -0.01 0.00 0.02 0.14 0.21 Labour Product.
United States of America -0.33 -1.09 -1.41 -2.08 -3.31 All Damages
United States of America -0.10 -0.35 -0.52 -0.98 -1.76 Labour Product.
Viet Nam -2.35 -9.27 -12.42 -19.59 -27.78 All Damages
Viet Nam -1.10 -4.13 -5.73 -9.80 -15.08 Labour Product.

Figure 3.2 illustrates GDP changes worldwide, segmented into the 60 analyzed regions,
with each region’s GDP changes shown relative to its own economy, all damages included.
Antarctica is excluded due to its negligible socioeconomic activity. The upper panel
presents transient GDP deviations from the baseline under RCP7.0 for the years 2035,
2050, 2075, and 2100, reflecting each economy’s ongoing adjustment to temperature shocks
over time. In contrast, the lower panel depicts the quasi-equilibrium states of each regional

economy at the terminal year of the simulations for the four adjusted RCP scenarios.

Comparing the two panels reveals several key insights. Firstly, long-term impacts
on GDP are consistently more negative than transient impacts, regardless of the region
or pathway. Secondly, while most regions experience negative economic consequences
across all scenarios, some (particularly Scandinavian countries) show consistent GDP
benefits. Additionally, other higher-latitude countries, such as Canada, Belgium, and
Germany, exhibit initial economic benefits in the transient phase but face economic losses
in the long-term equilibrium. Notably, this trend also extends to Australia, which follows
a similar pattern despite being outside the higher-latitude zone. Lastly, both panels
highlight significant regional disparities, with tropical and subtropical regions being the
most severely affected. These disparities grow more pronounced as total losses increase,

underscoring the systematic inter-regional inequities.
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F1cURE 3.2: Climate change-induced GDP effects for each region included in this
analysis. The upper panel provides four snapshots of annual GDP changes under the
RCP7.0 scenario for the years 2035, 2050, 2075, and 2100, respectively. The lower panel
shows long-term impacts under four different RCP scenarios.
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FIGURE 3.3: Long-term regional GDP percentage losses under four RCP scenarios,
plotted against the baseline GDP per capita of the corresponding region. Each circle
represents a region included in the model run, with its size proportional to the region’s
population. The vertical dashed line indicates the global average of regional baseline
GDP per capita, while the yellow and red horizontal dashed lines represent global GDP
percentage losses, weighted by GDP and population, respectively.

Figure 3.3 delves deeper into regional heterogeneity, illustrating the long-term climate
change impacts on GDP for the four RCP scenarios (as in Figure 3.2, lower panel). It
examines the relationship between regional GDP losses and baseline GDP per capita,
with each circle representing a region. The size of the circles reflects the population of the
corresponding region. Two key patterns emerge from this representation. Firstly, while
most regions experience negative impacts from long-term climate change, low-income
countries (those with low GDP per capita) are disproportionately affected, with both
losses and disproportionality increasing alongside temperature (higher RCPs). Secondly,
the most populous regions tend to fall on the lower end of the GDP per capita spectrum.
This emphasizes that negative impacts tend to affect a larger number of people than one
might infer from a spatial map of losses alone. Moreover, Figure 3.3 starkly emphasizes on
the importance of mitigation in context of shared burden of impacts — while in RCP2.6

scenario most of the losses are avoided for all the regions of the world, the long-term
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F1GURE 3.4: Globally aggregated GDP losses per degree of global mean temperature
change for all five adjusted RCP scenarios, using unweighted, population-weighted, and
GDP-weighted methods. The kink at the end of each slope represents the system’s
adjustment to long-term impacts at the constant temperature.

regional GDP losses following RCP7.0 can reach almost 50% in Indonesia followed by
Ghana and India with both roughly around 40% GDP loss. On the opposite side of the
GDP per capita scale, Switzerland, Ireland the Rest of EFTA countries are not effected
by climate change even under a high temperature scenario. Drawing a vertical dashed line
that represents the global average of regional GDP per capita, one can see that the regions
with the lower GDP per capita experiences proportionally larger losses, with increasing
difference scaled with higher emission scenarios, compared to the regions on the higher-
than-average. Population size plays a critical role, as the most populous regions tend to
have lower GDP per capita, with the exception of the United States (60k US$ GDP per
capita). Finally, the figure clearly touches down on the importance of the mitigation when
it comes to reducing the regional GDP loss inequalites, as seen by RCP2.6 scenario case

where all of the countries tend to cluster around the same horizontal line.

Zooming out to the global scale, Figure 3.4 presents globally aggregated GDP losses
per degree of global mean temperature change (relative to the present day) across all
five adjusted RCP scenarios. With two different GDP loss aggregation methods applied,
the figure provides insight into how climate-induced economic damages vary depending

on the chosen weighting approach. Solid lines represent the case where all three damage
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FI1GURE 3.5: Decomposition of GDP-contributing impacts under labor-productivity
damages only (RCP6.0). Contribution of demand components to the percent change in
GDP for Denmark (top) and Indonesia (bottom), with the dashed line showing total
GDP change (as reported in the rest of the Results section). While labor-productivity
losses are always negative, the figure shows that positive (or less negative) GDP change
amid climate change can come from increased exports (Denmark case). We also see
that international transport margins decrease as the world economy slows. Indonesia
experiences losses across all components (imports buffer the loss only slightly).

Indonesia does not supply international transport services in GTAP-INT 2; hence its
transport margin term remains zero.
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components are included, while the dashed lines depict losses considering only labor pro-
ductivity damages, isolating the economic consequences of reduced worker efficiency due
to rising temperatures. The kink at the end of each slope represents the adjustment of the
system to long-term impacts, during which we keep the temperature constant, allowing

economic damages to stabilize over time.

The first panel applies a GDP-weighted aggregation method, where each region’s GDP
loss is weighted by its share of global GDP. This approach prioritizes regions with larger
economic contributions, emphasizing the proportional impact of climate change on the
overall global economy. By assigning greater weight to wealthier regions, it reflects the
economic significance of losses relative to baseline GDP levels. The second panel uses
a population-weighted aggregation method, where regional GDP losses are weighted by
population before being aggregated globally. This method provides a more representa-
tive measure of global damages by aligning the results with the proportional impact of
climate change on the total number of people affected. The comparison between these
two methods reveals a clear pattern: the population-weighted global loss is approximately
twice as large as the GDP-weighted loss. This aligns closely with the findings of Figures
3.1 and 3.2, reinforcing the conclusion that poorer and more populous regions bear a
disproportionately high share of climate-induced economic losses. Separating the dam-
age contributions on the global scale, both panels show that the labor productivity loss
impact on GDP contributes to roughly half of the total damages. Table 3.1 provides
more regional detail and shows that this proportion varies substantially between regions.
Additionally, Figure 3.4 reveals that the global GDP losses exhibit a small degree of tem-
perature pathway dependency: stronger mitigation pathways tend to show slightly higher
losses for the same level of temperature increase compared to weaker mitigation coun-
terparts. Running the model with only labor productivity damages (which are pathway
independent, see Figure 3.1), drastically reduces this pathway dependency, but does not

eliminate it entirely.

Table 3.1 explicitly presents each region and its corresponding GDP losses (%) in the
year 2100 under all five temperature scenarios, for both cases: one where all three damage
components are included and one where only labor productivity damages are considered.
Furthermore, Table 3.1 confirms the masking effect of globally aggregated phenomena,
particularly regarding the proportion of labor productivity-derived damages relative to

total damages. While the globally aggregated view suggests that labor productivity losses
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contribute to the half of the total GDP loss, this ratio is rarely observed at the regional

level.

Generally, Northern European countries benefit as global mean temperature increases,
while the rest of the world, including Southern Europe, experiences negative impacts to
varying degrees. Some of these benefits stem from reduced cold-related mortality and
positive effects on certain crops in these regions. However, focusing on labor productivity
damages only suggests additional drivers, particularly those linked to trade dynamics that
GTAP captures. Since the labor productivity damage function itself can only generate
losses, yet Northern European countries still benefit in these simulations, the most plau-
sible explanation is that production losses in highly affected regions are compensated by

increased trade from minimally affected countries, such as Denmark.

Indeed, Figure 3.5 points in this direction. It shows a decomposed GDP identity and
how each element changes under the assumption of labor productivity damage only. Since
Denmark’s labor productivity loss due to climate change is negligible (see supplementary
Figures S2.1 to S2.3), it does not drastically affect Denmark’s economy (in contrast to the
Indonesian case). As other countries are more severely affected, their production levels
drop while demand remains similar, increasing the need for imported goods. Countries
that are barely affected, like Denmark, can (and will) expand exports and, in this regard,

benefit from climate change.

However, because the global economy slows, total international trade also declines.
Countries that are suppliers of international transport services therefore lose GDP from
reduced global demand for transport, even if their own merchandise exports rise. Denmark
is one such supplier, so it incurs a loss via the international transport channel (Figure
3.5). This pattern appears for other regions with a positive supply share in the GTAP
international transport account. By contrast, Indonesia has no transport-supply share in

the GTAP database, so the figure shows no movement for that channel.

Before progressing to the discussion, this portion of the results section provides picked
examples of losses under the RCP6.0 scenario. Regional snapshots of losses for each
scenario, specifically for the years 2035, 2050, 2075, and 2100, as well as the corresponding

long-term damages, are detailed in the supplementary material.
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In the United States, initial GDP gains shift to rapid declines, with damages quadru-
pling by 2100 to roughly 275 billion USD per year (1.4% of GDP, see Table 3.1), assuming
no economic growth, which would further increase these numbers. In China, damages re-
main steady through much of the century but escalate sharply in the long term, reaching
roughly 645 billion USD in 2100. In present-day dollar terms, GTAP-INT 2 estimates
that in 2100 (RCP6.0, roughly 3 °C compared to preindustrial temperature) warming
would result in a global loss in that single year of approximately 2.6 trillion USD (3.22%
of global GDP), based on GDP-weighted aggregated losses. If aggregated for every year
until 2100, the cumulative loss amounts to over 17.6 trillion USD, not taking into account
the damages that accrued up to the present day. In this context, COP29 pledge of 300

billion USD might seem insufficient.

The highest share of global loss are China, India and USA, with roughly 25%, 15% and
10% of total losses in present-day USD in 2070 (RCP6.0), followed by the Rest of South
and Southeast Asia and Indonesia with 7% and 5%3. This reflects the fact primarily that
these countries have a large contribution to global GDP combined with non-negligible
losses. Relative to their own economies, the same countries experience roughly 2.7%,
9%, 0.5%, 6.5% and 5.8% losses respectively, with the country with the highest damages
relative to its own economy is Ghana (roughly over 9.2%, placing India the second on this
tier). On the other side of the scale, five countries that have the lowest share of global
loss are in this order: Germany, UK, France, Netherlands and Sweden, de facto observing
gain. These regional discrepancies in climate impacts reflect how interpretations can differ
depending on the perspective used and highlights the challenges in accurately quantifying
and communicating global climate change losses. It also further emphasizes the unequal

and often disproportionate distribution of damages across regions.

3.5 Discussion

The literature often presents the economic effects of climate change through relative
changes in global GDP. However, estimates vary depending on the methodological ap-

proach, and a clear consensus has yet to be reached. This study, incorporating the latest

3Note that the ”Rest of” regions have disproportionally higher shares due to its GDP and the corre-
sponding loss stemming from a conglomerate of countries.
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climate impact assessments on agricultural yields and human mortality, alongside an im-
proved labor productivity loss function, produces estimates that fall on the higher end of
global damage projections derived from CGE modeling. Importantly, the regionally dis-
aggregated approach that estimates losses at the regional level before aggregating them to
a global scale, underscores that focusing exclusively on the global picture obscures critical
regional disparities. If the global community is to effectively mitigate losses in a way that
international equity is adequately addressed, adopting a more granular, region-specific

perspective is essential.

Firstly, changing the global aggregation method from weighting regions by their as-
sociated GDP to weighting them by population increases the relative global GDP loss
by approximately a factor of two. Even though losses measured this way are not di-
rectly applicable in global economic assessments—such as damage functions on global
production in optimizing IAMs—because the units are not aligned, it nonetheless indi-
cates underlying ethical implications and raises a key question: if shifting the focus to how
climate change impacts the global population (i.e., the GDP losses that population will
experience), rather than focusing on overall global capital (regardless of who is affected),
doubles the total impact, should this be of concern to policymakers? If so, it would be
informative to investigate how this weighting choice influences other global assessments

that are calculated as aggregates from regional losses (e.g., [86]).

The second, more concerning reason to question global climate damage assessments
is that they obscure the stark differences evident in disaggregated regional and country-
level effects. For example, in this study, we demonstrate that a roughly 2°C temperature
increase from the present day (projected for the year 2085 under RCP7.0) results in a
GDP-weighted global GDP decline of 2.5%. At the same time, when looking at the
country level, the effects vary significantly. For example, Indonesia observes a relative
decline of over 13%, whereas Sweden, in contrast, gains from climate change with a
relative GDP increase of 2%. This adds another fundamental question: who does the 5%
global loss actually represent, given that the global economy is inherently granular and

functions primarily at the national level?

Even more concerning is that the disparity in economic losses between countries widens

as total losses and global temperatures rise, as illustrated in Figure 3.3. These findings
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further confirm the unequal (and arguably, unjust) distribution of climate change dam-
ages. As a general trend, poorer and more populous countries will bear increasingly
greater burdens with each additional increment of unmitigated global warming. However,
our results indicate that the mitigation does make a difference. Observing the RCP2.6
scenario, both the total losses and the large discrepancies in regional economic impacts

are effectively mitigated.

Aggregation matters not only for GDP levels but also for decomposing losses by damage
channel. In the global aggregate (Figure 3.4), labor-productivity losses account for roughly
half of total GDP losses, alongside agriculture and heat-related mortality. However, as
Table 3.1 illustrates, this proportionality varies significantly at the country level, making
it impossible to derive a universal rule. This cross-country variation reflects differences
in climate exposure (country-unique climate damage functions) and economic structure
(production, preferences, and trade); input—output and trade linkages transmit shocks
unevenly across sectors, yielding country-specific decompositions. Taken together, the
main trend of economic impacts in terms of GDP loss can be read from the damage
functions, while trade dynamics reshape it, sometimes substantially. The country damage
mixes (supplementary Tables S2.1-S2.5) and the labor-productivity-only case (Figure 3.5,

Table 3.1) are informative in this regard and help explain observed differences.

Results consistently show that long-term GDP losses exceed transient ones, across
all regional aggregation levels. While each country’s outcome reflects its own mix of
climate damages and sectoral structure, this pattern is structural in GTAP-INT 2 due to
intertemporal dynamics (see Appendix A.1.6 and A.1.7 for details). First of all, capital
accumulation dynamics amplify losses. In the transient horizon, damages make production
less efficient (workers are less productive; yields are lower), so output falls. Anticipating
lower future returns leads to lower investments, so capital accumulation slows, making
the future capital stock is smaller, and hence, further reducing future output. Forward-
looking households, seeing a less rewarding future, save less and consume more today,

widening the gap between transient and long-run GDP.

To situate our study, Cantele et al. [91] map CGE climate studies by regional/sec-
toral coverage and time horizon; our configuration (60 regions, 30 sectors, multi-century
horizon) lies at the high-resolution end of that spectrum and enables the heterogeneity

documented here.
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Because GTAP-INT 2 directly succeeds GTAP-INT [81], a brief comparison of the
two studies using the two related models is warranted. Structurally, GTAP-INT 2 adds
forward-looking households alongside firms, which could, in principle, temper losses via
consumption—saving adjustments. In practice, however, we predominantly find larger
GDP losses than [81]. The primary reason is the implementation of updated damage
functions (labor productivity, agriculture, heat-related mortality) that impose stronger
impacts at higher temperatures. We exclude sea-level-rise (SLR) damages from Roson &
Sartori [80] due to representation limits; in their framework SLR contributes only a small
share of total costs (“limited incidence on total land” and a low land-income share in
GDP). Excluding SLR would, if anything, reduce our totals, so the larger losses here are

best explained by the updated damages rather than by the change in timing assumptions.

In agriculture, the impact functions are improved: Li et al. [4] estimate crop-yield
impacts at the grid-cell level and then aggregate to countries, rather than extrapolating
from broad climate regions by latitude (as in Roson Sartori, whose functions underpin the
GTAP-INT study). A detailed, country-by-country comparison is beyond our scope and
does not point consistently in one direction (see Supplementary Tables S2.2-S2.4). Never-
theless, agricultural changes remain a material contributor to GDP outcomes, particularly

in countries with a high agriculture share in GDP.

When it comes to human health, the main modification in GTAP-INT 2 is that changes
in mortality affect production through changes in labor availability (separately from la-
bor productivity) on the production side, and also alter population, which enters the
household-welfare component. Moreover, this study accounts for potential positive effects
on human health due to lower cold-related deaths, which is particularly relevant and ob-
served in high-latitude countries in the Northern Hemisphere. These effects, combined
with improvements in agricultural yields, contribute to small but detectable positive GDP
effects, by increasing effective labor supply (and thus lowering unit labor costs for firms)

while simultaneously affecting welfare through population dynamics.

In contrast, the labor productivity impacts are exclusively negative, as the Hothaps
work ability function considers productivity losses only at elevated WBGT levels. A key
finding in interpreting the results is that country-level labor productivity losses are in-
dependent of the emission scenario, depending solely on the global mean temperature

change. This contrasts with other climate impacts, which vary with emission pathways.
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This independence enables the creation of a precise temperature-dependent damage func-
tion for labor productivity, which exhibits a clear quadratic relationship with temperature.
This represents a significant improvement over the previous labor productivity loss dam-
age function in Roson and Sartori, which estimated losses for a 1°C increase and then
linearly interpolated damages for higher temperature levels. Comparing the two assess-
ments shows that the labor productivity damages are comparable at lower temperatures,

but escalate more sharply at higher temperatures in the new estimates.

These impacts are particularly severe for tropical and subtropical countries, where
increased humidity and higher temperatures combine to exacerbate losses. In fact, high
humidity levels in these regions are the key driver of labor productivity losses as temper-
atures increase globally (albeit at different rates—see supplementary Table S2.5). This
can lead to more than two orders of magnitude larger labor productivity losses (in per-
centage terms) when, for example, comparing Indonesia to Germany. Moreover, the most
affected regions tend to have a larger share of employment in high and moderate workload
sectors, such as agriculture, industry, and manufacturing, which are more vulnerable to
productivity losses. In contrast, service sectors, which dominate in the developed Global

North, are less affected—additionally contributing to regional disparities.

Before concluding words, we would like to emphasize that this study provides only a
partial view of the overall economic impact of climate change in terms of GDP, serving as
a conservative, lower-bound estimate. The list of currently unrepresented impact chan-
nels is still extensive, and their inclusion, along with extreme events not covered here,
would likely result in a significant increase in the estimated damages, on both global and
local level. This caveat is particularly relevant for countries that appear to benefit from
climate change. Unaccounted factors such as storm surges, sea level rise effects on coastal
infrastructure, and a potential weakening of the AMOC, which could excessively cool
Scandinavia, would disproportionately disadvantage northern Europe. For most others,

our conservative estimate already presents more than enough cause for concern.

3.6 Conclusion and outlook

” All models are wrong, but some are useful” as a phrase is already clichéd in discussing the

topics of models and their limitations in capturing complex realities; however, it remains
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true. The strength of CGEs lies in their high regional and sectoral resolution, crucial for
representing diverse regional economies and their interactions and capturing both direct

and indirect effects of different economic shocks.

This paper examines the economic impacts of climate change using a forward-looking,
highly disaggregated CGE model. We develop a country-level labor productivity loss
damage function and translate it into regional and global GDP losses, alongside two addi-
tional impact channels—agriculture and human health. The results confirm and highlight
the stark regional discrepancies in climate change effects on GDP while reaffirming that

mitigation pays off, both in reducing total losses and narrowing regional inequalities.

Future outlook promises further development in increasing the regional and sectoral
aggregation, and in improving the climate damage representation as well. Additional
interesting venue is taking steps toward becoming a fully coupled Integrated Assessment
Model (IAM). Currently, temperature change is assumed to be an exogenous input, while
in reality, it is driven by emissions generated by the economy. The next step in advancing
GTAP-INT 2 is to endogenize emissions, and consequently temperature change, by linking

a climate module with the economic system.
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Modified Cost-Risk Analysis as a
Bridge Between Target-Based and
Trade-Off-Based Decision-Making

Frameworks

This study introduces Cost-Benefit-Risk Analysis (CBRA), a novel decision-making frame-
work that bridges target-based and trade-off-based approaches by incorporating explicit cli-
mate damages while maintaining a reduced-weight risk function. CBRA refines Cost-Risk
Analysis (CRA) by introducing a partial global damage function derived from a forward-
looking, regionally and sectorally disaggregated Computable General Equilibrium (CGE)
model. This allows us to assess how much of the precautionary risk embedded in climate
targets is captured by explicit economic losses. We implement CBRA in the integrated
assessment model MIND, incorporating a modified version of the FalR climate model that
accounts for climate sensitivity uncertainty. QOur findings reveal that explicit damages
from agriculture, labor productivity, and human health explain 58% of the risk captured by
a 2°C target under a 65% safety level. Furthermore, we demonstrate that when MIND is
updated with FalR, CRA fully replicates Cost-Effectiveness Analysis (CEA), confirming
their conceptual equivalence. These results suggest that as damage estimates improve, a
greater share of precautionary risk is accounted for within cost-benefit models, reducing

the need for rigid precautionary targets and narrowing the gap between CBA and CEA.

82



Chapter 4 83

However, uncertainty in climate sensitivity remains a dominant factor, highlighting the

need for a more precise understanding of the climate system response to guide policy.

4.1 Introduction

As greenhouse gas emissions continue to drive global temperature increases [157] [158],
global society faces a fundamental dilemma: reducing emissions requires significant present-
day efforts, while inaction risks uncertain but potentially severe socio-economic conse-

quences [159]. How should a rational decision-maker respond?

Climate economics has been grappling with this question for over 30 years, with one of
the earliest and most prominent approaches framing the problem in terms of cost-benefit
analysis (CBA). In the context of climate change, CBA aims to balance the costs of
present-day mitigation efforts against the benefits of avoiding future losses from climate
change caused socio-economic impacts. Central to the implementation of CBA are globally
aggregated integrated assessment models (IAMs), which use simplified representations of
the climate and economic systems to link the effects of policy decisions on the climate with
feedback from climate changes on the economy [160]. These simplified representations are
essential for computational feasibility, as they make it possible to implement optimization
procedures that evaluate a wide range of potential policy pathways [12]. However, policy

recommendations derived from research utilizing CBA remains contentious.

Using the DICE IAM, which couples a simplified global carbon cycle and temperature
model with a neoclassical economic growth framework as a single, global economy, W.
Nordhaus demonstrated that the optimal policy involves only modest mitigation efforts
until later in the century, with the global warming considered optimal for society exceeding
3 °C by the end of the century [161][162][27]. Using the same model but with modified
parameters and an improved climate representation, Hénsel et al. argued that optimal
mitigation is likely to align more closely with limiting warming to 2 °C, providing cost-
benefit-based support for the goals of the Paris Agreement [28]. Opposedly, M. Weitzman
argued that the fat-tailed nature of the climate sensitivity probability distribution justifies
a de-facto immediate cessation of emissions, as the potential catastrophic consequences
would far outweigh the associated (and enormous) present-day costs [29]. The stark

differences in results across the literature highlight that, despite its strong theoretical
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foundation, CBA outcomes depend on underlying model assumptions which are often

subject to considerable uncertainties [23][30].

In light of the difficulties and uncertainties in quantifying future socio-economic dam-
ages from climate change—a key trade-off in CBA—some economists have proposed by-
passing this aspect of the framework altogether. Instead, they advocate a target-based
approach known as cost-effectiveness analysis (CEA). Guided by the precautionary prin-
ciple, this framework assumes adherence to a predefined temperature target and does not
directly quantify the resulting climate impacts or damages [37] [35]. The decision-maker’s
role is to identify the least costly pathway for achieving and maintaining this target.
However, Schmidt et al. demonstrated that this framework encounters significant con-
ceptual challenges when a decision-maker considers future learning about the system [42].
Namely, the absence of explicitly represented negative climate impacts in the model can
lead to situations where a decision-maker chooses to disregard new information, hence
undermining adaptive decision-making processes. To address this limitation, cost-risk

analysis (CRA) was introduced.

CRA is a hybrid decision-making tool that integrates precautionary motivated decision-
making with a modified trade-off based framework. As demonstrated by Neubersch et
al., it allows a target-oriented decision-maker to incorporate anticipated future learning
while preserving dynamic consistency [72]. However, similar to its predecessor, CEA, it
operates under the assumption that the economic impacts of climate change are entirely
unknown, with all the risk concentrated in the domain beyond the target threshold. Since
the uncertainty surrounding climate damages is inherently epistemic, it is reasonable to
assume that the scientific community is gradually advancing in its understanding. With
more consolidated impact assessments now emerging, a relevant question arises: can these
insights be incorporated into CRA? If the impact knowledge base becomes sufficiently
comprehensive, this integration could allow for a complete transition from target-based
approaches to a fully impact-informed CBA. At the same time, we can envision a util-
ity maximization framework that accounts for the partiality of impact knowledge while
still incorporating the unknown effects embodied in the target. Such a framework could
serve as a transitional approach, bridging the gap between these two contrasting decision-
making approaches. In this paper, we develop and implement such a modification to

CRA, first theoretically proposed by Held [52].
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In this paper, we operationalize the CRA modification and label it Cost-Benefit-Risk
Analysis (CBRA), a hybrid decision-making framework that bridges CRA and CBA by
incorporating partial climate impact information while preserving a precautionary tar-
get. We put CBRA into action, refining it into a structured framework that integrates
precautionary and cost-benefit perspectives within a unified decision-making model. To
implement this framework, we update an integrated assessment model (IAM) previously
used in CRA assessments by incorporating a modified FalR climate model. This updated
version includes a simplified uncertainty scheme specifically designed for this study to ac-
count for uncertainty in climate sensitivity. While tailored for our analysis, this approach
can also be applied in other climate-economic contexts that explore climate response sen-
sitivity using FalR. We explicitly demonstrate that, when an improved climate module is

employed, CRA fully replicates CEA, as analytically predicted by Held [45].
ployed, Yy rep ) y yp y

Furthermore, we develop a partial damage function using output from a forward-
looking computable general equilibrium (CGE) model and demonstrate how CBRA can
assess the extent to which a damage function accounts for the initially perceived risk of
exceeding a predefined target, as determined by the precautionary community. To identify
the threshold where a damage function fully replaces the precautionary perception of risk,
we calibrate it within a pure CBA framework to align with the predefined target, mirroring
the calibration approach applied to CRA in previous studies. By doing this, we show that
it provides a way to directly compare the two schools of thought, quantifying the extent
to which the climate impacts represented in the damage function were implicitly assumed

by the precautionary community when setting a climate target.

Following the introduction, the paper proceeds as follows. The first part of Section 4.2
defines each decision-making framework in greater detail, provides their formal descrip-
tions, and briefly introduces the model used to test the frameworks. The remainder of
the Section 4.describes modifications to the FalR model to incorporate climate sensitivity
uncertainty and outlines the context and specification of the tailor-made damage function.

Section 4.3 presents the results, while Section 4.4 examines their implications in detail.
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4.2 Methodology

4.2.1 Decision-making frameworks
4.2.1.1 Cost-effectiveness analysis (CEA)

Cost-effectiveness analysis is a target-driven decision-making framework that seeks to
identify the least costly policy recommendation while adhering to predetermined targets.
In the context of climate economics, these targets often include temperature targets, net-
zero emission targets, or renewable energy benchmarks. A key feature of this framework
is that it does not evaluate the benefits of achieving these targets (e.g., avoided damages),
as it does not include the quantification of damages. Instead, the targets themselves en-
capsulate these considerations, having been established through multiple lines of evidence
and consensus. A prominent example that we inspect in this paper is a 2 °C target,
reached by political consensus [163] [126], and rationalized by Jaeger and Jaeger [164].
Being a product of a precautionary principle, this target acts as a safeguard against po-
tentially harmful and deeply unknown events, whose likelihood and impacts remain highly
uncertain [165]. In this paper, we use the probabilistic extension of the conventional CEA
framework by employing chance-constrained programming (CCP), a probabilistic variant
of CEA [166] [36] [40]. While we refer to this approach as CEA for simplicity, CCP offers
a general framework for incorporating uncertainty into decision-making. Held et al. [37]
were the first to apply CCP specifically to address uncertainties in climate response and
resource availability in the context of adhering to temperature targets. Switching from
the fully deterministic CEA to a probabilistic version implies deciding on the probability
level at which the target will be adhered to. While the deterministic version typically re-
lies on the chosen percentile value of uncertain parameters (if a probability distribution is
assigned to them), the probabilistic approach explicitly prescribes the ”safety” P, —the
percentage probability that the temperature increase will remain below a target value.
The following equation represents the general structure of the probabilistic CEA for our

purposes:

maxyy W = /0 U ()], 00e M st Py(Toax (v, [#(8)]) <T,) = P, (4.1)
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Hence, the decision-maker maximizes the inter-generational welfare aggregate W by vary-
ing the control variable x(t), subject to the probabilistic constraint adhering to the
desired safety Py, such that the all-time maximum of temperature Tiax(7,[z(t)]) =
max;T(7y, [z(t)]), determined by the control variable pathway [z(¢)] and the state of the
world (uncertain parameter) -y, does not exceed the target temperature the target tem-
perature T, with probability F,. The utility function U is model-dependent, driven by
consumption determined by the control variable z(t), and exponentially discounted for
future time steps using a discount rate p. The zero term in the parenthesis reflects the
fundamental assumption of CEA, where the damages are set to 0 and the impacts are
captured solely through the temperature target rather through a damage function. In the
context of climate change economics, the emissions pathway F(t) is determined through
policy optimization, where the optimal control variable [z(¢)] pathway defines an emissions

policy that satisfies the target criteria while maximizing welfare.

4.2.1.2 Cost-benefit analysis (CBA)

While CEA focuses on adhering to predetermined targets, cost-benefit analysis operates
on the opposite end of the spectrum, emphasizing trade-offs between the contemporary
mitigation costs and avoided future damages. This framework assumes that decision-
makers possess a complete formulation of the damages associated with climate change and
can therefore conduct the necessary evaluation. However, while it is a predominant school
of thought in economics, its core assumption that decision-makers know the socioeconomic
consequences of climate change is open to scrutiny (see Section 4.2.4). The intertemporal

welfare optimization equation is given by:

masx(y ) W = / / P(U(t, [2(8)], D(T (3, [o(t)])))e Py, (4.2)

Compared to its CEA counterpart, any constraint is omitted, and mitigation is driven
by balancing consumption losses from climate change against those from mitigation ef-
forts. The consumption loss from climate change, and consequently welfare, is indirectly
influenced by impacts captured in the damage function D(T'(, [x(t)])), with probability
distribution of uncertain parameter p(7y). The damage function depends on the temper-
ature anomaly, introducing a negative feedback mechanism that incentivizes mitigation

efforts and helps regulate the temperature.
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4.2.1.3 Cost-risk analysis (CRA)

Cost-risk analysis integrates elements of both CEA and CBA, offering a hybrid decision-
making framework. Its mathematical structure builds on unconstrained utility maximiza-
tion, while maintaining the precautionary element of adhering to the temperature target.
The precautionary principle is embodied by introducing a negative utility term that rep-
resents the perceived risk of crossing the predetermined target. On a fundamental level,
CRA can be interpreted as the trade-off between mitigation costs and the decision-maker’s

aversion to crossing the target, described by the following welfare optimization equation:

maxp, (W = /0 / p(3) (Ut [2()],0) = BR(T(v, [e(O)])) e dydt.  (4.3)

The equation reveals that CRA assumes no knowledge of the socioeconomic impacts of
climate change, as the damage function is zero. In this case, mitigation efforts are guided
by the negative utility driven by the risk function R, which is designed to fully capture
the deeply uncertain risk associated with crossing the temperature target. Hence, the risk
function incorporates the precautionary principle from CEA but frames it as a trade-off
rather than a strict boundary. The 8 parameter quantifies the decision-makers aversion to
crossing the target, reflecting the perceived severity of the associated risk. In this paper,
the risk metric is calibrated by running the model such that the temperature target Ty,
is met with a P, safety level, referencing the preference implicit in the Cancun Accord
(UNFCCC, 2010) to stay below 2°C with a "likely” probability (65%) [167], as suggested
in previous CRA literature [42]. Previous literature has shown that the risk function can
take any convex shape, which guarantees a single optimal solution, while the calibration
procedure ensures that the risk perception remains consistent regardless of its functional
form [48]. We adopt the kink-linear risk function as the most conservative convex option to
intuitively reflect target-oriented preferences R(T') = (T'—T,)O(T —1,), where ©(T —Tj)
is a step function. This function has a value of zero for temperatures below the target

and increases linearly once the target is exceeded.

4.2.1.4 Cost-benefit-risk analysis (CBRA)

Cost-benefit-risk analysis represents a novel hybrid concept in decision-making theory,

conceptualized by Held [52]. It describes a situation where the rational decision-maker
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has acquired partial information of climate damages while still accounting for unknown
effects in the form of the temperature target motivated by the precautionary principle.
Hence, this framework combines elements of CRA and CBA, as mathematically formulated

in the following welfare optimization equation:

ten,
max[z(t)]W::/o d/wp(v) (Ut [(t)], D(T (v, [z()]))) — kBR(T (v, [z(t)]))) e dydt.

(4.4)
Compared to CRA, one can notice that the damage function is reintroduced to affect the
utility function. However, the decision-maker accounts for the possibility of incomplete
knowledge about climate damages by retaining the risk function, which represents the
aversion towards unknown risks of crossing the target. This aversion, embodied by the
risk function R, is scaled by a parameter k, reflecting the extent of unaccounted-for

damages.

In this paper, we treat k in two distinct ways. In one approach, we conduct a sensitivity
analysis by varying k£ from 0 to 1, thereby encompassing the full range of possible knowl-
edge states regarding climate impacts. A value of k=0 implies that the damage function
fully captures the impacts. In the second approach, we recalibrate the model within the
CBRA framework following the same procedure used for CRA. Specifically, we determine
a value of k that ensures the simulated trajectory remains within the predefined safety
margin for the temperature target. Since this framework includes a damage function that
incentivizes mitigation efforts alongside the risk function, the resulting risk-weighting pa-

rameter takes a lower value than 1.

This approach allows a researcher to test what proportion of the perceived risk is
quantified in the damage function. The choice of the damage function used in this paper

is introduced in subsection 4.2.4.

4.2.2 MIND Model

The Model of Investment and Technological Development (MIND) is a globally aggregated
Ramsey-type economic growth model that incorporates a detailed representation of the
renewable energy sector, fossil fuel extraction, and fossil energy production. Initially
introduced by Luderer et al. [168], the model has been enhanced over time by subsequent

studies to address uncertainty and incorporate learning mechanisms [37] [101]. A key
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advancement of MIND in comparison to other IAMs (e.g., DICE [161]) lies in its treatment
of the energy system, where it incorporates an endogenous learning-by-doing mechanism,

improving the representation of technological progress within the energy sector.

In this paper, we provide an improvement to the MIND model by updating the cli-
mate module, which provides a feedback mechanism between energy production choices
and global mean temperature change. We replace the one box climate model, originally
introduced by Petschel-Held et al. (1999) [70], with a modified version of FalRv2.0" [169].
As part of this update, we modified FalR to include a tailored uncertainty scheme for cli-
mate sensitivity that allows the user to do probabilistic analysis and to assess the effects of
learning about uncertain climate sensitivity, as detailed later in this section. This choice of
uncertainty scheme ensures compatibility with previous literature using the MIND model
while significantly reducing computational demands compared to optimization with the

full uncertainty ensemble for each parameter (e.g., [102]).

The production function, representing the global economic output in terms of GDP,
is modeled as a constant-elasticity-of-substitution (CES) function that depends on labor,
capital and energy as input factors. Consumption, and by extension the utility U, is de-
termined at each step by the decision-maker’s allocation of output between consumption
and investment. In MIND, the control variable represents investments in various technolo-
gies, including renewables as a mitigation mechanism. These decisions are governed by
inter-temporal welfare optimization, whose formulation depends on the decision-making
framework, as discussed above. When damages are introduced into MIND, the produc-
tion function is modified by the damage function, resulting in a net reduced production

D(T)

function given by Yie () = (1 — F4557) * Yaross: This reduction propagates through the

system, affecting utility and ultimately diminishing intertemporal welfare.

Apart from the introduction of the new climate module, the configuration of the MIND
model used in this paper remains consistent with the version presented in the work of

Neubersch et al. [72].

'Hereafter referred to as just FalR.
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4.2.3 Probabilistic FalR

FalR belongs to the category of climate models of reduced complexity, also known as
climate emulators. It represents the climate system as a global aggregate, enabling com-
putational efficiency that is essential for performing optimization procedures required in
climate policy evaluations. The first version of FalR was introduced by Millar et al.
[170]. It builds on the four carbon compartments proposed by Joos et al. [171], which
were shown to effectively replicate the carbon dynamics of fully resolved climate systems.
FalR extends this framework by incorporating a feedback parameter that accounts for the
saturation of carbon sinks, modifying the carbon retention time in each compartment. The
total content of these compartments defines the atmospheric carbon concentration?, which

is then translated into radiative forcing, driving temperature increases.

Temperature dynamics in FalR were initially modeled using two temperature com-
partments, following the framework proposed by Geoffroy et al. [172]. FalRv2 [169]
introduced a third temperature compartment and adjusted the feedback mechanism. To
incorporate uncertainty about climate sensitivity, we modify the temperature dynamics
to depend explicitly on the chosen climate sensitivity value. The temperature dynamics

are dictated by following equations:

ds;(t)  q;F(t) — S;(t) B |
a a; Tt =) S;(t), (4.5)

Jj=1

where S;(t) are the temperature compartments, whose sum gives a total temperature
increase T'(t), providing a mode representation of the energy balance model matrix (see
Leach et al. for details). The temperature change is driven by the radiative forcing
parameter F', which depends on the atmospheric carbon content and is redistributed across
the temperature compartments according to their response timescales d; and response
coefficients ¢;. In this representation, the equilibrium climate sensitivity and transient

climate response are given by:

3 3 d: _ t2xcoy
ECS:FQXCO2'Z(]J', TCR:FQXCOQ'Z q; 1_t J 1—e 4 s

j=1 j=1
(4.6)

2The compartments are not physical entities but rather a fitting mechanism designed to emulate Earth
System Models.
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where Fyxco, represents the radiative forcing at a doubling of atmospheric CO2 concen-
tration, and ta2xco, denotes the timescale for COy doubling in a stylized scenario with 1%
annual increase from preindustrial levels, which corresponds to approximately 70 years.
In their paper, Leach et al. derived the default parametrization by first fixing d;’s and
q1 to default values based on a central value within the constrained ensemble, and then
quantifying the parameters ¢o and g3 by setting the ECS and TCR to central values within
the constrained ensemble (3.24 °C and 1.79 °C, respectively) and solving the equations
above to obtain ¢ and g3. We follow the same approach to derive the probabilistic FalR

used in this paper, treating ECS as the uncertain parameter.

To ensure the model depends solely on ECS, we express TCR as a function of ECS
by employing an equation from the literature that defines the relationship between TCR
and ECS. Nijsse et al. (2020) demonstrated an approximate relationship between TCR
and ECS based on CMIP6 and CMIP5 models given as ECS = TCR/(1 — ¢’ - TCR), with
e/ = 0.24 [173]. Rearranging this equation to express TCR as a function of ECS, and
using €’ = 0.25, derived from the default FaIR TCR and ECS values, we combine it with
the equations above that ECS, TCR, ¢;’s and d;’s. While fixing d;’s and ¢; to the same
default values as suggested by Leach et al., we derive the relationships between go(ECS)

and ¢3(ECS) to construct the probabilistic FalR that varies with climate sensitivity.

The climate sensitivity probability distribution is modeled as a log-normal distribu-
tion, following the approach suggested by previous studies [48] [174]. To parameter-
ize this distribution, we use the constrained ECS estimates from Table 7 in Leach et
al., which provide median values along with likely and 5%-95% ranges. These esti-
mates are derived from methodologies that integrate observational data with outputs
from CMIP6. First, we acquire the p and o for our log-normal distribution by solv-
ing the cumulative distribution equation for the 50% and 95% percentile values provided
in Table 7 in [169]. This choice ensures the median of the distribution aligns with the
central value reported by Leach et al, while also bringing it closer to the IPCC ARG
very likely range of 2 to 5 °C compared to the original Leach et al. version [175].
The distribution is then numerically sampled by dividing it into equally probable in-
tervals using the inverse cumulative distribution function and then representing each
interval by its expected value, calculated analytically ([48]). This calculation is given

by: 6, = %V (Erf [% + InverseErfc (2(%1)” — Erf [% + Inversekrfc (QW”)} ), where 60,

represents the n-th sampled climate sensitivity, N is the total number of samples, and n
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is the n-th sample. The parameter @ is the mean climate sensitivity, and o corresponds

to the scale parameter of the log-normal distribution.

The parameterized distribution used in this study, along with the N=20 sampled nu-
merical values representing different states of the world (i.e., various climate sensitivity
outcomes), is visualized in the left panel of Figure 4.1. The right panel shows the model
results for the idealized scenario of an abrupt fourfold increase in atmospheric COs con-
centration, with the 20 states of the world corresponding to those shown in the left panel,
represented by consistent coloring. This simulation can be directly compared to the same
experiment and the full FalR uncertainty range calibrated to fit the CMIP6 range, as
shown in Figure 8b of Leach et al. [169]. Notably, for the central (default) value, the
two model runs align almost perfectly. However, our uncertainty scheme exhibits a slight
bias toward a lower response, systematically underestimating temperature outcomes by
approximately 2.5 percentiles, as indicated by the abrupt-4xCOq experiment. This bias
arises from modeling climate sensitivity as a log-normal distribution, which, while useful,
does not fully capture the complexity of the uncertainty space. In this study, the distribu-
tion is parameterized to align with constrained estimates of central and upper percentiles,
which produces biases at the lower end of distribution. Another source of deviation stems
from the approximation used to relate TCR to ECS, which, although effective for central
cases, may introduce inaccuracies at the tails of the distribution. Overall, simplifying the
representation of systematic uncertainty into a single variable, climate sensitivity, intro-
duces further bias. Nevertheless, the uncertainty space is sufficiently well-represented, and

the use of a single-variable representation remains a practical and effective simplification.

4.2.4 Damage function specification

To operationalize the CBRA framework, it is essential to select an appropriate damage
function. In this section, we present our choice and derivation of a partial damage function,
which reflects decision-makers’ incomplete information about the socioeconomic effects of
climate change. This partial knowledge, in turn, motivates the adoption of CBRA as a

decision-making framework.

Quantifying the total damage function had been open to the debate ever since in-
tegrated assessments models started looking into optimal mitigation policies, with the

ranges of total production losses from climate change varying drastically, depending on
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FIGURE 4.1: Left: The parameterized log-normal distribution and the N=20 sampled
values representing different climate sensitivity outcomes. The first (1.39 °C) and the
last (7.55 °C) values correspond approximately to the 2.5th and 97.5th percentiles,
respectively, of the log-normal distribution (¢ = 1.27412 and o = 0.371725). Right:
Model run for an abrupt fourfold increase in COs, with colors corresponding to the
states of the world (i.e., climate sensitivity outcomes) shown in the left panel.

the methodical approach, best depicted by the IPCC ARG6’s collection of different damage
function calculations, shown in AR6 WGII Cross-Working Group Box [33]. Moreover,
Horward and Sterner showed that many of the damage functions found in the literature
suffer from different types of biases, i.e, replication, omitted variable and publication
biases, which presumably led to overconfidence in our assessments [79]. In this paper,
we quantify the damage function using the output of a computable general equilibrium
(CGE) model, following one of the suggestions of Piontek et al. [176]. In this paper, we
argue that CGE model output is the superior choice for calculating damage functions in

TAMs compared to upscaling local estimates, for several reasons.

Firstly, CGE models are promising due to their ability to simulate the propagation of
climate damages across sectors and represent a heterogeneous economy that dynamically
responds to structural changes induced by climate impacts. The first argument builds on
the fact that CGE models capture the entire economic impact chain, translating climate
change effects on specific sectors and regions into their final impact on globally aggregated
production. This approach incorporates internal economic feedback mechanisms, provid-
ing a comprehensive representation of the full channel of damage propagation, including
both direct and indirect climate change related GDP effects. We find this an important
factor, as indirect impacts can effect the economy across different sectors, locations and

time, all three covered by a CGE. Crucially to notice is that this global production impact
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aligns with the level of aggregation at which IAMs apply their damage functions. In con-
trast, upscaling local estimates of direct impacts bypasses these feedbacks by aggregating
localized impacts without accounting for their propagation through the broader economy,
inevitably missing critical economic readjustments resulting from these changes. Since
TAMs apply damage functions directly to total global production, it is essential that these
functions capture the systemic responses reflected in CGE models. This, we argue, makes

CGE-calculated damage functions a more consistent and accurate foundation for use in

TAMs.

Moreover, CGE models provide a transparent framework for identifying explicitly in-
cluded impact channels, making exclusions clear and highlighting the partial nature of
the damage assessment. This transparency enables more informed result interpretations.
Moreover, CGE models can explicitly model damages in certain sectors while leaving
others intact, reinforcing the partial nature of total damages and making it qualitatively

accessible.

There have been few attempts in the literature to derive global damage functions from
CGE models [103, 104], with existing studies primarily relying on either recursive or static
temporal dynamics. Static setup involves shocking the model (e.g., with a temperature
change) in a single year and using the resulting equilibrium for that year to represent
the damage, avoiding any temporal evolution. Recursive models, on the other hand,
account for the propagation of temperature shock throughout a time period but assume
fully myopic agents who optimize consumption only between two consecutive time steps.
Both approaches are misaligned with the temporal dynamics of globally aggregated policy-
optimizing TAMs, which determine optimal policies by simultaneously optimizing over the
entire time period. In this paper, we introduce the first intertemporal, forward-looking
CGE-derived damage function. To the best of our knowledge, this makes our approach
the only dynamically consistent CGE-derived damage function currently available for use

in TAMs.

To derive the damage function, we use the results from Avakumovié et al.[177] (in
prep.). The study divides the global economy into 60 regions and 30 commodity sectors
and, using three different sources of climate impacts, calculates total regional GDP losses.
These regional losses are then aggregated into global GDP loss, providing the necessary

data to construct a ready-to-use damage function for integration into MIND. The CGE
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model employed is GTAP-INT 2.0, a fully intertemporal model in which both firms and
households act as forward-looking agents. This study pioneers the application of a fully
intertemporal CGE to assess the economic effects of climate change, achieving temporal
dynamic consistency with globally aggregated TAMs such as MIND and DICE, in contrast

to static or recursive approaches.

Avakumovic¢ et al. apply shocks through three distinct impact channels: the effects of
climate change on human health via changes in mortality [178], impacts on the agricultural
sector through yield changes [4], and heat-related labor productivity losses [177]. Figure
4.2 illustrates the globally aggregated GDP loss for 5 emission pathways (solid lines), with
regional contributions weighted by GDP before aggregation.

)

= Damage function

Scenario
— SSP126
— SSP245
— SSP370
SSP460
— SSP585

Global GDP Loss (%)
&

0 1 2 3
Temperature Increase (°C)

FIGURE 4.2: Globally aggregated GDP loss across five emission pathways (solid lines),
with regional contributions weighted by GDP. The black dashed line represents the
derived quadratic damage function, estimated based on model-simulated GDP losses
under the SSP460 pathway. This function accounts for the combined impacts of climate
change on human health, agriculture, and labor productivity.

Unlike previous CGE-derived damage functions, which estimate damages at a specific
year under varying temperature levels, we derive the damage function (black dashed
line) based on globally aggregated GDP losses simulated by the model for each year
under the SSP460 pathway. This pathway was selected as it represents a mid-range
emission-intensive scenario within our set. We assume a quadratic functional form to
describe the evolution of total GDP losses as a function of temperature, expressed as:
D(T) =a-T?+b-T, yielding coefficients a = 0.772 (1/°C)? and b = 0.301 (1/°C). It is
important to note that the results from Avakumovié et al. suggest that the contemporary

global damage function depends on the emission scenario. This challenges the conventional
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approach of presenting global damage functions as solely temperature-dependent (see, for
example, [79]). However, addressing this issue is beyond the scope of this study and is

left for future research.

For comparison purposes, we employ an additional damage function used in study by
Hénsel et al. [28], which represents the best estimate from a meta-analysis conducted by

Howard and Sterner [79], given in a form of D(T) = 1.0038 - T2,

4.3 Results
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F1GURE 4.3: Comparative analysis of temperature pathways, emission trajectories, and
cumulative emissions across the decision-making frameworks: CEA, CRA,

CBRAy — g.42, CBAyg, and CBA.,. Each emission pathway corresponds to 20 possible
temperature pathways per framework, reflecting the sampling of 20 distinct climate
sensitivity outcomes. CRA and CBRA are calibrated to assess the weight of the risk
function, while CBA., is calibrated to evaluate the damage function itself, disregarding
risk considerations. The calibration for CRA, CBRA, and CBA.,; is performed to
adhere to the 2 °C target under a 65% safety level, requiring 65% of the temperature
pathways to remain below 2 °C. Notably, CBAys cannot be calibrated in this manner
because the Howard and Sterner damage function inherently results in more stringent
emission reductions, making it incompatible with the specified safety threshold.

Figure 4.3 presents multiple optimization runs across all four decision-making frame-
works. The first panel illustrates the temperature pathways for each climate sensitiv-
ity within each framework, the middle panel depicts the corresponding emission path-

ways, and the right panel shows the resulting cumulative emissions. The CEA, CRA,
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FIGURE 4.4: Sensitivity analysis of the CBRA framework with respect to the
risk-weighting parameter k, incorporating CGE-generated, partial damage function.
The left and center panels display emission pathways and cumulative emissions,
respectively, for varying k values. The right panel illustrates corresponding temperature
pathways for three climate sensitivity levels: the lowest (2.5th percentile), median (50th
percentile), and the highest (97.5th percentile). The temperature pathways cluster into
three distinct groups, indicating that uncertainty in climate sensitivity dominates over
variations in k when it comes to overall temperature outcomes.

CBRA — ¢.42 and CBA_, are set to adhere to the 2 °C with 65% safety, each operating

under distinct equations as described in the methodology section.

Remarkably, an important first observation is that CEA and CRA (blue and red) yield
virtually identical policy recommendations in terms of both emissions and cumulative
emissions pathways, with a maximum deviation of 1.3% at peak emissions (around the
mid-century) and negligible differences before and after. In terms of temperature and
cumulative emissions, the peak deviations are 0.40 % and 0.36% respectively, further

confirming their alignment.

In CBRAk—g.42 run (yellow), a partial CGE-generated damage function is incorpo-
rated to reduce the production function, and the calibration follows the same approach
as in CRA. This process reduces the multiplier factor in front of the risk function to
k = 0.42, compared to the pure CRA value. The results indicate that the partial dam-
age function accounts for 1 — k = 0.58 (or 58%) of the perceived risk in CRA, which
otherwise assumes no damages to production. While cumulative emissions and temper-
ature pathways align with the CEA and CRA counterparts by the end of the century,
temporary deviations of 1.86% in cumulative emissions and 1.96% in temperature occur

at intermediate stages before full convergence. The emission pathway in CBRA exhibits
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more pronounced deviations within the century, likely due to differences in the structural
formulation of temperature feedback within the model, as similarly observed in the CBA

runs.

Moving forward, CBAyg (green) represents the case of using a fully-fledged CBA that
incorporates the damage function provided by Horward and Sterner (HS) [79]. The re-
sulting cumulative emissions—and consequently, the temperature change—are lower than
those in the CEA, as well as in the calibrated CRA and CBRA counterparts. The 65%
percentile of the final temperature distribution is approximately 0.2 °C lower than the
the 2°C required by the calibration processes in other cases. This corresponds to a 10%
decrease in generated temperatures across all states of the world, which can also be traced
to a 10% decrease in cumulative emissions, reflecting the direct link between cumulative
emissions and temperature outcomes. Moreover, calibrating CBRA with the HS damage
function is not feasible for any value of positive k, as the resulting pathways consistently
fall below the safety threshold. This suggests that the damages represented by the HS
function are more severe than the perceived risk embedded in the CRA-based risk func-

tion.

Finally, CBA,, represents the case, within the fully-fledged CBA framework, we as-
sumed an unknown quadratic damage function D(T) = a - T?, and then calibrate a so
that the model run adheres 2°C with 65% safety, resulting in a = 0.896(1/C)?. The
pure CBA run under this newly specified damage function yields the same cumulative
end-of-century emissions and temperature pathways, while the emissions pathway closely
aligns with the CBRA counterpart but exhibits slight deviations due to differences in the
structural representation of temperature feedback mechanisms (i.e., exclusion of the risk
function). Nonetheless, when comparing CEA and the three calibrated runs (CRA, CBRA
and CBA.,1), the overall policy recommendations remain highly consistent, as reflected in
the key climate policy variable of interest: temperature increase. The largest temperature
difference among the four occurs between the CBA., and CEA, reaching a maximum of
less than 0.07 °C around 2075 for the highest climate sensitivity value, before diminishing
quickly thereafter. In contrast, the temperature difference between CEA and CBA}g in

the same year is 0.15°C and continues to grow over time.

Having examined how the choice of framework affects various outcomes, Figure 4.4

shows the sensitivity analysis of CBRA with respect to the risk-weighting parameter
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k. This parameter indicates what proportion of unknown risk remains unaccounted for,
given that the partial damage function captures only a fraction of the total damages
while the remainder is embedded in the risk function. This exercise explores the full
spectrum of possible damage representation, ranging from the assumption of complete
damage knowledge at k = 0 to the scenario where, even with the incorporation of a
partial function, the risks associated with crossing the target remain fully unaccounted
for, as reflected by k=1. Notably, the calibrated CBRA run from Figure 4.4 falls between
the pathways associated with k=0.4 and k=0.5, which serves as a useful point of reference

to compare with CBRA run in Figure 4.3.

Examining the left and center panels of Figure 4.4, we observe that incorporating
the risk of exceeding the target imposes a significantly stronger constraint on emissions
than the partial damage function. This is evident from the differences in final cumulative
emissions (center panel): reducing k£ from 1 to 0.3, which represents a 70% decrease in
the weight of the risk function, results in a change of just over 100 GtC in final cumu-
lative emissions. However, a further reduction of k¥ from 0.3 to 0, a 30% decrease, leads
to a more substantial variation of over 200 GtC. This indicates that the final reduction
to zero has a disproportionately larger impact on emissions compared to the initial de-
crease in weighting the risk of crossing the target. The right panel of Figure 4.4 presents
temperature pathways in the CBRA run across the full range of k values, considering
three climate sensitivity levels: the lowest, median, and highest in our set. The cluster-
ing of runs corresponding to different k£ values into three distinct groups suggests that
uncertainty in climate sensitivity has a more pronounced impact on overall temperature
outcomes than uncertainty in climate damages. Consequently, this indicates that climate

sensitivity uncertainty plays a more dominant role in shaping policy advice.

4.4 Discussion

This study represents the first operationalization and formal naming of cost-benefit-risk
analysis, a hybrid decision-making framework originally proposed by Held [52]. De-
signed to bridge the gap between the target-based, precautionary-principle-driven cost-
effectiveness analysis and the trade-off-based cost-benefit analysis, CBRA builds upon the
cost-risk analysis. By incorporating the negative utility from crossing the temperature

target through a risk function, as well as introducing an (incomplete) damage function
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akin to that in CBA, CBRA captures both the quantifiable economic damages and the

residual uncertainties associated with exceeding predefined climate thresholds.

In that sense, CBRA is a hybrid between CRA and CBA, representing a situation
where the decision-maker acknowledges that some of the fully unknown socioeconomic
feedbacks assumed by the precautionary decision-maker are actually known and can be
quantified, while at the same time recognizing that their knowledge is only partial. This
partial knowledge leaves the unquantifiable impacts embodied in the less-weighted nega-
tive utility stemming from crossing the target. By integrating these components, CBRA
provides a flexible yet structured framework for navigating between purely precautionary
and fully damage-informed decision-making approaches, making it an attractive tool for
addressing the evolving landscape of climate impacts research. Moreover, while this study
applies CBRA within the context of climate economics, the underlying logic of bridging
target-based and trade-off-based decision-making could, in principle, be extended to other
domains where policy decisions must balance precautionary constraints with evolving im-
pact assessments. Since CRA has thus far been used exclusively in the context of climate
targets, we hope that the newly revealed properties of CRA will encourage its application

in broader decision-making contexts.

Another notable feature of CBRA is its potential to act as a mediator between pre-
cautionary and cost-benefit-oriented schools of thought. By employing CBRA, one can
quantitatively assess how much of the implicit climate damage was assumed by proponents
of precautionary climate targets, while also accounting for uncertainties such as climate
sensitivity. Our results demonstrate that the partial damage function, which incorporates
three categories of climate impacts (agriculture, human health, and labor productivity)
propagated through a CGE model, accounts for 58% of the unknown risks associated
with crossing the 2°C target under a 65% safety level. This methodology can be extended
to any damage function or target/safety level combination to evaluate their interrelation.
Besides the reasons of internal consistency between discussed in the methodology, another
feature of forward-looking CGE models that makes it paramount for the damage function
assessment is its ability to be explicit with the user what climate impact channels are
being quantified (in our case three). One could imagine turning on and off a specific sec-
toral damage to gain new insights on how do different permutations of included damages
affect the total damage function, and with that potentially gain more insight into the

completeness (or lack of) of the estimated damages.
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Furthermore, we showed that CBRA can be used to calibrate a damage function that
fully encapsulates the risks embodied in a climate target, provided that the mathematical
form of the damage function is known. For example, if we adopt a quadratic form for the
damage function, as suggested by Howard and Sterner [79], our calibration process yields
D(T) = 0.896-T2. This calibrated function aligns closely with the risks implicit in the 2°C
target under the given safety level. While the emission pathway shows some differences,
likely due to the functional form and its incorporation in the welfare equation, by the
end of the century it converges perfectly in terms of cumulative emissions and resulting
temperatures. Importantly, this calibration proposes k = 0, which means that the risk
function is fully eliminated. This indicates that all risks are assumed to be captured by
the calibrated damage function, marking a complete transition from CBRA to pure CBA
framework, where decision-making is driven entirely by trade-offs between mitigation costs

and quantified damages.

Moreover, we showed that it is not possible to calibrate the model to fit the target if the
best-fit damage function from Howard and Sterner is employed (D(T) = 1.0038-T2), since
for every possible non-negative value of k the resulting safety will be above the required
65% as the strength of the damage function will require it to do so. This clearly means
that, in comparison to the impacts assessed by Howard and Sterner, the precautionary
community in fact expected less damages on the economy when assuming the 2 °C target
(with 656% safety). Using CBRA framework, one could theoretically quantify how much
of the risk of crossing the target was omitted by the precautionary decision-maker if the
calibration is done with k allowed to be negative. This is not done in our analysis since it
leads to a counterintuitive framework where the decision-maker gains utility from crossing

the target.

To sum up, CBRA’s flexibility is demonstrated across the spectrum of & values. When
0 < k < 1, it represents cases where assumed risks in the target exceed the quantified
effects in the damage function. When k = 0, it transitions to pure CBA. The range
k < 0, while not explored in our analysis due to its counterintuitive implication of utility
gains from crossing the target, theoretically represents cases where the damage function
overestimates climate impacts compared to the precautionary perspective. Hence, CBRA

serves as a ”translator” between the two opposing schools of thought in climate economics.

A pivotal innovation in bridging decision-making frameworks is the incorporation of a
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temperature target within the utility maximization framework through the introduction of
CRA. This paper demonstrates that updating the climate module enables CRA to fully
replicate CEA, as Held [45] anticipated. The updated module conforms to the carbon
budget approach [179], ensuring that any change in cumulative emissions directly impacts
temperature outcomes, independent of previous emission trajectories. This adjustment
in climate response behavior prevents further emissions once the temperature target is
exceeded, as temperatures stabilize at levels dictated by cumulative emissions rather than
decreasing to allow additional emissions. This confirms that CRA operates as a robust,
standalone target-based approach, seamlessly integrating trade-off considerations within

its framework.

CBRA effectively aligns the trade-off-based and target-based communities in achiev-
ing similar long-term goals for temperature and cumulative emissions by the end of the
century. This alignment underscores that while the frameworks converge on the critical
metrics of temperature and cumulative emissions, set by the temperature-based targets,
they offer varied recommendations on the pathways for achieving these emissions. In
terms of interpreting the damage functions as the quantification of assumed targets, this
is not an issue since the precautionary principle dictates the maximum levels of warming,
not how we reach there. Nevertheless, we hypothesize that these variations in emissions
recommendations may be attributed to differences in how damage functions are inte-
grated within the models and the functional form of the damages themselves, potentially
affecting the structural dynamics between temperature and economic outputs. Future re-
search should explore how diverse formulations of damage functions and their application

methods within models can influence these pathways.

Building on our findings, we have quantitatively demonstrated—while accounting for
the caveats discussed in this paper—that incorporating only three impact channels in
our analysis (agricultural yield losses, changes in human mortality, and heat-related labor
productivity losses) accounts for up to 58% of the risk perceived by the target-based
community under a 2°C climate target. Given the vast number of additional impact
channels that could further amplify GDP losses—too numerous to list in full—this suggests
that the target itself may be overly conservative in capturing the full spectrum of potential
risks. This, in turn, raises the question of whether the global community should have

initially pursued more stringent climate targets, if large losses were to be avoided.
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Finally, Figure 4.4 illustrates that the separation of temperature pathways for differ-
ent risk-weighting parameter k values across three levels of climate sensitivity highlights
how uncertainties in climate sensitivity dominate policy recommendations, surpassing
the influence of perceived risks or the depth of damage understanding. While damage
function research remains essential, its impact may be overshadowed by uncertainty in
climate response to emissions, given that damage functions are convex in temperature.
This reemphasizes on the need to refine our understanding of climate sensitivity, given its
non-linear amplification of damages, and reinforces the central role of climate science in

shaping effective policy.

Conclusion

To conclude, this paper makes several contributions to the field of decision-making in
global mitigation efforts. It presents the first operationalization of CBRA, an extension
of the purely target-driven CRA, enabling the incorporation of well-known socioeconomic
impacts through a damage function on production. This hybrid framework bridges trade-
off-based and target-based approaches while maintaining the dynamic consistency of the
utility maximization framework, thereby avoiding the structural limitations of traditional

target-based methods such as CEA.

We updated the MIND model with the FalR climate module, incorporating a novel,
simplified uncertainty scheme developed in this study. This scheme condenses the entire
uncertainty space of climate parameters into a single variable—climate sensitivity. Such
an approach is particularly advantageous in optimization procedures that require a high
number of iterations to determine an optimal value, as it significantly enhances computa-
tional feasibility by allowing variations in climate sensitivity without the need to sample
an entire ensemble of model-related parameters. By implementing a new climate module,
we explicitly show that the CRA almost perfectly replicates the policy recommendations

of the CEA counterpart.

Furthermore, we introduced, to our knowledge, the first-ever damage function derived
from a forward-looking, regionally and sectorally disaggregated global CGE model on
globally aggregated production. In this paper, we argue that calculating global losses di-

rectly from the CGE run is preferable to aggregating local impacts and scaling them up,
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as the latter approach overlooks economic interactions that shape the final production re-
sponse. Additionally, CGE-derived damages provide transparency regarding their origin,
enabling explicit tracking of the contribution of different impact channels and clarifying
the partiality of total damages. However, we emphasize that the temporal structure of
CGE models must be carefully considered to ensure consistency with the forward-looking

nature of policy-optimizing TAMs.

By incorporating a CGE-derived partial damage function that reflects the latest as-
sessments of climate impacts on agriculture, human health, and labor productivity, we
demonstrate that CBRA can quantify how much of the unknown risks embedded in cli-
mate targets under the precautionary principle are captured by explicitly quantified dam-
age functions. In doing so, CBRA serves as a bridge between fully target-based and fully
trade-off-based approaches, effectively acting as a translator between these two opposing

schools of thought.
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Discussion & Outlook

5.1 Discussion

5.1.1 Paper 1

The “carbon budget approach” is one of the central concepts in this dissertation. This
approach is premised on a “nearly linear” relationship in the Earth’s climate system,
whereby global mean temperature increases proportionally with cumulative emissions of
COg, independent of the preceding emissions scenario [64]. Due to its simplicity in relating
the primary driver of climate change to the corresponding climate response, the carbon
budget approach has gained prominence in policy discourse, providing a clear account on
exactly how much of the total carbon is allowed to emit for the society to adhere to the
predetermined temperature target [105]. In the context of the decision-making theory
that this thesis also contributes to, it is a crucial element that unifies CRA- and CEA-
generated policy advice, first theorized by Held [73] and numerically shown in the third
paper of this thesis.

The proportionality factor underpinning the carbon budget approach is formally called
transient climate response to cumulative emissions of carbon dioxide (TCRE). If the
carbon budget approach is to hold, TCRE must be preserved various possible preceding
emissions scenarios. We refer to this as scenario-independency. In addition, the possibility
that TCRE varies with preceding cumulative emissions implies that the carbon budget

follows a non-linear relationship—a condition we refer to as state-dependency. Thus,

106



Chapter 5 107

for the carbon budget approach to remain valid, it must satisfy scenario-independency.
However, it need not assume state-independency, as the relationship between cumulative
emissions and temperature can still be captured through a non-linear carbon budget

equation, should TCRE prove to be state-dependent.

Previous literature has addressed both scenario-dependence and non-linearity in the
carbon budget equation (i.e., state-dependent TCRE) to a limited extent. Several scholars
have tested the latter using a restricted set of emission scenarios [59, 60, 62]. However, to
our knowledge, the full portfolio of potential scenario-dependent deviations in the carbon
budget has not been systematically examined prior to this thesis. To address this gap, we
develop an optimization program to determine the minimum and maximum temperature
outcomes for a given cumulative emissions level. This allows us to systematically explore
the extent of scenario-dependence. Using a simplified climate emulator (FalR v2, with
default parameterization as in [1]), scenario-dependent deviations reach approximately
8% of the total temperature increase when negative emissions are allowed (and are lower
otherwise), but remain short-lived. Moreover, these deviations diminish rapidly over time,
reaffirming the validity of the carbon budget approach when using FalR. In contrast, our
calculations show that the one-box model—a climate module implemented in a variety
of TAMs [17, 18, 72] —can produce substantially larger and more persistent deviations
than its FalR counterpart. Our findings show the critical importance of climate model
selection in climate economic analyses. This should raise concerns among IAM modellers,

for so long as the carbon budget approach remains policy relevant.

In this paper, we unify the treatment of scenario- and state-dependency through the
lens of the pulse response function—i.e., the temperature response to a single emission
pulse. We demonstrate that this framework serves a dual purpose: it enables the assess-
ment of scenario-dependent deviations without requiring an optimization program, and it
provides a basis for deriving the (non)linear carbon budget equation. In the first paper, we
formalize this approach as the “pulse response representation”, defined as the analysis of
a temperature response to an emission pulse generated under varying climatic conditions.
The novelty of this framework lies in its diagnostic power: the shape of the pulse response
indicates the degree to which a model is susceptible to scenario-dependence, while changes
in the pulse response under different climatic conditions reflect the presence and nature

of state-dependence—and thus the non-linearity of the carbon budget equation.
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To test the hypothesis that the shape of the pulse response reveals scenario-dependent
deviations, we reinterpret the pulse response using the Green’s function formalism and
apply it within the optimization program. The results are consistent with those from
full simulations using FalR, thereby numerically confirming the hypothesis. Our findings
show that FalR’s pulse response peaks approximately 17 years after an emission pulse,
followed by a modest decline and gradual relaxation—explaining its small, diminishing
scenario-dependent deviations. By contrast, the one-box model lacks a relaxation phase,

which accounts for its failure to reproduce the carbon budget property.

Aside from scenario-dependency, pulse response representation also contributes to un-
derstanding the state-dependency of TCRE, which gives rise to non-linearities in the
carbon budget equation. Previous work on non-linear carbon budget equations is limited,
with the only example we are aware of presented by Nicholls et al. [110]. However, their
approach assumes a specific functional form for the non-linear relationship. Our hypoth-
esis is that the non-linearity of the carbon budget equation arises from the temperature-
dependence of TCRE, which can be diagnosed through changes in the pulse response. To
explore this, we propose approximating the pulse response with a step function that mim-
ics TCRE. This enables the derivation of a non-linear carbon budget equation without

assuming its form in advance.

This approach is novel in that it grounds the derivation in the thermodynamic structure
of the system by applying a Taylor expansion with respect to temperature, rather than
fitting an arbitrary curve. Under the default FalR parameterization, the pulse response
declines in magnitude, implying a corresponding decline in TCRE. This leads to the
derivation of a concave carbon budget equation. The resulting equation closely replicates
the full FalR model, with deviations of only 2% across all four RCP emissions scenarios
tested. In contrast, a linear carbon budget equation assuming constant TCRE yields
relative deviations of up to 15% from FalR-generated temperature projections. These
results support our claim that state-dependency in TCRE—and the resulting non-linearity
in the carbon budget—can be meaningfully diagnosed and incorporated through this

pulse-based method.

Additionally, we derived pulse response representations for eight different calibrations
of the FaIR model, each tuned to a distinct Earth System Model (ESM) [1]. The results

show that while all calibration variants exhibit scenario-independency and hence adhere to
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the carbon budget approach, they differ in the degree of non-linearity, ranging from fully
linear behavior to slightly convex responses. Moreover, using a simplified climate model,
MacDougall suggested that the models with low linearity have a higher path dependence
and vice versa [111]. Our results suggest that these two are independent, but more models
and calibrations need to be tested. In the outlook part of the conclusion section, future

research perspectives following this article are suggested.

In short, this paper quantified potential carbon budget deviations resulting from the
standard parametrization of the FalR model; provided robust confirmation of the scenario-
independency of the carbon budget approach; and derived a non-linear carbon budget
equation. As such, this paper offers various tools for the climate research and policymak-
ing community to assess their climate model’s adherence to the carbon budget approach.
These tools include the optimization framework (which assists in identifying extreme cases
of scenario-dependency) and the pulse response representation (which illuminates the ex-
tent of scenario- and state-dependency). In addition, this thesis confirms FalR’s adherence
to carbon budget approach, particularly in comparison to other climate emulators com-
monly used in Integrated Assessment Models (IAMs). Thus, taken together, this thesis
strengthens the case for the use of FalR in climate-economic assessments, as previously
suggested by Kikstra et al. and Dietz et al. [68, 180]. We implement FalR in the MIND
model [72] in the third paper of this thesis.

5.2 Paper 2

The second paper estimates future climate change-related economic damage, expressed
primarily as losses in GDP at the regional—and, in many cases, national—level. These
estimates are derived using the latest climate impact assessments within a Computable
General Equilibrium (CGE) model. Section 1.2.2 provides a detailed rationale for em-
ploying CGEs in this context. We argued that CGEs offer advantages over alternative
bottom-up methods that sum sector-specific impacts in isolation (i.e., direct effects on the
economy). In contrast, CGEs aim to maintain structural consistency with the real-world
economy by accounting for interactions between impacted sectors and regions following as
the economic response to the initial, sector and region specific shocks. These interactions
capture indirect effects, such as shifts and disruptions in interregional trade patterns,

labor and capital reallocations in response to shocks. By bringing together both direct
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and indirect impacts, CGEs deliver a more comprehensive picture of climate impacts and

their propagation as economic impacts through the world economy.

Another central idea in this thesis is the development of a decision-making framework
that explicitly acknowledges the inherent incompleteness of global climate damage esti-
mates. As a corollary, it is essential to be transparent about which impacts are—and are
not—included in any damage estimate. CGE-based damage functions render it straight-
forward to identify the specific impact channels assumed by the analyst, and thereby
reveal the partial scope of the assessment. This clarity is critical when integrating these
estimates into hybrid approaches such as CBRA, which depend on a clear distinction
between quantified damages and remaining, unquantified risks. In practice, sectoral and
regional granularity in impact assessments deliver more policy relevant information, es-
pecially if the aim is targeted, equity-based climate adaptation and compensation for the
future damages. By capturing heterogeneous impacts, higher granularity allows models
to reflect regional differences in exposure and vulnerability, while also considering sector-
specific sensitivities (e.g., the agricultural sector is more sensitive to heat stress than
the IT sector). Such heterogeneous factors are expected to exacerbate existing socioeco-
nomic inequalities and amplify the uneven distribution of future climate-driven economic
losses, as shown in the second paper of this thesis. Estimating economic damages using a
CGE model is done in two steps. First, sector-specific climate impacts are derived from
bottom-up quantifications that connect observed climate stressors with the subsequent
performance of specific economic sectors. Each of these impacts is then translated into a
temperature-dependent, sector-specific damage function. In the second step, these dam-
age functions are integrated into a CGE framework, forcing the stylized economic system
to dynamically adjust to model-imposed temperature changes and hence producing resul-
tant changes in GDP. This article contributes to the existing literature on the economic

modeling of climate impacts by refining impact calculations and testing them in a CGE.

5.2.1 Impact quantification: new heat-related labor productivity loss

assessment

Roson and Sartori present a suite of climate-damage functions linking temperature changes
to distinct, country-specific socio-economic impacts [80]. However, closer inspection re-

veals methodological limitations that warrant refinement. In this article, we focus on
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heat-related labor productivity losses—a damage function ultimately affecting almost all
economic sectors by reducing labor output, the key element in production. We identified
the following list of inconsistencies in their methodology: reliance on monthly data (too
low temporal resolution), approximation of humidity variable (instead of using the avail-
able data), not relying on climate projections but assuming a linear temperature-damage
relationship. As a response, this thesis developed a refined, country-level labor produc-

tivity loss damage function.

Our refined approach is as follows. We use daily temperature and humidity data from
an ESM with 50 ensemble variations to account for climate variability. We match these
climate data with gridded population data to derive country-level, population-weighted
projections of wet-bulb globe temperature (WBGT). WGBT is a key variable for assessing
heat exposure effects on the labor force. Drawing on empirical relationships provided by
the literature, we then translate WBGT into three categories of work ability, correspond-
ing to different work requirements (Bréde et al. 2018). The loss of labor productivity
is then defined as a relative change in work ability per unit time, compared to some
baseline period. This metric thereby indicates regional labor adaptation to changing cli-
matic conditions, from historical baselines. By analyzing multiple emissions scenarios
and all ensemble outcomes, we confirm the temperature—damage relationship for labor
productivity across 151 countries and three categories of workloads. Our results indicate
a robust relationship between temperature increases and labor productivity losses that
does not depend on any specific emission scenario. This suggests labor productivity losses
are a rare example of impact-to-damage functions that can be modeled as a function of

temperature alone (unlike, for example, agricultural sector losses [4]).

Our derived loss functions reconfirm (and exacerbate) regional discrepancies in labor
productivity losses. In general, our results suggest tropical regions are most severely af-
fected, while regions above the subtropical belt suffer comparably minor/negligible losses.
For example, under a 3°C warming scenario, Indonesia is projected to experience up to 100
times greater losses than Germany—albeit losses in Germany remain extremely low. This
suggests that labor productivity losses are driven by higher humidity levels and are there-
fore highly sensitive to temperature increases. Moreover, due to the quadratic nature of
the relationship, higher temperatures lead to substantially larger labor productivity losses

under our refined approach, compared to previous estimates [80].
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5.2.2 GDP loss calculation: CGE estimates

We then translate our country-level climate impact quantifications into region-specific
GDP projections. To do this, we employ GTAP-INT 2 [99], an intertemporal, fully
forward-looking extension of the standard Global Trade Analysis Project model [3]. This
extension was enabled by a series of methodological advances in solution methods [96, 97].
GTAP-INT 2 stands out for incorporating a higher degree of sectoral and regional detail
compared to typical CGE-based climate studies [91], while at the same time adopting

forward-looking dynamics.

We set up GTAP-INT 2 by representing the global economy as disaggregated into 60
regions and 30 sectors or commodity groups. This disaggregation is detailed in the supple-
mentary materials. We quantify GDP effects as changes relative to the baseline economy,
given by the GTAP 11 database [156] and keeping the GDP and population constant at
current levels. Economic changes thus emerge solely from temperature-dependent dam-
age functions that shock sectoral performance, represented here by five different future
temperature scenarios (RCP2.6, RCP4.5, RCP6.0, RCP7.0, and RCP8.5). Although most
of these 60 regions match individual countries, some constitute multi-country aggregates
(particularly in Africa, Central Asia, and South America). For these aggregates, we
calculated the damage function as the average of the associated country-level damage

estimates.

The labor productivity damage function, as expected, directly affects labor productiv-
ity across all production sectors. We categorized the workload required for different sec-
tors following International Labor Organization guidelines: agriculture and construction-
related sectors fall under high workload, manufacturing and industry under medium, and
services under low workload. In addition to labor productivity losses, we include two
further impact channels: agricultural damages via changes in crop yields, and human
health damages via changes in mortality rates (affecting both labor supply and popula-
tion), based on recent impact studies [4, 84]. While labor productivity losses consistently
impose negative effects on the economy, changes in yields and mortality rates may be
either positive or negative, depending on the region. If these impacts are realized, we

would expect them to contribute to a further widening of existing global inequalities.

Our results show overall negative economic impacts, but with notable regional differ-

ences and disparities. In terms of long-term effects, China, India, and the United States
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together account for roughly half of global GDP losses in absolute terms. However, several
tropical and subtropical regions (e.g., Indonesia) face much larger relative losses, exceed-
ing 40-50% of their baseline GDP under more severe scenarios (e.g., RCP7.0). Meanwhile,
certain high-latitude and generally wealthier countries (e.g., parts of Northern Europe)
experience net gains or minimal losses. Notably, when simulating climate change im-
pacts through labor productivity damages alone, we observe an effect not captured by
direct damages: labor productivity loss is always a loss, yet some Northern European
countries exhibit slight GDP gains. Since the labor productivity function produces only
losses, these gains must arise from trade interactions, specifically shifts in production and
market share away from more severely affected regions. This type of adjustment would
not occur without the propagation mechanisms embedded in the CGE framework. The
regional disparities are further exacerbated by the sectoral composition of each economy;
the most affected countries are often more dependent on primary sectors, while less af-
fected countries tend to have service-based economies. Moreover, we show that the gap
in regional effects increases as the global temperature increases. Conversely, our results
emphasize that stronger mitigation policies substantially diminish these geographic im-
balances: both total global damages and relative regional losses are markedly reduced

under lower-emissions scenarios.

When aggregating country and regional damage data into global GDP losses, the
information on disparities (unsurprisingly) disappears. As an example, we demonstrate
that a roughly 2°C temperature increase results in a global GDP decrease of 5% . Under
this global scenario, Indonesia could observe a relative GDP decrease of over 13%, whereas
Sweden could gain a relative GDP increase of 2%. Moreover, we show that the population-
weighted global loss aggregate is double the GDP-weighted counterpart. While the latter
is commonly used in global assessments (e.g., in damage functions in TAMs) because it
represents overall economic impacts, the former better captures the relative burden on the
global population. Finally, we show that across all emissions scenarios, labor productivity
losses alone account for about half of the total globally-aggregated GDP decline. However,
this share varies significantly by region, further reinforcing the value of more granular

analyses.

Despite these limitations, a globally aggregated perspective is necessary for evaluations
in globally aggregated IAMs, as they observe the world as a single unit. In the final article,

we adopt such an aggregate approach to address the more foundational question of how
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to apply a unified decision-making framework that reconciles the target-based and trade-

off-based strategies, which are central to global climate policy discourse.

5.3 Paper 3

Cost—Risk Analysis (CRA) was initially proposed by Schmidt et al. [42]. This decision-
making tool is distinguished by the fact it is the only tool enabling commitments to
climate targets in the evaluation of climate policies, while also accounting for the possibil-
ity of resolving climate sensitivity uncertainty through anticipated future learning. CRA
thereby addresses key limitations of the target-based Cost-Effectiveness Analysis (CEA)
framework. Whereas CEA is dynamically inconsistent under deep uncertainty, CRA in-
troduces a guardrail principle into the utility maximization framework, via a calibrated
risk function that captures the decision-maker’s aversion to exceeding the temperature
target. At the same time, the CRA approach also addresses limitations of Cost-Benefit
Analysis (CBA). In particular, CBA is characterized by very strong assumptions about
the completeness of climate impact knowledge and clear trade-off analysis between future
impacts and current mitigation costs. By contrast, CRA interprets preferences as the
result of negotiation and valuation based on multiple lines of evidence [126, 164]. In its
current form, CRA assumes complete ignorance about quantification of climate damages,
aligning philosophically with the precautionary principle underlying the formulation of
climate targets. However, it is reasonable to expect that, over time, the scientific method
will progressively yield a clearer understanding about climate damages (e.g. [181, 182]).
To address this possibility, Held introduced a new framework that would allow CRA to
incorporate new knowledge alongside incomplete knowledge about impacts, by retaining
the (reduced-weight) risk function to represent what is still unknown or unrepresented
about damages [52]. In the third article, we build on this work by considering one poten-
tial application of this new modified framework, which we call Cost-Benefit-Risk Analysis

(CBRA).

The final article of this thesis offers three distinct contributions. First, it introduces a
tailored uncertainty framework within the FalR climate emulator by condensing the full
uncertainty space of climate response parameters into a single uncertain variable: equi-
librium climate sensitivity (ECS). This modified version of FalR is then integrated into

the Model of Investment and Technological Development (MIND), a globally aggregated,
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Ramsey-type integrated assessment model (IAM). Second, and building on the second
article, we introduce what is, to our knowledge, the first global damage function derived
from a forward-looking computable general equilibrium (CGE) model. We explicitly inter-
pret this damage function as partial, reflecting the inclusion of only three impact channels
(labor productivity, agriculture and human health). Third, by incorporating this incom-
plete damage function into MIND, where it directly influences total economic output, we
present what we believe to be the first operationalization of CBRA. This modified CRA
framework bridges the gap between quantified economic losses and the residual uncer-
tainties inherent in climate impact assessments, acknowledging that precaution remains
necessary in light of incomplete knowledge about climate damages. We now turn to exam-
ine each of these three contributions in the third article in more detail, before considering

possibilities for future research.

The first contribution builds on the work presented in the first article. Recall that there
we showed the climate module previously used in the MIND model and in earlier CRA
analyses [46, 47, 72] does not adhere to the carbon budget approach. This is because it
fails to allow the temperature response to reach the relaxation phase following an emission
pulse. To enhance the robustness of our analysis and those of future MIND users, we

replaced this module with FaIR 2 [1].

To make FalR suitable for decision-making under uncertainty, we modified the model
to treat equilibrium climate sensitivity (ECS) as an uncertain parameter. This approach
is consistent with CRA studies that explore learning about ECS as a reduced-form rep-
resentation of broader climate system uncertainty. It also constitutes a novel way of
representing uncertainty within the FalR framework. Specifically, we parameterized ECS
using a log-normal distribution calibrated to constrained estimates from Leach et al. [1],
and expressed transient climate response (TCR) ! as a function of ECS, following Nijsse
et al. [173]. In line with the derivation of FalR’s standard parameterizations [1], we then
made two of the model’s response coefficients dependent on ECS. To ensure comparability
with previous studies (e.g. [72]), we discretized the ECS distribution into 20 intervals,
each representing 5 percent of the probability mass, and used the midpoints of these
intervals as representative ECS values, that is, 20 discrete states of the world. This sim-
plified, single-parameter uncertainty scheme significantly reduces the computational cost

and simplifies the model implementation, compared to sampling the full FalR parameter

ITCR is not the same as TCRE.
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space, as conducted by Smith et al. [102]. At the same time, it closely reproduces the
temperature response of more complex climate models. For example, it differs by only 2.5
percentile points across the full uncertainty distribution in the abrupt 4xCQOs experiment,
as reported by Leach et al.[1]. Finally, we note that these modifications to FalR are not
limited to the MIND model or to CRA applications. They could be readily adopted in
other integrated assessment or optimization models where a simple and computationally

efficient representation of climate uncertainty is required.

The second contribution expands upon the literature on global damage function deriva-
tions for IAMs, drawing on estimates from CGE models. We improve upon previous stud-
ies employing CGEs (e.g. [89, 183]), which typically rely on static or recursive temporal
dynamics and estimate damage functions by varying temperature in a single reference
year. By contrast, in this study we employ a forward-looking CGE model (GTAP 2) to
derive damage functions. We do this by first running the model under different emissions
scenarios to simulate annual GDP impacts over time. We then approximate transient
GDP losses across each year in the simulation and match these annual GDP changes
to the corresponding annual temperature levels. This process yields a time-consistent
relationship between temperature and GDP loss, which we use to construct the dam-
age function. This ensures temporal consistency between the derived damage functions
and the forward-looking intertemporal optimization structure of IAMs used to generate
optimal climate policies. Following established practice in the TAM literature [27, 101],
we incorporate the resulting (partial) damage function into the MIND model by directly
reducing total global production. We consider such CGE-based approaches superior to
bottom-up methods that aggregate only direct impacts without capturing broader eco-
nomic feedback effects, as discussed above. Simply put, if IJAMs simulate production as a
total economy aggregate, then model damage functions should also aggregate both direct
and indirect effects on the economy. However, one of our interesting findings is that the
damage function derived from CGEs is not solely temperature dependent, but varies with
the underlying emissions scenario. This calls into question the traditional TAM represen-
tation of damage as solely a function of temperature. We merely highlight this important
finding here without further discussion, leaving it open for more detailed consideration

and future research.

The third contribution is the first-ever, to our knowledge, construction and opera-

tionalization of CBRA. Incorporating the above-mentioned improvements in MIND, the
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results of this article, as a pioneering application of CBRA, can be separated into two
categories. First, we conduct a sensitivity analysis on the reduced weight of the risk
function in response to the incorporation of (partial) damages. This is motivated by the
unresolved question of what share of the socio-economic consequences, which originally
warranted the precautionary approach, is now explicitly represented in our damage func-
tion. We varied the weight of the risk function between 0 and 1. A weight of 0 assumes
that the damage function fully captures all relevant climate impacts, effectively reverting
the framework to a full-fledged CBA. A weight of 1 preserves the original CRA structure,
where the risk function reflects all uncertainty, and the damage function simply adds an
additional incentive for mitigation. By varying the weight in this way, we show that the
risk of exceeding the temperature guardrail continues to impose a stronger constraint on
emissions than the partial damage function alone.In particular, if the weighting is reduced
from 1 to 0.3 (a 70% reduction in the risk component), the resulting increase in recom-
mended optimal cumulative emissions is less than half the additional increase observed
when reducing the weight further from 0.3 to 0. This asymmetry highlights that even
when the guardrail is considered with reduced weight, it continues to act as a strong
driver of mitigation. Notwithstanding this result, we find that uncertainty in climate sen-
sitivity is a more significant driver of variation in projected temperatures, far outweighing

the influence of uncertainty in the relative contributions of risk and damages.

The second category of the third contribution lays down a framework which reinter-
prets CBRA as a bridge between the target-based approaches embodied in CEA and the
trade-off approaches embodied in CBA. The precautionary principle underpins the use of
temperature targets in climate policy. In this context, CBRA enables us to extract the ex-
plicit quantification of damages that was implicitly assumed by a precautionary-motivated
decision-maker when the target was originally defined. Moreover, if the damage function
is indeed an incomplete picture of total impacts, we showed that, through the proper
calibration procedure, one can quantify what proportion of the unknown risks embodied
in the agreed-upon temperature target has been covered by the (partial) damage function.
In the first step of this bridge, we showed that when calibrated to reflect the preferences
of climate policymakers under a binding temperature target, CRA produces effectively
identical policy recommendations as CEA (the maximum deviation briefly peaks at about

1% of total emissions). This result numerically confirms the theoretical proof provided by
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Held [73]. As such, CRA can now be considered firmly established as a viable decision-
making framework: consistent with the target-based approach, yet grounded in a utility

maximization framework.

Moving to the next step in the bridge, we use the same calibration procedure in CBRA
as described above. This procedure matches the preferences of a precautionary-motivated
decision-maker consistent with the temperature target. Under this calibration, the weight
on the risk function is reduced to 0.42. The resulting emissions pathway deviates only
slightly from the CRA and CEA counterparts, peaking at a 10 percent difference in
emissions, which declines over time, and a temporary temperature difference of just under
2 percent. All other model components remain fixed, allowing for direct comparison
across the three approaches. We interpret this result as showing that our partial damage
function, quantified from impacts on labor productivity, agriculture, and human health,
accounts for approximately 58 percent of the initially perceived risk embodied in the
temperature target. In other words, CBRA enables us to assess how much of the impact
uncertainty that originally motivated the precautionary use of a strict temperature target

is now explicitly captured through quantified damages.

Finally, we went a step further and brought CBRA back to a fully-fledged CBA by
setting the risk function weight to zero. We find that, by using the same calibration
technique and assuming a simple quadratic form for the damage function, one can ap-
proximate the level of damages implicitly assumed by policymakers and scientists when
defining the global temperature goal. When compared to several recent damage func-
tions as benchmarks [28, 133], our calibrated function yields lower damage estimates.
This raises an inevitable rhetorical question: was the international community cautious

enough in adopting the global temperature targets?

5.4 Outlook

In the context of carbon budget research, we have presented a pulse response framework
that can be straightforwardly applied to different climate models. If a model satisfies
the condition of scenario-independency (either through the shape of its pulse response
or by direct test using an optimization program), then the generation of pulse dynamics

under varying climatic conditions can reveal non-linearities in the corresponding model’s
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carbon budget equation. In this regard, the next promising candidate is the Model for
the Assessment of Greenhouse Gas Induced Climate Change (MAGICC) [184]. This is
because MAGICC provides detailed information about carbon cycle processes, yet remains
relatively simple. By examining its pulse response under different parameterizations,
future research could improve our understanding of the carbon cycle processes that drive

non-linear behaviour.

When it comes to labor productivity loss assessments, we noted that the current empir-
ical studies suggest that the work ability (negatively) changes only with higher WBGTs.
Intuitively, one could imagine that work ability also drops with very low temperatures.
If this possibility was also included in future analyses, this could provide even more re-
gional disparities between the colder, higher latitudes and the hotter, humid (sub)tropics.
Moreover, another natural step could be to repeat the labor productivity loss assessment
following the same methodology as in the second article. However, future research could
include a suite of models and their mean climate values, instead of one model and its full
ensemble. In addition, one could use a much higher model resolution to test how (and if)

it affects the outcomes.

In the context of future CBRA applications, numerous avenues remain to be explored,
as this study represents only the first implementation of the approach. In climate mitiga-
tion research, it would be interesting to examine how both the CBRA and CRA frame-
works incorporate compliance with emissions targets (i.e., net-zero targets), instead of
temperature targets. If the carbon budget relationship holds, does this also imply an

equivalence between temperature-based and emissions-based targets?

To date, both CRA and CBRA have been applied exclusively in climate mitigation
studies. However, given their general mathematical structure, these frameworks could be
readily applied in other fields of economics and, more broadly, in decision-making under
uncertainty. In these ways, future research could establish CRA alongside more traditional

decision-making approaches.
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Conclusion

Anthropogenic climate change compels trade-offs between near-term mitigation costs and
uncertain, potentially severe long-term damages from rising temperatures. The estab-
lished decision-making framework for generating a rational mitigation policy is cost-benefit
analysis (CBA), a trade-off based method founded on expected utility maximization. How-
ever, it relies on an unmet assumption of complete knowledge of future climate impacts
and their socio-economic damages. An alternative, Cost-Effectiveness Analysis (CEA) of-
fers a framework for identifying the least-cost mitigation pathway consistent with global
temperature targets, reflecting a precautionary response to deep uncertainty about the fu-
ture socio-economic impacts of climate change. Yet, when the possibility of future learning
events is introduced, CEA becomes dynamically inconsistent. Therefore, Schmidt et al.
(2011) introduced Cost-Risk Analysis (CRA) to overcome this limitation by embedding
the temperature target within the utility maximization framework, using a risk function
that imposes a utility penalty for target exceedance. Nonetheless, given the ongoing pro-
gression of climate impact research, the rationale for strictly target-oriented approaches
is called into question. To accommodate this, Held (2024) proposed a modification of
CRA that enables the consistent integration of matured impact modeling components.
This thesis provides a pioneering operationalization of the modified CRA, hereby named
Cost-Benefit-Risk Analysis (CBRA), interpreted as a bridging framework between strictly
target-based approaches (from CEA to CRA) and fully trade-off-based CBA. In doing so,
it also advances two foundational components of climate economics—climate modeling
and climate impact assessment—both of which serve as essential building blocks in the

construction of CBRA.
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Paper 1 establishes a fundamental condition from climate physics under which CEA
and CRA are expected to yield equivalent policy recommendations, thereby providing
a necessary basis that legitimizes CRA as a dynamically consistent extension of CEA
within target-based frameworks. Held (2019) proposed a theorem that under the condition
that the cumulative emissions directly translate to the temperature increase (i.e., carbon
budget approach), that CEA and CRA provide equivalent results. Using the FalR 2
climate emulator in an optimization program that tests the boundaries of the carbon
budget assumption, Paper 1 confirms the robustness of the carbon budget approach,
contributing a novel method that examines the full portfolio of scenarios that could lead
to potential deviations. Moreover, it shows that if a temperature response to an emission
pulse is interpreted as a Green’s function, it can mimic the deviations posed by the full
model. In addition, the results demonstrate that the equational form of the carbon budget
approach—and the degree of its nonlinearity—can be derived by examining how the pulse
response changes under different climatic conditions, offering a novel method for deriving

the carbon budget equation.

Having established that FalR 2 adheres to the carbon budget approach, Paper 3 in-
troduces a modified version of FalR 2 with a simplified uncertainty scheme that captures
the full parameter uncertainty space to a high precision (2.5 percentile) through a single
uncertain variable: climate sensitivity. This modification not only enables the implemen-
tation of FalR 2 for direct intercomparison between decision-making frameworks, but also
offers the broader community a computationally tractable tool for probabilistic analysis
under climate uncertainty. By replacing the previous climate module in MIND (which
does not adhere to the carbon budget approach, as shown in Paper 1) with FalR, we nu-
merically confirm the result proposed by Held (2019), demonstrating that CEA and CRA
yield equivalent policy recommendations, and hence, establishing CRA as a legitimate,

dynamically consistent extension of CEA.

With the first bridge established between CEA and CRA, Paper 2 lays the groundwork
for CBRA by addressing climate impact quantification, an essential step in extending CRA
toward CBA. The analysis is structured around two stages of climate-economic impacts:
sectoral disruptions and their transmission into GDP based economic damages. Using
Earth System Model climate data, combined with the population data and the empirical
relationships that connect climate indices with ability to work, we calculated the country-

level labor productivity loss related to the increasing heat-stress. This impact, together
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with two others from recent literature—agricultural yield losses and mortality changes—is
implemented in GTAP-INT 2, a regionally and sectorally disaggregated forward-looking
computable general equilibrium (CGE), and applied across several temperature pathways
to assess resulting economic damages. The results show large regional disparities in the

GDP losses, while also allowing aggregation to global GDP loss estimates.

Building on these findings, Paper 3 develops what is, to our knowledge, the first
forward-looking CGE-derived damage function aligned with the intertemporal optimiza-
tion framework that underpins IAMs. Moreover, the segmented structure and trans-
parency of the included impacts make it possible to explicitly identify and quantify a
partial damage function—one that reflects only well-understood impacts and thus serves

as a tractable input for CBRA.

Finally, Paper 3 provides the first operationalization of CBRA. It explores two distinct
approaches for identifying the extent to which the explicitly quantified impacts, captured
in the form of a partial damage function, account for the unknown risks embedded in
the risk function. In the sensitivity approach, by varying the weighting parameter of
the risk function, we show that the risk constraint imposes a stronger limitation on al-
lowable emissions than the partial damage function. Moreover, the results indicate that
uncertainty in the climate response has a greater influence on temperature outcomes than
uncertainty in climate damages. In the second, calibration approach, we calibrate CBRA
to adhere to the climate target with the same probability as CRA and CEA counterparts.
This lowers the weighting parameter and allows us to quantify exactly how much of the
initially perceived unknown risks embodied in a temperature target is covered by the
partial damage function. Put differently, it enables one to determine what fraction of the
guardrail-type uncertainty or “unknown risk” has been replaced by explicit, data-driven

damage estimates.

To conclude, this thesis, while centered on the development of CBRA, addresses three
pivotal facets of climate economics: how cumulative greenhouse gas emissions drive global
temperature rise, how physical climate responses translate into economic damages, and

how precautionary targets can be systematically integrated with cost-benefit reasoning.



Appendix: GTAP-INT 2

description and model setup

A.1 GTAP-INT 2 overview

A.1.1 Why GTAP INT-2?

Global Trade Analysis Project (GTAP) model is a multiregional, multisectorial, computa-
tional general equilibrium (CGE) model [3]. In short, CGEs are designed to represent the
global economy by simulating value flows (in monetary terms) among domestic and for-
eign agents, including households, private firms, and governments. The economic effects
of climate change are modeled as an output change between a counterfactual baseline
scenario and a scenario where sectors are modified by preassembled damage functions

(shocks) that affect the specific component in response to the temperature increase.

The temporal dynamics in CGE models can be either static or dynamic. In the static
setup [3], the shocks are introduced in a single baseline year, with the resulting effects of
the shock being a new equilibrium within the same timestep. Hence, the main issue with
the static approach is that it cannot analyze how pathways evolve over time. In contrast,
dynamic models capture the temporal evolution of shocks, which can be addressed using
either a recursive or an intertemporal (forward-looking) approach. Recursive dynamic
models, often preferred for their lower computational requirements and greater numerical
tractability, solve the model sequentially for each time step. Each period is treated as
a separate static equilibrium, with information communicated intratemporally between

neighboring time steps through linking variables such as savings and investment [141].
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A systematic review conducted in 2023 [142] highlights that recursive models are by far
the most commonly used temporal dynamics model setups in climate policy analyses,
with static models ranking second. While the recursive setup represents an improvement
over the static counterpart for long-term policy evaluation, it applies deviations from the
baseline as shocks to exogenous variables only at the current time step, with no influence
from future shocks on present agent behavior. This assumes fully myopic agents who
fail to anticipate future climate change—a simplification that, in our view, contradicts
reality. This is especially problematic in the context of climate change impacts research,
as it assumes that actors will have no access to the very knowledge produced to inform
their decisions. Ignoring this undermines the relevance of such analyses in this field,

creating a disconnect between research and actionable policy-making.

In contrast to the recursive approach, the forward-looking intertemporal model solves
for all time steps simultaneously, optimizing decisions across the entire time horizon while
accounting for all future shocks. This approach enables forward-looking agents with per-

fect foresight but comes at a significantly higher computational cost.

The CGE used in this analysis, GTAP-INT 2, is a forward-looking intertemporal model
that builds on the static GTAP through series of technical modifications, introduced
sequentially in [96, 97]. In the remainder of this appendix, GTAP-INT 2 is introduced
in broad terms only, starting from the original GTAP framework and then highlighting
the forward-looking modifications. The full set of equations that constitute the model is

exhaustive and can be found elsewhere (in the original literature).

A.1.2 Structure of GTAP

The GTAP model is a global model of the world economy, where each region and its

economic activity flow between the associated agents is illustrated in Figure A.1.

The main building block of GTAP is a regional household associated with each region
covered by the model setup. The functioning of GTAP can be understood by zooming
in one such regional household, while treating all of the other regions (and their house-
holds) under collectively as the “Rest of the world”. Each of these other regions operates
according to the same structure, with an identical household structure and associated

economic activities. Hence, we can understand the whole GTAP if we understand one
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Regional Household

GLOBAL Savings

Rest of World

FIiGURE A.1: A schematic representation of the GTAP model. The diagram illustrates
the structure of economic flows for a single region, with the rest of the world
represented as an aggregate external region. Taken from Brockmeier (2001) [2].
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regional household, consisting of private household, government and the domestic produc-
ers (hereby called firms), further called “agents”, and the interconnections between them.
Two global agents are missing in the figure, the global transport sector and the world
bank, introduced later in the appendix, as they play a crucial role in linking regions and,

in the case of the world bank, in the intertemporal features of GTAP — INT 2.

The starting point of the model’s value flow can be the regional household’s income
(arbitrary choice just for demonstration purposes). This income comes from selling re-
gional endowments. These are the primary factors of production that firms can buy only
domestically, typically distinguished between perfectly mobile ones (such as labor and
capital), and sluggish ones (such as land). Additional income to the regional household
comes from taxes on trade flows with other regions, including export taxes (XTAX) and

import taxes (MTAX).

The regional income is allocated across three compartments dictated by private (PRIV-
EXP), government (GOVEXP), and saving (SAVE) expenditure (demand). The private
household and government spend the allocated income to consume goods and services,
with their corresponding demands VDPA and VDGA. Both agents pay TAXES, so their
expenditures are net values of the income allocations, while at the same time these taxes

are allocated to the total pot of regional disposable income.

Moving to the firms, they receive payments from private and government households
from product consumption (VDPA, VDGA), as well as from the demand of other firms
for intermediate goods (VDFA) used as the input in the production tree (Section A.1.3).
Investments into firms come indirectly from regional households through the global savings
sector which pools the investments from all regions into one pot, and redistributes it back
to the regional firms (NETINV). Firms sell their products both in the domestic and the
foreign markets. In the figure, imports (VIFA) and exports (VXMD) represent the flow

of intermediate goods between the regional and foreign firms.

Equilibrium in GTAP is maintained through four main sets of conditions. First,
market-clearing equations ensure that for every good and (primary) factor, total demand
matches total supply. Second, zero-profit conditions guarantee that firms’ output prices
cover their costs without leaving excess profits. A third set links the different price con-
cepts, connecting market prices with import, export, and purchasers (agents) prices. Fi-

nally, the regional income—expenditure identity makes sure that disposable income is fully
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allocated across private consumption, government spending, and savings. Each equation
type is accompanied by a slack variable that allows for partial equilibrium settings, and
exploring the problems where we exogenously fix certain variables (different closures) and
hence deviate from the perfect market setting. Taken together with the basic (but exten-
sive) accounting identities, these conditions keep the circular flow of income consistent;
simply put, all income earned in production is exactly matched by expenditure, taxes, and
savings. While these equations taken together ensure consistency, they don’t model the
behavior of the system which dictates the choice of economic activities. The behavioral
content comes from corresponding demand structures introduced in later sections, both

for firms and households separately.

GTAP solves the whole system in percentage-change (linearized) form, with lowercase
variables denoting proportional changes around the benchmark. This linearization allows
large shocks to be applied gradually via decomposition methods (Euler’s and Gragg’s
approaches [185]). Hence, the shocks to the model (in this work, the sectoral temperature

change impacts) are also introduced as percentage changes.

A.1.3 Firm behavior in GTAP

Figure A.2 illustrates the “Technology Tree”, a schematic representation of the production
structure in GTAP. It displays the assumed nested technology under which firms operate
in the model. The production technologies in GTAP are assumed to be separable and
exhibit constant returns to scale. Within each nest, inputs are combined according to
a constant elasticity of substitution (CES) function. While this assumption makes the
model tractable, it can also be seen as restrictive, since it rules out increasing returns
or scale effects that might be relevant in real-world production. Each industry can be
conceptualized in this way, with the tree branching into its constituent inputs as shown

in the figure.

On the top of the tree sits the sectoral output of the firm qo(j,s). The output is
produced combining two aggregates: the bundle of value-added (i.e., primary factor or
endowment) and intermediate inputs. At this highest level, the model does not apply the
usual CES specification but instead uses a Leontief function, which requires these two

bundles to be combined in fixed proportions (not allowing substitution). This means that
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F1GURE A.2: A schematic representation of production structure in GTAP. Taken from
Hertel (1997) [3].

the overall ratio of value-added to intermediates is fixed and cannot adjust in response to

changes in relative prices.

Below the top nest, firms have more flexibility in the input choice. The value-added

bundle is composed of primary factors (endowments): land, labor, and capital. The

substitution is possible according to the CES function. In practice, this means that the

demand for each factor depends only on how its price compares to the others. For example,

if labor productivity falls, the firm can substitute capital for labor to maintain the same
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level of output. Parallel to value-added, the intermediate-input bundle is a CES mix
of domestic and imported tradeable commodities. These are themselves the outputs of
other firms, but in this context they appear as inputs into the production of the final good.
Furthermore, imported goods are distinguished by their country of origin and combined
through the Armington CES specification. In this setup, otherwise identical commodities
are treated as imperfect substitutes depending on their source, so the effective price of

an imported good reflects not only the world market price but also the specific origin of

supply.

The nested structure of the technology tree implies that firms’ choice of production
factor mix is separable across the bundles. In practice, this means that the mix of en-
dowments is determined independently of the prices of intermediate inputs. With the
additional assumption of constant returns to scale, the absolute level of output is also ir-
relevant. As a result, only the relative prices of endowments enter the demand equations
for the components of the value-added bundle. The same logic of separability applies on

the intermediate side, and both for domestic and imported goods separately.

The mathematical representation of the firm behavior is summarized in Tables 2.10.
and 2.11 of Hertel (1997) [3]. For each nest in the production structure, there are two

types of equations.

The first one determines the unit cost of the composite good produced in that nest. It
is built on the net-zero profit condition, which ensures the sum of input and output prices
to be equal. The composite good price in one nest enters a higher one to determine the
demand. At the top (final output) level, total net-zero profit condition introduces a slack
variable. This variable is set to zero by default, but it preserves model consistency if an
output price is fixed exogenously. In such a case, the slack absorbs the gap between the
fixed price and non-fixed unit cost of production, allowing the model to remain solvable.
This option can be used to represent a partially regulated or policy-driven sector, though

the closure which is used in this study retains the standard competitive specification.

The second type of equations specifies the conditional demand for inputs within each
nest, derived from the CES form of the production function. In general, the demand
for an input in the CES composite takes the form: ¢; = +q + o(p — p;), which holds
for any number of inputs in the composite. Here, ¢; and p; are percentage changes in

quantity and price of input ¢, ¢ and p the percentage changes for the composite good (the
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output of the nest). The good i’s demand is dictated by two mechanisms. First, due
to constant returns to scale, when the demand for the composite good rises, demand for
each good i rises equiproportionally (expansion effect). Secondly, if the input’s i price
goes up relative to the composite price, demand for ¢ shrinks, while it increases for others,
dictated by o (substitution effect). The elasticity of substitution o is calibrated from the
real-world data. Note, that in the top-level nest (the demand between the value added

and intermediate), the conditional demand equation drops out, leaving only the expansion

effect.

A.1.4 Household behavior in GTAP
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F1GURE A.3: A schematic representation of the regional household expenditure

structure in GTAP.
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Figure A.3 illustrates an “Expenditure Tree”, a schematic representation of the income
flow of the regional household in GTAP, providing the households’ demand structure
(the analogue of the firm’s technology tree). As discussed in Section A.1.2, a regional
household is represented as a single representative agent (distinct from the firm/producer),
which receives primary factor incomes and tax revenues. The income is allocated across
three top-level categories: private consumption, government consumption, and savings.
Preferences over these categories are formalised through an aggregate (Cobb-Douglas)
utility function. Nota bene, since the standard GTAP model is static, the savings were
tweaked following the approach of Howe (1975) [186]. The savings in this context are not
actual accumulations of wealth but rather a modelling device that mimics the expenditure
pattern of an intertemporal optimisation problem within a static framework (see [3] for
details). Moreover, the mathematical structure of the expenditure tree is analogous to its
firm-side counterpart: at each nest two equations govern the demand flow, namely the
budget constraint (analogous to the zero-profit condition for firms) and the conditional

demand equations.

At the top of the expenditure tree, the income is disposed across the three top-level
categories according to the Cobb-Douglas (per capita) utility conditional demand. That
means that income flows are partitioned into constant shares of total income across the
categories (private, government, savings), implying a fixed budget share. The changes
in expenditures on savings and government activities are a function of regional income
and prices (budget constraint). Moreover, slack variables are included that allow either
savings or government utility to be exogenised (swapped with slacks), in which case the
budget constraint ensures that private household expenditure adjusts residually. Hence,
the top nest guarantees that the household’s total income is fully allocated, while providing
closure flexibility through the slack variables to treat either savings or government demand

as exogenous.

Government branch. Once the government’s aggregate expenditure is specified, GTAP
first constructs a composite price index for government purchases. This index can be
thought of as the “average price” of one unit of government demand, based on the mix
of commodities it buys. Multiplying this index by the chosen real level of government
demand gives the total nominal expenditure. GTAP then allocates this spending across
commodities, according to the Cobb-Douglas substitution scheme. Once the demand for

each commodity has been established, the remainder of the government’s tree branching
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is analogous to that of the firms. Each commodity composite is split into domestic vs. im-
ported components with the usual Armington structure, and imported demand is further
allocated across source regions. The associated price-link equations ensure consistency
between import prices (CIF) and export prices (FOB) when goods cross borders. Impor-
tantly, Armington substitution parameters are commodity-specific but common across the
agents: what distinguishes the agent’s demand of the imported goods are their associated

benchmark import shares.

The private household demand system differs from others due to its nonhomothetic
nature. In Cobb-Douglas or CES systems (homothetic) the demand for all goods scales
proportionally with income. On the contrary, nonhomothetic elasticity embodied in the
Constant Difference of Elasticities (CDE) demand system allows budget shares to vary
with income. As an example, poorer households devote a large share of their income
to necessities such as food, while richer households spend proportionally less on these
items, even as their absolute consumption may rise. The CDE system is calibrated in
GTAP to match observed own-price and income elasticities. Private utility is defined
on a per-capita basis, so the utility index measures welfare changes per person in each
region and thereby accounts for the population dynamics (unlike other agents). Once the
CDE system has determined the allocation of spending across commodity composites, the

structure mirrors that of other agents (government and firms).

A.1.5 Investments, world bank and global transport

In a static CGE model like GTAP [3], investment is not determined intertemporally (as
discussed above), so it does not accumulate into the capital stock that could be later used
to expand the future productive capacity. Hence, there is a closure problem: how to recon-
cile savings, investment, and the current account (trade balance plus international transfer
receipts). Hertel (1997) explains that GTAP users can choose alternative “macroeconomic
closures”, whereby they can fix either savings or investment, with the others adjusting
accordingly. The default closure is that global savings equals global investment, with
regional trade balances fixed, and private consumption adjusting residually. The fictional
global institution “world bank” ensures that regional savings are collected into a global

pool and reallocated as investment demand across regions. While the treatment of fixed
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capital formation and the allocation of investment across regions in a static model is docu-
mented Hertel (1997) [3], these mechanisms do not carry over to GTAP-INT 2, where they
are embedded directly in the intertemporal optimisation problem. The key shifts from
static accounting devices towards forward-looking dynamics that constitute GTAP-INT

2 will be discussed in detail in the following section.

Before moving on, we close this section with a look at the global transportation sector,
which has the same structure in both the static and intertemporal versions of GTAP.
Together with the “world bank,” it is one of the two global (non-regional) sectors. It
fills the gap between the supply and demand for international transport services: on the
demand side, this appears as the difference between CIF and FOB values on traded goods,
while on the supply side, the services originate from all regions and are pooled together
through a Cobb—Douglas setup. These services are produced within regional economies by
regional firms. The global transport sector is an accounting device that aggregates these
regional contributions into a single composite international transport good. Since there
are no reliable data linking exports of transport services to specific shipping routes, GTAP
combines these contributions into a single composite international transport commodity.
The transport sector uses only intermediate inputs (such as fuel) and no primary factors.
The global bundle of transport services is then distributed across bilateral trade flows in
proportion to their value, thereby accounting for the trade margins that reconcile export
(Free on Board, FOB) and import (Cost, Insurance, and Freight, CIF) prices. In each

bilateral flow, the importing region bears the cost of the margin.

A.1.6 Forward-looking firms

In GTAP-INT 2, the firm’s forward-looking, intertemporal behavior is modeled the same
as in GTAP-INT. The behavior fundamentally differs from the static version in terms of
how investment behavior is modeled. Instead of treating investment as a static residual
(standard GTAP closure), firms in each region maximize long run investments, and all in-
dividual capital stocks are treated as variables: maxy, , fooo [PrlﬁKm - T Ir,tPrI, t] e~ Jo[Rs—gs] ds dt,
subject to capital accumulation equation ng = I+ — [0rt + gt] Ky t, where Prfi and K,
are the rental price of capital and a capital stock of region r at timestep t; T'I, ¢, I,; and
PT{ , are total investment expenditure, capital increment (from investment activities) and

price of investment; R; is the global interest rate, and g; and ¢,; are long run growth rate
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and depreciation rate. The setup is very standard in the intertemporal growth theory: the
objective function maximizes the present value of profits (capital rents — total investment
costs), with the exponential discounting at the world interest rate corrected for growth
(Ramsey condition: interest rate = preference rate + growth of consumption). An addi-
tional assumption in this setup is the convex adjustment function in investment increment
(more than 1 unit of investment is necessary for 1 unit of capital increase), reflecting in-
Prtlrt

stallation frictions, learning costs, or limits to scaling capacity T'1,; = I, ; [1 Tt}’

where ¢, ; is (positive) adjustment cost coefficient.

The solution to this optimization problem with a Hamiltonian yields a system of motion
equations that are embedded in the model, one is the aforementioned capital accumula-
tion equation, and the other describes how the shadow price of capital (the Lagrangian
multiplier of the Hamiltonian) evolves over time. The convex adjustment cost ensures
a smooth accumulation. This system can be solved numerically by imposing two termi-
nal conditions. We assume that the model reaches a steady state sufficiently far in the
future such that (i) the capital stocks are constant (net investment equals depreciation)
and (ii) the shadow value of capital is constant (return on capital converges to discount
rate adjusted for depreciation). In this way, GTAP-INT 2 explicitly incorporates the

intertemporal behavior of firms.

Finally, to make the model operational, an appropriate baseline scenario is required.
In static and recursive setups, the GTAP database can serve as a baseline, since each
period is solved independently and sequentially (in the recursive case). In contrast, the
intertemporal models require the entire path of the economy to be internally consistent
with the optimization problem. In other words, the baseline needs to be constructed so
that both the capital accumulation and shadow price equation(s) hold throughout the
entire time horizon. This is done by introducing a corresponding slack variable as a
multiplier to both equations. This allows the baseline to be defined either as a steady
state, where slack variable is set to zero and capital and its shadow value remain constant,
or as a non-steady state, where slack variable is 1 and the economy gradually transitions
from the observed state toward a steady state. If, by chance, the database is not a steady

state and we force slack to 0, then the baseline path is generally infeasible.
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A.1.7 Forward-looking household

In GTAP-INT 2, household behavior is extended beyond the static and recursive setups
(and also GTAP-INT) by making households explicitly forward-looking. In the standard
model [3], savings are included in the upper-level Cobb—Douglas utility function alongside
private and government consumption, so that expenditure equations only mimics an in-
tertemporal trade-off without households solving an actual dynamic problem. GTAP-INT
2 replaces this approximation with a full intertemporal household optimisation problem,
where a representative regional household (Figure A.3) maximizes intertemporal utility
subject to budget and wealth accumulation constraints. The full derivation of the house-
hold problem is provided in Ha et al. (2025) [187]; here we highlight only the key elements

needed to understand the model.

GTAP-INT 2 adopts the household wealth accumulation structure from the recursive
GTAP framework (GDyn) [141]), in which wealth is defined as the value of equity owned
in domestic firms with the equity held in the global trust. The global trust is an addi-
tional institution not present in the static GTAP, and it works as an intermediary between
regional households and foreign firm equity. It pools and redistributes international own-
ership claims, while ensuring accounting consistency. The household wealth accumulates
through increased ownership of domestic firms and global trust equity, thereby linking
saving with the capital stock. The households’ wealth allocation between domestic firms
and claims in the global trust is governed by constant elasticities, so that households can
diversify their equities but only within limits determined by the elasticity of substitution,

which ensures stable but responsive ownership shares.

With these modifications, the intertemporal (forward-looking) household behavior is

defined as follows. The household maximizes its intertemporal utility function

> BP BS, _ [tg.—
max / Cro (UE) P (UG) P o J310a0:)ds gy
UL USh, QS AV, Xr Jo ’ ’
, subject to budget constraint and the wealth accumulation constraint; where 0, ; is the
social discount rate and g, is the growth of the economy, Fp(.) and Eg(.) are private and
government expenditure functions (X, ; is total expenditure variable), Pﬁ and Pft are pri-

vate and government consumption prices, NW I, ; is the net of wealth household income,

Y, sisthereturnonhouseholdequitywealth, W, ;thehouseholdwealth PS AV, ; and QSAV,;
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price and quantity of savings. The utility function in the integral takes a Cobb-Douglas
form, aggregating the sub-utilities of private and government consumption. The param-
eter C' is a normalization constant, while Bp and Bg are the calibrated budget share
parameters corresponding to private and government sub-utilities, Up and Ug, respec-
tively. Operationally, the utilities are coded in GTAP-INT 2 (in percentage change form)
as UELASPRIV(rt) * wuy(r,t) = yp(r,t) - ppriv(r,t) - pop(r,t) and uy(r,t) = yg(r,t) -
pgov(r,t) - pop(r,t) where yp and y, g are nominal private and government expenditures,
ppriv and pgov the corresponding price indices, and pop the population. Hence, the util-
ities are expressed in real, per-capita terms. UELASPRIV (r,t) term is the elasticity for
the private CDE block (see Section A.1.4).

The Hamiltonian approach to this optimization problem yields its own set of motion
equations that solve the intertemporal problem. The first is the law of motion for house-
hold wealth (above), denoting that NW I, ; is exogenous and equals the sum of non-capital
endowment incomes, and indirect and direct taxes. The second is the shadow value of
wealth equation (the Lagrangian multiplier of the Hamiltonian), which also captures the
marginal utility of saving, and links present vs. future consumption. Lastly, the intrape-
riod condition ties the current saving decisions to the shadow value: households increase
their saving until the opportunity cost of current consumption equals the marginal utility
benefit of additional wealth. To solve this set of equations, terminal (boundary) condi-
tions are required. The first one ties firm wealth to firm’s capital stock and the second
one is simply a steady-state restriction on the household side (far in the future, wealth

stops accumulating).

Finally, the forward-looking household problem requires an internally consistent base-
line, as in the case of forward-looking firms. Accordingly, slack variables are attached
to each household motion equation. However, in this thesis, the issue of baseline is cir-
cumvented: the baseline itself is taken to be constant across all timesteps, matching the

GTAP 11 database [188], which by construction is already in equilibrium.

A.2 GTAP-INT 2 simulation setup

Chapter 3 examines the propagation of climate impacts in GTAP-INT 2 via three channels:

agricultural output efficiency (yield change) shocks, labor productivity (labor-augmenting
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efficiency) shocks, and human health (mortality) shocks to population/labor availability.
This section documents the simulation design (baseline and included impacts), and the
model closure that governs the macro responses (leading to GDP change through which

the results in Chapter 3 are reported as the variable of interest).

Under the GTAP-INT 2 closure, the macroeconomic aggregates that (in expendi-
ture form) make up regional GDP! respond as follows. Private consumption (C) and
saving/wealth are endogenous and determined by the forward-looking household block
(App. A.1.7). Investment (I) is endogenous and determined by forward-looking firm block
with convex adjustment costs (App. A.1.6); capital is fixed only at the initial time step
and thereafter evolves endogenously. Government consumption (G) is endogenous, with
the private—government split fixed by exogenous top-nest (Cobb—Douglas) shares (Figure
A.3). Tradeables (X, M) clear via Armington/CET with the standard goods-market slack
tradslack held exogenous, so prices (not quantities) eliminate demand—supply gaps; glob-
ally, saving equals investment. Endowments: non-capital factors (labor, land/resources)
are fixed in quantity, so factor prices/real wages adjust; capital evolves after t0. Exoge-
nous drivers: the population path, tax wedges (gaps between buyer and seller prices),
technology shifters (e.g., labor-augmenting productivity), and the price anchor are held

exogenous.

All reported economic changes from climate impacts are expressed as deviations of
the climate-change scenario (where impact functions modify the system) from a baseline
scenario. The baseline is built as a time-invariant replication of the GTAP 11 database
[188], with all variables held constant over the whole time horizon. In this case, the slack
variables attached to the household and firm motion equations (see previous section) are
set to 0, enforcing a steady-state path in which both the capital stock and its shadow value
remain constant (the motion equations are set to 0, mirroring the static setup). Since
the GTAP database already represents a world economy in equilibrium, this steady-state

configuration provides a feasible and internally consistent baseline.

In the climate-change scenario, the slack variables on the firm and household motion
equations are set to 1, restoring intertemporal adjustment in a non-steady state (i.e., after
the system is shocked out of the steady state by climate impacts). The non-steady state

is created by ”shocking” the steady state (baseline) as follows:

'Following the GDP identity GDPrs = Crt + It + Grt + Xop — My
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e Labor productivity (all sectors). Sector (¢) and region (r) specific labor-
augmenting efficiency A (e, r,t) is shocked (tiered by high/medium/low workload).
A fall in A7, means the same unit of labor provides less to output: unit cost rises in
the value-added nest (left nest in Figure A.2); as cost share of labor rises, firms sub-
stitute away from labor toward other inputs guided by CES; the sector’s producer
price increases, reducing the total output; trade adjusts (imports rise / exports
fall case-dependently). Since non-capital endowment quantities are fixed (closure),
employment does not drop; instead, real wages fall to equilibrate labor supply and
demand, and the contraction manifests in higher costs, lower output, and trade real-
location. Lower profitability reduces investment incentives, thereby slowing capital
accumulation, while the forward-looking household adjusts consumption/saving in-
tertemporally (e.g., if anticipated future returns on capital are lower, the households

shift a proportion of savings to consumption).

e Agricultural output efficiency (yields). Sector (¢) and region (r) specific
output-augmenting efficiency Ap(c,r,t) is shocked, specifically for agricultural sec-
tors (interpreting yield changes as sectoral productivity). A fall in Ap means less
output from the same inputs. This leads to unit cost rising at the top of the pro-
duction tree A.2 (scaling both the value added and the intermediates’ branches);
the agricultural output is modified, modifying the sector’s producer price; down-
stream users and trade adjust (imports rise / exports fall, case-dependent). Unlike
labor productivity damages, agricultural damages can be both positive and nega-
tive, and the sign can also depend on the temperature levels. Endowment quantities
are fixed, so real wages adjust to clear factor markets. Intermediate inputs are not
fixed: the total quantity of intermediate goods scales in proportion to output at
the top (Leontief nest), while input composition can substitute within the CES
intermediates bundle, and reallocate between domestic/imported sources. Macro
propagation to investment/consumption follows the mechanism already described

for labor-productivity shocks.

¢ Human health (mortality). Two components are shocked: first, regional pop-
ulation, which rescales per-capita private and government indices and the size of
household absorption, thereby affecting the household utility function. A change
in population modifies per-capita measures and scale but does not, by itself, al-

ter factor-market clearing. Secondly, labor availability is modified as a change in
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the labor endowment. It operates through the same mechanism as for labor pro-
ductivity: labor becomes relatively scarcer (if mortality increases, decreasing labor
availability), wages adjust to equilibrate factor markets, production costs rise, and
firms substitute away from labor in line with CES substitution possibilities, with the
propagation through the model detailed above (labor productivity). An important
distinction is that in some cases mortality impacts can increase labor availability

(e.g. under reduced mortality), in which case the sign of these effects is reversed.



Supplementary 1: Carbon Budget
Concept and its Deviation

Through the Pulse Response Lens

S1.1 Scenario-dependent deviations - experimental setup

Optimization scheme - boundary conditions

The first boundary condition sets the total cumulative emissions at the year of optimiza-
tion t* to a fixed value Fiot, counting from the initial year ¢y, chosen as the year 2020
in RCP6.0. The condition on Fi, ensures that the deviation from the carbon budget
stems only from the difference between the emission pathways, as it fixes the cumulative

emissions to be equal at the end of both the minimization and the maximization run.

The second boundary condition provides the upper bound on the rate of change in
emissions per year, effectively setting the allowed absolute slope of the emission pathway
to be less than or equal to a prescribed value k. Hence, a trivial solution (e.g., emitting
all of the emissions in one year) is avoided. The emission slope k is chosen such that it
its upper bound is 1 PgC/yr?, roughly corresponding to the emission reduction rate if the

annual emissions were linearly reduced to zero between the years 2020 and 2030.

The combination of the restriction on k with the Fiy restriction will affect the run’s
feasibility. The higher the cumulative emissions and the lower the k is, the less feasible

the run is. Moreover, the additional requirement that the emissions reach net-zero by t*

140
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further negatively affects the feasibility. The feasibility limiting value of k£ will correspond
to the run where both Tiyax (t*) and Ty (t*) are equal, as they come from the only possible
and feasible scenario; hence, the scenario-dependent carbon deviation Ty(t*) is zero for
that specific k. The higher £ is, the more the range of possible pathway combinations

increases, as does Ty.

The last boundary condition excludes negative emissions. This condition is utilized
since Green’s approach uses a pulse response generated under positive emissions. Never-
theless, for the sake of completeness, negative emissions will be allowed in the last part

of the section to see how doing so affects the deviations.

Two settings of the scenario-dependent deviations

To examine the carbon budget interpretation, we distinguish between two additional sets

of conditions that differ depending on how much we emit after the optimization year (¢*).

The first carbon budget interpretation is addressed as a net-zero budget case, which
corresponds to the situation in which all of the carbon has been emitted up until the
point in time of interest, and there are no other emissions afterward. This interpretation
coincides more with a carbon budget as addressed by the IPCC, which indicates how much
more carbon can be emitted while still reaching specific targets. In the corresponding
emission scenario set, the emissions are bound to reach zero by the year t* and stay zero
from there onwards (E(t > t*) = 0). Note, however, that this is not the case of calculating
the ZEC deviations, even though the requirement is emission cessation. ZEC tells us
what the temperature evolution will be following emission cessation. In the optimization
program, however, one derives two maximally different possible temperatures in a specific
year, stemming from different preceding emission choices, and the deviation comes from
deducting the two. ZEC affects both boundary temperature cases equally, so when the
two are subtracted to get the deviation Ty(t*), the effect of ZEC is also subtracted.

On the other hand, there is the transient budget case, in which only the momentary
relationship between the current cumulative emissions and current temperature increase
is of interest (as given by Equation (2.1), for example). Therefore, in the optimization
year t*, emissions are free to take any value in transient budget case (within the limits of

other constraints). The additional constraint on the emission pathway negatively affects
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the feasibility. Therefore, the transient budget case has more possible emission pathway

combinations available compared to net zero, which means a higher expected Tjy.

Deviation time evolution

The optimization procedure (Equation (2.6)) calculates the extreme case of scenario-
dependent deviations in one specific year t* only. To see whether these deviations are
persistent in time, an additional experiment is designed, one unique to the net-zero ap-
proach. For unit of k£ specified in the setup above, the system is left to evolve for the
next 50 years following the optimization year (t* = 2070), without adding new emissions.
Hence, Ty(k) is allowed to evolve freely in time, while keeping cumulative emissions at
the same level. In this way, one can see how the scenario-dependent deviation obtained

in ¢* changes in time.

Run configuration

Preceding the initialization of the optimization program, the FalR model was historically
forced from the preindustrial period (the year 1850) until 2020 under the RCP6.0 emission
scenario. The quasi-historical run is dynamically separated from the optimization run
since, in the former, emissions are prescribed, not generated by the program. The two
runs coincide in the year 2020, where the values of the historical run’s variables are
translated into the initial conditions of the variables of the FalR’s optimization run.
Hence, tg = 2020 in Equation (2.6) and the initial emissions value of the optimizer run
equals to Fy = Ercpe.0(2020). The initial temperature at ¢y is 7o = 0.96 K, with the

associated cumulative emissions counting Fy = 584 PgC.

S1.2 Optimization year sensitivity
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F1GURE S1.4: Maximal scenario dependent deviations for different optimization years
and total cumulative emission choices, under transient budget case. One can detect
that the optimization year choice does not affect the generated deviations, except for
feasibility limit that becomes more prominent the lesser t*, or prominently, the higher

Ftot is.




Supplementary 2: A
Forward-Looking CGE Analysis of
Climate Damages: Integrating
Labor Productivity, Agricultural
Yields, and Heat-Related
Mortality

S2.1 Labor Productivity
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(0.267,0.292) (0.382, 0.418)
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0.108 0.161 0.221
(0.101,0.116) (0.150,0.171) (0.207, 0.236)
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0.060 0.145 0.249 0.372
(0.056, 0.064) (0.137, 0.152) (0.237, 0.261) (0.354, 0.389)

0.000 0.003 0.011 0.024 0.041
(0.000, 0.001) (0.002, 0.004) (0.010, 0.012) (0.022, 0.026) (0.039, 0.044)
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(0.023, 0.028) (0.053, 0.062) (0.089, 0.103) (0.128, 0.149) (0.172, 0.201)
0.004 0.014 0.032 0.057 0.090
(0.003, 0.005) (0.012, 0.016) (0.029, 0.035) (0.053, 0.061) (0.084, 0.095)

0.140 0.297 0.455
(0.134, 0.145) (0.286, 0.309) (0.437, 0.473)
0.049 0.113 0.188 0.274 0.372
(0.045, 0.052) (0.106, 0.119) (0.177, 0.198) (0.259, 0.289) (0.350, 0.393)
0.100 0.228 0.374
(0.093, 0.106) (0.216, 0.241) (0.354, 0.394)

0.000 0.000 0.000 0.001 0.001
(0.000, 0.000) (0.000, 0.000) (0.000, 0.001) (0.001, 0.001) (0.001, 0.002)
0.000 0.000 0.001 0.003 0.006
(0.000, 0.000) (0.000, 0.000) (0.001, 0.002) (0.002, 0.004) (0.005, 0.006)
0.024 0.057 0.100 0.151 0.211
(0.021, 0.026) (0.053, 0.062) (0.093, 0.107) (0.141, 0.161) (0.197, 0.224)
0.000 0.000 0.001 0.002 0.003
(0.000, 0.000) (0.000, 0.000) (0.000, 0.001) (0.001, 0.002) (0.003, 0.004)
0.009 0.030 0.063 0.107 0.162

(0.008, 0.010) (0.028, 0.033) (0.059, 0.067) (0.101, 0.112) (0.154, 0.170)

0.072 0.159 0.261 0.377
(0.067, 0.076) (0.151, 0.168) (0.248, 0.275) (0.358, 0.397)

0.018 0.046 0.082 0.128 0.183
(0.016, 0.021) (0.041, 0.050) (0.075, 0.089) (0.118, 0.138) (0.169, 0.197)

0.002 0.010 0.023 0.041 0.066
(0.002, 0.003) (0.008, 0.011) (0.021, 0.025) (0.039, 0.044) (0.062, 0.070)

0.008 0.022 0.044 0.074 0.111
(0.007, 0.009) (0.020, 0.024) (0.041, 0.047) (0.069, 0.078) (0.104, 0.118)

0.013 0.041 0.085 0.145 0.220
(0.011, 0.014) (0.038, 0.044) (0.081, 0.090) (0.138, 0.152) (0.210, 0.230)

0.002 0.006 0.015 0.027 0.043
(0.001, 0.002) (0.005, 0.007) (0.012, 0.017) (0.024, 0.030) (0.039, 0.048)

0.067 0.138 0.210 0.284 0.359
(0.062, 0.073) (0.128, 0.148) (0.194, 0.226) (0.260, 0.307) (0.327, 0.392)

0.000 0.000 0.001 0.002 0.003
(0.000, 0.000) (0.000, 0.000) (0.000, 0.001) (0.001, 0.002) (0.002, 0.003)
0.012 0.035 0.071 0.118 0.177
(0.011, 0.013) (0.033, 0.038) (0.067, 0.075) (0.112, 0.124) (0.169, 0.185)

0.016 0.039 0.068 0.104 0.147
(0.013, 0.018) (0.034, 0.043) (0.060, 0.076) (0.093, 0.116) (0.132, 0.163)

0.003 0.011 0.025 0.045 0.070
(0.003, 0.004) (0.010, 0.013) (0.023, 0.027) (0.042, 0.048) (0.066, 0.074)

0.113 0.253 0.400
(0105, 0.120) (0.239, 0.267) (0.377, 0.422)

0.067 0.148 0.241 0.347 0.465
(0.063, 0.071) (0.140, 0.156) (0.229, 0.254) (0.329, 0.365) (0.440, 0.489)
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(0.036, 0.044) (0.082, 0.098) (0.133, 0.157) (0.187, 0.224) (0.246, 0.296)
0.033 0.082 0.147 0.228 0.326
(0.030, 0.035) (0.076, 0.087) (0.138, 0.156) (0.215, 0.241) (0.308, 0.344)
0.010 0.030 0.060 0.102 0.155
(0.009, 0.011) (0.027, 0.032) (0.057, 0.064) (0.097, 0.107) (0.148, 0.162)
0.010 0.029 0.060 0.103 0.157

(0.009, 0.011) (0.027, 0.032) (0.056, 0.064) (0.097, 0.109) (0.149, 0.165)

S2.1: Heatmap showing country-level losses (high workload).
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(0.000, 0.000)
0.024
(0.021, 0.027)
0.034
(0.031, 0.037)
0.008
(0.007, 0.009)
0.004
(0.003, 0.005)
0.028
(0.024, 0.031)
0.045
(0.040, 0.049)
0.037
(0.034, 0.040)
0.002
(0.001, 0.002)
0.069
(0.065, 0.072)
0.000
(0.000, 0.000)
0.008
(0.007, 0.009)
0.000
(0.000, 0.000)

0.069
(0.065, 0.073)

Loss
0%

2°C
0.000
(0.000, 0.000)
0.011
(0.009, 0.012)
0.013
(0.012, 0.014)
0.005
(0.005, 0.006)
0.000
(0.000, 0.000)
0.003
(0.003, 0.004)
0.000
(0.000, 0.000)
0.004
(0.004, 0.005)
0.119
(0.110, 0.128)
0.000
(0.000, 0.001)
0.000
(0.000, 0.000)
0.122
(0.113,0.131)
0.000
(0.000, 0.000)
0.000
(0.000, 0.000)
0.005
(0.004, 0.006)
0.010
(0.009, 0.011)
0.020
(0.019, 0.022)
0.083
(0.079, 0.088)
0.005
(0.004, 0.006)
0.138
(0.130, 0.145)
0.000
(0.000, 0.001)
0.111
(0.104,0.117)
0.048
(0.045, 0.051)
0.001
(0.000, 0.001)
0.066
(0.061, 0.072)
0.088
(0.082, 0.094)
0.025
(0.023, 0.027)
0.015
(0.014, 0.017)
0.082
(0.076, 0.089)
0.118
(0.109, 0.126)
0.101
(0.095, 0.106)
0.006
(0.005, 0.007)
0.157
(0.151, 0.164)
0.000
(0.000, 0.000)
0.025
(0.022, 0.027)
0.000
(0.000, 0.000)

0.157
(0.149, 0.165)

10%20%30%40%50%

Dominican Rep.

Ecuador
3¥C  4#C  5C Egypt
0.000 0.001 0.001

(0.000, 0.000) (0.000, 0.001) (0.001, 0.001) Eritrea
0.024 0.044 0.071
(0.022, 0.027) (0.041,0.048) (0.066, 0.075) eSwatini
0.029 0.052 0.082
(0.028,0.031) (0.050, 0.055) (0.079, 0.086) Ethioni
0012 0021 0033 thiopia
(0.011, 0.013) (0.020, 0.022) (0.031, 0.035)
0001 0002  0.003 Fiji
(0.000,0.001) (0.001, 0.002) (0.003, 0.003)
0.007 0.012 0.020 France
(0.006, 0.008) (0.011,0.014) (0.018, 0.021)
0.001 0.002 0.004 Gabon
(0.001,0.001) (0.002,0.003) (0.004,0.005)
0.010 0.019 0.031 Georgia
(0.009, 0.011) (0.018,0.021) (0.029, 0.033)
0196 | 0284 Germany
(0.182,0.211) (0.262, 0.306)
0.001 0.003 0.004
(0.001, 0.002) (0.002, 0.003) (0.003, 0.005) Ghana
0.000 0.001 0.001
(0.000, 0.000) (0.000, 0.001) (0.001, 0.001) Greece
0.214
(0.200,0.229) Guatemala
0.001 0.003 0.005
(0.001,0.001) (0.002,0.003) (0.005, 0.005) Guinea
0.000 0.000 0.001
(0.000,0.000) (0.000,0.001) (0.001,0.001) G jinea—Bissau
0.013 0.023 0.037
(0.011, 0.014) (0.021,0.025) (0.034, 0.040) Guyana
0.024 0.046 0.073
(0.022, 0.026) (0.042, 0.049) (0.069, 0.078) Haiti
0044 0077 0120 at
(0.041, 0.046) (0.074,0.081) (0.115, 0.125)
0174 [ 0299 Honduras
(0.167,0.181) |(0.289, 0.310)
0.012  0.023 0038 Hungary
(0.011, 0.014) (0.021,0.025) (0.035, 0.040)
0.223 India
(0.211, 0.235)
0.003 0.007 0.013 Indonesia
(0.002,0.003) (0.006, 0.008) (0.012, 0.014)
0.200 Iran
(0.190, 0.210)
0.099 0.168 0.256 Ira
(0.094,0.104) (0.161, 0.176) (0.246,0.267) a
0.003 0.006 0.011
(0.002, 0.003) (0.006,0.007) (0.011, 0.012) Israel
0.128 0.208 0.308
(0.119,0.136) (0.196, 0.221) (0.291, 0.325) Italy
0.158 0.244
(0.149,0.167) (0230, 0.257) Japan
0.051 0.087 0.132
(0.048, 0.054) (0.082, 0.091) (0.126, 0.139) Jordan
0.035 0.063 0.100
(0.032,0037) (0.059, 0.066) (0.095, 0.104) Kazakhstan
0.164 0.272
(0.153, 0.175) (0.255, 0.288) Kenva
0.221 v
(0.207,0.236)
0186 = 0.205 Kosovo
(0.177,0.196) (0.281, 0.309)
0.013  0.024  0.039 Laos
(0.012, 0.015) (0.022, 0.027) (0.036, 0.043)
0.262 Latvia
(0.251,0.273)
0.001 0.002 0.004 Lesotho
(0.001, 0.001) (0.002, 0.003) (0.004, 0.005)
0.054 0094 = 0.147 Liberia
(0.050,0.057) (0.089,0.100) (0.140, 0.155)
0000 0001  0.001 Libya
(0.000, 0.000) (0.000, 0.001) (0.001, 0.001)
0.262 . .

1°C
0.049
(0.046, 0.052)

0.002
(0.001, 0.002)

0.013
(0.011, 0.015)

0.014
(0.013,0.016)

0.003
(0.002,0.004)

0.000
(0.000, 0.000)

0.053
(0.049, 0.057)

0.000
(0.000, 0.000)

0.024
(0.022, 0.026)

0.000
(0.000, 0.000)

0.000
(0.000, 0.000)

0.055
(0.051, 0.059)

0.003
(0.002, 0.003)

0.013
(0.011, 0.016)

0.034
(0.031, 0.036)

0.055
(0.050, 0.060)

0.048
(0.044, 0.052)

0.060
(0.057, 0.063)

0.024
(0.021, 0.027)

0.001
(0.000, 0.001)

0.034
(0.033, 0.036)

0.041
(0.039, 0.044)

0.001
(0.001, 0.001)

0.012
(0.011, 0.014)

0.007
(0.006, 0.009)

0.000
(0.000, 0.001)

0.009
(0.008, 0.010)

0.007
(0.006, 0.008)

0.000
(0.000, 0.000)

0.001
(0.000, 0.001)

0.000
(0.000, 0.001)

0.027
(0.025, 0.030)

0.000
(0.000, 0.000)

0.000
(0.000, 0.000)

0.027
(0.024, 0.030)

0.007
(0.006, 0.008)

0.000
(0.000, 0.000)

2°C
0.118
(0.112, 0.124)

0.009
(0.008, 0.010)

0.039
(0.035, 0.042)

0.041
(0.038, 0.045)

0.010
(0.009, 0.012)

0.001
(0.000, 0.001)

0.129
(0.121, 0.136)

0.001
(0.000, 0.001)

0.074
(0.070, 0.078)

0.001
(0.001, 0.001)

0.000
(0.000, 0.000)

0.132
(0.124, 0.141)

0.009
(0.008, 0.011)

0.045
(0.041, 0.049)

0.091
(0.086, 0.096)

0.132
(0.123, 0.141)

0.120
(0.112, 0.128)

0.142
(0.136, 0.148)

0.075
(0.070, 0.081)

0.002
(0.002, 0.003)

0.085
(0.081, 0.088)

0.116
(0.110, 0.121)

0.004
(0.003, 0.005)

0.034
(0.031, 0.037)

0.021
(0.018, 0.024)

0.002
(0.002, 0.003)

0.026
(0.024, 0.029)

0.021
(0.019, 0.023)

0.001
(0.000, 0.001)

0.004
(0.004, 0.005)

0.002
(0.002, 0.003)

0.071
(0.067, 0.076)

0.000
(0.000, 0.000)

0.000
(0.000, 0.000)

0.081
(0.076, 0.086)

0.022
(0.019, 0.024)

0.000
(0.000, 0.000)

3°C 4°C 5°C
0.206 0.314
(0.197,0.216) | (0.300, 0.328)

0.023 0.044 0.071
(0.021,0.025) (0.041,0.046) (0.068, 0.075)
0.077 0.129 0.195
(0.071,0.083) (0.121,0.138) (0.183, 0.207)
0.083 0.139 0.210
(0.077,0.089) (0.131,0.147) (0.198, 0.221)
0.024 0.044 0.071
(0.022,0.026) (0.041,0.048) (0.066, 0.075)
0.003 0.008 0.015
(0.003,0.004)  (0.008, 0.009) (0.014, 0.016)

0.221
(0.209, 0.234)
0.003 0.005 0.009
(0.002,0.003) (0.004, 0.006) (0.008, 0.010)
0.152 0.260
(0.146,0.159)  (0.250, 0.270)

0.003 0.006 0.011
(0.003,0.003) (0.006, 0.007)  (0.010, 0.011)
0.001 0.002 0.004
(0.001,0.001) (0.002,0.002) (0.003, 0.004)
0.228
(0.215, 0.241)

0.022 0.040 0.064
(0.020,0.024) (0.037,0.043) (0.059, 0.068)
0.100 0.178 0.280
(0.093,0.107) (0.168,0.188)  (0.265, 0.204)
0.171 0.274
(0.163,0.179)  (0.262, 0.286)

0.229
(0.213, 0.244)
0.217
(0.204, 0.230)
0.244
(0.234,0.254)
0.152
(0.143,0.161)  (0.240, 0.266)

0.006 0.012 0.020
(0.005,0.007) (0.011,0.014) (0.018, 0.022)
0.149 0.227 0.319
(0.143,0.154) (0.219,0.235)  (0.308, 0.330)
0.225
(0.216, 0.234)

0.010 0.019 0.032
(0.009,0.011)  (0.018,0.021) (0.029, 0.034)
0.066 0.108 0.160
(0.061,0.071) (0.101,0.115) (0.151, 0.169)
0.043 0.072 0.109
(0.038,0.047)  (0.065,0.079) (0.100, 0.118)
0.007 0.013 0.022
(0.006,0.008) (0.012,0.015) (0.020, 0.024)
0.053 0.089 0.135
(0.049,0.057) (0.084,0.095) (0.127, 0.143)
0.043 0.073 0.112
(0.040,0.046) (0.068,0.079) (0.105, 0.119)
0.002 0.004 0.008
(0.002,0.002)  (0.004, 0.005) (0.007, 0.008)
0.013 0.025 0.043
(0.012,0.014) (0.024,0.027) (0.041, 0.044)
0.007 0.013 0.022
(0.006,0.007) (0.012,0.014) (0.020, 0.023)
0.135 0.217 0.318
(0.127,0.142)  (0.206,0.228) = (0.303, 0.333)
0.001 0.001 0.002
(0.000,0.001) (0.001,0.001) (0.001, 0.002)
0.000 0.000 0.001
(0.000,0.000)  (0.000, 0.000)  (0.001, 0.001)

0.158 0.258
(0.149,0.166)  (0.245, 0.270)
0.046 0.080 0.124
(0.042,0.050) (0.074,0.086) (0.116, 0.132)
0.001 0.002 0.003

(0.001,0.001)  (0.001, 0.002)  (0.002, 0.003)
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Madagascar
Malawi
Malaysia
Mali
Mauritania
Mexico
Moldova
Mongolia
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
New Zealand
Nicaragua
Niger
Nigeria
North Korea
North Macedonia
Oman
Pakistan
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Romania
Russia

S. Sudan
Saudi Arabia

Senegal

FIGURE

1°C
0.004
(0.004, 0.005)

0.006
(0.005, 0.007)

0.037
(0.034, 0.040)

0.048
(0.045, 0.051)

0.051
(0.048, 0.054)

0.001
(0.000, 0.001)

0.000
(0.000, 0.001)

0.000
(0.000, 0.000)

0.003
(0.002, 0.003)

0.010
(0.009, 0.012)

0.020
(0.019, 0.022)

0.002
(0.001, 0.002)

0.000
(0.000, 0.000)

0.000
(0.000, 0.000)

0.000
(0.000, 0.000)

0.030
(0.027, 0.033)

0.048
(0.044, 0.052)

0.040
(0.037, 0.043)

0.004
(0.004, 0.005)

0.000
(0.000, 0.001)

0.057
(0.054, 0.061)

0.036
(0.034, 0.038)

0.039
(0.035, 0.042)

0.011
(0.010, 0.012)

0.029
(0.025, 0.032)

0.000
(0.000, 0.000)

0.068
(0.065, 0.072)

0.000
(0.000, 0.000)

0.002
(0.002, 0.003)

0.001
(0.000, 0.001)

0.000
(0.000, 0.000)

0.025
(0.023, 0.028)

0.021
(0.019, 0.023)

0.049
(0.044, 0.054)

2°C
0.013
(0.012, 0.014)

0.019
(0.018, 0.021)

0.107
(0.101, 0.112)

0.113
(0.107, 0.118)

0.112
(0.106, 0.118)

0.004
(0.003, 0.004)

0.002
(0.001, 0.002)

0.000
(0.000, 0.000)

0.009
(0.008, 0.010)

0.031
(0.029, 0.033)

0.056
(0.053, 0.060)

0.006
(0.006, 0.007)

0.002
(0.002, 0.002)

0.000
(0.000, 0.000)

0.000
(0.000, 0.000)

0.082
(0.076, 0.088)

0.112
(0.104, 0.120)

0.103
(0.097, 0.108)

0.014
(0.012, 0.016)

0.002
(0.002, 0.002)

0.125
(0.118,0.131)

0.081
(0.077, 0.086)

0.105
(0.098, 0.111)

0.035
(0.033,0.037)

0.077
(0.070, 0.083)

0.000
(0.000, 0.000)

0.165
(0.159, 0.172)

0.001
(0.000, 0.001)

0.007
(0.006, 0.008)

0.003
(0.003, 0.004)

0.000
(0.000, 0.000)

0.072
(0.068, 0.076)

0.055
(0.051, 0.059)

0.115
(0.106, 0.125)

3°C
0.028
(0.026, 0.030)

0.041
(0.038, 0.044)

0.214
(0.206, 0.223)

0.192
(0.183, 0.201)

0.180
(0.171, 0.190)

0.010
(0.009, 0.010)

0.005
(0.004, 0.006)

0.001
(0.001, 0.001)

0.020
(0.019, 0.022)

0.065
(0.061, 0.069)

0.110
(0.104, 0.115)

0.015
(0.014, 0.016)

0.006
(0.005, 0.006)

0.001
(0.000, 0.001)

0.000
(0.000, 0.000)

0.156
(0.146, 0.166)

0.188
(0.175, 0.200)

0.186
(0.177, 0.195)

0.030
(0.027, 0.033)

0.006
(0.005, 0.006)

0.199
(0.188, 0.210)

0.132
(0.125, 0.139)

0.204
(0.193, 0.214)

0.076
(0.073, 0.079)

0.142
(0.132, 0.153)

0.000
(0.000, 0.000)

0.284
(0.273, 0.295)

0.002
(0.001, 0.002)

0.017
(0.015, 0.019)

0.009
(0.008, 0.010)

0.001
(0.000, 0.001)

0.142
(0.135, 0.149)

0.102
(0.095, 0.109)

0.200
(0.185, 0.215)

4°C
0.050
(0.047, 0.053)

0.072
(0.068, 0.076)

0.359
(0.346, 0.371)

0.285
(0.272, 0.299)

0.256
(0.241, 0.270)

0.019
(0.018, 0.020)

0.010
(0.009, 0.012)

0.002
(0.002, 0.003)

0.037
(0.034, 0.039)

0.111
(0.105, 0.117)

0.181
(0.172, 0.189)

0.028
(0.027, 0.030)

0.011
(0.011, 0.012)

0.001
(0.001, 0.001)

0.001
(0.000, 0.001)

0.251
(0.237, 0.265)

0.276
(0.258, 0.295)

0.290
(0.277,0.304)

0.052
(0.048, 0.056)

0.011
(0.010, 0.012)

0.280
(0.264, 0.295)

0.188
(0.178, 0.198)

0.335
(0:319, 0.351)

0.133
(0.129, 0.138)

0.225
(0.210, 0.241)

0.000
(0.000, 0.001)

0.003
(0.003, 0.004)

0.031
(0.028, 0.033)

0.017
(0.015, 0.019)

0.001
(0.001, 0.001)

0.235
(0.225, 0.244)

0.162
(0.152, 0.172)

0.303
(0.281, 0.325)

5°C
0.077
(0.073, 0.081)

0.111
(0.106, 0.117)

0.338
(0318, 0.357)

0.031
(0.030, 0.032)

0.017
(0.015, 0.019)

0.004
(0.004, 0.005)

0.058
(0.055, 0.061)

0.170
(0.162, 0.178)

0.270
(0.258, 0.281)

0.046
(0.044, 0.048)

0.019
(0.018, 0.020)

0.002
(0.001, 0.002)

0.001
(0.001, 0.001)

0.368
(0.348, 0.387)

0.377
(0.352, 0.403)

0.080
(0.074, 0.086)

0.019
(0.017, 0.020)

0.366
(0.345, 0.388)

0.249
(0.235, 0.263)

0.207
(0201, 0.213)

0.325
(0.304, 0.346)

0.001
(0.001, 0.001)

0.006
(0.005, 0.006)

0.049
(0.045, 0.052)

0.028
(0.025, 0.030)

0.002
(0.002, 0.003)

0.350
(0.337, 0.364)

0.234
(0.221, 0.248)

Serbia
Sierra Leone
Slovakia
Slovenia
Somalia
Somaliland
South Africa
South Korea
Spain

Sri Lanka
Sudan
Suriname
Switzerland
Syria
Tajikistan
Tanzania
Thailand
Tunisia
Turkey
Turkmenistan
Uganda
Ukraine
United Arab Emirates

United Kingdom

United States of America

Uruguay
Uzbekistan
Venezuela
Vietnam
W. Sahara
Yemen
Zambia

Zimbabwe

1°C 2°C 3°C 4°C 5°C
0.001 0.003 0.009 0.016 0.027
(0.000, 0.001) (0.003, 0.004) (0.007, 0.010) (0.015, 0.018) (0.025, 0.029)

0.040 0.109 0.204 0.323
(0.037, 0.043) (0.103, 0.115) (0.194, 0.213) (0.309, 0.337)

0.000 0.001 0.003 0.006 0.010
(0.000, 0.000) (0.001, 0.001) (0.002, 0.003) (0.005, 0.007) (0.008, 0.011)
0.001 0.003 0.008 0.016 0.026

(0.000, 0.001) (0.003, 0.004) (0.007, 0.010) (0.014, 0.018) (0.024, 0.029)

0.046 0.121 0.220 0.344
(0.043, 0.050) (0.115, 0.127) (0.210, 0.230) (0.330, 0.358)

0.025 0.070 0.140 0.234 0.351
(0.022, 0.027) (0.066, 0.075) (0.133, 0.147) (0.223, 0.244) (0.337, 0.365)
0.000 0.001 0.003 0.007 0.012
(0.000, 0.000) (0.001, 0.001) (0.003, 0.004) (0.007, 0.008) (0.012, 0.013)
0.012 0.032 0.060 0.097 0.143
(0.010, 0.013) (0.029, 0.034) (0.056, 0.065) (0.091, 0.104) (0.134, 0.152)
0.001 0.005 0.012 0.022 0.037

(0.001, 0.001) (0.004, 0.005) (0.011, 0.013) (0.021, 0.024) (0.034, 0.039)

0.073 0.180 0.314
(0.069, 0.077) (0.173, 0.188) (0.302, 0.326)

0.021 0.057 0.109 0.177 0.261
(0.019, 0.023) (0.053, 0.060) (0.103, 0.115) (0.168, 0.186) (0.249, 0.273)

0.043 0.115 0.216 0.346
(0.039, 0.047) (0.108, 0.122) (0.204, 0.228) (0.329, 0.363)

0.000 0.000 0.000 0.001 0.002
(0.000, 0.000) (0.000, 0.000) (0.000, 0.001) (0.001, 0.001) (0.001, 0.002)

0.010 0.029 0.059 0.098 0.148
(0.009, 0.011) (0.027, 0.032) (0.055, 0.062) (0.093, 0.104) (0.141, 0.156)

0.000 0.000 0.000 0.001 0.001
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S2.2: Heatmap showing country-level losses (moderate workload).
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FIGURE S2.3: Heatmap showing country-level losses (low workload). Unaffected
countries are left out of this table.
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TABLE S2.1: Polynomial coefficients for country-level labour productivity damage
function Loss(T) = ag + a1 T + axT?

Country ag(low) ai(low) a2 (low) ag(moderate) a1 (moderate) as(moderate) ap(high) a1 (high) ag (high)
Fiji 0.002492 -0.002132 0.005218 -0.005162 0.049709 0.008614 -0.012063 0.107242 0.002507
Tanzania 0.000083 -0.000169 0.000135 0.000418 -0.000403 0.002315 -0.001129 0.004509 0.005621
W. Sahara 0.001348 -0.002075 0.002897 -0.002329 0.019950 0.004763 -0.003918 0.041644 0.002677
Canada 0.000033 -0.000070 0.000032 0.000613 -0.001356 0.000706 0.001631 -0.003711 0.002070
United States of America 0.000418 -0.000833 0.000508 0.001946 -0.002435 0.004131 0.000475 0.005439 0.005974
Kazakhstan 0.000017 -0.000036 0.000018 0.000352 -0.000806 0.000454 0.000992 -0.002347 0.001417
Uzbekistan 0.000073 -0.000140 0.000089 0.000715 -0.001045 0.001266 0.001034 -0.000487 0.002858
Papua New Guinea 0.000539 -0.000906 0.000751 0.003906 -0.001042 0.008342 0.002502 0.020207 0.014280
Indonesia 0.002982 -0.004938 0.004243 0.002304 0.021562 0.017571 -0.012909 0.104964 0.010421
Argentina 0.000069 -0.000120 0.000096 0.000703 -0.000574 0.001409 0.001036 0.001096 0.003207
Chile 0.000000 -0.000000 0.000000 0.000003 -0.000007 0.000003 0.000012 -0.000025 0.000010
Dem. Rep. Congo 0.000367 -0.000644 0.000505 0.002921 -0.001162 0.006014 0.002714 0.013050 0.011175
Somalia 0.002850 -0.004147 0.004884 -0.003340 0.037364 0.012368 -0.015991 0.110744 0.005576
Kenya 0.000064 -0.000148 0.000090 0.000987 -0.002624 0.002186 0.002105 -0.006433 0.006665
Sudan 0.001688 -0.002935 0.002396 0.000733 0.011901 0.008042 -0.004271 0.047201 0.005597
Chad 0.002874 -0.004911 0.004450 -0.003371 0.029726 0.008025 -0.010012 0.078634 0.001116
Haiti 0.003653 -0.004325 0.006152 -0.001898 0.052083 0.009944 -0.005286 0.119283 0.002063
Dominican Rep. 0.002781 -0.003246 0.004498 -0.000087 0.039703 0.009714 -0.003183 0.100151 0.003888
Russia 0.000005 -0.000011 0.000005 0.000159 -0.000338 0.000154 0.000529 -0.001133 0.000523
Bahamas 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Falkland Is. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Norway -0.000000 0.000000 -0.000000 -0.000000 0.000000 -0.000000 -0.000000 0.000000 -0.000000
Greenland 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Fr. S. Antarctic Lands 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Timor-Leste 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
South Africa 0.000025 -0.000053 0.000027 0.000576 -0.001296 0.000733 0.001728 -0.003969 0.002369
Lesotho 0.000002 -0.000004 0.000002 0.000070 -0.000140 0.000056 0.000252 -0.000502 0.000200
Mexico 0.000052 -0.000117 0.000072 0.000565 -0.001554 0.001535 0.000621 -0.002661 0.004357
Uruguay 0.000373 -0.000493 0.000663 0.000310 0.004017 0.002707 -0.000725 0.013017 0.003319
Brazil 0.000313 -0.000541 0.000445 0.002131 -0.000721 0.004870 0.001476 0.010151 0.008704
Bolivia 0.000002 -0.000004 0.000001 0.000082 -0.000157 0.000058 0.000305 -0.000585 0.000215
Peru 0.000002 -0.000005 0.000002 0.000096 -0.000184 0.000067 0.000360 -0.000685 0.000249
Colombia, 0.000196 -0.000386 0.000267 0.001448 -0.001704 0.004265 -0.000449 0.006356 0.009759
Panama 0.002943 -0.004662 0.003880 0.004991 0.017232 0.016332 -0.005563 0.090015 0.011456
Costa Rica 0.003301 -0.004857 0.004708 0.002932 0.026193 0.015551 -0.006510 0.095569 0.010042
Nicaragua 0.001473 -0.002144 0.002310 -0.000439 0.019922 0.010736 -0.013074 0.083761 0.007334
Honduras 0.001419 -0.002812 0.002531 -0.002859 0.014226 0.012417 -0.019639 0.072389 0.010517
El Salvador 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Guatemala 0.001151 -0.002207 0.001546 0.004965 -0.003184 0.011620 0.001725 0.022613 0.016406
Belize 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Venezuela 0.003372 -0.005747 0.005885 -0.007000 0.045134 0.013317 -0.022143 0.131891 0.002924
Guyana 0.002892 -0.003724 0.004316 0.001831 0.033653 0.012671 -0.004359 0.103627 0.006084
Suriname 0.002704 -0.004096 0.004206 0.000245 0.028291 0.014550 -0.011836 0.102935 0.008545
France 0.000024 -0.000049 0.000026 0.000380 -0.000760 0.000491 0.000927 -0.001816 0.001353
Ecuador 0.000122 -0.000269 0.000170 0.001211 -0.003076 0.003421 0.000960 -0.003908 0.009353
Puerto Rico 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Jamaica 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Cuba, 0.004218 -0.004560 0.007686 -0.004306 0.065030 0.007907 -0.006535 0.129975 -0.000989
Zimbabwe 0.000164 -0.000299 0.000201 0.001616 -0.001659 0.002750 0.002242 0.001736 0.005859
Botswana, 0.000232 -0.000440 0.000270 0.002134 -0.002814 0.003416 0.002837 0.000221 0.006925
Namibia 0.000087 -0.000176 0.000120 0.000738 -0.001173 0.002026 0.000277 0.001018 0.004920
Senegal 0.003392 -0.003462 0.005720 0.000962 0.038715 0.009191 0.001718 0.075595 0.006230
Mali 0.003894 -0.005401 0.006305 -0.001718 0.042606 0.007290 -0.001983 0.083827 0.000585
Mauritania 0.002572 -0.000472 0.006485 -0.002825 0.050621 0.003493 -0.000572 0.071186 0.000410
Benin 0.002936 -0.003879 0.005502 -0.007343 0.045741 0.009395 -0.020552 0.111493 0.000399
Niger 0.004300 -0.006365 0.007495 -0.002969 0.044918 0.006221 -0.001959 0.079056 0.000127
Nigeria, 0.003110 -0.005064 0.004768 -0.002644 0.032207 0.010266 -0.011310 0.091392 0.003004
Cameroon 0.000946 -0.001723 0.001443 0.001776 0.004601 0.009262 -0.004684 0.038610 0.010514

Continued on next page
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Table S2.1 (continued)

Country ag(low) ai (low) as(low) ap(moderate) a1 (moderate) as(moderate) ap(high) ai (high) ag(high)
Togo 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Ghana 0.003991 -0.004645 0.006351 -0.003662 0.049574 0.009213 -0.013121 0.114338 -0.000192
Cote d’Ivoire 0.002600 -0.004308 0.004323 -0.003492 0.029486 0.011278 -0.015696 0.091850 0.004474
Guinea 0.002636 -0.004504 0.003992 -0.000441 0.022701 0.011480 -0.008514 0.077523 0.006134
Guinea-Bissau 0.003851 -0.005027 0.006781 -0.001927 0.047226 0.009868 -0.004182 0.100336 0.002250
Liberia 0.001596 -0.002959 0.003058 -0.003868 0.019423 0.011481 -0.018257 0.073454 0.008197
Sierra Leone 0.002687 -0.004520 0.004779 -0.004065 0.031496 0.012569 -0.016456 0.095509 0.005882
Burkina Faso 0.003614 -0.003844 0.008067 -0.007553 0.064431 0.004129 -0.006982 0.103952 -0.003649
Central African Rep. 0.001277 -0.001958 0.002020 0.001000 0.013502 0.009578 -0.006428 0.059229 0.007757
Congo 0.001545 -0.002686 0.002516 -0.000005 0.014567 0.013335 -0.014427 0.077976 0.011194
Gabon 0.001647 -0.002917 0.002328 0.003426 0.006144 0.014507 -0.008422 0.061838 0.014729
Eq. Guinea 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Zambia, 0.000122 -0.000224 0.000159 0.001140 -0.000966 0.002437 0.001046 0.003321 0.005487
Malawi 0.000318 -0.000536 0.000430 0.002035 -0.000068 0.004389 0.001333 0.012102 0.007354
Mozambique 0.000587 -0.000999 0.000833 0.002157 0.001713 0.006373 -0.000693 0.022100 0.008627
eSwatini 0.000259 -0.000473 0.000303 0.001957 -0.002142 0.003184 0.002539 0.001407 0.006022
Angola 0.000168 -0.000315 0.000229 0.001443 -0.001064 0.003447 0.000788 0.006228 0.007545
Burundi 0.000027 -0.000057 0.000025 0.000902 -0.001924 0.000854 0.003168 -0.006786 0.003032
Israel 0.000705 -0.001266 0.000963 0.001252 0.002162 0.003874 0.000251 0.013287 0.004552
Lebanon 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Madagascar 0.000179 -0.000290 0.000242 0.001728 -0.000470 0.003119 0.002417 0.006520 0.006206
Palestine 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Gambia 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Tunisia 0.000751 -0.001384 0.000947 0.001680 0.001127 0.004218 0.000590 0.013105 0.004677
Algeria 0.000332 -0.000639 0.000382 0.001798 -0.001921 0.003141 0.001518 0.003614 0.004834
Jordan 0.000653 -0.001210 0.000885 0.001348 0.001514 0.004127 0.000057 0.013347 0.004744
United Arab Emirates -0.001616 0.017444 0.006780 -0.002965 0.056304 0.001941 -0.001313 0.067760 0.000872
Qatar 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Kuwait 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Iraq 0.001142 -0.002079 0.001683 0.000294 0.006861 0.005011 -0.002192 0.025097 0.003914
Oman 0.002929 0.001805 0.009198 -0.004060 0.058115 0.003195 -0.002664 0.074418 0.000865
Vanuatu 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Cambodia 0.003706 -0.004775 0.004898 0.003558 0.029593 0.011957 -0.001266 0.086944 0.006353
Thailand 0.002777 -0.003559 0.003814 0.002911 0.021940 0.010504 -0.001353 0.065861 0.007212
Laos 0.002320 -0.003560 0.003156 0.002005 0.015596 0.009523 -0.002645 0.053825 0.006762
Myanmar 0.001543 -0.002352 0.002162 0.002275 0.009395 0.008813 -0.002585 0.041468 0.007636
Vietnam 0.002657 -0.003699 0.003607 0.002148 0.020878 0.009682 -0.002117 0.062901 0.006089
North Korea 0.000409 -0.000771 0.000536 0.001047 0.000285 0.003101 -0.000473 0.009251 0.003561
South Korea 0.001096 -0.001929 0.001545 0.000096 0.007307 0.004241 -0.002528 0.025167 0.002527
Mongolia 0.000009 -0.000020 0.000010 0.000179 -0.000410 0.000244 0.000498 -0.001166 0.000743
India 0.002661 -0.003617 0.004402 -0.002182 0.029564 0.006935 -0.005887 0.062852 0.002425
Bangladesh 0.003057 0.001612 0.007974 -0.005758 0.052532 0.004960 -0.007537 0.070351 0.001505
Bhutan 0.000012 -0.000024 0.000010 0.000396 -0.000825 0.000352 0.001388 -0.002902 0.001244
Nepal 0.000031 -0.000071 0.000042 0.000476 -0.001229 0.000985 0.000999 -0.002955 0.002969
Pakistan 0.002036 -0.001316 0.005203 -0.004026 0.037424 0.002639 -0.003496 0.054240 -0.000362
Afghanistan 0.000003 -0.000005 0.000002 0.000088 -0.000179 0.000074 0.000313 -0.000635 0.000262
Tajikistan 0.000002 -0.000005 0.000002 0.000075 -0.000154 0.000066 0.000263 -0.000540 0.000232
Kyrgyzstan -0.000000 0.000000 0.000000 -0.000000 0.000000 0.000000 -0.000000 0.000000 0.000000
Turkmenistan 0.000196 -0.000361 0.000242 0.001214 -0.001087 0.002255 0.001186 0.002555 0.003888
Iran 0.000094 -0.000187 0.000110 0.000919 -0.001540 0.001535 0.001303 -0.001209 0.003396
Syria 0.001096 -0.002094 0.001486 0.000847 0.003894 0.005123 -0.001885 0.021130 0.004271
Armenia, 0.000007 -0.000014 0.000006 0.000219 -0.000461 0.000200 0.000750 -0.001590 0.000697
Sweden 0.000001 -0.000002 0.000001 0.000023 -0.000050 0.000026 0.000074 -0.000163 0.000087
Belarus 0.000011 -0.000021 0.000012 0.000161 -0.000316 0.000226 0.000386 -0.000737 0.000622
Ukraine 0.000048 -0.000097 0.000057 0.000514 -0.000935 0.000829 0.000918 -0.001373 0.001972
Poland 0.000013 -0.000027 0.000016 0.000200 -0.000382 0.000290 0.000478 -0.000867 0.000791
Austria 0.000011 -0.000022 0.000010 0.000239 -0.000512 0.000255 0.000706 -0.001532 0.000794
Hungary 0.000068 -0.000135 0.000079 0.000630 -0.001061 0.000988 0.001045 -0.001205 0.002145
Moldova 0.000051 -0.000105 0.000060 0.000570 -0.001067 0.000879 0.001039 -0.001667 0.002077
Romania 0.000087 -0.000173 0.000102 0.000846 -0.001387 0.001347 0.001307 -0.001251 0.002919
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Table S2.1 (continued)

Country ag(low) ai (low) as(low) ap(moderate) a1 (moderate) as(moderate) ap(high) ai (high) ag(high)
Lithuania 0.000007 -0.000014 0.000008 0.000104 -0.000193 0.000148 0.000254 -0.000446 0.000406
Latvia 0.000004 -0.000007 0.000005 0.000059 -0.000112 0.000087 0.000153 -0.000276 0.000248
Estonia 0.000000 -0.000000 0.000000 0.000004 -0.000008 0.000003 0.000014 -0.000028 0.000011
Germany 0.000008 -0.000017 0.000009 0.000147 -0.000298 0.000196 0.000392 -0.000787 0.000571
Bulgaria 0.000139 -0.000270 0.000159 0.001158 -0.001660 0.001789 0.001622 -0.000537 0.003500
Greece 0.000294 -0.000563 0.000340 0.001662 -0.001764 0.002835 0.001539 0.003019 0.004442
Turkey 0.000067 -0.000136 0.000079 0.000729 -0.001348 0.001235 0.001125 -0.001613 0.002923
Albania 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Croatia 0.000159 -0.000307 0.000195 0.000989 -0.001158 0.001757 0.001142 0.000909 0.003065
Switzerland 0.000004 -0.000009 0.000004 0.000117 -0.000246 0.000111 0.000386 -0.000815 0.000372
Luxembourg 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Belgium 0.000002 -0.000004 0.000002 0.000060 -0.000128 0.000067 0.000205 -0.000440 0.000236
Netherlands 0.000003 -0.000006 0.000004 0.000068 -0.000134 0.000094 0.000207 -0.000398 0.000298
Portugal 0.000176 -0.000335 0.000229 0.001067 -0.001103 0.002136 0.001026 0.001846 0.003768
Spain 0.000123 -0.000242 0.000138 0.001169 -0.001888 0.001803 0.001666 -0.001324 0.003791
Ireland 0.000001 -0.000001 0.000001 0.000014 -0.000027 0.000015 0.000041 -0.000079 0.000045
New Caledonia 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Solomon Is. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
New Zealand 0.000002 -0.000004 0.000002 0.000056 -0.000127 0.000063 0.000195 -0.000442 0.000221
Australia 0.000028 -0.000053 0.000049 0.000253 -0.000213 0.000816 0.000245 0.000738 0.002048
Sri Lanka, 0.004993 -0.006660 0.008688 -0.006514 0.066422 0.013468 -0.018312 0.157846 -0.000021
China 0.000806 -0.001467 0.001027 0.001526 0.001792 0.004875 -0.001179 0.017634 0.004611
Taiwan 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Italy 0.000072 -0.000145 0.000078 0.000809 -0.001498 0.001159 0.001412 -0.002192 0.002689
Denmark 0.000002 -0.000004 0.000003 0.000031 -0.000058 0.000054 0.000086 -0.000148 0.000157
United Kingdom 0.000002 -0.000004 0.000002 0.000043 -0.000084 0.000049 0.000130 -0.000252 0.000155
Iceland 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Azerbaijan 0.000096 -0.000185 0.000118 0.000840 -0.001199 0.001454 0.001205 -0.000465 0.003060
Georgia 0.000023 -0.000049 0.000027 0.000379 -0.000820 0.000571 0.000902 -0.001984 0.001643
Philippines 0.004028 -0.004856 0.007192 -0.006678 0.064311 0.010852 -0.016453 0.147638 -0.000799
Malaysia 0.003283 -0.005732 0.004356 0.004263 0.013783 0.018723 -0.010509 0.089776 0.013484
Brunei 0.002570 -0.004459 0.003136 0.007699 0.002706 0.017552 -0.001794 0.061654 0.016913
Slovenia 0.000090 -0.000176 0.000105 0.000784 -0.001238 0.001266 0.001164 -0.000905 0.002637
Finland 0.000001 -0.000002 0.000001 0.000026 -0.000052 0.000028 0.000076 -0.000158 0.000088
Slovakia, 0.000028 -0.000056 0.000031 0.000351 -0.000685 0.000503 0.000746 -0.001368 0.001274
Czechia 0.000010 -0.000022 0.000011 0.000204 -0.000428 0.000242 0.000566 -0.001193 0.000721
Eritrea 0.001021 -0.001709 0.001430 0.002198 0.004995 0.007298 -0.000230 0.028703 0.008930
Japan 0.000868 -0.001561 0.001118 0.001274 0.003035 0.004735 -0.001496 0.020111 0.003993
Paraguay 0.002228 -0.003745 0.004091 -0.002237 0.022303 0.008640 -0.007327 0.056037 0.006358
Yemen 0.000836 -0.001417 0.001189 0.002119 0.003535 0.006773 -0.000383 0.024902 0.008059
Saudi Arabia 0.002201 -0.003941 0.003240 -0.000607 0.015090 0.006382 -0.003224 0.040767 0.004113
Antarctica 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
N. Cyprus 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Cyprus 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Morocco 0.000193 -0.000363 0.000242 0.001325 -0.001308 0.002533 0.001170 0.002964 0.004461
Egypt 0.002032 -0.003982 0.002518 0.001006 0.005464 0.006660 -0.002829 0.029245 0.004851
Libya 0.000803 -0.001535 0.000980 0.001943 0.000180 0.004836 0.000213 0.013901 0.005341
Ethiopia 0.000032 -0.000069 0.000031 0.000984 -0.002151 0.000991 0.003330 -0.007342 0.003433
Djibouti 0.005398 -0.004782 0.009447 -0.001647 0.062225 0.008555 -0.004249 0.111036 0.002335
Somaliland 0.002127 -0.003767 0.002895 0.002423 0.010211 0.011898 -0.004920 0.055553 0.009661
Uganda 0.000118 -0.000230 0.000188 0.000739 -0.000571 0.003169 -0.000838 0.005740 0.007676
Rwanda 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Bosnia and Herz. 0.000139 -0.000268 0.000165 0.001020 -0.001344 0.001726 0.001241 0.000369 0.003203
North Macedonia 0.000051 -0.000105 0.000058 0.000618 -0.001246 0.000978 0.001119 -0.002122 0.002455
Serbia 0.000085 -0.000172 0.000101 0.000795 -0.001355 0.001314 0.001143 -0.001126 0.002803
Montenegro 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Kosovo 0.000064 -0.000131 0.000073 0.000699 -0.001342 0.001117 0.001144 -0.001881 0.002646
Trinidad and Tobago 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

S. Sudan 0.001775 -0.003061 0.002574 0.001405 0.012469 0.011468 -0.007659 0.063244 0.009191
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S2.2 Agricultural damage functions

TABLE S2.2: Cereal/Grains sectoral output (yield) shock per country (average of maize
and soy from Li et al. (2025)[4]). These values correspond to the RCP8.5 scenario for
four 20-year periods in the 21st century, showing percentage changes in yield relative to
global mean temperature rise. Column headers denote the mean global temperature
(°C) within each period. While yield changes are case-specific, the general trend
indicates decreasing yields. In some countries, yields initially increase at lower
temperatures and begin to decline at higher temperatures. In certain cases (e.g.,
Indonesia), yield changes remain positive across all temperature levels, albeit at varying

rates.
Country 0.45° 1.53° 2.87° 4.36° Country 0.45° 1.53° 2.87° 4.36°
Afghanistan -1.97 -4.389 -12.336 -26.817 Angola -0.708 -3.135 -9.670 -20.992
Albania -0.909 -4.246 -12.216 -26.450 Argentina 2.256  2.829 0.675 -4.639
Armenia -2.224 -5.897 -14.885 -30.850 Australia 1.349 0.387 -4.594 -14.075
Austria 2.444 1.608 -3.141 -13.719 Azerbaijan 0.890 -1.604 -8.749 -22.095
Burundi 2.263 1.747 -2.454 -10.618 Belgium 2.006 1.859 -1.580 -9.293
Benin 5.518 5.465 2.088 -4.861 Burkina Faso 2.425 1.393 -3.702 -14.258
Bangladesh -0.271 -1.652 -6.453 -15.417 Bulgaria -0.966 -3.436 -10.095 -23.249
Bosnia and Herzegovina 1.891 0.131 -5.822 -18.174 Belarus 5.507 5.085 0.335 -9.697
Belize 3.582 2174 -2.910 -12.332 Bolivia 0.886 -2.791 -11.308 -26.285
Brazil 1.900 2.224 -1.091 -9.336 Bhutan -1.326 -2.362 -7.019 -16.016
Botswana 5.902 4.214 -2.075 -14.868 Central African Republic 1.754 1.129 -3.282 -12.022
Canada -1.581 -6.428 -16.761 -32.703 Switzerland 3.387 2,594 -2.319 -12.498
Chile 2.733 2478 -1.452 -9.446 China 1.066 -1.086 -8.077 -20.925
Ivory Coast 4.296 3.224 -1.440 -9.820 Cameroon 2.824 1.862 -2.623 -11.329
Congo (Dem. Rep.) 1.668 0.439 -4.555 -13.956 Congo (Rep.) 2.647 1.365 -3.193 -11.424
Colombia 6.436 4.885 -0.711 -10.684 Costa Rica 2.315 0.266 -5.181 -14.449
Czech Republic 4.563 3.971 -0.420 -10.462 Germany 4.850 4.868 1.212  -7.247
Djibouti 7.821 6.934 2.215  -6.531 Denmark 1.099 1.173 -1.836 -8.158
Algeria 0.589 -2.937 -11.179 -25.214 Ecuador -1.641 -0.866 -2.577 -7.184
Egypt -2.365 -4.380 -10.107 -20.593 Eritrea 8.258 7.926 3.810 -4.867
Spain 6.107 5.033 -0.604 -11.759 Estonia 3.549 1.849 -4.545 -15.965
Ethiopia 2.647 2.543 -1.027 -8.652 Finland 3.932 2563 -3.976 -15.896
France 5973 5.831 1.719 -7.362 Gabon 4.953 4.337 0.754 -6.170
Georgia -1.283 -5.534 -14.658 -30.728 Ghana 4.885 4.194 -0.023 -8.304
Guinea 3.295 1.697 -3.687 -12.498 Equatorial Guinea 6.968 6.928 4.147  -1.689
Greece -1.661 -4.623 -11.870 -24.913 Guatemala -1.102 -2.696 -8.153 -18.734
Guyana -1.832 -5.567 -13.424 -25.771 Honduras -1.353 -4.152 -11.106 -22.784
Croatia 0.620 -1.378 -7.517 -20.099 Hungary 1.979 0.248 -5.651 -17.845
Indonesia 5.191 6.674 5.663 2.337 India 3.140 2.554 -2.000 -11.242
Iran 0.569 -2.859 -11.329 -26.330 Iraq 5.081 2.090 -5.811 -20.552
Israel 1.767 -0.481 -6.310 -17.364 Italy 0.353 -2.048 -8.860 -21.864
Jordan 0.394 -2.736 -9.701 -22.215 Japan 0.239 -1.090 -5.906 -15.543
Kazakhstan -1.141 -4.717 -14.533 -33.139 Kenya 0.428 0.848 -1.933 -7.973
Kyrgyzstan 1.181 -0.076  -6.943 -21.050 Cambodia 2.597 2423 -0.531 -6.999
South Korea 3.217 1.281 -4.632 -15.015 Kosovo -1.146 -4.043 -11.560 -25.749
Laos 4.230 4.127 0.786 -6.283 Lebanon 1.224 -2.048 -9.047 -21.549
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Table S2.2 (continued)
Country 0.45° 1.53° 2.87° 4.36° Country 0.45° 1.53° 2.87° 4.36°
Liberia 2.960 1.233 -3.579 -11.115 Sri Lanka 0.194 0.690 -1.450 -6.117
Lesotho 8.154 7.261 2.031 -8.793 Lithuania 4.622 4.030 -0.582  -9.608
Luxembourg 4.544 4377 0.735 -7.400 Latvia 3.937 2.557 -3.367 -14.313
Morocco 6.445 5.086 -0.267 -10.535 Moldova 4.759 3.560 -1.913 -13.383
Madagascar -0.207 -1.784 -6.523 -14.982 Mexico 2.938 1.356 -4.054 -13.969
Macedonia -0.984 -3.083 -9.633 -22.555 Mali 1.698 0.724 -4.536 -15.462
Myanmar 0.245 -0.712 -4.965 -13.132 Montenegro 0.630 -1.899 -8.892 -22.129
Mongolia 2.353 0.955 -5.919 -20.241 Mozambique 3.996 3.248 -1.601 -11.423
Malawi 3.677 2.763 -2.201 -11.922 Malaysia 1.675 1.411 -1.696 -7.385
Namibia -0.623 -3.603 -11.142 -23.886 Niger 3.410 2902 -1.379 -11.044
Nigeria 4.397 3984 -0.039 -8.134 Nicaragua -1.197 -4.292 -11.063 -21.987
Netherlands 2.549 2.341 -1.029 -8.426 Nepal -1.770 -4.026 -10.553 -22.254
Pakistan -5.925 -9.286 -17.330 -31.763 Panama 4.764 4.204 0.647 -5.883
Peru -0.979 -2.021 -7.222 -16.733 Philippines 4.046  3.783 0.907  -4.685
Poland 4.250 3.626 -0.958 -10.594 North Korea 1.875 -0.840 -8.137 -20.945
Portugal 6.783 6.138 1.234 -8.303 Paraguay -1.908 -3.164 -8.208 -18.482
Romania 1.406 -0.566 -6.770 -19.252 Russia 1.097 -1.486 -9.582 -25.105
Rwanda -0.274 -1.511 -6.540 -15.693 Sudan 6.556 7.183 4.318 -2.762
South Sudan 3.810 4.464 1.813 -4.393 Sierra Leone 3.876 2.650 -1.875 -9.366
El Salvador 2.176 0.405 -5.170 -15.551 Somalia 1.178 0.899 -2.761 -10.512
Serbia 2.819 1.608 -3.791 -15.454 Suriname -1.201 -2.894 -7.713 -15.385
Slovakia 2.194 0.170 -6.199 -18.754 Slovenia 2.029 1.044 -3.893 -14.999
Swaziland 2.809 1.788  -2.748 -12.157 Syria -1.427 -5.429 -13.649 -28.236
Chad 0.977 0.084 -4.576 -14.337 Togo 4.047 3.493 -0.336 -7.701
Thailand 3.485 3.042 -0.349 -7.292 Tajikistan -3.308 -7.139 -17.042 -34.822
Turkmenistan 3.073 1.214 -5.359 -17.998 East Timor 6.732 7.312 5.464 1.174
Turkey -1.001 -4.583 -12.425 -27.006 Taiwan 1.768 1.572 -1.680 -7.054
Tanzania 0.996 0.231 -4.209 -12.452 Uganda 0.143 0.223 -3.153 -9.906
Ukraine 3.987 2.874 -2.526 -13.564 Uruguay 2.578 2.939 0.341  -5.488
USA -2.027 -5.718 -14.208 -28.432 Uzbekistan -1.538 -4.226 -12.049 -26.784
Venezuela 5.322 3.578 -2.181 -12.286 Vietnam 2.175 2.755 0.225 -5.725
South Africa 6.917 6.086 1.173 -9.086 Zambia 4.010 3.227 -1.657 -11.925
Zimbabwe 8.332 7.608 2.646  -8.050 Andorra 7.722  8.535 5.392  -2.839
Gaza -0.378 -2.375 -7.770 -18.026 Hong Kong S.A.R. 0.399 0.330 -2.708 -8.729
Siachen Glacier -4.649 -1.610 -2.969 -10.306 Liechtenstein 3.083 1.869 -3.536 -14.481
Macau S.A.R. 2.530 2.351 -0.872 -6.976 Monaco 5.524 6.126 3.087 -4.676
San Marino 0.890 -3.520 -12.677 -28.721
TABLE S2.3: Paddy rice output (yield) shock per country from Li et al. (2025)[4].
Values correspond to the RCP8.5 scenario for four 20-year periods, with columns
indicating the mean global temperature (°C) in each period. As in the cereal/grains
case, yield changes are case-specific. In some instances, a large positive yield change
(e.g., in Switzerland) does not imply a strong economic response, since baseline rice
yields are very low in these regions. GTAP-INT 2 accounts for this by incorporating
baseline yield information.
Country 0.45° 1.53° 2.87° 4.36° Country 0.45° 1.53° 2.87° 4.36°
Afghanistan 4.425 2.109 -0.289 -0.254 Angola -2.470 -4.983 -8.527 -11.795
Albania 1.436 0.050 -1.647 -2.299 Argentina 2.338 0.117 -3.772 -7.970
Armenia 1.358 -0.011 -1.010 0.032 Australia -0.748 -2915 -6.270 -9.229
Austria 6.883 12.943 19.932 29.766 Azerbaijan 5.399 1.120 -3.830 -8.031
Burundi 2.739 1.254 -1.376 -3.711 Benin 2.206 -3.103 -10.360 -18.504
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Table S2.3 (continued)

Country 0.45° 1.53° 2.87° 4.36° Country 0.45° 1.53° 2.87° 4.36°
Burkina Faso 0.195 -5.693 -13.409 -21.528 Bangladesh -2.665 -7.975 -14.540 -21.614
Bulgaria -2.521  -4.065 -5.885 -6.612 Belarus 4.959 2.759 0.122  -1.396
Belize 1.811  -3.327 -10.273 -17.384 Bolivia -5.692 -11.013 -17.066 -22.114
Brazil 5.162 0.852  -5.022 -10.870 Brunei -1.174  -4.620 -9.764 -15.290
Bhutan -4.473  -7.393 -11.366 -15.140 Botswana 2.202 -3.973 -11.111 -17.557
Central African Republic -0.099 -3.216 -8.239 -13.567 Switzerland 5.461 10.143 15.598 23.471
Chile -0.541 0.642 1.279 2.510 China -0.921 -3.633 -7.087 -9.778
Ivory Coast 0.913 -3.957 -10.285 -16.796 Cameroon -0.980 -4.113 -8.633 -13.378
Congo (DR) -0.787  -3.397 -7.485 -11.674 Congo (Rep.) -2.286  -5.876 -10.696 -15.780
Colombia 2.476  -0.723 -5.273  -9.495 Costa Rica 5.150 0.496 -5.810 -12.286
Cuba 5.700 1.015 -5.704 -12.854 Djibouti -2.111  -9.723 -19.380 -28.953
Dominican Republic -0.079  -2.510 -6.287 -9.997 Algeria -1.590 -4.909 -9.108 -12.655
Ecuador 4.937 2.550 -1.233  -4.921 Egypt -1.169  -6.116 -12.265 -18.817
Eritrea 2.420 -3.879 -12.005 -20.299 Spain 2.378 0.980 -1.112 -2.125
Ethiopia 3.252 0.577 -3.258 -6.877 France 2.007 1.1564  -0.360 -0.953
Gabon -0.124  -3.997 -9.410 -15.293 Georgia 0.921 2.003 3.509 7.151
Ghana 1.496 -3.565 -10.500 -17.972 Guinea -1.981 -5.816 -11.046 -16.091
Gambia 0.412 -4.743 -11.618 -18.759 Guinea Bissau 1.046 -3.645 -10.132 -16.815
Equatorial Guinea 2.959 -0.590 -5.606 -11.077 Greece -4.112  -6.242 -8.830 -10.544
Guatemala 1.064 -2.685 -7.761 -12.576 Guyana -3.290 -7.447 -13.167 -19.007
Honduras -1.241  -4.492  -8.767 -12.557 Haiti 3.975 0.297  -4.847 -10.036
Hungary 0.617 -2.209 -5.591 -8.350 Indonesia 11.460 6.972 0.495 -6.453
India 0.098 -5.946 -13.435 -21.327 Iran 7.458 1.638 -5.230 -11.378
Iraq -7.135 -19.656 -33.579 -47.378 Italy 1.876 0.085 -2.346  -3.998
Jamaica 9.548 5.793 0.222 -5.765 Japan 1.176  -0.070 -1.895 -3.201
Kazakhstan 1.600 -1.921 -5.649 -7.762 Kenya 2.465 -0.391 -4.877 -9.708
Kyrgyzstan 3.568 6.813 11.371 19.189 Cambodia 1.307 -3.317 -9.683 -16.550
South Korea -2.195 -3.639 -5.540 -6.836 Kosovo 0.777 -0.722 -2.496 -3.092
Laos 3.850 -1.161 -7.788 -14.405 Liberia -1.260 -5.003 -9.875 -14.968
Sri Lanka 1.421 -2.097 -7.486 -13.327 Lesotho 3.003 1.965 0.811 1.044
Morocco -0.673 -1.516 -2.874 -3.183 Moldova 5.885 1.799 -2.935 -7.072
Madagascar -2.206  -4.559  -8.252 -12.205 Mexico 1.619 -2.986 -9.493 -15.966
Macedonia -2.335  -3.712  -5.329 -5.733 Mali 2.972  -4.216 -13.243 -22.259
Myanmar 0.293 -4.584 -10.732 -17.131 Mongolia 3.420 5.449 8.442  14.383
Mozambique 0.009 -4.393 -10.328 -16.355 Mauritania -5.978 -13.007 -22.000 -31.109
Malawi 3.562 0.067 -4.701 -9.233 Malaysia -1.383  -4.503 -9.300 -14.472
Namibia -8.021  -7.906 -7.934 -6.429 Niger -1.441  -7.801 -16.153 -25.104
Nigeria -0.414  -4.429 -10.288 -16.721 Nicaragua -2.494  -6.526 -11.691 -16.677
Nepal -2.243  -5.541 -9.662 -13.261 Pakistan -4.153 -11.161 -19.510 -27.524
Panama -1.105 -4.253 -9.128 -14.311 Peru 5.023 5.309 5.065 5.575
Philippines -1.894  -4.813 -9.448 -14.566 Papua New Guinea  4.897 1.428 -3.825 -9.618
Poland 3.428 2.041 0.184 -0.699 North Korea -0.227  -0.249 -0.168 1.325
Portugal 2.786 1.749 -0.392 -2.021 Paraguay -0.207  -4.417 -9.887 -15.119
Romania 1.567 -1.868 -5.792 -9.101 Russia 3.061 3.600 4.780 8.595
Rwanda 0.865 -0.128 -2.055 -3.580 Sudan 3.258  -3.229 -11.818 -20.847
South Sudan 1.687 -2.626 -9.155 -16.140 Senegal -2.193  -8.212 -16.006 -23.880
Sierra Leone -1.288  -5.390 -11.018 -16.993 El Salvador 3.001 -1.373 -7.053 -12.595
Somalia 0.411  -3.798 -9.649 -16.262 Serbia 1.766 -0.071 -2.227 -3.282
Suriname -5.086  -8.826 -14.320 -19.982 Slovakia 0.428 -0.665 -2.037 -2.312
Swaziland 0.921 -2.458 -6.763 -10.924 Syria -7.223 -13.375 -19.855 -25.914
Chad -2.601  -6.480 -12.224 -18.738 Togo 1.531 -3.177 -9.686 -16.807
Thailand 2.116  -3.191 -10.026 -17.092 Tajikistan 0.831 1.830 3.553 8.093
Turkmenistan -0.668  -6.943 -14.684 -21.657 East Timor 5.974 2.781 -2.087 -7.585
Trinidad & Tobago -0.652  -3.785 -8.714 -14.155 Tunisia -0.831  -4.450 -8.949 -13.006
Turkey -1.644 -3.191 -5.045 -6.110 Taiwan 0.715 -0.770 -3.593 -6.545
Tanzania -0.764 -3.282 -7.218 -11.060 Uganda 0.292 -2.022 -6.079 -10.235
Ukraine 3.953 0.880 -2.528 -4.984 Uruguay 2.952 1.212  -2.149 -5.843
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Table S2.3 (continued)

Country 0.45° 1.53° 2.87° 4.36° Country 0.45° 1.53° 2.87° 4.36°
USA -0.503  -5.120 -10.865 -16.294 Uzbekistan 0.893 -1.892 -5.034 -6.518
Venezuela 1.535 -4.627 -12.279 -19.378 Vietnam 5.181 -0.017 -7.033 -14.383
South Africa 3.777  0.303 -3.854 -7.299 Zambia -0.272  -3.172  -7.158 -10.731
Zimbabwe 2.612 -2.380 -8.493 -14.290 Andorra 4.395 5.691 6.937 9.816
Hong Kong S.A.R. 2.540 -0.967 -5.855 -10.867 Siachen Glacier -1.680 4.201 11.979 23.129
Macau S.A.R. 1.687 -1.799 -6.661 -11.634 Monaco 7.535 4.910 1.235 -2.150
San Marino -4.698  -3.244  -1.741 1.489 French Guiana -0.419  -4.180 -9.584 -14.960

TABLE S2.4: Wheat output (yield) shock per country from Li et al. (2025)[4]. Values
correspond to the RCP8.5 scenario for four 20-year periods, with columns indicating
the mean global temperature (°C) in each period. Wheat yields exhibit an optimal
temperature at which yield levels peak, followed by a decline as temperatures continue
to rise. In some cases, this “optimum” is already exceeded at lower temperature
increases, resulting in consistently negative yield changes, while in others, yields
initially increase before declining at higher temperatures.

Country 0.45° 1.53° 2.87° 4.36° Country 0.45° 1.53° 2.87° 4.36°
Afghanistan 0.329 -3.850 -9.681 -16.021 Angola -3.804 -8.112 -14.297 -21.704
Albania -0.503 -3.495 -7.686 -12.558 United Arab Emirates -2.708 -10.300 -20.284 -31.149
Argentina 1.642 0.067 -3.124 -7.426 Armenia -1.521  -3.030 -5.287 -7.690
Australia 2.226 -0.468 -5.034 -10.404 Austria 4.584 1.889 -2.118 -7.259
Azerbaijan 1.072 -2.307 -6.874 -12.288 Burundi 0.807 -2.348 -7.576 -13.888
Belgium 1.309 -0.188 -3.033 -6.721 Benin 4.890 -0.631 -8.630 -18.920
Burkina Faso -0.618  -5.944 -13.629 -24.053 Bangladesh -2.781  -7.688 -14.122 -22.465
Bulgaria -3.693 -6.818 -10.911 -16.020 Bosnia and Herzegovina 1.220 -1.762 -5.815 -10.843
Belarus 7.233 3.987 -0.618 -5.855 Belize 3.991 -2.303 -10.486 -19.759
Bolivia -3.135 -8.617 -15.641 -23.634 Brazil 3.472  -0.261 -5.528 -11.916
Bhutan -2.512  -4.880 -8.557 -13.208 Botswana 8.302 1.349 -7.321 -17.565
Central African Republic -0.665 -5.009 -11.955 -20.576 Canada 0.615 -1.647 -4.765 -8.108
Switzerland 6.206 3.765 -0.202 -4.833 Chile 1.860 -0.559 -3.864 -7.636
China -0.535 -3.366 -7.603 -12.663 Cameroon 1.423 -3.233 -10.049 -18.802
Congo (DR) -0.619 -4.723 -10.961 -18.680 Congo (Rep.) -1.943  -6.662 -12.985 -20.712
Colombia 7.540 2.953 -3.546 -10.783 Czech Republic 5.455 2.992 -0.819 -5.710
Germany 5.505 3.389  -0.317 -4.895 Denmark -1.327  -1.712 -3.381 -5.526
Algeria 0.293 -4.428 -10.632 -17.647 Ecuador 2.486 -0.605 -5.299 -10.797
Egypt -5.074  -9.209 -14.640 -21.131 Eritrea 13.658 7.696 -0.771 -11.153
Spain 4.540 0.781 -4.809 -10.893 Estonia 3.705 1.351 -2.228 -6.043
Ethiopia 1.356 -1.672 -6.549 -12.676 Finland 2.640 0.913 -2.027 -4.969
France 5.173 2.671 -1.551 -6.560 Gabon 5.548 0.564 -6.169 -14.116
United Kingdom -0.848 -1.305 -3.052 -5.402 Georgia -1.430 -3.515 -6.458 -9.875
Equatorial Guinea 7.397 2.373 -4.401 -12.421 Greece -4.807 -7.561 -11.348 -15.767
Guatemala -2.196  -6.963 -13.460 -21.009 Guyana -7.270 -12.056 -18.183 -24.773
Honduras -4.013  -9.073 -15.725 -23.135 Croatia -0.610 -3.683 -7.867 -13.163
Hungary 0.602 -2.556 -6.954 -12.423 India 1.198 -4.553 -12.283 -21.738
Ireland -1.539  -1.439 -2.713 -4.526 Iran 2.459  -2.760 -9.185 -16.528
Iraq 6.811 -1.256 -10.397 -20.943 Israel 0.349 -3.981 -9.188 -15.532
Italy 2,478 -0.979 -5.887 -11.806 Jordan -2.149  -6.830 -12.355 -18.916
Japan 0.025 -0.340 -1.493 -3.047 Kazakhstan -3.800 -8.384 -14.201 -20.979
Kenya -1.548 -4.640 -9.672 -16.032 Kyrgyzstan 2.357 0.767 -2.136 -5.371
Cambodia 3.633 -1.774 -8.901 -17.329 South Korea 3.553 1.755 -1.406 -5.163
Kosovo -1.505 -4.041 -7.631 -11.927 Kuwait 5.445 -3.155 -13.343 -24.830
Laos 1.269 -3.129 -9.434 -16.802 Lebanon -0.777  -4.555  -9.096 -14.575

Continued on next page
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Table S2.4 (continued)

Country 0.45° 1.53° 2.87° 4.36° Country 0.45° 1.53° 2.87° 4.36°
Libya 7.784 2.753 -3.872 -11.592 Lesotho 12.448 8.245 2.565  -3.796
Lithuania 4.999 2.568 -1.267 -5.560 Luxembourg 4.705 2.618 -1.022 -5.532
Latvia 4.915 2.581 -1.079 -5.133 Morocco 9.018 2.680 -5.007 -13.220
Moldova 6.997 2.345 -3.626 -10.835 Madagascar -4.837 -8.679 -14.119 -20.698
Mexico 0.990 -4.350 -11.290 -19.374 Macedonia -3.617  -6.163 -9.732 -13.898
Mali -2.009 -9.034 -18.296 -29.552 Myanmar -3.335  -7.752 -13.740 -20.918
Montenegro -0.497 -2.699 -5.968 -9.820 Mongolia 4.970 5.243 4.850 4.356
Mozambique 5.455 -0.269 -8.205 -17.449 Mauritania -7.225 -14.303 -23.623 -34.156
Malawi 3.422  -1.212 -7.883 -15.483 Malaysia 1.614 -2.471 -8.620 -15.986
Namibia -2.409 -7.705 -14.864 -22.972 Niger 1.028 -3.729 -10.557 -20.427
Nigeria 5.643 0.974 -6.098 -16.139 Nicaragua -5.126 -10.546 -17.319 -24.726
Netherlands 0.862 -0.258 -2.724 -5.995 Norway -0.627 -0.839 -2.141 -3.732
Nepal -2.116  -6.580 -12.851 -20.689 New Zealand -0.071  -0.747 -2.506 -4.915
Oman 16.906 7.626  -4.217 -17.400 Pakistan -8.910 -14.917 -22.490 -31.627
Peru 15.511 12.573 7.750 1.711 Poland 4.887 2.460 -1.420 -6.212
North Korea 3.742 2.495 0.056 -2.861 Portugal 9.559 5.264 -1.389 -8.466
Paraguay -3.030 -6.975 -12.523 -19.322 Romania 0.204 -3.720 -8.774 -14.996
Russia 0.710 -3.021 -7.822 -13.338 Rwanda -4.570  -7.292 -11.811 -17.400
Saudi Arabia 23.799 12.347 -1.693 -17.138 Sudan 13.142 6.126  -3.787 -16.072
South Sudan 5.035 0.446  -6.932 -16.235 Senegal -2.094 -9.318 -18.323 -28.433
El Salvador -5.648 -10.603 -17.139 -24.662 Somalia -1.195  -5.527 -11.422 -19.134
Serbia 2439 -1.180 -6.011 -11.973 Slovakia 1.234  -1.339 -5.154 -9.971
Slovenia 2.360 -0.364 -4.193 -9.113 Sweden 1.162 0.220 -1.977 -4.533
Swaziland 2.231 -2.030 -7.670 -14.534 Syria -5.139  -9.289 -14.175 -20.015
Chad -3.085 -7.933 -14.963 -24.506 Togo 8.571 2.660 -5.891 -15.832
Thailand 1.956 -2.970 -9.602 -17.493 Tajikistan -5.262  -8.213 -12.564 -17.643
Turkmenistan -2.361  -7.792 -15.146 -23.648 Tunisia -3.893 -7.602 -12.701 -18.929
Turkey -3.336  -6.015 -9.375 -13.378 Tanzania 1.614 -1.561 -6.813 -13.158
Uganda -1.287 -4.055 -9.311 -15.736 Ukraine 6.774 2.634 -2.778  -9.248
Uruguay 1.952 0.067 -3.895 -9.056 USA -1.443  -5.001 -9.456 -14.423
Uzbekistan -4.438 -8.744 -14.617 -21.510 Venezuela 6.291 -1.603 -11.375 -21.756
Vietnam 15.601  10.606 3.497  -4.489 West Bank -3.394 -7.305 -12.114 -18.007
Yemen -16.702 -19.819 -24.602 -30.190 South Africa 11.974 6.857 0.285 -7.114
Zambia 5.636 -0.392 -8.455 -18.352 Zimbabwe 10.420 3.865 -4.624 -14.839
Andorra 12.439 9.202 4.022 -1.644 Gaza -2.342  -6.414 -11.431 -17.649
Hong Kong S.A.R. -0.157  -4.125 -9.770 -16.292 Siachen Glacier -8.928 -5.350 -1.493 3.090
Liechtenstein 3.813 1.781 -1.579 -5.582 Macau S.A.R. 0.835 -2.907 -8.355 -14.527
Monaco 9.012 5.301 -0.335 -7.020 San Marino 0.909 -2.284 -6.821 -12.296

S2.3 Mortality rate damage functions

TABLE S2.5: Linear coefficients for the mortality changes (shocks to regional
population and labor availability), in percentage change. Based on Bressler et al.
(2021), no-income-adaptation scenario.

Region Intercept Slope Region Intercept Slope
Afghanistan -0.33 4.39 Ghana 4.33
Albania -0.14 2.05 Greece 1.27
Algeria -0.35 2.79 Guatemala 2.48
Angola -0.44 2.42 Guinea 4.82
Argentina -0.22 1.36 Guinea-Bissau 3.98

Continued on next page
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Table S2.5 (continued)

Region Intercept Slope Region Intercept Slope
Armenia -0.24 2.24 Hungary -0.03 1.08
Australia -0.24 0.28 Iceland -0.01  -0.89
Austria 0.04 0.01 India -0.19 4.17
Azerbaijan -0.08 2.07 Indonesia -0.15 2.59
Bahamas 0.01 1.01 Iran -0.06 2.36
Bangladesh -0.19 3.46 Iraq -0.12 4.68
Belarus -0.08 0.92 Ireland -0.04 -0.51
Belgium 0.01 0.00 Israel 0.07 0.95
Belize -0.04 2.61 Italy 0.02 0.75
Benin -0.23 4.59 Japan 0.04 0.81
Bhutan -0.17 1.57 Jordan 0.04 2.66
Bolivia -0.88 1.91 Kazakhstan -0.10 1.65
Bosnia and Herzegovina 0.02 1.40 Kenya 0.09 2.81
Botswana -0.25 1.77 Laos -0.25 3.44
Brazil -0.22 1.72 Latvia -0.09 0.74
Brunei -0.16 0.44 Lebanon 0.11 1.06
Bulgaria -0.13 1.36 Libya -0.25 1.91
Burkina Faso -0.14 5.71 Lithuania -0.10 0.67
Burundi -0.10 3.85 Luxembourg 0.04 -0.52
Cambodia -0.14 4.18 Madagascar -0.50 4.28
Cameroon -0.31 3.76 Malawi -0.31 4.67
Canada -0.39 0.61 Malaysia -0.15 1.55
Cape Verde -0.20 2.45 Mali -0.24 6.27
Central African Rep. -0.30 5.16 Mauritania -0.33 4.96
Chad -0.28 5.72 Mexico -0.06 1.15
Chile -0.31 0.75 Moldova -0.13 2.58
China -0.24 2.37 Mongolia -0.05 1.71
Colombia -0.30 1.41 Morocco -0.15 2.80
Comoros -0.15 4.60 Mozambique -0.19 4.61
Congo (Rep. of) -0.31 2.97 Myanmar -0.24 4.36
Costa Rica -0.13 1.35 Namibia -0.33 2.38
Céte d’Ivoire -0.26 4.28 Nepal -0.19 4.65
Croatia 0.04 1.13 Netherlands 0.01 -0.25
Cyprus 0.07 1.42 New Zealand -0.04 0.07
Czech Republic 0.00 0.30 Nicaragua -0.12 3.60
Denmark 0.02 -0.16 Niger -0.37 6.88
Djibouti -0.26 5.05 Nigeria -0.28 4.23
Ecuador -0.37 1.52 Norway -0.14  -0.32
Egypt -0.12 3.09 Oman -0.19 1.72
El Salvador -0.08 2.11 Pakistan -0.29 4.75
Ethiopia -0.15 3.16 Panama -0.19 0.92
Finland -0.24 0.06 Paraguay -0.45 3.10
France 0.05 0.22 Peru -0.37 0.96
Gabon -0.21 1.66 Philippines -0.02 2.98
Gambia -0.17 4.14 Poland -0.11 0.66
Georgia -0.17 2.12 Portugal 0.05 0.75
Germany 0.00 0.03 Qatar 0.08 0.19
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S2.4 Country-specific temperature change

Mexico Temp vs Global Temp for Different SSPs
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F1GURE S2.4: Example of linear dependency of the regional temperature on global
mean temperature, under 4 temperature pathways (Mexico).

The calculation of regional temperatures is done using the same climate dataset as
for labor productivity. Defining the countries by the population-weighted grid sum, we
observe that country-level temperatures exhibit a consistent linear relationship with global
mean temperatures, irrespective of the emission scenario (Figure S3). If regions assessed
in the analysis are an aggregate of more countries, the corresponding coefficient is chosen

to be an average of the coefficients of the countries it captures.
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TABLE S2.6: Country-specific temperature linear coefficients derived from regression
analysis. Values represent the rate of warming relative to the global average
temperature increase.

Country Value Country Value Country Value
Afghanistan 1.60  Ghana 0.84  Nigeria 0.80
Algeria 1.26  Greece 1.43  Norway 1.19
Angola 1.00  Guatemala 1.28  Oman 1.21
Argentina 1.23  Guinea 1.04  Pakistan 1.35
Armenia 1.45  Guinea-Bissau 0.96 Panama 0.93
Australia 1.06  Hungary 1.47  Paraguay 1.64
Austria 1.39  Iceland 0.80  Peru 1.24
Azerbaijan 1.30  India 1.18 Philippines 0.90
Bangladesh 1.14  Indonesia 0.93  Poland 1.34
Belarus 142 Iran 1.48  Portugal 1.40
Belgium 0.96 Iraq 1.56 Romania 1.48
Benin 0.75 Ireland 0.74  Russia 1.59
Bolivia 1.47  Israel 1.19 Saudi Arabia 1.40
Botswana 147  Ttaly 1.35  Senegal 1.03
Brazil 1.13  Japan 1.19 Serbia 1.53
Brunei 0.98 Jordan 1.41 Sierra Leone 0.94
Bulgaria 1.48  Kazakhstan 1.54 Slovakia 1.41
Burkina Faso 0.76  Kenya 0.99  Slovenia 1.50
Cambodia 0.94  Laos 1.10  South Africa 1.30
Cameroon 0.81 Latvia 1.36  South Korea 1.32
Canada 1.70  Liberia 0.88  Spain 1.38
Central African Rep.  0.59  Libya 1.20  Sri Lanka 0.95
Chad 0.78  Lithuania 1.35  Sudan 1.10
Chile 1.11  Madagascar 0.90 Sweden 1.30
China 1.36  Malawi 0.88  Switzerland 1.23
Colombia 1.16  Malaysia 0.96 Tanzania 0.90
Congo 0.92  Mali 0.91  Thailand 0.94
Costa Rica 0.82 Mauritania 1.12 Tunisia 1.24
Cote d’Ivoire 0.99  Mexico 1.35  Turkey 1.38
Croatia 1.50  Moldova 1.54  Uganda 0.78
Cuba 0.84  Mongolia 1.66  Ukraine 1.49
Czechia 1.34  Morocco 1.36 United Arab Emirates 1.32
Denmark 1.06  Mozambique 0.96  United Kingdom 0.92
Djibouti 1.12  Myanmar 1.11 United States of America  1.45
Ecuador 1.11 Namibia 1.34  Uruguay 1.02
Egypt 1.23  Nepal 1.26  Uzbekistan 1.50
Eritrea 1.18  Netherlands 1.01 Venezuela 1.29
Estonia 1.36  New Zealand 1.00  Vietnam 1.00
Ethiopia 1.13  Nicaragua 1.05  Yemen 1.16
Finland 1.51 Niger 0.97 Zambia 0.96
France 1.20 North Macedonia 1.52 Zimbabwe 1.12
Gabon 0.91

Georgia 1.38

Germany 1.20
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S2.5 Modified temperature pathways

Temperature Pathways

Temperature Anomaly (°C)

2050

Scenario
~ RGP2.6
RCP4.5
RCP.6.0
RCR7.0

RCP.8.5

2100
Year

2150

2200

FIGURE S2.5: Pathways (RCPs) used in the analyses. Note that the temperatures are
adjusted so that they remain constant after the year 2150.

S2.6 Region aggregation and baseline values

TABLE S2.7: Region aggregation and the corresponding baseline population and GDP.
The rightmost column is the list of sectors/commodities included in this analysis.

Regions Population (million) GDP (million) Sectors

Australia 24.606 1327042.5 Paddy rice

Rest of Oceania 16.519 263357.75 Wheat

China and Hong Kong 1393.787 12651701.312 Other Grains and Crops

Japan 126.786 4930838 Livestock and Meat Products
Republic of Korea 51.466 1623898.875 Forestry

Rest of East Asia 52.722 670066.309 Fishing

Indonesia 264.646 1015616.562 Mining and Extraction

Malaysia 31.105 319113.156 Processed Food

Thailand 69.21 456355.875 Textiles, Clothing and Leather
Viet Nam 94.597 223780.234 Wood products

India 1338.659 2651476.25 Paper products, publishing

Rest of South and SE 642.975 1561576.709 Petroleum, Chemical and Pharma
Canada 36.54 1649267.375 Rubber and plastic products
United States of America 325.147 19479580 Mineral products nec

Costa Rica 4.95 60516.098 Ferrous metals and Metal produ
Rest of North and Central America 168.503 1396768.126 Computer, electronic and optic
Argentina 44.045 643625.438 Electrical equipment

Brazil 207.834 2063513 Machinery, Motor and Equipment
Rest of South America 168.112 1306014.88 Manufactures nec

Continued on next page
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Table S2.7 (continued)

Regions Population (million) GDP (million) Sectors
Caribbean 42.388 377635.383 Electricity
Austria 8.798 417260.938 Gas and Water
Belgium 11.375 502761.688 Construction
Croatia 4.125 56212.895 Trade

Czechia 10.594 218626.969 Accommodation, Food and servic
Denmark 5.765 332118.812 Transport and Warehousing
Finland 5.538 256968.094 Communication
France 68.517 2640248 Financial, Insurance Real est
Germany 82.657 3690815.75 Public Administration and defe
Ireland 4.807 335431.125 Education

Italy 60.537 1961790.75 Other services
Netherlands 17.131 833867.688

Portugal 10.3 221355.781

Spain 46.593 1312528.875

Slovakia 5.439 95393.047

Slovenia 2.066 48588.93

Sweden 10.058 541014.5

United Kingdom of Great Britai 66.059 2698969.5

Switzerland 8.452 704477.25

Rest of EU25 93.513 1347639.025

Rest of EFTA 5.661 429714.236

Russian Federation 144.497 1574200.5

Ukraine 44.831 112090.469

Rest of Eastern Europe 22.942 121594.828

Rest of Europe 8.371 74168.125

Rest of Former Soviet Union 71.263 283005.188

Iran (Islamic Republic of) 80.674 486629.656

Saudi Arabia 33.099 688587.938

T rkiye 81.102 858994.188

United Arab Emirates 9.487 385607.125

Rest of Western Asia 141.682 1156911.349

Rest of North Africa 191.98 625742.352

Ghana 29.121 60405.359

Rest of Western Africa 366.603 572412.535

Gabon 2.065 14929.512

South-Central Africa 137.408 142738.324

Ethiopia 106.4 81770.305

Rest of Eastern Africa 344.951 419522.709

South Africa 57 381449.312

Rest of Southern African Custo 7.824 35693.257

Rest of World 0.003 101.224

S2.7 Simulation results
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TABLE S2.8: GDP losses under RCP2.6 scenario, in percentages. The year 2200 stands
for long term damages.

Regions 2035 2050 2075 2100 2200

Australia 0.130128 0.050121  -0.111317  -0.129478 0.07927
Rest of Oceania 0.060973  -0.064229 -0.327291 -0.383978  -0.082187
China and Hong Kong -0.238831 -0.817001 -1.358253 -1.2191 -0.362984
Japan -0.093173  -0.344533  -0.740949 -0.814291 -0.331428
Republic of Korea -0.084645 -0.376425 -0.749011 -0.748321 -0.245169
Rest of East Asia 0.008064  -0.221436 -0.518957 -0.505579  -0.092958
Indonesia 0.105196  -0.633437 -1.79445 -1.540317 -0.15855
Malaysia -0.456463 -1.300121 -2.061541 -1.810515 -0.588091
Thailand -0.406776  -1.098892 -1.79173 -1.643378  -0.599392
Viet Nam -0.929714 -2.18727  -3.005548  -2.352756  -0.838777
India -1.030472  -2.779821 -3.932769 -3.176921 -1.005207

Rest of South and SE -0.687837  -1.990842 -3.020746 -2.575297 -0.808651
Canada 0.202265 0.090658  -0.098171 -0.101142  0.162224

United States of America 0.046756  -0.088532  -0.310057 -0.329415 -0.03692
Costa Rica -0.424774  -1.232487  -1.991277  -1.780055 -0.606218

Rest of North and Central America -0.086453  -0.388888 -0.83944 -0.888914  -0.288914
Argentina -0.055963 -0.3637 -0.666024 -0.600489 -0.130012

Brazil -0.245664  -0.764921 -1.202855 -1.047301 -0.322406

Rest of South America -0.06175 -0.512763  -0.963475 -0.835799 -0.101672
Caribbean -0.578227 -1.818579  -3.119231 -2.943562 -1.010297
Austria 0.117796 0.188393 0.069434  -0.088354  -0.058167
Belgium 0.155198 0.232438 0.089051  -0.091214 -0.038821
Croatia -0.145042  -0.367909 -0.640493 -0.642245 -0.285585
Czechia 0.135314 0.201696 0.056075  -0.108454  -0.049437
Denmark 0.12796 0.165966 0.053023  -0.063133 -0.012211
Finland 0.297385 0.421981 0.350394 0.22061 0.223503
France 0.050228 0.045349  -0.099685  -0.204627 -0.106527
Germany 0.115973 0.16085 0.049089  -0.071133  -0.025079
Ireland 0.213543 0.279882 0.14787 0.00689 0.049969

Ttaly -0.035214 -0.14709 -0.374975  -0.463987 -0.221892
Netherlands 0.154919 0.268819 0.131683  -0.068784  -0.022655
Portugal -0.092706 -0.260861 -0.51507 -0.567066  -0.274405

Spain -0.120841  -0.294257  -0.527648 -0.558289  -0.284809
Slovakia 0.115338 0.149285 -0.00576 -0.15359 -0.040865
Slovenia -0.027295 -0.136299 -0.370282 -0.45336 -0.209598
Sweden 0.256531 0.350276 0.233602 0.081964 0.122951

United Kingdom of Great Britain 0.130719 0.19184 0.118861 0.016938 0.022805
Switzerland 0.115138 0.163951 0.030861  -0.110454  -0.052349

Rest of EU25 0.068651 0.02714 -0.163789  -0.255916  -0.077582
Rest of EFTA 0.232454 0.343933 0.287905 0.1674 0.142186
Russian Federation -0.023985 -0.239433 -0.531739  -0.551573 -0.16299
Ukraine 0.071799  -0.008185 -0.331813 -0.314592 -0.103716

Rest of Eastern Europe 0.061124  -0.001142 -0.171074 -0.191901 -0.054796
Rest of Europe -0.164147  -0.456173  -0.791403 -0.786066 -0.334758
Rest of Former Soviet Union -0.223514  -0.751008 -1.241632 -1.146353 -0.396001
Iran (Islamic Republic of) -0.213977  -0.785334  -1.467332 -1.420846 -0.511958
Saudi Arabia -0.341658  -1.177063  -1.914889 -1.67753 -0.505122

T rkiye 0.025602  -0.162436  -0.516034  -0.599502 -0.17255

United Arab Emirates -0.378064 -1.32055 -2.242674  -2.078113  -0.650759
Rest of Western Asia -0.46421 -1.253596 -1.861382 -1.603515 -0.583244
Rest of North Africa -0.381237  -1.092293 -1.69773 -1.494174  -0.513868
Ghana -1.102165 -2.968094 -4.18978 -3.366263  -0.983486

Rest of Western Africa -0.680226 -1.80243 -2.556515  -2.063035 -0.63662
Gabon -0.093654 -0.690758  -1.539985 -1.55711 -0.40102
South-Central Africa -0.545402  -1.574251 -2.379317 -2.010037 -0.581212
Ethiopia -0.277366  -0.930148 -1.566524  -1.371543  -0.504481

Rest of Eastern Africa -0.778868  -2.032426  -2.855461 -2.35135 -0.835184
South Africa -0.226174  -0.571578 -0.884334 -0.800576 -0.326639

Rest of Southern African Customs -0.221382  -0.718858 -1.194502 -1.110248 -0.360039
Rest of World 0.164104 0.270538 0.210567 0.063517 0.03051
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TABLE S2.9: GDP losses under RCP6.0 scenario, in percentages. The year 2200 stands
for long term damages.

Regions 2035 2050 2075 2100 2200
Australia 0.17636 0.107663  -0.253575 -0.588117 -0.86477
Rest of Oceania 0.107306 0.014985  -0.575246 -1.148511 -1.584961
China and Hong Kong -0.204406 -1.060542  -2.785055 -3.948008 -4.624374
Japan -0.034087  -0.292422 -1.184518 -2.012759 -2.708961
Republic of Korea -0.022609 -0.371277 -1.351495 -2.135379 -2.668335
Rest of East Asia 0.034843  -0.259507 -1.081151 -1.734691 -2.170989
Indonesia 0.090452  -1.471078  -5.707966 -8.628512 -10.300979
Malaysia -0.470342  -1.807706  -4.612278 -6.52655 -7.574222
Thailand -0.421669  -1.523896  -3.845028 -5.488034 -6.553163
Viet Nam -1.005036  -3.303372 -7.18613 -9.270152 -10.140116
India -1.133362  -4.043792 -8.729971 -11.267004 -12.315344
Rest of South and SE -0.726136  -2.753948  -6.443733 -8.699571 -9.796544
Canada 0.277018 0.179468  -0.267249 -0.658991 -0.948942
United States of America 0.077874  -0.064011 -0.604051 -1.091426 -1.461804
Costa Rica -0.431044  -1.644166  -4.226271 -6.015812 -6.989703
Rest of North and Central America -0.068121  -0.439785 -1.529628 -2.501411 -3.305902
Argentina -0.047764  -0.477216 -1.37808 -2.008934 -2.390586
Brazil -0.234553  -1.033214 -2.56034 -3.577126 -4.178636
Rest of South America -0.053738  -0.749886  -2.251352 -3.277507 -3.869451
Caribbean -0.587792  -2.366745 -6.123313 -8.759188 -10.331062
Austria 0.201431 0.465021 0.563064 0.391414 0.062842
Belgium 0.218407 0.496307 0.571138 0.337965 -0.075097
Croatia -0.100007  -0.373979  -1.129963 -1.753677 -2.22148
Czechia 0.19044 0.425809 0.444554 0.204034 -0.200546
Denmark 0.236217 0.434076 0.468882 0.313328 0.078643
Finland 0.387262 0.692578 0.832831 0.721042 0.484846
France 0.139307 0.265098 0.175964 -0.062068 -0.367852
Germany 0.180836 0.369483 0.393889 0.226706 -0.032742
Ireland 0.272253 0.518362 0.563354 0.395605 0.156417
Italy 0.002934  -0.060655 -0.443845 -0.8891 -1.370871
Netherlands 0.187414 0.510764 0.626373 0.390896 -0.047317
Portugal -0.062049  -0.223746  -0.766696 -1.291353 -1.755869
Spain -0.075777  -0.250502  -0.773784 -1.24577 -1.634127
Slovakia 0.141633 0.299471 0.234525 -0.048531 -0.501004
Slovenia 0.035412  -0.008563  -0.390574 -0.820316 -1.229892
Sweden 0.389805 0.702137 0.809769 0.643202 0.344803
United Kingdom of Great Britain 0.190089 0.390404 0.476332 0.385822 0.222629
Switzerland 0.199046 0.42604 0.458859 0.267944 -0.026111
Rest of EU25 0.101305 0.128716  -0.147253 -0.514085 -0.905461
Rest of EFTA 0.307155 0.591265 0.759363 0.695157 0.518924
Russian Federation 1.51e-4 -0.246795  -0.905252 -1.44751 -1.870971
Ukraine 0.115153  -0.145948  -1.180506 -1.911283 -2.398219
Rest of Eastern Europe 0.099865 0.035778  -0.369783 -0.717842 -0.968055
Rest of Europe -0.139019  -0.502801 -1.335415 -1.979501 -2.452325
Rest of Former Soviet Union -0.200523  -0.898286  -2.283014 -3.22953 -3.787421
Iran (Islamic Republic of) -0.197727  -0.994382  -2.879324  -4.286174 -5.20887
Saudi Arabia -0.346004 -1.586563  -4.002686 -5.558054 -6.350416
T rkiye 0.074433  -0.103167 -0.911765 -1.724793 -2.451968
United Arab Emirates -0.389129  -1.749587  -4.440723 -6.284422 -7.410482
Rest of Western Asia -0.473246  -1.679159  -3.813253 -5.107441 -5.750106
Rest of North Africa -0.374807  -1.45404 -3.487419 -4.795292 -5.510638
Ghana -1.183384  -4.300028  -9.344478 -12.073581  -13.215443
Rest of Western Africa -0.716389  -2.622757 -5.811518 -7.603127 -8.413212
Gabon -0.07962 -0.852109  -3.044414 -4.865241 -6.131485
South-Central Africa -0.54966 -2.209597 -5.231336 -7.088574 -8.050492
Ethiopia -0.234651  -1.235269  -3.290822 -4.56421 -5.207519
Rest of Eastern Africa -0.815003  -2.795206 -6.041238 -7.860405 -8.633321
South Africa -0.213322  -0.729177 -1.713672 -2.361564 -2.751826

Rest of Southern African Customs -0.222887 -0.943894  -2.353798 -3.34631 -4.015117
Rest of World 0.20453 0.497749 0.721732 0.660848 0.447278
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Regions 2035 2050 2075 2100 2200
Australia 0.191215 0.133456 -0.249327 -0.729499 -1.507924
Rest of Oceania 0.118462 0.02637 -0.643906 -1.527152 -2.89518
China and Hong Kong -0.23426 -1.14642 -3.19526 -5.11725 -7.486984
Japan -0.023339 -0.283416  -1.285381 -2.517674 -4.518648
Republic of Korea -0.014914 -0.373383  -1.507308 -2.748499 -4.478437
Rest of East Asia 0.032901  -0.279508  -1.235627 -2.277276 -3.734055
Indonesia 0.053781  -1.751916  -6.952725 -11.959463  -18.242042
Malaysia -0.515118  -1.975185  -5.455538 -8.879006 -13.14732
Thailand -0.458659 -1.660226  -4.481753 -7.24182 -10.923896
Viet Nam -1.103624 -3.623786 -8.489042 -12.42183 -16.444872
India -1.263045  -4.428204 -10.174458  -14.700007 -19.22394
Rest of South and SE -0.800968 -2.99734 -7.473393  -11.370285 -15.737496
Canada 0.298651 0.220163 -0.252115 -0.822821 -1.68705
United States of America 0.08232 -0.060749  -0.668713 -1.413583 -2.562609
Costa Rica -0.467449  -1.786629  -4.933474 -8.030752 -11.904429
Rest of North and Central America  -0.072221  -0.468481 -1.708435 -3.156038 -5.485906
Argentina -0.059101 -0.517852  -1.569685 -2.585429 -3.890652
Brazil -0.257945  -1.112297  -2.949593 -4.678758 -6.87092
Rest of South America -0.074056 -0.827 -2.623999 -4.333494 -6.458894
Caribbean -0.637859  -2.564267  -7.007892 -11.193543 -16.406
Austria 0.235282 0.550335 0.782294 0.696635 0.09294
Belgium 0.246573 0.568791 0.778553 0.619881 -0.189133
Croatia -0.095411  -0.376181 -1.261728 -2.277871 -3.794879
Czechia 0.214981 0.486223 0.617878 0.431504 -0.351572
Denmark 0.280987 0.527655 0.671201 0.571684 0.115954
Finland 0.423561 0.780778 1.049502 1.027056 0.608194
France 0.173458 0.342352 0.333682 0.092481 -0.57774
Germany 0.206802 0.431396 0.5514 0.432891 -0.072415
Ireland 0.300732 0.580483 0.739172 0.647552 0.21841
Ttaly 0.012312  -0.039664  -0.424122 -1.01103 -2.193325
Netherlands 0.209071 0.570961 0.82402 0.678764 -0.147866
Portugal -0.057242  -0.218697  -0.812484 -1.574658 -2.88371
Spain -0.066926  -0.237483 -0.810883 -1.509773 -2.642615
Slovakia 0.155448 0.335082 0.347203 0.075567 -0.831308
Slovenia 0.054405 0.029346 -0.343827 -0.905995 -1.948638
Sweden 0.444874 0.82632 1.086477 1.015877 0.472032
United Kingdom of Great Britain 0.21602 0.451138 0.630414 0.607234 0.317582
Switzerland 0.234868 0.508851 0.657249 0.529061 -0.034558
Rest of EU25 0.113617 0.15215 -0.104868 -0.574379 -1.542662
Rest of EFTA 0.343094 0.673683 0.962428 1.001453 0.726443
Russian Federation 7.05e-4 -0.255736  -0.975312 -1.742038 -2.894838
Ukraine 0.127888 -0.185228 -1.393648 -2.591261 -4.185557
Rest of Eastern Europe 0.111303 0.043375 -0.398294 -0.933007 -1.733817
Rest of Europe -0.143363  -0.522236  -1.453672 -2.404668 -3.77151
Rest of Former Soviet Union -0.214223  -0.952937 -2.55097 -4.037648 -5.893134
Iran (Islamic Republic of) -0.210664  -1.074452  -3.264965 -5.428483 -8.309929
Saudi Arabia -0.384241  -1.725914 -4.61192 -7.207342 -10.217515
T rkiye 0.082408  -0.097552  -1.015978 -2.258488 -4.413348
United Arab Emirates -0.431125  -1.894626 -5.061142 -7.968538 -11.621348
Rest of Western Asia -0.513501 -1.812242  -4.378376 -6.581052 -9.049495
Rest of North Africa -0.407839  -1.566929 -3.99962 -6.185013 -8.782251
Ghana -1.316738  -4.690005 -10.888803 -15.785179  -20.682608
Rest of Western Africa -0.794631  -2.859299 -6.80515 -10.080439  -13.55877
Gabon -0.092404  -0.93116 -3.468176 -6.263929 -10.362277
South-Central Africa -0.607258  -2.393725 -6.08679 -9.344262 -13.086134
Ethiopia -0.24693 -1.331214  -3.753788 -5.928016 -8.402225
Rest of Eastern Africa -0.889127 -3.027289  -6.981265 -10.226036  -13.594401
South Africa -0.225717 -0.77643 -1.934732 -2.987697 -4.304325
Rest of Southern African Customs -0.24611 -1.017358 -2.678373 -4.256419 -6.375521
Rest of World 0.225522 0.556919 0.909098 0.962739 0.617076
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TABLE S2.10: GDP losses under RCP7.0 scenario, in percentages. The year 2200
stands for long term damages.

Regions 2035 2050 2075 2100 2200
Australia 0.239608 0.233197 -0.147347 -0.854342 -3.629088
Rest of Oceania 0.146292 0.07811 -0.772129 -2.466681 -8.408184
China and Hong Kong -0.257764  -1.281741 -3.985685 -7.67432 -17.079488
Japan 0.01531 -0.217691 -1.431801 -3.606287 -11.429032
Republic of Korea 0.024161  -0.329709  -1.773677 -4.144934  -11.394086
Rest of East Asia 0.043463 -0.28569 -1.517697 -3.487015 -9.659593
Indonesia 0.013566  -2.222627  -9.493389  -19.983737  -49.134731
Malaysia -0.551257  -2.243243  -7.176294  -14.817158 -37.173573
Thailand -0.488407 -1.868439 -5.722519 -11.327509  -27.105441
Viet Nam -1.200387  -4.17386 -11.017391  -19.585808  -36.944685
India -1.400764  -5.084441 -12.955235 -22.138364 -39.667869
Rest of South and SE -0.868194  -3.383151 -9.461004 -17.32395 -35.443164
Canada 0.370523 0.363046 -0.099903 -0.950863 -4.119549
United States of America 0.101962 -0.02298 -0.759658 -2.07875 -6.809641
Costa Rica -0.49536 -2.002746  -6.343159  -12.891811 -32.170524
Rest of North and Central America -0.066074 -0.480864 -2.019072 -4.512376 -13.463812
Argentina -0.062809 -0.564725  -1.917238 -3.776248 -8.966743
Brazil -0.262755  -1.215497  -3.661627 -7.071699 -16.384382
Rest of South America -0.081643 -0.929386  -3.317887 -6.646302 -15.392906
Caribbean -0.678129  -2.855745 -8.704536 -16.524823  -36.470878
Austria 0.303321 0.75637 1.314238 1.630677 0.048462
Belgium 0.296994 0.744788 1.263734 1.480549 -0.936614
Croatia -0.067186  -0.342528  -1.486131 -3.507131 -10.317038
Czechia 0.258767 0.636022 1.02768 1.159321 -0.981886
Denmark 0.38293 0.76486 1.194456 1.411242 0.20783
Finland 0.49961 0.994646 1.581801 1.954229 0.880199
France 0.253803 0.546707 0.76851 0.698271 -1.349506
Germany 0.258223 0.582477 0.932113 1.086091 -0.295665
Ireland 0.34991 0.731937 1.135573 1.395636 0.488315
Italy 0.03774 0.034072 -0.325758 -1.1304 -5.182142
Netherlands 0.241118 0.71772 1.267106 1.519366 -0.802669
Portugal -0.038856  -0.176764 -0.85827 -2.116878 -7.200929
Spain -0.035853  -0.175435 -0.82314 -1.986015 -6.402795
Slovakia 0.176878 0.430072 0.617826 0.526832 -2.026894
Slovenia 0.10293 0.144859 -0.173315 -0.907367 -4.458021
Sweden 0.570753 1.141178 1.803667 2.200747 0.865333
United Kingdom of Great Britain 0.267121 0.597212 0.996729 1.257713 0.516535
Switzerland 0.309352 0.715487 1.151001 1.359736 -0.113431
Rest of EU25 0.138999 0.227957 0.02272 -0.571133 -3.945642
Rest of EFTA 0.418255 0.87766 1.462902 1.907817 1.350141
Russian Federation 0.014275 -0.236383 -1.057023 -2.188822 -5.885201
Ukraine 0.158669  -0.220222 -1.76539 -3.91942 -9.927942
Rest of Eastern Europe 0.136914 0.084778 -0.421574 -1.317091 -4.620674
Rest of Europe -0.134636  -0.520638  -1.621871 -3.138213 -7.835567
Rest of Former Soviet Union -0.209577  -1.003406  -3.016342 -5.626202 -12.41561
Iran (Islamic Republic of) -0.209934  -1.16976 -3.968754 -7.783407  -18.275953
Saudi Arabia -0.413938  -1.932983  -5.772021 -10.79967  -23.145214
T rkiye 0.109851 -0.04568 -1.201889 -3.569323 -13.274371
United Arab Emirates -0.46273 -2.09964 -6.204502 -11.483782  -24.914434
Rest of Western Asia -0.543063 -2.011912 -5.433923 -9.735413 -19.55265
Rest of North Africa -0.424498  -1.725772  -4.945729 -9.15072 -19.392169
Ghana -1.439426  -5.339555  -13.820932  -23.822131 -42.87977
Rest of Western Africa -0.861591  -3.250662  -8.713926  -15.643516  -30.483004
Gabon -0.09537  -1.016351 -4.273712 -9.360377  -27.865436
South-Central Africa -0.640253 -2.670316 -7.702682 -14.434462  -30.295447
Ethiopia -0.230785  -1.446702  -4.618626 -8.735846 -18.390729
Rest of Eastern Africa -0.952784  -3.397992  -8.773155 -15.35516 -29.200253
South Africa -0.225597  -0.832244 -2.31926 -4.248888 -9.289206

Rest of Southern African Customs -0.260983  -1.114534 -3.264861 -6.152423 -14.097969
Rest of World 0.253947 0.684849 1.305581 1.727043 0.642439
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TABLE S2.11: GDP losses under RCP8.5 scenario, in percentages. The year 2200
stands for long term damages.

Regions 2035 2050 2075 2100 2200

Australia 0.289413 0.291964 -0.238962 -1.324871 -4.836169
Rest of Oceania 0.186053 0.068314 -1.329215 -4.20652 -12.129063
China and Hong Kong -0.343689  -1.714615  -5.607702  -11.079439 -22.570385
Japan 0.051602 -0.257019 -2.103492 -5.620333 -15.906815
Republic of Korea 0.045093  -0.439723  -2.645481 -6.452976  -15.998115
Rest of East Asia 0.040287  -0.409221 -2.257597 -5.386615  -13.426889
Indonesia -0.153173  -3.540425 -14.395726  -30.831832 -71.366149
Malaysia -0.710373  -3.076666  -10.700851  -23.284265 -57.644699
Thailand -0.616655  -2.518418  -8.214053  -16.829448  -37.387899

Viet Nam -1.543182  -5.659031 -15.497235 -27.781788  -48.177731
India -1.829748  -6.751874  -17.701507 -30.346004  -49.754775
Rest of South and SE -1.12062 -4.484935 -13.191345 -24.687445 -46.514219
Canada 0.439447 0.445931 -0.20621 -1.520063 -5.51376

United States of America 0.119072  -0.047978  -1.166193 -3.307568 -9.542185
Costa Rica -0.618659 -2.682628  -9.243378  -19.812313  -47.845574
Rest of North and Central America -0.074665 -0.619465 -2.849103 -6.743479 -18.435508
Argentina -0.094033 -0.751525  -2.668906 -5.449372  -11.912235
Brazil -0.333666  -1.600371  -5.136629  -10.294737  -22.145382
Rest of South America -0.147397  -1.299166  -4.756141 -9.750363  -20.621793
Caribbean -0.842612  -3.733539  -12.050204 -23.540325 -47.935886
Austria 0.422859 1.062405 1.866074 2.170124 -0.112858
Belgium 0.40186 1.031875 1.78261 1.898395 -1.651854
Croatia -0.05324  -0.434356  -2.233123 -5.606007  -15.161239
Czechia 0.349612 0.874895 1.456656 1.510343 -1.493308
Denmark 0.528798 1.070863 1.685803 1.88099 0.209309
Finland 0.624518 1.299386 2.128862 2.522043 0.899738

France 0.368182 0.791261 1.114006 0.883501 -1.875991
Germany 0.351065 0.807471 1.315962 1.420589 -0.523156
Ireland 0.449763 0.97973 1.574853 1.853191 0.649441

Ttaly 0.076427 0.098224 -0.41154 -1.732871 -7.093104
Netherlands 0.320872 0.982834 1.781631 1.972717 -1.430794
Portugal -0.016778  -0.182018  -1.190086 -3.244561 -10.005267

Spain -0.001379  -0.167043 -1.12257 -3.002789 -8.783076

Slovakia 0.229457 0.58401 0.878612 0.644682 -2.845059
Slovenia 0.171468 0.256147 -0.194518 -1.397206 -5.974692
Sweden 0.749458 1.545651 2.495727 2.922739 1.003914

United Kingdom of Great Britain 0.356635 0.817266 1.384643 1.651782 0.531787
Switzerland 0.430183 1.00508 1.638696 1.816077 -0.240168

Rest of EU25 0.186219 0.3147 0.015448 -1.005553 -5.497675
Rest of EFTA 0.535854 1.167876 2.006709 2.552285 1.652568
Russian Federation 0.022159 -0.28535 -1.3728 -2.971975 -7.389493
Ukraine 0.203977  -0.430669  -2.626289 -5.800392 -12.95056

Rest of Eastern Europe 0.182121 0.090747 -0.665747 -2.136014 -6.436012
Rest of Europe -0.140932  -0.622094  -2.113175 -4.303469  -10.026076
Rest of Former Soviet Union -0.249119  -1.261175 -4.04966 -7.802637 -15.841792
Iran (Islamic Republic of) -0.24946  -1.534298  -5.464054  -11.041648 -23.761477
Saudi Arabia -0.53877  -2.559506  -8.024711 -15.428967  -30.516607
T rkiye 0.140515 -0.089515 -1.972119 -6.128723 -20.514498
United Arab Emirates -0.599988  -2.738802  -8.445274  -16.008065 -32.141867
Rest of Western Asia -0.675869 -2.617665 -7.433748 -13.617778  -25.239107
Rest of North Africa -0.53186 -2.259 -6.820161 -12.931613  -25.236149
Ghana -1.888196  -7.101928 -18.957204 -32.775991 -54.02953

Rest of Western Africa -1.12403 -4.357531  -12.201494  -22.246961 -40.076931
Gabon -0.135183  -1.369301  -6.127085  -14.288848 -42.868566
South-Central Africa -0.835183 -3.5728 -10.879202  -20.91165  -40.460233
Ethiopia -0.265608  -1.92012 -6.435505  -12.406205 -23.577676

Rest of Eastern Africa -1.199491  -4.439925 -12.025181 -21.406537 -37.501319
South Africa -0.263276  -1.060548  -3.128441 -5.928682  -12.105828

Rest of Southern African Customs -0.335679  -1.450375 -4.467086 -8.675019 -18.418032
Rest of World 0.334798 0.930809 1.780926 2.16581 0.283655
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