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1. Zusammenfassung

Der Einsatz von regenerativen Kraftstoffen und insbesondere von E-Fuels, kann einen

wichtigen Beitrag zur Erreichung der Pariser Klimaziele leisten. Allerdings stellt die Alte-

rung dieser Kraftstoffe eine Herausforderung dar, da sie zu Veränderungen in der Zusam-

mensetzung, den Verbrennungseigenschaften und der Kompatibilität mit anderen Kraft-

stoffen führen kann. Das Ziel der vorliegenden Arbeit war deshalb, die thermo-oxidative

Alterung ausgewählter, vielversprechender, regenerativer Kraftstoffe detailliert zu unter-

suchen, um zu bewerten, ob sich deren chemische Zusammensetzung infolge der Alte-

rung verändert und dadurch die Einsatzfähigkeit der Kraftstoffe beeinträchtigt wird. Des

Weiteren sollte ein Sensorkonzept entwickelt werden, um verschiedene Kraftstoffe zu

klassifizieren und deren Alterungsgrad zu bestimmen. Eine solche Sensorik könnte im

Fahrzeug oder in Tanklagern eingesetzt werden, um zu detektieren, ob ein Kraftstoff be-

reits gealtert ist oder noch problemlos verwendet werden kann.

In dieser Arbeit wurde die thermo-oxidative Alterung der beiden vielversprechenden Kraft-

stoffe OME (Oxymethylenether) und Solketal, sowohl in Reinform als auch in verschiede-

nen Mischungen (3:1, 1:1, 1:3) (vol%) untersucht. Dabei zeigte sich, dass weder Solketal,

noch OME stabil gegenüber thermo-oxidativer Alterung blieben und sich eine Vielzahl

verschiedener Alterungsprodukte durch Hydrolyse, Oxidation, oxidative C-C- Bindungs-

spaltung, Decarboxylierung und Veresterung gebildet hat. Die kinetischen Untersuchun-

gen zeigten, dass die Hauptprodukte der Solketal-Alterung die Edukte der Synthese,

Glycerin und Aceton, sowie der Ester aus Solketal und Ameisensäure, 2,2-dimethyl-1,3-

dioxolane-4-carboxylat, waren. Die Alterung von OME führte aufgrund säurekatalysierter

und oxidativer Zersetzung zu einer Abnahme der längerkettigen OME (OME3-6), einer

Zunahme der kurzkettigen OME (OME1-2) sowie zur Bildung von Methanol und Formal-

dehyd. Letzteres führte zu einer Entstehung des Feststoffs Paraformaldehyd infolge von

Polymerisationsprozessen. Die Ergebnisse zeigen weiter, dass bei der Alterung der Mi-
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schungen die selben Produkte wie bei der Alterung der reinen Kraftstoffe entstanden,

sich jedoch der zeitliche Verlauf der jeweiligen Konzentrationen je nach Mischung änder-

te. Die (3:1)-Mischung zeigte eine deutlich höhere Stabilität als die anderen Mischungen

oder das reine OME. Dies zeigte sich unter anderem an einer effektiven Verhinderung der

Bildung von Paraformaldehyd. Aufgrund der erhöhten Stabilität könnte diese Mischung

eine vielversprechende Option für zukünftige Kraftstoffe darstellen, beispielsweise auch

in ternären Gemischen aus OME, Solketal (3:1) (vol%) und weiteren regenerativen Kraft-

stoffen.

Um die Stabilität verschiedener Alkohole in Abhängigkeit ihrer Kettenlänge und Position

der OH-Gruppe zu bewerten, wurde die thermo-oxidative Alterung der beiden n-Alkohole

1-Hexanol und 1-Octanol sowie des iso-Alkohols 2-Hexanol untersucht. Die Ergebnisse

zeigen, dass bei der Alterung der n-Alkohole eine Vielzahl an Alterungsprodukten ge-

bildet wurde. Durch Oxidation, Decarboxylierung, oxidative C-C-Bindungsspaltung und

Veresterung entstanden mehrere Aldehyde, Carbonsäuren, kürzerkettige n-Alkohole und

verschiedene Ester. Weiterhin zeigte sich, dass bei der Alterung des iso-Alkohols durch

Oxidation, Decarboxylierung, oxidative C-C-Bindungsspaltung und Veresterung ebenfalls

mehrere Produkte, wie Ketone, kürzerkettige n-Alkohole, Carbonsäuren und Ester ent-

standen. Allerdings bildeten sich deutlich weniger Alterungsprodukte als bei der Alterung

der n-Alkohole, was in der Tatsache begründet ist, dass die direkte Oxidation eines iso-

Alkohols nur zu einem Keton führen kann und die oxidative C-C-Bindungsspaltung auf-

grund der Bindungsenergien deutlich unwahrscheinlicher ist. Aus den Ergebnissen der

kinetischen Untersuchungen und der Kohlenstoffmassenbilanzierung konnte geschluss-

folgert werden, dass die Stabilität der Alkohole mit steigender Kettenlänge abnimmt und

mit dem Verzweigungsgrad zunimmt. Dies liefert wertvolle Erkenntnisse für die Auswahl

geeigneter Alkohole im Kontext nachhaltiger Kraftstoffanwendungen, denn aufgrund ihrer

erhöhten Stabilität gegenüber thermo-oxidativer Alterung stellen iso-Alkohole eine viel-

versprechendere Alternative zu n-Alkoholen dar und sollten bevorzugt als regenerative

Kraftstoffe oder in Kraftstoffmischungen eingesetzt werden.

Eine Strategie zur Minderung der Alterungsproblematik bei Kraftstoffen, besteht in der

Zugabe von Antioxidantien. In dieser Arbeit konnte gezeigt werden, dass durch eine Mar-

kierung der Alkohole mit 50 ppm des Farbstoffs Nilrot die thermo-oxidative Alterung ef-

fektiv verhindert bzw. verlangsamt wurde und der Farbstoff ebenfalls stabil gegenüber

der Alterung blieb. Außerdem zeigte sich, dass während der Alterung der markierten Al-

kohole kein Anstieg der Säurezahl und keine Veränderung der kinematischen Viskosität
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auftrat. Durch einen Vergleich mit dem Antioxidans BHT (Butylhydroxytoluol) konnte die

antioxidative Wirkung von Nilrot bestätigt werden.

Für den zukünftigen Einsatz erneuerbarer Kraftstoffe ist es außerdem von zentraler Be-

deutung sicherzustellen, dass in Verbrennungsmotoren tatsächlich ausschließlich diese

eingesetzt werden. Eine Kraftstoffmarkierung mit einem geeigneten Fluoreszenzmarker

und einer entsprechenden Sensorik kann hierzu einen entscheidenden Beitrag leisten.

Die Ergebnisse zeigen, dass eine Sensorik auf Basis der Fluoreszenzspektroskopie (An-

regungswellenlänge: 405 nm) mit einem geeigneten Fluoreszenzmarker eine vielverspre-

chende Methode zur schnellen und einfachen Differenzierung der Kraftstoffe darstellt.

Der Farbstoff Nilrot erwies sich dabei als geeigneter Marker zur Differenzierung zwischen

fossilen und regenerativen Kraftstoffen, zusätzlich zu dessen antioxidativen Eigenschaf-

ten. Durch eine Markierung mit Nilrot und einer geeigneten Sensorik im Fahrzeug könnte

in Zukunft eine verlässliche Kontrolle über die Nutzung erneuerbarer Kraftstoffe ermög-

licht werden.

Vor der Verwendung eines Kraftstoffs muss außerdem sichergestellt werden, dass dieser

noch problemlos verwendet werden kann. Die Änderung der chemischen Zusammenset-

zung kann zu Änderungen der Verbrennungseigenschaften und der Kompatibilität mit

anderen Kraftstoffen führen. Außerdem könnte die Bildung höher molekularer Alterungs-

produkte an kritischen Bauteilen wie Injektoren oder Kraftstofffiltern die Betriebssicherheit

des Fahrzeuges gefährden. Aus diesem Grund stand neben der Analyse der Alterungs-

prozesse die Entwicklung eines Sensorkonzeptes zur Klassifizierung und Bestimmung

des Alterungsgrades im Fokus dieser Arbeit.

Eine kostengünstige Möglichkeit, um verschiedene Kraftstoffe zuverlässig zu charakte-

risieren und zusätzlich ihren Alterungsgrad zu bestimmen, ist eine auf der Nahinfrarot-

spektroskopie basierende Sensorik. In dieser Arbeit wurde eine geeignete Methode ent-

wickelt, um auf Basis von Nahinfrarotspektren sowohl die Bezeichnung des jeweiligen

Kraftstoffs als auch verschiedene Parameter zur Bestimmung des Alterungsgrades vor-

herzusagen. Dazu zählt zum einen die genaue Alterungszeit des Kraftstoffs und zum

anderen die in verschiedenen Kraftstoffnormen festgelegten Parameter Säurezahl, kine-

matische Viskosität und Dichte. Hierbei lieferte die Vorhersage mit einer künstlichen Intel-

ligenz, also einem neuronalen Netzwerk, die besten Ergebnisse, denn es zeigte sich so-

wohl eine hohe Genauigkeit bei der Vorhersage der Kraftstoff-Bezeichnungen, als auch
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ein geringer mittlerer relativer Fehler (Median) der vorhergesagten Alterungszeit und der

Kraftstoffparameter (0,1-4 %).

Insgesamt liefert diese Arbeit wichtige Erkenntnisse über die Stabilität vielversprechen-

der, regenerativer, CO2-neutraler Kraftstoffe. Für deren zukünftige Nutzung ist ein fundier-

tes Verständnis der Lagerstabilität und der Alterungsprozesse unverzichtbar, da nur so

ein sicherer und effizienter Einsatz gewährleistet werden kann. Des Weiteren wird in die-

ser Arbeit ein Sensorkonzept zur Charakterisierung und Bestimmung des Alterungsgra-

des von Kraftstoffen aufgezeigt. In einem Fahrzeug könnte eine solche Sensorik zuver-

lässig detektieren, welcher Kraftstoff genau verwendet wird. Durch die genaue Kenntnis

über den verwendeten Kraftstoff kann das Motormanagement auf den Kraftstoff einge-

stellt werden, um dadurch eine optimale Verbrennung zu gewährleisten. Außerdem kann

durch die Bestimmung des Alterungsgrades sichergestellt werden, dass ein Kraftstoff

noch unproblematisch verwendet werden kann.

Die durchgeführten Studien tragen wesentlich zur technischen Realisierung des Einsat-

zes regenerativer Kraftstoffe, insbesondere von E-Fuels, bei.



5

2. Abstract

The use of renewable fuels, and e-fuels in particular, can make an important contribution

to achieving the Paris climate targets. However, the aging of these fuels poses a challen-

ge, as it can lead to changes in their composition, combustion properties, and compatibili-

ty with other fuels. The aim of this study was therefore to investigate the thermo-oxidative

aging of selected, promising renewable fuels in detail in order to assess whether their

chemical composition changes as a result of aging and whether this impairs the usability

of the fuels. Furthermore, a sensor concept was to be developed to classify different fuels

and determine their degree of aging. Such a sensor system could be used in vehicles or

fuel storage facilities to detect whether a fuel has already aged or can still be used without

any problems.

In this work, the thermo-oxidative aging of the two promising fuels OME (oxymethyle-

ne ether) and solketal was investigated, both in their pure form and in various mixtures

(3:1, 1:1, 1:3) (vol%). It was found that neither solketal nor OME remained stable against

thermo-oxidative aging and that a large number of different aging products were formed

by hydrolysis, oxidation, oxidative C-C bond cleavage, decarboxylation, and esterificati-

on. Kinetic studies showed that the main products of solketal aging were the reactants

of the synthesis, glycerol and acetone, as well as the ester of solketal and formic acid,

2,2-dimethyl-1,3-dioxolane-4-carboxylate. The aging of OME led to a decrease in longer-

chain OME (OME3-6), an increase in short-chain OME (OME1-2), and the formation of me-

thanol and formaldehyde due to acid-catalyzed and oxidative decomposition. The latter

led to the formation of the solid paraformaldehyde as a result of polymerization proces-

ses. The results also show that the aging of the mixtures produced the same products as

the aging of the pure fuels, but the time course of the respective concentrations changed

depending on the mixture. The (3:1) (vol%) mixture showed significantly higher stability

than the other mixtures or pure OME. This was evident, among other things, in the effec-
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tive prevention of paraformaldehyde formation. Due to its increased stability, this mixture

could be a promising option for future fuels, for example in ternary mixtures of OME,

solketal (3:1) (vol%) and other renewable fuels.

In order to evaluate the stability of various alcohols depending on their chain length and

position of the OH group, the thermo-oxidative aging of the two n-alcohols 1-hexanol and

1-octanol as well as the iso-alcohol 2-hexanol was investigated. The results show that a

large number of aging products were formed during aging of the n-alcohols. Oxidation,

decarboxylation, oxidative C-C bond cleavage, and esterification produced several alde-

hydes, carboxylic acids, shorter-chain n-alcohols, and a variety of different esters. Fur-

thermore, it was found that the aging of the iso-alcohol through oxidation, decarboxylati-

on, oxidative C-C bond cleavage, and esterification also resulted in several products, such

as ketones, shorter-chain n-alcohols, carboxylic acids, and esters. However, significantly

fewer aging products were formed than during the aging of n-alcohols, which is due to the

fact that the direct oxidation of an iso-alcohol can only lead to a ketone and oxidative C-C

bond cleavage is significantly less likely due to the bond energies. From the results of the

kinetic investigations and the carbon mass balance, it could be concluded that the stabi-

lity of the alcohols decreases with increasing chain length and increases with the degree

of branching. This provides valuable insights for the selection of suitable alcohols in the

context of sustainable fuel applications, because due to their increased stability against

thermo-oxidative aging, iso-alcohols represent a more promising alternative to n-alcohols

and should be preferred for use as renewable fuels or in fuel blends. One strategy for

mitigating the aging problem in fuels is the addition of antioxidants. In this work, it was

shown that labeling the alcohols with 50 ppm of the benzophenoxazine-based dye Nile

red effectively prevented or slowed down thermo-oxidative aging and that the dye also

remained stable against aging. Furthermore, it was found that during the aging of the

labeled alcohols, there was no increase in the total acid number and no change in the

kinematic viscosity. In addition, a comparison with the antioxidant BHT (butylated hydro-

xytoluene) confirmed the antioxidant effect of Nile Red.

For the future use of renewable fuels, it is also crucial to ensure that only these fuels

are actually used in combustion engines. Fuel marking with a suitable fluorescent mar-

ker and corresponding sensor technology can make a decisive contribution to this. The

results show that sensor technology based on fluorescence spectroscopy (excitation wa-

velength: 405 nm) with a suitable fluorescent marker is a promising method for quickly

and easily differentiating between fuels. The dye Nile red proved to be a suitable marker
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for differentiating between fossil and renewable fuels, in addition to its antioxidant pro-

perties. Marking with Nile red and suitable sensor technology in the vehicle could enable

reliable control over the use of renewable fuels in the future.

Before using a fuel, it must be ensured that it can still be used without any problems. The

change in chemical composition can lead to changes in combustion properties and com-

patibility with other fuels. In addition, the formation of higher molecular aging products

on critical components such as injectors or fuel filters could endanger the operational

safety of the vehicle. For this reason, in addition to analyzing the aging processes, this

work focused on developing a sensor concept for classifying and determining the degree

of aging. A cost-effective way to reliably characterize different fuels and also determine

their degree of aging is a sensor system based on near-infrared spectroscopy. In this

work, a suitable method was developed to predict both the designation of the respective

fuel and various parameters for determining the degree of aging based on near-infrared

spectra. These include, on the one hand, the exact aging time of the fuel and, on the other

hand, the parameters specified in various fuel standards, such as total acid number, ki-

nematic viscosity, and density. The prediction using artificial intelligence, i.e., a neuronal

network, delivered the best results, as it demonstrated both high accuracy in predicting

fuel designations and a low median relative error in the predicted aging time and fuel

parameters (0.1–4%).

Overall, this work provides important insights into the stability of promising, renewable,

CO2-neutral fuels. A sound understanding of storage stability and aging processes is

essential for their future use, as this is the only way to ensure safe and efficient applicati-

on. Furthermore, this work presents a sensor concept for characterizing and determining

the degree of aging of fuels. In a vehicle, such a sensor system could reliably detect

exactly which fuel is being used. With precise knowledge of the fuel used, the engine

management system can be adjusted to the fuel to ensure optimal combustion. In addi-

tion, determining the degree of aging ensures that a fuel can still be used without any

problems.

The studies conducted contribute significantly to the technical implementation of the use

of renewable fuels, especially e-fuels.
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3. Einleitung

Die Einleitung der Dissertation besteht aus zwei Teilen: Zunächst wird die Motivation für

das Thema dargelegt und anschließend folgt eine Beschreibung der Zielsetzung und der

angewandten Forschungsstrategie.

3.1 Motivation

Der Klimawandel stellt eine der größten Herausforderungen unserer Zeit dar und erfor-

dert entschlossene Maßnahmen auf globaler, nationaler und lokaler Ebene. Um dieser

Herausforderung zu begegnen, hat die Europäische Union am 14. Juli 2021 den „Eu-

ropean Green Deal“ verabschiedet [1]. Dieses umfassende Klimaschutzprogramm sieht

vor, die Treibhausgasemissionen bis zum Jahr 2030 um 55 % im Vergleich zu 1990 zu

reduzieren und bis spätestens 2050 eine vollständige Klimaneutralität, also Netto-Null-

Emissionen, zu erreichen [2]. Diese Ziele stehen im Einklang mit dem Pariser Klimaab-

kommen von 2015, das darauf abzielt, die globale Erderwärmung auf maximal 2 °C zu

begrenzen. Um dies zu schaffen, müssen die weltweiten CO2-Emissionen bis 2050 auf

etwa 20 Gigatonnen pro Jahr gesenkt werden [1].

Der Verkehrssektor verursacht weltweit eine erhebliche Menge an Emissionen. In der

Europäischen Union ist dieser für etwa 25 % der gesamten Treibhausgasemissionen ver-

antwortlich, während er in Deutschland rund 20 % der nationalen Emissionen ausmacht.

Um Klimaneutralität bis 2050 zu erreichen, ist eine drastische Reduktion der verkehrs-

bedingten Emissionen um mindestens 90 % erforderlich [1]. Dies erfordert nicht nur eine

verstärkte Elektrifizierung des Verkehrs, sondern auch die Nutzung alternativer Antriebs-

konzepte und CO2-neutraler Kraftstoffe. Die Defossilisierung des Verkehrssektors kann

durch drei wesentliche technologische Ansätze vorangetrieben werden: Erstens durch

batterie-elektrische Fahrzeuge, die einen direkten Einsatz von erneuerbarem Strom er-

möglichen. Zweitens durch eine indirekte Elektrifizierung, beispielsweise mittels Elektro-
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lyse zur Herstellung von Wasserstoff, der in Brennstoffzellen genutzt werden kann und

drittens durch die Verwendung erneuerbarer Kraftstoffe in Verbrennungsmotoren, ent-

weder in Form von Biokraftstoffen oder synthetischen E-Fuels [3]. E-Fuels stellen eine

vielversprechende Option dar [4], da sie eine hohe Energiedichte aufweisen und mit der

bestehenden Infrastruktur für Transport und Speicherung kompatibel sind. Sie werden

durch die Synthese von grünem Wasserstoff und CO2, das entweder direkt aus der Atmo-

sphäre, aus industriellen Abgasen oder aus Biomasse gewonnen werden kann, erzeugt.

Da E-Fuels nur die Menge an CO2 freisetzen, die zuvor für ihre Herstellung benötigt wur-

de, gelten sie als quasi klimaneutrale Kraftstoffe [5]. Dies macht sie zu einer attraktiven

Alternative für Anwendungen, in denen eine direkte Elektrifizierung schwierig oder ineffi-

zient ist, wie beispielsweise in schweren Nutzfahrzeugen. Neben den klimatischen Her-

ausforderungen gibt es auch geopolitische und wirtschaftliche Faktoren, die den Transfor-

mationsprozess beeinflussen. Globale Energiekrisen und Versorgungsengpässe haben

in der Vergangenheit gezeigt, wie stark die Abhängigkeit von fossilen Energieträgern die

wirtschaftliche und politische Stabilität einzelner Länder beeinflussen kann. Preisschwan-

kungen auf den Energiemärkten sowie Unsicherheiten in der Versorgung verdeutlichen

die Notwendigkeit einer zügigen Umstellung auf erneuerbare Energien und nachhaltige

Lösungen für die Mobilität [6].

Ein entscheidender Aspekt beim Einsatz erneuerbarer Kraftstoffe ist jedoch ihre Lagerfä-

higkeit. Wenn ein Kraftstoff über einen längeren Zeitraum gelagert wird - beispielsweise

beim Einsatz in Hybridfahrzeugen, die für einen längeren Zeitraum rein elektrisch be-

trieben werden, oder als eine Art Speicher zur Sicherstellung der Energieversorgung

in Krisenzeiten -, kann Kraftstoffalterung auftreten. Insbesondere ein Sauerstoffeintrag

im Tank, ein Wärme-, Wasser- oder Metalleintrag können diese Problematik verstärken.

Die Alterung ist definiert als die Veränderung der chemischen und physikalischen Ei-

genschaften des Kraftstoffs über die Zeit. Sie kann zu Farbveränderungen, Änderungen

in der Kraftstoffzusammensetzung, veränderten Verbrennungseigenschaften und einer

geringeren Kompatibilität mit anderen Kraftstoffen führen [7, 8]. Zudem können sich dar-

aus nachteilige Effekte auf die Materialbeständigkeit von Dichtungen und Schläuchen im

Fahrzeug ergeben. Die Alterung von konventionellen Kraftstoffen und Biodiesel wurde

bereits seit vielen Jahren untersucht [7, 9]. Für den Einsatz neuer, regenerativer Kraftstof-

fe sind jedoch weitere Alterungsuntersuchungen an diesen Kraftstoffen unerlässlich und

eine wichtige Voraussetzung für deren Zulassung und Nutzung.

Des Weiteren muss vor der Verwendung eines Kraftstoffs sichergestellt werden, dass
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dieser noch problemlos verwendet werden kann. Die Bildung höher molekularer Alte-

rungsprodukte könnte an kritischen Bauteilen wie Injektoren oder Kraftstofffiltern die Be-

triebssicherheit des Fahrzeuges gefährden [10]. Eine Sensorik, die einen Kraftstoff cha-

rakterisieren und dessen Alterungsgrad und Zustand bestimmen kann, ist daher äußerst

hilfreich für eine problemlose Verwendung von konventionellen und insbesondere rege-

nerativen Kraftstoffen.

3.2 Zielsetzung und Forschungsstrategie

Die vorliegende Arbeit verfolgte zwei zentrale Fragestellungen: Zum einen sollte ein de-

tailliertes Verständnis der thermo-oxidativen Alterung ausgewählter regenerativer Kraft-

stoffe erarbeitet werden, zum anderen galt es, ein Sensorkonzept zur Klassifikation und

Bestimmung des Alterungsgrades fossiler und regenerativer Kraftstoffe zu entwickeln.

Das Ziel hierbei war es, eine präzise und gleichzeitig robuste Methode zu etablieren.

Die Beantwortung der Fragestellungen erforderte eine systematische Herangehenswei-

se. Im ersten Schritt wurden zwei unterschiedliche Alterungsapparaturen zur thermo-

oxidativen Alterung der Kraftstoffe konzipiert. Eine offene Apparatur diente zur Durchfüh-

rung kinetischer Untersuchungen, während eine geschlossene Apparatur zur Kohlenstoff-

Massenbilanzierung der gealterten Kraftstoffe eingesetzt wurde. Um die während des

Alterungsprozesses gebildeten Produkte zu identifizieren und die zugrunde liegenden

Reaktionsmechanismen zu verstehen, wurden verschiedene analytische Methoden ein-

gesetzt.

Neben der Analyse der Alterungsprozesse stand die Entwicklung eines Sensorkonzepts

im Fokus. Die Fluoreszenzspektroskopie ist eine vielversprechende Methode zur schnel-

len und einfachen Differenzierung der Kraftstoffe, es wird hierfür jedoch ein geeigneter

Fluoreszenzmarker benötigt. Daher wurden verschiedene Fluoreszenzmarker getestet

und deren Stabilität gegenüber thermo-oxidativer Alterung untersucht.

Weiterhin wurde untersucht, ob sich die die Nahinfrarotspektroskopie in Kombination mit

einem geeigneten Auswertealgorithmus als vielversprechende Methode für eine noch

präzisere und kosteneffizientere Klassifizierung der Kraftstoffe sowie zur Bestimmung

ihres Alterungsgrades eignet. Hierfür musste zunächst eine umfangreiche Datenbasis

erstellt und auf dieser Grundlage verschiedene, auf maschinellem Lernen und künstlicher
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Intelligenz basierende Auswertealgorithmen zur Vorhersage implementiert und getestet

werden.
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4. Theoretische Grundlagen

4.1 Kraftstoffe

Kraftstoffe sind flüssige oder gasförmige Energieträger, die Energie für den Antrieb von

Verbrennungskraftmaschinen bereitstellen [11, 12, 13]. Sie müssen eine hohe volumetrische

Energiespeicherdichte aufweisen, leicht handhabbar sein und ohne feste oder flüssige

Rückstände verbrennen [14]. Die Eigenschaften der Kraftstoffe und deren Anforderungen

für den Einsatz in Otto- und Dieselmotoren werden im Rahmen verschiedener Normen,

wie der DIN EN 228 [15], der DIN EN 590 [16] oder der DIN EN 14214 [17], vorgegeben [14, 18].

Sie können in fossile Kraftstoffe, die konventionell auf Mineralölbasis hergestellt werden

und in regenerative Kraftstoffe, die synthetisch aus erneuerbaren Rohstoffen hergestellt

werden, unterteilt werden [19].

4.1.1 Fossile Kraftstoffe

Fossile Kraftstoffe werden aus Rohöl in Raffinerien durch fraktionierte Destillation ge-

wonnen [20]. Sie bestehen aus mehreren hundert verschiedenen Kohlenwasserstoffen

unterschiedlicher Gruppen, wie beispielsweise Alkane (Paraffine), Alkene (Olefine) und

Aromaten [21].

4.1.1.1 Ottokraftstoff (Benzin)

Benzin kann als Kraftstoff in Ottomotoren eingesetzt werden. Es besteht in erster Linie

aus einem komplexen, einphasigen Gemisch aus über 100 verschiedenen Kohlenwas-

serstoffen aus der Rohölfraktion mit dem Siedebereich zwischen 35-210 °C (Naphta) [22].

Die flüchtige und brennbare Flüssigkeit besteht aus Paraffinen (n-Alkanen), Isoparaffi-

nen (iso-Alkanen), Naphtenen (Cycloalkanen), Olefinen (n- und iso-Alkenen) und Aroma-

ten mit 4 bis 12 Kohlenstoffatomen pro Molekül (C4-C12) [23]. Außerdem enthält Benzin
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einen geringen Gehalt an sauerstoffhaltigen Verbindungen, sowie Spuren von Schwe-

fel, Stickstoff und verschiedenen Metallen [7]. Außerdem werden dem Kraftstoff Additive

zugesetzt. Die Norm DIN EN 228 [20, 21, 24] definiert die Anforderungen für Benzin zur Ver-

wendung in Ottomotoren. In dieser Norm werden unter anderem Mindestwerte für die

Oktanzahl, den Dampfdruck oder den Siedeverlauf angegeben [25] (vgl. Kapitel 4.1.3). Es

sind zwei Sorten unverbleiter Ottokraftstoffe zugelassen: Zum einen E5 mit einem Sau-

erstoffgehalt von maximal 2,7 % (vol%) und einem maximalen Bioethanolgehalt von 5 %

(vol%) und zum anderen E10 mit einem Sauerstoffgehalt von maximal 3,7 % (vol%) und

einem maximalen Gehalt an Bioethanol von 10 % (vol%). Ein Auszug der Norm EN 228

wird in Tabelle 8.5 (Anhang) gezeigt.

4.1.1.2 Dieselkraftstoff

Ein idealer Dieselkraftstoff würde zu 100 % aus gesättigten n-Paraffinen bestehen, hät-

te beim Verbrennen wenig Schadstoffemissionen und eine hohe Cetanzahl. Da es sich

beim fossilen Dieselkraftstoff jedoch um das Mitteldestillat der Rohölraffination handelt,

besteht dieser aus einem komplexen Gemisch aus über 300 verschiedenen Paraffinen,

Olefinen und Aromaten mit Kettenlängen im Bereich von 10-20 Kohlenstoffatomen (C10-

C20). Der Siedebereich liegt bei 180-370 °C und es werden Additive zugesetzt [22, 26]. Die

Norm DIN EN 590 definiert die Spezifikationen von Dieselkraftstoff (vgl. Tabelle 8.6 (An-

hang)). In dieser Norm sind unter anderem Werte für die Cetanzahl, die Dichte und die

kinematische Viskosität festgelegt (vgl. Kapitel 4.1.3). Der maximal zulässige Anteil an

regenerativem Fettsäuremethylester (FAME) beträgt 7 % (vol%) (B7).

4.1.2 Regenerative Kraftstoffe

Es gibt verschiedene Arten von regenerativen Kraftstoffen. Kraftstoffe aus Anbaumasse

werden als Biokraftstoffe der ersten Generation bezeichnet [27]. Hierzu zählen beispiels-

weise Bioethanol, welcher durch die Fermentation von Getreide, Mais oder Zuckerrüben

gewonnen oder Biodiesel, der durch einen Umesterungsprozess pflanzlicher Öle her-

gestellt wird [28]. Obwohl durch die Verbrennung die selbe Menge an CO2 frei wird, die

vorher beim Wachstum der Pflanzen durch die Photosynthese gebunden wurde, gelten

diese Kraftstoffe trotzdem nicht als komplett klimaneutral, wenn der Energiebedarf für
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Anbau und Produktion und die zusätzlich durch das Düngemittel freiwerdenden Treibh-

ausgase mit eingerechnet werden. Biodiesel aus Rapsmethylester (RME) zeigt hierbei

die schlechteste Klimabilanz [28, 29]. Als Biokraftstoffe der 2. Generation werden Biokraft-

stoffe bezeichnet, die nicht aus Pflanzen produziert werden, die eigens dafür angebaut

wurden. Stattdessen werden die Kraftstoffe z.B. aus Lignocellulose, die in Reststoffen

wie Stroh oder Forstabfällen enthalten ist, hergestellt [28]. Außerdem zählen hydrierte

Pflanzenöle (HVO), die aus grünem (regenerativ erzeugtem) Wasserstoff erzeugt wer-

den ebenfalls zu den Biokraftstoffen der 2. Generation [28, 30].

Tabelle 4.1: Einteilung von Biokraftstoffen in verschiedene Generationen [18, 27].

1. Generation 2. Generation 3. Generation

Bioethanol Hydrierte Pflanzenöle
(HVO)

Synthetische Biokraftstoffe
aus Biosynthesegas

Pflanzenöle Biodiesel aus Altspeise-
ölen oder Abfallstoffen
(UCOME)

Biokraftstoffe aus aquatischer
Biomasse (z.B. Algen)

Biodiesel Bioethanol
aus Lignocellulose

Bioparaffine aus
Lignocellulose

Blends aus fossilen
Kraftstoffen mit
Bioethanol oder Biodiesel

Bio-Butanol

Bio-Methan

Bio-Dimethylether

Beim Biomass-to-Liquid-Verfahren (BtL) können biogene Rohstoffe mittels Dampfrefor-

mierung in Synthesegas umgewandelt werden. Durch eine anschließende Fischer-Tropsch-

Synthese, welche weiter unten näher beschrieben wird, können dann daraus hochwertige

Kraftstoffe (Ottokraftstoffe, Dieselkraftstoffe oder Kerosin) hergestellt werden [28]. Diese

Kraftstoffe zählen, ebenso wie Biokraftstoffe aus Algen, zu den Biokraftstoffen der 3.

Generation [31]. In Tabelle 4.1 ist eine Übersicht über die verschiedenen Generationen

gezeigt.

Ebenfalls zu den regenerativen Kraftstoffe zählen die sog. E-Fuels (electrofuels, power-

to-X, PtX), also synthetische, strombasierte Kraftstoffe. Diese werden aus grünem Was-

serstoff, der durch die Elektrolyse von Wasser mit erneuerbarem Strom produziert wird
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und CO2 mit Hilfe der Fischer-Tropsch-Synthese hergestellt. Das CO2 wird entweder der

Atmosphäre entzogen oder kommt als Abfallprodukt aus Industrieanlagen [32, 33]. Da bei

der Verbrennung der E-Fuels so viel CO2 frei wird, wie der Atmosphäre für die Synthese

der Kraftstoffe entzogen wurde, gelten diese als quasi klimaneutral.

Einige wichtige Vertreter der regenerativen Kraftstoffe und Kraftstoffkomponenten wer-

den im Folgenden vorgestellt.

4.1.2.1 Biodiesel

Biodiesel besteht aus Fettsäuremethylester (engl. fatty acid methyl ester, FAME). Die

Herstellung der FAME erfolgt durch die Umesterung von Triglyceriden (Pflanzenöle oder

tierische Fette) mit Alkohol, entweder säure-oder basenkatalysiert. Als Alkohol für den

Herstellungsprozess wird hauptsächlich Methanol verwendet, da es kostengünstig ist und

physikalische und chemische Vorteile, wie eine hohe Polarität, aufweist [34]. Aber auch

andere kurzkettige Alkohole wie Ethanol oder Butanol können zur Herstellung der Fett-

säureester verwendet werden [34, 35]. In Abb. 4.1.1 ist das Reaktionsschema der basen-

katalysierten Umesterung von Triglyceriden mit Alkohol zu Fettsäureestern und Glycerin

dargestellt [36, 34, 37].

Abbildung 4.1.1: Reaktionsschema der basenkatalysierten Herstellung von Biodiesel [36, 34, 37].

Im ersten Schritt wird aus einer Base (z.B. eine Natriumhydroxidlösung), die als Kataly-

sator fungiert und einem Alkohol (z.B. Methanol) ein Alkoholat gebildet. Durch den nu-

kleophilen Angriff des Alkoholats an der Carbonylgruppe des Triglycerids, bildet sich der

erste Fettsäurealkylester und ein Anion des Diglycerids, welches den Katalysator depro-
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toniert. Die daraufhin regenerierte Base kann mit einem weiteren, im Überschuss vor-

liegenden Alkoholmolekül reagieren, wodurch ein weiterer katalytischer Zyklus beginnt.

Auf diese Weise werden auch das Diglycerid und das anschließende Monoglycerid in

Glycerin umgewandelt, wobei jeweils ein Fettsäurealkylester entsteht [37]. Das so ent-

stehende Glycerin trennt sich vom Triglycerid-Ester-Gemisch ab und bildet eine eigene

Phase. Nebenreaktionen wie Verseifungen können durch wasserfreies Arbeiten weitge-

hend unterdrückt werden [26]. Insgesamt wird für die Umesterung von drei Mol FAME ein

Mol Triglycerid und drei Mol Methanol benötigt, wobei als Nebenprodukt ein Mol Glycerin

entsteht.

Tabelle 4.2: Fettsäuremuster verschiedener Pflanzenöle [36, 26, 30, 38].

Fettsäure Rapsöl Sonnenblumenöl Sojaöl Palmöl Kokosnussöl
Caprylsäure

C8:0
- - - - 8 %

Caprinsäure
C10:0

- - - - 5 %

Laurinsäure
C12:0

- - - - 49 %

Myristinsäure
C14:0

- - - 1 % 18 %

Palmitinsäure
C16:0

6 % 6 % 11 % 42 % 9 %

Stearinsäure
C18:0

1-2 % 4 - 5 % 4 % 5 % 3 %

Ölsäure
C18:1

55 - 65 % 28 % 24 % 41 % 7 %

Linolsäure
C18:2

20 - 26 % 61 % 54 % 11 % 2 %

Linolensäure
C18:3

8 - 10 % 1 % 7 % - -

Cetoleinsäure
C22:1

2 % - - - -

Die für die Biodieselherstellung verwendeten Pflanzenöle besitzen ein typisches Fettsäu-

remuster, das sich je nach Sorte des Öls unterscheidet. In Tabelle 4.2 ist das exemplari-

sche Fettsäuremuster einiger Triglyceride der Pflanzenöle dargestellt. Das Fettsäuremus-

ter des Biodiesels ist mit dem des verwendeten Pflanzenöls identisch [39] und hat einen

Einfluss auf die physikalischen und chemischen Eigenschaften des Kraftstoffs [40, 41]. Ein



18

hoher Anteil an Doppelbindungen kann beispielsweise dessen Kältestabilität verbessern,

dafür ist er dadurch anfälliger gegenüber Oxidation [36, 26]. Außerdem beeinflusst ein ho-

her Anteil an ungesättigten Fettsäuren die Viskosität des Biodiesels maßgeblich, was auf

die Geometrie der Moleküle durch vorhandene Doppelbindungen und dadurch weniger

intermolekulare Wechselwirkung zurückzuführen ist. Die Norm DIN EN 14214 spezifiziert

die Spezifikationen für FAME (vgl. Tabelle 8.7 (Anhang)). Darin sind unter anderem Wer-

te für die Dichte, die kinematische Viskosität und die Säurezahl festgelegt (vgl. Kapitel

4.1.3).

Zur Herstellung der FAME können zur Umesterung anstatt von frischen Speiseölen auch

bereits gebrauchte Altspeiseöle verwendet werden. Dieser Rest- und abfallstoffbasierte

Biodiesel (engl. used cooking oil methyl ester, UCOME) steht nicht im Wettbewerb mit

Nahrungsmitteln. Für UCOME gelten ebenfalls die Qualitätskriterien der DIN EN 14214
[17].

4.1.2.2 HVO (Hydrierte Pflanzenöle)

Hydrierte Pflanzenöle (engl. hydrotreated vegetable oils, HVO) zählen zu den Biokraft-

stoffen der 2. Generation (vgl. Tab. 4.1). Für ihre Erzeugung können neben Pflanzenölen

auch gebrauchte Frittieröle- und fette, Schlachthausfette, Fette aus Kläranlagen oder Al-

genöle verwendet werden [27]. Bei der Herstellung von HVO erfolgt eine Hydrierung der

Triglyceride mit regenerativ erzeugtem Wasserstoff. In Abbildung 4.1.2 sind exemplarisch

die Reaktionswege der katalytischen Hydrierung eines Triglycerids dargestellt. Dies kann

entweder mittels Hydrodeoxygenierung (vgl. Abb. 4.1.2 (I)), Decarboxylierung (vgl. Abb.

4.1.2 (II)) oder Decarbonylierung (vgl. Abb. 4.1.2 (III)) vonstattengehen. Die eingesetz-

ten Katalysatoren sind beispielsweise Platin, Palladium, Nickel, Iridium oder Ruthenium

auf einem Träger aus Aluminiumoxid oder Siliciumdioxid. Das Produkt HVO besteht aus

verzweigten und unverzweigten Alkanen, die weder Doppelbindungen noch Aromaten

enthalten. Ein kommerzielles Nebenprodukt, das bei der Herstellung entsteht, ist Propan
[27]. Durch das Nichtvorhandensein der Doppelbindungen wird die Reaktivität im Vergleich

zu FAME deutlich reduziert, was die thermo-oxidative Stabilität erhöht [30, 27]. Außerdem

kann durch zusätzliches Hydrocracking der Isomerisierungsgrad erhöht werden [36, 42],

wodurch eine ausreichende Kältefestigkeit gewährleistet wird [30].
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Abbildung 4.1.2: Reaktionsschema der Herstellung von HVO (Hydrotreated Vegetable Oil) [27].

4.1.2.3 Solketal

Beim Herstellungsprozess von Biodiesel entsteht als Nebenprodukt Glycerin in signifikan-

ten Mengen (vgl. Abb. 4.1.1). Da die Reinheit des entstehenden Glycerins der Biodiesel-

industrie nur bei etwa 70 % liegt, kann dieses nicht in der pharmazeutischen, Lebensmittel-

oder Kosmetikindustrie verwendet werden [43, 44, 45]. Glycerin ist als Kraftstoff oder Kraft-

stoffkomponente ungeeignet, da es eine hohe Viskosität von 1,412 Pa·s aufweist [43] und

bei der Verbrennung von Glycerin das toxische Acrolein entsteht [46]. Allerdings kann

aus Glycerin und Aceton durch säurekatalysierte Ketalisierung Solketal (Isopropyliden-

glycerin) gebildet werden. Wenn für dessen Synthese Bio-Aceton, welches durch ABE-

Fermentation (Aceton-Butanol-Ethanol-Fermentation) gewonnen werden kann [47, 48], ver-

wendet wird, ist Solketal komplett regenerativ herstellbar. Solketal ist ein zyklisches Ketal,

aufgrund seiner Hydroxylgruppe aber auch ein primärer Alkohol und gleichzeitig ein zy-

klischer Ether.
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Abbildung 4.1.3: Reaktionsschema des Syntheseprozesses von Solketal [43, 49].

In Abbildung 4.1.3 ist der Reaktionsweg der Synthese von Solketal dargestellt. Durch

eine säurekatalysierte Kondensationsreaktion von Aceton und Glycerin entsteht entwe-

der ein fünfgliedriges Ketal (Solketal, vgl. Abb. 4.1.3 (I)) oder ein sechsgliedriges Ketal

(2,2-dimethyl-1,3-dioxan-5-ol, vgl. Abb. 4.1.3 (II)), wobei das fünfgliedrige Ketal bevorzugt

im Verhältnis 99:1 gebildet wird [43, 50, 51, 49]. Als Katalysatoren kommen starke Brönsted-

Säuren, wie beispielsweise Schwefelsäure zum Einsatz [52, 53]. Es können jedoch auch

Lewis-Säuren (Metalle), die in mesoporöse Silicate eingebracht werden, als Katalysato-

ren verwendet werden [45, 53, 54]. Solketal wurde bereits mehrfach als Kraftstoffkomponen-

te getestet. Es hat einen geringeren Heizwert als beispielsweise Benzin oder Diesel [55],

weist aber dennoch einige Vorteile auf. Eine Beimischung von 10 % Solketal zu Biodie-

sel bewirkt bessere Kaltfließeigenschaften, eine Flammpunktserniedrigung [56, 57] und ei-

ne Erhöhung der Cetanzahl, wodurch eine bessere Verbrennung ermöglicht wird [45]. Bei

Blends aus Benzin und bis zu 9 % Solketal zeigt sich ein Anstieg der Oktanzahl und der

Dichte, sowie eine Reduzierung der Bildung von Ablagerungen (Gum-Bildung) während

der Alterung (vgl. Kapitel 4.2) und der Rußbildung während der Verbrennung [43, 54, 56, 58].

4.1.2.4 Alkohole

Alkohole können als Beimischkomponenten in Kraftstoffen eingesetzt werden. Im Fol-

genden werden einige ausgewählte Vertreter der Alkohole genauer vorgestellt.

Die kurzkettigen Alkohole Methanol und Ethanol sind bekannte Kraftstoffe bzw. Kraft-

stoffzusätze. Methanol kann aus fossilem Erdgas oder aus Gas, das von biogenen Ab-

fällen stammt, hergestellt werden [25, 59, 60, 61, 62, 63]. Durch die Dampfreformierung von Me-

than wird ein Gemisch aus CO, CO2 und H2 erzeugt und aus diesem Synthesegas er-



21

folgt die Synthese von Methanol, wobei als Katalysator ein System aus CuO/ZnO/Al2O3

eingesetzt wird [25, 64]. Das benötigte Kohlendioxid kann auch, anstatt aus Methan, aus

Abgasströmen von verschiedenen industriellen Anlagen (z.B. aus der Zement- oder Alu-

miniumproduktion) oder durch Abscheidung aus der Umgebungsluft (z.B. durch Mem-

branabscheidung) gewonnen werden [64, 65]. Aus dem so gewonnen CO2 kann durch die

reverse Wassergas-Shift-Reaktion [66] CO entstehen, wodurch Methanol, bei Verwendung

von grünem Wasserstoff, regenerativ erzeugt werden kann. Aufgrund seines Sauerstoff-

gehalts hat Methanol einen geringeren Heizwert als Benzin oder Diesel [59], allerdings

bewirkt eine Beimischung von Methanol zu fossilen Kraftstoffen eine Absenkung der CO-

und HC-Emissionen, wobei die NOx-Emissionen ansteigen [67, 68, 69]. Eine Beimischung

von Methanol zu Biodiesel bewirkt ebenfalls eine Senkung der CO-, HC und Feinstaube-

missionen [68]. Die Synthese von Ethanol erfolgt industriell entweder durch die säureka-

talysierte Hydratisierung von petrochemischem Ethen [70, 71, 72, 73] oder über die Fermen-

tation von Zucker aus Zuckerrüben oder Getreidestärke mit Hilfe von Mikroorganismen

wie Bakterien oder Hefen. Alternativ kann zur Fermentation auch Lignozellulose verwen-

det werden [25, 71, 72, 74, 75]. Das dadurch entstehende Bioethanol wird in Deutschland bis

maximal 10 % (vol%) zu Benzin beigemischt, in Ländern wie Brasilien oder Schweden

ist die Beimischrate deutlich höher [76]. Die Beimischung von Ethanol zu fossilem Kraft-

stoff führt zu einer Erhöhung der Oktanzahl [77] und durch den erhöhten Sauerstoffgehalt

im Kraftstoff werden die CO- und HC-Emissionen gesenkt, die NOx-Emissionen jedoch

erhöht [78, 79].

Weitere interessante Kraftstoffzusätze, die aktuell jedoch noch nicht verwendet werden,

sind C6- und C8-Alkohole.

Der lineare C6-Alkohol 1-Hexanol kann industriell durch die Ziegler-Alfol-Synthese her-

gestellt werden [25, 70, 73, 80]. Bei dieser Synthese reagiert Triethylaluminium mit petroche-

mischem Ethen zu linearen Alkoholen mit einer geradzahligen Anzahl an C-Atomen [73].

Die Selektivität der Alkohole beträgt 85-91 % [73]. Ein Weg zur regenerativen Herstellung

von 1-Hexanol ist die Hydrodeoxygenierung (HDO) von Sorbitol in wässriger Lösung mit

einem Ru-MoOx/Mo2C-Katalysator [81]. Sorbitol kann beispielsweise aus Cellulose herge-

stellt werden [82, 83, 84]. Der Syntheseprozess mit Hilfe der HDO ist in Abb. 4.1.4 dargestellt.

Hierbei wird Sorbitol zunächst zu Isosorbid dehydratisiert, welches durch mehrere HDO-

Reaktionen zu den zwei Polyolen Hexantriol und weiter zu Hexandiol reagieren kann.

Daraus kann wiederum durch HDO der einwertige Alkohol 1-Hexanol oder das Alkan He-

xan entstehen [81].
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Abbildung 4.1.4: Reaktionsschema des Syntheseprozesses von 1-Hexanol durch Hydrodeoxy-
genierung von Sorbitol [81].

Der iso-Alkohol 2-Hexanol kann beispielsweise regenerativ aus der in Lignocellulose ent-

haltenen Cellulose oder Hemicellulose hergestellt werden. Durch eine saure Hydrolyse

können Cellulose und Hemicellulose in C5-Zucker (Xylose) und C6-Zucker (Glucose) um-

gewandelt werden [85], welche wiederum durch eine säurekatalysierte Dehydratisierung

zu Furfural und Hydroxymethylfurfural reagieren können [85, 86, 87, 88]. Furfural kann mit Hil-

fe eines Pd/C-Katalysators durch Decarbonylierung zu Furan [85, 89, 90] und durch Hydro-

genolyse der CO-Bindung mittels eines Raney-Ni-Katalysators zu Methylfuran reagieren
[85, 91]. Durch Hydrogenolyse kann aus Hydroxymethylfurfural Dimethylfuran entstehen,

wobei Pd/C als Katalysator verwendet wird [85, 92] (vgl. Abb. 4.1.5).

Abbildung 4.1.5: Reaktionsschema des Syntheseprozesses von 2-Hexanol aus Cellulose und
Hemicellulose [85].

Die entstehenden Produkten können dann durch katalytische Hydrierung zu verschiede-
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nen Alkoholen reagieren. Aus Methylfuran kann 1-Pentanol und 2-Pentanol, aus Furan

1-Butanol und aus Dimethylfuran 2-Hexanol mit Hilfe eines Kupfer-Chromit-Katalysators

entstehen [85, 93]. 2-Hexanol kann auch mittels eines Ru/C-Katalysators [85, 94] oder mittels

eines Katalysators aus Polyoxometallaten (POMs) [85] aus Dimethylfuran hergestellt wer-

den. Letzteres führt zu milden Reaktionsbedingungen, wodurch eine energiesparendere

Synthese möglich ist.

Durch eine Beimischung von 1-Hexanol und 2-Hexanol zu fossilem Dieselkraftstoff oder

Biodiesel können bei der Verbrennung die CO- und HC-Emissionen sowie die Rußbil-

dung vermindert werden [95, 96].

Der lineare C8-Alkohol 1-Octanol kann ebenfalls durch die weiter oben beschriebene

Ziegler-Alfol-Synthese synthetisiert werden [25, 70, 73, 80]. Regenerativ kann 1-Octanol bei-

spielsweise über die Reaktion von Furfural aus Cellulose und Hemicellulose mit Aceton

hergestellt werden [97, 98] (vgl. Abb. 4.1.6). Hierbei reagiert Furfural zunächst mittels Al-

dolkondensation mit Aceton zu Furfuralaceton, welches dann zu Tetrahydrofurfurylalko-

hol (THFA) hydriert wird [97]. Der THFA kann dann durch selektive Desoxygenierung der

sekundären Alkoholfunktion [99] gekoppelt mit der selektiven Ringöffnung des Tetrahydro-

furylrings durch Hydrogenolyse zu 1-Octanol umgewandelt werden [97]. Mischungen aus

bis zu 30 % (vol%) 1-Octanol und fossilem Dieselkraftstoff können in Selbstzündungs-

motoren als Ersatz für Standarddiesel verwendet werden, ohne dass Änderungen am

Einspritzsystem oder der Motorsteuerung erforderlich sind [100]. Die Mischungen weisen

eine erhebliche Verringerung der Rußemissionen bei gleichen NOx-Emissionen im Ver-

gleich zu reinem Dieselkraftstoff auf [101].

Abbildung 4.1.6: Reaktionsschema des Syntheseprozesses von 1-Octanol aus Furfural und
Aceton [97].
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4.1.2.5 PtL-Kraftstoffe (Fischer-Tropsch-Kraftstoffe)

Die Herstellung von synthetischen PtL (power-to-liquid)-Kraftstoffen, sogenannten E-Fuels,

umfasst die Umwandlung von Wasser und Kohlendioxid in Kohlenwasserstoffe mit Hil-

fe von regenerativ erzeugtem elektrischen Strom. Hierfür kann die von Franz Fischer

und Hans Tropsch 1923 entwickelte Fischer-Tropsch-Synthese (FT-Synthese) [102, 103] ver-

wendet werden. Die Herstellung umfasst drei Schritte: Die Elektrolyse von Wasser in

Wasserstoff und Sauerstoff [104], die reverse Wassergas-Shift-Reaktion (reverse WGS-

Reaktion) und die Fischer-Tropsch-Synthese (FT-Synthese) [104]. Das Synthesegas für

die FT-Synthese ist eine Mischung aus CO und H2. Kohlenmonoxid erhält man durch

eine Reduktion von Kohlendioxid durch die reverse WGS-Reaktion [66]. Als Katalysatoren

kommen hierbei beispielsweise Platin, Kupfer oder Eisen infrage [66]. Das benötigte CO2

kann direkt aus der Umgebungsluft gewonnen werden (direct air capture). Hierbei wird es

beispielsweise in einer flüssigen Lösung (Natriumhydroxidlösung) in Füllkörperkolonnen,

Konvektionstürmen oder Sprühturmkontraktoren absorbiert [104]. Alternativ können Punkt-

quellen mit einem hohen CO2-Partialdruck, wie beispielsweise industrielle Abgase die

Lieferanten für CO2 sein. Hierbei wird es aus Rauchgasen in flüssigen Lösungsmitteln, in

der Regel wässrige Aminlösungen, absorbiert, wobei wasserlösliche Salze gebildet wer-

den. Das CO2 kann anschließend in einer Desorptionskolonne zurückgewonnen werden
[104, 105, 106, 107]. Das für die FT-Synthese benötigte Synthesegas (H2 und CO) kann auch

biogenen Ursprungs sein, beispielsweise aus der Vergasung von Biomasse oder Abfäl-

len [108]. Durch die FT-Synthese wird Synthesegas in flüssige Kohlenwasserstoffe unter-

schiedlicher Länge, abhängig von den Reaktionsbedingungen, umgewandelt. Hierbei hat

das Synthesegas ein H2/CO-Verhältnis von 2-2,2. In Abb. 4.1.7 sind die Reaktionen auf-

gezeigt, die während der FT-Synthese stattfinden, wobei n die resultierende Kettenlänge

der Kohlenwasserstoffe ist (typischerweise: n=10-20). Die FT-Synthese ist sowohl eine

CO-Hydrierungs- als auch eine Polymerisationsreaktion [109].

Abbildung 4.1.7: Reaktionsschema der Fischer-Tropsch-Synthese [104].

Durch die FT-Synthese entstehen hauptsächlich Alkane, aber auch Alkohole gehören zu
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den Produkten [104], allerdings mit einer schlechten Selektivität [81]. Als Nebenprodukt ent-

steht Wasser, dieses kann jedoch mit Hilfe der WGS-Reaktion mit CO wieder zu CO2 und

H2 umgewandelt werden [104, 66].

Tabelle 4.3: Zusammensetzung der entstehenden Produkte der Hochtemperatur-Fischer-
Tropsch-Synthese (HT-FT) und der Niedertemperatur-Fischer-Tropsch-Synthese (LT-FT) bei Ei-
sen (Fe)- und Kobalt (Co)-Katalysatoren [108].

Kohlenwasserstoff Produktzusammensetzung [m%]

HTFT
(Fe-Katalysator)

LTFT
(Fe-Katalysator)

LTFT
(Co-Katalysator)

Gasförmige Produkte (C1-C4)
Methan 12,7 4,3 5,6
Ethylen 5,6 1,0 0,1
Ethan 4,5 1,0 1,0
(C3-C4) Olefine 21,2 6,0 3,4
(C3-C4) Paraffine 3,0 1,8 1,8
Naphta (C5-C10)
Olefine 25,8 7,7 7,8
Paraffine 4,3 3,3 12,0
Aromaten 1,7 0 0
Oxygenate 1,6 0,3 0,2
Destillate (C11-C22)
Olefine 4,8 5,7 1,1
Paraffine 0,9 13,5 20,8
Aromaten 0,8 0 0
Oxygenate 0,5 0,3 0
Wachse (≥C22)
Olefine 1,6 0,7 0
Paraffine 0,4 49,2 44,6
Aromaten 0,7 0 0
Oxygenate 0,2 0 0
Wässrige Produkte
Alkohole 4,5 3,9 1,4
Aldehyde, Ketone 3,9 0 0
Carbonsäuren 1,3 0,3 0,2

Für die FT-Synthese werden Eisen- oder Kobalt-Katalysatoren eingesetzt. Während Kobalt-

Katalysatoren eine hohe Stabilität und Selektivität für langkettige Paraffine aufweisen,

neigen Eisen-Katalysatoren stärker zur Bildung von Olefinen, Aromaten und sauerstoff-
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haltigen Nebenprodukten. Ein wesentlicher Vorteil der Eisen-Katalysatoren liegt jedoch

in ihrer ausgeprägten Aktivität für die WGS-Reaktion, wodurch sich auch Synthesegas-

Ströme mit geringem H2- und hohem CO2- Anteil, wie sie beispielsweise bei der Verga-

sung von Biomasse entstehen, verwerten lassen. Kobalt-Katalysatoren hingegen zeigen

kaum Aktivität für die WGS-Reaktion und sind daher insbesondere für Synthesegas mit

hohem H2/CO-Verhältnis geeignet [110].

Die Verteilung der Kettenlängen der Kohlenwasserstoffe ist durch die Anderson-Schulz-

Flory-Verteilung [104, 109, 111, 112] gegeben durch:

Wn = n(1− α)2αn−1 (4.1.1)

wobei Wn den Massenanteil der entstehenden Kohlenwasserstoffe mit der Kettenlänge n

beschreibt und α die Kettenwachstumswahrscheinlichkeit, die abhängig vom Katalysator

(Eisen oder Kobalt), der Reaktionstemperatur, dem Druck und der Zusammensetzung

des Synthesegases ist [104]. Man unterscheidet zwischen der Niedertemperatur-Fischer-

Tropsch-Synthese (LT-FT- Synthese) bei einem Temperaturbereich von T=200-240 °C

und der Hochtemperatur-Fischer-Tropsch-Synthese (HT-FT-Synthese) bei einem Tempe-

raturbereich von T=300-350 °C [113]. Bei der HT-FT-Synthese entstehen kurz- und mittel-

kettige Paraffine sowie unverzweigte Olefine, aber auch Oxygenate wie Alkohole, Alde-

hyde, Carbonsäuren und Ketone. Ester, Furane und Phenole entstehen ebenfalls, aber

in sehr geringen Konzentrationen [108]. Bei der LT-FT-Synthese entstehen hauptsächlich

hochmolekulare Kohlenwasserstoffe (≥C22) und Wachse, hauptsächlich paraffinische,

aber auch cycloparaffinische und aromatische Kohlenwasserstoffe in geringen Konzen-

trationen [108]. Tabelle 4.3 gibt eine Übersicht der entstehenden Produkte.

Die bei der FT-Synthese entstehenden Produkte werden Syncrude genannt. Das Syn-

crude kann nicht ohne weiteres als Kraftstoff verwendet werden, sondern muss vorher in

einer Raffinerie verfeinert werden, um spezifische Fraktionen zu erhalten [108, 113].

4.1.2.6 MtG-Kraftstoffe (Methanol-to-Gasoline-Kraftstoffe)

Eine weitere Möglichkeit zur Synthese von E-Fuels ist das Methanol-to-Gasoline (MtG)-

Verfahren. Hierbei findet eine katalytische Umsetzung von regenerativ erzeugtem Metha-

nol (vgl. oben) zu Kohlenwasserstoffen und Wasser statt [25]. Hierbei wird Methanol als

erstes in einer schwach sauren Hydrolyse zu Dimethylether (DME) dehydratisiert, wobei
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als Nebenprodukt Wasser entsteht. Die Gleichgewichtsmischung aus DME und Wasser

wird dann in kurzkettige Olefine C2-C4 umgewandelt. Im letzten Reaktionsschritt reagie-

ren die kurzkettigen Olefine zu einem Gemisch aus längerkettigen Olefinen, n- und iso-

Alkanen, Aromaten und Cycloalkanen [114, 115] (vgl. Abb. 4.1.8), wobei als Katalysator H-

ZSM-5 verwendet wird [115]. Das durch den MtG-Prozess produzierte synthetische Benzin

besteht überwiegend aus iso-Alkanen und Aromaten und in geringerem Maß aus Cycloal-

kanen und Alkenen, wobei eine Selektivität hinsichtlich der C5+-Fraktion von etwa 80 %

erreicht wird [115]. Unter den aromatischen Verbindungen wird 1,2,4,5-Tetramethylbenzol

(Durol) in großen Mengen gebildet. Dieses kann aufgrund seines hohen Schmelzpunktes

(T=79 °C) zu Problemen bei der Einspritzanlage des Motors führen, weil es bei niedrigen

Temperaturen auskristallisieren kann. Aus diesem Grund muss vor der Verwendung des

MtG-Kraftstoffs die hoch-siedende Fraktion isomerisiert werden [115].

Abbildung 4.1.8: Reaktionsschema der Methanol-to-Gasoline-Synthese (MtG-Synthese) [114].

4.1.2.7 OME (Oxymethylenether)

Ein weiterer, synthetisch hergestellter Kraftstoff ist OME. Dieser besteht aus Oxyme-

thylenether, also Acetalen mit der chemischen Struktur CH3[OCH2]nOCH3, wobei deren

physikalische Eigenschaften durch die Kettenlänge bestimmt werden. OME0 ist gasför-

mig (Dimethylether), OME1-5 sind flüssig und ab OME6 liegen die OMEn als Feststoffe

vor [116, 117]. Die Struktur von OME weist Ähnlichkeiten mit dem Polymer Polyoxymethylen

(POM) auf, allerdings ist die Kettenlänge n von POM n>2000 [116, 118, 119]. Es gibt meh-

rere Möglichkeiten, um OME zu synthetisieren. Die Synthese der OME1 erfolgt durch

die Reaktion von Methanol und Formaldehyd, welches durch eine Oxidation mit Metha-

nol mit Hilfe eines Silber-Katalysators, hergestellt werden kann [116, 120]. Die längerket-

tigeren OMEn können beispielsweise aus OME1 und Trioxan, welches aus Formalde-

hyd mit Hilfe der Druckwechseladsorption hergestellt werden kann, synthetisiert werden
[25, 116, 121, 122, 123]. Alternativ ist auch eine Herstellung der OMEn aus Methanol und Formal-

dehyd, mit Hemiformalen als Zwischenprodukt, möglich (vgl. Abb. 4.1.9) [116, 124]. Bei Ver-

wendung von regenerativ hergestellten Methanol zur Synthese ist eine Herstellung von

regenerativem OME möglich. OME kann sowohl als Otto- als auch als Dieselkraftstoff (in
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Mischungen) eingesetzt werden. Die OME3-5 ähneln fossilem Dieselkraftstoff hinsichtlich

ihrer physikalischen Eigenschaften [116, 117] und weisen aufgrund ihrer molekularen Struk-

tur (keine direkten C-C-Bindungen im Molekül) ein hohes Potential zur Verminderung der

Rußbildung während der Verbrennung auf [25, 116, 117, 125]. Damit wird der Konflikt zwischen

der Optimierung der Verbrennungstemperaturen zur Vermeidung von NOx (niedrigere

Temperaturen erwünscht) und zur Reduzierung der Rußemissionen (höhere Tempera-

turen erwünscht), des sog. Ruß-NOx-Trade-off, weitgehend gelöst. Dies ermöglicht den

Betrieb des Motors mit niedrigen NOx- und Partikelemissionen (durch Abgasrückführung)

zur gleichen Zeit [116].

Abbildung 4.1.9: Reaktionsschema des Syntheseprozesses von OME aus Methanol und
Formaldehyd [124].

4.1.3 Kraftstoffparameter

Das Brennverfahren beim Dieselmotor mit Direkteinspritzung basiert auf der kontrollierten

Selbstzündung bei Luftüberschuss [25]. Es wird im Ansaugtakt Luft angesaugt, die im Ver-

dichtungstakt komprimiert wird. Gegen Ende des Verdichtungstaktes wird Kraftstoff, der

vom Einspritzsystem zur Verfügung gestellt wird, unter hohem Druck in den Brennraum

gebracht und es findet eine innere Gemischbildung statt. Der Verlauf der anschließenden

Verbrennung im Arbeitstakt und die Beschaffenheit der Abgasemissionen im Ausstoßtakt

werden maßgeblich durch den Einspritzvorgang beeinflusst [14, 18, 25, 126]. Wegen des ho-

hen Drucks an der Einspritzdüse, gelangt der Kraftstoff mit hoher Geschwindigkeit in die
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hochverdichtete Zylinderladung [14]. Es entsteht ein zunächst heterogenes Gemisch aus

Luft, Kraftstoffdampf und Kraftstofftröpfchen. Um jedoch eine optimale Verbrennung zu

gewährleisten, sollte der Kraftstoff komplett verdampfen, damit sich ein homogenes Ge-

misch bildet [25, 126]. Hierfür müssen die Kraftstofftropfen hinreichend klein sein [14, 127, 128],

was unter anderem durch den hohen Druck an der Einspritzdüse, die Dichte und die

Viskosität des Kraftstoffs beeinflusst wird [25]. Um die anschließende Selbstzündung des

Gemisches zu gewährleisten, ist eine ausreichende Zündwilligkeit des Kraftstoffs nötig
[25].

Beim konventionellen Ottomotor gibt es zwei verschiedene Brennverfahren, die zur An-

wendung kommen. Entweder findet die Gemischbildung von Kraftstoff und Luft außer-

halb des Brennraums statt (äußere Gemischbildung) und das Gemisch wird im Ansaug-

takt angesaugt, oder es findet eine innere Gemischbildung statt. Hierfür wird im An-

saugtakt Luft angesaugt, verdichtet und der Kraftstoff wird wie beim Dieselmotor direkt

eingespritzt [18, 126]. Der Hauptunterschied zur dieselmotorischen Verbrennung ist, dass

sich das Kraftstoff-Luft-Gemisch nicht selbst entzündet, sondern durch den Funken einer

Zündkerze fremdgezündet wird [25]. Hierfür ist eine erhöhte Zündunwilligkeit/Klopffestigkeit

sowie der richtige Siedeverlauf und der Dampfdruck des Kraftstoffs ausschlaggebend.

Einige wichtige Parameter, die einen Einfluss auf die Motorleistung, das Verbrennungs-

verhalten eines Kraftstoffs oder dessen Stabilität haben, werden im Folgenden vorge-

stellt.

4.1.3.1 Dichte

Die Dichte ρ eines Kraftstoffs beschreibt seine temperaturabhängige, auf ein bestimmtes

Volumen bezogene Masse. Bei Kohlenwasserstoffen nimmt sie mit wachsender Molekül-

länge und steigender Anzahl an Doppelbindungen zu [25, 129]. Auch durch einen erhöhten

Anteil an Sauerstoffmolekülen wird die Kraftstoffdichte in der Regel erhöht, da die intra-

molekularen C-O-Bindungen kürzer sind als die C-C-Bindungen [25]. Die Einspritzrate des

Kraftstoffs in den Brennraum, der Zerfall in Kraftstofftröpfchen und dadurch die Gemisch-

bildung werden von der Austrittsgeschwindigkeit Uaus des Flüssigkeitsstrahls beeinflusst
[127]. Eine höhere Austrittsgeschwindigkeit begünstigt aufgrund verstärkter aerodynami-

scher Kräfte eine feinere Zerstäubung und damit eine effizientere Gemischbildung. Die
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Austrittsgeschwindigkeit ergibt sich nach der Bernoulli-Gleichung zu:

Uaus = Cv ·

√

2 ·∆p

ρ
(4.1.2)

wobei ∆p den Druckunterschied zwischen dem Druck des Kraftstoffs und dem Druck des

umgebenden Gases an der Einspritzdüse, Cv einen Geschwindigkeitskoeffizienten, der

Werte von ~0,9 annimmt [127, 21] und ρ die Kraftstoffdichte beschreibt. Da Uaus abhängig

von der Dichte ist, hat diese einen großen Einfluss auf den Energieeintrag in den Brenn-

raum, wirkt sich auf die Emissionen aus und ist ein limitierender Faktor für die maximal

erzielbare Motorleistung [14, 130].

Sowohl für Otto- als auch für Dieselkraftstoffe gelten gewisse Grenzwerte für die Dichte

(vgl. Kapitel 4.1.1).

4.1.3.2 Viskosität und Oberflächenspannung

Die Viskosität ist ein Maß für die innere Reibung einer Flüssigkeit, die jeder dynamischen

Veränderung der Flüssigkeitsbewegung entgegenwirkt. Sie wird von den anziehenden,

intermolekularen Kräften beeinflusst und nimmt mit steigender Temperatur und sinken-

dem Druck ab [14, 131]. Der Zusammenhang zwischen dynamischer und kinematischer

Viskosität ist gegeben durch:

ν =
µ

ρ
(4.1.3)

wobei ν die kinematische Viskosität, µ die dynamische Viskosität und ρ die Dichte be-

schreibt. Die Viskosität eines Kraftstoffs beeinflusst das Verschleißverhalten im Einspritz-

system [14]. Eine zu hohe Viskosität hätte einen stark erhöhten Druck im Einspritzsystem

zur Folge, aber eine zu geringe Viskosität kann die Schmierwirkung beeinträchtigen, was

insbesondere an den Kolbenringen und anderen gleitenden Komponenten der Einspritz-

anlage zu erhöhtem Verschleiß führen kann [130].

Aufgrund von Molekularkräften ist es für Flüssigkeiten energetisch am günstigsten, ihre

Oberfläche zu minimieren. Die Oberflächenspannung beschreibt diese Tendenz und ist

die Ursache für die Tropfenbildung mancher Flüssigkeiten.

Der mittlere Tropfendurchmesser (Sauterdurchmesser) bei der Einspritzung wird maß-



31

geblich von der Viskosität und der Oberflächenspannung beeinflusst [18, 132, 133, 22]. Es gilt:

SMD = A ·

[

σ0.5µL

ρ0.5A ∆pL

]0.5

(t · cosθ)0.25 + B ·

[

σρL
ρA∆pL

]0.25

(t · cosθ)0.75 (4.1.4)

wobei SMD den mittleren Sauterdurchmesser, σ die Oberflächenspannung, µ die dyna-

mische Viskosität, ρA die Luftdichte, ρL die Dichte der Flüssigkeit, ∆pL die Druckdifferenz

über der Einspritzdüse beschreibt. θ ist der halbe Spraywinkel, t die Kraftstofffilmdicke

in der Düse und A und B sind von der konstruktiven Ausführung der Düse abhängige

Konstanten [133].

Ein geringere Viskosität und Oberflächenspannung (vgl. Glg. 4.1.4) und dadurch ein ge-

ringerer Tropfendurchmesser wirkt sich positiv auf die Verdampfung des Kraftstoffs und

dadurch auf die Gemischbildung aus [14, 18, 132].

4.1.3.3 Zündwilligkeit und Cetanzahl

Die Zündwilligkeit eines Kraftstoffs, d.h. dessen Tendenz zur Selbstzündung wird durch

die Cetanzahl (CN) beschrieben [18, 25]. Um beim Dieselmotor einen optimalen Verbren-

nungsablauf zu gewährleisten, sollte es eine kontrollierte Selbstzündung des Kraftstoffs

geben und daher dessen Cetanzahl möglichst hoch sein [25]. Wenn die CN zu niedrig

ist, wird die Zündung verzögert, was ein schlechteres Kaltstartverhalten und höhere Ab-

gasemissionen (HC, CO und NOx) zu Folge hat [25, 22, 134]. Eine höhere Cetanzahl führt

zu einer signifikanten Reduktion der Carbonylemissionen, was auf eine vollständigere

Verbrennung schließen lässt [25, 135]. Dadurch sinkt der Kraftstoffverbrauch und die Mo-

torleistung steigt [25]. Die molekulare Zusammensetzung des Kraftstoffs hat Einfluss auf

die Cetanzahl. Diese steigt mit zunehmendem Paraffinanteil sowie mit zunehmender Ket-

tenlänge der Paraffine, während sie mit zunehmendem Anteil an Aromaten sinkt. Die Ce-

tanzahl von n-Alkanen liegt bei CN=100-110 , die von iso-Alkanen bei CN=30-70, die von

Alkenen bei CN=40-60, die von Cycloalkanen bei CN=40-70, die von Alkylbenzolen bei

CN=20-60 und die Cetanzahl von Naphtalinen liegt bei CN=0-20 [25, 136].

4.1.3.4 Klopffestigkeit und Oktanzahl

Die Klopffestigkeit eines Kraftstoffs wird über die Oktanzahl (ROZ=Researched Oktan-

zahl) angegeben. Beim Ottomotor wird das Kraftstoff-Luft-Gemisch fremdgezündet und

eine Selbstentzündung sollte verhindert werden. Wenn sich das Gemisch zu früh selbst
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entzündet, tritt Motorklopfen auf, was den Motor schädigen kann [18]. Je höher die Oktan-

zahl, desto klopffester ist ein Kraftstoff, desto niedriger also seine Tendenz, sich selbst zu

entzünden. Für Alkane und Alkene nimmt die Oktanzahl mit steigender Anzahl der Koh-

lenstoffatome tendenziell ab, während sie für Aromaten zunimmt [21]. Iso-Alkane weisen

im Vergleich zu ihren linearen Isomeren (n-Alkane) eine höhere Klopffestigkeit auf [20].

Sauerstoffhaltige Verbindungen wie Ether und Alkohole tragen ebenfalls zur Erhöhung

der Klopffestigkeit bei.

4.1.3.5 Siedeverhalten

Das Verdampfungs- oder Siedeverhalten eines Kraftstoffs ist entscheidend für die Ge-

mischbildung. Wenn ein Kraftstoff nur aus einer Komponente besteht, weist er eine defi-

nierte Verdampfungs- oder Siedetemperatur auf. Die Siedetemperatur hängt sowohl von

der Molekülgröße als auch von den Bindungskräften ab. Je größer ein Molekül ist, desto

höher sein Siedepunkt. Allerdings gilt auch, je stärker dessen Bindungskräfte in der flüssi-

gen Phase (Wasserstoffbrückenbindung > Dipol-Dipol-Wechselwirkung > van-der-Waals-

Wechselwirkungen), desto höher der Siedepunkt. Fossile Otto- und Dieselkraftstoffe ha-

ben als Gemische unterschiedlicher Kohlenwasserstoffe jedoch einen Siedebereich [14].

Eine zu hohe Temperatur beim Siedebeginn eines Kraftstoffs bewirkt eine schlechtere

Zerstäubung des Kraftstoffs im Brennraum und damit eine inhomogene Kraftstoff-Luft-

Gemisch-Bildung. Der Dieselmotor reagiert weniger kritisch auf den Siedeverlauf eines

Kraftstoffs als der Ottomotor, jedoch sinken bei diesem die Carbonylemissionen signifi-

kant mit Absenkung der Siedetemperaturen [25].

4.1.3.6 Säurezahl

Die Säurezahl (engl. total acid number, TAN) ist eine Kenngröße aus der Lebensmittel-

chemie. Sie ist ein Maß für den Gehalt an freien Carbonsäuren. Gebundene Säuren, wie

sie z.B. in Glyceriden vorliegen, werden nicht erfasst. Die TAN bezeichnet die Menge

an Kaliumhydroxid in mg, die zur Neutralisation der in einem Gramm enthaltenen frei-

en Säuren erforderlich ist [137, 138]. Die Bestimmung der Säurezahl eines Kraftstoffs gibt

einen Hinweis auf dessen Oxidations- bzw. Alterungsstabilität (vgl. Kapitel 4.2) [139, 26].
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4.2 Kraftstoffalterung

Kraftstoffstabilität bedeutet die allgemeine Beständigkeit eines Kraftstoffs gegenüber che-

mischen und physikalischen Veränderungen. Hierbei kann zwischen Lagerungsstabilität,

thermischer Stabilität [7, 140] und oxidativer Stabilität [141] unterschieden werden. Die La-

gerungsstabilität beschreibt die Stabilität eines Kraftstoffs gegenüber Veränderungen un-

ter Umgebungsbedingungen, beispielsweise durch den Oxidationsprozess, über längere

Zeiträume. Die thermische Stabilität beschreibt die Fähigkeit eines Kraftstoffs relativ ho-

hen Temperaturbelastungen über kürzere Zeiträume ohne Veränderungen standzuhalten
[7, 140, 141].

Die Kraftstoffalterung ist definiert als die Änderung der chemischen und physikalischen

Eigenschaften über der Zeit. Diese Änderungen können beispielsweise Veränderungen

der Farbe, Veränderung der Kraftstoffzusammensetzung, Entwicklungen von löslichen

oder unlöslichen Sedimenten (Gum) oder Veränderungen der Verbrennungseigenschaf-

ten und der Kompatibilität mit anderen Kraftstoffen zur Folge haben [7]. Die Alterung kann

rein oxidativ sein, also ausgelöst durch die Autoxidation in Gegenwart von Luftsauerstoff,

oder thermo-oxidativ, was eine zusätzlich zur Autoxidation auftretende Veränderung des

Kraftstoffs durch erhöhte Temperaturen zur Folge haben kann. Des Weiteren kann eine

Hydrolyse der Kraftstoffmoleküle in Gegenwart von Wasser auftreten oder eine biologi-

sche Alterung stattfinden, bedingt durch Kontakt mit Staubpartikeln oder Wassertröpf-

chen, die Pilze oder Bakterien enthalten [9].

4.2.1 Autoxidation

Bei der Autoxidation reagieren reaktive C-H-Bindungen, wie beispielsweise gesättigte

Kohlenwasserstoffe mit tertiären H-Atomen, ungesättigten Kohlenwasserstoffen mit allyl-

ständigen H-Atomen oder Ether mit α- ständigen H-Atomen, mit molekularem Luftsau-

erstoff, der als Biradikal (Triplett-Sauerstoff) vorliegt, zu Hydroperoxiden. Der Reaktions-

mechanismus folgt einer radikalischen Kettenreaktion [142].

Am Anfang werden Startradikale R• durch thermische Belastung, Licht, Metallionen oder

mechanische Belastung gebildet (I).

Im Anschluss können die gebildeten Radikale mit molekularem Sauerstoff zu Peroxidradi-
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kalen ROO• reagieren (II), welche ihrerseits zu Hydroperoxiden ROOH weiterreagieren

können, wobei jeweils weitere Radikale R• entstehen (III).

Die gebildeten Hydroperoxide ROOH können mit ausreichend hoher Aktivierungsener-

gie unter Bruch der O−O-Bindung zu je einem Alkoxyradikal RO• und einem Hydroxyra-

dikal •OH zerfallen (IV). Die Alkoxyradikale können zu Alkoholen ROH (V), die Hydroxy-

radikale zu Wasser weiterreagieren (VI), wobei bei beiden Reaktionen weitere Radikale

R• entstehen.

Durch die Rekombination der entstehenden Radikale (R• und ROO•) können sich stabile

Endprodukte bilden ((VII)-(IX)).

Durch zusätzliche Metallionen M (n+) wird die Bildung der Radikale R• katalytisch be-

günstigt (X). Des Weiteren können durch Metallionen Hydroperoxide ROOH in Peroxi-

dradikale ROO• zerfallen ((XI-XII)), wodurch sich weitere Reaktionspfade zur Kettenfort-

pflanzung ergeben [26, 36, 142, 143, 144, 145, 146].
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4.2.2 Temperaturabhängigkeit der Alterung

Die Alterung, insbesondere die Entstehung der Alterungsprodukte durch Autoxidation, ist

abhängig von der Alterungsdauer und der Temperatur. Je höher die Temperatur, desto

schneller wird ein bestimmter Alterungszustand erreicht [147].

Die Reaktionsgeschwindigkeit einer chemischen Reaktion ist definiert als die Anzahl pro-

duktiver Zusammenstöße pro Zeiteinheit [148]:

Reaktionsgeschwindigkeit=Energiefaktor·Stoßhäufigkeit·Orientierungsfaktor

wobei der Energiefaktor durch die Reaktionstemperatur und die Aktivierungsenergie be-

einflusst wird. Die Reaktionsgeschwindigkeitskonstante k ist nach der Arrhenius-Gleichung

gegeben durch [148]:

k = A · e−
EA

R·T . (4.2.1)

Hierbei ist A ein empirischer Vorfaktor, EA die Aktivierungsenergie, R die universelle

Gaskonstante und T die Temperatur. Aufgrund des exponentiellen Zusammenhangs zwi-

schen EA, T und k, bewirkt eine Zunahme der Temperatur um 10 °C eine Zunahme der

Reaktionsgeschwindigkeitskonstante um einen Faktor von bis zu 1,3-5 [148].

4.2.3 Alterung verschiedener Kohlenwasserstoffe

Das Reaktionsverhalten verschiedener Kohlenwasserstoffe zur Autoxidation kann damit

begründet werden, dass hierfür eine Bildung von Radikalen nötig ist (vgl. Kapitel 4.2.1

(II)). In Abbildung 4.2.1 ist die Stabilität verschiedener Radikale gezeigt.

Abbildung 4.2.1: Stabilität verschiedener Radikale [148, 149, 150, 151].
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Alkane

Es zeigt sich, dass n-Alkane kaum zur Autoxidation neigen, jedoch iso-Alkane mit terti-

ären C-Atomen oder Cycloalkane durchaus.

Abbildung 4.2.2: (I) Autoxidation von Cyclohexan zu Cyclohexylhydroperoxid oder zum sekun-
dären Alkohol Cyclohexanol [152]. (II) Autoxidation von iso-Butan zu tert-Butylhydroperoxid oder
zum tertiären Alkohol tert-Butanol [148]. (III) Autoxidation von Toluol zu Benzylalkohol, wobei als
Zwischenprodukt Phenylmethanperoxid entsteht [153].

Die Radikalstabilität nimmt mit den am Radikalzentrum gebundenen Alkylsubstituenten

zu, tertiäre Alkylradikale bilden sich also viel leichter als primäre Alkylradikale [148, 149, 150]
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(vgl. Abb. 4.2.1). Eine mögliche Erklärung hierfür ist zum einen die Hyperkonjugation,

also die Delokalisierung des ungepaarten Elektrons des sp2-hybridisierten C-Atoms des

Alkylradikals, welche den Grundzustand des Alkylradikals stabilisiert. Dieses ist umso

stabiler, je mehr Alkylgruppen an dessen sp2-hybridisierten C-Atom gebunden sind [148].

Zum anderen nimmt der +I-Effekt, also die elektronenschiebende Wirkung der Alkylgrup-

pen zum C-Atom mit steigendem Verzweigungsgrad zu. Dadurch nimmt die Elektronen-

dichte am C-Atom zu und Wasserstoffatome können leichter abstrahiert werden [36, 148].

Die Stabilität cyklischer Radikale hängt auch von der jeweiligen Ringspannung des Cy-

cloalkanringes ab. Die Bildung eines Radikalzentrums erhöht die Ringspannung in den

jeweiligen Molekülen erheblich. Je stärker die Ringspannung, desto instabiler das Radi-

kal [149].

Ein Beispiel für ein Cycloalkan ist Cyclohexan, das durch Autoxidation zu Cyclohexylhy-

droperoxid oder zum sekundären Alkohol Cyclohexanol oxidiert werden kann (vgl. Abb.

4.2.2 (I)) [152]. Ein Vertreter der iso-Alkane ist iso-Butan, das durch Autoxidation zu tert-

Butylhydroperoxid oder zum tertiären Alkohol tert-Butanol reagieren kann (vgl. Abb. 4.2.2

(II)) [148, 154].

Aromaten

Arylradikale weisen eine höhere Stabilität auf als Alkylradikale, wobei Benzylradikale auf-

grund der Delokalisierung des übrigen Elektrons deutlich stabiler als Phenylradikale sind

(vgl. Abb. 4.2.1). Folglich sind Aromaten ohne Seitenketten (z.B. Benzol) auch reaktiver

als Aromaten mit Seitenketten (z.B. Toluol) und polyzyklische Aromaten (z. B. Naphta-

lin) sind noch reaktiver [36, 142]. Aromaten können durch Autoxidation oxidiert werden, wie

beispielsweise Toluol zu Benzylalkohol, wobei als Zwischenprodukte Hydroperoxide ent-

stehen (vgl. Abb. 4.2.2 (III)).

Alkene

Allylradikale weisen eine höhere Stabilität auf als Alkylradikale (vgl. Abb. 4.2.1), wobei

die Radikale in bis-allylischer Position stabiler sind als die Radikale in allylischer Posi-

tion, was durch eine geringere Bindungsdissoziationsenergie des Wasserstoffs an das

Kohlenstoffatom in bis-allylischer Position begründet ist [26, 155] (vgl. Abb. 4.2.3).
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Abbildung 4.2.3: Bindungsdissoziationsenergien für die Dissoziation eines Wasserstoffatoms
an verschiedenen Positionen im Molekül [26, 155].

Alkene können sowohl durch Autoxidation oxidiert werden [144] als auch mit Hilfe der ra-

dikalischen Polymerisation langkettige Verbindungen bilden [146]. Ein Beispiel für die Au-

toxidation eines Alkens ist in Abb. 4.2.4 dargestellt. Das Alken Ethen reagiert entweder

zum Hydroperoxid Vinylhydroperoxid oder zum Epoxid Oxiran. Letzteres entsteht durch

die Reaktion eines als Zwischenprodukt gebildeten Alkoxyradikals mit einem Elektron der

benachbarten Doppelbindung [144].

Abbildung 4.2.4: Autoxidation von Ethen zu Oxiran, wobei auch Vinylhydroperoxid entstehen
kann [144, 156].

Bei der radikalischen Polymerisation reagieren am Anfang Startradikale R• (vgl. Kapitel

4.2.1) aufgrund ihres elektrophilen Charakters mit Alkenen (I), wodurch weitere Radikale

(II) entstehen.
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Die dabei entstehenden Radikale (II) können mit weiteren Alkenen reagieren, wobei wei-

tere Radikale entstehen (III). Durch Wiederholung dieses Vorgangs kommt es zu einem

Kettenwachstum, wodurch sich langkettige Verbindungen (IV) bilden.

Ein Abbruch dieser Kettenreaktion kann entweder durch die Kombination zweier höher-

molekularer (V und VI) zu hochmolekularen Molekülen (VII) oder durch die Disprotonie-

rung in zwei stabile Produkte (VIII und IX) erfolgen [36, 146].

4.3 Kraftstoffadditive

Zur Verbesserung der Eigenschaften von Kraftstoffen werden verschiedene Zusätze (Ad-

ditive) hinzugegeben, wobei die Konzentration dieser Additive üblicherweise im ppm-

Bereich liegt. Da die Entwicklung der Additive meist kostenintensiv ist, sollte deren Do-

sierung möglichst gering sein, jedoch bei deutlicher Wirkung und ohne unerwünschte

Nebenwirkungen [157]. Im Folgenden werden die für diese Arbeit relevanten Additive vor-

gestellt.
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Antioxidantien

Um die Alterung aufgrund von Autoxidation (vgl. Kapitel 4.2.1) zu verhindern oder zu

verlangsamen, können Antioxidantien eingesetzt werden. Hierbei gibt es primäre Antioxi-

dantien und sekundäre Antioxidantien [26].

Primäre Antioxidantien sind Radikalfänger, die die bei der Autoxidation gebildeten Ra-

dikale abfangen, sodass diese nicht weiterreagieren können. Hierfür eignen sich bei-

spielsweise sterisch gehinderte Phenole [142] oder sekundäre aromatische Amide [26]. Der

Wirkungsmechanismus eines sterisch gehinderten Phenols ist in Abb. 4.3.1 (I) am Bei-

spiel von Butylhydroxytoluol (BHT) dargestellt. Das Wasserstoffatom der Hydroxygruppe

des BHT kann auf reaktive Radikale übertragen werden, wodurch diese ihren radikali-

schen Charakter verlieren und es zum Abbruch der Kettenreaktion kommt [26]. Aufgrund

der Delokalisierung am aromatischen Ring ist das neu gebildete BHT-Radikal weniger

reaktiv als das ursprüngliche Radikal [158] , außerdem wird die radikalische Stelle im Mo-

lekül durch die beiden tert-Butylgruppen sterisch abgeschirmt [26]. Durch Einfangen eines

weiteren Radikals kann das radikalische Molekül zu einer stabilen Verbindung reagieren,

wodurch ein Kettenabbruch erfolgt [26, 9, 159].

Abbildung 4.3.1: (I) Wirkungsmechanismus des primären Antioxidans Butylhydroxytoluol
(BHT) [26, 9, 160]. (II) Wirkungsmechanismus des primären Antioxidans N-Phenyl-1-Naphtylamin
(PANA) [26, 9].

Sekundäre aromatische Amine, wie beispielsweise N-Phenyl-1-Naphtylamin (PANA) (vgl.
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Abb. 4.3.1 (II)), können ebenfalls als Radikalfänger fungieren. Dabei wird das am Stick-

stoff gebundene Wasserstoffatom auf ein reaktives Radikal übertragen und führt damit

zu einem Abbruch der Kettenreaktion [26, 161]. Die Beimischungsmenge der Antioxidantien

ist üblicherweise 20-200 ppm [162].

Sekundäre Antioxidantien sind beispielsweise Dialkylthioether und Tiarylphosphate. Die-

se zersetzen die bei der Autoxidation gebildete Hydroperoxide, in dem sie diese zu Alko-

holen reduzieren (vgl. Abb. 4.3.2). Dadurch wird eine Bildung neuer Radikale durch die

reaktiven Hydroperoxide verhindert. Allerdings können sowohl Phosphor als auch Schwe-

fel den Katalysator negativ beeinflussen. Aus diesem Grund sollte auf die Beimischung

dieser Antioxidantien zum Kraftstoff verzichtet werden [26].

Abbildung 4.3.2: Wirkungsmechanismus eines Thioethers als sekundäres Antioxidans [26].

Es gibt neben synthetischen Antioxidantien auch natürliche Antioxidantien. Ein bekanntes

Beispiel, das in FAME von Natur aus vorkommt, ist Vitamin E (α-, β-, γ- und δ-Tocopherol)

(vgl. Abb. 4.3.3). Vitamin E ist ein primäres Antioxidans, wirkt also als Radikalfänger.

Weitere natürliche Antioxidantien sind beispielsweise Carotinoide [155].

Abbildung 4.3.3: Strukturformel des natürlich vorkommenden Antioxidans Tocopherol (Vitamin
E) [163].

Farbstoffe und Marker

Um Kraftstoffe eindeutig zu kennzeichnen, können Farbstoffe eingesetzt werden. Da-

durch wird eine klare Differenzierung von Kraftstoffen unterschiedlicher Produktqualität

oder steuerlicher Einstufung ermöglicht [164, 165, 166]. Die Einfärbung von Dieselkraftstof-

fen erfolgt mithilfe von Azo- und Anthrachinonchemikalien und wird insbesondere bei

Kraftstoffen eingesetzt, die in Land- und Baumaschinen mit steuerlichen Vergünstigun-

gen verwendet werden [162]. Marker haben keine sichtbare Wirkung im Kraftstoff, können
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jedoch nach Extraktion mit einem geeigneten Lösungsmittel charakteristische Farben er-

zeugen. Diese Technik kann bei der Bestandskontrolle oder zur Diebstahlabschreckung

nützlich sein. Sowohl Farbstoffe als auch Marker werden in der Regel in der Raffinerie

hinzugefügt [162].
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4.4 Multivariate Datenanalyse, Machine Learning und KI

Die multivariate Datenanalyse umfasst eine Sammlung statistischer Methoden zur gleich-

zeitigen Analyse mehrerer voneinander abhängiger Variablen. Sie wird angewendet, wenn

Datensätze mehr als eine abhängige Variable enthalten und untersucht Zusammenhän-

ge, Muster oder Strukturen innerhalb dieser hoch-dimensionalen Daten. Multivariate Ver-

fahren sind besonders nützlich in der Chemometrie, wo beispielsweise in der Nahin-

frarotspektroskopie komplexe Spektraldaten verarbeitet werden müssen [167]. Die Me-

thoden der multivariaten Datenanalyse helfen dabei, relevante Informationen aus hoch-

dimensionalen und korrelierten Variablen zu extrahieren, die Datendimension zu reduzie-

ren und robuste Vorhersagemodelle zu erstellen [168]. Im Folgenden werden ausgewählte

Methoden der multivariaten Datenanalyse, die für diese Arbeit von Bedeutung sind, de-

taillierter beschrieben.

4.4.1 Hauptkomponentenanalyse (PCA)

Die Hauptkomponentenanalyse (engl. principal component analysis, PCA) wird einge-

setzt, um hoch-dimensionale Daten auf wenige, aussagekräftige Hauptkomponenten (Prin-

cipal Components, PC) zu reduzieren. Dadurch wird die Visualisierung und Interpretation

der Daten erleichtert, in dem diese auf kleinere Dimensionen projiziert werden, ohne si-

gnifikanten Informationsverlust [168].

In Nahinfrarot (NIR)-Spektren gibt es bei verschiedenen Wellenlängen Bereiche mit un-

terschiedlichen Varianzen, also Bereiche bei denen sich bei einer bestimmten Wellenlän-

ge die Intensitätswerte unterschiedlich stark ändern. Dies ist anschaulich in Abb. 4.4.1

dargestellt. Die Bereiche bei den Wellenlängen λ=1050 nm und λ=1350 nm zeigen eine

geringe Varianz, die Bereiche bei λ=1723 nm und λ=1760 nm eine leichte Varianz und

in den Bereichen bei λ=1923 nm und λ=2090 nm gibt es eine hohe Varianz.

Da für die Datenanalyse die Bereiche mit hoher Varianz deutlich wichtiger sind als die

Bereiche mit niedriger Varianz, ist eine Datenreduktion auf diese Bereiche sinnvoll. Hier-

für eignet sich die PCA.
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Abbildung 4.4.1: Beispieldatensatz (Nahinfrarotspektren) zur Veranschaulichung verschiede-
ner Bereiche im Spektrum mit unterschiedlicher Varianz.

Zur Berechnung wird eine Daten-Matrix (Data-Matrix) X̂ benötigt:

X̂ : n×m. (4.4.1)

Hierbei ist n die Anzahl der gemessenen Proben und m die Anzahl der Messungen. Am

Beispiel von 150 verschiedenen NIR-Spektren (Proben) mit Wellenlängen von λ=400-

2300 nm, wobei je ein Messpunkt im Abstand von ∆λ=0,5 nm vorhanden ist, also insge-

samt 3801 Messungen (gemessenen Wellenlängen), besteht die Data-Matrix aus n=150

Zeilen und m=3801 Spalten:

X̂ =



















In=1(400nm) In=1(400, 5nm) · · · In=1(2300nm)

In=2(400nm) In=2(400, 5nm)
. . . In=2(2300nm)

In=3(400nm) In=3(400, 5nm)
. . . In=3(2300nm)

...
... · · ·

...

In=150(400nm) In=150(400, 5nm) · · · In=150(2300nm)



















(4.4.2)

wobei IProbe,x(λ) der Intensitätswert des Spektrums einer Messung x bei einer bestimm-

ten Wellenlänge λ ist. Durch die Berechnung der Eigenwerte Λx und Eigenvektoren Wx

der Kovarianzmatrix

Ŝ =
1

n− 1
X̂T X̂ (4.4.3)

erhält man die Ladungsmatrix (engl. Loadings-Matrix) Ŵ , die die Eigenvektoren Wx der
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Kovarianzmatrix erhält:

Ŵ =









W1,1 W2,1 . . .

W1,2
... · · ·

...
... · · ·









(4.4.4)

wobei W1 der Eigenvektor ist, der zum größten Eigenwert Λ1 gehört, W2 der Eigenvek-

tor ist, der zum zweitgrößten Eigenwert Λ2 gehört, etc. Aus der Data-Matrix X̂ und der

Loadings-Matrix Ŵ kann die projizierte Datenmatrix (Scores-Matrix) T̂ berechnet wer-

den:

T̂ = X̂ · Ŵ =









T1,1 T2,1 . . .

T1,2
... · · ·

...
... · · ·









=
(

PC1 PC2 · · ·

)

. (4.4.5)

Diese enthält die neuen Koordinaten der Datenpunkte nach der Projektion in den PCA-

Raum. Die verschiedenen Scores Tx sind die Hauptkomponeten PCx, wobei die Haupt-

komponenten jeweils senkrecht zueinander sind [167].

Abbildung 4.4.2: Links: Datenpunkte im ursprünglichen Raum mit den ersten beiden Haupt-
komponenten PC1 und PC2. Rechts: Projizierte Daten im Hauptachsenraum die zu den beiden
ersten Hauptkomponenten gehören.

In Abb. 4.4.2 ist die Projektion in den PCA-Raum dargestellt. Hierbei sind links die Da-

tenpunkte im ursprünglichen Raum mit den ersten beiden Hauptkomponenten PC1 und

PC2 gezeigt und rechts die projizierten Daten im Hauptachsenraum die zu den beiden

ersten Hauptkomponenten gehören. Im projizierten Raum bilden die PCx das neue Ko-

ordinatensystem.

Die Anwendung der PCA eignet sich als Datenvorbereitung, da sie spektrale Rausch-

effekte reduzieren kann, eine Hilfestellung bietet, um Hauptmuster in den Spektren zu
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erkennen (Clusterbildung) und die Dimension der Daten für nachfolgend angewendete

Modelle reduziert [168].

4.4.2 Partial Least Squares Regression (PLS)

Die Partial Least Squares (PLS) Regression ermöglicht eine gleichzeitige Reduktion der

Dimension der Eingangsdaten X̂ und die Vorhersage der Zielvariablen Ŷ , indem sie

latente Variablen (nicht direkt messbare Größen, die relevante Informationen zur Vorher-

sage von Ŷ enthalten) extrahiert, die den höchsten Zusammenhang zwischen X̂ und Ŷ

abbilden [167]. Zur Berechnung wird, genau wie bei der PCA eine Data-Matrix X̂ benö-

tigt (Glg. 4.4.2). Des Weiteren benötigt man eine Ziel-Matrix (Target-Matrix) Ŷ , in der die

zu vorhersagenden Zielgrößen (z.B. die Alterungszeit t(n), die Viskosität ν(n) oder die

Dichte ρ(n) der n gemessenen Proben) enthalten sind:

Ŷ =













t(n = 1) ν(n = 1) ρ(n = 1)

t(n = 2) ν(n = 2) ρ(n = 2)
...

...
...

t(n = 150) ν(n = 150) ρ(n = 150)













. (4.4.6)

Bei der PLS wird, anders als bei der PCA, bei der nur die Varianz von X̂ maximiert

wird, die Kovarianz zwischen X̂ und Ŷ maximiert. Hierfür werden neue latente Matrizen

T̂ und Û berechnet, um eine möglichst gute lineare Beziehung, also eine hohe Kovarianz,

zwischen X̂ und Ŷ herzustellen:

X̂ = T̂ P̂ T + Ê (4.4.7)

und

Ŷ = ÛQ̂T + F̂ (4.4.8)

wobei T̂ die neue Scores-Matrix von X̂ , P̂ die neue Loadings-Matrix von X̂, Û die neue

Scores-Matrix von Ŷ , Q̂ die neue Loadings-Matrix von Ŷ ist und Ê und F̂ Residuen-

Matrizen sind [167]. Die Berechnungen von T̂ und Û erfolgt mit dem NIPALS-Algorithmus
[169], auf den hier nicht weiter eingegangen wird. Durch die berechnete Regressionsglei-

chung kann dann anhand eines x-Vektors (beispielsweise ein NIR-Spektrum) der dazu-

gehörige y-Wert (z.B. die Alterungszeit) vorhergesagt werden.
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4.4.3 Entscheidungsbäume

Ein Entscheidungsbaum ist ein Modell, welches Daten durch eine Reihe von Ja/Nein-

Entscheidungen aufteilt, wobei jede Aufteilung auf Basis eines Merkmals erfolgt [168].

Das Modell wird rekursiv aufgebaut, bis eine Stoppregel erreicht ist.

Abbildung 4.4.3: Schematisches Diagramm eines Entscheidungsbaums. Links: allgemeines
Schema [168]. Rechts: Schema am Beispiel der Absorptionsintensität Iabs(λ) eines Nahinfrarot-
spektrums.

In Abb. 4.4.3 ist ein schematisches Diagramm eines Entscheidungsbaums gezeigt (all-

gemein und am Beispiel eines NIR-Spektrums). Der Entscheidungsbaum besteht aus

folgenden Elementen [168]:

• Wurzelknoten: Dies ist der oberste Knoten, von dem der Baum ausgeht. Hier wird

die erste Entscheidung getroffen

• Innerer/interner Knoten: Jeder innere Knoten stellt eine Entscheidung basierend

auf einem Merkmal dar (z. B. eine bestimmte Wellenlänge λ im NIR-Spektrum)

• Äste: Die Verzweigungen, die verschiedene Knoten miteinander verbinden. Jeder

Ast entspricht einer Ja/Nein-Entscheidung (z. B. Absorptionsintensität Iabs>0,5)

• Blätter : Dies sind die Endpunkte des Baums. Sie enthalten die finale Klassifika-

tion (z. B. „Sample A“) oder den vorhergesagten Wert (z. B. einen Wert für die

Alterungszeit)

Zur Berechnung wird der Datenraum (Data-Matrix X̂) in mehrere getrennte Regionen

aufgeteilt und die Vorhersage eines neuen Datenpunkts erfolgt durch die Zuweisung
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zum entsprechenden inneren Knoten. Die Daten in einem Knoten sollten optimal auf-

geteilt werden. Die Knoten sollten möglichst rein sein, das heißt, die darin enthaltenen

Datenpunkte sollten sich stark ähneln und möglichst alle zur gleichen Gruppe gehören.

Um die Unreinheit eines Knotens zu minimieren, wird bei der Klassifikation als Maß zur

Bestimmung der Unreinheit entweder der Gini-Index [168, 170, 171]

GINI(X) =
c

∑

i=1

pi(1− pi) = 1−
c

∑

i=1

p2i (4.4.9)

wobei pi der Anteil der Klasse i im entsprechenden Knoten ist, oder der Entropie-Wert H
[168, 170, 171]

H(X) = −

c
∑

i=1

pi log2(pi) (4.4.10)

verwendet. Bei der Regression wird die mittlere quadratische Abweichung MSE [168, 172]

MSE =
1

n

n
∑

i=1

(ŷKnoten − yi)
2 (4.4.11)

wobei yi die zu bestimmende Variable (z.B. ein Viskositätswert) und ŷKnoten der Mittel-

wert der Variablen im Knoten ist, minimiert.

Die Anzahl der Knotenebenen (vgl. Abb. 4.4.3) (Baumtiefe) ist ein einstellbarer Parame-

ter und stellt ein Abbruchkriterium für den Algorithmus dar [168]. Nachdem die Unreinheit

der Knoten (Klassifizierung) bzw. die mittlere quadratische Abweichung (Regression) mi-

nimiert wurde, endet die Vorhersage in jeweils einem Blatt des Baums. Die Blätter ent-

halten also die finalen, vorhergesagten Werte (z.B. die Alterungszeit).

Eine Erweiterung des Entscheidungsbaums ist der Random Forest. Dieser besteht aus

einem Ensemble aus vielen Entscheidungsbäumen, wobei die Vorhersagen der einzel-

nen Bäume kombiniert werden, um eine robustere und genauere Vorhersage zu erhalten
[168].

4.4.4 Neuronales Netzwerk (ANN)

Ein künstliches neuronales Netzwerk (engl. artificial neural network, ANN) ist ein mathe-

matisches Modell, das sich an der Funktionsweise des menschlichen Gehirns orientiert.

Ein ANN besteht aus mehreren Schichten (Layer), die mehrere miteinander verbunde-

ne Neuronen enthalten. Ein Eingangssignal (z.B. ein NIR-Spektrum) durchläuft mehrere
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Layer an Neuronen, in denen das Signal verarbeitet wird, bevor es als Klassifikation oder

Regression ausgegeben wird [168]. Die ANN können komplexe Zusammenhänge in Daten

erkennen. In Abb. 4.4.4 ist die schematische Darstellung eines neuronalen Netzwerks

gezeigt.

Abbildung 4.4.4: Schematisches Diagramm eines neuronalen Netzwerks (ANN) [168].

Das ANN besteht aus folgenden Elementen [168, 173]:

• Eingabeschicht (Input Layer): Die erste Schicht, die die Eingabedaten x enthält

• Verborgene Schichten (Hidden Layer): Diese Schichten enthalten mehrere Neuro-

nen, in denen die Daten verarbeitet werden

• Ausgabeschicht (Output Layer): In dieser Schicht werden die vorhergesagten Va-

riablen ypred ausgegeben

Die Neuronen innerhalb einer Schicht sind mit den Neuronen der nächsten Schicht über

gewichtete Verbindungen verbunden [168, 173]. Ein einzelnes Neuron j berechnet seine

Ausgabe aj basierend auf den Eingaben xi, den Gewichten wij und einem Offset (Bias)

bj :

aj = f(zj) (4.4.12)

mit

zj =
∑

i

wijxi + bj (4.4.13)
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wobei f(z) eine nichtlineare Aktivierungsfunktion ist, beispielsweise

f(z) =
1

1 + e−z
(4.4.14)

oder

f(z) =
ez − e−z

ez + e−z
. (4.4.15)

Dadurch wird sichergestellt, dass das neuronale Netzwerk auch nicht lineare Zusammen-

hänge erlernen kann. In jeder Schicht l im Netzwerk werden die Werte schrittweise bis

zur Ausgabeschicht L berechnet [168, 173]:

• Eingabeschicht

a(0) = xi (4.4.16)

• Erste verborgene Schicht

z(1) = Ŵ (1)a(0) + b(1) (4.4.17)

a(1) = f(z(1)) (4.4.18)

• Weitere verborgene Schicht

z(l) = Ŵ (l)a(l−1) + b(l) (4.4.19)

a(l) = f(z(l)) (4.4.20)

• Ausgabeschicht

ypred = a(L) (4.4.21)

wobei Ŵ (l) die Matrizen der Gewichte, bl die Bias-Vektoren und f(z(l)) die Aktivierungs-

funktion der jeweiligen Schicht ist [168, 173]. Um ein ANN zu trainieren, wird der Fehler

zwischen dem vorhergesagten Wert ypred und dem tatsächlichen y-Wert mit einer Fehler-

funktion L berechnet. Im Fall einer Klassifizierung wird L durch die Entropie (Glg. 4.4.10)

und im Fall einer Regression durch die mittlere quadratische Abweichung (Glg. 4.4.11)

berechnet und die Gewichte mit einer Lernrate η aktualisiert [168, 173]

W (l) = W (l)
− η

∂L

∂W (l)
(4.4.22)

um die Abweichung zwischen vorausgesagten und realen Werten zu minimieren, also
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bei jeder Iteration zu verkleinern. Die erlernten Gewichte pro Neuron werden verwendet,

um mit Hilfe von Gleichung 4.4.12 und 4.4.13 die vorhergesagten Werte zu berechnen.

Dadurch wird es dem ANN ermöglicht, durch Iterationen und Anpassungen, aus Einga-

bedaten (z.B. ein NIR-Spektrum) verschiedene Werte (beispielsweise die Alterungszeit)

vorherzusagen.
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5. Methoden

Im Folgenden werden zunächst die Methoden zur Alterung verschiedener Kraftstoffe und

die verschiedenen Messverfahren, mit denen die gealterten Kraftstoffe charakterisiert

wurden, vorgestellt. Anschließend wird das Vorgehen erläutert, um die Nahinfrarotspek-

tren der ungealterten und gealterten Kraftstoffe mit den Modellen des maschinellen Ler-

nens zu trainieren und dadurch verschiedene Vorhersagen zu treffen.

5.1 Thermo-oxidative Alterung von Kraftstoffen

5.1.1 Rancimat-Methode

Die Rancimat-Methode (nach DIN EN 14112 [174] und DIN EN15751 [175]) ist ein standar-

disiertes Verfahren zur beschleunigten Alterung von Kraftstoffen.

Abbildung 5.1.1: Messanordnung der Rancimat-Methode zur beschleunigten Alterung und Be-
stimmung der Oxidationsstabilität [26].

Eine Kraftstoffprobe (m=7,5 g) wird in einem verschlossenen Reagenzglas auf T=110 °C

erhitzt und mit einem Luftstrom (10 L/h) (ungetrocknete Laborluft) durchströmt. Die ent-

stehenden flüchtigen Oxidationsprodukte werden durch den Luftstrom in ein Gefäß mit

destilliertem Wasser geleitet. Die Leitfähigkeit der wässrigen Phase wird kontinuierlich
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gemessen (vgl. Abb. 5.1.1). Durch die während der Alterung entstehenden, leichtflüchti-

gen Oxidationsprodukte im Wasser tritt eine Änderung der Leitfähigkeit auf, die signifikant

ansteigt, wenn sekundäre Alterungsprodukte eingetragen werden. Die Oxidationsstabili-

tät kann durch die Induktionszeit bestimmt werden, d. h. die Zeit vom Beginn der Alterung

bis zum Auftreten der sekundären Oxidationsprodukte, die einen Anstieg der Leitfähigkeit

verursachen [176]. Im Rahmen dieser Arbeit wurde der Biodiesel Rancimat 873 der Firma

Metrohm verwendet.

5.1.2 Offene Alterungsapparatur

Eine alternative Methode zur thermo-oxidativen Alterung verschiedener Kraftstoffe ist

in Abb. 5.1.2 gezeigt. Es wurde eine neue Alterungsapparatur entwickelt, die an die

Rancimat-Methode angelehnt ist. Allerdings ist sie mit einem zusätzlichen Rückfluss-

kühler ausgestattet, um die Austragung leichtflüchtiger Alterungsprodukte zu minimieren.

Abbildung 5.1.2: Offene Alterungsapparatur zur beschleunigten Alterung von Kraftstoffen.

Die offene Apparatur besteht aus einem 250 ml-Dreihalskolben mit rundem Boden, der zu

Beginn der Alterung (t=tstart=0 h) mit 250 ml Kraftstoff gefüllt wird (vgl. Abb. 5.1.2 (I)) und

in ein mit Hilfe einer Heizplatte erwärmtes Ölbad (T=110 °C) eingebracht wird (vgl. Abb.

5.1.2 (II)). Ein mit Hilfe eines Umlaufkühlers gekühlter (T=2 °C) Dimroth-Rückflusskühler,

ist über dem Kolben positioniert (vgl. Abb. 5.1.2 (III)). Zur Oxidation wird getrocknete

Druckluft, die zusätzlich mit einem Molekularsieb (4Å) entfeuchtet wird (vgl. Abb. 5.1.2

(IV)), mit einer, durch ein Flowmeter eingestellten, konstanten Flussrate (10 L/h) über

ein am Dreihalskolben angeschlossenes Gaseinleitungsrohr während der gesamten Al-

terungsdauer in den Kraftstoff geleitet (vgl. Abb. 5.1.2 (V)). Die durch den Kraftstoff gelei-
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tete Luft wird durch den Luftstrom in eine Waschflasche mit destilliertem Wasser geleitet

(vgl. Abb. 5.1.2 (VI)). Zur Untersuchung der zeitlichen Entstehung der Alterungsprodukte,

kann alle 24 h mit einer Glaspipette eine Kraftstoffprobe von 25 ml entnommen werden.

Hierfür wird der Stopfen des Dreihalskolbens (vgl. Abb. 5.1.2 (VII)) für eine kurze Zeit

geöffnet. Das Probeentnahmeverfahren wird bis zum Abschluss der Alterungsdauer wie-

derholt, wobei am Ende der Alterung der restliche Kraftstoff nach einer Abkühlphase ent-

nommen wird (t=tend). Im Rahmen dieser Arbeit wurden mehrere Kraftstoffe über einen

Zeitraum von bis zu tend=192 h mit Hilfe dieser Apparatur gealtert.

5.1.3 Geschlossene Alterungsapparatur

Um eine Kohlenstoff-Massenbilanzierung gealterter Kraftstoffe schließen zu können, müs-

sen sowohl deren Flüssigphase als auch deren Gasphase untersucht werden. Aus die-

sem Grund wurde eine weitere Alterungsapparatur entwickelt (vgl. Abb. 5.1.3).

Abbildung 5.1.3: Geschlossene Alterungsapparatur zur beschleunigten Alterung von Kraftstof-
fen.

Die geschlossene Apparatur besteht aus einem 100 ml-Zweihalskolben, in den 50 ml

des zu alternden Kraftstoffs gefüllt werden (vgl. Abb. 5.1.3 (I)). Der Kolben wird in ein

mit Hilfe einer Heizplatte erwärmtes Ölbad (T= 120 °C) eingebracht (vgl. Abb. 5.1.3 (II))

und auf dem Kolben wird ein mit Hilfe eines Umlaufkühlers gekühlter (T=2 °C) Dimroth-

Rückflusskühler positioniert, um das Ausdampfen leichtflüchtiger Alterungsprodukte zu

verringern (vgl. Abb. 5.1.3 (III)). Die dennoch entstehende Gasphase des gealterten

Kraftstoffs wird durch einen Gasbag, der mit einem Schlauch am oberen Ende des
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Dimroth-Kühlers befestigt ist, aufgefangen (vgl. Abb. 5.1.3 (IV)). Die andere Öffnung des

Zweihalskolbens ist mit einem Septum verschlossen (vgl. Abb. 5.1.3 (V)), um eine voll-

ständige Abdichtung des Systems zu gewährleisten. Vor Beginn der Alterung wird das

System mit einem Inertgas (Stickstoff) gespült, um sicherzustellen, dass alle im Gasbeu-

tel nachgewiesenen Produkte ausschließlich Alterungsprodukte sind. Als Oxidationsmit-

tel werden 20 ml einer 30%igen, wässrigen Wasserstoffperoxidlösung verwendet, die mit

Hilfe eines Magnetrührers im Kolben kontinuierlich mit dem Kraftstoff vermischt wird. Zu

Beginn der Alterung (t=tstart=0 h) werden 8 ml der Wasserstoffperoxidlösung mit einer

Spritze durch das Septum (vgl. Abb. 5.1.3 (V)) in den Kraftstoff eingebracht. Nach ei-

ner Alterungszeit von t=24h weitere 8 ml und nach t=48 h die restlichen 4 ml. Am Ende

der Alterung (t=tend) wird der restliche Kraftstoff nach einer Abkühlphase entnommen.

Im Rahmen dieser Arbeit wurden mehrere Kraftstoffe über einen Zeitraum von bis zu

tend=120 h mit Hilfe dieser Apparatur gealtert.

5.2 Charakterisierung gealterter Kraftstoffe

5.2.1 GC-MS und GC-TCD

Durch die Gaschromatographie mit gekoppelter Massenspektrometrie (GC-MS) und die

Gaschromatographie mit gekoppeltem Wärmeleitfähigkeitsdetektor (GC-TCD) können die

einzelnen Komponenten von Mehrstoffgemischen analysiert werden, wenn diese voll-

ständig verdampft werden können ohne sich zu zersetzen [177]. Die Flüssigphase der

gealterten Kraftstoffe in dieser Arbeit wurden mit einem GC7890A Gaschromatograph,

gekoppelt mit einem 5973 Quadrupol-Massenspektrometer der Firma Agilent analysiert,

wobei eine leicht polare Zebron-ZB5-HT-Säule (Länge=30 m, Filmdicke=0,25 µm und

Innendurchmesser=0,25 mm) von Phenomenex verwendet wurde. Als Trägergas wurde

Helium verwendet und es wurden jeweils 2 µl der Probe injiziert. Die Gasphase der ge-

alterten Kraftstoffe wurde mit einem Variant 450-GC-Chromatograph mit TCD-Detektor

und einer Shin-Carbon-ST-Säule (2 m x 0,75 mm) gemessen.

Die Gasphase wurde in einem Gasbeutel gesammelt und und unter Verwendung von

Argon als mobile Phase bei einem Druck von 4,82 bar injiziert. In Tab. 5.1 sind die im

Rahmen dieser Arbeit verwendeten Temperaturprogramme dargestellt.
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Tabelle 5.1: Temperaturprogramm.

GC-MS (Temperaturprogramm 1)
40 °C 15 min
100 °C 3 °C/min 15 min
180 °C 5 °C/min
250 °C 10 °C/min

He (49,8 ml/min), Split: 60:1

GC-MS (Temperaturprogramm 2)
80 °C 10 min
120°C 3 °C/min 2 min
250 °C 5 °C/min
300 °C 15 °C/min

He (35,5 ml/min), Split: 20:1

GC-TCD (Temperaturprogramm)
40°C 1,5 min

250° C 18 °C/min 12 min

5.2.2 Kohlenstoff-Massenbilanzierung

Zur Schließung der Kohlenstoff-Massenbilanz wurden die Kraftstoffe mit der geschlos-

senen Alterungsapparatur (vgl. Abb. 5.1.2) gealtert. Das Volumen der Gasphase wurde

durch die Auftriebsmethode (Archimedes-Prinzip) bestimmt und die Masse der gasför-

migen Produkte wurde über die Konzentration der in der Gasphase nachgewiesenen

Produkte berechnet. Bei der Alterung bildete sich eine organische und eine wässrige

Phase. Beide Phasen wurde mit einem Scheidetrichter getrennt und die jeweiligen Vo-

lumina wurden mit einem Messzylinder bestimmt. Durch die Konzentration der Produkte

in der organischen und der wässrigen Phase, konnte die Gesamtmasse der Produkte in

der flüssigen Phase bestimmt und die Kohlenstoff-Massenbilanz geschlossen werden.

5.2.3 Viskositäts-und Dichtemessungen

Für die Messungen der Viskosität in dieser Arbeit wurde ein Stabinger-Viskosimeter der

Firma Anton-Paar verwendet, mit welchem ebenfalls eine Dichtemessung nach dem Bie-

geschwingerprinzip durchgeführt werden konnte. Die Viskosität wurde bei T=40 °C und

die Dichte bei T=15 °C gemessen, da diese Werte nach der Norm DIN EN 590 [16] die

vorgeschriebenen Grenzwerte nicht überschreiten dürfen (vgl. Kapitel 4.1.1 und Kapitel

4.1.3).

5.2.4 Säurezahl-Messungen (TAN)

Die Säurezahl (engl. total acid number, TAN) ist ein Maß für die bei der Alterung gebil-

deten Säuren. Die Bestimmung erfolgt nach der potentiometrischen Titrationsmethode
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gemäß DIN EN 12634 [178]. Zur Durchführung der Messungen in dieser Arbeit wurden

ein 888 Titrando und ein Rührer der Firma Metrohm eingesetzt. Als Maßlösung für die

Titration wurde eine gekaufte, in 2-Propanol gelöste Kaliumhydroxidlösung (0,1 mol/l)

eingesetzt und eine für nicht wässrige Medien geeignete Glaselektrode verwendet. Das

Lösungsmittel für die Analyse war eine selbst angesetzte Mischung aus 50 % Toluol, 49,5

% 2-Propanol und 0,5 % destilliertem Wasser mit einem Volumen von 60 ml pro Probe.

Die Einwaage der Probe variierte von 0,505-10,007 g in Abhängigkeit der erwarteten

TAN.

5.2.5 Fourier-Transform-Infrarotspektroskopie (FT-IR)

Die Fourier-Transform-Infrarotspektroskopie (FT-IR)-Messungen wurden mit einem Nico-

let 6700 FTIR der Firma Thermo Scientific durchgeführt, welches über einen ATR-Kristall

(Diamant) verfügt. Zur Messung wurde ein Tropfen der Probe mit Hilfe einer Pipette auf

den ATR-Kristall aufgetragen. In Tabelle 5.2 ist aufgezeigt, welche funktionellen Gruppen

welchen Wellenzahlen zugeordnet werden können [179].

Tabelle 5.2: Schwingungsbanden (Infrarotspektroskopie), die spezifischen Molekülgruppen zu-
geordnet werden können [180, 179, 181].

Wellenzahl [cm−1] Funktionelle Gruppe/
Schwingung

700-1250 C-C (Deformationsschwingung und Streckschwingung)
1340-1465 C-H (Deformationsschwingung)
1620-1680 C=C (Streckschwingung)
1640-1780 C=O (Streckschwingung)
2850-2960 C-H (Streckschwingung)
3200-3700 O-H (Streckschwingung)
3200-3570 Wasserstoffbrückenbindungen

5.2.6 Fluoreszenzspektroskopie

Die Fluoreszenzmessungen der Kraftstoffe in dieser Arbeit wurden an einem F-4500

Fluoreszenzspektrometer mit einem PMT-Detektor der Firma Hitachi durchgeführt. Hier-

bei wurden 10mm-Küvetten aus PMMA (Polymethylmethacrylat) verwendet.
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5.2.7 Nahinfrarotspektroskopie (NIR)

Die NIR-Messungen zur Entwicklung des Sensorkonzeptes wurden mit einem NIRS XDS

Rapid Liquid Analyzer der Firma Metrohm mit einem Xds Monochromator Type XM-1000

als Lichtquelle, durchgeführt. Die Temperatur war hierbei T=35 °C und der Messbereich

war ν=400-2400 nm. Es wurden 5mm-Quarzglasküvetten (QS) für die Messung verwen-

det. In Tabelle 5.3 ist aufgezeigt, welche funktionellen Gruppen bzw. Molekülgruppen

welchen Wellenlängen zugeordnet werden können [182, 183].

Tabelle 5.3: Schwingungsbanden (Nahinfrarotspektroskopie), die spezifischen Molekülgruppen
zugeordnet werden können [182].

Wellenlänge [nm] Funktionelle Gruppe/
Molekülgruppe

928, 1153, 1176, 1207-1212, 1723, 1762 CH2

913, 1190-1194, 1360, 1370, 1690-1700, 1812 CH3

960, 1280, 1410, 1470, 1580, 1965, 2017, 2100, 2124 OH in Alkoholen
800, 1000, 1445, 1890, 2130, 2160 OH in Carbonsäuren
840, 967, 1160, 1425, 1786, 1916, 1938 Wasser
2050 CO
1097, 1160 (Epoxid-Ring), 1185, 1206, 1440,
1624-1650, 1714-1727, 1745-1755, 2210, 2220

Cykloalkane

1940, 2150 C=O
1960, 2045, 2106, 2220 Aldehyde
714, 874, 880, 1132, 1140, 1670,
1767 (CH3 in Aromaten), 2148, 2154, 2167, 2188

Aromaten
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5.3 Arbeitsablauf zum Erstellen der Vorhersagemodelle

des maschinellen Lernens

Zur Vorhersage verschiedener Parameter aus den Nahinfrarotspektren der ungealter-

ten und gealterten Kraftstoffe mit Hilfe verschiedener Modelle, wurde ein Python-Skript

(Python-Version: 3.11) entwickelt. Der Ablauf zum Training der Modelle lässt sich in drei

Kategorien aufteilen: Datenvorbereitung (Preprocessing), Training und Validierung.

Die Datenvorbereitung (1. Kategorie) beinhaltete das Einlesen der Daten, also der Inten-

sitäten aller Nahinfrarotspektren und die Werte der zu vorhersagenden Parameter (Be-

zeichnung des Kraftstoffs, Alterungszeit, Säurezahl, kinematische Viskosität und Dichte).

Mit Hilfe der Python-Bibliothek Pandas (Pandas-Version: 2.3.3) wurden die Daten in eine

Tabelle eingelesen. Hierbei wurden nur Intensitäten des Wellenlängenbereichs von 400-

2300 nm betrachtet, da nach 2300 nm die Absorption der Proben zu stark war und somit

die Messgenauigkeit des Geräts nicht mehr gewährleistet werden konnte. Um die unge-

alterten Proben im Training mehr zu gewichten, also den Bias zu verschieben und die

Vorhersage dieser Proben zu verbessern, wurden die ungealterten Proben in der Tabel-

le 5-fach eingebunden. Da die Parameter „Bezeichnung“ aus jeweiligen String-Objekten

(Textform) bestanden, wurden diese in Integer-Objekte (ganze Zahlen) überführt, um von

den Modellen berechnet werden zu können. Anschließend wurden die Daten in Trainings-

und Testdaten aufgeteilt, wobei 90 % der Daten Trainingsdaten und 10 % der Daten

Testdaten waren. Der Split der Daten wurde durch einen sog. Random-State-Faktor fest-

gelegt. Dieser wurde soweit wie möglich konstant gehalten, um eine Reproduzierbarkeit

zu gewährleisten. Die Trainingsdaten repräsentieren die Daten zum Training des Algorith-

mus, während die Testdaten die Daten repräsentieren, die dem Algorithmus unbekannt

sind, also vorher nicht trainiert wurden. Durch die Vorhersage der Trainingsdaten wird der

Optimierungsfortschritt des Modells aufgezeigt: Je besser die Vorhersage, desto besser

konnte das Modell von den Trainingsdaten lernen. Um die Qualität der Vorhersage zu

beurteilen, ist jedoch in erster Linie die Vorhersage der Testdaten relevant, da das trai-

nierte Modell diese Daten nie gesehen hat. Aus der Tabelle der Trainingsdaten und der

Testdaten konnten die jeweilige Data-Matrix (vgl. Glg. 4.4.2) und die Target-Matrix (vgl.

Glg. 4.4.6) extrahiert werden. Bei einigen Modellen war es günstig, eine Hauptkompo-

nentenanalyse (PCA) an der Data-Matrix der Trainingsdaten durchzuführen, wobei 139

Hauptkomponenten gewählt wurden. Dadurch konnten die hochdimensionalen Daten in
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eine orthogonale Darstellungsform transformiert werden, um mögliche Korrelationen zwi-

schen den ursprünglichen Variablen zu reduzieren und die Informationsstruktur der Daten

zu optimieren [168].

Vor dem Training (2. Kategorie) wurden verschiedene Modelle definiert: Der Partial Least

Squares (PLS)-Algorithmus, der Random Forest-Algorithmus und ein neuronales Netz-

werk (Multi-layer Perzeptron), wobei zur Vorhersage der Bezeichnung des Kraftstoffs

jeweils ein Klassifizierer und zur Vorhersage der Alterungszeit, Säurezahl, kinematische

Viskosität und Dichte jeweils ein Regressor verwendet wurde. Allgemein ist ein Regres-

sor zur Vorhersage numerischer Werte und ein Klassifizierer zur Vorhersage kategori-

scher Werte geeignet. Für den Trainingsablauf wurde die Python-Bibliothek Scikit-Learn
[184] (Sklearn) (Version: 1.6.1) verwendet, in der alle verwendeten Modelle implementiert

sind. Die Modelle wurden mit modell-spezifischen Hyperparametern [185] (beispielswei-

se Anzahl der Knoten, Tiefe der Bäume, Anzahl der Schichten des neuronalen Netz-

werks,...) initialisiert. Außerdem wurde die Data-Matrix der Trainingsdaten und jeweils

ein dazugehöriger Vektor der Target-Matrix, der jeweils einen zu vorhersagenden Para-

meter repräsentiert, zum Training verwendet.

Nachdem die drei verschiedenen Modelle trainiert wurden, wurde zunächst eine Validie-

rung (3. Kategorie) der Trainingsdaten durchgeführt. Das bedeutet, dass das jeweilige

trainierte Modell anhand der Data-Matrix Werte für verschiedene Parameter (Bezeich-

nung des Kraftstoffs, Alterungszeit, Säurezahl, kinematische Viskosität und Dichte) vor-

hergesagt hat. Um die beste Vorhersage mit dem jeweiligen Modell zu gewährleisten,

wurde ein sog. Fine-Tuning der Modelle [184, 185] durchgeführt, was bedeutet, dass der

gesamte Trainings- und Validierungsablauf (anhand der Trainingsdaten) mit verschiede-

nen Sets an modellspezifischen Hyperparametern wiederholt wurde und die Kombination

gewählt wurde, die das beste Ergebnis lieferte. Auch hierfür wurde eine Methode (Ran-

domizedSearchCV) aus der Sklearn-Bibliothek verwendet. Anschließend wurde mit den

Modellen und der dazugehörigen besten Kombination aus Hyperparametern eine Vali-

dierung der Testdaten durchgeführt, also anhand deren Data-Matrix die verschiedenen

Parameter vorhergesagt.

Der Quellcode des Python-Skriptes ist in Kapitel 8 (Anhang) gezeigt.



62



63

6. Kumulativer Teil der Dissertation

Dieses Kapitel enthält die Originalpublikationen, die in peer-reviewed Journalen mit ei-

ner Erstautorenschaft publiziert wurden. In den Veröffentlichungen P1 und P2 wurde die

thermo-oxidative Alterung ausgewählter, regenerativer Kraftstoffe detailliert untersucht,

mit dem Ziel herauszufinden, in welchem Maß ihre Langzeitstabilität gewährleistet ist –

ein entscheidendes Kriterium für den Einsatz in Verbrennungsmotoren. In der Veröffent-

lichung P3 wurde ein Farbstoff untersucht, der sowohl antioxidative Eigenschaften zur

Verlangsamung der Kraftstoffalterung aufweist als auch als Fluoreszenzmarker einge-

setzt werden kann, um in Kombination mit einer geeigneten Sensorik den zukünftigen

Betrieb von Verbrennungsmotoren ausschließlich mit regenerativen Kraftstoffen sicher-

zustellen.

• P1: Aufklärung der Alterungsmechanismen von Solketal, Oxymethylenether und

deren Mischungen als vielversprechende E-Fuels, publiziert in Fuel 2025, 390,

134738, DOI: https://doi.org/10.1016/j.fuel.2025.134738

• P2: Thermo-oxidative Alterung von linearen und verzweigten Alkoholen als Stabili-

tätskriterium für deren Verwendung als E-Fuels, publiziert in Sustainable Energy &

Fuels 2024, 8, 3329-3340, DOI: https://doi.org/10.1039/ D4SE00400K

• P3: Nilrot als Fluoreszenzmarker und Antioxidans für regenerative Kraftstoffe, pu-

bliziert in Energy Technology 2023, 11, 2300260, DOI: https://doi.org/10.1002/ente.

202300260
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6.1 Aufklärung der Alterungsmechanismen von Solke-

tal, Oxymethylenether und deren Mischungen als viel-

versprechende E-Fuels

Platzhalter

Platzhalter

Revealing the aging mechanisms of Solketal, Oxymethylene ether, and mixtures thereof

as promising e-fuels

Anne Lichtinger, Maximilian J. Poller, Olaf Schröder, Julian Türck, Thomas Garbe, Jür-

gen Krahl, Markus Jakob, Jakob Albert

A. Lichtinger, M. J. Poller, O. Schröder, J. Türck, T. Garbe, J. Krahl, M. Jakob, J. Albert.

Revealing the aging mechanisms of Solketal, Oxymethylene ether, and mixtures thereof

as promising e-fuels, Fuel 2025, 390, 134738, DOI: https://doi.org/10.1016/j.fuel.2025.134738
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Um eine drastische Reduktion der CO2-Emissionen im Verkehrssektor zu erreichen, ist

der Einsatz regenerativer Kraftstoffe sinnvoll. Innovative, regenerative Kraftstoffkompo-

nenten wie Solketal und Oxymethylenether (OME1-6) rücken dabei in den Fokus, da sie

einige Vorteile aufweisen. Solketal weist aufgrund seines hohen Sauerstoffgehalts ein

verringertes Potential zur Rußbildung sowie verbesserte Kaltfließeigenschaften auf, wäh-

rend der E-Fuel OME aufgrund des Fehlens von C–C-Bindungen (nahezu) rußfrei ver-

brennt (vgl. Kapitel 4.1.2.3 und 4.1.2.7). Allerdings erfüllen weder Solketal noch OME in

reiner Form alle Parameter der Kraftstoffnorm DIN EN 590, sodass geeignete Mischun-

gen erforderlich sind. Um zu bewerten, ob sich die Zusammensetzung der Kraftstoff-

komponenten infolge der Alterung verändert und damit die Einsatzfähigkeit beeinträch-

tigt wird, wurde in dieser Studie die thermo-oxidative Alterung beider Komponenten so-

wohl in reiner Form als auch in Mischungen mit unterschiedlichen Volumenverhältnissen

(3:1, 1:1, 1:3) (vol%) untersucht. Hierfür wurden die Kraftstoffe mit Hilfe der offenen Al-

terungsapparatur (vgl. Kapitel 5.1.2) gealtert und die entstandenen Alterungsprodukte

durch GCMS- , Säurezahl-, Viskositäts- und Dichtemessungen (vgl. Kapitel 5.2.1-5.2.4)

in Abhängigkeit der Alterungszeit untersucht. Dadurch konnten die zugrunde liegenden

Reaktionspfade der thermo-oxidativen Alterung aufgeklärt werden.

Während der thermo-oxidativen Alterung von Solketal und OME, sowie deren Mischun-

gen, wurde die Bildung einer Vielzahl an Alterungsprodukten beobachtet. Aufgrund einer

Hydrolyse spaltete sich Solketal in dessen Synthese-Edukte, Glycerin und Aceton auf.

Diese wurden wiederum, ebenso wie Solketal selbst, durch verschiedene Reaktionen

wie Oxidation, oxidative C-C-Bindungsspaltung, Veresterung und Decarboxylierung zu

Aldehyden, Carbonsäuren, Estern und weiteren Verbindungen umgesetzt.

Die Alterung von OME führte aufgrund säurekatalysierter und oxidativer Zersetzung zu

einer Abnahme der längerkettigen OME (OME3-6), einer Zunahme der kurzkettigen OME

(OME1-2) sowie zur Bildung von Methanol und Formaldehyd. Letzteres führte zu einer

Entstehung von Paraformaldehyd infolge von Polymerisationsprozessen. Die zugrunde

liegenden Reaktionspfade der thermo-oxidativen Alterung von Solketal und OME sind in

Abb. 6.1.1 dargestellt. Bei der Alterung der Mischungen sind die selben Produkte wie bei

der Alterung der reinen Kraftstoffe entstanden, jedoch änderte sich der zeitliche Verlauf

der jeweiligen Konzentrationen je nach Mischung.
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Abbildung 6.1.1: Reaktionspfade der thermo-oxidativen Alterung von Solketal (oben) und Oxy-
methylenether (OME) (unten).

Es zeigte sich eine höhere Stabilität der 3:1-Mischung gegenüber anderen Mischungen

oder der reinen Kraftstoffkomponenten. Dies äußerte sich insbesondere in der wirksamen

Unterdrückung der Paraformaldehydbildung – einem der zentralen Probleme der OME-
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Alterung – sowie in einer erhöhten Stabilität der OME1-6-Konzentrationen im Vergleich zu

anderen Mischungen.

Aufgrund der verbesserten Stabilität gegenüber thermo-oxidativer Alterung könnte die

3:1-Mischung eine vielversprechende Option für zukünftige Kraftstoffe darstellen. Dar-

über hinaus könnten auch ternäre Gemische aus OME, Solketal (3:1) und weiteren rege-

nerativen Kraftstoffen eine vielversprechende Möglichkeit für nachhaltige Kraftstoffkon-

zepte sein.
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A B S T R A C T

Solketal and oxymethylene ether (OME) are two promising blending candidates for regenerative fuels (e-fuels), 
which could contribute to a holistic solution to the energy crisis. In this study the thermo-oxidative aging of these 
two e-fuels in their pure form as well as in binary mixtures with different ratios (3:1, 1:1, and 1:3) (vol%) is 
investigated. Herein, the reaction networks of the thermo-oxidative aging process of both e-fuels and mixtures 
thereof is elucidated based on intermediates and decomposition products determined via GC–MS. Furthermore, 
changes of important fuel-specific parameters like kinematic viscosity and density as well as total acid number 
during aging have been determined. The 3:1 solketal:OME (vol%) mixture exhibits a higher stability to thermo- 
oxidative aging than the pure fuel components or mixtures with other ratios. The viscosity value of this mixture is 
within the DIN EN 590 norm after accelerated aging of 72 h (viscosity (72 h) = 4.25 mm2/s)) unlike other blends. 
The maximum value of the total acid number of this aged mixture reaches only ~ 29 % of the maximum value of 
aged pure OME and has the lowest value of all mixtures. Furthermore, the formation of a precipitate could be 
successfully suppressed in the 3:1 solketal:OME (vol%) mixture different from other mixtures. With these find
ings, this study contributes to the design of new sustainable fuels for the transport sector.

1. Introduction

In order to achieve climate neutrality in the EU by 2050, CO2 
emissions must be reduced drastically [1]. As 25 % of the total green
house gas emissions in the EU come from the transport sector [1], 
defossilization of the latter is essential to achieve the climate protection 
goals. Defossilization can be achieved by switching to renewable energy 
sources and using renewable fuels such as biofuels or e-fuels [2]. As a 
beneficial side-effect, this also helps to reduce the dependence on oil and 
gas exporting countries, which is of great importance given the current 
political situation in eastern Europe.

The production of biodiesel, a biofuel consisting of fatty acid methyl 
esters has been established for several years [3], whereby large amounts 
of glycerol as a by-product are produced. The crude glycerol produced 

by the biodiesel industry (70 % purity) contains impurities such as 
water, inorganic salts, methanol, fatty acids and esters [4] and therefore 
cannot be used in the food or cosmetics industry. Glycerol has a high 
boiling point (290 ◦C) and a high viscosity (1.412 Pa s at room tem
perature), in addition it has a corrosive effect and acrolein is emitted 
during combustion [3]. Therefore, it cannot be used as a pure fuel or as a 
blend component. However, by ketalization with acetone, which can be 
produced from biomass, e.g., through the acetone-butanol-ethanol 
(ABE) fermentation process [5], glycerol can be used for the produc
tion of solketal (isopropylidene glycerol). Solketal is a promising sub
stance to be used as a regenerative fuel (biofuel) component [4,6,7]
(Fig. 1). The acid catalyzed [4,8,9] condensation reaction of glycerol 
and acetone can lead to the formation of five-membered and six- 
membered rings (ketals) [4,10,11], but the five-membered ketal is 
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highly favored with a ratio of 99:1 [4,12,13].
Solketal has a higher oxygen content compared to fossil fuels, which 

means less chemical energy can be stored and released during com
bustion. This is expressed by a lower specific heating value [3,14]. 
However, the lower number of C–C bonds and the absence of double 
bonds in the solketal molecule also leads to reduced soot formation 
during combustion, and thereby lower particle emissions [3]. The use of 
solketal as a fuel additive has shown these effects alongside and 
improved cold flow properties [4,15]. Furthermore, when added to 
gasoline, gum formation is reduced and the octane number is increased 
[4,16].

OME are oxymethylene ethers, i.e., acetals with the chemical struc
ture CH3[OCH2]nOCH3. The chain length n determines the physical 
properties of the OME. OME1 to OME5 are liquid, from OME6 onwards 
the oxymethylene ethers are solid [17,18]. OME is similar in structure to 
the polymer POM (polyoxymethylene), which, however, has a much 
higher degree of polymerization (chain length ≥ 2000) compared to 
OME [17,19,20]. There are several synthetic pathways for the produc
tion of OME. OME1 (dimethoxy methane) is commonly synthesized from 
methanol and formaldehyde. Long-chain OMEn are formed by reacting 
OME1 with trioxane, which is obtained from formaldehyde in the pres
sure swing process [18,21–23]. An alternative synthesis route describes 
the direct synthesis of OME via methanol and formaldehyde, without 
trioxane as an intermediate [18,24] (Fig. 2). Methanol is commonly 
produced from fossil-based syngas (CO/ H2) [18], but can also be syn
thesized sustainably from green H2 and CO2[25]. Formaldehyde can be 
obtained from methanol by silver catalyzed oxidation [18,26].

OME3-5 are non-toxic and have similar physical properties as fossil 

diesel fuel [17,18]. However, they show a strong potential for reducing 
soot formation during combustion, as there are no direct C–C bonds in 
the OME molecules [17,18,27]. This largely resolves the conflict of 
optimizing combustion temperatures to either avoid NOx (lower tem
peratures desired) or reduce soot emissions (higher temperatures 
desired) [18]. This allows operation of the engine with low NOx and low 
particulate emissions at the same time (through exhaust gas recircula
tion). There have been several studies regarding the pyrolysis of OME. 
De Ras et al. [28] investigated the pyrolysis of OME2 over a broad 
temperature range and found a decomposition of OME2 to formaldehyde 
and OME1 at temperatures below 800 K. In addition to unimolecular 
decomposition, radicals and intermediate products like methane, 
methyl formate and formaldehyde were formed at higher temperatures.

Solketal as a biofuel component and OME as an e-fuel are both 
promising regenerative fuels due to their advantageous characteristics. 
However, some of the fuel parameters of their pure form do not fulfill the 
fuel standard DIN EN590 [29], e.g., the viscosity of solketal is too high, 
while it is too low for OME. But it is important for using a fuel that its 
characteristics are within the norm. Therefore, some mixtures of both 
have to be found which are in the desired range to get regenerative fuels 
that can directly be used as fuels or fuel components, with promising fuel 
properties.

Blends of gasoline or diesel fuel with solketal as well as blends of 
diesel fuel with OME were already investigated [3,6,16,30]. But mix
tures of solketal and OME have been, to the best of our knowledge, only 
studied very little so far. These mixtures can also be blended with diesel 
fuel or FAME (fatty acid methyl esters) to form a ternary mixture that 
could be used as fuel, similar to Diesel R33 [31].

If fuels are stored for a longer period of time, for example as emer
gency energy storage or in the case of hybrid vehicles, fuel aging is a 
major concern [2]. The aging of conventional fossil fuels and biodiesel 
through autoxidation is a phenomenon that has been known for many 
years and is widely discussed in the literature, for example by Pradelle 
et al. [32], Rizwanul Fattah et al. [33] and others [32–39]. However, 
further aging studies are essential for the use of new, regenerative fuels. 
Cychy et al. [40] and Kumari et al. [41] have carried out electro- 
oxidative studies on solketal using electrocatalysts for synthetic pur
poses. They found, in addition to the main product glyceric acid, some 
other products, like glyceraldehyde and oxalic acid [40,41]. Moity et al. 
[42] investigated cyclic glycerol acetals and ketals as bio-based solvents 
and their stability with regard to pH-value dependent hydrolysis. They 
also investigated the oxidation of these compounds with the PetroOxy 
device [43] up to 4 h. They found that neither acetals nor ketals are 
stable in an acidic media but acetals exhibited a higher stability than 
ketals. Furthermore, they found that formaldehyde and acetone acetals 

Fig. 1. Formation of solketal: condensation reaction of acetone and glycerol to 
solketal (five-membered ring) or 2,2-dimethyl-1,3-dioxan-5-ol (six-membered 
ring) [4].

Fig. 2. Synthesis process of oxymethylene ether (OMEn): synthesis to OMEn from methanol and formaldehyde [24].

A. Lichtinger et al.                                                                                                                                                                                                                              
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are very stable against autoxidation, whereas glycerol-based ketals are 
more stable than ethylene glycol-based ketals [42]. Türck et al. [3,6,44]
have investigated the influence of solketal on the aging of biodiesel (by 
blending with C18:1 as a model fuel or by blending with biodiesel/diesel 
mixtures). They have discovered that the addition of solketal has an 
influence on the aging of biodiesel, for example changes in viscosity or 
total acid number [3,44].

The degradation of polyoxymethylene was investigated in the 1960 s 
and early 1970 s. It was found that the most important degradation 
mechanism is oxidative, whereas thermal decomposition occurs via 
chain reactions of free radicals at temperatures between 100 ◦C-170 ◦C 
[20,45–48]. However, it is not clear to what extent the aging of poly
oxymethylene is transferable to the aging of OME, as the influence of the 
chain length was not investigated. Bogatykh et al. [20] investigated 
OME aging with the aid of the Rancimat method. The authors identified 
various degradation products and investigated the induction time of an 
OME-mix (OME3-5) as a function of different concentrations of the added 
antioxidant BHT (butyl hydroxy toluene). Furthermore, the influence of 
hydroperoxides on the induction time was investigated. They found that 
hydroperoxides have a detrimental effect and BHT led to a higher 
oxidation stability of OME [20].

The here presented study, in contrast to earlier work, investigates in 
detail the time-dependent concentrations of the individual OME1 −
OME6 and the different aging products of the solketal-aging. Further
more, the exact reaction pathways are elucidated in order to get a better 
understanding of the formation of the various aging products. Also, the 
time-dependent changes in important fuel-specific parameters, such as 
the kinematic viscosity, density and total acid number of different 
mixtures of solketal and OME and the influence of solketal on OME- 
aging and vice versa are deduced.

2. Experimental

2.1. Fuels and chemicals

All chemicals were used as received without further purification. 
Solketal with a purity ≥ 97 % was purchased from Sigma Aldrich. OME 
(unadditivated) was purchased from ASG (product number 
2803710_001). The composition of OME can vary considerably from 
batch to batch. According to the data sheet, the composition of the OME 
used in this research is: 0.05 wt% OME1, 0.06 wt% OME2, 45.39 wt% 
OME3, 5.11 wt% OME3-derivative, 25.39 wt% OME4, 2.23 wt% OME4- 
derivative, 11.22 wt% OME5 and 4.57 wt% OME6[49]. The OME- 
derivatives are shown in the supporting information (Fig. S1). The 
chemicals for calibration and the pure paraformaldehyde (chain length 
n = 8–100) were purchased from Carl Roth and Sigma Aldrich. The 
different OMEn in pure form for calibration were kindly provided from 
ASG.

2.2. Experimental setup and working procedure of fuel aging

For the accelerated thermo-oxidative aging of the fuels, the aging 
setup described in detail in previous articles [2,50] was used (Figure S2, 
section 1). The fuel was aged in a three-neck round bottom flask, which 
was placed in an oil bath (T = 110 ◦C). To minimize the release of 
volatile aging products, a Dimroth reflux condenser (T = 2 ◦C) was 
positioned above the flask. To oxidize the fuel, dry air was introduced 
into the fuel at a constant flow rate of 10 l/h via a gas introduction tube. 
These conditions were based on the Rancimat method (according to DIN 
EN 14112 [51] and DIN EN 15751 [52]). This aging setup was operated 
as an open aging system. The air introduced into the fuel was directed 
through the reflux condenser into a wash bottle containing deionized 
water. At the start of the aging process, the flask contained 250 ml of the 
fuel to be aged. To monitor the aging products over time, a 25 mL fuel 
sample was taken from the flask every 24 h. For this purpose, the stopper 
of the flask was briefly opened and 25 ml of the aged fuel was removed 
using a glass pipette. The samples were subsequently analyzed with 
GC–MS of FT-IR spectroscopy (vide infra). The fuel was aged for a total 
of 144 h. For a more detailed description, see references [2,50].

2.3. Analytical methods

An Agilent GC7890A gas chromatograph coupled to an Agilent 5973 
quadrupole mass spectrometer was used for the gas chromatography 
with coupled mass spectrometry (GC–MS) measurements. It was 
equipped with a Phenomenex Zebron ZB-5 HT column with a length of 
30 m, an inner diameter of 0.25 mm and a pathlength of 0.25 μm. The 
carrier gas was helium with a flow rate of 35.5 mL/min. 2 µl of the 
sample was injected and the split ratio was 20:1. In the temperature 
program, the oven was held at 80 ◦C for 10 min, then brought to 120 ◦C 
at 3 ◦C/min. After a holding time of 2 min, the oven was brought to 
250 ◦C at 5 ◦C/min and then to 300 ◦C at 15 ◦C/min. The spectra were 
compared with the NIST08 database for product identification. To 
determine the concentration of the aging products, a calibration series 
was performed with each of the pure substances and an internal stan
dard. The determination of the concentration of OME2 is described in the 
supporting information (section 2). For the aging products that were not 
available in pure form, the peaks of the products were integrated and the 
areas of the products were divided by the peak areas of the internal 
standard (peak area analyte / peak area internal standard).

The Fourier transformed infrared (FT-IR) spectroscopy measure
ments were carried out using a Thermo Scientific Nicolet 6700 FTIR 
spectrometer with a diamond ATR unit (attenuated total reflectance). 
The single bounce ATR unit has a wavelength cutoff of 650 cm−1 

through a ZnSe lens and an angle of incidence of 42◦. The penetration 
depth of the 1.5 mm diamond is 2.03 μm at 1000 cm-1. The spectrometer 
has a DTGS detector (deuterated triglycine sulphate) and an XT–KBrTM 
beam splitter (extended KBr range) [2,50].

The kinematic viscosity and the density were assessed using a Sta
binger viscosimeter from Anton Paar. To carry out the measurements, 3 

Table 1 
Fuel specific parameters (extract) of solketal and oxymethylene ether (OME). 100-S: pure solketal, 100-O: pure OME, mixtures of 3:1 (75-S-25-O), 1:1 (50-S-50-O) and 
1:3 (25-S-75-O) solketal:OME (vol%).

parameter 100-S 100-O 75-S-25-O 50-S-50-O 25-S-75-O DIN EN 590
boiling range 

[◦C]
188–189 [7] 156–242 [17]

(OME 3-5)
​ ​ ​ 180 – 390 

[17]
flashpoint 

[◦C]
85 [16] 54–115 [17]

(OME 3-5)
​ ​ ​ >55 [17]

kin. viscosity 
(T = 40 ◦C) 
[mm2/s]

5.02 1.21 3.05 2.02 1.51 2.00–4.50 [17]

density 
(T = 15 ◦C) 
[kg/m3]

1.07 1.06 1.07 1.06 1.06 0.820–0.845 [17]

A. Lichtinger et al.                                                                                                                                                                                                                              



71

Fuel 390 (2025) 134738

4

ml of the sample was injected into the device using a syringe. The vis
cosity measurements were carried out at a temperature of 40 ◦C and the 
density measurements at a temperature of 15 ◦C. The data processing of 
the measurements was done with the Rheoplus software from Anton 
Paar [2,50].

The total acid number (TAN) was determined using the potentio
metric titration method in accordance with DIN EN 12634. An 888 
Titrando and an 801 stirrer, both from Metrohm, were used to carry out 
these measurements. A glass electrode suitable for non-aqueous media 
was used for the titration. The measuring solution consisted of potas
sium hydroxide dissolved in 2-propanol (0.1 mol/L). The solvent used 
for the analysis consisted of 50 vol% toluene, 49.5 vol% 2 - propanol and 
0.5 vol% deionized water, with a total volume of 60 mL per sample. The 
sample weight varied depending on the expected total acid number and 

ranged from 0.505 g to 10.007 g. The TAN is the amount of base, 
expressed in milligrams of potassium hydroxide per gram of fuel (mg 
KOH/g), required to neutralize the acids present in the sample.

3. Results and discussion

In order to compare OME, solketal and mixtures thereof with con
ventional diesel fuel, the fuel properties according to the fuel standard 
DIN EN 590 were assessed first. The fuel properties of OME and solketal 
correspond to those of diesel fuel in terms of boiling range and flash 
point (Table 1). The kinematic viscosity of solketal is 5.02 mm2/s, that of 
OME is 1.21 mm2/s. According to DIN EN 590, the kinematic viscosity 
for a diesel fuel must be 2.00–4.50 mm2/s [17]. Mixtures with ratios of 
1:1 and 3:1 (solketal:OME) (vol%) are within the desired range and were 
consequently used in this study. In detail, the aging of mixtures of 3:1 
(75-S-25-O), 1:1 (50-S-50-O) and 1:3 (25-S-75-O) solketal:OME (vol%) 
in addition to pure solketal (100-S) and pure OME (100-O) were 
investigated.

In order to understand the aging of solketal and OME as well as their 
mixtures, the thermo-oxidative aging process of these fuels was accel
erated using a previously established setup [2,50] (Figure S2) to apply 
110 ◦C and a flow of 10L/h dry air. During this process, samples were 
taken every 24 h and analyzed by GC–MS or, in case of a solid-state aging 
product, by FT-IR. Additionally, the fuel specific parameters viscosity, 
density, and TAN have been determined.

3.1. Thermo-oxidative aging of solketal

The initial sample of solketal already contained some of its isomer, 
2,2-dimethyl-1,3-dioxan-5-ol, but no glycerol or acetone were detected. 

Table 2 
Products of the thermo-oxidative aging of solketal.

component aging time
solketal + 2,2-dimethyl-1,3-dioxan-5-ol 0 h − 144 h
glycerol 24 h − 144 h
acetone 24 h − 144 h
2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde 24 h − 144 h
glyceraldehyde 24 h − 144 h
acetic acid 24 h − 144 h
2,2-dimethyl-1,3-dioxolane-4-carboxylate 24 h − 144 h
2,2-dimethyl-1,3-dioxolane-4-methanol-acetate 24 h − 144 h
2,2-dimethyl-1,3-dioxolane 24 h − 144 h
acetine (2,3-dihydroxypropyl acetate) 48 h − 144 h
hydroxy acetic acid 96 h − 144 h
(1,3-dioxolane-4-yl)methanol + 1,3-dioxane-5-ol 96 h − 144 h
methyl hydroxy acetate 96 h − 144 h

Fig. 3. Reaction pathway of the thermo-oxidative aging of solketal, the compounds detected by GC–MS are highlighted. References used: (A): [4]; (B): [50,53,54]; 
(C): [50,54,55]; (D): [56–58]; (E): [60]; (F): [59]; G: [61].
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Starting from the 24 h sample, glycerol and acetone were found, next to 
glyceraldehyde, acetic acid, 2,2-dimethyl-1,3-dioxolane and some of its 
derivatives. After 48 h, acetine (2,3-dihydroxypropyl acetate) was 
found, and after 96 h hydroxy acetic acid, (1,3-dioxolan-4-yl)methanol 
and 1,3-dioxan-5-ol, as well as methyl hydroxy acetate could also be 
detected (Table 2).

Based on the observed products and known reaction pathways from 
other studies [4,50,53–61], the following reaction pathway for the aging 
of solketal is postulated (Fig. 3):

During thermo-oxidative aging, hydrolysis of the ketalization of 

solketal occurs from an aging time of 24 h, resulting in the two products 
glycerol and acetone. Alternatively, solketal can be oxidized directly via 
autoxidation [50,53,54] to form aldehyde 2,2-dimethyl-1,3-dioxolane- 
4-carboxaldehyde, which can then be further oxidized to 2,2- 
dimethyl-1,3-dioxolane-4-carboxylic acid (solketalic acid) by autoxida
tion [50,54,55]. Although the acid could not be detected, its formation is 
inferred by the observation of 2,2-dimethyl-1,3-dioxolane, which results 
from its decarboxylation. The glycerol resulting from hydrolysis of sol
ketal can similarly be oxidized to glyceraldehyde by autoxidation 
[50,53,54]. Furthermore, glycerol can also form 1-hydroxypropan-2- 
one via oxidative C–C bond cleavage, which itself can react further to 
produce formaldehyde and acetaldehyde [56–58].

Both of these aldehydes subsequently oxidized to their correspond
ing acids, formic acid and acetic acid [50,54,55], which are inferred 
because of the detection of hydroxy acetic acid and methyl hydroxy 
acetate. Their formation can be explained by a reaction of the afore
mentioned acids with formaldehyde [59,60]. Similarly, a reaction of 
formaldehyde with glycerol explains the observation of (1,3-dioxolane- 
4-yl)methanol [61]. Analogous to the synthesis of solketal (Fig. 1), both 
the five-membered ring (1,3-dioxolane-4-yl)methanol and the six- 
membered ring 1,3-dioxan-5-ol can be formed [61].

Moreover, glycerol can be esterified with acetic acid to form acetine 
(2,3-dihydroxypropyl acetate). Furthermore, a reaction of formic acid 
with solketal yields 2,2-dimethyl-1,3-dioxolane-4-carboxylate, and 
similarly the esterification of solketal with acetic acid produces 2,2- 

Fig. 4. a, b, c) Time course of the concentrations of various products of the thermo-oxidative aging of solketal. d, e) Normalized peak area as a function of the aging 
time of various products of the thermo-oxidative aging of solketal.

Table 3 
Components of the thermo-oxidative aging of OME.

component aging time
OME1 0 h − 144 h
OME2 0 h − 144 h
OME3 0 h − 144 h
OME4 0 h − 144 h
OME5 0 h − 144 h
OME6 0 h − 144 h
formic acid 24 h − 144 h
methyl formate 24 h − 144 h
hydroxy acetic acid 48 h − 144 h
methyl hydroxy acetate 48 h − 144 h
paraformaldehyde 72 h − 144 h
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dimethyl-1,3-dioxolane-4-methanol-acetate.
To evaluate the time dependency of the solketal aging process, the 

concentration or the normalized peak areas of selected decomposition 
products were plotted over time (Fig. 4). The concentration of solketal 
and its isomer, hereinafter referred to as solketal, decreased exponen
tially from initially c = 10.26 mg/ml to a value of c = 5.23 mg/ml after 
144 h i.e., ~ 49 % of the original concentration. The hydrolysis products 
glycerol and acetone were first detected after 24 h (first sample) with 
concentrations of c = 0.36 mg/ml and c = 0.32 mg/ml, respectively. The 

concentration of glycerol increased steadily from 24 h to 144 h up to a 
value of c = 3.41 mg/ml. In contrast, the concentration of acetone 
reached a plateau at 0.96 mg/ml after 96 h. The reason for the lower 
amount of acetone detected is suspected due to its high vapor pressure 
(pv, acetone (110 ◦C) = 4.78 bar) [62] leading to loss of acetone during 
sampling.

2,2-dimethyl-1,3-dioxolane-carboxaldehyde was also detected after 
24 h aging with a concentration of c = 0.084 mg/ml. Interestingly, its 
concentration decreased steadily until it reached c = 0.0107 mg/ml after 

Fig. 5. Reaction pathway for the thermo-oxidative aging of OME, the compounds detected by GC–MS are highlighted. References used: (A): [20,45]; (B): [45]; (C): 
[17,63]; (D): [54,55]; (E): [60].

Fig. 6. a, b) Concentration as a function of the aging time of various products of the thermo-oxidative aging of oxymethylene ether (OME). c) Normalized peak area 
as a function of the aging time of various products of the thermo-oxidative aging of OME.
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144 h. The most likely reason for this behavior are subsequent reactions, 
such as the oxidation to solketalic acid, proceeding at a faster rate than 
the formation of the aldehyde. Solketalic acid in turn forms 2,2- 
dimethyl-1,3-dioxolane via decarboxylation, which was detected with 
a concentration of c = 0.0032 mg/ml after 24 h of aging. The concen
tration of this product increased steadily and reached a plateau of ~ c =
0.0092 mg/ml after ~ 120 h of aging time. Furthermore, acetic acid and 
2,2-dimethyl-1,3-dioxolane-methanol acetate were detected after 24 h. 
The concentration of both steadily increased until the end of the 
experiment. The presence of these compounds confirms the oxidative 
C–C bond cleavage of glycerol resulting in formaldehyde and acetalde
hyde, with subsequent oxidation to acetic acid followed by esterification 
with solketal. The detection of 2-dimethyl-1,3-dioxolane-carboxylate 
after 24 h aging time with c = 0.17 mg/ml further confirms this reac
tion pathway, because it is formed by esterification of solketal and for
mic acid, which is an oxidation product of formaldehyde. The 
concentration of this ester increased steadily and reached a plateau after 
~ 120 h with a maximum concentration of c = 1.05 mg/ml. Although 
they were not detected in the 24 h sample, it’s reasonable to assume that 
formaldehyde and formic acid were already formed after 24 h aging due 
to the detection of 2-dimethyl-1,3-dioxolane-carboxylate.

The oxidation product of glycerol, glyceraldehyde, was first detected 
after 24 h. Its concentration increased steadily until the end of the 

experiment, indicating that it is not rapidly consumed by subsequent 
reactions. In addition to the previously detected molecules, acetine, the 
esterification product of glycerol and acetic acid, was first detected in 
the sample after 48 h, after which its concentration increased continu
ously. Hydroxy acetic acid and methyl hydroxy acetate, were both first 
detected after 96 h aging time, afterwards their concentration also 
increased until the end of the experiment. (1,3-dioxolane-4-yl)methanol 
and its isomer were also detected from 96 h onwards and showed an 
increasing concentration from initially c = 0.00645 mg/ml up to c =
0.0380 mg/ml at the end of the experiment. The reason for the late 
detection of hydroxy acetic acid, methyl hydroxy acetate, and (1,3- 
dioxolane-4-yl)methanol is suspected to be that the esterification to 2- 
dimethyl-1,3-dioxolane-carboxylate is highly favored in comparison to 
the reaction of glycerol or acetic acid with formaldehyde (Figs. 3 and 4
a-d). Overall, the detected products and the curve of their concentrations 
confirm the proposed reaction pathway.

In summary, the results of this experiment show that solketal is not 
stable against thermo-oxidative aging. After an aging time of 144 h, the 
initial concentration of solketal decreased by ~ 50 % and several 
products were formed mainly through hydrolysis, but also via oxidation, 
including oxidative C–C bond cleavage, followed by esterification. The 
main products formed during aging are glycerol, acetone, and 2- 
dimethyl-1,3-dioxolane-carboxylate.

Fig. 7. a-f) Concentration of various products of the thermo-oxidative aging of mixtures of solketal and oxymethylene ether (OME) as a function of the aging time. 
100-S: pure solketal, 100-O: pure OME1-6, mixtures of 3:1 (75-S-25-O), 1:1 (50-S-50-O) and 1:3 (25-S-75-O) solketal:OME (vol%).
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3.2. Thermo-oxidative aging of OME

After solketal, OME was studied in a similar fashion. The specific 
sample of OME used in our study, contained a mixture of OME1-6: 0.05 
wt% OME1, 0.06 wt% OME2, 45.39 wt% OME3, 5.11 wt% OME3-de
rivative 25.39 wt% OME4, 2.23 wt% OME4-derivative (Fig. S1), 11.22 
wt% OME5 and 4.57 wt% OME6[49]. In this study, this mixture is 
referred to as OME. During the aging process of OME, formic acid, 
methyl formate, hydroxy acetic acid, methyl hydroxy acetate, and 
paraformaldehyde were identified as aging products after different 
aging times (Table 3, Figure S3).

Based on these aging products and known reaction pathways from 
literature [17,20,45,55,60,63], the following reaction pathway for the 
thermo-oxidative aging of OME is postulated:

Formic acid and methyl formate (formed by esterification of formic 
acid and methanol), indicate degradation of OMEn to OMEn-1, releasing 
one equivalent of formaldehyde each step, until OME1 decomposes to 
formaldehyde and methanol. This occurs either acid-catalyzed, resulting 
in a reduction of the chain-length of OMEn and the formation of form
aldehyde [45] or through autoxidation resulting in the formation of 
formaldehyde and hemiformals [20,45]. Formic acid is then formed via 
oxidation of formaldehyde [54,55], and subsequently esterified with 
methanol to methyl formate. Formic acid can also react with 

formaldehyde, forming hydroxy acetic acid via C–C bond formation 
[60], which in turn can be esterified with methanol to form methyl 
hydroxy acetate. Formaldehyde can polymerize to paraformaldehyde at 
normal pressure and temperatures below 150 ◦C without the need of a 
catalyst usually reaching chain lengths m of m = 8–100 monomers. The 
presence of water results in shorter chains, due to hydrolysis [17,63]. 
Similarly, paraformaldehyde can react with methanol to form short- 
chain paraformaldehyde molecules and hemiformals [17]. The decom
position of paraformaldehyde to formaldehyde only takes place at 
temperatures above T = 150 ◦C [17]. An overview of this reaction 
network is shown in Fig. 5, whereby the compounds detected by GC–MS 
and FT-IR (in case of paraformaldehyde) are highlighted.

To evaluate the time dependency of the OME aging process, the 
concentration (or the normalized peak areas, respectively) of selected 
decomposition products were plotted over time (Fig. 6). After 24 h a 
substantial decrease of the concentration of OME3-6 was observed. OME3 
and OME4 decreased by ~ 8 %, OME5 by ~ 9 %, and OME6 by ~ 10 %. 
This decrease continued until the end of the experiment after 144 h. In 
the final sample, the concentration of OME3 decreased by ~ 56 %, of 
OME4 by ~ 47 %, of OME5 by ~ 57 %, and of OME6 by ~ 64 %, 
compared to the initial value. In contrast, the concentration of OME1-2 
was found to have increased after 24 h, for OME2 by ~ 2 %, and for 
OME1 by ~ 51 %. After 144 h of aging time the concentration of OME2 

Fig. 8. a) Concentration of various products of the thermo-oxidative aging of mixtures of solketal and oxymethylene ether (OME) as a function of the aging time. b-e) 
Normalized peak area of various products of the thermo-oxidative aging of mixtures of solketal and OME as a function of the aging time. 100-S: pure solketal, 100-O: 
pure OME1-6, mixtures of 3:1 (75-S-25-O), 1:1 (50-S-50-O) and 1:3 (25-S-75-O) solketal:OME (vol%).
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had increased to ~ 88 %, and to ~ 75 % for OME1, respectively. The 
obvious explanation for this is the aforementioned degradation of OME 
chains, producing formaldehyde and shorter chain OME. Formaldehyde 
was not directly observed, but its oxidation product, formic acid, was 
first found after 24 h after which its concentration increased steadily 
until 72 h of aging time. From the 72-hour sample until the final sample 
at 144 h a decrease of formic acid concentration was detected. The 
reason for this behavior is probably the increased rate of subsequent 
reactions with other decomposition products after longer aging times. 
This can also be seen in the increasing concentrations of hydroxy acetic 
acid (first observed after 48 h aging), as well as the esters methyl 
formate and methyl hydroxy acetate, which both steadily increased from 
24 h to 144 h aging.

From 72 h aging onwards, the formation of paraformaldehyde as a 
precipitate (colorless powder) in the three-neck flask and in the reflux 
condenser of the aging setup was observed. The amount of precipitate 
visually increased until the end of the experiment. However, since it was 
not possible to recover the precipitate quantitatively from the aging 
setup, exact numbers are not available. In summary, the investigation 
shows that OMEn is also not stable against thermo-oxidative aging. After 
an aging time of 144 h, the concentration of OME3-6 decreased by ~ 47 – 

57 % of the initial value, while the concentration of the short-chain 
OME1-2 increased by about 2–51 % Additionally, paraformaldehyde 

precipitated as a colorless solid, which is a significant problem for 
application.

3.3. Thermo-oxidative aging of mixtures of solketal and OME

After investigating solketal and OME separately, the aging of 
solketal-OME-mixtures with solketal:OME ratios of: 3:1 (vol%) (75-S-25- 
O), 1:1 (vol%) (50-S-50-O) and 1:3 (vol%) (25-S-75-O) was also inves
tigated. The initial samples of all mixtures contained solketal and its 
isomer, as well as OME3-6 and presumably OME1-2 in concentrations 
corresponding to the dilution with solketal. However, OME1-2 could not 
be detected in the 75-S-25-O and the 50-S-50-O sample, because their 
concentration was below the detection limit. During the aging process of 
all mixtures, a combination of the same aging products as for the indi
vidual components was observed. Therefore, it is concluded that the 
postulated reaction pathways for the aging of solketal and OME (Figs. 3 
and 5) are also valid for the aging process of their mixtures. Neverthe
less, the formation of the aging products over time differs significantly 
from the pure components (Figs. 7-10, Table S1).

The initial concentration of solketal and its isomer decreased from 24 
h – 144 h for all mixtures, by ~ 64 % for 75-S-25-O, by ~ 95 % and by ~ 
99 % for 25-S-75-O, respectively. The concentration of glycerol 
increased from 24 h - 144 h for 75-S-25-O and 50-S-50-O, but for 25-S- 

Fig. 9. a-f) Concentration of various products of the thermo-oxidative aging of mixtures of solketal and oxymethylene ether (OME) as a function of the aging time. 
100-S: pure solketal, 100-O: pure OME1-6, mixtures of 3:1 (75-S-25-O), 1:1 (50-S-50-O) and 1:3 (25-S-75-O) solketal:OME (vol%).
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75-O the curve shows a maximum at 72 h (Fig. 7 b). Possibly, this is due 
to the formation of (1,3-dioxolane-4-yl)methanol, which was formed 
significantly more in mixtures with more OME (Fig. 8 a). This required 
glycerol and formaldehyde. For 25-S-75-O, the concentration of (1,3- 
dioxolane-4-yl)methanol increased from 24 h – 144 h, but at some point, 
not enough remaining solketal was available to reproduce glycerol. 
Therefore, the concentration of glycerol decreased again after 72 h of 
aging. The acetone concentration increased during aging and the curve 
shows a maximum at 96 h for 75-S-25-O, at 72 h for 50-S-50-O and a 
maximum at 48 h for 25-S-75-O (Fig. 7 c). The decrease at later aging 
times is possibly caused by increased evaporation of acetone in the open 
aging setup. The concentration of 2,2-dimethyl-1,3-dioxolane-4-carbox
aldehyde (Fig. 7 d) as well as the concentration of 2,2-dimethyl-1,3- 
dioxolane (Fig. 7 f) show a similar progression for all mixtures with a 
maximum at 24 h. The concentration of 2,2-dimethyl-1,3-dioxolane-4- 
carboxylate (Fig. 7 e) increased steadily over the aging time of all 
mixtures and had the highest value for 75-S-25-O, followed by 50-S-50- 
O. The more solketal was present in the mixture, the more esterification 
to 2,2-dimethyl-1,3-dioxolane-4-carboxylate appeared.

The results also show that during aging of the OME-rich mixtures, 
more formic acid (Fig. 10 a) was produced and therefore more esterifi
cation to methyl formate (Fig. 10 b) occurred. Also, more hydroxy acetic 
acid and methyl hydroxy acetate were formed (Fig. 10 c, d). In contrast, 
the solketal-rich blends produced more glyceraldehyde, acetic acid, 2,2- 
dimethyl-1,3-dioxolane-4-methanol acetate and acetine (Fig. 8 b-e). The 
initial concentration of OME3 (Fig. 9 c) decreased for all mixtures, while 
OME4-6 (Fig. 9 d-f) decreased for 25-S-75-O but showed a higher stability 
towards aging in 75-S-25-O and 50-S-50-O. The OME5 and OME6 
increased slightly for 75-S-25-O. The acid catalyzed degradation reac
tion of OMEn to OMEn-1 (Fig. 5) can take place in both directions. 
Therefore, possibly OMEn-1 and formaldehyde could form OMEn. The 
OME2 (Fig. 9 b) increased stronger for 25-S-75-O, only slightly for 50-S- 
50-O and almost not at all for 75-S-25-O. The OME1 (Fig. 9 a) increased 
for all mixtures, except for 75-S-25-O. After 120 h paraformaldehyde has 
formed in 25-S-75-O and 50-S-50-O, but no precipitate formation was 
observed in the case of 75-S-25-O. The formation of paraformaldehyde 
depends on the methanol/formaldehyde ratio. If the methanol/formal
dehyde ratio is > 0.5, no paraformaldehyde is formed [17]. This suggests 
that more formaldehyde compared to methanol formed during aging for 
50-S-50-O and 25-S-75-O, but not for 75-S-25-O. The reason for this is 
possibly that there was a subsequent reaction of formaldehyde with 
solketal or its degradation products, e.g., the reaction of OMEn-1 and 
formaldehyde to OMEn. The formation of paraformaldehyde was sup
pressed by a higher concentration of solketal.

This study shows that the mixtures of solketal and OME are more 
stable against thermo-oxidative aging than the pure fuel components. 
This shows the potential strategy to increase stability through blending. 
The initial concentration of solketal decreased ~ by 64 % for 75-S-25-O, 
by ~ 95 % for 50-S-50-O and by ~ 99 % for 25-S-75-O. All products 
observed in the aging of the mixtures were also observed in the aging of 
the respective pure components. However, the concentration and aging 
time at which the products were formed varied depending on the 
composition of the mixture. The initial concentration of OMEn with n 
>= 3 decreased, while the concentration of OME1 increased for all 
mixtures, indicating chain degradation. However, a higher stability of 
OMEn n > 3 was observed in 75-S-50-O and 50-S-50-O. Additionally, the 

Fig. 10. a-d) Normalized peak area of various products of the thermo-oxidative aging of mixtures of solketal and OME as a function of the aging time. 100-S: pure 
solketal, 100-O: pure OME1-6, mixtures of 3:1 (75-S-25-O), 1:1 (50-S-50-O) and 1:3 (25-S-75-O) solketal:OME (vol%).

Table 4 
Fuel specific parameters (maximum values) of the thermo-oxidative aging of 
mixtures of solketal and oxymethylene ether (OME). 100-S: pure solketal, 100- 
O: pure OME1-6, mixtures of 3:1 (75-S-25-O), 1:1 (50-S-50-O) and 1:3 (25-S-75- 
O) solketal:OME (vol%).

blend total acid number 
(max. value) [mg 
KOH/g]

kin. viscosity [T =
40 ◦C] 
(max. value) [mm2/s]

density [T =
15 ◦C] 
(max. value) [kg/ 
m3]

​ ​ ​ ​
100-S 17.5 25.6 1.17
75-S-25- 

O
28.4 23.7 1.20

50-S-50- 
O

42.2 16.1 1.26

25-S-75- 
O

68.4 8.16 1.18

100-O 98.5 2.99 1.11
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formation of paraformaldehyde as a precipitate was observed in 25-S- 
75-O and 50-S-50-O, but not in 75-S-25-O. The formation of pre
cipitates during aging is particularly problematic in the use of fuels 
because they can cause severe damage to combustion engines. In sum
mary, 75-S-25-O is the most promising mixture in terms of stability to 
thermo-oxidative aging. Due to its higher stability, it could be a good 
candidate for further optimization in a ternary fuel blend.

3.4. Determination of fuel specific parameters

The viscosity and density of a fuel are two parameters that can in
fluence engine performance and emissions. Moreover, the total acid 
number is an important parameter for the degree of aging, especially for 
e-fuels. TAN increased during aging of pure solketal, pure OME and all 
mixtures. In case of 100-O, the TAN showed the highest values of all 
aged fuels with a maximum value at 96 h (TAN100 - O = 98.5 mg KOH/g). 
The obvious reason for this is the formation of formic acid. The forma
tion of methyl formate could explain the decrease of the TAN, which is a 
measure of the content of free carboxylic acids that are not bound as 
esters, after 96 h aging. The TAN of pure solketal (100-S) and of all 
mixtures increased during aging and reached a plateau at ~ 96 h. The 
maximum values of the TAN of all blends are shown in Table 4.

The results show, that the TAN increased during aging for the pure 
fuels and all mixtures, the more OME was present in the mixture, the 
higher the TAN values due to formation of acids (Fig. 11, Table 4 and 
Table S2). This is problematic because acidic compounds in the fuel can 
lead to corrosion and engine wear. The kinematic viscosity increased 
during aging of pure solketal, pure OME, and all mixtures. The 
maximum values are shown in Table 4. Higher solketal content in the 
mixture, resulted in higher kinematic viscosity values after aging 
(Fig. 11 b and Table S2). It is speculated that the increase in viscosity 
during aging is a result of the formation of highly viscos glycerol from 
solketal during aging. However, the viscosity values of 75-S-25-O and 
50-S-50-O were still in the range of the fuel standard DIN EN590 up to ~ 
72 h aging.

The density of 100-S, 100-O and all mixtures also increased during 
aging (Fig. 11 c, Table 4, Table S2). This is due to the formation of 

several aging products in varying concentration. The density of the aged 
50-S-50-O showed the highest values of all mixtures. This indicates a 
good intramolecular interaction and miscibility of the molecules.

In total, the fuel specific parameters indicate that the mixtures, 
especially 75-S-25-O could be used for a ternary blend, for example, with 
a fraction of 33 % like in the fuel Diesel R33 [31]: 25 vol% solketal and 8 
vol% OME could be mixed with 67 vol% conventional diesel fuel. 
Alternatively, the 75-S-25-O could also be mixed with FAME or HVO to 
produce a completely regenerative fuel. However, further investigations 
of the combustion properties and miscibility is required before these 
fuels can be used.

4. Conclusions

The thermo-oxidative aging of the two promising e-fuels solketal and 
oxymethylene ether (OME1 – OME6) in pure form as well as in mixtures 
with different ratios (3:1, 1:1, and 1:3) (vol%) was investigated. Both 
reaction pathways of the thermo-oxidative aging process as well as the 
concentrations of the formed aging products as a function of the aging 
time were elucidated in detail. Furthermore, fuel-specific parameters 
such as the total acid number, the kinematic viscosity and the density of 
the aged and unaged fuels have been analyzed.

By mixing solketal and OME in a 3:1 ratio (vol%), the formation of 
solid paraformaldehyde, which is a major problem, could be successfully 
suppressed. Nevertheless, significant degradation of the initial fuels 
during the accelerated thermo-oxidative aging was found, with signifi
cant formation of problematic aging products. To overcome these 
problems, the use of solketal and OME as components in ternary blends 
is suggested, similar to the fuel Diesel R33 [31] consisting of conven
tional diesel fuel, FAME or HVO. Alternatively, ternary mixtures of OME 
and solketal with FAME or other renewable fuels could produce a viable 
option for a purely sustainable fuel blend. Future studies should focus on 
these blends, i.e., further investigations should be carried out regarding 
combustion properties and the influence of additives such as antioxi
dants and stabilizers to pave the way for future e-fuels that can be used 
on the market.

Fig. 11. a) Total acid number as a function of the aging time of solketal, oxymethylene ether (OME) and mixtures of solketal and OME. b) Kinematic viscosity as a 
function of the aging time of solketal, OME and mixtures of solketal and OME. c) Density as a function of the aging time of solketal, OME and mixtures of solketal and 
OME. 100-S: pure solketal, 100-O: pure OME1-6, mixtures of 3:1 (75-S-25-O), 1:1 (50-S-50-O) and 1:3 (25-S-75-O) solketal:OME (vol%).
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[21] Burger J, Siegert M, Ströfer E, Hasse H. Poly(oxymethylene) dimethyl ethers as 
components of tailored diesel fuel: Properties, synthesis and purification concepts. 
Fuel 2010;89(11):3315–9.
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6.2 Thermo-oxidative Alterung von linearen und verzweig-

ten Alkoholen als Stabilitätskriterium für deren Ver-

wendung als E-Fuels
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Eine weitere Möglichkeit zur Reduktion der CO2-Emissionen bietet der Einsatz von Al-

koholen als erneuerbare Kraftstoffe bzw. Kraftstoffkomponenten (vgl. Kapitel 4.1.2.4).

Diese zeigen vorteilhafte Eigenschaften bei der Verbrennung, wie eine reduzierte Ruß-

und NOx-Bildung. Ein wichtiger Aspekt ist jedoch ihre Alterungsstabilität, da während

der Lagerung chemische Veränderungen auftreten können, die Zusammensetzung, Ver-

brennungseigenschaften und Betriebssicherheit beeinflussen können. Aus diesem Grund

wurde in dieser Studie die thermo-oxidative Alterung von drei vielversprechenden Alkoho-

len detailliert untersucht. Dabei wurden die beiden n-Alkohole 1-Hexanol und 1-Octanol

sowie der iso-Alkohol 2-Hexanol sowohl mit Hilfe der offenen Alterungsapparatur (vgl.

Kapitel 5.1.2) als auch mit der geschlossenen Alterungsapparatur (vgl. Kapitel 5.1.3)

gealtert und die entstandenen Alterungsprodukte durch GCMS- , Säurezahl- und Vis-

kositätsmessungen (vgl. Kapitel 5.2.1-5.2.4) in Abhängigkeit der Alterungszeit analysiert.

Hierbei wurde sowohl die flüssige als auch die gasförmige Phase der Kraftstoffe be-

trachtet und die Kohlenstoff-Massenbilanz geschlossen (vgl. Kapitel 5.2.2). Das Ziel der

Untersuchung war es, die Stabilität der Alkohole in Abhängigkeit von Kettenlänge und

Position der Hydroxygruppe zu bewerten.

Es zeigte sich eine deutlich höhere Stabilität des iso-Alkohols im Vergleich zu den n-

Alkoholen gegenüber thermo-oxidativer Alterung. Die Reaktionspfade der thermo- oxida-

tiven Alterung von n- und iso-Alkoholen sind in Abb. 6.2.1 gezeigt. Bei der Alterung von n-

Alkoholen wurden eine Vielzahl an Alterungsprodukten wie Aldehyde, Carbonsäuren, kür-

zerkettige Alkohole und Ester durch Oxidation, Decarboxylierung, thermo-oxidative C-C-

Bindungsspaltung und Veresterung gebildet. Die n-Alkohole wurden zunächst zu Aldehy-

den und weiter zu Carbonsäuren oxidiert, aus denen wiederum durch thermo-oxidative C-

C-Bindungsspaltung und Decarboxylierung kürzerkettige n-Alkohole und Säuren gebildet

wurden. Die entstandenen Säuren konnten mit den vorhandenen n-Alkoholen verestert

werden. Die Anzahl der entstandenen Produkte stieg mit zunehmender Kettenlänge der

gealterten n-Alkohole an. Im Gegensatz dazu verlief die Alterung des iso-Alkohols deut-

lich moderater, was sich in einer reduzierten Menge an Alterungsprodukten widerspie-

gelte. Der iso-Alkohol wurde zu einem Keton oxidiert, aus dem durch thermo-oxidative

C-C-Bindungsspaltung ein kürzerkettiger n-Alkohol und eine kürzerkettige Carbonsäure

gebildet wurde, die wiederum mit dem vorhandenen iso-Alkohol verestert werden konnte.

Die Kohlenstoff-Massenbilanzierung der untersuchten Alkohole lieferte detaillierte Er-

kenntnisse über die Zusammensetzung der Alterungsprodukte. Nach der Alterung waren

noch etwa 63 % (m%) von 1-Hexanol und 57 % (m%) von 1-Octanol vorhanden, wäh-
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rend der Anteil von 2-Hexanol mit etwa 80 % (m%) signifikant höher lag. Zudem wurden

bei der Alterung des iso-Alkohols deutlich geringere Mengen (~0,03 % (m%)) an Säuren

gebildet als bei den n-Alkoholen (~7-8 % (m%)). Die Ergebnisse spiegelten sich auch

anhand des Anstiegs der Werte der beiden Kraftstoffparameter Säurezahl und kinemati-

sche Viskosität wieder.

Abbildung 6.2.1: Reaktionspfade der thermo-oxidativen Alterung von n-Alkoholen (links) und
iso-Alkoholen (rechts).
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Aus den zeitabhängigen Alterungsexperimenten und der Kohlenstoff-Massenbilanzierung

lies sich folgende Stabilität ableiten:

Stabilitätn−Alkohol < Stabilitätn−Alkohol(kürzerkettig) < Stabilitätiso−Alkohol

was im konkreten Fall bedeutet, dass 1-Octanol eine geringere Stabilität gegenüber

thermo-oxidativer Alterung zeigt als 1-Hexanol, während 2-Hexanol die höchste Stabi-

lität aufweist.

Diese Ergebnisse liefern wertvolle Erkenntnisse für die Auswahl geeigneter Alkohole im

Kontext nachhaltiger Kraftstoffanwendungen. Aufgrund ihrer erhöhten Stabilität gegen-

über thermo-oxidativer Alterung stellen iso-Alkohole eine vielversprechende Alternative

zu n-Alkoholen dar und sollten bevorzugt als regenerative Kraftstoffe oder in Kraftstoff-

mischungen eingesetzt werden.
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Thermo-oxidative aging of linear and branched
alcohols as stability criterion for their use as e-
fuels†

Anne Lichtinger,a Maximilian J. Poller, a Olaf Schröder,b Julian Türck,cd

Thomas Garbe,eg Jürgen Krahl,fg Markus Jakobb and Jakob Albert *a

The decarbonization of the energy supply is one of the biggest and most important challenges of the 21st

century. This paper contributes to the solution of the energy crisis by investigating the stability of alcohols as

e-fuels. The focus is on the investigation of the aging mechanism of the linear alcohols 1-hexanol and 1-

octanol compared to the iso-alcohol 2-hexanol. It is analysed in detail how the time-dependent aging

varies depending on the chain length and the position of the hydroxy-group, both in the liquid and in the

gas phase. It is shown that a variety of aging products such as aldehydes, acids, short-chain alcohols and

esters are formed during the aging of the n-alcohols by oxidation, decarboxylation, oxidative C–C bond

cleavage and esterification. In contrast, the decomposition of the iso-alcohol is significantly lower. The

results show that the total acid number is significantly higher for aged n-alcohols than for the aged iso-

alcohos, while the kinematic viscosity decreases for all alcohols during aging. Carbon mass balancing

shows that after accelerated aging for 120 hours, around 80% of the iso-alcohol is still present,

compared to only around 57–63% for the n-alcohols. In addition, significantly fewer acids are formed

with the iso-alcohol. In this study, iso-alcohols have a higher stability against thermo-oxidative aging

compared to n-alcohols, showing their potential as e-fuels. Furthermore, the chain length of the

alcohols has also an influence on aging, as more different aging products can be formed with increasing

chain length.

1. Introduction

Climate change is a challenge for the world. On July 14, 2021,

the EU adopted the “European Green Deal” to reduce green-

house gas emissions by 55% until 2030 compared to 1990 levels

and to achieve net zero greenhouse gas emissions by 2050.1

Global emissions from the transport sector now account for

around 25% of total greenhouse gas emissions in the EU (20%

in Germany). In order to achieve climate neutrality in the EU by

2050, a 90% reduction in transport-related greenhouse gas

emissions is required.1 The war between Russia and Ukraine

could have a serious impact on achieving the climate targets.2

To ensure a sustainable future, the energy sector's dependence

on fossil fuels must be rapidly reduced in favour of renewable

energy sources and intelligent energy solutions.2 In addition to

the use of electric vehicles, the use of renewable fuels such as

biofuels or e-fuels, is particularly suitable for the transportation

sector,3,4 as current political discussions show.

Alcohols, ethers and hydrocarbons are of great interest for

use as e-fuels.5,6 As early as 1930, Fröhlich and Cryder developed

a process to produce higher alcohols from synthesis gas using

a Zn:Mn:Cr catalyst.7,8 Since then, the process has been further

developed by several research groups.7 For example, Schemme

et al.9 have developed new hydrogen-based synthetic routes for

the synthesis of higher alcohols by adapting known and new

chemical processes. Alcohols can also be produced from

biomass, e.g., through the acetone–butanol–ethanol (ABE)

fermentation process.10 Sherbi et al.11 have investigated the

selective production of ring-opening products, particularly

secondary alcohols, from furans and hydrogen under mild

reaction conditions, thereby demonstrating a route to produce

alcohols from lignocellulosic biomass using a bifunctional

catalyst system consisting of platinum on a Keggin-type

polyoxometalate.12

The use of alcohols as e-fuels can also have a positive effect

on the combustion behaviour. Jakob13 investigated various fuels
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at an optically accessible single-cylinder diesel engine at

a dened part-load operation point with fuel individual EGR

rates for 100 ppm NOx raw emissions and fuel individual starts

of the single main injection for xed center of combustion. The

results show that oxygenated molecules provide the potential

for decreased in-cylinder soot formation in comparison to

EN590 diesel. The decreased in-cylinder soot formation

tendency with similar NOx raw emissions results in decreased

particle raw emissions with marginal drawbacks in CO and HC

raw emissions. Nour et al.14 carried out combustion tests in a DI

diesel engine with blends of 1-hexanol and diesel of 10–50%.

They found that a reduction in NOx and smoke can be achieved

without compromising performance by using 1-hexanol diesel

blends compared to the use of pure diesel. Garcia et al.15 carried

out performance and engine exhaust measurements on a single-

cylinder engine at four different engine operating conditions of

1-octanol, di-n-butyl ether and various blends. They found, that

all used fuels show a considerable reduction in soot emissions

with the same NOx values. In addition, the used alternative fuels

improve fuel conversion in terms of efficiency.

If a fuel is stored for a longer period of time, for example to

build up a supply as a kind of “chemical battery” during the

current war, fuel aging can occur. This is dened as the change

in chemical and physical properties over time.3 These changes

can result in colour change, change in fuel composition,

combustion properties and compatibility with other fuels.16,17 In

addition to microbiological aging, oxidation is the most

important chemical reaction that triggers fuel aging.3 Both

fossil diesel fuel and gasoline can age due to autoxidation.16–19 If

metals are present in the fuel, the oxidation rate can increase.18

During aging, the olens and diolens in the fuel are oxidized

rst, which increases the oxygen content in the fuel.16,18 In the

case of gasoline, the volatile components can evaporate during

aging.16,17 Both gasoline and diesel show a decrease in

aromatics in the fuel and resin-like precipitate formation,

therefore “gum formation” can occur.16–19 The formed precipi-

tate consists of highly aromatic compounds with a molecular

weight of 200–500 Da, as well as cyclic and branched olens.

Esters, carboxylic acids and ethers can also be contained in the

gum.16,18 The gum can lead to deposits on the fuel lter and

blockage of engine parts.19 It can also affect the combustion of

the fuel, which can lead to a change in engine performance and

increased CO and NOx emissions.16,17 If the fossil fuel is mixed

with alcohol, aging shows that the alcohol does not act as

a catalyst or inhibitor for autoxidation. In addition, the depo-

sition of precipitates is reduced because the alcohols which are

more polar than diesel or gasoline keep the polar precipitates in

solution.17 Aging also occurs in biodiesel due to

autoxidation.20–23 Aldehydes, ketones and carboxylic acids can

be formed.24 However, oligomers can also be formed,25,26 which

can lead to clogging of the fuel lter.27 The aging of conven-

tional fuels is well studied, while research into the aging of e-

fuels is still in its infancy. However, studies on the aging of e-

fuels are an important prerequisite for the approval and use

of e-fuels.

The detailed investigation of the aging mechanism of alco-

hols as e-fuels has only been little studied in literature. Several

research groups have investigated the oxidation of primary

alcohols with the aid of catalysts for synthesis purposes (to

increase yield and product selectivity).28–36 For example, Ishida

et al.,30 Kotolevich et al.,32 Jenzer et al.34 and Iwahama et al.35

oxidized 1-octanol using various catalysts and found several

aging products (aldehydes, acids, esters). Hussein et al.31 also

found an ether and a peroxy-acetal as aging products. Guillard

et al.36 oxidized 1-octanol with ultrasound and photocatalysis

and detected several aldehydes, alkanes and alkenes as aging

products. Gallot et al.29 investigated the oxidation of 2-hexanol

to a ketone using a catalyst whereby Mosher and Preiss33

studied the acid-catalysed oxidation of various alcohols, e.g., 2-

pentanol and 2-methyl-1-propanol. They found aldehydes,

acetals, hemiacetals and esters as decomposition products.33

In this paper, the time-dependent, thermo-oxidative aging of

various alcohols with different chain length and position of the

hydroxy-group is investigated, both in the liquid and in the gas

phase. The carbon mass balance of the aged products and the

investigation of important fuel-specic parameters (total acid

number, kinematic viscosity) allow for a detailed elucidation of

the aging mechanism.

2. Materials and methods
2.1. Fuels and chemicals

1-hexanol with a purity > 98%, 1-octanol with a purity > 99%,

tetrahydrofuran, and the 30% aqueous hydrogen peroxide

solution were purchased from Carl Roth. 2-Hexanol with

a purity >98%was purchased from Alfa Aesar. The chemicals for

calibration for concentration determination were purchased

from Alfa Aesar and Sigma Aldrich. All chemicals were used as

received without further purication.

2.2. Experimental setup and work procedure of fuel aging

2.2.1. Open aging setup for accelerated aging (setup 1). For

accelerated thermo-oxidative aging the aging setup which is

described in a previous article3 was used. It consists of a 250 mL

three-neck round bottom ask, which was lled with 250 mL (at

the start of aging) of the fuel to be aged (Fig. 1, I). The ask was

then placed in the oil bath (Fig. 1, II), which was heated using

Fig. 1 Open aging setup for accelerated laboratory aging (setup 1).
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a heating plate to maintain a temperature of T = 110 °C. In
order to minimize the release of volatile aging products,
a Dimroth reux condenser (Fig. 1, III) was positioned above the
ask and maintained at a constant temperature of T = 2 °C
using a recirculating chiller (F series from Julabo). Condensa-
tion was observed only in the lower section of the reux
condenser during the aging process. To oxidize the fuel, dry
compressed air, which was additionally dehumidied using
a molecular sieve (4 Å) (Fig. 1, V), was introduced into the fuel at
a constant ow rate of 10 L h−1 via a gas introduction tube
connected to the three-neck ask (Fig. 1, IV). The air ow rate
was regulated using an Agilent Flow Tracker 1000 owmeter.
This aging setup operated as an open aging system. The air
introduced into the fuel was directed through the reux
condenser and a wash bottle containing deionized water (Fig. 1,
VI). To initiate the fuel aging process, the reux condenser and
oil bath were preheated to the desired temperature, and the air
ow rate was adjusted accordingly. The gas introduction tube
and the reux condenser were then connected to the three-neck
ask lled with 250 mL of fuel, and the ask was immersed in
the temperature-controlled oil bath. This marked the start of
the experiment (t = 0 h). To monitor the aging products over
time, a 25mL fuel sample was withdrawn from the ask every 24
hours. The stopper on the ask was briey opened, and a glass
pipette was used to extract 25 mL of the aged fuel. This
sampling procedure was repeated until a total aging time of 192
hours was reached. Aerwards, the air ow and heating plate
for the oil bath were turned off. The remaining fuel, along with
any condensate present in the reux condenser, was collected
aer a cooling phase. Both the unaged fuel (0 h) and the aged
fuel samples (24–192 h) were subjected to subsequent analysis.

2.2.2. Closed aging setup for accelerated aging (setup 2). In
order to perform carbon mass balancing of the aged fuels, both
the liquid phase and the gas phase of the aged fuels must be
examined. For this purpose, a closed aging setup was devel-
oped. 50 mL of the fuel to be aged is contained in a 100 mL two-
neck ask (cf. Fig. 2, I). The two-neck ask was placed in an oil

bath (cf. Fig. 2, II), which was tempered to T = 120 °C using
a magnetic stirring and heating plate. On top of the two-neck
ask a Dimroth reux condenser (cf. Fig. 2, III) was placed,
which was cooled to T = 2 °C with the aid of a recirculating
condenser to prevent evaporation of readily volatile aging
products. The gas phase of the aged fuel that nevertheless arose
was collected by a gas bag (cf. Fig. 2, IV) attached to the upper
end of the reux condenser by means of a hose. The other
opening of the two-necked ask was closed with a septum (cf.
Fig. 2, V) to ensure the system was completely sealed. This was
checked prior to the start of aging using a soap solution and gas
owed in. As oxidant, 20 mL of a 30% aqueous hydrogen
peroxide solution was used for this aging. To ensure mixing of
the fuel with the oxidant, a magnetic stirrer was located in the
two-neck ask by which the fuel was continuously stirred. Prior
to aging, the complete system was purged with an inert gas
(nitrogen) to ensure that any gaseous products detected in the
gas bag were the result of aging only. At the beginning of aging (t
= 0 h), the rst 8 mL of the hydrogen peroxide solution was
introduced into the fuel through the septum (cf. Fig. 2, V) using
a syringe. Aer 24 h of aging, another 8 mL of the hydrogen
peroxide solution was added to the fuel through the septum,
and aer another 24 h (48 h of aging), the remaining 4 mL of the
hydrogen peroxide solution was added. Aer 120 h of aging (end
of aging), the liquid phase of the aged fuel (in the two-neck
ask) and the gaseous phase of the aged fuel (in the gas bag)
were analysed aer cooling to ambient temperature.

2.3. Analytical methods

2.3.1. Gas chromatography with coupled mass spectrom-

etry (GC-MS). For the GC-MS measurements, an Agilent
GC7890A gas chromatograph coupled with an Agilent 5973
quadrupole mass spectrometer was employed. The GC-MS
system utilized a Phenomenex Zebron ZB-5 HT column with
a length of 30 m, an inner diameter of 0.25 mm, and a lm
thickness of 0.25 mm. Helium served as the carrier gas at a ow
rate of 49.8 mL min−1. In the temperature program, the furnace
was rst held at 40 °C for 15 min and then brought to 100 °C at
3 °C min−1. Aer holding for 15 min, the oven was brought to
180 °C at 5 °C min−1 and then to 250 °C at 10 °C. 2 mL were
injected and the split ratio was 60 : 1. For analysis, 10 mL of the
sample was mixed with 5 mL of tetrahydrofuran as an internal
standard and 1 mL of acetonitrile and used as a sample for GC-
MS analysis. For product identication, the spectra were
compared to the NIST08 database. To determine the concen-
tration of the aging products, a calibration series was performed
with each of the pure substances together with the internal
standard tetrahydrofuran. For the aging products that could not
be obtained in pure form, instead of determining the concen-
tration, the peaks of the products were integrated and the areas
of the products were divided by the peak areas of the internal
standard (peak areaanalyte/peak areainternalstandard).

2.3.2. Gas chromatography with a thermal conductivity

detector (GC-TCD). Quantication of the gaseous phase was
accomplished utilizing a Varian GC 450-TCD with a Shin
Carbon ST column (2 m × 0.75 mm). The gaseous sample wasFig. 2 Closed aging setup for accelerated laboratory aging (setup 2).
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collected in a gas bag and injected using argon as mobile phase

at a pressure of 4.82 bar. The following temperature program

was used: 40 °C (1.5 min), 18 °C min−1 to 250 °C, 250 °C (12

min).

2.3.3. Total acid number (TAN). The determination of the

total acid number for both the unaged and aged fuels followed

the potentiometric titration method according to DIN EN

12634. To conduct thesemeasurements, an 888 Titrando and an

801 stirrer, both from Metrohm, were employed. A glass elec-

trode suitable for non-aqueous media was used for the titration

process. The measuring solution consisted of a potassium

hydroxide solution (0.1 mol L−1) dissolved in 2-propanol. The

solvent utilized in the analysis was composed of 50% toluene,

49.5% 2-propanol, and 0.5% deionized water, with a volume of

60 mL per sample. The sample weight varied depending on the

expected total acid number, ranging from 0.505 g to 10.007 g.

The total acid number represents the quantity of base,

expressed in milligrams of potassium hydroxide per gram fuel

(mg KOH per g), necessary to neutralize the acids present in the

sample.

2.3.4. Kinematic viscosity. The kinematic viscosity of the

unaged and aged fuels was assessed using a Stabinger visco-

simeter from Anton Paar. To conduct the measurements,

a syringe was utilized to inject 3 mL of the sample into the

instrument. The viscosity measurements were carried out at

a temperature of 40 °C. Data processing of the measurements

was performed using Anton Paar's Rheoplus soware.

2.3.5. Carbon mass balancing. In order to close the carbon

mass balance of the aged products, the alcohols were aged in

the closed aging system (setup 2, cf. Section 2.2.2). The volume

of the gas phase was determined by the buoyancy method

(Archimedes' principle) and the mass of the products in the gas

phase could be calculated via the concentration of the detected

products in the gas phase. When the alcohols were aged with

a hydrogen peroxide solution, an organic and an aqueous liquid

phase were formed. The two phases were separated with the aid

of a separating funnel and the volume of the organic and

aqueous phases was determined with a graduated cylinder. By

determining the concentration of the products in the organic

and in the aqueous phase, the total mass of the products in the

liquid phase could be determined to get the carbon mass

balance.

3. Results and discussion

3.1. Qualitative analysis of thermo-oxidative aging

In order to determine which kind of products are formed during

aging, the alcohols 1-hexanol, 1-octanol, and 2-hexanol were

aged for up to 192 h using the open aging setup (setup 1, cf.

Section 2.2.1). The aging products detected by GC-MS (cf.

Section 2.3.1) and the corresponding aging times at which they

were detected are listed in Table 1.

3.1.1. Qualitative analysis of the aging of 1-hexanol and 1-

octanol. To explain the decomposition of 1-hexanol by thermo-

oxidative aging, the reaction pathways shown in Fig. 3 were

revealed. All products detected by GC-MS are highlighted.

However, some intermediates are either volatile or quickly react

further, so that not all postulated aging products (cf. Fig. 3)

could be found by GC-MS. However, in order to explain the

formation of the products found in the GC-MS in a meaningful

way, the following aging pathways (Fig. 3–5) are suggested.

Aer 24 hours, 1-hexanal was detected as a rst aging

product resulting from the oxidation of 1-hexanol. The oxida-

tion may take place via the reaction mechanism proposed by

Li.37 Alternatively, the aldehyde could also be formed via

autoxidation of the n-alcohol.38,39 Aer 48 h aging time, hex-

anoic acid could also be detected. Hexanal could be further

oxidized to hexanoic acid by autoxidation39,40 of the aldehyde to

a percarboxylic acid and subsequent conversion of the percar-

boxylic acid to a carboxylic acid.41,42 Also, the two esters hexyl

hexanoate and hexyl formate as well as the n-alcohol 1-pentanol

have been detected aer 48 h. The resulting hexanoic acid can

Table 1 Aging products (GC-MS) of the aging of 1-hexanol, 1-octanol, and 2-hexanol

1-Hexanol (aging products) 1-Octanol (aging products) 2-Hexanol (aging products)

1-Hexanol (0–192 h) 1-Octanol (0–192 h) 2-Hexanol (0–192 h)
Hexanal (24–192 h) 1-Heptanol (24–192 h) 2-Hexanone (48–192 h)

1-Pentanol (48–192 h) Octanal (24–192 h) 1-Butanol (96–192 h)

Hexanoic acid (48–192 h) Octanoic acid (24–192 h) Acetic acid (96–192 h)
Hexyl formate (48–192 h) Octyl formate (24–192 h) 2-Hexyl acetate (96–192 h)

Hexyl hexanoate (48–192 h) Octyl octanoate (24–192 h) 2-Hexyl formate (120–192 h)

1-Butanol (72–192 h) Heptanal (48–192 h) Butanoic acid (168–192 h)

Pentanal (72–192 h) 1-Hexanol (72–192 h)
Pentanoic acid (72–192 h) Heptanoic acid (72–192 h)

Hexyl acetate (72–192 h) Octyl acetate (72–192 h)

Hexyl pentanoate (72–192 h) Octyl heptanoate (72–192 h)

Butanoic acid (96–192 h) 1-Pentanol (96–192 h)
Hexyl butanoate (96–192 h) Hexanoic acid (96–192 h)

Hexyl propanoate (120–192 h) Octyl propanoate (96–192 h)

Octyl hexanoate (96–192 h)

1-Butanol (120–192 h)
Pentanoic acid (120–192 h)

Octyl butanoate (120–192 h)

Octyl pentanoate (120–192 h)
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be esteried with the existing alcohol 1-hexanol to form the

ester hexyl hexanoate. A possibility for the formation of 1-pen-

tanol is an oxidative decarboxylation of hexanoic acid with CO2

as by-product. Another explanation for the formation of 1-pen-

tanol could be an oxidative C–C bond cleavage of hexanoic acid

into shorter-chain alcohols and carboxylic acids. Depending on

the position of the C-atom at which the bond cleavage occurs,

several carboxylic acids and n-alcohols can be formed. Table 2

gives an overview of the carboxylic acids and n-alcohols formed

in this way. The starting products for the oxidative C–C bond

cleavage are hexanoic acid and octanoic acid. The second

product that can be formed in addition to 1-pentanol by

oxidative C–C bond cleavage of hexanoic acid is formic acid (cf.

Table 2). The latter can be esteried with 1-hexanol to form

hexyl formate. Aer 72 h aging time pentanal, pentanoic acid, 1-

butanol, hexyl acetate and hexyl pentanoate have been detected.

1-Pentanol could be oxidized to pentanal and further oxidized

to pentanoic acid.38–41 The latter can then be esteried with 1-

hexanol to hexyl pentanoate. An explanation for the formation

Fig. 3 Reaction pathway of the thermo-oxidative aging of 1-hexanol.

Directly observed compounds are highlighted.

Fig. 4 Reaction pathways of the thermo-oxidative aging of 1-octanol.

Directly observed compounds are highlighted.

Fig. 5 Reaction pathways of the thermo-oxidative aging of 2-hexanol.

Directly observed compounds are highlighted.

Table 2 Aging products of the oxidative C–C bond cleavage

depending on the position of the C-atom

Intermediate Position Products

2

3

4

2

3

4

5

3
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of 1-butanol and hexyl acetate could be the oxidative C–C bond

cleavage of hexanoic acid (cf. Table 2) to acetic acid and 1-

butanol and the esterication of 1-hexanol and acetic acid to

hexyl acetate. The analysis of the aging products aer 96 h aging

time showed the formation of butanoic acid and hexyl buta-

noate. The resulting 1-butanol could be oxidized to butanal and

further oxidized to butanoic acid. The latter can then be ester-

ied with 1-hexanol to hexyl butanoate. Aer 120 h aging time,

hexyl propanoate has been detected. An explanation could be

the oxidative C–C bond cleavage of hexanoic acid to 1-propanol

and propanoic acid (cf. Table 2) and the esterication of 1-

hexanol and propanoic acid to hexyl propanoate. The GC-MS

analysis showed, that all detected aging products that have

been formed until 120 h, could also be detected aer 144 h,

168 h, and 192 h aging time, respectively (cf. Table 1).

The thermo-oxidative aging of the n-alcohol 1-octanol

produces more products than the aging of 1-hexanol. Fig. 4

shows the proposed reaction pathway. All products detected by

GC-MS are highlighted. Aer 24 h aging time octanal, octanoic

acid, 1-heptanol, octyl formate, and octyl octanoate have been

detected. 1-Octanol could be rst oxidized to octanal and

further to octanoic acid.38–40 The latter can be esteried with 1-

octanol to form octyl octanoate. The octanoic acid could also be

cleaved into 1-heptanol and formic acid by oxidative C–C bond

cleavage (cf. Table 2) and the esterication of 1-octanol and

formic acid forms octyl formate. Aer 48 h aging time 1-hep-

tanal has been detected resulting from 1-heptanol

oxidation.37–39 Aer 72 h the GC-MS analysis showed the

formation of heptanoic acid, 1-hexanol as well as octyl acetate

and octyl heptanoate. The formation of heptanoic acid can be

explained by the oxidation of heptanal39,40 and the esterication

of heptanoic acid and 1-octanol forms octyl heptanoate. The

oxidative C–C bond cleavage of octanoic acid to 1-hexanol and

acetic acid (cf. Table 2) and the subsequent esterication of

acetic acid and 1-octanol to octyl acetate is a possible explana-

tion for the formation of the other detected aging products aer

72 h. Aer 96 h thermo-oxidative aging, hexanoic acid, 1-pen-

tanol, octyl propanoate, and octyl hexanoate have also been

detected. The formed 1-hexanol could be oxidized to hexanal

and further oxidized to hexanoic acid and 1-octanol, whereas

hexanoic acid can be esteried to octyl hexanoate. An explana-

tion for the formation of 1-pentanol and octyl propanoate could

be the oxidative C–C bond cleavage of octanoic acid to 1-pen-

tanol and propanoic acid (cf. Table 2) and further esterication

of 1-octanol and propanoic acid to octyl propanoate. Aer 120 h

aging time, GC-MS analysis showed pentanoic acid, 1-butanol,

octyl butanoate, and octyl pentanoate formation. The formed 1-

pentanol could be oxidized to pentanal and further to pentanoic

acid. 1-octanol and pentanoic acid can be esteried to octyl

pentanoate. The oxidative C–C bond cleavage of octanoic acid

could lead to 1-butanol and butanoic acid (cf. Table 2) and the

esterication of 1-octanol and butanoic acid forms octyl buta-

noate. All detected aging products that have been formed until

120 h, could also be detected aer 144 h, 168 h, and 192 h aging

time (cf. Table 1).

3.1.2. Qualitative analysis of the aging of 2-hexanol. The

aging of the iso-alcohol 2-hexanol produces fewer aging

products than the corresponding n-alcohol 1-hexanol (cf. Table

1). Fig. 5 shows the proposed reaction mechanism for the aging

of 2-hexanol. The products detected by GC-MS are highlighted.

Aer 48 h aging time 2-hexanone was detected as an aging

product. An explanation for its formation is the oxidation of 2-

hexanol to 2-hexanone. The reaction mechanism proposed by

Li37 could possibly come into play here. Alternatively, the ketone

could also be formed from the iso-alcohol by autoxidation.38,39

Aer 96 h aging time, 1-butanol, acetic acid, and the ester 2-

hexyl acetate were also detected as aging products. These are

formed due to an oxidative C–C bond cleavage of 2-hexanone to

1-butanol and acetic acid (cf. Table 2). Acetic acid can then be

esteried with 2-hexanol to 2-hexyl acetate. Aer 120 h aging

time, 2-hexyl formate was detected as an additional aging

product. An explanation for this could be an oxidative decar-

boxylation of acetic acid to methanol with CO2 as by-product,

and an oxidation of methanol to formaldehyde and further

oxidation to formic acid.38–40,42 An esterication of 2-hexanol

and formic acid can form 2-hexyl formate. Aer 168 h aging

time butanoic acid was detected as aging product. The formed

1-butanol can be oxidized to butanal and further oxidized to

butanoic acid.38–40,42 All detected aging products that have been

formed until 168 h could also be detected aer 192 h aging time

(cf. Table 1).

3.2. Quantitative analysis of thermo-oxidative aging

As the composition of fuels can change during aging, it is impor-

tant to further quantify the aging products. In order to quantita-

tively analyse the aging products formed during aging, the

concentration of the products is considered as a function of the

aging time. For this purpose, the samples from the above-described

experiment were investigated quantitatively using GC-MS.

3.2.1. Quantitative analysis of the aging of 1-hexanol.

Fig. 6a and b show the concentration of various aging products

of 1-hexanol as a function of aging time and Fig. 6c shows the

peak area normalized by the internal standard as a function of

aging time. Aer 24 h aging time, hexanal is formed with

a concentration of c = 0.064 mg mL−1. At the same time, the

concentration of 1-hexanol decreases by ∼8% from c = 8.14 mg

mL−1 to c = 7.48 mg mL−1. From an aging time of 48 h, hex-

anoic acid is formed with a concentration of c= 0.156 mgmL−1.

Furthermore, the two esters hexyl hexanoate with a concentra-

tion of c= 0.0038 mgmL−1 and hexyl formate with c= 0.028 mg

mL−1, as well as 1-pentanol with a concentration of c =

0.054 mg mL−1 are formed. Compared to the concentration at

24 h, the concentration of 1-hexanol decreases by a further 8%

to a value of c = 6.85 mg mL−1, while the concentration of

hexanal continues to increase to a value of c = 0.068 mg mL−1.

From 72 h aging time, pentanal and pentanoic acid as well as 1-

butanol and the two esters hexyl acetate (c = 0.0061 mg mL−1)

and hexyl pentanoate are formed (cf. Fig. 6b and c). From 96 h

the ester hexyl butanoate (c = 0.014 mg mL−1) is formed and

from∼120 h the ester hexyl propanoate (c= 0.0034 mgmL−1) is

formed (cf. Fig. 6b).

Considering the progression of the concentration or the

normalized peak area of the aging products over time (cf.

3334 | Sustainable Energy Fuels, 2024, 8, 3329–3340 This journal is © The Royal Society of Chemistry 2024
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Fig. 6a–c), it can be observed that the concentration of 1-hex-

anol steadily decreases to ∼65% of the initial concentration

aer 192 h aging time. This is due to the formation of various

aldehydes, acids, and esters. The concentration of hexanal

initially increases from 24 h to 96 h, reaches a maximum value

of c = 0.091 mg mL−1 at 96 h, and then decreases again to c =

0.051 mg mL−1 at 192 h. This is possibly due to the fact that

hexanal is continuously formed by oxidation of 1-hexanol, but is

then further oxidized to hexanoic acid. The formed hexanoic

acid increases from 48 h to c= 0.840 mgmL−1 at 168 h and then

decreases to c = 0.815 mg mL−1 at 192 h. The renewed decrease

can be possibly explained by the fact that although hexanal is

continuously oxidized to hexanoic acid, the hexanoic acid is

further esteried to hexyl hexanoate and can also be cleaved to

shorter-chain acids and n-alcohols by oxidative C–C bond

cleavage. The pentanoic acid formed from 72 h increases

steadily up to 192 h to c = 0.168 mg mL−1. An explanation for

the steady increase could be that pentanoic acid can be formed

from hexanoic acid both by oxidative C–C bond cleavage and by

oxidative decarboxylation and subsequent oxidation. 1-Penta-

nol increases slightly from 48 h to 192 h up to a value of c =

0.073 mg mL−1. The ester hexyl hexanoate increases steadily

from 48 h up to a value of c = 4.17 mg mL−1 at 192 h. The other

formed esters (hexyl formate, hexyl acetate, hexyl propanoate

and hexyl butanoate) increase steadily at the beginning, but

then reach a plateau aer a certain time. This can be possibly

explained by the fact that hexyl hexanoate can be esteried

directly from 1-hexanol and hexanoic acid, whereas for the

other esters the corresponding acids must rst be formed from

hexanoic acid. The direct esterication of hexyl hexanoate is

much more likely. This is also shown by the maximum

concentration at 192 h of the formed esters:

chexylhexanoate = 4.17 mg mL−1
[ chexylformate = 0.232 mg mL−1 >

chexylacetate = 0.110 mg mL−1 > chexylbutanoate = 0.0475 mg mL−1 >

chexylpropanoate = 0.0174 mg mL−1.

Considering the progression of the normalized peak area of

hexyl pentanoate over time, it can be seen that hexyl pentanoate

increases steadily up to 192 h and does not show a plateau. This

can be possibly explained by the fact that 1-pentanol, which can

be further oxidized to pentanoic acid, can be formed both by

oxidative decarboxylation and by oxidative C–C bond cleavage

(cf. Fig. 3 and 6a–c).

3.2.2. Quantitative analysis of the aging of 1-octanol.

Fig. 7a–c show the concentration proles resp. The peak area

normalized by the internal standard as a function of the aging

time of the decomposition products of the thermo-oxidative

aging of 1-octanol. From 24 h aging time, the initial concen-

tration of 1-octanol decreases by 7% from c= 8.03 mg mL−1 to c

= 7.47 mg mL−1. At the same time, both the aldehyde octanal (c

= 0.153 mg mL−1) and octanoic acid (c = 0.010 mg mL−1) are

formed (cf. Fig. 7a and b). Due to the presence of octanoic acid,

the two esters octyl octanoate (c = 0.00123 mg mL−1) and octyl

formate (c = 0.0183 mg mL−1) as well as 1-heptanol (c =

0.00324 mg mL−1) are formed from 24 h onwards. Heptanal is

formed from 48 h (cf. Fig. 7c). From 72 h, heptanoic acid (c =

0.00769 mg mL−1) and octyl heptanoate are formed. Further-

more, 1-hexanol (c = 0.00127 mg mL−1) and the ester octyl

acetate (c = 0.00599 mg mL−1) are formed. From an aging time

of 96 h, hexanoic acid, 1-pentanol (c = 0.00599 mg mL−1) and

the two esters octyl propanoate and octyl hexanoate are formed

(cf. Fig. 7b and c). From 120 h, the two esters octyl butanoate (c

= 0.00446 mgmL−1) and octyl pentanoate are formed (cf. Fig. 7b

and c). Aer 192 h of aging, the initial concentration of 1-

octanol (cf. Fig. 7a) decreases by ∼73%, in contrast to the aging

of 1-hexanol (cf. Fig. 6 a), where the initial concentration only

decreases by ∼65% aer 192 h. The decrease is possibly due to

the fact that 1-octanol reacts by oxidation and esterication to

form various aldehydes, acids, and esters. The concentration of

octanal shows amaximum at 24 h (c= 0.153 mgmL−1) and then

decreases steadily until it reaches a value of c= 0.0298 mgmL−1

at 192 h (cf. Fig. 7b). This shows a difference to the thermo-

oxidative aging of 1-hexanol. 1-Hexanal shows its maximum

concentration not at 24 h, but at 96 h (cf. Fig. 6b). Octanoic acid

increases continuously from 24 h to 192 h, up to a value of c =

0.939 mg mL−1 (cf. Fig. 7a). This represents a further difference

to the aging of 1-hexanol, because the formed hexanoic acid at

the aging of 1-hexanol shows a maximum concentration at

168 h, aer which its concentration decreases again (cf. Fig. 6a).

The two resulting n-alcohols 1-heptanol and 1-hexanol show

amaximum at 144 h, while heptanoic acid shows a maximum at

168 h (cf. Fig. 7b). The ester octyl formate increases continu-

ously up to a value of c = 0.410 mg mL−1 at 192 h and then

shows a plateau (cf. Fig. 7b). The other formed esters increase

continuously up to 192 h (cf. Fig. 7b and c), while the esters

formed during 1-hexanol aging (with the exception of hexyl

hexanoate) all show a plateau (cf. Fig. 7a–c). The concentration

of octyl octanoate aer 192 h is signicantly higher than the

concentration of the other esters, coctyloctanoate = 2.89 mg mL−1

[ coctylformate = 0.410 mg mL−1 > chexylacetate = 0.0756 mg mL−1

> chexylbutanoate = 0.0571 mg mL−1. This is possibly due to the

fact that octyl octanoate can be esteried directly from the

Fig. 6 (a and b) Concentration as a function of the aging time of

various decomposition products of the thermo-oxidative aging of 1-

hexanol. (c) Normalized peak area as a function of the aging time of

various products of the thermo-oxidative aging of 1-hexanol.
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resulting octanoic acid, whereas formic, acetic or butyric acid

must rst be formed from octanoic acid by oxidative C–C bond

cleavage, which is less likely. The results show that 1-octanol is

less stable against thermo-oxidative aging than 1-hexanol. This

can be seen, among other things, from the fact that more aging

products are formed during the aging of 1-octanol (cf. Fig. 4 and

Table 1). The chain length of the n-alcohols therefore appears to

have an inuence on aging.

3.2.3. Quantitative analysis of the aging of 2-hexanol. The

thermo-oxidative aging of the C6-iso-alcohol 2-hexanol produces

fewer aging products than the C6-n-alcohol 1-hexanol or the C8-

n-alcohol 1-octanol. Fig. 8a and b show the concentration resp.

the peak area normalized by the internal standard as a function

of the aging time of the decomposition products of 2-hexanol.

From an aging time of 48 h, the ketone 2-hexanone is formed

with a concentration of c = 0.515 mg mL−1. The concentration

of 2-hexanone increases at 72 h to c= 1.11 mgmL−1 (cf. Fig. 8a),

while the initial concentration of 2-hexanol decreases by ∼21%

to c= 6.88 mgmL−1. From an aging time of∼96 h, acetic acid is

formed with a concentration of c = 0.00150 mg mL−1 as well as

1-butanol and 2-hexyl acetate (cf. Fig. 8a and b). From 120 h the

ester 2-hexyl formate is formed, and from 168 h butyric acid is

formed (cf. Fig. 8b). Up to an aging time of 192 h, the initial

concentration of 2-hexanol decreases by ∼42% to a value of c =

5.06 mg mL−1. The concentration of 2-hexanone increases

continuously from 48 h to 192 h up to a value of c = 3.50 mg

mL−1. The resulting acetic acid also increases from 96 h to 192 h

up to a value of c = 0.101 mg m−1 (cf. Fig. 8a). The two esters 2-

hexyl formate and 2-hexyl acetate also increase from 96 h and

from 120 h to 192 h, respectively (cf. Fig. 8b).

The results show that the iso-alcohol 2-hexanol is more

stable against thermo-oxidative aging than the n-alcohols 1-

hexanol or 1-octanol. Aer 192 h of aging, the initial concen-

tration of 2-hexanol only decreases by 42%, whereas that of 1-

hexanol decreased by 65% and that of 1-octanol by almost 73%.

This is partly due to the fact that fewer aging products (cf. Table

1) can be formed during the aging of 2-hexanol than during the

aging of 1-hexanol and 1-octanol. This could be explained that

the resulting ketone 2-hexanone cannot be further oxidized, but

can only react by oxidative C–C bond cleavage into further

products.

The results show that the iso-alcohol 2-hexanol is more

stable than the two n-alcohols. Furthermore, the shorter-chain

n-alcohol 1-hexanol is more stable than the longer-chain 1-

octanol. This is shown, among other things, by the fact that the

initial concentration of 1-octanol decreases by ∼73% and the

initial concentration of 1-hexanol decreases by ∼65% aer

192 h aging time. This can also be explained by the fact that

signicantly more different products were formed during the

aging of 1-octanol than during the aging of 1-hexanol. The

initial concentration of 2-hexanol decreases by ∼21% aer

192 h of ageing time and signicantly fewer different products

were formed than during the aging of 1-hexanol and 1-octanol.

3.2.4. Fuel specic parameters of the aged alcohols. If the

fuel-specic parameters such as the total acid number and the

viscosity of the aged alcohols are considered, it can be seen that

the total acid number (cf. Fig. 9a) for the n-alcohols 1-hexanol

and 1-octanol rises strongly during aging, up to a maximum

value of TAN1-hexanol = 67.61 mg KOH per g and TAN1-octanol =

56.52 mg KOH per g, respectively. This is due to the above-

described formation of carboxylic acids during aging. The

total acid number of 2-hexanol increases only slightly during

aging to a maximum value of TAN2-hexanol = 2.41 mg KOH per g,

as signicantly fewer carboxylic acids are formed during aging.

The viscosity decreases during aging for all three alcohols (cf.

Fig. 9b). It decreases by ∼34% for 1-hexanol, by ∼28% for 1-

octanol and by∼53% for 2-hexanol. This is due to the formation

Fig. 8 (a) Concentration as a function of the aging time of various

products of the thermo-oxidative aging of 2-hexanol. (b) Normalized

peak area as a function of the aging time of various products of the

thermo-oxidative aging of 2-hexanol.

Fig. 9 (a) Total acid number as a function of the aging time of 1-

hexanol (black spheres), 2-hexanol (green squares), and 1-octanol (red

stars). (b) Kinematic viscosity as a function of the aging time of 1-

hexanol (black spheres), 2-hexanol (green squares), and 1-octanol (red

stars).

Fig. 7 (a and b) Concentration as a function of the aging time of

various products of the thermo-oxidative aging of 1-octanol. (c)

Normalized peak area as a function of the aging time of various

products of the thermo-oxidative aging of 1-octanol.
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of aldehydes or ketones, acids, and esters, whose viscosity is

lower due to the lower hydrogen bonding.

3.2.5. Carbon mass fraction of the liquid and the gas phase

of thermo-oxidative aging. Since, among other things, the

determination of the total acid number can neither determine

exactly which acids are formed nor to what quantitative extent

these are formed (the value of the total acid number can be

falsied by the formation of esters), it is important to consider

the composition in form of the carbon balance (Fig. 11).

As the experiment using the open aging setup (setup 1) does

not allow determination of gaseous products and furthermore

loss of volatile products occurred, the composition of the aged

fuel has been further investigated in a closed system. While this

allows to close the mass balance, air could not be used as an

oxidant due to volume/pressure constraints. Therefore, the

closed aging setup (setup 2, cf. Section 2.2.2) was used with

a 30% aqueous hydrogen peroxide solution as oxidant. Aging

with both setups (setup 1 and setup 2) shows similar aging

effects and concentrations of the aging products. This can

exemplarily be seen for the aging of 1-hexanol, 1-octanol, and 2-

hexanol using setup 1 and setup 2 and the concentrations for

the main products (cf. Fig. 10a–d). The concentration of 1-hex-

anol and 2-hexanol are slightly higher when aged in setup 2

than aged in setup 1. This can be due to the fact that the vapor

pressure of the alcohols is signicantly higher at higher

temperatures. As a result, the alcohols can partially evaporate

during aging in setup 1 when taking samples. If less alcohol is

present, it can be less esteried and more acids remain in the

fuel.

In order to further investigate the stability of the alcohols

against thermo-oxidative aging and to determine the exact

percentage carbon mass fraction of the resulting products in

the liquid and gas phase, the alcohols were aged for 120 h using

setup 2 and the carbon mass balancing was carried out (see

Section 2.3.5). Fig. 11 a shows the carbon mass fraction for the

aging of the C6-n-alcohol 1-hexanol; the corresponding

percentage values are tabulated in the ESI in Table S1.† Aer

120 h of aging, 63.21 m% of the original 1-hexanol is still

present. Furthermore, 0.86 m% hexanal and 6.25 m% hexanoic

acid are present. In addition, 13.93 m% hexyl hexanoate was

formed. The sum of the other resulting formed esters is 1.74

m%. Moreover, 3.10 m% CO2 (due to oxidative decarboxyl-

ation), 0.917 m% 1-pentanol and 1.73 m% pentanoic acid are

formed during aging. The remaining 8.26 m% are unbalanced

products, e.g., hexyl pentanoate, pentanal, 1-butanol or other

products in the gas phase (cf. Tables 1 and S1 (ESI†)).

The aging of the C8-n-alcohol 1-octanol (cf. Fig. 11b and Table

S1 (ESI†)) shows, that 56.92 m% of 1-octanol is still present aer

120 h of aging. In addition, 0.556 m% octanal and 6.99 m%

octanoic acid are formed aer 120 h. Furthermore, 16.32 m%

octyl octanoate, in total 0.287m% n-alcohols and in total 1.03m%

shorter-chain acids are formed during an aging time of 120 h. In

addition, 3.83 m% additional esters are formed. Since 3.34 m%

CO2 is formed aer 120 h, decarboxylation is indicated. The

remaining 11.00 m% of unbalanced products are, for example,

octyl propanoate, octyl pentanoate, octyl hexanoate, octyl hepta-

noate, heptanal, 1-butanol, pentanal or other products in the gas

phase (cf. Tables 1 and S1 (ESI†)).

The carbon mass balance of the C6-iso-alcohol 2-hexanol is

shown in Fig. 11c and tabulated in Table S1 (ESI†). Aer 120 h of

aging, 80.33 m% of 2-hexanol is still present. Furthermore,

10.09 m% of 2-hexanone is formed aer 120 h of aging. Acetic

acid is also formed with 0.032 m%. The formation of 1.40 m%

carbon dioxide aer 120 h of aging indicates decarboxylation. A

Fig. 11 (a) Carbon mass fraction of the thermo-oxidative aging (120 h)

of 1-hexanol. Other products, which were not individually quantified,

include hexyl pentanoate, pentanal, 1-butanol or other products in the

gas phase. (b) Carbonmass fraction of the thermo-oxidative aging (120

h) of 1-octanol. Other products, whichwere not individually quantified,

include octyl propanoate, octyl pentanoate, octyl hexanoate, octyl

heptanoate, heptanal, 1-butanol, pentanal or other products in the gas

phase. (c) Carbon mass fraction of the thermo-oxidative aging (120 h)

of 2-hexanol. Other products, which were not individually quantified,

include 2-hexyl formate, 2-hexyl acetate, 1-butanol or other products

in the gas phase.

Fig. 10 (a) Concentration as a function of the aging time for 1-hexanol

and hexyl hexanoate, aged with setup 1 (filled symbols) and aged with

setup 2 (blank symbols). (b) Concentration as a function of the aging

time of 1-octanol and octyl octanoate, aged with setup 1 (filled

symbols) and aged with setup 2 (blank symbols). (c) Concentration as

a function of the aging time of hexanoic acid and octanoic acid, aged

with setup 1 (filled symbols) and aged with setup 2 (blank symbols). (d)

Concentration as a function of the aging time of 2-hexanol and 2-

hexanone, aged with setup 1 (filled symbols) and aged with setup 2

(blank symbols).
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further 8.15 m% of unbalanced products can be, for example, 2-

hexyl formate, 2-hexyl acetate, 1-butanol or other products in

the gas phase (cf. Tables 1 and S1 (ESI†)).

It follows from the results that iso-alcohols are more stable to

thermo-oxidative aging than n-alcohols. One explanation for this is

that an iso-alcohol can only be oxidized to a ketone and not further

be oxidized to a carboxylic acid due to the non-terminal position of

its hydroxy group. Another reason could be the inductive stabili-

zation of the middle C-atoms, which reduces their reactivity. The

terminal position of the hydroxy group of an n-alcohol enables

direct oxidation to an aldehyde and further to a carboxylic acid.

Since direct oxidation to acids is not possible with an iso-alcohol,

the formation of an acid initially involves an oxidative C–C bond

cleavage, which is signicantly less likely than direct oxidation due

to the high binding energy of the C–C bonds. Due to this fact,

fewer esters are formed when aging an iso-alcohol, as the resulting

acids are required for this. The results also show, that the chain

length has an inuence on thermo-oxidative aging. Due to oxida-

tive C–C bond cleavage, more different acids and n-alcohols can be

formed because the additional two carbon atoms mean there are

more sites for the C–C bond to break. Due to the larger number of

carboxylic acids and n-alcohols, a larger number of esters can also

be formed through esterication.

4. Conclusion and outlook

This investigation is an important contribution for the wide-

spread implementation of sustainable e-fuels. In this paper, the

aging pathways of three promising alcohols, the two n-alcohols 1-

hexanol and 1-octanol as well as the iso-alcohol 2-hexanol, were

examined in detail depending on the aging time. This makes it

possible to investigate the stability of alcohols depending on their

chain length and their hydroxy group position. The focus here is

on both the liquid phase of the fuel and the gas phase. The

studies show that iso-alcohols are more stable against thermo-

oxidative aging than n-alcohols. We observed, among other

things, that signicantly more aging products are formed when

aging n-alcohols than when aging iso-alcohols. A large number of

aldehydes, acids, shorter-chain n-alcohols and esters are formed

when aging n-alcohols due to oxidation, decarboxylation, oxida-

tive C–C bond cleavage and esterication. When aging iso-

alcohol, signicantly fewer decomposition products are formed

through oxidation, decarboxylation, oxidative C–C bond cleavage

and esterication. The investigation of important fuel-specic

parameters such as the total acid number (TAN) and the kine-

matic viscosity shows that the total acid number of n-alcohols

reaches values of up to TANn-alcohol∼ 67.6mg KOHper g, while for

iso-alcohol it only reaches values of up to TANiso-alcohol ∼ 2.4 mg

KOH per g. The kinematic viscosity values decrease during aging

for both the n-alcohols and the iso-alcohol.

The carbon mass balance of the alcohols provides informa-

tion about the exact composition of the aging products. For the

two n-alcohols, ∼63 m% for 1-hexanol and ∼57 m% of 1-octanol

are still present aer an aging time of 120 h, while for 2-hexanol

∼80 m% is still present. In addition, signicantly fewer acids are

formed with iso-alcohol (for iso-alcohol ∼0.03%, for n-alcohols

a total of∼8 m% or 7 m%). When examining the inuence of the

chain length of the n-alcohols on aging, it is shown that the

shorter-chain C6-alcohol is more stable (∼6 m% more still

present aer 120 h) than the longer-chain C8-alcohol. This is

probably due to the fact that the longer chain n-alcohol can form

a greater variety of products.

It follows from the results of the time-dependent aging of the

alcohols and the carbon mass balance for stability against

thermo-oxidative aging:

Stabilitylongchain-n-alcohol < Stabilityshorterchain-n-alcohol
< Stabilityiso-alcohol.

Since the stability of iso-alcohols is signicantly higher than

that of n-alcohols, consideration should be given using iso-

alcohols as renewable fuels or fuel admixtures rather than n-

alcohols. However, this only applies from the chemical stand-

point of aging. To make a selection, further investigations into

the combustion behaviour of n- or iso-alcohols as pure fuels or

fuel mixtures are necessary. It is also useful to add an antioxi-

dant to prevent or slow down aging and its effects.
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6.3 Nilrot als Fluoreszenzmarker und Antioxidans für re-

generative Kraftstoffe

Platzhalter
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In den vorherigen Studien (vgl. Kapitel 6.1 und 6.2) wurden die Alterungsprozesse re-

generativer Kraftstoffe detailliert analysiert. Der Einsatz geeigneter Antioxidantien kann

diese Prozesse verlangsamen und so die Funktionsfähigkeit der Kraftstoffe länger si-

chern [9]. Für den zukünftigen Einsatz erneuerbarer Kraftstoffe ist es außerdem von zen-

traler Bedeutung sicherzustellen, dass Verbrennungsmotoren tatsächlich ausschließlich

mit diesen betrieben werden. Eine geeignete Kraftstoffmarkierung kann hierzu einen ent-

scheidenden Beitrag leisten [186, 187]. In dieser Studie wurde daher nach einem geeigne-

ten Fluoreszenzmarker gesucht, der außerdem antioxidative Eigenschaften zeigt. Hier-

für wurden verschiedene regenerative und fossile Kraftstoffe (1-Hexanol, 1-Octanol, ein

MtG-Kraftstoff, OME, HVO, B0, B7 und E10) (vgl. Kapitel 4.1.1 und 4.1.2) mit 50 ppm mit

dem auf Benzophenoxazin basierenden Farbstoff Nilrot markiert und mit Hilfe der Fluo-

reszenzspektroskopie (vgl. Kapitel 5.2.6) untersucht. Des Weiteren wurden 1-Hexanol

und 1-Octanol mit Hilfe der offenen Alterungsapparatur (vgl. Kapitel 5.1.2) sowohl unmar-

kiert als auch markiert thermo-oxidativ gealtert und die entstandenen Alterungsprodukte

durch FT-IR-Messungen (vgl. Kapitel 5.2.5), Fluoreszenzmessungen (vgl. Kapitel 5.2.6)

so wie Messungen der Säurezahl und der Viskosität (vgl. Kapitel 5.2.3 und 5.2.4) analy-

siert. Außerdem wurden die beiden Kraftstoffe B0 und 1-Octanol auch mit 50 ppm des

etablierten Antioxidans BHT [9, 160] (vgl. Kapitel 4.3) versehen und sowohl unmarkiert als

auch mit BHT und Nilrot markiert, mit Hilfe des Rancimats (5.1.1) gealtert.

Die Ergebnisse zeigen, dass mit Nilrot ein geeigneter Fluoreszenzmarker gefunden wur-

de, durch den eine eindeutige Differenzierung verschiedenster Kraftstoffe anhand der

Fluoreszenzsignale und dadurch eine verlässliche Kontrolle über die Nutzung erneuer-

barer Kraftstoffe ermöglicht wird (vgl. Abb. 6.3.1). Des Weiteren zeigte sich, dass Nilrot

während der Alterung stabil blieb und die Zugabe von 50 ppm Nilrot die Bildung von

Säuren und Estern, die bei der thermo-oxidativen Alterung von 1-Hexanol und 1-Octanol

entstanden, signifikant reduziert hat. Diese Wirkung konnte anhand der beiden Kraftstoff-

parameter Säurezahl und kinematische Viskosität bestätigt werden: Die beiden Parame-

ter veränderten sich während der Alterung der unmarkierten Alkohole signifikant, blieben

jedoch bei den mit Nilrot markierten Alkoholen stabil. Ein direkter Vergleich mit BHT zeig-

te, dass Nilrot die Induktionszeit gealterter Kraftstoffe in vergleichbarem Maße verlängert:

Bei fossilem Dieselkraftstoff um 51 % und um mindestens 33 % bei 1-Octanol. Die Er-

gebnisse deuten darauf hin, dass der Phenoxazin-Farbstoff ähnlich wie Phenothiazin [188]

als Reduktionsmittel fungiert und dadurch die Autoxidation der Kraftstoffe wirksam ver-

langsamt.
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Abbildung 6.3.1: Fluoreszenzemissionsspektren verschiedener fossiler und regenerativer
Kraftstoffe (unmarkiert und mit Nilrot markiert) bei einer Anregungswellenlänge λex=405 nm.

Dadurch kann diese Studie einen wichtigen Beitrag zum zukünftigen Einsatz regenera-

tiver Kraftstoffe leisten, denn durch eine Markierung der Kraftstoffe mit dem Farbstoff

Nilrot und einer geeigneten Sensorik im Fahrzeug könnte in Zukunft sichergestellt wer-

den, dass ausschließlich regenerative Kraftstoffe zur Verbrennung verwendet werden.

Des Weiteren wird durch die antioxidativen Eigenschaften von Nilrot die Alterung der

Kraftstoffe effektiv verlangsamt.
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Nile Red as a Fluorescence Marker and Antioxidant for
Regenerative Fuels

Anne Lichtinger, Maximilian J. Poller, Julian Türck, Olaf Schröder, Thomas Garbe,
Jürgen Krahl, Anja Singer, Markus Jakob, and Jakob Albert*

1. Introduction

In order to achieve the climate target, set out in the Paris Climate
Agreement of 2015, and to limit global warming to below 2 °C, a
reduction of climate-damaging gases such as CO2 is necessary.

[1]

For this reason, it is required to reduce CO2 emissions to 20 Gt
CO2 per year by 2050.

[2] A significant contribution to this can be
made by defossilizing the transport sector. The three most prom-
ising options for this are the following: first, battery-powered
electric vehicles; second, indirect electrification through the elec-
trolytic production of hydrogen and its use in fuel cells; and third,

the use of renewable fuels in gasoline or
diesel combustion engines. Renewable
fuels can be either biofuels (first and sec-
ond generation) or e-fuels as a further form
of indirect electrification.[3] The use of
e-fuels also makes sense in view of the cur-
rent tense situation in Europe due to the
Ukraine war. Esfandabadi et al.[4] studied
the impact of the Ukraine war on the fuel
market and showed that a transition to
higher generation biofuel production
seems to be an inevitable option to control
food supply and prices, protect the environ-
ment, intensify climate change mitigation,
and ensure the provision of affordable and
clean energy for all.[4] E-fuels are synthetic
hydrocarbon-based fuels produced by
green hydrogen (i.e., the required electric-
ity was generated from renewable energy
sources) and CO2. The required CO2 can

be obtained from various processes, e.g., extraction from the
atmosphere, from industrial waste gases, or from biomass.
The liquid e-fuels have a similar high energy density as conven-
tional fossil fuels, and are compatible with existing transport and
storage infrastructure. As they only release as much CO2 as has
been consumed during their production, they can be considered
carbon-neutral fuels.[5]

This allows, if permitted by policy, internal combustion
engines to continue operating after 2035, ensuring that only
climate-neutral fuels are used. One way to achieve this is labeling
of either the renewable or the fossil fuels with a suitable
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This article contributes to the ongoing dialogue regarding the future application

of renewable e-fuels as part of a holistic solution to the energy crisis. In order to

be able to continue using internal combustion engines in a sustainable manner, it

must be ensured that these engines are operated exclusively with renewable,

CO2-neutral fuels. One way to achieve this is the use of a fluorescence sensor in

the vehicle in combination with fuels that are labeled with a fluorescence marker.

This study presents an investigation into the use of the benzophenoxazine dye

Nile red as a fluorescent marker for distinguishing fossil from renewable fuels.

In addition to assessing the stability of the fluorescent marker against thermo-

oxidative aging, the study probes its antioxidative impact on fuel aging, by

comparing unlabeled and with Nile red labeled aged fuels. Furthermore, an

examination of fuel-specific parameters underscores the positive effect of Nile red

on fuel stability. A comparison with the antioxidant butylated hydroxytoluene

confirms the antioxidant effect of Nile red.
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fluorescence marker at the point of production. A fluorescence
sensor in the vehicle can then detect whether the correct fuel is
used. Tracers for fuels have been investigated by several research
groups. For example, Suwanprasop et al.[6] synthesized several
dyes for petroleum-based products from naturally occurring
n-alkylphenol, cardanol, and aniline derivatives. These markers
showed no emission at a concentration of 2–5 ppm in gasoline
and diesel in the visible spectrum, but exhibit significant
fluorescence when dissolved in ethane-1,2-diol and methanol.[6]

Figueira et al.[7] used ethanol and hexadecanol as nucleophilic
reagents, and synthesized 5-, 10-, 15-, 20-meso-tetrakis
(pentafluorophenyl)porphyrin fluorescence markers for biodiesel
by the synthetic modification of commercial porphyrin and
showed that these markers fluoresce strongly in biodiesel
without affecting its physical properties.[7] Furthermore, they
investigated the storage stability under different storage temper-
atures and light exposure and showed that the markers remained
stable in storage for at least 3months.[7] Fong and Xue[8] found
that Nile blue chloride, when dissolved in alcohol, can be used to
determine the content of FAME (fatty acid methyl ester) in diesel
(0.5 ppm—20%) by an optical sensor.[8]

An important aspect for the suitability of a fuel marker is its
stability even if the fuels are stored for a longer period of time.
Longer storage can cause fuel aging. This is defined as the
change in chemical and physical properties over time.[9] In addi-
tion to microbiological aging, oxidation is the most important
chemical reaction of fuel aging.[10] The most important oxidation
processes are autoxidation, photooxidation, and thermal oxida-
tion.[10] Preventing or delaying the oxidation process by using
small amounts of antioxidants in fuels is the most cost-effective
method.[11] Antioxidants transfer electrons or hydrogen to the
free radicals formed during aging to inhibit or reverse the oxida-
tion reaction.[10] Varatharajan and Pushparani studied various
antioxidants for biodiesel to improve its storage stability.
They found that antioxidants with a low binding enthalpy are
more suitable than those with a higher binding enthalpy
because they can release hydrogen more easily.[10]

Furthermore, they discovered that antioxidants with a higher
molecular weight are more suitable because they are able to
release larger amounts of hydrogen and antioxidants whose
chemical structure contains polyhydroxy groups providing an
advantage over antioxidants with only one hydroxy group.[10]

Uguz et al.[11] tested three antioxidants (pyrogallol, butylated
hydroxytoluene [BHT], and tert-butylhydroquinone) at different
concentrations and showed that tert-butylhydroquinone proved
to be the most effective of the three antioxidants for biodiesel.[11]

Also, Borsato et al.[12] studied the effect of different antioxidants
(butylated hydroxy anisole, BHT, and tert-butylhydroquinone) in
pure form and in a ternary mixture on biodiesel, but showed that
in their case BHT was the most effective of the antioxidants
studied.[12]

Thus, several suitable fluorescent markers for fuels could be
found in the last years and also several antioxidants, which, how-
ever, did not act as fluorescent markers at the same time or were
not investigated in this direction.

The aim of this work was to find a fluorescence marker
that is suitable for a wider variety of fuels, but especially for
e-fuels (e.g., alcohols). Furthermore, this fluorescence marker
should also have antioxidant properties to increase the storage

stability of the e-fuels without losing its fluorescent properties
itself.

2. Experimental Section

2.1. Fuels and Chemicals

All fuels and chemicals were used without further purification.
The unadditivated hydrotreated vegetable oil (HVO) was pur-

chased from Neste and contains the middle distillate fraction of
iso- and n-paraffinic hydrocarbons. According to the data sheet,
the aromatics content is a maximum of 1 wt%. The oxymethylene
ether (OME) was purchased from ASG and according to the data
sheet (determination by ASG 2506 GC-FID) contains 0.05 wt%
OME-1, 0.06 wt% OME-2, 45.39 wt% OME-3, 25.39 wt%
OME-4, 11.22 wt% OME-5, 4.57 wt% OME-6, and derivatives
of OME-3 and OME-4. The unadditivated diesel fuel B0 was
purchased from ASG and contains 0.1 wt% fatty acid methyl
ester and 5.7 wt% polyaromatic hydrocarbons, according to the
data sheet. The two fuels B7 (diesel fuel with 7 v% fatty acid
methyl ester) and E10 (gasoline with 10 v% bioethanol) are com-
mercial gas station fuels and were purchased from a Shell gas
station. The methanol-to-gasoline fuel (MtG fuel) was produced
using the MtG process as part of the C3 Mobility project.[13]

According to the data sheet, the composition (determined by
GC) is 55.85 v% n- and iso-paraffins, 2.56 v% n- and iso-olefins,
3.19 v% cyclic olefins, 9.01 v% naphthenes, 0.02 v% polynaph-
thenes, and 29.37 v% aromatics. The dye Nile red was purchased
fromCarl Roth with a purity of>99%. The alcohols 1-octanol and
1-hexanol were also purchased from Carl Roth with a purity of
>99% (1-octanol) and >98% (1-hexanol) as well as BHT with a
purity >99.7%.

2.2. Experimental Setup and Work Procedure of Fuel Aging

2.2.1. Aging Setup for Accelerated Laboratory Aging

For the accelerated thermo-oxidative aging of the various fuels,
an aging setup was developed which is based on the Rancimat
aging method (DIN EN 14112 and DIN EN 15751).[14] A
250mL three-neck round bottom flask was filled with 250mL
(at the start of aging) of the fuel to be aged (Figure 1I).

The flask was then placed in an oil bath (Figure 1II), which
was preheated to a temperature of T= 110 °C. In order to reduce
the loss of volatile aging products, a Dimroth reflux condenser
(Figure 1III) which was cooled to a constant temperature of
T= 2 °C by means of a recirculating chiller (F series from
Julabo) was located above the flask. During the aging process,
condensation was only observed in the lower third of the reflux
condenser. To oxidize the fuel, dried laboratory compressed air
was introduced into the fuel at a constant flow rate of 10 L h�1 by
means of a gas introduction tube attached to the three-necked
flask (Figure 1IV). The dried laboratory compressed air was addi-
tionally dried (humidity after drying: 0.07%) with the help of
molecular sieve (4 Å), which was located in four coupled glass
tubes (inner diameter: 30mm, length: 400mm) (Figure 1V).
The air flow was adjusted to a constant value of 10 L h�1 using
a flowmeter (Agilent Flow Tracker 1000). This aging setup was an
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open aging system. The air flowing into the fuel was directed
through the reflux condenser into a wash bottle filled with
deionized water (Figure 1VI). To perform fuel aging, the reflux
condenser and oil bath were first tempered to the correct temper-
ature and the correct air flow was set. Then, the gas inlet tube and
the reflux condenser were attached to the three-neck flask
filled with 250mL of fuel and the flask is immersed in the
temperature-controlled oil bath. This point was defined as start
of the experiment (t= 0 h). In order to investigate the aging prod-
ucts as a function of aging time, a fuel sample of 25mL was taken
from the flask every 24 h. For this purpose, the stopper located on
the flask (Figure 1VII) was briefly opened, and 25mL of the aged
fuel was taken with the aid of a glass pipette. This procedure was
repeated up to a total aging time of 192 h, after which the air flow
and the heating plate for the oil bath were switched off. The
remaining fuel was removed after a cooling phase, during which
the remaining condensate located at the reflux condenser could
also flow back into the flask. Both the unaged fuel (0 h) and the
aged fuel samples (24–192 h) were analyzed using the methods
described below.

2.2.2. Rancimat Method

The Rancimat method (according to DIN EN 14112 and DIN EN
15751) is a standardized method for accelerated aging.[14] The
sample is heated to 110 °C in a sealed test tube while an air
stream (10 L h�1) flows through it. The resulting volatile oxida-
tion products are passed through the air stream into a vessel con-
taining distilled water. The conductivity of the aqueous phase is
continuously monitored, and a significant change in conductivity
can be detected when the aging process has begun due to the
appearance of oxidation products in the water. The oxidation

stability can be determined by correlating it with the induction
time, which is the time that elapses from the start of the test until
the appearance of the secondary oxidation products that cause an
increase in conductivity in the water cell. For these measure-
ments, a Metrohm Biodiesel Rancimat 873 and a sample mass
of 7.5 g were used.

2.3. Analytical Methods

2.3.1. Fluorescence Spectroscopy

The fluorescence spectra of the unaged and aged fuels were
measured using a Hitachi F-4500 fluorescence spectrometer with
PMT detector. The excitation wavelength range and the emission
wavelength range of the spectrometer are 200–900 nm. The
measurements were performed with an excitation wavelength
of 405 nm and an emission wavelength range of 280–800 nm
in 5 nm steps. The apertures of the two monochromators were
set to a slit width of �5 nm. 10mm cuvettes made of PMMA
were used for the measurement.

2.3.2. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FT-IR) measurements
of the unaged and aged fuels were performed using a Thermo
Scientific Nicolet 6700 FT-IR spectrometer. The instrument
has a diamond attenuated total reflectance (ATR) unit for sample
acquisition. The single-bounce ATR unit has a wavelength cutoff
of 650 cm�1 through a ZnSe lens and an angle of incidence of
42°. The penetration depth of the 1.5mm diamond is 2.03 μm at
1000 cm�1. For measurement, a drop of the sample was placed
on the ATR crystal using a pipette. The spectrometer has a

Figure 1. Aging setup for the thermo-oxidative accelerated aging. I) Three-neck round bottom flask with 250mL fuel. II) Oil bath (tempered to T= 110°C).

III) Dimroth reflux condenser (T= 2°C). IV) Gas introduction tube for flowing dried air (flowrate= 10 h�1) through the fuel. V) Four coupled glass tubes

with molecular sieve (additional drying of the laboratory air). VI) Wash bottle with deionized water. VII) Stopper located on the flask (taking fuel sample

every 24 h).
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deuterated triglycine sulfate (DTGS) detector and an XT-KBrTM
beam splitter (extended KBr range). Integration of the measured
peaks of the vibrational bands was performed using Thermo
Scientific’s Omnic software.

2.3.3. Total Acid Number

The total acid number of the unaged and aged fuels was mea-
sured by potentiometric titration according to DIN EN 12634.
An 888 Titrando and an 801 stirrer from Metrohm were used
for this purpose. The measurements were carried out using a
glass electrode suitable for nonaqueous media. Potassium
hydroxide solution (0.1 mol L�1) dissolved in 2-Propanol was
used as the volumetric standard solution. The sample was dis-
solved in a mixture of 50% toluene, 49.5% 2-Propanol, and
0.5% deionized water (60mL per sample). The sample weight
varied between 0.505 and 10.007 g depending on the expected
acid number. The total acid number indicates the amount of base
(expressed in (mg KOH) g�1) required to neutralize the acids
present in the sample.

2.3.4. Viscosity

The viscosity of the unaged and aged fuels was determined using
a Stabinger viscosimeter from Anton Paar. For this purpose,
3mL of sample was injected into the instrument using a syringe.
The measurement was performed at a temperature of 40 °C, and
the samples were tempered in the instrument for 3 min before
each measurement. Anton Paar’s Rheoplus software was used
for data processing of the measurements.

3. Results and Discussion

3.1. Fluorescence Marker

A comparison of the fluorescence emission spectra at an excita-
tion wavelength of λex= 405 nm of different, unlabeled renew-
able fuels, such as MtG fuel, OME, HVO, as well as fossil
diesel fuel (B0) and commercial gas station fuels (B7 and E10)
(Figure 2; Table 1), shows that all of those fuels fluoresce in
the range of λem� 400–550 nm. The selected fuels were in each
case individual samples that were considered to be representative

by the authors. To distinguish labeled from unlabeled fuels, i.e.,
to avoid overlapping of the fluorescence emission spectra of the
labeled and unlabeled fuels, a suitable fluorescence
marker added to a fuel has to fluoresce in the range of
λem� 600–700 nm.

Nile red was identified by the authors to be an appropriate
marker (Figure 3; Table 1) as it meets this condition. Nile red
is a benzophenoxazine dye that has a lipophilic nature and an
intense color. Benzophenoxazines have a compact aromatic
structure with two heteroatoms (nitrogen and oxygen). This
structure is known for its strong fluorescence and stability.[15]

Nile red has no formal charges and shows intense fluorescence
with a high quantum yield in apolar media, but is poorly soluble
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Figure 2. Fluorescence emission spectra of various unlabeled fuels (MtG

fuel; OME; HVO; B0; B7, E10) at an excitation wavelength of λex= 405 nm.

Table 1. Maximum emission wavelength λem, max and relative fluorescence

intensity at an excitation wavelength λex= 405 nm for several unmarked

and marked fuels (unaged and aged).

Fuel λem, max

(λex= 405 nm) [nm]

Rel. fluorescence

intensity

Marking Aging

time [h]

MtG fuel 439 1971 Not labeled 0

OME – – Not labeled 0

HVO 438 463 Not labeled 0

B0 – – Not labeled 0

B7 447 4547 Not labeled 0

E10 441 300 Not labeled 0

1-hexanol – – Not labeled 0

1-octanol – – Not labeled 0

MtG fuel 562 4989 þ50 ppm Nile red 0

OME 594 3414 þ50 ppm Nile red 0

HVO 545 3711 þ50 ppm Nile red 0

B0 555 5294 þ50 ppm Nile red 0

B7 561 3116 þ50 ppm Nile red 0

E10 602 2363 þ50 ppm Nile red 0

1-hexanol 628 1283 þ50 ppm Nile red 0

1-hexanol 628 1258 þ50 ppm Nile red 24

1-hexanol 628 1257 þ50 ppm Nile red 48

1-hexanol 628 1243 þ50 ppm Nile red 72

1-hexanol 628 1244 þ50 ppm Nile red 96

1-hexanol 628 1240 þ50 ppm Nile red 120

1-hexanol 628 1249 þ50 ppm Nile red 144

1-hexanol 628 1244 þ50 ppm Nile red 168

1-hexanol 628 1258 þ50 ppm Nile red 192

1-octanol 625 1308 þ50 ppm Nile red 0

1-octanol 625 1307 þ50 ppm Nile red 24

1-octanol 625 1273 þ50 ppm Nile red 48

1-octanol 625 1301 þ50 ppm Nile red 72

1-octanol 625 1326 þ50 ppm Nile red 96

1-octanol 625 1324 þ50 ppm Nile red 120

1-octanol 625 1355 þ50 ppm Nile red 144

1-octanol 624 1347 þ50 ppm Nile red 168

1-octanol 615 577 þ50 ppm Nile red 192
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in water.[16] It is commonly used as a marker for biomolecules,
among other applications.[16]

The fluorescence emission spectra (at an excitation wave-
length of λex= 405 nm) of different fuels labeled with 50 ppm
Nile red (Figure 4) exhibit strong fluorescence in the range
between λem� 550–650 nm. The strong fluorescence below
550 nm of unlabeled fuels is suppressed by Nile red. In addition

to the fuels shown in Figure 2, two other potential e-fuels, the
monoalcohols 1-hexanol and 1-octanol, were also labeled with
50 ppm Nile red and resulting in similar fluorescence emission
maxima in the range between λem� 550–650 nm.

3.2. Aging Stability

To investigate whether Nile red remains stable during fuel aging,
several fuels labeled with Nile red underwent accelerated thermo-

oxidative ageing in the laboratory for up to 192 h. For compari-
son, the same fuels were also aged without labeling. The used
aging setup is described in Section 2.2.1 and shown in
Figure 1. Aging without and with addition of 50 ppm Nile red
was exemplary investigated for the two fuels 1-octanol and

1-hexanol, respectively. Here, the unaged and aged unlabeled
fuels were first studied by FT-IR and the peak area of the vibra-
tional bands of the OH valence vibration (3100–3600 cm�1), the
C═O valence vibration (1600–1800 cm�1), and the CO valence

and C─OH deformation vibrations (1100–1300 cm�1) were eval-
uated as a function of the aging time (0–192 h). There is a clear
decrease in the peak area of the OH-valence vibration band of
unlabeled 1-hexanol (Figure 5a) and 1-octanol (Figure 5b) from
an aging time of �48 h. Up to an aging time of 192 h, the peak

area of the OH-valence vibration band of 1-hexanol decreases by
72% and of 1-octanol by 90%, indicating a steady decrease of the
1-hexanol concentration (Figure 5a) or 1-octanol concentration
(Figure 5b) during aging. An increase in the C═O valence vibra-
tion band from �48 h aging time and an increase in the CO
valence and C─OH deformation vibration bands from �72 h
(Figure 5a,b) indicate a formation of carboxylic acids and esters[9]

during aging of 1-hexanol and 1-octanol.
To investigate the influence of the addition of Nile red on fuel

aging, the unaged fuels were labeled and then thermo-oxidatively
aged in the same way as the unlabeled fuels. Also, the aging
process was observed by FT-IR spectroscopy in the same way
as for the unlabeled fuels. With the addition of 50 ppm Nile
red to 1-hexanol and 1-octanol, the peak area of the OH-valence
vibration band does not change significantly during the aging
period. Up to an aging time of 192 h, the peak area changes
by only 1% for 1-hexanol (Figure 5c) and 6% for 1-octanol
(Figure 5d). This indicates that both concentrations remain con-
stant during aging for the labeled fuels. In the case of 1-octanol
(Figure 5d), a small increase in the C═O valence vibration band
can be observed from an aging time of �168 h onward, indicat-
ing the formation of acids or esters.[9]

In order to investigate the change of various fuel-specific
parameters[17] during aging of the unlabeled and with 50 ppm
Nile red labeled fuels, the total acid numbers and the kinematic
viscosity values were measured as a function of aging time
(Figure 6a,b). The total acid number (TAN) increases during
aging of unlabeled 1-hexanol and 1-octanol (Figure 6a) from
an aging time of �48 h to an aging time of �144 h to a
maximum value of TAN1-hexanol= 64 (mg KOH) g�1 and
TAN1-octanol= 57 (mg KOH) g�1, respectively, indicating acid for-
mation during aging in both cases. From an aging time of�168 h,
the TAN drops again to a value of TAN1-hexanol= 59 (mg KOH) g�1

or TAN1-octanol= 55 (mg KOH) g�1. The renewed decrease of
the acid number indicates an esterification of the alcohols
with the formed acids. The kinematic viscosity measurements
at a temperature of T= 40 °C of both unlabeled e-Fuels
(Figure 6b) show that the viscosity of both alcohols decreases from
an aging time of �72 h, which may be an indication of esterifica-
tion. The results of TANmeasurements and the viscosity measure-
ments match the previous results of the FT-IR measurements
(Figure 5a,b).

Considering the total acid number and the viscosity (@40 °C)
of 1-hexanol and 1-octanol labeled with 50 ppm Nile red
(Figure 6a, left and Figure 6b, right), it can be shown that the
total acid number of labeled 1-hexanol does not change over
an aging time of �192 h whereby the TAN of labeled 1-octanol
increases to a value of TAN1-octanol= 3 (mg KOH) g�1 at an aging
time of 192 h (Figure 6a). The viscosity does not change during
aging for both labeled alcohols (Figure 6b). The results indicate
that the addition of 50 ppm Nile red prevents the formation of
acids in 1-hexanol over an aging period of 192 h and that acids
are only formed from 1-octanol starting at an aging period of
168 h. Similar to phenothiazine,[18] phenoxazine could act as a
hydrogen donor[14] and be stably radicalized itself, thereby pre-
venting the radical oxidation of fuel aging. Therefore, it follows
that esterification is prevented.[19] Nevertheless, more research
needs to be done for a better understanding of aging and gaining
a more accurate insight into the formed products.
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Figure 3. Chemical structure of Nile red.
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Figure 4. Fluorescence emission spectra of various unlabeled (dashed

lines) and labeled (solid lines) fuels (MtG fuel; OME; HVO; B0; B7,

E10; 1-octanol, 1-hexanol) at an excitation wavelength of λex= 405 nm.
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To further investigate the antioxidant activity of Nile red, the
fossil fuel B0 and 1-octanol (as representative of the alcohols)

were aged both unlabeled and unadditivated, respectively, and

labeled and additivated, respectively, using the Rancimat method
(Section 2.2.2). For labeling, 50 ppm of Nile red was used, and for

additivation, 50 ppm of BHT, a known antioxidant,[12] was used
(Figure 7).

Here, B0 (unlabeled, or unadditivated and labeled, or additi-
vated) was aged for 192 h. The induction time of unadditivated

B0 is 97.43 h. When B0 is aged additivated with the antioxidant

BHT, the induction time is 148.85 h; when it is aged labeled with
Nile red, the induction time is 146.84 h (Figure 8a). 1-octanol

(unlabeled, or unadditivated and labeled, or additivated) was aged
for 120 h. It can be seen that unlabeled or unadditivated 1-octanol
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exhibits an induction time of 90.20 h. When 1-octanol is additi-
vated with BHT or labeled with Nile red and aged, the induction
time within 120 h cannot be reached. Thus, this is >120 h
(Figure 8b). The results show that labeling with Nile red prolongs
the induction time of B0 and 1-octanol during aging in a similar
way as additivation with the antioxidant BHT. In the case of B0,
the addition of Nile red prolongs the induction time by �51%
and for 1-octanol, the addition of Nile red increases the induction
time by at least 33% compared to the induction time of unaddi-
tivated fuel.

In order to investigate the change of the fluorescence spectra
during accelerated aging of 1-hexanol labeled with 50 ppm Nile
red and 1-octanol labeled with 50 ppm Nile red, fluorescence
measurements were performed on the unaged and aged marked
fuels (Figure 9a,b and Table 1). Hereby, the fluorescence spec-
trum of labeled 1-hexanol does (almost) not change over an aging

period of up to 192 h (Figure 9a). Moreover, the fluorescence
spectrum of labeled 1-octanol remains (almost) stable up to an
aging time of �168 h. From an aging time of 192 h, the intensity

of the fluorescence emission spectrum changes. This is due to
the formation of acids from �168 h onward (increase of the total
acid number (Figure 6a). The intensity of the fluorescence of Nile
red decreases with decreasing pH-value.[17]

4. Conclusions and Prospects

This article aims to contribute to the future use of renewable
fuels, especially e-fuels, leading to a holistic approach solving
the energy crisis. The benzophenoxazine dye Nile red, a fluores-

cent marker for labeling different fuels, is presented, which ena-
bles the use of a fluorescence sensor to distinguish fuels based
on their different fluorescence spectra, apart from the intrinsic
fluorescence of some fuels. Thus, marking a fuel with Nile red

allows to distinguish between fossil and renewable fuels.
Therefore, installing a fluorescence sensor in a vehicle could
ensure that a vehicle will be operated exclusively with CO2-
neutral fuels in the future. Promising fluorescent markers have
also been found by other research groups[9,16] and their storage

stability[7] has been studied under the influence of light aging and
at several temperatures for several months.[7]
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Figure 7. Chemical structure of BHT.
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However, in this article, in addition to the stability of the
fluorescent marker found against thermo-oxidative aging, its
antioxidative effect on fuel aging is also investigated by directly
comparing the thermo-oxidative aging of two alcohols, one unla-
beled and one labeled with 50 ppm Nile red. FT-IR measure-
ments allow initial conclusions to be drawn about the formed
aging products. Evaluation of the infrared vibration bands
showed that the addition of 50 ppm Nile red (almost) prevents
the formation of acids and esters, which are formed without
the addition of the fluorescence marker. Furthermore, the influ-
ence of Nile red on fuel aging can be quantified by examining
fuel-specific parameters such as total acid number and viscosity.
Without the addition of Nile red, the viscosity values of the aged
alcohols change to�30% during aging, while there is an increase
in the total acid number to �56 (mg KOH) g�1. The stability of
the alcohols is significantly improved by the addition of 50 ppm
Nile red. This is shown, among other things, by the fact that there
are (almost) no changes neither in the total acid number nor the
viscosity during aging as a result of labeling.

By a direct comparison with the antioxidant BHT, whose
antioxidant effect has been studied and confirmed by several
research groups, it can be shown that the induction time of aged
fuels is positively influenced, i.e., prolonged, by the addition of
50 ppm Nile red for B0 and for 1-octanol in a similar way as by
the addition of 50 ppm BHT. The addition of Nile red can extend
the induction time of aged B0 by �51% and at aged 1-octanol by
at least 33%.

Future studies should investigate the influence on combustion
of adding Nile red to the fuel. Furthermore, further detailed
aging studies should be conducted in the future to gain an even
better understanding of the products formed and the exact
chemical reactions during fuel aging and the influence of the
antioxidant effect of Nile red. However, systematically adding
Nile red to either fossil fuel or sustainable fuels could enable
the enforcement of fuel policies. Moreover, the use of Nile
red as a fluorescent marker could help to ensure that in addition
to electromobility, vehicles could continue operating on renew-
able fuels in the future, thereby taking a further step toward CO2

neutrality. This should be investigated by further studies to
assess sustainability, e.g., by combining life cycle assessment
and exergy analysis, as performed, e.g., in refs. [20,21].
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the author.

Acknowledgements

The authors thank the Forschungsvereinigung Verbrennungskraftmaschinen
e.V. (FVV 601342) and the Oberfrankenstiftung (FP00067) for the financial
support of the research.

Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

A.L.: Conceptualization, investigation, validation, data acquisition, writing
original draft, analysis and interpretation of data, approval of the version of
the manuscript to be published. M.J.P.: Conceptualization, analysis and
interpretation of data, revising manuscript critically for important intellec-
tual content, approval of the version of the manuscript to be published.
JT.: Revising the manuscript critically for important intellectual content,
approval of the version of the manuscript to be published. O.S.:
Analysis and interpretation of data, revising manuscript critically for
important intellectual content, approval of the version of the manuscript
to be published. T.G.: Conceptualization, revising manuscript critically for
important intellectual content, approval of the version of themanuscript to
be published. J.K.: Revising the manuscript critically for important intellec-
tual content, approval of the version of the manuscript to be published.
A.S.: Approval of the version of the manuscript to be published. M.J.:
Project administration, approval of the version of the manuscript to be
published. J.A.: Project administration, revising the manuscript critically
for important intellectual content, approval of the version of the
manuscript to be published

Data Availability Statement

Research data are not shared.

Keywords

antioxidants, climate policy, climate-neutral, e-fuels, fluorescence markers,
oxidation

Received: March 13, 2023

Revised: June 4, 2023

Published online: September 20, 2023

[1] United Nations Climate Change, Paris Agreement, Paris 2015.

[2] N. Mac Dowell, P. S. Dennell, N. Shah, G. C. Maitland, Nat. Clim.

Change 2017, 7, 243.

[3] F. Ausfelder, K. Wagemann, Chem. Ing. Tech. 2020, 92, 21.

[4] Z. S. Esfandabadi, M. Ranjbari, S. D. Scagnelli, Biofuel Res. J. 2022, 34,

1640.

[5] F. Ueckerdt, C. Bauer, A. Dirnaichner, J. Everall, R. Sacchi, G. Luderer,

Nat. Clim. Change 2021, 11, 384.

[6] S. Suwanprasop, T. Nhujak, S. Roengsumran, A. Petsom, Ind. Eng.

Chem. Res. 2004, 43, 4973.

[7] A. C. B. Figueira, K. T. de Oliveira, O. A. Serra, Dyes Pigm. 2011, 91,

383.

[8] J. K. Fong, Z.-L. Xue, ChemComm 2013, 49, 9015.

[9] J. Tuerck, A. Singer, A. Lichtinger, M. Almaddad, R. Tuerck, M. Jakob,

T. Garbe, W. Ruck, J. Krahl, Fuel 2022, 310, 122463.

[10] K. Varatharajan, D. S. Pushparani, Renew. Sustain. Energy Rev. 2018,

82, 2017.

[11] G. Uguz, A. E. Atabani, M. N. Mohammed, S. Shobana, S. Uguz,

G. Kumar, A. H. Al-Muhtaseb, Biocatal. Agric. Biotechnol. 2019, 21,

101283.

[12] D. Borsato, J. R. de Moraes Cini, H. C. da Silva, R. Lopes Coppa,

K. Gomes Angilello, I. Moreira, E. C. Rodrigues Maia, Fuel Process.

Technol. 2014, 127, 111.

[13] C3-Mobility, http://www.c3-mobility.de, (accessed: December 2022).

[14] S. N. Al-Ghamdi, H. A. Al-Ghamdi, R. M. El-Shishtawy, A. M. Asiri,

Dyes Pigm. 2021, 194, 109638.

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2023, 11, 2300260 2300260 (8 of 9) © 2023 The Authors. Energy Technology published by Wiley-VCH GmbH

 21944296, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ente.202300260, W

iley O
nline L

ibrary on [28/01/2025]. S
ee the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



108

[15] M. Hornum, M. W. Mulberg, M. Szomek, P. Reinholdt,

J. R. Brewer, D. Wuestner, J. Kongsted, P. Nielsen, J. Org. Chem.

2021, 86, 1471.

[16] V. Martinez, M. Henary, Chem. Eur. J. 2016, 22, 13764.

[17] G. Liu, X. Li, S. Xiong, L. Li, P. K. Chu, K. W. K. Yeung, S. Wu, Z. Xu,

Colloid Polym. Sci. 2012, 290, 349.

[18] C.M.Murphy, H. Ravner, N. L. Smith, Industr. Eng. Chem. 1950, 42, 2479.

[19] T. J. Schildhauer, I. Hoek, F. Kapteijn, J. A. Moulijn, Appl. Catal., A

2009, 358, 141.

[20] M. Aghbashlo, H. Hosseinzadeh-Bandbafha, H. Shahbeik,

M. Tabatabaei, Biofuel Research Journal 2022, 35, 1697.

[21] M. Aghbashlo, Z. Khounani, H. Hosseinzadeh-Bandbafha,

V. K. Gupta, H. Amiri, S. S. Lam, T. Morosuk, M. Tabatabaei,

Renew. Sustain. Energy Rev. 2021, 149, 111399.

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2023, 11, 2300260 2300260 (9 of 9) © 2023 The Authors. Energy Technology published by Wiley-VCH GmbH

 21944296, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ente.202300260, W

iley O
nline L

ibrary on [28/01/2025]. S
ee the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



109

7. Unveröffentlichter Teil der Dissertati-

on

In diesem Kapitel werden bisher unveröffentlichte Ergebnisse der Dissertation vorgestellt.

7.1 Entwicklung eines Sensorkonzeptes zur Erkennung

des Alterungsgrades verschiedener Kraftstoffe

In den vorherigen Kapiteln wurde gezeigt, dass verschiedene regenerative Kraftstoffe

unterschiedlich stark altern können, wobei die entstehenden Alterungsprodukte zu Pro-

blemen beim Einsatz der Kraftstoffe im Fahrzeug führen können. Aus diesem Grund ist

die Entwicklung eines Kraftstoffsensors sinnvoll, der zwischen verschiedenen Kraftstoff-

varianten unterscheiden und deren Alterungsgrad erkennen kann. Ein solcher Sensor

könnte entweder direkt im Fahrzeug eingebaut werden, um die Qualität des im Tank be-

findlichen Kraftstoffes zu prüfen, oder als Handsensor in Tanklagern verwendet werden.

In einem vorherigen Projekt [189] wurde bereits ein Sensor auf Basis der Nahinfrarotspek-

troskopie (NIRS), der Fluoreszenzspektroskopie und der dielektrischen Spektroskopie

(DS) entwickelt. Durch eine Kombination der DS und der NIRS war es möglich zu un-

terscheiden, ob es sich bei dem detektierten Kraftstoff um fossiles Benzin, Diesel oder

Biodiesel handelte. Hierfür wurden bei der Auswertung die jeweiligen Intensitätssignale

einer Wellenlänge im NIR-Spektrum und die Werte der Permittivität bei einer Frequenz

verwendet und in einem zweidimensionalen Plot korreliert. Eine Vorhersage verschiede-

ner Kraftstoffparameter oder die Vorhersage des genauen Alterungsgrades war mit die-

ser Methode jedoch noch nicht möglich. In einer weiteren Arbeit [36] wurde ebenfalls ein

Sensorkonzept auf Basis der NIRS und der DS entwickelt. Durch die Kombination beider

Messtechniken war die Vorhersage verschiedener Konzentrationen an Alkanen, Aroma-
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ten oder der Anteil an Biodiesel in fossilem Dieselkraftstoff möglich und es konnten höher

molekulare Alterungsprodukte der Biodiesel-Alterung sensorisch detektiert werden [36].

Ein Sensor, der nur auf einer Messtechnik basiert, ist deutlich kostengünstiger und des-

sen Einsatz daher leichter realisierbar. Da die Signale der dielektrischen Spektroskopie

stark temperaturabhängig sind [36], was den Einsatz als Sensor im Fahrzeug erschweren

kann, erweist sich die NIRS als eine vorteilhaftere Messmethode für eine solche Senso-

rik.

Um anhand des NIR-Spektrums eines Kraftstoffs, das mit Hilfe eines Sensors gemessen

wird, möglichst viele Parameter mit einer hohen Genauigkeit vorhersagen zu können,

ist ein geeigneter Auswertealgorithmus essentiell. Ein solcher Algorithmus muss in der

Lage sein, eine exakte Unterscheidung verschiedenster Kraftstoffe (fossil, regenerativ

und synthetisch) und Kraftstoffmischungen zu gewährleisten, also die Bezeichnung der

Kraftstoffe korrekt vorherzusagen. Denn durch die genaue Kenntnis über den verwen-

deten Kraftstoff kann das Motormanagement auf den Kraftstoff eingestellt werden, um

dadurch eine optimale Verbrennung zu gewährleisten.

Des Weiteren soll eine Vorhersage der numerischen Werte der in verschiedenen Kraft-

stoffnormen aufgeführten, relevanten Kraftstoffparameter (kinematische Viskosität, Dich-

te und Säurezahl) und des genauen Alterungsgrades (genaue Alterungszeit in Stunden)

mit einer für Messgeräte und Sensoren üblichen Genauigkeit > 95 % möglich sein, denn

die Vorhersage der in verschiedenen Kraftstoffnormen (DIN EN 228 [15], DIN EN 590 [16]

und DIN EN 14214 [17]) festgelegten Parameter Säurezahl, kinematische Viskosität und

Dichte liefert einen zuverlässigen Anhaltspunkt, ob ein Kraftstoff noch unproblematisch

verwendet werden kann (vgl. Abb. 4.1.3).

In den folgenden Unterkapiteln werden die Ergebnisse zur Entwicklung eines Sensorkon-

zeptes vorgestellt.

7.1.1 Datenanalyse als Basis für einen Auswertealgorithmus

Es ist sinnvoll die vorhandenen Daten zu analysieren, um zu entscheiden, welche Metho-

de oder welcher Algorithmus zur Auswertung und Vorhersage der Daten und Parameter

geeignet sein könnte.

Als Datenbasis für das Sensorkonzept wurden verschiedene regenerative und fossile

Kraftstoffe und Kraftstoffmischungen mit der offenen Alterungsapparatur (vgl. Kapitel

5.1.2) gealtert. Bei den gealterten Kraftstoffen wurde jeweils alle 24 h eine Kraftstoffpro-
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be entnommen. In Tabelle 7.1 sind die verschiedenen Kraftstoffe und die dazugehörige

Alterungszeit gezeigt. Es wurden insgesamt 19 verschiedene Kraftstoffe und Kraftstoff-

mischungen gealtert mit jeweils einer Probe pro 24 Alterungszeit, also insgesamt 156

Proben.

Tabelle 7.1: Kraftstoffe und deren jeweilige Alterungszeit als verwendete Datenbasis.

Kraftstoff Alterungs-
zeit [h]

Kraftstoff Alterungs-
zeit [h]

Kraftstoff
(Mischung in vol%)

Alterungs-
zeit[h]

1-Butanol 0-144 2-Butanol 0-168 3:1 Solketal:OME 0-144
75-S-25-O

1-Pentanol 0-192 2-Pentanol 0-144 1:1 Solketal:OME 0-144
50-S-50-O

1-Hexanol 0-192 2-Hexanol 0-192 1:3 Solketal:OME 0-144
25-S-75-O

1-Heptanol 0-192 Solketal 0-144 3:1 1-Octanol:B0 0-192
75-Oc-25-B0

1-Octanol 0-192 OME 0-144 1:1 1-Octanol:B0 0-192
50-Oc-50-B0

1-Nonanol 0-192 B0 (Diesel) 0-192 1:3 1-Octanol:B0 0-192
25-Oc-75-B0

1-Decanol 0-192
∑

= 156

Bei allen 156 Proben wurden die Nahinfrarotspektren, die Säurezahl, die kinematische

Viskosität und die Dichte gemessen (vgl. Kapitel 5.2.3-5.2.7). In Abb. 7.1.1 sind die Mes-

sungen der Säurezahl, der kinematischen Viskosität und der Dichte der verschiedenen

Kraftstoffe in Abhängigkeit der Alterungszeit dargestellt. Man kann eine Zunahme der

Säurezahl mit zunehmender Alterungszeit bei allen Kraftstoffen erkennen, gefolgt von ei-

ner erneuten Abnahme bei machen Kraftstoffen. Dies ist auf die Entstehung von Säuren

und einer darauffolgenden Veresterung während der Alterung zurückzuführen. Die Ver-

esterung ist, neben der Entstehung kurzkettiger Produkte, auch der Grund für die Abnah-

me der kinematischen Viskosität aller Kraftstoffe mit zunehmender Alterungszeit. Eine

Ausnahme bildet hierbei Solketal und dessen Mischungen, da die durch die Hydrolyse

bedingte Aufspaltung in die Edukte, aufgrund von Glycerin, zu einer Viskositätszunah-

me führte (vgl. Kapitel 6.2-6.1). Des Weiteren zeigt sich eine Zunahme der Dichte der

verschiedenen Kraftstoffe mit steigender Alterungszeit, was durch die Änderung der mo-

lekularen Zusammensetzung der gealterten Kraftstoffe begründet werden kann.
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In Abb. 8.0.5-8.0.9 (Anhang) sind die gemessenen NIR-Spektren der ungealterten und

gealterten Kraftstoffe und Kraftstoffmischungen dargestellt. Es zeigt sich eine Verände-

rung der NIR-Spektren aller Kraftstoffe und Kraftstoffmischungen in Abhängigkeit der Al-

terungszeit. Dies ist auf die Entstehung verschiedener Alterungsprodukte wie Aldehyde,

Säuren, Ketone, Ester oder auch auf die Hydrolyse in die Edukte während der Alterung

zurückzuführen (vgl. Kapitel 6.1-6.3 ).

Abbildung 7.1.1: Oben links: Säurezahl verschiedener Kraftstoffe in Abhängigkeit der Alte-
rungszeit. Oben rechts: Kinematische Viskosität verschiedener Kraftstoffe in Abhängigkeit der
Alterungszeit. Unten: Dichte verschiedener Kraftstoffe in Abhängigkeit der Alterungszeit.

Für eine Entwicklung eines Sensorkonzeptes ist der erste Schritt die „manuelle“ Analyse

der NIR-Spektren anhand relevanter Banden. In Abb. 7.1.2 sind die NIR-Spektren einiger

exemplarischer Kraftstoffe und deren dazugehörige Schwingungsbanden bei verschie-

denen Alterungszeiten gezeigt. Als exemplarischer Vertreter der n-Alkohole ist 1-Octanol

gezeigt und der Vertreter der iso-Alkohole ist 2-Hexanol. Der Vertreter der fossilen Kraft-

stoffe ist B0 (Dieselkraftstoff) und als Vertreter der Ether ist OME gezeigt. Man kann

erkennen, dass die Intensität einiger Banden während der Alterung eine hohe Varianz
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zeigt. Bei den Alkoholen (vgl. Abb. 7.1.2 oben) nimmt die Intensität der OH-Bande (bei

λ=1580 nm und λ=2100 nm) während der Alterung ab, während die Intensität der Car-

bonyl (C=O)-Bande (bei λ=1940 nm und λ=2150 nm) zunimmt. Die Begründung hierfür

ist die Abnahme der Alkoholkonzentration (OH-Bande) und die Entstehung von Alde-

hyden (bei 1-Octanol), Ketonen (2-Hexanol), Säuren und Estern während der Alterung.

Besonders auffällig ist die Zunahme der Wasser-Bande bei λ=1938 nm aufgrund der Ent-

stehung von Wasser während der Alterung (vgl. Kapitel 6.2). Zur Analyse der Spektren

erweist sich diese als problematisch, da dadurch relevante Banden (Carbonyl-Bande und

OH-Bande) überlagert werden.

Abbildung 7.1.2: Nahinfrarotspektren verschiedener Kraftstoffe bei verschiedenen Alterungs-
zeiten. Zusätzlich sind die Schwingungsbanden einiger spezifischen Molekülgruppen gezeigt.

Im Fall des Ethers OME (vgl. Abb. 7.1.2 unten links) zeigt, zusätzlich zur Carbonyl-Bande,

aufgrund der Entstehung von Säuren und Estern und der Wasser-Bande, die CO-Bande

(bei λ=2050 nm) eine höhere Varianz. Der Grund hierfür ist die Abnahme der längerket-

tigen OMEn und die Zunahme der kurzkettigen OMEn während der Alterung (vgl. Kapitel
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6.1). Auch im Fall von OME erweist sich die Wasserbande aufgrund der Überlagerung an-

derer Banden als problematisch bei der Analyse. Beim fossilen Dieselkraftstoff B0 zeigt

die Aromaten-Bande (bei λ=2167 nm) die größte Varianz während der Alterung, was auf

eine Änderung des Aromatengehalts zurückzuführen ist.

Die Ergebnisse der Analyse der Datenbasis zeigen, dass der Zusammenhang zwischen

den Nahinfrarotspektren und den Parametern, die vorhergesagt werden sollen, viel zu

komplex für einen klassischen Analyseansatz ist. Anhand einzelner NIR-Banden lässt

sich kein Zusammenhang zwischen den Schwingungsbanden und den vorherzusagen-

den Parametern erschließen, was anhand von Abbildung 7.1.3 exemplarisch verdeutlicht

wird. Es zeigt sich durch die Korrelation der Intensität der C=O-Bande und den beiden

Parametern Säurezahl und kinematische Viskosität von 1-Octanol, 2-Hexanol, OME und

B0 bei verschiedenen Alterungszeiten, dass kein funktionaler Zusammenhang (linear,

exponentiell,...) zwischen Bande und Parameter besteht (vgl. Abb. 7.1.3). Es werden für

eine Vorhersage deutlich mehr Parameter benötigt, was durch einen klassischen Analy-

seansatz nicht realisierbar ist.

Abbildung 7.1.3: Links: Korrelation der Säurezahl verschiedener Kraftstoffe bei verschiede-
nen Alterungszeiten und der Intensität der C=O-Schwingungsbande ihrer jeweiligen Nahin-
frarotspektren. Rechts: Korrelation der kinematischen Viskosität verschiedener Kraftstoffe bei
verschiedenen Alterungszeiten und der Intensität der C=O-Schwingungsbande ihrer jeweiligen
Nahinfrarotspektren.

Für die Vorhersage werden daher Machine Learning (ML)-Modelle bzw. eine künstliche

Intelligenz benötigt, denn diese sind daten-getrieben, anstatt regelbasiert. Sie suchen

sich also den Zusammenhang zwischen Eingabedaten (NIR-Spektren) und zu vorher-
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sagenden Parametern (Bezeichnung, Alterungszeit, Säurezahl, kinematische Viskosität

und Dichte) selbst, ohne ein notwendiges physikalisches oder chemisches Modell [168].

7.1.2 Verschiedene Auswertealgorithmen zur Vorhersage relevan-

ter Parameter

Im Folgenden werden die Ergebnisse verschiedener Algorithmen zur Vorhersage der

Bezeichnung, Alterungszeit, Säurezahl, kinematischen Viskosität und Dichte anhand der

Nahinfrarotspektren der ungealterten und gealterten Kraftstoffe gezeigt und diskutiert,

um auf Basis der besten Ergebnisse zu entscheiden, welcher Algorithmus für die Vorher-

sage des Alterungsgrades verschiedener Kraftstoffe geeignet ist. Zur Vorhersage wurde

das in Kapitel 5.3 beschriebene Verfahren angewendet.

7.1.2.1 PLS-Algorithmus

Der PLS (Partial Least Squares)-Algorithmus (vgl. Kapitel 4.4.2) ist eine seit vielen Jah-

ren in der Chemometrie etablierte Methode zur Vorhersage von Konzentrationen aus

NIR-Spektren [167]. Daher wurde als erstes der PLS-Algorithmus zur Vorhersage der Be-

zeichnung der Kraftstoffe, der Alterungszeit, der Säurezahl, der kinematischen Viskosität

und der Dichte angewendet (vgl. Kapitel 5.3).

Durch die Anwendung des Algorithmus ergeben sich Werte für die Trainingsdaten und

die Testdaten. Durch die Trainingsdaten wird der Optimierungsfortschritt des Models auf-

gezeigt: Je besser die Vorhersage der Trainingsdaten, desto besser konnte das Modell

von den Trainingsdaten lernen. Um die Qualität der Vorhersage eines Sensorkonzeptes

zu beurteilen, ist jedoch in erster Linie die Vorhersage der Testdaten relevant. In Tabelle

8.8 (Anhang) sind die vorhergesagten Bezeichnungen für die Kraftstoffe und die vorge-

sagten Werte für die jeweiligen Alterungszeiten für die Testdaten gezeigt, wobei „real“

hierfür für den jeweiligen realen Wert und „pred.“ für den vorgesagten Wert steht. Für die

Trainingsdaten befinden sich die vorhergesagten Werte in Tabelle 8.12-8.17 (Anhang).

Für alle vorhergesagten Werte ist jeweils der absolute Fehler und der relative Fehler (mit

Ausnahme der Alterungszeit von 0 h) als Maß für die Abweichung zwischen realen und

vorhergesagten Werten angegeben. Zusätzlich wurde der Median (Md.) des relativen und

absoluten Fehlers für die Testdaten und die Trainingsdaten berechnet, wobei der Medi-

an anstatt des arithmetischen Mittels gewählt wurde, da dadurch einzelne „Ausreißer“ in

der Vorhersage weniger stark gewichtet wurden. Für die Vorhersage der Bezeichnung ist
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anstatt des absoluten und relativen Fehlers die Genauigkeit (engl. accuracy) a:

a =
Anzahl korrekt vorhergesagter Parameter

Anzahl aller Parameter
(7.1.1)

angegeben (vgl. Tab. 8.8 (Anhang)). Im Idealfall, wenn alle Bezeichnungen korrekt vor-

hergesagt wurden, ist a=1. Je kleiner a, desto schlechter die Vorhersage.

Im Folgenden werden alle Trainingsdaten mit TR bezeichnet und alle Testdaten mit TE.

Die Ergebnisse zeigen, dass sich für die Vorhersage der Bezeichnungen ein a-Wert von

a=0,0480 für TE und a=0,159 für TR ergab. Außerdem ergab sich bei der Vorhersage

der Alterungszeit ein mittlerer relativer Fehler von ∆̃rel=27 % für TE und von ∆̃rel=29 %

für TR. Der mittlere absolute Fehler beträgt ∆̃abs=9 h (TE) und ∆̃abs=22 h (TR). In Tabelle

8.9 (Anhang) ist die Vorhersage der TE-Werte für die Säurezahl gezeigt, die entspre-

chenden Werte für TR befinden sich in Tabelle 8.18-8.21 (Anhang). Es ergaben sich für

die Vorhersage mittlere relative Fehler von ∆̃rel=82 % (TE) und ∆̃rel=53 % (TR), sowie

mittlere absolute Fehler von ∆̃abs=5,9 mg·KOH/g und ∆̃abs=6,1 mg·KOH/g.

Abbildung 7.1.4: PLS-Algorithmus: Realer Wert vs. vorhergesagter Wert der Säurezahl (TAN).

Zur besseren Veranschaulichung wurden die jeweiligen realen und vorhergesagten Wer-

te der Säurezahl gegeneinander aufgetragen (vgl. Abb. 7.1.4). Die Funktion y=m·x+t

(m=1, t=0) dient als Referenz für eine perfekte Vorhersage. Je näher die Punkte an

der Linie liegen, desto genauer ist die Vorhersage. Das Bestimmtheitsmaß R2 dient zur

Quantifizierung der Güte der Vorhersage. Ein hoher R2-Wert (im Idealfall R2=1) zeigt,

dass die Vorhersage gut ist.

Für die Vorhersage der Säurezahl ergaben sich jedoch Werte von R2=0,7892 (TE) und

R2=0,6920 (TR). Die durch den PLS-Algorithmus vorhergesagten Werte für die kinemati-
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sche Viskosität werden in Tabelle 8.10 (Anhang) (TE) bzw. in Tabelle 8.22-8.25 (Anhang)

(TR) gezeigt. Es ergaben sich folgende Werte: Der mittlere relative Fehler der kinemati-

schen Viskosität ist ∆̃rel=17 %, sowohl für TE als auch für TR und die beiden mittleren

absoluten Fehler sind ∆̃abs=0,6701 mm2/s (TE) und ∆̃abs=0,6499 mm2/s (TR). Es erga-

ben sich R2-Werte von R2=0,7575 (TE) und R2=0,7058 (TR) (vgl. Abb. 7.1.5).

Abbildung 7.1.5: PLS-Algorithmus: Realer Wert vs. vorhergesagter Wert der kin. Viskosität.

Abbildung 7.1.6: PLS-Algorithmus: Realer Wert vs. vorhergesagter Wert der Dichte.

In Tabelle 8.11 und Tabelle 8.26-8.29 (Anhang) sind die vorhergesagten Werte für die

Dichte gezeigt. Der mittlere relative Fehler des vorhergesagten Wertes der Dichte ist

∆̃rel=0,3 % (TE) und ∆̃rel=0,7 % (TR) und der mittlere absolute Fehler der vorhergesag-

ten Dichte ist ∆̃abs=0,0025 kg/m3 (TE) und ∆̃abs=0,0059 kg/m3 (TR). Die berechneten

R2-Werte sind R2=0,9927 (TE) und R2=0,9912 (TR) (vgl. Abb. 7.1.6).

Die Ergebnisse zeigen, dass der PLS-Algorithmus zur Vorhersage der Bezeichnung, also
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zur Unterscheidung der Kraftstoffe ungeeignet ist. Ebenso ist die Genauigkeit der Vorher-

sage für die Alterungszeit, die Säurezahl und die Viskosität nicht ausreichend. Lediglich

die Vorhersage der Dichte mit dem PLS-Algorithmus lieferte gute Ergebnisse.

Obwohl der PLS-Algorithmus eine leistungsfähige Methode zur Modellierung von hoch-

dimensionalen und korrelierten Daten (wie NIR-Spektren) ist, stößt er an seine Grenzen,

wenn die zugrunde liegenden Beziehungen zwischen den Eingangsdaten und der zu

vorhersagenden Parameter stark nichtlinear sind, denn die PLS beruht auf einer linearen

Projektion der Eingangsdaten (vgl. Kapitel 4.4.2). Ein nichtlineares Lernverfahren, wie

der Random Forest-Algorithmus könnte eine vielversprechende Alternative darstellen.

7.1.2.2 Random Forest - Algorithmus

Der Random Forest-Algorithmus (vgl. Kapitel 4.4.3) ist ein Ensemble-Lernverfahren, das

durch die Kombination mehrerer Entscheidungsbäume robuste und flexible Modellierun-

gen ermöglicht, ohne explizite Annahmen über die Art der Korrelation zwischen Ein-

gangsdaten und zu vorhersagenden Parametern zu treffen [168].

Um zu testen, ob der Random Forest-Algorithmus zufriedenstellende Ergebnisse bei der

Vorhersage der verschiedenen Parameter liefert, wurde dieser auf den Datensatz der

NIR-Spektren angewendet (vgl. Kap. 5.3), wobei vor der Anwendung des Random Forest-

Algorithmus eine PCA (Hauptkomponentenanalyse) (vgl. Kapitel 4.4.1) durchgeführt wur-

de. Durch die Anwendung des Algorithmus ergaben sich Werte für die Testdaten (TE)

und die Trainingsdaten (TR). In Tabelle 8.30 und 8.34-8.39 (Anhang) ist die Vorhersage

der Bezeichnungen und der Alterungszeit gezeigt. Für die Vorhersage der Bezeichnun-

gen zeigte sich eine Genauigkeit von a=0,905 (TE) und a=1,0 (TR), was auf eine gute

Vorhersage hindeutet. Bei der Alterungszeit ergaben sich mittlere relative Fehler (Medi-

an) von ∆̃rel=18 % (TE) und ∆̃rel=7 % (TR) bzw. mittlere absolute Fehler von ∆̃abs=2 h

(TE) und ∆̃abs= 8 h (TR). Die Ergebnisse der Vorhersage der Säurezahl befinden sich

in Tabelle 8.31 bzw. in Tabelle 8.40-8.65 (Anhang). Es zeigt sich, dass die mittleren re-

lativen Fehler bei ∆̃rel=13 % (TE) und ∆̃rel=16 % (TR) und die mittleren absoluten Feh-

ler bei ∆̃abs=0,30 mg·KOH/g (TE) und ∆̃abs=2,22 mg·KOH/g (TR) liegen. Zur besseren

Vergleichbarkeit wurden die jeweiligen realen und vorhergesagten Werte gegeneinander

aufgetragen (vgl. Abb. 7.1.7) und die R2-Werte berechnet.
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Abbildung 7.1.7: Random Forest: Realer Wert vs. vorhergesagter Wert der Säurezahl (TAN).

Dadurch ergaben sich folgende R2-Werte: Für TE ist R2=0,9112 und für TR ist R2=0,9565.

In Tabelle 8.32 und in Tabelle 8.44-8.47 (Anhang) sind die Ergebnisse der Vorhersage

der kinematischen Viskosität gezeigt. Die mittleren relativen Fehler ergaben sich zu ∆̃rel=

2 % (TE) und ∆̃rel=2 % (TR) und die mittleren absoluten Fehler zu ∆̃abs=0,0663 mm2/s

(TE) und ∆̃abs=0,1333 mm2/s (TR). Es ergaben sich R2-Werte von R2=0,8400 (TE) und

R2=0,9474 (TR) (vgl. Abb. 7.1.8).

Die vorhergesagten Werte der Dichte befinden sich in Tabelle 8.33 bzw. in Tabelle 8.48-

8.51 (Anhang). Es ergaben sich folgende Werte: Der mittlere relative Fehler liegt bei

∆̃rel=0,1 % (TE) und ∆̃rel=0,2 % (TR) und die mittleren absoluten Fehler bei ∆̃abs=0,0007

kg/m3 (TE) und ∆̃abs=0,0020 kg/m3 (TR). Die berechneten R2-Werte sind R2=0,9899 (TE)

und R2=0,9884 (TR) (vgl. Abb. 7.1.9).

Abbildung 7.1.8: Random Forest: Realer Wert vs. vorhergesagter Wert der kin. Viskosität.
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Abbildung 7.1.9: Random Forest: Realer Wert vs. vorhergesagter Wert der Dichte.

Es zeigt sich, dass die Vorhersage mit dem Random Forest-Algorithmus bessere Ergeb-

nisse lieferte als mit dem PLS-Algorithmus, aber die Ergebnisse im Fall der Alterungszeit

und der Säurezahl noch immer nicht ausreichend genau sind. Die Vorhersage der Be-

zeichnung des Kraftstoffes, der Viskosität und der Dichte lieferte jedoch gute Ergebnis-

se. Dennoch ist eine Verbesserung der Vorhersage der Alterungszeit und der Säurezahl

wünschenswert.

Der Random Forest-Algorithmus kann auch nichtlineare Beziehungen zwischen den Ein-

gangsdaten und den zu vorhersagenden Parametern erkennen, was ein deutlicher Vorteil

gegenüber dem PLS-Algorithmus ist. Es bleibt dennoch die Herausforderung bestehen,

noch komplexere, nichtlineare Zusammenhänge zwischen den NIR-Spektren und den

Parametern zur Vorhersage zu erfassen. Da neuronale Netzwerke in der Lage sind, sehr

komplexe Zusammenhänge zwischen verschiedenen Daten selbstständig zu lernen [168],

wurde im nächsten Schritt untersucht, ob eine künstliche Intelligenz, also ein neuronales

Netzwerk (ANN) eine noch präzisere Vorhersage ermöglichen kann.

7.1.2.3 Künstliche Intelligenz: Neuronales Netzwerk (ANN)

Ein neuronales Netzwerk (ANN) (vgl. Kapitel 4.4.4) ist eine künstliche Intelligenz (KI), wel-

che eigenständig relevante Merkmale aus den NIR-Spektren lernen [168] und somit den

Datensatz besser nutzen kann als der PLS- oder der Random Forest-Algorithmus. Es

besteht aus mehreren Schichten aus Neuronen, in denen mathematische Operationen

durchgeführt werden. Dadurch können auch feine Unterschiede in den Spektren erkannt

werden, die andere Algorithmen übersehen.

Die KI, die auf die Daten angewendet wurde, ist das MLP (Multi-layer Perzeptron)-Modell
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(vgl. Kapitel 5.3), wobei vor der Anwendung der KI eine PCA (vgl. Kapitel 4.4.1) an

den Daten durchgeführt wurde. Die Vorhersage lieferte folgende Ergebnisse: Die Be-

zeichnungen der Kraftstoffe und Kraftstoffmischungen konnten mit einer Genauigkeit von

a=1,00 sowohl für die Testdaten (TE) als auch für die Trainingsdaten (TR) vorhergesagt

werden (vgl. Tab. 8.52, 8.56 und 8.57 (Anhang)). Bei der Vorhersage der Alterungszeit

zeigte sich ein mittlerer relativer Fehler von ∆̃rel=4 % (TE) und ∆̃rel=0 % (TR) bzw. ein

mittlerer absoluter Fehler von ∆̃abs=1 h (TE) und ∆̃abs= 0 h (TR) (vgl. Tab. 8.52 und

8.58-8.61 (Anhang)). Die Vorhersage der Säurezahl lieferte folgende Werte für den mitt-

leren relativen und den mittleren absoluten Fehler: Der mittlere relative Fehler liegt bei

∆̃rel = 3,2 % (TE) und ∆̃rel = 0,7 % (TR) und der mittlere absolute Fehler bei ∆̃abs=

0,28 mg·KOH/g (TE) und ∆̃abs=0,002 mg·KOH/g (TR) (vgl. Tabelle 8.53 und 8.62-8.65

(Anhang)).

Abbildung 7.1.10: ANN: Realer Wert vs. vorhergesagter Wert der Säurezahl (TAN).

Zur besseren Vergleichbarkeit wurden die jeweiligen vorhergesagten und realen Werte

gegeneinander aufgetragen und die R2-Werte berechnet (vgl. Abb. 7.1.10). Dadurch er-

gaben sich folgende R2-Werte: Für TE ist R2=0,9940 und für TR ist R2=1,000. In Tabelle

8.54 bzw. Tabelle 8.66-8.69 (Anhang) sind die Werte für die Vorhersage der kinemati-

schen Viskosität gezeigt. Es ergaben sich mittlere relative Fehler von ∆̃rel=0,09 % (TE)

und ∆̃rel=0,02 % (TR) und mittlere absolute Fehler von ∆̃abs=0,0049 mm2/s (TE) und

∆̃abs=0,0004 mm2/s (TR). Außerdem ergaben sich R2-Werte von R2=0,9901 (TE) und

R2=1,000 (TR) (vgl. Abb. 7.1.11).
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Abbildung 7.1.11: ANN: Realer Wert vs. vorhergesagter Wert der kin. Viskosität.

Abbildung 7.1.12: ANN: Realer Wert vs. vorhergesagter Wert der Dichte.

Bei den vorhergesagten Werten der Dichte (vgl. Tabelle 8.55 und 8.70-8.73 (Anhang)) er-

gaben sich mittlere relative Fehler von ∆̃rel=0,5 % (TE) und ∆̃rel=0,2 % (TR) und mittlere

absolute Fehler von ∆̃abs=0,0045 kg/m3 (TE) und ∆̃abs=0,0017 kg/m3 (TR). Die berech-

neten R2-Werte sind R2=0,9715 (TE) und R2=0,9994 (TR) (vgl. Abb. 7.1.12).

Insgesamt zeigt sich, dass die Vorhersage mit dem neuronalen Netzwerk sehr gute Er-

gebnisse lieferte. Die Bezeichnungen wurden mit einer Genauigkeit von 100 % vorher-

gesagt und auch die Werte der Alterungszeit, der Säurezahl, der Viskosität und der Dich-

te konnten mit einer Genauigkeit ≥96 % vorhergesagt werden. Dadurch zeigt sich ei-

ne deutliche Verbesserung gegenüber dem PLS- und dem Random Forest-Algorithmus,

denn mit einem ANN ist, im Gegensatz zu den anderen Modellen, auch eine Vorhersage

der Säurezahl und der Viskosität mit einem relativen Fehler <5 % möglich.
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7.1.3 Vergleich der verschiedenen Algorithmen

Im Folgenden werden die Ergebnisse der Vorhersage verschiedener Parameter (Be-

zeichnung, Alterungszeit, Säurezahl, kinematische Viskosität und Dichte des Kraftstoffs)

mit Hilfe verschiedener Algorithmen der multivariaten Datenanalyse (PLS-Algorithmus),

des maschinellen Lernens (Random Forest-Algorithmus) und einer künstlichen Intelli-

genz (ANN) miteinander verglichen. Dadurch kann ein sinnvolles Sensorkonzept zur

Charakterisierung und Vorhersage des Alterungsgrades verschiedener Kraftstoffe und

Kraftstoffmischungen erstellt werden. In Tabelle 7.2 sind verschiedene Parameter aufge-

zeigt, durch die die Genauigkeit der Vorhersage mit den drei verschiedenen Algorithmen

charakterisiert werden kann. Hierbei ist sowohl die Vorhersage der Trainingsdaten (TR)

als auch der Testdaten (TE) gezeigt.

Sowohl die Vorhersage der Bezeichnungen der verschiedenen Kraftstoffe als auch die

Vorhersage der Alterungszeit mit dem PLS-Algorithmus lieferte unzureichende Ergebnis-

se. Der a-Wert ist viel zu gering, es konnten nur ∼5 % der Bezeichnungen korrekt vorge-

sagt werden. Der PLS-Algorithmus ist demnach hinsichtlich dieser Problemstellung nicht

geeignet. Dies zeigt sich auch an der Vorhersage der Alterungszeit der TE: Ein mittlerer

relativer Fehler von 27 % ist zu hoch für eine vernünftige Einschätzung, ob ein Kraftstoff

gealtert ist oder nicht. Die Vorhersage der Säurezahl und der kinematischen Viskosität

funktionierte mit dem PLS-Algorithmus ebenfalls unzureichend, denn die TE zeigten bei

der Vorhersage einen mittleren relativen Fehler von 82 % (Säurezahl) bzw. 17 % (kine-

matische Viskosität). Lediglich die Vorhersage des Wertes der Dichte funktionierte mit

einem mittleren relativen Fehler von 0,3 % (TE) sehr gut mit dem PLS-Algorithmus.

Die PLS ist grundsätzlich ein geeigneter Ansatz zur Datenreduktion, geht allerdings da-

von aus, dass die Beziehung zwischen den Eingangsdaten und den Parametern, die

vorhergesagt werden sollen, überwiegend linear ist. Die unzureichenden Ergebnisse der

Vorhersage deuten darauf hin, dass die Zusammenhänge zwischen den Eingangsdaten

(NIR-Spektren) und den Parametern die vorhergesagt werden sollten, in hohem Maße

nichtlinear waren. Die Dichte bildete hierbei eine Ausnahme: Die Ergebnisse der Vorher-

sage deuten auf eine Linearität hin.
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Tabelle 7.2: Vergleich der Genauigkeit (accuracy a, mittlerer relativer Fehler ∆̃rel (Median),
mittlerer absoluter Fehler ∆̃abs (Median) und Bestimmtheitsmaß R2 der Vorhersage verschie-
dener Parameter mit Hilfe verschiedener Auswertealgorithmen: PLS (Partial Least Squares-
Algorithmus), Random Forest-Algorithmus und ANN (neuronales Netzwerk, KI). Testdaten: (TE)
und Trainingsdaten: (TR).

Parameter Genauigkeit
der Vorhersage

PLS Random Forest ANN

Bezeichnung a (TE): 0,048
(TR): 0,159

(TE): 0,905
(TR): 1,000

(TE): 1,000
(TR): 1,000

Alterungszeit ∆̃rel [%] (TE): 27
(TR): 29

(TE): 18
(TR): 7

(TE): 4
(TR): 0

∆̃abs [h] (TE): 9
(TR): 22

(TE): 2
(TR): 8

(TE): 1
(TR): 0

Säurezahl ∆̃rel [%] (TE): 82
(TR): 53

(TE): 13
(TR): 16

(TE): 3,2
(TR): 0,7

∆̃abs [mg·KOH/g] (TE): 5,9
(TR): 6,1

(TE): 0,3
(TR): 2,2

(TE): 0,28
(TR): 0,002

R2 (TE): 0,7892
(TR): 0,6920

(TE): 0,9112
(TR): 0,9565

(TE): 0,9940
(TR): 1,0000

kin. Viskosität ∆̃rel [%] (TE): 17
(TR): 17

(TE): 2
(TR): 4

(TE): 0,09
(TR): 0, 02

∆̃abs [mm2/s] (TE): 0,6701
(TR): 0,6499

(TE): 0,0663
(TR): 0,1333

(TE): 0,0049
(TR): 0,0004

R2 (TE): 0,7575
(TR): 0,7058

(TE): 0,8400
(TR): 0,9474

(TE): 0,9901
(TR): 1,0000

Dichte ∆̃rel [%] (TE): 0,3
(TR): 0,7

(TE): 0,1
(TR): 0,2

(TE): 0,5
(TR): 0,2

∆̃abs [kg/m3] (TE): 0,0025
(TR): 0,0059

(TE): 0,0007
(TR): 0,0020

(TE): 0,0045
(TR): 0,0017

R2 (TE): 0,9927
(TR): 0,9912

(TE): 0,9899
(TR): 0,9884

(TE): 0,9715
(TR): 0,9994

Insgesamt ist die Alterung der Kraftstoffe jedoch ein hochkomplexer, nichtlinearer Pro-

zess, bei dem verschiedene chemische Reaktionen unterschiedlich stark ausgeprägt

sind (vgl. Kapitel 6.1 und 6.2). Aus diesem Grund zeigte die Vorhersage mit dem Random

Forest-Algorithmus deutlich bessere Werte (vgl. Tab. 7.2), denn beim Random Forest

handelt es sich und ein Ensemble-Lernverfahren, das aus einer großen Anzahl einzelner

Entscheidungsbäume besteht, welche von Natur aus nichtlineare Modelle sind [168]. Die

Vorhersage der Bezeichnungen lieferte bei ∼91 % korrekt vorhergesagter Bezeichnun-
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gen deutlich bessere Ergebnisse. Die Vorhersage der Alterungszeit und der Säurezahl

erwies sich jedoch mit mittleren relativen Fehlern von 18 % (Alterungszeit) bzw. 13 %

(Säurezahl) noch immer als unzureichend genau. Dafür zeigte die Vorhersage der kine-

matischen Viskosität und der Dichte mit einer mittleren Genauigkeit von 98 % (Viskosität)

und 99,9 % (Dichte) sehr gute Ergebnisse. Die Vorhersage der Ergebnisse wurde also

durch den Random Forest-Algorithmus im Vergleich zur PLS deutlich verbessert, da die-

ser auch nichtlineare Beziehungen modellieren kann. Allerdings trifft er Entscheidungen

basierend auf diskreten Schwellenwerten [168]. Es ist also möglich, dass die Abhängig-

keiten zwischen den hochdimensionalen kontinuierlichen NIR-Spektren und den zu vor-

hersagenden Parametern zu komplex sind, um durch den Random Forest-Algorithmus

optimal vorhergesagt werden zu können. Eine künstliche Intelligenz, also ein neuronales

Netzwerk (ANN) lieferte (trotz der für ein ANN eher geringen Datenmenge) die besten

Ergebnisse bei der Vorhersage. Die Bezeichnungen der verschiedenen Kraftstoffe konn-

ten mit einer Genauigkeit von 100 % vorhergesagt werden. Die Alterungszeit konnte mit

einem mittleren relativen Fehler von 4 % und die Säurezahl mit einem mittleren relati-

ven Fehler von 3,2 % vorhergesagt werden. Bei der kinematischen Viskosität und der

Dichte ergaben sich Fehler von 0,09 % und 0,5 %. Die Genauigkeit wurde durch das

ANN im Gegensatz zu den anderen Modellen deutlich verbessert und die Vorhersage

führte zu sehr guten Werten. Die ANN sind, im Gegensatz zu den anderen Modellen, in

der Lage, selbstständig abstrakte Zusammenhänge aus den Daten zu lernen, indem sie

mehrere Schichten von Neuronen durchlaufen [168]. Möglicherweise konnte das Modell

dadurch selbstständig viel komplexere Zusammenhänge (wie beispielsweise eine Kom-

bination von Wellenlängen, die für eine Vorhersage wichtig sind) erfassen und dadurch

eine optimale Vorhersage der Parameter gewährleisten. Das Training eines neuronalen

Netzwerks ist aufwändiger als das eines Random Forest-Algorithmus, allerdings zeigen

die Ergebnisse, dass mit einem ANN die Vorhersage deutlich verbessert wurde.

Für ein Sensorkonzept zur Charakterisierung verschiedenster Kraftstoffe mit gleichzei-

tiger Erfassung des Alterungsgrades erweist sich ein Sensor, der nur auf der Nahinfra-

rotspektroskopie basiert, als äußerst zielführend. Als Auswertealgorithmus empfiehlt sich

ein neuronales Netzwerk. Durch das Training dieses Netzwerks ist eine präzise Vorher-

sage verschiedenster Parameter, also die genaue Charakterisierung (Bezeichnung) des

verwendeten Kraftstoffs, die Vorhersage der genauen Alterungszeit, der Säurezahl, der

kinematischen Viskosität und der Dichte (mittlere relative Fehler der Werte stets <5 %)
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möglich. Durch diese Parameter kann der genaue Alterungsgrad eines Kraftstoffes er-

fasst werden.

Es ist jedoch wichtig zu erwähnen, dass, um sicherzustellen, dass der Algorithmus auch

weitere Kraftstoffe, wie beispielsweise fossiles Benzin, FAME oder HVO, zuverlässig vor-

hersagen kann, das Trainingsdatenset erweitert werden sollte. Des Weiteren bezieht sich

die Alterungszeit, die vorhergesagt werden kann, auf die Zeit der beschleunigten Alterung

im Labor, da der Algorithmus mit diesen Daten trainiert wurde. Um zu entscheiden, wie

lange ein Kraftstoff tatsächlich in der Realität gealtert ist, wären Versuchsreihen nötig, um

die reale Alterungszeit mit der Alterungszeit im Labor zu vergleichen. Dennoch bietet die

Vorhersage der in verschiedenen Kraftstoffnormen (DIN EN 228 [15], DIN EN 590 [16] und

DIN EN 14214 [17]) festgelegten Parameter Säurezahl, kinematische Viskosität und Dich-

te einen zuverlässigen Anhaltspunkt, ob ein Kraftstoff noch unproblematisch verwendet

werden kann (vgl. Kapitel 4.1.3) und durch die genaue Kenntnis über den verwendeten

Kraftstoff kann das Motormanagement auf den Kraftstoff eingestellt werden, um dadurch

eine optimale Verbrennung zu gewährleisten.
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8. Diskussion der Ergebnisse

Im folgenden Kapitel werden die zentralen Ergebnisse dieser Arbeit zusammengefasst

und im Hinblick auf die gestellten Fragestellungen diskutiert.

Der Einsatz von regenerativen Kraftstoffe und insbesondere von E-Fuels, kann einen

wichtigen Beitrag zur Erreichung der Pariser Klimaziele leisten. Allerdings stellt die Al-

terung dieser Kraftstoffe eine Herausforderung dar, da sie zu Veränderungen in der Zu-

sammensetzung, den Verbrennungseigenschaften und der Kompatibilität mit anderen

Kraftstoffen führen kann. Ebenso können die Alterungsprodukte zu einer Materialunver-

träglichkeit mit Leitungen oder Dichtungen führen, so dass diese beschädigt werden kön-

nen. Das Ziel der vorliegenden Studie war deshalb, die thermo-oxidative Alterung aus-

gewählter, vielversprechender, regenerativer Kraftstoffe detailliert zu untersuchen, um

zu bewerten, ob sich deren chemische Zusammensetzung oder die in den relevanten

Kraftstoffnormen (DIN EN 228 [15], DIN EN 590 [16] und DIN EN 14214 [17]) definierten

Parameter durch die Alterung verändern und dadurch die Einsatzfähigkeit der Kraftstoffe

beeinträchtigt wird.

Des Weiteren sollte ein Sensorkonzept entwickelt werden, um verschiedene Kraftstoffe

zu klassifizieren und deren Alterungsgrad zu bestimmen. Eine solche Sensorik könnte

im Fahrzeug oder in Tanklagern eingesetzt werden, um zu detektieren, welcher Kraftstoff

im Verbrennungsmotor zum Einsatz kommt und ob dieser bereits gealtert ist oder noch

problemlos verwendet werden kann.

Zwei äußerst vielversprechende Kraftstoffkomponenten sind Solketal und OME (Oxy-

methylenether). Solketal weist aufgrund seines hohen Sauerstoffgehalts ein verringertes

Potential zur Rußbildung sowie verbesserte Kaltfließeigenschaften auf, während der E-

Fuel OME aufgrund des Fehlens von C–C-Bindungen (nahezu) rußfrei verbrennt. Aller-

dings erfüllen weder Solketal noch OME in reiner Form alle Parameter der Kraftstoffnorm

DIN EN 590 [16], sodass geeignete Mischungen erforderlich sind. Um zu bewerten, ob
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sich die Zusammensetzung der Kraftstoffkomponenten infolge der Alterung verändert

und damit die Einsatzfähigkeit beeinträchtigt wird, wurde in dieser Arbeit die thermo-

oxidative Alterung dieser beiden Kraftstoffkomponenten, sowohl in Reinform als auch in

Mischungen mit unterschiedlichen Volumenverhältnissen (3:1, 1:1, 1:3) (vol%), detailliert

untersucht. Die Untersuchung beinhaltete die Aufklärung der Reaktionspfade der Entste-

hung der Alterungsprodukte und kinetische Untersuchungen. Hierzu wurden die reinen

Kraftstoffe und die Mischungen mit der offenen Alterungsapparatur (vgl. Kapitel 5.1.2) bis

zu 144 h gealtert und die Alterungsprodukte mit Hilfe von GCMS-Messungen (vgl. Kapitel

5.2.1) analysiert und zusätzlich Säurezahl-, Viskositäts- und Dichtemessungen (vgl. Ka-

pitel 5.2.3 und 5.2.4) durchgeführt, um die Auswirkungen der Alterung auf die Kraftstoffe

auch auf makroskopischer Ebene zu charakterisieren.

Die Ergebnisse zeigen, dass weder Solketal, noch OME stabil gegenüber thermo- oxidati-

ver Alterung blieben und sich eine Vielzahl verschiedener Alterungsprodukte gebildet hat

(vgl. Abb. 8.0.1). Durch eine Hydrolyse spaltete sich Solketal in dessen Synthese-Edukte

Glycerin und Aceton, die wiederum, ebenso wie Solketal selbst, durch verschiedene Re-

aktionen wie Oxidation, oxidative C-C-Bindungsspaltung, Veresterung und Decarboxy-

lierung zu Aldehyden (z.B. 2,2-dimethyl-1,3-dioxolane-4-carboxaldehyd), Säuren (z.B.

Ameisensäure oder Essigsäure), Estern (z.B. Acetin oder 2,2-dimethyl-1,3-dioxolane-4-

carboxylat) und weiteren Verbindungen umgesetzt wurden. Die Alterung von OME führte

aufgrund säurekatalysierter und oxidativer Zersetzung zu einer Abnahme der längerket-

tigen OME (OME3-6), einer Zunahme der kurzkettigen OME (OME1-2) sowie zur Bildung

von Methanol und Formaldehyd. Letzteres konnte weiter zu Ameisensäure oxidiert wer-

den, die wiederum mit Methanol zu Methylformiat verestert wurde. Alternativ führte das

während der Alterung entstandene Formaldehyd zu einer Entstehung des Feststoffs Par-

aformaldehyd infolge von Polymerisationsprozessen. Bei der Alterung der Mischungen

sind die selben Produkte wie bei der Alterung der reinen Kraftstoffe entstanden, jedoch

änderte sich der zeitliche Verlauf der jeweiligen Konzentrationen je nach Mischung.

Die während der Alterung auftretende Veränderung der molekularen Zusammensetzung

der Kraftstoffe kann eine Veränderung ihrer Polarität bewirken und dadurch die Mischbar-

keit mit Wasser beeinflussen. Darüber hinaus können sowohl Verluste an chemisch ge-

bundener Energie als auch veränderte Wechselwirkungen mit kraftstoffführenden Mate-

rialien auftreten, was die Einsatzfähigkeit der Kraftstoffe erheblich beeinträchtigen kann.
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Abbildung 8.0.1: Reaktionspfade der thermo-oxidativen Alterung von Solketal (oben) und Oxy-
methylenether (OME) (unten) [190].

Die kinetischen Untersuchungen zeigten eine unterschiedlich starke Verringerung der

Konzentration von Solketal um ~50-99 %, sowohl bei den Mischungen als auch bei der

Alterung in reiner Form. Weiterhin zeigte sich eine Zunahme verschiedener Alterungspro-
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dukte wie beispielsweise Glycerin, Aceton oder 2,2-dimethyl-1,3-dioxolane-4-carboxylat.

Die Konzentration der OME3-6 zeigte eine Abnahme um ~45-65 % während der Alterung,

die Konzentration der OME1-2 nahm während der Alterung um ~2-51 % zu. Hierbei wies

die 3:1-Mischung eine deutlich höhere Stabilität auf als die anderen Mischungen oder

das reine OME.

Des Weiteren zeigte sich bei der Alterung von reinem OME und bei allen Mischungen,

mit Ausnahme der 3:1-Mischung, eine Bildung von Paraformaldehyd. Dieser als Präzipi-

tat ausfallende Feststoff erweist sich als problematisch für den Einsatz, da das Präzipitat

den Kraftstofffilter verstopfen und zu Schäden führen kann. Die zusätzlich durchgeführten

Säurezahl-, Viskositäts- und Dichtemessungen (vgl. Kapitel 5.2.3 und 5.2.4) zeigten, so-

wohl bei der Alterung von reinem Solketal als auch bei der Alterung von reinem OME und

allen Mischungen, eine Zunahme aller gemessenen Kraftstoffparameter. Jedoch zeigte

sich, dass der Wert der Viskosität der 3:1- und der 2:1-Mischung bis zu einer Alterungs-

zeit von 72 h innerhalb der in der Kraftstoffnorm DIN EN 590 [16] festgelegten Grenzwerte

blieb.

Aufgrund der verbesserten Stabilität der 3:1-Mischung gegenüber thermo-oxidativer Al-

terung könnte diese eine vielversprechende Option für zukünftige Kraftstoffe darstellen.

Darüber hinaus könnten auch ternäre Gemische aus OME, Solketal (3:1) und weiteren

regenerativen Kraftstoffen eine vielversprechende Möglichkeit für nachhaltige Kraftstoff-

konzepte sein.

Auch Alkohole sind vielversprechende Kraftstoffe oder Beimischkomponenten in Kraft-

stoffen, denn diese können regenerativ erzeugt werden und ihr Einsatz weist Vorteile bei

der Verbrennung auf. Aus diesem Grund wurde in dieser Arbeit die Alterung verschiede-

ner Alkohole untersucht. Als Vertreter der linearen Alkohole wurden hierbei der kürzerket-

tige Alkohol 1-Hexanol und der längerkettige Alkohol 1-Octanol untersucht, der Vertreter

der iso-Alkohole war 2-Hexanol. Das Ziel war die Stabilität der Alkohole in Abhängigkeit

ihrer Kettenlänge und Position der Hydroxygruppe zu bewerten. Hierfür wurden die Alko-

hole sowohl mit der offenen Alterungsapparatur (vgl. Kapitel 5.1.2) bis zu 192 h gealtert,

um kinetische Untersuchungen an der flüssigen Phase der gealterten Kraftstoffe durch-

zuführen als auch mit der geschlossenen Alterungsapparatur (vgl. Kapitel 5.1.3), um die

Kohlenstoff-Massenbilanzierung der flüssigen Phase und der Gasphase der bis 120 h

gealterten Kraftstoffe zu schließen. Die entstandenen Alterungsprodukte wurden durch

GC-MS-Messungen (vgl. Kapitel 5.2.1) detektiert und es wurden zusätzlich Viskositäts-
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und Säurezahlmessungen (vgl. Kapitel 5.2.3 und 5.2.4) durchgeführt.

Abbildung 8.0.2: Reaktionspfade der thermo-oxidativen Alterung von n-Alkoholen (links) und
iso-Alkoholen (rechts).

Bei der Alterung der n-Alkohole wurde eine Vielzahl an Alterungsprodukten gebildet (vgl.

Abb. 8.0.2 links). Durch die Oxidation der n-Alkohole entstanden Aldehyde, die weiter zu

Carbonsäuren oxidiert wurden und aus den entstandenen Säuren konnten durch oxidati-

ve C-C-Bindungsspaltung weitere Produkte entstehen: Kürzerkettige Carbonsäuren und

kürzerkettige n-Alkohole. Letztere konnten ihrerseits zu Aldehyden und weiter zu Carbon-

säuren oxidiert werden. Außerdem konnten aus den Säuren durch oxidative Decarboxy-



132

lierung kürzerkettige n-Alkohole entstehen. Sämtliche entstandene Säuren konnten mit

den ursprünglich vorhandenen n-Alkoholen verestert werden, weshalb eine Vielzahl an

Estern als Alterungsprodukte detektiert wurde.

Auch die hier infolge der Alterung auftretende Veränderung der molekularen Zusammen-

setzung der Alterung kann sich als problematisch erweisen. Die Entstehung der Ester

bewirkt eine Verringerung der Polarität und führt zu einer Veränderung der Löslichkeit,

was gerade in Kraftstoffmischungen problematisch sein kann.

Die kinetischen Untersuchungen der beiden n-Alkohole zeigen, dass sich die Konzentra-

tion von 1-Hexanol mit steigender Alterungszeit stetig verringert hat, bis zu einem Wert

von ~65 % der Ausgangskonzentration nach 192 h Alterungszeit. Die Konzentrationen

der entstandenen Aldehyde nahm mit steigender Alterungszeit bis zu einem Maximum

zu und anschließend wieder ab, während die Konzentration sämtlicher entstandener Säu-

ren mit steigender Alterungszeit zunahm. Das Selbe zeigte sich bei den Konzentrationen

der Ester. Bei der Alterung von 1-Octanol zeigte sich, dass dessen Konzentration mit

steigender Alterungszeit stetig abnahm bis zu einem Wert von ~27 % der ursprüngli-

chen Konzentration. Die entstandenen Produkte zeigten einen ähnlichen Verlauf wie bei

1-Hexanol, allerdings entstanden durch die zusätzlichen zwei C-Atome des 1-Octanol-

Moleküls mehr verschiedene Produkte.

Bei der Alterung des iso-Alkohols 2-Hexanol entstanden während der Alterung deutlich

weniger Produkte als bei der Alterung der n-Alkohole. Durch die Oxidation des iso-

Alkohols entstand ein Keton, welches zwar nicht weiter oxidiert werden, jedoch durch

oxidative Bindungsspaltung der zum Keton benachbarten C-C Bindung in kürzerketti-

ge n-Alkohole und kürzerkettige Carbonsäuren umgewandelt werden konnte. Die C-C

Bindung wird durch die C=O-Bindung im Keton stärker polarisiert als durch eine C-OH-

Bindung im Alkohol, wodurch die oxidative C-C-Bindungsspaltung begünstigt wird [191].

Die n-Alkohole konnten zu Aldehyden und weiter zu Säuren oxidiert werden und aus

den Säuren konnten entweder durch oxidative Decarboxylierung kürzerkettige n-Alkohole

oder durch Veresterung mit dem ursprünglich vorhandenem 2-Hexanol Ester gebildet

werden (vgl. Abb. 8.0.2 rechts). Die oxidative C-C-Bindungsspaltung ist aufgrund der Bin-

dungsenergien (∆DH(25◦C)=370 kJ/mol [192]) deutlich unwahrscheinlicher als eine direkte

Oxidation, die allerdings im Fall eines Ketons nicht möglich ist. Dadurch konnte die Ent-

stehung von weniger Alterungsprodukten bei der Alterung der iso-Alkohole im Vergleich

zu den n-Alkoholen erklärt werden. Die kinetischen Untersuchungen zeigten, dass sich

die Konzentration von 2-Hexanol mit steigender Konzentration bis auf einen Wert von
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~79 % der Anfangskonzentration verringert hat, während die Konzentration des Ketons,

der Säuren und der Ester mit steigender Alterungszeit zunahmen.

Abbildung 8.0.3: Kohlenstoffmassenbilanzierung der thermo-oxidativen Alterung (120 h) von
1-Hexanol (oben links), 1-Octanol (oben rechts) und 2-Hexanol (unten) [193].

Durch die Kohlenstoffmassenbilanzierung (vgl. Abb. 8.0.3) konnten die Ergebnisse der

kinetischen Untersuchung bestätigt und erweitert werden. Es zeigte sich bei der Alterung

(in der geschlossenen Alterungsapparatur (vgl. Kapitel 5.1.3)) von 1-Hexanol, dass nach

120 h Alterungszeit noch 63,21 m% von 1-Hexanol vorhanden waren. Weiterhin wurden

0,86 m% des Aldehyds Hexanal und 7,98 m% Säuren gebildet, wobei die Hexansäure

hierbei den größten Anteil hatte. Außerdem wurden 0,92 m% 1-Pentanol und insgesamt

15,67 m% Ester gebildet. Der Ester aus 1-Hexanol und Hexansäure (Hexylhexanoat) war

mit 13,93 m% das Hauptprodukt. Aufgrund der Decarboxylierung wurden 3,10 m% Koh-

lendioxid in der Gasphase gebildet, die restlichen 8,26 m% waren nicht quantifizierbare

Produkte wie weitere Aldehyde, kürzerkettige Alkohole und Ester. Die Ergebnisse der

Kohlenstoffmassenbilanzierung von 1-Octanol zeigen, dass nach einer Alterungszeit von
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120 h noch 56,92 m% des Eduktes vorhanden waren. Des Weiteren entstanden 0,56 m%

Octanal und insgesamt 8,02 m% Säuren, wobei 6,99 m% Octansäure gebildet wurde.

Das gebildete Hauptprodukt war mit 16,32 m% der Ester Octyloctanoat (aus 1-Octanol

und Octansäure). Weiterhin wurden 3,83 m% weitere Ester, 0,29 m% kürzerkettige n-

Alkohole und 3,34 m% an CO2 gebildet. Die nicht quantifizierbaren restlichen 11,00 m%

waren weitere Ester, kürzerkettige n-Alkohole und Aldehyde. Die Ergebnisse der Kohlen-

stoffmassenbilanzierung von 2-Hexanol zeigen, dass noch 80,33 m% des Eduktes nach

einer Alterungszeit von 120 h vorhanden waren. Weiterhin wurden 10,09 m% des Ketons

2-Hexanon, 0,03 m% Säuren und 1,40 m% an CO2 gebildet. Die 8,15 m% an nicht quan-

tifizierbaren Produkten waren z.B. Ester.

Ergänzend wurden Viskositäts- und Säurezahlmessungen durchgeführt. Dabei zeigte

sich, dass die Säurezahl der Alterungsprodukte von 2-Hexanol nach 192 h auf einen ma-

ximalen Wert von 67,61 mg·KOH/g anstieg. Die Alterungsprodukte von 1-Octanol zeig-

ten einen Anstieg auf einen maximalen Wert von 56,52 mg·KOH/g und bei 2-Hexanol

auf einen maximalen Wert von 2,41 mg·KOH/g. Der jeweilige Anstieg war auf eine Ent-

stehung von freien Carbonsäuren während der Alterung zurückzuführen. Die Ergebnisse

der Viskositätsmessungen zeigen, dass die kinematische Viskosität während der Alte-

rung von 1-Hexanol um ~34 % nach 192 h verringert wurde. Des Weiteren zeigte sich

eine Verringerung von ~28 % nach 192 h Alterungszeit von 1-Octanol und um ~53 % bei

der Alterung von 2-Hexanol. Die jeweilige Abnahme der Viskosität ist auf die Entstehung

von Estern und des Ketons 2-Hexanol, sowie auf die Entstehung kurzkettiger Produkte

zurückzuführen.

Insgesamt zeigen die Experimente, dass der iso-Alkohol eine höhere Stabilität gegen-

über thermo-oxidativer Alterung aufwies als die n-Alkohole und dass die Stabilität mit

steigender Kettenlänge abnahm. Es lässt sich also folgende Stabilität ableiten:

Stabilitätn−Alkohol(langkettig) < Stabilitätn−Alkohol(kürzerkettig) < Stabilitätiso−Alkohol

was bedeutet, dass 1-Octanol eine geringere Stabilität gegenüber thermo-oxidativer Al-

terung zeigt als 1-Hexanol, während 2-Hexanol die höchste Stabilität aufweist.

Diese Ergebnisse liefern wertvolle Erkenntnisse für die Auswahl geeigneter Alkohole im

Kontext nachhaltiger Kraftstoffanwendungen. Aufgrund ihrer erhöhten Stabilität gegen-

über thermo-oxidativer Alterung stellen iso-Alkohole eine vielversprechende Alternative

zu n-Alkoholen dar und sollten bevorzugt als regenerative Kraftstoffe oder in Kraftstoff-
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mischungen eingesetzt werden.

In dieser Arbeit wurden die Alterungsprozesse regenerativer Kraftstoffe detailliert analy-

siert. Der Einsatz geeigneter Antioxidantien (vgl. Kapitel 4.2) kann diese Prozesse ver-

langsamen und so die Funktionsfähigkeit der Kraftstoffe länger sichern. Daher wurden

Untersuchungen mit dem auf Benzophenoxazin basierenden Farbstoff Nilrot durchge-

führt. Es wurden 50 ppm Nilrot zu den beiden n-Alkoholen 1-Hexanol und 1-Octanol

zugegeben und die so markierten Alkohole mit der offenen Alterungsapparatur (vgl. Ka-

pitel 5.1.2) bis 192 h gealtert. Die entstandenen Alterungsprodukte wurden durch FT-IR-

Messungen (vgl. Kapitel 5.2.5), Fluoreszenzmessungen (vgl. Kapitel 5.2.6) so wie Mes-

sungen der Säurezahl und der Viskosität (vgl. Kapitel 5.2.3 und 5.2.4) analysiert. Die

Ergebnisse zeigen eine antioxidative Wirkung von Nilrot auf die Kraftstoffe. Durch die

Zugabe von 55 ppm Nilrot wurde die Bildung von Säuren und Estern während der Al-

terung von 1-Hexanol und 1-Octanol unterdrückt bzw. stark verlangsamt. Des Weiteren

zeigte sich, dass während der Alterung der markierten Alkohole kein Anstieg der Säure-

zahl und keine Veränderung der kinematischen Viskosität auftrat. Durch einen Vergleich

mit dem Antioxidans BHT (Butylhydroxytoluol) konnte die antioxidative Wirkung von Nilrot

bestätigt werden, da Nilrot den Verlauf der Alterung von 1-Octanol und fossilem Diesel-

kraftstoff (B0) in ähnlichem Maß beeinflusst hat, wie BHT.

Für den zukünftigen Einsatz erneuerbarer Kraftstoffe ist es außerdem von zentraler Be-

deutung, sicherzustellen, dass in Verbrennungsmotoren tatsächlich ausschließlich diese

eingesetzt werden. Eine Kraftstoffmarkierung mit einem geeigneten Fluoreszenzmarker

und einer entsprechenden Sensorik kann hierzu einen entscheidenden Beitrag leisten.

Auch hierfür eignet sich der Farbstoff Nilrot. Es wurden verschiedene fossile und re-

generative Kraftstoffe mit 50 ppm des Farbstoffs markiert und die Fluoreszenzspektren

(vgl. Kapitel 5.2.6) der Kraftstoffe im unmarkierten und markierten Zustand gemessen.

Bei den Kraftstoffen handelte es sich um fossilen Dieselkraftstoff (B0 und B7), fossiles

Benzin (E10), einen MtG (Methanol-to-Gasoline)-Kraftstoff, der als regenerativer Kraft-

stoff in Ottomotoren Anwendung finden könnte, OME, HVO (hydrierte Pflanzenöle), wel-

che in Dieselmotoren eingesetzt werden können und die beiden Alkohole 1-Hexanol

und 1-Octanol. Die Fluoreszenzmessungen wurden bei einer Anregungwellenlänge von

λex=405 nm durchgeführt, da bei dieser Wellenlänge in einem Sensor eine kostengüns-

tige blaue Laserdiode verwendet werden könnte.
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Abbildung 8.0.4: Fluoreszenzemissionsspektren verschiedener fossiler und regenerativer
Kraftstoffe (unmarkiert und mit Nilrot markiert) bei einer Anregungswellenlänge λex=405 nm
[194].

Die Ergebnisse zeigen, dass die unmarkierten Kraftstoffe lediglich in einem Bereich von

400-550 nm fluoreszierten, während die markierten Kraftstoffe eine Fluoreszenzemission

bei 550-650 nm zeigten (vgl. Abb. 8.0.4). Die jeweiligen Emissionsmaxima der Kraftstof-

fe im unmarkierten und markierten Zustand waren klar unterscheidbar, wodurch dieses

Sensorkonzept für eine einfache Differenzierung der verschiedenen Kraftstoffe geeignet

ist. Es könnte beispielsweise dafür eingesetzt werden, um in Zukunft klimaneutrale Kraft-

stoffe eindeutig von nicht klimaneutralen Kraftstoffen zu unterscheiden, wenn entweder

die klimaneutralen oder die nicht klimaneutralen Kraftstoffe mit Nilrot markiert werden.

Die Voraussetzung hierfür ist natürlich die vollständige Löslichkeit von Nilrot in dem jewei-

ligen Kraftstoff. Ein auf der Fluoreszenzspektroskopie basierender Sensor im Fahrzeug

könnte dann anhand des Fluoreszenzspektrums des verwendeten Kraftstoffs eindeutig

detektieren, ob besagtes Fahrzeug klimaneutral betrieben wird.
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Obwohl sich ein Sensor, der auf der Fluoreszenzspektroskopie basiert, zur Klassifizie-

rung verschiedener Kraftstoffe eignet, wird hierfür ein (kostenintensiver) Fluoreszenzmar-

ker benötigt. Daher ist eine weitere Methode wünschenswert, um verschiedene Kraftstof-

fe zuverlässig zu charakterisieren und zusätzlich ihren Alterungsgrad zu bestimmen, um

damit sicherzustellen, dass ein Kraftstoff noch unproblematisch verwendet werden kann.

Eine kostengünstige Methode bietet eine auf der Nahinfrarotspektroskopie basierende

Sensorik. Diese bietet außerdem den Vorteil, dass damit die Kraftstoffe selbst untersucht

werden ohne einen Zusatzstoff (Fluoreszenzmarker), was auch die Fälschungssicherheit

erhöht.

In dieser Arbeit wurde eine geeignete Methode entwickelt, um auf Basis von Nahinfrarot-

spektren sowohl die Bezeichnung des jeweiligen Kraftstoffs als auch verschiedene Pa-

rameter zur Bestimmung des Alterungsgrades vorherzusagen. Dazu zählt zum einen die

genaue Alterungszeit des Kraftstoffs und zum anderen die in verschiedenen Kraftstoff-

normen (DIN EN 228 [15], DIN EN 590 [16] und DIN EN 14214 [17]) festgelegten Parameter

Säurezahl, kinematische Viskosität und Dichte.

Für die Entwicklung wurden 21 verschiedenen Kraftstoffe und Kraftstoffmischungen (fos-

siler Dieselkraftstoff, verschiedene n- und iso-Alkohole, sowie OME, Solketal und deren

Mischungen) mit Hilfe der offenen Alterungsapparatur (vgl. Kapitel 5.1.2) für bis zu 192 h

gealtert, wobei alle 24 h eine gealterte Probe entnommen wurde. Die Nahinfrarotspektren

(vgl. Kapitel 5.2.7) sowie die Säurezahl, die kinematische Viskosität und die Dichte (vgl.

Kapitel 5.2.3 und 5.2.4) der insgesamt 156 Proben wurden gemessen und dienten als

Datenbasis. Auf dieser Grundlage wurde die Vorhersage mit Hilfe verschiedener Auswer-

tealgorithmen untersucht, wobei die Ergebnisse zeigten, dass der Zusammenhang zwi-

schen den NIR-Spektren und den Parametern, die vorhergesagt werden sollten, viel zu

komplex für einen klassischen Analyseansatz ist. Deshalb wurden verschiedene auf ma-

schinellem Lernen und künstlicher Intelligenz basierende Algorithmen (PLS-Algorithmus,

Random Forest-Algorithmus und ein neuronales Netzwerk) getestet.

Hierbei lieferte die Vorhersage mit einem neuronalen Netzwerk (ANN) die besten Ergeb-

nisse, denn es zeigte sich sowohl die höchste Genauigkeit a bei der Vorhersage der

Kraftstoff-Bezeichnungen, als auch die geringsten mittleren relativen Fehler der vorher-

gesagten Kraftstoffparameter (stets <5%) (vgl. Tab. 8.1).
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Tabelle 8.1: Vergleich der Genauigkeit (accuracy a und mittlerer relativer Fehler ∆̃rel (Median))
der Vorhersage verschiedener Kraftstoffparameter mit Hilfe verschiedener Auswertealgorith-
men: PLS (Partial Least Squares-Algorithmus), Random Forest-Algorithmus und ANN (neuro-
nales Netzwerk, KI).

Parameter Genauigkeit
der Vorhersage

PLS Random Forest ANN

Bezeichnung a (TE): 0,048 (TE): 0,905 (TE): 1,000
Alterungszeit ∆̃rel [%] (TE): 27 (TE): 18 (TE): 4
Säurezahl ∆̃rel [%] (TE): 82 (TE): 13 (TE): 3,2
kin. Viskosität ∆̃rel [%] (TE): 17 (TE): 2 (TE): 0,09
Dichte ∆̃rel [%] (TE): 0,3 (TE): 0,1 (TE): 0,5

Es zeigte sich also, dass ein auf der Nahinfrarotspektroskopie basierender Sensor sehr

gut zur genauen Charakterisierung eines gemessenen Kraftstoffs sowie zur Bestimmung

von dessen Alterungsgrad geeignet, wenn als Auswertealgorithmus ein neuronales Netz-

werk verwendet wird. Dadurch ist eine präzise Vorhersage der genauen Bezeichnung

des Kraftstoffs sowie die Vorhersage der genauen Alterungszeit, der Säurezahl, der ki-

nematischen Viskosität und der Dichte möglich. Die vorhergesagte Alterungszeit bezieht

sich jedoch auf die Zeit der beschleunigten Alterung im Labor. Um zu entscheiden, wie

lange ein Kraftstoff tatsächlich in der Realität gealtert ist, wären Versuchsreihen nötig,

um die reale Alterungszeit mit der Alterungszeit im Labor zu vergleichen. Dennoch bietet

die Vorhersage der in verschiedenen Kraftstoffnormen (DIN EN 228 [15], DIN EN 590 [16]

und DIN EN 14214 [17]) festgelegten Parameter Säurezahl, kinematische Viskosität und

Dichte einen zuverlässigen Anhaltspunkt, ob ein Kraftstoff noch unproblematisch verwen-

det werden kann. Durch die genaue Kenntnis über den verwendeten Kraftstoff kann das

Motormanagement auf den Kraftstoff eingestellt werden, um dadurch eine optimale Ver-

brennung zu gewährleisten. Um auch die zuverlässige Vorhersage weiterer Kraftstoffe,

wie beispielsweise fossiles Benzin oder FAME, zu gewährleisten, sollte die Datenbasis

für das neuronale Netzwerk erweitert werden.

Zusammenfassend tragen die durchgeführten Studien wesentlich zur technischen Rea-

lisierung des Einsatzes regenerativer Kraftstoffe, insbesondere E-Fuels, bei. Für deren

zukünftige Nutzung ist ein fundiertes Verständnis der Lagerstabilität und der Alterungs-

prozesse unverzichtbar, da nur so ein sicherer und effizienter Einsatz gewährleistet wer-
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den kann. Die entwickelte Sensorik ermöglicht hierbei eine zuverlässige Detektion des

Alterungsgrades und stellt damit ein wichtiges Instrument zur Qualitätssicherung dar.

Darüber hinaus liefern die detaillierten Alterungsuntersuchungen eine wertvolle Grundla-

ge für die gezielte Auswahl geeigneter Kraftstoffe im Kontext nachhaltiger Kraftstoffan-

wendungen.
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Anhang

Gefahrstoffliste

Tabelle 8.2: Liste der gefährlichen Stoffe, gemäß dem global harmonisierten System zur Ein-
stufung und Kennzeichnung von Chemikalien (GHS) [195].

Substanz GHS-Symbol H- und P- Sätze

1-Butanol Platzhalter H226, H302, H315, H318, H335, H336,
P210, P233, P280, P301+P312,
P303+P361+P353, P305+P351+P338

1-Decanol Platzhalter H319, H412, P264, P273, P280,
P305+P351+P338, P337+P313, P501

1-Heptanol Platzhalter H319, P264, P280, P305+P351+P338,
P337+P313

1-Hexanol Platzhalter H226, H302+H312, H319, P210, P280,
P301+P312+P330, P302+P352+P312,
P305+P351+P338

1-Nonanol Platzhalter H319, H412, P264, P273, P280,
P305+P351+P338, P337+P313

1-Octanol Platzhalter H319, H412, P264, P273, P280,
P305+P351+P338, P337+P313, P501

1-Pentanol Platzhalter H226, H315, H318, H332, H335, P210,
P233, P280, P303+P361+P353,
P304+P340+P312, P305+P351+P338

2-Butanol Platzhalter H226, H319, H335, H336, P210, P233,
P240, P241, P242, P305+P351+P338

2-Hexanol Platzhalter H226, H315, H319, H335, P210, P280,
P304+P340, P312

2-Hexanon Platzhalter H226, H336, H361, H372, P201, P202,
P210, P233, P240, P308+P313
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Tabelle 8.3: Liste der gefährlichen Stoffe, gemäß dem global harmonisierten System zur Ein-
stufung und Kennzeichnung von Chemikalien (GHS) [195].

Substanz GHS-Symbol H- und P- Sätze

2-Pentanol Platzhalter H226, H332, H315, H319, H335, P210,
P233, P240, P303+P361+P353,
P304+P340+P312, P305+P351+P338
EUH066

2-Propanol Platzhalter H225, H319, H336, P210, P233, P240,
P241, P242, P305+P351+P338

Aceton Platzhalter H225, H319, H336, P210, P233, P240,
P241, P242, P305+P351+P338, EUH066

Acetonitril Platzhalter H225, H302+H312+H332, H319, P210,
P280, P301+P312, P303+P361+P353,
P304+P340+P312, P305+P351+P338

Buttersäure Platzhalter H302, H314, P270, P280,
P301+P330+P331, P312,
P303+P361+P353, P305+P351+P338

Butylhydroxy-
toluol

Platzhalter H410, P273, P391, P501

Cyclohexan Platzhalter H225, H304, H315, H336, H410, P210,
P233, P273, P301+P310,
P303+P361+P353, P331

Ethanol Platzhalter H225, H319, P210, P233, P240, P241,
P242, P305+P351+P338

Essigsäure Platzhalter H226, H314, P210, P280,
P301+P330+P331, P303+P361+P353,
P305+P351+P338, P310

Heptansäure Platzhalter H314, P280, P301+P330+P331,
P305+P351+P338, P310

Hexanal Platzhalter H226, H315, H319, P210,
P303+P361+P353, P332+P313,
P305+P351+P338, P337+P313, P280

Hexansäure Platzhalter H314, P280, P301+P330+P331,
P303+P361+P353, P305+P351+P338,
P310

Hexylacetat Platzhalter H226, P210
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Tabelle 8.4: Liste der gefährlichen Stoffe, gemäß dem global harmonisierten System zur Ein-
stufung und Kennzeichnung von Chemikalien (GHS) [195].

Substanz GHS-Symbol H- und P- Sätze
Hexylformiat Platzhalter H226, P210

Methanol Platzhalter H225, H301+H311+H331, H370, P210,
P233, P280, P301+P310,
P303+P361+P353, P304+P340+P311

Octanal Platzhalter H226, H315, H319, H411, P210, P280,
P302+P352, P305+P351+P338, P362

Octansäure Platzhalter H314, H412, P280, P301+P330+P331,
P305+P351+P338, P310,
P303+P361+P353

Octylformiat Platzhalter H315, H319, H335, P261, P264, P271,
P280, P302+P352, P305+P351+P338

Pentanal Platzhalter H225, H332, H317, H319, H335, P210,
P233, P280, P303+P361+P353,
P304+P340+P312, P305+P351+P338

Pentansäure Platzhalter H314, H412, P273, P280,
P303+P361+P353, P304+P340+P310,
P305+P351+P338, P363

Solketal Platzhalter H319, P264, P280, P305+P351+P338,
P337+P313

Tetrahydrofuran Platzhalter H225, H302, H319, H335, H336, H351,
P210, P280, P301+P312+P330,
P305+P351+P338, P370+P378,
P403+P235, EUH019

Toluol Platzhalter H225, H315, H361d, H336, H373, H304,
H412, P202, P210, P273, P301+P310,
P303+P361+P353, P331

Wasserstoffperoxid
(30%-Lösung)

Platzhalter H272, H302+H332, H315, H318, H335,
P220, P261, P280, P305+P351+P338
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Kraftstoffnormen

DIN EN 228

Tabelle 8.5: Mindestanforderungen für Ottokraftstoffe nach DIN EN 228:2017 (Auszug) [15].

Eigenschaft Einheit Mindestwert Maximalwert Testmethode

Oktanzahl (ROZ) 95,0 EN ISO 5164
Dichte (bei 15°C) kg/m3 720,0 775,0 EN ISO 3675

EN ISO 12185
Dampfdruck (im Sommer) kPa 45,0 60,0 EN 13016-1
Dampfdruck (im Winter) kPa 60,0 90,0 EN 13016-1
Siedeverlauf EN ISO 3405
verdampft bei 70°C vol% 20,0 48,0 EN ISO 3405
verdampft bei 100°C vol% 46,0 72,0 EN ISO 3405
verdampft bei 150°C vol% 75,0 EN ISO 3405
Siedeendpunkt °C 210 EN ISO 3405
Bleigehalt mg/l 5,0 EN 237
Schwefelgehalt mg/kg 10,0 EN ISO 13032

EN ISO 20846
EN ISO 20884

Gehalt an Olefinen % (vol%) 18,0 EN 15553
EN ISO 22854

Gehalt an Aromaten % (vol%) 35,0 EN 15553
EN ISO 22854

Benzolgehalt % (vol%) EN 237
EN 12177
EN ISO 22854

Oxidationsstabilität min EN ISO 7536
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DIN EN 590

Tabelle 8.6: Mindestanforderungen für Dieselkraftstoffe nach EN 590:2019 (Auszug) [16].

Eigenschaft Einheit Mindestwert Maximalwert Testmethode

Cetanzahl 51,0 EN ISO 5165
EN ISO 15195
EN ISO 16144

Dichte (bei 15°C) kg/m3 820,0 845,0 EN ISO 3675
EN ISO 12185

Viskosität (bei 40°C) mm2/s 2,00 4,50 EN ISO 3104
Flammpunkt °C 55 EN ISO 2719
Schmierfähigkeit
(Lubricity wsd 1,4) (bei 60°C)

µm 460 ISO 12156-1

Aschegehalt % (m%) 0,01 EN ISO 6245
Schwefelgehalt mg/kg 10,0 EN ISO 13032

EN ISO 20846
EN ISO 20884

Wassergehalt mg/kg 200 EN ISO 12937
Gehalt an polyzyklischen
aromatischen
Kohlenwasserstoffen

% (m%) 8,00 EN 12916

Gehalt an
Fettsäuremethylester (FAME)

% (vol%) 7,0 EN 14078

Säurezahl mg 0,20 KOH/g DIN 51558-1
Oxidationsstabilität g/m3 25 EN ISO 12205

h 20,0 EN 15751
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DIN EN 14214

Tabelle 8.7: Mindestanforderungen für Biodiesel nach EN 14214:2014 (Auszug) [17].

Eigenschaft Einheit Mindestwert Maximalwert Testmethode

Cetanzahl 51,0 EN ISO 5165
Dichte (bei 15°C) kg/m3 860,0 900,0 EN ISO 3675

EN ISO 12185
Viskosität (bei 40°C) mm2/s 3,50 5,00 EN ISO 3104
Flammpunkt °C > 101 EN ISO 2719

EN ISO 3679
Wassergehalt mg/kg 500 EN ISO 12937
Gesamtverschmutzung mg/kg 24 EN 12662
Gehalt an
Fettsäuremethylester (FAME)

m% 96,5 EN 14103

Säurezahl mg 0,20 KOH/g DIN 51558-1
Oxidationsstabilität h 8,0 EN 14112

EN 15751
Linolensäuremethylester m% 12,0 EN 14103
Gehalt an FAME mit ⩾ 4
Doppelbindungen

m% 1,00 EN 15779
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1. OME-derivatives 

The OME3-derivate and the OME4-derivative according to the datasheet [1] are shown in figure 

S1. 

 

 

Fig. S1: Composition of the OME-derivatives according to the datasheet [1]. 

 

 

2. Setup for thermo-oxidative aging according to the Rancimat method 

 

Fig. S2: Aging setup for accelerated thermo-oxidative aging. 

 

3. Determination of the concentration of OMEn 

A calibration series for the GC-MS measurements was carried out to determine the 

concentrations of OME1, OME3, OME4, OME5 and OME6. The respective response factor of 

the OMEn (n = 1, 3, 4, 5, 6) was determined and the respective concentration calculated. A 

linear relationship was found between the response factors of the OMEn as a function of n. 

Therefore the response factor of the OME2 could be determined by a linear interpolation of the 

response factors of the OMEn and the concentration of the OME2 could be calculated. 
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4. Identification of paraformaldehyde at the thermo-oxidative aging 

From 72 h aging time (100-O) and from 120 h aging time (25-S-75-O and 50-S-50-O), a 

precipitate forms during thermo-oxidative aging. This precipitate was purified and measured 

using Fourier transform infrared spectroscopy (FT-IR) (cf. chapter 2.3.2, Paper). Figure S1 

shows the FT-IR spectrum of the precipitate. In addition, the spectra of pure paraformaldehyde 

(chain length n=8-100) and 1,3,5-trioxane (from [2]) are shown. 

 

 

Figure S3: Fourier transform infrared spectroscopy measurements (extinction as a function of 

wavenumber) of paraformaldehyde (chain length n=8-100), 1,3,5-trioxane [2] and the precipitate formed 

during thermo-oxidative aging. 

 

The comparison of the spectra of paraformaldehyde and 1,3,5-trioxane with the spectrum of the 

precipitate shows that the spectrum of the precipitate is similar to the spectrum of pure 

paraformaldehyde (chain length n=8-100); only the intensity of the OH-vibration band is higher 

for the precipitate than for paraformaldehyde (chain length n=8-100). This suggests that the 

precipitate is not 1,3,5-trioxane, but paraformaldehyde. However, the chain length n of the 

precipitate is less than n=8-100 recognizable by the stronger intensity of the OH-vibration band. 

 

5. Aging products of the thermo-oxidative aging of blends of solketal and OME 

The following table shows the aging products and the corresponding aging time of blends of 

solketal and oxymethylene ether (OME).  
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Table S1: Aging products of the thermo-oxidative aging of mixtures of solketal and oxymethylene ether 

(OME). 100-S: pure solketal, 100-O: pure OME1-6, mixtures of 3:1 (75-S-25-O), 1:1 (50-S-50-O) and 

1:3 (25-S-75-O) solketal:OME (vol%). 

 

aging product aging time 

  

solketal + 2,2-dimethyl-1,3-dioxan-5-ol 0 h - 144 h (100-S) 

0 h - 144 h (75-S-25-O) 

0 h - 144 h (50-S-50-O) 

0 h - 144 h (25-S-75-O) 

glycerol 24 h - 144 h (100-S) 

24 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 

24 h - 144 h (25-S-75-O) 

acetone 24 h - 144 h (100-S) 

24 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 

24 h - 144 h (25-S-75-O) 

2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde 24 h - 144 h (100-S) 

24 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 

24 h - 48 h (25-S-75-O) 

glyceraldehyde 24 h - 144 h (100-S) 

48 h - 144 h (75-S-25-O) 

48 h - 144 h (50-S-50-O) 

72 h - 144 h (25-S-75-O) 

acetic acid 24 h - 144 h (100-S) 

48 h - 144 h (75-S-25-O) 

48 h - 144 h (50-S-50-O) 

72 h - 144 h (25-S-75-O) 

2,2-dimethyl-1,3-dioxolane-4-carboxylate 24 h - 144 h (100-S) 

24 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 

24 h - 144 h (25-S-75-O) 
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2,2-dimethyl-1,3-dioxolane-4-methanol acetate 24 h - 144 h (100-S) 

48 h - 144 h (75-S-25-O) 

48 h - 144 h (50-S-50-O) 

72 h - 144 h (25-S-75-O) 

acetine 48 h - 144 h (100-S) 

72 h - 144 h (75-S-25-O) 

72 h - 144 h (50-S-50-O) 

96 h - 144 h (25-S-75-O) 

2,2-dimethyl-1,3-dioxolane 24 h - 144 h (100-S) 

24 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 

24 h – 144 h (25-S-75-O) 

(1,3-dioxolane-4-yl)methanol + 1,3-dioxan-5-ol 96 h - 144 h (100-S) 

48 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 

48 h - 144 h (25-S-75-O) 

 

hydroxy acetic acid 96 h - 144 h (100-S) 

72 h - 144 h (75-S-25-O) 

48 h - 144 h (50-S-50-O) 

48 h - 144 h (25-S-75-O) 

48 h - 144 h (100-O) 

methyl hydroxy acetate 96 h - 144 h (100-S) 

72 h - 144 h (75-S-25-O) 

48 h - 144 h (50-S-50-O) 

48 h - 144 h (25-S-75-O) 

48 h - 144 h (100-O) 

formic acid 24 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 

24 h - 144 h (25-S-75-O) 

24 h - 144 h (100-O) 

methyl formate 48 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 
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24 h - 144 h (25-S-75-O) 

24 h - 144 h (100-O) 

OME1 120 h - 144 h (50-S-50-O) 

0 h - 144 h (25-S-75-O) 

0 h - 144 h (100-O) 

OME2 96 h - 144 h (75-S-25-O) 

24 h - 144 h (50-S-50-O) 

0 h - 144 h (25-S-75-O) 

0 h - 144 h (100-O) 

OME3 0 h - 144 h (75-S-25-O) 

0 h - 144 h (50-S-50-O) 

0 h - 144 h (25-S-75-O) 

0 h - 144 h (100-O) 

OME4 0 h - 144 h (75-S-25-O) 

0 h - 144 h (50-S-50-O) 

0 h - 144 h (25-S-75-O) 

0 h - 144 h (100-O) 

OME5 0 h - 144 h (75-S-25-O) 

0 h - 144 h (50-S-50-O) 

0 h - 144 h (25-S-75-O) 

0 h - 144 h (100-O) 

OME6 0 h - 144 h (75-S-25-O) 

0 h - 144 h (50-S-50-O) 

0 h - 144 h (25-S-75-O) 

0 h - 144 h (100-O) 

paraformaldehyde 120 h - 144 h (50-S-50-O) 

120 h - 144 h (25-S-75-O) 

72 h - 144 h (100-O) 

 

 

6. Fuel specific parameters of blends of solketal and OME 

The following table shows the fuel specific parameters as function of the aging time of blends 

of solketal and oxymethylene ether (OME). 
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Table S2: Fuel specific parameters of the thermo-oxidative aging of mixtures of solketal and 

oxymethylene ether (OME). 100-S: pure Solketal, 100-O: pure OME1-6, mixtures of 3:1 (75-S-25-O), 

1:1 (50-S-50-O) and 1:3 (25-S-75-O) Solketal:OME (vol%). 

 

blend total acid number 

[mg KOH/g] 

kin. viscosity [T=40°C] 

[mm2/s] 

density [T=15°C] 

[kg/m3] 

aging time 

[h] 

     

100-S 0.340 5.02 1.07 0 

100-S 9.57 5.66 1.08 24 

100-S 10.5 6.76 1.09 48 

100-S 11.7 8.67 1.11 72 

100-S 13.2 11.8 1.13 96 

100-S 15.1 16.8 1.15 120 

100-S 17.5 25.6 1.17 144 

75-S-25-O 0.560 3.05 1.07 0 

75-S-25-O 15.2 3.46 1.08 24 

75-S-25-O 21.3 4.25 1.10 48 

75-S-25-O 24.6 5.34 1.12 72 

75-S-25-O 28.4 7.38 1.14 96 

75-S-25-O 27.5 11.4 1.16 120 

75-S-25-O 25.4 23.7 1.20 144 

50-S-50-O 0.790 2.02 1.06 0 

50-S-50-O 22.8 2.26 1.08 24 

50-S-50-O 27.6 2.82 1.10 48 

50-S-50-O 29.8 3.78 1.12 72 

50-S-50-O 36.6 5.49 1.15 96 

50-S-50-O 37.0 11.2 1.19 120 

50-S-50-O 42.2 16.1 1.26 144 

25-S-75-O 1.19 1.51 1.06 0 

25-S-75-O 38.6 1.60 1.07 24 

25-S-75-O 42.3 1.87 1.10 48 

25-S-75-O 60.2 2.35 1.12 72 

25-S-75-O 65.8 3.76 1.13 96 

25-S-75-O 67.4 4.30 1.15 120 
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25-S-75-O 68.4 8.16 1.18 144 

100-O 0.980 1.21 1.06 0 

100-O 29.8 1.23 1.07 24 

100-O 67.0 1.35 1.08 48 

100-O 97.2 1.67 1.10 72 

100-O 98.5 1.92 1.11 96 

100-O 89.3 2.23 1.12 120 

100-O 73.6 2.99 1.15 144 
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1. Carbon mass fraction 

Table S1: Carbon mass fraction after 120 h aging of 1-hexanol, 1-

 octanol and 2-hexanol.

aging product carbon mass fraction 

(after 120 h) [m%]

aging educt

1-hexanol 63.21 1-hexanol

hexanal 0.859 1-hexanol

hexanoic acid 6.25 1-hexanol

hexyl hexanoate 13.93 1-hexanol

hexyl formate 1.34 1-hexanol

hexyl acetate 0.135 1-hexanol

hexyl propanoate 0.0445 1-hexanol

hexyl butanoate 0.221 1-hexanol

1-pentanol 0.917 1-hexanol

pentanoic acid 1.73 1-hexanol

carbon dioxide 3.10 1-hexanol

other products 8.26 1-hexanol

1-octanol 56.92 1-octanol

octanal 0.56 1-octanol

octanoic acid 6.99 1-octanol

octyl octanoate 16.32 1-octanol

octyl formate 2.18 1-octanol

octyl acetate 1.26 1-octanol

octyl butanoate 0.39 1-octanol

1-heptanol 0.26 1-octanol

heptanoic acid 0.76 1-octanol

1-hexanol 0.013 1-octanol

hexanoic acid 0.092 1-octanol

1-pentanol 0.011 1-octanol

pentanoic acid 0.17 1-octanol

carbon dioxide 3.07 1-octanol

other products 11.00 1-octanol

2-hexanol 80.33 2-hexanol

2-hexanone 10.09 2-hexanol

acetic acid 0.032 2-hexanol

carbon dioxide 1.40 2-hexanol
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General experimental Information 

Materials 

All fuels and chemicals were used without further purification. 

The unadditivated HVO (hydrotreated vegetable oil) was purchased from Neste and contains the 

middle distillate fraction of iso- and n-paraffinic hydrocarbons. According to the data sheet, the 

aromatics content is a maximum of 1 wt%. The OME (oxymethylene ether) was purchased from ASG 

and according to the data sheet (determination by ASG 2506 GC-FID) contains 0.05 wt% OME-1, 0.06 

wt% OME-2, 45.39 wt% OME-3, 25.39 wt% OME-4, 11.22 wt% OME-5, 4.57 wt% OME-6, and 

derivatives of OME-3 and OME-4. The unadditivated diesel fuel B0 was purchased from ASG and 

contains 0.1 wt% fatty acid methyl ester and 5.7 wt% polyaromatic hydrocarbons, according to the 

data sheet. The two fuels B7 (diesel fuel with 7 v% fatty acid methyl ester) and E10 (gasoline with 10 

v% bioethanol) are commercial gas station fuels and were purchased from a Shell gas station. The 

methanol-to-gasoline fuel (MtG fuel) was produced using the MtG process as part of the C3 Mobility 

project.1 According to the data sheet, the composition (determined by GC) is 55.85 v% n- and iso-

paraffins, 2.56 v% n- and iso-olefins, 3.19 v% cyclic olefins, 9.01 v% naphthenes, 0.02 v% 

polynaphthenes, and 29.37 v% aromatics. The dye Nile red was purchased from Carl Roth with a purity 

of >99%. The alcohols 1-octanol and 1-hexanol were also purchased from Carl Roth with a purity of 

>99% (1-octanol) and >98% (1-hexanol). 

 

Experimental setup & work procedure of fuel aging 

 

Figure S1: Aging setup. 

For the accelerated thermo-oxidative aging of the various fuels, an aging setup was developed which 

is based on the Rancimat aging method (DIN EN 14112 and DIN EN 15751).2 A 250 mL three-neck round 

bottom flask was filled with 250 mL (at the start of aging) of the fuel to be aged (cf. Fig. S1, I). The flask 

was then placed in an oil bath (cf. Fig. S1, II), which was tempered to a temperature of T = 110 °C with 
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the aid of a heating plate. In order to reduce the discharge of volatile aging products, a Dimroth reflux 

condenser (cf. Fig. S1, III) which was cooled to a constant temperature of T = 2 °C by means of a 

recirculating chiller (F series from Julabo) was located above the flask. During the aging process, 

condensation was only observed in the lower third of the reflux condenser. To oxidize the fuel, dried 

laboratory compressed air was blown into the fuel at a constant flow rate of 10 L/h by means of a gas 

introduction tube attached to the three-necked flask (cf. Fig. S1, IV). The dried laboratory compressed 

air was additionally dried (humidity after drying: 0.07 %) with the help of molecular sieve (4 Å), which 

was located in four coupled glass tubes (inner diameter: 30 mm, length: 400 mm) (cf. Fig. S1, V). The 

air flow was adjusted to a constant value of 10 L/h using a flowmeter (Agilent Flow Tracker 1000). This 

aging setup was an open aging system. The air flowing into the fuel was directed through the reflux 

condenser into a wash bottle filled with deionized water (cf. Fig. S1, VI). To perform fuel aging, the 

reflux condenser and oil bath were first tempered to the correct temperature and the correct air flow 

was set. Then, the gas inlet tube and the reflux condenser were attached to the three-neck flask filled 

with 250 mL of fuel and the flask is immersed in the temperature-controlled oil bath. This point was 

defined as start of the experiment (t = 0 h). In order to investigate the aging products as a function of 

aging time, a fuel sample of 25 mL was taken from the flask every 24 h. For this purpose, the stopper 

located on the flask (cf. Fig. S1, VII) was briefly opened, and 25 mL of the aged fuel was taken with the 

aid of a glass pipette. This procedure was repeated up to a total aging time of 192 h, after which the 

air flow and the heating plate for the oil bath were switched off. The remaining fuel was removed after 

a cooling phase, during which the remaining condensate located at the reflux condenser could also 

flow back into the flask. Both the unaged fuel (0 h) and the aged fuel samples (24 h - 192 h) were 

analyzed.   

 

Analytical Methods 

The fluorescence spectra of the unaged and aged fuels were measured using a Hitachi F-4500 

fluorescence spectrometer with PMT detector. The excitation wavelength range and the emission 

wavelength range of the spectrometer is 200 nm - 900 nm. The measurements were performed with 

an excitation wavelength of 405 nm and an emission wavelength range of 280 nm - 800 nm in 5 nm 

steps. The apertures were set to a slit width of the two monochromators of ± 5 nm. 10 mm cuvettes 

made of PMMA were used for the measurement. FT-IR measurements of the unaged and aged fuels 

were performed using a Thermo Scientific Nicolet 6700 FTIR spectrometer. The instrument has a 

diamond ATR (attenuated total reflectance) unit for sample acquisition. The single-bounce ATR unit 

has a wavelength cutoff of 650 cm-1 through a ZnSe lens and an angle of incidence of 42°. The 

penetration depth of the 1.5 mm diamond is 2.03 μm at 1000 cm-1. For measurement, a drop of the 

sample was placed on the ATR crystal using a pipette. The spectrometer has a DTGS (deuterated 

triglycine sulfate) detector and an XT-KBrTM beam splitter (extended KBr range). Integration of the 

measured peaks of the vibrational bands was performed using Thermo Scientific's Omnic software. 

The total acid number of the unaged and aged fuels was measured by potentiometric titration 

according to DIN EN 12634. A 888 Titrando and a 801 Stirer from Metrohm were used for this purpose. 

The measurement was carried out using a glass electrode suitable for non-aqueous media. Potassium 

hydroxide solution (0.1 mol/L) dissolved in 2-Propanol was used as the measuring solution. The solvent 

used consisted of 50 % toluene, 49.5 % 2-Propanol and 0.5 % deionized water (60 mL per sample). The 

sample weight varied between 0.505 g and 10.007 g depending on the expected acid number and was 

detected by the voltage drop across the electrode during continuous stirring. The total acid number 

indicates the amount of base (expressed in mg KOH/g) required to neutralize the acids present in the 

sample. The viscosity of the unaged and aged fuels was determined using a Stabinger viscosimeter 

from Anton Paar. For this purpose, 3 mL of sample was injected into the instrument using a syringe. 
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The measurement was performed at a temperature of 40 °C, and the samples were tempered in the 

instrument for three minutes before each measurement. Anton Paar's Rheoplus software was used for 

data processing of the measurements. 

 

Experimental Data 

Table S1: Maximum emission wavelength λem, max and relative fluorescence intensity at an excitation wavelength λex = 405 nm 

for several unmarked and marked fuels (unaged and aged). 

Fuel λem, max (λex=405 nm) Rel. fluorescence intensity Marking Aging time  

MtG fuel 439 nm 1971 not marked 0 h 

OME ---------- ---------- not marked 0 h 

HVO 438 nm 463 not marked 0 h 

B0 ---------- ---------- not marked 0 h 

B7 447 nm 4547 not marked 0 h 

E10 441 nm 300 not marked 0 h 

1-hexanol ---------- ---------- not marked 0 h 

1-octanol ---------- ---------- not marked 0 h 

MtG fuel 562 nm 4989 + 50 ppm Nile red 0 h 

OME 594 nm 3414 + 50 ppm Nile red 0 h 

HVO 545 nm 3711 + 50 ppm Nile red 0 h 

B0 555 nm 5294 + 50 ppm Nile red 0 h 

B7 561 nm 3116 + 50 ppm Nile red 0 h 

E10 602 nm 2363 + 50 ppm Nile red 0 h 

1-hexanol 628 nm 1283 + 50 ppm Nile red 0 h 

1-hexanol 628 nm 1258 + 50 ppm Nile red 24 h 

1-hexanol 628 nm 1257 + 50 ppm Nile red 48 h 

1-hexanol 628 nm 1243 + 50 ppm Nile red 72 h 

1-hexanol 628 nm 1244 + 50 ppm Nile red 96 h 

1-hexanol 628 nm 1240 + 50 ppm Nile red 120 h 

1-hexanol 628 nm 1249 + 50 ppm Nile red 144 h 

1-hexanol 628 nm 1244 + 50 ppm Nile red 168 h 

1-hexanol 628 nm 1258 + 50 ppm Nile red 192 h 

1-octanol 625 nm 1308 + 50 ppm Nile red 0 h 

1-octanol 625 nm 1307 + 50 ppm Nile red 24 h 

1-octanol 625 nm 1273 + 50 ppm Nile red 48 h 

1-octanol 625 nm 1301 + 50 ppm Nile red 72 h 

1-octanol 625 nm 1326 + 50 ppm Nile red 96 h 

1-octanol 625 nm 1324 + 50 ppm Nile red 120 h 

1-octanol 625 nm 1355 + 50 ppm Nile red 144 h 

1-octanol 624 nm 1347 + 50 ppm Nile red 168 h 

1-octanol 615 nm 577 + 50 ppm Nile red 192 h 

 

Table S1 shows the different maximum fluorescence emission wavelengths λem, max at an excitation 

wavelength λex = 405 nm for different unlabeled and with 50 ppm Nile red labeled fuels. Additionally, 

the excitation wavelengths for different aging times are shown for the two fuels 1-hexanol and 1-

octanol. 
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Supporting Information des unveröffentlichten Teils der

Dissertation

Nahinfrarotspektren verschiedener Kraftstoffe

Abbildung 8.0.5: Nahinfrarotspektren verschiedener Kraftstoffe bei verschiedenen Alterungs-
zeiten.
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Abbildung 8.0.6: Nahinfrarotspektren verschiedener Kraftstoffe bei verschiedenen Alterungs-
zeiten.
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Abbildung 8.0.7: Nahinfrarotspektren verschiedener Kraftstoffe bei verschiedenen Alterungs-
zeiten.
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Abbildung 8.0.8: Nahinfrarotspektren verschiedener Kraftstoffe und Kraftstoffmischungen bei
verschiedenen Alterungszeiten.
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Abbildung 8.0.9: Nahinfrarotspektren verschiedener Kraftstoffe und Kraftstoffmischungen bei
verschiedenen Alterungszeiten.



188

Vorhersage mit dem PLS - Algorithmus

Tabelle 8.8: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Testdaten
der Nahinfrarotspektren. Die Parameter, die vorhergesagt wurden sind die Bezeichnung des
Kraftstoffs (oben) und die Alterungszeit des Kraftstoffs (unten).

Alterungs-
zeit [h]

Bezeichnung
(real)

Bezeichnung
(pred.)

Bezeichnung
(real)

Bezeichnung
(pred.)

Alterungs-
zeit [h]

0 1-Decanol 1-Octanol 25-Oct-75-B0 25-Oct-75-B0 120
168 1-Heptanol 1-Octanol 25-Oct-75-B0 50-Oct-50-B0 72
0 1-Hexanol 1-Heptanol 50-Oct-50-B0 75-Oct-25-B0 144
120 1-Hexanol 1-Octanol 50-Oct-50-B0 2-Hexanol 72
0 1-Octanol 1-Pentanol 50-S-50-O 25-S-75-O 0
0 OME 2-Butanol 75-Oct-25-B0 2-Hexanol 0
48 OME 2-Butanol 75-Oct-25-B0 OME 192
120 Solketal 50-Oc-50-B0 75-Oct-25-B0 B0 48
0 2-Butanol 2-Pentanol 75-S-25-O 2-Pentanol 0
0 2-Hexanol 2-Pentanol 75-S-25-O 2-Pentanol 24
0 2-Pentanol 2-Hexanol

Testdaten
a = 0.0480

Trainingsdaten (siehe Tabelle 8.12 und 8.13)
a = 0.159

Bezeichnung Alterungs-
zeit [h] (real)

Alterungs-
zeit [h] (pred.)

Abs. Fehler
∆abs.[h]

Rel. Fehler
∆rel. [%]

1-Decanol 0 15 15 --
1-Heptanol 168 131 37 22
1-Hexanol 0 19 19 --
1-Hexanol 120 152 32 27
1-Octanol 0 25 25 --
OME 0 4 4 --
OME 48 93 45 94
Solketal 120 108 12 10
2-Butanol 0 10 10 --
2-Hexanol 0 36 36 --
2-Pentanol 0 34 34 --
25-Oct-75-B0 120 171 51 43
25-Oct-75-B0 72 111 39 54
50-Oct-50-B0 144 145 1 1
50-Oct-50-B0 72 81 9 13
50-S-50-O 0 4 4 --
75-Oct-25-B0 0 3 3 --
75-Oct-25-B0 192 127 65 34
75-Oct-25-B0 48 15 33 69
75-S-25-O 0 -5 5 --
75-S-25-O 24 22 2 8

Testdaten: Md.(∆rel.) = 27%,
Md.(∆abs.) = 9h

Trainingsdaten (siehe Tabelle 8.14 - 8.17)
Md.(∆rel.) = 29%, Md.(∆abs.) = 22h
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Tabelle 8.9: Vorhersage der Säurezahl (TAN) des Kraftstoffs mit dem PLS (Partial Least
Squares)-Algorithmus für die Testdaten der Nahinfrarotspektren.

Bezeichnung TAN (real)
[mgKOH/g]

TAN (pred.)
[mgKOH/g]

Abs. Fehler ∆abs

[mgKOH/g]
Rel. Fehler
∆rel[%]

1-Decanol (0h) 0.27 2.85 2.58 955.6
1-Heptanol (168) 63.60 49.64 13.96 21.9
1-Hexanol (0h) 0.29 4.41 4.12 1420.7
1-Hexanol (120h) 60.51 43.01 17.5 28.9
1-Octanol (0h) 0.43 0.46 0.03 7.0
OME (0h) 0.98 23.06 22.08 2253.1
OME (48h) 67.01 69.78 2.77 4.1
Solketal (120h) 15.12 27.53 12.41 82.1
2-Butanol (0h) 0.13 -6.62 6.75 5192.3
2-Hexanol (0h) 0.73 -3.75 4.48 613.7
2-Pentanol (0h) 0.14 -2.44 2.58 1842.9
25-Oct-75-B0 (120h) 17.51 26.47 8.96 51.2
25-Oct-75-B0 (72h) 11.64 20.05 8.41 72.3
50-Oct-50-B0 (144h) 18.89 20.27 1.38 7.3
50-Oct-50-B0 (72h) 10.96 14.69 3.73 34.0
50-S-50-O (0h) 0.79 2.93 2.14 270.9
75-Oct-25-B0 (0h) 0.41 -1.69 2.1 512.2
75-Oct-25-B0 (192 h) 35.35 24.10 11.25 31.8
75-Oct-25-B0 (48h) 1.03 6.91 5.88 570.9
75-S-25-O (0h) 0.56 -8.63 9.19 1641.1
75-S-25-O (24h) 15.22 7.95 7.27 47.8

Testdaten: Md.(∆rel.) = 82%,
Md.(∆abs.) = 5.9mgKOH/g

Trainingsdaten (siehe Tabelle 8.18 - 8.21)
Md.(∆rel.) = 53%,Md.(∆abs.) = 6.1mgKOH/g
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Tabelle 8.10: Vorhersage der kinematischen Viskosität des Kraftstoffs mit dem PLS (Partial
Least Squares)-Algorithmus für die Testdaten der Nahinfrarotspektren.

Bezeichnung Viskosität
[mm2/s] (real)

Viskosität
[mm2/s] (pred.)

Abs. Fehler
∆abs [mm2/s]

Rel. Fehler
∆rel [%]

1-Decanol (0h) 8.0442 6.6637 1.3805 17.2
1-Heptanol (168) 3.2306 3.3639 0.1333 4.1
1-Hexanol (0h) 3.5042 3.8642 0.3600 10.3
1-Hexanol (120h) 2.8645 3.1764 0.3119 10.9
1-Octanol (0h) 5.5643 5.9920 0.4277 7.7
OME (0h) 1.2094 -1.5967 2.8061 232.0
OME (48h) 1.3501 1.8308 0.4807 35.6
Solketal (120h) 16.7570 12.8107 3.9463 23.6
2-Butanol (0h) 2.0675 1.8970 0.1705 8.3
2-Hexanol (0h) 2.8462 3.1381 0.2919 10.3
2-Pentanol (0h) 2.3129 1.9916 0.3213 13.9
25-Oct-75-B0 (120h) 3.6910 4.5039 0.8129 22.0
25-Oct-75-B0 (72h) 3.2211 4.2455 1.0244 31.8
50-Oct-50-B0 (144h) 3.7718 5.1471 1.3753 36.5
50-Oct-50-B0 (72h) 3.4870 4.7308 1.2438 35.7
50-S-50-O (0h) 2.0173 2.0809 0.0636 3.2
75-Oct-25-B0 (0h) 4.1688 4.8045 0.6357 15.3
75-Oct-25-B0 (192 h) 4.1413 3.4712 0.6701 16.2
75-Oct-25-B0 (48h) 4.3290 5.1693 0.8403 19.4
75-S-25-O (0h) 3.0521 3.8590 0.8069 26.4
75-S-25-O (24h) 3.4627 4.5507 1.0880 31.4

Testdaten: Md.(∆rel.) = 17%,
Md.(∆abs.) = 0.6701mm2/s

Trainingsdaten (siehe Tabelle 8.22 - 8.25)
Md.(∆rel.) = 17%, Md.(∆abs.) = 0.6499mm2/s
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Tabelle 8.11: Vorhersage der Dichte des Kraftstoffs mit dem PLS (Partial Least Squares)-
Algorithmus für die Testdaten der Nahinfrarotspektren.

Bezeichnung Dichte (real)
[kg/m3]

Dichte (pred.)
[kg/m3]

Abs. Fehler
∆abs [kg/m3]

Rel. Fehler
∆rel [%]

1-Decanol (0h) 0.8332 0.8276 0.0056 0.7
1-Heptanol (168) 0.8838 0.8901 0.0063 0.7
1-Hexanol (0h) 0.8223 0.8190 0.0033 0.4
1-Hexanol (120h) 0.8691 0.8595 0.0096 1.1
1-Octanol (0h) 0.8287 0.8264 0.0023 0.3
OME (0h) 1.0570 1.0505 0.0065 0.6
OME (48h) 1.0810 1.1183 0.0373 3.5
Solketal (120h) 1.1490 1.1481 0.0009 0.1
2-Butanol (0h) 0.8134 0.8155 0.0021 0.3
2-Hexanol (0h) 0.8203 0.8029 0.0174 2.1
2-Pentanol (0h) 0.8134 0.8073 0.0061 0.8
25-Oct-75-B0 (120h) 0.8539 0.8557 0.0018 0.2
25-Oct-75-B0 (72h) 0.8385 0.8405 0.0020 0.2
50-Oct-50-B0 (144h) 0.8508 0.8526 0.0018 0.2
50-Oct-50-B0 (72h) 0.8336 0.8313 0.0023 0.3
50-S-50-O (0h) 1.0640 1.0617 0.0023 0.2
75-Oct-25-B0 (0h) 0.8267 0.8292 0.0025 0.3
75-Oct-25-B0 (192 h) 0.8802 0.8803 0.0001 0.0
75-Oct-25-B0 (48h) 0.8274 0.8228 0.0046 0.6
75-S-25-O (0h) 1.0680 1.0662 0.0018 0.2
75-S-25-O (24h) 1.0790 1.0885 0.0095 0.9

Testdaten: Md.(∆rel.) = 0.3%,
Md.(∆abs.) = 0.0025kg/m3

Trainingsdaten (siehe Tabelle 8.26 - 8.29)
Md.(∆rel.) = 0.7%, Md.(∆abs.) = 0.0059kg/m3
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Tabelle 8.12: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Bezeichnung des
Kraftstoffs.

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

1-Butanol 0 1-Heptanol 1-Nonanol 192 1-Octanol
1-Butanol 120 1-Heptanol 1-Nonanol 24 1-Nonanol
1-Butanol 144 1-Heptanol 1-Nonanol 48 1-Octanol
1-Butanol 24 1-Heptanol 1-Nonanol 72 1-Hexanol
1-Butanol 48 1-Hexanol 1-Nonanol 96 1-Nonanol
1-Butanol 72 1-Heptanol 1-Octanol 0 1-Pentanol
1-Butanol 96 1-Butanol 1-Octanol 120 B0
1-Decanol 0 1-Octanol 1-Octanol 144 OME
1-Decanol 120 1-Nonanol 1-Octanol 168 OME
1-Decanol 144 1-Nonanol 1-Octanol 192 1-Pentanol
1-Decanol 168 1-Nonanol 1-Octanol 24 1-Octanol
1-Decanol 192 1-Octanol 1-Octanol 48 1-Pentanol
1-Decanol 24 1-Pentanol 1-Octanol 72 1-Pentanol
1-Decanol 48 1-Nonanol 1-Octanol 96 OME
1-Decanol 72 1-Nonanol 1-Pentanol 0 1-Heptanol
1-Decanol 96 1-Nonanol 1-Pentanol 120 1-Nonanol
1-Heptanol 0 1-Nonanol 1-Pentanol 144 1-Nonanol
1-Heptanol 120 1-Octanol 1-Pentanol 168 1-Octanol
1-Heptanol 144 1-Nonanol 1-Pentanol 192 1-Pentanol
1-Heptanol 192 1-Heptanol 1-Pentanol 24 1-Hexanol
1-Heptanol 24 1-Hexanol 1-Pentanol 48 1-Heptanol
1-Heptanol 48 1-Heptanol 1-Pentanol 72 1-Hexanol
1-Heptanol 72 1-Hexanol 1-Pentanol 96 1-Nonanol
1-Heptanol 96 1-Nonanol B0 0 2-Butanol
1-Hexanol 0 1-Heptanol B0 120 25-S-75-O
1-Hexanol 144 1-Nonanol B0 144 Solketal
1-Hexanol 168 1-Pentanol B0 168 B0
1-Hexanol 192 1-Octanol B0 192 1-Heptanol
1-Hexanol 24 1-Heptanol B0 24 2-Hexanol
1-Hexanol 48 1-Hexanol B0 48 OME
1-Hexanol 72 1-Hexanol B0 72 25-S-75-O
1-Hexanol 96 1-Nonanol B0 96 25-Oc-75-B0
1-Nonanol 0 1-Nonanol OME 0 2-Butanol
1-Nonanol 120 1-Octanol OME 120 2-Butanol
1-Nonanol 144 1-Nonanol OME 144 2-Hexanol
1-Nonanol 168 1-Octanol OME 24 2-Butanol
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Tabelle 8.13: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Bezeichnung des
Kraftstoffs.

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

OME 72 2-Butanol 25-Oc-75-B0 48 25-Oc-75-B0
OME 96 2-Hexanol 25-Oc-75-B0 96 50-S-50-O
Solketal 0 2-Hexanol 25-S-75-O 0 25-Oc-75-B0
Solketal 144 50-S-50-O 25-S-75-O 120 25-Oc-75-B0
Solketal 24 2-Butanol 25-S-75-O 144 25-Oc-75-B0
Solketal 48 2-Pentanol 25-S-75-O 24 2-Hexanol
Solketal 72 25-O-75-B0 25-S-75-O 48 25-Oc-75-B0
Solketal 96 25-Oc-75-B0 25-S-75-O 72 50-S-50-O
2-Butanol 0 2-Pentanol 25-S-75-O 96 25-S-75-O
2-Butanol 120 2-Butanol 50-Oc-50-B0 0 25-Oc-75-B0
2-Butanol 144 Solketal 50-Oc-50-B0 120 50-Oc-50-B0
2-Butanol 168 Solketal 50-Oc-50-B0 168 50-Oc-50-B0
2-Butanol 24 2-Pentanol 50-Oc-50-B0 192 50-S-50-O
2-Butanol 48 2-Hexanol 50-Oc-50-B0 24 2-Butanol
2-Butanol 72 Solketal 50-Oc-50-B0 48 2-Hexanol
2-Butanol 96 2-Pentanol 50-Oc-50-B0 96 2-Hexanol
2-Hexanol 0 2-Pentanol 50-S-50-O 0 25-S-75-O
2-Hexanol 120 2-Pentanol 50-S-50-O 120 75-S-25-O
2-Hexanol 144 2-Pentanol 50-S-50-O 144 75-S-25-O
2-Hexanol 168 2-Hexanol 50-S-50-O 24 2-Pentanol
2-Hexanol 192 2-Hexanol 50-S-50-O 48 50-Oct-50-B0
2-Hexanol 24 2-Pentanol 50-S-50-O 72 75-Oc-25-B0
2-Hexanol 48 2-Pentanol 50-S-50-O 96 75-S-25-O
2-Hexanol 72 25-Oc-75-B0 75-Oc-25-B0 0 2-Hexanol
2-Hexanol 96 2-Pentanol 75-Oc-25-B0 120 2-Hexanol
2-Pentanol 0 2-Hexanol 75-Oc-25-B0 144 25-S-75-OME
2-Pentanol 120 OME 75-Oc-25-B0 168 2-Pentanol
2-Pentanol 144 1-Nonanol 75-Oc-25-B0 24 2-Hexanol
2-Pentanol 24 25-Oc-75-B0 75-Oc-25-B0 72 B0
2-Pentanol 48 2-Pentanol 75-Oc-25-B0 96 Solketal
2-Pentanol 72 2-Hexanol 75-S-25-O 0 2-Pentanol
2-Pentanol 96 2-Butanol 75-S-25-O 120 75-S-25-O
25-Oc-75-B0 0 2-Pentanol 75-S-25-O 144 75-S-25-O
25-Oc-75-B0 144 25-Oc-75-B0 75-S-25-O 48 25-S-75-O
25-Oc-75-B0 168 2-Hexanol 75-S-25-O 72 25-S-75-O
25-Oc-75-B0 192 2-Butanol 75-S-25-O 96 50-Oc-50-B0
25-Oc-75-B0 24 2-Hexanol
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Tabelle 8.14: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des
Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

1-Butanol 0 23 23 --
1-Butanol 120 65 55 46
1-Butanol 144 85 59 41
1-Butanol 24 26 2 8
1-Butanol 48 20 28 58
1-Butanol 72 39 33 46
1-Butanol 96 59 37 39
1-Decanol 0 15 15 --
1-Decanol 120 85 35 29
1-Decanol 144 91 53 37
1-Decanol 168 109 59 35
1-Decanol 192 107 85 44
1-Decanol 24 14 10 42
1-Decanol 48 14 34 71
1-Decanol 72 26 46 64
1-Decanol 96 59 37 39
1-Heptanol 0 22 22 --
1-Heptanol 120 142 22 18
1-Heptanol 144 141 3 2
1-Heptanol 192 124 68 35
1-Heptanol 24 23 1 4
1-Heptanol 48 26 22 46
1-Heptanol 72 73 1 1
1-Heptanol 96 118 22 23
1-Hexanol 0 19 19 --
1-Hexanol 144 142 2 1
1-Hexanol 168 146 22 13
1-Hexanol 192 135 57 30
1-Hexanol 24 24 0 0
1-Hexanol 48 34 14 29
1-Hexanol 72 88 16 22
1-Hexanol 96 129 33 34
1-Nonanol 0 16 16 --
1-Nonanol 120 107 13 11
1-Nonanol 144 116 28 19
1-Nonanol 168 115 53 32
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Tabelle 8.15: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des
Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

1-Nonanol 192 112 80 42
1-Nonanol 24 14 10 42
1-Nonanol 48 14 34 71
1-Nonanol 72 60 12 17
1-Nonanol 96 98 2 2
1-Octanol 0 25 25 --
1-Octanol 120 114 6 5
1-Octanol 144 115 29 20
1-Octanol 168 121 47 28
1-Octanol 192 116 76 40
1-Octanol 24 34 10 42
1-Octanol 48 61 13 27
1-Octanol 72 82 10 14
1-Octanol 96 96 0 0
1-Pentanol 0 14 14 --
1-Pentanol 120 150 30 25
1-Pentanol 144 150 6 4
1-Pentanol 168 151 17 10
1-Pentanol 192 131 61 32
1-Pentanol 24 23 1 4
1-Pentanol 48 31 17 35
1-Pentanol 72 86 14 19
1-Pentanol 96 128 32 33
B0 0 2 2 --
B0 120 174 54 45
B0 144 190 46 32
B0 168 183 15 9
B0 192 157 35 18
B0 24 7 17 71
B0 48 32 16 33
B0 72 87 15 21
B0 96 146 50 52
OME 0 4 4 --
OME 120 107 13 11
OME 144 110 34 24
OME 24 29 5 21
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Tabelle 8.16: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des
Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

OME 72 119 47 65
OME 96 90 6 6
Solketal 0 -9 9 --
Solketal 144 138 6 4
Solketal 24 9 15 63
Solketal 48 35 13 27
Solketal 72 57 15 21
Solketal 96 74 22 23
2-Butanol 0 10 10 --
2-Butanol 120 61 59 49
2-Butanol 144 68 76 53
2-Butanol 168 72 96 57
2-Butanol 24 20 4 17
2-Butanol 48 31 17 35
2-Butanol 72 37 35 49
2-Butanol 96 47 49 51
2-Hexanol 0 36 36 --
2-Hexanol 120 82 38 32
2-Hexanol 144 89 55 38
2-Hexanol 168 105 63 38
2-Hexanol 192 104 88 46
2-Hexanol 24 31 7 29
2-Hexanol 48 38 10 21
2-Hexanol 72 55 17 24
2-Hexanol 96 64 32 33
2-Pentanol 0 34 34 --
2-Pentanol 120 152 32 27
2-Pentanol 144 207 63 44
2-Pentanol 24 52 28 117
2-Pentanol 48 79 31 65
2-Pentanol 72 98 26 36
2-Pentanol 96 126 30 31
25-Oc-75-B0 0 6 6 --
25-Oc-75-B0 144 196 52 36
25-Oc-75-B0 168 205 37 22
25-Oc-75-B0 192 219 27 14
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Tabelle 8.17: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des
Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

25-Oc-75-B0 24 24 0 0
25-Oc-75-B0 48 64 16 33
25-Oc-75-B0 96 131 35 36
25-S-75-O 0 -2 2 --
25-S-75-O 120 148 28 23
25-S-75-O 144 172 28 19
25-S-75-O 24 36 12 50
25-S-75-O 48 67 19 40
25-S-75-O 72 101 29 40
25-S-75-O 96 120 24 25
50-Oc-50-B0 0 2 2 --
50-Oc-50-B0 120 120 0 0
50-Oc-50-B0 168 150 18 11
50-Oc-50-B0 192 158 34 18
50-Oc-50-B0 24 14 10 42
50-Oc-50-B0 48 61 13 27
50-Oc-50-B0 96 95 1 1
50-S-50-O 0 4 4 --
50-S-50-O 120 164 44 37
50-S-50-O 144 219 75 52
50-S-50-O 24 39 15 63
50-S-50-O 48 61 13 27
50-S-50-O 72 86 14 19
50-S-50-O 96 124 28 29
75-Oc-25-B0 0 3 3 --
75-Oc-25-B0 120 102 18 15
75-Oc-25-B0 144 115 29 20
75-Oc-25-B0 168 113 55 33
75-Oc-25-B0 24 -0 24 100
75-Oc-25-B0 72 55 17 24
75-Oc-25-B0 96 84 12 13
75-S-25-O 0 -5 5 --
75-S-25-O 120 132 12 10
75-S-25-O 144 167 23 16
75-S-25-O 48 49 1 2
75-S-25-O 72 76 4 6
75-S-25-O 96 91 5 5
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Tabelle 8.18: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN)
des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

1-Butanol 0 0.35 3.29 2.94 840.0
1-Butanol 120 5.8 16.96 11.16 192.4
1-Butanol 144 9.8 24.26 14.46 147.6
1-Butanol 24 0.35 2.49 2.14 611.4
1-Butanol 48 0.51 3.04 2.53 496.1
1-Butanol 72 1.44 6.26 4.82 334.7
1-Butanol 96 2.96 12.15 9.19 310.5
1-Decanol 0 0.27 2.85 2.58 955.6
1-Decanol 120 30.82 29.16 1.66 5.4
1-Decanol 144 41.66 34.80 6.86 16.5
1-Decanol 168 46.77 34.41 12.36 26.4
1-Decanol 192 49.4 34.98 14.42 29.2
1-Decanol 24 0.26 4.51 4.25 1634.6
1-Decanol 48 0.36 1.88 1.52 422.2
1-Decanol 72 3.42 6.12 2.7 78.9
1-Decanol 96 17.04 17.12 0.08 0.5
1-Heptanol 0 0.35 4.21 3.86 1102.9
1-Heptanol 120 61.1 45.00 16.1 26.4
1-Heptanol 144 65.16 46.51 18.65 28.6
1-Heptanol 192 61.7 45.06 16.64 27.0
1-Heptanol 24 0.34 4.09 3.75 1102.9
1-Heptanol 48 0.97 3.53 2.56 263.9
1-Heptanol 72 21.44 23.40 1.96 9.1
1-Heptanol 96 47.2 41.41 5.79 12.3
1-Hexanol 0 0.29 4.41 4.12 1420.7
1-Hexanol 144 66.22 43.93 22.29 33.7
1-Hexanol 168 67.61 45.67 21.94 32.5
1-Hexanol 192 62.57 44.16 18.41 29.4
1-Hexanol 24 0.59 4.77 4.18 708.5
1-Hexanol 48 15.18 7.95 7.23 47.6
1-Hexanol 72 36.32 29.07 7.25 20.0
1-Hexanol 96 49.69 40.87 8.82 17.8
1-Nonanol 0 0.34 3.04 2.7 794.1
1-Nonanol 120 46.34 38.05 8.29 17.9
1-Nonanol 144 49.89 37.04 12.85 25.8
1-Nonanol 168 48.58 34.11 14.47 29.8
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Tabelle 8.19: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN)
des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

1-Nonanol 192 48.58 38.62 9.96 20.5
1-Nonanol 24 0.79 2.34 1.55 196.2
1-Nonanol 48 1.21 5.87 4.66 385.1
1-Nonanol 72 17.59 18.21 0.62 3.5
1-Nonanol 96 34.93 32.75 2.18 6.2
1-Octanol 0 0.43 0.46 0.03 7.0
1-Octanol 120 54.53 34.74 19.79 36.3
1-Octanol 144 56.52 34.95 21.57 38.2
1-Octanol 168 55.52 36.49 19.03 34.3
1-Octanol 192 55.00 39.79 15.21 27.7
1-Octanol 24 0.45 6.60 6.15 1366.7
1-Octanol 48 10.81 15.38 4.57 42.3
1-Octanol 72 32.47 26.04 6.43 19.8
1-Octanol 96 47.01 28.22 18.79 40.0
1-Pentanol 0 0.33 5.19 4.86 1472.7
1-Pentanol 120 63.44 49.49 13.95 22.0
1-Pentanol 144 66.44 51.69 14.75 22.2
1-Pentanol 168 64.78 50.36 14.42 22.3
1-Pentanol 192 59.43 46.02 13.41 22.6
1-Pentanol 24 0.37 3.93 3.56 962.2
1-Pentanol 48 2.73 9.43 6.7 245.4
1-Pentanol 72 23.43 27.13 3.7 15.8
1-Pentanol 96 48.34 42.37 5.97 12.4
B0 0 0.070 4.67 4.6 6571.4
B0 120 23.97 27.78 3.81 15.9
B0 144 28.42 37.35 8.93 31.4
B0 168 28.94 37.11 8.17 28.2
B0 192 29.74 41.33 11.59 39.0
B0 24 0.40 6.97 6.57 1642.5
B0 48 0.62 8.49 7.87 1269.4
B0 72 4.93 9.01 4.08 82.8
B0 96 15.84 22.70 6.86 43.3
OME 0 0.98 23.06 22.08 2253.1
OME 120 89.26 65.24 24.02 26.9
OME 144 73.62 65.92 7.7 10.5
OME 24 29.83 51.01 21.18 71.0
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Tabelle 8.20: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN)
des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

OME 72 97.16 68.31 28.85 29.7
OME 96 98.47 63.84 34.63 35.2
Solketal 0 0.34 -16.11 16.45 4838.2
Solketal 144 17.54 34.25 16.71 95.3
Solketal 24 9.57 -7.89 17.46 182.4
Solketal 48 10.52 4.77 5.75 54.7
Solketal 72 11.68 12.23 0.55 4.7
Solketal 96 13.16 19.92 6.76 51.4
2-Butanol 0 0.13 -6.62 6.75 5192.3
2-Butanol 120 6.89 3.97 2.92 42.4
2-Butanol 144 9.34 7.33 2.01 21.5
2-Butanol 168 2.13 7.72 5.59 262.4
2-Butanol 24 1.22 -7.60 8.82 723.0
2-Butanol 48 5.34 -7.46 12.8 239.7
2-Butanol 72 2.12 -3.59 5.71 269.3
2-Butanol 96 3.28 3.19 0.09 2.7
2-Hexanol 0 0.73 -3.75 4.48 613.7
2-Hexanol 120 1.77 -1.19 2.96 167.2
2-Hexanol 144 1.86 2.95 1.09 58.6
2-Hexanol 168 2.41 8.78 6.37 264.3
2-Hexanol 192 1.72 19.01 17.29 1005.2
2-Hexanol 24 0.74 -1.73 2.47 333.8
2-Hexanol 48 0.74 -0.55 1.29 174.3
2-Hexanol 72 0.76 -0.82 1.58 207.9
2-Hexanol 96 1.09 -1.28 2.37 217.4
2-Pentanol 0 0.14 -2.44 2.58 1842.9
2-Pentanol 120 6.05 25.36 19.31 319.2
2-Pentanol 144 8.69 36.69 28 322.2
2-Pentanol 24 1.04 4.48 3.44 330.8
2-Pentanol 48 1.03 8.14 7.11 690.3
2-Pentanol 72 2.46 11.67 9.21 374.4
2-Pentanol 96 3.88 18.33 14.45 372.4
25-Oc-75-B0 0 0.73 -0.84 1.57 215.1
25-Oc-75-B0 144 19.84 33.60 13.76 69.4
25-Oc-75-B0 168 20.37 31.78 11.41 56.0
25-Oc-75-B0 192 21.10 33.52 12.42 58.9
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Tabelle 8.21: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN)
des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

25-Oc-75-B0 24 1.29 6.42 5.13 397.7
25-Oc-75-B0 48 5.73 12.27 6.54 114.1
25-Oc-75-B0 96 15.31 25.30 9.99 65.3
25-S-75-O 0 1.19 10.86 9.67 812.6
25-S-75-O 120 67.35 76.18 8.83 13.1
25-S-75-O 144 68.35 74.15 5.8 8.5
25-S-75-O 24 38.59 29.47 9.12 23.6
25-S-75-O 48 42.31 45.30 2.99 7.1
25-S-75-O 72 60.20 57.41 2.79 4.6
25-S-75-O 96 65.75 65.48 0.27 0.4
50-Oc-50-B0 0 0.37 0.40 0.03 8.1
50-Oc-50-B0 120 16.83 22.43 5.6 33.3
50-Oc-50-B0 168 19.16 19.58 0.42 2.2
50-Oc-50-B0 192 19.22 20.71 1.49 7.8
50-Oc-50-B0 24 1.50 -0.04 1.54 102.7
50-Oc-50-B0 48 6.30 9.77 3.47 55.1
50-Oc-50-B0 96 14.54 18.00 3.46 23.8
50-S-50-O 0 0.79 2.93 2.14 270.9
50-S-50-O 120 37.04 59.52 22.48 60.7
50-S-50-O 144 42.22 74.18 31.96 75.7
50-S-50-O 24 22.74 20.16 2.58 11.3
50-S-50-O 48 27.59 29.94 2.35 8.5
50-S-50-O 72 29.76 39.85 10.09 33.9
50-S-50-O 96 36.63 49.57 12.94 35.3
75-Oc-25-B0 0 0.41 -1.69 2.1 512.2
75-Oc-25-B0 120 25.67 23.02 2.65 10.3
75-Oc-25-B0 144 30.03 24.08 5.95 19.8
75-Oc-25-B0 168 32.31 27.92 4.39 13.6
75-Oc-25-B0 24 0.69 -0.73 1.42 205.8
75-Oc-25-B0 72 10.26 7.09 3.17 30.9
75-Oc-25-B0 96 19.33 18.29 1.04 5.4
75-S-25-O 0 0.56 -8.63 9.19 1641.1
75-S-25-O 120 27.45 42.30 14.85 54.1
75-S-25-O 144 25.44 50.64 25.2 99.1
75-S-25-O 48 21.28 16.32 4.96 23.3
75-S-25-O 72 24.58 24.42 0.16 0.7
75-S-25-O 96 28.38 31.94 3.56 12.5
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Tabelle 8.22: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische
Viskosität des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

1-Butanol 0 2.3384 1.9145 0.4239 18.13
1-Butanol 120 2.3139 2.5265 0.2126 9.19
1-Butanol 144 2.3620 3.0539 0.6919 29.29
1-Butanol 24 2.2083 1.6899 0.5184 23.48
1-Butanol 48 2.2313 2.0345 0.1968 8.82
1-Butanol 72 2.2630 1.9641 0.2989 13.21
1-Butanol 96 2.2881 1.1730 1.1151 48.73
1-Decanol 0 8.0442 6.6637 1.3805 17.16
1-Decanol 120 8.0093 7.1955 0.8138 10.16
1-Decanol 144 7.4920 6.6314 0.8606 11.49
1-Decanol 168 7.4638 5.6915 1.7723 23.75
1-Decanol 192 7.1420 5.7006 1.4414 20.18
1-Decanol 24 8.1192 6.8631 1.2561 15.47
1-Decanol 48 8.0275 6.6137 1.4138 17.61
1-Decanol 72 8.1589 6.6268 1.5321 18.78
1-Decanol 96 8.2611 7.0408 1.2203 14.77
1-Heptanol 0 4.5511 4.8291 0.2780 6.11
1-Heptanol 120 3.7407 4.1248 0.3841 10.27
1-Heptanol 144 3.5553 3.2477 0.3076 8.65
1-Heptanol 192 3.1804 1.9054 1.2750 40.09
1-Heptanol 24 4.4618 4.7245 0.2627 5.89
1-Heptanol 48 4.5282 4.8037 0.2755 6.08
1-Heptanol 72 4.5046 5.4167 0.9121 20.25
1-Heptanol 96 4.0740 5.4284 1.3544 33.24
1-Hexanol 0 3.5042 3.8642 0.3600 10.27
1-Hexanol 144 2.7515 2.7511 0.0004 0.01
1-Hexanol 168 2.7001 2.4671 0.2330 8.63
1-Hexanol 192 2.3226 2.4677 0.1451 6.25
1-Hexanol 24 3.4937 3.9317 0.4380 12.54
1-Hexanol 48 3.4683 4.0464 0.5781 16.67
1-Hexanol 72 3.1544 4.7264 1.5720 49.84
1-Hexanol 96 3.0511 4.1573 1.1062 36.26
1-Nonanol 0 6.7367 6.0121 0.7246 10.76
1-Nonanol 120 5.9894 6.2465 0.2571 4.29
1-Nonanol 144 5.6741 5.2517 0.4224 7.44
1-Nonanol 168 5.6334 4.9379 0.6955 12.35
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Tabelle 8.23: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische
Viskosität des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

1-Nonanol 192 5.1451 4.6725 0.4726 9.19
1-Nonanol 24 6.7466 6.1944 0.5522 8.18
1-Nonanol 48 6.8128 6.3529 0.4599 6.75
1-Nonanol 72 6.9023 6.6126 0.2897 4.20
1-Nonanol 96 6.4700 6.6371 0.1671 2.58
1-Octanol 0 5.5643 5.9920 0.4277 7.69
1-Octanol 120 4.5578 4.5829 0.0251 0.55
1-Octanol 144 4.3159 4.0234 0.2925 6.78
1-Octanol 168 4.0031 4.9226 0.9195 22.97
1-Octanol 192 3.9985 4.1101 0.1116 2.79
1-Octanol 24 5.6601 5.9429 0.2828 5.00
1-Octanol 48 5.6257 6.1026 0.4769 8.48
1-Octanol 72 5.4012 6.0954 0.6942 12.85
1-Octanol 96 4.9475 5.8107 0.8632 17.45
1-Pentanol 0 2.8651 2.9555 0.0904 3.16
1-Pentanol 120 2.4690 3.5193 1.0503 42.54
1-Pentanol 144 2.2299 2.7935 0.5636 25.27
1-Pentanol 168 2.0187 2.4046 0.3859 19.12
1-Pentanol 192 1.8722 1.9912 0.1190 6.36
1-Pentanol 24 2.8640 3.0889 0.2249 7.85
1-Pentanol 48 2.8644 3.1734 0.3090 10.79
1-Pentanol 72 2.8384 3.9186 1.0802 38.06
1-Pentanol 96 2.5739 3.6392 1.0653 41.39
B0 0 2.4520 2.0625 0.3895 15.88
B0 120 5.2410 5.1462 0.0948 1.81
B0 144 5.2410 4.8286 0.4124 7.87
B0 168 5.5426 4.5499 0.9927 17.91
B0 192 5.4745 3.1195 2.3550 43.02
B0 24 2.7705 2.3380 0.4325 15.61
B0 48 2.7705 2.7581 0.0124 0.45
B0 72 3.4156 3.9995 0.5839 17.10
B0 96 5.2410 4.7904 0.4506 8.60
OME 0 1.2094 -1.5967 2.8061 232.02
OME 120 2.2268 3.6176 1.3908 62.46
OME 144 2.9978 3.8827 0.8849 29.52
OME 24 1.2301 -0.0714 1.3015 105.80
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Tabelle 8.24: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische
Viskosität des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

OME 72 1.6650 2.1069 0.4419 26.54
OME 96 1.9228 2.9610 1.0382 53.99
Solketal 0 5.0164 5.4881 0.4717 9.40
Solketal 144 25.5650 15.1199 10.4451 40.86
Solketal 24 5.6628 6.1937 0.5309 9.38
Solketal 48 6.7557 7.8163 1.0606 15.70
Solketal 72 8.6660 9.4791 0.8131 9.38
Solketal 96 11.7755 10.9313 0.8442 7.17
2-Butanol 0 2.0675 1.8970 0.1705 8.25
2-Butanol 120 2.2260 2.8696 0.6436 28.91
2-Butanol 144 2.2428 2.9082 0.6654 29.67
2-Butanol 168 2.0750 2.5024 0.4274 20.60
2-Butanol 24 2.0963 2.0514 0.0449 2.14
2-Butanol 48 2.1823 1.7402 0.4421 20.26
2-Butanol 72 2.1879 2.0462 0.1417 6.48
2-Butanol 96 2.1829 2.9633 0.7804 35.75
2-Hexanol 0 2.8462 3.1381 0.2919 10.26
2-Hexanol 120 1.6809 0.9862 0.6947 41.33
2-Hexanol 144 1.5116 0.6351 0.8765 57.98
2-Hexanol 168 1.3861 0.5390 0.8471 61.11
2-Hexanol 192 1.3431 1.3292 0.0139 1.03
2-Hexanol 24 2.8717 3.2893 0.4176 14.54
2-Hexanol 48 2.4255 3.0868 0.6613 27.26
2-Hexanol 72 2.0028 2.7125 0.7097 35.44
2-Hexanol 96 1.7631 2.0082 0.2451 13.90
2-Pentanol 0 2.3129 1.9916 0.3213 13.89
2-Pentanol 120 1.9639 0.8460 1.1179 56.92
2-Pentanol 144 2.2530 0.4637 1.7893 79.42
2-Pentanol 24 2.1287 2.6408 0.5121 24.06
2-Pentanol 48 1.9959 2.4204 0.4245 21.27
2-Pentanol 72 1.8449 1.8306 0.0143 0.78
2-Pentanol 96 1.8698 1.2174 0.6524 34.89
25-Oc-75-B0 0 2.7364 2.4370 0.2994 10.94
25-Oc-75-B0 144 4.0114 4.6760 0.6646 16.57
25-Oc-75-B0 168 4.2482 4.8905 0.6423 15.12
25-Oc-75-B0 192 4.4758 4.5302 0.0544 1.22
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Tabelle 8.25: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische
Viskosität des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

25-Oc-75-B0 24 2.8752 3.1190 0.2438 8.48
25-Oc-75-B0 48 2.9743 3.6998 0.7255 24.39
25-Oc-75-B0 96 3.4112 4.7715 1.3603 39.88
25-S-75-O 0 1.5072 0.1679 1.3393 88.86
25-S-75-O 120 4.3035 6.7635 2.4600 57.16
25-S-75-O 144 8.1556 7.1522 1.0034 12.30
25-S-75-O 24 1.6009 0.9534 0.6475 40.45
25-S-75-O 48 1.8693 3.0698 1.2005 64.22
25-S-75-O 72 2.3537 5.3385 2.9848 126.81
25-S-75-O 96 3.7590 5.9519 2.1929 58.34
50-Oc-50-B0 0 3.3890 3.8589 0.4699 13.87
50-Oc-50-B0 120 3.6816 5.0117 1.3301 36.13
50-Oc-50-B0 168 3.7714 4.5556 0.7842 20.79
50-Oc-50-B0 192 3.8686 4.6173 0.7487 19.35
50-Oc-50-B0 24 3.4634 3.2044 0.2590 7.48
50-Oc-50-B0 48 3.4921 4.4703 0.9782 28.01
50-Oc-50-B0 96 3.6542 4.5116 0.8574 23.46
50-S-50-O 0 2.0173 2.0809 0.0636 3.15
50-S-50-O 120 11.1920 12.9825 1.7905 16.00
50-S-50-O 144 16.1430 16.3742 0.2312 1.43
50-S-50-O 24 2.2639 2.9357 0.6718 29.67
50-S-50-O 48 2.8226 5.0452 2.2226 78.74
50-S-50-O 72 3.7807 7.1507 3.3700 89.14
50-S-50-O 96 5.4924 9.6428 4.1504 75.57
75-Oc-25-B0 0 4.1688 4.8045 0.6357 15.25
75-Oc-25-B0 120 4.0639 5.5232 1.4593 35.91
75-Oc-25-B0 144 4.0199 5.1604 1.1405 28.37
75-Oc-25-B0 168 3.9739 4.5109 0.5370 13.51
75-Oc-25-B0 24 4.3054 4.8780 0.5726 13.30
75-Oc-25-B0 72 4.3798 5.3363 0.9565 21.84
75-Oc-25-B0 96 4.3220 5.6323 1.3103 30.32
75-S-25-O 0 3.0521 3.8590 0.8069 26.44
75-S-25-O 120 11.4315 11.9681 0.5366 4.69
75-S-25-O 144 23.7360 15.4397 8.2963 34.95
75-S-25-O 48 4.2516 6.2693 2.0177 47.46
75-S-25-O 72 5.3350 7.6358 2.3008 43.13
75-S-25-O 96 7.3803 9.4837 2.1034 28.50
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Tabelle 8.26: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

1-Butanol 0 0.8141 0.8098 0.0043 0.53
1-Butanol 120 0.8335 0.8401 0.0066 0.79
1-Butanol 144 0.8462 0.8607 0.0145 1.71
1-Butanol 24 0.8136 0.8147 0.0011 0.14
1-Butanol 48 0.8152 0.8159 0.0007 0.09
1-Butanol 72 0.8190 0.8192 0.0002 0.02
1-Butanol 96 0.8250 0.8357 0.0107 1.30
1-Decanol 0 0.8332 0.8276 0.0056 0.67
1-Decanol 120 0.8524 0.8625 0.0101 1.18
1-Decanol 144 0.8631 0.8701 0.0070 0.81
1-Decanol 168 0.8738 0.8690 0.0048 0.55
1-Decanol 192 0.8798 0.8843 0.0045 0.51
1-Decanol 24 0.8331 0.8308 0.0023 0.28
1-Decanol 48 0.8335 0.8280 0.0055 0.66
1-Decanol 72 0.8365 0.8287 0.0078 0.93
1-Decanol 96 0.8433 0.8515 0.0082 0.97
1-Heptanol 0 0.8255 0.8207 0.0048 0.58
1-Heptanol 120 0.8715 0.8700 0.0015 0.17
1-Heptanol 144 0.8792 0.8748 0.0044 0.50
1-Heptanol 192 0.8922 0.8807 0.0115 1.29
1-Heptanol 24 0.8258 0.8231 0.0027 0.33
1-Heptanol 48 0.8271 0.8245 0.0026 0.31
1-Heptanol 72 0.8391 0.8502 0.0111 1.32
1-Heptanol 96 0.8545 0.8759 0.0214 2.50
1-Hexanol 0 0.8223 0.8190 0.0033 0.40
1-Hexanol 144 0.8730 0.8660 0.0070 0.80
1-Hexanol 168 0.8760 0.8685 0.0075 0.86
1-Hexanol 192 0.8752 0.8810 0.0058 0.66
1-Hexanol 24 0.8223 0.8175 0.0048 0.58
1-Hexanol 48 0.8260 0.8261 0.0001 0.01
1-Hexanol 72 0.8408 0.8565 0.0157 1.87
1-Hexanol 96 0.8559 0.8718 0.0159 1.86
1-Nonanol 0 0.8311 0.8244 0.0067 0.81
1-Nonanol 120 0.8621 0.8772 0.0151 1.75
1-Nonanol 144 0.8719 0.8700 0.0019 0.22
1-Nonanol 168 0.8774 0.8749 0.0025 0.28
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Tabelle 8.27: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

1-Nonanol 192 0.8809 0.8775 0.0034 0.39
1-Nonanol 24 0.8311 0.8274 0.0037 0.45
1-Nonanol 48 0.8326 0.8309 0.0017 0.20
1-Nonanol 72 0.8422 0.8517 0.0095 1.13
1-Nonanol 96 0.8532 0.8654 0.0122 1.43
1-Octanol 0 0.8287 0.8264 0.0023 0.28
1-Octanol 120 0.8734 0.8726 0.0008 0.09
1-Octanol 144 0.8774 0.8736 0.0038 0.43
1-Octanol 168 0.8851 0.8748 0.0103 1.16
1-Octanol 192 0.8918 0.8750 0.0168 1.88
1-Octanol 24 0.8293 0.8304 0.0011 0.13
1-Octanol 48 0.8363 0.8410 0.0047 0.56
1-Octanol 72 0.8486 0.8569 0.0083 0.98
1-Octanol 96 0.8596 0.8715 0.0119 1.38
1-Pentanol 0 0.8182 0.8142 0.0040 0.49
1-Pentanol 120 0.8622 0.8786 0.0164 1.90
1-Pentanol 144 0.8680 0.8863 0.0183 2.11
1-Pentanol 168 0.8714 0.8866 0.0152 1.74
1-Pentanol 192 0.8741 0.8848 0.0107 1.22
1-Pentanol 24 0.8186 0.8160 0.0026 0.32
1-Pentanol 48 0.8227 0.8234 0.0007 0.09
1-Pentanol 72 0.8376 0.8533 0.0157 1.87
1-Pentanol 96 0.8539 0.8714 0.0175 2.05
B0 0 0.8227 0.8368 0.0141 1.71
B0 120 0.8536 0.8599 0.0063 0.74
B0 144 0.8596 0.8586 0.0010 0.12
B0 168 0.8597 0.8562 0.0035 0.41
B0 192 0.8611 0.8493 0.0118 1.37
B0 24 0.8206 0.8230 0.0024 0.29
B0 48 0.8206 0.8148 0.0058 0.71
B0 72 0.8310 0.8319 0.0009 0.11
B0 96 0.8446 0.8442 0.0004 0.05
OME 0 1.0570 1.0505 0.0065 0.61
OME 120 1.1240 1.1369 0.0129 1.15
OME 144 1.1480 1.1435 0.0045 0.39
OME 24 1.0680 1.0662 0.0018 0.17
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Tabelle 8.28: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

OME 72 1.0950 1.1231 0.0281 2.57
OME 96 1.1090 1.1237 0.0147 1.33
Solketal 0 1.0710 1.0677 0.0033 0.31
Solketal 144 1.1730 1.1713 0.0017 0.14
Solketal 24 1.0790 1.0800 0.0010 0.09
Solketal 48 1.0940 1.1019 0.0079 0.72
Solketal 72 1.1110 1.1188 0.0078 0.70
Solketal 96 1.1290 1.1339 0.0049 0.43
2-Butanol 0 0.8134 0.8155 0.0021 0.26
2-Butanol 120 0.8372 0.8625 0.0253 3.02
2-Butanol 144 0.8408 0.8652 0.0244 2.90
2-Butanol 168 0.8393 0.8589 0.0196 2.34
2-Butanol 24 0.8159 0.8204 0.0045 0.55
2-Butanol 48 0.8193 0.8187 0.0006 0.07
2-Butanol 72 0.8259 0.8327 0.0068 0.82
2-Butanol 96 0.8324 0.8510 0.0186 2.23
2-Hexanol 0 0.8203 0.8029 0.0174 2.12
2-Hexanol 120 0.8375 0.8257 0.0118 1.41
2-Hexanol 144 0.8424 0.8357 0.0067 0.80
2-Hexanol 168 0.8458 0.8484 0.0026 0.31
2-Hexanol 192 0.8448 0.8785 0.0337 3.99
2-Hexanol 24 0.8197 0.8059 0.0138 1.68
2-Hexanol 48 0.8214 0.8130 0.0084 1.02
2-Hexanol 72 0.8254 0.8247 0.0007 0.08
2-Hexanol 96 0.8295 0.8300 0.0005 0.06
2-Pentanol 0 0.8134 0.8073 0.0061 0.75
2-Pentanol 120 0.8777 0.8721 0.0056 0.64
2-Pentanol 144 0.8937 0.8726 0.0211 2.36
2-Pentanol 24 0.8246 0.8316 0.0070 0.85
2-Pentanol 48 0.8404 0.8517 0.0113 1.34
2-Pentanol 72 0.8525 0.8592 0.0067 0.79
2-Pentanol 96 0.8651 0.8626 0.0025 0.29
25-Oc-75-B0 0 0.8236 0.8197 0.0039 0.47
25-Oc-75-B0 144 0.8622 0.8718 0.0096 1.11
25-Oc-75-B0 168 0.8671 0.8670 0.0001 0.01
25-Oc-75-B0 192 0.8707 0.8711 0.0004 0.05
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Tabelle 8.29: Vorhersage mit dem PLS (Partial Least Squares)-Algorithmus für die Trainings-
daten der Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

25-Oc-75-B0 24 0.8253 0.8180 0.0073 0.88
25-Oc-75-B0 48 0.8306 0.8268 0.0038 0.46
25-Oc-75-B0 96 0.8461 0.8518 0.0057 0.67
25-S-75-O 0 1.0620 1.0511 0.0109 1.03
25-S-75-O 120 1.1500 1.1490 0.0010 0.09
25-S-75-O 144 1.1760 1.1468 0.0292 2.48
25-S-75-O 24 1.0730 1.0767 0.0037 0.34
25-S-75-O 48 1.0950 1.1093 0.0143 1.31
25-S-75-O 72 1.1190 1.1326 0.0136 1.22
25-S-75-O 96 1.1300 1.1444 0.0144 1.27
50-Oc-50-B0 0 0.8251 0.8249 0.0002 0.02
50-Oc-50-B0 120 0.8435 0.8426 0.0009 0.11
50-Oc-50-B0 168 0.8563 0.8544 0.0019 0.22
50-Oc-50-B0 192 0.8605 0.8536 0.0069 0.80
50-Oc-50-B0 24 0.8265 0.8170 0.0095 1.15
50-Oc-50-B0 48 0.8299 0.8262 0.0037 0.45
50-Oc-50-B0 96 0.8383 0.8405 0.0022 0.26
50-S-50-O 0 1.0640 1.0617 0.0023 0.22
50-S-50-O 120 1.1940 1.1838 0.0102 0.85
50-S-50-O 144 1.2580 1.2012 0.0568 4.52
50-S-50-O 24 1.0780 1.0876 0.0096 0.89
50-S-50-O 48 1.1000 1.1178 0.0178 1.62
50-S-50-O 72 1.1240 1.1367 0.0127 1.13
50-S-50-O 96 1.1510 1.1583 0.0073 0.63
75-Oc-25-B0 0 0.8267 0.8292 0.0025 0.30
75-Oc-25-B0 120 0.8477 0.8555 0.0078 0.92
75-Oc-25-B0 144 0.8594 0.8655 0.0061 0.71
75-Oc-25-B0 168 0.8704 0.8671 0.0033 0.38
75-Oc-25-B0 24 0.8267 0.8289 0.0022 0.27
75-Oc-25-B0 72 0.8323 0.8364 0.0041 0.49
75-Oc-25-B0 96 0.8386 0.8425 0.0039 0.47
75-S-25-O 0 1.0680 1.0662 0.0018 0.17
75-S-25-O 120 1.1630 1.1610 0.0020 0.17
75-S-25-O 144 1.2000 1.1909 0.0091 0.76
75-S-25-O 48 1.0960 1.1046 0.0086 0.78
75-S-25-O 72 1.1150 1.1277 0.0127 1.14
75-S-25-O 96 1.1350 1.1407 0.0057 0.50
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Vorhersage mit dem Random Forest - Algorithmus

Tabelle 8.30: Vorhersage mit dem Random Forest-Algorithmus für die Testdaten der Nahin-
frarotspektren. Die Parameter, die vorhergesagt wurden sind die Bezeichnung (oben) und die
Alterungszeit des Kraftstoffs (unten).

Alterungs-
zeit [h]

Bezeichnung
(real)

Bezeichnung
(pred.)

Bezeichnung
(real)

Bezeichnung
(pred.)

Alterungs-
zeit [h]

0 1-Decanol 1-Decanol 25-Oct-75-B0 25-Oct-75-B0 120
168 1-Heptanol 1-Heptanol 25-Oct-75-B0 25-Oct-75-B0 72
0 1-Hexanol 1-Hexanol 50-Oct-50-B0 50-Oct-50-B0 144
120 1-Hexanol 1-Hexanol 50-Oct-50-B0 50-Oct-50-B0 72
0 1-Octanol 1-Octanol 50-S-50-O 50-S-50-O 0
0 OME OME 75-Oct-25-B0 75-Oct-25-B0 0
48 OME OME 75-Oct-25-B0 75-Oct-25-B0 192
120 Solketal 1-Butanol 75-Oct-25-B0 1-Nonanol 48
0 2-Butanol 2-Butanol 75-S-25-O 75-S-25-O 0
0 2-Hexanol 2-Hexanol 75-S-25-O 75-S-25-O 24
0 2-Pentanol 2-Pentanol

Testdaten
a = 0.905

Trainingsdaten (siehe Tabelle 8.34 und 8.35)
a = 1.000

Bezeichnung Alterungs-
zeit [h] (real)

Alterungs-
zeit [h] (pred.)

Abs. Fehler
∆abs.[h]

Rel. Fehler
∆rel. [%]

1-Decanol 0 0 0 --
1-Heptanol 168 162 6 4
1-Hexanol 0 0 0 --
1-Hexanol 120 119 1 1
1-Octanol 0 0 0 --
OME 0 2 2 --
OME 48 89 41 86
Solketal 120 111 9 7
2-Butanol 0 1 1 --
2-Hexanol 0 0 0 --
2-Pentanol 0 0 0 --
25-Oct-75-B0 120 124 4 3
25-Oct-75-B0 72 111 39 54
50-Oct-50-B0 144 126 18 12
50-Oct-50-B0 72 59 13 18
50-S-50-O 0 0 0 --
75-Oct-25-B0 0 0 0 --
75-Oct-25-B0 192 84 108 56
75-Oct-25-B0 48 39 9 19
75-S-25-O 0 0 0 --
75-S-25-O 24 53 29 120

Testdaten: Md.(∆rel.) = 18%,
Md.(∆abs.) = 2h

Trainingsdaten (siehe Tabelle 8.36 - 8.39)
Md.(∆rel.) = 7%, Md.(∆abs.) = 8h
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Tabelle 8.31: Vorhersage der Säurezahl (TAN) des Kraftstoffs mit dem Random Forest-
Algorithmus für die Testdaten der Nahinfrarotspektren.

Bezeichnung TAN (real)
[mgKOH/g]

TAN (pred.)
[mgKOH/g]

Abs. Fehler ∆abs

[mgKOH/g]
Rel. Fehler
∆rel[%]

1-Decanol (0h) 0.27 0.27 0.00 1.8
1-Heptanol (168) 63.60 51.13 12.47 19.6
1-Hexanol (0h) 0.29 0.59 0.30 103.6
1-Hexanol (120h) 60.51 48.47 12.04 19.9
1-Octanol (0h) 0.43 0.42 0.01 2.8
OME (0h) 0.98 1.21 0.23 23.6
OME (48h) 67.01 76.00 8.99 13.4
Solketal (120h) 15.12 21.69 6.57 43.5
2-Butanol (0h) 0.13 0.23 0.10 75.0
2-Hexanol (0h) 0.73 0.94 0.21 28.1
2-Pentanol (0h) 0.14 0.14 0.00 0.5
25-Oct-75-B0 (120h) 17.51 17.88 0.37 2.1
25-Oct-75-B0 (72h) 11.64 12.45 0.81 7.0
50-Oct-50-B0 (144h) 18.89 18.55 0.34 1.8
50-Oct-50-B0 (72h) 10.96 17.64 6.68 60.9
50-S-50-O (0h) 0.79 0.79 0.00 0.0
75-Oct-25-B0 (0h) 0.41 0.41 0.00 0.5
75-Oct-25-B0 (192 h) 35.35 21.56 13.79 39.0
75-Oct-25-B0 (48h) 1.03 10.23 9.20 893.4
75-S-25-O (0h) 0.56 0.56 0.00 0.0
75-S-25-O (24h) 15.22 15.30 0.08 0.5

Testdaten: Md.(∆rel.) = 13%,
Md.(∆abs.) = 0.30mgKOH/g

Trainingsdaten (siehe Tabelle 8.40 - 8.43)
Md.(∆rel.) = 16%,Md.(∆abs.) = 2.22mgKOH/g
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Tabelle 8.32: Vorhersage der kinematischen Viskosität des Kraftstoffs mit dem Random Forest-
Algorithmus für die Testdaten der Nahinfrarotspektren.

Bezeichnung Viskosität
[mm2/s] (real)

Viskosität
[mm2/s] (pred.)

Abs. Fehler
∆abs [mm2/s]

Rel. Fehler
∆rel [%]

1-Decanol (0h) 8.0442 8.0441 0.0000 0.0
1-Heptanol (168) 3.2306 3.5315 0.3009 9.3
1-Hexanol (0h) 3.5042 3.5039 0.0004 0.0
1-Hexanol (120h) 2.8645 2.6670 0.1975 6.9
1-Octanol (0h) 5.5643 5.5797 0.0154 0.3
OME (0h) 1.2094 1.2375 0.0281 2.3
OME (48h) 1.3501 2.4487 1.0986 81.4
Solketal (120h) 16.7570 12.7199 4.0371 24.1
2-Butanol (0h) 2.0675 2.0773 0.0098 0.5
2-Hexanol (0h) 2.8462 2.8740 0.0278 1.0
2-Pentanol (0h) 2.3129 2.3117 0.0012 0.1
25-Oct-75-B0 (120h) 3.6910 3.8328 0.1418 3.8
25-Oct-75-B0 (72h) 3.2211 3.5851 0.3640 11.3
50-Oct-50-B0 (144h) 3.7718 3.9782 0.2064 5.5
50-Oct-50-B0 (72h) 3.4870 4.3455 0.8585 24.6
50-S-50-O (0h) 2.0173 2.0172 0.0000 0.0
75-Oct-25-B0 (0h) 4.1688 4.1688 0.0000 0.0
75-Oct-25-B0 (192 h) 4.1413 3.9836 0.1577 3.8
75-Oct-25-B0 (48h) 4.3290 4.2627 0.0663 1.5
75-S-25-O (0h) 3.0521 3.0521 0.0000 0.0
75-S-25-O (24h) 3.4627 4.2775 0.8148 23.5

Testdaten: Md.(∆rel.) = 2%,
Md.(∆abs.) = 0.0663mm2/s

Trainingsdaten (siehe Tabelle 8.44 - 8.47)
Md.(∆rel.) = 4%, Md.(∆abs.) = 0.1333mm2/s
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Tabelle 8.33: Vorhersage der Dichte des Kraftstoffs mit dem Random Forest-Algorithmus für
die Testdaten der Nahinfrarotspektren.

Bezeichnung Dichte (real)
[kg/m3]

Dichte (pred.)
[kg/m3]

Abs. Fehler
∆abs [kg/m3]

Rel. Fehler
∆rel [%]

1-Decanol (0h) 0.8332 0.8332 0.0000 0.0
1-Heptanol (168) 0.8838 0.8770 0.0068 0.8
1-Hexanol (0h) 0.8223 0.8223 0.0000 0.0
1-Hexanol (120h) 0.8692 0.8668 0.0023 0.3
1-Octanol (0h) 0.8287 0.8287 0.0000 0.0
OME (0h) 1.0570 1.0577 0.0007 0.1
OME (48h) 1.0810 1.0669 0.0141 1.3
Solketal (120h) 1.1490 1.1539 0.0049 0.4
2-Butanol (0h) 0.8134 0.8136 0.0002 0.0
2-Hexanol (0h) 0.8203 0.8204 0.0001 0.0
2-Pentanol (0h) 0.8134 0.8134 0.0000 0.0
25-Oct-75-B0 (120h) 0.8539 0.8531 0.0008 0.1
25-Oct-75-B0 (72h) 0.8385 0.8488 0.0103 1.2
50-Oct-50-B0 (144h) 0.8508 0.8515 0.0007 0.1
50-Oct-50-B0 (72h) 0.8336 0.8343 0.0007 0.1
50-S-50-O (0h) 1.0640 1.0640 0.0000 0.0
75-Oct-25-B0 (0h) 0.8267 0.8267 0.0000 0.0
75-Oct-25-B0 (192 h) 0.8802 0.8321 0.0481 5.5
75-Oct-25-B0 (48h) 0.8274 0.8285 0.0011 0.1
75-S-25-O (0h) 1.0680 1.0680 0.0000 0.0
75-S-25-O (24h) 1.0790 1.0654 0.0136 1.3

Testdaten: Md.(∆rel.) = 0.1%,
Md.(∆abs.) = 0.0007kg/m3

Trainingsdaten (siehe Tabelle 8.48 - 8.51)
Md.(∆rel.) = 0.2%, Md.(∆abs.) = 0.0020kg/m3
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Tabelle 8.34: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Bezeichnung des Kraftstoffs.

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

1-Butanol 0 1-Butanol 1-Nonanol 192 1-Nonanol
1-Butanol 120 1-Butanol 1-Nonanol 24 1-Nonanol
1-Butanol 144 1-Butanol 1-Nonanol 48 1-Nonanol
1-Butanol 24 1-Butanol 1-Nonanol 72 1-Nonanol
1-Butanol 48 1-Butanol 1-Nonanol 96 1-Nonanol
1-Butanol 72 1-Butanol 1-Octanol 0 1-Octanol
1-Butanol 96 1-Butanol 1-Octanol 120 1-Octanol
1-Decanol 0 1-Decanol 1-Octanol 144 1-Octanol
1-Decanol 120 1-Decanol 1-Octanol 168 1-Octanol
1-Decanol 144 1-Decanol 1-Octanol 192 1-Octanol
1-Decanol 168 1-Decanol 1-Octanol 24 1-Octanol
1-Decanol 192 1-Decanol 1-Octanol 48 1-Octanol
1-Decanol 24 1-Decanol 1-Octanol 72 1-Octanol
1-Decanol 48 1-Decanol 1-Octanol 96 1-Octanol
1-Decanol 72 1-Decanol 1-Pentanol 0 1-Pentanol
1-Decanol 96 1-Decanol 1-Pentanol 120 1-Pentanol
1-Heptanol 0 1-Heptanol 1-Pentanol 144 1-Pentanol
1-Heptanol 120 1-Heptanol 1-Pentanol 168 1-Pentanol
1-Heptanol 144 1-Heptanol 1-Pentanol 192 1-Pentanol
1-Heptanol 192 1-Heptanol 1-Pentanol 24 1-Pentanol
1-Heptanol 24 1-Heptanol 1-Pentanol 48 1-Pentanol
1-Heptanol 48 1-Heptanol 1-Pentanol 72 1-Pentanol
1-Heptanol 72 1-Heptanol 1-Pentanol 96 1-Pentanol
1-Heptanol 96 1-Heptanol B0 0 B0
1-Hexanol 0 1-Hexanol B0 120 B0
1-Hexanol 144 1-Hexanol B0 144 B0
1-Hexanol 168 1-Hexanol B0 168 B0
1-Hexanol 192 1-Hexanol B0 192 B0
1-Hexanol 24 1-Hexanol B0 24 B0
1-Hexanol 48 1-Hexanol B0 48 B0
1-Hexanol 72 1-Hexanol B0 72 B0
1-Hexanol 96 1-Hexanol B0 96 B0
1-Nonanol 0 1-Nonanol OME 0 OME
1-Nonanol 120 1-Nonanol OME 120 OME
1-Nonanol 144 1-Nonanol OME 144 OME
1-Nonanol 168 1-Nonanol OME 24 OME
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Tabelle 8.35: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Bezeichnung des Kraftstoffs.

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

OME 72 OME 25-Oc-75-B0 48 25-Oc-75-B0
OME 96 OME 25-Oc-75-B0 96 25-Oc-75-B0
Solketal 0 Solketal 25-S-75-O 0 25-S-75-O
Solketal 144 Solketal 25-S-75-O 120 25-S-75-O
Solketal 24 Solketal 25-S-75-O 144 25-S-75-O
Solketal 48 Solketal 25-S-75-O 24 25-S-75-O
Solketal 72 Solketal 25-S-75-O 48 25-S-75-O
Solketal 96 Solketal 25-S-75-O 72 25-S-75-O
2-Butanol 0 2-Butanol 25-S-75-O 96 25-S-75-O
2-Butanol 120 2-Butanol 50-Oc-50-B0 0 50-Oc-50-B0
2-Butanol 144 2-Butanol 50-Oc-50-B0 120 50-Oc-50-B0
2-Butanol 168 2-Butanol 50-Oc-50-B0 168 50-Oc-50-B0
2-Butanol 24 2-Butanol 50-Oc-50-B0 192 50-Oc-50-B0
2-Butanol 48 2-Butanol 50-Oc-50-B0 24 50-Oc-50-B0
2-Butanol 72 2-Butanol 50-Oc-50-B0 48 50-Oc-50-B0
2-Butanol 96 2-Butanol 50-Oc-50-B0 96 50-Oc-50-B0
2-Hexanol 0 2-Hexanol 50-S-50-O 0 50-S-50-O
2-Hexanol 120 2-Hexanol 50-S-50-O 120 50-S-50-O
2-Hexanol 144 2-Hexanol 50-S-50-O 144 50-S-50-O
2-Hexanol 168 2-Hexanol 50-S-50-O 24 50-S-50-O
2-Hexanol 192 2-Hexanol 50-S-50-O 48 50-S-50-O
2-Hexanol 24 2-Hexanol 50-S-50-O 72 50-S-50-O
2-Hexanol 48 2-Hexanol 50-S-50-O 96 50-S-50-O
2-Hexanol 72 2-Hexanol 75-Oc-25-B0 0 75-Oc-25-B0
2-Hexanol 96 2-Hexanol 75-Oc-25-B0 120 75-Oc-25-B0
2-Pentanol 0 2-Pentanol 75-Oc-25-B0 144 75-Oc-25-B0
2-Pentanol 120 2-Pentanol 75-Oc-25-B0 168 75-Oc-25-B0
2-Pentanol 144 2-Pentanol 75-Oc-25-B0 24 75-Oc-25-B0
2-Pentanol 24 2-Pentanol 75-Oc-25-B0 72 75-Oc-25-B0
2-Pentanol 48 2-Pentanol 75-Oc-25-B0 96 75-Oc-25-B0
2-Pentanol 72 2-Pentanol 75-S-25-O 0 75-S-25-O
2-Pentanol 96 2-Pentanol 75-S-25-O 120 75-S-25-O
25-Oc-75-B0 0 25-Oc-75-B0 75-S-25-O 144 75-S-25-O
25-Oc-75-B0 144 25-Oc-75-B0 75-S-25-O 48 75-S-25-O
25-Oc-75-B0 168 25-Oc-75-B0 75-S-25-O 72 75-S-25-O
25-Oc-75-B0 192 25-Oc-75-B0 75-S-25-O 96 75-S-25-O
25-Oc-75-B0 24 25-Oc-75-B0
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Tabelle 8.36: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

1-Butanol 0 0 0 --
1-Butanol 120 95 25 21
1-Butanol 144 111 33 23
1-Butanol 24 50 26 108
1-Butanol 48 46 2 3
1-Butanol 72 67 5 7
1-Butanol 96 88 8 9
1-Decanol 0 0 0 --
1-Decanol 120 117 3 3
1-Decanol 144 137 7 5
1-Decanol 168 163 5 3
1-Decanol 192 177 15 8
1-Decanol 24 25 1 3
1-Decanol 48 39 9 19
1-Decanol 72 57 15 21
1-Decanol 96 80 16 16
1-Heptanol 0 0 0 --
1-Heptanol 120 125 5 4
1-Heptanol 144 138 6 4
1-Heptanol 192 168 24 13
1-Heptanol 24 27 3 12
1-Heptanol 48 45 3 6
1-Heptanol 72 61 11 15
1-Heptanol 96 107 11 11
1-Hexanol 0 0 0 --
1-Hexanol 144 139 5 3
1-Hexanol 168 158 10 6
1-Hexanol 192 178 14 7
1-Hexanol 24 28 4 17
1-Hexanol 48 47 1 2
1-Hexanol 72 68 4 6
1-Hexanol 96 109 13 13
1-Nonanol 0 0 0 --
1-Nonanol 120 128 8 6
1-Nonanol 144 143 1 1
1-Nonanol 168 157 11 7
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Tabelle 8.37: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

1-Nonanol 192 181 11 6
1-Nonanol 24 26 2 7
1-Nonanol 48 44 4 9
1-Nonanol 72 70 2 3
1-Nonanol 96 103 7 8
1-Octanol 0 0 0 --
1-Octanol 120 128 8 7
1-Octanol 144 149 5 4
1-Octanol 168 164 4 3
1-Octanol 192 173 19 10
1-Octanol 24 33 9 39
1-Octanol 48 44 4 9
1-Octanol 72 80 8 11
1-Octanol 96 112 16 17
1-Pentanol 0 0 0 --
1-Pentanol 120 122 2 2
1-Pentanol 144 138 6 4
1-Pentanol 168 158 10 6
1-Pentanol 192 166 26 13
1-Pentanol 24 33 9 39
1-Pentanol 48 45 3 6
1-Pentanol 72 66 6 9
1-Pentanol 96 107 11 11
B0 0 0 0 --
B0 120 118 2 2
B0 144 143 1 1
B0 168 164 4 2
B0 192 174 18 9
B0 24 41 17 72
B0 48 53 5 10
B0 72 87 15 21
B0 96 95 1 1
OME 0 2 2 --
OME 120 110 10 8
OME 144 117 27 19
OME 24 39 15 63
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Tabelle 8.38: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

OME 72 79 7 10
OME 96 86 10 10
Solketal 0 0 0 --
Solketal 144 125 19 13
Solketal 24 39 15 63
Solketal 48 45 3 7
Solketal 72 71 1 1
Solketal 96 90 6 6
2-Butanol 0 1 1 --
2-Butanol 120 92 28 24
2-Butanol 144 112 32 22
2-Butanol 168 140 28 17
2-Butanol 24 41 17 70
2-Butanol 48 58 10 20
2-Butanol 72 72 0 0
2-Butanol 96 85 11 11
2-Hexanol 0 0 0 --
2-Hexanol 120 118 2 1
2-Hexanol 144 142 2 2
2-Hexanol 168 158 10 6
2-Hexanol 192 167 25 13
2-Hexanol 24 39 15 62
2-Hexanol 48 47 1 3
2-Hexanol 72 80 8 12
2-Hexanol 96 107 11 11
2-Pentanol 0 0 0 --
2-Pentanol 120 120 0 0
2-Pentanol 144 132 12 8
2-Pentanol 24 34 10 43
2-Pentanol 48 45 3 6
2-Pentanol 72 93 21 29
2-Pentanol 96 116 20 21
25-Oc-75-B0 0 0 0 --
25-Oc-75-B0 144 144 0 0
25-Oc-75-B0 168 159 9 5
25-Oc-75-B0 192 170 22 11
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Tabelle 8.39: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

25-Oc-75-B0 24 54 30 126
25-Oc-75-B0 48 71 23 48
25-Oc-75-B0 96 104 8 8
25-S-75-O 0 0 0 --
25-S-75-O 120 122 2 2
25-S-75-O 144 136 8 6
25-S-75-O 24 60 36 151
25-S-75-O 48 71 23 48
25-S-75-O 72 75 3 4
25-S-75-O 96 103 7 8
50-Oc-50-B0 0 0 0 --
50-Oc-50-B0 120 117 3 3
50-Oc-50-B0 168 148 20 12
50-Oc-50-B0 192 171 21 11
50-Oc-50-B0 24 35 11 46
50-Oc-50-B0 48 44 4 8
50-Oc-50-B0 96 88 8 8
50-S-50-O 0 0 0 --
50-S-50-O 120 105 15 13
50-S-50-O 144 127 17 12
50-S-50-O 24 28 4 15
50-S-50-O 48 44 4 8
50-S-50-O 72 58 14 19
50-S-50-O 96 72 24 26
75-Oc-25-B0 0 0 0 --
75-Oc-25-B0 120 97 23 19
75-Oc-25-B0 144 141 3 2
75-Oc-25-B0 168 152 16 10
75-Oc-25-B0 24 25 1 6
75-Oc-25-B0 72 76 4 6
75-Oc-25-B0 96 80 16 16
75-S-25-O 0 0 0 --
75-S-25-O 120 101 19 16
75-S-25-O 144 128 16 11
75-S-25-O 48 46 2 5
75-S-25-O 72 73 1 2
75-S-25-O 96 80 16 17
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Tabelle 8.40: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN) des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

1-Butanol 0 0.35 0.35 0.00 0.0
1-Butanol 120 5.8 7.63 1.83 31.5
1-Butanol 144 9.8 14.10 4.30 43.9
1-Butanol 24 0.35 5.12 4.77 1363.9
1-Butanol 48 0.51 3.98 3.47 681.2
1-Butanol 72 1.44 3.52 2.08 144.4
1-Butanol 96 2.96 7.70 4.74 160.2
1-Decanol 0 0.27 0.27 0.00 1.8
1-Decanol 120 30.82 23.88 6.94 22.5
1-Decanol 144 41.66 44.61 2.95 7.1
1-Decanol 168 46.77 48.52 1.75 3.8
1-Decanol 192 49.4 46.56 2.84 5.8
1-Decanol 24 0.26 1.93 1.67 643.2
1-Decanol 48 0.36 2.83 2.47 685.0
1-Decanol 72 3.42 4.10 0.68 20.0
1-Decanol 96 17.04 14.62 2.42 14.2
1-Heptanol 0 0.35 0.35 0.00 0.7
1-Heptanol 120 61.1 57.55 3.55 5.8
1-Heptanol 144 65.16 61.56 3.60 5.5
1-Heptanol 192 61.7 41.82 19.88 32.2
1-Heptanol 24 0.34 1.93 1.59 466.9
1-Heptanol 48 0.97 2.88 1.91 197.4
1-Heptanol 72 21.44 17.62 3.82 17.8
1-Heptanol 96 47.2 47.99 0.79 1.7
1-Hexanol 0 0.29 0.59 0.30 103.6
1-Hexanol 144 66.22 63.05 3.17 4.8
1-Hexanol 168 67.61 64.56 3.05 4.5
1-Hexanol 192 62.57 61.73 0.84 1.4
1-Hexanol 24 0.59 2.95 2.36 399.2
1-Hexanol 48 15.18 14.24 0.94 6.2
1-Hexanol 72 36.32 26.99 9.33 25.7
1-Hexanol 96 49.69 53.33 3.64 7.3
1-Nonanol 0 0.34 0.34 0.00 0.0
1-Nonanol 120 46.34 47.87 1.53 3.3
1-Nonanol 144 49.89 52.68 2.79 5.6
1-Nonanol 168 48.58 50.62 2.04 4.2
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Tabelle 8.41: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN) des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

1-Nonanol 192 48.58 49.00 0.42 0.9
1-Nonanol 24 0.79 2.91 2.12 268.4
1-Nonanol 48 1.21 3.95 2.74 226.2
1-Nonanol 72 17.59 13.52 4.07 23.2
1-Nonanol 96 34.93 24.73 10.20 29.2
1-Octanol 0 0.43 0.42 0.01 2.8
1-Octanol 120 54.53 54.24 0.29 0.5
1-Octanol 144 56.52 55.08 1.44 2.5
1-Octanol 168 55.52 53.87 1.65 3.0
1-Octanol 192 55 55.02 0.02 0.0
1-Octanol 24 0.45 1.27 0.82 181.2
1-Octanol 48 10.81 9.04 1.77 16.4
1-Octanol 72 32.47 25.85 6.62 20.4
1-Octanol 96 47.01 41.99 5.02 10.7
1-Pentanol 0 0.33 0.34 0.01 2.4
1-Pentanol 120 63.44 61.60 1.84 2.9
1-Pentanol 144 66.44 62.16 4.28 6.5
1-Pentanol 168 64.78 67.02 2.24 3.5
1-Pentanol 192 59.43 58.26 1.17 2.0
1-Pentanol 24 0.37 3.99 3.62 979.5
1-Pentanol 48 2.73 5.41 2.68 98.0
1-Pentanol 72 23.43 19.52 3.91 16.7
1-Pentanol 96 48.34 52.41 4.07 8.4
B0 0 0.07 0.07 0.00 0.0
B0 120 23.97 26.20 2.23 9.3
B0 144 28.42 25.99 2.43 8.6
B0 168 28.94 28.00 0.94 3.2
B0 192 29.74 31.06 1.32 4.4
B0 24 0.4 4.62 4.22 1054.0
B0 48 0.62 5.71 5.09 820.2
B0 72 4.93 6.72 1.79 36.3
B0 96 15.84 18.03 2.19 13.8
OME 0 0.98 1.21 0.23 23.6
OME 120 89.26 81.46 7.80 8.7
OME 144 73.62 70.28 3.34 4.5
OME 24 29.83 42.04 12.21 40.9
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Tabelle 8.42: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN) des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

OME 72 97.16 86.89 10.27 10.6
OME 96 98.47 85.07 13.40 13.6
Solketal 0 0.34 0.34 0.00 0.0
Solketal 144 17.54 20.34 2.81 16.0
Solketal 24 9.57 12.13 2.56 26.8
Solketal 48 10.52 13.43 2.91 27.7
Solketal 72 11.68 14.32 2.64 22.6
Solketal 96 13.16 15.95 2.78 21.1
2-Butanol 0 0.13 0.23 0.10 75.0
2-Butanol 120 6.89 6.58 0.31 4.5
2-Butanol 144 9.34 9.26 0.08 0.9
2-Butanol 168 2.13 4.01 1.88 88.3
2-Butanol 24 1.22 5.96 4.74 388.6
2-Butanol 48 5.34 6.54 1.20 22.6
2-Butanol 72 2.12 4.56 2.44 115.1
2-Butanol 96 3.28 5.41 2.13 64.9
2-Hexanol 0 0.73 0.94 0.21 28.1
2-Hexanol 120 1.77 3.64 1.87 105.6
2-Hexanol 144 1.86 3.55 1.69 90.8
2-Hexanol 168 2.41 2.87 0.46 19.2
2-Hexanol 192 1.72 17.63 15.91 924.7
2-Hexanol 24 0.74 2.94 2.20 297.2
2-Hexanol 48 0.74 4.45 3.71 500.8
2-Hexanol 72 0.76 3.39 2.63 345.8
2-Hexanol 96 1.09 3.99 2.90 265.8
2-Pentanol 0 0.14 0.14 0.00 0.0
2-Pentanol 120 6.05 17.52 11.47 189.6
2-Pentanol 144 8.69 15.56 6.87 79.0
2-Pentanol 24 1.04 3.93 2.89 276.3
2-Pentanol 48 1.03 3.33 2.30 223.6
2-Pentanol 72 2.46 4.45 2.00 81.4
2-Pentanol 96 3.88 10.84 6.96 179.6
25-Oc-75-B0 0 0.73 0.73 0.00 0.0
25-Oc-75-B0 144 19.84 17.95 1.89 9.5
25-Oc-75-B0 168 20.37 19.80 0.57 2.8
25-Oc-75-B0 192 21.1 19.50 1.60 7.6
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Tabelle 8.43: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN) des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

25-Oc-75-B0 24 1.29 3.68 2.39 185.4
25-Oc-75-B0 48 5.73 8.42 2.69 46.9
25-Oc-75-B0 96 15.31 15.47 0.16 1.1
25-S-75-O 0 1.19 1.18 0.01 0.7
25-S-75-O 120 67.35 65.92 1.43 2.1
25-S-75-O 144 68.35 49.12 19.23 28.1
25-S-75-O 24 38.59 43.96 5.37 13.9
25-S-75-O 48 42.31 34.96 7.35 17.4
25-S-75-O 72 60.2 58.66 1.54 2.5
25-S-75-O 96 65.75 63.61 2.14 3.3
50-Oc-50-B0 0 0.37 0.36 0.01 1.8
50-Oc-50-B0 120 16.83 17.69 0.86 5.1
50-Oc-50-B0 168 19.16 19.74 0.58 3.0
50-Oc-50-B0 192 19.22 19.57 0.35 1.8
50-Oc-50-B0 24 1.5 2.90 1.40 93.2
50-Oc-50-B0 48 6.3 6.74 0.44 6.9
50-Oc-50-B0 96 14.54 16.34 1.80 12.4
50-S-50-O 0 0.79 0.79 0.00 0.0
50-S-50-O 120 37.04 31.02 6.02 16.2
50-S-50-O 144 42.22 35.10 7.12 16.9
50-S-50-O 24 22.74 19.04 3.70 16.3
50-S-50-O 48 27.59 23.62 3.97 14.4
50-S-50-O 72 29.76 24.18 5.58 18.7
50-S-50-O 96 36.63 27.31 9.32 25.4
75-Oc-25-B0 0 0.41 0.41 0.00 0.0
75-Oc-25-B0 120 25.67 23.03 2.64 10.3
75-Oc-25-B0 144 30.03 23.70 6.33 21.1
75-Oc-25-B0 168 32.31 25.76 6.55 20.3
75-Oc-25-B0 24 0.69 2.38 1.69 245.5
75-Oc-25-B0 72 10.26 14.23 3.97 38.7
75-Oc-25-B0 96 19.33 17.78 1.55 8.0
75-S-25-O 0 0.56 0.56 0.00 0.0
75-S-25-O 120 27.45 25.51 1.94 7.1
75-S-25-O 144 25.44 23.61 1.83 7.2
75-S-25-O 48 21.28 16.75 4.53 21.3
75-S-25-O 72 24.58 21.96 2.62 10.7
75-S-25-O 96 28.38 23.77 4.61 16.3
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Tabelle 8.44: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische Viskosität
des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

1-Butanol 0 2.3384 2.3383 0.0000 0.00
1-Butanol 120 2.3139 2.3163 0.0024 0.10
1-Butanol 144 2.3620 2.3443 0.0177 0.75
1-Butanol 24 2.2083 2.2885 0.0801 3.63
1-Butanol 48 2.2312 2.3213 0.0900 4.04
1-Butanol 72 2.2630 2.2732 0.0102 0.45
1-Butanol 96 2.2881 2.3274 0.0393 1.72
1-Decanol 0 8.0442 8.0441 0.0000 0.00
1-Decanol 120 8.0094 7.6303 0.3791 4.73
1-Decanol 144 7.4920 6.9409 0.5511 7.36
1-Decanol 168 7.4638 6.6813 0.7825 10.48
1-Decanol 192 7.1420 6.1875 0.9545 13.36
1-Decanol 24 8.1192 7.7239 0.3953 4.87
1-Decanol 48 8.0274 7.6576 0.3699 4.61
1-Decanol 72 8.1589 7.9370 0.2219 2.72
1-Decanol 96 8.2610 7.7164 0.5446 6.59
1-Heptanol 0 4.5510 4.5454 0.0057 0.12
1-Heptanol 120 3.7407 3.6604 0.0803 2.15
1-Heptanol 144 3.5554 3.3481 0.2073 5.83
1-Heptanol 192 3.1804 3.5812 0.4008 12.60
1-Heptanol 24 4.4618 4.4744 0.0126 0.28
1-Heptanol 48 4.5282 4.5420 0.0138 0.30
1-Heptanol 72 4.5046 4.6108 0.1062 2.36
1-Heptanol 96 4.0740 3.9072 0.1668 4.09
1-Hexanol 0 3.5042 3.5039 0.0004 0.01
1-Hexanol 144 2.7514 2.6116 0.1399 5.08
1-Hexanol 168 2.7002 2.4767 0.2235 8.28
1-Hexanol 192 2.3226 2.6947 0.3721 16.02
1-Hexanol 24 3.4937 3.4826 0.0111 0.32
1-Hexanol 48 3.4683 3.5528 0.0845 2.44
1-Hexanol 72 3.1544 3.1527 0.0017 0.06
1-Hexanol 96 3.0511 3.0314 0.0198 0.65
1-Nonanol 0 6.7367 6.7367 0.0000 0.00
1-Nonanol 120 5.9894 5.8510 0.1384 2.31
1-Nonanol 144 5.6741 5.5555 0.1186 2.09
1-Nonanol 168 5.6334 4.9715 0.6620 11.75
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Tabelle 8.45: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische Viskosität
des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

1-Nonanol 192 5.1450 4.8509 0.2942 5.72
1-Nonanol 24 6.7466 6.8587 0.1121 1.66
1-Nonanol 48 6.8128 6.5525 0.2603 3.82
1-Nonanol 72 6.9023 6.4786 0.4237 6.14
1-Nonanol 96 6.4700 6.3497 0.1203 1.86
1-Octanol 0 5.5643 5.5797 0.0154 0.28
1-Octanol 120 4.5578 4.6442 0.0864 1.90
1-Octanol 144 4.3158 4.0966 0.2192 5.08
1-Octanol 168 4.0032 4.2312 0.2281 5.70
1-Octanol 192 3.9986 4.0381 0.0395 0.99
1-Octanol 24 5.6600 5.7521 0.0920 1.63
1-Octanol 48 5.6256 5.8472 0.2216 3.94
1-Octanol 72 5.4012 5.2845 0.1167 2.16
1-Octanol 96 4.9476 4.9992 0.0516 1.04
1-Pentanol 0 2.8652 2.8651 0.0000 0.00
1-Pentanol 120 2.4690 2.4145 0.0544 2.21
1-Pentanol 144 2.2299 2.3061 0.0762 3.42
1-Pentanol 168 2.0188 2.1452 0.1265 6.27
1-Pentanol 192 1.8722 2.1063 0.2341 12.51
1-Pentanol 24 2.8641 2.9084 0.0443 1.55
1-Pentanol 48 2.8644 2.9961 0.1317 4.60
1-Pentanol 72 2.8384 2.9159 0.0775 2.73
1-Pentanol 96 2.5739 2.5453 0.0286 1.11
B0 0 2.4520 2.4520 0.0000 0.00
B0 120 5.2410 4.8971 0.3439 6.56
B0 144 5.2410 4.9927 0.2483 4.74
B0 168 5.5426 5.2468 0.2958 5.34
B0 192 5.4745 4.8751 0.5994 10.95
B0 24 2.7705 2.9411 0.1706 6.16
B0 48 2.7705 2.8905 0.1200 4.33
B0 72 3.4156 3.5229 0.1073 3.14
B0 96 5.2410 4.7612 0.4798 9.16
OME 0 1.2094 1.2375 0.0281 2.32
OME 120 2.2268 2.5717 0.3449 15.49
OME 144 2.9978 3.7182 0.7204 24.03
OME 24 1.2300 2.2205 0.9905 80.52
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Tabelle 8.46: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische Viskosität
des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

OME 72 1.6650 2.3459 0.6808 40.89
OME 96 1.9228 2.2862 0.3634 18.90
Solketal 0 5.0164 5.0163 0.0000 0.00
Solketal 144 25.5650 20.1713 5.3937 21.10
Solketal 24 5.6628 5.3224 0.3403 6.01
Solketal 48 6.7556 7.0126 0.2570 3.80
Solketal 72 8.6660 8.1393 0.5267 6.08
Solketal 96 11.7755 10.2480 1.5275 12.97
2-Butanol 0 2.0675 2.0773 0.0098 0.48
2-Butanol 120 2.2260 2.2438 0.0178 0.80
2-Butanol 144 2.2428 2.7398 0.4970 22.16
2-Butanol 168 2.0750 2.2675 0.1925 9.28
2-Butanol 24 2.0963 2.2934 0.1971 9.40
2-Butanol 48 2.1823 2.1614 0.0209 0.96
2-Butanol 72 2.1879 2.1649 0.0230 1.05
2-Butanol 96 2.1829 2.2205 0.0376 1.72
2-Hexanol 0 2.8462 2.8740 0.0278 0.98
2-Hexanol 120 1.6809 1.7240 0.0431 2.57
2-Hexanol 144 1.5116 1.6197 0.1081 7.15
2-Hexanol 168 1.3861 1.5735 0.1874 13.52
2-Hexanol 192 1.3431 1.7945 0.4514 33.61
2-Hexanol 24 2.8717 3.5552 0.6835 23.80
2-Hexanol 48 2.4255 2.7863 0.3608 14.88
2-Hexanol 72 2.0028 2.1780 0.1752 8.75
2-Hexanol 96 1.7631 1.9020 0.1389 7.88
2-Pentanol 0 2.3129 2.3117 0.0012 0.05
2-Pentanol 120 1.9639 2.0920 0.1281 6.52
2-Pentanol 144 2.2530 2.7250 0.4720 20.95
2-Pentanol 24 2.1287 2.0856 0.0431 2.02
2-Pentanol 48 1.9959 2.0620 0.0661 3.31
2-Pentanol 72 1.8449 1.8518 0.0069 0.37
2-Pentanol 96 1.8698 1.9816 0.1118 5.98
25-Oc-75-B0 0 2.7364 2.7364 0.0000 0.00
25-Oc-75-B0 144 4.0114 4.0971 0.0857 2.14
25-Oc-75-B0 168 4.2482 4.3443 0.0961 2.26
25-Oc-75-B0 192 4.4758 4.2631 0.2127 4.75
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Tabelle 8.47: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische Viskosität
des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

25-Oc-75-B0 24 2.8752 2.9533 0.0781 2.72
25-Oc-75-B0 48 2.9743 3.3406 0.3663 12.32
25-Oc-75-B0 96 3.4112 3.5223 0.1111 3.26
25-S-75-O 0 1.5072 1.5123 0.0051 0.34
25-S-75-O 120 4.3036 4.9418 0.6383 14.83
25-S-75-O 144 8.1556 7.9674 0.1882 2.31
25-S-75-O 24 1.6009 1.8537 0.2528 15.79
25-S-75-O 48 1.8692 2.5252 0.6560 35.09
25-S-75-O 72 2.3536 3.3436 0.9900 42.06
25-S-75-O 96 3.7590 4.0555 0.2965 7.89
50-Oc-50-B0 0 3.3890 3.3890 0.0000 0.00
50-Oc-50-B0 120 3.6816 3.7274 0.0458 1.25
50-Oc-50-B0 168 3.7714 3.9583 0.1869 4.96
50-Oc-50-B0 192 3.8686 3.9593 0.0907 2.35
50-Oc-50-B0 24 3.4634 3.7362 0.2728 7.88
50-Oc-50-B0 48 3.4921 3.6527 0.1606 4.60
50-Oc-50-B0 96 3.6542 3.6966 0.0424 1.16
50-S-50-O 0 2.0173 2.0172 0.0000 0.00
50-S-50-O 120 11.1920 13.5915 2.3995 21.44
50-S-50-O 144 16.1430 14.9350 1.2080 7.48
50-S-50-O 24 2.2638 2.3401 0.0762 3.37
50-S-50-O 48 2.8226 3.7561 0.9335 33.07
50-S-50-O 72 3.7807 4.5251 0.7444 19.69
50-S-50-O 96 5.4924 6.2975 0.8050 14.66
75-Oc-25-B0 0 4.1688 4.1688 0.0000 0.00
75-Oc-25-B0 120 4.0639 4.2639 0.2000 4.92
75-Oc-25-B0 144 4.0199 4.1434 0.1235 3.07
75-Oc-25-B0 168 3.9739 3.9623 0.0116 0.29
75-Oc-25-B0 24 4.3054 4.4509 0.1455 3.38
75-Oc-25-B0 72 4.3798 4.1977 0.1821 4.16
75-Oc-25-B0 96 4.3220 4.5541 0.2321 5.37
75-S-25-O 0 3.0521 3.0521 0.0000 0.00
75-S-25-O 120 11.4315 11.1239 0.3076 2.69
75-S-25-O 144 23.7360 20.2182 3.5178 14.82
75-S-25-O 48 4.2516 4.3170 0.0654 1.54
75-S-25-O 72 5.3350 5.2000 0.1350 2.53
75-S-25-O 96 7.3803 7.2357 0.1446 1.96
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Tabelle 8.48: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

1-Butanol 0 0.8141 0.8141 0.0000 0.00
1-Butanol 120 0.8335 0.8290 0.0045 0.54
1-Butanol 144 0.8462 0.8373 0.0089 1.05
1-Butanol 24 0.8136 0.8189 0.0053 0.65
1-Butanol 48 0.8152 0.8180 0.0028 0.34
1-Butanol 72 0.8190 0.8200 0.0010 0.12
1-Butanol 96 0.8250 0.8252 0.0002 0.02
1-Decanol 0 0.8332 0.8332 0.0000 0.00
1-Decanol 120 0.8524 0.8549 0.0025 0.29
1-Decanol 144 0.8631 0.8640 0.0009 0.10
1-Decanol 168 0.8738 0.8721 0.0017 0.19
1-Decanol 192 0.8798 0.8770 0.0028 0.32
1-Decanol 24 0.8331 0.8328 0.0003 0.04
1-Decanol 48 0.8335 0.8340 0.0005 0.06
1-Decanol 72 0.8365 0.8361 0.0004 0.05
1-Decanol 96 0.8433 0.8416 0.0017 0.21
1-Heptanol 0 0.8255 0.8255 0.0000 0.00
1-Heptanol 120 0.8715 0.8685 0.0030 0.34
1-Heptanol 144 0.8792 0.8725 0.0067 0.77
1-Heptanol 192 0.8922 0.8815 0.0107 1.20
1-Heptanol 24 0.8258 0.8264 0.0006 0.07
1-Heptanol 48 0.8271 0.8278 0.0007 0.08
1-Heptanol 72 0.8391 0.8378 0.0013 0.16
1-Heptanol 96 0.8545 0.8578 0.0033 0.38
1-Hexanol 0 0.8223 0.8223 0.0000 0.00
1-Hexanol 144 0.8730 0.8714 0.0016 0.19
1-Hexanol 168 0.8760 0.8723 0.0037 0.43
1-Hexanol 192 0.8752 0.8751 0.0001 0.02
1-Hexanol 24 0.8223 0.8252 0.0029 0.35
1-Hexanol 48 0.8260 0.8266 0.0006 0.07
1-Hexanol 72 0.8408 0.8382 0.0026 0.31
1-Hexanol 96 0.8559 0.8579 0.0020 0.23
1-Nonanol 0 0.8311 0.8311 0.0000 0.00
1-Nonanol 120 0.8621 0.8625 0.0004 0.04
1-Nonanol 144 0.8719 0.8693 0.0026 0.30
1-Nonanol 168 0.8774 0.8772 0.0002 0.02
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Tabelle 8.49: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

1-Nonanol 192 0.8809 0.8794 0.0015 0.17
1-Nonanol 24 0.8311 0.8308 0.0003 0.04
1-Nonanol 48 0.8326 0.8328 0.0002 0.02
1-Nonanol 72 0.8422 0.8390 0.0032 0.38
1-Nonanol 96 0.8532 0.8542 0.0010 0.11
1-Octanol 0 0.8287 0.8287 0.0000 0.00
1-Octanol 120 0.8734 0.8711 0.0023 0.26
1-Octanol 144 0.8774 0.8777 0.0003 0.03
1-Octanol 168 0.8851 0.8817 0.0034 0.38
1-Octanol 192 0.8918 0.8840 0.0078 0.88
1-Octanol 24 0.8292 0.8306 0.0013 0.16
1-Octanol 48 0.8363 0.8355 0.0008 0.10
1-Octanol 72 0.8486 0.8473 0.0013 0.15
1-Octanol 96 0.8596 0.8627 0.0031 0.36
1-Pentanol 0 0.8182 0.8182 0.0000 0.00
1-Pentanol 120 0.8622 0.8620 0.0002 0.03
1-Pentanol 144 0.8680 0.8666 0.0014 0.16
1-Pentanol 168 0.8714 0.8720 0.0006 0.07
1-Pentanol 192 0.8741 0.8745 0.0004 0.04
1-Pentanol 24 0.8186 0.8199 0.0013 0.15
1-Pentanol 48 0.8227 0.8226 0.0001 0.01
1-Pentanol 72 0.8376 0.8345 0.0031 0.37
1-Pentanol 96 0.8539 0.8563 0.0024 0.28
B0 0 0.8227 0.8227 0.0000 0.00
B0 120 0.8536 0.8549 0.0013 0.16
B0 144 0.8596 0.8593 0.0003 0.03
B0 168 0.8597 0.8589 0.0008 0.10
B0 192 0.8611 0.8583 0.0028 0.32
B0 24 0.8206 0.8274 0.0068 0.82
B0 48 0.8206 0.8273 0.0067 0.82
B0 72 0.8310 0.8394 0.0084 1.01
B0 96 0.8446 0.8481 0.0035 0.42
OME 0 1.0570 1.0577 0.0007 0.06
OME 120 1.1240 1.1092 0.0148 1.31
OME 144 1.1480 1.1264 0.0216 1.89
OME 24 1.0680 0.9888 0.0792 7.41
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Tabelle 8.50: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

OME 72 1.0950 1.0898 0.0052 0.48
OME 96 1.1090 1.1078 0.0012 0.11
Solketal 0 1.0710 1.0710 0.0000 0.00
Solketal 144 1.1730 1.1654 0.0076 0.64
Solketal 24 1.0790 1.0880 0.0090 0.83
Solketal 48 1.0940 1.1086 0.0146 1.33
Solketal 72 1.1110 1.1114 0.0004 0.04
Solketal 96 1.1290 1.1314 0.0024 0.22
2-Butanol 0 0.8134 0.8136 0.0002 0.02
2-Butanol 120 0.8372 0.8343 0.0029 0.35
2-Butanol 144 0.8408 0.8373 0.0035 0.42
2-Butanol 168 0.8393 0.8412 0.0019 0.23
2-Butanol 24 0.8159 0.8206 0.0047 0.58
2-Butanol 48 0.8193 0.8234 0.0041 0.49
2-Butanol 72 0.8259 0.8268 0.0009 0.11
2-Butanol 96 0.8324 0.8308 0.0016 0.19
2-Hexanol 0 0.8203 0.8204 0.0001 0.01
2-Hexanol 120 0.8375 0.8427 0.0052 0.61
2-Hexanol 144 0.8424 0.8436 0.0012 0.14
2-Hexanol 168 0.8458 0.8444 0.0014 0.16
2-Hexanol 192 0.8448 0.8459 0.0011 0.13
2-Hexanol 24 0.8197 0.8223 0.0026 0.32
2-Hexanol 48 0.8214 0.8239 0.0025 0.31
2-Hexanol 72 0.8254 0.8316 0.0062 0.75
2-Hexanol 96 0.8295 0.8353 0.0058 0.70
2-Pentanol 0 0.8134 0.8134 0.0000 0.00
2-Pentanol 120 0.8777 0.9493 0.0716 8.15
2-Pentanol 144 0.8937 0.9616 0.0679 7.59
2-Pentanol 24 0.8246 0.8252 0.0006 0.07
2-Pentanol 48 0.8404 0.8344 0.0060 0.72
2-Pentanol 72 0.8525 0.8490 0.0035 0.41
2-Pentanol 96 0.8651 0.8643 0.0008 0.09
25-Oc-75-B0 0 0.8236 0.8236 0.0000 0.00
25-Oc-75-B0 144 0.8622 0.8589 0.0033 0.38
25-Oc-75-B0 168 0.8671 0.8644 0.0027 0.31
25-Oc-75-B0 192 0.8707 0.8628 0.0079 0.90
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Tabelle 8.51: Vorhersage mit dem Random Forest - Algorithmus für die Trainingsdaten der
Nahinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

25-Oc-75-B0 24 0.8253 0.8327 0.0074 0.89
25-Oc-75-B0 48 0.8306 0.8387 0.0081 0.98
25-Oc-75-B0 96 0.8461 0.8474 0.0013 0.15
25-S-75-O 0 1.0620 1.0622 0.0002 0.02
25-S-75-O 120 1.1500 1.1431 0.0069 0.60
25-S-75-O 144 1.1760 1.1512 0.0248 2.11
25-S-75-O 24 1.0730 1.0557 0.0173 1.61
25-S-75-O 48 1.0950 1.0926 0.0024 0.22
25-S-75-O 72 1.1190 1.1198 0.0008 0.07
25-S-75-O 96 1.1300 1.1287 0.0013 0.11
50-Oc-50-B0 0 0.8251 0.8251 0.0000 0.00
50-Oc-50-B0 120 0.8435 0.8455 0.0020 0.24
50-Oc-50-B0 168 0.8563 0.8519 0.0044 0.51
50-Oc-50-B0 192 0.8605 0.8564 0.0041 0.47
50-Oc-50-B0 24 0.8265 0.8286 0.0021 0.26
50-Oc-50-B0 48 0.8299 0.8313 0.0014 0.17
50-Oc-50-B0 96 0.8383 0.8341 0.0042 0.51
50-S-50-O 0 1.0640 1.0640 0.0000 0.00
50-S-50-O 120 1.1940 1.1778 0.0162 1.36
50-S-50-O 144 1.2580 1.2197 0.0383 3.04
50-S-50-O 24 1.0780 1.0804 0.0024 0.23
50-S-50-O 48 1.1000 1.1056 0.0056 0.51
50-S-50-O 72 1.1240 1.1296 0.0056 0.50
50-S-50-O 96 1.1510 1.1608 0.0098 0.85
75-Oc-25-B0 0 0.8267 0.8267 0.0000 0.00
75-Oc-25-B0 120 0.8477 0.8419 0.0058 0.69
75-Oc-25-B0 144 0.8594 0.8605 0.0011 0.13
75-Oc-25-B0 168 0.8704 0.8593 0.0111 1.28
75-Oc-25-B0 24 0.8267 0.8277 0.0010 0.12
75-Oc-25-B0 72 0.8323 0.8328 0.0005 0.06
75-Oc-25-B0 96 0.8386 0.8370 0.0016 0.19
75-S-25-O 0 1.0680 1.0680 0.0000 0.00
75-S-25-O 120 1.1630 1.1578 0.0052 0.44
75-S-25-O 144 1.2000 1.1802 0.0198 1.65
75-S-25-O 48 1.0960 1.1023 0.0063 0.57
75-S-25-O 72 1.1150 1.1145 0.0005 0.04
75-S-25-O 96 1.1350 1.1450 0.0100 0.88
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Vorhersage mit einem neuronalen Netzwerk

Tabelle 8.52: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Testdaten der Nahin-
frarotspektren. Die Parameter, die vorhergesagt wurden sind die Bezeichnung des Kraftstoffs
(oben) und die Alterungszeit des Kraftstoffs (unten).

Alterungs-
zeit [h]

Bezeichnung
(real)

Bezeichnung
(pred.)

Bezeichnung
(real)

Bezeichnung
(pred.)

Alterungs-
zeit [h]

0 1-Decanol 1-Decanol 25-Oct-75-B0 25-Oct-75-B0 120
168 1-Heptanol 1-Heptanol 25-Oct-75-B0 25-Oct-75-B0 72
0 1-Hexanol 1-Hexanol 50-Oct-50-B0 50-Oct-50-B0 144
120 1-Hexanol 1-Hexanol 50-Oct-50-B0 50-Oct-50-B0 72
0 1-Octanol 1-Octanol 50-S-50-O 50-S-50-O 0
0 OME OME 75-Oct-25-B0 75-Oct-25-B0 0
48 OME OME 75-Oct-25-B0 75-Oct-25-B0 192
120 Solketal Solketal 75-Oct-25-B0 75-Oct-25-B0 48
0 2-Butanol 2-Butanol 75-S-25-O 75-S-25-O 0
0 2-Hexanol 2-Hexanol 75-S-25-O 75-S-25-O 24
0 2-Pentanol 2-Pentanol

Testdaten
a = 1.000

Trainingsdaten (siehe Tabelle 8.56 und 8.57)
a = 1.000

Bezeichnung Alterungs-
zeit [h] (real)

Alterungs-
zeit [h] (pred.)

Abs. Fehler
∆abs.[h]

Rel. Fehler
∆rel. [%]

1-Decanol 0 0 0 --
1-Heptanol 168 173 5 3
1-Hexanol 0 0 0 --
1-Hexanol 120 121 1 1
1-Octanol 0 0 0 --
OME 0 0 0 --
OME 48 92 44 92
Solketal 120 123 3 3
2-Butanol 0 0 0 --
2-Hexanol 0 0 0 --
2-Pentanol 0 0 0 --
25-Oct-75-B0 120 109 11 9
25-Oct-75-B0 72 69 3 4
50-Oct-50-B0 144 141 3 2
50-Oct-50-B0 72 77 5 7
50-S-50-O 0 0 0 --
75-Oct-25-B0 0 0 0 --
75-Oct-25-B0 192 190 2 1
75-Oct-25-B0 48 13 35 73
75-S-25-O 0 0 0 --
75-S-25-O 24 27 3 14

Testdaten: Md.(∆rel.) = 4%,
Md.(∆abs.) = 1h

Trainingsdaten (siehe Tabelle 8.58 - 8.61)
Md.(∆rel.) = 0%, Md.(∆abs.) = 0h
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Tabelle 8.53: Vorhersage der Säurezahl (TAN) des Kraftstoffs mit dem neuronalen Netzwerk
(ANN) für die Testdaten der Nahinfrarotspektren.

Bezeichnung TAN (real)
[mgKOH/g]

TAN (pred.)
[mgKOH/g]

Abs. Fehler ∆abs

[mgKOH/g]
Rel. Fehler
∆rel[%]

1-Decanol (0h) 0.27 0.25 0.02 6.50
1-Heptanol (168) 63.60 70.65 7.05 11.10
1-Hexanol (0h) 0.29 0.30 0.01 2.20
1-Hexanol (120h) 60.51 66.88 6.37 10.50
1-Octanol (0h) 0.43 0.44 0.01 2.00
OME (0h) 0.98 0.98 0.00 0.00
OME (48h) 67.01 119.32 52.31 78.10
Solketal (120h) 15.12 15.40 0.28 1.80
2-Butanol (0h) 0.13 0.13 0.00 0.40
2-Hexanol (0h) 0.73 0.73 0.00 0.10
2-Pentanol (0h) 0.14 0.14 0.00 0.20
25-Oct-75-B0 (120h) 17.51 18.85 1.34 7.60
25-Oct-75-B0 (72h) 11.64 12.90 1.26 10.80
50-Oct-50-B0 (144h) 18.89 16.46 2.43 12.90
50-Oct-50-B0 (72h) 10.96 11.88 0.92 8.40
50-S-50-O (0h) 0.79 0.79 0.00 0.00
75-Oct-25-B0 (0h) 0.41 0.41 0.00 1.10
75-Oct-25-B0 (192 h) 35.35 29.13 6.22 17.60
75-Oct-25-B0 (48h) 1.03 0.40 0.63 61.60
75-S-25-O (0h) 0.56 0.56 0.00 0.00
75-S-25-O (24h) 15.22 14.73 0.49 3.20

Testdaten: Md.(∆rel.) = 3.2%,
Md.(∆abs.) = 0.28mgKOH/g

Trainingsdaten (siehe Tabelle 8.62 - 8.65)
Md.(∆rel.) = 0.7%,Md.(∆abs.) = 0.002mgKOH/g



234

Tabelle 8.54: Vorhersage der kinematischen Viskosität des Kraftstoffs mit dem neuronalen
Netzwerk (ANN) für die Testdaten der Nahinfrarotspektren.

Bezeichnung Viskosität
[mm2/s] (real)

Viskosität
[mm2/s] (pred.)

Abs. Fehler
∆abs [mm2/s]

Rel. Fehler
∆rel [%]

1-Decanol (0h) 8.0442 8.0501 0.0060 0.07
1-Heptanol (168) 3.2306 3.1923 0.0383 1.19
1-Hexanol (0h) 3.5042 3.5036 0.0006 0.02
1-Hexanol (120h) 2.8645 2.9983 0.1338 4.67
1-Octanol (0h) 5.5643 5.5644 0.0001 0.00
OME (0h) 1.2094 1.2095 0.0001 0.01
OME (48h) 1.3501 1.1095 0.2406 17.82
Solketal (120h) 16.7570 20.7519 3.9949 23.84
2-Butanol (0h) 2.0675 2.0679 0.0004 0.02
2-Hexanol (0h) 2.8462 2.8464 0.0002 0.01
2-Pentanol (0h) 2.3129 2.3127 0.0002 0.01
25-Oct-75-B0 (120h) 3.6910 4.1690 0.4780 12.95
25-Oct-75-B0 (72h) 3.2211 3.2181 0.0030 0.09
50-Oct-50-B0 (144h) 3.7718 3.6484 0.1234 3.27
50-Oct-50-B0 (72h) 3.4870 3.7385 0.2515 7.21
50-S-50-O (0h) 2.0173 2.0171 0.0002 0.01
75-Oct-25-B0 (0h) 4.1688 4.1680 0.0008 0.02
75-Oct-25-B0 (192 h) 4.1413 4.2533 0.1120 2.70
75-Oct-25-B0 (48h) 4.3290 4.3693 0.0403 0.93
75-S-25-O (0h) 3.0521 3.0522 0.0001 0.00
75-S-25-O (24h) 3.4627 3.4578 0.0049 0.14

Testdaten: Md.(∆rel.) = 0.09%,
Md.(∆abs.) = 0.0049mm2/s

Trainingsdaten (siehe Tabelle 8.66 - 8.69)
Md.(∆rel.) = 0.02%, Md.(∆abs.) = 0.0004mm2/s
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Tabelle 8.55: Vorhersage der Dichte des Kraftstoffs mit dem neuronalen Netzwerk (ANN) für
die Testdaten der Nahinfrarotspektren.

Bezeichnung Dichte (real)
[kg/m3]

Dichte (pred.)
[kg/m3]

Abs. Fehler
∆abs [kg/m3]

Rel. Fehler
∆rel [%]

1-Decanol (0h) 0.8332 0.8344 0.0012 0.15
1-Heptanol (168) 0.8838 0.8121 0.0717 8.11
1-Hexanol (0h) 0.8223 0.8192 0.0031 0.38
1-Hexanol (120h) 0.8692 0.8291 0.0401 4.61
1-Octanol (0h) 0.8287 0.8302 0.0015 0.18
OME (0h) 1.0570 1.0570 0.0000 0.00
OME (48h) 1.0810 1.1160 0.0350 3.24
Solketal (120h) 1.1490 1.0967 0.0523 4.55
2-Butanol (0h) 0.8134 0.8137 0.0003 0.04
2-Hexanol (0h) 0.8203 0.8198 0.0005 0.06
2-Pentanol (0h) 0.8134 0.8147 0.0013 0.17
25-Oct-75-B0 (120h) 0.8539 0.8245 0.0294 3.45
25-Oct-75-B0 (72h) 0.8385 0.8543 0.0158 1.89
50-Oct-50-B0 (144h) 0.8508 0.8463 0.0045 0.53
50-Oct-50-B0 (72h) 0.8336 0.8537 0.0201 2.41
50-S-50-O (0h) 1.0640 1.0642 0.0002 0.02
75-Oct-25-B0 (0h) 0.8267 0.8244 0.0023 0.28
75-Oct-25-B0 (192 h) 0.8802 0.5444 0.3358 38.15
75-Oct-25-B0 (48h) 0.8274 0.8437 0.0163 1.97
75-S-25-O (0h) 1.0680 1.0699 0.0019 0.18
75-S-25-O (24h) 1.0790 1.0168 0.0622 5.77

Testdaten: Md.(∆rel.) = 0.5%,
Md.(∆abs.) = 0.0045kg/m3

Trainingsdaten (siehe Tabelle 8.70 - 8.73)
Md.(∆rel.) = 0.2%, Md.(∆abs.) = 0.0017kg/m3



236

Tabelle 8.56: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Bezeichnung des Kraftstoffs.

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

1-Butanol 0 1-Butanol 1-Nonanol 192 1-Nonanol
1-Butanol 120 1-Butanol 1-Nonanol 24 1-Nonanol
1-Butanol 144 1-Butanol 1-Nonanol 48 1-Nonanol
1-Butanol 24 1-Butanol 1-Nonanol 72 1-Nonanol
1-Butanol 48 1-Butanol 1-Nonanol 96 1-Nonanol
1-Butanol 72 1-Butanol 1-Octanol 0 1-Octanol
1-Butanol 96 1-Butanol 1-Octanol 120 1-Octanol
1-Decanol 0 1-Decanol 1-Octanol 144 1-Octanol
1-Decanol 120 1-Decanol 1-Octanol 168 1-Octanol
1-Decanol 144 1-Decanol 1-Octanol 192 1-Octanol
1-Decanol 168 1-Decanol 1-Octanol 24 1-Octanol
1-Decanol 192 1-Decanol 1-Octanol 48 1-Octanol
1-Decanol 24 1-Decanol 1-Octanol 72 1-Octanol
1-Decanol 48 1-Decanol 1-Octanol 96 1-Octanol
1-Decanol 72 1-Decanol 1-Pentanol 0 1-Pentanol
1-Decanol 96 1-Decanol 1-Pentanol 120 1-Pentanol
1-Heptanol 0 1-Heptanol 1-Pentanol 144 1-Pentanol
1-Heptanol 120 1-Heptanol 1-Pentanol 168 1-Pentanol
1-Heptanol 144 1-Heptanol 1-Pentanol 192 1-Pentanol
1-Heptanol 192 1-Heptanol 1-Pentanol 24 1-Pentanol
1-Heptanol 24 1-Heptanol 1-Pentanol 48 1-Pentanol
1-Heptanol 48 1-Heptanol 1-Pentanol 72 1-Pentanol
1-Heptanol 72 1-Heptanol 1-Pentanol 96 1-Pentanol
1-Heptanol 96 1-Heptanol B0 0 B0
1-Hexanol 0 1-Hexanol B0 120 B0
1-Hexanol 144 1-Hexanol B0 144 B0
1-Hexanol 168 1-Hexanol B0 168 B0
1-Hexanol 192 1-Hexanol B0 192 B0
1-Hexanol 24 1-Hexanol B0 24 B0
1-Hexanol 48 1-Hexanol B0 48 B0
1-Hexanol 72 1-Hexanol B0 72 B0
1-Hexanol 96 1-Hexanol B0 96 B0
1-Nonanol 0 1-Nonanol OME 0 OME
1-Nonanol 120 1-Nonanol OME 120 OME
1-Nonanol 144 1-Nonanol OME 144 OME
1-Nonanol 168 1-Nonanol OME 24 OME
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Tabelle 8.57: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Bezeichnung des Kraftstoffs.

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

Bezeichnung
(real)

Alterungs-
zeit [h]

Bezeichnung
(Vorhersage)

OME 72 OME 25-Oc-75-B0 48 25-Oc-75-B0
OME 96 OME 25-Oc-75-B0 96 25-Oc-75-B0
Solketal 0 Solketal 25-S-75-O 0 25-S-75-O
Solketal 144 Solketal 25-S-75-O 120 25-S-75-O
Solketal 24 Solketal 25-S-75-O 144 25-S-75-O
Solketal 48 Solketal 25-S-75-O 24 25-S-75-O
Solketal 72 Solketal 25-S-75-O 48 25-S-75-O
Solketal 96 Solketal 25-S-75-O 72 25-S-75-O
2-Butanol 0 2-Butanol 25-S-75-O 96 25-S-75-O
2-Butanol 120 2-Butanol 50-Oc-50-B0 0 50-Oc-50-B0
2-Butanol 144 2-Butanol 50-Oc-50-B0 120 50-Oc-50-B0
2-Butanol 168 2-Butanol 50-Oc-50-B0 168 50-Oc-50-B0
2-Butanol 24 2-Butanol 50-Oc-50-B0 192 50-Oc-50-B0
2-Butanol 48 2-Butanol 50-Oc-50-B0 24 50-Oc-50-B0
2-Butanol 72 2-Butanol 50-Oc-50-B0 48 50-Oc-50-B0
2-Butanol 96 2-Butanol 50-Oc-50-B0 96 50-Oc-50-B0
2-Hexanol 0 2-Hexanol 50-S-50-O 0 50-S-50-O
2-Hexanol 120 2-Hexanol 50-S-50-O 120 50-S-50-O
2-Hexanol 144 2-Hexanol 50-S-50-O 144 50-S-50-O
2-Hexanol 168 2-Hexanol 50-S-50-O 24 50-S-50-O
2-Hexanol 192 2-Hexanol 50-S-50-O 48 50-S-50-O
2-Hexanol 24 2-Hexanol 50-S-50-O 72 50-S-50-O
2-Hexanol 48 2-Hexanol 50-S-50-O 96 50-S-50-O
2-Hexanol 72 2-Hexanol 75-Oc-25-B0 0 75-Oc-25-B0
2-Hexanol 96 2-Hexanol 75-Oc-25-B0 120 75-Oc-25-B0
2-Pentanol 0 2-Pentanol 75-Oc-25-B0 144 75-Oc-25-B0
2-Pentanol 120 2-Pentanol 75-Oc-25-B0 168 75-Oc-25-B0
2-Pentanol 144 2-Pentanol 75-Oc-25-B0 24 75-Oc-25-B0
2-Pentanol 24 2-Pentanol 75-Oc-25-B0 72 75-Oc-25-B0
2-Pentanol 48 2-Pentanol 75-Oc-25-B0 96 75-Oc-25-B0
2-Pentanol 72 2-Pentanol 75-S-25-O 0 75-S-25-O
2-Pentanol 96 2-Pentanol 75-S-25-O 120 75-S-25-O
25-Oc-75-B0 0 25-Oc-75-B0 75-S-25-O 144 75-S-25-O
25-Oc-75-B0 144 25-Oc-75-B0 75-S-25-O 48 75-S-25-O
25-Oc-75-B0 168 25-Oc-75-B0 75-S-25-O 72 75-S-25-O
25-Oc-75-B0 192 25-Oc-75-B0 75-S-25-O 96 75-S-25-O
25-Oc-75-B0 24 25-Oc-75-B0
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Tabelle 8.58: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

1-Butanol 0 0 0 --
1-Butanol 120 120 0 0
1-Butanol 144 144 0 0
1-Butanol 24 24 0 0
1-Butanol 48 48 0 0
1-Butanol 72 72 0 0
1-Butanol 96 96 0 0
1-Decanol 0 0 0 --
1-Decanol 120 120 0 0
1-Decanol 144 144 0 0
1-Decanol 168 168 0 0
1-Decanol 192 192 0 0
1-Decanol 24 24 0 0
1-Decanol 48 48 0 0
1-Decanol 72 72 0 0
1-Decanol 96 96 0 0
1-Heptanol 0 0 0 --
1-Heptanol 120 120 0 0
1-Heptanol 144 144 0 0
1-Heptanol 192 192 0 0
1-Heptanol 24 24 0 0
1-Heptanol 48 48 0 0
1-Heptanol 72 72 0 0
1-Heptanol 96 96 0 0
1-Hexanol 0 0 0 --
1-Hexanol 144 144 0 0
1-Hexanol 168 168 0 0
1-Hexanol 192 192 0 0
1-Hexanol 24 24 0 0
1-Hexanol 48 48 0 0
1-Hexanol 72 72 0 0
1-Hexanol 96 96 0 0
1-Nonanol 0 0 0 --
1-Nonanol 120 120 0 0
1-Nonanol 144 144 0 0
1-Nonanol 168 168 0 0
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Tabelle 8.59: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

1-Nonanol 192 192 0 0
1-Nonanol 24 24 0 0
1-Nonanol 48 48 0 0
1-Nonanol 72 72 0 0
1-Nonanol 96 96 0 0
1-Octanol 0 0 0 --
1-Octanol 120 120 0 0
1-Octanol 144 144 0 0
1-Octanol 168 168 0 0
1-Octanol 192 192 0 0
1-Octanol 24 24 0 0
1-Octanol 48 48 0 0
1-Octanol 72 72 0 0
1-Octanol 96 96 0 0
1-Pentanol 0 0 0 --
1-Pentanol 120 120 0 0
1-Pentanol 144 144 0 0
1-Pentanol 168 168 0 0
1-Pentanol 192 192 0 0
1-Pentanol 24 24 0 0
1-Pentanol 48 48 0 0
1-Pentanol 72 72 0 0
1-Pentanol 96 96 0 0
B0 0 0 0 --
B0 120 120 0 0
B0 144 144 0 0
B0 168 168 0 0
B0 192 192 0 0
B0 24 24 0 0
B0 48 48 0 0
B0 72 72 0 0
B0 96 96 0 0
OME 0 0 0 --
OME 120 120 0 0
OME 144 144 0 0
OME 24 24 0 0
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Tabelle 8.60: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

OME 72 72 0 0
OME 96 96 0 0
Solketal 0 0 0 --
Solketal 144 144 0 0
Solketal 24 24 0 0
Solketal 48 48 0 0
Solketal 72 72 0 0
Solketal 96 96 0 0
2-Butanol 0 0 0 --
2-Butanol 120 120 0 0
2-Butanol 144 144 0 0
2-Butanol 168 168 0 0
2-Butanol 24 24 0 0
2-Butanol 48 48 0 0
2-Butanol 72 72 0 0
2-Butanol 96 96 0 0
2-Hexanol 0 0 0 --
2-Hexanol 120 120 0 0
2-Hexanol 144 144 0 0
2-Hexanol 168 168 0 0
2-Hexanol 192 192 0 0
2-Hexanol 24 24 0 0
2-Hexanol 48 48 0 0
2-Hexanol 72 72 0 0
2-Hexanol 96 96 0 0
2-Pentanol 0 0 0 --
2-Pentanol 120 120 0 0
2-Pentanol 144 144 0 0
2-Pentanol 24 24 0 0
2-Pentanol 48 48 0 0
2-Pentanol 72 72 0 0
2-Pentanol 96 96 0 0
25-Oc-75-B0 0 0 0 --
25-Oc-75-B0 144 144 0 0
25-Oc-75-B0 168 168 0 0
25-Oc-75-B0 192 192 0 0
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Tabelle 8.61: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Alterungszeit des Kraftstoffs.

Bezeichnung Alterungszeit [h]
(real)

Alterungszeit [h]
(Vorhersage)

Absoluter
Fehler [h]

Relativer
Fehler [%]

25-Oc-75-B0 24 24 0 0
25-Oc-75-B0 48 48 0 0
25-Oc-75-B0 96 96 0 0
25-S-75-O 0 0 0 --
25-S-75-O 120 120 0 0
25-S-75-O 144 144 0 0
25-S-75-O 24 24 0 0
25-S-75-O 48 48 0 0
25-S-75-O 72 72 0 0
25-S-75-O 96 96 0 0
50-Oc-50-B0 0 0 0 --
50-Oc-50-B0 120 120 0 0
50-Oc-50-B0 168 168 0 0
50-Oc-50-B0 192 192 0 0
50-Oc-50-B0 24 24 0 0
50-Oc-50-B0 48 48 0 0
50-Oc-50-B0 96 96 0 0
50-S-50-O 0 0 0 --
50-S-50-O 120 120 0 0
50-S-50-O 144 144 0 0
50-S-50-O 24 24 0 0
50-S-50-O 48 48 0 0
50-S-50-O 72 72 0 0
50-S-50-O 96 96 0 0
75-Oc-25-B0 0 0 0 --
75-Oc-25-B0 120 120 0 0
75-Oc-25-B0 144 144 0 0
75-Oc-25-B0 168 168 0 0
75-Oc-25-B0 24 24 0 0
75-Oc-25-B0 72 72 0 0
75-Oc-25-B0 96 96 0 0
75-S-25-O 0 0 0 --
75-S-25-O 120 120 0 0
75-S-25-O 144 144 0 0
75-S-25-O 48 48 0 0
75-S-25-O 72 72 0 0
75-S-25-O 96 96 0 0
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Tabelle 8.62: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN) des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

1-Butanol 0 0.35 0.35 0.00 0.3
1-Butanol 120 5.80 5.80 0.00 0.0
1-Butanol 144 9.80 9.80 0.00 0.0
1-Butanol 24 0.35 0.35 0.00 0.2
1-Butanol 48 0.51 0.50 0.01 2.2
1-Butanol 72 1.44 1.44 0.00 0.3
1-Butanol 96 2.96 2.96 0.00 0.1
1-Decanol 0 0.27 0.25 0.02 6.5
1-Decanol 120 30.82 30.82 0.00 0.0
1-Decanol 144 41.66 41.66 0.00 0.0
1-Decanol 168 46.77 46.77 0.00 0.0
1-Decanol 192 49.40 49.40 0.00 0.0
1-Decanol 24 0.26 0.38 0.12 46.6
1-Decanol 48 0.36 0.38 0.02 6.8
1-Decanol 72 3.42 3.42 0.00 0.1
1-Decanol 96 17.04 17.04 0.00 0.0
1-Heptanol 0 0.35 0.35 0.00 0.7
1-Heptanol 120 61.10 61.10 0.00 0.0
1-Heptanol 144 65.16 65.16 0.00 0.0
1-Heptanol 192 61.70 61.70 0.00 0.0
1-Heptanol 24 0.34 0.34 0.00 0.6
1-Heptanol 48 0.97 0.97 0.00 0.2
1-Heptanol 72 21.44 21.44 0.00 0.0
1-Heptanol 96 47.20 47.20 0.00 0.0
1-Hexanol 0 0.29 0.30 0.01 2.2
1-Hexanol 144 66.22 66.22 0.00 0.0
1-Hexanol 168 67.61 67.61 0.00 0.0
1-Hexanol 192 62.57 62.57 0.00 0.0
1-Hexanol 24 0.59 0.58 0.01 1.9
1-Hexanol 48 15.18 15.18 0.00 0.0
1-Hexanol 72 36.32 36.32 0.00 0.0
1-Hexanol 96 49.69 49.69 0.00 0.0
1-Nonanol 0 0.34 0.34 0.00 1.0
1-Nonanol 120 46.34 46.34 0.00 0.0
1-Nonanol 144 49.89 49.89 0.00 0.0
1-Nonanol 168 48.58 48.58 0.00 0.0
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Tabelle 8.63: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN) des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

1-Nonanol 192 48.58 48.58 0.00 0.0
1-Nonanol 24 0.79 0.73 0.06 7.3
1-Nonanol 48 1.21 1.14 0.07 5.5
1-Nonanol 72 17.59 17.59 0.00 0.0
1-Nonanol 96 34.93 34.93 0.00 0.0
1-Octanol 0 0.43 0.44 0.01 2.0
1-Octanol 120 54.53 54.53 0.00 0.0
1-Octanol 144 56.52 56.52 0.00 0.0
1-Octanol 168 55.52 55.52 0.00 0.0
1-Octanol 192 55.00 55.00 0.00 0.0
1-Octanol 24 0.45 0.45 0.00 0.0
1-Octanol 48 10.81 10.81 0.00 0.0
1-Octanol 72 32.47 32.47 0.00 0.0
1-Octanol 96 47.01 47.01 0.00 0.0
1-Pentanol 0 0.33 0.33 0.00 0.1
1-Pentanol 120 63.44 63.44 0.00 0.0
1-Pentanol 144 66.44 66.44 0.00 0.0
1-Pentanol 168 64.78 64.78 0.00 0.0
1-Pentanol 192 59.43 59.43 0.00 0.0
1-Pentanol 24 0.37 0.38 0.01 1.6
1-Pentanol 48 2.73 2.73 0.00 0.1
1-Pentanol 72 23.43 23.43 0.00 0.0
1-Pentanol 96 48.34 48.34 0.00 0.0
B0 0 0.07 0.07 0.00 1.6
B0 120 23.97 23.97 0.00 0.0
B0 144 28.42 28.42 0.00 0.0
B0 168 28.94 28.94 0.00 0.0
B0 192 29.74 29.74 0.00 0.0
B0 24 0.40 0.40 0.00 0.2
B0 48 0.62 0.62 0.00 0.5
B0 72 4.93 4.93 0.00 0.0
B0 96 15.84 15.84 0.00 0.0
OME 0 0.98 0.98 0.00 0.0
OME 120 89.26 89.26 0.00 0.0
OME 144 73.62 73.62 0.00 0.0
OME 24 29.83 29.83 0.00 0.0
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Tabelle 8.64: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN) des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

OME 72 97.16 97.16 0.00 0.0
OME 96 98.47 98.47 0.00 0.0
Solketal 0 0.34 0.34 0.00 0.2
Solketal 144 17.54 17.54 0.00 0.0
Solketal 24 9.57 9.56 0.00 0.0
Solketal 48 10.52 10.52 0.00 0.0
Solketal 72 11.68 11.69 0.00 0.0
Solketal 96 13.16 13.16 0.00 0.0
2-Butanol 0 0.13 0.13 0.00 0.4
2-Butanol 120 6.89 6.89 0.00 0.0
2-Butanol 144 9.34 9.34 0.00 0.0
2-Butanol 168 2.13 2.13 0.00 0.0
2-Butanol 24 1.22 1.22 0.00 0.2
2-Butanol 48 5.34 5.34 0.00 0.0
2-Butanol 72 2.12 2.12 0.00 0.2
2-Butanol 96 3.28 3.28 0.00 0.1
2-Hexanol 0 0.73 0.73 0.00 0.1
2-Hexanol 120 1.77 1.77 0.00 0.0
2-Hexanol 144 1.86 1.86 0.00 0.2
2-Hexanol 168 2.41 2.41 0.00 0.0
2-Hexanol 192 1.72 1.72 0.00 0.0
2-Hexanol 24 0.74 0.74 0.00 0.2
2-Hexanol 48 0.74 0.74 0.00 0.0
2-Hexanol 72 0.76 0.76 0.00 0.1
2-Hexanol 96 1.09 1.09 0.00 0.4
2-Pentanol 0 0.14 0.14 0.00 0.2
2-Pentanol 120 6.05 6.05 0.00 0.0
2-Pentanol 144 8.69 8.69 0.00 0.0
2-Pentanol 24 1.04 1.05 0.00 0.1
2-Pentanol 48 1.03 1.03 0.00 0.1
2-Pentanol 72 2.46 2.46 0.00 0.0
2-Pentanol 96 3.88 3.88 0.00 0.1
25-Oc-75-B0 0 0.73 0.73 0.00 0.2
25-Oc-75-B0 144 19.84 19.84 0.00 0.0
25-Oc-75-B0 168 20.37 20.37 0.00 0.0
25-Oc-75-B0 192 21.10 21.10 0.00 0.0
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Tabelle 8.65: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Säurezahl (TAN) des Kraft-
stoffs.

Bezeichnung Alterungs-
zeit [h]

TAN
[mgKOH/g]
(real)

TAN
[mgKOH/g]
(Vorhersage)

Absoluter
Fehler
[mgKOH/g]

Relativer
Fehler [%]

25-Oc-75-B0 24 1.29 1.29 0.00 0.1
25-Oc-75-B0 48 5.73 5.73 0.00 0.0
25-Oc-75-B0 96 15.31 15.31 0.00 0.0
25-S-75-O 0 1.19 1.19 0.00 0.0
25-S-75-O 120 67.35 67.35 0.00 0.0
25-S-75-O 144 68.35 68.35 0.00 0.0
25-S-75-O 24 38.59 38.59 0.00 0.0
25-S-75-O 48 42.31 42.31 0.00 0.0
25-S-75-O 72 60.20 60.20 0.00 0.0
25-S-75-O 96 65.75 65.75 0.00 0.0
50-Oc-50-B0 0 0.37 0.37 0.00 0.1
50-Oc-50-B0 120 16.83 16.83 0.00 0.0
50-Oc-50-B0 168 19.16 19.16 0.00 0.0
50-Oc-50-B0 192 19.22 19.22 0.00 0.0
50-Oc-50-B0 24 1.50 1.51 0.01 0.4
50-Oc-50-B0 48 6.30 6.30 0.00 0.0
50-Oc-50-B0 96 14.54 14.54 0.00 0.0
50-S-50-O 0 0.79 0.79 0.00 0.0
50-S-50-O 120 37.04 37.04 0.00 0.0
50-S-50-O 144 42.22 42.22 0.00 0.0
50-S-50-O 24 22.74 22.74 0.00 0.0
50-S-50-O 48 27.59 27.59 0.00 0.0
50-S-50-O 72 29.76 29.76 0.00 0.0
50-S-50-O 96 36.63 36.63 0.00 0.0
75-Oc-25-B0 0 0.41 0.41 0.00 1.1
75-Oc-25-B0 120 25.67 25.67 0.00 0.0
75-Oc-25-B0 144 30.03 30.03 0.00 0.0
75-Oc-25-B0 168 32.31 32.31 0.00 0.0
75-Oc-25-B0 24 0.69 0.66 0.03 3.9
75-Oc-25-B0 72 10.26 10.26 0.00 0.0
75-Oc-25-B0 96 19.33 19.33 0.00 0.0
75-S-25-O 0 0.56 0.56 0.00 0.0
75-S-25-O 120 27.45 27.45 0.00 0.0
75-S-25-O 144 25.44 25.44 0.00 0.0
75-S-25-O 48 21.28 21.28 0.00 0.0
75-S-25-O 72 24.58 24.58 0.00 0.0
75-S-25-O 96 28.38 28.38 0.00 0.0
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Tabelle 8.66: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische Viskosität des
Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

1-Butanol 0 2.3384 2.3382 0.0002 0.01
1-Butanol 120 2.3139 2.3126 0.0013 0.06
1-Butanol 144 2.3620 2.3620 0.0001 0.00
1-Butanol 24 2.2083 2.2073 0.0010 0.05
1-Butanol 48 2.2312 2.2272 0.0040 0.18
1-Butanol 72 2.2630 2.2666 0.0036 0.16
1-Butanol 96 2.2881 2.2885 0.0004 0.02
1-Decanol 0 8.0442 8.0501 0.0060 0.07
1-Decanol 120 8.0094 8.0079 0.0014 0.02
1-Decanol 144 7.4920 7.4919 0.0001 0.00
1-Decanol 168 7.4638 7.4639 0.0001 0.00
1-Decanol 192 7.1420 7.1433 0.0013 0.02
1-Decanol 24 8.1192 8.1057 0.0136 0.17
1-Decanol 48 8.0274 8.0248 0.0027 0.03
1-Decanol 72 8.1589 8.1472 0.0117 0.14
1-Decanol 96 8.2610 8.2635 0.0024 0.03
1-Heptanol 0 4.5510 4.5510 0.0001 0.00
1-Heptanol 120 3.7407 3.7406 0.0001 0.00
1-Heptanol 144 3.5554 3.5547 0.0007 0.02
1-Heptanol 192 3.1804 3.1784 0.0020 0.06
1-Heptanol 24 4.4618 4.4615 0.0003 0.01
1-Heptanol 48 4.5282 4.5259 0.0023 0.05
1-Heptanol 72 4.5046 4.5041 0.0005 0.01
1-Heptanol 96 4.0740 4.0746 0.0006 0.02
1-Hexanol 0 3.5042 3.5036 0.0006 0.02
1-Hexanol 144 2.7514 2.7506 0.0008 0.03
1-Hexanol 168 2.7002 2.6999 0.0003 0.01
1-Hexanol 192 2.3226 2.3231 0.0005 0.02
1-Hexanol 24 3.4937 3.4932 0.0005 0.01
1-Hexanol 48 3.4683 3.4722 0.0039 0.11
1-Hexanol 72 3.1544 3.1538 0.0006 0.02
1-Hexanol 96 3.0511 3.0488 0.0024 0.08
1-Nonanol 0 6.7367 6.7366 0.0001 0.00
1-Nonanol 120 5.9894 5.9910 0.0016 0.03
1-Nonanol 144 5.6741 5.6740 0.0001 0.00
1-Nonanol 168 5.6334 5.6341 0.0006 0.01
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Tabelle 8.67: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische Viskosität des
Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

1-Nonanol 192 5.1450 5.1449 0.0001 0.00
1-Nonanol 24 6.7466 6.7533 0.0067 0.10
1-Nonanol 48 6.8128 6.8089 0.0039 0.06
1-Nonanol 72 6.9023 6.9032 0.0009 0.01
1-Nonanol 96 6.4700 6.4735 0.0035 0.05
1-Octanol 0 5.5643 5.5644 0.0001 0.00
1-Octanol 120 4.5578 4.5564 0.0014 0.03
1-Octanol 144 4.3158 4.3167 0.0008 0.02
1-Octanol 168 4.0032 4.0026 0.0006 0.01
1-Octanol 192 3.9986 3.9982 0.0004 0.01
1-Octanol 24 5.6600 5.6593 0.0008 0.01
1-Octanol 48 5.6256 5.6256 0.0001 0.00
1-Octanol 72 5.4012 5.3993 0.0019 0.03
1-Octanol 96 4.9476 4.9462 0.0014 0.03
1-Pentanol 0 2.8652 2.8650 0.0001 0.00
1-Pentanol 120 2.4690 2.4688 0.0001 0.01
1-Pentanol 144 2.2299 2.2299 0.0000 0.00
1-Pentanol 168 2.0188 2.0187 0.0000 0.00
1-Pentanol 192 1.8722 1.8720 0.0002 0.01
1-Pentanol 24 2.8641 2.8721 0.0080 0.28
1-Pentanol 48 2.8644 2.8590 0.0054 0.19
1-Pentanol 72 2.8384 2.8384 0.0000 0.00
1-Pentanol 96 2.5739 2.5742 0.0003 0.01
B0 0 2.4520 2.4521 0.0001 0.01
B0 120 5.2410 5.2395 0.0015 0.03
B0 144 5.2410 5.2431 0.0021 0.04
B0 168 5.5426 5.5427 0.0001 0.00
B0 192 5.4745 5.4743 0.0002 0.00
B0 24 2.7705 2.7709 0.0004 0.02
B0 48 2.7705 2.7719 0.0014 0.05
B0 72 3.4156 3.4163 0.0007 0.02
B0 96 5.2410 5.2400 0.0010 0.02
OME 0 1.2094 1.2095 0.0001 0.01
OME 120 2.2268 2.2264 0.0003 0.01
OME 144 2.9978 2.9979 0.0001 0.00
OME 24 1.2300 1.2315 0.0015 0.12
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Tabelle 8.68: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische Viskosität des
Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

OME 72 1.6650 1.6650 0.0001 0.00
OME 96 1.9228 1.9207 0.0021 0.11
Solketal 0 5.0164 5.0166 0.0002 0.00
Solketal 144 25.5650 25.5650 0.0000 0.00
Solketal 24 5.6628 5.6626 0.0001 0.00
Solketal 48 6.7556 6.7573 0.0017 0.02
Solketal 72 8.6660 8.6661 0.0001 0.00
Solketal 96 11.7755 11.7750 0.0005 0.00
2-Butanol 0 2.0675 2.0679 0.0004 0.02
2-Butanol 120 2.2260 2.2251 0.0009 0.04
2-Butanol 144 2.2428 2.2432 0.0004 0.02
2-Butanol 168 2.0750 2.0754 0.0004 0.02
2-Butanol 24 2.0963 2.0960 0.0003 0.02
2-Butanol 48 2.1823 2.1838 0.0015 0.07
2-Butanol 72 2.1879 2.1877 0.0002 0.01
2-Butanol 96 2.1829 2.1825 0.0004 0.02
2-Hexanol 0 2.8462 2.8464 0.0002 0.01
2-Hexanol 120 1.6809 1.6807 0.0002 0.01
2-Hexanol 144 1.5116 1.5118 0.0002 0.01
2-Hexanol 168 1.3861 1.3856 0.0005 0.04
2-Hexanol 192 1.3431 1.3424 0.0007 0.05
2-Hexanol 24 2.8717 2.8721 0.0004 0.01
2-Hexanol 48 2.4255 2.4285 0.0030 0.12
2-Hexanol 72 2.0028 2.0020 0.0008 0.04
2-Hexanol 96 1.7631 1.7641 0.0010 0.06
2-Pentanol 0 2.3129 2.3127 0.0002 0.01
2-Pentanol 120 1.9639 1.9635 0.0004 0.02
2-Pentanol 144 2.2530 2.2528 0.0002 0.01
2-Pentanol 24 2.1287 2.1279 0.0008 0.04
2-Pentanol 48 1.9959 1.9953 0.0006 0.03
2-Pentanol 72 1.8449 1.8466 0.0017 0.09
2-Pentanol 96 1.8698 1.8696 0.0002 0.01
25-Oc-75-B0 0 2.7364 2.7366 0.0002 0.01
25-Oc-75-B0 144 4.0114 4.0115 0.0001 0.00
25-Oc-75-B0 168 4.2482 4.2481 0.0001 0.00
25-Oc-75-B0 192 4.4758 4.4755 0.0003 0.01
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Tabelle 8.69: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die kinematische Viskosität des
Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

kin. Viskosität
[mm2/s]
(real)

kin. Viskosität
[mm2/s]
(Vorhersage)

Absoluter
Fehler
[mm2/s]

Relativer
Fehler [%]

25-Oc-75-B0 24 2.8752 2.8730 0.0022 0.08
25-Oc-75-B0 48 2.9743 2.9733 0.0010 0.03
25-Oc-75-B0 96 3.4112 3.4112 0.0000 0.00
25-S-75-O 0 1.5072 1.5069 0.0003 0.02
25-S-75-O 120 4.3036 4.3043 0.0008 0.02
25-S-75-O 144 8.1556 8.1555 0.0001 0.00
25-S-75-O 24 1.6009 1.6013 0.0004 0.03
25-S-75-O 48 1.8692 1.8695 0.0002 0.01
25-S-75-O 72 2.3536 2.3539 0.0003 0.01
25-S-75-O 96 3.7590 3.7589 0.0001 0.00
50-Oc-50-B0 0 3.3890 3.3897 0.0007 0.02
50-Oc-50-B0 120 3.6816 3.6825 0.0009 0.02
50-Oc-50-B0 168 3.7714 3.7696 0.0018 0.05
50-Oc-50-B0 192 3.8686 3.8682 0.0004 0.01
50-Oc-50-B0 24 3.4634 3.4643 0.0009 0.03
50-Oc-50-B0 48 3.4921 3.4910 0.0011 0.03
50-Oc-50-B0 96 3.6542 3.6537 0.0005 0.01
50-S-50-O 0 2.0173 2.0171 0.0002 0.01
50-S-50-O 120 11.1920 11.1920 0.0000 0.00
50-S-50-O 144 16.1430 16.1429 0.0001 0.00
50-S-50-O 24 2.2638 2.2648 0.0010 0.04
50-S-50-O 48 2.8226 2.8233 0.0006 0.02
50-S-50-O 72 3.7807 3.7806 0.0001 0.00
50-S-50-O 96 5.4924 5.4922 0.0003 0.00
75-Oc-25-B0 0 4.1688 4.1680 0.0008 0.02
75-Oc-25-B0 120 4.0639 4.0636 0.0003 0.01
75-Oc-25-B0 144 4.0199 4.0199 0.0000 0.00
75-Oc-25-B0 168 3.9739 3.9743 0.0004 0.01
75-Oc-25-B0 24 4.3054 4.3079 0.0025 0.06
75-Oc-25-B0 72 4.3798 4.3796 0.0002 0.01
75-Oc-25-B0 96 4.3220 4.3211 0.0009 0.02
75-S-25-O 0 3.0521 3.0522 0.0001 0.00
75-S-25-O 120 11.4315 11.4315 0.0000 0.00
75-S-25-O 144 23.7360 23.7363 0.0003 0.00
75-S-25-O 48 4.2516 4.2507 0.0009 0.02
75-S-25-O 72 5.3350 5.3363 0.0013 0.02
75-S-25-O 96 7.3803 7.3794 0.0009 0.01
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Tabelle 8.70: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

1-Butanol 0 0.8141 0.8136 0.0005 0.07
1-Butanol 120 0.8335 0.8300 0.0035 0.42
1-Butanol 144 0.8462 0.8495 0.0033 0.40
1-Butanol 24 0.8136 0.8165 0.0029 0.35
1-Butanol 48 0.8152 0.8129 0.0023 0.28
1-Butanol 72 0.8190 0.8196 0.0006 0.07
1-Butanol 96 0.8250 0.8252 0.0002 0.02
1-Decanol 0 0.8332 0.8344 0.0012 0.15
1-Decanol 120 0.8524 0.8393 0.0131 1.54
1-Decanol 144 0.8631 0.8663 0.0032 0.38
1-Decanol 168 0.8738 0.8749 0.0011 0.12
1-Decanol 192 0.8798 0.8819 0.0021 0.23
1-Decanol 24 0.8331 0.8355 0.0024 0.29
1-Decanol 48 0.8335 0.8383 0.0048 0.57
1-Decanol 72 0.8365 0.8324 0.0041 0.49
1-Decanol 96 0.8433 0.8399 0.0034 0.40
1-Heptanol 0 0.8255 0.8256 0.0001 0.02
1-Heptanol 120 0.8715 0.8689 0.0026 0.30
1-Heptanol 144 0.8792 0.8771 0.0021 0.24
1-Heptanol 192 0.8922 0.8923 0.0001 0.01
1-Heptanol 24 0.8258 0.8218 0.0040 0.48
1-Heptanol 48 0.8271 0.8302 0.0031 0.38
1-Heptanol 72 0.8391 0.8412 0.0021 0.25
1-Heptanol 96 0.8545 0.8537 0.0008 0.09
1-Hexanol 0 0.8223 0.8192 0.0031 0.38
1-Hexanol 144 0.8730 0.8732 0.0002 0.02
1-Hexanol 168 0.8760 0.8764 0.0004 0.05
1-Hexanol 192 0.8752 0.8753 0.0001 0.02
1-Hexanol 24 0.8223 0.8287 0.0064 0.78
1-Hexanol 48 0.8260 0.8240 0.0020 0.24
1-Hexanol 72 0.8408 0.8443 0.0035 0.41
1-Hexanol 96 0.8559 0.8538 0.0021 0.25
1-Nonanol 0 0.8311 0.8306 0.0005 0.06
1-Nonanol 120 0.8621 0.8707 0.0086 0.99
1-Nonanol 144 0.8719 0.8704 0.0015 0.18
1-Nonanol 168 0.8774 0.8769 0.0005 0.06
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Tabelle 8.71: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

1-Nonanol 192 0.8809 0.8759 0.0050 0.57
1-Nonanol 24 0.8311 0.8333 0.0022 0.26
1-Nonanol 48 0.8326 0.8295 0.0031 0.37
1-Nonanol 72 0.8422 0.8490 0.0068 0.80
1-Nonanol 96 0.8532 0.8543 0.0011 0.13
1-Octanol 0 0.8287 0.8302 0.0015 0.18
1-Octanol 120 0.8734 0.8787 0.0053 0.60
1-Octanol 144 0.8774 0.8753 0.0021 0.24
1-Octanol 168 0.8851 0.8895 0.0044 0.49
1-Octanol 192 0.8918 0.8923 0.0005 0.05
1-Octanol 24 0.8292 0.8247 0.0045 0.54
1-Octanol 48 0.8363 0.8352 0.0011 0.13
1-Octanol 72 0.8486 0.8482 0.0004 0.05
1-Octanol 96 0.8596 0.8549 0.0047 0.55
1-Pentanol 0 0.8182 0.8173 0.0009 0.11
1-Pentanol 120 0.8622 0.8629 0.0007 0.08
1-Pentanol 144 0.8680 0.8693 0.0013 0.15
1-Pentanol 168 0.8714 0.8681 0.0033 0.38
1-Pentanol 192 0.8741 0.8722 0.0019 0.22
1-Pentanol 24 0.8186 0.8245 0.0059 0.72
1-Pentanol 48 0.8227 0.8210 0.0017 0.20
1-Pentanol 72 0.8376 0.8381 0.0005 0.06
1-Pentanol 96 0.8539 0.8530 0.0009 0.11
B0 0 0.8227 0.8217 0.0010 0.12
B0 120 0.8536 0.8533 0.0003 0.04
B0 144 0.8596 0.8648 0.0052 0.60
B0 168 0.8597 0.8572 0.0025 0.29
B0 192 0.8611 0.8623 0.0012 0.14
B0 24 0.8206 0.8247 0.0041 0.50
B0 48 0.8206 0.8225 0.0019 0.23
B0 72 0.8310 0.8287 0.0023 0.28
B0 96 0.8446 0.8446 0.0000 0.00
OME 0 1.0570 1.0570 0.0000 0.00
OME 120 1.1240 1.1267 0.0027 0.24
OME 144 1.1480 1.1480 0.0000 0.00
OME 24 1.0680 1.0681 0.0001 0.01
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Tabelle 8.72: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

OME 72 1.0950 1.0948 0.0002 0.02
OME 96 1.1090 1.1090 0.0000 0.00
Solketal 0 1.0710 1.0709 0.0001 0.01
Solketal 144 1.1730 1.1738 0.0008 0.07
Solketal 24 1.0790 1.0766 0.0024 0.22
Solketal 48 1.0940 1.0963 0.0023 0.21
Solketal 72 1.1110 1.1097 0.0013 0.12
Solketal 96 1.1290 1.1303 0.0013 0.12
2-Butanol 0 0.8134 0.8137 0.0003 0.04
2-Butanol 120 0.8372 0.8371 0.0001 0.01
2-Butanol 144 0.8408 0.8433 0.0025 0.29
2-Butanol 168 0.8393 0.8398 0.0005 0.06
2-Butanol 24 0.8159 0.8180 0.0021 0.26
2-Butanol 48 0.8193 0.8175 0.0018 0.21
2-Butanol 72 0.8259 0.8232 0.0027 0.33
2-Butanol 96 0.8324 0.8324 0.0000 0.00
2-Hexanol 0 0.8203 0.8198 0.0005 0.06
2-Hexanol 120 0.8375 0.8343 0.0032 0.38
2-Hexanol 144 0.8424 0.8478 0.0054 0.64
2-Hexanol 168 0.8458 0.8465 0.0007 0.09
2-Hexanol 192 0.8448 0.8451 0.0003 0.04
2-Hexanol 24 0.8197 0.8213 0.0016 0.19
2-Hexanol 48 0.8214 0.8239 0.0025 0.30
2-Hexanol 72 0.8254 0.8223 0.0031 0.38
2-Hexanol 96 0.8295 0.8296 0.0001 0.02
2-Pentanol 0 0.8134 0.8147 0.0013 0.17
2-Pentanol 120 0.8777 0.8763 0.0014 0.16
2-Pentanol 144 0.8937 0.8942 0.0005 0.06
2-Pentanol 24 0.8246 0.8242 0.0004 0.04
2-Pentanol 48 0.8404 0.8388 0.0016 0.19
2-Pentanol 72 0.8525 0.8504 0.0021 0.25
2-Pentanol 96 0.8651 0.8677 0.0026 0.30
25-Oc-75-B0 0 0.8236 0.8231 0.0005 0.06
25-Oc-75-B0 144 0.8622 0.8583 0.0039 0.45
25-Oc-75-B0 168 0.8671 0.8644 0.0027 0.31
25-Oc-75-B0 192 0.8707 0.8734 0.0027 0.31
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Tabelle 8.73: Vorhersage mit dem neuronalen Netzwerk (ANN) für die Trainingsdaten der Na-
hinfrarotspektren. Der Parameter, der vorhergesagt wurde ist die Dichte des Kraftstoffs.

Bezeichnung Alterungs-
zeit [h]

Dichte
[kg/m3]
(real)

Dichte
[kg/m3]
(Vorhersage)

Absoluter
Fehler
[kg/m3]

Relativer
Fehler [%]

25-Oc-75-B0 24 0.8253 0.8210 0.0043 0.52
25-Oc-75-B0 48 0.8306 0.8358 0.0052 0.63
25-Oc-75-B0 96 0.8461 0.8435 0.0026 0.31
25-S-75-O 0 1.0620 1.0616 0.0004 0.04
25-S-75-O 120 1.1500 1.1479 0.0021 0.18
25-S-75-O 144 1.1760 1.1758 0.0002 0.02
25-S-75-O 24 1.0730 1.0737 0.0007 0.07
25-S-75-O 48 1.0950 1.0964 0.0014 0.13
25-S-75-O 72 1.1190 1.1162 0.0028 0.25
25-S-75-O 96 1.1300 1.1280 0.0020 0.18
50-Oc-50-B0 0 0.8251 0.8249 0.0002 0.02
50-Oc-50-B0 120 0.8435 0.8451 0.0016 0.19
50-Oc-50-B0 168 0.8563 0.8587 0.0024 0.28
50-Oc-50-B0 192 0.8605 0.8609 0.0004 0.04
50-Oc-50-B0 24 0.8265 0.8291 0.0026 0.32
50-Oc-50-B0 48 0.8299 0.8308 0.0009 0.11
50-Oc-50-B0 96 0.8383 0.8392 0.0009 0.10
50-S-50-O 0 1.0640 1.0642 0.0002 0.02
50-S-50-O 120 1.1940 1.1918 0.0022 0.19
50-S-50-O 144 1.2580 1.2578 0.0002 0.02
50-S-50-O 24 1.0780 1.0783 0.0003 0.03
50-S-50-O 48 1.1000 1.0999 0.0001 0.01
50-S-50-O 72 1.1240 1.1236 0.0004 0.04
50-S-50-O 96 1.1510 1.1506 0.0004 0.03
75-Oc-25-B0 0 0.8267 0.8244 0.0023 0.28
75-Oc-25-B0 120 0.8477 0.8420 0.0057 0.67
75-Oc-25-B0 144 0.8594 0.8541 0.0053 0.62
75-Oc-25-B0 168 0.8704 0.8720 0.0016 0.18
75-Oc-25-B0 24 0.8267 0.8332 0.0065 0.79
75-Oc-25-B0 72 0.8323 0.8323 0.0000 0.00
75-Oc-25-B0 96 0.8386 0.8417 0.0031 0.37
75-S-25-O 0 1.0680 1.0699 0.0019 0.18
75-S-25-O 120 1.1630 1.1639 0.0009 0.07
75-S-25-O 144 1.2000 1.1998 0.0002 0.02
75-S-25-O 48 1.0960 1.0950 0.0010 0.09
75-S-25-O 72 1.1150 1.1146 0.0004 0.04
75-S-25-O 96 1.1350 1.1332 0.0018 0.16
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Quellcode (Python) für die Vorhersage mit Hilfe verschiedener Algo-

rithmen

import pathlib 

import pandas as pd 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.decomposition import PCA 

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor 

from prettytable import PrettyTable 

from sklearn.neural_network import MLPClassifier 

from sklearn.neural_network import MLPRegressor 

import numpy as np 

from sklearn.base import BaseEstimator, ClassifierMixin 

from sklearn.cross_decomposition import PLSRegression 

from sklearn.pipeline import make_pipeline 

from sklearn.metrics import accuracy_score 

 

class PLSClassifier(BaseEstimator, ClassifierMixin): 

    def __init__(self, n_components=2): 

        self.n_components = n_components 

        self.model = PLSRegression(n_components=n_components) 

        self.classes_ = None  # To store unique class labels 

 

    def fit(self, X, y): 

        self.classes_ = np.unique(y) 

        self.model.fit(X, y) 

        return self 

 

    def predict(self, X): 

        y_pred = self.model.predict(X) 

        y_pred_classes = np.round(y_pred).astype(int) 

        return np.clip(y_pred_classes, self.classes_.min(), self.classes_.max()) 

 

    def score(self, X, y): 
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        y_pred = self.predict(X) 

        return accuracy_score(y, y_pred) 

PATH_FEATURES = pathlib.Path("./data/NIR/") 

PATH_TARGETS = pathlib.Path("./data/Target_NIR.csv") 

FEATURE_NAMES = [(wavelength_num + 1) * 0.5 + 400 for wavelength_num in range(4200)] 

 

def findClosestWavelenght(featureNames, maxFeature): 

    wavelenghts = np.array(featureNames) 

    wavelenghts.sort() 

    closestValueIndex = (np.abs(wavelenghts - maxFeature)).argmin() 

    return closestValueIndex 

 

def filterWavelength(features, featureRanges): 

    new_feature_indices = np.array([], dtype=np.int32) 

    if len(featureRanges) > 0: 

        for left_feature, right_feature in featureRanges: 

            max_feature_idx = findClosestWavelenght(FEATURE_NAMES, right_feature) 

            min_feature_idx = findClosestWavelenght(FEATURE_NAMES, left_feature) 

            new_feature_indices = np.concatenate((new_feature_indices, 

range(min_feature_idx,max_feature_idx))) 

 

        new_feature_indices = np.sort(np.unique(new_feature_indices)) 

        feature_names = features.iloc[:,new_feature_indices] 

 

        return feature_names 

    else: 

        return features 

 

def readInData(trainPath): 

    trainPath = pathlib.Path(trainPath) 

    nirData = {} 

    waveLength = None 
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    nir_files = list(trainPath.glob("**/*/*.dat")) 

    for filePath in nir_files: 

        if filePath.is_file(): 

            data = np.loadtxt(filePath) 

            fileName = filePath.stem 

            waveLength, intensity = data.T[0], data.T[1] 

            nirData[fileName] = intensity 

    if waveLength is not None and len(nirData) != 0: 

        return pd.DataFrame.from_dict(nirData, orient='index', columns=[str(w) for w in waveLength]) 

 

def get_training_data(target_name): 

    feature_data = readInData(PATH_FEATURES) 

    feature_data = filterWavelength(feature_data, [(0, 2300), ]) 

    targets = pd.read_csv(PATH_TARGETS, sep=";") 

    data_df = feature_data.merge(targets, left_index=True, right_on="Filename", how="inner") 

 

    df_duplicate = data_df.loc[data_df['Aging time'] == 0] 

    for _ in range(5): 

        data_df = pd.concat([data_df, df_duplicate], axis=0 ,ignore_index=True ) 

 

    fuel_name_encoder = LabelEncoder().fit(data_df["Fuelname"]) 

    data_df["Fuelname"] = fuel_name_encoder.transform(data_df["Fuelname"]) 

 

    data_df.sort_values(by='Filename', ascending=False, inplace=True) 

    data_df = data_df.dropna() 

    file_names = data_df["Filename"] 

    important_columns = list(feature_data.columns) 

    important_columns.append(target_name) 

    data_df = data_df[important_columns] 

 

    return data_df[feature_data.columns], data_df[target_name], fuel_name_encoder, file_names 
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def classification_metric(file_names, true_targets, predicted_targets, kind, precision=0, 

percentage_precision=0): 

    table = PrettyTable(["file name", "true target", "predicted target", "is predicted class"]) 

    rows_df = pd.DataFrame([(filename, true_target, predicted_target) for filename, true_target, 

predicted_target in zip(file_names, true_targets, predicted_targets)], columns=["file_name", "true", 

"predicted"]) 

    rows_df.drop_duplicates(["file_name"],inplace=True) 

    rows = [(row.file_name, row.true, row.predicted) for _, row in rows_df.iterrows()] 

    for filename, true_target, predicted_target in rows: 

        table.add_row( 

            [filename, true_target, predicted_target, true_target == predicted_target]) 

    table.sortby = "is predicted class" 

    table.reversesort = True 

 

    temp= [] 

    results = pd.DataFrame(rows, columns=["file_name", "true", 

"predicted"]).sort_values("file_name") 

    results["correct_predicted"] = results["true"] == results["predicted"] 

    results.to_csv(f"prediction_{kind}.csv", index=False) 

    for _,true_target, predicted_target in rows: 

        if true_target == predicted_target: 

            temp.append(True) 

    acc = len(temp)/len(rows) 

    print("acc", f"{acc:.2f}") 

 

 

def _validate_fuel_name_classification(trained_model, file_names, features, true_targets, pca, 

fuel_name_encoder, kind="test"): 

    features = pca.transform(features) 
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    predicted_targets = trained_model.predict(features) 

    true_targets = fuel_name_encoder.inverse_transform(true_targets) 

    predicted_targets = fuel_name_encoder.inverse_transform(predicted_targets) 

 

    return classification_metric(file_names, true_targets, predicted_targets, kind) 

 

def regression_metric(file_names, true_targets, predicted_targets, kind, precision=2, 

percentage_precision=1): 

    rows_df = pd.DataFrame([(filename, true_target, predicted_target) for filename, true_target, 

predicted_target in 

                            zip(file_names, true_targets, predicted_targets)], 

                           columns=["file_name", "true", "predicted"]) 

    rows_df.drop_duplicates(["file_name"],inplace=True) 

    rows = [(row.file_name, row.true, row.predicted) for _, row in rows_df.iterrows()] 

    try: 

        mapes = [abs(true-pred)/true for _, true, pred in rows if true > 0] 

    except Exception: 

        pass 

    abs_errors = [abs(true-pred)for _, true, pred in rows] 

 

    table = PrettyTable(["file name", "true target", "predicted target", "abs error"]) 

    rows.sort() 

    results = pd.DataFrame(rows, columns=["file_name", "true", 

"predicted"]).sort_values("file_name") 

    results["abs_error"] = abs(results["true"] - results["predicted"]) 

    results['relative_error'] = results.apply(lambda row: 100*abs(row['true'] - row['predicted']) / 

row['true']if row['true'] != 0 else None, axis=1) 

    results = results.round(precision) 

    results['true'] = results["true"].apply(lambda x: "{:.{}f}".format(x, precision)) 

    results['predicted'] = results["predicted"].apply(lambda x: "{:.{}f}".format(x, precision)) 

    results['abs_error'] = results["abs_error"].apply(lambda x: "{:.{}f}".format(x, precision)) 

    results['relative_error'] = results["relative_error"].apply(lambda x: "{:.{}f}".format(x, 

percentage_precision)) 
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    results.to_csv(f"prediction_{kind}.csv", index=False) 

    for filename, true_target, predicted_target in rows: 

        table.add_row( 

            [filename, true_target, predicted_target, abs(true_target - predicted_target)]) 

    table.sortby = "abs error" 

    table.reversesort = True 

 

 

    return {"mape": f"{np.median(mapes): .2f}", "median_abs_errors": f"{np.median(abs_errors):.2f}"} 

 

 

def _validate_fuel_name_regression(trained_model, file_names, features, true_targets, pca, 

kind="test"): 

    features = pca.transform(features) 

    predicted_targets = trained_model.predict(features) 

    return regression_metric(file_names, true_targets, predicted_targets, kind) 

 

def start_training_classification_for(model, target_name): 

    random_state_split = 42 

 

    train_data, train_target, fuel_name_encoder, file_names = get_training_data(target_name) 

 

    x_train, x_test, y_train, y_test = train_test_split(train_data, train_target, train_size=0.7, 

random_state=random_state_split) 

    pca = PCA(10) 

    x_train_t = pca.fit_transform(x_train) 

    model.fit(x_train_t, y_train) 

 

    print("--- Test on train data ---") 

    print(_validate_fuel_name_classification(model, file_names, x_train, y_train, pca, 

fuel_name_encoder, kind="train")) 

 

    print("--- Test on test data ---") 
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    print(_validate_fuel_name_classification(model, file_names, x_test, y_test, pca, 

fuel_name_encoder, kind="test")) 

    return model, pca, fuel_name_encoder 

 

def start_training_regression_for(model, target_name): 

    random_state_split = 42 

 

    train_data, train_target, fuel_name_encoder, file_names = get_training_data(target_name) 

 

    x_train, x_test, y_train, y_test = train_test_split(train_data, train_target, train_size=0.7, 

random_state=random_state_split) 

    pca = PCA(10) 

    x_train_t = pca.fit_transform(x_train) 

    model.fit(x_train_t, y_train) 

 

    print("--- Test on train data ---") 

    print(_validate_fuel_name_regression(model, file_names, x_train, y_train, pca,  kind="train")) 

 

    print("--- Test on test data ---") 

    print(_validate_fuel_name_regression(model, file_names, x_test, y_test, pca, kind="test")) 

    return model, pca, fuel_name_encoder 

 

 

if __name__ == "__main__": 

    random_forest_regressor_config = {"max_depth":10, "random_state":15} 

    pls_regression_config= {"n_components": 6} 

 

    mlp_regressor_config= {'solver': 'lbfgs', 'max_iter': 5000, 'learning_rate_init': 0.01, 'learning_rate': 

'invscaling', 

                   'hidden_layer_sizes': (100, 100), 'early_stopping': True, 'batch_size': 8, 'alpha': 0.0001, 

                   'activation': 'relu', "random_state": 6} 
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    for model in [PLSRegression(**pls_regression_config), MLPRegressor(**mlp_regressor_config), 

RandomForestRegressor(**random_forest_regressor_config)]: 

        for target in ["Aging time", "TAN", "Viscosity", "Density"]: 

            print(f"train with {target}, {model.__class__}") 

            start_training_regression_for(model, target) 

            print() 

 

 

 

 

    pls_classifier_config= {"n_components": 6} 

    random_forest_classifier_config= {'max_depth': 10, "random_state": 15} 

    mlp_classifier_config= {'solver': 'lbfgs', 'max_iter': 500, 'learning_rate_init': 0.01, 'learning_rate': 

'invscaling', 

                    'hidden_layer_sizes': (100, 100), 'early_stopping': True, 'batch_size': 8, 'alpha': 0.1, 

                    'activation': 'relu', 

                    "random_state": 6} 

 

    for model in [PLSClassifier(**pls_classifier_config), MLPClassifier(**mlp_regressor_config), 

RandomForestClassifier(**random_forest_regressor_config)]: 

        for target in ["Fuelname"]: 

            print(f"train with {target}, {model.__class__}") 

            start_training_classification_for(model, target) 

            print() 
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