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A B S T R AC T

The ocean absorbs about a quarter of anthropogenic CO2 emissions each year,
mitigating climate change. Since 2018, sailboats have collected >350,000 observa-
tions of CO2 fugacity (fCO2) mainly during round-the-world races in the Atlantic
and the underobserved Southern Ocean, both key regions of carbon uptake. This
dissertation examines the role of these sailboat data in advancing our understand-
ing of the ocean carbon sink.
First, I demonstrate the value of high-frequency sailboat observations in cap-
turing fCO2 variability across different small-scale ocean dynamics. For instance,
under different fCO2 regimes in the Agulhas region, fCO2 is higher in anticyclonic
eddies and lower in cyclonic eddies, with strong gradients at eddy edges. Under
algae blooms, varied effects are observed: a Celtic Sea bloom reduces fCO2, while
a mixed coccolithophore bloom on the Patagonian Shelf causes short-term fCO2
fluctuations up to 100 µatm within half an hour. Small-scale features such as fCO2
gradients at eddy and bloom edges or bloom-induced fCO2 fluctuations are often
missed in infrequent observations, in regridded data products, or in models. Our
findings demonstrate the critical role of high-resolution fCO2 observations, such
as those collected by sailboats, in understanding CO2 dynamics and improving
regional and global air-sea CO2 flux estimates, particularly in variable, underob-
served regions.
Second, I show that including observations from even a single sailboat significantly
impacts air-sea CO2 flux estimates generated by the neural network gap-filling
method SOM-FFN, particularly in the Southern Ocean. Adding sailboat obser-
vations significantly increases the regional carbon uptake estimate in the North
Atlantic and decreases it in the Southern Ocean. While compensating changes
in both basins limit the global effect, the Southern Ocean – particularly frontal
regions between 40°S–60°S during summertime – exhibited the largest air-sea
CO2 flux changes, averaging 20% of the regional mean. The results stay robust
within the expected random measurement uncertainty (±5 µatm) but remain un-
detectable with a measurement offset of 5 µatm.
Third, using observing system simulations based on the HAMOCC model and
novel sailboat tracks, we demonstrate how integrating sailboat data improves
estimates of ocean carbon uptake. While we underestimate the ocean carbon
sink when mimicking real-world sampling, adding available sailboat data does
not substantially improve reconstructions. However, increased sampling reveals
a stronger carbon sink, particularly between 40°S and 60°S. The improvement
persists with hypothetical measurement uncertainties, but substantial differences
arise depending on whether positive or negative biases are applied to the sail-
boat track data. While we show that two additional circumnavigations already
improve the ocean mean sink estimate, we further highlight that the additional
data remain insufficient to correct the overestimated CO2 sink trend, calling for
continuation of the ongoing data collection.
These findings highlight the value of racing sailboats as a complementary observ-
ing platform that fills essential observational gaps, particularly in highly variable
and underobserved ocean regions.
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Z U S A M M E N FA S S U N G

Der Ozean nimmt etwa ein Viertel der vom Menschen verursachten CO2-Emissio-
nen pro Jahr auf und mildert damit den Klimawandel. Seit 2018 haben Segel-
boote mehr als 350.000 Beobachtungen der CO2-Fugazität (fCO2) gesammelt –
hauptsächlich während Weltumsegelungen durch den Atlantik und den unterbe-
obachteten Südlichen Ozean, zwei Schlüsselregionen für die Kohlenstoffaufnahme.
Diese Dissertation untersucht, welchen Beitrag Segelbootdaten zum besseren Ver-
ständnis der marinen Kohlenstoffsenke leisten.
Zunächst zeige ich den Mehrwert hochfrequenter Segelbootbeobachtungen für die
Erfassung der fCO2-Variabilität im Zusammenhang mit verschiedenen kleinskali-
gen marinen Prozessen. In der Agulhas-Region etwa ist fCO2 in antizyklonalen
Eddies erhöht und niedriger in zyklonalen Eddies, mit starken Gradienten an den
Rändern der Eddies. Algenblüten zeigen unterschiedliche Effekte: Eine Algenblü-
te in der Keltischen See senkt fCO2, während eine gemischte Coccolithophoren-
blüte auf dem Patagonischen Schelf kurzfristige fCO2-Schwankungen von bis zu
100 µatm innerhalb von 30 Minuten verursacht. Solche kleinskaligen Merkmale –
wie fCO2-Gradienten an Rändern von Eddies und Blüten oder blüteninduzierte
fCO2-Fluktuationen – werden in unregelmäßigen Beobachtungen, in aufgeraster-
ten Datenprodukten oder in Modellen häufig nicht erfasst. Unsere Ergebnisse
unterstreichen die zentrale Bedeutung hochaufgelöster fCO2-Beobachtungen, wie
sie durch Segelboote bereitgestellt werden, für das Verständnis der CO2-Dynamik
und für die Verbesserung regionaler und globaler Schätzungen des CO2-Flusses
zwischen Atmosphäre und Oberflächenozean – insbesondere in variablen, unter-
beobachteten Regionen.
Zweitens zeige ich, dass bereits Beobachtungen eines einzelnen Segelboots die
Schätzungen des CO2-Flusses, die mit der neuronalen Netzwerk-Methode SOM-
FFN erstellt werden, deutlich verändert, insbesondere im Südlichen Ozean. Die
Integration von Segelbootdaten erhöht die geschätzte regionale Kohlenstoffauf-
nahme im Nordatlantik signifikant und verringert sie im Südlichen Ozean. Wäh-
rend sich kompensierende Änderungen in beiden Becken auf globaler Ebene größ-
tenteils ausgleichen, zeigt der Südliche Ozean – insbesondere die Frontregionen
zwischen 40°S und 60°S im Südsommer – die größten Veränderungen im CO2-
Fluss, die im Mittel 20 % des regionalen Mittels betragen. Die Ergebnisse bleiben
innerhalb der erwarteten zufälligen Messunsicherheit (±5 µatm) robust, sind bei
einem systematischen Messversatz von 5 µatm jedoch nicht mehr nachweisbar.
Drittens zeigen wir mithilfe von Beobachtungssystemsimulationen basierend auf
dem HAMOCC-Modell und neuartigen Segelbootrouten, wie die Integration von
Segelbootdaten die Schätzung der marinen Kohlenstoffaufnahme verbessert. Wenn
reale Probennahmemuster nachgebildet werden, unterschätzen wir die marine
Kohlenstoffsenke. Die Ergänzung um bereits verfügbare Segelbootdaten führt zu
keiner wesentlichen Verbesserung der Rekonstruktionen; eine verstärkte Proben-
nahme hingegen zeigt eine stärkere Kohlenstoffaufnahme, insbesondere zwischen
40°S und 60°S. Diese Verbesserung bleibt auch unter Berücksichtigung hypotheti-
scher Messunsicherheiten bestehen. Systematisch verzerrte Messungen hingegen
– obwohl sie die mittleren jährlichen Flüsse über mehrere Jahre verbessern – ver-
schlechtern die regionalen Flussschätzungen im Südlichen Ozean. Wir zeigen, dass
bereits zwei zusätzliche Weltumsegelungen die Schätzung der mittleren marinen
Kohlenstoffsenke verbessern; die zusätzlichen Daten reichen jedoch nicht aus, um
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den überschätzten Trend der Kohlenstoffaufnahme zu korrigieren. Dies unter-
streicht die Notwendigkeit, die laufende Datenerhebung fortzusetzen.
Diese Ergebnisse verdeutlichen den Wert von Segelbooten als ergänzende Beob-
achtungsplattform, die wesentliche Lücken in hochvariablen und unterbeobachte-
ten marinen Regionen schließt.
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Unifying Essay.

"observations not taken today are lost forever"

— Wunsch et al. (2013)

1I N T RO D U C T I O N

The Challenger expedition between 1872 and 1876 marks for many the begin-
ning of modern oceanographic research. A small naval ship was transformed into
a pioneering research vessel with laboratories on board to study ocean chemistry,
currents, marine life, and more while circumnavigating the globe. While ancient
Egyptians, Greeks, and Romans mainly focused on navigation and trade, and
explorers like Magellan, Darwin, and Cook contributed to ocean science through
their observations and collections, nothing of the Challenger expedition’s magni-
tude had been attempted before. It was the first large-scale, systematic attempt
to observe the ocean. The expedition circumnavigated the globe, collecting thou-
sands of samples mainly from the ocean floor, and provided insights into deep-sea
life, seafloor structure, water chemistry, and ocean currents.
Nowadays, advancements in technology allow us to develop complex mechanis-
tic models that simulate oceanic processes. However, direct observations remain
indispensable – not only for validating and refining these models, but also for un-
covering new phenomena and mechanisms, and providing the foundational truths
about the ocean. Building on the Challenger ’s legacy, a global collaborative ef-
fort has emerged to monitor the oceans. Scientists worldwide contribute extensive
observations to large databases such as the Surface Ocean CO2 Atlas (SOCAT).
Additionally, citizen science initiatives, such as those involving racing sailboats
(Figure 1.1), have become part of this effort. Sailboats equipped with advanced
technology now measure parameters such as the fugacity of CO2 (fCO2) to better
understand how the ocean exchanges CO2 with the atmosphere – an endeavor
that was beyond reach during the Challenger expedition.
150 years after the Challenger expedition, we continue to circumnavigate the
globe, covering similar distances and traversing vast, underobserved ocean re-
gions, collecting measurements, and exploring these data to deepen and reshape
our understanding of the world. In this thesis, I show how the data collected
during sailboat circumnavigations enhances our understanding of surface ocean
carbon dynamics and advances ocean sciences.
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Figure 1.1: The IMOCA 60 sailboat Seaexplorer – Yacht Club de Monaco (formerly Ma-
lizia) from Team Malizia. The IMOCA 60 is a high-performance, 60-foot
(18.28 m) monohull class designed for single- or double-handed offshore rac-
ing, known for its use in round-the-world regattas such as the Vendée Globe
and The Ocean Race. Since 2018, Team Malizia has collaborated with the
Max-Planck-Institute for Meteorology to measure surface ocean fCO2 during
races and transfers. (Photo credit: Andreas Lindlahr).

1.1 O C E A N A S A C A R B O N S I N K

"An atmosphere of that gas [i.e., carbon dioxide] would give to our earth a high
temperature"

– Foote (1856)

Since the onset of the industrial era, atmospheric carbon dioxide (CO2) levels
have risen from about 280 ppm to about 420 ppm in 2023 (Lan et al., 2024;
Sarmiento and Gruber, 2006b). This increase is largely attributed to CO2 emis-
sions from fossil fuel combustion and to carbon released through deforestation
and other land-use changes (Friedlingstein et al., 2025). Only about half of the
CO2 emissions remain in the atmosphere, with the remainder being absorbed by
land and oceans (Friedlingstein et al., 2025). The ocean plays a crucial role in
mitigating global warming and regulating Earth’s climate by absorbing around
26% of anthropogenic CO2 emissions annually, equivalent to 2.9 ± 0.4 Petagram
of carbon per year (Pg C yr−1) (2014-2023) (Friedlingstein et al., 2025).

The ocean continually exchanges CO2 with the atmosphere through the air-sea
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1.1 ocean as a carbon sink

interface. When CO2 dissolves in seawater, it forms carbonic acid, which further
dissociates into bicarbonate and carbonate ions, collectively known as dissolved
inorganic carbon (DIC). This process increases the concentration of hydrogen
ions, thereby lowering the pH of the ocean and leading to ocean acidification,
which reduces the ocean’s capacity to absorb more CO2 and harms calcifying
organisms, potentially disrupting the marine food web (Doney et al., 2009).

The partial pressure of CO2 (pCO2), measuring the concentration of CO2 dis-
solved in seawater, is key to the air-sea CO2 exchange, as the pCO2 difference
between the ocean and atmosphere determines both the direction and magnitude
of this exchange (Williams and Follows, 2011a). To account for the non-ideal be-
havior of gases, fugacity of CO2 (fCO2) is used as a corrected measure of pCO2

(Pfeil et al., 2013). However, due to the nearly ideal behavior of CO2 – the dif-
ference between partial pressure and fugacity is less than 1% (Weiss, 1974) –
both fCO2 and pCO2 are commonly used to calculate the air-sea carbon flux
and are often treated interchangeably (Takahashi et al., 1997; Fay et al., 2018).1

The ocean’s capacity to absorb CO2 is influenced by factors such as sea surface
temperature and salinity, affecting the solubility and chemical behavior of CO2

in seawater Together, these factors determine the air-sea CO2 flux, expressed by
the equation:

F = kw × S × ∆fCO2, (1.1)

where F is the air-sea CO2 flux, kw is the gas transfer velocity, which depends on
wind speed, S is the solubility of CO2 in seawater, which depends on temperature
and salinity, and ∆fCO2 represents the difference in fugacity of CO2 at the sea
surface and atmosphere (Wanninkhof, 1992).

Increased oceanic fCO2 can oversaturate surface waters, leading to outgassing,
while reduced oceanic fCO2 results in undersaturation and carbon uptake (Taka-
hashi et al., 2002; Sarmiento and Gruber, 2006a, Figure 1.2a). Globally, regions
of carbon uptake and outgassing would nearly balance in a steady-state climate.
However, anthropogenic CO2 emissions create a gradient resulting in net oceanic
carbon uptake (Friedlingstein et al., 2025). On top of the long-term increasing
trend, the global ocean carbon sink has changed and fluctuated due to natural
changes and anthropogenic impacts. In recent decades, it stagnated in the 1990s,

1 Note: In the observational community, it is now standard practice to report observed values as
fCO2, a convention endorsed by the IOCCP (International Ocean Carbon Coordination Project)
(Fay et al., 2024). Accordingly, this thesis adopts fCO2 throughout. For consistency, I refer to
fCO2 even when citing studies that originally report pCO2. This choice is justified by the fact
that both are often used interchangeably, and the difference between them is negligible and often
only significant in the subsurface ocean (Dickson et al., 2007; Fay et al., 2024).
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strengthened from the early 2000s to the mid-2010s, and has been stagnant since
2016, mainly due to large interannual climate variability (Figure 1.2b, Le Quéré
et al., 2007; Landschützer et al., 2016; DeVries et al., 2017; Hauck et al., 2020;
McKinley et al., 2020; Gruber et al., 2023; Friedlingstein et al., 2025). Addition-
ally, regional fCO2 variability, driven by physical and biogeochemical processes,
is superimposed on the trend of increased carbon uptake due to human activities
(Sarmiento and Gruber, 2006b).

Figure 1.2: Global ocean carbon sink. a) Map of climatological mean air-sea CO2 flux
from 1990 to 2020. From Gruber et al., 2023). b) Timeseries of global ocean
CO2 sink. Uncertainty bounds (±1 standard deviation) are shaded; red dots
and error bars show 2024 projections and their uncertainty. From Friedling-
stein et al., 2025).

1.1.1 Biogeochemical and Physical Drivers of Surface fCO2

Surface ocean fCO2, and consequently the air-sea CO2 flux, is influenced by a
combination of biogeochemical and physical processes (Sarmiento and Gruber,
2006a; Williams and Follows, 2011a). Temperature is the primary physical driver,
as the CO2 solubility decreases with increasing temperature, resulting in higher
fCO2. These temperature changes affect the air-sea CO2 flux by altering fCO2

by 4.23% per 1°C (Takahashi et al., 1997; Sarmiento and Gruber, 2006b). Ad-
ditionally, physical changes such as transport and mixing processes, along with
biological activity, affect surface ocean fCO2. Ocean circulation, including up-
welling and mixing, redistributes water masses with varying CO2 and nutrient
levels, which can e.g. stimulate biological activity such as primary production,
ultimately impacting fCO2 (Williams and Follows, 2011a). Photosynthetic up-
take of CO2 biologically reduces surface fCO2, while remineralization of organic
matter in deeper layers can affect surface fCO2 when DIC is transported to the
surface through upwelling (Williams and Follows, 2011a). Biological CO2 uptake
depends on nutrient and light availability, influenced by factors such as seasonal
changes, upwelling, and riverine nutrient input (Williams and Follows, 2011b).
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Wind speed influences mixing and the rate of gas exchange between the ocean
and atmosphere, thereby modifying fCO2 levels (Williams and Follows, 2011b).
The net effect of the combination of these processes creates the regions of CO2

uptake and outgassing (Figure 1.2a). While the temperature effect predominantly
dominates the low latitudes – where stratified waters limit vertical mixing and
primary production remains relatively stable – fCO2 variations in high-latitude
regions are mainly driven by physical processes such as transport and mixing,
along with biological activity (Sarmiento and Gruber, 2006b).

1.1.2 Key Regions and Phenomena

This thesis focuses on the Southern Ocean (purple regions in Figure 1.3) and the
North Atlantic (northern part of the blue regions in Figure 1.3), key regions in
the global carbon cycle that were sampled using sailboats. Both ocean basins play
important roles in carbon uptake and prominently feature small-scale processes –
such as eddies and phytoplankton blooms – through which the sailboats passed,
capturing fCO2 variability associated with these features.

Figure 1.3: Ocean basins classified by similar biogeochemical characteristics. The masks
are from Gregor and Müller, 2025, based on Fay and McKinley, 2014. Differ-
ent color shades represent subclasses within each basin.

southern ocean The Southern Ocean holds a unique position in the
global system, as it is entirely surrounded by other oceans, connecting the three
major ocean basins and covering approximately one-third of the world’s ocean
area. It accounts for 75% of excess heat uptake and about 40% of the ocean’s
uptake of marine anthropogenic CO2, with the latter projected to increase to 50%
by 2100 under high emissions (Frölicher et al., 2015; Landschützer et al., 2016;
Mortenson et al., 2025). Between 2001 and 2020, regions south of 35°S absorbed
around 1.1 ± 0.25 PgC annually (Gray, 2024).
The Antarctic Circumpolar Current (ACC) is the main current, carrying more
water than any other as it flows eastward around the globe at high speeds, a route
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taken advantage of by e.g. sailboats (Gray, 2024; Landschützer et al., 2023). It
consists of hydrographic frontal bands that create a strong meridional gradient
in the air-sea CO2 flux by separating water masses with distinct properties (Orsi
et al., 1995; Kim and Orsi, 2014; Chapman et al., 2020). The Southern Ocean’s
northern boundary is not consistently defined and varies by studies, extending
north with the ACC reaching about 38°S (Talley et al., 2011, see Figure 1.3 for
a basin definition based on biogechemical similarities). The broadest definition
includes up to 30°S to cover all phenomena up to the Subtropical Front (Talley
et al., 2011).
Beyond the large-scale flow of the ACC, the Southern Ocean is home to smaller-
scale features, such as eddies, which influence the carbon cycle and dominate
small-scale CO2 flux variability in the region (Chapman et al., 2020; Gray, 2024).
Despite its key role in the global carbon cycle, the Southern Ocean remains the
most controversial ocean basin in terms of ocean carbon uptake magnitude as
well as variability (e.g. DeVries et al., 2019; Hauck et al., 2020; Friedlingstein
et al., 2025). This controversy is mainly attributed to the region’s undersampling
leading to significant uncertainties in observation-based estimates, which will be
further discussed in Chapter 2 (e.g. Gloege et al., 2021; Djeutchouang et al.,
2022).

north atlantic The North Atlantic is the most intense anthropogenic
carbon sink per unit area (Mikaloff Fletcher et al., 2006; Takahashi et al., 2009;
Olafsson et al., 2021). The region exhibits high spatial and temporal fCO2 vari-
ability (Friedrich and Oschlies, 2009) and is one of the most regularly observed
ocean regions, benefiting from extensive year-round observations via the Ship of
Opportunity Programme (SOOP) (Macovei et al., 2020). However, substantial
uncertainties persist, particularly in the seasonal variability of the air-sea CO2

flux in the North Atlantic (as well as in the Southern Ocean) due to limited
observations and inadequate representation of seasonal processes in models (Rus-
togi et al., 2023). Specifically, discrepancies between models and observations are
still one to two times greater for seasonal fluxes than annual fluxes in the North
Atlantic, despite its better observational coverage and process understanding com-
pared to regions such as the Southern Ocean (Rustogi et al., 2023).
A major contributor to this seasonal variability is the strong biological activity
at high latitudes, particularly the springtime phytoplankton blooms in the North
Atlantic, which significantly modulate the air-sea CO2 flux (e.g. Watson et al.,
2009; Siegel et al., 2013; McQuatters-Gollop et al., 2007; Shutler et al., 2013;
Nicholson et al., 2025).
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small-scale eddies and algae blooms Both the Southern Ocean
and the North Atlantic stand out in the global carbon cycle due to their distinc-
tive physical and biological dynamics. Among the processes shaping carbon fluxes
in these regions are small-scale ocean features such as eddies and algae blooms,
which drive small-scale variability in air-sea CO2 exchange (Williams and Follows,
2011a; Gray, 2024). Understanding these features is essential for improving our
representation of regional and global carbon fluxes and advancing our knowledge
of the mechanisms driving air-sea CO2 exchange.
Eddies, particularly prevalent in regions such as the Southern Ocean and the
Agulhas region, influence CO2 levels through physical and biological processes
(Keppler et al., 2024). Generally, anticyclonic eddies raise surface temperatures
and fCO2 through downwelling, which suppresses nutrients and primary produc-
tion, though lateral advection can modify fCO2 either way. Conversely, cyclonic
eddies typically promote upwelling, cooling the surface and bringing nutrients up-
ward, thereby decreasing fCO2 through increased CO2 solubility and enhanced
primary production, but they also bring DIC-rich water to the surface, potentially
increasing fCO2. However, the quantitative and mechanistic effects of different ed-
dies on fCO2 remain poorly understood and observational investigations are rare
(e.g. Guo and Timmermans, 2024b; Gray, 2024; Li et al., 2025). There is no
consensus on whether mesoscale eddies act as ocean carbon sinks with varying
strength (Jones et al., 2017; Orselli et al., 2019; Ford et al., 2023; Keppler et al.,
2024; Li et al., 2025) or as sources (Chen et al., 2007; Pezzi et al., 2021; Kim
et al., 2022), or if it depends on the season (Song et al., 2016), or if it varies by
type, with anticyclonic eddies acting as a source and cyclonic eddies serving as
sinks (Pezzi et al., 2021; Kim et al., 2022).
Phytoplankton blooms can either increase or decrease surface fCO2, depending
on their composition and phases of the bloom. Phytoplankton generally lower
fCO2 through photosynthetic carbon uptake; coccolithophores, as calcifying phy-
toplankton, likewise lower fCO2 via photosynthesis, but their calcification process
can increase fCO2 (Frankignoulle et al., 1994; Shutler et al., 2013; Guinder et al.,
2025).
These biological and physical processes create high variability in fCO2 at small
spatial and temporal scales. To detect these features and improve our under-
standing of the spatiotemporal variability of fCO2 and air-sea CO2 fluxes, high-
resolution data are essential in highly variable regions (Friedrich and Oschlies,
2009; Monteiro et al., 2015; Dong et al., 2024a; Li et al., 2025). However, capturing
these small-scale processes remains challenging due to the sparse coverage of cur-
rent observing systems, particularly in remote and dynamic regions. Many plat-
forms lack the spatial and temporal resolution needed to monitor features such
as eddies or phytoplankton blooms, especially where access is limited by harsh
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conditions or logistical constraints (Bushinsky et al., 2019b; Chai et al., 2020).
Consequently, critical observational gaps persist in regions where high-resolution
data are essential for understanding air-sea CO2 flux variability. Specific observa-
tion platforms such as sailboats are suited for resolving this small-scale variability,
especially in the remote Southern Ocean, whereas combining multiple platforms
allows for capturing fCO2 variability across a broad range of spatial and temporal
scales (Carter et al., 2019).

1.2 T H E B I G P I C T U R E : T H E O C E A N C A R B O N VA L U E C H A I N

"The goal is to turn data into information, and information into insight."

– Carly Fiorina

This chapter presents the big picture of ocean carbon observing, namely the
Ocean Carbon Value Chain, and explains how (sailboat) observations fit into and
relate to this framework.

Monitoring surface ocean carbon is key for understanding how the ocean ex-
changes CO2 with the atmosphere, its contribution to the carbon cycle, and its
response to climate change and human perturbations. This information is essen-
tial for quantifying the fluxes and assessing the ocean carbon budget, guiding
policymakers and stakeholders in emissions management and climate change mit-
igation strategies. Over the past three decades, a multi-level system known as the
Ocean Carbon Value Chain has been developed, consisting of a series of actions
(Figure 1.4): (1) collections of in-situ CO2 measurements using different platforms,
(2) data synthesis of these quality-controlled measurements, (3) data analysis, (4)
integration of ocean carbon sink estimates into the Global Carbon Budget and the
Intergovernmental Panel on Climate Change (IPCC) assessments and (5) annual
reporting of these to the Conference of the Parties (COP) (Tanhua et al., 2019;
Bakker et al., 2023; IOCCP, 2024). The quality of these scientific assessments de-
pends on the accuracy and availability of ocean carbon data. Community-based
efforts have substantially advanced the monitoring and documenting of changes
in ocean carbon and our understanding of its role in global carbon cycling.

10
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Figure 1.4: The Ocean Carbon Value Chain that connects in-situ oceanographic CO2
measurements to climate negotiations. Modified after Guidi et al., 2020).

The collection of ocean carbon data is guided by the broader framework of the
Global Ocean Observing System (GOOS) and the Global Climate Observing
System (GCOS), which coordinate international efforts to monitor and under-
stand climate-related ocean processes. Within this framework, several ship-based
programs such as the Global Ocean Ship-Based Hydrographic Investigations Pro-
gram (GO-SHIP) (Sloyan et al., 2019) and SOOP (Monteiro, 2010) coordinate
the collection of high-quality ocean carbon data from both commercial and re-
search ships. Surface ocean CO2 measurements are further expanded by the Sur-
face Ocean CO2 Network (SOCONET), which coordinates sensors deployed on
research ships, commercial vessels, and moorings (Wanninkhof et al., 2019).
The fCO2 measurements from these programs are quality-controlled and inte-
grated into the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016), while
interior ocean carbon data are synthesized into the Global Ocean Data Analysis
Project (GLODAP). These data underpin scientific assessments that inform orga-
nizations such as the IPCC (IPCC, 2023), an international collaboration founded
by the World Meteorological Organization (WMO), and the United Nations En-
vironment Program (UNEP), helping to shape global environmental policies. For
an overview of actors involved in the marine carbon observations value chain, see
Schoderer et al., 2024.
Together, these coordinated programs and initiatives form a comprehensive global
system providing critical data on the marine carbon cycle, with continuous surface
ocean fCO2 monitoring serving as the foundation for tracking carbon exchange
and its changes over time.
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1.2.1 A Short History of fCO2 Monitoring

"Look deep into nature, and then you will understand everything better"

– Albert Einstein

The history of in-situ sea surface ocean fCO2 monitoring has been driven by many
technological developments over time, progressing from traditional research ships
to unmanned surface vehicles (USV). Historically, fCO2 data were collected dur-
ing research ship cruises (Bakker et al., 2016; Pfeil et al., 2013; Sabine et al.,
2010), with the first continuous measurements starting in the late 1950s and
early 1960s (Takahashi, 1961; Keeling et al., 1965; Keeling and Waterman, 1968;
Waterman et al., 1996, www.socat.info/). Traditionally, discrete water samples
were lab-analyzed, but automated instruments soon allowed direct, high-accuracy
fCO2 measurements from seawater intakes on moving ships, complementing tradi-
tional methods with continuous data (Pierrot et al., 2009; Schoderer et al., 2024).
The CO2 Volunteer Observing Ship Program began in 1992 to recruit commer-
cial shipping vessels for meteorological data collection (Jiang et al., 2019). Since
the mid-1990s, fCO2 data have been gathered from buoys and moorings (Karl
and Lukas, 1996; Dickey et al., 1998; Bates et al., 2000; Hood and Merlivat,
2001). In 2007, the global marine carbon community established SOCAT, a vol-
untary initiative to compile and quality-control the growing volume of fCO2 data,
providing a publicly accessible platform (Bakker et al., 2016). Technological ad-
vancements have since introduced marine autonomous platforms, enhancing the
observation network (Pierrot et al., 2009; Sutton et al., 2014; Bushinsky et al.,
2019b; Whitt et al., 2020; Sutton and Sabine, 2023; Hammermeister et al., 2025).
Around 2010, wave gliders joined the fCO2 observational network (Manley and
Willcox, 2010; Monteiro et al., 2015; Chavez et al., 2018). Argo floats, with pH
sensors for indirect fCO2 measurement, became part of the Biogeochemical-Argo
program in 2016, including the SOCCOM array in the Southern Ocean (Johnson
et al., 2017; Bittig et al., 2019; Bushinsky et al., 2019a; Claustre et al., 2020).
Saildrones have been measuring fCO2 since 2011, with data included in SOCAT
from 2017 onwards (Zhang et al., 2019; Sabine et al., 2020; Sutton et al., 2021,
www.socat.info/). Since 2018, sailors onboard racing sailboats have collabo-
rated with scientists from the Max-Planck-Institute for Meteorology to collect
high-frequency fCO2 measurements during global racing events, becoming one
of the largest providers of fCO2 data in recent years (Smith et al., 2019; Land-
schützer et al., 2023, www.socat.info/).
While increasing measurement frequency in monitoring platforms generally en-
ables earlier identification of emergent long-term climate trends, especially in
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systems with high short-term variability, different observation platforms – each
observing processes over specific temporal and spatial scales – are suited to cap-
turing variability at those particular scales (Carter et al., 2019, Figure 1.5). These
platforms complement each other, forming the foundation of the Ocean Carbon
Value Chain. At the next level, their measurements are synthesized into SOCAT,
contributing to the GCB, and ultimately informing IPCC reports, which guide
global climate policy (Figure 1.4).

Figure 1.5: Spatial and temporal scale characteristics of ocean observing systems and en-
vironmental processes. Black circles represent dynamic and/or physical pro-
cesses, while green circles represent biological and/or ecological processes.
The lines indicate the spatiotemporal coverage of different observational plat-
forms. Dashed lines indicate potential extension of an observational network.
Figure from Chai et al., 2020.

1.2.2 Data Synthesis

On the second level of the Ocean Carbon Value Chain observational data is syn-
thesized into quality-controlled databases. GLODAP provides a global synthesis
of ocean interior carbon data (Lauvset et al., 2024), while SOCAT focuses on
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quality-controlled fCO2 data at the sea surface (Pfeil et al., 2013; Sabine et al.,
2013; Bakker et al., 2016). SOCAT is open access, updated annually, and includes
individual dataset files as well as synthesis and gridded data products. The SO-
CAT version 2025 includes 41.4 million quality-controlled surface ocean fCO2

observations with an estimated accuracy better than 5 µatm (www.socat.info/).
Additionally, SOCAT provides a separate set of 8.2 million fCO2 values with
slightly lower accuracy (5 to 10 µatm), primarily from membrane-based sensors.
These data cover the global ocean from 1957 to the present typically with a
1-minute sampling frequency, forming the basis for SOCAT’s monthly 1◦ × 1◦

gridded product routinely used to estimate global air-sea CO2 fluxes. For a com-
prehensive overview of existing ocean carbon data products and their synthesis,
see Jiang et al., 2025.

1.2.3 Gap-Filling

In-situ fCO2 measurements in SOCAT cover only about 2% of the global ocean’s
monthly 1◦ × 1◦ grid cells. For that reason, various methods have been developed
to fill the gaps in the sparse monthly gridded fCO2 data (e.g. Landschützer et
al., 2013; Friedlingstein et al., 2025; Jiang et al., 2025). The historical increase
in surface fCO2 observations led to the first robust mapping of an ocean fCO2

climatology in the late 1990s, compiling 30 years of data with 250,000 measure-
ments (Takahashi et al., 1997; Sabine et al., 2010). Due to sparse global and
temporal coverage, satellite data such as sea surface temperature, salinity, and
chlorophyll-a, which are correlated with surface fCO2 through physical and bio-
geochemical processes, are frequently used to estimate missing fCO2 (Shutler et
al., 2020; Shutler et al., 2024).
In addition to using gap-filled observation-based fCO2 products, the ocean carbon
sink is also quantified using approaches such as atmospheric inversions, Earth
system models, and global ocean biogeochemical models (Friedlingstein et al.,
2025). Historically, ocean biogeochemistry models were the primary source of un-
derstanding global ocean carbon dynamics (Gruber et al., 2023).2 However, the
Global Carbon Budget 2013 marked a shift by using not only models and indi-
rect observations but two observation-based fCO2 products (Park et al., 2010;
Rödenbeck et al., 2014; Le Quéré et al., 2014). Since then, the ocean carbon
sink has been estimated as the average of both an ensemble mean of observation-
based fCO2 products and an ensemble mean of models (Figure 1.6). Over the
past two decades, machine learning based method such as neural networks have

2 In this research field, we distinguish between an ’observation-based community’ and a ’model
community’. While gap-filling neural networks are indeed models, in this context, they belong
to the ’observation community’ as they work with observations.
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become increasingly prevalent, particularly for filling gaps in fCO2 observations
(e.g. Lefévre et al., 2005; Telszewski et al., 2009; Reichstein et al., 2019; Fay et al.,
2021). Today, gap-filling methods span a wide range of approaches with statistical
or machine learning techniques being the most common, (Telszewski et al., 2009;
Landschützer et al., 2013; Rödenbeck et al., 2015; Gregor et al., 2019; Iida et al.,
2021; Chau et al., 2022; Gloege et al., 2022; Gregor et al., 2024), though geospatial
and data assimilation methods are also used (Bennington et al., 2022a; Röden-
beck et al., 2022). As of the Global Carbon Budget 2024, alongside the model
ensemble mean, an ensemble mean of nine observation-based methods is used to
derive estimates of the ocean carbon sink (Friedlingstein et al., 2025, Figure 1.6).
While in 2014 only one neural network was used (Landschützer et al., 2013), a
decade later, five neural networks now provide estimates to the GCB (Le Quéré
et al., 2015; Friedlingstein et al., 2025) including VLIZ-SOMFFN (for more de-
tails see Chapter 3.2 or Landschützer et al., 2013). Continuous advancements in
machine learning have led to a convergence towards a common bias among these
methods, indicating that further optimization of these methods alone is unlikely
to improve fCO2 estimates considerably (Gregor et al., 2019).
Even though all underlying surface fCO2 measurements originate from SOCAT,
the ocean carbon sink estimates vary due to differences in the gap filling methods,
gas exchange parameterization, and ancillary products, all introducing sources of
uncertainty (Ford et al., 2024, Equation 1.1, Chapter 2.3).

15



introduction

Figure 1.6: Comparison of the air-sea CO2 flux showing the budget values of the ocean
sink estimate (black; with the uncertainty in grey shading), individual ocean
models (royal blue), and the ocean fCO2 products (cyan). The bar plot in
the lower right shows the number of monthly gridded values in the SOCAT
v2024 database (Bakker et al., 2024). Grey bars indicate the number of grid
cells in SOCAT v2023, and coloured bars indicate the newly added grid cells
in v2024. Figure from Friedlingstein et al., 2025.
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2C H A L L E N G E S I N O C E A N O B S E RV I N G

"One of our largest ‘blind spots’ in terms of our climate knowledge [...] lies in
the Southern Ocean."

– S. Swaart

Each section in the following chapter corresponds to challenges faced on the
different levels of the Ocean Carbon Value Chain discussed in Chapter 1.2 (Figure
1.4), highlighting research gaps and efforts made to address them.

2.1 DATA C O L L E C T I O N C H A L L E N G E S

Challenges in ocean observing at the data collection level include technological
and logistical constraints of monitoring platforms (2.1.1), limited spatial and
temporal coverage of measurements (2.1.2) and measurement uncertainties asso-
ciated with sensors (2.1.3). These aspects are discussed in detail in the following
sections.

2.1.1 Limitations of Monitoring Platforms

In the following, the limitations of various fCO2 monitoring platforms are dis-
cussed (see Figure 1.4 for illustrations of the different monitoring platforms). Each
ocean observing platform has specific limitations in terms of spatial coverage, tem-
poral resolution, data quality, or deployment cost. However, their complementary
use offers a more comprehensive understanding of the ocean carbon sink.

ships Ships provide the highest data quality due to minimal limitations on
sensor size and power constraints. However, their coverage is restricted by com-
mercial shipping routes and sea state conditions, resulting in uneven data dis-
tribution on both hemispheres and seasonal biases, particularly in high latitudes
(Hauck et al., 2023). They also face high operating costs and contribute to a large
carbon footprint.

moorings Moorings (anchored buoys or fixed platforms in the ocean) en-
hance the observational network by providing fixed-location data and opportuni-
ties for sensor validation and calibration (e.g. Schulz et al., 2012; Sutton et al.,
2019; Chai et al., 2020; Shadwick et al., 2024). Strategically placed in key regions,
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they can significantly reduce uncertainties in air–sea heat flux variability (Wei et
al., 2020). However, high maintenance costs limit network expansion, especially in
open oceans (Bushinsky et al., 2019b), and they lack spatial context to observed
temporal variability (Chai et al., 2020, Figure 1.5).

argo floats Compared to shipborne and mooring fCO2 observations, auto-
nomous-platforms such as wave gliders and Argo floats are capable of adaptive
sampling across different scales (Monteiro et al., 2015; Chai et al., 2020, Figure
1.5). Argo floats offer global and seasonal coverage, including polar regions, and
are uniquely scalable for studying basin-wide to global processes on seasonal to
interannual timescales (Johnson et al., 2017; Bushinsky et al., 2019b; Sarmiento
et al., 2023, Figure 1.5). However, the indirect fCO2 measurements from pH in
Argo floats introduce large uncertainties and biases, which exclude them from
the Global Carbon Budget (Williams et al., 2017; Friedlingstein et al., 2025).
Additionally, the 10-day sampling intervals of these floats do not capture intra-
seasonal variability effectively, limiting their effect on reducing uncertainties and
biases in fCO2 estimates (Djeutchouang et al., 2022). While incorporating float-
based observations can improve fCO2 reconstructions, systematic biases degrade
their accuracy (Heimdal and McKinley, 2024).

saildrones Saildrones are autonomous observing platforms that can access
fast-moving currents that profiling floats or gliders might miss (Bushinsky et al.,
2019b). In 2019, a Saildrone measured fCO2 while circumnavigating Antarctica
(Meinig et al., 2019; Sutton et al., 2021). Saildrones are ideal for meridional
(north-south) sampling at high temporal resolution (hourly) over large spatial
scales, leveraging their speed to cross ocean fronts and capture the spatial vari-
ability of fCO2 across latitudes. This capability helps resolve the seasonal cycle
of meridional gradients and minimizes fCO2 reconstruction errors (Djeutchouang
et al., 2022). By adding a few synthetic observations during the Southern Hemi-
sphere winter, Saildrones can reduce a reconstruction bias by up to 86% (Heimdal
et al., 2024). Despite their considerable potential in improving the observational
network, Saildrones face limitations due to costly measurement campaigns and
the absence of a continuous measurement program.

sailboats Unlike Saildrones, sailboats typically perform zonal sampling along
the ACC in the Southern Ocean. Sailboats are part of citizen science efforts, with
skippers voluntarily collecting fCO2 data as they follow the fastest possible routes
to win racing events, making data collection secondary and preventing deployment
for targeted meridional sampling. They capture fast-moving currents with high
spatiotemporal resolution (recording sea surface fCO2 at a 10 second frequency)
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but may encounter slow-moving water masses in eddies or during low wind pe-
riods. Sailboats are an environmentally friendly, low-emission, and cost-efficient
platform with expenses limited to the measurement device (€60,000-€70,000) and
maintenance, and they operate without battery dependency, featuring onboard
calibration for extended races (Landschützer et al., 2023). Unlike commercial ves-
sels, sailboats navigate less-observed regions in the Southern Ocean, with their
recurring circumnavigation races (Vendée Globe and The Ocean Race, both oc-
curring every 3-4 years) promising more future observations and providing com-
prehensive spatiotemporal coverage over weeks or months in the underobserved
Southern Ocean.
Within the ocean observing network, sailboats provide an important comple-
mentary contribution by providing cost-effective, sustainable, and high-resolution
data in undersampled key regions such as the Southern Ocean.

2.1.2 Data Sparsity

Despite advancements in sensor technology and monitoring platforms, the global
observing system remains far from ideal with a substantial measurement imbal-
ance between hemispheres (Figure 2.1). The Northern Hemisphere has been reg-
ularly sampled in recent years, largely due to the SOOP program (Pierrot et
al., 2009; Jiang et al., 2019), whereas the Southern Hemisphere remains under-
observed due to less commercial shipping activity and research missions. The
Southern Ocean, accounting for more than 40% of anthropogenic carbon uptake
(DeVries, 2014; Frölicher et al., 2015), introduces challenges such as remoteness
and harsh sea conditions, particularly during winter, deterring measurement ef-
forts (Bushinsky et al., 2019b).
Figure 2.1 shows the data sparsity in the Southern Ocean. Despite decades of
fCO2 measurements, some regions have never been subjected to any measure-
ments (Figure 2.1a). Even during the austral summer, when measurement activ-
ity in the Southern Hemisphere surpasses that of the winter months, extensive
areas still lack observations (Figure 2.1b). Figure 2.1c demonstrates the uneven
data distribution across the hemisphere, highlighting only few well-observed ship-
ping lanes in the Southern Ocean such as the Drake Passage, while many regions
have been measured only once. Additionally, recent years show a new alarming
trend: The coverage of surface ocean CO2 observations has declined by about 35%
annually from 2017 to 2021, reverting to early 2000s levels (Dong et al., 2024b;
Friedlingstein et al., 2025)(Figure 1.6).
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Figure 2.1: Data availability in the SOCATv2022 database. a-b) Maps illustrating data
availability in the SOCATv2022 database a) between 1982-2021 and b) be-
tween November 2020 to January 2021 (the time of the Vendée Globe circum-
navigation race). Colored lines represent sailboat fCO2 measurements from
Seaexplorer, while observation tracks taken by other observational platforms
such as ships, buoys, autonomous measurement platforms etc. are shown in
grey. c) Map showing the available number of months with data.

2.1.3 Measurement Uncertainties

Another challenge with ocean monitoring platforms is the measurement uncer-
tainties they introduce, which propagate further into gap-filled ocean carbon es-
timates. For instance, Argo floats, which derive fCO2 from pH and therefore do
not contribute to SOCAT, introduce substantial biases of around 4 µatm and
uncertainties up to 11.4 µatm (Williams et al., 2017; Gray et al., 2018; Williams
et al., 2018; Fay et al., 2018; Wu and Qi, 2022). In contrast, ships and Saildrones
provide high-quality measurements with uncertainties of less than 2 µatm using
state-of-the-art air–water equilibrators (Bakker et al., 2016; Sabine et al., 2020;
Gkritzalis et al., 2024). An overall accuracy of ±2 µatm for ocean surface fCO2

is necessary to achieve the community’s climate goal, which requires estimat-
ing regional fluxes with an accuracy of 0.2 PgC yr−1 (Wanninkhof et al., 2019;
Bender et al., 2002). Membrane-based systems serve as an alternative to these
equilibrator-based systems, and are e.g. used by sailboats (for further details on
the measurement device, refer to Landschützer et al., 2023). Earlier studies indi-
cated a lower uncertainty bound of 5 µatm for these systems (Arruda et al., 2019;
Olivier et al., 2022), classifying them as flag C and D in SOCAT until 2024, with
expected uncertainties under 5 µatm (Lauvset et al., 2018). However, a recent
intercomparison revealed higher measurement uncertainties in membrane-based
systems (up to 10 µatm), leading to a downgrade to flag E (Gkritzalis et al.,
2024; Steinhoff et al., 2025). Lower accuracy data (less than 10 µatm), accounts
for 17% of the total fCO2 data in SOCATv2023 and are excluded from global
ocean carbon sink estimates (Bakker et al., 2016; Dong et al., 2024b).
There is ongoing discussion about the acceptable level of measurement uncertainty
in climate research, particularly for studying shorter-timescale natural phenom-
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ena (Newton et al., 2015; Carter et al., 2019). However, only few studies have
explored the impact of measurement uncertainty and bias so far. Carter et al.,
2019; Hohensee, 2017 suggest that a larger set of less accurate data may be more
beneficial than a smaller set of highly accurate data, particularly when natural
variability is high. Dong et al., 2024b found that SOCAT’s annual mean CO2 flux
is insensitive to the addition of the lower accuracy data (<10 µatm). Meanwhile,
Heimdal and McKinley, 2024 show that targeted autonomous observing can im-
prove fCO2 reconstructions, even with random uncertainties of ±11 µatm, but
not with systematic bias.

Further along the Ocean Carbon Value Chain, these measurement uncertainties
combined with data sparsity cause substantial uncertainties in mapped ocean
carbon estimates (level 3 in Figure 1.4), while the data synthesis process (level 2
in Figure 1.4) simultaneously faces administrative issues.

2.2 DATA S Y N T H E S I S C H A L L E N G E S : F U N D I N G , C O O R D I -
N AT I O N & DATA R E S O L U T I O N

Challenges in ocean observing at the data synthesis level include funding short-
falls, coordination issues and the loss of high-frequency variability due to data
regridding.

2.2.1 Funding & Coordination Issues

Bakker et al., 2024 warns that ocean CO2 observing efforts have regressed to lev-
els from a decade ago, and the COVID-19 pandemic has added further strain to
the system (Boyer et al., 2023). Although short-term geographic coverage (days
to months) remained stable during the pandemic due to the continuation of auto-
nomous platforms, long-term observations (years to decades) were lost due to re-
duced personnel and supply chain disruptions (Boyer et al., 2023). Additionally,
SOCAT faces funding shortfalls and operational vulnerabilities, relying heavily
on voluntary contributions, which affects data quality and integration, poten-
tially leading to institutional knowledge loss (Schoderer et al., 2024). The Ostend
Declaration, supported by over 100 ocean experts, calls for a robust, resilient,
and sustainable ocean CO2 observing system (IOCCP, 2024). Urgent support is
requested to maintain SOCAT’s role in the Global Carbon Budgets, with propos-
als for sustainable funding models to establish a strong, resilient, and sustainable
framework for ocean CO2 observations (Bakker et al., 2023).
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2.2.2 Regridding and the Loss of Small-Scale Variability

SOCAT offers two product types: (i) high-frequency observations in their origi-
nal resolution and (ii) datasets regridded to a coarser 1-degree grid, with a finer
0.25-degree grid used in coastal areas due to higher variability (Sabine et al.,
2013; Bakker et al., 2016). Regridding to a uniform grid offers the advantage
of consistent datasets facilitating systematic analysis and global gap-filled ocean
carbon sink estimates (Sabine et al., 2013). It is driven by the methodological
constraints of gap-filling techniques such as SOM-FFN, which rely on colocated
predictor variables in a common spatial and temporal resolution (monthly 1°×1°).
However, it comes with a drawback, as it results in the loss of high variability
from small-scale processes, which is crucial for accurately capturing ocean car-
bon dynamics. Regridding can alter the statistical properties of climate variables
(Rajulapati et al., 2021) and mask important small-scale processes.
Small-scale variability, captured in high-frequency observations, is crucial for un-
derstanding ocean carbon dynamics. For instance, over 30% of air-sea CO2 flux
variability in certain eddy-rich regions is linked to spatial scales smaller than
2° (Guo and Timmermans, 2024b). The lack of comprehensive high-frequency
biogeochemical datasets capturing these processes can introduce uncertainties in
carbon sink estimates (Resplandy et al., 2014; Monteiro et al., 2015; Hewitt et al.,
2022; Dong et al., 2024a; Gray, 2024). Monteiro et al., 2015 demonstrate that a
sampling resolution of less than 2 days is required in 30–40% of the Southern
Ocean to reduce uncertainty to below 10%, while Djeutchouang et al., 2022 high-
light that increasing sampling frequency to this level better resolves intra-seasonal
variability and improves air-sea CO2 flux estimates. Small-scale variability can
account for 5–10% of the overall CO2 flux and can even alter the direction of
the CO2 flux (Wang et al., 2025a; Song et al., 2025; Dombret et al., 2025). High-
resolution data are crucial for effectively monitoring carbon cycle dynamics, as
they allow for the earlier identification of climate trends, especially in highly vari-
able environments (Carter et al., 2019). In essence, high-frequency observations
are invaluable for closing observational gaps and improving our understanding of
the ocean carbon cycle, providing benchmarks for models and reanalysis products
(e.g. Sutton et al., 2014; Chavez et al., 2018; Djeutchouang et al., 2022; Guo and
Timmermans, 2024b; Morgan et al., 2025; Prend et al., 2025).
However, despite their importance, the current reliance on a coarser grid to
achieve uniform data and generate gap-filled estimates of the ocean carbon sink
results in the loss of details from high-frequency data, sacrificing small-scale vari-
ability.
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2.3 U N C E RTA I N T I E S I N O C E A N C A R B O N S I N K E S T I M AT E S

A major challenge in ocean observing at the data analysis level is the uncertainty
associated with estimating the ocean carbon sink.
Since 2000s, the discrepancy between modeled ocean carbon uptake and the up-
take based on observation-based fCO2 products has increased (Hauck et al., 2020;
Friedlingstein et al., 2025, Figure 1.6). By 2023, the difference between the mean
of both products was approximately 0.3 PgC yr−1, roughly 10% of the global
sink estimate (Figure 1.6, Kelly et al., 2025; Friedlingstein et al., 2025). The
observation-based fCO2 products estimate a stronger annual mean ocean carbon
sink than the models as well as a stronger trend in the ocean sink (Figure 1.6).
Resolving this discrepancy is essential for providing accurate information to in-
form policy-making.
In addition to model biases that introduce errors on the modeling side, which are
not discussed here, there are several major sources of biases and uncertainties in
observation-based ocean carbon sink estimates such as: (1) biases and uncertain-
ties stemming from gap-filling unobserved ocean regions, (2) uncertainty related
to the the gas exchange transfer velocity (3) the uncertainty introduced by the
wind product choice (Roobaert et al., 2018; Woolf et al., 2019; Gloege et al.,
2021; Hauck et al., 2023; Jersild and Landschützer, 2024; Gloege and Eisaman,
2025). Additional sources of uncertainty include e.g. varying river input and the
cool skin effect (Takahashi et al., 2009; Woolf et al., 2016; Watson et al., 2020)
as well as measurement uncertainties, though the latter is small compared to
the much larger uncertainty stemming from extrapolating limited measurements
(Landschützer et al., 2014). The Surface Ocean fCO2 Mapping intercomparison
(SOCOM) analyzed air-sea CO2 flux variability using 14 fCO2 gap-filling meth-
ods (Rödenbeck et al., 2015). Despite methodological differences, the estimates
generally align in capturing seasonal variability, though significant uncertainty re-
mains for interannual variability, particularly in data-sparse regions (Rödenbeck
et al., 2015). Fay et al., 2021 introduced a standardized method for estimating
air–sea CO2 fluxes, addressing inconsistencies in flux calculations (by using three
wind products and scaling the gas exchange coefficient), which resulted in the
creation of the SeaFlux dataset. Methodological adjustments in parameterization
and wind product choice cause the global air-sea CO2 flux to vary by 10–20%
(Roobaert et al., 2018; Fay et al., 2021).
In subtropical regions, half of the uncertainty in air–sea CO2 flux estimates is
due to the choice of wind product, whereas in polar regions, nearly half is at-
tributed to the gas exchange transfer velocity (Jersild and Landschützer, 2024).
In areas with limited observational coverage, fCO2 gap-filling-driven uncertainty
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is predominant (Jersild and Landschützer, 2024). In the following, we focus on
the gap-filling driven uncertainty caused by data sparsity.

Studies show that machine learning, when provided with sufficient data, can skill-
fully and robustly reconstruct the ocean carbon sink (e.g. Rödenbeck et al., 2015;
Fay and McKinley, 2021; Gloege et al., 2021). However, the limited data avail-
ability remains a fundamental key-limiting factor in quantifying the ocean carbon
sink (e.g. Bushinsky et al., 2019a; Gregor et al., 2019; Hauck et al., 2020; Gloege
et al., 2021; Heimdal et al., 2024; Dong et al., 2024b; Fay et al., 2025). While the
gap-filling method demonstrates skill in representing low-frequency variability,
decadal variability can only be reconstructed with moderate skill in the Southern
Ocean due to undersampling (Ritter et al., 2017; Gloege et al., 2021). The uncer-
tainties stemming from the highly undersampled Southern Ocean are substantial
(Hauck et al., 2020; Gloege et al., 2021; Hauck et al., 2023; Friedlingstein et al.,
2025; Jersild and Landschützer, 2024). According to Gregor et al., 2019 we have
“hit a wall” in terms of better resolving surface fCO2. A way forward in reducing
these uncertainties and improving observation-based ocean carbon estimates in-
volves increasing the number of observations, particularly in strategic locations
such as the Southern Ocean (e.g. Smith et al., 2019).

2.3.1 The Impact of Increased Sampling

Several studies show the impact of additional observations on the estimated
ocean carbon uptake, particularly in the Southern Ocean, although there re-
mains some disagreement on the direction of improvement. Studies have shown
that observation-based products underestimate the Southern Ocean carbon sink
when compared to flux observations from aircraft (Long et al., 2021) and direct
measurements (Dong et al., 2024a). Similarly, Heimdal et al., 2024 found that
increased targeted meridional and winter sampling with Saildrone can improve
the underestimated ocean carbon sink.
In contrast, Hauck et al., 2023 find that SOCAT sampling overestimates the
Southern Ocean carbon sink and that additional sampling reduces the ocean car-
bon sink estimate. Fay et al., 2025 demonstrate that ocean sink reconstructions
are highly sensitive to the addition of data from poorly-sampled regions and that
additional unbiased data should substantially increase reconstruction accuracy
while leading to a weaker ocean carbon sink estimate. Zhong et al., 2024 found
that more winter observations would weaken the estimated carbon sink, a finding
similar to Bushinsky et al., 2019a, who found that additional float observations
also lead to weaker estimates. Deploying 150–200 profiling floats with pH sensors
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randomly south of 30°S could reduce ocean carbon sink uncertainty to 0.1 PgC
yr−1, tripling the accuracy of current estimates (Majkut et al., 2014). Hauck et al.,
2023 demonstrate that optimal sampling, with 1000 evenly distributed sites, can
decrease the global air-sea CO2 flux bias from 9–12% to 2–9%. Djeutchouang et
al., 2022 show that ideal sampling to reduce uncertainties includes high-frequency,
year-round measurements (including in the underobserved winter) and spatially
strategic deployment in key zones such as the Southern Ocean fronts. They also
demonstrate that while zonal (east-west) sampling is operationally convenient,
combining it with meridional (north-south) sampling enhances the ability to cap-
ture fCO2 variability across latitudes, which is critical for resolving the seasonal
cycle of meridional gradients (Djeutchouang et al., 2022), a finding supported by
Heimdal et al., 2024.

Reducing the range of carbon flux uncertainties leads to more effective mitiga-
tion measures and shows the economic value of research, allowing policymakers to
develop tailored mitigation strategies and improve decision-making in managing
carbon emissions and resources (Jin et al., 2020).

25





3R E S E A RC H D E S I G N

3.1 R E S E A RC H Q U E S T I O N S

Monitoring the ocean carbon sink in our changing climate is crucial for informing
policy decisions. As discussed in the previous chapters, this process depends on
accurate estimates of the ocean carbon sink, which in turn requires extensive data
availability.
Sailboats offer a promising solution for collecting underway fCO2 data in under-
observed regions, such as the Southern Ocean, thereby addressing uncertainties
in ocean carbon estimates. While competing in recurrent round-the-world racing
events, they effectively fill critical observational gaps and support the under-
resourced SOCAT database by complementing existing systems like ships, moor-
ings, and autonomous platforms.
Once integrated into SOCAT, this data allows for the quantification of the ocean
carbon sink, after neural networks reconstruct missing fCO2 data across time and
space. By providing high-frequency observations from underobserved regions, sail-
boats not only improve our understanding of small-scale oceanic processes but
also have the potential to refine ocean carbon sink estimates.

However, the extent to which the data from sailboat impacts the air-sea CO2

flux estimate and advances our understanding of carbon dynamics remains un-
certain. It is still unclear whether these data have a measurable effect on refining
ocean carbon sink estimates and how they advance our understanding of the in-
teractions in ocean carbon dynamics.

This dissertation examines the added value of underway fCO2 sailboat data by
1.) investigating drivers of small-scale fCO2 variability in high-frequency obser-
vations, 2.) detecting changes in global ocean carbon sink estimates from adding
sailboat data, and 3.) quantifying improvements in these estimates due to sailboat
data. In the following chapters, we address the following research questions:

➜ What insights into small-scale ocean features driving fCO2 vari-
ability can high-frequency sailboat observations provide? (Chap-
ter 4 and Appendix A)

I focus on eddies in the Agulhas region and two phytoplankton blooms in the
North-East Atlantic and on the Patagonian Shelf, exploring how specific bloom
and eddy regimes drive small-scale fCO2 variability.
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➜ How does the air-sea CO2 flux estimate change with the addition
of sailboat data? Is the impact of adding sailboat data still de-
tectable when considering potential measurement uncertainties?
(Chapter 5 and Appendix B)

I examine whether and how adding fCO2 data from a single sailboat alters the air-
sea CO2 flux estimate, particularly in the North Atlantic and the Southern Ocean.
Additionally, I evaluate how this signal holds up against potential measurement
uncertainties and biases.

➜ How does the air-sea CO2 flux estimate improve with the addition
of sailboat data? (Chapter 6 and Appendix C)

I quantify the actual improvement from adding existing sailboat data and assess
the potential of expanded sailboat observations to improve flux estimates and
long-term trends. In addition, I assess how measurement uncertainties and biases
in these data affect ocean carbon sink estimates.

3.2 M E T H O D S FO R I N V E S T I G AT I N G O C E A N C A R B O N S I N K

"What we observe is not nature itself, but nature exposed to our method of
questioning."

– Werner Heisenberg

Methodologically, we address our research questions using a multi-faceted ap-
proach: 1.) analyzing the high-frequency data directly, 2.) using the regridded
SOCAT observations for global ocean carbon sink estimates via neural network
gap-filling, and 3.) simulating observation tracks with model data to assess their
impact against the model ground truth baseline.

Observation System Simulation Experiments (OSSEs) are used to assess the po-
tential impact of new observational data on existing observing systems by using
synthetic observations derived from a model testbed, which acts as the ground
truth. They have been used in the past to show the value of optimized sampling
strategies in improving the air-sea CO2 flux estimate (Majkut et al., 2014; Bushin-
sky et al., 2019a; Denvil-Sommer et al., 2021; Djeutchouang et al., 2022; Hauck
et al., 2023; Heimdal et al., 2024; Fay et al., 2025).
In Chapter 6 and Appendix C, we conduct an observation system simulation
by subsampling the full hindcast model field of the global ocean biogeochemical
model HAMburg Ocean Carbon Cycle (HAMOCC) coupled to the ocean general
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circulation model Max Planck Institute Ocean Model (MPIOM) (Ilyina et al.,
2013; Paulsen et al., 2017; Mauritsen et al., 2019; Friedlingstein et al., 2025). The
subsampling schemes mimic the present-day fCO2 observations in SOCAT includ-
ing and excluding different sailboat tracks (Bakker et al., 2016, www.socat.info).
The HAMOCC model simulates the oceanic cycles of carbon in the global MPIOM.
HAMOCC features biology and inorganic carbon chemistry processes in the wa-
ter columns and sediment (Heinze et al., 1999; Ilyina et al., 2013). HAMOCC has
been evaluated in previous studies and successfully used for climate predictions
and projections as well as simulating the past climate (Ilyina et al., 2013; Paulsen
et al., 2017; Müller et al., 2018; Mauritsen et al., 2019; Maerz et al., 2020; Liu
et al., 2021; Li et al., 2023; Nielsen et al., 2024), and it contributes to the Global
Carbon Budget (Friedlingstein et al., 2025).

Based on sparse data – SOCAT observations (Chapter 5 and Appendix B) and
subsampled model data (Chapter 6 and Appendix C) – we estimate the global
ocean carbon sink with a gap-filling method, the SOM-FFN, from the Global Car-
bon Budget (Landschützer et al., 2013; Friedlingstein et al., 2025). The SOM-FFN
(Self-Organizing Map - Feed-Forward Neural Network) is a two-step neural net-
work approach involving clustering and regression, designed to reconstruct miss-
ing fCO2 from temporally and spatially sparse surface fCO2 data, enabling the
quantification of the global ocean carbon sink (Landschützer et al., 2013; Land-
schützer et al., 2016). The SOM-FFN product aligns well with other observation-
based products, accurately reconstructing surface fCO2 globally, seasonally and
across the Northern Hemisphere (Gregor et al., 2019; Fay et al., 2021; Gloege
et al., 2021).
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4S U M M A RY : P H Y S I C A L A N D B I O L O G I C A L D R I V E R S
O F f C O 2 VA R I A B I L I T Y A L O N G S A I L B OAT T R AC K S

.

"The small scales of the ocean may hold the key to surprises"

— Hewitt et al. (2022)

In a first step to evaluate the added value of fCO2 underway observations from
sailboats in advancing our understanding of the ocean carbon sink, I present case
studies that focus on the high-frequency nature of these measurements.

➜ What insights into small-scale ocean features driving fCO2 vari-
ability can high-frequency sailboat observations provide? (Chap-
ter 4 and Appendix A)

Between 2018 and 2023, sailboats collected over 300,000 high-frequency fCO2

observations along ∼112,000 km from low to high latitudes in the Atlantic and
Southern Oceans, covering key regions of interest. Combined with satellite data,
these in-situ observations revealed small-scale phenomena driving fCO2 variabil-
ity, linked to changes in temperature, chlorophyll-a (CHL), and other environ-
mental factors. I focus on three exemplary cases: Agulhas eddies, a Celtic Sea
algae bloom, and a coccolithophore bloom on the Patagonian Shelf.

4.1 T E M P E R AT U R E V S . B I O P H Y S I C A L D O M I N AT E D T R A N -
S E C T S

We used the decomposition in thermal and non-thermal (physical and biological)
drivers by Takahashi et al., 2002 to identify temperature-dominated ocean regions
and features. The sailboat observations reaffirm already established large-scale
patterns: across the tropical and subtropical oceans from 40°N to 40°S, fCO2

variability is predominantly influenced by temperature-driven changes in CO2

solubility (Takahashi et al., 2002; Gallego et al., 2018; Guo and Timmermans,
2024a). Remarkably, just one or two circumnavigation transects were sufficient
to detect and confirm this dominant thermal influence with its boundaries as
well as to further identify temperature-dominated ocean features – in this case,
anticyclonic eddies and cyclonic eddies in the Agulhas region (Figure 4.1a,c).
While the thermal–non-thermal decomposition effectively distinguishes between
regimes dominated by temperature-driven fCO2 variability and those influenced
by combined bio-physical processes, it does not explicitly separate individual
physical and biological drivers. The high-resolution sailboat observations enable
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us to overcome this limitation by investigating, on a regional basis, the physical
and biological processes and how they affect fCO2 variability. For instance, in
biologically active regions such as the Celtic Sea and the Patagonian Shelf, we
can examine the influence of biological drivers – algae blooms – on fCO2 dynamics.
Conversely, in thermally dominated regions such as the Agulhas region, we can
examine the role of other physical processes, such as small-scale eddy activity, in
driving fCO2 variability.

Figure 4.1: Thermal and non-thermal drivers along the sailboat transect. a) Map of the
circumnavigation tracks with the thermally dominated tracks in red and the
non-thermally dominated tracks in blue. Inlay: Relationship between fCO2
and temperature in thermally dominated regions of the track (red lines in
map). b) fCO2 as well as thermal and non-thermal fCO2 components per
latitude. c) Thermally and non-thermally dominated features between 10°W
to 50°E on top of SLA on the 4th of December 2020. d) fCO2 measured along
the sailboat track.
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4.2 the effect of eddies in the agulhas region on f co2

4.2 T H E E F F E C T O F E D D I E S I N T H E AG U L H A S R E G I O N
O N f C O 2

Considering the ongoing debate regarding the magnitude of fCO2 and even the
direction of the resulting air-sea CO2 flux within eddies, as well as the limited
availability of eddy observations (e.g., Guo and Timmermans, 2024b; Gray, 2024;
Li et al., 2025), the high-resolution fCO2 data collected during sailboat crossings
provide a substantial contribution toward refining the spatial variability of fCO2

within eddies and along their peripheries. The sailboat sailed through 4 anticy-
clonic (AE) and 7 cyclonic (CE) eddies collecting over 1000 high-frequency fCO2

observations within these eddies (contours taken from Meta3.2DT Pegliasco et al.,
2022) (Table 4.1). The fCO2 observed along the sailboat tracks (358.3 ± 8.7 µatm)
match the upper range of values reported in the literature (Orselli et al., 2019,
Table 4.1). Thermally dominated fCO2 generally aligns with anticyclonic (typ-
ically warm-core) eddies, while non-thermally dominated fCO2 aligns with cy-
clonic (typically cold-core) eddies (Figure 4.1c). A deviation from this pattern
led to the identification of an atypical warm-core cyclonic eddy (around 29°E in
Figure 4.1), a common feature in this region (Ni et al., 2021; Liu et al., 2024),
highlighting the sailboat’s potential in studying both typical and atypical eddies’
effects on fCO2 and air-sea CO2 flux.
We confirm the traditional view of increased biological activity within cyclonic
eddies (e.g. McGillicuddy and Robinson, 1997; Dawson et al., 2018; Belkin et al.,
2022, Table 4.1) and their peripheries (Chelton et al., 2011). We emphasize the
importance of accounting for the varying impacts of different eddy regimes on
fCO2, as fCO2 was significantly higher in anticyclonic eddies (358 ± 5 µatm)
than in cyclonic eddies (354 ± 3 µatm), and lower in cyclonic eddies compared
to the the surroundings (Figure 4.1d). Despite the high standard deviation, the
difference is statistically significant and could have a substantial impact when
integrated globally.
Our results suggest a stronger carbon sink (or weaker source) in cyclonic eddies
generally aligning with Pezzi et al., 2021; Kim et al., 2022 contrary to Keppler
et al., 2024; Li et al., 2025; Salinas-Matus et al., 2025.
Strong fCO2 gradients occurred as the sailboat crossed water mass boundaries
with distinct biogeochemical characteristics when entering or leaving an eddy,
particularly west of the well-mixed Agulhas current, indicating that these eddy
signals are crucial small-scale features that might be overlooked in coarser reso-
lutions as used for global estimates (Figure 4.1c).
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Table 4.1: Environmental properties of anticyclonic (AE), cyclonic (CE) eddies, as well
as the periphery (trans) and the background (outside) in the Agulhas region.
Transition zones (trans) were defined as 1 hour before/after entering/exiting
an eddy. Mean values and standard deviations are displayed.

Eddy Nr. fCO2 SST SSS CHL PIC
Type of obs. [µatm] [°C] [PSU] [mg m−3] [mmol m−3]
AE 679 358 ± 5 18.2 ± 1.6 35.5 ± 0.1 0.27 ± 0.09 0.11 ± 0.08
CE 540 354 ± 3 15.8 ± 0.8 35.2 ± 0.2 0.45 ± 0.12 0.49 ± 0.18
outside 3593 357 ± 9 17.1 ± 1.5 35.5 ± 0.2 0.33 ± 0.15 0.18 ± 0.14
trans 2047 358 ± 9 16.5 ± 2 35.4 ± 0.2 0.37 ± 0.2 0.21 ± 0.21

4.3 A L G A E B L O O M I N T H E C E LT I C S E A A N D I T S E F F E C T
O N f C O 2

Figure 4.2: Algae bloom in the Celtic Sea in May 2019. a) Map with the background
showing an 8-day composite of CHL concentrations from May 9 to May 16,
2019, and the line showing fCO2 measured by the sailboat. Red boxes mark
regions with fCO2 changes of ≥ 10 µatm in ≤ 10 minutes. b) Time series
of fCO2 and CHL concentrations (top panel for northern track, bottom for
southern track). Red vertical lines indicate fCO2 changes of ≥ 10 µatm in ≤
10 minutes.

A sailboat captured a phytoplankton bloom in the Celtic Sea in May 2019 (Figure
4.2). Increased biological activity, indicated by high CHL concentrations, occurred
along coastal lines and mainly between 49°N–47°N and 10°W–7°W (Figure 4.2a).
Observed mean CHL concentrations were around 2 mg m−3, with maxima ex-
ceeding 7 mg m−3 within the bloom patch, similar to concentrations reported in
literature (Garcia-Soto and Pingree, 2009). The bloom began around February/
March, peaked in April, and ended between June and September, indicating that
the sailboat mainly captured the bloom peak (Nicholson et al., 2023).
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4.4 coccolithophore bloom on the patagonian shelf

This algae bloom displayed "classical" bloom behavior, where high CHL concen-
trations caused reduced fCO2 (Figure 4.2), and explained 14% of fCO2 variance.
Notably, the most abrupt changes in fCO2 – fluctuations of ≥10 µatm within
10 minutes – were observed at the boundaries of high CHL zones, where CHL
concentrations shifted from around 1 mg m−3 to over 7 mg m−3 (see gray boxes
in Figure 4.2b,c). These changes align with the sailboat crossing into or out of
bloom patches (see red boxes in Figure 4.2a), highlighting the edges of high CHL
zones as hotspots of increased fCO2 variability. Increased CHL concentrations
caused fCO2 to decrease from approximately 320 µatm to as low as 265 µatm
in high CHL zones (Figure 4.2b). In contrast, CHL-lacking regions (around 5°E)
exhibited fCO2 as high as around 375 µatm (Figure 4.2a and 4.2b top panel).

4.4 C O C C O L I T H O P H O R E B L O O M O N T H E PATAG O N I A N
S H E L F A N D I T S E F F E C T O N f C O 2

In contrast to the Celtic Sea bloom, the Patagonian Shelf presents a more com-
plex scenario. The Patagonian Shelf is known for intense coccolithophore blooms
from December to January (Poulton et al., 2013; Balch et al., 2014; Hopkins
et al., 2015; Ulibarrena and Conzonno, 2015; Guinder et al., 2025), causing high
PIC concentrations that precede a CHL peak (Hopkins et al., 2015). Indeed, in
January 2021, the sailboat sailed through a mixed bloom at different stages fea-
tured a decaying CHL-dominated bloom (Nicholson et al., 2023) and a peaking
coccolithophore bloom (Figure 4.3a).

The coccolithophore bloom forms a westward-facing hook around the Malvinas/-
Falkland Islands with relatively low CHL concentrations around 1.5 mg m−3

(Figure 4.3), similar to concentrations reported in literature (Romero et al., 2006;
Gil et al., 2019). Alongside this, the bloom features high PIC concentrations ex-
ceeding 2 mmol C m−3 (Figure 4.3b-c), which are comparable to, and even higher
than literature values for the Patagonian Shelf (Balch et al., 2014; Hopkins et al.,
2015; Oliver et al., 2024). Similarly to the Celtic Sea bloom, large changes in
fCO2 occurred at the edge of high biological activity, in this case high PIC zones
(Figure 4.3a, see gray boxes in Figure 4.3b-c). In contrast to the Celtic Sea bloom,
the two intersections of the bloom where the sailboat sailed through showed even
higher fCO2 variations (Figure 4.3). While the Celtic Sea bloom produced con-
sistently low fCO2, the mixed bloom on the Patagonian Shelf caused high fCO2

fluctuations. The mixed bloom caused opposing influences on fCO2, leading to
the high short-term fCO2 fluctuations – up to 100 µatm, i.e. up to almost two
orders of magnitude larger than the CO2 variability found in the atmosphere, all
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within half an hour (Figure 4.3c). These variations are driven by CO2 release
through calcification and CO2 uptake through photosynthesis. We found that
changes in PIC concentrations account for 46% of the observed short-term fluc-
tuations in fCO2, while changes in CHL concentrations account for 34% of the
observed short-term fluctuations in fCO2 (Figure 4.3d-e).
Our findings suggest that CHL, commonly used in neural-network methods as a
proxy for estimating missing fCO2 (e.g. Landschützer et al., 2013), does not fully
capture the complexity of biological processes, suggesting that PIC should also
be considered in these estimations for improved accuracy of CO2 release due to
calcification.
We further conclude that high fCO2 variability at bloom edges as well as high
fCO2 variability within mixed blooms are crucial small-scale features that might
be overlooked in coarser resolutions as used for global estimates. Sailboat-based
fCO2 observations improve our understanding of highly variable and underob-
served ocean regions by capturing key small-scale processes at a high spatiotem-
poral resolution.

Figure 4.3: Algae bloom on the Patagonian Shelf in January 2021. a-b) Map showing a
composite from January 1–8, 2021 of a) CHL and b) PIC concentrations, and
the line showing fCO2 measured by the sailboat. Red boxes mark regions with
fCO2 changes of ≥ 10 µatm in ≤ 10 minutes. c) Time series of fCO2 and PIC
concentrations. Red vertical lines indicate fCO2 changes of ≥ 10 µatm in ≤
10 minutes. d-e) Time series of fCO2 variations, calculated with a 60-minute
moving standard deviation, and d) CHL and e) PIC concentrations. The
correlation coefficients and p-values between CHL/PIC and fCO2 variability
are shown in the upper right corner of each panel.
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5S U M M A RY : A D E T E C TA B L E C H A N G E I N T H E
A I R - S E A C O 2 F L U X E S T I M AT E F RO M S A I L B OAT

M E A S U R E M E N T S

In Chapter 4 (Appendix A), I show that sailboats provide high-frequency ob-
servations that capture key small-scale physical and biochemical processes driv-
ing fCO2 variability. However, when integrating surface ocean fCO2 observations
into the global SOCAT database – used for estimating the ocean carbon sink –
data must be gridded to a standardized monthly 1°×1° resolution, as required
by gap-filling methods such as SOM-FFN to match the fixed spatial and tem-
poral resolution of environmental predictor variables. This raises the following
questions:

➜ How does the air-sea CO2 flux estimate change with the addition
of sailboat data?

➜ Is the impact of adding sailboat data still detectable when consid-
ering potential measurement uncertainties?

In Chapter 5 (Appendix B, Behncke et al., 2024), I assess the added value of
sailboat observations by evaluating the impact of data from a single sailboat on
the ocean carbon sink estimate used in the Global Carbon Budget (Friedlingstein
et al., 2022). I show that adding fCO2 observations from a single sailboat leads
to a detectable change in CO2 flux estimates – especially in the Southern Ocean
during austral summer in recent years – even when accounting for measurement
uncertainty, though not if the data are biased.

5.1 I M PAC T O F A D D I N G N E W S A I L B OAT O B S E RVAT I O N S
O N T H E A I R - S E A C O 2 F L U X E S T I M AT E

We calculated global air-sea CO2 flux estimates using the SOCATv2022 database,
with and without data from a single sailboat (Seaexplorer-Yacht Club de Monaco,
covering 129 days in the Atlantic and Southern Ocean from 2018 to 2021, primar-
ily from a circumnavigation between November 2020 and January 2021), using
the SOM-FFN method. We compare the ensemble means to assess the impact of
fCO2 data from a single platform on air-sea CO2 flux reconstructions.

Spatially, the addition of sailboat data significantly changed the air-sea CO2

flux estimate in the North Atlantic and the Southern Ocean (Figure 5.1a-b). In
regions such as the Arctic, differences fall within the method’s noise, likely due to
the weak constraints on air-sea CO2 flux estimates in highly variable and sparsely
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monitored areas (Gloege et al., 2021; Hauck et al., 2023). This highlights the im-
portance of signal-to-noise detection techniques, or alternatively, using synthetic
data experiments with large ensembles (Gloege et al., 2021; Heimdal et al., 2024)
when comparing different neural network-derived air-sea CO2 flux estimates.
The addition of sailboat data changed the flux estimate the most in the Southern
Ocean between 40°S–60°S (Figure 5.1a-b), supporting research based on synthetic
data, which shows that even limited fCO2 sampling with Saildrone can potentially
improve air-sea CO2 flux reconstructions in the Southern Ocean (Heimdal et al.,
2024). Southern Ocean flux estimates vary on average by 0.15 mol C m−2 yr−1,
which is about 20% of the regional mean. Even well-monitored areas south of
Tasmania and New Zealand are affected by the addition of sailboat data, with
the largest differences in air-sea CO2 flux estimates occurring in regions where
the sailboat crossed frontal zones (Figure 5.1a). This highlights the importance of
capturing frontal dynamics and the insufficient data availability close to frontal
zones, given the region’s variability. The impact of adding sailboat data is highest
around the Sub-Antarctic Front in the Southern Ocean.
Sailboat data reduce the carbon uptake estimate in the Southern Ocean, aligning
with Bushinsky et al., 2019a, and increase it in the North Atlantic. Despite dense
observations in the North Atlantic, sailboat data still significantly impact regional
flux densities, averaging 0.08 mol C m−2 yr−1 in the North Atlantic (compared
to 0.15 mol C m−2 yr−1) in the Southern Ocean). Our analysis suggests that the
declining number of observations in the North Atlantic (www.socat.info) may
significantly affect global ocean carbon flux estimates (Canadell et al., 2021).
The regional changes in the two ocean basins compensate each other, limiting
the global effect but still resulting in a global difference of up to 0.04 PgC yr−1

(2021; -2.55 to -2.51 ± 0.4 Pg C yr−1 (Friedlingstein et al., 2022)).
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5.1 impact of adding new sailboat observations on the air-sea
co2 flux estimate

Figure 5.1: Absolute differences in air-sea CO2 flux between the air-sea CO2 fluxes E1
(based on SOCATv2022 including Seaexplorer data) and E2 (based on SO-
CATv2022 excluding Seaexplorer data). (a) Map of absolute differences be-
tween air-sea CO2 flux estimates averaged over Nov 2020–Jan 2021. Hatching
shows significance. Black lines indicate sailboat tracks (2018-2021). Blue lines
from north to south: Northern Boundary, Subantarctic Front, Polar Front. (b)
Significant differences by years and latitude. (c) Time series of significant dif-
ferences between E1 and E2.

Temporally, sailboat data impacted the flux estimate mainly after 2018, with
91% of significant differences occurring from 2018 to 2021, the period when sail-
boat measurements were taken, and particularly during the circumnavigation
race (Nov 2020 - Jan 2021). Differences appeared up to five years earlier in the
Southern Ocean and generally in regions and at times without new data, as the
neural network extrapolates over time and space. The limited temporal effect,
characterized by smaller differences as we move away from actual data addition,
restricts the method’s potential for extrapolating past fCO2 values because atmo-
spheric CO2, a trend variable, is used as a predictor. This limitation was noted in
previous studies using Argo floats (Bushinsky et al., 2019a). We anticipate that
a longer time series is necessary to influence interannual to decadal air-sea CO2

flux trends. The impact of adding sailboat observations is greatest during austral
summer, reflecting the seasonal availability of sailboat data.
Unlike Saildrones (Heimdal et al., 2024), sailboats cannot bridge the wintertime
discrepancy between float-based and ship-based flux estimates (Bushinsky et al.,
2019a). While zonal summertime sampling from sailboats alone may not address
seasonal biases, and substantial improvement in Southern Ocean flux reconstruc-
tions is better achieved through year-round meridional sampling (Djeutchouang
et al., 2022), sailboats can contribute to improved air-sea CO2 flux reconstruc-
tions in the Southern Ocean nonetheless. Sailboats support existing observational
platforms (Bakker et al., 2016, www.socat.info) and, combined with Argo floats
and Saildrones in the Southern Ocean (Djeutchouang et al., 2022), can reduce
air-sea CO2 flux uncertainties.
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5.2 S E N S I T I V I T Y O F T H E A I R - S E A C O 2 F L U X E S T I M AT E
T O M E A S U R E M E N T U N C E RTA I N T I E S A N D B I A S E S

In the preceding analysis, we assume the sailboat data to be accurate; however,
this is not the case in reality. According to SOCAT guidelines, these measure-
ments have an associated uncertainty of 5 µatm (Lauvset et al., 2018), which is
at the lower end of values observed in field campaigns (Arruda et al., 2019; Olivier
et al., 2022).
Our results show that a random measurement uncertainty of ±5 µatm has a neg-
ligible effect on basin-wide air-sea CO2 flux in the North Atlantic and Southern
Ocean. However, it does affect local flux estimates, highlighting the importance of
accounting for measurement uncertainty when investigating high-frequency and
small spatial scale fluxes.
In contrast, a constant measurement offset of 5 µatm – a worst-case scenario
due to system limitations and calibration issues during extended offshore races –
substantially affects the air-sea CO2 flux estimate. The North Atlantic flux esti-
mate is more robust than the Southern Ocean estimate, likely due to the denser
observing system, highlighting the need for cross-calibration in remote regions
where biases have a larger impact. The potential offset results in a bias of 0.06
PgC yr−1 in 2021, which, although representing only approximately 2.5% of the
global annual uptake, exceeds the impact from the addition of sailboat data (0.04
PgC yr−1). Thus, the impact from sailboat measurements from 129 days at sea
remains undetectable without adherence to the highest measurement standards,
thereby supporting the need for a CO2 reference network (Wanninkhof et al.,
2019).
In summary, the effect of sailboat data remains robust when a potential measure-
ment uncertainty of ±5 µatm is considered but becomes undetectable with a 5
µatm offset. Equipping additional sailboats with fCO2 measurement devices for
cross-calibration during races could reduce uncertainties and increase the accu-
racy of flux estimates. Given that many studies overlook measurement uncertain-
ties in fCO2 observations, our study highlights the importance of measurement
uncertainty analyses to provide more accurate flux estimates.
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6S U M M A RY : I M P ROV E D A I R - S E A C O 2 F L U X
E S T I M AT E S F RO M S A I L B OAT M E A S U R E M E N T S

In Chapter 5, I show that adding sailboat observations significantly impacts the
air-sea CO2 flux estimate, especially between 40°S and 60°S during the austral
summer, even with potential measurement uncertainties of ±5 µatm. However,
the actual improvement in the air-sea CO2 flux estimate remains unquantified
and raises the question of:

➜ How does the air-sea CO2 flux estimate improve with the addition
of sailboat data?

Using observing system simulations and sailboat tracks, we show how integrating
sailboat data improves our ability to estimate the air-sea CO2 flux. We perform
an observation system simulation as described in Chapter 3.2 by subsampling
the global ocean biogeochemical model HAMOCC, mimicking present-day fCO2

observations (Bakker et al., 2016, www.socat.info/), and apply the SOM-FFN
neural network to reconstruct the air-sea CO2 flux. We quantify improvements
from 161 days of available, existing sailboat data (including one circumnavigation)
and explore potential effects of additional data by subsampling previous years
with realistic sailboat tracks. We show how increased sailboat sampling with two
additional circumnavigations can correct the underestimated ocean carbon sink,
though not yet the overestimated trend, highlighting the need for ongoing long-
term data collection. We assess whether reconstructions continue to improve when
additional, albeit biased, data is added, to see if increased quantity compensates
for lack of quality.

6.1 P E R FO R M A N C E O F N E U R A L - N E T WO R K R E C O N S T RU C -
T I O N

The neural network successfully reconstructed fCO2 values globally with high fi-
delity to the model truth, except in the Arctic, a region previously identified as
erroneous due to the complexity of the region caused by sea ice dynamics (e.g.,
Ilyina et al., 2013; Landschützer et al., 2020), and thus excluded from further
analysis. However, when mimicking real-world sampling, it overestimates fCO2

in the undersampled Southern Ocean by around 2–3 µatm (Figure 6.1b). A sim-
ilar overestimation of fCO2 was found by Heimdal et al., 2024 using a different
reconstruction method and a large ensemble test bed of Earth System Models. In
contrast, while similar in magnitude, the mismatch sign differs from Hauck et al.,
2023, highlighting model-specific limitations.
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To further determine the similarities between model and observational data and
validate the method used in Behncke et al., 2024, we quantified the detectable
change in the air-sea CO2 flux estimate caused by adding existing sailboat model
data. We demonstrate consistent but smaller signal detection in subsampled
model data (due to more consistent predictor-fCO2 relationships in model data
than observations), closely mirroring observations (Behncke et al., 2024), indicat-
ing realistic performance on both model and observation data.

Figure 6.1: Spatial fCO2 Bias and Improvement Patterns Resulting from the
Integration of Different Sampling Schemes. a–c) Mean bias of subsam-
pled and reconstructed fCO2 averaged over 1982 until 2021 based on data
subsampled after SOCAT a) “without sailboat” track data (B) b) including
“existing sailboat” tracks (A) c) including existing sailboat tracks and 2 addi-
tional circumnavigations (C or “3 circumnav.”). Black lines represent sailboat
tracks. Hatched areas are regions with a climatological maximum sea-ice con-
centration greater than 50% and are excluded. µ represents the mean, while x̄
represents the median. d) Latitudinal bias of fCO2 reconstructions.

6.2 I M P ROV E M E N T W I T H D I F F E R E N T S A I L B OAT S A M P L I N G

Adding data from "existing sailboat" tracks does not substantially change the
reconstructed fCO2, likely due to the limited sailboat data coverage and late
inclusion in SOCAT (Figure 6.1a-b). The global median bias remains elevated
(+1.17 µatm instead of +1.16 µatm "without sailboat"), and the spatial bias pat-
tern shows negligible change.
In contrast, enhanced and continuous sampling, as represented by "3 circum-
navigations", substantially reduces the fCO2 bias to -0.13 µatm, particularly by
decreasing fCO2 estimates in the North Atlantic and Southern Ocean – regions
directly impacted by the additional data (Figure 6.1c). Moreover, the neural net-
work extrapolates into unaffected regions, reducing biases in regions such as the
Indian Ocean and western Pacific (Figure 6.1c). However, this comes at the cost
of worsening estimates elsewhere, notably the South Pacific, indicating potential
overfitting and compensating effects.

The spatial bias patterns in fCO2 propagate into the reconstructed air-sea CO2

fluxes. Globally, the ocean carbon sink is underestimated when mimicking real-
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6.2 improvement with different sailboat sampling

world sampling. Adding "3 circumnavigations" improves and strengthens the es-
timated ocean carbon sink, especially between 40°S–60°S, aligning with Behncke
et al., 2024. However, between 20°S–40°S, the sink is overestimated with "3 cir-
cumnavigations" relative to the model truth, which indicates a weaker sink.

Figure 6.2: The Impact of Adding Sailboat Data on Air-Sea CO2 Flux Time
Series. a–c) Air-sea CO2 flux estimates with and without different sailboat
tracks in different regions. Dashed lines show the long-term trend. d–e) Time
series of bias (global and Southern Ocean) in reconstructed air-sea CO2 flux
density. Dotted lines represent the long-term mean bias. Note that the gray
line, indicating the bias of the estimate based on “without sailboat”, and the
blue line, indicating the bias of the estimate based on “existing sailboat”, are
in close proximity to each other. Regions with a climatological maximum sea-
ice concentration greater than 50% are excluded.

In the annual time series, including "existing sailboat" data yields no notice-
able improvement over the reconstruction "without sailboat" data (Figure 6.2,
gray vs. blue lines), with both reconstructions overestimating tropical outgassing
and underestimating high-latitude ocean carbon uptake (Figure 6.2). By contrast,
adding "3 circumnavigations" (or "2 different circumnavigations", not shown here)
brings the global mean air-sea CO2 flux closer to the model truth, by reducing
tropical outgassing (Figure 6.2c) and enhancing uptake in higher latitudes (Fig-
ure 6.2a,c). In the Southern Ocean, the mean flux bias is reduced from 0.10 mol
C m−2 yr−1 to 0.00 mol C m−2 yr−1. This adjustment slightly overestimates the
sink after 2000, which leads to a worsening of the Southern Ocean flux estimate
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between 2005 and 2012, with improvements observed before and after.
Notably, the impact of "3 circumnavigations" extends beyond the years with
added data, affecting the air-sea CO2 reconstructions consistently across the en-
tire time series. This behavior is consistent with findings by Heimdal et al. (2024)
and contrasts with the more temporally localized effects found in Bushinsky et al.
(2019a) and Behncke et al. (2024). We attribute the broader temporal impact to
the larger and more consistent training dataset – spanning nearly a decade and
based on model output rather than observations – which enables the neural net-
work to more effectively learn and generalize the relationships between predictors
and fCO2.
Our findings reveal that adding measurements shifts and improves the mean time
series. However, the shape of the timeseries – and consequently the air-sea CO2

flux anomalies and trend (represented by dashed lines in Figure 6.2a-c) – remain
unchanged and overestimated compared to the model truth trend, particularly in
the Southern Ocean, even with data from two additional circumnavigation tracks
(Figure 6.2). Despite improvements, data from "3 circumnavigations" are insuf-
ficient to improve the trend, indicating that the Global Carbon Budget model
and data products are likely to continue diverging even with data from "3 circum-
navigations" (Friedlingstein et al., 2022; DeVries et al., 2023). Additional data is
necessary to address the overestimated air-sea CO2 flux trend, with the extent of
data needed warranting future investigation. By incorporating more input data
over multiple decades with accurate trends into the neural network, the output
reconstructions are expected to align more closely with the model’s true trend.
We conclude that the inclusion of more sailboat data with trend-consistent infor-
mation could improve the trend accuracy.
This underscores the need for implementing and maintaining multi-decadal ob-
serving strategies. Regular sailboat circumnavigations, such as The Ocean Race
and the Vendée Globe, which alternate on a staggered 4-year cycle, present a vi-
able approach. These events ensure a major around-the-world race approximately
every one to two years, thereby providing consistent and comprehensive datasets
to refine our understanding and improve the accuracy of reconstructions over
extended temporal scales. However, sailboats cannot fully cover seasonal mea-
surement gaps, especially in winter at high latitudes. This further underscores
the need to support complementary platforms such as autonomous floats (Gray
et al., 2018; Bushinsky et al., 2019a) and Saildrones (Sutton et al., 2021), which
provide year-round data in challenging conditions. Combining these platforms en-
sures more complete coverage and improves long-term monitoring of air-sea CO2

fluxes.
While the finding that adding new measurements improves the air-sea CO2 flux
estimate probably holds irrespective of the baseline model choice, the observed
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6.3 the effect of measurement uncertainties and biases on the
air-sea co2 flux estimate

magnitude of improvement from increased sailboat sampling, however, is highly
model-dependent and could vary with different models.

Figure 6.3: The Effect of Measurement Uncertainties and Biases on the Air-
Sea CO2 Flux Estimate. Air-sea CO2 flux estimates based on the model
truth (solid black lines), the “3 circumnavigation” sailboat sampling (solid
red lines), and the same sampling with added measurement errors. Measure-
ment errors are applied only to the subsampled sailboat fCO2 data. Teal lines
represent cases with low-end errors (±5 µatm uncertainty or 5 µatm bias),
and purple lines represent high-end errors (±10 µatm uncertainty or 10 µatm
bias). Random measurement uncertainties are shown as dashed lines (note:
they appear on top of each other), while systematic biases are shown as dotted
(negative bias) and dash-dotted (positive bias) lines.

6.3 T H E E F F E C T O F M E A S U R E M E N T U N C E RTA I N T I E S A N D
B I A S E S O N T H E A I R - S E A C O 2 F L U X E S T I M AT E

We assess the sensitivity of the reconstruction to two types of measurement error
applied to the subsampled sailboat data: random measurement uncertainty and
systematic bias (i.e., constant offsets). Sailboat data from "3 circumnavigation"
tracks continue to improve air-sea CO2 flux estimates, even when affected by ran-
dom uncertainties (Figure 6.3, see dashed lines). This holds for both ±5 µatm
(best-case scenario, based on previous quality flags) and ±10 µatm (based on up-
dated quality flags) (Arruda et al., 2019; Oliver et al., 2024; Gkritzalis et al., 2024)
(Figure 6.3). This finding is consistent with other studies on the impact of random
measurement uncertainties (Behncke et al., 2024; Heimdal and McKinley, 2024),
showing that adding data from sailboats and Argo floats to the observing system
can significantly impact and improve fCO2 and air-sea CO2 flux reconstructions,
even when the data contain measurement uncertainties, but not if these data are
biased. This supports previous findings (Hohensee, 2017; Carter et al., 2019) that
data quantity can compensate for reduced data quality.

In contrast, systematic biases have a more pronounced effect, particularly during
data-sparse periods before 1990 – a byproduct of the reconstruction method –
and in recent years when biased data are introduced. The Southern Ocean is par-
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ticularly sensitive: air-sea CO2 flux estimates begin to diverge from the unbiased
reconstruction around 2005 (Figure 6.3), whereas divergence in the tropics and
northern high latitudes becomes visible only after 2018–2019. This high sensitiv-
ity in the Southern Ocean estimate is consistent with previous findings (Behncke
et al., 2024).
Surprisingly, the reconstruction does not respond to measurement biases as one
might expect: while negative biases worsen the estimates as anticipated, positive
biases can, counterintuitively, result in improved reconstructions (Figure 6.3). In
the Southern Ocean, a negative bias exacerbates the already slightly overesti-
mated ocean carbon uptake in recent years, while a positive bias reduces this
overestimate, bringing the estimate closer to the model truth (Figure 6.3). Along
the sailboat tracks themselves, both bias directions degrade the flux estimate as
expected (with +10 µatm and –10 µatm biases yielding mean flux biases of +0.14
and –0.16 mol C m−2 yr−1, respectively). Therefore, the improvement observed
in the positive bias scenario must originate elsewhere.
Indeed, we find that positive-biased sailboat data improve the reconstruction in
high-fCO2 regions such as the Southern Ocean outgassing zone, the South At-
lantic, and the Equatorial Pacific. In these areas, biased data can incidentally
shift the reconstruction closer to the model truth. As a result, biased data seem-
ingly improve global reconstructions while they reduce accuracy regionally where
the measurements are taken. This behavior highlights the sensitivity of the neural
network (Landschützer et al., 2013) – and likely other machine learning models –
to biases in predictors and targets.
When the data distribution is skewed and observational constraints are weak, neu-
ral network extrapolation can have disproportionate and occasionally beneficial
effects, even when the input data are systematically biased. However, this sensi-
tivity depends on the extent and direction of bias, the spatial coverage, and the
underlying model used as the testbed. It is important to consider the underlying
data density distribution, the model used for the testbed analysis as well as the
machine learning background bias (relative to the model truth), and the direction
of any measurement bias before interpreting the machine learning extrapolation,
and we highly recommend considering these in future observing system design
studies.
In summary, while random measurement uncertainties have a negligible influence
on reconstruction skill, systematic biases introduce complex and regionally depen-
dent impacts. Biases in sailboat data can improve estimates (by compensating
for structural underestimation of fCO2 in high-fCO2 areas in our testbed setup),
but at the same time, they can worsen estimates during data-sparse periods and
in sensitive regions like the Southern Ocean.
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This dissertation presents a comprehensive answer to the question of the added
value of underway fCO2 data collected by racing sailboats. First, we focus on the
additional value gained from the high-frequency nature of these fCO2 observations
for better understanding small-scale ocean carbon dynamics, showcasing three
case studies on eddies and phytoplankton blooms. Second, we assess the impact
of sailboat data on global carbon flux estimates, as provided in the Global Carbon
Budget (GCB) (Friedlingstein et al., 2025), which contribute to IPCC assessments
that inform policy decisions (IPCC, 2023). Third, we quantify the improvements
in these estimates that result from the addition of sailboat data. In the following,
the research questions outlined in Chapter 3.1 are revisited and answered.

7.1 A N S W E R I N G T H E R E S E A RC H Q U E S T I O N S

➜ What insights into small-scale ocean features driving fCO2 vari-
ability can high-frequency sailboat observations provide?

In Chapter 4, it is shown that resolving different bloom and eddy regimes with
high-frequency observations is key to capturing small-scale fCO2 variability. In
the Agulhas region, we find elevated fCO2 in anticyclonic eddies (358 ± 5 µatm)
and decreased fCO2 in cyclonic eddies (354 ± 3 µatm), with strong fCO2 gradients
occurring at eddy edges. An algae bloom in the Celtic Sea displayed "classical"
bloom behavior, where high chlorophyll concentrations led to reduced fCO2 (from
320 ± 27 µatm to as low as 265 µatm, averaging 305 ± 16 µatm). In contrast,
the Patagonian Shelf presented a more complex scenario, with a mixed bloom
at different stages: a decaying chlorophyll-dominated bloom co-occurring with a
peaking coccolithophore bloom, characterized by particularly high PIC concen-
trations of >2 mmol C m−3. This combination caused opposing effects on fCO2,
resulting in short-term fluctuations of up to 100 µatm within half an hour. In
both blooms, large fCO2 changes were associated with bloom edges.
We conclude that incorporating both CHL and PIC as complementary bloom
proxies allows for a more accurate representation of bloom-driven fCO2 variabil-
ity. Small-scale features – such as fCO2 gradients at eddy and bloom edges or
bloom-induced fCO2 fluctuations – are often missed in infrequent observations,
when regridding to coarser resolutions, or in models. Our findings highlight the
critical role of high-resolution fCO2 observations in understanding spatiotempo-
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ral CO2 dynamics and improving estimates of regional and global air-sea CO2

fluxes, particularly in variable and underobserved regions.

➜ How does the air-sea CO2 flux estimate change with the addition
of sailboat data? Is the impact of adding sailboat data still de-
tectable when considering potential measurement uncertainties?

In Chapter 5 we show that even a single sailboat makes a significant difference
when estimating the air-sea CO2 flux, particularly in the Southern Ocean. Adding
sailboat observations significantly increases the regional carbon uptake estimate
in the North Atlantic and decreases it in the Southern Ocean. While compensating
changes in both basins limit the global effect, the Southern Ocean - particularly
frontal regions between 40°S–60°S during summertime - exhibited the largest
air-sea CO2 flux changes, averaging 20% of the regional mean. Assessing the sen-
sitivity of the air-sea CO2 flux estimate to measurement uncertainty, the results
stay robust within the expected random measurement uncertainty (±5 µatm) but
remain undetectable with a measurement offset of 5 µatm. We thus conclude that
sailboats fill essential measurement gaps in remote ocean regions.

➜ How does the air-sea CO2 flux estimate improve with the addition
of sailboat data?

While we detect changes in the air-sea CO2 flux estimate caused by the addition
of sailboat observations in Chapter 5, Chapter 6 extends this analysis, providing
a definitive answer regarding if and to what extent sailboat data improve air-sea
CO2 flux estimates.
Using observing system simulations and artificial sailboat tracks, we demonstrate
how sailboat data improve estimates of the ocean carbon sink. While we at present
underestimate the ocean carbon sink when mimicking real-world sampling in
the HAMOCC model, adding available sailboat data does not substantially im-
prove reconstructions. However, increased sampling reveals a stronger carbon
sink, particularly between 40°S and 60°S. The improvement persists with hypo-
thetical measurement uncertainties, but substantial differences arise depending
on whether positive or negative biases are applied to the sailboat track data.
While we show that two additional circumnavigations already improve the ocean
mean sink estimate, we further highlight that the additional data remain insuffi-
cient to correct the overestimated CO2 sink trend, calling for continuation of the
ongoing data collection.

As shown, sailboats help close essential observational gaps – particularly in the
underobserved Southern Ocean – a priority highlighted by many studies (e.g.
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Gregor et al., 2019; Gloege et al., 2021; Djeutchouang et al., 2022; Hauck et al.,
2023; Dong et al., 2024b; Fay et al., 2025). Among the general advantages of cit-
izen science, sailboats offer clear benefits for ocean carbon monitoring: they are
cost-efficient, environmentally friendly, operate in poorly sampled regions, pro-
vide broad spatial coverage during round-the-world races, and capture small-scale
variability at high frequency. Although sailboats cannot perform ideal sampling
– such as meridional, winter, or other targeted deployments (e.g. Djeutchouang
et al., 2022) – they effectively complement existing observing networks, particu-
larly in the Southern Ocean, alongside Saildrones and Argo floats, offering strong
potential to improve long-term ocean carbon sink estimates. By providing high-
resolution fCO2 data from underobserved ocean regions, sailboat observations
strengthen the scientific foundation of climate policy, enabling policymakers to
develop more targeted and effective mitigation and adaptation measures.

7.2 O U T L O O K A N D F I N A L R E M A R K S

This section presents an outlook by discussing key insights and implications from
high-frequency sailboat observations and by outlining recommendations for fu-
ture studies to improve sailboat-based sampling and our understanding of the
global carbon sink.

Enhanced and sustained ocean carbon monitoring is key to improving estimates Need for
Enhanced
Ocean fCO2

Monitoring

of the ocean carbon sink at regional and global scales, which feed into assess-
ments such as the GCB and are critical for understanding the ocean’s role in the
climate system and informing policy decisions. This need is especially urgent as
large parts of the ocean, such as the Southern Ocean, remain underobserved, in-
troducing substantial uncertainties in carbon flux estimates. In addition to sparse
data coverage, small-scale, high-frequency variability – often missed by current
observing systems – challenges our ability to accurately estimate the ocean car-
bon sink. At the same time, climate change is altering the ocean carbon cycle in
complex, regionally and temporally variable ways, thereby increasing the urgency
for enhanced and sustained observational efforts. Among the ocean processes af-
fected by climate change are, for instance, intensified Agulhas leakage (Biastoch
et al., 2009; Rouault et al., 2009; Sebille et al., 2009; Beech et al., 2022), shifts
in Southern Ocean eddy activity (Beech et al., 2025; Mortenson et al., 2025),
and more frequent phytoplankton blooms on the Patagonian Shelf and in the
Celtic Sea (Dai et al., 2023; Nocera et al., 2024; Demasy et al., 2025). Addi-
tionally, rising marine heatwaves (Frölicher et al., 2018) and enhanced mesoscale
temperature variance (Guo et al., 2022) further alter the thermal component of
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fCO2 variations, impacting mesoscale CO2 exchange. These rapid and spatially
variable changes demand an observing system that captures small-scale processes
driving carbon flux variability. Sailboats equipped to measure at a high frequency
complement the ocean observing network by providing continuous measurements
capable of detecting emerging climate-driven changes in ocean carbon dynamics
earlier than most other platforms (Carter et al., 2019).
High-frequency sailboat observations capture small-scale fCO2 dynamics asso-Importance

of Resolving
Small-Scale

fCO2 Dynamics

ciated with eddies and phytoplankton blooms, which are often missed by lower-
frequency datasets. These dynamics may be obscured or underestimated due to
infrequent sampling, coarse spatiotemporal gridding (e.g., the monthly 1°x1° grid
used in SOCAT), and in neural network gap-filling methods and mechanistic mod-
els. As a result, key processes – such as strong fCO2 gradients at eddy and bloom
edges and high variability during coccolithophore blooms – are underrepresented.
Looking ahead, accurately resolving these processes with the aid of sailboats and
uncrewed surface vehicles (e.g. Patterson et al., 2025) at fine temporal and spa-
tial scales is necessary. This will become particularly relevant, as biogeochemical
models are developed at kilometer scale and enable more accurate estimates of
the ocean carbon budget.
Addressing measurement uncertainty remains a key challenge for evaluating theAddressing

Measurement
Uncertainty

effectiveness of ocean carbon monitoring platforms. The studies here assumed
fCO2 measurement uncertainties of ±5 µatm (Behncke et al., 2024) and ±10 µatm
(Behncke et al., 2024; Behncke et al., n.d.) – ±5 µatm being consistent with SO-
CAT quality flags at the time and prior field studies (Lauvset et al., 2018; Arruda
et al., 2019; Olivier et al., 2022), while recent research suggests ±10 µatm is a more
realistic uncertainty (Gkritzalis et al., 2024). Given the rarity and importance of
such analyses, future work should continue to conduct detailed uncertainty as-
sessments that cover both low-end and high-end scenarios. This should include
sensitivity analyses that systematically apply fixed fCO2 biases, and Monte Carlo
simulations introducing varying measurement uncertainties with different random
perturbations in each run to quantify the impact of varying uncertainty levels on
regional and global air-sea CO2 flux estimates, along with detailed temporal and
spatial bias assessments to determine how uncertainty affects flux estimates by
season and region (e.g., winter versus summer fluxes in the Southern Ocean).
These analyses will be essential to assess how measurement errors propagate into
global and regional carbon flux estimates. Additionally, cross-platform intercom-
parisons should be performed to better understand how accuracy compares across
observing systems. Our analyses focused on the theoretical impact of an expected
uncertainty on global carbon flux estimates. We emphasize the importance of re-
ducing biases and uncertainties through improved instrument design to improve
the accuracy of the global ocean carbon sink estimates.
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Beyond addressing measurement uncertainties, substantially increasing data cov- OSSEs for
Optimizing
Sailboat
Sampling
and Data
Requirements

erage remains crucial to improve air-sea CO2 flux estimates. Although valuable,
sailboat observations collected by the end of 2021 – even with data from two addi-
tional circumnavigation races – remain insufficient to correct the overestimation
of the air-sea CO2 flux trend when reconstructing the model truth, represented
by the HAMOCC model. Future research should determine how many additional
races are necessary to address this issue, using OSSEs as effective tools to eval-
uate sampling strategies. We recommend using OSSEs to assess the benefits of
sailboat fleet deployments and to guide complementary sampling designs for other
platforms, considering race routes and timing (e.g., as planned in the EU project
TRICUSO, 2024).
The recurring nature of major circumnavigation races – such as the Vendée Future

Opportunities
with Sailboat
Fleets

Globe and The Ocean Race, both held every 3–4 years – and the availability of a
fleet present promising opportunities for sustained, high-resolution ocean obser-
vations in the future. For instance, during the Vendée Globe 2024, four sailboats
measured fCO2, with many other sailboats gathering additional environmental
data including plankton imaging data (e.g., Tanhua et al., 2020; Umbert et al.,
2022; Pollina et al., 2022; Landschützer et al., 2023; IMOCA, 2024; Hernani et al.,
2025). To further improve monitoring of algae blooms and their impact on air-
sea CO2 exchange, future deployments should incorporate fluorescence sensors or
plankton imaging systems alongside fCO2 instruments on sailboats. An upcom-
ing trimaran campaign in the North-East Atlantic in summer 2025 will help to
advance our understanding of fCO2 dynamics during bloom events, with data
made available via the innovation platform (www.soop-platform.earth). We
also highlight the potential benefits of varying race routes through the Southern
Ocean and of simultaneous fCO2 measurements from multiple sailboats following
closely aligned, yet slightly offset tracks. Looking ahead, this approach facilitates
cross-calibration of instruments, a crucial step to reduce measurement uncertain-
ties inherent in sailboat data and improve data quality for long-term monitoring
efforts.

Building on the need for enhanced and optimized sampling strategies, advances Advancing
Neural Network
Techniques

in neural network techniques offer promising avenues to further improve ocean
carbon flux reconstructions. Indeed, research shows that incorporating metrics
related to eddy activity into neural networks improves the accuracy of fCO2 re-
constructions, especially on a regional and seasonal scale (Wang et al., 2025b).
Future research should focus on improving global mapping and gap-filling meth-
ods by leveraging the high-resolution data provided by sailboats. Integrating these
data with additional biological proxies such as PIC alongside CHL in these neural
networks and employing high-resolution neural network techniques can improve
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the representation of mesoscale features and variability associated with eddies and
phytoplankton blooms at a high resolution. Sensitivity analyses should be con-
ducted in future studies to evaluate the effectiveness of these approaches. Recent
developments such as a global 8-day fCO2 dataset at a finer spatial resolution of
0.25°×0.25° (Gregor et al., 2024) show the potential of higher-resolution datasets
to improve carbon flux estimates, particularly at subseasonal timescales and in
spatially highly variable regions. Moving towards even higher-resolution neural
network models – such as those by Duke et al., 2023; Duke et al., 2024 with res-
olutions of approximately 1/12° × 1/12° – is especially valuable in key dynamic
regions, enabling more accurate reconstructions of ocean carbon fluxes and better
capturing small-scale variability critical for understanding air-sea CO2 exchange.
However, these high-resolution neural networks need sufficient training data, call-
ing for continuous sampling on sailboats.
While data-driven approaches like neural networks are valuable for reconstruct-Advancing

Ocean Carbon
Modeling

ing fCO2 and consequently air-sea CO2 flux estimates, process-based ocean mod-
els remain essential for testing sampling strategies and understanding underlying
mechanisms. In the OSSE in Behncke et al., n.d., I used HAMOCC with a 1°×1°
grid resolution, estimating that at least 2–3 circumnavigations are needed to im-
prove global mean estimates. However, this resolution is too coarse to resolve
complex small-scale features crucial for accurately evaluating sampling strategies.
Future work should employ high-resolution models (<10 km) to better capture
eddies and phytoplankton blooms. The new ICOsahedral Nonhydrostatic (ICON)-
Sapphire Earth system model, which includes the HAMOCC biogeochemistry
component, supports ocean simulations with grid spacings down to 1.25 km, en-
abling resolution of submesoscale processes (Hohenegger et al., 2023; Nielsen et
al., 2025). Using such models for future high-resolution OSSEs will allow more
realistic representation of small-scale ocean dynamics and improve the design of
observational strategies aimed at capturing variability in the ocean carbon cycle.
While adding new sailboat measurements is likely to improve air-sea CO2 fluxNeed for

Multi-Model
Comparisons

estimates regardless of the baseline model, the degree of improvement depends
strongly on model choice. We used HAMOCC as the assumed truth, which reason-
ably reproduces the spatial distribution of annual mean fCO2 (Ilyina et al., 2013)
but underestimates Southern Ocean surface fCO2 (Ilyina et al., 2013) and am-
plifies the seasonal cycle (Rustogi et al., 2023). This may exaggerate or obscure
improvements across seasons compared to a model accurately capturing fCO2

dynamics, potentially distorting long-term trends. Additionally, our analysis em-
ployed only one neural network method (Landschützer et al., 2013); alternative
methods might respond differently to added data. To increase confidence in our
findings, future studies should conduct inter-model comparisons using multiple
ocean biogeochemistry models and alternative gap-filling techniques, as used in
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the Global Carbon Budget (e.g., Friedlingstein et al., 2025). Such intercompar-
isons will help determine the sensitivity of flux estimates and trends to model and
method choice, thereby strengthening observational design recommendations.
I would like to close with the cautionary words quoted by Wunsch et al., 2013 Closing

Remarksat the start of this dissertation: observations not taken today are lost for-
ever. As demonstrated here, sailboat observations contribute meaningfully to
advancing our understanding of the ocean carbon sink and its dynamics and re-
fining global estimates used by policymakers to manage emissions and climate
mitigation. Yet, it is an ongoing effort. Observations not taken will inevitably
lead to gaps in our understanding and hinder our ability to make informed deci-
sions. Continued, consistent and widespread observations are essential, if we are
to protect our planet and guide policy with confidence and precision.
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A B S T R AC T

Sailboats collected more than 300,000 high-frequency observations of the CO2
fugacity (fCO2) across ∼112,000 km during races in the Atlantic and Southern
Ocean between 2018 and 2023, observing several small-scale ocean features. We
identified key physical and biogeochemical processes influencing fCO2, such as
Agulhas eddies and algae blooms, by examining fCO2 changes driven by tem-
perature, chlorophyll, and other environmental factors using in-situ and satellite
data.
A single sailboat transect confirmed regional temperature-dominance in the CO2
variability between 40°N–40°S and the Agulhas retroflection, where the sailboat
encountered 4 anticyclonic and 7 cyclonic eddies. We find elevated fCO2 in anti-
cyclonic eddies (358 ± 5 µatm) compared to cyclonic eddies, and decreased fCO2
in cyclonic eddies (354 ± 3 µatm), with strong fCO2 gradients occurring at eddy
edges. An algae bloom in the Celtic Sea displayed "classical" bloom behavior,
where high chlorophyll concentrations (>7 mg m−3) led to reduced fCO2 (from
320 ± 27 µatm to as low as 265 µatm, averaging 305 ± 16 µatm). In contrast,
the Patagonian Shelf presented a more complex scenario, with a mixed bloom
at different stages: a decaying chlorophyll-dominated bloom co-occurring with a
peaking coccolithophore bloom, characterized by high particulate inorganic car-
bon concentrations (>2 mmol m−3). This combination caused opposing effects
on fCO2, resulting in short-term fluctuations of up to 100 µatm within the bloom.
In both blooms, large fCO2 changes were associated with bloom edges.
Small-scale features – such as fCO2 gradients at eddy and bloom edges or bloom-
induced fCO2 fluctuations – are often missed in infrequent observations, when
regridding to coarser resolutions, or in models. Our findings demonstrate the
critical role of high-resolution fCO2 observations, such as those collected by sail-
boats, in understanding spatiotemporal CO2 process dynamics and improving
estimates of regional and global air-sea CO2 fluxes, particularly in variable and
underobserved regions.

A.1 I N T RO D U C T I O N

The ocean acts as a major sink for carbon dioxide (CO2), taking up approx-
imately a quarter of anthropogenic carbon emissions and mitigating climate
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change (Friedlingstein et al., 2025). Rising atmospheric CO2 is the main driver
behind the increase in the ocean carbon sink over the past decades (DeVries et al.,
2023; Gruber et al., 2023; Müller et al., 2023); however, the uptake and outgassing
of carbon by the ocean are not spatially uniform due to processes on small scales
such as enhanced biological activity, localized mixing, and ocean circulation. This
small-scale variability is insufficiently captured by current observational networks
due to general undersampling and a specific lack of high-resolution measurements
of the fugacity of CO2 (fCO2)—leading to large uncertainties in ocean carbon sink
estimates and a limited understanding of the underlying carbon cycle dynamics
(e,g, Resplandy et al., 2014; Djeutchouang et al., 2022; Dong et al., 2024b; Fay
et al., 2025; Song et al., 2025; Dombret et al., 2025). These uncertainties can be
substantially reduced by increasing sampling resolution (Monteiro et al., 2015).
Moreover, high-frequency measurements can improve the detection of emerging
climate signals, especially in regions with high short-term variability (Carter et
al., 2019).

Most existing fCO2 observations come from research and commercial ships, which
typically record measurements at intervals ranging from several minutes to hours
and cover spatial scales from kilometers to basin scale (Bushinsky et al., 2019b;
Chai et al., 2020). Since 2018, sailboats fill critical gaps in this monitoring sys-
tem by providing high-frequency fCO2 observations, that capture variability at
small spatiotemporal scales (tens of meters, every 10 seconds). While it has been
shown how the sailboat data affect and improve air-sea CO2 flux estimates when
regridded to a coarser resolution (monthly 1°x1° grid) contributing to the Global
Carbon Budget (Behncke et al., 2024; Friedlingstein et al., 2025; Behncke et al.,
n.d.), these estimates are too coarse to resolve small-scale features and the added
value of the high-frequency measurements from sailboats in improving our under-
standing of observed small-scale processes has yet to be quantified.
During round-the-world circumnavigation races such as the Vendée Globe in win-
ter 2020/21, The Ocean Race in spring 2023, and several shorter races in the North
Atlantic, sailboats collected valuable high-frequency observations while capturing
small-scale eddies in the Agulhas region and algae blooms in the Celtic Sea and
on the Patagonian Shelf along the sailboat tracks.

The observed small-scale ocean features – eddies and algae blooms – contribute
substantially to fCO2 variability (Resplandy et al., 2014). These features modu-
late fCO2, i.e. the dominant control of air-sea CO2 exchange, and can thereby
amplify or dampen CO2 fluxes between the ocean and atmosphere (e.g. Shutler
et al., 2013; Gray, 2024). For instance, more than 30% of air-sea CO2 flux vari-
ability in eddy-rich ocean regions is attributed to small spatial scales (Guo and
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Timmermans, 2024b), and small-scale variability can contribute up to 5–10% of
the total CO2 flux, and even reverse its direction (Wang et al., 2025a; Song et al.,
2025; Dombret et al., 2025). Incorporating eddy activity proxies into neural net-
works has been shown to improve fCO2 reconstructions, especially on a regional
and seasonal scale (Wang et al., 2025b). Resolving small-scale ocean features is
important for accurately constraining the ocean carbon sink.

Among small-scale features, mesoscale eddies are particularly complex and in-
fluential in modulating fCO2 variability, as they can cause outgassing through
physical processes or carbon uptake via both physical and biological mechanisms
(Keppler et al., 2024). Agulhas eddies, formed by the retroflection of the Agul-
has current, transport warm, salty water from the Indian Ocean to the Atlantic,
affecting fCO2. Generally, anticyclonic eddies with a warm core raise surface
temperatures and fCO2 through downwelling, which suppresses nutrients and
primary production, although lateral advection can modify fCO2 in either direc-
tion. Conversely, cyclonic eddies typically promote upwelling, cooling the surface
and bringing nutrients upward, thereby decreasing fCO2 through increased CO2

solubility and enhanced primary production, but they also bring DIC-rich water
to the surface, potentially increasing fCO2. Despite their importance, the quan-
titative and mechanistic effects of different eddy types on fCO2 remain poorly
understood and observational eddy investigations are rare in key regions such
as the Southern Ocean (Smith et al., 2023; Guo and Timmermans, 2024b; Gray,
2024). Guo and Timmermans, 2024b state that there is ongoing debate about
whether mesoscale eddies act as ocean carbon sinks (Jones et al., 2017; Orselli
et al., 2019; Smith et al., 2023; Ford et al., 2023; Keppler et al., 2024; Li et al.,
2025) as sources (Chen et al., 2007; Moreau et al., 2017; Pezzi et al., 2021; Kim
et al., 2022), if it depends on the season (Song et al., 2016), or if it varies by type,
with anticyclonic eddies acting as a source and cyclonic eddies serving as sinks
(Pezzi et al., 2021; Kim et al., 2022). Eddy-induced upwelling in cyclones can also
enhance biological activity, thereby reducing fCO2 (McGillicuddy and Robinson,
1997; Oschlies and Garçon, 1998; Dawson et al., 2018; Belkin et al., 2022; Li et
al., 2025), and advection can increase chlorophyll in the eddy periphery (Chelton
et al., 2011). However, the impact of eddies on phytoplankton biomass, much
like their impact on fCO2 remains unclear (Su et al., 2021). Contrary to expec-
tations, cyclonic eddies do not always show increased chlorophyll concentrations
compared to anticyclones, with various regional mechanisms causing high pro-
ductivity in anticyclones as well (Meredith et al., 2003; Waite et al., 2007; Siegel
et al., 2011; Gaube et al., 2013; Dufois et al., 2014; Dufois et al., 2016; Song et al.,
2016; Doddridge and Marshall, 2018; Su et al., 2021) or reduced productivity in
cyclones (Song et al., 2016; Moreau et al., 2017).
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Biological phenomena such as algae blooms also play a critical role in shaping
surface fCO2 and consequently the air-sea CO2 exchange on a small scale. These
blooms can both increase or decrease surface ocean fCO2 depending on bloom
composition and bloom stages. For instance, the Patagonian Shelf supports in-
tense phytoplankton blooms from December to January (Ulibarrena and Con-
zonno, 2015; Guinder et al., 2025), which influence the air-sea CO2 flux (Schloss
et al., 2007; Bianchi et al., 2009; Kahl et al., 2017; Oliveira Carvalho et al., 2022;
Berghoff et al., 2023; Guinder et al., 2025). Coccolithophores, in particular, are
prevalent there (Garcia et al., 2011; Souza et al., 2012; Balch et al., 2014; Guinder
et al., 2025). Although algae blooms generally decrease fCO2 through photosyn-
thesis; coccolithophores, being calcifying phytoplankton, can both decrease fCO2

via photosynthesis and increase fCO2 through their calcification process (Frankig-
noulle et al., 1994; Shutler et al., 2013). Moreover, the North Atlantic, including
the Celtic Sea in the North East Atlantic in May, experiences algae blooms that
drive changes in fCO2 (Rees et al., 1999; McQuatters-Gollop et al., 2007; Garcia-
Soto and Pingree, 2009; Suykens et al., 2010; Shutler et al., 2013; Perrot et al.,
2018). While fCO2 in subtropical regions is largely temperature dominated, fCO2

changes in both these subpolar regions are largely driven by biological activity
(Fay and McKinley, 2017; Guo and Timmermans, 2024a).

The examples above show how high-resolution spatiotemporal data are key to
better understanding and resolving small-scale processes and their effect on car-
bon dynamics. High-frequency observations—such as those collected by sailboats
in key regions dominated by eddies and algae blooms—are essential not only to
improve our understanding of fCO2 variability but also to provide robust bench-
marks for the next generation of models and reanalysis products (e.g. Sutton et
al., 2014; Chavez et al., 2018; Djeutchouang et al., 2022; Guo and Timmermans,
2024b; Prend et al., 2025; Morgan et al., 2025).
In this study, we analyze high-frequency sailboat-based fCO2 measurements from
2018–2023 across the Atlantic and Southern Ocean to investigate the drivers of
CO2 variability in mesoscale features. Specifically, we focus on the fCO2 draw-
down during an algae bloom in the Celtic Sea, a mixed coccolithophore bloom on
the Patagonian Shelf, and the role of eddies in the Agulhas region in shaping fCO2

dynamics. We demonstrate how integrating satellite Earth observations with in
situ sailboat data improves our understanding of ocean carbon fluxes, offering
insights for improved representation in high-resolution Earth system models.
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A.2 DATA A N D M E T H O D S

a.2.1 Observational satasets: Underway fCO2 measurements and satellite data

Sampling of fCO2 was conducted using the membrane-based OceanPackT M Race
system, developed by SubCtech industries, aboard the IMOCA 60 class sailboat
from Team Malizia "Malizia-Seaexplorer" during The Ocean Race (round-the-
world race from February 26 - May 29, 2023; Leg 3: February 26 - April 2, 2023,
Leg 4: April 24 - May 10, 2023, Leg 5: May 21 - May 29, 2023) as well as on their
former sailboat "Seaexplorer – Yacht Club de Monaco" during the Vendée Globe
race (round-the-world race from November 8, 2020 - January 28, 2021), as well
as during four races in the North Atlantic and four transfers (between 2018 and
2021) (see Figure A.1 and Supplementary Table A.2).

The water inlet, located at the keel at a depth of ∼2 meters below the sea surface,
feeds the sample into a debubbler unit equipped with a conductivity–temperature–
depth (CTD) sonde (Sea&Sun customized CTD48). A membrane separates the
sampled seawater from a closed air-loop, facilitating gas exchange until equilib-
rium is achieved. The air is then circulated by a membrane pump through a
LI-COR L840 infrared gas analyzer. The measurement system is equipped with a
two-point underway calibration: 1. zero reference calibration, and 2. calibration
with a known reference gas (using a 2-liter bottle containing a compressed, pre-
calibrated air mixture) to enable daily calibration over extended periods without
replacing the bottle. For a more detailed description of the measurement system,
refer to Landschützer et al., 2023.
In the observational community, reporting measured values as fCO2 has become
standard practice, a convention endorsed by the International Ocean Carbon
Coordination Project (IOCCP) (Fay et al., 2024). Accordingly, we adopt fCO2

throughout this study. For consistency, we refer to fCO2 even when citing studies
that originally report pCO2. We justify this approach as the two terms are often
used interchangeably, with differences being negligible and often only significant
in the subsurface ocean (Dickson et al., 2007; Fay et al., 2024).

Besides fCO2, temperature, and salinity data provided by the sailboats, we further
analyze satellite data, co-located with the sailboat measurements. Chlorophyll-a
(CHL), particulate inorganic carbon (PIC) (http://www.globcolour.info; pa-
rameter CHL1 and PIC with the AVW L3 merging method in 4 km resolution,
8-daily), wind (Hersbach et al., 2023), and gridded daily Sea Level Anomaly (SLA)
data (Copernicus Climate Change Service, 2018) were used to identify small-scale
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ocean features. Additionally, NOAA 1/4° Daily Optimum Interpolation Sea Sur-
face Temperature (OISSTv2.1) (Huang et al., 2021), available at NOAA/ NCEI
(https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum

-interpolation/v2.1/access/avhrr/) was used to obtain more information
about sea surface temperature (SST) in the proximity of the sailboat tracks.
We used regional ocean masks available at https://github.com/RECCAP2-o

cean/R2-shared-resources/tree/master (last accessed: January 27, 2025,
Gregor and Müller, 2025) with most regional ocean masks based on Fay and
McKinley, 2014 and the coastal mask based on Laruelle et al., 2017, to character-
ize the regional data distribution. The Southern Ocean is defined as the following
biomes by Fay and McKinley, 2014: Southern Hemisphere ice biome (SSH ICE),
Southern Hemisphere subpolar seasonally stratified biome (SH SPSS), South-
ern Hemisphere subtropical seasonally stratified biome (SH STSS). The Atlantic
starts north of SH STSS and has the boundaries defined by the World Ocean
Atlas (Levitus et al., 2009; Gregor and Müller, 2025).

a.2.2 Small-scale ocean feature detection

We identified small-scale ocean features by examining temperature-, physical, and
biological-driven changes in fCO2 explained in the following sections.

a.2.2.1 Thermal and non-thermal drivers

Thermal (gas solubility) and non-thermal (bio-physical) processes affect surface
fCO2 with the relative contribution of these processes varying seasonally and re-
gionally (e.g. Takahashi et al., 2002; Peter et al., 2025). Following Takahashi et al.,
2002 we estimate fCO2 at Tmean (non-thermal bio-physical component; Tmean be-
ing the mean observed temperature) and fCO2 at Tobs (thermal component, Tobs

being the given observed temperature) during both circumnavigations (Equations
A.1). While fCO2 at Tobs is driven by temperature gradients, fCO2 at Tmean is
influenced by physical processes such as mixing as well as biological processes.
We performed k-means clustering on thermal and non-thermal components to de-
termine which is the dominant driver within each cluster (Supplementary Figure
A.6).

(fCO2 at Tmean) = (fCO2)obs × exp[0.0423(Tmean − Tobs)]

(fCO2 at Tobs) = (Mean annual fCO2) × exp[0.0423(Tobs − Tmean)]
(A.1)
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a.2.2.2 Eddies in the Agulhas region

We used the locations of the dominant (thermal and non-thermal) drivers to
identify the region of the Agulhas retroflection and Agulhas Return Current and
potential eddies. We then used the all-satellite Mesoscale Eddy Trajectory At-
las, version 3.2 (Meta3.2DT; Pegliasco et al., 2022; DOI: 10.24400/527896/a01-
2022.005.220209), to identify eddies in the Agulhas region from December 1st to
6th, 2020 (10°E-50°E). Meta3.2DT identifies eddy centers by detecting minima
or maxima in the filtered absolute dynamic topography (ADT), distinguishing
cyclonic eddies (CEs) and anticyclonic eddies (AEs). We selected Meta3.2DT ed-
dies that persist for at least 10 days to guarantee they are stable formations with
a sufficient duration to significantly influence ocean biogeochemistry. For further
details on the eddy location method, see Chaigneau et al., 2009; Pegliasco et al.,
2022; Keppler et al., 2024. Additionally, we used gridded daily SLA data from
Copernicus Climate Change Service, 2018 to gather more information about the
eddies.
When the sailboat crossed an eddy’s contour line, the track segment within was
classified as either cyclonic eddy (CE) or anticyclonic eddy (AE), except for
transition zones defined as 1 hour before and after entering or exiting an eddy.
The remaining segments were labeled ’outside’. Typical cold-core cyclonic eddies
and warm-core anticyclonic eddies have SLA and SST anomalies at the center
with the same sign (Ni et al., 2021; Liu et al., 2024). Eddies, such as warm-core
cyclonic eddies, are considered atypical if the anomalies at their centers have op-
posite signs (Ni et al., 2021). To check for this atypical behavior (indicated by
thermally-driven parts of the sailboat track coinciding with negative SLA), we
checked the SST anomaly (Huang et al., 2021).

a.2.2.3 Algae blooms

We examined the role of biological activity in driving fCO2 variability by analyz-
ing CHL and PIC concentrations (http://www.globcolour.info). To identify
regions with potential algae blooms, we pre-selected regions where sailors reported
algae blooms. We identified algae blooms by analyzing the correlation between
fCO2 and CHL and PIC, as well as between short-term fluctuations in fCO2 and
CHL and PIC. Due to gaps in the satellite ocean color data, we selected the
values closest in time and space to the sailboat track (for the Vendée Globe track:
the median Euclidean distance from the track to the nearest CHL value is 2.52
km (IQR 1.48–3.65 km; for the Patagonian shelf area (70°W–50°W: the median
Euclidean distance is 2.42 km (IQR 1.71–3.18 km); for the Bermudes1000 track
in the North Atlantic: the median Euclidean distance is 2.27 km (IQR 1.59–2.79
km).) The distances seem adequate since algae blooms e.g. on the Patagonian
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shelf have been described as extensive, covering approximately 55,000 km2 (Gar-
cia et al., 2008). We focused on regions with an increase/decrease in fCO2 of
≥10 µatm/10min and high concentrations of PIC and CHL. We used a satellite-
derived phenology data product to determine the phenological stage of the blooms
(Nicholson et al., 2023; Nicholson et al., 2025).

A.3 R E S U LT S

a.3.1 Oceanographic conditions across the sailboat transects

Figure A.1: Sailboat Tracks. a) fCO2 data b) SST data and c) SSS data from four
North Atlantic races and four transfers (yellow tag), and two Antarctic cir-
cumnavigations sailed by Team Malizia. Vendée Globe 2020/21 (blue tag) is
a non-stop race, whereas The Ocean Race 2023 (brown tags) is a multi-leg
race. (No measurements were taken during the first two legs and the last of
The Ocean Race 2023.)

The sailboats sailed mainly through the Atlantic and Southern Ocean during
the winter of 2020/21 and spring of 2023, participating in four North Atlantic
races, which involved four transfers to the race’s starting point, and two round-
the-world circumnavigations ((Figure A.1a and Supplementary Table A.2). The
sampling across both hemispheres was relatively balanced with 59% from the
Northern Hemisphere and 41% from the Southern Hemisphere, showing the fo-
cus on the less well-observed Southern Hemisphere in contrast to most observing
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platforms (www.socat.info, Supplementary Figure A.7). Seasonally, the samples
were collected as follows: 5% in winter, 36% in spring, 38% in summer, and 21%
in autumn, with all seasons referring to both Northern and Southern Hemisphere
conditions (Supplementary Figure A.7). This distribution indicates an overall sea-
sonal summer bias in the dataset. Regional distribution showed that 69% of the
samples were from the Atlantic Ocean, 30% from the Southern Ocean, 1% from
the Pacific Ocean, and less than 1% from the Indian Ocean (Supplementary Fig-
ure A.7). 62% of the samples were from open ocean areas, while 38% were from
coastal regions (either 300 km distance from the coastline or the 1000m isobaths,
Supplementary Figure A.7).
The environmental parameters recorded included SST of 15.8 ± 5.9°C, SSS of
35.1 ± 1.2 PSU, and fCO2 of 372.8 ± 39.7 µatm (Figure A.1). Satellite products
show wind speeds of 7.2 ± 2.9 m/s at the time and location of the races, and
CHL concentration of 0.6 ± 1.2 mg m−3, with the latter co-located only during
two races (Bermudes1000 and Vendée Globe).

Using the well-established thermal decomposition method by Takahashi et al.,
2002, by using the temperature sensitivity of CO2, we can further investigate the
dominant drivers along the track. Decomposition of fCO2 from the circumnaviga-
tions into a thermal and non-thermal component shows that between 40°N and
40°S in the Atlantic, fCO2 variability is primarily driven by temperature control-
ling CO2 solubility, with thermal drivers dominating over non-thermal influences
(Figure A.2a–b, Box A), in agreement with Takahashi et al., 2002; Gallego et al.,
2018.
Interestingly, the observations from few circumnavigations are sufficient to iden-
tify this division and moreover, to identify temperature-dominated small-scale
ocean features, in this case Agulhas eddies (see box B in Figure A.2a). The re-
lationship between fCO2 and temperature in thermally dominated regions is as
follows: 0.94% CO2 change per 1°C change (see Inlay in A.2a).

In general, the north-south transect in the Atlantic shows fewer drivers of fCO2

than the east-west (E-W) transect, as its fCO2 is mainly driven by temperature
gradients. In contrast, the E-W transects in high latitudes are influenced by bi-
ological and physical driven processes (see blue lines for biological and physical
drivers and red lines for thermal drivers in Figure A.2a).
While the thermal–non-thermal decomposition effectively distinguishes between
regimes where fCO2 is dominated by temperature variability and those influenced
by combined bio-physical processes, it does not further distinguish between indi-
vidual physical and biological drivers. The high-resolution sailboat observations
enable us to overcome this limitation by investigating, on a regional basis, the
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Figure A.2: Thermal and Non-Thermal Drivers Along the Sailboat Transect.
a) Map of the circumnavigation tracks with the thermally dominated tracks
in red and the non-thermally dominated tracks in blue. Inlay: Relationship
between fCO2 and SST in thermally dominated regions of the track (red lines
in map). b) fCO2 as well as thermal and non-thermal fCO2 components per
latitude. c) Thermally and non-thermally dominated features between 10°W
to 50°E on top of SLA on the 4th of December 2020. d) fCO2 measured
along the sailboat track.

physical and biological processes and how they affect fCO2 variability. For in-
stance, in biologically active regions such as the Celtic Sea and the Patagonian
Shelf, we can examine the influence of biological drivers – algae blooms – on fCO2

dynamics. Conversely, in thermally dominated regions like the Agulhas region, we
can examine the role of other physical processes, such as small-scale eddy activity,
in driving fCO2 variability.
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a.3.2 Eddies in the Agulhas region

We identify the location of the region of the Agulhas retroflection and Agulhas
Return Current between 10°E and 50°E (see box B in Figure A.2a,c-d) with ther-
mal drivers dominating fCO2 variability along segments of the fCO2 track. We
confirm the location of the Agullhas retroflection with 1/4° daily OISST v2.1 data
(Supplementary Figure A.8). Plumes of higher sea surface temperatures coincide
with thermally dominated sections (Supplementary Figure A.8). From December
1st to December 6th, 2020, the sailboat navigated through 12 |SLA| > 0.2m) in
that area, comprising 6 positive and 6 negative SLA of that magnitude (Sup-
plementary Figure A.9). The positive SLA covered more area than the smaller
negative ones (Supplementary Figure A.9).
While SLAs indicate the presence of eddies, there can be deviations. Using the
META3.2 DT we identified 4 anticyclonic and 7 cyclonic eddies through which
the sailboat sailed (Figure A.2c – for daily resolution see Supplementary Figure
A.10).
Interestingly, the thermal-dominated parts of the fCO2 tracks largely coincide
with positive SLA and anticyclonic eddies, and the non-thermal-dominated parts
of the track largely coincide with cyclonic eddies (Figure A.2c and Supplemen-
tary Figure A.11). We observe an exception around 29°E where the fCO2 in a
cyclonic eddy is thermally dominated (Figure A.2c and Supplementary Figure
A.11). Upon closer inspection, SST anomalies and SLA near the center of the
cyclonic eddy exhibit opposite signs (Supplementary Table A.3), indicating an
atypical warm-core cyclonic eddy. The temperature within this eddy is notably
higher than compared to the other cyclonic eddies in that region (Figure ??). It
should be noted that META3.2 eddy contours have a daily resolution and might
therefore lag behind or not fully align with the higher-resolved temperature data.
Nonetheless, the temperature difference between typical and atypical cyclonic ed-
dies is around 2–3°C (Figure A.12) and might be even greater if the eddy contours
matched the resolution of the temperature data.

Figure A.3 shows time series of environmental parameters along sailboat tracks
crossing different eddy regimes: anticyclonic eddies, cyclonic eddies, transition
zones, and outside regions.
fCO2 averaged 358.3±8.7 µatm along the sailboat track between 10°E and 50°E.
Using a two-sample t-test, we find that the mean fCO2 in the Agulhas region
is significantly higher in AE (358 ± 5 µatm) than CE (354 ± 3 µatm) by
4 µatm (p = 0.0000), although the differences lie within the range of the stan-
dard deviation. The mean fCO2 of CE is significantly lower than both the outside
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Table A.1: Environmental properties of anticyclonic (AE), cyclonic (CE) eddies, as well
as the periphery (trans) and the background (outside) in the Agulhas region.
Transition zones (trans) were defined as 1 hour before/after entering/exiting
an eddy. Mean values and standard deviations are displayed.

Eddy Nr. fCO2 SST SSS CHL PIC Wind
Type of obs. [µatm] [°C] [PSU] [mg m−3] [mmol m−3] Speed

[m s−1]
AE 679 358 ± 5 18.2 ± 1.6 35.5 ± 0.1 0.27 ± 0.09 0.11 ± 0.08 10 ± 1.7
CE 540 354 ± 3 15.8 ± 0.8 35.2 ± 0.2 0.45 ± 0.12 0.49 ± 0.18 8.8 ± 0.7
outside 3593 357 ± 9 17.1 ± 1.5 35.5 ± 0.2 0.33 ± 0.15 0.18 ± 0.14 10.1 ± 1.6
trans 2047 358 ± 9 16.5 ± 2.0 35.4 ± 0.2 0.37 ± 0.20 0.21 ± 0.21 9.8 ± 1.6

(357 ± 9 µatm) and transition zones (358 ± 9 µatm) (p = 0.0000) (Figure A.3
and Table A.1). Unsurprisingly, anticyclones exhibited higher temperatures than
cyclones, except for the cyclonic eddy on December 3rd, 2020 (Figure A.3a). Dif-
ferences between anticyclonic and cyclonic eddy temperatures are around 2.4°C.
Salinity variations closely follow temperature changes, with sharp decreases and
increases occurring simultaneously (Figure A.3a-b). In cyclones, salinity dropped
sharply with temperature, whereas in anticyclones, salinity increased with rising
temperature. We find that the SST and SSS means of AE (SST: 18.2 ± 1.6°C,
SSS: 35.5 ± 0.1) are significantly higher than those of CE (SST: 15.8 ± 0.8°C,
SSS: 35.2 ± 0.2), transition zones, and outside (p = 0.0000) (Table A.1). The
SST and SSS means of CE are significantly lower than those of the outside, AE,
and transition zones (p = 0.0000) (Table A.1).
Peaks in fCO2 and strong gradients were observed to coincide with sharp changes
in SLA during transitions, as the sailboat entered or exited eddies, particularly
before December 4th, 2020, west of approximately 30°E (Figure A.3c). This area
is west of the retroflection and further from the relatively well-mixed Agulhas cur-
rent. SLA appeared to generally follow wind speed with similar timing of changes
and both exhibiting gradual changes (Figure A.3c-d). Wind speeds in AE (10
± 1.7 m/s) are significantly higher than in CE (8.8 ± 0.7 m/s). CE mean wind
speeds are lower than those in AE, transition zones, and outside (Table A.1).
Additionally, higher biological activity was observed in cyclones compared to
anticyclones and outside of eddies, with cyclones showing increased CHL con-
centrations (Figure A.3e). However, the impact on fCO2 was generally weak. In
cyclonic eddies on December 2nd, 5th, and 6th, CHL concentrations increased
to approximately 0.6 mg m−3 (Figure A.3e), with a slight decrease in fCO2. In
contrast, in the atypical warm-core cyclonic eddy, particularly while exiting the
eddy, CHL concentrations reached up to 1.6 mg m−3, reducing fCO2 from around
370 µatm before entering the eddy to 350 µatm during the CHL peak when exit-
ing the eddy (Figure A.3e).
PIC concentrations were similarly elevated in cyclones and their surrounding tran-
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sition zones compared to anticyclones and areas outside of eddies (Figure A.3f).
Inside cyclonic eddies, PIC concentrations reached up to 1 mmol m−3, but again,
the effect on fCO2 was not very prominent (Figure A.3f). The CHL and PIC
concentrations of AE (CHL: 0.27 ± 0.09 mg m−3, PIC: 0.11 ± 0.08 mmol m−3)
are significantly lower than those of CE (CHL: 0.45 ± 0.12 mg m−3, PIC: 0.49 ±
0.18 mmol m−3), transition zones, and outside (p = 0.0000). The CHL and PIC
means of CE are significantly higher than those of AE, outside, and transition
zones (p = 0.0000) (Table A.1).

Figure A.3: Effect of Agulhas Eddies on fCO2. Time series of fCO2 (orange) and
a) SST, b) SSS, c) SLA, d) wind speed, e) CHL concentration, and f) PIC
concentration and salinity between 10°E and 50°E. Red-shaded segments are
classified as inside an anticyclonic eddy, blue-shaded shaded are classified as
inside a cyclonic eddy, and gray is the transition area. The eddy on December
3rd, 2020 appears to be an atypical warm-core cyclonic eddy.

71



appendix a

a.3.3 Algae bloom in North-East Atlantic/Celtic Sea

The Bermudes1000 sailboat race in May 2019 was characterized by high CHL
concentrations, indicating high primary productivity during the bloom season
(Figure A.4a). Regions characterized by elevated CHL concentrations generally
exhibit low fCO2 (305 ± 16 µatm), compared to low CHL regions (320 ± 27 µatm,
Figure A.4b), consistent with the expected biological drawdown of CO2 during
productive periods.

High CHL concentrations occurred along the coast and between 49°N and 47°N
and 10°W and 7°W through which the sailboat sailed at the northeast and south
edges (Figure A.4a). We observed mean CHL concentrations around 2 mg m−3

along the track. Notably, the most distinct changes in fCO2 were observed at the
boundaries of these high CHL zones (see gray boxes in Figure A.4b,c), where
CHL concentrations changed from around 1 mg m−3 to more than 7 mg m−3.
Abrupt increases or decreases in fCO2 – fCO2 fluctuations of ≥10 µatm within
10 minutes – align with the sailboat crossing into or out of bloom patches (see
red boxes in Figure A.4a), highlighting that the edges of high CHL zones are
hotspots of high fCO2 variability.
Increased CHL concentrations caused fCO2 to decrease from around 320 µatm to
as low as 265 µatm (Figure A.4b). We observed much higher CHL concentrations
(up to 21 mg m−3) in coastal zones; however, without a sudden decrease in fCO2,
indicating the difference between coastal and open ocean dynamics and the pres-
ence of other drivers. Furthermore, it is well known that ocean color algorithms
have problems in near-shore regions. The lowest observed CHL concentrations
around 6°E coincided with the highest fCO2 of up to 380 µatm (dark blue patch
in Figure A.4a). CHL accounts for 14% of the variance in fCO2 (Supplementary
Figure A.13), reflecting a statistically significant but moderate relationship, con-
sistent with observations from other bloom events (Lüger et al., 2004; Schneider
et al., 2006; Lueger et al., 2008).

To investigate other bloom types, such as coccolithophores, we examined dif-
ferent ocean color products and analyzed the correlation between PIC and fCO2,
which proved to be insignificant and did not account for any variance in fCO2

(see Supplementary Figure A.13). Although high PIC concentrations, indicative
of coccolithophore blooms, are mainly found along the coast, the sailboat only
encounters elevated PIC concentrations around 48°N in the Bay of Biscay, coin-
ciding with sudden changes in fCO2 (Supplementary Figure A.14). For the rest
of the region, we observe low PIC concentrations, indicating that calcification
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played a minor role during this bloom (Supplementary Figure A.14).
Examining the phenological stage of the bloom in that region in 2019 (Nicholson
et al., 2023; Nicholson et al., 2025), we observe that the bloom began around
February/March, peaked in April, and terminated between June and September,
indicating that the sailboat mainly captured the bloom peak in May (Supplemen-
tary Figure A.15).

Figure A.4: Algae Bloom in the Celtic Sea in May 2019. a) Map with the back-
ground showing an 8-day composite of CHL concentrations from May 9 to
May 16, 2019, and the line showing fCO2 measured by the sailboat. Red
boxes mark regions with fCO2 changes of ≥10 µatm in ≤ 10 minutes. b)
Time series of fCO2 and CHL concentrations (top panel for northern track,
bottom for southern track). Red vertical lines indicate fCO2 changes of ≥10
µatm in ≤ 10 minutes.

a.3.4 Coccolithophore bloom on the Patagonian Shelf

In January 2021, during the Vendée Globe race, we observed abrupt changes in
fCO2 over a short time period on the Patagonian Shelf. Interestingly, though, and
in contrast to the algae bloom in the Celtic Sea, the relationship between CHL
and fCO2 is less apparent (Figure A.5a and Supplementary Figure A.16a). There
is no correlation between CHL and fCO2 (insignificant, R2 = 0). Examining the
phenological stage of the CHL-based bloom on the Patagonian Shelf in 2020/21
(Nicholson et al., 2025), we observe that a CHL-dominated bloom began around
September, peaked in November, and terminated in February (Supplementary
Figure A.17). This indicates that a CHL-based bloom was in a decaying stage in
January when the sailboat passed through it. The correlation between PIC and
fCO2 (significant, R2 = 0.09) is still weak, but still insightful (Supplementary
Figure A.16) with increased PIC generally reducing fCO2. Regions with elevated
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PIC concentrations exhibited fCO2 of 354 ± 27 µatm, characterized by a rela-
tively high standard deviation compared to the productive zones of the Celtic
Sea. Similarly, regions without high PIC concentrations exhibited comparable
fCO2 of 360 ± 31 µatm.

Notably, high fluctuations in fCO2 are associated with elevated CHL concentra-
tions and particularly with elevated PIC concentration, indicating the presence
of both a CHL- and PIC-based bloom (Figure A.5). While bloom patches with
high CHL concentrations in the Celtic Sea led to consistently low fCO2 (Figure
A.4b), the mixed bloom on the Patagonian Shelf, in contrast, caused high fCO2

fluctuations (Figure A.5c-e). Changes in PIC concentrations account for 46% of
the observed short-term fluctuations in fCO2, while changes in CHL concentra-
tions account for 34% (Figure A.5d-e). These variations are driven by CO2 release
through calcification and CO2 uptake through photosynthesis. In this scenario,
fCO2 varies up to 100 µatm, i.e. up to almost two orders of magnitude larger
than the CO2 variability found in the atmosphere, and all within half an hour
within the bloom (Figure A.5c).

The satellite data show high PIC concentrations in the coastal region of the
Patagonian Shelf, particularly in the Grande Bay as well as in the river mouth
of Magellan Strait (Figure A.5b). The bloom navigated by the sailboat forms
a westward-facing hook around the Malvinas/Falkland Islands (Figure A.5b-c).
Maximum PIC concentrations exceed 2 mmol m−3, with average concentrations of
0.8 mmol m−3 in high PIC zones. The two intersections where the sailboat sailed
through the bloom indicated by increased PIC concentrations show high fCO2

variations. Similarly to the Celtic Sea bloom, large changes in fCO2 occurred at
the edge of high PIC zones (Figure A.5b, see gray boxes in Figure A.5c).
As the sailboat enters the bloom around 60°W, fCO2 increases from 370 µatm to
approximately 420 µatm. It then sharply drops and fluctuates 2–3 times by up to
100 µatm before reaching around 320 µatm upon leaving the bloom (Figure A.5c).
Upon re-entering the high PIC bloom area around 63°W, fCO2 fluctuates again,
stabilizing around 320 µatm. Generally, fCO2 is higher west of 60°W compared
to east of 60°W despite slightly higher temperatures east of 60°W (Figure A.5b-c
and Supplementary Figure A.18).
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Figure A.5: Algae Bloom on the Patagonian Shelf in January 2021. a-b) Map
showing a composite from January 1–8, 2021 of a) CHL and b) PIC con-
centrations, and the line showing fCO2 measured by the sailboat. Red boxes
mark regions with fCO2 changes of ≥10 µatm in ≤ 10 minutes. c) Time series
of fCO2 and PIC concentrations. Red vertical lines indicate fCO2 changes of
≥10 µatm in ≤ 10 minutes. d-e) Time series of fCO2 variations, calculated
with a 60-minute moving standard deviation, and d) CHL and e) PIC con-
centrations. The correlation coefficients and p-values between CHL/PIC and
fCO2 variability are shown in the upper right corner of each panel.

The elevated PIC concentration of the main bloom body (around the river mouth
of the Magellan Strait as well as around the Malvinas/Falkland) matches in-
creased temperatures (Supplementary Figure A.18). Lower PIC occurs east and
southwest of the bloom where temperatures are generally lower (Supplementary
Figure A.18).
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A.4 D I S C U S S I O N

The high-resolution fCO2 measurements collected during sailboat races provide a
unique opportunity to observe how physical and biological processes drive sea sur-
face fCO2, i.e. the dominant control on the air-sea CO2 exchange, at small spatial
and temporal scales. These data reveal the importance of small-scale processes –
often unresolved by coarser observational networks and models – in driving sur-
face fCO2 variability.
While the thermal–non-thermal decomposition is useful as a valuable first-order
approach for identifying broad regimes of fCO2 variability, it provides limited
insight into the specific underlying drivers other than distinguishing temperature-
driven changes from general other influences. The sailboat observations reaffirm
already established large-scale patterns: across the tropical and subtropical oceans
from 40°N to 40°S, fCO2 variability is predominantly influenced by temperature-
driven changes in CO2 solubility (Takahashi et al., 2002; Gallego et al., 2018; Guo
and Timmermans, 2024a). Remarkably, just one or two circumnavigation tran-
sects were sufficient to detect and confirm this dominant thermal influence with
its boundaries as well as to further identify more thermally driven small-scale
features such as Agulhas eddies (see box B in Figure A.2a).
Moreover, the high-frequency observations presented here provide the resolution
needed to move beyond a binary thermal/non-thermal framework, enabling more
detailed, region-specific investigations that better differentiate and characterize
the physical and biological drivers of observed fCO2 variability.

a.4.1 Agulhas eddy regimes influence fCO2

The Agulhas region is characterized by large spatial and temporal eddy-driven
fCO2 variations, controlled mainly by temperature, biology and circulation. As
demonstrated in our study, these variations depend on the eddy regime.
fCO2 measured along the sailboat track in the Agulhas region (358.3 ± 8.7 µatm)
is generally consistent with previously reported values, although it falls toward the
upper end of the observed range (Orselli et al., 2019). Our findings generally sup-
port studies (Pezzi et al., 2021; Kim et al., 2022) demonstrating increased fCO2

in anticyclones (358 ± 5µatm), and decreased fCO2 in cyclones (354 ± 3 µatm).
This finding is, however, in disagreement with observational studies from Keppler
et al., 2024 analyzing Southern Ocean eddies and Li et al., 2025 analyzing eddies
from the Kuroshio Extension, both showing increased carbon uptake in anticy-
clones and weaker carbon uptake in cyclones.
The observed stronger winds in anticyclones can either amplify an anticyclonic

76



A.4 discussion

CO2 source signal by releasing more CO2 to the atmosphere or the stronger winds
act to mitigate the reduced uptake caused by higher fCO2 depending on the di-
rection of the prevailing air-sea CO2 flux.
We confirm the classical perspective of heightened biological activity in cyclones
(McGillicuddy and Robinson, 1997; Oschlies and Garçon, 1998; Dawson et al.,
2018; Belkin et al., 2022) and their periphery (Chelton et al., 2011) possibly due
to upwelling in cyclonic eddy increasing nutrients in surface water and thereby bi-
ological activity (McGillicuddy and Robinson, 1997; Oschlies and Garçon, 1998;
Dawson et al., 2018; Belkin et al., 2022), with the suggested mechanisms for
increased biological activity in anticyclonic eddies appearing to be of lesser im-
portance in this region during the study period (Waite et al., 2007; Siegel et al.,
2011; Gaube et al., 2013; Doddridge and Marshall, 2018; Su et al., 2021).
fCO2 in anticyclonic eddies was significantly higher than in cyclonic eddies by
4 µatm and fCO2 in cyclonic eddies was significantly lower than outside of eddies
and in transition zones. While the results are statistically significant, it has to be
noted that the standard deviation is relatively high. However, globally integrated
these differences may have a substantial impact on the ocean carbon uptake. The
effect might differ and be smaller in other ocean regions where the difference be-
tween warm-core and cold-core eddies is less pronounced.
Strong fCO2 gradients when entering or leaving eddies occur when the sailboat
crossed the boundaries of different distinct water masses with distinct biogeo-
chemical signals, particularly west of the relatively well-mixed Agulhas current,
as well as different eddy signals are important small-scale features that might be
lost in coarser resolutions.
We show that the fCO2 decomposition in thermal and non-thermal fCO2 (Taka-
hashi et al., 2002) can be used to first-order identify SLA and eddies in the Agul-
has region. It highlights the potential of sailboats in examining the understudied
effects of both typical and atypical anticyclonic and cyclonic eddies on fCO2 and
the air-sea CO2 flux. The encounter with atypical warm-core cyclonic eddies in
the Agulhas region as shown in this study is not unusual, as globally, around
20% of eddies are atypical (Ni et al., 2021) and long-lived eddies display atypical
behavior for about 40% of their lifetimes, with these eddies predominantly con-
centrated in the South Atlantic Ocean (Ni et al., 2021; Liu et al., 2024). Given
their occurrence and abundance in the Agulhas region, we recommend conduct-
ing more observations to investigate and better understand the impact of these
eddies on biological processes and CO2 uptake.

One limitation of our study is the current definition of transition zones, which
are currently time-dependent (60 minutes before and after entering or exiting
an eddy). This approach may not accurately capture the dynamics, as we show
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that wind conditions differ between anticyclonic eddies and cyclonic eddies, with
higher wind speeds in anticyclonic eddies and lower in cyclonic eddies, result-
ing in faster transitions through anticyclonic eddies compared to cyclonic eddies.
Additionally, we did not identify the life stage of the eddies, which could be sig-
nificant since the impact of eddies on fCO2 varies with their age (Liu et al., 2025).
Future studies should address these limitations, especially as more sailboat ob-
servations become available, to enhance our understanding of eddy dynamics and
their influence on the carbon system.

a.4.2 Algae bloom in the Celtic Sea

Although coccolithophore blooms regularly occur between April and June in the
Bay of Biscay (Harlay et al., 2010; Suykens et al., 2010; Perrot et al., 2018) –
a part of the observed region—it is unlikely to be a coccolithophore dominated
bloom through which "Seaexplorer" sailed due to the relatively low PIC concen-
trations. In the Celtic bloom, observed CHL maxima exceeded 4 mg m−3, similar
to concentrations reported in literature (Garcia-Soto and Pingree, 2009). Most
observations along the track ranged from 1 to 2 mg m−3, matching modal peak
concentrations for spring blooms in the region (Garcia-Soto and Pingree, 2009).
High CHL concentrations (up to 21 mg m−3) in coastal areas did not coincide
with reduced fCO2, likely due to limited photosynthesis, river discharge, or algo-
rithmic uncertainties in nearshore waters.
While Watson et al., 1991 show a close and inverse relationship between fCO2

and CHL, we could only observe a modest correlation between CHL and fCO2 in
the Celtic Sea. Similarly, other studies reported a weaker or even no correlation
between CHL and fCO2 (Lüger et al., 2004; Schneider et al., 2006; Schloss et al.,
2007; Lueger et al., 2008; Takao et al., 2020). Schloss et al., 2007 attribute the
lack of a relationship to a differing influence of different phytoplankton groups
on fCO2. Lüger et al., 2004; Schneider et al., 2006; Lueger et al., 2008 attribute
the weak relationship to the differing temporal behavior of these signals. They
argue that a decrease in CHL will not directly correlate with an fCO2 increase
because of longer timescales of upwelling, mixing, or air-sea gas exchange. The
drastic changes in fCO2 (≥10 µatm within 10 minutes) might occur due to the
patchiness of algae blooms at small-scales (Breier et al., 2018; Robinson et al.,
2021).
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a.4.3 Coccolithophore bloom on the Patagonian Shelf

While the Celtic Sea displayed "classical" bloom behavior with high CHL concen-
trations reducing fCO2 through photosynthesis, the bloom along the Patagonian
Shelf paints a more complex picture. The relatively low CHL concentrations of
around 1.5 mg m−3 are similar to concentrations reported in literature around
the Malvinas/Falkland at the end of austral summer (Romero et al., 2006; Gil
et al., 2019). The low CHL concentrations and phenology metrics may suggest
the decay of a bloom, however, they do not necessarily indicate its absence, as
shown in previous studies (Garcia et al., 2011). Indeed, the high PIC concentra-
tion observed in January 2021 suggests a coccolithophore bloom, which aligns
with the typical bloom patterns on the Patagonian Shelf – a region known for
intense algal blooms from December to January (Poulton et al., 2013; Balch et al.,
2014; Hopkins et al., 2015; Ulibarrena and Conzonno, 2015; Oliver et al., 2024;
Guinder et al., 2025). Zones with high biological activity, indicated by elevated
PIC concentrations, coincide with high fCO2 fluctuations and in part increased
fCO2, indicating the effect of CO2 release due to calcification. This demonstrates
the contrasting effect of the coccolithophore bloom compared to elevated CHL
concentrations.
We confirm that a CHL peak preceded the observed high PIC concentration, that
likely represents the coccolithophore peak, along the Patagonian Shelf in January
2021 (Hopkins et al., 2015). This pattern is consistent with the bloom dynamics
of Emiliania huxleyi and supports the notion that blooms of coccolithophores
and other phytoplankton species can co-occur (Hopkins et al., 2015). The bloom
resulted in high PIC concentrations exceeding 2 mmol C m−3, which is compa-
rable to, and even higher than literature values where concentrations exceeding
1 mmol C m−3 are common along the Patagonian Shelf, typically attributed to
Emiliania huxleyi (Balch et al., 2014; Hopkins et al., 2015; Oliver et al., 2024).
As observed in other blooms, the pattern of PIC concentration follows the 200m
isobath (Gil et al., 2019) and the spatial extent of the bloom appears to coincide
with warmer temperatures, aligning with (Oliver et al., 2024), who noted that the
spatial extent of coccolithophore blooms in that region is defined by temperature
limitation.

a.4.4 Implications and Recommendations for Future

a.4.4.1 Implications for models and neural network gap-filling

Small-scale variations are often missed by lower-frequency observations, can be
lost during regridding in synthesis products (e.g., the monthly 1°×1° grid in SO-
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CAT; Bakker et al., 2016), or through gap-filling procedures, and are frequently
not accurately represented in models used to estimate carbon budgets. For in-
stance, strong fCO2 gradients at the edges of blooms and eddies and short-term
bloom dynamics cannot be resolved at a monthly 1°×1° resolution. This limita-
tion makes low-resolution models less ideal for estimating local fCO2 dynamics, as
small-scale processes are not adequately represented. This could lead to underes-
timating changes in the carbon budget, which is crucial for understanding climate
change impacts. To address discrepancies between global ocean biogeochemistry
models and observations (Hauck et al., 2020; Rodgers et al., 2023; Friedlingstein
et al., 2025), processes at various scales should be taken into account (e.g. Jersild
et al., 2021; Hewitt et al., 2022; Ford et al., 2023; Rodgers et al., 2023; Smith
et al., 2023; Couespel et al., 2024; Beech et al., 2025; Nielsen et al., 2025) as well
as high-resolution measurements, particularly in highly variable regions such as
e.g. eddy-rich regions (e.g. Leseurre et al., 2022; Guo and Timmermans, 2024b;
Morgan et al., 2025; Song et al., 2025). Looking ahead, accurately resolving these
processes with the aid of sailboats and uncrewed surface vehicles (e.g. Patterson
et al., 2025) at small temporal and spatial scales is necessary. This will become in-
creasingly important, as biogeochemical models are developed at kilometer scale
and enable more accurate estimates of the ocean carbon budget. Research shows
that incorporating metrics related to eddy activity into neural networks improves
the accuracy of fCO2 reconstructions, especially on a regional and seasonal scale
(Wang et al., 2025b).
We demonstrate that the CO2 dynamics can vary between different types of
blooms. Specifically, coccolithophore blooms, which are characterized by high
PIC concentrations, can have an opposite effect on fCO2 compared to CHL, and
mixed blooms can obscure the signals. Our findings indicate that CHL, often
used in neural-network methods as a proxy for estimating missing fCO2 (e.g.
Rödenbeck et al., 2015; Fay et al., 2021), does not fully capture the biological
processes and is not an ideal predictor or proxy. We recommend including PIC as
a predictor in these estimations to improve the representation of different bloom
dynamics and variability associated with eddies at a high resolution.
Recent developments, such as a global 8-day fCO2 dataset at a finer spatial reso-
lution of 0.25°×0.25° (Gregor et al., 2024) show the potential of higher-resolution
datasets to improve carbon flux estimates. Moving towards even higher-resolution
neural network models – such as those by Duke et al., 2023; Duke et al., 2024
with resolutions of approximately 1/12° × 1/12° – is especially valuable in key
dynamic regions, enabling more accurate reconstructions of ocean carbon fluxes
and better capturing small-scale variability critical for understanding air-sea CO2

exchange. However, these high-resolution neural networks need sufficient training
data, calling for continuous sampling on sailboats.
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a.4.4.2 Importance of enhanced monitoring and future applications of sailboats

Climate change is altering the ocean carbon cycle in complex and regionally vari-
able ways, thereby increasing the urgency for expanded high-frequency in situ
fCO2 observations. With the rise in marine heatwaves (Frölicher et al., 2018) and
enhanced mesoscale temperature variance (Guo et al., 2022), the thermal com-
ponent of fCO2 variations is likely being altered as well, potentially impacting
mesoscale-driven CO2 exchange (Guo and Timmermans, 2024b). As the ocean’s
temperature dynamics shift, the contribution of thermal and non-thermal influ-
ences on fCO2 may be disrupted, potentially affecting the ocean’s role in global
carbon cycling.
At the same time, climate change is driving shifts in the small-scale physical and
biological phenomena that modulate fCO2 and thereby CO2 fluxes, making it
increasingly important to expand observational networks that effectively monitor
these dynamics, with particular focus on biologically active and eddy-rich regions,
to better understand their evolving influence on regional flux variability and the
carbon cycle (e.g. Gray, 2024; Prend et al., 2025). This becomes especially im-
portant as phenomena such as the Agulhas leakage intensify (Biastoch et al.,
2009; Rouault et al., 2009; Sebille et al., 2009; Beech et al., 2022) and Southern
Ocean eddy activity is projected to shift polewards and intensify (Beech et al.,
2025; Mortenson et al., 2025). Meanwhile, coastal regions like the Patagonian
Shelf and the Celtic Sea are experiencing increased bloom frequency and shifts
in phytoplankton community composition (Dai et al., 2023; Nocera et al., 2024;
Demasy et al., 2025).
Prend et al., 2025 recommend a coordinated deployment of USVs in key regions
with high eddy-driven air–sea flux variability. We highlight that sailboats, al-
though not subject to targeted deployment due to their independent sailing routes,
provide a large spatiotemporal high-resolution dataset that complements the ex-
isting network of USVs, moorings and ships. With upcoming races featuring a
fleet of sailboats equipped with various measurement devices – as exemplified by
the Vendée Globe 2024, where four sailboats measured fCO2 and one carried a
plankton imaging platform (Pollina et al., 2022) – we anticipate capturing many
more small-scale processes and gaining a deeper understanding of their dynamics.
Because these sailboats sail through eddies and blooms at different times, the
combined data will effectively create a time-lapse view of evolving physical and
biological features, offering unique insights into temporal changes that are diffi-
cult to capture with fixed or single-platform observations.
Sailboats are able to monitor these changes, complementing the ocean observ-
ing network by providing high-frequency measurements that can detect emerg-
ing climate-driven changes in ocean carbon dynamics earlier than many other
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platforms (Carter et al., 2019). We recommend adding fluorescence sensors and
plankton imaging systems (e.g. Pollina et al., 2022) alongside fCO2 measurement
devices to better understand the role of biology in modulating fCO2, especially
the counteracting effects of CHL and PIC in blooms of various stages.

A.5 C O N C L U S I O N

Many ocean regions lack sufficient observational coverage, particularly in areas
where high variability occurs at small spatial and temporal scales, challenging
accurate assessment of carbon fluxes. Emerging observational platforms such as
sailboats measuring during racing events provide a unique opportunity to cap-
ture these small-scale processes, complementing traditional ship-based and auto-
nomous systems (Olivier et al., 2022; Landschützer et al., 2023; Zhang et al., 2023;
Prend et al., 2025; Patterson et al., 2025).

In this study, we demonstrate how high-resolution fCO2 measurements collected
by sailboats across the Atlantic and Southern Ocean between 2018 and 2023 cap-
ture small-scale ocean features such as eddies and algae blooms and provide new
insights into the physical and biological drivers of sea surface fCO2 variability.
Our observations confirm the thermal dominance of fCO2 variability between
approximately 40°N and 40°S and identify the Agulhas region as a key area in-
fluenced by temperature and other physical phenomena, namely small-scale eddy
activity. Meanwhile, in regions such as the Celtic Sea and the Patagonian Shelf,
biological processes exert a dominant influence on fCO2 variability.
The high-frequency sailboat observations reveal the key role of eddies and algae
blooms in driving fCO2 variability. In the Agulhas region, distinct eddy regimes
demonstrate characteristic variations in fCO2. Cyclonic eddies emerge as biolog-
ically productive regions with lower fCO2. Anticyclonic eddies show increased
fCO2 concentrations than cyclonic eddies, while cyclonic eddies have lower fCO2

compared to anticyclones and their surroundings.
These patterns, along with sharp fCO2 gradients at the eddy edges, suggest po-
tential misrepresentations in coarser-scale models and regridded data products
as used for the Global Carbon Budget (Friedlingstein et al., 2025), consequently
underestimating regional and global carbon flux changes. The identification of
atypical eddies further highlights the complexity of these systems and under-
scores the need for detailed, high-resolution monitoring.
Beyond eddies, we observed significant fCO2 variability associated with algae
blooms in the Celtic Sea and along the Patagonian Shelf. The Celtic Sea bloom
followed a "classical" pattern where high CHL concentrations caused reduced
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fCO2. In contrast, the Patagonian Shelf featured a more complex, mixed-stage
bloom, where a decaying CHL-dominated bloom and a peaking coccolithophore
bloom (high in PIC) counteracted each other’s effects on fCO2, causing large
short-term fluctuations up to 100 µatm.
These small-scale variations (e.g. strong fCO2 gradients at the edges of eddies
and bloom dynamics) are often missed in infrequent measurements, when regrid-
ded to coarser resolutions, or in models, leading to inaccuracies in estimating
fCO2. We conclude that CHL, commonly used as a predictor for estimating fCO2

(e.g. Rödenbeck et al., 2015; Fay et al., 2021), does not fully capture biological
processes, suggesting that PIC should also be considered in these estimations for
improved accuracy of CO2 release due to calcification.
This study presents a detailed case for three distinct small-scale features, high-
lighting the potential of the sailboat dataset. Given the accelerating impacts of
climate change on bloom dynamics, eddy intensity, and temperature regimes,
expanding high-frequency in situ fCO2 observations is critical. While ships and
autonomous platforms provide targeted measurements, sailboats offer valuable
complementary coverage, sampling across space and time with a natural time-
lapse effect as fleets encounter dynamic features at different moments. Upcoming
sailboat races with a fleet, equipped with different sensors such as fluorescence and
plankton imaging systems (the latter already used during Vendée Globe 2024 ),
will further enhance our capacity to resolve and understand biological and phys-
ical influences on ocean carbon fluxes.

Sailboat-based fCO2 observations improve our understanding of highly variable
and underobserved ocean regions by capturing key small-scale processes at a high
spatiotemporal resolution. These insights are vital for refining models and improv-
ing regional to global estimates of the ocean carbon sink in a rapidly changing
climate.

A.6 DATA AVA I L A B I L I T Y

The sailboat data used and discussed in this article are freely available via
www.socat.info. The code will be made publicly available upon submission or
publication of this work.
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(SOCAT) is an international effort, endorsed by the International Ocean Carbon
Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SO-
LAS) and the Integrated Marine Biosphere Research (IMBeR) program, to deliver
a uniformly quality-controlled surface ocean CO2 database. The many researchers
and funding agencies responsible for the collection of data and quality control are
thanked for their contributions to SOCAT. The altimetric Mesoscale Eddy Trajec-
tories Atlas (META3.2 DT) was produced by SSALTO/DUACS and distributed
by AVISO+ (https://aviso.altimetry.fr) with support from CNES, in col-
laboration with IMEDEA (DOI: 10.24400/527896/a01-2022.005.220209 for the
META3.2 DT allsat version and 10.24400/527896/a01-2022.006.220209 for the
META3.2 DT twosat version).

A.8 S U P P L E M E N TA RY I N FO R M AT I O N

Table A.2: Overview of sailing races and fCO2 observations collected by Team Malizia.∑
305,405 fCO2 observations over 112,369 km measured during 2 round-the-

world races, 4 North Atlantic Races, and 4 transfers
Name of Race Period of Time # of fCO2 Distance Region

observations covered
(between samples)

Défi
Azimuth

21-Sep-2018 –
22-Sep-2018 5,192 297 km North Atlantic

Bermudes
1000

09-May-2019 –
17-May-2019 67,561 4,158 km North Atlantic

Rolex
Fastnet

03-Aug-2019 –
05-Aug-2019 17,249 1,296 km North Atlantic

Transfer
Brest

03-May-2019 –
04-May-2019 3,685 165 km North Atlantic

Transfer
Les Sables

09-Oct-2020 –
11-Oct-2020 711 344 km North Atlantic

Transfer
Monaco

02-Jun-2019 –
11-Jun-2019 5,996 2,391 km North Atlantic

Transfer
Bretagne

14-Aug-2018 –
16-Aug-2018 9,422 402 km North Atlantic

Vendée
Arctic

03-Jul-2020 –
15-Jul-2020 15,001 6,157 km North Atlantic

Vendée
Globe

08-Nov-2020 –
28-Jan-2021 109,919 53,480 km Atlantic,

Southern Ocean
The Ocean Race
(multi-legged)

26-Feb-2023 –
29-May-2023 69,377 43,679 km Atlantic,

Southern Ocean
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Figure A.6: K-Means clustering of fCO2
data from two circumnaviga-
tion races into thermal and
non-thermal driven compo-
nents.

Figure A.7: Distribution of sailboat data
categorized by hemisphere,
season, ocean basin, and
distinguishing between open
ocean and coastal regions.

Figure A.8: Thermally and non-thermally
dominated sailboat tracks,
with satellite SST, averaged
from December 1 to Decem-
ber 6, 2020, shown as the
background.

Figure A.9: SLA in the Agulhas region
with sailboat tracks colored
by whether fCO2 is non-
thermally or thermally domi-
nated. Background shows SLA
from December 4, 2020, with
0.2 m contour lines.

Table A.3: Sea surface temperature and sea level anomalies of eddies in the Agulhas re-
gion from December 1st to December 6th, 2020. The bold line marks an atypi-
cal eddy, characterized by anomalies of opposite sign, indicative of a warm-core
cyclonic eddy.
Date SST Anomaly Sea Level Anomaly
01-Dec-2020 -3.1315 -0.2368
02-Dec-2020 -1.5745 -0.5411
03-Dec-2020 0.1290 -0.4496
04-Dec-2020 -1.9715 -0.4853
04-Dec-2020 -1.1651 -0.1486
05-Dec-2020 -1.1336 -0.3520
05-Dec-2020 -1.7167 -0.4622
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Figure A.10: Sailboat tracks colored by location relative to eddies (inside AE, inside CE,
outside) overlaid on daily sea level anomaly (background) and META3.2
DT all-satellite long-lived eddy contours.

Figure A.11: Dominant fCO2 drivers (thermal or non-thermal) derived by Takahashi de-
composition (Takahashi et al., 2002) along the sailboat track in the Agulhas
region (lines of points) on top of daily sea level anomaly (background) and
META3.2 DT all-satellite long-lived eddy contours.
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Figure A.12: Temperature time series along sailboat tracks in the Agulhas region.

Figure A.13: Relationship between fCO2 and satellite-derived (a) (CHL) and (b) PIC in
the Celtic Sea during an algae bloom in May 2019.

Figure A.14: Map of the Celtic Sea algae bloom with the background showing an 8-day
composite of PIC concentration data from May 9 to May 16, 2019, and the
line showing fCO2 measured by the sailboat Seaexplorer. Red boxes indicate
regions where fCO2 changed by ≥10 µatm in ≤ 10 minutes minutes.
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Figure A.15: Maps of Celtic Sea bloom phases in 2019. (a) Bloom initiation, (b) bloom
peak, (c) bloom termination. Phenological metrics are derived from Nichol-
son et al., 2025.

Figure A.16: Relationship between fCO2 and satellite (a) CHL and (b) PIC on the Patag-
onian Shelf during an algae bloom in January 2021.

Figure A.17: Maps of Patagonian Shelf bloom phases in 2020/21. (a) Bloom initiation,
(b) bloom peak, (c) bloom termination. Phenological metrics are derived
from Nicholson et al., 2025.

Figure A.18: Satellite SST (Huang et al., 2021) averaged from January 6 to January 5,
2021. Contours depict PIC concentrations derived from an 8-day composite
from January 1 to January 8, 2021.
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A B S T R AC T

The sailboat Seaexplorer collected underway sea surface partial pressure of CO2
(pCO2) data for 129 days (2018–2021), including an Antarctic circumnavigation.
By comparing ensembles of data-driven air-sea CO2 fluxes computed with and
without sailboat data and applying a detection algorithm, we show that these sail-
boat observations significantly increase the regional carbon uptake in the North
Atlantic and decrease it in the Southern Ocean. While compensating changes
in both basins limit the global effect, the Southern Ocean - particularly frontal
regions (40◦S–60◦S) during summertime - exhibited the largest air-sea CO2 flux
changes, averaging 20% of the regional mean. Assessing the sensitivity of the
air-sea CO2 flux to measurement uncertainty, the results stay robust within the
expected random measurement uncertainty (± 5 µatm) but remain undetectable
with a measurement offset of 5 µatm. We thus conclude that sailboats fill essential
measurement gaps in remote ocean regions.

B.1 I N T RO D U C T I O N

The ocean plays a critical role in regulating Earth’s climate by absorbing more
than a quarter of anthropogenically emitted carbon dioxide (CO2) from the at-
mosphere on an annual basis (Friedlingstein et al., 2022; Gruber et al., 2023;
DeVries et al., 2023). However, climate change has already started to alter the
carbon uptake capacity of the ocean (Friedlingstein et al., 2022; Le Quéré et al.,
2007), thus monitoring the sea surface CO2 content is crucial for understanding
the Earth system as a whole. Although there has been a significant community
effort resulting in the collection and synthesis of sea surface CO2 observations
(Bakker et al., 2016; Pierrot et al., 2009) in recent decades, and methods to up-
scale the existing measurements (Landschützer et al., 2016; Bennington et al.,
2022b; Iida et al., 2021; Rödenbeck et al., 2022; Gregor and Gruber, 2021; Chau
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et al., 2022) we find a significant difference between hemispheres. While the North-
ern Hemisphere has been regularly sampled in the recent past being the result of
the community-driven measurement efforts resulting from the Ship Of Opportu-
nity (SOOP) program (Pierrot et al., 2009; Jiang et al., 2019), key regions in the
ocean carbon and heat uptake such as the Southern Ocean remain undersampled
(Bakker et al., 2016; Pfeil et al., 2013; Sabine et al., 2013). The resulting uncer-
tainty in air-sea CO2 fluxes is problematic (Gloege et al., 2021; Hauck et al., 2023)
and limits our ability to resolve and interpret observed and modelled variations in
the carbon sink (McKinley et al., 2020; DeVries et al., 2017; Mongwe et al., 2018).
This is concerning as the Southern Ocean alone is estimated to be responsible for
40% of the marine anthropogenic CO2 and 75% of the marine excess heat uptake
(Landschützer et al., 2016; Frölicher et al., 2015).

New techniques, including new sensors on biogeochemical floats, have started
to address this observational gap, but their indirect measurements of pCO2 - cal-
culated from pH and salinity measurements—remain uncertain (Bushinsky et al.,
2019a; Gray et al., 2018; Williams et al., 2017). Additionally, Antarctic operations
from Saildrones (Sutton et al., 2021) have contributed to filling the measurement
gaps and are suggested to improve the air-sea CO2 flux estimates (Heimdal et al.,
2024), however, thus far no continuous measurement program exists. Given the
limitations of the existing observational network and the moderate success of gap-
filling methods in further improving pCO2 estimates (Gloege et al., 2021; Hauck
et al., 2023), it is essential to explore new opportunities to fill observational gaps.

Here we show that a novel observing platform is capable of improving our es-
timates of the air-sea CO2 exchange. Since 2018, the high-performance IMOCA
class 60 sailboat “Seaexplorer-Yacht Club de Monaco“(until 2019 “Malizia”) has
collected pCO2 observations (hereinafter: Seaexplorer data) while competing for
129 days in round-the-world racing events, including an Antarctic circumnaviga-
tion race from November 2020 to January 2021 (Landschützer et al., 2023). We
show that the use of a single platform (“Seaexplorer-Yacht Club de Monaco”),
and the participation in a single race in the Southern Ocean has a measurable
effect on data-driven air-sea CO2 flux estimates. This impact persists even when
considering its expected measurement uncertainty of ±5 µatm (Lauvset et al.,
2018). Thus sailboats have the potential to complement and improve the existing
observing system. Nevertheless, we further illustrate that high standard measure-
ments are crucial in detecting changes in the air-sea flux and that measurement
biases still pose a challenge for detecting improvements in the air-sea CO2 flux
estimates.

92



B.2 results

B.2 R E S U LT S

global effect of adding sailboat pco2 data Figure B.1a,b show
the air-sea CO2 fluxes calculated based on the upscaling of all available pCO2

measurements including (ensemble 1=E1) and excluding Seaexplorer data (en-
semble 2=E2). The ensembles were generated using SOM-FFN, a 2-step neural
network method (Landschützer et al., 2013) — see “Methods” — regularly used
in the Global Carbon Budget (Friedlingstein et al., 2022) and the recent IPCC
assessment (Canadell et al., 2021). The significant impact of adding all under-
way pCO2 observations from the sailboat on the air-sea CO2 flux from November
2020 through January 2021 is further illustrated in Fig. B.1c. We chose this time
period from November 2020 to January 2021 as it showed the largest flux impact
by adding sailboat data, which is related to the circumnavigation race where Sea-
explorer participated (see black lines in Fig. B.1 and in Supplementary Fig. B.1).
Interestingly, significant differences between E1 and E2 in the North Atlantic
(largely negative shown in blue: E1<E2) and the Southern Ocean (largely posi-
tive shown in red: E1>E2) in the air-sea CO2 fluxes are opposing each other (Fig.
B.1), resulting in an insignificant change when integrated globally (i.e. an annual
flux difference in 2021 from - 2.55 to - 2.51±0.4 Pg C yr−1), which has also been
suggested by Landschützer et al., 2023.

Considering that both the North Atlantic and the Southern Ocean are predom-
inantly carbon sinks from 2018 onwards, the addition of Seaexplorer data reveals
increased carbon uptake in the North Atlantic and reduced uptake in the South-
ern Ocean (Fig. B.1 and Supplementary Fig. B.1) similar to previous findings
(Bushinsky et al., 2019a).

Differences in the flux estimates are visible across all ocean regions even away
from the sailboat tracks. The neural network’s ability to estimate changes in
air-sea CO2 flux distant from the sailboat tracks originates from its methodol-
ogy, combining clustering and regression. This process involves assimilating data
from observations made in distant yet biogeochemically comparable ocean regions.
However, in many regions, these differences fall within the noise of the method
(Storey, 2002) (see “Methods”) and are thus not detected as significant changes
(hatches in Figs. B.1 and B.2). This is most visible in the high-latitude ocean
regions and is likely due to the poor constraint of the air-sea CO2 flux estimate
in highly heterogeneous and sparsely observed regions (Gloege et al., 2021; Hauck
et al., 2023). Focusing on the detectable changes, irrespective of the background
fluxes, the absolute magnitude of the difference between flux estimates provides
a better insight (Fig. B.2).
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Figure B.1: (a) Timeseries of Seaexplorer data availability per basin and b-d) air-sea CO2
fluxes in ensemble 1 (E1) and 2 (E2) and their difference averaged over Nov
2020–Jan 2021. (b) Air-sea CO2 flux in E1 (based on SOCATv2022 including
Seaexplorer data). (c) Air-sea CO2 flux in E2 (based on SOCATv2022 exclud-
ing Seaexplorer data). Positive=carbon outgassing, negative=carbon uptake.
(d) Difference between E1 and E2. Hatching indicates significant differences.
Blue indicates increased carbon uptake due to the addition of Seaexplorer
data, red indicates reduced carbon uptake due to the addition of Seaexplorer
data. Black lines in (b,d) represent sailboat tracks from 2018 to 2021. Figures
generated using a mapping package for MATLAB (Pawlowicz, 2020).

impact of adding sailboat pco2 data in the southern ocean
In less frequently monitored regions such as the Southern Ocean, even adding
Southern Ocean CO2 measurements from a single track results in a significant
difference between E1 and E2 (Fig. B.2a)—acknowledging a possible influence of
sailboat observations from other oceanic regions that were equally excluded.

This aligns with previous findings based on synthetic data (Heimdal et al., 2024)
demonstrating that few additional pCO2 sampling by Saildrone would potentially
improve the air-sea CO2 flux reconstructions most in the Southern Ocean (south
of 35◦S). The reconstructions of our air-sea CO2 flux differ most significantly
between 40◦S and 60◦S and with maximum differences of 0.77 mol C m−2 yr−1,
reflecting the rate of carbon exchange between the atmosphere and the ocean
per unit area, in the time period from 1982 to 2021 in the Southern Ocean (Figs.
B.2b and B.3a). Overall, the absolute air-sea CO2 fluxes significantly differed on
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Figure B.2: The absolute magnitude of differences between the air-sea CO2 flux E1 (based
on SOCATv2022 including Seaexplorer data) and the air-sea CO2 flux E2
(based on SOCATv2022 excluding Seaexplorer data). (a) Map shows the ab-
solute magnitude of differences between carbon flux estimates averaged over
Nov 2020–Jan 2021. Hatching indicates significance. Black lines represent
sailboat tracks from 2018 to 2021. Blue lines from north to south: Northern
Boundary, Subantarctic Front, Polar Front. Figure generated using a map-
ping package for MATLAB (Pawlowicz, 2020). (b,c) Significant differences
between air-sea CO2 flux estimates per year and (b) latitude and (c) longi-
tude.

average by 0.15 mol C m−2 yr−1 in the Southern Ocean (Supplementary Fig. B.2),
which is roughly 20% of the regional mean flux density, thus leaving a significant
imprint on the regional flux.

The impact of including the Seaexplorer data in the air-sea CO2 flux calcula-
tions is the largest within the vicinity of the Subantarctic Front (2-degree grid
cells or approximately 200 km radius) closely followed by the Northern Bound-
ary (Figs. B.2a and B.3c). Although the sailboat did not cross the Polar Front,
significant differences emerge in its vicinity (Figs. B.2a and B.3c) due to the ex-
trapolation of the data using the neural network algorithm. This pattern coincides
with the coverage of the Seaexplorer data, as the region along the Subantarctic
Front contained most Seaexplorer data with an overall 11% of the area covered
by sailboat tracks when binned into a 1×1 degree grid, followed by 9% along the
Northern Boundary, and 2% in the vicinity of the Polar Front.
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Figure B.3: Magnitude of significant differences between the air-sea CO2 flux E1 (based
on SOCATv2022 including Seaexplorer data) and the air-sea CO2 flux E2
(based on SOCATv2022 excluding Seaexplorer data). (a) Histogram of the
magnitude of significant flux differences in the Southern Ocean and the North
Atlantic. (b,c) Time series of the magnitude of significant differences between
carbon flux estimates (based on SOCATv2022 with and without Seaexplorer
data) as well as the Seaexplorer data availability per basin (b) on a global
scale and (c) on regional scales.

Regionally, we find the largest differences during the Antarctic circumnavigation
race between Nov 2020–Jan 2021 exceeding 0.4 mol C m−2 yr−1 in the interfrontal
region south of Tasmania and New Zealand (Figs. B.1 and B.2a). Although the
region south of Tasmania and New Zealand is relatively well-observed for the
Southern Hemisphere (Bakker et al., 2016), the data availability close to frontal
zones is insufficient considering the variability within this region (Chapman et al.,
2020). The frontal zones are characterized by enhanced vertical mixing and high
biological productivity. In fact, the pCO2 signal measured by Seaexplorer-Yacht
Club de Monaco there is oversaturated and distinctly higher than the surrounding
area (Landschützer et al., 2023). Our results demonstrate the high potential of
sailboat pCO2 data in improving the air-sea CO2 flux estimate in frontal regions.

Although our results confirm the finding that regional differences in the air-sea
CO2 flux are attributed to the frontal zones in the Southern Ocean, the pre-
viously proposed changes south of the Polar Front (Landschützer et al., 2023)
probably stem from noise in the methodology and not from a detectable sig-
nal. This underscores the need for signal-to-noise detection methods as presented
here, or alternatively, the use of synthetic data experiments using large ensembles
(Gloege et al., 2021; Heimdal et al., 2024) when comparing different air-sea CO2

flux estimates from neural networks.
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impact of adding sailboat pco2 data in the north atlantic
Compared to the Southern Ocean, individual races in the North Atlantic are less
impactful (Figs. B.2 and B.3c), largely owing to the already denser observing net-
work in place where the addition of a single measurement track does not cause
large significant changes in the already robust reconstruction. Nevertheless, we
still observe that sailboat pCO2 measurements have a significant regional impact
since Seaexplorer data covers a total of 7% of the North Atlantic area (when
binned into 1×1◦ pixels), in comparison to only 3% of the Southern Ocean area.

The air-sea CO2 fluxes significantly differed regionally peaking at 1.26 mol C m−2 yr−1

in the North Atlantic between 1982 and 2021 (Fig. B.3a), which is thus higher
than the maximum flux difference of 0.77 mol C m−2 yr−1 in the Southern Ocean.
However, the mean difference of 0.08 mol C m−2 yr−1 in the North Atlantic is
substantially smaller than observed in the Southern Ocean (0.15 mol C m−2 yr−1)
(Supplementary Fig. B.2), considering the historic coverage of the SOOP program.
In recent years however, we also find a reduction in North Atlantic measurements
(www.socat.info; Bakker et al., 2016), thus even in the better observed North
Atlantic the sailboat data might gain more importance.

temporal evolution Comparing the flux reconstructions E1 and E2 over
time, we see the greatest impact of adding Seaexplorer data from 2018 to 2021
in the air-sea CO2 flux estimates in the latter years of the time series (Fig. B.3).
About 91% of the significant differences between E1 and E2 occurred between
2018 and 2021, which is when the sailboat pCO2 observations were measured. The
pCO2 data collected by Seaexplorer-Yacht Club de Monaco affects the air-sea CO2

flux estimate only up to ca. 5 years prior to the Antarctic circumnavigation race.
This is not immediately obvious, since the applied method extrapolates infor-
mation both in space and time. It learns from all available observations when
clustering the ocean into biogeochemical provinces and estimating the missing
pCO2 values by using previously established relationships between already avail-
able pCO2 and other environmental variables within each province. However, a
similar observation, where differences become smaller as we look further back in
time, has been made when BGC Argo data were added (Bushinsky et al., 2019a).
This is explained by trend variables (i.e. atmospheric xCO2) used in the method
(Landschützer et al., 2013) limiting the potential of the method when extrap-
olating the missing pCO2 values into the past (Bushinsky et al., 2019a). As a
consequence, we expect that a longer time series is required to change the in-
terannual to decadal air-sea CO2 flux trends. Nevertheless, with upcoming races
announced (round-the-globe racing events taking place every other year) and with
the increasing willingness among skippers to contribute with observations, we see
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a long term potential to increase pCO2 data in remote ocean regions to overcome
this limitation.

The addition of Seaexplorer data has the highest impact on austral summer,
whereas it has little to no impact on austral wintertime fluxes (Fig. B.3b,c), mir-
roring the seasonal availability of data and illustrating the weak connectivity
between seasons identified in our neural network. Therefore, sailboat measure-
ments – unlike Saildrone campaigns (Sutton et al., 2021; Heimdal et al., 2024)
– currently are unable to bridge the wintertime discrepancy between float-based
and ship-based flux estimates (Bushinsky et al., 2019a). Even though sailboat
pCO2 data have limited added value during harsh winter conditions in the South-
ern Ocean where no sailboat racing events take place, we show that sailboats
support the existing observing system of Argo floats (Bushinsky et al., 2019a;
Gray et al., 2018; Johnson et al., 2017), Saildrones (Sutton et al., 2021; Meinig
et al., 2019), moorings, drifting buoys, and wave gliders.

sensitivity of air-sea co2 flux to measurement uncertainty
Finally, we also tested whether potential measurement uncertainties or even mea-
surement bias have an effect on the air-sea CO2 flux estimate. We considered
a random measurement uncertainty of ±5 µatm (ensemble E3) and a constant
measurement offset of 5 µatm (ensemble E4) (Fig. B.4) as the data set qual-
ity flag assigned by SOCAT is 5 µatm. Figure B.4a illustrates that a random
measurement uncertainty of ±5 µatm does not affect the air-sea CO2 flux at a
basin-wide level in the North Atlantic and the Southern Ocean, as the mean dif-
ference (E1–E3) is near zero for both basins (Fig. B.4a). However, locally the
air-sea CO2 flux can be significantly impacted by up to 0.65 mol C m−2 yr−1

in the North Atlantic during individual months and up to 0.32 mol C m−2 yr−1

in the Southern Ocean (Fig. B.4a). This highlights the importance of accounting
for measurement uncertainty when investigating high-frequency and small spatial
scale fluxes which will become increasingly important as we move towards marine
carbon accounting, marine carbon dioxide removal and national carbon stocktake
efforts (United Nations Framework Convention on Climate Change, 2015; Lebling
et al., 2022).
We also explore potential limitations of the system and imperfect calibration over
long offshore racing events by testing a constant measurement offset of 5 µatm.
This causes a global bias up to 0.06 Pg C yr−1 (E1–E4) in 2021 (Supplementary
Table B.1). On the one hand this is only roughly 2.5% of the global annual uptake,
showing the rather small sensitivity of the air-sea CO2 flux, to biases in a single
platform. However it is larger than the global flux change from adding Seaex-
plorer data of 0.04 Pg C yr−1 (Supplementary Table B.1). Thus, our comparison
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Figure B.4: Sensitivity of air-sea CO2 flux to measurement uncertainty. (a,b) Histogram
of significant differences between flux estimate E1 (based on SOCATv2022
with original Seaexplorer data) and E3 and E4 (based on SOCATv2022 with
modified Seaexplorer data) in the Southern Ocean and the North Atlantic.
(a) E3 modification = addition of random measurement uncertainty, (b) E4
modification = addition of constant measurement offset. (c) Map shows the
absolute magnitude of differences between the original flux estimate E1 and
the E4 flux estimate including a sailboat measurement offset averaged over
Nov 2020–Jan 2021. Hatching indicates significance. Black lines represent
sailboat tracks. Figures generated using a mapping package for MATLAB
(Pawlowicz, 2020).

highlights that flux changes from measurements from 129 days at sea remain
undetectable if the measurement system does not follow the highest standards,
supporting the need for a CO2 reference network (Wanninkhof et al., 2019). How-
ever, while important globally, the constant measurement biases are still smaller
at basin scale. The mean absolute difference in the air-sea CO2 flux attributed to
the offset is 0.03 mol C m−2 yr−1 in the North Atlantic and only 0.07 mol C m−2

yr−1 in the Southern Ocean (Fig. B.4b), which is smaller than the mean differ-
ences caused by adding Seaexplorer data. Particularly in the North Atlantic, the
flux estimate proves to be more robust towards a potential measurement offset
than the Southern Ocean flux estimate. This robustness is again attributed to the
already denser observations from different platforms. This however also indicates
the need for cross-calibration of measurements in remote regions, as measurement
biases have a larger impact there. Locally, the air-sea CO2 flux densities (based
on E1-E4) significantly differed up to 0.76 mol C m−2 yr−1 in the North At-
lantic during individual months and up to 0.38 mol C m−2 yr−1 in the Southern
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Ocean. The significant differences occur in proximity to the sailboat tracks and
peak between 40◦S and 60◦S (Fig. B.4c). Equipping more sailboats with a pCO2

measurement device during the round-the-world races would help to reduce the
impact of potential measurement uncertainties and increase the accuracy of our
flux estimate. Considering that many studies thus far do not include or assess the
impact of measurement uncertainty in their pCO2 observations (Landschützer et
al., 2016; Rödenbeck et al., 2015), we hereby show the importance of measure-
ment uncertainty analyses at a regional scale to provide a more accurate estimate
of high-frequency fluxes.

B.3 D I S C U S S I O N

We quantify the impact of underway pCO2 data from sailboats on the air-sea
CO2 exchange by comparing the air-sea CO2 flux estimates based on pCO2 mea-
surements of the SOCAT database – with and without the Seaexplorer data. We
show that measuring pCO2 underway, and in particular during round-the-world
sailing events, improved air-sea CO2 flux reconstruction at regional scales, partic-
ularly in under-sampled regions like the Southern Ocean. However, we find that
also in the more densely observed North Atlantic, significant flux density changes
occur locally. The flux reconstructions differ the most between 40◦S and 60◦S,
particularly within 200 km of the Subantarctic Front during austral summertime,
where the largest disagreement in air-sea CO2 flux reconstructions exist (DeVries
et al., 2019; Ritter et al., 2017). While the addition of Seaexplorer data region-
ally increases the estimated carbon sink in the North Atlantic, it reduces the
carbon sink in the Southern Ocean similar to previous studies (Bushinsky et al.,
2019a). Even though sailboat data cannot help to close the winter discrepancy
between float-based and ship-based flux estimates (Bushinsky et al., 2019a), due
to the seasonal sampling bias, it supports the existing observational platforms
(www.socat.info). Utilizing this data, particularly in combination with various
other platforms, particularly from Argo floats and Saildrones in the Southern
Ocean (Djeutchouang et al., 2022), can reduce air-sea CO2 flux uncertainties.
While the zonal summertime sampling alone may not suffice to address seasonal
biases, and substantial improvement in the Southern Ocean flux reconstructions
is better achieved through year-round meridional sampling (Djeutchouang et al.,
2022), sailboats still contribute to an improved reconstruction of the air-sea CO2

fluxes in the Southern Ocean.

Rare underway pCO2 observations collected close to the frontal zones changed
the air-sea CO2 flux estimate the most and can help to better understand these
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regions and their role in carbon uptake and the longer-term variation of the
air-sea CO2 exchange. Compared to the Southern Ocean, races in the North At-
lantic were less impactful due to the historical stronger observing network there.
However, since the majority of races took place there, we still see sailboat pCO2

observations having a significant impact on regional air-sea CO2 flux densities.
Thus, our analysis suggests that a declining number of observations in the North
Atlantic as we currently see (www.socat.info), may lead to a significant impact
on the global ocean carbon flux estimates (Canadell et al., 2021).

Added random measurement uncertainty (±5 µatm) has a low impact on the
overall air-sea CO2 flux estimate due to compensating errors. However, we illus-
trate the importance of including measurement uncertainty locally when investi-
gating high-resolution fluxes. On the contrary, a potential measurement bias of
5 µatm results in a global flux bias larger than the detectable change due to 129
days of sailboat measurements. Although a measurement uncertainty of 5 µatm
marks the lower end of achievable uncertainty ranges (Arruda et al., 2019; Olivier
et al., 2022), we show that even with this lower-end uncertainty fails to reveal
any detectable impact when adding 129 days of Seaexplorer data. The impact of
the measurement bias was more pronounced in the data-sparse Southern Ocean
flux estimate, whereas the North Atlantic flux estimate proved to be more robust
towards a measurement offset as a result of the denser existing measurement net-
work (Bakker et al., 2016). Thus, our findings indicate that the quantity of the
data has a greater influence on accuracy than the data quality in densely observed
ocean areas.

We show the importance of cross-calibration and having a fleet simultaneously
measuring pCO2 while closely sailing together. In this study, we detect any
changes in the air-sea CO2 flux and attribute them to the integration of sailboat
pCO2 observations. Although we show the difference induced by the Seaexplorer
data, a conclusive answer to if, and to how much, the Seaexplorer data reduce the
overall present-day uncertainty in the air-sea CO2 flux is still not provided. This
should be explored in future studies. Considering the recurrence of sailboat races,
they have the potential to improve reconstructive air-sea CO2 flux estimates on
longer timescales in the future.

B.4 M AT E R I A L S A N D M E T H O D S

surface-ocean carbon dioxide data Two sea surface carbon diox-
ide datasets were used in this study: (1) pCO2 measurements from underway
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shipboard and mooring data contained in the 1×1 degree gridded Surface Ocean
CO2 Atlas SOCATv2022 from 1982 to 2021 (Bakker et al., 2016) and (2) under-
way pCO2 measurements from the sailboat “Seaexplorer-Yacht Club de Monaco”
(until 2019 “Malizia”) during offshore sailing and training events from 2018 to
2021. The former dataset includes the latter data as well, hence we artificially
create a third dataset, where we exclude the Seaexplorer measurements from the
SOCAT gridded dataset.

To quantify the changes in air-sea CO2 fluxes based on the addition of Seaex-
plorer data, we used these 2 datasets as starting points, i.e. (1) SOCATv2022 in-
cluding Seaexplorer data (E1), and (2) SOCATv2022 excluding Seaexplorer data
(E2). To assess the impact of a potential measurement accuracy of ±5 µatm we
created two more datasets by (3) adding a random uncertainty of ±5 µatm to
the Seaexplorer data (E3) (similar to differences observed during measurement
campaigns (Arruda et al., 2019; Olivier et al., 2022) where multiple pCO2 systems
were compared to the membrane system used on sailboats) and by (4) adding a
constant measurement offset of 5 µatm to the Seaexplorer data (E4), which is in
theory possible but less likely considering the prescribed daily two-point calibra-
tion. The 5 µatm are based on the expected accuracy of flag C data in SOCAT,
however, larger differences with the same systems have also been observed in
field studies (Arruda et al., 2019; Olivier et al., 2022). The system used here is
configured with pressure measurements in the gas phase of the equilibration and
makes daily zero and span gas calibrations. For a more detailed description of the
measurements and the instrument setup and justification of the 5 µatm offset, we
refer to Landschützer et al., 2023.

pco2 mapping and air-sea co2 flux calculation Mapped esti-
mates of the sea surface pCO2 were created by applying the SOM-FFN method
to all four datasets. Here we provide a brief overview of the method, whereas
a more detailed description including evaluation can be found in (Landschützer
et al., 2013; Landschützer et al., 2014).

In the first step, a self-organizing map (SOM) clusters the ocean into 16 bio-
geochemical provinces based on common patterns in predictor variables. We used
sea-surface temperature (SST) data (Reynolds et al., 2007) (https://psl.no

aa.gov/data/gridded/data.noaa.oisst.v2.html), sea-surface salinity (SSS)
data (Good et al., 2013) (https://www.metoffice.gov.uk/hadobs/en4/

- Analyses with Gouretski and Reseghetti (2010) bias corrections applied), a
mixed layer depth (MLD) climatology (Boyer Montégut et al., 2004) (https:

//cerweb.ifremer.fr/deboyer/mld/Surface_Mixed_Layer_Depth.php),
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and a pCO2 climatology (Takahashi et al., 2009) (https://www.ncei.noaa.go

v/access/ocean-carbon-acidification-data-system/oceans/LDEO_Un

derway_Database/sumflux_2006c.txt) as predictors. In the second step, a
feed-forward neural network (FFN) establishes non-linear relationships between
the predictors and pCO2 observations within each province separately. It uses
these relationships to reconstruct the missing pCO2 values within each province.
The predictors for the FFN were SST, SSS, the MLD climatology as well as
chlorophyll-a (http://www.globcolour.info); parameter CHL1 with the GSM
L3 merging method), and the atmospheric CO2 concentration (Dlugokencky et al.,
2021) (https://gml.noaa.gov/ccgg/mbl/data.php). Prior to 1997, we used a
monthly climatology from 1998 to 2002 for chlorophyll-a, given that chlorophyll-a
became available only after the launch of satellites in 1997. The data for the FFN
are divided into a training dataset to train on and a validation dataset used for
validation within the method (Landschützer et al., 2013).

From the four reconstructed pCO2 maps described above we estimate the air-sea
CO2 flux based on a bulk gas transfer formulation with a quadratic relationship
between windspeed and transfer velocity (Landschützer et al., 2013; Wanninkhof,
1992) where we scale the mean gas transfer to a global average rate of 16.5 cm
hr−1 (Naegler, 2009). We use wind data (Hersbach et al., 2023), monthly mean
sea level pressure data (Kalnay et al., 1996) as well as sea ice concentration data
(Titchner and Rayner, 2014) for the air-sea CO2 flux calculation. We calculate
the difference between the flux estimate based on SOCAT with and without Sea-
explorer data (E1 vs. E2) to quantify the impact on the air-sea CO2 flux. We
further calculate the difference between the flux estimate based on Seaexplorer
data with and without added measurement uncertainties (E1 vs. E3 and E4) to
assess the impact of the expected measurement accuracy on the air-sea CO2 flux.

signal-to-noise-detection To detect statistically significant differences
and reduce the impact of random errors arising from methodological choices, we
use a Monte Carlo approach to reconstruct and calculate each of the air-sea CO2

flux estimates (i.e. with Seaexplorer data, without Seaexplorer data, random error
and constant offset—see above) 40 times with a varying split between the training
and validation dataset to create for ensembles, i.e. ensemble E1 = Seaexplorer
data, E2 = Seaexplorer data excluded, E3 = random measurement uncertainty,
and E4 = fixed measurement bias. We gradually increased the number of runs
and based on trial and error we found that the absolute difference between the
two means of the ensembles between runs is nearly constant for 40 runs (Sup-
plementary Fig. B.3). To ensure the statistical significance of our results, we
conducted a two-sample t-test and adjusted the resulting p-values in order to
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control the False Discovery Rate, i.e. the expected proportion of false discover-
ies among all significant results, to 5% (Storey, 2002). The signal corresponds
to adjusted p-values below 5%, indicating significance, while non-significant dif-
ferences represent noise (Supplementary Fig. B.4). The noise level is highest at
the beginning of the time series as SOCAT contains few observations before 1990
(Bakker et al., 2016), whereas the signal increases after 2016 as new Seaexplorer
data made a difference (Supplementary Fig. B.4).

regional focus Finally, we set our focus on two main regions of interest,
i.e. the North Atlantic, where most sailboat races took place, and on the Southern
Ocean, where the longest race, the Antarctic circumnavigation race, took place.
Furthermore, Rustogi et al., 2023 has highlighted significant uncertainties in the
air-sea CO2 flux in both regions. We focused on three zonal bands in the Southern
Ocean: the Polar Front, the Subantarctic Front, and the Northern Boundary
(Park et al., 2019) including the respective areas within a 2-degree (or roughly
200 km) radius. We utilized the zonal bands enclosing the fronts as geographical
reference points only to delineate zones in the Southern Ocean and to attribute
differences caused by the addition of Seaexplorer data to these zones. Note that
overlap between the frontal regions occurs. In the North Atlantic, we define the
region as the area between 70◦N, 0◦, 85◦W, and 20◦E. The extent of the Southern
Ocean is defined by south of 35◦S. To determine the data availability per region,
we calculate the percentage of 1×1◦ pixels that were filled with Seaexplorer data
at least once, regardless of the monthly availability.

B.5 DATA AVA I L A B I L I T Y

All data used and discussed in this article are freely available via www.socat.info.
The datasets generated and/or analysed during the current study are available
in the Zenodo repository, https://doi.org/10.5281/zenodo.10036578.
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B.7 S U P P L E M E N TA RY I N FO R M AT I O N

Figure B.1: Difference between the air-sea CO2 fluxes in ensemble E1 (based on SO-
CATv2022 including Seaexplorer data) and in ensemble E2 (based on SO-
CATv2022 excluding Seaexplorer data) averaged over 2018 - 2021. Hatching
indicates significant differences. Blue indicates increased carbon uptake due
to the addition of Seaexplorer data, red indicates reduced carbon uptake
due to the addition of Seaexplorer data. Black lines represent sailboat tracks
from 2018 - 2021. Figure generated using a mapping package for MATLAB
(Pawlowicz, 2020).

Figure B.2: Histogram of the absolute magnitude of significant differences between the
air-sea CO2 flux E1 (based on SOCATv2022 including Seaexplorer data) and
the air-sea CO2 flux E2 (based on SOCATv2022 excluding Seaexplorer data)
in the Southern Ocean and the North Atlantic.
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Figure B.3: Time series of the magnitude of significant differences between the air-sea
CO2 fluxes E1 and E2 (including and excluding sailboat pCO2 data) based
on the ensemble size of flux reconstructions. Changes in the magnitude of
significant differences decrease with an increasing number of flux reconstruc-
tions as the random uncertainty is less well constrained.

Table B.1: Integrated flux bias in Pg C yr−1 in 2021.

Due to missing
Seaexplorer data
(comparison E1
and E2)

Due to random
measurement
uncertainty
(comparison E1
and E3)

Due to fixed
measurement
bias
(comparison E1
and E4)

Global 0.04 0.01 - 0.06
North
Atlantic 0.00 0.00 - 0.01

Southern
Ocean 0.05 0.02 - 0.03

.
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Figure B.4: Temporal development of signal and noise.
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A B S T R AC T

Despite their significance in the climate system, remote ocean regions and their
ability to absorb anthropogenic carbon dioxide remain highly uncertain. To ad-
dress this issue, citizen science initiatives, including sailboats, expand the obser-
vational network. Using observing system simulations and novel sailboat tracks,
we demonstrate how integrating sailboat data improves estimates of ocean car-
bon uptake. While we underestimate the ocean carbon sink when mimicking
real-world sampling, adding available sailboat data does not substantially im-
prove reconstructions. However, increased sampling reveals a stronger carbon
sink, particularly between 40°S and 60°S. The improvement persists with hypo-
thetical measurement uncertainties, but substantial differences arise depending
on whether positive or negative biases are applied to the race track data. While
we show that two additional circumnavigations already improve the ocean mean
sink estimate, we further highlight that the additional data remain insufficient to
correct the overestimated CO2 sink trend, calling for continuation of the ongoing
data collection.

C.1 I N T RO D U C T I O N

The ocean plays a critical role in regulating Earth’s climate by acting as a sub-
stantial carbon sink that annually absorbs over a quarter of anthropogenically
emitted carbon dioxide (CO2) from the atmosphere (Friedlingstein et al., 2025;
Gruber et al., 2023). However, climate change alters the carbon uptake capacity
of the ocean (Le Quéré et al., 2007; Gruber et al., 2023; Friedlingstein et al.,
2025), making the monitoring of the sea surface partial pressure of CO2 (pCO2)
or the fugacity of CO2 (fCO2) indispensable in order to assess the impacts of cli-
mate change. Despite this need, a declining trend in observations in recent years
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and an imbalance in sampling efforts across the hemispheres persist (Bakker et
al., 2016; Dong et al., 2024b). While the Ship Of Opportunity (SOOP) program
has successfully contributed to systematic sampling in the Northern Hemisphere
(Jiang et al., 2019), the Southern Ocean remains more irregularly sampled (Pfeil
et al., 2013; Sabine et al., 2013; Bakker et al., 2016; Dong et al., 2024b), lead-
ing to biases in the reconstruction of the air-sea CO2 flux (Gloege et al., 2021;
Hauck et al., 2023; Jersild and Landschützer, 2024; Ford et al., 2024). Specifi-
cally, insufficient sampling leads to a 31% overestimation of the Southern Ocean
decadal variability (Gloege et al., 2021) and a strong overestimation of decadal
trends (Hauck et al., 2023). Considering the key role of remote ocean basins such
as the Southern Ocean in ocean carbon and heat uptake (Frölicher et al., 2015;
Landschützer et al., 2016; Williams et al., 2024), and the moderate success of gap-
filling methods in further improving fCO2 estimates (Gregor et al., 2019; Gloege
et al., 2021; Hauck et al., 2023), new observational efforts have been undertaken
to expand the observational network.

Sailboat races are emerging as a novel means to address observational gaps by
providing a unique source of oceanographic data, particularly in remote ocean re-
gions, as part of citizen science efforts (Landschützer et al., 2023; Behncke et al.,
2024). Despite their predominant occurrence in the North Atlantic, regular re-
peating circumnavigation races (Vendée Globe – every 4 years, The Ocean Race –
every 3–4 years) also provide valuable data in the Southern Ocean – both regions
prone to uncertainty in the air-sea CO2 flux (Rustogi et al., 2023; Pérez et al.,
2024) and drivers on multiple timescales (Ostle et al., 2022). Hence, sailboats
complement the observational network consisting so far of research ships, volun-
tary observing ships, drifting and moored buoys (e.g. Yang et al., 2024), gliders
(e.g. Daniel et al., 2011; Chavez et al., 2018; Monteiro et al., 2015; Nicholson
et al., 2022), biogeochemical floats (e.g. Williams et al., 2017; Gray et al., 2018;
Bushinsky et al., 2019a) and Saildrones (Sutton et al., 2021; Heimdal et al., 2024;
Nickford et al., 2024) and have been shown to significantly impact the air-sea
CO2 flux estimate, particularly between 40°S and 60°S during austral summer
(Behncke et al., 2024). Previous research has shown that even when considering
potential measurement uncertainties within the range of ±5 µatm the impact of
new Southern Ocean measurements on the air-sea CO2 flux is still detectable,
unlike when considering a systematic measurement bias (Behncke et al., 2024).
What we still lack, however, is information on whether sailboat measurements
actually improve the air-sea CO2 flux estimates which has yet to be quantified.
Here, we address this challenge.

Recent Observing System Simulation Experiments investigate the impact of differ-
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ent sampling strategies on carbon fluxes by using a model testbed as a benchmark
to quantify the improvement (Bushinsky et al., 2019a; Denvil-Sommer et al., 2021;
Djeutchouang et al., 2022; Hauck et al., 2023; Heimdal et al., 2024; Henson et
al., 2024; Yun et al., 2024). These investigations typically involve subsampling
a fCO2 model testbed based on synthetic sampling schemes and reconstructing
the air-sea CO2 flux with neural network gap-filling methods (e.g. Landschützer
et al., 2013) to compare against the model truth. However, previous studies often
focus on optimal, yet not operational sampling scenarios rather than feasible real-
world sampling schemes such as our repeating circumnavigations. Thus, although
studies show promising improvements linked to optimized sampling (Hauck et al.,
2023; Wei et al., 2020), the implementation is often not feasible. The frequency
of sailboat races allows us to quantify the extent to which realistic sampling by
sailboats, particularly in the Southern Ocean, improves the estimate of the air-
sea CO2 flux, providing a path forward in improved monitoring of the Southern
Ocean CO2 uptake.

Here, we conduct an observation system simulation by subsampling the global
ocean biogeochemical model HAMOCC coupled to the ocean general circulation
model MPIOM that contributes to the Global Carbon Budget (Ilyina et al., 2013;
Paulsen et al., 2017; Mauritsen et al., 2019; Friedlingstein et al., 2025) mimick-
ing the present-day observations (www.socat.info; Bakker et al., 2016) of the
sea surface fugacity of CO2 (fCO2) and apply the 2-step neural network method
SOM-FFN (self-organizing map – feed-forward neural network) (Landschützer
et al., 2013; Landschützer et al., 2020) to reconstruct different air-sea CO2 flux
estimates. We quantify the improvement from our existing 161 days of sailboat
data from several sailboats on the air-sea CO2 flux estimate as well as the poten-
tial effect of more data by subsampling data from previous years using realistic
sailboat tracks (Fig. C.1). Our analysis further explores the effect of potential
random measurement uncertainties and systematic biases associated with the
sailboat data. We investigate whether reconstructions continue to improve when
additional, albeit biased, data is added, to assess whether the increase in quantity
compensates for the lack of quality. Here we show that continuous and long-term
observing improves the mean air-sea CO2 flux estimate; however, our analysis
reveals that the reconstructed trend from the neural network method remains
overestimated even after adding 3 circumnavigation races, highlighting the need
for multi-decadal observing strategies.

113

www.socat.info


appendix c

C.2 R E S U LT S

In this study, we show how incorporating different synthetic sailboat data im-
proves the reconstructions of a known-truth model field in an observing system
simulation experiment. We take the full hindcast model fCO2 field from MPIOM
HAMOCC and subsample it at times and locations where (based on a 1x1 degree
grid location) historical and synthetic observations exist. Fig. C.1 presents the
different pseudo-observation tracks used in this study to subsample the model
field. Using the SOM-FFN method, i.e. a two-step neural network method (see
Landschützer et al., 2013 for details), we then gap-fill these subsampled data to
reconstruct the complete model fCO2 field. Fig. C.1a presents the reconstructed
global fCO2 based on subsampled model data mimicking the real-world obser-
vations from SOCAT (“existing sailboat”). After deriving the air-sea CO2 flux
estimates from the subsampled and gap-filled fCO2 field, our analysis proceeds
in three steps: (1) assessing the neural network’s performance with present-day
sampling against the model truth; (2) quantifying improvements in air-sea CO2

flux estimates from adding different sailboat data tracks; and (3) assessing the
impact of measurement uncertainties and biases.

c.2.1 Performance of Neural-Network Reconstruction

We evaluated the neural network method’s performance in reconstructing fCO2

(based on available present-day observation tracks from SOCATv2022 “exist-
ing sailboat”) by comparing the fCO2 model truth with the “existing sailboat”
fCO2 estimate. By comparing fCO2 data distributions, we observe a relatively
strong agreement (Supplementary Fig. C.6). The neural network successfully re-
constructed fCO2 values close to the model truth, with the exception of the polar
north (Supplementary Fig. C.6), i.e. a region that has been identified as erroneous
in previous studies (Ilyina et al., 2013; Landschützer et al., 2020) and is thus not
further considered here (see Methods). Probability density functions for the orig-
inal model fCO2 and the model-subsampled neural-network-reconstructed fCO2

show dissimilarities with Bhattacharyya distances ranging from 0.00 to 0.14. The
Bhattacharyya distance (BD) (Bhattacharyya, 1943) measures the similarity be-
tween two probability distributions, with lower values indicating greater similarity.
In this context, the distances ranging from 0.00 to 0.14 suggest a high degree of
similarity between the distribution of the model fCO2 and reconstructed fCO2.
The fCO2 distributions in the tropics show the highest agreement with relatively
low Bhattacharyya distances, suggesting a robust representation of the observed
patterns, and almost identical means (0.23–1.11 µatm difference) between model
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Figure C.1: Sailboat Sampling Schemes. a) Reconstructed fCO2 based on SOCAT-
sampling. The lines represent different sailboat tracks, which are used along-
side the rest of SOCATv2022 tracks in the subsampling process. (Note: The
Vendée Globe track (red) was plotted with a small offset from its original posi-
tion to avoid overlap with the “existing sailboat” tracks, even though Vendée
Globe 2020/21 is included in “existing sailboat” tracks). Hatched areas are re-
gions with a climatological maximum sea-ice concentration greater than 50%
and are excluded. b) Sailboat data availability per month. Sampling scheme
A “existing sailboat” = black data. Sampling scheme C “3 circumnav.” =
black + red data. Sampling scheme D “2 diff. circumnav.” = black + blue.
Sampling scheme B “without sailboat” excludes all colored sailboat track
data. c–f) Tracks used to subsample the model during different time periods
for the “3 circumnavigations” run. Gray lines indicate SOCAT tracks; col-
ored lines represent subsampled sailboat fCO2 tracks.
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and reconstruction followed by the fCO2 distributions in the middle latitudes
(Supplementary Fig. C.6). In the Southern polar region, dissimilarities are more
pronounced, featuring BD between 0.04 and 0.05 and higher offsets between mean
fCO2 values ranging from 0.92 to 3.78 µatm (Supplementary Fig. C.6).

Both over- and underestimation of fCO2 occur along the coastal ocean (Fig. C.2),
a region that is highly variable (Roobaert et al., 2019; Roobaert et al., 2024).
We find that the neural network in combination with the present-day sampling
overestimates fCO2 in the under-sampled Southern Ocean by around 2–3 µatm
(Fig. C.2b and Supplementary Fig. C.7). A similar overestimation of fCO2 was
found by Heimdal et al., 2024 using a different reconstruction method and a
large ensemble test bed of Earth System Models. In contrast, while similar in
magnitude to our results, the sign of the mismatch is opposite to a study con-
ducted by Hauck et al., 2023 using a different single hindcast model, illustrating
the limitations of such an analysis to a single model. However, here we are in-
terested in potential improvements in space and time from adding measurement
compared to the baseline. Additionally, we do not test the effect of different gas
transfer schemes, as our study solely focuses on the improvement in the fCO2

from increased sailboat sampling. We find that additional sailboat data from “3
circumnavigations” already reduces the fCO2 in the Southern Ocean, hence im-
proving the reconstruction (Supplementary Fig. C.8).

Behncke et al., 2024 quantified the detectable change caused by the addition
of existing sailboat data based on real-world observations. To validate this and
determine the similarities between observation and model data, we applied the
same method to our subsampled model data and compared both (Supplementary
Fig. C.9). The neural network demonstrated consistent but smaller signal detec-
tion in subsampled model data, mirroring observations closely, thus underscoring
the method’s realistic performance on both model and observation data (Supple-
mentary Fig. C.9).
The effect of the sailboat sampling scheme on the model reconstruction is more
subtle, complicating detection as the relationships between driver variables and
fCO2 are more consistent in the model setup, compared to the real world. Mea-
sured fCO2 is subject to variability and uncertainties, such as measurement un-
certainties and temporal averaging when producing gridded fields; fCO2 measure-
ments taken at one point in time are averaged per month, reducing accuracy.
Additionally, the effect in observations may be more pronounced because effects
of hypothetical biogeochemical and physical processes and their variability that
could be missing or unresolved in models might be captured in the real world
(Ilyina et al., 2013; Hauck et al., 2020; DeVries et al., 2023; Mayot et al., 2023).
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c.2.2 Effect of Sailboat Sampling on fCO2 Estimates

Figure C.2: Spatial fCO2 Bias and Improvement Patterns Resulting from the
Integration of Different Sampling Schemes. a–c) Mean bias of subsam-
pled and reconstructed fCO2 averaged over 1982 until 2021 based on data
subsampled after SOCAT a) “without sailboat” track data (B) b) includ-
ing “existing sailboat” tracks (A) c) including existing sailboat tracks and
2 additional circumnavigations (C or “3 circumnav.”). Black lines represent
sailboat tracks. Hatched areas are regions with a climatological maximum sea-
ice concentration greater than 50% and are excluded. µ represents the mean,
while x̄ represents the median.
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Adding data from the existing sailboat tracks does not substantially reduce the
fCO2 bias when averaged over the full time period 1982-2021, probably due to
their small number and their late addition to the SOCAT database (Figs. C.2a,b).
The global mean fCO2 is overestimated by 0.99 µatm regardless of the inclusion
of sailboat data, and particularly in the Southern Ocean by around 3 µatm (Figs.
C.2a,b and Supplementary Fig. C.7). Similarly, the median bias is 1.17 µatm with
sailboat data and 1.16 µatm without it. The spatial bias pattern stays nearly iden-
tical (Fig. C.2a). In contrast, adding sailboat fCO2 data from “3 circumnaviga-
tion” tracks substantially reduces biases mainly in the North Atlantic and in the
Southern Ocean, mirroring the data addition in these regions (Figs. C.2a-c). The
fCO2 estimate improves with the addition of “3 circumnavigations” particularly
between 40°S – 60 °S (Fig. C.2 and Supplementary Fig. C.7) similar to findings
in Behncke et al., 2024. Due to the neural network’s capacity to extrapolate over
time and space, fCO2 estimates in other regions e.g. in the Indian Ocean and West
Pacific, where we do not have new data, improve as well (Figs. C.2b-c). However,
we also observe compensating effects, indicating a trade-off in other regions, e.g.
the South Pacific (Figs. C.2b-c). While the neural network learns new features
and minimizes errors, it also adopts inaccurate representations of processes due
to overfitting tendencies, resulting in increased biases in e.g. parts of the East
Pacific, where the fCO2 is underestimated. Globally, however, the median bias
decreases to near zero, when adding data from “3 circumnavigation” tracks (Fig.
C.2).

c.2.3 Effect of Sailboat Sampling on Air-Sea CO2 Flux Estimates

Using these fCO2 reconstructions and model wind data, we compute the air–sea
CO2 flux estimates by applying a bulk gas transfer formulation (Wanninkhof,
1992; Landschützer et al., 2013, Supplementary Fig. C.10). Fig. C.3 shows the
latitudinal air-sea CO2 flux estimates and the best guess closest to the model
truth with the direction of improvement. Mirroring the spatial improvement pat-
tern seen in the fCO2 estimate (Fig. C.2), the air-sea CO2 flux estimate improves
the most with the addition of “3 circumnavigations”, particularly between 40°S
– 60 °S (Fig. C.3), similar to findings in Behncke et al., 2024. This results in a
more negative air–sea CO2 flux, indicating an enhanced global ocean carbon sink
(Fig. C.3). In contrast, we observe no improvement of the reconstruction between
20°S – 40°S (Fig. C.3), where the model truth sink is weaker than estimated with
more sailboat data.

In addition to spatial patterns, we evaluate the influence of added sailboat data
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Figure C.3: Latitudinal Air-Sea CO2 Flux Estimates for the Period From 1982
to 2021. The black line represents the model truth. The area under the black
curve is shaded to depict the “best guess” estimate closest to the model truth,
with the color corresponding to one of three scenarios: A (“existing sailboat”),
B (“without sailboat”), or C (“3 circumnav.”). The cyan line highlights the
persistent mismatch between the “best guess” estimate and the model truth.
Gray bars illustrate the improvement in estimates from scenario B (“without
sailboat”) to the “best guess.” For example, bars pointing in the negative
direction indicate that the “best guess” reduced the estimate by that amount.
A cyan line pointing to the left indicates that the estimate is still too negative,
while a line pointing to the right indicates that the estimate is still too positive.

on the temporal trajectory of the air–sea CO2 flux (Fig. C.4). Similar to the esti-
mated fCO2, the air-sea CO2 flux does not show substantial improvement with the
addition of existing sailboat tracks (see proximity of gray and blue lines in Figs.
C.4a-e). However, the global mean air-sea CO2 flux density bias slightly decreases
from 0.06 to -0.02 mol C m−2 yr−1, and in the Southern Ocean, it improved from
0.10 to 0.00 mol C m−2 yr−1 when data from two additional circumnavigation
tracks (“3 circumnavigations”) were included (Figs. C.4d-e). Without this data,
we observe that the annual air-sea CO2 flux is almost consistently too positive,
indicating excessive outgassing and/or insufficient uptake (see gray lines in Fig.
C.4). However, when data from “3 circumnavigation” tracks are added, the air-
sea CO2 flux estimate decreases by approximately 0.1 mol C m−2 yr−1. This
adjustment brings the estimate closer to the model truth (Fig. C.4) by reducing
the excessive outgassing in the tropics (Fig. C.4b) and increasing the insufficient
uptake north and south of 30° before 2000 (Figs. C.4a,c). It also results in an
exaggeration of the total carbon sink after 2000 on a global scale (Figs. C.4a-c,d)
and in the Southern Ocean (Figs. C.4c,e) as a trade-off.
The inclusion of additional sailboat data not only affects the air-sea CO2 flux
where the data has been added, but the neural network extrapolates in the past,
affecting the air-sea CO2 reconstructions consistently over time. Even though no
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new data were added prior to 2012/2013, the data addition in the later years in-
fluenced the pre-2000 air-sea CO2 flux estimate (Figs. C.4a-e), similar to results
shown in Heimdal et al., 2024, probably due to the sparse data during that period,
as less than 1% of the monthly 1°x1° grid cells contain measurements (Dong et
al., 2024b). In contrast to the findings in Bushinsky et al., 2019a; Behncke et al.,
2024, where the effect of additional data on the air-sea CO2 flux was primarily
detected in the most recent years, attributed to the use of atmospheric CO2 as
a predictor with trend behavior, our study demonstrates improvement over the
entire timeseries. This more generalized impact, similar to Heimdal et al., 2024, is
mainly attributed to the increased data volume spanning multiple years, as well
as methodological differences such as the different nature of data.
The larger dataset, covering e.g. a decade starting in the "3 circumnavigation"-
run, offers broader temporal coverage. This allows the model to learn generalized
patterns and make informed predictions further back in time, enhancing its abil-
ity to extrapolate beyond the immediate training period. Additionally, the use
of model data, instead of observations, provides consistent relationships between
fCO2 and predictors that enable the neural network to learn and generalize pat-
terns more effectively.
In the Southern Ocean, the air-sea CO2 flux density is improved before 2000 and
in some of the better observed recent years when adding “3 circumnavigations”;
however, it notably worsens between 2005 and 2012 as a trade-off for improving
the full timeseries (Figs. C.4c and C.4e and Supplementary Figs. C.11c-d). Glob-
ally, the estimate is most improved before 2000, but it also continues to show
improvement afterwards (Figs. C.4a-d and Supplementary Figs. C.11a-b).
Our findings further reveal a remarkable behavior: While we observe a shift in the
mean due to the addition of the measurements, the shape of the timeseries and
consequently the air-sea CO2 flux anomalies and trend (represented by dashed
lines in Figs. C.4a-c) remains unchanged and continues to be overestimated com-
pared to the model truth trend, particularly in the Southern Ocean, even with
the addition of data from two additional circumnavigation tracks (Fig. C.4).
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Figure C.4: The Impact of Adding Sailboat Data on Air-Sea CO2 Flux Time
Series. a–c) Air-sea CO2 flux estimates with and without different sailboat
tracks in different regions. Dashed lines show the long-term trend. d–e) Time
series of bias (global and in Southern Ocean) in reconstructed air-sea CO2
flux density. Dotted lines represent the long-term mean bias. Note that the
gray line, indicating the bias of the estimate based on “without sailboat”, and
the blue line, indicating the bias of the estimate based on “existing sailboat”,
are in close proximity to each other. Regions with a climatological maximum
sea-ice concentration greater than 50% are excluded.

Adding data from one additional but different circumnavigation track, such as
from The Ocean Race 2023 instead of Vendée Globe 2020/21 (Fig. C.1), to the
existing sailboat data improves the air-sea CO2 flux estimates as effectively as
adding data from two identical Vendée Globe 2020/21 tracks (see cyan and red
lines in Fig. C.4).

c.2.4 The Effect of Measurement Uncertainties and Biases on the Air-Sea CO2

Flux Estimate

We explore the effect of two types of measurement errors applied to the subsam-
pled sailboat fCO2 data on the resulting air-sea CO2 reconstructions: random
measurement uncertainties, representing zero-mean fluctuations in the measure-
ments, and systematic biases, representing constant offsets. Random uncertain-
ties are assumed to be normally distributed around zero, while biases introduce
a fixed, consistent deviation from the true value. Specifically, we consider six sce-
narios (Fig. C.5):
(i) a low-end measurement uncertainty of ±5 µatm (best-case scenario);
(ii–iii) a constant positive or negative bias of 5 µatm (low-end systematic offset);
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(iv) a high-end measurement uncertainty of ±10 µatm;
(v–vi) a constant positive or negative bias of 10 µatm (high-end systematic offset).

Figure C.5: The Effect of Measurement Uncertainties and Biases on the Air-
Sea CO2 Flux Estimate. a–c) Air-sea CO2 flux estimates based on the
model truth (solid black lines), the “3 circumnavigation” sailboat sampling
(solid red lines), and the same sampling with added measurement errors.
Measurement errors are applied only to the subsampled sailboat fCO2 data.
Teal lines represent cases with low-end errors (±5 µatm uncertainty or 5 µatm
bias), and purple lines represent high-end errors (±10 µatm uncertainty or
10 µatm bias). Random measurement uncertainties are shown as dashed lines
(note: they appear on top of each other), while systematic biases are shown
as dotted (negative bias) and dash-dotted (positive bias) lines.

5 µatm is at the lower range of uncertainties observed in the field (Arruda et
al., 2019; Olivier et al., 2022), thus representing a “best case” estimate, while 10
µatm is at the higher end with a systematic offset representing the “worst-case”
scenario of limited calibration and maintenance as well as system limitations.
Sailboat data from “3 circumnavigation” tracks with an associated random mea-
surement uncertainty ranging between ±5 µatm still improve the air-sea CO2 flux
estimate, presenting a similar picture to unaffected reconstructions, both showing
improved reconstructions in the data-sparse period before 2000 and in recent years
(see the teal dashed following the red line in Figs. C.5a-c). This is consistent with

122



C.2 results

other studies examining the effect of random measurement uncertainties, show-
ing that the addition of data can improve air-sea CO2 flux estimates, even when
those data are affected by high random measurement uncertainties (Behncke et
al., 2024; Heimdal and McKinley, 2024).
While adding a negative bias to the measurements worsens the reconstruction as
expected (dotted lines in Fig. C.5), interestingly, introducing positive measure-
ment offsets of either 5 µatm or 10 µatm to the sailboat data improves the air-sea
CO2 flux reconstructions (dash-dotted lines in Fig. C.5). The impact of the sys-
tematic offsets – both negative and positive – is most pronounced before 1990
in high latitudes (Figs. C.5a,c) and in recent years where biased sailboat data
were added starting around 2015 (Figs. C.5a-c), indicating that the bias is not
extrapolated in time, but in space. Positive biases lead to reduced CO2 uptake in
recent years, particularly in the high latitudes (dash-dotted lines in Figs. C.5a,c)
and increased outgassing in the tropics (dash-dotted lines in Fig. C.5b), while
negative biases cause the opposite.
Similar to Behncke et al., 2024, we also find that Southern Ocean air-sea CO2

estimates are most sensitive to measurement errors, particularly measurement
biases, with biased estimates diverging from the unbiased estimate around 2005
(Fig. C.5c), while estimates in the northern high latitudes and tropics only visibly
diverge around 2018/2019 (Figs. C.5a-b).

Interestingly, positive measurement biases counteract the overestimation of the
carbon uptake in high latitudes and underestimation of outgassing in the tropics
with “3 circumnavigations” in recent years, bringing the air-sea CO2 flux esti-
mates even closer to the model truth (see dash-dotted lines and red solid line
compared to black line in Figs. C.5a-c). This highlights that the impact of biased
observations is more complex than one would expect at first sight. Negative off-
sets, on the other hand, in “3 circumnavigations” lead to an overestimation of
the ocean carbon uptake in high latitudes and underestimation of the outgassing
in the tropics especially in recent years.
Focusing on the sailboat tracks alone, we find that both the high and low biased
scenarios lead to similar errors, but as expected in opposite directions. A 10 µatm
positive bias leads to a mean flux bias of 0.14 mol C m−2 yr−1 and a negative
measurement bias leads to a flux bias of -0.16 mol C m−2 yr−1. Therefore, the dif-
ference must come from other places, where the neural network extrapolates the
information gained by sailboat tracks. This is visualized in Supplementary Fig.
C.12. While adding negative biases worsens the reconstruction, adding positive
biases actually improves the reconstruction in the Southern Ocean outgassing
region, the South Atlantic and the Equatorial Pacific.
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These results indicate that the neural network method used here (Landschützer
et al., 2013) and potentially other machine learning methods are sensitive to sys-
tematic biases and their extrapolation. Biased measurements may compensate
for missing information (in our case high-end fCO2) elsewhere, improving the
reconstruction for the wrong reason (Supplementary Fig. C.13). Thus, even bi-
ased observations can improve reconstructions when data availability is limited
and data distribution is skewed (Supplementary Fig. C.13), as evidenced by the
proximity of the dash-dotted and dotted lines to the solid red lines in Fig. C.5,
however our analysis shows that this result is strongly linked to the underlying
model testbed, the machine learning algorithm and the direction of the bias.

In conclusion, the improvement in the air-sea CO2 flux reconstruction caused by
the addition of data from “3 circumnavigations” persists even when the sailboat
data contain uncertainties. Although biased data can still contribute to improved
overall reconstructions, for the wrong reason through spatial extrapolation, the
bias impact becomes substantial when observational constraints are weak: under-
observed regions and data-sparse periods are particularly sensitive. A positive
measurement bias may coincidentally shift the reconstruction closer to the model
truth. However, negative biases – especially those approaching the upper limit
of what is expected from the measurement system – worsen the air-sea CO2 flux
estimates.

It is important to note that, unlike studies such as Dong et al., 2024b; Watson
et al., 2020, which applied bias corrections to the entire underlying observational
dataset, our study introduces measurement errors only to a limited subset of sail-
boat data, similar to Behncke et al., 2024 We show that our method – as maybe
other machine learning approaches – is sensitive to biased predictors and targets;
however, the neural network’s sensitivity depends on the extent of biased data,
and the measurement coverage, and the underlying model used as ground truth.

C.3 D I S C U S S I O N

Here, we quantify the improvement in the air-sea CO2 flux estimate by adding sail-
boat observations in an observing system simulation experiment. We find that a
commonly used neural network method, using the available real-world sampling
scheme, underestimates the model-truth ocean carbon sink, which aligns with
findings by Heimdal et al., 2024. However, increased sampling with sailboats im-
proves the global estimate and increases the ocean carbon sink from 1982 to the
end of 2021, particularly in the North Atlantic and in the Southern Ocean be-
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tween 40°S–60°S. For instance, by adding data from “3 circumnavigation” tracks,
the global mean air-sea CO2 flux density bias decreases from 0.06 to -0.02 mol C
m−2 yr−1, and in the Southern Ocean from 0.10 to 0.00 mol C m−2 yr−1.

Despite the observed shift in the mean air-sea CO2 flux when adding more data,
the overestimated air-sea CO2 flux trend persists even with the addition of two
additional circumnavigations. We conclude that data from two additional circum-
navigations are insufficient to improve the trend, suggesting that the Global Car-
bon Budget model and data products are likely to continue diverging even with
the incorporation of more circumnavigation data (DeVries et al., 2023; Friedling-
stein et al., 2025). Additional data is needed to improve the trend. Currently,
the trend in the reconstructions deviates from the model trend. By incorporating
more input data over multiple decades that inherently follow the correct trend
into the neural network, the output reconstructions are expected to align more
closely with the model’s true trend. Thus, we conclude that the inclusion of more
sailboat data with trend-consistent information could improve the trend accu-
racy.
This underscores the need for implementing multi-decadal observing strategies.
Regular sailboat circumnavigations, such as The Ocean Race and the Vendée
Globe, which alternate on a staggered 4-year cycle, present a viable approach.
These events ensure a major round-the-world race approximately every one to
two years, thereby providing consistent and comprehensive datasets to refine our
understanding and improve the accuracy of reconstructions over extended tem-
poral scales. However, sailboats cannot fully cover seasonal measurement gaps,
especially in winter at high latitudes. This further underscores the need to support
complementary platforms such as autonomous floats (Gray et al., 2018; Bushin-
sky et al., 2019a) and Saildrones (Sutton et al., 2021), which provide year-round
data in challenging conditions. Combining these platforms ensures more complete
coverage and improves long-term monitoring of air-sea CO2 fluxes.

Previous studies have shown that adding data from sailboats and Argo floats
to the observing system can significantly impact and improve fCO2 and air-sea
CO2 flux reconstructions, even when the data contain measurement uncertainties,
but not if these data are biased (Behncke et al., 2024; Heimdal and McKinley,
2024). Here we show that adding more data, even if they contain uncertainties,
can improve air-sea CO2 flux reconstructions and strengthen the overall observ-
ing system. This supports previous findings (Hohensee, 2017; Carter et al., 2019)
that data quantity can compensate for reduced data quality. However, biased data
come with a trade-off. They can still help improve overall reconstructions, but
for the wrong reason. Compensating for the lack of high-end fCO2 samples in the
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machine learning training data, biased measurements led to an improved recon-
struction in high fCO2 regions. As a result, biased data seemingly improve global
reconstructions while they reduce accuracy regionally where the measurements
are actually taken. Such improvements have to be taken with caution as they
are likely machine learning and model-dependent and may not be translatable
into the real world, creating a false acceptance for measurement biases. Instead,
we show in our study that in order to interpret reconstructions with biased mea-
surements, it is essential to consider the underlying data density distribution, the
model used for the testbed analysis as well as the machine learning background
bias (relative to the model truth), and the direction (positive or negative) of any
measurement bias before interpreting the machine learning extrapolation, and we
highly recommend to consider these in future observing system design studies.

While the finding that adding new measurements improves the air-sea CO2 flux
estimates probably holds irrespective of the baseline model choice, the observed
magnitude of improvement from increased sailboat sampling, however, is highly
model-dependent and could vary with different models. We work under the as-
sumption that HAMOCC represents a known truth for our experiment; however,
the HAMOCC model is known to underestimate surface ocean fCO2 in the South-
ern Ocean (Ilyina et al., 2013) and exhibits an amplified seasonal cycle (Rustogi
et al., 2023). This could affect the results by making the improvements appear
more pronounced or less consistent across seasons than they would with a model
that accurately captures seasonal variations in fCO2, potentially distorting the
long-term trend. Furthermore, we only employ one neural network method (Land-
schützer et al., 2013) on the model data, and different neural network methods
might respond differently to data addition. We recommend more extensive anal-
yses in the future including different neural network approaches and different
model data, i.e. the products used in the Global Carbon Budget (Friedlingstein
et al., 2025).
While we studied how underway fCO2 measurements from sailboats affect and
improve reconstructions, we have yet to identify the specific ocean features respon-
sible for this effect. To determine why these changes and improvements occur, fu-
ture research should focus on another added value of the data: the high-resolution
nature of sailboat data, which resolves important small-scale ocean features driv-
ing variability in the air-sea CO2 flux (e.g. Gray, 2024).

The global fCO2 measurement coverage is biased towards the Northern Hemi-
sphere, which leads to reconstruction errors; however, the addition of sailboat
data provides better data coverage in the Southern Ocean with the potential
to improve air-sea CO2 flux reconstructions in the future. The frequency of the
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sailboat races meets the demand for more affordable and innovative platforms
(Whitt et al., 2020; Gregor et al., 2019; Meinig et al., 2019; Roemmich et al.,
2019; Hassoun et al., 2024). Considering that the Southern Ocean carbon uptake
will increase (Mongwe et al., 2018; Silvy et al., 2024) and the observational cov-
erage recently declined (www.socat.info Bakker et al., 2016), more observations
are needed to closely monitor the ocean carbon sink over multiple decades and
sailboat races provide the opportunity to do that. We conclude that while the
addition of sailboat data has the potential to improve air-sea CO2 flux reconstruc-
tions, particularly in the Southern Ocean, further expansion of the sailboat-based
observational network is essential to help minimize discrepancies in Global Car-
bon Budget sink estimates. Continued efforts to increase the volume and coverage
of sailboat measurements will be crucial in refining our understanding of oceanic
carbon dynamics.

C.4 M AT E R I A L S A N D M E T H O D S

c.4.1 Datasets and Sampling Masks

In this study, our primary aim is to quantify the improvement in our air-sea CO2

flux estimate caused by adding different sailboat data to our flux reconstructions.
To achieve this, we utilize the model fCO2 field as our starting point and apply
different subsampling schemes (Fig. C.1) to get pseudo-observations. Most of the
races took place in the North Atlantic between 2018 and the end of 2021. How-
ever, the Antarctic circumnavigation race, Vendée Globe, primarily navigated the
Southern Ocean and occurred in 2020/2021, repeating every four years. Another
significant round-the-world race contributing substantial Southern Ocean data
is The Ocean Race, held in 2023 and recurring approximately every three years.
This study focuses on the period from 1982 to 2021, utilizing The Ocean Race
tracks solely to subsample earlier years.

Data X - “truth”: Ground truth fCO2 values from the HAMOCC (HAMburg
Ocean Carbon Cycle model) model coupled to the ocean general circulation model
MPIOM, contributing to Global Carbon Budget simulation at a monthly 1x1 de-
gree resolution from 1982 until the end of 2021 (Ilyina et al., 2013; Paulsen et al.,
2017; Mauritsen et al., 2019; Friedlingstein et al., 2025).
The HAMburg Ocean Carbon Cycle (HAMOCC) model simulates the oceanic
cycles of carbon in the global Max Planck Institute Ocean Model (MPIOM).
HAMOCC features biology and inorganic carbon chemistry processes in the water
column and sediment (Six and Maier-Reimer, 1996; Ilyina et al., 2013). Marine
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primary producers are represented by two state variables: bulk phytoplankton
and diazotrophs. The growth of bulk phytoplankton is limited by temperature
and light as well as by the availability of nutrients including nitrate, phosphate,
and iron linked by constant Redfield ratios across organic compartments. The
growth of nitrogen-fixing cyanobacteria is parameterized analogously to that of
the bulk phytoplankton, but at a lower rate and is extended by representing their
buoyancy. Zooplankton grazes on bulk phytoplankton, producing particulate or-
ganic matter which enters the detritus pool. Opal particles or CaCO3 is produced
during detritus formation, depending on silicate availability. HAMOCC simulates
the upper sediment by 12 biologically active layers and a burial layer to represent
the dissolution and decomposition of inorganic and organic matter as well as the
diffusion of pore water constituents (Heinze et al., 1999). The HAMOCC model
has been extensively evaluated in previous studies and successfully used for cli-
mate predictions and projections as well as simulating the past climate (Ilyina
et al., 2013; Paulsen et al., 2017; Mauritsen et al., 2019; Müller et al., 2018; Maerz
et al., 2020; Liu et al., 2021; Li et al., 2023; Nielsen et al., 2024).

Data A - “existing sailboat”: Subsampled model fCO2 (X) generated using
the SOCATv2022 sampling scheme, including sailboat data. We used underway
fCO2 measurement tracks from the IMOCA 60 sailboats “Seaexplorer-Yacht Club
de Monaco” (until 2019 “Malizia”) and “Newrest - Art & Fenêtres” (now “Nexans
- Art & Fenêtres”) during offshore sailing and training events from 2018 to 2021.
Together, all sailboats collected 161 days of fCO2 measurements until the end of
2021.

Data B - “without sailboat”: Subsampled model fCO2 (X) generated using
the SOCATv2022 sampling scheme, excluding sailboat data

Data C - “3 circumnavigations”: Subsampled model fCO2 (X) generated
using the SOCATv2022 sampling scheme including existing sailboat data and
two additional Antarctic circumnavigations (Vendée Globe; 2012/13, 2016/17,
2020/21) (from which only the latter one is from the existing track and also
included in A; the track of the Vendée Globe 2020/21, where fCO2 measurements
were taken, was used to subsample the model data in earlier years when Vendée
Globe races occurred without fCO2 measurements.)

Data D - “2 different circumnavigations”: Subsampled model fCO2 (X)
generated using the SOCATv2022 sampling scheme including sailboat data and 2
different round-the-world races (Vendée Globe 2020/21 and the preliminary The
Ocean Race 2017/18 ) (for the latter one we used existing tracks from 2023).

128



C.4 materials and methods

In the following, we added random measurement uncertainties and biases to the
subsampled sailboat fCO2 data in “3 circumnavigations”:

Data E - “3 circumnav + low uncert.”: Data C, but with an added random
measurement uncertainty ranging from ±5 µatm (lower end of what is expected
from the measurement device) to the data from sailboat tracks

Data F - “3 circumnav + 5 offset”: Data C, but with an added + 5 µatm
measurement offset to the data from sailboat tracks

Data G - “3 circumnav – 5 offset”: Data C, but with an added – 5 µatm
measurement offset to the data from sailboat tracks

Data H - “3 circumnav + high uncert”: Data C, but with an added random
measurement uncertainty ranging from ±10 µatm (higher end of what is expected
from the measurement device) to the data from sailboat tracks

Data I - “3 circumnav + 10 offset”: Data C, but with an added + 10
µatm measurement offset to the data from sailboat tracks

Data J - “3 circumnav – 10 offset”: Data C, but with an added – 10 µatm
measurement offset to the data from sailboat tracks

c.4.2 The reconstruction of sea surface fCO2 and air-sea CO2 fluxes

The gaps in all subsampled sea surface fCO2 maps (data A-J) were filled using
the 2-step neural network method called SOM-FFN (Landschützer et al., 2013).
In the first step, a self-organizing map (SOM) classified the ocean into biogeo-
chemical provinces based on common patterns in predictor variables, including
HAMOCC sea-surface temperature, sea-surface salinity, mixed layer depth, and
a fCO2 climatology (Ilyina et al., 2013; Paulsen et al., 2017; Mauritsen et al.,
2019; Friedlingstein et al., 2025). The second step involved a feed-forward neural
network (FFN) establishing non-linear relationships between predictors and sub-
sampled fCO2 data within each province. Predictors were HAMOCC sea-surface
temperature, sea-surface salinity, mixed layer depth, atmospheric CO2 concentra-
tion, and phytoplankton plus cyanobacteria biomass integrated over a depth of 37
meters. This specific depth, limited to the upper ocean biology and excluding the
deep chlorophyll maxima, was chosen due to the limitations of equivalently and
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previously used ocean color observations for case-1 water, which are restricted
to the first optical depth below 40 meters (Nababan et al., 2021). Based on the
reconstructed fCO2 A-J and model truth X, we computed flux estimates A-J
and X by applying a bulk gas transfer formulation with a quadratic relationship
between wind speed and transfer velocity to the reconstructed maps (A-J), as
well as the model truth X (Wanninkhof, 1992; Landschützer et al., 2013)(37,49).
The mean gas transfer was standardized to a global average rate of 16.5 cm hr−1

(Naegler, 2009). While the neural network reconstructed fCO2 closely matches
the model fCO2, the reconstructed air-sea CO2 flux differs from the model flux.
This discrepancy arises because of the bulk gas transfer parametrization with a
standardized mean gas transfer velocity of 16.5 cm hr−1, which is not ideal for
the model fCO2. Acknowledging that our primary focus is not on realistically
estimating the air-sea CO2 flux but rather on assessing the impact of different
sampling schemes on the flux estimate, we decided to eliminate this uncertainty
by applying the same parametrization on the model fCO2 (Wanninkhof, 1992).
This allowed us to establish a comparable "original" flux model truth for our anal-
ysis.
We focus both on the air-sea CO2 flux and the fCO2 because of the high sensitivity
of air-sea CO2 flux estimates to errors in fCO2. In high wind regions, small fCO2

errors can lead to large flux errors due to high gas transfer velocity, while the
same fCO2 error in low wind regions results in smaller flux errors. Furthermore,
the direction of the fCO2 error improvement (negative or positive) significantly
impacts the air-sea CO2 flux estimate. A small negative improvement in fCO2

can either decrease or increase the flux estimate depending on whether the ocean
fCO2 is greater or less than the atmospheric fCO2, respectively. Similarly, a small
positive improvement can increase or decrease the flux estimate based on the same
conditions. By focusing on both estimates, we ensure a comprehensive assessment,
minimizing the risk of overlooking critical factors that could skew the air-sea CO2

flux estimates.

In this study, we define the air-sea CO2 flux density as the instantaneous flux
into or out of the ocean (in units of mol C m−2 yr−1), where positive flux indi-
cates outgassing and negative flux indicates uptake (Fig. C.10), generally aligning
its direction with fCO2. In contrast, the air–sea CO2 flux—as well as the ocean
carbon sink when referring to a negative integrated signal—is quantified as the
spatially integrated flux over a given area (in PgC) and typically follows the
opposite direction.
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c.4.3 Statistical Analyses

We exclude regions with a climatological maximum sea-ice concentration greater
than 50%, from most of our analysis as sparse observations (Bakker et al., 2016)
and the influence of seasonal changes in sea-ice coverage introduce high uncertain-
ties into the neural network reconstruction in that region (Duke et al., 2024; Ford
et al., 2024; Jersild and Landschützer, 2024; Roobaert et al., 2024) and due to
the model’s less realistic representation of the high latitudes (Ilyina et al., 2013).
The ice zone in the Southern Ocean coincides with the high uptake region south
of 60°S (Fig. C.1a).

c.4.4 Neural Network Performance Evaluation

To evaluate the performance of the neural network in reconstructing the HAMOCC
fCO2 we use Probability Density Functions and calculate the Bhattacharyya dis-
tance (BD) (Bhattacharyya, 1943), which measures the similarity between the
probability density functions of the reconstruction and the original model fCO2.
Lower BD values indicate a higher degree of similarity between the probability
density functions. We further compare the detectable signal in the air-sea CO2

flux estimate caused by the addition of sailboat data in our subsampled model
data to the signal in observation data from a previous study using a signal-to-
noise detection described in Behncke et al., 2024.

c.4.5 Improvement Quantification

We employed a Monte Carlo approach, generating 10- to 40-member ensembles
for each of the 10 subsampling scenarios. For scenarios A (“existing sailboat”),
B (“without sailboat”), C (“3 circumnavigations”), D (“2 different circumnaviga-
tions”), E (“3 circumnavigations + low measurement uncertainty”), and F (“3
circumnavigations + positive 5 µatm offset”), we generated 40 ensemble members
each. For scenarios G (“3 circumnavigations – 5 µatm offset”), H (“3 circumnav-
igations + high measurement uncertainty”), I (“3 circumnavigations + 10 µatm
offset”), and J (“3 circumnavigations – 10 µatm offset”), we generated 10 ensem-
ble members each, as the standard deviation across 10 versus 40 ensembles differs
only slightly and using fewer members allows for more computationally efficient
analysis.
We generated the ensembles by varying training and validation dataset splits to
enhance the reliability of our air-sea CO2 flux estimates and identify potential
random errors caused by the sensitivity of the neural-network approach to differ-
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ent subsets of the data. The ensemble mean served as the best estimate for each
sampling scenario.
The bias is calculated as the mean of the reconstruction R (i.e., A, B, C) minus
the model truth (X): Bias = mean(R) - mean(X) and measures the over- and un-
derestimation in the reconstructions over different time periods. It is important
to note that values near zero not only indicate a good reconstruction but could
also indicate that positive and negative differences cancel out. We calculated the
mean bias as well as the median bias to minimize the impact of regional outliers
caused by regions of high uncertainty (Fig. C.2).
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C.6 S U P P L E M E N TA RY

Figure C.6: Reconstruction Uncertainty Assessment. Kernel density estimate of
fCO2 data distributions of model truth fCO2 (X; red) and subsampled and
NN-reconstructed fCO2 (A “existing sailboat” ; blue) for different regions and
time periods. Regions with a climatological maximum sea-ice concentration
greater than 50% are included. Latitudinal zones are divided into increments
of 30◦, ranging from 90◦N to 90◦S. The time periods were chosen to demon-
strate how the addition of sailboat data impacts the fCO2 and, by extension,
the air-sea CO2 flux across the entire time period, independently of the spe-
cific years in which data were added.

Figure C.7: Latitudinal Bias of the fCO2 Reconstructions “existing sailboat”
and “3 circumnavigations” compared to model truth.
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Figure C.8: Effect of “3 circumnavigations” on Southern Ocean fCO2 distribu-
tion (2002–2021). Difference between the data distribution of fCO2 esti-
mates based on sampling scheme B “without sailboat” (gray) and C “3 cir-
cumnavigations” (red) in the Southern Ocean between 2002–2021. Regions
with a climatological maximum sea-ice concentration greater than 50% are
included. Additional sailboat data reduce the fCO2 estimate in the Southern
Ocean (see change from gray line to red line).
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Figure C.9: Comparing the Impact of Observational and Model-Based Sailboat
Data Addition on Air-Sea CO2 Flux Estimates. The detectable change
in the air-sea CO2 flux estimate caused by adding the existing sailboat data
to the reconstructions. a–c) Observation-based reconstructions (Behncke et
al., 2024) and d–f) (subsampled) model-based reconstructions. a) and d)
Maps show the detectable change in the air-sea CO2 flux estimate caused
by adding the existing sailboat data to the reconstructions averaged over
November 2020 to January 2021 (the time of the Vendée Globe circumnavi-
gation). Hatching indicates significant differences. b,c) and e,f) Significant
differences between air-sea CO2 flux estimates per year and (b, e) latitude
and (c, f) longitude. Blue lines from north to south: Northern Boundary,
Subantarctic Front, Polar Front (Park et al., 2019). Note the different ranges
on axes. a–c) includes tracks from a single sailboat (Behncke et al., 2024),
while d–f) include tracks from all sailboats measuring fCO2 and contributing
to SOCAT (Bakker et al., 2016) up until the end of 2021 (used in this study).

Figure C.10: Reconstructed air-sea CO2 flux density based on SOCAT-
sampling.
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Figure C.11: Annual Time Series of Mean Absolute Errors (MAE) in Recon-
structed a–b) fCO2 (left column) and c–d) air-sea CO2 flux density (right
column).

Figure C.12: Spatial Difference in the MAE of Reconstructed Air-Sea CO2
Fluxes between Biased (±10 µatm) and Unbiased “3 Circum-
navigation” Scenarios. Spatial difference in the MAE of reconstructed
air-sea CO2 fluxes between biased (±10 µatm) and unbiased “3 circum-
navigation” scenarios. ∆MAE was calculated as MAEbiased reconstruction –
MAEunbiased reconstruction. Positive (red) values indicate regions where the
unbiased run yielded lower reconstruction errors (i.e., performed better),
while negative (blue) values indicate areas where the biased run performed
better. Track-averaged MAE and bias values are shown to the right of each
map and indicate that the addition of biased observations systematically in-
creases both the bias and MAE along the sailboat track. a) −10 µatm bias
scenario; b) +10 µatm bias scenario.
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Figure C.13: Kernel density estimate of data distribution of model truth fCO2,
unbiased “3 circumnavigations”, and +10 µatm biased “3 cir-
cumnavigations” south of 30°S between 2015 and 2021. Regions
with a climatological maximum sea-ice concentration greater than 50% are
excluded. Biased “3 circumnavigations” (blue) shift the data distribution
closer to the model truth (black) than unbiased “3 circumnavigations” (red).
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