
Benefit of Random-Local Updates in
Networks

(Load Balancing)

Dissertation zur Erlangung des akademischen Grades
Dr. rer. nat.

Betreut von: Prof. Dr. Petra Berenbrink

eingereicht von

Hamed Hosseinpour

Hamburg 2026

An der Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Universität Hamburg

Gutachterin 1: Prof. Dr. Petra Berenberink,
Gutachter 2 : Prof. Dr. Soeren Laue

Datum der Disputation : 23.01.2026

Hamed Hosseinpour, 7335036
Vogt-Kölln-Straße 30, 22527 Hamburg
hamed.hosseinpour@uni-hamburg.de

2

Abstract

This thesis studies the discrete load balancing problem on graphs in both static and dynamic settings. In
discrete load balancing, a graph G = (V,E) is given, and each node initially holds an integer number of
load items (tokens). At each step, nodes apply the same balancing rule, and load items cannot be divided.
In the static setting, no new tokens are added, whereas in the dynamic setting, a fixed number of tokens
are generated and distributed uniformly at random to the nodes at the start of each round. The goal is to
make the loads across all nodes approximately equal. We focus on two main models: the matching model,
where each node interacts with at most one neighbor per round, and the diffusion model, where each
node interacts with all its neighbors in each round.

We propose and analyze simple local balancing rules, which use randomization. In the matching
model, two matched nodes take the average of their loads. If the sum of their loads is odd, the node that
receives the one excess token is selected at random. In the diffusion model, each node spreads its loads as
evenly as possible among its neighbors and itself. Any extra tokens are distributed randomly and without
replacement between itself and its neighbors.

In part two of this thesis, we investigate dynamic load balancing on graphs using matchings, focusing
on three popular models: the balancing circuit, random matching, and (asynchronous) single random
edge models. We provide upper bounds on the discrepancy, defined as the maximum difference in load
between any two nodes. Furthermore, we establish a lower bound on the discrepancy in the balancing
circuit model, showing that the upper bound is tight up to an additional O(

√
log(n)) factor.

In part three, we study static load balancing using matchings. We provide a general framework that
includes the three models mentioned above. We show that the discrepancy reaches 3 after a sufficiently
large number of rounds, which depends on the underlying graph. We develop a novel technique here,
which may be of independent interest.

In part four, we first look at static load balancing on d-regular graphs in the diffusion model. We
provide upper bounds on the discrepancy, which are O(

√
d · log(n) + log(n)), after sufficient time. We

develop a simple method that helps us prove a tail concentration bound for the discrepancy, which could
be of independent interest. Using our methods from part two, we extend the result to the dynamic setting.
This is the first work considering the dynamic setting of discrete diffusion.

In part five, we tackle the Token Distribution problem on matchings. If the load difference between two
matched nodes is at least one, one load item is moved from the higher-loaded node to the other. We prove
that, after sufficiently many rounds, the discrepancy falls below the graph’s diameter for any connected
graph. Moreover, we derive a lower bound on the discrepancy.

3

Zusammenfassung

Diese Arbeit untersucht das diskrete Lastenausgleichsproblem auf Graphen sowohl in statischer als
auch in dynamischer Umgebung. Beim diskreten Lastenausgleich ist ein Graph G = (V,E) gegeben,
und jeder Knoten hält anfangs eine ganzzahlige Anzahl von Lastobjekten (Token). In jedem Schritt
wenden die Knoten dieselbe Ausgleichsregel an, und Lastobjekte können nicht geteilt werden. In der
statischen Umgebung werden keine neuen Token hinzugefügt, während in der dynamischen Umgebung eine
feste Anzahl von Token erzeugt und zu Beginn jeder Runde gleichmäßig zufällig auf die Knoten verteilt
wird. Ziel ist es, die Lasten über alle Knoten hinweg annähernd gleich zu machen. Wir konzentrieren
uns auf zwei Hauptmodelle: das Matching-Modell, bei dem jeder Knoten pro Runde mit höchstens
einem Nachbarn interagiert, und das Diffusions-Modell, bei dem jeder Knoten in jeder Runde mit allen
seinen Nachbarn interagiert. Wir schlagen einfache lokale Ausgleichsregeln vor und analysieren diese, die
Randomisierung nutzen. Im Matching-Modell nehmen zwei gematchte Knoten den Durchschnitt ihrer
Lasten. Ist die Summe ihrer Lasten ungerade, wird der Knoten, der das eine überschüssige Token erhält,
zufällig ausgewählt. Im Diffusions-Modell verteilt jeder Knoten seine Lasten so gleichmäßig wie möglich
auf seine Nachbarn und sich selbst. Etwaige überschüssige Token werden zufällig und ohne Zurücklegen
zwischen ihm und seinen Nachbarn verteilt.

Im zweiten Teil dieser Arbeit untersuchen wir den dynamischen Lastenausgleich auf Graphen unter
Verwendung von Matchings, wobei wir uns auf drei populäre Modelle konzentrieren: das Balancing
Circuit-Modell, das Random Matching-Modell und das (asynchrone) Single Random Edge-Modell. Wir
geben obere Schranken für die Diskrepanz an, definiert als die maximale Differenz der Last zwischen zwei
beliebigen Knoten. Darüber hinaus zeigen wir eine untere Schranke für die Diskrepanz im Balancing-
Circuit-Modell, was beweist, dass die obere Schranke bis auf einen zusätzlichen Faktor von O(

√
log(n))

scharf ist.

Im dritten Teil untersuchen wir den statischen Lastenausgleich mittels Matchings. Wir stellen einen
allgemeinen Rahmen vor, der die oben genannten drei Modelle umfasst. Wir zeigen, dass die Diskrepanz
nach einer hinreichend großen Anzahl von Runden, abhängig vom zugrunde liegenden Graphen, den Wert
3 erreicht. Dabei entwickeln wir eine neue Technik, die von eigenem Interesse sein könnte.

Im vierten Teil betrachten wir zunächst den statischen Lastenausgleich auf d-regulären Graphen
im Diffusionsmodell. Wir geben obere Schranken für die Diskrepanz an, die nach ausreichend vielen
Runden O(

√
d · log(n) + log(n)) betragen. Wir entwickeln eine einfache Methode, die uns hilft, eine

Tail-Konzentrationsschranke für die Diskrepanz zu beweisen, die von eigenem Interesse sein könnte. Unter
Verwendung der Methoden aus Teil zwei erweitern wir dieses Ergebnis auf die dynamische Umgebung.
Dies ist die erste Arbeit, die die dynamische Umgebung der diskreten Diffusion betrachtet.

Im fünften Teil behandeln wir das Token-Distribution-Problem auf Matchings. Wenn der Lastunter-
schied zwischen zwei gematchten Knoten mindestens eins beträgt, wird ein Lastobjekt vom höherbelasteten
Knoten auf den anderen übertragen. Wir beweisen, dass nach ausreichend vielen Runden die Diskrepanz
für jeden zusammenhängenden Graphen unter den Durchmesser des Graphen fällt. Zusätzlich geben wir
eine dazu untere Schranke für die Diskrepanz an.

Acknowledgments

I thank my advisor, Prof. Dr. Petra Berenbrink, for her guidance and support. I am grateful to my
co-authors for fruitful collaborations. I thank my colleagues and friends at the university for a stimulating
environment. I also thank the wider research community for many enjoyable discussions. I thank my
family, especially my parents, for their constant encouragement. Finally, I thank Germany and its people
for providing a welcoming and supportive environment for my studies.

5

Contents

List of Figures III

List of Tables IV

1 Introduction 1
1.1 Overview of Problems and Results . 3
1.2 Publications . 5
1.3 Related Works . 6
1.4 Stochastic Ingredients . 9
1.5 Notation and Preliminaries . 11

2 Discrete Dynamic Load Balancing on Matchings 14
2.1 Introduction . 15
2.2 Model and Definitions . 16
2.3 Balancing Circuit Model . 18
2.4 Random Matching Model . 25
2.5 Asynchronous Model . 27
2.6 Technical Lemmas . 28
2.7 Bounds for Specific Graph Classes . 47
2.8 Summary and Open Problems . 53

3 Discrete Static Load Balancing on Matchings 54
3.1 Introduction . 55
3.2 Model and Definitions . 57
3.3 (τglobal , τlocal)-Good Sequence . 59
3.4 Technical lemmas . 69
3.5 Bounds for Specific Models . 92
3.6 Summary and Open Problems . 94

4 Discrete Diffusion on d-Regular Graphs 95
4.1 Introduction . 96
4.2 Model and Definitions . 97
4.3 Static Diffusion . 101
4.4 Dynamic Diffusion . 107
4.5 Technical Lemmas . 108
4.6 Bounds for Specific Rounds . 118
4.7 Summary and Open Problems . 120

5 Token Distribution on Matchings 121
5.1 Introduction . 122
5.2 Model and Definitions . 123
5.3 Token Distribution . 123
5.4 Technical Lemmas . 128
5.5 Bounds for Specific Graph Classes . 133
5.6 Summary and Open Problems . 134

6 Auxiliary Results 136

II

List of Figures

1 Lower bound on cycle in dynamic load balancing . 48
2 The height-sensitive process . 58
3 Phases 1 and 2 in the proof of Proposition 3.4 . 68
4 The events Γ

(e(k)
` (u), Γ

(e(k−1))
g and L(e(k))(u) . 84

5 Hight Sensitive process, the start of a round . 100
6 Hight Sensitive process, the queuing step . 100
7 Hight Sensitive process, the shuffling step . 100
8 Hight Sensitive process, the swapping step . 100
9 Hight Sensitive process, the de-queuing step . 100
10 Hight Sensitive process, the end of a round. 100
11 Discrete diffusion-1, regular graph . 120
12 Discrete Diffusion-2, regular graph . 120

III

List of Tables

1 Upper bounds on the discrepancy in dynamic load balancing on matchings 16
2 Lower bounds on the discrepancy in dynamic load balancing on matchings 48
3 Overview of related results in the static load balancing on matchings 56
4 Results for static discrete diffusion . 96
5 Overview of related results in token distribution on matchings 122

IV

1 Introduction

Efficiently distributing indivisible tasks (tokens) across the processors of a networked system is a central
problem in distributed computing with immediate applications to datacenter scheduling, cloud plat-
forms [76], large-scale computations [87], numerical simulations [73], finite element analysis [79], and GPU
farms used for training modern machine learning models. The discrete nature of jobs, the locality of
communication, and the potential for continuous arrivals create a rich design space of local load-balancing
rules. The practical performance and theoretical guarantees of these rules depend sensitively on two
orthogonal design choices: (1) the interaction model, which specifies which neighbors exchange load
at each step, and (2) the operating setting, which distinguishes between a static scenario (a one-time
redistribution) and a dynamic one (with a continuous flow of new work). This thesis focuses on two
canonical families of local rules - matching-style exchanges, where each node interacts with at most one
neighbor per round, and diffusion-style exchanges, where each node interacts with all neighbors every
round and analyzes their behavior in both static and dynamic regimes. By treating these axes together
we aim both to isolate the fundamental trade-offs between convergence speed and communication locality,
and to provide modular techniques that yield tight bounds for discrete and dynamic settings.

We formalize the setting on an undirected graph G = (V,E) with n = |V | nodes. Each node v ∈ V
holds an integer number of tokens, and we denote the load vector at (logical) time t by X(t) = (Xv(t))v∈V .
The principal measure of imbalance that we study throughout is the discrepancy which captures the worst
gap between any two nodes, i.e., disc(X(t)) := maxv∈V Xv(t)−minv∈V Xv(t).

Two operating settings are considered. In the static setting a fixed multiset of tokens is present at
time t = 0 and no new tokens arrive; here the questions concern how quickly and with what migration
cost local iterative rules can reduce discrepancy starting from an arbitrary initial configuration. In the
dynamic setting, a fixed number of new tokens is generated in each round and distributed to nodes (in
our main model uniformly at random); here the objective becomes maintaining a small instantaneous
discrepancy in steady state while controlling the long-run migration and communication volume induced
by continual arrivals.

The two interaction models we analyze capture different practical constraints and trade-offs. In
matching-style models the system proceeds by repeatedly selecting a collection of disjoint edges (a
matching) and letting each matched pair perform a local balancing operation; this limits the number of
simultaneous transfers incident on any node and is appropriate when pairwise channels or connection
limits constrain per-round communication. In the concrete matching rule we use, two matched nodes
replace their loads by the integer average of the pair, and when the pair sum is odd a single extra token
is assigned uniformly at random to one endpoint. In diffusion-style models every node exchanges with
all neighbors in each round and attempts to split its tokens as evenly as possible among itself and its
neighbors; leftover tokens due to indivisibility are allocated uniformly at random without replacement
across the local neighborhood. Diffusion generally promotes faster global smoothing because each node
acts on all incident edges in parallel, but it can induce larger per-round migration and requires careful
rounding control when loads are discrete.

On the matching side we analyze three natural scheduling variants that arise in practice and in
prior theoretical work. The balancing-circuit model applies a fixed, deterministic sequence of matchings
periodically; the random-matching model samples a fresh uniform random matching each round; and the
asynchronous single-random-edge model activates exactly one uniformly random edge in each logical round
and lets its endpoints balance, a model that abstracts asynchronous or extremely sparse-communication
environments. On the diffusion side we concentrate our strongest results on d-regular graphs, both because

1

regularity simplifies several probabilistic symmetries and because many network topologies of interest
admit locally approximately-regular neighborhoods; where possible we also explain how the techniques
extend beyond regular graphs and how parameter choices must be adapted in nonregular settings.

Our analytic goals are to bound discrepancy (both after a finite number of rounds in the static case
and in steady state for the dynamic case), to quantify convergence time from worst-case initial states,
and to measure migration and communication costs induced by balancing. Intuitively, matching-based
rules limit per-round migration at the expense of slower mixing, whereas diffusion-style rules mix faster
but create more simultaneous transfers; a recurring theme of the thesis is making this intuition precise,
showing how graph structure (spectral gap, conductance, diameter) and the chosen schedule affect the
attainable guarantees in discrete and dynamic environments.

From a technical standpoint, discrete and dynamic processes bring several complications that do not
appear in the continuous (divisible-load) idealization. Continuous diffusion admits a clean linear-algebraic
treatment: the load vector evolves under a linear operator closely related to the graph Laplacian, and
spectral gap bounds the rate at which the system approaches the uniform distribution. When loads are
indivisible, however, rounding errors accumulate and may create persistent local imbalances; random
tie-breaking reduces bias but requires careful potential-based accounting to bound long-term effects.
Asynchrony and concurrent activations (especially in single-edge or partially overlapping matchings)
complicate coupling arguments and demand analyses that tolerate overlapping moves and delayed effects.
In the dynamic setting continuous injection of new tokens produces a steady-state that balances smoothing
against fresh imbalance; establishing nontrivial steady-state discrepancy bounds therefore requires drift
arguments that quantify how quickly the protocol removes injected imbalance relative to the arrival
rate. Finally, for matching-based processes, a precise combinatorial tracking of how discrete averaging
propagates through the sequence of matchings is necessary to prove sharp static bounds; developing such
a tracking invariant is one of the technical contributions of this work.

In the remainder of this section, we first provide an overview of the problems and results in Subsection
1.1, followed by a discussion of publications in Subsection 1.2. Subsection 1.3 reviews related work relevant
to our problems. Subsection 1.4 introduces some basic stochastic elements. Finally, Subsection 1.5 presents
the notation used across all models.

2

1.1 Overview of Problems and Results

Part Two. In this part, we study dynamic load balancing on general graphs. We consider infinite-time
and dynamic processes, where in each step new load items are assigned to randomly chosen nodes. A
matching is selected, and the load is averaged over the edges of that matching. We analyze the discrete
case, where load items are indivisible. Moreover, our results also carry over to the continuous case, where
load items can be split arbitrarily. Regarding the choice of matchings, we consider three different models:
random matchings of linear size, random matchings consisting of individual edges, and deterministic
sequences of matchings that cover the entire graph. We bound the discrepancy, defined as the difference
between the maximum and minimum load.

Our results cover a broad range of graph classes and, to the best of our knowledge, represent the first
analysis of discrete and dynamic averaging load balancing processes. Table 1 shows our simplified upper
bounds for some specific graphs, and Table 2 provides the corresponding lower bounds. In fact, we show
that in the deterministic sequence model, the gap between the upper and lower bounds is O(

√
log(n)),

which is nearly tight.

Part Three. Here, we investigate discrete static load balancing via matchings on arbitrary graphs.
Initially, each node holds a certain number of tokens. The objective is to redistribute the tokens so that
eventually each node has approximately the same number of tokens. We present results for a general class
of simple local balancing schemes covering the three matching models mentioned above. In each round,
the process averages the tokens of any two matched nodes. If the sum of their tokens is odd, the node
that receives the excess token is selected at random.

As our main result, we show that, with high probability, our discrete balancing scheme reaches a
discrepancy of 3 in a number of rounds that matches the spectral bound for continuous load balancing
with fractional load. The result improves and tightens a long line of previous work, both by achieving
a small constant discrepancy (rather than a non-explicit, large constant) and by applying to arbitrary,
rather than only regular graphs. It also demonstrates that, in the general model we consider, discrete load
balancing is no harder than continuous load balancing. A summary of our results, along with comparisons
to related work, can be found in Table 3.

Part Four. In this part, we investigate the vertex-based diffusion process. A d-regular graph G(V,E) is
given, and each node initially holds some integer load items. In each round, every node distributes its
load as evenly as possible among its neighbors and itself. If it is not possible to do so without splitting
some tokens, the node distributes its excess tokens randomly without replacement among all its neighbors
and itself.

We first prove a new bound of O(d log(n)) and then improve it to O(
√
d log(n) + log(n)) for the

discrepancy in d-regular graphs. Our bound improves upon existing results for the regime d = ω(4
√

log(n)).
Moreover, we propose the first bound on the discrepancy in the dynamic setting of the discrete vertex-based
diffusion process. A summary of our results is provided in Table 4.

Part Five. In this part, we study the token distribution problem via matchings on arbitrary graphs.
Initially, each node holds a certain number of load items. In each step, a matching is given, and for two
matched nodes, if the load difference is at least one, then only one token is moved from the more loaded
node to the other. Previous work has shown that the discrepancy converges to the diameter of a given
regular graph, but no concrete bound on the runtime has been provided ([49] and [3]).

3

We show that the discrepancy drops below the diameter (a) while providing an explicit bound on the
number of rounds, and (b) in a way that applies to arbitrary connected graphs. Our analysis is simple
and relies solely on a well-known quadratic potential function. A summary of our results, together with a
comparison to the most closely related work, is presented in Table 5. Furthermore, we establish a lower
bound on the discrepancy for regular graphs, which matches the bound given in [49].

General Outline. The focus is on Parts Two to Five. Part Six collects important and useful related
results that serve as the foundation for our calculations. Each main part follows a consistent structure:

• Introduction: briefly presents the problem, main results, and an outline.

• Model and Definitions: introduces notations, the model, and key definitions.

• Detailed Analysis: states the main theorems, supporting propositions, and technical lemmas.

• Bounds: provides results for specific graph classes, models, or rounds, depending on the problem.

• Conclusion: summarizes the results and highlights open problems.

4

1.2 Publications

Most of our work is based on peer-reviewed papers, and the results presented here advance the state of
the art. The following list provides an overview of each paper, including all co-authors, as well as the
conferences and journals where the work was published or submitted. In addition, we include two of our
previously published papers, which are not discussed in this thesis; interested readers are referred to the
original publications for further information.

Part Two: Dynamic Averaging Load Balancing on Arbitrary Graphs
Authors: Petra Berenbrink, Lukas Hintze,

Hamed Hosseinpour, Dominik Kaaser, Malin Rau
Conference: ICALP 2023 - The EATCS International Colloquium on Automata,

Languages and Programming, Germany, July 10-14 2023, [24]
Journal: ACM Transactions on Algorithms (TALG), Submitted

Full Version: arXiv CoRR, [23]

Part Three: (Almost) Perfect Discrete Iterative Load Balancing
Authors: Petra Berenbrink, Robert Elsaesser, Tom Friedetzky,

Hamed Hosseinpour, Dominik Kaaser, Peter Kling, Thomas Sauerwald
Conference: SODA 2026 - The ACM-SIAM Symposium on Discrete Algorithms,

Vancouver, Canada, January 11-14 2026 [17]
Full Version: arXiv CoRR, [16]

Fast Consensus via Unconstrained Undecided State Dynamics
Authors: Gregor Bankhamer, Petra Berenbrink, Felix Biermeier,

Robert Elsaesser, Hamed Hosseinpour, Dominik Kaaser, Peter Kling
Conference: SODA 2022 - The ACM-SIAM Symposium on Discrete Algorithms,

Virtual / Alexandria, VA, January 9-12 2022, [10]
Full Version: arXiv CoRR, [9]

Population Protocols for Exact Plurality Consensus
Authors: Gregor Bankhamer, Petra Berenbrink, Felix Biermeier,

Robert Elsaesser, Hamed Hosseinpour, Dominik Kaaser, Peter Kling
Conference: PODC 2022 - The ACM Symposium on Principles of Distributed Computing,

Italy, July 25-29 2022, [12]
Full Version: arXiv CoRR, [11]

The contribution of the author of this thesis to the results of each part is described at the end (??).

5

1.3 Related Works

We provide an overview of existing results related to the problems considered in the main four parts
of this thesis. There is a vast body of literature on iterative load balancing schemes on graphs, where
nodes balance (or average) their load only with neighbors. A common distinction is between diffusion
load balancing, where nodes balance with all neighbors simultaneously, and the matching (or dimension-
exchange) model, where edges used for balancing form a matching. In the latter, each node participates in
at most one balancing action per step, which simplifies the analysis.

This overview focuses on theoretical results for discrete load balancing; for continuous load balancing,
see, e.g., [39, 60]. Related literature also studies selfish load balancing, where tokens act as independent
agents; see [45] for a survey and [2, 27, 57] for recent results. Recall that the discrepancy (at round t) is
the maximum difference between the loads of any pair of nodes at round t. Let τ̃S(K) := log(Kn)/(1− λ),
where λ is the second-largest eigenvalue of the diffusion matrix and K is the initial discrepancy. Moreover,
∆ is the maximum degree (of the graph) in the random matching model and the sequence length in the
balancing circuit model.

Continuous Model. Bertsekas and Tsitsiklis [29], Boillat [31], Boyd et al. [32], and Cybenko [38]
pioneered the use of Markov chains for analyzing diffusion-based load balancing schemes in the continuous
model (where the load can be arbitrarily divided). Note that [32] considers the asynchronous process, in
which a single edge is chosen uniformly at random in each round, whereas the other papers study the
synchronous variant. For these processes, it is known that the discrepancy can be reduced from K to `
within O(τ̃S(K/`)) rounds in the diffusion model, the balancing circuit model, and the random matching
model (see, e.g., [82]). All these upper bounds are essentially tight, which follows from the connection
between the spectral gap of the graph and the mixing times of Markov chains [54].

Discrete Models. One of the earliest rigorous analyses of the discrete setting is due to Muthukrishnan
et al. [78]. Their algorithm computes, for each edge, the flow of load that would occur in the continuous
model and rounds that value down to obtain the number of tokens to be sent. For the diffusion model, they
show that after O(τ̃S(K)) rounds the discrepancy is at most O(∆n/(1−λ)). Ghosh and Muthukrishnan [51]
show similar results for the matching model. Rabani et al. [82] present a more refined analysis based on
Markov chains. They introduce the so-called local divergence, which aggregates the sum of load differences
over all edges in all rounds. The authors prove that the local divergence provides an upper bound on the
maximum deviation between the continuous and discrete versions of a protocol. In the same spirit as the
previous papers, they assume that an excess token is always kept at the current node. Their technique
applies to a large class of processes, including matching and diffusion models. Among other results, they
provide bounds for general graphs, showing that the discrepancy is at most O(∆τ̃S(K)) after O(τ̃S(K))

rounds in both the balancing circuit model and the diffusion model.
Berenbrink et al. [20] analyzed the asynchronous process for the complete graph. In each round, a pair

of nodes is selected uniformly at random and completely balances their loads up to a rounding error of
±1. They prove that after O(n log(Kn)) rounds, a discrepancy of two is reached. However, to the best of
our knowledge, there are no results for arbitrary graphs in the discrete asynchronous setting.

Friedrich et al. [46] introduce a quasi-random version that rounds up or down deterministically so that
the accumulated rounding errors on each edge are minimized. For torus graphs, they show a constant
discrepancy, while for hypercubes the discrepancy is O(log3/2(n)). Akbari et al. [4] analyze a similar
framework for load balancing, achieving a discrepancy of O(d) for d-regular graphs, but their algorithm
requires additional memory to track previous decisions.

6

In [47], the authors present several results for a randomized protocol with rounding in the matching
model. For complete graphs, their results show a discrepancy of O(n

√
log(n)) after Θ(log(Kn)) steps. For

expanders, a more tailored analysis yields a constant discrepancy in O(τ̃S(K)(log log(n))3) rounds in the
random matching model. Later, [14] extended some of these results to the diffusion model. The bounds
they provide depend on the spectral gap and a refined measure of local divergence. For constant-degree
expanders and torus graphs, they obtain exponential improvements in the discrepancy bounds, and for
hypercubes, polynomial improvements. Subsequently, Sun and Sauerwald [85] extended these results and
showed that the discrepancy is bounded by O(d2

√
log(n)) after O(τ̃S(K)) rounds for the vertex-based

discrete diffusion model.
Sauerwald and Sun [85] also studied discrete load balancing on matchings for arbitrary graphs and

proved that a discrepancy of O(logε n) for an arbitrarily small constant ε > 0 can be achieved in O(τ̃S(K))

rounds in both the random matching and balancing circuit models. For regular graphs, the authors show
constant discrepancy for both models, though for the latter this requires ∆ = O(1). They show that the
number of rounds needed to reach constant discrepancy is, with high probability, O(τ̃S(K)).

Berenbrink et al. [19] propose a very simple potential-function technique to analyze discrete and
continuous diffusion load balancing.

The authors of [33] study load balancing via matchings assuming random placement of load items.
The initial load distribution is sampled from exponentially concentrated distributions (including uniform,
binomial, geometric, and Poisson). They show that in this setting, convergence time is smaller than in
the worst case. Regardless of the graph’s topology, the discrepancy decreases by a factor of 4

√
t within

t synchronous rounds. Their approach of using concentration inequalities to bound the discrepancy (in
terms of the squared 2-norm of the columns of the matrices underlying the mixing process) strongly
influenced our approach in part Two.

Dynamic Models. There are far fewer results for the dynamic setting, where new load enters the
system over time. In [6], the authors study a model similar to our asynchronous model. In each step, one
load item is allocated to a chosen node. The chosen node then selects a random neighbor, and the two
nodes balance their loads by averaging them (continuous model). The authors show that the expected
discrepancy is bounded by O(

√
n log(n)), as well as a lower bound on the square of the discrepancy of

Ω(n). Anagnostopoulos et al. [7] consider load balancing via matchings in a dynamic model where the
load is distributed by an adversary. They show that the system is stable for sufficiently limited adversaries
and provide upper bounds on the maximum load for more restricted adversaries. Berenbrink et al. [22]
consider discrete dynamic diffusion load balancing on arbitrary graphs. In each step, up to n load items
are generated on arbitrary nodes (the allocation is determined by an adversary). Then, the nodes balance
their loads with each neighbor, and finally, one load item is deleted from every non-empty node. They
show that the system is stable, meaning that the total load remains bounded over time (as a function of n
alone and independently of t).

In the graphical balanced allocations setting, the initial allocation of a load item is constrained to a
randomly chosen edge of a graph, and load items cannot be moved after allocation (in contrast to our
setting). For d-regular graphs, Peres et al. [81] show that for the greedy algorithm, which allocates a load
item to the less-loaded node of each edge (with the edge distribution being uniform), the discrepancy is
O(log(n)d/α) with high probability, where α is the edge expansion of the graph. They further generalize
this result to distributions over arbitrary subsets of nodes. Bansal and Feldheim [13] present a non-greedy
algorithm using limited non-local information that achieves a discrepancy of O((d/k) log4(n) log(log(n)))

for k-edge-connected d-regular graphs, as well as a lower bound for the graphical balanced allocation

7

setting, showing that the discrepancy is Ω(d/k + log(n)) with constant probability at any given time for
any allocation strategy.

Balls into Bins. In the Balls-into-Bins setting, at each step m balls are distributed among n nodes.
In the One-choice process, where each ball is placed on a uniformly random node, the discrepancy is
O(log(n)/ log log(n)) for m = n and O(

√
(m/n) log(n)) for m > n [75]. In the d-Choices process, each

ball samples d nodes uniformly at random, and the least-loaded node receives the ball. In [58], the
authors show that the maximum load deviation from the average (the upper gap) is logd log(n) + O(1) for
m = n. Later, Berenbrink et al. [15] show that for the 2-Choice protocol and m� n, the upper gap is
log2 log(n) + O(1). Mitzenmacher et al. [74] introduce the Memory Process, which maintains a one-slot
memory storing a bin. In each step, a bin is sampled; if its load is smaller than that of the bin in memory,
it replaces the stored bin. The ball is then placed into the bin currently in memory. They show that the
upper gap is O(log log(n)) for m = n. Los et al. [66] show the same bound for m � n and extend the
results to other classes of protocols using memory.

Token Distribution A related line of research focuses on token distribution, where nodes transfer
individual tokens to neighboring nodes with smaller loads rather than fully balancing their loads. Early
works address both static settings [50, 55, 80] and dynamic ones [8]. In [49], the process is analyzed under
two models: the Single-Port model, where each node sends one token per round, and the Multiple-Port
model, where a node may send one token to each neighbor if their load difference exceeds 2(d + 1).
In the single-port model and for any d-regular graph G, the discrepancy becomes O(d log(n)/α) after
O(dK/α+d2 log(n)/α2) steps with high probability, where α denotes the edge expansion and K the initial
imbalance. These bounds are shown to be asymptotically tight.

Further studies extend these results to specific topologies and dynamic settings. Gehrke et al. [48]
show that on a ring, nodes achieve perfect balance within 4OPT(b) + n steps in which OPT(b) is the
time taken by the optimal centralized algorithm to balance b completely. Aiello et al. [3] prove that in
networks whose active edges form a µ-expander, balancing to an additive O(K log(n)/µ) is possible in
O(K log(nK)/µ) steps, with a matching lower bound of Ω(K/µ).

There are many results in related models. Mavronicolas and Sauerwald [70, 71] consider smoothing
networks and show that dimension-exchange on hypercubes achieves a discrepancy of 16 in 2 log2(n)

rounds and a discrepancy of 2 in O(log(n)) rounds.1 Due to the special structure of the network and the
matchings, there is no dependence on K.

Another interesting, albeit less related, class of load balancing processes is inspired by the Rotor-Router
model [36, 37], where each node evenly distributes tokens to its neighbors, usually in a deterministic
manner. Berenbrink, Klasing, Kosowski, Mallmann-Trenn, and Uznanski [26] consider rotor-router-
inspired diffusion-type algorithms. Their results hold only for d-regular graphs, and their best algorithm
achieves a discrepancy of d. There are also so-called “selfish” load balancing models [25], where tokens act
selfishly when deciding whether to migrate to a neighboring node. Several works also study models with
dynamic load generation and consumption [7, 18, 21], resulting in discrepancy bounds that are either not
independent of n or that establish only stability.

1Note that the dimension-exchange communication scheme can be regarded as a particular instance of the balancing
circuit model. When we write log, we mean loge unless specified otherwise.

8

1.4 Stochastic Ingredients

In this section, we briefly introduce several well-known stochastic elements that form the foundation of
our analysis. We begin with a general setup. The processes we study are stochastic processes.

Definition 1.1 (Stochastic Process (Section 7.1 in [75])). A stochastic process X = {X(t) : t ∈ N} is a
collection of random variables indexed by t, which typically represents time. The process X models how
the value of a random variable evolves over time.

We refer to X(t) as the state of the process at time t. In what follows, we use Xt interchangeably
with X(t). If X(t) takes values from a countably infinite set, then X is a discrete-space process. If it
takes values from a finite set, the process is finite. When the index set t is countably infinite, X is a
discrete-time process.

We focus on a special class of discrete-time, discrete-space stochastic processes X0, X1, . . . in which
the value of Xt depends only on Xt−1 and not on the sequence of preceding states.

Definition 1.2 (Markov Chain (Definition 7.1 in [75])). A discrete-time stochastic process X0, X1, . . . is
a Markov chain if

Pr[Xt = at | Xt−1 = at−1, Xt−2 = at−2, . . . , X0 = a0] = Pr[Xt = at | Xt−1 = at−1].

This property states that the state Xt depends only on the immediately preceding state Xt−1, regardless
of how the process arrived there. This is known as the Markov property or the memoryless property. Note
that Xt is generally not independent of all previous steps; any dependence on the past is entirely captured
by Xt−1.

We define the transition probability as

P
(t)
i,j := Pr[Xt = j | Xt−1 = i]. (1)

If P (t) is identical for all t ∈ N, the chain is called time-homogeneous ; otherwise, it is time-inhomogeneous.
A time-homogeneous Markov chain is completely described by its transition matrix P = (Pi,j)i,j∈[1,∞].

Markov chains naturally arise as models of random movement, for example in random walks on graphs.
Let G = (V,E) be a finite, undirected, and connected graph.

Definition 1.3 (Random Walk (Section 7.1 in [75])). A random walk on G is a Markov chain in which a
single particle moves between the nodes of G. If the particle is at node i at step t− 1, the probability that
it moves to node j is defined as in Equation (1).

In our analysis, the runtime of some algorithms depends on the underlying graph and its transition
matrix. For any n× n real symmetric matrix P , let λ1(P) ≥ λ2(P) ≥ . . . ≥ λn(P) denote its eigenvalues,
and define

λ(P) := max{|λ2(P)|, |λn(P)|}.

For non-symmetric matrices, let P̂ = P ·PT and define λ(P) = max{|λ2(P̂)|, |λn(P̂)|}. Consider a particle
at an arbitrary node of G at round 0, using P as its transition matrix. After O(log(n)/(1− λ(P))) steps,
the particle is at any node with probability Θ(1/n).

The term with high probability (w.h.p.) denotes probability at least 1−n−Ω(1). Since our processes are
stochastic, we frequently need to bound error probabilities. The following lemma provides a fundamental

9

tool: the probability that at least one of several events occurs is at most the sum of their individual
probabilities.

Lemma 1.1 (Union Bound (Lemma 1.2 in [75])). For any finite or countably infinite sequence of events
E1, E2, . . .,

Pr

⋃
i≥1

Ei

 ≤∑
i≥1

Pr[Ei].

We often require tail concentration results for random variables or their convex combinations to show
that they are tightly concentrated around their expectation. A common tool is the Chernoff bound, which
is closely related to McDiarmid’s inequality.

Lemma 1.2 (Chernoff Bounds (Theorems 4.4 and 4.5 in [75])). Let X1, . . . , Xn be independent Bernoulli
trials with Pr[Xi = 1] = pi, and let X =

∑n
i=1Xi with µ = E[X]. Then:

1. For any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
.

2. For any 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
.

In many cases, the random variables in our processes are dependent, so Chernoff bounds cannot always
be applied. When this occurs, we use the Azuma–Hoeffding inequality or derive custom bounds.

Definition 1.4 (Martingale (Definition 13.1 in [75])). A sequence of random variables Z0, Z1, . . . is a
martingale with respect to a sequence X0, X1, . . . if, for all n ≥ 0:

1. Zn is a function of X0, . . . , Xn;

2. E[|Zn|] <∞;

3. E[Zn+1 | X0, . . . , Xn] = Zn.

Lemma 1.3 (Azuma–Hoeffding Inequality (Theorem 13.4 in [75])). Let X0, . . . , Xn be a martingale such
that |Xk −Xk−1| ≤ ck. Then for all t ≥ 1 and any λ > 0,

Pr[|Xt −X0| ≥ λ] ≤ 2 exp

(
− λ2

2
∑t
k=1 c

2
k

)
.

We may also exploit the property of negative association to obtain Chernoff-like tail bounds.

Definition 1.5 (Negative Association (Definition 1 in [42])). A vector (Xi)i∈[n] of random variables is
negatively associated if, for any disjoint index subsets Γ, R ⊆ [n] and any non-decreasing function f ,

E[f(X`, ` ∈ Γ) | Xr = xr, r ∈ R]

is non-increasing in each xr.

To establish negative association in the diffusion protocol, we may use the following result.

Lemma 1.4 (Zero–One Lemma (Lemma 8 in [42])). If X1, . . . , Xn are zero–one random variables such
that

∑
iXi = 1, then X1, . . . , Xn satisfy the negative association property.

10

1.5 Notation and Preliminaries

In this subsection, we introduce the basic notation, a formula for the load vector and the models containing
random matching, balancing circuit and diffusion, along with several important preliminaries such as the
smoothing time, which serves as a benchmark for analyzing the convergence time of the discrete process.
For each specific problem, we recall and define the further notions in the corresponding section.

We consider an arbitrary graph G = (V,E) with n nodes. Each process is modeled as a Markov chain
(X(t))t∈N0

, where the load vector X(t) = (Xi(t))i∈[n] ∈ Rn represents the state of the process at the end
of step t, and Xi(t) denotes the load of node i at time t. We measure the imbalance of a load vector using
the discrepancy :

disc(X(t)) := max
i∈[n]

Xi(t)− min
j∈[n]

Xj(t),

and define the average load as

x :=
1

n

∑
i∈V

xi(0).

Uppercase letters, such as Xi(t) and M(t), denote random variables and random matrices, while
lowercase letters (e.g., xi(t), m(t)) denote fixed realizations.

For matching-based problems, the idealized (continuous) balancing step in round t can be represented
by multiplication with a matrix M(t) ∈ Rn×n defined as

M
(t)
i,j :=



1, if i = j and i is not matched at time t,

1/2, if i = j and i is matched at time t,

1/2, if i and j are matched at time t,

0, otherwise.

With a slight abuse of notation, we use the same symbol M(t) to refer both to the matching and to
the associated balancing matrix, and we refer to both simply as matchings. Following [82, 85], we write
[u : v] ∈M(t) to indicate that nodes u and v, with u < v, are matched in round t.

For the product of all matching matrices from time t1 to t2, we write

M[t1,t2] :=

t2∏
s=t1

M(s),

where for t1 > t2 this product is defined as the identity matrix. We generally refer to these matrices
as mixing matrices. Moreover, we write M[t] for the sequence of matching matrices (M(τ))τ∈[t] and
analogously m[t] for a fixed sequence (m(τ))τ∈[t]. For a matrix M, we denote by Mk,· its kth row (which
we often treat as a column vector when convenient).

In line with previous work [32, 51, 85], we consider the class of randomized algorithms that generate
a sequence of (random) matchings M[∞], referred to as the random matching model. The matchings
are mutually independent across all rounds. Furthermore, for all edges {u, v} and all rounds t ≥ 1, the
probability that {u, v} is included in M(t) is at least pmin := c/∆ for some constant c > 0 (possibly
depending on n). Here, ∆ denotes the maximum degree of G. Note that within the same round, the
inclusion decisions for different edges are generally not independent. Concrete distributed algorithms
satisfying these conditions are described in [32, 51].

In the balancing circuit model, the graph G is covered by ∆ fixed matchings m(1), . . . ,m(∆). In step

11

t ∈ N, the selected matching is
m(t) := m((t−1) mod ∆+1).

The round matrix is then defined as
R := M[1,∆],

which corresponds to the product of the matching matrices forming one complete period of the circuit.
Here, ∆ denotes both the number of matchings in the circuit model and the maximum degree of G in the
random matching model. We write λ(R) for the spectral gap of R, i.e., the difference between its two
largest eigenvalues.

Let ε(t) ∈ Rn denote the vector of additive rounding errors in round t, where εk(t) is the difference
between the load at node k after step t and the load in the idealized scheme with arbitrarily divisible load.
Moreover, let A(t) ∈ Nn denote the allocated load vector in round t, with Ak(t) items added to node k.
In this work, all vectors are considered as column vectors.

With this notation, the load vector at the end of step t can be expressed as

X(t) = M(t) · (X(t− 1) +A(t)) + ε(t). (2)

For problems in the diffusion model with diffusion matrix P, we have

X(t) = P · (X(t− 1) +A(t)) + ε(t). (3)

In the diffusion process on d-regular graphs, the diffusion matrix P follows the standard random walk on
a d-regular graph G, i.e.,

Pu,v :=

 1
d+1 , if (u, v) ∈ E or u = v,

0, otherwise.

Idealized Continuous Process. In the idealized process, the load is assumed to be arbitrarily divisible.
Hence, both the allocation vector A(t) and the rounding error vector ε(t) are zero. This process serves as
a useful analytical benchmark: when the continuous load discrepancy becomes negligible, the discrete
load is determined primarily by the newly added load items and rounding errors.

In the matching process, we have X(t) = M(t)] ·X(t− 1), that is, for [u, v] ∈M(t),

Xu(t) = Xv(t) =
Xu(t− 1) +Xv(t− 1)

2
.

In the diffusion process, we have X(t) = P ·X(t− 1), i.e., for each node u ∈ V ,

Xu(t) =
∑

v∈N(u)∪{u}

Xv(t− 1).

d+ 1
.

Throughout the proofs, we use the notion of (K,κ)-smoothing time (also known as the continuous
balancing time). Specifically, it denotes the time required by the continuous process to reduce the
discrepancy from K to κ < K.

Definition 1.6 ([85, Definition 2.1]). A fixed sequence of adjacency matrices M[t], t ≥ 1, is called

12

(K, ε)-smoothing if for any x(0) ∈ Rn with disc(x(0)) = K, we have

disc(M[1,t] · x(0)) ≤ ε.

For the random matching, balancing circuit, and asynchronous models, there exists a round t? =

O(τ̃S(K/κ)) for which the sequence of matchings M[t?] is (K,κ)-smoothing, w.h.p., [82, 85].

In the diffusion process, the sequence of matrices M[t] is replaced by P[t], the sequence of t transition
matrices P. In this case, we define the smoothing time of matrix P as follows.

Definition 1.7 (Smoothing Time). For a diffusion matrix P and an arbitrary initial load vector with
disc(X(0)) = K and κ < K, the (K,κ)-smoothing time is defined as

τS(P,K, κ) := min
{
t
∣∣ disc(Pt · x(0)) ≤ κ

}
.

It is the time required by the continuous process to decrease the initial discrepancy K to κ, while
applying P in each round. Note that Theorem 1 in [82] states that

τS(P,K, κ) = O(τ̃S(K/κ)) = O

(
log(Kn/κ)

1− λ(P)

)
.

13

Part Two:

2 Discrete Dynamic Load Balancing on Matchings

P. Berenbrink et al.: Dynamic Averaging Load Balancing on Arbitrary
Graphs. In 50th International Colloquium on Automata, Languages, and

Programming, ICALP. LIPIcs, volume 261, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023, pages 18:1–18:18. doi:

10.4230/LIPICS.ICALP.2023.18

14

https://doi.org/10.4230/LIPICS.ICALP.2023.18

2.1 Introduction

In this section we study dynamic averaging load balancing on general graphs. We consider infinite time
and dynamic processes, where in every step new load items are assigned to randomly chosen nodes. A
matching is chosen, and the load is averaged over the edges of that matching. We analyze the discrete case
where load items are indivisible, moreover our results also carry over to the continuous case where load
items can be split arbitrarily. For the choice of the matchings we consider three different models, random
matchings of linear size, random matchings containing only single edges, and deterministic sequences of
matchings covering the whole graph. We bound the discrepancy, which is defined as the difference between
the maximum and the minimum load. Our results cover a broad range of graph classes and, to the best of
our knowledge, our analysis is the first result for discrete and dynamic averaging load balancing processes.

Results in a Nutshell. We present, for the three models introduced above, bounds on the expected
discrepancy and bounds that hold with high probability. Our bounds for the synchronous model with
balancing circuits hold for arbitrary graphs G, the bounds for the asynchronous model and the synchronous
model with random matchings hold for regular graphs G only. For the asynchronous model and the
model with random matchings our bounds on the discrepancy are expressed in terms of hitting times
of a standard random walk on G, as well as in terms of the spectral gap of the Laplacian of G. For the
synchronous model with balancing circuits we express our bounds in terms of the global divergence. This
can be thought of as a measure of the convergence speed of the Markov chains modeling a random walk
on G. However, it does not directly measure the speed of convergence of the chain. It accounts for the
time period in which the chain keeps a given distance from the stationary (and uniform) distribution. In
physics terminology, it is a measure of total absement, which is the time-integral of displacement.

For all three infinite processes our bounds on the discrepancy hold at an arbitrary point of time
as long as the system is initially empty. Otherwise, the bounds hold after an initial time period, its
length is a function of the initial discrepancy. In the following we give some exemplary results assuming
that the system is initially empty m = n. For the synchronous model with random matchings and the
asynchronous model we can bound the discrepancy by O(

√
n log(n)) for any regular graph G. Our results

show a polylogarithmic bound on the discrepancy for all regular graphs with a hitting time at most
O(npoly log(n)) (e.g., the two-dimensional torus or the hypercube). In all models we can bound the
discrepancy by O(

√
n log(n)) for arbitrary constant-degree regular graphs. Moreover, in the balancing

circuit model we provide a lower bound on the discrepancy showing that the upper bound is tight up to
a multiplicative factor

√
log(n). We give a detailed overview on the results on specific graph classes in

table 1. All bounds presented in this paper also hold for the corresponding continuous processes without
rounding.

Comparisons to last works. The authors of [6] consider the asynchronous process on cycles in
the continuous setting where the load items can be divided into arbitrary small pieces. They bound the
expected discrepancy and show that E[disc(G)] = O(

√
n log(n)) for a cycle G with n nodes. In contrast,

we improve that bound for the cycle to disc(G) = O(
√
n log(n)). Note that our result not only bounds

the expected discrepancy but it also holds with high probability. Moreover, our results work for arbitrary
graphs in balancing circuit model and regular graphs in random matching and single edge model.

Outline. The remainder of this section is structured as follows. Section 2.2 introduces the notation
and provides the formal definitions of the synchronous and asynchronous models. In Section 2.3, we analyze
the balancing circuit model, establishing upper bound on the discrepancy and presenting the intermediate

15

Table 1: Asymptotic upper bounds on the discrepancy in specific graph classes.

Graph SBal(DBC(G), 1,m) SBal(DRM(G), 1,m) ABal(D1(G), 1)

d-regular
graph
(const. d)

log(n) +
√
m · log(n) log(n) +

√
m · log(n)

√
n · log(n)

cycle Cn log(n) +
√
m · log(n) log(n) +

√
m · log(n)

√
n · log(n)

2-D torus (1 +
√
m/n) · log(n) log(n) +

√
m/n · log3/2(n) log3/2(n)

r-D torus
(const. r ≥ 3)

log(n) +
√
m/n · log(n) (1 +

√
m/n) · log(n) log(n)

hypercube (1 +
√
m/n) · log(n) (1 +

√
m/n) · log(n) log(n)

expander log(n) +
√

∆/ λ(R) ·
√
m/n · log(n) log(n) +

√
m/n · log(n) log(n)

results that support this bound, followed by corresponding lower bound. Section 2.4 examines the random
matching model and derives an upper bound on the discrepancy in terms of structural properties of the
underlying graph. Section 2.5 extends the analysis to the asynchronous setting. Section 2.6 compiles the
technical lemmas that underpin our results, encompassing both fundamental and intermediate findings.
Finally, Section 2.7 discusses results for specific graph families, and Section 2.8 concludes with a summary
of our contributions and a discussion of open problems.

2.2 Model and Definitions

We begin by introducing notations and the balancing process. Subsection 2.2.1 introduces the synchronous
process while Subsection 2.2.2 defines the asynchronous process and recall useful definitions.

Each process is modeled by a Markov chain (X(t))t∈N0 , where the load vector X(t) = (Xi(t))i∈[n] ∈ Rn

is the state of the process at the end of step t, and Xi(t) is the load of node i at time t. We measure a
load vector’s imbalance by the discrepancy disc(~x), which is the difference between the maximum load
and the minimum load disc(~x) := maxi∈[n] xi −minj∈[n] xj .

We investigate two balancing processes, the synchronous process SBal and the asynchronous process
ABal. In the former, a matching of linear size is given and the matched nodes balance their load items.
In the latter, a matching of size one is given and the two matched nodes balance their load items.

For balancing action, we introduce a balancing parameter β determining the balancing speed which
measures what fraction of load items should move. For two matched nodes i, j, the balancing with speed
β, Bal(i, j, β), is defined as follows.

Bal(i, j, β):

1. Assume w.l.o.g. that Xi(t) ≥ Xj(t).

2. Let p =
β·(Xi(t)−Xj(t))

2 −
⌊
β·(Xi(t)−Xj(t))

2

⌋
.

3. Then, node i sends Li,j load items to node j where

Li,j :=


⌈
β·(Xi(t)−Xj(t))

2

⌉
, with probability p,⌊

β·(Xi(t)−Xj(t))
2

⌋
, with probability 1− p.

16

To capture the matching distribution, we introduce D(G) for SBal which is a distribution over
linear-sized matchings of G. For ABal, D1(G) is a distribution over edges of G. SBal is additionally
parameterized by the number of load items m ∈ N+ allocated in each round. ABal allocates only one
new load item per step.
In the idealized setting, where the load is continuously divisible, a load of β(Xi(t)−Xj(t))/2 is sent from
node i to node j.

2.2.1 Synchronous Processes

The synchronous process SBal(D(G), β,m) works as follows. The process first allocates m items to
randomly chosen nodes. Then it uses the matching distribution D(G) to determine the matching which is
applied. Finally it balances the load over the edges of the matching. The parameter β ∈ (0, 1] controls
the fraction of the load difference that is sent over an edge in a step.

For the synchronous process SBal we consider two families of matching distributions, balancing circuits
(DBC(G)) and random matchings (DRM(G)). In the balancing circuit model we assume G is covered by
∆ fixed matchings m(1), . . . ,m(∆). DRM(G) is generated according to the following method described
in [51]. First an edge set S is formed by including each edge with probability 1/(4d)− 1/(16d2) = Θ(1/d),
independently from all other edges. Then a linear-sized matching M(t) ⊆ S is computed locally.

SBal(D(G), β,m): In each round t ∈ N+:

1. Allocate m discrete, unit-sized load items to the nodes uniformly and independently at random.
Define Ai(t) as the number of tokens assigned to node i ∈ [n] and set Xi(t) := Xi(t− 1) +Ai(t).

2. Sample M(t) according to D(G).

3. For each edge {i, j} ∈M(t) do the balancing action with Bal(i, j, β).

2.2.2 Asynchronous Process

The asynchronous process ABal(D1(G), β) works as follows. The process first uses D1(G) to generate a
matching, this time containing one edge only. The distribution we consider, D1(G), first chooses a node
i uniformly at random and then it chooses one of the nodes’ edges (i, j) uniformly at random. Finally
one new token is assigned to either node i or j and then the edge (i, j) is used for balancing. Note
that for ABal(D1(G), β) the load allocation heavily depends on the edges which are used for balancing.
This makes the analysis for this model quite challenging. In contrast, in SBal(DRM(G), β,m) the load
allocation and the balancing are independent. Note that in the case of d-regular graphs D1(G) is equivalent
to the uniform distribution over all edges or to choosing a random matching of size one.

ABal(D1(G), β): In each round t ∈ N+:

1. Select an edge {i, j} according to D1(G).

2. Allocate a single unit-size load item to either node i or j with a probability of 1/2.

I.e., with prob. 1/2 set Ai(t) = 1 and Ak(t) = 0 for all k 6= i, otherwise set Aj(t) = 1 and Ak(t) = 0

for all k 6= j and set Xi(t) := Xi(t− 1) +Ai(t) for i ∈ [n].

3. For the edge {i, j} do the balancing with Bal(i, j, β).

We are given an arbitrary graph G = (V,E) with n nodes. We mainly assume that G is regular and
write d for the node degree. We model the idealized balancing step in round t by multiplication with a

17

matrix Mβ(t) ∈ Rn×n given by

Mβ
i,j(t) :=



1, if i = j and i is not matched at time t,

1− β/2, if i = j and i is matched at time t,

β/2, if i and j are matched at time t,

0, otherwise.

Recall that from Equation (2) we have

X(t) = Mβ(t) · (X(t− 1) +A(t)) + ε(t), (4)

in which X(t),Mβ(t), A(t) and ε(t) are the load vector, the balancing matrix, the newly added load items
and rounding error vectors in round t. We will omit the parameter β if it is clear from context.

We write thit(G) for the hitting time of G, which is the maximum expected time it takes for a standard
random walk on G (i.e., the walk moves to a neighbor chosen uniformly at random in each step) to reach a
given node i from a given node j, with the maximum taken over all such pairs of nodes. We write t*

hit(G)

for the edge hitting time of G, which is defined like the hitting time, except that the maximum is taken
over adjacent nodes only. We write L(G) for the normalized Laplacian matrix of a graph G. For regular
graphs it may be defined as L(G) := I−A(G)/d, where A(G) is the adjacency matrix of G. Writing
λ0 ≤ λ1 ≤ . . . ≤ λn−1 for the real eigenvalues of L(G), we let λ(L(G)) := λ1 − λ0 be the spectral gap of
the Laplacian of G. The convergence time of idealized load balancing, is a function of spectral gap of the
Laplacian graph, i.e., 1− L(G) and logarithm of the initial discrepancy.

2.3 Balancing Circuit Model

In this section, we analyze the synchronous process for the balancing circuit model. The main results are
Theorem 2.1 and Theorem 2.5, which provide an upper and lower bound on the discrepancy. Note that
these results hold for arbitrary graphs.

Recall that in the balancing circuit model, the graph G is covered by ∆ fixed matchings m(1), . . . ,m(∆).
The matching distribution DBC(G) deterministically selects the matching m(t) = m((t−1) mod ∆+1) at step
t. The round matrix is defined as R = M[1,∆]. For a sequence of matchings m[t] := (m(s))ts=1, we define
the global divergence as

Υ(m[t]) := max
k∈[n]

√√√√ t∑
τ=1

∣∣∣∣∣
∣∣∣∣∣M[τ,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

.

The global divergence can be interpreted as a measure of the convergence speed of a random walk that uses
the matching matrices as transition probabilities. In [14, 47, 85], the authors introduce a related notion
called the local p-divergence, also defined on a sequence of matchings. The difference is that the global
divergence measures deviations from the global average across all nodes, whereas the local divergence
measures differences between neighboring nodes.

Theorem 2.1. Let G be an arbitrary graph and X(t) be the state of process SBal(DBC(G), 1,m) at
time t with disc(X(0)) =: K. For all t ∈ N with t ≥ 2 · (∆/λ (R)) · ln(K · n) it holds w.h.p. and in
expectation

disc(X(t)) = O

(
log(n) +

√
m

n
·Υ(m[t]) ·

√
log(n)

)
.

18

Proof. Note that β = 1. We define m(t) := Mβ(t). We first expand the recurrence of Equation (4)
(cf. [82]). After one step we get

X(t) = m(t) · (X(t− 1) +A(t)) + ε(t)

= m(t) ·
((

m(t−1) · (X(t− 2) +A(t− 1)) + ε(t− 1)
)

︸ ︷︷ ︸
X(t−1)

+A(t)
)

+ ε(t)

= m[t−1,t] ·X(t− 2) +

t∑
s=t−1

m[s,t] ·A(s) +

t∑
s=t−1

m[s+1,t] · ε(s)

We repeatedly expand this form up to the beginning of the process and get

X(t) = m[1,t] ·X(0)︸ ︷︷ ︸
I(t)

initial load contribution

+

t∑
s=1

m[s,t] ·A(s)︸ ︷︷ ︸
D(t)

dynamically allocated Load contribution

+

t∑
s=1

m[s+1,t] · ε(s)︸ ︷︷ ︸
R(t)

rounding error contribution

. (5)

We write I(t), D(t), and R(t) for the three terms as indicated. Note that, in general, these terms
are vectors of real numbers. The sum I(t) +D(t) can be regarded as the contribution of the (dynamic)
continuous process, where I(t) is the contribution of the initial load and D(t) is the contribution of the
dynamically allocated load. Thus, R(t) is the deviation between the idealized process without rounding
and the discrete process.

To bound the discrepancy disc(X(t)) of the load vector X(t) at time t we use the fact that the
discrepancy is sub-additive such that disc(~x+ ~y) ≤ disc(~x) + disc(~y) (see Observation 2.13). Hence, to
bound disc(X(t)) we individually bound the discrepancies of the three terms in Equation (5) and get

disc(X(t)) ≤ disc(I(t)) + disc(D(t)) + disc(R(t)). (6)

If the system is initially empty, then disc(I(t)) = 0. Moreover, in the idealized setting without rounding
disc(R(t)) = 0. In the rest of this Subsection we bound these three terms. Bounds on disc(I(t)) and
disc(R(t)) is quite well-known and simple and are done in Subsections 2.3.1 and 2.3.2, respectively. The
interesting part is bounding disc(D(t)) which is done in Subsection 2.3.3.

From Proposition 2.2 for the specified t in the statement we have,

disc(I(t)) = 1. (7)

From Proposition 2.3 we get

Pr
[
disc(R(t)) = O

(√
log(n)

)]
≥ 1− 2 · n−2. (8)

And from Lemma 2.4 (with γ := 3) it follows that

Pr

[
disc(D(t)) = O

(
log(n) +

√
log(n) · m

n
·Υ(m[t])

)]
≥ 1− 2 · n−2. (9)

The statement of the theorem then follows from a union bound over the Equation (7), Equation (8)
and Equation (9). The bound on expectation follows from the linearity of expectation and the bounds on
the expected discrepancies in the aforementioned propositions.

19

In the rest of this section, we first prove the three propositions used in the theorem above. Then, we
provide a lower bound on the discrepancy in this model.

2.3.1 Bounding the Contribution of the Initial Load, disc(I(t))

The following proposition shows that, in this model, for sufficiently large rounds t, the contribution of the
initial load to the overall discrepancy becomes negligible. In particular, we determine the value of t for
which the sequence m[t] is (K, 1)-smoothing in this model (see Definition 1.6).

Proposition 2.2 (Smoothing Property). Consider the balancing circuit model with round matrix R. For
all t ∈ N, K ≥ 1 if t ≥ 2 · (∆/ λ (R)) · ln(K · n), then disc(I(t)) ≤ 1.

Proof. Recall that the round matrix is given by R =
∏∆
s=1 m

(s). The quadratic node potential is defined
as

Φ(~x) :=
∑
i∈[n]

(xi − x)
2
, where x :=

1

n

∑
j∈[n]

xj .

Since Φ(X(0)) ≤ K2n, it follows from Lemma 2 in [53] (restated as Lemma 6.22) that

Φ
(
m[1,t] ·X(0)

)
≤ (1− λ(R))

2btc/∆ · Φ(X(0))

≤ (1− λ(R))
2btc/∆ ·K2n

≤ e−2btcλ(R)/∆+2 ln(Kn).

Setting t ≥ 2∆ · ln(Kn)/ λ(R) implies that Φ
(
m[1,t] · x(0)

)
≤ n−2. Consequently, for all t ∈ N satisfying

this bound, we have disc(I(t)) ≤ 1.

2.3.2 Bounding the Contribution of the Rounding Errors, disc(R(t))

In this subsection, we analyze the effect of cumulative rounding errors on the discrepancy. The proof
follows similarly to the proof of Theorem 3.6 in [85] which is based on work in [14].

Proposition 2.3 (Insignificance of Rounding Errors). Let G be an arbitrary graph. Then for all t ∈ N,
and k ∈ [n] we get with probability at least 1− 2n−2 and in expectation disc(R(t)) = O

(√
log(n)

)
.

Proof. The proof directly follows from the proof of [85, Theorem 3.6]. In the next part, using a different
technique, we prove a generalized version of this theorem. In fact, we show that with slightly smaller
probability the discrepancy of rounding errors is at most 3 (after sufficiently many steps). However, for
our analysis, the bound of O(

√
log(n)) is sufficient. To establish the expectation bound on E[disc(R(t)],

we apply Lemma 6.2 with X = disc(R(t)), c = 2 and C = 2
√

log(n) to see that

E[disc(R(t))] ≤ 2
√

log(n) ·
(

1 +
2

log(n)

)
= O

(√
log(n)

)
.

2.3.3 Bounding the Contribution of Dynamically Allocated Loads by Global Divergence

In the following lemma, we bound the discrepancy of dynamically allocated loads in terms of the global
divergence. In this setting, the matchings are assumed to be fixed, and the only source of randomness
comes from the random placement of loads. By fixing the sequence of matchings, the result can later be
applied directly to the random matching model DRM. The proof relies on two high-level ideas. First,
the placement of newly added items is independent of the sequence of matching matrices. Second, the

20

matching matrices themselves are doubly stochastic. As we will see in a later section, this lemma can also
be extended to the diffusion model (see Lemma 4.14).

Lemma 2.4 (Load concentration via global divergence). Let m[t] be an arbitrary sequence of matchings.
Then for all γ > 0 and t ∈ N we get with probability at most 2 · n−γ+1

disc(D(t)) ≥ 8

3
· γ log(n) +

√
32γ log(n) · m

n
·Υ(m[t]).

Proof. Fix a node k ∈ [n]. First we establish a concentration inequality on Dk(t) in terms of Υk(m[t]).
Our goal is to decompose Dk(t) into a sum of independent random variables. Recall that we assume

that the matching matrices are fixed and all randomness is due to the random choices of the load items.
This will enable us to apply a concentration inequality to this sum. For the decomposition observe that
D(t) =

∑t
τ=1 m

[τ,t] · A(τ), where A(τ) is the random load vector corresponding to the m load items
allocated at time τ . So the kth coordinate of D(t) is Dk(t) =

∑t
τ=1

∑
w∈[n] m

[τ,t]
k,w · Aw(τ). We define

the indicator random variable B(τ, j, w) for τ ∈ [t], j ∈ [m] and w ∈ [n] as , starting from their token
locations, Pr[B(τ, j, w) = 1] = 1/n and E[B(τ, j, w)] = 1/n. Observe that Aw(τ), the load allocated to
node w at step τ , can be expressed as

∑
j∈[m]B(τ, j, w). Merging this with the value of Dk(t) gives

Dk(t) =

t∑
τ=1

∑
w∈[n]

m
[τ,t]
k,w ·

∑
j∈[m]

B(τ, j, w)

 =

t∑
τ=1

∑
j∈[m]

∑
w∈[n]

(
m

[τ,t]
k,w ·B(τ, j, w)

)
︸ ︷︷ ︸

=:Ck(τ,j)

.

For a fixed τ ∈ [t] and j ∈ [m] we define Ck(τ, j) :=
∑
w∈[n] m

[τ,t]
k,w · B(τ, j, w). This random variable

measures the contribution of j-th load item of round τ to Dk(t). Note that the load items are allocated
independently from each other. Since m[τ,t] are fixed matrices, then Ck(τ, j) and Ck(τ ′, j′) are independent
for all τ and τ ′ and j 6= j′. To apply the concentration inequality from Theorem 6.9 we need to show
that Ck(τ, j) ≤ 1 and compute an upper bound on Var[Ck(τ, j)]. Showing the first condition is easy since
exactly one of the indicator random variables B(τ, j, w) is one and m

[τ,t]
k,w has a value between zero and

one.
It remains to consider the variance of Ck(τ, j). First note that by linearity of expectation

E[Ck(τ, j)] = E

∑
w∈[n]

(
m

[τ,t]
k,w ·B(τ, j, w)

)=
∑
w∈[n]

m
[τ,t]
k,w ·E[B(τ, j, w)]=

∑
w∈[n]

m
[τ,t]
k,w ·

1

n
=

1

n
,

where the last equality follows form the fact that m[τ,k] is doubly stochastic. Now we get

Var[Ck(τ, j)] = E
[
(Ck(τ, j)−E[Ck(τ, j)])

2
]

= E

((∑
w∈[n]

m
[τ,t]
k,w ·B(τ, j, w)

)
− 1

n

)2


=
∑
w′∈[n]

1

n
·
(
m

[τ,t]
k,w′ −

1

n

)2

=
1

n
·

∣∣∣∣∣
∣∣∣∣∣m[τ,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

,

where we used that for each τ and each j exactly one of the B(τ, j, w) is one and all others are zero, and
each of the n possible cases has uniform probability.

21

Recall that Ck(τ, j) and Ck(τ ′, j′) are independent for all τ, τ ′ and j 6= j′. Hence we get

Var

 t∑
τ=1

∑
j∈[m]

Ck(τ, j)

 =

t∑
τ=1

∑
j∈[m]

Var[Ck(τ, j)] =
1

n
·

t∑
τ=1

∑
j∈[m]

∣∣∣∣∣
∣∣∣∣∣m[τ,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

=
m

n
·
(

Υk(m[t])
)2

,

where the final equality uses the definition of the global divergence Υk(m[t]). Applying Theorem 6.9 with
M = 1 and X = Dk(t) =

∑t
τ=1

∑
j∈[m] Ck(τ, j) with λ = 2γ log(n)/3 + Υk(m[t]) ·

√
2γm/n results in

Pr

[
Dk(t)− t · m

n
≥ 2

3
· γ log(n) +

√
2γ log(n) · m

n
·Υk(m[t])

]
≤ n−γ .

The lower bound can be established using Theorem 6.10 (with ai = 0 and M = 1) instead of Theorem 6.9.
Via a union bound we get

Pr

[∣∣∣Dk(t)− t · m
n

∣∣∣ ≥ 4

3
· γ log(n) +

√
8γ log(n) · m

n
·Υk(m[t])

]
≤ 2 · n−γ . (10)

Applying the union bound over all nodes k ∈ [n] together with observation 2.14 (showing that disc(D(t)) ≤
2|Dk(t)− t ·m/n|) finishes the proof.

The next theorem provides a lower bound on the discrepancy in the balancing circuit model with
β = 1, SBal(DBC(G), 1,m). The proof idea is to apply Berry-Essen Theorem (Theorem 6.8) in a way
similar to Theorem 1.2 in [33]. For this, we rely on the following facts: (1) the placement of newly added
items is independent of the sequence of matrices, (2) the matching matrices are doubly stochastic, and (3)
the variable Dk(t) can be decomposed into independent random variables with finite and bounded second
and third moments.

Theorem 2.5. Let G be an arbitrary graph and X(t) be the state of process SBal(DBC(G), 1,m) at
time t. Then for all t ∈ N and m ≥ 4n · log(n)/Υ(m[t]) it holds with constant probability

disc(X(t)) = Ω

(√
m

n
·Υ(m[t])

)
.

Proof. First we show a lower bound on Dk(t). The idea is to decompose Dk(t) into sum of independent
random variables (Y`) which have expected value zero and also show that

∑
`E
[∣∣Y 3

`

∣∣] is properly bounded.
It allows us to apply a concentration inequality to the sum. To do so, we define several intermediate
random variables similar to the proof of Lemma 2.4.

Fix round t and consider node k ∈ [n] such that Υk(m[t]) = Υ(m[t]). Recall that,

Dk(t) =

t∑
τ=1

∑
w∈[n]

m
[τ,t]
k,w ·Aw(τ).

We define indicator random variables B(τ, j, w) for τ ∈ [t], j ∈ [m] and w ∈ [n] as follows.

B(τ, j, w) :=

{
1, if j-th load item of step τ goes to node w,
0, otherwise.

Note that for fixed j and τ ,
∑
w∈[n]B(τ, j, w) = 1 and Pr[B(τ, j, w) = 1] = 1/n. Recall that Aw(τ) can

22

be expressed as
∑
j∈[m]B(τ, j, w). It then follows that

Dk(t) =

t∑
τ=1

∑
j∈[m]

∑
w∈[n]

(
m

[τ,t]
k,w ·B(τ, j, w)

)
.

We define the derivative from the average for Dk(t) as

D̃k(t) :=

t∑
τ=1

∑
k∈[m]

∑
w∈[n]

(
m

[τ,t]
k,w ·B(τ, j, w)− 1

n2

)
︸ ︷︷ ︸

Ck(τ,j)

.

It immediately follows that D̃k(t) = Dk(t)− t ·m/n. We call

Ck(τ, j) :=
∑
w∈[n]

(
m

[τ,t]
k,w ·B(τ, j, w)− 1

n2

)

the contribution of the j-th load item (of step τ) to D̃k(t). For a fixed τ and j, from the linearity of
expectation, it follows that

E[Ck(τ, j)] =
∑
w∈[n]

E

[
m

[τ,t]
k,w ·B(τ, j, w)− 1

n2

]
=

∑
w∈[n]

m
[τ,t]
k,w ·

1

n

− 1

n
= 0,

where the last inequality follows since m[τ,t] is a doubly stochastic matrix.
Here for ` = (τ − 1) · m + j such that τ ∈ [t] and j ∈ [m] we define Y` := Ck(τ, j) and it follows

D̃k(t) =
∑t·m
`=1 Y`. Note that Y`’s are independent. We want to apply the Berry-Esseen Theorem [28, 43]

(see Theorem 6.8). To do so, we need to compute Var[Y`] and E
[
|Y`|3

]
. Then we get

Var[Y`] = E

(Ck(τ, j)−E[Ck(τ, j)]︸ ︷︷ ︸
=0

)2

 = E


∑
w∈[n]

(
m

[τ,t]
k,w ·B(τ, j, w)− 1

n2

)2


= E


∑

w∈[n]

m
[τ,t]
k,w ·B(τ, j, w)

− 1

n

2
 =

1

n

∑
w′∈[n]

(
m

[τ,t]
k,w′ −

1

n

)2

=
1

n
·

∥∥∥∥∥m[τ,t]
k,· −

~1

n

∥∥∥∥∥
2

2

,

where in the second last equality we used the fact that for each τ and each j exactly one of the B(τ, j, w)

is one and all others are zero, and that each of the n possible cases has uniform probability. Similarly,

E
[
|Y`|3

]
= E

[
|Ck(τ, j)|3

]
= E


∣∣∣∣∣∣
∑
w∈[n]

(
m

[τ,t]
k,w ·B(τ, j, w)− 1

n2

)∣∣∣∣∣∣
3


(a)
=
∑
w′∈[n]

E


∣∣∣∣∣∣
∑
w∈[n]

(
m

[τ,t]
k,w ·B(τ, j, w)− 1

n2

)∣∣∣∣∣∣
3
∣∣∣∣∣∣∣B(τ, j, w′) = 1

 · Pr[B(τ, j, w′) = 1],

where (a) follows form the law to total expectation. Using the fact that for any w′ ∈ [n], |m[τ,t]
k,w′ − 1/n| < 1

23

in (b), from above, we get

E
[
|Y`|3

]
=

1

n
·
∑
w′∈[n]

∣∣∣∣m[τ,t]
k,w′ −

1

n

∣∣∣∣3 (b)

≤ 1

n
·
∑
w′∈[n]

(
m

[τ,t]
k,w′ −

1

n

)2

≤ 1

n
·

∥∥∥∥∥m[τ,t]
k,· −

~1

n

∥∥∥∥∥
2

2

,

Recall that
∥∥∥m[τ,t]

k,· −
~1
n

∥∥∥2

2
= Φ (m

[τ,t]
k,·). By defining Ft·m(x) as the distribution of D̃k(t)√∑t·m

`=1 Var[Y`]
, from

Theorem 6.8 it follows that,

|Ft·m(x)− ΦN (x)| ≤ C0 ·
∑t·m
`=1 E

[
|Y`|3

](∑t·m
`=1 Var[Y`]

)3/2
≤ C0 ·

m
n ·
∑t
τ=1 Φ (m

[τ,t]
k,·)(

m
n ·
∑t
τ=1 Φ (m

[τ,t]
k,·)

)3/2
= o(1),

in which the last inequality follows from the assumption, m ≥ 4n log(n)/
∑t
τ=1 Φ (m

[τ,t]
k,·), and C0 is some

constant. Note that ΦN (x) is the standard normal distribution. Therefore it holds that,

Ft·m(x) ≥ ΦN (x)− o(1) ≥ 1
√
π(x+

√
x2 + 2)ex2

− o(1),

where the last inequality follows from [[1], Formula 7.1.13] which states

1
√
π(x+

√
x2 + 2)ex2

≤ ΦN (x) ≤ 1
√
π(x+

√
x2 + 4/π)ex2

.

Hence with x = 1 we have
Ft·m(1) ≥ 1

√
π(1 +

√
3)e
− o(1) ≥ 1

16
.

Therefore by replacing the definition of Ft·m(1) we get that

Pr

 D̃k(t)√
m
n ·
∑t
τ=1 Φ (m

[τ,t]
k,·)

≥ 1

 = Pr

D̃k(t) ≥

√√√√m

n

t∑
τ=1

Φ (m
[τ,t]
k,·)

 ≥ 1

16
.

Recall that D̃k(t) = Dk(t)−E[Dk(t)], then it follows that

Pr

Dk(t) ≥ E[Dk(t)] +

√√√√m

n
·

t∑
τ=1

Φ (m
[τ,t]
k,·)

 ≥ 1

16
.

Moreover, when node k receives more than expectation from the allocated load items, there is (at least)
one node w receiving less than expectation. Hence,

Pr

Dk(t)−Dw(t) ≥

√√√√m

n
·

t∑
τ=1

Φ (m
[τ,t]
k,·)

 ≥ 1

16
· 1.

SinceX(0) = ~0, then Ik(t) = Iw(t) = 0. From Proposition 2.3 it follows that |Rk(t)−Rw(t)| = O(
√

log(n))

with probability 1− o(1). Since m ≥ 4n · log(n)/
∑t
τ=1 Φ (m

[τ,t]
k,·) and Xk(t) = Ik(t) +Dk(t) +Rk(t), then

it follows

Pr

Xk(t)−Xw(t) ≥ 1

2
·

√√√√m

n
·

t∑
τ=1

Φ (m
[τ,t]
k,·)

 ≥ 1

16
· (1− o(1)) ≥ 1

17
,

24

completing the proof.

2.4 Random Matching Model

Building on the upper bound established for the balancing circuit model, we now extend our results to the
process SBal(DRM(G), β,m) on d-regular graphs G. The matching distribution DRM(G) is generated
according to the algorithm described in [51]. As with the previous model, the upper bound holds at any
point in time t, assuming the system is initially empty. Furthermore, the same results remain valid in the
idealized setting where load items can be divided into arbitrarily small pieces (see [6]). To achieve this
extension, we adapt the proof of Theorem 2.1 so that it (a) holds for an arbitrary β and (b) applies to the
matching distribution DRM(G)

Theorem 2.6. Let G be a d-regular graph and define T (G) := min
{

thit(G)
n · log(n),

√
d

λ(L(G)) ,
1

λ(L(G))

}
.

Let X(t) be the state of process SBal(DRM(G), β,m) at time t with disc(X(0)) =: K ≥ 1. There exists
a constant c > 0 such that for all t ≥ c · log(K · n)/(λ(L(G)) · β) it holds w.h.p.and in expectation

disc(X(t)) = O

log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

+

√
log(n)

β
· m
n
· T (G)

.
Proof. The proof follows along the lines of the proof of Theorem 2.1. For a fixed β throughout this proof
we let M(t) := Mβ(t). Similar to Equation (5), we get

X(t) = M[1,t] ·X(0)︸ ︷︷ ︸
I(t)

initial load contribution

+

t∑
s=1

M[s,t] ·A(s)︸ ︷︷ ︸
D(t)

dynamically allocated Load contribution

+

t∑
s=1

M[s+1,t] · ε(s)︸ ︷︷ ︸
R(t)

rounding error contribution

, (11)

and
disc(X(t)) ≤ disc(I(t)) + disc(D(t)) + disc(R(t)).

In the rest of this section, we bound each term in the right hand side of the inequality above. We first
consider disc(I(t)) (in subsection 2.4.1) and disc(R(t)) (in subsection 2.4.2) since the techniques to bound
these terms are well-established. The hardest part of our analysis is that of disc(D(t)); hence, we consider
this part at the end of the section (in subsection 2.4.3).

With these bounds we are ready to finish the proof. Let now γ > 1. First, it follows from Proposition 2.7
that for all t ≥ c log(Kn)/(λ(L(G))β) we have disc(I(t)) ≤ 1 with probability at least 1− n−γ . Second, it
follows from Proposition 2.8 that disc(R(t)) ≤ 2

√
γ log(n)/β with probability at least 1− 3n−γ+1. Third,

it follows from Proposition 2.9 that

disc(D(t)) = O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

+

√
γ log(n)

β
· m
n
· T (G)


with probability at least 1− 2 ·n−γ+1. The statement of the theorem therefore follows from a union bound
over the statements of Proposition 2.7, Proposition 2.8, and Proposition 2.9. The bound on expectation
follows analogously from the linearity of expectation and the bounds on the expected discrepancies in the
aforementioned propositions.

25

2.4.1 Bounding the Contribution of the Initial Load, disc(I(t))

Here, we show that the contribution of the initial load to the discrepancy becomes negligible when t is
sufficiently large. We generalize the analysis of Theorem 1 in [82] to establish a bound on the discrepancy
of the initial load as a function of β. In particular, we demonstrate that a sequence of matchings of
sufficient length t is (K, 1)-smoothing.

Proposition 2.7 (Smoothing Property). Let G be a d-regular graph and K = disc(X(0)). There exists a
constant c > 0 such that for all γ > 0 and t ∈ N with t ≥ t0(γ) := c·max{γ log(n), log(K · n)}/(λ(L(G)) · β)

we get with probability at least 1− n−γ and in expectation disc(I(t)) ≤ 1.

Proof. Note that maxi∈[n]|xi − x| ≤
√

Φ(~x) by definition of Φ. Hence, disc(~x) ≤ 2
√

Φ(~x). By Lemma 2.22
(presented in technical lemma section), if t ∈ N with t ≥ t0(γ) := c·max{γ log(n), log(K · n)}/(λ(L(G)) · β),
then Φ(I(t)) ≤ 1/4 with probability at least 1− n−γ , and hence disc(I(t)) ≤ 2

√
Φ(I(t)) ≤ 2

√
1/4 = 1.

Moreover, by the lemma and the Jensen’s inequality we get for t ≥ t0(0) that,

E[disc(I(t))] ≤ E
[
2
√

Φ(I(t))
]
≤ 2
√

E[Φ(I(t))] ≤ 2

√
1

4
= 1,

finishing the proof.

2.4.2 Bounding the Contribution of the Rounding Errors, disc(R(t))

Here we bound the contribution of cumulative rounding errors to the discrepancy. The following proposition
is not restricted to the random matching model but applies to all three models considered in this work.

Proposition 2.8 (Insignificance of Rounding Errors). Let G be an arbitrary graph. Then for all γ > 1, t ∈
N, and k ∈ [n] we get with probability at least 1−2n−γ+1 and in expectation disc(R(t)) = O

(√
γ log(n)/β

)
.

Proof. The proof is similar to the proof of [85, Theorem 3.6] for β = 1. In Lemma 2.23 (presented
in technical lemmas) we generalized it to arbitrary β. To show the bound on E[disc(R(t)], we apply
Lemma 6.2 with X = disc(R(t)), c = 2 and C = 2

√
log(n)/β to see that

E[disc(R(t))] ≤ 2

√
log(n)

β
·
(

1 +
2

log(n)

)
= O

(√
log(n)

β

)
.

2.4.3 Bounding the Contribution of the Dynamically Allocated Load, disc(D(t))

In this subsection, we establish a tail bound on the discrepancy contribution of dynamically allocated
load (Proposition 2.9). This, in fact, constitutes the most challenging proof in this section.

Proposition 2.9 (Contribution of Dynamically Allocated Load). Let G be a d-regular graph. Define

T (G) := min
{

thit(G) · log(n)/n,
√
d/λ(L(G)), 1/λ(L(G))

}
.

Then for all γ > 1 and t ∈ N we get with probability at least 1− 3n−γ+1 and in expectation

disc(D(t)) = O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

+

√
γ log(n)

β
· m
n
· T (G)

.

26

Proof. The proof is partitioned into two parts. First we bound the discrepancy in terms of global
divergence. Then we bound the global divergence by the quantity T (G) defined in the statement.

Let m[t] be an arbitrary but fixed sequence of matchings generated by DRM(G) and let γ > 0. From
Lemma 2.4 it follows, with a probability at least 1− 2n−γ+1, that

disc(D(t)) = O

(
γ log(n) +

√
γ log(n) · m

n
·Υ(m[t])

)
. (12)

Since the statement holds for any arbitrary and fixed matching sequence m[t] generated by DRM(G), then
it holds for any sequence of random matchings M[t] generated by DRM(G) as well.

From Lemma 2.24 (shown in technical lemmas) it follows, with probability at least 1− n−γ , that

Υ(M[t]) = O

√γ log(n) ·
t*
hit(G)

n
+

√
T (G)

β

. (13)

Applying union bound over Equation (12) and Equation (13), gives us that with probability at least
1− 3n−γ+1

disc(D(t)) = O

γ log(n) +

√
γ log(n) · m

n
·

√γ log(n) ·
t*
hit(G)

n
+

√
T (G)

β


= O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

+

√
γ log(n)

β
· m
n
· T (G)

.
The corresponding bound on E[disc(D(t)] follows by applying the bound presented in Lemma 6.2.

2.5 Asynchronous Model

In this section, we analyze the asynchronous process. The following theorem presents our main result
for the asynchronous model. The bounds provided by Theorem 2.10 for the asynchronous model differ
from those in Theorem 2.6 for the random matching model in two respects. First, the lower bound on
the smoothing time is larger by a factor of n, reflecting the fact that the asynchronous model balances
across only one edge per round, in contrast to Θ(n) edges in the random matching model. Second, the
upper bound on disc(X(t)) is considerably simpler. Note, however, that setting m = n in Theorem 2.6
and further simplifying the result using t*

hit(G) /n = Ω(1) (see also Claim 2.26 used in the proof of
Proposition 2.9) yields the same asymptotic bound as in Theorem 2.10.

Theorem 2.10. Let G be a d-regular graph and define T (G) := min
{

thit(G)
n · log(n),

√
d

λ(L(G)) ,
1

λ(L(G))

}
.

Let X(t) be the state of process ABal(D1(G), β) at time t with disc(X(0)) =: K ≥ 1. There exists a
constant c > 0 such that for all t ≥ c · n · log(K · n)/(λ(L(G)) · β) it holds w.h.p. and in expectation

disc(X(t)) = O

log(n)

√
t*
hit(G)

n
+

√
log(n)

β
· T (G)

.
Proof. The proof follows the approach of Theorem 2.1, using the fact that

disc(X(t)) ≤ disc(I(t)) + disc(D(t)) + disc(R(t)),

27

where I(t), D(t), and R(t) denote the contributions of the initial load, dynamically allocated load, and
rounding errors, respectively. Proposition 2.8, which bounds disc(R(t)), also applies in the asynchronous
model, as it only requires that the subgraph used for balancing is a matching. The contribution of
disc(I(t)) is bounded in Proposition 2.11 (replacing Proposition 2.7, see below). However, the proof of
Lemma 2.4 (which bounds disc(D(t)) in terms of the global divergence) and, most importantly, the proof of
Proposition 2.9 (which provides a concentration bound on disc(D(t))) cannot be directly applied to ABal.
We therefore replace Proposition 2.9 with Proposition 2.12. A final union bound over Proposition 2.8,
Proposition 2.11, and Proposition 2.12 completes the proof. The result concerning the expectation follows
similarly from Lemma 6.2.

2.5.1 Bounding the Contribution of the Initial Load I(t)

The following lemma is a version of Proposition 2.7 adapted to this model. Its proof requires recalculating
the functions gG and σG to demonstrate that the matching distribution used by D1(G) is (gG, σ

2
G)-good

(Lemma 2.20). For the precise definition of goodness, see Definition 2.1 in the technical lemmas section.

Proposition 2.11 (Memorylessness Property). Let G be a d-regular graph. Let K = disc(X(0)).
Then there exists a constant c > 0 such that for all γ > 0 and t ∈ N with t ≥ t0(γ) := cn ·
max{γ log(n), log(K · n)}/(λ(L(G)) · β) we get with probability at least 1 − n−γ and in expectation
disc(I(t)) ≤ 1.

Proof. The proof follows the same approach as that of Proposition 2.7, with the exception that in
Equation (25) and Equation (26), we replace Lemma 2.17 with Lemma 2.21, which is presented in
Section 2.6. In essence, to apply Theorem 6.1 (the Drift Theorem) and derive a bound analogous to
that in Proposition 2.7, we must show that the sequence of matchings in this model is (gG, σ

2
G)-good for

specific functions gG and σ2
G. This is established in Lemma 2.21.

2.5.2 Bounding the Contribution of the Dynamically Allocated Load D(t)

Here we bound the contribution of dynamically allocated load to the discrepancy.

Proposition 2.12 (Contribution of Dynamically Allocated Load). Let G be a d-regular graph. Define

T (G) := min
{

thit(G) · log(n)/n,
√
d/λ(L(G)), 1/λ(L(G))

}
.

Then for all γ > 1 and t ∈ N we get with probability at least 1− 9n−γ+1 and in expectation

disc(D(t)) = O

log(n)

√
t*
hit(G)

n
+

√
log(n)

β
· T (G)

.
Proof. In Lemma 2.27 (presented in the technical lemmas), we bound the discrepancy in terms of the
global divergence. In Lemma 2.29 (also presented in the technical lemmas), we bound the global divergence
in terms of T (G). Applying a union bound over these two results completes the proof.

2.6 Technical Lemmas

This section is divided into two subsections. In the first subsection (2.6.1), we present all the basic
lemmas. In the second subsection (2.6.2), we use these basic lemmas to prove the developed tools that are

28

subsequently employed to establish our main propositions.

2.6.1 Basic Tools

We start with a well-known fact that the discrepancy is sub-additive.

Observation 2.13. For two vectors ~x, ~y ∈ Rn,

disc(~x+ ~y) ≤ disc(~x) + disc(~y).

Proof. For any ~a,~b ∈ Rn,
max
i∈[n]

(ai + bi) ≤ max
i∈[n]

ai + max
i∈[n]

bi,

and thus

disc(~x+ ~y) = max
i∈[n]

(xi + yi)− min
i∈[n]

(xi + yi) = max
i∈[n]

(xi + yi) + max
i∈[n]

((−xi) + (−yi))

≤ max
i∈[n]

xi + max
i∈[n]

yi + max
i∈[n]

(−xi) + max
i∈[n]

(−yi)

=

(
max
i∈[n]

xi − min
i∈[n]

xi

)
+

(
max
i∈[n]

yi − min
i∈[n]

yi

)
= disc(~x) + disc(~y),

as claimed.

Next observation is an immediate result of it.

Observation 2.14. It holds that disc(D(t)) ≤ 2 ·maxk∈[n]|Dk(t)− t ·m/n|.

To bound the global divergence of the matching sequence used by the process we use two potential
functions. Recall that the quadratic node potential Φ(~x) is given by

Φ(~x) =
∑
i∈[n]

(xi − x)
2
, where x =

1

n
·
∑
j∈[n]

xj .

For a set of edges S on the nodes [n] and a vector ~x ∈ Rn, the quadratic edge potential is

ΨS(~x) :=
∑
{i,j}∈S

(xi − xj)2.

We may also write ΨG := ΨE(G) whenever G is a graph, and ΨM := ΨE(M) whenever M is a matching
matrix. The following observation relates the drop of node potential to the edge potential in terms of β.

Observation 2.15. Let Mβ be a matching matrix with parameter β ∈ (0, 1]. Then for any ~x ∈ Rn we
have Φ(~x)− Φ(Mβ · ~x) = (1− (1− β)2)/2 ·ΨE(Mβ)(~x).

Proof. We assume w.l.o.g. that the entries of ~x sum to 0, meaning that x = 0, so that Φ(~x) =
∑
i∈[n] x

2
i .

As loads only change at matched nodes, let us investigate the potential change at two matched nodes
i and j, where w.l.o.g. xi ≥ xj . The amount of load transferred from i to j under idealized balancing
(without rounding) is (xi − xj) · β/2. So with

a :=
xi + xj

2
, b :=

xi − xj
2

, c := (1− β) · xi − xj
2

,

29

the loads before balancing are xi = a + b and xj = a − b, and the loads after idealized balancing are
x′i = a+ c and x′j = a− c. So the change of the potential contributions at i and v is

(a+ b)2 + (a− b)2 − ((a+ c)2 + (a− c)2) = 2(a2 + b2)− 2(a2 + c2) = 2(b2 − c2),

where we used (x+ y)2 + (x− y)2 = (x2 + 2xy + y2) + (x2 − 2xy + y2) = 2x2 + 2y2. Now,

2(b2 − c2) = 2(12 − (1− β)2)

(
xi − xj

2

)2

=
1− (1− β)2

2
(xi − xj)2.

Summing this over all edges in the matching gives, as claimed,

Φ(~x)− Φ(Mβ · ~x) =
1− (1− β)2

2

∑
[i,j]∈Mβ

(xi − xj)2 =
1− (1− β)2

2
·ΨE(Mβ)(~x).

We now define a notion of a matching distribution being good. In Lemma 2.19 below we show that the
notion is sufficient for showing that matching sequences generated from such distributions have bounded
global divergence. Note that the “goodness” of a distribution does not depend on β but on graph properties
and the random choices with which the matchings are chosen. Hence, we assume β = 1.

Definition 2.1. Assume G is an arbitrary d-regular graph. Let g : R+
0 → R+ be an increasing function

and let σ2 > 1. Then a matching distribution DRM(G) is (g, σ2)-good if the following conditions hold for
M1 ∼ DRM(G) and all stochastic vectors ~x ∈ Rn.

1. Φ(~x)−E
[
Φ(M1 · ~x)

]
≥ g(Φ(~x)).

2. Var
[
Φ(M1 · ~x)

]
≤ (σ2 − 1) ·

(
Φ(~x)−E

[
Φ(M1 · ~x)

])2
.

In the next lemma, we calculate a function gG and the values of σG for which the matching distribution
DRM(G) is (gG, σ

2
G)-good. This lemma together with Lemma 2.19 allows us to bound the global divergence

of random matching model (see Lemma 2.24).

Lemma 2.16. Assume G is an arbitrary d-regular graph. Let

gG(x) :=
1

16d
·max

{
d · λ(L(G)) · x, x2

Res(G)
,

4

27
· x3

}
and σ2

G = 32 · (t*
hit(G) /n) + 5.

Then DRM(G) is (gG, σ
2
G)-good.

Proof. First, note that the function gG(x) is increasing in x. Applying the first part of Lemma 2.17 (see
below) we get that for any vector ~x ∈ Rn it holds that

Φ(~x)−E
[
Φ(M1 · ~x)

]
≥ 1

16d
·ΨG(~x).

From the first two statements of Lemma 2.18 (stated behind Lemma 2.18) we see that for M1 ∼ DRM(G)

and all stochastic vectors ~x ∈ Rn

ΨG(~x) ≥ max

{
d · λ(L(G)) · Φ(~x),

Φ(~x)2

Res(G)
,

4

27
· Φ(~x)3

}
.

Hence,

Φ(~x)−E
[
Φ(M1 · ~x)

]
≥ 1

16d
·max

{
d · λ(L(G)) · Φ(~x),

Φ(~x)2

Res(G)
,

4

27
· Φ(~x)3

}
,

30

and as a consequence, Φ(~x)−E
[
Φ(M1 · ~x)

]
≥ gG(Φ(~x)) by the definition of gG.

It remains to check the second condition of Definition 2.1 with our claimed value σ2
G. Inserting its

value as stated in the lemma, the condition requires that

Var
[
Φ(M1 · ~x)

]
≤ (32(t*

hit(G) /n) + 5− 1) ·
(
Φ(~x)−E

[
Φ(M1 · ~x)

])2
,

which is given in the second part of Lemma 2.17 (see below).

In Lemma 2.17 we first relate the drop of Φ to the quadratic edge potential Ψ. In the second part we
bound the variance of the potential drop as a function of the edge hitting time.

Lemma 2.17. Let G be a d-regular graph, let M1 ∼ DRM(G), and let ~x ∈ Rn, then

1. Φ(~x)−E
[
Φ(M1 · ~x)

]
≥ 1

16d ·ΨG(~x).

2. Var
[
Φ(M1 · ~x)

]
≤ (32 · (t*

hit(G)
n) + 4) ·

(
Φ(~x)−E

[
Φ(M1 · ~x)

])2
.

Proof. By observation 2.15, we have

Φ(~x)− Φ(M1 · ~x) =
1− (1− 1)2

2
·ΨE(M1)(~x).

Rearranging this lower bound into Φ(M1 ·~x) = Φ(~x)− 1
2 ·ΨE(M1), and expanding the definition of ΨE(M1)

we have by linearity of expectation

E
[
Φ(M1 · ~x)

]
= E

Φ(~x)− 1

2
·
∑

[i,j]∈M1

(xi − xj)2


= Φ(~x)− 1

2
·

∑
{i,j}∈E(G)

E
[
1{i,j}∈E(M1) ·(xi − xj)2

]
= Φ(~x)− 1

2
·

∑
{i,j}∈E(G)

Pr
[
{i, j} ∈ E(M1)

]
· (xi − xj). (14)

From [51, Lemma 2], it follows that for M1 ∼ DRM(G) and all edges e ∈ E(G), it holds that
Pr
[
e ∈ E(M1)

]
≥ 1/(8d). Applying to Equation (14) gives us

E
[
Φ(M1 · ~x)

]
≤ Φ(~x)− 1

2
·

∑
{i,j}∈E(G)

1

8d
· (xi − xj)2 = Φ(~x)− 1

16d
·ΨG(~x),

finishing the proof of the first statement.
For the second statement observe that by observation 2.15 we have

Φ(~x)− Φ(M1 · ~x) =
1

2
·ΨE(M1)(~x)

Then, as Φ(~x) is constant for a given ~x,

Var
[
Φ(M1 · ~x)

]
= Var

[
Φ(~x)− Φ(M1 · ~x)

]
= Var

[
1

2
·ΨM1(~x)

]
=

1

4
Var[ΨM1(~x)]. (15)

Recall that the matching distribution DRM(G) is obtained as follows. First, generate a random edge set
S as follows. For each e ∈ E(G), e ∈ S with probability pmax := Pr[e ∈ S] = 1/(4d)− 1/(64d2) ≤ 1/(4d),

31

independently of all other edges. Then, some edges of S are deleted to create a proper matching, resulting
in E(M1) ⊆ S. Hence

0 ≤ ΨE(M1)(~x) =
∑

[i,j]∈M1

(xi − xj)2 ≤
∑
{i,j}∈S

(xi − xj)2 = ΨS(~x),

and
Var
[
ΨE(M1)(~x)

]
≤ E

[
(ΨE(M1)(~x))2

]
≤ E

[
(ΨS(~x))2

]
= Var[ΨS(~x)] + (E[ΨS(~x)])2. (16)

Observe that ΨS(~x) can be expressed as ΨS(~x) =
∑
{i,j}∈E(G)(xi − xj)2 1{i,j}∈S with Pr

[
1{i,j}∈S = 1

]
=

pmax. Thus,

E[ΨS(~x)] =
∑
{i,j}∈E

(xi − xj)2 ·E
[
1{i,j}∈S

]
= pmax ·

∑
{i,j}∈E

(xi − xj)2 = pmax ·ΨG(~x);

Var[ΨS(~x)] =
∑
{i,j}∈E

(xi − xj)4 ·Var
[
1{i,j}∈S

]
=

∑
{i,j}∈E

(xi − xj)4 · pmax(1− pmax)

= pmax(1− pmax) ·
∑
{i,j}∈E

(xi − xj)4 ≤ pmax ·
∑
{i,j}∈E

(xi − xj)2 · max
{k,l}∈E

(xk − xl)2

≤ pmax ·ΨG(~x) · max
{k,l}∈E

(xk − xl)2.

By using Lemma 2.18(3) and the first statement of Lemma 6.21 we get that max{k,l}∈E(xi − xj)2 ≤
Res∗(G) ·ΨG(~x) ≤ t*

hit(G)
|E| ·ΨG(~x). Hence,

Var
[
ΨE(M1)(~x)

]Eq. (16)

≤ Var[ΨS(~x)] + (E[ΨS(~x)])2

≤ pmax ·ΨG(~x) · max
{k,l}∈E

(xk − xl)2 + (pmax ·ΨG(~x))2

≤ pmax ·ΨG(~x) · t*
hit(G)

|E|
·ΨG(~x) + p2

max · (ΨG(~x))2

≤ 1

4d
· t*

hit(G)

dn/2
· (ΨG(~x))2 +

1

16d2
· (ΨG(~x))2 =

1

2d2
·
(

t*
hit(G)

n
+

1

8

)
·ΨG(~x)2. (17)

Applying the first statement of this lemma we get

ΨG(~x) ≤ 16d · (Φ(~x)−E
[
Φ(M1 · ~x)

]
). (18)

Putting everything together the second statement follows from

Var
[
Φ(M1 · ~x)

] Eq. (15)

≤ 1

4
·Var[ΨM1(~x)]

Eq. (17)

≤ 1

4
· 1

2d2
·
(

t*
hit(G)

s
+

1

8

)
· (ΨG(~x))2

Eq. (18)

≤ 1

8d2
·
(

t*
hit(G)

n
+

1

8

)
·
(
16d · (Φ(~x)−E

[
Φ(M1 · ~x)

])2
= 32 ·

(
t*
hit(G)

n
+

1

8

)
·
(
Φ(~x)−E

[
Φ(M1 · ~x)

])2
≤
(

32 · t*
hit(G)

n
+ 4

)
·
(
Φ(~x)−E

[
Φ(M1 · ~x)

])2
In Lemma 2.18 we relate the size of the quadratic edge potential ΨG to the second-largest eigenvalue

of L(G), the effective resistance of G and node potential. To state it, we need some additional definitions.

32

For any two nodes i and j of the graph G Res(i, j) is the effective resistance (or resistive distance) between
i and j in G (for a detailed definition see Section 6.3). Furthermore, we write Res(G) for the resistive
diameter of G, i.e., the largest resistive distance between any pair of nodes in G, and write Res∗(G) for the
maximum effective resistance between any pair of nodes adjacent in G. I.e., Res(G) := maxi,j∈[n] Res(i, j)

and Res∗(G) := max{i,j}∈E(G) Res(i, j). The first part of the following lemma was previously shown in [51,
85].

Lemma 2.18. Let ~x ∈ Rn, and let G be a connected d-regular graph.

1. ΨG(~x) ≥ d · λ(L(G)) · Φ(~x).

2. If ~x is stochastic, then ΨG(~x) ≥ max
{

1
Res(G) · Φ(~x)2, 4

27 · Φ(~x)3
}

3. max{i,j}∈E(G)(xi − xj)2 ≤ Res∗(G) ·ΨG(~x).

Proof. First note that for all ~x ∈ Rn, a, b ∈ R, and S ⊆ E(G),

ΨS(a · ~x+ b) =
∑
{i,j}∈S

((a · xi + b)− (a · xj + b))2 =
∑
{i,j}∈S

(a · xi + b− a · xj − b)2

=
∑
{i,j}∈S

a2(xi − xj)2 = a2 Ψ(~x).
(19)

The proof of the first part is similar to that of Theorem 2.6 in [85]. First, see that

ΨG(~x) =
∑

{i,j}∈E(G)

(xi − xj)2 =
∑

{i,j}∈E(G)

(x2
i − 2xixj + x2

j)

=
∑
i∈[n]

d · x2
i −

∑
i,j∈[n]

Ai,j xixj = d · 〈~x, ~x〉 −
∑
i∈[n]

xi

∑
j∈[n]

Ai,j xj


= d · 〈~x, I ~x〉 − 〈~x,A ~x〉 = d · 〈~x, (I−A /d)~x〉 = d · 〈~x,L(G)~x〉.

As ΨG(~x − b) = ΨG(~x) by observation 19, we may assume w.l.o.g. that 〈~x,~1〉 = 0 by subtracting
b := 〈~x,~1〉/n from every coordinate of ~x. For such a vector we have Φ(~x) = ||x||22 = 〈~x, ~x〉, and

ΨG(~x) = d〈~x,L(G)~x〉 = d · 〈~x,L(G)~x〉
〈~x, ~x〉

· Φ(~x) ≥ d · Φ(~x) · min
~a∈Rn \{~0}
〈~a,~1〉=0

〈~a,L(G)~a〉
〈~a,~a〉

= d · λ(L(G)) · Φ(~x),

where the final equality is due to the min-max theorem and the fact that the smallest eigenvalue of L(G)

is 0, with its associated eigenvector being ~1.
For the second part, let i, j ∈ [n] be two distinct nodes of the graph with xi 6= xj . Then

ΨG(~x) = (xi − xj)2 ·ΨG

(
~x− xj
xi − xj

)
≥ (xi − xj)2 · min

~a∈Rn
ai=1
aj=0

ΨG(~a) =
(xi − xj)2

Res(i, j)
, (20)

where the first equality uses observation 19, the central inequality holds because the argument of ΨG is a
vector ~a ∈ Rn with ai = 1 and aj = 0, and the final equality is by Dirichlet’s principle (Theorem 6.19).
Note that the bound also holds when xi = xj .

33

Given Equation (20), we now show that ΨG(~x) is larger than the first, resp. second, term inside
the maximum of the second part’s statement. For the first term, we choose i and j such that xi −
xj = disc(~x), and recall that Res(i, j) ≤ Res(G) for all i, j ∈ [n]. Then, Equation (20) states that
ΨG(~x) ≥ disc(~x)2/Res(G), and it remains to bound disc(~x) from below by Φ(~x). To that end, as the
vector ~x is stochastic by assumption, the sum over all its entries is 1, and there is at least one k ∈ [n] with
xk ≤ 1/n. Hence, disc(~x) ≥ maxk∈[n](xk − 1/n), and so

disc(~x) ≥ disc(~x) ·
∑
k∈[n]

xk︸ ︷︷ ︸
=1

≥
∑
k∈[n]

(
xk −

1

n

)
︸ ︷︷ ︸
≤disc(~x)

xk −
1

n
·
∑
k∈[n]

(
xk −

1

n

)
︸ ︷︷ ︸

= 1
n ·0=0

=
∑
k∈[n]

(
xk −

1

n

)2

= Φ(~x),

as needed to complete the bound for the first term.
For the second term, we choose i and j such that xi = maxk∈[n] xk, xj ≤ xi − 2/3 · disc(~x) with

the distance D between i and j being minimal. As xi ≥ disc(~x), each of the entries of ~x for the D − 1

non-terminal nodes on a shortest path between i and j is at least disc(~x)/3. As ~x is stochastic by
assumption, the sum of all loads is at most 1, and we have

disc(~x) + (D − 1) · disc(~x)

3
=
D + 2

3
· disc(~x) ≤ 1,

which implies D ≤ 3/ disc(~x).

Since Res(i, j) is bounded by the standard distance between i and j (see Lemma 6.16), and xi − xj ≥
2/3 · disc(~x), we thus have, by Equation (20),

ΨG(~x) ≥ (xj − xi)2

Res(i, j)
≥ (2/3 · disc(~x))2

3/disc(~x)
=

4 · disc(~x)3

27
≥ 4 · Φ(~x)

27
,

where the final inequality uses disc(~x) ≥ Φ(~x) as shown above.
For the third statement we first rearrange Equation (20) to see that, for all i 6= j,

(xi − xj)2 ≤ ΨG(~x) · Res(i, j).

Taking the maximum over all {i, j} ∈ E(G) on both sides gives us

max
{i,j}∈E(G)

(xj − xi)2 ≤ ΨG(~x) · max
{i,j}∈E(G)

Res(i, j) = ΨG(~x) · Res∗(G),

as claimed, where the final equality is by definition of Res∗(G).

In the next lemma we show assuming a matching distribution is (g, σ2)-good, the global divergence of
a matching sequence generated by that distribution can be bounded in terms of g and σ.

Lemma 2.19 (Bounding Global Divergence with Goodness). Assume G is an arbitrary graph. Let
g : R+

0 → R+ be an increasing function, σ2 > 1, and β ∈ (0, 1]. Let M[t] = (Mβ(τ))tτ=1 be an i.i.d.
sequence of matching matrices generated by DRM(G) and assume DRM(G) is a (g, σ2)-good matching
distribution. Then for all γ > 0 and k ∈ [n] we get with probability at least 1− n−γ

(
Υk(M[t])

)2

≤ 8σ2(γ log(n) + log(8σ2)) +
2

β
·
∫ 1

0

x

g(x)
dx.

34

Proof. First recall that (
Υk(M[t])

)2

=

t∑
τ=1

∥∥∥∥∥M[τ,t]
k,· −

~1

n

∥∥∥∥∥
2

2

.

As the mixing matrices are doubly stochastic, each row is a stochastic vector ~x. By definition of the node
potential Φ we know ∥∥∥∥∥M[τ,t]

k,· −
~1

n

∥∥∥∥∥
2

2

=

n∑
w=1

(
M

[τ,t]
k,w −

1

n

)2

= Φ
(
M

[τ,t]
k,·

)
and hence (

Υk(M[t])
)2

=

t∑
τ=1

Φ(M
[τ,t]
k,·).

To bound this sum we will apply the second statement of Theorem 6.1 to the sequence of values Φ(M[τ,t])

for τ = t, . . . , 1. Since the matching matrices Mβ(1) . . . ,Mβ(t) are symmetric we get

Φ(M
[τ,t]
k,·) = Φ

(
M

[τ+1,t]
k,· ·Mβ(τ)

)
= Φ

(
Mβ(τ) ·M[τ+1,t]

k,·

)
.

By observation 2.15 with S = E(Mβ(τ)) defined as the edges of Mβ(τ) we get

Φ(M
[τ+1,t]
k,·)− Φ(M

[τ,t]
k,·) =

1− (1− β)2

2
·ΨS(M

[τ+1,t]
k,·) ≥ 0. (21)

This shows that Φ(M
[τ,t]
k,·) ≤ Φ(M

[τ+1,t]
k,·) for all τ . Expressing Equation (21) with balancing parameter 1

and, for the ease of presentation, setting ~V := M
[τ+1,t]
k,· gives us

Φ(M
[τ+1,t]
k,·)− Φ(M

[τ,t]
k,·) = Φ(~V)− Φ(Mβ(τ) · ~V) = (1− (1− β)2) ·

(
Φ(~V)− Φ(M1(τ) · ~V)

)
.

Since β ≤ 1− (1− β)2 ≤ 2β for β ∈ (0, 1] we get

E
[
Φ(~V)− Φ(Mβ(τ) · ~V)

]
≥ β ·E

[
Φ(~V)− Φ(M1(τ) · ~V)

]
, (22)

Var
[
Φ(~V)− Φ(Mβ(τ) · ~V)

]
≤ 4β2 ·Var

[
Φ(~V)− Φ(M1(τ) · ~V)

]
. (23)

As DRM(G) is (g, σ2)-good, for any stochastic vector ~v ∈ Rn we have E
[
Φ(~v)− Φ(M1(τ) · ~v)

]
≥ g(Φ(~v)).

Combining this with Equation (22) gives

E
[
Φ(~v)− Φ(Mβ(τ) · ~v)

]
≥ β · g(Φ(~v)).

And thus,

E
[
Φ(M

[τ,t]
k,·)

∣∣∣Φ(~V) = ϕ
]

= E
[
Φ(Mβ(τ) · ~V)

∣∣∣Φ(~V) = ϕ
]
≤ ϕ− β · g(ϕ).

Similarly, as DRM(G) is (g, σ2)-good, for any stochastic vector ~v ∈ Rn we have

Var
[
Φ(M1 · ~v)

]
≤ (σ2 − 1) ·

(
Φ(~v)−E

[
Φ(M1 · ~v)

])2
.

Combining this with Equation (23) gives us

Var
[
Φ(Mβ · ~v)

]
≤ 4β2(σ2 − 1)

(
Φ(~v)−E

[
Φ(M1 · ~v)

])2
,

35

and thus

Var
[
Φ(M

[τ,t]
k,·)

∣∣∣Φ(~V) = ϕ
]

= Var
[
Φ(Mβ(τ) · ~V)

∣∣∣Φ(~V) = ϕ
]

≤ 4β2 · (σ2 − 1) ·
(
ϕ−E

[
Φ
(
M1(τ) · ~V

) ∣∣∣Φ(~V) = ϕ
])2

= 4(σ2 − 1) ·
(
β ·E

[
ϕ− Φ

(
M1(τ) · ~V

) ∣∣∣Φ(~V) = ϕ
])2

Eq. (22)

≤ 4(σ2 − 1) ·
(
E
[
ϕ− Φ

(
Mβ(τ) · ~V

) ∣∣∣Φ(~V) = ϕ
])2

= 4(σ2 − 1) ·
(
E
[
Φ
(
Mβ(τ) · ~V

) ∣∣∣Φ(~V) = ϕ
]
− ϕ

)2

.

We apply the second statement of Theorem 6.1 with p := n−γ , δ := 0.5, and h(x) := β · g(x), which is an
increasing function as g is increasing by the definition of (g, σ2)-good, and get

Pr

[
t−t0∑
τ=1

Φ(M
[τ,t]
k,·) ≤ 2 ·

∫ 1

0

x

β · g(x)
dx

]
≥ 1− n−γ ,

where t0 = 8σ2(γ log(n) + log(8σ2)). From this follows that with probability at least 1− n−γ

(
Υk(M[t])

)2

=

t−t0∑
τ=1

Φ(M
[τ,t]
k,·) +

t∑
τ=t−t0+1

Φ(M
[τ,t]
k,·)

(a)

≤ 2 ·
∫ 1

0

x

β · g(x)
dx+ t0,

where (a) follows from the fact that Φ(Mk,·) < 1 for k-th row of any stochastic matrix M. The lemma
follows applying the definition of t0.

The next result is analogous to Lemma 2.16:

Lemma 2.20. Assume G is an arbitrary d-regular graph. Then D1(G) is (gG, σ
2
G)-good, where

gG(x) :=
1

dn
·max

{
d · λ(L(G)) · x, 1

Res(G)
· x2,

4

27
· x3

}
; σ2 = 2 · t*

hit(G) .

The proof of Lemma 2.20 is analogous to that of Lemma 2.16, except that we use Lemma 2.21 stated
below instead of Lemma 2.17.

Lemma 2.21. Let G be a d-regular graph, let M1 ∼ D1(G), and let ~x ∈ Rn, Then

1. Φ(~x)−E
[
Φ(M1 · ~x)

]
= 1

dn ·ΨG(~x).

2. Var
[
Φ(M1 · ~x)

]
≤ (2 · t*

hit(G)−1) ·
(
Φ(~x)−E

[
Φ(M1 · ~x)

])2
.

Proof. For the first statement, we use observation 2.15 as well as the fact that D1(G) is the uniform
distribution over the edges of G to see that, as claimed.

Φ(~x)−E
[
Φ(M1 · ~x)

]
= E

[
Φ(~x)− Φ(M1 · ~x)

]
= E

[
1

2
·ΨM1(~x)

]
=

1

2
·

∑
{i,j}∈E(G)

1

|E|
· (xi − xj)2 =

1

2
· 1

dn/2
·ΨG(~x) =

1

dn
·ΨG(~x).

For the second statement we first observe that Φ(~x) is constant and by observation 2.15 we have

Var
[
Φ(M1 · ~x)

]
= Var

[
Φ(~x)− Φ(M1 · ~x)

]
= Var

[
1

2
·ΨM1(~x)

]
.

36

We bound this variance using the Bhatia-Davis inequality (Theorem 6.3). It states that, for a random
variable X taking values in [m,M], and with µ := E[X], it is the case that Var[X] ≤ (M − µ)(µ−m).

Now from the definition of Ψ, it is immediate that ΨM1(~x) ≥ 0. For the upper bound on ΨM1(~x), recall
that the matchings M1 ∼ D1(G) consist of just one edge, and so ΨM1 ≤ max{i,j}∈E(G)(xi − xj)2. The
latter is bounded from above by the third statement of Lemma 2.18, yielding

ΨM1(~x) ≤ max
{i,j}∈E(G)

(xi − xj)2 ≤ Res∗(G) ·ΨG(~x).

And so, by the Bhatia-Davis inequality (Theorem 6.3),

Var
[

1

2
·ΨM1(~x)

]
≤
(

Res∗(G) ·ΨG(~x)− 1

dn
·ΨG(~x)

)
· 1

dn
·ΨG(~x),

= (Res∗(G) · dn− 1) ·
(

1

dn
·ΨG(~x)

)2

≤ 2 · t*
hit(G) ·

(
Φ(~x)−E

[
Φ(M1 · ~x

]
)
)2
,

where the last inequality used the fact that Res∗(G) ·dn = 2 ·Res∗(G) · |E| ≤ 2 ·t*
hit(G) by Lemma 6.21.

2.6.2 Developed Tools

We now use the basic technical lemmas introduced above to prove the key tools that serve as the main
ingredients in our propositions.

The following lemma shows that, after a sufficiently long time (which depends on the spectral gap
and the logarithm of the initial discrepancy) the contribution of the initial load becomes negligible with
high probability. This lemma is used in Proposition 2.7, which applies to both the random matching and
asynchronous models.

Lemma 2.22. For t ∈ N with t = t0(γ) := c ·max{γ log(n), log(K · n)}/(λ(L(G)) · β) then E[Φ(I(t))] ≤
1/4, and if t ≥ t0(γ), then Pr

[
Φ(I(t)) ≤ 1

4

]
≥ 1− n−γ .

Proof. We aim to use the first statement of Theorem 6.1 on Φ(I(t)) and therefore need to check its
preconditions. By the definition of I(t), for all t ≥ 1,

I(t) = M[1,t] ·X(0) = Mβ(t) ·M[1,t−1] ·X(0) = Mβ(t) · I(t− 1).

Entirely analogous to the calculations in the proof of Lemma 2.19 (Equations (22) and (23)), we have,
writing ~V = I(t− 1) (so that I(t) = Mβ · ~V),

E
[
Φ(~V)− Φ(Mβ(t) · ~V)

]
≥ β ·E

[
Φ(~V)− Φ(M1(t) · ~V)

]
, (24)

and

Var
[
Φ(~V)− Φ(Mβ(t) · ~V)

]
≤ 4β2 ·Var

[
Φ(~V)− Φ(M1(t) · ~V)

]
,

37

and from the latter it immediately follows that for all ϕ

Var
[
Φ(I(t)) | Φ(~V) = ϕ

]
= Var

[
Φ(Mβ(t) · ~V) | Φ(~V) = ϕ

]
= Var

[
ϕ− Φ(Mβ(t) · ~V) | Φ(~V) = ϕ

]
≤ 4β2 ·Var

[
ϕ− Φ(M1(t) · ~V) | Φ(~V) = ϕ

]
,

= 4β2 ·Var
[
Φ(M1(t) · ~V) | Φ(~V) = ϕ

]
.

Combining the first statement of Lemma 2.18 and the first statement of Lemma 2.17 gives us, for all
~x ∈ Rn,

Φ(~x)−E
[
Φ(M1(t) · ~x)

]
≥ λ(L(G))

16
· Φ(~x), (25)

so that, for all ϕ,

E
[
Φ(I(t)) | Φ(~V) = ϕ

]
= E

[
Φ(Mβ(t) · ~V) | Φ(~V) = ϕ

]
≤ ϕ− β · λ(L(G))

16
· ϕ.

By the second statement of Lemma 2.17, for all ~x ∈ Rn:

Var
[
Φ(M1(t) · ~x)

]
≤ (32 · (t*

hit(G) /n) + 4) ·
(
Φ(~x)−E

[
Φ(M1(t) · ~x)

])2
. (26)

And so,

Var
[
Φ(I(t)) | Φ(~V) = ϕ

]
≤ 4β2 ·Var

[
Φ(M1(t) · ~V) | Φ(~V) = ϕ

]
≤ 4β2 ·

(
32 · t*

hit(G)

n
+ 4

)
·
(
ϕ−E

[
Φ(M1(t) · ~V) | Φ(~V) = ϕ

])2

=

(
128 · t*

hit(G)

n
+ 16

)
·
(
β ·E

[
ϕ− Φ

(
M1(t) · ~V

)
| Φ(~V) = ϕ

])2

Eq. (24)

≤
(

128 · t*
hit(G)

n
+ 16

)
·
(
E
[
ϕ− Φ

(
Mβ(t) · ~V

)
| Φ(~V) = ϕ

])2

=

(
128 · t*

hit(G)

n
+ 16

)
·
(
E
[
Φ
(
Mβ(t) · ~V

)
| Φ(~V) = ϕ

]
− ϕ

)2

.

So we can now apply Theorem 6.1 with h(x) := β · λ(L(G)) · x/16 and σ := 128 · t*
hit(G) /n+ 16. With

these values and δ := 1/2, the first statement of Theorem 6.1 gives us

Pr

[∫ Φ(I(0))

Φ(I(t))

1

h(ϕ)
dϕ ≤ t/2

]
≤ exp

(
− t

8(σ + 1)

)
.

The integral evaluates to∫ Φ(I(0))

Φ(I(t))

1

h(ϕ)
dϕ =

16

β λ(L(G))
·
∫ Φ(I(0))

Φ(I(t))

1

ϕ
dϕ = log

(
Φ(I(0))

Φ(I(t))

)
· 16

β · λ(L(G))
.

This is at least t/2 if and only if

Φ(I(t)) ≤ Φ(I(0)) · exp

(
− β · λ(L(G))

32
· t
)
,

38

which follows after rearranging the initial inequality and exponentiation. So

Pr

[
Φ(I(t)) ≤ Φ(I(0)) · exp

(
− β · λ(L(G))

32
· t
)]
≥ 1− exp

(
− t

8(σ + 1)

)
. (27)

Let K := disc(I(0)) = disc(X(0)) which implies that Φ(I(0)) ≤ n ·K2, so that log(Φ(I(0))) ≤ 2 log(K · n).
Furthermore, it is the case that 0.5 ≤ t*

hit(G) /n ≤ 1/ λ(L(G)) (by Theorem 6.20) and that β ∈ (0, 1].
Therefore, there is a sufficiently large constant c > 0 such that if t ≥ t0(γ) = c ·max{γ log(n), log(K ·
n)}/(β · λ(L(G))), then

t ≥ β · λ(L(G))

32
· log(8 · Φ(I(0))),

as well as

t ≥ max{γ log(n), log(Φ(I(0)))} · 8 ·
(

128 · t*
hit(G)

n
+ 33

)
= max{γ log(n), log(Φ(I(0)))} · 8(σ + 1).

From t ≥ (β · λ(L(G))/32) · log(8 · Φ(I(0))), it follows that

Φ(I(0)) · exp

(
− β · λ(L(G))

32
· t
)
≤ 1

8
.

From t ≥ max{γ log(n), log(Φ(I(0)))} · 8(σ + 1), it follows that

exp

(
− t

8(σ + 1)

)
≤ min

{
n−γ ,

1

8 · Φ(I(t))

}
.

And so, for t ≥ t0(γ), Equation (27) entails

Pr

[
Φ(I(t)) ≤ 1

8

]
≥ 1− n−γ ,

which is the remaining claim for the high-probability statement.
For the statement concerning the expectation, note that for t ≥ t0(0), the calculations above and

Equation (27) entail that

Pr

[
Φ(I(t)) ≤ 1

8

]
≥ 1− 1

8 · Φ(I(0))
.

Hence, as Φ(I(τ)) ≤ Φ(I(0)) for all τ ∈ N, we have, for all t ≥ t0(0),

E[Φ(I(t))] ≤ 1

8
·Pr

[
Φ(I(t)) ≤ 1

8

]
+ Φ(I(0)) ·Pr

[
Φ(I(t)) >

1

8

]
≤ 1

8
+ Φ(I(0)) · 1

8 · Φ(I(0))

=
1

8
+

1

8
=

1

4
,

as claimed.

The following lemma shows that the rounding errors in all three matching models are small. The
proof relies on the following facts: (1) the expected rounding error at each node is zero, (2) the matching
matrices are doubly stochastic, and (3) the variable R(t) can be decomposed into components with
bounded second moments.

Lemma 2.23 (Rounding Errors). In all three models on the matchings and any γ > 1 and t ∈ N it holds

39

that
Pr
[
disc(R(t)) = O

(√
γ log(n)/β

)
≥ 1− 2n−γ+1

]
Proof. We show the concentration bound on disc(R(t)) by proving concentration bounds on the absolute
values |Rk(t)| for each k ∈ [n] and then applying a union bound over all k. To show the concentration
bound on Rk(t) holds for any fixed sequence of matchings m[t] = (mβ(τ))tτ=1; this implies a concentration
bound on a random sequence of matchings by the law of total probability.

So we fix m[t]. Recall that

R(t) =

t∑
τ=1

m
[τ+1,t]
k,· · ε(τ),

where ε(τ) = (εk(t))k∈[n] is the vector of additive rounding errors incurred in round τ : it is the difference
between the load vector step t, and what the load vector would be after step t if the balancing in this
step were idealized. This additive rounding error stems from the constraint that only whole items can be
transferred across the edges [i, j] of the matching at time τ . From the description of the protocol, it is
immediate that the rounding errors at matched nodes sum to 0, so that εi(τ) := εi,j(τ) = −εj,i(τ) := −εj(τ)

for all edges [i, j] ∈m(τ) matched in round τ . Thus,

Rk(t) =

t∑
τ=1

m
[τ+1,t]
k,· · ε(τ) =

t∑
τ=1

m
[τ+1,t]
k,· ·

∑
[i,j]∈m(τ)

(εi(τ) + εj(τ))

=

t∑
τ=1

∑
[i,j]∈m(τ)

(
m

[τ+1,t]
k,i −m

[τ+1,t]
k,j

)
· εi(τ).

We will derive the claimed tail bound on Rk(t) by applying the Azuma-Hoeffding inequality (Theorem 6.6)
to a sequence of partial sums as follows. We sequence the rounding actions with τ increasing and arbitrarily
within rounds. If i is the representative node of the kth edge in round τ (with k ∈ [bn/2c] and τ ∈ [t]),
for l = (τ − 1) · bn/2c+ k let us write

Yl =
(
m

[τ+1,t]
k,i −m

[τ+1,t]
k,j

)
· εi(τ),

and let Yl = 0 if there are fewer than k edges are in the matching in round τ . Se sequence of partial sums
is then Sl :=

∑
a∈[l] Yl, which we consider with respect to the filtration (F(l))

t·bn/2c
l=0 in which F(l − 1)

completely determines the state right before the rounding action corresponding to the term Yl. Note that
St·bn/2c = Rk(t). To apply Theorem 6.6, it is enough to show that the conditional expectation of the
difference between successive terms is zero, and that we can bound the differences between terms.

To check these preconditions, let us write Fl for the fractional value of the load at node i before the
rounding action (i.e., the fractional value of the load i if balancing were idealized and no rounding was
necessary). Then the load will be rounded up with probability Fl, resulting in a positive rounding error
of εi(τ) = 1 − Fl, or rounded down with probability 1 − Fl, resulting in a negative rounding error of
εi(τ) = −Fl. Hence,

E[εi(τ) | F(l − 1)] = Fl · (1− Fl) + (1− Fl) · (−Fl) = 0,

so that, as required,

E[Yl | F(l − 1)] = E
[(

m
[τ+1,t]
k,i −m

[τ+1,t]
k,j

)
· εi(τ)

∣∣∣F(l − 1)
]

= 0.

40

From this description, it is also clear that writing g(τ)
i,j := m

[τ+1,t]
k,i −m

[τ+1,t]
k,j , the term Yl is bounded from

above by al := g
(τ)
i,j · (1− Fi(τ)), and from below by −bl := −g(τ)

i,j · Fi(τ), so that al + bl = g
(τ)
i,j .

So we may apply Theorem 6.6; to use it we require (an upper bound on) the value of the sum∑τ ·bn/2c
l=1 (al + bl)

2, which we bound by applying observation 2.15 and collapsing the ensuing telescoping
sum (analogously to the proof of Theorem 3.2 in [85]):

τ ·bn/2c∑
l=1

(al + bl)
2 =

t∑
τ=1

∑
[i,j]∈m(τ)

(
m

[τ+1,t]
k,i −m

[τ+1,t]
k,j

)2

︸ ︷︷ ︸
=Ψ

E(m(τ))

=

t∑
τ=1

2

1− (1− β)2

(
Φ
(
m

[τ+1,t]
k,·

)
− Φ

(
m

[τ+1,t]
k,· ·m(τ)

))
(a)

≤
t∑

τ=1

2

β

(
Φ
(
m

[τ+1,t]
k,·

)
− Φ

(
m

[τ+1,t]
k,· ·m(τ)

))
where (a) follows from the fact that β ∈ (0, 1] and therefore, 1− (1− β)2 ≥ β. Hence,

τ ·bn/2c∑
l=1

(al + bl)
2 =

2

β
·

t∑
τ=1

(
Φ
(
m

[τ+1,t]
k,·

)
− Φ

(
m

[τ,t]
k,·

))
=

2

β
·
(

Φ
(
m

[t+1,t]
k,·

)
− Φ

(
m

[1,t]
k,·

))
=

2

β
·
(

Φ(Ik,·)− Φ
(
m

[1,t]
k,·

))
≤ 2

β
· (1− 0) =

2

β
,

So by Theorem 6.6 (with ε :=
√
γ log(n)/β and E[Rk(t)] = 0) we have

Pr

[
|Rk(t)| ≥

√
γ log(n)

β

]
≤ 2 exp

(
− 2ε2

2/β

)
≤ 2 exp(−γ log(n)) = 2n−γ .

Since disc(R(t)) = maxk∈[n]Rk(t)−mink∈[n]Rk(t), applying a union bound over all nodes k ∈ [n] we see
that

Pr

[
disc(R(t)) ≥ 2 ·

√
γ log(n)

β

]
≤ 2n−γ+1,

which is the claimed concentration bound.

Using the tools we have developed, we can now bound the global divergence for the random matching
model. To do so, we first apply Lemma 2.16, which shows that the matching distribution DRM(G) is
(gG, σ

2
G)-good for specific values of gG and σ2

G. We then apply Lemma 2.19, which expresses the global
divergence in terms of gG and σ2

G, and the remainder follows through straightforward, albeit tedious,
calculations.

Lemma 2.24 (Global Divergence for Random Matching model). Assume G is an arbitrary graph. Let
M[t] = (Mβ(τ))tτ=1 be an i.i.d. sequence of matching matrices generated by DRM(G). Let

T (G) := min
{

thit(G) · log(n)/n,
√
d/λ(L(G)), 1/λ(L(G))

}
.

41

Then for all γ > 0 we get with probability at least 1− n−γ ,

Υ(M[t]) = O

√γ log(n) ·
t*
hit(G)

n
+
T (G)

β

 = O

√γ log(n) ·
t*
hit(G)

n
+

√
T (G)

β

.
Proof. Fix a node k ∈ [n]. Define gG(x) = 1

16d ·max
{
d · λ(L(G)) · x, x2/Res(G), 4x3/27

}
and let σ2

G :=

32 · (t*
hit(G) /n) + 5. Then by Lemma 2.16 the matching distribution DRM(G) is (gG, σ

2
G)-good. By

Lemma 2.19 we have for all t ∈ N

Pr

[(
Υk(M[t])

)2

≤ 8σ2
G((γ + 1) log(n) + log(8σ2

G)) +
1

β
·
∫ 1

0

x

gG(x)
dx

]
≥ 1− n−(γ+1). (28)

From Claim 2.25 (presented below) it follows that
∫ 1

0

x/gG(x) dx = O(T (G)) and from Claim 2.26 (also

presented below) it follows that t*
hit(G) /n ≥ 1/2. Hence with probability at least 1− n−(γ+1) we have

(
Υk(M[t])

)2

= O

(
t*
hit(G)

n
·
(
γ log(n) + log

(
t*
hit(G)

n

))
+
T (G)

β

)
. (29)

Since t*
hit(G) = O(n3) (Proposition 10.16 in [64]), log(t*

hit(G) /n) = O(log(n)), and γ > 1, we get that

Υk(M[t]) = O

√γ log(n) ·
t*
hit(G)

n
+
T (G)

β

 = O

√γ log(n) ·
t*
hit(G)

n
+

√
T (G)

β

.
Applying union bound over all k ∈ [n] finishes the proof.

Claim 2.25. It holds that
∫ 1

0

x/gG(x) dx = O(T (G)).

Proof. First, expanding the definition of gG(x), pulling out constant factors, and simplifying fractions
results in ∫ 1

0

x

gG(x)
dx = 16d ·

∫ 1

0

min

{
1

d · λ(L(G))
,

Res(G)

x
,

27

4x2

}
dx,

and we write f1(x), f2(x), and f3(x) for the first, second, and third argument of the minimum. For x ≥ 0,
the indefinite integrals of these functions are∫

f1(x) dx =
x

d · λ(L(G))
;

∫
f2(x) dx = Res(G) · log(x);

∫
f3(x) dx = − 27

4
x−1.

First, we show that
∫ 1

0
x/gG(x) dx = O(1/ λ(L(G))): As min{f1(x), f2(x), f3(x)} ≤ f1(x), we bound the

integral in question as∫ 1

0

x

gG(x)
dx ≤ 16d ·

∫ 1

0

1

d · λ(L(G))
dx = 16d · 1

d · λ(L(G))
= O

(
1

λ(L(G))

)
.

Next, we show that
∫ 1

0
x/gG(x) dx = O(

√
d/ λ(L(G))): Let x1,3 :=

√
27
4 d λ(L(G)) be the x such that

42

f1(x) = f3(x). If x1,3 ≤ 1, then

∫ 1

0

x

gG(x)
dx ≤ 16d ·

(∫ x1,3

0

f1(x) dx+

∫ 1

x1,3

f3(x) dx

)

= 16d ·
(

x1,3

d · λ(L(G))
+

27

4
·
(
−1 + x−1

1,3

))
= 16d ·

(√
27

4 · d · λ(L(G))
+

√
27

4 · d · λ(L(G))
− 27

4

)
= O

(√
d

λ(L(G))

)
.

But if x1,3 > 1, the same bound also holds: we showed above that the integral in question is bounded by
O(1/ λ(L(G))), so that if x1,3 > 1, we have an upper bound of

∫ 1

0

x

gG(x)
dx = O

(
1

λ(L(G))

)
= O

(
x1,3

λ(L(G))

)
= O

(√
d

λ(L(G))

)
.

Last, we show that
∫ 1

0
x/gG(x) dx = O(thit(G) /n · log(n)): Let x1,2 := d · λ(L(G)) ·Res(G) be the x such

that f1(x) = f2(x). If x1,2 ≤ 1, then

∫ 1

0

x

gG(x)
dx ≤ 16d ·

(∫ x1,2

0

f1(x) dx+

∫ 1

x1,2

f2(x) dx

)

= 16d ·
(

x1,2

d · λ(L(G))
+ Res(G) · (log(1)− log(x1,2))

)
,

= 16d ·
(

Res(G) + Res(G) · log

(
1

d · λ(L(G)) · Res(G)

))
= O

(
d · Res(G) · log

(
1

d · λ(L(G)) · Res(G)

))
= O

(
thit(G)

n
· log

(
1

λ(L(G))
· n

thit(G)

))
= O

(
thit(G)

n
log(n)

)
,

where the penultimate bound uses the fact that Res(G)·|E(G)| = Res(G)·dn/2 ≤ thit(G) (Lemma 6.21),
and the final bound uses the fact that the inverse spectral gap of the normalized Laplacian 1/ λ(L(G)) is
bounded from above by O(n3) (cf. [5]), and that thit(G) ≥ 1, so that the argument of the logarithm is
polynomial in n.

Otherwise, if x1,2 > 1, the same bound also holds: we show above that the integral is bounded by
O(1/ λ(L(G))), so that if x1,2 > 1 we have an upper bound of∫ 1

0

x

gG(x)
dx = O

(
1

λ(L(G))

)
= O

(
x1,2

λ(L(G))

)
= O(d · Res(G)) = O

(
thit(G)

n
· log(n)

)
.

Combining the three bounds, we have, as claimed,

∫ 1

0

x

gG(x)
dx = O

(
min

{
1

λ(L(G))
,

√
d

λ(L(G))
,

thit(G)

n
· log(n)

})
= O(T (G)).

Claim 2.26. For any d-regular graph G it holds that t*
hit(G) /n ≥ 1/2.

43

Proof. By the first inequality of Corollary 3.3 in [67] it holds for any nodes i, j ∈ V (G) that

H(i, j) +H(j, i) ≥ |E(G)| ·
(

1

d(i)
+

1

d(j)

)
.

As G is regular we have d(i) = d(j) = d and |E(G)| = dn/2, and since the statement holds in particular
for any pair of nodes that is adjacent this entails

2 t*
hit(G) ≥ dn

2
· 2

d
= n,

and the claim follows.

The following lemma can be viewed as a version of Lemma 2.4 adapted to the process ABal. The
proof of Lemma 2.4 relies heavily on the independence between load allocation and the choice of matching
edges, which does not hold for ABal. In contrast, Lemma 2.27 carefully analyzes this dependency while
employing a stronger concentration inequality.

Lemma 2.27 (Contribution of Dynamically allocated items in asynchronous model). Let G be a
regular graph, and let t ∈ N. Then in ABal(D1(G), β), for all γ > 0 and for Υ̂ > 0 such that
Pr
[
maxk∈V Υk(M[t]) + 1 > Υ̂

]
≤ n−γ , we have

Pr

[
disc(D(t)) ≥ 2γ log(n)

3
+ 2

√
γ log(n)

n
· Υ̂

]
≤ 8n−γ+1.

Proof. Fix a node k ∈ V . Let A(τ) be the vector of allocated loads in round τ and recall that we have

D(t) =

t∑
τ=1

M[τ,t] ·A(τ), so that Dk(t) =

t∑
τ=1

M
[τ,t]
k,· ·A(τ).

Using M[τ,t] = M[τ+1,t] ·M(τ), we can express the kth coordinate of D(t) as

Dk(t) =

t∑
τ=1

Ck(τ), where Ck(τ) := M
[τ,t]
k,· ·A(τ) = M

[τ+1,t]
k,· ·

(
M(τ) ·A(τ)

)
is the contribution of the load item allocated in round τ to Dk(t). Note that in the second factorization of
the Ck(τ), the two factors are independent as they concern disjoint rounds.

Now consider the sequence (Y (l))tl=0 of partial sums Y (l) =
∑t
τ=t−l+1(Ck(τ)− 1/n) with respect to

the natural filtration F = (F(l))tl=0 on the sequence of edges (I(t− l), J(t− l)). In particular, we have

Y (0) = 0, Y (l)− Y (l − 1) = Ck(t− l)− 1/n, and Y (t) = Dk(t)− t/n,

and F(l) determines all edges used in rounds t − l + 1 up to round t. To apply the martingale tail
inequality Corollary 6.5 to (Y (l))tl=0, we need to check that E[Y (l)− Y (l − 1) | F(l − 1)] = 0 and that
|Y (l)− Y (l − 1)| ≤ 1. For the first condition, note that both M

[τ,t]
k,· and A(τ) are stochastic vectors (for the

latter, this is because exactly one load item is allocated in each round in the asynchronous model). Thus,
their inner product Ck(τ) has a value in the interval [0; 1], so that |Y (l)− Y (l − 1)| = |Ck(t− l)− 1/n| ≤
1− 1/n ≤ 1, as required.

44

For the second condition, note that

E[Y (l)− Y (l − 1) | F(l − 1)] = E
[
Ck(t− l)

∣∣ ((I(r), J(r)))tr=t−l+1

]
− 1/n,

so that it is enough to show that the expected value of the Ck(τ) is 1/n when conditioned on the matching
choices in rounds τ + 1 to t. The bound given by Corollary 6.5 also involves the quantity

〈Y 〉t :=

t∑
l=1

E
[
(Y (l)− Y (l − 1))2 | F(l − 1)

]
=

t∑
l=1

E
[
(Ck(t− l)− 1/n)2 | F(l − 1)

]
,

so we will investigate Ck(τ) more thoroughly than would be required to compute only its conditional
expectation.

To this end, let us first make the dependence between M(τ) and A(τ) more explicit. Let (I(τ), J(τ))

be the random orientation of the random edge selected in round τ , so that the load item in round τ is
allocated to I(τ), and then the load is balanced across the edge {I(τ), J(τ)}. Then

(M(τ) ·A(τ))i =


1− β/2, if i = I(τ),

β/2, if i = J(τ),

0, otherwise.

Using this, we may see that

Ck(τ) = M
[τ+1,t]
k,· ·

(
M(τ) ·A(τ)

)
=
∑
i∈[n]

M
[τ+1,t]
k,i ·

((
1− β

2

)
· 1i=I(τ) +

β

2
· 1i=J(τ)

)

=

(
1− β

2

)
·

∑
i∈[n]

M
[τ+1,t]
k,i 1i=I(τ)

+
β

2
·

∑
i∈[n]

M
[τ+1,t]
k,i 1i=J(τ)

. (30)

Now D1(G) is the uniform distribution over the edges of G, and the node to which load is allocated is
a uniformly random endpoint of the chosen edge. Thus, (I(τ), J(τ)) is distributed uniformly over the
oriented edges

⋃
{i,j}∈E(G){(i, j), (j, i)}. Since G is d-regular, there are 2 · |E(G)| = 2 · (dn/2) = dn such

oriented edges. Hence, for all i ∈ [n],

Pr[I(τ) = i] =
∑
j∈[n]

Pr[(I(τ), J(τ)) = (i, j)] =
∑
j∈[n]

1

dn
· 1{i,j}∈E(G)

=
1

dn
· |{j ∈ [n] | {i, j} ∈ E(G)}| = 1

dn
· d =

1

n
.

By an entirely analogous calculation, Pr[J(τ) = i] = 1/n holds as well. So I(τ) and J(τ) are identically
distributed (but not necessarily independent). Because of this, the two sums over i ∈ [n] on the right-hand
side of Equation (30) are also identically distributed. We can now compute the conditional expectation of
Ck(τ). Using Equation (30) and linearity of expectation we see that

E
[
Ck(τ)

∣∣ ((I(l), J(l)))tl=τ+1

]
=

((
1− β

2

)
+
β

2

)
·E

∑
i∈[n]

M
[τ+1,t]
k,i 1i=I(τ)

∣∣∣∣∣∣M[τ+1,t]


= 1 ·

∑
i∈[n]

Pr[I(τ) = i] ·M[τ+1,t]
k,i =

1

n
·
∑
i∈[n]

M
[τ+1,t]
k,i =

1

n
.

45

So E[Y (l)− Y (l − 1) | F(l − 1)] = 1/n− 1/n = 0, as required for applying Corollary 6.5. So all precondi-
tions of Corollary 6.5 hold. Applying it with ε = γ log(n) and σ = Υ̂/

√
n yields

Pr

[
|Y (t)− Y (0)| ≥ γ log(n)

3
+
√

2γ log(n)/n · Υ̂
]
≤ 2(n−γ + Pr

[
〈Y 〉t > Υ̂2/n

]
). (31)

Note that from Claim 2.28 (see below) it follows that 〈Y 〉t ≤ 1/n · (Υk(M[t]) + 1)2, and therefore we get,

Pr
[
〈Y 〉t > Υ̂2/n

]
≤ Pr

[
1/n · (Υk(M[t]) + 1)2 > Υ̂2/n

]
= Pr

[
Υk(M[t]) + 1 > Υ̂

]
≤ n−γ , (32)

with the last inequality using the condition on Υ̂ in the statement. From Equation (31) together with
Equation (32), union bound over all nodes k ∈ V and observation 2.14 the statement follows.

Here we prove the claim used in the last lemma.

Claim 2.28. For 〈Y 〉t defined in the last lemma, it holds that 〈Y 〉t ≤ 1/n · (Υk(M[t]) + 1)2.

Proof. Recall that 〈Y 〉t :=
∑t
l=1 E

[
(Y (l)− Y (l − 1))2 | F(l − 1)

]
=
∑t
l=1 Var[Y (l)− Y (l − 1) | F(l − 1)],

with the latter equality using the fact the expected value of (Y (l)− Y (l− 1)) conditioned on F(l− 1) is 0.
And since Y (l)− Y (l − 1) = Ck(t− l)− 1/n and 1/n is a constant,

〈Y 〉t =

t∑
l=1

Var[Y (l)− Y (l − 1) | F(l − 1)] =

t∑
l=1

Var
[
Ck(t− l)

∣∣ ((I(r), J(r)))tr=t−l+1

]
.

By Equation (30), and as for two identically distributed random variables A and B, and a, b ∈ R+, we
have Var[aA+ bB] = a2Var[A] + 2abCovA,B + b2Var[B] ≤ (a2 + 2ab+ b2)Var[A] = (a+ b)2Var[A]:

Var
[
Ck(τ)

∣∣ ((I(l), J(l)))tl=τ+1

]
≤
(

1− β

2
+
β

2

)2

·Var

∑
i∈[n]

M
[τ+1,t]
k,i 1i=I(τ)

∣∣∣∣∣∣M[τ+1,t]


= 12 ·

∑
i∈[n]

Pr[I(τ) = i] ·
(
M

[τ+1,t]
k,i − 1

n

)2

=
1

n
·

∣∣∣∣∣
∣∣∣∣∣M[τ+1,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

.

And hence we may bound 〈Y 〉t from above using the global divergence:

〈Y 〉t =

t∑
τ=1

Var
[
Ck(τ)

∣∣ ((I(l), J(l)))tl=τ+1

]
≤ 1

n
·

t∑
τ=1

∣∣∣∣∣
∣∣∣∣∣M[τ+1,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

=
1

n

(Υk(M[t])
)2

−

∣∣∣∣∣
∣∣∣∣∣M[1,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

+

∣∣∣∣∣
∣∣∣∣∣M[t+1,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2


≤ 1

n
·
((

Υk(M[t])
)2

+ 1

)
≤ 1

n
·
((

Υk(M[t])
)

+ 1
)2

,

which is all that remained to be shown.

The next lemma is a version of Lemma 2.24 for the asynchronous model. It provides a bound on global
divergence in terms of T (G).

Lemma 2.29 (Global Divergence for Asynchronous Model). Assume G is an arbitrary graph. Let
M[t] = (Mβ(τ))tτ=1 be an i.i.d. sequence of matching matrices generated by D1(G). Let T (G) be defined

46

as in Theorem 2.10. Then for all γ > 0 we get with probability at least 1− n−γ ,

Υ(M[t]) = O

(√
γ log(n) · t*

hit(G) +

√
n · T (G)

β

)
.

Proof. The proof follows the same approach as that of Lemma 2.24, except that in Equation (28), we
replace Lemma 2.16 with Lemma 2.20.

2.7 Bounds for Specific Graph Classes

In this section, we present bounds on the discrepancy for specific classes of graphs in each of the three
models considered. We assume, in all cases, that the system is initially empty.

2.7.1 Balancing Circuit Model

The next two corollaries provide an upper and lower bounds on discrepancy, respectively. Corollary 2.30
and Corollary 2.31 are summarized in Table 1 and Table 2, respectively.

Corollary 2.30. Let X(t) be the state of process SBal(DBC(G), 1,m) at time t with X(0) = ~0 and
assume G has n nodes. For an arbitrary round t it holds w.h.p. and in expectation

• disc(X(t)) = O(log(n) +
√

(∆ ·m)/(n · λ (R)) ·
√

log(n)) for arbitrary graphs with round matrix R.

• disc(X(t)) = O(log(n) +
√
m ·

√
log(n)) for cycle and regular graphs with constant ∆.

• disc(X(t)) = O((1 +
√
m/n) · log(n)) for the two-dimensional torus or hypercube graphs.

• disc(X(t)) = O(log(n) +
√
m/n ·

√
log(n)) for constant three or more-dimensional torus.

Proof. The bounds follow from a straight-forward combination of the upper bounds on the local divergence
from Lemma 2.32 with Theorem 2.1.

Corollary 2.31. Let X(t) be the state of process SBal(DBC(G), 1,m) at time t with X(0) = ~0. It holds
with constant probability that

• disc(X(t)) = Ω(
√
m), for cycle, constant d-regular graphs, t = Ω(n2) and m ≥ 4 log(n).

• disc(X(t)) = Ω
(√

m
n · log(n)

)
for two-dimensional torus, t = Ω(n), and m ≥ 4n.

• disc(X(t)) = Ω
(√

m
n

)
, for constant r ≥ 3-dimensional torus, hypercube graphs, t ∈ N, and m ≥

4n · log(n).

Proof. The bounds follow from a straight-forward combination of the bounds on the local divergence from
Lemma 2.32 to Theorem 2.5.

The two corollaries above demonstrate that our bounds are nearly tight for cycle graphs (see Table
2), constant d-regular graphs, r-dimensional torus graphs with constant r, and hypercube graphs. For
example, consider a cycle constructed using the Odd–Even scheme with m ≥ log(n). Corollary 2.30 states
that, with high probability, the discrepancy is O(

√
m · log(n)), whereas Corollary 2.31 shows that, with

constant probability, the discrepancy is at least Ω(
√
m).

We now compute the global divergence for the following concrete graphs and circuits. For cycles of
even length, we consider the “Odd–Even” scheme, in which the first matching m(1) consists of all edges

47

Table 2: Asymptotic lower bounds on the discrepancy in specific graph classes.

Graph SBal(DBC(G), 1,m), Corollary 2.31

d-regular graph (const. d)
√
m

cycle Cn
√
m

2-D torus
√

(m/n) · log(n)

r-D torus
(const. r ≥ 3)

√
m/n

hypercube
√
m/n

Figure 1: Simulation results for lower bound on discrepancy in the balancing circuit model for cycle with
m = n. It shows Ω(

√
n) bound.

j, (j + 1) mod n for odd j ∈ [n], and the second matching m(2) consists of all edges j, (j + 1) mod n for
even j ∈ [n]. More generally, for an r-dimensional torus with node set [n1/r]r, the balancing circuit consists
of 2r matchings in total, with two matchings for each dimension i, analogous to the cycle construction. For
the hypercube, the canonical choice is the dimension-exchange circuit, which consists of log2(n) matchings.
Nodes u and v are matched in m(i) if and only if their binary representations differ in bit i only (see,
e.g., [33]).

Recall that m[t] is the sequence of matchings and Φ (m
[τ,t]
k,·) =

∣∣∣∣∣∣m[τ,t]
k,· −

~1
n

∣∣∣∣∣∣2
2
and R := m[1,∆]. The

next lemma bounds the global divergence of some specific graphs for the distribution DBC(G).

Lemma 2.32 (Global Divergence). Let G be a graph and consider DBC(G) constructed by Odd-Even
scheme such that it produces the round matrix R.

1. For each t ∈ N it holds (Υ(m[t]))2 = O(∆/ λ(R)).

2. For a constant ∆ and each t ∈ N it holds (Υ(m[t]))2 = O(n). It also holds for any t = Ω(n2),
(Υ(m[t]))2 = Ω(n).

48

3. For two-dimensional torus G and for each t ∈ N it holds (Υ(m[t]))2 = O(log(n)). It also holds for
any t = Ω(n), (Υ(m[t]))2 = Ω(log(n)).

4. For constant r ≥ 3-dimensional torus G and each t ∈ N it holds (Υ(m[t]))2 = O(r). It also holds for
any t ∈ N, (Υ(m[t]))2 = Ω(1).

5. For hypercube graphs G and each t ∈ N it holds (Υ(m[t]))2 = O(log(n)). It also holds for any t,
(Υ(m[t]))2 = Ω(1).

Proof. Recall that the sequence of matching matrices m[t] has global divergence Υ(m[t]), if

∀k ∈ [n],

t∑
τ=1

∣∣∣∣∣
∣∣∣∣∣m[τ,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

≤
(

Υ(m[t])
)2

.

Since the matchings are fixed we have
(
Υ(m[t])

)2
= maxw∈[n]

∑t
τ=1 ‖m

[τ,t]
w,· −

~1
n‖

2
2. Consider a node k ∈ [n]

such that Υk(m[t]) = Υ(m[t]). We have seen that

(
Υk(m[t])

)2

=

t∑
τ=1

∣∣∣∣∣
∣∣∣∣∣m[τ,t]

k,· −
~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

=

t∑
τ=1

Φ (m
[τ,t]
k,·).

Since Φ (R
[1,τ]
k,·) is non increasing in τ ∈ N and R := m[1,∆], then

(
Υk(m[t])

)2

≤
∞∑
τ=1

Φ (m
[1,τ]
k,·) ≤ ∆ ·

∞∑
τ=1

Φ (R
[1,τ]
k,·).

Hence, to bound
(
Υ(m[t])

)2
, it is enough to bound ∆ ·

∑∞
τ=1 Φ (R

[1,τ]
k,·).

General case: Here we get,

∆ ·
∞∑
τ=1

Φ (R
[1,τ]
k,·)

(a)

≤ ∆ ·

(∞∑
τ=0

(1− λ (R))2τ

)
≤ ∆ ·

(∞∑
τ=0

(1− λ (R))τ

)
= O

(
∆

λ (R)

)
,

where (a) follows from [53, Lemma 2] (restated as Lemma 6.22). Note that Φ (R
[1,1]
k,·) ≤ 1.

Cycles: Recall that in cycle ∆ = 2. It holds that

∆ ·
∞∑
τ=1

Φ (R
[1,τ]
k,·) = ∆ ·

 n2∑
τ=1

Φ (R
[1,τ]
k,·) +

∞∑
τ=n2+1

Φ (R
[1,τ]
k,·)


(b)

≤ ∆ ·

 n2∑
τ=1

O(
1√
τ

) +

∞∑
τ=n2+1

Φ (R
[1,τ]
k,·)

,
where (b) follows from first statement of Lemma 6.25 and therefore,

∆ ·
∞∑
τ=1

Φ (R
[1,τ]
k,·)

(c)

≤ ∆ ·

(
O(
√
n2) + Φ (R

[1,n2]
k,·) ·

∞∑
τ=1

(1− λ (R))2τ

)
(d)

≤ ∆ ·

(
O(
√
n2) + O(

1

n
) ·
∞∑
τ=1

(1− λ (R))2τ

)

= ∆ ·O
(
n+

1

n · λ (R)

)
(e)

≤ O(∆ · n) = O(2n),

49

where (c) follows from Lemma 6.22 and (d) follows from Lemma 6.25. To see (e), consider that the
spectral gap of the round matrix corresponding to a cycle is Θ(1/n2), Lemma 6.24. Moreover, for t = cn2

with some constant c, it follows from Lemma 6.25 that

t∑
τ=1

Φ (m
[τ,t]
k,·) = c1 ·

t∑
τ=1

Φ (R
[τ,t/2]
k,·) =

t/2−1∑
τ=0

Θ(
1√

t/2− τ
) = Θ(

√
t/2) = Ω(n),

for c1 ∈ [1, 2].
Two-dimensional torus: Note that in r-dimensional torus graphs ∆ = 2r = 4, and the spectral gap

of the round matrix corresponding to a r-dimensional torus is Θ(1/n2/r), Lemma 6.23. Hence,

∆ ·
∞∑
τ=1

Φ (R
[1,τ]
k,·) = ∆ ·

 n2∑
τ=1

Φ (R
[1,τ]
k,·) +

∞∑
τ=n2+1

Φ (R
[1,τ]
k,·)

 (f)

≤ ∆ ·

 n2∑
τ=1

O(
1

τ
) +

∞∑
τ=n2+1

Φ (R
[1,τ]
k,·)


where (f) follow from Lemma 6.25. Applying Lemma 6.22 to the right hand side of the last inequality
gives us then

∆ ·
∞∑
τ=1

Φ (R
[1,τ]
k,·) ≤ ∆ ·

 n2∑
τ=1

O(
1

τ
) + Φ (R

[1,n2]
k,·) ·

∞∑
τ=1

(1− λ (R))2τ


(h)

≤ ∆ ·

(
O(log(n)) + O(

1

n2
) ·
∞∑
τ=1

(1− λ (R))2τ

)

= O

(
4 · log(n) +

4 · n2

n2

)
= O(4 log(n)),

where (h) follow from Lemma 6.25. Moreover, for t = cn with some constant c, it follows from Lemma 6.25
(for c1 ∈ [1, 4]) that

t∑
τ=1

Φ (m
[τ,t]
k,·) = c1 ·

t∑
τ=1

Φ (R
[τ,t/4]
k,·) =

t/4−1∑
τ=0

Θ(
1

t/4− τ
) = Θ(log(t/4)) = Ω(log(n)).

Constant three or more-dimensional torus: Let us assume r = 2(1 + ε) for some ε > 0 then

∆ ·
∞∑
τ=1

Φ (R
[1,τ]
k,·)

(i)

≤ ∆ ·
∞∑
τ=1

τ−(1+ε) ≤ ∆ ·
(

1 +

∫ ∞
1

x−(1+ε) dx

)
≤ ∆ · (1 + 1/ε) = O(2r),

where (i) follows form Lemma 6.25.
Hypercubes: Similarly, it holds that

∆ ·
∞∑
τ=1

Φ (R
[1,τ]
k,·)

(j)

≤ ∆ ·

(∞∑
τ=1

2−τ

)
≤ 2 ·∆ = O(2 log(n)),

where (j) follows from Lemma 6.25. Recall that in hypercube ∆ ≤ log(n).
The lower bound of 1 is trivial.

50

2.7.2 Synchronous Model

Corollary 2.33. Let X(t) be the state of process SBal(DRM(G), β,m) where X(0) = ~0. For an arbitrary
t it holds w.h.p. and in expectation

• disc(X(t)) = O(
√
m log(n)) for any regular graph.

• disc(X(t)) = O(log(n) +
√
m log(n)) for cycles and constant-degree regular graphs.

• disc(X(t)) = O(log(n) +
√
m/n · log3/2(n)) for the two-dimensional torus graphs.

• disc(X(t)) = O((1 +
√
m/n) · log(n)) for torus graphs with ≥ 3 dimensions, the hypercube, and all

d-regular graphs with d ≥ bn/2c.

To show the above corollary we require bounds on T (G) (Lemma 2.34) and bounds on t*
hit(G)

(Lemma 2.36). Then the corollary immediately follows from Theorem 2.6.
In the following lemma we provide some bounds on T (G) for several specific graph classes.

Lemma 2.34. Assume G is a graph with n nodes.

• For constant-degree regular graphs G we have T (G) = O(n).

• For a two-dimensional k × k toroidal mesh G we have T (G) = O(log2(n)).

• For a r-dimensional k × · · · × k toroidal mesh (with r ≥ 3) we have T (G) = O(log(n)).

• For a r-dimensional hypercube G we have T (G) = O(log(n)).

• For a d-regular graph G with d ≥ bn2 c we have T (G) = O(log(n)).

• For an arbitrary d-regular graph G we have T (G) = O(n log(n)).

Proof. Recall that T (G) = min
{

1/ λ(L(G)),
√
d/ λ(L(G)), (thit(G) /n) · log(n)

}
, and that thit(G) ≤ 2 ·

Res(G) · |E| (Lemma 6.21), so that thit(G) /n = O(d · Res(G)).
For d-regular graphs with d being constant, 1/ λ(L(G)) = O(n · d · (diam(G) + 1)) by [62], where

diam(G) is the diameter of G. As diam(G) ≤ n and d is constant, 1/ λ(L(G)) = O(n2), so that

T (G) = O(
√
d/ λ(L(G))) = O(n).

For the two-dimensional k× k toroidal mesh, d ≤ 4 and Res(G) = O(log(n)) by [34, Theorem 6.1], so that

T (G) = O((thit(G) /n) · log(n)) = O(log2(n)).

For a r-dimensional k × · · · k toroidal mesh with r ≥ 3, as well as the r-dimensional hypercube, d ≤ 2r

and Res(G) = O(r−1) by [34, Theorem 6.1], so that

T (G) = O((thit(G) /n) · log(n)) = O((d · Res(G)) log(n)) = O(r · r−1 · log(n)) = O(log(n)).

For a d-regular graph G with d ≥ bn2 c, Res(G) = O(d−1) by [34, Theorem 3.3], so that

T (G) = O((thit(G) /n) · log(n)) = O((d · Res(G)) log(n)) = O(d · d−1 · log(n)) = O(log(n)).

51

For general d-regular graphs G, thit(G) ≤ 3n2 − nd by [64, Proposition 10.16], so that

T (G) = O((thit(G) /n) · log(n)) = O((n2/n) log(n)) = O(n log(n)).

To bound t*
hit(G) for many specific graph classes we use the following.

Theorem 2.35 (Theorem 2.10 in [67], [59]). Let G be a graph and i ∈ [n] be one of its nodes. Then if
J ∈ [n] is chosen uniformly at random from the neighbors of i in G, E[H(i, J)] = 2|E|/d(i)− 1, where
d(i) is the degree of i in G.

This gives us the following bounds.

Lemma 2.36. Assume G is a graph with n nodes.

• For G being a toroidal mesh (including cycles and hypercubes), or being a d-regular graph with
d ≥ bn/2c, we have t*

hit(G) = O(n)

• For an arbitrary d-regular graph G we have t*
hit(G) ≤ dn.

Proof. Recall that t*
hit(G) := maxi,j∈V,{i,j}∈E H(i, j). Toroidal meshes are symmetric or arc-transitive

graphs: for every two ordered pairs of adjacent nodes (i1, j1) and (i2, j2) there is a graph automorphism
f such that f(i1) = i2 and f(j1) = j2. Hence, for every such two ordered pairs, H(i1, i1) = H(i2, j2),
and thus t*

hit(G) = H(i, j) for any pair of adjacent nodes i, j. So applying Theorem 2.35 shows that
t*
hit(G) = 2|E|/d − 1. As |E| = dn/2 for d-regular graphs, t*

hit(G) = 2(dn/2)/d − 1 = n − 1 = O(n), as
claimed.

For dense graphs we bound t*
hit(G) as t*

hit(G) ≤ thit(G) ≤ 2 · Res(G) · |E| (see Lemma 6.21). As
Res(G) = O(1/d) by [34, Theorem 3.3], we get since |E| = dn/2 that t*

hit(G) = O(dn/d) = O(n).
For arbitrary d-regular graphs, t*

hit(G) ≤ 2 ·Res∗(G) · |E| by the first statement of Lemma 6.21. As
|E| = dn/2 for a d-regular graph, and as Res∗(G) ≤ 1 (by definition of Res∗(G) and Lemma 6.16), we
thus have t*

hit(G) ≤ 2 · 1 · dn/2 = dn.

2.7.3 Asynchronous Model

Combining the bounds on T (G) and on the hitting time with Theorem 2.10 leads us to the following
results w.h.p. and in expectation.

Corollary 2.37. Let X(t) be the state of process ABal(D1(G), 1) where X(0) = ~0. For an arbitrary t it
holds w.h.p. and in expectation

1. disc(X(t)) = O(
√
n log(n)) for any regular graph.

2. disc(X(t)) = O(
√
n log(n)) for cycle and constant-degree regular graphs.

3. disc(X(t)) = O(log3/2(n)) for the two-dimensional torus graph.

4. disc(X(t)) = O(log(n)) for r-dimensional torus graphs with r ≥ 3 dimensions, for the hypercube,
and for all d-regular graphs with d ≥ bn/2c.

52

2.8 Summary and Open Problems

In this part we analyze discrete load balancing processes on graphs. As our main contribution we bound
the discrepancy that arises in dynamic load balancing in three models, the random matching model, the
balancing circuit model, and the asynchronous model. Our results for the random matching model and
the asynchronous model hold for d-regular graphs, while our analysis for the balancing circuit model
applies to arbitrary graphs.

To the best of our knowledge our results constitute the first bounds for discrete, dynamic balancing
processes on graphs. Furthermore, our results improve the work by Alistarh et al. [6] who prove that the
expected discrepancy is bounded by

√
n log(n) in the (arguably simpler) continuousasynchronous process

ABal(cont)(D1(G), 1). We improve their bound to
√
n log(n) and additionally show that it holds with

high probability. We conjecture that our results are tight up to polylogarithmic factors. However, showing
tight upper and lower bounds remains an open problem.

We are confident that our results carry over to arbitrary graphs (as opposed to regular graphs),
provided that there exists a lower bound on the probability pmin with which an edge is used for balancing.
However, to show bounds on the discrepancy one has to overcome fundamental problems such as the bias
introduced by high-degree nodes. Another interesting open question is whether the results carry over
to a model where the amount of load that may transmitted over an edge in each step is bounded by a
constant. If only a single load item can be transferred per edge and step the problem is similar to the
token distribution problem (see, for example, [55]).

Finally, we believe that one can also adapt our analysis to variant of a graphical balls-into-bins process.
The process works as follows. In each step an edge (i, j) is sampled uniformly at random. W.l.o.g. assume
that the load of i is smaller than the load of j by an additive term δ. Then a biased coin is tossed showing
heads with probability p := min{1, (1 + β · δ)/2} and tails otherwise, where β is a suitably chosen and
non-constant parameter. If the coin hits heads one item is allocated to i and otherwise to j. A formal
analysis of this allocation process (as well as of other, related balls-into-bins processes) is beyond the
scope of our paper and remains an open problem.

53

Part Three:

3 Discrete Static Load Balancing on Matchings

54

3.1 Introduction

In this part, we investigate discrete, iterative load balancing via matchings on arbitrary graphs. Initially
each node holds a certain number of tokens, defining the load of the node, and the objective is to
redistribute the tokens such that eventually each node has approximately the same number of tokens.
We present results for a general class of simple local balancing schemes where the tokens are balanced
via matchings. The result improves and tightens a long line of previous works, by not only achieving
a small constant discrepancy (instead of a non-explicit, large constant) but also holding for arbitrary
instead of regular graphs. The result also demonstrates that in the general model we consider, discrete
load balancing is no harder than continuous load balancing.

While the continuous setting is well understood, the question remains whether it is a good approximation
of the discrete setting, where load is composed of unit-size tokens that are not divisible [82]. The deviation
between the processes is caused by the accumulation of rounding errors across different nodes and rounds,
which makes the discrete process non-linear and hard to analyze. This stark contrast between the
continuous setting and the discrete setting is highlighted in Rabani, Sinclair and Wanka [82], where they
call the discrete setting “true process” and the continuous setting “idealized process”. In the same work
from 1998, the authors also point out that “the question of a precise quantitative relationship between
Markov chains and load-balancing algorithms has been posed by several authors”, notably by Ghosh
and Muthukrishnan [51], Lovász and Winkler [68], Muthukrishnan et al. [78], and Subramanian and
Scherson [86], and “seems to be of interest in its own right.” One concretization of this question, which has
been the objective of many previous works in this area [14, 47, 82, 85], is as follows: For a given undirected,
connected graph G = (V,E) and an arbitrary initial load vector in Nn0 with initial discrepancy K, let
τS(K, 1) denote the number of rounds needed in the idealized (continues) setting to reach discrepancy at
most 1. Find a tight bound on the discrepancy after O(τS(K, 1)) rounds in the discrete model.

Results in a Nutshell. As is commonly done we bound the convergence time in terms of the
natural spectral bound τ̃S(K) = log(Kn)/(1− λ) on τS(K, 1), instead of τS(K, 1) directly. Furthermore,
it was shown in [85, Theorem 2.10], that this upper bound is tight for the random matching model if
K ≥ n1+Ω(1). With this slight slack in the number of rounds, our work essentially closes the lid on the
long standing problem of consolidating the continuous and the discrete setting. Concretely, we obtain the
following quantitative improvements. First, the previously best known result [85] used the same balancing
times but only achieved a discrepancy which is a non-explicit (and large) constant. Second, the results for
constant discrepancy in [85] only hold for regular graphs, whereas our theorem applies to regular and
non-regular graphs alike. Third, our result holds with higher probability compared to [85].

On a very high level, the way we reduce the discrepancy from K to 3 is as follows. The most involved
building block is to show a constant bound on the maximum load for instances with a linear number of
tokens. Then we show that for instances with an arbitrary number of tokens, after O(τ̃S(K)) rounds the
number of tokens above the average is O(n). Hence we can apply the result for a linear number of tokens,
which results into a discrepancy of 4 after O(τ̃S(K)) rounds. Using another O(τ̃S(K)) rounds we finally
reduce the discrepancy down to 3.

Techniques and Comparisons to prior works. An important novelty of our approach is that
our analysis framework seamlessly covers the balancing circuit model, the random matching model and
the asynchronous (single edge) model. This is in contrast to previous works [47, 78, 82, 85], which either
focus only on one specific matching model or provide tailored analyses for each of them. To unify the three

55

Table 3: Overview of related results for the balancing circuit model. The stated results from [47, 85], as well
as ours, also hold for the random matching model. τ̃S(K) is the spectral bound for the continuoussetting,
and it is defined in Equations (3.62) and (3.63), respectively. All runtime bounds for randomized rounding
hold with probability at least 1− o(1).

Reference Rounds Discrepancy Rounding Graphs

[82] O(τ̃S(K)) O(τ̃S(n)) det all

[47] O(τ̃S(K)) O
(√

τ̃S(n)
)

rand all

[47] O
(
τ̃S(K) · (log log(n))3

)
O(1) rand expander

[71] 2 log2(n) 16 rand hypercube

[70] O(log(n)) 2 rand hypercube

[85] O(τS(K, 1)) O(logε n) rand all

[85] O(τS(K, 1) · log log(n)) O(log log(n)) rand all

[85] O(τ̃S(K)) O(1) rand constant degree, ∆ = O(1)

Thm. 3.1 O(τ̃S(K)) 3 rand all

models covered here, our analysis is based on a coarse (and local) and a fine (and global) mixing/balancing
property of these models.

In comparison to [85], the constant factors in both of our running time and discrepancy are explicit
and fairly small. In addition to our analysis being tighter and simpler, we also obtain a larger success
probability. Finally, the results of [85] require regular graphs in the random matching, and a constant
∆ for the balancing circuit model. Our results are covering both of these models (and additionally the
asynchronous model), and hold without any of these restrictions.

While our proof method yields more general and tighter results, we also believe that our proof is more
intuitive and direct. The first and more straightforward step is to carefully bound the number of tokens
in each possible subset S ⊆ V and then apply a union bound. This is based on a new Hoeffding-type
concentration bound, which generalizes and tightens previous bounds [47, 85] in that it works for arbitrary
convex combinations of the load vector. This leaves us with only O(n) tokens to balance.

The second part of the analysis makes uses of our new height-sensitive process, which constraints
the movement of tokens in such a way that their heights are non-increasing. Despite this restriction, we
can prove that their movements satisfy a negative association property. This property, together with the
Hoeffding-type concentration, is then used in an involved analysis to show that eventually a discrepancy 3

is reached.

3.1.1 Outline

Section 3.2 introduces notations, the standard discrete load-balancing and height-sensitive processes, and
defines important concepts. Section 3.3 presents the main theorem and the propositions used in its proof,
concluding with an overview of our proof techniques. Section 3.4 lists the technical lemmas with formal
analysis, correlation, and concentration results for load vectors, which form the core tools of our analysis.
Section 3.5 provides results for specific models: the balancing circuit, random matching, and asynchronous
models. Finally, Section 3.6 summarizes the main results and discusses open problems.

56

3.2 Model and Definitions

We begin by introducing the notation. Subsection 3.2.1 defines the the standard load balancing and the
height-sensitive processes, while section 3.2.2 recalls and defines useful definitions.

We are given an arbitrary connected and undirected graph G = (V,E) with n nodes. Initially a set
T of unit-sized tokens are distributed arbitrarily among the nodes. The initial load vector is denoted
x(0), and the load vector at (the end of) round t is denoted by X(t). These vectors are row-vectors
and the i-th entry represents the (integral) load of node i, i.e., the number of tokens on node i. Note
that due to the inherent randomization in the process, Xi(t) for t > 0 is a random variable. We will use
uppercase letters for random variables and matrices, but lowercase letters for fixed outcomes. Recall that
x =

∑
i∈V xi(0)/n is the average load and disc(X) = maxi∈[n]Xi −minj∈[n]Xj is the discrepancy of load

vector X. We usually assume that the tokens on the nodes are ordered; the height of the token is its
number in that order.

3.2.1 Process Definition

Here we first define the standard discrete balancing process which does not specify how tokens are
exchanged across the matching edges (similar to [82, 85]). After that we define a so-called height-sensitive
variant of the process, which also specifies the movements of individual tokens. However, both processes
generate, at any point of time, exactly the same load distribution. For both processes we are given a
sequence of matchings M[t] := (M(1),M(2), . . . ,M(t)). The standard load balancing process updates the
(discrete) load vector iteratively as follows.

1 for each round t = 1, 2, . . . do
2 for each edge {u, v} ∈M(t) do

3 (Xu(t), Xv(t))←


(⌈

Xu(t−1)+Xv(t−1)
2

⌉
,
⌊
Xu(t−1)+Xv(t−1)

2

⌋)
with probability 1/2,(⌊

Xu(t−1)+Xv(t−1)
2

⌋
,
⌈
Xu(t−1)+Xv(t−1)

2

⌉)
with probability 1/2.

We assume the tokens in T are numbered from 1 to |T |. In each round t, each token i has a location
Wi(t) ∈ V and a height Hi(t) ∈ {1, . . . , XWi(t)(t)}. Initially tokens are ordered arbitrarily on each node,
and the initial height of a token is its position in that order. Two tokens on the two adjacent nodes with
the same height are called sibling. We now define the height-sensitive process which is a realization (and
refinement) of the load balancing process above (an illustration can be found in Figure 2).

Height-Sensitive Process (round t, matching edge {u, v} ∈ E with Xu(t− 1) ≥ Xv(t− 1))

1. Moving step: Move the top b(Xu(t− 1) −Xv(t− 1))/2c tokens from node u to node v, preserving
their relative order and adjusting their height accordingly.

2. Shuffling step: Swap each token on node u with its sibling on v with probability 1/2, independently
from all other tokens. In case where the topmost token at u has no sibling, this token is also moved to v
with probability 1/2.

In the following we will refer to the topmost token as excess token if it does not have a sibling. It
is easy to verify that the height of a token can never increase (see Lemma 3.11, (i) in Section 3.4).
Furthermore, any individual token performs a random walk with the sequence of matching matrices as
transition matrices (Lemma 3.11, (ii)). Crucially, we will prove later that the movements of different
tokens satisfy a negative association property (see Lemma 3.12).

57

height

1

2

3

4

5

6

7 7

6

5

4

3

2

1

u

9

8

v

(a)

4

3

2

1

u

7

6

5

9

8

v

?

?

?

?

?

Moving Step
(b)

6

3

2

8

u

7

4

5

9

1

v

Shuffling Step
(c)

Figure 2: Illustration of the height-sensitive process and the effect on the tokens, which are labeled from 1
to 9. (a): The configuration of tokens before the averaging; (b): the configuration after the moving step
and (c): the configuration after the shuffling step.

3.2.2 Properties of Matchings

Assume that nodes are labeled from 1 to n. Recall that the balancing matrix M(t) ∈ [0, 1]n×n represents a
matching ofG in round t asM(t)

u,v := 1/2 if u 6= v are matched in round t, M(t)
u,v := 0 if u 6= v are not matched

in round t, and M
(t)
u,u := 1 if u is not matched in round t. We define use M

[t1+1,t2]
u,D :=

∑
v∈DM

[t1+1,t2]
u,v .

By ~1 we denote the row vector of length n in which each entry is 1.
Recall that a fixed sequence of matchings M[t], t ≥ 1 is called (K, ε)-smoothing if for any x(0) ∈ Rn

with disc(x(0)) ≤ K we have disc(M[1,t] · x(0)) ≤ ε. The expression M[1,t] · x(0) equals the load vector of
the continuous load balancing process with initial load x(0) applying the matchings M[t]. It states that
the matching sequence is sufficient to balance the load up to ε in the continuous model (see Definition 1.6).

In general the matching sequence can be generated deterministically or randomly, and our main result
will cover both cases. The next definition states the properties of the matchings which we require for our
main result.

Definition 3.1. A sequence of matchings M[∞] :=
(
M(s)

)∞
s=1

is called (τglobal, τlocal)-good if

inf
t∈N0

Pr

 ⋂
u∈V

∥∥∥∥∥M[t+1,t+τglobal]
u,· −

~1

n

∥∥∥∥∥
2

2

≤ 1

n7

 ≥ 1− 1

n3
, (3.33)

and inf
t∈N0

min
u∈V

Pr

[∥∥∥M[t+1,t+τlocal]
u,·

∥∥∥2

2
≤ 1

log10(n)

]
≥ 1− 1

log11(n)
. (3.34)

Since each token is performing a random walk according to the matching sequence (Lemma 3.11),
we can interpret these events in terms of a distribution of a token performing a time-inhomogeneous
random walk and its `2-distance to the stationary (i.e, uniform) distribution. The event in Equation (3.33)
means that the distribution of any token will be very close to uniform after τglobal rounds. This basically
corresponds to a complete, i.e., “global” mixing property of a random walk, since it holds for any start
node u. With regards to the event in Equation (3.34), it only a requires a very coarse mixing of the
distribution after τlocal rounds, and this condition holds only “locally”, i.e., from a specific node u. Using
standard spectral techniques, for the random matching model we have τglobal = O(log(n)/(1− λ)) and
τlocal = O(log log(n)/(1− λ)) (assuming pmin = Ω(1/∆)).

58

3.3 (τglobal , τlocal)-Good Sequence

In this section we analyze (τglobal , τlocal)-good sequence of matchings. First we mention and prove the
main theorem of this section. In subsection 3.3.1 we show any arbitrary initial load vector reaches a load
vector with at most O(n) tokens above average, after smoothing time (Lemma 3.3). Subsection 3.3.2
shows how to balance a linear number of tokens. It contains the backbone of our analysis. There we
show the discrepancy 3 using our developed techniques. Finally we provide a high level of the analysis in
subsection 3.3.3. Combining these results, we obtain our main theorem below.

Theorem 3.1. Let G be any undirected, connected graph on n nodes and consider any initial load vector
x(0) ∈ Nn0 with disc(x(0)) := K > 1. Assume our process balances the tokens via a (τglobal, τlocal)-good
sequence of matchings M[∞]. Then there exists a time τ with

τ = O

(
log(Kn)

log(n)
· τglobal +

log(n)

log log(n)
· τlocal

)
such that

Pr[disc(X(τ)) ≤ 4] ≥ 1− exp

(
−(1/200) · log(n)

log log(n)

)
,

and for any constant c > 0,

Pr[disc(X(τ)) ≤ 3] ≥ 1− exp
(
− log1−c(n)

)
.

Proof. To ease the notation, we define ` := log(n)
log log(n) . Let t0 := 3τglobal · log(2Kn)/ log(n). First, we define

two events
G? :=

{
M[t0] is (K, 1/(2n))-smoothing

}
,

and

G0 :=

{∑
w∈V

max{Xw(t0)− x, 0} ≤ 16 · n

}
.

From Lemma 3.2 (presented below) it follows that Pr
[
G?
]
≤ n−2. From Lemma 3.3 (presented in

subsection 3.3.1) it follows that
Pr
[
G0

∣∣ G?] ≤ 2 · n−2.

Note that by the law of total probability we get

Pr
[
G0

]
= Pr

[
G0

∣∣ G?] ·Pr[G?] + Pr
[
G0

∣∣ G?] ·Pr
[
G?
]

≤ Pr
[
G0

∣∣ G?]+ Pr
[
G?
]
≤ 3 · n−3. (3.35)

Let t1 := t0 + 2 · τglobal + 6` · τlocal. Here we define an event G1 := {disc(X(t1)) ≤ 38} and from Lemma 3.5
(presented in subsection 3.3.2) it follows that

Pr
[
G1

∣∣∣ G0

]
≤ exp(−(1/80) · `),

and by the law of total probability (Equation (3.35)) we get, Pr
[
G1

]
≤ exp(−(1/80) · `+ 3 · n−3

Let t2 := t1 + 2 · τglobal + 6` · τlocal. We define another event G2 := {disc(X(t2)) ≤ 4}, and from
Lemma 3.6 (presented in subsection 3.3.2) it follows that

Pr
[
G2

∣∣ G1

]
≤ exp(−(1/160) · `),

59

and by the law of total probability (eq. (3.35)) we get,

Pr
[
G2

]
≤ exp(−(1/160) + exp(−(1/80) · `+ 3 · n−3 ≤ exp(−(1/200) · `).

Note that

t2 = t1 + 2 · τglobal + 6` · τlocal = t0 + 4 · τglobal + 12` · τlocal

=

(
3 log(2Kn)

log(n)
+ 4

)
· τglobal + 12` · τlocal,

finishing the proof of the first statement (with τ := t2).
Let c > 0 be any constant and τ := t2 + 2 · τglobal + d10/ce · ` · τlocal. Here we define an event

G3 := {disc(X(τ)) ≤ 3}. From Lemma 3.7 (presented in subsection 3.3.2) with δ := c/2 it follows that

Pr
[
G3

∣∣ G2

]
≤ 2 exp(− log1−c(n)).

By the law of total probability (Equation (3.35)) we get,

Pr
[
G3

]
≤ Pr

[
G3

∣∣ G2

]
+ Pr

[
G2

]
≤ 2 exp(− log1−c(n)) + exp(−(1/200) · `) ≤ exp(− log1−2c(n)).

Finally,

τ = t2 + 2 · τglobal +
d10/ce log(n)

log log(n)
· τlocal

=

(
3 log(2Kn)

log(n)
+ 6

)
· τglobal +

(d10/ce+ 12) log(n)

log log(n)
· τlocal.

Since c is a constant, this finishes the proof.

In the rest of this section we prove the propositions used in the theorem. First we present a simple
lemma which relates (τglobal, τlocal)-good sequences of matchings to the property of (K, ε)-smoothing.

Lemma 3.2. Consider a sequence of (τglobal, τlocal)-good matchings M[∞]. Let K ≥ 2n2 and 0 < ε ≤ 1.
Then for t∗ := (3 · log(Kε)/ log(n)) · τglobal,

Pr
[
M[t?] is (K, ε)-smoothing

]
≥ 1− n−2.

Proof. Recall that M[t?] =
(
M(s)

)t?
s=1

. We first define x := 3
⌈
log2n2(Kε)

⌉
. We will consider x subsequent

and disjoint subsequences of matchings,
(
M(s)

)i·τglobal

s=(i−1)·τglobal+1
, where i ∈ [1, x]. For any i ∈ [1, x] we

define a random variables Zi to be zero if the sequence of matchings
(
M(s)

)i·τglobal

s=(i−1)·τglobal+1
is (1, 1/(2n2))-

smoothing and one otherwise.
From Definition 3.1 together with observation 6.31 we get

Pr[Zi = 1] ≤ n−3.

We define Z :=
∑x
i=1 Zi and an event Ψ := {Z ≤ x/2}.

By linearity of expectation we get that E[Z] ≤ x/n3. From Markov’s inequality it follows that
Pr
[
Z ≥ x

2

]
≤ Pr

[
Z ≥ x

n

]
≤ n−2 implying that Pr[Ψ] ≥ 1− n−2.

60

In the remainder of the proof we assume that the event Ψ occurs. This implies that at least x/2
matching subsequences of length τglobal are (1, 1/(2n2))-smoothing. Note that the discrepancy is non-
increasing over the time. Hence conditioning on the event Ψ, we get that after x · τglobal rounds the
discrepancy is at most

K ·
(

1

2n2

)x/2
≤ K ·

(
1

2n2

)log2n2 (K/ε)

= ε.

Finally, we have that

3 ·
⌈

log2n2

(
K

ε

)⌉
= 3 ·

⌈
log(Kε)

log(2n2)

⌉
(?)

≤ 3 ·
log(Kε)

log(n)
= t? · 1

τglobal
,

where (?) used that K ≥ 2n2 and ε ≤ 1, which implies that the argument of d.e is at least 1. This
completes the proof.

3.3.1 Reducing the Number of Tokens to Linear

We will now present an application of our strong Hoeffding bound ,Lemma 3.15, to bound the number of
tokens above the average load (i.e.,

∑
w∈V max{Xw(t)− x, 0}); this can be regarded as the number of

tokens that need to be rearranged to achieve constant discrepancy. The proof relies on the flexibility of
Lemma 3.15 by applying it multiple times for different coefficients (aw)w∈V in order to prove that there is
no large subset in which all nodes have large load.

Lemma 3.3. Assume our process applies a sequence of matchings M[t1] which is (K, 1/(2n))-smoothing
on an arbitrary initial load vector with disc(x(0)) ≤ K. Then it holds that

Pr

[∑
w∈V

max{Xw(t1)− x, 0} ≤ 16 · n

]
≥ 1− 2 · n−2.

Proof. For any integer i = 1, 2, . . . , 2 ·
√

log(n), we define the event

Ei :=

{
|{u ∈ V : Xu(t1)− x ≥ 4 · i}| ≤ n · 2−i

}
and E0 :=

{
max
w∈V

Xw(t1)− x ≤ 6
√

log(n)

}
.

From our Hoeffding bound Lemma 3.15 with δ :=
√

36 log(n), aw := 1 and au := 0 for u 6= w and union
bound over all nodes w ∈ V it follows that

Pr[E0] ≥ 1− n−2.

It remains to analyze the probability of the other Ei. To this end, fix any 1 ≤ i ≤ 2
√

log(n). By the union
bound,

Pr
[
Ei
]
≤

∑
S⊆V : |S|=n·2−i

Pr

[⋂
u∈S
{Xu(t1) ≥ x+ 4 · i}

]
. (3.36)

To calculate this probability we apply Lemma 3.15 as follows. We define for a fixed subset S ⊆ V a vector
(aw)w∈V by aw := 1/|S| for w ∈ S and aw := 0 otherwise. Then

∑
w∈V aw = 1 and ‖a‖22 = |S| · (1/|S|)2 =

61

1/|S|, κ = 1/n, and we obtain that

Pr

[⋂
u∈S
{Xu(t1) ≥ x+4 · i}

]
≤ Pr

[∑
u∈S

Xu(t1) ≥ |S| · (x+ 4 · i)

]

≤ Pr

[∣∣∣∣∣∑
w∈V

aw ·Xw(t1)− x

∣∣∣∣∣ ≥ 4 · i

]
(a)

≤ 2 · exp

(
− (3i)2

4‖a‖22

)
≤ 2 · exp

(
−(9/4) · i2 · |S|

)
= 2 · exp

(
−(9/4) · i2 · n · 2−i

)
,

where (a) follows from Lemma 3.15. Plugging this into Equation (3.36) yields

Pr
[
Ei
]
≤
(

n

n · 2−i

)
· 2 · exp

(
−(9/4) · i2 · n · 2−i

)
(a)

≤
(
e · 2i

)n·2−i · 2 · exp
(
−(9/4) · i2 · n · 2−i

)
= 2 ·

(
e · 2i

e(9/4)·i2

)n·2−i (b)

≤ n−3,

where (a) used the estimate
(
n
k

)
≤ (en/k)k and (b) used that i ∈ [1, 2

√
log(n)]. By another union bound

over i = 0, 1, . . . , 2
√

log(n),

Pr

2
√

log(n)⋂
i=0

Ei

 ≥ 1− n−2 − 2
√

log(n) · n−3 ≥ 1− 2 · n−2.

We assume that the event
⋂2
√

log(n)

i=0 Ei occurs and define a sequence a0 := −∞, ai := 4 · i for 1 ≤ i ≤
2
√

log(n). Hence,

∑
w∈V

max{Xw(t1)− x, 0} ≤
2
√

log(n)∑
i=1

|{w ∈ V : Xw(t1)− x ∈ (ai−1, ai]}| · ai

≤
2
√

log(n)∑
i=1

|{w ∈ V : Xw(t1)− x ≥ ai−1}| · ai

≤
∞∑
i=1

(
4n · 2−i+1 · i

)
≤ 8n ·

∞∑
i=1

(
i · 2−i

)
= 16n.

This completes the proof.

3.3.2 Balancing a Linear Number of Tokens

In this subsection we establish the most challenging step in our analysis. We consider an initial load
vector x(0) with at most (L− ε)n tokens for 4

log4(n)
< ε < L and integer L ≥ 1 (this is more general than

62

requiring a linear number of tokens, which is what we will need in the final proof).
The main result of this section is given in Proposition 3.4, which states that after O(τglobal + τlocal ·

log(n)/ log log(n)) rounds the maximum load is L+ 1. An illustration of the proof method can be found
in Figure 3.

The next proposition makes uses of Lemma 3.27 and Lemma 3.28 which are stated and proved in the
technical lemmas (Section 3.4).

Proposition 3.4. Let t2 := 2·τglobal+6 · τlocal · log(n)/log log(n), let L be any integer with 1 ≤ L ≤ log7(n)

and let 4
log4(n)

≤ ε < L (not necessarily constant). Assume our process applies a (τglobal, τlocal)-good
sequence of matchings M[∞] to an arbitrary initial load vector x(0) with at most (L− ε)n tokens. Then

Pr

[
max
w∈V

Xw(t2) ≤ L+ 1

]
≥ 1− exp

(
− ε · log(n)

2 · L · log log(n)
+ 8 · log log(n)

)
− 2 · n−2.

Proof. Phase 1. Let t1 := τglobal +τlocal · log(n)/ log log(n) and define Y (t1) :=
∑
u∈V max{Xu(t1)−L, 0}

as the number of tokens at height at least L+ 1. Define the event

G1 :=

{
Y (t1) ≤ n

log(n)

}
.

From Lemma 3.27 (Phase 1 Lemma) it follows that

Pr[G1] ≥ 1− exp

(
− ε · log(n)

2 · L · log log(n)
+ 8 · log log(n)

)
− n−2.

Phase 2. For any t ≥ t1, we define an auxiliary load vector X̂(t) with X̂u(t) := max{Xu(t)−L, 0}. From
observation 3.18 it follows that for any t ≥ t1, Xu(t) ≤ X̂u(t) + L. Hence it is sufficient to show that
maxu∈V X̂u(t2) ≤ 1 for some suitable round t2. Note that from Phase 1 we get

∑
u∈V X̂u(t1) ≤ n/ log(n),

i.e. the load vector X̂(t1) has at most n/ log(n) tokens. This time we define, for any round t ≥ t1,
Ŷ (t) :=

∑
u∈V max{X̂u(t)− 1, 0}, which is equal to the number of tokens with height at least 2 in X̂(t).

Let t2 := t1 + τglobal + 4τlocal · log(n)

− log(1
log(n)

+ 2
log4(n)

)
. We define a second event

G2 := {Ŷ (t2) = 0}.

From Lemma 3.28 (Phase 2 Lemma) with ε := 1− 1
log(n) it follows that Pr

[
G2 | G1

]
≤ n−2. And by the

law of total probability (stating that for two events A,B we have Pr
[
A
]
≤ Pr

[
A
∣∣ B]+ Pr

[
B
]
) we get

Pr
[
G2

]
≤ Pr

[
G2 | G1

]
+ Pr

[
G1

]
≤ n−2 + exp

(
− ε · log(n)

2 · L · log log(n)
+ 8 · log log(n)

)
+ n−2.

From the definition of t2 it follows that

t2 = t1 + τglobal +
4 · log(n)

− log
(

1
log(n) + 2

log4(n)

) · τlocal

≤ t1 + τglobal +
5 · log(n)

log log(n)
· τlocal

= 2 · τglobal +
6 · log(n)

log log(n)
· τlocal,

63

finishing the proof.

In the remainder of this Subsection, we show how to reduce the discrepancy to 3 in three steps: first
to 38 (Lemma 3.5), then to 4 (Lemma 3.6), and finally to 3 (Lemma 3.7). For these purposes, we frequently
apply the techniques developed earlier (Proposition 3.4).

Reducing Discrepancy to 38. Here we show that once the load vector consists of only O(n) tokens,
then after additional O(τglobal + log(n)

log log(n) · τlocal) rounds the discrepancy is reduced to 38 (see Lemma 3.5).
The proof of the result relies on Lemma 3.3 showing that the number of tokens with height at least x+ 1

is at most 16n.

Lemma 3.5. Let t? := 2 · τglobal + 6 log(n)
log log(n) · τlocal. Assume our process applies a (τglobal, τlocal)-good

sequence of matchings M[∞] to a load vector x(0), which satisfies
∑
w∈V max{xw(0)−x, 0} ≤ 16 ·n. Then

Pr[disc(X(t?)) ≤ 38] ≥ 1− exp

(
−(1/80) · log(n)

log log(n)

)
.

Proof. For any t ≥ 0, define an auxiliary load vector X̃u(t) := max{Xu(t) − dxe, 0}, u ∈ V , that
is, we subtract dxe tokens from any node (as long as its load is large enough). By assumption, we
have

∑
w∈V x̃w(0) ≤ 16 · n. Here we can apply Proposition 3.4 with L = 17, ε := 1/2 and t? :=

2 · τglobal + 6 log(n)
log log(n) · τlocal and obtain for c := 1/70,

Pr

[
max
w∈V

X̃w(t?) ≤ 18

]
≥ 1− exp

(
−c · log(n)

log log(n)

)
.

Applying Observation 3.18 we get that the same holds for X(t?), resulting in

Pr

[
max
w∈V

Xw(t?) ≤ dxe+ 18

]
≥ 1− exp

(
−c · log(n)

log log(n)

)
.

Using a simple symmetry argument (see observation 6.30),

Pr

[
min
w∈V

Xw(t?) ≥ bxc − 19

]
≥ 1− exp

(
−c · log(n)

log log(n)

)
.

A final union bound gives

Pr[disc(X(t?)) ≤ 38] ≥ 1− 2 exp

(
−c · log(n)

log log(n)

)
≥ 1− exp

(
−(1/80) · log(n)

log log(n)

)
,

which yields the statement.

Reducing Discrepancy from 38 to 4. Here we show that once the load vector consists of only
O(n) tokens and the initial discrepancy is at most 38, then after additional O(τglobal + log(n)

log log(n) · τlocal)

rounds the discrepancy is reduced to 4.

Lemma 3.6. Assume our process applies a (τglobal, τlocal)-good sequence of matchings M[∞] to a load
vector x(0), in which disc(x(0)) ≤ 38. Then for t? := 2 · τglobal + 6τlocal · log(n)

log log(n) , we have,

Pr[disc(X(t?)) ≤ 4] ≥ 1− exp

(
−(1/160) · log(n)

log log(n)

)
.

64

Proof. Assume without loss of generality that the load values are {0, 1, 2, . . . , 38}. Let us pick L :=⌈
x+ 1

2

⌉
and ε := 1

2 ; clearly L ≤ 39 since x ≤ 38. Using Proposition 3.4, we obtain that at round
t? := 2 · τglobal + 6τlocal · log(n)/log log(n) the maximum load is at most L + 1 =

⌈
x+ 1

2

⌉
+ 1 with

probability at least

1− exp

(
− log(n)

156 · log log(n)
+ 8 · log log(n)

)
− 2 · n−2.

Let us now consider the load vector x̃(0) := 38− x(0). By observation 3.19, x̃(t) = 38− x(t) for all
t ≥ 1. Also, (x̃) = 38− x. Repeating the above argument, but now applied to x̃, yields for any u ∈ V ,

x̃u(t?) ≤ L+ 1 =

⌈
(x̃) +

1

2

⌉
+ 1,

which implies

xu(t?) ≥ 38−
⌈

(x̃) +
1

2

⌉
− 1 = 37−

⌈
38− x+

1

2

⌉
(a)
= 37−

(
38 +

⌈
−x+

1

2

⌉)
(b)
=

⌊
x− 1

2

⌋
− 1,

where (a) used the fact that for any integer k and real z, dk + ze = k + dze and (b) used the fact that
d−ze = −bzc for any real z. Hence we can also conclude that the minimum load in x(t?) is at least⌊
x− 1

2

⌋
−1. Since all load values at round t? are integers in the interval

[⌊
x− 1

2

⌋
− 1,

⌈
x+ 1

2

⌉
+ 1
]
, which

are at most 5 values, the discrepancy is at most 4. Hence a final union bound gives,

Pr[disc(X(t?)) ≤ 4] ≥ 1− 2 exp

(
− log(n)

156 · log log(n)
+ 8 · log log(n)

)
− 4 · n−2

≥ 1− exp

(
− log(n)

160 · log log(n)

)
.

Reducing Discrepancy from 4 to 3. To obtain discrepancy 3, we may not be able to apply
Proposition 3.4 directly. For example, if x is an integer (or close to an integer), the highest load is x+ 2,
and the minimum load is x − 2, then there is no L and ε such that the application of Proposition 3.4
would result in a reduced discrepancy. To overcome this problem, we first remove a small number of
tokens at the two highest levels (they will be called “secondary"), and focus on the movement of the
remaining tokens (called “primary"). We can then show, by Proposition 3.4, that most of the primary
tokens reduce their height to at most x. Then we can show that the amount of these primary tokens
together with the secondary tokens is smaller than (L− ε) · n (for L = 2 and proper ε), and by applying
Lemma 3.28 we obtain that all tokens at height x+ 2 will reduce their height.

Lemma 3.7. Assume our process applies a (τglobal, τlocal)-good sequence of matchings M[∞] to a load
vector x(0), in which disc(x(0)) ≤ 4. Then for any 0 < δ < 1/2 and t∗ := 2τglobal +

5
δ log log(n) · log(n) ·τlocal,

Pr[disc(X(t∗)) ≤ 3] ≥ 1− 2 · exp
(
− log1−2δ(n)

)
.

Proof. For simplicity, we assume that the load values at time 0 are {0, 1, 2, 3, 4} (this can be achieved by
reducing the load by the same value at each node).

To show the lemma, we consider two different cases (1 and 2). In Case 1, we assume that x ≤ 2.
Ideally, we would like to apply Proposition 3.4 for L = 2, but this requires that the total number of tokens
is at most (L− ε) · n for ε > 4

log4 n
, but this may not be satisfied if x ∈ (2− 4

log4 n
, 2]. To overcome this

65

problem, we will first apply the first phase in the proof of Proposition 3.4 to a load vector with slightly
fewer tokens. To this end, we first mark n

logδ n
tokens at height 3 and 4, and call these tokens “secondary”

tokens (all other tokens are called “primary”). We now apply a (τglobal, τlocal)-good sequence of matchings
M[∞], and consider the load balancing process with a fixed sequence of orientations on the graph w.r.t.
the primary tokens only (in which the secondary tokens are removed) versus the process with the same
sequence of orientations w.r.t. both types of tokens. The load vector at some time t, which results from
the load balancing process w.r.t. the primary tokens only, is denoted by p(t).

Clearly, the number of tokens in p(0) is at most 2n− n
logδ n

= (L− ε) · n, where L := 2 and ε := 1
logδ n

.
Then we can apply Lemma 3.27 for t1 := τglobal + log(n)/ log log(n) · τlocal, (note that ε ≥ 4/ log4(n) is
satisfied) and conclude that the number of nodes with load at least 3 in p(t1) satisfies

Pr

[
|{u ∈ V : pu(t1) ≥ 3}| ≤ n

log(n)

]
≥ 1− exp

(
− (1/ logδ n)

4
· log(n)

log log(n)
+ 8 · log log(n)

)
− 2n−2

≥ 1− exp
(
− log1−2δ(n)

)
.

According to the second statement of observation 6.29, we have for all rounds t ≥ 0 and u ∈ V ,

xu(t) ≥ pu(t).

As there are n/ logδ(n) secondary tokens, the number of tokens at height at least 3 in x(t1) is at most

2n

log(n)
+

n

logδ(n)
≤ 2n

logδ(n)
= (1− ε) · n,

for ε := 1− 2
logδ(n)

. Then we consider an additional phase, applied to x(t), t ≥ t1, where we consider only
these (1− ε) · n tokens at height 3 and 4. By Lemma 3.28, by round t∗ := t1 + τglobal + 4

− log
(

1−ε+ 2
log4(n)

) ·
log(n) · τlocal, all tokens at height 4 are eliminated with probability 1− n−2. Hence the total number of
rounds is

t∗ = 2τglobal +
log(n)

log log(n)
· τlocal +

4

δ log log(n)− 2
· log(n) · τlocal ≤ 2τglobal +

5

δ log log(n)
· log(n) · τlocal,

and by the union bound the success probability for both phases is

1− exp
(
− log1−2δ(n)

)
+ n−2 ≥ 1− 2 · exp

(
− log1−2δ(n)

)
.

In Case 2, where x ≥ 2, we consider the flipped load vector with the entries yi(0) = 4− x(0)i, and apply
the analysis of the first case to this vector.

3.3.3 An Outline of the Analysis

Before presenting the technical lemmas in detail, we provide a more detailed outline of our analysis. We
compile a collection of the most important technical results, which form the core tools of our analysis.
The proofs of these tools are significantly more involved than the derivation of the discrepancy bounds
using them. Moreover, we believe that several of these tools are of independent interest.

In order to prove small discrepancy bounds, we need to keep track of the number of tokens at a specific
height. Thanks to the height-sensitive process defined earlier, the height of a token is non-increasing over

66

time, and the sequence of locations of a token i ∈ T , (Wi(t))t≥0, form a random walk (Lemma 3.11).
Crucially, we establish that these random walks are negatively correlated:

Lemma 3.8 (simplified version of Lemma 3.12). Fix a subset of tokens B ⊆ T at round 0. Let t > 0 be any
round, and fix the matchings from round 1 and t. Then for any set D ⊆ V , the events {Wi(t) ∈ D}, i ∈ B
are negatively correlated.

In comparison to previous work (Lemma 4.2 from [85]), our lemma yields the same statement but
here tokens move following the definition of the height-sensitive process, whereas in [85], the two nodes
exchange all tokens freely, which means that the height of a token could increase. Even though in this sense
our process might be slightly harder to describe and analyze, our proof is simpler and more elementary
than [85], e.g., we do not need the somewhat unwieldy negative regression condition from [41]. We continue
with a Hoeffding-like concentration bound.

Lemma 3.9 (simplified version of Lemma 3.15). Consider any load vector x(0) with disc(x(0)) ≤ K and
any round t ≥ 1 such that the sequence of matchings from round 1 to t is (K, 1/(2n))-smoothing. Then
for any stochastic vector (aw)w∈V , it holds for any δ > 0,

Pr

[∣∣∣∣∣∑
w∈V

aw ·Xw(t)− x

∣∣∣∣∣ ≥ δ
]
≤ 2 · exp

(
− (δ − 1/(2n))2

4‖a‖22

)
.

In order to appreciate this result, we first discuss a more general (but somewhat harder to apply)
version, which is derived in the proof of Lemma 3.15. This states that for any matching sequence, and
any stochastic vector (aw)w∈V , µ := E

[∑
w∈V aw ·Xw(t)

]
, and any δ > 0 it holds

Pr

[∣∣∣∣∣∑
w∈V

aw ·Xw(t)− µ

∣∣∣∣∣ ≥ δ
]
≤ 2 · exp

(
− δ2

4‖a‖22

)
.

This tail bound essentially matches the one from Hoeffding’s inequality for
∑
w∈V Yw if the Yw are all

independent and Yw ∈ [−aw, aw]. However, in the load balancing process the range of the Xw’s are
unbounded and also the Xw’s are far from being independent; for instance, two nodes matched in round t
must have a load difference of at most 1. Our concentration bound is established by carefully aggregating
all rounding errors contributing to

∑
w∈V aw ·Xw(t)−µ by means of a quadratic potential function. On a

high level, our proof resembles that in [85], however, one key difference is that we employ a more general
potential function which involves the coefficients a := (aw)w∈V .

Compared to prior work, our result generalizes [85, Lemma 3.5] to arbitrary stochastic vectors a. The
corresponding result in [85] only works for the specific vector a with aw := M

[t+1,t1]
w,u , for a fixed node

u ∈ V and round t1 ≥ t − 1; in particular, if we choose t1 = t then a is a unit-vector. There are also
earlier and weaker versions of this inequality, e.g., in [47, Theorem 4.6], which only match our form if the
underlying graph and matchings have constant expansion. We therefore believe that our result will be the
final word in the quest to find a tight and general concentration inequality of this type.

The first application of our concentration inequality (Lemma 3.15) is to bound the number of tokens
above the average load in Lemma 3.3. This lemma exploits that in Lemma 3.15 we can choose the
stochastic vector (aw)w∈V freely. For each possible subset S ⊆ V and integer i ≥ 1, we bound the
existence of a “bad” set S of size Θ(n/2i) in which all nodes have load at least x+ 4 · i. This is done by
choosing an appropriate vector (aw) and threshold δ in Lemma 3.15. The proof is then concluded by a
simple union bound over all possible “bad” subsets S ⊆ V .

67

The second application of our concentration inequality (Lemma 3.15) is Proposition 3.4. It is the most
involved step in our analysis. It shows that we can reduce the discrepancy to a constant if the initial
load vector has at most O(n) tokens. The proof of this proposition constitutes the most challenging part

V

t
0 1

1

L · n
n/ log(n)

τglobal t1 := τglobal + ` · τlocal t1 + τglobal t1 + ` · τlocal

τlocal τlocal

Phase 1 Phase 2

Y (t) Ŷ (t)

Figure 3: Illustration of phases 1 and 2 in the proof of proposition 3.4. Phase 1 decreases Y (t), the number
of tokens with height at least L+ 1, from n · L to n

log(n) . Then Phase 2 decreases Ŷ (t), the number of
tokens with height at least L+ 2, to 0. Both phases first use τglobal rounds for a “global mixing”, and then
` := log(n)

log log(n) short epochs of length τlocal.

of our analysis. Note that in this proposition we consider a generalized statement and instead of O(n)

tokens we balance (L − ε) · n tokens for a constant ε > 0 and integer log7(n) ≥ L ≥ 1. Our goal is to
gradually reduce the number of tokens with height ≥ L+ 1, until no token with height ≥ L+ 2 remains.
Proposition 3.4 uses two phases, which are illustrated in Figure 3. In Phase 1 we reduce the number of
tokens with height ≥ L+ 1 from (L− ε)n to n/ log(n) (see Lemma 3.27) and in Phase 2 we reduce the
number of tokens with height ≥ L+ 2 further to 0 (see Lemma 3.28).

Phases 1 and 2 run successively and are analyzed with the same framework, only with alternate
parameters. The key difference is that after Phase 1 we only need to cope with a sublinear number, that
is, n/ log(n), tokens at height at least L+ 1, and we wish to bound the number of tokens that remain
at height L + 2. This allows us to make faster progress in Phase 2. Specifically, we prove exponential
decay every τlocal rounds in Phase 1 and even super-exponential decay (factor 1/ log(n)) in Phase 2. The
analyses of both phases hinges on the key lemma stated below, which establishes a multiplicative drop on
the number of tokens at height at least L+ 1 within τlocal rounds:

Lemma 3.10 (simplified and informal version of Lemma 3.24 (Key Lemma)). Assume that a load vector
x(t) has at most (L− ε)n tokens, where 0 < t, 0 < ε < 1 and 1 ≤ L ≤ log7(n) is an integer. Let Y (t) be
the number of tokens with height at least L+ 1 in round t. Then,

E
[
Y (t+ τlocal)

∣∣∣ x(t)
]
≤
(

1− ε

L
+

2

L · log4(n)

)
· Y (t).

In the following we will sketch the central ideas needed to establish the key lemma above. We start
with a token i ∈ T at height at least L + 1, located at a node u ∈ V in round t. Our goal is to lower
bound the probability that after τlocal additional rounds, the token is still at this height. The location of
token i at time t+ τlocal is determined by a random walk with law M

[t+1,t+τlocal]
u,· (Lemma 3.11); we call

this (random) node v ∈ V . As heights of tokens are non-decreasing in [t, t+ τlocal], the only way for token
i to remain at height at least L+ 1 is for there to be at least L many other tokens j which are also on
node v ∈ V at time t+ τlocal. Using the negative correlation lemma (Lemma 3.12), the expected number

68

of tokens which collide with token i at round t+ τlocal can be upper bounded by (see Lemma 3.21),

∑
w∈V

(∑
v∈V

M[t+1,t+τlocal]
u,v ·M[t+1,t+τlocal]

w,v︸ ︷︷ ︸
=:aw

)
·Xw(t).

We proceed with upper bounding the right hand side. This is a convex combination of a load vector,
which makes it amenable to our new concentration inequality for convex combinations of loads. Using
that the matching sequences are of length τlocal, we obtain with reasonably large probability over the
matching sequence that ‖a‖22 is small. Once we have established this, we apply our Hoeffding bound for
convex combinations of loads (Lemma 3.15) to the above sum; here, for fixed a the randomness is over the
matching sequences and shuffling steps in [1, t], where t ≥ τglobal. Taking aside some technicalities, we can
then conclude that there is an expected drop in the number of tokens at height L+ 1 within τlocal rounds.

One significant technical challenge is to iterate this argument over consecutive epochs of length τlocal,
as each epoch also depends on the random decisions in previous epochs (both matchings and shuffling
decisions). We will overcome these dependencies by carefully defining events (corresponding to the local
and global behavior of the process; similar to τlocal and τglobal), and then integrate these events into a
submartingale which shows that the number of tokens at height L+ 1 drops.

3.4 Technical lemmas

Here we provide the detailed proofs of our technical lemmas. Our first goal is to prove the two main
components of our analysis; first, the negative correlation result about token movements (Lemma 3.12 in
subsection 3.4.1) and secondly, the Hoeffding-like concentration inequality (Lemma 3.15 in subsection
3.4.2). Using these two tools we are able to prove the intermediate results.

We start with a simple but useful observation indicating that the height of a token is non-increasing
and a single token follows a random walk with transition matrices M(s) for s ∈ [t1, t2].

Lemma 3.11. Consider any pair of rounds t1 ≤ t2 and let (M(s))t2s=t1 be an arbitrary but fixed sequence of
matchings. For any token i ∈ T it holds that (1) Hi(t1) ≥ Hi(t2), and (2) Pr[Wi(t2) = v | wi(t1) = u] =

M
[t1+1,t2]
u,v .

Proof. The height of a token can only change in the moving step of a round t. This only happens if the
token is on one endpoint of an edge [u : v] ∈M(t) with xu(t− 1) ≥ xv(t− 1). Then tokens on node u at
height xv(t− 1) + dxu(t−1)−xv(t−1)

2 e+ i for some i > 0 will decrease their height by dxu(t−1)−xv(t−1)
2 e and

move to node v. No other token on u or v will change its height during the moving step, and hence the
first statement follows.

Similar to the proof of [85, Lemma 4.1], we prove the second statement by induction over t ∈ [t1 + 1, t2],
that is, for all u, v ∈ V , we have Pr[Wi(t) = v | wi(t1) = u] = M

[t1+1,t]
u,v . For t = t1, M[t1+1,t] is the

identity matrix, which means that the induction base holds. For the induction hypothesis, consider
Pr[Wi(t) = v | wi(t1) = u]. If v is not part of a matching in round t, then

Pr[Wi(t) = v | wi(t1) = u] = Pr[Wi(t− 1) = v | wi(t1) = u]
(?)
= M[t1+1,t−1]

u,v = M[t1,t]
u,v ,

where (?) used the induction hypothesis. If v is matched with a node w in round t, then by definition of

69

the height-sensitive process the token i has a probability of 1
2 of reaching v from either v or w, and hence

Pr[Wi(t) = v | wi(t1) = u] = Pr[Wi(t− 1) = v | wi(t1) = u] · 1

2
+ Pr[Wi(t− 1) = w | wi(t1) = u] · 1

2
(?)
= M[t1,t]

u,v ·
1

2
+ M[t1,t]

u,w ·
1

2

= M[t1,t]
u,v ·M(t+1)

v,v + M[t1,t]
u,w ·M(t+1)

w,v

= M[t1,t+1]
u,v ,

where (?) used the induction hypothesis.

3.4.1 Height-Sensitive Negative Association

We next present our Height-Sensitive Negative Association result, which can be interpreted as a form of
the negative covariance property introduced in [42]. In essence, this result establishes that the locations of
tokens exhibit a negative dependence structure: the probability that a given set of tokens simultaneously
lies within a fixed subset D is upper-bounded by the product of their individual probabilities of being in D

Lemma 3.12 (Height-Sensitive Negative Association). Consider any pair of rounds 0 ≤ t1 < t2, and let
(M(s))t2s=t1 be an arbitrary but fixed sequence of matchings. Further, let w(t1) = (wi(t1))i∈T be a fixed
location vector in round t1 ≥ 0. Then for any subset of tokens B ⊆ T and any subset of nodes D ⊆ V , it
holds that

Pr

[⋂
i∈B
{Wi(t2) ∈ D}

∣∣∣∣∣ w(t1)

]
≤
∏
i∈B

Pr[Wi(t2) ∈ D | w(t1)] =
∏
i∈B

M
[t1+1,t2]
wi(t1),D.

Proof. Throughout the proof we always assume that w(t1) is fixed and we omit the conditioning. Note
that by Lemma 3.11, we have

∏
i∈BPr[Wi(t2) ∈ D] =

∏
i∈BM

[t1+1,t2]
wi(t1),D and therefore it only remains to

prove the inequality

Pr

[⋂
i∈B
{Wi(t2) ∈ D}

]
≤
∏
i∈B

M
[t1+1,t2]
wi(t1),D.

For every round t ∈ [t1, t2] and a token i ∈ B we define a random variable

Zi(t) :=
∑
u∈V

1Wi(t)=u ·M
[t+1,t2]
u,D and Z(t) :=

∏
i∈B

Zi(t). (3.37)

Hence, conditional on the token location Wi(t), Zi(t) is the probability that token i starting at time t
is on a node w ∈ D at time t2. In the following analysis we use the simplified notation

M
[t+1,t2]
Wi(t),D

:=
∑
u∈V

1Wi(t)=u ·M
[t+1,t2]
u,D .

Since M[t2+1,t2] = I,
Z(t2) =

∏
i∈B

M
[t2+1,t2]
Wi(t2),D.

Hence, Zi(t2) is a random variable that can take on the values zero or one. Therefore,

E[Z(t2)] = Pr[Z(t2) = 1] = Pr

[⋂
i∈B
{Zi(t2) = 1}

]
= Pr

[⋂
i∈B
{Wi(t2) ∈ D}

]
.

70

The key idea is to prove that the sequence Z(t), t ∈ [t1, t2] forms a supermartingale with respect to the
filtration F(t), which reveals all random decisions of the process between rounds t1 and t (so in particular,
it reveals the location vectors W (t) =

(
W1(t), . . . ,W|T |(t)

)
), that is,

E
[
Z(t)

∣∣∣ F(t−1)
]
≤ Z(t− 1), (3.38)

which would immediately imply
E[Z(t2)] ≤ Z(t1).

It then follows

Pr

[⋂
i∈B
{Wi(t2) ∈ D}

]
= E[Z(t2)] ≤ Z(t1) =

∏
i∈B

M
[t1+1,t2]
wi(t1),D,

finishing the proof.
It remains to prove Equation (3.38). Without loss of generality we may assume that each matching

consists only of one edge. This is because for any sequence of matchings (M(s))t2s=t1 in which there is
a round s ∈ [t1 + 1, t2] whose matching includes more than one edge, we can decompose such round s
into multiple “sub-rounds”, each consisting of exactly one matching. It is clear that this yields the same
process, only with a larger number of rounds.

Fix round t with t1 ≤ t ≤ t2 and assume {u, v} is the single edge in M(t). First we compute Z(t− 1).
We define Tu ⊆ B as the tokens from B which are on u and Tv ⊆ B as the tokens from B which are on v
at the beginning of round t. Note that it is possible that there are tokens i 6∈ B on those nodes. We get

M
[t,t2]
u,D = M

[t,t2]
v,D = M(t)

u,v ·M
[t+1,t2]
v,D + M(t)

u,u ·M
[t+1,t2]
u,D =

M
[t+1,t2]
u,D + M

[t+1,t2]
v,D

2
.

For ease of presentation we define

p := M
[t+1,t2]
u,D and q := M

[t+1,t2]
v,D .

From the definition (3.37) it follows that

Z(t− 1) =
∏

i∈B\(Tu∪Tv)

Zi(t− 1) ·
∏

i∈Tu∪Tv

Zi(t− 1) =
∏

i∈B\(Tu∪Tv)

Zi(t− 1) ·
(
p+ q

2

)|Tu∪Tv|
. (3.39)

We will continue to analyze E
[
Z(t) | F(t−1)

]
and eventually upper bound it by the right hand side in

Equation (3.39), which completes the argument. For each token i located at {u, v} let S(i) be its sibling
token on the other node after the moving step of round t and before the shuffling step; note that it is
possible for a token to have no sibling. We partition tokens in Tu ∪ Tv into three sets:

B1 = {i ∈ Tu ∪ Tv | S(i) ∈ Tu ∪ Tv},

B2 = {i ∈ Tu ∪ Tv | S(i) ∈ T \ (Tu ∪ Tv)},

B3 = {i ∈ Tu ∪ Tv | S(i) does not exist.}.

Note that the set B3 corresponds to the excess token (if there is one), and thus |B3| ∈ {0, 1}. We will now

71

apply this partitioning to E
[
Z(t)

∣∣∣ Ft],
E
[
Z(t)

∣∣∣ F(t−1)
]

= E

[∏
i∈B

Zi(t)

∣∣∣∣∣ F(t−1)

]
= E

 ∏
i∈B\(Tu∪Tv)

Zi(t) ·
∏

i∈Tu∪Tv

Zi(t)

∣∣∣∣∣ F(t−1)

,
and since for tokens i ∈ B \ (Tu ∪ Tv), Wi(t) is not matched with any node in this round, then Zi(t) =

Zi(t− 1) and the above is

=
∏

i∈B\(Tu∪Tv)

Zi(t− 1) ·E

[∏
i∈B1

Zi(t) ·
∏
i∈B2

Zi(t) ·
∏
i∈B3

Zi(t)

∣∣∣∣∣ F(t−1)

]

and since tokens which are in different Bj , 1 ≤ j ≤ 3 must be at different heights and therefore move
independently in the shuffling phase, the above is

=
∏

i∈B\(Tu∪Tv)

Zi(t− 1) ·E

[∏
i∈B1

Zi(t)

∣∣∣∣∣ F(t−1)

]
·E

[∏
i∈B2

Zi(t)

∣∣∣∣∣ F(t−1)

]
·E

[∏
i∈B3

Zi(t)

∣∣∣∣∣ F(t−1)

]
.

(3.40)

We will now analyze the three different expectations in Equation (3.40)

Case 1: The expectation over B1. Using that any token i ∈ B1 only depends on its sibling token
S(i) we can group all tokens in B1 in pairs, and we denote this relation by ∼. Further, a token i with
sibling j will take the opposite action in the shuffling step, and therefore

E

[∏
i∈B1

Zi(t)

∣∣∣∣∣ F(t−1)

]
=

∏
i<j∈B1 : i∼j

E
[
Zi(t) · Zj(t)

∣∣∣ F(t−1)
]

=
∏

i<j∈B1 : i∼j
(p · q).

Case 2: The expectation over B2. Since each token in B2 has no sibling in B (let alone B2), their
movements in the shuffling step are independent. Further, each such token is on u or v with the same
probability which yields,

E

[∏
i∈B2

Zi(t)

∣∣∣∣∣ F(t−1)

]
=
∏
i∈B2

E
[
Zi(t)

∣∣∣ F(t−1)
]

=
∏
i∈B2

(
p+ q

2

)
.

Case 3: The expectation over B3. This is analogous to Case 2, as a token in B3 has no sibling
in B (in fact there is not even any other token at this height). Hence,

E

[∏
i∈B3

Zi(t)

∣∣∣∣∣ F(t−1)

]
=
∏
i∈B3

(
p+ q

2

)
.

Aggregating the contributions of all tokens in B in round t and using Equation (3.40) we get

E
[
Z(t)

∣∣∣ F(t−1)
]

=
∏

i∈B\(Tu∪Tv)

Zi(t− 1) ·E

[∏
i∈B1

Zi(t)

∣∣∣∣∣ F(t−1)

]
·E

[∏
i∈B2

Zi(t)

∣∣∣∣∣ F(t−1)

]
·E

[∏
i∈B3

Zi(t)

∣∣∣∣∣ F(t−1)

]

72

and using Cases 1, 2 and 3 above gives us,

E
[
Z(t)

∣∣∣ F(t−1)
]

(a)
=

∏
i∈B\(Tu∪Tv)

Zi(t− 1) ·
∏

i<j∈B1 : i∼j
(p · q) ·

∏
i∈B2

p+ q

2
·
∏
i∈B3

p+ q

2

and using the simple fact the fact that p · q ≤ ((p+ q)/2)2 (this is a special case of Lemma 6.35, but can
be also easily verified by expanding) leads to

E
[
Z(t)

∣∣∣ F(t−1)
] (b)

≤
∏

i∈B\(Tu∪Tv)

Zi(t− 1) ·
∏

i<j∈B1 : i∼j

(
p+ q

2

)2

·
∏
i∈B2

p+ q

2
·
∏
i∈B3

p+ q

2

=
∏

i∈B\(Tu∪Tv)

Zi(t− 1) ·
(
p+ q

2

)|Tu∪Tv|
= Z(t− 1),

where the last equality follows form Equation (3.39). Hence E
[
Z(t)

∣∣∣ F(t−1)
]
≤ Z(t− 1), which is

Equation (3.38) and, consequently, completes the proof.

3.4.2 Concentration Inequality for Convex Combinations of Loads

In this subsection we are to prove our strong Hoeffding bound, Concentration Inequality for Convex
Combinations of Loads (Lemma 3.15). This “Hoeffding-like” concentration inequality is another key tool
in our analysis. We use it frequently to derive (upper) bounds on the number of tokens on a set of nodes.
Before proving it, we mention some basic results which will be used in the proof of Lemma 3.15.

We will first state a Hoeffding-like concentration inequality from a related work. Recall that εu,v(s)
is the rounding error for node u in round s when [u : v] ∈ M(s) and from the definition we have
εu,v(s) = −εv,u(s).

Lemma 3.13 (Lemma 3.4 in [85]). Consider an arbitrary but fixed sequence of matchings M[t] for any
rounds t ≥ 1 and the load vector x(0). For any family of numbers g(s)

u,v, [u : v] ∈M(s), 1 ≤ s ≤ t, define the
random variable

Z :=

t∑
s=1

∑
[u:v]∈M(s)

εu,v(s) · g(s)
u,v.

Then, E[Z] = 0, and for any δ > 0, it holds that

Pr[|Z −E[Z]| ≥ δ] ≤ 2 · exp

− δ2

2
∑t
s=1

∑
[u:v]∈M(s)

(
g

(s)
u,v

)2

.
The next lemma can be seen as a generalization of the first statement of Lemma 3.2 from [85], which

considers the fixed vector a with aw := 1 for node w ∈ V and au = 0 for u 6= w. We extend it to arbitrary
stochastic vectors a, which is crucial to prove Lemma 3.15 in its full generality.

Lemma 3.14. Consider an arbitrary sequence of matchings M[∞]. Let (ak)k∈V be any stochastic vector.
Then:

73

1. For any two rounds 0 ≤ t1 ≤ t it holds,

t1∑
s=1

∑
[u:v]∈M(s)

(∑
k∈V

ak ·
(
M

[s+1,t]
u,k −M

[s+1,t]
v,k

))2

≤ 2 · ‖a‖22.

2. For any two rounds 0 ≤ t1 ≤ t it holds,

∑
w∈V

(∑
k∈V

ak ·M[t1+1,t]
w,k

)2

≤ ‖a‖22.

Proof. The proof follows closely the proof of Theorem 3.2 from [85]. We define a potential function as

Ψ(s) :=
∑
w∈V

(∑
k∈V

akM
[s+1,t]
w,k − 1

n

)2

,

for any round 1 ≤ s ≤ t. This is a generalization of the potential function in [85], where all ak := 1.

Proof of the first statement. Consider now any round 1 ≤ s ≤ t, and let u, v be nodes with
[u : v] ∈M(s). We have

M
[s,t]
u,k = M(s)

u,u ·M
[s+1,t]
u,k + M(s)

u,v ·M
[s+1,t]
v,k =

M
[s+1,t]
u,k + M

[s+1,t]
v,k

2
.

To simplify notation, define for any two nodes u, v ∈ V , yu,v := M
[s+1,t]
u,v . With that notation, the

contribution of these nodes to Ψ(s) −Ψ(s−1) is(∑
k∈V

akM
[s+1,t]
u,k − 1

n

)2

+

(∑
k∈V

akM
[s+1,t]
v,k − 1

n

)2

−

(∑
k∈V

akM
[s,t]
u,k −

1

n

)2

−

(∑
k∈V

akM
[s,t]
v,k −

1

n

)2

=

(∑
k∈V

akyu,k −
1

n

)2

+

(∑
k∈V

akyv,k −
1

n

)2

−

(∑
k∈V

ak
yu,k + yv,k

2
− 1

n

)2

−

(∑
k∈V

ak
yu,k + yv,k

2
− 1

n

)2

,

having used that M[s,t]
u,k = M

[s,t]
v,k =

yu,k+yv,k
2 . We can further rewrite the last expression as

=

(∑
k∈V

akyu,k

)2

− 2

n
·
∑
k∈V

akyu,k +
1

n2
+

(∑
k∈V

akyv,k

)2

− 2

n
·
∑
k∈V

akyv,k +
1

n2

− 2 ·

(∑
k∈V

ak ·
yu,k + yv,k

2

)2

+
4

n
·
∑
k∈V

ak ·
yu,k + yv,k

2
− 2

n2
,

74

and rearranging it gives,

=

(∑
k∈V

akyu,k

)2

+

(∑
k∈V

akyv,k

)2

− 1

2
·

(∑
k∈V

akyu,k +
∑
k∈V

akyv,k

)2

+
2

n
·

(
−
∑
k∈V

akyu,k −
∑
k∈V

akyv,k +
∑
k∈V

ak · (yu,k + yv,k)

)
︸ ︷︷ ︸

= 0

(a)
=

1

2
·

(∑
k∈V

akyu,k −
∑
k∈V

akyv,k

)2

,

where in (a) we used the fact that a2 + b2 − 1
2 · (a+ b)2 = 1

2 · (a− b)
2. If a node is not matched in round

s, then its contribution to Ψ(s)−Ψ(s− 1) equals zero. Accumulating the contribution of all nodes yields

Ψ(s)−Ψ(s− 1) =
1

2
·

∑
[u:v]∈M(s)

(∑
k∈V

ak ·
(
M

[s+1,t]
u,k −M

[s+1,t]
v,k

))2

. (3.41)

Therefore,

Ψ(t1) ≥ Ψ(t1)−Ψ(0) =

t1∑
s=1

(Ψ(s)−Ψ(s− 1)) =
1

2
·
t1∑
s=1

∑
[u:v]∈M(s)

(∑
k∈V

ak ·
(
M

[s+1,t]
u,k −M

[s+1,t]
v,k

))2

,

and rearranging gives,

t1∑
s=1

∑
[u:v]∈M(s)

(∑
k∈V

ak ·
(
M

[s+1,t]
u,k −M

[s+1,t]
v,k

))2

≤ 2 ·Ψ(t1) ≤ 2 ·Ψ(t),

where the last inequality holds since the potential Ψ(s) is non-decreasing over s (Equation (3.41)).
Moreover, since M[t+1,t] is the identity matrix I, we have M

[t+1,t]
w,k = 1 for k = w and M

[t+1,t]
w,k = 0 for

k 6= w. Hence

Ψ(t) =
∑
w∈V

(∑
k∈V

akM
[t+1,t]
w,k − 1

n

)2

=
∑
w∈V

(
aw −

1

n

)2

= ‖a‖22 −
1

n
. (3.42)

Combining the last two statements finishes the proof of the first statement.

Proof of the second statement. Note that since t1 ≤ t, it follows from Equation (3.41) that
Ψ(t1) ≤ Ψ(t). Substituting the definition of Ψ(t1) and Ψ(t) on both sides gives

∑
w∈V

(∑
k∈V

ak ·M[t1+1,t]
w,k − 1

n

)2

≤
∑
w∈V

(∑
k∈V

ak ·M[t+1,t]
w,k − 1

n

)2
Eq. (3.42)

= ‖a‖22 −
1

n
. (3.43)

Finally, we have

∑
w∈V

(∑
k∈V

ak ·M[t1+1,t]
w,k

)2
(a)
=
∑
w∈V

(∑
k∈V

ak ·M[t1+1,t]
w,k − 1

n

)2

+
1

n

Eq. (3.43)
= ‖a‖22,

where (a) follows from observation 6.33 (since the matrix M[t1+1,t] is doubly stochastic and ‖a‖1 = 1).

75

Now we prove the main result of this section.

Lemma 3.15 (Hoeffding Bound for Convex Combinations of Loads). Consider any load vector x(0) with
disc(x(0)) ≤ K and any round t ≥ 1 such that M[t] is a (K,κ)-smoothing sequence of matchings with
K > κ. Then for any stochastic vector (aw)w∈V , it holds for any δ > 0,

Pr

[∣∣∣∣∣∑
w∈V

aw ·Xw(t)− x

∣∣∣∣∣ ≥ δ
∣∣∣∣∣ M[t]

]
≤ 2 · exp

(
− (δ − κ)2

4‖a‖22

)
.

As a special case of this concentration inequality, we can take any node v, define the unit-vector
aw = 1w=v (and thus ‖a‖22 = 1), pick δ =

√
12 · log(n) and then apply a union bound over all nodes

v ∈ V . This immediately yields the following bound on the discrepancy.

Corollary 3.16. Consider any load vector x(0) with disc(x(0)) ≤ K. Consider any round t ≥ 1 and let
M[t] be a fixed (K, 1)-smoothing sequence of matchings. Then,

Pr
[
disc(X(t)) ≥

√
48 · log(n) + 1

]
≤ 2 · n−1.

The exact same bound was shown in [85, Theorem 3.6].

Proof of Lemma 3.15. Recall from Equation (2) we have

X(t) = M(t) · (X(t− 1) +A(t)) + ε(t), (3.44)

in which X(t),M(t), `(t) and ε(t) are the load vector, the balancing matrix, the newly added load items
and rounding error vector in round t. Then from Equation (5) (by repeatedly expanding above equation
form up to the beginning of the process) we get

X(t) = M[1,t] ·X(0)︸ ︷︷ ︸
I(t)

initial load contribution

+

t∑
s=1

M[s,t] ·A(τ)︸ ︷︷ ︸
D(t)

dynamically allocated Load contribution

+

t∑
s=1

M[s+1,t] · ε(s)︸ ︷︷ ︸
R(t)

rounding error contribution

.

(3.45)
Since in the continuous setting the contribution of rounding error disc(R(t)) and dynamically allocated
load disc(D(t)) is zero, then in the idealized (continues) setting

`w(t) :=
(
M[1,t] ·X(0)

)
w

=
∑
u∈V

xu(0) ·M[1,t]
u,w ,

is the load of node w after t rounds. Recall that εu,v(s) = 1
2 ·Odd(Xu(t− 1) +Xv(t− 1)) · φu,v(t) is the

rounding error; here φu,v(t) ∈ {−1,+1} is the random orientation which has Rademacher distribution
(which takes each value with probability 1/2). Since φu,v(t) = −φv,u(t) then we get; for any node w ∈ V ,

Xw(t)− `w(t) =

(
t∑

s=1

M[s+1,t] · ε(s)

)
w

=

t∑
s=1

∑
[u:v]∈M(s)

εu,v(s) ·
(
M[s+1,t]

u,w −M[s+1,t]
v,w

)
, (3.46)

76

Note that this equation is a standard formula (e.g., [85, Equation 2.5]). Therefore,

∑
w∈V

aw · (Xw(t)− `w(t)) =
∑
w∈V

aw ·

 t∑
s=1

∑
[u:v]∈M(s)

εu,v(s) ·
(
M[s+1,t]

u,w −M[s+1,t]
v,w

)
=

t∑
s=1

∑
[u:v]∈M(s)

εu,v(s) ·

[∑
w∈V

aw ·
(
M[s+1,t]

u,w −M[s+1,t]
v,w

)]
.

Since the time interval [1, t] is (K,κ)-smoothing, it holds that −κ ≤ `w(t)− x ≤ κ for all nodes w ∈ V ,
and therefore ∑

w∈V
aw · `w(t) = x+B,

where |B| ≤ κ. This implies

∑
w∈V

aw ·Xw(t)− x = B +

t∑
s=1

∑
[u:v]∈M(s)

εu,v(s) ·

[∑
w∈V

aw ·
(
M[s+1,t]

u,w −M[s+1,t]
v,w

)]
(3.47)

Following the notation of Lemma 3.13, let us define

Z :=

t∑
s=1

∑
[u:v]∈M(s)

εu,v(s) ·

[∑
w∈V

aw ·
(
M[s+1,t]

u,w −M[s+1,t]
v,w

)]
,

and
g(s)
u,v :=

∑
w∈V

aw ·
(
M[s+1,t]

u,w −M[s+1,t]
v,w

)
.

Since E[εu,v(s)] = 0, then E[Z] = 0 and from Lemma 3.13 it follows that,

Pr[|Z| ≥ δ] ≤ 2 · exp

− δ2

2
∑t
s=1

∑
[u:v]∈M(s)

(
g

(s)
u,v

)2

.
From the first statement of Lemma 3.14 it follows that

∑t
s=1

∑
[u:v]∈M(s)

(
g

(s)
u,v

)2

≤ 2 · ‖a‖22. Combining
these two gives that Pr[|Z| ≥ δ] ≤ 2 · exp(−δ2/(4 · ‖a‖22)), which is the first statement. Combining this
with Equation (3.47) implies that,

Pr

[∣∣∣∣∣∑
w∈V

aw ·Xw(t)− x

∣∣∣∣∣ ≥ δ + κ

]
≤ 2 · exp

(
− δ2

4 · ‖a‖22

)
,

and shifting δ by κ completes the proof.

Here we provide a similar statement with different constant but with a self-contained proof.

Lemma 3.17. Consider any load vector x(0) with disc(x(0)) ≤ K and any round t ≥ 1 such that M[t] is
a (K,κ)-smoothing sequence of matchings with K > κ. Then for any stochastic vector (aw)w∈V , it holds
for any δ > 0,

Pr

[∣∣∣ ∑
w∈V

aw ·Xw(t)− x
∣∣∣ ≥ δ ∣∣∣∣∣ M[t]

]
≤ 4 · exp

(
− (δ − κ)2

‖a‖22

)
.

77

Proof. Let |B| ≤ κ. Recall that Equation (3.47) implies that

∑
w∈V

ak ·Xw(t)− x = B +

t∑
s=1

∑
[u:v]∈M(s)

εu,v(s) ·

[∑
w∈V

aw ·
(
M[s+1,t]

u,w −M[s+1,t]
v,w

)]
.

For clarity, we first define

g(s)
u,v :=

[∑
w∈V

aw ·M[s+1,t]
u,w −

∑
w∈V

aw ·M[s+1,t]
v,w

]
.

From the definition it follows that

Z =

t∑
s=1

∑
(u,v)∈M(s)

εu,v(s) · g(s)
u,v =

1

2

t∑
s=1

∑
(u,v)∈M(s)

Odd(Xu(s− 1) +Xv(s− 1)) · φu,v(s) · g(s)
u,v.

Since E[εu,v(s)] = 0 and εu,v(s) is independent of P, the linearity of expectation gives E[Z] = 0.
Assume for any δ > 0, we have

Pr[|Z| ≥ δ] ≤ 4 · exp

(
− δ2

‖a‖22

)
, (3.48)

which would complete the proof. Hence, it remains to prove it.
Recall that φu,v(t) ∈ {−1,+1} is the random orientation which has Rademacher distribution (that is,

it is uniform in {−1,+1}). Let us define an auxiliary random variable

W :=
1

2

t∑
s=1

∑
(u,v)∈M(s)

φu,v(s) · g(s)
u,v.

The intuition is to show that an upper bound for W leads to a bound on Z. This part of proof follows
along the same lines as the proof of [56, Lemma 1]. For the sake of completes we give the full technical
proof here. Note that W is a sum of independent random variables, in particular, a weighted sum of
Rademacher variables. We first prove that for any δ > 0

Pr[|Z| ≥ δ] ≤ 2 ·Pr[|W | ≥ δ]. (3.49)

Consider the edges which for s ∈ [1, t] satisfy Odd(Xu(s− 1) + Xv(s− 1)) = 0. These edges make the
difference between Z and W . To see this, let Z > δ for some δ > 0. Then W ≤ δ can happen only if

t∑
s=1

∑
(u,v)∈M(s) :

Odd(Xu(s−1)+Xv(s−1))=0

φu,v(s) · g(s)
u,v < 0.

Hence,

Pr[W ≤ δ | Z > δ] ≤ Pr

[
t∑

s=1

∑
(u,v)∈M(s) :

Odd(Xu(s−1)+Xv(s−1))=0

φu,v(s) · g(s)
u,v < 0

]
.

Recall that φ.,.(.) is a random variable which is 1 or −1 each with probability 1/2. Moreover, it is
independent of g(.)

.,. . Because of symmetry, the right side happens with probability strictly less than 1/2.

78

Therefore,
Pr[W > δ | Z > δ] ≥ 1/2.

Consequently it follows that

Pr[W ≥ δ] ≥ Pr[W > δ | Z > δ] ·Pr[Z > δ] ≥ 1

2
·Pr[Z > δ],

and by symmetry

Pr[W ≤ −δ] ≥ 1

2
·Pr[Z < −δ].

This completes the proof of Equation (3.49). Now we derive a tail bound for

W =
1

2

t∑
s=1

∑
(u,v)∈M(s)

φu,v(s) · g(s)
u,v.

We define a sequence of random variables Y1, . . . , Yt such that Y` for 1 ≤ ` ≤ t indicates the orientation
of the single matching edge (u, v) of round `, i.e., Y` := φu,v(`). To simplify the notation we define
F` := (Y1, Y2, . . . , Y`). We are to apply Theorem 6.14. Since W is a (weighted) sum of independent
random variables, for any 1 ≤ ` ≤ t (such that edge (u, v) is picked up in round `) it holds that

|E[W | F`]−E[W | F`−1]| ≤ |g
(`)
u,v|
2

.

Note that E[W] = 0. An application of Theorem 6.14 to the martingale X` := E[W | F`], where 1 ≤ ` ≤ t
gives for any δ > 0,

Pr[|W | ≥ δ] ≤ 2 · exp

− 2 · δ2∑t1
s=1

∑
(u,v)∈M(s)

(
g

(s)
u,v

)2

.
From the first statement of Lemma 3.14 it follows that

t∑
s=1

∑
(u,v)∈M(s)

(
g(s)
u,v

)2

≤ 2 · ‖a‖22.

Combining this with Equation (3.49) gives

Pr[|Z| ≥ δ] ≤ 4 · exp

(
− δ2

‖a‖22

)
,

and shifting δ by κ and recalling the definition of Z concludes the proof.

Here we collect a few other tools and results that are frequently used only in our analysis. The next
two observations help us in coupling arguments.

Observation 3.18. Fix a sequence of matchings M[∞]. Consider two executions of the discrete load
balancing protocol with the same matchings and the same random choices for the excess tokens’ movements,
but with different initial load vectors x(0) and x̃(0) such that for some α ∈ N and for all u ∈ V it holds

x̃u(0) := max{xu(0)− α, 0}.

79

Then for any round t ≥ 0 it holds
Xu(t) ≤ X̃u(t) + α.

It then directly follows that the height of any token in load vector X(t) is at most the maximum height of
any token in load vector X̃(t) plus α.

Proof. We consider two auxiliary executions of discrete load balancing with initial load vectors x̂(0) and
x̃(0) in which for each node u ∈ V we have

x̂u(0) := max{xu(0), α} and x̃u(0) := x̂u(0)− α.

We run the discrete load balancing for these executions with the same matching M(t) and the same
random choices for the excess tokens in each round t ∈ N but with different initial load vectors constructed
as above. From the second statement of observation 6.29, it follows that for any round t ≥ 0 and each
node u ∈ V we have Xu(t) ≤ X̂u(t). Similarly, from the first statement of observation 6.29 it follows that
X̃u(t) = X̂u(t)− α. A combination of these two implies that

Xu(t) ≤ X̃u(t) + α,

for any node u ∈ V and any round t ≥ 0.

The next observation uses the concept of orientation, which is defined in Equation (3.46). In our
analysis we often need to use a flipped process. The next observation allows us to do it.

Observation 3.19. Fix a sequence of matchings M[∞]. Consider two executions of the discrete load
balancing protocol with the same matchings but with different initial load vectors x(0) and x̃(0), where
x̃(0) := K · ~1− x(0) for some K ∈ N0, and flipped orientations, i.e., φ̃u,v(t) = −φu,v(t). Then for any
round t ≥ 1,

X̃(t) = K ·~1−X(t).

Proof. The proof is by induction over t ∈ N0. The base case t = 0 holds by assumption. Now assuming
x̃(t− 1) = K · 1−X(t− 1) for some t− 1 ∈ N0, we will prove that the same equation holds for round t.
If a node u is not matched in round t then

X̃u(t) = X̃u(t− 1) = K −Xu(t− 1) = K −Xu(t).

Now assume the edge [u : v] is in the matching M(t). Then we have

Xu(t) =
Xu(t− 1) +Xv(t− 1)

2
+

1

2
·Odd(Xu(t− 1) +Xv(t− 1)) · φu,v(t)

and
Xv(t) =

Xu(t− 1) +Xv(t− 1)

2
+

1

2
·Odd(Xu(t− 1) +Xv(t− 1)) · φv,u(t).

80

Furthermore, we have

X̃u(t) =
X̃u(t− 1) + X̃v(t− 1)

2
+

1

2
·Odd

(
X̃u(t− 1) + X̃v(t− 1)

)
· φ̃u,v(t)

=
2K − (Xu(t− 1) +Xv(t− 1))

2
+

1

2
·Odd(2K − (Xu(t− 1) +Xv(t− 1))) · φ̃u,v(t)

=
2K − (Xu(t− 1) +Xv(t− 1))

2
+

1

2
·Odd(Xu(t− 1) +Xv(t− 1)) · φ̃u,v(t)

= K − (Xu(t− 1) +Xv(t− 1))

2
− 1

2
·Odd(Xu(t− 1) +Xv(t− 1)) · φu,v(t)

= K −Xu(t).

The case for v is analogous to the case for u. Hence for each node u ∈ V , we get X̃u(t) = K −Xu(t) and
consequently, X̃(t) = K ·~1−X(t). This finishes the induction step and completes the proof.

3.4.3 Ingredients used in Proposition 3.4

In the rest of this section we prove the main lemmas used in the proof of Proposition 3.4 which are
Lemma 3.27 (Phase 1) and Lemma 3.28 (Phase 2). To do so, we have to provide several additional
definitions and statements, which ultimately leads towards the key lemma (Lemma 3.24), which proves
a drop in the number of tokens with height at least L+ 1 within τlocal rounds. From this, Lemma 3.27
and Lemma 3.28 can be derived relatively easily. Note that throughout this section we assume there are
initially O(L · n) tokens for L ≤ log7(n).

First of all, we define two events corresponding to τglobal (global mixing) and τlocal (local mixing).

Definition 3.2. For any round t ≥ τglobal we define

Γ(t)
g :=

⋂
u∈V

∥∥∥∥∥M[1,t]
u,. −

~1

n

∥∥∥∥∥
2

2

≤ 1

n7

.
For any round t ≥ τlocal and arbitrary node u ∈ V we define

Γ
(t)
` (u) :=

{∥∥∥M[t−τlocal+1,t]
u,.

∥∥∥2

2
≤ 1

log10(n)

}
.

Note that the event Γ
(t)
g depends on the matching matrices in the time interval [1, t]. The event implies

that the balancing matrices applied during rounds [1, t] are (n · log7(n), 1/n)-smoothing (see observation
6.31). We call that property globally mixing since it implies that a token starting from any node in round
1 across the entire graph. In contrast, the event Γ

(t)
` (u) adopts the viewpoint of a single node u. It

implies that the matchings chosen during the last τlocal rounds are locally smoothing from the viewpoint
u. Γ

(t)
` (u) depends on the matchings applied in the time interval [t− τlocal + 1, t]. We remark that for any

round t ≥ 1, the events Γ
(t)
g and Γ

(t+τlocal)
` (u) are statements over disjoint time-intervals, Hence for the

random matching model they are independent events. In the following we first calculate the probabilities
that these events occur for a sequence of (τglobal, τlocal)-good matchings, the proof is a straightforward
calculation.

Lemma 3.20. For any process generating (τglobal, τlocal)-good matchings the following holds.

1. For any round t ≥ τglobal, Pr
[
Γ(t)
g

]
≥ 1− 1/n3.

81

2. For any round t ≥ τlocal and arbitrary node u ∈ V , Pr
[
Γ

(t)
` (u)

]
≥ 1− 1/ log11 n.

Proof. First note that

Pr

[
Γ

(τglobal)
g

]
= Pr

 ⋃
u∈V


∥∥∥∥∥M[1,τglobal]

u,. −
~1

n

∥∥∥∥∥
2

2

>
1

n7


. (3.50)

Applying the definition of τglobal (Definition 3.1), we get for t = τglobal that Pr

[
Γ

(τglobal)
g

]
≤ 1/n3. The

first statement follows from the basic fact that
∥∥∥M[1,t]

u,. − ~1n
∥∥∥2

2
is non-increasing in t (see Observation 6.34).

For the second statement, consider an arbitrary round t ≥ τlocal and a fixed node u ∈ V . Here, we get

Pr
[
Γ

(t)
` (u)

]
= Pr

[{∥∥∥M[t−τlocal+1,t]
u,.

∥∥∥2

2
>

1

log10(n)

}]
≤ 1

log11(n)
,

where the last inequality follows from the definition of τlocal (Definition 3.1). As above, the proof follows
from Observation 6.34.

Recall that Phase 1 starts at round τglobal and each of our two phases is subdivided into log(n)/ log log(n)

epochs of τlocal many rounds. We refer to the last round of an epoch as milestone. For any epoch k we
denote by e : N0 → N0 the function e(k) := τglobal + k · τlocal which returns the last round of k-th epoch,
i.e., e(k) returns the k-th milestone. We define E(k) := [e(k − 1) + 1, . . . , e(k)] for the interval of rounds
constituting the k-th epoch.

Let the random variable Y (t) denote the number of tokens of height at least L+ 1 at round t, i.e.,

Y (t) :=
∑
u∈V

max{Xu(t)− L, 0} =
∑
j∈T

1Hj(t)≥L+1 . (3.51)

We wish to prove that in each epoch Y (t) drops by a constant factor (see Lemma 3.24) such that at the
end of Phase 1 the number of tokens of height at least L+ 1 is at most n/ log(n) (Lemma 3.27). Since the
height of the token is non-increasing this number will not increase for the rest of the process.

Let us first focus on the k-th milestone, for k ∈ N. For now, let us fix an arbitrary location vector
w(e(k − 1)). Consider an arbitrary token i ∈ T which has height at least L+ 1 at round e(k − 1). Our
goal is to prove that the expected number of tokens that collide with i at round e(k) is smaller than L.
To this end, we define an indicator random variable Z(e(k)

i,j (v) for any token j ∈ T , j 6= i and any node
v ∈ V as

Z
(e(k))
i,j (v) := 1Wi(e(k))=v ∩ Wj(e(k))=v and Z

(e(k))
i :=

∑
v∈V

∑
j∈T : j 6=i

Z
(e(k))
ij (v),

i.e., Z(e(k))
i,j (v) = 1 if and only if tokens i and j are both on node v at the k-th milestone. Hence Z(e(k))

i

counts the number of tokens colliding with token i at that time.
The next lemma bounds the expected number of collisions. Note that we assume in the lemma that

the applied matrices are fixed. The randomness is due to the random decisions in the shuffling step. For
the proof we use the negative association lemma after expanding the term E[Z

(e(k))
i].

Lemma 3.21. Let M[e(k)] be an arbitrary but fixed sequence of matchings. For any milestone k ∈ N and

82

any token i ∈ T it holds that

E
[
Z

(e(k))
i

∣∣∣ W (e(k−1)),M[e(k)]
]
≤
∑
w∈V

(∑
v∈V

M
[e(k−1)+1,e(k)]
Wi(e(k−1)),v ·M[e(k−1)+1,e(k)]

w,v

)
·Xw(e(k − 1)).

Proof. First we focus on a fixed location vector w(e(k − 1)) and compute,

E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)) = w(e(k − 1)),M[e(k)]
]

(a)
=
∑
v∈V

∑
j∈T : j 6=i

E
[
Z

(e(k))
ij (v)

∣∣∣ W (e(k − 1)) = w(e(k − 1)),M[e(k)]
]

(b)
=
∑
v∈V

∑
j∈T : j 6=i

Pr
[
Z

(e(k))
ij (v) = 1

∣∣∣ W (e(k − 1)) = w(e(k − 1)),M[e(k)]
]

=
∑
v∈V

∑
j∈T : j 6=i

Pr
[
Wi(e(k)) = v ∩Wj(e(k)) = v

∣∣∣ W (e(k − 1)) = w(e(k − 1)),M[e(k)]
]
, (3.52)

where (a) uses linearity of conditional expectation and (b) uses the fact that the Z(e(k))
i,j (v) are indicator

random variables. Recall the definition E(k) = [e(k − 1) + 1, . . . , e(k)]. Crucially, we can now apply our
negative association result (Lemma 3.12) to Equation (3.52) to obtain

E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)) = w(e(k − 1)),M[e(k)]
]

≤
∑
v∈V

∑
j∈T : j 6=i

Pr
[
Wi(e(k)) = v

∣∣∣ W (e(k − 1)) = w(e(k − 1)),M[e(k)]
]

·Pr
[
W

(e(k))
j = v

∣∣∣ W (e(k − 1)) = w(e(k − 1)),M[e(k)]
]

=
∑
v∈V

M
E(k)
wi(e(k−1)),v ·

∑
j∈T

M
E(k)
wj(e(k−1)),v

=
∑
v∈V

M
E(k)
wi(e(k−1)),v ·

∑
w∈V

ME(k)
w,v · xw(e(k − 1))

=
∑
w∈V

(∑
v∈V

M
E(k)
wi(e(k−1)),v ·M

E(k)
w,v

)
· xw(e(k − 1)).

Since the above estimate holds for all location vectors w(e(k − 1)), it follows

E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),M[e(k)]
]
≤
∑
w∈V

(∑
v∈V

M
E(k)
Wi(e(k−1)),v ·M

E(k)
w,v

)
·Xw(e(k − 1)).

We now define two more events which we use to track the decrease of Y (t) from epoch to epoch.

Definition 3.3. Let 4
log4(n)

≤ ε < L. Fix a node u and let i be a token located on u at milestone e(k− 1).

1. L(e(k))(u) :=

{
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u)

]
≤ L− ε+

1

log4(n)

}
.

2. E(e(k))(u) :=
{

Γ(e(k−1))
g ∩

(
Γ

(e(k))
` (u) ∪ L(e(k))(u)

)}
and E(e(k)) :=

⋂
u∈V
E(e(k))(u).

The idea behind the events defined above is as follows (see also Figure 4 for an illustration). In the
definition of L(e(k))(u) we condition on Γ

(e(k))
` (u) which means that, from the viewpoint of node u (or

token i), the randomly chosen matchings in epoch k ensure that token i mixes “locally”. If now the

83

matchings chosen during the time interval [1, e(k − 1)] also suffice for a “global mixing”, then the expected
number of tokens colliding with token i on node v (the location of token i at time e(k)) is less than L.
The event E(e(k))(u) occurs when the matchings chosen during the time interval [1, e(k − 1)] are globally
mixing and the last epoch k was “locally mixing” for token i.

V

t
0 1

1
2

n

e(k − 1) e(k)

≥ τglobal = τlocal

u

1
2
3

w1

1

w2

1
2

w3

1

v

3

Γ
(e(k))
` (u) :=

{∥∥∥ME(k)
u,.

∥∥∥2

2
≤ 1

log10(n)

}

L(e(k))(u) ≈
{∑

w∈V

(∑
v∈V M

E(k)
u,v ·ME(k)

w,v

)
·Xw(e(k − 1)) ≤ 2− ε+ 1

log4(n)

}
Γ

(e(k−1))
g :=

{⋂
u∈V

∥∥∥M[1,e(k−1)]
u,. − ~1n

∥∥∥2

2
≤ 1

n7

}

v ∼M
E(k)
u,.

Figure 4: The events Γ
(e(k)
` (u), Γ

(e(k−1))
g and L(e(k))(u)

Illustration of the events Γ
(e(k))
` (u), Γ

(e(k−1))
g and L(e(k))(u), where L = 2. The token i, marked in red, is

located at node u in round e(k − 1) and has height L+ 1 = 3. Its location v in round e(k) is random and
chosen according to M

E(k)
u,. . In order to keep its height L+ 1 = 3, there must be at least L = 2 other

tokens on v in round e(k). Roughly speaking, the event L(e(k))(u) corresponds to a certain upper bound
on a convex combination of loads at round e(k − 1) holding; this event depends both on the matchings
and shuffling decisions in [0, e(k − 1)] and the matchings in E(k). The coefficients of the load vector are
collision probabilities so that the left-hand side equals the expected number of tokens that reach We prove
in Lemma 3.22 that if Γ

(e(k))
` (u) and Γ

(e(k−1))
g occur, then also L(e(k))(u) occurs (with high probability).

Then, conditional on this implication, we prove in our key lemma (Lemma 3.24) that the number of
tokens with height L+ 1 = 3 drops within E(k) by a suitable factor.

Lemma 3.22. Assume that the load vector x(0) has at most (L− ε)n tokens for 1 ≤ L ≤ log7(n) being
an integer and any 0 < ε < L. Then for any milestone k ≥ 1 we have Pr

[
E(e(k))

]
≥ 1− 2

n3 .

Proof. Consider a node u ∈ V ; recall token i is located on u at round e(k− 1). First let us negate the two

84

events from Definition 3.3 which gives

L(e(k))(u) =

{
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u)

]
> L− ε+

1

log4(n)

}
and

E(e(k))(u) =
{

Γ
(e(k−1))
g ∪

(
Γ

(e(k))
` (u) ∩ L(e(k))(u)

)}
.

For brevity, let us write α := Pr
[
Γ

(e(k−1))
g

]
and note that α ≤ 1/n3 by Lemma 3.20. Then,

Pr
[
E(e(k))(u)

]
≤ α+ Pr

[
Γ

(e(k))
` (u) ∩ L(e(k))(u)

]
≤ α+ Pr

[
L(e(k))(u)

]
= α+ Pr

[
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u)

]
> L− ε+

1

log4(n)

]
= α+ Pr

[
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u),Γ(e(k−1))

g

]
·Pr

[
Γ(e(k−1))
g

]
+

E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u),Γ

(e(k−1))
g

]
·Pr

[
Γ

(e(k−1))
g

]
> L− ε+

1

log4(n)

]
≤ α+ Pr

[
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u),Γ(e(k−1))

g

]
> L− ε+

1

log4(n)
− log7(n)

n2

]
, (3.53)

where the last inequality holds since first Pr
[
Γ

(e(k−1))
g

]
≤ 1, and secondly, since (deterministically)

Z
(e(k))
i ≤ L · n ≤ log7(n) · n we get,

E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u),Γ

(e(k−1))
g

]
·Pr

[
Γ

(e(k−1))
g

]
≤ log7(n)

n2
.

We thus have

Pr
[
E(e(k))(u)

]
≤ α+ Pr

[
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u),Γ(e(k−1))

g

]
> L− ε+

1

log4(n)
− log7(n)

n2

]
. (3.54)

To upper bound Equation (3.53) we apply Claim 3.23 below. Since Claim 3.23 holds for any fixed sequence
M[e(k)] satisfying Γ

(e(k))
` (u) ∩ Γ

(e(k−1))
g , we have

Pr

[
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),Γ
(e(k))
` (u),Γ(e(k−1))

g

]
> L− ε+

1

2 log4(n)

]
≤ 1

n5
.

Applying the union bound twice implies that

Pr
[
E(e(k))

]
= Pr

[
Γ

(e(k−1))
g ∪

⋃
u∈V

(
Γ

(e(k))
` (u) ∩ L(e(k))(u)

)]
≤ α+ n · 1

n5
≤ 2

n3
.

Claim 3.23. Fix a node u and let M[e(k)] be a fixed sequence of matchings satisfying Γ
(e(k))
` (u)∩Γ

(e(k−1))
g .

85

Then, it holds that

Pr

[{
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),M[e(k)]
]
> L− ε+

1

2 log4(n)

}]
≤ 1

n5
.

Proof. As before, E(k) = [e(k− 1) + 1, . . . , e(k)] is the interval of rounds constituting the k-th epoch. Let
W

(e(k−1))
i = u and note

Pr

[{
E
[
Z

(e(k))
i

∣∣∣ W (e(k − 1)),M[e(k)]
]
> L− ε+

1

2 log4(n)

}]
(a)

≤ Pr

[∑
w∈V

(∑
v∈V

ME(k)
u,v ·ME(k)

w,v

)
·Xw(e(k − 1)) ≥ L− ε+

1

2 log4(n)

]
, (3.55)

where (a) follows from Lemma 3.21. To bound the probability of Equation (3.55) we will apply our
concentration inequality (Lemma 3.15). Note that, since the matchings are fixed, the only randomness
remaining in Lemma 3.15 are the movements of tokens in the shuffling step. We define an n-dimensional
vector (aw)w∈V as aw :=

∑
v∈V M

E(k)
u,v ·ME(k)

w,v . To apply Lemma 3.15 we need to (1) show the time interval
[1, e(k − 1)] is (K, 1/n)-smoothing for some K ≤ n · L ≤ n · log7(n), (2) show ‖a‖1 = 1 and (3) compute
‖a‖22. Since the sequence of matchings M[e(k−1)] satisfies the event Γ

(e(k−1))
g , it follows from observation

6.31 that this sequence is (n · log7(n), 1/n)-smoothing. Since the matrix ME(k) :=
∏e(k)
s=e(k−1)+1 M

(s) is
doubly stochastic we get

‖a‖1 =
∑
w∈V

aw =
∑
w∈V

∑
v∈V

ME(k)
u,v ·ME(k)

w,v =
∑
v∈V

ME(k)
u,v ·

∑
w∈V

ME(k)
w,v =

∑
v∈V

ME(k)
u,v = 1.

Furthermore,

‖a‖22 =
∑
w∈V

(∑
v∈V

ME(k)
u,v ·ME(k)

w,v

)2
(a)

≤
∥∥∥ME(k)

u,.

∥∥∥2

2

(b)

≤ 1

log10(n)
,

where (a) follows from the second statement of Lemma 3.14; (b) follows from the definition of the event
Γ

(e(k))
` (u). Since we have at most (L − ε)n many tokens the average load x satisfies x ≤ L − ε. From

Lemma 3.15 with t := e(k − 1), κ := 1/n, δ := 1/(2 log4(n)), and the bound on ‖a‖22 from above, we have

Pr

[∑
w∈V

aw ·Xw(e(k − 1)) ≥ L− ε+
1

2 log4(n)

]
≤ 2 · exp

−
(

1
2 log4(n)

− 1
n

)2

4 ·
(

1
log10(n)

)
 ≤ 1

n5
. (3.56)

Combining Equations (3.55) and (3.56) finishes the proof of the claim.

Next we define two random variables which will be used in the remainder of the proof. Recall that T
is the set of tokens, Z(e(k))

i counts the number of tokens colliding with token i at the k-th milestone and
for any t ≥ 0, Y (t) is the number of tokens with height at least L+ 1 at round t. For any milestone k ∈ N
we define,

Ỹ (e(k)) := Y (e(k)) · 1∩ki=0E(e(i)) . (3.57)

Later we will show how to use Z(e(k))
i to bound Ỹ (e(k)), and then eventually Y (e(k)). In the next lemma

we bound the expected value of Ỹ (e(k)). We will denote by
(
F(t)

)
t≥0

the filtration of the random process;

86

note that in particular, F(t) determines not only the current load vector and previous load vectors
X(t), X(t− 1), . . . , X(1), but also all location vectors W (t),W (t− 1), . . . ,W (1). In case of randomly
generated matchings M[t] =

(
M(s)

)t
s=1

is determined by
(
F(t)

)
t≥0

, too. In the following, to keep the
notation brief, we use the convention that for any round t ≥ 0, any random variable X and event E ,

E(t)[X] := E
[
X
∣∣∣ F(t)

]
and Pr(t)[E] := Pr

[
E
∣∣∣ F(t)

]
.

We emphasize that in the next lemma, it is possible to have an ε that depends on n.

Lemma 3.24 (Key Lemma – Expected Drop in one Epoch). Assume that the initial load vector x(0) has
at most (L− ε)n tokens for 1 ≤ L ≤ log7 n being an integer and 0 < ε < 1. Then for any milestone k ≥ 1,

E(e(k−1))
[
Ỹ (e(k))

]
≤
(

1− ε

L
+

2

L · log4 n

)
· Ỹ (e(k−1)).

Proof. Using the definition of Ỹ (e(k)) we get

E(e(k−1))
[
Ỹ (e(k))

]
= E(e(k−1))

[
Y (e(k)) · 1∩ki=0E(e(i))

]
,

applying Lemma 6.36 to it (note that F(e(k−1)) determines the random variable 1∩k−1
i=0 E(e(i))) gives

E(e(k−1))
[
Ỹ (e(k))

]
= 1∩k−1

i=0 E(e(i)) ·E(e(k−1))
[
Y (e(k)) · 1E(e(k))

]
,

and since Γ
(e(k−1))
g implies 1E(e(k)) = 0 then,

E(e(k−1))
[
Ỹ (e(k))

]
= 1∩k−1

i=0 E(e(i)) ·
(
Pr(e(k−1))

[
Γ(e(k−1))
g

]
·E(e(k−1))

[
Y (e(k)) · 1E(e(k))

∣∣∣ Γ(e(k−1))
g

]
+ Pr(e(k−1))

[
Γ

(e(k−1))
g

]
· 0
)

≤ 1∩k−1
i=0 E(e(i)) ·E(e(k−1))

[
Y (e(k)) · 1E(e(k))

∣∣∣ Γ(e(k−1))
g

]
, (3.58)

Further, we have

Y (e(k)) =
∑
j∈T

1Hj(e(k))≥L+1 ≤
∑
j∈T

1Hj(e(k−1))≥L+1 ·1Z(e(k))
j ≥L, (3.59)

where the equality follows from the definition of Y (e(k). To see the inequality, observe that by properties
of the height-sensitive processthe height of a token never increases and therefore, in order for a token j to
be at height at least L+ 1 in round e(k), it must have had height at least L+ 1 in round e(k − 1) and
there must be at least L other tokens at its location in round e(k).

87

Applying Equation (3.59) to Equation (3.58) leads us to

E(e(k−1))
[
Ỹ (e(k))

]
≤ 1∩k−1

i=0 E(e(i)) ·E(e(k−1))

∑
j∈T

1Hj(e(k−1))≥L+1 ·1Z(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g


(a)
= 1∩k−1

i=0 E(e(i)) ·
∑
j∈T

E(e(k−1))
[
1Hj(e(k−1))≥L+1 ·1Z(e(k))

j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g

]
(b)
= 1∩k−1

i=0 E(e(i)) ·
∑
j∈T

1Hj(e(k−1))≥L+1 ·E(e(k−1))
[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g

]
, (3.60)

where (a) holds by linearity of conditional expectation and (b) holds since F(e(k−1)) reveals 1Hj(e(k−1))≥L+1

(“take-out-what-is-known”, Lemma 6.36). To simplify the notation we will write u instead of wj(e(k − 1)) in
what follows. Conditioning on whether Γ

(e(k))
` (u) holds, we can bound the expectation from Equation (3.60)

by

E(e(k−1))
[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g

]
= Pr(e(k−1))

[
Γ

(e(k))
` (u)

∣∣∣ Γ(e(k−1))
g

]
·E(e(k−1))

[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
+ Pr(e(k−1))

[
Γ

(e(k))
` (u)

∣∣∣ Γ(e(k−1))
g

]
·E(e(k−1))

[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
≤ Pr(e(k−1))

[
Γ

(e(k))
` (u)

∣∣∣ Γ(e(k−1))
g

]
· 1+1 ·E(e(k−1))

[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
.

We upper bound the two remaining terms in the last line separately using Claim 3.25 and Claim 3.26 (see
below). Together these two claims yield, using the assumption that L ≤ log7(n),

E(e(k−1))
[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g

]
≤ 1− ε

L
+

1

L · log4(n)
+

1

log11(n)
≤ 1− ε

L
+

2

L · log4(n)
.

Applying this to Equation (3.60) gives us

E(e(k−1))
[
Ỹ (e(k))

]
≤ 1∩k−1

i=1 E(e(i)) ·
∑
j∈T

1Hj(e(k−1))≥L+1 ·
(

1− ε

L
+

2

L · log4(n)

)

= 1∩k−1
i=1 E(e(i)) ·Y (e(k−1)) ·

(
1− ε

L
+

2

L · log4(n)

)
= Ỹ (e(k−1)) ·

(
1− ε

L
+

2

L · log4(n)

)
.

Here we prove the two claims used in the last lemma.

Claim 3.25. Pr(e(k−1))
[

Γ
(e(k))
` (u)

∣∣∣ Γ(e(k−1))
g

]
≤ 1

log11(n)
.

Proof. As before we define E(k) = [e(k − 1) + 1, . . . , e(k)] for the interval of rounds constituting the
k-th epoch. Note that Γ

(e(k))
` (u) depends only on the matchings in the time interval E(k). Moreover, as

Γ
(e(k−1))
g and Γ

(e(k))
` (u) refer to disjoint time-intervals, we have

Pr(e(k−1))
[

Γ
(e(k))
` (u)

∣∣∣ Γ(e(k−1))
g

]
= Pr(e(k−1))

[
Γ

(e(k))
` (u)

] (a)

≤ 1

log11(n)
,

where (a) follows Lemma 3.20 (recall that e(k)− e(k − 1) = τlocal).

88

Claim 3.26. E(e(k−1))
[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
≤ 1− ε

L
+

1

L · log4(n)
.

Proof. Recall that wj(e(k − 1)) = u. Conditioning on whether E(e(k)) happens or not gives us

E(e(k−1))
[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
= Pr(e(k−1))

[
E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
·E(e(k−1))

[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u), E(e(k))

]
+ Pr(e(k−1))

[
E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
·E(e(k−1))

[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u), E(e(k))

]
,

and since E(e(k)) implies that 1E(e(k)) = 0, the above is

= Pr(e(k−1))
[
E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
·E(e(k−1))

[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u), E(e(k))

]
≤ 1 ·E(e(k−1))

[
1
Z

(e(k))
j ≥L

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u), E(e(k))

]
,

using the definition of expectations conditional that E
[
Z
∣∣∣ E] = E[Z · 1E]/Pr[E], simplifies the above to

=
E(e(k−1))

[
1
Z

(e(k))
j ≥L ·1Γ

(e(k−1))
g ∩Γ

(e(k))
` (u)∩E(e(k))

]
Pr
[
Γ

(e(k−1))
g ∩ Γ

(e(k))
` (u) ∩ E(e(k))

]
=

E(e(k−1))
[
1
Z

(e(k))
j ≥L∩Γ

(e(k−1))
g ∩Γ

(e(k))
` (u)∩E(e(k))

]
Pr
[
Γ

(e(k−1))
g ∩ Γ

(e(k))
` (u) ∩ E(e(k))

]
and using the definition of the expectation we get

=
Pr(e(k−1))

[
(Z

(e(k))
j ≥ L) ∩ Γ

(e(k))
` (u) ∩ E(e(k))

]
Pr
[
Γ

(e(k−1))
g ∩ Γ

(e(k))
` (u) ∩ E(e(k))

]
=

Pr(e(k−1))
[
Z

(e(k))
j · 1

Γ
(e(k−1))
g ∩Γ

(e(k))
` (u)∩E(e(k)) ≥ L

]
Pr
[
Γ

(e(k−1))
g ∩ Γ

(e(k))
` (u) ∩ E(e(k))

] ,

and applying the so-called “conditional Markov’s inequality” (Exercise 8.2.5 in [61]) simplifies the above to,

≤
1
L ·E

(e(k−1))
[
Z

(e(k))
j · 1

Γ
(e(k−1))
g ∩Γ

(e(k))
` (u)∩E(e(k))

]
Pr
[
Γ

(e(k−1))
g ∩ Γ

(e(k))
` (u) ∩ E(e(k))

]
(c)
=

1

L
·E
[
Z

(e(k))
j

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u), E(e(k))

]
,

where (c) also uses the definition of expectations conditional on events E , E
[
Z
∣∣∣ E] = E[Z·1E]

Pr[E] . Recall that

E(e(k−1))
[
Z

(e(k))
j

∣∣∣ Γ
(e(k−1))
g ,Γ

(e(k))
` (u), E(e(k))

]
is not a number but a random function over F(e(k−1))-

measurable events. In the following, for any such random function f , let us write supω f for the largest

89

value f could attain over its arguments. With this notation, we obtain the bound

E(e(k−1))
[
1
Z

(e(k))
j ≥L ·1E(e(k))

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u)

]
≤ 1

L
· sup
ω

E
[
Z

(e(k))
j

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u), E(e(k))

]
(a)
=

1

L
· sup
ω

E
[
Z

(e(k))
j

∣∣∣ Γ(e(k−1))
g ,Γ

(e(k))
` (u), E(e(k)),L(e(k))(u)

]
≤ 1

L
· sup
ω

E
[
Z

(e(k))
j

∣∣∣ Γ
(e(k))
` (u),L(e(k))(u)

]
Def. (3.3)

≤ 1

L
·
(
L− ε+

1

log4(n)

)
= 1− ε

L
+

1

L · log4(n)
,

where (a) holds, since by definition, when the events Γ
(e(k−1))
g , Γ

(e(k))
` (u), E(e(k)) hold, the event L(e(k))(u)

must also hold. This completes the proof of the second statement and the proof of the claim.

By repeatedly applying strong Lemma 3.24 over subsequent epochs, we can complete the analysis of
Phase 1 and Phase 2.

Lemma 3.27 (Phase 1). Let ε ≥ 4/ log4(n) and 1 ≤ L ≤ log7(n) be an integer. We assume that x(0)

has at most (L− ε)n tokens and choose t1 := τglobal + log(n)
log log(n) · τlocal. Then,

Pr

[
Y (t1) ≤ n

log(n)

]
≥ 1− exp

(
− ε

2L
· log(n)

log log(n)
+ 8 · log log(n)

)
− 2n−2.

Proof. Recall that e(0) = τglobal. Hence t1 = e(log(n)/ log log(n)). Note that Ỹ (e(0)) ≤ Y (e(0)) ≤ n·log7(n).
Applying Lemma 3.24 for ` := log(n)

log log(n) epochs gives us

E
[
Ỹ (e(`))

]
= E

[
E
[
Ỹ (e(`))

∣∣∣ F(e(`−1))
]]
≤
(

1− ε

L
+

2

L · log4(n)

)
·E
[
Ỹ (e(`−1))

]
(a)

≤
(

1− ε

2L

)
·E
[
Ỹ (e(`−1))

]
≤ e−ε/(2L) ·E

[
Ỹ (e(`−1))

]
,

where (a) used that ε ≥ 4/ log4(n). By iterating this, it follows

E
[
Ỹ (e(`))

]
≤ e−ε·`/(2L) · Ỹ (e(0)) ≤ e−ε·`/(2L) · n · log7(n).

Let β := ε · `/(2L)− 8 · log log(n). By Markov’s inequality,

Pr

[
Ỹ (e(`)) ≥ exp

(
−ε · `

2L
+ β

)
· n · log7(n)

]
≤ e−β . (3.61)

Note that

exp

(
−ε · `

2L
+ β

)
· n · log7(n) = exp

(
−ε · `

2L
+
ε · `
2L
− 8 · log log(n)

)
· n · log7(n)

= exp(−8 · log log(n)) · n · log7(n) =
n

log(n)
.

90

By the definition of Ỹ (e(`)), the law of total probability and the union bound we get

Pr

[
Y (e(`)) ≥ n

log(n)

]
= Pr

[
Y (e(`)) ≥ n

log(n)

∣∣∣∣∣ ⋂̀
s=0

E(e(s))

]
·Pr

[⋂̀
s=0

E(e(s))

]

+ Pr

Y (e(`)) ≥ n

log(n)

∣∣∣∣∣∣
⋂̀
s=0

E(e(s))

 ·Pr

⋂̀
s=0

E(e(s))


≤ Pr

[
Y (e(`)) ≥ n

log(n)

∣∣∣ ⋂̀
s=0

E(e(s))

]
+ Pr

⋂̀
s=0

E(e(s))


= Pr

[
Ỹ (e(`)) ≥ n

log(n)

]
+ Pr

[⋃̀
s=0

E(e(s))

]
Eq. (3.61)
≤ e−β +

∑̀
s=0

Pr
[
E(e(s))

] (a)

≤ e−β + 2 · (`+ 1) · n−3,

where (a) follows from Lemma 3.22. Recalling our choice of β earlier in this proof, and the choice of
` = log(n)

log log(n) , finishes the proof.

Lemma 3.28 (Phase 2). Assume that the load vector x(0) has at most (1−ε) ·n tokens, where 1
2 < ε < 1.

Then it holds for t2 := τglobal + 4

− log
(

1−ε+ 2
log4(n)

) · log(n) · τlocal,

Pr

[
max
w∈V

Xw(t2) ≤ 1

]
≥ 1− n−2.

Proof. The proof of this lemma is similar to the one of the previous lemma, but here we have the
special case L = 1. By assumption, Y (e(0)) ≤ Y (0) ≤ n. Furthermore, Ỹ (e(0)) ≤ Y (e(0)) ≤ n. Applying
Lemma 3.24 with L = 1 yields for any epoch k ≥ 1,

E
[
Ỹ (e(k))

]
= E

[
E
[
Ỹ (e(k))

∣∣∣ F(e(k−1))
]]
≤
(

1− ε+
2

log4(n)

)
·E
[
Ỹ (e(k−1))

]
.

We now consider ` := 4

− log
(

1−ε+ 2
log4(n)

) · log(n) many epochs. It follows that

E
[
Ỹ (e(`))

]
≤
(

1− ε+
2

log4(n)

)`
· Ỹ (e(0))

≤ exp

log

(
1− ε+

2

log4(n)

)
· 4

− log
(

1− ε+ 2
log4(n)

) · log(n)

 · n
= exp(−4 · log(n)) · n = n−3.

By Markov’s inequality, Pr
[
Ỹ (e(`)) ≥ 1

]
≤ n−3. By the definition of Ỹ (e(`)), law of total probability and

91

the union bound we get

Pr
[
Y (e(`)) ≥ 1

]
= Pr

[
Y (e(`)) ≥ 1

∣∣∣∣∣ ⋂̀
s=0

E(e(s))

]
·Pr

[⋂̀
s=0

E(e(s))

]
+ Pr

Y (e(`)) ≥ 1

∣∣∣∣∣∣
⋂̀
s=0

E(e(s))

 ·Pr

⋂̀
s=0

E(e(s))


≤ Pr

[
Y (e(`)) ≥ 1

∣∣∣ ⋂̀
s=0

E(e(s))

]
+ Pr

⋂̀
s=0

E(e(s))


= Pr

[
Ỹ (e(`)) ≥ 1

]
+ Pr

⋂̀
s=0

E(e(s))


≤ n−3 +

∑̀
s=0

Pr
[
E(e(s))

] (a)

≤ n−3 + 2 · (`+ 1) · n−3 ≤ n−2,

where the last line used that ` = O(log(n)) and (a) follows from Lemma 3.22.

3.5 Bounds for Specific Models

Note that our main result (Theorem 3.1) does not make any assumption regarding the provenance of
the matching sequences; all we use is the abstract property of (τglobal, τlocal)-goodness. We now provide
details for three explicit ways to create such sequences, namely, the balancing circuit model, the random
matching model and the asynchronous model (a.k.a. single edge model).

3.5.1 Application to Balancing Circuits

In the balancing circuit model all or a subset of the edges of G are covered using a periodic sequence of ∆

fixed matchings m(1),m(2), . . . ,m(∆). The sequence m[∞] =
(
m(s)

)∞
s=1

is chosen deterministically and
periodically such that m(s) = m((s−1) mod ∆+1). Such matchings can be found, e.g., via edge-coloring, and
there exist many efficient distributed algorithms that compute such a coloring [51]. Recall that the round
matrix R is defined as R :=

∏∆
s=1 m

(s) and λ(R) is the second (absolute) largest eigenvalue of it. In this
model, Theorem 3.1 provides, see Corollary 3.29 below,

τ = O(τ̃S(K)), where τ̃S(K) := Θ

(
∆ · log(Kn)

1− λ(R)

)
. (3.62)

Corollary 3.29. Assuming the premise of Theorem 3.1, for the balancing circuit model we have τ =

O(∆ · log(Kn)/(1− λ(R))).

Proof. Using standard spectral arguments (e.g., [82, Theorem 1]) yields that the sequence of matchings
m[t] =

(
m(s)

)t
s=1

for t := 4∆
1−λ(R) · log

(
Kn
ε

)
is (K, ε)-smoothing. Note that this corresponds to the

multiplication of t/∆ round matrices.
In the following analysis we will show that the balancing circuit model is also (τglobal, τlocal)-good with

τglobal := 7∆·log(n)
1−λ(R) and τlocal := 11∆·log log(n)

1−λ(R) . Fix an arbitrary t ≥ 1. From [85, Lemma 2.4] (restated as
Lemma 6.26) it follows for any u ∈ V and for the choice of τglobal as above that we have∥∥∥∥∥m[t,t+τglobal]

u,. −
~1

n

∥∥∥∥∥
2

2

≤ (1− λ(R))
log(n7)/(1−λ(R)) ≤ e− log(n7) =

1

n7
.

92

Now we consider τlocal. We fix a node u ∈ V and an arbitrary t ≥ 1. Then we have

∥∥∥m[t,t+τlocal]
u,.

∥∥∥2

2
− 1

n

Obs. 6.32
=

∥∥∥∥∥m[1,τlocal]
u,. −

~1

n

∥∥∥∥∥
2

2

Lem. 6.26
≤ 1

log11 n
.

From this we get ∥∥∥m[t,t+τlocal]
u,.

∥∥∥2

2
≤ 1

log11 n
+

1

n
≤ 1

log10 n
.

3.5.2 Application to Random Matchings

In this model ∆ is maximum degree of G. Note that the decisions whether or not to include two edges
into a matching within the same round are clearly not independent. Some concrete distributed algorithms
that satisfy both conditions are described in [32, 51]. To state the results for the random matching model
we recall the diffusion matrix P which is Pu,v := 1/(2∆) if (u, v) ∈ E, Pu,v := 1− deg(u)/(2∆) if u = v,
and Pu,v := 0 otherwise. In this case, Theorem 3.1 provides, see Corollary 3.30 below,

τ = O(τ̃S(K)), where τ̃S(K) := Θ

(
log(Kn)

pmin ·∆ ·
(
1− λ

(
P
))) (3.63)

Note that in case pmin = Ω(1/∆) we have τ̃S(K) = Θ(log(Kn)/(1− λ(P))).

Corollary 3.30. Assuming the premise of Theorem 3.1, for the random matching model we have
τ = O

(
log(Kn)/

(
pmin ·∆ ·

(
1− λ

(
P
))))

.

Proof. It suffices to show that the random matching model is (τglobal, τlocal)-good with τglobal :=
14·log(n)

pmin·∆·(1−λ(P)) and τlocal := 22·log log(n)
pmin·∆·(1−λ(P)) .

Fix an arbitrary t ≥ 1. From [85, corollary 2.7] (see Lemma 6.27) it follows for any u ∈ V and the
choice of τglobal as above (and sufficiently large n) that we have

Pr

∥∥∥∥∥M[t,t+τglobal]
u,. −

~1

n

∥∥∥∥∥
2

2

≤ 1

n7

 ≥ 1− 1

n7
.

Applying the union bound over all nodes u ∈ V implies that

Pr

 ⋂
u∈V

∥∥∥∥∥M[t,t+τglobal]
u,. −

~1

n

∥∥∥∥∥
2

2

≤ 1

n7

 ≥ 1− 1

n6
.

Now we consider τlocal. We fix a node u ∈ V and an arbitrary t ≥ 1. Then we have

Pr

[∥∥∥M[t,t+τlocal]
u,.

∥∥∥2

2
≤ 1

log10 n

]
≥ Pr

[∥∥∥M[t,t+τlocal]
u,.

∥∥∥2

2
≤ 1

log11 n
+

1

n

]
Obs. 6.32

= Pr

∥∥∥∥∥M[t,t+τlocal]
u,. −

~1

n

∥∥∥∥∥
2

2

≤ 1

log11 n

 Lem. 6.27
≥ 1− 1

log11 n
.

93

3.5.3 Application to Asynchronous Model

In this model, at each round we pick a single edge e uniformly at random. This is a special case of
the random matching model with pmin = 1/|E|; and thus, the same of definition of τ̃S(K) applies here.
Therefore, Theorem 3.1 provides τ = O

(
|E|
∆ · log(Kn)/

(
1− λ

(
P
)))

= O
(
n · d∆ · log(Kn)/

(
1− λ

(
P
)))

,
where d = 2|E|/n is the average degree of G (see Corollary 3.30).

3.6 Summary and Open Problems

In this work we show that, for the matching model, discrete load balancing is as efficient and effective as
continuous load balancing. We show that in the discrete setting with integer loads, a discrepancy of 3 is
reached in a time that matches the standard spectral bound on the time needed by the continuous setting.
In particular, this means that for expanders and a polynomial initial discrepancy, our load balancing
schemes achieve a discrepancy of 3 using only O(log(n)) = O(diam(G)) rounds, which is optimal not only
for a distributed but also a centralized setting.

As an improvement over previous works, our general result holds for a wider class of graphs (e.g.,
including non-regular graphs) and models (e.g., including the asynchronous model). Also the constants
in our runtime as well as in the achieved discrepancy are explicit and small, compared to large and
non-explicit constants in [85].

At the heart of our analysis lie new correlation and concentration results, which we believe to be
of independent interest. As the most involved step, showing that O(n) tokens can be balanced with
maximum load O(1), which can be leveraged to prove a discrepancy of 3 for an arbitrary number of tokens.
It should be noted that reaching a discrepancy of 1 needs Ω(n) rounds for any sequence of matchings
(see [71]). Hence one may wonder whether our discrepancy bound could be improved from 3 to 2. We
believe that this might be possible, but it will likely need stronger assumptions on the matchings than
just being (τglobal, τlocal)-good.

94

Part Four:

4 Discrete Diffusion on d-Regular Graphs

95

4.1 Introduction

In this section, we study the vertex-based diffusion process, also referred to as neighborhood-based load
balancing, originally introduced in [14] for static setting. We consider a d-regular graph G = (V,E) where
each node initially holds an integer number of tokens (also referred to as load items). In each round, every
node distributes its tokens as evenly as possible among its neighbors and itself. If a perfectly uniform
distribution is not feasible-i.e., some tokens would require splitting-the node distributes the remaining
excess tokens randomly among its neighbors and itself, without replacement. The objective is to compute
an upper bound on the discrepancy, defined as the difference between the maximum and minimum loads
across all nodes in the network.

This protocol is motivated by rotor-router walks, a deterministic alternative to random walks. In
a rotor-router walk, each node serves its neighbors in a fixed, cyclic order. Despite its deterministic
nature, the resulting walk closely approximates the behavior of a random walk in terms of distribution
and coverage. This connection motivated the design of our algorithm. In each round, every node selects a
random permutation of its neighbors (including itself) and distributes its tokens sequentially in that order.
This round-robin mechanism promotes fairness and facilitates effective load balancing over time.

Results in a nutshell. Building on prior work, we consider the quantity τ̃S(K) = log(Kn)/(1− λ)

as an approximate upper bound on the time required for the discrepancy to fall from an initial value K
to 1 in the idealized continuous diffusion, where load items are infinitely divisible. The analysis shows
that discrepancy shrinks to polylogarithmic bounds within O(τ̃S(K)) rounds, with faster convergence for
higher-degree graphs, and quantifies the additional discrepancy caused by random load insertions in the
dynamic case.

In our setting, we prove that the initial discrepancy K decreases to O(d log(n)) within O(τ̃S(K))

rounds. After an additional i · τ̃S(n) rounds (i.e., at round t = O(τ̃S(K) + i · τ̃S(n))) the discrepancy
becomes O(2i

√
d log(n) +

√
d log(n)) w.h.p. In particular, at round t = O(τ̃S(K) + τ̃S(n)) the discrepancy

is O(
√
d log(n)) . Moreover, if d = Ω(log1+ε) for any constant ε ∈ [0, 1] the discrepancy is already bounded

by O(
√
d log(n)) after O(τ̃S(K)) rounds. We then extend our analysis to the dynamic setting, where in

each step m new load items are allocated uniformly at random to the nodes before the balancing dynamics
are applied. We show that this increases the discrepancy by O(

√
m/n ·

√
τ̃S(n)). A summary of the

results are provided in Table 4.

Table 4: Results for static discrete diffusion. K is the initial discrepancy and ε ∈ (0, 1).

Discrepancy Rounds d

O(d · log(n)) O(τ̃S(K)) -

O(
√
d · log(n)) O(τ̃S(K) + τ̃S(n)) -

O(
√
d · log(n) + log(n)) O(τ̃S(K)) + log log(d) · τ̃S(n) -

O(
√
d · log(n)) O(τ̃S(K)) Ω(log1+ε n)

Techniques and Comparisons to prior works. The best-known result is due to Sauerwald and
Sun [85], who show that the discrepancy is O(d2

√
log(n)) within O(τ̃S(K)) rounds. Their analysis bounds

the deviation of a node’s load from the average by expressing it as a weighted sum of dependent random

96

variables, where each variable accounts for the error contributions accumulated across edges and rounds.
In contrast, we reorganize this sum by grouping the random variables by nodes and their incident edges,
which gives a tighter control over deviation. With this method, we prove our first result: the discrepancy
is O(d log(n)) within O(τ̃S(K)) rounds. This already improves the best-known bound for the regime
d = ω(

√
log(n)).

Next, we develop a height-sensitive process, which is an alternative realization of the load-balancing
dynamics. In this process, each token follows a standard random walk and the token locations are shown
to be negatively associated. This property enables a Chernoff-like concentration bound on the load
distribution after τ̃S(n) rounds. Combining these bounds with an invariant, we establish that within
O(τ̃S(K) + τ̃S(n)) rounds, the discrepancy is O(

√
d log(n)). This result strictly improves upon existing

bounds in the regime d = Ω(3
√

log(n)).

Outline. The remainder of this part is organized as follows. Section 4.2 introduces the model and
definitions. First, we formally define the discrete diffusion and the height-sensitive processes, then recall
useful definitions. These are crucial, as they allow us to (a) reason about the convergence time of the
discrete process and (b) keep track of the discrepancy. We also introduce the notion of vital tokens, which
plays a central role in establishing a bound on the discrepancy after τ̃S(K) rounds.

Section 4.3 presents our main result for the static setting, along with the key proof techniques. These
techniques build on the introduced definitions while also relying on standard tools such as martingales,
concentration inequalities for sums of random variables, and the negative association property.

Section 4.4 extends the analysis to the dynamic setting. Here we show that the difference between the
dynamic and static settings lies in the presence of newly added load items. In particular, we bound the
contribution of these newly allocated items.

Section 4.5 collects the technical lemmas supporting both the intermediate steps and the main results,
including a strong tool: the negative association property among the locations of load items.

Section 4.6 derives bounds on the discrepancy at specific rounds in both the static and dynamic
settings, following directly from the main theorems. Section 4.7 concludes with a summary and open
problems.

4.2 Model and Definitions

We begin by introducing the notation and model. Subsection 4.2.1 formally defines the process, while
Subsection 4.2.2 presents the height-sensitive process in detail. Section 4.2.3 defines and recalls crucial
definitions for our analysis.

Let G be a d-regular graph with n nodes. We denote by X(t) the discrete load vector at the end of
round t where the i-th entry is the load of node i. At round 0, each node starts with an arbitrary load,
and the average load is x :=

∑
i∈V xi(0)/n. Our goal is to bound the discrepancy which for a load vector

X(t) is defined as disc(X(t)) := maxw∈V Xw(t)−minw∈V Xw(t). Throughout this part, we describe the
dynamics using the diffusion matrix P, corresponding to a standard random walk on a G, Pi,j := 1/(d+ 1)

if (i, j) ∈ E or i = j and 0 otherwise. Here, λ := λ(P) represents the second-largest eigenvalue of P in
absolute value. We write Pt :=

∏t
s=1 P and denote by Pi,. the row of P corresponding to i in matrix P.

Due to randomized rounding, Xi(t) is inherently a random variable.

97

4.2.1 Process Definition

The vertex-based diffusion process proceeds in rounds 1, 2, Fix a round t and node i. Let Xi(t)

be the current load of node i. Then, node i sends bXi(t)/(d + 1)c tokens to each of its neighbors and
keeps the same amount for itself. The remaining Xi(t)− (d+ 1)bXi(t)/(d+ 1)c ∈ [0, d] excess-tokens are
distributed randomly without replacement among i and its d neighbors. For each edge [i, j] ∈ E(G), define
the random variable Zi,j(t+ 1) to be 1 if i sends one excess token to j in round t+ 1 and 0 otherwise.
Similarly, Zi,i(t+ 1) = 1 if i keeps an excess token for itself and 0 otherwise. Note that Zi,j(t+ 1) for
j ∈ N(i)∪ {i} is a {0, 1} random variable with Pr[Zi,j(t+ 1) = 1] = Xi(t)/(d+ 1)− bXi(t)/(d+ 1)c. The
number of excess tokens sent out by i satisfies

Zi,i(t+ 1) = Xi(t)−
∑

j:[i,j]∈E(G)

Zi,j(t+ 1)− (d+ 1)

⌊
Xi(t)

d+ 1

⌋
. (4.1)

The process can thus be described as follows,

Xi(t+ 1) =

⌊
Xi(t)

d+ 1

⌋
+ Zi,i(t+ 1) +

∑
j:[i,j]∈E(G)

(⌊
Xj(t)

d+ 1

⌋
+ Zj,i(t+ 1)

)
. (4.2)

Substituting Zi,i(t+ 1) from Equation (4.1) in Equation (4.2) yields

Xi(t+ 1) =

⌊
Xi(t)

d+ 1

⌋
+Xi(t)−

∑
j:[i,j]∈E(G)

(
Zi,j(t+ 1)−

⌊
Xi(t)

d+ 1

⌋)

+
∑

j:[i,j]∈E(G)

(⌊
Xj(t)

d+ 1

⌋
+ Zj,i(t+ 1)

)

= Xi(t) +
∑

j:[i,j]∈E(G)

(⌊
Xj(t)

d+ 1

⌋
−
⌊
Xi(t)

d+ 1

⌋
+ Zj,i(t+ 1)− Zi,j(t+ 1)

)
. (4.3)

4.2.2 Height-Sensitive Process

We will describe a specific realization of the vertex-based diffusion process. Let T denote the set of all
tokens. Initially tokens on each node u ∈ V are numbered from 1 to xu. In each round t, each token i has
a location Wi(t) ∈ V and a height Hi(t) ∈ {1, · · · , dXWi(t)(t)/(d+ 1)e} as di/(d+ 1)e.

Each edge (u, v) ∈ E is equipped with two initially empty Queues Qu,v and Qv,u and each node u has
a self-loop queue Qu,u. Tokens with the same rank in queues Qu,v for node u and v ∈ N(u) are called
siblings.

One round of the height sensitive process consists of five steps called Rounding, Queuing, Shuffling,
Swapping and De-queuing. All nodes do each step concurrently. Fix round t and node u ∈ V and assume
u’s neighbors are numbered from 1 to d+ 1.

1. Rounding: Node u determines how many tokens to send to each neighbor in the vertex-based
diffusion process. Specifically, it computes Zu,j (whether an excess token is sent to node j) for all
j = 1, · · · , d+ 1 based on the diffusion process’ choices and rounding decisions.

2. Queuing: Node u places the tokens into the outgoing queues in a round-robin manner. Token j for
j from 1 to (d + 1) · bxu/(d + 1)c are assigned to Qu,i with i = j mod (d + 1). Then, for each j
with Zu,j = 1 an excess token is added to Qu,j .

98

3. Shuffling: Siblings at each rank r = 1, 2, · · · , bxu/(d+ 1)c are shuffled independently among the
queues Qu,j for j = 1, · · · , d+ 1 while retaining their original rank. Excess tokens are not shuffled
and remain in their assigned queues.

4. Swapping: For each edge, the outgoing queues are exchanged with the corresponding incoming
queues: tokens queued to go from j ∈ N(u) \ u to u are placed in u’s incoming queue, and vice
versa. That is, Qu,j and Qj,u are swapped for all j 6= u.

5. De-queuing: Each node repeatedly removes one token at a time from each of its incoming queues
in neighbor order. This continues until all queues Qu,j are empty. At this points, the tokens on
each node can be relabeled.

An illustration of the process is shown in figure 5. During round t+ 1, node u sends bXu(t)/(d+ 1)c+

Zu,j(t+ 1) tokens to each node j ∈ N(u). Using the same random choices together with Equation (4.2),
we obtain that

Observation 4.1. Fix a load vector. After one round of Height-Sensitive static diffusion , the load
distribution is identical to that of the vertex-based diffusion process.

4.2.3 Further Definitions

Here, we define and recall key concepts that form the basis of our arguments.
For a round t in the continuous process, each node u sends Xu(t− 1)/(d+ 1) load to each neighbor

and itself. This model serves as a benchmark for analyzing the discrete dynamics, allowing discrepancy
bounds to be transferred from the continuous to the discrete setting.

For the diffusion matrix P and an initial load vector with (K,κ)–smoothing time is defined as

τS(P,K, κ) = min
{
t |disc(Pt ·X(0)) ≤ κ

}
,

that is, the minimum number of rounds for the continuous process to reduce the discrepancy from K to κ.
We next define the mixing time of a Markov chain on G with transition matrix P.

Definition 4.1 (Mixing Time). Let G be a d-regular graph. The mixing time tmix(P) of a Markov chain
with state space V and transition matrix P is

tmix(P) := min

{
t
∣∣∣ ∀u, v ∈ V :

∣∣∣∣(Pτ)u,v −
1

n

∣∣∣∣ ≤ 1

n3

}
.

Assume there is only one load item initially located at some node. After tmix(P) rounds, this token
is located at each node with probability between 1/n ± 1/n3. Together with the negative association
property, this allows us to derive a bound on the discrepancy.

Next observation bounds τS(P,K, κ) and tmix(P) in terms the spectral gap of P. In particular, it
shows that τS(P,K, 1) = O(τ̃S(K)) and tmix(P) = O(τ̃S(n)).

Observation 4.2. [Theorem 1 in [83] and Lemma 2.1 in [57]] Let G be a d-regular with n nodes and
diffusion matrix P. For K > κ it holds that τS(P,K, κ) ≤ 2 ln(Kn2/κ)/(1 − λ). Moreover, tmix(P) ≤
4 log(n)/(1− λ) .

When G and P are clear form context we write τS(K,κ) := τS(P,K, κ) and tmix := tmix(P). Moreover,
to show the decrease in discrepancy after the continues balancing time τS(K, 1), we model the movement
of load items as (dependent) random walks. For this purpose, we define the location vector.

99

u v

w

u1
u2
u3
u4
u5
u6

w1

w2

w3

w4

v1

Figure 5: We consider the clock-wise order of
neighbors, for instance v is the first neighbor of
u. Here Zwu = 1 and Zvw = 1.

u v

w

u1 u4Qu,1:

u2
u5

Qu,2:

Qu,3:

:Qw,1 Qw,2:

w1
w4

w3
Qw,3:

w2

:Qv,2

:Qv,1

v1

Qv,3:
u3 u6

Figure 6: The siblings have the same color. The
excess tokens are black.

u v

w

u2 u4Qu,1:

u3
u6

Qu,2:

u1 u5Qu,3:

:Qw,1 Qw,2:

w3
w4

w2Qw,3:

w1

:Qv,2

:Qv,1

v1

Qv,3:

Figure 7: The Siblings are shuffled. For instance,
tokens w1,w2 and w3 changed their queues. The
rank of tokens does not change.

u v

w

u2 u4Qu,1:

w3
w4

Qu,2:

u1 u5Qu,3:

:Qw,1 Qw,2:

u3
u6

w2
Qw,3:

v1

:Qv,2

:Qv,1

w1

Qv,3:

Figure 8: Queues Qu,j and Qj,u for u ∈ V ,
j ∈ N(u)/{u} are swapped.

u v

w

w3

u1
w4

u5

u3
v1
w2

u6

w1

u2
u4

Figure 9: Tokens will be placed on each node.

u v

w

u1
u2
u3
u4

w1

w2

w3

w4

v1
v2
v3

Figure 10: Tokens will be renumbered according
to their position on each node.

100

Definition 4.2 (Location Vector). The location vector W (t) is defined as an |Γ|-dimensional vector
where Wi(t) = j if token i ∈ Γ is located at node j ∈ V at the end of round t.

Here we introduce vital tokens, which helps analyze the decrease in the discrepancy after tmix rounds.

Definition 4.3 (Vital Tokens). For round t with load vector X(t), define bX(t)c := (d+1) ·
⌊

minu∈V Xu(t)
d+1

⌋
the minimum load shared by all nodes that is a multiple of d+ 1. The number of vital tokens on node w in
round t is

Ψw(t) := Xw(t)− bX(t)c, and Ψ(t) :=
∑
w∈V

Ψw(t)

is the total number of vital tokens in round t .

Observation 4.7 shows that the number of vital tokens is non-increasing over time. Together with
the negative association property (lemma 4.10), this ensures that controlling the number of vital tokens
received by a node directly translates into a bound on its load.

4.3 Static Diffusion

In this section, we first prove our main result for the static setting (Theorem 4.3). After this proof, the
section contains two subsections analyzing the discrepancy at the smoothing time and after the mixing
time.

In Subsection 4.3.1, we bound the discrepancy at round τS(K,κ), the time required for the continuous
process to reduce an (arbitrary) initial discrepancy K down to κ < K. In particular, at round τS(K, 1), the
deviation between the discrete and continuous load is quantified as the contribution of the errors caused
by the randomized rounding dynamics. Bounding this carefully, we show that there are O(nd log(n)) vital
tokens. In Subsection 4.3.2, we bound the discrepancy after tmix rounds in terms of the (initial) vital
tokens, noting that tmix = O(τS(n, 1)). Here, using the height-sensitive process, we show that the locations
of the tokens are negatively associated, which allows us to derive Chernoff-like tail concentration bounds
for the load distribution. Together with the non-increasing property of the vital tokens (Observation 4.7),
these results yield a bound on the discrepancy after τS(K, 1) rounds, as stated in Theorem 4.3, while
Corollary 4.16 (presented in Section 4.6) provides bounds for specific rounds.

Theorem 4.3. Consider the discrete static vertex-based diffusion on d-regular graph G with n nodes,
diffusion matrix P and any initial load vector with disc(x(0)) := K > 1. Let i ∈ [0, log log d]. For the
round t∗ = τS(P,K, 1) + i · tmix(P), it holds that

Pr
[
disc(X(t∗)) ≤ 48 · d(1/2)i · log(n) + 48

√
d · log(n)

]
≥ 1− 2(i+ 1) · n−3.

Proof. Let t0 := τS(P,K, 1). We define Phase i for i ∈ [1, 1+log log d] as rounds [t0+(i−1)·tmix(P) +1, t0+

i · tmix(P)]. With function e(i) we show the last round of phase i i.e., e(i) := t0 + i · tmix(P) and we let
e(0) := t0. For each i ∈ [0, log log d], we define an event

Λi :=
{

disc(X(e(i))) ≤ 48 · d(1/2)i · log(n) + 48
√
d · log(n)

}
(4.4)

and we show by induction that Pr
[
Λi
]
≤ 2(i+ 1) · n−3.

101

Base case i = 0. Here t = e(0) = τS(P,K, 1). From Lemma 4.4 (presented in Subsection 4.3.1) with
δ := 8d · log(n) and κ := 1 it follows that, for a node u ∈ V ,

Pr[|Xu(t)− x| ≥ 8d · log(n) + 1] ≤ exp

(
− 64d2 log2 n

2(d+ 1)2 + 16d2 log(n)/3

)
≤ exp

(
− 64d2 log2 n

16d2 log(n)

)
≤ n−4.

Note that disc(X(t)) ≤ 2 ·maxu∈V |Xu(t)− x|. An application of union bound over all nodes completes
the proof of the base case.

Induction Step. Assume the event Λi for some i ∈ [0, log log(d) − 1] holds with probability (at
least) 1− 2(i+ 1) · n−3; we show it for i+ 1. The number of vital tokens in round e(i) is

Ψ(e(i)) =
∑
w∈V

(
Xw(e(i))−min

u∈V
Xu(e(i))

)
+
∑
w∈V

(
min
u∈V

Xu(e(i))− bX(e(i))c
)

≤ n · disc(X(e(i))) + n · d ≤ 48n ·
(
d(1/2)i log(n) +

√
d · log(n)

)
+ nd,

where the last inequality follows from the inductive hypothesis (event Λi). Then, from Lemma 4.5
(presented in Subsection 4.3.2) it follows that,

Pr

[
disc(X(e(i+ 1))) >

2Ψ(e(i))

n2
+

√
48

Ψ(e(i))

n
log(n)

∣∣∣ Λi

]
≤ 2n−3. (4.5)

Since i ≥ 0 and d ≤ n, then

2Ψ(e(i))

n2
+

√
48

Ψ(e(i))

n
log(n) ≤ O(1) +

√√√√
48

48n
(
d(1/2)i log(n) +

√
d log(n)

)
+ nd

n
log(n)

≤ 48d(1/2)i+1

log(n) + 48
√
d log(n). (4.6)

Substituting Equation (4.6) into Equation (4.5) and applying the law of total probability yields

Pr
[
disc(X(e(i+ 1))) > 48d(1/2)i+1

log(n) + 48
√
d log(n)

]
≤ 2n−3 + Pr

[
Λi
]

≤ 2(i+ 2)n−3.

for which we use the inductive hypothesis. It completes the induction step and finishes the proof.

In the rest of this section we prove the key intermediate results used in the theorem’s proof.

4.3.1 Discrepancy at Smoothing Time

The next lemma bounds the load of a node at round τS(K,κ) for arbitrary K > κ. This result improves on
the existing bound for d = Ω(

√
log(n)), where the previous best was O(d2

√
log(n)) ([85]). In particular,

it provides our first new discrepancy bound, showing that at round τS(K, 1) the discrepancy is at most
17d · log(n) w.h.p.

Lemma 4.4. Let G be a d-regular graph with n nodes and diffusion matrix P. Consider an arbitrary
initial load vector with disc(x(0)) := K > 1. Then for any node w ∈ V , round t = τS(P,K, κ) with K > κ

102

and any δ > 0, it holds that

Pr[|Xw(t)− x| ≥ δ + κ] ≤ 2 · exp

(
− δ2

2(d+ 1)2 + 2
3dδ

)
.

Proof sketch. The proof proceeds in three main steps. First, we bound the deviation between the
discrete and continuous load by introducing a suitable sequence of weighted prefix sums whose terminal
value equals the total deviation of interest. Second, we show that this sequence of prefix sums is a
martingale with respect to the natural filtration generated by the process, so the total deviation is the
terminal value of that martingale. Third, we use negative association to verify the bounded-differences
condition required to apply an exponential concentration inequality (Azuma–Hoeffding) to that martingale;
this yields that probabilistic deviations are negligible and gives the claimed bound. The remainder of the
proof fills in these steps with the precise parameter choices.

Proof. To track of the discrete load, we consider the deviation from the continuous load. Let `(t) :=

(`u(t))t∈N,u∈V denote the continuous load vector, whose dynamics are given by

`u(t+ 1) = `u(t) +
∑

v:[u,v]∈E(G)

`v(t)− `u(t)

d+ 1
.

To obtain a recursion for the discrete process analogous to the continuous dynamics, [14] introduces a
random variable εu,v(t+ 1) representing the rounding error at edge [u, v] ∈ E caused by node uat round
t+ 1,

εu,v(t+ 1) :=
Xu(t)

d+ 1
− Xv(t)

d+ 1
−
⌊
Xu(t)

d+ 1

⌋
+

⌊
Xv(t)

d+ 1

⌋
+ Zv,u(t+ 1)− Zu,v(t+ 1).

This allows the discrete process to be expressed as the continuous process plus accumulated rounding
errors, enabling precise analysis of the discrepancy. From this together with Equation (4.3), it follows that

Xu(t+ 1) = Xu(t) +
∑

v:[u,v]∈E(G)

Xv(t)−Xu(t)

d+ 1
+ εu,v(t+ 1).

Define an error vector ε(t) with εu(t) :=
∑
v:[u,v]∈E(G) εu,v(t). With this notation the discrete load satisfies

X(t) = P ·X(t− 1) + ε(t). Note that this is the same as Equation (3) in which A(t) := ~0. Solving the
recursion with `(0) = X(0) gives

X(t) = Pt ·X(0) +

t−1∑
s=0

Ps · ε(t− s) = `(t) +

t−1∑
s=0

Ps · ε(t− s)

where P0 is the n× n identity matrix. For each node w ∈ V , this implies

Xw(t)− `w(t) =

t−1∑
s=0

∑
u∈V (G)

ε(t− s)u · (Ps)u,w =

t−1∑
s=0

∑
u∈V

∑
v:[u,v]∈E(G)

εu,v(t− s) · (Ps)u,w.

Using the antisymmetry εu,v(t− s) = −εv,u(t− s), we obtain

Xw(t)− `w(t) =

t−1∑
s=0

∑
[u,v]∈E(G)

εu,v(t− s) ·
(

(Ps)u,w − (Ps)v,w

)
.

103

Since t = τS(P,K, κ), we have |`w(t)−x| ≤ κ for all w ∈ V (Definition 1.7), so we can write `w(t) = x+Θ,
where |Θ| ≤ κ. It Follows that

Xw(t)− x = Θ +

t∑
s=1

∑
[u:v]∈E(G)

εu,v(s) ·
((

Pt−s
)
u,w
−
(
Pt−s

)
v,w

)
︸ ︷︷ ︸

:=Z

.

Equivalently, define

Z :=

t∑
s=1

∑
[u:v]∈E(G)

εu,v(s) ·
((

Pt−s
)
u,w
−
(
Pt−s

)
v,w

)
. (4.7)

Since E[εu,v(s)] = 0 and εu,v(s) is independent of P, the linearity of expectation gives E[Z] = 0. Assume
for any δ > 0, we have

Pr[|Z| ≥ δ] ≤ 2 · exp

(
− δ2

2(d+ 1)2 + 2dδ/3

)
, (4.8)

which would complete the proof. Hence, it remains to prove Equation (4.8). Fix a node w ∈ V . For fixed
round t and any s ≤ t, define

Gu,v(s) :=
(
Pt−s

)
u,w
−
(
Pt−s

)
v,w

.

From Equation (4.7) we can write

Z =

t∑
s=1

∑
[u:v]∈E(G)

εu,v(s) ·Gu,v(s)

=

t∑
s=1

∑
[u:v]∈E(G)

(E[Zu,v(s)]− Zu,v(s) + Zv,u(s)−E[Zv,u(s)]) ·Gu,v(s)

=

t∑
s=1

∑
[u:v]∈E(G)

(E[Zu,v(s)]− Zu,v(s)) ·Gu,v(s)− (E[Zv,u(s)]− Zv,u(s)) · Gu,v(s)︸ ︷︷ ︸
=−Gv,u(s)

and since Gu,v(s) = −Gv,u(s) then we get,

Z =

t∑
s=1

∑
[u:v]∈E(G)

(E[Zu,v(s)]− Zu,v(s)) ·Gu,v(s) + (E[Zv,u(s)]− Zv,u(s)) ·Gv,u(s)

=

t∑
s=1

∑
u∈V

∑
v∈N(u)

(E[Zu,v(s)]− Zu,v(s)) ·Gu,v(s),

Recall that Zu,v(s) = 1 with probability Xu(s − 1)/(d+ 1) − bXu(s− 1)/d+ 1c and 0 otherwise. For
clarity, for a fixed node u ∈ V and round s, define

Au(s) :=
∑

v∈N(u)

(E[Zu,v(s)]− Zu,v(s)) ·Gu,v(s).

Here, Au(s) represents the total contribution of node u in round s to the sum Z. Note that∑
v∈N(u)(E[Zu,v(s)] − Zu,v(s)) depends only on u, and the outcome of Zu,v(s) is independent of

Gu,v(s).
Consider an ordering of nodes from 1 to n. Define a filtration F where Fi reveals Zu,v(s) for all

104

u ∈ [n], v ∈ N(u), and rounds s ∈ [1, bi/nc], as well as Zu,v(s) for round s = di/ne and u ∈ [1, i mod n]

and v ∈ N(u). For ` ∈ [t · n], let 1 ≤ s1 ≤ t and 1 ≤ i1 ≤ n such that ` = (s1 − 1) · n+ i1 and define

Y` :=

s1−1∑
s=1

n∑
i=1

Ai(s) +

i1∑
i=1

Ai(s1).

Then Z = Yt·n. Since E[Ai(s)] = 0 for all s ∈ [t] and i ∈ [n], the sequence of Y1, Y2, · · · , Yt·n forms a
martingale with respect to the filtration F , and E[Yt·n] = 0.

We are to apply Theorem 6.12. To do so, we need to bound |Y` − Y`−1| and Var[Y` | F`−1] for each
` ∈ [t · n]. For ` = (s1 − 1) · n+ i1 with s1 ∈ [t] and i1 ∈ [n] we have,

|Y` − Y`−1| = |Ai1(s1)| ≤ d.

Moreover, we have

Var
[
Y`

∣∣∣ F`−1

]
= Var

[
Y`−1 +Ai1(s1)

∣∣∣ F`−1

]
= Var

[
Ai1(s1)

∣∣∣ F`−1

]
,

where the last inequality holds since F`−1 fixes Y`−1. Using the definition of Ai1(s1) we get,

Var
[
Y`

∣∣∣ F`−1

]
= Var

 ∑
j∈N(i1)

(E[Zi1,j(s1)]− Zi1,j(s1)) ·Gi1,j(s1)
∣∣∣ F`−1


= Var

 ∑
j∈N(i1)

Zi1,j(s1) · |Gi1,j(s1)|
∣∣∣ F`−1


(a)

≤
∑

j∈N(i1)

Var
[
Zi1,j(s1) · |Gi1,j(s1)|

∣∣∣ F`−1

]
=

∑
j∈N(i1)

(Gi1,j(s1))
2 ·Var

[
Zi1,j(s1)

∣∣∣ F`−1

]
≤

∑
j∈N(i1)

(Gi1,j(s1))
2
,

where (a) follows from Observation 4.8. Applying Theorem 6.12 to the martingale sequence Y1, · · · , Yt·n
where for ` = (s− 1) · n+ i (with s ∈ [t] and i ∈ [n]) we have M = d and σ2

` =
∑
j∈N(i)(Gi,j(s))

2, gives

Pr[Yt·n ≥ δ] ≤ exp

− δ2

2
(∑t

s=1

∑n
i=1

∑
j∈N(i)(Gi,j(s))

2
+ dδ/3

)
.

Recall that E[Yt·n] = 0. Furthermore we have

t∑
s=1

n∑
i=1

∑
j∈N(i)

(Gi,j(s))
2

= 2 ·
t∑

s=1

∑
[i,j]∈E

(Gi,j(s))
2

(a)

≤ (d+ 1)2.

where (a) follows form [85, Theorem 6.4] with γ = 1 + 1/d and ∆ = d. Hence, we obtain

Pr[Yt·n ≥ δ] ≤ exp

(
− δ2

2((d+ 1)2 + dδ/3)

)
.

105

Using Theorem 6.13 (with ai = 0) instated of Theorem 6.12 gives

Pr[Yt·n ≤ −δ] ≤ exp

(
− δ2

2((d+ 1)2 + dδ/3)

)
.

Recalling that Z = Yt·n, an union bound over the upper and lower tails yields

Pr[|Z| ≥ δ] ≤ 2 · exp

(
− δ2

2(d+ 1)2 + 2dδ/3

)
.

This establishes Equation (4.8) and shifting δ by κ finishes the proof.

4.3.2 Discrepancy at Mixing Time

The next lemma bounds the discrepancy at the mixing time in terms of the initial number of vital tokens.
It shows that the discrepancy after the mixing time, w.h.p., is bounded by O(1 +

√
Ψ(0) · log(n)/n),

provided that Ψ(0) ≤ n2. The proof leverages the negative association property to derive concentration
bounds.

Lemma 4.5. Let G be a d-regular graph with n nodes. Consider height-sensitive diffusion process with
an initial load vector containing Ψ(0) vital tokens. Then for τ := tmix(P), we have

Pr

[
disc(X(τ)) ≤ 2Ψ(0)

n2
+

√
48

Ψ(0)

n
log(n)

]
≥ 1− 2n−3.

Proof. Let the number of vital tokens received by node u in round τ be

Yu(τ) :=
∑

i∈[Ψ(0)]

1{Wi(τ)=u} .

Then we have

µu := E[Yu(τ)] =
∑

i∈[Ψ(0)]

Pr[Wi(τ) = u | wi(0)]

(a)

≤ Ψ(0)

n

(
1 +

1

n2

)
,

where (a) follows from the first part of the third statement of Observation 4.9. Similarly, from the second
part of the same statement, we get

µu ≥
Ψ(0)

n

(
1− 1

n

)
.

Although 1{Wi(τ)=u} and 1{Wj(τ)=u} for tokens i 6= j may not be independent, Lemma 4.10 ensures they
satisfy the negative association property. Define the events

Λmax :=

{
max
u∈V

Yu(τ) ≤ µu +
√

12µu log(n)

}
, and Λmin :=

{
min
u∈V

Yu(τ) ≥ µu −
√

12µu log(n)

}
.

By Lemma 6.15 and an union bound over all nodes, the event Λmin ∩ Λmax occurs with probability at

106

least 1− 2n−3. Conditioned on this event, we get

max
u∈V

Yu −min
u∈V

Yu ≤ max
u∈V

(
µu +

√
12µu log(n)

)
−min
u∈V

(
µu −

√
12µu log(n)

)
≤ 2Ψ(0)

n2
+

√
48

Ψ(0)

n
log(n),

where we use the bounds on µu from the previous step. From Observation 4.13 it follows that the
disc(X(τ)) = disc(Y (τ)) and it finishes the proof.

4.4 Dynamic Diffusion

We now extend our analysis to the dynamic discrete vertex-based diffusion process. Let G = (V,E) be
a d-regular graph, where each node initially holds an integer number of load items (tokens). At the
start of each round, m ∈ N new tokens are generated and assigned uniformly at random to the nodes.
Afterward, each node redistributes its tokens as evenly as possible among itself and its neighbors. If perfect
redistribution is impossible without splitting tokens, any remaining excess tokens are distributed randomly
among the neighbors without replacement. This dynamic process introduces additional fluctuations in the
load distribution. In the following, we analyze how these newly generated tokens contribute to the overall
discrepancy.

Recall that the dynamic load balancing is modeled by a Markov chain (X(t))t∈N, where X(t) =

(Xi(t))i∈[n] ∈ Rn is the load vector at the end of round t, and Xi(t) is the load of node i at time
t. Let Ai(t) denote the number of (newly generated) tokens allocated to node i in step t and define
A(t) = (Ai(t))i∈[n]. Let ε(t) ∈ Rn be the vector of additive rounding errors in round t, where εk(t)

measures the difference between the actual load at node k after step t and the corresponding load in the
continuous model with arbitrarily divisible loads.

For the diffusion matrix P we define the global divergence as

Υ(P) := max
k∈[n]

Υk(P), where Υk(P) :=

√√√√ ∞∑
s=1

∣∣∣∣∣
∣∣∣∣∣(Ps)k,· − ~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

.

The next theorem is the main result of this section.

Theorem 4.6. Let G be a d-regular with diffusion matrix P. Consider the discrete dynamic vertex-
based diffusion on G where m items are added uniformly at random to the nodes in each step, starting
from an arbitrary initial load vector such that disc(x(0)) := K > 1. Let i ∈ [0, log log d] and define
t∗ := τS(P,K, 1/(2n)) + i · tmix(P). Then, with probability at least 1− 2(i+ 1)n−3 − 2n−γ+1,

disc(X(t∗)) ≤ 48d(1/2)i log(n) + 48
√
d log(n) +

8

3
γ log(n) +

√
32γ log(n)

m

n
Υ(P).

Proof. Since the placement of newly added tokens are independent of the matrix P, we can use the same

107

approach as in Equation (5). Expanding the recurrence of Equation (3) gives

X(t) = P · (X(t− 1) +A(t)) + ε(t)

= P ·
(

(P · (X(t− 2) +A(t− 1)) + ε(t− 1))︸ ︷︷ ︸
X(t−1)

+A(t)
)

+ ε(t)

= P2 ·X(t− 2) +

t∑
s=t−1

Pt−s+1 ·A(s) +

t∑
s=t−1

Pt−s · ε(s)

Iterating this expansion back to the initial round, we obtain

X(t) = Pt ·X(0)︸ ︷︷ ︸
I(t)

initial load contribution

+

t∑
s=1

Pt−s+1 ·A(s)︸ ︷︷ ︸
D(t)

dynamically allocated Load contribution

+

t∑
s=1

Pt−s · ε(s)︸ ︷︷ ︸
R(t)

rounding error contribution

.

We denote the three sums in the expansion by I(t), D(t), and R(t) as indicated. By the sub-additivity
of discrepancy (Observation 2.13), we have

disc(X(t)) ≤ disc(I(t) +R(t)) + disc(D(t)), (4.9)

showing that it suffices to bound each term individually and sum the results.
Note that I(t) +R(t) corresponds to the static load balancing (without the dynamically added items).

Hence, for any i ∈ [0, log log(d)] and t? = τS(P,K, 1/(2n)) + i · tmix(P), Theorem 4.3 implies

Pr
[
disc(I(t?) +R(t?)) > 48 · d(1/2)i · log(n) + 48

√
d · log(n)

]
≤ 2(i+ 1) · n−3. (4.10)

To bound the contribution of dynamically allocated items, we relate it to the global divergence of P,a
s formalized in Lemma 4.14. It states

Pr

[
disc(D(t?)) >

8

3
· γ log(n) +

√
32γ log(n) · m

n
·Υ(P)

]
≤ 2 · n−γ+1. (4.11)

Applying an union bound over Equation (4.10) and Equation (4.11) together with Equation (4.9) finishes
the proof. Note that the proof of Lemma 4.14 follows directly from the tools developed in Part Two,
specifically Lemma 2.4.

4.5 Technical Lemmas

In this section, we list the technical lemmas used in our analysis. It is divided into two subsections: one
for intermediate results in the static setting, and one for the dynamic setting.

4.5.1 Ingredients Used in Theorem 4.3

We first prove the intermediate results for the static diffusion, highlighting the key component of our
analysis: the negative association property Lemma 4.10. We start by showing that the number of vital
tokens is non-increasing over time.

Observation 4.7. The function Ψ(t) is non-increasing over time.

108

Proof. Fix round t. Each node has at least bX(t)c tokens. During the balancing of round t+ 1 (i.e., the
five steps of height-sensitive process), each node receives at least bX(t)c/(d+ 1) tokens from each of its
d+ 1 neighbors. Hence, we get

bX(t+ 1)c ≥ (d+ 1) · bX(t)c
d+ 1

.

Using conservation of total load, we get

Ψ(t+ 1) =
∑
w∈V

(Xw(t+ 1)− bX(t+ 1)c) =

(∑
w∈V

Xw(t)

)
− n · bX(t+ 1)c

≤

(∑
w∈V

Xw(t)

)
− n · bX(t)c = Ψ(t).

The following simple observation is crucial in our analysis. It bounds the variance of a weighted sum
of negatively dependent variables by the sum of the individual variances, which is essential for deriving
the discrepancy bound after the smoothing time (Lemma 4.4).

Observation 4.8. Consider the vertex-based diffusion process. Fix a round t and node i. Let aj for
j ∈ N(i) be non-negative (or non-positive) constants. Then

Var

 ∑
j∈N(i)

aj · Zi,j(t)

 ≤ ∑
j∈N(i)

a2
j ·Var[Zij(t)].

Proof. First, note that each node has at most d excess token in each step and has d+ 1 neighbors. For
distinct neighbours j, k ∈ N(i), we have

Pr[Zi,j(t) = 1 ∧ Zi,k(t) = 1] = Pr[Zi,j(t) = 1 | Zi,k(t) = 1] · Pr[Zi,k(t) = 1]

≤ Pr[Zi,j(t) = 1] · Pr[Zi,k(t) = 1], (4.12)

where the inequality holds since conditioning on node k receiving an excess token form i in round t, may
decrease the probability that node j receives an excess token form i in round t.

Now using the definition of variance via covariance, we have

Var

 ∑
j∈N(i)

aj · Zij(t)

 =
∑

j∈N(i)

a2
j ·Var[Zij(t)] +

∑
j 6=k: j,k∈N(i)

Cov[aj · Zij(t), ak · Zik(t)]

=
∑

j∈N(i)

a2
j ·Var[Zi,j(t)] +

∑
j 6=k: j,k∈N(i)

aj · ak ·E[Zij(t) · Zik(t)]− aj · ak ·E[Zij(t)] ·E[Zik(t)]

=
∑

j∈N(i)

a2
j ·Var[Zij(t)] +

∑
j 6=k: j,k∈N(i)

aj · ak ·Pr[Zij(t) = 1 ∧ Zik(t) = 1]

− aj · ak ·Pr[Zij(t) = 1] ·Pr[Zik(t) = 1],

109

and applying Equation (4.12) to the right-hand side of the last equation gives

Var

 ∑
j∈N(i)

aj · Zij(t)

 ≤ ∑
j∈N(i)

a2
j ·Var[Zij(t)]

+
∑

j 6=k: j,k∈N(i)

aj · ak ·Pr[Zij(t) = 1] ·Pr[Zik(t) = 1]− aj · ak ·Pr[Zij(t) = 1] ·Pr[Zik(t) = 1]

=
∑

j∈N(i)

a2
j ·Var[Zij(t)],

finishing the proof.

We state an useful observation that is frequently used in our analysis. It shows that the height of a
token is non-increasing over time and provides a bound on the probability that a single token reaches any
node after the mixing time. Recall that Wi(t1) is the (random) node on which the token i is located in
round t1.

Observation 4.9. Consider the height-sensitive diffusion process and fix a token t ∈ T .

1. For any pair of rounds t1 < t2, it holds that Hi(t2) ≤ Hi(t1).

2. For the token’s location, it holds that

Pr[Wi(t2) = w | Wi(t1) = v] =
(
Pt2−t1

)
v,w

.

Consequently, for any set D ⊆ V , Pr[Wi(t2) ∈ D | W (t1) = w(t1)] = (Pt2−t1)wi(t1),D.

3. Let tmix(P) be the mixing time of a Markov chain with state space V and transition matrix P. For
t2 ≥ t1 + tmix(P):

(a) Pr[Wi(t2) = v | Wi(t1) = w] ≤ 1
n + 1

n3 .

(b) Pr[Wi(t2) = v | Wi(t1) = w] ≥ 1
n −

1
n2 .

Proof. Assume Hi(t+1) ≤ Hi(t) holds for all previous rounds: then a simple induction over t completes the
proof. It remains to prove that Hi(t1 + 1) ≤ Hi(t1) for a single round. Let Wi(t1) = v and Hi(t1) = k ∈ N.
For each buffer Qu,j and each step s ∈ [5] of the height-sensitive process, let Qsi,j be the state of the queue
after step s. Initially Q0

i,j = ∅ for all u ∈ V and j ∈ N(u).
The rank of token i does not change during the queuing, shuffling and swapping steps. Now consider

the de-queuing step. Let w := Wi(t1 + 1) and suppose token i is in queue Q4
w,d+1. De-queuing proceeds

rank after rank. Since token i has rank k, before it is dequeued, node w receives at most k tokens from
each queue Q4

w,j for j = 1, · · · , d and k − 1 from Q4
w,d+1. Hence, the height of token i after this step

satisfies
Hi(t1 + 1) ≤

⌈
k · d+ (k − 1) + 1

d+ 1

⌉
= k = Hi(t1).

This shows that the height does not increase in a single round, completing the induction.
Now we prove the second statement. Fix nodes u, v ∈ V and round t ≥ t1. We prove by induction on

t that for a token i located at node w in round t1, the probability it is on v at round t equals (Pt−t1)w,v.

• Base case: t = t1. Trivially, P0
w,v = Iw,v, so the claim holds.

• Induction step: Assume the claim holds for round t ≥ t1. Let Wi(t) = u at the end of round t.
Consider round t+ 1 and distinguish cases:

110

Case 1: Token i is an excess token before the rounding of round t+ 1. At rounding step, it
is decided which queue receive token i. During the shuffling, swapping, and de-queuing steps, neither the
rank of token i nor the queue containing token i changes until swapping step. Suppose node u has r ≤ d
excess tokens at the start of the round. The excess tokens are distributed among the d + 1 neighbors
(including itself) uniformly without replacement. The probability that v receives i-th token for i ≤ r is

Pr[Wi(t+ 1) = v | Wi(t) = u] = Pr
[
i ∈ Q1

u,v

]
=

d

d+ 1
· d− 1

d
· · · (d+ 1)− (i− 1)

(d+ 1)− (i− 2)︸ ︷︷ ︸
node v receives none of the first i− 1 tokens

· 1

(d+ 1)− (i− 1)

=
1

d+ 1
.

This shows that each neighbor, including v, receives an excess token with uniform probability 1/(d+ 1),
matching Pu,v.

Case 2: Token i is a non-excess token before the rounding of round t + 1. If token i has
rank k after the queuing step (i.e., height k on node u), it is shuffled with its d siblings. Since u ∈ N(u),
the token is assigned to any queue Q3

u,v for v ∈ N(u) with equal probability 1/(d + 1). Hence for any
v ∈ N(u),

Pr[Wi(t+ 1) = v | Wi(t) = u] = Pr
[
i ∈ Q3

u,v

]
=

1

d+ 1
.

Applying the law of total probability over both cases gives

Pr[Wi(t+ 1) = v] =
∑

u∈N(v)

Pr[Wi(t+ 1) = v | Wi(t) = u] ·Pr[Wi(t) = u]

=
∑

u∈N(v)

1

d+ 1
·Pr[Wi(t) = u] =

∑
u∈N(v)

Pu,v ·Pr[Wi(t) = u].

Since wi(t1) = w, by the induction hypothesis it follows that

Pr[Wi(t+ 1) = v] =
∑

u∈N(v)

Pu,v ·Pt−t1w,u = Pt+1−t1
w,v ,

which completes the induction and proves the second statement.
The first part of the third statement follows directly from the second statement and the definition of

mixing time (Definition 4.1). To prove the second part, observe that∑
v∈V

Pr[Wi(t2) = v | Wi(t1) = w] = 1,

since token i should be located on some node in any round. Then for a fixed node v ∈ V we get,

Pr[Wi(t2) = v | Wi(t1) = w] = 1−
∑

u∈V,u 6=v

Pr[Wi(t2) = u | Wi(t1) = w]

≥ 1− (n− 1) ·
(

1

n
+

1

n3

)
≥ 1

n
− 1

n2
,

for which we use the upper bound from the first part of third statement.

111

Negative Association. In the next lemma, we establish the negative association property between
the locations of tokens in the height-sensitive process (lemma 4.10). This property states that, for any
subset of tokens and any subset of nodes, the probability that all tokens end up in the specified nodes is
at most the product of their individual probabilities.

Let S(t) denote the Height-Sensitive diffusion process andW(t) the random walk process with adjacency
matrix P, both restricted to t rounds. For a fixed round t and t′ ≤ t, we define an intermediate process
SW(t′, t) that performs t′ rounds of process S and t− t′ rounds of process W afterward. By construction
SW(0, t) is identical to W(t), while SW(t, t) coincides with S(t). Introducing this intermediate process
allows us to interpolate between the two dynamics, which is useful for transferring probabilistic bounds
from the well-understood random walk to the height-sensitive diffusion process.

We denote the location fo token j after t′ rounds by Wj(t
′), Ŵj(t

′) and W̃j(t
′) for the height-sensitive,

intermediate, and random walk process, respectively, assuming all tokens start at the same initial positions:
Wj(0) = Ŵj(0) = W̃j(0).

Lemma 4.10 (Negative Association). Consider a time t ≥ 1. Moreover, let B ⊆ T and D ⊆ V be an
arbitrary subset of tokens and nodes, respectively. Then the following holds:

Pr

[⋂
i∈B
{Wi(t) ∈ D}

]
≤
∏
i∈B

Pr
[
W̃i(t) ∈ D

]
.

Proof. Note that
∏
i∈B Pr

[
W̃i(t) ∈ D

]
= Pr

[⋂
i∈B{W̃i(t) ∈ D}

]
, since the tokens in random walk process

(W) move independent. To prove the statement we consider the intermediate process SW(t′, t) for t′ ∈ [0, t].
Recall that SW(t′, t) performs the first t′ rounds according to the height-sensitive process(SW) and the
remaining t− t′ rounds as standard random walk (W). For each round t′ ∈ [0, t] and each token i ∈ B we
define a random variable

Zi(t
′) :=

∑
u∈V

1{Ŵi(t′)=u} ·
(
Pt−t

′
)
u,D

and Z(t′) :=
∏
i∈B

Zi(t
′).

Here Zi(t′) represents the probability that token i, starting at node Ŵi(t
′), ends up in a node w ∈ D after

t− t′ rounds of a standard random walk.
Claim 4.11 (stated below) states that Z(0) =

∏
i∈BPr

[
W̃i(t) ∈ D

]
, and E[Z(t)] = Pr

[⋂
i∈B{Wi ∈ D}

]
.

The lemma then follows immediately if E[Z(t)] ≤ Z(0). To prove this, we show that for each round
t′ ∈ {1, 2, · · · , t} that

E
[
Z(t′)

∣∣∣ Ŵ (t′ − 1) = ŵ(t′ − 1)
]
≤ Z(t′ − 1). (4.13)

By the law of total probability, this implies E[Z(t′)] ≤ Z(t′ − 1). Iterating this inequality over all
rounds completes the proof. Thus, it remain to show Equation (4.13). Since the location vector W (t′ − 1)

is fixed, we can drop the conditioning.
First we calculate Z(t′ − 1) and then E[Z(t′)] using the intermediate process SW(t′, t).
Let Tu denote the set of tokens from B located on node u at round t′ − 1. We have

Z(t′ − 1) =
∏
i∈B

(∑
u∈V

1{Ŵi(t′−1)=u} ·
(
Pt−t

′+1
)
u,D

)
=
∏
u∈V

∏
i∈Tu

(
Pt−t

′+1
)
u,D

=
∏
u∈V

((
Pt−t

′+1
)
u,D

)|Tu|
=
∏
u∈V

 ∑
v∈N(u)

(
Pt−t

′
)
v,D

d+ 1


|Tu|

. (4.14)

112

Next, for the expectation at round t′, we have

E[Z(t′)] = E

[∏
i∈B

Zi(t
′)

]
= E

[∏
u∈V

∏
i∈Tu

Zi(t
′)

]
=
∏
u∈V

E

[∏
i∈Tu

Zi(t
′)

]
, (4.15)

where the last equality holds because tokens on different nodes move independently within a fixed round.
We now focus on a single term corresponding to a fixed node u in Equation (4.15) and analyze the

steps of round t′ in SW(t′, t) process, which coincide with round t′ in S(t′) process.
We define Qiuv for i ∈ [5] as the state of queue Qu,v(t′) after the i-th step of round t′. Let h(u) :=

dxu(t′ − 1)/(d+ 1)e denote the maximum height of any token on node u at the end of round t′ − 1. We
partition the tokens in Tu into sibling sets S1, · · · , Sh(u)where

Sj(u) :=
{
i ∈ Tu

∣∣∣ token i is in Q2
u,k with rank j for some k ∈ N(u)

}
.

These are the tokens of rank j on outgoing queues after the queuing step. The destinations of these tokens
are fixed after the shuffling step, in which siblings of the same rank (except non-excess tokens) are shuffled
among outgoing queues independently across ranks. From this independence property follows that we can
write the expectation over the tokens on node u as a product over the sibling sets:

E

[∏
i∈Tu

Zi(t
′)

]
=

h(u)∏
j=1

E

 ∏
i∈Sj(u)

Zi(t
′)

.
Expanding Zi(t′) gives

E

[∏
i∈Tu

Zi(t
′)

]
=

h(u)∏
j=1

E

 ∏
i∈Sj(u)

(∑
v∈V

1
Ŵi(t′)=v

·
(
Pt−t

′
)
v,D

).
Since tokens in Sj(u) can only move to neighbours of u, this reduces to

E

[∏
i∈Tu

Zi(t
′)

]
=

h(u)∏
j=1

E

 ∏
i∈Sj(u)

0 +
∑

v∈N(u)

1{Ŵi(t′)=v} ·
(
Pt−t

′
)
v,D

.
Finally, noting that token i ∈ Sj(u) goes to node v ∈ N(u) if and only if it is placed on queue Q3

u,v, we
have

E

[∏
i∈Tu

Zi(t
′)

]
=

h(u)∏
j=1

E

 ∏
i∈Sj(u)

 ∑
v∈N(u)

1{i∈Q3
u,v} ·

(
Pt−t

′
)
v,D


This expresses the expected product in terms of the independent placement of sibling tokens into outgoing
queues. Applying Claim 4.12 (stated below) to the previous expression gives

E

[∏
i∈Tu

Zi(t
′)

]
≤
h(u)∏
j=1

∏
i∈Sj(u)

E

 ∑
v∈N(u)

1{i∈Q3
u,v} ·

(
Pt−t

′
)
v,D



113

Since each single token in Sj(u) independently chooses a queue, we can evaluate the expectation:

h(u)∏
j=1

∏
i∈Sj(u)

E

 ∑
v∈N(u)

1{i∈Q3
u,v} ·

(
Pt−t

′
)
v,D

 =

h(u)∏
j=1

∏
i∈Sj(u)

∑
v∈N(u)

(
Pt−t

′
)
v,D

d+ 1

Combining over all sibling sets and tokens, we get,

E

[∏
i∈Tu

Zi(t
′)

]
≤

 ∑
v∈N(u)

(
Pt−t

′
)
v,D

d+ 1


|Tu|

.

Combining this with Equation (4.15) gives

E[Z(t′)] ≤
∏
u∈V

 ∑
v∈N(u)

(
Pt−t

′
)
v,D

d+ 1


|Tu|

Eq. (4.14)
= Z(t− 1′),

completing the proof of Equation (4.13) and consequently finishing the proof.

Here we state and prove the claims used in Lemma 4.10.

Claim 4.11. Z(0) =
∏
i∈BPr

[
W̃i(t) ∈ D

]
, and E[Z(t)] = Pr

[⋂
i∈B{Wi ∈ D}

]
.

Proof. By definition, for each token i, Zi(t′) =
∑
u∈V 1{Ŵi(t′)=u} ·

(
Pt−t

′
)
u,D

, and Z(t′) =
∏
i∈B Zi(t

′).

At time t′ = 0, the locations Ŵi(0) is fixed and equal to the starting locations of the random walk process
W̃i(0). Thus,

Z(0) =
∏
i∈B

(
Pt
)
Ŵi(0),D

=
∏
i∈B

(
Pt
)
W̃i(0),D

=
∏
i∈B

Pr
[
W̃i(t) ∈ D

]
.

At time t′ = t we have Pt−t
′

= P0 = I, so

Z(t) =
∏
i∈B

(∑
u∈V

1{Ŵi(t)=u} ·
(
P0
)
u,D

)
=
∏
i∈B

(∑
u∈D

1{Ŵi(t)=u}

)
.

Hence, Z(t) is 1 if all tokens in B are located on nodes in D at round t, then it can be regarded as a
random variable that can take on the values zero or one. Therefore,

E[Z(t)] = Pr[Z(t) = 1] = Pr

[⋂
i∈B

{
Ŵi(t) ∈ D

}]
= Pr

[⋂
i∈B
{Wi(t) ∈ D}

]
,

because the intermediate process SW(t, t) coincides with the height-sensitive process S(t). This proves
the claim.

Claim 4.12. For a fixed sibling set Sj(u) in round t′ it holds

E

 ∏
i∈Sj(u)

 ∑
v∈N(u)

1{i∈Q3
u,v} ·

(
Pt−t

′
)
v,D

 ≤ ∏
i∈Sj(u)

E

 ∑
v∈N(u)

1{i∈Q3
u,v} ·

(
Pt−t

′
)
v,D

.
Proof. Recall that Sj(u) is the set of sibling tokens with rank j on outgoing queues of node u. After the

114

shuffling step, each token i ∈ Sj(u) must be assigned to exactly one queue, so∑
v∈N(u)

1{i∈Q3
u,v} = 1.

If token i was an excess token at the start of the round, then its placement in queue Q3
u,v is the same as

in Q1
u,v. By the Zero-One Lemma in [41] (restated as Lemma 1.4) it follows that, the indicator variables

1{i∈Q3
u,v} for v ∈ N(u) are negatively associated (see the Definition 1.5).

Define for each token i ∈ Sj(u) the function

fi :=
∑

v∈N(u)

1{i∈Q3
u,v} ·

(
Pt−t

′
)
v,D

.

The claim we want is

E

[∏
i

fi

]
≤
∏
i

E[fi].

Since each fi is a non-decreasing function of negatively associated random variables, we can apply the
standard result of negatively associated functions, Lemma 6 in [42] (restated as Lemma 6.37), to conclude
that E[

∏
i fi] ≤

∏
iE[fi], finishing the proof. Note that this inequality is know as Negative Covariance

(Proposition 3 in [42]).

Occasionally, we need to add or remove the same number of tokens form each node. The next
observation show adding or subtracting a multiple of d+ 1 tokens per node does not affect the distribution
of excess tokens. It can be seen as the diffusion analogue of Observation 6.29.

Observation 4.13. Let G be a d-regular graph with n nodes and diffusion matrix P. Consider two
executions of the vertex-based diffusion process on G with initial load vectors x(0) and x̂(0), using the same
random choices for all Zi,j(t), nodes i ∈ V , neighbors j ∈ N(u), and rounds t ∈ N. If x(0) = x̂(0)+α ·1 for
some α = k · (d+ 1), k ∈ Z, then X(t) = X̂(t) + α · 1 for all t ≥ 1. It particular, disc(X(t)) = disc(X̂(t)).

Proof. We prove this by induction. We show that Xu(t) = X̂u(t) + α for t ≥ 0.

• Base case. For t = 0, the claim holds since by assumption xu(0) = x̂u(0) + α for all u ∈ V .

• Induction step. Assume for some round t that xu(t) = x̂u(t) + α for all u ∈ V . By assumption, for
all i, j ∈ V , Zi,j(t+ 1) = Ẑi,j(t+ 1). Here we get,

Xu(t+ 1) =
∑

v∈N(u)

⌊
xv(t)

d+ 1

⌋
+ Zv,u(t+ 1)

=
∑

v∈N(u)

⌊
x̂v(t) + k · (d+ 1)

d+ 1

⌋
+ Ẑv,u(t+ 1)

=

 ∑
v∈N(u)

⌊
x̂v(t)

d+ 1

⌋
+ Ẑv,u(t+ 1)

+ k · (d+ 1)

= X̂u(t+ 1) + α.

Since it holds for each node u ∈ V then we get X(t+ 1) = X̂(t+ 1) + α · 1 and it finishes the proof.

115

4.5.2 Ingredients used in Theorem 4.6

In this subsection, we prove Lemma 4.14 and Observation 4.15 which are used in dynamic setting
(Theorem 4.6). Together, these lemmas capture the contribution of newly allocated load items to the
discrepancy. Our approach follows the same ideas as in part two of this thesis.

Recall that Lemma 2.4 which bounds the disc(D(t)) in terms of the global divergence of the matching
sequence m[t] requires that (a) the matrix chosen in round t and the newly added items are independent,
and (b) all matrices in the sequence are double stochastic. Since the diffusion matrix also satisfies both
conditions, then the lemma applies to the dynamic setting of the diffusion model as well.

Next lemma is the diffusion analogue of Lemma 2.4.

Lemma 4.14 (Load concentration via global divergence). Consider the diffusion matrix P. Then for all
γ > 0 and t ∈ N we have

Pr

[
disc(D(t)) ≥ 8

3
· γ log(n) +

√
32γ log(n) · m

n
·Υ(P)

]
≤ 2 · n−γ+1.

Proof. Proof is essentially a repetition of Lemma 2.4, in a way that we replace m[τ,t] with Pt−τ+1, since
we have the same matrix P in each step . For the sake of completeness, we provide it.

Fix a node k ∈ [n]. First we establish a concentration inequality on Dk(t) in terms of Υk(P). Our
goal is to decompose Dk(t) into a sum of independent random variables. For the decomposition observe
that D(t) =

∑t
τ=1 P

t−τ−1 · A(τ), where A(τ) is the random load vector corresponding to the m load
items allocated at time τ . So the kth coordinate of D(t) is Dk(t) =

∑t
τ=1

∑
w∈[n]

(
Pt−τ−1

)
k,w
· Aw(τ).

We define the indicator random variable B(τ, j, w) for τ ∈ [t], j ∈ [m] and w ∈ [n] as , starting from their
token locations, Pr[B(τ, j, w) = 1] = 1/n and E[B(τ, j, w)] = 1/n. Observe that Aw(τ), the load allocated
to node w at step τ , can be expressed as

∑
j∈[m]B(τ, j, w). Merging this with the value of Dk(t) gives

Dk(t) =

t∑
τ=1

∑
w∈[n]

(
Pt−τ−1

)
k,w
·

∑
j∈[m]

B(τ, j, w)

 =

t∑
τ=1

∑
j∈[m]

∑
w∈[n]

((
Pt−τ−1

)
k,w
·B(τ, j, w)

)
︸ ︷︷ ︸

=:Ck(τ,j)

.

For a fixed τ ∈ [t] and j ∈ [m] we define Ck(τ, j) :=
∑
w∈[n]

(
Pt−τ−1

)
k,w
· B(τ, j, w). This random

variable measures the contribution of j-th load item of round τ to Dk(t). Note that the load items are
allocated independently from each other. Since Pt−τ−1 are fixed matrices, then Ck(τ, j) and Ck(τ ′, j′)

are independent for all τ and τ ′ and j 6= j′. To apply the concentration inequality from Theorem 6.9 we
need to show that Ck(τ, j) ≤ 1 and compute an upper bound on Var[Ck(τ, j)]. Showing the first condition
is easy since exactly one of the indicator random variables B(τ, j, w) is one and

(
Pt−τ−1

)
k,w

has a value
between zero and one.

It remains to consider the variance of Ck(τ, j). First note that by linearity of expectation

E[Ck(τ, j)] = E

∑
w∈[n]

((
Pt−τ−1

)
k,w
·B(τ, j, w)

)=
∑
w∈[n]

(
Pt−τ−1

)
k,w
·E[B(τ, j, w)]

=
∑
w∈[n]

(
Pt−τ−1

)
k,w
· 1

n
=

1

n
,

116

where the last equality follows form the fact that Pt−τ−1 is doubly stochastic. Now we get

Var[Ck(τ, j)] = E
[
(Ck(τ, j)−E[Ck(τ, j)])

2
]

= E

((∑
w∈[n]

(
Pt−τ−1

)
k,w
·B(τ, j, w)

)
− 1

n

)2


=
∑
w′∈[n]

1

n
·
((

Pt−τ−1
)
k,w′
− 1

n

)2

=
1

n
·

∣∣∣∣∣
∣∣∣∣∣(Pt−τ−1

)
k,· −

~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

,

where we used that for each τ and each j exactly one of the B(τ, j, w) is one and all others are zero, and
each of the n possible cases has uniform probability. Recall that Ck(τ, j) and Ck(τ ′, j′) are independent
for all τ, τ ′ and j 6= j′. Hence we get

Var

 t∑
τ=1

∑
j∈[m]

Ck(τ, j)

 =

t∑
τ=1

∑
j∈[m]

Var[Ck(τ, j)] =
1

n
·

t∑
τ=1

∑
j∈[m]

∣∣∣∣∣
∣∣∣∣∣(Pt−τ−1

)
k,· −

~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ m

n
·
∞∑
s=0

∣∣∣∣∣
∣∣∣∣∣(Ps)k,· − ~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

=
m

n
· (Υk(P))

2
,

where the final equality uses the definition of the global divergence Υk(P). Applying Theorem 6.9 with
M = 1 and X = Dk(t) =

∑t
τ=1

∑
j∈[m] Ck(τ, j) with λ = 2γ log(n)/3 + Υk(P) ·

√
2γm/n results in

Pr

[
Dk(t)− t · m

n
≥ 2

3
· γ log(n) +

√
2γ log(n) · m

n
·Υk(P)

]
≤ n−γ .

The lower bound can be established using Theorem 6.10 (with ai = 0 and M = 1) instead of Theorem 6.9.
Via a union bound we get

Pr

[∣∣∣Dk(t)− t · m
n

∣∣∣ ≥ 4

3
· γ log(n) +

√
8γ log(n) · m

n
·Υk(P)

]
≤ 2 · n−γ .

Applying the union bound over all nodes k ∈ [n] together with Observation 2.14 (stating that disc(D(t)) ≤
2|Dk(t)− t ·m/n|) finishes the proof.

Next simple observation bounds the global divergence in diffusion model.

Observation 4.15 (Spectral gap bound on global divergence). Consider the diffusion matrix P. Then,

Υk(P) ≤

√
1

1− λ(P)

Proof. Form the analysis of continues diffusion process or reversible Markov-Chain (e.g., [82], [64]), it is
known that ‖(Pt)k,· −

~1
n‖2 ≤ λ(P)2 · ‖(Pt−1)k,· −

~1
n‖2 ≤ (λ(P))2t. So, it follows that

(Υk(P))
2

=

∞∑
t=0

∣∣∣∣∣
∣∣∣∣∣(Pτ)k,· −

~1

n

∣∣∣∣∣
∣∣∣∣∣
2

2

≤
∞∑
t=0

(λ(P))
2t

=
1

1− (λ(P))
2 ≤

1

1− λ(P)
,

as claimed.

117

4.6 Bounds for Specific Rounds

In this section, we prove two corollaries that give bounds on discrepancy at specific rounds after smoothing
time τS(K, 1) , in both static and dynamic settings.

Corollary 4.16. Consider the discrete static vertex-based diffusion on d-regular graph G with n nodes,
diffusion matrix P and an initial load vector with disc(x(0)) := K > 1. Let ε ∈ [0, 1] be a constant.

1. For d = Ω
(
log1+ε n

)
, there is a round t? = O(ln(Kn)/(1− λ)) such that

Pr
[
disc(X(t0) ≤ 10

√
d log(n)

]
≥ 1− n−2.

2. For any d, there is a round t1 = O(ln(Kn)/(1− λ)) such that

Pr
[
disc(X(t1)) ≤ 49

√
d log(n)

]
≥ 1− 4n−3.

3. For any d, there is a round t2 = O((ln(Kn) + log log(d) · log(n))/(1− λ)) such that

Pr
[
disc(X(t2)) ≤ 48

√
d log(n) + 96 log(n)

]
≥ 1− n−2.

Proof. From Theorem 4.3, it follows that at round t? = τS(P,K, 1) + i · tmix(P) for i := log2(2(1+ε)
ε), with

probability at least 1− 2(i+ 1) · n−3 ,we have

disc(X(t?)) ≤ 48 · d 1/2i · log(n) + 48 ·
√
d · log(n)

(a)

≤ 48 · c · d 1/2i+1/(1+ε) + 48 ·
√
c · d1+1/(1+ε)

= 48 · c · d ε/2·(1+ε)+1/(1+ε) + 48 ·
√
c · d(2+ε)/(1+ε)

≤ 48 · c · d(2+ε)/(2+2ε) + 48 ·
√
c · d(2+ε)/(1+ε)

≤ d/2 + d/2 = d

where (a) follows from the assumption that log(n) ≤ c · d1/(1+ε) for some constant c > 0. Since
i = log2(2(1+ε)

ε) is a constant, then we have

t? = τS(P,K, 1/(2n)) + log2

(
2(1 + ε)

ε

)
· tmix(P)

≤ τS(P,K, 1/(2n)) ·
(

1 + log2

(
2(1 + ε)

ε

))
= O(τS(P,K, 1/(2n))).

Now we define an event Γ? := {disc(X(t∗)) ≤ d}, and from above it follows that

Pr
[
Γ?
]
≤ 2 ·

(
log2(

2(1 + ε)

ε
) + 1

)
· n−3.

Here we assume this event happens and we condition on this. Recall that bX(t?)c = (d + 1) ·

118

bminu∈V Xu(t?)/(d+ 1)c and the number of vital tokens at round t? is

Ψ(t?) =
∑
u∈V

(
Xu(t?)−min

v∈V
Xv(t

?) + min
v∈V

Xv(t
?)− bX(t?)c

)
≤ n · disc(X(t?)) + n · d ≤ 2n · d.

Let t0 := t? + tmix(P). From Lemma 4.5, it then follows that,

Pr

[
disc(X(t0)) ≤ 4d

n
+
√

48 · 2d · log(n)
∣∣∣ Γ?

]
≥ 1− 2n−3.

From the law of total probability then we get,

Pr
[
disc(X(t0)) ≤ 10

√
d log(n)

]
≥ 1− 2n−3 −Pr

[
Γ?
]

≥ 1− 2n−3 − 2 ·
(

log2

(
2(1 + ε)

ε

)
+ 1

)
· n−3 ≥ 1− n−2,

where the last inequality holds since log2(2(1+ε)
ε) is a constant and it finishes the proof of the first statement.

Recall that τS(P,K, 1) ≤ 4 ln(Kn)/(1− λ) (Observation 4.2).
Let t1 := τS(P,K, 1) + tmix(P). The second statement follows directly from Theorem 4.3 (with i = 1)

together with Observation 4.2.
Now let t2 := τS(P,K, 1) + log log(d) · tmix(P). Since d ≤ n, from Theorem 4.3 with i = log log(d) we

get that

Pr
[
disc(X(t2)) ≤ 48d(1/2)i log(n) + 48

√
d log(n)

]
≤ 2(log log(d) + 1)n−3 ≤ n−2,

and note that

disc(X(t2)) ≤ 48d(1/2)log log(d)

log(n) + 48
√
d log(n)

≤ 48d(1/ log d) log(n) + 48
√
d log(n)

(c)

≤ 96 log(n) + 48
√
d log(n),

where (c) holds since d1/ log d ≤ 2. This together with Observation 4.2 finishes the proof.

The next corollary provides the dynamic counterpart to Corollary 4.17.

Corollary 4.17. Let G be a d-regular graph with diffusion matrix P. Consider the dynamic discrete
vertex-based diffusion on graph G (with m new items added in each step) and an initial load vector
with disc(x(0)) := K > 1. In case d = ω(log1+ε(n) for some constant ε > 0, there is a round t =

O(log(Kn)/(1− λ)) such that ,w.h.p.,

disc(X(t)) = O

(√
d log(n) +

√
log(n)

1− λ

√
m

n

)
.

For any d, there is a round t = O((log(Kn) + log log(d)log(n))/(1− λ) such that ,w.h.p.,

disc(X(t)) = O

(√
d log(n) + log(n) +

√
log(n)

1− λ

√
m

n

)
.

119

Proof. The proof follows directly from Corollary 4.16 and Theorem 4.6, using Observation 4.15 to bound
the global divergence in terms of the spectral gap of the diffusion matrix.

Simulation. We also compared the static discrete diffusion with other protocols through simulations.
Although we tested several protocols, here we only present two variants of Threshold load balancing. In
this protocol, for a matched pair of nodes [u : v] ∈M(t) with Xu(t) > Xv(t), if Xu(t) > x then u send
Xu(t) − x tokens to v, each independently with probability 1/2. In the second variant, the same rule
applies, but v accepts tokens only if its load below the average.

Figure 11: Discrete diffusion after continues balanc-
ing time for a regular graph. Time is normalized by
the number of nodes.

Figure 12: Discrete diffusion after continues balanc-
ing time for a regular graph.Time is normalized by
the number of nodes.

As the plots show, the discrepancy in static discrete diffusion remains between
√

log(n) and
√
d log(n).

4.7 Summary and Open Problems

In this work, we show that the discrepancy in the vertex-based discrete diffusion converges to O(
√
d log(n)+

log(n)) and extend this result to the dynamic setting. Previously, authors of [85] showed a bound of
O(d2

√
log(n)) on the discrepancy for a d-regular graph after continues balancing time τS(K, 1/(2n)). Our

results improve on this for d = Ω(3
√

log(n)) and for d = Ω(4
√

log(n)) when spending log log(d) · tmix more
rounds (Corollary 4.16). Moreover, we provide the first bound on the discrepancy in the dynamic setting
of the discrete vertex-based diffusion.

We conjecture that our bound is tight up to an factor of O(
√

log(n)). The intuition is that
√
d

represent a fundamental lower bound, which could potentially be formalized using a variant of the Central
Limit theorem, such as the Berry-Essen theorem, for specially constructed graphs and initial configuration
similar to our proposed lower bound on discrepancy in part two.

One open question is how tight our dynamic load balancing bounds are for the diffusion model.
Improving the bound on the global divergence would be a natural first step, as the other components of
our analysis are nearly tight. For constant d-regular graphs, we believe that a constant discrepancy can
be shown by adapting the analysis from part four. This raises the question of what the tightest bound
is in the regime d = O(4

√
log(n)) and d = Ω(1). Finally, an important open problem is whether a tight

bound can be established for non-regular graphs. We conjecture this may be possible by designing a
height-sensitive protocol that mimics the standard random walk.

120

Part Five:

5 Token Distribution on Matchings

121

5.1 Introduction

In this part, we investigate the token distribution process on arbitrary connected graphs. Consider a
connected graph G = (V,E) with diameter D, where each node initially holds an integer number of load
items, or tokens. In each round, a matching is selected, and every pair of matched nodes compares their
loads. If the load difference between two matched nodes is at least one, the node with the higher load
transfers exactly one token to its partner. This simple, local rule gradually balances the load across the
network through repeated pairwise exchanges.

Results in a Nutshell. Our main result establishes a diameter bound on the final discrepancy and,
for the first time, provides an explicit bound on the number of rounds required to achieve it. Specifically,
we show that after O(K · τ̃S(K) + (|E|+ D2) · |E| log(n)) rounds, the protocol reaches a configuration
whose discrepancy is smaller than the graph’s diameter D. Here, K denotes the initial discrepancy,
and τ̃S(K) = log(Kn)/(1 − λ) is a spectral parameter reflecting the approximate time it takes for the
continuous load balancing to reduce the initial discrepancy K to 1. The proof relies on a simple yet
powerful quadratic potential function that captures the evolution of the total load imbalance. Furthermore,
we establish a matching lower bound (Ω(K/(1− λ))) on the number of rounds required by the process on
regular graphs, matching with the bound established in [49].

Techniques and Comparison to Prior Work. To place our results in context, we compare
them with the classical bound presented in [49], which shows that for d-regular graphs, after O(dK/α+

d2 log(n)/α2) rounds (where α denotes the edge expansion of the graph) the discrepancy decreases to
O(d log(n)/α). Our result improves upon this bound for d-regular graphs satisfying d log(n)/α = Ω(D);
however, our analysis may exhibit a longer convergence time. Moreover, our bound holds for arbitrary
connected graphs.

For instance, in the r-dimensional grid and torus (encompassing the cycle and the hypercube) as well
as in complete graphs, our analysis achieves a smaller discrepancy. A concise summary and comparison of
the results is presented in Table 5, with a detailed discussion provided in Section 5.5.

Table 5: Overview of related results for the discrepancy in the token distribution process. Note that
r ∈ [1, log(n)] and H(r, q) is the Hamming (q-ary hypercube) graph. The statements hold w.h.p.

Graph Disc. from [49] Disc. from Thm. 5.2

Cycle O(n log(n)) θ(n)

2-dim torus O(
√
n · log(n)) θ(

√
n)

3-dim torus O(3
√
n · log(n)) θ(3

√
n)

r-dim torus O(rn1/r · log(n)) θ(rn1/r)

Hypercube O(log2(n)) θ(log(n))

H(r, q) O(r2 log(q)) θ(r)

Complete O(log(n)) 1

Non-regular - D

Overall, our approach offers a unified and elementary analysis based solely on a quadratic potential

122

argument, while simultaneously improving the known bounds on discrepancy across a variety of graph
families.

Outline. The remainder of this part is organized as follows. Section 5.2 introduces the notation and
model. Section 5.3 presents the main results (upper and lower bound on the discrepancy) for the token
distribution problem on arbitrary graphs and the intermediate results used in their proofs. Section 5.4
summarizes the key technical tools. Section 5.5 provides discrepancy bounds for specific graph classes and
compares them with related work. Finally, Section 5.6 concludes and outlines open problems.

5.2 Model and Definitions

We begin by introducing the notations, then formally define the process and present an useful observation.
We are given an undirected graph G(V,E) and an arbitrary initial assignment of discrete load to nodes.

Time progresses in discrete rounds. As before, the load vector in round t ∈ N is shown by X(t), where
Xi(t) ∈ N0 is the load of node i ∈ V in round t. The initial load vector is denoted X(0). For a load vector
X(t), we let disc(X(t)) denote the discrepancy, defined as disc(X(t)) = maxiXi(t)−miniXi(t). In each
round t, a matching M(t) is given, and the loads are updated according to the following rule: for each
edge (i, j) ∈M(t) with Xi(t) > Xj(t), exactly one load item is moved from node i to node j in round t.
Formally, the protocol is specified as follows.

For each round t = 1, 2, 3, . . . and for each edge (i, j) ∈M(t) do:

• Xi(t) = Xi(t− 1) + sgn(Xj(t− 1)−Xi(t− 1))

• Xj(t) = Xj(t− 1) + sgn(Xi(t− 1)−Xj(t− 1))

We assume that G is connected and let du denote the degree of node u, ∆ := maxu{du} the maximum
degree of G, and D := D(G) the diameter of G. Here we recall the diffusion matrix of the graph G.
For {i, j} ∈ E, we have Pi,j := 1/2∆, Pi,j := 1 − di/2∆ if i = j, and Pi,j = 0 otherwise. Recall that
λ1(P) ≥ . . . ≥ λn(P) are the eigenvalues of P and in this section we let λ = max{|λ(P)|, |λn(P)|}.

We recall the generating protocol for the matchings from [52].

Observation 5.1 (Lemma 1 in [52]). Consider the following protocol for generating matchings on a graph
G with maximum degree ∆. First, Each edge (i, j) is independently put in M(t) with probability 1/4dij in
which dij = max{di, dj} and di is the degree of node i. Then, Each edge (i,j) removes itself from M(t) if
(w, i) or (w, j) is in M(t) for some w ∈ V . For each round t and edge (i, j) ∈ E it holds that,

1

8∆
≤ Pr

[
(i, j) ∈M(t)

]
.

To analyze the protocol we use the known quadratic potential function. Let x be the average load.
For each node u ∈ V and round t, we define

Φu(t) := (Xu(t)− x)
2 and Φ(t) :=

∑
u∈V

Φu(t).

5.3 Token Distribution

In this section, we prove a general upper bound (Theorem 5.2) and a lower bound (Theorem 5.6) on the
discrepancy. First we prove the upper bound, then we provide the intermediate results used in its proof
and in the end we prove our lower bound.

123

In Subsection 5.3.1, we show that any initial load vector reaches a load vector with discrepancy at
most 2|E| after sufficiently many rounds. In Subsection 5.3.2, we demonstrate that, shortly thereafter,
the discrepancy decreases to 2D, where D is the diameter of the graph. Finally, Subsection 5.3.3 reduces
it further to D. Together, these results lead to the following theorem.

Theorem 5.2. Let G be an undirected, connected graph with maximum degree ∆, diffusion matrix P

and diameter D, and let M[∞] :=
(
M(s)

)∞
s=1

be a sequence of matchings on G with pmin as the minimum
probability of an edge appearing in any matching. Consider token distribution protocol initialized with an
arbitrary initial load vector X(0) with disc(X(0)) := K > 1. For round

t∗ :=

⌈
K · (1 + log(nK2))

2∆pmin · (1− λ)

⌉
+

⌈
96|E| · n · log(n)

pmin

⌉
+

⌈
24D2 · n · log(n)

pmin

⌉
,

it holds
Pr[disc(X(t∗)) ≤ D] ≥ 1− 6 · n−2.

Proof. Let t1 :=
⌈
K·(1+log(nK2))
2∆pmin·(1−λ)

⌉
and define an event E1 := {disc(X(t1)) ≤ 2|E|}. From Proposition 5.3

(presented in Subsection 5.3.1) it follows that Pr
[
E1
]
≤ 6 · n−2.

Let t2 := t1 +
⌈

96|E|·n·log(n)
pmin

⌉
and define an event E2 := {disc(X(t2) ≤ 2D}. From Proposition 5.4

(presented in Subsection 5.3.2) it follows that Pr[E2 | E1] ≥ 1− n−2 and by the law of total probability
we get, Pr[E2] ≥ 1− 5 · n−2.

Let t3 := t2 +
⌈

24D2·n·log(n)
pmin

⌉
and define an event E3 := {disc(X(t3)) ≤ D}. From Proposition 5.5

(presented in Subsection 5.3.3) it follows that Pr[E3 | E2] ≥ 1− n−3 and via the law of total probability
we get,

Pr[E3] ≥ 1−Pr
[
E2
]
− n−3 ≥ 1− 6n−2.

In the rest of this subsection we prove the three propositions used in the proof of the Theorem 5.2,
and afterward we provide the proof of the lower bound.

5.3.1 Arbitrary Discrepancy to 2|E|

In the next proposition, we show that any initial load vector reaches a discrepancy of at most 2|E| after
sufficiently many rounds. To prove this, we argue that as long as the load differences across all edges
remain at least 2|E|, the potential function decreases sufficiently so that, after t rounds (specified in the
proposition), the discrepancy falls below 2|E| with high probability.

Proposition 5.3. Consider the token distribution on the sequence M[∞] (with pmin as the minimum
probability of an edge appearing in any matching) and an arbitrary initial load vector X(0) such that
disc(X(0)) ≤ K. Then, for the round

t :=

⌈
K · (1 + log(nK2))

2∆pmin · (1− λ)

⌉
,

it holds that
Pr[disc(X(t)) ≤ 2 · |E|] ≥ 1− 4 · n−2.

Proof. We aim to show that there exists a round t∗ ∈ N, t∗ ≤ t, such that disc(X(t∗)) ≤ 2|E|. Since the
discrepancy is non-increasing, this suffices to prove the proposition.

124

Assume, for contradiction, that for all t∗ ≤ t we have∑
(i,j)∈E

Xi(t
∗)−Xj(t

∗) > 2|E|.

We apply Lemma 5.7 repeatedly. Define β := 2∆pmin/K · (1− λ). Then

E[Φ(t)] = E[E[Φ(t) | X(t− 1)]] ≤ E[Φ(t− 1)] · (1− β).

Since Φ(0) ≤ nK2, the chain rule of conditional expectation gives, for the specified t,

E[Φ(t)] ≤ (1− β)t · Φ(0) ≤ (1− β)t · nK2 ≤ e−β·t+log(nK2)

= e−β·
1+log(nK2)

β +log(nK2) = e−1. (5.1)

Define the event E(t) := {Φ(t) ≤ |E|2}. From Equation (5.1) and Markov’s inequality, we have

Pr
[
E(t)

]
= Pr

[
Φ(t) > |E|2

]
≤ E[Φ(t)]

|E|2
≤ 1

e · |E|2
≤ 4

n2
, (5.2)

where the last inequality uses |E| ≥ n/2 since G is connected. By definition, disc(X(t)) ≤ 2 ·
√

Φ(t).
Hence, if E(t) occurs, then

Pr[disc(X(t)) ≤ 2 · |E| | E(t)] = 1.

Applying the law of total probability gives

Pr[disc(X(t)) ≤ 2 · |E|] ≥ 1−Pr
[
E(t)

] Eq. (5.2)

≥ 1− 4n−2.

This contradicts the assumption that
∑

(i,j)∈E Xi(t
∗)−Xj(t

∗) > 2|E| for all t∗ ≤ t. Therefore, the
proposition holds.

5.3.2 Discrepancy from 2|E| to 2D

Recall that D is the diameter of the underlying graph. We define phases as consecutive rounds in which,
for phase i ∈ N, the discrepancy lies in the interval (2|E|/2i−1, 2|E|/2i]. The idea is that as long as the
discrepancy is sufficiently large (> 2D), the quadratic potential function experiences a significant decrease.
In particular, for a round in phase r, the expected decrease is at least pmin|E|/2r (Lemma 5.10). This
allows us to bound the length of phase r with high probability (Lemma 5.11), which in turn shows that
the discrepancy reaches 2D after O(|E|n log(n)/pmin) rounds, as stated in the next proposition.

Proposition 5.4. Consider the token distribution on the sequence M[∞] (with pmin as the minimum
probability of an edge appearing in any matching) and an arbitrary initial load vector X(0) such that
2D < disc(X(0)) ≤ 2|E|. Then, for the round

t1 :=

⌈
96|E| · n · log(n)

pmin

⌉
,

it holds that
Pr[disc(X(t1)) ≤ 2D] ≥ 1− n−2.

125

Proof. Let ` := log(|E|/D) and that f(0) := 0. For each integer r ∈ [1, `] we define function f(r) :=

48|E| · n · log(n)/pmin · 2r and an event

Γr :=

{
disc(X(f(r))) ≤ disc(f(X(r − 1)))

2

}
and Γ :=

⋂
r∈[`]

Γr.

From Lemma 5.11 it follows that Pr
[
Γr
]
≤ n−3. Hence by union bound we get,

Pr
[
Γ
]

= Pr

 ⋃
r∈[`]

Γr

 ≤ ` · n−3 ≤ n−2. (5.3)

Recall that the discrepancy is non-increasing over time. Hence, assuming the event Γ holds we have,

disc(X(f(`))) ≤ disc(X(f(0))) ·
(

1

2

)log(|E|/D)

≤ 2|E| ·
(

1

2

)log(|E|/D)

= 2 ·D.

Therefore, we have
Pr[disc(X(f(`))) ≤ 2 ·D | Γ] = 1,

and by the law of total probability we get,

Pr[disc(X(f(`))) ≤ 2 ·D] ≥ 1−Pr
[
Γ
] Eq. (5.3)

≥ 1− n−2.

Finally the total number of rounds until f(`) is,

log(|E|/D)∑
r=1

48
|E| · n · log(n)

pmin · 2r
≤ (48|E| · n · log(n)/pmin) ·

∞∑
r=0

2−r ≤ 98|E| · n · log(n)/pmin,

and setting t1 := 98|E| · n · log(n)/pmin completes the proof.

5.3.3 Discrepancy form 2D to D

Here, we show that starting from a load vector with disc(X(0)) ≤ 2D, the discrepancy drops below D after
O(D2n log(n)/pmin) rounds, as stated in Proposition 5.5. For the proof, we first compute the expected
change in Φ(·) after one step, and then we bound the number of rounds required to reach discrepancy D.

Proposition 5.5. Consider the token distribution on the sequence M[∞] (with pmin as the minimum
probability of an edge appearing in any matching) and an arbitrary initial load vector X(0) such that
D < disc(X(0)) ≤ 2D. Then, for the round

t1 :=

⌈
24D2 · n · log(n)

pmin

⌉
,

it holds that
Pr[disc(X(t1)) ≤ D] ≥ 1− n−3.

Proof. Fix round t and note Φ(t) ≤ 4nD2. Since the discrepancy is at least D + 1, then there is at
least one edge in which its endpoints have load difference of ≥ 2. From Equation (5.7) it follows that
E[Φ(t)− Φ(t+ 1)] ≥ 2 · pmin and for t∗ := D2 · d4n− 1/2e/2 · pmin we get E[Φ(t+ t∗)] ≤ D2/2. Markov’s

126

Inequality implies Pr
[
Φ(t+ t∗) ≥ D2/4

]
≤ 1/2 and since Φ(t) is not-increasing over t, then

Pr

 ⋃
j∈[3 log(n)]

{Φ(t+ j · t∗) < D2/4}

 ≥ 1−
(

1

2

)3 log(n)

≥ 1− n−3.

When this event occurs, then for some j ∈ [3 log(n)], it holds that Φ(t+ j · t∗) ≤ D2/4 and consequently,
disc(X(t+j · t∗)) ≤ D. Since the discrepancy is non-increasing then setting t1 := d24D2 ·n · log(n)/pmine ≥
t+ 3 log(n) · t∗ finishes the proof.

We now establish our lower bound. For the remainder of this section, we assume that the underlying
graph G is d-regular and first introduce the relevant variables and definitions. For each round t and any
subset S ⊆ V (G), we define

µS(t) :=
1

|S|
∑
u∈S

Xu(t),

as the mean load in the set S. With S := V (G) \ S, we write

∆S(t) := µS(t)− µS(t),

for the difference between the mean load in S and its complement. Moreover, let E(S, S) denote the set
of edges crossing the cut between S and S. Recall that the conductance of a d-regular graph G = (V,E)

is defined as

Φ(G) := min
S⊆V (G)
|S|≤n/2

|E(S, S)|
d|S|

.

We define TK to denote the time required for the discrepancy to decrease from K to K/4. The next
theorem provides a lower bound on TK , showing that, for sufficiently large K, with constant probability,
the process requires at least Ω(K/Φ(G)) rounds to reduce the initial discrepancy K to K/4.

Consider the following d-regular graph G(V,E) with |V | = n in which n = 2r for r ∈ N and let K = 4l

for l ∈ N. There is one node with load K, one node with load 0, (n − 2)/2 nodes with load 3k/4 and
(n− 2)/2 nodes with load k/4. It is clear that disc(X(0) = K and x = K/2.
Theorem 5.6. Consider the randomized token distribution on graph G with the initial load vector
described above and assume K > 8/Φ(G). Then,

Pr

[
TK ≥

K

8Φ(G)

]
≥ 1/2.

Note that from Cheeger’s Inequliaty we get K/Φ(G) ≤ cK/(1− λ) for some constant c > 0.

Proof. First define

t := min

{
K

8Φ(G)
,
K2

64

}
.

For K ≥ 8/Φ(G), we have t = K/(8Φ(G)). Recall that x = K/2. Let S := {u ∈ V | Xu(0) ≥ x} denote
the set of overloaded nodes. Note that |S| = n/2 and

µS(0) =
1

|S|
∑
i∈S

Xi(0) =
2

n
·
(
K +

n− 2

2
· 3K

4

)
≥ 3K

4
,

127

and similarly

µS(0) =
1

|S|

∑
i∈S

Xi(0) =
2

n
·
(

0 +
n− 2

2
· K

4

)
≤ K

4
,

and therefore ∆S(0) = µS(t) − µS(t) ≥ K/2. From lemma 5.13 (presented in the technical lemmas’
section) with p := 1/2 and round t (as specified above), we obtain

Pr[∆S(t) > K/4] ≥ 1/2.

Observe that, in (each) round t, there exist at least two nodes u ∈ S and v ∈ S such that Xu(t) ≥ µS(t)

and Xv(t) ≤ µS(t). Combining this with the bound ∆S(t) > K/4, we obtain

Xu(t)−Xv(t) > K/4,

which implies disc(X(t)) > K/4. Hence, by definition of TK , we have TK ≥ t, which completes the
proof.

5.4 Technical Lemmas

Here we list the basic and developed tools. Throughout this subsection, for each edge (i, j) ∈ E and
round t, we may assume that Xi(t) ≥ Xj(t) (otherwise we consider (j, i) ∈ E). Moreover, we assume a
connected graph G = (V,E) with maximum degree ∆, diffusion matrix P and diameter D together with a
sequence of matchings M[∞] :=

(
M(s)

)∞
s=1

is given.

5.4.1 Ingredients used in Theorem 5.2

We begin by stating the fundamental results employed in establishing the intermediate lemmas used in
the proof of the upper bound, Theorem 5.2.

Discrepancy to 2|E|. First we prove the intermediate results used in Proposition 5.3. Next lemma
is a simple result computing the expected change of the potential as long as the load difference over all
edges is at least 2|E|.

Lemma 5.7. Consider the Token Distribution on sequence M[∞] (with pmin as the minimum probability
of an edge appearing in any matching and)with arbitrary initial load vector X(0) such that disc(X(0)) ≤ K.
Assume

∑
(i,j)∈E Xi(t)−Xj(t) > 2 · |E|. Then, for t ∈ N with load vector X(t), it holds

E[Φ(t+ 1) | X(t)] ≤
(

1− 2pmin ·∆
K

· (1− λ)

)
· Φ(t).

Proof. The proof proceeds along the lines of Theorem 1 in [52]. Fix step t. We assume
∑

(i,j)∈E Xi(t)−
Xj(t) ≥ 2 · |E| otherwise we are already done.

Consider an edge (i, j) ∈M(t+1) with Xi(t) ≥ Xj(t) + 1. Then we have,

Φi(t+ 1) + Φj(t+ 1) = (Xi(t)− 1− x)2 + (Xj(t) + 1− x)2

= (Xi(t)− x)2 − 2(Xi(t)− x) + 1 + (Xj(t)− x)2 + 2(Xj(t)− x) + 1

= Φi(t) + Φj(t)− 2(Xi(t)−Xj(t)− 1).

128

Hence for an edge (i, j) ∈M(t+1) with Xi(t)−Xj(t) ≥ 1, it holds that

Φi(t) + Φj(t)− Φi(t+ 1)− Φj(t+ 1) = 2(Xi(t)−Xj(t)− 1). (5.4)

If a node is not matched in round t + 1 or is matched with a node sharing the same load, then its
contribution to Φ(t)− Φ(t+ 1) equals zero. Accumulating the contribution of all nodes yields,

E[Φ(t)− Φ(t+ 1) | X(t)] =
∑

(i,j)∈E:
Xi(t)−Xj(t)≥1

Pr
[
(i, j) ∈M(t+1)

]
· (2(Xi(t)−Xj(t)− 1))

≥ pmin ·
∑

(i,j)∈E
Xi(t)−Xj(t)≥1

2(Xi(t)−Xj(t)− 1) (5.5)

≥ pmin ·

 ∑
(i,j)∈E

(2(Xi(t)−Xj(t)))− 2|E|


(a)

≥ pmin ·
∑

(i,j)∈E

(Xi(t)−Xj(t)) = pmin ·
∑

(i,j)∈E

(Xi(t)−Xj(t))
2

Xi(t)−Xj(t)
(5.6)

where (a) follows from the assumption
∑

(i,j)∈E Xi(t)−Xj(t) ≥ 2|E|. Since Xi(t)−Xj(t) ≤ K, then we
have 1/(Xi(t)−Xj(t)) ≥ 1/K and from Equation (5.6) we get

E[Φ(t)− Φ(t+ 1) | X(t)] ≥ pmin ·

 ∑
(i,j)∈E

(Xi(t)−Xj(t))
2

K

.
Notice that we assume for the reminder of the proof that X(t) 6= 1 ·x, otherwise the claim of lemma holds
since Φ(t+ 1) = Φ(t) = 0. Hence, Φ(t) 6= 0 and

E

[
Φ(t)− Φ(t+ 1)

Φ(t)

∣∣∣∣ X(t)

]
=
E[Φ(t)− Φ(t+ 1)]

Φ(t)

≥
pmin

K ·
∑

(i,j)∈E (Xi(t)−Xj(t))
2∑

i∈V (X(t)− x)2
.

By Introducing the vector y ∈ Rn where yi := Xi(t)− x, we can rewrite the formula above as

E

[
Φ(t)− Φ(t+ 1)

Φ(t)

∣∣∣∣ X(t)

]
≥ pmin

K
· yL y

T

y · yT
,

where here L is the Laplacian matrix of G defined by Li,i = di, Li,j = −1 for {u, v} ∈ E, and Li,j = 0,
otherwise. Since X(t) 6= 1 ·x we have that y 6= 0 and y⊥1, and the Min-Max characterization of eigenvalue
yields

E

[
Φ(t)− Φ(t+ 1)

Φ(t)

∣∣∣∣ X(t)

]
≥ pmin

K
· λn−1(L).

Since P = I− 1
2∆ · L, we have that λ(P) = 1− λn−1(L)

2∆ and λn−1(L) = 2∆ · (1− λ(P)). This implies,

E[Φ(t+ 1) | X(t)] ≤
(

1− λn−1(L) · pmin

K

)
· Φ(t) =

(
1− 2∆ · pmin

K
· (1− λ(P))

)
Φ(t).

129

Discrepancy from 2|E| to 2D. Here we prove the intermediate results used in Proposition 5.4.
Note that since load is moved only from the higher loaded nodes to the lower loaded nodes, therefore:

Observation 5.8. The discrepancy disc(X(.)) in the Token Distribution protocol is non-increasing.

Moreover, from Equation (5.4) we have that

Observation 5.9. The potential function Φ(.) in the Token Distribution protocol is non-increasing.

We partition the time into consecutive intervals of different size. Without loss of generality we assume
disc(X(0)) ≤ 2|E|. We let e(0) := 0. For r ∈ N, we define phase i to be the rounds [e(r − 1) + 1, e(r)]

such that
e(r) := min

{
t | disc(X(t)) ≤ 2|E|

2r

}
.

Next lemma bounds the decrease in Φ(.) after each step during phase i. To show this we use the
properties of phase r.

Lemma 5.10. Consider the Token Distribution on sequence M[∞] (with pmin as the minimum probability of
an edge appearing in any matching and) with arbitrary initial load vector X(0) such that disc(X(0)) ≤ 2|E|.
Consider a phase r ∈ [1, log(|E|/D)] with disc(X(e(r))) > 2D. For any round t in this phase, it holds that

E[Φ(t)− Φ(t+ 1) | X(t)] ≥ pmin · |E|
2r

.

Proof. From Equation (5.5) it follows that,

E[Φ(t)− Φ(t+ 1) | X(t)] ≥ pmin ·
∑

(i,j)∈E
Xi(t)−Xj(t)≥1

2(Xi(t)−Xj(t)− 1)

≥ pmin ·
∑

(i,j)∈E
Xi(t)−Xj(t)≥2

(Xi(t)−Xj(t)). (5.7)

We are to bound the term in Equation (5.7) using our bounds on the discrepancy in the phase r.
Fix a round t in phase r. Note that by the definition we have disc(X(t)) ≥ 2|E|/2r. Consider two

nodes u, v ∈ V such that Xu(t)−Xv(t) = disc(X(t)). Since there is a path of length (at most) D between
u and v in the graph G then there can be at most D − 1 edges on this path in which the endpoints have
load difference of at most 1. Hence,∑

(i,j)∈E
Xi(t)−Xj(t)≥2

(Xi(t)−Xj(t)) ≥ disc(X(t))− (D − 1)

(a)

≥ disc(X(e(r)))− (D)

(b)

≥ disc(X(e(r)))

2
≥ |E|

2r
, (5.8)

where (a) holds since discrepancy is non-increasing over the time and t ≤ e(r) and (b) follows from the
assumption disc(X(e(r))) > 2D. Therefore, from Equation (5.7) and Equation (5.8) together, it follows
that

E[Φ(t)− Φ(t+ 1) | X(t)] ≥ pmin · |E|
2r

.

130

In the following lemma we bound the number of rounds in phase r. For this we use the last lemma
and the Markov’s inequality.

Lemma 5.11. Consider the Token Distribution on sequence M[∞] (with pmin as the minimum probability
of an edge being in any matching and) with arbitrary initial load vector X(0) such that disc(X(0)) ≤ 2|E|.
Length of phase r ∈ [1, log(|E|/D)] is at most d48 · |E| · n · log(n)/(2r · pmin)e rounds with probability at
least 1− n−3.

Proof. Fix a phase r ∈ [1, log(|E|/D)]. Recall that by definition we have disc(X(e(r − 1))) ≤ 2|E|/2r−1

and Φ(X(e(r − 1))) ≤ n(2|E|/2r−1)2.
Let us define t0 := e(r − 1) and t∗ :=

⌈
|E|(16n−1/2)

pmin·2r

⌉
. From Lemma 5.10 (and the law of total

expectation) we get,

E[Φ(t0 + t∗) | X(t0)] ≤ Φ(t0)− t∗ · pmin|E|
2r

≤ n ·
(

2|E|
2r−1

)2

− t∗ · pmin|E|
2r

≤ n · 16|E|2

22r
− |E| · (16n− 1/2)

pmin · 2r
· pmin|E|
·2r

=
16n|E2| − 16n|E2|+ |E|2/2

22r
=
|E|2

22r+1
. (5.9)

Here for integer j ∈ [1, 3 log(n)], we define epoch j to be the rounds [t0 + (j − 1) · t∗ + 1, t0 + j · t∗]. For
each epoch j we define a good event

Ej :=

{
Φ(t0 + j · t∗) ≤ |E|

2

22r

}
.

Note that epochs j and k 6= j consist of disjoint time intervals. From Equation (5.9) and Markov’s
Inequality we have that Pr

[
Ej
]
≤ 1

2 . Then we get

Pr

 ⋃
j∈[3 log(n)]

Ej

 = 1−Pr

 ⋂
j∈[3 log(n)]

Ej

 ≥ 1−
(

1

2

)3·log(n)

= 1− 1

n3
.

The event
⋃
j∈[3 log(n)] Ej implies there is at least one epoch j ∈ [3 log(n)] for which the good event Ej

holds. In the rest of proof we assume the event Ej for some j holds. Since disc(X(t)) ≤ 2 ·
√

Φ(t), we have

disc(X(t0 + t∗ · j)) ≤ 2 ·
√
|E|2
22r

=
2|E|
2r

,

indicating the round t0 + t∗ · j is the end of phase r (in fact e(r) ≤ t0 + t∗ · j). Moreover, the number of
rounds in phase r is at most

t∗ · 3 · log(n) + t0 − t0 ≤ 48 · |E| · n · log(n)/pmin · 2r

finishing the proof.

131

5.4.2 Ingredients used in Theorem 5.6

Here we provide the basic and intermediate results used in the proof of the lower bound stated in
Theorem 5.6. To establish the theorem, we prove two auxiliary lemmas. The first lemma shows that the
expected change in ∆(·) after one round is bounded by the conductance Φ(G).

Recall that for a set S ⊆ V (G) we let µS(t) = 1
|S|
∑
u∈S Xu(t) denote the mean load in the set S and

∆S(t) = µS(t)− µS(t).

Lemma 5.12. Let S ⊆ V (G) with |S| ≤ n/2. Then, for any round t ∈ N, it holds that

|E[∆S(t)−∆S(t− 1) | X(t− 1) = x]| ≤ Φ(G).

Proof. Consider an edge (u, v) ∈M(t). If both u and v belong to S (or both to S), a token may move
within S (or S), so the expected values µS(t) and µS(t) remain unchanged. In the remaining case, where
u ∈ S and v ∈ S (or vice versa), the sum of loads in S may increase or decrease. Hence,

E[µS(t)− µS(t− 1) | X(t− 1) = x] =
∑

(i,j)∈E(S,S)

Pr
[
(i, j) ∈M(t)

]
· sgn(xj − xi)

|S|
,

E[µS(t)− µS(t− 1) | X(t− 1) = x] =
∑

(i,j)∈E(S,S)

Pr
[
(i, j) ∈M(t)

]
· sgn(xi − xj)

|S|
.

Since ∆S(t) = µS(t)− µS(t), linearity of expectation and the fact that sgn(−z) = − sgn(z) give

E[∆S(t)−∆S(t− 1) | X(t− 1) = x]

= E[µS(t)− µS(t− 1) | X(t− 1) = x]−E[µS(t)− µS(t− 1) | X(t− 1) = x]

=
∑

(i,j)∈E(S,S)

Pr
[
(i, j) ∈M(t)

]
·
(

sgn(xj − xi)
|S|

− sgn(xi − xj)
|S|

)

≤
∑

(i,j)∈E(S,S)

Pr
[
(i, j) ∈M(t)

]
·
(

1

|S|
+

1

|S|

)

≤
∑

(i,j)∈E(S,S)

1

d|S|
,

where the last inequality uses Observation 5.1, Pr
[
(i, j) ∈M(t)

]
≤ 1/(2d), and the fact that |S| ≤ n/2

implies |S| ≤ |S|.
Applying the triangle inequality, we obtain

|E[∆S(t)−∆S(t− 1) | X(t− 1) = x]| ≤
∑

(i,j)∈E(S,S)

1

d|S|
≤ |E(S, S)|

d|S|
= Φ(G),

where the last inequality holds since the graph G is d-regular. It then completes the proof.

We next prove the second lemma, which is instrumental for the theorem. The lemma asserts that
there exists a round t (in terms of the initial discrepancy and the conductance of the graph) at which,
∆S(t) exceeds a threshold determined by the initial discrepancy.

132

Lemma 5.13. Let S ⊆ V (G) with |S| ≤ n/2, and fix an initial load vector with ∆S(0) ≥ K. Then, for
any p ∈ (0, 1) and round

t := min

{
K

4Φ(G)
,

K2

8 log(2/p)

}
,

it holds that
Pr

[
∆S(t) >

K

2

]
≥ 1− p.

Proof. For a round t′ ∈ [1, t], define the random variable

Z ′t := ∆S(t′)− t′ · Φ(G).

It follows from lemma 5.12 that the sequence Z1, Z2, . . . , Zt forms a submartingale. Applying lemma 5.12
and using the bound |∆S(t)−∆S(t− 1)| ≤ 2 (|S ≤ n/2 and since we have matching then a single node
u ∈ V can contribute to this difference by at most 2/|S|), we obtain via two-sided Azuma’s inequality
(similar to Theorem 6.6) for ε :=

√
2t log(2/p), that

Pr[|∆S(t)−∆S(0)| ≥ t · Φ(G) + ε] ≤ 2 exp

(
− 2ε2

t(2)2

)
= 2 exp

(
−ε

2

2t

)
:= p.

Since ∆S(0) ≥ K, it follows that ∆S(t) > K/2 with probability at least 1− p, provided

t · Φ(G) +
√
t ·
√

2 log(2/p) <
K

2
.

This holds if each term is at most K/4 individually, i.e., when

t ≤ min

 K

4Φ(G)
,

(
K

2
√

2 log(2/p)

)2
 = min

{
K

4Φ(G)
,

K2

8 log(2/p)

}
,

which establishes the claim.

5.5 Bounds for Specific Graph Classes

In this section, we present (upper) bounds on the discrepancy for specific classes of graphs and compare
them in detail with the most closely related work [49] in which the authors show that in a d-regular graph
with n nodes and edge expansion α, after a number of rounds, the discrepancy reaches O(d log(n)/α).
We, in contrast, show that the discrepancy becomes smaller than D after sufficiently many rounds for any
connected graph. In the following, we compare our results for concrete graph families.

r-Dimensional Torus. Here d = 2r, α = Θ(n−1/r), and D = θ(rn1/r). Note that r = 1 and
r = log(n) correspond to the cycle and the hypercube, respectively. It holds that

d log(n)

α
= 2rn1/r log(n) > D,

implying that our bound yields a smaller discrepancy. The same holds for r-dimensional grid.

133

Complete Graphs. Here α = Θ(n), d = n− 1, and D = 1. Hence,

d log(n)

α
= Θ(log(n)) > D.

Hamming (q-ary hypercube) Graphs H(r, q). Here n = qr, d = r(q− 1), and D = r. Fixing the
first coordinate gives α(H(r, q)) ≤ q − 1, and in fact, the boundary-to-volume ratio shows that α = q − 1.
Thus,

d log(n)

α
=
r(q − 1) log(qr)

q − 1
= r2 log(q) > D,

for all q, r ≥ 2.

Cartesian Powers of a Fixed Connected Regular Graph. Here our analysis again provides a
smaller discrepancy. Let G be a d0-regular graph on n0 vertices with edge expansion α0 and diameter D0.
Then n = nr0, d = rd0, and D = rD0. Taking sets that vary only in one coordinate, one sees that α ≤ α0

(hence α does not grow with r). Consequently,

d log(n)

α
≥ r2d0 log(n0)

α0
> rD0 = D,

where the last inequality holds for sufficiently large r. This construction subsumes the hypercube,
Hamming, and torus examples, as they are Cartesian powers of small base graphs.

Barbell-type Regular Graphs. Here we also obtain a better bound. Take two d-regular expanders
on n/2 vertices and connect them by a small number t of matching edges, adjusting interior edges to
maintain regularity. If t is small relative to n, the edge expansion satisfies α = Θ(t/n), while the diameter
remains small (at most a small constant greater than the expanders’ diameters). Hence,

d log(n)

α
> D.

Note that a tiny cut (small boundary) makes α very small while keeping the diameter small.

Random d-Regular Graphs. Here we typically have α = Θ(1) and D = Θ(log(n)). Then for
non-constant d, we have

d log(n)

α
= θ(d log(n)) = Ω(D),

indicating that for any fixed non-constant d and typical constants, with high probability, our bound
provides (asymptotically) smaller discrepancy. Moreover, in case of constant d, our bounds coincide.

For many standard expanders that are locally tree-like, our diameter-based bound also yields a smaller
value. Finally, our bound applies to non-regular graphs, whereas the previous bound applies only to
regular graphs.

5.6 Summary and Open Problems

In this work, we show that the token distribution process reduces any initial discrepancy K > D to D
within O

(
K log(Kn)/(1− λ) + (|E|+D2)|E| log(n)

)
rounds, w.h.p. Moreover, for a d-regular graph with

initial discrepancy disc(x(0)) = K > 8/Φ(G), it requires Ω(K/(1− λ)) rounds to reach a discrepancy of
K/4 with consonant probability.

134

Many related works have claimed that the process eventually reaches the diameter of the graph.
However, their results (1) do not specify the runtime, and (2) apply only to regular graphs. We show
that, for any arbitrary connected graph, the process reaches a load vector with discrepancy at most the
diameter. This implies that, for graphs with low expansion-sparse and poorly connected graphs-our bound
on the discrepancy improves upon existing results. In particular, for d-regular graphs with n nodes, edge
expansion α, and diameter D, when d log(n)/α = Ω(D), we show a smaller discrepancy; however, our
analysis may require a larger number of rounds.

An interesting question is whether our results can be extended to the multi-port version of the problem,
in which nodes of a regular graph may send or receive a token over each edge in their neighborhood whenever
the load difference between endpoints is at least 2d. We believe that a diameter-related discrepancy bound
should still be achievable. Another open question is whether one can design a randomized version of the
process, in which at most one token is moved over each edge, and show that the discrepancy reaches a
small constant, possibly by combining this approach with our results from part three on discrete static
load balancing using matchings.

135

6 Auxiliary Results

In this section we list the known results which we frequently use in our analysis

6.1 Drift Result

In our analysis we use the following tail bound for the sum of a non-increasing sequence of random variables
with variable negative drift. The proof uses established methods from drift analysis. In particular, it relies
one techniques found in the proof of the Variable Drift Theorem in [63].

Theorem 6.1. Let (X(t))t≥0 be a non-increasing sequence of discrete random variables with X(t) ∈ R+
0

for all t with fixed X(0) = x0. Assume there exists an increasing function h : R+
0 → R+ and a constant

σ > 0 such that the following holds. For all t ∈ N and all x > 0 with Pr[X(t) = x] > 0

1. E[X(t+ 1) | X(t) = x] ≤ x− h(x),

2. Var[X(t+ 1) | X(t) = x] ≤ σ · (E[X(t+ 1) | X(t) = x]− x)
2
.

Then the following statements hold.

1. For all δ ∈ (0, 1) and any arbitrary but fixed t

Pr

[∫ x0

X(t)

1

h(ϕ)
dϕ ≤ (1− δ)t

]
≤ exp

(
− δ2t

2(σ + 1)

)
.

2. For all δ ∈ (0, 1) and p ∈ (0, 1) we define t0 := 2(σ+1)
δ2

(
− log(p) + log

(
2(σ+1)
δ2

))
. Then

Pr

[∞∑
t=t0+1

X(t) ≤ 1

1− δ
·
∫ x0

0

ϕ

h(ϕ)
dϕ

]
≥ 1− p.

Proof. Throughout this proof we write

f(x) :=

∫ x0

x

1

h(ϕ)
dϕ.

We start by proving the first statement. Let a, b ∈ R+ with a ≤ b ≤ x0 be two arbitrary numbers.
Since h is increasing we have h(a) ≤ h(b) and 1/h(a) ≥ 1/h(b). Hence,

f(a)− f(b) =

∫ x0

a

1

h(ϕ)
dϕ−

∫ x0

b

1

h(ϕ)
dϕ =

∫ b

a

1

h(ϕ)
dϕ ≥

∫ b

a

1

h(b)
dϕ =

b− a
h(b)

.

From condition 1 of the theorem it follows that E[X(t+ 1) | X(t) = b] ≤ b − h(b) and consequently
h(b) ≤ b−E[X(t+ 1) | X(t) = b] giving us with X(t) = b

f(X(t+ 1))− f(b) ≥ X(t+ 1)− b
E[X(t+ 1)− b | X(t) = b]

. (6.1)

We introduce a new sequence of random variables for which we will derive a lower tail bound, defined as
(Y (t))t∈N given by Y (0) := 0 and

Y (t+ 1) := Y (t) +
X(t+ 1)−X(t)

E[X(t+ 1)−X(t)]
.

136

Comparing this with Equation (6.1) we see that regardless of the value of X(t) it holds that

f(X(t+ 1))− f(X(t)) ≥ X(t+ 1)−X(t)

E[X(t+ 1)−X(t)]
= Y (t+ 1)− Y (t).

By induction over t, and since f(x0) =
∫ x0

x0
(1/h(ϕ)) dϕ = 0 and Y (0) = 0, we have for all t

f(X(t)) = f(X(t))− f(x0) ≥ Y (t)− Y (0) = Y (t).

From the definition of (Yt)t≥0 it follows assuming X(t) = x that

E[Y (t+ 1)− Y (t) | X(t) = x] = E

[
X(t+ 1)− x

E[X(t+ 1)− x]

]
= 1.

Then, from the law of total expectation we get that

E[Y (t+ 1)− Y (t)] =
∑
x

E[Y (t+ 1)− Y (t) | X(t) = x] · Pr[X(t) = x]

=
∑
x

1 · Pr[X(t) = x] = 1.

Since Y (0) = 0 it immediately follows that E[Y (t)] = t. Furthermore, we may bound the variance of the
change of Y given X(t) = x by

Var[Y (t+ 1)− Y (t) | X(t) = x] = Var
[

X(t+ 1)− x
E[X(t+ 1)− x]

]
=

Var[X(t+ 1)− x]

(E[X(t+ 1)− x])2

(a)

≤ σ · (E[X(t+ 1)]− x)
2

(E[X(t+ 1)− x])
2 = σ,

where (a) follows from Condition 2 of the theorem. The sequence (Y (t) − E[Y (t)])t≥0 is a martingale
and hence fulfills the preconditions of Theorem 6.6 from [35] (restated as Theorem 6.4) with at := 1 and
σ2
t := σ. Note that E[Y (t)−E[Y (t)]] = 0. Hence, we obtain

Pr[Y (t)−E[Y (t)] ≤ 0− ε] ≤ exp

(
− ε2

2t(σ + 1)

)
.

Recalling that f(X(t)) ≥ Y (t) and E[Y (t)] = t and setting ε = δt for some δ ∈ (0, 1) we arrive at the first
statement of the theorem;

Pr[f(X(t)) ≤ (1− δ)t] ≤ exp

(
− δ2t

2(σ + 1)

)
.

Next we prove the second statement and bound
∑∞
t=t0+1X(t). Let T (x) := min{t ∈ N | X(t) ≤ x} be a

hitting time for the event that X(t) ≤ x. Using 1x<X(t) as the indicator variable (which is one if x < X(t)

and zero otherwise) we can write X(t) =
∫ x0

0
1X(t)>x dx because x0 is fixed and X(t) is non-increasing in

137

t resulting in X(t) ∈ [0, x0]. As a consequence it holds that

∞∑
t=t0+1

X(t) =

∞∑
t=t0+1

∫ x0

0

1X(t)>x dx =

∫ x0

0

(∞∑
t=t0+1

1X(t)>x

)
dx

=

∫ x0

0

(∞∑
t=t0+1

1t<T (x)

)
dx =

∫ x0

0

T (x)−1∑
t=t0+1

1

 dx =

∫ x0

0

max{0, T (x)− (t0 + 1)}dx.

We now proceed to bound the T (x). Using the first statement with a union bound over all t for

t > t0 :=
2(σ + 1)

δ2
·
(
− log(p) + log

(
2(σ + 1)

δ2

))
gives us

Pr

[∞∨
t=t0+1

f(X(t)) ≤ (1− δ)t

]
≤

∞∑
t=t0+1

exp

(
− δ2t

2(σ + 1)

)
≤
∫ ∞
t0

exp

(
− δ2t

2(σ + 1)

)
dt

=
2(σ + 1)

δ2
· exp

(
− δ2t0

2(σ + 1)

)
=: p.

As a consequence,

Pr

[∞∧
t=t0+1

t ≤ f(X(t))

1− δ

]
≥ 1− p,

and

Pr

[∧
t∈N0

t ≤ max

{
t0,

f(X(t))

1− δ

}]
≥ 1− p. (6.2)

Recalling that T (x) := min{t ∈ N | X(t) ≤ x} Equation (6.2) implies that

Pr

[∧
x<x0

T (x)− 1 ≤ max

{
t0,

f(X(T (x)− 1))

1− δ

}]
≥ 1− p,

since X(T (x)−1) > x by the definition of T (x) and f is non-increasing it holds that f(X(T (x)−1)) ≤ f(x).
It follows that

Pr

 ∧
x≤x0

T (x)− 1 ≤ max

{
t0,

f(x)

1− δ

} ≥ 1− p.

As a consequence we get that with probability at least 1− p∫ x0

0

max{0, T (x)− (t0 + 1)} dx ≤
∫ x0

0

max

{
0,max

{
t0,

f(x)

1− δ

}
+ 1− (t0 + 1)

}
dx.

Finally, we find that

138

∫ x0

0

max

{
0,max

{
t0,

f(x)

1− δ

}
+ 1− (t0 + 1)

}
dx

=

∫ x0

0

max

{
0,
f(x)

1− δ
− t0

}
dx ≤ 1

1− δ

∫ x0

0

f(x) dx

=
1

1− δ

∫ x0

0

∫ x0

x

1

h(ϕ)
dϕdx =

1

1− δ

∫ x0

0

∫ x0

0

1ϕ≥x
h(ϕ)

dϕdx

=
1

1− δ

∫ x0

0

1

h(ϕ)

∫ x0

0

1x≤ϕ dxdϕ =
1

1− δ
·
∫ x0

0

1

h(ϕ)
· ϕdϕ.

Putting everything together we see with probability at least 1− p that

∞∑
t=t0+1

X(t) ≤ 1

1− δ
·
∫ x0

0

ϕ

h(ϕ)
· dϕ.

6.2 Concentration Results

The following lemma allows us to turn a high-probability bound into a bound on the expected value. It is
a known state.

Lemma 6.2. Let X be a non-negative real random variable, and let n ∈ N. Then if there are c, C > 0

such that for all γ > 0,
Pr[X ≥ (γ + 1)C] ≤ cn−γ ,

then
E[X] ≤ C ·

(
1 +

c

log(n)

)
.

Proof. Observe that when x = (γ + 1)C we have γ = x
C − 1, so that for all x ≥ C we have

Pr[X ≥ x] ≤ c · n− x
C+1.

Thus,

E[X] =

∫ ∞
0

Pr[X ≥ x] dx =

∫ C

0

Pr[X ≥ x] dx+

∫ ∞
C

Pr[X ≥ x] dx

≤
∫ C

0

1 dx+

∫ ∞
C

c · n− x
C+1 dx = C +

[
− cCn1− x

C

log(n)

]∞
x=C

= C +

[
0 +

cCn1−1

log(n)

]
= C

(
1 +

c

log(n)

)
,

as claimed.

Theorem 6.3 (Bhatia-Davis inequality [30]). Let X be a real random variable with X ∈ [m,M]. Then
Var[X] ≤ (M −E[X])(E[X]−m).

Theorem 6.4 (Adapted from Theorem 6.6 in [35]). Let (X(t))nt=0 be a martingale associated with the
filter (F(t))nt=0, where there exist (at)

n
t=1 and (σt)

n
t=1 such that for all t ∈ [n],

1. X(t)−X(t− 1) ≥ at;

139

2. Var[X(t) | F(t− 1)] ≤ σ2
t .

Then for all ε > 0,
Pr[X(n) ≤ E[X(n)]− ε] ≤ exp

(
− ε2

2
∑n
i=1(a2

t + σ2
t)

)
.

Corollary 6.5. Let (X(t))nt=0 be a martingale associated with the filter (F(t))nt=0, where

∀t ∈ [n], |X(t)−X(t− 1)| ≤ 1.

Then with 〈X〉 as in Theorem 6.7, for any ε ≥ 0 and σ > 0,

Pr
[
|X(n)−X(0)| ≥ ε

3
+ v
√

2ε
]
≤ 2(e−ε + Pr

[
〈X〉n > v2

]
).

Proof. As (X(t))nt=0 is a martingale, it is also a supermartingale, and it fulfills the conditions of Theorem 6.7
by the assumptions of the claim. So way may use Theorem 6.7 to see that

Pr
[
X(n)−X(0) ≥ ε

3
+ σ
√

2ε ∧ 〈X〉n ≤ σ2
]

≤ Pr
[
∃t ∈ [n] : X(t)−X(0) ≥ ε

3
+ σ
√

2ε ∧ 〈X〉t ≤ σ2
]
≤ e−ε.

As Pr[A] ≤ Pr[(A ∧B) ∨B] ≤ Pr[A ∧B] + Pr[B], this implies that

Pr
[
X(n)−X(0) ≥ ε

3
+ σ
√

2ε
]
≤ e−ε + Pr

[
〈X〉n ≤ σ2

]
.

The claim follows from applying the same argument to the supermartingale (−X(t))nt=0 and a union
bound.

Theorem 6.6 (Azuma–Hoeffding inequality Theorem 13.6 in [75]). Let (X(t))nt=0 be a martingale
associated with the filter (F(t))nt=0, where there exist non-negative sequences (at)

n
t=1, (bt)

n
t=1 and (σt)

n
t=1

such that for all t ∈ [n],
−bt ≤ X(t)−X(t− 1) ≤ at.

Then for all ε > 0,

Pr[|X(n)−E[X(n)]| ≥ ε] ≤ 2 exp

(
− 2ε2∑n

i=1(at + bt)2

)
.

Theorem 6.7 (Adapted from Theorem 2.1 and combined with Remark 2.1 and Equation 18 in [44]). Let
(X(t))nt=0 be a supermartingale associated with the filter (F(t))nt=0, where X(t) − X(t − 1) ≤ 1 for all
t ∈ [n]. Let 〈X〉 be the quadratic characteristic of X, i.e., let

〈X〉0 = 0, 〈X〉t =

t∑
τ=1

E
[
(X(τ)−X(τ − 1))2

∣∣∣ F(τ − 1)
]
, ∀t ∈ [n].

Then, for any ε ≥ 0 and σ > 0,

Pr
[
∃t ∈ [n] : X(t)−X(0) ≥ ε

3
+ v
√

2ε ∧ 〈X〉t ≤ σ2
]
≤ e−ε.

140

Theorem 6.8 (Berry-Esseen Theorem [28, 43] for Non-identical Random Variables). Let Y1, Y2, · · · , Yk
be independently distributed with E[Yi] = 0, E

[
Y 2
i

]
= Var[Yi] = σ2

i and E
[
|Yi|3

]
= ρi < ∞. If Fk(x) is

the distribution of Y1+Y2+···+Yk√
σ2

1+σ2
2+···+σ2

k

and ΦN (x) is the standard normal distribution, then

|Fk(x)− ΦN (x)| ≤ C0 · ψ0,

where ψ0 =
∑k
i=1 ρi

(
∑k
i=1 σ

2
i)

3/2 and C0 is a constant.

Theorem 6.9 (Theorem 3.4 in [35], [72]). let Xi (1 ≤ i ≤ n) be independent random variables satisfying
Xi ≤ E[Xi] +M , for 1 ≤ i ≤ n. We consider the sum X =

∑n
i=1Xi with expectation E[X] =

∑n
i=1 E[Xi]

and variance Var[X] =
∑n
i=1 Var[Xi]. Then for any δ > 0 we have

Pr[X ≥ E[X] + δ] ≤ exp

(
− λ2

2 · (Var[X] +Mδ/3)

)
.

Theorem 6.10 (Theorem 4.1 in [35]). Let Xi denote independent random variable satisfying Xi ≥
E[Xi]− ai −M for 0 ≤ i ≤ n. For X =

∑n
i=1Xi and any δ > 0 we have

Pr[X ≤ E[X]− δ] ≤ exp

(
− δ2

2 · (Var[X] +
∑n
i=1 a

2
i +Mδ/3)

)
.

Theorem 6.11 (Theorem 3.4 in [35]). Let Yi denote independent random variables satisfying Yi ≤
E[Yi] + ai +M , for 1 ≤ i ≤ n. For Y =

∑n
i=1 Yiand any δ > 0, we have

Pr[Y ≥ E[Y] + δ] ≤ exp

(
− δ2

2(Var[Y] +
∑n
i=1 a

2
i +Mδ/3)

)
.

Theorem 6.12 (Theorem 6.1 in [35]). Let Xi be the martingale associated with a filter F satisfying

1. Var[Xi | Fi−1)] ≤ σ2 for i ∈ [n],

2. |Xi −Xi−1| ≤M for i ∈ [n].

Then, we have

Pr[Xn −E[Xn] ≥ δ] ≤ exp

(
− δ2

2(
∑n
i=1 σ

2 +Mδ/3)

)
.

Theorem 6.13 (Theorem 6.5 in [35]). Let Xi be the martingale associated with a filter F satisfying

1. Var[Xi | Fi−1)] ≤ σ2 for i ∈ [n],

2. Xi−1 −Xi ≤ ai +M for i ∈ [n].

Then, we have

Pr[Xn −E[Xn] ≤ −δ] ≤ exp

(
− δ2

2(
∑n
i=1(σ2 + a2

i) +Mδ/3)

)
.

141

Theorem 6.14 ([77, page 92, Theorem 4.16, Azuma’s Inequality]). Let X0, X1, . . . be a martingale
sequence such that for each k, |Xk −Xk−1| ≤ ck, where ck may depend on k. Then, for all t ≥ 0 and any
δ > 0,

Pr[|Xt −X0| ≥ δ] ≤ 2 · exp

(
− δ2

2
∑t
k=1 c

2
k

)
.

Sum of {0, 1} random variables which satisfy negative association condition has Chernoff-like tail
concentration.

Lemma 6.15 (Proposition 29 in [42]). The Chernoff-Hoeffding bounds apply to sum of variables that
satisfy the negative association condition. In other words, let Y1, Y2, · · · , Yn be a sequence of {0, 1} random
variables satisfying the negative association condition and Y =

∑n
i=1 Yi and µ = E[Y]. Then it holds,

1. For all δ > 0 that

Pr[Y ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ exp

(
−δ

2 · µ
2 + δ

)
,

2. For all 1 > δ > 0 that

Pr[Y ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
≤ exp

(
−δ

2 · µ
2

)
.

6.3 Random Walks, Hitting Times and Effective Resistance

In this subsection we present for completeness fundamental definitions and relations concerning random
walks, hitting times, and the effective resistance. We start with a definition of the effective resistance of
a network in Definition 6.1. For a motivation of the definition see [64, Chapter 9]. Further details and
properties can also be found in [40] and [67, Section 4].

Definition 6.1 (Harmonic Functions and Effective Resistance). Let G be a graph and let i, j ∈ [n] be
nodes of the graph. Then a harmonic function on G with the poles i and j (for unit edge weights) is a
function f : [n]→ R such that for all k ∈ [n] \ {i, j} we have f(k) = 1

d(k) ·
∑
l∈NG(k) f(l), where NG(k) is

the set of k’s neighbors in G. Given a harmonic function f on G with the poles i and j (with arbitrary
boundary values f(i) 6= f(j)), the effective resistance (or resistive distance between i and j in G is given
by

Res(i, j) :=
f(i)− f(j)∑

k∈NG(i)|f(k)− f(i)|
.

Note that the value is not dependent on the boundary values of the harmonic function.

Note that for boundary values f(i) and f(j) the harmonic function is unique [64, Proposition 9.1].
The following is a well-known property of effective resistances; it is a direct consequence of, e.g.,

Corollary 9.13 in [64].

Lemma 6.16. Let G be a graph, and write d(i, j) for the (standard) distance between i and j in G. Then
Res(i, j) ≤ d(i, j).

For a graph G, and nodes i, j ∈ V (G), let H(i, j) be the hitting time from i to j, i.e., the expected
time for a random walk on G starting at i to reach j for the first time.

142

Theorem 6.17 (Theorem 4.1 (i) in [67]). Let G be a graph. Then for any i, j ∈ V (G),

H(i, j) +H(j, i) = 2 · |E| · Res(i, j).

Corollary 6.18. Let G be a graph. Then for any i, j ∈ V (G),

max{H(i, j), H(j, i)} ≤ 2 · |E(G)| · Res(i, j) ≤ 2 ·max{H(i, j), H(j, i)}.

Proof. For the first inequality, since one of H(i, j) and H(j, i) is at least the maximum of the two, we
have, by Theorem 6.17:

max{H(i, j), H(j, i)} ≤ H(i, j) +H(j, i) = 2 · |E(G)| · Res(i, j).

And for the second inequality, since both H(i, j) and H(j, i) are at most the maximum of the two, we
have, again by Theorem 6.17

2 · |E(G)| · Res(i, j) = H(i, j) +H(j, i) ≤ 2 ·max{H(i, j), H(j, i)},

as claimed.

Theorem 6.19 (Dirichlet’s principle, see Exercise 2.13 in [69]; or Exercise 9.9 in [64], referencing Theorem
6.1 in [65]). Let u, v be distinct nodes of a graph G. Then

min
~a∈Rn
av=1
au=0

ΨG(~a) =
1

Res(u, v)
.

Theorem 6.20 (Corollary 3.3 in [67], applied to d-regular graphs). Let G be an arbitrary graph on n

nodes. Then
n ≤ H(i, j) +H(j, i) ≤ n

λ(L(G))
.

The following lemma is well-known; we state it for completeness. It relates the hitting time of a graph
G to its resistive diameter and the edge hitting time of G to the Res∗(G).

Lemma 6.21. For any graph G = (V,E)

1. Res∗(G) · |E| ≤ t*
hit(G) ≤ 2 · Res∗(G) · |E|, and

2. Res(G) · |E| ≤ thit(G) ≤ 2 · Res(G) · |E|.

Proof. Recall that
t*
hit(G) := max

i,j∈V,{i,j}∈E
H(i, j),

and that
Res∗(G) := max

i,j∈V,{i,j}∈E
Res(i, j).

For the first inequality, let i, j ∈ V be adjacent nodes for which Res(i, j) = Res∗(G). Then, by Corol-
lary 6.18,

2 · |E| · Res∗(G) ≤ 2 · |E| · Res(i, j) ≤ 2 ·maxH(i, j), H(j, i) ≤ 2 · t*
hit(G),

143

which becomes the first inequality after dividing by 2 on both sides. For the second inequality, let i, j ∈ V
be adjacent nodes for which t*

hit(G) = H(i, j). Then, again by Corollary 6.18,

t*
hit(G) = H(i, j) ≤ 2 · |E| · Res(i, j) ≤ 2 · |E| · Res∗(G).

The second statement is entirely analogous, except that the i, j ∈ V are no longer required to be
adjacent, and that they are chosen such that Res(i, j) = Res(G) for the first inequality, or, for the second
inequality, that H(i, j) = thit(G).

6.4 Basic Results for Load Balancing

In this subsection we mention the useful lemmas from related works which are used in our analysis of the

first part. Recall that Φ (m
[τ,t]
k,·) =

∣∣∣∣∣∣m[τ,t]
k,· −

~1
n

∣∣∣∣∣∣2
2
and R := m[1,∆] is the round matrix in the balancing

circuit model.

Lemma 6.22 (Lemma 2 in [53]). It holds that Φ (R
[1,τ]
k,·) ≤ (1− λ (R))2τ . More generally,

Φ (R
[1,t+τ]
k,·) ≤ (1− λ (R))2τ · Φ (R

[1,t]
k,·).

Lemma 6.23 ([82]). Let G be a r-dimensional torus graph with the round matrix R. Then it holds,

1− λ (R) = θ(
1

n2/r
).

Lemma 6.24 ([82]). Let G be a cycle graph with the round matrix R. Then it holds,

1− λ (R) = θ(
1

n2
).

Lemma 6.25 ([33]). Let G be a r-dimensional torus graph with the round matrix R. Then if graph G is

1. a cycle, then it holds Φ (R
[1,τ]
k,·) = O(1√

τ
).

2. a 2-dimensional torus, then it holds that Φ (R
[1,τ]
k,·) = O(1

τ).

3. a r-dimensional with r ≥ 3, then it holds Φ (R
[1,τ]
k,·) ≤ τ−r/2.

4. a hypercube, then it holds that Φ (R
[1,τ]
k,·) ≤ 2−τ .

Here we list basic results from [85] that we use in our analysis.

Lemma 6.26 ([85, Lemma 2.4]). Consider the balancing circuit model with sequence of matchings
m[∞] :=

(
m(s)

)∞
s=1

with round matrix R :=
∏∆
s=1 m

(s). Then for any node u ∈ V it holds

∥∥∥∥∥m[1,t·∆]
u,. −

~1

n

∥∥∥∥∥
2

2

≤ (λ(R))
t
.

Lemma 6.27 (cf. [85, Corollary 2.7]). Consider the random matching model with sequence of matchings
M[∞]. Then for any node u ∈ V and any round t ≥ 1 we have

Pr

∥∥∥∥∥M[1,t]
u,. −

~1

n

∥∥∥∥∥
2

2

≤ e−
pmin·∆

2 ·(1−λ(P))·t

 ≥ 1− e−
pmin·∆

2 ·(1−λ(P))·t,

144

We remark that in contrast to [85, Corollary 2.7], we have dropped the constraint that pmin = Ω(1
∆)

as it is easy to see that the proof works without this constraint.

Theorem 6.28 ([85, Theorem 2.9]). Let G be any graph with maximum degree ∆ and consider the
random matching model. Then with probability at least 1 − n−1 the sequence of matchings M[t] is
(K, 1/(2n))-smoothing for

t :=
8

∆ · pmin
· 1

1− λ(P)
· log

(
4Kn2

)
.

Occasionally, we may add/subtract the same number of tokens to/from each node.

Observation 6.29 ([85, Observation 2.11]). Fix a sequence of matchings M[∞]. Consider two executions
of the discrete load balancing protocol with the same matchings and the same random choices for the excess
tokens but with different initial load vectors x(0) and x̃(0). Then the following two statements hold:

1. If x̃(0) = x(0) + α · 1 for some α ∈ Z, then X̃(t) = X(t) + α · 1 for all t ≥ 1.

2. If xu(0) ≤ x̃u(0) for all u ∈ V , then Xu(t) ≤ X̃u(t) for all u ∈ V and t ≥ 1.

Next observation bounds the tail of the lower gap by that of upper gap.

Observation 6.30 (cf. [85, Observation 2.12]). Assume disc(x(0)) = K. Fix a sequence of matchings
M[∞]. Then for arbitrary positive integers α and t it holds that

max
y∈Zn:

disc(y)≤K

{
Pr
[
Xmin(t) ≤ bxc − α

∣∣∣ x(0) = y
]}
≤ max

y∈Zn:
disc(y)≤K

{
Pr
[
Xmax(t) ≥ bxc+ α

∣∣∣ x(0) = y
]}
.

The following observation shows an important relationship.

Observation 6.31 (cf. [85, Lemma 2.2]). Assume the sequence of matchings M[t] satisfies for all u ∈ V
that

∥∥∥M[1,t]
u,. − ~1n

∥∥∥2

2
≤
(

ε
2K·n

)2. Then this sequence is (K, ε)-smoothing.

We will omit the proof, since the result follows immediately by noting that maxv∈V

∣∣∣M[1,t]
u,v − 1

n

∣∣∣ ≤∥∥∥M[1,t]
u,. − ~1n

∥∥∥
2
and then applying the third statement of [85, Lemma 2.2].

The next three lemmas are simple and known results.

Observation 6.32. Let M be an n× n doubly stochastic matrix. Then for any node u ∈ V ,∥∥∥∥∥Mu,. −
~1

n

∥∥∥∥∥
2

2

= ‖Mu,.‖22 −
1

n
.

Proof. We calculate∥∥∥∥Mu,. − 1 · 1
n

∥∥∥∥2

2

=
∑
v∈V

(
Mu,v −

1

n

)2

=
∑
v∈V

(
(Mu,v)

2 − 2

n
·Mu,v −

1

n2

)
=
∑
v∈V

(Mu,v)
2 − 2

n
·
∑
v∈V

Mu,v +
∑
v∈V

1

n2
= ‖Mu,.‖22 −

2

n
+

1

n
.

145

Observation 6.33. Let M be any doubly stochastic matrix and (ak)k∈V be any stochastic vector. Then

∑
w∈V

(∑
k∈V

ak ·Mw,k

)2

=
∑
w∈V

(∑
k∈V

ak ·Mw,k −
1

n

)2

+
1

n
.

Proof.

∑
w∈V

(∑
k∈V

ak ·Mw,k

)2

=
∑
w∈V

(∑
k∈V

(
ak −

1

n

)
·Mw,k +

1

n

)2

=
∑
w∈V

(∑
k∈V

(
ak −

1

n

)
·Mw,k

)2

+
2

n
·
∑
w∈V

∑
k∈V

(
ak −

1

n

)
·Mw,k +

∑
w∈V

1

n2

=
∑
w∈V

(∑
k∈V

(
ak −

1

n

)
·Mw,k

)2

+
2

n
·
∑
k∈V

(
ak −

1

n

)
·
∑
w∈V

Mw,k +
1

n

(a)
=
∑
w∈V

(∑
k∈V

ak ·Mw,k −
1

n

)2

+
1

n
,

where (a) holds since Mw,. is stochastic, from
∑
k∈V ak = 1 and |V | = n we get

∑
k∈V

(
ak − 1

n

)
= 0.

The next observation is a well-known statement and in fact, it is implied by Equation (3.41).

Observation 6.34. For each node w ∈ V the expression
∥∥∥M[1,t]

w,. − ~1n
∥∥∥2

2
is non-increasing over t.

Proof. The observation follows from the fact that 1 is an eigenvector of any matching matrix with
eigenvalue 1, and all its eigenvalues are between [−1, 1]. Here we give a more intuitive proof, which uses
the balancing process. Let u, v be nodes with [u : v] ∈M(t+1). From the balancing process we have,

M[1,t+1]
w,u = M[1,t+1]

w,v =
M

[1,t]
w,u + M

[1,t]
w,v

2
.

Note that if a node u ∈ V is not matched in M(t+1), then

M[1,t+1]
w,u = M[1,t]

w,u .

We have∥∥∥∥∥M[1,t+1]
w,. −

~1

n

∥∥∥∥∥
2

2

−

∥∥∥∥∥M[1,t]
w,. −

~1

n

∥∥∥∥∥
2

2

=
∑

[u:v]∈M(t+1)

2 ·

(
M

[1,t]
w,u + M

[1,t]
w,v

2
− 1

n

)2

−
(
M[1,t]

w,u −
1

n

)2

−
(
M[1,t]

w,v −
1

n

)2

=
∑

[u:v]∈M(t+1)

1

2

((
M[1,t]

w,u −
1

n

)
+

(
M[1,t]

w,v −
1

n

))2

−
(
M[1,t]

w,u −
1

n

)2

−
(
M[1,t]

w,v −
1

n

)2

(a)
= −1

2

∑
[u:v]∈M(t+1)

(
M[1,t]

w,u −M[1,t]
w,v

)2

≤ 0,

where in (a) we use the fact that (a+ b)2/2− a2 − b2 = −(a− b)2/2.

146

The next lemma is elementary.

Lemma 6.35. The following statements hold.

• For any p, q ∈ [0, 1] and any even integer k we have,

(
p+ q

2

)k
≥ pk/2 · qk/2.

• For any p, q ∈ [0, 1] and any odd integer k we have,

(
p+ q

2

)k
≥ 1

2
pdk/2e · qbk/2c +

1

2
pbk/2c · qdk/2e.

Proof. For even k, this is equivalent to the arithmetic-geometric mean inequality.
Consider now the case of odd k = 2` + 1 for even `. Starting from the arithmetic-geometric mean

inequality, we have (
p+ q

2

)
≥ √p · q,

and raising both sides to the power of 2`, (
p+ q

2

)2`

≥ p`q`.

Now multiplying both sides by p+q
2 ,

(
p+ q

2

)2`+1

≥ p`q` ·
(
p+ q

2

)
=

1

2
p`+1q` +

1

2
p`q`+1.

Lemma 6.36 (Proposition 13.2.6 in [84]). Let X and Y be random variables, and let F be a sub-σ-algebra.
Suppose that E[X] and E[XY] are finite, and furthermore that X is F-measurable. Then with probability 1,

E
[
X · Y

∣∣∣ F] = X ·E
[
Y
∣∣∣ F].

Lemma 6.37 (Lemma 2 in [42]). Let X1, · · · , Xn satisfy the negative association condition. Then for
any non-decreasing function fi, i ∈ [n],

E

∏
i∈[n]

fi(Xi)

 ≤ ∏
i∈[n]

E[fi(Xi).]

147

References

[1] M. Abramowitz and I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, ninth Dover printing, tenth GPO printing. Dover, 1964.

[2] H. Ackermann, S. Fischer, M. Hoefer, and M. Schöngens: Distributed algorithms for QoS load
balancing. In Distributed Comput. volume 23 (5-6), 2011, pages 321–330. doi: 10.1007/s00446-010-
0125-1.

[3] W. Aiello, B. Awerbuch, B. M. Maggs, and S. Rao: Approximate load balancing on dynamic and
asynchronous networks. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, STOC. ACM, 1993, pages 632–641. doi: 10.1145/167088.167250.

[4] H. Akbari, P. Berenbrink, and T. Sauerwald: A simple approach for adapting continuous load
balancing processes to discrete settings. In Distributed Comput. volume 29 (2), 2016, pages 143–161.

[5] S. G. Aksoy, F. Chung, M. Tait, and J. Tobin: The maximum relaxation time of a random walk. In
Adv. Appl. Math. volume 101, 2018, pages 1–14. doi: 10.1016/j.aam.2018.07.002.

[6] D. Alistarh, G. Nadiradze, and A. Sabour: Dynamic Averaging Load Balancing on Cycles. In 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020. LIPIcs, volume
168, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pages 7:1–7:16. doi: 10.4230/LIPIcs.
ICALP.2020.7.

[7] A. Anagnostopoulos, A. Kirsch, and E. Upfal: Load Balancing in Arbitrary Network Topologies with
Stochastic Adversarial Input. In SIAM Journal on Computing, volume 34 (3), 2005, pages 616–639.
doi: 10.1137/S0097539703437831.

[8] E. Anshelevich, D. Kempe, and J. M. Kleinberg: Stability of Load Balancing Algorithms in Dynamic
Adversarial Systems. In SIAM J. Comput. volume 37 (5), 2008, pages 1656–1673. doi: 10.1137/
050639272.

[9] G. Bankhamer, P. Berenbrink, F. Biermeier, R. Elsässer, H. Hosseinpour, D. Kaaser, and P. Kling:
Fast Consensus via the Unconstrained Undecided State Dynamics. 2021. arXiv: 2103.10366 [cs.DC].

[10] G. Bankhamer, P. Berenbrink, F. Biermeier, R. Elsässer, H. Hosseinpour, D. Kaaser, and P. Kling:
Fast Consensus via the Unconstrained Undecided State Dynamics. In Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms, SODA 2022. SIAM, 2022, pages 3417–3429. doi:
10.1137/1.9781611977073.135.

[11] G. Bankhamer, P. Berenbrink, F. Biermeier, R. Elsässer, H. Hosseinpour, D. Kaaser, and P. Kling:
Population Protocols for Exact Plurality Consensus – How a small chance of failure helps to eliminate
insignificant opinions. 2024. arXiv: 2402.06471 [cs.DC].

[12] G. Bankhamer, P. Berenbrink, F. Biermeier, R. Elsässer, H. Hosseinpour, D. Kaaser, and P. Kling:
Population Protocols for Exact Plurality Consensus: How a small chance of failure helps to eliminate
insignificant opinions. In PODC ’22: ACM Symposium on Principles of Distributed Computing.
ACM, 2022, pages 224–234. doi: 10.1145/3519270.3538447.

[13] N. Bansal and O. N. Feldheim: The power of two choices in graphical allocation. In STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022. ACM,
2022, pages 52–63. doi: 10.1145/3519935.3519995.

[14] P. Berenbrink, C. Cooper, T. Friedetzky, T. Friedrich, and T. Sauerwald: Randomized diffusion
for indivisible loads. In J. Comput. Syst. Sci. volume 81 (1), 2015, pages 159–185. doi: 10.1016/J.
JCSS.2014.04.027.

148

https://doi.org/10.1007/s00446-010-0125-1
https://doi.org/10.1007/s00446-010-0125-1
https://doi.org/10.1145/167088.167250
https://doi.org/10.1016/j.aam.2018.07.002
https://doi.org/10.4230/LIPIcs.ICALP.2020.7
https://doi.org/10.4230/LIPIcs.ICALP.2020.7
https://doi.org/10.1137/S0097539703437831
https://doi.org/10.1137/050639272
https://doi.org/10.1137/050639272
https://arxiv.org/abs/2103.10366
https://doi.org/10.1137/1.9781611977073.135
https://arxiv.org/abs/2402.06471
https://doi.org/10.1145/3519270.3538447
https://doi.org/10.1145/3519935.3519995
https://doi.org/10.1016/J.JCSS.2014.04.027
https://doi.org/10.1016/J.JCSS.2014.04.027

[15] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking: Balanced Allocations: The Heavily Loaded Case.
In SIAM J. Comput. volume 35 (6), 2006, pages 1350–1385. doi: 10.1137/S009753970444435X.

[16] P. Berenbrink, R. Elsässer, T. Friedetzky, H. Hosseinpour, D. Kaaser, P. Kling, and T. Sauerwald:
(Almost) Perfect Discrete Iterative Load Balancing. 2025. arXiv: 2510.15473 [cs.DC].

[17] P. Berenbrink, R. Elsässer, T. Friedetzky, H. Hosseinpour, D. Kaaser, P. Kling, and T. Sauerwald:
(Almost) Perfect Discrete Iterative Load Balancing. In, Jan. 2026, pages 4224–4237. doi: 10.1137/
1.9781611978971.156.

[18] P. Berenbrink, T. Friedetzky, and L. A. Goldberg: The Natural Work-Stealing Algorithm is Stable.
In SIAM J. Comput. volume 32 (5), 2003, pages 1260–1279.

[19] P. Berenbrink, T. Friedetzky, and Z. Hu: A new analytical method for parallel, diffusion-type load
balancing. In J. Parallel Distributed Comput. volume 69 (1), 2009, pages 54–61. doi: 10.1016/J.
JPDC.2008.05.005.

[20] P. Berenbrink, T. Friedetzky, D. Kaaser, and P. Kling: Tight & Simple Load Balancing. In 2019
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2019, Rio de Janeiro,
Brazil, May 20-24, 2019. IEEE, 2019, pages 718–726. doi: 10.1109/IPDPS.2019.00080.

[21] P. Berenbrink, T. Friedetzky, and R. A. Martin: Dynamic Diffusion Load Balancing. In Automata,
Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July
11-15, 2005, Proceedings, 2005.

[22] P. Berenbrink, T. Friedetzky, and R. A. Martin: On the Stability of Dynamic Diffusion Load
Balancing. In Algorithmica, volume 50 (3), 2008, pages 329–350. doi: 10.1007/S00453-007-9081-Y.

[23] P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau: Dynamic Averaging Load
Balancing on Arbitrary Graphs. 2023. arXiv: 2302.12201 [cs.DC].

[24] P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau: Dynamic Averaging Load
Balancing on Arbitrary Graphs. In 50th International Colloquium on Automata, Languages, and
Programming, ICALP. LIPIcs, volume 261, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023,
pages 18:1–18:18. doi: 10.4230/LIPICS.ICALP.2023.18.

[25] P. Berenbrink, M. Hoefer, and T. Sauerwald: Distributed Selfish Load Balancing on Networks. In
ACM Trans. Algorithms, volume 11 (1), 2014, pages 2:1–2:29. doi: 10.1145/2629671.

[26] P. Berenbrink, R. Klasing, A. Kosowski, F. Mallmann-Trenn, and P. Uznanski: Improved Analysis
of Deterministic Load-Balancing Schemes. In ACM Trans. Algorithms, volume 15 (1), 2019, pages
10:1–10:22. doi: 10.1145/3282435.

[27] P. Berenbrink, P. Kling, C. Liaw, and A. Mehrabian: Tight Load Balancing Via Randomized Local
Search. In 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017.
IEEE Computer Society, 2017, pages 192–201. doi: 10.1109/IPDPS.2017.52.

[28] A. C. Berry: The Accuracy of the Gaussian Approximation to the Sum of Independent Variates. In
Transactions of the American Mathematical Society, volume 49 (1), 1941, pages 122–136.

[29] D. P. Bertsekas and J. N. Tsitsiklis: Parallel and Distributed Computation: Numerical Methods.
Prentice Hall, 1989.

[30] R. Bhatia and C. Davis: A Better Bound on the Variance. In Am. Math. Mon. volume 107 (4), 2000,
pages 353–357.

149

https://doi.org/10.1137/S009753970444435X
https://arxiv.org/abs/2510.15473
https://doi.org/10.1137/1.9781611978971.156
https://doi.org/10.1137/1.9781611978971.156
https://doi.org/10.1016/J.JPDC.2008.05.005
https://doi.org/10.1016/J.JPDC.2008.05.005
https://doi.org/10.1109/IPDPS.2019.00080
https://doi.org/10.1007/S00453-007-9081-Y
https://arxiv.org/abs/2302.12201
https://doi.org/10.4230/LIPICS.ICALP.2023.18
https://doi.org/10.1145/2629671
https://doi.org/10.1145/3282435
https://doi.org/10.1109/IPDPS.2017.52

[31] J. E. Boillat: Load Balancing and Poisson Equation in a Graph. In Concurr. Pract. Exp. volume
2 (4), 1990, pages 289–314. doi: 10.1002/CPE.4330020403.

[32] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah: Randomized gossip algorithms. In IEEE Trans.
Inf. Theory, volume 52 (6), 2006, pages 2508–2530. doi: 10.1109/TIT.2006.874516.

[33] L. Cai and T. Sauerwald: Randomized Load Balancing on Networks with Stochastic Inputs. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017. LIPIcs, volume
80, 2017, pages 139:1–139:14. doi: 10.4230/LIPIcs.ICALP.2017.139.

[34] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari: The Electrical Resistance
of a Graph Captures its Commute and Cover Times. In Comput. Complex. volume 6 (4), 1997, pages
312–340. doi: 10.1007/BF01270385.

[35] F. R. K. Chung and L. Lu: Survey: Concentration Inequalities and Martingale Inequalities: A Survey.
In Internet Math. volume 3 (1), 2006, pages 79–127. doi: 10.1080/15427951.2006.10129115.

[36] J. N. Cooper, B. Doerr, T. Friedrich, and J. Spencer: Deterministic random walks on regular trees.
In Random Struct. Algorithms, volume 37 (3), 2010, pages 353–366. doi: 10.1002/RSA.20314.

[37] J. N. Cooper and J. Spencer: Simulating a Random Walk with Constant Error. In Comb. Probab.
Comput. volume 15 (6), 2006, pages 815–822. doi: 10.1017/S0963548306007565.

[38] G. Cybenko: Dynamic Load Balancing for Distributed Memory Multiprocessors. In J. Parallel
Distributed Comput. volume 7 (2), 1989, pages 279–301. doi: 10.1016/0743-7315(89)90021-X.

[39] R. Diekmann, A. Frommer, and B. Monien: Efficient schemes for nearest neighbor load balancing.
In Parallel Comput. volume 25 (7), 1999, pages 789–812. doi: 10.1016/S0167-8191(99)00018-6.

[40] P. G. Doyle and J. L. Snell: Random Walks and Electric Networks. Carus Mathematical Monographs.
Mathematical Association of America, 1984.

[41] D. P. Dubhashi and D. Ranjan: Balls and bins: A study in negative dependence. In Random Struct.
Algorithms, volume 13 (2), 1998, pages 99–124. doi: 10.1002/(SICI)1098- 2418(199809)13:
2\<99::AID-RSA1\>3.0.CO;2-M.

[42] D. Dubhashi and D. Ranjan: Balls and Bins: A Study in Negative Dependence. In Random Struct.
Algorithms, volume 13 (2), Sept. 1998, pages 99–124.

[43] C.-G. Esseen: On the Liapounoff Limit of Error in the Theory of Probability. Arkiv för matematik,
astronomi och fysik. Almqvist & Wiksell, 1942.

[44] X. Fan, I. Grama, and Q. Liu: Hoeffding’s Inequality for Supermartingales. In Stochastic Processes and
their Applications, volume 122 (10), Oct. 2012, pages 3545–3559. doi: 10.1016/j.spa.2012.06.009.

[45] S. Fischer, H. Räcke, and B. Vöcking: Fast Convergence to Wardrop Equilibria by Adaptive Sampling
Methods. In SIAM J. Comput. volume 39 (8), 2010, pages 3700–3735. doi: 10.1137/090746720.

[46] T. Friedrich, M. Gairing, and T. Sauerwald: Quasirandom Load Balancing. In SIAM J. Comput.
volume 41 (4), 2012, pages 747–771. doi: 10.1137/100799216.

[47] T. Friedrich and T. Sauerwald: Near-perfect load balancing by randomized rounding. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009. ACM, 2009, pages 121–130. doi: 10.1145/1536414.1536433.

[48] J. Gehrke, C. G. Plaxton, and R. Rajaraman: Rapid Convergence of a Local Load Balancing
Algorithm for Asynchronous Rings. In Theor. Comput. Sci. volume 220 (1), 1999, pages 247–265.
doi: 10.1016/S0304-3975(98)00243-6.

150

https://doi.org/10.1002/CPE.4330020403
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.4230/LIPIcs.ICALP.2017.139
https://doi.org/10.1007/BF01270385
https://doi.org/10.1080/15427951.2006.10129115
https://doi.org/10.1002/RSA.20314
https://doi.org/10.1017/S0963548306007565
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1016/S0167-8191(99)00018-6
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2\<99::AID-RSA1\>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2\<99::AID-RSA1\>3.0.CO;2-M
https://doi.org/10.1016/j.spa.2012.06.009
https://doi.org/10.1137/090746720
https://doi.org/10.1137/100799216
https://doi.org/10.1145/1536414.1536433
https://doi.org/10.1016/S0304-3975(98)00243-6

[49] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Rajaraman, A. W.
Richa, R. E. Tarjan, and D. Zuckerman: Tight analyses of two local load balancing algorithms. In
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing. STOC ’95.
Association for Computing Machinery, 1995, pages 548–558. doi: 10.1145/225058.225272.

[50] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Rajaraman, A. W.
Richa, R. E. Tarjan, and D. Zuckerman: Tight Analyses of Two Local Load Balancing Algorithms.
In SIAM J. Comput. volume 29 (1), 1999, pages 29–64. doi: 10.1137/S0097539795292208.

[51] B. Ghosh and S. Muthukrishnan: Dynamic Load Balancing by Random Matchings. In J. Comput.
Syst. Sci. volume 53 (3), 1996, pages 357–370. doi: 10.1006/jcss.1996.0075.

[52] B. Ghosh and S. Muthukrishnan: Dynamic Load Balancing by Random Matchings. In Journal of
Computer and System Sciences, volume 53 (3), 1996, pages 357–370. doi: https://doi.org/10.
1006/jcss.1996.0075.

[53] B. Ghosh, S. Muthukrishnan, and M. H. Schultz: First and Second Order Diffusive Methods for
Rapid, Coarse, Distributed Load Balancing (Extended Abstract). In Proceedings of the 8th Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA ’96. ACM, 1996, pages 72–81.
doi: 10.1145/237502.237509.

[54] V. Guruswami: Rapidly Mixing Markov Chains: A Comparison of Techniques (A Survey). 2016.
arXiv: 1603.01512 [cs.DS].

[55] F. M. auf der Heide, B. Oesterdiekhoff, and R. Wanka: Strongly Adaptive Token Distribution. In
Algorithmica, volume 15 (5), 1996, pages 413–427. doi: 10.1007/BF01955042.

[56] M. Herlihy and S. Tirthapura: Randomized smoothing networks. In J. Parallel Distributed Comput.
volume 66 (5), 2006, pages 626–632. doi: 10.1016/J.JPDC.2005.06.009.

[57] M. Hoefer and T. Sauerwald: Threshold Load Balancing in Networks. In CoRR, volume abs/1306.1402,
2013. arXiv: 1306.1402.

[58] R. M. Karp, M. Luby, and F. M. auf der Heide: Efficient PRAM Simulation on a Distributed Memory
Machine. In Algorithmica, volume 16 (4/5), 1996, pages 517–542. doi: 10.1007/BF01940878.

[59] J. Keilson: Markov Chain Models — Rarity and Exponentiality. Springer New York, 1979. doi:
10.1007/978-1-4612-6200-8_1.

[60] D. Kempe, A. Dobra, and J. Gehrke: Gossip-Based Computation of Aggregate Information. In 44th
Symposium on Foundations of Computer Science, FOCS. IEEE Computer Society, 2003, pages
482–491. doi: 10.1109/SFCS.2003.1238221.

[61] A. Klenke: Probability theory - a comprehensive course. Universitext. Springer, 2008.

[62] H. Landau and A. Odlyzko: Bounds for eigenvalues of certain stochastic matrices. In Linear Algebra
and its Applications, volume 38, 1981, pages 5–15. doi: 10.1016/0024-3795(81)90003-3.

[63] J. Lengler: Drift Analysis. In Theory of Evolutionary Computation - Recent Developments in Discrete
Optimization. Natural Computing Series. Springer, 2020, pages 89–131. doi: 10.1007/978-3-030-
29414-4_2.

[64] D. Levin and Y. Peres: Markov Chains and Mixing Times. AMS, 2017. doi: 10.1090/mbk/107.

[65] T. M. Liggett: Interacting Particle Systems. Springer, 1985. doi: 10.1007/b138374.

151

https://doi.org/10.1145/225058.225272
https://doi.org/10.1137/S0097539795292208
https://doi.org/10.1006/jcss.1996.0075
https://doi.org/https://doi.org/10.1006/jcss.1996.0075
https://doi.org/https://doi.org/10.1006/jcss.1996.0075
https://doi.org/10.1145/237502.237509
https://arxiv.org/abs/1603.01512
https://doi.org/10.1007/BF01955042
https://doi.org/10.1016/J.JPDC.2005.06.009
https://arxiv.org/abs/1306.1402
https://doi.org/10.1007/BF01940878
https://doi.org/10.1007/978-1-4612-6200-8_1
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1016/0024-3795(81)90003-3
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1090/mbk/107
https://doi.org/10.1007/b138374

[66] D. Los, T. Sauerwald, and J. Sylvester: Balanced Allocations with Heterogeneous Bins: The Power
of Memory. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023. SIAM, 2023, pages 4448–4477. doi: 10.1137/1.
9781611977554.CH169.

[67] L. Lovász: Random walks on graphs. In Combinatorics, Paul Erdős is Eighty, volume 2, 1993, pages
1–46.

[68] L. Lovász and P. Winkler: Mixing of random walks and other diffusions on a graph. In Surveys in
Combinatorics, volume 218, London Mathematical Society Lecture Note Series. Cambridge University
Press, 1995, pages 119–154. doi: 10.1017/CBO9780511662096.007.

[69] R. Lyons and Y. Peres: Probability on Trees and Networks. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 2017. doi: 10.1017/9781316672815.

[70] M. Mavronicolas and T. Sauerwald: A randomized, o(log w)-depth 2 smoothing network. In SPAA
2009: Proceedings of the 21st Annual ACM Symposium on Parallelism in Algorithms and Architectures.
ACM, 2009, pages 178–187. doi: 10.1145/1583991.1584043.

[71] M. Mavronicolas and T. Sauerwald: The impact of randomization in smoothing networks. In
Distributed Comput. volume 22 (5-6), 2010, pages 381–411. doi: 10.1007/S00446-009-0087-3.

[72] C. McDiarmid: Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics.
Springer Berlin Heidelberg, 1998, pages 195–248. doi: 10.1007/978-3-662-12788-9_6.

[73] H. Meyerhenke: Shape optimizing load balancing for MPI-parallel adaptive numerical simulations.
In Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop.
Contemporary Mathematics, volume 588, American Mathematical Society, 2012, pages 67–82.

[74] M. Mitzenmacher, B. Prabhakar, and D. Shah: Load Balancing with Memory. In 43rd Symposium
on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada,
Proceedings. IEEE Computer Society, 2002, pages 799–808. doi: 10.1109/SFCS.2002.1182005.

[75] M. Mitzenmacher and E. Upfal: Probability and Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005. doi: 10.1017/CBO9780511813603.

[76] V. Mohammadian, N. J. Navimipour, M. Hosseinzadeh, and A. M. Darwesh: Fault-Tolerant Load
Balancing in Cloud Computing: A Systematic Literature Review. In IEEE Access, volume 10, 2022,
pages 12714–12731. doi: 10.1109/ACCESS.2021.3139730.

[77] R. Motwani and P. Raghavan: Randomized Algorithms. Cambridge University Press, 1995. doi:
10.1017/CBO9780511814075.

[78] S. Muthukrishnan, B. Ghosh, and M. H. Schultz: First- and Second-Order Diffusive Methods for
Rapid, Coarse, Distributed Load Balancing. In Theory Comput. Syst. volume 31 (4), 1998, pages
331–354. doi: 10.1007/s002240000092.

[79] B. Patzák and D. Rypl: Object-oriented, parallel finite element framework with dynamic load balancing.
In Adv. Eng. Softw. volume 47 (1), 2012, pages 35–50. doi: 10.1016/j.advengsoft.2011.12.008.

[80] D. Peleg and E. Upfal: The Token Distribution Problem. In SIAM J. Comput. volume 18 (2), 1989,
pages 229–243. doi: 10.1137/0218015.

[81] Y. Peres, K. Talwar, and U. Wieder: Graphical balanced allocations and the (1 + β)-choice process.
In Random Struct. Algorithms, volume 47 (4), 2015, pages 760–775. doi: 10.1002/rsa.20558.

152

https://doi.org/10.1137/1.9781611977554.CH169
https://doi.org/10.1137/1.9781611977554.CH169
https://doi.org/10.1017/CBO9780511662096.007
https://doi.org/10.1017/9781316672815
https://doi.org/10.1145/1583991.1584043
https://doi.org/10.1007/S00446-009-0087-3
https://doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1109/SFCS.2002.1182005
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1109/ACCESS.2021.3139730
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1007/s002240000092
https://doi.org/10.1016/j.advengsoft.2011.12.008
https://doi.org/10.1137/0218015
https://doi.org/10.1002/rsa.20558

[82] Y. Rabani, A. Sinclair, and R. Wanka: Local Divergence of Markov Chains and the Analysis of
Iterative Load Balancing Schemes. In 39th Annual Symposium on Foundations of Computer Science,
FOCS ’98. IEEE Computer Society, 1998, pages 694–705. doi: 10.1109/SFCS.1998.743520.

[83] Y. Rabani, A. Sinclair, and R. Wanka: Local Divergence of Markov Chains and the Analysis of
Iterative Load-Balancing Schemes. In Proceedings of the 39th Annual Symposium on Foundations of
Computer Science. FOCS ’98. IEEE Computer Society, 1998, pages 694.

[84] J. S. Rosenthal: A First Look at Rigorous Probability Theory, Second Edition. World Scientific, 2006.
doi: 10.1142/6300.

[85] T. Sauerwald and H. Sun: Tight Bounds for Randomized Load Balancing on Arbitrary Network
Topologies. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS. Full
version at https://arxiv.org/abs/1201.2715. IEEE Computer Society, 2012, pages 341–350.
doi: 10.1109/FOCS.2012.86.

[86] R. Subramanian and I. D. Scherson: An Analysis of Diffusive Load-Balancing. In Proceedings of the
6th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA. ACM, 1994, pages
220–225. doi: 10.1145/181014.181361.

[87] G. Zheng, A. Bhatele, E. Meneses, and L. V. Kalé: Periodic hierarchical load balancing for large
supercomputers. In Int. J. High Perform. Comput. Appl. volume 25 (4), 2011, pages 371–385. doi:
10.1177/1094342010394383.

153

https://doi.org/10.1109/SFCS.1998.743520
https://doi.org/10.1142/6300
https://arxiv.org/abs/1201.2715
https://doi.org/10.1109/FOCS.2012.86
https://doi.org/10.1145/181014.181361
https://doi.org/10.1177/1094342010394383

	List of Figures
	List of Tables
	Introduction
	Overview of Problems and Results
	Publications
	Related Works
	Stochastic Ingredients
	Notation and Preliminaries

	Discrete Dynamic Load Balancing on Matchings
	Introduction
	Model and Definitions
	Balancing Circuit Model
	Random Matching Model
	Asynchronous Model
	Technical Lemmas
	Bounds for Specific Graph Classes
	Summary and Open Problems

	Discrete Static Load Balancing on Matchings
	Introduction
	Model and Definitions
	(global , local)-Good Sequence
	Technical lemmas
	Bounds for Specific Models
	Summary and Open Problems

	Discrete Diffusion on d-Regular Graphs
	Introduction
	Model and Definitions
	Static Diffusion
	Dynamic Diffusion
	Technical Lemmas
	Bounds for Specific Rounds
	Summary and Open Problems

	Token Distribution on Matchings
	Introduction
	Model and Definitions
	Token Distribution
	Technical Lemmas
	Bounds for Specific Graph Classes
	Summary and Open Problems

	Auxiliary Results
	Drift Result
	Concentration Results
	Random Walks, Hitting Times and Effective Resistance
	Basic Results for Load Balancing

