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1 Zusammenfassung

Moderne Pump-Probe-Spektroskopie nutzt zunehmend elektromagnetische Felder

mit maßgeschneiderter räumlicher und zeitlicher Struktur. Attosekunden-Methoden

senken die Pulsdauer in den Sub-Femtosekundenbereich und ermöglichen so die

Echtzeitverfolgung elektronischer Bewegungen, während Röntgenspektroskopie

Materie im Angström-Wellenlängenbereich untersucht und mit atomarer räum-

licher Auflösung die Dynamik auf Kernniveau zugänglich macht. Gleichzeitig

entwickelt sich räumlich strukturiertes Licht, wie verdrehte Strahlen mit Or-

bitaldrehimpuls (OAM), Vektorstrahlen und andere künstlich erzeugte Wellen-

fronten, zu einem leistungsstarken Werkzeug zur Steuerung und Untersuchung

von Materie, mit Anwendungen, die von ultraschneller Bildgebung über chi-

rale Diskriminierung bis hin zur Quanteninformationsverarbeitung reichen. Diese

Fortschritte zeigen die Grenzen gängiger theoretischer Näherungen auf, insbeson-

dere der elektrischen Dipolnäherung, die Feldgradienten, räumliche Texturen oder

den intrinsischen Drehimpuls von strukturiertem Licht nicht erfassen kann. In

dieser Arbeit gehen wir über die Dipolnäherung hinaus und verwenden einen

vollständigen Minimal-Kopplungs-Rahmen , der die gesamte räumliche Struktur,

die Gradienten und den OAM-Gehalt des elektromagnetischen Feldes beibehält.

Dieser Ansatz ermöglicht es uns, die multiskalige Wechselwirkung von strukturi-

ertem Licht mit Materie durch eine Kombination aus klassischer Elektrodynamik

und quantenmechanischen Simulationen zu untersuchen und legt dabei Bereiche

der Kontrolle und der Spektroskopie, die mit herkömmlichen Methoden nicht

zugänglich sind.

Zunächst demonstrieren wir die Erzeugung optischer Wirbel aus nanoplas-

monischen archimedischen Spiralen mithilfe von Echtzeit-Elektrodynamiksimulationen

im Realraum, bei denen wir die Entstehung und zeitliche Entwicklung der lokalen

Bahndrehimpulsdichte auflösen. Die resultierenden Wirbel weisen aufgrund der

Drehimpulsübertragung eine ausgeprägte räumliche Struktur auf. Wir validieren
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die Phasenstrukturierung des Strahls, indem wir klassisch beschriebene Punk-

tladungen als Sonden verwenden. Die Positionsabhängigkeit der Testladungs-

bahnen über den Strahl hinweg unterstreicht die Notwendigkeit, die räumliche

Abhängigkeit von OAM- Strahlen zu berücksichtigen.

Wir untersuchen die Erzeugung hoher Harmonischer in atomarem Wasser-

stoff jenseits der Dipolnäherung und verwenden dabei den Hamiltonian-Operator

für vollständige minimale Kopplung, um magnetische, quadrupolare und räum-

liche Gradienteneffekte ohne Trunkierung einzubeziehen. Wir bestätigen die Ex-

istenz solcher Effekte mit Lasern mit ebenen Wellen. Darüber hinaus beobachten

wir, dass strukturierte Felder wie Besselstrahlen charakteristische Formen nicht-

linearer Dipolbewegungen und Symmetriebrüche induzieren, die besonders bei

geraden Harmonischen sichtbar sind. Wir scannen die einfallende OAM-Zahl,

um zu zeigen, dass Korrekturen jenseits der Dipolnäherung in der Elektronen-

bahn für diesen Parameter empfindlich sind. Wir erweitern diese Analyse auf

den molekularen Fall. Wir untersuchen ein Benzolmolekül, das einem zirkular

polarisierten Strahl aus ebenen Wellen ausgesetzt ist, und identifizieren die mod-

ifizierten Auswahlregeln jenseits des Dipols im harmonischen Spektrum.

Wir richten unseren Fokus auf die Vorwärts-Rückwärts-Kopplung von Licht

und Materie. Wir verwenden in unserem numerischen Aufbau ein Cherenkov-

Wellenpaket, das sich schneller als die Phasengeschwindigkeit des Lichts bewegt,

um zu zeigen, dass nicht nur der Grad der Kopplung, sondern auch die Berück-

sichtigung der Rückwirkung der Materie auf das elektromagnetische Feld erhe-

bliche Auswirkungen haben kann: Wir identifizieren eine Symmetriebrechung im

elektronischen Wellenpaket, die nur sichtbar wird, wenn über den Dipol hinaus-

gehende Ansätze mit der Vorwärts- Rückwärts-Kopplung kombiniert werden.

Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass die räumliche

Struktur des Lichts, sein Drehimpuls und die daraus resultierende Symmetriebrechung

nicht erfasst werden, wenn nur die zeitlichen Eigenschaften des elektromagnetis-

chen Feldes berücksichtigt werden. Durch die Kombination klassischer und quan-

tenmechanischer Beschreibungen und durch die vollständige Beschreibung des

elektromagnetischen Feldes, die über die elektrische Dipolnäherung hinausgeht,

untersuchen wir strukturierte elektromagnetische Felder, beginnend mit der Erzeu-

gung plasmonischer Wirbel, bis hin zur Emission hoher Harmonischer und Cherenkov-

Strahlung. Wir liefern eine Reihe von vorhersagekräftigen Simulationen, in denen

die Wechselwirkung von Licht und Materie empfindlich auf räumliche Struktur

und Symmetrie reagiert. Unsere Ergebnisse bieten eine Grundlage für zukünftige

Studien zu strukturierten elektromagnetischen Feldern und deren Auswirkungen

auf Quantensysteme.
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2 Abstract

Modern pump–probe spectroscopies increasingly exploit electromagnetic fields

with tailored spatial and temporal structure. Attosecond techniques push pulse

durations to the sub-femtosecond regime, enabling real-time tracking of electronic

motion, while X-ray spectroscopies probe matter at angstrom-scale wavelengths,

accessing core-level dynamics with atomic spatial resolution. At the same time,

spatially structured light, such as twisted beams carrying orbital angular mo-

mentum (OAM), vector beams, and other engineered wavefronts, is emerging

as a powerful tool for controlling and interrogating matter, with applications

ranging from ultrafast imaging to chiral discrimination and quantum information

processing. These advances expose the limitations of common theoretical approx-

imations, particularly the electric-dipole approximation, which cannot capture

field gradients, spatial textures, or the intrinsic angular momentum of structured

light. In this thesis, we go beyond the dipole approximation and employ a full

minimal-coupling framework that retains the complete spatial structure, gradi-

ents, and OAM content of the electromagnetic field. This approach allows us

to explore the multiscale interaction of structured light with matter through a

combination of classical electrodynamics and quantum-mechanical simulations,

revealing regimes of control and spectroscopy that are inaccessible to conven-

tional treatments.

First, we demonstrate the generation of optical vortices from nanoplasmonic

Archimedean spirals using real-time real-space electrodynamics simulations, where

we resolve the emergence and temporal evolution of the local orbital angular mo-

mentum density. The resulting vortices manifest pronounced spatial structure

owing to the angular momentum transfer. We validate the phase structuring of

the beam by using classically described point charges as probes. The position de-

pendence of the test charge trajectories across the beam highlights the necessity

of accounting for the spatial dependence of OAM beams.
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We proceed to investigate high-harmonic generation in atomic hydrogen be-

yond the dipole approximation, employing the full minimal-coupling Hamiltonian

to include magnetic, quadrupolar, and spatial-gradient effects without truncation.

We confirm the existence of such effects with plane-wave lasers. Moreover, we

observe that structured fields such as Bessel beams induce characteristic forms of

nonlinear dipole motion and symmetry breaking, which are particularly visible in

even harmonics. We tune the incident OAM number to show that beyond-dipole

corrections in the electron trajectory are susceptible to this parameter. We ex-

pand this analysis to the molecular case. We investigate a benzene molecule

subjected to a circularly polarized plane wave beam, and identify the modified,

beyond dipole selection rules in the harmonic spectrum.

We turn our focus to the forward-backward coupling of light-matter. We

employ a Cherenkov wave packet traveling faster than the phase velocity of light

in our numerical setup to demonstrate that not only the level of coupling, but also

accounting for the back reaction of the matter to the electromagnetic field can

have significant implications: We identify symmetry breaking in the electronic

wave packet that is only visible when beyond dipole approaches are combined

with the forward-backward coupling.

To summarize, the results of this thesis highlight that the spatial structure

of light, its angular momentum, and resulting symmetry breaking are not cap-

tured when accounting only for the temporal properties of the electromagnetic

field. By combining classical and quantum descriptions, and by embracing the

full description of the electromagnetic field by going beyond the electric dipole ap-

proximation, we study structured electromagnetic fields starting from plasmonic

vortex generation, then move to high-harmonic emission and Cherenkov radia-

tion. We provide a set of predictive simulations where the interaction of light and

matter is sensitive to spatial structure and symmetry. Our results offer a basis

for future studies involving structured electromagnetic fields and their effects on

quantum systems.
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“ Into the space ship, Granny."

-Ursula K. Leguin, The Space Crone (1976)
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3 Introduction

The interaction between light and matter is one of our main sources of information

about the world. Whether through our eyes or through spectroscopy, we living

beings constantly extract knowledge from this interplay: A bird knows where to

perch because she sees the tree as light fires the optical nerve, and we know where

a bone is broken as we map the X-ray radiation passing through the matter: our

body. Hence, it is not surprising that yet another thesis focuses on light–matter

interaction, describing both sides at different scales and theoretical levels. This

particular thesis presents our successful efforts to couple time-dependent density

functional theory (TDDFT) with Maxwell’s equations, highlighting why an effort

to go beyond the known approximations is necessary.

On the matter side, we work in a variety of scales: we start from the classical

Drude description of the nanoplasmonic medium, where we model the medium

with its pole frequency and the Drude relaxation parameters. We then expand our

findings to ab initio calculations. When tackling ab initio descriptions, we operate

with the time-dependent Schrödinger equation (TDSE), and then time-dependent

Kohn Sham equations (TDKS) within the TDDFT formalism. TDDFT remains

one of the most versatile and widely used methods for studying ultrafast and

light-driven phenomena in atoms, molecules, and solids [1].

On the electromagnetic field side, structured light will have a special emphasis

throughout the thesis. A particular focus is on the twisted light, also referred

to as the optical vortex, namely the electromagnetic field with orbital angular

momentum (OAM) along its direction of propagation. Since its first theoretical

prediction by Ref. [2], and following experimental confirmation by Ref. [3], the

twist of light has represented a new degree of freedom that enables new knobs to

tune the light–matter interaction and devise new optical spectroscopic tools to

study matter. As the name ‘twisted light’ implies, the wavefront twists around

the propagation direction, resembling a corkscrew. Unlike the plane waves, whose
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phase fronts are generally flat, twisted light has a phase dependence of the form

eimϕ. The variable m is named the topological charge, or the OAM number,

since it dictates the content of OAM of the field. The twist around the beam

axis superposes the field components in the middle, leading to their cancellation.

This creates a dark spot at the center of OAM beams, which is also referred to

as the singularity.

The applications of the OAM of light have been numerous: The helical swirl

of the beam can trap small objects and optically manipulate them [4, 5]. The

swirl also creates intensity rings around the propagation axis, which creates a

nonhomogeneous transversal plane. The asymmetric intensity distribution of

the superposed OAM beams can be used to overcome the Rayleigh limit for

imaging [6], and the rich phase structuring finds application in microscopy [7].

The ground-state depletion can be modified with twisted light to sense even the

wave packet of a single trapped ion [8]. The high-dimensional OAM states can be

employed in quantum information protocols [9, 10]. The wide-ranging potential

applications go hand in hand with an abundance of theoretical and experimental

studies. Researchers have so far investigated the excitation with OAM beams

[11–20] as well as scattering processes [21–24] and finally, ionization [25–32].

When it comes to the coupling, even though the extensive quantum electro-

dynamics (QED) formalism successfully treats both the charged particles and

photons, and explains fundamental phenomena [33], its application is computa-

tionally costly and therefore limited to small systems [34–37]. The development

of alternative ab initio approaches capable of treating electronic structure and

light–matter coupling in more complex settings flourished as a response to those

limitations of QED. Particularly, TDDFT has emerged as a powerful and compu-

tationally feasible tool for modeling electronic dynamics driven by external elec-

tromagnetic fields. Several semiclassical strategies have been proposed to account

for coupling to the radiation including the Maxwell–Ehrenfest dynamics [38],

multi-trajectory Ehrenfest schemes [39, 40], coherent electron–field dynamics [41],

models combining Maxwell’s equations with Schrödinger’s [42], and finally the

combination of Maxwell–TDDFT[43, 44]. However, in most applications, the light

field is introduced semiclassically as a practical step towards the full quantum-

electrodynamical density-functional theory (QEDFT) first-principles framework.

It is typically treated within the electric dipole approximation (EDA), so that only

the temporal dependence of the electromagnetic field couples to the electrons.

Yet with the growing sophistication of modern pump-probe spectroscopies, the

shortcomings of the EDA are becoming more apparent. When the wavelength is

comparable to the system size, or when the field exhibits spatial inhomogeneity or

magnetic effects, the EDA picture breaks down. This leads to new physical effects,
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modified selection rules, and novel opportunities for controlling matter with light

and improving the performance of optical spectroscopies[12, 45]. Beyond-dipole

behavior has been observed in X-ray and XUV spectroscopy [46–51], strong-

field and attosecond physics [52–59], magneto-optical processes [48, 60], chiral

cavity QED [61–63], nanoplasmonic spectroscopy [64–66], and interactions with

structured light among many other studies [16, 25, 26, 61, 67]. Most existing

treatments of such beyond dipole fingerprints rely on perturbative approaches or

multipolar expansions. However, such truncated expansions are origin-dependent

[47] and costly [45]. Although computationally feasible non-dipole strong-field

Hamiltonians [57] have provided valuable insights for specific applications, a uni-

fied framework that treats arbitrary spatial field distributions and their associated

radiation reaction in real time is yet to be achieved.

In this work, we employ the exact full minimal coupling (FMC) methodol-

ogy as a remedy to these limitations. By retaining the complete spatial form

of the electromagnetic vector potential, the FMC approach avoids the multipole

truncation and naturally incorporates magnetic-field effects, field gradients, and

non-dipole interactions. Within this formalism, we employ a parallel, open-source

Maxwell–TDDFT scheme computed in real space and real time. This combined

framework treats electrons and electromagnetic fields on equal footing, and en-

ables an ab initio exploration of light–matter interaction, which captures the

beyond-dipole phenomena and radiation back reaction.

The thesis is organized as follows: The initial section 4 comprises the theoret-

ical methodology of the thesis. We detail the formulations we employ as well as

numerical implementations. we start with providing an overview of density func-

tional theory (DFT) and TDDFT. An explanation of EDA and our beyond dipole

approach FMC details follow. We introduce our beyond dipole FMC methodol-

ogy. Then, we detail the forward-backward coupling, which enables us to discern

not only the effect of light on the matter, but the complete cross-talk of light and

matter. Maxwell’s equations, as well as the Riemann-Silberstein formalism, are

found next. Linear, non-magnetic medium, as the Drude model of the nanoplas-

monic medium, is also explained in this section. Then we move on to elaborate

on the electromagnetic field we employ: we expand on our formalism of twisted

light in the form of Bessel beams. In the final subsections, an account of the code

infrastructure is found. We explain the multisystem framework and the spatial

laser implementation of the Octopus-code, which is the code base where most of

the calculations of this work are performed.

Twisted-light beams are routinely produced using spiral phase plates [68],

forked holograms [69], q-plates [70], metallic nanostructures [71–75]). To develop

compact and reliable techniques to generate twisted beams that can fulfill the
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requirements of the emerging photonic technologies is crucial. Therefore, the

interplay of the nanolasmonics and the twisted light is worthy of attention. In the

following chapter 5, we investigate the generation and transfer of orbital angular

momentum (OAM) via nanoplasmonic spiral vortex generators. We describe a

golden Archimedean spiral to investigate time-resolved twisted light generation

from a circularly polarized plane wave pulse. We probe the passage of the incident

pulse through the Archimedean spiral and resolve the generated OAM in space

and time.

In the generation of OAM with the nanoplasmonic structures, surface plasmon

polariton (SPP)s play a crucial role. Previous studies have addressed the emer-

gence of these hybrid light matter surface states employing plasmonic Archimedean

spirals [76]. There have been numerical studies studying the mechanism for such

polaritonic modes with OAM content [77–79]. We build on this understanding

by examining the scattered radiation from the spiral and evaluating its OAM

evolution in time. Since we use an incident ultrashort pulse, we are also able to

comment on the spatiotemporal shaping of the resulting twisted beam.

We do not confine ourselves to examining the vacuum component of the scat-

tered pulse: we model a diatomic target molecule that consists of classically

described point-like particles and subject it to the radiation generated by the

plasmonic spiral. We capture the complete process from the very emergence of

the twisted beam up until the angular momentum transfer to the target parti-

cles. By displacing the target system across the cross section of the generated

radiation, we confirm the spatial structuring of the OAM beam, which verifies

the need for beyond dipole approaches.

In the following chapter 6, we adopt a more accurate, ab initio description

of the matter. We investigate high harmonic generation (HHG), a widely used

non-linear mechanism for generating ultrashort, high-frequency pulses. In this

process, an intense laser interacts with the target system and induces emission

at integer multiples of its driving frequency [80]. HHG has transformed time-

resolved spectroscopy by enabling the observation of ultrafast electron dynamics,

and has been applied extensively to both gaseous and solid-state targets [81, 82].

Here, we focus on HHG from atomic hydrogen driven by beams carrying orbital

angular momentum (OAM).

The inherent spatial variance of said beams is incompatible with the EDA,

where electromagnetic fields are solely represented with their time dependence.

Hence, the HHG with OAM beams case resides outside of the boundaries of the

‘Dipole Oasis’, which mainly is investigated in terms of intensity and wavelength

limits [83]. Up until now, HHG with OAM beams has been studied in the light

of the local dipole approximation [84–88], which merely accounts for the local
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amplitude of the field. However, we report that this approach has its shortcomings

as it overlooks the effects caused by the magnetic field or electric quadrupoles

stemming from the gradients of the field.

HHG beyond the EDA has been addressed by numerous works, be it rela-

tivistic [89, 90] or non-relativistic and rather wavelength and intensity related

[83]. These works have identified magnetic field caused deviations in the electron

trajectory referred to as figure-of-eight motion [55, 91–96]. Their findings showed

that when the spatial distribution of the vector potential is retained, one can

calculate the resulting magnetic field; therefore, radiation pressure effects and

breaking of forward-backward symmetry along the laser propagation axis can be

addressed. The effect of this symmetry breaking on the resulting momentum

distribution of electrons has been confirmed by experiments [97].

However, while succeeding at identifying the magnetic field effects, the pre-

vious non-dipole approaches have employed either the strong field approxima-

tion (SFA) [98] or the multipolar expansion[92], which necessarily involve spatial

truncations or approximations. This motivates the need for a fully spatially re-

solved treatment of the light field, especially in the case of structured beams. In

this work, we explore the intrinsic properties of OAM beams, which include the

spatial gradients as well as magnetic field effects. We work with FMC in the

non-relativistic regime, which accounts for the full spatial characteristics of the

beam without resorting to truncations.

To investigate the beyond dipole effects in HHG, we solve the TDSE for the

electron of a hydrogen atom in real space and real time. We compute the HHG

spectrum from positions at different transverse locations relative to the beam

axis. Our results reveal symmetry breaking owing to the magnetic and gradient-

induced forces that manifest in the appearance of even harmonics. Resolving the

electron trajectories allows us to identify clear fingerprints of the OAM: The OAM

driven electron has trajectory components besides the polarization or propagation

axes. The angular dependence of emitted harmonics in the transversal plane

reveals that the off-axis (polarization-orthogonal) component shows substantial

non-dipole corrections. Learning from this, we compute the off-axis harmonics

response as a function of the OAM number of the incident beam. We observe

that particularly even harmonics respond well to OAM adjustment. The final

subsection of this chapter includes the HHG calculations of the benzene molecule,

where we employ a circularly polarized pulse and unravel beyond-dipole effects

of symmetry in spectra.

The following chapter is reserved for the Cherenkov emission from an elec-

tronic wavepacket with the FMC tool. The wavepacket is a fitting playground

to demonstrate the effect of both spatial dependence and backward reaction. We
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first detail the efforts to optimize the numerical parameters to overcome the chal-

lenges imposed by the uncertainty principle. With the optimized simulations, we

can test the effects of two parameters: The level of coupling and the effect of back

reaction of the emission. We provide the corresponding results with an emphasis

on the forward-backward coupling scheme, which enables us to couple its emitted

radiation back into the quantum dynamics of the wavepacket.

This thesis aims to demonstrate the beyond-dipole phenomena that emerge

from the interaction of matter with the spatial structuring of light. We combine

solutions of Maxwell’s equations with nanoplasmonics, TDSE and TDDFT calcu-

lations on the matter side. We explore how spatial gradients and magnetic com-

ponents of spatiotemporally structured beams show beyond dipole fingerprints.

We start from the generation of OAM beams, and expand the understanding of

OAM transfer across multiple regimes. We cover short OAM pulses generated

from a plane-wave through spiral-shaped structures, as well as analytically de-

rived exact twisted modes of Maxwell’s solutions. The target systems span from

classically described particles to fully ab initio descriptions of electronic matter.

Through this multiscale and multiphysics framework, we capture accurately

the relevant symmetry-breaking mechanisms enabled by spatial gradients, mag-

netic field effects, and the bidirectional nature of forward-backward coupling of

light and matter. We emphasize that these mechanisms are invisible within the

EDA.
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4 Theory & Implementation

The investigation of light–matter interactions under structured electromagnetic

fields requires the development of both analytical and numerical frameworks. In

this chapter, we present the theoretical constructs and numerical implementations

employed throughout the thesis. These efforts paved the way for simulations

spanning multiple scales of time and space that also go beyond conventional

approximations, such as the EDA.

We begin by outlining the core theoretical formalism of DFT and TDDFT,

which forms the quantum mechanical background for describing the electronic dy-

namics of matter. To account for the electromagnetic field dynamics and its cou-

pling with matter, we introduce Maxwell’s equations in the Riemann–Silberstein

formalism. We also tackle the generation of orbital angular momentum with

nanoplasmonic structures: For the modeling of this process, we choose a linear,

non-magnetic medium captured via the Drude model, the theory of which we

provide in this section.

We continue with a primer about light matter interaction. We present the

novel full minimal coupling implementation [99], which allows a complete cou-

pling between the electromagnetic field and the electronic system, capturing both

spatial and temporal characteristics of the field and the corresponding response

of the material. Our novel approach enables a new class of simulations that reach

beyond the traditional electric dipole approximation, offering insights into the

symmetry breaking in Cherenkov radiation, orbital angular momentum transfer,

and structured field-driven nonlinearities. We continue with the introduction of

a full ab initio forward-backward coupling scheme, which allows not only to treat

the action of the electromagnetic field on the matter system, but also includes

the back reaction from the matter in the form of radiation.

We then elaborate on the details of the structured light sources used in this

work. Bessel beams, which carry orbital angular momentum, are introduced as
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a class of twisted light. We provide a vector potential formulation that retains

full spatial dependence and allows for flexible construction in Cartesian coordi-

nates, which is crucial for our implementation in the Octopus code [99, 100].

These beams serve as probes to investigate light–matter coupling effects that are

inaccessible when using plane-waves or under the EDA.

We introduce the Multisystem framework of the Octopus code, which enabled

us to perform calculations across a vast variety of systems and scales. To simulate

such spatially structured laser fields within our TDDFT framework, we also detail

the implementation of position-dependent laser sources (‘External Source’) in the

Octopus code. This includes a computationally efficient approach that avoids a

full propagation of Maxwell’s equations while retaining spatial dependence, which

is crucial for beyond-dipole studies.

4.1 Density Functional Theory

The way to describe the electronic structure of the matter system is through the

solution of the many-body Schrödinger equation

Ĥψj(r1, ..., rN) = Enψ(1, ..., rN), (1)

where the Hamiltonian for Schrödinger equation (SE) reads:

Ĥ = −
N
∑

i=1

ℏ2

2me

∇2
i −

N
∑

i=1

∑

a

Zae
2

|r⃗i − R⃗a|
+
∑

i̸=j

e2

|r⃗i − r⃗j|
(2)

Here, the first term describes the kinetic energy of electrons, while the second

term represents Coulomb interactions of electrons with nuclei with charge Za,

and the last term denotes the electron-electron repulsion. Tackling this problem

implies solving for a system that requires dependence on 3N spatial coordinates.

The many-body wavefunction ψ depends on the behavior of N particles. How-

ever, such a solution beyond a small number of interacting particles is rather

costly, if feasible. In this sense, DFT provides a remedy to the computational

cost as it allows the many-body problem to be expressed solely as a function of 3

spatial coordinates. This ground-breaking idea was founded on two foundational

theorems proposed by Hohenberg and Kohn in 1964 [101].

Their first theorem provides a bijection between the external potential and

the density of the system. This is deduced from the connection that the external

potential veff (r⃗), as well as the ground state wave function, are unique functionals

of the ground state electronic density n0(r⃗). This implies that all properties of

the system, such as the ground-state energy and excitation energies, are also
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determined by n0(r⃗).

The second theorem proposed in the same paper demonstrates that the exact

ground state density n0(r⃗) should minimize the total energy functional E [n0].

This reduces the many-body problem to a minimization problem over densities.

However, an exact functional F [n0] that will connect the energy E [n0]

E [n0] = F [n0] +
∫

veff (r⃗)n0(r⃗)d
3r (3)

and the external potential as in Eq. (3) is not known.

In 1965, Kohn and Sham tackled this unknown functional, [102], and expressed

it in parts as

F [n0] = T [n0] + EH [n0] + Exc[n0]. (4)

Here, the term T [n0] denotes the kinetic energy of non-interacting electrons,

while EH [n0] is the Hartree energy and Exc[n0] is the exchange-correlation func-

tional, which stores all of the many-body effects extending beyond Hartree.

The effective potential acting on the system can be expressed as

veff (r⃗) = vext(r⃗) +
∫ n0(r⃗′)

|r⃗ − r⃗′|
d3r′ + vxc(r⃗). (5)

The exchange-correlation potential is related to the exchange correlation en-

ergy as vxc(r⃗) = δExc

δn0(r⃗)
.

These steps of the Kohn-Sham construction allow us to solve the problem

through a fictitious non-interacting electronic system with auxiliary orbitals.

These orbitals are obtained from

[

−ℏ2∇2

2me

+ veff [n0](r⃗)

]

ϕj(r⃗) = ϵjϕj(r⃗), (6)

where the Kohn-Sham states ϕj(r⃗) are functionals of the space-dependent electron

density n0(r⃗). This formalism is built upon the unique mapping of the external

potential veff ; consequently, all observables are functionals of the ground-state

density n0(r) as explained above, and the exact ground-state density is the solu-

tion that minimizes the total-energy functional as a function of electronic density,

[101, 102]. The density is reached by summing over occupied orbitals

Nocc
∑

j=1

|ϕj(r⃗)|2 = n0(r⃗). (7)

Static DFT relies on the solution of the self-consistent eigenvalue problem in
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(6). Here, an initial guess for the ground state electron density n0 is produced, a

corresponding Kohn-Sham potential is built, which in turn yields via Eq. (6) new

orbitals ϕj(r⃗) and density n0. Iteration is continued until a certain threshold for

the difference of density or energy is reached. However, this does not conclude

the story: The exact form of the exchange-correlation potential is not known,

which is approached by different levels of approximations.

The very first approach to approximate Exc was introduced already by Kohn

and Sham and is called local density approximation (LDA). This approximation

assumes that Exc depends only on the local value of the density at a given point

and relates the exchange correlation energy to the corresponding energy of a

homogeneous electron gas with this value of the density

ELDA

xc [n0] =
∫

n0(r⃗) ε
unif

xc (n0(r⃗)) d
3r. (8)

Another approach is to consider the gradients of the density to increase accuracy.

The generalized gradient approximation (GGA) follows this formalism:

EGGA

xc [n0] =
∫

f(n0(r⃗),∇n0(r⃗)) d
3r. (9)

Popular versions of this approach include the Perdew–Burke–Ernzerhof (PBE)

and Becke–Lee–Yang–Parr (BLYP) functionals, [103–105]. While the search for

a more accurate description of the exchange-correlation functional is ongoing, and

there are additional options, such as borrowing the exact Hartree-Fock exchange

for correction (as in the case of hybrid functionals), the process has been linked

to ‘Jacob’s Ladder’ [106]. The LDA and GGA approaches prove useful for our

study, since they provide a good balance between accuracy and computational

cost. Hence, we choose our final steps early in the ladder and restrict ourselves

to these two approximations of functionals.

So far, we have emphasized the one-to-one correspondence between the elec-

tron density n(r⃗, t) and the external potential veff (r⃗, t), which is the concept

of v − representability. When the external perturbation cannot be described

solely by a scalar potential, namely, a vector potential is present and magnetic

effects become relevant, the electron density alone is no longer sufficient. In fact,

time-dependent currents are, in general, not v-representable, as distinct vector

potentials can give rise to the same density while inducing different current dis-

tributions [107]. Then the current density must be introduced as an additional

basic variable[1]. time dependent current density functional theory (TDCDFT)

provides such a generalization by extending density functional theory to include

the paramagnetic current, thereby introducing an exchange–correlation vector

potential A⃗xc that ensures gauge invariance and enables a consistent description
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of magnetic and non-dipole effects.

In practice, however, the limited availability and maturity of current depen-

dent exchange–correlation functionals restrict the widespread use of TDCDFT.

For this reason, and because many time-dependent observables of interest are

primarily density-driven, we employ TDDFT with full minimal coupling to vec-

tor potential to describe dynamical phenomena in this work. TDDFT extends

ground-state DFT to the time domain and provides access to excited-state proper-

ties, non-equilibrium dynamics, and ultrafast responses, while remaining compu-

tationally feasible for realistic systems. In the following subsection, we introduce

the TDDFT formalism and outline the specific numerical implementations and

approximations adopted in this work. The SI system of units is used in the paper

unless specified otherwise.

4.2 Time-Dependent Density Functional Theory

For time-dependent phenomena, the TDSE

Ĥψj(r1, ..., rN) = iℏ
∂

∂t
(ψ(r1, ..., rN)) (10)

has to be solved.

Within the same spirit of DFT, TDDFT scales the problem down, using

the one-to-one correspondence of the time-dependent external potential and the

time-dependent electronic density n(r⃗, t). This correspondence was proven in the

Runge-Gross theorem [108], which is analogous to the Hohenberg–Kohn theorem

in ground-state DFT. It states that, for a fixed initial many-body wavefunction,

there exists such a correspondence between time-dependent external potentials

and time-dependent densities up to an additive function of time. The implica-

tion of this is that all observables of a time-dependent interacting system can be

written as unique functionals of the density. The proof assumes that the external

potential is Taylor-expandable around the initial time and that the initial state

is sufficiently well behaved.

As mentioned in the previous section, this concept is called the v−representability,

which entails the requirement that a given density n(r⃗, t) can be generated by at

least one external potential veff (r⃗, t). In their work, Runge and Gross postulated

non-interacting v-representability, which states that for any interacting density,

there exists a Kohn–Sham potential that reproduces it in a non-interacting sys-

tem. This postulate was later proven by Van Leeuwen, who showed that under

mild conditions imposed on the initial state and boundary conditions, such a

potential always exists [109]. This proof legitimized the application of TDDFT.
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The time-dependent Kohn-Sham equations take the form [110].

[

−∇2

2
+ veff [n](r⃗, t)

]

ϕj(r⃗, t) = i
∂

∂t
ϵjϕj(r⃗, t). (11)

Here, the time-dependent Kohn-Sham states ϕ, as well as n(r⃗, t), do not only

depend on space, but also evolve in time. Consequently, solving the scheme pre-

sented in Eq. (11) computationally allows for the description of time-dependent

phenomena [111].

The corresponding sum over occupied states for a given time t in TDDFT is

used to reach the correct form of density as a function of time

∑

j

|ϕj(r⃗, t)|2 = n(r⃗, t). (12)

The initial condition is set by the ground state density and orbitals provided

by static DFT in this work, which is a common procedure for TDDFT. On the

other hand, there have been works showing that the exact exchange–correlation

potential depends on the history of the density and the initial state, a feature

known as memory dependence [112]. However, while neglecting memory in adi-

abatic approximations leads to failures in describing charge-transfer dynamics,

double excitations, and strongly correlated systems [113], this study dwells out-

side of these phenomena.

To tackle the problem numerically, a choice of basis or representation for the

Kohn-Sham states is required. The accuracy and the efficiency of a calculation are

strongly determined by this choice. Some common basis representations are the

plane-wave basis (PWB), numeric atomic orbitals (NAO), and the real space grid.

The first approach expands the orbitals as a Fourier series using reciprocal lattice

vectors, and it is well-suited for the periodic description of solids. On the other

hand, NAO expresses the orbitals as solutions of the radial Schrödinger equation

centered around the atoms, which corresponds to tabulated radial functions mul-

tiplied by spherical harmonics, which represents a good candidate for all-electron

calculations [114]. However, these basis sets represent challenges when describing

continuum and ionization. In this work, we employ the real-space representa-

tion, which corresponds to orbitals discretized directly on a spatial grid, imple-

mented in the Octopus code [115–117]. This representation grants the flexibility

in modeling since no bias from the basis set is introduced. Moreover, real-space

description is naturally fitting to real-time propagation since with this scheme,

derivatives and potentials are represented as finite-difference stencils. Then an

update in time to these quantities involves only neighboring grid points, which
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reduces computational overhead by avoiding, for instance, dense matrix vector

multiplications encountered in NAO. A final advantage of a real-space representa-

tion is the treatment of the continuum. This is of importance in the present case,

since we would like to study high harmonic generation phenomena. While con-

tinuum and ionization problems can be treated via absorbing boundaries around

a real space simulation box [118], the localized nature of other basis sets might

represent a challenge.

Another key aspect to consider when modeling matter with the TDDFT for-

malism is the core electrons: Core states are inert, and they usually do not

contribute much to bonding or dynamics. Nonetheless, one can choose to repre-

sent core electrons explicitly in time-dependent Kohn-Sham equations, keeping

their Coulomb interaction with nuclei and their effect on valence electrons. This

is referred to as all-electron calculation. However, this entails a computational

cost: Since these states oscillate rapidly, the discretization in space has to be

fine to cover their behavior. A workaround is to employ pseudopotentials, which

are effective potentials that replace explicit treatment of core-level electrons with

an assigned effective potential. This potential should reproduce the interaction

between the core electrons and the atomic nucleus with the valence electrons.

Nonetheless, when considering electromagnetic coupling, the computational

efficiency of pseudopotentials comes with a cost: The calculations with pseu-

dopotentials suffer from a path ambiguity due to the nonlocal part [99, 119, 120].

Unlike all-electron calculations, where the potential is local and couples directly

to an electromagnetic field, the nonlocal part of the pseudopotential depends

on two spatial points. Since different paths connecting these points can lead to

different results, there is no unique, gauge-invariant prescription. Therefore, in

this work, we benchmark our TDDFT calculations with all-electron counterparts

when it is feasible.

Once the basis representation and the addressing of core-level electrons are

decided, the next step is to propagate the calculation in time

U(t, t0) = T exp
[

− i

ℏ

∫ t

t0

H(t′)dt′
]

, (13)

where T is the time-ordering operator. Throughout this work, two approaches

to time propagation are used: approximate enforced time-reversal symmetry

(AETRS) and exponential midpoint. The first approach relies on the extrap-

olated Hamiltonian H̃(t+ ∆t) ≈ H(t) + ∆tḢ(t) + ∆t2

2
Ḧ(t) and uses the following
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propagation scheme

UAET RS(∆t) = exp

[

−i∆t

2ℏ
(H̃(t+ ∆t) +H(t))

]

. (14)

The exponential midpoint scheme predicts the state ϕ at the midpoint and

estimates the Hamiltonian from the predicted density, then applies the propagator

UEM(∆t) = exp

[

−i∆t

ℏ
H(t+ ∆t/2)

]

. (15)

to arrive at the state in the following timestep.

In this subsection, we introduced our main tool for modeling matter within

the formalism of TDDFT, while elaborating on the numerical aspects such as

basis representation and time-propagation schemes. We note that extensions to

TDDFT such as TDCDFT, which explicitly incorporate vector potentials and

currents, could provide a more general framework for treating the response to

magnetic or spatially structured electromagnetic fields in the future; however,

the present work is confined to the standard TDDFT formalism.

Having established these foundations, the following sections will first dwell on

Maxwell’s equations, then turn to the description of light–matter coupling, where

we outline the different levels of theory and the approaches used to incorporate

the electromagnetic field.

4.3 Classical Maxwell’s Equations and the Riemann-Silberstein

Formalism

Maxwell’s equations govern the behavior of the electromagnetic field. In this

thesis, we focus on their time-dependent microscopic expressions:

∇⃗ · E⃗(r⃗, t) =
1

ϵ0

ρ(r⃗, t), (16)

∇⃗ · B⃗(r⃗, t) = 0 (17)

−∂tB⃗(r⃗, t) = ∇⃗ × E⃗(r⃗, t), (18)

µ0ϵ0∂tE⃗(r⃗, t) = ∇⃗ × B⃗(r⃗, t) − µ0j⃗(r⃗, t). (19)

They consist of Gauß’s laws Eqs. (16) and (17), Faraday’s law in Eq. (18), and

Ampère’s law Eq. (19). Gauß’s law in Eq. (16) connects the electric field E⃗(r⃗, t)

with the electronic density ρ(r⃗, t) (connected to electronic probability density

n(r⃗, t) with relation ρ(r⃗, t) = −|e|n(r⃗, t)) and states that the charges result in an

electric field. Here, ϵ0 denotes the vacuum permittivity. Gauß’s law of magnetism,

seen in Eq. (17), on the other hand, states that for magnetic field B⃗(r⃗, t), there
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are no monopoles.

These two equations are time-dependent. Faraday’s law expresses that the

temporal change in the magnetic field gives rise to an electric field. Symmetrically,

Ampère’s law states that the time-dependent changes in the electric field, along

with the displacement current j⃗(r⃗, t), induce a magnetic field. Here, µ0 denotes

the vacuum permeability.

It is worth noting that the charge density described in Eq. (16) and the

current contribution j⃗(r⃗, t) seen in Eq. (19) are the contributions of matter to

Maxwell’s equations. The key to coupling light with matter resides within these

terms.

In classical electrodynamics, the electromagnetic field energy is a function of

the physical, gauge-invariant electric field E⃗ and magnetic field B⃗. The corre-

sponding electromagnetic energy density is given by

u⃗(r⃗, t) =
1

2

(

ϵ0E⃗
2(r⃗, t) +

1

µ0

B⃗2(r⃗, t)

)

, (20)

whose spatial integral yields the total energy of the electromagnetic field. Moti-

vated by this physical interpretation that E⃗(r⃗, t) and B⃗(r⃗, t) are fundamental ob-

servables, the Riemann–Silberstein formalism offers the opportunity of combining

electromagnetic fields into one complex vector, also referred to as the Riemann-

Silberstein vector [121–123]. This vector has the electric field incorporated into

its real part, while the magnetic field constitutes its imaginary part

F⃗±(r⃗, t) =

√

ϵ0

2
E⃗(r⃗, t) ± i

√

1

2µ0

B⃗(r⃗, t). (21)

In this complex electromagnetic vector, electric and magnetic fields are scaled

by the prefactors
√

ϵ0/2 and
√

1/2µ0. This establishes the connection to the

electromagnetic energy density

u⃗(r⃗, t) = F⃗−(r⃗, t) · F⃗ ∗(r⃗, t) = F⃗−(r⃗, t) · F⃗+(r⃗, t) = F⃗+(r⃗, t) · (F⃗+)∗(r⃗, t), (22)

where the Riemann-Silberstein vectors of different handedness are F⃗+(r⃗, t) and

F⃗−(r⃗, t), which are also complex conjugates[124].

The Riemann-Silberstein formalism allows one to re-express Maxwell equa-

tions in numerically convenient forms [73, 125]. Two Gauß’s laws can be combined

to yield the modified Gauß’s law

∇·F⃗ (r⃗, t)=
1√
2ϵ0

ρ(r⃗, t). (23)
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Similarly, Faraday’s and Ampère’s laws are combined in the Riemann-Silberstein

formalism to yield a unified equation of motion for the electromagnetic field

i∂tF⃗ (r⃗, t)=c∇×F⃗ (r⃗, t)− i√
2ϵ0

J⃗(r⃗, t). (24)

Here, c is the speed of light in vacuum with the relation c = 1/
√
ϵ0µ0. This

form has the advantage of evaluating the electric and magnetic fields on the

same grid simultaneously, instead of the evaluation of the electric and magnetic

fields on separate grids located midway between the pair of other components, as

is common for finite-difference time-domain (FDTD) methods in computational

electromagnetism [126]. Another advantage is the description of enveloped short

pulses: While one could also evaluate the fields via the Helmholtz equation, the

explicit, approximation-free time evaluation of the fields in Eq. (24) provides an

excellent description of the electromagnetic field even in a broad frequency range.

4.4 Linear, Non-Magnetic Medium as Drude Model

While DFT describes the electronic response at the microscopic level, classical

electrodynamics often treats materials through an effective dielectric function.

The Drude model is a simple and commonly used form of this response, which

connects the quantum description and classical nanoplasmonic models. Although

the ultimate goal is to couple microscopic Maxwell equations with the TDDFT

formalism using the time-dependent electronic density n(r⃗, t) and current density

j⃗(r⃗, t), effective medium approaches remain useful for describing the electromag-

netic response at larger length scales.

The linear response of materials as given by the TDDFT formalism yields

the susceptibility χµ(r⃗, r⃗′;ω), which is connected to the expansion of the density

around the equilibrium

δn(r⃗, ω) =
∫

d3r′χmic(r⃗, r⃗′;ω)δvext(r⃗′, ω). (25)

For a simple metal where only the free electron response survives, this mi-

croscopic TDDFT response reproduces the Drude response. Spatial averaging of

this quantity paves the way to the Drude susceptibility, which will be detailed in

this chapter. Since this is valid in the linear regime, we employ a linear medium

description to study macroscopic scales.

A linear medium is defined by the linear relationship the displacement vector

D⃗(r⃗, ω) has with the exciting electric field E⃗(r⃗, ω); henceforth, the constitutive

relation for D⃗ takes the form
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D⃗(r⃗, ω) = ϵ(r⃗, ω)E⃗(r⃗, ω). (26)

Going into the time domain, Eq. (26) corresponds to a convolution of the

first-order response function χ(r⃗, t− τ) and time-dependent electric field E⃗(r⃗, t).

This allows us to separate the treatment of the electric field-dependent part of

the response ϵ0E⃗(r⃗, t) and the polarization vector P⃗ (r⃗, t). Here, ϵ(r⃗, ω) represents

the frequency-dependent permittivity of the material while ϵ0 is the vacuum per-

mittivity. Then the displacement vector has the form

D⃗(r⃗, t) = χ(r⃗, t) ∗ E⃗(r⃗, t) =
∫ ∞

0
χ(r⃗, t− τ)E⃗(r⃗, τ)dτ = ϵ0E⃗(r⃗, t) + P⃗ (r⃗, t). (27)

Ampère’s law connects the applied magnetic field H⃗(r⃗, t) with the displace-

ment vector

∇⃗ × H⃗(r⃗, t) = ∂tD⃗(r⃗, t) + J⃗free(r⃗, t) (28)

= ϵ0∂tE⃗(r⃗, t) + J⃗p(r⃗, t) + J⃗free(r⃗, t).

The final form of Eq. (28) is reached by using the definition of the displace-

ment vector in Eq. (27) and the definition of polarization current J⃗P

J⃗P = ∂tP⃗ (r⃗, t) = ϵ0∂t

∫ t

0
χe(r⃗, τ)E⃗(t− τ)dτ. (29)

On the other hand, the total magnetic field in a medium can be expressed via

the combination of the applied external magnetic field H⃗(r⃗, t) and magnetization

M⃗(r⃗, t) of the medium given by

B⃗(r⃗, t) = µ0(H⃗(r⃗, t) + M⃗(r⃗, t)). (30)

With this definition in mind, one can see that, symmetrically to Ampère’s law,

the electric field is now connected by Faraday’s law to the magnetization.

∇⃗ × E⃗(r⃗, t) = −∂tB⃗(r⃗, t) (31)

= −µ0∂tH⃗(r⃗, t) − µ0∂tM⃗(r⃗, t)). (32)
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Keeping in mind the form of the complex bilinear vector shown in Eq. (21),

one can express the time derivatives of electric and magnetic fields in terms of

such a representation.

i∂tF⃗
± = i

(

√

ϵ0

2
∂tE⃗ ± i

√

1

2µ0

∂tB⃗

)

(33)

Using the connection given by Ampère’s law in Eq. (28) and Faraday’s law

in Eq. (32) in Riemann-Silberstein formalism:

i∂tF⃗
± = i

(

√

ϵ0

2
(

1

ϵ0

(∇⃗ × H⃗(r⃗, t) − J⃗P (r⃗, t) − J⃗free(r⃗, t))) ∓ i

√

1

2µ0

∇⃗ × E⃗(r⃗, t)

)

(34)

Once again, using the definitions of total magnetic field provided by Eq. (30),

one arrives at

∇⃗ × H⃗(r⃗, t) = =

√

2

µ0

(∇⃗ ×
√

1

2µ0

B⃗(r⃗, t) − ∇⃗ × M⃗(r⃗, t)). (35)

One can also conveniently express the electric field as in

∇⃗ × E⃗(r⃗, t) =

√

2

ϵ0

∇⃗ ×
√

ϵ0

2
E⃗(r⃗, t). (36)

Expressions of Eqs. (30) and (35) can be plugged in Eq. (34) to obtain the

equation of motion for complex bilinear vector F⃗± .

i∂tF⃗
± = c0∇⃗ × (±F⃗±) − i

√

1

2ϵ0

(∇⃗ × M⃗(r⃗, t) + J⃗P (r⃗, t) + J⃗free(r⃗, t)),

i∂tF⃗
± = c0∇⃗ × (±F⃗±) − i

√

1

2ϵ0

J⃗total. (37)

Here, J⃗total is a combination of magnetization, polarization current, and free

current as in

J⃗total = ∇⃗ × M⃗(r⃗, t) + J⃗P (r⃗, t) + J⃗free(r⃗, t). (38)

Once the equation of motion in Eq. (37) is established, it becomes clear

that the current contribution from the matter side can be fed back to the time

propagation of Maxwell’s equations. Such a current contribution can come from

any level of description of matter. In the particular case of the Drude medium,
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the matter system is described by the scalar (isotropic) electric susceptibility, i.e.,

Drude susceptibility (for one pole), given by

χ(ω) = − ω2
p

ω2 − iωγp

, (39)

where ωp is the frequency of the pth pole and γp is the corresponding relaxation

time. We know the form of polarization in the frequency domain P̃(ω)

P̃(ω) = ϵ0χ(ω)Ẽ(ω). (40)

and as in Fourier domain f ′(t) = iωf̃(ω), then from the definition of J⃗P (t),

J̃P (ω) = iωP⃗ (ω) = iωϵ0χ(ω)E⃗(ω). (41)

Now the definition of the polarization current permits the plugging in of the

definition of the susceptibility seen in (39), when rearranged, results in

J̃P (ω) = −ϵ0

ω2
p

−iω − γp

Ẽ(ω),

(iω + γp)J̃P (ω) = ϵ0ω
2
pẼ(ω). (42)

The advantage of Eq. (42) is that its inverse Fourier transform back into the

time domain yields the auxiliary equation of motion

∂tJ⃗D(r⃗, t) + γpJ⃗D(r⃗, t) = ϵ0ω
2
pE⃗(r⃗, t). (43)

for the current contribution from the medium. This procedure can also be

applied to other susceptibility models [127]. The auxiliary equation for J⃗P can

be tackled simultaneously with the Maxwell time-propagation, which was given

in Eq. (24).

Keeping in mind that we focus on non-magnetic materials in the linear regime,

one can consider the current contribution from polarization J⃗P (r⃗, t) and neglect

the magnetization and free charge contribution described in Eq. (38). Henceforth,

the current supplied by the Drude medium is the total contribution, and one can

state J⃗P (r⃗, t) = J⃗D(r⃗, t) where J⃗D(r⃗, t) denotes the current contribution from

Drude medium.
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4.5 Light-Matter Coupling

The coupling of light with matter can be described at different levels of theory.

The most simplistic approach is to treat light as a classical electromagnetic wave

and matter as classical charges. Then an electron bound to a nucleus is modeled

as a damped harmonic oscillator driven by the electric field. The corresponding

equation of motion in one direction then reads

meẍ+meγẋ+meω
2
0x = −eE(t), (44)

where me is the electron mass, ω0 the natural frequency, gamma the damping

constant, and E⃗(r⃗, t)(t) the electric field. The induced polarization can be under-

stood as P (t) = Nex(t), with N oscillators. This model explains linear optical

response, but cannot capture discrete quantum levels or spontaneous emission,

since it lacks a quantum description.

One moves to the semi-classical Rabi model to account for quantum features

of matter while still treating light classically [128]. Here, the atom is described

as a two-level quantum system coupled to a classical oscillating field, with the

Hamiltonian

H =
ℏω0

2
σz − d⃗ · E⃗(t), (45)

where ω0 is the transition frequency, σz the Pauli matrix, and d⃗ the dipole operator

with d⃗ = −e.r⃗. While this model explains Rabi oscillations between ground and

excited states, it lacks the spontaneous emission and photon statistics. The first

fully quantum description of light–matter coupling, where both the atom and a

single mode of the electromagnetic field are quantized, is the Jaynes–Cummings

model [129] with

H = ℏωcâ
†â+

ℏω0

2
σz + ℏg

(

â†σ̂− + âσ̂+

)

, (46)

where â, â† are photon creation and annihilation operators, σ̂± the raising and

lowering operators of the two-level atom, and g the coupling constant. Eq. (46)

is formulated under the rotating wave approximation (RWA), which captures

vacuum Rabi splitting, spontaneous emission, and atom-photon entanglement.

However, this approximation discards rapidly oscillating counter-rotating terms,

which is justified when the light–matter coupling is weak, and the neglected terms

average out over an optical cycle. The discarded terms describe virtual processes

that do not obey energy conservation and become relevant in the ultrastrong

coupling regime or for few-cycle and broadband fields.

When the RWA is lifted, one obtains the Rabi model, which retains both
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energy-conserving and counter-rotating terms. This model becomes relevant

when the light–matter interaction strength is significant.

For multiple atoms interacting with a common field mode, the Jaynes–Cummings

framework generalizes to the Tavis–Cummings model [130], or the Dicke model

[131], which explains collective quantum optical effects such as superradiance.

To expand beyond single atoms and a few level modes, one must turn to the

full machinery of QED. The QED Hamiltonian quantizes both matter and the

electromagnetic field across all modes. QED explains phenomena such as the

Lamb shift. However, it is far too complex to apply directly to realistic many-

electron systems such as molecules or solids.

For such systems, many-body approaches are employed. As it was detailed

in previous chapters, the full TDSE equation can treat electrons interacting with

strong laser pulses, but scales exponentially with system size. TDDFT provides

a feasible route by reformulating the problem in terms of the electron density,

leading to the time-dependent Kohn–Sham equations. This allows simulation of

optical excitations, nonlinear responses, and high-harmonic generation in com-

plex systems. In this work, we adopt the TDDFT formalism, where the matter is

treated quantum mechanically while the electromagnetic field is described clas-

sically. The following subsections will elaborate on the different levels of theory

we adopted concerning light-matter coupling.

4.5.1 Electric Dipole Approximation EDA

The spatial part of the electric field E⃗(r⃗, t) can be expressed as

exp
(

−i⃗k · r⃗
)

= 1 + i⃗k · r⃗ +
(i⃗k · r⃗)2

2!
+ ... (47)

which corresponds to the Taylor expansion of the exponential k⃗ · r⃗ term around

r⃗ = 0⃗. Here, keeping in mind that the wave vector k⃗,

|⃗k| =
ω

c
=

2π

λ
, (48)

where ω denotes the frequency, scales inversely with the wavelength λ.

When it comes to incorporating electromagnetic fields in the Hamiltonian,

the EDA is a common procedure. When the wavelength is much larger than the

size of the system, one can argue that for an electromagnetic field of the form

A0e
ik⃗·r⃗−ωt, the term k⃗ · r⃗ is small and its expansion can be truncated at the first
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term in Eq. (47), which effectively reduces to

exp
(

−i⃗k · r⃗
)

= 1 + i⃗k · r⃗ +
(i⃗k · r⃗)2

2!
+ ... ≈ 1. (49)

The EDA approximation seen in Eq. (49) results in the omission of the spatial

dependence of the electromagnetic field, which is then expressed solely by its

temporal dependence E⃗(t), or within the velocity gauge A⃗(t). When one accounts

for the spin dynamics under the effect of the magnetic field B⃗(t) via the Zeeman

term |e|
m
B⃗(t) · ŝ and effective time dependent potential term v[n](r⃗, t), one arrives

at the Hamiltonian

H(DIP) =
1

2m

(

−iℏ∇ +
|e|
c
A⃗(t)

)2

+
|e|
m
B⃗(t) · ŝ+ v[n](r⃗, t). (50)

4.5.2 Identifying the Electromagnetic Beyond-Dipole Effects: Multi-

polar Expansion

The Hamiltonian defined within the full minimal coupling approach preserves

the complete spatial dependence, therefore spans over all multipolar orders. Nev-

ertheless, for the analysis we will carry on for the following sections, the need

to identify the effects stemming from different orders and types of electromag-

netic fields is raised. To do so, one needs to reformulate the Hamiltonian as

a function of electric and magnetic fields, which are gauge independent, rather

than the gauge-dependent potentials [125]. The Power-Zienau-Woolley (PZW)

transformation,

ÛP ZW = exp
[

i

ℏ

∫

P⃗ (r⃗)A⃗(r⃗)d3r
]

, (51)

allows one to express the Hamiltonian in terms of electric and magnetic fields.

Keeping in mind that the electric field E⃗(r⃗, t) and the magnetic field B⃗(r⃗, t) are

connected to the vector potential A⃗(r⃗, t), upon this transformation, one reaches

the multipolar interaction Hamiltonian

HM
int = −

∫

P⃗ (r⃗) · E⃗⊥(r⃗)d3r −
∫

M⃗(r⃗) · B⃗(r⃗)d3r, (52)

which is expressed in terms of electromagnetic fields. Here, P⃗ (r⃗) refers to the

polarization density while M⃗(r⃗) refers to the magnetization density. We also

note that this expansion operates solely with the transversal part of the electric

field.
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Once the interaction Hamiltonian depends on the spatial form of electric and

magnetic fields, the Taylor expansion of the fields around a fixed position r⃗0

generates terms of different orders. This expansion is commonly referred to as

the multipolar expansion. Then, the expression, which is truncated at the third

term for the multipolar Hamiltonian, takes the form

H(ME)
total = − ℏ2

2m
∇2 + |e|r⃗ · E⃗⊥ (r⃗0, t) +

1

2
|e|(r⃗ · ∇)r⃗ ·

(

E⃗⊥(r⃗, t)
)

∣

∣

∣

∣

r⃗=r⃗0

(53)

+ i
|e|
2m

B⃗ (r⃗0, t) · (r⃗ × ∇) + ...+ VH[n](r⃗, t) + Vxc[n](r⃗, t) + Vnuc(r⃗, t).

One can already recognize that the first term is the electric dipole term |e|r⃗ ·
E⃗⊥ (r⃗0, t). It depends solely on the amplitude of the applied electric field, which

is also the backbone of the EDA seen in Eq. (49). The next term

1

2
|e|(r⃗ · ∇)r⃗ ·

(

E⃗⊥(r⃗, t)
)

∣

∣

∣

∣

r⃗=r⃗0

=
1

2
|e|
∑

ij

riQijrj, (54)

is one step further in the expansion of the electric field term P⃗ (r⃗) · E⃗⊥(r⃗), which

is called the electric quadrupole term. This contribution does not only depend

on the amplitude but also on the gradients of the applied field, see the term

Qij = ∂iE⃗⊥,j (r⃗, t)
∣

∣

∣

r⃗=r⃗0

in Eq. (54), which is the electric field gradient tensor.

The following term is the magnetic dipole contribution

i
|e|
2m

B⃗ (r⃗0, t) · (r⃗ × ∇) = − |e|
2m

B⃗ (r⃗0, t) · ⃗̂L. (55)

Notice that L⃗ is the orbital angular momentum operator, which highlights the

interplay between the orbital motion of the electron and the magnetic field.

Since structured beams have spatial variations as well as temporal ones, it is

common to account for at least up to the electric quadrupole term while analyzing

their interaction with matter [132]. While the FMC approach covers the effects

stemming from all the expansion terms, studying these three multipolar expansion

terms will allow us to identify the source of the effects in the following sections.

4.5.3 Beyond the Electric Dipole Approximation: Full Minimal Cou-

pling Approach

The quantum mechanical interaction of a charged particle with electromagnetic

fields is described by
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H =
1

2m

(

p⃗+
|e|
c
A⃗(r⃗, t)

)2

+ |e|ϕ(r⃗, t). (56)

Here p⃗, e, and m are the momentum, charge, and mass of the particle, respec-

tively. A⃗(r⃗, t) denotes the vector potential while Φ(r⃗, t) corresponds to the scalar

potential.

We work with the Coulomb gauge throughout the thesis. Henceforth, the

vector potential is transversal, i.e. A⃗(r⃗, t) and scalar potential Φ(r⃗, t) are chosen

so that ∇ · A⃗ = 0 and Φ = 0. With such constraints, while keeping in mind the

definition of the canonical momentum

p⃗ = −iℏ∇, (57)

Eq. (56) can be rewritten as

H =
1

2m

(

−iℏ∇ +
|e|
c
A⃗(r⃗, t)

)2

. (58)

Here we choose to work with the velocity gauge, hence the Hamiltonian oper-

ates with vector potential via the term p⃗ − |e|A⃗(r⃗, t) rather than electric field

|e|r⃗E⃗(r⃗, t) which would be the case with length gauge. With this choice, electric

and magnetic fields are calculated with

E⃗(r⃗, t) = −∂tA⃗(r⃗, t), (59)

B⃗(r⃗, t) = ∇ × A⃗(r⃗, t). (60)

When one does not resort to EDA, this Hamiltonian keeps the spatial dependence

as seen in the FMC case

H(FMC) =
1

2m

(

−iℏ∇ +
|e|
c
A⃗(r⃗, t)

)2

+
|e|
m
B⃗(r⃗, t) · ˆ⃗s+ v[n](r⃗, t). (61)

Here, the latter term v[n](r⃗, t) is the potential term expressed as a function of

density n(r⃗, t) and also depends on the current J⃗(r⃗, t). This term encapsulates

the potential terms according to the level of theory one aims to cover. This term

can span over the Hartree potential VH[n](r⃗, t) which describes the effect of charge
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density produced by other electrons on the electron, the exhange-correlation po-

tential Vxc[n](r⃗, t) which encapsulates many-body effects such as exchange inter-

actions (effects caused by antisymmetry of fermionic wavefunction) and correla-

tion effects (describing dynamic interactions between electrons where mean-field

Hartree potential falls short), and Vnuc(r⃗, t) which denotes the Coulomb potential

of the nuclei. Then, the FMC Hamiltonian H(FMC) [99], takes the form

H(FMC) =
1

2m

(

−iℏ∇ +
|e|
c
A⃗(r⃗, t)

)2

+
|e|
m
B⃗(r⃗, t) · ˆ⃗s

+VH[n](r⃗, t) + Vxc[n](r⃗, t) + Vnuc(r⃗, t). (62)

These Hamiltonians described here can then be plugged into the TDDFT

framework described in Sec. 4.2 in order to tackle TDKS equations

−i
∂

∂t
φi(r⃗, t) = Hφi(r⃗, t). (63)

Then the corresponding current contribution from the matter side can be

calculated from the Kohn-Sham states φi(r⃗, t). Here, the states ϕi are indexed

over i, representing the occupied orbitals. As seen in Eq. (12) in previous sections,

once summed up over states, one reaches the electronic probability density. For

each state φi(r⃗, t), the current contribution is computed via

j⃗(r⃗, t) =
ℏ

m
Im (φ∗∇φ) +

|e|
mc

A⃗φ∗φ+
ℏ

2m
∇⃗ × (φ∗ŝφ) . (64)

The term j⃗(r⃗, t) in Eq. (64) is the probability current density. Here, the first,

second, and third terms represent the paramagnetic, diamagnetic, and magne-

tization current densities, respectively. We would also like to note that in the

second term, the contribution of exchange–correlation vector potential A⃗xc to

vector potential A⃗ = A⃗ext + A⃗xc is discarded, since we remain within TDDFT

framework. Probability current density j⃗(r⃗, t) is connected to the total electric

current density J⃗(r⃗, t) [43, 133] with

J⃗(r⃗, t) = −|e|⃗j(r⃗, t). (65)

4.5.4 Forward-Backward Coupling

Computing the total electric current density from the matter side is crucial be-

cause it enables its application in Maxwell’s equations. The total current contri-

bution is the tool to connect the matter system to the electromagnetic field. The

current computed in Eq. (64) is then converted into total electric current den-
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Figure 1: A schematic summarizing the forward-backward coupling approach
followed while modeling light-matter interaction. We note that this scheme is
valid for both TDSE and TDDFT frameworks.

sity and shipped to the equation of motion for Maxwell’s equations in Riemann-

Silberstein formalism described in Eq. (24). Here, the side condition of modified

Gauß’s law is applied as seen in Eq. (23). The vector potential is computed from

the instantaneous magnetic field through the solution of Poisson’s equation [134]

A⃗ (r⃗, t) = ∇ ×
∫ B⃗ (r⃗′, t)

4π|r⃗ − r⃗′| d3r′. (66)

This provides the chance of coupling the electromagnetic field back to the matter

side: With the newly obtained electric and magnetic fields, one can compute the

vector potential A⃗(r⃗, t) and feed it back to the Hamiltonians of Eqs. (50) and

(61) alongside the computed magnetic field B⃗(r⃗, t).

At this point, the gauge choice should be highlighted: Throughout this thesis,

we operate within the Coulomb(radiation) gauge. As mentioned in Sec. 4.5.3, this

choice imposes that the vector potential A⃗ is kept divergence-free. This choice

enables the extraction of the vector potential from the instantaneous magnetic

field shown in Eq. (66).

With the recipe described above, one has the option to couple matter sys-

tems with electromagnetic fields in a forward-backward loop. While calculating

the electromagnetic field and introducing them to the matter side is ‘forward

coupling’, shipping the current contribution from the matter side to the elec-

tromagnetic simulation and dynamically updating the fields is called ‘backward

coupling’ throughout this work. When the electromagnetic response is coupled
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back to the matter system, we call this bidirectional scheme ‘forward-backward

coupling’. This provides a self-consistent framework that allows one to investigate

different contributions. Added on top of the option of employing both dipole and

beyond-dipole approaches, this scheme becomes a powerful tool to discover and

identify new phenomena in light-matter interactions. In the following sections, we

will apply this tool to a variety of examples spanning from Cherenkov radiation

to high harmonic generation.

4.6 Twisted Light in the form of Bessel Beams

Light beams carrying orbital angular momentum, also referred to as twisted light,

possess the unique characteristic of carrying a nonzero projection of the orbital

angular momentum (OAM) onto the propagation direction. This special feature

has paved the way to gain a deeper understanding of the role played by OAM

in light-matter interactions. The possible applications of vortex-light beams are

numerous, spanning from optical manipulation [4, 5], quantum information [9, 10]

to imaging and sensing applications [6–8]. These beams can enable OAM based

pump–probe techniques which have the potential to detect chiral or topological

responses that ordinary plane waves cannot detect. A deeper understanding of

twisted light interacting with quantum descriptions of matter is mandatory, and

its inherent spatial dependence makes the twisted light an excellent candidate for

beyond-dipole investigations.

Twisted light has phase structuring effects which cause spatial inhomogeneity

in the transversal plane as depicted in panel b of Fig. 2. This phase structuring

can be seen in

A⃗(r⃗, t) ∝ exp
(

−iωt+ i⃗k · r⃗
)

exp(imϕ)Jm(k⊥r), (67)

where a general form for twisted light is provided: the vector potential A⃗(r⃗, t) has

the usual plane wave ansatz exp
(

−iωt+ i⃗k · r⃗
)

which propagates through time

and space as a function of frequency ω, time t, wave vector k⃗ and position r⃗.

Here, the term exp(imϕ) implies a phase structuring in the field on the order of

m since ϕ = atan( y
x
) is the azimuthal angle, while the Bessel function Jm(k⊥r)

causes the variation of the field along the transversal distance from the beam

axis.

In this chapter, we provide the exact Bessel beam formulation we have imple-

mented and employed for our calculations. The formulation described here is also

implemented in the Octopus code, offering the first integrated software platform

for combining exotic beam profiles with TDDFT simulations.

If a monochromatic field is assumed, the vector potential can be decomposed
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Figure 2: a) The comparison of the wave fronts of twisted light (light with orbital
angular momentum) and a plane wave. As the wavefront of a plane wave would
indeed be planar, the rotation around the propagation axis causes the wavefront
of the twisted light to assume a screw-like shape. b) The qualitative comparison
of transversal intensity profiles as time snapshots. While the transversal plane
of a plane wave is uniform in intensity, the Bessel function governing over radial
direction (in xy plane) paves the way to structured intensity for a twisted beam.

in its spatial and temporally dependent parts. This separation will also be useful

to go beyond monochromatic waves and apply the envelopes to the pulses: We

will employ spatially dependent envelope expressions provided in Sec. 4.8 to

turn continuous Bessel waves into pulses in the following sections. Here in this

chapter, we will deal with the spatially structured part first, and we will assume

propagation as a function of time per the temporal exponential.

4.6.1 Bessel Beams: Spatially Dependent Vector Potential Formula-

tion

In the present work, we restrict ourselves to the case of Bessel beams when it

comes to electromagnetic fields with orbital angular momentum content. These

beams possess the frequency ω, helicity λ, as well as projections of the linear

wave vector kz and total angular m momenta onto the propagation direction.

The z axis is fixed as the propagation direction in our formulation. The Bessel-

wave twisted field is described by the vector potential separated in temporal and
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spatial parts as A⃗(tw)
κmkzλ(r⃗, t) = A⃗

(tw)
κmkzλ(r⃗)e−iωt. The spatially dependent part is

A⃗
(tw)
κmkzλ(r⃗) = iλ−mA0

∫ eimφk

2πk⊥
δ (k⊥ − κ) δ

(

k∥ − kz

)

A⃗
(pl)

k⃗λ
(r⃗)d2k⊥dk∥, (68)

where A⃗(pl)

k⃗λ
(r⃗) = ε⃗k⃗λe

ik⃗·r⃗ is the vector potential describing plane wave light with-

out orbital angular momentum content, ε⃗k⃗λ is the polarization vector, k∥ and

k⊥ are the longitudinal and transversal components of the momentum k⃗, respec-

tively, and κ =
√

ω2 − k2
zc

2 is the well-defined transversal momentum of the

Bessel beam, and A0 is the amplitude of the vector potential. From Eq. (68), it

is visible that Bessel states represent a cone comprised of plane waves with the

opening angle θk

θk = arctan
(

κ

kzc

)

, (69)

in momentum space [25]. Once the integral in Eq. (68) is performed, the following

expression is reached

A⃗
(tw)
κmkzλ(r⃗) = (−λ)A0e

ikzz
∑

µ=0,±1

d1
µλ (θk) eiφr(m−µ)iλ−µJm−µ(κr⊥)e⃗µ. (70)

Here, Jn represents the Bessel function of the first kind, r⃗ =
(

r⊥, φr, r∥
)

is a

postion vector in cylindrical coordinates, r⊥ is the perpendicular component of

r⃗, d1
µλ (θk) is a small Wigner matrix described below. The small Wigner matrices

depend on both opening angle and helicity of the beam λ as follows

d1
µλ (θk) =























sin θk√
2
λ, if µ = 0

1+λ cos θk

2
, if µ = 1

1−λ cos θk

2
, if µ = −1

. (71)

Here, e⃗µ are eigenvectors of the spin projection operator Ŝz concerning the z axis,

which form the (orthonormal) basis provided as:

Ŝz e⃗µ = µe⃗µ Ŝz = −i











0 1 0

−1 0 0

0 0 0











.

The eigenvectors in Cartesian coordinates are explicitly:

e0 =











0

0

1











, e±1 =
∓1√

2











1

±i
0











.
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4.6.2 Formulation in Cartesian Coordinates

We implement the formula in the three-dimensional cartesian grid of octopus.

The corresponding components of A⃗(tw)
κmkzλ(r⃗) = (Ax(r⃗), Ay(r⃗), Az(r⃗)) in cartesian

coordinates are

Ax = (−λ)
1√
2
A0e

ikzzeimφr(eiφr
d1

−1λ (θk) Jm+1

(

κr⊥
c

)

iλ+1

− e−iφrd1
1λ (θk) Jm−1

(

κr⊥
c

)

iλ−1), (72)

Ay =

(

λi√
2

)

A0e
ikzzeimφr(eiφrd1

−1λ (θk) Jm+1

(

κr⊥
c

)

iλ+1

+ e−iφrd1
1λ (θk) Jm−1

(

κr⊥
c

)

iλ−1),

Az = (−λ)A0e
ikzziλeimφrd1

0λ (θk) Jm

(

κr⊥
c

)

.

Here, the Wigner functions d are given by Eq. (71), cylindrical and cartesian com-

ponents are connected such that r⊥ =
√
x2 + y2, κ =

√

ω2 − k2
zc

2, kz = κ

tan(θk)c
,

tan(ϕr) = y
x
. A further simplification is possible: λ is the indicator of helicity,

and one can restrict the formulation so that either right or left-handedness is

chosen, i.e., λ = ±1. Then, the reformulated cartesian components become

Ax =
1√
2
A0e

ikzzeimφr(eiφrd1
−1λ (θk) Jm+1

(

κr⊥
c

)

+ e−iφrd1
1λ (θk) Jm−1

(

κr⊥
c

)

),

(73)

Ay =

(

i√
2

)

A0e
ikzzeimφr(−eiφrd1

−1λ (θk) Jm+1

(

κr⊥
c

)

+ e−iφrd1
1λ (θk) Jm−1

(

κr⊥
c

)

),

Az = −A0e
ikzzieimφrd1

0λ (θk) Jm

(

κr⊥
c

)

.

We note that the real parts of the formulation

Re(Axe
−iωt) =

A0√
2

[cos(kzz + ϕr(m+ 1) − ωt)d1
−1λ (θk) Jm+1

(

κr⊥
c

)

+ cos(kzz + ϕr(m− 1) − ωt)d1
1λ (θk) Jm−1

(

κr⊥
c

)

], (74)

Re(Aye
−iωt) =

A0√
2

[sin(kzz + ϕr(m+ 1) − ωt)d1
−1λ (θk) Jm+1

(

κr⊥
c

)

− sin(kzz + ϕr(m− 1) − ωt)d1
1λ (θk) Jm−1

(

κr⊥
c

)

],

Re(Aze
−iωt) = A0d

1
0λ (θk) Jm

(

κr⊥
c

)

sin(kzz +mϕr − ωt),

is used to compute observables such as the electric field and the magnetic field

[135].
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4.6.3 Applying Paraxial Approximation to Bessel Beams

A frequently used approach employed in twisted electromagnetic fields that prop-

agate predominantly along a single axis is the paraxial approximation. This

approximation assumes that transverse variations occur on length scales much

larger than the optical wavelength. Under this condition, Maxwell’s equations

are simplified to the wave equation form that admits well-known solutions such

as Gaussian and Laguerre–Gaussian beams.

However, this approximation breaks down in the presence of strong envelopes,

strong focusing and when longitudinal fields are relevant. This occurs for tightly

focused beams with large aperture, for beams carrying large OAM exhibiting

strong transverse gradients, and for ultrashort or broadband pulses where the

slowly varying envelope approximation no longer holds. In such nonparaxial

regimes, longitudinal field components become significant.

Physically, the beam divergence or opening angle must remain small for parax-

ial approximation to hold. In this regime, the electromagnetic field is predomi-

nantly transverse, longitudinal field components are negligible, and polarization

and spatial degrees of freedom remain approximately decoupled. This setup de-

pends on the opening angle θk. Since this angle describes the ratio of transversal

wave vector components to the one in the propagation axes as seen in Eq. (69),

such an approximation implies that the propagation takes place strictly in one

direction. Throughout this thesis, we impose the condition θk ≈ 5◦ when residing

in the paraxial regime.

Applying the paraxial approximation, i.e. sin(θk) ≈ θk and cos(θk) ≈ 1, and

reordering terms which depend on the zeroth order of θk, we arrive at Az ≈ 0.

Ax ≈ 1√
2
A0e

ikzzeimφr(eiφr
1 − λ

2
Jm+1

(

κr⊥
c

)

+ e−iφr
1 + λ

2
Jm−1

(

κr⊥
c

)

), (75)

Ay ≈
(

i√
2

)

A0e
ikzzeimφr(−eiφr

1 − λ

2
Jm+1

(

κr⊥
c

)

+ e−iφr
1 + λ

2
Jm−1

(

κr⊥
c

)

),

Az ≈ 0.

The paraxial approximation also implies that m = moam + λ, and the angular

momentum number moam and helicity λ are separable. Then the formulation

takes the shape below, which constitutes the spatially dependent part of the
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general form in Eq. (67).

Ax ≈ 1√
2
A0e

ikzzeimoamφrJmoam

(

κr⊥
c

)

, (76)

Ay ≈
(

iλ√
2

)

A0e
ikzzeimoamφrJmoam

(

κr⊥
c

)

,

Az ≈ 0.

4.6.4 Construction of a Linearly Polarized Bessel Beam

The formulation we elaborated in the preceding sections covers the exact formu-

lation of Bessel beams, which is accompanied by circular polarization (helicity

λ ± 1). However, circularly polarized pulses are not a good fit for studying

high harmonic generation in spherically symmetrical atomistic systems: Once

the electron is driven away from the nucleus, the recombination is subsequently

suppressed in the presence of a circularly polarized beam. Therefore, a linearly

polarized Bessel beam is required: Following the formulation of [29, 136, 137], we

arrive at

A⃗
(tw)
lin (r⃗, t) =

1√
2

[

A⃗
(tw)
mγ1 ,λ=+1,θk

(r⃗, t) + A⃗
(tw)
mγ2 ,λ=−1,θk

(r⃗, t)
]

. (77)

Here, the recipe is to combine two Bessel beams with opposite helicities. The

same opening angle and the same amplitude for two beams with the condition

mγ1 −mγ2 = 2 yields a Bessel beam which is linear in one direction and has the

OAM number m, which is the average of the superposed beams. Nevertheless,

we note that this linearization is not exact: the beam retains a component along

the propagation direction with an amplitude on the order of 10−3 relative to the

main beam amplitude, and a residual amplitude of approximately 10−4 in the

suppressed transverse direction.

4.7 Multisystem Implementation in the Octopus code

This work spans a broad range of light–matter interaction phenomena starting

from the atomic level (e.g., hydrogen atoms and benzene molecules) to micro-

scopic nanoplasmonic structures with sizes on the order of several micrometers.

Capturing such multiscale physics within a unified framework requires careful

coordination between different physical subsystems, each governed by distinct

equations of motion, numerical grids, and time resolutions. In this section, we

outline the implementation strategies that enable this multiscale coupling, the

multisystem framework of the Octopus code.
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There are numerous descriptions of light and matter available in the Oc-

topus code. Matter systems can include classically described point charges,

wavepackets, periodic solids, finite systems describing atoms or molecules within

the TDDFT formalism. Each system is initialized through a central system fac-

tory, which manages the setup of propagators, grids, and interactions. Systems

coexisting in the simulation are called partner systems. Once initialized, the sys-

tems can communicate via the regridding interface and update their fields and

potentials according to the prescribed clocks.

The interaction between systems includes the transfer of quantities such as

electromagnetic fields (electric, magnetic fields, or vector potential), Coulomb

forces, Lorenz force, potentials such as Lennard-Jones, and currents. Once these

interactions are set up via the interaction factory, they are handled dynamically

during real-time propagation. We note that the direction of the interaction can

also be chosen freely, depending on the level of approximation. A system of clocks

is used to determine when particular quantities need to be updated or exchanged

between components. These clocks allow systems with different timescales to

remain synchronized and enable efficient propagation without unnecessary recal-

culation. For instance, an atomistic system driven by an external field might not

need to update its interaction with a current emitter at every timestep, depending

on the scale separation.

To facilitate the exchange of information between systems defined on differ-

ent spatial grids (e.g., transferring the Lorentz force from a Maxwell grid to an

electronic system, or applying Coulomb potentials between charge distributions),

a regridding mechanism is employed. This mechanism allows quantities to be

interpolated across grids with different resolutions or extents. Two interpolation

methods are supported: linear interpolation, which smoothly maps quantities be-

tween grids, and nearest-neighbor interpolation, which transfers quantities from

the closest points. This flexibility supports different levels of approximation de-

pending on the required accuracy and physical context.

Note that the transfer of some quantities may not be as crucial under certain

approximations. For instance, under the EDA, the electric field of a laser can

be evaluated directly from the electronic subsystem for the complete simulation

box, without requiring full electromagnetic field propagation, and thus does not

need explicit coupling to the Maxwell solver spatially across the grid. As we will

see in the following chapter, we take advantage of such approaches and avoid

unnecessary evaluation in the partner system when feasible.



42

4.8 Implementation of Position-dependent Laser beams

in the Octopus code

To enable calculations extending beyond the EDA, a space-dependent electromag-

netic source is necessary. This part can be supplied within the Maxwell solver of

the Octopus code, or, in the case of other codes, a workflow combining a Maxwell

solver code with the ab-initio code can be devised. However, solving Maxwell’s

equations for each simulation can be computationally demanding, both in terms

of memory and time, especially when the laser field needs to be propagated across

the entire simulation grid. This section describes the solution developed for this

problem.

To ease computational load, a more efficient solution has been developed: a

spatially dependent laser source that does not require full propagation. Integrated

into the multi-system framework of the Octopus code with the name ‘External-

Source’, this approach significantly reduces computational overhead by avoiding

the need to solve Maxwell’s equations during every simulation step. Instead, the

laser field is defined directly on the grid of the target system, making it possi-

ble to retain spatial dependence without the cost of time-domain propagation.

Therefore, such a feature offers a good way to reduce the computation time and

consumption of memory resources via the two advantages: Circumventing the

usage of partial differential equation solvers, which would tackle Eqs. (23) and

(24), and avoiding the unnecessary calculation of the fields in unused parts of the

simulation box.

Through this feature, users can now prescribe laser fields that are explic-

itly dependent on both space and time. This represents a novelty for TDDFT

software, where external fields are typically only a function of time, and spatial

uniformity was assumed under the dipole approximation.

A great advantage of such a spatially dependent laser is the facilitation of

employing complex beams such as Bessel pulses described in Sec. 4.6. The

transversal planes describing such Bessel beams of the orders of m = 1, 2, 3 re-

spectively can be seen in Fig. 3, panel a. It is visible from Sec. 4.6 that the

formulation of Bessel beams is complex and dependent on numerous variables;

therefore, the complete computation in a Maxwell solver requires great compu-

tational effort. A spatial laser system that calculates the beam properties when

necessary helps the user to circumvent such a problem. The opportunity extends

for users to make approximations: between the exact solution of Maxwell’s equa-

tions and the approximated dipolar field, there is a playground. With such a

feature, one can explicitly check parameters such as opening angle and rapidly

test the importance of approximating certain variables.
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Moreover, calculating a beam in a Maxwell solver requires the formulation

to be an exact solution of Maxwell’s equations. While this is indeed the case

for Bessel beams, frequently used Laguerre-Gaussian beams, for instance, are

rather solutions to the paraxial Helmholtz equation. Therefore, it is impossible

to propagate such beams in a solver, but rather applying them as an external

laser is preferable.

To see how space dependence naturally involves time propagation, a very use-

ful example is the envelope imposed on an electromagnetic wave. This transforms

the wave into a pulse, meaning that the wave becomes finite in time and space.

A finite pulse in simulations, particularly in TDDFT, is essential both physically

and numerically. Physically, it mirrors real experimental conditions where fields

are time-localized, enabling the study of transient dynamics, as well as broadband

excitation through a finite spectral width. Numerically, finite pulses ensure sim-

ulations remain stable, since the nonphysical energy accumulation (which would

be caused by continuous waves) is avoided. This renders a clean initial state

possible: Once the ground state of the matter system is combined with an ini-

tially zero electromagnetic field, one can entirely capture the dynamics within

the simulation window.

Within the dipole approximation, conventional time-dependent laser schemes

describe a temporal envelope

A(t) = A0 exp [i (−ωt+ ϕp)] exp

(

−(t− t0)
2

2τ 2
0

)

. (78)

Here, A0 denotes the amplitude, ϕp is the phase of the beam, ω is the central

frequency, and t refers to time. t0 is the point in time where the pulse is initiated,

τ0 is the width in time, i.e., duration of the pulse. On the other hand, the same

envelope can be expressed for a space-dependent pulse

A(r⃗, t) = A0 exp
[

i
(

k⃗ · r⃗ − ωt+ ϕp

)]

exp





−
(

k⃗ · (r⃗ − r⃗0)/|⃗k|
)2

2σ2





 . (79)

Here, the dependence of the pulse on the wave vector |⃗k| = ω/c is preserved

as well as space dependent terms in the exponential describing a plane wave:

exp
(

i(k⃗ · r⃗ − ωt+ ϕp)
)

. The exponential describing the envelope is expressed

now in space-dependent terms: r⃗0 denotes the position where the pulse starts,

and instead of the width in time τ0, now the width in space σ0 is used. Time

propagation in Eq. (79) is implied through the nature of the wave: |r⃗| = r0 − ct.

A benchmark that is used for the implementation is as follows: The expres-

sions of the envelope described in Eqs. (78) and (79) should be equivalent in terms
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of A(r⃗, t) for r⃗ = 0 or when r⃗ is the center of charge of the system. Therefore,

one can compute the electromagnetic field and compare the two results stemming

from the two expressions. Results of such a comparison are given in Fig. 3, panel

b), which confirms that for identical parameters, the two implementations yield

the same vector potential as a function of time, assuring the space-dependent

implementation is working as intended.

Figure 3: a) Electric fields of Bessel beams with orders m = 1, 2, 3 respectively,
implemented as spatial laser in the Octopus code. Time snapshots of the transver-
sal xy plane are shown, while z is the direction of propagation. b) Benchmarking
of the spatial laser with its solely time-dependent counterpart. Once the position
is fixed as the center of charge for the system, both formulations should yield the
same electromagnetic field, hence the same dipole excitement. Here, the results
are compared as a function of time. c) Comparison of elapsed calculation time
for the spatial laser and Maxwell solver. The advantage of the spatial laser grows
as the size of the simulation box is increased.

We show the numerical advantage of implementing such a laser in panel c) of

Fig. 3. Here, plane wave pulses are propagated first in a cubic simulation box

with dimensions 3.0×3.0×3.0 Å, with equal spacing of 0.2 Å. The simulation box

contains a carbon atom, which is coupled to the electromagnetic field within the

EDA. Two cases were tested: Green bars in Fig. 3 point to the case where the field

is supplied with the spatial laser (called External Source in the code), while red

bars refer to the case where the Maxwell solver is used for explicit computation of

the electromagnetic field. The elapsed time in seconds to complete one timestep
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(2.41888 × 10−3 fs) is measured and compared for the box in panel c of Fig. 3.

Here, the same quantity is also compared for a larger box of 4.0 × 4.0 × 4.0 Å,

with equal spacing of 0.2 Å. Observing that the difference in elapsed calculation

time between the External Source and Maxwell Solver tools is increased, it is

clear to see that as one moves to larger grids, the advantage of spatial laser is

important. All simulations for this demonstration were performed locally on a

Debian 12 (Bookworm) machine with an AMD Ryzen 7 PRO 7840U CPU (8

cores, 16 threads), 28 GB RAM. Calculations were launched using Open MPI

4.1.4 with 2 MPI processes.

In summary, the full spatial laser implementation enables a practical and effi-

cient route to explore physics beyond the electric dipole approximation, capturing

spatial field variations while maintaining computational tractability.
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5 Nanoplasmonics & Generation of Light

with Archimedean Spirals∗

Nanoplasmonics is the field that resides at the interface of optics and condensed

matter science, focusing on the optical phenomena found in metallic systems

structured at the nanoscale [138]. Emerged from classical scattering theory,

nanoplasmonics gained momentum with the advancement of nanofabrication tech-

niques. Particularly due to surface plasmons, i.e., propagating modes along the

surface of a conductor, nanoplasmonics carried the physics to the subwavelength

scale: this rendered miniaturized photonic circuits possible, which in turn entailed

outstanding progress in sensing, imaging, data storage, and light manipulation

[139].

Specifically, light with OAM, also referred to as twisted light or optical vor-

tices, their orbital angular momentum content has significant implications for

the study of light-matter interactions. The avenues opened by this new degree of

freedom, represented by orbital angular momentum, include optical manipulation

of particles [4, 5], as well as novelties in quantum information [9, 10], imaging

[6, 7], and detection techniques with superresolution [8]. Naturally, there have

been numerous experimental and theoretical studies tackling the interaction of

optical vortices with matter spanning from photoionization with such beams [25–

29], to the excitation of matter with twisted light in the low intensity regime

[12–18, 140].

When combined, nanoplasmonic structuring of twisted electromagnetic fields

enables a new knob for the control over light–matter interactions. Considering

∗Parts of this chapter, including figures and text excerpts, are adapted from the author’s

previously published work: Albar, E.I., Bonafé, F.P., Kosheleva, V.P. et al. Time-resolved

plasmon-assisted generation of optical-vortex pulses. Sci Rep 13, 14748 (2023), under the

Creative Commons Attribution (CC BY 4.0) license.
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that the nanoplasmonic systems provide the opportunity to localize, enhance, and

spatially structure electromagnetic fields well below the diffraction limit, it is not

surprising that they are frequently used for molding light. Customizing field

topologies via nanoplasmonics in terms of phase, intensity, and OAM content

allow unprecedented access to subwavelength phenomena. Particularly, the abil-

ity to imprint and reshape OAM onto incoming non-OAM plane waves through

carefully engineered nanostructures has expanded the toolbox for optical control

at the nanoscale, offering new handles for steering energy flow, tailoring optical

selection rules, and driving novel light-induced dynamics [71, 141]. Henceforth,

we focus here on this particular concept of generating OAM from a plane wave

pulse.

Understanding the introduction of orbital angular momentum to an unstruc-

tured electromagnetic field is crucial for the development of new photonic tech-

nologies. The process of twisted light generation can be realized by a variety of

structures, such as spiral phase plates [68], forked holograms [69], and q-plates

[70]. In this work, we focus on the generation of such fields with gold Archimedean

spirals [71], which offers a simple picture of phase structuring of the plane wave

beam.

Gorodetski and colleagues experimentally demonstrated the emergence of vor-

tex surface plasmon polaritons (VSPP), i.e., hybrid light-matter states residing

at the surface of a conductor [76]. Subsequent studies have reported nanoscale

platforms for the synthesis [142], real-time emergence [143], and beaming [144]

of twisted light. Such studies were accompanied by finite-difference time-domain

(FDTD) simulations that have addressed the mechanisms underlying the gener-

ation [77–79]. It has also been shown that vortex characteristics are not confined

to the conductor surface, but rather extend to the vacuum [71, 72]. All of these

results concerning SPPs motivate our study of the nanoplasmonic Archimedean

spiral, which is a suitable candidate to focus on while addressing the SPP-driven

mechanisms contributing to twisted light generation.

In this chapter, we present the first complete modeling of the dynamics of a

short optical vortex pulse, tracing the process from the very formation of an OAM

beam to the imparting of angular momentum onto point-like test charges. The

observed susceptibility of the particle trajectories on the initial position across

the transversal plane of the beam offers a sensitive diagnostic of the spatially

varying orbital angular momentum density.

This chapter is organized as follows: We start with the details of the design

process for the structure and its integration into the Maxwell solver part of the

Octopus code. Then we move on to describe real-space real-time emergence of

orbital angular momentum in the unstructured beam that is shone onto the spiral.
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This work is a multiscale study: We employ point charges to test and characterize

the produced local orbital angular momentum density. The chapter is concluded

with a discussion of findings from the trajectories of test charges.

5.1 Design and Integration of Structures into Maxwell

Simulation Box

Spiral phase plates, holograms, and Archimedean spirals imprint OAM onto the

incoming beam mainly via their inherent phase structuring. The gaps or indenta-

tions in the structure diffract and delay the light, which results in the imprinting

of phase structuring onto the incoming light field.

For the case of an Archimedean spiral, phase structuring is bound to the

number of branches and the separation between the branches. The general form

of the Archimedean spiral is given by

r(φ) = d0 +
d mod (mφ, 2π)

2π
. (80)

Here, d0 =
√

x2
0 + y2

0 is the starting radius of the segmented Archimedean spiral

branches, which then expand from the smallest radius around the center to reach

d0 + d. φ = arctan
(

y
x

)

represents the azimuthal angle, and mod is the modulus

function giving the remainder of the division of mφ by 2π. The number of

segments in the spiral is determined by the parameter m, which is shown in

panel a of Fig. 4 (for our OAM transfer investigation, we use m = 4). This is an

analogy to the cross-section of OAM beams, the number of segments enforces the

number of phase jumps of the emitted field, which is the fingerprint of the OAM

number for electromagnetic fields.

The nanoplasmonic Archimedean spiral is designed first in OpenSCAD [145], a

script-based 3D computer-aided modeling software that is used for programmable

construction of complex geometries. We match the gap to the wavelength as

seen in Fig. 4. We set the radius of the golden spiral to 9 microns, which is

feasible for such nanoplasmonic golden structures. The spiral thickness in the

propagation direction is 1.6 µm. Resulting geometric files are then transferred to

the calculation grid in Octopus and are read in Octopus using the Computational

Geometry Algorithms Library (CGAL) [146].

In real-space real-time simulations we perform in Octopus-code [100], we treat

the grid points that overlap with the structure as points that emit the current

response of the material. This means that the susceptibility is applied only in-

side the Drude material, while we solve Maxwell’s equations in the vacuum for

the external points. In this work, the classical Drude susceptibility model for a
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linear, non-magnetic medium is used as described in Section 4.4. To describe the

matter grid points with this susceptibility model, we employ previously reported

parameters [147] for the Drude pole frequency ωp and inverse relaxation time γp

for gold, and calculate the susceptibility following Eq. (39).

Figure 4: a) Archimedean spiral designs from OpenSCAD. The number of
branches determines the number of phase jumps. We employ the Drude pole
frequency and inverse relaxation time values for gold to describe a nanoplas-
monic Archimedean spiral. b) Setup for the investigation of OAM generation in
the spiral. The central wavelength of the incoming 8-cycle, right circularly po-
larized ultrashort pulse is matched to the separation between the branches. The
radius of the spiral is set to 9 µm, while the spiral thickness in the propagation
direction is 1.6 µm.

Since the gap between branches is expected to diffract the incoming light and

introduce the phase structuring, multiples of the incoming wavelength are benefi-

cial: This facilitates understanding the interference pattern of the produced field

occurring in the central vacuum region. In this study, we employ a central wave-

length of λ = 800 nm, which is standard for a Ti:Sapphire laser. An ultrashort

pulse of 8 cycles with the said wavelength is then sent onto the nanoplasmonic

structure. The pulse has no transversal structuring up until the interaction with

the spiral: It has a plane wave form and is right circularly polarized. The electric
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field has the form

E⃗(r⃗, t) = Re{g(r⃗)eik⃗·r⃗−ωtε⃗k⃗σ}. (81)

Here, the polarization vector ε⃗k⃗σ = 1√
2

(1, σi, 0)T points to circularly polarized

light with a helicity σ = 1, denoting the right-handedness, and g(r⃗) is the Gaus-

sian envelope function described as

g(r⃗) = E0e
−
(

k⃗·(r⃗−r⃗o)
|r⃗|

)2
1

2w2 . (82)

The maximum pulse amplitude E0 shown in Eq. (82) is 0.02 V/nm; this justifies

the restriction of our analysis to the linear regime.

In the envelope that restricts the electromagnetic field in space and time, w

is the half pulse width in space, and it corresponds to 4λ in the present study.

This renders the used pulse to be ultra-short, while broadening its span over the

frequencies surrounding the central frequency of 1.5498 eV . ro marks the spatial

offset from the origin of the pulse to the simulation box, which is arranged with

the purpose that at the initial timestep t = 0 the pulse starts already inside the

simulation box, as depicted in Fig. 6.

The incident pulse and nanoplasmonic golden spiral are combined in a real

space simulation box of size of 15.9 × 15.9 × 10.6 µm. The spacing used to dis-

cretize the system is 52.9 nm in every direction. We use a time step of 2.65×10−3

fs for the time propagation. The total simulation time is 45 fs. The computa-

tional method to propagate Maxwell’s equations in real time is based on the

Riemann-Silberstein (RS) formalism, which is detailed in Section 4.3. The corre-

sponding modified Gauß’s Law and equation of motion are seen in Eqs. (23) and

(37). For the linear medium, we can express the total current density J⃗total(r⃗, t)

as J⃗(r⃗, t) = ∇ × M⃗(r⃗, t) − ∂tP⃗ (r⃗, t) − J⃗free(r⃗, t). Here, M(r⃗, t) and P (r⃗, t) are

the magnetization and polarization, respectively. Following the spirit of Section

4.4, we restrict ourselves to the non-magnetic case in the linear regime, hence the

currents are solely stemming from polarization P⃗ (r⃗, ω) = ϵ0χ(r⃗, ω)E⃗(r⃗, ω), where

χ is the scalar (isotropic) electric susceptibility shown in Eq. (39).

When propagating the matter side and the electromagnetic side together,

one has to solve the auxiliary differential equation involving the induced current

density, given in Eq. (43) [127]. We use a Runge-Kutta scheme to tackle this

simultaneous propagation in the time domain.

Finally, the simulation box needs absorbing boundaries. In Finite-Difference

Time-Domain (FDTD) or Finite Element Methods (FEM) calculations, a finite

simulation box implies artificial numerical boundaries imposed on Maxwell’s equa-
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tions. When reaching the simulation box boundary, the electromagnetic waves

can then artificially scatter and reflect, displaying erroneous behavior. To prevent

this, Perfectly Matched Layer (PML) boundaries are used: Such a layer acts as

an artificial absorber which causes the incident wave at the boundary to be prop-

agated without reflection at the interface [148]. The wave that passes through

the boundary to the said artificial layer is attenuated until it is fully absorbed.

Then, the outer edge of the simulation box is safe to truncate, since the wave in

question is handled. The attenuation follows an artificial conductivity profile σi

assigned to the PML region

σi(i) =

(

|i| − bi

Li − bi

)qP ML

σi,max, (83)

where i is the Cartesian direction coordinate i ∈ (x, y, z) while bi and Li are inner

simulation box size and total box size including PML layer thickness wrapped

around the inner part in that direction[43, 127]. The maximum conductivity

σi,max value is determined as

σi,max = −ϵ0(q + 1)ln(R(0))

2µ0(Li − bi)
. (84)

The variable qP ML here is the PML power coefficient, and it is numerically

screened by [125], and fixed at qP ML = 3.5 in this study. R0 is the reflection coef-

ficient, i.e., the knob for the tolerated reflection error, and it is set to 1.0 × 10−16

for our work. The simulation box size described above includes a PML region

of 0.8 µm in each direction, which corresponds to 15 grid points to absorb the

incoming wave safely.

We employ the setup described in this section and propagate an ultrashort

pulse in the simulation box, which is incident on a golden nanoplasmonic Archimedean

spiral. The following subsection describes the resulting time-resolved OAM be-

havior emerging in the simulation.

5.2 Probing the Emergence of Orbital Angular Momen-

tum Generation in Time

The classically described, spatially resolved OAM density L⃗(r⃗, t) is calculated

from the electric and magnetic fields E⃗(r⃗, t) and B⃗(r⃗, t) [135].

L⃗(r⃗, t) =
1

c2µ0

r⃗ ×
[

E⃗(r⃗, t) × B⃗(r⃗, t)
]

= ϵ0r⃗ ×
[

E⃗(r⃗, t) × B⃗(r⃗, t)
]

. (85)
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Since electromagnetic fields are evaluated instantaneously via the Riemann-Silberstein

formalism, the OAM density then becomes a straightforward quantity to report.

We implemented this output in theOctopus code and made use of the existing

machinery to produce the output efficiently.

We first show the emergence of the OAM density in the electromagnetic field

in a scaled-down, proof-of-concept simulation. In Fig. 5.2, a volumetric snapshot

of the OAM density is provided where the pulse is halfway through the spiral.

It is clearly visible that this quantity is introduced upon passing through the

golden nanostructure, since before the spiral, the OAM density is minimal. Here,

we report the OAM density in the z direction, which is the propagation direction

of the pulse. We also observe that this quantity extends well beyond the span of

the spiral, hinting at a consistent production of OAM density.

Figure 5: Volumetric Plot for the generation of orbital angular momentum, plot-
ted for a proof-of-concept calculation. A snapshot where the pulse is halfway
through the Archimedean spiral is shown.

To move on to a more detailed analysis, we employ the simulation box de-

scribed in the previous section, and split the electromagnetic field into its external

and induced components: E⃗(r⃗, t) = E⃗ext(r⃗, t)+ E⃗ind(r⃗, t). Here, the external part

propagates in the vacuum part of the box and is unaffected by scattering; it only

serves to excite the spiral. On the other hand, E⃗ind(r⃗, t) collects the response from

the spiral. We would like to highlight that with this decomposition, E⃗ext corre-

sponds directly to the pulse described in the previous section, which is engineered

via the input parameters.

In Fig. 6, we report the results in terms of these components of the total

electric field. The side section on the left marks the spiral as the gold area,

and the external profile of Eext
x (r⃗, t) component through the propagation axis

(z) is shown in green, while its induced counterpart Eind
x (r⃗, t) along the same
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axis is plotted in blue. Here, the rows correspond to different time steps of the

simulation: Snapshots from 0.0 fs, 15.9 fs, 21.2 fs, and 29.1 fs are provided.

We are interested in the z component of xy-plane averaged OAM density

Lz(r⃗, t) ≡ Lz(x, y, z, t)

L̄z(z, t) =
1

Sxy

∫ ∫

|Lz(x, y, z, t)|dxdy. (86)

Here, Sxy denotes the cross-sectional area of the simulation box. Then we can

express this averaged quantity along the propagation axis as seen in the left side

of Fig. 6.

As the induced field in Fig. 6 is shown only along the propagation axis on

the left side, the vortex-like time resolved dynamics is better characterized by the

averaged OAM density L̄z(z, t) along the z-axis, which is shown in purple in Fig-

ure 6. We compute the OAM density considering the total electric and magnetic

fields (external and induced) following the recipe of Eq. (85). We also decompose

and plot the OAM density stemming from only the induced fields; it is plotted

in red. The amplitude of the OAM density arising from the induced field alone

is significantly smaller than that of the total field. Moreover, the induced-only

OAM density traces the regions of strongest induced field intensity: it exhibits

near-field peaks at the boundaries of the nanostructure and decays (although does

not vanish) in amplitude as it propagates away from the spiral. The comparison

between these two densities shows that the interference of the incident circularly

polarized beam with the induced one plays a significant role in OAM density.

On the other hand, the OAM density stemming from the total fields does not

experience a significant change in amplitude after the interaction of the external

pulse with the nanospiral, since its average profile is mostly dependent on the

amplitude of the source pulse. However, it is delayed with respect to the external

pulse envelope due to the contribution from emission that travels to free space.

The vertical dashed black lines in the left panels are the transversal cross-

section planes plotted in the right panels of Figure 6. These are the middle of the

spiral (z = −2µm) and a further plane (z = 0) to characterize the far field. Upon

the arrival of the incident pulse to the spiral, the emitted radiation emanates

from the branches and travels towards the center of the spiral, interfering with

the central axis of the structure. This behavior is clearly visible in the cross-

section of the emitted field at time snapshots of 15.9 fs, 21.2 fs, and 29.1 fs.

The temporal resolution provided by these snapshots clearly demonstrates the

geometric structure that the spiral imprints on the emitted field. In the case of

a continuous wave, this interference would result in a clearer pattern. However,

the ultrashort incident pulse induces many frequency components that acquire
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Figure 6: The left panels display the simulation box along the propagation axis,
while the corresponding cross-sectional profiles are presented on the right. Each
of the rows represents a snapshot in time at 0.0 fs, 15.9 fs, 21.2 fs, and 29.1 fs.
The external and induced electric field components Ex, are shown in green and
blue, respectively. The xy-integrated OAM density L̄z(z, t) is given for two cases:
The total field (external + induced) is purple, and the induced field is plotted in
red. In the side views, vertical dashed black lines indicate the planes for which
cross-sectional plots are provided. These two cross sections are located at the
midpoint of the spiral (z = −2µm) and the center of the simulation box z = 0.
Following the arrival of the external pulse at the spiral, the emitted radiation is
seen to propagate towards its center, as shown in the cross-sections at 15.9 fs,
21.2 fs, and 29.1 fs. The behavior of the OAM density in the side view further
demonstrates that the vortex-like character of the induced field persists and is not
confined to the near field: It survives in the transverse components that radiate
into the far field. The figure is reproduced with permission from E. I. Albar et
al., Sci. Rep. 13, 14748 (2023), licensed under CC BY 4.0.

different phase components.

In addition to the patterned field at the mid-plane of the spiral, the emission

stays significant a few micrometers away. Such an induced field also carries a

non-negligible OAM structuring, as seen in the snapshots at 21.2 fs and 29.1 fs,

which is also confirmed by the corresponding OAM density in the left panel. This

traveling component in the cross-section has a profile that resembles the one at

the spiral plane but with a certain delay. Then, one can conclude that the vortex-

like nature of the induced radiation survives the interaction: This behavior is not
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only present in the near field but also accompanies the transverse component of

the electromagnetic field that radiates far from the structure.

Another quantity that demonstrates the contribution of the external fields in

the amplitude of the produced OAM density is the averaged energy density along

the propagation axis. We calculate the energy density W⃗

W⃗ (r⃗, t) =
ϵ0

2
E⃗(r⃗, t)2 +

2

µ0

B⃗(r⃗, t)2. (87)

We integrate it over the cross section in Eq. (88) with a similar procedure to

the OAM and report it in Fig. 7.

W̄ (z, t) =
1

Sxy

∫ ∫

|W (r⃗, t)|dxdy. (88)

Here, we highlight that the energy density reflects the contribution of the

electric and magnetic fields. As seen in Eq. (85), the OAM is proportional to

these quantities. In the circularly polarized case where both x and y components

are present, the correlation between the magnitude of the energy density and the

OAM becomes even more significant.

Once the effect of geometric phase structuring on the ultrashort pulse is con-

firmed, we simplify our model to dissect the local OAM further. We replace the

Maxwell simulation in vacuum with external current sources directly, which mim-

ics the emission from the golden Archimedean spiral. This will help to isolate

the induced emission: Current emitters will have the same geometric structuring

while being free of external incident pulse and its noise. Since the linear medium

requires a fine mesh due to surface boundary conditions, the need to replace it

with computationally cheaper current sources arises. The linear medium also

suffers from spurious fields at the intricate parts of the design, such as the caps

at the ends of branches. This replacement also nullifies such problems.

As a final argument in favor of currents, we investigate the OAM patterning

of total and induced fields in Fig. 8. Here, three rows correspond to snapshots

from three timesteps in the simulation: 15.9 fs, 42.2 fs, and 45.0 fs. We observe

that even though the average OAM density depends on the amplitude of the

electromagnetic fields, the patterning due to interference is very similar for both

cases. This resemblance is particularly striking after the pulse passes through

the spiral. This behavior implies that the overall OAM behavior is governed

by the induced field. Henceforth, investigating the current emitters mimicking

the induced field should provide reliable insights into the original linear medium

setup.

The current density emitters are structured to have the shape of segmented
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Figure 7: Time-dependent evolution of the energy density reported along prop-
agation axis. Here, the left side indicates the evolution of the x component of
the electric field while the right hand side of the graph shows that of the energy
density described in Eq. (87). The snapshots correspond to 0.0 fs, 15.9 fs, 21.2
fs, and 29.1 fs. The figure is reproduced with permission form E. I. Albar et al.,
Sci. Rep. 13, 14748 (2023), licensed under CC BY 4.0.

nanoplasmonic Archimedean spirals. Their space and time dependence are en-

gineered to emulate the emission from the original nanoplasmonic spiral. The x

and y components of the emitted current are shown in

Jx(x, y, z, t) = j0 exp







−
(√

x2 + y2 − r0 − dφ
)2

2σ2





 exp

(

−(t− t0)
2

2τ 2

)

cos(ωt),

(89)
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Figure 8: Comparison of cross-sectional OAM densities for total fields and isolated
induced field. Since the patterns are quite similar, OAM density generated from
current emitters is expected to reproduce the phase structuring from the original
medium. Figure is reproduced with permission form E. I. Albar et al., Sci. Rep.
13, 14748 (2023), licensed under CC BY 4.0.

Jy(x, y, z, t) = j0 exp







−
(√

x2 + y2 − r0 − dφ
)2

2σ2





 exp

(

−(t− t0)
2

2τ 2

)

cos(ωt+ π/2),

(90)

whose shape then mimics the behavior given by Eq. (80). Notice that in the spirit

of mimicking the behavior induced by the original circularly polarized pulse, two

components have a π/2 phase shift.

Similar to the definition in Eq. (80), d represents the gap between the branches

of the segmented spiral, while j0 is the current density amplitude and is set to

7.57 ×10−7 A nm−2. Four segments of the spiral are represented in four angular

sections: from 0 to π
2
, π

2
to π, π to 3

2
π and 3

2
π to 2π. Once again, a Gaussian



58

envelope is introduced in the temporal domain to ensure a short pulse. The width

in time corresponds to τ = 4 fs, while the shift in time is t0 = 13.3 fs. In order to

have a finite and smooth emission range, the spatial span of the current source is

set to σ =0.08 µm.

Figure 9: The induced field from the spiral as a Drude medium is found on the left
side, while the emission from the current density described in Eq. (89) is situated
on the right side. The panel (a) describes the schematics of the comparison: The
emission from the gold nanoplasmonic spiral is replaced by the current emitters.
Such emitters are prescribed directly in the simulation box and shown in dashed
black lines. In panel (b), the emission cross sections are given. The simulation
with the current emitter setup permits scaling down the simulation box: We set
the radius of the emitter to 4.5 µm. The figure is reproduced with permission
from E. I. Albar et al., Sci. Rep. 13, 14748 (2023), licensed under CC BY 4.0.

In Fig. 9, we compare the two mechanisms of vortex generation: the plasmonic

spiral and the spiral-shaped current emitters. For the emitter case (right panel),

the spiral radius was chosen as r0 = 4.5 µm, i.e., half the radius of the actual

plasmonic spiral (left panel), to reduce computational cost. The current emitters

are also much thinner, with their extent defined by the parameter σ, in contrast

to the 1.6 µm span of the gold segmented spiral. These simplifications allow for

a simulation box of 12 × 12 × 6 µm, with a spacing of 80 nm, which accelerates

the calculation remarkably. As we will see in the following section, the aim is to

add classically described charged particles to the simulation box. In this context,

the simplification that is entailed by current emitters provides an outstanding

computational advantage. This setup allows the incorporation of other systems

in the box while still allowing a reasonable computation time.
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Nonetheless, even if sources are positioned differently relative to the origin,

the resulting radiation patterns exhibit striking similarities, as seen in the lower

panel of Fig. 9 and in Fig. 10. They share the same number of nodal lines, and

the two interference profiles are almost identical. The validity of this replacement

is confirmed over time, both in terms of the electric field amplitude and the OAM

density.

The resemblance in OAM behavior is clearly visible in Fig. 10. Here, both

the electric field Ex and OAM density components are sampled with intervals

of 2.6 fs. The patterns are compatible in spatial distribution and dynamics.

Moreover, the dynamics shown here also unravel the time-resolved emergence of

phase structuring that leads to the OAM content in the pulse. In the time-resolved

picture, we see that the phase introduced by segmented branches ends up causing

the interference petals seen in OAM density dynamics. These patterns evolve in

time to form the high-intensity donut rings visible in OAM beams. Another

observation is that due to the positioning of branches, emanated fields cancel at

the center, leading to an empty area in the center, which is the fingerprint of

OAM beams.

However, a direct quantitative comparison of two emissions is not feasible.

This is due to immense structural differences: While the plasmonic spiral has a

finite and considerable thickness corresponding to two wavelengths of the incident

beam, the current emitters are much thinner in the propagation direction, as

explained above. Therefore, the amount of emission amplitude over time changes

substantially. However, the phase structuring behavior is similar, as evidenced by

the time-resolved pattern observed in OAM density given in Fig. 10. Therefore,

to probe the local OAM density, adopting the current emitters is useful and

accurate.

We note that even in the case of the idealized spiral-shaped emitters, which are

free from the numerical artifacts associated with radiation at metal surfaces, the

cross-sectional profiles do not immediately reproduce a structure that is identical

to a pure Bessel beam, as previously reported in the frequency domain [72]. The

root of this discrepancy is the broad frequency content of the ultrashort driving

pulse, which introduces various spectral components. The components that are

not tuned to the central frequency of the incident beam do not experience the

same phase structuring via spiral branches, since they are mismatched to the gap

between the spiral branches. This then forbids the formation of a clean nodal

structure with the expected number of phase discontinuities. One can resort to

a systematic study with progressively longer pulses until the continuous wave

regime is covered. However, this is a computationally heavy study and beyond

the scope of this work.
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Figure 10: a)The induced electric field from the spiral as a Drude medium is on the
left side, while the emission from the current density described in Eq. (89) is on
the right. While the area close to boundaries displays different characteristics, the
phase structuring is similar at the center, where emitted fields from the segments
interfere. b) Same comparison for the OAM density. The left side is the Drude
medium, while the right side shows the current emitter OAM density. Once
again, particularly at the center where the structuring takes place, the interference
patterns similar to petals are striking. The figures here are reproduced with
permission from the supporting information of E. I. Albar et al., Sci. Rep. 13,
14748 (2023), licensed under CC BY 4.0.

The motivation for devising the current emitters is to make simulations feasi-

ble in the presence of other systems. To probe the local OAM density, we intro-

duce a point charged particle system in the following section. This will enable us

to characterize the beam further and to develop a microscopic understanding of

OAM transfer between light and matter.
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5.3 Investigation of Local Orbital Angular Momentum

Density using Point Charges

The dynamics of two point-like charged particles serve to probe the transfer of

OAM with full space and time resolution. We employ the current emitter system

described in the previous section and place a point-like particle system as the

target of the OAM light pulse in the simulation box. The position of the point-

like system is changed across the transversal plane of the emitter, and the resulting

angular momentum change and trajectories are computed. The dependence of the

angular momentum and trajectory of the cross-sectional location of the particle

system provides insight into OAM transfer that takes place upon the interaction

of the emitted electromagnetic field with matter.

Figure 11: A Lennard-Jones potential is binding the two classically described
charged particles. While the anchor particle is heavy and unaffected by the
radiation, the orbiting charged particle is lighter and its trajectory is susceptible
to incoming OAM content.

For the two particles, we choose to have opposite charges of ±1 atomic units

(±1.602 × 10−19 C) so that overall charge neutrality is ensured. The two charged

point-like particles are devised so that only one of them is affected by the emission.

One of them is much lighter with a mass of 1 u (1.67 × 10−24g, 1836 me, 1 atomic

mass unit). The other particle, named ‘anchor particle’, has a much heavier mass

of (9.1 × 10−21g , 107 me). The asymmetry between the masses of the particles

ensures that the system is not swept away by the radiation. Then the lighter mass,

which orbits the heavy particle, responds to the field, and its angular momentum

and trajectory become a direct indicator of OAM content in the radiation.

The two particles are bound with a Lennard-Jones potential, which favors a

specific distance between them. The employed Lennard-Jones potential takes the
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form

VLJ = 4ϵLJ

[

(

σLJ

r

)12

−
(

σLJ

r

)6
]

. (91)

Here, σLJ parameter governs the distance that minimizes the potential, so that

rmin = 21/6σLJ. On the other hand, ϵLJ denotes the depth of the potential well

experienced by the light particle. In our simulations, the potential depth is set

to ϵLJ = 2.72 eV, while σLJ = 0.053 nm, which results in an equilibrium distance

of deq = 1.123 Bohr (≈0.065 nm), which is close to the interatomic distance in

an H2 molecule.

In the following two cases are studied: a plane wave pulse and the OAM

pulse from a current emitter. In the first case, a plane wave radiation is used.

The second one, concerning the spiral emitter, probes the local OAM of the

incident field. Both simulations have the same simulation setup: They consist

of the addition of the point-like particles into the simulation box of the spiral

emitter, while the plane wave is adjusted to have no phase structuring and has

a uniform cross-section. This setup is an example of the multisystem framework

of the Octopus code. Here, the emitted radiation is a system using a Maxwell

solver box, where its partner system, namely classical point-like particles, is its

own system. Here, the two-particle system is propagated using the exponential

midpoint scheme [149]

The two-particle system interacts with the radiation via the Lorentz force,

F⃗ (r⃗, t) = q(E⃗(r⃗, t) + v⃗ × B⃗(r⃗, t)), (92)

where q is the charge of the particle and v⃗ its velocity. We compute the angular

momentum change of the particle L⃗p induced by the incident radiation with

L⃗p = mp [(r⃗ − r⃗0) × v⃗] , (93)

where mp is the particle mass, and r⃗0 and r⃗ are the initial and time-dependent

positions.

The particle system is located at various positions across the xy plane of the

spiral emitter, and then we probe the spatial dependence of angular momentum

transfer and connect it to the corresponding local field characteristics. To achieve

this, one needs to consider the OAM pattern in the cross-sectional (xy) plane.

Since the goal is to capture the full-time resolution of OAM transfer, we form

a Fourier-transformed map of the time-dependent local OAM density for the

current emitter. The panel (a) of Fig. 12 shows the Fourier transformed map

˜⃗
L(r⃗, ω) =

∫ +∞

−∞
L⃗(r⃗, t)eiωtdt. (94)



63

Here, the Fourier component corresponding to 800 nm is chosen.

The resulting Fourier transformed OAM density map in Fig. 12 allows us to

distinguish ‘hot spots’ within the concentric-ring structure generated by the spiral

emission. To probe these regions, we place the particle system at the positions

labeled 1–4 in Fig. 12 a). Here, the first point is at the center of the emission,

while the second one is placed on the ‘hot spot’ which corresponds to a dense local

OAM density. The third one is situated at the following ring, which is another

hotspot, and the fourth point corresponds to a low local OAM density. The

particle dynamics are then calculated for the external field of the spiral emitter

(Fig. 9) and under excitation by a circularly polarized plane wave (Fig. 12 b).

The plane-wave pulse is adjusted to match the scaled spiral emitter in amplitude

and envelope, enabling a direct comparison. The resulting trajectories, shown

in Fig. 12 c) after subtracting the initial positions, show the net displacement

of the lighter particle. In both cases, the particle acquires angular momentum

within a finite interaction window, comprising a circular orbiting motion and

a subsequent return to its starting point. Whereas the trajectories driven by

the plane wave remain circular and uniform, those induced by the spiral emitter

exhibit noticeable deformations, which are consistent with previous reports [150].

This is expected since the cross-section of the plane wave is uniform, i.e., changing

the particle location across the cross-section is not expected to result in a behavior

change. Movies of the time-resolved trajectories of the particle system located in

point 2 for both cases, spiral emitter and plane wave, can be found in [151].

The change of the point particle’s angular momentum, ∆Lp, is presented for

positions 1–4 in Fig. 12 d) and e). Here, the particle starts at rest with zero

angular momentum, and ∆Lp refers to the difference in angular momentum upon

the interaction with the radiation. As can be predicted from the trajectories of

panel c), the circularly polarized plane-wave pulse imparts an identical change in

angular momentum to the probe particle, independent of its initial location. In

contrast, for the OAM-carrying pulse, the angular momentum transfer exhibits

a significant spatial dependence. When analyzed in relation to the OAM density

distribution shown in Fig. 12 a), we find that the density is maximal at point 2,

consistent with the significant angular momentum change observed there. Sur-

prisingly, however, point 1 shows an even larger angular momentum transfer than

predicted, despite lying at the vortex center where the OAM density reaches a

minimum. For points 3 and 4, the angular momentum change decreases progres-

sively, in accordance with the OAM density trend. Thus, while the spiral emitter

reproduces the expected spatial dependence at points 2–4, the anomaly at the

vortex center reveals a limitation of the classical OAM density picture in pre-

dicting the actual particle response, as well as the limitation of single-frequency,
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Figure 12: The local OAM of the light field from the spiral emitters is char-
acterized by placing the point particles at different locations. (a) The Fourier
component of the time-dependent orbital angular momentum density shown in
Eq. (85) at the z = 0 plane, at the frequency of 1.55 eV, which corresponds to
800 nm central wavelength used for the spiral emitter. The yellow triangles mark
the locations 1-4 of the probe particles. This cross-sectional plot shows the x
and y coordinates of both particles; they overlap in the z direction. The lighter
particle is at the z = 0 plane, and the heavier (anchor) particle resides in the
z = −deq plane. deq denotes the Lennard-Jones equilibrium distance between the
particles. (b) The temporal behavior of the electric field Ex emitted by a spiral-
shaped source and right circularly-polarized plane wave at the point (0,0,0) is
presented. Both sources show the same amplitude and temporal behavior, except
for a delayed arrival of the plane wave pulse at the location of the particle. Here,
both the pulse emitted from the spiral emitter and the plane wave have a full
width at half maximum (FWHM) of 0.3 eV. (c) The x − y components of the
trajectories of the lighter particle are shown when driven by a plane wave pulse
(left column) and by the radiation generated by spiral emitters (right column).
The labels 1-4 correspond to particle positions 1-4 in panel (a). (d) and (e) z
component of the angular momentum change ∆Lp as described in Eq. (93) are
given. At (d), results for particles at locations 1-4 from panel (a) in the presence
of the vortex-like beam are given. (e) shows the results for the plane wave pulse.
Here, the notation ∆Lp is used, since it refers to the difference in angular mo-
mentum introduced by radiation after the particle starts at rest with zero angular
momentum. The figure is reproduced with permission from E. I. Albar et al., Sci.
Rep. 13, 14748 (2023), licensed under CC BY 4.0.

continuous wave analysis of OAM generation. The motion at the center is partly

due to several frequency components of the pulse: While the components of 800
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nm cancel due to the structuring of emitter branches with a gap of 800 nm, other

components do not experience the same pattern. Therefore, they do not cancel

exactly at the center and keep acting on the particle system. Moreover, a quan-

tum understanding of the problem is also important: In the following chapters,

we will see that even though the field has zero amplitude at the beam center, the

electronic Hamiltonian will have quadrupolar and further interactions through

gradients in the electromagnetic field, which will result in effects beyond the ones

predicted by a classical Lorentz force coupling.

5.4 Discussion & Outlook

The microscopic mechanism of OAM generation in electromagnetic fields upon the

interaction with matter is not completely understood. In this work, we have inves-

tigated this problem using nanoplasmonic Archimedean spirals within real-time,

real-space simulations performed with the Octopus code. Firstly, a circularly

polarized plane wave was directed onto plasmonic optical vortex generators, and

the resulting twisted light formation was observed with complete spatio-temporal

resolution. In agreement with earlier studies, we find that emission from the

spiral branches shapes the phase of the incident beam and creates a vortex-like

structure, and governs the OAM content of the outgoing electromagnetic field.

We employed the classical description of orbital angular momentum [135], and

probed its emergence in the simulation box. We formed OAM density maps that

confirmed the formation of a spatially and temporally structured vortex beam.

However, the field exhibits modifications from previous theoretical works due to

the finite time envelope of the incident pulse. This motivated us to investigate the

local OAM density of the radiation further. To do so, we employed a simplified

description in which the spiral geometry was mimicked by current emitters. For

this description, we proposed an analytical expression for the current distribution

capable of generating a similar twisted beam, establishing a link between the

nanostructure geometry and the induced currents. This simplification reproduced

the essential features of the vortex field and also enabled us to couple a classically

described point-particle system to the emitted radiation and resolve the transfer

of angular momentum in real time.

When probe particles are positioned at different locations across the beam

cross-section, their trajectories and the associated angular momentum transfer

show clear spatial variations, which is in contrast with a plane wave beam. This

spatial dependence is inherent to structured beams, and challenges the well-

established EDA. We will see in the following sections that the full minimal

coupling approach can overcome this problem.
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For most points where the particle system is located, the transferred angular

momentum is well captured by the classical local OAM density. However, at the

vortex center, a deviation emerges, precisely in the regime where the non-trivial

effects of structured light carrying OAM are expected. This calls for further

investigations to assess the validity and the limitations of a classical description

of angular momentum for light in such cases, as well as the continuous wave

approach.

To enable these multiscale studies, we have employed the Octopus code [116],

which allows for the real-time propagation of Maxwell’s equations on a real-space

grid. Originally designed for quantum dynamics and light-driven phenomena, the

code has been extended into a multi-system, multi-physics framework. Within

this setting, electromagnetic fields can be coupled both to simplified semiclassical

models of matter and, self-consistently, to first-principles electronic descriptions

via time-dependent density functional theory (TDDFT) [125] [99]. In the present

work, we restricted ourselves to classical susceptibility models to describe the

plasmonic medium. However, a natural next step is to model the interaction

of vortex beams with matter from first principles, by exploiting the coupling of

TDDFT with Maxwell’s equations in real time, retaining the complete spatial

dependence of the electromagnetic fields through the minimal coupling Hamilto-

nian [125]. Within this approach, not only the fields emitted by plasmonic vortex

generators, but also analytically defined vortex beams (e.g., Bessel beams) can be

used to excite electronic systems. It will be detailed in the following chapters that

such a methodology paves the way for novel insights that transcend the dipole

approximation.

Another promising direction is to design OAM induced setups where addi-

tional symmetries are broken beyond the time-reversal symmetry already lifted

by circular polarization [152]. We will explore such linear and nonlinear regimes

which would open new opportunities for tailoring light–matter interactions in the

following sections.

The datasets generated and analysed during the current study are accessible

in this repository (DOI:10.5281/zenodo.8208674).

https://zenodo.org/record/8208674
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6 High Harmonic Generation Beyond

Electric Dipole Approximation∗

In this chapter, we employ the FMC framework tool from previous chapters to

investigate high-harmonic generation driven by vortex beams beyond the EDA.

Using the FMC formalism, we include all multipolar contributions without trun-

cation and address the complete spatio-temporal structure of the incident optical

vortex. We analyze beyond-dipole modifications in electron trajectories and in

the corresponding harmonic spectra, where the orbital angular momentum of the

beam gives rise to both magnetic and quadrupolar contributions. We confirm

the existence of nonlinear dipole motion along both the polarization and prop-

agation directions for the case of the plane-wave excitation. In contrast to the

plane-wave case, vortex beams induce an additional nonlinear dipole response

in the direction orthogonal to both the polarization and propagation axes. We

show that the symmetry breaking stemming from beyond-dipole effects becomes

particularly evident in the appearance of even harmonics.

Since the discovery of light with OAM, numerous theoretical and experimental

investigations have focused on the interaction between twisted light and matter,

be it excitation [11–20], ionization [25–32], or scattering [21–24]. The study of

HHG) with twisted light has gained a particular momentum [84, 85, 153–162], as

it offers a tabletop setup for producing OAM beams.

The first understanding of the HHG process was the three-step model [80].

The steps are simple: first, the electron is driven away from the parent atom;

second, it moves in the laser field, and the third and final step comprises its

∗Parts of the following chapter, including figures and text excerpts, are adapted from the

author’s previously published work: Albar, E.I., Kosheleva, V.P., Appel, H., Rubio,A. and

Bonafé, F.P., High Harmonic Generation with Orbital Angular Momentum Beams: Beyond-

dipole Corrections. Physical Review A 112, 063109 (2025), Published by the American Physical

Society under the terms of the Creative Commons Attribution 4.0 International license.
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recombination with the parent atom. The recombination of the final step causes

the electron to emit high harmonics.

The typical electron motion range is much smaller than the wavelength of a

driving laser, especially for optical lasers with intensities smaller than 5.0 V/nm.

This entails the approximation that the spatial profile of the laser field in the

second step is neglected. As we have seen in Sec. 4.5.3, this means that the

EDA can be applied; consequently, the electron is assumed to be driven solely

by a time-dependent electric field, neglecting the spatial dependence of the field.

This approximation states that the dominant direction of the HHG emission

is then governed by the incident field’s amplitude and polarization direction.

However, the theoretical frameworks that tackle the HHG process have evolved

and refined the description of the relevant light–matter interactions. Various

corrections to the three-step model, as well as to the EDA picture, were proposed

[163]. Subsequent works have shown that the magnetic field interferes with the

trajectories of high-speed electrons via the Lorentz force, resulting in a figure-

eight electron motion which is well beyond the capability of EDA [55, 91–96].

Such an effect of the magnetic field leads to deviations of the trajectories in the

propagation direction of the incident laser. Nevertheless, the effects of the spatial

structuring of light on the electron motion in the transversal plane, as is the case

in twisted light beams, are yet to be tackled.

The space-dependent intensity profile of the twisted light beams proves the

usual EDA to be insufficient to describe the interaction between matter and OAM

beams. This shortcoming of the EDA has been addressed both experimentally

and theoretically [12, 16]. However, these studies resided in the linear regime,

and the effect of OAM beams in the nonlinear regime necessitates further at-

tention. HHG with OAM beams has been previously studied within the local

dipole approximation [84, 88], however, this approach merely considers the local

values of the incident field. Therefore, magnetic and higher-order terms remain

unaddressed within their light-matter coupling treatment.

In this chapter, the coupling between light and matter beyond the dipole ap-

proximation is considered with our FMC approach. This enables us to account

for the effects of both the field gradients and the magnetic field. We perform

real-space and real-time numerical simulations to solve the quantum equation of

motion for the electron of a hydrogen atom. We then locate the target atom

at different positions with respect to the beam center and inspect the resulting

HHG spectra. The symmetry breaking due to the field gradients and the mag-

netic field manifests in the appearance of even harmonics. We resolve the electron

trajectories for plane-wave and OAM beams to identify the effect of orbital an-

gular momentum. The trajectory of the driven electron is not confined to the
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polarization or propagation axes only under the effect of OAM beams. We test

the angular dependence of the emission of harmonics in the transversal plane,

i.e. plane orthogonal to the laser propagation, where the off-axis (perpendicular

to the laser polarization) emission shows significant beyond dipole corrections.

Consequently, we propose that the off-axis even harmonics can be tuned by the

OAM content of the incident beam.

This chapter is organized as follows: in Sec. 6.1 we present the formalism used

in this work and provide the expressions for the spectroscopic quantities analyzed

thereafter. In Sec. 6.3, we employ a linear beam with strictly one component and

identify the effects of gradients that stem from the OAM content of the incident

field. After demonstrating the effect of the gradients, we proceed to employ a

realistic three-component beam in Sec. 6.6 and investigate the beyond dipole

corrections to the HHG process for a case of Bessel beam. We compare the

results to the case of HHG driven by a conventional plane wave pulse. We also

address the influence of orbital angular momentum on the HHG process in Sec.

6.7. Finally, we expand our analysis to the benzene molecule and report beyond

dipole corrections for the case of a circularly polarized plane wave beam in Sec.

6.8.

6.1 Method

In this work, we study the HHG spectrum of the hydrogen atom. We calculate the

spectra from the real-time evolution of the system for the cases of different driving

lasers. The dynamics are computed by numerically solving the time-dependent

Schrödinger equation

iℏ∂tφ(r⃗, t) = H(t)φ(r⃗, t). (95)

Here ℏ is the reduced Planck constant and H(t) is the electronic Hamiltonian.

We use the real-space real-time Octopus code [100], as described in the chapter

4. This code has previously been used for the computation of HHG spectra of

molecules [164], liquids [165], and solids [166].

For the numerical simulations, a cylindrical simulation box with a radius of

1.32 nm and a length of 3.7 nm was used. The largest excursion is expected to

take place in the polarization direction (x direction) of the incident beam; hence-

forth, the height of the cylinder is aligned with the x direction. The simulation

box is surrounded by absorbing boundaries of thickness 0.52 nm with a complex

absorbing potential. These boundary conditions prevent spurious effects arising

from the reflection of the driven electron [118]. The nucleus of the atom stays

fixed. The grid spacing is 0.016 nm and the timestep is adjusted as 0.0036 fs.

We employ the approximated enforced time-reversal symmetry (AETRS) scheme
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for the time evolution [167]. Our analysis expands beyond the commonly used

multipolar expansion [168] and considers the FMC Hamiltonian without resort-

ing to truncations , as shown in Sec. 4, Eq. (61), see [99]. To distinguish the

beyond-dipole corrections, we also compare the EDA results with light-matter

coupling in the velocity gauge, as shown in Sec. 4, Eq. (50).

6.2 Description of Vortex Pulses: Bessel beams

In the present work, we use Bessel beams to form vortex pulses. The spatial

profile of the incident Bessel beam is on a micrometer scale, therefore it is much

larger than the relevant scale of the electron dynamics, as shown in Fig. 14a. To

address this, the simulation box is shifted in space to the location of interest along

the transversal plane of the incident beam. Thus, only the spatial component of

the beam overlapping with the electronic simulation box is incorporated into the

electronic Hamiltonian.

Circularly polarized beams do not generate high-harmonic radiation with

spherical systems. The phase difference between the components reduces the

recombination rate dramatically. Hence, we construct the Bessel-beam counter-

part of linearly polarized plane-wave beams as [29, 136, 137]

A⃗3C
tw (r⃗, t) =

1√
2

[

A⃗tw
mγ1 ,λ=+1,θk

(r⃗, t) + A⃗tw
mγ2 ,λ=−1,θk

(r⃗, t)
]

, (96)

where mγ1 −mγ2 = 2, mγ denotes the total angular momentum, λ = ±1 represents

the helicity, θk = arctan
(

κ

kz

)

is the opening angle with kz and the longitudinal and

transversal components of the wave vector k⃗ are κ =
√

(ω
c
)2 − k2

z , respectively.

Here,

A⃗tw
mγ ,λ,θk

(r⃗, t) = f(z)
(

Atw
mγ ,λ,θk,x(r⃗, t), Atw

mγ ,λ,θk,y(r⃗, t), Atw
mγ ,λ,θk,z(r⃗, t)

)

is the vector potential in Coulomb gauge describing a Bessel beam propagating

in the z direction,

Atw
mγ ,λ,θk,x =

Atw√
2

[

cos(kzz + ϕ(mγ + 1) − ωbt+ Φtw)d1
−1λ (θk) Jmγ+1 (κr⊥)

+ cos(kzz + ϕ(mγ − 1) − ωbt+ Φtw)d1
1λ (θk) Jmγ−1 (κr⊥)

]

,

Atw
mγ ,λ,θk,y =

Atw√
2

[

sin(kzz + ϕ(mγ + 1) − ωbt+ Φtw)d1
−1λ (θk) Jmγ+1 (κr⊥)

− sin(kzz + ϕ(mγ − 1) − ωbt+ Φtw)d1
1λ (θk) Jmγ−1 (κr⊥)

]

,

Atw
mγ ,λ,θk,z = Atw sin(kzz +mγϕ− ωbt+ Φtw)d1

0λ (θk) Jmγ (κr⊥) , (97)
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where Φtw is a constant phase, A0 is the peak amplitude, and ωb is the central

frequency of the pulse, respectively. Jm (κr⊥) represents the Bessel function,

r⊥ =
√
x2 + y2, ϕ = arctan(y/x) is the azimuthal angle, and d1

µλ (θk) denotes the

small Wigner matrix.

The real-space envelope function along the propagation direction (z axis), is

given by

f(z) = sin2

(

π(z −R0)

w

)

θ(z −R1)θ(R0 − z), (98)

where z = ct, θ(z) is the Heaviside step function, R0 and R1 define the spatial

extent of the envelope in real space, w = 8λw with λw = 800 nm being the central

wavelength of the laser field. This choice ensures that the pulse contains 8 optical

cycles, corresponding to a duration of 21.3 fs.

We illustrate the evolution of the incident electromagnetic pulse used in the

calculations. We express the pulse as a function of position as f(z) as seen in Eq.

(98), where the time dependence is carried with the compound variable z = ct.

With our illustration, we aim to demonstrate the correspondence between the

space and time dependence of the short pulse, as detailed in Sec. 4.8. As it can

be seen in Fig. 13, the pulse is restricted within z = R0 and z = R1. As the

calculation progresses in time, the position dependence f(z) of the pulse carries

the envelope forward in the simulation box. Each frame in the figure corresponds

to another timestep, showcasing the time evolution of the electromagnetic pulse.

We use the External Source feature of the Octopus code to evaluate the spa-

tiotemporal shape of the Bessel beam. However, we would like to note that the

envelope is only applied in the propagation direction z; therefore, this operation

does not convert the field to well-known Bessel-Gauss type beams with finite

transverse extent, which are typically used in experiments. Since in the present

study a single atom is affected only by the local spatial profile of the beam, an

ideal Bessel beam is sufficient to describe the spatial profile in the vicinity of the

atom.

The polarization of A⃗3C
tw (r⃗, t) has 3 components in general (which are specified

by index 3C). This twisted-light field A⃗3C
tw (r⃗, t) can be viewed as the realistic

analogue of linearly polarized light, since in the paraxial limit (when the opening

angle approaches zero, θk → 0) it reduces to a single transverse component along

the x axis,

A⃗1C
tw (r⃗, t) ≈ Atwf(z)Jm (κr⊥) cos(kzz +mϕ− ωbt+ Φtw)êx. (99)
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Figure 13: The time evolution of the pulse, expressed in position space. Applying
the envelope in the space implies imposing it also in time: R0 and R1 mark the
initial spatial extent of the pulse. As the pulse evolves in time, it also evolves
in space owing to the compound variable z − ct. The position of the target is
shown with blue markers. The figure is reproduced with permission from the
supplemental material of E. I. Albar et al., Phys. Rev. A 112, 063109 (2025),
published by the American Physical Society under the terms of the Creative
Commons Attribution 4.0 International license.

Here the unit vector is given by êx = (1, 0, 0) and we note that in the paraxial

approximation mγ1 ≈ m+ λ = m+ 1 and mγ2 ≈ m+ λ = m− 1, where m is the

projection of OAM. The vector potential A⃗1C
tw (r⃗, t) only approximately obeys the

Coulomb gauge [169]. In Section 6.6 we examine how the observables are strongly

affected by the choice between A⃗1C
tw (r⃗, t) and A⃗3C

tw (r⃗, t). Therefore, to account for

all 3 components of the vector potential is of crucial importance.

To investigate the effects stemming from OAM, we compare the OAM results
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with their plane wave counterpart, which does not have OAM content. The

expression of the plane wave pulse with explicit space dependence is

A⃗pw(r⃗, t) = Apwf(z) cos(kzz − ωbt)êx. (100)

The plane wave pulse is adjusted to have the same field amplitude, phase, wave-

length (800 nm), and envelope as the m = 1 Bessel beam at the position r⃗ =

(r⊥, 45◦, 0) with r⊥ = 2545 nm. The matching peak electric field amplitude

Epw = ωbApw is 2.72 × 1010 V/m. For an accurate comparison of the two cases,

this condition will be used throughout the chapter.

The HHG yield is computed from the dipolar emission P d, i.e. the energy

dissipated per unit frequency [170, 171],

P d =
∑

i=x,y,z

P d
i =

µ0ω
4

12πc

∑

i=x,y,z

d̃i
2
(ω), (101)

as well as quadrupolar contribution PQ [170, 171]

PQ =
∑

i,j=x,y,z

PQ
ij =

µ0ω
6

1440πc3

∑

i,j=x,y,z

Q̃2
ij(ω). (102)

The expression for the magnetic dipole (MD) moment Pm contribution is

Pm =
µ0ω

4

12πc3

∑

i=x,y,z

m̃2
i (ω). (103)

Here, µ0 denotes the magnetic vacuum permeability, while d̃i(ω) is the Fourier

transformation of ith component of the time-dependent dipole response di(t),

di(t) = |e|⟨φ(r⃗, t)|ri|φ(r⃗, t)⟩, (104)

and Q̃ij(ω) represents the Fourier transform of the time-dependent quadrupole

moments Qij(t) corresponding to directions i and j.

Qij(t) = |e|⟨φ(r⃗, t)|
(

3rirj − r2δij

)

|φ(r⃗, t)⟩. (105)

Here δij is the Kronecker delta.
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6.3 HHG of a Hydrogen Atom: Isolating the Effect of

Orbital Angular Momentum

The spatial structuring of OAM beams renders the HHG yield dependent on

the location of the target relative to the center of the beam. We first tackle

this position dependence for the case of the m = 1 Bessel beam A⃗1C
tw . For the

remainder of the chapter, we omit the dependence of the vector potential on r⃗

and t for brevity. We select three positions to place the atom along the line

r⃗0 = (r0, 45◦, 0): The beam center (r0 = 0 nm), first ring (We name this position

hot spot due to large intensity of the field, r0 = 2545 nm), and the third ring

(r0 = 12020 nm), as shown in panel a) of Fig. 14. The path connecting these

points was selected so that the beyond-dipole effects in x and y directions receive

averaged contributions of the field gradients.

We calculated the harmonic spectra from the electric dipole P d and electric

quadrupole PQ terms for three selected positions. While we have also calculated

the magnetic dipole emission Pm, which can be found in Fig. 15, we present it

in a separate figure to highlight its disparity with other contributions. Note that

we also adjust the vector potential phase to be the same for all three positions,

to avoid spurious effects arising from the phase shifts. Fig. 15 shows the results

calculated with this expression.

The panel b) of Fig. 14 shows that the electric field of the beam A⃗1C
tw is zero

in the beam center, while the field gradient reaches its maximum. The larger

gradients compared to the intensity lead to a quadrupolar PQ emission that is

comparable to the dipolar P d counterpart, as shown in panel c) of Fig. 14. Since

the spectra are computed within the FMC approach, the nonzero dipole emission

for the beam center stems from the higher order terms in the full minimal coupling

interaction Hamiltonian Hf.m.c.
int (t) (Eq. (61)). Nevertheless, the yield at the beam

center is weak and displays a low cut-off due to the absence of field amplitude.

In contrast, the HHG yield for the atom located at the hot spot in the first

ring is stronger. The cut-off at this position reaches the 20th peak, in line with

the classical three-step model trajectory prediction for the peak amplitude of the

electric field, even though the peaks subside after the 15th harmonic. The dipolar

emission follows the well-known selection rules and peaks at odd harmonics, while

the quadrupolar emission displays peaks of even harmonics due to symmetry

breaking, as reported previously [171]. Finally, at the position located at the

third intensity ring (r0 = 12020 nm), the Bessel beam has a small amplitude in

comparison to the hot spot and almost zero gradients (as shown in Fig. 14 panel

b). A weaker field amplitude leads to an earlier cut-off as expected, which is

found at the 11th harmonic, accompanied by weaker peaks.
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Both for the second and third studied positions, even though the effects of the

field gradient are minimal, the magnetic field produces a symmetry-breaking that

leads to a quadrupolar yield at even harmonics. Quadrupolar emission persists

with higher harmonics owing to its ω6 dependence described in Eq (102), and

it reaches considerable yields at the hot spot thanks to the larger cut-off at the

location. The quadrupolar emission, which is fully addressed only within beyond-

dipole treatment, will become even more prominent at higher intensities, which

will entail even higher harmonics. This analysis confirms the necessity of going

beyond the EDA as the intensity increases [83].

The hot spot combines the strongest field amplitude with a nonzero field

gradient, as shown in Fig. 14 panels b) and c). This entails a strong dipolar and

non-negligible quadrupolar spectrum. Henceforth, we select this position of the

atom for the remainder of the chapter.

6.4 Disentangling the Beyond-dipole Effects in Structured

Beams

We now compare the spectra resulting from this point using a Bessel beam A⃗1C
tw

with a plane wave to discern the OAM influence. Fig. 17 shows the frequency-

resolved dipole component spectra (P d
x , P d

y , and P d
z ) produced by the plane wave

A⃗pw and Bessel beam A⃗1C
tw , in its first and second column. The Bessel beam

and plane wave spectra are indistinguishable when the coupling Hamiltonian is

restricted within EDA. This limitation is born from the discarding of the spatial

dependence of the OAM beam, which is imprinted on the trajectory of the driven

electron. To overcome such a limitation, the beyond-dipole treatment of FMC is

necessary, as seen in Fig. 17. The dipolar spectra shown in this figure demonstrate

that while the Bessel beam can access all dipole components, the plane wave only

drives the dipole in the x and z directions. The excited dipole component in the

z direction, namely the propagation direction for both beams, is a clear outcome

of the beyond-dipole coupling, as it has been shown previously by computing the

Lorentz force in the propagation direction, which is proportional to the ∇zAtw/pw

[55, 93]. Unlike the P d
x spectrum, which is governed by the dipole interactions,

the spectral components P d
z and P d

y , arising from beyond-dipole corrections, both

exhibit larger amplitudes at the even harmonics. The Bessel beam spectra have

contributions from components other than the beam polarization (x) direction.

This points to the need for a beyond dipole approach to analyze the spectrum,

as well as the underlying dynamics.

We name the y and z contributions to the spectra off-axis contributions. We

show their dipole moment dynamics di(t), excited by the linear Bessel beams A⃗1C
tw ,
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Figure 14: HHG spectra from three locations across the transversal plane. a)
We depict the electric field Etw(r⃗, t) = −∂A1C

tw (r⃗,t)

∂t
of the Bessel beam. The one-

component Bessel beam A1C
tw with OAM number m = 1 has a singularity at the

beam center due to the cancellation of the fields, marked in green. A hydrogen
atom is first located in this position, where the driving electric and magnetic
fields are absent. In contrast, the maximum of the field gradient occurs here, as
shown in panel b), where the amplitude A1C

tw and the spatial gradient in terms of y
position of the corresponding vector potential A1C

tw are plotted as a function of r⊥.
The next location is the hot spot at the first ring of the Bessel beam (r0 = 2545
nm, marked by cyan color, with the highest field amplitude and non-zero gradi-
ent). The final point is at the third ring (r0 = 12020 nm, shown in orange); the
field amplitude is still considerable, and the gradient is zero. c) The HHG spectra
in FMC from all three locations. Solid lines depict the dipolar emission spectrum
P d (See Eq. (101)), while dashed lines point to the quadrupolar PQ (See Eq.
(102) ) counterpart. The results are computed beyond the dipole approximation.
Throughout the chapter, the yields below ≈ 10−35 are considered numerically
zero. The figure is reproduced with permission from E. I. Albar et al., Phys.
Rev. A 112, 063109 (2025), published by the American Physical Society under
the terms of the Creative Commons Attribution 4.0 International license.

in Fig. 16. Since the dipole moment di(t) described in Eq. (104) is the expectation

value of the position of the electron in the Cartesian direction i, it is referred to as

the trajectory. An animation of the trajectory shown in Fig. 16 can be accessed at

Ref. [172]. The off-axis spectral signals are connected to the electron’s trajectory:

as the electron is driven further away from the ion, it accelerates, reaching a higher

velocity. This leads to a greater Lorentz force acting on the electron, which then
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Figure 15: Magnetic dipole (MD) Pm contributions to spectra compared to
those of electric dipole (ED) and electric quadrupole (EQ). Results are presented
at three locations of the target system: At the beam center (0 nm), at a radial
distance of 2545 nm (hot spot), and 12020 nm away from the beam center. A1C

tw

beam is used for calculations. Pm is observed to be the weakest contribution
to the spectra. The figure is reproduced with permission from the supplemental
material of E. I. Albar et al., Phys. Rev. A 112, 063109 (2025), published by the
American Physical Society under the terms of the Creative Commons Attribution
4.0 International license.

deviates the electron from a linear path constrained to the polarization axis of

the incident beam [91]. Accounting for only the electric field amplitude (dipolar

coupling) when calculating the electron’s trajectory cannot capture this behavior

[173, 174].

The amplitudes of the electric and magnetic field amplitudes, the field gra-

dients in the direction of propagation in the vicinity of the atom, of both the

linear Bessel beam A⃗1C
tw and plane wave pulse are equal as shown in Fig. 17. This

naturally leads to the contribution in the z axis, which stems from the longitu-

dinal field gradients being identical. However, adding to the said magnetic-field-
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induced figure-eight motion in the xz plane, the Bessel beam leads to a nonzero

electron trajectory in all directions due to the xy-plane field gradients (see Fig.

23). These beyond-dipole trajectory components influence the angular distribu-

tion of the emission as shown in Fig. 24. The nonzero dynamics of the dy dipole

component can be attributed to the field gradients ∇yAtw/pw, which are inherent

to the structured beams. Therefore, measuring the Py component of the emission

could provide information about the transverse gradients, and vice versa. See Eq.

(108) for an analytical expression of the field gradients of the Bessel beams.

However, we note that the results in Fig. 17 demonstrate that the effects of

transverse gradients (Py) are much smaller than the ones from longitudinal gradi-

ents Pz, particularly for the A⃗1C
tw case. This is established for paraxial beams, and

further confirmed by the comparison given in Fig. 20. Regardless, investigating

the angular distribution of the emission could help discern the effects on these

two directions, as we will see in the following sections.

In Fig. 16, we depict the trajectory induced by the Bessel beam. In the

upper part, blue lines point to FMC dipole moment dynamics, while red lines

depict those in the EDA. The latter shows a one-directional oscillation along the

polarization direction. Meanwhile, the FMC shows the excitation of both y and z

dipole components. Deviations due to the magnetic field are already visible and

equal for both beams as shown in the lower panels of Fig. 16.

6.5 Accounting for the Complete Structure of the Beams

The results we have presented up until this point have been computed with the

approximated expression (99) for the vector potential A1C
tw that discards the y

and z components, to isolate and identify gradient-driven motion. While the dis-

carded components are small, especially considering the small opening angle used

here, their effect persists [12, 16, 168, 175]. Therefore, as Ref. [12] experimen-

tally and Ref. [16] theoretically demonstrated, to ignore the longitudinal field

fails drastically, especially in the case of counterrotating spin and orbital angu-

lar momentum, even for paraxial beams. To unravel the effects of these usually

disregarded components, we compare the frequency-resolved dipole component

spectra for the cases of A1C
tw and A⃗3C

tw , see Fig. 17, second and third columns.

Considering the dipolar contribution P d
x (which is the dominant contribution to

the total dipolar emission P d), both beam configurations A⃗3C
tw and A⃗1C

tw result in

the spectra.

It is worth noting that both P d
y and P d

z emission spectra in the case of A⃗1C
tw

driving beam lack the first harmonic (the largest contribution). This stems from

the fact that the x polarized field is unable to efficiently excite dipoles in respective
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Figure 16: Comparison of dipole moment di(t) dynamics with one component
Bessel Beam OAM A⃗1C

tw and plane wave using EDA and FMC approaches. We
show the dynamics from the Bessel beam in FMC (TW, blue) and velocity-gauge
dipole (EDA TW, red) approaches in the upper panels. The dipole coupling is
insufficient to capture off-axis deviations. Plane wave-induced off-axis motion
and OAM beam-induced motion are plotted in the lower panels. The lower right
panel shows that the plane wave also has a beyond dipole correction on the elec-
tron’s trajectory.The figure is reproduced with permission from the supplemental
material of E. I. Albar et al., Phys. Rev. A 112, 063109 (2025), published by the
American Physical Society under the terms of the Creative Commons Attribution
4.0 International license.
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Figure 17: Dipole component resolved spectra for a plane wave beam and the
Bessel beam. The target atom is located at the hot spot (r0 = 2545 nm). At this
point, the field amplitude, frequency, phase, and envelope of the x component
of the Bessel beam with all three components (A⃗3C

tw , the Bessel beam with one
component A⃗1C

tw ) and plane wave match. The upper panel shows the dipolar
emission in all three directions calculated with FMC, while the lower panel depicts
the emission calculated within EDA. The figure is reproduced with permission
from E. I. Albar et al., Phys. Rev. A 112, 063109 (2025), published by the
American Physical Society under the terms of the Creative Commons Attribution
4.0 International license.

directions alone.

We proceed to present FMC spectra of the Bessel beams in comparison with a

plane wave without OAM content in Fig. 18. In such a case, y and z components

of A⃗3C
tw (r⃗, t) have a nonzero magnitude: all three directions are excited, therefore

all of the dipolar contributions are accessed with A⃗3C
tw (r⃗, t). The spatial structure

of the Bessel beam provides access to all quadrupolar components; on the other

hand, the plane wave lacks the cross components Q̃yz(ω) and Q̃xy(ω), due to the

absence of field gradients in the y direction. These calculations are performed

within the FMC approach.

The Bessel beam described by A⃗3C
tw is more realistic and provides insight into

dipole-level and beyond-dipole effects on all components of the emission. Since we

have accomplished the mission of discerning and demonstrating gradient-driven

motion in Sec. 6.3 free of dipolar contributions, now we switch to the realistic
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Figure 18: Component resolved spectra comparison for a plane wave and for a
A⃗3C

tw (r⃗, t) Bessel beam. Without the paraxial approximation, the A⃗3C
tw (r⃗, t) beam

preserves non-zero y and z components which drive oscillations in these directions,
causing a contribution in these components of the spectra. In contrast to a Plane
Wave, all dipolar and quadrupolar directions are excited. These calculations are
within the FMC approach. The figure is reproduced with permission from the
supplemental material of E. I. Albar et al., Phys. Rev. A 112, 063109 (2025),
published by the American Physical Society under the terms of the Creative
Commons Attribution 4.0 International license.

beams. We will use A⃗3C
tw for the remainder of this chapter.

6.6 Angular Beyond-dipole Corrections in HHG with Bessel

beams

In this section, we focus on the beyond-dipole corrections caused by the structured

fields. We show the results for the A⃗3C
tw Bessel beam (TW) and the plane wave

cases (PW) in Figure 19a. Here, we plot the normalized difference between the

total HHG FMC spectra in comparison to their EDA counterpart, given in Fig.

17. The beyond dipole correction is plotted as a percentage. We observe that the

beyond-dipole correction is around 100% for both cases in the second harmonic.

This common correction has its roots in the magnetic field component in the y

direction. The magnetic field in y direction acts on the electron trajectory with

the Lorentz force in z direction. This results in a drift in the propagation direction

for both PW and TW beams, since this effect, namely radiation pressure, is free

of OAM. For the greater even harmonics (6th, 8th, 10th, and 12th), the correction

in the TW case lies between 2% and 10%, which is much larger than the PW

correction. Keeping in mind that the corrections stemming from the gradients

in the z direction are identical for both beams, such deviations between the two
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cases for greater even harmonics can be associated with the gradients in the xy

plane. In other words, the spatial structure of the Bessel beam causes a beyond

dipole correction that survives in even harmonics.

A relevant observable related to the HHG process is the emission in the far

field. We analyze the beyond-dipole corrections to the angular distribution of

the resulting emission, P d(ω, θ). The definition is P d(ω) =
∫

dΩP d(ω, θ) where

dΩ = sin θdθdφ is the solid angle, and P d(ω, θ) is computed as

P d(ω, θ) =
µ0| ˜⃗
d(ω)|2ω4

32π2c
sin2 θ. (106)

Here, θ is the angle between the dipole moment ˜⃗
d(ω) and the direction of ob-

servation. The expression is normalized by the total emission driven by a plane

wave pulse P d
pw(ω) =

∫

dΩP d
pw(ω, θ).

In Fig. 19, panel b), we show the dipole emission of the second and third har-

monics in the top left and top right panels, respectively, in the xy-plane (orthog-

onal to the propagation direction of the beams). The beyond-dipole corrections,

also resolved in the azimuthal angle, are shown in the xy plane in the lower pan-

els. The emission produced by the plane wave and the Bessel beam is seen in the

upper left panel, calculated with FMC. The difference in the angular dependence

of the normalized P d(ω, θ) is larger in the case of even harmonics, as evidenced

by the second harmonic for both cases. As seen in the upper left panel of Fig.

19b), the amplitude of the OAM beam emission shows an angle with respect to

its plane wave counterpart.

The difference of emission calculated within EDA from that in the FMC ap-

proach (which can be seen in the beyond-dipole correction, Fig. 19b) lower left

panel), clearly demonstrates that the angular difference is caused by the field

gradient effects, henceforth the off-axis motion. The amplitude difference is up

to 11.5 %, while a slight tilt emerges due to the Py. We note that a beyond dipole

correction for the plane wave case persists due to the z gradients; however, this

correction displays no angular dependence in the xy plane.

Odd harmonics are much stronger because the driving field and the atomic

potential have inversion symmetry. This forces the electron to accelerate in a

way that naturally cancels even harmonics and reinforces odd ones. Hence, it

is expected that the beyond-dipole corrections are much less considerable in the

case of the odd harmonics. This is confirmed as seen in the case of the third

harmonic angular spectrum in 19b), upper right panel. The dipolar contribution

dominates the distribution strongly; therefore, the beyond-dipole correction is

only on the order of 0.01%, as shown in the beyond-dipole correction plotted in

the lower right panel. Thus, for the plane wave case, the correction in the second



83

Figure 19: a) We calculate the spectra first using the FMC approach and then
with the EDA for two cases: firstly, we use a Bessel beam with three components,
A3C

tw , (OAM), and then a plane wave (PW). We report the percentage difference
between the two spectra. Beyond-dipole contributions are considerable at even
harmonics, highlighting the need for beyond-dipole treatments to identify the
symmetry-breaking phenomena. b) Angular distribution of the emission in the xy
plane Pd(ω, θ) for second and third harmonics. The panels on the left correspond
to the second harmonic, while the one on the right shows the results from the
third harmonic. The upper panel from the left describes the angular distribution
of total emission induced by a PW and a Bessel beam. In contrast, the lower
left one describes the beyond dipole correction compared to the EDA. The right
side shows total emission induced by a plane wave (PW) and Bessel beam for the
third harmonic on the upper part, and the beyond dipole correction on the lower
panel. Results here are normalized by total emission induced by the plane wave
P d

pw(ω) =
∫

dΩP d
pw(ω, θ), where dΩ = sin θdθdφ. The figure is reproduced with

permission from E. I. Albar et al., Phys. Rev. A 112, 063109 (2025), published
by the American Physical Society under the terms of the Creative Commons
Attribution 4.0 International license.

harmonic is almost 100 times larger than that of the third harmonic.

In our simulations, we are also able to directionally resolve the beyond dipole

corrections. Such corrections demonstrate the effect of gradient-driven motion.

This then enables us to compare the scales of motion induced in the direction

y and the propagation direction z. Note that the excitation in the y direction

is only accessible with the transverse gradients of OAM beams. We plot the

comparison of the corrections in these two directions in Fig. 20. We observe that
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even though the beyond dipole correction in the y direction is limited to ≈ 1 %,

it persists throughout the spectrum and stays relevant for even harmonics.

Figure 20: The ratio of beyond dipole corrections for y and z directions induced
by a Bessel beam A⃗3C

tw (r⃗, t). The z component correction is considerable due to
the combination of the large velocity in the x direction with the large magnetic
field By. On the other hand, the y correction contains only the gradient-induced
correction in the presence of transversal gradients of the OAM beam. However,
the correction in the y direction remains relevant for all even harmonics and is
inaccessible with plane waves.

Added to the possibility of measuring even harmonics without dipolar back-

ground [96], we believe the considerable correction in the emission visible in the

second harmonic yield given in panel b) of Fig. 19 due to the deviations in the

electron trajectory confirms that the second harmonic emission is a fitting can-

didate for an experimental observable, which provides a playground where the

effect of OAM can be used to induce emission in all directions. While such a

correction seen in Fig. 19 is not limited to an OAM-carrying Bessel beam, the

correction for the plane wave is azimuthally symmetric, hinting that an angular

deviation is inherent to incident OAM.

Predicting strong beyond-dipole corrections in the even harmonics is promis-

ing for experiments. Similar OAM induced effects in HHG have previously been

observed in high odd harmonics [176]. As shown in Fig. 14, quadrupolar con-

tributions dominate the even harmonics, making these harmonics fitting probes

of beyond-dipole phenomena, in line with earlier work [171]. Combined with the

fact that even harmonics can be measured without a dipolar background [96], the

sizable correction shown in the second-harmonic yield (panel b of Fig. 19), which

stems from modified electron trajectories, suggests that the second harmonic is

a suitable experimental observable candidate. Even harmonics observed in the
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off-axis directions offer a setting in which OAM can excite emission in all angular

directions. Although similar corrections do appear for a plane-wave, they remain

azimuthally symmetric, indicating that the angular asymmetry is connected to

the OAM content of the incident field.

6.7 OAM as a Parameter to Tune Off-axis HHG

We propose the OAM number m as a tuning parameter for the off-axis emission,

i.e., the third direction which is neither the polarization nor the propagation

direction. To investigate the effect, we construct A⃗3C
tw Bessel beams with higher

m. We place the atom at the first intensity ring (hot spot) for each case of m,

with the amplitude and phase of the beams matched in the x direction, so that

the dipolar effects are identical for all the beams. This implies that the field

amplitude Atw at the atomic position matches the plane-wave amplitude value

Apw = 0.053 a.u. at t = 0. The atom is placed at r⃗0 = (r0, 45◦, 0) with r0 adjusted

for each OAM number m to locate the atom at the first intensity ring of the beam

(hot spot). The chosen parameters used for all beams are reported in the Table

6.7.

Matching the phase for different beams is crucial, since the carrier envelope

phase is shown to impact the HHG process strongly [177]. To match the total

phase Φpw of the plane wave at t = 0 and z = 0 we calculate Φtw from the

condition,

mϕ+ Φtw = 0, (107)

where ϕ = 45◦. For the case of A⃗3C
tw , we used the same set of parameters as for

A⃗1C
tw . For the case of A⃗3C

tw we use the following formulas for the total angular

momentum mγ1 ≈ m+ 1 and mγ2 ≈ m− 1. We present the completely matched

temporal behavior, including the envelope, of the beams in Fig. 21.

The complete matching of the temporal behavior and the amplitude of the

beams presented in Fig. 21 enables us to perform an accurate comparison between

different m. Adjusting solely m and the phase results in uncontrolled changes

in the amplitude of the beams, which causes dipolar effects on the spectrum.

Therefore, matching the amplitude in addition eliminates any undesired dipolar

effect on the spectrum: the sole difference is the OAM number m. Therefore, one

can connect the difference in spectra directly with the gradients at play.

In Fig. 22 we show the y dipole component spectra P d
y normalized by the

m = 1 case, for values of m ranging from 1 to 21. As shown in Fig. 17, the

P d
y spectra provide unequivocal evidence of effects arising from in-plane spatial

structuring of the beams. Here, it becomes clear that this quantity is sensitive to



86

Table 1: Parameters used for the calculations of A⃗1C
tw and A⃗3C

tw .
m Atw a. u. r0 nm Φtw

1 0.0455 2545 1.4915
2 0.0543 4596 3.8481
3 0.0608 6081 6.2033
4 0.0661 7920 2.2779
5 0.0705 9334 4.6344
6 0.0745 10960 0.7059
10 0.0872 17324 3.8516
11 0.0898 18738 6.2082
20 0.1084 32527 2.2816
21 0.1102 33941 4.6332

Figure 21: Phase-adjusted pulses for the cases of plane wave and OAM numbers
ranging from 1 to 5. The left side shows the phase adjustment with the same as-
signed amplitude Atw. Since the envelope and phase adjustment impose different
amplitudes for varying OAM numbers m, we adjust the amplitudes as seen on the
right side, where the temporal behavior of different beams matches in intensity
and phase completely. With this setup, any dipolar variance between the beams
is eliminated, and we can operate with the isolated effect of gradients governed
by m.

the OAM number.

The top panel of Fig. 22 shows y dipole component spectra P d
y as a function

of OAM number m for the second harmonic, while the top panels show the

results for the third harmonics. We observe that the second harmonic yield

monotonously increases with m. On the other hand, the third harmonic yield

shows a sudden drop between m from 1 to 3, and then increases. A saturation

trend emerges for larger values of m in both cases. This trend follows the behavior

of the field gradient for increasing values of m as shown in Fig. 23, where the

y-derivative of the electric field of each beam is plotted at the hot-spot location.

The explicit expression for the gradient of the linearly polarized Bessel beam
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Figure 22: The y-dipole component spectra P d
y for m ranging from 1 to 21 for

the second and third harmonics. It is visible that P d
y drastically depends on m.

Here, the change of m affects mostly the second harmonic. Both harmonics show
a saturation regime after m = 10. Here, the inset in the second harmonic graph
displays the cross sections of beams with m = 1, m = 5, and m = 20. The
presented results are calculated beyond the dipole approximation.The figure is
reproduced with permission from E. I. Albar et al., Phys. Rev. A 112, 063109
(2025), published by the American Physical Society under the terms of the Cre-
ative Commons Attribution 4.0 International license.

A⃗1C
tw (r⃗, t) = A1C

tw (r⃗, t)e⃗x from Eq. (99), is given as

∇yA
1C
tw (r⃗, t) = Atwf(z)





κy (Jm−1 (r⊥κ) − Jm+1 (r⊥κ)) cos (mϕ+ kz − ωt)

2r⊥
−

mxJm (r⊥κ) sin (mϕ+ kz − tω)

x2 + y2



. (108)

Fig. 23 shows the magnitude of the y gradient at the hotspots of each m

number.



88

Figure 23: Maximum y gradient (∇y) for each OAM number m. The rapid initial
increase of the amplitude of the gradient is saturated as one moves to higher
OAM numbers.The figure is reproduced with permission from the supplemental
material of E. I. Albar et al., Phys. Rev. A 112, 063109 (2025), published by the
American Physical Society under the terms of the Creative Commons Attribution
4.0 International license.

In addition to the P d
y dipole component, we calculated the angular emission

spectra for different values of m for the second and third harmonic in Fig. 24.

Here, we report the correction entailed by the OAM number m. We observe

that this correction for the second and third harmonics also exhibits angular

dependence. It can be seen that for the second harmonic, both the angle and

intensity of the emission depend on the OAM number. This implies that not

only the amplitude of the yield, but also the angle of the emission for the second

harmonic, represents a fitting candidate for OAM tuning. In contrast, for the

third harmonic shown in Fig. 24, only the intensity increases.

These findings demonstrate that the nonlinear response for the even harmonics

depends strongly on the OAM number of the beam, following a similar trend

to the field gradients. This suggests that a path to incorporate beyond-dipole

effects in simulations of HHG from a gas-phase target is possible through the

even harmonics of off-axis direction.

6.8 Effects of Molecular Symmetry: Benzene

To investigate effects of molecular symmetry, we perform in this section HHG

calculations using the benzene molecule and a circularly polarized plane wave

beam. We compare the EDA and the FMC approaches to identify beyond dipole

corrections. We confirm that the effects of symmetry breaking in the propagation
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Figure 24: Angular distribution of the deviation from plane wave results as
a function of OAM number m. The left panel is reserved for the correction of
the second harmonic, while the right panel shows that of the third harmonic.The
figure is reproduced with permission from the supplemental material of E. I. Albar
et al., Phys. Rev. A 112, 063109 (2025), published by the American Physical
Society under the terms of the Creative Commons Attribution 4.0 International
license.

direction of the incident field survive in the beyond dipole HHG spectra of the

benzene molecule.

As before, we perform the real-space real-time TDDFT calculations with Oc-

topus. In particular here, we employ Troullier-Martins norm-conserving pseu-

dopotentials as provided by the Octopus distribution to describe carbon and

hydrogen cores, see [178]. The timestep is set to 0.0036 fs, and for the time

propagation, the AETRS scheme is employed. A rectangular simulation box of

4.44×4.44 ×3.2 nm3 is employed, where the benzene molecule is aligned with the

xy plane as shown in Fig. 25. The pulse is also polarized in x and y directions,

where the excursion is expected to be the largest. The grid spacing is 0.02 nm.

Absorbing boundaries of 0.52 nm are placed around the electronic box [118].

We employ a right-circular polarized beam

A⃗pw(r⃗, t) = Apwf(z) cos(kzz − ωbt)êx + Apwf(z) sin(kzz − ωbt)êy, (109)

with a central wavelength of 800 nm. Following the recipe described in Sec. 6.1,

we impose a spatiotemporal envelope on the beam and form a pulse of 10 cycles.

The beam amplitude is set to yield a peak electric field of 3.82 × 1010 V/m.

We present our results in Fig. 25. Here, part a) depicts the setup, while part

b) shows the dipole moment dynamics on xz plane. We observe that the EDA

approach is insufficient to capture the radiation pressure effects in the propagation

direction, similar to the case of hydrogen as shown in Fig. 16. In part c) of the
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figure we present HHG spectra: the left side of the upper panel shows the spectra

calculated with the two approaches. We would like to highlight that the EDA

results are multiplied by a factor of 5 for visualisation purposes of this plot.

Hence, we can observe the symmetry effect on the HHG spectrum of benzene.

Since the dipole operator allows only one unit of angular momentum transfer,

the 6-fold symmetry of the molecule yields 6k ± 1 peaks within EDA [179, 180].

However, when one moves beyond the EDA, the contribution from other peaks

such as 6k ± 2 is visible, as seen clearly in the right-hand logarithmic side.

The lower part of Fig.25c) shows the direction-resolved spectra for the ben-

zene molecule. The left side shows the FMC results, while the right side shows

the EDA results. Similar to the previous section, we see that the contribution in

the propagation direction P d
z is invisible within the EDA. This can be explained

with the dynamics shown in Fig.25b): since the motion in the z direction is not

captured, the corresponding contribution to the spectrum is discarded within the

EDA. Moreover, the beyond-dipole side peaks at 6k ± 2 and beyond, stemming

from the inclusion of beyond dipole effects, are visible in P d
x and P d

y components

on the left-hand side. We observe that the symmetry-breaking effect in the z di-

rection is visible in the even harmonics in particular. The even P d
z peaks show yet

another interesting pattern, where the 6th and 12th harmonics are the strongest

peaks, which shows that the effect of the 6-fold symmetry is also imprinted on

the even harmonics.

To conclude, we study the beyond-dipole effects in HHG in the presence of

optical vortices with OAM. We find that these corrections are predominant for

even harmonics, which appear due to the symmetry breaking. We show that the

in-plane gradients of the structured fields excite the dynamics. This behavior is

visible solely beyond the dipole approximation and results in a tilt in the angular

distribution of the emitted radiation for the second harmonic, a tendency that

can be generalized to even harmonics.

We have shown that the effect of the often neglected components of the vec-

tor potential for optical vortices is non-negligible and demonstrate that taking

them into account while analyzing component-resolved spectra is of utmost im-

portance. We show that it is possible to tune the harmonic yield in both off-axis

and on-axis directions by adjusting the OAM number of the Bessel beam, since

the beyond-dipole corrections of the even harmonics match the trend of the elec-

tric field gradients, especially the second harmonic. We extend our analysis to

the benzene molecule in the final section and investigate the beyond dipole im-

plications that the molecular symmetry entails. An approach that incorporates

both microscopic and macroscopic effects, for instance, studies an extensive gas

target and models the propagation in a medium while accounting for the phase
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Figure 25: a)High harmonic generation with a benzene molecule aligned with
the xy plane, using a circularly polarized pulse with a wavelength of 800 nm. b)
Dipole moment dynamics in xz plane, showing that the neglected component in
the propagation direction z is captured by the FMC approach. c) High harmonic
generation spectra for the EDA and the FMC approaches. On the upper panel,
results are shown on the linear scale to highlight 6k ± 1 peaks on the left side,
and the right side shows the logarithmic scale. The EDA approach is multiplied
by a factor of 5 in the linear scale for visualization purposes. The lower panel is
reserved for the direction-resolved spectra for two approaches: the left side shows
the FMC spectra and the right side shows the EDA spectra.

matching from individual dipoles, can provide further insights into possible exper-

imental setups for detecting and manipulating beyond-dipole effects in nonlinear

spectroscopy with structured light.
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7 Wave Packet Dynamics: an Applica-

tion of the Full Minimal Coupling FMC

Formalism∗

A wave packet is a combination (packet) of plane waves with a spanning a range

of frequencies around a central frequency ω. Usually described with a Gaussian

form, a wave packet evolves with time, with momentum defined by its wave

vector. The wave-particle duality finds a fitting expression in the concept of a

wavepacket. In quantum mechanics, wave functions are used to describe wave

properties of the system, such as interference and diffraction. However, a single

plane wave is completely delocalized, i.e., it extends infinitely and thus cannot

represent a particle confined in space. When many plane waves with slightly

different momenta are superposed, as in the case of a wave packet, a localized

quantum state that moves as a whole through space and time is formed. This

picture brings the wave and the particle together [181]: the oscillatory components

of the wave packet correspond to the wave nature, while the localization imposed

by the envelope encapsulates the particle-like behavior.

Consequently, a wave packet model provides a unified description of classical

and quantum phenomena. A well-localized wave packet under a smooth potential

U represents the classical properties via its mean position ⟨x⟩ and mean momen-

tum ⟨p⟩, which reproduces Newton’s second law as described with Ehrenfest’s

theorem
∗Parts of this chapter, including figures and text excerpts, are adapted from the author’s

previously published work: Bonafé, F.P., Albar, E.I., Ohlmann, S., Kosheleva, V.P. et al. Full

minimal coupling Maxwell-TDDFT: An ab initio framework for light-matter interaction beyond

the dipole approximation Phys. Rev. B 111, 085114 (2025), Published by the American Physical

Society under the terms of the Creative Commons Attribution 4.0 International license.
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−m
d⟨x⟩
dt

= ⟨p⟩, d⟨p⟩
dt

= −dU

dx
. (110)

The wave packet moves with the group velocity vg = dω
dk

as a whole, which can

be used to model a classical trajectory. On the other hand, a wave packet follows

the Schrodinger equation and displays quantum behavior since it spreads, splits,

tunnels, and interferes.

The flexibility of the wave packet then makes it a powerful tool for modeling

a vast variety of phenomena, ranging from the tunneling of nuclei, photons and

electrons, to photoelectrons in high-harmonic generation [182–184]. In this chap-

ter, we employ the simple wave packet to model a charged particle with the goal

of investigating the Vavilov-Cherenkov Radiation.

Vavilov-Cherenkov Radiation is the emitted radiation from a particle that

is traveling faster than the speed of light in a medium [185, 186]. The shape

of the accompanying emission, namely ‘Cherenkov cone’, can be thought of as

the electromagnetic counterpart of the acoustic phenomenon of the Mach cone

[187]. A Mach cone forms when particles in the air fail to respond to a super-

sonic object and accumulate into a shock front while clashing into each other.

Similarly, a charged particle moving rapidly through a medium outruns the po-

larization response of its constituents. Since the fastest way for the dipoles to

align themselves to the moving particle would be to react with the speed of light,

and since the phase velocity of light is exceeded by the particle as it travels, a

similar shock wave appears. Finally, an instantaneous burst of radiation emerges

in the Cherenkov case, similar to the sonic boom of the Mach cone.

Cherenkov radiation is used for imaging in any setup where energetic charged

particles move faster than light in a medium, producing a cone of coherent blue

light that can be recorded and analyzed. In nuclear reactors, Cherenkov imag-

ing verifies the presence of beta particles in water. In astrophysics, imaging

atmospheric Cherenkov telescopes detect Cherenkov light in the atmosphere. In

medical applications, Cherenkov luminescence imaging visualizes the distribu-

tion of the delivery of radiation dose inside tissue [188]. Across all these fields,

Cherenkov imaging provides clues about the high-energy particles via detectable

light patterns. As probing the Cherenkov angle is crucial to extract information

from the superluminal travel of particles in such a wide range of applications

[189], beyond-dipole self-consistent corrections to the spatial distribution of the

wavepacket, as well as its dynamics, would have practical implications.

In this chapter, we perform numerical simulations employing a wave packet

traveling at a higher speed than that of light in a medium, intending to investigate



94

Cherenkov radiation. To understand the effect of coupling between the wave

packet and its emitted radiation, we put a variety of approaches to test: we

first compare the EDA and FMC approaches, which enable us to account for the

spatial variations of the electromagnetic field. Then, we switch the back reaction

of the emitted field on the wave packet on and compare the observables with the

switched-off case. As the radiated Cherenkov field is highly inhomogeneous and is

emitted in the vicinity of the particle, backward-coupling of the induced radiation

in the dynamics of the particle itself could, in principle, have considerable effects.

This framework is a thorough demonstration of the beyond-dipole light-matter

interaction.

To observe the effect of back-reaction and the level of coupling on the particle,

we employ a Gaussian electronic wave packet. However, real-time propagation

of the wave packet in real space proves to be nontrivial numerically. In the

following subsections, we provide the details of this challenge imposed by the

principle of uncertainty, and we provide our optimized simulation parameters.

Then we proceed to present our results, which show that in order to capture the

spatiotemporal symmetry breaking in Cherenkov radiation, one needs to account

for both the beyond dipole corrections and the back reaction of the emitted

radiation on the wave packet.

7.1 The Real-Space Real-Time Simulation Challenge: The

Principle of Uncertainty

A challenge is to simulate the system with the following constraints: a wave

packet requires several grid points to capture the oscillations of the wave function,

while the finite simulation box sets a limit on the width and path of the system,

as described in the schematic Fig. 26. The principle of uncertainty binds the

momentum spread δp and the position spread δx of the wave-packet inversely:

δp =
ℏ

2δx
. (111)

We need a well-defined momentum to get a considerable width in space to

observe the time evolution of the wave packet shape. If the width is large enough,

the wave packet disperses slowly and preserves its initial shape while traveling in

space. This eases the observation of temporal changes in the shape of the wave

packet. Only when the wave packet is allowed to propagate for a sufficient time

without fully dispersing does the emitted radiation become observable and begin

to act back on the wave packet.

The De Broglie wavelength of the system is a decisive parameter. The phase

velocity of the wave packet has to be larger than that of light in the medium



95

Figure 26: The schematic describing the bottlenecks of the simulation. The box
size should be large enough to cover the motion. On the other hand, the grid
spacing should be sufficiently small to describe the oscillations of the various
components of the wave packet.

to observe Cherenkov radiation. However, as the momentum p⃗ increases, the

accompanying wavelength λ decreases due to the De Broglie relation

λ =
2π

p⃗
. (112)

7.2 Optimization of the numerical setup implemented in

the Octopus-Code

The spatial oscillations have to be described accurately with the discretization

of the simulation box. Therefore, the decreasing wavelength entails the need

for a denser mesh to fully describe the wave characteristics. As the spreading

in the position necessitates a larger simulation box, the dense grid represents a

challenge in the calculation. With this in mind, we perform calculations to cover

a sufficiently long simulation duration (with an elongated box in the propagation

direction) where we can thoroughly capture the deformation of the wave packet

as it disperses and emits.

The initial condition for a single electron wave packet is

φ(x, y, z, t = 0) = C0e
−ip(x−x0)e

− 1
4

(

x2

(∆x)2 + y2

(∆y)2 + z2

(∆z)2

)

. (113)

Here C0 denotes the amplitude while ∆x, ∆y, and ∆z indicate the width of the

wave packet in three directions. The phase factor e−ip(x−x0) describes the motion:

the wave packet moves with a velocity of amplitude p along the x direction,
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starting from point x0. Due to the system being a simple one-electron Gaussian

electronic wave packet, the Kohn-Sham Hartree exchange-correlation potential is

zero. The explicit coupling between the electronic and Maxwell subsystems is

through the FMC or EDA Hamiltonian, depending on the approach.

The simulation setup defines two subsystems using the multisystem feature

of the Octopus-code, as detailed in Sec. 4.7. The first system is a Maxwell

subsystem, which solves the time-dependent Maxwell’s equations for the emitted

electromagnetic field, and the second one is an electronic subsystem that evolves

according to the time-dependent Schrödinger equation. The grid spacing for the

matter subsystem is set to 0.016 nanometers, while the Maxwell grid is coarser by

a factor of two. This nested grid configuration allows the electromagnetic fields

to propagate into the Maxwell grid. The Maxwell box surrounds the electronic

one and extends for another 0.53 nm in each direction to capture the emitting

radiation. The Maxwell boundary conditions are set to a Perfectly matched layer

(PML), as detailed in 5 [190]. The PML region spans another 0.53 nm around

the Maxwell grid so that electromagnetic energy leaving the domain is attenuated

and parasitic reflections are prevented.

Both the electromagnetic and electronic systems are propagated in time using

the exponential midpoint integrator described in Sec. 4.2, Eq. (15). The bottle-

neck for the timestep is the emission solved by Maxwell’s equations. According

to the Courant-Friedrichs–Lewy (CFL) stability criterion, which ensures that the

physical wave cannot travel faster than one spacing at one time step, the spacing

∆x is bound with time discretisation

∆t <
1

c

√

1

∆x2 + ∆y2 + ∆y2
. (114)

Thus, a time step of 0.0025 atomic units of time (6.05 ×105 fs) is chosen for

both systems to respect the stability condition. The common timestep allows for

the direct exchange of the relevant quantities during the calculation without time

interpolation. For instance, the vector potential in the case of backwards reaction

plus the full minimal coupling case, or the current density from the wave packet

to the Maxwell box.

For the calculations, we optimized the electronic simulation box for the Octopus-

code calculation to have the non-uniform dimensions of 60×18×18 bohr3 with an

equal spacing of 0.3 bohr. We employ a box with a larger dimension in the prop-

agation direction for a longer time evolution. The wave packet has a full width

half maximum (FWHM), i.e. a position spread δx of 5.5 bohr, while the spread

in the other two dimensions is δy = δz = 2.5 bohr. We apply an offset of −30 nm

in the x direction. This allows us to propagate the system for a short time before
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it arrives at the box boundary, hence we can observe time-dependent differences

between different approaches. The wave packet has a velocity v = p
m

= 2.5 a.u.,

where the phase velocity of light is set to 1.37 a.u., which yields a factor of 1.825

between the velocities of the wave packet and that of light in the medium.

With these parameters, we are able to propagate the wave packet and observe

the emergence of a Cherenkov cone, while analysing the effect of the emitted field

on the density distribution of the wave packet. We present the results of these

two simulation setups in the following section.

7.3 Results

We aim to understand the beyond-dipole mechanisms at play during Cherenkov

radiation. With this goal, we employ the flexible multisystem approach of the

Octopus code and perform calculations with EDA and FMC approaches. As

detailed before, in the FMC approach, both the spatial and temporal dependence

of the vector potential are retained, meaning that the effects of the magnetic field,

the radiation pressure, and retardation are naturally included. On the other hand,

the simulations of an electronic wave packet travelling at a higher velocity than

the phase velocity of light in a medium serve yet another purpose: not only the

space dependence, but also the cross-talk of light and matter is also a topic of

interest. We refer to the effect of the emitted field back on the wave packet as

‘back-reaction’. Our setup allows us to switch the back-reaction on and off freely,

hence we can investigate the different levels of coupling (EDA and FMC) while

accounting for this contribution.

An observable that many applications extract information from is the Cherenkov

angle, which is the angle the Cherenkov cone has with the axis of motion. The

non-dispersive Cherenkov angle where the system does not experience energy

losses is defined as

βnon−disp = arctan

(

cm

vwp

)

. (115)

Here, cm denotes the speed of light in the medium and vwp denotes the speed of

the particle described by the wave packet. As the wave packet travels from right

to left in Fig. 27, we measure the Cherenkov angle and compare it to the non-

dispersive Cherenkov angle. Since we can describe the time-dependent behavior

of both the particle and the emission, we observe that this angle is indeed time-

dependent. As the particle starts the motion, the angle starts from zero to reach

the usually defined ratio. This demonstrates how spherical wavefronts interfere

and form an angle as the wave packet travels. The spherical form of the newly

forming wave is visible in the left panel of Fig. 27.

As shown in the three top rows of Fig. 27, as time evolves, the wavepacket



98

disperses, while the emitted electric field (x-component, in this case) starts to

develop the well-known Cherenkov cone. The non-dispersive Cherenkov angle is

given by βnon−disp = 56.8◦. Here we study the birth of the Cherenkov radiation

and the time evolution of the angle, being first close to 90◦ (initial field aligned

with the axis of propagation), as it develops and tends to ≈ 54◦ as can be seen

in the bottom panel of Fig. 27. The slight difference with the non-dispersive

value can be attributed to the dispersion of the wave packet and the numerical

resolution of the grid. This is a dynamic demonstration of the spherical wave

fronts interfering and forming the angle as the wave packet travels.

When we include the back-action corrections, as shown in the middle pan-

els of Fig. 27, both for dipolar and full minimal couplings, we observe that the

corrections to the density and the emitted field are around 0.1% with dipolar

back-reaction (spatial average of the radiated field), but over 3% with full min-

imal coupling back-reaction. The dipolar correction shows the expected dipolar

pattern in the direction of propagation of the wave packet, namely a slight shift

in space of the density (which can be interpreted as a slightly larger velocity with

respect to the uncoupled case). However, the correction with full minimal cou-

pling displays a rich spatial distribution, creating a slight accumulation on the

front and lateral sides, and a strong depletion on the back of the wave packet,

thereby deforming the shape of the wave packet. The emitted field also shows an

increase in the wavefront width and a decrease (in absolute values) of the field

at the tip of the cone. In the literature, the corrections to Cherenkov dynamics

have been addressed in a non-perturbative QED approach [191].

As expected, the wave packet disperses as it moves. In Fig. 28, the leftmost

panel shows the density distribution of the electronic wave packet calculated

with the FMC formalism. It discards the contribution from the back reaction of

the emitted radiation. The middle panel is reserved for the difference between

backward reactions on and off cases for the EDA approach. In the EDA, the

space dependence of the emitted field is not considered, hence we see a uniform

difference between the two cases. Therefore, the change in the dispersion of the

wave packet due to its emitting fields and the effect of the field acting back on the

packet are not fully captured. The rightmost panel shows the FMC calculations

with the difference in the back-reaction. The difference stemming from the effect

of the back-reaction grows with time. This is due to the emitted field growing

in intensity and acting back more strongly; henceforth, accounting for the space

dependence is not sufficient to capture the interaction thoroughly.

The symmetry breaking of the wave packet along the axis of propagation is

visible only when the FMC approach is combined with the effect of back-reaction,

as presented in Fig. 28. The electronic density distribution of the wave packet
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Figure 27: The electronic density distribution and transverse electric field for
different time steps are given at the top panel, beyond dipole corrections that
are the difference of dipolar and full minimal coupling reside in the middle; and
dynamics of the Cherenkov angle formation are given in the bottom. For the
three time snapshots chosen in the top panels, the wave packet is not subjected
to an external drive and is free of the back-reaction of the emission. It can be
seen how the wave packet disperses while the radiation forms the well-known
cone. We observe that a rich angular dependence arises in our full minimal
coupling approach. The angle dynamics (bottom) show the time evolution of the
angle measured from the simulations (calculated) together with an exponential
fit (model) with a characteristic time of 0.09 fs. The figure is reproduced with
permission from Bonafé et al., Physical Review B 111, 085114 (2025), licensed
under CC BY 4.0.
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Figure 28: Evolution of the density of the wave packet for different time steps,
and the difference when the back-reaction is turned on. The first panel plots
the density of the wave packet as it travels. This panel shows the result of
a calculation without back-reaction. The middle panel shows the difference in
density for the electric dipole approximation and the case without back-reaction.
We observe that the difference between the levels of coupling, i.e., the space
dependence of the phenomenon, increases as time progresses. The third panel
shows the density difference when the calculation is performed using the full
minimal coupling approach, while the back reaction of the emitted field is taken
into account. Only with the combination of these two approaches, the symmetry
breaking along the propagation axis becomes visible.

is deformed from its initial Gaussian shape during the time evolution, and going

beyond the dipole approximation is necessary to distinguish the directionality

of the motion and its effect on the dispersion of the wave packet. Moreover,

accounting for the back reaction of the field is the only way of observing the

pressure difference that results in the spatial redistribution of the density. We

want to stress that, while the spatial deformation of the wave packet has been

exaggerated by a factor of 10 to be able to visualize it, the actual deformation of

3% after only 0.36 fs of dynamics is already surprising, and a huge motivation to

study this topic further using the new tools developed in this thesis.

To sum up, we have demonstrated that observables such as the angle of

Cherenkov radiation are time-dependent phenomena. Moreover, the symmetry

breaking of the phenomenon can only be captured when two tools are combined:

the FMC approach and the accounting of the back reaction of the electromagnetic

field to the matter side. This highlights that the EDA approach is insufficient

in modeling the emission of radiation with strong spatial dependence within the

scales of the matter system. The fact that the back reaction of the emitted field

was detectable in our calculations calls for further investigation of the forward-

backward coupling of light and matter. Finally, the present toolbox enables us

to simulate the non-perturbative dynamics of arbitrary particles described at the

first principles level. Extending this framework to larger and more complex sys-

tems could provide a range of spectroscopic opportunities where detecting, as
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well as engineering the symmetry-breaking mechanisms, becomes possible.
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8 Conclusions & Outlook

8.1 Conclusion

In this thesis, we have contributed to the development and implementation of

a multiscale approach to investigate light-matter interactions. Placing a spatial

emphasis on the structured light, the starting point was to perform classical elec-

trodynamics calculations to observe the structuring of such fields with a linear,

non-magnetic medium. This has provided insights in terms of the classical for-

mulation of OAM generation, and we were able to resolve the transformation of

an ultra-short circularly polarized plane-wave pulse into a Bessel-like field. While

the OAM density showed a pattern resembling earlier predictions [72], it was

modified by the finite time envelope of the driving pulse. We discovered that the

real space cross-section of a short pulse does not match completely with an ideal-

ized case with a pure OAM number: Since the openings of the spiral branches are

matched to the central wavelength of the pulse, the structuring does not apply

to all components of the frequency bandwidth. This concept is intensely stud-

ied in the context of spatiotemporal optical vortices (STOV)s, which are light

pulses whose vortex structure is combined with temporal shape [192, 193]. Upon

discovering that the geometry of current emitters emulates the nanoplasmonic

structure and imprints their spatial distribution onto the phase structure of the

far-propagating wave, we have investigated the impact of the imitated pulse on

a two-particle test charge system, which we used as a probe of the local OAM

density. When we displaced the position of the probe system, we saw that the

trajectory was susceptible to the positioning across the transversal plane of the

beam. This verified the necessity of accounting for the spatial structure of short

OAM pulses.

Accounting for the spatial structuring of the light implies going beyond the

EDA. To uncover the beyond-dipole phenomena that emerge from the interaction
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of matter with the spatial structuring of light, we have applied the FMC tool to

the HHG process. We discovered that the beyond dipole symmetry breaking in-

duced by a plane wave in the propagation via the radiation pressure mechanism,

predicted by other beyond dipole studies, is well captured within this approach.

We firstly worked on the hydrogen atom to show that the OAM of light is ex-

pressed in the even harmonics of the beyond dipole trajectory components. We

observed that the OAM induces motion in the third direction, which is neither the

polarization nor the propagation direction of the linearly polarized beam. Named

as the off-axis component, the even harmonics response of this contribution was

perfectly tunable with the incident OAM content. When the gradient behavior

is plotted as a function of OAM number, it becomes clear that this component

was governed by the magnitude of the field gradients.

We also included the usually neglected components of the vector potential in

twisted beams and showed that they are crucial for the accurate interpretation

of the component-resolved spectra. To be consistent with the Coulomb gauge

and to account for the longitudinal components of the Bessel beam is crucial to

identify the contributions from the gradients.

The symmetry breaking induced by OAM beams manifests in the angular

distribution of the light emission. Moreover, the benzene molecule investigation

with a circular polarized plane wave showed that beyond dipole fingerprints are

identifiable when a molecular symmetry is imposed as well.

The forward-backward coupling also proved to be relevant, as demonstrated

in the Cherenkov wavepacket case. We captured how the Cherenkov angle evolves

as a function of time thanks to our real-space real-time calculations. Most im-

portantly, we combined two ingredients: the FMC description and the inclusion

of the electromagnetic field’s back-reaction on the particle, namely the forward-

backward coupling. This combination revealed symmetry-breaking in the elec-

tronic density distribution of the wavepacket that the EDA cannot reproduce.

This showed the importance of the strong variation of the radiation across the

spatial scale of the matter system. The fact that the back-reaction is visible in

our simulations also points to the need for further studies that account for the

forward-backward coupling between light and matter.

Finally, the results of this thesis demonstrate that once the spatial structure,

magnetic components, and induced fields of light are taken into account, the

dynamics of light–matter interaction can differ noticeably from the predictions of

the EDA. The FMC approach consistently revealed symmetry-breaking patterns

and responses that the EDA cannot reproduce, whether in generated HHG or

Cherenkov wavepacket propagation. These findings highlight that beyond-dipole

effects need to be considered whenever structured fields vary on the scale of the
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system or when the induced transverse fields become significant. The methods

developed here provide a practical route for capturing such phenomena, and they

offer a foundation for future studies aimed at understanding and utilizing these

effects in more complex or experimentally realistic scenarios. Such outlooks will

be discussed in the next section.

8.2 Outlook

The ramifications of this thesis work span many scales. Following the demonstra-

tion of the spatial dependence of the produced beam with Archimedean spirals

and its slight difference from a pure OAM beam due to the temporal shape, a

study that scans other designs can pave the way to better understand the in-

terplay of STOVs and the design structure. Particularly, the structures with

other phase-matching mechanisms than branch gaps, for instance, forked holo-

grams, could yield beneficial insight that can be employed in plasmon-enhanced

scattering spectra such as tip-enhanced Raman Spectroscopy (TERS).

The enforced understanding of nanoplasmonic generation of OAM has also

significant implications for the use of structured fields with OAM inside cavities.

It is already known that the time-reversal symmetry is broken in such setups with

circularly polarized light [152]. On the other hand, experimental works using

twisted light in cavities have already taken off [194]. Therefore, an analytical

treatment that solves Maxwell’s equations with active mirrors using the twisted

light modes could have exciting applications and reveal additional symmetry-

breaking mechanisms in non-equilibrium quantum materials.

The HHG part of the thesis shows that the extension of the formalism to the

X-ray regime is necessary: The beyond dipole trajectory components of HHG

are expected to persist in the produced X-ray radiation. The combination of

the short wavelength that varies across the scale of the target, combined with the

structured light, forms a fitting playground to uncover beyond dipole mechanisms.

Moreover, experimental studies of even harmonics that are the fingerprints of

the symmetry breaking would be highly informative in both plane-wave and OAM

driven cases. Particularly, our demonstration of OAM as a tuning parameter of

even harmonics in the off-axis emission, combined with the circularly polarized

driving of benzene, implies that intrinsic molecular symmetries could act as a

knob of the HHG process. The possibility of selectively enhancing or suppressing

specific harmonic peaks arises. The used symmetries of both the incident light

and matter can effectively serve as a symmetry-sensitive filter or amplifier.

An extension of the HHG work is to incorporate the propagation through a

medium instead of studying an individual emitter. Realistic experimental setups
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necessitate the study of a larger number of target atoms and molecules. The first

step would be to include more than one target atom in the electronic box and

propagate the resulting HHG emission in a Maxwell solver box. This could help

to investigate the phase-matching conditions between the emitters. Moreover,

when it comes to molecules with inherent symmetries, the orientation conditions

of the molecule with the incident beam should also be studied.

Following our work on the Cherenkov radiation, a natural next step is to

extend our wavepacket framework to the regime of continuum states driven by

twisted light [195]. The Cherenkov case already demonstrated the importance of

accounting for the spatial distribution of the emitted radiation and capturing the

back-reaction of the emitted field. Applying this approach to twisted ionization

would enable us to explore how beyond-dipole mechanisms mediate the transfer

of OAM from the driving field to continuum states. This direction is especially

relevant for understanding light–matter interactions at the center of an OAM

beam, where the field amplitude vanishes and the spatial gradients are at play.

The combination of the classical and quantum structured fields and the full

minimal coupling can be expanded beyond the Born-Oppenheimer approxima-

tion. One can allow the ions to respond to the radiation pressure and optical

torque of twisted fields [196], while also accounting for the beyond dipole elec-

tronic response. Although the results presented here focus on finite systems, the

same approach naturally extends to periodic systems. This opens new routes

for modeling and controlling light-driven dynamics in complex molecules and

solids. Therefore, the present work lays the foundations for a new class of optical

spectroscopies capable of probing beyond dipole fingerprints of nonequilibrium

phenomena.
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