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Zusammenfassung

Hochgebirgsregionen zahlen zu den besonders vulnerablen Okosystemen, die in
besonderem MalRe vom globalen Klimawandel betroffen sind. Eine Veranderungen ist
der potenzielle Anstieg der alpinen Baumgrenze. Auch in den sldlichen Anden ist die
Baumgrenze von klimabedingten Veranderungen betroffen. Bisher wurden das radiale
Wachstum sowie das Aufkommen und Uberleben von Keimlingen der
baumgrenzbildenden Art Nothofagus pumilio vor allem in kleinrAumigen,
dendrochronologischen und experimentellen Studien untersucht, die lokale Temperatur-
und Niederschlagsmuster beriicksichtigen. Ecological Niche Modelling (ENM) erlaubt
dagegen eine flachenhafte Analyse aktueller Verbreitungsmuster und potenzieller
zukunftiger Veranderungen Uber das gesamte Verbreitungsgebiet der Art.
Entsprechende Modellstudien zu N. pumilio liegen jedoch bislang nicht vor. Ein
wesentlicher Grund daflr liegt in der begrenzten Verflgbarkeit valider und moglichst
unverzerrter Vorkommensdaten. Studien, die Daten durch Feldforschung in situ
erheben, sind oftmals kosten- und zeitintensiv, insbesondere in schwer zuganglichen
Hochgebirgsregionen. Daher wird haufig auf globale Biodiversitatsdatenbanken wie die
Global Biodiversity Information Facility (GBIF) zurtckgegriffen, die jedoch Daten mit
rdumlichem und zeitlichem Bias enthalten kénnen. Ein Grofteil der in solchen
Datenbanken enthaltenen Daten stammt aus Citizen-Science-Projekten, bei denen
Nicht-Expert:innen z.B. mit Hilfe von Smartphones Artvorkommen erfassen. Dieses
Vorgehen erlaubt eine schnelle und kostenginstige Datensammlung, weist jedoch
raumliche Verzerrungen auf, da Beobachtungen vor allem in urbanen oder touristisch
erschlossenen Regionen erfolgen und somit kein vollstandiges Bild der tatsachlichen
Verbreitung von Arten liefern. Fernerkundungsmethoden stellen eine vielversprechende
Alternative zur herkdmmlichen Felddatenerhebung dar, da sie die Erfassung von
Artvorkommen auch in abgelegenen und schwer zuganglichen Regionen ermdglichen.
Allerdings ist eine Validierung der fernerkundungsbasierten Ergebnisse erforderlich, um
sicherzustellen, dass die jeweilige Art tatsachlich in den identifizierten Gebieten
vorkommt (Ground Truthing). Hierfur sind wiederum in-situ-Daten notwendig. In jungerer
Zeit rucken Soziale Medien zunehmend in den Fokus, da sie eine hohe globale
Reichweite aufweisen und die Zahl georeferenzierter Beitrdge stetig zunimmt. Diese
Inhalte bieten ein bislang wenig genutztes Potenzial zur Generierung von
Vorkommensdaten.

Ziel der vorliegenden Arbeit mit dem Titel ,Improved Ecological Niche Modelling of
Nothofagus pumilio in the Southern Andes® ist es, die derzeitige und zuklnftige
potenzielle Verbreitung von N. pumilio in den sutdlichen Anden mit Hilfe eines ENM-
Ansatzes zu modellieren und somit die bestehende Forschungslicke zu schlie3en.
Dabei wurde durch die Optimierung der Eingangsdaten und den Einsatz von Machine-
Learning-Algorithmen ein verbesserter ENM-Ansatz entwickelt. Die Studie erfolgte in
zwei Schritten: Zunachst wurde das Potential von Sozialen Medien flr die Erhebung von
Artvorkommen getestet und ein neuartiger ,Instagram ground truthing approach® (IGTA)



entwickelt, der auf der Auswertung von Instagram-Beitragen basiert (Publikation | und II).
Dabei wurden Vorkommensdaten generiert, die einen geringeren rdumlichen Bias
aufweisen als klassische GBIF-Daten. Die IGTA-Punkte wurden anschlieend zum
Ground Truthing von Fernerkundungsdaten Uber das gesamte Verbreitungsgebiet der
Art genutzt. Die zwei daraus resultierenden Datensatze gingen abschlieRend in die
Modellierung ein (Publikation Il und 1V).

Aufgrund der hohen globalen Reichweite mit zwei Milliarden Nutzern weltweit und der
Fokussierung auf Bildinhalte eignet sich Instagram besonders fir die Erhebung
georeferenzierter Beobachtungen. Auf Basis eines klar definierten Kriterienkatalogs
wurden Bilder ausgewahlt, auf denen N. pumilio eindeutig identifizierbar war und deren
Standort anhand von Landschaftsmerkmalen lokalisiert werden konnte. Insgesamt
wurden 1.238 Vorkommenspunkte manuell georeferenziert. Aufgrund der hohen Anzahl
verfugbarer  Instagram-Beitrdge konnten Vorkommen Uber das gesamte
Verbreitungsgebiet hinweg erfasst werden. Eine Bias-Analyse mit dem R-Package
,sampbias“ zeigte, dass die IGTA-Daten weniger stark in Richtung urbaner Zentren
verzerrt sind als GBIF-Daten. AnschlieRend dienten die IGTA-Daten als Referenz zum
Ground Truthing von Fernerkundungsdaten, die uber eine Klassifikation (supervised
classification) von Sentinel-2-Level-2A-Daten generiert wurden. Dadurch entstanden
zwei Vorkommensdatensatze, der |IGTA-Punktdatensatz und die Sentinel-2-
Rasterdaten, die fir die Modellierung genutzt werden kénnen.

Zur Modellierung wurde der Machine-Learning-Algorithmus Random Forest (RF)
eingesetzt, der sich durch eine hohe Vorhersagekraft und gute Interpretierbarkeit
auszeichnet. Zudem eignet er sich sowohl fir die punktbasierten IGTA-Daten als auch
fur die kontinuierlichen Rasterdaten, wodurch ein direkter Vergleich beider Ansatze
maoglich war. Fir den IGTA-Punktdatensatz wurde ein RF-Klassifikationsmodell, fir die
Rasterdaten ein RF-Regressionsmodell berechnet. Zur Erfassung der 6kologischen
Nische dienten die bioklimatischen Variablen von CHELSA als Pradiktoren. Beide
Modelle lieferten valide Projektionen der potenziellen gegenwartigen und zukunftigen
Verbreitung der Art. Es zeigte sich eine potenzielle Verschiebung des
Verbreitungsgebiets in hohere Lagen sowie ein Rickgang in trockeneren Regionen,
insbesondere in Nordpatagonien. Diese Ergebnisse stimmen mit denen aus der Literatur
Uberein, wonach die Art von hoheren Temperaturen in Gebieten mit ausreichend
Niederschlag profitiert, wahrend es in trockenen Gebieten zu Durren und zum Rickgang
der Art kommt. Der Vergleich beider Modellansatze zeigte, dass die Raster-
Vorkommensdaten zu einer aussagekraftigeren Variableninterpretation und vor allem zu
einer besseren raumlichen Vorhersage fuhrten.

Der Einsatz Sozialer Medien zur Erfassung von Vorkommensdaten stellt eine innovative
Methode mit groRem Potenzial fir grolraumige dkologische Analysen dar. Der IGTA
verbindet die Vorteile von Citizen Science, wie schnelle und kostenglnstige
Datenerhebung, mit einer deutlichen Reduktion der damit haufig verbundenen
Verzerrungen. Obwohl die manuelle Bildauswertung noch aufwandig ist, bieten



automatisierte Schnittstellen (APIs) und Kl-basierte Erkennungsverfahren kinftig groes
Potenzial zur Effizienzsteigerung. Wahrend die Nutzung von Fernerkundungsdaten zur
Ableitung von Umweltvariablen im ENM bereits etabliert ist, sollte auch die Erfassung
von Vorkommensdaten aus Fernerkundung kunftig weiterentwickelt werden, durch die
sich modellgestitzte Aussagen fir geeignete Arten deutlich verbessern lassen. Die
vorliegende Arbeit prasentiert einen innovativen ENM-Ansatz fir N. pumilio und schlief3t
eine bislang bestehende Forschungslicke in der Modellierung klimabedingter
Veranderungen an der Baumgrenze in den sudlichen Anden.

Abstract

High mountain regions are among the most vulnerable ecosystems and are particularly
affected by global climate change. One consequence is the potential upward shift of the
alpine treeline. In the Southern Andes, the treeline is likewise influenced by climate-
related factors. To date, radial growth, seedling emergence and survival of the treeline
species Nothofagus pumilio have mainly been studied in small-scale
dendrochronological or experimental studies that consider local temperature and
precipitation patterns. In contrast, Ecological Niche Modelling (ENM) allows for
comprehensive analyses of current distribution patterns and potential future changes
across the entire study area. However, corresponding ENM studies for N. pumilio are
currently lacking. One maijor reason is the limited availability of valid and non-biased
species occurrence data. The sampling of in situ observations through fieldwork is often
time-consuming and costly, especially in remote high mountain regions. Consequently,
global biodiversity databases such as the Global Biodiversity Information Facility (GBIF)
are frequently used, despite the fact that they may contain data with spatial and temporal
biases. A significant proportion of the data in such databases originates from Citizen
Science (CS) projects, in which non-experts collect species occurrence data for example
by using smartphones. While this approach allows for fast and cost-effective data
sampling, it introduces spatial bias, as observations are predominantly recorded in urban
or tourist areas, resulting in incomplete representations of species’ actual distributions.
Remote sensing provides a promising alternative to traditional fieldwork, as it enables
species detection even in inaccessible and remote regions. However, validation of
remote sensing results is required to confirm that the target species actually occurs in
the identified areas (ground truthing). This, in turn, requires in situ observations.
Recently, social media has gained increasing attention in biodiversity research due to its
global reach and the increasing number of georeferenced posts. These sources offer
untapped potential for generating occurrence data.

The aim of this thesis, entitled “Improved Ecological Niche Modelling of
Nothofagus pumilio in the Southern Andes,” is to model the potential current and future
distribution of N. pumilio in the Southern Andes using an ENM approach. By optimising
input data and incorporating machine learning algorithms, an improved modelling
framework was developed. The study was conducted in two main steps: first, the
potential of social media for species occurrence data sampling was explored through the



development of a novel “Instagram ground truthing approach” (IGTA) (Publication |
and Il). This approach generated occurrence points with reduced spatial bias compared
to conventional GBIF data. The IGTA points were then used to validate remote sensing
data across the entire distribution range of the species (ground truthing). Second, the
two resulting datasets were used for ENM (Publications IIl and V).

Due to its global reach with two billion users and its image-based format, Instagram is
particularly suitable for collecting georeferenced biodiversity data. Based on a catalogue
of specific criteria, images were selected in which N. pumilio was clearly identifiable and
the location could be determined using landscape elements. A total of 1,238 occurrence
points were manually georeferenced. Due to the large volume of available posts,
occurrences could be documented across the entire distribution range of the species. A
bias analysis using the R package “sampbias” demonstrated that the IGTA dataset
exhibited less spatial bias than GBIF data. The IGTA data were then used to validate
remote sensing data derived from supervised classification of Sentinel-2, Level 2A
imagery. This process yielded two occurrence datasets, the IGTA point dataset and the
Sentinel-2 raster dataset, suitable for use in ENM.

For the modelling process, the Random Forest (RF) machine learning algorithm was
employed due to its high predictive performance and interpretability. Moreover, RF can
be applied to both point-based binary and continuous raster occurrence data, enabling
a direct comparison of the two approaches. An RF classification model was developed
for the IGTA point dataset, while an RF regression model was created for the continuous
raster dataset. CHELSA bioclimatic variables were used as environmental predictors.
Both models resulted in valid predictions of the species’ ecological niche and its potential
current and future distribution. The results indicate a potential shift of the distribution
range to higher elevations and a decline in drier regions, particularly in northern
Patagonia. These findings are consistent with existing literature indicating that the
species benefits from higher temperatures in areas with sufficient precipitation, whereas
population declines due to drought are expected in drier areas. The comparison of both
modelling approaches showed that the continuous raster data enabled a more
meaningful interpretation of predictor variables and improved spatial predictions.

The use of social media for sampling species occurrence data represents an innovative
and promising method. The IGTA combines the strengths of CS, such as rapid and cost-
effective data collection, with a reduction in spatial bias. Although the manual analysis of
posts is time-consuming, the process could be improved through the use of automated
processes with Application Programming Interfaces (APIs) or artificial intelligence (Al) in
the future. While the use of remote sensing to derive environmental predictors is already
well established in ENM, the sampling of species occurrence data through remote
sensing also holds considerable potential and should be further developed. For suitable
species, this approach can significantly improve model accuracy and ecological
interpretability. Therefore, this study presents an improved ENM workflow for N. pumilio
and addresses a previously existing research gap.

vV
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Chapter 1: Introduction

1. Introduction

Anthropogenic climate change is impacting ecosystems worldwide. However, certain
regions of the Earth are disproportionately affected by the associated warming and its
consequences (IPCC, 2023). High mountain regions are experiencing above-average
temperature increases, primarily due to albedo feedback mechanisms (Pepin et al.,
2015). Consequently, ecosystems near the alpine treeline are particularly vulnerable
(Schickhoff et al., 2022). Emerging new abiotic and biotic conditions are leading to
habitat shifts and losses (Schickhoff et al., 2022; IPCC, 2023). One consequence, which
is regarded as a key indicator of climate change, is the potential upward shift of the alpine
treeline (Qiu et al., 2023).

The alpine treeline marks the upper elevational limit at which tree growth remains
possible (Paulsen and Korner, 2014). The principal limiting factor for tree growth is heat
deficiency (Kérner, 2020), therefore, the location of treelines globally closely aligns with
the 6.4°C isotherm during growing season (Paulsen and Kdorner, 2014). Nevertheless,
treelines exhibit substantial variability in both composition and structure. A basic
distinction can be made between diffuse, abrupt and island-shaped treelines (Harsch
and Bader, 2011). In diffuse treelines, tree growth gradually declines as a result of
increasing heat limitation, eventually leading to a transition from upright trees to
krummbholz growth forms. In contrast, dieback processes play a significant role at abrupt
or island treelines (Bader et al., 2021). Factors such as strong winds, frost events, or
unfavourable soil conditions outside the protecting forest stand lead to increased
seedling mortality (Harsch and Bader, 2011). With increasing temperatures, it is highly
probable that the treeline position will shift to higher elevations at diffuse sites, however,
this upward shift may be constrained at abrupt treelines (Harsch and Bader, 2011; Treml
and Veblen, 2017). Furthermore, various additional factors can influence the position
and upward shift of the treeline. Besides climatic treelines, distinctions are also made
between edaphic, topographic and anthropogenic treelines (Schickhoff et al., 2020). The
treeline elevation can be suppressed due to snow accumulations, cold air drainage, or
edaphic and topographic factors like steep slopes, rock beds or avalanches, shallow soil
depth, waterlogged, dry or nutrient-poor soils (Kérner, 2007; Hadley et al., 2013;
Schickhoff et al., 2020). Human activities likewise exert a significant influence on the
treeline ecotone. Many treelines, particularly in the Northern Hemisphere, are
anthropogenic treelines (Treml et al., 2016; Vitali et al., 2019; Miehe et al., 2023). These
are shaped by disturbances such as deforestation, livestock grazing, or use for local
recreation and tourism, and thus often lie below the altitudinal limit that would be
climatically possible (Schickhoff et al., 2020). Globally, 66 % of treelines have been
reported to be advancing (Hansson et al., 2021). In the Northern Hemisphere, 90 % of
treelines are advancing (Lu et al., 2021), whereas those in the Southern Hemisphere are
advancing less markedly. This difference is largely attributed to the abrupt nature of
many Southern Hemisphere treelines (Hansson et al., 2023).



Chapter 1: Introduction

Treelines and their dynamics have been extensively studied in recent decades (Kdrner,
2012; Holtmeier and Broll, 2020). Many investigations have focused on treelines in the
Northern Hemisphere, including those in the Rocky Mountains, the Alps, the Scandes,
and the Himalayas. In contrast, treelines in the Southern Hemisphere remain significantly
underrepresented in the scientific literature (Hansson et al., 2021, 2023). Although small-
scale studies, primarily dendrochronological and experimental studies, have been
conducted in the Southern Andes, there is a lack of modelling studies that capture the
treeline in its entirety and simulate both current and future conditions. The treeline of the
Southern Andes represents a particularly interesting research subject. It is abrupt, largely
natural, and minimally influenced by human activity (Holtmeier, 2009). The species
forming the treeline is the deciduous species Nothofagus pumilio (Poepp et Endl.)
Krasser. Recent studies have already shown that this species is sensitive to climatic
variations, often associated with phase shifts in Antarctic Oscillation (AAO) also known
as the Southern Annular Mode (SAM), the EI Nifio Southern Oscillation (ENSO), and
Pacific Decadal Oscillation (PDO) (Alvarez et al., 2015; Srur et al., 2016, 2018). Higher
temperatures, in combination with sufficient precipitation, promote increased radial
growth (Alvarez etal., 2015; Brand et al., 2022; Reiter et al., 2024) and the establishment
of seedlings above the treeline (Srur et al., 2016, 2018). However, drought conditions,
particularly increasing in northern Patagonia, can lead to growth limitation and mortality
among both seedlings and mature individuals (Rodriguez-Catén et al., 2016; Fajardo et
al., 2019). Understanding the climatic conditions at the treeline, along with the potential
current and future distribution of this species, is therefore of considerable interest. These
questions can be addressed using Ecological Niche Modelling (ENM). Nevertheless,
such modelling studies are currently lacking.

The lack of modelling studies can largely be attributed to the limited availability of species
occurrence data. ENM approaches typically rely on georeferenced point data indicating
the presence or absence of species (Sillero et al., 2021). Such data can either be
collected through fieldwork or obtained from online databases (Feng et al., 2019). The
advantage of field-based data lies in the fact that it is usually gathered directly by experts,
thereby minimising taxonomic misidentifications (e.g., Fitzpatrick et al., 2009). However,
fieldwork is both time-consuming and costly and tends to be restricted to relatively small
study areas. Open-access databases such as the Global Biodiversity Information Facility
(GBIF) compile data from various sources (GBIF, 2025a). These include expert-verified
field observations, museum collections, and increasingly contributions from Citizen
Science (CS) initiatives. CS refers to projects in which “non-experts”, referred to as
Citizen Scientists, participate in scientific research, for example by documenting species
occurrences (Bonney, 1996; Bonney et al., 2009). This is commonly done using mobile
applications that allow users to take photographs, automatically record coordinates, and
generate species identifications. Despite their growing popularity, GBIF datasets are
subject to several well-documented sources of bias (Beck et al., 2014; Meyer et al., 2016;
Daru et al., 2018). These include spatial, taxonomic, and temporal biases. Sampling
methods and observer behaviour can lead to species misidentification and to data
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collection being concentrated in urban areas, resulting in spatial bias, while inaccurate
GPS readings can lead to coordinate errors (Di Cecco et al., 2021). Moreover, CS
projects typically do not cover areas that are difficult for humans to access, such as high
mountain regions with complex topography.

A promising approach that circumvents many of the aforementioned biases is the
collection of species occurrence data through remote sensing techniques. Remote
sensing enables comprehensive surveys of large areas, including those that are
inaccessible to humans (He et al., 2015). Very high-resolution imagery (e.g., IKONOS,
WorldView, RapidEye, or airborne data) is commonly used in small-scale studies to
identify individual species or forest types (Fassnacht et al., 2016). For larger spatial
extents, medium- to high-resolution datasets such as Landsat or Sentinel are typically
employed (Immitzer et al., 2016; Immitzer et al., 2019). However, ground truthing, the
verification whether the species of interest is indeed present in the area detected by
remote sensing, remains necessary (Nagai et al., 2020). This, in turn, requires
occurrence data that has been collected on-site. Recently, social media has gained
attention as a potential tool for both collecting occurrence data and supporting ground
truthing (Jari¢ et al., 2020). Platforms such as Facebook, Flickr, Instagram, Twitter (now
X) and YouTube have been used to gather occurrences of animal and plant taxa (e.g.,
Hentati-Sundberg and Olsson, 2016; ElQadi et al., 2017; Pace et al., 2019; Gibson et
al., 2020; Martino et al., 2021; Viri¢ GaSpari¢ et al., 2022; O'Neill et al., 2023). The
quantity of geo-tagged images on social media is steadily increasing, offering significant
potential for the analysis of suitable image and video contributions useful for species
occurrence sampling. For example, on Instagram, the third most widely used social
media platform worldwide (after Facebook and YouTube), with 2 billion active users
(Statista, 2025), over 60 million contributions are posted daily (WirtschaftsWoche, 2014).
Some platforms enable a manual search based on location tags or hashtags (metadata
keywords marked with a hash symbol, e.g., #nothofaguspumilio), while others offer
access via Application Programming Interfaces (APIs), allowing for automated searches
(e.g., Flickr, Fox et al., 2022). Given the wide reach of social media platforms plus the
fact that social media content is analysed by experts, social media occurrence data
sampling has the potential to generate large volumes of less-biased occurrence data and
is still largely untapped.

This thesis introduces a novel Instagram ground truthing approach (IGTA), which used
the social media platform Instagram for species occurrence data sampling aiming at
creating less-biased occurrence data of N. pumilio for ENM. The IGTA comprised two
main steps. First, Instagram posts were systematically searched using a strict set of
criteria to identify both the species N. pumilio and the location where the corresponding
photo was taken. The resulting data were then georeferenced and transferred to a map
as point occurrences. Due to the high volume of potentially suitable posts and the manual
georeferencing of occurrence points, allowing for multiple points per post e.g.,
occurrences in the background of posted photos, spatial sampling bias can be reduced.
Bias was detected and compared with that found in GBIF data. In the next step, to further
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mitigate spatial bias, the generated IGTA point dataset was subsequently used for
ground truthing large-scale remote sensing data. Raster data of N. pumilio occurrences
was derived from supervised classification of Sentinel-2 Level 2A imagery. Therefore,
the IGTA approach resulted in two occurrence datasets of N. pumilio: a point dataset
and a raster dataset covering the entire range of the species in the Southern Andes.
Both datasets can be used to model the ecological niche, and the potential current and
future distribution of the species. Two models were developed and compared: one using
a common binary (point-based) ENM approach, and another employing a more
innovative method based on continuous raster data.

The subsequent chapters provide a comprehensive overview of the methodological
background and conceptual framework of Ecological Niche Modelling (Chapter 2),
including a detailed presentation of the data underlying the models (Chapters 2.1 and
2.2), and the algorithms applied (Chapter 2.3). Chapter 3 introduces the study area and
study species in detail. Chapter 4 presents the key methods and content of the peer-
reviewed publications that form the core of this cumulative dissertation (full texts
available in the appendix). Finally, Chapter 5 synthesises the findings, and Chapter 6
offers a conclusion and outlines future research priorities.



Chapter 2: Ecological Niche Modelling

2. Ecological Niche Modelling: Concepts, Data, Limitations

One of the most important questions for biogeographers is understanding the spatial and
temporal distribution patterns of species (Thuiller, 2024). In the last decades, this
question has been investigated using Ecological Niche Modelling (ENM). ENM, also
known as Species Distribution Modelling (SDM) and Habitat Suitability Modelling, is an
approach to investigating the current, past and future distribution of species (Thuiller,
2024). This is achieved by a mathematical approach using species observations and
environmental predictor variables as well as correlative or machine learning algorithms
(Zurell and Engler, 2019). Typical areas of application are forecasting the effects of
climate change, land use, or anthropogenic factors on biodiversity, planning of protected
areas, and monitoring habitat shifts or the invasive potential of species (Araujo et al.,
2019; Thuiller, 2024). ENM has therefore developed into an indispensable application
for biodiversity conservation and management (Franklin, 2010; Thuiller, 2024). The
terms Ecological Niche and Species Distribution Modelling are often used
synonymously. However, ENM and SDM differ in terms of the subject of investigation
and the underlying hypothesis (Peterson and Soberén, 2012). Peterson and Soberén
(2012) highlight the differences between the concepts. SDM is primarily concerned with
modelling the current distribution of a species based on observed occurrences without
making any statements about the niche of a species. ENM, on the other hand, focuses
primarily on modelling the underlying abiotic and biotic (ecological) environmental
conditions under which a species can occur (Peterson and Soberén, 2012). According
to the authors, SDM can only refer to modelling the actual current distribution of a
species. In contrast, modelling under changing environmental conditions relates to the
niche concept, as it involves estimating the fundamental niche and potential changes to
it (Peterson and Soberén, 2012). Although many studies apply models to study changes
over time, the term SDM is used more frequently than ENM. The term SDM can be
understood as an umbrella concept under which numerous applications and methods
have been published (Elith and Leathwick, 2009; Franklin, 2010; Bobrowski, 2018). In
the following, however, the term ENM is used and the underlying concepts are described
accordingly.

ENM is a valuable tool for predicting suitable conditions in space and time for a study
species (Anderson, 2012). ENMs can be divided into three categories according to the
extent to which biological processes are included: mechanistic, correlative, and hybrid
models (Sillero et al., 2021). Mechanistic ENMs incorporate biotic variables about
physiological, morphological, and behavioural processes, while correlative and hybrid
ENMs use geographical data of species occurrences and environmental predictors. In
addition to geographical data, hybrid ENMs also incorporate process-based influences
such as biotic interaction and dispersal abilities (Sillero et al., 2021). The following work
refers to correlative models. The classic correlative approach consists of data on the
occurrence of the study species and environmental predictors like climate, soall,
topography, and biotic data. The species data can be presence-only, presence—
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background and presence—absence (Peterson et al., 2011). Some authors describe that
the type of species occurrence data used determines which kind of niche can be
modelled, for example the fundamental, realised, or potential niche (Franklin, 2010). The
precise definition of the niche being modelled is a critical aspect of ENM, and this is
where the niche concept becomes important.

Defining the term “ecological niche” has a long and contested history in ecology (Sales
et al., 2021). Following its initial introduction by Grinnell in 1917, the concept was further
developed, leading to numerous interpretations and applications (Peterson, 2011).
Grinnell originally defined the “niche” as the environmental (abiotic) conditions that allow
a species to survive and reproduce (Grinnell, 1917; Sillero et al., 2021). The Grinnellian
niche is thus based on abiotic conditions, whereas a later definition by Elton describes
the niche as the functional role of a species within an ecosystem and has therefore a
focus on biotic conditions. The Eltonian niche refers for example to biotic interactions
such as what a species consumes and what predators it faces (Elton, 1927; Sillero et al.,
2021). Hutchinson later combined abiotic and biotic dimensions and was the first to
introduce the concepts of the “realised” and “fundamental” niche. A fundamental niche
refers to the geographic space in which a species can occur and reproduce successfully
without concurrence, whereas the realised niche describes the space that is actually
occupied by a species despite competition (Hutchinson, 1957; Sillero et al., 2021). Both
concepts are important for ENM, since the scope of a modelling approach and the
underlying hypotheses depend on them. In the 21st century the Biotic-Abiotic-Movement
framework (BAM) was developed for ENM applications (Soberén and Peterson, 2005).
It supplements concepts of Grinnell and Hutchinson and is the basic framework for ENM
studies (Zurell and Engler, 2019).

The BAM framework is illustrated in Figure 1a. In this framework, G represents the
geographic space, A denotes the abiotic conditions suitable for a species’ survival and
reproduction, B includes biotic interactions, and M defines the area that is accessible to
a species without dispersal limitations. The intersection of G and A, Ga, represents the
species’ fundamental (Grinnellian) niche, while the intersection of A, B, and M, referred
to as Go, represents the actual occupied area (Soberén and Peterson, 2005; Peterson,
2011; Peterson and Soberén, 2012), which some authors synonymously define as the
realised niche (Sillero et al., 2021). However, some authors define the realised niche
strictly as the intersection of A and B, in line with Hutchinson’s classical concept
(Soberon and Peterson, 2005; Soberdn, 2007; Zurell and Engler, 2019). ENM aims at
predicting suitable environmental conditions for a species, yet there is ongoing debate
about which niche is modelled (Zurell and Engler, 2019). This distinction depends largely
on the type of species occurrence data used. Correlative ENMs based on presence—only
data tend to approximate the potential or realised niche, while presence—absence
models can capture the occupied niche (Franklin, 2010; Zurell and Engler, 2019). In this
study, a more neutral terminology is used. The presence—absence approach used here
contains information on A, B, and M: environmental predictors represent A and presence
data originate from Go, indirectly reflecting B and M. However, to estimate Go precisely,
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additional information on M would be required in order to delineate G,, the invadable area
constrained by dispersal limitations (Peterson, 2011; Peterson and Soberén, 2012).
Therefore, the ENM in this study is understood to predict the potential geographic
distribution (Gp), defined as the area where abiotic and biotic conditions (intersection of
A and B) are suitable for the species’ survival and reproduction. Following the authors’
recommendation, the term “potential current and future distribution” is used throughout
this study to describe the modelled distribution of Nothofagus pumilio (Peterson and
Soberdn, 2012).

Lately, several guidelines for ENMs have been published to help developing an ENM
workflow (e.g., Araudjo et al., 2019; Feng et al., 2019; Sillero et al., 2021). Figure 1b shows
the basic structure of an ENM approach. The ENM workflow consists of the preparation
and integration of two input datasets, the occurrence data and the environmental data,
followed by the model setup and algorithm choice, the evaluation and calibration of the
model, and finally, the transfer in space or time (Anderson, 2012). Each step involves
specific strengths and limitations. While the choice of methods is critical for producing
accurate model outputs, potential sources of error in the input data must also be
addressed. These include bias in the occurrence data, inaccuracies in the (climatic)
predictors or their preprocessing, spatial autocorrelation, and multicollinearity among

variables. Opportunities and limitations related to these aspects are discussed in detail
in the following chapters.

b) Occurrence Data Environmental Data
Download Download
Filtering Preprocessing
Validation
Mcodel Algorithm
Model calibration
and evaluation
L & | Ecological Niche Model
Jo ORI
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ieograph,
space geograpiy time
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Figure 1: a) Visualisation of the Biotic-Abiotic-Movement (BAM) scheme (after Peterson 2011). In
G, the geographic space, A abiotic and B biotic conditions for a species are given. M (movement)
is the space accessible for the species, where it can move without limitations. Ga is the
fundamental niche of the species, while the intersection between A, B and M is Go the occupied
distributional area. Gr is the potential geographic distribution that includes Gi, the invadable
distributional area (Soberén and Peterson 2005; Peterson, 2011; Peterson and Soberén, 2012).
b) shows the typical workflow of an Ecological Niche Modelling (ENM) approach (after Anderson,
2012).
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2.1 Species Occurrence Data

Correlative ENMs require georeferenced species occurrence data. These can either be
in situ data from fieldwork sampled by experts, digitalised data from museums, or data
from online databases that come from diverse sources (Thuiller, 2024). In the last
decades, online databases make biodiversity data largely available and are frequently
used by ecological modellers (Michener et al., 2012; Feng et al., 2019). Expert and
museum data as well as data from Citizen Science (CS) projects are available in global
databases such as the Global Biodiversity Information Facility (GBIF) (Anderson et al.,
2016; GBIF, 2025a). Especially CS data contribute significantly to such databases
(Goldberg, 2023). CS is the active involvement of “non-experts” in scientific research
(Bonney, 1996; Bonney et al., 2009). In the case of ecological modelling this is primarily
the sampling of species occurrences with mobile devices (Kullenberg and Kasperowski,
2016). One example of a CS project is iNaturalist. In the iNaturalist app, photos of
biodiversity observations with meta data of coordinates, date, and time can be uploaded
with a smartphone or PC. Users can identify the species based on suggestions in the
app, which are reviewed and updated by other users or experts (curators) (Heberling
and Isaac, 2018; Goldberg, 2023; iNaturalist, 2025). After reaching a consensus by at
least two users, occurrences are considered correctly identified, complete and certain,
and only then are they passed on to biodiversity data repositories like GBIF for
publication as valid data (Heberling and Isaac, 2018). iNaturalist serves as one of the
main contributors to GBIF with over 131 million hosted occurrence records (GBIF,
2025b). Therefore, CS is a very important contribution to species occurrence data
sampling (Feldman et al., 2021), offering a cost- and time-efficient method for large-scale
monitoring (Sumner et al., 2019). Some authors even emphasise that CS is the only
practical way to investigate range shifts of species in large scale (Dickinson et al., 2010).
Others found that the data quantity increases exponentially (Pocock et al., 2017) and the
data quality is improving rapidly, nearing expert level (Aceves-Bueno et al., 2017;
Mesaglio and Callaghan, 2021).

Recently, social media gained attention towards its contribution to species occurrence
data sampling (Deng et al., 2012; Jari¢ et al., 2020). With its wide reach and vast amount
of posted content with geotags, social media offers a still largely untapped potential for
surveying species occurrences (Deng et al., 2012). Just like CS, the use of social media
content has the potential to increase species occurrence data in a cost- and time-efficient
way (Edwards et al., 2021). However, CS usually requires the active involvement and
information transfer to Citizen Scientists (Wiggins and Crowston, 2011). When social
media content is re-used and analysed by scientists, content creators are rarely aware
that they are participating in a study. Therefore, social media species occurrence data
sampling can be assigned to “passive Citizen Science” (Nascimento et al., 2024). Social
media platforms such as Facebook, Flickr, Instagram, X (formerly Twitter), and YouTube
are used to sample occurrence data and range shifts of animals, for example data of
whales, dolphins (e.g., Pace et al., 2019; Gibson et al., 2020; Martino et al., 2021), birds
(e.g., Hentati-Sundberg and Olsson, 2016), snakes (e.g., Marshall and Strine, 2019),
8
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insects (e.qg., Viric Gasparic et al., 2022; O’Neill et al., 2023), and plants (e.g., ElQadi et
al., 2017).

However, even though data availability is increasing, data from global databases are
subject to several biases that must be addressed in ENM (Boakes et al., 2010; Beck et
al., 2014; Meyer et al., 2016; La Sorte et al., 2024). Species data can inhibit taxonomic,
sampling, and spatial bias (Meyer et al., 2016). Field trips by experts are, on the one
hand, costly and time-consuming, often limited to small study areas that cannot cover
the whole range of a species, and limited to areas that are accessible for humans. On
the other hand, expert data are considered to be mostly free of species misidentifications
or sampling biases. When species occurrences are sampled by (unstructured) CS
projects, misidentifications are common errors (Bird et al., 2014), especially for rare
species (Cox et al., 2012). Furthermore, sampling biases such as wrong coordinates can
occur mainly due to weak satellite signals while sampling with mobile devices (Uyeda et
al., 2020). One maijor bias is spatial bias. Citizen Scientists record the occurrence of
species primarily in areas of their everyday lives. For example, on their way to work,
during walks, or on holiday (Dimson and Gillespie, 2023). This observer behaviour leads
to the accumulation of occurrence points in areas that do not necessarily correspond to
the actual distribution range of species (Di Cecco et al., 2021). Areas that are difficult or
impossible for humans to access are usually not recorded at all. Even on a global scale,
the data is spatially biased, as sampling of occurrences takes place primarily in the
Northern Hemisphere (North America and Europe) (Di Cecco et al., 2021; Feldmann et
al., 2021). The potential of social media species occurrence data sampling to reduce
these biases effectively has not yet been tapped. As globally posted content is widely
available and accessible, and the data are collected and evaluated by experts, both
sampling and spatial biases may be mitigated. However, user behaviour on social media
often mirrors that of Citizen Scientists, meaning that certain biases still persist.

Therefore, occurrence data must be examined for these biases in order to avoid
distorting the modelling results (Meyer et al., 2016). There are several methodological
solutions to address the described sources of bias in occurrence data (Bird et al., 2014,
Sillero et al., 2021). First steps while and after downloading the data are intense filtering
and bias detection methods (Feng et al., 2019). Within the download process, data can
be checked for missing coordinates and excluded. Some databases such as GBIF
indicate the coordinate uncertainty, so that data with high variations in coordinates can
also be removed. Nevertheless, it is crucial to plot occurrence points and check for false
deviations. For example, spatial and environmental outliers, such as terrestrial plant
species occurring far from their natural distribution area or on water or glacier surfaces,
indicate an erroneous recording (Feng et al., 2019). The degree of spatial bias in the
data can be determined using bias detection methods such as the R package “sampbias”
(Zizka et al., 2021). “Sampbias” compares the position of species records with geodata
on urban areas and calculates the sampling rate. A high sampling rate in urban areas
and very low values in rural areas indicate significant spatial bias (Zizka et al., 2021).
Additional data can be necessary to reduce spatial bias or the proportion of “clustered”
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occurrences in urban area can be reduced (filtering) (Sillero and Barbosa, 2021).
Detecting taxonomic or sampling bias is more difficult. Misidentified species or incorrect
coordinates can rarely be identified retrospectively and are difficult to avoid entirely.
While such biases can lead to substantial errors in some algorithms, others (e.g.,
Boosted Regression Trees, Random Forest, Maximum Entropy) are considered more
robust to these issues (Sillero et al., 2021).

After downloading and filtering the occurrence data, they must be pre-processed and
formatted appropriately for modelling. Data types for correlative ENMs can be presence—
only, presence—background, or presence—absence/pseudo-absence data (Sillero et al.,
2021). The choice of data type depends on the modelling objective and the algorithm
applied. Presence—only models rely solely on species presence as the response variable
and typically apply envelope algorithms to predict habitat suitability (Booth et al., 2014;
Sillero et al., 2021). Presence—background data represents a special case, most
commonly used in Maximum Entropy (MaxEnt) model approaches (Phillips et al., 2006).
Background data refers to areas within the study area where no species occurrences
have been recorded. The abiotic and biotic conditions at presence locations are
compared to those at locations in the background (Phillips et al., 2009; Sillero et al.,
2021). In contrast to true absence data, background data covers the whole study area,
that may include sites where the species is actually present (Sillero and Barbosa, 2021).
Model validity can be increased by incorporating true absences, representing locations
where a species is known to be absent (Sillero et al., 2021). However, true absence
information is rarely available. When working with geospatial data, it is common practice
to generate so-called pseudo-absences (VanDerWal et al., 2009; Barbet-Massin et al.,
2012; Broussin et al., 2024). These are absence points created in grid cells e.g., in the
resolution of the species or climate data, that do not contain any recorded presence
points and are therefore treated as absences for modelling purposes (Sillero et al., 2021).
The choice of the number of pseudo-absence points created is important and can greatly
influence the model result (Barbet-Massin et al., 2012). “Prevalence” describes the
proportion of presence points in all data points (i.e. presence and absence). To gain a
suitable prevalence, different presence-to-absence ratios are recommended depending
on model algorithms. For example, a 1:10 ratio is recommended for a Generalised Linear
Model (GLM) and 1:1 for a Random Forest (RF) algorithm (Barbet-Massin et al., 2012).
If there are too many or too few absence points, the predictive power of the models can
vary greatly. For presence—absence modelling, another filtering method is necessary to
ensure good model quality. “Spatial thinning” ensures that only one occurrence point (as
well as pseudo-absence point) is present per raster cell. This reduces spatial bias,
prevents model overfitting caused by overrepresentation of duplicate occurrences, and
mitigates spatial autocorrelation (discussed in detail below) (Steen et al., 2021).
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2.2 Environmental Data

Environmental data of e.g., climate, soil, land cover, and land use can also be sampled
in situ, but here again datasets available online are most commonly used (Thuiller et al.,
2024). Most ENMs concentrate on climatic data. Common climate databases are
WorldClim (Hijmans et al., 2005; Fick and Hijmans, 2017) and CHELSA (Karger et al.,
2017). Both datasets contain information on current and future climate, as well as
paleoclimate data (Last Glacial Maximum) with a resolution of up to 30 arc sec ~ 1 km.
While WorldClim is based on interpolated station data and a digital elevation model (Fick
and Hijmans, 2017), CHELSA data are generated through dynamic downscaling and
reanalysis of ERA5 data (Karger et al.,, 2017). CHELSA data are more detailed and
account for orographic effects, resulting in improved performance in areas with complex
topography, such as high mountain regions (Bobrowski et al., 2021a). More recently,
remote sensing data have contributed significantly to the development of environmental
predictors for ENM. Data from sources such as MODIS, SRTM, or LiDAR provide
valuable information on climate, topography, land cover, and spectral metrics (e.g.,
NDVI), which can be extracted and used in modelling (Wang et al., 2025).

The choice and the number of predictor variables are again critical factors influencing
ENM outcomes (Cengi¢ et al., 2020; Sillero et al., 2021). While it may be tempting to
include as many abiotic variables as possible, an excessive nhumber of predictors can
lead to model overfitting, reducing the model’s ability to generalise beyond the training
area. A commonly cited rule of thumb suggests that the number of predictor variables
should not exceed the number of species occurrence records (Sillero et al., 2021). Other
authors provide estimation formulas for example k = (n — 50)/8 or k = n — 104 (Field
et al., 2012) for regression-based methods or general rules like k = n/10 (Franklin,
2010), where k is the number of predictors and n the number of species occurrence
records (Sillero et al., 2021). Additionally, multicollinearity must be taken into account.
Multicollinearity describes the effect that environmental variables are highly correlated
with one another. This effect can result in weak model performance and misleading
interpretations (Dormann et al., 2013). It increases the risk of overfitting and may cause
variables with no direct ecological relevance to exert a strong influence on model
outcomes simply because they are correlated with truly influential predictors (Sillero et
al., 2021). Some modelling algorithms are highly sensitive to multicollinearity, while
others can handle it more effectively. Nevertheless, collinearity should always be
assessed, and variables with correlation coefficients exceeding + 0.7 to £ 0.8 should
generally be excluded (Dormann et al., 2013). Another often-used solution is the
transformation of the predictors into principal components and their use in the models
(Principal Component Analysis, PCA). However, interpreting principal components is
more challenging than interpreting the original variables, as they represent combinations
of multiple factors rather than direct environmental gradients (Sillero et al., 2021).
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2.3 Modelling Algorithms, Evaluation and Calibration

For ENM, regression approaches like Generalised Linear Models (GLM), Generalised
Additive Models (GAM), and Multivariate Adaptive Regression Splines (MARS), or
machine learning approaches like Random Forest (RF), Maximum Entropy (MaxEnt),
and Artificial Neural Networks (ANN) can be used. The choice of algorithm should be
adapted to the data, the size of the study area, and the scope of the study. For example,
less complex models tend to perform better in small study areas (Li and Wang, 2013). In
linear regression approaches, all predictor-species relationships can be interpreted and
plotted in response curves. Therefore, these approaches are considered particularly
easy to interpret and suitable for ENM (Li and Wang, 2013). Conversely, machine
learning algorithms are often said to be black boxes and difficult to interpret (Breiman,
2001b; Ryo et al.,, 2021). In comparison, the performance of machine learning
approaches is often significantly better than that of linear regression approaches (Li and
Wang, 2013). Nevertheless, interpreting the ecological niche, or at least the underlying
abiotic conditions, should remain a central focus of any ENM study. However, some
authors have criticised the growing tendency to prioritise distribution prediction over
ecological interpretation, arguing that the original emphasis on understanding niche
dynamics is increasingly being watered down (Bobrowski et al., 2021b).

Prior to model computation, the final dataset, consisting of species occurrence and
environmental data, is split into training and testing subsets for model validation,
commonly using a cross-validation approach. Best practice in model validation would be
to test the model on independent, external data. But as these are rarely available,
standard cross-validation based on data splitting is commonly applied. The model is
trained on the training dataset and evaluated using the testing dataset (Yates et al.,
2023). There are several methods of cross-validation, with k-fold cross-validation being
the most commonly applied. In this approach, the dataset is divided into k equal subsets
(folds). In each iteration, one subset is used for testing, while the remaining k — 1 subsets
are used for training. This process is repeated k times, and model performance is
evaluated across all k iterations (Yates et al., 2023). Another possibility is the leave-one-
out method, where each individual data point is used once as test data while all remaining
points serve as training data (k = n) (Yates et al., 2023). Training and testing datasets
should be as independent as possible to allow for meaningful model validation (Sillero et
al., 2021). However, spatial data is always spatially autocorrelated to a certain degree,
which poses additional challenges for achieving full independence between training and
testing sets (Legendre, 1993; Dormann et al., 2007; Roberts et al., 2016). Tobler's law
applies here, that says: “[...] everything is related to everything, but near things are more
related than distant things.” (Tobler, 1970). In this context, this means that abiotic
conditions at closer species locations tend to be more similar than more distant ones, so
that autocorrelation is more pronounced (Sillero et al., 2021). In random cross-validation
splits, spatial autocorrelation is not accounted for, which can lead to overly optimistic
model evaluations. Therefore, a third cross-validation method must be mentioned, the
spatial or block cross-validation (Roberts et al., 2016). This approach divides the data
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into spatially distinct blocks, creating folds that are geographically separated, thereby
reducing spatial autocorrelation between training and testing sets and providing a more
realistic assessment of model performance (Roberts et al., 2016; Valavi et al., 2019). To
summarize, cross-validation is a method used to test the predictive performance of the
model with data that is as independent as possible. In addition, cross-validation can be
used to optimise model hyperparameters by testing models with different settings, for
example, testing different numbers of trees (ntree) or tested variables at each node
(mtry) in a RF model (Schratz et al., 2019; Yates et al., 2023). After model validation,
either the best-performing model (i.e. the one with the highest predictive performance
and optimal hyperparameters) or an average model (based on the mean validation
metrics across all runs) is selected and applied for model transfer in space or time (Yates
et al., 2023).

Evaluation metrics depend on the data type. For regression approaches with binary data
(presence data has two expressions, 1 = presence and 0 = absence) commonly applied
metrics include the threshold-dependent Cohen’s Kappa and True Skill Statistic (TSS),
as well as the threshold-independent Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve (Mouton et al., 2010; Sillero et al., 2021). In binary
modelling, a threshold must be set to determine when a predicted value is considered a
presence and when it is considered an absence (e.g., presence 2 0.5). The model results
can then be displayed in confusion matrices, as illustrated in Table 1 (Miller, 2010; Sillero
et al., 2021). From this confusion matrix, sensitivity, the proportion of correctly predicted
presences, and specificity, the proportion of correctly predicted absences can be derived,
which in turn can be used to calculate various evaluation measures (Miller, 2010).
Cohen’s Kappa is a commonly used metric that measures the agreement between
predicted and observed values. However, because it is highly sensitive to prevalence,
the TSS is now more widely used as a more robust alternative (Mourton et al., 2010).
The TSS is calculated as sensitivity + specificity — 1 and takes values from -1 to +1.
Values close to +1 indicate perfect agreement between predicted and observed values
and thus reflect high model performance, whereas values near or below 0 indicate
performance no better than random guessing (Allouche et al., 2006). The choice of
threshold plays an important role, as it strongly influences the result and model
performance (Liu et al., 2013). The AUC is independent of thresholds and is therefore
often used to evaluate prediction models (Peterson et al., 2008). The ROC curve, on
which the AUC is based, plots sensitivity (y-axis) against the false positive rate (x-axis)
for all possible thresholds. The AUC value describes the “area under this curve” and can
take values between 0 and 1. An AUC of < 0.5 means that the model is no better than
random guessing (Peterson et al., 2008). Other authors recommend likelihood-based
criteria such as Akaike information criterion (AIC) and the coefficient of determination
(R?) (Lawson et al., 2014). For continuous data (e.g., abundance data, variable is
numerical), simple correlations between observed and modelled values can be
computed, or evaluation metrics such as R? and the Root Mean Square Error (RMSE)
can be used to assess model performance (Potts and Elith, 2006).
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Table 1: Typical structure of a confusion matrix comparing observed and predicted values,
thereby distinguishing True Positives (TP), True Negatives (TN), False Positives (FP) and False
Negatives (FN). This forms the basis for calculating several model evaluation metrics (after Miller
et al., 2010).

Observed
Present Absent
b Present TP FP
kS
S
g
o Absent FN TN

After model setup, calibration, and validation, an ENM can be transferred both spatially
and temporally, unlike a traditional SDM (Anderson, 2012, Peterson and Soberdn, 2012).
Typically, the model is first projected across the entire study area to estimate the full
potential distribution of the species (Anderson, 2012). However, it can also be transferred
to remote geographic regions, for example, to assess the potential spread of invasive
species in novel environments (Elith and Leathwick, 2009; Anderson, 2012). Moreover,
ENMs can be projected under future or past climatic conditions. This requires climate
data with temporal projections (Sillero et al., 2021). Future projections are usually based
on Representative Concentration Pathways (RCPs), which are categorised into mild,
medium, and severe emission scenarios (van Vuuren et al., 2011). The most commonly
used sources for these datasets are again WorldClim and CHELSA, both of which
provide datasets in which RCP scenarios have been modelled using a variety of global
climate models.
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3. Nothofagus pumilio: Climate Change and Impacts on the
Alpine Treeline

The Andes are the largest mountain range with a latitudinal extent covering over
8,000 km. After the Himalayas, they are the second-highest mountain range in the world
with peaks up to 6,962 m (Cerro Aconcagua, Argentina) (Graham, 2009). Due to the high
complex topography and the north-south exposition, the Andes comprise of steep
climatic gradients leading to high heterogeneity of habitats. This results in a very high
floral diversity, with 10 % of the world’s vascular plant species in the Andes, at only 0.6 %
of the global land surface (Mittermeier et al., 2011). Biodiversity is highest in northern
mid-elevation cloud forests, while biomes of the Southern Andes are less diverse (Pérez-
Escobar et al., 2022). Nevertheless, the Andean biodiversity hotspot is threatened by
climate change in its northern and southern parts (Tovar et al., 2022). High mountain
regions like the Andes are particularly affected by climate change, as warming is above
the global average due to snow albedo feedback mechanisms (Pepin et al., 2015).
Glaciers and snow fields are retreating and bare ground with low albedo favours warming
of surrounding areas (Pepin et al., 2015; Pepin et al., 2022). Globally, an average
increase in air temperatures of 0.2°C is observed per decade since 1880 with an ongoing
positive trend (Allen et al., 2018). In high mountain regions, temperature increases
ranging from of 0.3°C to 0.4°C per decade (Schickhoff et al., 2022). This above-average
warming forces ecosystems to alter in terms of their structure and species composition,
leading to habitat shifts or even their loss due to new environmental conditions (Dirnbock
et al., 2011; Dullinger et al., 2012). An especially visible and documented change is the
shift of alpine treeline positions (Holtmeier and Broll, 2020).

This study focuses on the Southern Andes, specifically the Andean Cordillera between
35°S and 56°S, extending to the southern tip of South America (Tierra del Fuego), a
region often referred to as Patagonia in the literature. The Southern Andes reach a
maximum altitude of up to 4058 m at 46°S (Borsdorf and Stadel, 2013). The altitude itself
creates a steep temperature gradient and the north-south exposition in combination with
the west-wind regime creates a precipitation gradient, which is considered to be the most
extreme precipitation gradient of the world (Garreaud et al., 2013). These climatic
gradients directly influence the distribution range of the treeline species N. pumilio, as
well as changing conditions at the treeline in response to climate change. This chapter
gives an overview of the study area, its climate and climate change implications as well
as the study species N. pumilio and the changes of the species’ distribution at treeline
locations.
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3.1 Climate and Climate Change in Southern South America

The climate in the Southern Andes is temperate, adjacent to mediterranean climate in
the north and more cold-temperate climate at the southern tip of the South American
continent (Borsdorf and Stadel, 2013). One special feature, however, is that the climate
of the western and eastern side of the Andes is extremely different, which is due to the
extreme precipitation gradient. Climate is maritime and hyper-humid at the westside of
the Andes and more continental and arid at the east of the mountain range (Garreaud et
al., 2013). Figure 2 shows a Képpen-Geiger climate classification map and the steep
west-east precipitation gradient in the study area.

The Southern Andes are located between two pressure bands: the semi-permanent
anticyclones of the Pacific in the north-west and the subpolar low-pressure belt in the
south (Antarctic Oscillation) (Paruelo et al., 1998). These create strong and constant
west winds that transport humid air masses from the Pacific. Through orogenic uplift,
precipitation sums are very high at the western side of the Andes, reaching extremes
from 5,000 up to 10,000 mm/a (Garreaud et al., 2013). Since most of the precipitation
falls on the Chilean side of the Andes and dry air descents on the Argentinean side of
the Andes, this causes high evaporation and a precipitation deficit of below 300 mm/a at
the lee side of the mountain range (Garreaud et al., 2013). Seasonal changes in
precipitation are due to shifts in the pressure belts. A northward shift of the Antarctic
Oscillation (AAO) is associated with increased storm activity and colder, wetter
conditions in the mid-latitudes, especially in winter, whereas its southward shift results in
slightly lower precipitation sums in spring and summer (Holz et al., 2017). Temperatures
are relatively cold due to the Antarctic-Circumpolar- and Humboldt-Current that transport
cold water masses from the Antarctic (Schneider et al., 2003). Mean annual
temperatures range from 12°C in the north-east to 3°C in the south of the study area due
to the latitudinal gradient. Furthermore, the altitude gradient and cold winds influence
local temperature patterns (Paruelo et al., 1998).

Interannual variability of temperature and precipitation in the study area are significantly
influenced by expressions of large-scale phenomena like the ElI Nifio Southern
Oscillation (ENSO), La Nifa events and the Antarctic Oscillation (AAQO) also knows as
Southern Annular Mode (SAM). Furthermore, (multi-) decadal variability is due to
expressions of the Pacific Decadal Oscillation (PDO) (Garreaud, 2009). The AAO is the
dominant climatic pattern influencing the extratropical regions of the Southern
Hemisphere (Garreaud, 2009; Veblen et al., 2011). As outlined above, its northward and
southward shifts significantly affect temperature and precipitation patterns in southern
South America (Holz et al., 2017). Anomalies involving strong poleward shifts of the AAO
have a significant impact on regional precipitation, leading to weakened westerlies and
to drought conditions in northern Patagonia (Holz et al., 2017). ENSO events are non-
cyclical reversals of the Walker circulation, and are normally associated with very high
precipitation amounts and higher (water) temperatures in tropical and subtropical South
America (Cai et al., 2020). But in the Southern Andes ENSO events create warm-dry
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conditions also leading to droughts as the westerlies are weakened especially in spring
and summer month. La Nifia events on the opposite create cool and rainy summers
(Garreaud, 2018). The PDO refers to long-term water surface temperature changes in
the Pacific that last over approximately 20 years and lead to (global) temperature rises.
A negative-to-positive shift in PDO leads to increased spring and summer temperatures
in the Southern Andes, while a positive-to-negative shift in PDO creates dry and cold
conditions (Srur et al., 2016).

Temperature increase in southern South America is mostly associated with the positive
phase (poleward) shift of the AAO. Since the latter half of the 20th century, an increased
positive trend in the AAO has been observed, attributed to increased greenhouse gas
concentrations and reduced stratospheric ozone in the atmosphere (Miller et al., 2006,
Veblen et al., 2011). Therefore, it is most likely that the positive trend, associated with
rising temperatures and regional drought conditions, persists in the 21st century (Fyfe
and Saenko, 2006; Veblen et al., 2011). Decreases in precipitation can also be attributed
to the AAO and ENSO, as described above. However, in addition to variations caused
by phase shifts of AAO, ENSO, and PDO, trends attributable to anthropogenic climate
change are evident for both, temperatures and precipitation. Since the 1950s,
temperatures in northern Patagonia have risen by +1°C and precipitation has decreased
by -5 % (Pessacg et al., 2020). Climate modelling using CMIP5 models in central Chile
(30°S to 40°S) indicates a temperature increase of +1.2°C and a decrease in
precipitation of -3 % by the end of the century in a mild scenario (RCP2.6). For the
RCP8.5 scenario, temperatures increase by +3.5°C and precipitation decreases up to
-30 % (Bozkurt et al., 2018). A regional CORDEX model calculates an increase of
+1.5°C for annual mean temperature and a =10 to =30 % decrease in precipitation for
northern Patagonia for the same period (Pessacg et al., 2020). Chile is currently
experiencing its worst droughts since records (Garreaud et al., 2020), with the most
severe drought occurring in 2016 (Garreaud et al., 2018). For southern Chile, Bambach
et al. (2022) find warming trends in the Andes, as well as drying trends in the austral
summer and winter, and even emphasise that the Andean tundra and alpine climates
(classification according to Képpen and Geiger) will decline dramatically by the end of
the century (Bambach et al., 2022). Climate change in the Southern Andes has a strong
influence on snowfall and snow persistence, glacier thickness (Masiokas et al., 2020),
water availability (Masiokas et al., 2020; Pessacg et al., 2020), droughts (Garreaud et
al., 2017; Garreaud et al., 2020), and fire frequency (Holz et al., 2017; Mundo et al.,
2017). Ultimately, ecosystems will be forced to adapt to new climatic conditions, resulting
in habitat shifts and species extinction, particularly in vulnerable high mountain regions.
The effects of climate change also have a strong impact on the study species N. pumilio
at the alpine treeline.
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Figure 2: Study area in southern South America showing a) a climate classification map according
to Képpen and Geiger, with climate types ranging from BWk (Arid, desert, cold), BSk (Arid,
steppe, cold), Csa (Temperate, dry summer, hot summer), Csb (Temperate, dry summer, warm
summer), Csc (Temperate, dry summer, cold summer), Cfa (Temperate, no dry season, hot
summer), Cfb (Temperate, no dry season, warm summer), Cfc (Temperate, no dry season, cold
summer), Dsb (Cold, dry summer, warm summer), Dsc (Cold, dry summer, cold summer), Dfc
(Cold, no dry season, cold summer), ET (Polar, tundra) to EF (Polar, frost) (data from Beck et al.,
2023) and b) the steep precipitation gradient from the humid west to the arid east (Bioclim
variable 12, annual precipitation sums, Karger et al., 2017).
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3.2 Treeline Species Nothofagus pumilio

Nothofagus pumilio (Poepp et Endl.) Krasser (southern or lenga beech) belongs to the
Nothofagaceae family and is one of ten Nothofagus species on the South American
continent (Amigo and Rodriguez-Guitian, 2011). The genus Nothofagus developed on
Gondwana, with the first pollen evidence dating back to the late Cretaceous period (83
to 70 million years BP) (Manos, 1997). There are 36 Nothofagus species worldwide,
which have diversified with the continental drift of Gondwana to the present-day
continents in disjunct areas with a high degree of endemism in South America, New
Zealand, Australia, and Tasmania (Manos, 1997; Premoli et al., 2012). The South
American species survived the ice ages by migrating to more northern areas or to alpine
refuges in the Andes (Soliani et al., 2015; Premoli et al., 2024). The ten recent South
American Nothofagus species inhabit climates ranging from mediterranean to temperate
to cold-temperate conditions (Amigo and Rodriguez-Guitian, 2011) and represent 80 %
of the Patagonian-Andean forests (Veblen et al., 1996; Varela et al., 2010). Most species
are deciduous (seven species), and three species are evergreen. The orophilic species
N. pumilio and N. antartica, which are particularly adapted to cold conditions, are
deciduous (Amigo and Rodriguez-Guitian, 2011).

N. pumilio is the most widespread endemic species in the southern Chilean and
Argentinean Andes and forms pure forest stands at the alpine treeline from 35°S to 56°S.
The species is the dominant subalpine tree species and bioindicator for the oro-
temperate belt following the southern Andean Cordillera over a latitudinal range of
2000 km (Amigo and Rodriguez-Guitian, 2011). Along the latitudinal temperature
gradient, the distribution area ranges from very high elevation stands in the north at
2000 m to forest stands at sea level at Tierra del Fuego (Lara et al., 2005). The eastern
and western distribution area is defined by precipitation levels. The species does not
occur in low-lying areas in the hyper-humid west, where the species N. betuloides
becomes dominant (Young and Ledn, 2007; Amigo and Rodriguez-Guitian, 2011). In the
east, low precipitation levels define the distribution limit towards the Patagonian steppe.
The species follows the forest-steppe ecotone and often forms two treelines, a common
upper and a lower, xeric treeline towards the arid region (Hertel et al. 2008). N. pumilio
mostly occurs in pure forest stands especially south of 39°S, but it also forms mixed
stands in the north with Australocedrus chilensis and Araucaria araucana (Hildebrand-
Vogel et al., 1990). In the north-west and further south, adjacent or overlapping habitats
with other deciduous and evergreen Nothofagus species are possible. Between 35°S
and 40°S, the deciduous species N. alpina occurs from the coast up to a maximum
altitude of 1200 m (Pollmann, 2001), as well as deciduous N. obliqua in most oceanic
areas (Amigo and Rodriguez-Guitian, 2011). In the (hyper-) humid west, evergreen
N. dombeyi and N. nitida accompanies N. pumilio up to 47°S and N. betuloides all the
way south to Tierra del Fuego (Amigo and Rodriguez-Guitian, 2011). The deciduous
species N. antarctica accompanies N. pumilio across almost its entire distribution range
and occupies niches at high elevations in cold depressions, in locations with poor soil
conditions, and towards the arid east (Veblen et al., 1996; Amigo and Rodriguez-Guitian,
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2011). While the other deciduous species are morphologically and ecologically very
different from N. pumilio, N. antarctica is very similar, and even hybrids are possible
(Soliani et al., 2015).

N. pumilio is characterised by its dark green, elliptical, and notched broad leaves which
turn orange-red in autumn. Morphologic characteristics can be seen in Figure 3. The tree
species has high phenotypic plasticity. While erect trees can reach a height of up to 35 m
under optimal growing conditions, shrub-like krummholz growth occurs at the treeline
(Stecconi et al., 2010). The species is monoecious, anemophilic and not self-pollinating,
pollen and fruit are spread by wind. Every six to eight years, there are so-called mast
fruiting years, during which a particularly large number of fruits are produced (Cuevas,
2000). Seedling stage is the most critical life stage. Seedlings germinate in biological
substrate mostly in the protecting forest stand climate, which is an important limiting
factor for the advance of the treeline (Batllori et al., 2009; Blrzle et al., 2018). As orophilic
species, N. pumilio is particularly adapted to the harsh environmental conditions in high
mountain regions. At treeline sites under extreme conditions, mean growing season soil
temperatures correspond to the 6.6°C isotherm (Fajardo and Piper, 2014). N. pumilio
can tolerate cold air and soil temperatures and is well adapted to a short growing season
(Premoli et al., 2007). The species protects itself from the cold by concentrating
carbohydrates in the xylem and thus lowering the freezing point (Fajardo and Piper,
2014). An effective adaptation to the risk of frost drought is deciduousness, as this
minimises transpiration during the critical spring months when water uptake is limited
(Kérner, 2021). Due to advective precipitation, lee effects, and high radiation in
combination with high evapotranspiration, water availability is limited (Bach and Price,
2013). The species is adapted to medium to low annual precipitation levels of 400 to
500 mm, most of which falls as snow (Veblen et al., 1996). This also explains the species
distribution to the arid east (Hertel et al., 2008). Leaf size and shoot growth is significantly
reduced in high elevation individuals in comparison to low elevation trees. This might be
an adaptation to high wind speed and high radiation (Premoli et al., 2007). N. pumilio
occurs on Andisols formed from volcanic ash (Hildebrand-Vogel et al., 1990). These soils
are nutrient-rich, but the high content of phosphorus and potassium is largely unavailable
to plants, leading to the conservation of organic matter, further slowing down the already
delayed soil formation in high mountain regions (Hildebrand-Vogel et al., 1990, Premoli
et al., 2007). Therefore, N. pumilio grows and germinates preferentially in areas with an
herb layer of for example Empetrum rubrum stands, that provide nutrients, especially
nitrogen, through organic matter (Pissolito, 2016).
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Figure 3: Morphological and ecological features of Nothofagus pumilio. a) Autumn-coloured tree
crown of a mature individual (used with permission by Instagram user amb6767, 2018), b) abrupt
treeline seen from the Paso Garibaldi scenic viewpoint at Lago Escondido (used with permission
by Instagram user sebaingles, 2022), c) green leaves in detail (De Langhe, 2015), d) wind-
crooked individual above the treeline in krummholz growth form (used with permission by
Instagram user amb6767, 2018).

3.3 Changes at the Treeline of Nothofagus pumilio

The treeline formed by N. pumilio is abrupt. Abrupt treelines are the result of
unsuccessful seedling establishment and dieback processes outside the protecting
forest stand (Harsch and Bader, 2011; Bader et al., 2021), which can be attributed to
very cold temperatures (Fajado and Pieper, 2014), a prolonged snow cover (Holtmeier
and Broll, 2005), strong, cold winds, and wind shearing (Rebertus et al., 1997).
Furthermore, steep topography, talus slope/blockfields, and shallow soil depth prevent
the establishment of seedlings above the treeline (Hadley et al., 2013). Seedlings
preferably establish in developed soils covered with an herb layer (Pissolito, 2016; Srur
et al., 2018). Figure 3d visualises the harsh conditions above the abrupt treeline. A wind-
crooked N. pumilio individual has established in the lee of larger rocks, where wind speed
is reduced and substrate and soil can accumulate. At the same time, it shows the barren
ground and inhospitable conditions at the treeline at Torres del Paine National Park. The
treeline elevation ranges from 2000 m to 1600 m in the northernmost distribution area of
N. pumilio to 400 m at Tiera Del Fuego (Cuevas, 2000; Lara et al., 2005). Therefore, the
treeline elevation decreases almost constantly by 60 m per 1° latitudinal dispersion (Lara
et al., 2005). Treeline elevation also varies longitudinal due to the precipitation gradient.

At the humid western site of the Southern Andes, the treeline position is lower than at
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dry eastern slopes (Daniels and Veblen, 2003). But at wetter sites, tree density of newly
established trees is higher than at mesic and dry sites (Srur et al., 2016).

Generally, treeline elevation of abrupt treelines is lower than expected (Harsch and
Bader, 2011) and unlike diffuse treelines they are less likely to shift to higher elevations
(Harsch et al., 2009). Nevertheless, last decades research found, that N. pumilio is highly
sensitive to climate variations, which are often associated with phase shifts in AAO,
ENSO, and PDO, as reflected in its radial growth patterns and seedling establishment
above the treeline (Lara et al., 2001; Aravena et al., 2002; Daniels and Veblen, 2004;
Masiokas and Villalba, 2004; Alvarez et al., 2015; Srur et al., 2016, 2018; Brand et al.,
2022; Reiter et al., 2024). Generally, higher temperatures can lead to increased radial
growth of trees and the establishment of seedlings above the current treeline elevation
(e.g., Srur et al., 2018; Reiter et al., 2024). However, these effects are highly dependent
on the precipitation regime (Brand et al., 2022; Srur et al., 2020). There are differences
between northern and southern Patagonia, as northern Patagonia is more frequently
affected by drought events (Rodriguez-Caton et al., 2016; Garreaud et al., 2020).
However, the most pronounced contrasts are found between regions with differing
precipitation regimes along the west-east gradient (Brand et al., 2022). Radial growth in
humid and mesic locations is directly influenced by temperatures (Brand et al., 2022). In
these regions, higher temperatures lead to increased radial growth. Higher spring and
summer temperatures, in particular, have a positive effect on growth, as snow melt
begins earlier thus extending the growing season. In dry locations, however, water
availability plays a major role. Here, growth decreases due to increased
evapotranspiration and associated drought stress (Brand et al., 2022). Prolonged dry
conditions not only reduce growth but can also lead to increased mortality (Rodriguez-
Caton et al., 2016). Reiter et al. (2024) even emphasise that treeline limitation changes
from being primarily cold-limited to drought-limited.

The situation is similar with regard to the establishment of seedlings above the treeline.
Higher temperatures lead to an increased occurrence of seedlings in humid, mesic, and
dry locations. However, the density of seedlings is lower in mesic and dry locations (Srur
et al., 2016) because sufficient water availability promotes the survival of seedlings (Srur
et al., 2020). Studies show that the establishment of seedlings is primarily related to
warmer spring and early summer temperatures, and the associated earlier snowmelt
(Srur et al., 2016). Abrupt changes in establishment can be attributed to phases of the
PDO. A negative-to-positive shift in the 1970s led to warmer spring and summer
temperatures and thus to an abrupt increase in establishment, while the positive-to-
negative shift from the 1990s onwards led to lower temperatures and a decrease in
establishment above the treeline (Srur et al., 2016). A positive phase of the AAO leads
to higher temperatures in the entire study area and is therefore also positively correlated
with seedling establishment (Srur et al., 2018). Although drought poses a challenge for
seedlings, it does not affect seeds or seed production (Aschero et al., 2022). Seed
viability and fruit dispersal are essential prerequisites for seedling emergence and
establishment above the treeline. While seed production, fruit dispersal, seed viability,
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and seedling establishment all decline with increasing elevation (Cuevas, 2000), both
the quality and quantity of seeds tend to improve under higher temperatures, an effect
attributed to ENSO and the AAO (Rodriguez-Souilla et al., 2024a; Rodriguez-Souilla et
al., 2024b).

Even though changes in AAO, ENSO, and PDO cause variations in radial growth, seed
quantity and quality, as well as seedling establishment, long-term trends over 100 years
can be observed (Brand et al., 2022). With an average temperature increase of 0.54 °C
over the last 100 years, tree growth has increased in mesic and humid locations, while it
has decreased in dry locations. This trend will further continue in the 21st century (Brand
et al.,, 2022). The general trend for seedling establishment indicates that warm
temperatures favour the establishment of new individuals above the treeline, while
abundant precipitation support their survival (Srur et al., 2020). Despite the abrupt nature
of the Southern Andes’ treeline, climate change could generally cause it to shift to higher
elevations. However, it is important to note that various abiotic and biotic factors might
slow this process. Observations suggest that treeline advance is limited to a range of
5to 10m from closed stands, as the seeds of N. pumilio are relatively heavy and
dispersed by wind only over short distances (Srur et al., 2018). In addition, low soil depth
and a lack of herbaceous vegetation can further slow down the process (Pissolito, 2016).
Studying the conditions at the treeline is therefore of particular relevance for
understanding and predicting potential changes under climate change.

3.4 Study Objectives and Research Questions

N. pumilio is sensitive to climate variations, making it an especially interesting research
object to investigate changes at the alpine treeline due to climate change. Local studies
investigating changes to N. pumilio are mostly restricted to local experimental or
dendrochronological studies. Large-scale modelling studies investigating the entire
current and future distribution of the species are currently lacking, which can be attributed
to a lack of species occurrence data covering the full range of the species.

As described in the previous chapters, species data are generally scarce in areas that
are difficult to access or even inaccessible, such as high mountain regions, and may be
spatially biased towards urban or tourist areas. Remote sensing, along with innovative
approaches such as species occurrence data sampling from social media, holds great
potential for addressing these issues. Accordingly, the first main objective of this thesis
was to introduce a novel Instagram ground truthing approach (IGTA), which combined
the strengths of both, social media and remote sensing data. Using Instagram, one of
the most widely used social media platforms worldwide, offered a new possibility of
creating less-biased point occurrences of N. pumilio. These were subsequently used to
validate the large-scale raster dataset of the species (ground truthing), which is generally
free from the typical spatial biases found in Citizen Science and social media-based
datasets.
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This led to two main research questions:

1.

Can Instagram be used to obtain occurrence data for Nothofagus pumilio, and
is the spatial bias in the resulting IGTA dataset reduced compared to that in
commonly used GBIF data?

Can supervised classification be used to generate raster occurrence data for
Nothofagus pumilio across its entire range?

The IGTA resulted in two species datasets: a binary point dataset and a continuous
raster dataset, both of which can be used for modelling. The point dataset enabled a
typical presence—absence approach, while the continuous raster dataset allowed for a
more complex modelling strategy. To enable direct comparison between both
approaches, the Random Forest algorithm, suitable for both data types, was applied to
model the potential current and future distribution of the treeline species. This not only
addressed the existing research gap concerning treeline modelling studies in the
Southern Andes but also allowed for a comparison of two modelling approaches and an
evaluation of the potential benefits of using continuous raster data over binary point data.
This raised three further research questions to be answered:

3.
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How can the ecological niche of Nothofagus pumilio be characterised under
current climatic conditions, and what is the species’ potential geographic
distribution?

What potential range shifts are projected under future climate change
scenarios?

What are the differences between the modelling approaches used in this
study, and what are their respective advantages and disadvantages?



Chapter 4: Methodological Overview

4. Improved Ecological Niche Modelling of
Nothofagus pumilio — Methodological Overview

ENM can provide valuable insights of climatic conditions shaping treeline patterns in the
Southern Andes. The PhD project “Improved Ecological Niche Modelling of
Nothofagus pumilio in the Southern Andes” aims at modelling the current and future
potential distribution of the study species N. pumilio. Limitations in modelling were
discussed and addressed with innovative methods with a focus on creating two species
occurrence datasets developed by an Instagram ground truthing approach and applying
them in an ENM workflow. In Publication |, the IGTA was developed, and the resulting
data was made publicly available on the open-access data provider of University of
Hamburg (Publication Il). Two species datasets resulted from the IGTA, a point dataset
and a raster dataset, both of which can be used for modelling the ecological niche of the
species. The point dataset enabled a conventional binary presence—absence model
approach with randomly created pseudo-absences, but the more complex and
continuous raster dataset enabled a new modelling opportunity. The bioclimatic variables
from CHELSA (Bioclim, version 2.1) were used as predictors. To download and
preprocess these variables, the R package “ClimDatDownloadR” was employed, which
detailed description is Publication Ill. Both models were subsequently tested, compared,
and used to analyse the ecological niche, and to predict the potential current and future
distribution of the species, as presented in Publication IV.

4.1 The Instagram Ground Truthing Approach

The availability of unbiased species occurrence data is a major challenge in the field of
ENM (Chauvier et al., 2021). Comprehensive field studies that could create unbiased
data are costly, time-consuming and areas like high mountain regions are difficult or even
impossible to access. Therefore, data is mostly used from Open-Source databases,
which may contain errors of unknown magnitude, as described before (Beck et al., 2014;
Meyer et al., 2016). A promising approach to mitigate spatial bias is the use of remote
sensing data. Spatial data from remote sensing methods can be used to create large-
scale and areal data and record occurrences in inaccessible areas. But there is still a
need of a ground truthing process, the validation that a species actually occurs in the
areas investigated with remote sensing (Nagai et al., 2020). In Publication |, the
innovative IGTA was developed, in which sampling and spatial bias were reduced in two
ways: first, by creating occurrence points from a worldwide used social media platform
in a stratified approach, and second, by using this dataset for ground truthing of remote
sensing data created using supervised classification.

Instagram is one of the largest social media platforms worldwide, with more than 2 billion
users and over 60 million daily uploads (WirtschaftsWoche, 2014; Statista, 2025). On
Instagram, only pictures and short videos (Reels) can be posted. The user’s content is
listed chronologically on their profiles. A search bar allows users to search for profiles,
locations and hashtags. Hashtags and location tags can link posts to specific subjects or
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places (e.g., #nothofaguspumilio or #torresdelpaine) and can thus be found and
analysed in a large number. Figure 4a shows the Instagram interface with the profile
“nothofagus_pumilio_research” (www.instagram.com/nothofagus_pumilio_research/),
which was created specifically for this study. The typical chronologically sorted post view
is visible on the right, along with the search bar on the left side. Figure 4b illustrates the
results of a search process for the hashtag #nothofaguspumilio within the Instagram user
interface. By searching for different hashtags and location tags, it is not only possible to
find photos taken by experts linking the species name, but also photos taken on hikes,
while skiing, on a tourist trip, or on everyday photos, where the occurrence of the species
was documented unintentionally. This increases the number of suitable posts even more.
With a strict set of criteria (Table 2), posts were selected on which the species and the
location where the photo was taken were clearly identifiable. For manual georeferencing
of the occurrences with SAGA GIS (Conrad et al., 2015), landscape elements visible in
the photo had to be recognisable in satellite images. Such landscape elements were, for
example lakes, rivers, typical mountain ranges and peaks, glaciers, buildings, and
infrastructure. Due to the ecology of the species, occurrence points were not only set at
the sampling location but also in the visible background of the photo. If the treeline was
clearly autumn coloured and abrupt, occurrence points were set as far as the
neighbouring valley. The distance between background points was set to 1km,
corresponding to the target resolution used in the modelling. Figure 5 illustrates the post
selection and point transfer into a map. The high quantity of posts and the background
points have the potential to effectively reduce spatial bias. To quantify this, a bias
analysis was conducted using the R package “sampbias” (Zizka et al., 2021). By
incorporating geodata representing urban features, such as shapefiles of cities, roads,
rivers, and lakes, the relationship between species occurrences and their distance to
urban areas was calculated. This analysis produced both quantitative results about the
estimated sampling rate and a visual bias map.
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Figure 4: Screenshot of a) the Instagram profile “nothofagus_pumilio_research”, which was
generated for the Instagram ground truthing approach. The profile’s photo contributions are listed
chronologically. The search bar on the left is used for specific searches. The screenshot in b)
shows the search results for posts tagged with #nothofaguspumilio. Here the first of a total of
1,017 posts are displayed (last accessed 28.10.2025).
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Figure 5: a) Selected post at Laguna Capri in Argentina with the species visible in front (used with
permission by Instagram user fernando.v.fotografia, 2022). The abrupt treeline in the background,
the lake and Mount Fitz Roy are traceable landscape elements marked in red in b). The post
resulted in 4 Instagram ground truthing points. One at the photo sampling position and three

background points (marked in blue) at the abrupt and autumn-coloured treeline.
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Table 2: Criteria for selecting Instagram posts to generate occurrence data for
Nothofagus pumilio. All criteria must be met for an image to be included in the Instagram ground
truthing analysis.

Criterion Element or Example

Typical characteristics morphological characteristics (leaves, branches, habitus)
of Nothofagus pumilio  autumn colouring

abrupt treeline

mono-species forest

Concrete location geographical tag
information location hashtag
location description in the caption

Recognisable glaciers
landscape elements mountain peaks or ranges
rivers, lakes
roads
tourist points, cities, villages
coastlines
Fitting hashtags hashtags describing the location or the species
Picture criteria Avoid persons in focus
no photo montages
no emojis

no extreme (colour) falsifications

The IGTA points were subsequently used for ground truthing of large-scale remote
sensing data. Raster occurrence data of N. pumilio were created using supervised
classification of Sentinel-2 Level 2A imagery at a spatial resolution of 20 m. Summer
(month December and January), autumn (month April), and winter (month August)
Sentinel-2 data from 2019 to 2022 were downloaded using the R package “sen2R”
(version 1.5.1, Ranghetti et al., 2020). Sentinel-2 scenes covered the entire distribution
range of N. pumilio, with most scenes having a cloud cover of 15 % or less. A maximum
cloud cover threshold of 50 % was accepted. To prevent misclassification during the
classification process, the Scene Classification Layer (SCL) (Figure 6b), a standard
product of the Sentinel-2 Level 2A data, was used to remove all raster cells, that were
not classified as vegetation. The supervised classification was then trained on the
Sentinel-2 data with training areas and three classes (1 = deciduous vegetation, 2 =
evergreen vegetation and 3 = low vegetation/grassland). Autumn data made autumn-
coloured forest at the treeline visible, while winter scenes highlighted evergreen
vegetation. Two separate classifications were conducted using commonly applied
algorithms and evaluated based on Kappa values (Richards, 2022). The supervised
classification was performed using SAGA GIS via the “RSAGA” package (version 1.4.0,
Brenning et al., 2022) in R (version 4.4.1, R Core Team, 2024). Summer and autumn
scene classifications using the RF algorithm achieved the highest performance and
outperformed those obtained with the Maximum Likelihood, Minimum Distance, and

Spectral Angle algorithms. The summer and autumn results for deciduous vegetation
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were merged into one layer at the end (Figure 6d). With this approach also other
deciduous species except N. pumilio were recorded. Therefore, an altitude correction
was applied to ensure that only high-elevation deciduous forest was classified as
N. pumilio. The thresholds for altitude correction in the northern and central study areas
(800 m from 35°S to 40°S; 500 m from 40°S to 45°S; 250 m from 45° to 50°S) were
determined on the basis of literature. The raster data spans over 2000 km latitudinal
extent from 33.49°S to 56.27°S and captures the whole distribution range of N. pumilio,
including inaccessible areas. Data gaps resulted from missing Sentinel-2 data or due to
cloud or shadow coverage. Finally, ground truthing was conducted by verifying whether
the IGTA points coincided with the raster occurrence data. As a result, two valid species
occurrence datasets were generated through the IGTA approach: a point dataset and a
raster dataset with reduced spatial and sampling bias.

Figure 6: a) Sentinel-2 autumn scene at the Perito Moreno Glacier, Argentina, b) Scene
Classification Layer of the Sentinel-2 scene: green area represents vegetation, c) the masked
Sentinel-2 scene and, d) classification result with three classes (red = Nothofagus pumilio, dark
green = evergreen vegetation, light green = low vegetation/grassland).
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4.2 Downloading and Preprocessing Bioclimatic Predictors

A correlative ENM requires spatial data about the species occurrence and environmental
predictor variables (Sillero et al., 2021). Most commonly used climate datasets for
ecological applications are the WorldClim (Hijmans et al., 2005; Fick and Hijmans, 2017)
and CHELSA datasets (Karger et al., 2017; Karger et al., 2021). Both contain climate
data on a daily, monthly and annual basis. Furthermore, they offer bioclimatic variables,
which are temperature and precipitation variables calculated for quarters and annual
means, that allow for the interpretation of seasonality. CHELSA Bioclim data were
chosen, because they tend to perform better in high mountain ecosystems than the
WorldClim dataset (Soria-Auza et al., 2010; Bobrowski et al., 2021a). The CHELSA
Bioclim data version 2.1 is a global dataset consisting of 19 variables in a resolution of
30 arc sec ~ 1 km (see Table 3). The temperature and precipitation values are averaged
from climate records for the period 1981 to 2010. To download and preprocess the data,
the R package “ClimDatDownloadR” (version 0.1.7.6, Jentsch, 2025) was used. The
package, described in detail in Publication Ill, enables the download of data, clips it to a
predefined spatial extent, and optionally converts the files into ESRI ASCII format. The
function below illustrates how the data were downloaded and pre-processed. All
available functions of the package are published on GitHub (GitHub Inc., 2025).

# CHELSA Bioclim - Download - - ———————————"———————— - —————— —— —— —— —— ———

library(ClimDatDownloadR)
options (timeout= ) # cache time to 1 hour

Chelsa.Clim.download (
save.location = pasteO (WD, "data/"),

parameter = c("bio"),
bio.var = c¢(1:19), # all 19 Bioclim variables will be downloaded
version.var = "2.1", # here the newer version is chosen

clipping = TRUE, # TRUE for clipping with shapefile
clip.shapefile = paste0 (WD, "BioClimArealLonLat.shp"),
convert.files.to.asc = FALSE, # tiff data will be downloaded
stacking.data = FALSE,

combine.raw.zip = FALSE,

delete.raw.data = TRUE,

save.bib.file = FALSE
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The 19 Bioclim variables are highly multicollinear and even though RF can handle
multicollinearity well, it is recommended to use a subset of low or uncorrelated predictors
for modelling. Only the variables calculated for quarters and seasonality variables were
selected, since these allow for a better ecological understanding of the bioclimatic
conditions at the treeline than variables for individual months or annual averages, as
conclusions can be drawn about seasonality (Bobrowski et al., 2017). Furthermore, the
R package “VSURF” (version 1.2.0, Genuer et al., 2015) a tool to identify which variables
are important for interpretation and prediction, removed variables that were redundant
from the variable subset. For modelling, eight Bioclim variables were used (see variables
marked with an X in Table 3). The CHELSA version 2.1 dataset also contains data on
future CMIP6 scenarios based on Representative Concentration Pathways (RCP)
(Karger et al., 2021). The SSP126 (RCP2.6), SSP370 (RCP7), and SSP585 (RCP8.5)
scenarios for the years 2041 to 2070 and 2071 to 2100 from the MPIESM1-2HR model
were used for modelling the potential future distribution of N. pumilio.

Table 3: CHELSA Bioclim variables calculated for quarters and seasonality variables used in the
analysis (X). The variables bio 9 and bio 16 have been excluded by the VSURF analysis.

Name Description Used (X)

bio 1 mean annual air temperature [°C]

bio 2 mean diurnal air temperature range [°C]

bio 3 isothermality [°C]

bio 4 temperature seasonality [°C/100] ' X
bio 5 mean daily maximum air temperature of the warmest month [°C]

bio 6 mean daily minimum air temperature of the coldest month [°C]

bio 7 annual range of air temperature [°C]

bio 8 mean daily mean air temperatures of the wettest quarter [°C] X
bio 9 mean daily mean air temperatures of the driest quarter [°C] excluded
bio 10  mean daily mean air temperatures of the warmest quarter [°C] X
bio 11 mean daily mean air temperatures of the coldest quarter [°C] X

bio 12  annual precipitation amount [kg m-?]
bio 13  precipitation amount of the wettest month[kg m-2]
bio 14  precipitation amount of the driest month [kg m-2]

bio 15  precipitation seasonality [kg m2] 2 X
bio 16  mean monthly precipitation amount of the wettest quarter [kg m-2] excluded
bio 17  mean monthly precipitation amount of the driest quarter [kg m-2] X
bio 18  mean monthly precipitation amount of the warmest quarter [kg m-2] X
bio 19  mean monthly precipitation amount of the coldest quarter [kg m-2] X

" standard deviation of the monthly mean temperatures; 2 the coefficient of variation is the
standard deviation of the monthly precipitation estimates expressed as a percentage of the
mean of those estimates.
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4.3 Model Algorithm and Model Procedure

The modelling of the potential current and future distribution is facilitated by the
integration of IGTA occurrence data and bioclimatic predictors in Publication IV. The
nature of the two species input datasets enables two model approaches: (1) a typical
binary presence—absence model and (2) a continuous (abundance) model. As described
before, numerous regression and machine learning approaches have been applied to
ENM (Li and Wang, 2013). Here, the Random Forest algorithm was used (Breiman,
2001a), as it is capable of handling both data types, effectively managing
multicollinearity, offering high predictive performance, and remaining largely
interpretable (Breiman, 2001a, 2001b). Despite widespread criticism that machine
learning algorithms are black boxes with limited interpretability (Li and Wang, 2013,
Breiman, 2001b), RF results can be interpreted with variable importance analysis, partial
dependence plots (PDP), and Shapley Additive Explanations (SHAP) analysis in order
to draw conclusions about ecological site requirements of the study species.

The first steps in modelling involve the preparation of input data. For the binary
presence—absence approach using RF classification, it was first ensured that only one
presence point remained per 1 x 1 km Bioclim raster cell (spatial thinning). This filtering
step removed 239 duplicate points, resulting in a final set of 999 presence points.
Subsequently, pseudo-absence points were generated. This process involved creating
an alpha hull with a 1 km buffer around the presence data to serve as a mask. To avoid
placing absence points within presence raster cells, an additional 5km buffer was
applied around all presence points. Within this masked area, 2,000 pseudo-absence
points were randomly generated. Main literature recommends a 1:1 ratio, or a prevalence
of 0.5, for RF models, but discuss at the same time that a larger number of pseudo-
absence points may be necessary when modelling across large spatial extents (Barbet-
Massin et al., 2012). Since a 1:1 ratio resulted in an overprediction of presence, a 1:2
ratio was applied. For the continuous approach (RF regression), the 20 m resolution
raster data were aggregated to the target resolution of 30 arc sec ~ 1 km by calculating
the percentage of area covered by N. pumilio. This created a species variable with cover
values for N. pumilio occurrence, ranging from close to 0 % to a maximum of 99.96 %.

Spatial data are often spatially autocorrelated (Legendre, 1993, Dormann et al., 2007),
meaning that environmental conditions at nearby occurrence locations are more similar
to each other than to those at more distant locations. This spatial dependence can
significantly influence model results and lead to overestimation of model performance if
not properly accounted for. To minimise autocorrelation effects, a spatial-cross validation
approach was used (Roberts et al., 2016). Specifically, 5-fold spatial cross-validation
was conducted using the R package “blockCV” (version 3.1.5, Valavi et al., 2019). For
5-fold cross-validation, the data is initially partitioned into spatial blocks of a predefined
size, and each block is randomly assigned to one of five folds (k = 5). The model is then
trained on four folds (k — 1) and evaluated on the remaining fold. This procedure is
repeated five times, ensuring that each fold serves as both a training and a testing set.
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With the function “cv_spatial_autocor” the distance of autocorrelation was first estimated.
As a result, 50 km hexagonal spatial blocks were created (see Figure A1 in the appendix
section). During the spatial cross-validation process, not only was model performance
evaluated across the splits, but also the optimal hyperparameters for modelling were
identified. Different numbers of variables considered at each split (mtry: 2, 3, 4) and
varying numbers of decision trees (ntree: 100, 300, 500) were tested. This approach
resulted in the calculation of 45 models (9 hyperparameter combinations and 5 folds).
The best model was chosen by highest average AUC for the RF classification model and
the highest R? for the RF regression model. For both models, the combination of
hyperparameters mtry =2 and ntree = 500 yielded best performance. The optimal
hyperparameter setting was then applied to the entire dataset to model the current and
future distribution of N. pumilio.

For RF models, variable importance, PDP, and SHAP analysis can be used to interpret
the model results. There are two types of variable importance: accuracy importance,
which indicates most influential predictors for model accuracy, and Gini importance,
which indicates the most frequently used variables for decision at nodes (Wei et al.,
2015). Both were used for interpretation. PDP allow for the interpretation of the influence
of individual predictors on the model outcome while all other predictors stay constant
(Friedman, 2001). They visualise this relationship by plotting the values of the predictor
variable on the x-axis against the corresponding values of the target variable on the y-
axis. For PDP plotting, the function “partialPlot” from the “randomForest” R package
(version 4.7-1.2, Breiman et al., 2002) was used. While PDP only allow for the
interpretation of single predictors, SHAP summary or bee swarm plots, an analysis that
originates from cooperative game theory, provide a comprehensive overview of the
contribution of each predictor to the model outcome (Li et al., 2024). Here the “fastshap”
R package (version 0.1.1, Greenwell, 2024) was used. SHAP summary plots display
SHAP values on the x-axis, indicating a positive or negative influence of each predictor
on the model output, while the predictor variables are listed on the y-axis. These
analyses enable an interpretation of the ecological niche of N. pumilio on the basis of
bioclimatic variables.

Spatial predictions under current and future climate conditions were conducted using R
and visualised with ArcGIS Pro (version 2.7.0, ESRI, 2020). To quantify and evaluate
the modelled treeline elevation, a Digital Surface Model (DSM) was used to extract the
predicted elevation of the treeline and compare it with on-site treeline measurements
provided by Lara et al. (2005) across the entire study area. To identify the highest raster
cell representing treeline elevation, a threshold needed to be defined. Based on a
commonly accepted definition of the treeline, where canopy cover declines to
approximately 30 %, marking the upper boundary of closed forest (Holtmeier, 2009), a
threshold of 30 % cover (or 0.3 predicted probability) was applied. Using the ALOS
Global DSM (30 m resolution, JAXA EORC, 2025), the elevation of the highest raster cell
based on the defined threshold was recorded at the 13 treeline locations documented by
Lara et al. (2005).
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4.4 Overview of Original Publications
Publication |

Werner, M., Weidinger, J., Béhner, J., Schickhoff, U., and Bobrowski, M. (2024).
Instagram data for validating Nothofagus pumilio distribution mapping in the Southern
Andes: A novel ground truthing approach. Frontiers of Biogeography, 17, Article
€140606. https://doi.org/10.21425/fob.17.140606

Abstract:

The availability of valid, non-biased species occurrence data has always been a major
challenge for biodiversity research and modelling studies. Data from open-source
databases or remote sensing are promising approaches to increase the availability of
species occurrence data. However, these data may contain spatial, temporal, and
taxonomic biases or require ground truthing. In recent years, social media has received
attention for its contribution to species occurrence data sampling and ground truthing
approaches. The wide reach of social media platforms allows for rapid and large-scale
analyses. Here we introduce a novel Instagram ground truthing approach to validate the
occurrence mapping of Nothofagus pumilio across its entire distribution range. The
treeline species of the southern Andes has been extensively studied in small-scale
studies, but large-scale modelling approaches are largely missing due to limited
accessibility to treeline sites resulting in a lack of occurrence data. The content posted
on the social media platform Instagram consists of images and videos in which the
species N. pumilio and its location can be identified. By searching for suitable posts using
hashtags and location tags, we created 1238 Instagram ground truthing points. We
compared the performance of our dataset with open-source data from the Global
Biodiversity Information Facility (GBIF) through visual, quantitative, and bias analyses,
acknowledging that both social media-based and Citizen Science data are subject to
sampling and spatial biases due to collection in human-accessible areas. The Instagram
ground truthing points were subsequently used to validate remote sensing occurrence
data, generated using Sentinel-2 level 2A data and supervised classification. The
combined approach — Instagram ground truthing and remote sensing — allows for the
collection of occurrence data over the entire latitudinal range of N. pumilio, covering
approximately 2000 km.

Author Contributions:

Conceptualization, M.W., J.W. J.B., U.S. and M.B.; methodology, M.W., JW. and M.B.;
validation, M.\W., JW. and M.B.; formal analysis, M.W.; investigation, M.W.; data
curation, M.W.; writing—original draft preparation, M.W.; writing—review and editing,
MW., JW., JB. US. and M.B.; visualisation, M.W.; supervision, J.B. and U.S. All
authors have read and agreed to the published version of the manuscript.
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Publication Il

Werner, M., Weidinger, J., Bohner, J., Schickhoff, U., and Bobrowski, M. (2024).
Instagram ground truthing approach — Spatial occurrence data of Nothofagus pumilio in
the Southern Andes [Data set]. https://doi.org/10.25592/UHHFDM.16239

Abstract:

Valid and unbiased species occurrence data are scarce, making their availability a
challenge for ecological modelling approaches. Remote sensing is a promising approach
for increasing the availability of species occurrence data, but it requires ground truthing
for validation. Recently, Citizen Science and social media have contributed to improving
occurrence data sampling and ground truthing methods. This dataset contains remote
sensing occurrence data of the tree species Nothofagus pumilio, which was validated by
ground truthing points created using a novel Instagram ground truthing approach.

Author Contributions:

This publication is a dataset publication corresponding to Publication | (see above).

Publication Il

Jentsch, H., Weidinger, J., Werner, M., and Bobrowski, M. (2025). ClimDatDownloadR:
Accessing Climate Data Repositories for Modelling [Manuscript submitted for
publication].

Systematical accessing, downloading, and pre-processing climatological data from
CHELSA and WorldClim remains a challenge in different environmental disciplines like
Species Distribution Modelling (SDM) and climate studies. This package provides a set
of functions that allow easy access and customized selection of climate datasets.
Besides downloading the raw data, also functionalities to complete pre-processing steps
like clipping, rescaling, and file management are available. The applications of the
package range from one-time-use to implementing the functions in automatic processing
of scientific workflows.

Author Contributions:

Conceptualization, H.J., J.W., M.W. and M.B.; methodology, H.J., J.W.; validation, H.J.,
J.W., M.\W. and M.B.; formal analysis, J.H.; writing—original draft preparation, H.J. and
M.W.; writing—review and editing H.J., JW., M.W. and M.B.; visualisation, H.J,;
supervision, M.B., All authors have read and agreed to the submitted version of the
manuscript.
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Publication IV

Werner, M., Béhner, J., Oldeland, J., Schickhoff, U., Weidinger, J., and Bobrowski, M.
(2025). Treeline Species Distribution Under Climate Change: Modelling the Current and
Future Range of Nothofagus pumilio in the Southern Andes. Forests, 16(8), 1211.
https://doi.org/10.3390/f16081211

Abstract:

Although treeline ecotones are significant components of vulnerable mountain
ecosystems and key indicators of climate change, treelines of the Southern Hemisphere
remain largely outside of research focus. In this study, we investigate, for the first time,
the current and future distribution of the treeline species Nothofagus pumilio in the
Southern Andes using a Species Distribution Modelling approach. The lack of modelling
studies in this region can be contributed to missing occurrence data for the species. In a
preliminary study, both point and raster data were generated using a novel Instagram
ground truthing approach and remote sensing. Here we tested the performance of the
two datasets: a typical binary species dataset consisting of occurrence points and
pseudo-absence points and a continuous dataset where species occurrence was
determined by supervised classification. We used a Random Forest (RF) classification
and a RF regression approach. RF is applicable for both datasets, has a very good
performance, handles multicollinearity and remains largely interpretable. We used
bioclimatic variables from CHELSA as predictors. The two models differ in terms of
variable importance and spatial prediction. While a temperature variable is the most
important variable in the RF classification, the RF regression model was mainly modelled
by precipitation variables. Heat deficiency is the most important limiting factor for tree
growth at treelines. It is evident, however, that water availability and drought stress will
play an increasingly important role for the future competitiveness of treeline species and
their distribution. Modelling with binary presence—absence point data in the RF
classification model led to an overprediction of the potential distribution of the species in
summit regions and in glacier areas, while the RF regression model, trained with
continuous raster data, led to a spatial prediction with small-scale details. The time-
consuming and costly acquisition of complex species information should be accepted in
order to provide better predictions and insights into the potential current and future
distribution of a species.

Author Contributions:

Conceptualization, M.W., J.B., J.0., U.S., J.W. and M.B.; methodology, M.W., J.O., J.W.
and M.B.; validation, M.W., J.O. and M.B.; formal analysis, M.W.; investigation, M.W.;
data curation, M.W.; writing—original draft preparation, M.W.; writing—review and
editing, M.\W., J.B., J.O., U.S. and M.B.; visualisation, M.W.; supervision, J.B. and U.S.
All authors have read and agreed to the published version of the manuscript.
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5. Synthesis and Discussion

This thesis aims at modelling the potential current and future distribution of the treeline
species Nothofagus pumilio using an Ecological Niche Modelling (ENM) approach,
thereby addressing the existing research gap in treeline modelling studies in the
Southern Andes. A novel Instagram Ground Truthing Approach (IGTA) was developed
to generate bias-minimised species occurrence data, resulting in both a point dataset
and a raster dataset, the latter of which was validated using the IGTA points. Both
datasets served as inputs for modelling with a machine learning algorithm chosen for its
high predictive performance and interpretability. The resulting models were compared
and the strengths and limitations of each input dataset were critically assessed. In doing
so, this study applied an approach of “Improved Ecological Niche Modelling”, combining
less-biased occurrence data with advanced modelling techniques. This chapter
addresses the research questions by summarising and discussing the main findings.

5.1 Ground Truthing with Instagram: A Novel Approach

Can Instagram be used to obtain occurrence data for Nothofagus pumilio, and is
the spatial bias in the resulting IGTA dataset reduced compared to that in
commonly used GBIF data?

N. pumilio is particularly suitable for analysis with Instagram due to its morphology,
phenology, and ecology. The species occurs in pure forest stands at the treeline within
a scenic topographic and highly touristic region with numerous national parks. The
orange-red autumn colouring also makes the species an attractive photo motif. As a
result, a large number of posts featuring N. pumilio were identified on Instagram and
assessed for suitability as occurrence points using a strict set of criteria. Occurrence
points were created when the species and the location where the photo was taken could
be clearly identified by landscape elements. The IGTA resulted in 1,238 valid and
transparently traceable occurrence points of N. pumilio. A total of 297 posts
published between 2017 and 2022 were used for the analysis. These were posts
linked to specific hashtags relating to the species or location, as well as posts with
location tags in the distribution area. In this way, the dataset included not only posts
in which experts had deliberately photographed and posted the species, but also
everyday images taken by non-experts, in which the occurrence was captured
unintentionally. When georeferencing the posts, points were assigned not only to the
exact location where the image was taken (460 points), but also to identifiable
occurrences in the background of the image, including adjacent stands at the
autumn-coloured treeline (778 points). Figure 7 shows all 1,238 sampled IGTA
points.
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Figure 7: The two datasets resulting from the Instagram ground truthing approach (IGTA): IGTA
points and Sentinel-2 raster data in a resolution of 20 m covering the entire distribution range in
the Southern Andes
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According to a vignette study by Haklay et al. (2021) 50 % of respondents describe the
re-use of social media content as a form of CS. However, CS typically requires active
involvement of participants, information transfer, and data transparency (Haklay et al.,
2021). The IGTA can be framed as “passive CS” method (Nascimento et al., 2024).
Social media platforms can not only be used to sample occurrence data but also to share
information, communicate research findings, and recruit Citizen Scientists (Nascimento
et al., 2024). Furthermore, Instagram users can be informed about the importance of
using geotags and providing precise location information to support initiatives like the
IGTA. For this purpose and to take CS principles into account, an Instagram profile
(nothofagus_pumilio_research) was created and used to post information about the
project. When a post from another user was used for occurrence data sampling, it was
“liked” (by clicking the heart icon, see Figure 5a as an example), which notifies the user
and draws their attention to the research account. In addition, the chat function was used
to ask users about the exact location of a post or to discuss methods and research
findings. To promote data transparency, the final dataset was published via an open-
access data provider (Publication Il), bringing the project more in line with the standards
expected of CS initiatives. An advantage of passive CS is that it does not require active
recruitment of participants, and data collection via social media can be conducted
remotely, making it even more cost- and time-effective than traditional CS approaches
(Edwards et al., 2021). Moreover, the stratified IGTA aimed to further reduce common
sources of bias typically present in CS-derived datasets.

Sampling bias in global datasets, which often contain data from unstructured CS
projects, arises from sampling behaviour in predominantly urban areas. As a result,
the occurrence data does not always correspond to the actual distribution of a
species, which can have a negative impact on the model results (Di Cecco et al.,
2021). In the IGTA, the high number of available posts across the entire distribution
area and manual georeferencing led to a reduction in this bias. The “sampbias”
analysis (see Figure 8) showed that, in comparison to 558 filtered GBIF points with
a maximum coordinate uncertainty of 1 km (GBIF, 2024), the IGTA dataset provided
better coverage of rural areas. While both datasets showed increased sampling rates
around urban centres, the sampling rate of IGTA points was significantly higher in
non-urban regions, resulting in a more homogeneous spatial distribution and reduced
bias towards urban areas. Sampling bias, such as incorrect coordinates due to errors
in georeferencing of museum data (Boakes et al., 2010; Marcer et al., 2022) or weak
satellite signals during on-site sampling (Uyeda et al., 2020), was avoided in the IGTA
by the manual transfer of the occurrence points. However, a source of uncertainty in the
IGTA data must be considered. The publication date of the posts does not necessarily
correspond to the day or even the year the photo was taken. This means that temporal
bias may be introduced (Nascimento et al., 2024), as the IGTA does not reliably provide
information on the exact time the photograph was taken. Some information can be found
in the caption or comments or must be requested individually from Instagram users using
the chat function. Furthermore, unlike databases such as GBIF, which include historical
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records from museums and other sources, “historical’” data is not available through
Instagram.

In summary, the global usage and high volume of posts on Instagram, combined with
the manual georeferencing of occurrences, enable a cost-effective sampling of less-
biased occurrence data for N. pumilio. Compared to GBIF data, spatial bias is
significantly reduced. However, the IGTA was still relatively time-consuming, as
manually searching for posts via Instagram’s search function requires considerable
effort. Some social media platforms, such as Flickr, allow access and automated
searches via an Application Programming Interface (API), enabling faster identification
of suitable posts and facilitating automation (e.g., Fox et al., 2022). In contrast, Meta
(www.meta.com/), the company behind Instagram, Facebook, Messenger, and
WhatsApp, does not provide such access. Nevertheless, the time-consuming process of
manual searches is offset by the significantly broader reach of the Instagram platform
and therefore coverage of potential occurrence points.
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Figure 8: Results of the bias analysis using the R package “sampbias”, indicating the sampling
rate near urban areas for a) the Instagram ground truthing approach (IGTA) data and b) GBIF
data. While high sampling rates in the GBIF dataset are concentrated near urban centres, the
IGTA data shows a more homogeneous sampling across the study area.
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Can supervised classification be used to generate raster occurrence data for
Nothofagus pumilio across its entire range?

The occurrence of N. pumilio in pure forest stands at the treeline and its phenology
enabled the creation of continuous raster data via supervised classification, resulting in
over 2000 km range from 35°S to 55°S at a resolution of 20 m (Figure 7). The
classification of summer and autumn scenes achieved high performance with Kappa
values of 0.89 and 0.97, respectively. Potential sources of error from shadow or cloud
cover were mitigated by masking the Sentinel-2 scenes using the Scene
Classification Layer (SCL) before classification. However, this also introduced gaps
in the dataset, as did missing Sentinel-2 data in certain areas, which could not be
replaced with alternative scenes during the sensing period from 2019 to 2022.
Ground truthing of the classification results with the IGTA points resulted in a 92.25 %
match, meaning 1,142 IGTA points cover the determined raster data, indicating a
high accuracy. To ensure that other deciduous species were not included in the
raster data, an altitude correction was performed, retaining only high-elevation
deciduous forest. However, one source of error that could not be avoided is inclusion
of some N. antarctica stands. The species are morphologically and ecologically very
similar. Even hybrids between the two species are possible (Soliani et al., 2015). In
the future, to strictly separate the two species, external datasets could be used, e.g.,
from local forestry authorities (Corporacion Nacional Forestal (CONAF), Chile and
Ordenamiento Territorial de Bosque Nativo (OTBN), Argentina). However, at this
point, the forest type “high mountain deciduous forest” was reliably determined, even
if N. antarctica was partially included.

The IGTA facilitated the creation of large-scale raster data for N. pumilio and its
validation through Instagram ground truthing points, resulting in two robust datasets.
The approach is transferable to other ecological studies, both in terms of Instagram-
based sampling and the generation of remote sensing data, provided that the study
species exhibit similar characteristics to N. pumilio. Posted content must include
visible landscape elements, which excludes close-up images of smaller plant or
animal species. Similarly, remote sensing can only reliably detect and distinguish
contiguous species populations or individual mature trees (Immitzer et al., 2016,
2019). However, for plant or animal species that contain images with recognisable
landscapes, the IGTA offers a promising approach for generating valid species
occurrence datasets.

43



Chapter 5: Synthesis and Discussion

5.2 Modelling the Ecological Niche of Nothofagus pumilio:
A Comparison of Two Approaches

The ecological niche and potential current and future distribution of N. pumilio were
analysed using two models: a Random Forest (RF) classification model with the IGTA
point dataset and an RF regression model with the continuous raster data. A 5-fold
spatial cross-validation was used to validate the models. The model quality was
evaluated using the mean validation metrics and the best hyperparameters were
selected. The best-performing RF classification model achieved the highest mean AUC
of 0.9279 (£0.0257, 95 % confidence interval (Cl): 0.8960-0.9599), an overall accuracy
of 0.8466 (£0.0537, 95 % CI: 0.7799-0.9132), and a TSS of 0.6148 (£0.1582, 95 % ClI:
0.4183-0.8112). The best RF regression model had an R? of 0.3933 (+0.0409, 95 % CI:
0.3425-0.4441). For both models, the best hyperparameters were mtry = 2 and mtree =
500, which were applied to the entire datasets for spatial prediction and interpretation.
Variable importance, partial dependence plots (PDP) and Shapley Additive Explanations
(SHAP) summary plots were used for characterising the ecological niche of N. pumilio.
By applying the same algorithm, a direct comparison of the models and their outputs was
possible, although it must be considered that the scales of the output variables differ.
The RF classification model yielded predicted probability values for N. pumilio
occurrence, and the RF regression model yielded predicted cover values for the species.
These values were compared directly on the basis that low values in both datasets
indicate largely unsuitable bioclimatic conditions, while high probability and cover values
suggest suitable habitat. However, it is important to note that a probability of 0.01
represents only a very low likelihood of species occurrence, whereas 1 % cover indicates
that the species is present, albeit in low abundance.

How can the ecological niche of Nothofagus pumilio be characterised under
current climatic conditions, and what is the species’ potential geographic
distribution?

The temperature variable bio 8 (mean daily mean air temperatures of the wettest quarter)
and the precipitation variable bio 19 (mean monthly precipitation amount of the coldest
quarter) emerged in the RF classification model as the most important variables for
model accuracy (accuracy importance ranking: bio 8, bio 19, bio 15, bio 17, bio 4, bio
10, bio 18, bio 11). In the RF regression model, bio 15 (precipitation seasonality) and bio
19 (mean monthly precipitation amount of the coldest quarter) emerged as the most
important variables (accuracy importance ranking: bio 15, bio 19, bio 4, bio 11, bio 10,
bio 8, bio 18, bio 17). PDP can be used to interpret the characteristics of single variables
(Figure 9). In the PDP the temperature variable bio 8, which had the highest variable
importance in the RF classification model, shows a high predicted probability at very low
temperatures of -5 to —2°C in the wettest quarter, with a decline as temperatures
increase. N. pumilio therefore occurs in cold areas in the wettest quarter. The influence
of bio 15 on the predicted cover values contained more variation, but it can be concluded
that N. pumilio prefers regions with more stable precipitation patterns, and the species
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is less likely to occur in areas with highly variable precipitation (> 70 %), e.g., with periods
of drought.

SHAP plots allowed for a more comprehensive analysis of the ecological niche based on
bioclimatic variables. Even though the characteristics of the SHAP plots of the models
differed slightly, both showed the suitable climatic conditions for the species (Figure 9).
The species N. pumilio is adapted to the harsh conditions in high mountain regions, as
evidenced by the fact that it occurs in regions with cold winters (low values of bio 11,
mean daily mean air temperatures of the coldest quarter) and mild summers (moderate
values of bio 10, mean daily mean air temperatures of the warmest quarter). Heat
deficiency is considered the most important limiting factor for tree growth at the alpine
treeline (Kérner, 2020). Globally, the alpine treeline follows the 6.4°C isotherm during
growing season (Paulsen and Korner, 2014), which corresponds closely to the
distribution limit of N. pumilio at the 6.6°C isotherm (Fajardo and Pieper, 2014). As
described in Chapter 3, the species is adapted to the cold by concentrating
carbohydrates in the xylem to prevent damage due to frost (Fajardo and Piper, 2014),
mitigating the risk of frost drought by being a deciduous species (Kérner, 2021), and
furthermore due to its high phenotypic plasticity (Stecconi et al., 2010). Leaf size is
reduced in high-elevation individuals (Premoli et al., 2007) and growth height ranges
from 35 m at low elevations to krummbholz growth at the treeline (Stecconi et al., 2010).
The influence of temperature was evident not only in the SHAP plots but also in the high
variable importance of bio 8 (mean daily mean air temperatures of the wettest quarter)
in the RF classification model and in high GINI importance of bio 11 (mean daily mean
air temperatures of the coldest quarter) in both models. However, precipitation has an
important influence on the distribution of the species. The species occurs in areas with
moderate to low precipitation sums, mainly in the form of snow (moderate values of
bio 19, mean monthly precipitation amount of the coldest quarter). However, the species
requires sufficient precipitation throughout the year (low to medium values for bio 17,
mean monthly precipitation amount of the driest quarter and bio 18, mean monthly
precipitation amount of the warmest quarter) and does not occur in regions with high
precipitation variability (bio 15, precipitation seasonality). Very low precipitation (low
values of bio 17, 18, 19) defines the boundaries of the distribution range of N. pumilio.
Although the species is present in low-precipitation areas, such as the arid eastern
regions (Hertel et al., 2008), drought conditions pose a significant challenge to its survival
and regeneration (Rodriguez-Caton et al., 2016). Studies investigating the relationship
between radial growth of the species and climate variations have found growth declines,
especially in the northern distribution area, due to low precipitation in spring and summer
(Daniels and Veblen, 2004; Alvarez et al., 2015). Droughts lead to seedling dieback and
even increased mortality of mature trees (Rodriguez-Caton et al., 2016, Fajardo et al.,
2019). However, a distinction must be made between northern and southern Patagonia.
In more southern regions, high spring precipitation is primarily associated with delayed
snowmelt and thus a shortened growing season, which in turn again limits tree growth
(Villalba et al., 1997; Lara et al., 2001; Alvarez et al., 2015). The study by
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Brand et al. (2022) summarises that growth in mesic locations increases with higher
temperatures, followed by humid locations, while growth in dry locations decreases.
Other authors describe that growth limitation at the treeline changes from cold-limited to
drought-limited (Reiter et al., 2024). The model results can reflect these regional
differences in precipitation patterns. Particularly, the RF regression model focused on
the influence of precipitation variables, with bio 15 and bio 19 as the most important
variables. Bio 15 suggests that N. pumilio is unlikely to occur in regions with high
precipitation seasonality, which may be associated with periods of drought. Bio 19, on
the other hand, may be linked to precipitation in the form of snow, the resulting snow
cover, and water availability following thaw.

The models were used to predict the current potential distribution of the species. The
prediction resulted in a distribution area from 36.35°S to 55.45°S for the RF classification
model and a slightly smaller area from 35.24°S to 55.24°S for the RF regression model
(see Figure 10). The projected distribution area of the RF classification model is
somewhat more compact, while the RF regression model extends slightly further into the
humid west. On Tierra del Fuego, the RF regression model shows a more homogeneous
distribution than the RF classification model. The spatial predictions also differed in terms
of their details and the treeline elevation. The comparison of the spatial predictions of
the models is answered in detail by the last research question.
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Figure 9: Partial Dependence Plots (PDP) and Shapley Additive Explanations (SHAP) summary
plots for a) the Random Forest (RF) classification model and b) RF regression model. For the
SHAP analysis, feature values were normalised (breakpoints: 0, 0.5, 1) to account for the differing
units of temperature and precipitation variables.
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Figure 10: Potential current distribution of Nothofagus pumilio modelled by a) the Random Forest
(RF) classification model and b) the RF regression model.
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What potential range shifts are projected under future climate change scenarios?

CMIP6 data from CHELSA was used to predict the future distribution of N. pumilio under
different SSP scenarios. Predictions were made for the periods 2041 to 2070 and 2071
to 2100 using the SSP126, SSP370 and SSP585 scenarios (see Figures A2 to A5 in the
appendix section). Both models showed a shift of the treeline to higher elevations, and
this trend intensifies with modelled time period and the SSP scenario. However, there
are differences between the predictions. On the one hand, the RF classification model
showed sharp declines in the total distribution area in the north and in the southern part
on Tierra del Fuego, while these declines were only slight in the north and not
pronounced in the south in the RF regression model. On the other hand, the RF
classification model predicted an increase in currently snow- and ice-covered regions at
the Southern Patagonian Icefield, while the RF regression model predicted a decrease
in populations. The differences in the predicted upward shift of the treeline were clearly
shown by the analysis of high-elevation occurrences (estimated treeline elevation) using
a digital surface model at 13 selected locations across the study area (see Table 4 for
time period 2041 to 2070 below and Table A6 for 2071 to 2100 in the appendix section).
In general, the estimated treeline elevation in the RF classification model was higher
than those in the RF regression model. The table also clearly shows the population
decline in the north. At the second location, stands are missing in both models from the
SSP370 scenario for the period 2041 to 2070.

The models are based on climatic factors only, so the analysis showed the potential
climatic treeline shift in the Southern Andes. Whether this advance can actually take
place also depends on other factors. Abrupt treelines generally advance less pronounced
than diffuse treelines, as they are caused by seedling dieback outside the protective tree
stands (Bader et al., 2021). However, higher temperatures and a prolonged growing
season can improve conditions for seed production, fruit dispersal, seed viability,
seedling establishment and survival, and thus the conditions for an upward shift in the
treeline (Daniels and Veblen, 2004; Fajardo and Pieper, 2014; Srur et al., 2016, 2018;
Aschero et al., 2022). A treeline advance of 5 to 10 m above the current treeline has
already been recorded for N. pumilio (Srur et al., 2018). However, seedling establishment
also depends heavily on water availability and soil moisture (Lett and Dorrepaal, 2018;
Qiu et al., 2021). Seedling survival decreases with increasing aridity, and a deterioration
in growth conditions for both seedlings and mature individuals was observed on low- and
high-elevation slopes (Fajardo and Pieper, 2014; Rodriguez-Catoén et al., 2016; Aschero
et al., 2022; Reiter et al., 2024). Furthermore, even if temperatures and water availability
are favourable for treeline advance, this can still be prevented by local topographic or
edaphic factors. The inclusion of additional variables related to topography, soail,
vegetation cover, and wind could further elucidate the potential upward shift.
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Table 4: Estimated treeline elevation [m] at 13 locations according to Lara et al. (2005) based on
the results of the Random Forest (RF) classification (Class.) and RF regression (Reg.) models
under current climate conditions and CMIP6 SSP scenarios for the future period 2041 to 2070
(applied thresholds 0.3 and 30 %). NA = not available (no data recorded).

Coordinates Current Climate SSP126 SSP370 SSP585
(2041-2070) (2041-2070) (2041-2070)
X Y Class. Reg. Class. Reg. Class. Reg. Class. Reg.
-71.00 -35.36 NA NA NA NA NA NA NA NA
-71.11 -37.27 1988 1949 2214 NA NA NA NA NA

-71.33 -38.42 1854 1789 2201 1709 2186 1920 2227 2045
-72.15 -4042 1591 1437 1699 1636 1768 1674 2026 1674
-7219 -41.48 1500 1201 1560 1464 1730 1638 1730 1720
-71.45 -43.07 1839 1440 1918 1545 2059 1725 1918 1725
-71.42 -44.39 1320 1216 1704 1324 1852 1509 1852 1591
-72.24 -4712 1361 1197 1500 1423 1651 1439 1538 1500
-72.30 -48.30 1522 1074 1340 1098 1473 1098 1586 1209
-72.54 -50.57 1176 956 1296 961 1313 1103 1349 1124
-71.00 -53.00 543 560 592 721 NA 783 592 783
-68.45 -54.17 544 520 648 615 667 547 607 607
-67.30 -54.57 610 610 614 492 557 614 NA 614

What are the differences between the modelling approaches used in this study,
and what are their respective advantages and disadvantages?

Differences between the model results existed in spatial prediction, variable importance,
and thus PDP and SHAP plots, respectively. Even though a synthesis of the model
results was possible to identify and interpret the suitable bioclimatic conditions for
N. pumilio, the strengths and weaknesses of the models were particularly evident in the
spatial predictions. The RF classification model tended to predict occurrences in higher,
not vegetated areas, resulting in slight overprediction at high-elevation sites. This
became particularly evident in a comparison of the elevations of the highest grid cells in
the models and with external data. Table 5 compares the reported treeline elevation from
an on-site study by Lara et al. (2005) at 13 locations across the species' distribution
range with the estimated treeline elevation from the models. The treeline elevation of the
RF classification model was in some cases significantly higher than the on-site data, but
the data corresponded well in the southern distribution area. The treeline elevation of the
RF regression model, in contrast, was only slightly higher in the north and otherwise
corresponded very well with the actual measured values. Furthermore, the spatial
prediction of the RF regression model showed small-scale details (see Figure 11). It
distinguished better between forested valleys and bare peaks and did not overperform
at high altitudes. This was also verified with external data from the Argentine forestry
authority, Secretaria de Ambiente y Desarrollo Sustentable de la Nacion, which provides
shapefiles on forest types (Mohr-Bell et al., 2019). A comparison of the polygons with
the grid cells of the model results showed a very good match with the RF regression
model results, while the grid cells of the RF classification model extended beyond the
boundaries of the polygons (Figure 12). The overprediction at high altitudes can be
attributed, among other things, to high variable importance of temperature-related
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variables, which often reflect the effects of altitude. This is also evident in the SHAP
summary plots, where high temperatures exert only a negative influence on the model
outcome in the RF classification model, thus predicting suitable climatic conditions
predominantly in colder areas. In contrast, the RF regression model delineates extremely
cold areas, such as summit regions, more precisely, as demonstrated by the predictor
bio 10. In this context, low temperatures during the warmest quarter have a negative
impact on the model outcome (see Figure 9).

The continuous species occurrence variable “cover values” of the RF regression model,
calculated from the coverage of 20 m grid cells within a 1 km grid cell (the target
resolution of the climatic predictors of the model), contains information on the species
relative abundance and therefore additional unknown information on land cover. In
contrast, the binary variable used in the RF classification model consists only of the
values 0 or 1, indicating species absence or presence. Cover values can provide a more
realistic insight into the actual conditions on site. For this reason, the RF regression
model with this numerical variable provided a more accurate spatial prediction and a
result that was better interpretable with more meaningful predictors. The inclusion of
remote sensing data as environmental variables is already common practice in ENM.
But the creation of occurrence data based on remote sensing data can improve model
validity, holding great potential for future ENM studies.

Table 5: Treeline elevation sampled on site by Lara et al. (2005) compared with the modelled
highest occurrence raster cells of the Random Forest (RF) classification (applied threshold 0.3)
and RF regression model (threshold 30 %).

Treeline Position and Elevation [m] Treeline Elevation [m]
after Lara et al. (2005) Current Climate

ID X Y Elevation Range RF Class. RF Reg.
1 -71.00 -35.36 1530 NA NA
2 =711 -37.27 1500-1720 1988 1949
3 -71.33 -38.42 1490-1650 1854 1789
4 -72.15 -40.42 1000-1300 1591 1437
5 -72.19 -41.48 1300 1500 1201
6 -71.45 -43.07 1230-1350 1839 1440
7 -71.42 -44.39 1000-1200 1320 1216
8 -72.24 -47.12 800-1180 1361 1197
9 -72.30 -48.30 1200 1522 1074
10 -72.54 -50.57 650-980 1176 956
11 -71.00 -53.00 350-600 543 560
12 -68.45 -54.17 200-600 544 520
13 -67.30 -54.57 300-600 610 610
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Figure 11: Details of the spatial predictions of the potential current distribution of
Nothofagus pumilio from the Random Forest (RF) classification model and RF regression model,
shown in comparison with a satellite basemap (centre) and a Digital Surface Model (DSM)
indicating the elevation of the raster cells covered by the model outputs.
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Figure 12: Comparison of spatial predictions from the Random Forest (RF) models under current
climate with forest polygons of Nothofagus pumilio (red, centre) provided by the Argentinian
forestry authority (Mohr-Bell et al., 2019).
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6. Conclusion and Outlook

This study aimed to investigate the underlying bioclimatic requirements, and potential
current and future distribution of the treeline species Nothofagus pumilio in the Southern
Andes, using less-biased species occurrence data derived from a novel method
combining social media and remote sensing. The primary objective was to improve a
common modelling approach in two key steps: first, by developing the Instagram ground
truthing approach (IGTA), and second, by comparing binary and continuous species
datasets in Ecological Niche Modelling using a machine learning algorithm.

The results demonstrated that the IGTA produced less-biased species occurrence data
compared to commonly used data from the Global Biodiversity Information Facility
(GBIF). Moreover, the resulting IGTA point dataset proved valuable for validating large-
scale remote sensing data of N. pumilio across its entire distribution range. Remote
sensing data, in particular, can reduce spatial bias, as raster cells are sampled
consistently across the landscape, rather than being concentrated in urban or tourist
areas where most occurrences by Citizen Scientists or images by Instagram users are
typically taken. While the advantages of the approach were clearly demonstrated above,
it must be acknowledged that the manual search for suitable posts on Instagram and the
georeferencing of occurrences are still time-consuming processes. Future research
could explore the automation of this approach through the use of the Instagram API or
the integration of Al-based image recognition techniques. Both options would require
permission from the parent company, Meta, which has recently updated Instagram’s
terms of use to allow for Al usage (Meta, 2025). In conclusion, social media holds
significant potential for species occurrence data sampling and can promote research on
species in remote and high-elevation regions. The IGTA represents a novel and
transferable method that can be applied to other species and regions.

In the next analysis step, both datasets were used for modelling, allowing for a direct
comparison between models based on different types of species input data. This
comparison highlighted the advantages of using continuous species data derived from
remote sensing across the entire distribution range, as opposed to binary species data.
Continuous data, here the proportion of 20 m raster cells classified as N. pumilio within
each 1 km target resolution cell, can capture additional information related to land cover,
topography, and species composition, thereby providing insights into the relative
abundance of the species. In contrast, binary variables are limited to presence or
absence (1 or 0), offering no detail on local density or coverage. The Random Forest
regression model produced more meaningful predictor-variable relationships and yielded
a more detailed spatial prediction.
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Chapter 6: Conclusion and Outlook

In this study, only bioclimatic variables were used to model the potential current and
future distribution of N. pumilio. While this approach provides a comprehensive overview
of temperature, precipitation, and seasonality, future research could expand the
modelling framework to include additional abiotic variables, such as topography, soil
characteristics, and wind exposure, as well as biotic and anthropogenic factors, including
vegetation composition, fire regimes, grazing intensity, and forestry practices.

Up to date, this is the first study investigating the current state and future development
of the potential distribution range of N. pumilio in the Southern Andes, thereby
addressing an existing research gap. Common practices in ENM were successfully
improved by introducing the IGTA, incorporating continuous remote sensing-derived
data and using machine learning algorithms.
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A1: Hexagonal spatial blocks used for 5-fold spatial cross-validation and the five folds with training

data points (grey) and testing data points (dark green).
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Appendix
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A2: Potential future distribution of Nothofagus pumilio modelled using the Random Forest
classification model using CMIP6 SSP Scenarios for CHELSA Bioclim variables for the time

period of 2041 to 2070.
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A3: Potential future distribution of Nothofagus pumilio modelled using the Random Forest

regression model using CMIP6 SSP Scenarios for CHELSA Bioclim variables for the time period
of 2041 to 2070
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A4: Potential future distribution of Nothofagus pumilio modelled using the Random Forest
classification model using CMIP6 SSP Scenarios for CHELSA Bioclim variables for the time

period of 2071 to 2100.
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Time span 2071-2100
SSP126

I ssp370

I sspsss

Ab: Potential future distribution of Nothofagus pumilio modelled using the Random Forest

regression model using CMIP6 SSP Scenarios for CHELSA Bioclim variables for the time period
of 2071 to 2100.
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A6: Estimated treeline elevation [m] at 13 locations based on the results of the Random Forest
(RF) classification and RF regression models under current climate conditions and CMIP6 SSP
scenarios for the future period 2071 to 2100 (applied thresholds 0.3 and 30 %). NA = not available
(no data recorded).

Coordinates Current Climate SSP126 SSP370 SSP585
(2071-2100) (2071-2100) (2071-2100)
X Y Class. Reg. Class. Reg. Class. Reg. Class. Reg.
-71.00 -35.36 NA NA NA NA NA NA NA NA
-71.11  -37.27 1988 1949 2328 NA NA NA NA 2530
-71.33 -38.42 1854 1789 2071 1700 1780 1871 2460 2035
-72.15 -40.42 1591 1437 1679 1636 2026 1971 2026 2026
-72.19 -41.48 1500 1201 1555 1510 1917 1743 1917 1730
-71.45 -43.07 1839 1440 1955 1545 2059 1955 2059 2059
-71.42 -44.39 1320 1216 1703 1595 1952 1593 1952 1427
-72.24 -47.12 1361 1197 1439 1346 1742 1651 1901 1840
-72.30 -48.30 1522 1074 1399 1098 1578 1171 1698 1340
-72.54 -50.57 1176 956 1317 1000 1457 1229 1537 1287
-71.00 -53.00 543 560 592 728 NA NA NA NA
-68.45 -54.17 544 520 648 616 615 757 NA NA
-67.30 -54.57 610 610 609 614 NA 614 NA 614
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Abstract

The availability of valid, non-biased species occurrence
data has always been a major challenge for biodiversity
research and modelling studies. Data from open-source
databases or remote sensing are promising approaches
to increase the availability of species occurrence data.
However, these data may contain spatial, temporal, and
taxonomic biases or require ground truthing. In recent
years, social media has received attention for its contri-
bution to species occurrence data sampling and ground
truthing approaches. The wide reach of social media plat-
forms allows for rapid and large-scale analyses.

Here we introduce a novel Instagram ground truth-
ing approach to validate the occurrence mapping of
Nothofagus pumilio across its entire distribution range.
The treeline species of the southern Andes has been ex-
tensively studied in small-scale studies, but large-scale
modelling approaches are largely missing due to limited
accessibility to treeline sites resulting in a lack of occur-
rence data. The content posted on the social media plat-
form Instagram consists of images and videos in which
the species N. pumilio and its location can be identified. By
searching for suitable posts using hashtags and location
tags, we created 1238 Instagram ground truthing points.
We compared the performance of our dataset with open-
source data from the Global Biodiversity Information Facil-
ity (GBIF) through visual, quantitative, and bias analyses,
acknowledging that both social media-based and Citizen
Science data are subject to sampling and spatial biases
due to collection in human-accessible areas. The Insta-
gram ground truthing points were subsequently used to
validate remote sensing occurrence data, generated using
Sentinel-2 level 2A data and Supervised Classification.

The combined approach — Instagram ground truthing and
remote sensing — allows for the collection of occurrence
data over the entire latitudinal range of N. pumilio, cover-
ing approximately 2000 km.

Highlights

+ The use of social media content provides potentially
important contributions to species occurrence data
sampling and ground truthing

+ In our study we introduce a novel ground truthing ap-
proach for species occurrence data sampling based
on Instagram data

+ Instagram ground truthing points, combined with Su-
pervised Classification generate species occurrence
data of Nothofagus pumilio over its entire distribu-
tion range in the southern Andes

+ The performance of the Instagram ground truthing
points is evaluated by comparison with existing data
from the GBIF database.

* Our Instagram ground truthing approach demon-
strates a new way of sampling species occurrence
data and can be applied to other suitable species
and study areas.

Keywords

Citizen Science, Ecological Modelling, Ground Truthing,
Instagram, Occurrence Data Sampling, Remote Sensing,
Social Media, Southern Andes, Supervised Classification
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Introduction

Quantifying spatial and temporal distribution of species
and analysing underlying ecological requirements has be-
come increasingly important in high elevation regions due
to climate and environmental change (Schickhoff et al.
2022). Worldwide, ecological modelling studies are applied
to model treeline species under present, past and future
climate conditions (e.g., Dullinger et al. 2004; Bobrowski et
al. 2017; Akobia et al. 2022). Whereas high mountains of
the Northern Hemisphere are well represented in treeline
related research, those of the Southern Hemisphere, such
as the Andes, have rather been neglected (Hansson et al.
2021; Hansson et al. 2023). Recently published studies on
the southern Andes have focused on local treeline sites
(e.g., Daniels and Veblen 2003; Fajardo and Piper 2014;
Srur et al. 2016, 2018), while large-scale modelling studies
investigating treeline species or vegetation at higher ele-
vations are very rare (Nagy et al. 2023). The limited acces-
sibility of treeline sites due to remoteness and complex
topography might have impeded such studies.

Species occurrence data are mainly collected through
field research and made available in publications and da-
tabases (Feng et al. 2019). However, large-scale vegeta-
tion sampling is often costly and time-consuming. There-
fore, species occurrence data are frequently downloaded
via open-source databases such as the Global Biodiversity
Information Facility (GBIF, gbif.org), which hosts datasets
compiled from various sources (Edwards 2004; Boakes
et al. 2010). However, these data may contain unknown
taxonomic, spatial or sampling biases and are seldom
evaluated or revisited (Beck et al. 2014; Meyer et al. 2016;
Daru et al. 2018). Ensuring the quality of species data is
essential for accurate modelling outcomes (Chauvier et
al. 2021). Therefore, prior to utilisation, thorough examina-
tion, filtration, and potential supplementation of the data
are imperative steps.

More recently, Citizen Science projects and social me-
dia are becoming crucial for surveying species occurren-
ces (Jari¢ et al. 2020; Goldberg 2023). Citizen science in-
volves the participation of citizens in scientific processes,
such as collecting species data (Bonney 1996; Bonney et
al. 2009). The number of Citizen Science projects, partic-
ularly those that are computer- or app-based, along with
the resulting data, is increasing exponentially (Pocock et
al. 2017). Such projects can generate large amounts of
occurrence data in a comparatively short time (Sumner
et al. 2019). Dickinson et al. (2010) even take the view
that Citizen Science is the only practical way to study dis-
tribution patterns and range shifts of species over large
areas. Despite the improving quality of the data, which is
increasingly nearing that of expert-recorded data (Aceves-
Bueno et al. 2017), bias persists (Di Cecco et al. 2021).
Data collection is concentrated in urban and tourist ar-
eas, with inaccessible or remote locations rarely being
recorded. Additionally, the data is collected solely by in-
dividuals engaged in Citizen Science projects. Leveraging
social media contributions can unlock further potential in
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data collection. On social media, an increasing number of
geotagged image files are used. Images posted by both
experts and non-experts can be analysed in large quanti-
ties. Recently, social media platforms such as Facebook,
Flickr, Instagram, Twitter and YouTube are used to sample
occurrence data and range shifts of animals, for example
data of whales, dolphins (e.g., Pace et al. 2019; Gibson et
al. 2020; Martino et al. 2021), birds (e.g., Hentati-Sundberg
and Olsson 2016), insects (e.g., Viri¢ Gaspari¢ et al. 2022;
O’Neill et al. 2023) and plants (e.g., EIQadi et al. 2017).
Through the usage of geotagged social media content, as
well as identifiable landscape elements and descriptions
of the posted image, the actual location of the posts can
be traced. In combination with clearly recognisable plant
characteristics, it is possible to identify the location of
species, representing a promising new ground truthing
possibility. With the increasing use of social media and
the spread of high-quality digital cameras, a huge poten-
tial can be tapped to make, in addition, important contri-
butions to biodiversity monitoring and to the evaluation of
potential protected areas (Chowdhury et al. 2023).

While both Citizen Science and social media enhance
the sampling of occurrence data, the data remain spatially
biased, as records are predominantly collected from loca-
tions accessible to humans (Meyer et al. 2016; La Sorte
et al. 2024). Within this context, utilising remotely sensed
species occurrences emerges as a promising method
for reducing such bias and examining large study areas,
particularly in regions with limited accessibility, such as
high-elevation areas. One example is the use of remote
sensing to classify tree species. Very high-resolution data
like IKONOS, WorldView, RapidEye and airborne images
are mostly used for small-scale studies (Fassnacht et
al. 2016) and medium high-resolution data like Landsat
and Sentinel data can successfully be used for larger ar-
eas (Immitzer et al. 2016; Immitzer et al. 2019). Despite
the wide availability of high-resolution data and highly
developed remote sensing methods, ground truthing re-
mains indispensable for validating species data accuracy
through field validation (on-site sampling) or validation
processes with existing datasets (Nagai et al. 2020).

The availability of data for treeline species is limited;
however, such species are likely to be suitable candidates
for analysis using remote sensing and social media-based
species occurrence data sampling. N. pumilio forms an
abrupt treeline in the orotemperate belt of the southern
Andes in mono-species forest stands (Amigo and Rodri-
guez-Guitian 2011) and is distributed in a region with many
touristic areas where photos are taken, for example, during
hiking. Therefore, the species can be recognised in satel-
lite images as well as in Instagram posts. As N. pumilio
responds to climate variations by changing radial growth
patterns (Lara et al. 2001; Aravena et al. 2002; Daniels
and Veblen 2004; Masiokas and Villalba 2004; Alvarez et
al. 2015) and seedling establishment patterns above the
treeline (Fajardo and Piper 2014), it is a suitable target spe-
cies also for modelling approaches aiming at analysing
treeline sensitivity and treeline shift due to climate change.
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In this study, we demonstrate the large-scale sampling
of N. pumilio occurrence data using Sentinel-2 imagery and
Supervised Classification. To validate the spatial occur-
rence data, we introduce a novel Instagram ground truth-
ing approach, leveraging occurrence points derived from
the social media platform Instagram (www.instagram.
com). We hypothesise that this Instagram-based method,
due to a high volume of potentially suitable posts and our
sampling approach, will generate more occurrence points
with reduced spatial bias compared to datasets from the
open-source GBIF database. Spatial bias in the resulting
species occurrence data is further mitigated by incor-
porating remote sensing data, which enhances both the
quantity and spatial coverage of occurrence information.
Unlike presence-only point datasets, remote sensing data
provide presence-absence datasets, offering more com-
prehensive opportunities for ecological modelling.

Material and methods

Study area and target species

Nothofagus pumilio (Poepp et Endl.) Krasser (southern or
lenga beech) is the dominant subalpine tree species in the
southern Chilean and Argentinean Andes between 35°S
and 56°S, encompassing a longitudinal distribution range
of more than 500 km (Masiokas and Villalba 2004; Lara et
al. 2005; Rodriguez-Catoén et al. 2016). Out of all Nothofa-
gus species, N. pumilio is the most orophilic (Amigo and
Rodriguez-Guitian 2011). The dark green, elliptical, and
notched broad leaves of the deciduous species turn into an
orange-reddish colour in autumn, which is a reliable distin-
guishing feature of the species in comparison to other ever-
green Nothofagus species in this region (Hildebrand-Vogel
et al. 1990; Amigo and Rodriguez-Guitian 2011).

The distribution area of the species along the Andean
cordillera follows an elevational gradient from north to
south, while the west-east expansion is also dependent
on precipitation. N. pumilio forms mono-species forests
located between 1600 m up to 2000 m in the northern
parts, whereas the elevational limit decreases to 400 m
in the southernmost range at Tierra Del Fuego (Cuevas
2000; Lara et al. 2005). The treeline elevation decreases
constantly by 60 m per 1° latitude (Lara et al. 2005). The
west-east distribution area is defined by the extreme pre-
cipitation gradient from the windward to the leeward side
of the Andes (Hertel et al. 2008). The eastern distribution
boundary is characterised by low precipitation, following
the forest-steppe ecotone (Rodriguez-Caton et al. 2016).
Often, two treelines are formed in the eastern regions -
a common upper and a lower, xeric treeline towards the
arid region (Hertel et al. 2008). On the western side of the
Andes, the distribution is restricted to high elevations.
In these hyperhumid areas, the species does not occur
at lower elevations, where Nothofagus betuloides is the
dominant tree species (Young et al. 2007; Amigo and Ro-
driguez-Guitian 2011). Especially the autumn colouring of
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the deciduous species and its occurrence in mono-spe-
cies forests at the treeline are important characteristics
for the Instagram ground truthing approach, as these fea-
tures aid in identifying the species in Instagram posts and
make them recognisable in satellite images.

Instagram ground truthing approach

As a first step, we developed the Instagram ground truthing
approach to ensure proper validation of large-scale remotely
sensed occurrence data of N. pumilio. Additionally, the Insta-
gram ground truthing points are quantitatively compared
with existing occurrence data from the GBIF database.
We used the social media platform Instagram (www.insta-
gram.com) to sample the Instagram ground truthing points.
Although other social media platforms have been utilised in
studies sampling species occurrences, Instagram has large-
ly been overlooked. Nonetheless, we identify a significant ad-
vantage in using Instagram. Instagram users have the pos-
sibility to post both photos and short videos. The platform’s
lack of text-only posts makes it especially suitable for our
approach. At the same time, Instagram is one of the largest
social media platforms with 2 billion users worldwide (We
Are Social et al. 2024), allowing for the analysis of a signifi-
cantly larger volume of content compared to lesser-known
platforms that exclusively host visual content (e.g., Flickr).
Moreover, users can localise their posts with a geographical
tag and add descriptions where the content and, e.g., the lo-
cation can be specified with text or hashtags. The aim of the
ground truthing analysis was to identify locations in which
the species N. pumilio is clearly identifiable, the location can
be reliably traced and transferred to a map.

We started the Instagram ground truthing approach in
2021 and repeated it in 2022. The analysis consisted of 3
steps: 1) Potential contributions from publicly accessible
profiles were searched for using the search bar embedded
in the Instagram user interface and two specific search op-
tions: hashtags (#nothofaguspumilio and #lenga for exact
species information) and places or landscape features (by
location tags, locations in hashtags or usernames for ex-
act locations). 2) Posts were checked using a strict cata-
logue of criteria (Table 1), ensuring that the species can be
clearly identified, and that the location is traceable. Autumn
pictures were preferentially included in the analysis, as the
identification of the species is particularly reliable during
this season. In addition, the typical abrupt treeline and mo-
no-species forests were main criteria for selecting the posts.
Furthermore, the Instagram posts include a publication
date. Due to the chronological structure of the Instagram
interface, our analysis has primarily focused on the most
recent posts. However, the publication date does not guar-
antee that the photo was taken in that year. 3) Occurrenc-
es verified by the approach were transferred to a map. We
first analysed all posts with specific species information
(#nothofaguspumilio and #lenga). Next, we searched for
specific locations within the species’ distribution range, fill-
ing gaps and adding points to the already set occurrence
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points. This structured approach ensures a homogeneous
distribution of the sampled occurrences.

When we manually transferred the locations to a map
in step 3), simple descriptions of the locations were not
sufficient. The locations still had to be clearly traceable
by landscape features (see Table 1). Such landscape el-
ements in Patagonia could be glaciers, characteristic
mountain peaks, roads, urban areas, touristic sites, water-
bodies, and coastlines. These features should be so char-
acteristic, that they can also be recognised in a satellite
image. To avoid mistakes, the hashtags and descriptions
in the post should match the given location. Images cen-
tring people, as well as those altered through the usage
of filters, colour modifications, or emojis, were excluded.

Table 1. Criteria for selecting Instagram posts to generate
Nothofagus pumilio occurrence data. All these criteria must be
fulfilled for the image to be included in the analysis.

Criterion

Typical characteristics
of Nothofagus pumilio

Element or Example

morphological characteristics (leaves,
branches, habitus)

autumn colouring

abrupt treeline
mono-species forest
geographical tag

location hashtag

location description in the caption
glaciers

mountain peaks or ranges
rivers, lakes

roads

tourist points, cities, villages
coastlines

hashtags describing the location or
the plant

Avoid persons in focus

no photo montages

no emojis

no extreme (colour) falsifications

Concrete location
information

Recognisable
landscape elements

Fitting hashtags

Picture criteria

If all conditions were met, we manually transferred the
determined occurrence to a map with SAGA GIS (Conrad
et al. 2015, https://saga-gis.sourceforge.io). When creat-
ing Instagram ground truthing points, at least one point
was created at the actual location where the photo was
taken and N. pumilio was identified. However, additional
points were created if other occurrences of N. pumilio
were visible at the posted image. This is particularly the
case when forest or even the treeline of N. pumilio can be
seen in the background of landscape photographs. The
species’ ecology enables the identification of these oc-
currences, as its presence at the treeline, combined with
autumn colouring, makes the species recognisable, par-
ticularly when morphological features are clearly visible in
the foreground of the images. In some cases, points were
set as far as the neighbouring valley, when the treeline
was clearly autumn-coloured in the used satellite image.
Background points were assigned to a 1 km grid, as this
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is commonly the target resolution for model analyses,
thereby maintaining the number of background points at
areasonable level. The selection of posts is exemplified in
Fig. 1. The landscape elements used to locate the posts,
along with the transferred points, are shown in Fig. 2.

Remote sensing occurrence data sampling
with supervised classification

Analysing multispectral, medium spatial resolution
satellite data like Sentinel-2 leads to cost-efficient and
robust results in tree species classification over large
spatial extents (Fassnacht et al. 2016; Immitzer et al.
2016; Immitzer et al. 2019). Therefore, we compiled
large-scale occurrence data over the entire distribu-
tion range of N. pumilio using Sentinel-2 level 2A data
(BOA) in a resolution of 20 m. As N. pumilio occurs in
mono-species forests at the treeline, a medium spa-
tial resolution was sufficient to classify the forest type
while allowing analysis over almost 2000 km latitude.
Furthermore, the high temporal resolution data allowed
phenological differentiation with autumn and summer
images. Using the R Package “sen2r” (Ranghetti et al.
2020) we downloaded summer (months December and
January) and autumn (month April) Sentinel-2 data. The
sensing period was 2019 to 2022. Sentinel-2 scenes
with up to 50 % cloud cover were included. Most scenes
had a cloud cover of 15 % or less. We used the Sentinel-2
level 2A data “Scene Classification Layer” product (SCL,
Fig. 3B) to mask all raster cells not classified as vegeta-
tion. This ensured that only data relevant to the analysis
was included in the classification. Downloading numer-
ous Sentinel-2 data with different acquisition times en-
sured that as many vegetation pixels as possible from
a Sentinel-2 scene were included in the classification,
despite high cloud cover.

We trained our Supervised Classification with training
areas including three classes (1 = N. pumilio, 2 = Evergreen
vegetation, 3 = Low vegetation). Training areas were creat-
ed using summer, autumn and winter Sentinel-2 scenes at
selected sites across the range. The winter data made ev-
ergreen vegetation clearly recognisable. Autumn colouring
at the treeline indicated N. pumilio. We tested various clas-
sification algorithms for Supervised Classification, includ-
ing well-performing standard algorithms like Maximum
Likelihood, Minimum Distance, and Spectral Angle, as well
as the decision tree-based Random Forest algorithm. The
performance of these algorithms was measured using
overall accuracy and the Kappa value (Richards 2022).
To cover a wide spectral range, we used all the spectral
bands from 2 to 7, 8a, 11 and, 12. All preprocessing steps
and the Supervised Classification, which are visualised in
Fig. 3, were carried out in R (R Core Team 2023) and SAGA
GIS (Conrad et al. 2015). Map visualisation was performed
in ArcGIS Pro software by Esri, version 2.7.0.

We classified summer and autumn data separate-
ly and subsequently extracted and merged the result of
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Figure 1. Example of the Instagram ground truthing approach at Laguna Capri, Argentina. Nothofagus pumilio can be identified by its
habitus and leaves in the foreground, its autumn-colouring and the abrupt treeline in the background. The lake itself and Mount Fitz Roy
are reliable landscape elements. A location tag, the post description and hashtags also refer to the location (used with permission by

Instagram user fernando.v.fotografia 2022).
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Figure 2. The transmitted points (red) visible at Laguna Capri and at the treeline. Red boxes indicate the landscape elements, Laguna

Capri and Mount Fitz Roy, that allowed to identify the location of the Instagram post shown in Fig. 1.
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Figure 3. (A) Sentinel-2 autumn image at the Perito Moreno Glacier, Argentina, (B) Scene Classification Layer of the Sentinel-2 scene;
the green area, class 4, shows vegetation, (C) the masked Sentinel-2 scene and, (D) classification result with three classes (red =
Nothofagus pumilio, dark green = evergreen vegetation, light green = low vegetation/grassland).

the N. pumilio occurrence into one layer. The result was
further refined using three different masks. As the clas-
sification of the class “low vegetation/grassland” was
particularly reliable in the summer classification and the
classification of the class “evergreen” in the autumn clas-
sification, the result was masked by the result of these
classes. Therefore, any pixels that may have been mis-
classified have been removed. In the north of the study
area, N. pumilio occurs only at higher elevations, so that
other deciduous species at lower elevations were misclas-
sified as N. pumilio. To remove this occurrence, a Digital
Surface Model (DSM, ALOS Global Digital Surface Model
“ALOS World 3D — 30m (AW3D30)", Jaxa EORC 2023) was
used to remove occurrences below high-elevation mo-
no-species forests (thresholds: 800 m from 35°S to 40°S;
500 m from 40°S to 45°S; 250 m from 45° to 50°S).
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GBIF data and validation process

The large-scale remote sensing data on the occurrence of
N. pumilio was validated using the Instagram ground truth-
ing points. This process involved verifying whether the Insta-
gram ground truthing points align with the spatial distribu-
tion derived by Supervised Classification. Additionally, we
used occurrence data from the GBIF database to also vali-
date the spatial distribution and to compare it with the Insta-
gram ground truthing points visually, quantitatively and with
a sampling bias analysis. The GBIF database provides data
on species of all taxa according to the open-source principle.
The Secretariat in Copenhagen coordinates data from vari-
ous sources, such as museums, research publications, and
Citizen Science projects, and makes them available (GBIF
2024a). A search for the species Nothofagus pumilio (Poepp.
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& Endl.) Krasser resulted in 1,616 entries (as of 6 June 2024,
GBIF 2024b). These entries come primarily from the Citizen
Science platform iNaturalist, but also from other Citizen Sci-
ence projects, universities, botanical gardens/arboreta, state
institutions, and archives. All available data were download-
ed and filtered according to two criteria. First, coordinates
had to be provided, which led to the removal of 573 entries.
Second, the coordinate uncertainty had to be less than or
equal to 1,000 m, resulting in the removal of additional 485
entries. After filtering, 558 occurrences remained in the GBIF
dataset. The data sources included two Citizen Science
projects (iNaturalist with 546 occurrences and naturgucker
with 5 occurrences) and two museums (Museo Argentino
de Ciencias Naturales “Bernardino Rivadavia” with 6 occur-
rences and NTNU University Museum with 1 occurrence).
The sampling years range between 1981-2024. Instagram
ground truthing points and GBIF points were compared vi-
sually, quantitatively and by elevation using a DSM. The R
package “sampbias” (Zizka et al. 2021) was used to assess
whether the spatial sampling bias, influenced by site acces-
sibility to humans, is reduced in the Instagram ground truth-
ing point dataset. The package quantifies geographic bias
and estimates the sampling rate across the study area using
a Bayesian approach. Cities, roads, rivers, and lakes from
Natural Earth Data (https://www.naturalearthdata.com/)
were utilised as bias factors (gazetteers).

Usage of Al

ChatGPT (GPT-4 and GPT-3.5; available at https://chat.
openai.com/) was used to enhance sentence structure
and grammar in individual sentences.

Results

Instagram ground truthing approach

Numerous posts found by hashtags and location tags
were reviewed in 2021 and 2022, resulting in 1238 trace-
able occurrence points. In total we found 297 suitable
posts published between 2017 and 2022. Most posts
were published in 2021. A total of 460 points were placed
at the actual location of the posts, and 778 points were
placed in the visible background area (mainly autumn
coloured treeline locations). Posts with specific species
information using the hashtags #nothofaguspumilio or
#lenga provided 61 occurrence points. Posts with detailed
location information, where N. pumilio is recognisable,
contributed significantly to the occurrence data.

Comparison with GBIF data

Fig. 4 illustrates that the Instagram ground truthing points
from the structured approach are less scattered. This is
because the approach targeted the species’ distribution
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range and gaps between already set points, when search-
ing for specific locations, such as cities, national parks,
mountain peaks, and lakes within that range. In contrast,
the GBIF points are somewhat more scattered, with a few
separate “outliers” visible in the west. The average ele-
vation of the GBIF points is 559.82 m. Nevertheless, the
GBIF dataset also includes very high-elevation locations,
with the highest recorded location at 2123 m, compared
to 1952 m for the Instagram ground truthing points.
Instagram ground truthing points are higher on average
at 1049.25 m, as images with a visible treeline were
preferably selected. However, the differences in mean
elevation are mainly due to the fact that the GBIF points
were predominantly recorded in the southern part of the
study area (45°S to 55°S). Of the 558 points, 419 are lo-
cated in this area, with only 139 located to the north. In
contrast, the Instagram ground truthing points are more
homogeneously distributed: 661 of the 1238 points are
located between 45°S and 55°S, while 577 points are in
the northern part of the study area. However, the GBIF
data also supplement the Instagram ground truthing
data, particularly in the northernmost parts of the dis-
tribution area. 16 points are located further north of the
Instagram ground truthing dataset. In some cases, GBIF
data augment locations with Instagram ground truthing
points by adding several GBIF points. With 252 points
nearly half of the GBIF points are concentrated in a few
tourist/urban areas. For example, 159 points are locat-
ed in and around Ushuaia, 24 points in and around Bari-
loche, 53 points in Torres del Paine National Park, and
16 points solely at a parking area with viewing platform
for the Perito Moreno Glacier. To quantify this observed
bias, we used the “sampbias” package, which assesses
sampling bias based on factors (gazetteers) indicating
the influence of human-accessible locations (Zizka et al.
2021). The analysis revealed a significant impact of cit-
ies on both datasets, with the effect being higher for the
GBIF dataset (bias weight, IGTA = 0.3455, GBIF = 0.4611).
Additionally, roads and rivers exert a greater influence on
the GBIF dataset. The Instagram ground truthing dataset,
however, is more biased only in relation to lakes, which
can be attributed to numerous points in national parks
such as Torres del Paine and Los Glaciares. Fig. 5 pres-
ents the estimated sampling rates for both datasets. In
Fig. 5 (B) the undersampled area between cities can be
clearly seen. The bias weights and further results from
the “sampbias” analysis are included as supplemental
material (see Suppl. material 1).

Supervised classification

We found that the OpenCV Supervised Classification and
Random Forest algorithms demonstrated the best per-
formance. For the summer classification, the overall ac-
curacy was 0.93 with a Kappa value of 0.89, and for the
autumn classification, the overall accuracy was 0.97 with
a Kappa value of 0.96 (see Suppl. material 1 for details
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Figure 4. (A) 1238 points created by the Instagram ground truthing approach (IGTA) and (B) IGTA points (red) and 558 occurrence

points from GBIF database (yellow, GBIF 2024b).

on the Supervised Classification validation). The Super-
vised Classification of summer and autumn Sentinel-2
data resulted in a spatial distribution map of the species
N. pumilio from 35°10'S to 55°59'S (Fig. 6A). Detailed
strengths (Fig. 6B) and weaknesses (Fig. 7) can be re-
viewed in the following figures.

In particular, the area extending east of the Northern
and Southern Patagonian Ice Fields shows an accurate
classification result: Three tree species dominate these
areas, with N. pumilio and N. antarctica being deciduous
species and N. betuloides being an evergreen species
(Veblen et al. 1996). The occurrence of N. pumilio at
the treeline was clearly distinguished from the occur-
rence of the evergreen species N. betuloides (class 2)
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below the treeline and areas of low vegetation (class 3).
A clear distinction is also made in more arid regions in
the east of the study area. Here, N. pumilio occurrenc-
es are clearly separated from scrub- and grassland. In
the northern part of the study area, N. pumilio was re-
liably recorded at the treeline. However, in the valleys
of this area there are also deciduous species that are
misclassified as N. pumilio. We have removed these
occurrences by an elevation correction, so that only
occurrences of N. pumilio that could be unequivocally
identified as such remained. However, at higher eleva-
tion, it was not possible to distinguish between the two
deciduous and morphologically and ecologically similar
species, N. pumilio and N. antarctica.
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(A) IGTA dataset (B) GBIF dataset
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Figure 5. Visualised results of the “sampbias” analysis, indicating the sampling rate based on the influence of bias factors (gazetteers:
cities, roads, rivers and lakes). In comparison, the IGTA dataset (A) displays more homogeneous sampling, whereas the GBIF dataset
(B) shows undersampled areas, represented by dark blue regions.
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Figure 6. (A) Nothofagus pumilio occurrence determined by Supervised Classification and (B) occurrence of Nothofagus pumilio at
Perito Moreno Glacier, with a classification result corresponding to the natural conditions, shown in comparison with the autumn Sen-
tinel-2 scene in (C). All Instagram ground truthing points (blue, B) cover the identified occurrence.

Errors occur mainly due to high cloud cover and shadow
effects. At the southern tip of Chile and Argentina, high cloud
cover leads to data coverage problems. An area where the
Sentinel-2 scene is not fully available in the sensing period of
2019 to 2022 and other scenes were almost completely cov-
ered by clouds is shown in Fig. 7A). A case where data are
missing due to mountain shadows is visualised in Fig. 7B).
Using the SCL resulted in shadow or shaded valleys being
excluded from the analysis. Errors in validation with Insta-
gram ground truthing points occur precisely in these areas.

Validation

We validated the classification result with the Instagram
ground truthing and GBIF points by checking whether
the points match the spatial occurrence. Out of 1238
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Instagram ground truthing points, 1142 points are
congruent with the remote sensing data, which is
92.25 %. 96 points (7.75 %) lie outside the areas classified
as N. pumilio. These errors are probably due to mountain
shadows and missing data, as we show in the results.
Of the GBIF points, 157 (28.14 %) align with the spatial
occurrence, while 401 (71.86 %) do not. However, many
of these points lie just outside the determined spatial
occurrence. Errors can also occur due to shadows and
missing data. Other reasons may include the uncertainty
of the coordinates, the image being recorded on roads or
paths next to the occurrence rather than directly in the
plant stand, or individual trees or stands being recorded
in urban areas, evergreen forest stands, or open areas
with low vegetation, which the classification does not
categorise as N. pumilio areas. Fig. 8 provides two
examples that support these hypotheses.
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Figure 7. (A) A data gap at the southern tip of Chile. This is caused by missing Sentinel-2 data in the sensing period between 2019 and
2022 and very high cloud cover. (B) A valley with mountain shadows. To avoid errors in the spectral signals, these areas were removed
during analysis using the Sentinel-2 Scene Classification Layer. However, this leads to a gap in the classification result and errors in the

validation with the Instagram ground truthing points (blue).
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Figure 8. (A) Example of Nothofagus pumilio occurrence points from the GBIF database (GBIF points, yellow) with an uncertainty in
coordinates, so that the points are located in a lake and not at the actual sampling location and (B) GBIF points in Ushuaia, where some
raster cells, at locations of GBIF points, were not classified as vegetation.

Discussion

Instagram ground truthing approach as
novel method for ground truthing

The availability of sufficient, non-biased species occur-
rence data has always been a major problem for ecologi-
cal modelling studies (Bobrowski et al. 2021; Chauvier et
al. 2021). An increasing wealth of information on the oc-
currences of species is becoming available through glob-
al databases (Michener et al. 2012; Feng et al. 2019). As
field research is costly and time-consuming, open-source
occurrence databases like the GBIF, with data compiled
by Citizen Science are increasingly used in such studies
(Feldman et al. 2021). However, even these advances do
not replace the need for ground truthing procedures, as
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these data may contain spatial, temporal, and taxonomic
biases (Beck et al. 2014; Meyer et al. 2016). In this study,
we tested a novel Instagram ground truthing approach to
generate ground truthing points for the species N. pumilio
to validate species occurrence data derived from remote
sensing. Furthermore, the Instagram ground truthing
points were compared with existing GBIF data which led
us to the conclusion that our approach offers the possi-
bility to generate occurrence data with the potential to in-
crease and improve existing data.

We include the sampling of ground truthing points on
Instagram, and thus the re-use of social media posts in the
realm of Citizen Science, although this is controversially
discussed. According to the vignette study by Haklay et al.
(2021), approximately 50 % of respondents describe the
re-use of social media as Citizen Science. While Citizen
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Science requires the active involvement of participants
(Wiggins and Crowston 2011), in social media, content
creators are rarely aware that they are participating in a
study. Rather, permission to use imagery repurposed for
occurrence information was given passively or uninten-
tionally (Jari¢ et al. 2020). In addition, information about
one’s own study and its results (data transparency) is an
important point for Citizen Science (Haklay et al. 2021). In
our current work, we considered these criticisms as much
as possible. By creating an own public Instagram account
(www.instagram.com/nothofagus_pumilio_research/),
where our study and results are presented, we aim at
making a knowledge exchange possible. In addition, all
images sourced from publicly accessible profiles used for
our analysis were “liked” to draw the attention of content
creators to the account. Users whose images were used
in publications were asked for permission in advance and
informed of the purpose. Furthermore, Instagram’s chat
function was used to exchange information with Insta-
gram users about a photo’s location or the species itself.
Despite the discourse on terminology, we primarily focus
on discussing the advantages and disadvantages of Citi-
zen Science occurrence data sampling and exploring po-
tential improvements to our method.

N. pumilio is suitable for the Instagram approach due
to its distinctive characteristics and visibility in satellite
images at the treeline in mono-species forest stands. Ad-
ditionally, its occurrence in national parks, where tourists
often take photos, increases the number of Instagram
posts. The species’ autumn colouring further enhances
its aesthetic appeal, leading to even more posts. These
advantages, also benefit occurrence data sampling in un-
structured Citizen Science projects. In unstructured proj-
ects, user behaviour of Citizen Science participants leads
to observations with spatial bias (Di Cecco et al. 2021),
mainly concentrated in tourist locations or urban areas,
such as near cities or along roads (Reddy and Davalos
2003; Graham et al. 2004; Fithian et al. 2015; Chauvier et
al. 2021). Since the direct sampling location of the Citizen
Science participants is usually recorded, remote locations
that are difficult to access are not included. Other studies
have already addressed this spatial bias in GBIF data and
highlighted potential pitfalls for ecological conclusions
(Boakes et al. 2010; Beck et al. 2014; Meyer et al. 2016),
which can be further emphasized with the analysed data-
set where nearly half of the points are located in urban
or touristic locations. Points derived from Instagram are
also not free of this bias, but as the Instagram ground
truthing approach allowed to identify occurrence points
in the background of suitable posts and additional points
at autumn-coloured treelines, this spatial sampling bias is
efficiently reduced. Additionally, the use of Instagram, with
2 billion users worldwide (We Are Social et al. 2024) and
millions of photos uploaded daily (60 million daily uploads
by 2014, WirtschaftsWoche 2014), allows us to analyse
a large number of posts that are potentially suitable for
analysis. The large number of possibly suitable posts on
Instagram and a structured sampling approach further
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reduced spatial bias. After posts were found using spe-
cific hashtags (#nothofaguspumilio and #lenga), gaps be-
tween these occurrences were then closed by searching
for specific locations. Contributions were found where the
species was not specified by the Instagram user but was
clearly recognisable. This ensured that the study area was
covered as homogeneously as possible. The improvement
of the Instagram ground truthing approach compared to
other Citizen Science projects lies particularly in the inclu-
sion of images taken by non-experts, where the species
was recorded even though the social media user might not
be aware of it. Instagram exclusively shares photos and
videos and is one of the largest social media platforms, of-
fering the possibility to analyse a large quantity of suitable
posts. This is also reflected in the quantitative compari-
son. While the GBIF database contains 558 data points
from 1981 to 2024 after filtering, the Instagram ground
truthing approach was able to create 1238 points from
posts dated 2017 to 2022.

Data from Citizen Science projects are improving and
even approaching the quality of expert data (Mesaglio
and Callaghan 2021). For example, species identifica-
tions in iNaturalist, the main source of GBIF data used in
this study, must first be confirmed by a 2/3 consensus.
iNaturalist also offers suggestions for species identifi-
cation based on examples, which are reviewed and up-
dated by experts (curators). Only after occurrences are
considered complete and certain are they passed on to
the GBIF database for publication as valid data (Heberling
and Isaac 2018). Although the sampling bias in species
identification is decreasing, the sampling bias in terms of
coordinate accuracy still needs improvement. Coordinate
uncertainties result from georeferencing methods of mu-
seum data (Marcer et al. 2022) or weak satellite signals
while sampling with mobile devises (Uyeda et al. 2020).
We included GBIF data with an uncertainty of up to 1 km,
although such a deviation is substantial, especially in a
highly complex ecosystem like high mountains. The vali-
dation process showed that deviations in the coordinates
lead to errors. Precise filtering and selection of data from
databases are necessary. Although the manual creation
of occurrences during the Instagram ground truthing ap-
proach was time-consuming, this reduced such bias.

The limitation of the Instagram ground truthing ap-
proach is the time-consuming and non-automated pro-
cess. While sampling by Citizen Science projects is a
way of data collection in which data can be collected par-
ticularly quickly and cost-effectively with a large reach
(Kullenberg and Kasperowski 2016; Sumner et al. 2019),
the manual search for suitable posts and map transfer
is time-consuming. Other studies using social media to
investigate species occurrences carried out an automat-
ed search of suitable posts via the Application Program-
ming Interface (API) of the chosen social media plat-
form (e.g., Flickr: Alampi Sottini et al. 2019; August et al.
2020). The Instagram API is not as easy to access. At this
stage, manual analysis remains unavoidable when using
Instagram, and it is similarly required for platforms such
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as Facebook and Twitter, as demonstrated by O'Neill et
al. (2023). In the future, Al-based image recognition pro-
cesses could be an efficient way to find suitable posts on
Instagram more quickly. Recently, Instagram's terms of
usage were changed to allow for this purpose. By using
Instagram, users agree that their content may be analy-
sed by Al (Meta 2024).

Another limitation is the accuracy of the recording date.
Caution is needed regarding the exact timing of when a
photo was taken and posted on Instagram, as the publica-
tion date may not correspond to the actual date the photo
was captured. In our analysis, we primarily focused on re-
cent posts, covering the period from 2017 to 2022, while
the GBIF data includes records dating as far back as 1981.
Verifying the accuracy of the Instagram date is essential
(if necessary, by contacting the post creators), particularly
for temporal distribution analyses of species. “Historical”
data may not be available on Instagram at all. Additionally,
discrepancies in acquisition dates between Sentinel-2 and
Instagram data may introduce potential sources of error
in the validation process. We used Sentinel-2 data from
2019 to 2022, while Instagram posts date back to 2017.
Changes in forest stands, such as deforestation or forest
fires, could result in discrepancies.

Supervised classification

The occurrence in mono-species forest stands at the
treeline and the phenology of N. pumilio allows a precise
creation of training areas and a reliable result of the Su-
pervised Classification. With the Sentinel-2 level 2A data
in a resolution of 20 m we achieved an accurate classi-
fication over a very large study area of about 2000 km
latitudinal extent in the southern Andes. Such a resolu-
tion is sufficient for subsequent modelling, which often
uses climate data at a resolution of 30 arcseconds (~1
km), for example, WorldClim and Bioclim data (e.g., Bo-
browski et al. 2018). Furthermore, the high temporal res-
olution of the Sentinel-2 data provided many scenes, that
were analysed in the Supervised Classification. By mask-
ing the Sentinel-2 scenes with the SCL, sources of error
due to too many non-vegetation classes were avoided.
It also removed vegetation grid cells covered by clouds,
aerosols, and shadows, which can lead to classification
errors. Consequently, the three vegetation classes (1 =
N. pumilio, 2 = Evergreen vegetation, 3 = Low vegetation)
were trained using training areas that contained only the
spectral information of representative vegetation raster
cells. However, this also created gaps in the classifica-
tion result that could not be filled even with the large
number of Sentinel-2 scenes.

A different source of error is that in some cases
stands of N. antarctica were classified as stands of
N. pumilio in high and low elevation areas. The two de-
ciduous species are very similar, both phenologically and
ecologically, and often share the same range. Hybrids of
the two species are also possible (Soliani et al. 2015).
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Inclusion of N. antarctica occurrence data, e.g., data from
local forestry services (e.g data from Corporacién Nacio-
nal Forestal (CONAF), Chile and “Ordenamiento Territo-
rial de Bosque Nativo” (OTBN), Argentina), or repeating
the Instagram ground truthing approach for this species
could further specify the result. Nevertheless, the forest
type was determined with certainty at this stage. High
mountain deciduous forest was correctly identified even
if N. antarctica was partially included.

In more southerly areas, N. pumilio and N. antarctica
dominate as deciduous species. In the north, however,
many other deciduous species occur at lower elevations,
while N. pumilio occurs only at the treeline. For this rea-
son, an elevational correction of the result was necessary.
Occurrences below subalpine forest stands of N. pumilio
have been removed. Individual stands below these are also
less relevant for treeline modelling studies. The thresholds
(800 m, 500 m, 250 m) were estimated from literature data
and from the classification result in order to obtain the
most accurate classification result with the least data loss.

Conclusion

Citizen Science and social media-based occurrence sam-
pling is developing and improving rapidly, becoming an
important source of species occurrence data, especially
for large-scale modelling approaches where alternatives
are limited. However, resulting data are not free from bias
and need to be filtered and verified before being used in
applications such as ecological models. We conclude that
using social media posts on Instagram in a structured
Instagram ground truthing approach leads to less-biased
occurrence data for N. pumilio in comparison with GBIF
data. Sampling biases are further minimised by combin-
ing the Instagram ground truthing method with Supervised
Classification, as large-scale occurrence data are gener-
ated across the entire distribution range of the species,
rather than just in urban or tourist locations where most
pictures are taken building the basis for Citizen Scientist
observations or Instagram posts. We further conclude that
the Instagram ground truthing approach is a novel method
that can complement occurrence data sampling methods
and be applied to other suitable species. However, it is es-
sential that landscape elements are visible in the posts,
which is more likely for landscape images and less so for
detailed images of smaller herbaceous plant or animal
species. Future work could focus on creating an automat-
ed search for Instagram posts using Instagram APl and Al
technology to replace the time-consuming manual search
and further increase the availability of suitable posts. We
believe that using social media can unlock significant
potential for species occurrence data sampling and thus
promote research on species in remote and high-eleva-
tion regions. Furthermore, the spatial occurrence data
of N. pumilio enables presence-absence modelling ap-
proaches, that can provide detailed insights into the cur-
rent and future distribution of N. pumilio.
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Southern Andes
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Valid and unbiased species occurrence data are scarce, making their availability a challenge for ecological
modelling approaches. Remote sensing is a promising approach for increasing the availability of species
occurrence data, but it requires ground truthing for validation. Recently, Citizen Science and social media have
contributed to improving occurrence data sampling and ground truthing methods.

This dataset contains remote sensing occurrence data of the tree species Nothofagus pumilio, which was
validated by ground truthing points created using a novel Instagram ground truthing approach.

Details on the sampling approach can be found in the corresponding publication:

Werner M, Weidinger J, B6hner J, Schickhoff U, Bobrowski M (2024) Instagram data for validating Nothofagus
pumilio distribution mapping in the Southern Andes: A novel ground truthing approach. Frontiers of
Biogeography 17: €140606. https://doi.org/10.21425/fob.17.140606 (3)

Spatial occurrence data

= Raster data in tiff format (value: 1= N. pumilio occurrence, NA (-99999) = absence of N. pumilio)
= WGS84, UTM Zone 18S projection

Instagram ground truthing approach

= Shape data (points) and .xIsx table provided in a zip folder

= “origin”: GTA and GTA2 refer to Instagram ground truthing points that were sampled at different times
(GTAin 2021 and GTA2 in 2022). "Additional” points are points that were mainly set in (neighbouring)
valleys with autumn-coloured treelines adjacent to ground truthing points.

= “Validation”: 1= Instagram ground truthing point covers the spatial occurrence of N. pumilio, NA (-99999)
= point is not located on the N. pumilio occurrence data

= “Instagram Link”: Link to the Instagram post analysed. Please note: Users can delete their posts or change
their privacy settings at any time. Not all posts may be accessible.

Preview v

Instagram_ground_truthing_points.zip

[Minstagram_ground_truthing_points.dbf 124.0kB
[instagram_ground_truthing_points.mshp 73kB
[instagram_ground_truthing_points.prj 605 Bytes
[Instagram_ground_truthing_points.shp 34.8kB
[Instagram_ground_truthing_points.shx 10.0 kB
[ Instagram_ground_truthing_points.xlsx 74.9 kB
Files (15.2 GB) v

Name Size

Instagram_ground_truthing_points.zip 120.5 kB @ Preview & Download

md5:973497bd26486ead34108937d9446bcd @

Nothofagus_pumilio_occurrence.tif 15.2GB @ preview & Download

md5:9461c860d34c3da87da0100b70fa6a19 @
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1 Climate Geography (CliG), Albert-Ludwigs-Universitat Freiburg, Freiburg i. Breisgau, GermanyROR 2
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Summary

Systematical accessing, downloading, and pre-processing climatological data from CHELSA
(Karger et al., 2017, 2021; Karger et al., 2018) and WorldClim (Fick & Hijmans, 2017; Hijmans
et al., 2005) remains a challenge in different environmental disciplines like Species Distribution
Modelling (SDM) and climate studies. This package provides a set of functions that allow easy
access and customized selection of climate data sets. Besides downloading the raw data, also
functionalities to complete pre-processing steps like clipping, rescaling, and file management
are available. The applications of the package range from one-time-use to implementing the
functions in automatic processing of scientific workflows.

Statement of need

The climatology datasets CHELSA and WorldClim contribute as crucial data bases for studies
in various scientific fields. Primarily used in studies with focus on ecology (~4,200 publica-
tionsl), environmental sciences (>2,200 publications), and biodiversity conservation (>1,600
publications), usages extend to a wide variety of scientific disciplines. The main usage of
the datasets, however, lies in Species Distribution Modelling (SDM) and Ecological Niche
Modelling (ENM). Their free availability and frequent citation in widely referenced papers on
SDM and ENM strategies (e.g., Randin et al., 2020; Zurell et al., 2020) have contributed to
their widespread adoption, facilitating comparability between modelling studies at different
spatial and temporal scales.

The high resolution global climatological datasets (30 arc-sec. ~ 1km) include downscaled and
bias-corrected data from 30-year time-periods, providing always monthly mean, minimum, and
maximum values of temperature and monthly precipitation sums for analysis>. Additionally, 19
bioclimatic parameters are accessible, which enable conclusions about seasonality.

Since their initial releases in 2018 (CHELSA V1.2), the CHELSA (Karger et al., 2017; Karger
et al., 2018) datasets were cited in more than 2,800 peer reviewed papers, indexed on the Web
of Science (source, Aug. 2025). The latest release of WorldClim 2 in 2017 (Fick & Hijmans,
2017) was cited more than 10,600 times (source, Aug. 2025).

Following the Web of Science Categories, citations of Karger et al. (2018) (Data from CHELSA 2.1) had
1,155 citations in the field of Ecology. The WorldClim 2 data (Fick & Hijmans, 2017) has 3,044 citations in the
same Web of Science category. Both numbers are of the date 17.05.2025. The “Web of Science Categories are
assigned at the journal level”, meaning the publishing journal defines the category (source).

2Function Chelsa.timeseries.download supports also the download of potential evapotranspiration (PET)
from CHELSA 2.1 (Karger et al., 2018)

Jentsch et al. (2025). ClimDatDownloadR: Accessing Climate Data Repositories for Modelling. Journal of Open Source Software, ;VOL?(;ISSUE?), 1
iPAGE? https://doi.org/10.xxxxxx/draft.


https://orcid.org/0000-0003-4955-8358
https://orcid.org/0000-0003-4354-7711
https://orcid.org/0009-0005-4965-7024
https://orcid.org/0000-0002-9660-1614
https://ror.org/0245cg223
https://ror.org/00g30e956
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3847/xxxxx \TU\textless - update this with the DOI from AAS once you know it.
https://doi.org/10.3847/xxxxx \TU\textless - update this with the DOI from AAS once you know it.
https://doi.org/10.3847/xxxxx \TU\textless - update this with the DOI from AAS once you know it.
https://www.worldclim.org/data/bioclim.html
https://www.worldclim.org/data/bioclim.html
https://www.worldclim.org/data/bioclim.html
https://www.webofscience.com/wos/woscc/summary/1910f819-cfa2-430f-8e84-8882fbb25463-014c01bbb6/date-descending/1
https://www.webofscience.com/wos/woscc/summary/97f360a0-0e1e-4bd1-bf33-c34083cb6c8c-014c017f6b/date-descending/1
https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Core-Collection-Web-of-Science-Categories?language=en_US
https://doi.org/10.xxxxxx/draft

The Journal of Open Source Software

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

CHELSA and WorldClim datasets are commonly utilized in models predicting the potential past,
current, and future distribution of species, particularly in studies on monitoring distribution
shifts under climate change (e.g., Bobrowski et al., 2017; Twala et al., 2023; Werner et al.,
2025), tracking endangered species and planning conservation strategies (e.g., Franklin, 2013;
Muscatello et al., 2021), assessing the spread of invasive species (Srivastava et al., 2019),
and management strategies in forestry and agriculture (e.g., Agbezuge & Balakrishnan, 2024;
Pecchi et al., 2019).

Recent studies have also assessed the performance of these datasets in SDM/ENM approaches,
highlighting their respective strengths and limitations (e.g., Bobrowski, Weidinger, & Schickhoff,
2021; Bobrowski, Weidinger, Schwab, et al., 2021; Bobrowski & Schickhoff, 2017; Datta et al.,
2020; Rodriguez-Rey & Jiménez-Valverde, 2024). Given that dataset performance may vary
depending on the research scope, it is recommended to test multiple datasets to to ensure
their suitability for the research target and region.

For these applications, ClimDatDownloadR offers key advantages by enabling efficient retrieval
from both dataset providers and pre-processing steps such as partial selection of parameters,
months, and bioclimatic parameters, temporal subsets of timeseries, customized extent, and
included file management as well as an output of the provider's respective citation file. In
addition to time-saving aspects, the storage usage and management played a key role in the
development of the ClimDatDownloadR.

The implemented data management creates a hierarchical, clear, and reproducible data structure
for analyses during the processing. Downloaded data can be kept as is, deleted, or packed
in a zip-archive file. All of raised ease-of-use add-ons contribute to the primary goal of
ClimDatDownloadR to enable more scientists and other users or organisations to download and
pre-process CHELSA and WorldClim data to gain more experience in geodata handling and
applications.

Since the official release in 2023, the use of ClimDatDownloadR steadily increased (Bobrowski,
Weidinger, & Schickhoff, 2021; Chen et al., 2025; Costa-Saura et al., 2025; Maitner et al.,
2023; Santi et al., 2024; Twala et al., 2023; Werner et al., 2025). Further, the need of having
software for downloading and pre-processing of freely available data is shown by the steady
stream of interested visitors on ResearchGate (3,399 unique visits, 04.08.2025), Zenodo (>1000
views, > 150 downloads) (Jentsch et al., 2023), and citations in peer-reviewed papers.

The package implements the datasets CHELSA V1.2 , V2.1, WorldClim V1.4, and V2.1. More
specifically the CHELSA Climatologies, Timeseries, CRU Timeseries (CHELSAcruts), and
WorldClim Histclim datasets for present data. For past data, the CHELSA PIMP3 data from
CHELSA V1.2 is also available. For future data, both CHELSA and WorldClim provide datasets
incorporating various CMIP 5 and 6 global circulation models with various emission scenarios
and reference periods. An overview as well as a introduction to the usage of the functions is
provided in the Readme of the package on GitHub.
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Abstract

Although treeline ecotones are significant components of vulnerable mountain ecosystems
and key indicators of climate change, treelines of the Southern Hemisphere remain largely
outside of research focus. In this study, we investigate, for the first time, the current and
future distribution of the treeline species Nothofagus pumilio in the Southern Andes using
a Species Distribution Modelling approach. The lack of modelling studies in this region
can be contributed to missing occurrence data for the species. In a preliminary study, both
point and raster data were generated using a novel Instagram ground truthing approach
and remote sensing. Here we tested the performance of the two datasets: a typical binary
species dataset consisting of occurrence points and pseudo-absence points and a continuous
dataset where species occurrence was determined by supervised classification. We used
a Random Forest (RF) classification and a RF regression approach. RF is applicable for
both datasets, has a very good performance, handles multicollinearity and remains largely
interpretable. We used bioclimatic variables from CHELSA as predictors. The two models
differ in terms of variable importance and spatial prediction. While a temperature variable
is the most important variable in the RF classification, the RF regression model was mainly
modelled by precipitation variables. Heat deficiency is the most important limiting factor
for tree growth at treelines. It is evident, however, that water availability and drought
stress will play an increasingly important role for the future competitiveness of treeline
species and their distribution. Modelling with binary presence-absence point data in the RF
classification model led to an overprediction of the potential distribution of the species in
summit regions and in glacier areas, while the RF regression model, trained with continuous
raster data, led to a spatial prediction with small-scale details. The time-consuming and
costly acquisition of complex species information should be accepted in order to provide
better predictions and insights into the potential current and future distribution of a species.

Keywords: climate change; Nothofagus pumilio; Random Forest algorithm; Species Distribu-
tion Modelling; Southern Andes; treelines
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1. Introduction

The application of modelling approaches, including Species Distribution Modelling
(SDM), has recently rapidly increased in order to generate insights into the sensitivity and
shifts in treelines in response to climate change [1]. Warming rates in high mountain regions
are, on average, greater than the global mean, resulting in ecosystems being particularly
stressed by changing climatic conditions [2]. The natural elevational position of the treeline
is defined by heat deficiency [3] and, globally, is approximately aligned with the 6.4 °C
isotherm [4]. Consequently, treeline shift in response to warming is frequently investigated
and widely recognised as a key indicator of climate change [5]. However, observed responses
are rather inconsistent, spanning the entire gradient from static treelines with insignificant
responses to dynamic treelines with substantial treeline advance [6-8]. Globally, the pro-
portion of advancing elevational treelines has been increasing from 52% [9] to 66% [10,11].
In the Northern Hemisphere, 90% of treelines are reported to be advancing [12], whereas
treelines in the Southern Hemisphere are responding weakly to climatic changes [11]. Certain
relationships between treeline form, which can vary between gradual and abrupt, and treeline
dynamics have been suggested [13]. Factors such as seedling mortality and dieback processes
play critical roles in shaping treeline form and influencing possible shifts [14]. While grad-
ual treelines are more likely to advance to higher elevations, abrupt treelines, as formed by
Nothofagus in the Southern Hemisphere, are more stable due to increased seedling mortality
above closed forest stands or due to anthropogenic disturbances [14].

Treelines and the shift in treelines have extensively been studied in recent decades [1,15];
however, comparatively few studies focused on treelines of the Southern Hemisphere [10,11].
A recent review study examining the impact of climate change on Andean biomes found that
those in the southern Andes remain the least studied [16]. For example, to our knowledge,
there is no SDM study investigating the entire current and future distribution of important
treeline species in the Southern Andes. Nothofagus pumilio (Poepp et Endl.) Krasser (southern
or lenga beech) is forming an abrupt treeline over approximately 2000 km latitudinal extent
from 35° S to 56° S in the Southern Andes. The treeline is naturally abrupt due to seedling
dieback outside the protecting tree stands [17], and in some cases the treeline is influenced
by anthropogenic disturbances like grazing, forestry or fire, resulting in more diffuse treeline
ecotones [14]. The uppermost trees are often in a krummholz growth form [18]. The treeline
follows a 6.6 °C isotherm [19], while increases from 1.2 to 4.0 °C in mean annual temperatures
and decreases of up to 30% in mean annual precipitation are predicted for high-elevation
catchments in the southern Andes [20,21]. It is therefore of interest to study the changes in the
Southern Andean treeline as a result of global warming.

Recent research has explored changes at the treeline of N. pumilio through small-scale
dendrochronological and experimental studies [22-26]. N. pumilio is highly sensitive to
variations in temperature and precipitation, which are often associated with phase shifts in
Antarctic Decadal Oscillation (AAO) also known as the Southern Annular Mode (SAM), the
El Nifio Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO), as highlighted
in recent studies [22-24]. Increases in radial growth due to rising temperatures have been
observed when precipitation levels are sufficient [22,25,26]. Warm and dry springs lead
to an increased tree growth at humid treeline sites but to a decrease in tree growth and
an increase in tree mortality due to drought at drier treeline sides. Furthermore, high
precipitation in late spring often connected with a prolonged snow cover results in a
decrease in tree growth [22]. Accordingly, tree growth is highest at mesic sites, followed
by wetter sites, while growth rates at drier sites continue to decline [25]. Suitable climatic
conditions, particularly rising mean spring and summer temperatures, also promote the
establishment of N. pumilio seedlings above the current treeline, on both humid and dry
slopes, thereby facilitating treeline advance [23,24]. Additionally, warmer springs can
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improve seed quantity and quality [27] which further increases the possibility of seedlings
becoming established. However, drought or soils with low water capacity are important
controlling factors, causing drought stress for seedlings and adult trees [28] and ultimately
preventing a treeline advance.

In this study, we model the potential current and future distribution of N. pumilio based
on the species’ suitable bioclimatic conditions, following fundamental concepts of Species
Distribution Modelling (SDM). SDM models are typically constructed using binary species
occurrence data and environmental variables, often climate data [29]. While global climate
datasets, such as the CHELSA bioclimatic variables that we use here [30,31], are readily
available, the availability of unbiased species occurrence data is a major challenge for SDM
studies. Field studies, which can generate reliable occurrence data, are both time-consuming
and costly. Moreover, many study sites, particularly in topographic complex regions like
high mountains are inaccessible. When species data are not collected through field studies,
they are primarily obtained from open-source databases such as the Global Biodiversity
Information Facility (GBIF). Although the quantity [32] and quality [33] of data in databases
are increasing, these sources often still contain various forms of bias, as highlighted in
recent studies [34,35]. Consequently, using these point occurrences in SDM approaches,
without addressing these issues, can lead to inaccurate or misleading model results [36]. A
promising approach for the investigation of large study areas, especially in regions with
limited accessibility, is the use of remote sensing to survey species occurrences [37-39].
Remote sensing data on a species can provide more complex, continuous data and thus
further modelling opportunities. However, there is still a need for ground truthing to verify
that the species of interest are actually present in the remotely sensed area. In a previous
study, we developed an Instagram ground truthing approach, that created less-biased
occurrence points, that were subsequently used to validate remote sensing occurrence data
of N. pumilio, resulting in two valid occurrence datasets [40].

Here, we present an initial holistic approach to model the potential distribution of
N. pumilio based on two input datasets: a binary point dataset and a continuous raster
occurrence dataset derived from supervised classification. While we adopted a standard
modelling approach, we also test an innovative technique incorporating continuous raster
data. We hypothesise that this approach will yield more detailed insights into the species’
potential current and future distribution due to the increased complexity of input data.

To investigate the effect of different species input datasets, our aims are (1) to model
the current distribution of N. pumilio under prevailing climate conditions, and (2) assess
potential range shifts under climate change conditions, and (3) evaluate model performance
and model complexity with regard to ecological site factors.

2. Materials and Methods
2.1. Study Species and Study Area

N. pumilio is the most orophilous and widespread species of the Nothofagus genus on
the South American continent, extending from 35° S to the southernmost tip of Tierra del
Fuego (see Figure 1). As an indicator of the orotemperate belt, it forms mono-species forests
at the treeline [41]. The species is sometimes accompanied by the morphologically and
ecologically similar species N. antarctica, with which it can form mixed stands. Hybrids
between the two species are also known [42]. The evergreen N. betuloides dominates in the
lowlands and especially in the (hyper-) humid west.
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Figure 1. Point and raster occurrence data of Nothofagus pumilio created by a novel Instagram ground
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truthing approach [40].

The study area is characterised by two extreme gradients. One is the temperature
gradient, which results from the elevation of the southern Andean Cordillera (up to 3000 m),
and the other is the precipitation gradient, which is considered to be the most extreme
precipitation gradient on Earth. While precipitation extremes of up to 10,000 mm/year
occur on the windward side, west of the Andes, there is a precipitation decrease to less
than 300 mm/year on the leeward side, east of the Andes [43]. Northern Patagonia has
been substantially affected by the effects of climate change. Mean annual temperatures
have risen by up to 1 °C since 1950. While there are no negative trends in precipitation
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in most areas, precipitation totals are decreasing by 5% in Northern Patagonia. Climate
models predict a decrease in precipitation of up to 30% and an increase in temperature of
between 1.5 and 3 °C [21].

2.2. Input Data
2.2.1. Species Data

The two species occurrence datasets used were generated in a previous study using a
novel Instagram ground truthing approach (IGTA, [40]) designed to reduce sampling and
spatial bias often present in existing databases [34,44]. The IGTA aimed at reducing this bias
by using a very public and worldwide used social media platform (https:/ /www.instagram.
com/) and by including remote sensing data. The study species and area are particularly
well-suited for an Instagram-based analysis, as deciduous N. pumilio forms mono-species
forests at the treeline, making it an especially attractive photo motif in autumn and occurs
in a highly touristic region, where tourists and hikers frequently take and share photos
on social media. We compiled 1238 occurrence points extending from 36.88° S to 55.03° S
by searching for suitable posts uploaded between 2017 and 2022 with the species and the
photos’ location clearly identifiable, as well as a strict catalogue of criteria. Spatial bias
commonly present in datasets derived from citizen science or social media, typically due
to sampling near urban centres or in easily accessible areas [45,46], was reduced through
the IGTA. This reduction in bias is primarily due to the high number of posts, which
included not only intentional but also incidental records of the species. Furthermore, owing
to the ecology and phenology of N. pumilio, occurrence points were identifiable not only
at the exact location where the photo was taken, but also in the background, where the
abrupt treeline and the species” autumn colouring were visible. Although some spatial bias
remains, since posts are still limited to human-accessible areas, analysis using the R package
“sampbias” (version 2.0.0) [47] indicates that the bias was effectively reduced in comparison
to 558 points (after filtering for missing coordinates and a coordinate uncertainty of 1 km)
from often used open-source database Global Biodiversity Information Facility (GBIF).
In addition, the manual georeferencing of occurrence points further reduced coordinate
uncertainty. To minimise spatial bias, remote sensing data generated using Sentinel-2 level
2A data and supervised classification were created and subsequently validated using the
IGTA occurrence points as ground truth. Training areas were defined and trained using all
relevant spectral bands (bands 2 to 7, 8a, 11, and 12) at a spatial resolution of 20 m. Only
vegetation raster cells were included in the supervised classification, which distinguished
between three classes (deciduous vegetation/N. pumilio, evergreen vegetation, and low
vegetation/grassland). An altitude correction was applied to ensure that only deciduous
vegetation in high elevation was classified as N. pumilio. With this approach, two datasets
were created: a point occurrence dataset and a spatial raster dataset of the species N. pumilio
(Figure 1).

For the IGTA point dataset, the first step in modelling was to ensure that only one
point was set in a raster cell at the target resolution of 30 arc sec, ~1 km (raster cell size
of the climate data). After deleting duplicate points, 999 points remained in the model
as “presence” data. For “absence” data, 2000 pseudo-absence points (PA) were generated.
The number and the location of PA points have great influence on the model output [48].
We initially tested a PA ratio of 1:1 as suggested for RF models in relevant literature [49].
However, using only 1000 PA points across a large study area resulted in substantial
overprediction by the RF classification model, a known issue [49]. Consequently, we
adopted a ratio of 1:2 (2000 PA points). The process of PA creation involved first constructing
an alpha hull around the presence points and applying a 1 km buffer, within which PA
points were randomly generated. To prevent the overwriting of occurrence cells during
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this process, a 5 km buffer was placed around the presence points. For the final modelling
dataset, values from the climate dataset were extracted for both presence and absence
points. The two datasets were then merged and supplemented with a binary indicator
variable specifying whether N. pumilio was present (presence = 1) or absent (absence = 0).

The second dataset was derived from a supervised classification (Kappa values: sum-
mer scenes classification 0.89, autumn scenes classification 0.96), in which occurrences of
deciduous forest at the treeline were classified to represent the distribution of N. pumilio [40].
Gaps in the dataset resulted from missing Sentinel-2 data or areas affected by shadows and
cloud cover. The original dataset has a spatial resolution of 20 m. For modelling purposes,
N. pumilio cover values were aggregated to the target resolution (~1 km), resulting in
percentage values ranging from close to 0% up to a maximum of 99.96%. The raster data
covers a latitudinal range from 33.49° S to 56.27° S.

2.2.2. Bioclimatic Predictors

Global climatological datasets such as CHELSA [30,31] and Worldclim [50,51] are
standards for large-scale SDM studies. Due to their free accessibility, the datasets are widely
used and cited, allowing for some comparability of modelling studies. Since other studies
suggest that the CHELSA dataset performs better in topographically highly complex areas
such as high mountains [52,53], we decided to use this dataset. We utilised the 19 Bioclim
variables from version 2.1 with a 30 arc sec (~1 km) resolution [30,31]. The dataset includes
temperature and precipitation variables calculated on a daily, monthly, or annual basis,
averaged from climate records for the period 1981 to 2010. The “ClimDatDownloadR” R
package was used to download and pre-process the data (version 0.1.7.6) [54,55]. As the
Bioclim variables were highly multicollinear, we decided to use a subset of the data. To
enhance ecological interpretability, we included only variables derived for quarters. This
allows for a better ecological understanding of the bioclimatic conditions at the treeline
than variables for individual months or annual averages, as conclusions can be drawn
about seasonality [56]. At high elevations, the growth and survival of treeline species
are primarily determined by conditions during the short growing season [1]. Quarterly
variables can isolate this critical period, whereas annual means combine summer and
winter extremes, potentially obscuring the actual limiting factors. To further mitigate
multicollinearity and exclude irrelevant variables, we applied the “VSURF” R package
(version 1.2.0), which follows a two-step procedure. First, it identifies variables relevant
for interpretation, and subsequently, it eliminates redundant variables for prediction [57].
Through this approach, two additional variables were removed from the initial subset. The
variables used in the model are listed and described in Table 1.

For future prediction, CHELSA version 2.1 provides selected CMIP6 scenarios of
the bioclimatic variables. Future Bioclim variables were created using representative
concentration pathway (RCP) scenarios, that represent a range of potential greenhouse
gas emission pathways, from a low-emission (RCP2.6) to a high-emission development
(RCP8.5). We used the SSP126 (RCP2.6), SSP370 (RCP7), and SSP585 (RCP8.5) scenarios for
the years 2041 to 2070 and 2071 to 2100 from the MPIESM1-2HR model [31].
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Table 1. CHELSA Bioclim variables calculated for quarters and seasonality variables used in the
analysis (X). The variables bio 9 and bio 16 have been excluded by the VSURF analysis.

Short Name Long Name Used in Analysis
bio 4 temperature seasonality [°C/100] ! X
. mean daily mean air temperatures of the
bio 8 o A
wettest quarter [°C]
bio 9 mean daily mean air tempfratures of the excluded by VSURF
driest quarter [°C]
bio 10 mean daily mean air tempeiatures of the X
warmest quarter [°C]
bio 11 mean daily mean air temperatures of the X

coldest quarter [°C]
bio 15 precipitation seasonality [kg m~2] 2 X
mean monthly precipitation amount of the

bio 16 wettest quarter [kg m~2 month ] excluded by VSURF
bio 17 mean monthly precipitation amount of the X
driest quarter [kg m 2 month™1]
bio 18 mean monthly precipitation amount of the X
warmest quarter [kg m~2 month™1]
bio 19 mean monthly precipitation amount of the X

coldest quarter [kg m~2 month™!]

! standard deviation of the monthly mean temperatures; 2 the coefficient of variation is the standard deviation of
the monthly precipitation estimates expressed as a percentage of the mean of those estimates.

2.3. Model Approach and Model Algorithm

We follow the basic concepts of Species Distribution Modelling (SDM) to analyse the
relationship between the species’ current distribution and suitable abiotic conditions, as
well as its potential future distribution under climate change scenarios [58,59].

Several algorithms have been established for SDMs. In addition to linear regression
approaches such as Generalised Linear Models (GLMs), Generalised Additive Models
(GAMs), and Multivariate Adaptive Regression Splines (MARS), machine learning algo-
rithms such as Random Forest (RF), Maximum Entropy (MaxEnt), and Artificial Neural
Networks (ANN) are established methods [60]. We chose RF because it can be used for
classifying binary data (Random Forest Classification), as well as for regression approaches
with continuous data (Random Forest Regression) [61]. Although other algorithms would
also be suitable for modelling the point occurrences, using the same algorithm for both
datasets allows for direct comparison of the approach, subsequent analyses, and consistent
interpretation of the results. Furthermore, machine learning approaches such as RF not
only demonstrate strong predictive power and model performance but are also unaffected
by multicollinearity, making them particularly well-suited for climatic datasets with many
highly correlated variables [62]. However, some authors criticise that the interpretability of
the models decreases as machine learning methods are “black boxes” compared to simpler
linear approaches (e.g., GLMs) [56,60,62]. Random Forest combines both strengths: it is
a robust and powerful approach that remains largely interpretable. In the following, we
analysed two models: (1) RF classification with the point dataset and (2) RF Regression
with continuous data from the raster dataset. We apply k-fold spatial cross-validation
to identify the optimal model, using appropriate validation metrics for each modelling
approach. Model outcomes are interpreted using variable importance measures, partial
dependence plots, and SHAP (Shapley Additive Explanations) analysis. The results of the
models are subsequently compared visually.

Data processing and modelling were conducted in R (version 4.4.1 [63]). Maps were
created using SAGA GIS (version 9.3.2 [64]) and ArcGIS Pro (version 2.7.0 [65]).

2.4. Model Calibration and Evaluation

Spatial data, such as species and climate data, are often spatially autocorrelated [66,67].
Consequently, when spatial dependence is present in a dataset, spatial (or block) cross-
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validation is recommended [68]. We performed spatial cross-validation using the R package
“blockCV” (version 3.1.5) [69]. For 5-fold cross-validation, the data is initially partitioned
into spatial blocks of a predefined size, and each block is randomly assigned to one of
five folds (k = 5). The model is then trained on four folds (k - 1) and evaluated on the
remaining fold. This procedure is repeated five times, ensuring that each fold serves as
both a training and a testing set. To determine an appropriate block size, we initially used
the function “cv_spatial_autocor” to calculate the spatial autocorrelation of our species
data. Spatial autocorrelation differed slightly between the two datasets (29.6 km for the
point dataset and 24.4 km for the raster dataset). Therefore, we opted for a larger block
size of 50 km to minimise potential autocorrelation effects and to ensure comparability
between the two datasets. The spatial arrangement of the hexagonal blocks is displayed
in the Appendix A (Figure A1). To validate the models, we used threshold-independent
metrics such as AUC and overall accuracy, as well as threshold-dependent metrics like
the True Skill Statistic (TSS), using the maximum sensitivity plus specificity threshold,
for the RF classification approach. For the RF regression approach, the root mean square
error (RMSE) and the coefficient of determination (R?) were used as validation metrics. In
addition to evaluating model performance on the cross-validation splits, we also assessed
the models” hyperparameters. We evaluated models with different numbers of variables
considered at each split (mtry: 2, 3, 4) and varying numbers of trees (ntree: 100, 300, 500).
Through hyperparameter tuning in combination with spatial cross-validation, we were able
to identify the optimal model while minimising the risk of spatial overfitting. The model
with the highest average AUC resp. R? was selected and subsequently used to predict the
potential current and future distribution of N. pumilio across the entire dataset.

3. Results
3.1. Current Distribution Range of N. pumilio

The optimal model for predicting the current distribution of N. pumilio was identified
using 5-fold spatial cross-validation. The cross-validation results for both models are
presented in Tables Al and A2 in the Appendix A. Model quality was assessed based
on the mean validation metrics across all five folds (for the RF classification model, the
optimal model was selected based on the highest AUC; for the RF regression model,
selection was based on the highest R?). For the RF classification model, the best-performing
model, with hyperparameters mtry = 2 and ntree = 500, achieved the highest mean AUC of
0.9279 (£0.0257, 95% confidence interval (CI): 0.8960-0.9599), an overall accuracy of 0.8466
(£0.0537, 95% CI: 0.7799-0.9132), and a TSS of 0.6148 (£0.1582, 95% CI: 0.4183-0.8112). The
final model was subsequently trained using these hyperparameters on the entire dataset.
For the RF regression model, the highest mean R? determined by spatial cross-validation
was 0.3933 (£0.0409, 95% CI: 0.3425-0.4441), also indicating mtry = 2 and ntree = 500 as the
optimal hyperparameters. The models trained with the optimal hyperparameters and on
the complete datasets were then used for variable importance analysis as well as for spatial
predictions of current and future distributions.

Bioclimatic variables bio 8 (mean daily mean air temperature of the wettest quarter)
and bio 19 (mean monthly precipitation amount of the coldest quarter) emerged as the
most influential predictors for model accuracy of the RF classification model (Accuracy
Importance ranking, from most to least important bioclimatic variable: bio 8 (mean daily
mean air temperatures of the wettest quarter), bio 19 (mean monthly precipitation amount
of the coldest quarter), bio 15 (precipitation seasonality), bio 17 (mean monthly precipitation
amount of the driest quarter), bio 4 (temperature seasonality), bio 10 (mean daily mean
air temperatures of the warmest quarter), bio 18 (mean monthly precipitation amount
of the warmest quarter), and bio 11 (mean daily mean air temperatures of the coldest
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quarter)). Additionally, Gini Importance was calculated to assess the most frequently
used variables for decision at nodes, with bio 11 (mean daily mean air temperatures of
the coldest quarter) and bio 8 (mean daily mean air temperatures of the wettest quarter)
emerging as the primary split criteria for the RF classification model (Gini Importance
ranking: bio 11, bio 17, bio 8, bio 10, bio 18, bio 19, bio 4, bio 15). While a temperature
variable was the most important predictor in the RF classification model, precipitation-
related variables, particularly bio 15 (precipitation seasonality) and bio 19 (mean monthly
precipitation amount of the coldest quarter), played a dominant role in the RF regression
model (Accuracy Importance ranking: bio 15, bio 19, bio 4, bio 11, bio 10, bio 8, bio 18,
bio 17). Gini Importance analysis for the RF regression model indicated that bio 11 (mean
daily mean air temperatures of the coldest quarter) was the most critical variable for splits,
followed by bio 15 (precipitation seasonality) (Gini Importance ranking: bio 11, bio 15, bio
8, bio 18, bio 4, bio 10, bio 19, bio 17).

A RF model consists of multiple individual decision trees, making it challenging to
interpret the specific thresholds used at each node. However, the extraction of partial
dependence plots (PDP) for individual variables allows for an interpretation of the influ-
ence of specific bioclimatic predictors within the RF model. We employed the “partialPlot”
function from the “randomForest” R package (version 4.7-1.2, [70]) to assess the influence of
the most important variable in each model. The resulting PDPs are presented in Figure 2a,c.
For the RF classification model, the x-axis displays the values of the bioclimatic variable
bio 8 (mean daily mean air temperatures of the wettest quarter), while the y-axis represents
the predicted probability for class 1 (i.e., presence of N. pumilio). At low temperatures in
the wettest quarter (below —5 °C), the predicted probability of occurrence is high, clearly
decreasing towards 5 °C and remaining consistently low above this threshold. This indi-
cates that the model predicts the presence of N. pumilio primarily in colder environments
during the wettest quarter. In the RF regression model, the x-axis shows the values of bio
15 (precipitation seasonality), and the y-axis represents the predicted cover values of N.
pumilio. The plot reveals greater variability, but cover values are relatively high in areas
with moderate precipitation seasonality (0% to 30%). However, there is a marked decline in
predicted cover values in regions with high precipitation seasonality (70% to 100%). Two
key assumptions emerge: cover values are greater in areas with lower precipitation sea-
sonality, suggesting that N. pumilio prefers regions with more stable precipitation patterns
and the species is less likely to occur in areas with highly variable precipitation, e.g., with
phases of drought.

These effects are also evident in the SHAP summary (bee swarm) plots, created using
the “fastshap” R package (version 0.1.1) [71]. SHAP (Shapley Additive Explanation) analy-
sis, which originates from cooperative game theory, provides a comprehensive overview of
the contribution of each predictor to the model outcome (see Figure 2b,d) [72]. In the RF
classification model, the influence of temperature variables is consistent: high temperatures
have a negative effect on the model (indicating absence), while low temperatures have a
positive effect (indicating presence). In the RF regression model, the influence of tempera-
ture variables varies. For bio 8 (mean daily mean air temperatures of the wettest quarter)
and bio 11 (mean daily mean air temperatures of the coldest quarter), low temperatures
also have a positive influence on the model outcome (higher cover values), whereas this
effect is reversed for bio 10. For bio 10 (mean temperature of the warmest quarter), low
temperatures result in a decrease in cover values, while intermediate temperatures lead
to an increase. Bio 11, particularly in the RF regression model, exhibits a wide range,
indicating a strong influence on both models. This is further supported by the variable
importance analysis, which identifies bio 11 as the most important splitting criterion at
nodes based on Gini importance. The pattern for precipitation variables is less distinct;
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however, the trend is similar in both models: low to medium precipitation totals have a
positive effect on the model. A similar trend can also be observed for seasonality variables
bio 4 (temperature seasonality) and bio 15 (precipitation seasonality). Low to moderate
values of these variables are associated with species occurrence, whereas very low or very
high values result in a reduced probability of presence and lower cover values.
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Figure 2. Partial Dependence Plot (PDP) of (a) bio 8 (mean daily mean air temperatures of the wettest
quarter) for the Random Forest Classification model and (c) bio 15 (precipitation seasonality) for
Random Forest regression model indicating the influence of the most important variables. SHAP
summary plots (b,d) indicate the contribution of each predictor/feature to the model outcome. Feature
values were normalised (breaks: 0, 0.5, 1) due to different units of temperature and precipitation

variables.
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The spatial predictions of the two models revealed a more compact distribution in the
RF classification model, with a slightly broader extent towards the west and east for the
RF regression model. The binary RF classification model predicted a northern extent of up
to 36.35° S and a southern extent of 55.45° S, whereas the RF regression model extended
from 35.24° S to 55.24° S (Figure 3). In the southern regions, including Tierra del Fuego,
the RF regression model depicted a more homogeneous distribution. IGTA points were
lacking in this area resulting in gaps in the predicted occurrence. While the RF classification
model tended to overpredict in unvegetated summit regions and glaciated areas, the RF
regression model provided a more fine-grained representation, capturing vegetated valleys
more accurately. When compared with a digital surface model (DSM, ALOS Global Digital
Surface Model, 30 m), it was evident that the RF classification model predicted suitable
climatic conditions in higher (unvegetated) areas as distribution areas, while in the RF
regression model they were omitted. The described small-scale differences between the
models are illustrated in Figure 4.

To further validate the spatial predictions of the models, we conducted two addi-
tional comparisons. First, we performed a visual comparison of the model outputs with
independent data provided by the Argentinian forestry authority (Secretaria de Ambi-
ente y Desarrollo Sustentable de la Nacién, [73]). Second, we compared the elevation of
high-altitude raster cells from both models with reported treeline elevations from 48 plots
across 13 locations, as published by Lara et al. (2005) [74]. Figure 5 presents the visual
comparison between the raster outputs of the models and the N. pumilio forest polygons.
The RF classification model shows slightly more deviation and tends to extend beyond
the polygon boundaries, while the RF regression model closely matches the reference
polygons. Table 2 compares the treeline elevations from on-site measurements [74] with the
elevations of the highest raster cells predicted by the models (based on a DSM resampled
to 1 km), which are intended to approximate the treeline position. To identify these treeline
raster cells, a threshold is required. Based on the range of definitions compiled in the
literature, the treeline can be defined as the elevation at which tree canopy cover declines to
approximately 30%, representing the uppermost margin of closed forest [18]. Accordingly,
we applied a threshold of 30% (resp. 0.3 for RF classification) to the model outputs. In
the RF classification model, treeline elevations are, in some cases, significantly higher than
the treeline elevations measured on site. However, in the southern regions, the predicted
treeline aligns well with the literature. In contrast, the RF regression model predicts treeline
elevations that are only slightly higher in the north and overall correspond closely to the
reported values.
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Figure 3. Predicted probability of Nothofagus pumilio occurrence of (a) the Random Forest classification
model and (b) predicted cover values of N. pumilio of the RF regression model.
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Figure 4. Small-scale details of the Random Forest classification model and Random Forest regression model compared with a satellite basemap (centre) and a
Digital Surface Model (DSM), which shows the elevation of the raster cells covered by the model results.
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Figure 5. Comparison of the model results with Nothofagus pumilio forest polygons (red, centre) from

Argentinian forestry authority (Secretaria de Ambiente y Desarrollo Sustentable de la Nacién, [73]).

Table 2. Treeline positions based on field data from 48 plots at 13 locations [74], compared with the

elevation of the highest raster cell from the model outputs (Random Forest classification and RF

regression) in the adjacent mountain range corresponding to each plot location. NA = not available

(no data recorded).

Treeline Position and Elevation [m]
After Lara et al., 2005 [74]

Treeline Elevation [m]
Current Climate

D X Y Elevation RE Class. RF Reg.
Range

1 —71.00 3536 1530 NA NA
2 —71.11 —37.27 1500-1720 1988 1949
3 ~7133 3842 1490-1650 1854 1789
4 —7215 —40.42 1000-1300 1591 1437
5 —72.19 —41.48 1300 1500 1201
6 7145 —43.07 1230-1350 1839 1440
7 —71.42 4439 1000-1200 1320 1216
8 —72.24 —47.12 800-1180 1361 1197
9 —7230 —4830 1200 1522 1074
10 —72.54 5057 650-980 1176 956
1 —71.00 ~53.00 350-600 543 560
12 —68.45 5417 200-600 544 520
13 —67.30 _5457 300-600 610 610
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3.2. Future Distribution Range of N. pumilio

Using CMIP6 data provided by CHELSA for the SSP scenarios, we predicted the
potential future distribution of N. pumilio with both models. Predictions were generated
for the SSP126, SSP370, and SSP585 scenarios for two future periods: 2041-2070 and 2071-
2100. Figure 6a,b illustrate the potential distribution of N. pumilio for 2041-2070, while
Figure A2a,b in the Appendix A depict projections for 2071-2100. For the RF classification
model, the SSP scenarios for the period 2041-2070 already indicate a potential shift in
distribution towards currently unvegetated summit areas. This upward shift to higher
elevations becomes more pronounced with increasingly severe scenarios (SSP370, SSP585).
Simultaneously, there is a progressive decline in occurrences throughout the northern
part of the species’ range, and a slight decrease in the southernmost distribution areas.
Additionally, the occurrences are predicted to shift towards the more humid western
regions. These trends become even more marked in the period from 2071 to 2100. During
this later time span, a decrease in occurrence area is evident, particularly at lower elevations,
resulting in an overall stronger decline in the north. Both models consistently indicate a
reduction in occurrences in northern regions. However, in contrast to the RF classification
model, the RF regression model suggests that N. pumilio is more likely to persist at higher
elevations in the north, and that the decline in occurrences in the southernmost parts of
the range is less pronounced. The total decreases in distribution area and the westward
shift are less marked in the RF regression model, with eastern occurrences more likely to
remain stable. Nevertheless, the trend of occurrences shifting towards higher elevations is
observed in both models, and this trend intensifies with the severity of the scenario and
over time. While the RF classification model predicts an expansion into higher, currently
snow- and ice-covered areas of the Southern Patagonian Icefield, the RF regression model
forecasts a decline in occurrences in this region. Despite this, under the scenarios for 2071-
2100, the RF regression model also projects a reduction in occurrences at lower elevations,
which ultimately results in a net decrease in the total distribution area of the species. Thus,
both modelling approaches reveal potential changes in the distribution of N. pumilio under
future climate scenarios, particularly in lowland and northern areas, but they differ slightly
with respect to the potential persistence of the species at higher elevations in the north and
in the southern part of its range.

To assess treeline shifts in numbers, we again refer to the comparison of treeline
elevations at the 13 locations. In Table 3, we compare the elevation of the highest raster cells
at the treeline sites under current climatic conditions and under the SSP scenarios for the
period 2041-2070 (for the time span 2071-2100, please refer to Table A3 in the Appendix A).
Even under current climatic conditions, no occurrence was recorded at the northernmost
site (site no. 1), and this remains the case across all scenarios. The predicted decline in the
northern distribution range continues, with no remaining occurrences at the second site
under the SSP370 scenario. Overall, the estimated treeline elevations in the RF classification
model are generally higher than those predicted by the RF regression model. As climate
scenarios progress, a general upward shift in treeline elevation is observed, with a few
exceptions where treeline elevation either stagnates, mainly due to already having reached
the highest local topography, or shows a slight decrease. These trends are also evident
in the period 2071-2100, with even higher treeline elevations in most cases, or occasional
decreases due to an overall loss of suitable area in the region.
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Figure 6. Potential future distribution of Nothofagus pumilio modelled by (a) the Random Forest classification and (b) RF regression model using CMIP6 SSP Scenarios

for CHELSA Bioclim variables for the time span of 2041 to 2070.
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Table 3. Treeline elevation estimates based on the highest raster cells from the model outputs (Random
Forest classification and RF regression) under current climatic conditions and CMIP6 SSP scenarios
for the future period 2041-2070. NA = not available (no data recorded).

‘ Treeline Elevation Treeline Elevation Treeline Elevation Treeline Elevation
Coordinates [m] Current Climate [m] SSP126 [m] SSP370 [m] SSP585
(2041-2070) (2041-2070) (2041-2070)
RF RF RF RF
X Y Class. RF Reg. Class. RF Reg. Class. RF Reg. Class. RF Reg.
—71.00 —35.36 NA NA NA NA NA NA NA NA
—71.11 —37.27 1988 1949 2214 NA NA NA NA NA
—71.33 —38.42 1854 1789 2201 1709 2186 1920 2227 2045
—72.15 —40.42 1591 1437 1699 1636 1768 1674 2026 1674
—72.19 —41.48 1500 1201 1560 1464 1730 1638 1730 1720
71.45 —43.07 1839 1440 1918 1545 2059 1725 1918 1725
—71.42 —44.39 1320 1216 1704 1324 1852 1509 1852 1591
—72.24 —47.12 1361 1197 1500 1423 1651 1439 1538 1500
—72.30 —48.30 1522 1074 1340 1098 1473 1098 1586 1209
—72.54 —50.57 1176 956 1296 961 1313 1103 1349 1124
—71.00 —53.00 543 560 592 721 NA 783 592 783
—68.45 —54.17 544 520 648 615 667 547 607 607
—67.30 —54.57 610 610 614 492 557 614 NA 614

4. Discussion

The treeline species Nothofagus pumilio is highly sensitive to climate variations, as
reflected in its radial growth patterns and seedling establishment above the treeline. Con-
sequently, research into the species’ treeline dynamics in response to climate change has
already gained some attention. Many studies have examined growth variations using den-
drochronology, providing insights into the species’ response to climate variations, mostly
related to expressions in ENSO, PDO, and AAO/SAM over the past century [22,25,26].
Other research has focused on seedling establishment [23,24,75] or assessed the quantity
and quality of N. pumilio seeds [17,75,76]. However, large-scale Species Distribution Mod-
elling (SDM) approaches investigating the current and future development of the species
are lacking. In this study, we calculated two Random Forest (RF) models using a binary
and a continuous species dataset to model the current and future potential distribution of
the species.

Both models, RF classification and RF regression, achieved reasonable results and
good performance values. The RF classification model achieved an AUC of 0.93 (95%
CI: 0.90-0.96), whereas the RF regression model explained R? = 0.39 (95% CI: 0.34-0.44)
of the variance. This discrepancy is primarily due to the greater noise and structural
complexity inherent in the continuous response variable, as well as the inherently stricter
nature of R? as a performance metric. The use of spatially blocked cross-validation further
amplifies this issue, because the model must extrapolate beyond clusters of spatially
autocorrelated observations along the treeline. Consequently, an R? of around 0.4 can
already be considered good performance in ecological regression tasks. The RF algorithm
is well-suited for this study due to its strong predictive power and, more importantly,
its applicability to both datasets, enabling direct comparability. Moreover, RF is a well-
established algorithm that facilitates comparisons between different modelling approaches
within the field of SDM [60,77]. While binary approaches are mainly used in SDM, the use
of a continuous target variable generated from remote sensing, rather than the generation
of abiotic predictors, is still a novel approach. The continuous data were derived from 20 m
raster cells, with coverage aggregated to the target resolution of 1 km. While the binary
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variable contains only information on presence or absence, the continuous data reflect
additional influences from land cover and species composition, which affect cover values
and provide ecologically meaningful information. Other studies investigating topographic
complex regions have already discussed the loss of knowledge due to the use of binary
data at 1 km spatial resolution [56]. Here, we demonstrated an information gain using 1 km
resolution data while incorporating continuous variables.

It should be noted that the scales of the modelling approaches (RF classification and
RF regression) differ. However, we compare the model outputs, predicted probability and
predicted cover values, on the basis that both a low predicted probability and a low cover
value indicate largely unsuitable bioclimatic conditions, whereas high probability values
and cover values point to suitable conditions. Nevertheless, it is important to acknowledge
that a probability of 0.01 reflects only a very low likelihood of the species occurring at all,
whereas 1% cover implies the species is present, albeit in low abundance. Although the
models differ in their spatial predictions and variable importance, the correlation between
predicted probability and cover values is relatively high, with a Pearson’s r of 0.6. We
therefore treat the two metrics as complementary, not interchangeable, and interpret model
outputs jointly.

4.1. Current Distribution Range of N. pumilio

Differences between the two models were apparent across all analyses. In terms of
spatial prediction, the RF regression model captured fine-scale details more accurately
and was less prone to overprediction at high elevations. Additionally, the key predictors
for the RF models varied. While a temperature variable had the highest importance
(Accuracy Importance) in the RF classification model, precipitation variables had the
highest importance in the RF regression model. Although the SHAP plots differ slightly in
their expression between the models, the suitable bioclimatic conditions for N. pumilio are
clearly evident in both. The species benefits from cold winters (bio 11, mean daily mean
air temperatures of the coldest quarter) combined with moderate levels of precipitation,
presumably in the form of protective snow cover (bio 19, mean monthly precipitation
amount of the coldest quarter), and cool summers (moderate values of bio 10 (mean daily
mean air temperatures of the warmest quarter)). Moreover, N. pumilio tends to occur in
regions with sufficient overall precipitation and low precipitation seasonality, reflected
by low to medium values for bio 17 (mean monthly precipitation amount of the driest
quarter), bio 18 (mean monthly precipitation amount of the warmest quarter), and bio 15
(precipitation seasonality). Extreme heat or pronounced drought conditions inhibit the
species’ presence. Both temperature and precipitation seasonality are low, indicating that
the species does not occur in areas characterised by extreme temperature fluctuations or
erratic precipitation patterns, such as extended dry periods. The orophilous species N.
pumilio is particularly adapted to the harsh climatic conditions of high mountain ecosystems.
The species shows high phenotypic plasticity. While occurring at lower elevations as an
erect tree up to a height of 35 m, it shows krummholz growth forms at the treeline [78]. As
a deciduous species, it reduces transpiration in the months when frost-drought can be a
problem [79]. Heat deficiency is considered to be the most important site factor for treeline
formation worldwide. The treeline of N. pumilio follows an isotherm of 6.6 °C [19]. The
influence of temperature was shown in the RF classification model by the high importance
of bio 8 (mean daily air temperature of the wettest quarter), by the fact that the variable
bio 11 (mean daily mean air temperatures of the coldest quarter) has a very important
influence on the decisions at the nodes of both models (Gini Importance), and in the
SHAP plots. However, when modelling a species in high mountains, the influence of
elevation can also be represented by temperature variables. In the SHAP plot of the RF
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classification model, only very high temperature values in the warmest quarter (bio 10)
result in a reduction in predicted probability. In contrast, in the RF regression model, very
low temperatures during the warmest quarter lead to a decrease in predicted cover values.
This difference is also reflected in the spatial predictions, with the RF classification model
showing slight overprediction in summit regions. However, high temperatures during the
warmest quarter can also lead to drought events, particularly in high mountain ecosystems
where insolation and consequently evapotranspiration is very high. Authors analysing
the sensitivity of N. pumilio to climate change using changes in tree rings have found a
correlation with precipitation regimes in addition to temperatures. The species occurs in
humid to arid regions and is well adapted to medium to low precipitation sums that occur
at high elevations due to advective precipitation. This is also shown by its occurrence
as far as the arid east, where it sometimes forms two treelines: an alpine treeline and a
xeric treeline towards the arid steppes [80]. Very low values for precipitation variables
(bio 17, 18 and 19) and precipitation seasonality (bio 15) define the limits in the core range
and the eastern boundary of the species. However, particularly in northern Patagonia,
increasingly low precipitation during the spring and summer months negatively affects
tree growth [22,81]. In more southerly regions, high spring precipitation is primarily
associated with prolonged snow cover, leading to a shortened growing season, which in
turn also hinders tree growth [22,82,83]. Between 1900 and 2020, tree growth was found to
correlate most strongly with rising temperatures on mesic sites, followed by wetter sites,
while growth rates declined on drier sites [25]. Some authors state that all treelines in
southern South America have experienced a negative growth trend due to drought since
the 1980s and even suggest that the limitation at the treeline has changed from cold-limited
to drought-limited [26,84]. Our results of the RF regression model seem plausible in this
context, as the precipitation variables bio 15 (precipitation seasonality) and bio 19 (mean
monthly precipitation of the coldest quarter) played an important role. Both variables
reflect annual precipitation distribution patterns. Bio 15 suggests that N. pumilio is unlikely
to occur in regions with high precipitation seasonality, which may be associated with
periods of drought. Bio 19, on the other hand, may be linked to precipitation in the form of
snow, the resulting snow cover, and water availability following thaw.

4.2. Future Distribution Range of N. pumilio

Abrupt treelines respond less to global warming than diffuse treelines, primarily due
to higher seedling mortality outside the protecting forest stand climate [14]. The emergence
and establishment of seedlings represent the most critical life stage for trees at the treeline,
with the availability of species-specific safe sites being the basic precondition for seedling
recruitment [85,86]. Seed production, fruit dispersal, seed viability, and seedling establishment
all decline with increasing elevation [17]. Higher temperatures and an extension of the growing
season can thus facilitate seedling emergence and survival [19,23,24,75,81], a precondition
for a future treeline advance. However, the comparatively slow advance or persistence of
the treeline in the southern Andes is also linked to multi-faceted interactions with edaphic,
topographic, biotic, and other factors, including the development of alpine mats [24,28].
Demographic constraints across different life stages have been highlighted in previous studies
examining the relationship between climate change and tree habitats. As treelines shift
to higher elevations, trees are exposed to new climate-habitat interactions, and different
life stages may respond in distinct ways [87,88]. For instance, tree fertility is primarily
influenced by temperature, whereas seedling establishment depends more heavily on moisture
availability and soil water content [87]. In fact, seedling survival declines with increasing
drought at both high and low elevations, although at some high elevation stands this effect
can be mitigated by spring snow cover [75]. A deterioration in growth conditions due to
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drought is also predicted for adult trees at lower elevations as well as at the treeline, based on
studies of radial growth patterns [26,84,89]. However, even if temperature and precipitation
conditions are favourable for seedling establishment, local factors such as steep topography
and the absence of herbaceous vegetation can inhibit treeline advance [24,28]. While this study
focuses on assessing the effects of key climatic drivers on the treeline, future modelling efforts
should consider incorporating additional variables such as topography, wind exposure, soil
characteristics, and vegetation cover.

The use of CMIP6 SSP scenarios from CHELSA showed an advance to higher eleva-
tions in both models, as indicated by spatial predictions and treeline elevation estimates
derived from a digital surface model (DSM). The scenarios are based on global circulation
models and CO; concentration estimates. It should be noted that less periodic variations
caused by different phases of ENSO, PDO, and AAO/SAM cannot be fully modelled in
the scenarios [90]. While the RF classification model showed a significant decrease in
the northern range, lower cover values of the RF regression model remained at higher
elevations. The result that N. pumilio occurrences decreased at lower elevations is consistent
with previous findings [75], highlighting a decrease in the number of seedlings and a re-
duction in survival at lower-elevated sites. A review study modelling biome-level changes
predicts a reduction in area with suitable climatic conditions for temperate deciduous
forests of approximately 30% under the RCP8.5 scenario for the period 20402070 [16]. Our
results seem congruent with these findings, whereas the RF classification model predicts
a greater decline than the RF regression model. In particular, the RF classification model
predicted a shift towards the wetter western region. It will be necessary to investigate
the future competitive relationships with dominant tree species in this area (e.g., N. betu-
loides). In summary, precipitation conditions/drought stress will play a significant role in
future competitive relationships and successful regeneration of Nothofagus species in the
southern Andes.

5. Conclusions

To our knowledge, this is the first SDM study that models the current and future
distribution of N. pumilio across its entire distribution range in the southern Andes. Even
though the distribution range encompasses two extreme climatic gradients, both models
were able to comprehensively predict the current potential distribution and its future
development. The direct comparison of model approaches highlighted major differences in
the model results and the advantages of using more complex, continuous data. Continuous
data can provide better insights into suitable bioclimatic conditions for N. pumilio occurrence
leading to more detailed spatial predictions and meaningful predictors based on variable
importance. In contrast to presence—absence data, which can only take values of 0 or 1,
continuous cover values can reflect subtle or unknown effects of land cover, topography,
and species composition, thereby providing model results of greater ecological value.
However, we acknowledge that remote sensing data across a large geographic extent are
rarely available, difficult to obtain in very high resolution, and may still contain gaps that
introduce bias. Climatic parameters represent the principal limiting factors at the alpine
treeline, and bioclimatic variables have already proven effective in capturing the climatic
conditions at the treeline of the southern Andes. It will be of great interest to further model
the conditions at the treeline with more complex abiotic predictors, like topography, wind
and soil variables as well as to embed biotic and anthropogenic variables to model the
influences of vegetation composition, fire, grazing, and forestry.
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R package, and (b) the five folds showing test data points (dark green) and training data points (grey)
for the Random Forest classification model.
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Figure A2. Potential future distribution of Nothofagus pumilio modelled by (a) the Random Forest
classification and (b) RF regression model using CMIP6 SSP Scenarios for CHELSA Bioclim variables
for the time span of 2071 to 2100.
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Appendix A.3

Table Al. Results of the 5-fold spatial cross-validation of the Random Forest classification model.
The table presents the mean values across all five models for the various hyperparameter settings
(45 models in total). The hyperparameter setting for the final model, highlighted in bold, was selected
based on the highest mean AUC.

AUC o 1 Acc. o 1 TSS o 1
No. mtry ntree Mean AUC 95% CI Mean Acc. 95% CI Mean TSS 95% CI
1 2 100 0.9270 0.8908-0.9632 0.8460 0.7782-0.9139 0.6125 0.4169-0.8081
2 3 100 0.9204 0.8785-0.9623 0.8407 0.7803-0.9011 0.5968 0.4164-0.7772
3 4 100 0.9192 0.8821-0.9564 0.8454 0.7761-0.9147 0.6106 0.4025-0.8187
4 2 300 0.9268 0.8943-0.9592 0.8441 0.7767-0.9115 0.6053 0.4063-0.8043
5 3 300 0.9237 0.8884-0.9590 0.8473 0.7827-0.9118 0.6163 0.4212-0.8114
6 4 300 0.9228 0.8898-0.9557 0.8461 0.7831-0.9092 0.6127 0.4265-0.7988
7 2 500 0.9279 0.8960-0.9599 0.8466 0.7799-0.9132 0.6148 0.4183-0.8112
8 3 500 0.9233 0.8881-0.9585 0.8438 0.7765-0.9111 0.6025 0.4015-0.8035
9 4 500 0.9224 0.8837-0.9610 0.8429 0.7756-0.9102 0.6050 0.4082-0.8019
! Confidence intervals.
Table A2. Results of the 5-fold spatial cross-validation of the Random Forest regression model.
Hyperparameter for the final model, highlighted in bold, were selected based on the highest mean R?.
No. mtry ntree R? Mean 95% CI !
1 2 100 0.3910 0.3419-0.4400
2 3 100 0.3868 0.3366-0.4369
3 4 100 0.3835 0.3323-0.4348
4 2 300 0.3933 0.3432-0.4433
5 3 300 0.3892 0.3378-0.4407
6 4 300 0.3873 0.3362-0.4384
7 2 500 0.3933 0.3425-0.4441
8 3 500 0.3898 0.3386-0.4410
9 4 500 0.3869 0.3357-0.4381
1 Confidence intervals.
Table A3. Treeline elevation estimates based on the highest raster cells from the model outputs
(Random Forest classification and RF regression) under current climatic conditions and SSP scenarios
for the future period 2071-2100. NA = not available (no data recorded).
Coordinat Treeline Elevation [m] Treeline Elevation [m] Treeline Elevation [m] Treeline Elevation [m]
oordinates Current Climate SSP126 (2071-2100) SSP370 (2071-2100) SSP585 (2071-2100)
X Y RF Class. RF Reg. RF Class. RF Reg. RF Class. RF Reg. RF Class. RF Reg.
—71.00 —35.36 NA NA NA NA NA NA NA NA
—71.11 —37.27 1988 1949 2328 NA NA NA NA 2530
—71.33 —38.42 1854 1789 2071 1700 1780 1871 2460 2035
—72.15 —40.42 1591 1437 1679 1636 2026 1971 2026 2026
—72.19 —41.48 1500 1201 1555 1510 1917 1743 1917 1730
71.45 —43.07 1839 1440 1955 1545 2059 1955 2059 2059
—71.42 —44.39 1320 1216 1703 1595 1952 1593 1952 1427
—72.24 —47.12 1361 1197 1439 1346 1742 1651 1901 1840
—72.30 —48.30 1522 1074 1399 1098 1578 1171 1698 1340
—72.54 —50.57 1176 956 1317 1000 1457 1229 1537 1287
—71.00 —53.00 543 560 592 728 NA NA NA NA
—68.45 —54.17 544 520 648 616 615 757 NA NA
—67.30 —54.57 610 610 609 614 NA 614 NA 614
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