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Zusammenfassung 

Hochgebirgsregionen zählen zu den besonders vulnerablen Ökosystemen, die in 
besonderem Maße vom globalen Klimawandel betroffen sind. Eine Veränderungen ist 
der potenzielle Anstieg der alpinen Baumgrenze. Auch in den südlichen Anden ist die 
Baumgrenze von klimabedingten Veränderungen betroffen. Bisher wurden das radiale 
Wachstum sowie das Aufkommen und Überleben von Keimlingen der 
baumgrenzbildenden Art Nothofagus pumilio vor allem in kleinräumigen, 
dendrochronologischen und experimentellen Studien untersucht, die lokale Temperatur- 
und Niederschlagsmuster berücksichtigen. Ecological Niche Modelling (ENM) erlaubt 
dagegen eine flächenhafte Analyse aktueller Verbreitungsmuster und potenzieller 
zukünftiger Veränderungen über das gesamte Verbreitungsgebiet der Art. 
Entsprechende Modellstudien zu N. pumilio liegen jedoch bislang nicht vor. Ein 
wesentlicher Grund dafür liegt in der begrenzten Verfügbarkeit valider und möglichst 
unverzerrter Vorkommensdaten. Studien, die Daten durch Feldforschung in situ 
erheben, sind oftmals kosten- und zeitintensiv, insbesondere in schwer zugänglichen 
Hochgebirgsregionen. Daher wird häufig auf globale Biodiversitätsdatenbanken wie die 
Global Biodiversity Information Facility (GBIF) zurückgegriffen, die jedoch Daten mit 
räumlichem und zeitlichem Bias enthalten können. Ein Großteil der in solchen 
Datenbanken enthaltenen Daten stammt aus Citizen-Science-Projekten, bei denen 
Nicht-Expert:innen z.B. mit Hilfe von Smartphones Artvorkommen erfassen. Dieses 
Vorgehen erlaubt eine schnelle und kostengünstige Datensammlung, weist jedoch 
räumliche Verzerrungen auf, da Beobachtungen vor allem in urbanen oder touristisch 
erschlossenen Regionen erfolgen und somit kein vollständiges Bild der tatsächlichen 
Verbreitung von Arten liefern. Fernerkundungsmethoden stellen eine vielversprechende 
Alternative zur herkömmlichen Felddatenerhebung dar, da sie die Erfassung von 
Artvorkommen auch in abgelegenen und schwer zugänglichen Regionen ermöglichen. 
Allerdings ist eine Validierung der fernerkundungsbasierten Ergebnisse erforderlich, um 
sicherzustellen, dass die jeweilige Art tatsächlich in den identifizierten Gebieten 
vorkommt (Ground Truthing). Hierfür sind wiederum in-situ-Daten notwendig. In jüngerer 
Zeit rücken Soziale Medien zunehmend in den Fokus, da sie eine hohe globale 
Reichweite aufweisen und die Zahl georeferenzierter Beiträge stetig zunimmt. Diese 
Inhalte bieten ein bislang wenig genutztes Potenzial zur Generierung von 
Vorkommensdaten. 

Ziel der vorliegenden Arbeit mit dem Titel „Improved Ecological Niche Modelling of 
Nothofagus pumilio in the Southern Andes“ ist es, die derzeitige und zukünftige 
potenzielle Verbreitung von N. pumilio in den südlichen Anden mit Hilfe eines ENM-
Ansatzes zu modellieren und somit die bestehende Forschungslücke zu schließen. 
Dabei wurde durch die Optimierung der Eingangsdaten und den Einsatz von Machine-
Learning-Algorithmen ein verbesserter ENM-Ansatz entwickelt. Die Studie erfolgte in 
zwei Schritten: Zunächst wurde das Potential von Sozialen Medien für die Erhebung von 
Artvorkommen getestet und ein neuartiger „Instagram ground truthing approach“ (IGTA) 
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entwickelt, der auf der Auswertung von Instagram-Beiträgen basiert (Publikation I und II). 
Dabei wurden Vorkommensdaten generiert, die einen geringeren räumlichen Bias 
aufweisen als klassische GBIF-Daten. Die IGTA-Punkte wurden anschließend zum 
Ground Truthing von Fernerkundungsdaten über das gesamte Verbreitungsgebiet der 
Art genutzt. Die zwei daraus resultierenden Datensätze gingen abschließend in die 
Modellierung ein (Publikation III und IV). 

Aufgrund der hohen globalen Reichweite mit zwei Milliarden Nutzern weltweit und der 
Fokussierung auf Bildinhalte eignet sich Instagram besonders für die Erhebung 
georeferenzierter Beobachtungen. Auf Basis eines klar definierten Kriterienkatalogs 
wurden Bilder ausgewählt, auf denen N. pumilio eindeutig identifizierbar war und deren 
Standort anhand von Landschaftsmerkmalen lokalisiert werden konnte. Insgesamt 
wurden 1.238 Vorkommenspunkte manuell georeferenziert. Aufgrund der hohen Anzahl 
verfügbarer Instagram-Beiträge konnten Vorkommen über das gesamte 
Verbreitungsgebiet hinweg erfasst werden. Eine Bias-Analyse mit dem R-Package 
„sampbias“ zeigte, dass die IGTA-Daten weniger stark in Richtung urbaner Zentren 
verzerrt sind als GBIF-Daten. Anschließend dienten die IGTA-Daten als Referenz zum 
Ground Truthing von Fernerkundungsdaten, die über eine Klassifikation (supervised 
classification) von Sentinel-2-Level-2A-Daten generiert wurden. Dadurch entstanden 
zwei Vorkommensdatensätze, der IGTA-Punktdatensatz und die Sentinel-2-
Rasterdaten, die für die Modellierung genutzt werden können. 

Zur Modellierung wurde der Machine-Learning-Algorithmus Random Forest (RF) 
eingesetzt, der sich durch eine hohe Vorhersagekraft und gute Interpretierbarkeit 
auszeichnet. Zudem eignet er sich sowohl für die punktbasierten IGTA-Daten als auch 
für die kontinuierlichen Rasterdaten, wodurch ein direkter Vergleich beider Ansätze 
möglich war. Für den IGTA-Punktdatensatz wurde ein RF-Klassifikationsmodell, für die 
Rasterdaten ein RF-Regressionsmodell berechnet. Zur Erfassung der ökologischen 
Nische dienten die bioklimatischen Variablen von CHELSA als Prädiktoren. Beide 
Modelle lieferten valide Projektionen der potenziellen gegenwärtigen und zukünftigen 
Verbreitung der Art. Es zeigte sich eine potenzielle Verschiebung des 
Verbreitungsgebiets in höhere Lagen sowie ein Rückgang in trockeneren Regionen, 
insbesondere in Nordpatagonien. Diese Ergebnisse stimmen mit denen aus der Literatur 
überein, wonach die Art von höheren Temperaturen in Gebieten mit ausreichend 
Niederschlag profitiert, während es in trockenen Gebieten zu Dürren und zum Rückgang 
der Art kommt. Der Vergleich beider Modellansätze zeigte, dass die Raster-
Vorkommensdaten zu einer aussagekräftigeren Variableninterpretation und vor allem zu 
einer besseren räumlichen Vorhersage führten. 

Der Einsatz Sozialer Medien zur Erfassung von Vorkommensdaten stellt eine innovative 
Methode mit großem Potenzial für großräumige ökologische Analysen dar. Der IGTA 
verbindet die Vorteile von Citizen Science, wie schnelle und kostengünstige 
Datenerhebung, mit einer deutlichen Reduktion der damit häufig verbundenen 
Verzerrungen. Obwohl die manuelle Bildauswertung noch aufwändig ist, bieten 
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automatisierte Schnittstellen (APIs) und KI-basierte Erkennungsverfahren künftig großes 
Potenzial zur Effizienzsteigerung. Während die Nutzung von Fernerkundungsdaten zur 
Ableitung von Umweltvariablen im ENM bereits etabliert ist, sollte auch die Erfassung 
von Vorkommensdaten aus Fernerkundung künftig weiterentwickelt werden, durch die 
sich modellgestützte Aussagen für geeignete Arten deutlich verbessern lassen. Die 
vorliegende Arbeit präsentiert einen innovativen ENM-Ansatz für N. pumilio und schließt 
eine bislang bestehende Forschungslücke in der Modellierung klimabedingter 
Veränderungen an der Baumgrenze in den südlichen Anden. 

Abstract  

High mountain regions are among the most vulnerable ecosystems and are particularly 
affected by global climate change. One consequence is the potential upward shift of the 
alpine treeline. In the Southern Andes, the treeline is likewise influenced by climate-
related factors. To date, radial growth, seedling emergence and survival of the treeline 
species Nothofagus pumilio have mainly been studied in small-scale 
dendrochronological or experimental studies that consider local temperature and 
precipitation patterns. In contrast, Ecological Niche Modelling (ENM) allows for 
comprehensive analyses of current distribution patterns and potential future changes 
across the entire study area. However, corresponding ENM studies for N. pumilio are 
currently lacking. One major reason is the limited availability of valid and non-biased 
species occurrence data. The sampling of in situ observations through fieldwork is often 
time-consuming and costly, especially in remote high mountain regions. Consequently, 
global biodiversity databases such as the Global Biodiversity Information Facility (GBIF) 
are frequently used, despite the fact that they may contain data with spatial and temporal 
biases. A significant proportion of the data in such databases originates from Citizen 
Science (CS) projects, in which non-experts collect species occurrence data for example 
by using smartphones. While this approach allows for fast and cost-effective data 
sampling, it introduces spatial bias, as observations are predominantly recorded in urban 
or tourist areas, resulting in incomplete representations of species’ actual distributions. 
Remote sensing provides a promising alternative to traditional fieldwork, as it enables 
species detection even in inaccessible and remote regions. However, validation of 
remote sensing results is required to confirm that the target species actually occurs in 
the identified areas (ground truthing). This, in turn, requires in situ observations. 
Recently, social media has gained increasing attention in biodiversity research due to its 
global reach and the increasing number of georeferenced posts. These sources offer 
untapped potential for generating occurrence data. 

The aim of this thesis, entitled “Improved Ecological Niche Modelling of 
Nothofagus pumilio in the Southern Andes,” is to model the potential current and future 
distribution of N. pumilio in the Southern Andes using an ENM approach. By optimising 
input data and incorporating machine learning algorithms, an improved modelling 
framework was developed. The study was conducted in two main steps: first, the 
potential of social media for species occurrence data sampling was explored through the 
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development of a novel “Instagram ground truthing approach” (IGTA) (Publication I 
and II). This approach generated occurrence points with reduced spatial bias compared 
to conventional GBIF data. The IGTA points were then used to validate remote sensing 
data across the entire distribution range of the species (ground truthing). Second, the 
two resulting datasets were used for ENM (Publications III and IV). 

Due to its global reach with two billion users and its image-based format, Instagram is 
particularly suitable for collecting georeferenced biodiversity data. Based on a catalogue 
of specific criteria, images were selected in which N. pumilio was clearly identifiable and 
the location could be determined using landscape elements. A total of 1,238 occurrence 
points were manually georeferenced. Due to the large volume of available posts, 
occurrences could be documented across the entire distribution range of the species. A 
bias analysis using the R package “sampbias” demonstrated that the IGTA dataset 
exhibited less spatial bias than GBIF data. The IGTA data were then used to validate 
remote sensing data derived from supervised classification of Sentinel-2, Level 2A 
imagery. This process yielded two occurrence datasets, the IGTA point dataset and the 
Sentinel-2 raster dataset, suitable for use in ENM. 

For the modelling process, the Random Forest (RF) machine learning algorithm was 
employed due to its high predictive performance and interpretability. Moreover, RF can 
be applied to both point-based binary and continuous raster occurrence data, enabling 
a direct comparison of the two approaches. An RF classification model was developed 
for the IGTA point dataset, while an RF regression model was created for the continuous 
raster dataset. CHELSA bioclimatic variables were used as environmental predictors. 
Both models resulted in valid predictions of the species’ ecological niche and its potential 
current and future distribution. The results indicate a potential shift of the distribution 
range to higher elevations and a decline in drier regions, particularly in northern 
Patagonia. These findings are consistent with existing literature indicating that the 
species benefits from higher temperatures in areas with sufficient precipitation, whereas 
population declines due to drought are expected in drier areas. The comparison of both 
modelling approaches showed that the continuous raster data enabled a more 
meaningful interpretation of predictor variables and improved spatial predictions. 

The use of social media for sampling species occurrence data represents an innovative 
and promising method. The IGTA combines the strengths of CS, such as rapid and cost-
effective data collection, with a reduction in spatial bias. Although the manual analysis of 
posts is time-consuming, the process could be improved through the use of automated 
processes with Application Programming Interfaces (APIs) or artificial intelligence (AI) in 
the future. While the use of remote sensing to derive environmental predictors is already 
well established in ENM, the sampling of species occurrence data through remote 
sensing also holds considerable potential and should be further developed. For suitable 
species, this approach can significantly improve model accuracy and ecological 
interpretability. Therefore, this study presents an improved ENM workflow for N. pumilio 
and addresses a previously existing research gap. 
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1. Introduction 
Anthropogenic climate change is impacting ecosystems worldwide. However, certain 
regions of the Earth are disproportionately affected by the associated warming and its 
consequences (IPCC, 2023). High mountain regions are experiencing above-average 
temperature increases, primarily due to albedo feedback mechanisms (Pepin et al., 
2015). Consequently, ecosystems near the alpine treeline are particularly vulnerable 
(Schickhoff et al., 2022). Emerging new abiotic and biotic conditions are leading to 
habitat shifts and losses (Schickhoff et al., 2022; IPCC, 2023). One consequence, which 
is regarded as a key indicator of climate change, is the potential upward shift of the alpine 
treeline (Qiu et al., 2023). 

The alpine treeline marks the upper elevational limit at which tree growth remains 
possible (Paulsen and Körner, 2014). The principal limiting factor for tree growth is heat 
deficiency (Körner, 2020), therefore, the location of treelines globally closely aligns with 
the 6.4°C isotherm during growing season (Paulsen and Körner, 2014). Nevertheless, 
treelines exhibit substantial variability in both composition and structure. A basic 
distinction can be made between diffuse, abrupt and island-shaped treelines (Harsch 
and Bader, 2011). In diffuse treelines, tree growth gradually declines as a result of 
increasing heat limitation, eventually leading to a transition from upright trees to 
krummholz growth forms. In contrast, dieback processes play a significant role at abrupt 
or island treelines (Bader et al., 2021). Factors such as strong winds, frost events, or 
unfavourable soil conditions outside the protecting forest stand lead to increased 
seedling mortality (Harsch and Bader, 2011). With increasing temperatures, it is highly 
probable that the treeline position will shift to higher elevations at diffuse sites, however, 
this upward shift may be constrained at abrupt treelines (Harsch and Bader, 2011; Treml 
and Veblen, 2017). Furthermore, various additional factors can influence the position 
and upward shift of the treeline. Besides climatic treelines, distinctions are also made 
between edaphic, topographic and anthropogenic treelines (Schickhoff et al., 2020). The 
treeline elevation can be suppressed due to snow accumulations, cold air drainage, or 
edaphic and topographic factors like steep slopes, rock beds or avalanches, shallow soil 
depth, waterlogged, dry or nutrient-poor soils (Körner, 2007; Hadley et al., 2013; 
Schickhoff et al., 2020). Human activities likewise exert a significant influence on the 
treeline ecotone. Many treelines, particularly in the Northern Hemisphere, are 
anthropogenic treelines (Treml et al., 2016; Vitali et al., 2019; Miehe et al., 2023). These 
are shaped by disturbances such as deforestation, livestock grazing, or use for local 
recreation and tourism, and thus often lie below the altitudinal limit that would be 
climatically possible (Schickhoff et al., 2020). Globally, 66 % of treelines have been 
reported to be advancing (Hansson et al., 2021). In the Northern Hemisphere, 90 % of 
treelines are advancing (Lu et al., 2021), whereas those in the Southern Hemisphere are 
advancing less markedly. This difference is largely attributed to the abrupt nature of 
many Southern Hemisphere treelines (Hansson et al., 2023). 
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Treelines and their dynamics have been extensively studied in recent decades (Körner, 
2012; Holtmeier and Broll, 2020). Many investigations have focused on treelines in the 
Northern Hemisphere, including those in the Rocky Mountains, the Alps, the Scandes, 
and the Himalayas. In contrast, treelines in the Southern Hemisphere remain significantly 
underrepresented in the scientific literature (Hansson et al., 2021, 2023). Although small-
scale studies, primarily dendrochronological and experimental studies, have been 
conducted in the Southern Andes, there is a lack of modelling studies that capture the 
treeline in its entirety and simulate both current and future conditions. The treeline of the 
Southern Andes represents a particularly interesting research subject. It is abrupt, largely 
natural, and minimally influenced by human activity (Holtmeier, 2009). The species 
forming the treeline is the deciduous species Nothofagus pumilio (Poepp et Endl.) 
Krasser. Recent studies have already shown that this species is sensitive to climatic 
variations, often associated with phase shifts in Antarctic Oscillation (AAO) also known 
as the Southern Annular Mode (SAM), the El Niño Southern Oscillation (ENSO), and 
Pacific Decadal Oscillation (PDO) (Álvarez et al., 2015; Srur et al., 2016, 2018). Higher 
temperatures, in combination with sufficient precipitation, promote increased radial 
growth (Álvarez et al., 2015; Brand et al., 2022; Reiter et al., 2024) and the establishment 
of seedlings above the treeline (Srur et al., 2016, 2018). However, drought conditions, 
particularly increasing in northern Patagonia, can lead to growth limitation and mortality 
among both seedlings and mature individuals (Rodríguez‐Catón et al., 2016; Fajardo et 
al., 2019). Understanding the climatic conditions at the treeline, along with the potential 
current and future distribution of this species, is therefore of considerable interest. These 
questions can be addressed using Ecological Niche Modelling (ENM). Nevertheless, 
such modelling studies are currently lacking. 

The lack of modelling studies can largely be attributed to the limited availability of species 
occurrence data. ENM approaches typically rely on georeferenced point data indicating 
the presence or absence of species (Sillero et al., 2021). Such data can either be 
collected through fieldwork or obtained from online databases (Feng et al., 2019). The 
advantage of field-based data lies in the fact that it is usually gathered directly by experts, 
thereby minimising taxonomic misidentifications (e.g., Fitzpatrick et al., 2009). However, 
fieldwork is both time-consuming and costly and tends to be restricted to relatively small 
study areas. Open-access databases such as the Global Biodiversity Information Facility 
(GBIF) compile data from various sources (GBIF, 2025a). These include expert-verified 
field observations, museum collections, and increasingly contributions from Citizen 
Science (CS) initiatives. CS refers to projects in which “non-experts”, referred to as 
Citizen Scientists, participate in scientific research, for example by documenting species 
occurrences (Bonney, 1996; Bonney et al., 2009). This is commonly done using mobile 
applications that allow users to take photographs, automatically record coordinates, and 
generate species identifications. Despite their growing popularity, GBIF datasets are 
subject to several well-documented sources of bias (Beck et al., 2014; Meyer et al., 2016; 
Daru et al., 2018). These include spatial, taxonomic, and temporal biases. Sampling 
methods and observer behaviour can lead to species misidentification and to data 
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collection being concentrated in urban areas, resulting in spatial bias, while inaccurate 
GPS readings can lead to coordinate errors (Di Cecco et al., 2021). Moreover, CS 
projects typically do not cover areas that are difficult for humans to access, such as high 
mountain regions with complex topography. 

A promising approach that circumvents many of the aforementioned biases is the 
collection of species occurrence data through remote sensing techniques. Remote 
sensing enables comprehensive surveys of large areas, including those that are 
inaccessible to humans (He et al., 2015). Very high-resolution imagery (e.g., IKONOS, 
WorldView, RapidEye, or airborne data) is commonly used in small-scale studies to 
identify individual species or forest types (Fassnacht et al., 2016). For larger spatial 
extents, medium- to high-resolution datasets such as Landsat or Sentinel are typically 
employed (Immitzer et al., 2016; Immitzer et al., 2019). However, ground truthing, the 
verification whether the species of interest is indeed present in the area detected by 
remote sensing, remains necessary (Nagai et al., 2020). This, in turn, requires 
occurrence data that has been collected on-site. Recently, social media has gained 
attention as a potential tool for both collecting occurrence data and supporting ground 
truthing (Jarić et al., 2020). Platforms such as Facebook, Flickr, Instagram, Twitter (now 
X) and YouTube have been used to gather occurrences of animal and plant taxa (e.g., 
Hentati-Sundberg and Olsson, 2016; ElQadi et al., 2017; Pace et al., 2019; Gibson et 
al., 2020; Martino et al., 2021; Virić Gašparić et al., 2022; O'Neill et al., 2023). The 
quantity of geo-tagged images on social media is steadily increasing, offering significant 
potential for the analysis of suitable image and video contributions useful for species 
occurrence sampling. For example, on Instagram, the third most widely used social 
media platform worldwide (after Facebook and YouTube), with 2 billion active users 
(Statista, 2025), over 60 million contributions are posted daily (WirtschaftsWoche, 2014). 
Some platforms enable a manual search based on location tags or hashtags (metadata 
keywords marked with a hash symbol, e.g., #nothofaguspumilio), while others offer 
access via Application Programming Interfaces (APIs), allowing for automated searches 
(e.g., Flickr, Fox et al., 2022). Given the wide reach of social media platforms plus the 
fact that social media content is analysed by experts, social media occurrence data 
sampling has the potential to generate large volumes of less-biased occurrence data and 
is still largely untapped.  

This thesis introduces a novel Instagram ground truthing approach (IGTA), which used 
the social media platform Instagram for species occurrence data sampling aiming at 
creating less-biased occurrence data of N. pumilio for ENM. The IGTA comprised two 
main steps. First, Instagram posts were systematically searched using a strict set of 
criteria to identify both the species N. pumilio and the location where the corresponding 
photo was taken. The resulting data were then georeferenced and transferred to a map 
as point occurrences. Due to the high volume of potentially suitable posts and the manual 
georeferencing of occurrence points, allowing for multiple points per post e.g., 
occurrences in the background of posted photos, spatial sampling bias can be reduced. 
Bias was detected and compared with that found in GBIF data. In the next step, to further 
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mitigate spatial bias, the generated IGTA point dataset was subsequently used for 
ground truthing large-scale remote sensing data. Raster data of N. pumilio occurrences 
was derived from supervised classification of Sentinel-2 Level 2A imagery. Therefore, 
the IGTA approach resulted in two occurrence datasets of N. pumilio: a point dataset 
and a raster dataset covering the entire range of the species in the Southern Andes. 
Both datasets can be used to model the ecological niche, and the potential current and 
future distribution of the species. Two models were developed and compared: one using 
a common binary (point-based) ENM approach, and another employing a more 
innovative method based on continuous raster data.  

The subsequent chapters provide a comprehensive overview of the methodological 
background and conceptual framework of Ecological Niche Modelling (Chapter 2), 
including a detailed presentation of the data underlying the models (Chapters 2.1 and 
2.2), and the algorithms applied (Chapter 2.3). Chapter 3 introduces the study area and 
study species in detail. Chapter 4 presents the key methods and content of the peer-
reviewed publications that form the core of this cumulative dissertation (full texts 
available in the appendix). Finally, Chapter 5 synthesises the findings, and Chapter 6 
offers a conclusion and outlines future research priorities.
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2. Ecological Niche Modelling: Concepts, Data, Limitations 
One of the most important questions for biogeographers is understanding the spatial and 
temporal distribution patterns of species (Thuiller, 2024). In the last decades, this 
question has been investigated using Ecological Niche Modelling (ENM). ENM, also 
known as Species Distribution Modelling (SDM) and Habitat Suitability Modelling, is an 
approach to investigating the current, past and future distribution of species (Thuiller, 
2024). This is achieved by a mathematical approach using species observations and 
environmental predictor variables as well as correlative or machine learning algorithms 
(Zurell and Engler, 2019). Typical areas of application are forecasting the effects of 
climate change, land use, or anthropogenic factors on biodiversity, planning of protected 
areas, and monitoring habitat shifts or the invasive potential of species (Araújo et al., 
2019; Thuiller, 2024). ENM has therefore developed into an indispensable application 
for biodiversity conservation and management (Franklin, 2010; Thuiller, 2024). The 
terms Ecological Niche and Species Distribution Modelling are often used 
synonymously. However, ENM and SDM differ in terms of the subject of investigation 
and the underlying hypothesis (Peterson and Soberón, 2012). Peterson and Soberón 
(2012) highlight the differences between the concepts. SDM is primarily concerned with 
modelling the current distribution of a species based on observed occurrences without 
making any statements about the niche of a species. ENM, on the other hand, focuses 
primarily on modelling the underlying abiotic and biotic (ecological) environmental 
conditions under which a species can occur (Peterson and Soberón, 2012). According 
to the authors, SDM can only refer to modelling the actual current distribution of a 
species. In contrast, modelling under changing environmental conditions relates to the 
niche concept, as it involves estimating the fundamental niche and potential changes to 
it (Peterson and Soberón, 2012). Although many studies apply models to study changes 
over time, the term SDM is used more frequently than ENM. The term SDM can be 
understood as an umbrella concept under which numerous applications and methods 
have been published (Elith and Leathwick, 2009; Franklin, 2010; Bobrowski, 2018). In 
the following, however, the term ENM is used and the underlying concepts are described 
accordingly. 

ENM is a valuable tool for predicting suitable conditions in space and time for a study 
species (Anderson, 2012). ENMs can be divided into three categories according to the 
extent to which biological processes are included: mechanistic, correlative, and hybrid 
models (Sillero et al., 2021). Mechanistic ENMs incorporate biotic variables about 
physiological, morphological, and behavioural processes, while correlative and hybrid 
ENMs use geographical data of species occurrences and environmental predictors. In 
addition to geographical data, hybrid ENMs also incorporate process-based influences 
such as biotic interaction and dispersal abilities (Sillero et al., 2021). The following work 
refers to correlative models. The classic correlative approach consists of data on the 
occurrence of the study species and environmental predictors like climate, soil, 
topography, and biotic data. The species data can be presence–only, presence–
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background and presence–absence (Peterson et al., 2011). Some authors describe that 
the type of species occurrence data used determines which kind of niche can be 
modelled, for example the fundamental, realised, or potential niche (Franklin, 2010). The 
precise definition of the niche being modelled is a critical aspect of ENM, and this is 
where the niche concept becomes important.  

Defining the term “ecological niche” has a long and contested history in ecology (Sales 
et al., 2021). Following its initial introduction by Grinnell in 1917, the concept was further 
developed, leading to numerous interpretations and applications (Peterson, 2011). 
Grinnell originally defined the “niche” as the environmental (abiotic) conditions that allow 
a species to survive and reproduce (Grinnell, 1917; Sillero et al., 2021). The Grinnellian 
niche is thus based on abiotic conditions, whereas a later definition by Elton describes 
the niche as the functional role of a species within an ecosystem and has therefore a 
focus on biotic conditions. The Eltonian niche refers for example to biotic interactions 
such as what a species consumes and what predators it faces (Elton, 1927; Sillero et al., 
2021). Hutchinson later combined abiotic and biotic dimensions and was the first to 
introduce the concepts of the “realised” and “fundamental” niche. A fundamental niche 
refers to the geographic space in which a species can occur and reproduce successfully 
without concurrence, whereas the realised niche describes the space that is actually 
occupied by a species despite competition (Hutchinson, 1957; Sillero et al., 2021). Both 
concepts are important for ENM, since the scope of a modelling approach and the 
underlying hypotheses depend on them. In the 21st century the Biotic-Abiotic-Movement 
framework (BAM) was developed for ENM applications (Soberón and Peterson, 2005). 
It supplements concepts of Grinnell and Hutchinson and is the basic framework for ENM 
studies (Zurell and Engler, 2019).  

The BAM framework is illustrated in Figure 1a. In this framework, G represents the 
geographic space, A denotes the abiotic conditions suitable for a species’ survival and 
reproduction, B includes biotic interactions, and M defines the area that is accessible to 
a species without dispersal limitations. The intersection of G and A, GA, represents the 
species’ fundamental (Grinnellian) niche, while the intersection of A, B, and M, referred 
to as GO, represents the actual occupied area (Soberón and Peterson, 2005; Peterson, 
2011; Peterson and Soberón, 2012), which some authors synonymously define as the 
realised niche (Sillero et al., 2021). However, some authors define the realised niche 
strictly as the intersection of A and B, in line with Hutchinson’s classical concept 
(Soberón and Peterson, 2005; Soberón, 2007; Zurell and Engler, 2019). ENM aims at 
predicting suitable environmental conditions for a species, yet there is ongoing debate 
about which niche is modelled (Zurell and Engler, 2019). This distinction depends largely 
on the type of species occurrence data used. Correlative ENMs based on presence–only 
data tend to approximate the potential or realised niche, while presence–absence 
models can capture the occupied niche (Franklin, 2010; Zurell and Engler, 2019). In this 
study, a more neutral terminology is used. The presence–absence approach used here 
contains information on A, B, and M: environmental predictors represent A and presence 
data originate from GO, indirectly reflecting B and M. However, to estimate GO precisely, 
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additional information on M would be required in order to delineate GI, the invadable area 
constrained by dispersal limitations (Peterson, 2011; Peterson and Soberón, 2012). 
Therefore, the ENM in this study is understood to predict the potential geographic 
distribution (GP), defined as the area where abiotic and biotic conditions (intersection of 
A and B) are suitable for the species’ survival and reproduction. Following the authors’ 
recommendation, the term “potential current and future distribution” is used throughout 
this study to describe the modelled distribution of Nothofagus pumilio (Peterson and 
Soberón, 2012). 

Lately, several guidelines for ENMs have been published to help developing an ENM 
workflow (e.g., Araújo et al., 2019; Feng et al., 2019; Sillero et al., 2021). Figure 1b shows 
the basic structure of an ENM approach. The ENM workflow consists of the preparation 
and integration of two input datasets, the occurrence data and the environmental data, 
followed by the model setup and algorithm choice, the evaluation and calibration of the 
model, and finally, the transfer in space or time (Anderson, 2012). Each step involves 
specific strengths and limitations. While the choice of methods is critical for producing 
accurate model outputs, potential sources of error in the input data must also be 
addressed. These include bias in the occurrence data, inaccuracies in the (climatic) 
predictors or their preprocessing, spatial autocorrelation, and multicollinearity among 
variables. Opportunities and limitations related to these aspects are discussed in detail 
in the following chapters. 

 

Figure 1: a) Visualisation of the Biotic-Abiotic-Movement (BAM) scheme (after Peterson 2011). In 
G, the geographic space, A abiotic and B biotic conditions for a species are given. M (movement) 
is the space accessible for the species, where it can move without limitations. GA is the 
fundamental niche of the species, while the intersection between A, B and M is GO the occupied 
distributional area. GP is the potential geographic distribution that includes GI, the invadable 
distributional area (Soberón and Peterson 2005; Peterson, 2011; Peterson and Soberón, 2012). 
b) shows the typical workflow of an Ecological Niche Modelling (ENM) approach (after Anderson, 
2012). 
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2.1 Species Occurrence Data 

Correlative ENMs require georeferenced species occurrence data. These can either be 
in situ data from fieldwork sampled by experts, digitalised data from museums, or data 
from online databases that come from diverse sources (Thuiller, 2024). In the last 
decades, online databases make biodiversity data largely available and are frequently 
used by ecological modellers (Michener et al., 2012; Feng et al., 2019). Expert and 
museum data as well as data from Citizen Science (CS) projects are available in global 
databases such as the Global Biodiversity Information Facility (GBIF) (Anderson et al., 
2016; GBIF, 2025a). Especially CS data contribute significantly to such databases 
(Goldberg, 2023). CS is the active involvement of “non-experts” in scientific research 
(Bonney, 1996; Bonney et al., 2009). In the case of ecological modelling this is primarily 
the sampling of species occurrences with mobile devices (Kullenberg and Kasperowski, 
2016). One example of a CS project is iNaturalist. In the iNaturalist app, photos of 
biodiversity observations with meta data of coordinates, date, and time can be uploaded 
with a smartphone or PC. Users can identify the species based on suggestions in the 
app, which are reviewed and updated by other users or experts (curators) (Heberling 
and Isaac, 2018; Goldberg, 2023; iNaturalist, 2025). After reaching a consensus by at 
least two users, occurrences are considered correctly identified, complete and certain, 
and only then are they passed on to biodiversity data repositories like GBIF for 
publication as valid data (Heberling and Isaac, 2018). iNaturalist serves as one of the 
main contributors to GBIF with over 131 million hosted occurrence records (GBIF, 
2025b). Therefore, CS is a very important contribution to species occurrence data 
sampling (Feldman et al., 2021), offering a cost- and time-efficient method for large-scale 
monitoring (Sumner et al., 2019). Some authors even emphasise that CS is the only 
practical way to investigate range shifts of species in large scale (Dickinson et al., 2010). 
Others found that the data quantity increases exponentially (Pocock et al., 2017) and the 
data quality is improving rapidly, nearing expert level (Aceves-Bueno et al., 2017; 
Mesaglio and Callaghan, 2021). 

Recently, social media gained attention towards its contribution to species occurrence 
data sampling (Deng et al., 2012; Jarić et al., 2020). With its wide reach and vast amount 
of posted content with geotags, social media offers a still largely untapped potential for 
surveying species occurrences (Deng et al., 2012). Just like CS, the use of social media 
content has the potential to increase species occurrence data in a cost- and time-efficient 
way (Edwards et al., 2021). However, CS usually requires the active involvement and 
information transfer to Citizen Scientists (Wiggins and Crowston, 2011). When social 
media content is re-used and analysed by scientists, content creators are rarely aware 
that they are participating in a study. Therefore, social media species occurrence data 
sampling can be assigned to “passive Citizen Science” (Nascimento et al., 2024). Social 
media platforms such as Facebook, Flickr, Instagram, X (formerly Twitter), and YouTube 
are used to sample occurrence data and range shifts of animals, for example data of 
whales, dolphins (e.g., Pace et al., 2019; Gibson et al., 2020; Martino et al., 2021), birds 
(e.g., Hentati-Sundberg and Olsson, 2016), snakes (e.g., Marshall and Strine, 2019), 
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insects (e.g., Virić Gašparić et al., 2022; O’Neill et al., 2023), and plants (e.g., ElQadi et 
al., 2017). 

However, even though data availability is increasing, data from global databases are 
subject to several biases that must be addressed in ENM (Boakes et al., 2010; Beck et 
al., 2014; Meyer et al., 2016; La Sorte et al., 2024). Species data can inhibit taxonomic, 
sampling, and spatial bias (Meyer et al., 2016). Field trips by experts are, on the one 
hand, costly and time-consuming, often limited to small study areas that cannot cover 
the whole range of a species, and limited to areas that are accessible for humans. On 
the other hand, expert data are considered to be mostly free of species misidentifications 
or sampling biases. When species occurrences are sampled by (unstructured) CS 
projects, misidentifications are common errors (Bird et al., 2014), especially for rare 
species (Cox et al., 2012). Furthermore, sampling biases such as wrong coordinates can 
occur mainly due to weak satellite signals while sampling with mobile devices (Uyeda et 
al., 2020). One major bias is spatial bias. Citizen Scientists record the occurrence of 
species primarily in areas of their everyday lives. For example, on their way to work, 
during walks, or on holiday (Dimson and Gillespie, 2023). This observer behaviour leads 
to the accumulation of occurrence points in areas that do not necessarily correspond to 
the actual distribution range of species (Di Cecco et al., 2021). Areas that are difficult or 
impossible for humans to access are usually not recorded at all. Even on a global scale, 
the data is spatially biased, as sampling of occurrences takes place primarily in the 
Northern Hemisphere (North America and Europe) (Di Cecco et al., 2021; Feldmann et 
al., 2021). The potential of social media species occurrence data sampling to reduce 
these biases effectively has not yet been tapped. As globally posted content is widely 
available and accessible, and the data are collected and evaluated by experts, both 
sampling and spatial biases may be mitigated. However, user behaviour on social media 
often mirrors that of Citizen Scientists, meaning that certain biases still persist. 

Therefore, occurrence data must be examined for these biases in order to avoid 
distorting the modelling results (Meyer et al., 2016). There are several methodological 
solutions to address the described sources of bias in occurrence data (Bird et al., 2014, 
Sillero et al., 2021). First steps while and after downloading the data are intense filtering 
and bias detection methods (Feng et al., 2019). Within the download process, data can 
be checked for missing coordinates and excluded. Some databases such as GBIF 
indicate the coordinate uncertainty, so that data with high variations in coordinates can 
also be removed. Nevertheless, it is crucial to plot occurrence points and check for false 
deviations. For example, spatial and environmental outliers, such as terrestrial plant 
species occurring far from their natural distribution area or on water or glacier surfaces, 
indicate an erroneous recording (Feng et al., 2019). The degree of spatial bias in the 
data can be determined using bias detection methods such as the R package “sampbias” 
(Zizka et al., 2021). “Sampbias” compares the position of species records with geodata 
on urban areas and calculates the sampling rate. A high sampling rate in urban areas 
and very low values in rural areas indicate significant spatial bias (Zizka et al., 2021). 
Additional data can be necessary to reduce spatial bias or the proportion of “clustered” 
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occurrences in urban area can be reduced (filtering) (Sillero and Barbosa, 2021). 
Detecting taxonomic or sampling bias is more difficult. Misidentified species or incorrect 
coordinates can rarely be identified retrospectively and are difficult to avoid entirely. 
While such biases can lead to substantial errors in some algorithms, others (e.g., 
Boosted Regression Trees, Random Forest, Maximum Entropy) are considered more 
robust to these issues (Sillero et al., 2021).  

After downloading and filtering the occurrence data, they must be pre-processed and 
formatted appropriately for modelling. Data types for correlative ENMs can be presence–
only, presence–background, or presence–absence/pseudo-absence data (Sillero et al., 
2021). The choice of data type depends on the modelling objective and the algorithm 
applied. Presence–only models rely solely on species presence as the response variable 
and typically apply envelope algorithms to predict habitat suitability (Booth et al., 2014; 
Sillero et al., 2021). Presence–background data represents a special case, most 
commonly used in Maximum Entropy (MaxEnt) model approaches (Phillips et al., 2006). 
Background data refers to areas within the study area where no species occurrences 
have been recorded. The abiotic and biotic conditions at presence locations are 
compared to those at locations in the background (Phillips et al., 2009; Sillero et al., 
2021). In contrast to true absence data, background data covers the whole study area, 
that may include sites where the species is actually present (Sillero and Barbosa, 2021). 
Model validity can be increased by incorporating true absences, representing locations 
where a species is known to be absent (Sillero et al., 2021). However, true absence 
information is rarely available. When working with geospatial data, it is common practice 
to generate so-called pseudo-absences (VanDerWal et al., 2009; Barbet‐Massin et al., 
2012; Broussin et al., 2024). These are absence points created in grid cells e.g., in the 
resolution of the species or climate data, that do not contain any recorded presence 
points and are therefore treated as absences for modelling purposes (Sillero et al., 2021). 
The choice of the number of pseudo-absence points created is important and can greatly 
influence the model result (Barbet-Massin et al., 2012). “Prevalence” describes the 
proportion of presence points in all data points (i.e. presence and absence). To gain a 
suitable prevalence, different presence-to-absence ratios are recommended depending 
on model algorithms. For example, a 1:10 ratio is recommended for a Generalised Linear 
Model (GLM) and 1:1 for a Random Forest (RF) algorithm (Barbet-Massin et al., 2012). 
If there are too many or too few absence points, the predictive power of the models can 
vary greatly. For presence–absence modelling, another filtering method is necessary to 
ensure good model quality. “Spatial thinning” ensures that only one occurrence point (as 
well as pseudo-absence point) is present per raster cell. This reduces spatial bias, 
prevents model overfitting caused by overrepresentation of duplicate occurrences, and 
mitigates spatial autocorrelation (discussed in detail below) (Steen et al., 2021).  
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2.2 Environmental Data 

Environmental data of e.g., climate, soil, land cover, and land use can also be sampled 
in situ, but here again datasets available online are most commonly used (Thuiller et al., 
2024). Most ENMs concentrate on climatic data. Common climate databases are 
WorldClim (Hijmans et al., 2005; Fick and Hijmans, 2017) and CHELSA (Karger et al., 
2017). Both datasets contain information on current and future climate, as well as 
paleoclimate data (Last Glacial Maximum) with a resolution of up to 30 arc sec ~ 1 km. 
While WorldClim is based on interpolated station data and a digital elevation model (Fick 
and Hijmans, 2017), CHELSA data are generated through dynamic downscaling and 
reanalysis of ERA5 data (Karger et al., 2017). CHELSA data are more detailed and 
account for orographic effects, resulting in improved performance in areas with complex 
topography, such as high mountain regions (Bobrowski et al., 2021a). More recently, 
remote sensing data have contributed significantly to the development of environmental 
predictors for ENM. Data from sources such as MODIS, SRTM, or LiDAR provide 
valuable information on climate, topography, land cover, and spectral metrics (e.g., 
NDVI), which can be extracted and used in modelling (Wang et al., 2025). 

The choice and the number of predictor variables are again critical factors influencing 
ENM outcomes (Čengić et al., 2020; Sillero et al., 2021). While it may be tempting to 
include as many abiotic variables as possible, an excessive number of predictors can 
lead to model overfitting, reducing the model’s ability to generalise beyond the training 
area. A commonly cited rule of thumb suggests that the number of predictor variables 
should not exceed the number of species occurrence records (Sillero et al., 2021). Other 
authors provide estimation formulas for example 𝑘𝑘 = (𝑛𝑛 − 50)/8 or 𝑘𝑘 =  𝑛𝑛 −  104 (Field 
et al., 2012) for regression-based methods or general rules like 𝑘𝑘 = 𝑛𝑛/10 (Franklin, 
2010), where k is the number of predictors and n the number of species occurrence 
records (Sillero et al., 2021). Additionally, multicollinearity must be taken into account. 
Multicollinearity describes the effect that environmental variables are highly correlated 
with one another. This effect can result in weak model performance and misleading 
interpretations (Dormann et al., 2013). It increases the risk of overfitting and may cause 
variables with no direct ecological relevance to exert a strong influence on model 
outcomes simply because they are correlated with truly influential predictors (Sillero et 
al., 2021). Some modelling algorithms are highly sensitive to multicollinearity, while 
others can handle it more effectively. Nevertheless, collinearity should always be 
assessed, and variables with correlation coefficients exceeding ± 0.7 to ± 0.8 should 
generally be excluded (Dormann et al., 2013). Another often-used solution is the 
transformation of the predictors into principal components and their use in the models 
(Principal Component Analysis, PCA). However, interpreting principal components is 
more challenging than interpreting the original variables, as they represent combinations 
of multiple factors rather than direct environmental gradients (Sillero et al., 2021).  
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2.3 Modelling Algorithms, Evaluation and Calibration 

For ENM, regression approaches like Generalised Linear Models (GLM), Generalised 
Additive Models (GAM), and Multivariate Adaptive Regression Splines (MARS), or 
machine learning approaches like Random Forest (RF), Maximum Entropy (MaxEnt), 
and Artificial Neural Networks (ANN) can be used. The choice of algorithm should be 
adapted to the data, the size of the study area, and the scope of the study. For example, 
less complex models tend to perform better in small study areas (Li and Wang, 2013). In 
linear regression approaches, all predictor-species relationships can be interpreted and 
plotted in response curves. Therefore, these approaches are considered particularly 
easy to interpret and suitable for ENM (Li and Wang, 2013). Conversely, machine 
learning algorithms are often said to be black boxes and difficult to interpret (Breiman, 
2001b; Ryo et al., 2021). In comparison, the performance of machine learning 
approaches is often significantly better than that of linear regression approaches (Li and 
Wang, 2013). Nevertheless, interpreting the ecological niche, or at least the underlying 
abiotic conditions, should remain a central focus of any ENM study. However, some 
authors have criticised the growing tendency to prioritise distribution prediction over 
ecological interpretation, arguing that the original emphasis on understanding niche 
dynamics is increasingly being watered down (Bobrowski et al., 2021b). 

Prior to model computation, the final dataset, consisting of species occurrence and 
environmental data, is split into training and testing subsets for model validation, 
commonly using a cross-validation approach. Best practice in model validation would be 
to test the model on independent, external data. But as these are rarely available, 
standard cross-validation based on data splitting is commonly applied. The model is 
trained on the training dataset and evaluated using the testing dataset (Yates et al., 
2023). There are several methods of cross-validation, with k-fold cross-validation being 
the most commonly applied. In this approach, the dataset is divided into k equal subsets 
(folds). In each iteration, one subset is used for testing, while the remaining 𝑘𝑘 − 1 subsets 
are used for training. This process is repeated k times, and model performance is 
evaluated across all k iterations (Yates et al., 2023). Another possibility is the leave-one-
out method, where each individual data point is used once as test data while all remaining 
points serve as training data (𝑘𝑘 = 𝑛𝑛) (Yates et al., 2023). Training and testing datasets 
should be as independent as possible to allow for meaningful model validation (Sillero et 
al., 2021). However, spatial data is always spatially autocorrelated to a certain degree, 
which poses additional challenges for achieving full independence between training and 
testing sets (Legendre, 1993; Dormann et al., 2007; Roberts et al., 2016). Tobler's law 
applies here, that says: “[...] everything is related to everything, but near things are more 
related than distant things.” (Tobler, 1970). In this context, this means that abiotic 
conditions at closer species locations tend to be more similar than more distant ones, so 
that autocorrelation is more pronounced (Sillero et al., 2021). In random cross-validation 
splits, spatial autocorrelation is not accounted for, which can lead to overly optimistic 
model evaluations. Therefore, a third cross-validation method must be mentioned, the 
spatial or block cross-validation (Roberts et al., 2016). This approach divides the data 
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into spatially distinct blocks, creating folds that are geographically separated, thereby 
reducing spatial autocorrelation between training and testing sets and providing a more 
realistic assessment of model performance (Roberts et al., 2016; Valavi et al., 2019). To 
summarize, cross-validation is a method used to test the predictive performance of the 
model with data that is as independent as possible. In addition, cross-validation can be 
used to optimise model hyperparameters by testing models with different settings, for 
example, testing different numbers of trees (ntree) or tested variables at each node 
(mtry) in a RF model (Schratz et al., 2019; Yates et al., 2023). After model validation, 
either the best-performing model (i.e. the one with the highest predictive performance 
and optimal hyperparameters) or an average model (based on the mean validation 
metrics across all runs) is selected and applied for model transfer in space or time (Yates 
et al., 2023).  

Evaluation metrics depend on the data type. For regression approaches with binary data 
(presence data has two expressions, 1 = presence and 0 = absence) commonly applied 
metrics include the threshold-dependent Cohen’s Kappa and True Skill Statistic (TSS), 
as well as the threshold-independent Area Under the Curve (AUC) of the Receiver 
Operating Characteristic (ROC) curve (Mouton et al., 2010; Sillero et al., 2021). In binary 
modelling, a threshold must be set to determine when a predicted value is considered a 
presence and when it is considered an absence (e.g., presence ≥ 0.5). The model results 
can then be displayed in confusion matrices, as illustrated in Table 1 (Miller, 2010; Sillero 
et al., 2021). From this confusion matrix, sensitivity, the proportion of correctly predicted 
presences, and specificity, the proportion of correctly predicted absences can be derived, 
which in turn can be used to calculate various evaluation measures (Miller, 2010). 
Cohen’s Kappa is a commonly used metric that measures the agreement between 
predicted and observed values. However, because it is highly sensitive to prevalence, 
the TSS is now more widely used as a more robust alternative (Mourton et al., 2010). 
The TSS is calculated as sensitivity +  specificity − 1 and takes values from −1 to +1. 
Values close to +1 indicate perfect agreement between predicted and observed values 
and thus reflect high model performance, whereas values near or below 0 indicate 
performance no better than random guessing (Allouche et al., 2006). The choice of 
threshold plays an important role, as it strongly influences the result and model 
performance (Liu et al., 2013). The AUC is independent of thresholds and is therefore 
often used to evaluate prediction models (Peterson et al., 2008). The ROC curve, on 
which the AUC is based, plots sensitivity (y-axis) against the false positive rate (x-axis) 
for all possible thresholds. The AUC value describes the “area under this curve” and can 
take values between 0 and 1. An AUC of ≤ 0.5 means that the model is no better than 
random guessing (Peterson et al., 2008). Other authors recommend likelihood-based 
criteria such as Akaike information criterion (AIC) and the coefficient of determination 
(R2) (Lawson et al., 2014). For continuous data (e.g., abundance data, variable is 
numerical), simple correlations between observed and modelled values can be 
computed, or evaluation metrics such as R² and the Root Mean Square Error (RMSE) 
can be used to assess model performance (Potts and Elith, 2006).  
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Table 1: Typical structure of a confusion matrix comparing observed and predicted values, 
thereby distinguishing True Positives (TP), True Negatives (TN), False Positives (FP) and False 
Negatives (FN). This forms the basis for calculating several model evaluation metrics (after Miller 
et al., 2010). 

                             Observed 

  Present Absent 
Pr

ed
ic

te
d Present TP FP 

Absent FN TN 

 

After model setup, calibration, and validation, an ENM can be transferred both spatially 
and temporally, unlike a traditional SDM (Anderson, 2012, Peterson and Soberón, 2012). 
Typically, the model is first projected across the entire study area to estimate the full 
potential distribution of the species (Anderson, 2012). However, it can also be transferred 
to remote geographic regions, for example, to assess the potential spread of invasive 
species in novel environments (Elith and Leathwick, 2009; Anderson, 2012). Moreover, 
ENMs can be projected under future or past climatic conditions. This requires climate 
data with temporal projections (Sillero et al., 2021). Future projections are usually based 
on Representative Concentration Pathways (RCPs), which are categorised into mild, 
medium, and severe emission scenarios (van Vuuren et al., 2011). The most commonly 
used sources for these datasets are again WorldClim and CHELSA, both of which 
provide datasets in which RCP scenarios have been modelled using a variety of global 
climate models. 
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3. Nothofagus pumilio: Climate Change and Impacts on the 
Alpine Treeline 
The Andes are the largest mountain range with a latitudinal extent covering over 
8,000 km. After the Himalayas, they are the second-highest mountain range in the world 
with peaks up to 6,962 m (Cerro Aconcagua, Argentina) (Graham, 2009). Due to the high 
complex topography and the north-south exposition, the Andes comprise of steep 
climatic gradients leading to high heterogeneity of habitats. This results in a very high 
floral diversity, with 10 % of the world’s vascular plant species in the Andes, at only 0.6 % 
of the global land surface (Mittermeier et al., 2011). Biodiversity is highest in northern 
mid-elevation cloud forests, while biomes of the Southern Andes are less diverse (Pérez-
Escobar et al., 2022). Nevertheless, the Andean biodiversity hotspot is threatened by 
climate change in its northern and southern parts (Tovar et al., 2022). High mountain 
regions like the Andes are particularly affected by climate change, as warming is above 
the global average due to snow albedo feedback mechanisms (Pepin et al., 2015). 
Glaciers and snow fields are retreating and bare ground with low albedo favours warming 
of surrounding areas (Pepin et al., 2015; Pepin et al., 2022). Globally, an average 
increase in air temperatures of 0.2°C is observed per decade since 1880 with an ongoing 
positive trend (Allen et al., 2018). In high mountain regions, temperature increases 
ranging from of 0.3°C to 0.4°C per decade (Schickhoff et al., 2022). This above-average 
warming forces ecosystems to alter in terms of their structure and species composition, 
leading to habitat shifts or even their loss due to new environmental conditions (Dirnböck 
et al., 2011; Dullinger et al., 2012). An especially visible and documented change is the 
shift of alpine treeline positions (Holtmeier and Broll, 2020).  

This study focuses on the Southern Andes, specifically the Andean Cordillera between 
35°S and 56°S, extending to the southern tip of South America (Tierra del Fuego), a 
region often referred to as Patagonia in the literature. The Southern Andes reach a 
maximum altitude of up to 4058 m at 46°S (Borsdorf and Stadel, 2013). The altitude itself 
creates a steep temperature gradient and the north-south exposition in combination with 
the west-wind regime creates a precipitation gradient, which is considered to be the most 
extreme precipitation gradient of the world (Garreaud et al., 2013). These climatic 
gradients directly influence the distribution range of the treeline species N. pumilio, as 
well as changing conditions at the treeline in response to climate change. This chapter 
gives an overview of the study area, its climate and climate change implications as well 
as the study species N. pumilio and the changes of the species’ distribution at treeline 
locations. 
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3.1 Climate and Climate Change in Southern South America 

The climate in the Southern Andes is temperate, adjacent to mediterranean climate in 
the north and more cold-temperate climate at the southern tip of the South American 
continent (Borsdorf and Stadel, 2013). One special feature, however, is that the climate 
of the western and eastern side of the Andes is extremely different, which is due to the 
extreme precipitation gradient. Climate is maritime and hyper-humid at the westside of 
the Andes and more continental and arid at the east of the mountain range (Garreaud et 
al., 2013). Figure 2 shows a Köppen-Geiger climate classification map and the steep 
west-east precipitation gradient in the study area.  

The Southern Andes are located between two pressure bands: the semi-permanent 
anticyclones of the Pacific in the north-west and the subpolar low-pressure belt in the 
south (Antarctic Oscillation) (Paruelo et al., 1998). These create strong and constant 
west winds that transport humid air masses from the Pacific. Through orogenic uplift, 
precipitation sums are very high at the western side of the Andes, reaching extremes 
from 5,000 up to 10,000 mm/a (Garreaud et al., 2013). Since most of the precipitation 
falls on the Chilean side of the Andes and dry air descents on the Argentinean side of 
the Andes, this causes high evaporation and a precipitation deficit of below 300 mm/a at 
the lee side of the mountain range (Garreaud et al., 2013). Seasonal changes in 
precipitation are due to shifts in the pressure belts. A northward shift of the Antarctic 
Oscillation (AAO) is associated with increased storm activity and colder, wetter 
conditions in the mid-latitudes, especially in winter, whereas its southward shift results in 
slightly lower precipitation sums in spring and summer (Holz et al., 2017). Temperatures 
are relatively cold due to the Antarctic-Circumpolar- and Humboldt-Current that transport 
cold water masses from the Antarctic (Schneider et al., 2003). Mean annual 
temperatures range from 12°C in the north-east to 3°C in the south of the study area due 
to the latitudinal gradient. Furthermore, the altitude gradient and cold winds influence 
local temperature patterns (Paruelo et al., 1998).  

Interannual variability of temperature and precipitation in the study area are significantly 
influenced by expressions of large-scale phenomena like the El Niño Southern 
Oscillation (ENSO), La Niña events and the Antarctic Oscillation (AAO) also knows as 
Southern Annular Mode (SAM). Furthermore, (multi-) decadal variability is due to 
expressions of the Pacific Decadal Oscillation (PDO) (Garreaud, 2009). The AAO is the 
dominant climatic pattern influencing the extratropical regions of the Southern 
Hemisphere (Garreaud, 2009; Veblen et al., 2011). As outlined above, its northward and 
southward shifts significantly affect temperature and precipitation patterns in southern 
South America (Holz et al., 2017). Anomalies involving strong poleward shifts of the AAO 
have a significant impact on regional precipitation, leading to weakened westerlies and 
to drought conditions in northern Patagonia (Holz et al., 2017). ENSO events are non-
cyclical reversals of the Walker circulation, and are normally associated with very high 
precipitation amounts and higher (water) temperatures in tropical and subtropical South 
America (Cai et al., 2020). But in the Southern Andes ENSO events create warm-dry 
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conditions also leading to droughts as the westerlies are weakened especially in spring 
and summer month. La Niña events on the opposite create cool and rainy summers 
(Garreaud, 2018). The PDO refers to long-term water surface temperature changes in 
the Pacific that last over approximately 20 years and lead to (global) temperature rises. 
A negative-to-positive shift in PDO leads to increased spring and summer temperatures 
in the Southern Andes, while a positive-to-negative shift in PDO creates dry and cold 
conditions (Srur et al., 2016).  

Temperature increase in southern South America is mostly associated with the positive 
phase (poleward) shift of the AAO. Since the latter half of the 20th century, an increased 
positive trend in the AAO has been observed, attributed to increased greenhouse gas 
concentrations and reduced stratospheric ozone in the atmosphere (Miller et al., 2006, 
Veblen et al., 2011). Therefore, it is most likely that the positive trend, associated with 
rising temperatures and regional drought conditions, persists in the 21st century (Fyfe 
and Saenko, 2006; Veblen et al., 2011). Decreases in precipitation can also be attributed 
to the AAO and ENSO, as described above. However, in addition to variations caused 
by phase shifts of AAO, ENSO, and PDO, trends attributable to anthropogenic climate 
change are evident for both, temperatures and precipitation. Since the 1950s, 
temperatures in northern Patagonia have risen by +1°C and precipitation has decreased 
by −5 % (Pessacg et al., 2020). Climate modelling using CMIP5 models in central Chile 
(30°S to 40°S) indicates a temperature increase of +1.2°C and a decrease in 
precipitation of −3 % by the end of the century in a mild scenario (RCP2.6). For the 
RCP8.5 scenario, temperatures increase by +3.5°C and precipitation decreases up to 
−30 % (Bozkurt et al., 2018). A regional CORDEX model calculates an increase of 
+1.5°C for annual mean temperature and a −10 to −30 % decrease in precipitation for 
northern Patagonia for the same period (Pessacg et al., 2020). Chile is currently 
experiencing its worst droughts since records (Garreaud et al., 2020), with the most 
severe drought occurring in 2016 (Garreaud et al., 2018). For southern Chile, Bambach 
et al. (2022) find warming trends in the Andes, as well as drying trends in the austral 
summer and winter, and even emphasise that the Andean tundra and alpine climates 
(classification according to Köppen and Geiger) will decline dramatically by the end of 
the century (Bambach et al., 2022). Climate change in the Southern Andes has a strong 
influence on snowfall and snow persistence, glacier thickness (Masiokas et al., 2020), 
water availability (Masiokas et al., 2020; Pessacg et al., 2020), droughts (Garreaud et 
al., 2017; Garreaud et al., 2020), and fire frequency (Holz et al., 2017; Mundo et al., 
2017). Ultimately, ecosystems will be forced to adapt to new climatic conditions, resulting 
in habitat shifts and species extinction, particularly in vulnerable high mountain regions. 
The effects of climate change also have a strong impact on the study species N. pumilio 
at the alpine treeline. 
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Figure 2: Study area in southern South America showing a) a climate classification map according 
to Köppen and Geiger, with climate types ranging from BWk (Arid, desert, cold), BSk (Arid, 
steppe, cold), Csa (Temperate, dry summer, hot summer), Csb (Temperate, dry summer, warm 
summer), Csc (Temperate, dry summer, cold summer), Cfa (Temperate, no dry season, hot 
summer), Cfb (Temperate, no dry season, warm summer), Cfc (Temperate, no dry season, cold 
summer), Dsb (Cold, dry summer, warm summer), Dsc (Cold, dry summer, cold summer), Dfc 
(Cold, no dry season, cold summer), ET (Polar, tundra) to EF (Polar, frost) (data from Beck et al., 
2023) and b) the steep precipitation gradient from the humid west to the arid east (Bioclim 
variable 12, annual precipitation sums, Karger et al., 2017). 
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3.2 Treeline Species Nothofagus pumilio 

Nothofagus pumilio (Poepp et Endl.) Krasser (southern or lenga beech) belongs to the 
Nothofagaceae family and is one of ten Nothofagus species on the South American 
continent (Amigo and Rodríguez-Guitián, 2011). The genus Nothofagus developed on 
Gondwana, with the first pollen evidence dating back to the late Cretaceous period (83 
to 70 million years BP) (Manos, 1997). There are 36 Nothofagus species worldwide, 
which have diversified with the continental drift of Gondwana to the present-day 
continents in disjunct areas with a high degree of endemism in South America, New 
Zealand, Australia, and Tasmania (Manos, 1997; Premoli et al., 2012). The South 
American species survived the ice ages by migrating to more northern areas or to alpine 
refuges in the Andes (Soliani et al., 2015; Premoli et al., 2024). The ten recent South 
American Nothofagus species inhabit climates ranging from mediterranean to temperate 
to cold-temperate conditions (Amigo and Rodríguez-Guitián, 2011) and represent 80 % 
of the Patagonian-Andean forests (Veblen et al., 1996; Varela et al., 2010). Most species 
are deciduous (seven species), and three species are evergreen. The orophilic species 
N. pumilio and N. antartica, which are particularly adapted to cold conditions, are 
deciduous (Amigo and Rodríguez-Guitián, 2011). 

N. pumilio is the most widespread endemic species in the southern Chilean and 
Argentinean Andes and forms pure forest stands at the alpine treeline from 35°S to 56°S. 
The species is the dominant subalpine tree species and bioindicator for the oro-
temperate belt following the southern Andean Cordillera over a latitudinal range of 
2000 km (Amigo and Rodríguez-Guitián, 2011). Along the latitudinal temperature 
gradient, the distribution area ranges from very high elevation stands in the north at 
2000 m to forest stands at sea level at Tierra del Fuego (Lara et al., 2005). The eastern 
and western distribution area is defined by precipitation levels. The species does not 
occur in low-lying areas in the hyper-humid west, where the species N. betuloides 
becomes dominant (Young and León, 2007; Amigo and Rodríguez-Guitián, 2011). In the 
east, low precipitation levels define the distribution limit towards the Patagonian steppe. 
The species follows the forest-steppe ecotone and often forms two treelines, a common 
upper and a lower, xeric treeline towards the arid region (Hertel et al. 2008). N. pumilio 
mostly occurs in pure forest stands especially south of 39°S, but it also forms mixed 
stands in the north with Australocedrus chilensis and Araucaria araucana (Hildebrand-
Vogel et al., 1990). In the north-west and further south, adjacent or overlapping habitats 
with other deciduous and evergreen Nothofagus species are possible. Between 35°S 
and 40°S, the deciduous species N. alpina occurs from the coast up to a maximum 
altitude of 1200 m (Pollmann, 2001), as well as deciduous N. obliqua in most oceanic 
areas (Amigo and Rodríguez-Guitián, 2011). In the (hyper-) humid west, evergreen 
N. dombeyi and N. nitida accompanies N. pumilio up to 47°S and N. betuloides all the 
way south to Tierra del Fuego (Amigo and Rodríguez-Guitián, 2011). The deciduous 
species N. antarctica accompanies N. pumilio across almost its entire distribution range 
and occupies niches at high elevations in cold depressions, in locations with poor soil 
conditions, and towards the arid east (Veblen et al., 1996; Amigo and Rodríguez-Guitián, 
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2011). While the other deciduous species are morphologically and ecologically very 
different from N. pumilio, N. antarctica is very similar, and even hybrids are possible 
(Soliani et al., 2015). 

N. pumilio is characterised by its dark green, elliptical, and notched broad leaves which 
turn orange-red in autumn. Morphologic characteristics can be seen in Figure 3. The tree 
species has high phenotypic plasticity. While erect trees can reach a height of up to 35 m 
under optimal growing conditions, shrub-like krummholz growth occurs at the treeline 
(Stecconi et al., 2010). The species is monoecious, anemophilic and not self-pollinating, 
pollen and fruit are spread by wind. Every six to eight years, there are so-called mast 
fruiting years, during which a particularly large number of fruits are produced (Cuevas, 
2000). Seedling stage is the most critical life stage. Seedlings germinate in biological 
substrate mostly in the protecting forest stand climate, which is an important limiting 
factor for the advance of the treeline (Batllori et al., 2009; Bürzle et al., 2018). As orophilic 
species, N. pumilio is particularly adapted to the harsh environmental conditions in high 
mountain regions. At treeline sites under extreme conditions, mean growing season soil 
temperatures correspond to the 6.6°C isotherm (Fajardo and Piper, 2014). N. pumilio 
can tolerate cold air and soil temperatures and is well adapted to a short growing season 
(Premoli et al., 2007). The species protects itself from the cold by concentrating 
carbohydrates in the xylem and thus lowering the freezing point (Fajardo and Piper, 
2014). An effective adaptation to the risk of frost drought is deciduousness, as this 
minimises transpiration during the critical spring months when water uptake is limited 
(Körner, 2021). Due to advective precipitation, lee effects, and high radiation in 
combination with high evapotranspiration, water availability is limited (Bach and Price, 
2013). The species is adapted to medium to low annual precipitation levels of 400 to 
500 mm, most of which falls as snow (Veblen et al., 1996). This also explains the species 
distribution to the arid east (Hertel et al., 2008). Leaf size and shoot growth is significantly 
reduced in high elevation individuals in comparison to low elevation trees. This might be 
an adaptation to high wind speed and high radiation (Premoli et al., 2007). N. pumilio 
occurs on Andisols formed from volcanic ash (Hildebrand-Vogel et al., 1990). These soils 
are nutrient-rich, but the high content of phosphorus and potassium is largely unavailable 
to plants, leading to the conservation of organic matter, further slowing down the already 
delayed soil formation in high mountain regions (Hildebrand-Vogel et al., 1990, Premoli 
et al., 2007). Therefore, N. pumilio grows and germinates preferentially in areas with an 
herb layer of for example Empetrum rubrum stands, that provide nutrients, especially 
nitrogen, through organic matter (Pissolito, 2016). 
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Figure 3: Morphological and ecological features of Nothofagus pumilio. a) Autumn-coloured tree 
crown of a mature individual (used with permission by Instagram user amb6767, 2018), b) abrupt 
treeline seen from the Paso Garibaldi scenic viewpoint at Lago Escondido (used with permission 
by Instagram user sebaingles, 2022), c) green leaves in detail (De Langhe, 2015), d) wind-
crooked individual above the treeline in krummholz growth form (used with permission by 
Instagram user amb6767, 2018).  

3.3 Changes at the Treeline of Nothofagus pumilio 

The treeline formed by N. pumilio is abrupt. Abrupt treelines are the result of 
unsuccessful seedling establishment and dieback processes outside the protecting 
forest stand (Harsch and Bader, 2011; Bader et al., 2021), which can be attributed to 
very cold temperatures (Fajado and Pieper, 2014), a prolonged snow cover (Holtmeier 
and Broll, 2005), strong, cold winds, and wind shearing (Rebertus et al., 1997). 
Furthermore, steep topography, talus slope/blockfields, and shallow soil depth prevent 
the establishment of seedlings above the treeline (Hadley et al., 2013). Seedlings 
preferably establish in developed soils covered with an herb layer (Pissolito, 2016; Srur 
et al., 2018). Figure 3d visualises the harsh conditions above the abrupt treeline. A wind-
crooked N. pumilio individual has established in the lee of larger rocks, where wind speed 
is reduced and substrate and soil can accumulate. At the same time, it shows the barren 
ground and inhospitable conditions at the treeline at Torres del Paine National Park. The 
treeline elevation ranges from 2000 m to 1600 m in the northernmost distribution area of 
N. pumilio to 400 m at Tiera Del Fuego (Cuevas, 2000; Lara et al., 2005). Therefore, the 
treeline elevation decreases almost constantly by 60 m per 1° latitudinal dispersion (Lara 
et al., 2005). Treeline elevation also varies longitudinal due to the precipitation gradient. 
At the humid western site of the Southern Andes, the treeline position is lower than at 
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dry eastern slopes (Daniels and Veblen, 2003). But at wetter sites, tree density of newly 
established trees is higher than at mesic and dry sites (Srur et al., 2016).  

Generally, treeline elevation of abrupt treelines is lower than expected (Harsch and 
Bader, 2011) and unlike diffuse treelines they are less likely to shift to higher elevations 
(Harsch et al., 2009). Nevertheless, last decades research found, that N. pumilio is highly 
sensitive to climate variations, which are often associated with phase shifts in AAO, 
ENSO, and PDO, as reflected in its radial growth patterns and seedling establishment 
above the treeline (Lara et al., 2001; Aravena et al., 2002; Daniels and Veblen, 2004; 
Masiokas and Villalba, 2004; Álvarez et al., 2015; Srur et al., 2016, 2018; Brand et al., 
2022; Reiter et al., 2024). Generally, higher temperatures can lead to increased radial 
growth of trees and the establishment of seedlings above the current treeline elevation 
(e.g., Srur et al., 2018; Reiter et al., 2024). However, these effects are highly dependent 
on the precipitation regime (Brand et al., 2022; Srur et al., 2020). There are differences 
between northern and southern Patagonia, as northern Patagonia is more frequently 
affected by drought events (Rodríguez‐Catón et al., 2016; Garreaud et al., 2020). 
However, the most pronounced contrasts are found between regions with differing 
precipitation regimes along the west-east gradient (Brand et al., 2022). Radial growth in 
humid and mesic locations is directly influenced by temperatures (Brand et al., 2022). In 
these regions, higher temperatures lead to increased radial growth. Higher spring and 
summer temperatures, in particular, have a positive effect on growth, as snow melt 
begins earlier thus extending the growing season. In dry locations, however, water 
availability plays a major role. Here, growth decreases due to increased 
evapotranspiration and associated drought stress (Brand et al., 2022). Prolonged dry 
conditions not only reduce growth but can also lead to increased mortality (Rodríguez‐
Catón et al., 2016). Reiter et al. (2024) even emphasise that treeline limitation changes 
from being primarily cold-limited to drought-limited.   

The situation is similar with regard to the establishment of seedlings above the treeline. 
Higher temperatures lead to an increased occurrence of seedlings in humid, mesic, and 
dry locations. However, the density of seedlings is lower in mesic and dry locations (Srur 
et al., 2016) because sufficient water availability promotes the survival of seedlings (Srur 
et al., 2020). Studies show that the establishment of seedlings is primarily related to 
warmer spring and early summer temperatures, and the associated earlier snowmelt 
(Srur et al., 2016). Abrupt changes in establishment can be attributed to phases of the 
PDO. A negative-to-positive shift in the 1970s led to warmer spring and summer 
temperatures and thus to an abrupt increase in establishment, while the positive-to-
negative shift from the 1990s onwards led to lower temperatures and a decrease in 
establishment above the treeline (Srur et al., 2016). A positive phase of the AAO leads 
to higher temperatures in the entire study area and is therefore also positively correlated 
with seedling establishment (Srur et al., 2018). Although drought poses a challenge for 
seedlings, it does not affect seeds or seed production (Aschero et al., 2022). Seed 
viability and fruit dispersal are essential prerequisites for seedling emergence and 
establishment above the treeline. While seed production, fruit dispersal, seed viability, 
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and seedling establishment all decline with increasing elevation (Cuevas, 2000), both 
the quality and quantity of seeds tend to improve under higher temperatures, an effect 
attributed to ENSO and the AAO (Rodríguez-Souilla et al., 2024a; Rodríguez-Souilla et 
al., 2024b). 

Even though changes in AAO, ENSO, and PDO cause variations in radial growth, seed 
quantity and quality, as well as seedling establishment, long-term trends over 100 years 
can be observed (Brand et al., 2022). With an average temperature increase of 0.54 °C 
over the last 100 years, tree growth has increased in mesic and humid locations, while it 
has decreased in dry locations. This trend will further continue in the 21st century (Brand 
et al., 2022). The general trend for seedling establishment indicates that warm 
temperatures favour the establishment of new individuals above the treeline, while 
abundant precipitation support their survival (Srur et al., 2020). Despite the abrupt nature 
of the Southern Andes’ treeline, climate change could generally cause it to shift to higher 
elevations. However, it is important to note that various abiotic and biotic factors might 
slow this process. Observations suggest that treeline advance is limited to a range of 
5 to 10 m from closed stands, as the seeds of N. pumilio are relatively heavy and 
dispersed by wind only over short distances (Srur et al., 2018). In addition, low soil depth 
and a lack of herbaceous vegetation can further slow down the process (Pissolito, 2016). 
Studying the conditions at the treeline is therefore of particular relevance for 
understanding and predicting potential changes under climate change. 

3.4 Study Objectives and Research Questions 

N. pumilio is sensitive to climate variations, making it an especially interesting research 
object to investigate changes at the alpine treeline due to climate change. Local studies 
investigating changes to N. pumilio are mostly restricted to local experimental or 
dendrochronological studies. Large-scale modelling studies investigating the entire 
current and future distribution of the species are currently lacking, which can be attributed 
to a lack of species occurrence data covering the full range of the species.  

As described in the previous chapters, species data are generally scarce in areas that 
are difficult to access or even inaccessible, such as high mountain regions, and may be 
spatially biased towards urban or tourist areas. Remote sensing, along with innovative 
approaches such as species occurrence data sampling from social media, holds great 
potential for addressing these issues. Accordingly, the first main objective of this thesis 
was to introduce a novel Instagram ground truthing approach (IGTA), which combined 
the strengths of both, social media and remote sensing data. Using Instagram, one of 
the most widely used social media platforms worldwide, offered a new possibility of 
creating less-biased point occurrences of N. pumilio. These were subsequently used to 
validate the large-scale raster dataset of the species (ground truthing), which is generally 
free from the typical spatial biases found in Citizen Science and social media-based 
datasets. 
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This led to two main research questions: 

1. Can Instagram be used to obtain occurrence data for Nothofagus pumilio, and 
is the spatial bias in the resulting IGTA dataset reduced compared to that in 
commonly used GBIF data? 

2. Can supervised classification be used to generate raster occurrence data for 
Nothofagus pumilio across its entire range? 

The IGTA resulted in two species datasets: a binary point dataset and a continuous 
raster dataset, both of which can be used for modelling. The point dataset enabled a 
typical presence–absence approach, while the continuous raster dataset allowed for a 
more complex modelling strategy. To enable direct comparison between both 
approaches, the Random Forest algorithm, suitable for both data types, was applied to 
model the potential current and future distribution of the treeline species. This not only 
addressed the existing research gap concerning treeline modelling studies in the 
Southern Andes but also allowed for a comparison of two modelling approaches and an 
evaluation of the potential benefits of using continuous raster data over binary point data. 
This raised three further research questions to be answered: 

3. How can the ecological niche of Nothofagus pumilio be characterised under 
current climatic conditions, and what is the species’ potential geographic 
distribution? 

4. What potential range shifts are projected under future climate change 
scenarios? 

5. What are the differences between the modelling approaches used in this 
study, and what are their respective advantages and disadvantages? 
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4. Improved Ecological Niche Modelling of 
Nothofagus pumilio – Methodological Overview 
ENM can provide valuable insights of climatic conditions shaping treeline patterns in the 
Southern Andes. The PhD project “Improved Ecological Niche Modelling of 
Nothofagus pumilio in the Southern Andes” aims at modelling the current and future 
potential distribution of the study species N. pumilio. Limitations in modelling were 
discussed and addressed with innovative methods with a focus on creating two species 
occurrence datasets developed by an Instagram ground truthing approach and applying 
them in an ENM workflow. In Publication I, the IGTA was developed, and the resulting 
data was made publicly available on the open-access data provider of University of 
Hamburg (Publication II). Two species datasets resulted from the IGTA, a point dataset 
and a raster dataset, both of which can be used for modelling the ecological niche of the 
species. The point dataset enabled a conventional binary presence–absence model 
approach with randomly created pseudo-absences, but the more complex and 
continuous raster dataset enabled a new modelling opportunity. The bioclimatic variables 
from CHELSA (Bioclim, version 2.1) were used as predictors. To download and 
preprocess these variables, the R package “ClimDatDownloadR” was employed, which 
detailed description is Publication III. Both models were subsequently tested, compared, 
and used to analyse the ecological niche, and to predict the potential current and future 
distribution of the species, as presented in Publication IV. 

4.1 The Instagram Ground Truthing Approach 

The availability of unbiased species occurrence data is a major challenge in the field of 
ENM (Chauvier et al., 2021). Comprehensive field studies that could create unbiased 
data are costly, time-consuming and areas like high mountain regions are difficult or even 
impossible to access. Therefore, data is mostly used from Open-Source databases, 
which may contain errors of unknown magnitude, as described before (Beck et al., 2014; 
Meyer et al., 2016). A promising approach to mitigate spatial bias is the use of remote 
sensing data. Spatial data from remote sensing methods can be used to create large-
scale and areal data and record occurrences in inaccessible areas. But there is still a 
need of a ground truthing process, the validation that a species actually occurs in the 
areas investigated with remote sensing (Nagai et al., 2020). In Publication I, the 
innovative IGTA was developed, in which sampling and spatial bias were reduced in two 
ways: first, by creating occurrence points from a worldwide used social media platform 
in a stratified approach, and second, by using this dataset for ground truthing of remote 
sensing data created using supervised classification. 

Instagram is one of the largest social media platforms worldwide, with more than 2 billion 
users and over 60 million daily uploads (WirtschaftsWoche, 2014; Statista, 2025). On 
Instagram, only pictures and short videos (Reels) can be posted. The user’s content is 
listed chronologically on their profiles. A search bar allows users to search for profiles, 
locations and hashtags. Hashtags and location tags can link posts to specific subjects or 
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places (e.g., #nothofaguspumilio or #torresdelpaine) and can thus be found and 
analysed in a large number. Figure 4a shows the Instagram interface with the profile 
“nothofagus_pumilio_research” (www.instagram.com/nothofagus_pumilio_research/), 
which was created specifically for this study. The typical chronologically sorted post view 
is visible on the right, along with the search bar on the left side. Figure 4b illustrates the 
results of a search process for the hashtag #nothofaguspumilio within the Instagram user 
interface. By searching for different hashtags and location tags, it is not only possible to 
find photos taken by experts linking the species name, but also photos taken on hikes, 
while skiing, on a tourist trip, or on everyday photos, where the occurrence of the species 
was documented unintentionally. This increases the number of suitable posts even more. 
With a strict set of criteria (Table 2), posts were selected on which the species and the 
location where the photo was taken were clearly identifiable. For manual georeferencing 
of the occurrences with SAGA GIS (Conrad et al., 2015), landscape elements visible in 
the photo had to be recognisable in satellite images. Such landscape elements were, for 
example lakes, rivers, typical mountain ranges and peaks, glaciers, buildings, and 
infrastructure. Due to the ecology of the species, occurrence points were not only set at 
the sampling location but also in the visible background of the photo. If the treeline was 
clearly autumn coloured and abrupt, occurrence points were set as far as the 
neighbouring valley. The distance between background points was set to 1 km, 
corresponding to the target resolution used in the modelling. Figure 5 illustrates the post 
selection and point transfer into a map. The high quantity of posts and the background 
points have the potential to effectively reduce spatial bias. To quantify this, a bias 
analysis was conducted using the R package “sampbias” (Zizka et al., 2021). By 
incorporating geodata representing urban features, such as shapefiles of cities, roads, 
rivers, and lakes, the relationship between species occurrences and their distance to 
urban areas was calculated. This analysis produced both quantitative results about the 
estimated sampling rate and a visual bias map.  

http://www.instagram.com/nothofagus_pumilio_research/
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Figure 4: Screenshot of a) the Instagram profile “nothofagus_pumilio_research”, which was 
generated for the Instagram ground truthing approach. The profile’s photo contributions are listed 
chronologically. The search bar on the left is used for specific searches. The screenshot in b) 
shows the search results for posts tagged with #nothofaguspumilio. Here the first of a total of 
1,017 posts are displayed (last accessed 28.10.2025).  
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Figure 5: a) Selected post at Laguna Capri in Argentina with the species visible in front (used with 
permission by Instagram user fernando.v.fotografia, 2022). The abrupt treeline in the background, 
the lake and Mount Fitz Roy are traceable landscape elements marked in red in b). The post 
resulted in 4 Instagram ground truthing points. One at the photo sampling position and three 
background points (marked in blue) at the abrupt and autumn-coloured treeline. 
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Table 2: Criteria for selecting Instagram posts to generate occurrence data for 
Nothofagus pumilio. All criteria must be met for an image to be included in the Instagram ground 
truthing analysis. 

Criterion Element or Example 
 

Typical characteristics 
of Nothofagus pumilio  

 

morphological characteristics (leaves, branches, habitus) 
autumn colouring 
abrupt treeline 
mono-species forest 
 

Concrete location 
information 

geographical tag  
location hashtag 
location description in the caption 
 

Recognisable 
landscape elements 

glaciers 
mountain peaks or ranges 
rivers, lakes 
roads 
tourist points, cities, villages 
coastlines 
 

Fitting hashtags hashtags describing the location or the species 
 

Picture criteria Avoid persons in focus 
no photo montages 
no emojis 
no extreme (colour) falsifications 
 

 

The IGTA points were subsequently used for ground truthing of large-scale remote 
sensing data. Raster occurrence data of N. pumilio were created using supervised 
classification of Sentinel-2 Level 2A imagery at a spatial resolution of 20 m. Summer 
(month December and January), autumn (month April), and winter (month August) 
Sentinel-2 data from 2019 to 2022 were downloaded using the R package “sen2R” 
(version 1.5.1, Ranghetti et al., 2020). Sentinel-2 scenes covered the entire distribution 
range of N. pumilio, with most scenes having a cloud cover of 15 % or less. A maximum 
cloud cover threshold of 50 % was accepted. To prevent misclassification during the 
classification process, the Scene Classification Layer (SCL) (Figure 6b), a standard 
product of the Sentinel-2 Level 2A data, was used to remove all raster cells, that were 
not classified as vegetation. The supervised classification was then trained on the 
Sentinel-2 data with training areas and three classes (1 = deciduous vegetation, 2 = 
evergreen vegetation and 3 = low vegetation/grassland). Autumn data made autumn-
coloured forest at the treeline visible, while winter scenes highlighted evergreen 
vegetation. Two separate classifications were conducted using commonly applied 
algorithms and evaluated based on Kappa values (Richards, 2022). The supervised 
classification was performed using SAGA GIS via the “RSAGA” package (version 1.4.0, 
Brenning et al., 2022) in R (version 4.4.1, R Core Team, 2024). Summer and autumn 
scene classifications using the RF algorithm achieved the highest performance and 
outperformed those obtained with the Maximum Likelihood, Minimum Distance, and 
Spectral Angle algorithms. The summer and autumn results for deciduous vegetation 
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were merged into one layer at the end (Figure 6d). With this approach also other 
deciduous species except N. pumilio were recorded. Therefore, an altitude correction 
was applied to ensure that only high-elevation deciduous forest was classified as 
N. pumilio. The thresholds for altitude correction in the northern and central study areas 
(800 m from 35°S to 40°S; 500 m from 40°S to 45°S; 250 m from 45° to 50°S) were 
determined on the basis of literature. The raster data spans over 2000 km latitudinal 
extent from 33.49°S to 56.27°S and captures the whole distribution range of N. pumilio, 
including inaccessible areas. Data gaps resulted from missing Sentinel-2 data or due to 
cloud or shadow coverage. Finally, ground truthing was conducted by verifying whether 
the IGTA points coincided with the raster occurrence data. As a result, two valid species 
occurrence datasets were generated through the IGTA approach: a point dataset and a 
raster dataset with reduced spatial and sampling bias. 

 

Figure 6: a) Sentinel-2 autumn scene at the Perito Moreno Glacier, Argentina, b) Scene 
Classification Layer of the Sentinel-2 scene: green area represents vegetation, c) the masked 
Sentinel-2 scene and, d) classification result with three classes (red = Nothofagus pumilio, dark 
green = evergreen vegetation, light green = low vegetation/grassland). 
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4.2 Downloading and Preprocessing Bioclimatic Predictors 

A correlative ENM requires spatial data about the species occurrence and environmental 
predictor variables (Sillero et al., 2021). Most commonly used climate datasets for 
ecological applications are the WorldClim (Hijmans et al., 2005; Fick and Hijmans, 2017) 
and CHELSA datasets (Karger et al., 2017; Karger et al., 2021). Both contain climate 
data on a daily, monthly and annual basis. Furthermore, they offer bioclimatic variables, 
which are temperature and precipitation variables calculated for quarters and annual 
means, that allow for the interpretation of seasonality. CHELSA Bioclim data were 
chosen, because they tend to perform better in high mountain ecosystems than the 
WorldClim dataset (Soria-Auza et al., 2010; Bobrowski et al., 2021a). The CHELSA 
Bioclim data version 2.1 is a global dataset consisting of 19 variables in a resolution of 
30 arc sec ~ 1 km (see Table 3). The temperature and precipitation values are averaged 
from climate records for the period 1981 to 2010. To download and preprocess the data, 
the R package “ClimDatDownloadR” (version 0.1.7.6, Jentsch, 2025) was used. The 
package, described in detail in Publication III, enables the download of data, clips it to a 
predefined spatial extent, and optionally converts the files into ESRI ASCII format. The 
function below illustrates how the data were downloaded and pre-processed. All 
available functions of the package are published on GitHub (GitHub Inc., 2025). 

 

# CHELSA Bioclim - Download ------------------------------------------ 
 
library(ClimDatDownloadR) 
options(timeout=3600) # cache time to 1 hour 
 
Chelsa.Clim.download( 
  save.location = paste0(WD, "data/"), 
  parameter = c("bio"), 
  bio.var =  c(1:19), # all 19 Bioclim variables will be downloaded  
  version.var = "2.1", # here the newer version is chosen 
  clipping = TRUE, # TRUE for clipping with shapefile 
  clip.shapefile = paste0(WD, "BioClimAreaLonLat.shp"), 
  convert.files.to.asc = FALSE, # tiff data will be downloaded 
  stacking.data = FALSE,  
  combine.raw.zip = FALSE, 
  delete.raw.data = TRUE, 
  save.bib.file = FALSE 
) 
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The 19 Bioclim variables are highly multicollinear and even though RF can handle 
multicollinearity well, it is recommended to use a subset of low or uncorrelated predictors 
for modelling. Only the variables calculated for quarters and seasonality variables were 
selected, since these allow for a better ecological understanding of the bioclimatic 
conditions at the treeline than variables for individual months or annual averages, as 
conclusions can be drawn about seasonality (Bobrowski et al., 2017). Furthermore, the 
R package “VSURF” (version 1.2.0, Genuer et al., 2015) a tool to identify which variables 
are important for interpretation and prediction, removed variables that were redundant 
from the variable subset. For modelling, eight Bioclim variables were used (see variables 
marked with an X in Table 3). The CHELSA version 2.1 dataset also contains data on 
future CMIP6 scenarios based on Representative Concentration Pathways (RCP) 
(Karger et al., 2021). The SSP126 (RCP2.6), SSP370 (RCP7), and SSP585 (RCP8.5) 
scenarios for the years 2041 to 2070 and 2071 to 2100 from the MPIESM1-2HR model 
were used for modelling the potential future distribution of N. pumilio.  

Table 3: CHELSA Bioclim variables calculated for quarters and seasonality variables used in the 
analysis (X). The variables bio 9 and bio 16 have been excluded by the VSURF analysis. 

Name  Description  Used (X)  

bio 1 mean annual air temperature [°C]  
bio 2 mean diurnal air temperature range [°C]  
bio 3 isothermality [°C]  
bio 4 temperature seasonality [°C/100] 1 X 
bio 5 mean daily maximum air temperature of the warmest month [°C]  
bio 6 mean daily minimum air temperature of the coldest month [°C]  
bio 7 annual range of air temperature [°C]  
bio 8 mean daily mean air temperatures of the wettest quarter [°C] X 
bio 9 mean daily mean air temperatures of the driest quarter [°C] excluded  
bio 10 mean daily mean air temperatures of the warmest quarter [°C] X 
bio 11 mean daily mean air temperatures of the coldest quarter [°C] X 
bio 12 annual precipitation amount [kg m-2]  
bio 13 precipitation amount of the wettest month[kg m-2]  
bio 14 precipitation amount of the driest month [kg m-2]  
bio 15 precipitation seasonality [kg m-2] 2 X 
bio 16 mean monthly precipitation amount of the wettest quarter [kg m-2] excluded  
bio 17 mean monthly precipitation amount of the driest quarter [kg m-2] X 
bio 18 mean monthly precipitation amount of the warmest quarter [kg m-2] X 
bio 19 mean monthly precipitation amount of the coldest quarter [kg m-2] X 
 

1 standard deviation of the monthly mean temperatures; 2 the coefficient of variation is the 
standard deviation of the monthly precipitation estimates expressed as a percentage of the 
mean of those estimates. 
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4.3 Model Algorithm and Model Procedure  

The modelling of the potential current and future distribution is facilitated by the 
integration of IGTA occurrence data and bioclimatic predictors in Publication IV. The 
nature of the two species input datasets enables two model approaches: (1) a typical 
binary presence–absence model and (2) a continuous (abundance) model. As described 
before, numerous regression and machine learning approaches have been applied to 
ENM (Li and Wang, 2013). Here, the Random Forest algorithm was used (Breiman, 
2001a), as it is capable of handling both data types, effectively managing 
multicollinearity, offering high predictive performance, and remaining largely 
interpretable (Breiman, 2001a, 2001b). Despite widespread criticism that machine 
learning algorithms are black boxes with limited interpretability (Li and Wang, 2013, 
Breiman, 2001b), RF results can be interpreted with variable importance analysis, partial 
dependence plots (PDP), and Shapley Additive Explanations (SHAP) analysis in order 
to draw conclusions about ecological site requirements of the study species.  

The first steps in modelling involve the preparation of input data. For the binary 
presence–absence approach using RF classification, it was first ensured that only one 
presence point remained per 1 x 1 km Bioclim raster cell (spatial thinning). This filtering 
step removed 239 duplicate points, resulting in a final set of 999 presence points. 
Subsequently, pseudo-absence points were generated. This process involved creating 
an alpha hull with a 1 km buffer around the presence data to serve as a mask. To avoid 
placing absence points within presence raster cells, an additional 5 km buffer was 
applied around all presence points. Within this masked area, 2,000 pseudo-absence 
points were randomly generated. Main literature recommends a 1:1 ratio, or a prevalence 
of 0.5, for RF models, but discuss at the same time that a larger number of pseudo-
absence points may be necessary when modelling across large spatial extents (Barbet-
Massin et al., 2012). Since a 1:1 ratio resulted in an overprediction of presence, a 1:2 
ratio was applied. For the continuous approach (RF regression), the 20 m resolution 
raster data were aggregated to the target resolution of 30 arc sec ~ 1 km by calculating 
the percentage of area covered by N. pumilio. This created a species variable with cover 
values for N. pumilio occurrence, ranging from close to 0 % to a maximum of 99.96 %. 

Spatial data are often spatially autocorrelated (Legendre, 1993, Dormann et al., 2007), 
meaning that environmental conditions at nearby occurrence locations are more similar 
to each other than to those at more distant locations. This spatial dependence can 
significantly influence model results and lead to overestimation of model performance if 
not properly accounted for. To minimise autocorrelation effects, a spatial-cross validation 
approach was used (Roberts et al., 2016). Specifically, 5-fold spatial cross-validation 
was conducted using the R package “blockCV” (version 3.1.5, Valavi et al., 2019). For 
5-fold cross-validation, the data is initially partitioned into spatial blocks of a predefined 
size, and each block is randomly assigned to one of five folds (𝑘𝑘 = 5). The model is then 
trained on four folds (𝑘𝑘 − 1) and evaluated on the remaining fold. This procedure is 
repeated five times, ensuring that each fold serves as both a training and a testing set. 
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With the function “cv_spatial_autocor” the distance of autocorrelation was first estimated. 
As a result, 50 km hexagonal spatial blocks were created (see Figure A1 in the appendix 
section). During the spatial cross-validation process, not only was model performance 
evaluated across the splits, but also the optimal hyperparameters for modelling were 
identified. Different numbers of variables considered at each split (mtry: 2, 3, 4) and 
varying numbers of decision trees (ntree: 100, 300, 500) were tested. This approach 
resulted in the calculation of 45 models (9 hyperparameter combinations and 5 folds). 
The best model was chosen by highest average AUC for the RF classification model and 
the highest R2 for the RF regression model. For both models, the combination of 
hyperparameters 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 and ntree =  500 yielded best performance. The optimal 
hyperparameter setting was then applied to the entire dataset to model the current and 
future distribution of N. pumilio.  

For RF models, variable importance, PDP, and SHAP analysis can be used to interpret 
the model results. There are two types of variable importance: accuracy importance, 
which indicates most influential predictors for model accuracy, and Gini importance, 
which indicates the most frequently used variables for decision at nodes (Wei et al., 
2015). Both were used for interpretation. PDP allow for the interpretation of the influence 
of individual predictors on the model outcome while all other predictors stay constant 
(Friedman, 2001). They visualise this relationship by plotting the values of the predictor 
variable on the x-axis against the corresponding values of the target variable on the y-
axis. For PDP plotting, the function “partialPlot” from the “randomForest” R package 
(version 4.7-1.2, Breiman et al., 2002) was used. While PDP only allow for the 
interpretation of single predictors, SHAP summary or bee swarm plots, an analysis that 
originates from cooperative game theory, provide a comprehensive overview of the 
contribution of each predictor to the model outcome (Li et al., 2024). Here the “fastshap” 
R package (version 0.1.1, Greenwell, 2024) was used. SHAP summary plots display 
SHAP values on the x-axis, indicating a positive or negative influence of each predictor 
on the model output, while the predictor variables are listed on the y-axis. These 
analyses enable an interpretation of the ecological niche of N. pumilio on the basis of 
bioclimatic variables. 

Spatial predictions under current and future climate conditions were conducted using R 
and visualised with ArcGIS Pro (version 2.7.0, ESRI, 2020). To quantify and evaluate 
the modelled treeline elevation, a Digital Surface Model (DSM) was used to extract the 
predicted elevation of the treeline and compare it with on-site treeline measurements 
provided by Lara et al. (2005) across the entire study area. To identify the highest raster 
cell representing treeline elevation, a threshold needed to be defined. Based on a 
commonly accepted definition of the treeline, where canopy cover declines to 
approximately 30 %, marking the upper boundary of closed forest (Holtmeier, 2009), a 
threshold of 30 % cover (or 0.3 predicted probability) was applied. Using the ALOS 
Global DSM (30 m resolution, JAXA EORC, 2025), the elevation of the highest raster cell 
based on the defined threshold was recorded at the 13 treeline locations documented by 
Lara et al. (2005). 
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4.4 Overview of Original Publications 

Publication I 

Werner, M., Weidinger, J., Böhner, J., Schickhoff, U., and Bobrowski, M. (2024). 
Instagram data for validating Nothofagus pumilio distribution mapping in the Southern 
Andes: A novel ground truthing approach. Frontiers of Biogeography, 17, Article 
e140606. https://doi.org/10.21425/fob.17.140606  

Abstract: 

The availability of valid, non-biased species occurrence data has always been a major 
challenge for biodiversity research and modelling studies. Data from open-source 
databases or remote sensing are promising approaches to increase the availability of 
species occurrence data. However, these data may contain spatial, temporal, and 
taxonomic biases or require ground truthing. In recent years, social media has received 
attention for its contribution to species occurrence data sampling and ground truthing 
approaches. The wide reach of social media platforms allows for rapid and large-scale 
analyses. Here we introduce a novel Instagram ground truthing approach to validate the 
occurrence mapping of Nothofagus pumilio across its entire distribution range. The 
treeline species of the southern Andes has been extensively studied in small-scale 
studies, but large-scale modelling approaches are largely missing due to limited 
accessibility to treeline sites resulting in a lack of occurrence data. The content posted 
on the social media platform Instagram consists of images and videos in which the 
species N. pumilio and its location can be identified. By searching for suitable posts using 
hashtags and location tags, we created 1238 Instagram ground truthing points. We 
compared the performance of our dataset with open-source data from the Global 
Biodiversity Information Facility (GBIF) through visual, quantitative, and bias analyses, 
acknowledging that both social media-based and Citizen Science data are subject to 
sampling and spatial biases due to collection in human-accessible areas. The Instagram 
ground truthing points were subsequently used to validate remote sensing occurrence 
data, generated using Sentinel-2 level 2A data and supervised classification. The 
combined approach – Instagram ground truthing and remote sensing – allows for the 
collection of occurrence data over the entire latitudinal range of N. pumilio, covering 
approximately 2000 km. 

Author Contributions: 

Conceptualization, M.W., J.W. J.B., U.S. and M.B.; methodology, M.W., J.W. and M.B.; 
validation, M.W., J.W. and M.B.; formal analysis, M.W.; investigation, M.W.; data 
curation, M.W.; writing—original draft preparation, M.W.; writing—review and editing, 
M.W., J.W., J.B., U.S. and M.B.; visualisation, M.W.; supervision, J.B. and U.S. All 
authors have read and agreed to the published version of the manuscript. 

 

 

https://doi.org/10.21425/fob.17.140606
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Publication II 

Werner, M., Weidinger, J., Böhner, J., Schickhoff, U., and Bobrowski, M. (2024). 
Instagram ground truthing approach – Spatial occurrence data of Nothofagus pumilio in 
the Southern Andes [Data set]. https://doi.org/10.25592/UHHFDM.16239 

Abstract: 

Valid and unbiased species occurrence data are scarce, making their availability a 
challenge for ecological modelling approaches. Remote sensing is a promising approach 
for increasing the availability of species occurrence data, but it requires ground truthing 
for validation. Recently, Citizen Science and social media have contributed to improving 
occurrence data sampling and ground truthing methods. This dataset contains remote 
sensing occurrence data of the tree species Nothofagus pumilio, which was validated by 
ground truthing points created using a novel Instagram ground truthing approach. 

Author Contributions: 

This publication is a dataset publication corresponding to Publication I (see above).  

 

Publication III 

Jentsch, H., Weidinger, J., Werner, M., and Bobrowski, M. (2025). ClimDatDownloadR: 
Accessing Climate Data Repositories for Modelling [Manuscript submitted for 
publication]. 

Systematical accessing, downloading, and pre-processing climatological data from 
CHELSA and WorldClim remains a challenge in different environmental disciplines like 
Species Distribution Modelling (SDM) and climate studies. This package provides a set 
of functions that allow easy access and customized selection of climate datasets. 
Besides downloading the raw data, also functionalities to complete pre-processing steps 
like clipping, rescaling, and file management are available. The applications of the 
package range from one-time-use to implementing the functions in automatic processing 
of scientific workflows. 

Author Contributions:  

Conceptualization, H.J., J.W., M.W. and M.B.; methodology, H.J., J.W.; validation, H.J., 
J.W., M.W. and M.B.; formal analysis, J.H.; writing—original draft preparation, H.J. and 
M.W.; writing—review and editing H.J., J.W., M.W. and M.B.; visualisation, H.J.; 
supervision, M.B., All authors have read and agreed to the submitted version of the 
manuscript. 
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Publication IV 

Werner, M., Böhner, J., Oldeland, J., Schickhoff, U., Weidinger, J., and Bobrowski, M. 
(2025). Treeline Species Distribution Under Climate Change: Modelling the Current and 
Future Range of Nothofagus pumilio in the Southern Andes. Forests, 16(8), 1211. 
https://doi.org/10.3390/f16081211 

Abstract: 

Although treeline ecotones are significant components of vulnerable mountain 
ecosystems and key indicators of climate change, treelines of the Southern Hemisphere 
remain largely outside of research focus. In this study, we investigate, for the first time, 
the current and future distribution of the treeline species Nothofagus pumilio in the 
Southern Andes using a Species Distribution Modelling approach. The lack of modelling 
studies in this region can be contributed to missing occurrence data for the species. In a 
preliminary study, both point and raster data were generated using a novel Instagram 
ground truthing approach and remote sensing. Here we tested the performance of the 
two datasets: a typical binary species dataset consisting of occurrence points and 
pseudo-absence points and a continuous dataset where species occurrence was 
determined by supervised classification. We used a Random Forest (RF) classification 
and a RF regression approach. RF is applicable for both datasets, has a very good 
performance, handles multicollinearity and remains largely interpretable. We used 
bioclimatic variables from CHELSA as predictors. The two models differ in terms of 
variable importance and spatial prediction. While a temperature variable is the most 
important variable in the RF classification, the RF regression model was mainly modelled 
by precipitation variables. Heat deficiency is the most important limiting factor for tree 
growth at treelines. It is evident, however, that water availability and drought stress will 
play an increasingly important role for the future competitiveness of treeline species and 
their distribution. Modelling with binary presence–absence point data in the RF 
classification model led to an overprediction of the potential distribution of the species in 
summit regions and in glacier areas, while the RF regression model, trained with 
continuous raster data, led to a spatial prediction with small-scale details. The time-
consuming and costly acquisition of complex species information should be accepted in 
order to provide better predictions and insights into the potential current and future 
distribution of a species. 
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 5. Synthesis and Discussion 
This thesis aims at modelling the potential current and future distribution of the treeline 
species Nothofagus pumilio using an Ecological Niche Modelling (ENM) approach, 
thereby addressing the existing research gap in treeline modelling studies in the 
Southern Andes. A novel Instagram Ground Truthing Approach (IGTA) was developed 
to generate bias-minimised species occurrence data, resulting in both a point dataset 
and a raster dataset, the latter of which was validated using the IGTA points. Both 
datasets served as inputs for modelling with a machine learning algorithm chosen for its 
high predictive performance and interpretability. The resulting models were compared 
and the strengths and limitations of each input dataset were critically assessed. In doing 
so, this study applied an approach of “Improved Ecological Niche Modelling”, combining 
less-biased occurrence data with advanced modelling techniques. This chapter 
addresses the research questions by summarising and discussing the main findings.  

5.1 Ground Truthing with Instagram: A Novel Approach 

Can Instagram be used to obtain occurrence data for Nothofagus pumilio, and is 
the spatial bias in the resulting IGTA dataset reduced compared to that in 
commonly used GBIF data? 

N. pumilio is particularly suitable for analysis with Instagram due to its morphology, 
phenology, and ecology. The species occurs in pure forest stands at the treeline within 
a scenic topographic and highly touristic region with numerous national parks. The 
orange-red autumn colouring also makes the species an attractive photo motif. As a 
result, a large number of posts featuring N. pumilio were identified on Instagram and 
assessed for suitability as occurrence points using a strict set of criteria. Occurrence 
points were created when the species and the location where the photo was taken could 
be clearly identified by landscape elements. The IGTA resulted in 1,238 valid and 
transparently traceable occurrence points of N. pumilio. A total of 297 posts 
published between 2017 and 2022 were used for the analysis. These were posts 
linked to specific hashtags relating to the species or location, as well as posts with 
location tags in the distribution area. In this way, the dataset included not only posts 
in which experts had deliberately photographed and posted the species, but also 
everyday images taken by non-experts, in which the occurrence was captured 
unintentionally. When georeferencing the posts, points were assigned not only to the 
exact location where the image was taken (460 points), but also to identifiable 
occurrences in the background of the image, including adjacent stands at the 
autumn-coloured treeline (778 points). Figure 7 shows all 1,238 sampled IGTA 
points.  
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Figure 7: The two datasets resulting from the Instagram ground truthing approach (IGTA): IGTA 
points and Sentinel-2 raster data in a resolution of 20 m covering the entire distribution range in 
the Southern Andes 
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According to a vignette study by Haklay et al. (2021) 50 % of respondents describe the 
re-use of social media content as a form of CS. However, CS typically requires active 
involvement of participants, information transfer, and data transparency (Haklay et al., 
2021). The IGTA can be framed as “passive CS” method (Nascimento et al., 2024). 
Social media platforms can not only be used to sample occurrence data but also to share 
information, communicate research findings, and recruit Citizen Scientists (Nascimento 
et al., 2024). Furthermore, Instagram users can be informed about the importance of 
using geotags and providing precise location information to support initiatives like the 
IGTA. For this purpose and to take CS principles into account, an Instagram profile 
(nothofagus_pumilio_research) was created and used to post information about the 
project. When a post from another user was used for occurrence data sampling, it was 
“liked” (by clicking the heart icon, see Figure 5a as an example), which notifies the user 
and draws their attention to the research account. In addition, the chat function was used 
to ask users about the exact location of a post or to discuss methods and research 
findings. To promote data transparency, the final dataset was published via an open-
access data provider (Publication II), bringing the project more in line with the standards 
expected of CS initiatives. An advantage of passive CS is that it does not require active 
recruitment of participants, and data collection via social media can be conducted 
remotely, making it even more cost- and time-effective than traditional CS approaches 
(Edwards et al., 2021). Moreover, the stratified IGTA aimed to further reduce common 
sources of bias typically present in CS-derived datasets. 

Sampling bias in global datasets, which often contain data from unstructured CS 
projects, arises from sampling behaviour in predominantly urban areas. As a result, 
the occurrence data does not always correspond to the actual distribution of a 
species, which can have a negative impact on the model results (Di Cecco et al., 
2021). In the IGTA, the high number of available posts across the entire distribution 
area and manual georeferencing led to a reduction in this bias. The “sampbias” 
analysis (see Figure 8) showed that, in comparison to 558 filtered GBIF points with 
a maximum coordinate uncertainty of 1 km (GBIF, 2024), the IGTA dataset provided 
better coverage of rural areas. While both datasets showed increased sampling rates 
around urban centres, the sampling rate of IGTA points was significantly higher in 
non-urban regions, resulting in a more homogeneous spatial distribution and reduced 
bias towards urban areas. Sampling bias, such as incorrect coordinates due to errors 
in georeferencing of museum data (Boakes et al., 2010; Marcer et al., 2022) or weak 
satellite signals during on-site sampling (Uyeda et al., 2020), was avoided in the IGTA 
by the manual transfer of the occurrence points. However, a source of uncertainty in the 
IGTA data must be considered. The publication date of the posts does not necessarily 
correspond to the day or even the year the photo was taken. This means that temporal 
bias may be introduced (Nascimento et al., 2024), as the IGTA does not reliably provide 
information on the exact time the photograph was taken. Some information can be found 
in the caption or comments or must be requested individually from Instagram users using 
the chat function. Furthermore, unlike databases such as GBIF, which include historical 

https://www.instagram.com/nothofagus_pumilio_research/
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records from museums and other sources, “historical” data is not available through 
Instagram. 

In summary, the global usage and high volume of posts on Instagram, combined with 
the manual georeferencing of occurrences, enable a cost-effective sampling of less-
biased occurrence data for N. pumilio. Compared to GBIF data, spatial bias is 
significantly reduced. However, the IGTA was still relatively time-consuming, as 
manually searching for posts via Instagram’s search function requires considerable 
effort. Some social media platforms, such as Flickr, allow access and automated 
searches via an Application Programming Interface (API), enabling faster identification 
of suitable posts and facilitating automation (e.g., Fox et al., 2022). In contrast, Meta 
(www.meta.com/), the company behind Instagram, Facebook, Messenger, and 
WhatsApp, does not provide such access. Nevertheless, the time-consuming process of 
manual searches is offset by the significantly broader reach of the Instagram platform 
and therefore coverage of potential occurrence points. 

http://www.meta.com/
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Figure 8: Results of the bias analysis using the R package “sampbias”, indicating the sampling 
rate near urban areas for a) the Instagram ground truthing approach (IGTA) data and b) GBIF 
data. While high sampling rates in the GBIF dataset are concentrated near urban centres, the 
IGTA data shows a more homogeneous sampling across the study area.    



Chapter 5: Synthesis and Discussion 

43 
 

Can supervised classification be used to generate raster occurrence data for 
Nothofagus pumilio across its entire range? 

The occurrence of N. pumilio in pure forest stands at the treeline and its phenology 
enabled the creation of continuous raster data via supervised classification, resulting in 
over 2000 km range from 35°S to 55°S at a resolution of 20 m (Figure 7). The 
classification of summer and autumn scenes achieved high performance with Kappa 
values of 0.89 and 0.97, respectively. Potential sources of error from shadow or cloud 
cover were mitigated by masking the Sentinel-2 scenes using the Scene 
Classification Layer (SCL) before classification. However, this also introduced gaps 
in the dataset, as did missing Sentinel-2 data in certain areas, which could not be 
replaced with alternative scenes during the sensing period from 2019 to 2022. 
Ground truthing of the classification results with the IGTA points resulted in a 92.25 % 
match, meaning 1,142 IGTA points cover the determined raster data, indicating a 
high accuracy. To ensure that other deciduous species were not included in the 
raster data, an altitude correction was performed, retaining only high-elevation 
deciduous forest. However, one source of error that could not be avoided is inclusion 
of some N. antarctica stands. The species are morphologically and ecologically very 
similar. Even hybrids between the two species are possible (Soliani et al., 2015). In 
the future, to strictly separate the two species, external datasets could be used, e.g., 
from local forestry authorities (Corporación Nacional Forestal (CONAF), Chile and 
Ordenamiento Territorial de Bosque Nativo (OTBN), Argentina). However, at this 
point, the forest type “high mountain deciduous forest” was reliably determined, even 
if N. antarctica was partially included. 

The IGTA facilitated the creation of large-scale raster data for N. pumilio and its 
validation through Instagram ground truthing points, resulting in two robust datasets. 
The approach is transferable to other ecological studies, both in terms of Instagram-
based sampling and the generation of remote sensing data, provided that the study 
species exhibit similar characteristics to N. pumilio. Posted content must include 
visible landscape elements, which excludes close-up images of smaller plant or 
animal species. Similarly, remote sensing can only reliably detect and distinguish 
contiguous species populations or individual mature trees (Immitzer et al., 2016, 
2019). However, for plant or animal species that contain images with recognisable 
landscapes, the IGTA offers a promising approach for generating valid species 
occurrence datasets.  

 

 

 

 



Chapter 5: Synthesis and Discussion 

44 
 

5.2 Modelling the Ecological Niche of Nothofagus pumilio: 
A Comparison of Two Approaches 

The ecological niche and potential current and future distribution of N. pumilio were 
analysed using two models: a Random Forest (RF) classification model with the IGTA 
point dataset and an RF regression model with the continuous raster data. A 5-fold 
spatial cross-validation was used to validate the models. The model quality was 
evaluated using the mean validation metrics and the best hyperparameters were 
selected. The best-performing RF classification model achieved the highest mean AUC 
of 0.9279 (±0.0257, 95 % confidence interval (CI): 0.8960–0.9599), an overall accuracy 
of 0.8466 (±0.0537, 95 % CI: 0.7799–0.9132), and a TSS of 0.6148 (±0.1582, 95 % CI: 
0.4183–0.8112). The best RF regression model had an R2 of 0.3933 (±0.0409, 95 % CI: 
0.3425–0.4441). For both models, the best hyperparameters were mtry = 2 and mtree =
500, which were applied to the entire datasets for spatial prediction and interpretation. 
Variable importance, partial dependence plots (PDP) and Shapley Additive Explanations 
(SHAP) summary plots were used for characterising the ecological niche of N. pumilio. 
By applying the same algorithm, a direct comparison of the models and their outputs was 
possible, although it must be considered that the scales of the output variables differ. 
The RF classification model yielded predicted probability values for N. pumilio 
occurrence, and the RF regression model yielded predicted cover values for the species. 
These values were compared directly on the basis that low values in both datasets 
indicate largely unsuitable bioclimatic conditions, while high probability and cover values 
suggest suitable habitat. However, it is important to note that a probability of 0.01 
represents only a very low likelihood of species occurrence, whereas 1 % cover indicates 
that the species is present, albeit in low abundance. 

How can the ecological niche of Nothofagus pumilio be characterised under 
current climatic conditions, and what is the species’ potential geographic 
distribution?  

The temperature variable bio 8 (mean daily mean air temperatures of the wettest quarter) 
and the precipitation variable bio 19 (mean monthly precipitation amount of the coldest 
quarter) emerged in the RF classification model as the most important variables for 
model accuracy (accuracy importance ranking: bio 8, bio 19, bio 15, bio 17, bio 4, bio 
10, bio 18, bio 11). In the RF regression model, bio 15 (precipitation seasonality) and bio 
19 (mean monthly precipitation amount of the coldest quarter) emerged as the most 
important variables (accuracy importance ranking: bio 15, bio 19, bio 4, bio 11, bio 10, 
bio 8, bio 18, bio 17). PDP can be used to interpret the characteristics of single variables 
(Figure 9). In the PDP the temperature variable bio 8, which had the highest variable 
importance in the RF classification model, shows a high predicted probability at very low 
temperatures of −5 to −2°C in the wettest quarter, with a decline as temperatures 
increase. N. pumilio therefore occurs in cold areas in the wettest quarter. The influence 
of bio 15 on the predicted cover values contained more variation, but it can be concluded 
that N. pumilio prefers regions with more stable precipitation patterns, and the species 
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is less likely to occur in areas with highly variable precipitation (> 70 %), e.g., with periods 
of drought.  

SHAP plots allowed for a more comprehensive analysis of the ecological niche based on 
bioclimatic variables. Even though the characteristics of the SHAP plots of the models 
differed slightly, both showed the suitable climatic conditions for the species (Figure 9). 
The species N. pumilio is adapted to the harsh conditions in high mountain regions, as 
evidenced by the fact that it occurs in regions with cold winters (low values of bio 11, 
mean daily mean air temperatures of the coldest quarter) and mild summers (moderate 
values of bio 10, mean daily mean air temperatures of the warmest quarter). Heat 
deficiency is considered the most important limiting factor for tree growth at the alpine 
treeline (Körner, 2020). Globally, the alpine treeline follows the 6.4°C isotherm during 
growing season (Paulsen and Körner, 2014), which corresponds closely to the 
distribution limit of N. pumilio at the 6.6°C isotherm (Fajardo and Pieper, 2014). As 
described in Chapter 3, the species is adapted to the cold by concentrating 
carbohydrates in the xylem to prevent damage due to frost (Fajardo and Piper, 2014), 
mitigating the risk of frost drought by being a deciduous species (Körner, 2021), and 
furthermore due to its high phenotypic plasticity (Stecconi et al., 2010). Leaf size is 
reduced in high-elevation individuals (Premoli et al., 2007) and growth height ranges 
from 35 m at low elevations to krummholz growth at the treeline (Stecconi et al., 2010). 
The influence of temperature was evident not only in the SHAP plots but also in the high 
variable importance of bio 8 (mean daily mean air temperatures of the wettest quarter) 
in the RF classification model and in high GINI importance of bio 11 (mean daily mean 
air temperatures of the coldest quarter) in both models. However, precipitation has an 
important influence on the distribution of the species. The species occurs in areas with 
moderate to low precipitation sums, mainly in the form of snow (moderate values of 
bio 19, mean monthly precipitation amount of the coldest quarter). However, the species 
requires sufficient precipitation throughout the year (low to medium values for bio 17, 
mean monthly precipitation amount of the driest quarter and bio 18, mean monthly 
precipitation amount of the warmest quarter) and does not occur in regions with high 
precipitation variability (bio 15, precipitation seasonality). Very low precipitation (low 
values of bio 17, 18, 19) defines the boundaries of the distribution range of N. pumilio. 
Although the species is present in low-precipitation areas, such as the arid eastern 
regions (Hertel et al., 2008), drought conditions pose a significant challenge to its survival 
and regeneration (Rodríguez‐Catón et al., 2016). Studies investigating the relationship 
between radial growth of the species and climate variations have found growth declines, 
especially in the northern distribution area, due to low precipitation in spring and summer 
(Daniels and Veblen, 2004; Álvarez et al., 2015). Droughts lead to seedling dieback and 
even increased mortality of mature trees (Rodríguez‐Catón et al., 2016, Fajardo et al., 
2019). However, a distinction must be made between northern and southern Patagonia. 
In more southern regions, high spring precipitation is primarily associated with delayed 
snowmelt and thus a shortened growing season, which in turn again limits tree growth 
(Villalba et al., 1997; Lara et al., 2001; Álvarez et al., 2015). The study by 
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Brand et al. (2022) summarises that growth in mesic locations increases with higher 
temperatures, followed by humid locations, while growth in dry locations decreases. 
Other authors describe that growth limitation at the treeline changes from cold-limited to 
drought-limited (Reiter et al., 2024). The model results can reflect these regional 
differences in precipitation patterns. Particularly, the RF regression model focused on 
the influence of precipitation variables, with bio 15 and bio 19 as the most important 
variables. Bio 15 suggests that N. pumilio is unlikely to occur in regions with high 
precipitation seasonality, which may be associated with periods of drought. Bio 19, on 
the other hand, may be linked to precipitation in the form of snow, the resulting snow 
cover, and water availability following thaw. 

The models were used to predict the current potential distribution of the species. The 
prediction resulted in a distribution area from 36.35°S to 55.45°S for the RF classification 
model and a slightly smaller area from 35.24°S to 55.24°S for the RF regression model 
(see Figure 10). The projected distribution area of the RF classification model is 
somewhat more compact, while the RF regression model extends slightly further into the 
humid west. On Tierra del Fuego, the RF regression model shows a more homogeneous 
distribution than the RF classification model. The spatial predictions also differed in terms 
of their details and the treeline elevation. The comparison of the spatial predictions of 
the models is answered in detail by the last research question. 
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Figure 9: Partial Dependence Plots (PDP) and Shapley Additive Explanations (SHAP) summary 
plots for a) the Random Forest (RF) classification model and b) RF regression model. For the 
SHAP analysis, feature values were normalised (breakpoints: 0, 0.5, 1) to account for the differing 
units of temperature and precipitation variables. 
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Figure 10: Potential current distribution of Nothofagus pumilio modelled by a) the Random Forest 
(RF) classification model and b) the RF regression model.  
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What potential range shifts are projected under future climate change scenarios? 

CMIP6 data from CHELSA was used to predict the future distribution of N. pumilio under 
different SSP scenarios. Predictions were made for the periods 2041 to 2070 and 2071 
to 2100 using the SSP126, SSP370 and SSP585 scenarios (see Figures A2 to A5 in the 
appendix section). Both models showed a shift of the treeline to higher elevations, and 
this trend intensifies with modelled time period and the SSP scenario. However, there 
are differences between the predictions. On the one hand, the RF classification model 
showed sharp declines in the total distribution area in the north and in the southern part 
on Tierra del Fuego, while these declines were only slight in the north and not 
pronounced in the south in the RF regression model. On the other hand, the RF 
classification model predicted an increase in currently snow- and ice-covered regions at 
the Southern Patagonian Icefield, while the RF regression model predicted a decrease 
in populations. The differences in the predicted upward shift of the treeline were clearly 
shown by the analysis of high-elevation occurrences (estimated treeline elevation) using 
a digital surface model at 13 selected locations across the study area (see Table 4 for 
time period 2041 to 2070 below and Table A6 for 2071 to 2100 in the appendix section). 
In general, the estimated treeline elevation in the RF classification model was higher 
than those in the RF regression model. The table also clearly shows the population 
decline in the north. At the second location, stands are missing in both models from the 
SSP370 scenario for the period 2041 to 2070. 

The models are based on climatic factors only, so the analysis showed the potential 
climatic treeline shift in the Southern Andes. Whether this advance can actually take 
place also depends on other factors. Abrupt treelines generally advance less pronounced 
than diffuse treelines, as they are caused by seedling dieback outside the protective tree 
stands (Bader et al., 2021). However, higher temperatures and a prolonged growing 
season can improve conditions for seed production, fruit dispersal, seed viability, 
seedling establishment and survival, and thus the conditions for an upward shift in the 
treeline (Daniels and Veblen, 2004; Fajardo and Pieper, 2014; Srur et al., 2016, 2018; 
Aschero et al., 2022). A treeline advance of 5 to 10 m above the current treeline has 
already been recorded for N. pumilio (Srur et al., 2018). However, seedling establishment 
also depends heavily on water availability and soil moisture (Lett and Dorrepaal, 2018; 
Qiu et al., 2021). Seedling survival decreases with increasing aridity, and a deterioration 
in growth conditions for both seedlings and mature individuals was observed on low- and 
high-elevation slopes (Fajardo and Pieper, 2014; Rodríguez‐Catón et al., 2016; Aschero 
et al., 2022; Reiter et al., 2024). Furthermore, even if temperatures and water availability 
are favourable for treeline advance, this can still be prevented by local topographic or 
edaphic factors. The inclusion of additional variables related to topography, soil, 
vegetation cover, and wind could further elucidate the potential upward shift. 
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Table 4: Estimated treeline elevation [m] at 13 locations according to Lara et al. (2005) based on 
the results of the Random Forest (RF) classification (Class.) and RF regression (Reg.) models 
under current climate conditions and CMIP6 SSP scenarios for the future period 2041 to 2070 
(applied thresholds 0.3 and 30 %). NA = not available (no data recorded). 

Coordinates Current Climate SSP126  
(2041–2070) 

SSP370  
(2041–2070) 

SSP585  
(2041–2070) 

X Y Class. Reg. Class. Reg. Class. Reg. Class. Reg. 
−71.00 −35.36 NA NA NA NA NA NA NA NA 
−71.11 −37.27 1988 1949 2214 NA NA NA NA NA 
−71.33 −38.42 1854 1789 2201 1709 2186 1920 2227 2045 
−72.15 −40.42 1591 1437 1699 1636 1768 1674 2026 1674 
−72.19 −41.48 1500 1201 1560 1464 1730 1638 1730 1720 
−71.45 −43.07 1839 1440 1918 1545 2059 1725 1918 1725 
−71.42 −44.39 1320 1216 1704 1324 1852 1509 1852 1591 
−72.24 −47.12 1361 1197 1500 1423 1651 1439 1538 1500 
−72.30 −48.30 1522 1074 1340 1098 1473 1098 1586 1209 
−72.54 −50.57 1176 956 1296 961 1313 1103 1349 1124 
−71.00 −53.00 543 560 592 721 NA 783 592 783 
−68.45 −54.17 544 520 648 615 667 547 607 607 
−67.30 −54.57 610 610 614 492 557 614 NA 614 

 

What are the differences between the modelling approaches used in this study, 
and what are their respective advantages and disadvantages? 

Differences between the model results existed in spatial prediction, variable importance, 
and thus PDP and SHAP plots, respectively. Even though a synthesis of the model 
results was possible to identify and interpret the suitable bioclimatic conditions for 
N. pumilio, the strengths and weaknesses of the models were particularly evident in the 
spatial predictions. The RF classification model tended to predict occurrences in higher, 
not vegetated areas, resulting in slight overprediction at high-elevation sites. This 
became particularly evident in a comparison of the elevations of the highest grid cells in 
the models and with external data. Table 5 compares the reported treeline elevation from 
an on-site study by Lara et al. (2005) at 13 locations across the species' distribution 
range with the estimated treeline elevation from the models. The treeline elevation of the 
RF classification model was in some cases significantly higher than the on-site data, but 
the data corresponded well in the southern distribution area. The treeline elevation of the 
RF regression model, in contrast, was only slightly higher in the north and otherwise 
corresponded very well with the actual measured values. Furthermore, the spatial 
prediction of the RF regression model showed small-scale details (see Figure 11). It 
distinguished better between forested valleys and bare peaks and did not overperform 
at high altitudes. This was also verified with external data from the Argentine forestry 
authority, Secretaria de Ambiente y Desarrollo Sustentable de la Nacion, which provides 
shapefiles on forest types (Mohr-Bell et al., 2019). A comparison of the polygons with 
the grid cells of the model results showed a very good match with the RF regression 
model results, while the grid cells of the RF classification model extended beyond the 
boundaries of the polygons (Figure 12). The overprediction at high altitudes can be 
attributed, among other things, to high variable importance of temperature-related 



Chapter 5: Synthesis and Discussion 

51 
 

variables, which often reflect the effects of altitude. This is also evident in the SHAP 
summary plots, where high temperatures exert only a negative influence on the model 
outcome in the RF classification model, thus predicting suitable climatic conditions 
predominantly in colder areas. In contrast, the RF regression model delineates extremely 
cold areas, such as summit regions, more precisely, as demonstrated by the predictor 
bio 10. In this context, low temperatures during the warmest quarter have a negative 
impact on the model outcome (see Figure 9). 

The continuous species occurrence variable “cover values” of the RF regression model, 
calculated from the coverage of 20 m grid cells within a 1 km grid cell (the target 
resolution of the climatic predictors of the model), contains information on the species 
relative abundance and therefore additional unknown information on land cover. In 
contrast, the binary variable used in the RF classification model consists only of the 
values 0 or 1, indicating species absence or presence. Cover values can provide a more 
realistic insight into the actual conditions on site. For this reason, the RF regression 
model with this numerical variable provided a more accurate spatial prediction and a 
result that was better interpretable with more meaningful predictors. The inclusion of 
remote sensing data as environmental variables is already common practice in ENM. 
But the creation of occurrence data based on remote sensing data can improve model 
validity, holding great potential for future ENM studies.  

Table 5: Treeline elevation sampled on site by Lara et al. (2005) compared with the modelled 
highest occurrence raster cells of the Random Forest (RF) classification (applied threshold 0.3) 
and RF regression model (threshold 30 %).  

Treeline Position and Elevation [m]  
after Lara et al. (2005) 

Treeline Elevation [m]  
Current Climate 

ID X Y Elevation Range RF Class. RF Reg. 
1 −71.00 −35.36 1530 NA NA 
2 −71.11 −37.27 1500–1720 1988 1949 
3 −71.33 −38.42 1490–1650 1854 1789 
4 −72.15 −40.42 1000–1300 1591 1437 
5 −72.19 −41.48 1300 1500 1201 
6 −71.45 −43.07 1230–1350 1839 1440 
7 −71.42 −44.39 1000–1200 1320 1216 
8 −72.24 −47.12 800–1180 1361 1197 
9 −72.30 −48.30 1200 1522 1074 
10 −72.54 −50.57 650–980 1176 956 
11 −71.00 −53.00 350–600 543 560 
12 −68.45 −54.17 200–600 544 520 
13 −67.30 −54.57 300–600 610 610 
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Figure 11: Details of the spatial predictions of the potential current distribution of 
Nothofagus pumilio from the Random Forest (RF) classification model and RF regression model, 
shown in comparison with a satellite basemap (centre) and a Digital Surface Model (DSM) 
indicating the elevation of the raster cells covered by the model outputs. 
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Figure 12: Comparison of spatial predictions from the Random Forest (RF) models under current 
climate with forest polygons of Nothofagus pumilio (red, centre) provided by the Argentinian 
forestry authority (Mohr-Bell et al., 2019). 
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6. Conclusion and Outlook 
This study aimed to investigate the underlying bioclimatic requirements, and potential 
current and future distribution of the treeline species Nothofagus pumilio in the Southern 
Andes, using less-biased species occurrence data derived from a novel method 
combining social media and remote sensing. The primary objective was to improve a 
common modelling approach in two key steps: first, by developing the Instagram ground 
truthing approach (IGTA), and second, by comparing binary and continuous species 
datasets in Ecological Niche Modelling using a machine learning algorithm. 

The results demonstrated that the IGTA produced less-biased species occurrence data 
compared to commonly used data from the Global Biodiversity Information Facility 
(GBIF). Moreover, the resulting IGTA point dataset proved valuable for validating large-
scale remote sensing data of N. pumilio across its entire distribution range. Remote 
sensing data, in particular, can reduce spatial bias, as raster cells are sampled 
consistently across the landscape, rather than being concentrated in urban or tourist 
areas where most occurrences by Citizen Scientists or images by Instagram users are 
typically taken. While the advantages of the approach were clearly demonstrated above, 
it must be acknowledged that the manual search for suitable posts on Instagram and the 
georeferencing of occurrences are still time-consuming processes. Future research 
could explore the automation of this approach through the use of the Instagram API or 
the integration of AI-based image recognition techniques. Both options would require 
permission from the parent company, Meta, which has recently updated Instagram’s 
terms of use to allow for AI usage (Meta, 2025). In conclusion, social media holds 
significant potential for species occurrence data sampling and can promote research on 
species in remote and high-elevation regions. The IGTA represents a novel and 
transferable method that can be applied to other species and regions. 

In the next analysis step, both datasets were used for modelling, allowing for a direct 
comparison between models based on different types of species input data. This 
comparison highlighted the advantages of using continuous species data derived from 
remote sensing across the entire distribution range, as opposed to binary species data. 
Continuous data, here the proportion of 20 m raster cells classified as N. pumilio within 
each 1 km target resolution cell, can capture additional information related to land cover, 
topography, and species composition, thereby providing insights into the relative 
abundance of the species. In contrast, binary variables are limited to presence or 
absence (1 or 0), offering no detail on local density or coverage. The Random Forest 
regression model produced more meaningful predictor-variable relationships and yielded 
a more detailed spatial prediction.  
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In this study, only bioclimatic variables were used to model the potential current and 
future distribution of N. pumilio. While this approach provides a comprehensive overview 
of temperature, precipitation, and seasonality, future research could expand the 
modelling framework to include additional abiotic variables, such as topography, soil 
characteristics, and wind exposure, as well as biotic and anthropogenic factors, including 
vegetation composition, fire regimes, grazing intensity, and forestry practices. 

Up to date, this is the first study investigating the current state and future development 
of the potential distribution range of N. pumilio in the Southern Andes, thereby 
addressing an existing research gap. Common practices in ENM were successfully 
improved by introducing the IGTA, incorporating continuous remote sensing-derived 
data and using machine learning algorithms. 
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Appendix 

 

A1: Hexagonal spatial blocks used for 5-fold spatial cross-validation and the five folds with training 
data points (grey) and testing data points (dark green). 
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A2: Potential future distribution of Nothofagus pumilio modelled using the Random Forest 
classification model using CMIP6 SSP Scenarios for CHELSA Bioclim variables for the time 
period of 2041 to 2070. 
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A3: Potential future distribution of Nothofagus pumilio modelled using the Random Forest 
regression model using CMIP6 SSP Scenarios for CHELSA Bioclim variables for the time period 
of 2041 to 2070 
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A4: Potential future distribution of Nothofagus pumilio modelled using the Random Forest 
classification model using CMIP6 SSP Scenarios for CHELSA Bioclim variables for the time 
period of 2071 to 2100. 
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A5: Potential future distribution of Nothofagus pumilio modelled using the Random Forest 
regression model using CMIP6 SSP Scenarios for CHELSA Bioclim variables for the time period 
of 2071 to 2100. 
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A6: Estimated treeline elevation [m] at 13 locations based on the results of the Random Forest 
(RF) classification and RF regression models under current climate conditions and CMIP6 SSP 
scenarios for the future period 2071 to 2100 (applied thresholds 0.3 and 30 %). NA = not available 
(no data recorded). 

Coordinates Current Climate SSP126  
(2071–2100) 

SSP370  
(2071–2100) 

SSP585  
(2071–2100) 

X Y Class. Reg. Class. Reg. Class. Reg. Class. Reg. 
−71.00 −35.36 NA NA NA NA NA NA NA NA 
−71.11 −37.27 1988 1949 2328 NA NA NA NA 2530 
−71.33 −38.42 1854 1789 2071 1700 1780 1871 2460 2035 
−72.15 −40.42 1591 1437 1679 1636 2026 1971 2026 2026 
−72.19 −41.48 1500 1201 1555 1510 1917 1743 1917 1730 
−71.45 −43.07 1839 1440 1955 1545 2059 1955 2059 2059 
−71.42 −44.39 1320 1216 1703 1595 1952 1593 1952 1427 
−72.24 −47.12 1361 1197 1439 1346 1742 1651 1901 1840 
−72.30 −48.30 1522 1074 1399 1098 1578 1171 1698 1340 
−72.54 −50.57 1176 956 1317 1000 1457 1229 1537 1287 
−71.00 −53.00 543 560 592 728 NA NA NA NA 
−68.45 −54.17 544 520 648 616 615 757 NA NA 
−67.30 −54.57 610 610 609 614 NA 614 NA 614 
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Abstract

The availability of valid, non-biased species occurrence 
data has always been a major challenge for biodiversity 
research and modelling studies. Data from open-source 
databases or remote sensing are promising approaches 
to increase the availability of species occurrence data. 
However, these data may contain spatial, temporal, and 
taxonomic biases or require ground truthing. In recent 
years, social media has received attention for its contri-
bution to species occurrence data sampling and ground 
truthing approaches. The wide reach of social media plat-
forms allows for rapid and large-scale analyses.

Here we introduce a novel Instagram ground truth-
ing approach to validate the occurrence mapping of 
Nothofagus pumilio across its entire distribution range. 
The treeline species of the southern Andes has been ex-
tensively studied in small-scale studies, but large-scale 
modelling approaches are largely missing due to limited 
accessibility to treeline sites resulting in a lack of occur-
rence data. The content posted on the social media plat-
form Instagram consists of images and videos in which 
the species N. pumilio and its location can be identified. By 
searching for suitable posts using hashtags and location 
tags, we created 1238 Instagram ground truthing points. 
We compared the performance of our dataset with open-
source data from the Global Biodiversity Information Facil-
ity (GBIF) through visual, quantitative, and bias analyses, 
acknowledging that both social media-based and Citizen 
Science data are subject to sampling and spatial biases 
due to collection in human-accessible areas. The Insta-
gram ground truthing points were subsequently used to 
validate remote sensing occurrence data, generated using 
Sentinel-2 level 2A data and Supervised Classification. 

The combined approach – Instagram ground truthing and 
remote sensing – allows for the collection of occurrence 
data over the entire latitudinal range of N. pumilio, cover-
ing approximately 2000 km.

Highlights

•	 The use of social media content provides potentially 
important contributions to species occurrence data 
sampling and ground truthing

•	 In our study we introduce a novel ground truthing ap-
proach for species occurrence data sampling based 
on Instagram data

•	 Instagram ground truthing points, combined with Su-
pervised Classification generate species occurrence 
data of Nothofagus pumilio over its entire distribu-
tion range in the southern Andes

•	 The performance of the Instagram ground truthing 
points is evaluated by comparison with existing data 
from the GBIF database.

•	 Our Instagram ground truthing approach demon-
strates a new way of sampling species occurrence 
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Introduction
Quantifying spatial and temporal distribution of species 
and analysing underlying ecological requirements has be-
come increasingly important in high elevation regions due 
to climate and environmental change (Schickhoff et al. 
2022). Worldwide, ecological modelling studies are applied 
to model treeline species under present, past and future 
climate conditions (e.g., Dullinger et al. 2004; Bobrowski et 
al. 2017; Akobia et al. 2022). Whereas high mountains of 
the Northern Hemisphere are well represented in treeline 
related research, those of the Southern Hemisphere, such 
as the Andes, have rather been neglected (Hansson et al. 
2021; Hansson et al. 2023). Recently published studies on 
the southern Andes have focused on local treeline sites 
(e.g., Daniels and Veblen 2003; Fajardo and Piper 2014; 
Srur et al. 2016, 2018), while large-scale modelling studies 
investigating treeline species or vegetation at higher ele-
vations are very rare (Nagy et al. 2023). The limited acces-
sibility of treeline sites due to remoteness and complex 
topography might have impeded such studies.

Species occurrence data are mainly collected through 
field research and made available in publications and da-
tabases (Feng et al. 2019). However, large-scale vegeta-
tion sampling is often costly and time-consuming. There-
fore, species occurrence data are frequently downloaded 
via open-source databases such as the Global Biodiversity 
Information Facility (GBIF, gbif.org), which hosts datasets 
compiled from various sources (Edwards 2004; Boakes 
et al. 2010). However, these data may contain unknown 
taxonomic, spatial or sampling biases and are seldom 
evaluated or revisited (Beck et al. 2014; Meyer et al. 2016; 
Daru et al. 2018). Ensuring the quality of species data is 
essential for accurate modelling outcomes (Chauvier et 
al. 2021). Therefore, prior to utilisation, thorough examina-
tion, filtration, and potential supplementation of the data 
are imperative steps.

More recently, Citizen Science projects and social me-
dia are becoming crucial for surveying species occurren
ces (Jarić et al. 2020; Goldberg 2023). Citizen science in-
volves the participation of citizens in scientific processes, 
such as collecting species data (Bonney 1996; Bonney et 
al. 2009). The number of Citizen Science projects, partic-
ularly those that are computer- or app-based, along with 
the resulting data, is increasing exponentially (Pocock et 
al. 2017). Such projects can generate large amounts of 
occurrence data in a comparatively short time (Sumner 
et al. 2019). Dickinson et al. (2010) even take the view 
that Citizen Science is the only practical way to study dis-
tribution patterns and range shifts of species over large 
areas. Despite the improving quality of the data, which is 
increasingly nearing that of expert-recorded data (Aceves‐
Bueno et al. 2017), bias persists (Di Cecco et al. 2021). 
Data collection is concentrated in urban and tourist ar-
eas, with inaccessible or remote locations rarely being 
recorded. Additionally, the data is collected solely by in-
dividuals engaged in Citizen Science projects. Leveraging 
social media contributions can unlock further potential in 

data collection. On social media, an increasing number of 
geotagged image files are used. Images posted by both 
experts and non-experts can be analysed in large quanti-
ties. Recently, social media platforms such as Facebook, 
Flickr, Instagram, Twitter and YouTube are used to sample 
occurrence data and range shifts of animals, for example 
data of whales, dolphins (e.g., Pace et al. 2019; Gibson et 
al. 2020; Martino et al. 2021), birds (e.g., Hentati-Sundberg 
and Olsson 2016), insects (e.g., Virić Gašparić et al. 2022; 
O’Neill et al. 2023) and plants (e.g., ElQadi et al. 2017). 
Through the usage of geotagged social media content, as 
well as identifiable landscape elements and descriptions 
of the posted image, the actual location of the posts can 
be traced. In combination with clearly recognisable plant 
characteristics, it is possible to identify the location of 
species, representing a promising new ground truthing 
possibility. With the increasing use of social media and 
the spread of high-quality digital cameras, a huge poten-
tial can be tapped to make, in addition, important contri-
butions to biodiversity monitoring and to the evaluation of 
potential protected areas (Chowdhury et al. 2023).

While both Citizen Science and social media enhance 
the sampling of occurrence data, the data remain spatially 
biased, as records are predominantly collected from loca-
tions accessible to humans (Meyer et al. 2016; La Sorte 
et al. 2024). Within this context, utilising remotely sensed 
species occurrences emerges as a promising method 
for reducing such bias and examining large study areas, 
particularly in regions with limited accessibility, such as 
high-elevation areas. One example is the use of remote 
sensing to classify tree species. Very high-resolution data 
like IKONOS, WorldView, RapidEye and airborne images 
are mostly used for small-scale studies (Fassnacht et 
al. 2016) and medium high-resolution data like Landsat 
and Sentinel data can successfully be used for larger ar-
eas (Immitzer et al. 2016; Immitzer et al. 2019). Despite 
the wide availability of high-resolution data and highly 
developed remote sensing methods, ground truthing re-
mains indispensable for validating species data accuracy 
through field validation (on-site sampling) or validation 
processes with existing datasets (Nagai et al. 2020).

The availability of data for treeline species is limited; 
however, such species are likely to be suitable candidates 
for analysis using remote sensing and social media-based 
species occurrence data sampling. N. pumilio forms an 
abrupt treeline in the orotemperate belt of the southern 
Andes in mono-species forest stands (Amigo and Rodrí-
guez-Guitián 2011) and is distributed in a region with many 
touristic areas where photos are taken, for example, during 
hiking. Therefore, the species can be recognised in satel-
lite images as well as in Instagram posts. As N. pumilio 
responds to climate variations by changing radial growth 
patterns (Lara et al. 2001; Aravena et al. 2002; Daniels 
and Veblen 2004; Masiokas and Villalba 2004; Álvarez et 
al. 2015) and seedling establishment patterns above the 
treeline (Fajardo and Piper 2014), it is a suitable target spe-
cies also for modelling approaches aiming at analysing 
treeline sensitivity and treeline shift due to climate change.
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In this study, we demonstrate the large-scale sampling 
of N. pumilio occurrence data using Sentinel-2 imagery and 
Supervised Classification. To validate the spatial occur-
rence data, we introduce a novel Instagram ground truth-
ing approach, leveraging occurrence points derived from 
the social media platform Instagram (www.instagram.
com). We hypothesise that this Instagram-based method, 
due to a high volume of potentially suitable posts and our 
sampling approach, will generate more occurrence points 
with reduced spatial bias compared to datasets from the 
open-source GBIF database. Spatial bias in the resulting 
species occurrence data is further mitigated by incor-
porating remote sensing data, which enhances both the 
quantity and spatial coverage of occurrence information. 
Unlike presence-only point datasets, remote sensing data 
provide presence-absence datasets, offering more com-
prehensive opportunities for ecological modelling.

Material and methods
Study area and target species

Nothofagus pumilio (Poepp et Endl.) Krasser (southern or 
lenga beech) is the dominant subalpine tree species in the 
southern Chilean and Argentinean Andes between 35°S 
and 56°S, encompassing a longitudinal distribution range 
of more than 500 km (Masiokas and Villalba 2004; Lara et 
al. 2005; Rodríguez‐Catón et al. 2016). Out of all Nothofa-
gus species, N. pumilio is the most orophilic (Amigo and 
Rodríguez-Guitián 2011). The dark green, elliptical, and 
notched broad leaves of the deciduous species turn into an 
orange-reddish colour in autumn, which is a reliable distin-
guishing feature of the species in comparison to other ever-
green Nothofagus species in this region (Hildebrand-Vogel 
et al. 1990; Amigo and Rodríguez-Guitián 2011).

The distribution area of the species along the Andean 
cordillera follows an elevational gradient from north to 
south, while the west-east expansion is also dependent 
on precipitation. N. pumilio forms mono-species forests 
located between 1600 m up to 2000 m in the northern 
parts, whereas the elevational limit decreases to 400 m 
in the southernmost range at Tierra Del Fuego (Cuevas 
2000; Lara et al. 2005). The treeline elevation decreases 
constantly by 60 m per 1° latitude (Lara et al. 2005). The 
west-east distribution area is defined by the extreme pre-
cipitation gradient from the windward to the leeward side 
of the Andes (Hertel et al. 2008). The eastern distribution 
boundary is characterised by low precipitation, following 
the forest-steppe ecotone (Rodríguez‐Catón et al. 2016). 
Often, two treelines are formed in the eastern regions – 
a common upper and a lower, xeric treeline towards the 
arid region (Hertel et al. 2008). On the western side of the 
Andes, the distribution is restricted to high elevations. 
In these hyperhumid areas, the species does not occur 
at lower elevations, where Nothofagus betuloides is the 
dominant tree species (Young et al. 2007; Amigo and Ro-
dríguez-Guitián 2011). Especially the autumn colouring of 

the deciduous species and its occurrence in mono-spe-
cies forests at the treeline are important characteristics 
for the Instagram ground truthing approach, as these fea-
tures aid in identifying the species in Instagram posts and 
make them recognisable in satellite images.

Instagram ground truthing approach

As a first step, we developed the Instagram ground truthing 
approach to ensure proper validation of large-scale remotely 
sensed occurrence data of N. pumilio. Additionally, the Insta
gram ground truthing points are quantitatively compared 
with existing occurrence data from the GBIF database. 
We used the social media platform Instagram (www.insta-
gram.com) to sample the Instagram ground truthing points. 
Although other social media platforms have been utilised in 
studies sampling species occurrences, Instagram has large-
ly been overlooked. Nonetheless, we identify a significant ad-
vantage in using Instagram. Instagram users have the pos-
sibility to post both photos and short videos. The platform’s 
lack of text-only posts makes it especially suitable for our 
approach. At the same time, Instagram is one of the largest 
social media platforms with 2 billion users worldwide (We 
Are Social et al. 2024), allowing for the analysis of a signifi-
cantly larger volume of content compared to lesser-known 
platforms that exclusively host visual content (e.g., Flickr). 
Moreover, users can localise their posts with a geographical 
tag and add descriptions where the content and, e.g., the lo-
cation can be specified with text or hashtags. The aim of the 
ground truthing analysis was to identify locations in which 
the species N. pumilio is clearly identifiable, the location can 
be reliably traced and transferred to a map.

We started the Instagram ground truthing approach in 
2021 and repeated it in 2022. The analysis consisted of 3 
steps: 1) Potential contributions from publicly accessible 
profiles were searched for using the search bar embedded 
in the Instagram user interface and two specific search op-
tions: hashtags (#nothofaguspumilio and #lenga for exact 
species information) and places or landscape features (by 
location tags, locations in hashtags or usernames for ex-
act locations). 2) Posts were checked using a strict cata-
logue of criteria (Table 1), ensuring that the species can be 
clearly identified, and that the location is traceable. Autumn 
pictures were preferentially included in the analysis, as the 
identification of the species is particularly reliable during 
this season. In addition, the typical abrupt treeline and mo-
no-species forests were main criteria for selecting the posts. 
Furthermore, the Instagram posts include a publication 
date. Due to the chronological structure of the Instagram 
interface, our analysis has primarily focused on the most 
recent posts. However, the publication date does not guar-
antee that the photo was taken in that year. 3) Occurrenc-
es verified by the approach were transferred to a map. We 
first analysed all posts with specific species information 
(#nothofaguspumilio and #lenga). Next, we searched for 
specific locations within the species’ distribution range, fill-
ing gaps and adding points to the already set occurrence 
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points. This structured approach ensures a homogeneous 
distribution of the sampled occurrences.

When we manually transferred the locations to a map 
in step 3), simple descriptions of the locations were not 
sufficient. The locations still had to be clearly traceable 
by landscape features (see Table 1). Such landscape el-
ements in Patagonia could be glaciers, characteristic 
mountain peaks, roads, urban areas, touristic sites, water-
bodies, and coastlines. These features should be so char-
acteristic, that they can also be recognised in a satellite 
image. To avoid mistakes, the hashtags and descriptions 
in the post should match the given location. Images cen-
tring people, as well as those altered through the usage 
of filters, colour modifications, or emojis, were excluded.

If all conditions were met, we manually transferred the 
determined occurrence to a map with SAGA GIS (Conrad 
et al. 2015, https://saga-gis.sourceforge.io). When creat-
ing Instagram ground truthing points, at least one point 
was created at the actual location where the photo was 
taken and N. pumilio was identified. However, additional 
points were created if other occurrences of N. pumilio 
were visible at the posted image. This is particularly the 
case when forest or even the treeline of N. pumilio can be 
seen in the background of landscape photographs. The 
species’ ecology enables the identification of these oc-
currences, as its presence at the treeline, combined with 
autumn colouring, makes the species recognisable, par-
ticularly when morphological features are clearly visible in 
the foreground of the images. In some cases, points were 
set as far as the neighbouring valley, when the treeline 
was clearly autumn-coloured in the used satellite image. 
Background points were assigned to a 1 km grid, as this 

is commonly the target resolution for model analyses, 
thereby maintaining the number of background points at 
a reasonable level. The selection of posts is exemplified in 
Fig. 1. The landscape elements used to locate the posts, 
along with the transferred points, are shown in Fig. 2.

Remote sensing occurrence data sampling 
with supervised classification

Analysing multispectral, medium spatial resolution 
satellite data like Sentinel-2 leads to cost-efficient and 
robust results in tree species classification over large 
spatial extents (Fassnacht et al. 2016; Immitzer et al. 
2016; Immitzer et al. 2019). Therefore, we compiled 
large-scale occurrence data over the entire distribu-
tion range of N. pumilio using Sentinel-2 level 2A data 
(BOA) in a resolution of 20 m. As N. pumilio occurs in 
mono-species forests at the treeline, a medium spa-
tial resolution was sufficient to classify the forest type 
while allowing analysis over almost 2000 km latitude. 
Furthermore, the high temporal resolution data allowed 
phenological differentiation with autumn and summer 
images. Using the R Package “sen2r” (Ranghetti et al. 
2020) we downloaded summer (months December and 
January) and autumn (month April) Sentinel-2 data. The 
sensing period was 2019 to 2022. Sentinel-2 scenes 
with up to 50 % cloud cover were included. Most scenes 
had a cloud cover of 15 % or less. We used the Sentinel-2 
level 2A data “Scene Classification Layer” product (SCL, 
Fig. 3B) to mask all raster cells not classified as vegeta-
tion. This ensured that only data relevant to the analysis 
was included in the classification. Downloading numer-
ous Sentinel-2 data with different acquisition times en-
sured that as many vegetation pixels as possible from 
a Sentinel-2 scene were included in the classification, 
despite high cloud cover.

We trained our Supervised Classification with training 
areas including three classes (1 = N. pumilio, 2 = Evergreen 
vegetation, 3 = Low vegetation). Training areas were creat-
ed using summer, autumn and winter Sentinel-2 scenes at 
selected sites across the range. The winter data made ev-
ergreen vegetation clearly recognisable. Autumn colouring 
at the treeline indicated N. pumilio. We tested various clas-
sification algorithms for Supervised Classification, includ-
ing well-performing standard algorithms like Maximum 
Likelihood, Minimum Distance, and Spectral Angle, as well 
as the decision tree-based Random Forest algorithm. The 
performance of these algorithms was measured using 
overall accuracy and the Kappa value (Richards 2022). 
To cover a wide spectral range, we used all the spectral 
bands from 2 to 7, 8a, 11 and, 12. All preprocessing steps 
and the Supervised Classification, which are visualised in 
Fig. 3, were carried out in R (R Core Team 2023) and SAGA 
GIS (Conrad et al. 2015). Map visualisation was performed 
in ArcGIS Pro software by Esri, version 2.7.0.

We classified summer and autumn data separate-
ly and subsequently extracted and merged the result of 

Table 1. Criteria for selecting Instagram posts to generate 
Nothofagus pumilio occurrence data. All these criteria must be 
fulfilled for the image to be included in the analysis.

Criterion Element or Example
Typical characteristics 
of Nothofagus pumilio

morphological characteristics (leaves, 
branches, habitus)
autumn colouring
abrupt treeline
mono-species forest

Concrete location 
information

geographical tag
location hashtag
location description in the caption

Recognisable 
landscape elements

glaciers
mountain peaks or ranges
rivers, lakes
roads
tourist points, cities, villages
coastlines

Fitting hashtags hashtags describing the location or 
the plant

Picture criteria Avoid persons in focus
no photo montages
no emojis
no extreme (colour) falsifications

https://saga-gis.sourceforge.io
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Figure 1. Example of the Instagram ground truthing approach at Laguna Capri, Argentina. Nothofagus pumilio can be identified by its 
habitus and leaves in the foreground, its autumn-colouring and the abrupt treeline in the background. The lake itself and Mount Fitz Roy 
are reliable landscape elements. A location tag, the post description and hashtags also refer to the location (used with permission by 
Instagram user fernando.v.fotografia 2022).

Figure 2. The transmitted points (red) visible at Laguna Capri and at the treeline. Red boxes indicate the landscape elements, Laguna 
Capri and Mount Fitz Roy, that allowed to identify the location of the Instagram post shown in Fig. 1.
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the N. pumilio occurrence into one layer. The result was 
further refined using three different masks. As the clas-
sification of the class “low vegetation/grassland” was 
particularly reliable in the summer classification and the 
classification of the class “evergreen” in the autumn clas-
sification, the result was masked by the result of these 
classes. Therefore, any pixels that may have been mis-
classified have been removed. In the north of the study 
area, N. pumilio occurs only at higher elevations, so that 
other deciduous species at lower elevations were misclas-
sified as N. pumilio. To remove this occurrence, a Digital 
Surface Model (DSM, ALOS Global Digital Surface Model 
“ALOS World 3D – 30m (AW3D30)”, Jaxa EORC 2023) was 
used to remove occurrences below high-elevation mo-
no-species forests (thresholds: 800 m from 35°S to 40°S; 
500 m from 40°S to 45°S; 250 m from 45° to 50°S).

GBIF data and validation process

The large-scale remote sensing data on the occurrence of 
N. pumilio was validated using the Instagram ground truth-
ing points. This process involved verifying whether the Insta
gram ground truthing points align with the spatial distribu-
tion derived by Supervised Classification. Additionally, we 
used occurrence data from the GBIF database to also vali-
date the spatial distribution and to compare it with the Insta-
gram ground truthing points visually, quantitatively and with 
a sampling bias analysis. The GBIF database provides data 
on species of all taxa according to the open-source principle. 
The Secretariat in Copenhagen coordinates data from vari-
ous sources, such as museums, research publications, and 
Citizen Science projects, and makes them available (GBIF 
2024a). A search for the species Nothofagus pumilio (Poepp. 

Figure 3. (A) Sentinel-2 autumn image at the Perito Moreno Glacier, Argentina, (B) Scene Classification Layer of the Sentinel-2 scene; 
the green area, class 4, shows vegetation, (C) the masked Sentinel-2 scene and, (D) classification result with three classes (red = 
Nothofagus pumilio, dark green = evergreen vegetation, light green = low vegetation/grassland).
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& Endl.) Krasser resulted in 1,616 entries (as of 6 June 2024, 
GBIF 2024b). These entries come primarily from the Citizen 
Science platform iNaturalist, but also from other Citizen Sci-
ence projects, universities, botanical gardens/arboreta, state 
institutions, and archives. All available data were download-
ed and filtered according to two criteria. First, coordinates 
had to be provided, which led to the removal of 573 entries. 
Second, the coordinate uncertainty had to be less than or 
equal to 1,000 m, resulting in the removal of additional 485 
entries. After filtering, 558 occurrences remained in the GBIF 
dataset. The data sources included two Citizen Science 
projects (iNaturalist with 546 occurrences and naturgucker 
with 5 occurrences) and two museums (Museo Argentino 
de Ciencias Naturales “Bernardino Rivadavia” with 6 occur-
rences and NTNU University Museum with 1 occurrence). 
The sampling years range between 1981–2024. Instagram 
ground truthing points and GBIF points were compared vi-
sually, quantitatively and by elevation using a DSM. The R 
package “sampbias” (Zizka et al. 2021) was used to assess 
whether the spatial sampling bias, influenced by site acces-
sibility to humans, is reduced in the Instagram ground truth-
ing point dataset. The package quantifies geographic bias 
and estimates the sampling rate across the study area using 
a Bayesian approach. Cities, roads, rivers, and lakes from 
Natural Earth Data (https://www.naturalearthdata.com/) 
were utilised as bias factors (gazetteers).

Usage of AI

ChatGPT (GPT-4 and GPT-3.5; available at https://chat.
openai.com/) was used to enhance sentence structure 
and grammar in individual sentences.

Results
Instagram ground truthing approach

Numerous posts found by hashtags and location tags 
were reviewed in 2021 and 2022, resulting in 1238 trace-
able occurrence points. In total we found 297 suitable 
posts published between 2017 and 2022. Most posts 
were published in 2021. A total of 460 points were placed 
at the actual location of the posts, and 778 points were 
placed in the visible background area (mainly autumn 
coloured treeline locations). Posts with specific species 
information using the hashtags #nothofaguspumilio or 
#lenga provided 61 occurrence points. Posts with detailed 
location information, where N. pumilio is recognisable, 
contributed significantly to the occurrence data.

Comparison with GBIF data

Fig. 4 illustrates that the Instagram ground truthing points 
from the structured approach are less scattered. This is 
because the approach targeted the species’ distribution 

range and gaps between already set points, when search-
ing for specific locations, such as cities, national parks, 
mountain peaks, and lakes within that range. In contrast, 
the GBIF points are somewhat more scattered, with a few 
separate “outliers” visible in the west. The average ele-
vation of the GBIF points is 559.82 m. Nevertheless, the 
GBIF dataset also includes very high-elevation locations, 
with the highest recorded location at 2123 m, compared 
to 1952 m for the Instagram ground truthing points. 
Instagram ground truthing points are higher on average 
at 1049.25 m, as images with a visible treeline were 
preferably selected. However, the differences in mean 
elevation are mainly due to the fact that the GBIF points 
were predominantly recorded in the southern part of the 
study area (45°S to 55°S). Of the 558 points, 419 are lo-
cated in this area, with only 139 located to the north. In 
contrast, the Instagram ground truthing points are more 
homogeneously distributed: 661 of the 1238 points are 
located between 45°S and 55°S, while 577 points are in 
the northern part of the study area. However, the GBIF 
data also supplement the Instagram ground truthing 
data, particularly in the northernmost parts of the dis-
tribution area. 16 points are located further north of the 
Instagram ground truthing dataset. In some cases, GBIF 
data augment locations with Instagram ground truthing 
points by adding several GBIF points. With 252 points 
nearly half of the GBIF points are concentrated in a few 
tourist/urban areas. For example, 159 points are locat-
ed in and around Ushuaia, 24 points in and around Bari-
loche, 53 points in Torres del Paine National Park, and 
16 points solely at a parking area with viewing platform 
for the Perito Moreno Glacier. To quantify this observed 
bias, we used the “sampbias” package, which assesses 
sampling bias based on factors (gazetteers) indicating 
the influence of human-accessible locations (Zizka et al. 
2021). The analysis revealed a significant impact of cit-
ies on both datasets, with the effect being higher for the 
GBIF dataset (bias weight, IGTA = 0.3455, GBIF = 0.4611). 
Additionally, roads and rivers exert a greater influence on 
the GBIF dataset. The Instagram ground truthing dataset, 
however, is more biased only in relation to lakes, which 
can be attributed to numerous points in national parks 
such as Torres del Paine and Los Glaciares. Fig. 5 pres-
ents the estimated sampling rates for both datasets. In 
Fig. 5 (B) the undersampled area between cities can be 
clearly seen. The bias weights and further results from 
the “sampbias” analysis are included as supplemental 
material (see Suppl. material 1).

Supervised classification

We found that the OpenCV Supervised Classification and 
Random Forest algorithms demonstrated the best per-
formance. For the summer classification, the overall ac-
curacy was 0.93 with a Kappa value of 0.89, and for the 
autumn classification, the overall accuracy was 0.97 with 
a Kappa value of 0.96 (see Suppl. material 1 for details 

https://www.naturalearthdata.com/
https://chat.openai.com/
https://chat.openai.com/
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on the Supervised Classification validation). The Super-
vised Classification of summer and autumn Sentinel-2 
data resulted in a spatial distribution map of the species 
N. pumilio from 35°10'S to 55°59'S (Fig. 6A). Detailed 
strengths (Fig. 6B) and weaknesses (Fig. 7) can be re-
viewed in the following figures.

In particular, the area extending east of the Northern 
and Southern Patagonian Ice Fields shows an accurate 
classification result: Three tree species dominate these 
areas, with N. pumilio and N. antarctica being deciduous 
species and N. betuloides being an evergreen species 
(Veblen et al. 1996). The occurrence of N. pumilio at 
the treeline was clearly distinguished from the occur-
rence of the evergreen species N. betuloides (class 2) 

below the treeline and areas of low vegetation (class 3). 
A clear distinction is also made in more arid regions in 
the east of the study area. Here, N. pumilio occurrenc-
es are clearly separated from scrub- and grassland. In 
the northern part of the study area, N. pumilio was re-
liably recorded at the treeline. However, in the valleys 
of this area there are also deciduous species that are 
misclassified as N. pumilio. We have removed these 
occurrences by an elevation correction, so that only 
occurrences of N. pumilio that could be unequivocally 
identified as such remained. However, at higher eleva-
tion, it was not possible to distinguish between the two 
deciduous and morphologically and ecologically similar 
species, N. pumilio and N. antarctica.

Figure 4. (A) 1238 points created by the Instagram ground truthing approach (IGTA) and (B) IGTA points (red) and 558 occurrence 
points from GBIF database (yellow, GBIF 2024b).
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Figure 5. Visualised results of the “sampbias” analysis, indicating the sampling rate based on the influence of bias factors (gazetteers: 
cities, roads, rivers and lakes). In comparison, the IGTA dataset (A) displays more homogeneous sampling, whereas the GBIF dataset 
(B) shows undersampled areas, represented by dark blue regions.
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Errors occur mainly due to high cloud cover and shadow 
effects. At the southern tip of Chile and Argentina, high cloud 
cover leads to data coverage problems. An area where the 
Sentinel-2 scene is not fully available in the sensing period of 
2019 to 2022 and other scenes were almost completely cov-
ered by clouds is shown in Fig. 7A). A case where data are 
missing due to mountain shadows is visualised in Fig. 7B). 
Using the SCL resulted in shadow or shaded valleys being 
excluded from the analysis. Errors in validation with Insta-
gram ground truthing points occur precisely in these areas.

Validation

We validated the classification result with the Instagram 
ground truthing and GBIF points by checking whether 
the points match the spatial occurrence. Out of 1238 

Instagram ground truthing points, 1142 points are 
congruent with the remote sensing data, which is 
92.25 %. 96 points (7.75 %) lie outside the areas classified 
as N. pumilio. These errors are probably due to mountain 
shadows and missing data, as we show in the results. 
Of the GBIF points, 157 (28.14 %) align with the spatial 
occurrence, while 401 (71.86 %) do not. However, many 
of these points lie just outside the determined spatial 
occurrence. Errors can also occur due to shadows and 
missing data. Other reasons may include the uncertainty 
of the coordinates, the image being recorded on roads or 
paths next to the occurrence rather than directly in the 
plant stand, or individual trees or stands being recorded 
in urban areas, evergreen forest stands, or open areas 
with low vegetation, which the classification does not 
categorise as N. pumilio areas. Fig. 8 provides two 
examples that support these hypotheses.

Figure 6. (A) Nothofagus pumilio occurrence determined by Supervised Classification and (B) occurrence of Nothofagus pumilio at 
Perito Moreno Glacier, with a classification result corresponding to the natural conditions, shown in comparison with the autumn Sen-
tinel-2 scene in (C). All Instagram ground truthing points (blue, B) cover the identified occurrence.
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Figure 7. (A) A data gap at the southern tip of Chile. This is caused by missing Sentinel-2 data in the sensing period between 2019 and 
2022 and very high cloud cover. (B) A valley with mountain shadows. To avoid errors in the spectral signals, these areas were removed 
during analysis using the Sentinel-2 Scene Classification Layer. However, this leads to a gap in the classification result and errors in the 
validation with the Instagram ground truthing points (blue).

Figure 8. (A) Example of Nothofagus pumilio occurrence points from the GBIF database (GBIF points, yellow) with an uncertainty in 
coordinates, so that the points are located in a lake and not at the actual sampling location and (B) GBIF points in Ushuaia, where some 
raster cells, at locations of GBIF points, were not classified as vegetation.

Discussion
Instagram ground truthing approach as 
novel method for ground truthing

The availability of sufficient, non-biased species occur-
rence data has always been a major problem for ecologi-
cal modelling studies (Bobrowski et al. 2021; Chauvier et 
al. 2021). An increasing wealth of information on the oc-
currences of species is becoming available through glob-
al databases (Michener et al. 2012; Feng et al. 2019). As 
field research is costly and time-consuming, open-source 
occurrence databases like the GBIF, with data compiled 
by Citizen Science are increasingly used in such studies 
(Feldman et al. 2021). However, even these advances do 
not replace the need for ground truthing procedures, as 

these data may contain spatial, temporal, and taxonomic 
biases (Beck et al. 2014; Meyer et al. 2016). In this study, 
we tested a novel Instagram ground truthing approach to 
generate ground truthing points for the species N. pumilio 
to validate species occurrence data derived from remote 
sensing. Furthermore, the Instagram ground truthing 
points were compared with existing GBIF data which led 
us to the conclusion that our approach offers the possi-
bility to generate occurrence data with the potential to in-
crease and improve existing data.

We include the sampling of ground truthing points on 
Instagram, and thus the re-use of social media posts in the 
realm of Citizen Science, although this is controversially 
discussed. According to the vignette study by Haklay et al. 
(2021), approximately 50 % of respondents describe the 
re-use of social media as Citizen Science. While Citizen 
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Science requires the active involvement of participants 
(Wiggins and Crowston 2011), in social media, content 
creators are rarely aware that they are participating in a 
study. Rather, permission to use imagery repurposed for 
occurrence information was given passively or uninten-
tionally (Jarić et al. 2020). In addition, information about 
one’s own study and its results (data transparency) is an 
important point for Citizen Science (Haklay et al. 2021). In 
our current work, we considered these criticisms as much 
as possible. By creating an own public Instagram account 
(www.instagram.com/nothofagus_pumilio_research/), 
where our study and results are presented, we aim at 
making a knowledge exchange possible. In addition, all 
images sourced from publicly accessible profiles used for 
our analysis were “liked” to draw the attention of content 
creators to the account. Users whose images were used 
in publications were asked for permission in advance and 
informed of the purpose. Furthermore, Instagram’s chat 
function was used to exchange information with Insta-
gram users about a photo’s location or the species itself. 
Despite the discourse on terminology, we primarily focus 
on discussing the advantages and disadvantages of Citi-
zen Science occurrence data sampling and exploring po-
tential improvements to our method.

N. pumilio is suitable for the Instagram approach due 
to its distinctive characteristics and visibility in satellite 
images at the treeline in mono-species forest stands. Ad-
ditionally, its occurrence in national parks, where tourists 
often take photos, increases the number of Instagram 
posts. The species’ autumn colouring further enhances 
its aesthetic appeal, leading to even more posts. These 
advantages, also benefit occurrence data sampling in un-
structured Citizen Science projects. In unstructured proj-
ects, user behaviour of Citizen Science participants leads 
to observations with spatial bias (Di Cecco et al. 2021), 
mainly concentrated in tourist locations or urban areas, 
such as near cities or along roads (Reddy and Dávalos 
2003; Graham et al. 2004; Fithian et al. 2015; Chauvier et 
al. 2021). Since the direct sampling location of the Citizen 
Science participants is usually recorded, remote locations 
that are difficult to access are not included. Other studies 
have already addressed this spatial bias in GBIF data and 
highlighted potential pitfalls for ecological conclusions 
(Boakes et al. 2010; Beck et al. 2014; Meyer et al. 2016), 
which can be further emphasized with the analysed data-
set where nearly half of the points are located in urban 
or touristic locations. Points derived from Instagram are 
also not free of this bias, but as the Instagram ground 
truthing approach allowed to identify occurrence points 
in the background of suitable posts and additional points 
at autumn-coloured treelines, this spatial sampling bias is 
efficiently reduced. Additionally, the use of Instagram, with 
2 billion users worldwide (We Are Social et al. 2024) and 
millions of photos uploaded daily (60 million daily uploads 
by 2014, WirtschaftsWoche 2014), allows us to analyse 
a large number of posts that are potentially suitable for 
analysis. The large number of possibly suitable posts on 
Instagram and a structured sampling approach further 

reduced spatial bias. After posts were found using spe-
cific hashtags (#nothofaguspumilio and #lenga), gaps be-
tween these occurrences were then closed by searching 
for specific locations. Contributions were found where the 
species was not specified by the Instagram user but was 
clearly recognisable. This ensured that the study area was 
covered as homogeneously as possible. The improvement 
of the Instagram ground truthing approach compared to 
other Citizen Science projects lies particularly in the inclu-
sion of images taken by non-experts, where the species 
was recorded even though the social media user might not 
be aware of it. Instagram exclusively shares photos and 
videos and is one of the largest social media platforms, of-
fering the possibility to analyse a large quantity of suitable 
posts. This is also reflected in the quantitative compari-
son. While the GBIF database contains 558 data points 
from 1981 to 2024 after filtering, the Instagram ground 
truthing approach was able to create 1238 points from 
posts dated 2017 to 2022.

Data from Citizen Science projects are improving and 
even approaching the quality of expert data (Mesaglio 
and Callaghan 2021). For example, species identifica-
tions in iNaturalist, the main source of GBIF data used in 
this study, must first be confirmed by a 2/3 consensus. 
iNaturalist also offers suggestions for species identifi-
cation based on examples, which are reviewed and up-
dated by experts (curators). Only after occurrences are 
considered complete and certain are they passed on to 
the GBIF database for publication as valid data (Heberling 
and Isaac 2018). Although the sampling bias in species 
identification is decreasing, the sampling bias in terms of 
coordinate accuracy still needs improvement. Coordinate 
uncertainties result from georeferencing methods of mu-
seum data (Marcer et al. 2022) or weak satellite signals 
while sampling with mobile devises (Uyeda et al. 2020). 
We included GBIF data with an uncertainty of up to 1 km, 
although such a deviation is substantial, especially in a 
highly complex ecosystem like high mountains. The vali-
dation process showed that deviations in the coordinates 
lead to errors. Precise filtering and selection of data from 
databases are necessary. Although the manual creation 
of occurrences during the Instagram ground truthing ap-
proach was time-consuming, this reduced such bias.

The limitation of the Instagram ground truthing ap-
proach is the time-consuming and non-automated pro-
cess. While sampling by Citizen Science projects is a 
way of data collection in which data can be collected par-
ticularly quickly and cost-effectively with a large reach 
(Kullenberg and Kasperowski 2016; Sumner et al. 2019), 
the manual search for suitable posts and map transfer 
is time-consuming. Other studies using social media to 
investigate species occurrences carried out an automat-
ed search of suitable posts via the Application Program-
ming Interface (API) of the chosen social media plat-
form (e.g., Flickr: Alampi Sottini et al. 2019; August et al. 
2020). The Instagram API is not as easy to access. At this 
stage, manual analysis remains unavoidable when using 
Instagram, and it is similarly required for platforms such 
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as Facebook and Twitter, as demonstrated by O’Neill et 
al. (2023). In the future, AI-based image recognition pro-
cesses could be an efficient way to find suitable posts on 
Instagram more quickly. Recently, Instagram’s terms of 
usage were changed to allow for this purpose. By using 
Instagram, users agree that their content may be analy
sed by AI (Meta 2024).

Another limitation is the accuracy of the recording date. 
Caution is needed regarding the exact timing of when a 
photo was taken and posted on Instagram, as the publica-
tion date may not correspond to the actual date the photo 
was captured. In our analysis, we primarily focused on re-
cent posts, covering the period from 2017 to 2022, while 
the GBIF data includes records dating as far back as 1981. 
Verifying the accuracy of the Instagram date is essential 
(if necessary, by contacting the post creators), particularly 
for temporal distribution analyses of species. “Historical” 
data may not be available on Instagram at all. Additionally, 
discrepancies in acquisition dates between Sentinel-2 and 
Instagram data may introduce potential sources of error 
in the validation process. We used Sentinel-2 data from 
2019 to 2022, while Instagram posts date back to 2017. 
Changes in forest stands, such as deforestation or forest 
fires, could result in discrepancies.

Supervised classification

The occurrence in mono-species forest stands at the 
treeline and the phenology of N. pumilio allows a precise 
creation of training areas and a reliable result of the Su-
pervised Classification. With the Sentinel-2 level 2A data 
in a resolution of 20 m we achieved an accurate classi-
fication over a very large study area of about 2000 km 
latitudinal extent in the southern Andes. Such a resolu-
tion is sufficient for subsequent modelling, which often 
uses climate data at a resolution of 30 arcseconds (~1 
km), for example, WorldClim and Bioclim data (e.g., Bo-
browski et al. 2018). Furthermore, the high temporal res-
olution of the Sentinel-2 data provided many scenes, that 
were analysed in the Supervised Classification. By mask-
ing the Sentinel-2 scenes with the SCL, sources of error 
due to too many non-vegetation classes were avoided. 
It also removed vegetation grid cells covered by clouds, 
aerosols, and shadows, which can lead to classification 
errors. Consequently, the three vegetation classes (1 = 
N. pumilio, 2 = Evergreen vegetation, 3 = Low vegetation) 
were trained using training areas that contained only the 
spectral information of representative vegetation raster 
cells. However, this also created gaps in the classifica-
tion result that could not be filled even with the large 
number of Sentinel-2 scenes.

A different source of error is that in some cases 
stands of N. antarctica were classified as stands of 
N. pumilio in high and low elevation areas. The two de-
ciduous species are very similar, both phenologically and 
ecologically, and often share the same range. Hybrids of 
the two species are also possible (Soliani et al. 2015). 

Inclusion of N. antarctica occurrence data, e.g., data from 
local forestry services (e.g data from Corporación Nacio-
nal Forestal (CONAF), Chile and “Ordenamiento Territo-
rial de Bosque Nativo” (OTBN), Argentina), or repeating 
the Instagram ground truthing approach for this species 
could further specify the result. Nevertheless, the forest 
type was determined with certainty at this stage. High 
mountain deciduous forest was correctly identified even 
if N. antarctica was partially included.

In more southerly areas, N. pumilio and N. antarctica 
dominate as deciduous species. In the north, however, 
many other deciduous species occur at lower elevations, 
while N. pumilio occurs only at the treeline. For this rea-
son, an elevational correction of the result was necessary. 
Occurrences below subalpine forest stands of N. pumilio 
have been removed. Individual stands below these are also 
less relevant for treeline modelling studies. The thresholds 
(800 m, 500 m, 250 m) were estimated from literature data 
and from the classification result in order to obtain the 
most accurate classification result with the least data loss.

Conclusion

Citizen Science and social media-based occurrence sam-
pling is developing and improving rapidly, becoming an 
important source of species occurrence data, especially 
for large-scale modelling approaches where alternatives 
are limited. However, resulting data are not free from bias 
and need to be filtered and verified before being used in 
applications such as ecological models. We conclude that 
using social media posts on Instagram in a structured 
Instagram ground truthing approach leads to less-biased 
occurrence data for N. pumilio in comparison with GBIF 
data. Sampling biases are further minimised by combin-
ing the Instagram ground truthing method with Supervised 
Classification, as large-scale occurrence data are gener-
ated across the entire distribution range of the species, 
rather than just in urban or tourist locations where most 
pictures are taken building the basis for Citizen Scientist 
observations or Instagram posts. We further conclude that 
the Instagram ground truthing approach is a novel method 
that can complement occurrence data sampling methods 
and be applied to other suitable species. However, it is es-
sential that landscape elements are visible in the posts, 
which is more likely for landscape images and less so for 
detailed images of smaller herbaceous plant or animal 
species. Future work could focus on creating an automat-
ed search for Instagram posts using Instagram API and AI 
technology to replace the time-consuming manual search 
and further increase the availability of suitable posts. We 
believe that using social media can unlock significant 
potential for species occurrence data sampling and thus 
promote research on species in remote and high-eleva-
tion regions. Furthermore, the spatial occurrence data 
of N. pumilio enables presence-absence modelling ap-
proaches, that can provide detailed insights into the cur-
rent and future distribution of N. pumilio.
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Summary8

Systematical accessing, downloading, and pre-processing climatological data from CHELSA9

(Karger et al., 2017, 2021; Karger et al., 2018) and WorldClim (Fick & Hijmans, 2017; Hijmans10

et al., 2005) remains a challenge in different environmental disciplines like Species Distribution11

Modelling (SDM) and climate studies. This package provides a set of functions that allow easy12

access and customized selection of climate data sets. Besides downloading the raw data, also13

functionalities to complete pre-processing steps like clipping, rescaling, and file management14

are available. The applications of the package range from one-time-use to implementing the15

functions in automatic processing of scientific workflows.16

Statement of need17

The climatology datasets CHELSA and WorldClim contribute as crucial data bases for studies18

in various scientific fields. Primarily used in studies with focus on ecology (~4,200 publica-19

tions1), environmental sciences (>2,200 publications), and biodiversity conservation (>1,60020

publications), usages extend to a wide variety of scientific disciplines. The main usage of21

the datasets, however, lies in Species Distribution Modelling (SDM) and Ecological Niche22

Modelling (ENM). Their free availability and frequent citation in widely referenced papers on23

SDM and ENM strategies (e.g., Randin et al., 2020; Zurell et al., 2020) have contributed to24

their widespread adoption, facilitating comparability between modelling studies at different25

spatial and temporal scales.26

The high resolution global climatological datasets (30 arc-sec. ~ 1km) include downscaled and27

bias-corrected data from 30-year time-periods, providing always monthly mean, minimum, and28

maximum values of temperature and monthly precipitation sums for analysis2. Additionally, 1929

bioclimatic parameters are accessible, which enable conclusions about seasonality.30

Since their initial releases in 2018 (CHELSA V1.2), the CHELSA (Karger et al., 2017; Karger31

et al., 2018) datasets were cited in more than 2,800 peer reviewed papers, indexed on the Web32

of Science (source, Aug. 2025). The latest release of WorldClim 2 in 2017 (Fick & Hijmans,33

2017) was cited more than 10,600 times (source, Aug. 2025).34

1Following the Web of Science Categories, citations of Karger et al. (2018) (Data from CHELSA 2.1) had
1,155 citations in the field of Ecology. The WorldClim 2 data (Fick & Hijmans, 2017) has 3,044 citations in the
same Web of Science category. Both numbers are of the date 17.05.2025. The “Web of Science Categories are
assigned at the journal level”, meaning the publishing journal defines the category (source).

2Function Chelsa.timeseries.download supports also the download of potential evapotranspiration (PET)
from CHELSA 2.1 (Karger et al., 2018)
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CHELSA and WorldClim datasets are commonly utilized in models predicting the potential past,35

current, and future distribution of species, particularly in studies on monitoring distribution36

shifts under climate change (e.g., Bobrowski et al., 2017; Twala et al., 2023; Werner et al.,37

2025), tracking endangered species and planning conservation strategies (e.g., Franklin, 2013;38

Muscatello et al., 2021), assessing the spread of invasive species (Srivastava et al., 2019),39

and management strategies in forestry and agriculture (e.g., Agbezuge & Balakrishnan, 2024;40

Pecchi et al., 2019).41

Recent studies have also assessed the performance of these datasets in SDM/ENM approaches,42

highlighting their respective strengths and limitations (e.g., Bobrowski, Weidinger, & Schickhoff,43

2021; Bobrowski, Weidinger, Schwab, et al., 2021; Bobrowski & Schickhoff, 2017; Datta et al.,44

2020; Rodríguez-Rey & Jiménez-Valverde, 2024). Given that dataset performance may vary45

depending on the research scope, it is recommended to test multiple datasets to to ensure46

their suitability for the research target and region.47

For these applications, ClimDatDownloadR offers key advantages by enabling efficient retrieval48

from both dataset providers and pre-processing steps such as partial selection of parameters,49

months, and bioclimatic parameters, temporal subsets of timeseries, customized extent, and50

included file management as well as an output of the provider’s respective citation file. In51

addition to time-saving aspects, the storage usage and management played a key role in the52

development of the ClimDatDownloadR.53

The implemented data management creates a hierarchical, clear, and reproducible data structure54

for analyses during the processing. Downloaded data can be kept as is, deleted, or packed55

in a zip-archive file. All of raised ease-of-use add-ons contribute to the primary goal of56

ClimDatDownloadR to enable more scientists and other users or organisations to download and57

pre-process CHELSA and WorldClim data to gain more experience in geodata handling and58

applications.59

Since the official release in 2023, the use of ClimDatDownloadR steadily increased (Bobrowski,60

Weidinger, & Schickhoff, 2021; Chen et al., 2025; Costa-Saura et al., 2025; Maitner et al.,61

2023; Santi et al., 2024; Twala et al., 2023; Werner et al., 2025). Further, the need of having62

software for downloading and pre-processing of freely available data is shown by the steady63

stream of interested visitors on ResearchGate (3,399 unique visits, 04.08.2025), Zenodo (>100064

views, > 150 downloads) (Jentsch et al., 2023), and citations in peer-reviewed papers.65

The package implements the datasets CHELSA V1.2 , V2.1, WorldClim V1.4, and V2.1. More66

specifically the CHELSA Climatologies, Timeseries, CRU Timeseries (CHELSAcruts), and67

WorldClim Histclim datasets for present data. For past data, the CHELSA PIMP3 data from68

CHELSA V1.2 is also available. For future data, both CHELSA and WorldClim provide datasets69

incorporating various CMIP 5 and 6 global circulation models with various emission scenarios70

and reference periods. An overview as well as a introduction to the usage of the functions is71

provided in the Readme of the package on GitHub.72
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Abstract

Although treeline ecotones are significant components of vulnerable mountain ecosystems
and key indicators of climate change, treelines of the Southern Hemisphere remain largely
outside of research focus. In this study, we investigate, for the first time, the current and
future distribution of the treeline species Nothofagus pumilio in the Southern Andes using
a Species Distribution Modelling approach. The lack of modelling studies in this region
can be contributed to missing occurrence data for the species. In a preliminary study, both
point and raster data were generated using a novel Instagram ground truthing approach
and remote sensing. Here we tested the performance of the two datasets: a typical binary
species dataset consisting of occurrence points and pseudo-absence points and a continuous
dataset where species occurrence was determined by supervised classification. We used
a Random Forest (RF) classification and a RF regression approach. RF is applicable for
both datasets, has a very good performance, handles multicollinearity and remains largely
interpretable. We used bioclimatic variables from CHELSA as predictors. The two models
differ in terms of variable importance and spatial prediction. While a temperature variable
is the most important variable in the RF classification, the RF regression model was mainly
modelled by precipitation variables. Heat deficiency is the most important limiting factor
for tree growth at treelines. It is evident, however, that water availability and drought
stress will play an increasingly important role for the future competitiveness of treeline
species and their distribution. Modelling with binary presence–absence point data in the RF
classification model led to an overprediction of the potential distribution of the species in
summit regions and in glacier areas, while the RF regression model, trained with continuous
raster data, led to a spatial prediction with small-scale details. The time-consuming and
costly acquisition of complex species information should be accepted in order to provide
better predictions and insights into the potential current and future distribution of a species.

Keywords: climate change; Nothofagus pumilio; Random Forest algorithm; Species Distribu-
tion Modelling; Southern Andes; treelines
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1. Introduction
The application of modelling approaches, including Species Distribution Modelling

(SDM), has recently rapidly increased in order to generate insights into the sensitivity and
shifts in treelines in response to climate change [1]. Warming rates in high mountain regions
are, on average, greater than the global mean, resulting in ecosystems being particularly
stressed by changing climatic conditions [2]. The natural elevational position of the treeline
is defined by heat deficiency [3] and, globally, is approximately aligned with the 6.4 ◦C
isotherm [4]. Consequently, treeline shift in response to warming is frequently investigated
and widely recognised as a key indicator of climate change [5]. However, observed responses
are rather inconsistent, spanning the entire gradient from static treelines with insignificant
responses to dynamic treelines with substantial treeline advance [6–8]. Globally, the pro-
portion of advancing elevational treelines has been increasing from 52% [9] to 66% [10,11].
In the Northern Hemisphere, 90% of treelines are reported to be advancing [12], whereas
treelines in the Southern Hemisphere are responding weakly to climatic changes [11]. Certain
relationships between treeline form, which can vary between gradual and abrupt, and treeline
dynamics have been suggested [13]. Factors such as seedling mortality and dieback processes
play critical roles in shaping treeline form and influencing possible shifts [14]. While grad-
ual treelines are more likely to advance to higher elevations, abrupt treelines, as formed by
Nothofagus in the Southern Hemisphere, are more stable due to increased seedling mortality
above closed forest stands or due to anthropogenic disturbances [14].

Treelines and the shift in treelines have extensively been studied in recent decades [1,15];
however, comparatively few studies focused on treelines of the Southern Hemisphere [10,11].
A recent review study examining the impact of climate change on Andean biomes found that
those in the southern Andes remain the least studied [16]. For example, to our knowledge,
there is no SDM study investigating the entire current and future distribution of important
treeline species in the Southern Andes. Nothofagus pumilio (Poepp et Endl.) Krasser (southern
or lenga beech) is forming an abrupt treeline over approximately 2000 km latitudinal extent
from 35◦ S to 56◦ S in the Southern Andes. The treeline is naturally abrupt due to seedling
dieback outside the protecting tree stands [17], and in some cases the treeline is influenced
by anthropogenic disturbances like grazing, forestry or fire, resulting in more diffuse treeline
ecotones [14]. The uppermost trees are often in a krummholz growth form [18]. The treeline
follows a 6.6 ◦C isotherm [19], while increases from 1.2 to 4.0 ◦C in mean annual temperatures
and decreases of up to 30% in mean annual precipitation are predicted for high-elevation
catchments in the southern Andes [20,21]. It is therefore of interest to study the changes in the
Southern Andean treeline as a result of global warming.

Recent research has explored changes at the treeline of N. pumilio through small-scale
dendrochronological and experimental studies [22–26]. N. pumilio is highly sensitive to
variations in temperature and precipitation, which are often associated with phase shifts in
Antarctic Decadal Oscillation (AAO) also known as the Southern Annular Mode (SAM), the
El Niño Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO), as highlighted
in recent studies [22–24]. Increases in radial growth due to rising temperatures have been
observed when precipitation levels are sufficient [22,25,26]. Warm and dry springs lead
to an increased tree growth at humid treeline sites but to a decrease in tree growth and
an increase in tree mortality due to drought at drier treeline sides. Furthermore, high
precipitation in late spring often connected with a prolonged snow cover results in a
decrease in tree growth [22]. Accordingly, tree growth is highest at mesic sites, followed
by wetter sites, while growth rates at drier sites continue to decline [25]. Suitable climatic
conditions, particularly rising mean spring and summer temperatures, also promote the
establishment of N. pumilio seedlings above the current treeline, on both humid and dry
slopes, thereby facilitating treeline advance [23,24]. Additionally, warmer springs can
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improve seed quantity and quality [27] which further increases the possibility of seedlings
becoming established. However, drought or soils with low water capacity are important
controlling factors, causing drought stress for seedlings and adult trees [28] and ultimately
preventing a treeline advance.

In this study, we model the potential current and future distribution of N. pumilio based
on the species’ suitable bioclimatic conditions, following fundamental concepts of Species
Distribution Modelling (SDM). SDM models are typically constructed using binary species
occurrence data and environmental variables, often climate data [29]. While global climate
datasets, such as the CHELSA bioclimatic variables that we use here [30,31], are readily
available, the availability of unbiased species occurrence data is a major challenge for SDM
studies. Field studies, which can generate reliable occurrence data, are both time-consuming
and costly. Moreover, many study sites, particularly in topographic complex regions like
high mountains are inaccessible. When species data are not collected through field studies,
they are primarily obtained from open-source databases such as the Global Biodiversity
Information Facility (GBIF). Although the quantity [32] and quality [33] of data in databases
are increasing, these sources often still contain various forms of bias, as highlighted in
recent studies [34,35]. Consequently, using these point occurrences in SDM approaches,
without addressing these issues, can lead to inaccurate or misleading model results [36]. A
promising approach for the investigation of large study areas, especially in regions with
limited accessibility, is the use of remote sensing to survey species occurrences [37–39].
Remote sensing data on a species can provide more complex, continuous data and thus
further modelling opportunities. However, there is still a need for ground truthing to verify
that the species of interest are actually present in the remotely sensed area. In a previous
study, we developed an Instagram ground truthing approach, that created less-biased
occurrence points, that were subsequently used to validate remote sensing occurrence data
of N. pumilio, resulting in two valid occurrence datasets [40].

Here, we present an initial holistic approach to model the potential distribution of
N. pumilio based on two input datasets: a binary point dataset and a continuous raster
occurrence dataset derived from supervised classification. While we adopted a standard
modelling approach, we also test an innovative technique incorporating continuous raster
data. We hypothesise that this approach will yield more detailed insights into the species’
potential current and future distribution due to the increased complexity of input data.

To investigate the effect of different species input datasets, our aims are (1) to model
the current distribution of N. pumilio under prevailing climate conditions, and (2) assess
potential range shifts under climate change conditions, and (3) evaluate model performance
and model complexity with regard to ecological site factors.

2. Materials and Methods
2.1. Study Species and Study Area

N. pumilio is the most orophilous and widespread species of the Nothofagus genus on
the South American continent, extending from 35◦ S to the southernmost tip of Tierra del
Fuego (see Figure 1). As an indicator of the orotemperate belt, it forms mono-species forests
at the treeline [41]. The species is sometimes accompanied by the morphologically and
ecologically similar species N. antarctica, with which it can form mixed stands. Hybrids
between the two species are also known [42]. The evergreen N. betuloides dominates in the
lowlands and especially in the (hyper-) humid west.
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Figure 1. Point and raster occurrence data of Nothofagus pumilio created by a novel Instagram ground
truthing approach [40].

The study area is characterised by two extreme gradients. One is the temperature
gradient, which results from the elevation of the southern Andean Cordillera (up to 3000 m),
and the other is the precipitation gradient, which is considered to be the most extreme
precipitation gradient on Earth. While precipitation extremes of up to 10,000 mm/year
occur on the windward side, west of the Andes, there is a precipitation decrease to less
than 300 mm/year on the leeward side, east of the Andes [43]. Northern Patagonia has
been substantially affected by the effects of climate change. Mean annual temperatures
have risen by up to 1 ◦C since 1950. While there are no negative trends in precipitation
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in most areas, precipitation totals are decreasing by 5% in Northern Patagonia. Climate
models predict a decrease in precipitation of up to 30% and an increase in temperature of
between 1.5 and 3 ◦C [21].

2.2. Input Data
2.2.1. Species Data

The two species occurrence datasets used were generated in a previous study using a
novel Instagram ground truthing approach (IGTA, [40]) designed to reduce sampling and
spatial bias often present in existing databases [34,44]. The IGTA aimed at reducing this bias
by using a very public and worldwide used social media platform (https://www.instagram.
com/) and by including remote sensing data. The study species and area are particularly
well-suited for an Instagram-based analysis, as deciduous N. pumilio forms mono-species
forests at the treeline, making it an especially attractive photo motif in autumn and occurs
in a highly touristic region, where tourists and hikers frequently take and share photos
on social media. We compiled 1238 occurrence points extending from 36.88◦ S to 55.03◦ S
by searching for suitable posts uploaded between 2017 and 2022 with the species and the
photos’ location clearly identifiable, as well as a strict catalogue of criteria. Spatial bias
commonly present in datasets derived from citizen science or social media, typically due
to sampling near urban centres or in easily accessible areas [45,46], was reduced through
the IGTA. This reduction in bias is primarily due to the high number of posts, which
included not only intentional but also incidental records of the species. Furthermore, owing
to the ecology and phenology of N. pumilio, occurrence points were identifiable not only
at the exact location where the photo was taken, but also in the background, where the
abrupt treeline and the species’ autumn colouring were visible. Although some spatial bias
remains, since posts are still limited to human-accessible areas, analysis using the R package
“sampbias” (version 2.0.0) [47] indicates that the bias was effectively reduced in comparison
to 558 points (after filtering for missing coordinates and a coordinate uncertainty of 1 km)
from often used open-source database Global Biodiversity Information Facility (GBIF).
In addition, the manual georeferencing of occurrence points further reduced coordinate
uncertainty. To minimise spatial bias, remote sensing data generated using Sentinel-2 level
2A data and supervised classification were created and subsequently validated using the
IGTA occurrence points as ground truth. Training areas were defined and trained using all
relevant spectral bands (bands 2 to 7, 8a, 11, and 12) at a spatial resolution of 20 m. Only
vegetation raster cells were included in the supervised classification, which distinguished
between three classes (deciduous vegetation/N. pumilio, evergreen vegetation, and low
vegetation/grassland). An altitude correction was applied to ensure that only deciduous
vegetation in high elevation was classified as N. pumilio. With this approach, two datasets
were created: a point occurrence dataset and a spatial raster dataset of the species N. pumilio
(Figure 1).

For the IGTA point dataset, the first step in modelling was to ensure that only one
point was set in a raster cell at the target resolution of 30 arc sec, ~1 km (raster cell size
of the climate data). After deleting duplicate points, 999 points remained in the model
as “presence” data. For “absence” data, 2000 pseudo-absence points (PA) were generated.
The number and the location of PA points have great influence on the model output [48].
We initially tested a PA ratio of 1:1 as suggested for RF models in relevant literature [49].
However, using only 1000 PA points across a large study area resulted in substantial
overprediction by the RF classification model, a known issue [49]. Consequently, we
adopted a ratio of 1:2 (2000 PA points). The process of PA creation involved first constructing
an alpha hull around the presence points and applying a 1 km buffer, within which PA
points were randomly generated. To prevent the overwriting of occurrence cells during

https://www.instagram.com/
https://www.instagram.com/
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this process, a 5 km buffer was placed around the presence points. For the final modelling
dataset, values from the climate dataset were extracted for both presence and absence
points. The two datasets were then merged and supplemented with a binary indicator
variable specifying whether N. pumilio was present (presence = 1) or absent (absence = 0).

The second dataset was derived from a supervised classification (Kappa values: sum-
mer scenes classification 0.89, autumn scenes classification 0.96), in which occurrences of
deciduous forest at the treeline were classified to represent the distribution of N. pumilio [40].
Gaps in the dataset resulted from missing Sentinel-2 data or areas affected by shadows and
cloud cover. The original dataset has a spatial resolution of 20 m. For modelling purposes,
N. pumilio cover values were aggregated to the target resolution (~1 km), resulting in
percentage values ranging from close to 0% up to a maximum of 99.96%. The raster data
covers a latitudinal range from 33.49◦ S to 56.27◦ S.

2.2.2. Bioclimatic Predictors

Global climatological datasets such as CHELSA [30,31] and Worldclim [50,51] are
standards for large-scale SDM studies. Due to their free accessibility, the datasets are widely
used and cited, allowing for some comparability of modelling studies. Since other studies
suggest that the CHELSA dataset performs better in topographically highly complex areas
such as high mountains [52,53], we decided to use this dataset. We utilised the 19 Bioclim
variables from version 2.1 with a 30 arc sec (~1 km) resolution [30,31]. The dataset includes
temperature and precipitation variables calculated on a daily, monthly, or annual basis,
averaged from climate records for the period 1981 to 2010. The “ClimDatDownloadR” R
package was used to download and pre-process the data (version 0.1.7.6) [54,55]. As the
Bioclim variables were highly multicollinear, we decided to use a subset of the data. To
enhance ecological interpretability, we included only variables derived for quarters. This
allows for a better ecological understanding of the bioclimatic conditions at the treeline
than variables for individual months or annual averages, as conclusions can be drawn
about seasonality [56]. At high elevations, the growth and survival of treeline species
are primarily determined by conditions during the short growing season [1]. Quarterly
variables can isolate this critical period, whereas annual means combine summer and
winter extremes, potentially obscuring the actual limiting factors. To further mitigate
multicollinearity and exclude irrelevant variables, we applied the “VSURF” R package
(version 1.2.0), which follows a two-step procedure. First, it identifies variables relevant
for interpretation, and subsequently, it eliminates redundant variables for prediction [57].
Through this approach, two additional variables were removed from the initial subset. The
variables used in the model are listed and described in Table 1.

For future prediction, CHELSA version 2.1 provides selected CMIP6 scenarios of
the bioclimatic variables. Future Bioclim variables were created using representative
concentration pathway (RCP) scenarios, that represent a range of potential greenhouse
gas emission pathways, from a low-emission (RCP2.6) to a high-emission development
(RCP8.5). We used the SSP126 (RCP2.6), SSP370 (RCP7), and SSP585 (RCP8.5) scenarios for
the years 2041 to 2070 and 2071 to 2100 from the MPIESM1-2HR model [31].
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Table 1. CHELSA Bioclim variables calculated for quarters and seasonality variables used in the
analysis (X). The variables bio 9 and bio 16 have been excluded by the VSURF analysis.

Short Name Long Name Used in Analysis

bio 4 temperature seasonality [◦C/100] 1 X

bio 8 mean daily mean air temperatures of the
wettest quarter [◦C] X

bio 9 mean daily mean air temperatures of the
driest quarter [◦C] excluded by VSURF

bio 10 mean daily mean air temperatures of the
warmest quarter [◦C] X

bio 11 mean daily mean air temperatures of the
coldest quarter [◦C] X

bio 15 precipitation seasonality [kg m−2] 2 X

bio 16 mean monthly precipitation amount of the
wettest quarter [kg m−2 month−1] excluded by VSURF

bio 17 mean monthly precipitation amount of the
driest quarter [kg m−2 month−1] X

bio 18 mean monthly precipitation amount of the
warmest quarter [kg m−2 month−1] X

bio 19 mean monthly precipitation amount of the
coldest quarter [kg m−2 month−1] X

1 standard deviation of the monthly mean temperatures; 2 the coefficient of variation is the standard deviation of
the monthly precipitation estimates expressed as a percentage of the mean of those estimates.

2.3. Model Approach and Model Algorithm

We follow the basic concepts of Species Distribution Modelling (SDM) to analyse the
relationship between the species’ current distribution and suitable abiotic conditions, as
well as its potential future distribution under climate change scenarios [58,59].

Several algorithms have been established for SDMs. In addition to linear regression
approaches such as Generalised Linear Models (GLMs), Generalised Additive Models
(GAMs), and Multivariate Adaptive Regression Splines (MARS), machine learning algo-
rithms such as Random Forest (RF), Maximum Entropy (MaxEnt), and Artificial Neural
Networks (ANN) are established methods [60]. We chose RF because it can be used for
classifying binary data (Random Forest Classification), as well as for regression approaches
with continuous data (Random Forest Regression) [61]. Although other algorithms would
also be suitable for modelling the point occurrences, using the same algorithm for both
datasets allows for direct comparison of the approach, subsequent analyses, and consistent
interpretation of the results. Furthermore, machine learning approaches such as RF not
only demonstrate strong predictive power and model performance but are also unaffected
by multicollinearity, making them particularly well-suited for climatic datasets with many
highly correlated variables [62]. However, some authors criticise that the interpretability of
the models decreases as machine learning methods are “black boxes” compared to simpler
linear approaches (e.g., GLMs) [56,60,62]. Random Forest combines both strengths: it is
a robust and powerful approach that remains largely interpretable. In the following, we
analysed two models: (1) RF classification with the point dataset and (2) RF Regression
with continuous data from the raster dataset. We apply k-fold spatial cross-validation
to identify the optimal model, using appropriate validation metrics for each modelling
approach. Model outcomes are interpreted using variable importance measures, partial
dependence plots, and SHAP (Shapley Additive Explanations) analysis. The results of the
models are subsequently compared visually.

Data processing and modelling were conducted in R (version 4.4.1 [63]). Maps were
created using SAGA GIS (version 9.3.2 [64]) and ArcGIS Pro (version 2.7.0 [65]).

2.4. Model Calibration and Evaluation

Spatial data, such as species and climate data, are often spatially autocorrelated [66,67].
Consequently, when spatial dependence is present in a dataset, spatial (or block) cross-
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validation is recommended [68]. We performed spatial cross-validation using the R package
“blockCV” (version 3.1.5) [69]. For 5-fold cross-validation, the data is initially partitioned
into spatial blocks of a predefined size, and each block is randomly assigned to one of
five folds (k = 5). The model is then trained on four folds (k - 1) and evaluated on the
remaining fold. This procedure is repeated five times, ensuring that each fold serves as
both a training and a testing set. To determine an appropriate block size, we initially used
the function “cv_spatial_autocor” to calculate the spatial autocorrelation of our species
data. Spatial autocorrelation differed slightly between the two datasets (29.6 km for the
point dataset and 24.4 km for the raster dataset). Therefore, we opted for a larger block
size of 50 km to minimise potential autocorrelation effects and to ensure comparability
between the two datasets. The spatial arrangement of the hexagonal blocks is displayed
in the Appendix A (Figure A1). To validate the models, we used threshold-independent
metrics such as AUC and overall accuracy, as well as threshold-dependent metrics like
the True Skill Statistic (TSS), using the maximum sensitivity plus specificity threshold,
for the RF classification approach. For the RF regression approach, the root mean square
error (RMSE) and the coefficient of determination (R2) were used as validation metrics. In
addition to evaluating model performance on the cross-validation splits, we also assessed
the models’ hyperparameters. We evaluated models with different numbers of variables
considered at each split (mtry: 2, 3, 4) and varying numbers of trees (ntree: 100, 300, 500).
Through hyperparameter tuning in combination with spatial cross-validation, we were able
to identify the optimal model while minimising the risk of spatial overfitting. The model
with the highest average AUC resp. R2 was selected and subsequently used to predict the
potential current and future distribution of N. pumilio across the entire dataset.

3. Results
3.1. Current Distribution Range of N. pumilio

The optimal model for predicting the current distribution of N. pumilio was identified
using 5-fold spatial cross-validation. The cross-validation results for both models are
presented in Tables A1 and A2 in the Appendix A. Model quality was assessed based
on the mean validation metrics across all five folds (for the RF classification model, the
optimal model was selected based on the highest AUC; for the RF regression model,
selection was based on the highest R2). For the RF classification model, the best-performing
model, with hyperparameters mtry = 2 and ntree = 500, achieved the highest mean AUC of
0.9279 (±0.0257, 95% confidence interval (CI): 0.8960–0.9599), an overall accuracy of 0.8466
(±0.0537, 95% CI: 0.7799–0.9132), and a TSS of 0.6148 (±0.1582, 95% CI: 0.4183–0.8112). The
final model was subsequently trained using these hyperparameters on the entire dataset.
For the RF regression model, the highest mean R2 determined by spatial cross-validation
was 0.3933 (±0.0409, 95% CI: 0.3425–0.4441), also indicating mtry = 2 and ntree = 500 as the
optimal hyperparameters. The models trained with the optimal hyperparameters and on
the complete datasets were then used for variable importance analysis as well as for spatial
predictions of current and future distributions.

Bioclimatic variables bio 8 (mean daily mean air temperature of the wettest quarter)
and bio 19 (mean monthly precipitation amount of the coldest quarter) emerged as the
most influential predictors for model accuracy of the RF classification model (Accuracy
Importance ranking, from most to least important bioclimatic variable: bio 8 (mean daily
mean air temperatures of the wettest quarter), bio 19 (mean monthly precipitation amount
of the coldest quarter), bio 15 (precipitation seasonality), bio 17 (mean monthly precipitation
amount of the driest quarter), bio 4 (temperature seasonality), bio 10 (mean daily mean
air temperatures of the warmest quarter), bio 18 (mean monthly precipitation amount
of the warmest quarter), and bio 11 (mean daily mean air temperatures of the coldest
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quarter)). Additionally, Gini Importance was calculated to assess the most frequently
used variables for decision at nodes, with bio 11 (mean daily mean air temperatures of
the coldest quarter) and bio 8 (mean daily mean air temperatures of the wettest quarter)
emerging as the primary split criteria for the RF classification model (Gini Importance
ranking: bio 11, bio 17, bio 8, bio 10, bio 18, bio 19, bio 4, bio 15). While a temperature
variable was the most important predictor in the RF classification model, precipitation-
related variables, particularly bio 15 (precipitation seasonality) and bio 19 (mean monthly
precipitation amount of the coldest quarter), played a dominant role in the RF regression
model (Accuracy Importance ranking: bio 15, bio 19, bio 4, bio 11, bio 10, bio 8, bio 18,
bio 17). Gini Importance analysis for the RF regression model indicated that bio 11 (mean
daily mean air temperatures of the coldest quarter) was the most critical variable for splits,
followed by bio 15 (precipitation seasonality) (Gini Importance ranking: bio 11, bio 15, bio
8, bio 18, bio 4, bio 10, bio 19, bio 17).

A RF model consists of multiple individual decision trees, making it challenging to
interpret the specific thresholds used at each node. However, the extraction of partial
dependence plots (PDP) for individual variables allows for an interpretation of the influ-
ence of specific bioclimatic predictors within the RF model. We employed the “partialPlot”
function from the “randomForest” R package (version 4.7-1.2, [70]) to assess the influence of
the most important variable in each model. The resulting PDPs are presented in Figure 2a,c.
For the RF classification model, the x-axis displays the values of the bioclimatic variable
bio 8 (mean daily mean air temperatures of the wettest quarter), while the y-axis represents
the predicted probability for class 1 (i.e., presence of N. pumilio). At low temperatures in
the wettest quarter (below −5 ◦C), the predicted probability of occurrence is high, clearly
decreasing towards 5 ◦C and remaining consistently low above this threshold. This indi-
cates that the model predicts the presence of N. pumilio primarily in colder environments
during the wettest quarter. In the RF regression model, the x-axis shows the values of bio
15 (precipitation seasonality), and the y-axis represents the predicted cover values of N.
pumilio. The plot reveals greater variability, but cover values are relatively high in areas
with moderate precipitation seasonality (0% to 30%). However, there is a marked decline in
predicted cover values in regions with high precipitation seasonality (70% to 100%). Two
key assumptions emerge: cover values are greater in areas with lower precipitation sea-
sonality, suggesting that N. pumilio prefers regions with more stable precipitation patterns
and the species is less likely to occur in areas with highly variable precipitation, e.g., with
phases of drought.

These effects are also evident in the SHAP summary (bee swarm) plots, created using
the “fastshap” R package (version 0.1.1) [71]. SHAP (Shapley Additive Explanation) analy-
sis, which originates from cooperative game theory, provides a comprehensive overview of
the contribution of each predictor to the model outcome (see Figure 2b,d) [72]. In the RF
classification model, the influence of temperature variables is consistent: high temperatures
have a negative effect on the model (indicating absence), while low temperatures have a
positive effect (indicating presence). In the RF regression model, the influence of tempera-
ture variables varies. For bio 8 (mean daily mean air temperatures of the wettest quarter)
and bio 11 (mean daily mean air temperatures of the coldest quarter), low temperatures
also have a positive influence on the model outcome (higher cover values), whereas this
effect is reversed for bio 10. For bio 10 (mean temperature of the warmest quarter), low
temperatures result in a decrease in cover values, while intermediate temperatures lead
to an increase. Bio 11, particularly in the RF regression model, exhibits a wide range,
indicating a strong influence on both models. This is further supported by the variable
importance analysis, which identifies bio 11 as the most important splitting criterion at
nodes based on Gini importance. The pattern for precipitation variables is less distinct;
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however, the trend is similar in both models: low to medium precipitation totals have a
positive effect on the model. A similar trend can also be observed for seasonality variables
bio 4 (temperature seasonality) and bio 15 (precipitation seasonality). Low to moderate
values of these variables are associated with species occurrence, whereas very low or very
high values result in a reduced probability of presence and lower cover values.

Figure 2. Partial Dependence Plot (PDP) of (a) bio 8 (mean daily mean air temperatures of the wettest
quarter) for the Random Forest Classification model and (c) bio 15 (precipitation seasonality) for
Random Forest regression model indicating the influence of the most important variables. SHAP
summary plots (b,d) indicate the contribution of each predictor/feature to the model outcome. Feature
values were normalised (breaks: 0, 0.5, 1) due to different units of temperature and precipitation
variables.
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The spatial predictions of the two models revealed a more compact distribution in the
RF classification model, with a slightly broader extent towards the west and east for the
RF regression model. The binary RF classification model predicted a northern extent of up
to 36.35◦ S and a southern extent of 55.45◦ S, whereas the RF regression model extended
from 35.24◦ S to 55.24◦ S (Figure 3). In the southern regions, including Tierra del Fuego,
the RF regression model depicted a more homogeneous distribution. IGTA points were
lacking in this area resulting in gaps in the predicted occurrence. While the RF classification
model tended to overpredict in unvegetated summit regions and glaciated areas, the RF
regression model provided a more fine-grained representation, capturing vegetated valleys
more accurately. When compared with a digital surface model (DSM, ALOS Global Digital
Surface Model, 30 m), it was evident that the RF classification model predicted suitable
climatic conditions in higher (unvegetated) areas as distribution areas, while in the RF
regression model they were omitted. The described small-scale differences between the
models are illustrated in Figure 4.

To further validate the spatial predictions of the models, we conducted two addi-
tional comparisons. First, we performed a visual comparison of the model outputs with
independent data provided by the Argentinian forestry authority (Secretaría de Ambi-
ente y Desarrollo Sustentable de la Nación, [73]). Second, we compared the elevation of
high-altitude raster cells from both models with reported treeline elevations from 48 plots
across 13 locations, as published by Lara et al. (2005) [74]. Figure 5 presents the visual
comparison between the raster outputs of the models and the N. pumilio forest polygons.
The RF classification model shows slightly more deviation and tends to extend beyond
the polygon boundaries, while the RF regression model closely matches the reference
polygons. Table 2 compares the treeline elevations from on-site measurements [74] with the
elevations of the highest raster cells predicted by the models (based on a DSM resampled
to 1 km), which are intended to approximate the treeline position. To identify these treeline
raster cells, a threshold is required. Based on the range of definitions compiled in the
literature, the treeline can be defined as the elevation at which tree canopy cover declines to
approximately 30%, representing the uppermost margin of closed forest [18]. Accordingly,
we applied a threshold of 30% (resp. 0.3 for RF classification) to the model outputs. In
the RF classification model, treeline elevations are, in some cases, significantly higher than
the treeline elevations measured on site. However, in the southern regions, the predicted
treeline aligns well with the literature. In contrast, the RF regression model predicts treeline
elevations that are only slightly higher in the north and overall correspond closely to the
reported values.
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Figure 3. Predicted probability of Nothofagus pumilio occurrence of (a) the Random Forest classification
model and (b) predicted cover values of N. pumilio of the RF regression model.
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Figure 4. Small-scale details of the Random Forest classification model and Random Forest regression model compared with a satellite basemap (centre) and a
Digital Surface Model (DSM), which shows the elevation of the raster cells covered by the model results.
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Figure 5. Comparison of the model results with Nothofagus pumilio forest polygons (red, centre) from
Argentinian forestry authority (Secretaría de Ambiente y Desarrollo Sustentable de la Nación, [73]).

Table 2. Treeline positions based on field data from 48 plots at 13 locations [74], compared with the
elevation of the highest raster cell from the model outputs (Random Forest classification and RF
regression) in the adjacent mountain range corresponding to each plot location. NA = not available
(no data recorded).

Treeline Position and Elevation [m]
After Lara et al., 2005 [74]

Treeline Elevation [m]
Current Climate

ID X Y Elevation
Range RF Class. RF Reg.

1 −71.00 −35.36 1530 NA NA
2 −71.11 −37.27 1500–1720 1988 1949
3 −71.33 −38.42 1490–1650 1854 1789
4 −72.15 −40.42 1000–1300 1591 1437
5 −72.19 −41.48 1300 1500 1201
6 71.45 −43.07 1230–1350 1839 1440
7 −71.42 −44.39 1000–1200 1320 1216
8 −72.24 −47.12 800–1180 1361 1197
9 −72.30 −48.30 1200 1522 1074
10 −72.54 −50.57 650–980 1176 956
11 −71.00 −53.00 350–600 543 560
12 −68.45 −54.17 200–600 544 520
13 −67.30 −54.57 300–600 610 610
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3.2. Future Distribution Range of N. pumilio

Using CMIP6 data provided by CHELSA for the SSP scenarios, we predicted the
potential future distribution of N. pumilio with both models. Predictions were generated
for the SSP126, SSP370, and SSP585 scenarios for two future periods: 2041–2070 and 2071–
2100. Figure 6a,b illustrate the potential distribution of N. pumilio for 2041–2070, while
Figure A2a,b in the Appendix A depict projections for 2071–2100. For the RF classification
model, the SSP scenarios for the period 2041–2070 already indicate a potential shift in
distribution towards currently unvegetated summit areas. This upward shift to higher
elevations becomes more pronounced with increasingly severe scenarios (SSP370, SSP585).
Simultaneously, there is a progressive decline in occurrences throughout the northern
part of the species’ range, and a slight decrease in the southernmost distribution areas.
Additionally, the occurrences are predicted to shift towards the more humid western
regions. These trends become even more marked in the period from 2071 to 2100. During
this later time span, a decrease in occurrence area is evident, particularly at lower elevations,
resulting in an overall stronger decline in the north. Both models consistently indicate a
reduction in occurrences in northern regions. However, in contrast to the RF classification
model, the RF regression model suggests that N. pumilio is more likely to persist at higher
elevations in the north, and that the decline in occurrences in the southernmost parts of
the range is less pronounced. The total decreases in distribution area and the westward
shift are less marked in the RF regression model, with eastern occurrences more likely to
remain stable. Nevertheless, the trend of occurrences shifting towards higher elevations is
observed in both models, and this trend intensifies with the severity of the scenario and
over time. While the RF classification model predicts an expansion into higher, currently
snow- and ice-covered areas of the Southern Patagonian Icefield, the RF regression model
forecasts a decline in occurrences in this region. Despite this, under the scenarios for 2071–
2100, the RF regression model also projects a reduction in occurrences at lower elevations,
which ultimately results in a net decrease in the total distribution area of the species. Thus,
both modelling approaches reveal potential changes in the distribution of N. pumilio under
future climate scenarios, particularly in lowland and northern areas, but they differ slightly
with respect to the potential persistence of the species at higher elevations in the north and
in the southern part of its range.

To assess treeline shifts in numbers, we again refer to the comparison of treeline
elevations at the 13 locations. In Table 3, we compare the elevation of the highest raster cells
at the treeline sites under current climatic conditions and under the SSP scenarios for the
period 2041–2070 (for the time span 2071–2100, please refer to Table A3 in the Appendix A).
Even under current climatic conditions, no occurrence was recorded at the northernmost
site (site no. 1), and this remains the case across all scenarios. The predicted decline in the
northern distribution range continues, with no remaining occurrences at the second site
under the SSP370 scenario. Overall, the estimated treeline elevations in the RF classification
model are generally higher than those predicted by the RF regression model. As climate
scenarios progress, a general upward shift in treeline elevation is observed, with a few
exceptions where treeline elevation either stagnates, mainly due to already having reached
the highest local topography, or shows a slight decrease. These trends are also evident
in the period 2071–2100, with even higher treeline elevations in most cases, or occasional
decreases due to an overall loss of suitable area in the region.
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Figure 6. Potential future distribution of Nothofagus pumilio modelled by (a) the Random Forest classification and (b) RF regression model using CMIP6 SSP Scenarios
for CHELSA Bioclim variables for the time span of 2041 to 2070.
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Table 3. Treeline elevation estimates based on the highest raster cells from the model outputs (Random
Forest classification and RF regression) under current climatic conditions and CMIP6 SSP scenarios
for the future period 2041–2070. NA = not available (no data recorded).

Coordinates Treeline Elevation
[m] Current Climate

Treeline Elevation
[m] SSP126
(2041–2070)

Treeline Elevation
[m] SSP370
(2041–2070)

Treeline Elevation
[m] SSP585
(2041–2070)

X Y RF
Class. RF Reg. RF

Class. RF Reg. RF
Class. RF Reg. RF

Class. RF Reg.

−71.00 −35.36 NA NA NA NA NA NA NA NA
−71.11 −37.27 1988 1949 2214 NA NA NA NA NA
−71.33 −38.42 1854 1789 2201 1709 2186 1920 2227 2045
−72.15 −40.42 1591 1437 1699 1636 1768 1674 2026 1674
−72.19 −41.48 1500 1201 1560 1464 1730 1638 1730 1720
71.45 −43.07 1839 1440 1918 1545 2059 1725 1918 1725
−71.42 −44.39 1320 1216 1704 1324 1852 1509 1852 1591
−72.24 −47.12 1361 1197 1500 1423 1651 1439 1538 1500
−72.30 −48.30 1522 1074 1340 1098 1473 1098 1586 1209
−72.54 −50.57 1176 956 1296 961 1313 1103 1349 1124
−71.00 −53.00 543 560 592 721 NA 783 592 783
−68.45 −54.17 544 520 648 615 667 547 607 607
−67.30 −54.57 610 610 614 492 557 614 NA 614

4. Discussion
The treeline species Nothofagus pumilio is highly sensitive to climate variations, as

reflected in its radial growth patterns and seedling establishment above the treeline. Con-
sequently, research into the species’ treeline dynamics in response to climate change has
already gained some attention. Many studies have examined growth variations using den-
drochronology, providing insights into the species’ response to climate variations, mostly
related to expressions in ENSO, PDO, and AAO/SAM over the past century [22,25,26].
Other research has focused on seedling establishment [23,24,75] or assessed the quantity
and quality of N. pumilio seeds [17,75,76]. However, large-scale Species Distribution Mod-
elling (SDM) approaches investigating the current and future development of the species
are lacking. In this study, we calculated two Random Forest (RF) models using a binary
and a continuous species dataset to model the current and future potential distribution of
the species.

Both models, RF classification and RF regression, achieved reasonable results and
good performance values. The RF classification model achieved an AUC of 0.93 (95%
CI: 0.90–0.96), whereas the RF regression model explained R2 = 0.39 (95% CI: 0.34–0.44)
of the variance. This discrepancy is primarily due to the greater noise and structural
complexity inherent in the continuous response variable, as well as the inherently stricter
nature of R2 as a performance metric. The use of spatially blocked cross-validation further
amplifies this issue, because the model must extrapolate beyond clusters of spatially
autocorrelated observations along the treeline. Consequently, an R2 of around 0.4 can
already be considered good performance in ecological regression tasks. The RF algorithm
is well-suited for this study due to its strong predictive power and, more importantly,
its applicability to both datasets, enabling direct comparability. Moreover, RF is a well-
established algorithm that facilitates comparisons between different modelling approaches
within the field of SDM [60,77]. While binary approaches are mainly used in SDM, the use
of a continuous target variable generated from remote sensing, rather than the generation
of abiotic predictors, is still a novel approach. The continuous data were derived from 20 m
raster cells, with coverage aggregated to the target resolution of 1 km. While the binary
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variable contains only information on presence or absence, the continuous data reflect
additional influences from land cover and species composition, which affect cover values
and provide ecologically meaningful information. Other studies investigating topographic
complex regions have already discussed the loss of knowledge due to the use of binary
data at 1 km spatial resolution [56]. Here, we demonstrated an information gain using 1 km
resolution data while incorporating continuous variables.

It should be noted that the scales of the modelling approaches (RF classification and
RF regression) differ. However, we compare the model outputs, predicted probability and
predicted cover values, on the basis that both a low predicted probability and a low cover
value indicate largely unsuitable bioclimatic conditions, whereas high probability values
and cover values point to suitable conditions. Nevertheless, it is important to acknowledge
that a probability of 0.01 reflects only a very low likelihood of the species occurring at all,
whereas 1% cover implies the species is present, albeit in low abundance. Although the
models differ in their spatial predictions and variable importance, the correlation between
predicted probability and cover values is relatively high, with a Pearson’s r of 0.6. We
therefore treat the two metrics as complementary, not interchangeable, and interpret model
outputs jointly.

4.1. Current Distribution Range of N. pumilio

Differences between the two models were apparent across all analyses. In terms of
spatial prediction, the RF regression model captured fine-scale details more accurately
and was less prone to overprediction at high elevations. Additionally, the key predictors
for the RF models varied. While a temperature variable had the highest importance
(Accuracy Importance) in the RF classification model, precipitation variables had the
highest importance in the RF regression model. Although the SHAP plots differ slightly in
their expression between the models, the suitable bioclimatic conditions for N. pumilio are
clearly evident in both. The species benefits from cold winters (bio 11, mean daily mean
air temperatures of the coldest quarter) combined with moderate levels of precipitation,
presumably in the form of protective snow cover (bio 19, mean monthly precipitation
amount of the coldest quarter), and cool summers (moderate values of bio 10 (mean daily
mean air temperatures of the warmest quarter)). Moreover, N. pumilio tends to occur in
regions with sufficient overall precipitation and low precipitation seasonality, reflected
by low to medium values for bio 17 (mean monthly precipitation amount of the driest
quarter), bio 18 (mean monthly precipitation amount of the warmest quarter), and bio 15
(precipitation seasonality). Extreme heat or pronounced drought conditions inhibit the
species’ presence. Both temperature and precipitation seasonality are low, indicating that
the species does not occur in areas characterised by extreme temperature fluctuations or
erratic precipitation patterns, such as extended dry periods. The orophilous species N.
pumilio is particularly adapted to the harsh climatic conditions of high mountain ecosystems.
The species shows high phenotypic plasticity. While occurring at lower elevations as an
erect tree up to a height of 35 m, it shows krummholz growth forms at the treeline [78]. As
a deciduous species, it reduces transpiration in the months when frost-drought can be a
problem [79]. Heat deficiency is considered to be the most important site factor for treeline
formation worldwide. The treeline of N. pumilio follows an isotherm of 6.6 ◦C [19]. The
influence of temperature was shown in the RF classification model by the high importance
of bio 8 (mean daily air temperature of the wettest quarter), by the fact that the variable
bio 11 (mean daily mean air temperatures of the coldest quarter) has a very important
influence on the decisions at the nodes of both models (Gini Importance), and in the
SHAP plots. However, when modelling a species in high mountains, the influence of
elevation can also be represented by temperature variables. In the SHAP plot of the RF
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classification model, only very high temperature values in the warmest quarter (bio 10)
result in a reduction in predicted probability. In contrast, in the RF regression model, very
low temperatures during the warmest quarter lead to a decrease in predicted cover values.
This difference is also reflected in the spatial predictions, with the RF classification model
showing slight overprediction in summit regions. However, high temperatures during the
warmest quarter can also lead to drought events, particularly in high mountain ecosystems
where insolation and consequently evapotranspiration is very high. Authors analysing
the sensitivity of N. pumilio to climate change using changes in tree rings have found a
correlation with precipitation regimes in addition to temperatures. The species occurs in
humid to arid regions and is well adapted to medium to low precipitation sums that occur
at high elevations due to advective precipitation. This is also shown by its occurrence
as far as the arid east, where it sometimes forms two treelines: an alpine treeline and a
xeric treeline towards the arid steppes [80]. Very low values for precipitation variables
(bio 17, 18 and 19) and precipitation seasonality (bio 15) define the limits in the core range
and the eastern boundary of the species. However, particularly in northern Patagonia,
increasingly low precipitation during the spring and summer months negatively affects
tree growth [22,81]. In more southerly regions, high spring precipitation is primarily
associated with prolonged snow cover, leading to a shortened growing season, which in
turn also hinders tree growth [22,82,83]. Between 1900 and 2020, tree growth was found to
correlate most strongly with rising temperatures on mesic sites, followed by wetter sites,
while growth rates declined on drier sites [25]. Some authors state that all treelines in
southern South America have experienced a negative growth trend due to drought since
the 1980s and even suggest that the limitation at the treeline has changed from cold-limited
to drought-limited [26,84]. Our results of the RF regression model seem plausible in this
context, as the precipitation variables bio 15 (precipitation seasonality) and bio 19 (mean
monthly precipitation of the coldest quarter) played an important role. Both variables
reflect annual precipitation distribution patterns. Bio 15 suggests that N. pumilio is unlikely
to occur in regions with high precipitation seasonality, which may be associated with
periods of drought. Bio 19, on the other hand, may be linked to precipitation in the form of
snow, the resulting snow cover, and water availability following thaw.

4.2. Future Distribution Range of N. pumilio

Abrupt treelines respond less to global warming than diffuse treelines, primarily due
to higher seedling mortality outside the protecting forest stand climate [14]. The emergence
and establishment of seedlings represent the most critical life stage for trees at the treeline,
with the availability of species-specific safe sites being the basic precondition for seedling
recruitment [85,86]. Seed production, fruit dispersal, seed viability, and seedling establishment
all decline with increasing elevation [17]. Higher temperatures and an extension of the growing
season can thus facilitate seedling emergence and survival [19,23,24,75,81], a precondition
for a future treeline advance. However, the comparatively slow advance or persistence of
the treeline in the southern Andes is also linked to multi-faceted interactions with edaphic,
topographic, biotic, and other factors, including the development of alpine mats [24,28].
Demographic constraints across different life stages have been highlighted in previous studies
examining the relationship between climate change and tree habitats. As treelines shift
to higher elevations, trees are exposed to new climate–habitat interactions, and different
life stages may respond in distinct ways [87,88]. For instance, tree fertility is primarily
influenced by temperature, whereas seedling establishment depends more heavily on moisture
availability and soil water content [87]. In fact, seedling survival declines with increasing
drought at both high and low elevations, although at some high elevation stands this effect
can be mitigated by spring snow cover [75]. A deterioration in growth conditions due to
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drought is also predicted for adult trees at lower elevations as well as at the treeline, based on
studies of radial growth patterns [26,84,89]. However, even if temperature and precipitation
conditions are favourable for seedling establishment, local factors such as steep topography
and the absence of herbaceous vegetation can inhibit treeline advance [24,28]. While this study
focuses on assessing the effects of key climatic drivers on the treeline, future modelling efforts
should consider incorporating additional variables such as topography, wind exposure, soil
characteristics, and vegetation cover.

The use of CMIP6 SSP scenarios from CHELSA showed an advance to higher eleva-
tions in both models, as indicated by spatial predictions and treeline elevation estimates
derived from a digital surface model (DSM). The scenarios are based on global circulation
models and CO2 concentration estimates. It should be noted that less periodic variations
caused by different phases of ENSO, PDO, and AAO/SAM cannot be fully modelled in
the scenarios [90]. While the RF classification model showed a significant decrease in
the northern range, lower cover values of the RF regression model remained at higher
elevations. The result that N. pumilio occurrences decreased at lower elevations is consistent
with previous findings [75], highlighting a decrease in the number of seedlings and a re-
duction in survival at lower-elevated sites. A review study modelling biome-level changes
predicts a reduction in area with suitable climatic conditions for temperate deciduous
forests of approximately 30% under the RCP8.5 scenario for the period 2040–2070 [16]. Our
results seem congruent with these findings, whereas the RF classification model predicts
a greater decline than the RF regression model. In particular, the RF classification model
predicted a shift towards the wetter western region. It will be necessary to investigate
the future competitive relationships with dominant tree species in this area (e.g., N. betu-
loides). In summary, precipitation conditions/drought stress will play a significant role in
future competitive relationships and successful regeneration of Nothofagus species in the
southern Andes.

5. Conclusions
To our knowledge, this is the first SDM study that models the current and future

distribution of N. pumilio across its entire distribution range in the southern Andes. Even
though the distribution range encompasses two extreme climatic gradients, both models
were able to comprehensively predict the current potential distribution and its future
development. The direct comparison of model approaches highlighted major differences in
the model results and the advantages of using more complex, continuous data. Continuous
data can provide better insights into suitable bioclimatic conditions for N. pumilio occurrence
leading to more detailed spatial predictions and meaningful predictors based on variable
importance. In contrast to presence–absence data, which can only take values of 0 or 1,
continuous cover values can reflect subtle or unknown effects of land cover, topography,
and species composition, thereby providing model results of greater ecological value.
However, we acknowledge that remote sensing data across a large geographic extent are
rarely available, difficult to obtain in very high resolution, and may still contain gaps that
introduce bias. Climatic parameters represent the principal limiting factors at the alpine
treeline, and bioclimatic variables have already proven effective in capturing the climatic
conditions at the treeline of the southern Andes. It will be of great interest to further model
the conditions at the treeline with more complex abiotic predictors, like topography, wind
and soil variables as well as to embed biotic and anthropogenic variables to model the
influences of vegetation composition, fire, grazing, and forestry.
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Appendix A
Appendix A.1

Figure A1. (a) Hexagonal spatial blocks with the allocation of folds (1–5), created using the “blockCV”
R package, and (b) the five folds showing test data points (dark green) and training data points (grey)
for the Random Forest classification model.

http://doi.org/10.25592/uhhfdm.16239


Forests 2025, 16, 1211 22 of 27

Appendix A.2

Figure A2. Potential future distribution of Nothofagus pumilio modelled by (a) the Random Forest
classification and (b) RF regression model using CMIP6 SSP Scenarios for CHELSA Bioclim variables
for the time span of 2071 to 2100.
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Appendix A.3

Table A1. Results of the 5-fold spatial cross-validation of the Random Forest classification model.
The table presents the mean values across all five models for the various hyperparameter settings
(45 models in total). The hyperparameter setting for the final model, highlighted in bold, was selected
based on the highest mean AUC.

No. mtry ntree AUC
Mean AUC 95% CI 1 Acc.

Mean Acc. 95% CI 1 TSS
Mean TSS 95% CI 1

1 2 100 0.9270 0.8908–0.9632 0.8460 0.7782–0.9139 0.6125 0.4169–0.8081
2 3 100 0.9204 0.8785–0.9623 0.8407 0.7803–0.9011 0.5968 0.4164–0.7772
3 4 100 0.9192 0.8821–0.9564 0.8454 0.7761–0.9147 0.6106 0.4025–0.8187
4 2 300 0.9268 0.8943–0.9592 0.8441 0.7767–0.9115 0.6053 0.4063–0.8043
5 3 300 0.9237 0.8884–0.9590 0.8473 0.7827–0.9118 0.6163 0.4212–0.8114
6 4 300 0.9228 0.8898–0.9557 0.8461 0.7831–0.9092 0.6127 0.4265–0.7988
7 2 500 0.9279 0.8960–0.9599 0.8466 0.7799–0.9132 0.6148 0.4183–0.8112
8 3 500 0.9233 0.8881–0.9585 0.8438 0.7765–0.9111 0.6025 0.4015–0.8035
9 4 500 0.9224 0.8837–0.9610 0.8429 0.7756–0.9102 0.6050 0.4082–0.8019

1 Confidence intervals.

Table A2. Results of the 5-fold spatial cross-validation of the Random Forest regression model.
Hyperparameter for the final model, highlighted in bold, were selected based on the highest mean R2.

No. mtry ntree R2 Mean 95% CI 1

1 2 100 0.3910 0.3419–0.4400
2 3 100 0.3868 0.3366–0.4369
3 4 100 0.3835 0.3323–0.4348
4 2 300 0.3933 0.3432–0.4433
5 3 300 0.3892 0.3378–0.4407
6 4 300 0.3873 0.3362–0.4384
7 2 500 0.3933 0.3425–0.4441
8 3 500 0.3898 0.3386–0.4410
9 4 500 0.3869 0.3357–0.4381

1 Confidence intervals.

Table A3. Treeline elevation estimates based on the highest raster cells from the model outputs
(Random Forest classification and RF regression) under current climatic conditions and SSP scenarios
for the future period 2071–2100. NA = not available (no data recorded).

Coordinates Treeline Elevation [m]
Current Climate

Treeline Elevation [m]
SSP126 (2071–2100)

Treeline Elevation [m]
SSP370 (2071–2100)

Treeline Elevation [m]
SSP585 (2071–2100)

X Y RF Class. RF Reg. RF Class. RF Reg. RF Class. RF Reg. RF Class. RF Reg.

−71.00 −35.36 NA NA NA NA NA NA NA NA
−71.11 −37.27 1988 1949 2328 NA NA NA NA 2530
−71.33 −38.42 1854 1789 2071 1700 1780 1871 2460 2035
−72.15 −40.42 1591 1437 1679 1636 2026 1971 2026 2026
−72.19 −41.48 1500 1201 1555 1510 1917 1743 1917 1730
71.45 −43.07 1839 1440 1955 1545 2059 1955 2059 2059
−71.42 −44.39 1320 1216 1703 1595 1952 1593 1952 1427
−72.24 −47.12 1361 1197 1439 1346 1742 1651 1901 1840
−72.30 −48.30 1522 1074 1399 1098 1578 1171 1698 1340
−72.54 −50.57 1176 956 1317 1000 1457 1229 1537 1287
−71.00 −53.00 543 560 592 728 NA NA NA NA
−68.45 −54.17 544 520 648 616 615 757 NA NA
−67.30 −54.57 610 610 609 614 NA 614 NA 614
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