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Chapter 1

Introduction

Traffic flow is an interesting phenomenon of our modern world. Although
we all experience it daily, traffic flow is far from being well understood. It
is a life science problem, since drivers do not usually act according to well
defined rules. However, the increase of traffic in many areas and the related
problems underline the importance of a realistic description of traffic flow or
of some of its features.

The mathematical modeling of traffic flow has a long tradition. Various
approaches can be found in literature. A very common class of traffic models
is the macroscopic one, where the traffic flow is described in terms of density
and velocity distributions. One of the earliest models of this kind is the “clas-
sical” Lighthill-Whitham model [21]. A second class of approaches consists of
the kinetic Boltzmann-like models, where probability distribution functions
of the traffic flow are considered [18]. In the eighties cellular automata models
became popular and are still used. Yet another idea was that of regarding
the formation of a traffic jam as a clustering phenomenon linked to a Markov
process. This stochastic approach leads to the study of the master-equation
for a particular probability distribution and can be found in works such as
[22].

A very important class of models are the so called microscopic models,
where the dynamics of the single cars is described. The earliest microscopic
models where proposed in the early fifties in [27, 28, 29].

For an overview on the different modeling approaches see [6, 11, 12, 18].
The models considered in this paper are special class of microscopic mod-

els, the so called follow-the-leader models, where the dynamics of every car
depends mainly on its distance to the car in front (called headway) and on
the relative velocity with respect to the car in front. A historical overview on
follow-the leader models is given in [6].

In follow-the-leader models every car (or better its position) is described
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by an ordinary differential equation. This equation defines deterministically
the behavior of the car driver. It is assumed that there exists something like
a “mean” driver, i.e. all drivers act according to some general law. Follow-
the-leader models are easy to implement numerically. They not only show
the dynamics of the single cars, but also some macroscopic behavior like
the formation of more vs. less dense sections of the road. However the link
between microscopic and macroscopic models is still a challenging problem
(see [1, 20]). Finally how to choose an adequate microscopic model in order
to obtain realistic macroscopic phenomena, is also still subject of debate (see
[12]).

In this work I will consider follow-the-leader models on a circular road,
which leads to an (in general big) autonomous system of ODE’s. These sys-
tems are known to have special (quasi stationary) solutions with constant
headways and constant relative velocities. It is known that these solutions
are stable up to a critical car-density [4, 13]. Especially in the last years there
is a increased interest in the behavior beyond the critical density, i.e. in the
region, where the quasi-stationary solution is unstable. A natural way to ex-
plore the dynamics beyond the critical density is bifurcation theory. In fact,
a few authors based on numerical experiment have conjectured the existence
of bifurcations [2, 15].

In my work together with I. Gasser, T. Seidel and B. Werner a systematic
bifurcation analysis of different follow-the-leader models was conducted, lead-
ing to the two publications [8] and [9]. These two articles belong together in
that the second one is the natural extension of the first one. This work wants
to present the material in the two article in unitary form and formalism.

In [8] the standard optimal velocity models were analyzed. In these models
we assume that the acceleration of each car depends on the difference between
the car velocity and an “optimal” velocity, which models the velocity in an
“equilibrium” situation for example as function of the headway (distance of
a car to the car in front). Due to the high number of cars in real relevant
traffic situations these models consist typically of big systems of nonlinear
ODE’s.

Frequently used settings are an infinite single lane or N cars on a circle.
The latter is considered from now on in this paper.

For realistic optimal velocity functions it is easy to see that these models
allow a quasi-stationary state, i.e. a solution where all cars have the same
velocity and a constant (in time) headway. A stability analysis shows that
this solution is stable for certain parameter regimes ([2, 3, 4, 5, 13, 23]). In
other parameter regimes, such as high traffic density, this solution is unstable.
This is also known from experiments (see [2]).

So far, the dynamics beyond the stable region of the quasi-stationary
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state has been an interesting and still widely open question. In [15] a de-
lay differential optimal velocity model was studied in the unstable region. In
that case the authors were able to calculate exact multiple solutions and to
deduce the existence of bifurcations (subcritical Hopf bifurcations) assuming
the special optimal velocity function proposed in [2]. In [15] the same fea-
tures were mentioned for the standard (non-delay) optimal velocity function
models which is studied here in this paper. In [15] we find the conjecture:
“our results should be considered to be a universal feature of optimal velocity
models”.

In [8] we analyzed the complete dynamics for the standard optimal veloc-
ity models with general optimal velocity functions satisfying a few basic prop-
erties. In this case no explicit solutions can be calculated. We showed with
mathematical rigor that the loss of stability of the quasi-stationary solution
is, for general optimal velocity functions, due to a (not necessarily subcrit-
ical) Hopf bifurcation. Also we formulated explicitly an analytical criterion
concerning the sub- or supercriticality of the Hopf bifurcation. Moreover we
studied numerically the global dynamics of the model and its global bifur-
cation diagram using special continuation codes. We see that the stability
condition induced by the linear stability analysis is in general not the rele-
vant condition. Even before the quasi-stationary solution becomes unstable,
stable periodic solutions may already (co-)exist (compare with [15]). These
solutions correspond to congested traffic situations. Our analysis shows that
even simple optimal velocity models have already a rich solution structure
with a lot of dynamics. Finally we analyzed the loss of stability of the cor-
responding quasi-stationary solutions in optimal velocity models with non-
equal drivers. There we were able to prove that, in general optimal velocity
models, faster (slower) reacting drivers don’t necessarily stabilize (destabi-
lize) traffic. This is in line with the results obtained in [23] concerning the
behavior on a circular road. We should mention that on non-circular roads
similar phenomena may appear (see [23, 24]). However these are often caused
by boundary conditions which have to be imposed in that setting.

In [9] we investigated an extension of the simple optimal velocity model
in [8] in two directions: on one hand we considered non-constant reaction
times and on the other we included aggressive behavior.

The main issue here is to study the influence of these two extensions
on the dynamics. Most of the results can be adapted for this more complex
model and once again one can show that the loss of stability of the stationary
solution is due to a Hopf bifurcation of which the first Lyapunov coefficient
can be explicitly calculated.

At this point we should mention that similar bifurcation phenomena occur
in related microscopic traffic flow models. In [14] a model for a bus route
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is considered and stability and bifurcation questions are studied. In [26] a
bifurcation analysis of a model with delay for cars on a circular road is
analyzed.

In the following section I will introduce the general model describing the
meaning of its component and making some remarks. To go deeper in the
analysis of it, though I will have to relax the generality in different ways and
this leads to the simplified models considered in detail in chapters 2 and 3.

1.1 Setting of the problem

Consider a system of N cars moving counterclockwise on a ring of given
length L̃. Fix any origin on the ring and specify the position of each car with
a coordinate θ̃ (x̃ denoting throughout the article that the quantity x has a
dimension) and label the cars counterclockwise starting from a random one,
so that θ̃j = θ̃j(t̃), j = 1, . . . , N is the coordinate of the j-th car with respect
to the chosen origin as a function of time. Let the motion of the cars be
described by the following system of ordinary differential equations:

¨̃θj =
1

T̃j
(θ̃j+1 − θ̃j)

{
Ṽj
(
θ̃j+1 − θ̃j

)
− ˙̃θj + αj(

˙̃θj+1 − ˙̃θj)F̃j
(
θ̃j+1 − θ̃j

)}
(1.1)

where j = 1, . . . , N , θ̃N+1 := θ̃1 + L̃, αj are positive constants and the
functions Ṽj(x), T̃j(x) and F̃j are non-negative and are defined for x ∈ R+.
Note that these functions might in general depend on one or more parameters.

This is a general follow-the-leader model, appearing often in literature
with different specifications for the functions Ṽj, T̃j(x) and F̃j, see for example
[6, 12, 23, 24]. For a related approach involving delay differential equations,
see [15].

Turning to the undimensional (tilde-less) quantities

xj =
θ̃j
ã
, Vj(x) =

τ̃

ã
Ṽj(ãx), Tj(x) =

1

τ̃
T̃j(ãx), t =

t̃

τ̃
, L =

L̃

ã
, (1.2)

where j = 1, . . . , N , ã is a characteristic length and τ̃ is a characteristic time.
Introducing variables yj = ẋj, system (3.1) can be rewritten as

{
ẋj = yj
ẏj =

1
Tj(xj+1−xj)

[
Vj(xj+1 − xj)− yj + αj(yj+1 − yj)Fj(xj+1 − xj)

] (1.3)

where j = 1, . . . , N and xN+1 := x1 + L.
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The functions Tj, appearing in (1.3), have the meaning of reaction times
for each one of the car-drivers. Their dependence on the headway should
enable to mimic the fact that in a denser traffic situation drivers tend to be
more alert and react faster than they do when in a relatively empty road.
Accordingly the Tj’s should be positively valued functions which monotoni-
cally increase with the headway and eventually saturate to a reaction time
value of minimal alert.

Aside from the reaction time, the acceleration in system (3.1) is com-
posed of two parts, describing two different but possibly coexisting driving
behaviors. The first two terms correspond to the usual law prescribed in car
following traffic models (see for example [4, 8, 12, 15, 23]). It states that car
j tries to match its velocity to an optimal velocity given by function Vj in
terms of the headway. Each one of the Vj’s (V for brevity) will be taken such
that it is positively valued and monotonically increasing with its argument,
V (0) = 0, limx→∞ V (x) = Vmax (const.) and V (x) is S-shaped, i.e., there
exists a positive constant b such that V ′′(x) > 0 (< 0) if x < b (> b).
Qualitatively different optimal velocity functions are involved in the case of
car-bus systems (see [14]) or in the case of multi-lane traffic (see [16]).

The third term on the right hand side of (1.3) describes a more aggressive
driving behavior, in that cars try to match the velocity of the car ahead of
them. This tendency has been empirically observed and its definitely more
marked when cars are driving near to each other, while, when headways grow,
drivers tend to care less for what other drivers are doing. Functions Fj are
thus taken to be positive defined and decreasing in the headway. The coeffi-
cients αj ∈ [0,∞) are switches, allowing to choose how much aggressiveness
driver j has.

As an example, we show two of the OVF’s suggested in literature

ṼL(θ̃) = Ṽ max θ̃2

ã2 + θ̃2
, ṼB(θ̃) = Ṽ max

tanh
(
θ̃−ã
θ̃0

)
+ tanh ã

θ̃0

1 + tanh ã

θ̃0

(1.4)

Notice that, through the undimensionalization in (1.2), we are actually
dealing with the two following functions (see Fig. 1.1)

VL(x) = V max x2

1 + x2
(solid line) (1.5)

VB(x) = V max
tanh

(
a(x− 1)

)
+ tanh(a)

1 + tanh(a)
(dashed line) (1.6)

where V max := Ṽ maxτ̃min/ã and a := ã/θ̃0.
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Figure 1.1: Two examples of possible V -functions.

As in the second example, the OVF can depend on more than one (di-
mensionless) parameter.

The reaction time functions T can be chosen in the same class of functions
as the OVF’s. A typical choice for F is Fj(x) = bj/(x + 1) for positive
constants bj.

Historically the optimal velocity part of model (1.3) was introduced in [5]
while the other part is much older and goes back to the fifties ([10]).

A further remark about system (1.3) is that it is unable to deal with
car-crashes and overtakings in a reasonable way. This means that headways
xj+1 − xj can become negative without warning. When this happens, the
dynamics doesn’t reflect the new ordering of the cars and it is clear that the
real world situation is not properly described any more. Moreover one cannot
exclude the presence of solutions for which the velocities become negative.
We call such solutions as unphysical. In the following, alongside the stability
of solutions, we have to deal with their physicality too. Note though that we
don’t regard unphysical solutions as a failure of the model, we just have to
be aware of their presence. An interesting approach to be found in literature
is that of finding appropriate conditions on the initial data so as to prevent
unphysical results (see for ex. [10])

As it is, model (1.3) is hard to deal with so in the following I will study
some simplified versions of it.

The second chapter is a treatment of the simplest case where there is no
aggressive behavior (αj = 0∀j) and the reaction times are constant (Tj(x) =
τj∀j). This is then the pure optimal velocity model

In the third chapter I will allow for aggressive behavior and non constant
reaction times but this time only in the case where all drivers obey the same
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law of motion, i.e. I will drop the dependence on j of OVF’s Vj, of the reaction
time functions Tj and of the term αjFj.

Let me underline once more that this material is the result of the work
done together with I. Gasser, T. Seidel and B. Werner and it already appeared
in the two publications [8, 9].
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Chapter 2

Optimal velocity model

I will study here system (1.3) under the assumption that there is no
aggressive behavior and that the reaction times are constant, i.e. I set αj = 0
and Tj(x) = τj for all j and x and deal with the simpler system

{
ẋj = yj
ẏj =

1
τj

[
Vj(xj+1 − xj)− yj

] (2.1)

The contents of this chapter are a joined work together with I. Gasser
and B: Werner and were published in [8].

2.1 Linear analysis

We start looking for special solutions of system (2.1). The following
lemma, proved in [23], guarantees existence and uniqueness of a quasi-stationary
solution (see Remark 2).

Lemma 1 There is a unique solution x∗j(t) of (2.1) with constant velocity c
for all the cars.

Remark 1 Observe that velocity c is not a further independent parameter
but it actually depends on L and N .

Remark 2 We call solution x∗j(t) in Lemma 1 quasi-stationary, since the
corresponding headways d1(c), . . . , dN(c) are constant in time.

Now setting xj(t) = x∗j(t) +Xj(t) and yj(t) = c + Yj(t) in system (1.3),
leads to
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{
Ẋj = Yj
Ẏj =

1
τj

[
Vj
(
dj(c) +Xj+1 −Xj

)
− c− Yj

] j = 1, . . . , N (2.2)

where XN+1 = X1. Introducing W = (X,Y), our quasi-stationary solution
x∗j(t) for system (1.3) is now associated with the equilibrium point W = 0
for (2.2). Linearization around this fixed point leads to the system

Ẇ =MW, M =

(
ON IN
DN −CN

)
(2.3)

where IN is the (N × N)-identity matrix, ON is the (N × N)-null matrix,
DN is the matrix

DN =




−β̄1 β̄1 0 . . . 0

0 −β̄2 β̄2
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −β̄N−1 β̄N−1

β̄N 0 . . . 0 −β̄N




(2.4)

where β̄j =
1
τj
V ′j (dj) for j = 1, . . . , N and CN = diag(1/τ1, . . . , 1/τN)

As already shown in [23], the eigenvalues ofM are the solutions λ of the
equation

N∏

j=1

(
τjλ

2 + λ+ βj
)
−

N∏

j=1

βj = 0, (2.5)

where βj = τjβ̄j = V ′j (dj) ∀j. Equation (2.5) is too complicated to allow a
straightforward analytical insight into the stability of the considered equilib-
rium point.

The following section deals with the situation where all drivers are equal
with respect to Vj and τj, which simplifies (2.5). In section 2.4 we then face
(2.5) using perturbation arguments to gain insight in the case of individual
drivers.

2.2 Drivers with the same driving law: Hopf

bifurcation

The most drastic approximation that can be done to system (2.1) (and
consequently to system (2.2) and equation (2.5)) is that of imposing that all

10



drivers should have the same reaction time τ and the same optimal velocity
function, i.e. to set τj = 1, Vj(x) = V (x) ∀j. Under these conditions
the quasi-stationary solution of lemma 1 has headways d1 = . . . = dN = L/N
and velocity c = V (L/N). System (2.2) becomes

{
Ẋj = Yj
Ẏj = V

(
L
N
+Xj+1 −Xj

)
− V ( L

N
)− Yj

j = 1, . . . , N (2.6)

where XN+1 = X1, and equation (3.5) is simplified to

(
λ2 + λ+ β

)N − βN = 0 (2.7)

with β = V ′( L
N
).

The goal is that of studying the influence of the parameter L, the length
of the circuit, and with this of the density N/L on the nonlinear system
(2.6). We will analyze the (loss of) stability of the trivial equilibrium (or
equivalently of the quasi-stationary solution) due to the variation of L for
a given number of cars N . To this end we investigate in sec. 2.2.1 how the
eigenvalues λ of M vary with L according to (2.7). Since the parameter L
entersM only via β := V ′(L/N), we study the dependence of the eigenvalues
on β.

We will show that under certain conditions on V , Hopf bifurcations take
place for L equal to certain critical lengths LH . As a consequence periodic
solutions of (2.6) exist in a neighborhood of the equilibrium. The critical
lengths LH (and densities ρH = N/LH) for which Hopf bifurcations occur,
depend on N and certain parameters which enter V as well. This dependence
will be also investigated.

To apply the Hopf Theorem (see for example [19]), we have to show that
there is a smooth family of eigenvalues λ±(L) = µ(L)± iω(L) ofM such that
the following conditions are fulfilled:

1. µ(LH) = 0, i.e. for the critical parameter LH there is a pair ±iω(LH)
of purely imaginary eigenvalues of the matrix M .

2. There are no other eigenvalues ofM on the imaginary axis for L = LH .

3. Eigenvalue-crossing condition: µ′(LH) 6= 0.

4. The first Lyapunov coefficient ` does not vanish.

The last condition is a non-degeneracy condition which allows a con-
clusion about the stability of the bifurcating periodic solutions if the first
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condition is sharpened requiring all other eigenvalues of M for L = LH to be
located in the left half complex plane.

We remark that λ = 0 is always an eigenvalue of M for all parameters.
This contradicts the second Hopf condition. But we will show in sec. 2.2.2
that this eigenvalue can be eliminated due to a rotational symmetry in the
system.

2.2.1 Structure of the eigenvalues

Setting λ = µ+ iω, equation (2.7) is equivalent to

{
µ2 − ω2 + µ = β(ck − 1)
ω(2µ+ 1) = βsk

k ∈ {1, . . . , N} (2.8)

where ck = cos(2πk/N) and sk = sin(2πk/N). Notice that for k = N the
points (µ, ω) = (0, 0) and (µ, ω) = (−1, 0) are solutions of the system for
every β. The reason for this will become clear in sec. 2.2.2, where the 2N -
system is reduced to a (2N − 2)-system where these two eigenvalues don’t
appear anymore but all the other eigenvalues remain unchanged.

For every fixed N and k 6= N , system (2.8) is the parametric represen-
tation of two hyperbolically shaped branches with regard to the parameter
β > 0, as shown in Fig.2.1 for N = 5.

The whole set of eigenvalues has a central symmetry with respect to the
point C = (− 1

2
, 0). For β = 0, N eigenvalues are located in the origin O

and N in the point S = (−1, 0). As soon as β grows, the two eigenvalues
associated with k = N stay in S and in O respectively, while all the other
eigenvalues separate from each other flowing along the hyperbolic branches,
as represented by the arrows on the curves. For sufficiently small β > 0, all
the eigenvalues lie in the left complex plane, which implies the asymptotic
stability of our quasi-stationary solution. As β is increased more and more,
a pair of complex conjugate eigenvalues might cross the imaginary y-axis
causing loss of stability. The ’right’ k-th branch intersects the y axis at the
same time as the ’right’ (N − k)-th branch, and this happens when the
following relation is satisfied

β = βk :=
1− ck
s2
k

=
1

1 + ck
, (2.9)

the above being valid for k = 1, 2, ..., N ′, whereN ′ := b(N−1)/2c. Note the in
the limit for large N , crossing relation (2.9) reduces to β = 1/2 independently
of k. This is the usual instability threshold given in literature (see for example
[5, 23]).
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It is easily checked that the couple of eigenvalues which intersects the
imaginary axis for the lowest value of β, corresponds to k = 1 (and to k =
N − 1), followed for increasing values of β by the one corresponding to k = 2
(and to k = N − 2) and so on.

−2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

Real Axis

Im
ag

in
ar

y 
ax

is

B 

A 
O 

A’ 

B’ 

C M 

k=1 

k=1 

k=2 
k=3 k=4 

k=2 

k=3 k=4 PSfrag replacements

k = 1

Fig. 2.1: Eigenvalues for five cars (N =
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Therefore, as far as the stability of the quasi-periodic solution is con-
cerned, only the case where the first two eigenvalues cross the imaginary
axis for β = β1 is relevant. For the corresponding branch of eigenvalue pairs
λ(β) = µ(β)± iω(β) we have the following:

Lemma 2

ω(β1) = s1β1, µ′(β1) =
s2
1

5− 3c1
, (2.10)

For a proof one has to differentiate system (2.8) with respect to β.
Lemma 2 is an eigenvalue crossing condition which appears in the Hopf

Theorem. But observe that not β, but L is the parameter in (2.6). To this
purpose we have to solve V ′(L/N) = β for L, and the Hopf conditions have to
be checked in terms of the eigenvalues λ̃(L) := µ(V ′(L/N))± iω(V ′(L/N)).
The critical β1 corresponds to critical lengths LH given by

V ′(LH/N) = β1 =
1

1 + c1
. (2.11)

This is where the graph of V ′ enters the game, see Fig. 2.2. From the as-
sumptions on V follows that V ′(x) is bell-shaped. Let βmax be the maximum
of V ′(x) and βmax = V ′(dmax). If β1 > βmax, there is no solution of (2.11) –
the equilibrium is stable for all L, no bifurcations at all, see Fig. 2.3(a). The
case β1 = βmax leads to a degenerated Hopf point – we will not consider this
case. Instead we assume from now on that β1 < βmax. Then there exist two
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solutions L−, L+ of (2.11) satisfying L− < dmax < L+. The corresponding
critical densities are ρ− := N/L− and ρ+ := N/L+. The eigenvalue crossing
condition remains valid, since V ′′(L/N) 6= 0 for L = L±. Disregarding the
eigenvalue λ = 0, ±ω1 are the only eigenvalues of M on the imaginary axis
for L = LH . Hence the Hopf conditions are fulfilled for LH = L±, only the
last condition concerning the Lyapunov coefficient has to be analyzed.

It might be helpful to visualize how the complex conjugate eigenvalue
pairs λ̃(L) of M behave when L is varied. To this end we start with rather
large L (and small densities) for which V ′(L/N) < β1. All eigenvalues of M
have negative real part (excepted the zero-eigenvalue). Decreasing L (and
increasing the density) down to L = L+ results in a pair of purely imaginary
eigenvalues of M which crosses the imaginary axis when L is further de-
creased. If V ′(L/N) = βmax (for L/N = dmax), the real parts of the eigenval-
ues are maximal, further eigenvalues numbered by k = 2, 3, ... have crossed
the imaginary axis if βk < βmax, see Fig. 2.3(c). If β2 > βmax, no further
eigenvalues have entered the right complex half plane, see Fig. 2.3(b). A fur-
ther decrease of L leads to a turning back of all eigenvalues in the right half
of the complex plane. For L = L− the last of these eigenvalue curves cross
the imaginary axis with nonzero speed at the same locus where it entered the
right half of the complex plane leading to a second Hopf bifurcation with the
same β1. The trivial equilibrium (and hence our quasi-stationary solution)
becomes stable again, while it is unstable for all L ∈ (L−, L+).
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Figure 2.3: Three qualitatively different scenarios for the behavior of the
eigenvalues. The first two pictures are obtained for N = 5 and the
third for N = 7.

It is not unimportant to investigate the dependence of the critical β1 in
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(2.11) (and L±) on the number of cars N – the dimension of our nonlinear
system (2.6). While c1 = 1−O(1/N 2) increases with N , the parameter β1 de-
creases with N , we have β1 = 0.5+O(1/N 2). Hence the condition β1 < βmax

is always fulfilled for sufficiently large N if 0.5 < βmax. Concerning the crit-
ical lengths, L−/N decreases, while L+/N increases slightly with increasing
N . Asymptotically, taking the two solutions x0

− < x0
+ of Ṽ (x) = 0.5 we ob-

tain L−/N = x0
−+O(1/N 2) and L+/N = x0

+−O(1/N 2). Since c1 ≈ 1 for for
already not too large N , there are essentially two different critical densities
ρ+ := 1/x0

− and ρ− := 1/x0
+ for sufficiently (moderately) large N . For densi-

ties ρ = N/L with ρ− < ρ < ρ+ we expect – at least for sufficiently large N –
unstable quasi-stationary solutions which are either stabilized by decreasing
the density to ρ < ρ− or by increasing it to ρ > ρ+.

(a) Side view. (b) Top view.

Figure 2.4: In red surface Z(L,N) = V ′( L
N
), in yellow surface Z(L,N) =

(1 + cos 2π
N
)−1.

Fig.2.4(a) is a 3-dimensional representation. The red surface is the graph
of Z(L,N) = V ′( L

N
), while the yellow surface is the graph of Z(L,N) =

1
1+c1

=
(
1 + cos 2π

N

)−1
. The intersection of these two surfaces corresponds to

the points that verify the Hopf relation (2.11)
Fig.2.4(b), which is a top view of Fig.2.4(a), shows in red the (instability)

region of the (L,N)-plane in which the first couple of eigenvalues has positive
real part. Note that the Hopf curve given by points (L,N) satisfying (2.11)
is just the common border of the red and the yellow region. For larger N , it
consists of two straight lines due to our asymptotics above.

Notice that, though we have been talking about surfaces for clarity, one
can correctly do so only pretending that N is a continuous variable, while of

15



course it isn’t.

2.2.2 Bifurcation analysis

We have already checked three of the four conditions of the Hopf theorem,
showing that (2.6) undergoes a Hopf bifurcation for critical lengths L±, if we
disregard the eigenvalue λ = 0. The main task is the computation of the
Lyapunov coefficient `.

The main result of this paper reads as follows

Theorem 1 Let be

β1 =
1

1 + cos 2π
N

< βmax := max
x

V ′(x).

Then system (2.6) undergoes a Hopf bifurcation for the two critical lengths
L± which are the two solutions of V

′(L/N) = β1.
The two corresponding first Lyapunov coefficients are

`± =
s1(c1 + 1)

2(5− 3c1)

[
V ′′′
(L±
N

)
−
(
V ′′(L±

N
)
)2

V ′(L±
N
)

]
(2.12)

where s1 = sin 2π
N
and c1 = cos 2π

N
. Moreover, if ` < 0 (> 0), the bifurcation

is supercritical (subcritical).

Remark 3 This means that in the case ` < 0(> 0) we have locally stable
(unstable) periodic solutions.

Remark 4 The above theorem is valid for any positively valued, monotoni-
cally increasing and bounded OVF.

Sketch of proof and remarks : We want to apply the Hopf theorem to system
(2.6), but unfortunately this can’t be done directly because the matrix M,
appearing in the linearized version of this system, is singular. We can solve
this problem introducing the variables φj = Xj+1 − Xj + L/N (headways)
and ηj = Yj+1−Yj (relative velocities). The occurrence of the zero eigenvalue

is due to the conserved quantity
∑N

j=1 φj = L. Using this relation together

with
∑N

j=1 ηj = 0, we can eliminate variables xN and yN and rewrite system
(2.6) as





φ̇i = ηi i = 1, . . . , n
η̇i = V (φi+1)− V (φi)− ηi i = 1, . . . , n− 1
η̇n = V (L−∑n

k=1 φk)− V (φn)− ηn

(2.13)
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with n = N − 1, or, writing w = (φ, η)

ẇ = G(w), w ∈ R2n (2.14)

If we express system (2.14) in the form

ẇ = Aw + g(w), g(w) = 0(‖w‖2) (2.15)

then matrix A is regular and has the same eigenvalues of matrix M except
0 and −1. It has the block structure

A =

(
On In
Bn(β) −In

)
(2.16)

with

Bn(β) =




−β β 0 . . . . . . 0

0 −β β
. . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 . . . . . . 0 −β β
−β . . . . . . . . . −β −2β




(2.17)

Note that the parameter L doesn’t appear anymore, but A depends on it
via β = V ′(L/N) and the nonlinearity g(w) depend on L. Next we need some
formula to calculate the quantity `± for L = L±. Set λ(β1) = λ± = ±iω1

with ω1 > 0 and let q,p ∈ Cn be respectively an eigenvector corresponding
to λ+ and its adjoint, satisfying the normalization < p,q >= 1 (the standard
scalar product in Cn is taken to be anti-linear in the first argument). Consider
also the two multilinear functionals B(x,y) and C(x,y, z) defined as

Bi(x,y) =
n∑

j,k=1

∂2Gi(ξ)

∂ξj∂ξk
|ξ=0xjyk

Ci(x,y, z) =
n∑

j,k,l=1

∂3Gi(ξ)

∂ξj∂ξk∂ξl
|ξ=0xjykzl (2.18)

where i = 1, . . . , 2n. Observe that these multilinear functionals depend on
L±, while A and hence both p and q are the same for L = L− and L = L+,
since β1 = V ′(L±/N). Then we have the following invariant expression for
the first Lyapunov coefficient (see [19] for a proof of this formula):
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` =
1

2ω1

Re
[
< p,C(q,q, q̄) > −2 < p,B(q,A−1(β1)B(q, q̄)) > +

+ < p,B(q̄, (2iω1I−A(β1))
−1B(q,q)) >

]
(2.19)

A direct calculation leads now to formula (2.12). In the appendix we
explicitly calculate ` in the more complicated case of non-zero aggressive
term and non-constant reaction times.

Remark 5 Notice that for N > 2 the quantity s1(c1+1)(5−3c1)−1, appearing
as a coefficient in (2.12), is positive and, since we are only interested in the
sign of `, it is sufficient to study the factor in square brackets which will be
referred to as ˆ̀ in the following.

2.2.3 Discussion for different optimal velocity func-
tions

We analytically proved that system (2.6) undergoes a Hopf bifurcation if
L and N are such that

V ′
( L
N

)
=

1

1 + cos 2π
N

(2.20)

and if the quantity

ˆ̀= V ′′′
( L
N

)
−
(
V ′′( L

N
)
)2

V ′( L
N
)

(2.21)

related to the first Lyapunov coefficient of the bifurcation, is non-zero. More-
over, the Hopf bifurcation is supercritical if ˆ̀< 0 and subcritical if ˆ̀> 0.

As examples, we calculate ˆ̀ for the two optimal velocity functions men-
tioned in sec. ??. For VB(x) as in (1.6) we have

ˆ̀= −C
[
1− h

( L
N

)]2
(2.22)

where C is a positive constant and h(x) = tanh2
(
a(x−1)

)
. Then ˆ̀ is always

negative and we conclude that the OVF (1.6) only allows the development
of supercritical Hopf bifurcations. Fig.2.5 represents the implicit curve (2.20)
in the (N,L)-plane with (1.6) as a V function. Following from top to bottom
the vertical line drawn at N = 12, we are ideally shrinking the circuit on
which our twelve cars are moving. For a certain value of L we encounter
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the parabolic-like curve and a supercritical Hopf bifurcation takes place. We
are guaranteed by our previous analysis that the fixed point w0 becomes
unstable and stable periodic orbits are generated in its vicinity. We will see
in the next chapter that a numerical analysis shows that this behavior is
not only local but extended to all the interval between the two bold points
of intersection of the vertical line and the curve. If we continue to decrease
L, we reach the second intersection point and the Hopf bifurcation is, once
again supercritically, absorbed and the fixed point becomes again the only
stable element in the phase space of the system.
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Fig. 2.5: Bifurcation diagram for the
hyperbolic optimal velocity func-
tion (1.6).
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Fig. 2.6: Bifurcation diagram for the
logistic optimal velocity function
(1.5).

If we now try function (1.5), we obtain

ˆ̀= C
3d4 − 6d2 − 1

x(1 + d2)4
(2.23)

where C is a positive constant and d = L
N
. In this case the quantity ˆ̀ is null

for d∗ =
√

1 + 2
3

√
3 ' 1.4679 and if the critical density defined by (2.20)

is less than d∗ the transition is supercritical, otherwise it’s subcritical. The
bifurcation diagram in the (N,L)-plane is this time represented in Fig.2.6,
where we also drew the line L = d∗N separating an upper continuous curve of
subcritical Hopf bifurcations and a lower dashed curve of supercritical Hopf
bifurcations.

Both Fig.2.5 and 2.6 show that, though technically the system undergoes
two Hopf bifurcations, the only interesting one is the one taking place for the
higher value of L. In fact it can be seen that the other one takes place for a
very short circuit and a comparatively large amount of cars, attempting to
describe a situation where the hypothesis of point-like cars fails.
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2.3 Drivers with the same driving law: nu-

merical bifurcation analysis

In the previous section we presented an exhaustive analytical description
of the behavior of the system in the proximity of eventual Hopf bifurcation
points. These results are though local and do not give us insight into the
global stability of the Hopf branches nor do they enable us to detect any
further bifurcation that may take place on these branches. We thus use the
software AUTO2000 to numerically obtain more detailed bifurcation dia-
grams for system (2.6).

The following diagrams are relative to the already mentioned optimal
velocity function

VB(
L

N
) = V max

tanh
(
a( L

N
− 1)

)
+ tanh(a)

1 + tanh(a)
(2.24)

This choice means that, according to the discussion in subsection 3.4,
all the Hopf bifurcations from the quasi-stationary solution are going to be
supercritical.

In section 3 we focused on the case of just one Hopf bifurcation, using then
L as a free parameter to investigate the local characteristics of the bifurcation
itself. We want now to also allow the case of no bifurcation as well as the case
of multiple bifurcations. This can be controlled letting the maximal velocity
V max vary alongside with L. On the other hand N is always thought of as
fixed, being it not suitable as a bifurcation parameter due to the fact that
it is intrinsically discrete and that it controls the dimension of the system
itself.

Fig.2.7 is analogous to figures 2.3(a), 2.3(b) and 2.3(c) and it shows how
increasing V max increases the maximum of function V ′( L

N
) allowing, as L is

varied, for more and more Hopf bifurcations to take place.
Each of the following bifurcation diagrams is calculated for a fixed value

of V max, has L on the horizontal axis and a numerical L2-norm of the solution
on the vertical axis. Moreover the points of continuous curves represent stable
solutions (fixed points or orbits) while those on dashed curves are relative to
unstable solutions.

The dot-dashed curve in Fig.2.7 corresponds, as L is varied, to a branch
of stable fixed points. For each fixed L, we have only one fixed point w0.
No periodic solutions bifurcate from it. Figures 3.8 and 2.9 are both related
to the situation described by the dashed curve in Fig. 2.7. In Fig. 3.8(a) we
witness the birth of a simple supercritical Hopf bifurcation as L is varied. Say
we move along the skew branch from right to left (decreasing values of L),
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Figure 2.7: Function (2.24) for N = 8, a = 2 and V max = 7 (dot-dashed
curve), V max = 12 (dashed curve) and V max = 50 (continuous curve).
The horizontal lines correspond to the quantity (1 + cos 2πk

N
)−1 calcu-

lated for the indicated values of k.

then we have at first a stable fixed point that eventually looses its stability
in favor of a periodic solution which grows in norm and then shrinks again
collapsing on the fixed point in the left Hopf bifurcation. After that we are
once again left with a stable fixed point. Fig.3.8(b) portrays the solutions
represented by the bolt points in diagram 3.8(a) in a slice of the phase space
of the system relative to the i-th car, i.e. the plane (xi, yi). We see there
the unstable fixed point surrounded by a stable cycle. Note that, due to the
rotational group symmetry of system (2.6), Fig.3.8(b) is the same for every
car, i.e. for every i.

The situation in Fig.2.9 is similar, but a new effect appears. Four fold
bifurcations take place on the Hopf bifurcation branch. The blow-up of the
right Hopf bifurcation and the phase portrait of the bold solutions in it
(Fig.2.9(b)) show that for an interval of values of L we have an unstable
fixed point surrounded by a stable cycle, an unstable cycle and once again a
stable cycle. In this case there are two stable objects in the phase space of
the system, so that, according to the initial conditions, trajectories will spiral
toward one of the two and a sufficiently big perturbation can permanently
change the long term behavior of the system.

Let’s turn now to Fig.2.10. We can see that, as V max is increased, the two
folds F1 and F2 move outward eventually passing the verticals on the Hopf
bifurcations. This is an even bigger qualitative change, because, as shown in
Fig.2.10(b), even for a value of L bigger than the analytically forecast critical
value, the system can jump to a periodic orbit. Although even the detail in
Fig.2.10(a) doesn’t allow to observe this, the behavior is locally supercritical
but macroscopically subcritical. This should be compared with the subcritical
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Figure 2.8: Bifurcation diagram and phase space portrait of two solutions for
N = 14, a = 2 and V max = 34.
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Figure 2.9: Bifurcation diagram and phase space portrait of some solutions
for N = 14, a = 2 and V max = 35.
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Figure 2.10: Bifurcation diagram and phase space portrait of some solutions
for N = 14, a = 2 and V max = 50.

phenomenon shown in [15], note though that the model there involves a delay
differential equation, fact that makes a direct comparison impossible. Again
Fig.2.10 shows the appearance of a second Hopf bifurcation branch (solid
curve in Fig.2.7) which is though of secondary importance since its solutions
are unstable cycles. This holds for all the further branches that originate one
inside the other as V max is increased (Fig.3.4).

In Fig.2.12 we have a three dimensional bifurcation diagram of the system.
Hopf bifurcation surfaces other than the first one are not drawn.

2.4 Perturbative argument for non-equal drivers

We now go back to the general eigenvalue equation (3.5). It is trivial to see
that for any eigenvalue λ of (3.5), λ̄ is an eigenvalue too. Supposing that, for
some fixed N -tuple β1, . . . , βN , a couple of eigenvalues lies the imaginary axis
while all the other eigenvalues have negative real part, we investigate how a
small perturbation of the reaction times of the drivers affects the stability of
the system. We call λH = ±iω the couple of eigenvalues with null real part.
Writing equation (3.5) for λH , we obtain

N∏

j=1

(
γj + iω

)
=

N∏

j=1

βj (2.25)
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Figure 2.12: 3D bifurcation diagram. Free parameter are L and V max. In
blue stable fixed points, in yellow unstable fixed points, in red stable
periodical solutions, in green unstable periodical solutions.
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where γj = βj − τjω
2. Now perturb the τj assuming that

αi = τi + εAi, i = 1, ..., N (2.26)

where ε > 0 is a small parameter. Then the eigenvalues become

λ = λ(ε), λ(0) = λH . (2.27)

Substituting (2.26) into (3.5) and differentiating with respect to ε leads
to

λ′(0)
N∑

j=1

1 + iδj
γj + iω

= ω2

N∑

j=1

Aj

γj + iω
(2.28)

where δj = −2ωτj.
We can now state the following lemmas, dealing respectively with the

case of weakly individual drivers and with the case of two co-existing types
of vehicles.

Lemma 3 Suppose all drivers have equal reaction times τ and optimal ve-
locity function V . Then small disturbances of the form (2.26) of the scaled
reaction times stabilize (destabilize) the “stationary” solution if

N∑

i=1

Ai < 0 (> 0). (2.29)

Proof : Setting τj = τ and βj = β ∀j in (2.28), we get

Reλ′(0) =
ω2

N(1 + 4ω2τ 2)

N∑

j=1

Aj (2.30)

q.e.d.
Consider now the case of N − m drivers with reaction time τ and m

drivers with different reaction time, say τ̂ . All drivers have the same β (same
optimal velocity function) but a part of them reacts sensibly slower or faster
than the other one. We could think of a mixed traffic flow situation with
cars and trucks driving on the same street. Since equation (2.25) (and with
it the bifurcational behavior of the system) does not depend on the sequence
in which the vehicles travel on the road, we are free to consider the first
m vehicles as being the elements of the first type (say the trucks) and the
following N−m as all those of the second type (the cars). The perturbations
described by (2.26) become here
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τi + εAi =

{
τ̂ + εAi i = 1, . . . ,m
τ + εAi j = m+ 1, . . . , N

(2.31)

Call

δ = −2ωτ, δ̂ = −2ωτ̂ , γ = β − ω2τ, γ̂ = β − ω2τ̂

Â =
m∑

j=1

Aj, A =
N∑

j=m+1

Aj (2.32)

Lemma 4 In the case of two types of vehicles, a decrease of the reaction
times stabilizes (destabilizes) the ”stationary” solution if and only if

∣∣ω2(τ − τ̂)− Σ)
∣∣ < Γ (> Γ) (2.33)

where

Σ =
m(β + ω2τ̂)A− (N −m)(β + ω2τ)Â

2[mA+ (N −m)Â]
(2.34)

Γ =

√
Σ2 +

m(γ2 + ω2) + (N −m)(γ̂2 + ω2)

mA+ (N −m)Â
(A+ Â) (2.35)

Proof With the hypotheses of the lemma we have A ≥ 0 and hatA ≥ 0,
while equation (2.28) becomes

λ′(0)
[
(N −m)

1 + iδ

γ + iω
+m

1 + iδ̂

γ̂ + iω

]
= ω2

[ A

γ + iω
+

Â

γ̂ + iω

]
(2.36)

a direct calculation shows that Re[λ′(0)] = C(ξ − ξ+)(ξ − ξ−), where C is a
positive quantity, ξ = ω2(τ̂ − τ) and ξ± = Σ ± Γ. Now (2.33) immediately
follows. q.e.d.

This result shows that, if the reaction times of the two populations are
very different from each other, a decrease of the reaction times does not
necessarily imply a stabilizing effect as in case of similar reaction times tack-
led in the previous result. We see that decreasing the reaction times of one
type of vehicles stabilizes the traffic provided that the ratio between its own
number of elements and the number of the vehicles of the other kind is big
enough. However, for a fixed number of vehicles on a circular road this ratio
is bounded from above (as long as we don’t eliminate one type of vehicles)
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and may not reach the required stabilizing limit.Therefore when more than
one type of vehicles are present, we expect dynamical effects which are not
known in the case of equal cars. These results go in the same direction as [23].
However, in [23] the stability is studied depending on the ratio of the numer-
ousity of the two vehicle groups. Here we study the influence of changing the
reaction times under appropriate conditions.
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Chapter 3

Aggressive drivers and variable
reaction times

In this chapter I will consider the case of drivers obeying the same driv-
ing law but with aggressive behavior and reaction times dependent on the
headway. Under these conditions system (1.3) is equivalent to the following
law of motion for the cars

ẍj =
1

T
(
xj+1 − xj

)
{
V
(
xj+1−xj

)
− ẋj+α · (ẋj+1− ẋj)F

(
xj+1−xj

)}
, (3.1)

where j = 1, . . . , N and xj(t) is the distance of car j from a given origin with
the prescription xN+1 := x1 + L.

The contents of this chapter have been published in [9] and are the prod-
uct of a joined work with I. Gasser, T. Seidel and B. Werner.

3.1 Linear and local bifurcation analysis

It is convenient to rewrite system (3.1) with respect to the variables φj =
xj+1 − xj and ψj = ẋj with the prescription ψN+1 := ψ1. We get the system

{
φ̇j = ψj+1 − ψj
ψ̇j =

1
T (φj)

[
V (φj)− ψj + α · (ψj+1 − ψj)F (φj)

] (3.2)

for j = 1, . . . , N . Note that, although we consider relative distances (head-
ways) φj as variables as in chapter 2, we do not do the same with relative
velocities, keeping absolute velocities ψj. This actually simplifies matters in
the case of non-constant T (compare to [8]).
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Because of the assumptions on function V and of the fact that
∑N

k=1 φk =
L, system (3.2) admits as the only stationary solution φsj = L/N , ψsj =
V (L/N) for j = 1, . . . , N . Introducing variables ξj = φj − L/N , ηj = ψj −
V (L/N) for j = 1, . . . , N and w = (ξ, η), the stationary solution becomes
ws = 0. Linearizing around ws = 0 we find a system of the form ẇ =Mw,
where the 2N × 2N matrix M has the structure

M =

(
ON D
β

τ
IN

γ

τ
D− 1

τ
IN

)
(3.3)

where β = V ′(d), γ = αF (d), τ = T (d), IN is the (N ×N)-identity matrix,
ON is the (N ×N)-null matrix and D is the matrix

D =




−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1
1 0 . . . 0 −1



. (3.4)

The associated characteristic equation is

[
τλ2 + (γ + 1)λ+ β

]N −
(
γλ+ β

)N
= 0. (3.5)

Notice that λ = 0 is always an eigenvalue ofM and that this corresponds
to the presence of the conserved quantity

∑N

k=1 φk = L. This very relation
can be used to reduce the dimension of the system and this needs to be done
for two reasons. First we will show below that the system can undergo a Hopf
bifurcation but the Hopf theorem cannot be applied when the matrix of the
linearized system is singular. Second numerical integration and continuation
algorithms greatly gain in stability if no zero eigenvalue is present.

Since the sum of the first N equations of (3.2) gives
∑N

k=1 φ̇k = 0 we can
discard the N -th equation and eliminate the only other occurrence of φN (in
the 2N -th equation) by setting φN = L −∑N−1

k=1 φk. We obtain the reduced
system





φ̇j = ψj+1 − ψj j = 1, . . . , N − 1

ψ̇j =
1

T (φj)

[
V (φj)− ψj + α · (ψj+1 − ψj)F (φj)

]
j = 1, . . . , N − 1

ψ̇N = 1

T (L−
∑N−1

k=1
φk)

[
V (L−∑N−1

k=1 φk)− ψN + α · (ψ1 − ψN)F (L−
∑N−1

k=1 φk)
]

(3.6)
Linearizing system (3.6), we obtain ż = Az, where z := (φ1−d, . . . , φN−1−

d, ψ1 − c, . . . , ψN − c)T and it is easy to show that the (2N − 1)× (2N − 1)-
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matrixA has the same eigenvalues ofM except the zero, i.e., all the solutions
of (3.5) except λ = 0.

We want to study the stability of the stationary solution when the pa-
rameters of the system are varied. The natural candidate as a bifurcation
parameter would be N , but it is not suitable for this role because it is dis-
crete and because, varying it, varies the dimension of the system itself. So
we fix the value of N and let L vary instead, i.e., we imagine the circuit on
which the cars move to shrink or swell. Choosing for example

V (x) =
tanh 2(x− 1) + tanh 2

1 + tanh 2
, T (x) =

x2

1 + x2
, F (x) =

0.5

x+ 1
,

the typical behavior of the eigenvalues of matrix A (solutions of (3.5)) can be
seen in Fig. 3.1, where we have plotted the curves described by the eigenvalues
(in the direction shown by the arrow) as L is increased. For sufficiently small
values of L all the eigenvalues have negative real part. Increasing L can cause
one or more pairs of eigenvalues to cross the imaginary axis (points A1 and
A2), so that the stationary solution is unstable and a bifurcation has taken
place. A further increase leads once again to a condition of stability (points
B1 and B2). Note that in Fig.3.1 we only drew the N − 1 eigenvalues that
can have a positive imaginary part. There are always N eigenvalues that can
never cross the imaginary axis. To study this set λ = iω in (3.5) and find
solutions ωk = skβ/σk and the conditions for a possible of stability (i.e., the
condition for which the k-th couple of eigenvalues is purely imaginary)

Ck(
L

N
) :=

τβ

σ2
k

− γ

σk
=

1

1 + ck
, (3.7)

for k = 1, . . . , N − 1, where ck := cos(2πk/N), σk := 1− γ(ck− 1). Note that
the left hand side of (3.7) depends on L/N through γ, τ and β, while the
right hand side only depends on N . As we will show, the only bifurcation
that produces stable periodic solutions is the one corresponding to k = 1,
which is drawn in Fig.3.2. The intersection points LH

1 and LH2 correspond to
the two crossings of the imaginary axis described above. Note that function
C1 is bell-shaped due to the assumptions made on the functions V , T and F .

This suggests that for L = LH1,2 the system undergoes a Hopf bifurcation
and therefore periodic orbits will appear (at least locally).

Theorem 2 If N is fixed and L = LH is such that

C1(
LH

N
) =

1

1 + cos 2π
N

(3.8)

holds, then system (3.6) undergoes a Hopf bifurcation.
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Proof : If (3.8) is verified for some LH , there is a solution of (3.5) λ1 :=
λ1(L) := µ1(L) + iω1(L) such that µ1(L

H) = 0. It is sufficient to prove that
µ′(LH) 6= 0. This is true and it can be directly checked as in [8].

Remark 6 It is possible to calculate the first Lyapunov coefficient of the
bifurcation `1(L) (see the Appendix for this calculation and [19] for the un-
derlying theory) and, if `1(L

H) 6= 0, this can be used to gain insight in the
stability of the generated periodic solutions, i.e., in sub- or super-criticality
of the bifurcation.

In the next section we show that this is the case. Note that to rigor-
ously state that we are indeed observing a Hopf bifurcation for L = LH

1,2 two
genericity conditions must be verified. These involve long and tedious cal-
culations, especially those relative to the Lyapunov coefficient, and are not
reported here. For an example on how to proceed see [8].

Let us discuss another aspect of the conditions (3.7). Considering τ =
τ(L,N, α) we can solve equation (3.7) for τ

τ(L,N, α) =
(1 + 2αF ( L

N
))[1 + αF ( L

N
)(1− cos 2π

N
)]

V ′( L
N
)(1 + cos 2π

N
)

(3.9)

For fixed N and α this is a function of L such that limL→0+ = limL→∞ =
∞. In addition we have ∂τ

∂α
> 0, ∀L,N . This can be summarized in the
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following lemma.

Lemma 5 Aggressive driving behavior increases the stability (of the quasi-
stationary solutions) in the sense that

∂τ

∂α
> 0, ∀L,N.

The result of this lemma can be interpreted in two ways. The loss of sta-
bility occurs for fixed L and increasing α at higher values of τ . Alternatively
we can say, that for fixed τ and increasing α the unstable region (in values of
L) becomes smaller. Note that, though aggressive drivers reduce the occur-
rence of traffic jams, they might induce more car crashes. In fact there are
investigations, where on one hand a stabilizing effect of aggressiveness and
on the other hand an increased crash risk are observed [25].

3.2 Numerical bifurcation analysis

In this chapter we want to solve system (3.6) numerically with AUTO2000

(see [?]) to understand its global behavior. It is our special concern to show
the dependence on different reaction times T (x) and on parameter α that
corresponds to the aggressiveness of the drivers. Various bifurcation diagrams
will be drawn with L on the x-axis and a special norm of the solution

Norm(x) :=

√√√√
∫ 1

0

[N−1∑

j=1

φj(t)2 +
N∑

k=1

ψj(t)2
]
dt (3.10)

on the y-axis with x = (φ1, . . . , φN−1, ψ1, . . . , ψN)
T . In case of the sta-

tionary solution equation (3.10) becomes

Norm(x) :=

√√√√
N−1∑

j=1

(
L

N

)2

+
N∑

j=1

V

(
L

N

)2

,

which is drawn in Fig. 3.3(a).
We always choose F (x) = 0.5(x+1)−1 for the numerical analysis and use

V (x) = Vmax
x2

1+x2 as an optimal velocity function (see [22]).

3.2.1 Aggressive drivers with constant reaction time

Let us examine the effect of the aggressive term with constant reaction
times, i.e. we set T = 1 in (3.6). A typical bifurcation diagram for this
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(a) Norm of the stationary solution. (b) Two Hopf bifurcation points (1 and
2) joined by a branch of periodic solu-
tions.

Figure 3.3: Two Bifurcation diagrams for N = 5, V max = 8 and a function
T (x) = 1.

case is drawn in Fig. 3.3(b). What we see is the stationary solution that
becomes unstable on the left (with label 1) and then stable on the right Hopf
bifurcation point (label 2). These two Hopf points are joined by a branch of
periodic solutions, the labels 4, 5 and 6 correspond to period doubling points,
label 3 to a fold. In figure 3.4(a) we see solution 5 where all the five headways
between the drivers are plotted as a function of time. One can see that the
solution is a traveling wave with a phase shift of 1

5
(the time is always scaled

with respect to the period of the solution under consideration).
As mentioned before, there are two main aspects which need to be taken

into account: the stability and the physicality of both stationary and periodic
solutions. In fact most periodic solutions in figure 3.3(b) (e.g. see Fig. 3.4(b))
are unphysical.

Fig. 3.5 shows the influence of α on the stability of the stationary solution.
The L/Vmax-diagram shows the manifolds of the Hopf bifurcation points with
varying α as a numerical result from calculations with AUTO2000. According
to Lemma 5 the Hopf curve moves upward (in positive Vmax direction) as
α is increased, which means that the region in parameter space, where the
stationary solution is stable, grows.
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Figure 3.4: Bifurcation diagram and a periodic solution for N = 5, V max = 8
and a function T (x) = 1.
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3.2.2 The pure optimal velocity model with variable
reaction time

In the previous section we always chose the reaction time T (x) = 1. Now
we want to have a look at the influence of a non-constant T on the bifurcation
diagrams. In the simulations that correspond to Figs. 3.6(a) and 3.6(b) T is
still constant but very small. One can see, that in the first case (T (x) = 0.1)
there is no unstable stationary solution while in the second (T (x) = 0.2) the
distance between the two Hopf bifurcation points, that are joined by a branch
of stable periodic solutions, is small. This is what we would expect from real
traffic: drivers who are quicker to react, can better absorb perturbations and
find again the ordered situation corresponding to the stationary solution.

(a) T (x) = 0.1 (b) T (x) = 0.2

-0.2
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Headway2
Headway3
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Headway5

(c) The traveling wave corresponding
to the (unphysical) solution 3 in Fig.
3.6(b)

Figure 3.6: Bifurcation diagrams and a special periodic solution for N = 5,
Vmax = 8 and constant (low) T (x).

From Fig. 3.6(c) it can be seen that there are still unrealistic periodic
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solutions in the simulation because the headways are sometimes negative.
Next we would like to combine the previous reaction times by taking a

function T that is 0.2 for small headways and 1 for big ones. This seems to
be a realistic approach, because drivers become more attentive when they
are closer to the car ahead.

Fig. 3.7 shows the results of the simulation with T1(x) =
x2

1+x20.8 + 0.2.
Again in Fig. 3.7(a), we see two Hopf bifurcation points (1, 2), two period
doubling points (7, 10) and further on two folds (5,6). The area with stable
periodic solutions is bigger than in Fig. 3.4 but Fig. 3.7(b) shows that solu-
tions 8, 9, 10 are still unphysical while only the headways of solution 4 stay
positive (we plotted just one headway as the solutions are always traveling
waves).

(a) Two Hopf bifurcation points joined
by a branch of periodic solutions.

(b) Solutions corresponding to labels 4,
8, 9 and 10 in Fig. 3.7(a) projected into
the evolution in time of the headway
between the first two drivers.

Figure 3.7: Bifurcation diagram and periodic solutions for N = 5, V max = 8
and a function T1(x) =

x2

1+x20.8 + 0.2.

In comparison to this see Fig. 3.8 where we use the function T2(x) =
x6

1+x60.8 + 0.2 as a reaction time with a faster changeover between the two
different states than T1. It can be recognized from the fact that the headways
corresponding to solutions 3, 4, 5 and 6 in Fig. 3.8(b) are positive, so it looks
like the new reaction time works like a bumper between the cars.

In Fig. 3.9 three different reaction times T1, T2 and T3 can be seen where
in T3 the drivers are more watchfully for small headways than in T1 and T2.

At last we want to increase the number of cars in order to see if the
system behaves in a similar way as before. Therefore we choose the function
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(a) Two Hopf bifurcation points joined
by a branch of periodic solutions.

(b) Solutions corresponding to labels 3
to 6 in Figure 3.8(a).

Figure 3.8: Bifurcation diagram and phase space portrait of a periodic solu-
tion for N = 5, V max = 8 and a function T2(x) =

x6

1+x60.8 + 0.2.
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Figure 3.9: Three different functions T1(x) =
x2

1+x20.8+0.2, T2(x) =
x6

1+x60.8+

0.2 and T3(x) =
x6

1+x60.9 + 0.1.
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T3(x) = x6

1+x60.9 + 0.1 as reaction time and repeat the previous simulation
with ten cars.

(a) Two Hopf bifurcation points joined
by a branch of periodic solutions.

(b) Solutions corresponding to labels 7
to 14 in Fig. 3.10(a).
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(c) Traveling wave solution correspond-
ing to label 11 in Figure 3.10(a).

Figure 3.10: Bifurcation diagram and periodic solutions for N = 10, V max =
8 and a reaction time T3(x) =

x6

1+x60.9 + 0.1.

The bifurcation diagram and the phase space in figure 3.10 affirm the
results from before. We now have six Hopf bifurcations (with labels 1 to
6) from which the outer, where the stationary solutions changes its stability,
are the most interesting ones. Between them, the branch of periodic solutions
becomes stable after a fold (solution 7). Fig. 3.10(c) shows the traveling wave
of solution 11 where the ten headways of the drivers contain a phase shift
of 1

10
over the whole period now. There is no orbit in the branch of periodic

solutions between the Hopf bifurcations that is unrealistic (Fig. 3.10(b)).
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3.2.3 The full model (3.1)

In the last section of this chapter we use both the variable reaction time
T and the aggressiveness of the drivers α for parameters that might have
an influence of the stability and the quality of the system concerning the
unrealistic solutions. Figure 3.11 shows the effect of these two quantities.

(a) α = 1
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(b) α = 1: Traveling wave correspond-
ing to label 6 in 3.11(a).

(c) α = 5
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(d) α = 5: Traveling wave correspond-
ing to label 3 in 3.11(c).

Figure 3.11: Bifurcation diagrams and phase space portrait of some periodic
solutions with varying aggressiveness. N = 10, V max = 8 and a function
T3(x) =

x6

1+x60.9 + 0.1.

One can directly compare Fig. 3.11(a) and 3.11(c) to Fig. 3.10 (where
α = 0). First we know from the starting section of this chapter and from the
theoretical analysis, that an increasing α makes the system more stable in the

39



sense explained above. But this implicates that for a fixed Vmax the distant
between the two outer Hopf bifurcation points shrinks. Hence the bifurcating
periodic solutions have a decreasing amplitude. Further more one can see
from Figs. 3.10(b), 3.11(b) and 3.11(d) that the minimum of the particular
traveling wave increases – in a way the solutions become more realistic.
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Chapter 4

Conclusions

In this short chapter I will summarize the exposed analysis of follow-the-
leader traffic models.

The most general follow-the-leader model, written in (1.3), makes as-
sumption that the headway xj+1 − xj is the major quantity observed by the
drivers during the motion and that the value of this quantity at any given
instant, determines future changes to speed and position.

The headway appears as argument of three functions in (1.3), corre-
sponding to the three characteristics of the sub-models analyzed in this
work: the optimal velocity term V (xj+1 − xj) − yj, the aggressiveness term
α(yj+1 − yj)F (xj+1 − xj) and the reaction time function T (xj+1 − xj).

Moreover system (1.3) allows for the possibility that each car would have
different functions in these terms (non-equal drivers models). Models for
which this is not the case are those where all the drivers obey to the same
driving law (equal drivers models).

We only considered system (1.3) on a circular road.
For all the considered equal drivers models we showed that:

1. The loss of stability of quasi-stationary solutions can be shown rigor-
ously to be due to a Hopf bifurcation. This is true for general optimal
velocity functions V , aggressiveness functions F and reaction time func-
tions T satisfying only a very few basic requirements.

2. The bifurcation is not necessarily subcritical (as conjectured in litera-
ture).

3. For the optimal velocity model we analytically obtain a criterion which
tells us about the sub- or supercriticality of the Hopf bifurcation. In
the case of aggressive behavior and variable reaction times it is still
possible to produce such a result but it has a very complicated form.
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4. Performing a numerical global bifurcation analysis we see that the crit-
ical parameter for the loss of stability obtained by the linear stability
analysis is in general not the relevant one. Even in the stable regime sta-
ble periodic solutions may (co-)exist. In particular this is independent
of the type of Hopf bifurcation.

5. Aggressive behavior and variable reaction time seems to favor the sta-
bility of the quasi-stationary solution.

For the non-equal drivers optimal velocity model we analytically con-
firmed that faster (slower) reacting cars stabilize (destabilize) the traffic flow.
In addition we show that this is in general not the case if cars with different
reaction times are present.
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Appendix A

Calculation of a first Lypunov
coefficient

In this appendix I will go back to the situation described in section 3.1 and
explicitly calculate the Lyapunov coefficient relative to the Hopf bifurcation
of system (3.6). First I rewrite system (3.6) in terms of the variable z := (ξ, η)
with ξj := φj − d and ηj := ψj − c for j = 1, . . . , N obtaining





ξ̇j = ηj+1 − ηj
η̇j =

1
T (ξj+d)

[
V (ξj + d)− ηj − c+ α · (ηj+1 − ηj)F (ξj + d)

]

η̇N = 1

T (d−
∑N−1

k=1
ξk)

[
V (d−

∑N−1
k=1 ξk)− ηN − c

+α · (η1 − ηN)F (d−
∑N−1

k=1 ξk)
]

(A.1)

for j = 1, . . . , N−1 so that now the stationary solution is zs = 0. Linearizing
around zs we obtain the system ż = Az, where A is the following (2N−1)×
(2N − 1) matrix

A =

(
ON−1 Bb
β

τ
Ch

γ

τ
D − 1

τ
IN

)
(A.2)

where ON−1 is the (N − 1)× (N − 1) zero-matrix, IN is the N ×N identity
matrix, D is as in (3.4), Bb is the (N − 1)×N matrix

Bb =




−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1


 . (A.3)

and Ch is the N × (N − 1) matrix given by
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Ch =




1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1
−1 . . . . . . −1



. (A.4)

As already remarked, the eigenvalues of matrix A are all the solutions of
equation (??) except λ = 0 and this will allow us to apply the Hopf theorem
and formula (2.19) for the Lyapunov coefficient.

Now fix the value of the bifurcation parameter to L = LH as in theorem 2
so that we have a single pair of eigenvalues ±λH := λ1,N (L

H) = ±iω, ω > 0
with zero real part while all the other eigenvalues have negative real part.
We have

τH(λH)2 + λH = (w − 1)(βH + γHλH) (A.5)

with w := exp(2π/N), τH := T (LH/N), βH := V ′(LH/N) and γH :=
αF (LH/N) or alternatively

τHβH

σ2
− γH

σ
=

1

1 + c
, ω =

sβH

σ
(A.6)

where c := cos(2π/N), s := sin(2π/N) and σ := 1− γH(c− 1).
Note that, since the value of L is fixed to LH throughout this appendix,

there is really no need for the superscript H on parameters τ , β and γ, so I
will drop them in the following. Moreover I will also write λ for λH , so that
in the following λ is going to be the special eigenvalue of matrix (A.2) such
that λ = iω with ω as in (A.6).

We want to evaluate the first Lyapunov coefficient using formula

` =
1

2ω
Re
[
< p,C(q,q, q̄) > −2 < p,B(q,A−1B(q, q̄)) > +

+ < p,B(q̄, (2iω1I−A)−1B(q,q)) >
]

(A.7)

where A is matrix (A.2) and the functionals B and C, defined in (2.18), are
calculated for system (A.1).

I will use the following notation:

x for a (2N-1) column vector

x̂ for an (N-1) column vector
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x for an N column vector

We need two vectors q and p such that:





Aq = λq
ATp = −λp
< p,q >= 1

(A.8)

Making the ansatz qT = (q̂T , qT )T we get

Aq =

(
Bbq

β

τ
Chq̂ − 1

τ
q + γ

tau
Dq

)
= λ

(
q̂
q

)
(A.9)

Noting that ChBb = D, we rewrite the first equation in (A.9) as

Dq = λChq̂ (A.10)

and plugging this into the second equation we get

Dq =
τλ2 + λ

β + γλ
q = (w − 1)q (A.11)

where in the second equality I used (A.5). So q is an eigenvector of D with

eigenvalue (w − 1). It can be checked that q
k
= wk for k = 1, . . . , N works.

Now using (A.10), we discover q̂k =
1
λ
(w − 1)wk.

Similar calculations can be used to find the adjoint eigenvector p leading
to

q =

(
w−1
λ
û

u

)
p = ρ

(
− β

τλ
(û− ê)
u

)
(A.12)

where ûk = wk, k = 1, . . . , N − 1, uk = wk, k = 1, . . . , N , êk = 1, k =
1, . . . , N − 1 and ρ is chosen so that < p,q >= 1 is satisfied, i.e.

ρ̄ =
1

N

τλ2

τλ2 + β(w − 1)
(A.13)

We now have to explicitly calculate the multilinear functions B(x,y) and
C(x,y, z) according to definitions (2.18) for system (A.1):

B(x,y) =

(
0̂

B(x,y)

)
, C(x,y, z) =

(
0̂

C(x,y, z)

)
(A.14)

where 0̂ is the null (N − 1)-vector,
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B(x,y) =





Bk = g1xkyk + (g2 + g3)(xkyk+N−1 + xk+N−1yk)+
−g3(xkyk+N + xk+Nyk)

BN = g1

∑N−1
r,l=1 xryl

−(g2 + g3)
(
y2N−1

∑N−1
r=1 xr + x2N−1

∑N−1
r=1 yr

)
+

+g3

(
yN
∑N−1

r=1 xr + xN
∑N−1

r=1 yr
)

(A.15)

for k = 1, . . . , N−1 and with coefficients g1, g2, g3 representing the following
quantities.

g1 :=
1

T 2
(V ′′T − 2T ′V ′), g2 :=

T ′

T 2
, g3 := − α

T 2
(TF ′ − FT ′) (A.16)

where all the functions are calculated in LH/N . For C we have

C(x,y, z) =





Ck = d1xkykzk
+(d2 + d3)

(
xkykzk+N−1 + xkyk+N−1zk + xk+N−1ykzk

)
+

−d3

(
xkykzk+N + xkyk+Nzk + xk+Nykzk

)

CN = −d1

∑N−1
r,l,s=1 xrylzs+

+(d2 + d3)
(
z2N−1

∑N−1
r,l=1 xryl + y2N−1

∑N−1
r,l=1 xrzl + x2N−1

∑N−1
r,l=1 yrzl

)
+

−d3

(
zN
∑N−1

r,l=1 xryl + yN
∑N−1

r,l=1 xrzl + xN
∑N−1

r,l=1 yrzl
)

(A.17)
with coefficients

d1 := −3T ′′T−2(T ′)2

T 3 V ′ − 3 T ′

T 2V
′′ + V ′′′

T

d2 := T ′′T−2(T ′)2

T 3 V ′

d3 := α
(
T ′′T−2(T ′)2

T 3 F + 2 T ′

T 2F
′ − F ′′

T

) (A.18)

all functions being calculated in LH/N .
For the first term in (A.7), it can be directly checked that

C(q,q, q̄) = r1u (A.19)

were the constant r1 is given by

r1 := − d1
λ3 (w − 1)2(w−1 − 1)− d2+d3

λ2 (w − 1)(2w−1 − w − 1)+
+ d3

λ2 (w − 1)(w−1 − 2w + 1)
(A.20)
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so that

< p,C(q,q, q̄) >= r1 < p, (Ô
T , uT )T >= r1 < ρu, u >= ρ̄r1N (A.21)

The second term in (A.7) is zero. To see this notice that B(q, q̄) =
s(ÔT , eT )T for some constant s and ek = 1, k = 1, . . . , N and check that
this is an eigenvector of matrix A and consequently of matrix A−1, so

B(q,A−1B(q, q̄)) >= cB(q, (ÔT , uT )T ) = 0 (A.22)

As for the third term in (A.7), check first that

B(q,q) = r2s, (A.23)

where sk := w2k, k = 1, . . . , N and

r2 :=
g1

λ2
(w2 − 1) + 2

g2

λ
(w − 1)− 2

g3

λ
(A.24)

so that the quantity to be calculated is (2λI−A)−1(0̂T , sT )T .
Let’s set L := 2λI − A and due to the structure of matrix A, we can

make the following ansatz

L−1 =

(
L̃ B̃b

C̃h D̃

)
(A.25)

where L̃ has dimension (N−1)×(N−1), B̃b is (N−1)×N , C̃h is N×(N−1)

and D̃ is N ×N . Imposing L−1L = I we get the four relations

2λL̃− β

τ
B̃bCh = IN−1 (A.26)

2λC̃h −
β

τ
D̃Ch = Oh (A.27)

−L̃Bb + (
1

τ
+ 2λ)B̃b −

γ

τ
B̃bD = 0b (A.28)

−C̃hBb + (
1

τ
+ 2λ)D̃ − γ

τ
D̃D = IN (A.29)

(A.30)

Note that Ds = (w2 − 1)s and Bbs = (w2 − 1)ŝ. Making (A.28) act on s
we get

−(w2 − 1)L̃ŝ+ [
1

τ
+ 2λ− γ

τ
(w2 − 1)]B̃bs = 0̂ (A.31)
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Now note that Chŝ = s and make (A.26) act on ŝ to get

2λL̃ŝ− β

τ
B̃bs = ŝ (A.32)

and putting (A.31) and (A.32) together we find

B̃bs = h
w2 − 1

2λ
ŝ (A.33)

where

h := τ
[
1 + 2τλ− (w2 − 1)(γ +

β

2λ
)
]−1

(A.34)

Similarly let (A.27) act on ŝ and (A.29) act on s and use the two resulting
relations to get

D̃s = hs (A.35)

We’re interested in the quantity

L−1

(
0̂
s

)
=

(
B̃bs

L̃s

)
= h

(
w2−1

2λ
ŝ

s

)
(A.36)

so the third term in (A.7) is

hr2 < p,B(q̄,

(
w2−1

2λ
ŝ

s

)
) > (A.37)

but

B(q̄,

(
w2−1

2λ
ŝ

s

)
) = r3

(
0̂
u

)
(A.38)

with

r3 := − g1
2λ2 (w

2 − 1)(w−1 − 1) + g2+g3
2λ

(2w−1 + w − 1)+
− g3

2λ
(2w2 − w − w−1)

(A.39)

Plugging (A.38) in (A.37) and solving the scalar product we can write
the third term in (A.7) as

ρ̄hr2r3N (A.40)

Using now (A.21) and (A.40) in (A.7) we can write the Lyapunov coeffi-
cient for system (A.1) as
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` = Re
( ¯rhoN

2ω

[
r1 + hr2r3

])
(A.41)

where ρ̄ is defined in (A.13) (notice that the quntity ρ̄N appearing in (A.41)
doesn’t depend on N), h is defined in (A.34) and the quantities r1, r2 and r3,
defined in (A.20), (A.24) and (A.39) respectively, depend on the coefficients
gj and dj (j = 1, 2, 3) to be found in (A.16) and (A.18).
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Zusammenfassung

In dieser Arbeit wird der Kreisverkehr von Fahrzeugen durch einfache mi-
kroskopische Modelle studiert. Das führt zur Analysis von großen Systemen
nichtlinearer gewöhnlicher Differentialgleichungen, wobei die Größe propor-
tional der Anzahl der Fahrzeuge ist. Die nichtlinearen Terme der Gleichungen
haben die Bedeutung von optimalen Geschwindigkeitsfunktionen und werden
heuristisch gewählt.

Es war schon in der Literatur bekannt, dass solche Systeme eine quasi-
stationäre Lösung haben, bei der die Geschwindigkeiten und Abstände al-
ler Fahrzeuge gleich und konstant sind. Diese spezielle Lösung kann für be-
stimmte Parameterwerte (z.B. der Dichte der Fahrzeuge) instabil sein und
verschiedene numerische Arbeiten wiesen darauf hin, dass stattdessen stabile
periodische Lösungen auftreten.

In dieser Arbeit wird analytisch bewiesen, dass der Stabilitätsverlust
durch eine Hopfverzweigung zustande kommt und durch explizites Bestim-
men des 1. Lyapunov Koeffizienten werden den Typ der Verzweigung und die
Stabilität der lokal auftretenden periodischen Lösungen studiert.

Da diese analytische Methode nur lokale Informationen geben kann, hat
man numerische Verfolgungsalgorithmen benutzt, um einen möglichst großen
Ausschnitt des globalen Verzweigungsdiagramms zu erhalten. Das wichtich-
ste Ergebnis dieser numerischen Analyse liegt in der Beobachtung, dass in
manchen Parameterbereichen stabile periodische Lösungen und die stabile
quasistazionäre Lösung koexistieren können, so dass der durch die lineare
Stabilitätsanalyse gegebene kritische Parameterwert nicht der für die An-
wendung relevante ist.

Durch Störungsmethoden wurde gezeigt, dass eine Verkleinerung der Re-
aktionszeiten die Stabilität der quasistazionären Lösung erhöht.

Die Idee einer agressiveren Fahrweise wird auch modelliert. Das System
wird dann mit einem Term erweitert, der den Versuch jedes Fahrers be-
schreibt, nur mehr zu einem bestimmten Anteil eine optimale Geschwindig-
keit zu erreichen, sondern die Geschwindigkeit des vorderes Fahrzeuges ohne
Beachtung des Abstandes. Der Vergleich der entsprechenden Verzweigungs-
diagramme zeigt, dass dieses Verhalten zwar die Stabilität erhöht jedoch auch
eine höhere Unfallhäufigkeit impliziert.
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Summary

This work is a study of vehicular traffic on a circular road by means of
simple microscopic models. This leads to the analysis of high dimensional
systems of nonlinear ordinary differential equations where the size is propor-
tional to the number of vehicles. The nonlinear terms of the equations have
the meaning of optimal velocity functions and are heuristically chosen.

It is already in the literature that such systems have a quasi-stationary
solution, in which the velocities and the headways of all the vehicles are equal
and constant. This special solution can be unstable for certain parameter
values (for example the value of the density of vehicles) and several numerical
studies have suggested that stable periodic solutions may appear in its place.

In this work it is analytically proved that the loss of stability is due to
a Hopf bifurcation, and, by explicitly determining the first Lyapunov coeffi-
cient, a study of the type of the bifurcation and of the stability of periodic
solutions appearing locally is made.

Since this analytical method can only give local information, numerical
continuation algorithms were used to obtain as big a part as possible of the
global bifurcation diagram. The main result of this numerical analysis lies in
the observation that in some parameter regions stable periodic solutions can
coexist with the stable quasi-stationary solution, so that the critical values
of the parameter obtained with the linear stability analysis are not relevant
for the application.

Using variational methods it was shown that a decrease in the reaction
times increases the stability of the quasi-stationary solution.

The idea of a more aggressive driving behavior is also modeled. The sys-
tem is then enhanced with a term describing a tendency of each driver to
match the speed of the driver in front rather than an optimal velocity and
thus disregarding the headway.

Comparing the relative bifurcation diagram it can be seen that while this
behavior increases the stability, it also makes car crashes more frequent.



Lebenslauf

Vorname: Gabriele
Nachname: Sirito
Geburtsort: Parma (Italy)
Geburtsdatum: 1. May 1975
Staatsangehörigkeit: Italian
Addresse: 83 Humber Road

Nottingham NG9 2ET
UK

E-Mail: gabriele.sirito@nottingham.ac.uk
Telefon: +44-115-84-67915 (office),

+44-7940361328 (mobile).

Vorbildung

Aug./2005-Aug./2006 “Fellow Researcher”-Stelle am der University of Not-
tingham. Hauptthema: Mathematische Krebsmodelle.

Dec,/2005 Dissertation zur Erlangung des Doktorgrades mit dem
Titel ”Bifurcation Analysis of a Class of Follow-the-
Leader Traffic Models”.

Jan./2002-June/2005 Stipendium beim Graduiertenkolleg Erhal-
tungsprinzipien in der Modellierung und Simulation
mariner, atmosphärischer und technischer Systeme,
Universität Hamburg, Department Mathematik,
Hamburg. Hauptthema: “Autoverkehrsmodelle”.

Sommer 2001 Visiting Scholar für drei Monate am Center for Bi-
ological and Computational Learning, MIT, Boston,
USA.

April 2001 Laurea (Diplom) in Theoretischen Physik am der
Universität Genua, Italien. Diplomarbeit: “Statisti-
cal Learning and Game Theory”. Mit bester Note:
110/110.

Juli 1994 Maturita’ (Abitur) an der Wissenschaftlichen
Hochschule M. L. King, Genua, Italien. Mit bester
Note: 60/60.

1




