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I

Inhaltsangabe

Der Hauptteil der vorliegenden Arbeit widmet sich der theoretischen Un-
tersuchung der elektronischen und magnetischen Struktur von Fe-Ketten
auf der InAs(110) Oberfläche. Dazu wird zuerst die Geometrie der Fe-
Monolage/InAs(110) mit einem Fe-Atom pro InAs(110) Einheitszelle berech-
net. Ausgehend von dieser Geometrie werden die relaxierten Positionen der
Fe- und InAs-Atome für die Fe-Ketten entlang der [11̄0]- und entlang der
[001]-Richtungen bestimmt. Mit dieser Geometrie wird dann die jeweilige
magnetische Grundstruktur bestimmt. Ausgehend von der Bandstruktur
und den relevanten Zustandsdichten werden Modelle der Austauschwechsel-
wirkung zwischen den Fe-Atomen aufgestellt. Ausserdem werden für die
untersuchten Systeme die STM-Konstantstrom-Bilder und dI/dU-Karten si-
muliert und mit den experimentellen Daten aus STM-Messungen auf Fe-
Multimeren verglichen.

Die Motivation für den zweiten Teil der Arbeit sind gemessene Rastertun-
nelspektroskopie-Daten von Co-Inseln auf der Co(0001) Oberfläche. Dabei
wurde ein elektronischer Zustand unterschiedlicher Intensität bei -300meV
auf topographisch ähnlichen Co-Inseln gemessen. Um dieses Ergebnis besser
interpretieren zu können, wird die Co(0001) Oberfläche mit der obersten
Monolage in fcc- und hcp-Stapelung mit Hilfe der Dichtefunktionaltheorie
simuliert. Auf der Basis der berechneten elektronischen Eigenschaften beider
Stapelfolgen wird ein Modell zur Interpretation der experimentellen Daten
entwickelt.



II

Abstract

The first part of this work presents a theoretical study of the electronic and
magnetic structure of Fe chains on the InAs(110) surface. To achieve this,
first the geometry of an Fe ML/InAs(110) with a coverage of one atom per
unit cell is calculated. Using this geometry as a starting situation the relaxed
positions of Fe and InAs atoms are calculated for the Fe chains along [11̄0]
and [001] directions. With this calculated geometry the energetically prefer-
able magnetic structure is determined. From the electronic properties like
band structure and relevant densities of states the models of the exchange
interaction between Fe atoms in the chain are suggested. Additionally, STM
constant current images and dI/dU maps are simulated for the studied sys-
tems and are compared with experimental STM data on Fe multimers.

The motivation for the second part of the work were experimentally ob-
tained scanning tunneling spectroscopy measurements on Co islands on a
Co(0001) surface. A state of varying intensity was measured on topograph-
ically similar islands at -300meV. To understand this result, density func-
tional theory based calculations are performed on a Co(0001) surface ter-
minated with a monolayer in hcp and fcc stacking. An explanation of the
experimental results is given on the basis of the calculated electronic prop-
erties of both stackings.
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Chapter 1

Introduction

With the decreasing dimensions of electronic devices the quantum phenom-
ena start to play an increasing role. The study of these phenomena is a
major topic in todays’ solid state physics. Out of this range of phenomena
spin electronics (spintronics) is attracting a great amount of attention in the
academic world, and even outside of it. The spin transistor proposed by
Datta and Das [11] has moved the interface between a ferromagnet and a
semiconductor into the focus of research. Due to its high electron mobility
and large effective g-factor of the bulk, InAs is a promising candidate for
spintronic applications. Among the magnetic materials Fe is an interesting
and highly controversial candidate. Despite the multiplicity of theoretical
[15, 54] and experimental [20, 56] studies on Fe for spintronic applications
the detailed mechanism of interaction between Fe and semiconductors is still
unclear. In this work a lot of attention is paid to understand the interac-
tion between Fe and InAs directly at the interface. The covalent, strongly
direction-dependent bonding in InAs raises the question about the direction
dependence of the interaction between the Fe atoms on the InAs surface. To
address this question we decided to study Fe chains along two perpendicular
directions on InAs(110). A reduction of dimensionality can lead to additional
interesting effects.

I simulate the electronic and magnetic structure of the Fe/InAs system
within density functional theory (DFT). DFT is a theory developed in the last
decades [22, 25], which allows the computation of the electronic structure of
crystalline materials from first principles. DFT allows the substitution of the
many-particle Schrödinger equation by the effective single-particle (Kohn-
Sham) equations.

In chapter 2 the Kohn-Sham equations are derived from the DFT, and
a full-potential linarized augmented plane wave method (FLAPW) is intro-
duced to solve them, as it is implemented in the FLEUR code [23]. This
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method allows a very accurate calculation of the geometry and magnetic
structure of the studied systems. The precision is paid for by a high numer-
ical effort of the calculation.

To reduce this effort in the determination of the geometry, insights gained
from experiments are used, namely measurements with the scanning tunnel-
ing microscope (STM), an invention of the 1980’s [5, 6]. The STM allows
measurements of the local density of states (LDOS) of the sample with a
high spatial resolution, exploiting the quantum mechanical tunneling. Addi-
tionally, the interaction between the tip of the STM and atoms at the sample
surface can be used to move the atoms of the sample and in this way structure
the surface. The complexity of the quantum mechanical tunneling makes the
interpretation and prediction of STM results a difficult task. Here we use
an approximative model for the interpretation, which is described in detail
in chapter 3. Nevertheless, we should be aware that the effects of inelas-
tic tunneling, the interaction between tip and sample as well as the specific
electronic structure of the tip are neglected in this approximation.

After the introduction of the tools used in this work in chapter 2 and 3
the results are presented in chapter 4 to 7.

To calculate the electronic structure the geometry of the system has to be
determined first. For the Fe chains on InAs a large unit cell has to be used.
This makes a good first guess for the position of the Fe and surrounding
InAs atoms important. In the first part of chapter 4 the calculation for
an Fe monolayer on InAs(110) is presented. This is less demanding on the
computational ressources than Fe chains and at the same time gives the
starting position for the geometry optimization of Fe chains. The results of
this optimization are shown in the second and third part of chapter 4.

In chapter 5 the magnetic and electronic structure of Fe chains on InAs(110)
is described for the relaxed structure and compared with STM measurements
on Fe multimers.

Motivated by STM measurements of Co islands on Co(0001) a completely
different system is studied in chapter 6, namely Co(0001), which is often used
in layered magnetic thin-film structures.
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Chapter 2

Density Functional Theory

2.1 Kohn-Sham equations

The goal of solid state physics is to investigate and to understand the prop-
erties of materials, which are many-body systems containing an enormously
large number of interacting electrons and ions. Due to the complexity of this
problem it cannot be solved even nowadays neither analytically no numeri-
cally. First attempts to find some simplifications were made a long time ago.
The most essential among them is the Born-Oppenheimer approximation,
which is employed by the majority of first-principle calculations. It states
that as the electrons are very light compared with the nuclei, they move
much more rapidly and one can neglect all the quantum effects due to the
motion of the nuclei. In other words, in this approximation the positions of
ions are fixed, and the Hamiltonian of the system becomes:

H =

N
∑

i=1

− ~
2

2m
∇2

i +
1

2

∑

i,j

e2

|ri − rj |
−
∑

i,I

ZIe
2

|ri − RI |
+

1

2

∑

I,J

ZIZJ

|RI −RJ |
, (2.1)

where ZI denotes the charge of the nucleus I, RI is the position of the nucleus
I and ri the positions of the electrons. But even with this simplification there
is not an analytical or numerical solution for this Hamiltonian, if more than
a few electrons are considered.

A reduction of the complicated many-body problem to an effective single-
particle theory which can be applied for the numerical prediction of the
different properties for different types of materials and which also supplies
deeper physical insight is the density functional theory by Hohenberg, Kohn
and Sham [22, 25].

The Hamiltonian of N interacting electrons is decomposed into three
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parts:
H = T + V + U,

where T is the kinetic energy operator:

T = − ~
2

2m

∑

i

∇2
i ,

the quantity V denotes the external potential, which in the Born-Oppenheimer
approximation consists of the potential due to the fixed ions, and possibly
other external fields:

V =
∑

i

(

Vfield(ri) +
∑

j

Vion(ri − Rj)

)

. (2.2)

The last term of the Hamiltonian is the Coulomb electron-electron interac-
tion:

U =
∑

ij,i6=j

e2

|ri − rj |
. (2.3)

We focus our attention on the observable properties of the system like the
electron density or the ground-state energy. The electron density operator is
defined as:

n̂(r) =
N
∑

i=1

δ(r − ri), (2.4)

from which the electron density is given by:

n(r) = 〈Φ|n̂(r)|Φ〉,

where Φ is a many-body state. Hohenberg and Kohn discovered that this
quantity is actually a crucial variable. This is reflected in two famous theo-
rems.

1. The total ground-state energy, E, of any many-electron system is a
functional of the density n(r):

E[n] = F [n] +

∫

n(r)Vext(r) dr, (2.5)

where F [n] is a functional of the density, but independent of the external
potential.

2. For any many-electron system the functional E[n] for the total energy
has a minimum equal to the total ground-state energy at the ground-state
density.
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The second theorem allows a use of the variational calculation to derive
a single-particle Schrödinger equation. This was done by Kohn and Sham
who split the functional F [n] into three parts:

F [n] = T [n] +

∫ ∫

n(r)n(r′)

|r − r′| dr dr′ + Exc[n], (2.6)

which describe the kinetic, Hartree and exchange-correlation energy. In con-
trast to the Hartree integral, an explicit form of the other functionals, T and
Exc is not known in general. Ignoring this problem at the moment, we use
the variational principle and write:

δE[n]

δn(r)
+ µ

δ(N −
∫

n(r) dr)

δn(r)
= 0, (2.7)

where µ is a Lagrange multiplier taking care of particle conservation. We
now split up the kinetic energy into a term T0 reflecting the kinetic energy
of noninteracting particles and Txc which stands for the rest, i.e. we write:

T = T0 + Txc.

Here we are making an important step, we represent the density in the fol-
lowing form:

n(r) =
N
∑

i=1

|ψi(r)|2, (2.8)

where we assume that we can determine the ’single-particle’ wave-functions
ψi so that the density can be represented in this form. The question if every
possible electron density can be written in this form is open. Then we are
writing the kinetic energy of noninteracting particles as:

T0[n] = − ~
2

2m

N
∑

i=1

∫

∇ψ∗
i (r)∇ψi(r) dr. (2.9)

Since the Schödinger equation is just an Euler-Lagrange equation obtained
by varying T0[n] plus a potential energy term we come to:

(

− ~
2

2m
∇2 + Veff(r)

)

ψi(r) = εiψi(r). (2.10)

Now we determine the effective potential which affects the ith ’single particle’,
such that the density n(r) minimizes the energy functional. Thus, requiring



6 CHAPTER 2. DENSITY FUNCTIONAL THEORY

the functions ψi to be normalized, multiplying the last equation with ψ∗
i ,

integrating and adding we obtain:

T0[n] =

N
∑

i=1

εi −
∫

Veff (r)n(r) dr. (2.11)

Noting that δT0[n]
δn

= −Veff (r) variation of the energy functional is now easily
carried out:

Veff(r) = Vext(r) + 2

∫

n(r′)

|r − r′| dr
′ + Vxc(r) (2.12)

with

Vxc(r) =
δ(Exc + Txc)

δn(r)
. (2.13)

The effective single-particle equation,
(

− ~

2m
∇2 + Veff (r)

)

ψi(r) = εiψi(r) (2.14)

is called the Kohn-Sham equation. It is a Schröedinger equation with the
external potential replaced by the effective potential which depends on the
density. The density itself depends on the single-particle states ψi. The
Kohn-Sham equation thus constitutes a self-consistent problem. By choos-
ing some reasonable starting density, which is usually constructed from the
densities of isolated atoms, the starting potentials are defined. Then by solv-
ing the Kohn-Sham equations the output density is constructed. The output
density is mixed with the input density afterwards, thus becoming the start-
ing density for the next iteration. This iterative process is repeated until the
distance between the output and starting density becomes small. In this case
the calculation is converged and the ground-state density is found.

The Kohn-Sham equation furthermore allows us to derive an alternative
expression for the total energy:

E[n] =

N
∑

i=1,εi≤EF

εi−
∫ ∫

n(r)n(r′)

|r− r′| dr dr′−
∫

Vxc(r)n(r) dr+Exc[n]. (2.15)

The total energy thus consists of the sum over the eigenvalues, εi, minus the
so-called ’double-counting’ terms. Note that in the term Exc we also included
the exchange-correlation kinetic energy Txc.

Although density-functional theory provides the scheme to reduce the en-
tire many-body problem to a Schrödinger-like effective single-particle equa-
tion, the physical meaning of the eigenvalues εi is not clear. These eigenvalues
have been used very often and with success to interpret excitation spectra.
But there also some problematic cases like photoinduced exitations or bulk
plasmons.
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2.2 Spin Density Functional Theory

There are a lot of materials that possess a non-zero magnetisation in the
ground state. The DFT was extended to the case of spin polarized elec-
trons from Barth and Heidin [50] to describe materials of that kind. In this
case the energy functional depends on the electon density n(r) and on the
magnetization density m(r). By introducing the two component Pauli wave
function:

ψi =

(

ψ↑
i (r)

ψ↓
i (r)

)

, (2.16)

we can write for the charge density and magnetisation density:

n(r) =

N
∑

i=1

|ψi(r)|2 m(r) = µB

N
∑

i=1

ψ∗
iσψi. (2.17)

Applying the variational principle:

E[n(r),m(r)] ≥ E[n0(r),m0(r)] (2.18)

we obtain again the KS equations:

(− ~
2

2m
∇2 + Veff(r) + σBeff(r))ψi(r) = εiψi(r) with (2.19)

Veff(r) = Vext(r) + 4πe

∫

n(r′)

|r − r′|dr
′ +

δExc[n(r)]

δn(r)
.

For collinear spin structures, like ferromagnetic and antiferromagnetic align-
ment, the choice of the z-axis along the magnetic field Beff = (0, 0, Beff)
results in the diagonal form of the Hamiltonian in (2.19). So the problem
(2.19) can be solved independently for both spin components. In this case
the energy functional depends only on |m(r)| and n(r). With a trivial trans-
formation:

n(r) = n↑(r) + n↓(r)

m(r) = n↑(r) − n↓(r),

E becomes dependent on the densities of spin up and spin down electrons:

nσ(r) = 2

N
∑

i=1

|ψσ
i (r)|2. (2.20)

Up to this point we have an exact theory. No approximations have been
made. So if we could write the exchange-correlation functional in an explicit
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form, this would be a perfect theory to calculate all ground state properties of
the system. Actual state of affairs is that only approximative representations
for Exc have been found. One very widely used approach is the local spin
density approximation (LSDA), which is described in the following.

2.3 The Local Spin Density Approximation

So far, no approximations have been made. The density functional formal-
ism, outlined in the previous sections, could in principle reproduce all ground
state properties of any complex many-electron system exactly, if the exchange
correlation energy Exc was known. Unfortunately, no explicit representa-
tion of this functional, that contains all many-body effects, has been found
yet. Thus, approximations to Exc have to be used. The most widely used
and very successful approximation is the local spin density approximation
(LSDA). The underlying idea is very simple. At each point of space, Exc is
approximated locally by the exchange correlation energy of a homogeneous
electron gas with the same electron and magnetization density. Hence, the
approximate functional Exc is of the form

Exc[n(r), |m(r)|] =

∫

n(r)εxc(n(r), |m(r)|) d3r. (2.21)

It is important to note that εxc is not a functional, but a function of n(r) and
|m(r)| at a particular point of space. As a consequence of its local definition,
εxc and thus Exc depend only of the magnitude of the magnetization. This,
in terms, leads to the fact that Bxc(r) and m(r) do always have the same
direction. Therefore, the exchange correlation potential and magnetic field
derived from (2.21) become

Vxc(r) = εxc(n(r), |m(r)|) + n(r)
δεxc(n(r), |m(r)|)

δn(r)

Bxc(r) = n(r)
δεxc(n(r), |m(r)|)

δ|m(r)| m̂(r). (2.22)

Using the LSDA, the Kohn-Sham equations take exactly the same form as
the Hartree equations, and they are no more difficult to solve. In particular,
they are far easier to deal with than the Hartree-Fock equations because of
the local effective potential. Intuitively one should expect that the LSDA
is valid only for slowly varying densities. Nevertheless, it has been applied
successfully to inhomogeneous systems.

Explicit parameterizations of εxc can be obtained for example from Hartree-
Fock calculations for the homogeneous electron gas. Of course, such calcula-
tions do only take into account the exchange effects, but neglect correlation.
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Modern parameterizations of εxc are based on quantum-mechanical many-
body calculations. Most commonly used are the parameterizations of Barth
and Hedin [50] and Moruzzi, Janak and Williams [35] which have been ob-
tained applying the random phase approximation (RPA) and the parameter-
ization of Perdew and Zunger [41] which is, in a certain sense, a mixture of
the previous two.

It should be mentioned however, that LSDA is not the solution for all
problems of the solid state physics. For the systems with charge density
strongly varying over space the generalized gradient approximation (GGA)
is more appropriate than LSDA. Other corrections, to apply where neces-
sary, are self-interaction correction (SIC) [41, 47], orbital-polarization cor-
rections [43], LDA+U [3, 44], and exact exchange [46].
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2.4 Solving the KS equations

The solution of the KS equations is represented in form of a series:

ψi(r) =
∑

n

anφn(r) (2.23)

where {φn} is a certain basis set. In the following the basis set, which is
used in this work, is constructed. The plane waves, which are used in this
construction, offer a large number of advantages including their simplicity.
Furthermore, the plane waves are orthogonal, do not anticipate the special
form of the solution and are solutions of the Schrödinger equation for a con-
stant potential. However, in a crystalline material a potential can be approx-
imated with a constant only in the interstitial, far enough from the nuclei.
Around the nuclei spherical harmonics together with the radial solution of
the Schrödinger equation become more suitable to represent ψi(r). Slater
[45] had the idea to augment each plane wave into the solution described by
the Schrödinger equation for the spherical potential.

2.4.1 APW basis functions

In this method and in further modifications of it, like linearized APW (LAPW)
and full-potential LAPW (FLAPW), the crystal structure is partitioned into
spheres around the atoms (muffin-tins) and the space in between (the inter-
stitial). The effective potential Veff is approximated with a spherical part
Veff(r) in the muffin-tins and with a constant in the interstitial. Then a
particular solution ψi(r,k) of the KS equations (2.14) is sought after in the
form:

ψi(r,k) =
∑

G

aGφG(r,k)

φG(r,k) =

{

ei(G+k)r r ∈ interstitial
∑

lm A
µG

lm ul(r)Ylm(r̂) r ∈ muffin-tin µ (2.24)

where G is the reciprocal lattice vector and k is the Bloch vector. The cut-
off Kmax for the norm of the vector K = G + k determines the number
of the plane waves used in the representation 2.24. The coefficients AµG

lm

are determined from the condition of continuity of the wave function at the
muffin-tin boundary. Function ul(r) is the solution of the radial Schrödinger
equation:

(

~
2

2m

∂2

∂r2
+

~
2

2m

l(l + 1)

r2
+ V (r) −E

)

rul(r) = 0, (2.25)
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containing the energy parameters E: ul(r) ≡ ul(r, E).
Inserting ansatz (2.24) in the KS equations (2.14) results in a linear,

easily solvable eigenvalue problem in case of fixed E. However, fixed energy
parameters E do not provide enough variational freedom to describe the
wave function and eigenvalues of the electrons with sufficient accuracy in the
reasonable energy interval. An accurate description of the system can only
be achieved by setting E to the band energies, not known a priori. On the
other hand, in order to find the energy parameters self-consistently, a non-
linear and computationally highly demanding problem is to be solved. This
problem can be cured on the base of the LAPW method, described in the
next section.

2.4.2 LAPW basis functions

The idea of the LAPW method, first proposed by O. K. Andersen [1], is to
linearize radial functions u(εi, r) around a certain energy parameter value
εi = Êl using Taylor expansion:

ul(εi, r) = ul(Êl, r) + (εi − Êl)
∂

∂ε
ul(εi, r)|εi=Êl

+O((εi − Êl)
2). (2.26)

The error of this expansion O(εi − Êl)
2 is of second order and therefore the

error in the energy is of the order 4. According to this idea the basis functions
in the muffin-tins are modified in the following way:

φG(r,k) =
∑

lm

(AµG

lm ul(r) +BµG

lm u̇l(r))Ylm(r̂). (2.27)

The coefficients AµG

lm and BµG

lm are determined from the continuity of the wave
functions φG(r,k) and their derivatives with respect to r on the muffin-tin

boundaries. The u̇(r) := ∂u(El,r)
∂El

can be calculated by differentiating (2.25)

with respect to the energy. By differentiating the scalar product 〈u(r)|u(r)〉
with respect to the energy it is easy to show that u(r) and u̇(r) are orthogonal.
It follows that the LAPW basis functions are orthogonal inside the muffin-
tins since the spherical harmonics are also orthogonal.

LAPW solves the problem of variational freedom that persists for APW
basis functions. However, further substantial improvements of this method
are possible. The APW and LAPW methods use an approximate form of the
potential, i.e. it was assumed to be spherically symmetric in the muffin-tins
and constant in the interstitial. This is an appropriate approximation for
metals in bulk, but is not applicable for the materials in open structures like
semiconductors and surfaces, where the difference between the true potential
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and this approximation is too large. The need for a natural treatment of
systems, where non-spherical contributions to the potential are essential,
leads us to the full-potential LAPW (FLAPW) method.

2.4.3 FLAPW basis

In the FLAPW method no assumptions on the shape of the potential are
made and a more general spatial representation is considered:

V (r) =

{ ∑

G
V G

i eiGr r ∈ interstitial
∑

lm V
lm
MT (r)Ylm(θ, φ) r ∈ muffin-tin

(2.28)

instead of

V (r) =

{

V 0
i = const. r ∈ interstitial

V 0
MT (r) r ∈ muffin-tin.

(2.29)

Because of the limited computational capacities only a finite number of ele-
ments from the infinite series over G and l in (2.28) can be considered. In
(2.28) all elements with |G| < Gmax and l < lmax are used, where Gmax

and lmax are some cut-off parameters. Still, the large number of coefficients
can be considerably reduced by exploiting the symmetry of the system. The
corresponding symmetry group consists of Nop operations {R|t}, where R is
a rotation and t is a non-lattice vector translation. Based on this symmetry
group the plane waves that are associated via {R|t} can be joined together
in so-called star functions:

φs =
1

Nop

∑

R

eiRG(r+t) (2.30)

with the sum over all reciprocal lattice vectors G, that are connected through
the rotation R. Analogously, we combine the spherical harmonics into the
lattice harmonics:

Kα
ν (r̂α) =

∑

m

cαν,mYlm(r̂α), (2.31)

where α denotes the atomic site. One should keep in mind that the point-
group symmetry is in general different from site to site. The index ν accounts
for the fact, that there is in general more than one lattice harmonic for any
given α and l. Finally, every quantity, like charge density or potential, that
possess the symmetry of the crystal, can be represented in terms of star
functions and lattice harmonics:

n(r) =

{ ∑

s nsφs(r) r ∈ interstitial
∑

ν n
α
ν (r)Kα

ν (r̂α) r ∈ muffin-tin α.
(2.32)
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In this way the number of coefficients that have to be stored in computer
memory is drastically reduced due to the fact that every single star function
and lattice harmonic contain terms with coefficients in the expansion (2.28),
which are equal, or connected to each other by phase factors, defined by the
symmetry basis once at the beginning of the calculation.

2.4.4 Surfaces

In the scanning tunneling microscopy (STM) experiments simulated in the
main part of this work, the electronic and magnetic structure of the sample
surface can be measured. In spite of the disrupted periodicity perpendicu-
lar to the surface, nevertheless, it is possible to simulate periodic boundary
conditions based on a super-cell approach. In this case the periodicity per-
pendicular to the surface is restored by choosing an appropriate unit cell con-
sisting of several atomic layers and a separating vacuum layer, thick enough
to prevent adjacent surfaces from interacting. The super-cell approach as
described requires a large number of plane waves to achieve sufficient accu-
racy. An efficient and elegant scheme, originally proposed by Krakauer et
al. [26], allows to overcome difficulties imposed by the super-cell approach
and to reduce the computational effort drastically. The space partitioning
and the unit cell in this method are shown in Fig. 2.1. The film now consists
of some atomic layers, typically up to 20, and is terminated on both sides by
semi-infinite vacuum. The vacuum stretches from −∞ to −D/2 and from
D/2 to ∞. An auxiliary parameter D̄ (D̄ > D) helps to generate a set of
reciprocal vectors and corresponding plane-waves. The inner film space is di-
vided according to the bulk-case into the muffin-tins and interstitial regions,
preserving two-dimensional periodicity.

According to the new geometry an appropriate set of basis functions has
to be considered. Essentially for APW-based approaches, plane waves are still
used to represent the basis functions in the interstitial region (2.24). While
the two-dimensional periodicity and symmetries are preserved, modifications
in the basis functions are required due to the presence of the vacuum region.
Consequently, a generalized wave vector is decomposed into three parts: two
parallel (G‖, k‖) and one perpendicular G⊥ to the surface.

φG‖
(k‖, r) = ei(G‖+k‖)r‖eiG⊥z, (2.33)

where G‖, k‖ are the two-dimensional reciprocal lattice vector and the Bloch
vector, r‖ is the corresponding in-plane part of r and G⊥ = 2πn

D̄
is the z-

reciprocal vector. As φG‖
(k‖, r) form a basis only inside the region with

|z| < D/2, the choice of D̄ > D seems to be arbitrary. This is, however,
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z

x

D/2

vacuum

MT

interstitial
D/2

unit-cell

D/2
D/2

Figure 2.1: A unit cell contains a finite number of lattice planes in z-direction
and is terminated on both sides by a semi-infinite vacuum region. The muffin-
tin spheres are positioned at the atomic sites and the interstitial stretches out
between −D/2 and D/2. The reciprocal vectors in z-direction are generated
by D̄.

only partly true as the span of the plane-wave vacuum boundary values is
important for the variational flexibility of the basis and the optimal choice of
the difference (D̄ − D) can be established numerically (for more details see
[28]).

The basis in the muffin-tins preserves the general shape of (2.27) and can
be rewritten in terms of the two-dimensional wave- and Bloch-vectors as:

φG‖,G⊥
(k‖, r) =

∑

lm

(

AµG

lm (k‖)ul(r) +BµG

lm (k‖)ul(r)
)

Ylm(r̂). (2.34)

The basis functions in the vacuum are defined similarly to the muffin-tin basis
wave functions, namely consisting of two-dimensional plane waves ei(G‖+k‖)r‖

and a z-dependent part u, which is a solution of the one-dimensional Schrödinger
equation:

(− ~
2

2m

∂2

∂z2
+ V (z) − Evac +

~
2

2m
(G‖ + k‖)

2)uG‖
(k‖, z) = 0. (2.35)

From this equation the energy derivative u̇G‖
(k‖, z) can be easily evaluated.

The resulting vacuum part of the basis functions reads:

φG‖,G⊥
(k‖, r) = (AG‖,G⊥

(k‖)uG‖
(k‖, z) + (2.36)

BG‖,G⊥
(k‖)u̇G‖

(k‖, z))e
i(G‖+k‖)r‖ .
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Equation (2.33) in the interstitial, Eq. (2.34) in the muffin-tins and Eq. (2.36)
in the vacuum form the FLAPW basis set in the film-geometry. This basis
set is further used for expanding the solutions of the KS-equations.

2.4.5 The Generalized Eigenvalue Problem

Substituting the expansion ψi(r,k) =
∑

G
ai
G
φG(r,k) in (2.14) yields:

∑

G

ai
G
HφG(r,k) = εi

∑

G

ai
G
φG(r,k). (2.37)

Scalar multiplication of this equation from the left with φG′(r,k) leads to:
∑

G

ai
G
〈φG′(r,k)|H|φG(r,k)〉 = εi

∑

G

ai
G
〈φG′(r,k)|φG(r,k)〉. (2.38)

This equation can be rewritten in matrix form:

(H − εiS)ai
G

= 0, (2.39)

where the overlap matrix

S :=

∫

φ∗
G

(r,k)φ∗
G′(r,k) (2.40)

is in general only hermitian, but not diagonal. The equation (2.39) to be
solved, is a so-called generalized eigenvalue problem, which can be trans-
formed to a conventional eigenvalue problem using Cholesky factorization
applied to the overlap matrix. For a given size N of the matrices in the
eigenvalue problem, the time required for its solution scales like N3, making
it by far the most computationally demanding part of the whole algorithm.
It is highly desirable, therefore, to have an efficiently constructed basis set,
so that the smallest possible matrix size N is sufficient to describe the system
accurately.

2.5 Relaxations

In the Born-Oppenheimer approximation the atomic nuclei are regarded as
point charges with fixed positions Rν . The energy functional still depends
on those Rν . Thus relaxation of the system means minimizing the ground
state energy with respect to Rν . To minimize the ground state energy we
calculate the corresponding force on a nucleus α:

Fα = −∇α〈Ψ0|H |Ψ0〉 =

−〈Ψ0|∇αH | Ψ0〉 − 〈∇αΨ0|H |Ψ0〉− 〈Ψ0|H |∇αΨ0〉, (2.41)
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with Ψ0 being the ground state wave function. The first term in (2.41) is
called the Hellmann-Feynman force [16]. The Hellmann-Feynman theorem
states that the second and third terms vanish in case the basis used for the
expansion of the single particle wave function is complete, which is not the
case for the FLAPW basis set. Thus it is necessary to include the so-called
incomplete basis set correction in the force calculation, first introduced by
Pulay [42]. which arises from the gradient of the wave function on nuclei
positions. The exact form of this correction is calculated in [55].
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Chapter 3

Scanning Tunneling Microscopy

The scanning tunneling microscope (STM) is an instrument, that allows to
study surfaces with high lateral resolution by using the quantum mechanical
tunnel effect. The STM setup basically consists of a sharp metallic tip (the
probe) and a sample surface. Usually the sample is parallel to the xy-plane
with the tip at a vertical distance of about 3-10 Å. The tip can be moved
with a high accuracy in all three dimensions with piezo actuators. Due to the
small distance between tip and sample electrons can tunnel. By applying a
voltage between the tip and the sample their Fermi energies shift against each
other and the tunneling current can be measured as a function of the applied
voltage and the lateral tip position. In first approximation the tunneling
current decreases exponentially with the tip-sample distance. This implies
that the atoms of the sample which lie directly under the tip apex contribute
mainly to the tunneling current. In the following sections of this chapter
some basics of the theory of STM and of the simulation of STM results
are presented. The description in this chapter is restricted to the elastic one-
particle tunneling. This means that possible interactions among the electrons
and between electrons and quasi-particles, like phonons, are neglected. More
details on the subject are given in [4, 9, 10, 52].

3.1 The Perturbational Approach

A schematic representation of an STM tunnel junction is shown in Fig. 3.1.
The tip and a semiconducting sample are separated by vacuum. The Fermi
energies EF

tip of the tip and EF
sam of the sample are shifted by eU . The density

of states of the tip is assumed to be nearly constant. Electrons in occupied
states of the tip can tunnel into empty states of the sample. The transmission
coefficient depends on the distance between tip and sample and the applied
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Figure 3.1: (a) Schematic representation of a sample and an ideal tip with
only one apex atom. The space is devided into a tip part and a sample
part by an arbitrarily formed surface Σ. (b) The electronic situation of the
metallic tip close to a semiconducting surface is shown. The applied voltage
U shifts the Fermi energies by the value eU . The DOS of the tip is assumed
to be nearly constant. The electrons tunnel from the occupied states of the
tip into the empty states of the semiconducting sample.
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voltage. The tunneling current It can be calculated with a perturbational
approach, for the first time suggested for an arbitrary tunnel junction by
Bardeen [4] and then modified for applying to STM by Tersoff, Hamann and
Chen [48, 49, 9].

Bardeen considered the tunneling current as the independend transfer
of electrons across the tunneling barrier described by the single-electron
Schrödinger equation:

i~
∂Ψ(r, t)

∂t
=

(

− ~
2

2m
∇2 + V (r)

)

Ψ(r, t). (3.1)

V (r) is the electrostatic potential energy that an electron would have inside
of STM. The idea of Bardeen was to exploit the knowledge we might have
of the tip and the sample as two separate systems. He defined tip- and
sample-Hamiltonians as :

HsamΨ(r) =

(

− ~
2

2m
∇2 + Vsam(r)

)

Ψ(r) (3.2)

HtipΨ(r) =

(

− ~
2

2m
∇2 + Vtip(r)

)

Ψ(r), (3.3)

with the potentials Vtip, Vsam defined by two conditions:

Vtip(r) ∗ Vsam(r) = 0 (3.4)

Vtip(r) + Vsam(r) = V (r) (3.5)

The eigenstates of the sample- and tip-Hamiltonians (3.2), (3.3) are tip
states ψtip and sample states ψsam respectively. The tunneling current is
the transfer of electrons from tip states to sample states or reverse gov-
erned by the Schrödinger equation (3.1). An electron initially in the sample
state Ψ(r, 0) = ψsam evolves with the time t. With the evolution deter-
mined only by the sample Hamiltonian (3.2) its wave function would become
Ψ(r, t) = ψsam exp

(

− iEsamt
~

)

.

To take into account the influence of the tip, an additional term is used
to represent Ψ(r, t):

Ψ(r, t) = ψsam exp

(

−iEsamt

~

)

+
∑

ν

cν(t)ψ
ν
tip exp

(

−
iEν

tipt

~

)

. (3.6)

The additional term is the sum over all bound states ψν
tip with eigenvalues

Eν
tip of the tip Hamiltonian.
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Inserting this representation in (3.1) yields a set of differential equations
for cν , that can be solved like described in [7, 19], with the result:

cν =
exp(−itEsam/~) − exp(−itEν

tip/~)

Esam −Eν
tip

〈ψν
tip|Vtip|ψsam〉 (3.7)

The probability of the electron to be in the state ψν
tip is calculated from the

square of the expansion coefficients |cν|2. The transition rate from state ψsam

into ψν
tip is then defined as:

w =
d

dt
|cν |2. (3.8)

Due to the symmetrical treatment of the tip and the sample to this point w
also gives the transition rate from the given tip state ψν

tip into ψsam. Inserting
cν in this definition and considering only elastic tunneling yields Fermi’s
Golden Rule:

w =
2π

~
δ(Eν

tip − Esam)|M |2 (3.9)

M = 〈ψν
tip|Vtip|ψsam〉.

The delta function annihilates all the transitions with Esam 6= Eν
tip, so that

only elastic tunneling processes are considered. The occupation of the states
by the electrons at the temperature T is described by the Fermi-Dirac dis-
tribution:

f(E −EF ) =

(

1 + exp

(

E −EF

kBT

))

. (3.10)

By taking into account all possible initial and final states we get for the
tunneling current It:

It =
4πe

~

∑

νµ

(

f(Eµ
sam − EF,sam) − f(Eν

tip − EF,tip)
)

× (3.11)

× |M |2δ(Eν
tip − Eµ

sam − eV )

with the Fermi function f(E) and the tunneling matrix element M which
determines the probability for an electron to pass from the sample state ψµ

sam

into the tip state ψν
tip. Bardeen [4] calculates the tunneling matrix element

like:

M [ψtip, ψsam] = − ~
2

2m

∫

Σ

ψ∗
tip∇ψsam − ψsam∇ψ∗

tipdS, (3.12)

where the integration is performed over the arbitrary surface Σ separating tip
and sample (compare Fig. 3.1). In the original work [4], where unperturbed
potentials are considered, the corresponding error is minimized by choice of
the surface equidistant between the two electrodes.
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3.2 Tersoff-Hamann Model

Now it is possible to calculate the tunneling current in an STM setup with
equations (3.11), (3.12) in case the exact electronic structure of the sample
and the tip is known. The FLAPW method as described in sec. 2.4 gives ac-
cess to the electronic structure of the sample whereas for the tip the situation
is slightly more complicated. The main problem is that the atomic structure
of any real tip is unknown. The symmetry of the tip is in general so low,
that the exact calculation of the electronic structure of the tip remains a very
demanding problem even with knowledge of the atomic structure available.
Thus, simplifying assumptions have to be made. For the interpretation of
STM experiments the Tersoff-Hamann model of the tip has been used very
successfully. This model is based on two assumptions, firstly that the tip has
one apex atom in the s-state and secondly that the tunneling happens in the
limits of low temperature and low voltage.

To evaluate the tunneling matrix element (3.12) we need the tip wave
function ψtip on the surface Σ, located somewhere in the vacuum gap be-
tween the electrodes. This means that the ψtip has to satisfy the Schrödinger
equation in the vacuum:

(∇2 − κ2)ψtip(r) = 0 (3.13)

with the decay constant κ. ψtip(r) can be expanded into the spherical har-
monics:

ψtip(r) =
∑

almfl(κρ)Ylm(θ, φ), (3.14)

with ρ = |r−Rt| where Rt is the position of the apex atom. Inserting ansatz
(3.14) into equation (3.13) results in the spherical modified Bessel functions
of the second kind:

kl(u) = (−1)lul

(

1

u

d

du

)l
e−u

u
(3.15)

with u = κρ, for the radial part fl. So the tip wave function for an s-orbital
has the form:

ψtip(r) = Ck0(κρ) = C
e−κρ

κρ
. (3.16)

It is crucial for the following considerations that the wave function of an
s-orbital at the apex atom is proportional to the Greens function of the
Schrödinger equation in vacuum. Substituting (3.16) into (3.12) and using
the Greens theorem we obtain:



22 CHAPTER 3. SCANNING TUNNELING MICROSCOPY

M [ψtip, ψsam] =
2πC~

2

κm

∫

ΘT

G(r −Rt)∇2ψsam − ψsam∇2G(r − Rt)dV =

=
2πC~

2

κm
ψsam(Rt), (3.17)

with ΘT denoting the volume of the tip. Using this matrix element together
with (3.11) leads to the following expression for the tunneling current:

lim
T=0

I(Rt, V ) = lim
T=0

[

16π3C2
~

3e

κ2m2
×

×
∫

ρsam(Rt, E) [f(E −EF,sam) − f(E + eV − EF,tip)] dE

]

=

=
16π3C2

~
3e

κ2m2

∫ EF +eV

EF

ρsam(Rt, E)dE

(3.18)

with the local density of states (LDOS) defined as:

ρ(r, ε) = lim
∆ε→0

ε+∆ε
∑

Eµ=ε

|ψµ(r)|2δ(ε−Eµ). (3.19)

The tunneling current It(V ) (3.18) is proportional to the integrated LDOS of
the sample under the additional constraint of a constant DOS of the tip. An
immediate consequence of equation (3.18) is that dI

dV
∼ ρsam(Rt, E). Three

basic measurement modes of an STM directly connected with It(V ) and dI
dV

are described in the following section.

3.3 Measurement Modes

In an STM experiment, different kinds of measurements can be done. I will
discuss here the constant current mode (CCM) that allows to measure the
topography of the surface, the spectroscopic dI/dV mapping, and the full
spatially resolved spectroscopy of a sample.

3.3.1 Constant Current Mode

In the CCM during the scanning of the xy-plane, a feedback system keeps
the tunneling current It at a constant value. The tunneling current (3.18)
depends exponentially on the distance between the tip and the surface, so by
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doing small adjustments in the distance, It can be regulated very efficiently.
The feedback loop keeps the tip on the surface, where

∫ EF +eV

EF
ρs(Rt, E)dE =

const.. Consequently, scanning in CCM gives only an approximate measure-
ment of the surface topography. Features in the LDOS will also affect the
measurement when scanning in CCM.

3.3.2 Spectroscopic dI/dV Mapping

According to equation (3.18) the dI/dV signal is directly proportional to
the LDOS of the sample at the position of the tip. A map of the differ-
ential conductivity (dI/dV ) is obtained simultaneously with a topography
measurement. To get the dI/dV map a small modulation voltage with a
frequency of a few kHz is superimposed on the bias voltage during the CCM
measurement. With a frequency higher than the cut-off frequency of the
feedback circuit this modulation does not have any influence on the CCM
tracking. The lock-in technique allows to record the corresponding dI/dV
signal.

3.3.3 Full spatially resolved spectroscopy

After positioning the tip with stabilization voltage Vst and stabilization cur-
rent Ist at the point of measurement, the feedback of the system is switched
off. Then the voltage of the tip is changed slowly from a starting to a fi-
nal value. At the same time I(V ) and the dI/dV signal are recorded by
means of lock-in technique. Spatially resolved spectroscopic information is
obtained by repeating this procedure at every location (x, y) of the image
frame. These full spectroscopy measurements take a longer time to record
than dI/dV maps. The advantage of the full spectroscopy measurement
is, that it gives the dI/dV signal for a complete voltage range without the
additional influence of the change of a tip height.

3.4 Simulating Experiments

The tunneling current is kept constant in the CCM through the adjustment
of the z coordinate of the tip. This means that an STM image in the CCM
represents the ∆z movement of the tip from the starting height z for every
point r‖. The simulation gives access to the LDOS of the sample at every
given point in the simulated space. This means that we can easily get the
plots of the LDOS at the distance z = const. from the surface. In the Tersoff-
Hamann theory this corresponds to the change in the current ∆It for every
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point r‖ if the feed-back of the tip is switched off. The connection between
measured ∆z movements and ∆It can be established with two assumptions:

• The tunneling current It(r‖, z) for the tip movement in CCM can be
linearized around some set-point value z0.

• The change of It(r‖, z) with z is independent of r‖.

The second assumption is justified because the decay rate κ depends to first
approximation only on the energy of the tunneling electrons and the work
function. Due to the exponential dependence of the transmission coefficient
on the distance, the adjustment of the distance is normally ≈ 0.1 Å, whereas
the tip-sample distance is between 3 Å and 10 Å. Consequently we expect
that the linearization of It(r‖, z(r‖)) around z0 works.

It(r‖, z(r‖)) = It(r‖, z0) + dIt(r‖, z0). (3.20)

Due to the constant current in CCM the change of the current is zero:

dIt =
∂It
∂r‖

(r‖, z0)dr‖ +
∂It
∂z

(r‖, z0)dz = 0 (3.21)

The first term is ∆It(r‖) - the change of the current with r‖ while the z
coordinate of the tip is kept fixed: z = z0. The second term ∂It

∂z
(r‖, z0) is

constant over r‖ due to the second approximation. This means

−∂It
∂z

(z0)dz = ∆It(r‖). (3.22)

Accounting for ∂It

∂z
(z0) < 0 with dz > 0 leads to the equation:

dz(r‖) ∼ ∆It(r‖). (3.23)

This equation connects the change in the vertical position of the tip during
the CCM measurement with the change of the tunnelling current in case
the vertical position of the tip would be kept constant. The latter can be
simulated directly with the LDOS plots calculated at the distance z0 from
the surface.
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Chapter 4

Geometry of Fe on InAs(110)

The idea of spin electronics (spintronics) inspired a lot of extensive experi-
mental [36] and theoretical [13, 29] studies on magnetic semiconductors and
semiconductor/ferromagnet hybrid systems. Promising results on the spin
injection through the interface between magnetic material/semiconductor,
depending on the symmetry, were reported in [54, 31]. Despite the multi-
plicity of these studies, the details of the interaction between a metal and a
semiconductor are still unclear. Additionally, research on quantum confined
structures attracts increasing attention in recent years [38, 32]. This chapter
is focused on the geometry of Fe on InAs(110). The determination of the
geometry is the most demanding part in the calculation. The relaxation of
the Fe monolayer on InAs(110) is calculated at first to obtain a good first
guess of the geometry of Fe chains on InAs(110).

4.1 Fe ML on InAs(110)

InAs is a III-V semiconductor that crystallizes in the cubic zinc-blende struc-
ture. This structure consists of two fcc sublattices that are shifted relative
to each other by 1/4 of the cube diagonal. Each atom is bound to its four
nearest neighbours of the other element. We calculated the lattice constant
to 11.437 a.u., which is in good agreement with the experimentally found
value of 11.46 a.u. (1 a.u.=0.529 Å). The unit cell of the InAs(110) surface,
which contains atoms of both species, is shown in Fig. 4.1 (c).

The calculations are performed using DFT [22]. The exchange-correla-
tion functional is formulated within the local spin-density approximation [40].
The Kohn-Sham equations are solved applying the full-potential linearized
plane-wave (FLAPW) method, as realized in the FLEUR-code [53, 23]. For
simulating the InAs(110) surface we use a slab geometry with five layers of
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Figure 4.1: (a) STM constant-current image of InAs(110) covered with 7.5%
Fe, U = 50 mV, I = 200 pA, T = 8 K; [33] (b) calculated constant-current
image of the relaxed InAs(110) surface, U = 50 mV; (c) from (a) and (b)
deduced position of the Fe-atom in the InAs(110) unit cell; (d) calculated
position of Fe-atom in the InAs(110) unit cell after relaxation; The numbers
on the atoms indicate the vertical relaxation in atomic units from the ideal
bulk terminated position of the surface As.
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Figure 4.2: Side-view of calculated relaxed atomic positions at the InAs(110)
surface covered with an Fe-monolayer. The lower half part shows the relax-
ation of the clean InAs(110) surface. Black circles mark the Fe-positions, gray
the In- and white the As-positions. Tables 4.1 and 4.3 give the corresponding
values of distances, bond lengths and angles.
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InAs embedded in infinite vacua on both sides of the slab. Tests with five
and nine atomic layer slabs of InAs show, that the energetically favorable
structure is reproduced with sufficient accuracy using a five layer slab. Next,
a Fe-monolayer with one Fe-atom per unit cell is placed on one side of the
optimally relaxed InAs slab. For the optimization of the new configuration,
the Fe-monolayer and the two adjacent layers of the InAs are allowed to
relax. To prevent an overlap of the MT-spheres and at the same time to
take into account the extension of the states at the atoms we choose the
radii of the MTs to be 2.2 a.u. for the Fe, 2.0 a.u. for the In and 1.8 a.u.
for the As. The wavefunctions are expanded into augmented plane waves
with a maximum K-vector of Kmax = 3.9 a.u.−1, which amounts to 230
basis functions per atom. The basis functions in the MTs are expanded
into radial functions and spherical harmonics with angular momenta up to
l = 8. The BZ integration is carried out using 121 k‖-points in the irreducible
wedge of the two-dimensional BZ. The starting position for the relaxation
of the Fe-atom is deduced as follows: We compare measured STM images of
InAs(110) covered with submonolayers of Fe with calculated STM images of
clean InAs(110) [14, 34]. Fig. 4.1(a) shows the measured image [33]. The
atomic rows of one type of atoms are visible in the background. The bright
spots surrounded by a black rim are the Fe atoms. The inset shows that
the position of the Fe maxima is in between two atomic rows and slightly
displaced towards one of them. Moreover, the Fe maxima are located exactly
between two neighboring maxima inside the InAs rows [33]. The calculated
image of the clean InAs(110) surface at the same voltage is displayed in
Fig. 4.1 (b). The marked atomic centers of the In and the As atoms reveal
that the protrusions in the constant-current image correspond to the As
atoms. This is opposite to the conventional knowledge that cations (In) are
imaged at positive voltage on III-V materials, but has its origin in the high
energy position of the In dangling-bond state of 0.9 eV above the conduction
band minimum and the fact that the surface As atoms are relaxed outwards
[14, 34]. From comparison of Fig. 4.1 (a) and Fig. 4.1 (b) we deduce a lateral
position of the Fe atom as displayed in Fig. 4.1 (c). The optimization process
of this atomic structure led to the structure shown in Fig. 4.1 (d).

Fig. 4.2 shows a side-view of the InAs film after relaxation. The lower
half of the film shows the relaxation without the Fe monolayer, while the
relaxed structure with Fe is shown in the upper half. There, in contrast to
the film without Fe, In and As are nearly at the same height. The In atom is
even slightly higher (0.5 a.u.) than the As atom. The bond length between
In and As in the uppermost layer as well as the bond length between the up-
permost and the next layer of InAs are increased with respect to the relaxed
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distance unit InAs bulk InAs(110) Fe/InAs(110)
a [ a.u. ] 11.437

dFeIn,⊥ [1
2
a/

√
2] 0.079

dFeIn,x [a] 0.429

∆1,⊥ [a/
√

2] 0.000 -0.164 0.056
∆1,x [3

4
a] 1.000 1.033 0.632

d12,⊥ [1
2
a/

√
2] 1.000 1.118 1.241

d12,x [1
2
a] 1.000 1.080 1.266

∆2,⊥ [a/
√

2] 0.000 -0.018 0.043
∆2,x [3

4
a] 1.000 0.999 0.996

Table 4.1: Distances between the atoms at the clean relaxed InAs(110) sur-
face and at the InAs(110) surface covered with one Fe-atom per unit cell
according to the definitions in Fig. 4.2. The distances are expressed in units
of the respective InAs bulk distances given in the second column.

InAs film without Fe. Table 4.1 and 4.3 give the corresponding values of
distances and bond lengths for the clean relaxed InAs(110) and the relaxed
InAs(110) covered with one Fe atom per unit cell. The results for the clean
surface are in excellent agreement with other theoretical work on III-V semi-
conductors [14]. A strongly increased In-As bond length in the Fe/InAs(110)
case shows that In-As-bonds are weakened in favor of the bonds between Fe
and InAs.

In this section the geometry of 1ML(Fe)/InAs(110) was calculated. The
position of the Fe atom and the surface layer of InAs is used in the next sec-
tion as a starting geometry for the calculation of the Fe chains on InAs(110).

4.2 Fe chains on InAs(110)

4.2.1 Computational details

To simulate the InAs(110) surface we used a slab of 5 layers InAs(110) with
an Fe atom on top. To simulate Fe chains we put one Fe atom per two
InAs(110) unit cells, so that the two-dimensional unit cell in the calcula-
tion consists of two InAs(110) unit cells along the [001] direction or along
the [11̄0], respectively. This model geometry leads to Fe chains along [11̄0]
(Fe[11̄0]/InAs(110)) with a distance between the chains of 22.87 a.u., as
shown in Fig. 4.4, while chains along the [001] direction (Fe[001]/InAs(110))
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Γ

M
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Y
a b

In

As Figure 4.3: (a) InAs(110)
unit cell. The bonds be-
tween In (grey) and As (white)
are drawn as a dashed line.
(b) The Brillouin zone of the
InAs(110) with the irreducible
part hashed grey.

have a distance of 16.16 a.u., as shown in Fig. 4.5. Compared to the Fe lat-
tice constant of 3.5 a.u., these rather large distances rule out the interaction
between the chains. The distance between Fe atoms in the chain is 8.16 a.u.
in case of Fe[11̄0]/InAs(110) and 11.437 a.u. in case of Fe[001]/InAs(110).
These distances are also rather large compared to the Fe lattice constant,
so that we expect direct interaction between Fe atoms to be small. For
the initial position of Fe and the surface layers of InAs, the geometry of Fe
ML/InAs(110) is used. All three coordinates of the Fe atom and two surface
layers of InAs were relaxed with the additional restriction that the mirror
symmetry is preserved. For the 2DBZ sampling we used 12 k-points in the
irreducible part of the 2DBZ shown in Fig. 4.3 (b). We started the calcula-
tion with a plane wave cut-off Kmax = 3.4 a.u.−1 and increased Kmax during
the convergence tests to Kmax = 3.8 a.u.−1, which corresponds to 230 plane
waves per atom in the case of chains along [11̄0] and to 301 plane waves per
atom in the case of chains along [001]. The radii of the muffin-tins (MTs)
were set to 2 a.u. for the Fe and In atoms and to 1.8 a.u. for the As atoms.
In case of Fe[001]/InAs(110) we had to increase the MTs radii to achieve suf-
ficient accuracy in the relaxation to 2.1 a.u. for Fe, 2.2 a.u. for the In atoms
in the surface layer, 2.1 a.u. for the remaining In atoms, and 1.9 a.u. for all
As atoms. Spherical harmonics up to lmax = 8 were used for the basis func-
tions in the MTs and with lmax = 6 for the expansion of the non-spherical
potential.

4.2.2 Geometry of Fe[110]/InAs(110)

After the relaxation and convergence tests we obtained the geometry pictured
in Fig. 4.4 in the case of Fe chains along the [11̄0] direction. Fig. 4.4 (a)
shows an isometric perspective of two relaxed unit cells. We assume that the
mirror symmetry, imposed from the InAs(110), remains. This means that
the y-coordinate of all atoms was kept fixed during the relaxation. So the
relaxation concerns the x- and z-coordinates of Fe and two surface layers of
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Figure 4.4: The structure of 5 layers InAs with Fe-chains along the [11̄0]
direction on top. Fe is marked dark grey, In is light grey, and As white. (a)
Isometric view of the structure. The atoms allowed to relax are marked with
Fe, In1-In4, As1-As4. (b) - (e) Orthogonal projections of the structure. (d),
(e) The relaxed atoms and the bulk layer are shown. Small spheres indicate
the atomic positions for the free InAs(110) surface.
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InAs. The relaxed atoms in one unit cell are marked with Fe1, As1-As4 and
In1-In4. The Fe atom (dark grey) goes from the top position in the starting
configuration, which we took from the calculation with the Fe ML, to the
energetically preferable position embedded in the first layer of InAs. This
position is in the middle of the triangle formed by two mirror symmetrically
connected As1- and As4-sites at the corners, as indicated in Fig. 4.4 (a). The
orthogonal projection of the structure, shown in Fig. 4.4 (c) demonstrates
that Fe is indeed in the same plane as the three As atoms. The distances
between Fe and As1 of 4.609 a.u. and between Fe and As4 of 4.596 a.u. can
be considered equal within limits of accuracy in the relaxation. We suppose
that Fe forms bonds to these three As atoms. The nature of these bonds
will be studied later in this work. The strength of the bonds between In
and As is indicated by the respective bond lengths and marked as a different
thickness of the bar between the atoms. The strongest bonds (thick bar)
correspond to the previously calculated bulk value of 4.93 a.u.. The range of
the bond length between 5.01 a.u. 5.41 a.u. corresponds to an intermediate
strength and a length between 5.5 a.u. and 7.11 a.u. indicates the weakest
bond. There are four bonds in this upper length range, as visible in Fig. 4.4
(a). These are all the bonds of In1, which is the top atom, and the bond
between As4 and In of the bulk layer. Consequently, we assume that due to
the presence of the Fe atom these bonds are considerably weakened.
Figures 4.4 (b) and (c) are the orthogonal projections of the same structure.
They demonstrate that the vertical position of Fe and In2 are nearly the
same.

Figures 4.4 (d) and (e) show the top three layers of one 2-D unit cell
from Fig. 4.4 (b) and (c). For comparison the positions of the free InAs(110)
surface atoms are drawn in the same plot as small spheres. The largest visi-
ble deviations between the pure InAs(110) and Fe[11̄0]/InAs(110) are in the
vicinity of In1 and In2. In2 moves into the film after the Fe deposition. It
is located in the plane defined by As4 and two mirror plane connected As2.
In1, on the other hand, relaxes outwards from the surface.

In the following, some quantitative data of the relaxed structure are given
and compared between Fe[11̄0]/InAs(110) and InAs(110). The coordinates of
the relaxed structure and their convergence with increasing number of plane
waves are summarized in Table 4.2.

The As atom in the middle layer was chosen as the point of origin as
marked in Fig. 4.4 (a) by the x,y,z-axes. Table 4.2 shows that for Kmax be-
tween 3.7 a.u.−1 and 3.8 a.u.−1 the changes of the atomic coordinates are
all below 0.1 a.u.. Consequently, sufficient convergence is achieved with
Kmax=3.7 a.u.−1. The starting value for Kmax of 3.4 a.u.−1 is apparently too
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Kmax [a.u.−1] 3.4 3.5 3.6 3.7 3.8

Fe
x [a.u.]
z [a.u.]

2.44
7.91

2.41
7.90

2.39
7.88

2.39
7.88

2.41
7.88

In1
x [a.u.]
z [a.u.]

4.18
10.86

4.19
10.67

4.20
10.54

4.20
10.41

4.20
10.34

As1
x [a.u.]
z [a.u.]

0.82
9.44

0.77
9.42

0.74
9.39

0.71
9.35

0.71
9.33

In2
x [a.u.]
z [a.u.]

10.08
7.72

10.06
7.70

10.04
7.69

10.02
7.67

10.01
7.66

As2
x [a.u.]
z [a.u.]

12.69
8.73

12.67
8.72

12.67
8.72

12.66
8.71

12.64
8.71

In3
x [a.u.]
z [a.u.]

-7.89
4.12

-7.92
4.11

-7.93
4.11

-7.96
4.10

-8.01
4.09

As3
x [a.u.]
z [a.u.]

-5.01
4.47

-5.01
4.48

-5.02
4.47

-5.04
4.46

-5.08
4.44

In4
x [a.u.]
z [a.u.]

2.01
4.59

2.04
4.56

2.05
4.55

2.11
4.57

2.14
4.55

As4
x [a.u.]
z [a.u.]

5.74
4.77

5.72
4.76

5.72
4.76

5.73
4.75

5.72
4.73

Table 4.2: The relaxed coordinates of Fe[11̄0]/InAs(110) and their conver-
gence with increasing number of plane waves. The configuration achieved
with Kmax = 3.7/3.8 a.u.−1 is then analysed in the text. Notation is given in
Fig. 4.4.

small to yield the atomic coordinates with a precision of 0.1 a.u.. The largest
change in the atomic position from Kmax = 3.4 a.u.−1 to Kmax = 3.8 a.u.−1

is in the z-coordinate of In1 and amounts to −0.56 a.u.. Since In1 is the
top atom on the surface, it plays a decisive role in simulating STM im-
ages. Consequently, the change in the z-coordinate of In1 of −0.56 a.u. is
very important for getting correct simulations of dI/dU and CCM images.
Nevertheless, Kmax = 3.4 a.u.−1 is enough to reproduce the planar arsenic
neighborhood of the Fe atom.

Next we compare bond lengths and bond angles in the surface layer of
pure InAs(110) and Fe[11̄0]/InAs(110). Two of the four bonds for each InAs
atom are in the InAs(110) plane. For two relaxed layers one of the remaining
two bonds points to the middle of the film and one points to the surface layer
or to the vacuum respectively.

We will use the notation adopted from Engels [14]. The bonds in the
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InAs(110) plane are called bridge bonds (BrB), bonds pointing to the mid-
dle of the film are called back bonds (BB) and those pointing to the surface
layer or to the vacuum - dangling bonds (DB). The notation for DB devi-
ates from the notation used by Engels, where DB is used only for the bonds
pointing to the vacuum. We denote the angle between BrBs with α, and
that between BrB and BB with β. The bond lengths and the angles between
the bonds for the relaxed atoms of Fe[11̄0]/InAs(110), Fe[001]/InAs(110) and
InAs(110) are summarized in Table 4.3.

The data for the pure InAs(110) surface are in good qualitative agreement
with previous calculations on InAs(110) [14]. The main change in the bond
lengths between pure InAs(110) and Fe[11̄0]/InAs(110) happens for In1. The
BB of In1 is increased by 30% and the BrB by 20% compared with the bulk
value of 4.95 a.u.. The angles between the bonds are strongly reduced for In1

in case of Fe[11̄0]/InAs(110) compared to pure InAs(110). For As1 the BB
remains almost like in the pure InAs(110) surface. The angle between BrB
and BB as well as the length of the BrB change strongly mainly due to the
changed position of In1, which is connected through the BrB to the As1. The
changes for In2 and As2 are less drastic. The BB of In2 is increased by 10%
in length compared to the value in pure InAs(110).

From Fig. 4.4 (d) und (e) and Table 4.3 we conclude that the Fe mainly
affects the relaxation in its close vicinity. Just one unit cell away from an
adsorption position of Fe, InAs(110) exhibits the configuration known from
the pure InAs(110) surface with As atoms on top and In in almost planar
neighborhood of the As atoms.

4.2.3 Geometry of Fe[001]/InAs(110)

For the Fe atoms placed along the [001] direction and with all atoms in
the same starting configuration as for Fe[11̄0]/InAs(110), after relaxation
we obtain the structure shown in Fig. 4.5. The relaxed atoms of one unit
cell are marked in Fig. 4.5 (a) with Fe, In1-In3 and As1-As3. The unit cell
contains two As1 and two In3 which are coincident under the mirror symme-
try. Consequently, the positions of only seven different atoms are optimized.
Under the additional constraint that the mirror symmetry is preserved, all
three coordinates are allowed to relax. This means that not only x- and
z-coordinates change, but also the y-coordinate is allowed to change without
breaking the mirror symmetry. The change of the y-coordinate results in
dimerization of As1 and In3, as can be seen in Fig. 4.5 (c), (e). We assume
that this dimerization is caused by some kind of interaction between Fe and
As1 and not by the dimerization of arsenic DB’s. The top position is oc-
cupied by Fe, which is 0.2 a.u. higher than In1. Along the [001] direction
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Figure 4.5: The structure of 5 layers InAs with Fe-chains along the [001]
direction on top. Fe is marked dark grey, In light grey and As white. (a)
Isometric perspective of the structure. The atoms allowed to relax are marked
with Fe, In1-In4, As1-As4. (b) - (d) Orthogonal projections of the structure.
(e), (f) The relaxed atoms and the bulk layer are shown. Small spheres
indicate the atomic positions for the free InAs(110) surface.
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In
A

s(
11

0)

In1 As1 In2 As2 In3 As3 In4 As4

BrB [a.u.] 5.15 5.15 5.15 5.15 5.2 5.2 5.2 5.2
BB [a.u.] 4.97 4.97 4.97 4.97 5.08 5.12 5.08 5.12
α [◦] 103 103 103 103 102 102 102 102
β [◦] 120 95 120 95 106 111 106 111

M
L
(F

e)
/I

n
A

s(
11

0)

In1 As1 In2 As2 In3 As3 In4 As4

BrB [a.u.] 7.29 7.29 7.29 7.29 4.97 4.97 4.97 4.97
BB [a.u.] 5.61 5.5 5.61 5.5 5.29 5.1 5.29 5.1
α [◦] 68 68 68 68 109 109 109 109
β [◦] 97 105 97 105 114 103 114 103

F
e[

11̄
0]

/I
n
A

s(
11

0)

In1 As1 In2 As2 In3 As3 In4 As4

BrB [a.u.] 6.43 6.43 4.94 4.94 5.0 5.0 5.40 5.40
BB [a.u.] 5.96 5.04 5.2 5.13 5.25 5.0 4.98 5.55
α [◦] 78 78 110 110 107 107 97 97
β [◦] 87 112 124 92 115 101 109 108

F
e[

00
1]

/I
n
A

s(
11

0)

In1 As1 In2 As2 In3 As3 In4 As4

BrB [a.u.] 7.07 7.07/5.01 5.01 4.94 4.94/5.09 5.09 - -
BB [a.u.] 5.54 5.10 5.19 5.01 5.07 5.00 - -
α [◦] 65 93 116 101 108 115 - -
β [◦] 75 126/95 115 101 120/110 104 - -

Table 4.3: Bond lengths and angles between bonds for the surface atoms of
the InAs(110), Fe[11̄0]/InAs(110) and Fe[001]/InAs(110). BrB: bridge bonds,
BB: back bonds, α: angle between BrBs, β: angle between BrB and BB

In1 has a position nearly equidistant between two Fe atoms, as visible in
Fig. 4.5 (d). The distance between In1 and As atoms of the surface layer pre-
viously bonded to it is increased to 6.97 a.u.. The distance to the As atoms
of the neighbouring unit cell is decreased to 7.06 a.u.. This means that in
the (110) plane In1 has a position nearly in the center of the rectangle drawn
in Fig. 4.5 (b) with As1 atoms at the corners. As a consequence, we cannot
decide solely from the structure, if a bond between the In1 and As1 from the
same unit cell and from the neighbouring unit cell exists.

To indicate this, thin bonds between the In1 and As1 of the same and the
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neighbouring unit cells are shown in the picture, so that In1 appears with
five bonds, four to the As atoms in the same layer and one to the As2 in the
subsurface layer. The thickness of all bonds shown indicates their lengths.
Over the whole structure only the five bonds of In1 are drawn with thin
lines, which correspond to the length range between 5.5 a.u, and 7.11 a.u..
In the next sections we will investigate which of these indicated bonds on
In1 really do exist. However, already from the relaxation data alone it is
clear that the original bonds between In1 and the As atoms are severely
weakened. We conclude that for both structures, for Fe[11̄0]/InAs(110) and

Kmax[a.u.−1] 3.4 3.5 3.6 3.7 3.8 MT

Fe
x [a.u.]
z [a.u.]

0.60
10.85

0.65
10.86

0.66
10.88

0.66
10.49

0.56
10.44

0.41
10.19

In1
x [a.u.]
z [a.u.]

-5.27
11.76

-5.21
11.67

-5.08
11.07

-4.84
10.82

-4.88
10.58

-4.90
9.94

As1

x [a.u.]
y [a.u.]
z [a.u.]

0.80
-0.74
8.51

0.82
-0.74
8.52

0.82
-0.63
8.52

0.78
-0.40
8.47

0.77
-0.40
8.46

0.76
-0.21
8.46

In2
x [a.u.]
z [a.u.]

-3.63
10.78

-3.55
10.50

-2.99
10.19

-1.95
8.58

-1.89
8.28

-1.91
7.96

In3

x [a.u.]
y [a.u.]
z [a.u.]

-7.91
-0.11
3.87

-7.92
-0.11
3.88

-7.96
-0.10
3.91

-8.07
-0.22
3.93

-8.13
-0.25
3.94

-8.26
-0.21
3.95

As3
x [a.u.]
z [a.u.]

-4.99
4.56

-4.99
4.56

-5.00
4.58

-5.01
4.60

-5.02
4.58

-5.14
4.44

As4
x [a.u.]
z [a.u.]

-5.20
4.65

-5.20
4.63

-5.21
4.58

-5.36
4.40

-5.43
4.33

-5.55
4.20

Table 4.4: Convergence of the relaxed coordinates of Fe[001]/InAs(110) with
increasing plane wave cut-off parameter Kmax . The last column corresponds
to Kmax = 3.8 a.u−1 and increased MT radii. Notation is given in Fig. 4.5.

Fe[001]/InAs(110), the geometry is determined by the partial substitution of
an In atom with Fe in the In-As bonds.

In Figure 4.5 (d) a star indicates the position of the Fe atom in the
case of Fe[11̄0]/InAs(110) (see Fig. 4.4 (c)). By comparing Fig. 4.5 (c) and
Fig. 4.4 (c) we see that the distance between the marked position and In1 of
the next unit cell is smaller in Fig. 4.5 (c) than in the case of Fe[11̄0]/InAs(110).
We assume that the presence of the In in the neighbourhood of the marked
position displaces the Fe atom from this position further outwards of the
surface.
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Summarizing we can say that two trends determine the geome-
try of the structure. Fe tends to have a position as near as possible
to the As atoms and at the same time as far as possible from the
In atoms.

To confirm this structure we performed at first the same convergence
test on the number of plane waves, like for the Fe[11̄0]/InAs(110). The
relaxed coordinates and their convergence over the number of plane waves
are summarized in Table 4.4. The point of origin is on the As atom in
the middle layer as marked in Fig. 4.5 (a). In the last step of increasing
Kmax from 3.7 a.u.−1 to 3.8 a.u.−1 the largest change of −0.3 a.u. is in the
z-coordinate of In2.

This accuracy is not sufficient for a proper calculation of the electronic
structure and simulation of an STM measurement. Further increase of the
number of plane waves would blow up the calculation time beyond feasible
border. Another way to improve this point is the increase of the muffin-
tin radii. The disadvantage of this approach is that the energy of the cal-
culation cannot be compared any more with the energy of the structure
Fe[11̄0]/InAs(110). I increased the muffin-tin radii to the values 2.1 a.u. for
Fe, 2.2 a.u. for In1 and In2, 2.1 a.u. for the remaining In atoms, and 1.9 a.u.
for all As atoms. The result of this improved relaxation is summarized in
the last column of Table 4.4. Especially considering the In1 of the first layer,
this last step with increased MTs was indispensable. With increased MT,
In1 went more than 0.5 a.u. into the surface.

Only this step gives the correct relation between the vertical
position of Fe and In1 atoms, namely, that Fe has the highest po-
sition.

Table 4.4 demonstrates that the coordinates of the In atoms are especially
sensitive to the increase of Kmax in a particular way. Namely a small Kmax

leads to the underestimation of the bonding between As and In atoms in the
surface layer. The y-coordinate of As1 shows that the dimerization of As1

decreases with increase of Kmax. So we conclude that another consequence
of a too small Kmax is the overestimation of the bonding between Fe and As.
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Chapter 5

Electronic and magnetic
properties of Fe chains on
InAs(110)

This chapter is focused on the determination of magnetic moments and the
comparison between two magnetic structures, namely ferromagnetic (FM) vs.
antiferromagnetic (AF) ordering for both chain directions. To determine the
magnetic structure we calculated the FM and AF state for both geometries
with a unit cell twice as large as for the crystal structure. To perform the
calculation within reasonable time the cut-off parameter for the number of
plane waves was reduced to Kmax = 3.2 a.u.−1. For the 2DBZ sampling we
used 6 k-points in the irreducible part of the 2DBZ. The MT radii were set
as in the relaxation calculation of Fe[11̄0]/InAs(110), namely 1.8 a.u. for the
As, and 2.0 a.u. for Fe and In. The remaining numerical parameters are the
same as in the relaxation calculation. The results of this calculation and
their interpretation are covered in the following sections.

5.1 Magnetic structure of Fe[110]/InAs(110)

In the case of Fe[11̄0]/InAs(110) the AF structure is favourable with an
energy of 550meV. The convergence test for the number of plane waves
shows, that with the increase of Kmax = 3.1 a.u.−1 to Kmax = 3.2 a.u.−1 the
difference in the energies of the AF and FM state decreases from 580 meV
to 550 meV. This means, that the difference in the energy between the two
states is converged with the accuracy of 30meV.

The electronic configuration of As1 of a free InAs(110) surface consists of
four completely occupied sp3-hybrids. Fe as a free atom has 3d6 4s2 configu-
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ration. This means that among the five d-orbitals one is completely occupied
and four are half-filled. After the adsorption on the surface the magnetic mo-
ment of Fe changes from 4 µB to 2.4µB. It has 4.1 d-electrons of one spin
channel and 1.7 of the other. This means that the electrons are rearranged in
a way, that approximately two d-orbitals are filled and one empty. The mag-
netic moment of Fe is slightly higher in the AF case with µ = 2.44µB than in
the FM case with µ = 2.38µB. The Fe induces also a small magnetic moment
on InAs namely in the MTs of As1 and As4 following the notation given in
Fig. 4.4. In the FM case these magnetic moments are µ(As1) = 0.025µB

and µ(As4) = 0.01µB, whereas in the AF case µ(As4) = 0.03µB and µ(As1)
vanishes.

Some hints to a possible explanation of the AF structure can be extracted
solely from the geometry of the system. In section 4.2.2 it was discussed that
the geometry of the system indicates a strong interaction between Fe and As1,
As4. One well known model of the AF interaction of the magnetic atoms em-
bedded in a non-magnetic system is superexchange. Superexchange is the
interaction between magnetic cations via a non-magnetic anion. This inter-
action depends strongly on the overlap between cation and anion orbitals and
thus on the character of the interacting orbitals and the cation-anion-cation
angle. With the angle Fe-As1-Fe of 2

3
π and the position of As1 symmetrically

between the Fe atoms of the chain an overlap between As1 p-orbitals and Fe
d-orbitals is possible. The character of these orbitals will be discussed later
in this section. These observations strongly suggest that superexchange be-
tween the Fe atoms via As1 is the mechanism that leads to the AF structure.

In the following we can show from our results that the Fe atoms
indeed interact strongly with adjacent As atoms and that the in-
teraction with As1 leads to superexchange and to the energetically
prefered AF configuration in the Fe chain.

5.1.1 DOS of Fe[110]/InAs(110)

The DOS in the Fe MT for the FM and AF Fe chains along the InAs rows are
presented in Fig. 5.1 (a)-(d). For the FM structure (a), (b) the DOS in both
spin channels are not only shifted with respect to each other by 2.5 eV, but
have also different band width. The DOS in the spin1 channel has a width of
2 eV and is nearly constant in the range from -3.5 eV to 1.5 eV, whereas the
DOS in spin2 channel has a width of approximately 1.5 eV with a maximum
at EF .

The DOS of the AF structure Fig. 5.1 (c), (d) has approximately the same
bandwidth of 2 eV in both spin channels. Spin1 channel shows, differently
to the FM case, a clear two-peak structure. The formation of the band gap
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Figure 5.1: The left column (a) - (d) shows the DOS in the Fe MTs for the
Fe[11̄0]/InAs(110) structure. (e) - (h) show the DOS in the Fe MTs for the
Fe[001]/InAs(110) structure.

of about 0.3 eV at EF in the spin2 DOS of Fig. 5.1 (d) in effect lowers the
energy of the occupied states and leads to the preference of the AF structure.
Consequently we focus in the following discussion on the formation of the
band gap in the DOS of the AF structure. Two different effects play a role in
the creation of this band gap. The first one is a symmetry breaking induced
through the antiferromagnetism, which leads to the splitting at the edge
of the quasi-one-dimensional BZ. The second effect is the bond formation
between Fe and As1 in the AF case, which leads to the splitting of the DOS
around EF into bonding and antibonding states with a band gap between
them.

The DOS of As1 and As4 presented in Fig. 5.2 provides additional indi-
cation for a strong interaction between Fe and adjacent As. The As1 DOS
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Figure 5.2: The DOS in the
MTs of As1 (solid line) and
As4 (dhashed line) for the
Fe[11̄0]/InAs(110) structure.

of the FM case in Fig. 5.2 (a)-(b), shows one prominent peak at -0.3 eV and
a smaller peak directly at EF in the spin1 channel and vanishes almost com-
pletely around EF in the spin2 channel. We assume, that the peak at -0.3 eV
in the spin1 channel is spatially so extended, that it contributes also to the
DOS in the Fe MTs in the spin1 channel at -0.3 eV. The As4 DOS has in both
spin channels a small contribution at EF . For the AF case the DOS of As1 as
well as the DOS of As4 exhibit a band gap in both spin channels and have no
other significant features in the energy range shown. The spin polarisation
of the As4 state around -0.5 eV is not surprising, since this As interacts only
with one Fe atom of the unit cell. The striking change of the As1 DOS with
the change of magnetic configuration in the Fe chain is an indication for the
significant role of As1 in the formation of the magnetic configuration.

One of the differences between our calculations and the experiment is
that in the calculations the magnetic configuration is imposed as a restric-
tion on the system. The result is the energy of the system and the acompa-
nying interaction. In the experiment the true magnetic configuration arises
from interaction between the atoms. Comparing the DOS of As and Fe in
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Fig. 5.2 (a), (b) and Fig. 5.1 (a), (b) we see narrow peaks around EF on
Fe (spin2 channel) and As1 (spin1 channel) indicating that there is no in-
teraction between these states in the FM configuration. This interaction is
switched on in case of the AF configuration, which is energetically prefered.
This means, that in the real system the interaction between these states
forces the system into the AF configuration and leads to the splitting into
bonding and antibonding states and to the formation of a band gap.

5.1.2 Dominant superexchange paths in Fe[110]/InAs(110)

Superexchange is a special exchange interaction between two magnetic atoms
via a nonmagnetic atom. Such a mechanism was originally proposed by
Kramers [27]. Quantitative estimates of the dependence on the angle be-
tween cation-anion-cation were given by Anderson [2]. The superexchange is
possible only if orbitals of the magnetic atoms exhibit sufficient overlap with
an orbital of the non-magnetic atom. This leads to the dependence of the
interaction on the cation-anion-cation angle, which was first quantitatively
estimated by Anderson [2]. As pointed out by Goodenough and Loeb [18]
the symmetry of the interacting orbitals is decisive for the superexchange.
The entity of the interacting orbitals is called superexchange path. From the
symmetry of the d- and p-states and from the previous qualitative evaluation
of the states around EF we suggest that the superexchange in this system
is dominated by two paths. Figure 5.3 schematically shows the contribut-
ing orbitals and the geometry. Two Fe dxy orbitals with an overlaping As
py orbital between them are shown in Fig. 5.3 (a). The image plane is the
plane going through two As1 and As4 as it is shown in Fig. 4.4. A σ bond
between Fe and As1 provides a large overlap between the orbitals and thus
a large interaction. This superexchange path we call in the following dxy-py

superexchange. Superexchange in general, can have AF as well as FM char-
acter, as described in detail in [17]. For our system in case of a half-filled
dxy orbital the bond formation takes place only between electrons of oppo-
site spins, leading to a strong AF coupling between the Fe atoms. Due to
the intraatomic exchange between d-orbitals on the Fe the spin of the filled
orbitals plays a role in the bond formation between empty d-orbitals and the
p-electrons of As. The spin of electrons transfered from As into the bonding
orbital has to align parallel to the spin of Fe. This leads to an AF coupling
between Fe atoms.

Figure 5.3 (b) shows two Fe dx2−y2 orbitals with the overlapping As px

orbital between them. There is no definite answer to the question if this is
a strongly asymmetric π bond between Fe dx2−y2 and As px or a σ bond
formed from only one lobe of px and Fe dx2−y2 lobes on both sides. This
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superexchange path we call in the following dx2−y2-px superexchange. The
angle between the bond line and the As px orbital is π/3. This means, that
here the upper part of the π bond provides a very small contribution to the
exchange interaction. Similarly to the dxy-py superexchange path this path
also gives antiparallel coupling between Fe atoms. Since π bonds in general
are weaker than σ bonds the contribution of this path to the energy gain in
the AF system is smaller than the contribution of the dxy-py superexchange.
We will discuss the band structure of the system in the following subsection
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Figure 5.3: Bond paths of
superexchange interaction be-
tween Fe cations (d-orbitals
left and right) via As anion (p-
orbital in the middle). (a) dxy

orbitals interact via As py. (b)
dx2−y2 orbitals interact via As
px.

to see how exactly these two paths contribute to the splitting of the DOS
into the bonding and antibonding states at EF .

5.1.3 Band structure of Fe[110]/InAs(110)

The band structures of the AF and FM configurations for both spin channels
are plotted in Fig. 5.4 with Fe dxy and As py states marked. Fe dx2−y2 and As
px states are marked in Fig. 5.5. The one-dimensional periodicity along ΓY
leads to the pronounced quasi-one-dimensional character of the band struc-
ture. The backfolding of the bands in the FM case is visible at Y and M,
which correspond to the edge of the one-dimensional BZ, with degeneracy
of pairs of the states along YM. Reduction of the symmetry removes these
degeneracy in the AF case. The majority of the bands exhibits almost dis-
persionless behaviour perpendicular to the chain, i.e. along YM and XΓ, and
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Figure 5.4: Projected band structure of Fe[11̄0]/InAs(110). The states
marked with crosses are dxy states localised on Fe MTs. The states marked
with diamonds are py states localized to a large extent on As1.
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a strong dispersion along the chain, i.e. along ΓY and MX. The main contri-
bution to the energy gain from the FM to the AF case comes from lowering
of the partly occupied bands around EF . Consequently the emphasis in the
following discussion is put on the bands around EF .

First, we discuss the FM band structure with projected bands of Fe dxy

and As py presented in Fig. 5.4 (a), (b). There is one partly filled As1 band
degenerate with an Fe band around EF in the spin1 channel. These bands are
occupied at the edge of the quasi one-dimensional BZ, along YM, and exhibit
a strong dispersion along the chain. The unoccupied part of these bands is
visible as a completely dispersionless state at 0.8 eV along XΓ, in the middle
of the quasi one-dimensional BZ. Remaining marked states around EF belong
to the occupied As1 band around −1 eV and the Fe band around −0.2 eV.
Along the YM direction the As1 band at EF contributes to the peak at
−0.6 eV in Fig. 5.2 (a) whereas the contribution of the dispersing part along
ΓY and MX to the DOS is rather small. Due to the strong dispersion, the
contribution of the Fe band at EF to the Fe DOS is negligible. In the spin2
channel presented in Fig. 5.4 (b) the Fe minority bands are around EF while
the As1 bands are located around -2.1 eV. The prominent peak in the FM Fe
DOS at EF consists partly of two bands tagged with crosses in Fig. 5.4 (b)
which are nearly dispersionless at EF along the XΓ direction. The As1 states
are visible around -2.1 eV in the As DOS.

To summarize this section up to here we identified the states
in the FM bandstructure, which can contribute to the dxy-py su-
perexchange, as an As1 band degenerate with the Fe band at EF

in the spin1 channel (Fig. 5.4 (a)) and two partly filled Fe bands
in Fig. 5.4 (b), which are nearly dispersionless at EF along the
XG direction. The interaction between these states leads to the
hybridization and to a splitting in bonding and antibonding parts
leading to the energetic preference of the AF order.

Next, we discuss the AF band structure with the aim to identify states
evolved through the dxy-py superexchange. The band structure of the AF
case (Fig. 5.4 (c)-(d)) contains two nearly dispersionless bands around −0.6 eV
and around +0.6 eV indicated with crosses. Two additional marked bands
are: a dispersionless occupied band at -1 eV and a band dispergent along
ΓY and MX between +0.6 eV and +1 eV. In the AF Fe DOS these states
are visible as small peaks around ± 1.1 eV and ± 0.6 eV. We assume that
those are bonding and antibonding states arising from the interaction of the
marked bands around EF in Fig. 5.4 (a)-(b). Idications for this assumption
are presented in the next subsection, where an example of the corresponding
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Figure 5.5: Band structure of Fe[11̄0]/InAs(110). The states marked with
crosses are mainly Fe dx2−y2 states. The states marked with diamonds are
mainly As px states.

charge distribution is discussed.

The states contributing to the dx2−y2-px superexchange are marked in
the band structure in Fig. 5.5. Fe dx2−y2 states are indicated with crosses
and As1 px states with diamonds. There is one partly filled, cross marked
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band in the spin1 channel and one in the spin2 channel, which are nearly
dispersionless at EF around Γ. These bands are degenerate with one spin1
As1 band in the vicinity of Γ. Another dispersionless spin1 As1 band around
-0.3 eV contributes to the prominent As1 DOS in Fig. 5.2 (a). The interac-
tion between these bands contributes to dx2−y2-px superexchange and leads
to the splitting of these states in the AF case.

Two bands are marked at the same time with crosses and diamonds in
Fig. 5.5 (c). One has the energy of -500meV along YM and -1 eV at Γ. The
counterpart of it is an empty band which has the energy between 200meV
and 300meV along YM and 100meV at Γ. The As px contribution of this
band is larger than a threshold of 7% only along the YM direction. These
bands are nicely visible in the AF Fe DOS (Fig. 5.1 (d)). The unoccupied
band contributes to the large peak at 0.3 eV. The dispersionless part of the
occupied band along YM is merged with a nearly flat band at -0.25 eV in the
DOS to the peak at -0.25 eV, whereas the dispergent part in the remaining
BZ has no significant contribution to the AF Fe DOS.

To complete our understanding of the bond formation, the next section
will discuss the charge distribution of examplary states contributing to dxy-py

and dx2−y2-px superexchange.

5.1.4 LDOS distribution in case of superexchange

To give an example of the distribution of the charge density in the states
contributing to the dxy-py superexchange we plot in Fig. 5.6 the contour and
color scale plots of the states between M and X points at ±700 meV marked
as Fe dxy and As1 py in the AF bandstructure. Fig. 5.6 (a1)-(c1) and (a2)-
(c2) show logarithmically scaled charge density plots in the plane containing
Fe, As1 and As4. The color scale with corresponding values of the DOS at
the edges is shown below. In the contour plots of the Fig. 5.6 (d1)-(f1) and
(d2)-(d2) Fe atoms are marked with black circles and As atoms with white
circles. The spin1 channel is presented in the left column of Fig. 5.6 (a1),
(a2), the spin2 channel - in the right column of Fig. 5.6 (c1), (c2) and in the
middle column (b1), (b2) the sum of both spin channels is shown.

The py state on As4 is clearly visible in all panels additionally to the dxy

state on Fe and py on As1. The bonds between Fe and As1 are σ bonds,
whereas bonds between Fe and As4 are π bonds. The lobes of the py state at
As1 are slightly rotated in the spin1 channel with respect to the spin2 chan-
nel. Consequently, they are tilted to the left and to the right, respectively.
Moreover, the tilt is exactly in the opposite direction for the two different
spin channels. We consider now the spin1 channel Fig. 5.6 (a1), (a2). For
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the bonding state (a2), one lobe of the py state, which is rotated away from
the Fe, is nearly merged with one lobe of the dxy state of this Fe. The po-
larization of the DOS on Fe for this state is almost negligible in accordance
with the plot of the DOS in Fe MTs in Fig. 5.1 (c), (d). The bonding and an-
tibonding character of the states is also clearly visible. Whereas in the bond
between As1 and the middle Fe in (a2) the charge density is persistent larger
than zero, in (a1) within the same bond a node plane is visible. The bond
between As4 and Fe does not exhibit a clear bonding-antibonding character,
although the spin-polarisation at As4 changes the sign from -700 to 700 meV
in agreement with the DOS of As4 in Fig. 5.2 (c)-(d).

Summarizing, the plots in Fig. 5.6 clearly show that a strong
bond is formed between Fe dxy and As1 py states. This confirms
our assumption, that the superexchange is indeed the exchange
mechanism between Fe atoms in the chain, and that one of the
contributing superexchange paths is the dxy-py. Additionally, the
plots in Fig. 5.6 show a strong indication of the bonding and an-
tibondig character of the Fe-As1 bond. This is in agreement with
our previous assumption that the band gap results from the split-
ting of the states at EF in bonding and antibonding parts. As4

obviously takes part in the bond formation but its contribution to
superexchange is negligible compared to the contribution of As1

Analogously, the contour and color plots of the states at Y at -500 meV
and 210 meV presented in Fig. 5.7 are an example of the charge distribution
in case of dx2−y2-px superexchange. The plotted plane contains Fe, As1 and
As4, as it is marked with a triangle in Fig. 4.4 (a). The states shown are
marked in the band structure at Y as Fe dx2−y2 and As px states at the
same time. In the contour plots of Fig. 5.7 (d1)-(f1), (d2)-(f2) the Fe and As
atoms are marked black and white. The spin1 channel is presented in the left
column of Fig. 5.7 ((a1), (a2)), the spin2 channel, respectively, in the right
column Fig. 5.7 ((c1), (c2)), and in the middle ((b1), (b2)) the sum of both
spin channels.

First we consider the spin1 state at -500meV (Fig. 5.7 (a2)). This state
shows alternatingly a high intensity dx2−y2 with a weak part from the dxy

state at Fe and a clear px at As1. The lobes of the px states are slightly
rotated away from the Fe dx2−y2 of the same spin orientation and towards
the Fe dx2−y2 of the opposite spin orientation. Moreover, the tilt directions
are opposite at -500meV and +200meV. The overlap between As1 px and
Fe dx2−y2 states of opposite spin indicates a bond formation between them.
Differently to the dxy-py case, the bonding or antibonding character of this
state cannot be identified solely from these plots. The contribution of this
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state to superexchange is estimated to be 500meV provided that it emerges
from the hybridization of the states at EF . This is in nice agreement with the
previously given difference of 550meV between FM and AF configuration.

At 210meV, the dx2−y2 state at Fe varies in the distribution of the LDOS
compared to the state at -500meV. The lobes in x direction are weaker and
the lobes in y direction are stronger. The overlap between one lobe of the px

state and the lobes in y direction in the opposite spin channel appears to be
responsible for the bond between Fe and As1. The overlap is smaller than in
the case of -500meV. This state does not contribute to the energy lowering
in the AF structure since it is empty.

Summarizing, the plots in Fig. 5.7 show that a bond formation
between Fe dx2−y2 and As1 px takes place. This confirms dx2−y2-px

as one of the contributing superexchange paths.
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5.2 Magnetic structure of Fe[001]/InAs(110)

In this section I will discuss the magnetic structure of Fe chains on InAs(110)
along the [001] direction (perpendicular to the InAs rows). The calculation
was performed in the same way, with the same numerical parameters, as for
the chains along InAs rows (section 5.1). In the case of Fe[001]/InAs(110) the
FM structure is favourable with an energy of 80meV. The magnetic moment
of Fe in the AF case with µ = 2.19µB is slightly lower than in the FM
case with µ = 2.26µB. Unlike for Fe[11̄0]/InAs(110), the magnetic moments
induced on InAs are negligible. The distance of 11.437 a.u. between the Fe
atoms in the chain is large compared to the Fe lattice constant of 3.5 a.u..
Thus, we assume that the direct exchange between the Fe d electrons is small.
Consequently, the interaction between Fe atoms is mediated in some way by
InAs. From the geometry of the system shown in Fig. 4.5 (a), (b) we see that
there is one In atom (In1) directly between two Fe atoms. However, the next
nearest neighbour to the Fe is As1. This As1 has, on a pure InAs(110) surface,
a bond (bridge bond) to the In1. The geometry opens two main possibilities
for the mediation of the interaction between Fe atoms via the InAs lattice:
either Fe-In1-Fe or Fe-As1-In1-As1-Fe. To test these possibilities, which are
derived only from the geometry of the system, and to obtain further insight
into the interaction between Fe and InAs, I will discuss the DOS of the Fe,
In1 and As1 in the next subsection.

5.2.1 DOS of Fe[001]/InAs(110)

The DOS in the MTs of Fe, In1 and As1 is shown in Fig. 5.8 (a), (b) for the
FM case and (c), (d) for the AF case. The geometry of the 2-D unit cell with
the Fe atoms and the first layer of InAs is sketched in Fig. 5.8 (e), (f) for a
better overview.

The DOS of all three atoms look very similar for the FM and for the
AF structure. The spin1 Fe DOS given in Fig. 5.8 (a), (c) has a three peak
structure around -2.5 eV. This structure is slightly stretched on the energy
scale in the AF case in Fig. 5.8 (c) compared to the FM case Fig. 5.8 (a).

In the following I will focus on the discussion of states around EF . The
Fe DOS in the spin2 channel has one peak slightly below EF , then a clear
minimum at EF and two large peaks between EF and +500meV. The ener-
getically lower edge of these two peaks is slightly below EF in the AF case,
whereas in the FM case the minimum of the DOS is directly at EF . The
large peak below EF can be found again as a prominent feature in the DOS
of As1 in the FM case in Fig. 5.8 (a) as well as in the AF case in Fig. 5.8 (c)
in the spin1 channel, opposite to the Fe. In the AF case this As1 peak is
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Figure 5.8: In (e) and (f) the two-dimensional projection of the geometry of
the first layer of InAs with Fe-chains along [001] is shown. Detailed discussion
of the geometry is given in section 4.2.3. The DOS of the atoms labeled in
(e) and (f) is shown in (a)-(d). The DOS of As1 (grey dashed) and In1 (black
dashed) is scaled by a factor of 10. The Fe DOS is plotted unscaled with a
solid black line.
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located at −90meV and in the FM case at −250meV. The energy of this
As1 state is lowered due to the interaction with the Fe state of opposite spin
at −250meV. Apparently the FM configuration of the Fe atoms in the chain
benefits from this interaction. The In1 DOS exhibits in the FM case also a
state at −250meV in the spin1 channel, which is a dominant feature in the
DOS of In1. This shows that In1 participates in the interaction between the
surface atoms at -250meV.

To summarize, I found a state in the FM structure which exists on the
three atoms Fe, In1 and As1 at an energy of −250meV. This state is also
present in the AF structure on Fe at −250meV and on As1 where it lies at
−90meV. In the FM case the interaction between Fe and As1 apparently
leads to the energy lowering of the arsenic state and also induces a state at
the same energy on In1.

The interaction between surface atoms leads to a redestribution of charge
between the spin channels and as a consequence to the increase of the mag-
netic moment of Fe in the FM case. The minority states of Fe around EF

are depopulated in favour of the majority spin in the AF to FM transition.
From this findings the following scenario of interaction is possible. A

bond between Fe and As1 develops after adsorption of Fe on the surface. This
bond leads to the AF coupling between Fe and As1 with the same exchange
mechanism as in superexchange. At the same time the As1 is interacting
with In1. As described in section 4.2.3 the position of In1 is relaxed to the
position, which is almost equidistant between four As1. This indicates that
In1 is interacting not only with two As1 by means of the bridge bonds, but also
very symmetrically with the As1 of the next unit cell in the chain. Thus In1

is coupled on two sides to the As1 in the same way. The peaks at −250meV
in the DOS of In1 and As1 are in the same spin channel in Fig. 5.8 (a),
which shows that this coupling is of the FM kind. Finally, the AF coupling
between the As1 of the next unit cell and the next Fe in the chain gives an
overall FM coupling between the Fe atoms in the chain. This is again a kind
of superexchange Fe-As1-In1-As1-Fe with FM coupling between In1 and As1.
The way of exchange between the Fe atoms Fe-In1-Fe cannot be excluded
entirely from the density of states. To investigate this exchange mechanism
further I will discuss in the next section the band structure of the system.

5.2.2 Band structure of Fe[001]/InAs(110)

The band structure of Fe chains on InAs(001) with the chain direction per-
pendicular to the InAs rows (Fe[001]/InAs(110)) is plotted in Fig. 5.9. The
first row, Fig. 5.9 (a) and (b) corresponds to the FM structure and the second
row, Fig. 5.9 (c) and (d) to the AF structure. All states of the atoms, which
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can contribute to the exchange between Fe atoms in the chain are marked.
Fe states are marked with diamonds, As1 states with squares and In1 states
with crosses.

The FM case of Fig. 5.9 (a), (b) will be discussed first. All marked bands
are degenerate along MX. The reason for this is the calculation of the FM
structure with doubled unit cell. The chain direction is along ΓX. So MX
is the edge of the quasi one-dimensional BZ. The backfolding of the bands
through the doubled unit cell results in their degeneracy along the edge of
the quasi one-dimensional BZ.

There are three As1 bands and one In1 band in the vicinity of the Fermi
energy in Fig. 5.9 (a). Two of the As1 bands, which are degenerate along
MX intersect the Fermi energy. These bands contribute to the peak at EF in
the As1 DOS. One of the As1 bands has a minimum at Y around -300meV.
The completely occupied As1 band and the In1 band have a maximum at
Y with energies of −280meV and −250meV respectively. The energies of
these extrema and the low dispersion of the bands along YM and MX lead to
the conclusion that the peak in the As1 and In1 DOS at -250meV is caused
by these bands. The occupied As1 band is degenerate along MX and almost
degenerate along YM with the In1 band. This means that the interaction
between these two bands is possible and they originate from one band in the
halved original unit cell.

Four Fe bands are visible in Fig. 5.9 (b) around the Fermi energy. One of
them is occupied along MX and unoccupied along the GY, YM and XG. This
band is degenerate along MX with another one which is completely occupied.
Both are nearly dispersionless with an energy of -100meV along MX. The
completely occupied band descends to the energy of -200meV along XΓ and
to the energy of -600meV and further to -900meV along MY and YΓ. From
the splitting and dispersion of these bands along the chain, XΓ and MY, we
conclude, that their contribution to the interaction along the chain is quite
large.

Another two of the four Fe bands are degenerate and almost completely
dispersionsless, not only along MX but also along MY at an energy of
−250meV. This means, that these bands contribute less than the two oth-
ers to the interaction along the chain. Nevertheless, they have almost the
same energy as the degenerate In and As bands in Fig. 5.9 (a). The con-
clusion is that although these Fe states interact with As1 and In1 states at
-300meV, this interaction does not mediate the interaction between Fe atoms
in the chain. All Fe bands around EF are almost flat along ΓY and MX. This
means that the interaction between the Fe atoms perpendicular to the chains
is weak.

To summarize the discussion of the FM band structure, I identified the
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Figure 5.9: (a), (b) - the band structure of Fe[001]/InAs(110) in the FM
configuration. (c), (d) - the band structure of the Fe[001]/InAs(110) in the
AF configuration. Three kinds of states are marked, the Fe states with
diamonds, the As states with squares and the In states with crosses.
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bands contributing to the state at -250meV in Fig. 5.8. The coinciding ener-
getic position of those bands confirms the strong interaction between them.
Additionally, I have shown that only parts of these bands mediate the inter-
action between Fe atoms along the chains.

Next, I analyse the band structure of the AF configuration shown in
Fig. 5.9 (c), (d). Six bands are marked around EF in Fig. 5.9 (c). They all
are almost flat along the chain. Differently to the FM case with the maximal
dispersion of 500meV along the chain, in the AF case the maximal dispersion
is 100meV. The lowest of the marked bands has In and As character at the
same time. Its energy lies between -700 and -500meV. This band is split
off from another occupied InAs band, which has an energy of -100meV. The
InAs band at -100meV hybridizes with two Fe bands at the X point and at an
energy of -200meV, and between M and X almost at the Fermi energy. The
InAs band at -100meV is marked with squares (arsenic band) from Γ to the
point of hybridization between M and X. From this point further to the X
and Γ the arsenic band becomes unoccupied through the hybridization with
a mainly unoccupied Fe band. The InAs band at -100meV is marked with
crosses from the point of hybridization between M and X to X and further
to Γ. From M in the direction towards Y the In states become unoccupied.
Thus the point of hybridization between M and X can be viewed as a cross
point of Fe, In and As states. Different to this hybridization the occupied
Fe band at -250meV hybridizes only with In1 states of the InAs band at
-100meV.

In the following section, I discuss the LDOS of the system in order to
get further insights into the interaction mechanism between Fe atoms on
InAs(110) in the FM case. In particular, I will look for the confirmation or
counterevidence of the hypothesis, that the interaction between the Fe atoms
in the chain works mainly along two paths: one of them being Fe-As1-In1-
As1-Fe with Fe-As1 AF superexchange and the other being Fe-In1-Fe.

5.2.3 Symmetry of the interaction states

In the previous section the bands contributing to the DOS peaks at −250meV
were identified. As an example of the DOS distribution in those interacting
bands the LDOS of the state at M at −300meV is plotted in Fig. 5.10 and
the LDOS of the state at -100meV in Fig. 5.11.

In Fig. 5.10 (c2) a dyz state on Fe is clearly visible. Fig. 5.10 (a2) shows
a slightly tilted pz state on As1. The symmetry of the states allows a π
bond between them, which is shown in Fig. 5.10 (b2). This confirms the AF
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interaction between Fe spin2 and As1 spin1 via these states. Figure 5.10 (a1)
shows a pz state on As1, which is slightly bend into the (11̄1̄) direction. The
LDOS on In1 pictured in the same panel has spz character. Due to the small
overlap between spz(In1)↑ with the outward directed lobe of the pz(As1)↑ at
one side and with the inward directed lobe of the pz(As1)↑ at another side
the FM interaction between these states is rather weak.

In Fig. 5.10 (a3)-(c3) the LDOS distribution is dominated by the spin1
channel as well on the Fe as on the In1. This corresponds on the Fe to the
minor peak at -250meV and on the In1 to the large peak at -250meV in
Fig. 5.8 (a). The LDOS on the In1 has spz character. The state at the Fe
is a linear combination of the d-states with a triangular shape. Two angles
of this triangle point towards the In1 in Fig. 5.10 (a3). These facts confirm
a weak FM coupling between the Fe and the In1, which is mediated through
the spin1 states.

In summary, the interaction Fe↓-As1↑-In1↑-As1↑-Fe↓ between the Fe atoms
in the chain via a state at -250meV is confirmed. Differently to the Fe↓-As1↑
with a strong coupling, the interaction As1↑-In1↑ is weak due to the small
overlap between the spz(In1)↑ and the pz(As1)↑ states. Additionally the FM
interaction Fe↑-In1↑-Fe↑ is confirmed.

Next, the LDOS of the state at M at the energy of -100meV, shown in
Fig. 5.11 will be discussed. This state contributes, like the state at -300meV,
to the peak at -250meV in Fig. 5.8 (b) at the Fe. Differently to the state
at -300meV the contribution to the DOS of the In1 is negligible in the spin1
channel and very small in the spin2 channel. At the As1 this state exists in
the spin1 channel and is visible in the DOS of Fig. 5.8 (a) as a peak at the
Fermi energy.

Figures 5.11 (a1)-(c1) show a tilted pz(As1)↑ and p[11̄1̄] (In1)↓ states.
These states form a σ bond between the In1 and the As1 with AF coupling,
opposite to the FM coupling at -300meV. Figures 5.11 (a2)-(c2) show a tilted
pz(As1)↑ state and a linear combination of d-states on the Fe in the spin2
channel. The character of this linear combination cannot be determined
in this case. The states at the Fe and at the As1 couple antiferromagnet-
ically likewise in the state at -300meV. The bond between Fe and As1 is
a σ bond, differently to the state at -300meV in Fig. 5.11 (a2)-(c2). In
Fig. 5.11 (b3)-(c3) a large intensity of the LDOS at the Fe atoms, which in-
teracts ferromagnetically with the state p[11̄1̄](In1)↓, is visible. In summary,
the FM coupling is mediated between Fe atoms in the chain via Fe↓-In1↓-Fe↓
and Fe↓-As1↑-In1↓-As1↑-Fe↓ for this state. The p[11̄1̄] (In1)↓ character of the
state at In1 allows large overlap to the tilted pz(As1)↑. Probably this leads
to the stronger coupling than the coupling at -300meV in spite of the lower
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Figure 5.10: Density plots of the state at M at -300meV. Directions are
indicated at the borders. The spin1 channel of the system (↑) is shown in
panels (a), spin1+spin2 in (b), and the spin2 channel (↓) in (c). The panels
(a1)-(c1) show the (11̄1) plane, (a2)-(c2) the (001) plane, (a3)-(c3) the (11̄0)
plane, and (a4)-(c4) the (110) plane. The Fe atoms in the planes are marked
with black circles, As atoms with white circles, and In atoms with grey circles.

DOS at In1.

Next, I will describe the coupling between the chains. Figure 5.11 (a4)-
(c4) indicates an interaction Fe↓-As1↑-As1↑-Fe↓ between the chains, whereas
in Fig. 5.10 (a4)-(c4) this interaction is mediated via the In2. According to
the band structure with the low dispersion of the bands perpendicular to the
chain direction the corresponding interaction is very low. The LDOS plots
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Figure 5.11: Density plots of the state at M at -100meV. Directions are
indicated at the borders. The spin1 channel of the system (↑), is shown in
panels (a), spin1+spin2 in (b), and the spin2 channel (↓) in (c). The panels
(a1)-(c1) show the (11̄1) plane, (a2)-(c2) the (001) plane, (a3)-(c3) the (11̄0)
plane, and (a4)-(c4) the (110) plane. The Fe atoms in the planes are marked
with black circles, As atoms with white circles, and In atoms with grey circles.

reveal that the small overlap of the corresponding orbitals leads to the weak
interaction.
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Chapter 6

Simulation of the STM
measurements

6.1 Simulation of STS on Fe multimers

The local density of states on and around a single Fe atom (monomer) and
Fe multimers deposited on n-InAs(110) surfaces was studied experimentally
by scanning tunneling spectroscopy at T ∼ 6 K. Fe dimers, trimers and
tetramers both perpendicular and parallel to the InAs rows were formed by
evaporating Fe atoms on a clean InAs(110) surface at room temperature.
The multimers perpendicular to the InAs rows are closely packed. One Fe
atom is adsorbed in every unit cell with a separation between the Fe atoms
of 11.435 a.u.. The parallel multimers on the other hand are stable only if
one Fe atom is adsorbed in every second unit cell of InAs. This leads to a
separation of 16.17 a.u. between the Fe atoms. Further experimental details
are presented in [30].

The spectroscopy curves measured on a tetramer parallel to the InAs
rows, i.e. along [11̄0], and on a trimer perpendicular to the InAs rows, i.e.
along [001], are shown in Fig. 6.1. In Fig. 6.1 (a) three curves measured on the
different atoms of the Fe trimer are presented. Additionally, the spectrum
of the substrate is shown as a thin dashed line. The topography of the
corresponding structure as measured at UB=0.1V is shown in Fig. 6.1 (b).
All three curves in Fig. 6.1 (a) have a two peak structure. The energies
of the lower peak are E(Fe1)1=0.73 eV, E(Fe2)1=0.83 eV, E(Fe3)1=0.87 eV
and for the higher peak E2(Fe1)=1.15 eV, E2(Fe2)=1.0 eV, E2(Fe3)=1.09 eV.
The lower peak can also be found on the substrate at 0.88 eV. The contrast
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Figure 6.1: (a), (c) Experimentally obtained spectroscopy curves on Fe mul-
timers. (b), (d) The topographic CCM image of the corresponding multimer
at a bias of 100meV. The spectrum of the substrate is shown with a thin
dashed line. Other curves correspond to the atoms marked in (b) and (d).
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between two peaks defined as

C =
DOS(E2) −DOS(E1)

DOS(E2) +DOS(E1)

is CFe1 = 0, CFe2 = −0.27, CFe3 = 0.25.
The spectroscopy curves obtained on the tetramer parallel to the InAs

rows are shown in Fig. 6.1 (c) together with the substrate spectroscopy. The
topography of the corresponding structure as measured at UB=0.1V is visible
in Fig. 6.1 (d). The spectroscopy curves of the two middle Fe atoms have two
peaks: one at 0.87 eV and one at 1.28 eV with the same contrast of -0.06 for
both atoms. The first of these peaks can be found again in the spectroscopy
of the substrate. The edge atoms exhibit an additional state at 1.07 eV. This
additional peak is apparently the end state of the tetramer.

To understand these results I plotted in Fig. 6.2 the vacuum DOS of the
Fe[11̄0]/InAs(110) and Fe[001]/InAs(110) in the FM and AF configuration.
The DOS is averaged at a distance of 10 a.u. from the surface over the 2D
unit cell. The energetically favoured configurations are Fe[11̄0]/InAs(110)
AF shown in Fig. 6.2 (c) and Fe[001]/InAs(110) FM shown in Fig. 6.2 (b).
Both systems have two peaks in the vacuum DOS in the neighbourhood of
1 eV.

The DOS of Fe[001]/InAs(110) FM in Fig. 6.2 (b) has a small peak at
1.1 eV and a large peak at 1.5 eV. The large peak has a double peak structure
with a larger part at 1.44 eV coming from the majority spin and a lower part
originating from the minority spin at 1.63 eV. The contrast between majority
spin and minority spin contributions to the higher peak changes from 0.133
at the distance of 1 a.u. from the surface to 0.053 at the distance 14 a.u. from
the surface. This leads to the asymmetric form of the peak in the sum of the
majority and minority spin DOS at the lower distances to the surface. The
contrast between the peak at 1.1 eV and the peak at 1.5 eV is 0.52.

The Fe[11̄0]/InAs(110) AF has a peak at 0.83 eV and one at 1.23 eV. The
contrast between two peaks is 0.27. Thus in the system with the Fe chains
along the InAs rows the peaks are shifted to the lower energies and the con-
trast between the peaks is reduced, compared with Fe chains perpendicular
to the InAs rows.

Comparison between calculated vacuum DOS and experimental data shows
that both have two peaks around 1 eV for the case Fe[11̄0]/InAs(110) as well
as for the case Fe[001]/InAs(110). The exact energies and contrasts are dif-
ferent probably due to the finite length of the multimeres in the experiment.
Another cause for the differences in the calculated and measured vacuum
DOS can be the distance between the Fe atoms in the Fe[11̄0]/InAs(110),
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Figure 6.2: Calculated DOS in the vacuum at a distance of 10 a.u. from the
surface. The DOS is averaged over the complete 2D unit cell. The left column
(a), (c) shows the vacuum DOS of Fe[11̄0]/InAs(110). The right column (b),
(d) - the vacuum DOS of Fe[001]/InAs(110). (a), (b) corresponds to the
FM configuration with spin1 shown with a thin solid line, spin2 with a thin
dashed line, and the sum of the both spins with a thick solid line. (c), (d)
corresponds to the AF configuration. Due to the averaging over a unit cell
the DOS of spin1 and spin2 are equal. The thick line corresponds to the sum
of both spin channels.

which is half of the distance between the Fe atoms in the multimers along
[11̄0].

The only case in the measurement with a positive contrast between two
peaks is the spectroscopy on a perpendicular trimer at Fe3 (Fig. 6.1 (a)). A
striking feature of this spectroscopy data is also the strong asymmetry of the
peak at 1.09 eV. According to the calculation this can be explained with the
double structure of the peak and a weaker contribution of the minority spin to
the energetically higher part of the state. The contrast in the case of the par-
allel tetramer is negative for both middle atoms. The calculations reproduce
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this trend. This means that the contrast between the two peaks is reduced
from Fe[001]/InAs(110) (perpendicular case) to Fe[11̄0]/InAs(110)(parallel
case).

Up to now, two states around 1 eV are identified, in the measured spec-
troscopies as well as in the calculated vacuum DOS. The agreement in the
energetical positions of the calculated and measured states is reasonable.
The difference in the contrast can be explained with different distances to
the surface in the calculation versus the experiment. Another reason for the
different contrast could be the difference in the geometry between the ex-
periment and the theory. The strongly asymmetric form of the peak with
higher energy at Fe3 in Fig. 6.1 (a) is explained by different contributions
of two slightly split minority and majority states at this energy. In the next
subsection I will determine the character of the states around 1 eV.

6.2 Vacuum states

To identify the atoms, which contribute to the vacuum DOS around 1 eV, I
plotted in Fig. 6.3 the LDOS of Fe[001]/InAs(110) for the states at 1.1 eV
1.4 eV and 1.6 eV. In the first three rows the LDOS in the vacuum at the
distance 10 a.u. from the surface is plotted. For all three states the LDOS
has a maximum along Fe chains. For the state at 1.1 eV the LDOS along
the chain has maxima at the positions of the In atoms. For the states at
1.4 eV and 1.6 eV the LDOS along the chain has maxima at the positions of
the Fe atoms. This means, that for the multimers perpendicular to the InAs
rows the lower vacuum state at 1.1 eV is located at In and the higher one at
1.5 eV at Fe. If we recall that at the pure InAs(110) surface the In DB is
located at 0.9 eV, the In vacuum state around 1 eV becomes very plausible
as a rudiment of the In DB. In Fig. 6.3 (a4)-(a6), (b4)-(b6), (c4)-(c6) a plane
through the film is plotted. In Fig. 6.3 (a4)-(c4) it is visible, that the state at
1.1 eV is indeed the In DB, whereas the states at 1.4 eV and 1.6 eV in Fig. 6.3
(a5)-(c5) and (a6)-(c6) are the Fe minority, respectively majority states.

Similar for the system Fe[11̄0]/InAs(110) the LDOS of the states at 0.8 eV
and 1.2 eV is plotted in Fig. 6.4. In Fig. 6.4 (b1) the maxima of the LDOS
are located at the positions of In atoms. Differently in Fig. 6.4 (b2) the
maxima are shifted to the Fe atoms. Due to the buried position of the Fe
atoms, described in section 3.1.1, the maximum of the LDOS in Fig. 6.4 (b2)
is not directly above the Fe atoms. Fig. 6.4 (b4) demonstrates that the state
at 1.2 eV on the Fe is directed to the surface and further to the vacuum.
However, In is relaxed far outwards, and therefore still plays a significant
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Figure 6.3: The LDOS of the vacuum states of the FM system
Fe[001]/InAs(110) is shown. (a1)-(c1), (a2)-(c2) and (a3)-(c3) the LDOS
distribution at the distance 10 a.u. from the surface. (a4)-(c4), (a5)-(c5) and
(a6)-(c6) the LDOS in the (11̄0)-plane for the corresponding states is shown.
In the left column (a) spin1, in the right (c) - spin2, and in the middle (b)
the sum of both spin channels are presented.
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the sum of the both spin channels are presented.

role for the vacuum LDOS. Fig. 6.4 (b3) shows that the state at 0.8 eV at In
comes indeed fom the In DB. At Fe this state is located mainly in the plane
of the Fe and three adjacent As atoms.

In this section I determined the character of the vacuum states around
1 eV. The lower state is the rudiment of the In DB for the case of Fe[11̄0]/InAs(110)
as well as for the case of Fe[001]/InAs(110). This can be supported by the
experimental data, where the lower state in the spectroscopic data exists not
only on the multimers, but also on the substrate. The higher state is located
in both cases on Fe, whereas in the FM case of Fe[001]/InAs(110) the higher
state is slightly spin-split. In the next section I analyse the topography of
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Fe[11̄0]/InAs(110) and Fe[001]/InAs(110) to see if and how it is influenced
by these vacuum states.

6.3 Topography of Fe[110]/InAs(110) and

Fe[001]/InAs(110)

To encourage further systematic experimental studies of Fe chains on InAs(110)
we present in Fig. 6.5 - Fig. 6.7 and Fig. 6.8 - Fig. 6.10 an overview of the
calculated topographic images of Fe[11̄0]/InAs(110) and Fe[001]/InAs(110)
for a wide energy range. The images are simulated at the distance 10 a.u.
from the surface. Due to the band maximum in Fig. 5.4 at -100meV at Γ
the As1 atoms are imaged at this particular energy. At the lower voltages,
between -200meV and -600meV the Fe band at -200meV in Fig. 5.4, which
corresponds to a dz2−r2 state, determines the topography. This leads to the
preferential imaging of Fe atoms, despite their position deep in the surface.
At -600meV and lower voltages the outward relaxation of the In1 prevails all
effects of the electronic structure, so that the In1 atom is imaged at these volt-
ages. The In1 atom is also imaged at all positive voltages. This means, that
the Fe state at 1.2 eV is visible in the spectroscopic measurements, however,
not in the topographic images.

In Fig. 6.8 - Fig. 6.10 the calculated topography images of the system
Fe[001]/InAs(110) are presented. The patterns consist of stripes along the
Fe chains almost at all voltages. The maxima in these stripes are at the
positions of the In1 atoms at negative voltages, and beginning from 300meV
up to higher voltages at the positions of the Fe atoms. The In vacuum state
at 1.1 eV is noticeable only in the more elongated form of the maxima along
the stripes compared with the image at 1.5 eV. An interesting deviation from
the pattern, consisting of the stripes along the Fe-chains is visible between
-200meV and 200meV. At these voltages the image of the minority spin
channel exhibits a kind of fish-bone pattern. At -100meV and 100meV the
maximum is shown at the interstitial position.

Despite the absence of a systematic experimental study of Fe multimers
with STM some results presented in [24, 30] demonstrate that at low voltages
Fe atoms are surrounded by a black rim, whereas at higher voltages the black
rim disappears. This is qualitatively reproduced in the calculation of the
Fe[001]/InAs(110). Thus the Fe chains perpendicular to the InAs rows are
more suitable to model the Fe monomers, than the Fe chains along the InAs
rows.

Summarizing, we have shown, that for the Fe chains parallel to
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the InAs rows the Fe atom is imaged only at low negative voltages.
For the Fe chains perpendicular to the InAs rows the Fe atom
is imaged at positive voltages higher than 300meV, whereas at
negative voltages the In atom shows up in the topography image.
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Figure 6.5: Topographic images at negative voltages for Fe[11̄0]/InAs(110)
at a distance of 10 a.u. from the surface. The spin1 channel is presented in
the left column, the spin2 channel - in the right and the sum of both spin
channels in the middle. The position of the atoms is indicated in the right
column: Fe with black circles, As with white, and In with grey.
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Figure 6.6: Topographic images around EF for Fe[11̄0]/InAs(110) at a dis-
tance of 10 a.u. from the surface. The spin1 channel is presented in the left
column, the spin2 channel - in the right and the sum of both spin channels
in the middle. The position of the atoms is indicated in the right column:
Fe with black circles, As with white, and In with grey.
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Figure 6.7: Topographic images at large positive voltages for
Fe[11̄0]/InAs(110) at a distance of 10 a.u. from the surface. The spin1
channel is presented in the left column, the spin2 channel - in the right and
the sum of both spin channels in the middle. The position of the atoms is
indicated in the right column: Fe with black circles, As with white, and In
with grey.
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Figure 6.8: Topographic images at negative voltages for Fe[001]/InAs(110)
at a distance of 10 a.u. from the surface. The spin1 channel is presented in
the left column, the spin2 channel in the right, and the sum of both spin
channels in the middle. The position of the atoms is indicated in the right
column: Fe with black circles, As with white, and In with grey.
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Figure 6.9: Topographic images around the EF for Fe[001]/InAs(110) at a
distance of 10 a.u. from the surface. The spin1 channel is presented in the
left column, the spin2 channel in the right, and the sum of both spin channels
in the middle. The position of the atoms is indicated in the right column:
Fe with black circles, As with white, and In with grey.
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Figure 6.10: Topographic images at large positive voltages for
Fe[001]/InAs(110) at a distance of 10 a.u. from the surface. The spin1 chan-
nel is presented in the left column, the spin2 channel in the right, and the
sum of both spin channels in the middle. The position of the atoms is indi-
cated in the right column: Fe with black circles, As with white, and In with
grey.
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Chapter 7

Spectroscopic difference
between the Co(0001) hcp and
fcc surfaces

7.1 Experimental motivation

The motivation for this part of the work come from STM measurements
done on Co deposited on W(110). Fig. 7.1 (a) shows a constant current
image of a monolayer high islands of Co on Co(0001)/W(110) taken during
these measurements. The experimental details of this work are published
in [51]. Two islands of a height of one ML are marked with black and
white triangles, respectively. The topography of these two islands is very
similar apart from the direction of the triangles. Despite this similarity in
shape, the spectroscopy curves Fig. 7.1 (b) taken on each of the two islands
are completely different. The intensity and the position of the peaks with
energies below −500meV were found to depend on the tip. Only the peak
at −300meV is reproducable in all experiments. Hence it follows that only
the states around −300meV are related in the substrate. In order to find
the reason for the different intensities of the spectroscopic peak at −0.3 eV
on the two islands imaged in Fig. 7.1 (a), we performed density-functional
theory (DFT) calculations.

7.2 Calculational details

For simulating the Co(0001) surface we use a film geometry with 12 layers of
Co embedded in infinite vacua on both sides of the film. We compare the per-
fect hcp structure (ABA) to an hcp structure exhibiting an fcc stacking-fault
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Figure 7.1: (a) Constant current image of Co ML islands on Co(0001), grown
on W(110). (b) Spectroscopy curves taken correspondingly on the islands
marked with white and black triangles in (a).

in both surface layers (ABC). The atomic positions in the two-dimensional
unit cell are sketched for both cases in Fig. 7.2 (a). Both geometries are
optimized by total-energy minimization using the theoretical Co bulk lat-
tice constant which is determined to 2.509 Å (experimental value: 2.507 Å).
Self-consistent results have been obtained with about 110 basis functions per
atom and 26 k-points in the irreducible wedge of the 2DBZ (Fig. 7.2 (b))
as numerical parameters. The exchange-correlation functional is expressed
within the generalized gradient approximation [39]. The Kohn-Sham equa-
tions are solved applying the FLAPW method, as realized in the FLEUR-code
[23]. For the DOS calculation we used 50 k-points in the irreducible wedge
of the 2DBZ. The spherical harmonics up to lmax = 8 are used for the ba-
sis functions in the muffin-tins and with lmax = 6 for the expansion of the
non-spherical potential.

Compared with the ideal bulk termination, both surfaces are relaxed in-
wards. The surface layer of the faulted structure is relaxed by 0.046 Å and
that of the unfaulted structure by 0.015 Å, which corresponds to 2.3% and
0.7% of the Co interlayer distance of 2.034 Å, respectively. The workfunction
of the faulted structure (5.143 eV) is slightly larger than of the unfaulted
structure 5.096 eV. Thus, the decay constant of the wavefunctions into the
vacuum of the faulted structure is also slightly larger. The total energy of
the faulted structure (fcc) is only 11 meV/atom larger than that of the un-
faulted structure (hcp). Compared to kBT = 25 meV/atom this small value
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Figure 7.2: (a) The two-dimensional unit cell for the hcp and the hcp+fcc
stacking fault structure. Black circles (A) mark the atomic positions in the
third layer from the surface, grey (B) in the subsurface layer. The atoms in
the surface layer have the position A for the hcp structure and for the fcc
stacking fault the positions marked with white circles (C). (b) The corre-
sponding 2DBZ with the irreducable part hatched grey. The side length of
the hexagons in (a) and (b) have a relation of B = 2π

A
.
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Figure 7.3: The vacuum DOS
of the Co(0001) surface at
the distance of 3 Å from the
surface for the hcp-structure
(grey) and hcp+fcc stacking
fault surface (black). In the
top part the majority spin
DOS and the total DOS are
shown. The lower part con-
tains the minority spin DOS.

suggests that stacking fault nucleation sites occur rather frequently in thin
film growth [8], possibly explaining the experimental observation that fcc
areas exist in thin films even at room temperature.

7.3 Electronic structure

7.3.1 Difference in the calculated vacuum DOS be-

tween hcp and fcc surface

To simulate spectroscopic measurements we calculated the vacuum DOS for
both structures. In the following all energies are given with respect to the
Fermi level. Since the workfunctions of the faulted and the unfaulted struc-
ture differ by 47 meV, the Fermi levels are shifted accordingly with respect to
the vacuum-zero. The results for the majority spin DOS and minority spin
DOS as well as the sum of both DOSs are presented in Fig. 7.3 at a distance
of 3 Å from the film surface.

The majority spin channel, shown in the top panel, exhibits a small shoul-
der between EF and 200meV and remains nearly featureless for the rest of
the energy range. Consequently, the features in the averaged DOS are deter-
mined by the minority spin channel, which has a dominating peak at approx-
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imately −0.3 eV below EF . The peak exhibits a full width at half maximum
of 0.3 ± 0.05 eV. The unfaulted structure additionally has two minor peaks
at −600meV and at 50meV. Since the proportion between different peaks in
the vacuum DOS can change with the distance from the surface, we evaluated
the vacuum DOS at distances ranging from 2 Å to 10 Å. For these distances
the peak at −0.3 eV remains the dominating feature for both structures.
Consequently, this peak corresponds to the one found in STS-measurements.

As visible in Fig. 7.3, the faulted structure exhibits a higher peak intensity
than the unfaulted structure at −0.3 eV, and a lower intensity at 50meV and
−0.6 eV. We define a contrast between two peaks p1 and p2 like

cp1,p2
=
DOS(p1) −DOS(p2)

DOS(p1) +DOS(p2)
. (7.1)

Then the contrast between faulted (f) and unfaulted (u) structures for these
three peaks at two different distances amounts to:

Energy −0.6 eV −0.3 eV 50meV

Cu,f at 3 Å 0.35 −0.11 0.2

Cu,f at 10 Å 0.62 −0.03 0.25

Table 7.1: Contrast of three peaks visible in Fig. 7.3 for the distance 3 Å,
respectively 10 Å from the surface.

Moreover, the dominating peak on the faulted structure is at −0.34 eV, while
that on the unfaulted structure is at −0.28 eV. This means that the peak
on the faulted structure is shifted to lower energies by 60 meV. These two
findings are in excellent agreement with the STS results shown in Fig. 7.1
where an intensity change of (50± 20)% and an energy shift of 55± 35 meV
are found. Finally, the calculated peak width is in reasonable agreement with
the experimental result.

The reason for the difference between the two structures at 50meV and
−600meV is apparent from the relaxation data. The vacuum DOS curve is
calculated at the distance of 3 Å from the vacuum boundary of the film, which
is defined independently of the relaxation (chapter 2.4). The relaxation of the
structures is such that the atoms of the fcc surface are shifted 0.03 Å further
into the film from the vacuum boundary. Consequently, they contribute less
than the atoms of the hcp surface to the vacuum DOS.

Tab. 7.1 shows that with increased distance from the surface the hcp
peaks reach further than the fcc peaks. The reason for this is the smaller
decay constant of the hcp structure, which leads to the change of the contrast
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with distance in favour of the unfaulted surface for all three peaks at 50meV,
−0.3 eV and −0.6 eV.

7.3.2 Band structure analysis

Next we want to understand the mechanism behind why fcc stacking leads to
a higher peak intensity at −0.3 eV. To answer this question, we first compare
the vacuum DOS with the band structures of faulted and unfaulted surfaces.
Fig. 7.4 shows band structures of majority (upper panel) and minority (lower
panel) spin for both systems along the high symmetry directions. States
which have more than 10% of their DOS in vacuum, are marked by black
dots. The corresponding bands are identified as surface-related bands.

In the majority spin channel two of those bands are unoccupied with
band minima at EF and at 100meV. These bandminima contribute to the
shoulder between EF and 200 meV in the vacuum DOS of Fig. 7.3. Two
further surface-related bands which cross at the Γ-point around −0.7 eV do
not play a significant role in the vacuum DOS due to the high dispersion. The
quantitative contribution to the vacuum DOS of the states around −1.4 eV at
the Γ-point is higher than 10%, but is a factor of 8 lower than the contribution
from the band minima at EF . For this reason they do not appear as a feature
in Fig. 7.3.

In the minority spin channel two maxima and one minimum of surface-
related bands exist in the energy range shown. The minimum is marked by
the circles in Fig. 7.4 at approximately 1/4 of the way from Γ to K and
from Γ to M, respectively. This minimum is close to −0.3 eV. A second
surface band has a maximum at about −0.5 eV and is located at the Γ-
point. This band maximum is visible in the vacuum DOS of the unfaulted
structure as a peak at −0.6 eV in the minority spin DOS. For the faulted
structure it is merged with the peak at −0.3 eV and cannot be distinguished
clearly. Its contribution to the peak at −0.3 eV is a factor of 10 lower than
the contribution of the band minimum away from Γ. Consequently, the peak
at −0.3 eV is caused by the band minimum of the surface band at 1/4 of
the 2DBZ. The minor peak in the vacuum DOS at the hcp surface and the
shoulder at the fcc faulted surface at 50meV is caused by the band maximum
at 50meV at Γ.

Therefore, we conclude that the band minimum is the origin of the peak
measured by STS. This is in contrast to conclusions given for Co/Cu(111),
where a band at Γ̄ has been proposed to be responsible for the peak [37, 12].
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Figure 7.4: Majority spin (top part) and minority spin (lower part) band
structure of the 12 ML Co slab in the unfaulted (left panel) and in the
faulted (right panel) structure plotted along the high-symmetry directions in
the neighborhood of Γ. The empty circles represent the unprojected band
structure, whereas the filled circles mark states that are located by more than
10% in vacuum.
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7.4 Charge distribution analysis

7.4.1 Difference between the states at -0.3 eV and 50 meV

Finally, we analyze the charge distribution of the surface band of the mi-
nority spin channel with the band minimum at −300meV. The character
of this band with its minimum at 1/4 of the 2DBZ changes going from the
band maximum at Γ, where it has a predominant p-character, to the band
minimum, where it has a d3z2−r2-character with a small contribution of s-
and p-states of less than 5%. The corresponding contour plots are presented
in Fig. 7.5 (a) for the band maximum at 50meV and at the Γ-point, and in
Fig. 7.5 (b) for the energy and the Bloch vector corresponding to the band
minimum marked by arrows in Fig. 7.4. The contour lines between atomic
positions are nearly horizontal in Fig. 7.5 (a). It is impossible to assign from
the contour plot a specific character to this state. In contrast, the contour
plots show a predominant d3z2−r2-character at the surface layer with a minor
contribution of an s-like character in Fig. 7.5 (b). The lobes of the DOS point
away from the atomic positions into the vacuum in Fig. 7.5 (b). The extent
of the state into the vacuum is slightly higher for the state in Fig. 7.5 (a)
than in Fig. 7.5 (b). Within the bulk, the LDOS has at 50meV d3z2−r2- and
at 300meV predominant dxz-character.

The contribution of the states, shown in Fig. 7.5, to the LDOS in each
layer and in vacuum, normalised to 6 layers of Co, is indicated by the numbers
next to the contour plots. The state at 50meV (Fig. 7.5 (a)) has a huge part
in the vacuum. Apart from the vacuum the largest contribution for both
structures in Fig. 7.5 (a) and (b) is in the surface layer. Nevertheless, there
is a considerable contribution in the subsurface layers. This means that the
states at the surface can couple to bulk d-states. That this coupling takes
place indeed can be concluded from the hybridization with the bulk d-bands
near the band minimum and maximum, marked in Fig. 7.4. Consequently,
the states have to be assigned to a surface resonance rather than to a surface
state. In contrast, the dot marked band with the maximum at −0.5 eV at
Γ is found to be a d3z2−r2-surface state in accordance with the Co/Cu(111)-
case [37, 12].

The large vacuum part of the state in Fig. 7.5 (a), which is located at Γ,
is in nice agreement with [21], where it is shown that the states with small
k‖ have a large probability density in vacuum. The vacuum part of the state
at 300meV in Fig. 7.5(b) is by a factor of 10 lower than that of the state
at 50meV. Nevertheless in the vacuum DOS (Fig. 7.3) the peak at 300meV
is much higher than the DOS at 50meV. The reason is that in the 2DBZ
the state at −300meV is located on a ring with radius ∼ 1/4 ΓK and the
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state at EF is located at Γ. Consequently, much more k‖-vectors from the
2DBZ contribute to the peak at −300meV. Summarizing we can say that
three factors play a role for the high vacuum DOS of a state: the number
of the Bloch waves that contribute to the state being determined by the
dispersion of the corresponding band and by the part of the 2DBZ where the
state is located; the third mechanism is that the states with shorter Bloch
vectors have a higher probability density in vacuum [21]. In the cases, where
the third and second mechanism are competitive, it is not possible to say
without further analysis, if the states with shorter Bloch vectors carry the
main part of the vacuum DOS.

7.4.2 Difference between the hcp- and fcc-surface

Now we examine the two states at 50meV and −300meV for similarities and
differences between the faulted and unfaulted structures. In Fig. 7.5(a, b)
the left panel shows the contour plots for the hcp structure at both energies,
while the right panel contains the corresponding contour plots for the fcc
structure. The numbers on the side of the contour plots in Fig. 7.5 show that
the hcp structure has a slightly higher vacuum part for the state at 50meV
than the fcc surface. This can be explained from the different relaxation
of both surfaces (section 7.3.1). The maximal deviation in the contribution
of the layers between the two structures is 2%. Consequently, the charge
distribution in the film is very similar for the hcp and fcc surface at 50meV.

In contrast, the contribution of the third layer from the surface at −300meV
in Fig. 7.5 (b) is more than twice as high for the hcp than for the fcc structure.
The reason for this can be explained as follows.

The contour plots in Fig. 7.5 (b) show that in the case of hcp-stacking the
downward oriented orbitals of the surface atoms point directly to the atoms
in the second subsurface layer. In contrast, for the faulted structure, the
lobes point into the interstitial region. Accordingly, the surface resonance
exhibits a stronger coupling to bulk d-states for pure hcp stacking than for
stacking faults. This leads to a weaker electron-localization in the surface
layer in the hcp case as can also be seen by comparing the distribution of
the LDOS in the different layers (Fig. 7.5 (b)). As a consequence, the inten-
sity of the vacuum DOS as measured by STS is lower for the hcp structure.
The reason for a different brightness of hcp and fcc areas in dI/dV -maps at
−300 meV thus is a different coupling of the d3z2−r2-like surface resonance to
the underlying bulk. Note that the intensity of the surface resonance in the
hcp case is larger in the second subsurface layer than in the first subsurface
layer. This approves the assumption that the geometrically induced coupling
to the second subsurface layer is indeed the relevant coupling. Further, we
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Figure 7.5: (a) Contour plots of the DOS for the band maximum of the
surface related band at 50meV located at Γ. (b) Contour plots of the DOS
for the band minimum of the surface related band at −300meV away from
Γ.
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want to point out that the surface resonance is crossing only one bulk d-band
in the (Γ̄, K̄)-direction before it runs into the band minimum in the hcp-case.
In contrast, in the case of fcc stacking, the surface resonance crosses two bulk
d-bands. Since the d-band to which the band minimum couples is approxi-
mately 50 meV lower in energy in the fcc case, the peak in the vacuum DOS
accordingly occurs at lower energies.

In summary, the peak at −300 meV measured by STS is assigned
to a d3z2−r2-like surface resonance with minority spin character and
located in a band minimum away from Γ. We identified the differ-
ent appearances of hcp- and fcc-stacked areas in dI/dV -maps as due
to a different, geometrically induced, coupling of the corresponding
surface resonance to the bulk. This coupling is strongly dependent
on the d3z2−r2-like state at the surface atoms and does not work for
the surface states with another symmetry.
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Chapter 8

Summary

In this thesis, DFT calculations of Fe structures on InAs(110) as well as of Co
islands on Co(0001) are presented. First the geometry of three different sys-
tems, namely an Fe monolayer and Fe chains along [11̄0] (Fe[11̄0]/InAs(110))
and [001] (Fe[001]/InAs(110)) on InAs(110) are discussed. Then the elec-
tronic and magnetic structure of Fe chains on InAs(110) is studied in detail.
A direct comparison between theory and experiment follows. The following
results on the geometry of Fe structures on InAs(110) were obtained:

• An Fe atom in the Fe ML on InAs(110) takes almost the same position
as an As atom along [001]. The relaxation is reversed compared to the
pure InAs(110) surface. Under the Fe ML In has a higher position than
As.

• For both chain structures, Fe becomes strongly bound to the As atoms.
It takes a position in the arsenic’s surrounding and at the same time as
far as possible away from the In atoms. The bonds between the surface
In and As are weakened in favour of the bonds between Fe and As.

• For the Fe[11̄0]/InAs(110) it is shown that Fe takes a position embedded
in the surface in the middle of a triangle defined by three As atoms at
the corners. The In atom previously bound to these atoms is relaxed
out from the surface.

• For the Fe[001]/InAs(110) it is shown that Fe and one of the In atoms of
the unit cell have almost the same vertical position. This In is located
nearly equidistant to four surrounding As atoms of the surface.

For the magnetic and electronic structure of Fe chains on InAs(110) we
found the following:
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• The calculated magnetic structure of the chains is antiferromagnetic
for Fe[11̄0]/InAs(110) and ferromagnetic for Fe[001]/InAs(110).

• We suggest as an explanation for the antiferromagnetic structure the
antiferromagnetic superexchange between Fe atoms via dxy(Fe)-py(As)-
dxy(Fe) and dx2−y2(Fe)-px(As)-dx2−y2(Fe). This is supported by analysing
the electronic structure and the distribution of the LDOS around the
Fe in the film.

• For the ferromagnetic structure of Fe[001]/InAs(110), the interaction
between the Fe atoms is mediated through In, which has a position
along the chain between Fe atoms, and neighbouring As. Fe interacts
antiferromagnetically with As atoms: Fe↓-As1↑ and ferromagnetically
with In: Fe↑-In1↑-Fe↑, Fe↓-In1↓-Fe↓. Additionally, interaction of As
with In contributes to the overall FM coupling between Fe atoms in
the chain: Fe↓-As1↑-In1↑-As1↑-Fe↓ Fe↓-As1↑-In1↓-As1↑-Fe↓.

• The comparison with experimental results reveals, that there are two
surface states around 1 eV. One is the rudiment of the In dangling bond
and the other is an Fe state.

• An overview of the calculated topographic images is given, which shows
that for Fe[001]/InAs(110) Fe atoms are imaged at large positive volt-
ages while the In atoms are imaged at negative voltages. For Fe[11̄0]/InAs(110)
Fe atoms are imaged at low negative voltages.

These calculations can serve as a starting point for further studies of transi-
tion metal structures on III-V semiconductor surfaces. From the experimen-
tal side the preparation of quasi-infinitely long chains of transition metals and
STM measurements on them could be the next goal. From the theoretical
side the simulation of monomers and multimers would improve the model-
ing of the experimental situation. Substitution of the Fe by other transition
metals, or substitution of the InAs by other III-V semiconductors would give
some insights into the dependance of the studied effects on the specific sys-
tem.

In the last part of the work the interplay between geometry and electronic
structure of the Co(0001) surface was studied. The results explain STM
measurements on Co islands on Co(0001).

• The relaxation of the Co(0001) surface in hcp stacking and in hcp
stacking with fcc stacking fault at the surface was calculated. The hcp
surface relaxes inwards by 0.015 Å, whereas the faulted surface relaxes
inwards by 0.046 Å.
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• Both structures have a spin-polarized state around -300meV. The in-
tensity of this state is higher on the faulted structure. This is in nice
agreement with STS measurements on Co islands on Co(0001). These
measurements also show a peak around -300meV with different inten-
sity on the differently stacked islands.

• The intensity difference of this peak for different stackings is explained
by a different, geometry induced coupling of the state at -300meV to
the bulk DOS.
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Erklärungen zum Superexchangemechanismus.

Gustav Bihlmayer danke ich für seine Geduld und die vielen Tips und
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am ZAM im Forschungszentrum Jülich. Ohne die Kompetenz und Hilfsbe-
reitschaft dieser Menschen wäre ich verloren gewesen.
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