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Abstract

Topic of this thesis are electronic properties and transport characteristics of single and
double quantum dots. We begin with a discussion of the effects of Coulomb interaction
on the eigenspectra of isolated single and double dots. Thereafter, we study consequences
of these many-particle effects for the transport characteristics of dots that are coupled to
external contacts. In these studies the limit of weak coupling is considered which allows to
neglect any back action of the external coupling on the eigenspectrum of the dot structures.
In the last part of this thesis we extend our description of quantum transport and describe
effects of the external coupling on the eigenspectrum and transport characteristics of a
double dot.

In the first part we discuss the excitation spectrum and the transport properties of a single
two-dimensional dot with parabolic confinement. Classical and quantum mechanical effects
of Coulomb interaction on the charge density excitations are studied for various numbers of
electrons confined to the dot. The calculations explain recently measured Raman spectra
of self-assembled dots. Thereafter, a blocking mechanism in the nonlinear transport regime
is introduced, which completely suppresses the stationary current through the dot. The
presented blocking mechanism only occurs if the Coulomb interaction exceeds the single
particle level spacing and the blockade can be switched on and off by an external magnetic
field.

The second part deals with the consequences of Coulomb interaction on the eigenspectrum
and the transport properties of two vertically coupled dots. It is shown that a vertical mag-
netic field can tune a spontaneous charge polarization in vertical direction of the 3-electron
ground state. This strong charge polarization is caused by the different magnetic-field
dependence of the intra- and interdot Coulomb interaction and has severe consequences
on the serial transport through the double dot. In particular linear transport through the
double dot is blocked at the critical magnetic field.

In the last part of the thesis we study again the transport characteristics of a double dot
coupled in series to external contacts. Now we consider the regime when the external
coupling exceeds the interdot tunneling energy and extend our description of the double
dot, by considering also superpositions of eigenstates. In fact we find that these superpo-
sitions are relevant since they describe the interplay between the decoherent coupling to
the external contacts and the coherent dynamics on the double dot. Analogies to related
work in the field of spintronics are pointed out. Furthermore, we find that the external
coupling shifts the energy of the dot levels which results in characteristic features in the
current-voltage characteristic of the double dot as well as in its stability diagram.
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Zusammenfassung

Das Thema dieser Doktorarbeit sind elektronische Eigenschaften sowie Transporteigen-
schaften von Einzel- und Doppelquantenpunkten. Zunächst werden verschiedene Effekte
der Coulombwechselwirkung auf die Eigenspektren der Quantenpunktsysteme untersucht.
Danach wird aufgezeigt, welche Konsequenzen sich aus diesen Vielteilcheneffekten für die
Transporteigenschaften von Quantenpunkten ergeben, wenn sie an externe Kontakte gekop-
pelt sind. In diesen Rechnungen wird vorerst angenommen, dass die externe Ankopplung
schwach genug ist, um alle Rückwirkungen der externen Kontakte auf das Eigenspektrum
der Quantenpunktstrukturen vernachlässigen zu können. Im letzten Teil der Arbeit wird
die Beschreibung des Quantentransports erweitert und es wird gezeigt, wie sich Eigenspek-
trum und Transporteigenschaften eines Doppelquantenpunktes bei stärkerer externener
Ankopplung ändern.

Im ersten Teil der Arbeit werden Anregungsspektrum und Transporteigenschaften eines
einzelnen zweidimensionalen Quantenpunktes mit parabolischem Einschlusspotential be-
sprochen. Klassische und quantenmechanische Auswirkungen der Coulombwechselwirkung
auf die Ladungsdichteanregungen für verschiedene Elektronenzahlen im Quantenpunkt
werden präsentiert. Diese Rechnungen erklären aktuelle Ramanspektren von selbstor-
ganisiert gewachsenen Quantenpunkten. Danach wird ein Mechanismus diskutiert, der
im nichtlinearen Transportregime zu einer vollständigen Unterdrückung des stationären
Stroms durch den Quantenpunkt führt. Dabei tritt der dargestellte Mechanismus nur
auf, wenn die Coulombwechselwirkung stärker als die Einteilchenanregungen des Quanten-
punktes ist. Desweiteren kann die Blockade durch ein externes Magnetfeld an- und aus-
geschaltet werden.

Im zweiten Teil dieser Arbeit werden die Auswirkungen der Coulombwechselwirkung auf
Eigenspektrum und Transportcharakteristik zweier vertikal gekoppelter Quantenpunkte
besprochen. Es zeigt sich, dass ein vertikales Magnetfeld eine spontane Ladungspolarisa-
tion des 3-Elektronengrundzustandes in vertikaler Richtung bewirken kann. Diese starke
Ladungspolarisation wird durch eine unterschiedliche Magnetfeldabhängigkeit der Intra-
und Interdotcoulombwechselwirkung hervogerufen und hat weitreichende Auswirkungen
auf den Transport durch den seriell angekoppelten Doppelquantenpunkt. Insbesondere
wird der lineare Transport durch den Doppelquantenpunkt am kritischen Magnetfeld na-
hezu vollständig unterdrückt.

Im abschließenden Teil der Arbeit werden erneut die Transporteigenschaften eines Dop-
pelquantenpunktes berechnet, der seriell an externe Kontakte gekoppelt ist. Nun wird der
Fall betrachtet, bei dem die externe Ankopplungsstärke größer als das Tunneln zwischen
den Quantenpunkten ist. Dazu wird die Beschreibung des gekoppelten Doppelquanten-
punktes um kohärente Überlagerungen von Eigenzuständen erweitert. Tatsächlich zeigt
sich, dass in dem diskutierten Parameterbereich diese Überlagerungen für die Beschreibung
des Zusammenspiels von der inkohärenten externen Ankopplung und der kohärenten Dy-
namik auf dem Doppelquantenpunkt notwendig sind. Der Zusammenhang zu ähnlichen Ar-
beiten im Bereich der Spintronic wird diskutiert. Darüberhinaus führt die externe Ankop-
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plung zu einer Verschiebung der Energieniveaus der Quantenpunkte und somit zu neuen
charakteristischen Merkmalen in der Strom-Spannungskennlinie und des Stabilitätsdiagramms
des Doppelquantenpunktes.
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1 Introduction

The physical concepts of the macroscopic and the microscopic world are principally differ-
ent. While the basics for the macroscopic world and in particular all physical phenomena
in our everyday world are described by classical mechanics and Maxwell equations, the
microscopic world appearing at the atomic scale needs to be described by quantum me-
chanics.

The task of mesoscopic physics is to describe the intermediate regime, where on the one
hand the system size is already smaller than the phase coherence length, so that quan-
tum mechanical effects become relevant, but at the same time the system still consists
of millions of atoms. The relevance of mesoscopic physics is not only explained by the
thirst of knowledge of scientists, but also by the tremendous speed of the miniaturization
of electronic devices. The electronic industry performs this task in a top-down approach,
starting with their currently working devices and watching what happens upon shrinking
them. Theoretically appealing is a bottom-up scheme, starting with the well understood
quantum mechanical description of atomic physics. However, this is a rather hopeless
approach since the complexity of the exact quantum mechanical calculations grows expo-
nentially with the system size. The typical task in mesoscopic physics is thus to find an
effective model, where the huge number of degrees of freedom can be reduced to a few
characteristic ones.

Quantum dot systems are particularly suited for a prolific cooperation between experimen-
talists and theoreticians in mesoscopic physics, since they combine a microscopic under-
standing of the Hamiltonian of these systems with a tremendous experimental control over
the system parameters. In particular semiconductor quantum dots can be designed on
purpose since they are fabricated by semiconductor growth and processing technologies. A
quantum dot is a quasi zero-dimensional electron system where electrons are confined in all
spatial directions, giving rise to discrete single-particle levels. Furthermore the Coulomb
interaction between the confined electrons together with the small volume results in a con-
siderable addition energy needed before an extra electron can be put on the dot. Depending
on the size of the dot the addition energy varies between 1-100 meV, which exceeds con-
siderably the temperature used in current experiments, so that the Coulomb interaction
stabilizes the electron number. The relative magnitude of single-particle level spacing and
Coulomb interaction is preset by design. In general the influence of Coulomb interaction
on the eigenspectrum increases with decreasing confinement.

For small dots where the level spacing exceeds the Coulomb interaction between two elec-
trons, the few-particle eigenspectrum shows many analogies to atomic physics. The eigen-
states e.g. can be approximated by consecutively filling the single-particle levels, following
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1 Introduction

Hund’s rule and the Aufbau principle known from atomic physics. Quantum dots are
therefore often called artificial atoms. However, in contrast to atoms where confinement
and electron number are determined by nature, quantum dots are man made structures al-
lowing for example to systematically charge the dot with additional electrons. Furthermore
due to the much weaker confinement and larger spatial extend of quantum dots in com-
parison to atoms, the eigenspectrum becomes much more sensitive to an external magnetic
field. This allows to induce groundstate transitions in quantum dots at typical magnetic
fields available in laboratories, while the corresponding transitions in atoms would require
magnetic fields of the order of 106 Tesla. All these features show, that quantum dots offer
a great opportunity to study many-particle physics.

A further enrichment of the physics of quantum dots is achieved by coupling several dots.
Such coupled dots can then be thought of as artifical molecules and again, the high experi-
mental control over the system parameters, like interdot coupling, confinement or occupa-
tion offers a systematic study of the many-particle and molecular physics.

Other keywords used in the context of quantum dot structures are spintronics, quantum
computation or quantum cellular automata. In spintronics, one looks for electronic devices
using not only the charge degree of freedom but also the spin of the electrons. This is
particularly desirable since the spin degree is much less volatile than the charge degree of
freedom, resulting in relatively long coherence times, which are a prerequisite of quantum
computations. In quantum computing one tries to exploit the unique feature of quantum
mechanics namely entanglement and superposition to perform computations that are not
possible classically.

Other astonishing effects arise in transport through quantum dot structures. If a quan-
tum dot structure is integrated in an electrical circuit, by connecting it via high tunneling
barriers to external contacts, and if the temperature is low enough, then the Coulomb
interaction and the discrete energy spectrum of the dot are manifest in the transport
characteristics. In particular in the weak coupling regime and for small applied voltages
transport is only possible at discrete energies, where the tunneling electron has the nec-
essary energy to overcome the Coulomb interaction on the dot, while at other energies
the dot is in the Coulomb blockade. In most experiments, the transport channels of the
dot can be continuously shifted upwards or downwards in energy by a side gate. Due to
the Coulomb blockade the current shows peaks in the linear transport regime as function
of the voltage applied to the side gate. Complementary, the spectrum of the dot can be
investigated in the nonlinear transport. As function of the transport voltage the current
has the form of a staircase and correspondingly the differential conductance shows a peak
structure, where the position of the steps or peaks reveals the excitation spectrum of the
dot, while their height depends on the form of its eigenfunctions. Another important ques-
tion concerns the influence of the external coupling on the eigenspectra of the dot. With
increasing external coupling renormalizations of energy levels show up. Furthermore the
Coulomb blockade, which is characteristic for the weak coupling regime, can be canceled
by higher order tunneling processes. Finally Kondo physics arise in the regime of strong
external coupling and for strong Coulomb interaction.
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This work however is restricted to the weak coupling regime, where transport can be
described by independent tunneling processes occurring one after the other. The aim of
this thesis is to study many-particle effects based on Coulomb interaction in single and
double quantum dots containing few electrons and the manifestations of these effects in
optical spectroscopy and mainly in transport experiments.

After the introduction, the few-electron eigenspectrum of a two-dimensional harmonic
quantum dot and its manifestation in optical and transport experiments is studied in
chapter 2. First the effect of Coulomb interaction on the charge density excitations is
discussed for various numbers of electrons confined to the dot. The presented calculations
allowed to interpret recent Raman spectra. Thereafter different aspects of Coulomb inter-
action are discussed for the transport through the dot. In particular a blockade mechanism
is introduced, that results in a complete suppression of the nonlinear current through the
dot.

In chapter 3 the spectrum and the transport properties of a vertically coupled double
dot containing few electrons are studied. It is shown that the different magnetic field
dependence of intra- and interdot Coulomb interaction can induce a spontaneous charge
polarization in the three-electron ground state at critical magnetic fields. Again this many-
particle effect has severe consequences on the transport characteristic of this structure, if
it coupled in series to external contacts. In particular the current through the double dot
vanishes at the critical magnetic fields.

In chapter 4 the influence of the external coupling on the eigenspectrum and the transport
characteristics of a double dot coupled in series to external contacts is investigated. When
the coupling to the external contacts is of the same order or even larger than the interdot
coupling, then the transport through the double dot changes significantly with respect to
limit of weak external coupling. Then transport through the double dot is accompanied by
partially coherent dynamics on the double dot, corresponding to superpositions of different
eigenstates. Furthermore the external coupling shifts the energy of the dot levels. Conse-
quences of these effects are already visible at rather high temperatures, where transport is
dominated by incoherent tunneling processes.

Some of the main results of this thesis have already been published.

Publications

• “Spectroscopy of Few-Electron Collective Excitations in Charge-Tunable Artificial

Atoms” [1].

• “Inelastic light scattering on few-electron quantum-dot atoms” [2].

• “Charge localization and isospin blockade in vertical double quantum dots” [3].

• ”Isospin blockade in transport through vertical double quantum dots” [4].

• “Probing level renormalization by sequential transport through double quantum dots” [5].

3



1 Introduction

4



2 Few-electron quantum dots

The eigenspectrum of a quantum dot containing few electrons is determined by the single-
particle spectrum on the one side and the Coulomb interaction on the other side. In
semiconductor quantum dots the single-particle spectrum is often well described by the
Fock-Darwin spectrum, which assumes a two-dimensional quantum dot with harmonic
confinement potential in lateral direction. If one neglects the interaction between electrons
for a moment, the few-particle spectrum is obtained by consecutively filling the single-
particle levels with electrons. However this simple picture can be strongly modified by
the interaction between the electrons. In this chapter we discuss the effect of Coulomb
interaction on the spectroscopy of quantum dots for two different experimental setups.

In the first case we show how the Coulomb interaction affects the charge density excita-
tions of self-assembled dots. In general we find that with increasing Coulomb energy the
excitations spread over a broader energy regime where the upper limit is given by the
single-particle excitation. Furthermore the excitation spectrum reveals the shell structure
of the single-particle levels.

In the second case we study a blocking mechanism arising in transport experiments due to
transitions to excited states. The blocking mechanism depends on the excitation spectrum
at constant electron number as well as on the energy differences between the ground-
states energies corresponding to consecutive electron numbers. The characteristics of these
energies strongly depends on the Coulomb energy and in particular we show that the
blocking mechanism disappears for strong confinement.

In the following we first discuss different experimental realizations of semiconductor quan-
tum dots in section 2.1. Then, in section 2.2 the effective theoretical model for these dots
is introduced and it is shortly explained how the eigenspectra can be obtained by means
of exact diagonalization. In section 2.3 the effects of Coulomb interaction on the charge
density excitations of self-assembled dots are studied depending on the number of electrons
occupying the dots. These calculations were used to understand recent experimental results
obtained by resonant Raman spectroscopy and are published together with the experimen-
tal data in references [1, 2]. In section 2.4 the transport spectroscopy of quantum dots is
shortly introduced, which is valid if the external coupling sets the lowest energy scale. This
approach is then applied to study a blocking mechanism for the nonlinear current through
the dot in section 2.5. Finally we conclude this chapter in section 2.6.
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2 Few-electron quantum dots
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Figure 2.1: a) Atomic-force-microscope image of an array of self-assembled InAs quantum dots
(taken from the group of Prof. Hansen, university of Hamburg). b) Schematic energy profile for
conductance band and valence band of heterostructure, where dots are embedded. The occupation
of the dot with electrons can be tuned by the voltage applied between the two-dimensional electron
system and the titanium top gate. Data taken from reference [1].

2.1 Experimental realizations

In this work we focus on semiconductor quantum dots, containing few conduction electrons.
In the following we shortly discuss three important types of quantum dots, namely self-
assembled dots, lateral or planar dots, and vertical dots.

Self-assembled dots
Self-assembled dots form spontaneously during an epitaxial growth process. Choosing the
right experimental conditions, InAs grown on a GaAs substrate forms nanometers sized
islands for energetic reasons.[6] Fig. 2.1 a) shows an array of self-assembled dots as they
are realized in the experimental group of Prof. Hansen at the university of Hamburg.
All dots have approximately the same size, however they are randomly distributed on the
GaAs surface. By overgrowing these islands again with GaAs one can confine electrons
in these InAs dots in all three dimensions due to the much higher bandgap of the sur-
rounding GaAs material. The single-particle-excitation energy for the lateral motion is
about 50 meV. The motion in vertical direction is typically restricted to the ground state,

6



2.1 Experimental realizations

Figure 2.2: Scanning-tunneling-microscope image of the gate geometry forming a lateral quantum
dot in the 2DES about 90nm below the surface. The plunger gate allows to trap a precise number
of electrons varying from 0-50. In a transport experiment a characteristic current flows through
this structure as response to an applied source drain voltage not shown in this graph. Figure
taken from [8].

since the vertical confinement is about an order of magnitude larger than the lateral one.
Fig. 2.1 b) shows the growth sequence and the band structure of the heterostructure where
the dots are embedded. The two-dimensional electron system (2DES), residing in an in-
verted heterostructure, acts as a back contact, while the titanium gate is deposited on top
of the sample. By applying a gate voltage between top and back contact the quantum dots
can be charged by single electrons.

Lateral dots
A lateral or planar quantum dot is created by patterning several metal electrodes, or gates,
on the surface of a 2DES-heterostructure, usually of GaAs.[7] Applying a negative voltage
to the gates raises the electrostatic potential in their neighborhood and depletes the 2DES
in the vicinity of the gates. The confinement in vertical direction is thus provided by a
quantum well produced by the growth process, while the lateral confinement is caused by
the electrostatic potentials of the gates. Fig. 2.2 shows the setup of a lateral quantum dot,
which can be emptied completely.[8] Depending on the voltage applied to the plunger gate,
the dot can be precisely charged with electrons, starting from the empty dot up to about 50
electrons. Connecting the outer regions of the 2DES with a source and drain contact one
can run a current through the quantum dot as response to a transport voltage. In the weak
coupling regime, where we are interested in, the current flow is then caused by a sequence
of single electrons hopping one after the other from source contact into the dot and then
out to the drain contact. The corresponding tunneling rates and thus the current through
the dot strongly depend on the properties of the dot, like its single-particle spectrum and
the Coulomb energy. The manifestation of the dot spectrum in transport measurements
is one of the main topics of this thesis. Thereby we limit our studies to the weak coupling
regime, where the external coupling can be treated as a small perturbation.

7
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Figure 2.3: a) Schematic diagram of vertical quantum dot. b) Scanning-tunneling-micrograph of
quantum dot pillar. Data taken from [9] .

Vertical dots
Vertical dots like the one depicted in Fig. 2.3 are fabricated by etching a pillar out of

a semiconductor double barrier structure defined by the growth process.[9] A side gate is
added by depositing a metal electrode around the pillar. The confinement of the dot is
defined in z-direction by a double barrier structure and in lateral direction by the interplay
of the surface potential and the gate potential. In contrast to planar dots, where electrons
tunnel within the electron layer, the current now consists of electrons tunneling vertically
through the double barriers. Therefore in vertical structures the electrons couple more or
less to the entire area of the quantum dot and the tunnel amplitudes can be assumed to
be independent of the single-particle orbitals, while in lateral quantum dots the electrons
tunnel into the edges, which might lead to an orbital dependence of the tunnel amplitudes.

2.2 Many-particle eigenspectrum

In this section we show how we calculate the eigenspectrum of a quasi two-dimensional
harmonic quantum dot. Therefore we first discuss its analytically solvable single-particle
spectrum, known as Fock-Darwin spectrum. Then we dicuss the effects of Coulomb inter-
action, which we are going to include non-perturbatively via an exact diagonalization of
the many-particle Hamiltonian.

2.2.1 Fock-Darwin Hamiltonian

The first task for a calculation of the electronic states in a quantum dot is to identify a
good Hamiltonian (i.e. the possible approximations) to start with. Since the external con-
finement that defines the quantum dot is smooth on the atomic length scale it is allowed to
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2.2 Many-particle eigenspectrum

start with an effective Schrödinger equation determining the envelope wavefunction within
the effective mass approximation. Furthermore the vertical confinement is much stronger
than the lateral one, so that the motion in z-direction is frozen for all relevant eigenstates.
Often the quasi two-dimensional confinement is turned into a strict two-dimensional one,
by restricting the motion in z-direction to a delta layer. The lateral motion is often well de-
scribed by a rotationally-symmetric parabolic confinement (harmonic confinement), which
was shown theoretically in self-consistent calculations [10], and furthermore is justified by
the good agreement between theoretical calculations and experimental data [9, 11, 12].

A single electron moving in a two-dimensional quantum dot with harmonic confinement
potential and subject to a magnetic field B, perpendicular to its plane of motion, is well
described by the Fock-Darwin Hamiltonian:

Ĥ =
1

2m∗

(

~p+ e ~A
)2

+
m∗ω2

0

2
r2 . (2.1)

Here ~A denotes the vector potential with rot( ~A) = Bez, ω0 the strength of the parabolic
confinement potential, m∗ the effective mass, and e is the positive elementary charge (i.e.
the electron has the charge q = −e). The momentum ~p and the spatial vector ~r are
restricted to the plane perpendicular to the magnetic field.

In addition to the orbital dynamics described by the Hamiltonian above, the magnetic field
also causes a Zeeman splitting of the spin levels

ĤZ = g∗
µB

~
BŜz . (2.2)

Here µB is the Bohr magneton and g∗ the effective Landé factor. In GaAs the Zeeman
term is often neglectable, since the Zeeman splitting of spin-degenerate states is about
70 times smaller than the splitting of the orbital degree of freedom in a magnetic field
(orbital Zeeman term). Furthermore, the many-particle Hamiltonian describing several
interacting electrons confined to the quantum dot, commutes with the spin, so that the
Zeeman term only shifts the eigenenergies a little bit, while it leaves the many-particle
eigenstates unaffected.

Fock-Darwin eigenspectrum
The Schrödinger equation corresponding to the Fock-Darwin Hamiltonian (2.1) was first

solved independently by Fock and Darwin [13, 14]. Its energy eigenspectrum is given by:

Enm = ~ωeff(2n+ |m| + 1) +
~ωc

2
m . (2.3)

Here ωc = eB
m∗ denotes the cyclotron frequency and ωeff =

√

ω2
0 + ω2

c

4
the effective con-

finement frequency. The relevant energies that determine the single-particle spectrum are
therefore: ~ωc, ~ω0, ~ωeff . The eigenstates are denoted by the principal quantum number
n and by the angular momentum m. The energy spectrum as function of magnetic field is
illustrated in Fig. 2.4. With increasing magnetic field, states with highest negative angular

9



2 Few-electron quantum dots
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Figure 2.4: Fock-Darwin spectrum as function of the external magnetic field. Eigenstates can
either be labeled by the oscillator quantum numbers n+, n− or by principal quantum number and
angular momentum n,m. The two representations are connected by Eq. (2.8). For high magnetic
fields n+ labels the Landau levels. In particular, states with minimum angular momentum m =
−n i.e. with n+ = 0 converge to the lowest Landau level.

-2

0

2
-2

0

2

0
0.1
0.2
0.3

-2

0

2

-2

0

2
-2

0

2

0
0.1
0.2
0.3

-2

0

2 0.5 1 1.5 2 2.5 3 3.5

0.05

0.1

0.15

0.2

0.25

0.3

m=0
m=1

m=2
m=3

-2

0

2
-2

0

2

0
0.025
0.05

0.075
0.1

-2

0

2

(b)

(d)(c)

(a)

x/l

x/l x/l

y/l

y/l
y/l

r/l = ξ

P (~r/l)

P (~r/l)P (~r/l)

P (~r/l)

(1,0)

(0,1)(0,0)

(0,m)

Figure 2.5: a)-c) Probability density P (~r/l) = |〈n,m|~r/l |n,m〉|2 for the lowest eigenstates. (d)
With increasing angular momentum the probability distribution is broadened.
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2.2 Many-particle eigenspectrum

momentum m = −n are favored. Fig. 2.4 also includes the oscillator representation of the
eigenstates, which we introduce below.

One set of eigenstates are the Fock-Darwin states |nm〉:

〈~r |nm〉 = ψnm(~r) = φm(ϕ)ρnm(r) =
1

l
φm(ϕ)ρ̃nm(

r

l
)

ρ̃nm(ξ) = (−1)n

√

2n!

(n+ |m|)!ξ
|m|e−ξ2/2L|m|

n (ξ2)

φm(ϕ) =
1√
2π
eimϕ

l =
√

~/(m∗ωeff) (2.4)

Here l denotes the characteristic length scale of the quantum dot, which exclusively contains
confinement ω0 and magnetic field ωc. The radial part ρnm(r) of the wavefunction is form-
invariant under a change of either ω0 or ωc, or in other words an increase (decrease) in
either ω0 or ωc shrinks (stretches) the radial wavefunction ρnm(r) without changing its
characteristic form. Mathematically this follows from the fact that ρ̃nm(ξ) is independent
of ω0 and ωc. Furthermore the radial wavefunction ρnm(r) only depends on the absolute
value of the angular momentum m.

We put the prefactor (−1)n (which is a mere phase factor) in the definition of the radial
wavefunction to allow a direct transformation between the Fock-Darwin eigenstates and the
bosonic representation of eigenstates introduced below. As an example of the eigenfunction

we mention that the ground-state wavefunction is given by ψ00(~r) = 1
l
√

π
e−

r2

2l2 . Figure 2.5
shows the probability density of the lowest eigenfunctions. In general the extend of the
wavefunction increases with the magnitude of the angular momentum see Figure 2.5 (d)
while the principal number gives the number of nodes in the radial part see Figure 2.5 (c).

Introduction of ladder operators

The Hamiltonian can also be represented by the bosonic operators a†±, a± of a harmonic
oscillator [15]

a†± :=
1√
2
(a†x ± ia†y) ; a± :=

1√
2
(ax ∓ iay)

ax :=
1√
2
(
x

l
+ i

l

~
px) ; ay :=

1√
2
(
y

l
+ i

l

~
py) . (2.5)

They fulfill canonical commutator relations (i, j ∈ {x, y,+,−})
[

ai, a
†
j

]

= δij; [ai, aj ] =
[

a†i , a
†
j

]

= 0 . (2.6)

11



2 Few-electron quantum dots

With the help of the bosonic operators the Hamiltonian and its eigenspectrum can be
rewritten in the following form:

ĤFD = ~Ω+

(

a†+a+ +
1

2

)

+ ~Ω−

(

a†−a− +
1

2

)

E|n+n−〉 = ~Ω+(n+ +
1

2
) + ~Ω−(n− +

1

2
) = ~ωeff(n+ + n− + 1) +

~ωc

2
(n+ − n−)

|n+, n−〉 =
(a†+)n+

√

n+!

(a†−)n−

√

n−!
|0, 0〉

Ω± = ωeff ± ωc

2
. (2.7)

The angular momentum expressed by the ladder operators is: L̂z = ~

(

a†+a+ − a†−a−

)

.

Since both presented eigensystems to the Hamiltonian (2.1) (either the Fock-Darwin states
described by the quantum number n,m or the eigenstates described by n+, n−) are also
eigenstates to L̂z , there is a one to one correspondence between both systems, given by:

m = n+ − n−

n = min(n+, n−) =
n+ + n− − |n+ − n−|

2

n± =
2n±m+ |m|

2
. (2.8)

In general the space representations of corresponding eigenstates (connected by equa-
tions (2.8)) can still differ by a phase factor, i.e. 〈~r |nm〉 = α(n,m)〈~r |n+n−〉. However,
by adding the prefactor (−1)n in the definition of the Fock-Darwin eigenstates this phase
factor is always one, i.e. 〈~r |nm〉 = 〈~r |n+n−〉 if Eq. (2.8) are fulfilled.

The oscillator representation is particularly useful to describe the high magnetic field regime
defined by ωc ≫ ω0, so that Ω+ → ωc and Ω− → 0. In this regime n+ labels the Landau
levels and n− labels the excitations within a Landau level caused by the comparatively low
confinement ω0, see Fig. 2.4.

2.2.2 Coulomb interaction

In this work we take the full Coulomb interaction into account, represented by

V̂c =
1

2

1

κ

Ne∑

i,j=1

1

rij

(2.9)

with rij = |~ri − ~rj | and κ = 4πε0ε
e2 , where ε denotes the relative dielectric constant of the

host material. The Coulomb interaction only acts on the orbital degree of freedom and
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2.2 Many-particle eigenspectrum

thus commutes with the square of the real total spin and with all spin components:

[V̂c, ~S] = 0 , ~S =

Ne∑

i=1

~S(i) (2.10)

Furthermore the Coulomb interaction only acts on the relative coordinates, while it is
independent of the center of mass motion. Together with the rotational invariance of V̂c,
this leads to the following commutator relations:

[V̂c, Lz] = 0 = [V̂c, L
(rel)
z ] = [V̂c, L

(cm)
z ] , Lz =

Ne∑

i=1

L(i)
z (2.11)

Here L
(rel)
z (L

(cm)
z ) denotes the angular momentum of the relative (center of mass) motion.

The eigenstates of the interacting dot can therefore be chosen to be simultaneously eigen-
states of the z-component of the total spin and of the square of the total spin as well as
of the total angular momentum in z-direction described by the quantum numbers Sz, S
and M respectively. In section 2.3 we will furthermore determine the relative and center
of mass angular momentum of the eigenstates.

Center of mass motion
In a quantum dot with harmonic confinement potential the dynamics of several electrons
separates in the center of mass motion and the relative motion even in the presence of
Coulomb interaction.[16, 17, 18] The center of mass motion is described by the nonin-
teracting single-particle Hamiltonian (2.1), so that it is independent of interactions and
the number of particles. Excitations of the center of mass motion therefore always ap-
pear at the single-particle excitation energies. In order to reveal many-particle effects it is
necessary to excite the relative motion, which will be topic of section 2.3.

The conserved center of mass and relative angular momenta, denoted by L̂cm
z and L̂rel

z ,
respectively, can be calculated with the ladder operator introduced in Eq. (2.5):

L̂z = ~

Ne∑

i=1

(

a†i+ai+ − a†i−ai−

)

L̂cm
z := ~̂R× ~̂P = 1/Ne

Ne∑

i=1

~̂ri ×
Ne∑

j=1

~̂pj = ~

(

A†
+A+ −A†

−A−

)

A± =
1√
Ne

Ne∑

i=1

ai±

L̂rel
z = L̂z − L̂cm

z . (2.12)

Here Ne denotes the number of electrons.
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2 Few-electron quantum dots

Effective units and scaling of Coulomb interaction

We now comment on the relevance of the Coulomb interaction relative to the single-particle
spacing. If one splits the motion of two electrons confined to the quantum dot in the center
of mass and the relative motion of the electrons, one finds that the characteristic length
scale for the relative motion is given by lrel =

√
2l, where l =

√

~/(m∗ωeff) denotes the
confinement length introduced in Eq. (2.4). This calculation is performed in appendix A.1.
The characteristic Coulomb energy is thus given by 1/(κlrel). It can be related to the other
characteristic energy scales ~ω0 and ~ωc of the system by expressing distances in units of
the effective Bohr radius a∗0 and energies in units of effective Rydbergs Ryd∗ defined by:[19]

a∗0 =
κ ~

2

m∗

Ryd∗ =
1

2κ a∗0
=

~
2

2m∗a∗0
2 . (2.13)

The constant κ is given by κ = 4πεε0/e
2. While in atomic physics a Rydberg is given

by 13.6eV its effective value in semiconductors is drastically reduced to Ryd∗ = Ryd ·
m∗/(m0 ε

2), where ε denotes the relative dielectric constant and m∗ the effective mass.
Accordingly the effective Bohr radius is strongly increased by a∗0 = a0 εm0/m

∗, where the
atomic Bohr radius is given by a0 = 5.29 · 10−11m. The effective units absorb the material
constants of the host material and the resulting values for InAs and GaAs are listed in
Table 2.1. We now note the following identities:

1

κlrel
= Ryd∗

√

~ωeff

Ryd∗
(2.14)

(
l

a∗0

)2

= 2
Ryd∗

~ωeff
. (2.15)

The consequences of these equations become obvious in the absence of a magnetic field, i.e.
for ωeff = ω0. In that case the characteristic interaction energy exceeds the single-particle
level spacing for a confinement of ~ω0 < 1Ryd∗ ( i.e. a characteristic length l >

√
2a∗0),

while the characteristic interaction energy is lower than the single-particle level spacing for
~ω0 > 1Ryd∗ (i.e. l <

√
2a∗0).

Throughout chapter 2 and chapter 3 we will always use these energy units if not stated
otherwise. Concerning the magnetic field we note that it only enters the Hamiltonian via
the cyclotron frequency ωc = eB/m∗, which is proportional to the magnetic field. With
the material constants of GaAs listed in Table 2.1 we find that a magnetic field of 1 Tesla
corresponds in GaAs to ~ωc = 0.29Ryd∗ and vice versa ~ωc = 1Ryd∗ corresponds to a
magnetic field of B ≈ 3.45T .

Matrix elements of Coulomb interaction
We reexpress the Coulomb interaction V̂c introduced in Eq. (2.9) using Eq. (2.13) and

14



2.2 Many-particle eigenspectrum

m∗/m0 ε a0 Ryd∗

GaAs 0.067 12.4 9.79 nm 5.93 meV=68.8 Kelvin *kB

InAs 0.0239 15.15 33.5 nm 1.42 meV=16.5 Kelvin *kB

Table 2.1: Material constants and values of effective units. kB denotes the Boltzmann constant.

Eq. (2.14) by:

V̂∗
c =

√

~ω∗
eff

1

2

Ne∑

i,j=1

lrel

rij
(2.16)

Here the superscript ∗ again denotes that the quantity is given in units of Ryd∗, see
Eq. (2.13). It is important to note the matrix elements of lrel

r12
are independent of both

confinement and magnetic field and are only a function of the quantum numbers defining
the matrix element, which is based on the following relation:

〈n1m1, n2m2| lrel/r12 |n3m3, n4m4〉 :=

= lrel

∫ ∫

d2r1 d
2r2

ψ∗
n1 m1

(~r1)ψ
∗
n2 m2

(~r2)ψn3 m3
(~r1)ψn4 m4

(~r2)

r12

=

∫ ∫

d2ξ1 d
2ξ2

ψ̃∗
n1 m1

(~ξ1) ψ̃
∗
n2 m2

(~ξ2) ψ̃n3 m3
(~ξ1) ψ̃n4 m4

(~ξ2)

ξ12
. (2.17)

Here we used ψ̃n m(~ξ) = ρ̃n m(ξ)φm(ϕ) as defined in Eq. (2.4) and furthermore ξ12 =

|~r1 − ~r2| /lrel =
∣
∣
∣~ξ1 − ~ξ2

∣
∣
∣ /
√

2, ~ξi = ~ri/l. With Eq. (2.17) we expressed the matrix ele-

ment only by functions that are independent of ω0 and ωc. For the actual calculation of
the matrix elements shown in Eq. (2.17) it is useful to transform ~r1, ~r2 into relative and

center of mass coordinates ~R = (~r1 + ~r2)/2 and ~r = (~r1 − ~r2), as shown in Appendix A.2.

In Tables 2.2 and 2.3 we list matrix elements of the Coulomb energy for various basis
states. Since the Coulomb interaction commutes with the total angular momentum the
only non-vanishing matrix elements are 〈n1m1, n2m2| lrel/r12 |n3m3, n4m4〉 ∝ δm1+m2,m3+m4

.

Table 2.2 lists examples of the direct and exchange Coulomb energy. We note that electrons
in the s-shell interact strongest with each other while electrons in higher levels generally
interact weaker due to the larger spatial extend of the wavefunctions. Furthermore the
exchange term illustrates that the spin degree of freedom affects the Coulomb energy of
a wavefunction, since it determines the symmetry of a wavefunction, even though the
Coulomb operator itself is independent of the spin.

The matrix elements listed in Table 2.3 lead to superpositions of different states belong-
ing to the same subspace M,S, Sz, giving rise to Coulomb correlations. These matrix
elements are particularly important whenever different states belonging to the same sub-
space M,S, Sz have the same single-particle energy, so that they can easily be coupled
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2 Few-electron quantum dots

ψ1 = |n1m1〉 ψ2 = |n2m2〉 Ec
12 Ex

12

|0, 0〉 |0, 0〉 1 -

|0, 0〉 |0,±1〉 3
4

= 0.75 1
4

= 0.25

|0, 0〉 |0,±2〉 19
32

≈ 0.594 3
32

≈ 0.094

|0, 0〉 |1, 0〉 11
16

= 0.6875 3
16

= 0.1875

|0,±1〉 |0,±1〉 11
16

-

|0,±1〉 |0,∓1〉 11
16

3
16

Table 2.2: Direct (Ec
12) and exchange (Ex

12) Coulomb energy for lowest orbitals in

units of
√
π
√

~ω∗
eff Ryd∗. [20] Definition: Ec

12 = 〈ψ1, ψ2| lrel
~rrel

|ψ1, ψ2〉 /
√
π, Ex

12 =

〈ψ1, ψ2| lrel
~rrel

|ψ2, ψ1〉 /
√
π, space-representation of Coulomb matrix elements given in Eq. (2.17).

n1, m1 n2, m2 n3, m3 n4, m4 〈n1m1, n2m2| lrel

r12
|n3m3, n4m4〉 /

√
π

0, ±1 0, ±1 0, 0 0, ±2 0.221
0, 0 1, 0 0, 0 0, 0 0.25
0, 0 1, 0 0, ±1 0, ∓1 0.0625

Table 2.3: Coulomb matrix elements leading to correlations. Units chosen as in Table 2.2.

by Coulomb interaction. This will be discussed in section 2.3. Furthermore the matrix
elements listed in Table 2.3 are also important for weak external confinement or strong
magnetic fields, since then the single-particle level spacing is of the same order or lower
than the Coulomb interaction matrix elements.

2.2.3 Full Hamiltonian in second quantization

The few-electron eigenspectrum of a harmonic quantum dot is determined by the following
Hamiltonian:

Ĥ = ĤFD + ĤZ + V̂c =
∑

i

(Ĥ
(i)
FD + Ĥ

(i)
Z ) +

1

2

∑

i,j

V̂ (i,j)
c . (2.18)

Here ĤFD =
∑

i Ĥ
(i)
FD denotes the Fock-Darwin Hamiltonian (2.1), ĤZ =

∑

i Ĥ
(i)
Z repre-

sents the Zeeman term (2.2) and V̂c = 1
2

∑

i,j V̂
(i,j)
c the Coulomb interaction on the dot,

introduced in Eq. (2.9).

Written in second quantization the different parts of the Hamiltonian (2.18) have the
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2.2 Many-particle eigenspectrum

following form:

ĤFD =
∑

nmσ

Enmc
†
nmσcnmσ ; ĤZ = g∗

µB

2~
(n↑ − n↓)

V̂c =
1

κlrel

1

2

∑

n1,m1
n2,m2

∑

n3,m3
n4,m4

∑

σ,σ′

〈n1m1, n2m2|
lrel

r12
|n3m3, n4m4〉 c†n1m1σc

†
n2m2σ′cn4m4σ′cn3m3σ .

The operator c†nimiσ
(cnimiσ) creates (annihilates) an electron with spin σ in the orbital

|nimi〉, and n̂σ =
∑

nm c
†
nmσcnmσ denotes the number of electrons with spin σ. The eigen-

spectrum is determined by the competition between ĤFD favoring a succeeding filling of
the lowest single-particle states on the one side and the Coulomb interaction V̂c favoring
a maximum distance between the electrons on the other side. The Coulomb interaction
builds up correlations between the electrons and causes the occupation of higher orbitals.

Rewriting the Fock-Darwin term and the Coulomb interaction, defined in Eq. (2.1), (2.16),
in the effective units given in Eq. (2.13) results in:

Ĥ∗
FD = ~ω∗

eff

∑

n,m,σ

(2n+ |m| + 1) c†n m σ cn m σ +
~ω∗

c

2

∑

n,m,σ

mc†n m σ cn m σ

V̂∗
c =

√

~ω∗
eff

1

2

∑

n1,m1
n2,m2

∑

n3,m3
n4,m4

∑

σ,σ′

〈n1m1, n2m2|
lrel

r12
|n3m3, n4m4〉 c†n1m1σc

†
n2m2σ′cn4m4σ′cn3m3σ.

(2.19)

The star indicates again, that the quantity is expressed in effective Rydbergs. The appeal-
ing feature of the above equations is that the parameters ω0, ωc only appear as prefactors,
while the matrix elements are independent of these values. In particular the different
scaling of the single-particle and interaction terms with the effective confinement becomes
obvious. Furthermore we note that all material constants are absorbed in the effective
units. Independent of the host material, we therefore describe the eigenspectrum of the
quantum dot in the absence of an external magnetic field by a single parameter that de-
scribes the effective confinement ~ω∗

0.

In Eq. (2.19) an external magnetic field applied perpendicular to the plane of motion enters
the Hamiltonian only via the cyclotron frequency ~ω∗

c ∝ B. One further parameter is
needed to take into account the Zeeman term, describing the spin splitting in the magnetic
field. The Zeeman splitting defined in Eq. (2.2) is given in effective units by:

Ĥ∗
Z = α ~ω∗

c Ŝz

α = g∗m∗/(2m0) . (2.20)

For (bulk) GaAs the effective Landé factor is given by g∗ = −0.44 and we obtain α =
−0.0145.
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2 Few-electron quantum dots

2.2.4 Exact diagonalization

The eigenspectrum of the time-independent Hamiltonian (2.18) needs to be determined
numerically. We use the method of exact diagonalization or configuration interaction [19,
21, 22, 23], alternative methods are based on Hartree-Fock calculations [24] or spin density
functional theory [11].

Starting point is the stationary Schrödinger equation, that determines the eigenfunctions
|ψ〉 and eigenenergies E via the eigenvalue problem:

Ĥ |ψ〉 = E |ψ〉 . (2.21)

In order to calculate the eigenspectrum we reexpress this equation in an appropriate basis
|n〉. Thus the Hamilton operator Ĥ is transformed in a Hamilton matrix H and the
eigenfunction |ψ〉 in a vector ψ, resulting in the following set of linear equations:

H ψ = E ψ (2.22)

Hn n′ = 〈n| Ĥ |n′〉 ; ψn = 〈n|ψ〉 . (2.23)

The eigenenergies of the stationary Schrödinger equation (2.21) are given by the eigenvalues
of the Hamilton matrix and correspondingly the eigenfunctions |ψ〉 are determined from
the eigenvectors ψ of Eq. (2.22) by |ψ〉 =

∑

n ψn |n〉. In the case of a complete basis |n〉
the result is exact.

Applying this idea to the Hamiltonian (2.18) we first note that there is no finite basis for the
Hilbert space corresponding to any electron number Ne, since there are already infinitely
many single-particle states. In order to truncate the basis in a reasonable way, we note
the following: First, we know the exact solution for the noninteracting problem, namely
the Fock-Darwin spectrum introduced in Eqs. (2.3) and (2.4). Furthermore we found
that according to the symmetries of the system, the number of electrons, the total angular
momentum perpendicular to the plane of motion as well as the square and the z-component
of the total spin are conserved. These quantities are described by the quantum numbers
Ne,M, S, Sz respectively. Therefore the symmetries of the systems allow us to restrict the
basis states |n〉 of Eq. (2.22) to a given subspace characterized byNe,M, S, Sz. Furthermore
we choose the basis elements as eigenstates of the non-interacting Fock-Darwin Hamiltonian
and numerate them according to their (single-particle) energy. We then truncate the
basis at a specific single-particle energy, calculate the Hamilton matrix for this basis and
diagonalize it. The size of the matrix is chosen big enough, so that the eigenspectrum has
converged, i.e. it does not change significantly by further increasing the basis size. The
code was implemented by David Jacob [19].

It is very useful to take the symmetries of the system into account, because for a required
precision it reduces the size of the basis, thus allowing to calculate higher particle numbers.
Furthermore it allows to specify the eigenspectrum according to the conserved quantities.
We note that the basis vectors to constant N,M, Sz are single Slater determinants, however
basis states of constant S may include superposition of Slater determinants that only
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2.3 Coulomb effects in charge density excitations

differ in the spin degree of freedom. Technical details of the implementation of an exact
diagonalization scheme can be found in references [19, 22, 23].

2.3 Coulomb effects in charge density excitations

In this section we study how charge density excitations of self-assembled dots are affected
by Coulomb interaction. The calculations presented here were used to model experimental
data obtained from resonant inelastic Raman scattering on InAs self-assembled quantum
dots and are published together with the experimental data in references [1, 2].

The experimental realization of self-assembled dots was shortly explained in subsection 2.1
and a typical sample was shown in Fig. 2.1. The number of (conduction) electrons in
the dots is controlled by the voltage applied between top and back contact and is varied
from one up to six electrons. Further experimental input for our calculations are the
confinement strength ~ω0 = 50meV and the material constants of bulk InAsm∗ = 0.024m0,
ε = 15.15. Using the effective units introduced in Eq. (2.13) and Table 2.1 this results
in Ryd∗ = 1.42meV , a∗0 = 33.5nm and ~ω0 = 35.2Ryd∗. According to our discussion
in subsection 2.2.2 we note that in this regime the Coulomb energy between any pair of
electrons is always smaller than the confinement energy by at least a factor of

√
π/
√

~ω∗
0 ≈

0.3.

In Raman spectroscopy the excitation energies of quantum dots are measured in a two-
photon process. Roughly spoken, first the incoming laser light causes a transition from the
many-particle ground state of a quantum dot to an intermediate state with an additional
electron-hole pair. If after the recombination of the electron-hole pair the dot is left in
an excited many-particle state, then the emitted photon is red shifted with respect to the
incoming light. The energy difference between incoming and outgoing photon equals the
excitation energy of the electronic many-particle state.

Polarization selection rules enable to distinguish charge density and spin density excitations
in Raman spectroscopy. Charge density excitations (spin density excitations) are defined as
excitations where the excited state has the same spin (has a different spin) as the ground
state, and they appear in an experimental configuration where the polarizations of the
incoming laser light and of the inelastically scattered photon are parallel (perpendicular)
to each other.

In our calculations we use the Hamiltonian introduced in Eq. (2.18). In first quantization
and without an external magnetic field it reads:

H =
N∑

i=1

[
p2

i

2m∗ +
m∗

2
ω2

0r
2
i

]

+
1

2

e2

4πǫǫ0

N∑

i6=j

1

|ri − rj|
, (2.24)

The dimensionless form of the Hamiltonian was derived in Eq. (2.19) and in the absence
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Figure 2.6: Energetically lowest charge density excitations of a two-dimensional parabolic quan-
tum dot occupied with N electrons. The excitation of the center of mass motion (Kohn mode) al-
ways appears at the single-particle level spacing ~ω0. Below the Kohn mode excitations of the rel-
ative motion arise, that are influenced by the Coulomb interaction. Parameters: ~ω0 = 35.2Ryd∗

of a magnetic field it is given by:

Ĥ∗ := ~ω∗
0

∑

n,m,σ

(2n+ |m| + 1) c†n m σ cn m σ + (2.25)

+
√

~ω∗
0

∑

n1,m1
n2,m2

∑

n3,m3
n4,m4

∑

σ,σ′

〈n1m1, n2m2|
lrel

r12
|n3m3, n4m4〉 c†n1m1σc

†
n2m2σ′cn4m4σ′cn3m3σ.

Here the superscript ∗ again denotes that the quantity is given in units of Ryd∗. The low
number of electrons confined to the dots allows to calculate the eigenspectrum by means
of exact diagonalization of the Hamiltonian.

Fig. 2.6 shows the low lying charge density excitations (spin conserving excitations) from
the ground state, for different numbers N of electrons confined to the dot. First, one can see
that, independent of N , there is always an excitation at the confinement energy ~ω0, which
represents the excitation of the center of mass mode (Kohn mode). However for N > 2 and
at energies below the Kohn mode, further excitations show up, which are sensitive to the
electron number and that can be identified as excitations of the relative motion. Consistent
with the experimental finding Fig. 2.6 shows, that the average excitation energy shifts to
lower energies if the occupation of the dot is increased, while the distribution of possible
excitations becomes broader. Furthermore we note the special situation for N = 2 and
N = 6 electrons confined to the dot. For two electrons on the dot there is only the center of
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2.3 Coulomb effects in charge density excitations

M−2 −1 0 1 2

0
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∆E [~ω0]

|0, 1〉

|1, 1〉

|0, 2〉

|1,−1〉 , |−1, 1〉
|0, 0〉

|−1,−1〉

|0,−1〉

|0,−2〉

Figure 2.7: Schematic energy differences between three-electron states with the same spin as
the ground state i.e. S = 1

2 , Sz = ±1
2 . States are characterized by

∣
∣M cm,M rel

〉
, where M cm

denotes the angular momentum of the center of mass motion and M rel that of the relative motion.
Parameters ~ω0 = 35.2Ryd∗.

mass excitation and no excitation of the relative motion and for six electrons the possible
excitations have a higher average value and a smaller width than for N = 5. This effect is
caused by the shell filling of the n = 0, m = 0 level for N = 2 and of the p-shell for N = 6.

The difference between excitations of the center of mass and relative motion is explainable
by the Coulomb interaction, which only influences the relative motion. We argue that
the excitations of the relative motion are below the single-particle excitation, since the
N-particle excited state has a lower Coulomb energy than the N-particle ground state. We
identify two general mechanisms that reduce the excitations of the relative motion below
the center of mass or single-particle excitation. First, we note that the wavefunction of an
excited state has a larger spatial extend than the ground state, since higher single-particle
orbitals are occupied. This can lead to a larger distance between the electrons and thus
to a lower Coulomb interaction in the excited state than in the ground state. In terms of
matrix elements this fact is visible in Table 2.2 since the direct and exchange term decrease
if higher orbitals are occupied. Secondly, we note that all ground states discussed here are
(approximately) given by single Slater determinants, since for each subspace N,M, S, Sz

there is only a single Slater determinant which minimizes the single-particle energy. There-
fore the many-particle ground state cannot profit of Coulomb correlations that arise due to
the superposition of different basis states. In contrast the many-particle excited states are
built up by superpositions of different basis states belonging to the same subspace M,S, Sz,
which all have the same single-particle energies. This allows to reduce the Coulomb energy
by building up correlations, connected with the matrix elements listed in Table 2.3. In the
following we discuss these mechanism in more detail for the case of three electrons.

As an example for the microscopic structure of the different excitations we discuss the case
of three electrons inside the dot by means of Fig. 2.7 and 2.8 . In agreement with the
single-particle picture the ground state is four-fold degenerate in the absence of a magnetic
field, with angular momentum M = ±1 and spin S = 1

2
, Sz = ±1

2
. Its form is schematically
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Figure 2.8: Schematic representation of many-body wavefunction of the ground state and its
lowest charge density excitations in Slater determinants of Fock-Darwin orbitals.

depicted in Fig 2.8. In order to distinguish excitations of relative and center of mass motion
we specify in Fig. 2.7 the angular momentum of the center of mass (M cm) and of the relative
motion (M rel) and label the ground state and its lowest excitations by

∣
∣M cm, M rel

〉
. This

can be done with the help of Eq. (2.12). Due to the degeneracy of the orbitals |n,±m〉
we find degenerate excitation spectra, either starting from M = 1 or M = −1. The lower
lying excitations correspond to excitations of the relative motion with ∆M rel = ±1 while
the Kohn modes have ∆M cm = ±1. We note that the effect of Coulomb interaction on the
excitation spectrum discussed here will be more pronounced for weaker confinement, since
the influence of the Coulomb interaction increases with decreasing confinement. While the
single-particle energy in Fig 2.6 and 2.7 is given by ~ω∗

0 the characteristic energy scale for
the Coulomb interaction is

√
~ω∗

0, so that the ratio between Coulomb energy and single
particle energy is approximately doubled if the confinement is reduced by a factor of 4.

In Fig. 2.8 we represent the form of the corresponding many-particle states by showing the
dominant Slater determinants of the Fock-Darwin orbitals. For illustration we considered
in Fig. 2.8 for each state only Slater determinants with the same single-particle energy
which can be justified by the strong confinement energy and which is checked by proving
the close agreement with the exact wavefunction obtained with a much larger basis size.
The strong reduction of the basis for the many-particle states in Fig. 2.8 helps to identify
the two different aspects of the Coulomb interaction. First we note that each of the two
Slater determinants contributing to the lowest excited state |0, 2〉 has a lower Coulomb
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2.4 Introduction to transport spectroscopy

energy than the ground state. This can be explained by the larger extend of these wave-
functions and by the corresponding matrix elements listed in Table 2.2. However the lowest
excited state |0, 2〉 has still a smaller Coulomb energy than each of its Slater determinants
individually, which is explained by the Coulomb correlations arising due to the superpo-
sition of different states with same M,S, Sz. These correlations are connected with the
matrix elements listed in Table 2.3. Since the ground state consists of a single Slater de-
terminant it cannot profit of such Coulomb correlations. Following the same reasoning we
understand the appearance of excitation energies below the Kohn mode for all occupation
numbers Ne > 2.

We now comment on the special situation for Ne = 2, where at low energies only center
of mass excitations exist. The ground state is non-degenerate and is approximated by the
single Slater determinant |0 0 ↑, 0 0 ↓〉, where two electrons fill the s-shell leading to the
quantum numbers M = 0, S = Sz = 0 and M rel = M cm = 0. In each of the subspaces
M = ±1, S = Sz = 0 there is only a single charge density excitation which corresponds to
M rel = 0; M cm = ±1. These center of mass excitations illustrate again the importance of
the spin degree of freedom. They are well approximated by |0 0 ↓, 0 ±1 ↑〉− |0 0 ↑, 0 ±1 ↓〉.
The Coulomb energy of such a charge density excitation is the same as in the ground state
even though each of its Slater determinants has a lower Coulomb energy. The reason is,
that for the singlet excited states the orbital wavefunction is symmetric which increases
the Coulomb energy. It is given by the direct interaction Ec

sp plus the exchange term Ex
sp

between an electron in the s-orbital and one in the p-orbital. This adds up to the direct
Coulomb interaction between two electrons in the s-orbital Ec

sp +Ex
sp = Ec

ss see Table 2.2.
In contrast, the triplet state |0 0 ↓, 0 ±1 ↑〉 + |0 0 ↑, 0 ±1 ↓〉 has an antisymmetric orbital
wavefunction which decreases the Coulomb energy which is given by Ec

sp − Ex
sp.

2.4 Introduction to transport spectroscopy

The eigenspectrum of an interacting quantum dot is also manifest in its transport charac-
teristics. [9] We are interested in transport experiments, where the quantum dot is weakly
tunnel coupled to two contacts and furthermore electrostatically coupled to one or more
side gates as illustrated in Fig. 2.9. Experimental setups are illustrated in Fig 2.2 and 2.3
in subsection 2.1. In these transport experiments electrons can only tunnel through the
dot at characteristic, discrete energies determined by the eigenspectrum of the interacting
dot. This has severe consequences for the current through the dot as we will show in
subsection 2.4.2.

In the following subsection we will present the theoretical basics for transport spectroscopy,
which are valid if the tunnel coupling is the smallest energy scale in the system.
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Figure 2.9: Schematic picture of transport setup. The quantum dot is connected via tunneling
barriers to a left and right contact and is electrostatically coupled to a side gate. By applying a
transport voltage, Vsd, between source and drain contact one can push a tunnel current through
the dot. A voltage VG applied to the gate voltage tunes the electrostatic potential on the dot.

2.4.1 Theoretical basics

Hamiltonian: The total Hamiltonian describing the system depicted in Fig. 2.9 consists of
the dot Hamiltonian, HD, the left and right contact, HL, HR,1 and a term describing the
tunnel coupling between dots and reservoirs, HT [22, 25]

H =
∑

r=L,R

Hr +HD

︸ ︷︷ ︸

H0

+HT . (2.26)

The contacts Hr =
∑

k,σ εkra
†
rkσarkσ are modeled by large reservoirs of noninteracting

electrons. Here arkσ, a
†
rkσ denote the annihilation and creation operators for electrons in

the reservoir r ∈ {L,R} with spin σ and wave vector k. Each reservoir is assumed to
be in equilibrium, so that it can be characterized by the Fermi distribution fL/R(ω). An
applied bias voltage Vsd is modeled by different chemical potentials in the left and right
contact µL − µR = eVsd. We set µL = eVsd/2 = −µR or fL/R(ω) = f(ω ∓ eVsd/2), with
f(x) = 1/(exp(βx) + 1)) and β = 1/(kBT ).

The dot Hamiltonian, HD, is written in its eigenbasis:

HD =
∑

s

Es |s〉 〈s| . (2.27)

The eigenspectrum has to be determined in advance, for example by an exact diagonal-
ization approach as discussed in subsection 2.2.4. The eigenenergies of the dot are shifted

1We make use of a labeling appropriate for a lateral quantum dot and therefore use the notation left and
right contact, however the considerations are equally valid for a vertical dot. In the latter case it is
more appropriate to think of an upper and lower contact.
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2.4 Introduction to transport spectroscopy

by the electrostatic interaction with a side gate, which is controlled by the gate voltage
VG. It is assumed that the voltage VG applied to the side gate causes a constant elec-
trostatic potential VD = αVG on the dot, with some proportionality factor α. This leads
to Es(VD) = Es(VD = 0) − eVDN(s), where N(s) describes the number of electrons of
state s. The terms of the Hamiltonian (2.26) describing the dot and the contacts define
the unperturbed Hamiltonian denoted by H0 =

∑

r=L,RHr +HD.

The Tunnel Hamiltonian HT consists of Hr
T,in with r ∈ {L,R}, which describes electrons

hopping from the reservoir r into the dot, and of Hr
T,out describing the opposite process:

HT =
∑

r,k,l,σ

trkla
†
rkσclσ + tr∗kl c

†
lσarkσ =

∑

r

(Hr
T,out +Hr

T,in) . (2.28)

Here c†lσ, clσ again describe the creation and annihilation operator of a single-particle state
in the quantum dot characterized by the orbital quantum number l (in our case the Fock-
Darwin quantum numbers n,m) and the spin σ. Within this model the tunnel process
preserves the spin orientation and the tunnel matrix elements are independent of the spin.

It is useful to reexpress the Tunnel Hamiltonian in the eigenbasis of the dot:

Hr
T,out =

∑

k,s,s′,σ

T r
kσss′a

†
rkσPss′ (2.29)

Hr
T,in = (Hr

T,out)
† =

∑

k,s,s′,σ

T r∗
kσss′Ps′sarkσ (2.30)

T r
kσss′ =

∑

l

trkl 〈s| clσ |s′〉 ∝ δN(s)+1,N(s′) (2.31)

Pss′ = |s〉 〈s′| . (2.32)

The tunnel matrix elements T r∗
kσss′ determine the probability amplitude for a transition

between the states |s〉 and |s′〉 caused by the tunneling of an electron from reservoir r
described by its quantum numbers k and σ. It not only depends on the single-particle
amplitudes trkl but according to Eq. (2.31) also on the structure of the involved few-electron
wavefunctions |s〉 and |s′〉.
Relevant for transport characteristics are the spectral functions Γr

l1l2
(ω),Γr

s1s′
1
s2s′

2

(ω) of the

tunnel matrix elements, defined as:

Γr
l1l2

(ω) := 2π
∑

k

trkl1
tr∗kl2

δ(εkr − ω) (2.33)

Γr
s1s′

1
s2s′

2
(ω) = 2π

∑

kσ

T r
kσ,s1s′

1
T r∗

kσ,s′
2
s2
δ(εkr − ω)

=
∑

l1,l2,σ

Γr
l1l2(ω) 〈s1| cl1σ |s′1〉 〈s′2| cl2σ |s2〉∗ . (2.34)

Since the single-particle matrix elements are in general unknown one has to specify Γr
l1l2

(ω)
by some reasonable assumption. Thereafter the structure of the many-particle eigenfunc-
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2 Few-electron quantum dots

tions can be taken into account exactly in the spectral function Γr
s1s′

1
s2s′

2
(ω) defined by

Eq. (2.34).

Transition rates: The tunnel coupling to the external reservoirs causes transitions between
many-particle states |s〉 , |s′〉 differing in the number of electrons confined to the dot. While
a more sophisticated transport theory will be presented in chapter 4 in form of a real time
transport theory [26] we will now calculate the transition rate Ws′s from state |s〉 to |s′〉
applying Fermi’s golden rule [25, 27, 28]:

Ws′s =
∑

r

(
W r+

s′ s +W r−
s′ s

)

W r+
s′ s =

2π

~

∑

kσ

δ(Es + εk − Es′) |T r
kσss′|2 fr(εk)

=
Γr

ss′s′s(Es′ −Es)

~
fr(Es′ −Es)

W r−
s′ s =

2π

~

∑

kσ

δ(Es − εk −Es′) |T r
kσs′s|2 f−

r (εk)

=
Γr

s′sss′(Es − Es′)

~
f−

r (Es − E ′
s) (2.35)

Here we use the shortcut f−
r (εk) = 1−fr(εk). W

r+
s′ s denotes the tunneling-in rate, connected

with an electron entering the dot from reservoir r, thus causing a transition from |s〉 to |s′〉.
Respectively W r−

s′ s denotes the tunneling-out rate, where an electron hops from the dot to
reservoir r thus causing a transition from |s〉 to |s′〉. The delta function ensures the energy
conservation during the tunneling process and the Pauli-factors fr(ek), f

−
r (ek) determine

the probability to find the electron or respectively the hole in the reservoir needed for the
tunneling-in or tunneling-out process.

To calculate the transition rate one has to specify the spectral function Γr
l1l2

(ω). The
energy dependence of the spectral function Γr

l1l2
(ω) is mainly determined by the density

of states in the reservoirs. In the following we assume a constant density of states in the
reservoirs and apply the random phase approximation for the tunneling matrix elements
trkl which leads to [22, 25, 28]

Γr
l1l2(ω) = δl1,l2Γ

r

Γr
ss′s′s(ω) = Γr

∑

lσ

|〈s| clσ |s′〉|2 . (2.36)

Qualitatively our results do not depend on this assumption, and especially similar results
are obtained for Γr

l1l2
(ω) = Γr, valid for example for constant tunneling elements trkl = t.

Applying Eq. (2.36) to Eq. (2.35) we get for the transition rates

W r+
s′ s = Γrfr(Es′ − Es)

∑

lσ

|〈s| clσ |s′〉|2 (2.37)

W r−
s′ s = Γrf−

r (Es −Es′)
∑

lσ

|〈s′| clσ |s〉|2 . (2.38)
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2.4 Introduction to transport spectroscopy

The meaning of the different terms is now quite intuitive. Γr specifies the coupling strength
of the dot to contact r. The Pauli-factors fr(Es′ −Es), f

−
r (Es −Es′) guarantee the energy

conservation of the tunneling process. A transition from |s〉 to |s′〉 defines a transport
channel with its characteristic energy given by µ(s, s′) := Es′−Es. According to Eq. (2.37),
an electron can only tunnel into the dot being in state |s〉, if there is a transport channel
µ(s, s′) below one of the chemical potentials of the reservoirs. Analogously an electron
can only tunnel out of the dot being in state |s〉 if there is a transport channel µ(s, s′),
which lies above one of the electron chemical potentials µr of the reservoirs. While the
eigenenergies of the dot determine the discrete energies of the transport channels, the form
of the wavefunctions enters the spectral weight

∑

lσ |〈s| clσ |s′〉|
2. In a sense it measures

how well an electron entering the many-particle state |s〉 can cause a transition to |s′〉. A
prominent consequence of the spectral weights is the spin blockade.[29, 30] It states that
transitions between two states differing in either of the spin quantum numbers S, Sz by
more than a half, i.e. ∆Sz,∆S 6= 1

2
, are forbidden.

Master equation and current: With the help of the transition rates given in Eq. (2.37)
and (2.38) we can now calculate the occupation probabilities of the many-particle eigen-
states in the stationary case:

0 =
d

dt
Ps =

∑

s′

(Wss′Ps′ −Ws′sPs) (2.39)

1 =
∑

s

Ps . (2.40)

The first equation states that the gain rate of state |s〉, given by
∑

s′ Wss′Ps′ is the same
as the loss rate

∑

s′ Ws′sPs. The second equation guarantees probability conservation.

With the steady state probabilities Ps one can calculate the stationary current, I, through
the dot:

I := −edNR

dt
= e

∑

s,s′

(
WR+

s′s Ps −WR−
ss′ Ps′

)
. (2.41)

Here NR denotes the number of electrons in the right reservoir. Since in our convention
the electron charge is q = −e the current is positive if electrons flow from the left to the
right reservoir, which is the case for positive transport voltage. In the stationary case the
following relation holds: dNL

dt
= −dNR

dt
. With Eqs. (2.37), (2.39), (2.41) we are now able

to calculate the stationary current through the dot, as well as the stationary occupation
probabilities of its eigenstates depending on the spectrum of the dot, the applied voltages
and temperature.

2.4.2 Linear and nonlinear transport

In this subsection we discuss the main aspects of how Coulomb interaction influences the
transport through an interacting dot. The relevant quantities are the energies of transport
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2 Few-electron quantum dots

channels through the dot and the addition energies, which we define in the following. We
denote the energy of the transport channel corresponding to a transition between the i-th
N -electron state and the j-th (N + 1)-electron state by:

µ(N, i;N + 1, j) = E(N + 1, j) − E(N, i) − eVD . (2.42)

Applying a gate voltage VG continuously changes the electrostatic potential VD ∝ VG on
the dot, which is taken into account in Eq. (2.42) by the term −eVD. The energy separation
between consecutive ground-state channels is called addition energy ∆µ(N):

∆µ(N) = µ(N, 0;N + 1, 0) − µ(N − 1, 0;N, 0) . (2.43)

We first discuss the regime where the applied transport voltage and the temperature are
both small enough so that transitions to excited states are not possible and transport
through the dot can take place only via the ground-state channels. Fig. 2.10 shows the
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Figure 2.10: Schematic energy profile for linear transport. The transport channels are shifted
to lower (higher) energies relative to the chemical potentials of the reservoirs by increasing (de-
creasing) the electrostatic potential VD on the dot. An applied transport voltage Vsd separates
the electrochemical potentials of the reservoirs µL = eVsd/2 = −µR. Consecutive ground-state
channels are separated by the addition energy ∆µ. For the situation depicted here the dot is
occupied by N electrons and transport is Coulomb blocked.

energy profile for such a case. The quantum dot can only be passed via the ground-state
channels which are separated in energy by the addition energy. In the situation depicted in
Fig. 2.10 no ground-state channel is inside the transport window, defined by the chemical
potential of the source and drain reservoir. Transport through the dot is therefore blocked
and the dot is in the N-particle ground state. Increasing the electrostatic potential VD

on the dot shifts the ground-state channels to lower energies. For specific values of VD

a ground-state channel is inside the transport window and current can flow through the
dot. This leads to the so called Coulomb oscillation of the current as function of the gate
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N = 3

N = 5 N = 6

N = 2N = 1

N = 4
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Figure 2.11: a) Measurement of Coulomb oscillations of the current as function of the gate voltage
for transport through a vertical dot. Only for specific voltages a ground-state channel is inside
the transport window and a current flows through the dot. Between the current peaks transport
is blocked and the number of electrons on the dot is fixed. Electron numbers corresponding to
a filled shell are indicated. The inset shows the magnitude of the addition energies as function
of the occupation of the dot. Data taken from reference [9]. b) Dominant Slater determinant
of N-electron ground state. Schematic representation based on Fock-Darwin spectrum like in
Fig. 2.8.

voltage as shown in Fig. 2.11 a). In order to understand the dependence of the addition
energy on the number of electron, we follow references [9, 12] and approximate the ground
states by the dominantly occupied Slater determinant as depicted in Fig 2.11 b). Within
this rough estimate we obtain the following energies of the ground-state channels:

µ(0, 0; 1, 0) = ε1s

µ(1, 0; 2, 0) = ε1s + Ec
ss

µ(2, 0; 3, 0) = ε1p + 2Ec
sp − Ex

sp

µ(3, 0; 4, 0) = ε1p + 2Ec
sp − Ex

sp + Ec
pp − Ex

p+p−
µ(4, 0; 5, 0) = ε1p + 2Ec

sp − Ex
sp + 2Ec

pp

µ(5, 0; 6, 0) = ε1p + 2Ec
sp − Ex

sp + 3Ec
pp −Ex

p+p− (2.44)

Here we denote the orbitals according to their angular momentum that is the s-orbital
corresponds to the Fock-Darwin quantum numbers n = 0, m = 0 and respectively the p±-
orbitals correspond to n = 0, m = ±1. The Fock-Darwin levels have the energy εs = ~ω0

and εp = 2~ω0. The Coulomb interaction is labeled as in Table 2.2, e.g. Ec
ss denotes the

direct Coulomb interaction between two electrons in the s-orbitals and Ex
p+p− the exchange

interaction between an electron in orbital p+ and one in orbital p− both with the same spin
orientation. The approximated energies of the ground-state channels given in Eq. (2.44)
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2 Few-electron quantum dots

result in the following addition energies:

∆µ(1) = Ec
ss

∆µ(2) = ε1p − ε1s − Ec
ss + 2Ec

sp − Ex
sp = ~ω0 + 0.25Ec

ss

∆µ(3) = Ec
pp −Ex

p+p− = 0.5Ec
ss

∆µ(4) = Ec
pp + Ex

p+p− = 0.875Ec
ss

∆µ(5) = Ec
pp −Ex

p+p− = 0.5Ec
ss .

Here we expressed all Coulomb energies by Ec
ss using Table 2.2. We note that the simple

estimate of the addition energies reproduces the qualitative behavior of the experimental
values for the corresponding addition energies depicted in Fig. 2.11. The large addition
energies ∆µ(2) and ∆µ(4) are explained by the filling of the s-shell and by the exchange
energy between the two p-electrons respectively. We note that the addition energies for
N = 3 to N = 5 are exclusively determined by the Coulomb interaction, since the added
electron always occupies a p-level.

Figure 2.12: Charging diagram for a
vertical dot. dI/dVsd is plotted as func-
tion of source-drain voltage Vsd and
gate voltage VG. White regions cen-
tered around zero transport voltage
show the Coulomb diamonds, where
the number of electrons on the dot is
fixed and current is Coulomb-blocked.
Red color indicates positive dI/dVsd,
while blue regions indicate negative
dI/dVsd. Data taken from reference [9].

While the signals in the linear transport regime correspond to ground-state transitions,
the excitations of the dot spectrum can be studied in the nonlinear response regime. In
the nonlinear regime the current increases in form of a Coulomb staircase as function of
the transport voltage.[7] Steps in the current arise whenever a further (allowed) transport
channel enters the transport window. The linear and nonlinear transport spectra can
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2.5 Complete blocking of nonlinear transport

be combined in a so-called charging diagram, where either the current or the differential
conductance is plotted as function of transport and gate voltage. [9, 31, 32, 33] An example
for a charging diagram showing the differential conductance through a vertical dot is given
in Fig. 2.12. Centered around zero transport voltage, the Coulomb blockade gives rise to
Coulomb diamonds, where the current is blocked and the number of electrons on the dot is
fixed. The Coulomb diamonds are limited by the resonances of the ground-state channels
with either the source or drain chemical potential giving rise to a peak in the differential
conductance and a step in the current. Outside the Coulomb diamonds the excitation
spectrum of the dot becomes visible as lines parallel to the ground-state channels.

In the next section we discuss a blocking mechanism for the current through the dot which
leads to an extension of the third Coulomb diamond. The mechanism is based on transitions
to excited states. With the discussion presented in this subsection we therefore already
know that it will be restricted to weak confinement, due to the following reasoning. The
magnitude of the third Coulomb diamond is given by the addition energies ∆µ(3) which
is determined by the interaction on the dot as shown in Eq. (2.45). Since the Coulomb
interaction scales like

√
ω0, the magnitude of the Coulomb diamonds will be small (large)

compared to the excitation energies for ~ω0 ≫ 1Ryd∗ (~ω0 ≪ 1Ryd∗).

2.5 Complete blocking of nonlinear transport

The most prominent selection rule for transport through quantum dots is the spin selec-
tion rule, stating that transitions are forbidden between two states differing in either of the
spin quantum numbers S, Sz by more than a half. [29, 34, 35] If a ground-state channel is
spin-blocked, the conductance peak in the linear transport regime, corresponding to this
transition is absent and the Coulomb diamonds in the charging diagram are not closed at
zero transport voltage. Experimentally such a behavior was found recently in transport
through a lateral quantum dot. [30] Furthermore spin-blocking of energetically higher lying
transport channels can lead to the appearance of negative differential conductances in the
nonlinear transport regime and even to the complete disappearance of the current. This
effect is theoretically discussed for a square-shaped dot and a colloidal nanocrystal in refer-
ences [29, 34, 35] and [22], respectively, and experimentally observed in references [30, 36].
Furthermore recent theoretical work on molecular electronics shows that this effect is not
restricted to quantum dots but it is also predicted for transport through charge-switchable
molecular magnets. [37] Related work includes nonlinear transport spectra through inter-
acting one-dimensional wires, where also negative differential conductances arise due to
spin blockade. [34, 38, 39] It is crucial to note that the appearance of eigenstates with large
spin in the low excitation spectrum is a many-particle effect, like the exchange interaction
and can therefore not be found in simple constant interaction models.

In the following we discuss a blocking mechanism for the case of a parabolic quantum
dot weakly coupled to external electron reservoirs. A parabolic dot is especially suited to
study the dependence of the blocking mechanism on the confinement potential and on the
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2 Few-electron quantum dots

strength of the magnetic field, since the single-particle spectrum can be solved analytically
and the dependence of the excitation spectrum and the addition energy on confinement
and magnetic field are well understood.
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Figure 2.13: Charging diagram of differential conductance (left) and stationary current (right)
through a two-dimensional parabolic dot. Due to blocking mechanism transport through ground-
state channel disappears for 2.62Ryd∗ ≤ eVD ≤ 2.78Ryd∗ leading to an extension of the Coulomb
diamond. Current given in units [Γe/~] and differential conductance in [Γe2/(Ryd∗~)]. Parame-
ters: ~ω0 = 0.6Ryd∗,~ωc = 0Ryd∗, kT = 0.01Ryd∗, symmetric coupling is assumed.
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Figure 2.14: Occupation probabilities for three-electron ground state (left) and first excited state
(right). In the regime where the blocking is active (see Fig. 2.13) the dot is always in state |3, 1〉.
Same parameters as in Fig. 2.13

.

Fig. 2.13 illustrates an example of the blocking mechanism in a (gate) voltage regime
where the dot is preferably occupied by three electrons. If the electrostatic potential
VD on the dot ranges between 2.62Ryd∗ ≤ eVD ≤ 2.78Ryd∗ the Coulomb diamond is
extended to transport voltages, where already the ground-state channel µ(2, 0; 3, 0) is inside
the transport window. As illustrated on the left side of Fig. 2.13, the conductance peak
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2.5 Complete blocking of nonlinear transport

- corresponding to the resonance of the ground-state channel with the electrochemical
potential in the drain reservoir (lower electrochemical potential) - is interrupted in this
gate voltage regime and transport is only allowed at higher transport voltages2.

Fig. 2.14 shows the occupation probabilities of the ground (left) and first excited (right)
three-particle state. Inside the Coulomb diamond the dot is not always in the ground state
as expected, but there is also a region where the dot is exclusively in the first excited state.
It is just this region where blocking of transport occurs.
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Figure 2.15: Differential conductance as function of VD and VSD (same as in Fig. 2.13). Reso-
nances of relevant transport channels with electrochemical potentials in the reservoirs are in-
dicated. The transport channel µ(2, 1; 3, 2), which is nearly degenerate with the ground-state
channel µ(2, 1; 3, 2) ≈ µ(2, 0; 3, 0), is not shown here.

In order to understand the blocking mechanism we indicate by dashed lines in Fig. 2.15
the resonances of the relevant transport channels with the electrochemical potentials of
the reservoirs. Furthermore three characteristic points for the blocking mechanism are
marked by crosses in the charging diagram. The transport properties at these points will
be discussed in the following. Since we assume symmetric tunneling barriers the charging
diagram depicted Fig. 2.15 is symmetric with respect to Vsd = 0.

The relevant states participating in the blocking mechanism are characterized in Ta-
ble 2.4 (a). As indicated in Table 2.4 (b) the spin polarization of the first excited three-
particle state leads to a spin blockade of the channel µ(2, 0; 3, 1). There is a close degeneracy

2The blocking mechanism is completely determined by the states listed in Table 2.4, since further trans-
port channels cannot cancel the blocking mechanism (by providing an exit channel in the relevant
voltage regime). Our calculations do however also include the two lowest four electron excitations, to
account for additional structures in the charging diagram. Adding further transport channels will only
lead to new conductance peaks further outside the Coulomb diamond.
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2 Few-electron quantum dots

|2, 0〉 |2, 1〉 |3, 0〉 |3, 1〉 |3, 2〉 |4, 0〉
M 0 ±1 ±1 0 ±2 0
S 0 1 0.5 1.5 0.5 1

E[Ryd∗] 2.170 2.431 4.731 4.837 4.989 7.861

(a)

|2, 0〉 |2, 1〉 |4, 0〉
|3, 0〉 ✔ ✔ ✔

|3, 1〉 ✖ ✔ ✔

|3, 2〉 ✔ ✔ ✔

(b)

Table 2.4: (a): Characterization of relevant eigenstates for ~ω0 = 0.6Ryd∗, ~ωc = 0. (b):
Indication of allowed (✔) and forbidden transitions (✖).
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Figure 2.16: a) Schematic energy diagram including the transport channels relevant for blocking
mechanism. Voltages are chosen according to point 2 in Fig. 2.15. b) Possible transitions for the
situation depicted in a). Cascade indicated by red arrows describes a possible entrance to state
|3, 1〉, while the exit from this state is spin-blocked. This leads to an exclusive occupation of |3, 1〉
and to a complete suppression of the current.

between the excitation energies E(2, 1) − E(2, 0) and E(3, 2) − E(3, 0), which results in
µ(2, 0; 3, 0) ≈ µ(2, 1; 3, 2). Since all Coulomb matrix elements scale equally with the con-
finement strength like

√
ω0, this close degeneracy is true for the whole range of confinement

strengths 0.4Ryd∗ < ~ω0 < 1Ryd∗, which is considered in this subsection.

Fig. 2.16 a) shows the energy profile at point 2 of Fig 2.15. One notices that the ground-
state channel µ(2, 0; 3, 0) is in resonance with the right (drain) chemical potential, so
that electrons can hop from the left reservoir onto the dot and to the right reservoir.
Nevertheless the stationary current is completely suppressed and the corresponding peak
in the differential conductance is missing in Fig. 2.15. This can be explained by a complex
interplay between different transport channels that leads to an exclusive occupation of
state |3, 1〉 as illustrated in Fig. 2.16 b).

Fig. 2.16 b) shows a possible entrance to the three-electron first excited state, via the
cascade of transitions depicted in red. However being in state |3, 1〉 the only energetically
allowed transition is spin blocked namely µ(2, 0; 3, 1). The other transport channels for
leaving state |3, 1〉 are not available due to Pauli-blocking. Only at higher voltages an
exit from state |3, 1〉 is allowed and current flows again. This happens for example when
µ(2, 1; 3, 1) enters the transport window (conductance line starting at point 3 in Fig. 2.15).
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2.5 Complete blocking of nonlinear transport

Another exit opens via occupation of the four-electron ground state using the transport
channel µ(3, 1; 4, 0).

The reason for the blocking mechanism to start already at point 1 in Fig. 2.15 rather
than at point 2, is the finite temperature. The bottleneck for going through the cas-
cade depicted in Fig. 2.16 b) is channel µ(2, 0; 3, 2), which has a transition rate propor-
tional to fL(µ(2, 0; 3, 2)). Thus the entrance rate to state |3, 1〉 is limited by the factor
fL(µ(2, 0; 3, 2)). Respectively the exit rate from state |3, 1〉 is limited by 1−fR(µ(2, 1; 3, 1)),
corresponding to an exit via channel µ(2, 1; 3, 1). From point 1 in Fig. 2.15 onwards the
entering rate is stronger than the exit rate so that the blocking is active.

The extension of the Coulomb diamond due to the described blocking mechanism de-
pends on the relative position of the transport channels depicted in Fig. 2.15. The two
relevant energy differences are µ(3, 1; 4, 0) − µ(2, 0; 3, 2), and µ(2, 0; 3, 0) − µ(2, 1; 3, 1).
µ(3, 1; 4, 0)−µ(2, 0; 3, 2) determines the voltage range in which the conductance line - cor-
responding to the resonance of the ground-state channel µ(2, 0; 3, 0) with the drain reservoir
- is interrupted. While the channel µ(2, 0; 3, 2) enables the cascade depicted in Fig. 2.16 b)
and thus switches on the blocking mechanism, the entrance of channel µ(3, 1; 4, 0) in the
transport window provides an alternative, allowed exit from state |3, 1〉 and hence cancels
the blocking.

Similarly, µ(2, 0; 3, 0) − µ(2, 1; 3, 1) determines the extension of the Coulomb diamond to
higher source drain voltages (distance between points 2 and 3 or points 1 and 3 in Fig. 2.15).
The entrance of channel µ(2, 1; 3, 1) in the transport window also allows an exit from state
|3, 1〉 and hence again cancels the blocking.
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Figure 2.17: a) Energy profile of transport channels relevant for blocking mechanism. With the
entrance of the red channel in the transport window the blockade is switched on until also the green
channel enters the transport window, which cancels the blocking. Parameters: ~ω0 = 0.6Ryd∗,
~ωc = 0. b) Regime where the blocking is active is given by energy distance between red and
green transport channel. This region shrinks with increasing confinement.

These two characteristic energy differences can be manipulated by different means. The
distance µ(3, 1; 4, 0) − µ(2, 0; 3, 2) = ∆µ(3) − ∆1 − ∆2 depends on the addition energy
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Figure 2.18: Charging diagrams for different confinement strengths, in the absence of magnetic
field. With increasing confinement the regime where the blocking is active becomes smaller, until
it disappears for ~ω0 > 1Ryd∗ in agreement with Fig. 2.17. Scale of differential conductance is the
same in all plots. Parameters: kT = 0.01Ryd∗, differential conductance in units of Γe2/(Ryd∗~).

∆µ(3) = µ(3, 0; 4, 0)−µ(2, 0; 3, 0) as well as on the excitation energies ∆1 = E(3, 1)−E(3, 0)
and ∆2 = E(3, 2) − E(3, 0). Fig. 2.17 a) illustrates the impact of ∆1, ∆2 and ∆µ(3)
on the order of the transport channels. As discussed at the end of subsection 2.4.2 the
excitations ∆1 and ∆2 grow faster with increasing confinement than the addition energy
∆µ(3). Consequently the regime where the blocking is active is therefore reduced with
increasing confinement as illustrated in Fig. 2.17 b). For a confinement stronger than
~ω0 ≈ 1 the blocking disappears completely. This behavior is demonstrated in Fig. 2.18
showing charging diagrams for different confinement potentials.

The other relevant energy, namely µ(2, 0; 3, 0) − µ(2, 1; 3, 1), only depends on excitation
energies and can be manipulated by a magnetic field applied perpendicularly to the plane
of motion. In a magnetic field the degeneracy of the states listed in Table 2.4 (a) is can-
celed, mainly due to the orbital Zeeman splitting (which is much larger than the Zeeman
splitting for the spin degree of freedom), which favors large negative angular momenta.
For small and intermediate magnetic fields ~ωc < ~ω0 the three-electron ground state has
M = −1 and the two-electron ground state has M = 0, respectively, while the blocking
state is characterized by |Ne = 3,M = 0, S = 1.5〉. An exit from the blocking is possi-
ble via the exit channel µexit corresponding to a transition from |Ne = 3,M = 0, S = 1.5〉
to |Ne = 2,M = −1, S = 1〉. Figure 2.19 a) illustrates the magnetic field dependence of
groundstate channel µ(2, 0; 3, 0) and the exit channel. One finds that the extension of the
Coulomb diamond to higher transport voltages reduces with increasing magnetic fields and
for a confinement of ~ω0 = 0.6Ryd∗ it disappears for ~ωc > 0.16Ryd∗. This behavior is
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2.5 Complete blocking of nonlinear transport

 0
 2.5
 5
 7.5
 10
 12.5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6
 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 0
 2.5
 5
 7.5
 10
 12.5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6
 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 2.4
 2.42
 2.44
 2.46
 2.48
 2.5

 2.52
 2.54
 2.56
 2.58

 0  0.05  0.1  0.15  0.2

µ(2,0;3,0)
µexit

 0
 2.5
 5
 7.5
 10
 12.5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6
 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

c) d)

b)a)
~ωc = 0.05Ryd∗

~ωc = 0.1Ryd∗ ~ωc = 0.16Ryd∗

dI/dVSDdI/dVSD

dI/dVSD

eVSD [Ryd∗] eVSD [Ryd∗]

eVSD [Ryd∗]

eV
D

[R
y
d
∗ ]

eV
D

[R
y
d
∗ ]

eV
D

[R
y
d
∗ ]

~ωc [Ryd∗]

E
[R
y
d
∗ ]

Figure 2.19: Magnetic field dependence of blocking mechanism. a) As long as the exit channel
(black line) is below the ground-state channel (red line) there is a blockade region in transport.
This region shrinks with increasing magnetic field and disappears for ~ωc > 0.16Ryd∗. The
disappearance of the blocking mechanism with increasing magnetic field is shown in Figs. b)-
d). Parameters: ~ω0 = 0.6Ryd∗, kT = 0.01Ryd∗, differential conductance given in units of
Γe2/(Ryd∗~).

demonstrated in Fig. 2.19 b)-d) showing charging diagrams for different magnetic fields.

Finally we briefly discuss the influence of energy relaxation in the dot, which was neglected
up to now. According to Fig. 2.16 (b) the transition to the spin polarized state requires an
intermediate occupation of excited states. Energy relaxation within the dot will therefore
reduce the entrance rate to the spin-polarized state. In particular some of the excitations
have a lower lying state of the same spin, so that only orbital relaxation is needed, which is
supposed to be faster than the average time between consecutive tunneling processes. [40]
However, the blocking of current persists if the ratio between the effective entrance rate
and the exit rate continues to be larger than 1. Since the suppression of the exit rate is
based on a spin blockade and the spin lifetime is known to be much longer than the average
tunneling time, we expect that signatures of the blockade will survive even in the presence
of relaxation. This is in agreement with experimental transport data of a dot containing
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2 Few-electron quantum dots

about 50 electrons. [36]

2.6 Conclusion

In this chapter we studied the influence of Coulomb interaction on the excitation spectrum
and the transport properties of a quasi two-dimensional parabolic quantum dot. We obtain
the eigenspectrum of the dot by diagonalizing its few-electron Hamiltonian, so that the
Coulomb interaction on the dot is fully taken into account.

As a first example we use our numerically calculated spectra to study charge density
excitations of a self-assembled quantum dot for different numbers of electrons confined to
the dot. For charge density excitations ground state and excited states coincide in the
spin degree of freedom. We show that the Coulomb energy of the ground state is always
larger or equal to the Coulomb energy of excited states (with the same spin as the ground
state). Therefore charge density excitations emerge below the single particle or center of
mass excitation, due to the Coulomb interaction on the dot. The presented calculations
explain recently measured Raman spectra for self-assembled dots.

In a second application of numerically calculated few-electron spectra we study the trans-
port characteristics of a dot connected to external contacts. We consider the limit of weak
external coupling and assume that the eigenspectrum of the dot is unaffected by the ex-
ternal coupling. We find that for weak lateral confinement where the Coulomb interaction
exceeds the single particle energy a blocking mechanism occurs, that completely suppresses
the nonlinear current through the dot. The presented current blockade can be switched on
and off by sweeping the magnetic field.
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3 Few-electron vertical double dots

While single quantum dots are often called artifical atoms, double dots build the simplest
artifical molecule and allow detailed studies on few-particle molecular physics. The appeal-
ing feature is again the full experimental control over the number of confined electrons, the
interatomic distance as well as the confinement potential of these systems. Furthermore
an external magnetic field strongly influences the eigenspectrum and induces characteristic
ground state transitions. The analog of such transitions in real molecules would require
magnetic fields of the order of 106 Tesla.

A particularly interesting realization of double dots are two vertically-coupled quantum
dots, since they can be produced nominally identical and with a high degree of cylindrical
symmetry [41, 42]. Furthermore their occupation with electrons can be precisely controlled
by a side gate voltage with allows to charge the double dot one by one starting from the
empty double dot. In addition to their importance for the study of molecular physics,
vertical double dots are considered as building block of a quantum computer [43, 44, 45]
and they are the few electron analog of a coupled bilayer Quantum Hall system [46].

In vertically coupled double quantum dots the molecular binding for a single electron is
determined by the vertical degree of freedom, while the lateral degree of freedom reflects
the physics of the single dots or quasi-atoms building up the molecule. The additional
vertical degree of freedom enriches the physics by interdot tunneling and the separation of
the Coulomb interaction in intra- and interdot contributions. Many interesting effects arise
from the competition between interdot tunnel-coupling and the Coulomb interaction. The
former favors the occupation of only symmetric wavefunctions, and thus an uncorrelated
wavefunction in z-direction. In contrast the Coulomb interaction prefers to occupy also
antisymmetric wavefunctions in order to build up correlations between the electrons that
maximize their mutual distance. This competition between interdot tunnel-coupling and
Coulomb interaction leads to a qualitatively different behavior for strongly tunnel-coupled
or weakly tunnel-coupled dots. Theoretical studies of the many-particle spectrum, molec-
ular phase diagrams, and transport properties of vertical double dots as function of the
interdot coupling can be found in references [47, 48, 49, 50, 51, 52]. Recent experimental
studies of molecular phases in vertically coupled double dots as function of interdot tun-
neling, electron number and magnetic field are given in references [53, 54, 55, 56, 57, 58].

In this chapter we study the many-particle spectrum and the transport properties of a
vertically coupled double dot containing few electrons. Therefore we first shortly describe
the experimental realization of these systems in section 3.1. Then, in section 3.2 we intro-
duce the theoretical model and discuss the single-particle and many-particle terms of the
Hamiltonian of the double dots. The results are then presented in sections 3.3 and 3.4. In
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3 Few-electron vertical double dots

section 3.3 we show that Coulomb correlations can lead to a spontaneous charge polariza-
tions of the three-electron ground state, which is tunable by a magnetic field applied in
vertical direction. We study in detail the mechanism leading to this spontaneous charge po-
larization and determine its dependence on the system parameters. In section 3.4 we then
show consequences of the spontaneous polarization for transport spectra through the double
dot. In a serial transport geometry the selective charge-polarization of the three-electron
ground state leads to a blocking mechanism which is identified as a pseudospin-blockade,
where the pseudospin labels the vertical degree of freedom. Some of the main results of
this chapter have been published in references [3, 4].

3.1 Experimental realization

The double dots we study in this chapter are realized in a vertical geometry transis-
tor as depicted in Fig. 3.1. It consists of a submicron cylindrical mesa incorporating a
GaAs/AlxGa1−xAs/InyGa1−yAs triple barrier structure surrounded by a single side gate
which allows to control the number of electrons confined to the double dot [41, 42]. The
geometrical lateral diameter of the mesa is about 0.56µm, however, the typical lateral
extension of the few-electron wavefunction is only about 100 − 200nm [54, 55]. The rota-
tionally symmetric lateral confinement can well be modeled by a parabolic confinement,
with a typical confinement ~ω0 ranging between 3meV [57] up to 5meV [58].

The vertical extension of the wavefunction is determined by the triple barrier structure
and is much smaller than the vertical one. It is often modeled by a double well potential
as depicted in Fig. 3.1, where the thickness of the interdot barrier b determines the tunnel
splitting ∆sas between symmetric and antisymmetric wavefunction in z-direction and the
width w of the potential wells determines the energy splitting to higher subbands of the
vertical motion. Typical values are w ≈ 12nm and 2.5nm < b < 7.5nm. Since the
vertical extension of the wavefunction is much smaller than the lateral one only the lowest
subband of the vertical potential is occupied, thus restricting the vertical degree of freedom
to the lowest symmetric and antisymmetric wavefunction, splitted in energy by ∆sas. ∆sas

decreases exponentially with the interdot distance and has values from ∆sas ≈ 0.1meV for
b = 7.5nm up to ∆sas ≈ 3.5meV for b = 2.5nm [57, 58].

In many experiments the sample is subject to a magnetic field applied in z-direction, i.e.
parallel to the symmetry axes of the double dot. The magnetic fields applied in these
experiments reach up to 12T [57] and the samples are cooled down to about 100mK.

The eigenspectrum of the double dot is studied by transport spectroscopy, i.e. by measuring
the current Id flowing from the substrate to the top contact in response to the applied
transport voltage Vsd, see section 2.4. We will discuss the transport properties in subsection
3.4.
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Figure 3.1: (a) Schematic picture of the double dot device. Dots are defined in vertical direction
by a triple barrier structure made of AlGaAs and InGaAs [53, 59] and laterally by the size of
the mesa and the voltage applied to the side gate. Current can be pushed through the double
dot by applying a source drain voltage Vsd between top contact and substrate. Additionally the
occupation on the double dot can be controlled by tuning the gate voltage VG applied to the
side gate. An external magnetic field B is applied in z-direction. (b) Schematic single electron
wavefunction in z-direction in the triple barrier structure characterized by the width of the wells
w and the width of the central barrier b. Interdot tunneling leads to a level splitting between
symmetric and antisymmetric wavefunctions given by ∆sas.

3.2 Model and Hamiltonian

In the vertical double dot structures introduced above, the confinement in both dots is
in good approximation the same and one can separate the vertical and lateral degree of
freedom in the single-particle Schrödinger equation. In analogy to the case of the single
dot, a rotationally symmetric parabolic confinement potential is assumed for the lateral
motion. The parabolic confinement and the perpendicular magnetic field determine the
lateral motion and are described by the Fock-Darwin Hamiltonian ĤFD given in Eq. (2.1).
The magnetic field splits the spin degeneracy due to the Zeeman term ĤZ given in Eq. (2.2).

The vertical motion of a single electron in the double dot is determined by the interdot
tunneling ĤT and a possible asymmetry ĤAs between the energy levels of the upper and
lower dot, as e.g. caused by a voltage drop between the dots. We describe the vertical
motion within the layer model, thus restricting it to two δ-sheets separated by the interdot
distance d. This approximation is justified due to the much larger vertical than lateral
confinement. An estimate for an appropriate interdot distance d is given by the distance
between the wavefunction maxima of the vertical wavefunction in the real structure and is
given by d ≈ b+ w as indicated in Fig. 3.1.

The single-particle Hamiltonian Ĥ has thus the following form:

Ĥ = ĤFD + ĤZ + ĤT + ĤAs . (3.1)

If more than one electron is confined to the double dot, the Coulomb interaction V̂c between
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3 Few-electron vertical double dots

different electrons has to be included. Therefore the many-particle Hamiltonian Ĥ has the
following form:

Ĥ = ĤFD + ĤT + ĤAs + ĤZ + V̂c

=
Ne∑

i=1

(

Ĥ
(i)
FD + Ĥ

(i)
T + Ĥ

(i)
As + Ĥ

(i)
Z

)

+
1

κ

1

2

N∑

i,j=1

V̂ ij
C , (3.2)

Here κ = (4πε0εr)/ε
2 and V̂ i,j

c denotes the inverse relative distance between two electrons.
The tunneling Hamiltonian ĤT and the possible asymmetry ĤAs are given in the following
subsection.

3.2.1 Pseudospin

According to the layer model we introduce the single-particle quantum number α ∈ {+,−},
where α = ± corresponds to the upper dot (+) or lower dot (−) respectively.[60, 61, 62, 63]
In analogy with the real electron spin one can define a spin operator algebra describing the
vertical motion, where the quantum number of the z-component of this pseudo- or isospin,
Îz is given by α [60]1

Îz |±〉 = ±1

2
|±〉 . (3.3)

The x− and y− components of the pseudospin are typically expressed by the raising and
lowering operators Î+,Î− defined by:

Î± |∓〉 = |±〉 ; Î± |±〉 = 0. (3.4)

Thus the pseudospin algebra is given by:

Îx :=
1

2

(

Î+ + Î−

)

; Îy :=
1

2i

(

Î+ − Î−

)

; [Îx, Îy] = i Îz. (3.5)

The last equation denotes the cyclic commutation relation of the (pseudo-)spin algebra.

The eigenstates of Ix are the symmetric, |s〉 = (|+〉 + |−〉)/
√

2, and antisymmetric state,
|a〉 = (|+〉 − |−〉)/

√
2, with Ix |s〉 = 1

2
|s〉 and Ix |a〉 = −1

2
|a〉 respectively.

In the pseudospin representation the interdot tunneling ĤT and the asymmetry Ĥas have
the following form:

ĤT = −∆sas Îx

Ĥas = VZ Îz . (3.6)

1Frequently the z-axes of the pseudospin is chosen to diagonalize the tunnel Hamiltonian (3.6), which
corresponds to the x-axes in our definition [47, 50, 53, 55, 56]. The two representations are of course
equivalent and are connected by a rotation of the pseudospin.
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3.2 Model and Hamiltonian

∆sas denotes the energy difference between the symmetric and antisymmetric wavefunction
due to interdot tunneling and VZ is a constant energy shift of all single-particle states
between upper and lower dot. A complete single-particle basis for the Hamiltonian (3.1) is
given by all states |nmασ〉, where the angular momentum m and the principal number n
determine the Fock-Darwin orbital that characterizes the lateral motion, while α ∈ {+,−}
labels the dot and characterizes the vertical motion. σ ∈ {↑, ↓} denotes the z-component
of the real electron spin.

3.2.2 Intra- and interdot Coulomb interaction

The Coulomb interaction V̂c is defined by:

V̂c =
1

κ

1

2

N∑

i,j=1

(V̂ ij
c ) . (3.7)

Here V̂ i,j
c = 1

(r2
ij+(zi−zj)2)1/2 is the inverse relative distance between two electrons where rij

defines the lateral distance and zi − zj the vertical one. In the layer model zi − zj ∈ {0, d},
corresponding to either two electrons in the same dot or in opposite dots, giving rise to
the terminology of intradot and interdot Coulomb interaction, respectively.

As discussed in the last chapter the matrix elements of the intradot Coulomb interaction
depend on the external magnetic field and the confinement via the universal factor

√
ωeff

(see Eq. (2.19)), which accounts for the shrinking of the single-particle wavefunction with
increasing effective confinement ωeff =

√

ω2
0 + ω2

c/4. However, the interdot Coulomb
interaction is more complicated. Since the interdot distance d is independent of the effective
confinement, it sets a minimum distance between electrons in different dots and thus an
upper limit of the interdot Coulomb interaction. There is no single universal scaling factor
relating interdot matrix elements of different parameters of ω0, ωc, d to one another. In
fact, the interdot Coulomb interaction depends on the characteristic length l ∝ 1/

√
ωeff

defined in Eqs. (2.4),(2.15) as well as on the ratio d/l.

Whether intra- or interdot interaction dominate the Coulomb correlations depends on the
factor 〈

√
r2 + d2/r〉 and thus on the ratio between vertical and average lateral distance

d/l ∝ d
√
ωeff . Classically the ground state configuration of N electrons confined to two

parallel layers with parabolic in plane confinement changes as function of the layer distance
[64, 65], which illustrates the impact of the ratio between interdot and intradot Coulomb
interaction on the electronic structure of the double dot. In the quantum mechanical
description of the double dot one also has to include the effect of interdot tunneling which
opposes interdot Coulomb correlations.[51, 66] Experimentally a decreasing interatomic
distance also increases the interdot tunneling, which complicates a systematic study of the
change of Coulomb correlations with the interdot distance. Alternatively the transition
from mainly intradot correlated electrons to mainly interdot correlated electrons can be
seen by studying pair correlation functions for eigenstates with increasing total angular
momentum, M , since the lateral extension of the eigenfunctions increases with M .[62, 63]
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3 Few-electron vertical double dots

In this chapter we present another important consequence of the magnetic field dependence
of the Coulomb correlations. We show that a change in the parameter d/l can lead to a
crossing between states only differing in the vertical motion which causes a strong spon-
taneous charge-polarization in vertical direction at arbitrarily small asymmetries between
the dots.

The dependence of the Coulomb operator V̂c defined in Eq. (3.7) on the pseudospin can

be expressed by introducing the projection operators P̂
(i)
± , which project the i-th electron

to the upper dot (P̂
(i)
+ ) or to the lower dot (P̂

(i)
− ), respectively. The inverse distance V̂

(i,j)
c

between the electrons i and j is then expressed by:

V̂ (i,j)
c = V̂

(i,j)
intra + V̂

(i,j)
inter

=
1

rij
⊗
(

P̂
(i)
+ P̂

(j)
+ + P̂

(i)
− P̂

(j)
−

)

+
1

(r2
ij + d2)1/2

⊗
(

P̂
(i)
+ P̂

(j)
− + P̂

(i)
− P̂

(j)
+

)

.

We will use this representation in the following subsection to prove symmetries of the
double dot system.

Finally we briefly discuss the form of the Coulomb matrix elements in the basis used for
the numerical calculations. They are given by:

〈n1m1 α1 σ1, n2m2 α2 σ2|
1

(r2
12 + (z1 − z2)2)1/2

|n′
1 m

′
1 α

′
1 σ

′
1, n

′
2m

′
2 α

′
2 σ

′
2〉 (3.8)

= δm1+m2,m′
1
+m′

2
δα1,α′

1
δα2,α′

2
δσ1,σ′

1
δσ2,σ′

2
〈n1m1, n2m2|

1
√

r2
12 + (1 − δα1 α2

) d2
|n′

1m
′
1, n

′
2m

′
2〉 .

Since the Coulomb interaction is independent of the real spin it commutes with all spin com-
ponents. Furthermore the additional Kronecker deltas in the above equation correspond
to the conservation of the total angular momentum L̂z =

∑

i L̂
(i)
z and the z-component of

the total pseudospin Îz =
∑

i Î
(i)
z . The matrix elements Eq. (3.8) are calculated for each

value of d/l as presented in Appendix A.2.

3.2.3 Symmetries and competing mechanisms

The rotationally symmetric lateral confinement of the double dot leads the conservation
of the angular momentum L̂z. Since furthermore the Hamiltonian (3.2) does not act on
the spin degree of freedom the spin operators Ŝ2, Ŝz also commute with the Hamiltonian.
Therefore the eigenstates of the double dot can simultaneously be chosen to be eigenstates
of L̂z, Ŝ2, Ŝz, and are thus characterized by their eigenenergy as well as by the quantum
numbers M,S, Sz. However, while we encountered these symmetries already for a single
dot, there is an additional symmetry for the double dot concerning exclusively the vertical
degree of freedom. In case of perfectly symmetric dot (i.e. in absence of the interdot
asymmetry, VZ = 0) the dots can be interchanged without changing the system. In other
words, the pseudospin parity P̂ (in the following only called parity), that flips the isospin

44



3.2 Model and Hamiltonian

of each electron (exchanging electrons between upper and lower dot) is conserved.[46] It
can be represented by the pseudospin operators in the following form:

P̂ = 2Ne · Î(1)
x ⊗ . . .⊗ Î(Ne)

x . (3.9)

Applying the (pseudospin) parity operator twice results in the identity i.e. P̂P̂ = 1, so
that the eigenvalues of the parity are P = ±1. For a single particle the parity eigenstates
are the symmetric and the antisymmetric state i.e. |P = ±1〉 = (|α = +〉 ± |α = −〉)/

√
2.

For a many-particle state the parity eigenstates can have a rather complicated form and
in particular they are in general not eigenstates to Îx. The eigenvalue of P̂ is given by
P = (−1)na ∈ {+1,−1}, where na denotes the occupation of antisymmetric orbitals.
In the presence of an asymmetry between the dots the parity conservation is broken and
states of different parity are mixed. Except for the pseudospin parity which is conserved
for a symmetric double dot, neither of the components of the pseudospin Îx, Îy, Îz nor its

square Î2 are conserved.[50, 60]

It is important to understand the competition between interdot tunneling and Coulomb
interaction. The Coulomb operator commutes with the z-component of the pseudospin:

0 = [V̂ , Îz] = [V̂intra, Îz] = [V̂inter, Îz]

which follows from the relation [P̂
(i)
+ , Î

(i)
z ] = 0 = [P̂

(i)
− , Î

(i)
z ]. However, the conservation of

Îz is broken by the interdot tunneling ĤT = −∆sasÎx. Vice versa the Coulomb interaction
does not commute with Îx, or the interdot tunneling, respectively.

[V̂c, Îx] =
1

κ

∑

i,j|i<j

(
1

rij

− 1

(r2
ij + d2)1/2

)

⊗ [P̂
(i)
+ P̂

(j)
+ + P̂

(i)
− P̂

(j)
− , Î(i)

x + Î(j)
x ] .

Thus the difference between inter- and intradot Coulomb energy breaks the conservation
of Îx, since it leads to correlations in z-direction which oppose the occupation of the
delocalized eigenstates of the interdot tunneling. On the other hand, the conservation of
Îz is broken only by the interdot tunneling and since we are interested in the weak coupling
regime, we will use this fact later in subsection 3.3.2.

We summarize the discussion by emphasizing the following facts:

1. The orbital degree of freedom of the single-particle eigenstates separates in the lat-
eral motion described by the Fock-Darwin states and a vertical motion consisting
of a symmetric and an antisymmetric wavefunction. The interdot tunneling thereby
always favors the symmetric wavefunction.

2. According to the symmetries of the system the eigenstates can be labeled in addition
to their eigenenergies byN, S, Sz,M , labeling the electron number, the spin degrees of
freedom and the angular momentum, respectively. For symmetric dots the pseudospin
parity P̂ represents an additional symmetry.
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3 Few-electron vertical double dots

3. The Coulomb interaction breaks the single-particle behavior and leads to correlations
that mix vertical and lateral degree of freedom. By increasing the factor d/l ∝ d

√
ωeff

the intradot Coulomb interaction grows faster than the interdot Coulomb interaction.
Thus the factor d/l allows to modify the correlations on the double dot.

4. In the limit of vanishing interdot coupling Îz is conserved.

5. Since the Coulomb interaction does not commute with Îx, the occupation of the sym-
metric or antisymmetric orbitals is not conserved, although in the case of symmetric
dots the parity P = (−1)na is a good quantum number.

3.2.4 Exact diagonalization of the Hamiltonian

Before we present our results in the following sections, we shortly comment on how the
method of exact diagonalization introduced in subsection 2.2.4 for the single dot is used
to obtain the eigenspectrum of the interacting double dot.

Therefore, we first rewrite the many-particle Hamiltonian in second quantized form, where
we use again the effective units introduced in Eq. (2.13).

Ĥ∗ = Ĥ∗
FD + Ĥ∗

Z + Ĥ∗
T + Ĥ∗

As + V̂∗
inter + V̂∗

intra . (3.10)

The superscript star, “∗”, indicates that the corresponding quantity is expressed in effective
Rydbergs.

The single-particle terms of the Hamiltonian have the following form:

Ĥ∗
FD = ~ω∗

eff

∑

n,m,α,σ

(2n+ |m| + 1) c†n m α σ cn m α σ +
~ω∗

c

2

∑

n,m,α,σ

mc†n m α σ cn m α σ

Ĥ∗
Z = α ~ω∗

c Ŝz

Ĥ∗
T = −∆∗

sasÎx

Ĥ∗
As = V ∗

Z Îz . (3.11)

The operators c†n m α σ and cn m α σ create and annihilate an electron in the single-particle
state |nmασ〉, where n and m denote the principal quantum number and the angular
momentum of a Fock-Darwin orbital, α denotes the pseudospin and σ the real spin. The
pseudospin operators Îx, Îz are defined by:

Îx =
1

2

∑

n,m,α,σ

c†n m α σcn m ᾱ σ

Îz =
1

2

∑

n,m,σ

(

c†n m +σcn m + σ − c†n m− σcn m− σ

)

. (3.12)

Here we introduced ᾱ denotes the opposite pseudospin of α.
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3.3 Spontaneous charge localization

The difficult part of the Hamiltonian is the Coulomb interaction, which is a two-particle op-
erator causing correlations between the electrons. Intra- and interdot Coulomb interaction
are defined by:

V̂∗
inter =

√

~ω∗
eff

1

2

∑

α,σ,σ′

∑

n1,m1
n2,m2

∑

n3,m3
n4,m4

〈n1m1, n2m2| Ṽinter |n3m3, n4m4〉

×c†n1m1ασc
†
n2m2ᾱσ′cn4m4ᾱσ′cn3m3ασ

V̂∗
intra =

√

~ω∗
eff

1

2

∑

α,σ,σ′

∑

n1,m1
n2,m2

∑

n3,m3
n4,m4

〈n1m1, n2m2| Ṽintra |n3m3, n4m4〉

×c†n1m1ασc
†
n2m2ασ′cn4m4ασ′cn3m3ασ .

The Coulomb matrix elements are defined via the dimensionless quantities: Ṽintra = lrel/r12,
and Ṽinter = lrel/

√

r2
12 + d2, where r12 = |~r1 − ~r2| denotes the lateral distance and lrel =

√
2l

is the characteristic length of the relative motion. While the matrix elements of Ṽintra are
parameter independent, the elements of Ṽinter have to be computed for each value of d/l.

The eigenstates of the Hamiltonian (3.10) are calculated by means of exact diagonalization,
as discussed in subsection 2.2.4 for the case of a single dot. This approach is particularly
important here since it takes Coulomb interaction fully into account, which turns out
to be essential for the correlation-induced charge polarization discussed in the following
section. In our calculations we again use the symmetries of the system and build up the
many-particle basis for the eigenstates to a fixed subspace characterized by N,M, S, Sz as
discussed in subsection 2.2.4.

Relevant parameters for the experimentally realized vertical double dots are: 0.5Ryd∗ <
~ω0 < 1Ryd∗, 0 < ~ωc < 5Ryd∗, 1a∗0 < d < 3a∗0. Finally we mainly consider weak coupling
and often use ∆sas = 0.02Ryd∗. The effective units are listed in Table 2.1. The relevant
material is GaAs where 1Ryd∗ = 5.93meV and a magnetic field of 1 Tesla corresponds to
~ωc = 0.29Ryd∗ and vice versa ~ωc = 1Ryd∗ corresponds to a magnetic field of B ≈ 3.45T .
Furthermore the effective Bohr radius is given by a∗0 = 9.79nm.

3.3 Spontaneous charge localization tunable by

perpendicular magnetic field

The Hamiltonian (3.10) of the double dot depends on the distance d between the layers,
the confinement ~ω0, the interdot tunneling ∆sas, the level asymmetry between the dots
VZ and the magnetic field applied in z-direction, characterized by the cyclotron frequency
~ωc = eB/m∗. While d, ~ω0 and ∆sas are fixed by the growth process of the sample, the
magnetic field can be changed easily.

Surprisingly we found, that a sweep of the perpendicular magnetic field does not only lead
to transitions to states with higher angular momenta, but it can also lead to a spontaneous
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Figure 3.2: Angular momentum M , total spin S and expectation value of the z-component of
the isospin 〈Îz〉 for the three-electron ground state as function of the magnetic field. Due to
the Zeeman term the spins are always aligned with the external field, i.e. Sz = S. The peak
in 〈Iz〉 illustrates a strong spontaneous charge localization. Parameters: Tunneling strength:
∆sas = 0.02Ryd∗, confinement: ~ω0 = 0.5Ryd∗, layer asymmetry: VZ = 10−4Ryd∗ ≪ ∆sas layer
separation in (a) d = 2.6 a∗0 and (b) d = 2 a∗0.

charge localization in one of the dots. In the following we use the words charge-polarization
and charge-localization as synonyms. Fig. 3.2 shows the angular momentum and the spin
of the three-electron ground state characterized by M,S, and the expectation value 〈Îz〉
of the z-component of the isospin for two different interlayer distances d.2 The value
of the charge localization at the peak is 〈Îz〉 ≈ −0.5 and corresponds to two electrons
occupying the lower dot and only one electron the upper dot. The special feature of the
charge localization depicted in Fig. 3.2 is, that it is not tuned by the asymmetry between
the dots, but by the external magnetic field which doesn’t cause any force in z-direction.
Furthermore the charge localization is not connected with a transition between states of
different angular momentum and/or spin.

In the following we call transitions where either the angular momentum or the spin is
changed (or both), ’transitions in the lateral degree of freedom’, since they arise already for
single dots. They are based on two effects. First the lateral extension of the wavefunction
shrinks with increasing magnetic field like l ∝ 1/

√
ωeff , see Eqs. (2.4),(2.15), which leads

to an increase of the Coulomb interaction. Second, the Fock-Darwin states converge into
Landau levels with increasing magnetic field and thereby reduce the level spacing between

2Even though Fig. 3.2 (a) and Fig. 3.2 (b) correspond to a different interlayer distance d we use the same
coupling strength ∆sas. In an experiment this could be achieved e.g. by properly choosing the width
of the wells w and the interdot barrier width b introduced in Fig. 3.1.
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Figure 3.3: Contours of constant vertical polarization, 〈Îz〉 = const as function of magnetic
field ωc and asymmetry VZ between upper and lower dot. The effect of asymmetry on the
polarization strongly depends on the Coulomb correlations in the dot, and thus on the magnetic
field. Parameters in (a)and (b) like in Fig. 3.2 (a) and (b).

single-particle states with consecutive angular momenta. The combination of lower level
spacing and higher Coulomb interaction leads to ground-state transitions favoring states
with higher angular momenta, that have a larger lateral extension and thus lower Coulomb
interaction.[62, 63] Of particular is the angular momentum corresponding to the maximum
density droplet, realized by the occupation of single-particle states with successive angular
momenta.[57, 67] For three electrons confined to the double dot this results in M = −3.
The magnetic field where the ground state turns into the maximum density droplet, is
often called the ’regime of filling factor ν = 1’, which originates from the similarity of a
quantum dot with a finite Quantum Hall system [46]. Even though the maximum density
droplet state is more stable in single dots than in double dots, we note that the steps
corresponding to M = −3, S = Sz = 1.5 in Fig. 3.2 are extraordinarily broad.

In the intermediate and strong coupling regime ∆sas ≥ ~ω0, transitions in the lateral
degree of freedom are often accompanied by transitions in the vertical direction [53, 55,
56, 57]. In that regime an increasing magnetic field favors transitions where an electron
leaves an antibonding level of low angular momentum and enters a bonding level of higher
angular momenta, thus flipping the x-component of its pseudospin. The electron thus gains
tunneling energy (since more bonding levels are occupied) and simultaneously reduces the
Coulomb energy (due to the larger lateral extension).[47, 50] This kind of transitions leads
in our definition to an increase of the x-component of the pseudospin with increasing
magnetic field and cannot lead to a charge localization connected with the z-component
of the pseudospin. Furthermore the spontaneous charge localization discussed here is not
related with a change in the lateral degree of freedom.

We emphasize that the asymmetry VZ chosen in Fig. 3.2 is much smaller than the interdot
coupling and therefore only at a critical magnetic field a significant charge localization is
found, while the ground state is delocalized over both dots at general magnetic fields. This
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3 Few-electron vertical double dots

is in sharp contrast to the single electron states. For a single electron the polarization
is independent of the magnetic field and only depends on the vertical level asymmetry
and the interdot coupling. It is given by 〈Iz〉 = 1/2 ∗ VZ/(

√

V 2
Z + ∆2

sas). For the many-
particle states this is not longer true as shown in Fig. 3.3, where we plot the contours of
constant vertical polarization as function of the magnetic field and the vertical asymmetry
VZ between the dots. We find that the charge-polarization at constant asymmetry strongly
depends on the magnetic field and that there are critical magnetic fields where already a
tiny asymmetry is sufficient to strongly polarize the wavefunction.

Actually, in real experiments the asymmetry between the dots can exceeds the interdot
coupling which leads to a strong charge polarization over a broad parameter regime and
for all angular momenta [58]. In the situation discussed here, however, the asymmetry is
much smaller than the interdot coupling and the presented charge-polarization only occurs
for certain three-electron states and only at a critical magnetic fields. In the following
subsection we relate the charge-localization to crossings between states only differing in
parity, and we will show that these crossings are driven by Coulomb correlations.

3.3.1 Crossing between states only differing in parity

We discussed in subsection 3.2.3 that the ratio between layer distance and confinement
length, d/l, determines whether electrons are mainly intradot or mainly interdot correlated.
We now study how the vertical degree of freedom characterizing the few-electron molecular
binding of the artifical molecule, is affected by a change of d/l ∝ d

√
ωeff . Therefore we

calculate the three-electron eigenspectrum in a fixed ’lateral’ subspace characterized by
M,S, Sz. For perfectly symmetric dots (i.e. VZ = 0) the (pseudospin-) parity is conserved
and its eigenvalues are given by (−1)na where na denotes the occupation of antisymmetric
orbitals in z-direction. For small tunneling ∆sas ≪ ~ω0 the energy splitting between the
parity eigenstates |P = ±1〉 within the same set of quantum numbers (M,S, Sz) is due
to their different tunneling energies, as the occupation probabilities of symmetric and
antisymmetric orbitals depend on parity. However, as discussed in subsection 3.2.3 the
x-component of the pseudospin is not conserved in the presence of Coulomb interaction.
In particular it follows that the occupation of symmetric and antisymmetric orbitals of the
parity eigenstates is a function of the magnetic field. This can lead to correlation induced
crossings between states differing only in parity as depicted in Fig. 3.4 and Fig. 3.5. This
parity crossing is a pure many-body effect.

While in a real experiment the interdot coupling will depend on the interlayer distance we
fix it in Fig. 3.4 to a small, constant value, here ∆sas = 0.02Ryd∗. We do this to highlight
the effect of Coulomb correlations, while the dependence of the charge polarization on the
interdot tunneling will be discussed later in the context of Fig. 3.9. However we point
out that in the mapping from a realistic finite confinement potential in z-direction (see
e.g. Fig 3.1) to the layer model used here, the interlayer distance does not only depend
on the interdot barrier width b, which strongly changes the interdot coupling, but also on
the well thickness w, which is of minor relevance for the interdot coupling. Thus it should
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Figure 3.4: Parity of energetically lowest state in the subspace of M = −5, S = Sz = 1.5 (upper
row) and M = −3, S = Sz = 1.5 (lower row) as function of the interdot distance d, and either
the confinement strength ~ω0 (left column) or the magnetic field ~ωc (right column). Interdot
tunneling is kept fixed at ∆sas = 0.02Ryd∗. Calculated values for parity crossings are indicated
by red points. They follow lines of constant ration d/l (green lines). Black lines in (b) and (d)
correspond to parameters of the magnetic-field sweeps illustrated in Fig. 3.2. The spontaneous
charge polarization in Fig. 3.2 takes place right at the parity crossing.

be possible to vary the interlayer distance in some range without changing the interdot
coupling. In particular we believe that the parameters chosen in Fig. 3.2 are experimentally
relevant.

Fig. 3.4 shows phase/stability diagrams between states differing only in parity for the
subspaces M = −5, S = Sz = 1.5 (upper row) and M = −3, S = Sz = 1.5 (lower row). In
Fig. 3.4 (a) and (c) the relation between the interlayer distance and the critical confinement
strength at the phase boundary are illustrated while Fig. 3.4 (b) and (d) show the relation
between the interlayer distance and the critical magnetic field. The parameters used in
Fig. 3.2 are marked by the black solid lines. The critical field of the charge polarization of
Fig. 3.2 exactly coincides with the magnetic field, where the parity changes in Fig. 3.4.

The critical values of d, ~ω0 or d, ~ωc depicted in Fig. 3.4 can well be fitted by a line of
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Figure 3.5: Colored lines illustrate the
parity-crossing in a symmetric double
dot in a magnetic field sweep. In
the presence of a slight asymmetry be-
tween the dots, the parity eigenstates
are mixed and the crossing turns into
an anticrossing as shown by the black
lines. The depicted situation corre-
sponds to the parity crossing in the
subspace M = −3, S = Sz = 1.5.

constant ratio of d/l = const, as indicated by the blue curves in Fig. 3.4. The constants
in Fig. 3.4 (a)-(d) are used as fitting parameters, they are similar for all figures and have
values of 1.5 < d/l < 2. Even though the absolute value of the Coulomb energy for the
parity eigenstates at the crossing is more than doubled in the depicted parameter regime the
ratio between the interdot and the intradot Coulomb interaction for the parity eigenstates
is approximately constant (±3% ) along the transition line. Furthermore the ratios are
also similar for the different figures and have values of 2 < 〈V inter

c 〉/〈V intra
c 〉 < 2.3.

We note, that the transition of the parity is reversed in the two distinct subspaces. While
with increasing ratio d/l the parity changes from P = +1 to P = −1 in the case of M =
−3, S = Sz = 1.5, it changes from P = −1 to P = +1 in the case of M = −5, S = Sz = 1.5.
Furthermore there is a second parity crossing in the case of M = −5, S = Sz = 1.5 for
even higher values of d/l.

3.3.2 Spontaneous charge localization

According to Fig. 3.4 a magnetic field sweep leads to a crossing between states differing
only in parity. A schematic energy profile of such a crossing is depicted in Fig. 3.5, by
the colored lines. If one now breaks the parity conservation, e.g. by introducing a tiny
asymmetry ĤAs between the dots, then the crossing turns into an anticrossing as shown
by the black lines in Fig. 3.5. Far from the crossing non-degenerate-perturbation theory
can be applied and the mixing between the parity eigenstates (caused by ĤAs) scales
like the inverse of their energy difference. Right at the critical magnetic field, the parity
eigenstates are maximally superposed in order to minimize the perturbation ĤAs. The
asymmetry between the dots thus converts the crossing into an anticrossing and leads to
strongly polarized states at the critical magnetic field.

Fig. 3.6 illustrates a quantitative study of the influence of a slight asymmetry VZ between
the dots on the parity crossing schematically shown in Fig. 3.5. First of all we note, that
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Figure 3.6: Upper row: Energy difference between the two lowest eigenstates as function of the
magnetic field for various small asymmetries VZ . In the presence of an asymmetry the crossing
turns into an anticrossing with a minimum energy difference given by VZ . Lower panel the
asymmetry strength VZ determines the width of the charge localization peak but does not change
the critical magnetic field. Parameters: ~ω0 = 0.5, ∆sas = 0.02 (a) d = 2.6a∗0 (b) d = 2.a∗0
Energies given in Ryd∗

the effect of the asymmetry on the crossing is qualitatively the same for both illustrated
subspaces. The graphs in the upper row of Fig. 3.6 show the energy difference between the
two lowest eigenstates. For perfectly symmetric dots (red line) states of different parity
cross in a magnetic field sweep, which results in a vanishing energy difference at the critical
magnetic field. The magnetic fields corresponding to the critical cyclotron frequencies
~ωc = 1.98Ryd∗ and ~ωc = 2.24Ryd∗ shown in Fig. 3.6 are B = 6.83T and B = 7.72T
(see Table 2.1). In the presence of level asymmetry between the dots, the crossing turns
into an anticrossing and the minimum energy distance is given by VZ . Simultaneously the
eigenstates are strongly polarized in opposite direction with a maximum charge polarization
of 〈Îz〉 = ±0.5 as shown in the lower row of Fig 3.6. (In Fig 3.6 only the polarization of
the ground state is shown, the first excited state has just the inverse polarization.) Note,
that parity eigenstates are always unpolarized, since 〈P | Îz |P 〉 = 0. The widths of the
charge-localization peaks are proportional to the corresponding asymmetry strength VZ ,

53



3 Few-electron vertical double dots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

C
oe

ffi
ci

en
ts

~ωc [Ryd∗]

c1 c4c2 = c3
c21 + c22 + c23 + c24

Figure 3.7: Magnetic-field dependence of
many particle states |Iz = ±1/2〉. Illus-
trated are the coefficients c1, c2, c3, c4 in-
troduced in Eq. (3.13) corresponding to
the Slater determinants given in Eq. (3.14).
The magnetic-field dependence of the coef-
ficients is exclusively caused by Coulomb
correlations since all Slater determinants
considered here have the same single-
particle energy. Parameters: ~ω0 =
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however all peaks are centered at the same critical magnetic field. The asymmetry thus
only visualizes the parity crossing which is caused by the magnetic field dependent Coulomb
correlations.

In the following we are interested in the structure of the parity eigenstates. We start our
discussion by considering the limit of small interdot tunneling. In the absence of interdot
tunneling the z-component of the pseudospin, Îz , is conserved. If furthermore the dots
are perfectly symmetric, then the three-electron ground state is twofold degenerate with
Iz = ±1/2. The states |Iz = ±1/2〉 mainly occupy Slater determinants that minimize the
lateral confinement. As an example we note that in the subspace M = −3, S = Sz = 1.5 the
structure of each of the three-electron states |Iz = ±1/2〉 is mainly given by a superposition
of four Slater determinants:

|Iz = −0.5〉 ≈ c1 |1〉 + c2 |2〉 + c3 |3〉 + c4 |4〉
|Iz = 0.5〉 ≈ c1 ¯|1〉 + c2 ¯|2〉 + c3 ¯|3〉 + c4 ¯|4〉 . (3.13)

The coefficients c1, c2, c3, c4 are only determined by the Coulomb interaction, since all Slater
determinants have the same single-particle energy. In the following we label an electron
orbital only by its angular m and its pseudospin α = ±. The additional quantum numbers
are always n = 0 and σ = 0.5 since we describe the energetically lowest Slater determinants
and consider fully spin-polarized states. Within this notation the Slater determinants of
Eq. (3.13) are represented by:

|1〉 = |0−, 0 +,−3−〉 ; ¯|1〉 = |0 +, 0−,−3 +〉 ;
|2〉 = |0−,−1−,−2 +〉 ; ¯|2〉 = |0 +,−1−,−2−〉 ;
|3〉 = |0−,−1 +,−2−〉 ; ¯|3〉 = |0 +,−1−,−2 +〉 ;

|4〉 = |0 +,−1−,−2−〉 ; ¯|4〉 = |0−,−1 +,−2 +〉 .

(3.14)

The two Slater determinants in each row are connected to each other by flipping all pseu-
dospin quantum numbers.
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3.3 Spontaneous charge localization

The magnetic field dependence of the coefficients c1, c2, c3, c4 is shown in Fig. 3.7. First of
all we note, that the approximate form of the eigenstates |Iz = ±1/2〉 of Eq. (3.13) seems
justified since the sum of the occupation probabilities of the four Slater determinants is
always above 95%. Furthermore Fig. 3.7 illustrates that the weight of each of these Slater
determinants changes with the magnetic field. Since the Slater determinants have the same
single-particle energy for all magnetic field strengths, the change of the coefficients shown
in Fig. 3.7 is exclusively caused by a change of the Coulomb correlations.

If now the interdot tunneling is switched on, then Îz is no longer conserved and the degen-
erate ground state splits in two non-degenerate parity eigenstates. For a small tunneling
energy ∆sas, the structure of the parity eigenstates is approximated by applying lowest-
order perturbation theory:

|P = ±1〉 ≈ 1√
2
(|Iz = 1/2〉 ± |Iz = −1/2〉) . (3.15)

Such a presentation for the parity eigenstates is justified if states |IZ = ±1/2〉 are separated
from excited states (within the same subspace) by an energy gap ∆E which is larger than
the interdot tunnel energy ∆sas.

We now apply Eq. (3.15) to the parity crossing in the subspace M = −3, S = 1.5 = Sz.
Using Eq. (3.13) and (3.14) and changing to the symmetric s and antisymmetric a pseu-
dospin representation defined by |s/a〉 = (|+〉 ± |−〉)/

√
2 we rewrite the parity eigenstates

in the following form:

|P = +1〉 ≈ aI |I〉 + aII |II〉 + aIII |III〉 + aIV |IV 〉 + aV |V 〉
|P = −1〉 ≈ aI

¯|I〉 + aII
¯|II〉 + aIII

¯|III〉 + aIV
¯|IV 〉 + aV

¯|V 〉 . (3.16)

Here we used:

aI = c1 ; |I〉 = |0a, 0s,−3a〉 ; ¯|I〉 = |0s, 0a,−3s〉
aII = 1

2
(c2 + c3 + c4) ; |II〉 = |0s,−1s,−2s〉 ; ¯|II〉 = |0a,−1a,−2a〉

aIII = 1
2
(c2 − c3 − c4) ; |III〉 = |0a,−1a,−2s〉 ; ¯|III〉 = |0s,−1s,−2a〉

aIV = 1
2
(−c2 + c3 − c4) ; |IV 〉 = |0a,−1s,−2a〉 ; ¯|IV 〉 = |0s,−1a,−2s〉

aV = 1
2
(−c2 − c3 + c4) ; |V 〉 = |0s,−1a,−2a〉 ; ¯|V 〉 = |0a,−1s,−2s〉 .

The two Slater determinants within each row are connected to each other by exchanging
symmetric with antisymmetric orbitals. This representation of the parity eigenstates il-
lustrates two facts. First, the occupation of symmetric and antisymmetric wavefunctions
depends on the parity. Second, Coulomb correlations change the occupation of symmetric
and antisymmetric orbitals in a magnetic field sweep, since the coefficients aI , .., aV are
magnetic field dependent.

Consequently the energy splitting between the parity states caused by the interdot tun-
neling is also magnetic field dependent. Using Eq. (3.15) the energy splitting between the
parity states can be approximated by:

E|P=1〉 − E|P=−1〉 ≈ 〈P = 1| ĤT |P = 1〉 − 〈P = −1| ĤT |P = −1〉 (3.17)

≈ 2 〈P = 1| ĤT |P = 1〉 ≈ −2∆sas 〈Iz = 1/2| Îx |Iz = −1/2〉 .

55



3 Few-electron vertical double dots

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3
-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0  0.5  1  1.5  2  2.5  3

(a) M = −3, S = Sz = 1.5 (b) M = −5, S = Sz = 1.5

~ωc ~ωc

〈I
z

=
1/

2|
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Î x

|I z
=

−
1/

2〉

Figure 3.8: Magnetic-field dependence of the matrix element 〈Iz = 1/2| Îx |Iz = −1/2〉 indicated
by the red line. The green line in left graph shows the approximation given in Eq. (3.18). The
plotted matrix element is proportional to the tunnel coupling between the states |Iz = ±1/2〉.
Parameters: (a) ~ω0 = 0.5Ryd∗, d = 2.6a∗0; (b) ~ω0 = 0.5Ryd∗, d = 2a∗0 .

Using Eq. (3.16) and (3.17) we now get a perturbative expression for the energy splitting
between the energetically lowest parity eigenstates in the subspace M = −3, S = Sz = 1.5.
Noting that according to the data shown in Fig. 3.7 the coefficients c2 and c3 are equal,
i.e. c2 = c3, we obtain:

〈Iz = 1/2| Îx |Iz = −1/2〉 ≈ −1

2
c21 + c22 + 2c2c4 . (3.18)

Fig. 3.8 (a) shows the magnetic field dependence of 〈Iz = 1/2| Îx |Iz = −1/2〉, together with
the perturbative result given in Eq. (3.18). Fig. 3.8 illustrates that the tunnel coupling
between the states |Iz = ±1/2〉 strongly depends on the magnetic field which is explained
by the change of Coulomb correlations. While Fig. 3.8 together with Eq. (3.17) explains
the parity crossing and the charge polarization in the isolated double dot, we will show
in section 3.4 that the disappearance of the tunnel coupling also suppresses the current
through the double dot. We emphasize that Eqs. (3.15) and (3.17) hold for any subspace
of quantum numbers Ne,M, S, Sz, if the electron number Ne is odd. However, a further
condition for the parity crossing and the corresponding spontaneous charge polarization
is, that the matrix element 〈Iz = 1/2| Îx |Iz = −1/2〉 vanishes at a critical magnetic field.
For the case Ne = 3,M = −5, S = Sz = 1.5 this is shown in Fig. 3.8 (b). In that case
the positive parity is favored for low magnetic fields. The mechanism presented here also
occurs at higher particle numbers, e.g. we found it for Ne = 5,M = −7, S = Sz = 2.5.
Parity crossings also occur for an even number of electrons on the double dot. However in
that case the crossings are in general not accompanied by a vanishing interdot tunneling
and often they also occur in the absence of interdot coupling. Thus a charge localization
at arbitrarily small asymmetries is only possible for an odd number of electrons on the
double dot.

Finally we note that for vertically coupled double dots the (single-particle) interdot tunnel
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energy ∆sas is independent of the magnetic field, so that the disappearance of the interdot
coupling shown in Fig. 3.8 is purely a many-body effect. This is in contrast to lateral
double dots. There an increasing vertical magnetic field not only changes the Coulomb
correlations but also reduces the (single-particle) tunnel energy ∆sas, since it effectively
decreases the overlap between electrons in the left and right dot.[68, 69]

In Eq. (3.17) the interdot tunneling is treated as small perturbation, however, with in-
creasing interdot coupling this perturbative description of the parity eigenstates fails. This
is visible in two aspects. First, the critical magnetic field where the parity crossing occurs
depends on the interdot tunneling and second, due to the different structure of the parity
eigenstates, the maximum of the charge localization decreases in general with increasing
interdot tunneling.

In Fig. 3.9 (a) and (b) we plot the parity of the energetically lowest eigenstate of the
specified subspace (i.e. M = −3, S = Sz = 1.5 for (a) and M = −5, S = Sz = 1.5 for (b))
as function of the interdot coupling and the magnetic field. In the limit ∆sas → 0, the
parity crossing appears at the critical magnetic field predicted by Eq. (3.17) and shown in
Fig. 3.8, that is at ~ωc = 1.935Ryd∗ and ~ωc = 2.275Ryd∗, respectively.

Right at this critical magnetic field and for vanishing interdot tunneling the ground state is
degenerate with |Iz = ±1/2〉 and is separated from the lowest excited state by the excitation
energy ∆E = 0.141Ryd∗ (for M = −3, S = Sz = 1.5) and ∆E = 0.075Ryd∗ (for M =
−5, S = Sz = 1.5). These excitation energies set an upper limit for the validity regime of
Eq. (3.17) as function of the interdot coupling.

The interplay between interdot coupling and Coulomb interaction shifts the critical mag-
netic fields in Fig. 3.8 a) and b). In the subspace specified by M = −5, S = Sz = 1.5
and depicted in Fig. 3.9 (b), the parity crossings even disappear completely for interdot
couplings larger than ∆sas > 0.094Ryd∗, while in the subspace M = −3, S = Sz = 1.5
depicted in Fig. 3.9 (a) the transition continuously shifts to higher magnetic fields.

The lower column of Fig. 3.9 shows that the parity crossings of the symmetric double dot
cause strong spontaneous charge localizations in the presence of a tiny asymmetry. We
see that the maximum height of the polarization peak decreases with increasing interdot
tunneling, due to the different structure of the parity eigenstates. Furthermore the width
of the polarization peaks shrinks with increasing interdot tunneling, which is also explained
by Eq. (3.17), since the energy splitting between the parity eigenstates scales with ∆sas and
hence the regime, where the asymmetry effectively couples the parity eigenstates, depends
on the ratio VZ/∆sas. Thus the decrease of the polarization width with increasing interdot
tunneling is complementary to Fig. 3.6 where we studied the polarization as function of
the asymmetry VZ . Finally we note that due to the subtle interplay between interdot
coupling and Coulomb interaction there is a small regime of interdot tunnel couplings
for M = −5, S = Sz = 1.5, where the parity eigenstates cross twice. This leads to two
localization peaks in the presence of a slight asymmetry in Fig 3.9 d) for ∆SAS = 0.0932.

In the last part of this subsection we show how the magnetic-field dependent charge local-
ization is manifest in the electron density ρ±(~r0) = 〈 |±〉 〈±| δ(~r − ~r0) 〉 which specifies the

57



3 Few-electron vertical double dots

-0.5
-0.45
-0.4

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 1.5  2  2.5  3  3.5

∆SAS=0.01

∆SAS=0.02

∆SAS=0.06

∆SAS=0.1

∆SAS=0.14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  1  2  3  4  5

-0.5
-0.45
-0.4

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0  0.5  1  1.5  2  2.5  3

∆SAS=0.01

∆SAS=0.04

∆SAS=0.06

∆SAS=0.08

∆SAS=0.0932

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  0.5  1  1.5  2  2.5  3

P = −1

P = +1

P = +1 P = −1

(a) M = −3, S = Sz = 1.5 (b) M = −5, S = Sz = 1.5

(c) M = −3, S = Sz = 1.5 (d) M = −5, S = Sz = 1.5
~ωc

~ωc

~ωc ~ωc

∆
sa
s

∆
sa
s

〈Î
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Figure 3.9: (a) Black line shows the dependence of the critical magnetic field (defined by the
parity-crossing) on the interdot coupling in the subspace M = −3, S = 1.5 = Sz. (c) Magnetic
field sweep of the average charge polarization in the presence of a tiny level asymmetry between
the dots. At the critical magnetic field a strong charge polarization builds up. Parameters of the
magnetic field sweeps are shown by colored lines in (a). Fig. (b),(d) show the corresponding data
for subspace M = −5, S = 1.5 = Sz. Parameters: ~ω0 = 0.5, (a) d = 2.6a∗0, VZ = 0 (b) d = 2.a∗0,
VZ = 0 (c) d = 2.6a∗0, VZ = 10−4 (d) d = 2.a∗0, VZ = 10−4. Energies given in units of Ryd∗.

probability density to find an electron at the position ~r0 in dot ±. Each row of Fig. 3.10
shows the electron densities in the upper dot (i.e ρ+(r/l)) and the lower dot (i.e. ρ−(r/l))
for three different magnetic fields. Due to the rotational symmetry of the double dot, the
electron density only depends on the radial coordinate r that measures the distance from
the center. The norm of the electron density is 2πl2

∫
(ρ+(r∗) + ρ−(r∗))dr∗ = Ne where Ne

is the electron number and r∗ = r/l. We see from Fig. 3.10 that at magnetic fields far away
from the anticrossing, the electron densities in the upper and lower dot are approximately
the same (which is exactly true for parity eigenstates) while at the anticrossing crossing
they differ strongly. At the critical magnetic field two electrons are in the lower dot and
the upper dot is only singly occupied. The two electrons in the lower dot try to avoid
each other which yields a torus-like density in the lower dot and the single electron in the
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Figure 3.10: The electron densities of the three-electron ground state for the lower ρ− and upper
ρ+ dot before, right at, and after the localization peak. The right column shows the expectation
value of the angular momentum in the lower L− and the upper L+ dot as function of the magnetic
field. Parameters ~ω0 = 0.5Ryd∗, ∆sas = 0.02Ryd∗, VZ = ∆sas/100 and d = 2.0a∗0 for M = −5
and d = 2.6a∗0 for M = −3.

upper dot sits in the potential minimum. This is also visible in the expectation values of
the angular momentum per dot, which obey the relation L+ +L− = M . The two electrons
sitting in the same dot carry nearly all the angular momentum available in order to reduce
the Coulomb interaction by increasing their mutual distance.

3.3.3 Charge localization in the three-electron ground state

In this subsection we discuss for which parameters the parity crossing arising in symmetric
dots (or respectively the charge localization found in slightly asymmetric dots) appears in
the three-electron ground state. Therefore we determine for different confinement strengths
the quantum numbers (M,S, Sz, P ) of the three-electron ground state of a symmetric
double dot as function of the layer distance d and the magnetic field ~ωc. The result is
depicted in Fig. 3.11. Like in Fig. 3.4 we fix the interdot tunneling energy to a small
value, here ∆sas = 0.02Ryd∗, independent of the layer distance. Within this assumption
transitions in the eigenspectrum are mainly determined by the Coulomb interaction, which
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Figure 3.11: Quantum numbers (M,S = Sz, P ) of the three-electron ground state for various
confinement strengths and perfectly symmetric dots as function of the magnetic field and layer
distance. The labeling of the subspaces is explained in the upper right corner. The black lines
separate regions belonging to different subspaces M,S, Sz, while the red lines indicate ground
state transitions where only the parity P is changed. The blue crosses for ~ω0 = 0.5Ryd∗ indicate
the parameters where the charge localization occurs in Fig. 3.2. The interdot coupling is fixed to
∆sas = 0.02Ryd∗.

is always much larger than the interdot coupling. The small interdot coupling chosen in
Fig. 3.11 is maybe unrealistic for small layer distances, however, the parity crossing appears
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3.3 Spontaneous charge localization

in a broad region of the layer distance with values of 1.5a∗0 < d < 2.8a∗0 depending on the
confinement strength.

The black lines in Fig. 3.11 illustrate transitions where the angular momentum is in-
creased with increasing magnetic field, while the red lines indicate transitions where only
the (pseudospin) parity is changed. As explained at the beginning of this section (see
page 48) transitions to states with higher angular momentum are based on the effect that
the Coulomb energy increases with increasing magnetic field while the single-particle level
spacing decreases. At some critical magnetic field, it is therefore favorable to increase the
angular momentum in order to reduce the Coulomb energy by increasing the extension of
the wavefunction. Since the Coulomb energy (mainly interdot Coulomb energy) decreases
with the layer distance d these transitions shift to higher magnetic fields for increasing
layer distance.

We note that with increasing confinement the ground-state transitions move to higher
magnetic fields and lower layer distances, since the competition between the single-particle
spacing and the Coulomb energy depends also on the ratio ωc/ω0 in addition to ωeff .
Furthermore, the layer distance has to be compared with the characteristic confinement
length l ∝ 1/

√
ωeff . Thus the critical magnetic fields of lateral transitions increase with

increasing confinement while the critical layer distances decrease.

We have already shown in Fig. 3.2 that parity crossings (for symmetric dots) or anticross-
ings (for slightly asymmetric dots) found in a subspace of fixed M,S, Sz in a magnetic field
sweep can occur in the three-electron ground state. Fig. 3.11 shows a systematic deter-
mination of the range of layer distances where the parity crossings found in the subspaces
with M = −3 or M = −5 and S = Sz = 1.5 take place in the three-electron ground state.
The condition that the crossing has to occur in the ground state restricts the possible
parameters of the spontaneous localization as illustrated in Figs. 3.12 and 3.13.

Fig. 3.12 characterizes the charge polarization in the three-electron ground state for dif-
ferent confinement strengths ~ω0 and interdot tunneling energies ∆sas. The lengths of the
lines depicted in Fig. 3.12 are defined by the condition that the ground state is in the sub-
space M = −3, S = 1.5 = Sz at the critical magnetic field. The polarized three-electron
states are therefore the lowest eigenstates of the double dot and are separated from the
excited states (which can be in any subspace M,S, Sz) by the energy gap depicted in the
central row of Fig. 3.12. Finally the lowest row in Fig. 3.12 illustrates the charge polar-
ization of the three-electron ground state at the critical magnetic fields. The upper row of
Fig. 3.12 combines the information presented in Figs. 3.4 and 3.9. The critical magnetic
field decreases with increasing interlayer distance and increases with increasing interdot
tunnel coupling. However, the additional information of Fig. 3.12 is that the charge polar-
ization occurs in the three-electron ground state for a broad regime of interdot couplings
and in particular for significantly larger interdot tunneling than the one used in Fig. 3.2.
Furthermore the charge localization 〈Îz〉 at the critical fields shown in the lowest row of
Fig. 3.12 is always close to −1

2
although it slightly decreases with increasing interdot tun-

neling as discussed in the context of Fig. 3.9. Important to note is the relative large value
of the excitation gap shown in the second row of Fig. 3.12. Its maximum value is given by
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〈Î
z
〉

〈Î
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Figure 3.12: Closer look at parity crossings and charge polarizations in the three-electron ground
state. Length of lines defined by the condition that the ground state is in the subspace M =
−3, S = 1.5 = Sz at the critical magnetic field (compare with Fig. 3.11). Upper row: Dependence
of critical magnetic field on layer distance for various coupling strengths ∆sas and confinements.
Central row: Lowest excitation energy at the critical magnetic field from the polarized states to
a three-electron state in any subspace (M,S, Sz). Lowest row: Charge polarization at the critical
magnetic field in the presence of a tiny asymmetry VZ = 5 ∗ 10−4.

0.03−0.07Ryd∗ depending on the confinement. This corresponds to voltages of 0.18−0.42
meV or temperatures of 2.0 − 4.8 Kelvin (see Table 2.1), so that the manifestation of the
charge-polarized ground state in the transport characteristics of the double dot is well ac-
cessible as will be discussed in the next section. The stability of the M = −3, S = Sz = 1.5
state can be argued by its special meaning as realization of the maximum density droplet
[57].

Fig. 3.13 is closely related to Fig. 3.12. The lengths of the lines in Fig. 3.13 are now defined
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Figure 3.13: Same as in
Fig. 3.12, but for ground
state transitions where the
lateral quantum numbers are
left unchanged at M =
−5, S = 1.5 = Sz. The
values of the interdot cou-
plings are specified in the up-
per graph of each column.
Small wiggles are only due to
finite numerical precision.

by the condition that the ground-state is in the subspace M = −5, S = 1.5 = Sz at the
critical magnetic field. The major difference to the results depicted in Fig. 3.12 is the much
smaller excitation gap. It is already about three times smaller at ∆sas = 0.02Ryd∗ than
in the case of M = −3, S = 1.5 = Sz and furthermore it decreases rapidly with increasing
interdot tunneling in contrast to the case of M = −3, S = 1.5 = Sz. For ∆sas > 0.04
Ryd∗ (∆sas > 0.06 Ryd∗) the parity crossings does no longer appear in the ground state
for ~ω0 = 0.5Ryd∗ (~ω0 = 0.7Ryd∗). For the parameters chosen in Fig. 3.2 (a) and (b) the
energy gap at the parity-anticrossing is about 0.004Ryd∗ and 0.03Ryd∗, respectively.

3.4 Pseudospin blockade

Transport spectroscopy is a powerful tool to study the eigenspectrum of quantum dot
systems. In the regime of weak external coupling the effect of the contacts on the eigen-
spectrum of the interacting dot system can be neglected and the transport through the
double dot can be described by a master equation with transition rates obtained by Fermi’s
golden rule as shown for a single dot in subsection 2.4.1.
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3 Few-electron vertical double dots

For a double dot coupled in series to the external reservoirs and with a rather weak interdot
tunnel coupling, the left reservoir couples only to the left and the right dot couples only
to the right reservoir, respectively. Thus the external coupling will be strongly modified
by the charge polarization discussed in the last section. We will show, that transitions
including a strongly charge-polarized state effectively decouple from one of the reservoirs
leading to a pseudospin blockade of the current through the double dot. The mechanism
is closely related to the spin blockade found in single dots [29] and has been published in
references [3, 4].

In the next subsection we discuss how the serial geometry and the eigenspectrum of the
double dot can be included in the master equation introduced in subsection 2.4.1. In sub-
section 3.4.2 we then show how the current through the double dot is strongly suppressed
at the critical magnetic fields where the three-electron ground state is polarized. Further-
more we discuss how an increasing transport voltage increases the asymmetry between the
dots and thus leads to negative differential conductances.

3.4.1 Master equation for transport through a serial double dot

In fact, transport through a double dot coupled in series to external contacts is described
by the master equation and the current formula introduced for a single dot in subsec-
tion 2.4.1 in Eqs. (2.35), (2.39) and (2.41). However in the calculation of the transition
rates given in Eq. 2.35 one now has to take into account the serial transport geometry and
the eigenspectrum of the double dot.
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s s’

s s’

s s’ s s’W

W

W W
E

VD

µ↓ = −eVsd/2

µ↑ = eVsd/2

µ(s; s′)|s〉 , |s′〉

Figure 3.14: Visualization of the serial transport through double dot. |s〉 , |s′〉 denote eigenstates
of the double dot including the interdot coupling, and hatched areas denote the contacts. (a)
Different treatment of external coupling and interdot tunneling. (b) Energy profile for transport
through double dot including a single transport channel. Transport channels are continously
shifted in energy by changing the electrostatic potential VD on the double dot.

Within our approach we thus start with the eigenspectrum of the double dot including in-
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3.4 Pseudospin blockade

terdot tunneling and then we include the external coupling to lowest order. This approach
is visualized in Fig. 3.14. Fig. 3.14 (a) illustrates the different treatment for the interdot
coupling and the external coupling. In a first step the eigenstates of the double dot (in-
cluding the interdot tunnel coupling exactly) are determined. They are called |s〉 , |s′〉 in
the following. Then a lowest order expansion in the external coupling is performed, leading
to the transition rates W r

s s′, where r ∈ {↑, ↓} labels the dot and due to the serial geometry
also its corresponding reservoir. Within this approach it is assumed that the double dot
is never in a coherent superposition of eigenstates, but is described by a mixture of eigen-
states. Superpositions of eigenstates are neglected since the external coupling is several
orders of magnitude smaller than the interdot coupling as we will discuss in context of
Fig. 3.17 in the following subsection. (In the next chapter we study the case when the
external coupling exceeds the interdot coupling and discuss the evolution of superpositions
of eigenstates there.) Fig. 3.14 (b) shows the energy profile for transport through the
double dot. In analogy to the case of single dots, the eigenspectrum of the double dot
determines the discrete energies of the transition channels µ(s; s′) = Es′ − Es correspond-
ing to transitions between the N-electron state |s〉 and the (N+1)-electron state |s′〉. As
discussed in the context of Fig. 3.1 a side gate around the double dot structure can be used
to continuously change the electrostatic potential VD on the double dot, which is assumed
to be the same on both dots. Therefore the eigenstates of the double dot are unaffected
by the constant electrostatic potential, VD, while the eigenenergies shift proportionally to
VD, i.e. Es(VD) = Es(VD = 0)−eVDN(s), where N(s) describes the number of electrons of
state |s〉. Thus the transport channels µ(s; s′) = Es′(VD = 0) − Es(VD = 0) − eVD can be
continuously shifted by the electrostatic potential VD on the dot, as indicated in Fig. 3.14.

We now show how the serial geometry enters the transition rates. For the double dot
discussed here a single-particle orbital l is specified by l = n,m, α, where n,m are re-
spectively the principal quantum number and the angular momentum of the Fock-Darwin
states describing the lateral motion, while α denotes the pseudospin, which labels the dot.
The single-particle orbitals l enter the spectral functions Γr

l1l2
(ω) and Γr

ss′s′s(ω) defined in
Eq. (2.34). For a double dot coupled in series, the reservoir index also represents a pseu-
dospin since only the upper (lower) reservoir couples to the upper (lower) dot, so that we
will label the reservoirs now by r ∈ {↑, ↓} and will use either r or α to denote the vertical
degree of freedom. The mapping on the lateral geometry used in subsection 2.4.1 is done
by replacing L ↔↑ and R ↔↓. With the assumptions leading to Eq. (2.36) we obtain for
the spectral functions of the coupling strengths:

Γr
l1l2

(ω) = Γrδl1l2δα(l1)r

Γr
ss′s′s(ω) = ΓrSr

s s′

Sr
s s′ =

∑

n,m,σ

|〈s| cnmrσ |s′〉|2 =
∑

n

|〈s| cnm̄rσ̄ |s′〉|2 . (3.19)

Here α(l1) denotes the pseudospin of the orbital l1. Furthermore, m̄ = M(|s′〉)−M(|s〉) and
σ̄ = Sz(|s′〉)−Sz(|s〉) denote angular momentum and the spin orientation of the tunneling
electron, that are determined by the conserved total angular momenta M(|s〉),M(|s′〉) and
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3 Few-electron vertical double dots

spins Sz(|s〉), Sz(|s′〉) of the states |s〉 and |s′〉. The important difference to the transition
rates given in Eq. (2.36) is, that now the spectral weight Sr

s s′ depends on the reservoir/dot
index r = α.

In conclusion we obtain the following master equation and current formula [70]:

Wss′ =
∑

α

(W α+
s s′ +W α−

s s′ )

W α+
s′ s = Γαfα(Es′ −Es)S

α
s s′ ; W α−

s′ s = Γαf−
α (Es − Es′)S

α
s′ s

0 =
d

dt
Ps =

∑

s′

(Wss′Ps′ −Ws′sPs) (3.20)

1 =
∑

s

Ps

I := −edN↑
dt

= e
∑

s,s′

(

W ↑+
s′s Ps −W ↑−

ss′ Ps′

)

. (3.21)

3.4.2 Manifestations of charge localization in transport spectra

We start with the discussion of linear transport through the double dot corresponding to
an occupation of the double dot varying between two and three electrons.
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Figure 3.15: (a) Energy profile for the transport through the double dot at the critical magnetic
field, where the three-electron ground state and first excited state are strongly charge-polarized.
Even though the two transport channels µ(2, 0; 3 ↓), µ(2, 0; 3 ↑) are inside the transport window
the current through the double dot is blocked. (b) The blocking mechanism is based on a pseu-
dospin blockade, which leads to a decoupling of the transport channel from one of the reservoirs
due to a vanishing spectral weight. (c) Analogy to the spin blockade of single dot by identifying
the meaning of real spin and pseudospin for selection rules.

Fig. 3.15 (a) illustrates the energy profile at the critical magnetic field where the three-
electron ground state (first excited state) is strongly charge-polarized in the lower (upper)

66



3.4 Pseudospin blockade

dot. According to their polarization we call these states |3 ↓〉 and |3 ↑〉, respectively.
According to Fig. 3.15 (a) both transition channels µ(2, 0; 3 ↓) and µ(2, 0; 3 ↑) are inside
the transport window. However even though the transitions are energetically allowed, the
current through the double dot is blocked which is explained by the pseudospin blockade
depicted in Fig. 3.15 (b). Essential for the blocking mechanism is the serial geometry
and the fact that already for very weak asymmetry the relevant three-electron states are
strongly polarized at the critical field, while the two-electron ground state is completely
unpolarized. In this situation the spectral weights S↑

2,0;3↓ and S↓
2,0;3↑ vanish and thus also

the transition rates W ↑
2,0;3↓ and W ↓

2,0;3↓. For the situation depicted in Fig. 3.15 (a) a current
can only flow through the double dot, if it alternately occupies the two-electron ground-
state |2, 0〉 and either of the three-electron states |3 ↓〉 , |3 ↑〉. In order to explain the
pseudospin blockade depicted in Fig. 3.15 (b) we assume for a moment that the double
dot is in the two-electron ground state |2, 0〉. An electron entering the upper dot cannot
cause a transition to the three-electron ground state |3 ↓〉 since this state has only one
electron in the upper dot, see Fig. 3.15 (b). Therefore, the electron entering the upper
dot can only cause a transition to the nearly degenerate first excited state |3 ↑〉 which is
separated in energy by the small asymmetry VZ . For a current to flow, the electron in the
lower dot should leave the state |3 ↑〉 and enter the lower reservoir. However, this is again
impossible, since this would leave the double dot in a two-electron state with both electrons
in the upper dot, which is forbidden for energy reasons. Mathematically, this transition is
forbidden by the vanishing spectral weight S↓

2,0;3↑ = 0 indicated in Fig. 3.15 (b). Since the
state |3 ↑〉 is an eigenstate of the double dot it will not evolve into state |3 ↓〉, so that the
double dot is stuck in state |3 ↑〉 and current is blocked. The blocking mechanism described
here for serial transport through double dots resembles strongly the spin blockade found
for single dots, which is depicted in Fig. 3.15(c). This is an additional advantage of the
pseudospin description of the vertical motion.

We now comment on the different treatment of interdot tunnel coupling on the one side
and tunnel coupling to the external reservoirs on the other side, as discussed previously
in the context of Fig. 3.14 in the previous subsection. In particular we emphasize that
the blocking mechanism discussed here also occurs if both tunnel couplings, the interdot
coupling as well as the external coupling, are treated in lowest order perturbation the-
ory. In that case an electron passes the double dot in three sequent processes. First it
enters the upper dot, causing a transition from the two-electron state |Ne = 2, Iz = 0〉 to
the three-electron state |Ne = 3, Iz = 1/2〉. In the second step, it tunnels from the upper
to the lower dot thus causing a transition from |Ne = 3, Iz = 1/2〉 to |Ne = 3, Iz = −1/2〉.
This process is caused by the interdot tunneling ĤT and is governed by the matrix ele-
ment 〈Ne = 3, Iz = −1/2| Îx |Ne = 3, Iz = 1/2〉. Finally the electron leaves the lower dot
to the lower reservoir, causing a transition from |Ne = 3, Iz = −1/2〉 to |Ne = 2, Iz = 0〉.
Now as illustrated in Fig. 3.8 the matrix element 〈Ne = 3, Iz = −1/2| Îx |Ne = 3, Iz = 1/2〉
disappears at the critical magnetic field, leading to a complete suppression of the interdot
tunneling. Consequently the current through the double dot vanishes. In the following we
apply the master equation approach to study the dependence of the blocking mechanism
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on the external magnetic field and on the applied transport voltage.
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Figure 3.16: (a) Magnetic field dependence of spectral weights shown in Fig 3.15(b). The charge
polarization of the three-electron states |3, ↓〉 , |3, ↑〉 at ~ωc ≈ 1.98Ryd∗ leads to a complete
suppression of the coupling between reservoir and the singly occupied dot. (b) Spectral weights
vanish at slightly different magnetic fields. (c) Expectation of the z-component of the pseudospin
in the ground and first excited three-electron state (see Fig. 3.6). Parameters: ~ω0 = 0.5Ryd∗, d =
2.6a∗0,∆SAS = 0.02Ryd∗ = 100VZ .

The blocking mechanism as depicted in Fig 3.15 (b) relies on the strong charge polar-
izations of the three-electron ground state |3 ↓〉 and first excited state |3 ↑〉 at a critical
magnetic field. In order to understand the magnetic-field dependence of the blocking mech-
anism we first discuss the situation sufficiently far away from the critical magnetic field,
where the eigenstates are only weakly disturbed by the slight asymmetry. For symmetric
dots the spectral weights S

↑/↓
s s′ (defined in Eq. (3.19)) - characterizing the coupling of a

transport channel µ(s, s′) to the upper and lower reservoir respectively - are always the
same. Mathematically this follows from the parity conservation in symmetric dots which
allows to transform the spectral weights into each other. Using Eq. (3.19) we obtain for a
symmetric double dot:

S↑
s s′ =

∑

n

|〈s| cnm̄↑σ̄ |s′〉|2 =
∑

n

∣
∣
∣〈s| cnm̄↑σ̄P̂ |s′〉

∣
∣
∣

2

=
∑

n

∣
∣
∣〈s| P̂cnm̄↓σ̄ |s′〉

∣
∣
∣

2

=

=
∑

n

|〈s| cnm̄↓σ̄ |s′〉|2 = S↓
s s′ . (3.22)

Fig. 3.16 a) shows the magnetic-field dependence of the spectral weights in presence of a
slight asymmetry. With increasing charge-polarization of the three-electron states, depicted
in Fig. 3.16 c), the singly occupied dot decouples more and more from the corresponding
reservoir while the doubly occupied dot couples stronger to its reservoir. Zooming closer
to the critical magnetic field of the charge polarization, one observes that for each channel
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3.4 Pseudospin blockade

the singly occupied dot decouples completely at a characteristic field as illustrated in
Fig. 3.16 b). These characteristic fields are slightly different for the two channels.

We note that - since the suppression of the spectral weights is determined by the polariza-
tion of the three-electron states - the magnetic field regime of the blockade is determined
by the ratio VZ/∆sas, which determines the width of the polarization peak (see discussion
of Figs. 3.6 and 3.9).
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Figure 3.17: Magnetic field dependence of Coulomb peak in conductance G = I/Vsd in units of
e2Γ/~Ryd∗ for small applied transport voltage eVsd = 1/200Ryd∗. Charge polarization of the
three-electron states at ~ωc = 1.98Ryd∗ leads to a strong suppression of the conductance. Pa-
rameters like in Fig. 3.16 and Vsd = 1/200Ryd∗, kBT = 1/100Ryd∗ in (a) and kBT = 1/200Ryd∗

in (b).

Fig. 3.17 shows the magnetic field dependence of the Coulomb peak in the conductance
through the double dot, corresponding to a transition between the two- and three-electron
ground state. The main message of this figure is the strong suppression of the conductance
peak around ~ωc = 1.98Ryd∗, which is due to the pseudospin blockade as explained above.
The width of the dip in the conductance is directly connected with the width of the
polarization and is therefore determined by the ratio VZ/∆sas (see discussion of Fig. 3.6
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3 Few-electron vertical double dots

and 3.9). Fig. 3.17 (c) and (d) show the maximum of the conductance as function of
the magnetic field which is reduced by a factor of 10-100 at the critical magnetic field
depending on temperature .

According to table 2.1 the temperatures used in the calculation correspond to 140-700 mK
and the applied transport voltage corresponds to Vsd = 30µV. Fig. 3.17 illustrates that
in the linear transport regime an increase in temperature generally causes a broadening
and lowering of the conductance peak as function of the gate voltage [70, 71]. However,
this is not the case close to the pseudospin blockade where the broadening of the Fermi-
function also allows transitions to excited states which circumvent the blocking mechanism.
Therefore, right at the crossing the conductance even increases with increasing temperature
as soon as the broadening of the Fermi distribution is of the order of the excitation gap
to excited states. According to the data plotted in Fig. 3.12 the excitation gap from
the strongly charge-polarized three-electron states to the lowest excitation is given by
∆E = 0.03Ryd∗ and according to Fig. 3.17 (d) the conductance increases for temperatures
above 1/200kBT = ∆E/6.

In Fig. 3.17 we assume symmetric coupling constants to the left and right reservoir and
set the coupling constants to Γ = ΓL = ΓR. Concerning the magnitude of Γ we note that
typical currents through vertical double dots are in the range between picoampère and
nanoampère [42, 59, 72] and the average tunneling times ~/Γ in vertical dot structures are
of the order 1− 100ns [40]. This corresponds to an external coupling strength in the order
of Γ ≈ 1−100µRyd∗ = 10−6−104Ryd∗, which is much smaller than the interdot tunneling
∆sas > 10−2Ryd∗ considered here, so that the master equation approach is applicable.

It is important to note that also the next conductance peak - belonging to an occupation
on the double dot varying between three and four electrons - will be suppressed at the
same critical magnetic field. The selection rules for the transition between the unpolarized
four-electron ground state |4, 0〉 and the strongly polarized three-electron states |3, ↓〉 , |3, ↑〉
lead to S↑

3↑;4,0 = S↓
3↓;4,0 = 0, which again blocks the linear transport through the double

dot, according to the same arguments as stated above.

Fig. 3.18 shows the charge diagrams of the double dot at the critical magnetic field
~ωc = 1.985Ryd∗ (upper row) and at ~ωc = 1.7Ryd∗ (lower row). In the left column we
assumed that all transport voltage drops across the outer barriers, so that the asymmetry
VZ between the dots is independent of the transport voltage. In contrast, the data shown
in the right colum, are obtained by assuming a linear dependence between asymmetry be-
tween the dots and the applied voltage VZ = eVsd/20 which is closer to the experimental
situation [59]. In a first step we explain the charging diagrams for constant asymmetry
(left column). In general a stationary current can flow through the double dot when the
ground state channel enters the transport window see Fig. 3.18 (c). However, as we already
explained above this is not the case at the critical magnetic field shown in Fig. 3.18 (a)
since a pseudospin blockade strongly suppresses the transition rate of the two lowest trans-
port channels. However, with increasing transport voltage, transitions to excited states
become possible, which may weaken the blocking mechanism. This happens first when the
transport channel µ(2, 4; 3, 1) aligns with the source reservoir. This improves the exit from
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Figure 3.18: Charge diagrams at the critical magnetic field ~ωc = 1.985Ryd∗ (upper row) and
at ~ωc = 1.7Ryd∗ (lower row). In the left column a constant asymmetry is assumed VZ =
2 ∗ 10−4Ryd∗ while in the right column the asymmetry is assumed to be proportional to the
transport voltage VZ = eVsd/20. At the critical magnetic field the current is strongly suppressed
(please that scaling differs by factor 20 between upper and lower row). At finite transport
voltages the blockade is canceled since transitions to excited states are possible. Left column: (d)
The induced asymmetry continuously turns on the pseudospin blockade and leads to regimes of
negative differential conductance. Parameters like in Fig 3.16 with kT = 0.002Ryd∗.

the state |3, 1〉 to the drain reservoir since the spectral weight S↓
2,4;3,1 is more than 2 orders

of magnitude larger than S↓
2,0;3,1 . The state |2, 4〉 has Ne = 2, M = −1, S = Sz = 1. We

note similarity between the charge diagram Fig. 3.18 (a) revealing the pseudospin blockade
and the charge diagrams for spin blockade (see e.g. Ref. [29]) which highlights again the
similarity of both blocking mechanisms.

Considering the asymmetry induced by the transport voltage (right column) of Fig. 3.18,
we find that it generally reduces the current through the double dot. In Fig. 3.19 (a)
we show a line scan of the current plotted in Fig 3.18 (d) at eVD = 2.415Ryd∗. We find
that the current decreases with increasing transport voltage. The reason for this negative
differential conductance is not the entry of a new badly conducting channel but rather a
continuous decoupling of the ground-state channel due to an increasing polarization of the
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3 Few-electron vertical double dots

three-electron states. The dependence of the relevant spectral weights on the transport
voltage are shown in Fig. 3.19 b).
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Figure 3.19: (a) Current as function of the transport voltage at ~ωc = 1.7Ryd∗ as obtained from
a trace of Fig. 3.18 (d) at eVD = 2.415Ryd∗. The asymmetry VZ between the dots increases with
the transport voltages VZ = eVsd/20 and causes a strong suppression of the spectral weights and
the transition rates. Other parameters like in Fig. 3.18 (d).

3.4.3 Stability of pseudospin blockade

The pseudospin blockade is based on the orbital degree of freedom in vertical direction.
In single dots the lateral degree of freedom is strongly affected by relaxation processes
due to coupling with acoustic phonons, and the corresponding transition rates are often
larger than the external tunnel rate.[40] Therefore, we need to check if the pseudospin
blockade can be canceled by phonon induced transitions between the polarized states |3, ↑〉
and |3, ↓〉. In contrast to the lateral motion, where electrons occupy the same volume, the
pseudospin orbitals |±〉 describing the vertical motion have no (significant) spatial overlap.
We therefore expect that phonons cannot move electrons from the upper to the lower dot
and that therefore direct phonon-induced transition between states |3, ↑〉 and |3, ↓〉 are
absent.

In the following we substantiate this argument following reference [73]. We assume that
the perturbation potential induced by an acoustic phonon with the three-dimensional wave
vector ~q is modeled by:

Vep(~q) = ei~q~rλ~q(b~q + b†−~q) .

Here b~q and b†−~q denote the phonon operators, λ~q a coupling parameter, and ~r a three-
dimensional spatial vector. According to Fermi’s golden rule the phonon induced transition
rate W ph

s′,s from a state |s〉 to an energetically lower state |s′〉 is given by :

W ph
s′,s =

V

2π2~

∫

d3q| 〈s′|Vep(~q) |s〉 |2δ(Es − E ′
s − ~ω~q) .
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Here ω~q denotes the phonon frequency and V the volume of the system. If we now come
back to the vertical double dot and define the single-particle states |s〉 = |nmασ〉 and
|s′〉 = |n′m′α′σ′〉 we find that the matrix element | 〈s′| Vep(~q) |s〉 |2 vanishes, if the two
states differ in the vertical degree of freedom, 〈s′| ei~q~r |s〉 = δσσ′δαα′ 〈nm| ei~q~r |n′m′〉. Thus
within the applied approximations a phonon cannot push an electron from the upper to the
lower dot or vice versa, so that the pseudospin blockade is stable against electron-phonon
interaction. We note that in real structures there is a finite spatial overlap between the
“localized” states |α = ±1〉, and the selection rule discussed here is not strictly applicable.
However, since we discuss the regime of weak interdot-tunnel coupling this overlap is always
small, so that direct phonon induced transitions between the localized states will also be
small due to the above considerations. A quantitative study about the influence of phonons
on the eigenspectra of a double dot can e.g. be found in reference [74].

3.5 Conclusion

The three-electron ground state of two vertically coupled dots can show a spontaneous
charge polarization in a magnetic field sweep. The origin of this effect is the different
magnetic field dependence of intra- and interdot Coulomb interaction. At the critical
magnetic field the Coulomb interaction effectively turns off the interdot coupling, so that
any small level asymmetry between the dots leads to a strongly polarized ground state with
two electrons in one dot and only one electron in the other dot. This charge polarization
is a pure many-body effect and it strongly influences the transport characteristics of the
double dot in a serial geometry. In the linear transport regime the corresponding Coulomb
peaks of the current vanish due to a pseudospin-blockade. Additionally broad voltage
regions of negative differential conductance appear in the nonlinear transport regime in
the vicinity of the critical magnetic field.

In this chapter we clearly identified Coulomb correlations as the driving force for the charge
polarization. Our discussion on the electronic structure of parity eigenstates as well as the
dependence of the phase diagram as function of the magnetic field and interdot distance
indicates that the type of correlations leading to the charge polarization are probably not
contained in a Hartree-Fock or density functional approximation. It could be interesting
to check this hypothesis by Hartree-Fock or density functional calculations.
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4 Probing level renormalization by

sequential transport through double

quantum dots

In this chapter we investigate the transport properties of a double dot coupled in series to
external reservoirs. In contrast to the previous chapter we assume the external coupling
to be of the same order as or even larger than the interdot coupling or the level asym-
metry between the dots. In that regime a simple master equation approach as used in
subsections 2.4.1 and 3.4.1 fails to describe the interplay between the external coupling to
reservoirs and the internal dynamics on the double dot.

The main outcome of our studies is that the external coupling renormalizes the level asym-
metry between the dots already in the sequential transport regime, where incoherent tun-
neling events dominate transport. We show that the renormalization is manifest in the
current voltage characteristics and in the stability diagram of the double dot. The main
results are published in reference [5].

The chapter is organized as follows: In the first section we present the theoretical de-
scription of quantum transport in the framework of the real time diagrammatic approach
developed by Schoeller et al. It allows a systematic expansion of the non-equilibrium dy-
namics in the order of the external coupling.[22, 26, 75, 76, 77] In the second part of this
chapter we apply this approach to the transport through serial double dots.

4.1 Theory of quantum transport

In order to emphasize the general applicability of the presented theory we use the terminol-
ogy ’local system’ in the following as substitute for any interacting quantum dot system.
Except of this change in notation the general setup is the same as in Fig. 2.9 on page 24.
The real time transport theory generalizes the master equation and the current formula
derived in subsections 2.4.1 and 3.4.1 to the intermediate and strong coupling regime. The
reduced density operator for the local region and the electric current are again determined
by kinetic equations, where the generalized transition rates or self-energies can be expressed
by a (rapidly growing) number of irreducible diagrams, which allows a systematic expan-
sion of the current in powers of the external coupling. Recently this technique was applied
to study the fingerprints of the excitation spectrum on the Co-tunneling current inside
the Coulomb blockade,[78] the noise spectrum and the counting statics of single quantum
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4 Renormalization effects in sequential transport through a serial double dot

dots [79, 80] and chains of dots,[81] as well as the partially coherent dynamics of a single
dot, which is weakly coupled to ferromagnetic leads.[82]

The starting point of this approach is again the Hamiltonian (2.26) in subsection 2.4.1
describing a local strongly interacting system which is tunnel-coupled to reservoirs. Similar
to Fermi’s golden rule, this formalism treats the external coupling as perturbation while the
Coulomb interaction on the local system is taken into account exactly. The power of the
formalism is that it allows to systematically include contributions of higher orders in the
external coupling and that it can be applied for general transport voltages. This approach
is thus the complement of a scattering formalism, where the noninteracting problem is
solved including all orders of external coupling [83, 84].

4.1.1 Objectives

Our objective is to obtain the quantum statistical expectation values of the current I
through the local system and of the matrix elements P s1

s2
:= 〈s1| p |s2〉 of the reduced

density matrix p of the local system.

At a given time t the expectation values of these quantities are defined by:

p(t) = Trres(ρ(t))

P s1

s2
(t) := 〈Ps2 s1

〉(t) = Tr(ρ(t)Ps2 s1
)

〈I〉(t) = Tr(ρ(t)I) . (4.1)

Here ρ(t) denotes the total density matrix including the reservoirs and the local system,
Trres denotes the trace over the reservoir, Tr without any subindex denotes the traces
over the reservoirs as well as over the local system, and Ps2s1

= |s2〉 〈s1| is defined as in
Eq. (2.31).

Expressed by its matrix elements the reduced density p(t) at a time t has the following
form:

p(t) =
∑

s1, s2

P s1

s2
(t)Ps1 s2

=
∑

s1, s2

P s1

s2
(t) |s1〉 〈s2| .

In our notation |si〉 denote the eigenstates of the stationary Schrödinger equation of the
local system, so that |si〉 and also the projection operator (in the Schrödinger picture)
are time independent. The off-diagonal matrix elements P s1

s2
(t) of the reduced density

matrix are therefore time-dependent already in the absence of the external coupling. This
is described by the factor exp(−i(Es1

− Es2
)t/~), which gives rise to coherent oscillations

within the local system.

The definition for the current through the local system was introduced already in subsec-
tion 2.4.1 in Eq. (2.41) as I := −edNR

dt
. Since dNR

dt
= i

~
[H,NR] we can rewrite the current
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operator in the following form:

I := −e( d
dt
NR) = −e i

~
[H,NR] =

ie

~

∑

k,s,s′

(TR
kσss′a

†
RkσPss′ − TR∗

kσss′Ps′saRkσ)

= −e(− i

~
HR

T,out +
i

~
HR

T,in) . (4.2)

The current operator can thus be expressed by the tunneling-in HR
T,in and tunneling-out

HR
T,out operators arising due to the coupling to the right reservoir. Since we are always

interested in the stationary current through the system, we note that due to charge con-
servation the following relation holds: −e( d

dt
NR) = e( d

dt
NL). Therefore the current can

equivalently be defined by I := −e/2( d
dt
NR − d

dt
NL).[85]

According to Eq. (4.1) the transport properties are determined by the total density matrix
ρ(t). Its time evolution is governed by the Hamiltonian (2.26) and is given by:

ρ(t) = e−
i
~

H(t−ti)ρ(ti)e
i
~
H(t−ti) . (4.3)

Here ti denotes an initial time. The time dependence in Eq. (4.3) can be summarized in

the time-evolution operator U(t, ti) = e−
i
~
H(t−ti) and its hermitian conjugate. It describes

the time evolution of a wavefunction from time ti to t under the Hamiltonian H . The
stationary limit is obtained by shifting the initial time ti to minus infinity.

It is assumed that the coupling to the external reservoirs is adiabatically switched on at
time ti and that the initial density matrix separates in three parts corresponding to the
two reservoirs, ρres = ρLρR and the local density matrix, p(t) respectively.

ρ(ti) = p(ti)ρres . (4.4)

As discussed in subsection 2.4.1 each of the large reservoirs is assumed to stay always in
thermal equilibrium with a fixed chemical potential, so that the density matrices ρL, ρR

are given by:

ρr = e−β(Hr−µrNr)/Zr . (4.5)

Here r ∈ {L,R} labels the reservoir, β = 1/(kBT ) is the inverse temperature, Nr =
∑

kσ a
†
rkσarkσ denotes the number of particles in the reservoir and the applied bias voltage V

is modeled by different chemical potentials in the left and right contact, µL = eV/2 = −µR.
The grand-canonical potentials Zr are determined by Tr(ρr) = 1.

In the stationary limit the initial reduced density matrix p(ti) is of less importance. The
statistics of the local region represented by p(t) = Trres(ρ(t)) are in general strongly af-
fected by the external tunnel coupling, in contrast to fixed statistics of the huge reservoirs.
Thus in the stationary limit, the reduced density matrix of the local system will be deter-
mined by a self-consistent kinetic equation, which is independent of the initial conditions.
However, assuming that the initial density matrix is diagonal in spin and particle number,

77



4 Renormalization effects in sequential transport through a serial double dot

it never acquires off-diagonal matrix elements, since the Hamiltonian (2.26) is indepen-
dent of the spin orientation and is conserving the particle number of the whole system.
Mathematically this follows from the fact that the reduced propagator Π introduced below
always contains the same number of tunneling-in and tunneling-out processes, as we will
see later.

In the following two subsections we continue with the calculation of the reduced density
matrix. Thereafter we show in subsection 4.1.4, how the stationary current can be obtained
by the same type of calculations.

4.1.2 Kinetic equation

We are interested in the dynamics of the local system, in the presence of the external
tunnel coupling. Therefore we study the time evolution of the reduced density matrix
described by the time dependence of its matrix elements P s1

s2
(t) defined in Eq. (4.2). Ac-

cording to Eq. (4.2) and Eq. (4.4) we set the initial density matrix to ρ(ti) = p(ti)ρres =
(
∑

s3,s4
P s3

s4
(ti)Ps3s4

)

ρres and obtain:

P s1

s2
(t) = Tr(ρ(t)Ps2s1

) = Tr(e−
i
~
H(t−ti)(

∑

s3,s4

P s3

s4
(ti)Ps3s4

)ρrese
i
~
H(t−ti)Ps2s1

)

=
∑

s3,s4

Tr(Ps3s4
ρrese

i
~
H(t−ti)Ps2s1

e−
i
~
H(t−ti))P s3

s4
(ti)

=
∑

s3,s4

Π(t, ti)
s1,s3

s2,s4
P s3

s4
(ti) . (4.6)

In the second line we used the invariance of the trace under permutation. With the above
equation we derived a mathematical expression for the matrix elements Π(t, ti)

s1,s3

s2,s4
of the

propagator Π(t, ti).

Π(t, ti) describes the time evolution of the reduced density matrix from time ti up to time t.

p(t) = Π(t, ti)p(ti) . (4.7)

Thus Π(t, ti) acts on the reduced density p(ti) just as the time-evolution operator U(t, ti)
on a wavefunction. Since the reduced density matrix p is already an operator, Π(t, ti) is
called a superoperator. If Π(t, ti) is represented in a basis of wavefunctions it becomes a
4-th order tensor, in contrast to U(t, ti), which is represented by a 2nd-order tensor.[86, 87]

A systematic expansion of the matrix elements of the propagator Π(t, ti) in the external
coupling is possible by switching to the interaction picture:

Π(t, ti)
s1 s3

s2 s4
(t, ti) = Tr (P I

s3s4
(ti)ρresT̃ e

i
~

R t
ti

dt′HI
T (t′)

P I
s2s1

(t)Te
− i

~

R t
ti

dt′′HI
T (t′′)

) . (4.8)

Here we introduced the time ordering operator T (operator with later time goes left) and
the reversed time ordering operator T̃ (operator with later time goes right).[88] Both T

78



4.1 Theory of quantum transport

and T̃ order the following operators without sign change. The label I is used for operators
in the interaction representation where the time evolution determined by the unperturbed
Hamiltonian H0 is carried by the operators:

AI(t) = e
i
~

H0tAe−
i
~
H0t . (4.9)

The nontrivial part of the time evolution forward in time i.e. U I(t, ti) is now given

by U I(t, ti) = Te
− i

~

R t
ti

dt′′HI
T (t′′)

and respectively for the backward propagator U I(ti, t) =

(U I(t, ti))
† = T̃ e

i
~

R t
ti

dt′HI
T (t′)

.[88]

Expanding the exponentials of the time-evolution operators in Eq. (4.8), a systematic
perturbative calculation of the propagator Π(t, ti) in the external coupling is possible. We
call the order of the expansion of the forward and backward propagator f and b and denote
the time-variables by t1, ..., tf and t̃1, ..., t̃b, so that we obtain:

Π(t, ti)
s1,s3

s2,s4
(t, ti) =

∞∑

b,f=0

(− i

~
)f (

i

~
)b

∫ t

ti

dt̃1

∫ t

t̃1

dt̃2...

∫ t

t̃b−1

dt̃b

∫ t

ti

dt1

∫ t

t1

dt2...

∫ t

tf−1

dtf

Tr(ρresP
I
s3s4

(ti)H
I
T (t̃1)H

I
T (t̃2)..H

I
T (t̃b)P

I
s2s1

(t)HI
T (tf )..H

I
T (t2)H

I
T (t1)) .

(4.10)

The actual calculation of these matrix elements will be performed with a diagrammatic
technique developed by Schoeller et al [26, 75, 76, 77], which will be presented in the next
subsection.

Now we illustrate the structure of the propagator Π(t, ti) when it is expanded in the
external coupling. The idea is to split the time evolution of the reduced density matrix in
sub intervals of free propagation alternating with sub intervals where the time evolution is
always affected by the external coupling. Thus the propagator Π(t, t0) is expressed by a sum
of sequences consisting of the free local propagator, Π0, alternating with irreducible blocks
Σ, which we identify with the self-energy below. The complement “irreducible” means that
if the time evolution from t1 to t2 is characterized by Σ(t2, t1), then it is always affected by
the external coupling and contains no subinterval of free time evolution. Dropping time
indices leads to the Dyson equation for the propagator:

Π = Π0 + Π0ΣΠ0 + Π0ΣΠ0ΣΠ0 + ...

= Π0
∞∑

n=0

(ΣΠ0)n

= Π0 + Π0Σ(Π0
∞∑

n=0

(ΣΠ0)n)

= Π0 + Π0ΣΠ . (4.11)

Including the time indices in Eq. (4.11) again results in the integral form of the kinetic
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4 Renormalization effects in sequential transport through a serial double dot

equation for the reduced density matrix:

Π(t, t0) = Π0(t, t0) +

∫ t

t0

dt2Π
0(t, t2)

∫ t2

t0

dt1Σ(t2, t1)Π(t1, t0) (4.12)

p(t) = Π(t, t0)p(t0) = Π0(t, t0)p(t0) +

∫ t

t0

dt2Π
0(t, t2)

∫ t2

t0

dt1Σ(t2, t1)p(t1) .(4.13)

In order to derive the differential form of Eq. (4.13), we express the free propagator Π0(t, t1)
by Π0(t, t1) = exp(−i/~L0(t − t1)) . [86, 87] Here L0 is the Liouville operator for the
unperturbed local system. It is again a superoperator, and is defined by its action on an
operator A, L0A := [Hlocal, A]. This representation of the free propagator follows from the
Baker-Hausdorff relation [88]:

Π0(t, t1)p(t1) = e−
i
~
Hlocal(t−t1)p(t1)e

i
~

Hlocal(t−t1)

= p(t1) +
∞∑

n=1

(− i
~
(t− t1))

n

n!
[Hlocal, [...[Hlocal, p(t1) ]...]]

︸︷︷︸

n times

=

=

∞∑

n=0

(− i
~
(t− t1)L0)

n

n!
p(t1) = e−

i
~
L0(t−t1)p(t1) . (4.14)

We now differentiate Eq. (4.13) with respect to time and get the following kinetic equation
for the reduced density:

d

dt
p(t) = − i

~
[Hlocal, p(t)] +

∫ t

t0

dt1 Σ(t, t1) p(t1) . (4.15)

The first term of Eq. (4.15) represents the time evolution due to the internal dynamics of
the local system, while the second term describes the effect of the external coupling.

We close this subsection by considering the stationary case, which is defined by d
dt
pst = 0.

In the stationary case one can set t0 → −∞ and t = 0, which leads to the stationary
kinetic equation:

0 =
d

dt
pst = − i

~

[
Hlocal, p

st
]
+

∫ 0

−∞
dt1 Σ(0, t1) p

st(t1) . (4.16)

Since in the stationary reduced density is by definition time independent, the time integral
in Eq. (4.16) can be comprised in the definition Σ = i~(

∫ 0

−∞ dt1Σ(0, t1)). Eq. (4.16) thus
becomes:

0 = i~
d

dt
pst =

[
Hlocal, p

st
]
+ Σ pst . (4.17)

Expressed in the eigenbasis of the local system Eq. (4.17) has now the form:

0 = i~
d

dt
P s1

s2
= 〈s1|

[
Hlocal, p

st
]
|s2〉 +

∑

s3 s4

Σs1 s3

s2 s4
P s3

s4

= (Es1
−Es2

)P s1

s2
+
∑

s3 s4

Σs1 s3

s2 s4
P s3

s4
. (4.18)
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4.1 Theory of quantum transport

Σ has the meaning of a self-energy. Its imaginary part describes the energy width of trans-
port channels, while its real part adds up to the coherent time evolution and renormalizes
the energies [5]. The effect of energy renormalization on the transport characteristics will
be discussed in detail in section 4.2. Instead of introducing the quantity Σ it is sometimes
preferred to define W = (

∫ 0

−∞ dt1Σ(0, t1)) = −i/~Σ. Expressed in an eigenbasis, the ele-
ments of the tensor W have the meaning of transition rates. In particular if the external
coupling is the lowest energy scale of the system, then the elements of W are just the
transition rates Wss′ presented in subsections 2.4.1 and 3.4.1.[22, 89]

The following subsection is rather technical and illustrates how the irreducible self-energy
Σ can be expanded in powers of the external coupling strength by means of a diagrammatic
technique based on Eq. (4.10).

4.1.3 Diagrams

The matrix elements of the propagator Π(t, ti) written in the eigenbasis of the local system
have been formally derived in Eq. (4.10).

We proceed with the following steps: First the different time orderings of the forward
and backward propagator are unified on the Keldysh contour. Then the traces over the
reservoir and the local system are performed. Finally the time is integrated out. During
these calculations we introduce a diagrammatic description and identify the relevant di-
agrams needed to calculate the irreducible self-energy Σ, which according to the kinetic
equation (4.17) is sufficient to calculate the reduced density matrix. At the end of this
subsection we summarize the different steps and list the diagrammatic rules needed to
calculate the self-energy up to a given order in the external coupling.

1) Keldysh time and real time
Eq. (4.10) contains two different time ordering operators. Both orderings can be unified
by introducing the “Keldysh” time, tK , which increases along the Keldysh contour as
illustrated in Fig. 4.1. Each tunnel Hamiltonian that arises due to the expansion of the
forward (backward) time evolution causes a vertex on the upper (lower) time branch and
is symbolized by a dot. We denote the number of vertices on the forward and backward
time branch by f and b respectively and the total number of vertices by n = f + b. The
corresponding mathematical expression of the ordered product of operators depicted in
Fig. 4.1 is HI

T (t̃1)H
I
T (t̃2)P

I
s2s1

(t)HI
T (t2)H

I
T (t1).

In the next step we perform the trace in Eq. (4.10) and explain the diagrammatic visualiza-
tion of the result. We perform a trace over the local system as well as over the reservoirs,
Tr = TrresTrlocal. They can be performed independently since the free time evolution
Hres +Hlocal does not couple the local system with the reservoirs.[77] Furthermore due to
the quadratic structure of creation and annihilation operators in the Tunnel Hamiltonian
(that only contains terms like a†krσclσ or c†lσakrσ) no additional minus sign arises during this
separation, as long as each subsystem keeps its time ordering. We start by tracing out the
reservoir.
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4 Renormalization effects in sequential transport through a serial double dot

HI
T (t̃1) HI

T (t̃2)

P I
s2s1

(t)

HI
T (t2)HI

T (t1)

ρresP
I
s3s4

(ti)

t1 t̃1 t̃2 t2 tti treal

tK

Figure 4.1: The Keldysh contour runs from the initial time ti along the forward propagator to time
t (upper time branch) and then along the backward operator back to ti (lower time branch). The
Keldysh time tk increases along the Keldysh contour. We define the symbols >k and <k for the
time order along the Keldysh contour, e.g. with this figure we find: t2 <k t̃2 and t̃1 >k t̃2. The ver-
tices on the contour represent the mathematical expression: HI

T (t̃1)H
I
T (t̃2)P

I
s2s1

(t)HI
T (t2)H

I
T (t1).

The real time treal increases from the left to the right.

2) Tracing out the reservoir
Since the reservoirs are noninteracting the trace over the reservoirs can be performed using
Wick’s theorem.[88] As an illustration of Wick’s theorem we look at 〈a†1a†2a3a4〉:

〈a†1a†2a3a4〉 := Trres(ρresa
†
1a

†
2a3a4) =

= −〈a†1a3〉〈a†2a4〉 + 〈a†1a4〉〈a†2a3〉 . (4.19)

Due to the Fermi statistics each interchange of two operators results in a minus sign.

Applying Wick’s Theorem to the trace over the reservoirs, each creation operator (a†krσ)I(t1)
appearing in a tunneling-out Hamiltonian is contracted with the respective annihilation
operator aI

krσ(t2) of a tunneling-in Hamiltonian. The contraction is only non-zero if the
reservoir operators coincide in all quantum numbers r, k, σ. Including the relevant tunnel-
matrix elements (e.g. T r

kσs1s′
1

and T r∗
kσs′

2
s2

for the creation and annihilation operator respec-

tively) the contraction results in the factor:

γr
s1s′

1
s2s′

2
(t1, t2) :=

∑

kσ

T r
kσs1s′

1
T r∗

kσs′
2
s2
〈TK((a†)I

krσ(t1)a
I
krσ(t2))〉 . (4.20)

The order of the subscripts γr
s1s′

1
s2s′

2

(t1, t2) is useful later. We distinguish the two possible

time orderings:

〈TK((a†)I
krσ(t1)a

I
krσ(t2))〉ρr =

{

e
i
~
εkr(t1−t2)fr(εkr) for t1 >k t2

e
i
~

εkr(t1−t2)(1 − fr(εkr)) for t1 <k t2
. (4.21)

The symbols >k and <k compare times on the Keldysh contour as discussed in the caption
of Fig. 4.1. For the following we introduce the notations f+

r (ε) = fr(ε) and f−
r (ε) =
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4.1 Theory of quantum transport

L L

R
L

t1 t2 t3 t4 t5 t6 t7 t8 t

s3

s4

s1

s2

s̃1 s̃2

s̃3s̃4s̃5s̃6

Ps2s1
(t)

ti

ti

treal

Figure 4.2: Example of a diagram contributing to the propagator element Π(t, ti)
s1 s3
s2 s4

. Each
tunnel Hamiltonian is represented by a vertex, and the vertices are numerated with increasing
numbers for increasing real times (regardless on which time branch). Vertices are connected by
directed tunneling lines. Each segment of the Keldysh contour is labeled by an eigenstate of the
local system. Time intervals where always at least one tunneling line is present (e.g. [t1, t2] or
[t3, t6]) represent irreducible self-energy blocks Σ, while time intervals without tunneling line (e.g.
[t2, t3] or [t6, t7]) represent the free propagation Π0.

1 − fr(ε). We denote the case of t1 >k t2 (t1 <k t2) by γr±
s1s′

1
s2s′

2

(t1, t2). Together with

Eq. (2.34) this results in:

γr±
s1s′

1
s2s′

2

(t1, t2) =
1

2π

∫

dεΓr
s1s′

1
s2s′

2
(ε)f±

r (ε)e
i
~
ε(t1−t2) . (4.22)

We visualize the contraction in the diagrams by a dashed tunneling line symbolizing
the tunneling electron as shown in Fig. 4.2. The tunneling line starts at a tunneling-out
vertex and enters again at the corresponding tunneling-in vertex. Furthermore we label
the tunneling line with a reservoir label r ∈ {L,R}. According to the diagrammatic rules
listed below we finally sum over all possible reservoir labels. To illustrate these rules we
note that the factor corresponding to the first (left most) tunneling line in Fig. 4.2 is
given by γL+

s4s̃6s̃1s3
(t2, t1) while the tunneling line running from t4 to t5 results in the factor

γL−
s̃2s̃1s̃5s̃4

(t4, t5).

Having introduced the tunneling lines in Fig. 4.2 we note that there are time intervals
of the propagator, where a vertical line through the diagram always cuts at least one
tunneling line. In these time intervals the propagation of the density matrix is always
affected by the external coupling. The corresponding blocks of the propagator therefore
contribute to the irreducible self-energy Σ as introduced in Eq. (4.11). We distinguish the
different self-energy blocks in Fig. 4.2 according to their number of tunneling lines. For
example Fig. 4.2 includes two blocks contributing to the self-energies Σ(1) (i.e. expanding
up to lowest order in the external coupling), namely in the time-intervals [t1, t2] and [t7, t8].
Additionally there is a contribution to Σ(2) in the time-interval [t3, t6]. According to the
kinetic equation (4.18) the self-energy completely determines the reduced density matrix.
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4 Renormalization effects in sequential transport through a serial double dot

3) Tracing out the local system
Now we perform the trace over the local system. According to equation (4.10) there are
projection operators at the initial and final time ti and t respectively and furthermore each
tunnel Hamiltonian represented by a vertex in Fig. 4.2 contains a projection operator (see
Eq. (2.29) and (2.30)) . Thus each time segment of the Keldysh contour is sandwiched
between two projection operators. The outgoing state of the projection operator at the
beginning t1 of a time segment has to coincide with the incoming state of the projection
operator at the end of the time interval t2, t1 <k t2. Therefore the time segment can
be labeled by an eigenstate s (see Fig. 4.2) and it contributes to the trace over the local

system by a factor e−
i
~

Es(t2−t1) due to the free time evolution. If a time segment is limited
by two vertices (i.e. two tunnel Hamiltonians) then the corresponding eigenstate is called
intermediate. Therefore, the trace over the local system is performed by labeling all time
segments of the contour by an eigenstate s yielding to a factor exp(− i

~
Es)(t2 − t1) for a

segment limited by the times t1 <K t2, followed by a summation over all intermediate
states.

4) Time integration

Before we formulate the diagrammatic rules for the calculation of the self-energies Σ(n),
where n labels the order in the external coupling, we explain how the time integration is
performed. While in equation (4.10) only the vertices on the same time branch keep their
time ordering, the diagrams fix the time order also with respect to the real time. Thus
the time integration is performed by keeping the time ordering of the vertices regardless
on which time branch they are, see Fig. 4.2. Mathematically the integration over the time
thus results in a product of resolvents:

lim
ν→0+

∫ 0

−∞
dt1

∫ 0

t1

dt2...

∫ 0

tn−1

dtne
(−ix1+ν)t1e(−ix2+ν)t2 ...e(−ixn+ν)tn

= in
1

x1 + i0+

1

x1 + x2 + i0+
..

1

x1 + x2 + ...+ xn + i0+
. (4.23)

Here the factor exp(ν(t1 + t2 + ... + tn)) arises since the external coupling is adiabatically
switched on. While it is useful to fix the order of the vertices with respect to the real
time for the calculation of the diagrams, it leads to an exponential increase of the number
of topologically different diagrams that have to be calculated, since there are already
2n possibilities to distribute the n vertices over the two time contours. Furthermore all
possibilities of connecting the vertices with directed tunneling lines (including the direction
of the line) have to be considered, which leave the diagram irreducible.

There are 8 topologically different diagrams contributing to the sequential tunneling regime
i.e. to Σ(1), but already 128 diagrams are needed to calculate the self-energy Σ(2) in the
Co-tunneling regime.

Diagrammatic rules

We now summarize the diagrammatic rules for the calculation of the n-th order contribution
to the irreducible self-energy: Σ(n) = i~

∫ 0

−∞ dt1Σ
(n)(0, t1).[22, 26, 75, 76, 77]
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4.1 Theory of quantum transport

The self-energy Σ(n) is given by the sum of all topologically different irreducible dia-
grams with 2n vertices on the contour. (The topology of a diagram was explained below
Eq. (4.23)). The value of each diagram is obtained according to the following rules:

1. Assign to each segment of the Keldysh contour an eigenstate s, and to each tunneling
line the reservoir index r and energy ω of the tunneling electron.

2. The times of the vertices cut the diagrams in 2n−1 succeeding time intervals. Write
to each time interval j = 1, ..2n − 1 the resolvent 1/[∆Ej + i0+], where ∆Ej is the
difference of ’left going’ minus ’right going’ energies (consisting of the energies of the
eigenstates labeling the contour segments and of the energy of the tunneling lines).

3. Each occurring reservoir line running from a vertex at time t1 to a vertex at time
t2 gives rise to the factor 1/(2π)Γr

s1s′
1
s2s′

2

(ε)f±
r (ε). r is the index of the reservoir,

f+
r (ε) = 1

1+exp((ε−µr)/kT )
corresponds to t1 >K t2 and f−

r (ε) = 1 − f+
r (ε) to t1 <K t2.

s1,2 (s′1,2) are the outgoing (incoming) dot states at each vertex.

4. The diagram obtains a factor of (−1)b+c where b is the number of vertices on the
lower time branch, and c the number of crossings of the tunneling lines. This factor
arises due to the different prefactors of the forward and backward time-evolution
operator in Eq. (4.10) and due to Wick’s theorem applied to the reservoir operators
in Eq. (4.19).

5. Sum over all reservoir indices and intermediate local states and integrate over all
energies of the tunneling electrons.

4.1.4 Electric current

The current operator is expressed in Eq. (4.2) by the tunneling-in HR
T,in and tunneling-out

HR
T,out operators arising due to the coupling to the right reservoir.

Most of the work for the calculation of the expectation value of the current 〈I〉(t) =
Tr(ρ(t)I) was already done in deriving the irreducible self-energies Σ needed for the kinetic
equation. This becomes clear by rewriting the expectation value of the current in analogy
to Eq. (4.8):

−1/e〈I〉(t) = Tr(ρ(t)(− i

~
HR

T,out +
i

~
HR

T,in))

= Tr(ρ(ti)T̃ e
i
~

R t
ti

dt′HI
T (t′)

(− i

~
(HR

T,out)
I(t) +

i

~
(HR

T,in)
I(t))Te

− i
~

R t
ti

dt′′HI
T (t′′)

)

The superscript “I” again denotes the interaction representation. We note that − i
~
(HR

T,out)
I(t)

is presented in a diagram as a tunneling-vertex at time t on the upper contour with an
outgoing tunneling line corresponding to the right reservoir. Respectively, i

~
(HR

T,in)
I(t) can

be represented by vertex at time t on the lower branch of the Keldysh contour with an
incoming tunneling line corresponding to the right reservoir.
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s1

s1s2

s2s3

s3s4

s4

ω Lω L

Figure 4.3: Illustration of the mirror rule for a diagram of first order in the external coupling.
The right diagram is obtained by reflecting the left diagram horizontally and by changing the
directions of the tunneling lines. Its value is given by the complex conjugate of left one multiplied
by −1.

This correspondence leads to the following expression for the stationary current:

I = −e Trlocal

((∫ 0

−∞
dt′ΣI(0, t′)

)

pst

)

=
ie

~
Trlocal

(
ΣIpst

)
. (4.24)

Here pst is the stationary reduced density matrix (determined by the kinetic equation (4.18)

and the normalization condition
∑

s P
s
s = 1) and ΣI =

∫ 0

−∞ dt′ΣI(0, t′) denotes the irre-

ducible self-energy for the current. ΣI is given by a lower sum of the diagrams contributing
to Σ. The relevant diagrams are the ones, where the tunneling line of the right most vertex
(at t = 0) corresponds to the right reservoir and is an outgoing (incoming) line if the vertex
is on the upper (lower) time branch.

Written in the eigenbasis of the local system, equation (4.24) turns into:

I =
ie

~

∑

s,s1,s2

(ΣI)ss1

ss2
ps1

s2
. (4.25)

In the following subsection we show some properties of the diagrams, which reduce the
number of diagrams that need to be calculated and that assure e.g. the hermiticity of the
density matrix and the probability conservation.

4.1.5 Conservation Laws

We present two important symmetries of the irreducible self-energies Σ and ΣI , namely
the mirror rule and the sum rule. Both rules hold for each order in the external coupling
separately. The mirror rule states that:

Σs2s1

s′
2
s′
1

= −
(

Σs′
2
s′
1

s2s1

)∗
; (ΣI)s2s1

s′
2
s′
1

= −
(

(ΣI)s′
2
s′
1

s2s1

)∗
.

This relation can be proven by identifying to each diagram its mirror diagram as illustrated
in Fig. 4.3. The mirror diagram is obtained by reflecting the original diagram horizontally
and by changing the directions of all tunneling lines. Looking at the diagrammatic rules
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in energy space we find that the expressions for the mirror diagram only differs in the
resolvents. According to rule 2 the resolvents 1/[∆Ej + i0+] of the original diagram turn to
1/[−∆Ej + i0+] = −(1/[∆Ej + i0+])∗ in the mirror diagram. By construction the number
of resolvents is always odd, so that the mirror diagram is given by the complex value of
the original diagram multiplied by -1. The mirror rule reduces the number of diagrams
that have to be calculated by a factor of two. Furthermore it assures the hermiticity of the
reduced density matrix and guarantees a real current.

The sum rule states that:
∑

s

Σss1

ss′
1

= 0 ;
∑

s

(ΣI)ss1

ss′
1

= 0 .

It relies on the fact that the sum over the diagrams with the latest vertex at t = 0 on
the upper time branch just cancel the sum of all diagrams with the latest vertex on the
lower time branch, due to rule 4 on page 85 . The sum rule guarantees the probability
conservation since d

dt

∑

s Pss =
∑

s,s1,s′
1
Σss1

ss′
1

Ps1,s′
1

= 0. Furthermore it guarantees that the

equations that determine the occupation probabilities of the eigenstates of the local system
are linearly dependent. Therefore there must exist a nontrivial solution for the reduced
density matrix as demanded.

4.1.6 Coherent tunneling processes and off-diagonal density matrices

In the first part of this subsection we motivate why a large ratio kT/Γ , with Γ = ΓL + ΓR

denoting the external coupling strength, suppresses coherent tunneling events and thus
justifies the sequential tunnel approximation, which is valid to first order in the coupling Γ
and assumes independent tunneling events. In a higher-order tunneling process at least two
tunneling events are present at the same time, so that they are no longer independent of
each other. In the diagrammatic language this corresponds to self-energy diagrams where
at least two tunneling lines partially overlap. In order to identify the parameter regime,
in which diagrams with partially overlapping tunneling lines can be neglected we need to
compare the coherence time of tunneling with the average time between two tunneling
events. The latter is estimated by ~/Γ.

The coherence time is given by the average time-duration of a tunneling process. It is
visualized in the diagrams by the finite (time-)extend of the tunneling lines. According
to Eq. (4.22) a tunneling line running from time t to time t + ∆t gives rise to a factor
γr±

s1s′
1
s2s′

2

(t, t + ∆t). Assuming a constant density of states the coupling strength, Γr and

also the spectral function Γr
s1s′

1
s2s′

2

(see Eq. (2.34), (2.36)) are independent of energy and

one obtains [86, 90]:

γr±
s1s′

1
s2s′

2

(t, t+ ∆t) =
1

2π

∫

dεΓr
s1s′

1
s2s′

2
(ε)f±

r (ε)e−
i
~
ε(∆t)

=
iΓr

s1s′
1
s2s′

2
e∓

i
~
µr(∆t)

2βsinh[π(∆t+ i0+)/(β~)]
. (4.26)
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4 Renormalization effects in sequential transport through a serial double dot

Here β = 1/(kBT ) denotes the inverse temperature. For a time duration ∆t≫ π/(β~) this
expression is exponentially damped with the characteristic time ~β. Thus the appearance
of higher order tunneling events will be strongly suppressed for Γ ≪ kT .

These qualitative arguments are exclusively based on the coherence time of tunneling, while
the influence of the eigenspectrum of the local system on the self-energies (transition rates)
has not been considered. An inclusion of these effects may lead to a strong suppression
of the sequential tunneling rates, even below the higher order rates. As discussed in
subsections 2.4.1, 3.4.1 the sequential tunneling rates are e.g. exponentially suppressed
within the Coulomb blockade regime. Furthermore for particular parameters sequential
tunneling is spin or pseudo-spin blocked. Since higher order tunneling events are less
affected by the Coulomb blockade or the selection rules, they may be relevant in these
cases. However, anyway, the fingerprints of higher order tunneling events will be strongly
suppressed for Γ ≪ kT .

In the second part of this subsection we discuss the meaning of off-diagonal entries P s1

s2

of the reduced density matrix1. While a diagonal density matrix represents an incoherent
mixture of eigenstates, an off-diagonal density matrix is at least partially coherent, since its
off-diagonal elements represent coherent superpositions of the eigenstates and coherently
oscillate in time due to the local dynamics. One should be careful not to mix the two
different meanings of the word “coherent” either used in the context of coherent reduced
density matrices or in the context of coherent tunneling. Coherent tunneling processes
imply that tunneling events are no longer independent of each other, but in general they do
not imply that the reduced density matrix acquires off-diagonal elements. Complementary
off-diagonal (thus coherent) density matrices can also arise in sequential transport (thus
for incoherent tunneling processes). A prominent example for the latter case is sequential
transport through a double dot in a parameter regime, when the external coupling exceeds
the interdot tunneling. This system will be discussed in detail in section 4.2.

Now we clarify under which conditions off-diagonal entries of the reduced density matrix
are absent or can be neglected. One reason for a diagonal reduced density matrix are
symmetries of the Hamiltonian. For example if the Hamiltonian is independent of the spin
orientation and conserves the particle number of the whole system, then the stationary
reduced density matrix will be diagonal in spin and particle number of the local system.
Another reason for the absence of an off-diagonal matrix element becomes evident by
looking at its kinetic equation:

0 = i~
d

dt
P s1

s2
= (Es1

− Es2
)P s1

s2
+
∑

s3 s4

Σs1 s3

s2 s4
P s3

s4
. (4.27)

If the energy difference (Es1
− Es2

) is much larger than the tunnel coupling Γ then the
second term of the above equation can be neglected in comparison with the first one and the
off-diagonal matrix element disappears. This effect can also be understood by noting that

1Here, we always assume that the basis of the reduced density matrix is given by the eigenbasis of the
local system
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4.2 Renormalization effects in sequential transport through double dot

the coupling strength characterizes the intrinsic broadening of levels due to the external
coupling. A superposition of different levels only occurs if the broadening Γ exceeds the
level spacing (Es1

− Es2
) while is can be neglected for Γ ≪ Es1

− Es2
.

Thus, by applying the master-equation approach in subsections 2.4.1, 3.4.1 we not only
assumed sequential tunneling (justified e.g. by Γ ≪ kT ), but we also assumed the external
coupling to be much smaller than all relevant excitation energies, so that off-diagonal
density matrix elements could be neglected. In the following section we drop the second
assumption and study features of sequential transport through a serial double dot in a
parameter regime, where the reduced density matrix acquires off-diagonal entries.

4.2 Probing level renormalization by sequential transport

through double quantum dots

In this section we study electron transport through double quantum dots in series. In
contrast to the master equation approach applied in subsection 3.4.1 we now focus on the
case, when the interdot coupling and the level asymmetry between the dots are of the same
order of magnitude as or smaller than the external coupling strength. In this regime it is
no longer possible to describe the double dot as a single object, being in a mixture of its
eigenstates. Now superpositions of eigenstates play a relevant role and it is essential to
take the off-diagonal elements of the reduced density matrix into account (see discussion
in subsection 4.1.6).

The interplay of the coherent dynamics on the double dot on the one hand and the coupling
to external reservoirs on the other hand leads to energy shifts of the dot levels. This
energy renormalization of the dot levels already arises at relatively high temperature, where
transport is described by incoherent sequential tunneling processes. The presented results
contrast the standard description of sequential tunneling by a master equation approach
as introduced in subsection 2.4.1 and 3.4.1, where the local system remains unchanged by
the external coupling. Interestingly the current through a double dot coupled in series is
highly sensitive to the induced asymmetry between the dots and signatures of the level
renormalization are visible in either the current-voltage characteristics or in the stability
diagram.

4.2.1 Introduction

In chapter 3 we studied many-particle effects and in particular the molecular binding in
vertical double dots. In this section we focus on lateral double dots defined by top gates
as shown in Fig. 4.4 a), since they allow to scan a rich parameter space in a single sample
by only changing external voltages. Now the coupling of the dots to the external leads
as well as the interdot coupling can be adjusted by external voltages, while in vertical
structures these quantities are defined by the growth process. Furthermore one can detune
the levels in the right and left dot independent of the transport voltage due to a more
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Figure 4.4: a)-d) Experimental data taken from reference[91], e) Theoretical model. a) Image of a
lateral double dot device. Electron numbers on the dots and interdot coupling are tunable by gates
L,R and T . Current through the double dot can be measured directly i.e. via conductance GD or
via the quantum point conductances GS1 or GS2 serving as charge sensors. b) and d) Differential
conductances dGS2/dVL as function of gate voltages VR, VL in linear transport regime. Charge
states are labeled by (M,N) corresponding to the number of electrons in the left (M) and right
(N) dot. c) GD as function of gate voltages VR, VL. e) Schematic energy profile for a double dot
coupled in series to two reservoirs. Each reservoir is coupled to the dot of the corresponding side
by the coupling strength Γr, r ∈ {L,R}. The interdot coupling is determined by ∆. The energies
of the dot levels are characterized by the mean energy Ē and their relative distance ε, indicated
by dashed lines in d).

complex gate structure. Finally the measurement of the current through the double dot
is often complemented by charge sensing each dot by quantum point contacts as indicated
in Fig. 4.4 a). Recent experiments on lateral double dots include the measurements of
quantum mechanical level repulsion due to interdot coupling [69] as well as due to external
magnetic fields,[92] the detection of molecular states in a double dot dimer,[93] and the
observation of coherent time evolution of the dot states.[94] Another reason for the intense
study of lateral multi-dot structures is their possible use for quantum information. Recent
theoretical proposals on quantum computing based on dot structures can be found e.g. in
references [95, 96, 97, 98], and corresponding experimental achievements towards a charge
and/or spin qubit realized in double dots are reported in references [91, 94, 99, 100].

Transport through serial double dots, as depicted in Fig. 4.4 e), inherently visualizes the
basic quantum mechanical concept of coherent superposition of charge states.[101] The
states that are coupled to the left and right lead, the localized states in the left and right
dot, respectively, are not energy eigenstates of the double dot. This leads to oscillations of
the electron in the double dot as it was shown in recent experiments.[94, 99] To account
for this internal dynamics, descriptions using classical rates only, are insufficient. For this
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4.2 Renormalization effects in sequential transport through double dot

reason approaches including non-diagonal density matrix elements for the double dot have
been developed.[102, 103, 104, 105, 106, 107].

In this section, we propose to use a serial double quantum dot to probe another consequence
of quantum mechanics: the energy level renormalization of the quantum dot levels due to
tunnel coupling to a reservoir. This idea is based on two properties of a serial double
dot system. First, the left and right dot levels are tunnel-coupled to different reservoirs.
The energy shift of the left and right dot levels is, in general, different, since the level
renormalization is a function of level energy, lead chemical potential, and external tunnel
coupling. Second, the conductance through the double dot is very sensitive to the difference
of the energy levels and shows a resonant behavior with the width given by the tunnel
couplings.[108] This width can be much smaller than temperature. This sharpness of the
resonance makes the conductance a valuable experimental tool, for example to measure
the shell structure of quantum dots.[109]

It is well known[76, 110, 111] that tunnel coupling to reservoirs renormalizes the energy
levels. In single-dot geometries such an energy renormalization is only accessible in trans-
port of higher order in the tunnel coupling strength. We show, that this is different for the
serial double dot geometry, for which renormalization effects are visible in the conductance
also for weak dot-lead coupling (in comparison with temperature). This regime is still well
described by transport to first order (sequential tunneling) in the tunnel-coupling strength
Γ = ΓL + ΓR.

The section is organized as follows: In subsection 4.2.2 we present the model Hamiltonian
for the double dot. Then we derive the stationary density matrix and the dc−current for
arbitrary bias voltages in subsection 4.2.3, based on the transport theory introduced in the
previous chapter. Furthermore we give an illustrative reformulation of the master equation
in terms of a pseudospin. In subsection 4.2.5 we point out the similarity of the present
system and a quantum dot coupled to ferromagnetic leads with antiparallel magnetization.

4.2.2 Model

We consider a double quantum dot, contacted in series, which is described by the Hamil-
tonian: [102, 103]

H =
∑

r=L,R

Hr +HD +HT . (4.28)

Here r ∈ {L,R} labels the contacts, HL/R describe the electric contacts on the left (L) and
right (R) side, HD describes the double dot and HT the serial coupling of the double dot
to the external contacts.

As discussed in subsection 2.4.1 we model the external contacts by large reservoirs of
noninteracting electrons Hr =

∑

k,σ εrka
†
rkσarkσ where arkσ, a

†
rkσ denote the annihilation

and creation operators for electrons in the reservoir r ∈ {L,R} with spin σ. Furthermore
it is assumed that the reservoirs are in equilibrium, so that they are characterized by
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4 Renormalization effects in sequential transport through a serial double dot

the Fermi distribution fL/R(ω) = f(ω − µL/R), where µL/R = ±eV/2 denote the chemical
potential in the reservoirs and with f(x) = 1/(exp(βx) + 1)), β = 1/(kBT ).

We restrict the eigenspectrum of each dot to a single spin-degenerate level, so that the
Hamiltonian HD for the double dot is given by:

HD =
∑

r=L,R

Ernr −
∆

2

∑

σ

(

c†LσcRσ + c†RσcLσ

)

+ UnLnR + U ′(nL↑nL↓ + nR↑nR↓) . (4.29)

Here ciσ, c
†
iσ are again the annihilation and creation operators of an electron on dot i with

spin σ, and niσ = c†iσciσ, ni =
∑

σ c
†
iσciσ are the occupation number operators for dot

i ∈ {L,R}. The other parameters are the energies EL,R of the electronic level in the left
and right dot, the interdot tunnel energy ∆ and the intra- and interdot Coulomb energies
called U ′ and U respectively.

The first term of HD describes the energy needed to occupy the electronic levels of the
left and right dot characterized by the energies EL/R. We parameterize the levels by their
average energy Ē = (EL +ER)/2 and their difference ε = EL−ER, so that EL/R = Ē±ε/2.
The second term describes the interdot tunneling by the real and positive parameter ∆.
The energy profile of the electronic levels is illustrated in Fig. 4.4 e). The single-particle
eigenstates of the double dot subsystem are the bonding and anti-bonding states with
energies Eb/a = Ē ∓ ∆ab/2 where ∆ab =

√
∆2 + ε2 denotes their energy splitting. This

identifies ∆ as minimum distance between the bonding and anti-bonding eigenstates as
function of the left and right energy level.[69] The last two terms of HD describe the
Coulomb interaction on the double dot. Electrons on different dots interact via the interdot
Coulomb interaction U while a double occupation of one individual dot is associated with
the intradot charging energy U ′. We assume U ′ ≫ U (in particular U ′ − U ≫ ∆), so
that the two-particle ground state has the form |LσRσ′〉 and its energy is independent
of spin.[107] We assume that the intradot charging energy always exceeds the lead Fermi
energies. Therefore the states with three or more electrons in the double dot or with two
electrons in the same dot will have a vanishing occupation probability. However, we allow
the states |LσLσ̄〉 and |RσRσ̄〉 as intermediate (virtual) states in our calculation, since
they provide a natural high-energy cut-off, as discussed below.

It turns out that our calculations trivially include the case of spin-polarized electrons.
In this case the spin quantum number is fixed and a double occupation of a dot level is
forbidden by the Pauli principle. By introducing the spin-degeneracy gσ ∈ {1, 2}, we are
able to present the case of spin-polarized electrons (gσ = 1) as well as the spin-degenerate
(gσ = 2) one. We mainly focus on the case gσ = 2 which results in the Hamiltonian HD

given above.

The third part of the total Hamiltonian (4.28) describes the coupling between the double
dot and the external leads and is given by:

HT =
∑

kσ

tLka
†
LkσcLσ + tRka

†
RkσcRσ + h.c. (4.30)
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4.2 Renormalization effects in sequential transport through double dot

Due to the serial geometry, an electron from the right (left) reservoir can only tunnel
to the right (left) dot. The tunnel coupling of reservoir r to the corresponding dot is
characterized by the coupling strength Γr(ω) = 2π

∑

k |trk|2δ(εrk −ω) (see Eq. (2.33)). We
consider only spin conserving tunneling processes, and assume a constant density of states
in the reservoirs, which yields energy independent couplings Γr(ω) = Γr.

4.2.3 Kinetic equation

Following the transport theory introduced in the previous section, the reduced density
matrix p of the double dot is obtained from the density matrix of the whole system by in-
tegrating out the reservoir degrees of freedom. According to Eq. (4.17) the kinetic equation
for the reduced density matrix is given by:

0 = i~
d

dt
p = [HD, p] + Σp . (4.31)

The first part in Eq. (4.31) represents the coherent internal dynamics on the double dot,
which depends on the level separation ε and the interdot coupling ∆. Non-eigenstates of
the double dot arising due to the sequential tunneling perform charge oscillations with the
characteristic frequency ∆ab/~.[94, 99]

The second part of Eq. (4.31) accounts for the tunnel coupling between double dot and
external reservoirs. The fourth-order tensor Σ contains imaginary and real parts, associated
with particle transfer processes and with tunnel induced energy shifts of the dot levels,
respectively. The latter has been neglected in previous works.[102, 103, 105, 106, 107]
We calculate Σ using the real-time diagrammatic approach introduced in the previous
section.[22, 26, 75, 76, 77] The technical details of the calculation of Σ are described in
Appendix B. Also alternative methods for the calculation of Σ are available such as Bloch-
Redfield theory.[112, 113, 114]

In the following we concentrate on the regime of weak tunnel coupling between double
dot and leads. Therefore, we calculate Σ to lowest order in the tunnel-coupling strength
Γ = ΓL +ΓR, which defines the so-called sequential-tunneling approximation. This approx-
imation implies that all tunneling events are independent from each other, which is fulfilled
for kBT ≫ Γ. As discussed in subsection 4.1.6 , the condition kBT ≫ Γ guarantees, that
the correlations generated in the contacts during a tunnel process decay fast in comparison
to the average time between consecutive tunneling events. Therefore higher order, coherent
tunneling events are suppressed and may be neglected.

As shown in subsection 4.1.6 off-diagonal density matrix elements disappear for ∆ab ≫ Γ,
so that for ∆ab ≫ Γ transport through the double-dot system takes place through two
separate incoherent levels. In the sequential tunneling regime the kinetic equation (4.31)
then reduces to the master equation used in subsection (3.4.1), where the double dot is
always described by an incoherent mixture of eigenstates.

Now we are interested in the opposite regime, i.e. in ∆ab . Γ, where the external coupling
strongly modifies the internal dynamics captured in the off-diagonal elements of the reduced
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4 Renormalization effects in sequential transport through a serial double dot

density matrix.[102, 103, 107] The validity condition for sequential tunneling, i.e. Γ ≪ kBT
then implies ∆ab ≪ kBT . In section 4.1.6 we showed that the average time duration of a
tunneling event is given by ~/kT . In the regime discussed here, ~/kT is much shorter than
the period of internal oscillations on the double dot given by ~/∆ab. Consequently, the
localized states |Lσ〉 and |Rσ〉 can be used as eigenstates of the double dot in the calculation
of Σ, which facilitates the interpretation of the dynamics.[102, 103, 105, 106, 107] Another
consequence of the condition ∆ab ≪ kBT is that the Fermi functions of the reservoirs
do not resolve energies of the order of the interdot tunneling or the level separation, i.e.
for any energy ω it is valid that fr(ω ± ∆/2), fr(ω ± ε/2) ≈ fr(ω) and in particular
fr(Ea/b) ≈ fr(EL/R) ≈ fr(Ē). The formulas we derive for the current therefore contain the
Fermi functions at the average single-particle level fr(Ē).

Since the Hamiltonian (4.28) is independent of the spin orientation, each spin-realization of
a charge state is equiprobable. We can therefore define P0 = 〈0| p |0〉, P r

r′ =
∑

σ 〈rσ| p |r′σ〉,
P2 =

∑

σ,σ′ 〈LσRσ′| p |LσRσ′〉. Furthermore the stationary density matrix is diagonal in
spin and particle number. Thus the reduced density matrix p describing the double dot is
given by the 4 × 4 matrix

p =







P0 0 0 0
0 P L

L P L
R 0

0 PR
L PR

R 0
0 0 0 P2






. (4.32)

The diagonal elements of the density matrix are the probabilities to find the double dot
empty (P0), the left (P L

L ) or the right dot (PR
R ) singly occupied, or the two dots simul-

taneously occupied by one electron (P2). Furthermore superpositions of the two singly
occupied states are possible P L

R =
(
PR

L

)⋆
.

Instead of working with the off-diagonal density matrix (4.32) we prefer to switch to a
pseudospin representation. As any two level system, the 2 × 2 hermitian submatrix of
the singly occupied states can be treated as SU(2) representation of a pseudospin Bloch
vector I = (P L

R + PR
L , iP

L
R − iPR

L , P
L
L − PR

R )T/2. For a complete set of variables, we
further introduce P1 = P L

L +PR
R as the probability of a singly-occupied double dot. Such a

pseudospin representation is often used in the quantum information community.[95, 96, 99]

Kinetic equation in pseudospin representation

A simplified visualization of transport through the double dot based on the pseudospin
presentation is given in Fig. 4.5. Imagine the double dot is empty and µL > µR. Then, in a
first step, an electron hops from the left reservoir to the left dot. Afterwards it coherently
oscillates around the eigenaxis of the double dot defined by ~BDD = (−∆, 0, ε), which causes
a finite possibility to occupy the right dot. Finally the electron hops from the right dot
to the right reservoir. Such a sequence of tunneling events leads to a current through
the double dot. While in a master equation approach as studied in subsection 3.4.1, one
assumes that electrons directly hop from the reservoirs into the bonding or anti-bonding
state, we now take into account the internal dynamics on the double dot, since the coherent
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Figure 4.5: Visualization of the single-particle dynamics in a pseudospin representation, if energy
renormalization is neglected. (Illustrated is the x-z plane, the y-axis points into the sheet.) Due
to the serial geometry the external reservoirs couple to the localized states |L〉 = |Iz = 1/2〉,
|R〉 = |Iz = −1/2〉 situated on the z-axis. Since the localized states are not eigenstates of the
double dot, they coherently oscillate around the eigenaxis ~BDD = (−∆, 0, ε), leading to a motion
out of the x-z plane. The characteristic frequency of these oscillations is given by ∆ab/~.

oscillations on the double dot happen on the same time scale (or are even slower) than the
time between consecutive tunneling events. Keeping this picture in mind we now discuss
the kinetic equations for the occupation probabilities and the pseudospin components.

Due to the serial geometry the external tunneling affects only the z-direction of the pseu-
dospin and the left and right contacts couple with a different sign to Iz. This is captured by
the definitions n̂L = (0, 0, 1) and n̂R = (0, 0,−1), which can be understood as pseudo-spin
magnetizations of the leads. With these definitions the occupation probabilities obey the
following master equations:

0 =
d

dt
P0 =

∑

r

Γr

~
(−gσfr(Ē)P0 +

1

2
f−

r (Ē)P1) +

+
∑

r

Γr

~
f−

r (Ē)n̂r · I , (4.33)

0 =
d

dt
P2 =

∑

r

Γr

~
(
gσ

2
fr(Ē + U)P1 − f−

r (Ē + U)P2)

−
∑

r

Γr

~
gσfr(Ē + U)n̂r · I (4.34)

P1 = 1 − P0 − P2 . (4.35)

In equilibrium (fR = fL) the diagonal matrix elements fulfill the Boltzmann statistics P0 =
1/Z, P1 = 2gσ exp[−Ē/kBT ]/Z, P2 = g2

σ exp[−(Ē + U)/kBT ]/Z, where Z is determined
by the normalization condition 1 = P0 + P1 + P2. Furthermore all components of the
pseudospin vanish.
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The dynamics of the single-particle state is described by a Bloch-like equation:

0 =
d

dt
I =

(
dI

dt

)

acc.

−
(
dI

dt

)

rel.

+
1

~
(B × I) . (4.36)

The first term,
(

dI
dt

)

acc.
describes the accumulation of pseudospin caused by the external

coupling. Due to the serial geometry this spin accumulation occurs along the z-direction.
It is given by:

(
dI

dt

)

acc.

=
∑

r

n̂r
Γr

2~

[

gσfr(Ē)P0 +
1

2

(
gσfr(Ē + U) − f−r (Ē)

)
P1 − f−r (Ē + U)P2

]

.

The term
(

dI
dt

)

rel.
describes the isotropic relaxation of the pseudospin. It is due to transi-

tions from a singly occupied double dot to either an empty or a doubly occupied double
dot. These transition destroy all pseudospin components. The term

(
dI
dt

)

rel.
is given by:

(
dI

dt

)

rel.

=
1

2

∑

r

Γr

~

(
f−

r (Ē) + gσfr(Ē + U)
)
I .

Finally the third term in Eq. (4.36) describes a rotation of the pseudospin around a fictitious

magnetic field given by ~B = (−∆, 0, εren). Here εren = ε + ∆EL − ∆ER denotes the
renormalized level separation which does not coincide with the bare level mismatch ε. It
is changed by the energy shifts ∆EL/R of the level in the left or right dot, caused by
the external tunnel coupling. The renormalization of the energy mismatch caused by the
external coupling and its consequences for the current through the double dot are the
central statement of this section. The energy shifts are determined by the real part of
the self-energy as shown in Appendix B. The renormalized level mismatch εren has the
following form:

εren = ε+ ∆EL − ∆ER , (4.37)

∆Er = φr(Ē) − gσφr(Ē + U) + (gσ − 1) φr(Ē + U ′) , (4.38)

φr(ω) =
Γr

2π
Re Ψ

(
1

2
+ iβ

ω − µr

2π

)

. (4.39)

Here, Re denotes the real part, Ψ is the digamma function, and µL/R = ±eV/2 the leads’
chemical potentials. The intradot charging energy U ′ (which we usually treat as infinite to
avoid double occupation of one dot) serves as a natural cut off for the energy renormaliza-
tion in Eq. (4.37). This is the reason why we allowed the intermediate states χ5 in App. B
to occupy these states. Additionally we note that the energy shifts ∆EL/R vanish in the
noninteracting case U = U ′ = 0.

The term 1
~
(B × I) gives rise to coherent oscillations inside the double dot which mix

the accumulated spin in z-direction with the other components. The interdot tunneling
characterized by ∆ leads to a precession of the isospin around the x-axis, while the energy
separation between the dot levels results in a rotation around the z-axis. It is important to
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note that the renormalization of the level mismatch leads to a tilting of the eigenaxis ~BDD.
According to Fig. 4.5 this tilting will facilitate the hopping of electrons between the dots
for |εren| < |ε| and respectively aggravate the hopping for |εren| > |ε|. This is in agreement
with the fact that elastic tunneling between the dots is only possible for resonant levels,
while it is strongly suppressed by increasing level asymmetry. In the following subsection
we confirm this prediction quantitatively by calculating the stationary current through the
double dot.

4.2.4 Discussion

We are now interested in the manifestation of the level renormalization in the stationary
current I through the double dot. A generally valid method, to calculate the current was
presented in subsections 4.1.1 and 4.1.4, where the current was defined as the change of
the total number of electrons in the leads. Here, the current can alternatively be defined
as the number of electrons hopping from the left to the right dot [102, 103]

I = −e i
~
〈[HD, nL]〉 = −e

~
∆Im(

∑

σ

P Lσ
Rσ ) =

e∆

~
Iy , (4.40)

where Im denotes the imaginary part. Eq. (4.40) states, that the stationary current through
the double dot is given by the expectation value of the y-component of the pseudospin.

The system of master equations presented in the previous subsection together with the
normalization condition P0 + P1 + P2 = 1 can be solved analytically. The current as
function of bias voltage and gate voltages has the following form:

~

e
I = ∆2 A

ε2
ren +B2

. (4.41)

It has a Lorentzian dependence on the renormalized level asymmetry εren between left and
right dot (see Eq. (4.37)) and the factors A, B are given by:

A =
ZA

N
; B2 =

Z2
0

4
+

∆2ZB

N
;

Z0 = (
∑

r

Γrf−
r1 + gσΓrfr2);

N = gσ

∑

r

Γr(f−
r2 + gσfr2)(f

−
r1fr̄1 + gσfr1fr̄2) +

∑

r

Γr(f−
r1 + gσfr1)(f

−
r2f

−
r̄1 + gσfr2f

−
r̄2);

ZA =
gσZ0

4

(

gσ(fL2 − fR2)(
∑

r

Γrfr1) + (fL1 − fR1)(
∑

r

Γrf−
r2)

)

;

ZB =
Z0

4

[(∑

r(Γ
r)2
(
f−

r1f
−
r2 + 2gσfr1f

−
r2 + g2

σfr1fr2

))

ΓLΓR

+f−
L2

(
f−

R1 + 2gσfR1

)
+ f−

R2

(
f−

L1 + 2gσfL1

)
+ g2

σ (fL1fR2 + fR1fL2)
]
.
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Here r̄ denotes the opposite of r and we use the abbreviations fr1 = fr(Ē), f−
r1 = 1 − fr1,

fr2 = fr(Ē+U), f−
r2 = 1− fr2, as well as the approximation fr(EL) ≈ fr(ER) ≈ fr(Ē) and

fr(Ē + U ′) = 0.

First of all we compare the stationary current given in Eq. (4.41) with results of previous
publications, where the current was calculated for specific transport voltages. For this we
set the Fermi functions to fL(Ē) = 1 and fL(Ē + U) = fR(Ē) = fR(Ē + U) = 0. This
simplifies the current to:

I =
e

~

ΓR∆2

∆2
(

2 + ΓR

gσΓL

)

+ 4(εren)2 + (ΓR)2
.

Neglecting renormalization effects (setting εren = ε), this equation reproduces for gσ = 2
Eq. (4.19) in the paper by Gurvitz,[107] or for gσ = 1 the result presented by Stoof and
Nazarov [102]. Choosing the voltages such that the double dot can also be doubly occupied,
i.e. fL(Ē +U) = fL(Ē) = 1 and 0 = fR(Ē) = fR(Ē +U) one obtains for gσ = 2 Eq. (4.18)
of Ref. [107].

It is already well-known that the current through the double dot has a Lorentzian depen-
dence on the energy separation between left and right dot level.[102, 103, 108] However, we
showed in Eq. (4.37) that the external coupling causes a shift in the energy separation εren

with respect to the bare level mismatch ε. Thus according to Eq. (4.41) the maxima of
the current will not be centered around ε = 0 anymore.

It is essential to note, that the energy renormalization is not due to a capacitive coupling
but due to the tunnel coupling to the reservoirs. The energy shift of the localized levels
is proportional to the external coupling strength and depends on the dot level positions
relative to the Fermi energy. The renormalized level separation εren as function of the bias
voltage is plotted in Fig. 4.6 a). It reaches a (local) extremum each time, when the Fermi
energy of a lead becomes resonant with the energy needed for single (µr = Ē) or double
occupation (µr = Ē + U).

The solid line in Fig. 4.6 b) shows the current (given in Eq. (4.41)) as function of the
transport voltage, taking the level shift into account. The effects of level renormalizations
on the current-voltage characteristics are identified by a comparison between the solid and
the dashed line in Fig. 4.6 b). The dashed line shows the current-voltage characteristics
if level renormalization is neglected, i.e. if the renormalized level asymmetry εren is sub-
stituted by the bare asymmetry ε in Eq. (4.41). The current plotted by the dashed line
shows steps when a lead chemical potential matches the energy needed for either single
(Ē) or double occupation (Ē + U) of the double dot. Since the bare energy level separa-
tion ε as well as the interdot tunneling ∆ shall be of the order of or smaller than Γ, i.e.
{∆, ε} ≤ Γ, and we consider Γ < kBT , the different single-particle states are not resolved
as individual steps in the I − V staircase but become resonant simultaneously resulting in
the first current step2. As shown by the solid line in Fig. 4.6 b) the energy shifts of the
dot levels, caused by the external tunnel coupling to the reservoirs, strongly change the

2Within the used approximation fr(EL) ≈ fr(ER) ≈ fr(Ē) the energy scales kBT and Γ become inde-
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4.2 Renormalization effects in sequential transport through double dot
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Figure 4.6: Upper part: Renormalized
level spacing εren (solid line) between
the electronic levels in the left and right
dot as function of the transport volt-
age V . εren is extremal, when the
chemical potential of a lead aligns with
the energy needed for either single (Ē)
or double occupation (Ē + U). Lower
part: Current-voltage characteristics
for bare (dashed line) and renormal-
ized level spacing (solid line). Renor-
malization of energy levels leads to an
asymmetric current-voltage character-
istic. The current increases (decreases)
whenever the level spacing is reduced
(increased) with respect to the bare
value. Plot parameters are: ε = ∆ =
ΓR = ΓL = Γ/2, Ē = 10kBT , U =
20kBT , gσ = 2 and U ′ = 100kBT .

current-voltage characteristics. Whenever the magnitude of the renormalized level spacing
grows (drops) with respect to the bare asymmetry the current decreases (increases). This
leads to a suppression or an enhancement of the current around the steps of the I − V
characteristic, leading to pronounced regions of negative differential conductance. The
width of these feature is of the order of the charging energy and can exceed temperature
and coupling strength significantly.

Here we comment on the assumption made in several publications, that if the lead Fermi
energies are far away from the electronic states of the dots, then the renormalization of
the level asymmetry can be neglected. However the energy shifts are relevant on an energy
scale given by the charging energy U , as shown in Fig. 4.6 a). Therefore the assumption,
that one can neglect renormalization effects and still exclude states with more than one
electron occupying the double dot is not justified.

Neglecting renormalization effects and assuming symmetric coupling to the reservoirs
(ΓL = ΓR), the current through the double dot is an odd function of the transport volt-
age (see dashed line in Fig. 4.6 b). This is not longer the case when renormalization is
taken into account (see solid line in Fig. 4.6 b). The reason for this asymmetry is that

pendent. Therefore the ratio kBT/Γ does not need to be specified. However, the sequential tunnel
approximation still requires kBT > Γ.
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4 Renormalization effects in sequential transport through a serial double dot

even though the change of asymmetry, ∆EL − ∆ER, caused by level renormalization is
antisymmetric with respect to the bias voltage, this in not true for the total asymmetry
εren = ε+∆EL−∆ER due to the non-vanishing bare splitting ε (see Fig. 4.6 a). A compa-
rable asymmetry in transport through two coupled dots was recently observed by Ishibashi
et al.[115] and theoretically described by Fransson et al.[116, 117] However, a negative
differential conductance feature cannot be uniquely linked to such renormalization effects.
Due to interface capacities the level positions in the left and right dot are always affected
by the transport voltage in real experiments.[70, 108]

To exclude the effect of interface capacities, we propose a complementary experiment:
measuring the current at a constant transport voltage as function of the gate voltages
on the dots. The resulting stability diagram is plotted in Fig. 4.7 a). Elastic sequential
tunneling from the left to the right dot is possible if EL ≈ ER i.e. for ε ≈ 0. Furthermore
electron transport from the left to the right reservoir takes only place if the dot level for
single (Ē) or double occupation (Ē+U) is located in the bias voltage window. Therefore the
current resonance forms two stripes in the regions −eV/2 < Ē < eV/2 and −U − eV/2 <
Ē < −U + eV/2. Away from the current stripes the occupation number of the left and
right dot (NL, NR) is fixed, and no current crosses the structure. For a detailed discussion
on stability diagrams for transport through double dots we refer to the review of van der
Wiel et al [118].

In the absence of renormalization effects, the maxima of the current stripes would exactly
coincide with the condition EL = ER. By plotting the current as function of the mean
level position Ē = (EL +ER)/2 and the relative energy difference ε = EL −ER, one would
therefore expect a straight horizontal line. Instead, the maximum of the current follows
the renormalization shift, where the condition εren = 0 is fulfilled, see Fig. 4.7 b). The
shift of the resonance is of order Γ as shown in Eq. (4.37) and can be small on the scale
of bias voltage or temperature. The same is true for the width of the current maxima
in the stability diagram in Fig. 4.7. It is not determined by temperature but in fact by
the dominant coupling strength max(Γ,∆).[108] Therefore the resonance width is sharp
enough for measuring the renormalization of energy levels if Γ & ∆ as used in Fig. 4.7.
In the nonlinear transport regime ∆Er depends on Ē and therefore the current stripes in
Fig. 4.7 are bent and tilted against each other. This dependence can be used as a stringent
experimental prove of the renormalization of energy levels. We note that the experimental
challenges to perform these experiments have already been solved. For example recently
Johnson et al measured the relevant stability diagrams for his studies on singlet-triplet
spin blockade in double dots [119] and already more than 10 years ago van der Vaart and
coworkers measured the linewidth of the current maxima as function of the level mismatch
[108]. A detailed study of the renormalization effects should therefore be possible.

Concerning the fingerprint of the level renormalization on real experiments we note the
following: First there are always internal cross capacities so that the gate voltage of one
dot is a linear function of the gate voltage of the other dot. Therefore a stability diagram
I(VL, VR) taken as function of the gate voltages at the right and left dot will experience a
linear shear transformation. However straight (parallel) lines stay straight (parallel). Thus,
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Figure 4.7: Stability diagram I(Ē, ε) of the current in the nonlinear transport regime. a) Elastic
sequential current flows for ε ≈ 0 and either −eV/2 < Ē < eV/2 or −eV/2 < Ē + U < eV/2 re-
sulting in two current stripes. The resonances of chemical potentials µL/R with the corresponding
dot level are indicated and occupation of the dots is specified by ordered pairs (NL,NR). Also
marked is the coordinate axis given by left and right dot level. b) Same as Fig. a) but for small
ε. Different renormalization of left and right level shifts the current maxima by ∆ER − ∆EL

(dashed black-white line) where εren = 0 . This leads to a tilting of the current stripes relative
to each other. Parameters: kBT = 5Γ, ΓL = ΓR = ∆ = Γ/2, V = 10kBT , U ′ = 100kBT ,
gσ = 2,U = 20kBT .

cross capacities cannot mimic the bending due to renormalization effects. More importantly
experimental measurements of stability diagrams show in addition to the resonant current
stripes explained here, further features due to inelastic or Co-tunneling processes, or due
to excited levels within the bias voltage window. As discussed in references [118, 120] such
effects lead to additional features within the triangles above the current strips in Fig. 4.7 a),
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4 Renormalization effects in sequential transport through a serial double dot

however, we do not expect them to interfere with our presented results.

4.2.5 Analogy to spin valve effects

In the following we outline the close analogy between the transport through a serial double
dot described here and the dynamics in a spin valve described in Ref. [82, 121, 122]. Fig. 4.8

ΓL ΓRnL
nR

Dot

B

S
L

2
− V

R

B

V
2

+

Figure 4.8: Sketch of quantum dot spin valve. A single level quantum dot is connected to two
ferromagnetic reservoirs with antiparallel magnetization. The spin precesses around an external
field with a component transverse (B⊥) and along (B‖) the magnetization of the leads. B‖ is
modified by an exchange field arising due to the external coupling. This exchange field is manifest
in the transport properties of the spin valve.

sketches a spin valve, realized by a single level quantum dot placed between anti-aligned
ferromagnets. Relating the pseudospin ~I, in the present work with the real spin ~S, in such
a spin valve, one can perform the following mapping. The serial setup for the double dot
system corresponds to the anti-aligned magnetization of the contacts in the spin valve.
Furthermore the interdot tunneling translates to a transverse magnetic field in the single
dot, while the level separation ε corresponds to the magnetic field component along the
magnetization of the contacts. Finally the renormalization of the energy levels discussed
here was introduced in the spin valve as an exchange field leading to the Hanle effect.[122]

If one extends the presented work to the parallel geometry, i.e two dots coupled in parallel
to reservoirs, then four coupling strengths have to be specified, since each reservoir couples
to both dots. Thus, the coupling to each reservoir can be described by a vector ~Γr with
two components, one for each dot.[123] Alternatively on can specify the magnitude Γr and
the angle αr of the coupling to each reservoir. For the limiting cases αr = 0 or αr = π
the reservoir couples only to the upper dot or lower dot respectively. The general angle α
represents the analog of arbitrary magnetizations of the leads in a spin valve.

Another interesting extension of the presented work is to look for signatures of the level
shift in the noise spectrum of the double dot. Corresponding calculations for the spin valve
have been recently published in reference [85].
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4.3 Conclusion

4.3 Conclusion

If a quantum dot is connected to reservoirs, the tunnel coupling causes an energy renor-
malization of the electronic states. We derived the conductance of a double dot connected
in series to external reservoirs for general bias voltages and temperatures, taking into ac-
count energy renormalizations. We have shown, that the conductance of such a double
dot structure is affected by the energy level shifts already in a lowest order expansion in
the tunnel coupling strength, which is explained by the high sensitivity of the the current
through the double dot on the relative detuning of energy levels. Therefore we propose to
use a double-dot system as detector for these energy renormalization effects.

We present experimental consequences of the renormalization for the current-voltage char-
acteristics and for the stability diagram for the double dot in the nonlinear transport
regime. In the current-voltage characteristics we find prominent negative differential con-
ductances in voltage windows of the order of the charging energy. In the stability diagram
of the double dot, we found that the current stripes arising as function of dot levels EL/R

are tilted against each other and are not centered at the resonance condition EL = ER,
as it is the case when energy renormalization is neglected. We showed that the tilting of
the current stripes is resolvable even in the sequential tunneling regime (i.e. for Γ < kBT )
as long as the interdot tunneling, ∆, is of the same order as or smaller than the external
coupling Γ ≥ ∆.
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5 Conclusion

We studied the effects of Coulomb interaction on the electronic structure of semiconductor
single and double dots and showed experimental consequences of these effects for optical
and transport spectroscopy of the dots. Finally we reversed our perspective and did not
longer restrict our studies to the fingerprints of the few-electron structure of a double dot
on its transport characteristics, but showed that the electronic structure itself is changed
due to the coupling to external contacts. Again we presented clear signatures of these
effects in the transport characteristics of the double dot.

The excitation spectrum of a quantum dot is accessible in optical experiments and in
particular in Raman spectroscopy. We calculated the charge density excitations of a self-
assembled quantum dot for various numbers of electrons confined to the dot. These calcu-
lations demonstrated that charge density excitations are sensitive to the electron number
and that generally low lying excitations spread over a larger energy range and shift to lower
energies with increasing electron number. We explained this behavior by showing that ex-
cited states have a lower Coulomb energy than the ground state (if they are characterized
by the same spin quantum numbers), so that charge density excitations appear at energies
below the center of mass or single particle excitation energy. Our studies explain recently
measured Raman spectra on self-assembled quantum dots.

Transport spectroscopy is another important tool to study the electronic structure of quan-
tum dots. The current flowing through a dot coupled via high tunneling barriers to external
contacts is strongly sensitive to the eigenspectrum of the dot. We presented a mechanism
that completely blocks the current through a dot, even though there are allowed transitions
in the transport window. This blocking mechanism only occurs if the Coulomb interaction
exceeds the single-particle level spacing and is explained by a cascade of transitions leaving
the dot in a fully spin-polarized state where the exit is spin blocked. An external magnetic
field can switch this current blockade on and off.

The parameter space of coupled dots is further increased in compared to single dots by
the interdot tunnel coupling and the splitting of the Coulomb interaction in an intradot
and interdot contribution. The interdot tunneling between two identical vertically coupled
dots causes an energy splitting between the symmetric and antisymmetric wavefunction.
Since symmetric and antisymmetric wavefunction are delocalized, the same is expected
to be true for electrons occupying the double dot. However, the Coulomb interaction
prefers a maximum distance between the electrons and builds up Coulomb correlations that
mix the vertical and lateral degree of freedom. We showed that the Coulomb interaction
can even lead to a spontaneous charge polarization in the vertical part of the 3-electron
ground state. This polarization is based on the different magnetic-field dependence of intra-
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5 Conclusion

and interdot Coulomb interaction and is, thus, tuneable by an external vertical magnetic
field. The strong charge polarization has severe consequences for the serial transport
through the double dot. In particular the linear transport through the double dot is
blocked at the critical magnetic field. Describing the spin-like degree of freedom in vertical
direction (upper or lower dot) with a pseudospin, this blocking mechanism is identified
as a pseudospin blockade. The magnetic field dependence and the nonlinear transport
characteristics of the pseudospin are analyzed in detail.

The two presented blocking mechanisms for the transport through a single dot or a vertical
double dot demonstrate the strong influence of the Coulomb interaction and Coulomb cor-
relations on the transport characteristics of quantum dots. Reversely, it is also known that
the energy spectrum of a local systems strongly coupled to reservoirs can be significantly
different to the energy spectrum of the isolated local system. A prominent example is the
Kondo effect in quantum dots, where the spectral density of the coupled dot shows an addi-
tional Kondo resonance at the Fermi-energy which is absent for the isolated system. While
the Kondo effect can only be explained by considering higher order tunneling processes to
the external reservoirs, we demonstrated that already in a consistent lowest order calcula-
tion (in the external coupling) the dynamics of a double dot connected in series to external
contacts are significantly changed by the external coupling. While tunneling processes of
higher order in the external coupling are suppressed at high enough temperature, already
lowest order tunneling processes lead to superpositions of eigenstates. Precondition is that
the coupling strength exceeds the energy difference between these states. We studied the
interplay between coherent dynamics on the double dot and the incoherent external cou-
pling and pointed out the analogy to the physics of a spin valve discussed in the context
of spintronics. We demonstrated that the dot levels are shifted in energy by the external
coupling and proposed an experimental verification of these effects by demonstrating clear
signatures of these effects in the current-voltage characteristics and the stability diagram
of the double dot.

In summary we contributed to an understanding of current experiments and presented new
theoretical results together with the prediction of their experimental signatures. While the
scientific community working on quantum dot spectroscopy is huge and offers a wide vari-
ety of different activities, we mention here two immediate extensions of the present work.
Our discussion of the correlation induced charge-polarization in double dots presented in
chapter 3 was based on results obtained by exact diagonalization of the Hamiltonian. This
allowed us to take Coulomb correlation fully into account. It could be interesting to com-
pare our results with Hartree-Fock calculations, which also include the different magnetic
field dependence of intra- and interdot Coulomb interaction, but which essentially miss
correlations due to quantum mechanical superpositions. We expect that the Coulomb cor-
relations leading to the charge polarization go beyond mean field calculations. A second
interesting extension of this thesis concerns the level renormalization in double dots dis-
cussed in chapter 4. There one could investigate how this effect is present in the noise
power spectrum of the double dot.
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A Coulomb matrix elements

A.1 Separating relative and center of mass motion

In the calculation of the Coulomb matrix elements the decomposition of a two-electron
wavefunction into relative and center of mass part reduces the number of integration vari-
ables and therefore we discuss this decomposition in further detail here. The center of
mass and relative coordinates are defined by:

~R =
~r1 + ~r2

2
; ~P = ~p1 + ~p2

~r = ~r1 − ~r2 ; ~p =
~p1 − ~p2

2
.

Here ~ri, ~pi denote position and momentum of particle i ∈ {1, 2}, while small letter (capital
letters) without particle index denote the operators of the relative (center of mass) motion.
Instead of defining the ladder operators for the electronic states of each electron separately
as done in Eq. (2.5), we can also write the ladder operators for the center of mass and the
relative motion:

A± =
1√
2
(a1± + a2±) =

1√
2
(Ax ∓ iAy)

Ax : =
1√
2
(
X

lcm
+ i

lcm
~
Px) ; Ay :=

1√
2
(
Y

lcm
+ i

lcm
~
Py)

a± =
1√
2
(a1± − a2±) =

1√
2
(ax ± iay)

ax : =
1√
2
(
x

lrel
+ i

lrel

~
px) ; ay :=

1√
2
(
y

lrel
+ i

lrel

~
py)

Here we defined two new length scales, lcm = 1√
2
l, lrel =

√
2l. The Hamiltonian for the

orbital motion of two electrons therefore has the following representations:

Ĥ(1) + Ĥ(2) =

2∑

i=1

(

~Ω+

(

a†i+ai+ +
1

2

)

+ ~Ω−

(

a†i−ai− +
1

2

))

= Ĥ(rel) + Ĥ(cm)

Ĥ(rel) = ~Ω+

(

a†+a+ +
1

2

)

+ ~Ω−

(

a†−a− +
1

2

)

Ĥ(cm) = ~Ω+

(

A†
+A+ +

1

2

)

+ ~Ω−

(

A†
−A− +

1

2

)
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Therefore a different representation for the normalized two-electron eigenfunctions is:

|N+, N−〉(cm) |n+, n−〉(rel) =
(A†

+)N+

√

N+!

(A†
−)N−

√

N−!

(a†+)n+

√

n+!

(a†−)n−

√

n−!
|0, 0〉(cm) |0, 0〉(rel) . (A.1)

The two-electron ground state is uniquely defined so that

|0〉 = |0, 0〉(1) ⊗ |0, 0〉(2) = |0, 0〉(cm) ⊗ |0, 0〉(rel) . (A.2)

A transformation from wavefunctions of particle coordinates to wavefunction of center of
mass and relative coordinates can now be achieved by expressing the ladder operators for
the single particle wavefunctions by the relative and center of mass operators:

a†1± =
1√
2

(

A†
± + a†±

)

; a†2± =
1√
2

(

A†
± − a†±

)

These relations are now inserted in the representation of the two-particle wavefunction:

|n1+, n1−〉(1) |n2+, n2−〉(2) =
(a†1+)n1+

√

n1+!

(a†1−)n1−

√

n1−!

(a†1+)n2+

√

n2+!

(a†1−)n2−

√

n2−!
|0〉 .

This expression can now be reexpressed in the following form:

ψn1 m1
(~r1)ψn2 m2

(~r2) = (A.3)

An1 m1 n2 m2

Mmax∑

M=Mmin

(−1)M
Nmax∑

N=0

Kn1 m1 n2 m2

N M ψ
(cm)
N M (~R)ψ

(rel)
Nmax−N,m1+m2−M(~r),

Here we used the following expressions:

Mmin = −2(n1 + n2) −m1 −m2 + |m1| + |m2|
2

,

Mmax =
2(n1 + n2) +m1 +m2 + |m1| + |m2|

2
,

Nmax =
1

2
[2(n1 + n2) + |m1| + |m2| − |M | − |m1 +m2 −M |] ,

An1 m1 n2 m2
:= (−1)m2

(
2∏

i=1

2(2ni+|mi|)
(

2ni +mi + |mi|
2

)

!

(
2ni −mi + |mi|

2

)

!

)− 1

2

,

Kn1 m1 n2 m2

N M := C
2n1+m1+|m1|

2
,
2n2+m2+|m2|

2
1

2
(2N+M+|M |) C

2n1−m1+|m1|
2

,
2n2−m2+|m2|

2
1

2
(2N−M+|M |) ,

Cb c
a :=

√
a!
√

(b+ c− a)!

min(a,b)
∑

s=max(a−c,0)

(
b

s

)(
c

a− s

)

(−1)s.
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A.2 Coulomb matrix elements using relative and center of

mass coordinates

The Coulomb matrix elements for a single dot or a vertically coupled double dot have the
following form:

e2

4π ǫ ǫ0
〈n1m1 α1 σ1, n2m2 α2 σ2|

1

(r2
12 + (z1 − z2)2)1/2

|n′
1m

′
1 α1 σ1, n

′
2m

′
2 α2 σ2〉

=
e2

4π ǫ ǫ0

∫ ∫

d2r1 d
2r2

ψ∗
n1 m1

(~r1)ψ
∗
n2 m2

(~r2)ψn′
1

m′
1
(~r1)ψn′

2
m′

2
(~r2)

√

(~r1 − ~r2)2 + (1 − δα1 α2
) d2

. (A.4)

Here r12 = |~r1−~r2| is the lateral distance between the two electrons, ni, mi are the quantum
numbers determining the Fock-Darwin eigenstate, σ denotes the electron spin, and α the
pseudospin labeling the dot. In a single dot all pseudospin quantum numbers are equal
and z1 = z2.

Transforming the two-particle wavefunctions in relative and center of mass part (see Ap-
pendix A.1), one arrives at the following expression containing only a single integration:

e2

4π ǫ ǫ0
〈n1m1 α1 σ1, n2m2 α2 σ2|

1

(r2
12 + (z1 − z2)2)1/2

|n′
1m

′
1 α1 σ1, n

′
2m

′
2 α2 σ2〉

= δm1+m2,m′
1
+m′

2

e2

4π ǫ ǫ0 lrel

An1 m1 n2 m2
An′

1
m′

1
n′

2
m′

2

×
min(Mmax,M ′

max)
∑

M=max(Mmin,M ′
min)

min(Nmax,N ′
max)

∑

N=0

Kn1 m1 n2 m2

N M K
n′

1
m′

1
n′

2
m′

2

N M

×
∫

dξrel ξrel

ρ̃Nmax−N,m1+m2−M(ξrel) ρ̃N ′
max−N,m′

1
+m′

2
−M(ξrel)

√

ξ2
rel + (1 − δα1 α2

) (d/lrel)2
. (A.5)

For a single quantum dot or for the intradot Coulomb interaction in a vertical double dot,
the single integration left in the above expression can be performed analytically [23, 33,
124, 125]
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B Diagrammatic rules for sequential

transport through serial double dot

With the definition P χ1

χ2
:= 〈χ1| p |χ2〉, the kinetic equation Eq. (4.31) can be written as:

0 = i~
d

dt
P χ1

χ2
= 〈χ1| [HD, p] |χ2〉 +

∑

χ3,χ4

Σχ1χ3

χ2χ4
P χ3

χ4
. (B.1)

As discussed in subsection 4.2.3 we are interested in the regime ∆ab . Γ ≪ kBT , where the
localized states |Lσ〉 and |Rσ〉 can be used as eigenstates of the double dot in the calculation
of Σ. In the following we show, how we calculate the tensor Σχ3χ1

χ4χ2
. The states χi ∈ { |0〉,

|Lσ〉, |Rσ〉, |LσRσ′〉} still include the spin degree of freedom. We apply the diagrammatic

=

treal

tKΣχ3χ1

χ4χ2

χ1

χ2

χ3

χ4

r, σ, ω

Figure B.1: Sketch of the structure of a diagram. The upper (lower) horizontal line denotes the
forward (backward) propagator of the double dot system. The Keldysh time contour is labeled
by tK, while the real time runs from left to right.

technique introduced in section 4.1. We shortly restate the essentials here. Within the
diagrammatic approach, the tensor Σχ3χ1

χ4χ2
is represented as block diagram, which is a part

of the Keldysh time contour as shown in Fig. B.1. The upper and lower line of the Keldysh
time contour tK represent the propagation of the double dot system forward and backward
in time. They connect the matrix element characterized by the labels on the left side
with the matrix element characterized by the labels on the right side. In the sequential
tunneling approximation all transitions are allowed where a single electron first leaves and
then reenters the double dot or vice versa. The two tunnel Hamiltonians are represented
by vertices on the propagators. These vertices are connected by the contraction of the lead
Fermi operators (indicated by a dashed line). Each line is characterized by its energy ω, the
spin σ of the transfered electron, as well as the corresponding reservoir label r ∈ {L,R}. A
vertex with an outgoing (incoming) tunneling line represents an electron leaving (entering)
the double dot on the specified side r. All possible transitions in lowest order in the external
coupling Γ belong to one of the eight diagrams depicted in Fig. B.2. Σχ3χ1

χ4χ2
is given by the
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χ1

χ2

χ3

χ4

χ5χ5

χ5χ5

r, σ, ω

Figure B.2: All topologically different diagrams contributing to the tensor Σχ3χ1
χ4χ2

calculated in
first order in the external coupling Γ. Labeling of the eigenstates at the four corners and of the
tunneling line like in first diagram. χ5 labels an intermediate charge state of the double dot.

sum of all diagrams with the corresponding eigenstates at the four corners, see Fig. B.2.
The number of relevant diagrams is limited by spin and particle number conservation as
well as to the serial system geometry. The general rules of how to calculate the diagrams
are given on page 84. Within the sequential tunneling approximation these rules can be
simplified for the present system in the following way:

1. Draw the upper and lower time contour. Add two tunnel vertices in any topological
different way. The relevant criteria are the upper and lower contour, and the time
ordering of the vertices on the real axes, not only on the Keldysh time contour. Assign
to each free segment of the contour a state of the double dot and the corresponding
energy. For ’bubble’ diagrams like in the lower row of Fig. B.2, an intermediate state
χ5 participates.

2. The two vertices are connected by a tunnel line. Each tunnel line is labeled with
the energy of the tunneling electron ω, its reservoir label r and its spin σ. Spin and
reservoir label of the tunneling electron are uniquely determined by the eigenstates
involved in the tunneling processes.

3. Assign to each diagram the resolvent 1/(∆E+i0+) where ∆E is the difference between
energies belonging to left going lines and energies belonging to right going lines (the
tunneling line as well as the propagators).

4. The tunneling line connecting two vertices and labeled by the reservoir index r gives
rise to the factor

γ±r (ω) =
1

2π
Γrf±

r (ω)

Here, the Fermi function f+
r (ω) = fr(ω) = 1/(1 + exp[(ω − µr)/kBT ]) corresponds

to a tunneling line that is backward directed in the Keldysh time ordering (compare
Fig. B.1), and f−

r (ω) = 1− fr(ω) corresponds to a tunneling line forward directed in
the Keldysh time ordering.
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5. Each diagram gets a prefactor (−1)v where v is the number of vertices on the back-
ward propagator. (This leads to an (−1) for the diagrams in the upper row of
Fig. B.2.)

6. Sum over possible internal eigenstates χ5 and integrate over the energy ω of the
tunneling electron.

(+

+

+

+

+

+

)

ΣLσ,0
Lσ,0 =

ΣLσ,Lσ
Rσ,Rσ =

L, σ, ωL, σ, ω

L, σ, ω R, σ, ω

L, σ′, ω
R, σ′, ω

L, σ̄, ω R, σ̄, ω

|0〉

|0〉

|0〉

|0〉

|Lσ〉

|Lσ〉

|Lσ〉 |Lσ〉

|Rσ〉 |Rσ〉

Σ
σ′

|0〉

|0〉

|Lσ〉

|Lσ〉

|Lσ〉

|Lσ〉

|Lσ〉

|Rσ〉

|Rσ〉

|Rσ〉

|LσRσ′〉

|LσRσ′〉
|Lσ Lσ̄〉

|RσRσ̄〉

Figure B.3: Relevant dia-
grams contributing to two
specific entries of Σ, in a low-
est order expansion in Γ. Ev-
ery diagram corresponding to
a specific entry is labeled by
the same eigenstates at its
four corners.

In the parameter regime we are interested in, the following relations hold: kT > Γ ≥ ε,∆.
Therefore the energy difference between the single particle states is not resolved by the
Fermi functions in the reservoir, so that we approximate the eigenenergies of {|0〉, |Lσ〉,
|Rσ〉, |LσRσ′〉} by {0, EL ≈ ER ≈ Ē, 2Ē+U}. While we exclude a double occupation of a
single dot for the initial or final states by setting fr(Ē+U ′) = 0 we allow the intermediate
state χ5 to be such a state. These states have the eigenenergy 2Ē + U ′.

In Fig. B.3, we show as examples the diagrammatic expansion of the tensor elements ΣLσ,0
Lσ,0

and ΣLσ,Lσ
Rσ,Rσ. ΣLσ,0

Lσ,0 is purely imaginary and its magnitude has the meaning of a transition
rate for a tunneling-in process starting from the empty double dot and resulting in a single
electron with spin σ sitting in the left dot. In contrast, ΣLσ,Lσ

Rσ,Rσ also has a real part which
renormalizes the energy levels. Calculated in lowest order in Γ, each element of the tensor
Σ can be expressed by terms of the form:

X(n,m)
r (E) =

∫

dω
γn

r (ω)

m(E − ω) + i0+
, (B.2)
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B Diagrammatic rules for sequential transport through serial double dot

where n and m are either (−) or (+). In this notation, the algebraic expression for ΣLσ,Lσ
Rσ,Rσ

is:

ΣLσLσ
RσRσ = X(−,+)

r (Ē) +X(−,−)
r (Ē) (B.3)

+gσ

(
X(+,+)

r (Ē + U) +X(+,−)
r (Ē + U)

)

+(gσ − 1)
(
X(+,+)

r (Ē + U ′) +X(+,−)
r (Ē + U ′)

)

Here and in the following we allow for an arbitrary spin degeneracy gσ ∈ {1, 2}, since the
presented treatment allows a general solution of the problem including both, the case of
spin-polarized electrons (gσ = 1), and the case of spin-degenerate electrons (gσ = 2). Since
fr(Ē + U ′) = 0 the imaginary part of the last row vanishes, however this is not the case
for the real part, which causes the level renormalization. The real part of the diagrams is
determined by the principal values of the integrals in Eq. (B.2) and can be expressed as a
sum over digamma functions, see Eq. (4.37).

In the following we calculate the effective tensor for Σ, that only depends on the orbital
or charge part of the matrix elements (denoted in the following formula by χ1, χ2, χ3, χ4)
and not longer on the spin variables. This tensor is needed for the kinetic equation of the
reduced density matrix defined in Eq. (4.32), where we summed over the different spin
realizations of each orbital or charge state. The new tensor elements are defined by:

Σχ3χ1

χ4χ2
=
∑

f

Σ
χf

3
χi

1

χf
4
χi

2

(B.4)

Here i labels any possible spin-realization for the initial states, χ1, χ2, and f for the final
states χ3, χ4. (Due to spin degeneracies the two particle states are four fold degenerate,
and the left and right states are each two-fold degenerate.) The tunnel tensor Σχ3χ1

χ4χ2
is

independent of the spin-realization i. The spin degeneracy appears only as a prefactor,
but does not change the functional form of the elements. For example, ΣL,0

L,0 =
∑

σ ΣLσ,0
Lσ,0

describing the transition from P0 to PL is twice as big for spin-degenerate electrons as
for spin-polarized ones. On the other hand ΣL,L

L,L = ΣL↑,L↑
L↑,L↑ + ΣL↓,L↑

L↓,L↑ = ΣL↓,L↓
L↓,L↓ + ΣL↑,L↓

L↑,L↓
describing the loss term of PL is the same for spin-degenerate or spin-less fermions since
ΣL↓,L↑

L↓,L↑ = 0 = ΣL↑,L↓
L↑,L↓.
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