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Preface

The determination of the influence of covariates on survival times is a common
issue in biomedical research. In this dissertation tests for various hypotheses
are rigorously developed on the basis of Cox-type models. The investigated
models are obtained by modifying the frequently applied Cox Regression Model
(CRM) [13, 14]. For this purpose the basic concept of the rank tests with
estimated scores provided by Behnen and Neuhaus [7, 8] is combined with
the CRM, and methods derived from LAN and counting process theory are
employed.

The results of this dissertation are practical and applied, even thought the
structure of the monograph is theoretically oriented. In order to facilitate the
access to the presented approach its organisation is outlined in the following

paragraphs.

In the first chapter an introduction to the objectives of the dissertation is given.
Furthermore, the Modified Cox Regression Model (MCRM) is motivated by
the two-sample problem with randomly right censored data, since this well
understood problem can be used to link the ideas of Behnen and Neuhaus [7,
8] with the CRM. Moreover, localized, g-dimensional parametric sub-models
of the MCRM, which form the basis for the further statistical analysis, are
introduced. These models incorporate the crucial aspects of the CRM and the
models considered by Behnen and Neuhaus [7, 8]. In contrast to these authors
who state their models using LLo-differentiable distribution families, the models
in this dissertation are specified by hazard rates. From an application-oriented

point of view this approach is preferable, since the resulting counting process
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models can be easily interpreted and are very comprehensible. However, this
direction unfortunately holds several methodological difficulties. Additionally,
some of the vast amount of literature on the CRM and its generalizations, as

well as the relevant literature on rank test theory, is discussed.

One aim of this dissertation is the development of a comprehensive, asymp-
totic theory of localized, g-dimensional parametric sub-models of the MCRM.
In order to achieve this objective, important theorems and concepts required in
the following sections are arranged and discussed. In Section 2.1, the concept
of weak convergence on Polish spaces is sketched. Among other things, Re-
bolledo’s Central Limit Theorem and Lenglart’s Inequality are stated. Jacod’s
Formula for the Density Process and the above-named results are the foun-
dation for the proof of a general result on asymptotic normality for counting
process models, see Section 2.2. This general result, which can be regarded
as a counting process analogue to the Second Le Cam Lemma, is applied to
sequences of localized, g-dimensional parametric sub-models of the MCRM in

Section 2.3.

The MCRM is an semi-parametric model, i.e. the interesting parameter is
finite-dimensional and further parameters that are regarded as nuisance are
infinite-dimensional. One of these nuisance parameters is the baseline hazard
which is an element of an infinite-dimensional function space. Localized, ¢-
dimensional parametric sub-models of the MCRM are obtained by — among
others things — restricting the baseline hazard to some at-most g-dimensional
sub-space of the before mentioned infinite-dimensional function space. Speci-
fying this sub-space is a problem, since there are no reasons why certain sub-
spaces are preferable to others. A well-known way out of this dilemma is the
study of hardest parametric sub-models, cf. e.g. Neuhaus [60] or Andersen et
al. [4]. However, in Literature there still remain questions concerning the con-
struction and the definition of hardest parametric sub-models. In Section 3.1
statistical considerations are made to shape and provide such a definition. In
the following section of Chapter 3 the properties of sequences of hardest para-

metric sub-models are investigated. First of all, their existence is established.
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The further analysis of sequences of hardest parametric sub-models gives that
an important sequence of statistics, cf. Section 4.1 and Section 4.2, is asymp-
totically equivalent to a sequence of statistics that can be independently chosen
of the underlying sequence of localized, parametric sub-models. This sequence
of statistics plays a significant role as can be seen in Section 4.3. Addition-
ally, it is proved that this sequence of statistics converges in distribution to
some normal distribution that only depends on the interesting parameter and

a matrix that can be consistently estimated.

In Section 4.1 and Section 4.2 multivariate one-sided and linear testing prob-
lems are examined under fairly general conditions. The models treated in these
two sections contain both interesting and nuisance parameters. Moreover, it is
assumed that sequences of the models in question are asymptotically normal,
i.e. they converge weakly to some Gauss Shift Experiment. Based on the likeli-
hood ratio test statistic of the limit Gauss Shift Experiment a test statistic for
finite sample-sizes is derived. Finally, it is shown that the resulting sequence
of tests keeps asymptotically the level, is even asymptotically unbiased and

admissible.

The findings of the two previous sections are applied to sequences of hardest
parametric sub-models of the MCRM in Section 4.3. Using the results of
Section 3.2, it is shown that the resulting sequence of tests is independent of the
special choice of the sequence of localized, parametric sub-models. Therefore,
it can be regarded as a sequence of tests for the MCRM. At the end of this
chapter, see Section 4.4, it is proven that the tests received in Section 4.3 are
projective-type tests. This theorem helps to establish a connection to well
known results and provides a descriptive illustration of the effectiveness of the

constructed tests.

Chapter 5 is devoted to examples and applications. The existence of the
MCRM and localized, g-dimensional parametric sub-models of the MCRM is
discussed with elementary methods in Section 5.1. In particular, filtered prob-

ability spaces that satisfy the assumptions required to prove the Theorems
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of Section 2.2 are constructed. In Section 5.2 the assumptions stated in Sec-
tion 2.3 and Chapter 3, which are exactly the assumptions used in Section 4.3,

are examined in detail.

In Section 5.3, the applicability of the MCRM is eventually demonstrated. The
two-sample problem with and without concomitant covariates is one major
example. Among the further examples are tests for trend and k-sample tests.

Finally, model check problems are briefly discussed.

A permutation method to determine the critical values is introduced in Chap-
ter 6. Under additional premises the stated permutation tests keep the level
on a subset of the hypothesis even for finite sample sizes. The basic concept is
presented in Section 6.1. In the following section, it is proven that the sequence
of tests derived in Section 4.3 and the corresponding sequence of permutation
tests is asymptotically equivalent. Again, Rebolledo’s Central Limit Theorem
is a major tool in the proof. The assumptions of Section 6.1 and Section 6.2 are

discussed for the important case of time-independent covariates in Section 6.3.

In the previous chapters some proofs were omitted for diverse reason. These
proofs can be found in Appendix A. Mainly technical propositions applied in
the preceding chapters are collected in Appendix B.

Hamburg, in November 2006 Michael Brendel
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1 Survival Times and Covariates

This chapter is devoted to the presentation of the fundamental notions and
notations used in this dissertation. In Section 1.1 different types of covariates
are discussed and the main statistical questions are stated. In Section 1.2 the
Cox Regression Model (CRM) is defined and some of the extensive literature
on the CRM is summarized and reviewed, before the Modified Cox Regression

model is motivated and introduced in Section 1.3.

1.1 Introduction

In a case study, one is often interested in finding out if a new treatment is
better than a standard method, or if a new cure has any effect at all. Normally,
one forms two groups of subjects. The first group, the so-called control group,
receives the standard treatment or no treatment at all, and the members of the
second group, the so-called test group, obtain an alternative therapy. Then one
observes, how the different subjects respond to their treatments. In medicine
this response is typically the time between the start of the treatment and the
death of the subject, i.e. the survival time. More generally, the response is
the time between the start of the treatment and a point in time, when the
subject experiences a defined event, some examples being death, a decrease
or increase of the subjects constitution or that the drug under consideration
stops to be effective. In the following text the time to event is generally called

survival time. So, one aims to compare the distributions of the survival times
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of the two groups in order to discover differences between the standard and the

alternative treatment.

From a statistical point of view, this situation is a two-sample problem. There
are two groups of observations and one wants to test if the distribution of
the survival times in both samples are equal or if the distribution of the test
group is stochastically larger. An alternative testing problem would be to test
the hypothesis that the distribution of the survival times is the same in both
samples against the alternative that the distribution of the survival times is

not the same in both samples.

In the previous example the two groups only differed in one characteristic,
i.e. the type of therapy they received. For a case study, one would try to
find subjects that are quite similar, so that a difference in the survival time

distribution can be attributed to the difference in treatment.

However, in biology and medicine one often encounters the situation that in-
dividuals differ in various characteristics, and one wants to determine the in-
fluence of these characteristics on the times to event. These characteristics —
the explanatory variables or risk factors — are called covariates. Examples for
covariates are physical variables like constitution, blood pressure, age and gen-
der or demographic quantities like education, income or the ethnic group an
individual belongs to, and last but not least behaviour variables like smoking
and drinking habits, cf. Klein and Moeschberger [43, pp. 243].

Covariates can be classified as time-independent and time-dependent covari-
ates. Typical examples of the first are the kind of therapy, gender or social
status. These variables are fixed at the start of the study or do not change
during the study. Time-dependent covariates are given by air pollution, con-

stitution, stress, pulse or blood pressure.

Additionally, one has to distinguish between external and internal covariates.
External covariates are classified as fixed, defined and ancillary. Time-inde-
pendent covariates are considered as fixed covariates. Defined covariates are

time-dependent but their path is already known at the start of the study, for
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instance any factor that is controlled by some experimenter and that is not
adjusted according to the course of the experiment. In a psychological experi-
ment such a factor could be a stress factor. The last type of external covariates
are ancillary covariates which are the realisation of a stochastic process. The
marginal distribution of the process is independent of the underlying model for
the survival time and the survival time itself, cf. Kalbfleisch and Prentice [41,
pp. 123].

Internal covariates are also the realisation of stochastic processes, but the distri-
bution of this process depends on the individual under study, since an internal
covariate can only be observed as long as the subject is at risk. Examples for
internal covariates are blood pressure or white blood count, cf. Kalbfleisch and
Prentice [41, pp. 123]. Other examples are disease complications that cannot

be predicted from the history of the process, cf. Andersen et al. [4, pp. 169].
As we will see later, our model comprises both internal and external covariates.

In this dissertation it is aimed to develop tests which conclude whether covari-
ates have influence on the survival times. A special case of this undertaking is
the well understood two-sample problem, which serves us as a motivation and
an illustration. More precisely, the following statistical questions are going to

be considered:
e Does a covariate have any influence on the survival time at all?
e Does a large value of a covariate correspond with longer survival times?

e Can differences in the survival times be explained only with some of the

covariates?

In the next sections the basic notation is introduced and the Cox Regression
Model (CRM), which links the covariates and the survival times is presented.
Under the CRM the aforementioned statistical questions can be transformed
into parametric testing problems. The first one turns out to be a multivariate
one-sided testing problem, the second and third can be transformed into linear
hypotheses, cf. Chapter 4 and Chapter 5.
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1.2 A First Mathematical Model

In this section we present the basic mathematical notation and a few funda-
mental notions and terms from counting process theory. Moreover, the CRM
is introduced and some of the abounding literature on the CRM is briefly dis-

cussed.

First, let us fix some terminology. Suppose that (£2,F) is some measurable
space and let P denote some probability measure on F. The survival times
Ti,...,T, are modelled by the measurable mappings T ((2,9) — (R4, By),
which can be identified with the stochastic processes N, = {N; Dyt e Ry},
where

NP =1T,<t), teRy, i=1,...,n.

Such a process equals 0 as long as the individual has not experienced the event
under consideration — i.e. is alive — and jumps to 1, when the event occurs. This
jump process is a special example of a so-called counting process. Counting
processes are increasing processes with right continuous paths that only take
the numbers {0,1,2,...}. The index T indicates that the counting process

depends only on the survival time.

A survival time can also be identified with the so-called at-risk process Y:ﬁi) =
{Y(Z t)[teRy}, i=1,...,n, where

YW = 1T, >t), teR,.

This process equals 1 as long as the individual has not experience the event
under consideration, i.e. the individual is at risk. The process jumps to 0 after
the event in question has occurred. As the random variable N;i )(t) tells us,
whether the event at the time ¢ with respect to the i-th individual has already
occurred or not, the information on that individual up to time ¢ is contained
in the o-algebra

F ) = o (N (s) | s < 1).

The family of o-algebras F(l {S" t)|te R+} is called filtration.

4



1.2 A First Mathematical Model

More precisely, a filtration F = {F, | t € R, } is a right continuous, increasing

family of sub-sigma-algebras of JF, i.e. it holds that

F,CF, CF forall s<t,
Fi=()F. foralltel0o0).

s>t
It is said to be P-complete, if F and Fy contain all subsets of P-null sets.

The tuple (Q,F,F,P) is called a filtered probability space. In the situation
that we consider several probability laws we write (Q,F,F, ) for the filtered
space, where 3 denotes a family of probability measures on F. The filtered
probability space is called complete or satisfying the ”usual conditions®, if the
filtration is P-complete for all P € . It is always possible to ”complete® a
filtered space, cf. Jacod and Shiryaev [32, pp. 2].

Additionally, Proposition B.5.1 yields that the family of o-algebras Fgf) =
{?(Ti) (t) | t € Ry} is right continuous.

The process Ng) (t),teRy,isa ]Fgf)—sub—martingale. By the Doob-Meyer de-
composition we know the existence of a predictable, increasing process Agf) =
{Ag) (t) |t € Ry} with Ag)(O) = 0, such that the process N;i) - Ag) is a
]Fg,f)—martingale. The dual predictable projection Agpi) is unique up to in-
distinguishability. Note that a process X = {X; |t € R} on (Q,F,F,P) is
called predictable, if it is adapted, i.e. X; is F-measurable, and if the map-
ping (w,t) — X;(w) is measurable with respect to the predictable o-algebra
— the o-algebra generated by the adapted process with left continuous paths.
A detailed explanation of the terms introduced in these paragraphs can be
found, for example, in the books of Fleming and Harrington [19] or Jacod and

Shiryaev [32].

The dual predictable projection Ag,f) is given by

(i)
() () — Y (s) T;
AT (t) - /[O,t] ]P)(n Z S) dpP (5)7 te R-‘ra
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and in the case that P”" is absolutely continuous by

AP(1) = /[0 ) Y (s)a(s)ds,  a(s) =lim Pla<Ti<s+h) (1.1)

ho  P(T;>s)
cf. Fleming and Harrington [19, Section 1.3] or Andersen et al. [4, Exam-
ple I1.4.1]. We note that the distribution of the survival time T; is reflected by
the dual predictable projections of the counting process Nq(f ), Later, different
underlying probability measures are modelled by stating the dual predictable
projections of the counting processes Nq(j)7 1 =1,...,n. But first, let us con-

sider the case that the survival data is right censored.

In clinical studies, it is often not possible to observe the survival time one is
interested in. One only registers that the event in question has not happened
up to some time ¢ and must have occurred after ¢. In this case we say that
the survival time was right censored. More precisely, one observes an event
time and an indicator stating, whether the survival time in question or some
censoring time was observed. There are different reasons for right censoring.
Among others, subjects drop out of the study because they move away or die
and the cause of the death is not related to the investigation, e.g. someone dies

due to an accident.

This situation can be modelled as follows. Let C; : (Q,F) — (R4,B.),
i1 =1,...,n, denote the censoring times. The survival time T; is right censored,

if T; > C}, so one merely observes
X, =T,NC; and A;= ]l(TZ < Ci)7

where X; is the censored survival time and A; the censoring indicator. A; =1

(0) means that the i-th observation was non-censored (censored).
The random variables X; and A; can be used to define a new counting process,

namely

NO =N, |teRy}y, NP =aA,ND @)= [ vP(s)an(s),
0.1
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where Yc(f)(t) = 1(C; > t), t € Ry, is the at-risk process of the censoring time.
This counting process only jumps to 1, if one observes the event. At first
glance, one might think that information is being wasted by only considering
the non-censored observations, but we will see that the likelihood in the CRM
and also in the MCRM primarily depends on the counting processes N, The

censored observations are going to be used for estimation.

Setting N (¢) = (1 —A;) - 1(X; <t),t € Ry, i=1,...,n, we can define the

filtration

FO = {39 |teRy},  FD =o(ND(s), NO(s) | s < t).

Under the additional assumption that T; and C; are stochastically independent
and that the distribution of T; is absolutely continuous, the dual predictable

projection of N; is given by

AD(t) = Y@ (s)a(s)ds, teRy,
[0,¢]
where Y (¢) = j(f)(t) : Y(gi)(t) is the censored at-risk process and « is the
hazard rate given in equation (1.1), cf. Fleming and Harrington [19, Theo-
rem 1.3.1]. Note that the dual predictable projection does not formally depend
on the distribution of the censoring time, which, in this context, is an infinite

dimensional nuisance parameter.

In order to get a ”complete® statistical model we still have to integrate the
covariates. A straightforward way to model an influence on the distribution of
the survival times is by linking the hazard rate of the survival time distribution
with the covariates. The proceeding is illustrated by the next example — the
two-sample problem — which is a leitmotif of the whole dissertation, since this
problem is well understood and serves as the starting point for the modification
of the CRM considered in this dissertation. Moreover, we will show that our
results always contain the two-sample model and a lot of well known related

results as special cases.
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1.2.1 Example (Two-sample problem). Consider the probability space
(Q,F,P) and suppose that T;,C; : @ — Ry, i =1,...,nand Z; : Q —
{0, 1}, i =1,...,n, are measurable mappings denoting the survival and cen-
soring time and the covariate. The covariate Z; is interpreted as follows, Z; = 1
(0) means that the i-th observation belongs to the first (second) sample. Under
this model, it is also assumed that survival times and censoring times 7; and
C;, i =1,...,n, are mutually stochastically independent and that we merely
observe X; =T; NC;, A; = IL(E- < CZ-) and the covariate Z;, 1 =1,...,n.

If F} and F5 denote the cumulative distribution functions
Fi(t)y=P(T; <t|Z;=1) and F(t)=P(T;<t|Z;=0), t=>0,
under the two-sample problem one is interested to test the hypotheses
H: I =F, versus K: F| > F,, F| # Iy,

i.e. no difference in survival times versus the distribution of the survival times
in the second sample is stochastically larger. Or even more colloquial one
wants to test no difference in methods applied to the first and second group
versus the method applied to the second group is better. This is a classical

non-parametric testing problem.

In the next step we intend to transform the testing problem into a parametric
one, because there exists a lot of approved methods to develop reasonable
testing procedures for parametric testing problems. Therefore, let us assume
that P = {Pg,a |BER, e N} is some family of probability distributions on
F and P € P, where N denotes the set of all hazard rates on R;. Analog
to the previous consideration we can identify the censored survival times X,
i = 1,...,n, with the counting processes N i = 1,...,n. Moreover, a

suitable filtration is given by
F={F|teRy}, F=\_

Assuming that the dual predictable projection of N9 under Ps o € B is given
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by

AP (1) = . YO (s) exp(3Z;) als)ds,  teER,,

the testing problem H versus X transforms to
H: =0 versus K: >0,

where we use the fact that

IP(Ti >t|Z; = z) = exp <— /[0 , exp(f z) a(s) ds),

cf. Fleming and Harrington [19, Theorem 1.3.1]. Implicitly, it is also assumed
that the distribution of the covariates does not depend on the underlying prob-

ability distribution. Moreover, the baseline hazard « is a nuisance parameter.

The previous example is a special case of the CRM and will be discussed
later in greater detail. Note that the above procedure is a standard method
to transform a non-parametric statistical question into a parametric testing

problem.

1.2.2 Definition (Cox Regression Model). Consider the filtered space
(Q,F,F,B), where P = {Pg,a | BEeRP, € N} The observations are given
by the tuples (X;,A;,Z;), i = 1,...,n, where X; : (2,F) — (R4,B;) de-
notes a censored survival time and A; : (Q,F) — ({0, 1}, P{0,1}) the corre-
sponding censoring indicator. P{0, 1} represents the power set of {0,1}. Z; =
{Z;(t) |t e Ry}, Zi(t) : (Q,F) — (RP,BP), is a predictable, and therefore F-
adapted, stochastic process. The counting processes N = {N(i) (t)|te R+},
NO(t) = A;-1(X; <t),i=1,...,n, are also supposed to be adapted to F. Un-
der the Cox Regression Model (CRM) it is assumed that the dual predictable
projection of N under Ps, € P is given by Ag}a = {Ag)a(t) |t eR:},
where
Ag,)a(t) = /[ ]Y(i)(s) exp(BTZ(s)) a(s)ds,
0,t

YO(s)=1(X; > s),i=1,...,n.
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Clearly, Example 1.2.1 is a special case of the CRM model introduced by D.
R. Cox [13] in 1972. The analysis of the model — the estimation of the pa-
rameter 3 — by the so-called marginal likelihood caused a lot of attention and
discussion. Therefore, Cox [14] formalised the idea of analysis by introducing
the partial likelihood. It was shown that maximum likelihood estimates and
tests derived from the partial likelihood have the usual large sample proper-
ties. Tsiatis [69] proved strong consistency and asymptotic normality of the
estimates in the CRM. He also suggested estimates for the underlying baseline
hazard and the survivor function and investigated their asymptotic properties.
For a modern treatment of the CRM with martingale methods, see Andersen
and Gill [5] or Andersen et al. [4, Chapter VII]. In this dissertation we also
rely on this martingale approach introduced by Aalen [1]. A different method
for estimating ( on the basis of the method of local likelihoods was proposed

by Crowley and Gentlemen [21].

In application the main interest is estimating § and testing hypothesis on 3
using either the Wald, likelihood ratio or score test, where the estimates and the
statistics are derived from Cox partial likelihood cf. Klein and Moeschberger
[43, chapter 8]. The concept of the partial likelihood has been a subject of
discussion since its introduction. Although it is not a full likelihood, methods
based on the partial likelihoods share many properties of methods based on
likelihoods. For more detailed information on partial likelihoods consult e.g.
Wong [73], Jacod [31], Slud [66], Greenwood and Wefelmeyer [25].

The advantage of the CRM model is its simplicity and easy manageability. Its
drawback is the assumption that the influence of the covariates is constant
in time. In particular, this means that the hazard rates of time-independent
covariates are proportional. This drawback has been the starting point for
many generalizations of the CRM, and in this dissertation it is also attempted
to overcome this assumption, see also Example 1.3.1. A possible way out is
stratification, cf. Klein and Moeschberger [43, Section 9.3]. Another approach
is to allow 3 to vary in time. Murphy and Sen [56] assumed [ to be some deter-

ministic function and developed a sieve estimation procedure. The method of

10
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sieves is also used by Murphy [55] in order to derive a test for the hypothesis of
proportional hazard. Verweij and van Houwelingen [70] assume the coefficient
0 to be a function on a discrete time domain and proposed some estimation
procedure using penalized likelihoods. Sargent [62] allows the coefficients to
vary in time and bases his method on a dynamic linear model. The model is
fitted to the data using Markov Chain Monte Carlo Methods. Models using
time-dependent coefficients were also investigated by Martinussen, Scheike and

Skovgaard [52]. They use a kernel smoother for their estimation procedure.

The assumptions of the Cox Regression Model are often violated in practise,
therefore goodness-of-fit methods for the CRM were developed, cf. Andersen
et al. [4, Section VIL.3]. A similar idea as in our approach is used by Lin [50]
to construct a goodness-of-fit procedure. Lin used weighted score functions
instead of the normal score functions derived from the partial likelihood — a
proceeding that is motivated by the commonly used log-rank tests. Kauermann
and Berger [42] apply a related strategy and use the local partial score to
construct a goodness-of-fit procedure. The idea of introducing weights can also
be found in Grambsch and Therneau [23]. A very general non-linear regression
model was considered by McKeague and Utikal [54]. Under this model, they
derive a test for independence of survival time and covariate and give as an

example of a goodness-of-fit test for the proportional hazard model.

A parametric generalization of the CRM was investigated by Lin and Ying [49],
they assume that the dual predictable projection of N is given by

Ag}a(t) = /[O,ﬂ Y (s) (g(ﬁlTZ“(s)) + h(B3 Z2,i(s)) a(s)) ds, teRy,

B = (8,7, Z; = (ZEi,Zgi)T, where g, and h are known link functions.
A consistent estimator for § is derived and the weak convergence of an Aalen-
Breslow-type estimator for f[o, 9 a(s)ds, t € Ry, is also proved. Moreover, they
present some adaptive estimators that achieve the semi-parametric information

bounds.

A lot of research was also done concerning non-parametric extensions of the

11
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CRM. Dabrowska [15] considered the very general model

Ag)a(t) = /[0 ) Y@ (s) exp(BTZ1,(s)) a(s, Zoi(s)) ds, te€Ry,
Z; = (leji, Z;i)T. In that model a kernel smoothing technique is used for
the estimation of § and the function a. LeBlanc and Crowley [46] consider a
model, where the dual predictable projection of N9 is given by

A%i)(t) = - Y (s) exp(n(Z;)) a(s)ds, teRy
and 7 is some spline. They demonstrate some adaptive technique for the es-
timation of . Under the partly linear additive Cox model of Huang [29], one
supposes that the dual predictable projection is defined by

P2

A(ﬂz,)¢1,...,¢p2,a(t) = 0.4 Y(Z)(s) exp (ﬂTZm + Z¢j (22(?1'))> a(s)ds, teRy,
) j=1

where ¢;, 7 = 1,...,p2, are some smooth functions that are estimated with

the help of splines. The rate of convergence is considered and it is shown that
the estimator of 3 attains the semi-parametric information bound. Heller [27]

investigated the more general model

Ag’)g’a(t) = Y(i)(s) exp(ﬁTZM + g(Zg)i)) a(s)ds, teR,,

[0,¢]

where g is some unknown smooth real-valued function. The interesting param-
eter [ is estimated by maximization of a profile partial likelihood, profiling out

g using a kernel function.

In a series of papers the models
AD () = /[0 ) YO(s) exp(BZ14(s) + 97(5) Z2a(5)) ds, t € Ry,
cf. Martinussen et al. [52],

A,(Bi,)g,a(t) = Y (s) (GXP(ﬁTZLi(S)) a(s) + gT(s)Zgﬂ-(s)) ds, teRy,
0,¢]

12
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cf. Scheike and Martinussen [51], and
AS,)a(t) = /[0 ] Y (s) exp(87Z1,(s)) (Z;i(s)a(s)) ds, teRy,
it

cf. Scheike and Zhang [64], were considered. The authors obtain efficient es-
timation procedures depending on kernel smoothers for these non-parametric
extensions of the CRM. Using the model of Martinussen et al., Scheike and
Martinussen [63] proposed tests for checking, whether or not a covariate effect
varies in time. Kraus [45] developed goodness-of-fit tests for the additive-
multiplicative intensity model introduced by Scheike and Zhang [64] using a

stratified martingale residual process.

It is seen that many generalizations of the CRM aim to extend the model with
some non-parametric component, so that at least some of the covariates effects
can vary in time. This approach to overcome the assumption of proportional
hazards has become quite popular in recent years. For these fairly general
models kernel smoothers or estimators based on splines are used to detect a
possible influence of the covariates on the survival times. A potential problem
with methods based on kernel smoothers can be that relatively large sample
sizes are often needed, if one wants to rely on asymptotic results. However,
in survival analysis sample sizes are quite often comparatively small. Thus,
it might be worth considering a different method to treat the CRM, if one
intends to investigate dependencies between survival time and covariates. In
this dissertation we want to use an approach of rank test theory for extending
the CRM. Therefore, some remarks on the literature on the testing of right

censored life time data need to be made.

Aalen [1] introduced counting processes and martingale methods to survival
analysis. These methods were popularized by Gill [22] who investigated the
two-sample problem and weighted log-rank statistics in great generality and
detail in his PhD thesis. Martingale methods were also used by Jones and
Crowley, [39] and [40], to consider the asymptotic properties of a general class

of non-parametric tests for survival analysis. Using a generalized version of the

13
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test statistics of Crowley and Jones, Lin and Kosorok [48] consider function-
indexed tests to receive testing procedures that are sensitive for a wider range
of alternatives. This approach, that came to the author’s attention just be-
fore finishing this dissertation, uses empirical process theory to derive limit
theorems. Even though there are some connection to work presented in this
dissertation, our approach is an approach in its own right. For more informa-
tion on testing in survival analysis see Andersen and Borgan [2], Andersen et

al. [3] and [4] as well as Jones and Crowley [40].

A different approach extending the classical rank test theory of H&jek and
Sidak [26] to censored data was considered by Neuhaus [57] and Janssen [33].
They use local asymptotic normal approximations (LAN theory) to construct
(asymptotically) distribution free tests for right censored data under the two-
sample model. Additionally, these tests are asymptotically optimal under cer-
tain contiguous alternatives. Janssen [34] also investigated optimal k-sample

tests for randomly censored data.

Since rank tests are optimal only in one direction of contiguous alternatives
Behnen and Neuhaus [7] proposed rank tests with estimated scores that are
distribution free and sensitive to a broader range of alternatives. They also
apply their ideas to right censored survival data, see Behnen and Neuhaus [8].
Mayer [53] generalized their proceeding to weighted log-rank tests under the
two-sample problem deriving asymptotically admissible tests. In this disser-
tation, it is intended to take up the idea of Behnen and Neuhaus in order to
modify the CRM and to develop tests for an influence of covariates on the

distribution of the survival times, see Section 1.3.

Combinations of k-sample tests and the CRM were considered by Shen and
Fleming [65], who proposed a weighted mean survival test statistic for the two-
sample problem that also considers additional, concomitant covariates, and
by Heller and Venkatraman [28], who consider the k-sample problem with co-
variate adjustment in a extended CRM. They later use a kernel smoother to

derive non-parametric test statistics. The test statistics derived in this disser-

14
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tation also include k-sample tests under consideration of additional covariates

as special cases.

Summarizing, one can say that the CRM model has become very popular in
practical applications and there exists an enormous amount of literature on
the CRM and possible generalizations. Survival analysis in general is a field
of intensive research. Therefore, it is impossible to review and summarize the
literature on that subject. The previous account of the literature is supposed to
help to be sort the approach of treating the CRM suggested in this dissertation.
In the next Section the MCRM is introduced and discussed in detail.

1.3 The Modified Cox Regression Model

In the previous Section a brief account of the literature on the CRM and
some extensions of the CRM was given. Under the CRM the influence of
a certain value of the covariate on the baseline hazard is constant in time.
For time-independent covariates this means that the conditioned cumulative
hazard functions given covariate are proportional. This property of the CRM
has been regarded as one of its major drawbacks and has been the starting
point for many extensions of the CRM, see Section 1.2. In this Section, the

two-sample problem will be the starting point of our modification of the CRM.

1.3.1 Example (Continuation of Example 1.2.1). Let us consider the
two-sample problem under the CRM and explicitly assume that (T3, C;, Z;),
i = 1,...,n are stochastically independent and that F = (3’} |t e R+), J =
a(N@(s), NO(@s)|li=1,...,n, s< t). The conditional hazard rate of the
survival time T; given Z; = z is given by

1 Pao(t<T; <t+h|Z=2z)

Asalt | 2) = lim
sl ) = <11 Zi = 2)

=exp(f-2)a(t) = (1+ 8-z +o(8))a(t)
where o(+) denotes the Landau symbol. Consequently, the probability of an

individual dying in the small time interval (¢,¢ + h], if it survives longer than
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t, is given by
Poo(t<T; <t+h|T; >t Zi=z)~h-(1+p-2)alt),

so we see that the influence of the covariate, i.e. the treatment effect, is constant
in time. As we have already mentioned, this assumption is often violated in
practical applications. A way out can be the introduction of weight functions,
that determine the influence of the treatment with respect to time. This could

be done by considering the model
Poo(t <Ty <t+h|Ti>t Zi=z)~h-(1+3-2-7())alt), (1.2)

where 7 denotes a weight function. This model is quite handy to interpret.
Assume that § is non-negative, a positive value of (¢) increases, a negative
value decreases the probability of failure in the time interval (¢,¢ + h|, given
that the failure occurs after t. Moreover, one can argue that statisticians should
have an idea, if they expect short term or long term differences in the survival
times, so that they should be able to choose at least approximately a suitable

weight function ~.

Such models are well known in the theory of rank statistics, where they play
an important role in proving asymptotic optimality of linear rank tests. To
simplify matters let us assume that no right censoring is present and that the
covariates are deterministic. Let n; = 22:1 Z; and no = n — ny denote the
sizes of the first and the second sample and assume that *> — v € (0,1) as
n — oo. Given any two absolute continuous distributions P; and P, on (R, B),
one can find a parametric family of distributions Q = {Qy |V € [v —1,v]}
that comprises these distributions, more precisely Q,_, = P; and Q, = Ps.

The probability measure (g is defined by the cumulative distribution function
Fo(z) = vPi{(—00,z]} + (1 — v) P2 {(—o0, 2]}, teR.
and arbitrary Qy is given by Qo-densities of the form

Jo(x) =147 -bo Fy(x) [Qol,
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where

dP. dP;
b(u) = <(LQ?)_CLQ;) o Fyt(u), u € [0,1].

Fy 1 denotes the pseudo inverse of Fy. The function b is bounded and it holds
that f(o 1 b(s)ds = 0. This approach is described in greater detail by Behnen
and Neuhaus [7, pp. 18]. The distribution Qg is the so-called foot-point of the

distribution family and the function b describes the direction of the alternatives.

Furthermore, the distribution family 9 is Lo-differentiable at ¢ = 0 with La-
derivative bo Fy, cf. Witting [71, Definition 1.187, Beispiel 1.200]. Let us define

the sequence of rank statistics
n
Sp = ch,i : bn,Ria n €N,
i=1

where c,, ; are regression coefficients given by

ny - N2 — — .
C’I’L,i: " '{n21]l{0}(Zi)_nll]l{l}(Zi>}, ’L:l,...,n.

R; = Z?zl 1(T; < T;) are the ranks of the survival times, and b, ;, i =1,...,n

are scores. If one assumes that the scores satisfy the condition
/ (bn,LnsJ — b(s))2 ds — 0, as n — oo,
(0,1)
where |ns| denotes the integer part of ns, one can show that the sequence of

1, < 1/2
On = Sh Ugy - (/ b2(s) ds) , n — 00,
0, < (0,1)

is asymptotically optimal for the testing problem ¢ = 0 versus ¢ > 0 which is

tests

a sub-problem of the testing problem H versus X, if P, is stochastically larger
than P; with respect to the standard stochastic ordering. u, = ®~ (1 — a),
where ® denotes the cumulative distribution function of a normal distribution
with mean 0 and variance 1. Note that the statistic S,, is distribution-free under
the hypothesis of randomness H and that the optimality of the sequence of tests

does not depend on the foot-point of the parametric family, but merely depends
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on the direction of the alternatives. Thus, one can consider the rank tests ¢,
as a non-parametric procedure that in certain cases is asymptotically optimal.

More comprehensive information can be found in Neuhaus [58, Chapter 17].

In the presence of right censoring the situation becomes more delicate, since
the optimal scores also depend on the censoring distribution. Choosing optimal
scores for the rank tests proposed by Neuhaus [57] and Janssen [33] can only
be done, if one knows the distribution of the censored survival times X; =
T; A C; under ¥ = 0, i.e. the foot-point, however, their tests are distribution-
free under the hypothesis of randomness. Scores for rank tests whose optimality
only depends on the direction of the alternatives despite the presence of right

censoring were proposed by Brendel [11].

To simplify matters let us stick to the situation of no right censoring. The Lo-
differentiability of £ implies the existence of a hazard ratio derivate at ¥ = 0.

More precisely, it holds that

1/ dAy
19<dA0 1> —q, R(bo Fy), as n — oo,

where Ay(z) = f(_oo 2] {Qy([s,0)) }71 d@y and the hazard ratio derivative is
given by
f[w,oo) bo Fy(u)dQo(u)
Qo([% OO)) ’

The operator R establishes an isometry between tangents and hazard ratio

R(bo Fy)(z) =bo Fy(x) x eR.

derivatives, cf. Janssen [35]. Using this isometry we can also see, how the
model introduced in equation (1.2) and the rank test theory approach are
linked. Considering that equation, one can identify « as the hazard rate of Qg
and v as R(bo Fp).

The optimality of the rank tests for certain contiguous alternatives depends
on the right choice of b. Even though a statistician might have an idea about
the direction of the alternatives, it is impossible to know the right direction

of the alternative. Therefore, Neuhaus and Behnen [7] proposed both kernel

18



1.3 The Modified Cox Regression Model

estimators and projection estimators for the score function b. The resulting
rank test proved to be sensitive for different directions of alternatives. Behnen
and Neuhaus [8] also applied their approach to right censored data. Mayer [53]
considered some primitive projection estimator for the hazard ratio derivatives
under the two-sample model deriving projective-type tests generalizing the

well-known weighted log-rank tests.

In this dissertation it is aimed to extend the testing procedure proposed by
Mayer [53] to arbitrary covariates. And it is shown that new test statistics
depend on a multivariate generalization of statistics considered by Jones and
Crowley [39]. Basically, our test statistic is the squared norm of some prim-
itive projective-type estimator for the direction of the alternatives. In order
to construct the new test statistics, it is assumed that instead of the weight
function v = 1 determining the direction of the alternatives under the CRM
there are a finite number of weight functions specifying possible directions of
the alternatives, where we also allow the weight functions to depend on the
baseline hazard and the distribution of the censoring times. This very simple
idea leads to the modification of the CRM subject of the following text.

1.3.2 Definition (Modified Cox Regression Model). Consider the fil-
tered probability space (Q,F,F, €), where € = {Pﬁ,a |BEeR", o€ N} The
observations are given by the tuples (X;,A;,Z;), ¢ = 1,...,n, where X, :
(Q,F) — (R4,B;) denotes a censored survival time and A; : (Q,F) —
({0,1},P{0,1}) the corresponding censoring indicator. Z; = {Z;(t) | t € Ry},
Zi(t) : (2,F) — (RP,BP), is the predictable covariate process associated
with the ¢-th observation. This process is obviously F-adapted. Further-
more, it is supposed that the counting processes N(*) = {N(i) t)|te R+},
NO@#)=A; - 1(X; <t),i=1,...,n, are also adapted to the filtration F.

Assume that 78" : R, — R, v=1,...,7, u=1,...,p, are some measur-

((Iu,v) _ ’y(()u,v)

able functions. More precisely, it supposed that ~ o H,, where

,y(gu,v):[071]_)R’ 'U:].,...,'ru, u:]‘""’p7
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are measurable functions and H, is a cumulative distribution function that can
depend on the baseline hazard « and the distribution of the censoring times.
Set 7 = 3" r,. The stochastic process Z; ® 7o = {Z; ©®7a(t) | t € Ry },
defined by

T

207 = (200 701 ®) ., (2P0 70 ®)T)

is called weighted covariate process belonging to the i-th observations, i =

1,...,n, where the abbreviations 7, ., = (’y&u’l), . ,’y&u’r“))T

,yu=1,...,p,
and vy, = (7571, ... ,’yEﬁP)T are used.
Under the modified Cox Regression Model (MCRM) the dual predictable pro-

jection of N under Pg, € € is given by A(ﬂi, {A( 9 t) |t € Ry}, where

AR = YO0 (07210 7(s)) alo) d, (13)
,t

Y@ (s) = 1(X;>5s), i = 1,...,n, see Remark 1.3.3.b for a different rep-
resention of the predictable dual projection. We also use the abbreviations

N=(NM ... NM)and Agq = (AS),...,AT).

1.3.3 Remark. a) Under this model, every component of the covariate vector
is multiplied by a vector of weight functions determining the direction of
the alternatives. If one choose H, independently of o then we receive the
Cox Regression Model, whereas the covariate processes are given by Z; ©,,
i=1,...,n.

b) A perhaps more intuitive reprensentation of the predictable projection of

N under Pg,, is given by

7 (u v) u,v

A,(B,)a(t) = o Y (s) exp <Z Z Z A L) (s )) a(s)ds,
v=1

t € Ry, where B(uﬂ)) = ﬁ(Z;;l )y =1,...,ry, u=1,...,p. Never-

theless, the representation of predictable dual projection given in Defini-

tion 1.3.2 is used, as it is intended to apply the methods provided by linear

algebra.
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1.3 The Modified Cox Regression Model

¢)

(u,v

As the weight functions 7{""*) are defined on the interval [0,1] a statistician

can easily choose functions, such the influence of the covariates is appropri-
ately weighted with respect to time. The "right“ transformation of 'y(g"’v)
onto R is provided by the cumulative distribution function H,. For exam-
ple, if one thinks that a covariate mainly effects the survival time, shortly
after a subject entered the study, e.g. disease complications, then a possible

choice of weight functions could be

Wy = (1-0)" telo1],  k>1.

Furthermore, this procedure also guarantees that the testing procedures to
be developed are independent of the underlying time scale of our data i.e.
if we consider (f(X;), A, Z9), ZY) = {Zi(f@t)) [t eRY, i=1,...,n,
instead of (X;,A;,Z;), i = 1,...,n, where f : Ry — R, is a strictly
increasing function, our tests give the same result. In other words, if the
weight functions 7, are chosen independently of the baseline hazard then
a transformation of the time scale could lead to a different outcome of the

analysis.

Results by Janssen [36] suggest that any test keeping the level on the hy-
pothesis can have reasonable power only for a finite number of orthogonal
directions of alternatives. So, considering just a finite number of weight
functions is no restriction in practice. If a testing procedure is based on
kernel estimators the directions of alternatives are implicitly given by the
kernel. So, an advantage of the approach discussed in this dissertation is
that the directions of the alternatives are directly chosen by the statistician.
Additionally, the number of different directions of the alternatives can be

adjusted to the sample size.

The MCRM is a semi-parametric statistical model. The interesting parameter

[ is the parametric part and the infinitely dimensional « together with the

distribution of the censoring times form the non-parametric part. For the

further development we want to consider sequences of parametric sub-models
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1 Survival Times and Covariates

of the MCRM that we localize. Like in rank test theory it is intended to apply
results from LAN theory in order to derive some reasonable testing procedures
for the statistical questions introduced in Section 1.1. We will show that there
is no harm in considering parametric models, if these models are big enough.
This will lead to the notion of sequences of hardest parametric sub-models in
Chapter 3.

1.3.4 Definition (Parametric Sub-Model). Assume that our observations
are given by the tuples (X;,A;, Z;), i = 1,...,n, where X;, A; and Z;(¢), t €
R4, i=1,...,n, are measurable mapping on (Q, 3"). The filtered probability
space (2, F,F,P), is called g-dimensional parametric sub-model of the MCRM
with nuisance direction 7 and foot-point v, if the following conditions hold:
i) 7= HWY,...,59), where ¥*) : Ry — R, u = 1,...,q, are measurable
functions.
i) P={P: | &= (BT,n")T € R""} is a r + g-dimensional distribution fam-
ily.
iii) The dual predictable projection of the counting process N under P is
given by A¢ = (Aél), ... ,Aén)), where

@)y _ . |
A (t)—/[O,t]exp<ﬁTZz@van(s))YZ(s)an(s)d& teRy, (14

and o, (s) = exp(n3(s)) ao(s), s € Ry. The hazard rate o € N is fixed.

If instead of (1.4) it holds that

AVt = /{M exp(% BTZ;@(s) + % : nTﬁ(s))Yi(s) ao(s)ds, &Ry,

where v = ~v,,, we call the filtered probability space (Q,F,F,B) a 1/y/n-

localized, g-dimensional parametric sub-model of the MCRM.

In the further treatment, we will concentrate on 1/4/n-localized, g-dimensional
parametric sub-model of the MCRM.
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1.3 The Modified Cox Regression Model

1.3.5 Remark. a) Note that under a g-dimensional parametric sub-model the

nuisance parameter o is restricted to the space {agexp(n™?) |n e R?}.
Later we will see that completely fixing the nuisance parameter o would
not be an appropriate approach, since those sub-models do not share the
properties of the MCRM. They are too small. A complete fixing of the
nuisance parameter is equivalent to knowing the correct baseline hazard a.
This is clearly not the case under the MCRM.

Note that under the localized, g-dimensional parametric sub-model of the
MCRM we fix the weight functions. More precisely, they only depend on the
foot-point g and the distribution of the censoring times. This procedure

is justified by the localization.

The function (n,t) — exp(nT7(t)) can be replaced by any function g that

is two times continuously differentiable with respect to 77 and that satisfies

As we want to localize, only the derivatives at n = 0 are important. How-
ever, the specific form for the parametrisation is very convenient for further

treatment.

In the next Chapter sequences of localized, parametric sub-models are con-

sidered. Asymptotic normality for counting process models is introduced and

conditions implying asymptotic normality are discussed.
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2 Asymptotic Normality

In this chapter the theoretical framework is established and some important
results from martingale theory, that are frequently applied in this dissertation,
are stated. Furthermore, asymptotic normality for counting process models is
introduced and a general theorem on local asymptotic normality is presented
and discussed. Subsequently, this result is applied to sequences of localized,

g-dimensional parametric sub-models of the MCRM.

2.1 Important Results and Concepts

As we intend to consider sequences of models, the concept of convergence in
distribution plays an important role. Let the tuple (F,d) denote a metric
space, where E is some set and d is a metric on E. Furthermore, let & be
the Borel-c-algebra on (E, d), i.e. the smallest o-algebra that contains all open
sets. Assume that P,, n € Ny, are probability measures on €. We say that P,

n € N, converges weakly to Fy, if

Jr@ari@) — [1@dn@.  asn-oo,

for all real-valued, bounded and continuous functions f. Equivalent definitions
of convergence in distribution are summarized in the so-called Portmanteau

Theorem, cf. Billingsley [9, Theorem 2.1].

However, in this dissertation we are interested in sequences of random variables.

Consider a sequence of probability spaces (2, Ay, Py, ), n € N, and assume that
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2 Asymptotic Normality

X, 1 Q, — E, n € Ny, are some measurable mappings. Consequently,
P,(A) =P, {X, € A}, A€, neN,

are probability measures on €. We say X,, converges in distribution to Xy on
FE, in short X, &pn Xop, as n — oo, if the sequence P,, n € N, converges
weakly to . Note that the notation —p, means convergence in probability,

see also Appendix B.4.

Before we can state Rebolledo’s Central Limit Theorem for Local Martingales,
some more notation has to be introduced. D(]R+7 ]R) denotes the set of all func-
tions f : Ry — R that are right continuous with left hand limits. These func-
tions are called cadlag functions. Additionally, the function space D(R+,R)
can be endowed with a metrizable topology, such that D(R+,R) is a Polish
space. This topology is called Skorokhod topology. More detailed information
on this subject can be found in Jacod and Shiryaev [32, Chapter VI]. Analo-
gously, one defines D([O7 7], R), as the set of all cadlag functions f : [0,7] — R.
The space D([O,T],R) can be identified with the space D([(), 1],]1%)7 which is
also a polish space, if it is endowed with the Skorokhod topology, see Billingsley
[9, Chapter 3] for a detailed discussion. Note that 7 = oo is also possible. One
easily shows that if the sequence of processes {X,(t) |t € Ry}, n € N, con-
verges in distribution to {X () | t € Ry} on D(Ry,R) then {X,,(t) | t € [0,7]}
converges in distribution {X(t) |t € [0,7]} on D([0,7],R), 7 < co. Further-
more, the sequence of stopped processes { X,,(t A7) |t € [0,00]} converges in
distribution to {X (¢t A7) |t € [0,00]} on D([0,00],R), T < 0o. These implica-
tions are applied in the proof of Theorem 2.2.7.

An important result from weak convergence theory, which is applied again and

again, is the following replacement result.

2.1.1 Theorem. Let (Qn,i}“n,]P’n) , n € N, be some sequence of probability
spaces and let (F,d) be a polish space. Assume that

Xnk:Q — E, knelN, and Y,:Q, — E, neN,
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are F,—€ measurable, where € denotes the Borel-o-algebra on E, and that
) )
Xnr —p, X, asn—oo, and X — X, ask — oo
If for all € > 0 the condition

lim lim P, (d(X,,Ys) >€) =0

k— oo n—oo

holds then it also holds that Y, gpn X, asn — oo.
Proof. Cf. Billingsley [9, Theorem 4.2] O

Furthermore, it is assumed that all (local) (sub- / super-) martingales have
cadlag paths. For any (local) square integrable martingales M, N the processes
<M > and <M , N > denote the dual predictable variation and covariation, i.e.
<M> and <M7 N> are predictable processes, <M>(O) = <M7 N>(O) =0, and
the processes M? — (M) and M - N — (M, N) are (local) martingales. The

following result is one standard tool for analysing counting process models.

2.1.2 Theorem (Rebolledo’s Central Limit Theorem). Consider a se-
quence of filtered probability spaces (2, F,,Fn,Pn), n € N, satisfying the
usual conditions, ¢.e. the filtration F,, is increasing, right continuous and P,-
complete. The latter means that F,, and F,;, ¢ € R, contain all subsets of
P,, negligible sets. And let {M )| te R+} n € N, be a sequence of local,
square integrable F-martingales, where M, is defined on (Qn,?n). For e > 0

we define the jump process

=Y AM,()1(|AM(s)| > €), teRy,

s<t
where AM,(s) = My(s) — My(s—), My(s—) = limyys M, (u) and M,(0—) =
M,,(0). Because of the Doob-Meyer decomposition, cf. e.g. Jacod and Shiryaev
[32, Theorem I.3. 18] there exists a predictable, up to an evanescent set unique
process A°[M,,] = {A°[M,](t) | t € Ry}, such that the processes

M§1—JE[ n] — AL [My] and MZ,2:M'”_MTEL,1
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2 Asymptotic Normality

are local, square integrable F-martingales. If
<MZ1>(t) + s;lg)Kle, M§2>(8)’ —p, 0, as m — 00,
forallt > 0 and ¢ > 0, and
(M )(t) —p, A(t), as n — oo,

for all ¢ > 0, where A is a continuous, non-decreasing function with A(0) = 0,
then

M, ipn {WoA(t)|teRy}, asn — oo, on D(Ry, R).

W denotes a standard Wiener motion (Brownian motion).
Proof. See Rebolledo [61, Theorem V.1]. O

In Chapter 6 this result is used to investigate the asymptotic properties of per-
mutation tests. The following Corollary, see e.g. Fleming and Harrington [19,
Theorem 5.1.1] is an easy consequence of Rebolledo’s Central Limit Theorem.
It will play a crucial role in deriving a criterion for asymptotic normality in
counting process models. In the following we always assume that a counting
process N defined on a filtered probability space {Q, F,F, ]P’} is adapted to the
filtration, i.e. N(t) is Fy-measurable for all t € R.

2.1.3 Corollary. Let (2,,F,,F,,P,), n € N, be a sequence of filtered prob-
ability spaces satisfying the usual conditions and let N,, = (NT(LD, .. ,N,(lk”)),
Nr(f) = {N,(zi)(t) |t e R+}, i =1,...,k,, be a multivariate counting process,
i.e. none of the Ny(f), i=1,...,n, jump at the same time. The dual predictable
projection A, = (A%l),...,A%k”)) of N, where A} = {Ag)(t) |teRy)},
is assumed to have continuous paths. Furthermore, suppose that H,(f), i =
1,...,k,, n € N, are real-valued, predictable, locally bounded processes and

that for all ¢ € Ry the following conditions hold:

kn
> / (H?())* dAD (s) —p, A(t), asn — oo, (2.1)
i—1 710,]
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where A : Ry — R, is a continuous, non-decreasing function with A(0) = 0,

and

Z H(l (|H( V(s) =€) dAY(s) —p, 0, asn—oo, (2:2)
[0,¢]

for all e > 0. Using the abbreviation M\" = N{” — A% it holds that

kn
{ HD (s)dMWI(s) | t e R+} gpn {WoA(t)|teRy}, asn— oo,
[0,¢]

on D(R4,R).
Proof. See Appendix A.1. O

A very useful tool which is applied again and again is Lenglart’s domination

property. It is also essential for proving Rebolledo’s Central Limit Theorem.

2.1.4 Definition (Lenglart’s Domination Property). Assume that X =
{X(t)|teR:} and Y = {Y(t) |t € R} are two processes on the filtered
probability space (2, F,F,P), such that X is optional and Y is a predictable,
non-negative, increasing process, where Y (0) = 0. If it holds that E(X(T)) <
]E(Y(T)) for all bounded stopping times T' then X is Lenglart-dominated by
Y.

2.1.5 Theorem (Lenglart’s Inequality). Let X be a cadlag process which
is Lenglart-dominated by Y. For any stopping time 7" and any e, > 0, it
holds that

n
P(SuPogth‘X(t)‘ > 5) < - +P(Y(T) = n).
Proof. Cf. Jacod and Shiryaev [32, Lemma 1.3.30]. O

2.1.6 Corollary. Let (2, F,F,P) be a filtered probability space satisfying the
usual conditions. Suppose N = (N ... N(™) is a multivariate counting
process with dual predictable projection A = (A, ..., A(™) having continu-
ous paths. Moreover, let H(", i =1,..., n, be locally bounded and predictable
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2 Asymptotic Normality

processes. For any stopping time T, such that P{T < co} = 1, and any £, > 0,
it holds that

P (SUDogth (Zj_l 0. HO(s) dM(i)(S)) 2 > 5)
Tir(Y 0w aa (52n)

Proof. See Appendix A.2. O
2.1.7 Corollary. a) In the situation of Theorem 2.1.5, it holds that
P (5P coc X (1)] 2 2) < T +B(Y(00) 2 1),

where Y (00) = limy; . Y (%), for all n,e > 0.
b) In the situation of Corollary 2.1.6, it holds that

P <Sup0<t<oo (Zj_l HO(s) dM<i>(s))2 > 5>
Tir(X, [, 0@ a10) 2 1)

for all n,e > 0.

Proof. In both cases, choose the stopping times T,, = 7, € Ry, n € N, such
that T}, T oo and apply Theorem 2.1.5 or Corollary 2.1.6 with T},. Considering

Corollary 2.1.7.a this means

Pr = B(supocicr, [X(0)] 2 €) < L+ B(Y(T) 2 7).

Using the Monotone Convergence Theorem yields p,1 < 2 + IP(Y(oo) > 77).
Applying the Monotone Convergence Theorem again establishes the result.

Corollary 2.1.7.b is shown completely analogously. O

To show the asymptotic equivalence of certain sequences of random variables,
the following Lemma will play a crucial role. It is an immediate consequence

of the previous results.
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2.1.8 Lemma. Let (Q,,%,,F,,P,), n € N, be a sequence of filtered prob-
ability spaces satisfying the usual conditions and let I(¢) denote the interval
[0,t], if ¢ < oo, or [0,00), if ¢ = co. The dual predictable projection A, =
(A,(zl), el A%k")) of the multivariate counting process N,, = (Ny(ll), o 7NT(Lk”))
is assumed to have continuous paths. Moreover, let Hy(f), i=1,...,k, be

locally bounded and predictable processes. The condition

Z/ H(l) A(Z)< ) P 0, as n — oo,
I(7)

implies

Z (s)dM) (s) —p, 0 as n — 0o,
I(‘r
where Mr(li) = Nr(f) — Agf), i=1,...,k,, n €N,

Proof. Assume ¢, > 0. Applying Corollary 2.1.6 or Corollary 2.1.7 gives the

)
<P (Suptem) <Z / H{ (s) dMD (s ))2 > 52>
+]P>n <ZZ 1/ (HO (5))? dAD () > n).

Consequently, limsup,,_, ., P (|Zl 1f0 0.7] H() dM( )( )| > 5) <Z,nl0
establishes the result. O

estimate

(%

5) dMP(s)| >

I(T)

2.2 A General Result on Asymptotic Normality

In this Section, asymptotic normality for counting process models is estab-

lished. First, let us introduce some general premises.
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2.2.1 Assumption. Let (Qn,ITn,Fn ={F,.|te R+},‘Bn), n € N, be a se-
quence of filtered probability spaces and suppose that the following conditions
hold.

i) The filtrations satisfy the condition F,, = F,, o = \/t20 Tt

i) P, = {ng | €€ Rm} is a family of probability measures defined on the o-
algebra JF,,. Let Pffé denote the restriction of the probability measure P, ¢
to the sigma-algebra F, ;, ¢t € [0, 00], i.e. P(t) (F)=Ppe(F), FeT,,. It
is assumed that P(O) P(O for all £ € R™.

ili) &, and F, 4, t € Ry are P, o-complete.

iv) Pp¢ < Py, for all { € R™.

v) Let N, = (N,Sl)7 o Nflk"))T and N'n = (Ny(ll), .. J\Nﬂ(lk"))T be two counting
processes, such that (NT, NT)T is a multivariate counting process.

vi) N,gf) + ZV,(LZ) < 1 P,p-almost surely and fo)(O) = ]\ny(f) (0) =0, i =
1,...,k,. The latter means that no events occur at time 0.

vii) Let §G,, be some o-algebra and assume that ¥, ; = G,, VN, ;, where N,, ; =
a{N(s), No(s) | s < t}, t € Ry. Usually, G, contains all subsets of P, o

negligible sets and the information on the covariates.

viii) The dual predictable projection of the counting processes Ny(f) under the

probability measure P, ¢ is given by

)

AD () = /[0 ]Yn(i)(s) oll(s)ds,  teRy,
t

where V") = {V,(V(s) | s e Ry}, Vi) (s) = 1— (N,(f)(s—) + N (s=)) and

( ) Y(Z) {asf)é (l) t)|te R+} 1 =1,...,n, are some non-negative,
predlctable processes. Furthermore, suppose that aff))o (s) = 0 implies

asﬁ)é(s) =0 for all £ € R™.

ix) The dual predictable projection of the counting processes ]vr(f) under the

probability measure P, ¢ is given by

ADW = [ Y (s)a)(s)ds,  tERy,
0.1
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where &) v;{" = {an’( DY@ | te R}, i=1,...,n, are non-negative,

predictable processes, and Y,g ) is defined in vnl).

The existence of filtered probability spaces satisfying these assumptions is dis-

cussed later in the context of examples, see Section 5.1.

The processes N,, and Nn are supposed to coincide with the processes defined
in Section 1.2 (page 6). fo) is a counting process associated with some survival
time. A jump only occurs, if the survival time is observed. Analogously, ]\77(11)
is a counting process associated with the corresponding censoring time. The
requirement N,(f) + Nr(f) < 1 guarantees that only the survival time or the

censoring time is observed.

The conditions imposed on the processes O‘Ei)s and aﬁf ) are very natural, if one
keeps in mind that the paths of these processes are supposed to be hazard rates
of some measure on B,. The assumption that the processes are predictable
guarantees that every path is a BB, measurable function. The implica-
tion stated in Assumption 2.2.1.viii reflects Assumption 2.2.1.iv. Before we
give some more remarks on these assumptions, let us introduce a notion of

asymptotic normality for counting process models.

2.2.2 Definition (Asymptotic Normality). a) A sequence of filtered prob-
ability spaces (Qn, Fn,Fu, 33”), n € N, is said to be asymptotically normal
restricted to the time t € (0, 0c0] with positive semi-definite asymptotic in-

formation matrix _#Z (t) € R™>*™, if

(t)

log 8 — €75(1) + 3677 (W)€ —p,, 0, forall§ R,

where S,,(t) is F,, (-measurable and S, (t) —>p o N(0, Z(t)) as n — oo.

Sp(t), n € N, is called central sequence.

b) A sequence of filtered probability spaces is said to be asymptotically normal,

if it is asymptotically normal restricted to the time oc.
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2.2.3 Remark. a) Restricting the sequence of filtered probability spaces to
time ¢ means for a statistical experiment that we only consider the informa-
tion up to time £. At this point Definition 2.2.2 pays tribute to the fact that
it is often easier to consider counting process models on compact intervals
[0,t] rather than on R.

b) If X,, is &, ;-measurable for all n € N, then X, ip e X, a8 n — 00,

and X, 2, pty X, as n — oo are equivalent. If additionally Y, is also
n. W€

Fn,t—measurable for all n € N, then X,, —Y,, —p, . 0, asn — oo, and

X, —-Y, — ) 0, as n — oo are also equivalent.
g

¢) Asymptotic normality yields that

logdP{")/dP") = = p0) N(— gT (), €T F(t)¢)  forall € € R™.

Moreover, the First Le Cam Lemma, cf. Witting and Miiller-Funk [72, Ko-
rollar 6.124], gives that the sequences of probability measures {P(t) |neN }
and {P(to | n € N} are mutual contiguous. In particular convergence in

P,(L%—probablhty implies convergence in P( _¢-probability.

One can think of the quantities depending on ¢ in the previous definition,
especially dP /dP t()) and S, (¢), t € Ry, as stochastic processes. This leads

to the mtroductlon of the density process.

2.2.4 Definition (Density Process). The process

dP(t)
The= {Tmf(t) = qP (t) ‘ te R+}

is called the density process of P, ¢ with respect to P, q.

Assumption 2.2.1.i guarantees that the probability measure P, ¢ can be ap-
proximated by Pr(fé for sufficiently large t. More precisely, this condition en-
ables us to approximate the likelihood dP, ¢/dP, ¢ by the density process, see

Proposition 2.2.5. This is an essential step in proving asymptotic normality.
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In the case of external covariates, Assumption 2.2.1.ii means that the distri-
bution of the covariates does not depend on the underlying probability distri-
bution. This property reflects the notion of external covariates presented in
Section 1.1. In this context Assumption 2.2.1.vii seems to be very restrictive,
but it is necessary to ensure that the density process can be represented by the
processes N,, and ]\~fn. However, this type of filtration is only needed for the
proofs. The following Proposition is a specialisation of a well-known result by
Jacod, cf. Jacod [30] or Jacod and Shiryaev [32, Theorem IIL.5.19].

2.2.5 Proposition (Jacod’s Formula for the Density Process). Let I(¢)
be the interval [0,¢], if t € Ry, or [0,00), if t = co. Under Assumption 2.2.1, it
holds that

The(t) =

exp( o 1fl(t) (s) ozmE s) s)

exp(—Zf 1 I()Y( 0‘1(11)0 (s)ds

for the density process T, ¢

Proof. First of all we note that the filtration I, is increasing and right con-
tinuous, see Proposition B.5.1. Let us start with finite ¢. We use the notions
presented in Jacod and Shiryaev [32, Chapter II, Chapter III], especially we
intend to apply Theorem II1.5.19. Assumption 2.2.1.iv gives that Pét% < PT(:())
for all t € Ry.

The first and the second characteristic of the process X, = (N, ]\7;F )T can
be chosen identically as 0, cf. Jacod and Shiryaev [32, Definition I1.2.6, For-
mula I1.3.22]. Setting e,, ; = (01,5, ..., 02k,;), where §; ; denotes the Kronecker
symbol (d; ; = 1 (0), if and only if s = j (i # j)), we can represent the multi-
variate point process associated to the jumps of X,, as follows:

kn
Mn([07t]7 B) = Z]lB(enz N(1 Z]IB €n kn-i-z N’I’(Lz)(t)7 B e Ban7

i=1
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where we use the fact that X, is a multivariate counting process. See Ja-
cod and Shiryaev [32, Proposition I1.1.16 and Definition I11.1.23] for detailed

information.

Clearly, p,, is a integer-valued random measure, cf. Jacod and Shiryaev (32,
Definition I1.1.13, Proposition II.1.16]. Using the fact that N A(Zf and
N,(Li) — ESZ) are local martingales, we get that the third characteristic of X,
under P, ¢ is given by

kn _ ko _
v ([0.1], B) = Z L (en,:) 'AS,)é(t) + Z 15 (€nk,+i) -AD(t), BeB*n,

i=1
where we use Theorem 1.3.18 and Theorem I1.1.8.ii of Jacod and Shiryaev [32].
By Girsanov’s Theorem, cf. Jacod and Shiryaev [32, Theorem II1.3.24], we
know that there exists a function U, ¢, such that Uy, ¢(w,t, x) - vpo(w,ds,dz) =

Un,¢(w,ds,dx). This function is obviously given by
Az =eni)+1(z €{en; |j=kn+1,...,2kn}).

We see that vy, (w,{t},R?**») = 0. Evaluating formula II1.5.7 in Jacod and
Shiryaev [32] gives that

Hye(w, t) = / (1 - Unﬁg(w,s,x)) Un,e(w, ds, dz)
[0,¢] X R2kn

- Z /H (1 —follkw.9) /o, s>)2 Y (w, 5) ol (w,s) ds.

The process Hy, ¢ does not jump to infinity, cf. Jacod and Shiryaev [32, Defini-
tion IT1.5.8], and therefore the condition (ii) of Corollary II1.5.22 in Jacod and
Shiryaev [32] is satisfied.

In particular, all local martingales have representation property relative to i,
cf. Jacod and Shiryaev [32, Condition ITI.1.25, Equation I11.4.35]. It holds that
T, ¢(0) = 1 because of Assumption 2.2.1.ii. Evaluation of formula III1.5.23 in

Jacod and Shiryaev [32] gives the assertion for finite ¢.

36



2.2 A General Result on Asymptotic Normality

In the next step the result is extended to t = oo. Because of Assump-
tion 2.2.1.iv, Jacod and Shiryaev [32, Proposition II1.3.5] give that the den-
sity process is a uniformly integrable martingale, i.e. there exists a integrable
random variable T, ¢(c0), such that E[Y, ¢(c0) | F,:] = Ty e(t). Moreover,
it holds that Y, ¢(c0) = limy_.o Yy e(t) Py o-almost surely, cf. Jacod and
Shiryaev [32, Theorem 1.1.42]. &, = F, » is generated by Ut>0 nt- Note
that for all A, B € Ut>0 n,t We have AN B € Ut>0 nt- For B € Fy it holds
that

/ Tn,g(oo) dPn,O = / Tn)g(t) dPn’o
B B

:/ Yoe(t)d ,gg_/ 1de2_/ 1dP, .
B B

Thus, 1), ¢(00) is a version of the density of P, ¢ with respect to P, . O

2.2.6 Remark. In particular, this result means that the censoring mechanism
is non-informative in the sense of Andersen et al. [4, Definition I11.2.2]. But

now let us concentrate on the main result of this section.

2.2.7 Theorem. Let I(t) be the interval [0,¢], if ¢ < oo, or the interval [0, c0),
if t = co. For fixed 7 € (0,00] let # : I(t) — R™*™ be a continuous
function, such that #(0) = 0 and that the matrix _#(t) is positive semi-
definite and symmetric for all ¢ € I(7). Moreover, assume that the mappings
I I(1) — Ry, t— & 7 ()€, € € R™, are non-decreasing and continuous.
In the case of 7 = 00, it is supposed that ¢ (c0) = lim;_,oc _Z (t) < 00. Clearly,

7 (00) is positive semi-definite. Abbreviating )\Ei)o =Y,® 0‘5:,)0 and

£ s) =

we suppose that the processes {a(z) )/a o(t )Y,Si) () [teRy}, i=1,... kn,
are predictable and locally bounded and that Assumption 2.2.1 and the follow-
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2 Asymptotic Normality

ing conditions hold:

2"3 / S I A ds o, €O (23
and
Z [, BP0 > 9 My ds —r,0 @

for all t € [O,T], £, € R™ and € > 0. Then we have

sup
tel(r)

log Y1) + 3 F(1) —22 / F0s)aMl)| —p, 0, (25)

where Mr%(s) = N,(f)(s) - Ag,o(s), 1=1,...,kp, and

{22 / (s) )
I(tAT) mt

on D(R,R) implying

teR+} Poo{Wo Ze(tAT) |t ER,}

(2.6)

{log T (t A7) |t € Ry} o, JWo et A7) - %jg(t Am) |t e Ry}

(2.7
on D(R4,R). Especially, it holds that
log Te(7) + 5 Fe(r) - 22 [ Sl —n0 @)
and
22 / (5)dM) Zop, N(0, Ze(7)). (2.9)
As a consequence of the previous implications we get that
(108 Trgy (1), - log Yo, (1) —p, N(—%g(T), 7@),  (210)

where

S = (6,0 &) (D€, &), €y b ERT,
o(1) = (LEV(7),...,. 20 (7) " and r € N.
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2.3 Asymptotic Normality for Parametric Sub-Models

Proof. See Appendix A.3. O

2.2.8 Remark. a) Theorem 2.2.7 is a version of a Theorem stated by Ander-

sen et al. [4, Theorem VIIL.2.1], (2.3) and (2.4) imply (2.10). Unfortunately,
they do not present a proof of this theorem, but they accredit this Theorem
to Jacod and Shiryaev [32, Theorem X.1.12]. The Theorem of Jacod and
Shiryaev gives a sufficient and necessary condition for (2.7). However, the
conditions stated there do not coincide with (2.3) and (2.4). Therefore, a
proof of Theorem 2.2.7 is presented in the Appendix.

Equation (2.10) could also be used as a definition of the asymptotic normal-
ity, since equation (2.10) implies that the sequence of filtered probability

spaces is asymptotically normal restricted to time 7 in the sense of Defi-

nition 2.2.2. This can be see as follows. Set e, = (duﬂ,, v=1,... ,m)T,
u=1,...,m, where J, , denotes the Kronecker symbol. If one sets
T 1
Sn(T) = (log The (7)., log e, (T)) + §§(T), n €N,

one readily shows using equation (2.10) that S, (7) is a central sequence,
where one uses that convergence in distribution to some constant implies
convergence in probability to that constant cf. Witting and Miiller-Funk
[72, Hilfssatz 5.82].

If (2.3) only holds for & = &', then Theorem 2.2.7 stays valid except that
assertion (2.10) only holds for r = 1.

2.3 Asymptotic Normality for Parametric

Sub-Models

In the next Section the main result of Section 2.2 is applied to sequences of

parametric sub-models providing the first key result for the further analysis of

the MCRM. Initially, let us introduce some general premises.
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2 Asymptotic Normality

2.3.1 Assumption. i) The measurable, non-negative function ay € N is

called baseline hazard. Moreover, we set

T()—Sup{t€R+ ‘ / ds<oo}
[0,t]

ii) Suppose that aif)g(s) = exp(% Ty, (s )) ag(s), i = 1,...,n, and that
the processes {¥,, ;(s ( )| s€Ry}, i =1,...,n are predictable and
locally bounded.

i) supyeqo.q] 2 Yimy UL () U () Vi (1) = WD (1)) —p, , 0, s n — oo,
where \I/(“ v) is some measurable function that is bounded on every interval

of the form [0,t], u,v =1,...,m, for all ¢t < 79.

V) SUD;c(1, . n}.selo t]{T 1I<nuab<xm| U () Vi )|} —p,o 0, as n — oo, for

all t < 7p.

2.3.2 Remark. In Assumption 2.3.1 we consider the supremum of uncount-
ably many random variables. This supremum is not necessarily a random
variable, i.e. a measurable mapping. In the following we always assume that
all suprema of uncountable many random variables are measurable. This ques-
tion will be discussed in Chapter 5. See Proposition B.5.5.a for some condition

guaranteeing the measurability.

2.3.3 Theorem. Let I(t) denote the interval [0,¢], if ¢ < oo, or [0,00), if
t = co. Under Assumption 2.2.1 and Assumption 2.3.1 the sequence of filtered
spaces (Qn, Fn, Fa, 2]3n), n € N, is asymptotically normal restricted to time 7
with asymptotic information matrix # (1) = (_#“¥)(7)), where

g (r) = / O (s)ag(s)ds, w,v=1,...,m,
I(1)
for all 7 < 19. Moreover, it holds that

1 i
10ng,£(T)+§€T § 22/ R Z) S 5 —1dM, 7(L)0( ) —7Pno Oa (211)

)
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2.3 Asymptotic Normality for Parametric Sub-Models

where R\ (s,€) = exp(ﬁfT\I'mi(s) Yrgi)(s)) and M % = AgLO, =
1,...,n. A central sequence is given by

T
1 (< :
Sp(r) = — / v (s)dM ) (s), u=1,...,m| . (2.12)
vn (ZZ: (r ?
If additionally ¢ (19) = lims—.,, 7 (t) exists and the conditions

) =0, (2.13)

where Vit (s,6,¢") = (RY(5,€) — 1) (RY (5,6) — 1), AUy (5) = Vit (s) ao(s),

and

lim limsumeO( (s,6,6) X @ no(s)ds| >

t—=7T0 pooo

(t T())

—70 n—oo

lim limsup P, o (

o R

hold for all € > 0, then the above assertions also hold for 7.

> 5> =0 (214)

Proof. Note that the processes {a(z) t)|te R+} i=1,...,n, £ € R™, are

L

predictable and that the processes

a(i) (t)

YO@)|[teRyy, i=1,...,n, £€R™,
(l) (1)

are predictable and locally bounded, cf. Proposition B.5.3, where we set 0/0 =

0. We want to apply Theorem 2.2.7. First, it is verified that the condition (2.3),

i.e.
n

s ds — T !
Z;/I(t) D(s,6,6) AUy (5) P 5/(75)5

holds for all £,&’ € R™ and t € [0, 7].

Proof of (2.3). For the functions Rgf ) we want to compute a Taylor-expansion

in £ with fixed s. The Jacobian and the Hessian matrix of Rﬁf ) are given by

VR (5.6) = 5= R (5.€) - W, i(5) Vit (s) and VIRV (s,€) = &R (5,€)

2y/n
i) Wy (s )Y{)(s). Therefore, a Taylor-expansion at the point & = 0 gives
i ET00(s) L i 2 i
RV (s,&)—1= < s T am R (5,6n,:(5)) (€7 i(s))” |V, (s), (2.15)
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2 Asymptotic Normality

|€n.i(s)] € 10,€] = X121 [0,16@]], and that the right hand side of (2.3) is equal
to TSV (¢) + T2 (¢) + T2 (¢) + TV (¢), where

T () / €T, i(s) - UL (s) € AP (5) ds,
o 4nZ A(8) € No(s)
1 T : :
100 = [ 1 > €6 Q) AT s,
(1) 167%/2 ; 7 ¢ .

1 n
TO (¢ :/ 3T, i(5) QU (5) AV (5) ds,
(1) (t)mng/g_ #(8) @i (8) A o(9)

T4 / @ ( ()2
n (t) ) 64n2 ZQ ,€ Qn§ ( ) n, 0( )dS
using the abbreviation
7 i 2 i
Qplk() = B (5,60,4(5)) (€7 0ni(5)" Y ()

In the following we are going to use the abbreviations %, (t) = (@,(Lu’v) ()

u,v =1,...,m, where

750)(t) = sup
s€[0,t]1 T

1 u v 7 U,V
Z\M( )U)(5) Y (5) — w0 (s)
=1

and €] = (J€M],..., €™ )". Note that Assumption 2.3.1.iii implies
" 2,(t)¢( —p,, 0 forall ¢, € R™. (2.16)

Because of the estimate

TO(t) — 5 ()¢
12 g I()\ S ) 0 ¥O(5) - 10 6] ag(s) ds
u,v=1 =1
1,1 ,
< Z‘§| @n(t)|§ ‘ . /I(t) ag(s)ds,
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2.3 Asymptotic Normality for Parametric Sub-Models

Assumption 2.3.1.i and (2.16) directly imply TT(ll)( t) —poo 1T 7 ()€, There-
fore, it remains to be shown that T (t), i = 2,3,4, converge to 0 in P, o-
probability. Note that in the following sup; ; = sup;<;<y scjo,- Because of
&n,i(s) € [0,€] it holds that

sup
7,8

g () YO (5)] < sp o M Z\f RISHOMNO

<ec- sup—Z] (u) )|

1 .
< _— (%)
m-c- blusp Tn 1I<r71$a<xm| s) Y, (s)|,
where ¢ = max1§u§m|§(“)|. Assumption 2.3.1.iv gives
1 .
sup 7§n,i(3)T\Pn,i(3) Yrgl)(s)’ —p,, 0 and SUPR ( €n,i(8)) — P L
] 2\/5 0,8
(2.17)
One easily obtains that
T(2 < sup’ / (Z l) (s)ds
| 2\f I(t) ; ’E
< sp R (1 (1) p € T s >Y<“<s>\
/ Z (€7Wn()) Ay (s) s
HORL ’
(2.18)

<sup R (s,&.i(5)) -

1,8

& 0,i(5) V()]

X <I£|T@n|£| : /m) ap(s) ds + SIT/(t)ISI)

Assumption 2.3.1., (2.16) and (2.17) imply TT(L2)(t) —p,, 0. By a similar
estimate one shows T,(LS)( t) —p,, 0.

In a last step we show T,(l ) —p,, 0. First, note that (2.17) implies

SU.p §n ’L( (S) Yéz) (8) ——Ppno 07 (219)

v
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2 Asymptotic Normality

then (2.16), (2.17) and (2.19) using the estimate

T00)] < g sup B (0,4,(5) - sup R s, ()

& T (i
/f(t) n? Z (€7 Wil (€T, (s )? Apo(s)ds <
(2.20)

- /T\Ifn 1( )Y(i)(S)r

%supRl)(t £i(5)) S}IPRS)(&fn,i(S))

x (|5| Z(t)l€] / ol eI /<t>|5|)

give the assertion and therefore condition (2.3) holds. The second condition to
verify is (2.4), i.e

Z (D (5,6) = 1)" 1(|RD(5,€) = 1] > £) ALy (s)ds —p, , 0
()

for all t € [0,7] and for all € > 0. Again, a Taylor-expansion gives that the
right hand side of (2.4) equals Tfllg) (t) + 2T,(L,25) (t) + Tf{gg) (t), where

T (1) / o Z (€70, .1(5))* T(|RY (5,€) — 1] > &) AUy (5) ds,

T’rg?s (t) = / 16’17,3/2 ZQ §T\Ijn z (|R - 1| > 8) /\5;)0(5) dS,

1 i 1 [
70 - [ )  (@UV(5))” 1(|RD(5,6) — 1] > &) AF) (s) .
It holds the estimates

| n2e) <§up’2ffT nyi Y(Z / ZQ( A’SL)O (s)ds,

and

T)(1) / )29, (s)d
’ 1) 64n2 Z Q nO( ) S.

Now, (2.18) and (2.20) (with & = £) give that T2 (1) —p, , 0, i = 2,3. Thus,
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2.3 Asymptotic Normality for Parametric Sub-Models

it merely remains to be proved that Télg) (t) —p,, 0. Applying a Taylor-

expansion to the function in the indicator function and using the abbreviation

(4)
C—sup 2\/>§ U,.i(s) Y, (s)‘
+5p R (5, ,(5) - 50567 00i(5) YO(5)|
one gets
IT((t)] < 1(C >¢) - /m) %Z(ngpn,i(s))“’ AV(s) ds. (2.21)
=1

Note that 1(C' > &) —p, , 0 because of (2.17) and (2.19). The estimate (2.21)
gives Tﬁble) (t) —p,, 0. Thus, (2.4) also holds. The matrix ¢ (t) is obviously

symmetric. Because of

Z (R{V(s,6) —1)*A%(5)ds > 0 for all n € N and £ € R™
I0)
and the convergence in (2.3), it holds that ¢ (t) is positive semi-definite. The-
orem 2.2.7 implies (2.11).

We show that S,, is indeed a central sequence. A Taylor expansion, cf. (2.15),

gives

22 / —1aMY)(s) Z €7, 4(5) Y, (5) AMLY (5)

I(7)
_TL Z /I ( )Rn,i(s,gn,i(s)) (€T W,0(5)) YD (5) AM) (5).
=1 T

We want to apply Lemma 2.1.8. R, ;(s,&n.:(8)) - (ﬁT\Iln,i(s)fY,Ei)(s), i =
1,...,n, are predictable and locally bounded because of (2.15).

The estimate

i 2 (¢T 4, @) 4
og/lm 16”22 (RO (5,€04(5)))% (€70 4(5)) A0 () ds < AT (7)
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2 Asymptotic Normality

and T3 (1) —p,, 0 (€ =€) yield that 257, [, — 1dMU)(s)
and ¢TS,,(7) are asymptotically equivalent. We know that §TS»,L(T) 2, Puo

N(O,ﬁT/(T)f), for all £ € R™. By applying the Cramér-Wold-device, cf.
Billingsley [9, Theorem 7.7], one obtains that S, is a central sequence. Up
to now, it was shown that (QH,S’H,FR,‘BH), n € N, restricted to time 7 is

asymptotically normal.

In order to proof the last assertion one uses Theorem 2.1.1 to show that (2.3)
and (2.4) also hold for 79. Assume that 7, < 79, k¥ € N, and limg_,o, 7 = 70.
Set

Xk = Z/ (R (5,6) — 1) (B (5.€") — 1) ALy (s) ds,

I(7x)

Xn = Z~/I(To) (R%)(&E) - 1) (RS)<S>§/) - 1) )‘gzi,)o(s) ds,

Xi = LT 7 (7)€ and X = L¢T g (7)€", We showed that X, ——p, , X,
as n — oo, and obviously it holds that Xj gpmo X asn — oco. As we
assumed that

hm limsup P, 0(’Xn v — X, ‘ > (5) =0 (2.22)

for all § > 0, it follows that (2.3) also holds for 79. With a similar consideration
one shows that (2.4) holds. Set

“’“‘Z/W (B (5,6 = 1) L(|RY (5.€) — 1 > €) Ay (s) ds,

-3 =) 1A 1] A0 as
I(T10)
and X} =0 and X’ = 0. Because of
P’n,O(‘X’,{L,k - Xu > 5) < Pn,O(an}k — )Z'n| > 5) (with & = 5/),

(2.22) and Theorem 2.1.1 give that (2.4) also holds for 79. Applying Theo-
rem 2.2.7 yields that the assertions also hold for 7y except (2.12).
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2.3 Asymptotic Normality for Parametric Sub-Models

In the last step we show that Pn,O(lgn,f(TO) — fTSn(TQ)‘ > 5) — 0, as n — oo.
It holds that

Proo(|Sn,e(70) = €7 Sn(70)] > €) < Poo(|Sng(70) = Sne(7)] > £/3)+
Pn,O(lgn,f(T) - gTSn(T)‘ > 5/3) + Pn,0(|£TSn(T) - fTSn(TO)‘ > 5/3)7

where §n§( =2%", f](t) ) —1 er(L 2)( ). It was already shown that
the second summand on the rlght hand side converges to 0 as n — oco. There-
fore, there remains to be shown that the first and the third summand on the
right hand side get arbitrarily small. For all n > 0 we can choose 7 € R, such
that he = n/4 — 7 (7 (10) — #(1))€/4 > 0 and

n—oo

limsuan,()(’ Z/ § U, ))2 AS,)O(S) ds
TTO

> n) <9n/e?, (2.23)

where we use equation (2.14).

Applying Corollary 2.1.7 to the first summand gives

- +Pn,o( o B ) X ds > n/4) <
T,7T0

/I( (R (s,6) — 1) A0 ()ds—fo(T)§/4’Zhs/2)

(’)s — () s — To
Z/w (RO(s,€) — 1)° ALy (s)ds — €7 7 ( )6/4‘>hs/2)

+Pn,0<

We get that limsup,,_, P,L’O(}gné(’ro) - §n5(7)| >¢/3) < 9n/e?, since (2.3)
holds for all ¢ € [0, 79]. Again, applying Corollary 2.1.7 to the third summand

gives
=)
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2 Asymptotic Normality

Thus, it holds that limsup,, .. Pno(|€T5,(7) — TS, (10)| = €/3) < 18n/e?,
where we use (2.23). All in all, we proved that

. 5 27
lim sup Pn’()(‘sn’g(To) - §TSn’5(TO)’ > 5) < —
n— 00 3
using the fact that n was arbitrarily chosen, the result is our assertion. O

The next result gives the asymptotic distribution of a central sequence under

alternatives.

2.3.4 Corollary. In the situation of Theorem 2.3.3, it holds that

D

Su(1) —p, e N ()€, 7 (7).

Proof. As S,(7), n € N is a central sequence, we know by applying the
Cramér-Wold device, cf. Witting and Miiller-Funk [72, Korollar 5.69], that
978, (1) =5, , N(0,9T_79) for all ¥ € R™, therefore it holds that

G (€°8u(r) — 5€" £ () + G Su(r)
= (G 6+ G9) ") - 5GE" £ (7)€
D

2 N(—56E" £, (G E+ G0 ()G €+ G )

for all (¢1,¢2)" € R?, where we applied Slutsky’s Lemma, cf. Witting and
Miiller-Funk [72, Korollar 5.84]. Noting that

Qo T, 6() + Gi7S, ~ (1 (€75, - 567 7€) + @IS, ) 0

and applying the Cramér-Wold device yields

logToe(r)) o [ (—3T7€) (€Fr¢ v r¢
IS, (1) Fro o ) \wT ge v go))

Le Cam’s Third Lemma, cf. Witting and Miiller-Funk [72, Korollar 6.139],
implies 975, (1) —p, . N(@T_g&97_g9) for all ¥ € R™. Applying the

Cramér-Wold device gives the second assertion. O
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2.3 Asymptotic Normality for Parametric Sub-Models

2.3.5 Remark. In the proof of Theorem 2.3.3 we merely use the fact that
that the exponential function is two times continuously differentiable with the
Taylor expansion exp(z) = 14+2+0(2?) at the point 29 = 0. Therefore, we can
substitute the exponential function by any strictly positive function g that is
two times continuously differentiable with the Taylor expansion g(x) = 1+ 2z +
O(2?) in the point xo = 0. In order to receive some suitable stochastic ordering
one should also demand that this function is monotone. In the subsequent
considerations we only employ the just mentioned properties of the exponential

function.

Now, it is intended to apply the previous result to localized, g-dimensional
parametric sub-models, i.e. Definition 1.3.4 holds for all n € N. In particular,

this means that

i 1 1 ~
allk(e) = exp( 7= - 0720 045+ a9 Janls) s € R,
i=1,...,n, where Z, ; denotes the covariate process of the i-th observation.

However, we have to introduce some more notions and assumptions. The fol-

lowing Definition will play a central role in Chapter 3.

2.3.6 Definition (Parametric Sub-Sub-Model). a) Let
Q= {Qn,g ‘ E: (GTaﬁT)v B € RF, UAS Rq} C B

be a family of probability measures, 1 < 7 < r and 1 < g < ¢. If there
exists two matrices 71 € R™*" and Z € R7*7, such that under @, ¢ the

counting process NN, has the F,,-compensator A,, 5z, where

T = S0 eR(T-&-q)X(?"-&-Q)’
0 %

for all £ € R™7, then we call (Qy,,5,,F,,Qy) a (7, q)-sub-sub-model of
the localized, g-dimensional parametric sub-model (Qn,fr"n,]Fn,‘Bn) with

transformation-matrix 7.
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2 Asymptotic Normality

b) Assume that (Qn,fr"n,Fn,Dn) is a (7, q)-sub-sub-model with transformation-
matrix .7 for all n € N. Then the sequence (Qy,,F,,F,,Q,), n € N, is

called a sequence of (7, g)-sub-sub-models with transformation-matrix 7.

In this Definition we allow the interesting parameter § and the nuisance pa-
rameter 1 only to vary in the subspaces given by the matrices 77 and .
In other words some additional restrictions are imposed on the parameters.
These restrictions mean that we also have some more information on the pa-
rameter. Considering sequences of sub-sub-models turns out to be important
for determining sequences of so-called hardest parametric sub-models of the
MCRM. These sequences share some nice properties and enable us to derive a
suitable statistic on which we can base the testing on . However, before we

can proceed we need some more notation.

2.3.7 Definition. a) We agree that

-1 l u—1
=1, ierU<u§er,l€{1,...,p}, and ilzu—Zm,
v=1 v=1 v=1

for 1 < w < r where the r,’s were introduced in Definition 1.3.2. The

functions @ and # are called index functions.

b) In the following we use the abbreviations

MnO ZY

Fin (5) =gzzg,2<sm< )(s), W=1....p,
=1
A(u v) Zz(u Z(v )Yni)(8)7 wo=1,...,p.

2.3.8 Remark. a) Definition 2.3.7.a enables us to easily determine the weight
function () corresponding with "), u € {1,...,r}. The index functions

help us to keep the notation simple, see also Remark 1.3.3.b.
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2.3 Asymptotic Normality for Parametric Sub-Models

b) The quantities of Definition 2.3.7.b will be crucial for the further treat-
ment of the MCRM. [i, o is an estimator of the survival function of the
censored survival times. [i,1 and fi, 2 are basically estimators of the mo-
ments of covariates. However, these estimators only use the covariates of
the individuals that are still at-risk, i.e. they only depend on observations
that are available. Note that fi, o(s) = 0 always implies that ﬁﬁui( ) =0,
u=1,...,p. Using the definition 0/0 = 0 gives that the fraction Mn,l/ﬁn,o

is always defined.

2.3.9 Assumption. The functions g, ,ugu) and ,uéu’v), w,v = 1,...,p, are

measurable and real-valued. Furthermore, it is assumed that

i) 70 = sup{t e Ry | f[o " ap(s)ds < oo}, where ap € N is a measurable,

non-negative function called baseline hazard.

ii) The processes {Z(u Yn(i)(s) | s € R+}, u=1,...,p,i=1,...,n,n €N,
are predictable and locally bounded.

iii) 1o, §" and p

all t < 9.

(u.v) , u,v =1,...,p, are bounded on every interval [0, ¢] for
iv) sup,eo |in,0(s) = po(s)| —p,, 0 for all t < 7.
V) SUP,cpo,q |ZZ£Lui(s) - /,Lgu)(s)| —p,o 0forallu=1,...,pand t < 7.

(u,v)

ﬁgf’;)(s) — py"" (s)‘ —p,, 0forallu,v=1,...,pand t <7,

Vi) sup,efo g

max }Z(u) 75)(5)’} —p,, 0 forall t < 7.

V11) SUPjic{1,...,n}, s€[0,t] { vn 1<u<p

viii) The real-valued functions A% 4y =1,...,r, are bounded on every inter-

val [0,¢] for all ¢ < 7.

ix) The real-valued functions ¥ w=1,...,q, are bounded on every interval
[0,¢] for all t < 7.

Andersen and Gill, who consider the asymptotic properties of the partial like-

lihood estimator for # under the CRM, have to assume conditions similar
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2 Asymptotic Normality

to Assumption 2.3.9 for deriving their results, cf. Andersen et al. [4, Condi-
tion VII.2.1] or Andersen and Gill [5]. After this preparations we can state the

main result of this section.

2.3.10 Theorem. a) Let I(t) denote the interval [0, ], if ¢ < oo, or [0, 00), if
t = 0co. Under Assumption 2.2.1 and Assumption 2.3.9, the sequence of lo-
calized, ¢-dimensional parametric sub-models of the MCRM €,,, F,,,F..,B,),
n € N, is asymptotically normal restricted time 7, for all 7 < 79. The

asymptotic information matrix

)= (/1,1(7) /1,2(T)> |

/2,1(7') /2,2(7)
is given by the matrices
Sa(r) = (S5 () eR7T

Sa2(r) = (I35 (1)) e R,
S2(r) = Fh(r) = (#57(1) e R,

where
A= | 2 76) 5 o) s
A5 = | T p0(s) oa(s) ds
50 () = /,m A (5) 50 (5) ui™ () v (5) ds.

A central sequence is given by S, (7) = (Sy1(7), 51, (T))T, where
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2.3 Asymptotic Normality for Parametric Sub-Models

Assume that lim; .-, 7 (t) = _# (70) exists and set

i) = YO0 - (Zosor®) A1) . teRe i=1...m

If the condition

lim limsuan’()( (s,6,8) A ( )ds| >

=70 n—oo

) =0, (2.24)

t 7'0)

where

V(6,66 = (00 0s(e) ) 1) (w0 (e T0ste)) 1),

and )‘S,)o(s) = Y,Si)(s) ap(s), s € Ry, and the condition

tlim limsumeO(‘ Z/ gT n,i( )2 )\557)0(8) ds| >
t, ’T())

—T0 n—oo

z—:) =0 (2.25)

hold for all £, € R4 and ¢ > 0, then the previous assertions also hold
for 7 = 9.

Let (QH,FH,FH,Q,L), n € N, be a sequence of (7, 7)-sub-sub-models with
transformation matrix 7 in the sense of Definition 2.3.6. Under Assump-
tion 2.2.1 and Assumption 2.3.9, the sequence (Qn,ffn,Fn,Qn)7 n € N,
is asymptotically normal restricted to time 7 with asymptotic information
matrix 7T _¢(7).7 for all T < 75. A central sequence is given by 715, (7).

In particular, we have

TS (1) g, . N(TT 7(1)TE, TT (1) 7).

Assume that limy_.,, 77 7(t)7 = IT _7(10)7 exists and set U,,; =
T, i=1,...,n,n € N. If the condition (2.24), where

VO (s,€,€) = (exp(%fwn,i(@) - 1) <exp<2\1/ﬁs%n,i<s>) - 1>,

and the condition

tlim limsumeO(‘ Z/ f \I/nz )2 )\no( )ds| >
tTo)

—70 n—oo

) =0 (2.26)
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2 Asymptotic Normality

hold for all £,¢" € R™4, then the previous assertions of Theorem 2.3.10.b

also hold for 7 = 7.

Proof. We want to apply Theorem 2.3.3 to prove the assertions of b). Choose

T < 79. As a first step, we show that the processes
Uoir = {Uni(t AT) [t € RL, i=1,...,n,

are predictable and locally bounded and that Assumption 2.3.1 holds. In the

following we set m =7+ g and m =r +q.

Using Assumption 2.3.9.viii and Assumption 2.3.9.ix, one can easily see that
{yDEAT) [teRL Y, u=1,...,r,and {FV(tAT) [t eRL}, v=1,...,q,
are predictable and locally bounded processes for all 7 <7y. Assumption 2.3.9.ii
and Proposition B.5.3 yield that the processes {W,;(tAT)|t€ Ry}, i =
1,...,n are predictable and locally bounded for all 7 < 75. Again, Propo-
sition B.5.3 gives that {0, ;(t A7) |t € Ry}, i=1,...,n, are predictable and
locally bounded. Therefore, Assumption 2.3.1.ii holds.

Assumption 2.3.1.1 is exactly Assumption 2.3.9.i. Moreover, we set
T = max{|§(“’”)| } we{l,...,m},ve {1,...,m}}

and choose C € Ry, such that

max{ sup ’7(” D (¢t )|} <C and max{ sup |7(“) |} <C. (2.27)

1<u<r telo,7] 1<u<q te[0,7]

Proof that Assumption 2.3.1.iii holds. We consider 3 cases. For 7 < u < v < m,
it holds that

m q
() = S (7R pH)(5) Z F®0g®) (5) =3 g EuD gl ().
k=1

k=r+1 k=1
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2.3 Asymptotic Normality for Parametric Sub-Models

Using (2.27) and Assumption 2.3.9.iv we get that

sup |- Zw“% YT (5) v (s)

s€f0,t]' T =1

q
S k=) %(kw—?")g(’fl)(sﬁ(k”(8)MO(S)‘

kl,kzzl
< C?T? %+ sup |fino(s) — po(s)| —p,., 0.
s€[0,t]
In the case 1 <u <7 < v <m, we get that
\Il(u) Z ﬂT (u, k)\I/(k)( ) = Z%(kvu)qjgﬁg(s)’
k=1 k=1
(2.27) and Assumption 2.3.9.v yield
u) i
sup Zxﬂ L) Y(s)
s€[0,t]
30 3 e R 505 ) )
k1=1ko=1
<C’T?q- )" sup B3 (5) = w0 ()] —p,., 0.

k=1 s€[0,t]

Last but not least, if 1 <u <wv <r, Assumption 2.3.9.vi and (2.27) give that

sup
s€[0,t]

- Z 30 ) D )0 ) ) 0 )|

k1=1ks=1

<7207 303 sup [0 (5) = ) 0) | — 0.
ki=1 ky— 15601&]

Proof that Assumption 2.3.1.iv holds. Note that sup;c(i,.. n}, scpo,q is abbre-
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2 Asymptotic Normality

viated to sup; ;. It holds that

1 1 1

_ \1; < — \If — \I/

s 75 B [T )] < sup 7 e [T s e [0
= 5511) + sg).

Because of (2.27) we have 8512) < ﬁq TC —0,asn — oo, and

1

w—Tm%%29WWWﬂ%MWM
1 T
< 7sup 12132{ 71|ﬂ(k u)| |’)/(k k) | |Z(k) )|
<rTC - sup maX\Z (5) Y (5)| —pus O,

- \/ﬁlsl<u

where we use Assumption 2.3.9.vii. The formula for the central sequence re-
sults from (2.12). The asymptotic distribution of the central sequence under
alternatives is a consequence of Corollary 2.3.4. The conditions stated to ex-
tend the result to the point 7y are exactly the conditions (2.13) and (2.14) of
Theorem 2.3.3.

Assertion a) is a special case of assertion b), choose 7 as (m x m)-unity

matrix. O

2.3.11 Remark. a) If the condition (2.24) in Theorem 2.3.10.a holds then
(2.24) also holds with the 7% ( £E), i =1,...,n, £,¢, n € N, given
in Theorem 2.3.10.b. Moreover, the condition (2.25) implies the condi-
tion (2.26).

b) By construction all events occur before 7y under P, o, since

Poo(Y;? (r0) = 1) = lim Poo(Y;7(t) = 1)

= lim (]. - Gnﬂ(t)) (1 - Fo(t)) = 0,

t—To

where

Fo(t):exp(— /1 ) ao(s)ds> and Gm(t):exp(— /1 ) ag>(s)ds),

56



2.3 Asymptotic Normality for Parametric Sub-Models

and we use Fleming and Harrington [19, Theorem 1.3.1] as well as

Ym) =13 =¥ =1}  tln.
keN
Thus, it holds that P, = PTETS) and T, ¢(19) = Y, ¢(00) P, o—almost
surely, see Proposition 2.2.5, and S, (79) = Sp(c0) P, ¢-almost surely. In
particular this means that asymptotic normality restricted to time 7y is

asymptotic normality restricted to time oo, see Definition 2.2.2.
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3 Sequences of Hardest Parametric
Sub-Models

The development tests for detecting a possible influence of covariates on sur-
vival times is the objective of this dissertation. In Chapter 1 it was shown
that the MCRM is a reasonable mathematical description for the interaction
between covariates and survival times. However, instead of looking at the
MCRM we considered sequences of localized, g-dimensional parametric sub-
models of the MCRM and proved asymptotic normality, see Theorem 2.3.10.
These parametric sub-models depend on the choice of the number of nuisance
parameters ¢, the nuisance directions 4 and the foot-point aq. In contrast to the
choice of v, a statistician has no indication for a sensible choice of these quan-
tities. From this point of view studying sequences of parametric sub-models
seems to be a cul-de-sac, if one wants to obtain some test that is applicable
under the MCRM, since one can suspect that any reasonable testing procedure
derived from some parametric sub-model should depend on the above men-
tioned nuisance quantities. However, this is not the case, if the underlying
localized parametric sub-models are ”big enough®, i.e. the sequence of local-
ized, g-dimensional parametric sub-models is a sequence of hardest parametric
sub-models (SHPSM).

In Section 3.1 we will discuss the notion of sequences of hardest parametric
sub-models which leads to an algebraic Definition of SHPSM. In Section 3.2
the properties of SHPSM are investigated. Among others, we construct a test
statistic that is independent of the sequence of the underlying parametric sub-

models, as long as this sequence of parametric sub-models is a SHPSM. In
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3 Sequences of Hardest Parametric Sub-Models

Chapter 4 it turns out that this test statistic is important for the analysis of
our testing problems. All in all this chapter provides a justification why it is

sufficient to consider localized parametric sub-models.

3.1 Primary Remarks

In this section the notion of sequences of hardest parametric sub-models is
derived. In the following we assume that (Q,,F,,F,,B,), n € N, is some se-
quence of localized, g-dimensional parametric sub-models of the MCRM. More-
over, it is assumed that this sequence is asymptotically normal restricted to
time 7, where 0 < 7 < oo, with asymptotic information matrix _#(7), that

m = q+r and that F,, o = F,,.

3.1.1 Discussion. The sequence of statistical experiments (Qn,ffn,‘ﬁg)),
P = {Pé? | €= (BY,n")T € R™}, n € N, converges weakly to some Gauss
shift experiment (Q,A,‘B(T)), B = {Pre| €= (BT, nT)T € R™}, with cen-
tral random variable ST (7) = (S{ (1), S2T(7'))T (QA) — (R™,B™), i.e.
dP; ¢
dPro

= exp(STf — %ﬁT/(T)S) P, g-almost surely,

£(S | Pro) = N(0, 7 (7)), cf. Strasser [68, Theorem 80.2]. For the rest of
this discussion we drop the index 7, if possible. Let us consider the limit

experiment. It holds that

Ps,. :N<(/1,1 /1,2> <5> | (/1,1 /1,2>>.
/271 /2,2 n f2,1 /2,2

For the binary testing problem 8 = 0, n = 7y versus 8 = By # 0, n = ng the
Neyman-Pearson test to the level a € (0, 1) is given by

#(s1, 82) :{ 1, T(s1,52) Z cla),

) —

where ) )
T(s1,s2) = 5?50 + 53(770 —1) — §§0T/§0 + §ﬁrf2,2777
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3.1 Primary Remarks

& = (B .m0 ), and ¢(a) is chosen, such that P2, , (T > ¢(e)) = a. For the
special choice 77 = g + /2_21 2,100 the test statistic T" simplifies to

T(s1,52) = ﬁoT (81 - f1,2/2j2182) - %5(?/*507

where #* = 711— _ 712 /2}1 F2.1. One readily checks that the resulting test
¢ keeps the level on the composite hypothesis 3 = 0, n € R?. Moreover, ¢ is

almost surely determined, since it is a Neyman-Pearson test.

Let @, denote the set of all tests that keep the level on the composite hypothesis
B8 =0,n¢€R? and let

= sup /qﬁdP B

be the envelope power function. For every § € R", there exists a Neyman-

Pearson test ¢*, such that e(8,n) f(b* dPTSﬂ "

can say that ¢ is an efficient test for the testing problem g = 0, n € R? versus

for all n € RY. Therefore, we

B = Bo, n € R? which is a sub-problem of the testing problems considered in

Chapter 4. A similar discussion can also be found in Janssen and Werft [38].

Let us now consider the sequence of tests ¢, = 1(T(Sy,1,50,2) > c¢(a)), n €
N, where ST = (ST ST 2) is a central sequence. This sequence of tests is
asymptotically efficient for the testing problem g = 0,7 € R? versus § =
Bo, 1 € R2. For any other sequence of tests v,,, n € N, of asymptotic level «
that is efficient for this testing problem it holds that ¥, — ¢, — PL) 0, cf.
Strasser [68, Theorem 63.6] (The optimal test in limit experiment is uniquely
determined by its distribution, ¢,, and 1, converge in distribution to the
efficient test in limit experiment in the sense of Strasser [68, Definition 62.1]).
That means any asymptotically efficient testing procedure for the test problem
B8 =0, n¢eR?versus § = By, n € R? is asymptotically equivalent to a sequence

of tests that depends on the random variables

Un(7) = Sh = J12(7) F55 (T)Sn2(7), neN.

Thus, if one aims to construct procedures that keep the level on the compo-

site hypothesis and that possibly attain the envelope power function at some

61



3 Sequences of Hardest Parametric Sub-Models

point, one can restrict oneself to tests that depend on U,. This consideration
may justify, why we concentrate only on the statistics U,, in the following.
Additionally, looking at the literature on testing problems involving nuisance
parameters reveals that many efficient procedures depend on the statistics Uy,
n € N, cf. Witting and Miiller-Funk [72, Section 6.4.2].

3.1.2 Lemma. In the situation of Theorem 2.3.10.b, we abbreviate 7 (1) =
IT 7(1)7 and partition the matrix .#(7) as follows

() Ap)\ (A )R T 1a(r) T
L(r) = = " " .
y2,1(7') 5@,2(7') 92 /2,1(7')% «72 jQ,z(T)e%
It holds that

T 80a(7) = A2 I55(D) T Sua(r) g, N(77(1)5,~77 (7)),

where (1) = S11(7) — S12(7)F22(7) " F2,1(7) and 7, ,(7) denotes the

generalized inverse of %% 5(7), cf. Definition B.1.1.

Proof. For a moment let us drop the index 7. The Cramér-Wold device, cf.
Billingsley [9, Theorem 7.7], yields that (T.7 TS, &Qn,é N(¢T.7¢,(T.7¢) for
all ¢ € R4, Let & denote the (¥ x 7) unity matrix. Choosing (T = pT.e7,
where & = (é’f —:5’1,25’2?2), and p € R gives that

pT(%TSnJ - yl,Zygig%TSn,Q) = pTﬁfyTSn.
Clearly, it holds that
prd TS, g, (N(pT A SE, pTd ST p),

where

i (5% *y1,2y2_,2) (yl’l yl,z)

a1 S

(y* Ao — 5/1,25/2?25”2,2)

(#- 0)
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3.1 Primary Remarks

and .77 = .#*. In the last but one equation, Proposition B.3.4.b and
Sy 0522555 = L5y, cf. Definition B.1.1, and (#5,)" = (#'y) ™, cf. Proposi-
tion B.1.4 are used. Applying the Cramér-Wold device gives the assertion. O

In the situation of Theorem 2.3.10.a the previous result especially means that
— D * *

Un(7) = Sna(7) = F12(7) F3(1)Sn2(r) —p,  N(I7(1)B, £7(7)), (3.1)

where fZ*(1) = #11(1) — /1’2(7)/2;(7)/2,1(7). The asymptotic distri-

bution of the sequence U, (7) depends only on the interesting parameter 3,
i.e. under the composite hypothesis § = 0, n € R? the statistic U, (7) has,
asymptotically, always the same distribution. Of course this property is fairly
useful, if one aims to construct tests, since one does not need to worry about
the nuisance parameter 7. However, the asymptotic distribution still depends

on the choice of the nuisance direction 7.

In the following it is aimed to find nuisance directions that satisfy some ”opti-
mality “ condition. This leads to the notion of sequences of hardest parametric
sub-models. Our approach generalizes a well known idea on the construction

of non-parametric test statistics, see e.g. Neuhaus [60].

3.1.3 Proposition. Let (Qn, S"n,Fn,Qn), n € N, be a sequence of (1, 1)-sub-

sub-models with the transformation matrix

Bo O ,
‘%0;770:<0 " ) 60€R,UOER(1-
0

In the situation of Theorem 2.3.10.b, it holds that

— D * o *
0 Sn1 (1) = F12(7) S5 ()09 Sn2(T) —=Q,, ¢ NS5y 00 (T)By 50 (7)),

where 75 | (T) = S, (T) — %0»770 (1),

(7 / Zzﬂé%é”) B (5) 7O (s) u5 (5) ag(s) ds

ulvl
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3 Sequences of Hardest Parametric Sub-Models

and

T om0 (T (/ T);;ﬁ(u a0 () 50 (5) 1{™ () ao(s) ds)2
(/ (Z”(u) “(s)) uo(s)ao(s)ds)

Moreover, we have the estimate

u) (uu) )S 20(()(8) s
0 < oo _/I(T) (Zﬁ (s)) e ()

Proof. The convergence in distribution is an easy consequence of Lemma 3.1.2.

Proof of (3.2). In the case that 5’%0’770 (1) = 0 any non-negative number is an
upper bound. Thus, let us assume that %07,70 (1) > 0. Applying the Cauchy-
Schwarz-inequality, cf. Génssler and Stute [20, Satz 1.13.3], one gets

(f“) (S8 720 (5) () (S5 (5)) ;;ggzgao(sms)Q
Jrimy (S0 759 (5)) 10(s) 0(s) s
. <zuﬂsw><s>ufﬂw»zzsizi ds)

Uiy (8, 17765)) o(s) as) ds)

fI(T (>, 770U 7(”)(5)) po(s) ao(s) ds .
(3.3)

O

‘yﬁomo =

IN

3.1.4 Discussion. In the situation of Theorem 2.3.10.a, consider the sequence
of (1, 1)-sub-sub-models (Qn,ff"n,]Fn,Qn), n € N, with transformation matrix
T39.mo- Under this sequence of experiments the parameter of interest is 3 and
the nuisance parameter is 77. For the limit model (£, A, {Qs,7 | 3,7 € R}) with
the central random variable S = (5(1), 5(2)), it holds that

05 —N ((ﬁg/mﬁo 53/1,200) (5) <ﬁgf1,150 55/1,2770>>
o m F21B m Faam) \0) \ng Faibo ng Fa2mo) )
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3.1 Primary Remarks

where we dropped the index 7.

Now, let us investigate the testing problem 3 = 0, 77 € R versus 5 > 0, 77 € R.

The uniformly best, unbiased test to the level « for this testing problem is

<

1, _ >
¢<S<1>,s<2>){ . SW — BT 71 9m0 (g F22m0)~SP 7 cla)

where QO,O(S(D — ﬁg/mr]o (n§/272n0)—5(2> > c(a)) = «, cf. Witting and
Miiller-Funk [72, Satz .6.184] . The power function of this test is given by

O(~ta+ B (F4yu)?), B0, nER

where ® is the distribution function of a normal distribution with mean 0
and variance 1, and u, = ®7'(1—a). The factor . ,  determines the
capability of the uniformly best, unbiased test to detect any fixed alternative,
i.e. the smaller this factor, the less powerful the test. Therefore, we have to
minimize ./} = for finding a hardest model. Since we considered a fixed (1,1)-
sub-sub-model, Gy and 7y cannot be subject to a minimization, consequently,
minimizing 75 . is equivalent to maximizing %@,no with respect to 7. Note
that 73, », is bounded, see Proposition 3.1.3. One easily checks that the upper
bound of %Om, cf. equation (3.2), is attained, if

(v) N~ 4w (i) ()
g Mo E By 'y (s)puy (s Ap-almost everywhere
M0<5> —~ 0 ( ) 1 ( )
for some ¢y € R, A(()TO) = [5n - s)ds, B € B. A similar discussion can

be found in Neuhaus [60].

The previous discussion provides an idea how to generalize the notion of a
hardest model to multi-dimensional models. Basically, it is asked that in the

inequality (3.3) equality holds.

3.1.5 Definition (Sequence of Hardest Parametric Sub-Models). Let

us consider a sequence of localized, g-dimensional parametric sub-models of
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3 Sequences of Hardest Parametric Sub-Models

the MCRM (Qn, ?H,Fn,‘l?n), n € N, that is asymptotically normal restricted
to time 7 with information matrix # (7). We say (Qn, EFn,IFn,iBn), n € N, is
a sequence of hardest parametric sub-models restricted to time 7, if for every

Bo € R” there exists an 7y € RY, such that

(ﬂonl,Q(T)Uo)Q = /I( :

(sz 58y ) () Mgu)(s))2zggz§ ds nF Foo(r)no
(3.4)

and

/I( ) (Z 5 ) () ugu)(s)ym ds =0 <= ng _F22(7)no =0. (3.5)
T u=1

7o is called a hardest nuisance parameter with respect to fy.

3.1.6 Remark. The Definition 3.1.5 is based on the idea that for every fixed
direction of the interesting parameter 3y there should be a nuisance parameter
7o, such that the limit model of the sequence (Qm Fn, Fo, Qn), n €N, of (1,1)-
sub-sub-models with transformation matrix 3, ,, is a hardest model in the
sense of Discussion 3.1.4. More precisely, this means that for every 3y there
exists an 79, such that %07770 attains the right hand side of (3.2).

Condition (3.5) prevents the trivial solution of (3.4), namely 79 = 0. Otherwise
every sequence of parametric sub-model would be a sequence of hardest para-
metric models. Clearly, a hardest nuisance parameter is by no means unique,
since if 79 is a hardest nuisance direction then c-1g, ¢ € R\{0}, is also a hardest

nuisance direction.

3.2 Properties of Sequences of Hardest Parametric
Sub-models
In the previous section the notion of SHPSM was established. In this section

the properties of such sequences of models are investigated. First of all, the

existence of SHPSM is discussed. One easily sees that starting from a given
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3.2 Properties of Sequences of Hardest Parametric Sub-models

SHPSM, new sequences of hardest parametric sub-models can be generated by
reparametrization and adding new nuisance direction. Considering this fact,
one should regard (3.4) and (3.5) in Definition 3.1.5 as conditions guarantee-
ing that a sequence of localized, ¢-dimensional parametric sub-models is “big
enough” to reflect the properties of the MCRM. However, sequences of hard-
est parametric sub-models share one important property: the statistic U, (1)
defined in equation (3.1) is independent of the underlying SHPSM. We replace
the asymptotic quantities of the statistic U,(7) by consistent estimators and
prove asymptotic equivalence of these statistics. Last but not least, a weakly
consistent variance estimator is introduced. But first a crucial premise for

proving the main results of this chapter.

3.2.1 Assumption. Set 7§ = sup {s | po(s) > 0}. It is assumed that
Pn,O(Yn(i)(Tg) = 1) =0 foralli=1,...,nand n € N.

3.2.2 Remark. a) Obviously, it holds that 7§ < 79, see Assumption 2.3.9.i.

In particular, all observed survival times are smaller than 7§.

b) In the case 7§ < 79, we do not have any information on the distribution of
the survival times in the limit model after 7§ due to the right censoring.
Assumption 3.2.1 guarantees that the limit model is a reasonable approxi-

mation of the models for finite n € N.

¢) Remark 2.3.11.b still holds, if one replaces 7y by 7§. Especially, asymptotic
normality restricted to time 7§ implies asymptotic normality restricted to
time oo, see Definition 2.2.2. In the case that 7§ < 79, the conditions (2.24)
and (2.25) trivially holds.

3.2.3 Theorem (Existence of SHPSM). Consider the sequence of local-
ized, r-dimensional parametric sub-models (Qn, Fn,Fo, ‘ﬁn), n € N, where the

nuisance directions are given by

~(v 0,9 K
T ) =7 ) 21
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3 Sequences of Hardest Parametric Sub-Models

Under Assumption 2.2.1, Assumption 2.3.9.i — Assumption 2.3.9.viii and As-
sumption 3.2.1, the sequence of parametric sub-models (Qn, ?H,Fn,ipn), n e
N, is asymptotically normal restricted to time 7 for all 7 < 7. If additionally
the conditions (2.24) and (2.25) hold with 7 replaced by 7§, then the result

extends to 7 = 7§.

Moreover, the sequence of localized parametric sub-models (Qn, Srn,IFn,&Bn),
n € N, is a sequence of hardest parametric sub-models in the sense of Defini-

tion 3.1.5. We call it the canonical sequence of hardest parametric sub-models.

Proof. Assumption 2.3.9.i — Assumption 2.3.9.viii imply Assumption 2.3.9.ix,
therefore asymptotic normality is an immediate consequence of Theorem 2.3.10.
For given (y choose 19 = (p. Using the basic Definition of the asymptotic
information matrix ¢, see Theorem 2.3.10.a, it holds that

(55 Ar2m)” = (/ (30, 6000 ) () 221 d8)2

(r) u=l to(s)
and
T _ r (w) (i) (1) 2ap(s)
Mo H2,2M0 = / Bo oy (s) (s ds.
0 /2 27/0 1) (Zuzl 0 ( ) 1 ( )) ,LL()(S)
Consequently, the conditions (3.4) and (3.5) hold. O

3.2.4 Theorem. Under Assumption 2.2.1, Assumption 2.3.9.0 — Assump-
tion 2.3.9.viii and Assumption 3.2.1, let (Qn, Fn,Fu, ‘,Bn), n € N, be a sequence
of localized, g-dimensional sub-models of the MCRM that is asymptotically
normal restricted to time 7" with asymptotic information matrix ¢ (7") and
central sequence S, (7’). Moreover, assume that (Qn, Fn, Fo, ‘,Bn), neN isa
SHPSM in the sense of Definition 3.1.5.

a) The matrices #73"(7") € R"™*" and 53" (7') € R™*", where

) = /,< 1A ) 1" ) () ds
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3.2 Properties of Sequences of Hardest Parametric Sub-models

and

can (u,v w, U 0,0 u v QoS
SO = [ 005300 ) ) i 5) 24 g
() fo(s)

are well defined. (Only in the case 7/ = 7§ is this not obvious.)

b) It holds that /172(15)/2’2( )/2 1( ) can( ) te I( )
c¢) For the statistic Uy (t) = Sp,1(t) — _#1,2(t)_F2.2(t)” Sp 2(t) it holds that

(i)
0= 2 [ 00 (A - S @0

po(s)

P, o-almost surely, u = 1,...,r, for all t < 7’. Moreover, we have

D

Un(T/) _>P”£ N(/*’Can(T/)ﬂ,/*’Can(T,)),

where 7 (7") = 7*(1') = F15(1") — F55% (7). F (1) is called

(asymptotic) information matrix of the MCRM and its components are

given by
() ()
.o 5 0,0 12 S S
/ 7(wu)( ) (m)( )(ué )<s> _ 1(>1()>a0<s> ds,
I(r") to(s)
u,v =1, T

For the proof of the Theorem the following well-known results are needed.

3.2.5 Lemma. Let f;, 7 = 1,2, be real-valued functions. If 0 < (ff1 - fa dy)2 =
[fidv - [f3dv < oo then it holds that f; = co f> v-almost surely for some
Ccy € R\{O}

Proof. The functions f;, i = 1,2, are obviously square-integrable. Set

:M/f%dy and b= /ffdu.{ 1 if/fl-dez/io.
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3 Sequences of Hardest Parametric Sub-Models

Note that a,b # 0. Since the equation

/(a-f1+b-f2)2du:2/ffdu~/f22dy+2ab/f1-fgdz/

:Q/ffdu./fgduﬂ /fdu./fgdy.‘/fl-fgdu
:(272)o/ffdy-/§dy:0

implies a f = bg v-almost surely, Lemma 3.2.5 holds. O

3.2.6 Lemma. Let ¢; : R, — R, j = 1,2, be some measurable functions

that are bounded on bounded intervals. Suppose that Assumption 2.2.1 holds.

If ¢y = ¢y A{-almost surely, AL (B = [ 11+ (s) ao(s)ds, B € B, then it
holds that
Z MSO Z MS%( ) Ppo-almost surely.
I (T) I(T)
Proof. Using the abbreviation X() = 37" | fI () ¢;(s)dM, f)o( ), 7 =1,2, it
holds that

{(x® 2 x®) = [ J{1x© - x@| > 1/k},

k=1

where {| XM — X®| >1/k} ¢ {| X - X®|>1/(k+1)}. Corollary 2.1.7

implies
Poo{| X" = X > 1/k} <
k%c + P (Z/ (¢1(s) — ¢2(s))2 Y, (s) ap(s) ds > 5) = k2.
i=171(7)

As € > 0 was arbitrary, € | 0 gives P, o{|X®) — X®| > 1/k} = 0. We have
Poo({XW £ XA V) = limp_oo Poo{ | XM — XP| > 1/k} = 0, where we use

an elementary property of measures. Thus, the assertion holds. O
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3.2 Properties of Sequences of Hardest Parametric Sub-models

Proof of Theorem 3.2.4. First, note that we can assume that 7/ < 7§ be-
cause of Remark 3.2.2. Let us start with a). In the case 7/ < 7§ the assertion is
trivial, since we assumed that all functions are bounded and p is bounded away
from 0. In the case 7/ = 7§ this argument does not apply. However, it holds
that _711(75) = #73"(75), so that we only have to worry about Z5%"(75).
Set B = (G1,wy--»0rw) T, w=1,...,7, where §;,, is the Kronecker symbol,

and let n,, denote a hardest nuisance parameter with respect to 3.

Using the fact that a SHPSM is considered, it holds that 8y _#5%"(76)0Buw -
2 . .
Mo #2.2(76)00 = (B #1.2(76)0w) " < oo implying

(w) 2
can (w,w) ¢y _ () (g py o (s) ) anls) ds < oo
s = [ (7 B ot an(sas < o

Consequently, ~(%#) ugﬁ) /o is a square-integrable functions with respect to
KéT(J‘)(B) = [ Li¢re)(8) po(s) ao(s) ds, B € B. Thus,
() ()
- - s 5
/Q(iaén(u,U)(T/) _ / ,y(u,u)(s) ,y(v,v)(s) M ( 2)/~L1 ( ) MO(S) ao(s) ds
I(r") UO(S)
exists and is well defined.

Proof of b). Let us drop the Index 7’ for a moment. Assume that § €
ker(_71%). As a first step we show that § € ker(_#5%"). Using the proper-

ties of SHPSM we can find a hardest nuisance parameter 7, such that
2 n
0= (ﬁT/L?’?) = ﬁT/zc,% g UT/2,277

and 8T F35'8=0. Set n = _#55"3. Applying the Cauchy-Schwarz inequality,
cf. (3.3), gives

2 ~\ 2 ~ ~
0< (87753 2530)" = (5 rsyi)’ < 07 Asy B0t ISy =0,

)

As a second step we consider § € ker(_#,")*. Let 7 denote a corresponding
hardest nuisance parameter. First we show that (8T _#1 21)? > 0. It holds that

q
0< 8% f1s g1 < BT 78-S /I » (7 ())? 10(s) ao(s) d,
v=1 T/
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3 Sequences of Hardest Parametric Sub-Models

where the Cauchy-Schwarz-inequality is used, again. Consequently, we get that
BT 7556 > 0 and 0¥ _#55m > 0, see equation (3.5). Now, equation (3.4) is
given by

(BT Ar20)* = BY 7558 0" Fa2n > 0.
Lemma 3.2.5 yields

q T o (@) .,
czn(”) ) = Z B (i) % AéT )_almost surely. (3.7)

In particular, equation (3.7) also holds A(()T/)—almost surely. Because of (3.7)
and the properties of the generalized inverse, see Definition B.1.1, it holds that

BY P2 Fan IoaB =" Fao Foo Joon=En' Foon= 0" 755,

Putting the previous results together for all 5 € ker(_#/%,)* and £ € ker( %)
it holds that

(B +B)T/1,2/2f2f2,1(5+ B) = 6" 7, 2 F9072108
=BT 75308 =(B+B)" I53(B+B).

Thus, 87 712 5, F210 = BT 7543 for all 3 € R”, since the matrices are

symmetric, the result is our assertion.

Proof of ¢). Lemma 3.1.2 and b) give the assertion concerning the convergence
in distribution. It remains to show (3.6). It holds that

(w,w) 1 Ml Z ﬂ (u) (u i) M1 Ml _ C(w Zn 'u),.y(v (38)

K(()T/)—almost surely, where ¢(®) #£ 0, w = 1,...,r. This equality in an imme-
diate consequence of Definition 3.1.5. Either, we have 0 = (G A, 2Mw)? =

ﬂT/C‘mﬁw N /2 2Mw, Which implies ﬁT/mnﬂw =0 and 77;5 F2.2M =0 and
consequently

q
Zﬁ(u (i, ii) /~L1 _ Z ()7 () ™) _almost surely

u=1

72



3.2 Properties of Sequences of Hardest Parametric Sub-models

(in this case set ¢(*) = 1), or we have

0 < (B A1,0m0)° = B 755" Bw - My F2,9M0

then Lemma 3.2.5 gives (3.8), see also (3.7). Equation (3.8) implies that
J12t) = T TT Zas(t), t < 7', where ¢ = (¢ |w=1,...,7)T and T =
(m,...,ny) € R?*". Because of

12(0) F32(0)8n2(t) = ' TT Foa(t) F3,(t)Sna(t) (3.9)

we show as a first step that _#55(t)( #2.2(t)) Sna2(t) = Sp2(t) Pno-almost
surely for all ¢ < 7/. We consider three cases. If #5,(t) has full rank, the
assertion is trivial. Assume that rank(_#22(t)) = 0 implying #22(t) = 0
which gives 7 =0 K(()t/w/)—almost surely and also almost surely with respect
to the measure A(()MT/)7 where Assumption 3.2.1 is used. We get that .S, 2(t) =
Sp2(tAT") = 0 P, ¢-almost surely, where once more Assumption 3.2.1 and

Lemma 3.2.6 are used.

Last but not least suppose that rank(_#>2(t)) = k, 0 < k < g. Therefore,

we can assume that we have My = {v1,...,v} C {1,...,q}, such that the
vectors ( ;j;’v’)(t) lu=1,... ,q)T7 Il = 1,...,k are generating the column

space of f#52(t). Hence, for every u € My = {1,...,¢}\M; there exists a

vector ¢, € R¥, such that

7@ (8))? 11o(s) ag(s) ds =
/I(t)(v (5))” no(s) ao(s)ds = |

I(t)

k
7 (s) (Z ey (S)) po(s) ao(s) ds
=1

k

-/ (chws)) ) )
I(t) \7—1
(3.10)

Because of (3.10) we have for all u € My
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3 Sequences of Hardest Parametric Sub-Models

implying 7 = Zl 7o) A(MT )_almost surely, where once again the As-
sumption 3.2.1 is ubed. Using Assumption 3.2.1 and applying Lemma 3.2.6

yields that
S(u) (t) = 12”:/ Z x (vz) dM(Z Zk: S(vz)
" v i=17/1(1) =1 1=1 e
P, o-almost surely, so we can conclude that the rank of the extended matrix
(Z22(t) | Spna2(t)) is k P, o-almost surely, where we use that the matrix 75 »(t)

is symmetric. Proposition B.1.5 implies
F22(t)( F22(t)) Sn2(t) = Spa(t) P, o-almost surely,

completing the assertion.

By now, we have shown that _#1 »(t) #55(t)Sn2(t) = ¢*. 7S, 2(t) P, o-almost
surely, see equation (4.18). Applying (3.8), Assumption 3.2.1 and Lemma 3.2.6

gives
i(s) :
T FTg i s (1)
T Sn2( / (8 ) 7dMn (s)’uzl,...,r
(Z I(t) po(s) 0
P, o-almost surely, all in all equation (3.6) holds for all t < 7. O

The notation #5%" is supposed to remind that this matrix coincides with the
matrix _#s o of the canonical hardest model. The previous result gives that the
statistics U, (7'), n € N, are independent of the underlying SHPSM. However,
the statistics U,(7’), n € N, still depend on some asymptotic quantities and
the foot-point ayg. In the next step we will replace the asymptotic quantities by
some consistent estimators and show asymptotic equivalence of the sequence
of the new statistics with U, (1), n € N.

3.2.7 Lemma. Under Assumption 3.2.1 and Assumption 2.3.9.i — Assump-
tion 2.3.9.v, it holds that
~(u) (u)
n,1(t 3
/i’l()_'ul (> —)P"007 'U/Zl,...7p
Qi ,

no(t)  po(t)

sup
tel0,7]

for all 7 < 7§.
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3.2 Properties of Sequences of Hardest Parametric Sub-models

Proof. First, note that one can choose 0 < 20 < infy¢jo - po(t) exploiting
Assumption 3.2.1. For all € > 0, we have A,, C (4, N B,)U BEL where we set

—(u) (u)
lunl(t) Ul (ﬂ‘ } {
: - >¢epand By, =9 sup |iin, — ()] <6 ).
fino(t)  pio(t) 200 [Bno(t) = ot

A, = { sup

tel0,7]

Because of Assumption 2.3.9.iv we have ng(BE) — 0, so there remains to be
shown that P, (A, N By) — 0. On the set B, it holds the estimate

sup
t€[0,7]

At uﬁ“)()’

1 ('“') (u) ~
-~ < = su 7 ot
o po(t) | = 07, 2P s (®) po(t) =" () fino )]
<

te(0,7]

5( sup |u(“) ()| + sup \uno uo(t)|> —p,, 0,
te(0,7] te(0,7]
where we set ¢y = max{supte[oﬂ.]m(lu) ()], supse(o,-] po(t)} and use Assump-

tion 2.3.9.iv and 2.3.9.v. Consequently, P, (A, N B,) — 0. O

We assumed that the weight functions are of the form (%% = 'y(gi"ﬁ) oH, where
7(()71,1‘;) :10,1] — R, w = 1,...,r, are measurable functions and H is some
cumulative distribution function on R,. Possible choices for the cumulative

distribution function are H = 1 — g or

H()= /[07.] ap(t) exp (— /[O,t] ap(s) ds) dt.

As already mentioned, see Remark 1.3.3.c, one can easily determine early or
late differences on the interval [0, 1] and choose an appropriate weight function
véﬂ’ﬂ). The distribution function H guarantees the right scaling with respect to
the underlying probability measure P, . However, H has to be estimated cf.
Remark 4.4.3. This is reflected by the following premises, where we consider
a more general situation. In Chapter 5 7 A(u @ = %()u,a) o H, is used as an
estimator, where ﬁn is either 1 — i, o or the left continuous version of the

Kaplan-Meyer estimator.

3.2.8 Assumption. Let {A(u %) ()|t €0,00)}, u=1,...,7, be predictable

and locally bounded processes. Moreover, assume that these processes satisfy
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the condition
U, t .l 2
</I( )(%(L V(s) =™ )(5)) po(s) ao(s) dS) —P,0 0
for all T < 7§.

The statistics defined in the following Theorem merely depend on observable
quantities. This property is very important for the application. Especially, we
can replace Mr% by Néi), see Remark 3.2.10.a.

3.2.9 Theorem. Define the statistic U,, (1) = (U( )( Ylu=1,... ,T)T, where

n ~(1)
—=(u) 1 Z (t1,) (@) Fin 1 (s) V@
= —_— ’ . Z ; - d
Un'(1) Vn i=1 /I(T) ! (s) ( o (s) Fin,0(s) n’O(S)

and the statistic ﬁn(T) = ((7,2“) (MNlu=1,... ,T)T7 where

~(1)
u u i U Mn,l(s) 7
0t Z / IR (Zﬁ,?(s) - Ehe ) AM(s)

.Un,O(S)

a) In the situation of Theorem 3.2.4, it holds that U, (1) — U,(7) —p,

n,0

0,
for all 7 € Ry, such that 7 < 7/ and 7 < 7§. If 7/ = 7§ and additionally the

condition
(w) (@)
lim limsup P, o / (7(“’“))2 ('ul P, 1) Hnooods >e] =0
=75 n—oo (t,7§) Ho /~Ln 0
(3.11)
foralle > 0and u = 1,...,r is satisfied, the convergence in probability also

holds for the case 7 = 7§.

b) In the situation of Theorem 3.2.4 and under Assumptions 3.2.8, it holds
that Uy, (1) — Upn(7) —p,, Oforall 7 <7/ and 7 < 7§. If 7’ = 7§ and
additionally the conditions (3.11),

~(1)\2
lim limsup P, o / (7““”)2 (ﬁgu’;‘) (Mnl)) agds >e| =0
t—>7-0 n—oo (t,Tg) ’ Hn,0

(3.12)
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3.2 Properties of Sequences of Hardest Parametric Sub-models

foralle >0,u=1,...,r, and

~(1)\2
lim limsup Py o / @(u,u))Q <ﬁ7(1“’2u) %1)) apds>e| =0
=75 n—oo (t,78) ’ Hn,0
(3.13)

foralle >0, u=1,...,r, are satisfied then the convergence in probability

also holds for the case 7 = 7§.

Proof. We start with a). Assume that 7 < 7/ and 7 < 7§. According to
Proposition B.4.5 and Lemma 2.1.8 it suffices to show

(@) s A(u% S)\ 2
RSZJ) ()= /1( ) (7(117&)(8))2 (H/jo(i)) - g:ogso Ano(s) cols) ds —p,., 0

p® ) B s)

)

foru=1,...,r, where we use Theorem 3.2.4.c. As we have the estimate

() ﬁn0(5)> (/ (757 (5))” po(s) v (s) ds

+ sup |po(s) = fino(s |/ (u W (s Ozo(S) ds>,
sel(r)

Ry (1) < ( sup

sel(r)

Lemma 3.2.7 as well as Assumption 2.3.9.i, Assumption 2.3.9.iv and Assump-
tion 2.3.9.viii yield the result that R\ (r) —p,, 0.

Now, we show the extension to 7/ = 7§. Let 7%, k € N, be a sequence of real

numbers, such that 7, < 7§ and 7, T 7§, as kK — oo. Set

u =), ¢ u c
Vrg ) = Un (TO) - Ur(L )(TO>'

As we have Xflu,g —p,, 0 for all k € N, Theorem 2.1.1 gives that V") —
0 is implied by

n,0

hm hmsuanO(’V(“ XT(LUIH > &:) =0, u=1,...,r, (3.14)

k—oo n—oo

for all € > 0. Note that convergence in distribution to some constant implies

convergence in probability to that constant, cf. Witting and Miiller-Funk [72,
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Hilfssatz 5.82]. For any § > 0 choose 7, such that n/e? < §. Corollary 2.1.7
gives that

Poo(|V — X(“ )| >e) <

(i) )
(i, u) (S i, 1(8) e e
P.o </(Tk,7'0) ( 5) Nn 0(5)) Mn,O( ) 0( ) ds > 77) .

Because of (3.11) we get, for all sufficiently large k, that

oy
2

o H(u) ﬁ(u) 2 7
lim sup P, o / (7(“’”)) ( L o 1) Hnooods >n| <6 — —-
n— 00 (Tk-,TS) Ho /~Ln,(] €

Consequently, lim sup,,_, ., Pn.0 (\Vnu) -X 7(1“,2| > €) < 6 for all sufficiently large
k, i.e. (3.14) holds.

Proof of b). Assume that 7 < 7" and 7 < 7§. We show A (T)—UELM)(T) — P

0. According to Proposition B.4.5 and Lemma 2.1.8 this is implied by

(u))

JIRCEE “*“)Q(mf? (“) qods —p 0. (315)
I(7) ' Hn,0 ’

First, we show that

(i (Nglu)) 1, (u)
sup Mgl,é ) e (e (7 —— P 0.
sel(r) Fn,0H0 Ho

Set 0o = infscr(ry po(s) and ko = supsel(7)|ugﬂ)(s)‘. Because of Assump-

(ﬂu

tion 2.3.9 we have dp > 0, k9 < oo and supseI(T)’ﬁgéﬁ)(s) — [ty

‘ —Pno
0. Moreover, one easily sees that
(1) 2 ()
(B ()" (157 )*| _ ro () ()
sup - < — sup |fy,1(8) —py (s
sel(r)| Hno(s) o(s) do sel('r)| 1 ()
~(u) ()
fina(s)  pi™ (s) ( (@) )
+ sup |=——= — sup |7 (s) — ps™ (s)] + k0 | —p, ., 0,
sel(r)| Hn,0(8) Ho(s) 96](7’)| ! ( )‘ "
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where Lemma 3.2.7 and Assumption 2.3.9.v are used. This result and Assump-
tion 3.2.8 yield (3.15), since

~(%)\2
(1, i)\ 2 [ ~(u,a (Nn,l)
/ (AL — A(E)) (un,g)— - >aods§
I(7) Hn,0
k (i i)\ 2 1 (i i)\ 2
5—1/ (%(l’)—’y(’)) Moaods+5—/ (%(L’)—’Y(’)) 1o o ds
0 JI(r) 0 JI(T)

X sup
sel(r)

s (And)? (u;ﬂ’“ . (u@)Q)

Ho - Fin,0 10 Ho Ho

where k1 = Supsel(7)|/¢gl’ﬂ) (s)| + K3 /.

The proof of the case 7 = 7/ = 7§ is based on the same idea as the proof of a).
Let 74, k € N, be a sequence of real numbers, such that 7, < 7§ and 7, T 7§,

as k — oo. Set

As we have Xflulz —p,, 0forall k € N, Theorem 2.1.1 gives that Vn(u) — P,
0 is implied by equation (3.14).
Pao (Vi = X\ 2 €) < Pao(|00(75) = ()| = ¢/2)
+ Pao (|0 (76) = T, (m)] = 2/2).
Completely analogously to the proof of a), one shows that for all § > 0 the
conditions (3.12) and (3.13) yield that

Pn,o({USL)(TS) — US)(T;QM > 5/2) <6

and
Poo([089(76) = T ()] > /2) < 6
for all sufficiently large k. Thus, equation (3.14) holds. O
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3.2.10 Remark. a) One easily sees that condition (3.11) can be replaced by
condition (3.12) and

n (w) N\ 2
thm limsup P, o (/ (“ “) Z( u) ad ) Yél) apds > 6) =0
=76 n—oo (t,75)

i=1
(3.16)
foralle >0and u=1,...,r
b) Consider the test statistics U, (7). It holds that
~()
(u) / (a, u) ( OIS Ho, 1(5)) AN (s
TL fz ’y "Ll() /,(,no(s) n ()7
u=1,...,r, because of
n ~()
Z/ (Z(u)( ) M”1§S§>Yéi)ao(8)d8
i—1 I(T) Hn,0\S
~(t)
i) Fin 1 (8)
=vaf A ) (R0 22157 aals) s .

Analogously one shows that

~(1) ( )

,-\ [ N“nls
\fz 7()

Un o(s)

)anee)

w=1,...,r. The statistics U,, and ﬁn do not depend on the foot-point «y
and nuisance directions 7 of our parametric sub-model. This means that
the statistics U,, and ﬁn are independent of the underlying sequence of
parametric sub-models as long as it is a SHPSM. Obviously, these statistics

are promising candidates for the derivation of a testing procedure for the
MCRM.

¢) Calculating Cox partial likelihood for the MCRM (without localization), cf.
Definition 1.3.2, gives

Hpnz nuﬁ

80



3.2 Properties of Sequences of Hardest Parametric Sub-models

where ‘
Vi () exp (67 Zi 0 1(1))

S (1) exp(57 2 @9(1)

Anzfsup{ﬂN(z) *O} ananzfsup{HN(l) )+N() 70} see
Andersen et al. [4, Example VII.2.1]. Normally, one uses the partial likeli-

DPni (tv ﬁ) =

hood for inference on ( by solving the score equations

OL,(B)
PRD)

=0, u=1,...,r

The Wald, the likelihood ratio and score statistic depend on the solution
of the score equations Bn, see Andersen et al. [4, pp. 486] or Klein and
Moeschberger [43, Section 8.5]. In this thesis a different approach was used.
However, the statistic U,, is also connected with Cox partial likelihood.

More precisely, it holds that

OL, (8//n)

(u)
95 ‘H—O_U (10), u=1,...,7

cf. Andersen et al. [4, Equation 7.2.16]. This is not too surprising as Peto
remarks in the Discussion on a paper of Cox [13] that in certain cases
efficient rank test procedures depend on the statistic 0L, (6) /8ﬁ(“)| B8=0
This will also be seen in Chapter 4.

However, in order to construct tests we need an estimator for the asymptotic
covariance matrix. Unfortunately, we need stricter assumptions on the weight

functions to prove the consistency of the variance estimator.

3.2.11 Assumption. Let {’y o u) (t)|t€[0,00)}, u=1,...,7, be predictable
and locally bounded processes. Moreover, assume that these processes satisfy
the condition

sup [F54% (s) — v (5)] —p, , 0.
sel(r)

for all 7 < 7§.
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3.2.12 Remark. Assumption 3.2.11 implies Assumption 3.2.8, since

(/I(T) (75 (5) = 710 (5)) 10(s) ao(s) ds) <

2
( sup [74) (s) - W’“’(S)D ~ / | ols) () ds —p, 0.

sel(r)

3.2.13 Theorem. Let us agree that

~(u) ~(v)
. .o S S
FLv) (5) = A (5) 300 () (ﬁf?é”)(s) _ 1 (8 1(5) ))7 s € Ry,
’ #n,O(S)

u,v = 1,...,7. Under Assumption 2.2.1, Assumption 2.3.9 and Assump-
tion 3.2.11, V(1) = (‘7,5“’”)(7) |u,v=1,...,7), where

R n Pu,v) )
e =3 [ Iy

ni:l I(T) ﬂn,O(S)

is a consistent estimator of the asymptotic information matrix ¢ **"(r) for
all 7 < 75. If additionally lim; .,c #*%(t) = _#*(7§) exists and the

condition

i T
lim limsup Py o (Z Z (@) /

F=76 n—oo u=1v=1 (t,7§)

FE) (s) o (s) ds > 5) =0 (3.17)

for all e > 0 and ¢ € R" holds, then the estimator is also consistent for 7 = 7.

Proof. We merely need to show that

P (s) i (s)

V(u v) / ,Y(u,ii) (0,7) (’u(“ﬂ") s) —
Pp o 1) ( ) ( ) 2 ( ) NO(S)

) ao(s) ds

for all w,v =1,...,r, where we observe that

() (0)
(i) (5) 09 (5) () () — LGV o
A8 () ()<u2 (9 - 1t ) < I(r),
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3.2 Properties of Sequences of Hardest Parametric Sub-models

u=1,...,p, are bounded functions. Clearly, fi, o(s) = 0 implies J?(u U)( )=0.
It holds that

‘//\jrgu,v) _ /;(Lu,v) s /zn,o(s)a s)ds
(7) I(T)f ( )/Ln o(s) ols)

) /
Z 1(r) Hno(
ﬁ(lu v) ;
- Z / Mé,&(s»

I(T) /’[”I’LO

#(u, v)
fo(5) Y. (s) ap(s) ds

(3.18)

Note that the process {f,(lu’v)(s AT)/fino(s AT) | s € Ry} is predictable and
locally bounded. We show that the right hand side of (3.18) converges to 0 in
P, o-probability, as n — oco. According to Lemma 2.1.8 this is implied by

7 (s }
N

:unO

It holds the estimate

1 n j-‘(u,'u) 2 , 9
OS—QZ/ ( ) Yél)aodsgf/ gn 0o ds,
ne 3 i nJr(r)

where we set

gn(s) =

7(@0) ()2 7 () () (g
(;Y\T(Lu,u)(s) /,)77(11'),%)(8))2((“7172 ( )) + (Nn,l( ) )) )

&
Fin,0(8) (Mn,o (s )3

Exploiting Assumption 3.2.1 one can choose 0 < 26 < {infteI(T) 1o (t)} Hence,

for all € > 0 we have

2] o ds > |
c ({2 / () ds > hn {Sgg)mn,o(s) ~ o(s)] < 6})

U { su(p)|ﬁn}0(s) — uo(s)’ > (5} = A, UDB,.
sel(r
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3 Sequences of Hardest Parametric Sub-Models

It remains to be proved that P, ¢(A4,) — 0 and P, ¢(B,) — 0, as n — oc.

The latter is obvious because of Assumption 2.3.9.iv.

Since fin,0 > ¢ is implied by sup,e (. |Tin,0(s) — po(s)| < & on the set BE we

n?

have the estimate

2
*/ gn g ds, <
nJrr)

2 (i) (0,0 \ 2 [ (~0)\2 | () ~(0)\2

= (,YT(L'U, ) (v,v)) ((M;Q )) + (Mn,% Mn,)l) )ao ds
no= J(r)

on the set BE. One easily shows that

[ @R (G0« AR aods
I(r
- /I( ) (7@ 500 ((ué“’”))z + (" Mgv))2> apds —p, , 0,

where one uses Assumption 2.3.9 and Assumption 3.2.11. Consequently, the
right hand side of (3.19) converges to 0 in P, o-probability. By the same con-
siderations, one proves that
. (w)  (9)
/ Fluw) & ) Hn,0 o ds _/ i) o (6.) <Méu’v) P )ao ds —p, , 0.
I(7) Nn 0 I(7) Lo

Thus, consistency holds for 7 < 7§.

The proof of consistency for 7 = 7§ is a bit trickier. Since ‘A/n(t) and _Z ()
are both symmetric, it holds that ‘A/n(t) —p,o J () is equivalent to
TV, (t)e —p, €T _F 9 (t)c for all ¢ € R”. Let us introduce some abbrevi-

ations

Xo(t) =TV, (t) ¢

ZZ () / 74 (5) ao(s) ds

X(t) =ct g (t)e.

We have already shown that X, (1) — X, (7) —p,, 0forall 7 < 75. As a first

step we extend this result to 7 = 7§ using Theorem 2.1.1. We now merely have
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3.2 Properties of Sequences of Hardest Parametric Sub-models

to prove that

lim lim sup Pm()(‘)?n(Tg) — X (t) — X (75) + X ()] > 5) =0 (3.20)

t—=7§ n—oo

for all € > 0. We show that

tlim lim sup Pn,o(’)/(:n(Tg) — )?n(t)’ > 5) =0. (3.21)

c
—T0 n—oo

Since limy—_r¢ limsup,, o, Pro(|Xn(76) — Xu(t)| > €) = 0 is exactly condi-
tion (3.17), the condition (3.20) holds, if condition (3.21) holds.

From Remark 3.2.14 we know that {)A(n(s AT§) | s € Ry} is an increasing and

non-negative process. As
{)A(n(rg/\r/\s) — Xp(TEAEAS) = Xn(TEATAS) + Xn(TEAEAS) | s eR.},

t <71 < 7§, is alocal martingale, cf. Jacod and Shiryaev [32, Theorem 1.3.18],
the process
(Rn(rSATAS) = Xn(rE AtAS) | s € Ry}

is Lenglart-dominated by the process
{X0(t§ATAS) = Xn(T6 ANt As) | s € Ry}
Therefore, we can apply Theorem 2.1.5

Pn70< sup )?n(rg ATAS)— )?n(t As) > 5) < g + P (Xn(T) - X, (t) > 77)
0<s<t

Applying the Monotone Convergence Theorem, it results that

Pn,o( sup X (7§ As) — Xp(tAs) > 5) < g + Poo (X (785) — Xo(t) > 1),
0<s<7§

where we also use the fact that the process )?n does not jump at the point 7§

and that the paths of X,, are continuous. Thus, we proved

Poo(X0(7§) = Xn(t) > ¢) < g + Proo(Xn(7) = Xu(t) > 1),
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3 Sequences of Hardest Parametric Sub-Models

The condition (3.17) yields lim; ¢ limsup,, ., Pr.o ()/(:n(TS) — )?n(t) > 5) <
n/e. Asn > 0 was arbitrary, equation (3.20) holds, i.e. X, (16)=Xn(75) — P,
0, as n — oo.

As the last step we show that X, (7§) — X(7§) —p,, 0. We have already
shown that X,,(t) — X(t) —p,, 0 for all ¢ < 7§. Again, Theorem 2.1.1 gives

that we merely have to show that

lim hmsuanO(‘X (75) = Xn(t) — X (15) —|—X(t)‘ > 6) = 0.

t=7§ n—oo
However, this condition holds trivially, because of condition (3.17) and the fact
that lim; e X(t) = X(75). O

3.2.14 Remark. a) The matrix ‘A/n is positive semi-definite. As the sum of
positive semi-definite matrices is again a positive semi-definite matrix, e.g.
cf. Brunner and Munzel [12, Satz B.40], it is sufficient to show that

SN w @ [ fles) L ani) >0
=1 o=1 I(r) Fin,0(s)
for all w € R” and 7 € {1,...,n}. Using the abbreviation

o) Z WS nw) s

n
u=1

we have

ahy (w) 4 (v) Flu,w)
S et w0
u=1v=1

T“l TUl

Z Z Z Z (27 rtus) w(Z?éflervz) :7\7(#1’“2) :Y\£Lv1,v2)

U= 1U2 1’01 11}2 1
(g - B

Ho
~(u1) ~(v1)
— Z Z C(u]) (v1) | ( (Ul,vl) I ! ! >

U= 1’01 1 ILLO

Ty 2yG) _ €
Zl(c va]) YTLJ Z Y(J) (ZC Z n,j Y ’ > :
j=

S|
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3.2 Properties of Sequences of Hardest Parametric Sub-models

Set 61 =", ¥,t!) > 0. Multiplying the right hand side of the previous

equation with & gives

HM:

2
1 A 1 ,
- T Z0ni) yUgs_ = E Tz Y@gs| .
’fl C J n 'fl( c J T

Jj=1

Using the Jensen-Inequality gives the estimate

n 2
(T2, )2 Y9 § > (ZCTZM Ygﬁ(s) ,

Jj=1

I

1

J
i.e the assertion.

b) The condition (3.17) is implied by

() ~()
/ Aad) (6, )(ﬁ;uw “"1“"1>a0ds >
(tﬂ'o) 2 Hn,0

forall u,v =1,...,r and € > 0.

—T6 n—oo

lim limsup Py o (

=

In the next chapter tests for linear and multivariate one-sided hypotheses are
rigorously developed and their asymptotic properties are investigated for se-
quences of hardest parametric sub-models. Even though we start with some

semi-parametric model, these tests turn out to be non-parametric.
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4 Deriving Testing Procedures

In Chapter 2 we established asymptotic normality for sequences of parametric
sub-models and in Chapter 3 the notion of sequences of hardest parametric
sub-models (SHPSM). In Section 4.1 and Section 4.2 multivariate one-sided
testing problems and linear testing problems are considered. The results are
applied to SHPSM in Section 4.3. Moreover, it is shown that the resulting
tests are non-parametric procedures and that they are generalizations of the
projective-type tests of Mayer [53] and the general class of tests introduced by
Jones and Crowley [39], see Section 4.4.

4.1 Multivariate One-Sided Testing Problems

First of all, let us introduce the premises for this section. Analog to previous
chapters we consider sequences of experiments that are asymptotically normal,

again.

4.1.1 Assumption. Let (Qn,An,%n), n € N, where ,, = {Pn{ | €T =
(BT,nT), BER", ne Rq}, be a sequence of experiments that is asymptotically
normal with central sequence S,,, n € N, and asymptotic information matrix

J that is partitioned as follows

_ /1,1 /1,2
4 (/2,1 /2,2> ’

where #; ;1 is some (r x r) matrix and _#5 2 is some (¢ x ¢) matrix. These
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4 Deriving Testing Procedures

premises mean that

AP, ¢
AP0

)

-8, + f AE—pr,, as n — oo,

and S, gpn,o N(0, #), as n — oo.

4.1.2 Remark. Using the First Le Cam Lemma, cf. Witting and Miiller-
Funk [72, Korollar 6.124], one sees that the sequences of probability measures
{Pnf |neN } and {Pn,o |ne N} are mutual contiguous. Especially, conver-
gence in P, g-probability implies convergence in P, ¢-probability. The First
Le Cam Lemma, Slutsky’s Lemma and the Cramér-Wold device, cf. Witting
and Mﬁller Funk [72, Korollar 6.124, Korollar 5.83, Korollar 5.69], give that
Sn 2, Poe N(ZE&, 7), as n — oo. Hence, the sequence of experiments con-

verges weakly to some Gauss shift experiment

(2A,6),  ©&={P|€ = (") e R},
where
S:(Q,A) — (R"T9,B"19), 2(5 | PE) = N(j& /), (4.1)
and AP . ”
I = op(8Te- €7 re). (4.2)

Before we can state the multivariate one-sided testing problem we have to

introduce some more notation.

4.1.3 Definition. Let m > 1 be some integer and () # X C {1, cee m}. Then
we define the mappings

R R™ — RI%I () = (T3 Tz,

o R RIS ) = (70 AT,

where I = (ek | ke IK), er = (51,k, .. .,5,n7k)T and 6, , denotes the Kro-

necker symbol.
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4.1 Multivariate One-Sided Testing Problems

The functions 7% and pi are obviously projections. Let J C {1,...,r} denote
the components of the parameter (3, that we are interested in, i.e. we want
to test one-sided hypotheses that only depend on these components. The
remaining components of 3 are regarded as nuisance parameters. Consequently,
the vector 83 = mj(3) contains the interesting parameter and B4c = ﬂgc(ﬁ)
contains the nuisance parameter. More precisely, the multivariate one-sided

testing problem 9{"13 versus ﬂ{‘g, where
HY: By =0, Bge e Ry e R

and
:Kél] : 63 > 07 58 7é 07 630 S Rr7|3|, ne qu

is the subject of this section. Examples for one-sided testing problems are the
two-sample problem with covariate adjustment or more generally any one-sided

testing problem in the presence of concomitant covariates.

In order to derive some reasonable testing procedure we study the testing
problem U—C% versus fKé under the limit model and derive some test statistic.
This statistic will be the basis to propose a test statistic for finite n € N. As we
allow the asymptotic information matrix ¢ to be degenerated, the hypothesis
ﬂ{f and the alternative fK% are not necessarily disjoint. The next result helps
us to state conditions for guaranteeing that the hypothesis and the alternative

are disjoint

4.1.4 Lemma. P = Py is equivalent to #§ = _7¢'.

Proof. As Py(S € Im(_#)) =1, cf. Witting [71, Hilfssatz 1.90], we get that
dPe T
ap, &P ST 7 (FE - = /f T 7=(7¢ P, o-almost surely.

Therefore 7¢& = f7¢ = Py = PE’ is trivial. On the other hand Pr = Py
implies that Py {s € Im(_#) | f(s) =0} = 1, where

fs) =" 7 (FE~ 7€) - %(fs)%*(fs) + (IO ().
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4 Deriving Testing Procedures

As 2(5 | Po) = N(O, /), it holds that

0=E(f(9) = 5 (SO S (SO + L (FE 5 (FE)
and

0=E(f(S) ~Ef(5)" = (£~ £ 7 (FE~ 7€),
As (s1,82) > 81 _Z ~sy is an inner product on Im(_#), see Proposition B.2.5,
we get that Z¢& — #¢ = 0. Remember that T = (8T, nT) and ¢t =
B ). O

The previous result gives that the hypothesis ﬂ-f? and the alternative 3{‘? are
disjoint, if and only if ©(3{) N ©(X]) = 0, where

o) ={ selecad} and O(KY) ={ se|eecx?}

are the induced parameter sets of the hypothesis and the alternative. Later,
the matrix ¢ corresponds with the asymptotic information matrix of some
sequence of hardest parametric sub-models, see Section 4.3. This means that
we do not know the matrix ¢ in general. Therefore, we state a criterion that

depends on the matrix

J =0 1252272

which corresponds with the asymptotic covariance matrix of the MCRM, see
Theorem 3.2.4.c. We will see that this matrix is known to some extend. In
Discussion 4.3.2 reasons for considering models with a degenerated asymptotic
information matrix are provided and it is shown that these models satisfy the

condition (4.3) given in the following result.

4.1.5 Proposition. Assume that

B eker( " )N\{0} = [y Z0and -5 20, (4.3)

where £ # 0 means that x(®) < 0 for some u. Then the hypothesis H?
and the alternative K¢ are disjoint in the limit experiment. Note that con-

dition (4.3) trivially holds, if the information matrix #* is non-degenerated,

since ker(_#*)\{0} = 0.
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4.1 Multivariate One-Sided Testing Problems

Proof. Lemma 4.1.4 implies that P: = P/, ifand only if #¢ = _#¢. Without
loss of generality, we can assume that 7,7’ € ker(_#22), as f#21 = 0 and
J1om = 0 for all 7 € ker(_#s2), see Proposition B.3.4.a. 7¢& = 7¢& is

equivalent to
(/1,1 /1,2> (ﬂ) _ (/1,1 /1,2> ( g )
H21 Fa2) \0 S Fa2) \n' —n

J1a(B=0)= F12(n —n) and Z1(B—0) = Za22(n —n).

and

and

J1a(B—=0)— F12n =n) =0 and _Zy, 71 (B-0") = (0 —n).

Putting these equations together yields that #*(3—3') =0, i.e. (86— 0') €
ker(_7*).
Assume that £ € H? and ¢’ € X7 and that JE&= g Applying the previous

considerations, we get

/ r r 0_5/ *
(5= = (7 73) (533 i ;én) € ker( 5

and that 85 > 0 and 35 # 0. This contradicts our assumption. O

Behnen and Neuhaus [8], who consider a similar testing problem, suggest the
asymptotic likelihood ratio test statistic as basis for inference on 3. Following
their idea, we also aim to develop an asymptotic likelihood ratio test. For the

testing problem H? versus K¢ the likelihood ratio test statistic is given by

dP:
SUP¢egc?ux? ap,
SUP¢es! ap,

T =2log

see also Witting and Miller-Funk [72, pp. 215] for a justification of this pro-

ceeding.
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4 Deriving Testing Procedures

For defining the statistic T one does not need the assumption that the hypoth-

esis H? and the alternative X7 are disjoint. Basically, T is the likelihood ratio

test statistic for the testing problem
HI €0y, Versus X9 :¢€051\04.0,

where

Og0={¢| FEcO@])} and 51 ={¢| ¢ O0(Xd)}.

If the condition (4.3) holds this testing problem is equivalent to the original

testing problem, since ©4 ¢ and Oy ; are disjoint. The transformation is based
on the fact that P; = P if and only if #& = #¢', see Lemma 4.1.4. The

next results help us to simplify the statistic 7.

4.1.6 Lemma. Let &/ be some symmetric, positive semi-definite (k x k) ma-

trix, s € Im(«7) and ¢ € R. It holds that

1 1
sup s'x — —z Ar+c=—-s A s+
IER"" 2 2

Proof. As s € Im(«&/), we can write s = .&/s¢ for some so € R¥. It holds that
AdA s = dA Asg = /sy = s and therefore xyg = &/ s is a solution of

o/ x = s, see Proposition B.1.5. A Taylor-expansion at z( gives that
sTa — le%Z' +c= %sTd_s +c— %(x —x0) e (x — x0).

Since &7 is positive semi-definite, it follows the assertion.

4.1.7 Lemma. Let us introduce the following abbreviations

%(/) = ‘?{QJ,rq,r} - ‘j{:iql,u.,r+q}/2j2/2,1

and
Yy(F*) = Tf — T (A5 7)) A (7

where we set

A I =I5 I Tyg Fya=7f, and Tya= T,

J

(4.4)

O
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4.1 Multivariate One-Sided Testing Problems

Abbreviating
HG(J7) = A I ™) = AL I (A I 7)) AL (I,
we define
1
Ly s+(y)=2 sup (nTy - §KT%*(/*)H), y € R
x>0, keRI3|

Ly, y+(u) = Ly, s+ (#5(_7") ), ueR",

and

Lya(u, #*)=max{fyg(u, F*)|0#IC{1,....[d]}}, u€eR",

where
fra(u, 77) = Qog(u H]l<77 (Ryg(u f*))ZO)
1€Jd
and
Qaa(u, 7)) =yag(u, £*) Ry g(u, 7%),

(u

Ry g, 7 = (o5 (7)) malu, 7,

walu f) =m) (25(F ) ).

a) For any s € Im(_#), it holds that

SUDgescsunc exp(s7E — 37 7€) -
Subgeges exp(sT¢ — 3¢7 7€)

2log T (%(/)TS)

b) For any u € Im(_#*), it holds that flgﬁj* (u) =Lga(u, 7).

(4.10)

¢) Ly, g+ : Im(5(#*)) — R and Zg’/* :Im(_#*) — R are convex and

continuous functions.

Proof. For the proof set % = % ( 7), /;; = %’;%(j*), H* = AP (I)

and %5 = %;(_#*). Obviously, it holds that

wt gUu = (/1,1 — 2S00 S — /172/2}%2’2) “

=(/* 0)02/=/*,
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4 Deriving Testing Procedures

where we use Proposition B.3.4.b and the properties of a generalized inverse.
Analogously, it is proved that %T F %y = J*. Note that these matrices are
also symmetric and positive semi-definite. Abbreviate s; = ngq (s) and

Sg = ﬂg:rflw,q}(s) and set
(B3, Bge,n) = By m5(s1) + Bromye (s1) + 1" s2
- %ﬁgcpgc(fl,l)ﬁgc - %ﬁgTPE(/l,l)ﬁa — B30 T " F119 By
" o T B~ 1t Faa Tl — 5" Frm
One sees that the left hand side of (4.10) is equal to
2 sup{p(Bs, Bye.m) | B3 > 0, 5 e R"11 py e R7}
— 2 5up{p(0. Bge.m) | 55 € R, € RY}
=2 Sup{SUP {Sup {p(Bg, B0, m) | n € R} ‘ Bge € RHB'Hﬂa > 0}
-2 sup{ sup {p(O,/Bac,n) |ne Rq}|ﬂgc € RT*W}

=2 SUP{M(ﬂﬂ,ﬂgﬂan) | 53 > 0} 72M(07630777)

where

M (By, Bge,n) = sup {sup {p(Bs, Bge,m) | n € RY} ) Bye € R""H‘}.

Proposition B.3.4.b and Proposition B.3.4.c give that
s2 — F2173B5 — F21750Bge € Im(_F22).
Applying Lemma 4.1.6 yields
sup {p(B1,Byo.m) | m € B9} = G} (%7s) — L9F Ai.16
¥ 392 s+ BRormo (U75) — 38T 250 — o 1By

after some tedious computations. As

%1 %2 %Tl
R R R B T A
<ﬁf %) (% s (7 %ia)

96



4.1 Multivariate One-Sided Testing Problems

Proposition B.3.4.b and Proposition B.3.4.c give that 7Tgc (%Ts) — 518y €
Im(.7% 2). Applying Lemma 4.1.6 yields that

1
M (B3, Bge,m) = B3 Py U ™"s — 55}%*53
1 T 1 -
+ 3 (7720 (%TS)) oo (WEJU (%TS)) + §Sr2r/27282'

As 2 sup{M(By,By0.n) | By =0} — 2M(0, Bg0,m) = zg,j*(%Ts), the proof
of a) is complete.
Proof of b). As #Tu € Im(*), cf. Proposition B.3.4.c, it holds that

T * *\ — 1 * *\ — *

Lgyj*(u) =2 sgg((%” /{)T(%ﬂ ) %Tu — 5(%” /s)T(jf ) (if )/{)
Proposition B.2.5 yields the assertion.

Proof of ¢). First we note that the set Im(_#*) is convex and that 0 <
53,/*(u) < oo for all u € Im(_#*), because of b).

E&j* (/\U1 + (1 - /\) Ug) = LH,]* (%T(/\Ul + (1 - /\) UQ))
< /\L&/* (%Tul) + (1 — )\) Lg,/* (%TUQ)
=MLy g-(u1) + (1= ) Ly, g+ (u2)

for all u; € Im(_#*) and X € (0,1), i.e. Zg’j* is convex and therefore contin-
uous, cf. Borwein and Lewis [10, Theorem 4.1.3]. Since any y; € Im(s¢*) can
be represented as y; = J*y;, one gets that y; = %Tui, where u; = _Z*%3;.

Since Im(7*) is convex, we have
Lg,j* ()\yl + (1 - )\) yz) = zg,/* ()\ul(l - )\) U,Q)
<ALy g-(u1) + (1= X)Ly, g~ (up)
=ALg z-(11) + (1= A) Ly, g+ (y2),

where we use the convexity of Eg) g+. Thus, Ly g~ is convex and continuous,
cf. Borwein and Lewis [10, Theorem 4.1.3]. O
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4 Deriving Testing Procedures

Using the previous result we can simplify our test statistic 7', whose distribution

is calculated in Theorem 4.1.14.
4.1.8 Corollary. It holds that
T=Ly:(U, #*) Pe-almost surely,
where U =% (_7)"S.
Proof. As P; < Py, it suffices to show the assertion for Fy. Witting [71,

Hilfssatz 1.90] gives that Py(S € Im(_#)) = 1 and Py(U € Im(_#*)) = 1.
Consequently, Lemma 4.1.7.a and Lemma 4.1.7.b imply the assertion. O

4.1.9 Remark. In Discussion 3.1.1 we showed that the statistic
— 1 * 1 *
Tso = Bo (51— F12.85252) — 553/ Bo=0Bo%(F)'S ~ gﬁoT/ Bo

where we set S; = ﬂf{”i_q__’r}(S) and Sy = ngfl ____ riqy (5), is efficient for the
testing problem 8 = 0, n € RY? versus = [y, n € R%. Remember that the
critical values can be chosen independently of 7. Now, let us assume that 3 is

one-dimensional, i.e. r = 1. Clearly,

T Vz(m 08 S 0) = TSNS,
is an efficient test statistic for 8 = 0, n € R? versus 8 = [y, n € R4
More precisely, the test @ = ﬂ(f > c(a)), where c(a) is chosen, such that
Py (T > c(a)) = q, is the most powerful a-test. This test is independent of
Bo, therefore it is even the most powerful a-test for the testing problem g = 0,
n € R versus > 0,n € RY. As o = 1(T > (c(oz))2)7 our likelihood ratio test
statistic is optimal in the case of a one-dimensional 3. So, we can expect to
obtain reasonable testing procedures by using the likelihood ratio test statis-
tic. The efficiency of our tests will be discussed in greater detail later in this

section.
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4.1 Multivariate One-Sided Testing Problems

Since the statistic U corresponds with the statistic U,, = %(j)TSn for finite
n, the previous result suggests that Ly ; (Un, B *) is a reasonable test statistic
for the testing problem 9~{§ versus JNC‘E However, this statistic still depends on
asymptotic quantities. In order to get some applicable test we have to replace
these quantities by suitable estimators. In the next few steps we provide the
results needed for proving that if V,, — " —p,, 0and U, — U, —p,, 0,

as n — 00, it holds that
L871 (Un, /*) — L871 (ﬁn,‘/}n) —>Pn,§ 07 as n — oo,

for all £ € R4, Hence, one can use Lgﬂl(ﬁn, Vn) as test statistic that does
not depend anymore on asymptotic quantities for suitable U, and V,,. The
following Lemma is a generalization of a result that can be found in Janssen [34,
p. 151].
4.1.10 Lemma. Assume that 7,, n € N, is a sequence of real, symmetric,
positive semi-definite (k x k) random matrices, such that
(i) o, — o —p, 0, as n — oo, where &/ is a real, symmetric, positive
semi-definite (k x k) matrix, and
(ii) ker(«) C ker(«,) P,-almost surely for all sufficiently large n € N.
The following assertions hold true.
a) o, —of~ —p, 0, asn — oco.
b) (VY V)~ — (VT V)~ —p, 0, as n — oo for any (k x m)-matrix ¥ .
¢) In the case that k = r and using the notation of Lemma 4.1.7, where we
replace #* by &/ and 47,, it holds that
(i) #(ety) — #Y5(ef) —p, 0, as n — oo.
(ii) ker(H5 (/) C ker(5 (,)) Py-almost surely for all sufficiently
large n € N and 5 (,) — 5 () —p, 0, as n — o0.

Proof. Without loss of generality we can assume that all random matrices are
defined on the same probability space. By applying the sub-sub-sequence prin-

ciple for random variables that converge in probability, cf. Proposition B.4.8,
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4 Deriving Testing Procedures

we merely have to show the assertion for sub-sequences of fixed sequences of

non-random matrices.

ker(«7) C ker(7,) yields dim Im(/) > dim Im(47,), i.e. rank(47,) < rank().
Abbreviating | = rank(.«?), we note that the set of all real (k x k) matrices with
rank greater or equal to [ is an open set. Thus, we can assume that rank(%7,) =
[ for all sufficiently large n. Using the representation <7, = %I 2,,.%,, where
Fn, is some orthogonal matrix and 2, = diag(Ay1,..., Ay, 0,...,0) we get
that o/ = 19, 7,, see Proposition B.1.6. One immediately sees that
liminf,,_ minlgigl()\nﬁi) > (0. Consequently, it holds that 0 < trace(.dn_) =
22:1 )\;i < K < oo. Thus, the sequence &7, , n € N, is relative compact and

therefore contains an accumulation point .o%.

We see that o, o/~ o~ o, o, <, and o, o, o, have the accumulation

points &7 <, Ay, o Hhof and Ayl oy respectively. Now, one easily checks
that ., satisfies the conditions of Definition B.1.1. As the generalized inverse

is uniquely determined, see Proposition B.1.2, the proof of a) is complete.

Proof of b). Assume that x € ker(¥ T/ ¥). Using Proposition B.3.2.b gives
that ¥k € ker(«/) and therefore ¥« € ker(«,) P-almost surely. Again, Propo-
sition B.3.2.b yields that x € ker(? T, %) P-almost surely. The assertion is
implied by a).

Proof of the first part of ¢). Applying b) yields that

(1%’532(,@7”)) — (%’382(42%))_ —p, 0, as n — 0o.

Proposition B.4.6 gives that %31 () — %”231(427) —p, 0. Finally, Proposi-
tion B.4.6 yields the assertion.

Proof of the second part of c). Proposition B.4.6 gives that j’f;gj(&fn) -
z%’;‘q](,;zf) —p, 0, as n — o0o. b) yields that

(A ()™ = (Ho()” —, 0, as n — 00.

Combing these results and Proposition B.4.6 imply the first assertion.
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4.1 Multivariate One-Sided Testing Problems

We show that ker (5 («/)) = mj(ker(&/)). Assume that x € ker (5 (<))
Using Proposition B.3.2.b one gets that %;(#/)x € ker(&/), since 5 (&) =
Yy( )V Wy (o). As my(Y5(o k) = K, it results directly that ker (75" (7)) C
7 (ker(«7)). Assume that r € ker(«/). Proposition B.3.2.b gives that

N <w§<n>>T (%ﬂ(ﬂ) %{W)) (w;(n))
wo(n)) \ A7) A)) \ (o)

and that

() (k) = A2 () () — €T A () (A (1))~ A () ()
= 0\ () (k) — €T A, (o )7 (k)
= S\ ()7 (k) + €T A (A ) <>
= M () (k) + AL ()l (k) =

i.e. ker(#5 (7)) D mj(ker(«/)). Analogously, one shows that 7 (ker(4,)) =
ker(%’g* (dn)) Consequently, it holds that

ker (5 (o)) = my (ker(Z)) C my(ker(a,)) = ker (A5 ()
P,,-almost surely for all sufficiently large n € N. O

4.1.11 Lemma. Let &/ be some (k x k) positive semi-definite, symmetric

matrix, x € Im() and define

gk (@) = [ 1(=fy (@) reRF, 0#IC{1,... K}
i€Jd

Assume that X, g]pn X, as n — oo, where X ~ N(x, o).

a) gr,g(X,) converges in distribution.
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4 Deriving Testing Procedures

b) If additionally X,, — X,, —p, 0, as n — oo, and plzi}(sz{) > 0,4 € J, then

9r,9(Xn) — gr,9(Xy) —p, O.

Proof. Note that P(X € C) = 1, where C = Im(«), cf. Witting [71, Hilfs-
satz 1.90], and define the (k — 1)-dimensional hyperplanes {z € R* | w’fi} (z) =
0},i=1,...,k. Set

M:{iGJ‘CC {xekafi}(x):o}} and M = J\)M,
where M contains the indices of the hyperplane that completely cover C.

Clearly, it holds that gr5 = g, 5 PX-almost surely, where Ieo = 1.

Let D(g, 5;) denote the set of points where g, 5 is not continuous. Obvi-
ously, we have the inclusion D(g, 5;) C Uie’ﬁ{m € R¥ | ﬂfi}(z) =0}. Cn
{z eR*| 7r’{“i} () =0}, i€ M, are linear sub-spaces of C' whose dimension is

strictly smaller than the dimension of C. Hence, we have
IP’X({:U € R¥ | 7k, (z) =0} N C) -0, ieM,

the Continuous Mapping Theorem, cf. Witting and Miiller-Funk [72, Satz 5.43],

yields the assertion.

Proof of b) by induction with respect to |J|. For |J| = 1 one gets that 75(X) ~
N(7h (x), p’{“i}(gz{)), and therefore P(75(X) = 0) = 0. Proposition B.4.7 implies
the assertion. Assume that the assertion holds for all |J| <, 1 > 1. It is shown
that the assertion holds for |J| = I + 1. Choose non-empty sets M;, i = 1,2,
such that M; UMy =J and My N My = 0. Clearly, it holds that |[M;| <I. As

9r,3(Xn) — gk:,f]()?n) = gk (Xn) - gre,vs (Xn) — gk,Ml()A(n) Gk M (X,)

a), the induction assumption and Proposition B.4.6 yield the assertion. O

Let us summarize the premises of the previous results.

4.1.12 Assumption. Assume that the following conditions hold.

102



4.1 Multivariate One-Sided Testing Problems

(i) & is some (r X r) positive semi-definite, symmetric matrix, pf{“i}(d) > 0,

4.1.13 Theorem. Let Assumption 4.1.12 be satisfied. Then it holds that

a) Ly1(X,, o) — Lg,l()/(:n,@/f;) —p, 0, as n — oo, and

~

b) LEJ,I(Xm@Z:) gpn Lj1(X, o), as n — o0,

where use the notation provided in Lemma 4.1.7.

Proof. First we show the estimate
lmax{ai,...,a} —max{by,...,b}| <max{|ay —bi],...,[a; — b|}. (4.11)

Without loss of generality one can assume that max;{a;} = a;, > max;{b;} =

bi,. The estimate
’mzax{ai} - mzax{bi}| = aj, — biy + biy — biy < ai, — by, < mlax{\ai — bi|},

where we use a;, — b;, > 0 and b;, — b;; <0, gives the assertion. Because of
the estimate (4.11) and Proposition B.4.5, it suffices to show that

F1.3(Xn, @) = f35(Xp, @) —p, 0, asn—oo, O#IC{1,...,]3]}.
Using Lemma 4.1.10.c.i and Proposition B.4.6, one gets that yg (X, ) —
ylg(f(n,.sz?;) —p, 0, as n — oo. Applying Lemma 4.1.10 and Proposi-
tion B.4.6 gives that Ry 5(X,,, &) — Rgﬂ(f(n,&?;) —p, 0, as n — oo.

Now, Proposition B.4.6 yields that Qg 5(X,, &) — Qy.5(Xn, ) —p, 0, as
n — 0o. The Continuous Mapping Theorem, cf. Witting and Miiller-Funk [72,
Satz 5.43], yields that Qg 5(X,,, &) converges in distribution as n — oco.
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4 Deriving Testing Procedures

The Continuous Mapping Theorem gives that Ry (X, 2/) ipn Ry 4(X, o),

as n — o0o. One readily checks that

P (%) e N( (01085 (e0) ) (@500, (o1 85 (1))
and that

(041 ) =" @ater) ) € (o () ),

where one uses Proposition B.3.4.c. Furthermore, Lemma 4.1.11 yields that

9y, {1 \3\} (Rj’g(Xn, .52/)) converges in distribution, as n — oo, and that

g|j|,{1,_4,7\j\} (Rj’g(Xn,JZf)) —g|j|7{1 m}( 9.9 Xn,,szf )) —p, 0, asn — oo.

All in all, one gets that

Fr.0(Xn, ) = f3,5 (X, ) = Q2.5(Xn, ) RLTR D) (Ro.(Xn, o))

- Q@ 3( n> g|j| {1 m}(R‘JS Xm%L)) —p, 0,

as n — 00. The proof of a) is complete.

Proof of b). Because of Slutsky’s Lemma, cf. Witting and Miiller-Funk [72, Ko-
rollar 5.84], and a) we merely have to show that Lj 1 (X,,, &) g]pvn Ljq(X, o),
as n — oo. Witting [71, Hilfssatz 1.90] yields that P(X € Im(«)) = 1. Be-
cause of Lemma 4.1.7.b and Lemma 4.1.7.c the Continuous Mapping Theorem

can be applied and yields the assertion. O

The following result contains as a special case Theorem 3.2.7 of Behnen and
Neuhaus [7]. The proof presented here relies on ideas that can be found in
Behnen and Neuhaus [7] and an unpublished paper of Mayer on his disserta-
tion [53].

4.1.14 Theorem. Assume that X ~ N(0, &), where &/ is some (r x r) posi-
tive semi-definite, symmetric matrix. Set ;" = 75" (/) and

F3a(t)=P(Lg1(X, o) <t), teR

Furthermore, suppose that rank(J#;") > 0
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4.1 Multivariate One-Sided Testing Problems

a)

c)
d)

Assume that ¥ ~ N(0,.55") and that Z, ~ x3, where xj denotes a central
chi-squared distribution with &k degrees of freedom. For all ¢ > 0 it holds
that

1=Faa)= X P(Z(in) > ) POT €V
029 {1.....13/}

xP(ﬂiejc{ 2L —vy) <0})

where we set
vi =5 7 (o (o)) xS (v), o {n. a1,
and

V= {%;,*z"”n | >0, u= 1,...,\J|}, Ic{1,...,19},

and define P(ﬂe@{- . }) =1

Assume that
Y N (0 |8| %* -1 v |8| x—1 -1
3~ N(0, (o (7)) and Yo~ N(0, (o () ),

then for all ¢ > 0 it holds that
L-Fat)= Y  P(Zy>1) (ﬂ {miy(¥2) = 0})
0£9c{1,...1a1}
x (), o {7} (7)< 0}),

where P((),c4{.--}) = 1.
It holds that Fy ,(0) < 1.

Fy o is continuous and strictly increasing on the interval (0, 00).

Proof. For the proof we use the concepts and notation provided in Section B.2,

especially Proposition B.2.5. Define

vy = {%*lealﬁwemﬂ}
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4 Deriving Testing Procedures

and
Vi = {x € Im(J5") | <w,y>(sy)- =0forally € Vg},
where J C {1,...,]d|}. Especially, we define Vy = Vy = {0}.

Set Y = %(«/)TX. Using Witting [71, Hilfssatz 1.90] and Proposition B.3.4.c
gives that ]P’(Y € Im(%‘g*)) = 1. Consequently, one gets that Ly (X, o) =

2 . .
HHV?L...,\B\} (Y)H(%H*), P-almost surely by applying Proposition B.2.5.e. De-
fine
R _ * og7|d] _
Ql’l o {<Y HV{+1 ,,,,, \3\}(Y)’% %i}>(%*)’ 0}
and

Qi = {(Y ~ 0

« o7 |d]
{1,..., \3\}(Y)"%ﬂ3 j{i}>(%§)7 < 0},

Proposition B.2.3.b implies that the sets
= (mieﬂ Qi’l) N (mieﬂc Qﬁ)

= = _ * g7 |d| : C
_ {Hva,...,a#” =Ty, (¥), (Y ~ Ty, (V), 5 73} ) <06 €9 }

_ _ * o] . H
= {HVEV_H“(Y) =TIy, (Y) and <ij¢ (Y), 75 ‘7{1'}>(%;)— <0,i€7d },
JcC {1, ceey \3|}, are a disjoint decomposition of the sample space.

For ¢t > 0 we get

{Hnwﬁ

2
Ol e > t} Ny = Ay By Cy.

where
Ay = {HHVU(Y)H?%*), >th By={Tly,(v) € V5 }

and

Noting that ¥ ~ N(O,jfg"‘) and using the representation given in Proposi-
tion B.2.5.c, one sees that Eaton [18, Proposition 3.4] is applicable and that
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4.1 Multivariate One-Sided Testing Problems

Iy, (Y) and II (Y) are stochastically independent. Therefore, the events
Ag N By and Cy are stochastically independent.

In the next step it is proved that the events A5 and Bj are stochastically
independent. Using Proposition B.2.5.c one gets that Iy, (Y) = Y;" and

[T, ()] [y = 7)™ (6 51)) ™l ) (o )™ ().

Note that (pga‘(%*)) ﬂ"f‘(Y) ~ N(0, (p IH\(%*)) ). Consider the distribu-

tion family
B ={FP.|c>0}, where P, = N(O,c (p ‘3‘(%*)) )

Clearly, it holds that

dP,
dpP;

. 2 « 1
(2) = ¢ ronkl (A2 exp<‘2<1/c - 1)2%3'(%*)2)'

One sees that 2Tp IH\ (M5 )z is a boundedly complete and sufficient statistic for
the exponential famlly B, cf. Witting [71, Korollar 3.20, Satz 3.39]. As V;r is

a closed convex cone, see Definition B.2.2, it holds that

({215 7/ €V} ) = Po({= | 1/ve- 5 7)) e V1))
= P.({z1 7577 (1/ve ) evi}) = Pi({z | 75 772 € v} ).
Thus, the distribution of the auxiliary statistic ]1(%%* %‘3‘2 € \75}") is indepen-
dent of the parameter ¢. Basu’s Theorem, cf. Lehmann [47, Theorem 2, p. 191],

gives that sz‘jgl (M5 )z and 1 (%”3* %IH\Z € V;) are stochastically independent.

Consequently, the events A5 and Bj are stochastically independent.

So far, we have proved that

P(Ly1(X, o) >t) = > P(Ajg) - P(By) -P(Cy), ¢ >0,
0£9c{1,...1a1}

where we set P(Cyy j93) =1
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According to Proposition B.3.3.b we can find (|J| x I) matrices & and €, where
| = rank(p‘jg‘(c}%*)), such that AT = pga‘(%*), CET = (pljﬁl(%*))* and
CTRB = BTEC = &, where & denoted the (I x [) unity matrix. As

‘ |HVJ (Y) 2

oy =m0 (V) (o (7)) "y (V) = i’ (V) 6wy (1)

and %TW?'(Y) ~N(0, &), it follows that ||IIy, (Y -distributed.

2 .9
)||(yf;,;)f 18X
Using Iy, (Y) = Y7, HVJL (Y)=Y —IIy,(Y) and IP(Y S Im(jfg*)) =1, one
receives the representation of the sets By and Cy.

Proof of b). In the case that rank(.7;" %IHI) = |J], the condition Y;* € Vi is
equivalent to 71'5' ((p |3\(% ))77r‘33|(Y)) >0,i€J. As

d *\) ~|d aJ 1
(o) "l ) ~ N (0, (6 (1)),
we get the new representation of the set Bj.
Note that 5 is not degenerated, therefore one readily checks that Vi =

{%lf‘fi | k € RFI}. We know that Iy, (V) = (p‘ja‘(%”a*fl)) ! \,Ijil(Y), see

Proposition B.2.5.d. Because of
II Y) ~N{(0, 21 ﬁf* ! '
VJL( ) (pj ( )) ’

it results the representation of the set Cj.

Proof of ¢). As rank () > 0, one can choose i, such that p‘gl (A7) >

The estimate

P(Lya(X, o) =0) = P(ﬂm#jc{lww} {fr0(X, ) = 0})
B(fo10) (X, /) = 0) = B () (7)) "' (v) <0) =

gives the assertion.

d) is an immediate consequence of the representation of 1 — Fj s given in a),
rank(£5") > 0 and the fact that t — P(Z; >t), k > 0, is continuous and

strictly decreasing on the interval (0, co). O
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In Behnen and Neuhaus, cf. [7, pp. 158], the computation of the survival

function 1 — Fj o is demonstrated for the cases |J| = 2 and |J| = 3.

4.1.15 Corollary. Under Assumption 4.1.12, it holds that

031(04527) Hd(l—a)*np 0, as n — oo,
where o € (0,1/2) and one sets 0371(04,&2:) = Fa_ii (1-a),neN.

Proof. Without loss of generality we can assume that all random variables are
defined on the same probability space. Using the sub-sub-sequence principle
for random variables that converge in probability, cf. Bauer [6, Korollar 20.8],

we can also assume that Jz?; — &/ almost surely.

Assume that X,, ~ N(O,;f;). As X, 2, X, using Theorem 4.1.13.b yields
that Ly 1 (X, ) — Ly.1(X, /). Theorem 4.1.14.d and Witting and Miiller-
Funk, cf. [72, Satz 5.58], give that F; 7 () — Fj (t) almost surely for all
t > 0. Theorem 4.1.14.c and Theorem 4.1.14.d imply that FJ;{ is continuous
on (1/2,1). Witting and Miiller-Funk [72, Satz 5.76] and the sub-sub-sequence

principle for random variables that converge in probability give the result. [

4.1.16 Assumption. Let the Assumption 4.1.1 hold and suppose that ﬁn
Q, — R", n € N, are measurable mappings and that ‘7n : Q,, — R™7,

n € N, are random matrices satisfying the following conditions.

)

a) —U, —p,, 0, a8 n — oo, where U, = % (_#)"S,, n e N.
b)
¢)

)

d) piy (F*)>0,i=1,...,r

‘A/ J* —p,,0,asn — oo.
ker

r( 7*) C ker(Vn) P, o-almost surely for all sufficiently large n € N.

For the testing problem UTCf versus 3~sz , we propose the sequence of tests ¢y, 1,

n € N, where

1, o .
507%1 = O L371(Un, Vn) — 0371(017 Vn) O .

IN V
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4 Deriving Testing Procedures

For a practical application the following representation of the test is more

convenient

) f—

17 -~ 7 >
Pn1 = { Fy 5. (Lga(Un,Vp)) = (L—a) ~ 0.
0, < <
4.1.17 Corollary. If @ € (0,1/2) and Assumption 4.1.16 holds, it holds that

Eng(¢n1) = Pe(Laa(U, f7) = cgale, J7) > 0),

where U = % (_7)"S and £(U | P:) = N(_#*3, #*). Especially, the sequence
of tests ¢,1, n € N, keeps asymptotically the level on the hypothesis ﬁ?

Moreover, if
KL AG (I ke >0, forall k; € R k>0, =1,2, (4.12)

then the sequence of tests ¢, 1, n € N, is asymptotically unbiased.

Proof. The Continuous Mapping Theorem, cf. Witting and Miiller-Funk [72,
Satz 5.43] gives that U, gpw U, where one checks that U ~ N(_7*3, #%),

since

UI) IE= I B+ (12— Sr2I02  20)0= I B,
see Proposition B.3.4.b, and % ( #)* 7% ( ¥) = F*. Setting o = #*,
,sz?,: = \7n, X, =U,, )A(n = Un and P, = P, 0, n € N, one sees that Assump-
tion 4.1.12 holds. Theorem 4.1.13.a, Corollary 4.1.15 and Remark 4.1.2 give
that

L1 (Un, Vi) = cg1(, Vi) = (Lga(Uny F7) = cgale, #*)) —p,. 0.

Setting &7 = 42?;: I Xy = )/(\’n =U,, and P,, = P, ¢, n € N, one sees that
Assumption 4.1.12 holds. Theorem 4.1.13.b and Slutsky’s Lemma, cf. Witting
and Miiller-Funk [72, Korollar 5.84], yield that

L3,1(ﬁn, ‘771) —cg1 (e, ‘777,) 3’&,,£ Ly (U, 7*) —cga(a, 77).
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4.1 Multivariate One-Sided Testing Problems

Theorem 4.1.14.c and Theorem 4.1.14.d imply that

Po(Lga (U, 77) = e (e, £*) =0) =0.

As P; < Py, the Portmanteau Theorem, cf. Witting and Miiller-Funk [72,
Satz 5.40], gives the first assertion.

Abbreviating %‘;3] = %‘f](/*) and 5" = A3 (™), one readily shows that
Yy( ) 8 = A Py + (0 — A (o)A ) B = 5 By
where one uses Proposition B.3.4.b. Thus, it holds that £(%;(_Z*)TU | P) =

N(Ay By, H5).-

Assume that € € ﬂff? As 7¢ = _#Z¢& isequivalent to P: = Pe/, cf. Lemma 4.1.4,
without loss of generality it can be assumed that £ € ﬂ{f . Using the previous

considerations and Lemma 4.1.7.b, we get that

(LgaU, 7*) | Pe) = £(Ly,s- (#(F)"U) | Fe)
= (Lo~ (#(F)U) | By) = £(LaaU, 7) | o).

Now, Theorem 4.1.14 yields that

PE(LH,l(U7 /*) > 03,1(0‘7 f*>) = PO(LELI(Uﬂ /*) > CH,I(O‘> /*))

» (4.13)
=1—Fy 4 (F&j*(l —a)) =

So, it remains to be proved that the sequence of tests is asymptotically unbi-

ased. First, we note that

Pe(Lya(U, ) > cgala, 7))
= Pe(La s (#(F)TU) > egale 7))

(4.14)
= Po(La g (B9 7 )0 + 5 By) > egaln 7)),
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cf. Lemma 4.1.7.b. Furthermore, it holds that

Ly, 7+ (#5( 7 ) u+ 5 By)
* * 1 *
= sup MI(&T(%(j )Tu—h% 63) - §/£T,7f5 /1)
>0, KERI2
T *\T 1 T * (415)
> sup (/{ Yy( ) u— =k %Ii),
}>0, KERIAI 2

where we use the condition stated in (4.12). Using again Lemma 4.1.7.b as
well as combining (4.13), (4.14), (4.15), we finally get that

Pe(Lga(U, F7) > cgala, 7)) > a

for all & € 3. O

In the last part of this section, it is shown that the sequence of tests ¢y 1,
n € N, is asymptotically admissible for the testing problem ﬂTC‘{f versus 3~<§ . But

first let us remember the notion of admissibility.

4.1.18 Definition. a) In the limit model, a test ¢’ is said to be admissible
for the testing problem IJT@ versus 92?, if for any other test ¢ satisfying

Ee(¢) <Ee(¢'), €M,  and  Ee(p) >Ee(¢), €eXi,

it follows that ¢ = ¢’ Pe-almost everywhere for all £ € R4,

b) A sequence of tests ¢/, n € N, is said to be asymptotically admissible for
the testing problem thf versus 3~<Ef7 if for any other sequence of tests ¢,
n € N, satisfying

limsupE,,¢(¢n) < liminf B, e(d)), € €,

n—oo

and

liminf B, ¢(¢y,) > limsup E, ¢(¢),), e 9~<§7
n—oo

n—oo

holds that ¢, — ¢;, —p, . 0.

n
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4.1 Multivariate One-Sided Testing Problems

The following result will be essential for proving that a sequence of tests for

multivariate one-sided testing problems is admissible.

4.1.19 Theorem. Let & € R™9 k € N, and a;, € R, k € N, be arbitrary. If
& € fJN{?, k € N, then the test ¢’'(S), where

#(s) = 1, sT¢ > ay for some k € N,
0, sTé, <ayforall k€N,

is admissible for the testing problem ﬂtff versus 3~<21’ and uniquely determined

by its distribution.

Proof. The proof of Theorem 71.14 in Strasser [68] is also applicable for this
Theorem. The crucial point is the fact that the &, & € N, belong to the
alternative 3~<§ . O

4.1.20 Proposition. Under Assumption 4.1.16, the test ¢/ (S), where

¢1(s) ={ (1)’ Lyga (% (F)'s, 77%) —canla, 77) z 0,

and a € (0,1/2), is admissible for ﬁ? versus 52? and uniquely determined by

its distribution.

Proof. We show that ¢} has a representation as the test considered in Theo-
rem 4.1.19. Set 5" = A7 (_7*). The function Ly, s~ : Im(J) — R,

1
Lo p-) = 2sup KTy = 36Tt k). g € (),
k>0

is a continuous and convex function according to Lemma 4.1.7.c. Thus, the
set C* = {Ly, g+(-) < cga(a, #*)} is convex and closed. By basic separation
theorems we know that there exists xx € Im(5)\{0} and ar € R, k € N,
such that

cr = m {y e Im(5) | kiy < ap}.
k=1
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4 Deriving Testing Procedures

In the following we use the concept provided in Section B.2. Let us introduce
some notation. Set V = Im(J)") and <yi1,y2> ()~ = Yt (A7) y2, yi €
Im(25"). (V,<~,~>(%g*)_), is a Hilbert space and V{ = {%”3*/{ | k> 0} a

closed convex cone, see Proposition B.2.5. It holds that
{y eIm(") |y rr <ar}={yeV| <Y, AF K> () - < ar}.  (4.16)

In the next step we show that 5 k) € \73’ , which is clearly equivalent to
I+ (5 ki) = A5 Ky, where Iy« denotes the projection on V{ in the sense
of Proposition B.2.3.a. Assume that § = X - (] ki — Iy (A5 kr)) € V\{0}.
It holds that

<A 1> gy = Al A= Ty (A7 50|

where we use Proposition B.2.3.b. Using equation (4.16), for all sufficiently
large A > 0 it holds that y Tk > ag, i.e. ¥ € C*. On the other hand, it holds
that
Ly ¢-(y) = ||va(@||?ﬂ§), =0,

where we use Proposition B.2.4 and Proposition B.2.5.b. Lj, s-(y) = 0 means
7 € C*, this is a contradiction. Consequently, there exists 7, € RI3!, such that
'/7;,(:) > 0, and 5 Ky, = H5 Ky, where we use the Definition of \73‘ . Moreover,
it holds that

{y e m(25") | y"rr < an} = {y € Im(H5") |y Fp < an},

which can be derived by applying equation (4.16) twice. Remember that we
want to show that ¢} has a representation as the test considered in Theo-

rem 4.1.19. Therefore, we set
%, VK
@:( (s mw)’ ren,
f2,2/2,1%(/ )k
and note that 7r;+q(£k) = K > 0. Therefore, it holds that &, € iK‘g.

Thus, we have that %5(_#*) % ( 7)" 7€ = A5 B =0 for all € € HY, where
we use the Definition of H? and fJTCf We also have that 5 kg, = H#5 ki # 0,
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4.1 Multivariate One-Sided Testing Problems

where we use that xy € Im(£5°)\{0}. Thus, we get that &, € X?. Finally, it
holds that

ﬂ{selm |§,;Fs§ak}

= N{sem(2) | "% ( 2% (7w < ar)

k=1
= {sem(r) | Ly (BIV U S) < cpala, 7))
{sem() | Loa(@( )75, F7) < egala, £},

where we use Proposition B.3.4.c and Lemma 4.1.7.b. As P¢(S € Im(_#)) =1,
cf. Witting [71, Hilfssatz 1.90], we have that

& (S) = 1, ST¢. > ay, for some k € N,
! 0, ST¢& < ay for all k € N.

Theorem 4.1.19 yields the assertion. O

4.1.21 Theorem. Suppose that Assumption 4.1.16 holds and that ac€ (0,1/2).
The sequence of tests ¢, 1, n € N, is asymptotically admissible for the testing
problem ﬁ? versus 9~C% .

Proof. Corollary 4.1.17 gives

lm B, e(on) = Ee(¢)), €€ H UK

n—oo

Let ¢, n € N, be another sequence of tests and let n’ be some infinite sub-
sequence of the natural numbers. The Uniform Weak Compactness Lemma,
cf. Witting and Miller-Funk [72, Satz 6.150], yields that there exists a sub-

subsequence nj, and a test ¢ in the limit model, such that
Jim Enr e(on;) = Ee(9).

Assume that Ee(¢) < Ee(¢}), if € € HY and Ee(¢) > Ee(¢)), if € € KI. Since
¢} is admissible, cf. Proposition 4.1.20, it holds that E¢(¢) = E¢(¢]). The
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4 Deriving Testing Procedures

subsequence principle yields lim,,_.oc E,, ¢(¢,) = E¢(¢]). Hence, the sequences
¢n and @, 1 converge in distribution to ¢} in the sense of Strasser [68, Defini-
tion 62.1]. ¢} is uniquely determined by its distribution and non-randomized,
see Proposition 4.1.20. Strasser [68, Theorem 63.6, Remark 63.2] gives the

assertion. O

The last result means that there exists no sequence of tests that is uniformly
better than the proposed sequence of tests. However, other sequences of ad-

missible tests can be constructed with the help of Theorem 4.1.19.

4.2 Linear Testing Problems

Analog to the previous section we assume that Assumption 4.1.1 holds. In this
section it is aimed to construct a testing procedure for linear hypotheses. More

precisely, it is aimed to tackle the testing problem
3—C§° 1B €Ly, neRYT versus fK§1 1 0 € L1\Ly, n € RY|

where Ly and L, are linear sub-spaces of R”, such that Ly C L1, and Ly # £1.

As we allow the asymptotic information matrix _# to be degenerated, the
sub-spaces have to satisfy an additional regularity condition, which we want
to discuss in the following paragraph. But first, let us introduce some more
notation. Let . € R™*! be some matrix, such that Im(.%;) = £; , i = 0, 1.

Furthermore, we set
% 0
% = ) /l: = 07 17
0 &

where & denotes the (¢ x g)-unity matrix. Looking at the limit experiment
(2, A, {P¢ | £ € R"™}) and remembering that P: = Py is equivalent to #¢ =
F&, see Lemma 4.1.4, one sees that hypothesis IJ-CQLO and alternative 9<§1 are
disjoint, if and only if

O(H5°) NO(X5") =0, (4.17)

116



4.2 Linear Testing Problems

where

O(H;) ={ /1€ eH} and O(K5Y) = { 7¢| e K5}

are the induced parameter sets of the hypothesis and the alternative. If ¢ is
not degenerated the condition (4.17) is trivially satisfied. Finally, if the hypoth-
esis TJ{QL ° and the alternative ngCl are disjoint the testing problem transforms

to

fﬁgo 1€ €0Og, versus 3N<§1 :£€0g,\0O,

where

Oc, = {¢] FE€O3G)} and O, = {¢] 7€ O(KS)}.

Analog to Section 4.1 we study the testing problem JTCQL ° versus UN{QL ! under the
limit model and derive some test statistic. This statistic will be the basis to
propose some test statistic for finite n € N. To find a reasonable test we state
a well-known result, cf. Witting and Miiller-Funk [72, Satz 6.168], which we

slightly modify by allowing the covariance matrix to be degenerated.

4.2.1 Theorem. Define the mappings Iy, : Im(_¢) — Im(_# %),
Iy, (s) = 744" 79) ¥%s, i=0,1

The mapping Ily, is obviously the orthogonal projection on the space V; =
Im(_#7;) with respect to the inner product <81,82> g- = S}‘/_SQ, see

Proposition B.2.5. Moreover, set

T __
T(s) = (v, (s) = Iy, (s)) 7~ (Iv, (s) — Iy, (s)).
Under the limit experiment the following assertions hold true.

a) Under P, the statistic T'(S) is distributed according to a x7 (§)-distribution,
where | = dim(Vy) — dim(V) and § = T(_£¢). Additionally, if & € H5° U
3~<§1, then 0 = 0 is equivalent to _Z¢& € Im(/”f/o).
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4 Deriving Testing Procedures

b)

Let Qo denote the group of affine transformations 7 : Im(_¢) — Im(_¢),
m(r) = 22 + u, where 2 : Im(#) — Im(_#) is a linear mapping,
u € Im(/“i/o) and Im(Q/%) = Im(/“//o), Im(Q/”//l) = Im(/”//l),
Im(2 7)=Im(2), 2 72V = 7 aswellas 2T 7~ 2= g7~.

The testing problem ﬂTCQL ? versus 9~<§1 is invariant with respect to Qy. More-
over, T is a maximal invariant statistic with respect to Qg in the sense that
T(z) = T(wx) for all # € Qp, v € Im(_¢) and that T'(z) = T(y) implies
the existence of m € g, such that Iy, (y) = Iy, (rz) = 7lly,1(z).

The test ¢ = ]l(T(S ) > Xi, a) is a uniformly most powerful invariant a-test
for the testing problem J—C ° versus 3(2 , where x? ', denotes the (1 — a)-

quantile of a y2-distribution with [ degrees of freedom and [ is given in

a).

Proof. See Appendix A.4. O

The next result helps us to simplify the statistic T'.

4.2.2 Lemma. Let us define

HLOVE/l(u’/*) :Hﬂl(uaj*)fnﬁo(uaf*)a uveR",

where

e, (u, £7) = f*.,%(.ZiT/*.iﬁi)_.fiTm veR", ¢=0,1,

and

LL07L172(u7f*) :HLO,L1(ua/*)T(f*) Hﬁo,ﬁq(u?/*)'

It holds that

T(s) = LLO,Ll,Q(%(/)Ts, /*) for all s € Im(_#),

where % (_#) is introduced in Lemma 4.1.7.
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4.2 Linear Testing Problems

Proof. In the proof we use the concept provided in Section B.2, especially
Proposition B.2.5. As Ily, (), ¢« = 0,1, are orthogonal projections on V; see
Proposition B.2.5.d, and as for all w € ker(_#*) it holds that

(fm f1,2> <w> _ (/1,1111) _ <f1,2/2j2/2,1w>
o1 Fao 0 21w S22 752 210
AT

Ho1 oo oo 21w ,

where we use Proposition B.3.4.b, we can find matrices Z, i = 0,1, whose

columns are linearly independent and elements of Im(_#*), such that V; =

Im(_# ¥;), where
~ (% 0
¥ = . i=0,1
0 &

Clearly, it holds that Im(_#*.%) = Im(_#*.%), i = 0, 1.

Using the uniqueness of orthogonal projections, see Proposition B.2.3.a, and
Proposition B.2.5.d we get that

Wy, (s) = % (VF 79) ¥ s, selm( ), i=0,1, (4.18)
and
Mg, (u, /%)= 7" G(L" 7*4) Llu, uelm(f*), i=0,1. (4.19)

As the columns of .%; are linearly independent and elements of Im(_#*), the
matrix of; = gT I *.5?; is invertible. Moreover, one readily checks that

ST A A
v A= —
( ' j ) (/2,1-31 fz,Q )

_ ( ! ~ L P12 I )
_/2}}2,1%%—1 /2} + /2?2/2,19%%_1°%Tf1,2/2j2
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4 Deriving Testing Procedures

This result implies that ”/Z(”IZT J “IZ—)“/ZT is equal to

L LT ~ LA L F1a I
= Ioa I Lid VLY Foo+ Fon Jon Lo L 12 75,

Consequently, it holds that

S ACAP AT
g LNLT J L) LU s
= J2272, VLT L)L U s + 9252
=" w L(LF / %) 1$T%Ts+32/2252
HHLi @/TS, +32/272327

[T, ()], -

where sy = 77?:31 iy (8), W = %(F) and we use (4.18) and (4.19) as
well as T #% = #* and Proposition B.3.4.c. Using the last equation and
Proposition B.2.4.f gives

(5) = |1y, (5) ~ v, (9)], -

(s)
~ It @IF, -~ Mo,
e (s, N — [Ty (25,
e, (%75, %)~ Tey (s, )12,
This is the assertion. O

4.2.3 Corollary. It holds that
T(S)=Legc,2(U, 7*) Pe-almost surely,

where U = % (_ 7)TS.

Proof. As P; < P, it suffices to show the assertion for P,. Witting [71, Hilfs-
satz 1.90] shows that Py (S € Im(/)) = 1. Consequently, Lemma 4.2.2 implies

the assertion. O
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4.2 Linear Testing Problems

As the statistic U corresponds with the statistic U,, = %(/)TSn for finite n,
the previous result suggests that L, ¢, 2 (Un, 4 *) is a reasonable test statistic
for the testing problem ﬁéo versus 3~<§1 However, this statistic still depends on
asymptotic quantities. In order to get some applicable test we have to replace
these quantities by suitable estimators. This is done completely analogously
to Section 4.1.

4.2.4 Theorem. Under Assumption 4.1.12 it holds that
a) LLO’LLQ(Xn,%) — Lgoygl’g()?n,ﬂ/{;) —P, 0, as n — oQ.
b) LLU7L112()?7L7"Q};) iﬂ]’n LLO,LhQ (Xv “‘Z{)v where LLle,Q(Xv JZ{) ~ Xl2(6)v

| = rank(o/ 4) — rank(&/ %) and 6 = L, o, 2(k, o).

Moreover, if k € Im(«7.%]), then § = 0 is equivalent to x € Im(&/' %).

Proof. The first assertion can be seen as follows. Lemma 4.1.10.b and Propo-
sition B.4.6 give that

—

HL (Xn,ﬁf) - HL7(XH,J27n) —P, 0, as n — 00, 1= 0, 1.

Consequently, it holds that

—
n

HLOyLl(XTH%) - Hﬂo,fal()?nvﬂ ) P, Ov as n — oo, (420)
and therefore
A ey o, (X, ) — ), My o (X, ) —p, 0, asn— oo, (4.21)

where one uses Lemma 4.1.10.a and Proposition B.4.6. Because of (4.20) and
(4.21), Proposition B.4.6 yields the assertion.

Proof of b). Because of a), Slutsky’s Lemma and the Continuous Mapping
Theorem, cf. Witting and Miller-Funk [72, Korollar 5.84, Satz 5.43], it fol-
lows the first part of the assertion. Completely analogously to the proof of
Theorem 4.2.1.a, see Appendix A.4, one establishes the second part of the

assertion. O
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4 Deriving Testing Procedures

4.2.5 Corollary. Suppose that Assumption 4.1.12 is satisfied. Moreover, let
Co.0q.2(a, B) denote the (1 — «) quantile of a x?-distribution with  degrees
of freedom, where

I =rank(ZB.%) — rank($.%).

Then it holds that

—

CLO,Ll,z(a,%,) - CLO,Ll,z(Oé,JZf) —p, 0, asn — oo,

for all « € (0,1).

Proof. Without loss of generality we can assume that all random variables are
defined on the same probability space. Using the sub-sub-sequence principle
for random variables that converge in probability, cf. Proposition B.4.8,we can

also assume that 7, — </ almost surely.

—~

Moreover, one sees that ker(«/) C ker(e,) Pp-almost surely implies that
ker(«/ %;) C ker(;z?,;%) P,-almost surely. Thus, it holds that rank(e/.%;) >
rank(gz//;.,fi) P,,-almost surely for all sufficiently large n € N.

As the set of all matrices with rank greater or equal to rank(e/.%;) is open, one
gets that rank(#.%;) = rank(,;z/f;.,%), i = 0,1, for all sufficiently large n € N
and cLO7L172(a,£?;) = cpy,0,,2(a, &) for all sufficiently large n € N. The sub-
sub-sequence principle for random variables that converge in probability gives

the assertion. O

After this preparation we propose the sequence of tests ¢, 2, n € N, where

1, ~ o~
Pn,2 = 0 LLO,L1,2(U7L7 Vn) - CLO,Ll,Q(aa Vn)

)

for the testing problem UTC2L° versus 9~<§1 The next result summarizes the

asymptotic properties of this sequence of tests.

4.2.6 Corollary. Under Assumption 4.1.16, it holds that

Ene(¢n2) — Pe(Leoe,2(U, F%) > coge, (e, 7)), asn— oo,
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4.2 Linear Testing Problems

where U = % (_#)TS and E(U | Pg) =N(_7"B, 7*). Especially, the sequence
of tests p.2, n € N, keeps asymptotically the level on the hypothesis ﬂ~{§ ° and
is unbiased. Additionally, we have that

Pﬁ(LLle,Q(Ua j*) > 650751,2<O" /*)) = Eg((p),

where ¢, is the most powerful, invariant a-test for the testing problem ﬂtfg 0

versus 3C§1 given in Theorem 4.2.1.c.

Proof. The Continuous Mapping Theorem, cf. Witting and Miiller-Funk [72,
Satz 5.43] gives that U, E’Pn,& U, where one checks that U ~ N(_7*3, 7%),
see proof of Corollary 4.1.17. Setting & = 77, JZ//;Z ‘A/n, X, =U,, )?n = ﬁn
and P, = P, 0, n € N, one sees that Assumption 4.1.12 holds. Theorem 4.2.4.a,
Corollary 4.2.5 and Remark 4.1.2 give that

LLOyﬁl,Q(ﬁ’nJ ‘7"’7«) - CLQ,Ll,Q(av ‘777,)
— (Lo, 2Un, F7) = oo, 2(a, £7)) —p, . 0.

Setting & = e&;: I X, = )?n =U,, and P, = P, ¢, n € N, one sees that
Assumption 4.1.12 holds. Theorem 4.2.4.b and Slutsky’s Lemma, cf. Witting
and Miller-Funk [72, Korollar 5.84], yield that

~

LLD,L1,2(Um ‘7n) —croei,2(a, Vi) i>Pn,5 Leger2(U, %) =ceg e, 2(a, 7)),

Obviously, we have, cf. Theorem 4.2.4.b,

Pg(Lgmth(U, /*) — CL0,2172(047 /*) = O) = 0.

The Portmanteau Theorem, cf. Witting and Miiller-Funk [72, Satz 5.40], gives
the first assertion. The equivalence stated in Theorem 4.2.4.b gives that the test
keeps asymptotically the level on the hypothesis and is asymptotically unbiased

as well. The last assertion is an immediate consequence of Corollary 4.2.3. [

In the last part of this section we show that the sequence of tests ¢y 2, n €
N, is asymptotically admissible for the testing problem UTCQLD versus 5251, see

Definition 4.1.18. The proceeding is exactly the same as in Section 4.1.
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4 Deriving Testing Procedures

4.2.7 Theorem. Let & € R"T% and a, € R, k € N, be arbitrary. If §, € 3~<§1,
k € N, then the test ¢'(5), where

&/(s) = 1, sT& > ay, for some k € N,
0, sT&, <ayforall keN,

is admissible for the testing problem .’J~{2L © versus J~C§ ! and uniquely determined

by its distribution.

Proof. The proof of Theorem 71.14 in Strasser [68] is also applicable for this
Theorem. The crucial point is the fact that the &, k € N, belong to the

alternative 5~<§ ' O

4.2.8 Proposition. Under Assumption 4.1.16, the test ¢4(S), where

¢/2(5) = { (1)’ L5075172(%(j)T8’f*) _050721,2(04’}*) z 0,

9 —

and a € (0,1), is admissible for JTCQL ° versus 3~<§1 and uniquely determined by

its distribution.

Proof. We show that ¢, has a representation as the test considered in Theo-
rem 4.2.7. In the following we use the concept provided in Section B.2, espe-

cially Proposition B.2.5.

Remember that

LL[)7£/1;2 (OZ/(%)T& /*> = T<S)7 s € Im(/)v
see Lemma 4.2.2. First, we show that 7" : Im(_#) — R is a convex and there-
fore continuous function, cf. Borwein and Lewis [10, Theorem 4.1.3]. Clearly,
it holds that
2
T(s) = ||y, (s) =Ty, (s)[| ", . s €Im(7),

where V; = Im(_# ¥;). The triangle inequality and the fact that ¢ — t2, ¢ > 0,

is convex and non-decreasing gives the assertion.
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Thus, the set C* = {T < ceye,2(a, #*)} is convex and closed. By basic
separation theorems we know that there exists & € Im(_#)\{0} and a; € R,
k € N, such that

C* = ﬂ{selm(/) | &hu < ag}.
k=1

It holds that

{361m(/)|§gu§ak} ={seIm(7) | <8, J&> g- <ag}.

First, we show that #¢, € V;. Assume that s = A - (/&c — Hvl(/@) #
0. as <5, Z&> 5 = MN|3]|°,~ > a; for sufficiently large ), where we use
Proposition B.2.3.b, it results that 5 ¢ C*. On the other hand, it holds that

0 < T(3) = |1y, (3) ~ Iy, 3)|* = ||1lv, B)]|” < ||tlv, )| = 0,

where we use Proposition B.2.4.b and Proposition B.2.4.h. This means s € C*,

this is a contradiction.

Now, we show that Z&, & Vo. Assume that #&, € V. For sufficiently large
A it holds that A - < _#&, F&> s- > ax, that is to say A Z& ¢ C*, having
said this T(A_#Z¢&) = 0, i.e. A £ € C*, where we use Proposition B.2.4.a
and Proposition B.2.4.c. _Z§&, € Vi\Vy is equivalent to §, € fJNCgl And as
P:(S eIm( 7)) =1, cf. Witting [71, Hilfssatz 1.90], we have that

(S) = 1, ST¢. > ay for some k € N,
2 0, ST&, < ay for all k € N.

Theorem 4.2.7 yields the assertion. O

4.2.9 Theorem. Assume that Assumption 4.1.16 holds and that o € (0, 1).
The sequence of tests ¢, 2, n € N, is asymptotically admissible for the testing

problem H5° versus X5*.

Proof. The proof is identical to the proof of Theorem 4.1.21. Instead of
Corollary 4.1.17 and Proposition 4.1.20, one uses Corollary 4.2.6 and Proposi-
tion 4.2.8. O
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The last result means that there exists no sequence of tests that is uniformly
better than the proposed sequence of tests. However, other sequences of ad-

missible tests can be constructed with the help of Theorem 4.2.7.

4.3 Test for Sequences of Hardest Parametric
Sub-Models

In this section the results of Section 4.1 and Section 4.2 are applied to se-
quences of hardest parametric sub-models As a first step we verify that As-

sumption 4.1.1 is satisfied.

4.3.1 Proposition. Let (mefm]Fm‘Bn), n € N, denote a sequence of lo-
calized, g-dimensional parametric sub-models of the modified Cox regression
model, see Definition 1.3.4. Assume that (Q,,F,,F,,PBn), n € N, restricted
to time 7 is asymptotically normal with asymptotic information matrix ¢ (7)
and central sequence S, (7), n € N, then the sequence of statistical experi-

ments (Qn,fﬂw, {PTS? | € € R’”rq}), n € N, satisfies Assumption 4.1.1, where
Sp=8n(1),neN,and ¢ = #(7).

Proof. Paying attention to Definition 2.2.2 and Remark 2.2.3 gives the result.
O

Conditions implying the assumptions of Proposition 4.3.1 are stated in Theo-
rem 2.3.10.a. In the following let us assume that (Qn, Fn,Fo, ‘ﬁn), neN,isa
sequence of hardest parametric sub-models (SHPSM) restricted to time 7, see
Definition 3.1.5. In the previous sections we saw that reasonable test statistics
for multivariate one-sided testing problems and linear testing problems were
dependents on the statistic U, (7) = % (_#)"S,.(7), see pp. 99 as well as pp.
121 and Lemma 4.1.7. Using equation (3.1) gives that

Un(7) — piry N(J (1), F7(7)),  asm— oo
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In the following discussion we show why it is useful to study models with de-
generated asymptotic information matrix _#*(7), if one considers multivariate

one-sided testing problems.

4.3.2 Discussion. As we consider a sequence of hardest parametric sub-
models it holds that #*(7) = _#* (1), see Theorem 3.2.4. One sees that
B € ker(_Z* (1)) is equivalent to

T L () M(u) M(U)
pr () = Z Zc(“) ) (,ug = H)ao ds=0, (4.22)

I(7) u=1v=1 Ho

where we set

Ty

w =~ u ~ u-1, T
dW(s) =B (s),  By= (BEE R k=1, )", (4.23)
k=1

Tu, ¥ = 1,...,p, are given in Definition 1.3.2 and the same calculations as in
Remark 3.2.14.a are used. Equation (4.22) can imply several things. To sim-
plify matter let us assume that the covariates do not have a linear dependence
structure, i.e. no component of the covariate vector can be expressed as a lin-
ear function of the remaining components. This situation can be achieved by

a reasonable experiment design. Therefore, we can suppose that

)y, (v)
(u,) py(s) (8))
W §) — ——————= u,v=1,...,p,
( 2 ( ) o (s)

has full rank for Kg)—almost all s. This means that c(*)(s) = 0 for Ag-almost all
s,and u=1,...,7, i.e. the weight functions belonging to the u-th component
are linearly dependent, if [~3u is not the null-vector. Thus, the weight functions
for at least one component of the covariate vector are linearly dependent. The
reasons for this dependency might be due to the weight functions, that 7 <
is chosen too small, the right censoring, i.e. the linearly independent part of
the weight functions are censored. Another reason for the linear dependency
can be that the baseline hazard is zero on the sets where the weight functions

are linearly independent.
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However, in multivariate one-sided testing problems the linear dependency of
the weight functions might arise very naturally. Let us consider the case of
a univariate, non-negative covariate. For example, we want to test, if larger
values of the covariate correlate with shorter survival times. Under the MCRM,

see Definition 1.3.2, we can model this situation by setting

Ag)a(.) :/ Y(i)(s)exp(Zl‘Zﬁ(u)’Y(u)) a(s) ds,
’ [07'] u=1

where v(*), w = 1,...,r, are some non-negative functions that determine the
direction of the alternatives. Larger values of 3 given the covariate imply
shorter survival times. Therefore, the above mentioned test problem turns out

to be =0 versus 3 > 0, 8 # 0, i.e. a multivariate one-sided testing problem.

The cone {22:1 By | g e RT} gives the possible directions of the alter-

natives. For illustration, we choose » = 3 and
YW (s) =1, vP(s) = Fols), 7P (s) = F§(s),

where Fjy(s) is a continuous, strictly increasing cumulative distribution function
on Ri. 4 corresponds with the case of proportional hazard rates, whereas
~® and 43 correspond with increasing differences in the hazard rates for large

s, Obviously, the weight function
2
YW (s) = (Y (5) = 1P (5))” = 1M (5) = 29 (5) + 1P ()

does not belong to the cone {Zizl B~ | 3>0}. However, the weight
function v is non-negative like the others on the whole interval, i.e. it gener-
ates the same stochastic ordering as the other functions and might be therefore
considered as a possible direction of the alternatives. A way out is to extend
the model by adding the weight function v(*). As a result, one gets not only
a wider range of alternatives, but that the asymptotic information matrix of
the MCRM is degenerated, since the functions ("), u = 1,...,4 are linearly
dependent.
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4.3 Test for Sequences of Hardest Parametric Sub-Models

In the next step we show that one cannot find three weight functions spanning
the same cone as ¥*), u = 1,...,n. Obviously, we have to show that there
does not exist z, € R?, u = 1,2,3, such that

{Zizl 0w, | 520} = {Zi; B2, | B0}, (4.24)

where
1 0 0 1
wp =01, w2= 11|, w3s=|0 and wgq = | -2
0 0 1 1

Assume we could find z,, u = 1,2, 3, such that (4.24) holds, then there exits a

(3 x 4) matrix % and a (4 x 3) matrix ¥ with non-negative entries, such that
W =XB=WECH
where we set
Z = (xl 9 :c3> and ¥ = <w1 wy W3 w4) .

On the one hand, it holds that rank(4%) < 3. On the other hand we see
that the entries of the matrix €% are non-negative and that the only non-
negative solution of the system of linear equations #y = w, is given by
Yy = (6171“ . ,64’U)T, u =1,...,4, where ¢; ; denotes the Kronecker symbol.
Clearly, this means that rank(€ %) = 4, a contradiction.

Consequently, there does not exist three weight functions that generate the
cone given by (", w = 1,...,4. All in all, it is worth considering the case
of degenerated limit distributions that are due to linear dependencies of the

weight functions, if one treats multivariate one-sided testing problems.

The asymptotic information matrix of the MCRM for a model with a one-

dimensional covariate and weight functions (") is given by _#*< (1), where

(1) (), ()
kcan(uv) (1) _ (W) () @) () [ 0D (g) — KB ()N -y
ey = [ 0(5)500(s) (1 (s) - A .

I(7)
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Under this model it holds that ker(_#*) = {x- (1, =1, 1, =1)T | K € R}. Con-
sequently, the conditions 3 2 0 and —f 2 0 hold for all § € ker(_#*)\{0}, see
equation (4.3). This means that the hypothesis J{‘f and the alternative fK? are
disjoint under the limit model, cf. Proposition 4.1.5.

As Y (s)y ") (s) >0, s € Ry, u,v=1,...,4, we get that Feang >0 for all
B € R% 3> 0. Consequently, the condition (4.12) holds, i.e. the sequence of

tests .1, 7 € N, is asymptotically unbiased.

In the next step it is shown that Assumption 4.1.16 is satisfied by SHPSM

under certain regularity conditions.

4.3.3 Assumption. Let (Qn,?n,IFn,‘Bn), n € N, be a sequence of hardest
parametric sub-models restricted to time 7 with asymptotic information matrix
¥ (7) and central sequence S,,(7), n € N, see Definition 3.1.5. Let us assume
that

(i)

A lE8) — ,y(()u,i;) oHy, u=1,...,n, where 5 :[0,1] — R,
is some measurable function and Hj is some cumulative distribution function.
Moreover, we suppose that the following conditions hold.
i) Assumption 2.2.1 and Assumption 2.3.9.i — viii hold.
ii) Assumption 3.2.1 holds.

iii) Suppose that %(Lu,u) = %()u,u’) o ﬁ[n, uw = 1,...,r, where H, is some es-
timator Hy, such that 0 < ﬁn <1
Assumption 3.2.11 hold.

P, o-almost surely. Moreover, let

iv) Furthermore, let us assume that 3 € ker(_#* (7)) implies
Zﬁg")véu’v)(s) =0 forallsel0,1], u=1,...,p
v=1

where [, is defined in equation (4.23).

V) Py (I () > 0,i=1,...,7
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4.3 Test for Sequences of Hardest Parametric Sub-Models

vi) In the case that 7 = 7§ additionally assume that the conditions (3.11),
(3.12), (3.13) and (3.17) hold.

4.3.4 Remark. Assumption 4.3.3.iv means that the degeneracy of the asymp-
totic information matrix of the MCRM _#*“**(7) is only due to some linear
dependency of the weight functions. Assumption 4.3.3.v excludes weight func-

tions that are A(76)-almost surely 0.

Now, we can state the main result of this section. This result enables us to
apply the results derived in Section 4.1 and Section 4.2 to testing problems
under SHPSM.

4.3.5 Theorem. Set
Up=% (7 (7)) Su(r), Upn=0n(r), V=Vulr), neN,

and ¢# = ¢ (1), where U, (7) is defined in Theorem 3.2.9 and V,, () is defined
in Theorem 3.2.13. Assumption 4.3.3 implies Assumption 4.1.16. (Note the
representation of Uy, (7) given in Remark 3.2.10.b.)

Proof. As (Qn,ffn,IFn,‘Bn), n € N, is asymptotically normal to time 7, one
sees that Assumption 4.1.1 holds by paying attention to Definition 2.2.2 and
Remark 2.2.3. Theorem 3.2.4, Theorem 3.2.9, Remark 3.2.10.a and Theo-
rem 3.2.13 imply Assumption 4.1.16.a and Assumption 4.1.16.b. Since the

u-th component of 17”57 u=1,...,r is given by

)~

n ~(u
w,i) ~(a, U) 'u" 1”" 1> 3(1) (7)
>3 (Saom) L ave

v=1

where Bv is defined in equation (4.23). Assumption 4.3.3.iii and Assump-
tion 4.3.3.iv yield that Assumption 4.1.16.c is valid. Assumption 4.3.3.v is
exactly Assumption 4.1.16.d. O

4.3.6 Corollary. In the situation of Theorem 4.3.5, the following assertions
hold true.
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4 Deriving Testing Procedures

a) For the testing problem jr(? versus f]N(f;f, the sequence of tests ¢, 1, n € N,

where

1, P o>
On,1 = { 0 Lgyl(Un(T),Vn(T)) - 0371(04,‘/”(7')) _ 0,

Y —

and « € (0,1/2), keeps asymptotically the level on the hypothesis. More-
over, if the condition stated in (4.12) holds, then the sequence of tests is

also asymptotically unbiased.

b) For the testing problem 9TC2L° versus 9~<2Ll7 the sequence of tests @y 2, n € N,

where

1, I >
On,2 :{ 0 Lty 2(Un(7), V(7)) = crg,eq,2(, Va(7)) < 0

9

and a € (0,1), keeps asymptotically the level on the hypothesis and is

asymptotically unbiased.

Moreover, both sequences of tests are asymptotically admissible, if one only
considers tests that use information up to time 7. In the case that 7 = 7§,
we use all available information, because all censored survival times are almost

surely smaller than 7.

Proof. Corollary 4.1.17 and Corollary 4.2.6 yield Corollary 4.3.6.a and Corol-
lary 4.3.6.b. The asymptotic admissibility is implied by Theorem 4.1.21 and
Theorem 4.2.9. O

4.3.7 Remark. Note that the sequences of tests ¢, 1, n € N, and ¢, 2, n € N,
do not depend on the choice of the foot-point g and the nuisance direction
75, since we consider a SHPSM. Obviously, one could extend the underlying lo-
calized, g-dimensional parametric sub-models with further nuisance directions
without any effect on the asymptotic properties of the tests, as the sequence of
the extended parametric sub-models is also a SHPSM. For the last conclusion
it is assumed that the sequence of the extended parametric sub-models is also

asymptotically normal restricted to time 7.
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In particular, this means that the sequence of tests ¢, 1, n € N, is asymptoti-
cally distribution free under the hypothesis if § = {1,...,r}. Analogously, one
sees that the sequence of tests ¢, 2, n € N, is asymptotically distribution free
under the hypothesis if Lo =0 € R".

In the case that J # {1,...,r}, the sequence of tests ¢,1, n € N, is only
asymptotically distribution free under the hypothesis if the part of the model
based on the weight functions (%% v € gC, is correct. A similar consideration
also holds true for the case that Ly # 0.

4.4 The Connection to Projective-Type Tests

In this section it is shown that the testing procedures derived in Section 4.3 are
generalizations of well-known testing procedures by proving that our tests are
projective-type tests. The latter property provides a descriptive interpretation
of the test statistics Ly 1 (ﬁn(T), \A/n(T)) and Lg, 4.2 (ﬁn(T), ‘77,(7)) In order to
keep notation simple we consider only the case that no concomitant covariates
are present, this means we assume that J = {1, ... 77“} for multivariate one-

sided testing problems and L1 =R" and Ly = {0} for linear testing problems.

As it is intended to obtain a different representation of Ly ; (ﬁn (m), ‘7“(7')) and
Lp,ry2 (ﬁn(r), ‘7n<T)), it is necessary to introduce some more notation. We
define

. 1 .
A,(,Z)B:/A dN{(s), BeB,
( ) B Nn,O(s) ( )

which can be interpreted as the empirical hazard measure belonging to the
i-th observation, and K;(B) =>", K,(f)(B) B € B, which is the cumulative
empirical hazard measure. Obviously, it holds that /A\Sf ) « /A\;L, 1 =1,...,n.

The matrix 0,(s) = (37(;“")(8) | u,v=1,...,p) is given by

TSI T I )
On (S)ZHn,z (S)_T(S).
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4 Deriving Testing Procedures

Note that ,(s) is positive semi-definite, see Remark 3.2.14.a. One easily sees

that
Vie s = {f | f:(I(r),I(r)NB) — (RP,B?), f(t) € Im(G,(t))Vt € I(T)}
is a real vector space. An empirical pseudo inner product can be defined by

(fi:f2)qe 5. = )fl(s)T(an(s))’fz(s) dA3(s), S fo € Vie s

I(t
By the introduction of the equivalence relation f1 = fo, if |[f1 — f2||3. 5 =0,
where ||f]|3, 5 = <[f,f>3. 5., one can partition the vector space V3. 5

into equivalence classes. The vector space of the equivalence classes is a real
Hilbert space. As a consequence of this procedure, the results provided in

Appendix B.2 are applicable to (Vx. 5,0 < >R 3n)‘

4.4.1 Proposition. Define the function h,, : I(1) — RP, where

N < u ~ ~(u szLZ)
R (s) = 3(289(s) fino(s) — AL (5)) o) el
=1 n

It holds that

G0 (5)(@n(5)) hn(s) = hn(s) for As-all s € I(7).

In particular, this means that we can assume that ﬁn € V3. 5 - One only has
to choose reasonable versions of dKSf)/dK;, i=1,...,n.

Proof. For verifying the assertion the same ideas as in the proof of Theo-
rem 3.2.4.c are used. It holds that

n ~(u) ~(v)
~ 1 Fin 1 (5) 1 (8)\ |
(uv)(g) — = Z) oy 7’71> (Z(”? LTSN IS O 4.95
o s) = (s) — = o i(8) — = s). :
) = 3 324000 - g ) (2900 - ) Y0 6s)
Let us consider the three cases rank(d,,(s)) = 0, 0 < rank(d,(s)) < p and
rank (5, (s)) = p. Using (4.25) one sees that rank(,(s)) = 0 implies that
Y,gi)(s) = 0,4 =1,...,n. Therefore we can choose (ngf)/dK;)(s) =0,1=
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4.4 The Connection to Projective-Type Tests

1,...,n. This means that f,(s) = 0. If 5,,(s) has full rank the assertion is also

trivial.

Let us assume that 0 < rank(&n(s)) =k < pand that M = {111, ... ,vk} are the
indices of k linearly independent columns of 3,,(s). For every u € {1,...,p}\M
there exists ¢, € R¥, such that

et = 3 (s~ B S (e - B o

n,0

1
(S (-2

implying
(u) ~(v1)

2
IR (u) lunls l( v) :unl(s)> i
= AE : A A —_— Y,V (s) = 0.
z( ) - il z AN o

With the same considerations as before we get that

=Y " cDh{(s), it A3 ({s}) > 0.

=1
As 7,(s) is symmetric, we can conclude that the rank of the extended matrix
(Gn(s) | T (s)) is also k. Proposition B.1.5 yields the assertion. O

The function ﬁn can be interpreted as a primitive estimator for the influence
of the covariates on the survival function of the survival times in question. For

the u-th component we have

y ~(u Wiy LNy 1o~ i
2, ()i () = i (s) = 2,1(s) = DY) = =020 () YO (s)

i=1 i=1
~E(ZW(s))E(Y(s)) —E(Z(s)™ Y(s)) = —Cov (2" (s),Y(s)),

where E(Y(s)) is the probability that a censored observation is larger than

s. Without censoring, it would be the probability that an individual survives
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longer than s. So the function h,, measures the correlation of covariates and

survival times.

Under the hypothesis we expect the survival times and the covariates to be

uncorrelated, so that the function /ﬂ” should vary around 0.

Before we start rewriting the statistic ﬁn(T) and the variance estimator, we

artificially rewrite the weight functions as functions that are elements of V3, - .

nIn

(i)
@n,u . I(T) — ]pr @n,u(s) = L(S) : 8n(s)yp

iy S € I(7),

u=1,...,r, where ﬁ{’;} is given in Definition 4.1.3.

4.4.2 Theorem. Let us define the closed, convex cone

F;‘: - {22:1 ﬂ(u) ° &]\n;u | ﬂ(U) 2 Oa U = 1’ T ’T} - /\77\:1,3",

and the linear space

r, = {ZT B . @, ., | Be R”} C Vs o

u=1

Ifg = {1, . ,r}, L1 = R" and Ly = {0} then the following assertions hold
true, where I+ (hy,) and Ir, (hy,) denote the projections of Ty on ) and T,
with respect to <-, >Re

~

a) Ly (Un(7), Va(7)) = |[Hps (ha)]| |3

)

2
An,ffn
2

A% On

~

b) Ley o2 (Un(r), V(7)) = ||[Tr, (hn))|

Proof. We readily check that
(1) (D)

1 Z / i) 5(09) (l;g;zéw “nl“nl) dAW
I(r) ’ Hn,0

1 - Ly~
_Y [ @iy gr Ta gr @) gRe
_ /1 N T, 5T, 4D dhs,

ARIE

Il
~
g

3
g
£)
3
=
~~—
>
0
Q)
3
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4.4 The Connection to Projective-Type Tests

and that

~(i)
o (r Z / ) (Z“f) a "1> ANg
I(7) "t Mo

= LS A (200 A ang
i=1 I(7)

Mn,0

(Lt ~ ~(u dK’Sll) Ae
\F/ G0N (20 fino — i) aAe dAs,

A (i) h(u) dA'
I(7)

= A P TG 5, dA®
1(r) tad " "

~

= (B

For any ( € ker(‘A/n(T)) we get that

DI

see Proposition B.3.2.b, implying ﬁTﬁn(T) = 0 and ﬁn(T) € Im(r/n(T))7
where we use Proposition B.3.2.a. Applying Proposition B.2.5.e and Proposi-
tion B.2.5.b gives

2

~ = 07
A3 Gn

Lyt (Ta(r), V(7)) = 2 sup (fﬂﬁnm - ;ﬁTf/n(r)ﬁ>

B=0
~ 1
=2 sup | <hnp,w>3. 5, ~ 5<w,w>3. 5 |
wert %00 9 "0n

Proposition B.2.5.b yields the first assertion. Moreover, Proposition B.2.5.d
and Proposition B.2.5.b imply that

Leszo2(Un(r - H m (Ve H (Vum)
=2 sup ( - *ﬂTV (T )ﬁ)
BERT
1
=2 Sup< >A°a —<w,w>/§.8)
werl yOn 2 n:9n
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Again, Proposition B.2.5.b yields the assertion. O

4.4.3 Remark. In the situation of Theorem 4.4.2, one sees that the test
statistics Ly 1 (ﬁn(T),‘/}n(T)) and Lg, 4.2 (ﬁn(T),‘/}n(T)) are projections of a
primitive estimator for the correlation between covariates and survival function
on the closed, convex cones ff{ and fn, respectively. If this projection is too
large, i.e. is not too close to 0, the test rejects the hypothesis, since there seems
to be some influence of the covariates on the survival times. Moreover, one sees

that the cones determine the alternatives the test is sensitive for.

In the case that the weight functions are of the form ﬁ,(f’ﬁ) = 'y(g{"ﬁ) ) ﬁn,
u = 1,...,r, cf. Assumption 4.3.3.iii, where f[n is either a left continuous
version of the Kaplan-Meyer estimator, see Andersen et al. [4, Chapter IV.3],
or }AIn =1- %2?21 Yn(i), the testing procedures derived in the previous sec-
tions are indeed non-parametric procedures. This can be seen as follows. By
choosing the functions %()71,1';) : [0,1] — R, the statistician decides whether it
is intended to weight early or late influences of the covariates on the survival
times. As the functions %()u,u)y u=1,...,r, are defined on the interval [0, 1],
the terms early and late can be given a meaning. The empirical cumulative
distribution function H,, provides the right transformation of the interval [0,1]
onto Ry. Some aspects concerning the sign of the weight functions were al-
ready worked out in Discussion 4.3.2. In the case that %u’ﬂ) = ,Y(()mu) o ﬁn,
u=1,...,r, one can also easily see that our tests are invariant with respect to
changes of the time scale in the sense of Remark 1.3.3.c. Results by Janssen
[36] suggest, that any test keeping the level on the hypothesis can have rea-
sonable power only for a finite number of orthogonal directions of alternatives.
Therefore, restricting ourselves to finite dimensional, closed, convex cones and
linear spaces is no restriction in practice, but reveals the advantage of the test-
ing procedure suggested in Section 4.3. The statistician can control the weight
functions and the number of weight functions. This means that the statistician

can control the alternatives the test is sensitive for.

Behnen and Neuhaus [7] and Mayer [53] have introduced similar tests for the
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two-sample problem. Behnen and Neuhaus [7, Chapter 3] derive some primitive
estimator for the difference of the distributions of the two samples and project
this estimator on a cone of score functions. An extension of this proceeding to

right censored data can be found in Behnen and Neuhaus [8].

Mayer [53] introduced some empirical inner product and showed that log-rank
statistics are projections of a primitive estimator on some one-dimensional
cone, if one considers a one-sided testing problem, or on a one-dimensional
linear space, if one considers two-sided testing problems. Then Mayer replaces
the one-dimensional cone and linear space by higher dimensional cones and
spaces that are generated by weight functions and investigates the asymptotic
properties of the new test statistics. One easily sees that the projective-type
tests of Mayer are special cases of the tests proposed in Section 4.3, cf. also
Example 5.3.2.

If we consider the case p = r = 1 then our test statistic ﬁn(’ro) belongs to
the general class of non-parametric test statistics introduced by Jones and
Crowley [39, 40]. Hence, the non-parametric test statistics Ly 1 (ﬁn (1), I7n(7))
and Lg, c,.2 (ﬁn(T), ‘A/,L(T)) generalize the statistics introduced by Jones and
Crowley, because we allow multivariate covariates and several weight functions

instead of one weight function.
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5 Examples and Applications

In this chapter we provide applications of the theory developed in the previous
chapters. In Section 5.3 several statistical questions are modelled with help of
the modified Cox Regression Model (MCRM). And once again, it is shown that
our results are extensions of well-known results. But initially, in Section 5.1
and Section 5.2 the existence of parametric sub-model and the Assumptions of

Chapter 2 and Chapter 3 are discussed.

5.1 On the Existence of the Modified Cox

Regression Model

In this Section, it is aimed to explicitly construct sequences of filtered proba-
bility spaces satisfying Assumption 2.2.1. The starting point is given by some
stochastic processes, whose paths are supposed to determine the distribution
of survival times. The whole construction is carried out in the spirit of Propo-

sition B.5.4. First, let us introduce some notation and premises.

5.1.1 Assumption. i) Let
(i T Fnin @)y Fra={Tnie [t €RLY, i=1,...,n,
be filtered probability spaces and
N

(Q ni) = ({0,1} x (0,00),P{0,1} ® B(0, 00)), i=1,...,n,

n,t’
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measurable spaces, where P{0,1} denotes the power set of {0,1} and
B(0,00) = {BN(0,00) | B € B}. Moreover, we set

n
Q= X Qs where Q5= x Q. i=1,...,m,
and
n
Fn=QQ)Fni,  where Fo; =5, @N,, i=1...,n
i=1
In the following, the notation
W = W1y Wnn) = (w:’l,w;,l .. 7w;’nw;7n) €0,
is used.
ii) Assume that there exits measurable mappings
nit'Q __>Rp t€R+, 7::1,...,71,
that satisfy the following conditions.
*,0 0 .
a) Ty it =Nese Tis Where 3";” =0(Zy,ulu<s),i=1,...,n

) Vt>0 n,i,t — ‘rfn 20 i = 1

c¢) The process {Z; ,, |t € R+} is progressively measurable, i.e. for all
te R-‘m the mapping (wz,z’ ) — Z, ( Wn.i ')a s <t, is H:Z,i,t®B[Ovt]7Bp

’I’LZS

measurable.

iii) Define the mapping hy, : Q, — Ry, hy(wy) = [[im, hn,i(w;mw;’i),

(W 5. 01) = exp(— [z dA<s>)
[07un,i]
X h’ﬂ,i~,2(Z'rt,i,u")i(wjl,i)’w;,i)’

where w;m = (0n,i,Un,i), A denotes the Lebesgue measure on Ry and

By i RPF — Ry, j=1,2,i=1,...,n, are BP"/-B, measurable.
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iv) Assume that o and &, 4, ¢ = 1,. .., n, are hazard rates of some probability

measures on B(0, 00). Set
hn,i1(2,8) = (Ru(2,8) ao(s) + @ni(s)) - 1(s < Tni)
and
hnsia(2,0,8) = (Ra(2,8) ao(s) - 111y (8) + @ni(s) - 1103(8)) - 1(s < 7n0),

(2,8) € RPTL (2,8,8) € RPT2 i =1,... ,n, where

Tn,i = Sup{t ’ / o + an,i d\ < OO}
0,2]

and R, : RPT! — R, is some BP*!-B_ measurable mapping. Moreover,

let us assume that a(t) = 0 for all t > 7, if 79 < 0o, where

To = sup{t ‘ /( )ozo(s)ds < oo}.
I(t

V) fy = ®?=1 Py Bng = @ ; @ Ve @ A, where v, denotes the counting

measure on P{0,1}. .

vi) We define the mappings N, ; ;, Nyi¢ : ©;,; — R, where

N, (6n,i78n,i) = ]l(sn,z < t)én,i

n,i,t

and
N7/1 i t(an,ia Sn,i) = ]]-(Sn,i < t)(]- - 677,,1')3

andY) ., :Q . — R,

n,i,t mn,1
Yy it (Onsis sni) = L(sn, 2 1),

Wh ;= (On,irsni)y tERL,i=1,...,n

n,i

A it oy — R, where

n,t,tr “n,

vii) We define the mappings A’

A () = /[ Vi) B (515.:) () 4G9
ot
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and

A (i) = /[ Vsl ) Bi(5) X9),
,t

(wy 5 wn i) € Uiy Wy i = (Onisuni), t ERyi=1,...,n.

n,i) n,t

viil) Moreover, we define the mappings Z,, ;(t) : Q, — R? and

Ny)(t)vﬁr(zz)(t)aYrgl)(t)vAgzl)(t)’ggf)(t) : Qn - R+7

by setting

N(i)(t) = N;L,i ¢t © W;z,m N7(LZ) (t) = N;«L,l t© W;L,z'a

Zn,l(t) - Z:L,l,t © w:,zv Yrgl) (t) = Yri,z t© w;’b,l’

A'SZ) (t) - A;Li,t (w: (3 w’:’b,l)’ As:) (t) = Av{n i,t (w:L 7 w;,z)7
teRy,i=1,...,n, where @) ;, : Q, — Q , and @, ; : Q, — Q; ;

. .. . % % / o
denote coordinate projections, i.e. @), ;(wn) = w;, ; and @, ;(wn) = wj, ;.

ix) Let 8, be some o-algebra on the space €2,,. In the following the important
case will be that §,, is generated by the subsets of negligible sets of some

probability measure. Finally, we define the o-algebras

N’ *J(N’

n,e,t n,:,s?

erz,i,sa|5§t)a t€R+a

and set G, = {Gn: |t €Ry}, where Gy = 8, V Qi (Fr, ON], ).
Moreover, we define the filtration H,, = {H,, |t € Ry}, where 3, ; =
ms>t j{%,s’ }Cg,s = 8” v ®17'L:1 (?:,i,s ® N;’L,i,s)'

5.1.2 Proposition (Properties of the Filtration). Under Assumption 5.1.1,
it holds that

a) Gnt =8, V3, \/U(Ny(f)(s), Kh(f)(s) |s<t,i= 1,...,n), t € Ry, where

G, = J(X(Fi x Q)| F e ?Z’i>.

i=1

b) G, and H,, are indeed increasing and right continuous.
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5.1 On the Existence of the Modified Cox Regression Model

C) }Cmt C 9n,t~
d) \/tZO Gt = \/1‘20 Hpp = 8n V T

Proof. It holds that

Sy =8, Vo <><(F x NJ)| Ff € F5,, N; € N;m>

=1
=8,Vo (><(F x ) | Ff e :f;,i) w—()((n;}i x NJ) | N; € N;w.,t)
=1 =1

As o (X (s x N)) [Ny €NJ, ;) =0(Nnjis | s <t,i=1,...,n) the proof
of a) is complete. Proof of b). We note that {HY , | ¢ € Ry} is increasing by
construction, therefore H,, is increasing. The right continuity is also given by
the construction of H,. a) and Proposition B.5.1 imply the result for G,,.
Assume H € H, . Because of H,, s C 9{2,3 and b), we get H € §,, 5 for all
s > t. The right continuity of G,, gives ¢). Proof of d). Because of the previous
inclusion, it suffices to show the assertion Vtzo Hpr = T, V8, One readily

checks that \/,5, N,

it =Ny, ;. Using this result and Assumption 5.1.1.ii make

the assertion an easy consequence of Proposition B.5.4.a. O

The function h,, is a candidate for a u,-density of some probability measure.

As a first step we show that h,, is a measurable mapping.

5.1.3 Proposition. Under Assumption 5.1.1 without articles iv) and v) the
mappings i, @ = 1,...,n, are F}, ®Nﬁl’i—]B3+ measurable. Consequently, the

mapping h,, is F,-B; measurable.

Proof. Consider the measurable space (Qf” x{0,1}, 35 ; @ P{0, 1}) Clearly,
the processes {(Z}; ;,,t) |t € Ry} and {(Z} ,,,6,t) | t € Ry} are progressively
measurable with respect to the filtration {J7; ;, , ® P{0,1} | t € R, }, see Propo-
sition B.5.4.b. Proposition B.5.2.c yields that the mappings g1 : ©y,,; x {0, 1} x

[0,] — Ry and g2 : Q5 ; x {0,1} x [0,¢] — R, where

g1(w,d,u) =exp (— P (Z;;,i)s(w), s) d)\(s)>
[0,u]
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and
g2 (wv 57 u) = hn,i72 (Z:L,i,u (w)7 57 U) ;

are J; , , ® P{0,1} ® B[0,]-B; measurable. Consequently, g1 - g2 : €2}, ; X

n,t

{0,1} x [0,¢] — Ry is F},;, ® P{0,1} @ B[0,#]-B; measurable. Now, we
consider the mapping g = g1 - g2 on the space €2, ; x {0, 1} x Ry It holds that

{(w,d,s) | g(w,d,s) € B} = U{(w,d,s) | g(w,d,s) € B} N{(w,d,s) | s <t}
t=1

BeB,, and
{(w,é, s) | g(w,d,s) € B} N{(w,0,s) s <t} €T, ,;, ®P{0,1} @ B[0,1].
As T}, @P{0,1} @B, [0,t] C F}, , ® P{0,1} @ By, it holds that
{(w,8,5) | g(w,d,5) € B} N {(w,8,5) |0 <s < oo} ey, ®P{0,1} @ By.

Fr,©P{0,1} @By N {(w,0,5) | 0 <5 <oo} =T, ®N] ; and Bauer [6, Be-

n,i

merkung 2, p. 153] give the assertion. O

5.1.4 Remark. Let T,C : (Q,A,P) — (R4, B.) be stochastically indepen-
dent random variables. Furthermore, assume that ar and a¢ are hazard rates
of the measures PT and P¢. If X = T A C and A = 1(T < C) then it holds
that

]P’(X <z, A= 5) = 1{0}(5) /
(0,2]

+ﬂ{1}(5)-/ exp(f/ aT+aCdA) -arp(s) dA(s)
[O,ZE} [O’s]

exp(—/ ar + ac d)\) ~ac(s)dA(s)
[0.5]

The result can be used to construct p,-densities of probability measures on
F,. The previous remark gives a probability measure on the measurable space
(€, N7, ;) and the (v ® A)-density of that probability measure. Now, one

just constructs for almost every paths of the covariate processes Z ; a probabil-

ity measure of the above type. The next but one result justifies this proceeding.
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5.1 On the Existence of the Modified Cox Regression Model

5.1.5 Lemma. Set
ratrd =swle] [ R0 s a0t i <o 6)
’ [0,¢] ” ’

It holds that 7, ,

; is I ,—B measurable.

Proof. One readily shows that
Xoslt) = [ Ra(Z3000:8) a0+ s
[0.1] -
is 3":71-7E3+ measurable, see Proposition B.5.2. As
{7';';71 > c} = {X,,,,i(c) < oo}, c€R,

where we use the continuity of the paths, it results that 7, ; is fT;*L)fI@_F mea-

surable. O

5.1.6 Proposition (Existence of Probability Measures). Suppose that
Assumption 5.1.1 holds and that the processes {Z} , , [t € R}, i =1,...,n,
are predictable and locally bounded. In particular this means that the processes

are progressively measurable, cf. Dellacherie and Meyer [16, IV.67]. If
/ hni1 (Z:;,i,s (w;,i),s) dA(s) = 00 (5.2)
I(Tn,'i)
for @, ;-almost all wy, ; then hy, is a i,,-density of a probability measure on F,.

Proof. According to Proposition 5.1.3, the mappings h,, ; and h,, are measur-

able. The local boundedness guarantees that for @, ;-almost all wy, ; it holds

n,i

that 7,7 ;(wy, ;) > 0, for the measurability see Lemma 5.1.5. Consequently, the
condition (5.2) and Proposition B.5.2.b guarantee that hy;1(Z;; (ws ), -)

n,i
is a hazard rate of some probability measure on B(0,00) for @, ;-almost all
wy ;. Using Remark 5.1.4 gives that hy;(Z}; (w},),",") is a vo ® A-density

*
n,i*

of some probability measure for @)}, ;-almost all w Therefore, hy; is a
(@, ® ve ® \)-density of some probability measure on Fy, ; @ N} ;. Bauer

6, Satz 23.11| gives the assertion. O
[ g
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The next result gives the dual predictable projections of the counting processes.

5.1.7 Proposition (Counting Processes and Dual Predictable Projec-
tion). In the situation of Proposition 5.1.6 and considering the probability
space (Qp, Fpn, P,), where P, ( fF hyn dp,, F € F,, the processes

{(AD@t) |te Ry} and {AD() |t e Ry}

are predictable with respect to G,, and H,, where we assume that 8,, = {Q,,,0},

see Assumption 5.1.1.ix. Moreover, the processes
(NO@) — AD@) [te Ry} and {ND () — AD() [t e Ry}
are G, and H,, martingales, where we assume that 8, = {Q,,, 0}, again.

Proof. One readily checks that the process

{ nzs TL(Z;ZS(),S)OL()(S)‘SGR_’_}

N,

TLZS

s | s € R4}, Propo-
sition B.5.2.c and Proposition B.5.4.b yield that A{ = {Ag)(t) |t eRy} is

progressively measurable with respect to H,, and G,, Where we use Propo-

is progressively measurable with respect to {F

sition 5.1.2.c. Consequently, the processes A( = {A YAKk|te R+} are
progressively measurable with respect to H, and Gy, As the process A(i)k is
real-valued with continuous paths, it follows that the process A( . 1s pre-
dictable with respect to H, and G,. Finally, we receive that A,(l)(t,wn) =
SUPgeN AS’)k(t,wn) for all w, € Q, and ¢t € Ry. Thus, we can conclude
that the process Aff ) is predictable with respect to H,, and G,,. Additionally,
Lemma 5.1.5 implies that F, ; = {7 ;(w}; ;) > un.} € Fj; @ N]

*
n,i» Where 77

is defined in equation (5.1). By constructlon it holds that fF hn i Ay, = 1
therefore the process A(i) is almost surely finite. Proving that the process

{A(Z) t)|te R+} is predictable is done by the same means.

Because of the product structure it suffices to show the second assertion for i =
n. For H € H,, 4, we define Hy = {wn’n | (@, wn.n) € H}, LeN= X;L_:ll Qs

148



5.1 On the Existence of the Modified Cox Regression Model

and Hg e = {w),,, | (W), w),) € Hy}. As H € Hyy implies H € K,

n,s’

s > t, it holds that Hg € F, , ;@ Nj, ;. o, s > 1, and Hg o € NJ o, o 8 > ¢

As the filtration {N], ,, ;| s € Ry} is right continuous, see Proposition B.5.1,
it follows that Hg .- € N;

n,n,t*
Note that for @, ,-almost all wy, ,, and all s, > 0, it holds that

%
n,n
E[N'rlz,n,t+s - A;L,n,t+s(w:z,n7 ) | N;z,n,t:l = N'r/z,n,t - A;L,n,t(w;;,nv ')7 (53)

almost surely with respect to the probability measure given by the v ® A-
density hy, n(w;, ), cf. Fleming and Harrington [19, Theorem 1.3.1]. Using
Fubini’s Theorem, cf. Bauer [6, Korollar 23.7], and equation (5.3) yields
/ (Nt + s) — AL+ 8)) by dp, = / (NS () — A () By dpan,
H H
H € 3,4, s,t > 0, i.e. the assertion. By exactly the same arguments, one
proves the assertion for G,, and {N,E’)(t) —AD@) | te Ry} O

Now, we can state conditions that imply the existence of the MCRM and

(localized) g-dimensional parametric sub-models.

5.1.8 Proposition. a) Let us suppose that the processes {Z; |t € Ry},
i = 1,...,n, are predictable, locally bounded and that for every Wy €
Q;, ; there exists a C(w;, ;) € Ry, such that sup{’Z;kL’iyt(w;yi)’ |teRy} <
C(wy, ;). Moreover, assume that the function R,, : RP*! — R is given by

Ry(z,8) = Rye(z,s) = exp(\/lﬁ BTz ~(s) + % nTﬁ(s)>, (5.4)
€= (BT,n")T € R4, see Definition 1.3.4, and that the functions ~(%%),
w=1,...,rand ¥, u =1,...,q, are bounded. Then the condition (5.2)

holds and 7, ; = 7,,; @}, ;-almost surely.

b) Assume that the processes {Z ,, |t € Ry}, i = 1,...,n, are predictable
and locally bounded. Moreover, suppose that 79 = oo and 7, ; = 00, i =
1,...,n, as well as that v(®% o = 1,...,7r, and 3™, v = 1,...,r, are
bounded on every interval [0,t], ¢ € Ry. Analog to Proposition 5.1.8.a let
R, : RPT! — R be given by (5.4). Then the condition (5.2) holds.
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Proof. Straightforward. O

Of course the conditions stated in Proposition 5.1.8 are not the most general
conditions one can find to guarantee the existence of parametric sub-models.
The cricial point is ensuring that A, ; 1 is a hazard rate of a probability measure
on N;” On closer inspection this requirement is not really difficult, because
of the right censoring. However, we also intend to get that P, ¢ < P, . This

point turns out to be responsible for most of the conditions in Proposition 5.1.8.

5.1.9 Remark. Let P, ¢ be some probability measure on F,, and Z, o the
o-algebra generated by all subsets of P, ¢ negligible sets. It is well known
that P, can be uniquely extended to a probability measure PS, on F50 =
Zno V Ty, such that Py o(F) = P, o(F), F' € F,, see Dellacherie and Meyer
[16, Theorem II1.31, Remark I11.32].

The next result is essential for proving that Assumption 2.2.1 holds.

5.1.10 Lemma. Consider the probability space (Qn, Fo, {Pno, Pn,1}) and as-
sume that P, 1 < Py .

a) The Probability measure P, ; can be uniquely extended to a measure Pﬁ:(l)
on F¢9, such that Pﬁz(l) (F) = Py1(F), F € F,. Moreover, it holds that

n

Pyl < P

b) Assume that under P, ; the process M, = {M,(¢)|t e Ry} is a H,-
martingale with 8, = {Q,,0}. Then under Pﬁ:? the process M,, is a H,-

martingale with 8, = Z,,.
Proof. Assume that f is a P, ¢ density of P, ;. Set

PEO(F) = /F fdPL,  Fegsd.

Remark 5.1.9 implies the first assertion. Proof of b). Any set H € 3, ,, can
be represented as H = (G'U N.)\(GNN,), where G € ®;_,(Fr, @Ny ;)
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and N, C N € &, with P, ¢(N) = 0. Consequently, G\N ¢ H C GUN, cf.
Dellacherie and Meyer [16, Remark 11.32]. Thus, it holds that

/Mn(tJrs)dPﬁ’?:/ M, (t + s)dP, :/ M, (t)dP, 1 :/Mn(t)dp;;‘f,
H ’ G G H ’
for all s > 0. O

5.1.11 Discussion. Under Assumption 5.1.1 and in the situation of Proposi-
tion 5.1.8, we proved the existence of a probability space (Qn, Fn, mn), B =
{P, ¢ | € € R4}, such that

Pn,ﬁ(F) = /th,§<wn> dun(wn)a Fe EFna hn,§ = H hmi,.fz
=1
where

Pnie = exp (-/ hn,i,£,1(Zn,i(sawn)aw;’b7i)(wn)d)‘(s)>
[07'}
X hn,i,£,2 (Zn,i(sa wn)a w;Li (wn))7
with
hnie1(2,0,8) = (Rng(2,8) ao(s) + dn,i(s)) - 1(s < 754)

and
hnig2(2,0,8) = (Rn’g(z, s) ap(s) - 11{1}((5) + api(s) - 1{0}(5)) S1(s < Tni),s

cf. Assumption 5.1.1.iii, Assumption 5.1.1.iv and equation (5.4). As h, o =0
implies that h, ¢ = 0 for all £ € R"9, it results that P, < P, for all
¢ € R"4. Using Lemma 5.1.10.a and setting 8,, = Z,,0, we can assume that
F, and G+, t € Ry, are P, g-complete. This means that Assumption 2.2.1.iii
and Assumption 2.2.1.iv hold. Proposition 5.1.2 yields that G,, is indeed a
filtration and that Assumption 2.2.1.i and Assumption 2.2.1.vii hold. Since

Poo(N(s) =N (s—)=1) =0 and P, o(N¥(s) - NP (s—)=1) =0,
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i1=1,...,n, s >0, we can modify the process
(N, . N RO, N)T

on a P, o negligible set, such it is a multivariate counting process. Note that
this procedure has no impact on the filtration, as it is P, o-complete. Thus,
Assumption 2.2.1.ii, Assumption 2.2.1.v and Assumption 2.2.1.vi are valid by
construction. Proposition 5.1.7, Lemma 5.1.10, Proposition B.5.3 and Propo-

sition B.5.4 yield Assumption 2.2.1.viii and Assumption 2.2.1.ix

5.1.12 Remark. Proposition 5.1.6 and Proposition 5.1.7 emphasize that As-
sumption 2.2.1.vii is mainly due to the fact that we have to guarantee that
all local martingales have representation property with respect to the counting
process (NI, NE ). Basically, Assumption 2.2.1.vii secures that the distribution

of the covariates does not change with the parameter £ € R4,

5.2 Checking Further Conditions

In this section we always suppose that the following premises, for which we

gave sufficient condition in Discussion 5.1.11, hold

5.2.1 Assumption. Suppose that Assumption 5.1.1, Assumption 2.2.1, As-
sumption 2.3.9.i, Assumption 2.3.9.ii and Assumption 2.3.9.viii are satisfied.

Moreover, suppose that
Pn,O(F):/hnd/Jna Feg:nv
F

where we assume that R, = 1, see also Assumption 5.1.1.iii and Assump-

tion 5.1.1.iv.

In the following paragraphs we consider the remaining articles of Assump-
tion 2.3.9. Note that conditions similar to Assumption 2.3.9 are also used by
other author, cf. Andersen et al. [4, Condition VII.2.1] or Andersen and Gill
[5]. Now we state a result derived in empirical process theory that helps us to

verify Assumption 2.3.9.iv — Assumption 2.3.9.vi
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5.2.2 Proposition (Abstract Law of Large Numbers). Under Assump-

tion 5.2.1, let us suppose that every path of the covariate processes
{Z,:(t) | t e Ry}, i=1,....,n, n €N,

is left continuous. Set ZH = suptel(T)HZn,i(t) where ||-|| denotes the

Hoo’

sup-norm on RP, see Definition B.4.3, and define the covering number
CN(g,p) = min{|‘3’| | T CQr, infeeqp(t,s) <eforallte QT},

where Q, = I(7)NQ and p is a pseudo metric on I(7), as well as the empirical

pseudo metrics

P (s,1) = —

2 &Y O(6) - 2OV, ste

i=1

and

uU,v 1 u v u v %
Py (s.6) = — 37| 200(5) 2,7 () YO () = 2,2 (1) 2] () Y, O 1),

i=1

s,t € Qr. Assume that

lim sup sup /]l (272” > C’) me dP,o =0

C—© peN 1<i<n

and

log CN(e, p i) —p,, 0, and %log CN(apSﬁ;)) —p,, 0, (5.5)
asnm — oo, for all e > 0, u,v =1,...,n. Then it holds that
a) Eno (Suptel(r)|ﬁn,0(t) En,0/tn,0( ) — 0, as n — oo.
b) E,o (supteI(T)mgﬂi( )—E, Oﬁgq |> —0,asn—o0,u=1,...,p.
c) Eno(suptel T)|p(u ”)( t) — nOAglu; (t) ) —0,asn — o0, u,v=1,...,p.
Proof. As the paths of the processes {Yn )| te R+} i1=1,...,n,n €N,
are left continuous, it holds that

. fino(t) = Eno(fino(t))| = Sup |finot) = Eno (fin,0(t))|,
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see Proposition B.5.5. Obviously, it also holds that

lim sup sup /sup ’Yéi) (t)|1(sup }eri) (t)] > C’) dP,o=0
C—00neN 1<i<n J teQ, teQ,

and CN(g, pp0) < (n+ 1), where

n

1 7 [
pn,0(57t):ﬁzpfvg)(s)_}/n()(t)}? S’te@T'

=1

The latter assertion can be seen as follows. We have that

{Sup{s eRy | nyi)(s) = 1}, = 1,...,n} ={sn1,---sSnkn}

where s, ;1 < s,,; and k, < n. Choose rational numbers ¢, ;, such that
Smic1 < tni < Spg, ¢ = 1,...,ky +1, where s, 0 = 0 and sy, 1,+1 = 00.
Setting T = {t,,; |i=1,...,k, + 1} we get that

inf p, o(t,s) =0, forall s € R4.
teT

Thus, n~' log CN(e, pn,0) —p,, 0, as n — oo. Now the assertions are im-
plied by Diimbgen [17, Satz 8.3]. The other assertions are proved completely
analogously. Note that Zn,i, i=1,...,n, n € N, are measurable, because of
Proposition B.5.5.a. O

5.2.3 Corollary. In the situation of Proposition 5.2.2, assume that the fol-

lowing conditions hold.
i) SuPteI('r)|% > iz1 Enp (Yrgi)(t)) - Mo(t)| — 0, as n — oo,
i) subie () Sy Bno (Vi (1) Bno (25 (1) = " (0)] — 0, a5 0 — oo,

u=1,...,p,

i) supre )| 2 Simy Eno (Vi (8) Eno (250 () Z00(1)) — us"(8)] — 0, as
n— oo, u,v=1,...,p,

where o, ,u:(tu) and uéu’v), w,v = 1,...,p, are bounded and left continuous.

Then Assumption 2.3.9.iv, Assumption 2.3.9.v and Assumption 2.3.9.vi hold
forallt <.
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Proof. Proposition B.5.5.a gives that sup;c (. |in,0(t) — po(t)| is measurable.
The Markov-inequality, cf. Génssler and Stute [20, Lemma 1.18.1], implies
that sup,c () |Tin,0(t) = Eno fin,0(t)| — P, , 0, as n — oo. Therefore, the first

assertion is an immediate consequence of the triangle inequality. Noting that

B (VS0 () EBno (22(9) = Eno (V7 () 220 (0)

and
Eno (V2 (1) Bro (2,00 2,53(1)) = Bno (V0 (1) Z,20(1) 2,7(1)),
one proves the second and third assertion analogously to the first one. O

5.2.4 Example (Proposition 5.2.2). a) Let us assume that the paths of the
processes {Z,;(t) [t € Ry}, i =1,...,n, n € N, are left continuous with
right hand limits (caglad) and that

12{")(s) — 2" (0)] < L(r)[t — 5] (5.6)
and
128 (5) 2800 (s) — 250 (8) 280 (8)] < L()lE — s, (5.7)

whenever the process Zfluz) and Zf:fi) do not jump in the interval [s,?],
where L(7) € Ry is independent of u, v, ¢ and n. This means the paths
of the processes are piecewise Lipschitz continuous functions. Set J, =
maX{J("’U) | u,v=1,...,p}, where J{“ is the number of jumps of the
process {ﬁgu;)( t) |t € Ry} in the interval [0,7]. Assume that for a fixed
wn, € Qy, the paths of the processes {ZSQ (tAT) YT,(,i)(t AT)[tERL}, u=

1,...,p, i =1,...,n, do not jump in the interval [s1,s2] C I(7). Then it
holds that p(“)(sl,sz) < L(7)|s2 — 51| and p(u U)(Sl,SQ) < L(7) |82 — s1],
u,v =1,...,p. Taking the jumps into account one easily checks the follow-

ing estimates for the covering numbers

+J,+1 and CN(e, p"") <

7n2

ON(e, pi"]) <

' Fn,l

L) T dy 41
&

27L(T)
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Without loss of generality we can assume that 27L(7)e~! > 2 and that
Jn + 1> 2. Hence, it holds the estimate

og < 27L€<T)

+Jn + 1) <log(27L(7)) —log(e) + log(J,, + 1).

If n='log(Jy, +1) —p, , 0 then the condition (5.5) holds.

b) Examples of caglad processes that satisfy the conditions (5.6) and (5.7) are

processes with piecewise constant paths.

c¢) If the paths of the covariate processes do not contain any jumps and con-
ditions (5.6) and (5.7) hold, then J,, < n 4 1. Thus, the condition (5.5)
holds.

5.2.5 Example (k-sample problems). In the situation of Proposition 5.2.2

assume that n > k and that n; = n;(n) ¢ = 0,...,k, are sequences of natural
numbers, such that ng = 0 and n; = n and that under P, the random
variables

Zni(t) ~ Zi(t) and YO (t) ~ YO (1), n_q <i<mny

t € Ry, I =1,...,k Suppose that sup;<;< SUPycR, nOHZl H2
If (nl —ny_ 1)/n — y,as n — oo, for | = 1,...,k, then the conditions of
Corollary 5.2.3 hold with po(t) Zl LE(Y ! ) as well as

ut(t Z nE(Y (1) E(2" (1))

and
(u U) Z I/lE Y(l (Zl(u) (t) Zl(v) (t)),

u=1,...,p. The left cont1nu1ty of this functions can be proved analogously

to Proposition B.5.5.

5.2.6 Proposition. Suppose that Assumption 2.3.9.iv — Assumption 2.3.9.vi

and
sup sup sup IE,LOHZ,” H2 <K<

neN 1<i<n tcI(r)
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hold, where ||- HOO denotes the sup-norm on R?, see Definition B.4.3. Then the

(u,v)

functions pg, N1 ) and wy 7 u, v =1,...,p, are bounded on the interval [0, 7],

i.e. Assumption 2.3.9.iii holds for all ¢t < 7.

Proof. For pg the assertion is straightforward. Let M > 0 be arbitrary. For
all t € [0, 7] it holds that

<|u(u) )| > M)

M R M
< Puo (A0 - 0] 2 5 ) + Pao (20| 2 5 ).

The Markov-inequality and the Jensen inequality, cf. Génssler and Stute [20,
Lemma 1.18.1, Satz 5.4.7], yield that

A ( M (u) 2\/»
Po(|A0] 2 ) < 17 Enali20)] <
Using Assumption 2.3.9.v, one receives
w 2VK
limsuan70<|,ug )(t)| > M) < W\F <1.

for all sufficiently large M > 0. Note that M is independent of ¢. As

. (w)
(u) _ 1L, if |'u1 (t)| 2 M,
&JM<MZMV{O7ﬁMWM<M

it results that |u(u) (t)| < M for all t € I(r). The third assertion is proved

completely analogously. O
5.2.7 Example (Assumption 3.2.11). Suppose that

A1) — yéﬁ’u) oH and A = 'y(()ﬂ’ﬁ) o H,, neN,u=1,...r

(@)

where v, : [0,1] — R are some continuous functions. Let us discuss the

following two cases.
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a) Assume that H = 1 — po and set H, = 1 — Hno. Assumption 2.3.9.iv
implies Assumption 3.2.11. This assertion can seen as follows. The processes
{ﬁr(fl’u)(t) |t e ]R+}, u=1,...,7, n € N, are bounded and left continuous,
i.e. they are especially locally bounded and predictable. In particular, the
functions yéd’ﬁ), u=1,...,7, are uniformly continuous. Therefore, we can
find for every € > 0 some § > 0, such that
Pn,o( sup [7{50) — 50| > s> < Pn,,o< sup [p10(t) — fino(t)] = 5) 0,

tel(r) tel(r)
as n — oo, for all 7 < 9.

b) Suppose that Assumption 3.2.1 holds and that
1—H(t):exp(—/ ao(s)ds>, teR,.
I(t)

Let ﬁn denote a left continuous version of the Kaplan-Meyer estimator for
H, see Andersen et al. [4, Section IV.3]. One readily checks that Assump-
tion 2.3.9.iv implies the conditions of Andersen et al. [4, Theorem IV.3.1].
Therefore, we have that Suptel(fﬂﬁn(t) ~H(t)| —p,, 0, as n — oo,
for all 7 < 7§. Analogously to Example 5.2.7.a, one shows that Assump-
tion 3.2.11 holds.

Asymptotic normality restricted to time 7y always depended on some additional
conditions. The next result gives sufficient, handier assumptions for these
premises. We also show the existence of the canonical SHPSM restricted to

time 7.

5.2.8 Proposition. Under Assumption 5.2.1, suppose that Assumption 2.3.9

and Assumption 3.2.1 hold as well as the conditions

1
T Jmax seslu(IT)g)HZH’i(S)HOO —p,o 0, asn— oo, (5.8)
and
sup sup sup En70<||Zn7i(s)||io> =K < 0, (5.9)

neN1<i<n sel(r§)

where ||-||oo denotes the sup-norm on RP, see Definition B.4.3.
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a) The conditions (2.24) and (2.25) hold. In particular, the functions ,ugu) / o,
u=1,...,p, are bounded. This means that the conditions (2.24) and (2.25)
also hold in the context of Theorem 3.2.3.

b) The conditions (3.11) and (3.12) are satisfied.

¢) Assume that W,(Luu)| < C < oo, u=1,....,7r, n € N, then the condi-
tion (3.13) and (3.17) hold.

Proof. Using the notation of Theorem 2.3.10, we prove that (2.24) holds.
Note that we can replace 79 by 7§ in equation (2.24) and (2.25), because of
Assumption 3.2.1. Choose d,¢ > 0 and define the sets

A, = {1 max sup HZ,H(S)HC>C < 6}, n €N,

\/’TL 1<i<n s€l(ro)

as well as
B, = {

> / Vi(s,6,6") A (s) ds
i—=1 7 (t,70)

Clearly, it holds that

25}7 n € N.

limsup P, o(B,,) < limsup P, (A, N B,) + limsup Pn’O(AEL)

n—oo n—0oo n—oo

and lim,,_, o PmO(A,BL) = 0, because of (5.8). A Taylor expansion gives that

exp( J=ET () VO(9)) <1 = J=ET0i(0) p(ﬁ(ﬁj €000 VL),

where J(s) € (0,1). Therefore, we get that

V5,680 < €7, 4(5) €, (5

X exp(2\1/ﬁl9(s) é‘T\IJn’i(S) + %ﬁ’(s) ng\I/n,i(S)> Yrgi)(s),

where 9,9 : Ry — (0,1). Using the boundedness of the weight functions, on
the set A, it holds the estimate |V,5i)(s,£7§')’ < C, where C' is some constant
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that can be chosen independently of i, n and s. Using Fubini’s Theorem, cf.

Bauer [6, Korollar 23.7], gives

En,O/ CYD(s) ag(s)ds = C E, O(Y(’)( )) ao(s)ds.
(t,7§) (t,7§)

Using Remark 5.1.4 gives that E,, o (Yn(l)(s)) < 1-— Fy(s), where

| — Fy(s) = exp (— /M ao(u) du>.

Therefore, we get that
E/( OYPE) aal) ds SC(FGH ~R(0). (610)
t,To

The Markov-inequality, cf. Génssler and Stute [20, Lemma 1.18.1], and (5.10)
give that

1 n .
li Poo(An N By) <li Pool = C A (s)ds >
imsup Py, o( ) < limsup ’O(n Zi:l /t »(s)ds > E)

C ,
< — (Fo(76) = Fo(1)) — 0,

as t — 7§. With a similar consideration one proves that (2.25) holds. In the
next step we show that the functions M§“)/u0, u=1,...,p, are bounded. For
this proof we also use the same idea as in Proposition 5.2.6. If 7§ < oo we
can assume without loss of generality that p(“) (7§)/ o (7§) = 0. Let M > 0 be
arbitrary. For all ¢ € [0,7§) it holds that

(u)
limsup P, o "ul *) ‘ >M | <limsup P, o| |=—=
n—00 /~L0(t) n— 00

+ limsup P, o
Ho

n—oo

Obviously, it holds that

) A
< —~ - Zn i )
Nn,O(t) - :“mO Z‘ ‘ Oo
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where we use the Cauchy-Schwarz inequality, see e.g. Génssler and Stute [20,

Satz 1.13.3]. The Markov inequality and Lemma 3.2.7, give that

(u)
: pa (¢ )‘ 2K
lim sup P, >M|<—x<1
naoop 0 (‘ Mo(t) M

for sufficiently large M. As K and M are independent of ¢ and
() 1, if [ () /o) > M

ol ]2 ()‘ VAT B fu%u) )/ 1o (t)] = M,
po(t) 0, if [ (8) /(1)) < M

it follows the assertion.

First, we show that (3.13) holds. Again, using the estimate (ﬁglui)Q/ﬁno <

ﬂguéu), applying Markov’s inequality and Fubini’s Theorem yield

(@)
Poof( [ Gin (557 - ZE Yooy s> )

,LLn,O(S)

2 < i s .

= en Z /(t ) Eno (Zv(L,i)(S))Q Eno ((77(#7“) (5))2 Yé’)(s))ao(s) ds
2KC2 2KC?

<

[ BV eote) ds = F (Ry(r) — i),

3

where C' > 0 is some suitable constant. For the last estimates we also use
boundedness of the weight functions and the stochastic independence of the
covariates and the at-risk processes. ¢ — 7§ gives that (3.13) holds. With the
same method one proves that the conditions (3.11) and (3.12) are satisfied.

Using the estimates

(b 1« i
03" 6)] < 3 3l Zni) 1LY )
i=1

and

n 2
A () A (s)] < (;Z|yzn,z—<s>|le#><s>>
= (iZHZn,i(S)HiOYp(SO “in,0(8),
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where we applied the Cauchy-Schwarz inequality, one sees that the condi-

tion (3.17) is proved completely analogously to (3.13), cf. also Remark 3.2.14.b.

5.2.9 Remark. a) Abbreviating ZM = SUP,¢

O

| Zn,i ()] |oo the condition

75)

(5.8) is implied by

lim sup sup /IL (2,2” > C)Zgl dP, o =0. (5.11)

C—o0 peN 1<i<n

For 6 > 0 choose C' > 0, such that sup; <;<,, nen En,O(]]-(ZTZL’i > C’)ZQ”) <4,
and define the sets 4,, = {maxi<;<p, ZQ” > C}, n € N. It holds that

;> n52} ﬁA%)

+Po ( max ZZ Z411(2,2” >C) > n52) = Pn,1 + Pn,2
1<i<n ’ ’

1<i<n

Pn,O <112a<x Zn,i Z \/ﬁg> S Pn,O ({ max ZEL

Obviously, it holds that p, 1 — 0, as n — oo, and
1 & =5 = 5
Pn,2 < @ZE"@(H(Z"J > C)Zn,i) < ?’
i=1

since d was arbitrary, § | 0 yields the assertion. Additionally, the condi-
tion (5.11) yields that the condition (5.9) holds.

The condition (5.9) does not generally imply the condition (5.8). This can
be seen as follows. Using the notation of a) assume that ,va’ i=1,...,n,
n € N, are stochastically independent and
. 1—1/i, ifz=0,
P, 0 Lpi =2) =
n, ( 51 ) { 1/i, jfzzﬂ,
Clearly, it holds that E, (Z, ;) = 1/v/i and IEnO(Zf”) = 1. However, some
tedious computation, where one uses the properties of the gamma function,

gives that

lim P, max Zn,i > 5) =1- min{l,eg}, e > 0.

1
n—oo \/ﬁ 1<i<n
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¢) Assume that the random variables ,va’ i =1,...,n, n € N, see Re-

mark 5.2.9.a, have the same distribution and that E,o(Z3 ;) < oo, then
the condition (5.11) holds.

d) Using the notation of a) assume that for some ¢ > 0, it holds that

sup sup E,o (Z%Jgé) =K < 0. (5.12)
neN1<i<n ’

Using the Markov inequality yields that

1
Poo( 7 s, 2w (1ol 2 )

<e @)y mURANTE, (Zﬁ&) <
i=1

i.e. the condition (5.8) holds. Obviously, the condition (5.9) is also implied
by the condition (5.12).

e) If all paths of all covariate processes are bounded by the same constant then

clearly the condition (5.11) is satisfied.

f) In particular, the condition (5.11) or (5.12) imply Assumption 2.3.9.iii, see
Proposition 5.2.6, and Assumption 2.3.9.vii.

5.2.10 Proposition (Local Boundedness of Covariate Processes). As-
sume that ||Zn7i(0)Hoo < Ch;, where C,,; € R4, i=1,...,n, and that the con-
dition (5.11) holds. Then the processes {Z,;(tA7§) |t € Ry}, i =1,...,n,
are locally bounded with respect to the filtration G,

Proof. Set

oo, otherwise.

{ 0, if Zn,i A On,i > k‘, }
Tn,ik =

Clearly, it holds that {7, ;5 <t} € G0 C G, and HZn,i(t A Tnjike N TOC)HOO <
max(C,, ;, k) for all ¢ € Ry. The condition (5.11) gives that Zn,i is integrable.
Thus Z” < 00 P, p-almost surely. Thus, we get that 7, ;  — 0o P, ¢-almost

surely. O
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Let us end this section with an important and prominent type of covariate.

5.2.11 Example (Time-Independent Covariates). If the covariates Z, ;,

t = 1,...,n, n € N, are time independent, we can identify them with the

stochastic processes
{Zni(t) =2}, 1Lt >0)[teRy}, i=1,...,n, neN.

Furthermore, assume that the condition (5.11) holds. According to Proposi-
tion 5.2.10 these processes are locally bounded. As these processes are left con-
tinuous, using Example 5.2.4.a we see that the conditions of Proposition 5.2.2
hold. Remark 5.2.9.c yields that the premises of Proposition 5.2.8 are satisfied.
Sufficient conditions for the assumptions of Corollary 5.2.3 can be found in
Example 5.2.5.

5.3 Applications

In the previous sections we basically discussed Assumption 4.3.3, except As-
sumption 4.3.3.ii — Assumption 4.3.3.v, and showed how to construct models
that satisfy these premises. Assumption 4.3.3.ii — Assumption 4.3.3.v guarantee
that our statistical model is reasonable, see Remark 3.2.2.b and Remark 4.3.4.
Therefore, we suppose that Assumption 4.3.3 holds and that our observation
are given by the tuples (Xm, JAVER Zn,i), i=1,...,n, where X, ; and A,, ; de-
note a censored survival time and the corresponding censoring indicator. Z, ;
is the covariate process associated with (X, ;,Ap;), ¢ =1,...,n, n € N. In
particular, it holds that N{” () = 1(X,; < t)- Ap, and Y37 (1) = 1(X,; > 1),
teRy,v=1,...,n, n € N. Further information on the modelling can be
found in Chapter 1. In the next example it is shown, once again, how a non-
parametric testing problem can be transformed into parametric testing prob-
lem with help of the Modified Cox Regression Model (MCRM) and sequences
of hardest parametric sub-models (SHPSM). As this procedure is always the

same, the other examples are only discussed on the level of SHPSM.
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5.3.1 Example (One-Sided Tests). Let Z = {Z(t) | t € Ry} be some mul-
tivariate, non-negative covariate process possibly having some impact on a

survival time 7. Let
M1 Z=2)=lmPt<T<t+h|T>t7=z)

denote the conditional hazard rate of T' given Z = z, where z = {z(t) |t € R+}
is a fixed path of the covariate process. In the following it is assumed that z
is not identically zero for every component, i.e. z(“)(tu) > 0 for some t,, € R4,
u=1,...,p. Moreover, we suppose that A(t | Z = 2) = A(t | Z(t) = 2(t)), i.e.
the conditional hazard rate of T" at ¢t depends only at the value of the covariate
process at time t.

Now, we intended to test the hypothesis that the covariates have no influence
on the survival times versus the alternative that the larger the values of the

covariates the shorter the survival times. More precisely, we want to test
Hi: Mt Z(t)==2(t) =A(t]| Z(t) =0) forallteRy
versus
Ki: At]Z@1) ==2(t) > At| Z(t) =2(t)) for all t with z(t) = Z(¢),

where z(t) = Z(t) means that 2(*)(t) > Z((¢) for all u and at least one

inequality is strict.

This testing problem can be modelled with the MCRM. Let us assume that
under the probability measure Pg , the hazard rate of the survival time is given
by

Agalt ] 2) =exp(BT2 @7a(t)) ot)
p T
u *(UVU) w.v
o (320 370
u=1 v=1
’Y‘(Xum = ,y(()u,u) oH,,u=1,...,r, are positive weight functions and H, is some

cumulative distribution that might depend on the baseline hazard a and the
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distribution of the censoring times and ﬁ(u ) ﬁ(27;11 ) yo=1,... 7,
u = 1,...,p, see Definition 1.3.2 and Remark 1.3.3.b. Clearly, this setting
means that the weight functions ’y( ’”), u = 1,...,r, are positive. In other
words, we assume that the predictable dual projection of N®) under Ps o is
given by

AD (. / YO (s) Agals| Zi(s)) ds.
Under the MCRM our testing problem H; versus X; is equivalent to
5{1:620 versus ilzﬁzo,ﬁ;ﬁo,

where we use the notation of Definition 1.3.2. Localizing and embedding our
observations (Xm, Ap i, Zm), i=1,...,n,in a SHPSM the testing problem

transforms into ﬂffﬁ versus 92‘;’, where J = {1,...,7}, see Section 4.1. Conse-
quently,
1, A - - >
On1 = 0 Lg’l(Un(oo),Vn(oo)) — 03,1(a, Vn(oo)) - 0,

is an admissible test for our testing problem, see Corollary 4.3.6.a. The statis-
tic Up(c0) and the variance estimator V,(co) are defined in Theorem 3.2.9,
Remark 3.2.10.a and Theorem 3.2.13.

If one wants to test H; versus
Koo Mt | Z(1t) =2(1t)) < A(t| Z(t) = Z(t)) for all ¢ with z(t) Z Z(t),

one merely has to replace the positive weight functions by negative ones or use
the covariate processes —Z,,; = {—Zn,i(t) |t e ]R+}, 1 =1,...,n instead of
Zyni, t=1,...,n. The second proposal is more suitable, if one wants to check,
if the condition (4.12) holds.

5.3.2 Example (Two-Sample Problem, Tests of Mayer [53]). Assume
that we observe a one-dimensional covariate, i.e. p = 1 that can only attain

the values 0 and 1, where Z, ; = 1 (0) means that the i-th observation belongs
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to the first or the second sample. Assume that we want to test the hypothesis
that the distribution of the survival times in both samples is equal versus the
alternative that the distribution in the second sample is stochastically larger
than the distribution in the first sample This means larger values of the covari-
ates correspond with shorter survival times. Therefore, this testing problem is

a special case of Example 5.3.1, see also Example 1.2.1 and Example 1.3.1.

Moreover, assume that Z,; = 1(1 <¢ <w,) where 1 < v, < n. Thus, the
sample-size of the first (second) sample is given by v, (n — v,). Obviously,
in this case the covariates are non-random. If one computes the test statis-
tic L571(ﬁn,‘7n), see Section 4.1 and Section 4.3, we receive the one-sided

projective-type of Mayer [53]. Setting

1 Vn 1 n
- _ - (4) - =
fimo.1 = — ZYn ) fino2 = — Z
= J=vn+1
Vn n
le = ZN7(LZ)? Nn72 Z n a

i=1

it hold that

7 - ~(1,u) Hn,0,2 Mn 02 4 ~1, u) Mn 0,1 1 nr(d)
e = (3 ey - 3 [ seRea)

1=vn+1
/ 1u)ﬂn01un02d(Nn,1 Nn,2>
\f 0 fno1  fnoz2)’
u=1,...,r. Consequently, fjn(T) is in this special case a r-dimensional vector

of log-rang statistics that are frequently applied for the two-sample problem
in survival analysis. Furthermore, the estimator of the covariance matrix boils

down to

1 . N Ly, Iin 1
V) (o) = 7/ 5L 5(1L0) im0 Fn,0.2 _ A(Nos + Noa),
I(c0) Hn,0 Hn,0

u,v = 1,...,r, a multivariate version of the variance estimator V; in Gill [22,
Equation (3.3.12)]. Extensive simulation results for the two-sample problem
can be found in Behnen and Neuhaus [8] and Mayer [53, Section 3.6].
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Clearly, Assumption 2.3.9.vii is satisfied and Assumption 2.3.9.iv — Assump-
tion 2.3.9.vi hold, if

sup ’ﬁn,o,l(s) - #0,1(5)| and  sup ’ﬁn,O,Q(S) - #0,2(3)|,

s€[0,t] s€[0,1]
for all t < 79 and lim,, .o %= = v € (0,1), where the last condition provides
that #*(70) # 0. Note that these are the classical conditions needed for

treatment of the two-sample problem.

5.3.3 Example (Trend Test for Discrete Stages). In a study, the subjects
are classified by the stage of their disease, when they start participating in the

study.

Assume that we have p + 1 different stages of the disease. Let A; denote the
hazard rate determining the distribution of the survival times at stage j. We
want to test the hypothesis H : Ay = Aa = ... = Ap41 versus the alternative
X: A <A ..o < Apq1 with at least one strict inequality. In other words,
we want to test that there is no difference in the hazard rate among the stages

versus the higher the stage, the higher the death rate.

Now, we show how this statistical question can be modelled with the MCRM.
Choosing non-negative weight functions, we have merely to define suitable
covariates. Suppose that Z,,; = j, if and only if the i-th subject is classified

stage j. A possible choice of the covariates is given by

i = (Z(l) ..,fog), where ZS’JZ-) =1(u < Zn;).

n,ao "

As we assume that our observation are embedded in a SHPSM, the dual pre-

dictable projection of N,(f) and P, ¢ is given by

i i 1 1
Agl)é() = 1) A3(8; Zn,i) Y'rg )(5) eXp(\/ﬁﬁTV(S)> ap(s)ds
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where

550 205405

u=1

szzﬁ“ (s

u=1

A3(8, Zn ;) = exp<

S|

= exp

= exp(

B(“’”) - 5(27;11 nt) y=1,...,ry, u=1,...,p, see Remark 1.3.3.b.

Sl gl-

N\

-1 r

5 iﬁ‘“” (o) >)

u=1

§H

Obviously, our testing problem H versus X transform into UTC? versus f]~<"f, where
Jd ={1,...,r} — the same testing problem as in Example 5.3.1, where we stated

the corresponding test procedure.

5.3.4 Example (Trend Test for Continuous Stages). Now we want to
extend Example 5.3.3 and allow as covariate not only discrete stages, but also
continuous stages, i.e. Z,; can take values in whole R and not only 1,2,.,p.
Of course, one can always discretize Z,, ; but to do this one has to have an idea

of which values of Z,, ; represent a certain stage of a disease.

The following example might serve as an illustration. Assume that we can
observe the time between the beginning of a disease and the treatment, this
might be the case if you consider organ transplantation. A possible statistical
question would be to test, the longer the time between the beginning of the
disease and the treatment, the shorter the survival time after the treatment.
In this case, X, ; denotes the time between treatment and death or censoring
of the i-th subject. And let 7,“2» be the time before the treatment of the i-th
subject. Clearly, in this example we could replace time before the transplanta-
tion by any real valued quantity that can be measured, when a subject enters

a study, e.g. the number of white blood cells.

Choosing non-negative weight functions, we have to define suitable covariates.
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A possible choice of the covariates would be Z,, ; = Zn,i implying that

1 o T
Ag(8,Zp ;) = GXP<\/ﬁZn,i Zﬂ(u)’Y(l’u)(s)> )
u=1

see Example 5.3.3. And again, our testing problem that the stage of a dis-
ease does not effect the survival time versus the higher the stage, the higher
the death rate transforms into iﬂf versus fJN{Zf, where § = {1,...,r}. However,
a linear influence might be too restrictive. Therefore, let g, : Ry — Ry,
u = 1,...,p, some strictly increasing, known functions that are linearly inde-

pendent. A different choice of the covariate could be

Z’n,i - (gl (7774,2')7 .. agp(f’ﬂ,i))T'

Consequently, we get that

1 & o =) (uw
)\5(5, Znﬂ') = exp (ﬁ Z gu(Zn,i) Z B 7( ’ )(5)>
u=1 v=1

Choosing (%) = () and setting r, = ... = rp = T, this expression simplifies

to

1 T P ( ) _
A3 (8, Zn,i) = exp (\/ﬁ > () Z " 9u(Zn) |-
v=1 =
In this model, covariates and weight functions change their roles to some ex-
tend, as we use the g, to approximate some unknown link function g. Again,

our testing problem transforms into GN{f versus 52?

So far, we have mainly considered applications with time-independent covari-

ates, now, let us consider an example with time-dependent covariates.

5.3.5 Example (Application of Example 5.3.1). Assume we want to find
out, if disease complications in the recovery phase lead to shorter survival

times. Therefore, let us define the covariates as follows

w 1, t > time at which disease complication u occurs,
() =
’ 0. otherwise,
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u = 1,...,p. In this model we presume that the point in time at which the
disease complication occurs is important. With this choice of covariates our
statistical question boils down to test the hypothesis that the covariates have
no influence on the survival times versus the alternative that the larger the
values of the covariates, the shorter the survival times. This problem was

already treated in Example 5.3.1.

5.3.6 Example (Two-sided Tests). Assume we want to find out whether
the observed covariates have any effect on survival times at all. As we consider

a SHPSM, the predictable dual projection of Nr(f) under P, ¢ is given by

) 1 1 .
A0 = [ e 67200 0(6) + =36 YO s) ) .
e 1) Vvn ’ Vn
where 'y(“*”), v=1...,r, u=1,...,p, are any weight functions. Conse-
quently, our testing problem transforms into 5(50 versus 9~<2Ll7 where L1 = R"

and Ly =0 € R", see Section 4.2. Consequently,

1, - - - >
Pn,2 = { 0 LLO,L1,2 (Un(OO), Vn(OO)) —CLo,L1,2 (Oé, Vn(OO)) < 0

)

is an admissible test for our testing problem, see Corollary 4.3.6.b. The statis-
tic U,(c0) and the variance estimator V,(co) are defined in Theorem 3.2.9,
Remark 3.2.10.a and Theorem 3.2.13.

5.3.7 Example (k-Sample Problem). Let \; denote the hazard rate of the
j-th sample and suppose we want to test the hypothesis H : A\ = ... = A\
versus the alternative K : \; # \; for at least one pair (¢,5), 4,5 € {1,...,k}.

Choosing arbitrary weight functions and defining the covariates as

(u) 1, -th observation belongs to sample u,
ni — u=1,...,k,

0, otherwise,

the testing problem H versus X is a special case of Example 5.3.7.
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5.3.8 Example (Competing Risks). If one changes the interpretation of

the covariate in Example 5.3.7 to

1,

(W) i-th subject dies of cause u,
o 0, otherwise, ’

we receive a model for competing risks.

5.3.9 Example (Two-Sample Problem with Concomitant Covariates).
In Example 5.3.2, we considered the two sample problem and presented a
testing procedure for the hypothesis no differences between the two samples
versus the alternative the distribution of the second sample is stochastically
larger, where Z,; = 1 (0) means that the i-th observation belongs to the
first (second) sample. In the two sample problem the group membership often
depends on the kind of treatment a subject receives, more precisely the subjects

in the first (second) sample receive the standard (new) treatment.

However, the individuals within one sample might differ in various character-
istics that might have an additional impact on the survival times, but we only
want to know, if the group membership leads to difference in the survival times.

Such a characteristic could be gender for example.

Of course this situation can be modelled with the MCRM. Assume that our
covariate process {Zm(t) |t e R+}, i = 1,...,n, are interpreted as follows
Z,i(t)1) =1 (0), if the i-th observation belongs to the first (second) sample.
{Zfﬁi) |t e R+}, u = 2,...,p denote the concomitant covariates that might
have an impact on the survival times. As we consider a SHPSM the predictable

dual projection of Nr(f) under P, ¢ is given by

()= s (s (1) (5) ex iTF's ap(s)ds
A% = [ Aalos Zu) YO (s) exo( o™i (o),

A3 (8, Zni(s)) = exp (zgms) i B 41w (5) 4 Z z\") (s)p™ w»w(s)) :
u=1

u=ri1+1




5.3 Applications

Furthermore, let us assume that the weight functions vV, ... ~(171) are non-
negative. The remaining weight functions v u = 7 +1,...,r can be
chosen arbitrarily. In this setting our testing problem in question transforms
into the testing problem f]ff? versus 3~<§, where the set J = {1,...,r}, see
Section 4.1. The corresponding test is given by

>

Pn,1 = { ;7 LH,l(ﬁn(oo)7‘7n(oo)) — €31 (a,‘/}n(oo)) < 0,

)

see Corollary 4.3.6.a. The statistic U, (co) and the variance estimator V,(co)
are defined in Theorem 3.2.9, Remark 3.2.10.a and Theorem 3.2.13.

The testing problem no influence of the group membership versus there is
an influence of the group membership on the survival times the under this

model transforms into H5° versus K5, where L1 = Im(7/) ) and Lo =

Im(g{’;lﬂ’m,r}). See Definition 4.1.3 for the matrices y{’"lr} and ,7{:&1,“.”.
The corresponding testing procedure is given by
1, . - -~ >
¥n,2 = 0 LLOle»Q (U,L(OO), Vn(oo)) — CLo,L1,2 (av Vn(oo)) < 0,

cf. Corollary 4.3.6.b. Analogue to the two-sided testing problem, see Exam-
ple 5.3.6, we do not have to restrict ourselves to non-negative weight functions

AW  ~(m) i order to get the "right“ stochastic ordering.

5.3.10 Remark. In Example 5.3.9 we extended Example 5.3.2 by concomitant
covariates. With an analogue proceeding one can also extended the other
Examples discussed in this section so far by concomitant covariates. However,
one should keep in mind that an extension by concomitant covariates also
increases the number of model parameters. In order to obtain reasonable results
in such situations, the number of observations available for the analysis has to

be adequately large.

5.3.11 Example (Model Check). Analogue to the previous examples we
consider again a SHPSM and assume that the predictable dual projection of
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5 Examples and Applications

N under P, ¢ is given by

@ ()= s (s (1) (5) ex LTNs ag(s)ds
AL = [ (o Zuso) YE0(6) exp ™)) o),

n

where
A3 (s, Zm'(s)) =

exp ZZ“‘ (Zﬁ(w) @)+ 30 By >>

V=T +1

B — gEiS ) 4 = 1, ry u = 1,...,p, see Definition 1.3.2 and
Remark 1.3.3.b. Moreover, assume that 7, < r,, v = 1,...,r, where at least
one of the inequalities is strict. Considering the testing problem 5(22 O versus

f]~<§1, where L1 = R" and Ly = Im(%r) with

is a possible simple way to check, if the family of probability {Pné | € e Lo}
measures is sufficient to model the given observations, or if we have to introduce
more weight functions. The alternative models are specified by the weight
functions v(**), v = 7, +1,...,7y, v = 1,...,p. The corresponding testing

procedure is given by Corollary 4.3.6.b.

5.3.12 Example. Assume that 1 < p < p and that we want to test the
hypothesis that only the components u = 1,...,p of the covariate process
have some effect on the survival times versus the alternative that also other
components of the covariate process have some influence on the survival time.
Clearly, this statistical question can be modelled with the MCRM. Consider-
ing a SHPSM the non-parametric testing problem transforms to ﬂTCZL“ versus
3~C§1, where L1 = R" and £y = Im(ﬂa’“) with J = {1, e 521 ru}, see also
Example 5.3.11.
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In this chapter a different method for determining the critical values for the
tests developed in Chapter 4 is presented. The advantage of these critical values
is that they do not only converge to the correct asymptotic critical values, but
in certain cases they are the exact critical values for finite n € N, so that our
tests hold the level even for finite n € N. In Section 6.1 we motivate and
introduce so called permutation tests. Before we can state our main result
— the asymptotic equivalence of permutation tests and the tests developed in
Chapter 4 — in Section 6.2, we have to present some rather technical results.
The whole proceeding is based on ideas that were developed by Neuhaus [59].
A similar approach is also used by Janssen and Mayer [37] who investigate
conditional studentized permutation tests. The assumptions needed in the
proof of our main result are discussed and verified for important examples in
Section 6.3 in detail.

Unfortunately, this method only applies to external covariates, see Section 1.1,
as our method requires that we can observe the covariates determining the
survival time of a subject even after the death of that subject. Obviously this
condition is satisfied, if we consider time-independent covariates, which are a

major example for external covariates.

6.1 Introduction

In the following it is supposed that Assumption 4.3.3 holds with 7 = 7§. Con-

ditions implying these premises were discussed in Chapter 5. So without loss
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6 Generalized Permutation Tests

of generality, we can assume that we are in the situation of Discussion 5.1.11,

which means in particular that Assumption 5.1.1 is valid.

Remember that the censored survival time X, ; and the censoring status A, ;

of the i-th observation are given by

X, = sup{t | YO (t) = 1}, A= NO(X,4), i=1,...,n, n €N.

The ranks of the censored survival times X, ;, ¢ = 1,...,n are denoted by
R, = (le, e ,Rn,n), where R, ; = E?:l I(X,,; <X,;),i=1,...,n. The

inverse ranks D,, = (Dnﬁl, ey Dnm) are defined by the identities Dy, g, , =

R, p,,=11=1,...,n. The statistic
Xn,T = (anla cee 7Xn:n) = (Xn,Dn,lv cee 7Xn.,Dn,n)

is the order statistic of the observations. The statistic

An,T = (Anzly ey Ann) = (An,Dmly ey An,Dn’n)

is called the concommitant order statistic of the censoring indicators. Finally,

the reduced covariate processes are given by Z, 1 = (Zyn,1,1,- -, Zn,1,n), where
Zoi) o TN\ (20 (K)o 20 (X)
Znti= - = . : )
zr) Lz ZPN (X)) oo 2PN (X

indicate why we only consider external covariates in this chapter.
Additionally, let us suppose that Afbuu)() = %(Lu")( | X1y App), i.e. the es-
timators for the weight functions only depend on the order statistics. For
example, estimators based on the Kaplan-Meyer estimator or on fi, ¢ satisfy
this condition, see Example 5.2.7 for details. Finally, set Afﬁi’m = ?T(Lﬂ’u)(Xn;i),
u=1,...,r,t=1,...,n.

One readily checks that

_ 1 & . DDA
) = 3 a2, - EE s
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6.1 Introduction

u=1,...,r, and that

Vn(ulu ZAnl’ynl /ynl
n (u,l) (0,1) n (a,l) n (0,0)
== Zip, 2t  2jm1Znipa, k=120 00
n+1-1 (n+1-1)2

Vs (Do Wat),

w,v = 1,...,r, where W, 1 = (Xu1,An1,2Zn,1). Moreover, we note that
the covariate processes {Zm-(t) |t e R+}, 1 =1,...,n, and the multivariate
counting process (Nn,ﬁ,b) are stochastically independent under P, . Thus,
{an |t e R+} i=1,...,n, and (X,;,An:), ¢ = 1,...,n, are stochasti-
cally independent under Pn,o. If additionally all censoring times have the same
distribution, i.e.

Op1 = ... = Onn, (6.1)

see Assumption 5.1.1.vii, Remark 5.1.4, and Assumption 2.2.1.ix, it holds that
(Xn,i»Anyi), ¢ = 1,...,n, are stochastically independent and identically dis-
tributed (i.i.d.). In particular, the ranks of our observations R, and the in-
verse ranks D, are uniformly distributed on Per(1,...,n) under P, o, where
Per(1,...,n) denotes the set of all permutation of the numbers 1,...,n. More
precisely, it holds that

Pn,O(Rn:T) :Pn,O(Dn:r) :%, TEPQI‘(I,...,TL).

Furthermore, one can easily show that D,, and (X,m, Ay, Zn,T) are stochas-
tically independent under P, g, if condition (6.1) is satisfied. In this situation
assume that the order statistics and the reduced covariate processes are given
and fixed, i.e. X;, 1 = ©p,1, Any = 6p,1 and Z,, 1 = 2z,1. Then the distribution
of the statistics, cf. Section 4.3,

TEJ*,7117a(Dnvwn7T) =
Lga (ﬁn,*(Dm wn,T)v ‘7717*(Dm wn,T)) — €31 (O‘a Vn,*(Dnv wn,T))
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6 Generalized Permutation Tests

and

Tﬁffl (D, wnp) =

LLO,Ll,Q (ﬁn,*(Dna wn,T)a Vn,*(D'rn wn,T)) —CLy,L1,2 (aa Vn,*(Dna wn,T))

where we set wy,1 = (Zn,1,0n,1,2n,1), i principally known and can be easily
approximated by simulations. This observation leads to the introduction of

conditional permutation tests.

Let Fzglim and F;i:‘ L1 .w,, denote the cumulative distribution functions
of the statistic Ta*’ll’a(Dn,wnyT) and TE’(}Q’EI(Dn,wn,T)7 in the case that D,, is
uniformly distributed on Per(1,...,n). Obviously, for every a € (0,1) there

exists real numbers

r:L:;(a,wn,T), T:LZiO,Ll(O‘awn»T) and k;’,;(a,wnﬂ), k::io,nl(%wnﬁ)’

such that
Sry(s,wn ) dE 30 (s) =@
[0,00) !
and
2 12,
/[o )¢;L0,21(s’w"ﬁ) dF;L:,LI,wn,T(S) =q,
,00
where
1, >
Sng(siwnt) = rih(onwny), s —kyglawny) = 0
0, <
and
1, >
)2 , ,2
Orrg oy (Swng) = i o (wng), 5=k o (@wng) = 0.
0, <

The sequences of tests

*,1 *,1
%0;,1 = ¢n73 (T;J,L(X(Dm Wa,1), Wn,T)» n €N,
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and

Ona= ¢:{,2LO,LI (Tzﬁfl,z(l)m Wi1), W), neN,
are called (conditional) permutation tests of level « for the testing problems
iﬁ? versus 92? and HN{QLD versus 5~<§ 1. respectively, cf. Hajek and Sidék [26, p.
42]. Summarizing the previous discussion gives the following result.
6.1.1 Proposition. In the situation of Discussion 5.1.11 assume that the
condition (6.1) is satisfied and that %(lﬂ’ﬁ), uw = 1,...,r, only depend on the
order statistics X,, ; and A, 1, then it holds that

/‘p;,l dPno = /‘Pv*z,z dP, 0 = a, n € N.

Proof. Because of condition (6.1), it holds that (X, ;,A,;), ¢ = 1,...,n,
are ii.d. implying that D, is uniformly distributed on Per(1,...,n) under
Pyo. As Dy, and (X, 1, Ap 1, Zy,1) are stochastically independent under P, o,

conditioning gives that

. X1 1270
Eno(eni) = /]En,O[@Z,1 | (Xn,15An.15 Zn,1) = Wnt de(z,O AT (4, 1)

= [ (655 (T (Do) ) ) AP )

:a’

where we use that E, g (‘15;% (Tg*y’ll’o‘(Dn,wnﬁ),wnﬂ)> = « by construction.

The second assertion is shown completely analogously. O

6.2 Asymptotic Equivalence

In this section we show that the sequences of tests ¢} ;,n € N, and ¢, ;, n € N,
are asymptotically equivalent, 7 = 1,2, which implies that the sequences of
tests ¢y, ;, n € N, j = 1,2, keep asymptotically the level on the hypothesis,
are asymptotically unbiased and asymptotically admissible, cf. Corollary 4.3.6.
However, before we can proof such a result, we need some more assumptions

and notation.
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6 Generalized Permutation Tests

6.2.1 Assumption. Suppose that Assumption 4.3.3 holds and set

oo o0 o0
Q= X s T= Q)T {Pg ~ @ Puce |t R”q}.
n=1 n=1 n=1
Moreover, let (2,5, P}), n € N, be a sequence of probability spaces, where
7, is P)-complete. Assume that D), = (D}, ;,..., D}, ) : @, — Per(1,...,n)
are uniformly distributed random permutations, i.e.

1

d € Per(1,...,n).
Computing the asymptotic distribution of

Ty Dy, Wiyt (wr,))  and  TE2E (D, Wi, 1 (wk,)s

where Wi, 1(wk,) = (Xng,1 Wk )s Dpg 1 (W )s Zng 1 (k. )) 5 for sub-sequences
of natural numbers k,, n € N, and fixed w = (w1, ws,...,) € Q is a key step
in the proof of the asymptotic equivalence of ¢}, ., n € N, and ¢, j, n € N,
j = 1,2. As these statistics depend on the statistic T/J\'km* (D;n,kaT(wkn))
and the variance estimator f/n,* (D;n,kaT(wkn)), we mainly have to prove
a central limit theorem for (7;%* (D}, Wi, 1(wk,)), n € N, for fixed w € Q.
For deriving such a result it is intended to apply Rebolledo’s Martingale Limit
Theorem, see Theorem 2.1.2. Unfortunately, we have to introduce some more

notation.

6.2.2 Definition. Suppose that Assumption 6.2.1 holds. For fixed w =

(w1, wa,...) € Q, we define
Cn,O = Cn,O(W) =0¢c Rpxn and Cn,i = Cn,i(w) = Zn,T,D;’ i(wn)a 1= 1> cee, N,

and

877,,0 = gn’o(w) =0€R and Sn’i = &m—(é) =Api(wn), i=1,...,n,
as well as

7560 = 3% (@) =0 e R and 7% =3P (w) =3P (wn), i =1,...,m,

n,i
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6.2 Asymptotic Equivalence

u=1,...,r, n € N. Moreover, we set
il (5) = i (5,) Z gt
i=|ns|
~(u,v) N c(u,v) (u,|ns]) (v Lnsj)
/j‘n,2 (S) - /‘l”n,Q S, w Z an C

i=|ns|
€[0,1], u,v=1,...,p, n € N, and

hn(s):hn(s,w):(?n’LmJ, s€0,1], n € N.

Finally, we define the stochastic processes {5n(t) | t €0,1]}, where 5'n(t) =
=(1) =(r) T
(Un t),....0, (t)) and

Lnt] (D)
~ (u) e(u) Y=y
0. (t)y=0 S *(’“‘)( (i) _ Zoj=t ong_ )
n () n ’w \/*Z ’Ynl nl n+1—l

=~ = (u,v)
as well as {V ) |t €10,1]}, where V,,(t) = (Vn (t) | u,v=1,... 77“) and
- ~ (u)
Ve @)=V, (tw)
(i) ~(@), | ~(5)
~ (i) —(v,9) (1 :un,Z (S) :U“n,l(s) :un,l(s) ) h (S) dS,

771,\_nsj7n,|_ns] _ Ins] + 1 - (1 _Ins] + l)2

[0,t]

n € N.

Obviously, it holds that

~

Un(1) = Uk, (D, s Wi, .1 (Wi, ) and Vy o (Df, Wi, 1 (wr,)) = Va(1). (6.2)

But before we can proceed in computing the asymptotic distribution of U, (1),

we have to compute some quantities which are collected in the following results.

6.2.3 Lemma. Under Assumption 6.2.1 let w = (w1, ws,...) €  be fixed.
Using the notation provided in Definition 6.2.2, set

Q _Q {ZnTzwn)|Z—1 n}:{gn,la“wz’ﬂ,mn}’
where 1 < m,, <n, and v, ; = 2;21 1(Zn,i = Znyp,j(wn)), i=1,...,my,.
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a) For all 7 € Q,, it holds that

Mn

, _ 1
Pn{Cn,i:I} :EZ

j:1V”’j]l(2"’j:j)’ 1:1,,71

b) For all Z1,...,%, €, it holds that

Pylz{(Cn,lv”'»Cn,n) = ((E 7"'7i'n)}

’I’L' H(Vnz : (ijl ]]-(zn,i = jj) = Vn,i))~
c) For all Zy,...,%; € €, it holds that

P7/z{§n,i =Z; ‘ (<n,1, R 7<n,i—1) = (i‘l, ey ji—l)} =
1 . o
m ijl ]]-(Z”J - xl) (Vn,j - Zk:l ]]-(Znﬂj = xk));

if the left hand side is defined.

Proof. Straightforward and elementary calculations give the results. O

6.2.4 Proposition. Under Assumption 6.2.1 let w = (wy,ws,...) € Q be fixed.
Using the notation provided in Definition 6.2.2, let Z!, denote the o-algebra that
is generated by all subsets of P)-negligible sets and set F/, = {F7, , | t € [0,1]},

where
ff;,t:Ziz\/J(Cn,()ag’n,la"'7Cn,Lntj>v te [07 1]

Then, the process U, = {cTﬁn(t) | t €[0,1]} is a F/,-martingale, ¢ € R".

Proof. Basically, the process {U )| telo,1] } is a process in discrete time.

Therefore, it suffices to show that

~

E;, [cTﬁn(l/n) | Frim1y/m] = ¢ Un((i —1)/n)  Pj-almost surely
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6.2 Asymptotic Equivalence

fori=1,...,n. As J}, o = Zy, it holds that either P, (F) =0 or P, (F) =1 for

Fed) - Hence, we have P/ -almost surely the following chain of equalities
E, [CTU”(I/TL) | 3";% } =E/ (cTUn(l/n))
Z (u) (“ i) E/ < (“ 1) _ ZC(U 1))

_u 1, 1 = 1,
a3t () - HZE;«;;»)
j=1

= (iT/L;% zr: C(U)%(zu ,i) (E/ (C(u 1)) IE, (C(u 1))>

u=1

=0=1cTU,(0),

where we use Lemma 6.2.3.a. As G, = > Gt = do1oq Zn,1a(wy) is non-
random, we get that Z] lC(u i F (U=1)/n —BP*"-measurable for all [ =
1,....,nand u=1,...,p. Consequently, it holds that

= s (-1
B [T (l/m) | Fp1oayyn) = T0n(—)

n
= r (w, l)
Ond N () (i) ( , D=t
+ﬁﬂzﬂc Pyn,l E [nl |35 ,(1— 1)/n}_ n—l+1
P! -almost surely, I = 2,...,n. Using Lemma 6.2.3.c we receive that

E, (¢ ] Gots s Catmt) = @t Tntt)]

My, -1 _ _
_ N (g = 2 LGnyg = Za))
s T n—101+1
j=1
P/ -almost surely implying that
My ) (I/ o -1 ]].(2 o C )) Z C(u 1)
E/ [C(u ) |3~ ] _ Z(UTZ) n,j k=1 n,j — Sn.k _ j=l
(=1)/n = ™ n—1+1 n—1+1
P! -almost surely, u=1,...,r. O
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Before we can apply the Martingale Limit Theorem 2.1.2, we have to calculate

some quantities.

6.2.5 Lemma. Under Assumption 6.2.1 let w = (wi,ws,...) € Q be fixed.
Using the notation provided in Definition 6.2.2, let ¢ > 0 and consider the

processes
N N |nt]
T[T, = { T[T ) [t [0,1]}, JE[TT,] = Wi 1([Wa| > ¢),
=1
where
’ li (u) = (it,i1) ( (i) Z G
= Dl 2 ) i) (i) Zg=ting ) I=1,....n,
vn — —1+1
and
N N [nt]
A [P0 = {A5 UL (1) [t [0,1]}, Ajle ZAM
where

w) = (U, wu, Z C(UZ
)

= r (w,l)
On,i Z () (i) (D) _ >kt Gk
X]]-(\/ﬁ C nl Z’n,j n—l+1 25

u=1
- _
o Yni 1 L2 = Cap)
n—1+1 ’
[ =1,...,n. Then the following assertions hold true.
a) The processes
Mgy = {ME (0 [te0.1]}, M7, () = JEETT)() - AT (1),

and
My 5= {Mfz o(t) | t €0, 1]} M 5(t) = FUL(t) - M (1),

are F/ -martingales, where I/, is defined in Proposition 6.2.4. Moreover, the

process A% [cTU,] is predictable with respect to F/,.
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6.2 Asymptotic Equivalence

b) Let <Mle> denote the predictable quadratic variation of My ;, which is

given by
[nt] )
<MTEL,1>(t) = Z(Krsl,l - (Afz,l) )a te [Oa 1]7
=1
where

L (i)
S Lnl - (u) = (i) (u n Zk zC
nl = Ty Z(ZC Tn,l n,j n—l—|-1
7j=1 \u=1
r no (@)
ZC(“)W(Q’W _(ul) D ket 2k=1Snk -
— n,l n,j n— l + 1 =

gnl
x 1| —=
(ﬁu—l
-1 _
« Vngj = 2.p=1 (Z’ﬂ] an)
n—1I01+1

)

l=1,...,n.

¢) Let <Mn 1, My, > denote the predictable covariation of My ;- My 5 which

satisfies P{l—almost surely the equality

Lt
(Mg, MEL) () =D (A2 )%, telo,1l.

=1

d) The predictable quadratic variation of the process {CTfjn(t) |0<t<1}is

given by
. Lnt)
'UL) ZKM, t € [0,1].

Proof. Observe that (, = > ;g Cut = Y.1oy Zn,11(wn) is non-random and
that all considered processes are basically processes in discrete time. As JF
Z;,, it holds that either P, (F) = 0 or P;(F) =1 for I € 3}, ;. Therefore, we

n?
have P} -almost surely the following chain of equalities

B, (W 1(1Waal 2 £) | Fao] = B (Wt 1(IWaal 2 €))
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and

]E/n(Wn 1 ]l(|W

~(i,1)
nl (u) = (i) =(%,1) n
b S (e (4 -0
(’d/71)
n,1 (u u (ul) Cn Vn,j
( S (s - E0) =)

where we use Lemma 6.2.3.a. Applying Lemma 6.2.3.c gives that

L (Wt 1(Woa] > €) | (Couts -5 Cnit) = @nts o s Brg1)]
u (uu) (i) ah — l | 7fzukl)
R P G )
x r( ’”Zcu) (uu)((uz) i~ 2—11””55?121))‘>5>
™ n—10+1 -

l = _
S k:11 L(Znj = Tn,k)

n—1+1

l=2,...,n, implying that

B (Woi L(Wail > €) | 57, 1 1y/m] = A5y Pr-almost surely,  1=1,...,n.

This is the first part of assertion a). Proposition 6.2.4 gives the second part of
the assertion. The predictability of AS[cTU,,] is straightforward.

Proof of b). It holds that (Mg ,(t))” =0, ¢ € [0,1/n), and
(M71(0)” = (M1 (= 1/m)” + (Waputg 1([Wa, oy | 2 €) = Afx,rnw)Q
o 205 (= 1/0) (W ity LWLy | 2 €) = A5 )
€ [1/n,1]. We also have that
B, | M (t — 1/n)( nnt) L(Wa o) | 2 €) = Ai,rmr) )%rrnu—l)/n} =0

P -almost surely, where we use that My (¢ —1/n) is almost surely bounded

and F7, ([nt]—1)/n —B measurable. Furthermore using the EFn([ntJ 1)/n —B mea-
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surability of Af it holds that

st

2
E%KWantJ 1(|Wn,LntJ\ 2 5) - AZ,LntJ) ) ?;L,(Lntj—l)/n} =

E;[(Wn,muf L(|Wo, [ne)] =€) ’ %,(LntJ—l)/n} - (AZ»LW)Q’

Analog to the previous considerations we get that
B (W21 L(Waal 2 €) | 5)0) = B, (W21, 1(1Waa 2 €)))

and
On1 o . (i) \ 2
E;z(Wfb,lv]lGWn,l ZED) <Z (u) = uu)< S(,1) nn>>

#(,1)
— n.j n n

/\
£

as well as

B, (W2 L([Wail =€) | (Cats- - Cni=1) = (Zn1s- - - Zni—1)]

= My, r =(u,l -1 _(u,l 2
_ On,l Z c(“)ﬁ(ﬁ’ﬂ) Sl _ Q(«L ) _ k=1 ﬂfgz,k)
n o= .l m.J n—1I01+1

u=1

O, ZT iy (o = S a
n, (u) £ (w,4) [ (1) n n
IL<\/ﬁu_1c Tt (Zn’j n—1+1 >‘>€>
-1 _ _
w Ynid T 2ik=1 1(Zn,; = Znk)
n—1I1+1 ’

Il =2,...,n. On the whole, we showed that

B (W3 1([Wal >€) | F, — 1)/n] K}, P -almost surely.

Proof of ¢). Note that

nt]
Mo (8) = 30 (Wt L([Wa| <€) + 45,).

=1
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Moreover, it holds that My, ; My, »(t) =0, t € [0,1/n), and

E;, [M; 1 () My, 5(t) | EF;z,(I_ntJ—l)/n] =My 1(t —1/n) My 5(t —1/n)

+ My, (t—1/n)E], [Wn,Lntj (W ey | < &) + A5, ’ %,(Lnu—n/n}

= 0 P} -almost surely

+ M ,(t —1/n) E;, [Wn,mu L(|Wy,nt)] =€) — AL nt) ’ %,(anq)/n}

= 0 P/ -almost surely

+EL[Cn() | T, 1ty -1y /)

t € [1/n,1], where C,(t) is given by
(WantJ L(IWo, )| <€) + A5 e J) (Wn,mw L(IWa, )| =€) — AfutntJ)
and a) is applied. Using the previous considerations and observing that
Wﬁ nt) ]]-(|Wn,\_ntj| < 5)1(|Wn7mﬂ| > 5) =0 P/-almost surely,

one easily sees that E/, [Cy(t) | ?;’(Lmjfl)/n] = (AZ,Lm:J)2 P! -almost surely.

The assertion of d) is an immediate consequence of the fact that ¢*U,, = M}

and that A%’l =0,l=1,...,n, as an easy calculation shows. O

Now, we state the assumptions needed to prove the convergence in distribution
of the statistic U(t) for fixed w € Q

6.2.6 Assumption. i) The functions ﬂgu) :[0,1]] — R, u=1,...,p, and

ﬂéu’v) : 10,1 — R, u,v = 1,...,p, are measurable functions that are

bounded on every interval [0, ¢].

.. ~(u) _(u
ii) supse[o’t”ukml(s,w) —(1-1) ,ug )(s)’ —p, 0,asn —oo,u=1,...,p,

for all t € [0,1).
iii) supse[ovt]m,&:’?(s,w) —(1-y9) ﬂgu’”)(3)| —py 0,asm—oo,u=1,...,p,
v=1,...,p, forall t € [0,1).

iV) hmn_,oo «[‘[O,t] (;Y\](CZ’Z[]{:”SJ (wkn) —_ ;Y(u’u)(S))Q dS — 0’ Where »-_Y(u,u) iS some
square integrable function, u =1,...,r, for all t € [0,1).
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6.2 Asymptotic Equivalence

V) f[O,t] h, (s,w)ds — H(t), as n — oo, for all t € [0,1], where H is a

monotone non-decreasing function with H(0) = 0.

vi) limy, 0 \/% maxi<i<k, maX{|Z,§Z’ﬁ?i| ! u=1,...,p,v=1,... .k, } =0.
Later we choose the functions /1§ ), /iéu Do =1, .p, as well as (%)

u=1,...,r, and H(t) independently of w € Q. Moreover, we need that the
measure defined by H has a Lebesgue density.

6.2.7 Lemma. Under Assumption 6.2.1, let w = (w1, ws,...) €  be fixed and
use the notation provided in Definition 6.2.2. Suppose that Assumption 6.2.6.v
holds for fixed w € €2, where k,,, n € N, is some sub-sequence of natural num-
bers. Then the function H : [0,1] — R defines a Lebesgue-continuous measure,
i.e. f (0,4 1dH (s f[o . h(s)ds. Additionally, one can choose a version of the
density h, such that 0< h <1.

Proof. By construction it holds that

‘fo 4 Ok Lns) 45 = Jig ) Ok L) ds‘ . ‘H(t) — H(u)

; , as n — oo,
—u

<1 <1

for all t,u € [0,1], which implies that the function H is Lipschitz-continuous,
i.e. |[H(t) — H(u)| < |t —u|. Consequently, for ¢ > 0 and all (a;,b;] C [0,1],
i = 1,...,k, such that Zle(bi —a;) < € we have Zf:1|ﬁ(bi) — H(a;)| <
. This means that the function H is absolute continuous on the interval
[0,1]. Witting and Miller-Funk [72, Theorem B1.21] yield the existence of a
Lebesgue-density h. Because 0 < h(s) = lim;_, % < 1 for almost all
s € [0,1] the last assertion holds true. O

After these preparatory efforts, we can state a central limit theorem for the

sequence of statistics U,,(t), n € N, where w € Q is fixed.

6.2.8 Theorem. Suppose that Assumption 6.2.1 holds, let k,, n € N, be

some sub-sequence of natural numbers and let w = (w1,ws,...) € Q be fixed.
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6 Generalized Permutation Tests

Using the notation provided in Definition 6.2.2 assume that Assumption 6.2.6.1
— Assumption 6.2.6.vi hold for w and k,, n € N. Furthermore, let A denote a
Lebesgue-density of H, cf. Lemma 6.2.7. Then it holds that

D

U, () ==p, N(0, 7 (1), where 7 (t) = (7" (1) € R™

and

S (t) = /[ AN @) (5" (5) = i ) 17 (5) hs) s
t
u,v=1,...,r forallt € [0,1). Moreover, one gets that ‘C/kn (t)— 7 (t) —p: 0,

as n — oQ.

Proof. Without loss of generality, we can suppose that k, = n, n € N. We
intend to apply Rebolledo’s Central Limit Theorem. Therefore, we check the

conditions stated in Theorem 2.1.2 in the following paragraphs.

As a first step we want to show that (Mg )(t) —p, 0, as n — oo, for all

t €[0,1). Let us introduce some more abbreviations

- w) = (W, ns Zk [ns] C(“ o)
w”’j(s)zzc( )’YT(L’[n)SJ< (JL D n_L J+1 )7 Jj=1 y M,
u=1
Lnsj 1
Vnj — 1(Zn,; = Cn,k .
pn,j(s): ! k= |_ J( J >7 ]:la-uamna

bu(s) = Z”wi,j<s> ﬂ(hj}§> o 5(s)] > e)pn,x )

Jj=1

bnls) = 3 wns(s) n(h’j;) o 5(5)] > e)pm )

j=1

where s € [0, 1] and we remember that &, o = 0, 7(u W —0,u=1,...,r,neEN,

and ¢! =0,u=1,...,r,1=1,...,n, n € N. It holds that
(M5,)() = / 62(5) () ds — / 2 (s) i (5) ds.
[0, nt-+1] /] [0, Lnt+1] /n]
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6.2 Asymptotic Equivalence

Choose t* € (t,1). For all sufficiently large n € N the estimates

0< / On(8) hn(s)ds < On(8) hp(s)ds
[0,[nt+1]/n] [0,¢*]
and
0< / V2(s) hn(s)ds < [ 92(s) hn(s) ds
[0,[nt+1]/n] [0,¢*]

hold. Therefore, it suffices to show that

®n(s) hn(s)ds —p, 0 and ¥7(8) hn(s) ds —p; 0,
[0,t*] [0,t*]
as n — oo, for all t* € [0,1).
Using Assumption 6.2.6.i, one can choose Cy« € R, such that |u1 ‘ < O
and |u(u ) (s)] < Cy for all s € [0,*], u,v = 1,...,p. Moreover, note that
0 < h,, <1. It holds the estimate

1 () (i
0< ¢n(3) hn(s) < 1<\/ﬁ 1227}; |w”1| 2 5) r Z(C( )7("@10

u=1

o lns Z”‘L: o C(u ,ns])
XZ<( sl ;_LLJ J+1 pn,i(s)

(6.3)
1 clu 2
Zz ™ (C(u Lns])) ZZ s Cfbuz [ns])
< _
n—|ns]+1 n—|ns]+1

for all s € [0,t*], where we use the estimate ()|, ai)2 <rY.i_,a?. Obvi-
ously, it holds that

s (9) < sup |l (5) = (1= 5) B (5)| + Coe
=1+ O
and )
()" <2 sup | (s) = (1= ) i (s)| + 207

=1\ +2C2,
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6 Generalized Permutation Tests

u=1,...,p. Exploiting the estimates

- 1 1
nolnslrl oy oms Loy s
n n

n

and expanding the fractions with 1/n, we get that

Zz [ns] (C(“ L) ) . Zz [ns] Cn 1LnSJ
n—|ns|+1 n—|ns|+1

< (=) 2 (A" () + (A ()°) < 10 + G,
u=1,...,p, where
9 = (- )21 4 1) and G = (1 - £)72(Cr +202).
The estimate (6.3) implies that
uls)h ds<r§:1w [t ) as

[0,¢%] [0,¢%]

+”Z@Aﬁ&%w@pwwm%
(6.4)

C 1 CAE 2
+2 E:C*/ ]1( il > ) (0 ) (4))2 o,
Tu:1 ' [0,t%] \/ﬁlglgi(n |w ’ € (C gl (S)) s

Because of Assumption 6.2.6.iv and Vitali’s Theorem, see e.g. Witting [71,
Satz 1.181], we get that

/ ()5 <utz>sj) ds — (@0 ()% ds, asn— o0,  (6.5)
[0,2%] [0,t%]

implying

r Z I(u) /[0 t*] (U) r(;jl_:il]) ds e 0, asn— oo,

where we also use Assumption 6.2.6.ii and Assumption 6.2.6.iii. Clearly, it
holds that

ij" () (3L | = 50 (5)) ds — s, 0,

[0,¢%]
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6.2 Asymptotic Equivalence

because of Assumption 6.2.6.iv. Finally, we show that the third summand
of the right hand side of (6.4) converges to 0 in P/-probability. For this we
show that Il(fmax1<z<mn|wn1| > 5) — O,Where u(B) = T* fB 1ds,
B € B[0,t*], as a first step. It holds the estimate

1 1
2 : (u) = (1) (u,v)
vn 1 [wni] < ( [ oLns] ) vn 1o, 15y 12132(n|2

1 u
*mz"“ el 2,

u=1

Z|C(u) LnsJ e

implying the estimate

i (v) = (1= 0" (v)

1 1
—— max ’wnl‘ < E |c(“ ol uLu)J - —— max max max |z(u v)
V/n 1<i<m, ns /N 1<i<m, 1<u<p1<v<n

u=1
+—— max  max |c(“)7 o u)| sup M(d) (v) —(1- U)ﬂgd)(v)
\/ﬁ(]_ —t*) 1<u<lr 1<i< [ nt* | +1 e veEl(0,t] "

+Cr vn 1<3<r 1<zgﬁgﬁj+1’ |

(i)
wln) T
W) (1) in y.-probability. As ¢(®5(®#)(.) are integrable with respect to

Again, Assumption 6.2.6.iv and Vitali’s Theorem imply that c(“)’y
e+, cf. Assumption 6.2.6.iv, we can immediately conclude that

(1511 1 \
Y lns) | | T =, Max - max  max z — s 0, asn — oo,
e V1 1<i<m,, 1<u<p 1<v<n

where we use Assumption 6.2.6.vi. Assumption 6.2.6.iv and Neuhaus [57, Proof
of Theorem 5.2] give that

1 (i
—— max max |c(“)7£”?)’—>0, as n — oo, u=1,...,r.
/M 1<u<r 1<i< [ nt* | +1 ’

Thus, it holds that
1

max }wnz| — s 0, as n — oQ.

V/n 1<i<m,

193



6 Generalized Permutation Tests

Finally, Lebesgue’s Theorem yields that

>

]]_(1 max |wn1‘ > 5> (C(u)?y(’d,ﬁ)(s))QdS 4)P’Vll 0
[0,¢]

n 1<i<m,,

On the whole we showed that f[O,t*] ¢n(8)hn(s)ds —ps 0, as n — co. Apply-
ing the Cauchy-Schwarz inequality yields that (7/1n(8))2 < ¢n(s). Therefore,
we get that f[O,t*] (wn(s))2hn(s) ds —ps 0, as n — oo. Recapitulating, we
proved that (Mg | )(t) —p; 0 for all ¢ € [0,1). Fortunately, it holds that

sup
0<s<t

<Mn 1)M 5)’ = / (Q/Jn(s))zhn(s) ds —)pr/” O7
[0,[nt+1]/n]

forallt € [0,1), which is an easy consequence of Lemma 6.2.5.c and the previous

calculations.

In the next step we show that <ch/7\'n>(t) — A.(t) —p, 0, for all t € [0,1),

where

A(t) = Z ic(“) W g, (6.6)

u=1v=1

Lemma 6.2.5.d gives that

/ (30 w269 ) s
[0,|nt+1]/n] i=1

L = (u,v)
=> > WV, (It + 1] /n).

u=1v=1

(¢TT)(1)
(6.7)

=~ (u,v)
As S0 ST e Vo (t) is non-decreasing in ¢ and t — A.(t) is con-

tinuous, if suffices to show that

T T /_\(u,v)
ch(u)c(v) V, ()= At) —p 0, asn — oo,

u=1v=1
for all t € [0,1). Using Assumption 6.2.6.i, one can choose C; € R, such that

|,LL(u) ’<Ct and |H(UU) )|§Ct for al]se[ovt]v U,’U::l,...,p- As a first

= (u,v) =~ (u,v)
step we show that V,, " (t) =V, ~(t) —p, 0, as n — oo, where

:(u,v) _(u,u 0,0 U,0 (0 _(v
7 ) = /M 50 500 (G () 50() 1(5)) ha(s) i,
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6.2 Asymptotic Equivalence

u,v=1,...,7. Some easy calculations yield that
[ns] 1y—1 . )
1-— — —(1 - < —
‘( n +n) (1=9)") = n(1l—t)2
and
[ns] | 172 -2
_ LnSJ 1\—1 -1 LnsJ 1\ 1! 1
’(171 +E> —(1—29) .(17771 +E) +(1—s)
<4
“n(l-1t)3

for all 0 < s <t. Using these estimates and abbreviating

=(u,v) =(u,v) =(u) , \=(v) =(u) , \=(v)
R u,v) (S) _ Hn 2 (S) . Hp 2 (8) + Ho, 1(3)[1,“ 1( ) . :LLn,l( )/u’n 1( )
e I (e i et

u,v=1,...,p, one gets that
(o) 4 ~(u,v) ~(u)  \=~(v)
B 6)] < g (I )]+ [ @R )).
Therefore, we have that
‘/{0 i 'V(uLZ)sﬂ(ULZ)SJ R4V () hi(s) ds

4 w,i) —(0,0) ~(1,0 ~(u D)
T /[ 5550 3550 |- (RS )]+ [ @RS 5)]) s

~n(l-1t)3
SLQW()- sup [7i35” (5) = (1 = )™
(170 0<s<
, (%) ~(0) 2_(w), N ~(9)
+n(17t)3 Qﬁf‘“’(t)'OSlip il — (1= )" (s) 1" (s)]
4
———— QW (t) - (Cy + CF
+n(1_t)3Qn () ( t+ t)a
u,v=1,...,r, where we set

v=1,...,7

w,v Ut U0 2
[0,¢] [0,]
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6 Generalized Permutation Tests

and use the Cauchy-Schwarz inequality. Obviously, Assumption 6.2.6.i and
Assumption 6.2.6.ii yield that

sup [fin1(s) fin1(5) — (1= )2 @5 () " ()| —py 0. asn— oc,

u,v = 1,...,p. Consequently, Assumption 6.2.6.ii, Assumption 6.2.6.iii and
equation (6.5) give that

] [ A AL R 6 () ds| 0, asm—oe. (69
0,5 ’ ’ "

With the same arguments we receive that

’/ ’S/T(LUI_ZLJ :Yr(:&)sj Rgﬁév) (8) hn(s)ds
[0,¢]
< (1-6)72QW () sup L3 (s) — (1 — s)as"" (s)|

0<s<t

— u,v ”—‘( ) ’—\( ’) _(uw _(v
F(1=0)72Q () - sup |fi, ()i (s) — (1 — )2t ()t (s)),

0<s<t
u,v=1,...,r, where
~(u,0) ~(u), \~()
u,v /’Ln,2 (S) _(u,v —(u _(v /J/ml(s)lu’n,l(s)
R () = B2 e (5) 4 ) (5) ) () - Pt )
g (1-s)

implying that

’/ Viu[?llﬂgii)sj R (s) hu(s) ds| —p; 0, asn — cc. (6.9)
0. 7 ’ ’

=~ (u,v) ~ (u,v)
Equation (6.8) and equation (6.9) yield that V,, (t) -V, (t) —p; 0, as

n — 0o, because of the estimate

= (u,v)

= (u,v) () _(8,8) plis
7.0 -] < | /[Oﬂw;,m)sn,iwfﬂz%ﬁ,l><s>hn<s>ds

i ’/[O ] ,?T(:’LLZ)SJ WT(:SL)SJ RS’L;)) (5) hn(s)ds
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6.2 Asymptotic Equivalence

~ (u,v) -
Clearly, V., (t) — TS ' )(t) —pr 0,28 n — 00, u,v =1,...,r, where

V() = /[ T ) (75" (s) = 11" (5) 11 (5)) hn(s) ds,
it

u,v = 1,...,r, is implied by Assumption 6.2.6.1 and the estimate

V., () = Vi (@) <

(Cy + C?) \/ / fftgzj_ () (5))? ds / (yffﬁ)qj 309 (5))? ds
’ [0,t] ’

e +cf)\/ [, GR ey as [ (eo)*as
t

[0,2]

e W[ iy =100 E) s [ (30 (5)* s,
0,t]

[0,¢]

which is derived with the Cauchy-Schwarz inequality. Therefore, for proving

(cTU,)(t) — Ac(t) — p; 0, as n — oo, it remains to be shown that

FO (8)hy () ds — F) (s)h(s) ds — 0,
[0,¢] [0,]

as n — 0o, where

£ (5) = 3D ()50 (s) (5" () = A{ () 1 (5))s wv =1,

and h is the Lebesgue-density of the measure defined by the function H, cf. in
Lemma 6.2.7.

It is well known that for every € > 0, there exists a continuous function gg"’”) :

[0,] — R, such that f[O,t] ‘géu’v)(s) — f¥)(s)|ds < e. Lemma 6.2.7 and
Witting and Miiller-Funk [72, Satz 5.55 and Korollar 5.56] yield that

[ s — [ gl as
[0,1]

[0,t]
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6 Generalized Permutation Tests

Hence, it holds that

lim sup‘ FY) (8) Ry (s) ds — / Fv) (s)h(s) ds‘ <
n—oo /0,4 (0,¢]
lim sup/ |f(“ V) (s) — (s)|hn(s
n—oo [0 t

+ lim sup‘/ g:(s s)ds — / g<(8) h(s)ds
[0,] (0,¢]

n—oo

+ lim sup/ |f(“’” (s) — gs(s)’h(s) ds < 2¢,
[0,t]

n—oo

where one also uses the boundedness of h,, and h, see Lemma 6.2.7. Since e > 0
was chosen arbitrarily, it follows the assertion. In the previous paragraphs we
showed that

) oo

i ic(u)c(v) ‘9/2“ Zc(u v) g (u,v) () —p 0, asn— oo,

u=1v=1 u=1v=1

for all ¢ € R", which is equivalent with f/n(t) - 7 —p; 0, as n — o0,
te[0,1).

Let t € (0,1) and consider the process {ch/jn(t As)|s e Ry} and the filtra-
tion {F), ;1. | s € Ry}, where F7, ;. is defined in Proposition 6.2.4. As this
process is a martingale, where Proposition 6.2.4 and the Optional Stopping
Theorem, cf. Fleming and Harrington [19, Theorem 2.2.2], are used, the pre-
vious calculations give that we can apply Rebolledo’s Central Limit Theorem,
see Theorem 2.1.2. Thus, it holds that

{TUn(tAs)|sER} op {WoA(tAs)|seRy}, asn— oo, (6.10)

in D(R4,R). In particular this means that CT[/j"(t) ipé N(0,A.(t)). Asce
R" was arbitrary, applying the Cramer-Wold-device, cf. Witting and Miiller-
Funk [72, Korollar 5.69] completes the proof. O

The next result extends the assertions of the last Theorem to ¢t = 1.
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6.2 Asymptotic Equivalence

6.2.9 Corollary. In the situation of Theorem 6.2.8 assume that A.(1) < oo,
for all ¢ € R", where A.(¢) is defined in equation (6.6). Suppose that

ST (1. TF7 _ /T S ) — _
lim lim P (<c Uy, (0))(1) = (TT, (w))(2) > 5) 0 (6.11)
for alle > 0 and for all ¢ € R", where <0Tﬁkn (w))(t) is defined in Lemma 6.2.5.d
and a different representation of (¢*Uy, (w))(t) can be found in equation (6.7).
Then the assertions of Theorem 6.2.8 also hold for ¢ = 1.

Proof. Without loss of generality, we can assume that k, = n, n € N. Con-
sider the metric space (D([0,1],R.), D([0,1], R ), d), where d denotes the Sko-
rokhod metric. Note that the Skorokhod metric is dominated by the supremum
metric, i.e. d(z,y) < sup0§t§1|x(t) —y(t)| for all z,y € D|0,1]. Moreover, let

tk, k € N, be a strictly increasing sequence satisfying ¢, < 1 and limg_. ot = 1.

Once again, we aim to apply Theorem 2.1.1. Therefore, we define the following

processes
Xog = {Xon(®) [t €01}, Xor(t) = TUn(t Ati),
X = {Xni(t) |t €[0,1]}, Xy (t) = Wo Au(t Aty),
X={X@)|tel0,1]}, X(t) =Wo A.(t),
Y, = {V,(t) [te[0,1]}, Yo (t) = TUL(1),

where A.(t) is defined in equation (6.6) and W denotes a standard Wiener
(Brownian) motion. In the proof of Theorem 6.2.8 we showed that Xk 2, P!
Xy in D([O, 1],R+), cf. equation (6.10) and note the remarks on page 26.
Moreover, we have that

sup |Xp(t) — X(t)] = sup |BoAc(ty) —Bo A (t)] — 0 almost-surely,
0<t<1 tp<t<1

as k — o0, since the paths of a Wiener motion are almost surely continuous
and A, is continuous and non-decreasing. In the last step we show that

lim limsup Pé( sup |Yy,(t) — Xy io(t)| > 5) =0 foralle >0, (6.12)
0,<t<1

—X n—oo
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6 Generalized Permutation Tests

with the Lenglart Domination property, see Theorem 2.1.5.

Let us consider the {fﬂmﬂ |t e R+}—sub—martingale
(Vo = Xo)* = { (0t A1) = Xur(t A1) [t € RS |,
where 37, ;,; is defined in Proposition 6.2.4. The predictable quadratic varia-
tion of (Yn — Xn,k)2 is given by
(Yo — X i )(#) = (TTNENT) = (TT)EAt AT),  tER,,
see also equation (6.7). For any bounded stopping time T, the process
{(Va = Xup) (T AEAT) = (Yo = X g )T ALAT) [tER, ]

is a martingale because of the Optional Stopping Theorem, see Fleming and
Harrington [19, Theorem 2.2.2]. Furthermore, it holds that

E;((Yn = X k) (T AEAT) = (Y = Xk WT AEA 1)) =
2
B (Y = Xa) 2(0) = (Yo = X 4)(0)) =0
implying that (Yn — Xn);g)2 is Lenglart dominated by <Yn — Xn)k>. Applying
Theorem 2.1.5 (with the stopping time 7' = 1) yields that

P s 120 = X)) 2 2) = P2 sup ) = X0 > )

0,<t<1 0,<t<1

< 5+ P ({0 — (MU 0) = ).
Consequently, we get that
n

limsuplimsupP,'L< sup |Yy,(t) — X k(t)] > €> < =

k—oo  n—0o 0,<t<1
As 7 > 0 was arbitrary (6.12) holds. Theorem 2.1.1 gives that Y, ip;b
{WoA.t)|te[0,1]} on D[0,1].
In particular this means that ¢TU, (1) gp;l N(0,4.(1)). As ¢ € R" was
arbitrary, applying the Cramer-Wold-device, cf. Witting and Miiller-Funk [72,
Korollar 5.69] yields the first part of the result.
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6.2 Asymptotic Equivalence

The second part of the assertion is straightforward. Let n,e > 0 be arbitrary
and choose 7 € (0, 1), such that

lim P, ((c"0,)(1) = (") (r) 2 ¢/3) < (6.13)

and A.(1) — A.(7) < &/3. Using the estimate
P ([T (1) = Ac(1)] 2 £) < P (|7 Tn) (1) = (" Tn) ()] = 2/3)
+ P (" Ta)(r) = Au(n)] 2 /3) + Pi (| Acl(r) = Ac(1)] > ¢/3),
we receive that

lim sup P, (

n—oo

(UM = A1) 2 €) <.

As 1 > 0 was chosen arbitrarily and using equation (6.6) and (6.7), we get that

i ic(“)c(“) ffiu’v)(l) - i ic(“)c(”) (1) —p 0, asn— oo,

u=1v=1 u=1lv=1

for all ¢ € R", which is equivalent to Ié/n(l) - J(1) —p 0,asn —o00. 0O

The next result finally enables us to characterize the asymptotic properties of

our conditional permutation tests.

6.2.10 Theorem. Abbreviating W;, 1 = (X1, A 1, Zn,1), let us assume that
Assumption 6.2.1 is satisfied. Moreover, suppose that in every sub-sequence of
natural numbers, we can find a sub-sub-sequence k,, n € N, and a set Qy € F

with P(€p) = 1, such that the following premises are satisfied.

i) Assumption 6.2.6.i — Assumption 6.2.6.vi hold with the sub-sequence k,,,
n € N, for all w € Q.

ii) The condition (6.11) holds with the sub-sequence k,, n € N, for all € > 0,
ceR" and w € Q.

Then the following assertions are valid.
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6 Generalized Permutation Tests

a) It holds that

1, _ -1 .
F';::’gy%/nﬂ (t) — Fa,'/(l) (t + FB,j(l)(l — Oé)) %pn,g 0, as n — o0,

for all t > —F;}(l)(l —a), and a € (0,1/2), where the cumulative distri-

bution function Fy s is defined in Theorem 4.1.14.
b) It holds that

*,2,0 _ —1
sup | F3 2% (8) = Froen s (t+ Fole, yo(1— a))‘ 5 O,

teER 4
as n — oo, for all @ € (0,1), where Fp. o, () denotes the distribution
function of a y2-distribution with [ degrees of freedom,

I =rank(_ 7 (1).%1) —rank( 7 (1)%), Im(Z);=4L;,i=0,1,

see Section 4.2, in particular Corollary 4.2.5.

Proof. First, we remember the equalities in (6.2) and note that Corollary 6.2.9
is applicable for fixed sub-sequence k,, n € N, and fixed w = (w1, ws,...) € Q.

Keeping the sub-sequence k,, n € N, and w € €y fixed, we get that

U, «(Dy, s Wi 1 (W) &p% N(0, 7(1)), asn— o0

ny

and
‘7kn,7*(Dkn7Wkn7T)(wkn) - /_(1) —>p};n O, as n — oo,

by applying Corollary 6.2.9. We readily see that Assumption 4.1.12 holds.
Theorem 4.1.13, Corollary 4.1.15 and Slutsky’s Lemma, cf. Witting and Miiller-
Funk [72, Satz 5.83], yield that

T (D, Wi, 1 (wr,)) —=p,, Laa(X, 7(1) ~Fy g (1-a), asn — oo,

where X ~ N(0, #(1)). Theorem 4.1.14 and Witting and Miiller-Funk [72,
Satz 5.58] give that

*, 1,

-1
kaa)ww(wkn)(t) — Fg,j(l) (t + Fg,ju)(l — a)), as n — 0o,
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6.2 Asymptotic Equivalence

for all t > —F g ;,—(1)(1 — ). The sub-sub-sequence principle for random vari-

ables that converge in probability, see Proposition B.4.8, gives that
*, 1, —
Fn,H,WnyT(t) - Fﬂ,j(l) (t + Fa’ij(l)(l - Oé)) —P, 07 as n — o0
forallt > —F ! (1 — ), which implies the convergence in P, g-probability.

3,.7(1)
Remark 2.2.3.c completes the proof of a).

b) is shown completely analogously, instead of Theorem 4.1.13, Corollary 4.1.15
and Theorem 4.1.14, Theorem 4.2.4 and Corollary 4.2.5 are used. Since the
distribution function Fg o g1y is continuous, Witting and Miiller-Funk [72,
Satz 5.75] give that the cumulative distribution functions converge uniformly.

O

Now, we can state the main result of this section, namely the asymptotic
equivalence of the permutation tests introduced in Section 6.1 and the tests
derived in Chapter 4.

6.2.11 Corollary. In the situation of Theorem 6.2.10, it holds that
Pn1—¢n1 P, 0 and no =9 —p, 0, asn— oo

This means in particular that the assertions of Corollary 4.3.6 also hold for

o1, n €N, and ¢ 5, n € N.

Proof. We show that ¢, 1, n € N, and ¢}, 1, n € N, are asymptotically equiv-
alent. The proof for the other sequence is exactly the same. Remark 2.2.3.c
implies that it suffices to show the assertion under P, o, n € N. Because of
B -1 s . ) ot .
Theorem 4.1.14.d, F37j(1)(' +FEJ,](1)(1 — «)) is continuous and strictly in-
Fg—}j(l)u — @),00). Theorem 6.2.10 and Witting
and Miiller-Funk [72, Satz 5.76] give that k;’é(a, Whit) =P, 0, as n — oo.
Setting

creasing on the interval (f

~

Qn=1Lga (ﬁn(oo)a ‘771(00)) —Cg,1 (O‘a Vn(oo))
and
Qn =Ty (D, Wi p) — kg (0, Wi p),
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6 Generalized Permutation Tests

we get that Q,, — @n = k;:;(a,Wn7T) —p,o 0, as n — o0, because of Q,, =
Tgll "*(Dy,, Wa.1). Moreover, we readily check that

$n,1 — QO:L,I = ]]-(Qn > O) - ]]-(@n > 0)
+ (1 =5 (0, Wap)) - 1(@n = 0) — 1(Qn = 0).

Proposition B.4.7 yields that 1(Q, >0) — ]l(@n >0) —p,, 0, as n — oo.
For all € > 0 it holds that

PmO(’(l - T:;](O‘aWn,T)) : ]l(@n = O)| > 5) < Pn,O(@n = 0)

Because of Theorem 4.1.13, Corollary 4.1.15 and Slutsky’s Lemma, cf. Witting
and Miller-Funk [72, Satz 5.83], we get that

Qn —p, o Lgn (X, j*(oo)) — FH_,i?*(oo)(l —a), asn— oo,

where X ~ N(0, _#*()), as n — oo. Theorem 4.1.14 and the Portman-
teau Theorem, cf. Witting and Miiller-Funk [72, Satz 5.40], finally yield that
lim,, o0 Pro (@n = 0) = 0. With the same considerations one receives that

1(Qn =0) —p, , 0, as n — 0o, completing the proof. O

6.3 Checking Assumptions

In analogy to Section 5.1 and Section 5.2 it is shown that Assumption 6.2.6
is satisfied for an important class of examples in this Section. Note that the
assumptions of Theorem 6.2.10 and Corollary 6.2.11 are based on the sub-
sub-sequence principle for random variables that converge in probability, see
Proposition B.4.8. Therefore, we merely have to show that the quantities in
question converge in probability, as the sub-sub-sequence principle implies the
assertion for fixed sub-sequences k,, and w € €.

First, it is intended to discuss Assumption 6.2.6.v, but before we can prove con-
ditions implying this assumption we have to introduce the notion of a pseudo-

inverse.
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6.3 Checking Assumptions

6.3.1 Definition (Pseudo-Inverse). Assume that F' : R — [0, 1] is some
cumulative distribution function, ¢.e. F' is non-decreasing, right continuous
and normed in the sense that lim, ,_ F(z) = 0 and lim,_,o F(z) = 1. The

function

sup{s | F(s) =0}, t=0,
F71:00,1] — RU {0}, FHt) =4 inf{s| F(s) >t}, te(0,1),
inf{s | F(s) =1}, t=1,

where we define sup () = —oco and inf () = oo, is called pseudo-inverse of F'.

6.3.2 Proposition. Suppose that Assumption 6.2.1 holds and that G,é :
R, — [0,1] are continuous non-decreasing, functions. In particular assume

that G is a cumulative distribution function. Set

1 & ~ 1
Gn(t) = — D 1(Xp; <t) and Gp(t) = - D (X <1) - Ay,

=1 i=1

n

t € R4, n € N. If the conditions

sup’Gn(t) - G(t)’ —p,o 0 and sup’én(t) - é(t)’ —p,, 0, (6.14)
teR teR
as n — 00, hold, then

An:LnsJ ds — é o G_l(t) —Pno 0, as n — oo,
[0,¢]

sup
te[0,1]

where G~! denotes the pseudo-inverse of G, see Definition 6.3.1. Clearly, Go

G~ is a non-decreasing function.

Proof. In the following we always use the pseudo-inverse, see Definition 6.3.1.
One readily checks that

sup (6.15)

t€0,1]

S|

/ An:[ns] ds — én © G;I(t) <
[0,2]
for all n € N. Therefore, we have merely to show that

sup ‘én oG (t)—Go G7'(t)) —p, 0, asn — oo.
te[0,1]
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6 Generalized Permutation Tests

Without loss of generality, we can assume that all random variables are de-
fined on the same probability space. Using the sub-sub-sequence principle for
random variables that converge in probability, cf. Proposition B.4.8, we receive
that in every sub-sequence of natural numbers we can find a sub-sub-sequence
kn, n € N, and a set Qp € F, such that Py(20) = 1 and

sup| Gy, (t,w) — G(t)] — 0 and sup|(~¥kn(t,w) - é(tﬂ — 0,

teR teR
for all w € Q. Keeping w € Qy fixed, the functions Gy, , n € N, are cumulative
distribution functions, so that applying Witting and Miiller-Funk [72, Satz 5.76]
gives G,;nl (t,w) — G7L(t) for all t € Con(G~1), where Con(G~!) denotes the

set of a continuity points of G~!. Because of the estimate

|G, 0 G} M (t,w) — G o GTH(1)]
< |G, 0 Gyl (tw) — G o Gt w)]
+]Go Gyl (tw) — Go Gl ()
< sup|Gh, (t,w) = G(1)] + |G o G (bw) = Go G,

te

we have that
‘ékn o G,;nl(t,w) —Go G'(t)| — 0, asn—o0, teCon(G™"), (6.16)

where we use (6.14) and the continuity of G. Moreover, note that Con(G™1) is
a dense set in (0, 1), since G~! is a non-decreasing function. Additionally, one
shows that (6.16) also holds for ¢ = 0 and ¢t = 1. As an immediate consequence
we receive that |ékn o G,;:(t,w) —~Go G~(t)| converges uniformly to 0 on
[0,1]. The sub-sub-sequence principle for random variables that converge in

probability and (6.15) give the assertion. O

In the next step, conditions implying Assumption 6.2.6.iv are stated.

6.3.3 Proposition. Suppose that Assumption 6.2.1 holds, that H is a con-

tinuous function and that

A1) — »y(()ﬂ"ﬁ) oH and A0 = 'y(()ﬁ’ﬁ) o H,, neN,u=1,...,r
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6.3 Checking Assumptions

where %u,u) :[0,1] — R, w=1,...,r, are some continuous functions. If

sup [Ho(t) = H(t)| —p,, 0 and  sup |Ga(t) = G(t)] —p, , O,
tel(7s) tel(rg)

1=

asn — 00, Gp(t) =1 3" 1(X,,; <t),t € Ry. Then it holds that

~(u,u _(1,ii 2
/[O 1] (rYT(Lzl_nz;j - 7( ’ )(S)) ds ——Pno 0, as n — o0,

where ﬁfﬁdm =0, ﬁ(ﬂ’ﬁ) = %Lu’ﬁ)(Xn:i), i =1,...,n, as well as 3(®# =

n:e

ry(()u,u) oHoG Y u=1,...,r and G~! denotes the pseudo-inverse of G.

Proof. Let A\ denote the Lebesgue measure on B[0,1]. As G~(u) = X4, for
all uw € ((¢ — 1)/n,i/n], it holds that

ﬁr(zuLZ)j = 7611,71) o H,o G, '(-—1/n)-1(- > 1/n) A-almost surely.

By applying the sub-sub-sequence principle for random variables that converge
in probability, cf. Proposition B.4.8, we can assume that in every sub-sequence
of natural numbers we can find a sub-sub-sequence k,, n € N, such that

sup |Hy, (t) — H(t)| — 0 and  sup |Gy, (t) — G(t)] — 0,
tel(re) tel(r§)

G, (t) — G(t)] —

0, as n — oo, implies that G} '(s —1/kn,) — G~'(s), as n — oo, for all

as n — 0o, converge Py-almost surely. Note that sup,¢ 1(78)

s € Con(G™1). This is an immediate consequence of Witting and Miiller-Funk
[72, Satz 5.76], the monotonicity of G,;rl, n € N, and G! as well as the left
continuity of G=1. As [0,1]\Con(G~!) is countable the previous convergence

holds for A-almost all s € [0,1]. Consequently, it holds that

|Hy,, 0 Gyl (s — 1/kn) — H o G71(s)|
= By, 0 Gy (s = 1/kn) = Ho Gy N (s = 1/ky)|
+[Ho Gyl s = 1/ky) = HoG™\(s)|
sup |Hy, (t) = H(t)| + [H o Gl (s = 1/kn) = H o G™Y(s)| — 0,

tel(r§)

IN
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6 Generalized Permutation Tests

as n — oo, for A-almost all s € [0,1], where we also use that H is continuous

[CAD)

on I(7§). Using the continuity of v, '™ gives that
,yéu,ﬂ) o ﬁkn o G]:nl( _ 1/]{;n) . ]l(s > 1/kn) N ,yéd,ii) oHo G—l(s) _ ,7(&,1'),)(8)
for A-almost all s € [0, 1]. Note that by construction

A0 -3 D(s)? <0, se0,1]andneN,

for some suitable C' € R;. Thus, the Dominated Convergence Theorem yields
that

/[0 1 (al(si,:ifl)cnsj - ,—y(u,ﬁ)(s))2 ds — 0, as n — oo0.

Again, applying the sub-sub-sequence principle for random variables that con-

verge in probability yields that assertion. O

Before we finally discuss Assumption 6.2.6.ii and Assumption 6.2.6.iii in the
special case of time-independent covariates, we state conditions implying the
premises of Corollary 6.2.9 which are essential for proving Theorem 6.2.10 and
Corollary 6.2.11.

6.3.4 Proposition. Under Assumption 6.2.1, define

n, 7,0

My i(w) = max{|Z(u’”)(wn)|2 | u=1,...,p,v= 1,...JL}7 w € Q,

t=1,...,n, n € N. Suppose that in every sub-sequence of natural numbers
we can find a sub-sub-sequence k,, = k,, n € N, and a set Qp € F, Py(Q) = 1,
such that for all w = (w1,ws,...) € Qg the following conditions hold.

i) é Zf;l My, i(w) < C(w) < o0, n € N.

ii) (ﬁ,(czz)n(wn))Q/kn —0,asn—oo,u=1,...,7.
iii) f[0,1] (A,(::TLMJ (wn) _»‘y(ﬂvﬁ))zds — 0,asn — oo, u = 1,...,r, where
(@) [0,1] — R, u=1,...,r are square integrable functions.

Then the condition (6.11) in Corollary 6.2.9 holds with the sequence k,,, n € N,
foralle >0, ceR" and w € Q.
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6.3 Checking Assumptions

Proof. Let w € Qg be fixed and let us use the notation provided in Defini-

tion 6.2.2. Without loss of generality we can assume that k, =n, n € N.

Remember that <cTﬁn(w)>(t) = ZLntJ K}, see Lemma 6.2.5. Using the es-
timates (Z;’:l aj)2 <qXi_, a?, where a; € R, j =1,...,¢, and ¢ € N, and

0< Sn,i <1, we get the estimate

(u,l)

oy (e

o PRSIV

)

j=1lu= 1 I ’I’L—|—1—l
=1gs
o Vnid = D1 1(ng = Gnk)
n+1-—1
Lemma 6.2.3 gives that
My -1 _
(@0\2 Vng — Dokt LEng = Cnk) 1 a2
Z(nj) ’ n+1-—1 =E I:(C ) ‘gnla-'wC’ml—l]
Jj=1
and
Sra(G”)” vng = S 12 = Gok) _ Tt ()"
Z k=l L Un,g k=1 n,j n,k _ k=l )
= n+1-—1 n+1-—1 n+1-—1
Consequently, it holds that
r (4,0)
27“ AN Z (C )
0 20 (u) 5 (i) (u l) 2 | qv 2ek=t\5nk )\
=5, u;(c i)\ Ballead D" 1 Toaonyml + =207

Thus, we receive that

(TT o (w))(1) = (T

- > w

I=|[nt]+1

QTZ (<) /tl] (o) B 1G5

(50
n, \_ns])

)’ (&,

+2rz () /

[t,1]

S SO

u=1

L)

[ns])
)2 | ? ,(Ins|— 1)/n] ds

2 Zk [ns] (C(“ LnSJ))
n+1—|nsj

a,n)\ 2
nenyn] + (E50)7).

ds

(i,

'I’LTL

()2 | T
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6 Generalized Permutation Tests

Moreover, we note that

B, (B L) 1 T sy 1yy] ) = B (50?2

1 u,| ns 1
=3 (2 @) £ S M) (6.17)
i=1 i=1
and that
Zk Lnsj( u,LnSJ)) Ek ™ (( Lnsj)) L
( nt 1= [ns) 1] o M)

(6.18)

Applying the Markov-inequality, cf. Génssler and Stute [20, Lemma 1.18.1],
Fubini’s Theorem, cf. Bauer [6, Korollar 23.7], as well as (6.17) and (6.18), we

receive that

i=1 u=1
8r 1 & T
+ — | - Mn,i w / —(u u) d
€ (TL z:zl ( )> u=1 [t 1]
r (1S -
B <n > My 1<w)> () ()
=1 u=1

Therefore, it holds that

lim sup P,g(<cT5kn (@) (1) = (" T, (@))(t) > 5) <

&r - f(w) Z(C(u))Z/ (:y(uu ( )) ds — 0,

u=1 [t,1]

as t — 1, where we also use the Dominated Convergence Theorem. O

Remember that the theory developed in this chapter only applies to external
covariates, for which time-independent covariates are major example. There-
fore, we only consider time-independent covariates for the remaining conditions

of Assumption 6.2.6.
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6.3.5 Proposition (Time-Independent Covariates). Suppose that As-
sumption 6.2.1 holds, that Zl,,-, i =1,...,n, n € N, are time independent
covariates and that the covariates processes {Zn,i(t) |t e R+} are given by
Zn.i(t) = Zpi - 1(t > 0), cf. Example 5.2.11. If

RS 7 (u) ~(u) RS 7 (u) 7(v) ~(u,v)
— E Z 7 — eR d — E Z 07— " eR,
n Pt n, Py o My an n — n,i “n,t Py o Ho

asn — oo, u,v=1,...,p, and

= max max \Z(u-)|—>p 0 as n — 00
\/7’7 1<i<n 1<u<p e o ’
then we can find in every sub-sequence of natural numbers a sub-sub-sequence
kn, n € N, and a set Qp € F, Py(Q) = 1, such that Assumption 6.2.6.i,
Assumption 6.2.6.ii and Assumption 6.2.6.iii hold with k,,, n € N, for all w €

Q.

The following Glivenko-Cantelli-type result is the key for the proof of Propo-
sition 6.3.5.

6.3.6 Lemma. Under Assumption 6.2.1, let ax, s, ¢ = 1,...,k,, kn € N,
n € N, be a triangular array of real numbers and assume that lim,, . k, = oo
and that

k

1 & 1
. Zakn,i —a€R and 7, Jax lag,, il — 0, (6.19)
m =1 nostsin

as n — oo, and that the sequence é Ef;1|akmi|, n € N, is bounded. Then it

holds that
1 Lknt]

sup |— E ap p  —t-al —p O.
"k i kn
0<t<1{T =]

Proof. Without loss of generality, we can assume that k, = n, n € N. Let

us assume that a,; > 0,7 =1,...,n, n € N. As a first step we show that
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L Ztnl an,pr , —py t-a for every fixed t € [0,1]. As LZ” Y an —ta

and
[nt] nt ] n 1 [nt]
(\ IR D m) SEQVMP;L( zawm),

where we used the Tchebychef-inequality, cf. Géanssler and Stute [20, Korol-

lar 1.18.3], we simply need to show that

[t
1
Varp, ( Zan D > = Tjﬁ Varp; (an, D, )
]

[nt] ([tn) —

1)
+ COV(amD;lyﬁan,Dgla) —P, 07

n2

as n — oo. We have that |nt]/n — t and

1 1 )
0 < E V&I‘PA (CLn,D;l‘l) < E]EP;L (ai.’D;’l) _ Zaiﬁi

n2
=1
1 n
S E 1I£Iza<x |an,z| E |an7z| i Oa
- =1
as n — 00, as well as
n n
, 1

En(a’naD;z‘l a”van,,z) = TL(TL _ 1) E QniGn,j

i=1j=1,j#i

as n — 00, and
’Vll

1
E (anp )= EE an; — a, as n — 00.

Consequently, it holds that
COV(an’D’:L,l ’ a”ﬁD;L,z) = E;l(an’D':L,l a’nﬁDL,z) o E{ﬂ(a"’D;,l) E{fl(a"’D;L,z) —0,

as n — oo, completing the proof of the first step.
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As a second step we show that the convergence is uniform. For this purpose we
use the same idea as for the proof of the Glivenko-Cantelli Theorem. It holds

the estimate

1 lnaz)/ml 1 o 1l
D S TP

n ‘ i m
i=1
1 LnJ/mJ j “
< —_ a / —_ — —_—
=n Z n,D; a+ ma
=1
whenever 17 <t S , m € N. Since we can find for every € > 0 an m € N,
such that € — = > 0, we get that

[nt]

g anD/,_—t al >

<O<t<1

Lnj/mJ

j
no L DT

1<j<m|n

SPfl(maX Z€—a>a
m

where the right hand side converges to 0 because of + Zztmlj an,p! , —py t-a,
as n — oo. By now we have shown that the assertion of the Lemma holds for

non-negative an;, ¢ =1,...,n.

In the last step we consider arbitrary a,;, i = 1,...,n. We define a, =
Qni ]l(an,i > O) and a, ; = —an,; ]l(am > O), i=1,...,n, n € N. Obviously,

we have that

1 1
fmax‘a ‘—>0 and fmax|a |—>0,
n 1<i<n 1<i<n

i 15+ 1\ -

as n — oo. Additionally, -+ > ;" a;, and 5 >, a, , are bounded. Therefore

we can find in every sub-sequence of natural numbers a sub-sequence k,,, n € N,
1 yka + Ay - -

such that 7= > 2" ap ; — a® and ;=33 ap ; — a”, as n — co. Because

of

kn kn krn

1 N 1 _ 1

T E i — e E :akn,i = o E Qi
=1 =1 =1
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we get that a™ —a~

n, it results that

26>§

for non-negative a, ;, ¢ =1,...,

1 Lknt]

Z :anka k
/
P,%( sup
0<t<1 P

Py | sup
0<t<1

—t-a

Pj, | sup
0<t<1

1 Lknt]

1 [knt]
I

i=1

+ o+
k Z a'nk,Di,n,i t-a

_ 3
meDp, O ’ - 2) 0

= a. As we have already proved that the Lemma holds

as n — oo. Applying the sub-sub-sequence principle yields that

L"H
lim PT’L< sup

n—oo 0<t<1

ZanD’ —t-a|>¢

):0.

O

Proof of Proposition 6.3.5. Because of the sub-sub-sequence principle for

random variables that converge in probability, cf. Proposition B.4.8, for every

sub-sequence of the natural number there exists a sub-sub-sequence k,,, n € N,

and a set Qy € F, P(Qo) = 1, such that

k
1 s u ~ v ~(u,v
= W) — i Zz W) Z (w) — 5" (6.20)
" =1
as well as
L max | (w)| —0, and — max ’Z(u)( )Z(U).(w)’—>0
kp 1<i<kn o 1<i<k, | ot o i ’
asn — oo, u,v=1,...,n, for all w € Q.
Keeping w € Qg fixed, we show that
RN
E 1Z{ (w)| <C and Z\Z Z\V (W) <c, (6.21)
1
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n €N, u,v =1,...,p, for some C € Ry. Because of (6.20) there exists a
C € Ry, such that

W)*<c, neN,  u=1,...,p. (6.22)

Applying the Jensen inequality and the Cauchy-Schwarz inequality, cf. Ganssler
and Stute [20, Satz 5.4.7, Satz 1.13.2] give that

1 3%~
=212 W) < Zl

1 = )
o 2@ 2 )] < Z| Zid@l Z| Zi4(w)

Consequently, (6.22) implies (6.21). Now, the assertion is an immediate con-

sequence of Lemma 6.3.6. O

6.3.7 Remark. Both in Proposition 6.3.2 and Proposition 6.3.3 we assume
that

sup |Gn(t) — G(t)] —p,, 0, as n — oo, (6.23)
tel(r§)

where G, (t) = 23" | 1(X,,; <t), t € R. In particular, it holds that G,,(t) =
1 — fin,0(t+), where [ip, o(t+) = limp o fin,o(t + h). As in our setting it holds

that t — E, o (ﬂn,o (t)) is a continuous function, we get that

SUp |fin,0(t+) = Enofin,0(t)| = sup |fino(t) = Enofino(t)],
tel(r§ tel(r§)
P, o-almost surely, where we also use Assumption 3.2.1. Therefore, Proposi-
tion 5.2.2 and Corollary 5.2.3 can be used to verify condition (6.23). Moreover,
one sees that the remaining assumptions of Proposition 6.3.3 are the same as

in Example 5.2.7.
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6 Generalized Permutation Tests

In the following discussion we summarize the previous results and state a set-

ting in which previous premises are satisfied.

6.3.8 Discussion. Suppose that Assumption 4.3.3 holds and that ZW-, 1=
1,...,n, n € N, are time-independent covariates and that the covariates pro-
cesses {Zn,i(t) |t e R+}7 i=1,...,n, are given by Z, ;(t) = an -1(¢t > 0),
teR,i=1,...,n, cf. Example 5.2.11. Moreover, let us assume that n > k
and that n; = n;(n), i =0,...,k, are sequences of natural numbers, such that

no = 0 and ng = n and that the random variables
(Zn,i7Xn,i7An,i) ~(Z1, X0, A, iy <0 <,

under P, g,n € N,[ =1,...,k. In other words we consider a k-sample problem,
see also Example 5.2.5. If (nl — nl,l)/n —y,asn — oo, forl=1,...,k and

if all covariates are square integrable it obviously holds that

lim sup sup /]l( max (Z{"))? > C) max (Z( N)2dP,o = 0.

C—00 peN 1<i<n 1<u<p ’ 1<u<p

Remark 5.2.9.a yields that

— max max |Z

. 24
VI 1<i<n 1<u<p' Z| TP O, as oo (6:24)

Chinchin’s Weak Law of Large Numbers (WLLN) gives that

1 n~u u 1 n~u~v ~(u,v

S22 oY R and T2 —p i €R, (625)
in particular the Assumptions of Proposition 6.3.5 hold. Setting

1 ~ 1 ¢
==-> 1(Xpi<t) and Gu(t) ==Y L(Xn; <t)-Apy,
=1

3

n-
=1

we get that G, (t) — G(t) —p,, 0 and G, (t) — G(t) —p, , 0, as n — oo, for

all t € (—o00,00), where

k
Zm (X, <t) and G(t) =Y v E(L(Xn; <t)-Ayy),
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6.3 Checking Assumptions

and the WLLN is applied again. As an immediate consequence, we get that
SUPycR, ]Gn(t) — G(t)] —p,, 0 and SUPycr, ]Gn(t) — G(t)] —p,o0,asn —

00. Thus, we proved that the premises of Proposition 6.3.2 hold, i.e.

Apins) ds — GoG(t) —p,, 0, asn— ooc. (6.26)
[0,4]

sup
tel0,1]

Furthermore, let us suppose that we are in the situation of Proposition 6.3.3,

see also Example 5.2.7. Note that the only assumption in Proposition 6.3.3 not

concerning the weight functions, namely sup;e ;(7¢)|Gn(t) — G(t)| —p,, 0, as

n — 0o, was already verified. Consequently, we get that
(A(u ;i) = (i) 23 0 6.27
Vnilns] =7 (5)) s —p,, 0, asn— oco. (6.27)
[0,1]

Let my, n € N, be some sub-sequence of natural numbers. Using Proposi-
tion 6.3.5, cf. equation (6.25), we can find a sub-sub-sequence k,, n € N, and a
set Qo1 € F, Po(Q0,1) = 1, such that Assumption 6.2.6.i — Assumption 6.2.6.iii
hold for k,,, n € N, and all w € Q¢ ;. Because of the sub-sequence principle
for random variables that converge in probability, see Proposition B.4.8 and
(6.24), (6.26) as well as (6.27), we can find a set Qo2 € F, Po(Qp2) =1, and a
sub-sub-sequence of the sub-sequence k,,, n € N, which we call £/,, n € N, such
that Assumption 6.2.6.iv — Assumption 6.2.6.vi hold for the sub-sub-sequence
k., m €N, and for all w € Qg = Qg 1 N Qg 2, where we note that Py(p) = 1. In
particular this means that Assumption 6.2.6.1 — Assumption 6.2.6.vi hold with

the sub-sequence k!, n € N, for all w € Q.

n?

Because of the estimate

kn P k;,
1 1 A(u )
< o E M%,Z—(w)g E o 0,w) — E ,u(uu)
n =1 u=1"" =1

u=1

as n — oo, for all w € Qp. Assumption i) of Proposition 6.3.4 holds. As-
sumption ii) of Proposition 6.3.4 is valid because of the boundedness of the
weight functions and assumption iii) of Proposition 6.3.4 is exactly Assump-
tion 6.2.6.iv.
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6 Generalized Permutation Tests

Recapitulating, we showed that in the setting of this discussion the premises of
Theorem 6.2.10 and Corollary 6.2.11 hold, i.e. the permutation tests introduced

in Section 6.1 and the tests of Section 4.3 are asymptotically equivalent.
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A Omitted Proofs

In the text several proofs were omitted for various reason. Some of them are
well known results or slight modifications of such results. Others were omitted

to increase the readability. These proofs are collected in this Appendix.

A.1 Proof of Corollary 2.1.3

We want to apply Theorem 2.1.2. Setting U, (t) = Zk” [0,1] HY )( )dM(Z)( ),
t € R, Fleming and Harrington [19, Theorem 2.4.3 and Theorem 2.5.2] give
that (U, )(t) is exactly the left hand side of (2.1). Obviously, it holds that

kn
JE[UL)(t) = HD()1([HD(s)| > ) AN
wlo=3 | J1(|H ()] = )
and
Z O(s) 1([H(s)] = €) dAg),

[Ot
cf. Fleming and Harrlngton [19, Theorem 2.4.1]. Setting U;, = J°[U,] —
Af[Up] and Uy 5 = Uy, — Uy, 1, one sees with the same arguments as above that
(Ug 1,U55)(t) = 0 for all t € Ry and that (US )(t) is the left hand side of
(2.2).

A.2 Proof of Corollary 2.1.6

The proof is a slight modification of a proof given in Fleming and Harring-

ton [19, Corollary 3.4.1]. Lemma 2.2.3 in Fleming and Harrington [19] enables
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A Omitted Proofs

us to choose a localization sequence {71, 72,...}, such that for any & € N we
have the processes N (- A1), AD( A7) and HO(- A7), 0 = 1,...,n,
are bounded by k. Note that the processes A% are always locally bounded.
M (i)(- A Tk) is a square integrable martingale. Theorem 1.5.1 in Fleming and
Harrington [19] yields that the processes f[O.,t/\‘rk] HO(s)dMW(s),i=1,...,n,
are martingales. Because of the linearity of the conditional expectation we get
that the process Y ., f[O,t/\‘rk] H®(s)dM®(s) is a martingale. Let T be a
bounded stopping time then the Optional Stopping Theorem, Theorem 2.4.2
and Theorem 2.5.2 in Fleming and Harrington [19] give that

E(Xp(t AT) = Ye(t AT)) =0, for any ¢t > 0, (A1)
where
n 2
Xt = (30 / HO(s) dM D (s)
i—1 “ [0,tATy]
and

Yi(t) = Z/[O o (O aa0)

It holds that X (¢t AT) — X, (T) and Y (t AT) T Y5 (T'), as t — oco. Hence, the
Dominated Convergence Theorem and the Monotone Convergence Theorem
give that E(Xx(tAT)) — E(Xi(T)) and E(Yi(t AT)) — E(Yi(T)), where
E(X%(T)) and E(Yx(T)) are finite. By (A.1) we get E(X,(T)) = E(Yx(T)).
Applying Theorem 2.1.5 yields that
Pk = P( sup  Xp(t) > e) <Topi(t) > 1) = 2+ pox.
0<t<T € €

The Monotone Convergence Theorem gives that

png]P<Z/ ] dA(Z()ZT]>:p2, as k — oo,
0T

so for every k € N we have that p; < g + p2. The Monotone Convergence

Theorem finally implies

n 2
Pk — ]P’( sup (Z o HW(s) dM(i)(s)> > 5>7 as k — oo.
= ot

0<t<T
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A.3 Proof of Theorem 2.2.7

A.3 Proof of Theorem 2.2.7

Note that Proposition B.5.3 guarantees that the processes { f() t)|te ]R}
i = 1,...,n, are predictable and locally bounded. Proposition B.5.3 is used

implicitly in the proof to come several times.

First, we prove the asymptotic expansion of log Y, ¢(t), t € [0,7]. A Taylor-

expansion gives that

. s () (g) —
E:A ( $>dMl“

anO
22/ dMs—Zﬂﬂ () ()" AN s),

where r(z) = (1 + 6(x)) 2 with [#(z)| € [0, |#|] is the remainder of the Taylor-

expansion. Using this result, Jacod’s Formula, cf. Proposition 2.2.5, gives that
(5) (i)
log T (1) Z/ R RHICLE
(s)
i i 4 2 3
+2z > R0 aN00) =3 [ ) (160) aN )

Addmg and bubtractmg the following terms 3" 1 f 1) ( N 5( )) AN (s) and
> ity f[(t ( n£ ) >\’£L)O( )ds and 221 1 f] w )AEL)O( ) ds yields

1(t)

kn
log Ty ¢(t) = —ZZ/I(t) f(l,)é s ) )\EZ) () ds
o kn
(4) s (i) &) @) "
+2;/I(t)( n,E( ))dMnO( ) /[(t) (f 7 ( )) dMn()( )
“ .
+zz_;/f(t) (1—T(f,§f)§(s))) (fy(l,g( ) AN (s)




A Omitted Proofs

Note that Tr(f)g(oo) = lims 00 Tfll)g (t) almost surely, ¢ = 1,...,4, which is mainly

relevant for considering the case that 7 = oo.

In the next step, (2.5) is proved. Let us consider Tr(ng) and use the abbreviation

ge(t) = 271 _Z¢(t). For every € > 0 there exists a k € Nand 0 =ty < ... <
tp =7, such that ge(t;) — ge(ti—1) <€/2, i =1,..., k. It holds the estimate

&
Ty (tio) + 9e(tin) + 5 = Td(0) + ge(t) = T2 (1) + 9e(t:) -

N ™

for all ¢ € [t;—1,t;]. Consequently, we receive that

Pn,O(Sup |T() +g£()’Z€>SPn,O(

€
max |T(,€)( i)+ ge(t )| > 2)
tel

0<i<k
) O’

k
Z (T() )+ ge(t)| >

N ™

as n — oo, where we use (2.3).

Now, we show that

lim sup Pn,O( sup |T ( )| > 8) <dme™t +dne?,

n— oo tel(r)

for all e,7 > 0. Then as 7 is arbitrary, it follows P, o (SuptE[O,T] |T7§35) )| > a) —
0 as n — oo. Choose §, such that nd=2 > 271g¢(7). It holds the estimate

oo 121
tel(r)

< 0 (5 (i) €
< P,o (tgtll(g E / (fn (Ifns )| > )dMno( )| = 2)
P, § . dM)(s)| = <
+ ’°<t2‘}‘3> /I(t) . (\f £(8)] < ) o(s)| > 2)

= Pn,1 + Pn,2-
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A.3 Proof of Theorem 2.2.7

Moreover, one sees that

pn1<Pno<Z/l DRI(FRE |>5)A£Z'?0<s)dszj>
+pno(supz/l() 21 (ucto] > ) a5

tel(r) ;1

The first summand asymptotically vanishes because of (2.4). Note that

Xnelt A7) = Z/W) D1 (|fnels)] > 8) ANP(s), 120,

is Lenglart-dominated by

Yoe(tAT) = Z/I(W (]fn,g \>5)A§j}g(s)ds, t>0,

since {(Xn,e — Yne)(t AT) | t > 0} is alocal martingale, cf. Jacod and Shiryaev
[32, Theorem 1.3.18]. A similar technique is used in the proof of Corollary 2.1.6.
Therefore Theorem 2.1.5 gives that

4 4
Pn’()( sup Xn,g(t AT) > E) hS = + Py, O(Yn,E( ) > 77) - 7777 (A.2)
tel(r) 4 €

as n — 00, because of (2.4). Because of Corollary 2.1.6 and 2.1.7, it holds that
n . 4
o < +Pno<2/ (F(90)* Ay (s) ds > ;) <+

(s

where the second term of the right hand side tends to 0 as n — oo, because
of (2.3).

i 1
)* Alb(s) ds = Sge(r)

> 1 - ;gdf)), (4.3

I(T)
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A Omitted Proofs

Let us consider Tffg(t) Obviously, it holds that

kn

EHURDY /I(t)(l—r(fif)g(s))) (£ 1(170400)] < 6) aNE()

" Z / r(05) ) 1170 > 6) ang ()
=10 + T 1)
for all 6 > 0. Because of (A.2), we get that

Pno(sup| 2 ()] 25>

tel(r)

§Pn,0<sup max /I(t)(ffl’g( )) (|f ()| )dN()()>52>

tel(r) 1<i<k,

no(sup Z/ f( |f ()’ )dN ()>62>_>O.

tel(r) ;=1
For all |z| <4 < 1 it holds that

30

0?(x 0(x
() +20(z) < qgogp =10, [0@)] € 0]l

(1+6(x))?

1-r@)] =

For sufficiently small § > 0, we get the estimate

Ppo( sup |T(4 1)( t) > e)

tel(r) nd
S Pn,O < sup

\_/

ko
(D(g) >
< Pao <t2111£);/1(t) (f9%s 5))? (!fn§ |<6) dN (s) > (5)>
tel(T)

5[ G0l <5) v
+Pn,0< )
i=1

> [ () M) ds = Fae(r)| =

= Pn,3 + Dna-
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A.3 Proof of Theorem 2.2.7

Note that one can always choose J, such that 5(27](5))_1 — % ge(1) > 0. pra—
0, because of (2.3). pp3 — 0 is proved completely analogously to p, 2 — 0.

Hence, the proof of (2.5) is complete.

Equation (2.8) is an immediate consequence of equation (2.5), where we use
the fact that
[log T (7) + ge(7) = T2 (7)] < sup flog T (t) + g(t) = T, (1)
tel(r)

Let be c€ R" and §; € R™, j =1,...,r. Consider the process
{Un(t) |t eRy},  where Uy( ZC(J)T

We want to apply Corollary 2.1.3. Because of (2.3) and (2.4), it holds that

kn T ) 2
i=1 j=1

11]1

T

as n — oo, and
Zc(j)fr(bz,)ﬁj (s)

S L 00 )

L) @ (g
Z/It (232—:1 & )> 1( =1
< 47“222/ T(;)gj ) (|C(k y(;)gk( )| > E/(Qr)) )\S’)O(s) ds

> s/2> A (s) ds

i=1 j=1 k=1
v Yy [ G119 0 = /) Aate) s —r 0
j=11:=1

where the estimates (Z;Zl aj) <ryliog a? and

(e fé@j)ﬁ(‘c( £ 1> e/(2r)
= (9 £0)1(|e® £ ] = </ 2n) 11D 15, | > ¢/ 2n)
+ (D FE 21 (e® £, | = /(2r) 1(je® £ | < e/ (2r))
< (W fﬁfik)zﬂ(lc(’“) ffjgk| > 5/(2r))
+ (9 £9 )21 (e £ | > ¢/(2r))
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A Omitted Proofs

were used. Thus, the conditions (2.1) and (2.2) hold. Corollary 2.1.3 yields

{Un(tAT) [ tERY} &p,ho{woz > el 7t nT)g ‘ teR+}, (A.4)

i=1 j=1
as n — oo, on D(R;,R). Choosing r =1 and ¢ = 1 one sees that (2.6) holds.
Applying Jacod and Shiryaev [32, Proposition VI.3.17] yields that

{22/ £ (s) MY — ge(t A7) ‘te&}
t/\T

—»pn)g {WOETj(t/\T)f —ge(tAT) |t € R+}, (A.5)

as n — oo. Let d denote the metric on D(Ri,R) defined in Jacod and
Shiryaev [32, Formula VI.1.26]. d generates the Skorokhod topology and makes
D(R4,R) a Polish space. (Note that there are metrics on D(R,,R) that gen-
erate the Skorokhod topology, but fail to make D(R,,R) a complete space,
see Jacod and Shiryaev [32, Remark VI.1.27].) Looking at the definition of the

metric, one sees that
d({longE(t AT)[tER,Y, Xn)

log T e(t) + ge(t A T) *QZ I()fif)g(S)dMé%
t

< sup

Pno 07
tel(r)

as n — oo, where we use (2.5). Applying (A.5) and Slutsky’s Lemma, cf.
Billingsley [9, Theorem 4.1], yield (2.7).

In the case 7 < oo, equation (2.9) follows directly from equation (A.4) by
setting » = 1 and ¢ = 1 and using Proposition VI.3.14 in Jacod and Shiryaev
[32]. Analogously, one sees that

r

Unlr) = 32 Vg6 (1) on N( > e, (7). CTY(T)c> 7

i=1

asn — o0, ¢ = (cM,...,c") where we use Witting and Miiller-Funk [72,
Satz 5.83] and (A.4). Applying (2.8) and the Cramér-Wold device, cf. Billings-
ley [9, Theorem 7.7], gives (2.10).
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A.3 Proof of Theorem 2.2.7

Now, let us consider the case 7 = co. We want to apply Theorem 2.1.1. Assume
that 7, £ € N, is a sequence of real numbers, such that limg_,,, 7x = oo.

Defining the following processes
Xngp = {Un (tATE) |t €O, oo]}

Xk—{WoZZ @Del 7 t/\kaj‘te 000}}

i=1 j=1

= {Woiﬁjc@ L 7 ()¢ | te [o,oo]},

i=1 j=1

= {U.(t) | t € [0,00]},

it holds that X, gpn,o Xp, as n — oo, and Xy gpn,o X,as n — oo,
on D([O7 oo],R), see also the remarks on page 26. Therefore, it remains to be

proven that

hﬂrgo limsup P, o (J()?n7Xnk) > E) =0 foralle>0, (A.6)
where d denotes a metric that generates the Skorokhod topology and such
that ensures that D([O, oo],]R) is a Polish space. For example choose J(m, y) =
do(x o T~y o T™1), where dj is the metric generating the Skorokhod topology
on D([O, 1},R+) and making D([O, 1},]R+) a Polish space, cf. Billingsley [9,
pp. 112], and T : [0,1] — [0,00], T(t) = t(1 —¢)~1, t € [0,1), and T(1) = oo.

Note that

g()?naXn,k) < sup ’j(vvn(t) - Xn,k(t)|
te[0,00)

Let n > 0 be arbitrary and set hy; = n—7 (c( )) sz(f(oo) — j(Tk))&. There

exists a kg € N, such that hy; >0 for all i =1,...,r and all k£ > k.

Poo (d(X s Xop) > €) < Pn,o( sup | Ka(t) — Xon(t)] s) <
te[0,00)
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A Omitted Proofs

ZPn()(’c()‘ sup ’T(2 n, (Tk/\t)

t€[0,00 r

<K+ano<c<z Z/ (f9 (s A(”()ds>n>
Tk;
<K+2Pno<c<z ‘Z/ (92 (£))* A9 (5) ds+ h —n‘ > hk>
Tk:

| ™
N———

where we set K = r?n/(¢?) and use Corollary 2.1.7. If k > ko we have that

Pn,o<<c<i>)2\2/( )(f“,;,()) ATo(s)ds + b n\>hkl>
]: Tk 00

n()( C(

+ })n ,0 (i C(Z

(F9L () A0)(5) ds — 167 7 (0)6e| >

FOL () A (s) ds — €T £ (mes|

I(Tk

asm — oo, foralli =1,...,r, see (2.3). A n > 0 was arbitrary, assertion (A.6)
holds. We showed X, i>pmo X on D([0,00],Ry). Thus, it holds that

U, (0 )—>P ON<O ZZ )(]gT )£>

1=1 j=1

(2.9) results, if one chooses r = 1 and ¢ = 1. Applying (2.8), Witting and
Miiller Funk [72, Theorem 5.83] and the Cramér-Wold device, cf. Billingsley
[9, Theorem 7.7], yield (2.10).

A.4 Proof of Theorem 4.2.1

The statistic S is sufficient for the distribution family { P | £ € R97"}, see Wit-
ting [71, Satz 3.19]. Consequently, we only need to consider the induced distri-
bution family {N(_#¢, #) | & € R?T"}, cf. Witting [71, Satz 3.30]. Therefore,
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A.4 Proof of Theorem 4.2.1

without loss of generality, we can assume that Py = N(0, #) and S is the
identity.

Proof of a). Let # 1/2 be a positive semi-definite, symmetric matrix, such that
/% /% = _#, see Proposition B.3.3.a. Abbreviating

M=n(""7n) h =% %) %
we see that

JU Zlle = Zllx for all z € Im(_7), (A.7)

where we use Proposition B.2.4.c. Moreover, it holds that the matrix &/ =
(7T _7~(_#1I) is symmetric and self-adjoint with respect to the Euclidean

inner product and that

' () g (T (1) 7
= 73 M 7o ( I M) (0 gt
N mT () g

where we use equation (A.7) and that IT and ¢ are symmetric. Hence,
I 3ol I 3 is an orthogonal projection of rank I, see Eaton [18, Proposi-
tion 1.17]. Eaton [18, Proposition 3.8] yields that the statistic T'(S) is x7(8)-
distributed. We show that I = dim (Im(_# #1))—dim (Im(_# #;)). Using Propo-
sition B.3.3.a we get that

| =rank( /2 73)=dimIm( 24 7)) =dimIm( fo _7)
= dim Im(_/ T #) = dim{ ¢TIz | » € Im(_7) }
= dim{Ily, (z) |z € Im(,7)} — {Ily, () | = € Im(_7) }
= dim(Im(_# 1)) — dim(Im(_# %)).
The equivalence is an easy consequence of the projection properties of the

statistic. Using the concept presented in Section B.2, especially Proposi-

tion B.2.5, one sees that

0=T(7¢) = ||y, (7€) ~ Ty, (FE)°,. = Ty, (F€) =Ty, (F9).
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As IIy, (&) = Z¢&, the assertion of a) is proved.
Proof of b). One readily checks that Qg is indeed a group. The invariance of

the testing problem is more or less obvious. The invariance of T can be seen

as follows. Using the decomposition
§= (S - HVl (S)) + (Hvl (S) - HVO (S)) + HV0(3)7 s € Im(j)v

we get for any m = 2(-) + u € Qo that

Iy, (ws) — Iy, (7 s)
= Iy, (210y, (s) — 210y, (s)) + My, (2IIy,(s)) — My, (2Iy,(s))
= 91y, (s) — 21y, (s),
since 2(s — Ily, (s)) is orthogonal on Im(_#¥]) and 2(Ily, (s) — Iy, (s)) is
orthogonal on Im(_# %) with respect to <-,-> »-, see also Proposition B.2.4.
Applying 2T #-2 = 7, gives the first assertion T'(s) = T(rs).
Let # and € the matrices defined in Proposition B.3.3.b, i.e. it holds that

BE = 7, €T =77, and BC=%"B = Enr( s

where & denotes the (I x [) unity-matrix. Assume that z,y € Im( B ), such
that 27 #~2 =yT #-yandz #y. Set w=€"(x —y)/\/<x — YT —Y> g-
and

H = B(Erank( z) — 20w")ET. (A.8)

T

Srank( #) — 2ww? is a so-called Householder-Matrix, as w™w = 1. Using the

basic properties of these matrices, cf. Stoer [67, pp. 181], one easily shows
that 27z = vy, %T/_%ﬂ =7, %/%T = ¢ and z = Sz, whenever
<z, x—y>4-=0,2 eIm( 7).

We have to show that T'(z) = T(y) implies that there exists a m € Qg, such
that Iy, (y) = Iy, (rx) = 7lly, (x). Obviously, the matrices defined in equa-
tion (A.8) are helpful to construct such elements of the group. Using the

decomposition

z = (z—1Iy,(2)) + (v, (z) — My, (2)) 4+ Oy, (z) = x5 + 22 + 21
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and

y=(y—Tv,(y) + (Ty, (y) — v, () + v, (y) = ys +y2 + 1.

T(z) = T(y) means 23 #~xy = yJ 7 ys. By the previous considerations
we know that there exists a matrix J#, such that ##zy = y2 and 7(-) =
H(-) + (y1 — x1) € Qo. Easy calculations give that

Iy, (rz) =y, (0 (23 + 22+ 21)) + (11 — 21) = Y2 + 11 = Iy, (y)

and
mlly, () = (22 + x1) + (Y1 — 71) = y2 +y1 = v, (y).

The proof of ¢) is straightforward. It holds that

dP("’)
log = <S_HV1(S)7/€>/— + <HV1(S)7/§>/7 - %</§7 /§>/—'

ar{?
As (5 — Ty, (9), /§>j,=0 for all £ € H5*, the statistic Iy, (S) is sufficient
for the distribution family N(j“//m, /), k € R¥ cf. Witting [71, Satz 3.19].
Therefore, we can assume that V; = Im( 4 ) without loss of generality. T is
a maximal invariant statistic in the conventional sense. Choose x € Im(_#),
such that <z,z> 4- = 1 and <z,2> 4y- = 0 for all z € Vo The mapping
T~ (s) = \/sz, satisfies T o T~ (s) = s for all s € [0,00). Witting [71, Satz 3.91,
Satz 3.92] yields that every invariant test ¢ is of the form ¢ = ¢ o T. The fact
that the class of x7(8)-distributions, § > 0, has a monotone likelihood ratio in
the identity implies the assertion, cf. Witting [71, Satz 2.24, Satz 2.36].
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B.1 Generalized Inverse

This section contains a small summary of the facts on generalized inverses used

in the previous chapters.
B.1.1 Definition (Generalized Inverse). Let <7 be a real (m X r) matrix.
Any real (r x m) matrix 2 that satisfies the conditions
i) o/ P and B/ are symmetric,
i) A BA = o,
ill) BA B = A,
is called the generalized inverse of .

B.1.2 Proposition (Existence and Uniqueness of the Generalized In-
verse). For any real (m X r) matrix o7, there exists a uniquely determined
matrix A satisfying the conditions of Definition B.1.1. This matrix is abbre-
viated &7 .

Proof. Cf. Graybill [24, Theorem 6.2.1, Theorem 6.2.4]. O

B.1.3 Proposition (Relation to Inverse). Let &7 be a real (m x m) matrix
with full rank. Then it holds that &/~ = &/~

Proof. Cf. Graybill [24, Theorem 6.2.13]. O
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B.1.4 Proposition (Inverse of Transposed Matrix). For any real (m x r)
matrix 27 it holds that (&/T)~ = (&/~)T. Especially, the generalized inverse

of a symmetric matrix is also symmetric.

Proof. Cf. Graybill [24, Theorem 6.2.5] O

B.1.5 Proposition (Consistency of Linear Equations). The system of

linear equations &/x = b is consistent, if and only if &/.&7 b = b.

Proof. Cf. Graybill [24, Theorem 6.3.1]. O

B.1.6 Proposition (Generalized Inverse and Orthogonal Matrices).
Let o/ be a real (m x m) matrix and let .# be a real orthogonal (m x m)
matrix, i.e. F'.F = FF' = &,, where &, denotes the (m x m) unity-

matrix. It holds that (#T.&/.#)™ = F o/~ F.

Proof. Cf. Graybill [24, Theorem 6.2.10]. O

B.2 Projections in Hilbert Spaces

This section contains some results on projections in Hilbert spaces used in

previous chapters.

B.2.1 Definition (Hilbert Space). Let (V,||:||) denote a real, complete,

normed vector space. If there exists an inner product <-, > :VxV — R,
i.e. a positive definite, symmetric, bilinear mapping, satisfying ||v|| = <U, v>,
v €V, then we call the tuple (V, <~, >) a real Hilbert space.

B.2.2 Definition (Closed, Convex Cone). Let (V,(:,-)) be some real
Hilbert space. A set Vo C 'V is called closed, convex cone, if
(i) Vo is closed in the ||-||-topology,

(ii) wvy,v2 € Vo and « € (0,1) imply that avi + (1 — a)ve € Vo,
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(iii) v € Vp and « > 0 imply that av € V.

B.2.3 Proposition (Characterization of Projections). Let (V,(-,-)) be

some real Hilbert space and Vg be a closed, convex cone.

a) For every v € V there exists a unique element Iy, (v) € Vg, such that
.| = inf [jv— 7.
o = Ty, @)I] = inf || =7

ITy,(v) is called the projection of v on V.

b) The projection Iy, (v) is uniquely determined by the conditions

(T, (v),v) = ||y, (v)[]”

and
(v,0) < (Iy,(v), D), v € V.

Proof. Cf. Behnen and Neuhaus [7, Section 7.2]. O

B.2.4 Proposition (Properties of Projections). Let (V, <~, >) be some

real Hilbert space and Vo and V; be closed, convex cones, such that Vo C V;.
a) For all & > 0 it holds that Iy, (av) = ally, (v).

b) My, (v — My, (v)) = 0.

¢) Iy, (v) = v for all v € V.

d) If Vg is a linear subspace then <11 — 1Ty, (v), 5> = 0,for all v € V.

e) If Vy is a linear subspace then Iy, (v1 + va) = Iy, (v1) + [y, (ve).

f) If V; is a linear subspace then (Ily, (v), Iy, (v)) = ||y, (v)]|>.

g) It holds that [|v —ITy, (v)|| < [[v — Iy, (v)[| and [[Iy, (v)|| > [Ty, (v)|| for
all v € V. Equality in one of the inequalities implies IIy, (v) = IIy, (v).

h) Assume that Ily (v) is an inner point of Vo in the sense that for every

v € V1 there exists a € > 0, such that
(1 —a)Ily,(v) + av € Vy for all a < e.

Then it holds that Iy, (v) = Iy, (v).
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Proof. a), b) and c¢) are proved by checking the conditions stated in Proposi-
tion B.2.3.b.

Proof of d). As Vg is a linear space, it holds that <v,5> < <HVD (v),5> and
(v,—v) < (Ily,(v), =) for © € Vo, cf. Proposition B.2.3.b. Combining these
inequalities gives the assertion.

Proof of e). Because of d) it is straightforward to check the conditions of
Proposition B.2.3.b.

Proof of f). Using e) and Proposition B.2.3.b gives
(Iy, (v), Iy, (v)) = —(v = Iy, (v), v, (V) + (v, Iy, (v)) = [Ty, (0)]]*.
Proof of g). Using Proposition B.2.3.a we get that
lo =TT, @Il = inf flo =11 2 inf flo— 71| = [lo ~ T, ).
Using Proposition B.2.3.b one easily shows Pythagoras’s equality
o = Iy, (0)|[* = [Jo]]* = 2(v, Ty, (v)) + [Ty, (v)||* = [|v]|* = ||y, (v)|[*.

Therefore, the inequalities ||v — Ty, (v)]| < |Jv — Oy, (v)|| and |[IIy, (v)|| >
[Ty, (v)|| are equivalent. Assume that ||v —IIy, (v)|| = |Jv — Iy, (v)||. Con-
sequently, it holds that ||v — Iy, (v)|| = infzev, ||[v — ¥]|. As the projection is

unique, see Proposition B.2.3.a, it follows the second part of the assertion.
Proof of h). Assume that IIy,(v) # Iy, (v) . Define the function
g9(a) = |lv = (1 = a)Ily, (v) — ally, (v)||?
= O‘2HHVO (U) - Hvl (U)||2 + 20&<H\70 (U) - Hvl (U)v v = HV@ (U)>
+ o = Ty, ()]

As d?g/d?a = ||Ily,(v) — Oy, (v)||*> > 0 we get that g is a strictly convex
function. g) gives that g(0) > ¢g(1). Consequently, it holds that g(0) > g(«)
for all @ € (0, 1]. All in all, we have that (1 — ag)Ily,(v) + aplly, (v) € Vo and

llv = (1 = o)y, (v) = aolly, (v)[| < [[v =T, (v)]| = ;goHv il

for sufficiently small cg > 0, which is a contradiction. O
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B.2.5 Proposition. Let ¢ be some real, positive semi-definite, symmetric

(m x m) matrix and set

V:Im(/) and <v1,vg>j, zvrlr/fvz, V1,09 € V.
It holds that
a) (\7, <-, ->/,) is a real Hilbert space.
b) Let VcVa closed, convex cone, then

1 1 2
Sup( ’075 - 7H:l7||2 _) =35 HN(’U) —> (S V.
su((0:9) -~ 1R, ) = Sl

¢) Let .Z be some real (m x ¢) matrix. The sets

Vo={ L1 €€RY) and Vi ={ 7L¢|¢ R ¢ >0}

are closed, convex cones.
Q) Ty, (v) = F.2(L° F.2) LM, ve.
e) It holds that

1y @)%, - = max{wﬁ(f%f(p;f(f/z))‘ﬂ(f%)x

[T (621" 7 2 s5270) 20)

i€J

‘@#Jc{l,...,q}}, (B.1)

where we use the notation provided in Definition 4.1.3.

is clearly symmetric and bilinear, see Proposition B.1.4. It

Proof. <-, >
remains to be shown that (-, -) - is positive definite. As v € Im(_¢), we have
v = _fvg for some vg. It holds that <fu,v>j_ =vg Lo > 0. <v,v>j_ =0

implies that vy € ker(_#), see Proposition B.3.2.b. Consequently, we get v =
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S vo = 0. It is well known that (V,[[-| z-), [[v]| ,- = 1/<v,v>j_, veV,is

a real, complete, normed vector space. Therefore, the proof of a) is complete.

Proof of b). Using Proposition B.2.3 we get the following chain of equations

1 1
STy @)% - = f\|v||/f—f||v|\/ (0 Tp(0)) - = 5lIMp(0)1%-
1
= 2l — 5o~ TP
1 1. -
= 5l 5 inf (o~ %)

1 1 . .
= gl0ll% - =g it (% ~2(0,5) - — Il -)

~ 1

:sup<<v7v>j HvH/ )
veEV

see also Behnen and Neuhaus [7, Equation (3.2.10)]. ¢) is straightforward. d) is

a consequence of the usual calculus to compute projections on linear sub-spaces
and the fact that v € Im(_#).

Proof of e). For J C {1, e ,q} we define the following closed, convex cones
={ 7277 |¢ R} and Vi ={727%|¢>0¢cR¥}

where Vg = Va' = {0} and .7} are given in Definition 4.1.3. In the following
we abbreviate z; = _#.2.7, {J}, =1,...,q.

In the next step it is shown that if ) > 0, j € g, and zj, j € J are linearly
dependent, where J C {17 . ,q}, then there exists J € J and &Y >0, i € J,

such that
Zn zj = Zn Zi.

j€d i€J
Without loss of generality we can assume that £(9) > 0. Because of the linear

dependency of the vectors z;, j € d, there exists sets N, P C J and jo € J, such
that NN P =0, NUP =0, NN {jo} =PnN{jo} =0, and

o= Wz =Y (W, ¢V >0, jeNU?P.

jEP JEN
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Moreover, set M = J\(NUPU {jo}). We distinguish two cases. First, if
min{x) /¢ | j € N} > kU0 then it holds that

(4) )
@y = il ¢z B 0 ey,
> iz =3kl ZJJFZ(C(J) m)CJZJ*Z(C(j) W) D)z,
j€d JEM jeP
i.e. the assertion. Second, if min{x()/¢\9) | j € N} < £U0) then one can choose
41 € N, such that £U1)/¢U1) = min{x) /¢ | j € N}. Consequently, it holds
that

G) )

)
G, — r ) ( "“1)@),
P ZJ_Z(C(J‘) Dl EANDY gm D ¢z
j€d jeP JEN\{j1}
(J1)
. K
+ (FL(]O) — W)ij

i.e. the assertion.

Now, we show that the left hand side of equation (B.1) is smaller or equal to
the right hand side. If va (v) = 0, the assertion is trivial. Using the previous
considerations we know that there exists a set J C {1,...,q}, J # 0, such
that va (V) = X ieq kD z;, where k) > 0, i € J, and z;, i € J, are linearly
independent. Moreover, one easily shows that vaf (v) = ijr (v), by checking
the conditions of Proposition B.2.3.b. Using Proposition B.2.4.h yields that
ij (v) = Iy, (v). By d) one gets that

ang (v) ’

- = [[v (v

I, =miL™) (o427 72)) mi (L),

where Definition 4.1.3 is also applied. As z;, i € J, are linearly independent,
the matrix p!(£T_#.%) has full rank and it hold that

(i (e 2) iz ™) [iea) = a0 i),
consequently,

[T 2 (x5 (52" 7 2) m(2™)) = 0) =

i€Jd
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Therefore, the left hand side of equation (B.1) is smaller or equal to the right
hand side.

At last, we show that the right hand side of equation (B.1) is smaller or equal
to the left hand side. In the case that the right hand side is 0 the assertion is
trivial. Therefore, we can assume that the right hand side of equation (B.1) is
greater than 0. For any subset J C {1,..., ¢}, such that

(L) (pI( LT 7 2L)) 7 L) > 0
and
[T~} (82 7 2) =2 ) 2 0) =1,
i€J
it holds that

(L) (LT 7 L)) (L ) = [|T, ()], -

and Iy, (v) € Vi. Consequently, one receives that Ily,(v) = II,+(v), by

J
checking the conditions of Proposition B.2.3.b. Using Proposition B.2.4.g gives
that

[T, ()], - = [[Tps )], - < [[Tps )]

which completes the proof. O

B.3 Results on Covariance Matrices

B.3.1 Definition (Covariance Matrix). Let ¢ be a real, symmetric, pos-

itive semi-definite (m x m) matrix. _# is called covariance matrix.

B.3.2 Proposition. For any (m x m) covariance matrix _#, it holds that

R™ = ker(_#) & Im(_7)

with respect to the Euclidean inner product. In particular, we have that

a) s€Im( #) <= sTk =0 for all k € ker(_7).
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b) s€ker( #) < sT Zs=0.

Proof. Set [ = rank(_#). The matrix _# is diagonalisable, therefore there

exists an orthonormal basis of eigenvectors vy, ..., such that .#T P
2, where 2 = diag(A1,...,A,0,...,0), Ay > 0, i = 1,...,], and .F
(v1,...,vm). We have that Im(_#) = span(v; |i=1,...,1) and ker(_#)

span(vi li=1+1,... ,m). Hence, the assertions are trivial.

B.3.3 Proposition (Decompositions of Covariance Matrices). Let #

be a (m x m) covariance matrix and set [ = rank(_#). The following assertions

hold true.

a) There exists a (uniquely determined) (m x m) covariance matrix _# /2 sat-

isfying the following properties.
Q) S g = g
(ii) rank(_#1/?) =1.
(i) Im(,#) = Im(_#1/2),
)

(iv) The linear mappings

S iIm(f) —Im(#) and 72 :Im(f) — Im(7)

are bijective.
b) There exists (m x ) matrices # and €, such that
(i) 7 =BPB" and 7~ =¢%7,
(if) rank(#) = rank(%) =1,
(iii) BTEC = €T % = &, where & denotes the (I x [) unity matrix,
(iv) = =%¢T and ¢~ = A7.

Proof. We use the notation introduced in the proof of Proposition B.3.2.
Set 712 = FPFT, where 9 = diag(v/Ar ...,v/A,0...,0). Obviously, it
holds that #1/2 g1/2 = #9.FT = 7 and that rank(_#/2) = rank(2) =
rank(2) = l. Clearly, #'/?is a covariance matrix. We have that Im(_¢1/2) =
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span(vi li=1,..., l) = Im(_#). As vy,...,vy; are eigenvectors to positive

eigenvalues the remaining assertions of a) are straightforward.
For the proof of b) we set

B=F <diag(\/ﬂo...,ﬁ)> and € = .F <diag(1/\/xo...,1/\/yl)> |

It holds that B8 = Z9FT = ¢ and €¢" = 9~ FT = 7, where we
use Proposition B.1.6. Obviously, it also holds that rank(#) = rank(¢) = I.
The proof of the last but one assertion is straightforward. The last asser-
tion of b) is shown by checking the conditions of Definition B.1.1 and using
Proposition B.1.2. O

B.3.4 Proposition. Let # be some (m x m) covariance matrix and s €

Im(_#). Furthermore, assume that ¢ is partitioned as follows

e (/1,1 /1,2> |
So21 J2o2
where #;; is a (r x ) matrix.
a) It holds the inclusion ker(_#s2) C ker(_#12).
b) There exists a matrix ¢, such that _#1 5 =67 _#5,.
¢) Assume that ¥ is some real (m x ¢) matrix. It holds that

Y Tsetm(vT 7).
Proof. Let % be the matrix defined in Proposition B.3.3.b and assume that
B
2=""),
B
where % is a (r x I) matrix. It holds that

= L1 A _ B B B BT
o1 oo BoBE B BT
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Proposition B.3.2.b gives that kT %,%3 k = 0 for all x € ker(_#2 ). Thus, one
gets that Z3 k = 0 and %1 %5 k = 0, i.e. the assertion of a) holds.

Proof of b). Proposition B.3.2.a and a) give that the columns of #; are
elements of Im(_#52). Thus, #o1 = _#22% for some matrix €. As /21:1 =

H1.2 and_Z» 5 is symmetric, the result is the assertion.

Proof of ¢). As s € Im(_#) there exists sg, such that s = #s9. Assume
that x € ker(#T_#¥). Proposition B.3.2.b gives that ¥ € ker(_#). Conse-
quently, KT¥Ts = s§ _#¥r = 0. Proposition B.3.2.a yields the assertion. [

B.4 Results on Stochastic Convergence

This section provides some results on stochastic convergence used in the pre-

vious chapters.

B.4.1 Definition (Stochastic Convergence). a) Assume that (Q,A,P) is
some probability space and that V(%) : Q, — R, u=1,...,qv=1,...,7,
are measurable mappings. The mapping

vy ooy
V:QHR(]X”} V= 9
v .. ylen)
is called a real (¢ x ) random matrix.

b) Let V,, n € N, be a sequence of real (¢ x ) random matrices. We say V,

converges in probability to some real (¢ x r) matrix ¥/,
V=Y —p, 0, as n — oo,
if and only if, for all € > 0,
nlLH;OIPn(|VTE“’”) - 7/(”’”)\ > 5) =0 u=1,...,q,v=1,...,7

B.4.2 Remark. a) The vector spaces R7*" and R?" are isomorph.
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b) The definition of the stochastic convergence is based on the vector space
isomorphism between R7*" and R?" and the fact that on R?" all norms are
equivalent. Choosing the sup-norm, cf. Definition B.4.3, leads to the above

definition of the stochastic convergence.

¢) For sequences of real (1 x 1) random matrices Definition B.4.1 is the usual
definition of stochastic convergence for sequences of real random variables.

B.4.3 Definition (Sup-Norm, Row-Sum-Norm). Assume that z € R?

and that « is some real (r X ¢) matrix.

a) The mapping ||*||oc : RY — R, [|7|oo = max;<;<4|z\9], is called sup-norm.

b) The mapping [lns. : BT — R, [[|o]|ra. = maxicuc, X [o/@9)] is
called row-sum-norm.

B.4.4 Proposition (Properties of Row-Sum-Norm). The following as-

sertions hold true.

a) ||'||r.s. is a norm on the space R7*".

b) || z]|oc < (| ]]rs. - [|2]loc, & € RT", z € R".

) | FBllrs. < || ]les. - ||Bllrs., & € R, B € R

)

d) [[#]loc = ll]]r.s., = € RY.

Proof. Cf. Konigsberger [44, pp. 26]. O

B.4.5 Proposition. Let ¥ be some real (¢ x r) matrix. The following state-
ments are equivalent
(i) Vo, — ¥ —p, 0, as n — .

(i) ||‘7n = Y||vs. —p, 0, as n — occ.

Proof. Assume that (i) holds. For all ¢ > 0 we have that

P, (Zﬁ}éu,v) _ fy/(u,v)| > 5)

v=1

Pn{”‘/}n Vs > €

s

P A B R

}sz:
<2
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as n — 00. Let us assume that (ii) holds. As we have
Py (|00 = 7)) 2 ) < Pu(||V = [, 2 ) =0,
as n — 0o, for all € > 0, the proof is complete. O

B.4.6 Proposition. a) Assume that

D .
Voi—rp, Vi and V,,;, —W,; —p, 0, asn — oo, i=1,2,

where V,, 1 is areal (¢ x r) random matrix and V,, 2 is a real (r x s) random
matrix. It holds that

Vn,an’g - Wn,1Wn72 —P, O7 as n — o0.

- )
b) V,, =¥ —p, 0, as n — oo, implies V;, —p, ¥ as n — oo, where V,,,

n € N, is a sequence of (¢ X r) random matrices and ¥ is a (¢ X r) matrix.

Proof. We show the first assertion. Using Slutsky’s Lemma, cf. Witting and
Miiller-Funk [72, Satz 5.45], one gets that W, ; inpn Vi;. The Continu-
ous Mapping Theorem, cf. Witting and Miiller-Funk [72, Satz 5.43], yields
Vailles. =, [[Villes. and [|Wi,
and a special case of Slutsky’s Lemma7 cf. Witting and Miiller-Funk [72, Ko-

) —>]p [|Villr.s.. The following estimate

rollar 5.84], give
0<|[|Va1Va2 = Wn1Wiollrs.

=||VaiVao — Vo i Who + Vo i Wy o — Wy 1 W,

< Vailles [Vaz =W,

. 1 ||Vn,1 - Wn,lHr.s. HWn72||r-S- —p, 0,

as n — 00. Proposition B.4.5 yields the assertion.

Using Remark B.4.2 and Witting and Miiller-Funk [72, Hilfssatz 5.82] one gets

the second assertion. O

B.4.7 Proposition. Assume that X,, ipn X, where £(X) is some distri-
bution on R, such that ]P’(X = 0) =0 IfX,— )?n —p, 0 then we have
that

]l(XnZO)—]l()?nEO) —p, 0, as n — oo.
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Proof. By Slutsky’s Lemma, cf. Witting and Miiller-Funk [72, Satz 5.45], we
also know X, —>p_ X, as n — oo. Because of the inclusions
(X020} 0 {X, <0} = ({Xa 20} N { X, <0} N {|X, — K| = 6})
U ({X0 2 0} N { X0 <0} N {IX, - Xl < 6})
c {|X, - X,| >s}u{o< X, <4}

and
(X, <0}n{X, >0} c {|X, - X,|>s}u{0<X, <d},

for all 4, > 0, it holds that
Po{[1(X, 2 0) = 1(X, 2 0) 2 ¢}
Pn(({anom{)?n<0}) ({X, < 0}n{X )
< 2P, (X, — Xn| > 6) + P, (0 < X, <6) +P, ( n < 0).

As we can choose a sequence of §; | 0, such that ]P’(X = 6k) = 0, the Port-
manteau Theorem, cf. Billingsley [9, Theorem 2.1], gives that

hmsup]Pn(yn(Xn >0) — 1(X, > 0)| > 5) <2P(0< X <6;) — 0,

n—oo

askﬂoo,sinceP(Ongék)HIP’(X:O),aSk‘Hoo. O

B.4.8 Proposition (Sub-Sub-Sequence Principle for Convergence in
Probability). Let X,,, n € N be a sequence of real-valued random variables
that are defined on the probabilty space (2, F,P), the following conditions are

equivalent
i) X,, —p 0, as n — oo.

ii) In every sub-sequence of the natural numbers m,,, n € N, there exists a
sub-sub-sequence k,, n € N, such that X}, — 0, as n — oo, P-almost

surely.

Proof. Cf. Bauer [6, Korollar 20.8]. O
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B.5 Results on Measure Theory

B.5.1 Proposition. Let (2, F) be some measurable space and X, : (Q,F) —
(,3), t € Ry, measurable mappings. If for all t € Ry and w € ) there exists
€ > 0, such that

Xi(w) = Xiys(w) for all s € [0,¢)

then the filtration {F, |t € Ry}, F; = o(X, | s < t), is right continuous. For
any c-algebra G, § C ¥, it holds that the filtration {SV F; |t € R} is right

continuous.

Proof. The first assertion can be found in Fleming and Harrington [19, The-

orem A.2.6]. Considering the mappings
)’Zt: (973:) - (QXQ/’S(@HT/)’ jzt(w): (W,Xt(CU)), teR-‘m

one sees that GV &, = O’()?s | s < t). Thus, the first assertion implies the

second. O

B.5.2 Proposition. Set R = RU{4occ} and let B denote the Borel o-algebra
on R. Assume that (Q,&’",F ={F|te R+},Q) is some filtered space and
that Z, : Q@ — RP, t € R, are measurable mappings, such that the process
{Z; |t € R}} is progressively measurable, i.e. for all ¢ € Ry the mapping
(w,s) = Zs(w) on Q x [0,1] is Ty @ B, [0,t]-BP measurable, where B, [0,t] =
{BN[0,t] | B € B.}. The following assertions hold true.

a) {Z, |t € Ry} is adapted to F.
b) The mapping s — Z,(w) is B,~BP measurable for every w € Q.

¢) Assume that f : (RP,BP) — (R,IE%) is non-negative and that p is some

o-finite measure on B. The processes

{f(Z,)|seR;y} and { ]f(Zs)d,u(s)’teR+}

[0,t

are progressively measurable.
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Proof. The first assertion is an easy consequence of Bauer [6, Lemma 23.5].
The same Lemma also yields that {s | Zs(w) € B, s <t} € B,[0,1] for every
weNand B eBP, tcR,. Consequently, we get that

{s]Zsw)e B} = J{s| Zw) e B} n[0,n]
n>1

=J {s51Z.w)e B, s<n},

n>1

5:
which proves b).

Consider the mapping (w, s) — f(Zs(w)) on Q x [0,¢]. Since f~'(B) € B? for
all B € B, it holds that

{(w, s) | £(Z(w)) € B} = {(w,5) | Zs(w) € F(B)} € F, @ B, [0, 4],

where we use that the process {Z; | s € R} is progressively measurable.
Consider the space Q x [0, ] x [0, t] equipped with the o-algebra F; @ B [0,t] ®
B, [0,¢]. All processes and functions are now defined on this product space. The
mappings (w, s,u) — f(Zs(w)) and (w, s,u) — L(u < s), (w,s,u) € 2 x[0,] x
[0,], are obviously F; ® B, [0,t] ® B, [0,#]-B measurable. Fubini’s Theorem,
cf. Bauer [6, Satz 23.6], gives that

(w,8) — o ]f(Zs(w))du(U), (w; s) € 2x[0,1],

is F; @ B, [0,¢]-B measurable. O

B.5.3 Proposition. Let (Q,S",F ={F;|te ]R+},Q) be some filtered space
and assume that Z; : Q@ — RP, t € R, are mappings, such that the process
Z = {Z; |t € R}} is predictable. Moreover, f : RP — R is some BP-BY

measurable function.
a) The process {f(Z;) | t € Ry} is predictable.

b) Assume that Z is additionally locally bounded. If f is continuous or
bounded then the process {f(Z;) | t € Ry} is locally bounded.
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Proof. Let P denote the predictable o-algebra. Clearly, for all B € B? it holds
that

{(w,s)| f(Zs) € B} ={(w,s) | Z, € f(B)} € P.

Proof of b). In the case that f is bounded the assertion is trivial. In the case
that f is continuous the assertion is implied by the fact that f maps compact

sets on compact sets. O

B.5.4 Proposition. Assume that (Q;, F;,F;,Q;), where F; = {F; , | t € Ry},
i=1,...,n, are filtered probability spaces and that Z; ; : Q; — Ry, t € Ry,

are measurable mappings.

Define Q= X Q;, F=Q;_, Fi, Q = Q. Q; as well as

F={3=Q Fulter}, F={5,=( 30[teRr.}

and w; : Q@ — Q;, wi(w1,...,wn) =w;, i =1,...,n.
a) VysoFir =5, i=1,...,n, implies that \/,5, FY = VisoFt =9

b) If {Z;+ |t € Ry} is progressively measurable then {Z;;o0w; |t € Ry} is

progressively measurable with respect to F and F°.

c) If{Z,, |t € R}} is predictable then {Z, ; o w; | t € Ry} is predictable with
respect to F and FO.

d) If 7; is a F; stopping time then 7,; is a F and F° stopping time.

Proof. As {J} |t > 0} is increasing, one gets that [ J,~, I} = Uy»o Fi. Obvi-
ously, it holds that \/,., J} C F, since

F9 = U(><:L:1 F | F e :ﬂ,t) c a(><j:1 F,

F, ¢ 3:.) — 7.
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On the other hand, it holds that
F=0o (U”l{w (F >\Fes})
o*( Fy|Fe\/_ 5 t})
0< L o(wi ) [ Fe Ut>09¢,t)>
"(Un ) [ Fel,., ffi,t})
U(UMU, 1{ \F) | F e}
t>0 -

b

=0

Proof of b). It holds that
{(w,s)| Zis owi(w) € B} = w; " ({(w,s) | Z; s(w) € B}) €V @B, [0,1]

and FY C F, for all B € BP.

Proof of ¢). Let Q and Q; denote the predictable o-algebras with respect to F
and F;. Define @; : Q xRy — Q; xRy, @;(w, s) = (w;, s). As Q; is generated
by the predictable rectangles

Fy x {0}, Fsx (s,t], F, €T, s<t,

and as @; " (Fy x {0}) = @; ' (Fp) x{0} and &@; ' (Fy x (s,t]) = @w; ' (Fp) % (s, 1]
are also predictable rectangles, where we use that 0 C Fy, it results that @; is
Q-Q; measurable. As {Z; ;ow; € B} = z%i_l({Zi,s € B})7 B € BP, it follows
the assertion.

Proof of d). It holds that
{row; <t} ew;'({n <t}) €F) CF, teR,.
O

B.5.5 Proposition. Let (Q, F, IP’) be some probability space and assume that
{X(t) |t € T} is a real valued stochastic process on 2.
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a) Let Ty C T be some countable set and assume that for every ¢ € T and
every w € (2, there exists a sequence ti(w,t), k € N, such that
i) tr(w,t) € T, k €N,
i) limg—oo X (th(w, 1), w) = X (t,w).
Then it holds that supt€7|X ’ = supte%yX ‘ Moreover, supt€7|X ’

is F-B measurable.
b) Additionally, assume that these sequences are independent of w € €, i.e.
tr(t) = tr(t,w) for all w € ©Q, and that Esup,cq|X(t)| < oo, then

lim EX (t,(t)) =EX(¢) forallteT.

k—o0

Proof. For every fixed w € Q, we know that there exists a sequence s €
T, k € N, such that limkﬁm‘X(sk,w)’ = supteg‘X(t,w)| and |X(sk,w)| <
| X (811, 0)],
k € N, such that

lergO”X(sk,w)| — ’X(tkaw)" =0.

This establishes the equality of the suprema. For the measurability, see Bauer
[6, Satz 9.5].

Proof of b). As |X (tk )| < supt€T|X } the result is an immediate con-
sequence of the Dominated Convergence Theorem, cf. Bauer[6, Satz 15.1 and
Satz 15.6). O
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Summary

The determination of the influence of covariates on survival times is a common
issue in biomedical research. The interaction between covariates and survival
times can be specified by the Modified Cox Regression Model (MCRM). This
model incorporates crucial aspects of the popular and frequently applied Cox
Regression Model and the basic concept of the rank tests with estimated scores
provided by Behnen and Neuhaus. On the basis of localized, parametric sub-
models of the MCRM, tests for various hypotheses are rigorously developed.

The considered models are stated as counting process models; therefore a gen-
eral result on asymptotic normality for such models is discussed and applied to
localized, parametric sub-models of the MCRM. Using the likelihood ratio test
statistic of the limit experiment, asymptotically unbiased and asymptotically
admissible tests are derived.

In order to receive test statistics that are independent of the special choice
of the underlying localized, parametric sub-model of the MCRM, sequences of
hardest parametric sub-models are considered. In particular, statistical con-
siderations are made to shape and provide a comprehensible and coherent def-
inition of sequences of hardest parametric sub-models.

Examples addressing the applicability of the MCRM are given and the connec-
tion to known results is shown. Moreover, the underlying general assumptions
are investigated in detail for important special cases. Additionally, a descrip-
tive illustration of the tests is provided by presenting them as projective-type
tests.

Finally, a permutation method to determine critical values is introduced. The
resulting conditional permutation tests are asymptotically equivalent to the
above constructed tests, but keep the level even for finite sample-sizes in certain
situations.
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Zusammenfassung

Die Bestimmung des Effekts von Kovariablen auf Uberlebenszeiten ist eine in
der biomedizinischen Forschung haufig auftretende Fragestellung. Das Zusam-
menspiel zwischen Kovariablen und Uberlebenszeiten kann mit dem modifizier-
ten Cox’schen Regressionsmodell (MCRM) beschrieben werden. Dieses Modell
verbindet die wesentlichen Aspekte des populdren und héufig angewandten
Cox’schen Regressionsmodells mit dem Konzept der Rangtests mit geschatzten
Gewichten von Behnen und Neuhaus. Auf der Grundlage von lokalisierten,
parametrischen Teilmodellen des MCRM werden Tests fiir verschiedene Hy-
pothesen entwickelt.

Die betrachteten Modelle werden als Z&hlprozessmodelle formuliert, deshalb
wird ein allgemeines Resultat iiber asymptotische Normalitat fiir solche Mo-
delle erortert und auf lokalisierte, parametrische Teilmodelle des MCRM ange-
wandt. Unter Verwendung der Likelihood-Quotienten-Teststatistik des Limes-
experiments werden asymptotisch unverfialschte und asymptotisch zuldssige
Tests hergeleitet.

Um Tests zu erhalten, die von einer speziellen Wahl des lokalisierten, parame-
trischen Teilmodells unabhéngig sind, werden Folgen von hirtesten parame-
trischen Teilmodellen betrachtet. Insbesondere wird aufgrund von statistischen
Uberlegungen eine anschauliche und versténdliche Definition der hértesten
parametrischen Teilmodelle entwickelt.

Weiterhin werden Beispiele, die die Anwendungsmoglichkeiten des MCRM
demonstrieren, diskutiert und die Verbindung zu bekannten Resultaten aufge-
zeigt. Auch werden die allgemeinen Voraussetzungen fiir wichtige Spezialfélle
néher untersucht. Durch den Nachweis, dass es sich bei den vorgestellten Ver-
fahren um Projektionstests handelt, wird zusétzlich eine anschauliche Deutung
der Ergebnisse gegeben.

Abschlielend wird eine Permutationsmethode vorgestellt, um kritische Werte
fir die Tests zu bestimmen. Die so konstruierten bedingten Permutationstests
sind asymptotisch dquivalent mit den oben behandelten Tests, aber halten das
Niveau bereits bei endlichen Stichprobenumfingen in bestimmten Situationen
ein.
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