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Preface

The determination of the influence of covariates on survival times is a common

issue in biomedical research. In this dissertation tests for various hypotheses

are rigorously developed on the basis of Cox-type models. The investigated

models are obtained by modifying the frequently applied Cox Regression Model

(CRM) [13, 14]. For this purpose the basic concept of the rank tests with

estimated scores provided by Behnen and Neuhaus [7, 8] is combined with

the CRM, and methods derived from LAN and counting process theory are

employed.

The results of this dissertation are practical and applied, even thought the

structure of the monograph is theoretically oriented. In order to facilitate the

access to the presented approach its organisation is outlined in the following

paragraphs.

In the first chapter an introduction to the objectives of the dissertation is given.

Furthermore, the Modified Cox Regression Model (MCRM) is motivated by

the two-sample problem with randomly right censored data, since this well

understood problem can be used to link the ideas of Behnen and Neuhaus [7,

8] with the CRM. Moreover, localized, q-dimensional parametric sub-models

of the MCRM, which form the basis for the further statistical analysis, are

introduced. These models incorporate the crucial aspects of the CRM and the

models considered by Behnen and Neuhaus [7, 8]. In contrast to these authors

who state their models using L2-differentiable distribution families, the models

in this dissertation are specified by hazard rates. From an application-oriented

point of view this approach is preferable, since the resulting counting process
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Preface

models can be easily interpreted and are very comprehensible. However, this

direction unfortunately holds several methodological difficulties. Additionally,

some of the vast amount of literature on the CRM and its generalizations, as

well as the relevant literature on rank test theory, is discussed.

One aim of this dissertation is the development of a comprehensive, asymp-

totic theory of localized, q-dimensional parametric sub-models of the MCRM.

In order to achieve this objective, important theorems and concepts required in

the following sections are arranged and discussed. In Section 2.1, the concept

of weak convergence on Polish spaces is sketched. Among other things, Re-

bolledo’s Central Limit Theorem and Lenglart’s Inequality are stated. Jacod’s

Formula for the Density Process and the above-named results are the foun-

dation for the proof of a general result on asymptotic normality for counting

process models, see Section 2.2. This general result, which can be regarded

as a counting process analogue to the Second Le Cam Lemma, is applied to

sequences of localized, q-dimensional parametric sub-models of the MCRM in

Section 2.3.

The MCRM is an semi-parametric model, i.e. the interesting parameter is

finite-dimensional and further parameters that are regarded as nuisance are

infinite-dimensional. One of these nuisance parameters is the baseline hazard

which is an element of an infinite-dimensional function space. Localized, q-

dimensional parametric sub-models of the MCRM are obtained by – among

others things – restricting the baseline hazard to some at-most q-dimensional

sub-space of the before mentioned infinite-dimensional function space. Speci-

fying this sub-space is a problem, since there are no reasons why certain sub-

spaces are preferable to others. A well-known way out of this dilemma is the

study of hardest parametric sub-models, cf. e.g. Neuhaus [60] or Andersen et

al. [4]. However, in Literature there still remain questions concerning the con-

struction and the definition of hardest parametric sub-models. In Section 3.1

statistical considerations are made to shape and provide such a definition. In

the following section of Chapter 3 the properties of sequences of hardest para-

metric sub-models are investigated. First of all, their existence is established.
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The further analysis of sequences of hardest parametric sub-models gives that

an important sequence of statistics, cf. Section 4.1 and Section 4.2, is asymp-

totically equivalent to a sequence of statistics that can be independently chosen

of the underlying sequence of localized, parametric sub-models. This sequence

of statistics plays a significant role as can be seen in Section 4.3. Addition-

ally, it is proved that this sequence of statistics converges in distribution to

some normal distribution that only depends on the interesting parameter and

a matrix that can be consistently estimated.

In Section 4.1 and Section 4.2 multivariate one-sided and linear testing prob-

lems are examined under fairly general conditions. The models treated in these

two sections contain both interesting and nuisance parameters. Moreover, it is

assumed that sequences of the models in question are asymptotically normal,

i.e. they converge weakly to some Gauss Shift Experiment. Based on the likeli-

hood ratio test statistic of the limit Gauss Shift Experiment a test statistic for

finite sample-sizes is derived. Finally, it is shown that the resulting sequence

of tests keeps asymptotically the level, is even asymptotically unbiased and

admissible.

The findings of the two previous sections are applied to sequences of hardest

parametric sub-models of the MCRM in Section 4.3. Using the results of

Section 3.2, it is shown that the resulting sequence of tests is independent of the

special choice of the sequence of localized, parametric sub-models. Therefore,

it can be regarded as a sequence of tests for the MCRM. At the end of this

chapter, see Section 4.4, it is proven that the tests received in Section 4.3 are

projective-type tests. This theorem helps to establish a connection to well

known results and provides a descriptive illustration of the effectiveness of the

constructed tests.

Chapter 5 is devoted to examples and applications. The existence of the

MCRM and localized, q-dimensional parametric sub-models of the MCRM is

discussed with elementary methods in Section 5.1. In particular, filtered prob-

ability spaces that satisfy the assumptions required to prove the Theorems
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of Section 2.2 are constructed. In Section 5.2 the assumptions stated in Sec-

tion 2.3 and Chapter 3, which are exactly the assumptions used in Section 4.3,

are examined in detail.

In Section 5.3, the applicability of the MCRM is eventually demonstrated. The

two-sample problem with and without concomitant covariates is one major

example. Among the further examples are tests for trend and k-sample tests.

Finally, model check problems are briefly discussed.

A permutation method to determine the critical values is introduced in Chap-

ter 6. Under additional premises the stated permutation tests keep the level

on a subset of the hypothesis even for finite sample sizes. The basic concept is

presented in Section 6.1. In the following section, it is proven that the sequence

of tests derived in Section 4.3 and the corresponding sequence of permutation

tests is asymptotically equivalent. Again, Rebolledo’s Central Limit Theorem

is a major tool in the proof. The assumptions of Section 6.1 and Section 6.2 are

discussed for the important case of time-independent covariates in Section 6.3.

In the previous chapters some proofs were omitted for diverse reason. These

proofs can be found in Appendix A. Mainly technical propositions applied in

the preceding chapters are collected in Appendix B.

Hamburg, in November 2006 Michael Brendel
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u̇, ü . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

µ̂n,0, µ̂
(u)
n,1, µ̂n,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

µ0, µ
(u)
1 , µ

(u,v)
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Ψn,i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

List of Symbols Introduced in Chapter 3

φ(s1, s2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

T (s1, s2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Φα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

e(β, η) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Un(τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 63, 69

S (τ), S1,1(τ), S1,2(τ), S2,1(τ), S2,2(τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

S ∗(τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

J ∗(τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 69

Tβ0,η0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

S ∗
β0,η0

(τ), Sβ0(τ), S̃β0,η0(τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xvii



List of Symbols

Λ(τ0)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

τ c
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

J can
1,1 (τ), J can

2,2 (τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

J ∗,can(τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Λ̃(τ)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

γ̂
(u̇,ü)
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1 Survival Times and Covariates

This chapter is devoted to the presentation of the fundamental notions and

notations used in this dissertation. In Section 1.1 different types of covariates

are discussed and the main statistical questions are stated. In Section 1.2 the

Cox Regression Model (CRM) is defined and some of the extensive literature

on the CRM is summarized and reviewed, before the Modified Cox Regression

model is motivated and introduced in Section 1.3.

1.1 Introduction

In a case study, one is often interested in finding out if a new treatment is

better than a standard method, or if a new cure has any effect at all. Normally,

one forms two groups of subjects. The first group, the so-called control group,

receives the standard treatment or no treatment at all, and the members of the

second group, the so-called test group, obtain an alternative therapy. Then one

observes, how the different subjects respond to their treatments. In medicine

this response is typically the time between the start of the treatment and the

death of the subject, i.e. the survival time. More generally, the response is

the time between the start of the treatment and a point in time, when the

subject experiences a defined event, some examples being death, a decrease

or increase of the subjects constitution or that the drug under consideration

stops to be effective. In the following text the time to event is generally called

survival time. So, one aims to compare the distributions of the survival times
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1 Survival Times and Covariates

of the two groups in order to discover differences between the standard and the

alternative treatment.

From a statistical point of view, this situation is a two-sample problem. There

are two groups of observations and one wants to test if the distribution of

the survival times in both samples are equal or if the distribution of the test

group is stochastically larger. An alternative testing problem would be to test

the hypothesis that the distribution of the survival times is the same in both

samples against the alternative that the distribution of the survival times is

not the same in both samples.

In the previous example the two groups only differed in one characteristic,

i.e. the type of therapy they received. For a case study, one would try to

find subjects that are quite similar, so that a difference in the survival time

distribution can be attributed to the difference in treatment.

However, in biology and medicine one often encounters the situation that in-

dividuals differ in various characteristics, and one wants to determine the in-

fluence of these characteristics on the times to event. These characteristics –

the explanatory variables or risk factors – are called covariates. Examples for

covariates are physical variables like constitution, blood pressure, age and gen-

der or demographic quantities like education, income or the ethnic group an

individual belongs to, and last but not least behaviour variables like smoking

and drinking habits, cf. Klein and Moeschberger [43, pp. 243].

Covariates can be classified as time-independent and time-dependent covari-

ates. Typical examples of the first are the kind of therapy, gender or social

status. These variables are fixed at the start of the study or do not change

during the study. Time-dependent covariates are given by air pollution, con-

stitution, stress, pulse or blood pressure.

Additionally, one has to distinguish between external and internal covariates.

External covariates are classified as fixed, defined and ancillary. Time-inde-

pendent covariates are considered as fixed covariates. Defined covariates are

time-dependent but their path is already known at the start of the study, for
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1.1 Introduction

instance any factor that is controlled by some experimenter and that is not

adjusted according to the course of the experiment. In a psychological experi-

ment such a factor could be a stress factor. The last type of external covariates

are ancillary covariates which are the realisation of a stochastic process. The

marginal distribution of the process is independent of the underlying model for

the survival time and the survival time itself, cf. Kalbfleisch and Prentice [41,

pp. 123].

Internal covariates are also the realisation of stochastic processes, but the distri-

bution of this process depends on the individual under study, since an internal

covariate can only be observed as long as the subject is at risk. Examples for

internal covariates are blood pressure or white blood count, cf. Kalbfleisch and

Prentice [41, pp. 123]. Other examples are disease complications that cannot

be predicted from the history of the process, cf. Andersen et al. [4, pp. 169].

As we will see later, our model comprises both internal and external covariates.

In this dissertation it is aimed to develop tests which conclude whether covari-

ates have influence on the survival times. A special case of this undertaking is

the well understood two-sample problem, which serves us as a motivation and

an illustration. More precisely, the following statistical questions are going to

be considered:

• Does a covariate have any influence on the survival time at all?

• Does a large value of a covariate correspond with longer survival times?

• Can differences in the survival times be explained only with some of the

covariates?

In the next sections the basic notation is introduced and the Cox Regression

Model (CRM), which links the covariates and the survival times is presented.

Under the CRM the aforementioned statistical questions can be transformed

into parametric testing problems. The first one turns out to be a multivariate

one-sided testing problem, the second and third can be transformed into linear

hypotheses, cf. Chapter 4 and Chapter 5.
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1.2 A First Mathematical Model

In this section we present the basic mathematical notation and a few funda-

mental notions and terms from counting process theory. Moreover, the CRM

is introduced and some of the abounding literature on the CRM is briefly dis-

cussed.

First, let us fix some terminology. Suppose that (Ω,F) is some measurable

space and let P denote some probability measure on F. The survival times

T1, . . . , Tn are modelled by the measurable mappings Ti : (Ω,F) −→ (R+,B+),

which can be identified with the stochastic processesN (i)
T =

{
N

(i)
T (t) | t ∈ R+

}
,

where

N
(i)
T (t) = 1(Ti ≤ t), t ∈ R+, i = 1, . . . , n.

Such a process equals 0 as long as the individual has not experienced the event

under consideration – i.e. is alive – and jumps to 1, when the event occurs. This

jump process is a special example of a so-called counting process. Counting

processes are increasing processes with right continuous paths that only take

the numbers {0, 1, 2, . . .}. The index T indicates that the counting process

depends only on the survival time.

A survival time can also be identified with the so-called at-risk process Y (i)
T ={

Y
(i)
T (t) | t ∈ R+

}
, i = 1, . . . , n, where

Y
(i)
T (t) = 1(Ti ≥ t), t ∈ R+.

This process equals 1 as long as the individual has not experience the event

under consideration, i.e. the individual is at risk. The process jumps to 0 after

the event in question has occurred. As the random variable N (i)
T (t) tells us,

whether the event at the time t with respect to the i-th individual has already

occurred or not, the information on that individual up to time t is contained

in the σ-algebra

F
(i)
T (t) = σ

(
N

(i)
T (s) | s ≤ t

)
.

The family of σ-algebras F(i)
T =

{
F

(i)
T (t) | t ∈ R+

}
, is called filtration.
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1.2 A First Mathematical Model

More precisely, a filtration F =
{
Ft | t ∈ R+

}
is a right continuous, increasing

family of sub-sigma-algebras of F, i.e. it holds that

Fs ⊂ Ft ⊂ F for all s ≤ t,

Ft =
⋂
s>t

Fs for all t ∈ [0,∞).

It is said to be P-complete, if F and F0 contain all subsets of P-null sets.

The tuple (Ω,F,F,P) is called a filtered probability space. In the situation

that we consider several probability laws we write (Ω,F,F,P) for the filtered

space, where P denotes a family of probability measures on F. The filtered

probability space is called complete or satisfying the ”usual conditions“, if the

filtration is P-complete for all P ∈ P. It is always possible to ”complete“ a

filtered space, cf. Jacod and Shiryaev [32, pp. 2].

Additionally, Proposition B.5.1 yields that the family of σ-algebras F(i)
T ={

F
(i)
T (t) | t ∈ R+

}
is right continuous.

The process N (i)
T (t), t ∈ R+, is a F(i)

T -sub-martingale. By the Doob-Meyer de-

composition we know the existence of a predictable, increasing process A(i)
T ={

A
(i)
T (t) | t ∈ R+

}
with A

(i)
T (0) = 0, such that the process N (i)

T − A
(i)
T is a

F(i)
T -martingale. The dual predictable projection A

(i)
T is unique up to in-

distinguishability. Note that a process X =
{
Xt | t ∈ R+

}
on
(
Ω,F,F,P

)
is

called predictable, if it is adapted, i.e. Xt is Ft-measurable, and if the map-

ping (ω, t) 7→ Xt(ω) is measurable with respect to the predictable σ-algebra

– the σ-algebra generated by the adapted process with left continuous paths.

A detailed explanation of the terms introduced in these paragraphs can be

found, for example, in the books of Fleming and Harrington [19] or Jacod and

Shiryaev [32].

The dual predictable projection A(i)
T is given by

A
(i)
T (t) =

∫
[0,t]

Y
(i)
T (s)

P
(
Ti ≥ s

) dPTi(s), t ∈ R+,
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1 Survival Times and Covariates

and in the case that PTi is absolutely continuous by

A
(i)
T (t) =

∫
[0,t]

Y
(i)
T (s)α(s) ds, α(s) = lim

h↓0

P
(
s < Ti ≤ s+ h

)
P
(
Ti > s

) , (1.1)

cf. Fleming and Harrington [19, Section 1.3] or Andersen et al. [4, Exam-

ple II.4.1]. We note that the distribution of the survival time Ti is reflected by

the dual predictable projections of the counting process N (i)
T . Later, different

underlying probability measures are modelled by stating the dual predictable

projections of the counting processes N (i)
T , i = 1, . . . , n. But first, let us con-

sider the case that the survival data is right censored.

In clinical studies, it is often not possible to observe the survival time one is

interested in. One only registers that the event in question has not happened

up to some time t and must have occurred after t. In this case we say that

the survival time was right censored. More precisely, one observes an event

time and an indicator stating, whether the survival time in question or some

censoring time was observed. There are different reasons for right censoring.

Among others, subjects drop out of the study because they move away or die

and the cause of the death is not related to the investigation, e.g. someone dies

due to an accident.

This situation can be modelled as follows. Let Ci : (Ω,F) −→ (R+,B+),

i = 1, . . . , n, denote the censoring times. The survival time Ti is right censored,

if Ti > Ci, so one merely observes

Xi = Ti ∧ Ci and ∆i = 1(Ti ≤ Ci),

where Xi is the censored survival time and ∆i the censoring indicator. ∆i = 1

(0) means that the i-th observation was non-censored (censored).

The random variables Xi and ∆i can be used to define a new counting process,

namely

N (i) =
{
Nt | t ∈ R+

}
, N

(i)
t = ∆iN

(i)
T (t) =

∫
[0,t]

Y
(i)
C (s) dN (i)

T (s),
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1.2 A First Mathematical Model

where Y (i)
C (t) = 1(Ci ≥ t), t ∈ R+, is the at-risk process of the censoring time.

This counting process only jumps to 1, if one observes the event. At first

glance, one might think that information is being wasted by only considering

the non-censored observations, but we will see that the likelihood in the CRM

and also in the MCRM primarily depends on the counting processes N (i). The

censored observations are going to be used for estimation.

Setting Ñ (i)(t) = (1−∆i) · 1(Xi ≤ t), t ∈ R+, i = 1, . . . , n, we can define the

filtration

F(i) =
{
F

(i)
t | t ∈ R+

}
, F

(i)
t = σ

(
N (i)(s), Ñ (i)(s) | s ≤ t

)
.

Under the additional assumption that Ti and Ci are stochastically independent

and that the distribution of Ti is absolutely continuous, the dual predictable

projection of Ni is given by

A(i)(t) =
∫

[0,t]

Y (i)(s)α(s) ds, t ∈ R+,

where Y (i)(t) = Y
(i)
T (t) · Y (i)

C (t) is the censored at-risk process and α is the

hazard rate given in equation (1.1), cf. Fleming and Harrington [19, Theo-

rem 1.3.1]. Note that the dual predictable projection does not formally depend

on the distribution of the censoring time, which, in this context, is an infinite

dimensional nuisance parameter.

In order to get a ”complete“ statistical model we still have to integrate the

covariates. A straightforward way to model an influence on the distribution of

the survival times is by linking the hazard rate of the survival time distribution

with the covariates. The proceeding is illustrated by the next example – the

two-sample problem – which is a leitmotif of the whole dissertation, since this

problem is well understood and serves as the starting point for the modification

of the CRM considered in this dissertation. Moreover, we will show that our

results always contain the two-sample model and a lot of well known related

results as special cases.
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1 Survival Times and Covariates

1.2.1 Example (Two-sample problem). Consider the probability space

(Ω,F,P) and suppose that Ti, Ci : Ω −→ R+, i = 1, . . . , n and Zi : Ω −→{
0, 1
}
, i = 1, . . . , n, are measurable mappings denoting the survival and cen-

soring time and the covariate. The covariate Zi is interpreted as follows, Zi = 1

(0) means that the i-th observation belongs to the first (second) sample. Under

this model, it is also assumed that survival times and censoring times Ti and

Ci, i = 1, . . . , n, are mutually stochastically independent and that we merely

observe Xi = Ti ∧ Ci, ∆i = 1
(
Ti ≤ Ci

)
and the covariate Zi, i = 1, . . . , n.

If F1 and F2 denote the cumulative distribution functions

F1(t) = P
(
Ti ≤ t | Zi = 1

)
and F2(t) = P

(
Ti ≤ t | Zi = 0

)
, t ≥ 0,

under the two-sample problem one is interested to test the hypotheses

H : F1 = F2 versus K : F1 ≥ F2, F1 6= F2,

i.e. no difference in survival times versus the distribution of the survival times

in the second sample is stochastically larger. Or even more colloquial one

wants to test no difference in methods applied to the first and second group

versus the method applied to the second group is better. This is a classical

non-parametric testing problem.

In the next step we intend to transform the testing problem into a parametric

one, because there exists a lot of approved methods to develop reasonable

testing procedures for parametric testing problems. Therefore, let us assume

that P =
{
Pβ,α | β ∈ R, α ∈ ℵ

}
is some family of probability distributions on

F and P ∈ P, where ℵ denotes the set of all hazard rates on R+. Analog

to the previous consideration we can identify the censored survival times Xi,

i = 1, . . . , n, with the counting processes N (i), i = 1, . . . , n. Moreover, a

suitable filtration is given by

F =
{
Ft | t ∈ R+

}
, Ft =

∨
i=1,...,n

F
(i)
t .

Assuming that the dual predictable projection of N (i) under Pβ,α ∈ P is given

8



1.2 A First Mathematical Model

by

A
(i)
β,α(t) =

∫
[0,t]

Y (i)(s) exp(β Zi)α(s) ds, t ∈ R+,

the testing problem H versus K transforms to

H : β = 0 versus K : β > 0,

where we use the fact that

P
(
Ti > t | Zi = z

)
= exp

(
−
∫

[0,t]

exp(β z) α(s) ds

)
,

cf. Fleming and Harrington [19, Theorem 1.3.1]. Implicitly, it is also assumed

that the distribution of the covariates does not depend on the underlying prob-

ability distribution. Moreover, the baseline hazard α is a nuisance parameter.

The previous example is a special case of the CRM and will be discussed

later in greater detail. Note that the above procedure is a standard method

to transform a non-parametric statistical question into a parametric testing

problem.

1.2.2 Definition (Cox Regression Model). Consider the filtered space

(Ω,F,F,P), where P =
{
Pβ,α | β ∈ Rp, α ∈ ℵ

}
. The observations are given

by the tuples (Xi,∆i, Zi), i = 1, . . . , n, where Xi : (Ω,F) −→ (R+,B+) de-

notes a censored survival time and ∆i : (Ω,F) −→
(
{0, 1},P{0, 1}

)
the corre-

sponding censoring indicator. P{0, 1} represents the power set of {0, 1}. Zi ={
Zi(t) | t ∈ R+

}
, Zi(t) : (Ω,F) −→ (Rp,Bp), is a predictable, and therefore F-

adapted, stochastic process. The counting processes N (i) =
{
N (i)(t) | t ∈ R+

}
,

N (i)(t) = ∆i·1(Xi ≤ t), i = 1, . . . , n, are also supposed to be adapted to F. Un-

der the Cox Regression Model (CRM) it is assumed that the dual predictable

projection of N (i) under Pβ,α ∈ P is given by A
(i)
β,α =

{
A

(i)
β,α(t) | t ∈ R+

}
,

where

A
(i)
β,α(t) =

∫
[0,t]

Y (i)(s) exp
(
βTZi(s)

)
α(s) ds,

Y (i)(s) = 1(Xi ≥ s), i = 1, . . . , n.
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1 Survival Times and Covariates

Clearly, Example 1.2.1 is a special case of the CRM model introduced by D.

R. Cox [13] in 1972. The analysis of the model – the estimation of the pa-

rameter β – by the so-called marginal likelihood caused a lot of attention and

discussion. Therefore, Cox [14] formalised the idea of analysis by introducing

the partial likelihood. It was shown that maximum likelihood estimates and

tests derived from the partial likelihood have the usual large sample proper-

ties. Tsiatis [69] proved strong consistency and asymptotic normality of the

estimates in the CRM. He also suggested estimates for the underlying baseline

hazard and the survivor function and investigated their asymptotic properties.

For a modern treatment of the CRM with martingale methods, see Andersen

and Gill [5] or Andersen et al. [4, Chapter VII]. In this dissertation we also

rely on this martingale approach introduced by Aalen [1]. A different method

for estimating β on the basis of the method of local likelihoods was proposed

by Crowley and Gentlemen [21].

In application the main interest is estimating β and testing hypothesis on β

using either the Wald, likelihood ratio or score test, where the estimates and the

statistics are derived from Cox partial likelihood cf. Klein and Moeschberger

[43, chapter 8]. The concept of the partial likelihood has been a subject of

discussion since its introduction. Although it is not a full likelihood, methods

based on the partial likelihoods share many properties of methods based on

likelihoods. For more detailed information on partial likelihoods consult e.g.

Wong [73], Jacod [31], Slud [66], Greenwood and Wefelmeyer [25].

The advantage of the CRM model is its simplicity and easy manageability. Its

drawback is the assumption that the influence of the covariates is constant

in time. In particular, this means that the hazard rates of time-independent

covariates are proportional. This drawback has been the starting point for

many generalizations of the CRM, and in this dissertation it is also attempted

to overcome this assumption, see also Example 1.3.1. A possible way out is

stratification, cf. Klein and Moeschberger [43, Section 9.3]. Another approach

is to allow β to vary in time. Murphy and Sen [56] assumed β to be some deter-

ministic function and developed a sieve estimation procedure. The method of
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1.2 A First Mathematical Model

sieves is also used by Murphy [55] in order to derive a test for the hypothesis of

proportional hazard. Verweij and van Houwelingen [70] assume the coefficient

β to be a function on a discrete time domain and proposed some estimation

procedure using penalized likelihoods. Sargent [62] allows the coefficients to

vary in time and bases his method on a dynamic linear model. The model is

fitted to the data using Markov Chain Monte Carlo Methods. Models using

time-dependent coefficients were also investigated by Martinussen, Scheike and

Skovgaard [52]. They use a kernel smoother for their estimation procedure.

The assumptions of the Cox Regression Model are often violated in practise,

therefore goodness-of-fit methods for the CRM were developed, cf. Andersen

et al. [4, Section VII.3]. A similar idea as in our approach is used by Lin [50]

to construct a goodness-of-fit procedure. Lin used weighted score functions

instead of the normal score functions derived from the partial likelihood – a

proceeding that is motivated by the commonly used log-rank tests. Kauermann

and Berger [42] apply a related strategy and use the local partial score to

construct a goodness-of-fit procedure. The idea of introducing weights can also

be found in Grambsch and Therneau [23]. A very general non-linear regression

model was considered by McKeague and Utikal [54]. Under this model, they

derive a test for independence of survival time and covariate and give as an

example of a goodness-of-fit test for the proportional hazard model.

A parametric generalization of the CRM was investigated by Lin and Ying [49],

they assume that the dual predictable projection of N (i) is given by

A
(i)
β,α(t) =

∫
[0,t]

Y (i)(s)
(
g
(
βT

1 Z1,i(s)
)

+ h
(
βT

2 Z2,i(s)
)
α(s)

)
ds, t ∈ R+,

β = (βT
1 , β

T
2 )T, Zi = (ZT

1,i, Z
T
2,i)

T, where g, and h are known link functions.

A consistent estimator for β is derived and the weak convergence of an Aalen-

Breslow-type estimator for
∫
[0,t]

α(s) ds, t ∈ R+, is also proved. Moreover, they

present some adaptive estimators that achieve the semi-parametric information

bounds.

A lot of research was also done concerning non-parametric extensions of the
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CRM. Dabrowska [15] considered the very general model

A
(i)
β,α(t) =

∫
[0,t]

Y (i)(s) exp
(
βTZ1,i(s)

)
α
(
s, Z2,i(s)

)
ds, t ∈ R+,

Zi = (ZT
1,i, Z

T
2,i)

T. In that model a kernel smoothing technique is used for

the estimation of β and the function α. LeBlanc and Crowley [46] consider a

model, where the dual predictable projection of N (i) is given by

A(i)
η (t) =

∫
[0,t]

Y (i)(s) exp
(
η(Zi)

)
α(s) ds, t ∈ R+

and η is some spline. They demonstrate some adaptive technique for the es-

timation of η. Under the partly linear additive Cox model of Huang [29], one

supposes that the dual predictable projection is defined by

A
(i)
β,φ1,...,φp2 ,α(t) =

∫
[0,t]

Y (i)(s) exp
(
βTZ1,i +

p2∑
j=1

φj

(
Z

(j)
2,i

))
α(s) ds, t ∈ R+,

where φj , j = 1, . . . , p2, are some smooth functions that are estimated with

the help of splines. The rate of convergence is considered and it is shown that

the estimator of β attains the semi-parametric information bound. Heller [27]

investigated the more general model

A
(i)
β,g,α(t) =

∫
[0,t]

Y (i)(s) exp
(
βTZ1,i + g(Z2,i)

)
α(s) ds, t ∈ R+,

where g is some unknown smooth real-valued function. The interesting param-

eter β is estimated by maximization of a profile partial likelihood, profiling out

g using a kernel function.

In a series of papers the models

A
(i)
β,g(t) =

∫
[0,t]

Y (i)(s) exp
(
βTZ1,i(s) + gT(s)Z2,i(s)

)
ds, t ∈ R+,

cf. Martinussen et al. [52],

A
(i)
β,g,α(t) =

∫
[0,t]

Y (i)(s)
(
exp
(
βTZ1,i(s)

)
α(s) + gT(s)Z2,i(s)

)
ds, t ∈ R+,

12



1.2 A First Mathematical Model

cf. Scheike and Martinussen [51], and

A
(i)
β,α(t) =

∫
[0,t]

Y (i)(s) exp
(
βTZ1,i(s)

)(
ZT

2,i(s)α(s)
)
ds, t ∈ R+,

cf. Scheike and Zhang [64], were considered. The authors obtain efficient es-

timation procedures depending on kernel smoothers for these non-parametric

extensions of the CRM. Using the model of Martinussen et al., Scheike and

Martinussen [63] proposed tests for checking, whether or not a covariate effect

varies in time. Kraus [45] developed goodness-of-fit tests for the additive-

multiplicative intensity model introduced by Scheike and Zhang [64] using a

stratified martingale residual process.

It is seen that many generalizations of the CRM aim to extend the model with

some non-parametric component, so that at least some of the covariates effects

can vary in time. This approach to overcome the assumption of proportional

hazards has become quite popular in recent years. For these fairly general

models kernel smoothers or estimators based on splines are used to detect a

possible influence of the covariates on the survival times. A potential problem

with methods based on kernel smoothers can be that relatively large sample

sizes are often needed, if one wants to rely on asymptotic results. However,

in survival analysis sample sizes are quite often comparatively small. Thus,

it might be worth considering a different method to treat the CRM, if one

intends to investigate dependencies between survival time and covariates. In

this dissertation we want to use an approach of rank test theory for extending

the CRM. Therefore, some remarks on the literature on the testing of right

censored life time data need to be made.

Aalen [1] introduced counting processes and martingale methods to survival

analysis. These methods were popularized by Gill [22] who investigated the

two-sample problem and weighted log-rank statistics in great generality and

detail in his PhD thesis. Martingale methods were also used by Jones and

Crowley, [39] and [40], to consider the asymptotic properties of a general class

of non-parametric tests for survival analysis. Using a generalized version of the

13



1 Survival Times and Covariates

test statistics of Crowley and Jones, Lin and Kosorok [48] consider function-

indexed tests to receive testing procedures that are sensitive for a wider range

of alternatives. This approach, that came to the author’s attention just be-

fore finishing this dissertation, uses empirical process theory to derive limit

theorems. Even though there are some connection to work presented in this

dissertation, our approach is an approach in its own right. For more informa-

tion on testing in survival analysis see Andersen and Borgan [2], Andersen et

al. [3] and [4] as well as Jones and Crowley [40].

A different approach extending the classical rank test theory of Hájek and

Šidák [26] to censored data was considered by Neuhaus [57] and Janssen [33].

They use local asymptotic normal approximations (LAN theory) to construct

(asymptotically) distribution free tests for right censored data under the two-

sample model. Additionally, these tests are asymptotically optimal under cer-

tain contiguous alternatives. Janssen [34] also investigated optimal k-sample

tests for randomly censored data.

Since rank tests are optimal only in one direction of contiguous alternatives

Behnen and Neuhaus [7] proposed rank tests with estimated scores that are

distribution free and sensitive to a broader range of alternatives. They also

apply their ideas to right censored survival data, see Behnen and Neuhaus [8].

Mayer [53] generalized their proceeding to weighted log-rank tests under the

two-sample problem deriving asymptotically admissible tests. In this disser-

tation, it is intended to take up the idea of Behnen and Neuhaus in order to

modify the CRM and to develop tests for an influence of covariates on the

distribution of the survival times, see Section 1.3.

Combinations of k-sample tests and the CRM were considered by Shen and

Fleming [65], who proposed a weighted mean survival test statistic for the two-

sample problem that also considers additional, concomitant covariates, and

by Heller and Venkatraman [28], who consider the k-sample problem with co-

variate adjustment in a extended CRM. They later use a kernel smoother to

derive non-parametric test statistics. The test statistics derived in this disser-
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1.3 The Modified Cox Regression Model

tation also include k-sample tests under consideration of additional covariates

as special cases.

Summarizing, one can say that the CRM model has become very popular in

practical applications and there exists an enormous amount of literature on

the CRM and possible generalizations. Survival analysis in general is a field

of intensive research. Therefore, it is impossible to review and summarize the

literature on that subject. The previous account of the literature is supposed to

help to be sort the approach of treating the CRM suggested in this dissertation.

In the next Section the MCRM is introduced and discussed in detail.

1.3 The Modified Cox Regression Model

In the previous Section a brief account of the literature on the CRM and

some extensions of the CRM was given. Under the CRM the influence of

a certain value of the covariate on the baseline hazard is constant in time.

For time-independent covariates this means that the conditioned cumulative

hazard functions given covariate are proportional. This property of the CRM

has been regarded as one of its major drawbacks and has been the starting

point for many extensions of the CRM, see Section 1.2. In this Section, the

two-sample problem will be the starting point of our modification of the CRM.

1.3.1 Example (Continuation of Example 1.2.1). Let us consider the

two-sample problem under the CRM and explicitly assume that (Ti, Ci, Zi),

i = 1, . . . , n are stochastically independent and that F =
(
Ft | t ∈ R+

)
, Ft =

σ
(
N (i)(s), Ñ (i)(s) | i = 1, . . . , n, s ≤ t

)
. The conditional hazard rate of the

survival time Ti given Zi = z is given by

λβ,α(t | z) = lim
h↓0

1
h

Pβ,α

(
t < Ti ≤ t+ h | Zi = z

)
Pβ,α

(
t < Ti | Zi = z

)
= exp

(
β · z

)
α(t) =

(
1 + β · z + o(β)

)
α(t)

where o(·) denotes the Landau symbol. Consequently, the probability of an

individual dying in the small time interval (t, t + h], if it survives longer than
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1 Survival Times and Covariates

t, is given by

Pβ,α

(
t < Ti ≤ t+ h | Ti > t, Zi = z

)
≈ h · (1 + β · z)α(t),

so we see that the influence of the covariate, i.e. the treatment effect, is constant

in time. As we have already mentioned, this assumption is often violated in

practical applications. A way out can be the introduction of weight functions,

that determine the influence of the treatment with respect to time. This could

be done by considering the model

Pβ,α

(
t < Ti ≤ t+ h | Ti > t, Zi = z

)
≈ h ·

(
1 + β · z · γ(t)

)
α(t), (1.2)

where γ denotes a weight function. This model is quite handy to interpret.

Assume that β is non-negative, a positive value of γ(t) increases, a negative

value decreases the probability of failure in the time interval (t, t + h], given

that the failure occurs after t. Moreover, one can argue that statisticians should

have an idea, if they expect short term or long term differences in the survival

times, so that they should be able to choose at least approximately a suitable

weight function γ.

Such models are well known in the theory of rank statistics, where they play

an important role in proving asymptotic optimality of linear rank tests. To

simplify matters let us assume that no right censoring is present and that the

covariates are deterministic. Let n1 =
∑n

k=1 Zi and n2 = n − n1 denote the

sizes of the first and the second sample and assume that n1
n −→ ν ∈ (0, 1) as

n→∞. Given any two absolute continuous distributions P1 and P2 on (R,B),

one can find a parametric family of distributions Q =
{
Qϑ | ϑ ∈ [ν − 1, ν]

}
that comprises these distributions, more precisely Q1−ν = P1 and Qν = P2.

The probability measure Q0 is defined by the cumulative distribution function

F0(x) = νP1

{
(−∞, x]

}
+ (1− ν)P2

{
(−∞, x]

}
, t ∈ R.

and arbitrary Qϑ is given by Q0-densities of the form

fϑ(x) = 1 + ϑ · b ◦ F0(x) [Q0],
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1.3 The Modified Cox Regression Model

where

b(u) =
(

dP2

dQ0
− dP1

dQ0

)
◦ F−1

0 (u), u ∈ [0, 1].

F−1
0 denotes the pseudo inverse of F0. The function b is bounded and it holds

that
∫
(0,1)

b(s) ds = 0. This approach is described in greater detail by Behnen

and Neuhaus [7, pp. 18]. The distribution Q0 is the so-called foot-point of the

distribution family and the function b describes the direction of the alternatives.

Furthermore, the distribution family Q is L2-differentiable at ϑ = 0 with L2-

derivative b◦F0, cf. Witting [71, Definition 1.187, Beispiel 1.200]. Let us define

the sequence of rank statistics

Sn =
n∑

i=1

cn,i · bn,Ri
, n ∈ N,

where cn,i are regression coefficients given by

cn,i =
√
n1 · n2

n
·
{
n−1

2 1{0}(Zi)− n−1
1 1{1}(Zi)

}
, i = 1, . . . , n.

Ri =
∑n

j=1 1(Tj ≤ Ti) are the ranks of the survival times, and bn,i, i = 1, . . . , n

are scores. If one assumes that the scores satisfy the condition∫
(0,1)

(
bn,bnsc − b(s)

)2 ds −→ 0, as n→∞,

where bnsc denotes the integer part of ns, one can show that the sequence of

tests

φn =

{
1,

0,
Sn

>

≤
uα ·

(∫
(0,1)

b2(s) ds
)1/2

, n→∞,

is asymptotically optimal for the testing problem ϑ = 0 versus ϑ > 0 which is

a sub-problem of the testing problem H versus K, if P2 is stochastically larger

than P1 with respect to the standard stochastic ordering. uα = Φ−1(1− α),

where Φ denotes the cumulative distribution function of a normal distribution

with mean 0 and variance 1. Note that the statistic Sn is distribution-free under

the hypothesis of randomness H and that the optimality of the sequence of tests

does not depend on the foot-point of the parametric family, but merely depends
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1 Survival Times and Covariates

on the direction of the alternatives. Thus, one can consider the rank tests φn

as a non-parametric procedure that in certain cases is asymptotically optimal.

More comprehensive information can be found in Neuhaus [58, Chapter 17].

In the presence of right censoring the situation becomes more delicate, since

the optimal scores also depend on the censoring distribution. Choosing optimal

scores for the rank tests proposed by Neuhaus [57] and Janssen [33] can only

be done, if one knows the distribution of the censored survival times Xi =

Ti ∧ Ci under ϑ = 0, i.e. the foot-point, however, their tests are distribution-

free under the hypothesis of randomness. Scores for rank tests whose optimality

only depends on the direction of the alternatives despite the presence of right

censoring were proposed by Brendel [11].

To simplify matters let us stick to the situation of no right censoring. The L2-

differentiability of Q implies the existence of a hazard ratio derivate at ϑ = 0.

More precisely, it holds that

1
ϑ

(
dΛϑ

dΛ0
− 1
)
−→Q0 R(b ◦ F0), as n→∞,

where Λϑ(x) =
∫
(−∞,x]

{
Qϑ

(
[s,∞)

)}−1 dQϑ and the hazard ratio derivative is

given by

R(b ◦ F0)(x) = b ◦ F0(x)−

∫
[x,∞)

b ◦ F0(u) dQ0(u)

Q0

(
[x,∞)

) , x ∈ R.

The operator R establishes an isometry between tangents and hazard ratio

derivatives, cf. Janssen [35]. Using this isometry we can also see, how the

model introduced in equation (1.2) and the rank test theory approach are

linked. Considering that equation, one can identify α as the hazard rate of Q0

and γ as R(b ◦ F0).

The optimality of the rank tests for certain contiguous alternatives depends

on the right choice of b. Even though a statistician might have an idea about

the direction of the alternatives, it is impossible to know the right direction

of the alternative. Therefore, Neuhaus and Behnen [7] proposed both kernel
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1.3 The Modified Cox Regression Model

estimators and projection estimators for the score function b. The resulting

rank test proved to be sensitive for different directions of alternatives. Behnen

and Neuhaus [8] also applied their approach to right censored data. Mayer [53]

considered some primitive projection estimator for the hazard ratio derivatives

under the two-sample model deriving projective-type tests generalizing the

well-known weighted log-rank tests.

In this dissertation it is aimed to extend the testing procedure proposed by

Mayer [53] to arbitrary covariates. And it is shown that new test statistics

depend on a multivariate generalization of statistics considered by Jones and

Crowley [39]. Basically, our test statistic is the squared norm of some prim-

itive projective-type estimator for the direction of the alternatives. In order

to construct the new test statistics, it is assumed that instead of the weight

function γ ≡ 1 determining the direction of the alternatives under the CRM

there are a finite number of weight functions specifying possible directions of

the alternatives, where we also allow the weight functions to depend on the

baseline hazard and the distribution of the censoring times. This very simple

idea leads to the modification of the CRM subject of the following text.

1.3.2 Definition (Modified Cox Regression Model). Consider the fil-

tered probability space (Ω,F,F,C), where C =
{
Pβ,α | β ∈ Rr, α ∈ ℵ

}
. The

observations are given by the tuples (Xi,∆i, Zi), i = 1, . . . , n, where Xi :

(Ω,F) −→ (R+,B+) denotes a censored survival time and ∆i : (Ω,F) −→(
{0, 1},P{0, 1}

)
the corresponding censoring indicator. Zi =

{
Zi(t) | t ∈ R+

}
,

Zi(t) : (Ω,F) −→ (Rp,Bp), is the predictable covariate process associated

with the i-th observation. This process is obviously F-adapted. Further-

more, it is supposed that the counting processes N (i) =
{
N (i)(t) | t ∈ R+

}
,

N (i)(t) = ∆i · 1(Xi ≤ t), i = 1, . . . , n, are also adapted to the filtration F.

Assume that γ(u,v)
α : R+ −→ R, v = 1, . . . , ru, u = 1, . . . , p, are some measur-

able functions. More precisely, it supposed that γ(u,v)
α = γ

(u,v)
0 ◦Hα, where

γ
(u,v)
0 : [0, 1] −→ R, v = 1, . . . , ru, u = 1, . . . , p,
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1 Survival Times and Covariates

are measurable functions and Hα is a cumulative distribution function that can

depend on the baseline hazard α and the distribution of the censoring times.

Set r =
∑p

u=1 ru. The stochastic process Zi } γα =
{
Zi } γα(t) | t ∈ R+

}
,

defined by

Zi } γα(t) =
((
Z

(1)
i (t) · γα,1(t)

)T
, . . . ,

(
Z

(p)
i (t) · γα,p(t)

)T)T

,

is called weighted covariate process belonging to the i-th observations, i =

1, . . . , n, where the abbreviations γα,u =
(
γ

(u,1)
α , . . . , γ

(u,ru)
α

)T, u = 1, . . . , p,

and γα =
(
γT

α,1, . . . , γ
T
α,p

)T are used.

Under the modified Cox Regression Model (MCRM) the dual predictable pro-

jection of N (i) under Pβ,α ∈ C is given by A(i)
β,α =

{
A

(i)
β,α(t) | t ∈ R+

}
, where

A
(i)
β,α(t) =

∫
[0,t]

Y (i)(s) exp
(
βTZi } γα(s)

)
α(s) ds, (1.3)

Y (i)(s) = 1(Xi ≥ s), i = 1, . . . , n, see Remark 1.3.3.b for a different rep-

resention of the predictable dual projection. We also use the abbreviations

N = (N (1) . . . , N (n)) and Aβ,α = (A(1)
β,α, . . . , A

(n)
β,α).

1.3.3 Remark. a) Under this model, every component of the covariate vector

is multiplied by a vector of weight functions determining the direction of

the alternatives. If one choose Hα independently of α then we receive the

Cox Regression Model, whereas the covariate processes are given by Zi}γα,

i = 1, . . . , n.

b) A perhaps more intuitive reprensentation of the predictable projection of

N (i) under Pβ,α is given by

A
(i)
β,α(t) =

∫
[0,t]

Y (i)(s) exp

(
p∑

u=1

Z
(u)
i (s)

ru∑
v=1

β
(u,v)

γ(u,v)
α (s)

)
α(s) ds,

t ∈ R+, where β
(u,v)

= β(
∑u−1

l=1 rl+v), v = 1, . . . , ru, u = 1, . . . , p. Never-

theless, the representation of predictable dual projection given in Defini-

tion 1.3.2 is used, as it is intended to apply the methods provided by linear

algebra.
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1.3 The Modified Cox Regression Model

c) As the weight functions γ(u,v)
0 are defined on the interval [0, 1] a statistician

can easily choose functions, such the influence of the covariates is appropri-

ately weighted with respect to time. The ”right“ transformation of γ(u,v)
0

onto R+ is provided by the cumulative distribution function Hα. For exam-

ple, if one thinks that a covariate mainly effects the survival time, shortly

after a subject entered the study, e.g. disease complications, then a possible

choice of weight functions could be

γ
(u,v)
0 (t) =

(
1− t

)k
, t ∈ [0, 1], k ≥ 1.

Furthermore, this procedure also guarantees that the testing procedures to

be developed are independent of the underlying time scale of our data i.e.

if we consider
(
f(Xi),∆i, Z

(f)
i

)
, Z(f)

i =
{
Zi

(
f(t)

)
| t ∈ R+

}
, i = 1, . . . , n,

instead of (Xi,∆i, Zi), i = 1, . . . , n, where f : R+ −→ R+ is a strictly

increasing function, our tests give the same result. In other words, if the

weight functions γα are chosen independently of the baseline hazard then

a transformation of the time scale could lead to a different outcome of the

analysis.

d) Results by Janssen [36] suggest that any test keeping the level on the hy-

pothesis can have reasonable power only for a finite number of orthogonal

directions of alternatives. So, considering just a finite number of weight

functions is no restriction in practice. If a testing procedure is based on

kernel estimators the directions of alternatives are implicitly given by the

kernel. So, an advantage of the approach discussed in this dissertation is

that the directions of the alternatives are directly chosen by the statistician.

Additionally, the number of different directions of the alternatives can be

adjusted to the sample size.

The MCRM is a semi-parametric statistical model. The interesting parameter

β is the parametric part and the infinitely dimensional α together with the

distribution of the censoring times form the non-parametric part. For the

further development we want to consider sequences of parametric sub-models
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1 Survival Times and Covariates

of the MCRM that we localize. Like in rank test theory it is intended to apply

results from LAN theory in order to derive some reasonable testing procedures

for the statistical questions introduced in Section 1.1. We will show that there

is no harm in considering parametric models, if these models are big enough.

This will lead to the notion of sequences of hardest parametric sub-models in

Chapter 3.

1.3.4 Definition (Parametric Sub-Model). Assume that our observations

are given by the tuples (Xi,∆i, Zi), i = 1, . . . , n, where Xi, ∆i and Zi(t), t ∈
R+, i = 1, . . . , n, are measurable mapping on

(
Ω,F

)
. The filtered probability

space (Ω,F,F,P), is called q-dimensional parametric sub-model of the MCRM

with nuisance direction γ̃ and foot-point α0, if the following conditions hold:

i) γ̃ =
(
γ̃(1), . . . , γ̃(q)

)
, where γ̃(u) : R+ −→ R, u = 1, . . . , q, are measurable

functions.

ii) P =
{
Pξ | ξ = (βT, ηT)T ∈ Rr+q

}
is a r+ q-dimensional distribution fam-

ily.

iii) The dual predictable projection of the counting process N under Pξ is

given by Aξ =
(
A

(1)
ξ , . . . , A

(n)
ξ

)
, where

A
(i)
ξ (t) =

∫
[0,t]

exp
(
βTZi } γαη (s)

)
Yi(s)αη(s) ds, t ∈ R+, (1.4)

and αη(s) = exp
(
ηTγ̃(s)

)
α0(s), s ∈ R+. The hazard rate α0 ∈ ℵ is fixed.

If instead of (1.4) it holds that

A
(i)
ξ (t) =

∫
[0,t]

exp
( 1√

n
· βTZi } γ(s) +

1√
n
· ηTγ̃(s)

)
Yi(s)α0(s) ds, t ∈ R+,

where γ = γα0 , we call the filtered probability space (Ω,F,F,P) a 1/
√
n-

localized, q-dimensional parametric sub-model of the MCRM.

In the further treatment, we will concentrate on 1/
√
n-localized, q-dimensional

parametric sub-model of the MCRM.
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1.3 The Modified Cox Regression Model

1.3.5 Remark. a) Note that under a q-dimensional parametric sub-model the

nuisance parameter α is restricted to the space
{
α0 exp(ηTγ̃) | η ∈ Rq

}
.

Later we will see that completely fixing the nuisance parameter α would

not be an appropriate approach, since those sub-models do not share the

properties of the MCRM. They are too small. A complete fixing of the

nuisance parameter is equivalent to knowing the correct baseline hazard α.

This is clearly not the case under the MCRM.

b) Note that under the localized, q-dimensional parametric sub-model of the

MCRM we fix the weight functions. More precisely, they only depend on the

foot-point α0 and the distribution of the censoring times. This procedure

is justified by the localization.

c) The function (η, t) 7→ exp(ηTγ̃(t)) can be replaced by any function g that

is two times continuously differentiable with respect to η and that satisfies

∂g

∂η(i) | η = 0, t = t0
= γ̃(i)(t0), i = 1, . . . , n.

As we want to localize, only the derivatives at η = 0 are important. How-

ever, the specific form for the parametrisation is very convenient for further

treatment.

In the next Chapter sequences of localized, parametric sub-models are con-

sidered. Asymptotic normality for counting process models is introduced and

conditions implying asymptotic normality are discussed.
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2 Asymptotic Normality

In this chapter the theoretical framework is established and some important

results from martingale theory, that are frequently applied in this dissertation,

are stated. Furthermore, asymptotic normality for counting process models is

introduced and a general theorem on local asymptotic normality is presented

and discussed. Subsequently, this result is applied to sequences of localized,

q-dimensional parametric sub-models of the MCRM.

2.1 Important Results and Concepts

As we intend to consider sequences of models, the concept of convergence in

distribution plays an important role. Let the tuple (E, d) denote a metric

space, where E is some set and d is a metric on E. Furthermore, let E be

the Borel-σ-algebra on (E, d), i.e. the smallest σ-algebra that contains all open

sets. Assume that Pn, n ∈ N0, are probability measures on E. We say that Pn,

n ∈ N, converges weakly to P0, if∫
f(x) dPn(x) −→

∫
f(x) dP0(x), as n→∞ ,

for all real-valued, bounded and continuous functions f . Equivalent definitions

of convergence in distribution are summarized in the so-called Portmanteau

Theorem, cf. Billingsley [9, Theorem 2.1].

However, in this dissertation we are interested in sequences of random variables.

Consider a sequence of probability spaces (Ωn,An,Pn), n ∈ N, and assume that
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2 Asymptotic Normality

Xn : Ωn −→ E, n ∈ N0, are some measurable mappings. Consequently,

Pn(A) = Pn

{
Xn ∈ A

}
, A ∈ E, n ∈ N,

are probability measures on E. We say Xn converges in distribution to X0 on

E, in short Xn
D−→Pn X0, as n → ∞, if the sequence Pn, n ∈ N, converges

weakly to P0. Note that the notation −→Pn
means convergence in probability,

see also Appendix B.4.

Before we can state Rebolledo’s Central Limit Theorem for Local Martingales,

some more notation has to be introduced. D
(
R+,R

)
denotes the set of all func-

tions f : R+ −→ R that are right continuous with left hand limits. These func-

tions are called cadlag functions. Additionally, the function space D
(
R+,R

)
can be endowed with a metrizable topology, such that D

(
R+,R

)
is a Polish

space. This topology is called Skorokhod topology. More detailed information

on this subject can be found in Jacod and Shiryaev [32, Chapter VI]. Analo-

gously, one definesD
(
[0, τ ],R

)
, as the set of all cadlag functions f : [0, τ ] −→ R.

The space D
(
[0, τ ],R

)
can be identified with the space D

(
[0, 1],R

)
, which is

also a polish space, if it is endowed with the Skorokhod topology, see Billingsley

[9, Chapter 3] for a detailed discussion. Note that τ = ∞ is also possible. One

easily shows that if the sequence of processes
{
Xn(t) | t ∈ R+

}
, n ∈ N, con-

verges in distribution to
{
X(t) | t ∈ R+

}
on D

(
R+,R

)
then

{
Xn(t) | t ∈ [0, τ ]

}
converges in distribution

{
X(t) | t ∈ [0, τ ]

}
on D

(
[0, τ ],R

)
, τ < ∞. Further-

more, the sequence of stopped processes
{
Xn(t ∧ τ) | t ∈ [0,∞]

}
converges in

distribution to
{
X(t ∧ τ) | t ∈ [0,∞]

}
on D

(
[0,∞],R

)
, τ <∞. These implica-

tions are applied in the proof of Theorem 2.2.7.

An important result from weak convergence theory, which is applied again and

again, is the following replacement result.

2.1.1 Theorem. Let
(
Ωn,Fn,Pn

)
, n ∈ N, be some sequence of probability

spaces and let (E, d) be a polish space. Assume that

Xn,k : Ωn −→ E, k, n ∈ N, and Yn : Ωn −→ E, n ∈ N,
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are Fn–E measurable, where E denotes the Borel-σ-algebra on E, and that

Xn,k
D−→Pn Xk, as n→∞, and Xk

D−→ X, as k →∞.

If for all ε > 0 the condition

lim
k→∞

lim
n→∞

Pn

(
d(Xn,k, Yn) ≥ ε

)
= 0

holds then it also holds that Yn
D−→Pn

X, as n→∞.

Proof. Cf. Billingsley [9, Theorem 4.2]

Furthermore, it is assumed that all (local) (sub- / super-) martingales have

cadlag paths. For any (local) square integrable martingales M,N the processes〈
M
〉

and
〈
M, N

〉
denote the dual predictable variation and covariation, i.e.〈

M
〉

and
〈
M, N

〉
are predictable processes,

〈
M
〉
(0) =

〈
M, N

〉
(0) = 0, and

the processes M2 −
〈
M
〉

and M · N −
〈
M, N

〉
are (local) martingales. The

following result is one standard tool for analysing counting process models.

2.1.2 Theorem (Rebolledo’s Central Limit Theorem). Consider a se-

quence of filtered probability spaces (Ωn,Fn,Fn,Pn), n ∈ N, satisfying the

usual conditions, i.e. the filtration Fn is increasing, right continuous and Pn-

complete. The latter means that Fn and Fn,t, t ∈ R+, contain all subsets of

Pn negligible sets. And let
{
Mn(t) | t ∈ R+

}
, n ∈ N, be a sequence of local,

square integrable F-martingales, where Mn is defined on
(
Ωn,Fn

)
. For ε > 0

we define the jump process

Jε[Mn](t) =
∑
s≤t

∆Mn(s)1
(
|∆Mn(s)| ≥ ε

)
, t ∈ R+,

where ∆Mn(s) = Mn(s) −Mn(s−), Mn(s−) = limu↑sMn(u) and Mn(0−) =

Mn(0). Because of the Doob-Meyer decomposition, cf. e.g. Jacod and Shiryaev

[32, Theorem I.3.18], there exists a predictable, up to an evanescent set unique

process Aε[Mn] =
{
Aε[Mn](t) | t ∈ R+

}
, such that the processes

Mε
n,1 = Jε

n[Mn]−Aε
n[Mn] and Mε

n,2 = Mn −Mε
n,1
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2 Asymptotic Normality

are local, square integrable F-martingales. If〈
Mε

n,1

〉
(t) + sup

s≤t

∣∣〈Mε
n,1,M

ε
n,2

〉
(s)
∣∣ −→Pn

0, as n→∞,

for all t ≥ 0 and ε > 0, and〈
Mn

〉
(t) −→Pn A(t), as n→∞,

for all t ≥ 0, where A is a continuous, non-decreasing function with A(0) = 0,

then

Mn
D−→Pn

{
W ◦A(t) | t ∈ R+

}
, as n→∞, on D(R+,R).

W denotes a standard Wiener motion (Brownian motion).

Proof. See Rebolledo [61, Theorem V.1].

In Chapter 6 this result is used to investigate the asymptotic properties of per-

mutation tests. The following Corollary, see e.g. Fleming and Harrington [19,

Theorem 5.1.1] is an easy consequence of Rebolledo’s Central Limit Theorem.

It will play a crucial role in deriving a criterion for asymptotic normality in

counting process models. In the following we always assume that a counting

process N defined on a filtered probability space
{
Ω,F,F,P

}
is adapted to the

filtration, i.e. N(t) is Ft-measurable for all t ∈ R+.

2.1.3 Corollary. Let (Ωn,Fn,Fn,Pn), n ∈ N, be a sequence of filtered prob-

ability spaces satisfying the usual conditions and let Nn =
(
N

(1)
n , . . . , N

(kn)
n

)
,

N
(i)
n =

{
N

(i)
n (t) | t ∈ R+

}
, i = 1, . . . , kn, be a multivariate counting process,

i.e. none of the N (i)
n , i = 1, . . . , n, jump at the same time. The dual predictable

projection An =
(
A

(1)
n , . . . , A

(kn)
n

)
of N , where A

(i)
n =

{
A

(i)
n (t) | t ∈ R+)

}
,

is assumed to have continuous paths. Furthermore, suppose that H(i)
n , i =

1, . . . , kn, n ∈ N, are real-valued, predictable, locally bounded processes and

that for all t ∈ R+ the following conditions hold:

kn∑
i=1

∫
[0,t]

(
H(i)

n (s)
)2 dA(i)

n (s) −→Pn A(t), as n→∞, (2.1)
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where A : R+ → R+ is a continuous, non-decreasing function with A(0) = 0,

and

kn∑
i=1

∫
[0,t]

(
H(i)

n (s)
)2
1
(∣∣H(i)

n (s)
∣∣ ≥ ε

)
dA(i)

n (s) −→Pn
0, as n→∞, (2.2)

for all ε > 0. Using the abbreviation M (i)
n = N

(i)
n −A

(i)
n it holds that{

kn∑
i=1

∫
[0,t]

H(i)
n (s) dM (i)

n (s)
∣∣∣∣ t ∈ R+

}
D−→Pn

{
W ◦A(t) | t ∈ R+

}
, as n→∞,

on D(R+,R).

Proof. See Appendix A.1.

A very useful tool which is applied again and again is Lenglart’s domination

property. It is also essential for proving Rebolledo’s Central Limit Theorem.

2.1.4 Definition (Lenglart’s Domination Property). Assume that X ={
X(t) | t ∈ R+

}
and Y =

{
Y (t) | t ∈ R+

}
are two processes on the filtered

probability space (Ω,F,F,P), such that X is optional and Y is a predictable,

non-negative, increasing process, where Y (0) = 0. If it holds that E
(
X(T )

)
≤

E
(
Y (T )

)
for all bounded stopping times T then X is Lenglart-dominated by

Y .

2.1.5 Theorem (Lenglart’s Inequality). Let X be a cadlag process which

is Lenglart-dominated by Y . For any stopping time T and any ε, η > 0, it

holds that

P
(
sup0≤t≤T

∣∣X(t)
∣∣ ≥ ε

)
≤ η

ε
+ P

(
Y (T ) ≥ η

)
.

Proof. Cf. Jacod and Shiryaev [32, Lemma I.3.30].

2.1.6 Corollary. Let (Ω,F,F,P) be a filtered probability space satisfying the

usual conditions. Suppose N = (N (1), . . . , N (n)) is a multivariate counting

process with dual predictable projection A = (A(1), . . . , A(n)) having continu-

ous paths. Moreover, let H(i), i = 1, . . . , n, be locally bounded and predictable
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2 Asymptotic Normality

processes. For any stopping time T , such that P{T <∞} = 1, and any ε, η > 0,

it holds that

P

(
sup0≤t≤T

(∑n

i=1

∫
[0,t]

H(i)(s) dM (i)(s)
)2

≥ ε

)

≤ η

ε
+ P

(∑n

i=1

∫
[0,T ]

(
H(i)(s)

)2 dA(i)(s) ≥ η

)
Proof. See Appendix A.2.

2.1.7 Corollary. a) In the situation of Theorem 2.1.5, it holds that

P
(
sup0≤t<∞

∣∣X(t)
∣∣ ≥ ε

)
≤ η

ε
+ P

(
Y (∞) ≥ η

)
,

where Y (∞) = limt→∞ Y (t), for all η, ε > 0.

b) In the situation of Corollary 2.1.6, it holds that

P

(
sup0≤t<∞

(∑n

i=1

∫
[0,t]

H(i)(s) dM (i)(s)
)2

≥ ε

)

≤ η

ε
+ P

(∑n

i=1

∫
[0,∞)

(
H(i)(s)

)2 dA(i)(s) ≥ η

)
for all η, ε > 0.

Proof. In both cases, choose the stopping times Tn ≡ τn ∈ R+, n ∈ N, such

that Tn ↑ ∞ and apply Theorem 2.1.5 or Corollary 2.1.6 with Tn. Considering

Corollary 2.1.7.a this means

pn,1 = P
(
sup0≤t<Tn

∣∣X(t)
∣∣ ≥ ε

)
≤ η

ε
+ P

(
Y (Tn) ≥ η

)
.

Using the Monotone Convergence Theorem yields pn,1 ≤ η
ε + P

(
Y (∞) ≥ η

)
.

Applying the Monotone Convergence Theorem again establishes the result.

Corollary 2.1.7.b is shown completely analogously.

To show the asymptotic equivalence of certain sequences of random variables,

the following Lemma will play a crucial role. It is an immediate consequence

of the previous results.
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2.1.8 Lemma. Let (Ωn,Fn,Fn,Pn), n ∈ N, be a sequence of filtered prob-

ability spaces satisfying the usual conditions and let I(t) denote the interval

[0, t], if t < ∞, or [0,∞), if t = ∞. The dual predictable projection An =

(A(1)
n , . . . , A

(kn)
n ) of the multivariate counting process Nn = (N (1)

n , . . . , N
(kn)
n )

is assumed to have continuous paths. Moreover, let H(i)
n , i = 1, . . . , kn be

locally bounded and predictable processes. The condition

kn∑
i=1

∫
I(τ)

(
H(i)

n (s)
)2 dA(i)

n (s) −→Pn 0, as n→∞,

implies
kn∑
i=1

∫
I(τ)

H(i)
n (s) dM (i)

n (s) −→Pn
0 as n→∞,

where M (i)
n = N

(i)
n −A

(i)
n , i = 1, . . . , kn, n ∈ N.

Proof. Assume ε, η > 0. Applying Corollary 2.1.6 or Corollary 2.1.7 gives the

estimate

Pn

(∣∣∣∣∣
kn∑
i=1

∫
I(τ)

H(i)
n (s) dM (i)

n (s)

∣∣∣∣∣ ≥ ε

)

≤ Pn

(
supt∈I(τ)

(∑kn

i=1

∫
I(t)

H(i)
n (s) dM (i)

n (s)
)2

≥ ε2

)

≤ η

ε2
+ Pn

(∑kn

i=1

∫
I(τ)

(
H(i)

n (s)
)2 dA(i)

n (s) ≥ η

)
.

Consequently, lim supn→∞ Pn

(
|
∑kn

i=1

∫
[0,τ ]

H
(i)
n (s) dM (i)

n (s)| ≥ ε
)
≤ η

ε2 , η ↓ 0

establishes the result.

2.2 A General Result on Asymptotic Normality

In this Section, asymptotic normality for counting process models is estab-

lished. First, let us introduce some general premises.
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2.2.1 Assumption. Let
(
Ωn,Fn,Fn = {Fn,t | t ∈ R+},Pn

)
, n ∈ N, be a se-

quence of filtered probability spaces and suppose that the following conditions

hold.

i) The filtrations satisfy the condition Fn = Fn,∞ =
∨

t≥0 Fn,t.

ii) Pn =
{
Pn,ξ | ξ ∈ Rm

}
is a family of probability measures defined on the σ-

algebra Fn. Let P (t)
n,ξ denote the restriction of the probability measure Pn,ξ

to the sigma-algebra Fn,t, t ∈ [0,∞], i.e. P (t)
n,ξ(F ) = Pn,ξ(F ), F ∈ Fn,t. It

is assumed that P (0)
n,ξ = P

(0)
n,0 for all ξ ∈ Rm.

iii) Fn and Fn,t, t ∈ R+ are Pn,0-complete.

iv) Pn,ξ � Pn,0, for all ξ ∈ Rm.

v) Let Nn =
(
N

(1)
n , . . . N

(kn)
n

)T and Ñn =
(
Ñ

(1)
n , . . . Ñ

(kn)
n

)T be two counting

processes, such that (NT, ÑT)T is a multivariate counting process.

vi) N (i)
n + Ñ

(i)
n ≤ 1 Pn,0-almost surely and N

(i)
n (0) = Ñ

(i)
n (0) = 0, i =

1, . . . , kn. The latter means that no events occur at time 0.

vii) Let Gn be some σ-algebra and assume that Fn,t = Gn∨Nn,t, where Nn,t =

σ
{
N(s), Ñn(s) | s ≤ t

}
, t ∈ R+. Usually, Gn contains all subsets of Pn,0

negligible sets and the information on the covariates.

viii) The dual predictable projection of the counting processes N (i)
n under the

probability measure Pn,ξ is given by

A
(i)
n,ξ(t) =

∫
[0,t]

Y (i)
n (s)α(i)

n,ξ(s) ds, t ∈ R+,

where Y (i)
n = {Y (i)

n (s) | s ∈ R+}, Y (i)
n (s) = 1−

(
N

(i)
n (s−) + Ñ

(i)
n (s−)

)
and

α
(i)
n,ξY

(i)
n =

{
α

(i)
n,ξ(t)Y

(i)
n (t) | t ∈ R+

}
, i = 1, . . . , n, are some non-negative,

predictable processes. Furthermore, suppose that α(i)
n,0(s) = 0 implies

α
(i)
n,ξ(s) = 0 for all ξ ∈ Rm.

ix) The dual predictable projection of the counting processes Ñ (i)
n under the

probability measure Pn,ξ is given by

Ã(i)
n (t) =

∫
[0,t]

Y (i)
n (s) α̃(i)

n (s) ds, t ∈ R+,
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where α̃(i)
n Y

(i)
n =

{
α̃

(i)
n (t)Y (i)

n (t) | t ∈ R+

}
, i = 1, . . . , n, are non-negative,

predictable processes, and Y (i)
n is defined in viii).

The existence of filtered probability spaces satisfying these assumptions is dis-

cussed later in the context of examples, see Section 5.1.

The processes Nn and Ñn are supposed to coincide with the processes defined

in Section 1.2 (page 6). N (i)
n is a counting process associated with some survival

time. A jump only occurs, if the survival time is observed. Analogously, Ñ (i)
n

is a counting process associated with the corresponding censoring time. The

requirement N (i)
n + Ñ

(i)
n ≤ 1 guarantees that only the survival time or the

censoring time is observed.

The conditions imposed on the processes α(i)
n,ξ and α̃(i)

n are very natural, if one

keeps in mind that the paths of these processes are supposed to be hazard rates

of some measure on B+. The assumption that the processes are predictable

guarantees that every path is a B+–B+ measurable function. The implica-

tion stated in Assumption 2.2.1.viii reflects Assumption 2.2.1.iv. Before we

give some more remarks on these assumptions, let us introduce a notion of

asymptotic normality for counting process models.

2.2.2 Definition (Asymptotic Normality). a) A sequence of filtered prob-

ability spaces
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, is said to be asymptotically normal

restricted to the time t ∈ (0,∞] with positive semi-definite asymptotic in-

formation matrix J (t) ∈ Rm×m, if

log
dP (t)

n,ξ

dP (t)
n,0

− ξTSn(t) +
1
2
ξTJ (t)ξ −→Pn,0 0, for all ξ ∈ Rm,

where Sn(t) is Fn,t-measurable and Sn(t) D−→Pn,0 N
(
0,J (t)

)
as n → ∞.

Sn(t), n ∈ N, is called central sequence.

b) A sequence of filtered probability spaces is said to be asymptotically normal,

if it is asymptotically normal restricted to the time ∞.
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2.2.3 Remark. a) Restricting the sequence of filtered probability spaces to

time t means for a statistical experiment that we only consider the informa-

tion up to time t. At this point Definition 2.2.2 pays tribute to the fact that

it is often easier to consider counting process models on compact intervals

[0, t] rather than on R+.

b) If Xn is Fn,t-measurable for all n ∈ N, then Xn
D−→Pn,ξ

X, as n → ∞,

and Xn
D−→

P
(t)
n,ξ

X, as n → ∞ are equivalent. If additionally Yn is also

Fn,t-measurable for all n ∈ N, then Xn − Yn −→Pn,ξ
0, as n → ∞, and

Xn − Yn −→P
(t)
n,ξ

0, as n→∞ are also equivalent.

c) Asymptotic normality yields that

log dP (t)
n,ξ/dP

(t)
n,0

D−→
P

(t)
n,0

N
(
−1

2
ξTJ (t)ξ, ξTJ (t)ξ

)
for all ξ ∈ Rm.

Moreover, the First Le Cam Lemma, cf. Witting and Müller-Funk [72, Ko-

rollar 6.124], gives that the sequences of probability measures
{
P

(t)
n,ξ | n ∈ N

}
and

{
P

(t)
n,0 | n ∈ N

}
are mutual contiguous. In particular convergence in

P
(t)
n,0-probability implies convergence in P (t)

n,ξ-probability.

One can think of the quantities depending on t in the previous definition,

especially dP (t)
n,ξ/dP

(t)
n,0 and Sn(t), t ∈ R+, as stochastic processes. This leads

to the introduction of the density process.

2.2.4 Definition (Density Process). The process

Υn,ξ =
{

Υn,ξ(t) =
dP (t)

n,ξ

dP (t)
n,0

∣∣∣ t ∈ R+

}
is called the density process of Pn,ξ with respect to Pn,0.

Assumption 2.2.1.i guarantees that the probability measure Pn,ξ can be ap-

proximated by P
(t)
n,ξ for sufficiently large t. More precisely, this condition en-

ables us to approximate the likelihood dPn,ξ/dPn,0 by the density process, see

Proposition 2.2.5. This is an essential step in proving asymptotic normality.
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In the case of external covariates, Assumption 2.2.1.ii means that the distri-

bution of the covariates does not depend on the underlying probability distri-

bution. This property reflects the notion of external covariates presented in

Section 1.1. In this context Assumption 2.2.1.vii seems to be very restrictive,

but it is necessary to ensure that the density process can be represented by the

processes Nn and Ñn. However, this type of filtration is only needed for the

proofs. The following Proposition is a specialisation of a well-known result by

Jacod, cf. Jacod [30] or Jacod and Shiryaev [32, Theorem III.5.19].

2.2.5 Proposition (Jacod’s Formula for the Density Process). Let I(t)

be the interval [0, t], if t ∈ R+, or [0,∞), if t = ∞. Under Assumption 2.2.1, it

holds that

Υn,ξ(t) =
exp
(
−
∑kn

i=1

∫
I(t)

Y
(i)
n (s)α(i)

n,ξ(s) ds
)

exp
(
−
∑kn

i=1

∫
I(t)

Y
(i)
n (s)α(i)

n,0(s) ds
)

× exp

(
kn∑
i=1

∫
I(t)

log
(
α

(i)
n,ξ(s)

α
(i)
n,0(s)

)
dN (i)

n (s)

)
for the density process Υn,ξ

Proof. First of all we note that the filtration Fn is increasing and right con-

tinuous, see Proposition B.5.1. Let us start with finite t. We use the notions

presented in Jacod and Shiryaev [32, Chapter II, Chapter III], especially we

intend to apply Theorem III.5.19. Assumption 2.2.1.iv gives that P (t)
n,ξ � P

(t)
n,0

for all t ∈ R+.

The first and the second characteristic of the process Xn =
(
NT

n , Ñ
T
n

)T can

be chosen identically as 0, cf. Jacod and Shiryaev [32, Definition II.2.6, For-

mula II.3.22]. Setting en,j = (δ1,j , . . . , δ2kn,j), where δi,j denotes the Kronecker

symbol (δi,j = 1 (0), if and only if i = j (i 6= j)), we can represent the multi-

variate point process associated to the jumps of Xn as follows:

µn

(
[0, t], B

)
=

kn∑
i=1

1B

(
en,i

)
·N (i)

n (t) +
kn∑
i=1

1B

(
en,kn+i

)
· Ñ (i)

n (t), B ∈ B2kn ,
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where we use the fact that Xn is a multivariate counting process. See Ja-

cod and Shiryaev [32, Proposition II.1.16 and Definition III.1.23] for detailed

information.

Clearly, µn is a integer-valued random measure, cf. Jacod and Shiryaev [32,

Definition II.1.13, Proposition II.1.16]. Using the fact that N (i)
n − A

(i)
n,ξ and

Ñ
(i)
n − Ã

(i)
n are local martingales, we get that the third characteristic of Xn

under Pn,ξ is given by

νn,ξ

(
[0, t], B

)
=

kn∑
i=1

1B

(
en,i

)
·A(i)

n,ξ(t) +
kn∑
i=1

1B

(
en,kn+i

)
· Ã(i)

n (t), B ∈ B2kn ,

where we use Theorem I.3.18 and Theorem II.1.8.ii of Jacod and Shiryaev [32].

By Girsanov’s Theorem, cf. Jacod and Shiryaev [32, Theorem III.3.24], we

know that there exists a function Un,ξ, such that Un,ξ(ω, t, x) ·νn,0(ω,ds,dx) =

νn,ξ(ω,ds,dx). This function is obviously given by

Un,ξ(ω, t, x) =
kn∑
i=1

α
(i)
n,ξ(ω, t)

α
(i)
n,0(ω, t)

·1(x = en,i)+1
(
x ∈ {en,j | j = kn + 1, . . . , 2kn}

)
.

We see that νn,0

(
ω, {t},R2kn

)
= 0. Evaluating formula III.5.7 in Jacod and

Shiryaev [32] gives that

Hn,ξ(ω, t) =
∫

[0,t]×R2kn

(
1−

√
Un,ξ(ω, s, x)

)
νn,ξ(ω, ds, dx)

=
n∑

i=1

∫
[0,t]

(
1−

√
α

(i)
n,ξ(ω, s)/α

(i)
n,0(ω, s)

)2

Y (i)
n (ω, s) α(i)

n,0(ω, s) ds.

The process Hn,ξ does not jump to infinity, cf. Jacod and Shiryaev [32, Defini-

tion III.5.8], and therefore the condition (ii) of Corollary III.5.22 in Jacod and

Shiryaev [32] is satisfied.

In particular, all local martingales have representation property relative to µn,

cf. Jacod and Shiryaev [32, Condition III.1.25, Equation III.4.35]. It holds that

Υn,ξ(0) = 1 because of Assumption 2.2.1.ii. Evaluation of formula III.5.23 in

Jacod and Shiryaev [32] gives the assertion for finite t.
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In the next step the result is extended to t = ∞. Because of Assump-

tion 2.2.1.iv, Jacod and Shiryaev [32, Proposition III.3.5] give that the den-

sity process is a uniformly integrable martingale, i.e. there exists a integrable

random variable Υn,ξ(∞), such that E
[
Υn,ξ(∞) | Fn,t

]
= Υn,ξ(t). Moreover,

it holds that Υn,ξ(∞) = limt→∞ Υn,ξ(t) Pn,0-almost surely, cf. Jacod and

Shiryaev [32, Theorem I.1.42]. Fn = Fn,∞ is generated by
⋃

t≥0 Fn,t. Note

that for all A,B ∈
⋃

t≥0 Fn,t we have A ∩ B ∈
⋃

t≥0 Fn,t. For B ∈ Ft it holds

that ∫
B

Υn,ξ(∞) dPn,0 =
∫

B

Υn,ξ(t) dPn,0

=
∫

B

Υn,ξ(t) dP (t)
n,0 =

∫
B

1 dP (t)
n,ξ =

∫
B

1 dPn,ξ.

Thus, Υn,ξ(∞) is a version of the density of Pn,ξ with respect to Pn,0.

2.2.6 Remark. In particular, this result means that the censoring mechanism

is non-informative in the sense of Andersen et al. [4, Definition III.2.2]. But

now let us concentrate on the main result of this section.

2.2.7 Theorem. Let I(t) be the interval [0, t], if t <∞, or the interval [0,∞),

if t = ∞. For fixed τ ∈ (0,∞] let J : I(τ) → Rm×m be a continuous

function, such that J (0) = 0 and that the matrix J (t) is positive semi-

definite and symmetric for all t ∈ I(τ). Moreover, assume that the mappings

Jξ : I(τ) −→ R+, t 7→ ξTJ (t)ξ, ξ ∈ Rm, are non-decreasing and continuous.

In the case of τ = ∞, it is supposed that J (∞) = limt→∞ J (t) <∞. Clearly,

J (∞) is positive semi-definite. Abbreviating λ(i)
n,0 = Y

(i)
n α

(i)
n,0 and

f
(i)
n,ξ(s) =


√√√√α

(i)
n,ξ(s)

α
(i)
n,0(s)

− 1

 Y (i)
n (s), i = 1, . . . , kn,

we suppose that the processes
{
α

(i)
n,ξ(t)/α

(i)
n,0(t)Y

(i)
n (t) | t ∈ R+

}
, i = 1, . . . , kn,

are predictable and locally bounded and that Assumption 2.2.1 and the follow-

37



2 Asymptotic Normality

ing conditions hold:

kn∑
i=1

∫
I(t)

f
(i)
n,ξ(s) f

(i)
n,ξ′(s) λ

(i)
n,0(s) ds −→Pn,0

1
4
ξTJ (t)ξ′ (2.3)

and
kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
1
(∣∣f (i)

n,ξ(s)
∣∣ > ε

)
λ

(i)
n,0(s) ds −→Pn,0 0 (2.4)

for all t ∈ [0, τ ], ξ, ξ′ ∈ Rm and ε > 0. Then we have

sup
t∈I(τ)

∣∣∣∣log Υn,ξ(t) +
1
2
Jξ(t)− 2

kn∑
i=1

∫
I(t)

f
(i)
n,ξ(s) dM (i)

n,0

∣∣∣∣ −→Pn,0 0, (2.5)

where M (i)
n,0(s) = N

(i)
n (s)−A

(i)
n,0(s), i = 1, . . . , kn, and{

2
kn∑
i=1

∫
I(t∧τ)

f
(i)
n,ξ(s) dM (i)

n,0

∣∣∣∣ t ∈ R+

}
D−→Pn,0

{
W ◦Jξ(t ∧ τ) | t ∈ R+

}
(2.6)

on D(R+,R) implying{
logΥn,ξ(t ∧ τ) | t ∈ R+

} D−→Pn,0

{
W ◦Jξ(t ∧ τ)−

1
2
Jξ(t ∧ τ)

∣∣∣ t ∈ R+

}
(2.7)

on D(R+,R). Especially, it holds that∣∣∣∣log Υn,ξ(τ) +
1
2
Jξ(τ)− 2

kn∑
i=1

∫
I(τ)

f
(i)
n,ξ(s) dM (i)

n,0

∣∣∣∣ −→Pn,0 0. (2.8)

and

2
kn∑
i=1

∫
I(τ)

f
(i)
n,ξ(s) dM (i)

n,0
D−→Pn,0 N

(
0,Jξ(τ)

)
. (2.9)

As a consequence of the previous implications we get that(
log Υn,ξ1(τ), . . . , log Υn,ξr (τ)

)T D−→Pn,0 N
(
−1

2
ς(τ),S (τ)

)
, (2.10)

where

S (τ) =
(
ξ1, . . . , ξr

)T
J (τ)

(
ξ1, . . . , ξr

)
, ξ1, . . . , ξr ∈ Rm,

ς(τ) =
(
S (1,1)(τ), . . . ,S (r,r)(τ)

)T and r ∈ N.

38



2.3 Asymptotic Normality for Parametric Sub-Models

Proof. See Appendix A.3.

2.2.8 Remark. a) Theorem 2.2.7 is a version of a Theorem stated by Ander-

sen et al. [4, Theorem VIII.2.1], (2.3) and (2.4) imply (2.10). Unfortunately,

they do not present a proof of this theorem, but they accredit this Theorem

to Jacod and Shiryaev [32, Theorem X.1.12]. The Theorem of Jacod and

Shiryaev gives a sufficient and necessary condition for (2.7). However, the

conditions stated there do not coincide with (2.3) and (2.4). Therefore, a

proof of Theorem 2.2.7 is presented in the Appendix.

b) Equation (2.10) could also be used as a definition of the asymptotic normal-

ity, since equation (2.10) implies that the sequence of filtered probability

spaces is asymptotically normal restricted to time τ in the sense of Defi-

nition 2.2.2. This can be see as follows. Set eu =
(
δu,v, v = 1, . . . ,m

)T,

u = 1, . . . ,m, where δu,v denotes the Kronecker symbol. If one sets

Sn(τ) =
(
log Υn,e1(τ), . . . , log Υn,em

(τ)
)T

+
1
2
ς(τ), n ∈ N,

one readily shows using equation (2.10) that Sn(τ) is a central sequence,

where one uses that convergence in distribution to some constant implies

convergence in probability to that constant cf. Witting and Müller-Funk

[72, Hilfssatz 5.82].

c) If (2.3) only holds for ξ = ξ′, then Theorem 2.2.7 stays valid except that

assertion (2.10) only holds for r = 1.

2.3 Asymptotic Normality for Parametric

Sub-Models

In the next Section the main result of Section 2.2 is applied to sequences of

parametric sub-models providing the first key result for the further analysis of

the MCRM. Initially, let us introduce some general premises.
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2 Asymptotic Normality

2.3.1 Assumption. i) The measurable, non-negative function α0 ∈ ℵ is

called baseline hazard. Moreover, we set

τ0 = sup
{
t ∈ R+

∣∣∣ ∫
[0,t]

α0(s) ds <∞
}
.

ii) Suppose that α(i)
n,ξ(s) = exp

(
1√
n
ξTΨn,i(s)

)
α0(s), i = 1, . . . , n, and that

the processes
{
Ψn,i(s)Y

(i)
n (s) | s ∈ R+

}
, i = 1, . . . , n are predictable and

locally bounded.

iii) supt∈[0,t]

∣∣ 1
n

∑n
i=1 Ψ(u)

n,i (t) Ψ(v)
n,i(t)Y

(i)
n (t)−Ψ(u,v)(t)

∣∣ −→Pn,0 0, as n → ∞,

where Ψ(u,v) is some measurable function that is bounded on every interval

of the form [0, t], u, v = 1, . . . ,m, for all t < τ0.

iv) supi∈{1,...,n},s∈[0,t]

{
1√
n

max
1≤u≤m

∣∣Ψ(u)
n,i (s)Y

(i)
n (s)

∣∣} −→Pn,0 0, as n → ∞, for

all t < τ0.

2.3.2 Remark. In Assumption 2.3.1 we consider the supremum of uncount-

ably many random variables. This supremum is not necessarily a random

variable, i.e. a measurable mapping. In the following we always assume that

all suprema of uncountable many random variables are measurable. This ques-

tion will be discussed in Chapter 5. See Proposition B.5.5.a for some condition

guaranteeing the measurability.

2.3.3 Theorem. Let I(t) denote the interval [0, t], if t < ∞, or [0,∞), if

t = ∞. Under Assumption 2.2.1 and Assumption 2.3.1 the sequence of filtered

spaces
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, is asymptotically normal restricted to time τ

with asymptotic information matrix J (τ) =
(
J (u,v)(τ)

)
, where

J (u,v)(τ) =
∫

I(τ)

Ψ(u,v)(s)α0(s) ds, u, v = 1, . . . ,m,

for all τ < τ0. Moreover, it holds that

log Υn,ξ(τ)+
1
2
ξTJ (τ)ξ−2

n∑
i=1

∫
I(τ)

R(i)
n (s, ξ)− 1 dM (i)

n,0(s) −→Pn,0 0, (2.11)
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2.3 Asymptotic Normality for Parametric Sub-Models

where R(i)
n (s, ξ) = exp

(
1

2
√

n
ξTΨn,i(s)Y

(i)
n (s)

)
and M

(i)
n,0 = N

(i)
n − A

(i)
n,0, i =

1, . . . , n. A central sequence is given by

Sn(τ) =
1√
n

(
n∑

i=1

∫
I(τ)

Ψ(u)
n,i (s) dM (i)

n,0(s), u = 1, . . . ,m

)T

. (2.12)

If additionally J (τ0) = limt→τ0 J (t) exists and the conditions

lim
t→τ0

lim sup
n→∞

Pn,0

(∣∣∣∣ n∑
i=1

∫
(t,τ0)

V (i)
n (s, ξ, ξ′) λ(i)

n,0(s) ds
∣∣∣∣ ≥ ε

)
= 0, (2.13)

where V (i)
n (s, ξ, ξ′) =

(
R

(i)
n (s, ξ)− 1

)(
R

(i)
n (s, ξ′)− 1

)
, λ(i)

n,0(s) = Y
(i)
n (s)α0(s),

and

lim
t→τ0

lim sup
n→∞

Pn,0

(∣∣∣∣ 1n
n∑

i=1

∫
(t,τ0)

(
ξTΨn,i(s)

)2
λ

(i)
n,0(s) ds

∣∣∣∣ ≥ ε

)
= 0 (2.14)

hold for all ε > 0, then the above assertions also hold for τ0.

Proof. Note that the processes
{
α

(i)
n,ξ(t) | t ∈ R+

}
, i = 1, . . . , n, ξ ∈ Rm, are

predictable and that the processes{
α

(i)
n,ξ(t)

α
(i)
n,0(t)

Y (i)
n (t)

∣∣∣∣ t ∈ R+

}
, i = 1, . . . , n, ξ ∈ Rm,

are predictable and locally bounded, cf. Proposition B.5.3, where we set 0/0 =

0. We want to apply Theorem 2.2.7. First, it is verified that the condition (2.3),

i.e.
n∑

i=1

∫
I(t)

V (i)
n (s, ξ, ξ′) λ(i)

n,0(s) ds −→Pn,0

1
4
ξTJ (t)ξ′

holds for all ξ, ξ′ ∈ Rm and t ∈ [0, τ ].

Proof of (2.3). For the functions R(i)
n we want to compute a Taylor-expansion

in ξ with fixed s. The Jacobian and the Hessian matrix of R(i)
n are given by

∇ξR
(i)
n (s, ξ) = 1

2
√

n
R

(i)
n (s, ξ) · Ψn,i(s)Y

(i)
n (s) and ∇2

ξR
(i)
n (s, ξ) = 1

4nR
(i)
n (s, ξ) ·

Ψn,i(s) ΨT
n,i(s)Y

(i)
n (s). Therefore, a Taylor-expansion at the point ξ = 0 gives

R(i)
n (s, ξ)−1 =

(
ξTΨn,i(s)

2
√
n

+
1
8n

R(i)
n

(
s, ξn,i(s)

)(
ξTΨn,i(s)

)2)
Y (i)

n (s), (2.15)
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2 Asymptotic Normality

∣∣ξn,i(s)
∣∣ ∈ [0, ξ] =

�m
i=1

[
0, |ξ(i)|

]
, and that the right hand side of (2.3) is equal

to T (1)
n (t) + T

(2)
n (t) + T

(3)
n (t) + T

(4)
n (t), where

T (1)
n (t) =

∫
I(t)

1
4n

n∑
i=1

ξTΨn,i(s) ·ΨT
n,i(s) ξ

′ λ
(i)
n,0(s) ds,

T (2)
n (t) =

∫
I(t)

1
16n3/2

n∑
i=1

ξ′
TΨn,i(s)Q

(i)
n,ξ(s)λ

(i)
n,0(s) ds,

T (3)
n (t) =

∫
I(t)

1
16n3/2

n∑
i=1

ξTΨn,i(s)Q
(i)
n,ξ′(s)λ

(i)
n,0(s) ds,

T (4)
n (t) =

∫
I(t)

1
64n2

n∑
i=1

Q
(i)
n,ξ(s)Q

(i)
n,ξ′(s)λ

(i)
n,0(s) ds

using the abbreviation

Q
(i)
n,ξ(s) = R(i)

n

(
s, ξn,i(s)

) (
ξTΨn,i(s)

)2
Y (i)

n (s).

In the following we are going to use the abbreviations Dn(t) =
(
D

(u,v)
n (t)

)
u, v = 1, . . . ,m, where

D (u,v)
n (t) = sup

s∈[0,t]

∣∣∣∣ 1n
n∑

i=1

Ψ(u)
n,i (s) Ψ(v)

n,i(s)Y
(i)
n (s)−Ψ(u,v)(s)

∣∣∣∣
and |ξ| =

(
|ξ(1)|, . . . , |ξ(m)|

)T. Note that Assumption 2.3.1.iii implies

ζTDn(t)ζ ′ −→Pn,0 0 for all ζ, ζ ′ ∈ Rm. (2.16)

Because of the estimate

∣∣∣T (1)
n (t)− 1

4
ξTJ (t)ξ′

∣∣∣ ≤
1
4

m∑
u,v=1

∣∣ξ(u)ξ′(v)
∣∣ ∫

I(t)

∣∣∣ 1
n

n∑
i=1

Ψ(u)
n,i (s)Ψ(v)

n,i(s)Y
(i)
n (s)−Ψ(u,v)(s)

∣∣∣ α0(s) ds

≤ 1
4

∣∣ξ∣∣TDn(t)
∣∣ξ′∣∣ · ∫

I(t)

α0(s) ds,
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2.3 Asymptotic Normality for Parametric Sub-Models

Assumption 2.3.1.i and (2.16) directly imply T (1)
n (t) −→Pn,0

1
4ξ

TJ (t)ξ′. There-

fore, it remains to be shown that T (i)
n (t), i = 2, 3, 4, converge to 0 in Pn,0-

probability. Note that in the following supi,s = sup1≤i≤n,s∈[0,t]. Because of

ξn,i(s) ∈
[
0, ξ
]

it holds that

sup
i,s

∣∣∣ 1
2
√
n
ξn,i(s)TΨn,i(s)Y (i)

n (s)
∣∣∣ ≤ sup

i,s

1
2
√
n

m∑
u=1

∣∣ξ(u)
n,i (s)

∣∣ · ∣∣Ψ(u)
n,i (s)Y

(i)
n (s)

∣∣
≤ c · sup

i,s

1√
n

m∑
u=1

∣∣Ψ(u)
n,i (s)Y

(i)
n (s)

∣∣
≤ m · c · sup

i,s

1√
n

max
1≤u≤m

∣∣Ψ(u)
n,i (s)Y

(i)
n (s)

∣∣,
where c = max1≤u≤m|ξ(u)|. Assumption 2.3.1.iv gives

sup
i,s

∣∣∣ 1
2
√
n
ξn,i(s)TΨn,i(s)Y (i)

n (s)
∣∣∣ −→Pn,0 0 and sup

i,s
R(i)

n (s, ξn,i(s)) −→Pn,0 1.

(2.17)

One easily obtains that

∣∣T (2)
n (t)

∣∣ ≤ sup
i,s

∣∣∣ 1
2
√
n
ξ′

TΨn,i(s)Y (i)
n (s)

∣∣∣ · ∫
I(t)

1
n

n∑
i=1

Q
(i)
n,ξ(s)λ

(i)
n,0(s) ds

≤ sup
i,s

R(i)
n (t, ξn,i(t)) sup

i,s

∣∣∣ 1
2
√
n
ξ′

TΨn,i(s)Y (i)
n (s)

∣∣∣
×
∫

I(t)

1
n

n∑
i=1

(
ξTΨn,i(s)

)2
λ

(i)
n,0(s) ds

≤ sup
i,s

R(i)
n (s, ξn,i(s)) · sup

i,s

∣∣∣ 1
2
√
n
ξ′

TΨn,i(s)Y (i)
n (s)

∣∣∣
×

(
|ξ|TDn|ξ| ·

∫
I(t)

α0(s) ds+ |ξ|TJ (t)|ξ|

)
.

(2.18)

Assumption 2.3.1.i, (2.16) and (2.17) imply T
(2)
n (t) −→Pn,0 0. By a similar

estimate one shows T (3)
n (t) −→Pn,0 0.

In a last step we show T
(4)
n −→Pn,0 0. First, note that (2.17) implies

sup
i,s

∣∣∣ 1
2
√
n
ξn,i(s)TΨn,i(s)Y (i)

n (s)
∣∣∣2 −→Pn,0 0, (2.19)
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then (2.16), (2.17) and (2.19) using the estimate

|T (4)
n (t)| ≤ 1

64
sup
i,s

R(i)
n (s, ξ′n,i(s)) · sup

i,s
R(i)

n (s, ξn,i(s))

×
∫

I(t)

1
n2

n∑
i=1

(ξ′TΨn,i(s))2 (ξTΨn,i(s))2 λ
(i)
n,0(s) ds ≤

1
16

sup
i,s

R(i)
n (t, ξ′n,i(s)) sup

i,s
R(i)

n (s, ξn,i(s)) sup
i,s

∣∣∣ 1
2
√
n
ξ′

TΨn,i(s)Y (i)
n (s)

∣∣∣2
×
(
|ξ|TDn(t)|ξ|·

∫
I(t)

α0(s) ds+ |ξ|TJ (t)|ξ|
)

(2.20)

give the assertion and therefore condition (2.3) holds. The second condition to

verify is (2.4), i.e.

n∑
i=1

∫
I(t)

(
R(i)

n (s, ξ)− 1
)2
1

(∣∣R(i)
n (s, ξ)− 1

∣∣ > ε
)
λ

(i)
n,0(s) ds −→Pn,0 0

for all t ∈ [0, τ ] and for all ε > 0. Again, a Taylor-expansion gives that the

right hand side of (2.4) equals T (1)
n,ε(t) + 2T (2)

n,ε(t) + T
(3)
n,ε(t), where

T (1)
n,ε(t) =

∫
I(t)

1
4n

n∑
i=1

(
ξTΨn,i(s)

)2
1
(∣∣R(i)

n (s, ξ)− 1
∣∣ > ε

)
λ

(i)
n,0(s) ds,

T (2)
n,ε(t) =

∫
I(t)

2
16n3/2

n∑
i=1

Q
(i)
n,ξ(s) ξ

TΨn,i(s) 1
(∣∣R(i)

n (s, ξ)− 1
∣∣ > ε

)
λ

(i)
n,0(s) ds,

T (3)
n,ε(t) =

∫
I(t)

1
64n2

n∑
i=1

(
Q

(i)
n,ξ(s)

)2
1
(∣∣R(i)

n (s, ξ)− 1
∣∣ > ε

)
λ

(i)
n,0(s) ds.

It holds the estimates

∣∣T (2)
n,ε(t)

∣∣ ≤ sup
i,s

∣∣∣ 1
2
√
n
ξTΨn,i(s) Y (i)

n (s)
∣∣∣ · ∫

I(t)

1
n

n∑
i=1

Q
(i)
n,ξ(s)λ

(i)
n,0(s) ds,

and ∣∣T (3)
n,ε(t)

∣∣ ≤ ∫
I(t)

1
64n2

n∑
i=1

(
Q

(i)
n,ξ(s)

)2
λ

(i)
n,0(s) ds.

Now, (2.18) and (2.20) (with ξ′ = ξ) give that T (i)
n,ε(t) −→Pn,0 0, i = 2, 3. Thus,
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it merely remains to be proved that T (1)
n,ε(t) −→Pn,0 0. Applying a Taylor-

expansion to the function in the indicator function and using the abbreviation

C = sup
i,s

∣∣∣ 1
2
√
n
ξTΨn,i(s) Y (i)

n (s)
∣∣∣

+ sup
i,s

R(i)
n (s, ξn,i(s)) · sup

i,s

∣∣∣ 1
2
√
n
ξTΨn,i(s) Y (i)

n (s)
∣∣∣2

one gets

∣∣T (1)
n,ε(t)

∣∣ ≤ 1
(
C > ε

)
·
∫

I(t)

1
n

n∑
i=1

(
ξTΨn,i(s)

)2
λ

(i)
n,0(s) ds. (2.21)

Note that 1
(
C > ε

)
−→Pn,0 0 because of (2.17) and (2.19). The estimate (2.21)

gives T (1)
n,ε(t) −→Pn,0 0. Thus, (2.4) also holds. The matrix J (t) is obviously

symmetric. Because of

n∑
i=1

∫
I(t)

(
R(i)

n (s, ξ)− 1
)2
λ

(i)
n,0(s) ds ≥ 0 for all n ∈ N and ξ ∈ Rm

and the convergence in (2.3), it holds that J (t) is positive semi-definite. The-

orem 2.2.7 implies (2.11).

We show that Sn is indeed a central sequence. A Taylor expansion, cf. (2.15),

gives

2
n∑

i=1

∫
I(τ)

R(i)
n (s, ξ)− 1 dM (i)

n,0(s)−
1√
n

n∑
i=1

∫
I(τ)

ξTΨn,i(s)Y (i)
n (s) dM (i)

n,0(s)

= − 1
4n

n∑
i=1

∫
I(τ)

Rn,i(s, ξn,i(s)) ·
(
ξTΨn,i(s)

)2
Y (i)

n (s) dM (i)
n,0(s).

We want to apply Lemma 2.1.8. Rn,i(s, ξn,i(s)) ·
(
ξTΨn,i(s)

)2
Y

(i)
n (s), i =

1, . . . , n, are predictable and locally bounded because of (2.15).

The estimate

0 ≤
∫

I(τ)

1
16n2

n∑
i=1

(
R(i)

n (s, ξn,i(s))
)2 (

ξTΨn,i(s)
)4
λ

(i)
n,0(s) ds ≤ 4T (4)

n (τ)
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and T
(4)
n (τ) −→Pn,0 0 (ξ′ = ξ) yield that 2

∑n
i=1

∫
I(τ)

R
(i)
n (s, ξ)− 1 dM (i)

n,0(s)

and ξTSn(τ) are asymptotically equivalent. We know that ξTSn(τ) D−→Pn,0

N
(
0, ξTJ (τ)ξ

)
, for all ξ ∈ Rm. By applying the Cramér-Wold-device, cf.

Billingsley [9, Theorem 7.7], one obtains that Sn is a central sequence. Up

to now, it was shown that
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, restricted to time τ is

asymptotically normal.

In order to proof the last assertion one uses Theorem 2.1.1 to show that (2.3)

and (2.4) also hold for τ0. Assume that τk < τ0, k ∈ N, and limk→∞ τk = τ0.

Set

Xn,k =
n∑

i=1

∫
I(τk)

(
R(i)

n (s, ξ)− 1
)(
R(i)

n (s, ξ′)− 1
)
λ

(i)
n,0(s) ds,

X̃n =
n∑

i=1

∫
I(τ0)

(
R(i)

n (s, ξ)− 1
)(
R(i)

n (s, ξ′)− 1
)
λ

(i)
n,0(s) ds,

Xk = 1
4ξ

TJ (τk)ξ′ and X = 1
4ξ

TJ (τ0)ξ′. We showed that Xn,k
D−→Pn,0 Xk,

as n → ∞, and obviously it holds that Xk
D−→Pn,0 X as n → ∞. As we

assumed that

lim
k→∞

lim sup
n→∞

Pn,0

(∣∣Xn,k − X̃n

∣∣ ≥ δ
)

= 0 (2.22)

for all δ > 0, it follows that (2.3) also holds for τ0. With a similar consideration

one shows that (2.4) holds. Set

X ′
n,k =

n∑
i=1

∫
I(τk)

(
R(i)

n (s, ξ)− 1
)2
1
(∣∣R(i)

n (s, ξ)− 1
∣∣ ≥ ε

)
λ

(i)
n,0(s) ds,

X̃ ′
n =

n∑
i=1

∫
I(τ0)

(
R(i)

n (s, ξ)− 1
)2
1
(∣∣R(i)

n (s, ξ)− 1
∣∣ ≥ ε

)
λ

(i)
n,0(s) ds,

and X ′
k = 0 and X ′ = 0. Because of

Pn,0

(
|X ′

n,k − X̃ ′
n| ≥ δ

)
≤ Pn,0

(
|Xn,k − X̃n| ≥ δ

)
(with ξ = ξ′),

(2.22) and Theorem 2.1.1 give that (2.4) also holds for τ0. Applying Theo-

rem 2.2.7 yields that the assertions also hold for τ0 except (2.12).

46
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In the last step we show that Pn,0

(∣∣S̃n,ξ(τ0)− ξTSn(τ0)
∣∣ ≥ ε

)
→ 0, as n→∞.

It holds that

Pn,0

(∣∣S̃n,ξ(τ0)− ξTSn,ξ(τ0)
∣∣ ≥ ε

)
≤ Pn,0

(∣∣S̃n,ξ(τ0)− S̃n,ξ(τ)
∣∣ ≥ ε/3

)
+

Pn,0

(∣∣S̃n,ξ(τ)− ξTSn(τ)
∣∣ ≥ ε/3

)
+ Pn,0

(∣∣ξTSn(τ)− ξTSn(τ0)
∣∣ ≥ ε/3

)
,

where S̃n,ξ(t) = 2
∑n

i=1

∫
I(t)

R
(i)
n (s, ξ)− 1 dM (i)

n,0(s). It was already shown that

the second summand on the right hand side converges to 0 as n→∞. There-

fore, there remains to be shown that the first and the third summand on the

right hand side get arbitrarily small. For all η > 0 we can choose τ ∈ R+, such

that hξ = η/4− ξT
(
J (τ0)−J (τ)

)
ξ/4 > 0 and

lim sup
n→∞

Pn,0

(∣∣∣∣ 1n
n∑

i=1

∫
(τ,τ0)

(
ξTΨn,i(s)

)2
λ

(i)
n,0(s) ds

∣∣∣∣ ≥ η

)
≤ 9η/ε2, (2.23)

where we use equation (2.14).

Applying Corollary 2.1.7 to the first summand gives

Pn,0

(∣∣S̃n,ξ(τ0)− S̃n,ξ(τ)
∣∣ ≥ ε/3

)
≤

9η
ε2

+ Pn,0

( n∑
i=1

∫
(τ,τ0)

(
R(i)

n (s, ξ)− 1
)2
λ

(i)
n,0(s) ds ≥ η/4

)
≤

9η
ε2

+ Pn,0

(∣∣∣∣ n∑
i=1

∫
I(τ)

(
R(i)

n (s, ξ)− 1
)2
λ

(i)
n,0(s) ds− ξTJ (τ)ξ/4

∣∣∣∣ ≥ hξ/2
)

+ Pn,0

(∣∣∣∣ n∑
i=1

∫
I(τ0)

(
R(i)

n (s, ξ)− 1
)2
λ

(i)
n,0(s) ds− ξTJ (τ0)ξ/4

∣∣∣∣ ≥ hξ/2
)
.

We get that lim supn→∞ Pn,0

(∣∣S̃n,ξ(τ0)− S̃n,ξ(τ)
∣∣ ≥ ε/3

)
≤ 9η/ε2, since (2.3)

holds for all t ∈ [0, τ0]. Again, applying Corollary 2.1.7 to the third summand

gives

Pn,0

(∣∣ξTSn(τ)− ξTSn(τ0)
∣∣ ≥ ε/3

)
≤ 9η
ε2

+ Pn,0

(∣∣∣∣ 1n
n∑

i=1

∫
(τ,τ0)

(
ξTΨn,i(s)

)2
λ

(i)
n,0(s) ds

∣∣∣∣ ≥ η

)
.
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Thus, it holds that lim supn→∞ Pn,0

(
|ξTSn(τ)− ξTSn(τ0)| ≥ ε/3

)
≤ 18η/ε2,

where we use (2.23). All in all, we proved that

lim sup
n→∞

Pn,0

(∣∣S̃n,ξ(τ0)− ξTSn,ξ(τ0)
∣∣ ≥ ε

)
≤ 27η

ε2
,

using the fact that η was arbitrarily chosen, the result is our assertion.

The next result gives the asymptotic distribution of a central sequence under

alternatives.

2.3.4 Corollary. In the situation of Theorem 2.3.3, it holds that

Sn(τ) D−→Pn,ξ
N
(
J (τ)ξ,J (τ)

)
.

Proof. As Sn(τ), n ∈ N is a central sequence, we know by applying the

Cramér-Wold device, cf. Witting and Müller-Funk [72, Korollar 5.69], that

ϑTSn(τ) D−→Pn,0 N(0, ϑTJ ϑ) for all ϑ ∈ Rm, therefore it holds that

ζ1

(
ξTSn(τ)− 1

2
ξTJ (τ)ξ

)
+ ζ2ϑ

TSn(τ)

=
(
ζ1 · ξ + ζ2 · ϑ

)T
Sn(τ)− 1

2
ζ1ξ

TJ (τ)ξ

D−→Pn,0 N
(
−1

2
ζ1ξ

TJ (τ)ξ, (ζ1 · ξ + ζ2 · ϑ)TJ (τ)(ζ1 · ξ + ζ2 · ϑ)
)

for all (ζ1, ζ2)T ∈ R2, where we applied Slutsky’s Lemma, cf. Witting and

Müller-Funk [72, Korollar 5.84]. Noting that

ζ1 log Υn,ξ(τ) + ζ2ϑ
TSn −

(
ζ1

(
ξTSn −

1
2
ξTJ ξ

)
+ ζ2ϑ

TSn

)
−→Pn,0 0

and applying the Cramér-Wold device yields(
log Υn,ξ(τ)

ϑTSn(τ)

)
D−→Pn,0 N

((
− 1

2ξ
TJ ξ

0

)
,

(
ξTJ ξ ϑTJ ξ

ϑTJ ξ ϑTJ ϑ

))
.

Le Cam’s Third Lemma, cf. Witting and Müller-Funk [72, Korollar 6.139],

implies ϑTSn(τ) D−→Pn,ξ
N(ϑTJ ξ, ϑTJ ϑ) for all ϑ ∈ Rm. Applying the

Cramér-Wold device gives the second assertion.
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2.3.5 Remark. In the proof of Theorem 2.3.3 we merely use the fact that

that the exponential function is two times continuously differentiable with the

Taylor expansion exp(x) = 1+x+O(x2) at the point x0 = 0. Therefore, we can

substitute the exponential function by any strictly positive function g that is

two times continuously differentiable with the Taylor expansion g(x) = 1+x+

O(x2) in the point x0 = 0. In order to receive some suitable stochastic ordering

one should also demand that this function is monotone. In the subsequent

considerations we only employ the just mentioned properties of the exponential

function.

Now, it is intended to apply the previous result to localized, q-dimensional

parametric sub-models, i.e. Definition 1.3.4 holds for all n ∈ N. In particular,

this means that

α
(i)
n,ξ(s) = exp

(
1√
n
· βTZn,i } γ(s) +

1√
n
· ηTγ̃(s)

)
α0(s) s ∈ R+,

i = 1, . . . , n, where Zn,i denotes the covariate process of the i-th observation.

However, we have to introduce some more notions and assumptions. The fol-

lowing Definition will play a central role in Chapter 3.

2.3.6 Definition (Parametric Sub-Sub-Model). a) Let

Qn =
{
Qn,ξ̄ | ξ̄ = (β̄T, η̄T), β̄ ∈ Rr̄, η̄ ∈ Rq̄

}
⊂ Pn

be a family of probability measures, 1 ≤ r̄ ≤ r and 1 ≤ q̄ ≤ q. If there

exists two matrices T1 ∈ Rr×r̄ and T2 ∈ Rq×q̄, such that under Qn,ξ̄ the

counting process Nn has the Fn-compensator An,T ξ̄, where

T =

(
T1 0

0 T2

)
∈ R(r+q)×(r̄+q̄),

for all ξ̄ ∈ Rr̄+q̄, then we call
(
Ωn,Fn,Fn,Qn

)
a (r̄, q̄)-sub-sub-model of

the localized, q-dimensional parametric sub-model
(
Ωn,Fn,Fn,Pn

)
with

transformation-matrix T .
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b) Assume that
(
Ωn,Fn,Fn,Qn

)
is a (r̄, q̄)-sub-sub-model with transformation-

matrix T for all n ∈ N. Then the sequence
(
Ωn,Fn,Fn,Qn

)
, n ∈ N, is

called a sequence of (r̄, q̄)-sub-sub-models with transformation-matrix T .

In this Definition we allow the interesting parameter β and the nuisance pa-

rameter η only to vary in the subspaces given by the matrices T1 and T2.

In other words some additional restrictions are imposed on the parameters.

These restrictions mean that we also have some more information on the pa-

rameter. Considering sequences of sub-sub-models turns out to be important

for determining sequences of so-called hardest parametric sub-models of the

MCRM. These sequences share some nice properties and enable us to derive a

suitable statistic on which we can base the testing on β. However, before we

can proceed we need some more notation.

2.3.7 Definition. a) We agree that

u̇ = l, if
l−1∑
v=1

rv < u ≤
l∑

v=1

rv, l ∈ {1, . . . , p}, and ü = u−
u̇−1∑
v=1

rv,

for 1 ≤ u ≤ r where the ru’s were introduced in Definition 1.3.2. The

functions u̇ and ü are called index functions.

b) In the following we use the abbreviations

µ̂n,0(s) =
1
n

n∑
i=1

Y (i)
n (s),

µ̂
(u)
n,1(s) =

1
n

n∑
i=1

Z
(u)
n,i (s)Y (i)

n (s), u = 1, . . . , p,

µ̂
(u,v)
n,2 (s)=

1
n

n∑
i=1

Z
(u)
n,i (s)Z(v)

n,i (s)Y
(i)
n (s), u, v = 1, . . . , p.

2.3.8 Remark. a) Definition 2.3.7.a enables us to easily determine the weight

function γ(·,·) corresponding with β(u), u ∈ {1, . . . , r}. The index functions

help us to keep the notation simple, see also Remark 1.3.3.b.
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2.3 Asymptotic Normality for Parametric Sub-Models

b) The quantities of Definition 2.3.7.b will be crucial for the further treat-

ment of the MCRM. µ̂n,0 is an estimator of the survival function of the

censored survival times. µ̂n,1 and µ̂n,2 are basically estimators of the mo-

ments of covariates. However, these estimators only use the covariates of

the individuals that are still at-risk, i.e. they only depend on observations

that are available. Note that µ̂n,0(s) = 0 always implies that µ̂(u)
n,1(s) = 0,

u = 1, . . . , p. Using the definition 0/0 = 0 gives that the fraction µ̂(u)
n,1/µ̂n,0

is always defined.

2.3.9 Assumption. The functions µ0, µ
(u)
1 and µ

(u,v)
2 , u, v = 1, . . . , p, are

measurable and real-valued. Furthermore, it is assumed that

i) τ0 = sup
{
t ∈ R+

∣∣ ∫
[0,t]

α0(s) ds <∞
}
, where α0 ∈ ℵ is a measurable,

non-negative function called baseline hazard.

ii) The processes
{
Z

(u)
n,i (s)Y (i)

n (s) | s ∈ R+

}
, u = 1, . . . , p, i = 1, . . . , n, n ∈ N,

are predictable and locally bounded.

iii) µ0, µ
(u)
1 and µ(u,v)

2 , u, v = 1, . . . , p, are bounded on every interval [0, t] for

all t < τ0.

iv) sups∈[0,t]

∣∣µ̂n,0(s)− µ0(s)
∣∣ −→Pn,0 0 for all t < τ0.

v) sups∈[0,t]

∣∣µ̂(u)
n,1(s)− µ

(u)
1 (s)

∣∣ −→Pn,0 0 for all u = 1, . . . , p and t < τ0.

vi) sups∈[0,t]

∣∣∣µ̂(u,v)
n,2 (s)− µ

(u,v)
2 (s)

∣∣∣ −→Pn,0 0 for all u, v = 1, . . . , p and t < τ0,

vii) supi∈{1,...,n}, s∈[0,t]

{
1√
n

max
1≤u≤p

∣∣Z(u)
n,i (s) Y (i)

n (s)
∣∣} −→Pn,0 0 for all t < τ0.

viii) The real-valued functions γ(u̇,ü), u = 1, . . . , r, are bounded on every inter-

val [0, t] for all t < τ0.

ix) The real-valued functions γ̃(u), u = 1, . . . , q, are bounded on every interval

[0, t] for all t < τ0.

Andersen and Gill, who consider the asymptotic properties of the partial like-

lihood estimator for β under the CRM, have to assume conditions similar
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to Assumption 2.3.9 for deriving their results, cf. Andersen et al. [4, Condi-

tion VII.2.1] or Andersen and Gill [5]. After this preparations we can state the

main result of this section.

2.3.10 Theorem. a) Let I(t) denote the interval [0, t], if t <∞, or [0,∞), if

t = ∞. Under Assumption 2.2.1 and Assumption 2.3.9, the sequence of lo-

calized, q-dimensional parametric sub-models of the MCRM (Ωn,Fn,Fn,Pn),

n ∈ N, is asymptotically normal restricted time τ , for all τ < τ0. The

asymptotic information matrix

J (τ) =

(
J1,1(τ) J1,2(τ)

J2,1(τ) J2,2(τ)

)
,

is given by the matrices

J1,1(τ) =
(
J

(u,v)
1,1 (τ)

)
∈ Rr×r,

J2,2(τ) =
(
J

(u,v)
2,2 (τ)

)
∈ Rq×q,

J1,2(τ) = J T
2,1(τ) =

(
J

(u,v)
1,2 (τ)

)
∈ Rr×q,

where

J
(u,v)
1,1 (τ) =

∫
I(τ)

γ(u̇,ü)(s) γ(v̇,v̈)(s)µ(u̇,v̇)
2 (s)α0(s) ds,

J
(u,v)
2,2 (τ) =

∫
I(τ)

γ̃(u)(s) γ̃(v)(s)µ0(s)α0(s) ds,

J
(u,v)
1,2 (τ) =

∫
I(τ)

γ(u̇,ü)(s) γ̃(v)(s)µ(u̇)
1 (s)α0(s) ds.

A central sequence is given by Sn(τ) =
(
ST

n,1(τ), S
T
n,2(τ)

)T, where

Sn,1(τ) =
1√
n

(
n∑

i=1

∫
I(τ)

γ(u̇,ü)(s)Z(u̇)
n,i (s) dM (i)

n,0(s), u = 1, . . . , r

)T

,

Sn,2(τ) =
1√
n

(
n∑

i=1

∫
I(τ)

γ̃(u)(s) dM (i)
n,0(s), u = 1, . . . , q

)T

.
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Assume that limt→τ0 J (t) = J (τ0) exists and set

Ψn,i(t) = Y (i)
n (t) ·

((
Zn,i } γ(t)

)T
, γ̃T(t)

)T

, t ∈ R+, i = 1, . . . , n.

If the condition

lim
t→τ0

lim sup
n→∞

Pn,0

(∣∣∣∣ n∑
i=1

∫
(t,τ0)

V (i)
n (s, ξ, ξ′) λ(i)

n,0(s) ds
∣∣∣∣ ≥ ε

)
= 0, (2.24)

where

V (i)
n (s, ξ, ξ′) =

(
exp
(

1
2
√
n
ξTΨn,i(s)

)
− 1
)(

exp
(

1
2
√
n
ξ′

TΨn,i(s)
)
− 1
)
,

and λ(i)
n,0(s) = Y

(i)
n (s)α0(s), s ∈ R+, and the condition

lim
t→τ0

lim sup
n→∞

Pn,0

(∣∣∣∣ 1n
n∑

i=1

∫
(t,τ0)

(
ξTΨn,i(s)

)2
λ

(i)
n,0(s) ds

∣∣∣∣ ≥ ε

)
= 0 (2.25)

hold for all ξ, ξ′ ∈ Rr+q and ε > 0, then the previous assertions also hold

for τ = τ0.

b) Let
(
Ωn,Fn,Fn,Qn

)
, n ∈ N, be a sequence of (r̄, q̄)-sub-sub-models with

transformation matrix T in the sense of Definition 2.3.6. Under Assump-

tion 2.2.1 and Assumption 2.3.9, the sequence
(
Ωn,Fn,Fn,Qn

)
, n ∈ N,

is asymptotically normal restricted to time τ with asymptotic information

matrix T TJ (τ)T for all τ < τ0. A central sequence is given by T TSn(τ).

In particular, we have

T TSn(τ) D−→Qn,ξ̄
N
(
T TJ (τ)T ξ̄, T TJ (τ)T

)
.

Assume that limt→τ0 T TJ (t)T = T TJ (τ0)T exists and set Ψn,i =

T TΨn,i, i = 1, . . . , n, n ∈ N. If the condition (2.24), where

V (i)
n (s, ξ, ξ′) =

(
exp
(

1
2
√
n
ξTΨn,i(s)

)
− 1
)(

exp
(

1
2
√
n
ξ′

TΨn,i(s)
)
− 1
)
,

and the condition

lim
t→τ0

lim sup
n→∞

Pn,0

(∣∣∣∣ 1n
n∑

i=1

∫
(t,τ0)

(
ξTΨn,i(s)

)2
λ

(i)
n,0(s) ds

∣∣∣∣ ≥ ε

)
= 0 (2.26)
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hold for all ξ, ξ′ ∈ Rr̄+q̄, then the previous assertions of Theorem 2.3.10.b

also hold for τ = τ0.

Proof. We want to apply Theorem 2.3.3 to prove the assertions of b). Choose

τ < τ0. As a first step, we show that the processes

Ψn,i,τ =
{
Ψn,i(t ∧ τ) | t ∈ R+

}
, i = 1, . . . , n,

are predictable and locally bounded and that Assumption 2.3.1 holds. In the

following we set m = r̄ + q̄ and m = r + q.

Using Assumption 2.3.9.viii and Assumption 2.3.9.ix, one can easily see that{
γ(u̇,ü)(t ∧ τ) | t ∈ R+

}
, u = 1, . . . , r, and

{
γ̃(v)(t ∧ τ) | t ∈ R+

}
, v = 1, . . . , q,

are predictable and locally bounded processes for all τ <τ0. Assumption 2.3.9.ii

and Proposition B.5.3 yield that the processes
{
Ψn,i(t ∧ τ) | t ∈ R+

}
, i =

1, . . . , n are predictable and locally bounded for all τ < τ0. Again, Propo-

sition B.5.3 gives that
{
Ψn,i(t ∧ τ) | t ∈ R+

}
, i = 1, . . . , n, are predictable and

locally bounded. Therefore, Assumption 2.3.1.ii holds.

Assumption 2.3.1.i is exactly Assumption 2.3.9.i. Moreover, we set

T = max
{∣∣T (u,v)

∣∣ ∣∣∣ u ∈ {1, . . . ,m}, v ∈ {1, . . . ,m}}
and choose C ∈ R+, such that

max
1≤u≤r

{
sup

t∈[0,τ ]

∣∣γ(u̇,ü)(t)
∣∣} ≤ C and max

1≤u≤q

{
sup

t∈[0,τ ]

∣∣γ̃(u)(t)
∣∣} ≤ C. (2.27)

Proof that Assumption 2.3.1.iii holds. We consider 3 cases. For r̄ < u ≤ v ≤ m,

it holds that

Ψ
(u)

n,i (s) =
m∑

k=1

(T T)(u,k)Ψ(k)
n,i(s) =

m∑
k=r+1

T (k,u)Ψ(k)
n,i(s) =

q∑
k=1

T2
(k,u−r̄)Ψ(k+r)

n,i (s).
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2.3 Asymptotic Normality for Parametric Sub-Models

Using (2.27) and Assumption 2.3.9.iv we get that

sup
s∈[0,t]

∣∣∣ 1
n

n∑
i=1

Ψ
(u)

n,i (s) Ψ
(v)

n,i(s)Y
(i)
n (s)

−
q∑

k1,k2=1

T
(k1,u−r̄)

2 T
(k2,v−r̄)

2 γ̃(k1)(s)γ̃(k2)(s)µ0(s)
∣∣∣

≤ C2 T 2 q2 · sup
s∈[0,t]

∣∣µ̂n,0(s)− µ0(s)
∣∣ −→Pn,0 0.

In the case 1 ≤ u ≤ r̄ < v ≤ m, we get that

Ψ
(u)

n,i (s) =
m∑

k=1

(T T)(u,k)Ψ(k)
n,i(s) =

r∑
k=1

T
(k,u)

1 Ψ(k)
n,i(s),

(2.27) and Assumption 2.3.9.v yield

sup
s∈[0,t]

∣∣∣ 1
n

n∑
i=1

Ψ
(u)

n,i (s) Ψ
(v)

n,i(s)Y
(i)
n (s)

−
r∑

k1=1

q∑
k2=1

T
(k1,u)

1 T
(k2,v)

2 γ(k̇1,k̈1)(s) γ̃(k2)(s)µ(k̇1)
1 (s)

∣∣∣
≤ C2 T 2 q ·

r∑
k1=1

sup
s∈[0,t]

∣∣µ̂(k̇1)
n,1 (s)− µ

(k̇1)
1 (s)

∣∣ −→Pn,0 0.

Last but not least, if 1 ≤ u ≤ v ≤ r, Assumption 2.3.9.vi and (2.27) give that

sup
s∈[0,t]

∣∣∣ 1
n

n∑
i=1

Ψ̄(u)
n,i (s) Ψ̄(v)

n,i(s)Y
(i)
n (s)

−
r∑

k1=1

r∑
k2=1

T
(k1,u)

1 T
(k2,v)

1 γ(k̇1,k̈1)(s) γ(k̇2,k̈2)(s)µ(k̇1,k̇2)
2 (s)

∣∣∣
≤ T 2 C2 ·

r∑
k1=1

r∑
k2=1

sup
s∈[0,t]

∣∣µ̂(k̇1,k̇2)
n,2 (s)− µ

(k̇1,k̇2)
2 (s)

∣∣ −→Pn,0 0.

Proof that Assumption 2.3.1.iv holds. Note that supi∈{1,...,n}, s∈[0,t] is abbre-
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2 Asymptotic Normality

viated to supi,s. It holds that

sup
i,s

1√
n

max
1≤u≤m

∣∣Ψ(u)

n,i (s)
∣∣ ≤ sup

i,s

1√
n

max
1≤u≤r̄

∣∣Ψ(u)

n,i (s)
∣∣+ sup

i,s

1√
n

max
r̄<u≤m

∣∣Ψ(u)

n,i (s)
∣∣

= s(1)n + s(2)n .

Because of (2.27) we have s(2)n ≤ 1√
n
q T C −→ 0, as n→∞, and

s(1)n =
1√
n

sup
i,s

max
1≤u≤r̄

∣∣ r∑
k=1

T
(k,u)

1 γ(k̇,k̈)(s)Z(k̇)
n,i (s)Y

(i)
n (s)

∣∣
≤ 1√

n
sup
i,s

max
1≤u≤r̄

r∑
k=1

∣∣T (k,u)
1

∣∣ ∣∣γ(k̇,k̈)(s)
∣∣ ∣∣Z(k̇)

n,i (s)Y
(i)
n (s)

∣∣
≤ r T C · 1√

n
sup
i,s

max
1≤u≤p

∣∣Z(u)
n,i (s)Y (i)

n (s)
∣∣ −→Pn,0 0,

where we use Assumption 2.3.9.vii. The formula for the central sequence re-

sults from (2.12). The asymptotic distribution of the central sequence under

alternatives is a consequence of Corollary 2.3.4. The conditions stated to ex-

tend the result to the point τ0 are exactly the conditions (2.13) and (2.14) of

Theorem 2.3.3.

Assertion a) is a special case of assertion b), choose T as (m × m)-unity

matrix.

2.3.11 Remark. a) If the condition (2.24) in Theorem 2.3.10.a holds then

(2.24) also holds with the V
(i)
n (·, ξ, ξ′), i = 1, . . . , n, ξ, ξ′, n ∈ N, given

in Theorem 2.3.10.b. Moreover, the condition (2.25) implies the condi-

tion (2.26).

b) By construction all events occur before τ0 under Pn,0, since

Pn,0

(
Y (i)

n (τ0) = 1
)

= lim
t→τ0

Pn,0

(
Y (i)

n (t) = 1
)

= lim
t→τ0

(
1−Gn,i(t)

)(
1− F0(t)

)
= 0,

where

F0(t) = exp
(
−
∫

I(t)

α0(s) ds
)

and Gn,i(t) = exp
(
−
∫

I(t)

α̃(i)
n (s) ds

)
,
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2.3 Asymptotic Normality for Parametric Sub-Models

and we use Fleming and Harrington [19, Theorem 1.3.1] as well as{
Y (i)

n (τ0) = 1
}

=
⋂
k∈N

{
Y (i)

n (tk) = 1
}
, tk ↑ τ0.

Thus, it holds that Pn,0 = P
(τ0)
n,0 and Υn,ξ(τ0) = Υn,ξ(∞) Pn,0−almost

surely, see Proposition 2.2.5, and Sn(τ0) = Sn(∞) Pn,0-almost surely. In

particular this means that asymptotic normality restricted to time τ0 is

asymptotic normality restricted to time ∞, see Definition 2.2.2.
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3 Sequences of Hardest Parametric

Sub-Models

The development tests for detecting a possible influence of covariates on sur-

vival times is the objective of this dissertation. In Chapter 1 it was shown

that the MCRM is a reasonable mathematical description for the interaction

between covariates and survival times. However, instead of looking at the

MCRM we considered sequences of localized, q-dimensional parametric sub-

models of the MCRM and proved asymptotic normality, see Theorem 2.3.10.

These parametric sub-models depend on the choice of the number of nuisance

parameters q, the nuisance directions γ̃ and the foot-point α0. In contrast to the

choice of γ, a statistician has no indication for a sensible choice of these quan-

tities. From this point of view studying sequences of parametric sub-models

seems to be a cul-de-sac, if one wants to obtain some test that is applicable

under the MCRM, since one can suspect that any reasonable testing procedure

derived from some parametric sub-model should depend on the above men-

tioned nuisance quantities. However, this is not the case, if the underlying

localized parametric sub-models are ”big enough“, i.e. the sequence of local-

ized, q-dimensional parametric sub-models is a sequence of hardest parametric

sub-models (SHPSM).

In Section 3.1 we will discuss the notion of sequences of hardest parametric

sub-models which leads to an algebraic Definition of SHPSM. In Section 3.2

the properties of SHPSM are investigated. Among others, we construct a test

statistic that is independent of the sequence of the underlying parametric sub-

models, as long as this sequence of parametric sub-models is a SHPSM. In
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3 Sequences of Hardest Parametric Sub-Models

Chapter 4 it turns out that this test statistic is important for the analysis of

our testing problems. All in all this chapter provides a justification why it is

sufficient to consider localized parametric sub-models.

3.1 Primary Remarks

In this section the notion of sequences of hardest parametric sub-models is

derived. In the following we assume that
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, is some se-

quence of localized, q-dimensional parametric sub-models of the MCRM. More-

over, it is assumed that this sequence is asymptotically normal restricted to

time τ , where 0 < τ ≤ ∞, with asymptotic information matrix J (τ), that

m = q + r and that Fn,∞ = Fn.

3.1.1 Discussion. The sequence of statistical experiments
(
Ωn,Fn,P

(τ)
n

)
,

P
(τ)
n = {P (τ)

n,ξ | ξ = (βT, ηT)T ∈ Rm}, n ∈ N, converges weakly to some Gauss

shift experiment
(
Ω,A,P(τ)

)
, P(τ) = {Pτ,ξ | ξ = (βT, ηT)T ∈ Rm}, with cen-

tral random variable ST(τ) =
(
ST

1 (τ) , ST
2 (τ)

)T : (Ω,A) −→ (Rm,Bm), i.e.

dPτ,ξ

dPτ,0
= exp

(
STξ − 1

2
ξTJ (τ)ξ

)
Pτ,0-almost surely,

L
(
S | Pτ,0

)
= N

(
0,J (τ)

)
, cf. Strasser [68, Theorem 80.2]. For the rest of

this discussion we drop the index τ , if possible. Let us consider the limit

experiment. It holds that

PS
τ,β,η = N

((
J1,1 J1,2

J2,1 J2,2

)(
β

η

)
,

(
J1,1 J1,2

J2,1 J2,2

))
.

For the binary testing problem β = 0, η = η̃ versus β = β0 6= 0, η = η0 the

Neyman-Pearson test to the level α ∈ (0, 1) is given by

φ(s1, s2) =

{
1,

0,
T (s1, s2)

>

≤
c(α) ,

where

T (s1, s2) = sT1 β0 + sT2 (η0 − η̃)− 1
2
ξT0 J ξ0 +

1
2
η̃TJ2,2η̃,
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3.1 Primary Remarks

ξT0 = (βT
0 , η

T
0 ), and c(α) is chosen, such that PS

τ,0,η

(
T > c(α)

)
= α. For the

special choice η̃ = η0 + J −1
2,2 J2,1β0 the test statistic T simplifies to

T (s1, s2) = βT
0

(
s1 −J1,2J

−1
2,2 s2

)
− 1

2
βT

0 J ∗β0,

where J ∗ = J1,1−J1,2J
−1
2,2 J2,1. One readily checks that the resulting test

φ keeps the level on the composite hypothesis β = 0, η ∈ Rq. Moreover, φ is

almost surely determined, since it is a Neyman-Pearson test.

Let Φα denote the set of all tests that keep the level on the composite hypothesis

β = 0, η ∈ Rq and let

e(β, η) = sup
φ∈Φα

∫
φdPS

τ,β,η

be the envelope power function. For every β ∈ Rr, there exists a Neyman-

Pearson test φ∗, such that e(β, η) =
∫
φ∗ dPS

τ,β,η for all η ∈ Rq. Therefore, we

can say that φ is an efficient test for the testing problem β = 0, η ∈ Rq versus

β = β0, η ∈ Rq which is a sub-problem of the testing problems considered in

Chapter 4. A similar discussion can also be found in Janssen and Werft [38].

Let us now consider the sequence of tests φn = 1
(
T (Sn,1, Sn,2) > c(α)

)
, n ∈

N, where ST
n =

(
ST

n,1, S
T
n,2

)
, is a central sequence. This sequence of tests is

asymptotically efficient for the testing problem β = 0, η ∈ Rq versus β =

β0, η ∈ Rq. For any other sequence of tests ψn, n ∈ N, of asymptotic level α

that is efficient for this testing problem it holds that ψn − φn −→
P

(τ)
n,ξ

0, cf.

Strasser [68, Theorem 63.6] (The optimal test in limit experiment is uniquely

determined by its distribution, φn, and ψn converge in distribution to the

efficient test in limit experiment in the sense of Strasser [68, Definition 62.1]).

That means any asymptotically efficient testing procedure for the test problem

β = 0, η ∈ Rq versus β = β0, η ∈ Rq is asymptotically equivalent to a sequence

of tests that depends on the random variables

Un(τ) = Sn,1(τ)−J1,2(τ)J −1
2,2 (τ)Sn,2(τ), n ∈ N.

Thus, if one aims to construct procedures that keep the level on the compo-

site hypothesis and that possibly attain the envelope power function at some
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3 Sequences of Hardest Parametric Sub-Models

point, one can restrict oneself to tests that depend on Un. This consideration

may justify, why we concentrate only on the statistics Un in the following.

Additionally, looking at the literature on testing problems involving nuisance

parameters reveals that many efficient procedures depend on the statistics Un,

n ∈ N, cf. Witting and Müller-Funk [72, Section 6.4.2].

3.1.2 Lemma. In the situation of Theorem 2.3.10.b, we abbreviate S (τ) =

T TJ (τ)T and partition the matrix S (τ) as follows

S (τ) =

(
S1,1(τ) S1,2(τ)

S2,1(τ) S2,2(τ)

)
=

(
T T

1 J1,1(τ)T1 T T
1 J1,2(τ)T2

T T
2 J2,1(τ)T1 T T

2 J2,2(τ)T2

)
.

It holds that

T T
1 Sn,1(τ)−S1,2(τ)S −

2,2(τ)T
T

2 Sn,2(τ)
D−→Qn,ξ̄

N
(
S ∗(τ)β̄,−S ∗(τ)

)
,

where S ∗(τ) = S1,1(τ) − S1,2(τ)S2,2(τ)−S2,1(τ) and S −
2,2(τ) denotes the

generalized inverse of S2,2(τ), cf. Definition B.1.1.

Proof. For a moment let us drop the index τ . The Cramér-Wold device, cf.

Billingsley [9, Theorem 7.7], yields that ζTT TSn
D−→Qn,ξ̄

N
(
ζTS ξ̄, ζTS ζ

)
for

all ζ ∈ Rr̄+q̄. Let Er̄ denote the (r̄ × r̄) unity matrix. Choosing ζT = ρTA ,

where A =
(
Er̄ −S1,2S

−
2,2

)
, and ρ ∈ Rr̄ gives that

ρT
(
T T

1 Sn,1 −S1,2S
−
2,2T

T
2 Sn,2

)
= ρTA T TSn.

Clearly, it holds that

ρTA T TSn
D−→Qn,ξ̄

N
(
ρTA S ξ̄, ρTA S A Tρ

)
,

where

A S =
(
Er̄ −S1,2S

−
2,2

)(S1,1 S1,2

S2,1 S2,2

)
=
(
S ∗ S1,2 −S1,2S

−
2,2S2,2

)
=
(
S ∗ 0

)
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and A S A T = S ∗. In the last but one equation, Proposition B.3.4.b and

S −
2,2S2,2S

−
2,2 = S −

2,2, cf. Definition B.1.1, and (S −
2,2)

T = (S T
2,2)

−, cf. Proposi-

tion B.1.4 are used. Applying the Cramér-Wold device gives the assertion.

In the situation of Theorem 2.3.10.a the previous result especially means that

Un(τ) = Sn,1(τ)−J1,2(τ)J −
2,2(τ)Sn,2(τ)

D−→Pn,ξ
N
(
J ∗(τ)β,J ∗(τ)

)
, (3.1)

where J ∗(τ) = J1,1(τ) − J1,2(τ)J −
2,2(τ)J2,1(τ). The asymptotic distri-

bution of the sequence Un(τ) depends only on the interesting parameter β,

i.e. under the composite hypothesis β = 0, η ∈ Rq the statistic Un(τ) has,

asymptotically, always the same distribution. Of course this property is fairly

useful, if one aims to construct tests, since one does not need to worry about

the nuisance parameter η. However, the asymptotic distribution still depends

on the choice of the nuisance direction γ̃.

In the following it is aimed to find nuisance directions that satisfy some ”opti-

mality“ condition. This leads to the notion of sequences of hardest parametric

sub-models. Our approach generalizes a well known idea on the construction

of non-parametric test statistics, see e.g. Neuhaus [60].

3.1.3 Proposition. Let
(
Ωn,Fn,Fn,Qn

)
, n ∈ N, be a sequence of (1, 1)-sub-

sub-models with the transformation matrix

Tβ0,η0 =

(
β0 0

0 η0

)
, β0 ∈ Rr, η0 ∈ Rq.

In the situation of Theorem 2.3.10.b, it holds that

βT
0 Sn,1(τ)−S1,2(τ)S −

2,2(τ)η
T
0 Sn,2(τ)

D−→Qn,ξ̄
N
(
S ∗

β0,η0
(τ)β̄, S ∗

β0,η0
(τ)
)
,

where S ∗
β0,η0

(τ) = Sβ0(τ)− S̃β0,η0(τ),

Sβ0(τ) =
∫

I(τ)

r∑
u=1

r∑
v=1

β
(u)
0 β

(v)
0 γ(u̇,ü)(s) γ(v̇,v̈)(s)µ(u̇,v̇)

2 (s)α0(s) ds
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3 Sequences of Hardest Parametric Sub-Models

and

S̃β0,η0(τ) =
(∫

I(τ)

r∑
u=1

q∑
v=1

β
(u)
0 η

(v)
0 γ(u̇,ü)(s) γ̃(v)(s)µ(u̇)

1 (s)α0(s) ds
)2

×
(∫

I(τ)

( q∑
u=1

η
(u)
0 γ̃(u)(s)

)2

µ0(s)α0(s) ds
)−

.

Moreover, we have the estimate

0 ≤ S̃β0,η0(τ) ≤
∫

I(τ)

( r∑
u=1

β
(u)
0 γ(u̇,ü)(s)µ(u̇)

1 (s)
)2α0(s)
µ0(s)

ds. (3.2)

Proof. The convergence in distribution is an easy consequence of Lemma 3.1.2.

Proof of (3.2). In the case that S̃β0,η0(τ) = 0 any non-negative number is an

upper bound. Thus, let us assume that S̃β0,η0(τ) > 0. Applying the Cauchy-

Schwarz-inequality, cf. Gänssler and Stute [20, Satz 1.13.3], one gets

S̃β0,η0 =

(∫
I(τ)

(∑
u
β

(u)
0 γ(u̇,ü)(s)µ(u̇)

1 (s)
)(∑

v
η
(v)
0 γ̃(v)(s)

)√
µ0(s)
µ0(s)

α0(s) ds
)2

∫
I(τ)

(∑
v η

(v)
0 γ̃(v)(s)

)2

µ0(s)α0(s) ds

≤
(∫

I(τ)

(∑
u
β

(u)
0 γ(u̇,ü)(s)µ(u̇)

1 (s)
)2α0(s)
µ0(s)

ds
)

×

(∫
I(τ)

(∑
v η

(v)
0 γ̃(v)(s)

)2
µ0(s)α0(s) ds

)
∫

I(τ)

(∑
v η

(v)
0 γ̃(v)(s)

)2
µ0(s)α0(s) ds

.

(3.3)

3.1.4 Discussion. In the situation of Theorem 2.3.10.a, consider the sequence

of (1, 1)-sub-sub-models
(
Ωn,Fn,Fn,Qn

)
, n ∈ N, with transformation matrix

Tβ0,η0 . Under this sequence of experiments the parameter of interest is β̄ and

the nuisance parameter is η̄. For the limit model
(
Ω,A, {Qβ̄,η̄ | β̄, η̄ ∈ R}

)
with

the central random variable S =
(
S(1), S(2)

)
, it holds that

QS
β̄,η̄ = N

((
βT

0 J1,1β0 βT
0 J1,2η0

ηT
0 J2,1β0 ηT

0 J2,2η0

)(
β̄

η̄

)
,

(
βT

0 J1,1β0 βT
0 J1,2η0

ηT
0 J2,1β0 ηT

0 J2,2η0

))
,
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3.1 Primary Remarks

where we dropped the index τ .

Now, let us investigate the testing problem β̄ = 0, η̄ ∈ R versus β̄ > 0, η̄ ∈ R.

The uniformly best, unbiased test to the level α for this testing problem is

φ(S(1), S(2)) =

{
1,

0,
S(1) − βT

0 J1,2η0 (ηT
0 J2,2η0)−S(2) >

≤
c(α) ,

where Q0,0

(
S(1) − βT

0 J1,2η0 (ηT
0 J2,2η0)−S(2) > c(α)

)
= α, cf. Witting and

Müller-Funk [72, Satz .6.184] . The power function of this test is given by

Φ
(
−uα + β̄ · (S ∗

β0,η0
)1/2

)
, β̄ ≥ 0, η̄ ∈ R

where Φ is the distribution function of a normal distribution with mean 0

and variance 1, and uα = Φ−1
(
1− α

)
. The factor S ∗

β0,η0
determines the

capability of the uniformly best, unbiased test to detect any fixed alternative,

i.e. the smaller this factor, the less powerful the test. Therefore, we have to

minimize S ∗
β0,η0

for finding a hardest model. Since we considered a fixed (1, 1)-

sub-sub-model, β0 and η0 cannot be subject to a minimization, consequently,

minimizing S ∗
β0,η0

is equivalent to maximizing S̃β0,η0 with respect to γ̃. Note

that S̃β0,η0 is bounded, see Proposition 3.1.3. One easily checks that the upper

bound of S̃β0,η0 , cf. equation (3.2), is attained, if

q∑
v=1

η
(v)
0 γ̃(v)(s) =

c0
µ0(s)

r∑
u=1

β
(u)
0 γ(u̇,ü)(s)µ(u̇)

1 (s) Λ0-almost everywhere

for some c0 ∈ R, Λ(τ0)
0 (B) =

∫
B∩I(τ)

α0(s) ds, B ∈ B. A similar discussion can

be found in Neuhaus [60].

The previous discussion provides an idea how to generalize the notion of a

hardest model to multi-dimensional models. Basically, it is asked that in the

inequality (3.3) equality holds.

3.1.5 Definition (Sequence of Hardest Parametric Sub-Models). Let

us consider a sequence of localized, q-dimensional parametric sub-models of
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3 Sequences of Hardest Parametric Sub-Models

the MCRM
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, that is asymptotically normal restricted

to time τ with information matrix J (τ). We say
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, is

a sequence of hardest parametric sub-models restricted to time τ , if for every

β0 ∈ Rr there exists an η0 ∈ Rq, such that(
βT

0 J1,2(τ)η0
)2 =

∫
I(τ)

(∑r

u=1
β

(u)
0 γ(u̇,ü)(s)µ(u̇)

1 (s)
)2α0(s)
µ0(s)

ds · ηT
0 J2,2(τ)η0

(3.4)

and∫
I(τ)

( r∑
u=1

β
(u)
0 γ(u̇,ü)(s)µ(u̇)

1 (s)
)2α0(s)
µ0(s)

ds = 0 ⇐⇒ ηT
0 J2,2(τ)η0 = 0. (3.5)

η0 is called a hardest nuisance parameter with respect to β0.

3.1.6 Remark. The Definition 3.1.5 is based on the idea that for every fixed

direction of the interesting parameter β0 there should be a nuisance parameter

η0, such that the limit model of the sequence
(
Ωn,Fn,Fn,Qn

)
, n ∈ N, of (1, 1)-

sub-sub-models with transformation matrix Tβ0,η0 is a hardest model in the

sense of Discussion 3.1.4. More precisely, this means that for every β0 there

exists an η0, such that S̃β0,η0 attains the right hand side of (3.2).

Condition (3.5) prevents the trivial solution of (3.4), namely η0 = 0. Otherwise

every sequence of parametric sub-model would be a sequence of hardest para-

metric models. Clearly, a hardest nuisance parameter is by no means unique,

since if η0 is a hardest nuisance direction then c·η0, c ∈ R\{0}, is also a hardest

nuisance direction.

3.2 Properties of Sequences of Hardest Parametric

Sub-models

In the previous section the notion of SHPSM was established. In this section

the properties of such sequences of models are investigated. First of all, the

existence of SHPSM is discussed. One easily sees that starting from a given
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SHPSM, new sequences of hardest parametric sub-models can be generated by

reparametrization and adding new nuisance direction. Considering this fact,

one should regard (3.4) and (3.5) in Definition 3.1.5 as conditions guarantee-

ing that a sequence of localized, q-dimensional parametric sub-models is “big

enough” to reflect the properties of the MCRM. However, sequences of hard-

est parametric sub-models share one important property: the statistic Un(τ)

defined in equation (3.1) is independent of the underlying SHPSM. We replace

the asymptotic quantities of the statistic Un(τ) by consistent estimators and

prove asymptotic equivalence of these statistics. Last but not least, a weakly

consistent variance estimator is introduced. But first a crucial premise for

proving the main results of this chapter.

3.2.1 Assumption. Set τ c
0 = sup

{
s | µ0(s) > 0

}
. It is assumed that

Pn,0

(
Y (i)

n (τ c
0 ) = 1

)
= 0 for all i = 1, . . . , n and n ∈ N.

3.2.2 Remark. a) Obviously, it holds that τ c
0 ≤ τ0, see Assumption 2.3.9.i.

In particular, all observed survival times are smaller than τ c
0 .

b) In the case τ c
0 < τ0, we do not have any information on the distribution of

the survival times in the limit model after τ c
0 due to the right censoring.

Assumption 3.2.1 guarantees that the limit model is a reasonable approxi-

mation of the models for finite n ∈ N.

c) Remark 2.3.11.b still holds, if one replaces τ0 by τ c
0 . Especially, asymptotic

normality restricted to time τ c
0 implies asymptotic normality restricted to

time ∞, see Definition 2.2.2. In the case that τ c
0 < τ0, the conditions (2.24)

and (2.25) trivially holds.

3.2.3 Theorem (Existence of SHPSM). Consider the sequence of local-

ized, r-dimensional parametric sub-models
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, where the

nuisance directions are given by

γ̃(v)(t) = γ(v̇,v̈)(t)
µ

(v̇)
1 (t)
µ0(t)

, v = 1, . . . , r.
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Under Assumption 2.2.1, Assumption 2.3.9.i – Assumption 2.3.9.viii and As-

sumption 3.2.1, the sequence of parametric sub-models
(
Ωn,Fn,Fn,Pn

)
, n ∈

N, is asymptotically normal restricted to time τ for all τ < τ c
0 . If additionally

the conditions (2.24) and (2.25) hold with τ0 replaced by τ c
0 , then the result

extends to τ = τ c
0 .

Moreover, the sequence of localized parametric sub-models
(
Ωn,Fn,Fn,Pn

)
,

n ∈ N, is a sequence of hardest parametric sub-models in the sense of Defini-

tion 3.1.5. We call it the canonical sequence of hardest parametric sub-models.

Proof. Assumption 2.3.9.i – Assumption 2.3.9.viii imply Assumption 2.3.9.ix,

therefore asymptotic normality is an immediate consequence of Theorem 2.3.10.

For given β0 choose η0 = β0. Using the basic Definition of the asymptotic

information matrix J , see Theorem 2.3.10.a, it holds that

(
βT

0 J1,2η0
)2 =

(∫
I(τ)

(∑r

u=1
β

(u)
0 γ(u̇,ü)(s)µ(u̇)

1 (s)
)2α0(s)
µ0(s)

ds
)2

and

ηT
0 J2,2η0 =

∫
I(τ)

(∑r

u=1
β

(u)
0 γ(u̇,ü)(s)µ(u̇)

1 (s)
)2α0(s)
µ0(s)

ds.

Consequently, the conditions (3.4) and (3.5) hold.

3.2.4 Theorem. Under Assumption 2.2.1, Assumption 2.3.9.i – Assump-

tion 2.3.9.viii and Assumption 3.2.1, let
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, be a sequence

of localized, q-dimensional sub-models of the MCRM that is asymptotically

normal restricted to time τ ′ with asymptotic information matrix J (τ ′) and

central sequence Sn(τ ′). Moreover, assume that
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, is a

SHPSM in the sense of Definition 3.1.5.

a) The matrices J can
1,1 (τ ′) ∈ Rr×r and J can

2,2 (τ ′) ∈ Rr×r, where

J can
1,1

(u,v)(τ ′) =
∫

I(τ ′)

γ(u̇,ü)(s) γ(v̇,v̈)(s)µ(u̇,v̇)
2 (s)α0(s) ds
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and

J can
2,2

(u,v)(τ ′) =
∫

I(τ ′)

γ(u̇,ü)(s) γ(v̇,v̈)(s)µ(u̇)
1 (s)µ(v̇)

1 (s)
α0(s)
µ0(s)

ds

are well defined. (Only in the case τ ′ = τ c
0 is this not obvious.)

b) It holds that J1,2(t)J −
2,2(t)J2,1(t) = J can

2,2 (t), t ∈ I(τ ′).

c) For the statistic Un(t) = Sn,1(t)−J1,2(t)J2,2(t)−Sn,2(t) it holds that

U (u)
n (t) =

1√
n

n∑
i=1

∫
I(t)

γ(u̇,ü)(s)
(
Z

(u̇)
n,i (s)− µ

(u̇)
1 (s)
µ0(s)

)
dM (i)

n,0(s) (3.6)

Pn,0-almost surely, u = 1, . . . , r, for all t ≤ τ ′. Moreover, we have

Un(τ ′) D−→Pn,ξ
N
(
J ∗,can(τ ′)β,J ∗,can(τ ′)

)
,

where J ∗,can(τ ′) = J ∗(τ ′) = J can
1,1 (τ ′) −J can

2,2 (τ ′). J ∗,can(τ ′) is called

(asymptotic) information matrix of the MCRM and its components are

given by∫
I(τ ′)

γ(u̇,ü)(s) γ(v̇,v̈)(s)
(
µ

(u̇,v̇)
2 (s)− µ

(u̇)
1 (s)µ(v̇)

1 (s)
µ0(s)

)
α0(s) ds,

u, v = 1, . . . , r.

For the proof of the Theorem the following well-known results are needed.

3.2.5 Lemma. Let fi, i = 1, 2, be real-valued functions. If 0 <
(∫
f1 ·f2 dν

)2 =∫
f2
1 dν ·

∫
f2
2 dν < ∞ then it holds that f1 = c0 f2 ν-almost surely for some

c0 ∈ R\{0}.

Proof. The functions fi, i = 1, 2, are obviously square-integrable. Set

a =

√∫
f2
2 dν and b =

√∫
f2
1 dν ·

{
1,

−1,
if
∫
f1 · f2 dν

<

>
0 .
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Note that a, b 6= 0. Since the equation∫ (
a · f1 + b · f2

)2 dν = 2
∫
f2
1 dν ·

∫
f2
2 dν + 2ab

∫
f1 · f2 dν

= 2
∫
f2
1 dν ·

∫
f2
2 dν − 2

√∫
f2
1 dν ·

∫
f2
2 dν ·

∣∣∣∣∫ f1 · f2 dν
∣∣∣∣

= (2− 2) ·
∫
f2
1 dν ·

∫
2
2 dν = 0

implies a f = b g ν-almost surely, Lemma 3.2.5 holds.

3.2.6 Lemma. Let φj : R+ → R, j = 1, 2, be some measurable functions

that are bounded on bounded intervals. Suppose that Assumption 2.2.1 holds.

If φ1 = φ2 Λ(τ)
0 -almost surely, Λ(τ)

0 (B) =
∫

B
1I(τ)(s)α0(s) ds, B ∈ B, then it

holds that

n∑
i=1

∫
I(τ)

φ1(s) dM (i)
n,0(s) =

n∑
i=1

∫
I(τ)

φ2(s) dM (i)
n,0(s) Pn,0-almost surely.

Proof. Using the abbreviation X(j) =
∑n

i=1

∫
I(τ)

φj(s) dM (i)
n,0(s), j = 1, 2, it

holds that {
X(1) 6= X(2)

}
=

∞⋃
k=1

{
|X(1) −X(2)| ≥ 1/k

}
,

where
{
|X(1) −X(2)| ≥ 1/k

}
⊂
{
|X(1) −X(2)| ≥ 1/(k + 1)

}
. Corollary 2.1.7

implies

Pn,0

{
|X(1) −X(2)| ≥ 1/k

}
≤

k2ε+ Pn,0

(
n∑

i=1

∫
I(τ)

(
φ1(s)− φ2(s)

)2
Y (i)

n (s)α0(s) ds ≥ ε

)
= k2ε.

As ε > 0 was arbitrary, ε ↓ 0 gives Pn,0

{∣∣X(1) −X(2)
∣∣ ≥ 1/k

}
= 0. We have

Pn,0

({
X(1) 6= X(2)

})
= limk→∞ Pn,0

{∣∣X(1) −X(2)
∣∣ ≥ 1/k

}
= 0, where we use

an elementary property of measures. Thus, the assertion holds.
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Proof of Theorem 3.2.4. First, note that we can assume that τ ′ ≤ τ c
0 be-

cause of Remark 3.2.2. Let us start with a). In the case τ ′ < τ c
0 the assertion is

trivial, since we assumed that all functions are bounded and µ0 is bounded away

from 0. In the case τ ′ = τ c
0 this argument does not apply. However, it holds

that J1,1(τ c
0 ) = J can

1,1 (τ c
0 ), so that we only have to worry about J can

2,2 (τ c
0 ).

Set βw = (δ1,w, . . . , δr,w)T, w = 1, . . . , r, where δi,w is the Kronecker symbol,

and let ηw denote a hardest nuisance parameter with respect to βw.

Using the fact that a SHPSM is considered, it holds that βT
wJ can

2,2 (τ c
0 )βw ·

ηT
wJ2,2(τ c

0 )ηw =
(
βT

wJ1,2(τ c
0 )ηw

)2
<∞ implying

J can
2,2

(w,w)(τ c
0 ) =

∫
I(τ ′)

(
γ(ẇ,ẅ)(s)

µ
(ẇ)
1 (s)
µ0(s)

)2

µ0(s)α0(s) ds <∞.

Consequently, γ(u̇,ü) µ
(u̇)
1 /µ0 is a square-integrable functions with respect to

Λ̃(τc
0 )

0 (B) =
∫

B
1I(τc

0 )(s)µ0(s)α0(s) ds, B ∈ B. Thus,

J can
2,2

(u,v)(τ ′) =
∫

I(τ ′)

γ(u̇,ü)(s) γ(v̇,v̈)(s)
µ

(u̇)
1 (s)µ(v̇)

1 (s)
µ2

0(s)
µ0(s)α0(s) ds

exists and is well defined.

Proof of b). Let us drop the Index τ ′ for a moment. Assume that β ∈
ker(J T

1,2). As a first step we show that β ∈ ker(J can
2,2 ). Using the proper-

ties of SHPSM we can find a hardest nuisance parameter η, such that

0 =
(
βTJ1,2η

)2 = βTJ can
2,2 β · ηTJ2,2η

and βTJ can
2,2 β = 0. Set η̃ = J can

2,2 β. Applying the Cauchy-Schwarz inequality,

cf. (3.3), gives

0 ≤
(
βTJ can

2,2 J can
2,2 β

)2 =
(
βTJ can

2,2 η̃
)2 ≤ βTJ can

2,2 β · η̃TJ can
2,2 η̃ = 0.

As a second step we consider β ∈ ker(J T
1,2)

⊥. Let η denote a corresponding

hardest nuisance parameter. First we show that (βTJ1,2η)2 > 0. It holds that

0 < βTJ1,2J2,1β ≤ βTJ can
2,2 β ·

q∑
v=1

∫
I(τ ′)

(
γ̃(v)(s)

)2
µ0(s)α0(s) ds,

71



3 Sequences of Hardest Parametric Sub-Models

where the Cauchy-Schwarz-inequality is used, again. Consequently, we get that

βTJ can
2,2 β > 0 and ηTJ2,2η > 0, see equation (3.5). Now, equation (3.4) is

given by

(βTJ1,2η)2 = βTJ can
2,2 β · ηTJ2,2η > 0.

Lemma 3.2.5 yields

c

q∑
v=1

η(v) γ̃(v) =
r∑

u=1

β(u) γ(u̇,ü) µ
(u̇)
1

µ0
Λ̃(τ ′)

0 -almost surely. (3.7)

In particular, equation (3.7) also holds Λ(τ ′)
0 -almost surely. Because of (3.7)

and the properties of the generalized inverse, see Definition B.1.1, it holds that

βTJ1,2J
−
2,2J2,1β = c2 ηTJ2,2J

−
2,2J2,2η = c2 ηTJ2,2η = βTJ can

2,2 β.

Putting the previous results together for all β ∈ ker(J T
1,2)

⊥ and β̃ ∈ ker(J T
1,2)

it holds that

(β + β̃)TJ1,2J
−
2,2J2,1(β + β̃) = βTJ1,2J

−
2,2J2,1β

= βTJ can
2,2 β = (β + β̃)TJ can

2,2 (β + β̃).

Thus, βTJ1,2J
−
2,2J2,1β = βTJ can

2,2 β for all β ∈ Rr, since the matrices are

symmetric, the result is our assertion.

Proof of c). Lemma 3.1.2 and b) give the assertion concerning the convergence

in distribution. It remains to show (3.6). It holds that

γ(ẇ,ẅ)µ
(ẇ)
1

µ0
=

r∑
u=1

β(u)
w γ(u̇,ü)µ

(u̇)
1

µ0
= c(w)

q∑
v=1

η(v)
w γ̃(v) (3.8)

Λ̃(τ ′)
0 -almost surely, where c(w) 6= 0, w = 1, . . . , r. This equality in an imme-

diate consequence of Definition 3.1.5. Either, we have 0 = (βT
wJ1,2ηw)2 =

βT
wJ can

2,2 βw · ηT
wJ2,2ηw, which implies βT

wJ can
2,2 βw = 0 and ηT

wJ2,2ηw = 0 and

consequently

r∑
u=1

β(u)
w γ(u̇,ü)µ

(u̇)
1

µ0
= 0 =

q∑
v=1

η(v)
w γ̃(v) Λ̃(τ ′)

0 -almost surely
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(in this case set c(w) = 1), or we have

0 < (βT
wJ1,2ηw)2 = βT

wJ can
2,2 βw · ηT

wJ2,2ηw

then Lemma 3.2.5 gives (3.8), see also (3.7). Equation (3.8) implies that

J1,2(t) = cTT TJ2,2(t), t ≤ τ ′, where c = (c(w) | w = 1, . . . , r)T and T =(
η1, . . . , ηr

)
∈ Rq×r. Because of

J1,2(t)J −
2,2(t)Sn,2(t) = cTT TJ2,2(t)J −

2,2(t)Sn,2(t) (3.9)

we show as a first step that J2,2(t)
(
J2,2(t)

)−
Sn,2(t) = Sn,2(t) Pn,0-almost

surely for all t ≤ τ ′. We consider three cases. If J2,2(t) has full rank, the

assertion is trivial. Assume that rank
(
J2,2(t)

)
= 0 implying J2,2(t) = 0

which gives γ̃(v) = 0 Λ̃(t∧τ ′)
0 -almost surely and also almost surely with respect

to the measure Λ(t∧τ ′)
0 , where Assumption 3.2.1 is used. We get that Sn,2(t) =

Sn,2(t ∧ τ ′) = 0 Pn,0-almost surely, where once more Assumption 3.2.1 and

Lemma 3.2.6 are used.

Last but not least suppose that rank(J2,2(t)) = k, 0 < k < q. Therefore,

we can assume that we have M1 = {v1, . . . , vk} ⊂ {1, . . . , q}, such that the

vectors
(
J

(u,vl)
2,2 (t) | u = 1, . . . , q

)T, l = 1, . . . , k are generating the column

space of J2,2(t). Hence, for every u ∈ M2 = {1, . . . , q}\M1 there exists a

vector cu ∈ Rk, such that∫
I(t)

(
γ̃(u)(s)

)2
µ0(s)α0(s) ds =

∫
I(t)

γ̃(u)(s)

(
k∑

l=1

c(l)u γ̃(vl)(s)

)
µ0(s)α0(s) ds

=
∫

I(t)

(
k∑

l=1

c(l)u γ̃(vl)(s)

)2

µ0(s)α0(s) ds.

(3.10)

Because of (3.10) we have for all u ∈ M2

∫
I(t)

(
γ̃(u)(s)−

k∑
l=1

c(l)u γ̃(vl)(s)

)2

µ0(s)α0(s) ds = 0
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implying γ̃(u) =
∑k

l=1 c
(l)
u γ̃(vl) Λ(t∧τ ′)

0 -almost surely, where once again the As-

sumption 3.2.1 is used. Using Assumption 3.2.1 and applying Lemma 3.2.6

yields that

S
(u)
n,2(t) =

1√
n

n∑
i=1

∫
I(t)

k∑
l=1

c(l)u γ̃(vl)(s) dM (i)
n,0(s) =

k∑
l=1

c(l)u S
(vl)
n,2 (t),

Pn,0-almost surely, so we can conclude that the rank of the extended matrix(
J2,2(t) | Sn,2(t)

)
is k Pn,0-almost surely, where we use that the matrix J2,2(t)

is symmetric. Proposition B.1.5 implies

J2,2(t)
(
J2,2(t)

)−
Sn,2(t) = Sn,2(t) Pn,0-almost surely,

completing the assertion.

By now, we have shown that J1,2(t)J −
2,2(t)Sn,2(t) = cTT TSn,2(t) Pn,0-almost

surely, see equation (4.18). Applying (3.8), Assumption 3.2.1 and Lemma 3.2.6

gives

cTT TSn,2(t) =
1√
n

(
n∑

i=1

∫
I(t)

γ(u̇,ü)(s)
µ

(u̇)
1 (s)
µ0(s)

dM (i)
n,0(s)

∣∣∣∣ u = 1, . . . , r

)T

Pn,0-almost surely, all in all equation (3.6) holds for all t ≤ τ ′.

The notation J can
2,2 is supposed to remind that this matrix coincides with the

matrix J2,2 of the canonical hardest model. The previous result gives that the

statistics Un(τ ′), n ∈ N, are independent of the underlying SHPSM. However,

the statistics Un(τ ′), n ∈ N, still depend on some asymptotic quantities and

the foot-point α0. In the next step we will replace the asymptotic quantities by

some consistent estimators and show asymptotic equivalence of the sequence

of the new statistics with Un(τ), n ∈ N.

3.2.7 Lemma. Under Assumption 3.2.1 and Assumption 2.3.9.i – Assump-

tion 2.3.9.v, it holds that

sup
t∈[0,τ ]

∣∣∣∣ µ̂(u)
n,1(t)
µ̂n,0(t)

− µ
(u)
1 (t)
µ0(t)

∣∣∣∣ −→Pn,0 0, u = 1, . . . , p

for all τ < τ c
0 .
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Proof. First, note that one can choose 0 < 2δ < inft∈[0,τ ] µ0(t) exploiting

Assumption 3.2.1. For all ε > 0, we have An ⊂ (An ∩Bn) ∪B{
n where we set

An =
{

sup
t∈[0,τ ]

∣∣∣∣ µ̂(u)
n,1(t)
µ̂n,0(t)

− µ
(u)
1 (t)
µ0(t)

∣∣∣∣ ≥ ε

}
and Bn =

{
sup

t∈[0,τ ]

∣∣µ̂n,0(t)− µ0(t)
∣∣ ≤ δ

}
.

Because of Assumption 2.3.9.iv we have Pn,0(B{
n) → 0, so there remains to be

shown that Pn,0(An ∩Bn) → 0. On the set Bn it holds the estimate

sup
t∈[0,τ ]

∣∣∣∣ µ̂(u)
n,1(t)
µ̂n,0(t)

− µ
(u)
1 (t)
µ0(t)

∣∣∣∣ ≤ 1
δ2

sup
t∈[0,τ ]

∣∣µ̂(u)
n,1(t)µ0(t)− µ

(u)
1 (t) µ̂n,0(t)

∣∣
≤ c0
δ2

(
sup

t∈[0,τ ]

∣∣µ̂(u)
n,1(t)− µ

(u)
1 (t)

∣∣+ sup
t∈[0,τ ]

∣∣µ̂n,0(t)− µ0(t)
∣∣) −→Pn,0 0,

where we set c0 = max
{
supt∈[0,τ ]|µ

(u)
1 (t)|, supt∈[0,τ ] µ0(t)

}
and use Assump-

tion 2.3.9.iv and 2.3.9.v. Consequently, Pn,0(An ∩Bn) → 0.

We assumed that the weight functions are of the form γ(u̇,ü) = γ
(u̇,ü)
0 ◦H, where

γ
(u̇,ü)
0 : [0, 1] −→ R, u = 1, . . . , r, are measurable functions and H is some

cumulative distribution function on R+. Possible choices for the cumulative

distribution function are H = 1− µ0 or

H(·) =
∫

[0,·]
α0(t) exp

(
−
∫

[0,t]

α0(s) ds
)

dt.

As already mentioned, see Remark 1.3.3.c, one can easily determine early or

late differences on the interval [0, 1] and choose an appropriate weight function

γ
(u̇,ü)
0 . The distribution function H guarantees the right scaling with respect to

the underlying probability measure Pn,0. However, H has to be estimated cf.

Remark 4.4.3. This is reflected by the following premises, where we consider

a more general situation. In Chapter 5 γ̂
(u̇,ü)
n = γ

(u̇,ü)
0 ◦ Ĥn is used as an

estimator, where Ĥn is either 1 − µ̂n,0 or the left continuous version of the

Kaplan-Meyer estimator.

3.2.8 Assumption. Let
{
γ̂

(u̇,ü)
n (t) | t ∈ [0,∞)

}
, u = 1, . . . , r, be predictable

and locally bounded processes. Moreover, assume that these processes satisfy
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the condition(∫
I(τ)

(
γ̂(u̇,ü)

n (s)− γ(u̇,ü)(s)
)2
µ0(s)α0(s) ds

)
−→Pn,0 0

for all τ < τ c
0 .

The statistics defined in the following Theorem merely depend on observable

quantities. This property is very important for the application. Especially, we

can replace M (i)
n,0 by N (i)

n , see Remark 3.2.10.a.

3.2.9 Theorem. Define the statistic Un(τ) =
(
U

(u)

n (τ) | u = 1, . . . , r
)T, where

U
(u)

n (τ) =
1√
n

n∑
i=1

∫
I(τ)

γ(u̇,ü)(s) ·
(
Z

(u̇)
n,i (s)−

µ̂
(u̇)
n,1(s)
µ̂n,0(s)

)
dM (i)

n,0(s)

and the statistic Ûn(τ) =
(
Û

(u)
n (τ) | u = 1, . . . , r

)T, where

Û (u)
n (τ) =

1√
n

n∑
i=1

∫
I(τ)

γ̂(u̇,ü)
n (s) ·

(
Z

(u̇)
n,i (s)−

µ̂
(u̇)
n,1(s)
µ̂n,0(s)

)
dM (i)

n,0(s).

a) In the situation of Theorem 3.2.4, it holds that Un(τ) − Un(τ) −→Pn,0 0,

for all τ ∈ R+, such that τ ≤ τ ′ and τ < τ c
0 . If τ ′ = τ c

0 and additionally the

condition

lim
t→τc

0

lim sup
n→∞

Pn,0

(∫
(t,τc

0 )

(
γ(u̇,ü)

)2(µ(u̇)
1

µ0
−
µ̂

(u̇)
n,1

µ̂n,0

)2

µ̂n,0 α0ds ≥ ε

)
= 0

(3.11)

for all ε > 0 and u = 1, . . . , r is satisfied, the convergence in probability also

holds for the case τ = τ c
0 .

b) In the situation of Theorem 3.2.4 and under Assumptions 3.2.8, it holds

that Ûn(τ) − Un(τ) −→Pn,0 0 for all τ ≤ τ ′ and τ < τ c
0 . If τ ′ = τ c

0 and

additionally the conditions (3.11),

lim
t→τc

0

lim sup
n→∞

Pn,0

(∫
(t,τc

0 )

(
γ(u̇,ü)

)2(
µ̂

(u̇,u̇)
n,2 −

(µ̂(u̇)
n,1)

2

µ̂n,0

)
α0 ds ≥ ε

)
= 0

(3.12)
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for all ε > 0, u = 1, . . . , r, and

lim
t→τc

0

lim sup
n→∞

Pn,0

(∫
(t,τc

0 )

(
γ̂(u̇,ü)

)2(
µ̂

(u̇,u̇)
n,2 −

(µ̂(u̇)
n,1)

2

µ̂n,0

)
α0 ds ≥ ε

)
= 0

(3.13)

for all ε > 0, u = 1, . . . , r, are satisfied then the convergence in probability

also holds for the case τ = τ c
0 .

Proof. We start with a). Assume that τ ≤ τ ′ and τ < τ c
0 . According to

Proposition B.4.5 and Lemma 2.1.8 it suffices to show

R(u)
n (τ) =

∫
I(τ)

(
γ(u̇,ü)(s)

)2(µ(u̇)
1 (s)
µ0(s)

−
µ̂

(u̇)
n,1(s)
µ̂n,0(s)

)2

µ̂n,0(s)α0(s) ds −→Pn,0 0

for u = 1, . . . , r, where we use Theorem 3.2.4.c. As we have the estimate

R(u)
n (τ) ≤

(
sup

s∈I(τ)

∣∣∣∣µ(u̇)
1 (s)
µ0(s)

−
µ̂

(u̇)
n,1(s)
µ̂n,0(s)

∣∣∣∣
)2(∫

I(τ)

(
γ(u̇,ü)(s)

)2
µ0(s)α0(s) ds

+ sup
s∈I(τ)

∣∣µ0(s)− µ̂n,0(s)
∣∣ ∫

I(τ)

(
γ(u̇,ü)(s)

)2
α0(s) ds

)
,

Lemma 3.2.7 as well as Assumption 2.3.9.i, Assumption 2.3.9.iv and Assump-

tion 2.3.9.viii yield the result that R(u)
n (τ) −→Pn,0 0.

Now, we show the extension to τ ′ = τ c
0 . Let τk, k ∈ N, be a sequence of real

numbers, such that τk < τ c
0 and τk ↑ τ c

0 , as k →∞. Set

X
(u)
n,k = U

(u)

n (τk)− U (u)
n (τk)

V (u)
n = U

(u)

n (τ c
0 )− U (u)

n (τ c
0 ).

As we have X(u)
n,k −→Pn,0 0 for all k ∈ N, Theorem 2.1.1 gives that V (u)

n −→Pn,0

0 is implied by

lim
k→∞

lim sup
n→∞

Pn,0

(∣∣V (u)
n −X

(u)
n,k

∣∣ ≥ ε
)

= 0, u = 1, . . . , r, (3.14)

for all ε > 0. Note that convergence in distribution to some constant implies

convergence in probability to that constant, cf. Witting and Müller-Funk [72,
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Hilfssatz 5.82]. For any δ > 0 choose η, such that η/ε2 < δ. Corollary 2.1.7

gives that

Pn,0

(∣∣V (u)
n −X

(u)
n,k

∣∣ ≥ ε
)
≤ η

ε2
+

Pn,0

(∫
(τk,τc

0 )

(
γ(u̇,ü)(s)

)2(µ(u̇)
1 (s)
µ0(s)

−
µ̂

(u̇)
n,1(s)
µ̂n,0(s)

)2

µ̂n,0(s)α0(s) ds ≥ η

)
.

Because of (3.11) we get, for all sufficiently large k, that

lim sup
n→∞

Pn,0

(∫
(τk,τc

0 )

(
γ(u̇,ü)

)2(µ(u̇)
1

µ0
−
µ̂

(u̇)
n,1

µ̂n,0

)2

µ̂n,0 α0 ds ≥ η

)
< δ − η

ε2
.

Consequently, lim supn→∞ Pn,0

(
|V (u)

n −X
(u)
n,k| ≥ ε

)
≤ δ for all sufficiently large

k, i.e. (3.14) holds.

Proof of b). Assume that τ ≤ τ ′ and τ < τ c
0 . We show Û

(u)
n (τ)−U (u)

n (τ) −→Pn,0

0. According to Proposition B.4.5 and Lemma 2.1.8 this is implied by

∫
I(τ)

(
γ̂(u̇,ü)

n − γ(u̇,ü)
)2(

µ̂
(u̇,u̇)
n,2 −

(µ̂(u̇)
n,1)

2

µ̂n,0

)
α0 ds −→Pn,0 0. (3.15)

First, we show that

sup
s∈I(τ)

∣∣∣∣∣µ̂(u̇,ü)
n,2 −

(µ̂(u̇)
n,1)

2

µ̂n,0µ0
−
(
µ

(u̇,u̇)
2 − (µ(u̇)

1 )2

µ0

)∣∣∣∣∣ −→Pn,0 0.

Set δ0 = infs∈I(τ) µ0(s) and κ0 = sups∈I(τ)

∣∣µ(u̇)
1 (s)

∣∣. Because of Assump-

tion 2.3.9 we have δ0 > 0, κ0 <∞ and sups∈I(τ)

∣∣µ̂(u̇,ü)
n,2 (s)− µ

(u̇,u̇)
2 (s)

∣∣ −→Pn,0

0. Moreover, one easily sees that

sup
s∈I(τ)

∣∣∣∣
(
µ̂

(u̇)
n,1(s)

)2
µ̂n,0(s)

−
(
µ

(u̇)
1 (s)

)2
µ0(s)

∣∣∣∣ ≤ κ0

δ0
sup

s∈I(τ)

∣∣µ̂(u̇)
n,1(s)− µ

(u̇)
1

(
s
)∣∣

+ sup
s∈I(τ)

∣∣∣∣ µ̂(u̇)
n,1(s)
µ̂n,0(s)

− µ
(u̇)
1 (s)
µ0(s)

∣∣∣∣( sup
s∈I(τ)

∣∣µ̂(u̇)
n,1(s)− µ

(u̇)
1

(
s
)∣∣+ κ0

)
−→Pn,0 0,
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where Lemma 3.2.7 and Assumption 2.3.9.v are used. This result and Assump-

tion 3.2.8 yield (3.15), since∣∣∣∣∣
∫

I(τ)

(
γ̂(u̇,ü)

n − γ(u̇,ü)
)2(

µ̂
(u̇,u̇)
n,2 −

(µ̂(u̇)
n,1)

2

µ̂n,0

)
α0 ds

∣∣∣∣∣ ≤
κ1

δ0

∫
I(τ)

(
γ̂(u̇,ü)

n − γ(u̇,ü)
)2
µ0 α0 ds+

1
δ0

∫
I(τ)

(
γ̂(u̇,ü)

n − γ(u̇,ü)
)2
µ0 α0 ds

× sup
s∈I(τ)

∣∣∣∣∣ µ̂
(u̇,ü)
n,2

µ0
−

(µ̂(u̇)
n,1)

2

µ̂n,0µ0
−
(
µ

(u̇,u̇)
2

µ0
− (µ(u̇)

1 )2

µ2
0

)∣∣∣∣∣ −→Pn,0 0,

where κ1 = sups∈I(τ)

∣∣µ(u̇,u̇)
2 (s)

∣∣+ κ2
0/δ0.

The proof of the case τ = τ ′ = τ c
0 is based on the same idea as the proof of a).

Let τk, k ∈ N, be a sequence of real numbers, such that τk < τ c
0 and τk ↑ τ c

0 ,

as k →∞. Set

X
(u)
n,k = Û (u)

n (τk)− U
(u)

n (τk)

V (u)
n = Û (u)

n (τ c
0 )− U

(u)

n (τ c
0 ).

As we have X(u)
n,k −→Pn,0 0 for all k ∈ N, Theorem 2.1.1 gives that V (u)

n −→Pn,0

0 is implied by equation (3.14).

Pn,0

(
|V (u)

n −X
(u)
n,k| ≥ ε

)
≤ Pn,0

(∣∣Û (u)
n (τ c

0 )− Û (u)
n (τk)

∣∣ ≥ ε/2
)

+ Pn,0

(∣∣U (u)

n (τ c
0 )− U

(u)

n (τk)
∣∣ ≥ ε/2

)
.

Completely analogously to the proof of a), one shows that for all δ > 0 the

conditions (3.12) and (3.13) yield that

Pn,0

(∣∣U (u)

n (τ c
0 )− U

(u)

n (τk)
∣∣ ≥ ε/2

)
< δ

and

Pn,0

(∣∣Û (u)
n (τ c

0 )− Û (u)
n (τk)

∣∣ ≥ ε/2
)
< δ

for all sufficiently large k. Thus, equation (3.14) holds.
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3.2.10 Remark. a) One easily sees that condition (3.11) can be replaced by

condition (3.12) and

lim
t→τc

0

lim sup
n→∞

Pn,0

(∫
(t,τc

0 )

(
γ(u̇,ü)

)2 1
n

n∑
i=1

(
Z

(u̇)
n,i −

µ
(u̇)
1

µ0

)2

Y (i)
n α0 ds ≥ ε

)
= 0

(3.16)

for all ε > 0 and u = 1, . . . , r.

b) Consider the test statistics Un(τ). It holds that

U
(u)

n (τ) =
1√
n

n∑
i=1

∫
I(τ)

γ(u̇,ü)(s)
(
Z

(u̇)
n,i (s)−

µ̂
(u̇)
n,1(s)
µ̂n,0(s)

)
dN (i)

n (s),

u = 1, . . . , r, because of

1√
n

n∑
i=1

∫
I(τ)

γ(u̇,ü)(s)
(
Z

(u̇)
n,i (s)−

µ̂
(u̇)
n,1(s)
µ̂n,0(s)

)
Y (i)

n α0(s) ds

=
√
n

∫
I(τ)

γ(u̇,ü)(s)
(
µ̂

(u̇)
n,1(s)−

µ̂
(u̇)
n,1(s)
µ̂n,0(s)

µ̂n,0(s)
)
α0(s) ds = 0.

Analogously one shows that

Û (u)
n (τ) =

1√
n

n∑
i=1

∫
I(τ)

γ̂(u̇,ü)
n (s)

(
Z

(u̇)
n,i (s)−

µ̂
(u̇)
n,1(s)
µ̂n,0(s)

)
dN (i)

n (s),

u = 1, . . . , r. The statistics Un and Ûn do not depend on the foot-point α0

and nuisance directions γ̃ of our parametric sub-model. This means that

the statistics Un and Ûn are independent of the underlying sequence of

parametric sub-models as long as it is a SHPSM. Obviously, these statistics

are promising candidates for the derivation of a testing procedure for the

MCRM.

c) Calculating Cox partial likelihood for the MCRM (without localization), cf.

Definition 1.3.2, gives

Ln

(
β
)

=
n∏

i=1

pn,i

(
Xn,i, β

)∆n,i
,
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where

pn,i

(
t, β
)

=
Y

(i)
n (t) exp

(
βTZn,i } γ(t)

)
∑n

i=1 Y
(i)
n (t) exp

(
βTZn,i } γ(t)

) ,
∆n,i = sup

{
t | N (i)

n (t) = 0
}

and Xn,i = sup
{
t | N (i)

n (t) + Ñ
(i)
n (t) = 0

}
, see

Andersen et al. [4, Example VII.2.1]. Normally, one uses the partial likeli-

hood for inference on β by solving the score equations

∂Ln

(
β
)

∂β(u)
= 0, u = 1, . . . , r.

The Wald, the likelihood ratio and score statistic depend on the solution

of the score equations β̂n, see Andersen et al. [4, pp. 486] or Klein and

Moeschberger [43, Section 8.5]. In this thesis a different approach was used.

However, the statistic Un is also connected with Cox partial likelihood.

More precisely, it holds that

∂Ln

(
β/
√
n
)

∂β(u)

∣∣∣β = 0 = U
(u)

n (τ0), u = 1, . . . , r,

cf. Andersen et al. [4, Equation 7.2.16]. This is not too surprising as Peto

remarks in the Discussion on a paper of Cox [13] that in certain cases

efficient rank test procedures depend on the statistic ∂Ln

(
β
)
/∂β(u)

| β = 0.

This will also be seen in Chapter 4.

However, in order to construct tests we need an estimator for the asymptotic

covariance matrix. Unfortunately, we need stricter assumptions on the weight

functions to prove the consistency of the variance estimator.

3.2.11 Assumption. Let
{
γ̂

(u̇,ü)
n (t) | t ∈ [0,∞)

}
, u = 1, . . . , r, be predictable

and locally bounded processes. Moreover, assume that these processes satisfy

the condition

sup
s∈I(τ)

∣∣γ̂(u̇,ü)
n (s)− γ(u̇,ü)(s)

∣∣ −→Pn,0 0.

for all τ < τ c
0 .
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3.2.12 Remark. Assumption 3.2.11 implies Assumption 3.2.8, since(∫
I(τ)

(
γ̂(u̇,ü)

n (s)− γ(u̇,ü)(s)
)2
µ0(s)α0(s) ds

)
≤(

sup
s∈I(τ)

∣∣γ̂(u̇,ü)
n (s)− γ(u̇,ü)(s)

∣∣)2

·
∫

I(τ)

µ0(s)α0(s) ds −→Pn,0 0.

3.2.13 Theorem. Let us agree that

f̂ (u,v)
n (s) = γ̂(u̇,ü)

n (s) γ̂(v̇,v̈)
n (s)

(
µ̂

(u̇,v̇)
n,2 (s)−

µ̂
(u̇)
n,1(s) µ̂

(v̇)
n,1(s)

µ̂n,0(s)

)
, s ∈ R+,

u, v = 1, . . . , r. Under Assumption 2.2.1, Assumption 2.3.9 and Assump-

tion 3.2.11, V̂n(τ) =
(
V̂

(u,v)
n (τ) | u, v = 1, . . . , r

)
, where

V̂ (u,v)
n (τ) =

1
n

n∑
i=1

∫
I(τ)

f̂
(u,v)
n (s)
µ̂n,0(s)

dN (i)
n (s),

is a consistent estimator of the asymptotic information matrix J ∗,can(τ) for

all τ < τ c
0 . If additionally limt→τc

0
J ∗,can(t) = J ∗,can(τ c

0 ) exists and the

condition

lim
t→τc

0

lim sup
n→∞

Pn,0

(
r∑

u=1

r∑
v=1

c(u)c(v)

∫
(t,τc

0 )

f̂ (u,v)
n (s)α0(s) ds > ε

)
= 0 (3.17)

for all ε > 0 and c ∈ Rr holds, then the estimator is also consistent for τ = τ c
0 .

Proof. We merely need to show that

V̂ (u,v)
n −→Pn,0

∫
I(τ)

γ(u̇,ü)(s) γ(v̇,v̈)(s)
(
µ

(u̇,v̇)
2 (s)− µ

(u̇)
1 (s)µ(v̇)

1 (s)
µ0(s)

)
α0(s) ds

for all u, v = 1, . . . , r, where we observe that

γ(u̇,ü)(s) γ(v̇,v̈)(s)
(
µ

(u̇,v̇)
2 (s)− µ

(u̇)
1 (s)µ(v̇)

1 (s)
µ0(s)

)
, s ∈ I(τ),
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u = 1, . . . , p, are bounded functions. Clearly, µ̂n,0(s) = 0 implies f̂ (u,v)
n (s) = 0.

It holds that

V̂ (u,v)
n (τ)−

∫
I(τ)

f̂ (u,v)
n (s)

µ̂n,0(s)
µ̂n,0(s)

α0(s) ds

= V̂ (u,v)
n (τ)− 1

n

n∑
i=1

∫
I(τ)

f̂
(u,v)
n (s)
µ̂n,0(s)

Y (i)
n (s)α0(s) ds

=
1
n

n∑
i=1

∫
I(τ)

f̂
(u,v)
n (s)
µ̂n,0(s)

dM (i)
n,0(s).

(3.18)

Note that the process
{
f̂

(u,v)
n (s ∧ τ)/µ̂n,0(s ∧ τ) | s ∈ R+

}
is predictable and

locally bounded. We show that the right hand side of (3.18) converges to 0 in

Pn,0-probability, as n→∞. According to Lemma 2.1.8 this is implied by

1
n2

n∑
i=1

∫
I(τ)

(
f̂

(u,v)
n (s)
µ̂n,0(s)

)2

Y (i)
n (s)α0(s) ds −→Pn,0 0.

It holds the estimate

0 ≤ 1
n2

n∑
i=1

∫
I(τ)

(
f̂

(u,v)
n

µ̂n,0

)2

Y (i)
n α0 ds ≤ 2

n

∫
I(τ)

gn α0 ds,

where we set

gn(s) =
(
γ̂(u̇,ü)

n (s) γ̂(v̇,v̈)
n (s)

)2((µ̂(u̇,v̇)
n,2 (s)

)2
µ̂n,0(s)

+

(
µ̂

(u̇)
n,1(s) µ̂

(v̇)
n,1(s)

)2(
µ̂n,0(s)

)3
)
.

Exploiting Assumption 3.2.1 one can choose 0 < 2δ <
{
inft∈I(τ) µ0(t)

}
. Hence,

for all ε > 0 we have{
2
n

∫
I(τ)

gn(s)α0(s) ds ≥ ε

}
⊂

({
2
n

∫
I(τ)

gn(s)α0(s) ds ≥ ε

}
∩
{

sup
s∈I(τ)

∣∣µ̂n,0(s)− µ0(s)
∣∣ ≤ δ

})

∪
{

sup
s∈I(τ)

∣∣µ̂n,0(s)− µ0(s)
∣∣ ≥ δ

}
= An ∪Bn.
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3 Sequences of Hardest Parametric Sub-Models

It remains to be proved that Pn,0(An) −→ 0 and Pn,0(Bn) −→ 0, as n → ∞.

The latter is obvious because of Assumption 2.3.9.iv.

Since µ̂n,0 ≥ δ is implied by sups∈I(τ)

∣∣µ̂n,0(s)− µ0(s)
∣∣ ≤ δ on the set B{

n, we

have the estimate
2
n

∫
I(τ)

gn α0 ds,≤

2
nδ3

∫
I(τ)

(
γ̂(u̇,ü)

n γ̂(v̇,v̈)
n

)2
((
µ̂

(u̇,v̇)
n,2

)2 +
(
µ̂

(u̇)
n,1 µ̂

(v̇)
n,1

)2)
α0 ds

(3.19)

on the set B{
n. One easily shows that∫

I(τ)

(
γ̂(u̇,ü)

n γ̂(v̇,v̈)
n

)2
((
µ̂

(u̇,v̇)
n,2

)2 +
(
µ̂

(u̇)
n,1 µ̂

(v̇)
n,1

)2)
α0 ds

−
∫

I(τ)

(
γ(u̇,ü) γ(v̇,v̈)

)2
((
µ

(u̇,v̇)
2

)2 +
(
µ

(u̇)
1 µ

(v̇)
1

)2)
α0 ds −→Pn,0 0,

where one uses Assumption 2.3.9 and Assumption 3.2.11. Consequently, the

right hand side of (3.19) converges to 0 in Pn,0-probability. By the same con-

siderations, one proves that∫
I(τ)

f̂ (u,v)
n

µ̂n,0

µ̂n,0
α0 ds−

∫
I(τ)

γ(u̇,ü) γ(v̇,v̈)

(
µ

(u̇,v̇)
2 − µ

(u̇)
1 µ

(v̇)
1

µ0

)
α0 ds −→Pn,0 0.

Thus, consistency holds for τ < τ c
0 .

The proof of consistency for τ = τ c
0 is a bit trickier. Since V̂n(t) and J ∗,can(t)

are both symmetric, it holds that V̂n(t) −→Pn,0 J ∗,can(t) is equivalent to

cTV̂n(t)c −→Pn,0 c
TJ ∗,can(t)c for all c ∈ Rr. Let us introduce some abbrevi-

ations

X̂n(t) = cTV̂n(t) c

Xn(t) =
r∑

u=1

r∑
v=1

c(u)c(v)

∫
I(t)

f̂ (u,v)
n (s)α0(s) ds

X(t) = cTJ ∗,can(t)c.

We have already shown that X̂n(τ)−Xn(τ) −→Pn,0 0 for all τ < τ c
0 . As a first

step we extend this result to τ = τ c
0 using Theorem 2.1.1. We now merely have
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3.2 Properties of Sequences of Hardest Parametric Sub-models

to prove that

lim
t→τc

0

lim sup
n→∞

Pn,0

(∣∣X̂n(τ c
0 )− X̂n(t)−Xn(τ c

0 ) +Xn(t)
∣∣ ≥ ε

)
= 0 (3.20)

for all ε > 0. We show that

lim
t→τc

0

lim sup
n→∞

Pn,0

(∣∣X̂n(τ c
0 )− X̂n(t)

∣∣ ≥ ε
)

= 0. (3.21)

Since limt→τc
0

lim supn→∞ Pn,0

(∣∣Xn(τ c
0 )−Xn(t)

∣∣ ≥ ε
)

= 0 is exactly condi-

tion (3.17), the condition (3.20) holds, if condition (3.21) holds.

From Remark 3.2.14 we know that
{
X̂n(s ∧ τ c

0 ) | s ∈ R+

}
is an increasing and

non-negative process. As{
X̂n(τ c

0 ∧ τ ∧ s)− X̂n(τ c
0 ∧ t ∧ s)−Xn(τ c

0 ∧ τ ∧ s) +Xn(τ c
0 ∧ t ∧ s) | s ∈ R+

}
,

t < τ < τ c
0 , is a local martingale, cf. Jacod and Shiryaev [32, Theorem I.3.18],

the process {
X̂n(τ c

0 ∧ τ ∧ s)− X̂n(τ c
0 ∧ t ∧ s) | s ∈ R+

}
is Lenglart-dominated by the process{

Xn(τ c
0 ∧ τ ∧ s)−Xn(τ c

0 ∧ t ∧ s) | s ∈ R+

}
.

Therefore, we can apply Theorem 2.1.5

Pn,0

(
sup

0≤s≤τ
X̂n(τ c

0 ∧ τ ∧ s)− X̂n(t ∧ s) ≥ ε

)
≤ η

ε
+ Pn,0

(
Xn(τ)−Xn(t) ≥ η

)
Applying the Monotone Convergence Theorem, it results that

Pn,0

(
sup

0≤s≤τc
0

X̂n(τ c
0 ∧ s)− X̂n(t ∧ s) ≥ ε

)
≤ η

ε
+ Pn,0

(
Xn(τ c

0 )−Xn(t) ≥ η
)
,

where we also use the fact that the process X̂n does not jump at the point τ c
0

and that the paths of Xn are continuous. Thus, we proved

Pn,0

(
X̂n(τ c

0 )− X̂n(t) ≥ ε
)
≤ η

ε
+ Pn,0

(
Xn(τ c

0 )−Xn(t) ≥ η
)
,
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3 Sequences of Hardest Parametric Sub-Models

The condition (3.17) yields limt→τc
0

lim supn→∞ Pn,0

(
X̂n(τ c

0 )− X̂n(t) ≥ ε
)
≤

η/ε. As η > 0 was arbitrary, equation (3.20) holds, i.e. X̂n(τ c
0 )−Xn(τ c

0 ) −→Pn,0

0, as n→∞.

As the last step we show that Xn(τ c
0 ) − X(τ c

0 ) −→Pn,0 0. We have already

shown that Xn(t)−X(t) −→Pn,0 0 for all t < τ c
0 . Again, Theorem 2.1.1 gives

that we merely have to show that

lim
t→τc

0

lim sup
n→∞

Pn,0

(∣∣Xn(τ c
0 )−Xn(t)−X(τ c

0 ) +X(t)
∣∣ ≥ ε

)
= 0.

However, this condition holds trivially, because of condition (3.17) and the fact

that limt→τc
0
X(t) = X(τ c

0 ).

3.2.14 Remark. a) The matrix V̂n is positive semi-definite. As the sum of

positive semi-definite matrices is again a positive semi-definite matrix, e.g.

cf. Brunner and Munzel [12, Satz B.40], it is sufficient to show that
r∑

u=1

r∑
v=1

w(u) w(v)

∫
I(τ)

f̂ (u,v)
n (s)

1
µ̂n,0(s)

dN (i)
n (s) ≥ 0

for all w ∈ Rr and i ∈ {1, . . . , n}. Using the abbreviation

c(s) =
rs∑

u=1

w(
∑s−1

l=1 rl+u) γ̂(s,u)
n

we have
r∑

u=1

r∑
v=1

w(u) w(v)f̂ (u,v)
n

=
p∑

u1=1

ru1∑
u2=1

p∑
v1=1

rv1∑
v2=1

w(
∑u1−1

l=1 rl+u2) w(
∑v1−1

l=1 rl+v2) γ̂(u1,u2)
n γ̂(v1,v2)

n

×
(
µ̂

(u1,v1)
2 − µ̂

(u1)
1 µ̂

(v1)
1

µ̂0

)
=

p∑
u1=1

p∑
v1=1

c(u1) c(v1) ·
(
µ̂

(u1,v1)
2 − µ̂

(u1)
1 µ̂

(v1)
1

µ̂0

)

=
1
n

n∑
j=1

(cTZn,j)2 Y (j)
n − 1

n
∑n

j=1 Y
(j)
n

(
n∑

j=1

cTZn,j Y
(j)
n

)2

.
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Set δ−1 =
∑n

j=1 Y
(j)
n > 0. Multiplying the right hand side of the previous

equation with δ gives

1
n

n∑
j=1

(cTZn,j)2 Y (j)
n δ − 1

n

(
n∑

j=1

cTZn,j Y
(j)
n δ

)2

.

Using the Jensen-Inequality gives the estimate

n∑
j=1

(cTZn,j)2 Y (j)
n δ ≥

(
n∑

j=1

cTZn,j Y
(j)
n δ

)2

,

i.e the assertion.

b) The condition (3.17) is implied by

lim
t→τc

0

lim sup
n→∞

Pn,0

(∣∣∣∣∫
(t,τc

0 )

γ̂(u̇,ü)
n γ̂(v̇,v̈)

n

(
µ̂

(u̇,v̇)
n,2 −

µ̂
(u̇)
n,1 µ̂

(v̇)
n,1

µ̂n,0

)
α0 ds

∣∣∣∣ ≥ ε

)
= 0

for all u, v = 1, . . . , r and ε > 0.

In the next chapter tests for linear and multivariate one-sided hypotheses are

rigorously developed and their asymptotic properties are investigated for se-

quences of hardest parametric sub-models. Even though we start with some

semi-parametric model, these tests turn out to be non-parametric.
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4 Deriving Testing Procedures

In Chapter 2 we established asymptotic normality for sequences of parametric

sub-models and in Chapter 3 the notion of sequences of hardest parametric

sub-models (SHPSM). In Section 4.1 and Section 4.2 multivariate one-sided

testing problems and linear testing problems are considered. The results are

applied to SHPSM in Section 4.3. Moreover, it is shown that the resulting

tests are non-parametric procedures and that they are generalizations of the

projective-type tests of Mayer [53] and the general class of tests introduced by

Jones and Crowley [39], see Section 4.4.

4.1 Multivariate One-Sided Testing Problems

First of all, let us introduce the premises for this section. Analog to previous

chapters we consider sequences of experiments that are asymptotically normal,

again.

4.1.1 Assumption. Let
(
Ωn,An,Pn

)
, n ∈ N, where Pn =

{
Pn,ξ | ξT =

(βT, ηT), β ∈ Rr, η ∈ Rq
}
, be a sequence of experiments that is asymptotically

normal with central sequence Sn, n ∈ N, and asymptotic information matrix

J that is partitioned as follows

J =

(
J1,1 J1,2

J2,1 J2,2

)
,

where J1,1 is some (r × r) matrix and J2,2 is some (q × q) matrix. These
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4 Deriving Testing Procedures

premises mean that

dPn,ξ

dPn,0
− ξTSn +

1
2
ξTJ ξ −→Pn,0 0 as n→∞,

and Sn
D−→Pn,0 N(0,J ), as n→∞.

4.1.2 Remark. Using the First Le Cam Lemma, cf. Witting and Müller-

Funk [72, Korollar 6.124], one sees that the sequences of probability measures{
Pn,ξ | n ∈ N

}
and

{
Pn,0 | n ∈ N

}
are mutual contiguous. Especially, conver-

gence in Pn,0-probability implies convergence in Pn,ξ-probability. The First

Le Cam Lemma, Slutsky’s Lemma and the Cramér-Wold device, cf. Witting

and Müller-Funk [72, Korollar 6.124, Korollar 5.83, Korollar 5.69], give that

Sn
D−→Pn,ξ

N(J ξ,J ), as n → ∞. Hence, the sequence of experiments con-

verges weakly to some Gauss shift experiment(
Ω,A,G

)
, G = {Pξ | ξT = (βT, ηT) ∈ Rr+q},

where

S : (Ω,A) −→ (Rr+q,Br+q), L
(
S | Pξ

)
= N

(
J ξ,J

)
, (4.1)

and
dPξ

dP0
= exp

(
STξ − 1

2
ξTJ ξ

)
. (4.2)

Before we can state the multivariate one-sided testing problem we have to

introduce some more notation.

4.1.3 Definition. Let m ≥ 1 be some integer and ∅ 6= K ⊂
{
1, . . . ,m

}
. Then

we define the mappings

πm
K : Rm −→ R|K|, πm

K(x) = (T m
K )Tx,

ρm
K : Rm×m −→ R|K|×|K|, ρm

K(M ) = (T m
K )TM (T m

K ),

where T m
K =

(
ek | k ∈ K

)
, ek =

(
δ1,k, . . . , δm,k

)T and δu,v denotes the Kro-

necker symbol.
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4.1 Multivariate One-Sided Testing Problems

The functions πm
K and ρm

K are obviously projections. Let J ⊂ {1, . . . , r} denote

the components of the parameter β, that we are interested in, i.e. we want

to test one-sided hypotheses that only depend on these components. The

remaining components of β are regarded as nuisance parameters. Consequently,

the vector βJ = πr
J(β) contains the interesting parameter and βJ{ = πr

J{(β)

contains the nuisance parameter. More precisely, the multivariate one-sided

testing problem HJ
1 versus KJ

1 , where

HJ
1 : βJ = 0, βJ{ ∈ Rr−|J|, η ∈ Rq

and

KJ
1 : βJ ≥ 0, βJ 6= 0, βJ{ ∈ Rr−|J|, η ∈ Rq,

is the subject of this section. Examples for one-sided testing problems are the

two-sample problem with covariate adjustment or more generally any one-sided

testing problem in the presence of concomitant covariates.

In order to derive some reasonable testing procedure we study the testing

problem H1
J versus K1

J under the limit model and derive some test statistic.

This statistic will be the basis to propose a test statistic for finite n ∈ N. As we

allow the asymptotic information matrix J to be degenerated, the hypothesis

HJ
1 and the alternative KJ

1 are not necessarily disjoint. The next result helps

us to state conditions for guaranteeing that the hypothesis and the alternative

are disjoint

4.1.4 Lemma. Pξ = Pξ′ is equivalent to J ξ = J ξ′.

Proof. As P0

(
S ∈ Im(J )

)
= 1, cf. Witting [71, Hilfssatz 1.90], we get that

dPξ

dP0
= exp

(
STJ −(J ξ)− 1

2
(J ξ)TJ −(J ξ)

)
Pn,0-almost surely.

Therefore J ξ = J ξ′ ⇒ Pξ = Pξ′ is trivial. On the other hand Pξ = Pξ′

implies that PS
0

{
s ∈ Im(J ) | f(s) = 0

}
= 1, where

f(s) = sTJ −(J ξ −J ξ′)− 1
2
(J ξ)TJ −(J ξ) +

1
2
(J ξ′)TJ −(J ξ′).
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As L
(
S | P0

)
= N

(
0,J

)
, it holds that

0 = E
(
f(S)

)
= −1

2
(J ξ)TJ −(J ξ) +

1
2
(J ξ′)TJ −(J ξ′)

and

0 = E
(
f(S)− Ef(S)

)2 = (J ξ −J ξ′)TJ −(J ξ −J ξ′).

As (s1, s2) 7→ sT1 J −s2 is an inner product on Im(J ), see Proposition B.2.5,

we get that J ξ − J ξ′ = 0. Remember that ξT = (βT, ηT) and ξ′
T =

(β′T, η′T).

The previous result gives that the hypothesis HJ
1 and the alternative HJ

1 are

disjoint, if and only if Θ
(
HJ

1

)
∩Θ

(
KJ

1

)
= ∅, where

Θ
(
HJ

1

)
=
{
J ξ | ξ ∈ HJ

1

}
and Θ

(
KJ

1

)
=
{
J ξ | ξ ∈ KJ

1

}
are the induced parameter sets of the hypothesis and the alternative. Later,

the matrix J corresponds with the asymptotic information matrix of some

sequence of hardest parametric sub-models, see Section 4.3. This means that

we do not know the matrix J in general. Therefore, we state a criterion that

depends on the matrix

J ∗ = J1,1 −J1,2J
−
2,2J2,1

which corresponds with the asymptotic covariance matrix of the MCRM, see

Theorem 3.2.4.c. We will see that this matrix is known to some extend. In

Discussion 4.3.2 reasons for considering models with a degenerated asymptotic

information matrix are provided and it is shown that these models satisfy the

condition (4.3) given in the following result.

4.1.5 Proposition. Assume that

β ∈ ker(J ∗)\{0} =⇒ βJ 6≥ 0 and −βJ 6≥ 0, (4.3)

where κ 6≥ 0 means that κ(u) < 0 for some u. Then the hypothesis HJ
1

and the alternative KJ
1 are disjoint in the limit experiment. Note that con-

dition (4.3) trivially holds, if the information matrix J ∗ is non-degenerated,

since ker(J ∗)\{0} = ∅.
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Proof. Lemma 4.1.4 implies that Pξ = Pξ′ , if and only if J ξ = J ξ′. Without

loss of generality, we can assume that η, η′ ∈ ker(J2,2)⊥, as J2,2η̃ = 0 and

J1,2η̃ = 0 for all η̃ ∈ ker(J2,2), see Proposition B.3.4.a. J ξ = J ξ′ is

equivalent to (
J1,1 J1,2

J2,1 J2,2

)(
β

0

)
=

(
J1,1 J1,2

J2,1 J2,2

)(
β′

η′ − η

)

and

J1,1

(
β − β′

)
= J1,2

(
η′ − η

)
and J2,1

(
β − β′

)
= J2,2

(
η′ − η

)
.

and

J1,1

(
β − β′

)
−J1,2

(
η′ − η

)
= 0 and J −

2,2J2,1

(
β − β′

)
=
(
η′ − η

)
.

Putting these equations together yields that J ∗(β − β′
)

= 0, i.e.
(
β − β′

)
∈

ker(J ∗).

Assume that ξ ∈ HJ
1 and ξ′ ∈ KJ

1 and that J ξ = J ξ′. Applying the previous

considerations, we get

(
β − β′

)
=
(
T r

J T r
J{

)( 0− β′J

βJ{ − β′
J{

)
∈ ker(J ∗)

and that β′J ≥ 0 and β′J 6= 0. This contradicts our assumption.

Behnen and Neuhaus [8], who consider a similar testing problem, suggest the

asymptotic likelihood ratio test statistic as basis for inference on β. Following

their idea, we also aim to develop an asymptotic likelihood ratio test. For the

testing problem HJ
1 versus KJ

1 the likelihood ratio test statistic is given by

T = 2 log
supξ∈HJ

1∪KJ
1

dPξ

dP0

supξ∈HJ
1

dPξ

dP0

,

see also Witting and Müller-Funk [72, pp. 215] for a justification of this pro-

ceeding.
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For defining the statistic T one does not need the assumption that the hypoth-

esis HJ
1 and the alternative KJ

1 are disjoint. Basically, T is the likelihood ratio

test statistic for the testing problem

H̃J
1 : ξ ∈ ΘJ,0 versus K̃J

1 : ξ ∈ ΘJ,1\ΘJ,0,

where

ΘJ,0 =
{
ξ | J ξ ∈ Θ(HJ

1)
}

and ΘJ,1 =
{
ξ | J ξ ∈ Θ(KJ

1)
}
.

If the condition (4.3) holds this testing problem is equivalent to the original

testing problem, since ΘJ,0 and ΘJ,1 are disjoint. The transformation is based

on the fact that Pξ = Pξ′ if and only if J ξ = J ξ′, see Lemma 4.1.4. The

next results help us to simplify the statistic T .

4.1.6 Lemma. Let A be some symmetric, positive semi-definite (k × k) ma-

trix, s ∈ Im(A ) and c ∈ R. It holds that

sup
x∈Rk

sTx− 1
2
xTA x+ c =

1
2
sTA −s+ c.

Proof. As s ∈ Im(A ), we can write s = A s0 for some s0 ∈ Rk. It holds that

A A −s = A A −A s0 = A s0 = s and therefore x0 = A −s is a solution of

A x = s, see Proposition B.1.5. A Taylor-expansion at x0 gives that

sTx− 1
2
xTA x+ c =

1
2
sTA −s+ c− 1

2
(x− x0)TA (x− x0). (4.4)

Since A is positive semi-definite, it follows the assertion.

4.1.7 Lemma. Let us introduce the following abbreviations

U (J ) = T r+q
{1,...,r} −T r+q

{r+1,...,r+q}J
−
2,2J2,1

and

YJ(J ∗) = T r
J −T r

J{

(
H J

2,2(J
∗)
)−

H J
2,1(J

∗)

where we set

H J
i,j(J

∗) = T T
J,iJ

∗TJ,j , TJ,1 = T r
J , and TJ,2 = T r

J{ .
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4.1 Multivariate One-Sided Testing Problems

Abbreviating

H ∗
J (J ∗) = H J

1,1(J
∗)−H J

1,2(J
∗)
(
H J

2,2(J
∗)
)−

H J
2,1(J

∗),

we define

LJ,J ∗(y) = 2 sup
κ≥0, κ∈R|J|

(
κTy − 1

2
κTH ∗

J (J ∗)κ
)
, y ∈ R|J|, (4.5)

L̃J,J ∗(u) = LJ,J ∗
(
YJ(J ∗)Tu

)
, u ∈ Rr, (4.6)

and

LJ,1(u,J ∗) = max
{
fI,J(u,J ∗) | ∅ 6= I ⊂ {1, . . . , |J|}

}
, u ∈ Rr, (4.7)

where

fI,J(u,J ∗) = QI,J(u,J ∗) ·
∏
i∈I

1

(
π
|I|
{i}
(
RI,J(u,J ∗)

)
≥ 0
)

(4.8)

and

QI,J(u,J ∗) = yI,J(u,J ∗)TRI,J(u,J ∗),

RI,J(u,J ∗) =
(
ρ
|J|
I

(
H ∗

J (J ∗)
))−

yI,J(u,J ∗),

yI,J(u,J ∗) = π
|J|
I

(
YJ(J ∗)Tu

)
.

(4.9)

a) For any s ∈ Im(J ), it holds that

2 log
supξ∈HJ

1∪KJ
1

exp
(
sTξ − 1

2ξ
TJ ξ

)
supξ∈HJ

1
exp
(
sTξ − 1

2ξ
TJ ξ

) = L̃J,J ∗
(
U (J )Ts

)
. (4.10)

b) For any u ∈ Im(J ∗), it holds that L̃J,J ∗
(
u
)

= LJ,1

(
u,J ∗).

c) LJ,J ∗ : Im
(
H ∗

J (J ∗)
)
−→ R and L̃J,J ∗ : Im(J ∗) −→ R are convex and

continuous functions.

Proof. For the proof set U = U (J ), Hi,j = H J
i,j(J

∗), H ∗ = H ∗
J (J ∗)

and YJ = YJ(J ∗). Obviously, it holds that

U TJ U =
(
J1,1 −J1,2J

−
2,2J2,1 J1,2 −J1,2J

−
2,2J2,2

)
U

=
(
J ∗ 0

)
U = J ∗,
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where we use Proposition B.3.4.b and the properties of a generalized inverse.

Analogously, it is proved that Y T
J J ∗YJ = H ∗. Note that these matrices are

also symmetric and positive semi-definite. Abbreviate s1 = πr+q
{1,...,r}(s) and

s2 = πr+q
{r+1,...,q}(s) and set

p(βJ, βJ{ , η) = βT
J π

r
J(s1) + βT

J{π
r
J{(s1) + ηTs2

− 1
2
βT

J{ρ
r
J{(J1,1)βJ{ −

1
2
βT

J ρ
r
J(J1,1)βJ − βT

J{T r
J{

TJ1,1T
r

J βJ

− ηTJ2,1T
r

J βJ − ηTJ2,1T
r

J{βJ{ −
1
2
ηTJ2,2η.

One sees that the left hand side of (4.10) is equal to

2 sup
{
p(βJ, βJ{ , η) | βJ ≥ 0, β{

J ∈ Rr−|J|, η ∈ Rq
}

− 2 sup
{
p(0, βJ{ , η) | β{

J ∈ Rr−|J|, η ∈ Rq
}

= 2 sup
{

sup
{

sup
{
p(βJ, βJ{ , η) | η ∈ Rq

} ∣∣∣ βJ{ ∈ Rr−|J|
}∣∣∣βJ ≥ 0

}
− 2 sup

{
sup

{
p(0, βJ{ , η) | η ∈ Rq

}∣∣βJ{ ∈ Rr−|J|
}

= 2 sup
{
M(βJ, βJ{ , η) | βJ ≥ 0

}
− 2M(0, βJ{ , η)

where

M(βJ, βJ{ , η) = sup
{

sup
{
p(βJ, βJ{ , η) | η ∈ Rq

} ∣∣∣ βJ{ ∈ Rr−|J|
}
.

Proposition B.3.4.b and Proposition B.3.4.c give that

s2 −J2,1TJβJ −J2,1TJ{βJ{ ∈ Im(J2,2).

Applying Lemma 4.1.6 yields

sup
{
p(βJ, βJ{ , η) | η ∈ Rq

}
= βT

J π
r
J

(
U Ts

)
− 1

2
βT

J H1,1βJ

+
1
2
s2J

−
2,2s2 + βT

J{π
r
J{

(
U Ts

)
− 1

2
βT

J{H2,2βJ{ − βT
J{H2,1βJ

after some tedious computations. As(
H1,1 H1,2

H2,1 H2,2

)
=

(
T T

J,1

T T
J,2

)
J ∗

(
TJ,1 TJ,2

)
,
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4.1 Multivariate One-Sided Testing Problems

Proposition B.3.4.b and Proposition B.3.4.c give that πr
J{

(
U Ts

)
− H2,1βJ ∈

Im(H2,2). Applying Lemma 4.1.6 yields that

M(βJ, βJ{ , η) = βT
J Y T

J U Ts− 1
2
βT

J H ∗βJ

+
1
2

(
πr

J{

(
U Ts

))T

H −
2,2

(
πr

J{

(
U Ts

))
+

1
2
sT2 J −

2,2s2.

As 2 sup
{
M(βJ, βJ{ , η) | βJ ≥ 0

}
− 2M(0, βJ{ , η) = L̃J,J ∗

(
U Ts

)
, the proof

of a) is complete.

Proof of b). As Y T
J u ∈ Im(H ∗), cf. Proposition B.3.4.c, it holds that

L̃J,J ∗
(
u
)

= 2 sup
κ≥0

((
H ∗κ

)T(
H ∗)−Y T

J u− 1
2
(
H ∗κ

)T(
H ∗)−(H ∗)κ).

Proposition B.2.5 yields the assertion.

Proof of c). First we note that the set Im(J ∗) is convex and that 0 ≤
L̃J,J ∗(u) <∞ for all u ∈ Im(J ∗), because of b).

L̃J,J ∗
(
λu1 + (1− λ)u2

)
= LJ,J ∗

(
Y T

J

(
λu1 + (1− λ)u2

))
≤ λLJ,J ∗

(
Y T

J u1

)
+ (1− λ)LJ,J ∗

(
Y T

J u2

)
= λ L̃J,J ∗(u1) + (1− λ) L̃J,J ∗(u2)

for all ui ∈ Im(J ∗) and λ ∈ (0, 1), i.e. L̃J,J ∗ is convex and therefore contin-

uous, cf. Borwein and Lewis [10, Theorem 4.1.3]. Since any yi ∈ Im(H ∗) can

be represented as yi = H ∗ỹi, one gets that yi = Y T
J ui, where ui = J ∗YJỹi.

Since Im(H ∗) is convex, we have

LJ,J ∗
(
λ y1 + (1− λ) y2

)
= L̃J,J ∗

(
λu1(1− λ)u2

)
≤ λ L̃J,J ∗(u1) + (1− λ) L̃J,J ∗ (u2)

= λLJ,J ∗(y1) + (1− λ)LJ,J ∗(y2),

where we use the convexity of L̃J,J ∗ . Thus, LJ,J ∗ is convex and continuous,

cf. Borwein and Lewis [10, Theorem 4.1.3].
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4 Deriving Testing Procedures

Using the previous result we can simplify our test statistic T , whose distribution

is calculated in Theorem 4.1.14.

4.1.8 Corollary. It holds that

T = LJ,1(U,J ∗) Pξ-almost surely,

where U = U (J )TS.

Proof. As Pξ � P0, it suffices to show the assertion for P0. Witting [71,

Hilfssatz 1.90] gives that P0

(
S ∈ Im(J )

)
= 1 and P0

(
U ∈ Im(J ∗)

)
= 1.

Consequently, Lemma 4.1.7.a and Lemma 4.1.7.b imply the assertion.

4.1.9 Remark. In Discussion 3.1.1 we showed that the statistic

Tβ0 = βT
0

(
S1 −J1,2J

−1
2,2 S2

)
− 1

2
βT

0 J ∗β0 = βT
0 U (J )TS − 1

2
βT

0 J ∗β0,

where we set S1 = πr+q
{1,...,r}(S) and S2 = πr+q

{r+1,...,r+q}(S), is efficient for the

testing problem β = 0, η ∈ Rq versus β = β0, η ∈ Rq. Remember that the

critical values can be chosen independently of η. Now, let us assume that β is

one-dimensional, i.e. r = 1. Clearly,

T̃ =

√
J ∗

β0

(
Tβ0 +

1
2
βT

0 J ∗β0

)
=
√

J ∗U T(J )S.

is an efficient test statistic for β = 0, η ∈ Rq versus β = β0, η ∈ Rq.

More precisely, the test ψ = 1
(
T̃ > c(α)

)
, where c(α) is chosen, such that

P0

(
T̃ > c(α)

)
= α, is the most powerful α-test. This test is independent of

β0, therefore it is even the most powerful α-test for the testing problem β = 0,

η ∈ Rq versus β > 0, η ∈ Rq. As ψ = 1
(
T >

(
c(α)

)2), our likelihood ratio test

statistic is optimal in the case of a one-dimensional β. So, we can expect to

obtain reasonable testing procedures by using the likelihood ratio test statis-

tic. The efficiency of our tests will be discussed in greater detail later in this

section.
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4.1 Multivariate One-Sided Testing Problems

Since the statistic U corresponds with the statistic Un = U (J )TSn for finite

n, the previous result suggests that LJ,1

(
Un,J ∗) is a reasonable test statistic

for the testing problem H̃J
1 versus K̃J

1 . However, this statistic still depends on

asymptotic quantities. In order to get some applicable test we have to replace

these quantities by suitable estimators. In the next few steps we provide the

results needed for proving that if V̂n −J ∗ −→Pn,0 0 and Un − Ûn −→Pn.0 0,

as n→∞, it holds that

LJ,1

(
Un,J

∗)− LJ,1

(
Ûn, V̂n

)
−→Pn,ξ

0, as n→∞,

for all ξ ∈ Rr+q. Hence, one can use LJ,1

(
Ûn, V̂n

)
as test statistic that does

not depend anymore on asymptotic quantities for suitable Ûn and V̂n. The

following Lemma is a generalization of a result that can be found in Janssen [34,

p. 151].

4.1.10 Lemma. Assume that An, n ∈ N, is a sequence of real, symmetric,

positive semi-definite (k × k) random matrices, such that

(i) An − A −→Pn
0, as n → ∞, where A is a real, symmetric, positive

semi-definite (k × k) matrix, and

(ii) ker(A ) ⊂ ker(An) Pn-almost surely for all sufficiently large n ∈ N.

The following assertions hold true.

a) A −
n −A − −→Pn

0, as n→∞.

b) (V TAnV )− − (V TA V )− −→Pn
0, as n→∞ for any (k ×m)-matrix V .

c) In the case that k = r and using the notation of Lemma 4.1.7, where we

replace J ∗ by A and An, it holds that

(i) YJ(An)− YJ(A ) −→Pn
0, as n→∞.

(ii) ker
(
H ∗

J (A )
)
⊂ ker

(
H ∗

J (An)
)

Pn-almost surely for all sufficiently

large n ∈ N and H ∗
J (An)−H ∗

J (A ) −→Pn
0, as n→∞.

Proof. Without loss of generality we can assume that all random matrices are

defined on the same probability space. By applying the sub-sub-sequence prin-

ciple for random variables that converge in probability, cf. Proposition B.4.8,
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4 Deriving Testing Procedures

we merely have to show the assertion for sub-sequences of fixed sequences of

non-random matrices.

ker(A ) ⊂ ker(An) yields dim Im(A ) ≥ dim Im(An), i.e. rank(An) ≤ rank(A ).

Abbreviating l = rank(A ), we note that the set of all real (k × k) matrices with

rank greater or equal to l is an open set. Thus, we can assume that rank(An) =

l for all sufficiently large n. Using the representation An = FT
n DnFn, where

Fn is some orthogonal matrix and Dn = diag
(
λn,1, . . . , λn,l, 0, . . . , 0

)
we get

that A −
n = FT

n D−
n Fn, see Proposition B.1.6. One immediately sees that

lim infn→∞ min1≤i≤l

(
λn,i

)
> 0. Consequently, it holds that 0 < trace

(
A −

n

)
=∑l

i=1 λ
−1
n,i ≤ K < ∞. Thus, the sequence A −

n , n ∈ N, is relative compact and

therefore contains an accumulation point A0.

We see that AnA −
n , A −

n An, AnA −
n An and A −

n AnA −
n have the accumulation

points A A0, A0A , A A0A and A0A A0 respectively. Now, one easily checks

that A0 satisfies the conditions of Definition B.1.1. As the generalized inverse

is uniquely determined, see Proposition B.1.2, the proof of a) is complete.

Proof of b). Assume that κ ∈ ker(V TA V ). Using Proposition B.3.2.b gives

that V κ ∈ ker(A ) and therefore V κ ∈ ker(An) P-almost surely. Again, Propo-

sition B.3.2.b yields that κ ∈ ker(V TAnV ) P-almost surely. The assertion is

implied by a).

Proof of the first part of c). Applying b) yields that(
H J

2,2(An)
)− − (H J

2,2(A )
)− −→Pn

0, as n→∞.

Proposition B.4.6 gives that H J
2,1(An) −H J

2,1(A ) −→Pn
0. Finally, Proposi-

tion B.4.6 yields the assertion.

Proof of the second part of c). Proposition B.4.6 gives that H J
i,j(An) −

H J
i,j(A ) −→Pn

0, as n→∞. b) yields that(
H J

2,2(An)
)− − (H J

2,2(A )
)− −→Pn

0, as n→∞.

Combing these results and Proposition B.4.6 imply the first assertion.
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4.1 Multivariate One-Sided Testing Problems

We show that ker
(
H ∗

J (A )
)

= πr
J

(
ker(A )

)
. Assume that κ ∈ ker

(
H ∗

J (A )
)

Using Proposition B.3.2.b one gets that YJ(A )κ ∈ ker(A ), since H ∗
J (A ) =

YJ(A )TA YJ(A ). As πr
J

(
YJ(A )κ

)
= κ, it results directly that ker

(
H ∗

J (A )
)
⊂

πr
J

(
ker(A )

)
. Assume that κ ∈ ker(A ). Proposition B.3.2.b gives that

0 = κTA κ =

(
πr

J(κ)

πr
J{(κ)

)T(
H J

1,1(A ) H J
1,2(A )

H J
2,1(A ) H J

2,2(A )

)(
πr

J(κ)

πr
J{(κ)

)

and that

H J
1,1(A )πr

J(κ) + H J
1,2(A )πr

J{(κ) = 0.

H J
2,1(A )πr

J(κ) + H J
2,2(A )πr

J{(κ) = 0.

Using these equations and Proposition B.3.4.b we finally get that

H ∗
J (A )πr

J(κ) = H J
1,1(A )πr

J(κ)− C TH J
2,2(A )

(
H J

2,2(A )
)−

H J
2,2(A )Cπr

J(κ)

= H J
1,1(A )πr

J(κ)− C TH J
2,1(A )πr

J(κ)

= H J
1,1(A )πr

J(κ) + C TH J
2,2(A )πr

J{(κ)

= H J
1,1(A )πr

J(κ) + H J
1,2(A )πr

J{(κ) = 0,

i.e. ker
(
H ∗

J (A )
)
⊃ πr

J

(
ker(A )

)
. Analogously, one shows that πr

J

(
ker(An)

)
=

ker
(
H ∗

J (An)
)
. Consequently, it holds that

ker
(
H ∗

J (A )
)

= πr
J

(
ker(A )

)
⊂ πr

J

(
ker(An)

)
= ker

(
H ∗

J (An)
)

Pn-almost surely for all sufficiently large n ∈ N.

4.1.11 Lemma. Let A be some (k × k) positive semi-definite, symmetric

matrix, κ ∈ Im(A ) and define

gk,I(x) =
∏
i∈I

1
(
πk
{i}(x) ≥ 0

)
, x ∈ Rk, ∅ 6= I ⊂ {1, . . . , k}.

Assume that Xn
D−→Pn X, as n→∞, where X ∼ N(κ,A ).

a) gk,I(Xn) converges in distribution.
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b) If additionally Xn − X̂n −→Pn
0, as n → ∞, and ρk

{i}(A ) > 0, i ∈ I, then

gk,I(Xn)− gk,I(X̂n) −→Pn 0.

Proof. Note that P(X ∈ C) = 1, where C = Im(A ), cf. Witting [71, Hilfs-

satz 1.90], and define the (k − 1)-dimensional hyperplanes
{
x ∈ Rk | πk

{i}(x) =

0
}
, i = 1, . . . , k. Set

M =
{
i ∈ I

∣∣∣ C ⊂
{
x ∈ Rk | πk

{i}(x) = 0
}}

and M̃ = I\M,

where M contains the indices of the hyperplane that completely cover C.

Clearly, it holds that gk,I = g
k,M̃

PX -almost surely, where gk,∅ = 1.

Let D(g
k,M̃

) denote the set of points where g
k,M̃

is not continuous. Obvi-

ously, we have the inclusion D(g
k,M̃

) ⊂
⋃

i∈M̃

{
x ∈ Rk | πk

{i}(x) = 0
}
. C ∩{

x ∈ Rk | πk
{i}(x) = 0

}
, i ∈ M̃, are linear sub-spaces of C whose dimension is

strictly smaller than the dimension of C. Hence, we have

PX
({
x ∈ Rk | πk

{i}(x) = 0
}
∩ C

)
= 0, i ∈ M̃,

the Continuous Mapping Theorem, cf. Witting and Müller-Funk [72, Satz 5.43],

yields the assertion.

Proof of b) by induction with respect to |I|. For |I| = 1 one gets that πk
I (X) ∼

N
(
πk

I (κ), ρk
{i}(A )

)
, and therefore P

(
πk

I (X) = 0
)

= 0. Proposition B.4.7 implies

the assertion. Assume that the assertion holds for all |I| ≤ l, l ≥ 1. It is shown

that the assertion holds for |I| = l + 1. Choose non-empty sets Mi, i = 1, 2,

such that M1 ∪M2 = I and M1 ∩M2 = ∅. Clearly, it holds that |Mi| ≤ l. As

gk,I(Xn)− gk,I(X̂n) = gk,M1(Xn) · gk,M2(Xn)− gk,M1(X̂n) · gk,M2(X̂n)

a), the induction assumption and Proposition B.4.6 yield the assertion.

Let us summarize the premises of the previous results.

4.1.12 Assumption. Assume that the following conditions hold.
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4.1 Multivariate One-Sided Testing Problems

(i) A is some (r × r) positive semi-definite, symmetric matrix, ρr
{i}(A ) > 0,

i = 1, . . . , r.

(ii) κ ∈ Im(A ).

(iii) Xn
D−→Pn X, as n→∞, where X ∼ N(κ,A ).

(iv) X̂n −Xn −→Pn 0, as n→∞.

(v) Ân −A −→Pn 0, as n→∞.

(vi) ker(A ) ⊂ ker(Ân) Pn-almost surely for all sufficiently large n ∈ N.

4.1.13 Theorem. Let Assumption 4.1.12 be satisfied. Then it holds that

a) LJ,1(Xn,A )− LJ,1(X̂n, Ân) −→Pn
0, as n→∞, and

b) LJ,1(X̂n, Ân) D−→Pn
LJ,1(X,A ), as n→∞,

where use the notation provided in Lemma 4.1.7.

Proof. First we show the estimate∣∣max{a1, . . . , al} −max{b1, . . . , bl}
∣∣ ≤ max

{
|a1 − b1|, . . . , |al − bl|

}
. (4.11)

Without loss of generality one can assume that maxi{ai} = ai0 ≥ maxi{bi} =

bi1 . The estimate∣∣max
i
{ai} −max

i
{bi}

∣∣ = ai0 − bi0 + bi0 − bi1 ≤ ai0 − bi0 ≤ max
i

{
|ai − bi|

}
,

where we use ai0 − bi0 ≥ 0 and bi0 − bi1 ≤ 0, gives the assertion. Because of

the estimate (4.11) and Proposition B.4.5, it suffices to show that

fI,J(Xn,A )− fI,J(Xn, Ân) −→Pn
0, as n→∞, ∅ 6= I ⊂

{
1, . . . , |J|

}
.

Using Lemma 4.1.10.c.i and Proposition B.4.6, one gets that yI,J(Xn,A ) −
yI,J(X̂n, Ân) −→Pn 0, as n → ∞. Applying Lemma 4.1.10 and Proposi-

tion B.4.6 gives that RI,J(Xn,A )−RI,J(X̂n, Ân) −→Pn
0, as n→∞.

Now, Proposition B.4.6 yields that QI,J(Xn,A ) − QI,J(X̂n, Ân) −→Pn 0, as

n→∞. The Continuous Mapping Theorem, cf. Witting and Müller-Funk [72,

Satz 5.43], yields that QI,J(Xn,A ) converges in distribution as n→∞.
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The Continuous Mapping Theorem gives that RI,J(Xn,A ) D−→Pn
RI,J(X,A ),

as n→∞. One readily checks that

RI,J(X,A ) ∼ N

((
ρ
|J|
I

(
H ∗

J (A )
))−

π
|J|
I

(
YJ(A )Tκ

)
,
(
ρ
|J|
I

(
H ∗

J (A )
))−)

and that(
ρ
|J|
I

(
H ∗

J (A )
))−

π
|J|
I

(
YJ(A )Tκ

)
∈ Im

((
ρ
|J|
I

(
H ∗

J (A )
))−)

,

where one uses Proposition B.3.4.c. Furthermore, Lemma 4.1.11 yields that

g
|I|,
{

1,...,|I|
}(RI,J(Xn,A )

)
converges in distribution, as n→∞, and that

g
|I|,
{

1,...,|I|
}(RI,J(Xn,A )

)
− g

|I|,
{

1,...,|I|
}(RI,J(X̂n, Ân)

)
−→Pn

0, as n→∞.

All in all, one gets that

fI,J(Xn,A )− fI,J(Xn, Ân) = QI,J(Xn,A ) · g
|I|,
{

1,...,|I|
}(RI,J(Xn,A )

)
−QI,J(X̂n, Ân) · g

|I|,
{

1,...,|I|
}(RI,J(X̂n, Ân)

)
−→Pn

0,

as n→∞. The proof of a) is complete.

Proof of b). Because of Slutsky’s Lemma, cf. Witting and Müller-Funk [72, Ko-

rollar 5.84], and a) we merely have to show that LJ,1(Xn,A ) D−→Pn LJ,1(X,A ),

as n → ∞. Witting [71, Hilfssatz 1.90] yields that P
(
X ∈ Im(A )

)
= 1. Be-

cause of Lemma 4.1.7.b and Lemma 4.1.7.c the Continuous Mapping Theorem

can be applied and yields the assertion.

The following result contains as a special case Theorem 3.2.7 of Behnen and

Neuhaus [7]. The proof presented here relies on ideas that can be found in

Behnen and Neuhaus [7] and an unpublished paper of Mayer on his disserta-

tion [53].

4.1.14 Theorem. Assume that X ∼ N
(
0,A

)
, where A is some (r × r) posi-

tive semi-definite, symmetric matrix. Set H ∗
J = H ∗

J (A ) and

FJ,A (t) = P
(
LJ,1(X,A ) ≤ t

)
, t ∈ R.

Furthermore, suppose that rank(H ∗
J ) > 0.
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4.1 Multivariate One-Sided Testing Problems

a) Assume that Y ∼ N(0,H ∗
J ) and that Zk ∼ χ2

k, where χ2
k denotes a central

chi-squared distribution with k degrees of freedom. For all t > 0 it holds

that

1− FJ,A (t) =
∑

∅6=I⊂
{

1,...,|J|
}P
(
Z

rank
(
ρJ

I (H ∗
J )
) > t

)
· P
(
Y ∗

I ∈ V+
I

)
× P

(⋂
i∈I{

{
π
|J|
{i}(Y − Y ∗

I ) < 0
})
,

where we set

Y ∗
I = H ∗

J T
|J|

I

(
ρ
|J|
I (H ∗

J )
)−
π
|J|
I (Y ), I ⊂

{
1, . . . , |J|

}
,

and

V+
I =

{
H ∗

J T
|J|

I κ | κ(u) ≥ 0, u = 1, . . . , |I|
}
, I ⊂

{
1, . . . , |J|

}
,

and define P
(⋂

i∈∅{. . .}
)

= 1.

b) Assume that

YI ∼ N
(
0,
(
ρ
|J|
I (H ∗

J )
)−1
)

and ỸI ∼ N
(
0,
(
ρ
|J|
I (H ∗

J
−1)
)−1
)
,

then for all t > 0 it holds that

1− FJ,A (t) =
∑

∅6=I⊂
{

1,...,|J|
}P
(
Z|I| > t

)
· P
(⋂

i∈I

{
π
|J|
{i}(YI) ≥ 0

})

× P
(⋂

i∈I{

{
π
|J|
{i}(ỸI) < 0

})
,

where P
(⋂

i∈∅{. . .}
)

= 1.

c) It holds that FJ,A (0) ≤ 1
2 .

d) FJ,A is continuous and strictly increasing on the interval (0,∞).

Proof. For the proof we use the concepts and notation provided in Section B.2,

especially Proposition B.2.5. Define

VI =
{

H ∗
J T

|J|
I κ | κ ∈ R|I|

}
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and

V⊥I =
{
x ∈ Im(H ∗

J ) | <x, y>(H ∗
J )− = 0 for all y ∈ VI

}
,

where I ⊂
{
1, . . . , |J|

}
. Especially, we define V∅ = V+

∅ = {0}.

Set Y = YJ(A )TX. Using Witting [71, Hilfssatz 1.90] and Proposition B.3.4.c

gives that P
(
Y ∈ Im(H ∗

J )
)

= 1. Consequently, one gets that LJ,1(X,A ) =∣∣∣∣ΠV+
{1,...,|J|}

(Y )
∣∣∣∣2

(H ∗
J )−

P-almost surely by applying Proposition B.2.5.e. De-

fine

Ωi,1 =
{〈
Y −ΠV+

{1,...,|J|}
(Y ),H ∗

J T
|J|
{i}
〉
(H ∗

J )−
= 0
}

and

Ωi,2 =
{〈
Y −ΠV+

{1,...,|J|}
(Y ),H ∗

J T
|J|
{i}
〉
(H ∗

J )−
< 0
}
,

Proposition B.2.3.b implies that the sets

ΩI =
(⋂

i∈I
Ωi,1

)
∩
(⋂

i∈I{
Ωi,2

)
=
{

ΠV+
{1,...,|J|}

(Y ) = ΠVI
(Y ),

〈
Y −ΠVI

(Y ),H ∗
J T

|J|
{i}
〉
(H ∗

J )−
< 0, i ∈ I{

}
=
{

ΠV+
{1,...,|J|}

(Y ) = ΠVI
(Y ) and

〈
ΠV⊥

I
(Y ),H ∗

J T
|J|
{i}
〉
(H ∗

J )−
< 0, i ∈ I{

}
,

I ⊂
{
1, . . . , |J|

}
, are a disjoint decomposition of the sample space.

For t > 0 we get{∣∣∣∣ΠV+
{1,...,|J|}

(Y )
∣∣∣∣2

(H ∗
J )−

> t
}
∩ ΩI = AI ∩BI ∩ CI.

where

AI =
{∣∣∣∣ΠVI

(Y )
∣∣∣∣2

(H ∗
J )−

> t
}
, BI =

{
ΠVI

(Y ) ∈ V+
I

}
and

CI =
{〈

ΠV⊥
I
(Y ),H ∗

J T
|J|
{i}
〉
(H ∗

J )−
< 0, i ∈ I{

}
.

Noting that Y ∼ N(0,H ∗
J ) and using the representation given in Proposi-

tion B.2.5.c, one sees that Eaton [18, Proposition 3.4] is applicable and that
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4.1 Multivariate One-Sided Testing Problems

ΠVI
(Y ) and Π⊥

VI
(Y ) are stochastically independent. Therefore, the events

AI ∩BI and CI are stochastically independent.

In the next step it is proved that the events AI and BI are stochastically

independent. Using Proposition B.2.5.c one gets that ΠVI
(Y ) = Y ∗

I and∣∣∣∣ΠVI
(Y )
∣∣∣∣2

(H ∗
J )−

= π
|J|
I (Y )T

(
ρ
|J|
I (H ∗

J )
)−
ρ
|J|
I (H ∗

J )
(
ρ
|J|
I (H ∗

J )
)−
π
|J|
I (Y ).

Note that
(
ρ
|J|
I (H ∗

J )
)−
π
|J|
I (Y ) ∼ N

(
0,
(
ρ
|J|
I (H ∗

J )
)−). Consider the distribu-

tion family

P = {Pc | c > 0}, where Pc = N
(
0, c ·

(
ρ
|J|
I (H ∗

J )
)−).

Clearly, it holds that

dPc

dP1
(z) = c−rank(ρ

|J|
I (H ∗

J ))/2 · exp
(
−1

2
(
1/c− 1

)
zTρ

|J|
I (H ∗

J )z
)
.

One sees that zTρ
|J|
I (H ∗

J )z is a boundedly complete and sufficient statistic for

the exponential family P, cf. Witting [71, Korollar 3.20, Satz 3.39]. As V+
I is

a closed convex cone, see Definition B.2.2, it holds that

Pc

({
z | H ∗

J T
|J|

I z ∈ V+
I

})
= Pc

({
z | 1/

√
c ·H ∗

J T
|J|

I z ∈ V+
I

})
= Pc

({
z | H ∗

J T
|J|

I (1/
√
c · z) ∈ V+

I

})
= P1

({
z | H ∗

J T
|J|

I z ∈ V+
I

})
.

Thus, the distribution of the auxiliary statistic 1
(
H ∗

J T
|J|

I z ∈ V+
I

)
is indepen-

dent of the parameter c. Basu’s Theorem, cf. Lehmann [47, Theorem 2, p. 191],

gives that zTρ
|J|
I (H ∗

J )z and 1
(
H ∗

J T
|J|

I z ∈ V+
I

)
are stochastically independent.

Consequently, the events AI and BI are stochastically independent.

So far, we have proved that

P
(
LJ,1(X,A ) > t

)
=

∑
∅6=I⊂

{
1,...,|J|

}P(AI) · P(BI) · P(CI), t > 0,

where we set P(C{1,...,|J|}) = 1.
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According to Proposition B.3.3.b we can find (|I| × l) matrices B and C , where

l = rank
(
ρ
|J|
I (H ∗

J )
)
, such that BBT = ρ

|J|
I (H ∗

J ), C C T =
(
ρ
|J|
I (H ∗

J )
)− and

C TB = BTC = El, where El denoted the (l × l) unity matrix. As∣∣∣∣ΠVI
(Y )
∣∣∣∣2

(H ∗
J )−

= π
|J|
I (Y )T

(
ρ
|J|
I (H ∗

J )
)−
π
|J|
I (Y ) = π

|J|
I (Y )TC C Tπ

|J|
I (Y )

and C Tπ
|J|
I (Y ) ∼ N(0,El), it follows that

∣∣∣∣ΠVI
(Y )
∣∣∣∣2

(H ∗
J )−

is χ2
l -distributed.

Using ΠVI
(Y ) = Y ∗

I , ΠV⊥
I
(Y ) = Y − ΠVI

(Y ) and P
(
Y ∈ Im(H ∗

J )
)

= 1, one

receives the representation of the sets BI and CI.

Proof of b). In the case that rank
(
H ∗

J T
|J|

I

)
= |I|, the condition Y ∗

I ∈ V+
I is

equivalent to π|I|{i}
((
ρ
|J|
I (H ∗

J )
)−
π
|J|
I (Y )

)
≥ 0, i ∈ I. As

(
ρ
|J|
I (H ∗

J )
)−
π
|J|
I (Y ) ∼ N

(
0,
(
ρ
|J|
I (H ∗

J )
)−1
)
,

we get the new representation of the set BI.

Note that H ∗
J is not degenerated, therefore one readily checks that V⊥I =

{T |J|
I{ κ | κ ∈ R|I|}. We know that ΠV⊥

I
(Y ) =

(
ρ
|J|
I (H ∗

J
−1)
)−1

π
|J|
I{ (Y ), see

Proposition B.2.5.d. Because of

ΠV⊥
I
(Y ) ∼ N

(
0,
(
ρ
|J|
I (H ∗

J
−1)
)−1
)
,

it results the representation of the set CI.

Proof of c). As rank (H ∗
J ) > 0, one can choose i0, such that ρ|J|{i}(H

∗
J ) > 0.

The estimate

P
(
LJ,1(X,A ) = 0

)
= P

(⋂
∅6=I⊂

{
1,...,|J|

}{fI,J(X,A ) = 0
})

≤ P
(
fI,{i0}(X,A ) = 0

)
= P

((
ρ
|J|
{i0}(H

∗
J )
)−1

π
|J|
{i0}(Y ) ≤ 0

)
=

1
2

gives the assertion.

d) is an immediate consequence of the representation of 1− FJ,A given in a),

rank(H ∗
J ) > 0 and the fact that t 7→ P(Zk > t), k > 0, is continuous and

strictly decreasing on the interval (0,∞).
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In Behnen and Neuhaus, cf. [7, pp. 158], the computation of the survival

function 1− FJ,A is demonstrated for the cases |J| = 2 and |J| = 3.

4.1.15 Corollary. Under Assumption 4.1.12, it holds that

cJ,1(α, Ân)− F−1
J,A (1− α) −→Pn 0, as n→∞,

where α ∈ (0, 1/2) and one sets cJ,1(α, Ân) = F−1

J,Ân
(1− α), n ∈ N.

Proof. Without loss of generality we can assume that all random variables are

defined on the same probability space. Using the sub-sub-sequence principle

for random variables that converge in probability, cf. Bauer [6, Korollar 20.8],

we can also assume that Ân → A almost surely.

Assume that X̃n ∼ N(0, Ân). As X̃n
D−→ X, using Theorem 4.1.13.b yields

that LJ,1(X̃n, Ân) D−→ LJ,1(X,A ). Theorem 4.1.14.d and Witting and Müller-

Funk, cf. [72, Satz 5.58], give that FJ,Ân
(t) → FJ,A (t) almost surely for all

t > 0. Theorem 4.1.14.c and Theorem 4.1.14.d imply that F−1
J,A is continuous

on (1/2, 1). Witting and Müller-Funk [72, Satz 5.76] and the sub-sub-sequence

principle for random variables that converge in probability give the result.

4.1.16 Assumption. Let the Assumption 4.1.1 hold and suppose that Ûn :

Ωn −→ Rr, n ∈ N, are measurable mappings and that V̂n : Ωn −→ Rr×r,

n ∈ N, are random matrices satisfying the following conditions.

a) Ûn − Un −→Pn,0 0, as n→∞, where Un = U (J )TSn, n ∈ N.

b) V̂n −J ∗ −→Pn,0 0, as n→∞.

c) ker(J ∗) ⊂ ker(V̂n) Pn,0-almost surely for all sufficiently large n ∈ N.

d) ρr
{i}(J

∗) > 0, i = 1, . . . , r.

For the testing problem H̃J
1 versus K̃J

1 , we propose the sequence of tests ϕn,1,

n ∈ N, where

ϕn,1 =

{
1,

0,
LJ,1(Ûn, V̂n)− cJ,1(α, V̂n)

>

≤
0 .
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For a practical application the following representation of the test is more

convenient

ϕn,1 =

{
1,

0,
FJ,V̂n

(
LJ,1(Ûn, V̂n)

)
− (1− α)

>

≤
0 .

4.1.17 Corollary. If α ∈ (0, 1/2) and Assumption 4.1.16 holds, it holds that

En,ξ

(
ϕn,1

)
→ Pξ

(
LJ,1(U,J ∗)− cJ,1(α,J ∗) > 0

)
,

where U = U (J )TS and L
(
U | Pξ

)
= N(J ∗β,J ∗). Especially, the sequence

of tests ϕn,1, n ∈ N, keeps asymptotically the level on the hypothesis H̃J
1 .

Moreover, if

κT
1 H ∗

J (J ∗)κ2 ≥ 0, for all κi ∈ R|J|, κi ≥ 0, i = 1, 2, (4.12)

then the sequence of tests ϕn,1, n ∈ N, is asymptotically unbiased.

Proof. The Continuous Mapping Theorem, cf. Witting and Müller-Funk [72,

Satz 5.43] gives that Un
D−→Pn,ξ

U , where one checks that U ∼ N(J ∗β,J ∗),

since

U (J )TJ ξ = J ∗β +
(
J1,2 −J1,2J

−
2,2J2,1

)
η = J ∗β,

see Proposition B.3.4.b, and U (J )TJ U (J ) = J ∗. Setting A = J ∗,

Ân = V̂n, Xn = Un, X̂n = Ûn and Pn = Pn,0, n ∈ N, one sees that Assump-

tion 4.1.12 holds. Theorem 4.1.13.a, Corollary 4.1.15 and Remark 4.1.2 give

that

LJ,1(Ûn, V̂n)− cJ,1(α, V̂n)−
(
LJ,1(Un,J

∗)− cJ,1(α,J ∗)
)
−→Pn,ξ

0.

Setting A = Ân = J ∗, Xn = X̂n = Un, and Pn = Pn,ξ, n ∈ N, one sees that

Assumption 4.1.12 holds. Theorem 4.1.13.b and Slutsky’s Lemma, cf. Witting

and Müller-Funk [72, Korollar 5.84], yield that

LJ,1

(
Ûn, V̂n

)
− cJ,1

(
α, V̂n

) D−→Pn,ξ
LJ,1

(
U,J ∗)− cJ,1

(
α,J ∗).
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Theorem 4.1.14.c and Theorem 4.1.14.d imply that

P0

(
LJ,1

(
U,J ∗)− cJ,1

(
α,J ∗) = 0

)
= 0.

As Pξ � P0, the Portmanteau Theorem, cf. Witting and Müller-Funk [72,

Satz 5.40], gives the first assertion.

Abbreviating H J
i,j = H J

i,j(J
∗) and H ∗

J = H ∗
J (J ∗), one readily shows that

YJ(J ∗)TJ ∗β = H ∗
J βJ +

(
H J

1,2 −H J
1,2

(
H J

2,2

)−
H J

2,2

)
βJ{ = H ∗

J βJ

where one uses Proposition B.3.4.b. Thus, it holds that L(YJ(J ∗)TU | Pξ) =

N(H ∗
J βJ,H ∗

J ).

Assume that ξ ∈ H̃J
1 . As J ξ = J ξ′ is equivalent to Pξ = Pξ′ , cf. Lemma 4.1.4,

without loss of generality it can be assumed that ξ ∈ HJ
1 . Using the previous

considerations and Lemma 4.1.7.b, we get that

L
(
LJ,1(U,J ∗) | Pξ

)
= L

(
LJ,J ∗

(
YJ(J ∗)TU

)
| Pξ

)
= L

(
LJ,J ∗

(
YJ(J ∗)TU

)
| P0

)
= L

(
LJ,1(U,J ∗) | P0

)
.

Now, Theorem 4.1.14 yields that

Pξ

(
LJ,1(U,J ∗) > cJ,1(α,J ∗)

)
= P0

(
LJ,1(U,J ∗) > cJ,1(α,J ∗)

)
= 1− FJ,J ∗

(
F−1

J,J ∗(1− α)
)

= α.
(4.13)

So, it remains to be proved that the sequence of tests is asymptotically unbi-

ased. First, we note that

Pξ

(
LJ,1(U,J ∗) > cJ,1(α,J ∗)

)
= Pξ

(
LJ,J ∗

(
YJ(J ∗)TU

)
> cJ,1(α,J ∗)

)
= P0

(
LJ,J ∗

(
YJ(J ∗)TU + H ∗

J βJ

)
> cJ,1(α,J ∗)

)
,

(4.14)
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cf. Lemma 4.1.7.b. Furthermore, it holds that

LJ,J ∗
(
YJ(J ∗)Tu+ H ∗

J βJ

)
= sup

κ≥0, κ∈R|J|

(
κT
(
YJ(J ∗)Tu+ H ∗

J βJ

)
− 1

2
κTH ∗

J κ
)

≥ sup
κ≥0, κ∈R|J|

(
κTYJ(J ∗)Tu− 1

2
κTH ∗

J κ
)
,

(4.15)

where we use the condition stated in (4.12). Using again Lemma 4.1.7.b as

well as combining (4.13), (4.14), (4.15), we finally get that

Pξ

(
LJ,1(U,J ∗) > cJ,1(α,J ∗)

)
≥ α

for all ξ ∈ HJ
1 .

In the last part of this section, it is shown that the sequence of tests ϕn,1,

n ∈ N, is asymptotically admissible for the testing problem H̃J
1 versus K̃J

1 . But

first let us remember the notion of admissibility.

4.1.18 Definition. a) In the limit model, a test φ′ is said to be admissible

for the testing problem H̃J
1 versus K̃J

1 , if for any other test φ satisfying

Eξ(φ) ≤ Eξ(φ′), ξ ∈ H̃J
1 , and Eξ(φ) ≥ Eξ(φ′), ξ ∈ K̃J

1 ,

it follows that φ = φ′ Pξ-almost everywhere for all ξ ∈ Rr+q.

b) A sequence of tests φ′n, n ∈ N, is said to be asymptotically admissible for

the testing problem H̃J
1 versus K̃J

1 , if for any other sequence of tests φn,

n ∈ N, satisfying

lim sup
n→∞

En,ξ(φn) ≤ lim inf
n→∞

En,ξ(φ′n), ξ ∈ H̃J
1 ,

and

lim inf
n→∞

En,ξ(φn) ≥ lim sup
n→∞

En,ξ(φ′n), ξ ∈ K̃J
1 ,

holds that φn − φ′n −→Pn,ξ
0.
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The following result will be essential for proving that a sequence of tests for

multivariate one-sided testing problems is admissible.

4.1.19 Theorem. Let ξk ∈ Rr+q, k ∈ N, and ak ∈ R, k ∈ N, be arbitrary. If

ξk ∈ K̃J
1 , k ∈ N, then the test φ′(S), where

φ′(s) =

{
1, sTξk > ak for some k ∈ N,
0, sTξk ≤ ak for all k ∈ N,

is admissible for the testing problem H̃J
1 versus K̃J

1 and uniquely determined

by its distribution.

Proof. The proof of Theorem 71.14 in Strasser [68] is also applicable for this

Theorem. The crucial point is the fact that the ξk, k ∈ N, belong to the

alternative K̃J
1 .

4.1.20 Proposition. Under Assumption 4.1.16, the test φ′1(S), where

φ′1(s) =

{
1,

0,
LJ,1

(
U (J )Ts,J ∗)− cJ,1(α,J ∗)

>

≤
0,

and α ∈ (0, 1/2), is admissible for H̃J
1 versus K̃J

1 and uniquely determined by

its distribution.

Proof. We show that φ′1 has a representation as the test considered in Theo-

rem 4.1.19. Set H ∗
J = H ∗

J (J ∗). The function LJ,J ∗ : Im(H ∗
J ) −→ R,

LJ,J ∗(y) = 2 sup
κ≥0

(
κTy − 1

2
κTH ∗

J κ

)
, y ∈ Im(H ∗

J ),

is a continuous and convex function according to Lemma 4.1.7.c. Thus, the

set C∗ =
{
LJ,J ∗(·) ≤ cJ,1(α,J ∗)

}
is convex and closed. By basic separation

theorems we know that there exists κk ∈ Im(H ∗
J )\{0} and ak ∈ R, k ∈ N,

such that

C∗ =
∞⋂

k=1

{
y ∈ Im(H ∗

J ) | κT
k y ≤ ak

}
.
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In the following we use the concept provided in Section B.2. Let us introduce

some notation. Set V = Im(H ∗
J ) and <y1, y2>(H ∗

J )− = yT
1 (H ∗

J )−y2, yi ∈
Im(H ∗

J ).
(
V, <·, ·>(H ∗

J )−
)
, is a Hilbert space and V+

0 =
{
H ∗

J κ | κ ≥ 0
}

a

closed convex cone, see Proposition B.2.5. It holds that{
y ∈ Im(H ∗

J ) | yTκk ≤ ak

}
=
{
y ∈ V | <y,H ∗

J κk>(H ∗
J )− ≤ ak

}
. (4.16)

In the next step we show that H ∗
J κk ∈ V+

0 , which is clearly equivalent to

ΠV+
0
(H ∗

J κk) = H ∗
J κk, where ΠV+

0
denotes the projection on V+

0 in the sense

of Proposition B.2.3.a. Assume that ỹ = λ ·
(
H ∗

J κk −ΠV+
0
(H ∗

J κk)
)
∈ V\{0}.

It holds that

<ỹ,H ∗
J κk>(H ∗

J )− = λ
∣∣∣∣H ∗

J κk −ΠV+
0
(H ∗

J κk)
∣∣∣∣2

(H ∗
J )−

,

where we use Proposition B.2.3.b. Using equation (4.16), for all sufficiently

large λ > 0 it holds that ỹTκk > ak, i.e. ỹ 6∈ C∗. On the other hand, it holds

that

LJ,J ∗(ỹ) =
∣∣∣∣ΠV+

0
(ỹ)
∣∣∣∣2

(H ∗
J )−

= 0,

where we use Proposition B.2.4 and Proposition B.2.5.b. LJ,J ∗(ỹ) = 0 means

ỹ ∈ C∗, this is a contradiction. Consequently, there exists κ̃k ∈ R|J|, such that

κ̃
(u)
k ≥ 0, and H ∗

J κk = H ∗
J κ̃k, where we use the Definition of V+

0 . Moreover,

it holds that{
y ∈ Im(H ∗

J ) | yTκk ≤ ak

}
=
{
y ∈ Im(H ∗

J ) | yTκ̃k ≤ ak

}
,

which can be derived by applying equation (4.16) twice. Remember that we

want to show that φ′1 has a representation as the test considered in Theo-

rem 4.1.19. Therefore, we set

ξk =

(
YJ(J ∗)κ̃k

J −
2,2J2,1YJ(J ∗)κ̃k

)
, k ∈ N,

and note that πr+q
J (ξk) = κ̃k ≥ 0. Therefore, it holds that ξk ∈ KJ

1 .

Thus, we have that YJ(J ∗)TU (J )TJ ξ = H ∗
J βJ = 0 for all ξ ∈ H̃J

1 , where

we use the Definition of HJ
1 and H̃J

1 . We also have that H ∗
J κ̃k,= H ∗

J κk 6= 0,
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where we use that κk ∈ Im(H ∗
J )\{0}. Thus, we get that ξk ∈ K̃J

1 . Finally, it

holds that

∞⋂
k=1

{
s ∈ Im(J ) | ξTk s ≤ ak

}
=

∞⋂
k=1

{
s ∈ Im(J ) | sTU (J )YJ(J ∗)κ̃k ≤ ak

}
=
{
s ∈ Im(J ) | LJ,J ∗

(
YJ(J ∗)TU (J )Ts

)
≤ cJ,1(α,J ∗)

}
=
{
s ∈ Im(J ) | LJ,1

(
U (J )Ts,J ∗) ≤ cJ,1(α,J ∗)

}
,

where we use Proposition B.3.4.c and Lemma 4.1.7.b. As Pξ

(
S ∈ Im(J )

)
= 1,

cf. Witting [71, Hilfssatz 1.90], we have that

φ′1(S) =

{
1, STξk > ak for some k ∈ N,
0, STξk ≤ ak for all k ∈ N.

Theorem 4.1.19 yields the assertion.

4.1.21 Theorem. Suppose that Assumption 4.1.16 holds and that α∈(0, 1/2).

The sequence of tests ϕn,1, n ∈ N, is asymptotically admissible for the testing

problem H̃J
1 versus K̃J

1 .

Proof. Corollary 4.1.17 gives

lim
n→∞

En,ξ(ϕn,1) = Eξ(φ′1), ξ ∈ H̃J
1 ∪ K̃J

1 .

Let φn, n ∈ N, be another sequence of tests and let n′ be some infinite sub-

sequence of the natural numbers. The Uniform Weak Compactness Lemma,

cf. Witting and Müller-Funk [72, Satz 6.150], yields that there exists a sub-

subsequence n′k and a test φ in the limit model, such that

lim
k→∞

En′k,ξ(φn′k
) = Eξ(φ).

Assume that Eξ(φ) ≤ Eξ(φ′1), if ξ ∈ H̃J
1 and Eξ(φ) ≥ Eξ(φ′1), if ξ ∈ K̃J

1 . Since

φ′1 is admissible, cf. Proposition 4.1.20, it holds that Eξ(φ) = Eξ(φ′1). The
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subsequence principle yields limn→∞ En,ξ(φn) = Eξ(φ′1). Hence, the sequences

φn and ϕn,1 converge in distribution to φ′1 in the sense of Strasser [68, Defini-

tion 62.1]. φ′1 is uniquely determined by its distribution and non-randomized,

see Proposition 4.1.20. Strasser [68, Theorem 63.6, Remark 63.2] gives the

assertion.

The last result means that there exists no sequence of tests that is uniformly

better than the proposed sequence of tests. However, other sequences of ad-

missible tests can be constructed with the help of Theorem 4.1.19.

4.2 Linear Testing Problems

Analog to the previous section we assume that Assumption 4.1.1 holds. In this

section it is aimed to construct a testing procedure for linear hypotheses. More

precisely, it is aimed to tackle the testing problem

HL0
2 : β ∈ L0, η ∈ Rq versus KL1

2 : β ∈ L1\L0, η ∈ Rq,

where L0 and L1 are linear sub-spaces of Rr, such that L0 ⊂ L1, and L0 6= L1.

As we allow the asymptotic information matrix J to be degenerated, the

sub-spaces have to satisfy an additional regularity condition, which we want

to discuss in the following paragraph. But first, let us introduce some more

notation. Let Li ∈ Rr×li be some matrix, such that Im(Li) = Li , i = 0, 1.

Furthermore, we set

Vi =

(
Li 0

0 Eq

)
, i = 0, 1,

where Eq denotes the (q × q)-unity matrix. Looking at the limit experiment(
Ω,A, {Pξ | ξ ∈ Rr+q}

)
and remembering that Pξ = Pξ′ is equivalent to J ξ =

J ξ′, see Lemma 4.1.4, one sees that hypothesis HL0
2 and alternative KL1

2 are

disjoint, if and only if

Θ
(
HL0

2

)
∩Θ

(
KL1

2

)
= ∅, (4.17)
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where

Θ
(
HL0

2

)
=
{
J ξ | ξ ∈ HL0

2

}
and Θ

(
KL1

2

)
=
{
J ξ | ξ ∈ KL1

2

}
are the induced parameter sets of the hypothesis and the alternative. If J is

not degenerated the condition (4.17) is trivially satisfied. Finally, if the hypoth-

esis HL0
2 and the alternative HK1

2 are disjoint the testing problem transforms

to

H̃L0
2 : ξ ∈ ΘL0 versus K̃L1

2 : ξ ∈ ΘL1\ΘL0

where

ΘL0 =
{
ξ | J ξ ∈ Θ(HL0

2 )
}

and ΘL1 =
{
ξ | J ξ ∈ Θ(KL1

2 )
}
.

Analog to Section 4.1 we study the testing problem H̃L0
2 versus H̃L1

2 under the

limit model and derive some test statistic. This statistic will be the basis to

propose some test statistic for finite n ∈ N. To find a reasonable test we state

a well-known result, cf. Witting and Müller-Funk [72, Satz 6.168], which we

slightly modify by allowing the covariance matrix to be degenerated.

4.2.1 Theorem. Define the mappings ΠVi
: Im(J ) −→ Im(J Vi),

ΠVi
(s) = J Vi

(
V T

i J Vi

)−
V T

i s, i = 0, 1.

The mapping ΠVi
is obviously the orthogonal projection on the space Vi =

Im(J Vi) with respect to the inner product <s1, s2>J− = sT1 J −s2, see

Proposition B.2.5. Moreover, set

T (s) =
(
ΠV1(s)−ΠV0(s)

)T
J −(ΠV1(s)−ΠV0(s)

)
.

Under the limit experiment the following assertions hold true.

a) Under Pξ, the statistic T (S) is distributed according to a χ2
l

(
δ
)
-distribution,

where l = dim(V1)− dim(V0) and δ = T (J ξ). Additionally, if ξ ∈ H̃L0
2 ∪

K̃L1
2 , then δ = 0 is equivalent to J ξ ∈ Im

(
J V0

)
.
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b) Let Q0 denote the group of affine transformations π : Im(J ) −→ Im(J ),

π(x) = Qx + u, where Q : Im(J ) −→ Im(J ) is a linear mapping,

u ∈ Im
(
J V0

)
and Im

(
QJ V0

)
= Im

(
J V0

)
, Im

(
QJ V1

)
= Im

(
J V1

)
,

Im(QJ ) = Im(Q), QJ QT = J as well as QTJ −Q = J −.

The testing problem H̃L0
2 versus K̃L1

2 is invariant with respect to Q0. More-

over, T is a maximal invariant statistic with respect to Q0 in the sense that

T (x) = T (πx) for all π ∈ Q0, x ∈ Im(J ) and that T (x) = T (y) implies

the existence of π ∈ Q0, such that ΠV1(y) = ΠV1(πx) = πΠV11(x).

c) The test ϕ = 1
(
T (S) > χ2

l,α

)
is a uniformly most powerful invariant α-test

for the testing problem H̃L0
2 versus K̃L1

2 , where χ2
l,α denotes the (1− α)-

quantile of a χ2-distribution with l degrees of freedom and l is given in

a).

Proof. See Appendix A.4.

The next result helps us to simplify the statistic T .

4.2.2 Lemma. Let us define

ΠL0,L1(u,J
∗) = ΠL1(u,J

∗)−ΠL0(u,J
∗), u ∈ Rr,

where

ΠLi
(u,J ∗) = J ∗Li

(
L T

i J ∗Li

)−
L T

i u, u ∈ Rr, i = 0, 1,

and

LL0,L1,2(u,J ∗) = ΠL0,L1(u,J
∗)T
(
J ∗)−ΠL0,L1(u,J

∗).

It holds that

T (s) = LL0,L1,2

(
U (J )Ts,J ∗) for all s ∈ Im(J ),

where U (J ) is introduced in Lemma 4.1.7.
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Proof. In the proof we use the concept provided in Section B.2, especially

Proposition B.2.5. As ΠVi
(·), i = 0, 1, are orthogonal projections on Vi see

Proposition B.2.5.d, and as for all w ∈ ker(J ∗) it holds that(
J1,1 J1,2

J2,1 J2,2

)(
w

0

)
=

(
J1,1w

J2,1w

)
=

(
J1,2J

−
2,2J2,1w

J2,2J
−
2,2J2,1w

)

=

(
J1,1 J1,2

J2,1 J2,2

)(
0

J −
2,2J2,1w

)
,

where we use Proposition B.3.4.b, we can find matrices L̃i, i = 0, 1, whose

columns are linearly independent and elements of Im(J ∗), such that Vi =

Im(J Ṽi), where

Ṽi =

(
L̃i 0

0 Eq

)
, i = 0, 1.

Clearly, it holds that Im(J ∗Li) = Im(J ∗L̃i), i = 0, 1.

Using the uniqueness of orthogonal projections, see Proposition B.2.3.a, and

Proposition B.2.5.d we get that

ΠVi
(s) = J Ṽi

(
Ṽ T

i J Ṽi

)−
Ṽ T

i s, s ∈ Im(J ), i = 0, 1, (4.18)

and

ΠLi(u,J
∗) = J ∗L̃i

(
L̃ T

i J ∗L̃i

)−
L̃ T

i u, u ∈ Im(J ∗), i = 0, 1. (4.19)

As the columns of L̃i are linearly independent and elements of Im(J ∗), the

matrix Ai = L̃ T
i J ∗L̃i is invertible. Moreover, one readily checks that

(
Ṽ T

i J Ṽi

)− =

(
Ai L̃ T

i J1,2

J2,1L̃i J2,2

)−

=

(
A −1

i −A −1
i L̃ T

i J1,2J
−
2,2

−J −
2,2J2,1L̃iA

−1
i J −

2,2 + J −
2,2J2,1L̃iA

−1
i L̃ T

i J1,2J
−
2,2

)
.
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This result implies that Ṽi

(
Ṽ T

i J Ṽi

)−
Ṽ T

i is equal to(
L̃iA

−1
i L̃ T

i −L̃iA
−1
i L̃ T

i J1,2J
−
2,2

−J −
2,2J2,1L̃iA

−1
i L̃ T

i J −
2,2 + J −

2,2J2,1L̃iA
−1
i L̃ T

i J1,2J
−
2,2

)
.

Consequently, it holds that∣∣∣∣ΠVi
(s)
∣∣∣∣2

J− = sTṼi

(
Ṽ T

i J Ṽ
)−

Ṽ T
i s

= sT

(
L̃i(L̃ T

i J ∗L̃i)−1L̃ T
i U Ts

−J −
2,2J2,1L̃i(L̃ T

i J ∗L̃i)−1L̃ T
i U Ts+ J −

2,2s2

)
= sTU L̃i(L̃ T

i J ∗L̃i)−1
i L̃ T

i U Ts+ s2J
−
2,2s2

=
∣∣∣∣ΠLi(U

Ts,J ∗)
∣∣∣∣2

(J ∗)−
+ s2J

−
2,2s2,

where s2 = πr+q
{r+1,...,r+q}(s), U = U (J ) and we use (4.18) and (4.19) as

well as U TJ U = J ∗ and Proposition B.3.4.c. Using the last equation and

Proposition B.2.4.f gives

T (s) =
∣∣∣∣ΠV1(s)−ΠV0(s)

∣∣∣∣2
J−

=
∣∣∣∣ΠV1(s)

∣∣∣∣2
J− −

∣∣∣∣ΠV0(s)
∣∣∣∣2

J−

=
∣∣∣∣ΠL1(U

Ts,J ∗)
∣∣∣∣2

(J ∗)−
−
∣∣∣∣ΠL0(U

Ts,J ∗)
∣∣∣∣2

(J ∗)−

=
∣∣∣∣ΠL1(U

Ts,J ∗)−ΠL0(U
Ts,J ∗)

∣∣∣∣2
(J ∗)−

.

This is the assertion.

4.2.3 Corollary. It holds that

T (S) = LL0,L1,2

(
U,J ∗) Pξ-almost surely,

where U = U (J )TS.

Proof. As Pξ � P0 it suffices to show the assertion for P0. Witting [71, Hilfs-

satz 1.90] shows that P0

(
S ∈ Im(J )

)
= 1. Consequently, Lemma 4.2.2 implies

the assertion.

120



4.2 Linear Testing Problems

As the statistic U corresponds with the statistic Un = U (J )TSn for finite n,

the previous result suggests that LL0,L1,2

(
Un,J ∗) is a reasonable test statistic

for the testing problem H̃L0
2 versus K̃L1

2 . However, this statistic still depends on

asymptotic quantities. In order to get some applicable test we have to replace

these quantities by suitable estimators. This is done completely analogously

to Section 4.1.

4.2.4 Theorem. Under Assumption 4.1.12 it holds that

a) LL0,L1,2(Xn,A )− LL0,L1,2(X̂n, Ân) −→Pn
0, as n→∞.

b) LL0,L1,2(X̂n, Ân) D−→Pn
LL0,L1,2

(
X,A

)
, where LL0,L1,2(X,A ) ∼ χ2

l (δ),

l = rank(A L1)− rank(A L0) and δ = LL0,L1,2

(
κ,A

)
.

Moreover, if κ ∈ Im(A L1), then δ = 0 is equivalent to κ ∈ Im(A L0).

Proof. The first assertion can be seen as follows. Lemma 4.1.10.b and Propo-

sition B.4.6 give that

ΠLi
(Xn,A )−ΠLi

(Xn, Ân) −→Pn
0, as n→∞, i = 0, 1.

Consequently, it holds that

ΠL0,L1(Xn,A )−ΠL0,L1(X̂n, Ân) −→Pn
0, as n→∞, (4.20)

and therefore

A − ΠL0,L1(Xn,A )− Â −
n ΠL0,L1(X̂n, Ân) −→Pn

0, as n→∞, (4.21)

where one uses Lemma 4.1.10.a and Proposition B.4.6. Because of (4.20) and

(4.21), Proposition B.4.6 yields the assertion.

Proof of b). Because of a), Slutsky’s Lemma and the Continuous Mapping

Theorem, cf. Witting and Müller-Funk [72, Korollar 5.84, Satz 5.43], it fol-

lows the first part of the assertion. Completely analogously to the proof of

Theorem 4.2.1.a, see Appendix A.4, one establishes the second part of the

assertion.
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4.2.5 Corollary. Suppose that Assumption 4.1.12 is satisfied. Moreover, let

cL0,L1,2(α,B) denote the (1− α) quantile of a χ2-distribution with l degrees

of freedom, where

l = rank(BL1)− rank(BL0).

Then it holds that

cL0,L1,2(α, Ân)− cL0,L1,2(α,A ) −→Pn
0, as n→∞,

for all α ∈ (0, 1).

Proof. Without loss of generality we can assume that all random variables are

defined on the same probability space. Using the sub-sub-sequence principle

for random variables that converge in probability, cf. Proposition B.4.8,we can

also assume that Ân → A almost surely.

Moreover, one sees that ker(A ) ⊂ ker(Ân) Pn-almost surely implies that

ker(A Li) ⊂ ker(ÂnLi) Pn-almost surely. Thus, it holds that rank(A Li) ≥
rank(ÂnLi) Pn-almost surely for all sufficiently large n ∈ N.

As the set of all matrices with rank greater or equal to rank(A Li) is open, one

gets that rank(A Li) = rank(ÂnLi), i = 0, 1, for all sufficiently large n ∈ N
and cL0,L1,2(α, Ân) = cL0,L1,2(α,A ) for all sufficiently large n ∈ N. The sub-

sub-sequence principle for random variables that converge in probability gives

the assertion.

After this preparation we propose the sequence of tests ϕn,2, n ∈ N, where

ϕn,2 =

{
1,

0,
LL0,L1,2(Ûn, V̂n)− cL0,L1,2(α, V̂n)

>

≤
0 , n ∈ N,

for the testing problem H̃L0
2 versus K̃L1

2 . The next result summarizes the

asymptotic properties of this sequence of tests.

4.2.6 Corollary. Under Assumption 4.1.16, it holds that

En,ξ

(
ϕn,2

)
−→ Pξ

(
LL0,L1,2(U,J ∗) > cL0,L1,2(α,J ∗)

)
, as n→∞,
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where U = U (J )TS and L
(
U | Pξ

)
= N(J ∗β,J ∗). Especially, the sequence

of tests ϕn,2, n ∈ N, keeps asymptotically the level on the hypothesis H̃L0
2 and

is unbiased. Additionally, we have that

Pξ

(
LL0,L1,2(U,J ∗) > cL0,L1,2(α,J ∗)

)
= Eξ(ϕ),

where ϕ, is the most powerful, invariant α-test for the testing problem H̃L0
2

versus K̃L1
2 given in Theorem 4.2.1.c.

Proof. The Continuous Mapping Theorem, cf. Witting and Müller-Funk [72,

Satz 5.43] gives that Un
D−→Pn,ξ

U , where one checks that U ∼ N(J ∗β,J ∗),

see proof of Corollary 4.1.17. Setting A = J ∗, Ân = V̂n, Xn = Un, X̂n = Ûn

and Pn = Pn,0, n ∈ N, one sees that Assumption 4.1.12 holds. Theorem 4.2.4.a,

Corollary 4.2.5 and Remark 4.1.2 give that

LL0,L1,2(Ûn, V̂n)− cL0,L1,2(α, V̂n)

−
(
LL0,L1,2(Un,J

∗)− cL0,L1,2(α,J ∗)
)
−→Pn,ξ

0.

Setting A = Ân = J ∗, Xn = X̂n = Un, and Pn = Pn,ξ, n ∈ N, one sees that

Assumption 4.1.12 holds. Theorem 4.2.4.b and Slutsky’s Lemma, cf. Witting

and Müller-Funk [72, Korollar 5.84], yield that

LL0,L1,2

(
Ûn, V̂n

)
−cL0,L1,2

(
α, V̂n

) D−→Pn,ξ
LL0,L1,2

(
U,J ∗)−cL0,L1,2

(
α,J ∗),

Obviously, we have, cf. Theorem 4.2.4.b,

Pξ

(
LL0,L1,2(U,J ∗)− cL0,L1,2(α,J ∗) = 0

)
= 0.

The Portmanteau Theorem, cf. Witting and Müller-Funk [72, Satz 5.40], gives

the first assertion. The equivalence stated in Theorem 4.2.4.b gives that the test

keeps asymptotically the level on the hypothesis and is asymptotically unbiased

as well. The last assertion is an immediate consequence of Corollary 4.2.3.

In the last part of this section we show that the sequence of tests ϕn,2, n ∈
N, is asymptotically admissible for the testing problem H̃L0

2 versus K̃L1
2 , see

Definition 4.1.18. The proceeding is exactly the same as in Section 4.1.
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4.2.7 Theorem. Let ξk ∈ Rr+q and ak ∈ R, k ∈ N, be arbitrary. If ξk ∈ K̃L1
2 ,

k ∈ N, then the test φ′(S), where

φ′(s) =

{
1, sTξk > ak for some k ∈ N,
0, sTξk ≤ ak for all k ∈ N,

is admissible for the testing problem H̃L0
2 versus K̃L1

2 and uniquely determined

by its distribution.

Proof. The proof of Theorem 71.14 in Strasser [68] is also applicable for this

Theorem. The crucial point is the fact that the ξk, k ∈ N, belong to the

alternative K̃L1
2 .

4.2.8 Proposition. Under Assumption 4.1.16, the test φ′2(S), where

φ′2(s) =

{
1,

0,
LL0,L1,2

(
U (J )Ts,J ∗)− cL0,L1,2(α,J ∗)

>

≤
0,

and α ∈ (0, 1), is admissible for H̃L0
2 versus K̃L1

2 and uniquely determined by

its distribution.

Proof. We show that φ′2 has a representation as the test considered in Theo-

rem 4.2.7. In the following we use the concept provided in Section B.2, espe-

cially Proposition B.2.5.

Remember that

LL0,L1,2

(
U (J )Ts,J ∗) = T (s), s ∈ Im(J ),

see Lemma 4.2.2. First, we show that T : Im(J ) −→ R+ is a convex and there-

fore continuous function, cf. Borwein and Lewis [10, Theorem 4.1.3]. Clearly,

it holds that

T (s) =
∣∣∣∣ΠV1(s)−ΠV0(s)

∣∣∣∣2
J− , s ∈ Im(J ),

where Vi = Im(J Vi). The triangle inequality and the fact that t 7→ t2, t ≥ 0,

is convex and non-decreasing gives the assertion.
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Thus, the set C∗ =
{
T ≤ cL0,L1,2(α,J ∗)

}
is convex and closed. By basic

separation theorems we know that there exists ξk ∈ Im(J )\{0} and ak ∈ R,

k ∈ N, such that

C∗ =
∞⋂

k=1

{
s ∈ Im(J ) | ξTk u ≤ ak

}
.

It holds that{
s ∈ Im(J ) | ξTk u ≤ ak

}
=
{
s ∈ Im(J ) | <s,J ξk>J− ≤ ak

}
.

First, we show that J ξk ∈ V1. Assume that s̃ = λ ·
(
J ξk −ΠV1(J ξ)

)
6=

0. as <s̃,J ξk>J− = λ||s̃||2J− > ak for sufficiently large λ, where we use

Proposition B.2.3.b, it results that s̃ 6∈ C∗. On the other hand, it holds that

0 ≤ T (s̃) =
∣∣∣∣ΠV1(s̃)−ΠV0(s̃)

∣∣∣∣2 =
∣∣∣∣ΠV0(s̃)

∣∣∣∣2 ≤ ∣∣∣∣ΠV1(s̃)
∣∣∣∣2 = 0,

where we use Proposition B.2.4.b and Proposition B.2.4.h. This means s̃ ∈ C∗,

this is a contradiction.

Now, we show that J ξk 6∈ V0. Assume that J ξk ∈ V0. For sufficiently large

λ it holds that λ · <J ξk,J ξk>J− > ak, that is to say λJ ξ 6∈ C∗, having

said this T (λJ ξ) = 0, i.e. λJ ξ ∈ C∗, where we use Proposition B.2.4.a

and Proposition B.2.4.c. J ξk ∈ V1\V0 is equivalent to ξk ∈ K̃L1
2 . And as

Pξ

(
S ∈ Im(J )

)
= 1, cf. Witting [71, Hilfssatz 1.90], we have that

φ′2(S) =

{
1, STξk > ak for some k ∈ N,
0, STξk ≤ ak for all k ∈ N.

Theorem 4.2.7 yields the assertion.

4.2.9 Theorem. Assume that Assumption 4.1.16 holds and that α ∈ (0, 1).

The sequence of tests ϕn,2, n ∈ N, is asymptotically admissible for the testing

problem H̃L0
2 versus K̃L1

2 .

Proof. The proof is identical to the proof of Theorem 4.1.21. Instead of

Corollary 4.1.17 and Proposition 4.1.20, one uses Corollary 4.2.6 and Proposi-

tion 4.2.8.
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The last result means that there exists no sequence of tests that is uniformly

better than the proposed sequence of tests. However, other sequences of ad-

missible tests can be constructed with the help of Theorem 4.2.7.

4.3 Test for Sequences of Hardest Parametric

Sub-Models

In this section the results of Section 4.1 and Section 4.2 are applied to se-

quences of hardest parametric sub-models As a first step we verify that As-

sumption 4.1.1 is satisfied.

4.3.1 Proposition. Let
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, denote a sequence of lo-

calized, q-dimensional parametric sub-models of the modified Cox regression

model, see Definition 1.3.4. Assume that
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, restricted

to time τ is asymptotically normal with asymptotic information matrix J (τ)

and central sequence Sn(τ), n ∈ N, then the sequence of statistical experi-

ments
(
Ωn,Fn,τ , {P (τ)

n,ξ | ξ ∈ Rr+q}
)
, n ∈ N, satisfies Assumption 4.1.1, where

Sn = Sn(τ), n ∈ N, andJ = J (τ).

Proof. Paying attention to Definition 2.2.2 and Remark 2.2.3 gives the result.

Conditions implying the assumptions of Proposition 4.3.1 are stated in Theo-

rem 2.3.10.a. In the following let us assume that
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, is a

sequence of hardest parametric sub-models (SHPSM) restricted to time τ , see

Definition 3.1.5. In the previous sections we saw that reasonable test statistics

for multivariate one-sided testing problems and linear testing problems were

dependents on the statistic Un(τ) = U (J )TSn(τ), see pp. 99 as well as pp.

121 and Lemma 4.1.7. Using equation (3.1) gives that

Un(τ) −→
P

(τ)
n,ξ

N
(
J ∗(τ)β,J ∗(τ)

)
, as n→∞.
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In the following discussion we show why it is useful to study models with de-

generated asymptotic information matrix J ∗(τ), if one considers multivariate

one-sided testing problems.

4.3.2 Discussion. As we consider a sequence of hardest parametric sub-

models it holds that J ∗(τ) = J ∗, can(τ), see Theorem 3.2.4. One sees that

β ∈ ker
(
J ∗, can(τ)

)
is equivalent to

βTJ ∗(τ)β =
∫

I(τ)

p∑
u=1

p∑
v=1

c(u) c(u)

(
µ

(u,v)
2 − µ

(u)
1 µ

(v)
1

µ0

)
α0 ds = 0, (4.22)

where we set

c(u)(s) =
ru∑

k=1

β̃(k)
u γ(u,k)(s), β̃u =

(
β(

∑u−1
l=1 rl+k) | k = 1, . . . , ru

)T
, (4.23)

ru, u = 1, . . . , p, are given in Definition 1.3.2 and the same calculations as in

Remark 3.2.14.a are used. Equation (4.22) can imply several things. To sim-

plify matter let us assume that the covariates do not have a linear dependence

structure, i.e. no component of the covariate vector can be expressed as a lin-

ear function of the remaining components. This situation can be achieved by

a reasonable experiment design. Therefore, we can suppose that(
µ

(u,v)
2 (s)− µ

(u)
1 (s)µ(v)

1 (s)
µ0(s)

)
u, v = 1, . . . , p,

has full rank for Λ̃(τ)
0 -almost all s. This means that c(u)(s) = 0 for Λ̃0-almost all

s, and u = 1, . . . , r, i.e. the weight functions belonging to the u-th component

are linearly dependent, if β̃u is not the null-vector. Thus, the weight functions

for at least one component of the covariate vector are linearly dependent. The

reasons for this dependency might be due to the weight functions, that τ < τ0

is chosen too small, the right censoring, i.e. the linearly independent part of

the weight functions are censored. Another reason for the linear dependency

can be that the baseline hazard is zero on the sets where the weight functions

are linearly independent.
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However, in multivariate one-sided testing problems the linear dependency of

the weight functions might arise very naturally. Let us consider the case of

a univariate, non-negative covariate. For example, we want to test, if larger

values of the covariate correlate with shorter survival times. Under the MCRM,

see Definition 1.3.2, we can model this situation by setting

A
(i)
β,α(·) =

∫
[0,·]

Y (i)(s) exp
(
Zi

r∑
u=1

β(u)γ(u)

)
α(s) ds,

where γ(u), u = 1, . . . , r, are some non-negative functions that determine the

direction of the alternatives. Larger values of β given the covariate imply

shorter survival times. Therefore, the above mentioned test problem turns out

to be β = 0 versus β ≥ 0, β 6= 0, i.e. a multivariate one-sided testing problem.

The cone
{∑r

u=1 β
(u)γ(u) | β ∈ Rr

}
gives the possible directions of the alter-

natives. For illustration, we choose r = 3 and

γ(1)(s) = 1, γ(2)(s) = F0(s), γ(3)(s) = F 2
0 (s),

where F0(s) is a continuous, strictly increasing cumulative distribution function

on R+. γ(1) corresponds with the case of proportional hazard rates, whereas

γ(2) and γ(3) correspond with increasing differences in the hazard rates for large

s, Obviously, the weight function

γ(4)(s) =
(
γ(1)(s)− γ(2)(s)

)2 = γ(1)(s)− 2γ(2)(s) + γ(3)(s)

does not belong to the cone
{∑3

u=1 β
(u)γ(u) | β ≥ 0

}
. However, the weight

function γ(4) is non-negative like the others on the whole interval, i.e. it gener-

ates the same stochastic ordering as the other functions and might be therefore

considered as a possible direction of the alternatives. A way out is to extend

the model by adding the weight function γ(4). As a result, one gets not only

a wider range of alternatives, but that the asymptotic information matrix of

the MCRM is degenerated, since the functions γ(u), u = 1, . . . , 4 are linearly

dependent.
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4.3 Test for Sequences of Hardest Parametric Sub-Models

In the next step we show that one cannot find three weight functions spanning

the same cone as γ(u), u = 1, . . . , n. Obviously, we have to show that there

does not exist xu ∈ R3, u = 1, 2, 3, such that{∑4

u=1
β(u)wu | β ≥ 0

}
=
{∑3

u=1
β̃(u)xu | β̃ ≥ 0

}
, (4.24)

where

w1 =


1

0

0

 , w2 =


0

1

0

 , w3 =


0

0

1

 and w4 =


1

−2

1

 .

Assume we could find xu, u = 1, 2, 3, such that (4.24) holds, then there exits a

(3× 4) matrix B and a (4× 3) matrix C with non-negative entries, such that

W = X B = W C B

where we set

X =
(
x1 x2 x3

)
and W =

(
w1 w2 w3 w4

)
.

On the one hand, it holds that rank(C B) ≤ 3. On the other hand we see

that the entries of the matrix C B are non-negative and that the only non-

negative solution of the system of linear equations W y = wu is given by

y =
(
δ1,u, . . . , δ4,u

)T, u = 1, . . . , 4, where δi,j denotes the Kronecker symbol.

Clearly, this means that rank(C B) = 4, a contradiction.

Consequently, there does not exist three weight functions that generate the

cone given by γ(u), u = 1, . . . , 4. All in all, it is worth considering the case

of degenerated limit distributions that are due to linear dependencies of the

weight functions, if one treats multivariate one-sided testing problems.

The asymptotic information matrix of the MCRM for a model with a one-

dimensional covariate and weight functions γ(u) is given by J ∗,can(τ), where

J ∗,can(u,v)(τ) =
∫

I(τ)

γ(u)(s) γ(v)(s)
(
µ

(1,1)
2 (s)− µ

(1)
1 (s)µ(1)

1 (s)
µ0(s)

)
α0(s) ds.
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4 Deriving Testing Procedures

Under this model it holds that ker(J ∗) =
{
κ · (1, −1, 1, −1)T | κ ∈ R

}
. Con-

sequently, the conditions β 6≥ 0 and −β 6≥ 0 hold for all β ∈ ker(J ∗)\{0}, see

equation (4.3). This means that the hypothesis HJ
1 and the alternative KJ

1 are

disjoint under the limit model, cf. Proposition 4.1.5.

As γ(u)(s) γ(v)(s) ≥ 0, s ∈ R+, u, v = 1, . . . , 4, we get that J ∗,canβ ≥ 0 for all

β ∈ R4, β ≥ 0. Consequently, the condition (4.12) holds, i.e. the sequence of

tests ϕn,1, n ∈ N, is asymptotically unbiased.

In the next step it is shown that Assumption 4.1.16 is satisfied by SHPSM

under certain regularity conditions.

4.3.3 Assumption. Let
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, be a sequence of hardest

parametric sub-models restricted to time τ with asymptotic information matrix

J (τ) and central sequence Sn(τ), n ∈ N, see Definition 3.1.5. Let us assume

that

γ(u̇,ü) = γ
(u̇,ü)
0 ◦H0, u = 1, . . . , r, where γ

(u̇,ü)
0 : [0, 1] −→ R,

is some measurable function and H0 is some cumulative distribution function.

Moreover, we suppose that the following conditions hold.

i) Assumption 2.2.1 and Assumption 2.3.9.i – viii hold.

ii) Assumption 3.2.1 holds.

iii) Suppose that γ̂(u̇,ü)
n = γ

(u̇,ü)
0 ◦ Ĥn, u = 1, . . . , r, where Ĥn is some es-

timator H0, such that 0 ≤ Ĥn ≤ 1 Pn,0-almost surely. Moreover, let

Assumption 3.2.11 hold.

iv) Furthermore, let us assume that β ∈ ker
(
J ∗, can(τ)

)
implies

ru∑
v=1

β̃(v)
u γ

(u,v)
0 (s) = 0 for all s ∈ [0, 1], u = 1, . . . , p

where β̃u is defined in equation (4.23).

v) ρr
{i}
(
J ∗,can(τ)

)
> 0, i = 1, . . . , r.
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4.3 Test for Sequences of Hardest Parametric Sub-Models

vi) In the case that τ = τ c
0 additionally assume that the conditions (3.11),

(3.12), (3.13) and (3.17) hold.

4.3.4 Remark. Assumption 4.3.3.iv means that the degeneracy of the asymp-

totic information matrix of the MCRM J ∗,can(τ) is only due to some linear

dependency of the weight functions. Assumption 4.3.3.v excludes weight func-

tions that are Λ̃(τc
0 )-almost surely 0.

Now, we can state the main result of this section. This result enables us to

apply the results derived in Section 4.1 and Section 4.2 to testing problems

under SHPSM.

4.3.5 Theorem. Set

Un = U
(
J (τ)

)T
Sn(τ), Ûn = Ûn(τ), V̂n = V̂n(τ), n ∈ N,

and J = J (τ), where Ûn(τ) is defined in Theorem 3.2.9 and V̂n(τ) is defined

in Theorem 3.2.13. Assumption 4.3.3 implies Assumption 4.1.16. (Note the

representation of Ûn(τ) given in Remark 3.2.10.b.)

Proof. As
(
Ωn,Fn,Fn,Pn

)
, n ∈ N, is asymptotically normal to time τ , one

sees that Assumption 4.1.1 holds by paying attention to Definition 2.2.2 and

Remark 2.2.3. Theorem 3.2.4, Theorem 3.2.9, Remark 3.2.10.a and Theo-

rem 3.2.13 imply Assumption 4.1.16.a and Assumption 4.1.16.b. Since the

u-th component of V̂nβ, u = 1, . . . , r is given by

n∑
i=1

∫
I(τ)

γ̂(u̇,ü)
n

p∑
v=1

(
µ̂

(u̇,v)
n,2 −

µ̂
(u)
n,1µ̂

(v)
n,1

µ̂n,0

)( ru∑
l=1

γ̂(v,l)
n β̃(l)

v

)
· 1
µ̂n,0

dN (i)
n ,

where β̃v is defined in equation (4.23). Assumption 4.3.3.iii and Assump-

tion 4.3.3.iv yield that Assumption 4.1.16.c is valid. Assumption 4.3.3.v is

exactly Assumption 4.1.16.d.

4.3.6 Corollary. In the situation of Theorem 4.3.5, the following assertions

hold true.
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a) For the testing problem H̃J
1 versus K̃J

1 , the sequence of tests ϕn,1, n ∈ N,

where

ϕn,1 =

{
1,

0,
LJ,1

(
Ûn(τ), V̂n(τ)

)
− cJ,1

(
α, V̂n(τ)

) >
≤

0 ,

and α ∈ (0, 1/2), keeps asymptotically the level on the hypothesis. More-

over, if the condition stated in (4.12) holds, then the sequence of tests is

also asymptotically unbiased.

b) For the testing problem H̃L0
2 versus K̃L1

2 , the sequence of tests ϕn,2, n ∈ N,

where

ϕn,2 =

{
1,

0,
LL0,L1,2

(
Ûn(τ), V̂n(τ)

)
− cL0,L1,2

(
α, V̂n(τ)

) >
≤

0

and α ∈ (0, 1), keeps asymptotically the level on the hypothesis and is

asymptotically unbiased.

Moreover, both sequences of tests are asymptotically admissible, if one only

considers tests that use information up to time τ . In the case that τ = τ c
0 ,

we use all available information, because all censored survival times are almost

surely smaller than τ c
0 .

Proof. Corollary 4.1.17 and Corollary 4.2.6 yield Corollary 4.3.6.a and Corol-

lary 4.3.6.b. The asymptotic admissibility is implied by Theorem 4.1.21 and

Theorem 4.2.9.

4.3.7 Remark. Note that the sequences of tests ϕn,1, n ∈ N, and ϕn,2, n ∈ N,

do not depend on the choice of the foot-point α0 and the nuisance direction

γ̃, since we consider a SHPSM. Obviously, one could extend the underlying lo-

calized, q-dimensional parametric sub-models with further nuisance directions

without any effect on the asymptotic properties of the tests, as the sequence of

the extended parametric sub-models is also a SHPSM. For the last conclusion

it is assumed that the sequence of the extended parametric sub-models is also

asymptotically normal restricted to time τ .
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In particular, this means that the sequence of tests ϕn,1, n ∈ N, is asymptoti-

cally distribution free under the hypothesis if J = {1, . . . , r}. Analogously, one

sees that the sequence of tests ϕn,2, n ∈ N, is asymptotically distribution free

under the hypothesis if L0 = 0 ∈ Rr.

In the case that J 6= {1, . . . , r}, the sequence of tests ϕn,1, n ∈ N, is only

asymptotically distribution free under the hypothesis if the part of the model

based on the weight functions γ(u̇,ü), u ∈ J{, is correct. A similar consideration

also holds true for the case that L0 6= 0.

4.4 The Connection to Projective-Type Tests

In this section it is shown that the testing procedures derived in Section 4.3 are

generalizations of well-known testing procedures by proving that our tests are

projective-type tests. The latter property provides a descriptive interpretation

of the test statistics LJ,1

(
Ûn(τ), V̂n(τ)

)
and LL1,L0,2

(
Ûn(τ), V̂n(τ)

)
. In order to

keep notation simple we consider only the case that no concomitant covariates

are present, this means we assume that J =
{
1, . . . , r

}
for multivariate one-

sided testing problems and L1 = Rr and L0 = {0} for linear testing problems.

As it is intended to obtain a different representation of LJ,1

(
Ûn(τ), V̂n(τ)

)
and

LL1,L0,2

(
Ûn(τ), V̂n(τ)

)
, it is necessary to introduce some more notation. We

define

Λ̂(i)
n (B) =

∫
B

1
µ̂n,0(s)

dN (i)
n (s), B ∈ B,

which can be interpreted as the empirical hazard measure belonging to the

i-th observation, and Λ̂•n(B) =
∑n

i=1 Λ̂(i)
n (B) B ∈ B, which is the cumulative

empirical hazard measure. Obviously, it holds that Λ̂(i)
n � Λ̂•n, i = 1, . . . , n.

The matrix σ̂n(s) =
(
σ̂

(u,v)
n (s) | u, v = 1, . . . , p

)
is given by

σ̂(u,v)
n (s) = µ̂

(u,v)
n,2 (s)−

µ̂
(u)
n,1(s)µ̂

(v)
n,1(s)

µ̂n,0(s)
.
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Note that σ̂n(s) is positive semi-definite, see Remark 3.2.14.a. One easily sees

that

VΛ̂•
n,σ̂n

=
{
f
∣∣ f :

(
I(τ), I(τ) ∩ B

)
→
(
Rp,Bp

)
, f(t) ∈ Im

(
σ̂n(t)

)
∀ t ∈ I(τ)

}
is a real vector space. An empirical pseudo inner product can be defined by〈

f1, f2
〉
Λ̂•

n,σ̂n
=
∫

I(τ)

f1(s)T
(
σ̂n(s)

)−
f2(s) dΛ̂•n(s), f1, f2 ∈ VΛ̂•

n,σ̂n
.

By the introduction of the equivalence relation f1 ∼= f2, if ||f1 − f2||Λ̂•
n,σ̂n

= 0,

where ||f ||2
Λ̂•

n,σ̂n
= <f, f>Λ̂•

n,σ̂n
, one can partition the vector space VΛ̂•

n,σ̂n

into equivalence classes. The vector space of the equivalence classes is a real

Hilbert space. As a consequence of this procedure, the results provided in

Appendix B.2 are applicable to
(
VΛ̂•

n,σ̂n
, <·, ·>Λ̂•

n,σ̂n

)
.

4.4.1 Proposition. Define the function ĥn : I(τ) −→ Rp, where

ĥ(u)
n (s) =

n∑
i=1

(
Z

(u)
n,i (s) µ̂n,0(s)− µ̂

(u)
n,1(s)

) dΛ̂(i)
n

dΛ̂•n
(s) s ∈ I(τ).

It holds that

σ̂n(s)
(
σ̂n(s)

)−
ĥn(s) = ĥn(s) for Λ̂•n-all s ∈ I(τ).

In particular, this means that we can assume that ĥn ∈ VΛ̂•
n,σ̂n

. One only has

to choose reasonable versions of dΛ̂(i)
n /dΛ̂•n, i = 1, . . . , n.

Proof. For verifying the assertion the same ideas as in the proof of Theo-

rem 3.2.4.c are used. It holds that

σ̂(u,v)
n (s) =

1
n

n∑
i=1

(
Z

(u)
n,i (s)−

µ̂
(u)
n,1(s)
µ̂n,0(s)

)(
Z

(v)
n,i (s)−

µ̂
(v)
n,1(s)
µ̂n,0(s)

)
Y (i)

n (s). (4.25)

Let us consider the three cases rank
(
σ̂n(s)

)
= 0, 0 < rank

(
σ̂n(s)

)
< p and

rank
(
σ̂n(s)

)
= p. Using (4.25) one sees that rank

(
σ̂n(s)

)
= 0 implies that

Y
(i)
n (s) = 0, i = 1, . . . , n. Therefore we can choose

(
dΛ̂(i)

n /dΛ̂•n
)
(s) = 0, i =
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1, . . . , n. This means that ĥn(s) = 0. If σ̂n(s) has full rank the assertion is also

trivial.

Let us assume that 0 < rank
(
σ̂n(s)

)
= k < p and that M =

{
v1, . . . , vk

}
are the

indices of k linearly independent columns of σ̂n(s). For every u ∈
{
1, . . . , p

}
\M

there exists cu ∈ Rk, such that

σ̂(u,u)
n (s) =

1
n

n∑
i=1

((
Z

(u)
n,i (s)−

µ̂
(u)
n,1(s)
µ̂n,0(s)

) k∑
l=1

c(l)u

(
Z

(vl)
n,i (s)−

µ̂
(vl)
n,1 (s)
µ̂n,0(s)

))
Y (i)

n (s)

=
1
n

n∑
i=1

( k∑
l=1

c(l)u

(
Z

(vl)
n,i (s)−

µ̂
(vl)
n,1 (s)
µ̂n,0(s)

))2

Y (i)
n (s)

implying

1
n

n∑
i=1

(
Z

(u)
n,i (s)−

µ̂
(u)
n,1(s)
µ̂n,0(s)

−
k∑

l=1

c(l)u

(
Z

(vl)
n,i (s)−

µ̂
(vl)
n,1 (s)
µ̂n,0(s)

))2

Y (i)
n (s) = 0.

With the same considerations as before we get that

ĥ(u)
n (s) =

k∑
l=1

c(l)u ĥ(vl)
n (s), if Λ̂•n

(
{s}
)
> 0.

As σ̂n(s) is symmetric, we can conclude that the rank of the extended matrix(
σ̂n(s) | ĥn(s)

)
is also k. Proposition B.1.5 yields the assertion.

The function ĥn can be interpreted as a primitive estimator for the influence

of the covariates on the survival function of the survival times in question. For

the u-th component we have

Z
(u)
n,i (s)µ̂n,0(s)− µ̂

(u)
n,1(s) = Z

(u)
n,i (s)

1
n

n∑
i=1

Y (i)
n (s)− 1

n

n∑
i=1

Z
(u)
n,i (s)Y (i)

n (s)

≈ E
(
Z(u)(s)

)
E
(
Y (s)

)
− E

(
Z(s)(u) Y (s)

)
= −Cov

(
Z(u)(s), Y (s)

)
,

where E
(
Y (s)

)
is the probability that a censored observation is larger than

s. Without censoring, it would be the probability that an individual survives
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longer than s. So the function ĥn measures the correlation of covariates and

survival times.

Under the hypothesis we expect the survival times and the covariates to be

uncorrelated, so that the function ĥn should vary around 0.

Before we start rewriting the statistic Ûn(τ) and the variance estimator, we

artificially rewrite the weight functions as functions that are elements of VΛ̂•
n,σ̂n

.

ŵn,u : I(τ) −→ Rp, ŵn,u(s) =
γ̂

(u̇,ü)
n (s)√

n
· σ̂n(s)T p

{u̇}, s ∈ I(τ),

u = 1, . . . , r, where T p
{u̇} is given in Definition 4.1.3.

4.4.2 Theorem. Let us define the closed, convex cone

Γ+
n =

{∑r

u=1
β(u) · ŵn,u

∣∣ β(u) ≥ 0, u = 1, . . . , r
}
⊂ VΛ̂•

n,σ̂n

and the linear space

Γn =
{∑r

u=1
β(u) · ŵn,u

∣∣ β ∈ Rr
}
⊂ VΛ̂•

n,σ̂n
.

If J =
{
1, . . . , r

}
, L1 = Rr and L0 = {0} then the following assertions hold

true, where ΠΓ+
n
(hn) and ΠΓn

(hn) denote the projections of ĥn on Γ+
n and Γn

with respect to <·, ·>Λ̂•
n,σ̂n

.

a) LJ,1

(
Ûn(τ), V̂n(τ)

)
=
∣∣∣∣ΠΓ+

n
(hn)

∣∣∣∣2
Λ̂•

n,σ̂n
.

b) LL1,L0,2

(
Ûn(τ), V̂n(τ)

)
=
∣∣∣∣ΠΓn

(hn)
∣∣∣∣2

Λ̂•
n,σ̂n

.

Proof. We readily check that

V̂ (u,v)
n (τ) =

1
n

n∑
i=1

∫
I(τ)

γ̂(u̇,ü)
n γ̂(v̇,v̈)

n

(
µ̂

(u̇,v̈)
n,2 −

µ̂
(u̇)
n,1µ̂

(v̇)
n,1

µ̂n,0

)
dΛ̂(i)

n

=
1
n

∫
I(τ)

γ̂(u̇,ü) ·T p
{u̇}

T
σ̂nT p

{v̇} · γ
(v̇,v̈) dΛ̂•n

=
〈
ŵn,u, ŵn,v

〉
Λ̂•

n,σ̂n
.
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and that

Û (u)
n (τ) =

1√
n

n∑
i=1

∫
I(τ)

γ̂(u̇,ü)
n

(
Z

(u̇)
n,i −

µ̂
(u̇)
n,1

µ̂n,0

)
dN (i)

n

=
1√
n

n∑
i=1

∫
I(τ)

γ̂(u̇,ü)
n

(
Z

(u̇)
n,i µ̂n,0 − µ̂

(u̇)
n,1

) 1
µ̂n,0

dN (i)
n

=
1√
n

∫
I(τ)

γ̂(u̇,ü)
n

n∑
i=1

(
Z

(u̇)
n,i µ̂n,0 − µ̂

(u̇)
n,1

)dΛ̂(i)
n

dΛ̂•n
dΛ̂•n

=
1√
n

∫
I(τ)

γ̂(u̇,ü)
n ĥ(u̇)

n dΛ̂•n

=
1√
n

∫
I(τ)

γ(u̇,ü) ·T p
{u̇}

T
σ̂n σ̂

−
n ĥn dΛ̂•n

=
〈
ŵn,u, ĥn

〉
Λ̂•

n,σ̂n
.

For any β ∈ ker
(
V̂n(τ)

)
we get that∣∣∣∣∣∣∑r

u=1
β(u)ŵn,u

∣∣∣∣∣∣2
Λ̂•

n,σ̂n

= 0,

see Proposition B.3.2.b, implying βTÛn(τ) = 0 and Ûn(τ) ∈ Im
(
V̂n(τ)

)
,

where we use Proposition B.3.2.a. Applying Proposition B.2.5.e and Proposi-

tion B.2.5.b gives

LJ,1

(
Ûn(τ), V̂n(τ)

)
= 2 sup

β≥0

(
βTÛn(τ)− 1

2
βTV̂n(τ)β

)
= 2 sup

w∈Γ+
n

(
<ĥn, w>Λ̂•

n,σ̂n
− 1

2
<w,w>Λ̂•

n,σ̂n

)
.

Proposition B.2.5.b yields the first assertion. Moreover, Proposition B.2.5.d

and Proposition B.2.5.b imply that

LL1,L0,2

(
Ûn(τ), V̂n(τ)

)
=
∣∣∣∣∣∣Π

Im
(
V̂n(τ)

)(Ûn(τ)
)∣∣∣∣∣∣2(

V̂n(τ)
)−

= 2 sup
β∈Rr

(
βTÛn(τ)− 1

2
βTV̂n(τ)β

)
= 2 sup

w∈Γn

(
<ĥn, w>Λ̂•

n,σ̂n
− 1

2
<w,w>Λ̂•

n,σ̂n

)
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Again, Proposition B.2.5.b yields the assertion.

4.4.3 Remark. In the situation of Theorem 4.4.2, one sees that the test

statistics LJ,1

(
Ûn(τ), V̂n(τ)

)
and LL1,L0,2

(
Ûn(τ), V̂n(τ)

)
are projections of a

primitive estimator for the correlation between covariates and survival function

on the closed, convex cones Γ̂+
n and Γ̂n, respectively. If this projection is too

large, i.e. is not too close to 0, the test rejects the hypothesis, since there seems

to be some influence of the covariates on the survival times. Moreover, one sees

that the cones determine the alternatives the test is sensitive for.

In the case that the weight functions are of the form γ̂
(u̇,ü)
n = γ

(u̇,ü)
0 ◦ Ĥn,

u = 1, . . . , r, cf. Assumption 4.3.3.iii, where Ĥn is either a left continuous

version of the Kaplan-Meyer estimator, see Andersen et al. [4, Chapter IV.3],

or Ĥn = 1 − 1
n

∑n
i=1 Y

(i)
n , the testing procedures derived in the previous sec-

tions are indeed non-parametric procedures. This can be seen as follows. By

choosing the functions γ(u̇,ü)
0 : [0, 1] −→ R, the statistician decides whether it

is intended to weight early or late influences of the covariates on the survival

times. As the functions γ(u̇,ü)
0 , u = 1, . . . , r, are defined on the interval [0, 1],

the terms early and late can be given a meaning. The empirical cumulative

distribution function Ĥn provides the right transformation of the interval [0, 1]

onto R+. Some aspects concerning the sign of the weight functions were al-

ready worked out in Discussion 4.3.2. In the case that γ̂(u̇,ü)
n = γ

(u̇,ü)
0 ◦ Ĥn,

u = 1, . . . , r, one can also easily see that our tests are invariant with respect to

changes of the time scale in the sense of Remark 1.3.3.c. Results by Janssen

[36] suggest, that any test keeping the level on the hypothesis can have rea-

sonable power only for a finite number of orthogonal directions of alternatives.

Therefore, restricting ourselves to finite dimensional, closed, convex cones and

linear spaces is no restriction in practice, but reveals the advantage of the test-

ing procedure suggested in Section 4.3. The statistician can control the weight

functions and the number of weight functions. This means that the statistician

can control the alternatives the test is sensitive for.

Behnen and Neuhaus [7] and Mayer [53] have introduced similar tests for the
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two-sample problem. Behnen and Neuhaus [7, Chapter 3] derive some primitive

estimator for the difference of the distributions of the two samples and project

this estimator on a cone of score functions. An extension of this proceeding to

right censored data can be found in Behnen and Neuhaus [8].

Mayer [53] introduced some empirical inner product and showed that log-rank

statistics are projections of a primitive estimator on some one-dimensional

cone, if one considers a one-sided testing problem, or on a one-dimensional

linear space, if one considers two-sided testing problems. Then Mayer replaces

the one-dimensional cone and linear space by higher dimensional cones and

spaces that are generated by weight functions and investigates the asymptotic

properties of the new test statistics. One easily sees that the projective-type

tests of Mayer are special cases of the tests proposed in Section 4.3, cf. also

Example 5.3.2.

If we consider the case p = r = 1 then our test statistic Ûn(τ0) belongs to

the general class of non-parametric test statistics introduced by Jones and

Crowley [39, 40]. Hence, the non-parametric test statistics LJ,1

(
Ûn(τ), V̂n(τ)

)
and LL1,L0,2

(
Ûn(τ), V̂n(τ)

)
generalize the statistics introduced by Jones and

Crowley, because we allow multivariate covariates and several weight functions

instead of one weight function.
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5 Examples and Applications

In this chapter we provide applications of the theory developed in the previous

chapters. In Section 5.3 several statistical questions are modelled with help of

the modified Cox Regression Model (MCRM). And once again, it is shown that

our results are extensions of well-known results. But initially, in Section 5.1

and Section 5.2 the existence of parametric sub-model and the Assumptions of

Chapter 2 and Chapter 3 are discussed.

5.1 On the Existence of the Modified Cox

Regression Model

In this Section, it is aimed to explicitly construct sequences of filtered proba-

bility spaces satisfying Assumption 2.2.1. The starting point is given by some

stochastic processes, whose paths are supposed to determine the distribution

of survival times. The whole construction is carried out in the spirit of Propo-

sition B.5.4. First, let us introduce some notation and premises.

5.1.1 Assumption. i) Let

(
Ω∗

n,i,F
∗
n,i,F∗n,i, Q

∗
n,i

)
, F∗n,i = {F∗n,i,t | t ∈ R+}, i = 1, . . . , n,

be filtered probability spaces and

(
Ω′

n,i,N
′
n,i

)
=
(
{0, 1} × (0,∞),P{0, 1} ⊗ B(0,∞)

)
, i = 1, . . . , n,
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measurable spaces, where P{0, 1} denotes the power set of {0, 1} and

B(0,∞) =
{
B ∩ (0,∞) | B ∈ B

}
. Moreover, we set

Ωn =
n�

i=1

Ωn,i, where Ωn,i = Ω∗
n,i × Ω′

n,i, i = 1, . . . , n,

and

Fn =
n⊗

i=1

Fn,i, where Fn,i = F∗n,i ⊗N′
n,i, i = 1, . . . , n.

In the following, the notation

ωn = (ωn,1, . . . , ωn,n) = (ω∗n,1, ω
′
n,1 . . . , ω

∗
n,nω

′
n,n) ∈ Ωn

is used.

ii) Assume that there exits measurable mappings

Z∗n,i,t : Ω∗
n,i −→ Rp, t ∈ R+, i = 1, . . . , n,

that satisfy the following conditions.

a) F∗n,i,t =
⋂

s>t F
∗,0
n,i,s, where F

∗,0
n,i,s = σ

(
Z∗n,i,u | u ≤ s

)
, i = 1, . . . , n.

b)
∨

t≥0 F∗n,i,t = F∗n,i, i = 1, . . . , n.

c) The process {Z∗n,i,t | t ∈ R+} is progressively measurable, i.e. for all

t ∈ R+, the mapping (ω∗n,i, s) 7→ Z∗n,i,s(ω
∗
n,i), s ≤ t, is F∗n,i,t⊗B[0, t]–Bp

measurable.

iii) Define the mapping hn : Ωn −→ R+, hn(ωn) =
∏n

i=1 hn,i(ω∗n,i, ω
′
n,i),

hn,i(ω∗n,i, ω
′
n,i) = exp

(
−
∫

[0,un,i]

hn,i,1

(
Z∗n,i,s(ω

∗
n,i), s

)
dλ(s)

)
× hn,i,2

(
Z∗n,i,un,i

(ω∗n,i), ω
′
n,i

)
,

where ω′n,i = (δn,i, un,i), λ denotes the Lebesgue measure on R+ and

hn,i,j : Rp+j −→ R+, j = 1, 2, i = 1, . . . , n, are Bp+j–B+ measurable.
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5.1 On the Existence of the Modified Cox Regression Model

iv) Assume that α0 and α̃n,i, i = 1, . . . , n, are hazard rates of some probability

measures on B(0,∞). Set

hn,i,1(z, s) =
(
Rn(z, s)α0(s) + α̃n,i(s)

)
· 1(s < τn,i)

and

hn,i,2(z, δ, s) =
(
Rn(z, s)α0(s) · 1{1}(δ) + α̃n,i(s) · 1{0}(δ)

)
· 1(s < τn,i),

(z, s) ∈ Rp+1, (z, δ, s) ∈ Rp+2, i = 1, . . . , n, where

τn,i = sup
{
t
∣∣∣ ∫

[0,t]

α0 + α̃n,i dλ <∞
}

and Rn : Rp+1 −→ R+ is some Bp+1–B+ measurable mapping. Moreover,

let us assume that α0(t) = 0 for all t ≥ τ0, if τ0 <∞, where

τ0 = sup
{
t
∣∣∣ ∫

I(t)

α0(s) ds <∞
}
.

v) µn =
⊗n

i=1 µn,i, µn,i = Q∗
n,i ⊗ νc ⊗ λ, where νc denotes the counting

measure on P{0, 1}. .

vi) We define the mappings N ′
n,i,t, Ñn,i,t : Ω′

n,i −→ R, where

N ′
n,i,t(δn,i, sn,i) = 1(sn,i ≤ t)δn,i

and

Ñ ′
n,i,t(δn,i, sn,i) = 1(sn,i ≤ t)(1− δn,i),

and Y ′
n,i,t : Ω′

n,i −→ R+,

Y ′
n,i,t(δn,i, sn,i) = 1(sn,i ≥ t),

ω′n,i = (δn,i, sn,i), t ∈ R+, i = 1, . . . , n.

vii) We define the mappings A′n,i,t, Ã
′
n,i,t : Ωn,i −→ R̄+, where

A′n,i,t(ω
∗
n,i, ω

′
n,i) =

∫
[0,t]

Y ′
n,i,s(ω

′
n,i)Rn

(
Z∗n,i,s(ω

∗
n,i), s

)
α0(s) dλ(s)
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and

Ã′n,i,t(ω
∗
n,i, ω

′
n,i) =

∫
[0,t]

Y ′
n,i,s(ω

′
n,i) α̃n,i(s) dλ(s),

(ω∗n,i, ω
′
n,i) ∈ Ωn,i, ω′n,i = (δn,i, un,i), t ∈ R+, i = 1, . . . , n.

viii) Moreover, we define the mappings Zn,i(t) : Ωn −→ Rp and

N (i)
n (t), Ñ (i)

n (t), Y (i)
n (t), A(i)

n (t), Ã(i)
n (t) : Ωn −→ R+,

by setting

N (i)
n (t) = N ′

n,i,t ◦$′
n,i, Ñ (i)

n (t) = Ñ ′
n,i,t ◦$′

n,i,

Zn,i(t) = Z∗n,i,t ◦$∗
n,i, Y (i)

n (t) = Y ′
n,i,t ◦$′

n,i,

A(i)
n (t) = A′n,i,t ◦ ($∗

n,i, $
′
n,i), Ã(i)

n (t) = Ã′n,i,t ◦ ($∗
n,i, $

′
n,i),

t ∈ R+, i = 1, . . . , n, where $∗
n,i : Ωn −→ Ω∗

n,i and $′
n,i : Ωn −→ Ω′

n,i

denote coordinate projections, i.e. $∗
n,i(ωn) = ω∗n,i and $′

n,i(ωn) = ω′n,i.

ix) Let Sn be some σ-algebra on the space Ωn. In the following the important

case will be that Sn is generated by the subsets of negligible sets of some

probability measure. Finally, we define the σ-algebras

N′
n,i,t = σ

(
N ′

n,i,s, Ñ
′
n,i,s, | s ≤ t

)
, t ∈ R+,

and set Gn = {Gn,t | t ∈ R+}, where Gn,t = Sn ∨
⊗n

i=1

(
F∗n,i ⊗N′

n,i,t

)
.

Moreover, we define the filtration Hn = {Hn,t | t ∈ R+}, where Hn,t =⋂
s>t H0

n,s, H0
n,s = Sn ∨

⊗n
i=1

(
F∗n,i,s ⊗N′

n,i,s

)
.

5.1.2 Proposition (Properties of the Filtration). Under Assumption 5.1.1,

it holds that

a) Gn,t = Sn ∨ Gn ∨ σ
(
N

(i)
n (s), Ñ (i)

n (s) | s ≤ t, i = 1, . . . , n
)
, t ∈ R+, where

Gn = σ

(
n�

i=1

(Fi × Ω′
n,i) | Fi ∈ F∗n,i

)
.

b) Gn and Hn are indeed increasing and right continuous.
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5.1 On the Existence of the Modified Cox Regression Model

c) Hn,t ⊂ Gn,t.

d)
∨

t≥0 Gn,t =
∨

t≥0 Hn,t = Sn ∨ Fn.

Proof. It holds that

Gn,t =Sn ∨ σ

(
n�

i=1

(F ∗
i ×N ′

i) | F ∗
i ∈ F∗n,i, Ni ∈ N′

n,i,t

)

=Sn∨σ

(
n�

i=1

(F ∗
i × Ω′

n,i) | F ∗
i ∈ F∗n,i

)
∨σ

(
n�

i=1

(Ω∗
n,i ×N ′

i) | Ni ∈ N′
n,i,t

)
.

As σ
(�n

i=1(Ω
∗
n,i ×N ′

i) | Ni ∈ N′
n,i,t

)
= σ

(
Nn,i,s | s ≤ t, i = 1, . . . , n

)
the proof

of a) is complete. Proof of b). We note that {H0
n,t | t ∈ R+} is increasing by

construction, therefore Hn is increasing. The right continuity is also given by

the construction of Hn. a) and Proposition B.5.1 imply the result for Gn.

Assume H ∈ Hn,t. Because of Hn,s ⊂ H0
n,s and b), we get H ∈ Gn,s for all

s > t. The right continuity of Gn gives c). Proof of d). Because of the previous

inclusion, it suffices to show the assertion
∨

t≥0 Hn,t = Fn ∨ Sn. One readily

checks that
∨

t≥0 N′
n,i,t = N′

n,i. Using this result and Assumption 5.1.1.ii make

the assertion an easy consequence of Proposition B.5.4.a.

The function hn is a candidate for a µn-density of some probability measure.

As a first step we show that hn is a measurable mapping.

5.1.3 Proposition. Under Assumption 5.1.1 without articles iv) and v) the

mappings hn,i, i = 1, . . . , n, are F∗n,i⊗N′
n,i–B+ measurable. Consequently, the

mapping hn is Fn–B+ measurable.

Proof. Consider the measurable space
(
Ω∗

n,i × {0, 1},F∗n,i ⊗ P{0, 1}
)
. Clearly,

the processes
{
(Z∗n,i,t, t) | t ∈ R+

}
and

{
(Z∗n,i,t, δ, t) | t ∈ R+

}
are progressively

measurable with respect to the filtration {F∗n,i,t ⊗ P{0, 1} | t ∈ R+}, see Propo-

sition B.5.4.b. Proposition B.5.2.c yields that the mappings g1 : Ωn,i×{0, 1}×
[0, t] −→ R+ and g2 : Ω∗

n,i × {0, 1} × [0, t] −→ R+, where

g1(ω, δ, u) = exp
(
−
∫

[0,u]

hn,i,1

(
Z∗n,i,s(ω), s

)
dλ(s)

)
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and

g2(ω, δ, u) = hn,i,2

(
Z∗n,i,u(ω), δ, u

)
,

are F∗n,i,t ⊗ P{0, 1} ⊗ B[0, t]–B+ measurable. Consequently, g1 · g2 : Ω∗
n,i ×

{0, 1} × [0, t] −→ R+ is F∗n,i,t ⊗ P{0, 1} ⊗ B[0, t]–B+ measurable. Now, we

consider the mapping g = g1 · g2 on the space Ω∗
n,i×{0, 1}×R+. It holds that

{
(ω, δ, s) | g(ω, δ, s) ∈ B

}
=

∞⋃
t=1

{
(ω, δ, s) | g(ω, δ, s) ∈ B

}
∩ {(ω, δ, s) | s ≤ t},

B ∈ B+, and{
(ω, δ, s) | g(ω, δ, s) ∈ B

}
∩ {(ω, δ, s) | s ≤ t} ∈ F∗n,i,t ⊗ P{0, 1} ⊗ B+[0, t].

As F∗n,i,t ⊗ P{0, 1} ⊗ B+[0, t] ⊂ F∗n,i ⊗ P{0, 1} ⊗ B+, it holds that{
(ω, δ, s) | g(ω, δ, s) ∈ B

}
∩
{
(ω, δ, s) | 0 < s <∞

}
∈ F∗n,i ⊗ P{0, 1} ⊗ B+.

F∗n,i ⊗ P{0, 1} ⊗ B+ ∩
{
(ω, δ, s) | 0 < s <∞

}
= F∗n,i ⊗ N′

n,i and Bauer [6, Be-

merkung 2, p. 153] give the assertion.

5.1.4 Remark. Let T,C :
(
Ω,A,P

)
−→

(
R+,B+

)
be stochastically indepen-

dent random variables. Furthermore, assume that αT and αC are hazard rates

of the measures PT and PC . If X = T ∧ C and ∆ = 1(T ≤ C) then it holds

that

P
(
X ≤ x, ∆ = δ

)
= 1{0}(δ) ·

∫
[0,x]

exp
(
−
∫

[0,s]

αT + αC dλ
)
· αC(s) dλ(s)

+ 1{1}(δ) ·
∫

[0,x]

exp
(
−
∫

[0,s]

αT + αC dλ
)
· αT (s) dλ(s)

The result can be used to construct µn-densities of probability measures on

Fn. The previous remark gives a probability measure on the measurable space(
Ω′

n,i,N
′
n,i

)
and the (νC ⊗ λ)-density of that probability measure. Now, one

just constructs for almost every paths of the covariate processes Z∗n,i a probabil-

ity measure of the above type. The next but one result justifies this proceeding.
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5.1.5 Lemma. Set

τ∗n,i(ω
∗
n,i) = sup

{
t
∣∣∣ ∫

[0,t]

Rn

(
Z∗n,i,s(ω

∗
n,i), s

)
α0 + α̃n,i dλ <∞

}
. (5.1)

It holds that τ∗n,i is F∗n,i–B̄ measurable.

Proof. One readily shows that

Xn,i(t) =
∫

[0,t]

Rn

(
Z∗n,i,s(·), s

)
α0 + α̃n,i dλ,

is F∗n,i–B̄+ measurable, see Proposition B.5.2. As{
τ∗n,i > c

}
=
{
Xn,i(c) <∞

}
, c ∈ R,

where we use the continuity of the paths, it results that τ∗n,i is F∗n,i–B̄+ mea-

surable.

5.1.6 Proposition (Existence of Probability Measures). Suppose that

Assumption 5.1.1 holds and that the processes {Z∗n,i,t | t ∈ R+}, i = 1, . . . , n,

are predictable and locally bounded. In particular this means that the processes

are progressively measurable, cf. Dellacherie and Meyer [16, IV.67]. If∫
I(τn,i)

hn,i,1

(
Z∗n,i,s

(
ω∗n,i

)
, s
)
dλ(s) = ∞ (5.2)

for Q∗
n,i-almost all ω∗n,i then hn is a µn-density of a probability measure on Fn.

Proof. According to Proposition 5.1.3, the mappings hn,i and hn are measur-

able. The local boundedness guarantees that for Q∗
n,i-almost all ω∗n,i it holds

that τ∗n,i(ω
∗
n,i) > 0, for the measurability see Lemma 5.1.5. Consequently, the

condition (5.2) and Proposition B.5.2.b guarantee that hn,i,1

(
Z∗n,i,·

(
ω∗n,i

)
, ·
)

is a hazard rate of some probability measure on B(0,∞) for Q∗
n,i-almost all

ω∗n,i. Using Remark 5.1.4 gives that hn,i

(
Z∗n,i(ω

∗
n,i), ·, ·

)
is a νC ⊗ λ-density

of some probability measure for Q∗
n,i-almost all ω∗n,i. Therefore, hn,i is a

(Q∗
n,i ⊗ νC ⊗ λ)-density of some probability measure on F∗n,i ⊗ N∗

n,i. Bauer

[6, Satz 23.11] gives the assertion.
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The next result gives the dual predictable projections of the counting processes.

5.1.7 Proposition (Counting Processes and Dual Predictable Projec-

tion). In the situation of Proposition 5.1.6 and considering the probability

space (Ωn,Fn, Pn), where Pn(F ) =
∫

F
hn dµn, F ∈ Fn, the processes{

A(i)
n (t) | t ∈ R+

}
and

{
Ã(i)

n (t) | t ∈ R+

}
are predictable with respect to Gn and Hn, where we assume that Sn = {Ωn, ∅},
see Assumption 5.1.1.ix. Moreover, the processes{

N (i)
n (t)−A(i)

n (t) | t ∈ R+

}
and

{
Ñ (i)

n (t)− Ã(i)
n (t) | t ∈ R+

}
are Gn and Hn martingales, where we assume that Sn = {Ωn, ∅}, again.

Proof. One readily checks that the process{
Y ′

n,i,s(·)Rn

(
Z∗n,i,s(·), s

)
α0(s) | s ∈ R+

}
is progressively measurable with respect to {F∗n,i,s ⊗N′

n,i,s | s ∈ R+}. Propo-

sition B.5.2.c and Proposition B.5.4.b yield that A(i)
n =

{
A

(i)
n (t) | t ∈ R+

}
is

progressively measurable with respect to Hn and Gn, where we use Propo-

sition 5.1.2.c. Consequently, the processes A(i)
n,k =

{
A

(i)
n (t) ∧ k | t ∈ R+

}
are

progressively measurable with respect to Hn and Gn As the process A(i)
n,k is

real-valued with continuous paths, it follows that the process A
(i)
n,k is pre-

dictable with respect to Hn and Gn. Finally, we receive that A(i)
n (t, ωn) =

supk∈N A
(i)
n,k(t, ωn) for all ωn ∈ Ωn and t ∈ R+. Thus, we can conclude

that the process A(i)
n is predictable with respect to Hn and Gn. Additionally,

Lemma 5.1.5 implies that Fn,i =
{
τ∗n,i(ω

∗
n,i) > un,i

}
∈ F∗n,i ⊗ N′

n,i, where τ∗n,i

is defined in equation (5.1). By construction it holds that
∫

Fn,i
hn,i dµn,i = 1,

therefore the process A(i)
n is almost surely finite. Proving that the process{

Ã
(i)
n (t) | t ∈ R+

}
is predictable is done by the same means.

Because of the product structure it suffices to show the second assertion for i =

n. For H ∈ Hn,t, we define Hω̃ =
{
ωn,n | (ω̃, ωn,n) ∈ H

}
, ω̃ ∈ Ω̃ =

�n−1
i=1 Ωn,i,
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and Hω̃,ω∗
n,n

=
{
ω′n,n | (ω∗n,n, ω

′
n,n) ∈ Hω̃

}
. As H ∈ Hn,t implies H ∈ H0

n,s,

s > t, it holds that Hω̃ ∈ F∗n,n,s ⊗ N′
n,n,s, s > t, and Hω̃,ω∗

n,n
∈ N′

n,n,s, s > t.

As the filtration {N′
n,n,s | s ∈ R+} is right continuous, see Proposition B.5.1,

it follows that Hω̃,ω∗
n,n

∈ N′
n,n,t.

Note that for Q∗
n,n-almost all ω∗n,n and all s, t ≥ 0, it holds that

E
[
N ′

n,n,t+s −A′n,n,t+s(ω
∗
n,n, ·) | N′

n,n,t

]
= N ′

n,n,t −A′n,n,t(ω
∗
n,n, ·), (5.3)

almost surely with respect to the probability measure given by the νC ⊗ λ-

density hn,n(ω∗n,n, ·), cf. Fleming and Harrington [19, Theorem 1.3.1]. Using

Fubini’s Theorem, cf. Bauer [6, Korollar 23.7], and equation (5.3) yields∫
H

(
N (n)

n (t+ s)−A(n)
n (t+ s)

)
hn dµn =

∫
H

(
N (n)

n (t)−A(n)
n (t)

)
hn dµn,

H ∈ Hn,t, s, t ≥ 0, i.e. the assertion. By exactly the same arguments, one

proves the assertion for Gn and
{
Ñ

(i)
n (t)− Ã

(i)
n (t) | t ∈ R+

}
.

Now, we can state conditions that imply the existence of the MCRM and

(localized) q-dimensional parametric sub-models.

5.1.8 Proposition. a) Let us suppose that the processes {Z∗n,i,t | t ∈ R+},
i = 1, . . . , n, are predictable, locally bounded and that for every ω∗n,i ∈
Ω∗

n,i there exists a C(ω∗n,i) ∈ R+, such that sup
{∣∣Z∗n,i,t(ω

∗
n,i)
∣∣ | t ∈ R+

}
≤

C(ω∗n,i). Moreover, assume that the function Rn : Rp+1 −→ R is given by

Rn

(
z, s
)

= Rn,ξ

(
z, s
)

= exp
(

1√
n
βTz } γ(s) +

1√
n
ηTγ̃(s)

)
, (5.4)

ξ = (βT, ηT)T ∈ Rr+q, see Definition 1.3.4, and that the functions γ(u̇,ü),

u = 1, . . . , r and γ̃(u), u = 1, . . . , q, are bounded. Then the condition (5.2)

holds and τ∗n,i = τn,i Q
∗
n,i-almost surely.

b) Assume that the processes {Z∗n,i,t | t ∈ R+}, i = 1, . . . , n, are predictable

and locally bounded. Moreover, suppose that τ0 = ∞ and τn,i = ∞, i =

1, . . . , n, as well as that γ(u̇,ü), u = 1, . . . , r, and γ̃(u), u = 1, . . . , r, are

bounded on every interval [0, t], t ∈ R+. Analog to Proposition 5.1.8.a let

Rn : Rp+1 −→ R be given by (5.4). Then the condition (5.2) holds.
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Proof. Straightforward.

Of course the conditions stated in Proposition 5.1.8 are not the most general

conditions one can find to guarantee the existence of parametric sub-models.

The cricial point is ensuring that hn,i,1 is a hazard rate of a probability measure

on N′
n,i. On closer inspection this requirement is not really difficult, because

of the right censoring. However, we also intend to get that Pn,ξ � Pn,0. This

point turns out to be responsible for most of the conditions in Proposition 5.1.8.

5.1.9 Remark. Let Pn,0 be some probability measure on Fn and Zn,0 the

σ-algebra generated by all subsets of Pn,0 negligible sets. It is well known

that Pn,0 can be uniquely extended to a probability measure P c
n,0 on Fc,0

n =

Zn,0 ∨ Fn, such that P c
n,0(F ) = Pn,0(F ), F ∈ Fn, see Dellacherie and Meyer

[16, Theorem II.31, Remark II.32].

The next result is essential for proving that Assumption 2.2.1 holds.

5.1.10 Lemma. Consider the probability space
(
Ωn,Fn, {Pn,0, Pn,1}

)
and as-

sume that Pn,1 � Pn,0.

a) The Probability measure Pn,1 can be uniquely extended to a measure P c,0
n,1

on Fc,0
n , such that P c,0

n,1

(
F
)

= Pn,1(F ), F ∈ Fn. Moreover, it holds that

P c,0
n,1 � P c

n,0.

b) Assume that under Pn,1 the process Mn = {Mn(t) | t ∈ R+} is a Hn-

martingale with Sn = {Ωn, ∅}. Then under P c,0
n,1 the process Mn is a Hn-

martingale with Sn = Zn.

Proof. Assume that f is a Pn,0 density of Pn,1. Set

P c,0
n,1(F ) =

∫
F

f dP c
n,0, F ∈ Fc,0

n .

Remark 5.1.9 implies the first assertion. Proof of b). Any set H ∈ Hn,t, can

be represented as H = (G ∪Nc)\(G ∩Nc), where G ∈
⊗n

i=1(F
∗
n,i ⊗N′

n,i,t)
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and Nc ⊂ N ∈ Fn with Pn,0(N) = 0. Consequently, G\N ⊂ H ⊂ G ∪ N , cf.

Dellacherie and Meyer [16, Remark II.32]. Thus, it holds that∫
H

Mn(t+ s) dP c,0
n,1 =

∫
G

Mn(t+ s) dPn,1 =
∫

G

Mn(t) dPn,1 =
∫

H

Mn(t) dP c,0
n,1,

for all s ≥ 0.

5.1.11 Discussion. Under Assumption 5.1.1 and in the situation of Proposi-

tion 5.1.8, we proved the existence of a probability space
(
Ωn,Fn,Pn

)
, Pn =

{Pn,ξ | ξ ∈ Rr+q}, such that

Pn,ξ(F ) =
∫

F

hn,ξ(ωn) dµn(ωn), F ∈ Fn, hn,ξ =
n∏

i=1

hn,i,ξ,

where

hn,i,ξ = exp
(
−
∫

[0,·]
hn,i,ξ,1

(
Zn,i(s, ωn), $′

n,i

)
(ωn) dλ(s)

)
× hn,i,ξ,2

(
Zn,i(s, ωn), $′

n,i(ωn)
)
,

with

hn,i,ξ,1(z, δ, s) =
(
Rn,ξ(z, s)α0(s) + α̃n,i(s)

)
· 1(s < τn,i)

and

hn,i,ξ,2(z, δ, s) =
(
Rn,ξ(z, s)α0(s) · 1{1}(δ) + α̃n,i(s) · 1{0}(δ)

)
· 1(s < τn,i),

cf. Assumption 5.1.1.iii, Assumption 5.1.1.iv and equation (5.4). As hn,0 = 0

implies that hn,ξ = 0 for all ξ ∈ Rr+q, it results that Pn,ξ � Pn,0 for all

ξ ∈ Rr+q. Using Lemma 5.1.10.a and setting Sn = Zn,0, we can assume that

Fn and Gn,t, t ∈ R+, are Pn,0-complete. This means that Assumption 2.2.1.iii

and Assumption 2.2.1.iv hold. Proposition 5.1.2 yields that Gn is indeed a

filtration and that Assumption 2.2.1.i and Assumption 2.2.1.vii hold. Since

Pn,0

(
N (i)

n (s)−N (i)
n (s−) = 1

)
= 0 and Pn,0

(
Ñ (i)

n (s)−N (i)
n (s−) = 1

)
= 0,
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i = 1, . . . , n, s ≥ 0, we can modify the process(
N (1)

n , . . . , N (n)
n , Ñ (1)

n , . . . , Ñ (n)
n

)T
on a Pn,0 negligible set, such it is a multivariate counting process. Note that

this procedure has no impact on the filtration, as it is Pn,0-complete. Thus,

Assumption 2.2.1.ii, Assumption 2.2.1.v and Assumption 2.2.1.vi are valid by

construction. Proposition 5.1.7, Lemma 5.1.10, Proposition B.5.3 and Propo-

sition B.5.4 yield Assumption 2.2.1.viii and Assumption 2.2.1.ix

5.1.12 Remark. Proposition 5.1.6 and Proposition 5.1.7 emphasize that As-

sumption 2.2.1.vii is mainly due to the fact that we have to guarantee that

all local martingales have representation property with respect to the counting

process (NT
n , Ñ

T
n ). Basically, Assumption 2.2.1.vii secures that the distribution

of the covariates does not change with the parameter ξ ∈ Rr+q.

5.2 Checking Further Conditions

In this section we always suppose that the following premises, for which we

gave sufficient condition in Discussion 5.1.11, hold

5.2.1 Assumption. Suppose that Assumption 5.1.1, Assumption 2.2.1, As-

sumption 2.3.9.i, Assumption 2.3.9.ii and Assumption 2.3.9.viii are satisfied.

Moreover, suppose that

Pn,0(F ) =
∫

F

hn dµn, F ∈ Fn,

where we assume that Rn = 1, see also Assumption 5.1.1.iii and Assump-

tion 5.1.1.iv.

In the following paragraphs we consider the remaining articles of Assump-

tion 2.3.9. Note that conditions similar to Assumption 2.3.9 are also used by

other author, cf. Andersen et al. [4, Condition VII.2.1] or Andersen and Gill

[5]. Now we state a result derived in empirical process theory that helps us to

verify Assumption 2.3.9.iv – Assumption 2.3.9.vi

152



5.2 Checking Further Conditions

5.2.2 Proposition (Abstract Law of Large Numbers). Under Assump-

tion 5.2.1, let us suppose that every path of the covariate processes{
Zn,i(t) | t ∈ R+

}
, i = 1, . . . , n, n ∈ N,

is left continuous. Set Z̃n,i = supt∈I(τ)

∣∣∣∣Zn,i(t)
∣∣∣∣
∞, where ||·||∞ denotes the

sup-norm on Rp, see Definition B.4.3, and define the covering number

CN(ε, ρ) = min
{
|T|
∣∣ T ⊂ Qτ , infs∈T ρ(t, s) ≤ ε for all t ∈ Qτ

}
,

where Qτ = I(τ)∩Q and ρ is a pseudo metric on I(τ), as well as the empirical

pseudo metrics

ρ
(u)
n,1(s, t) =

1
n

n∑
i=1

∣∣∣Z(u)
n,i (s)Y (i)

n (s)− Z
(u)
n,i (t)Y (i)

n (t)
∣∣∣, s, t ∈ Qτ ,

and

ρ
(u,v)
n,2 (s, t) =

1
n

n∑
i=1

∣∣∣Z(u)
n,i (s)Z(v)

n,i (s)Y
(i)
n (s)− Z

(u)
n,i (t)Z(v)

n,i (t)Y
(i)
n (t)

∣∣∣,
s, t ∈ Qτ . Assume that

lim
C→∞

sup
n∈N

sup
1≤i≤n

∫
1
(
Z̃2

n,i > C
)
Z̃2

n,i dPn,0 = 0

and

1
n

log CN(ε, ρ(u)
n,1) −→Pn,0 0, and

1
n

log CN(ε, ρ(u,v)
n,2 ) −→Pn,0 0, (5.5)

as n→∞, for all ε > 0, u, v = 1, . . . , n. Then it holds that

a) En,0

(
supt∈I(τ)

∣∣µ̂n,0(t)− En,0µ̂n,0(t)
∣∣)→ 0, as n→∞.

b) En,0

(
supt∈I(τ)

∣∣µ̂(u)
n,1(t)− En,0µ̂

(u)
n,1(t)

∣∣)→ 0, as n→∞, u = 1, . . . , p.

c) En,0

(
supt∈I(τ)

∣∣µ̂(u,v)
n,2 (t)− En,0µ̂

(u,v)
n,2 (t)

∣∣)→ 0, as n→∞, u, v = 1, . . . , p.

Proof. As the paths of the processes
{
Y

(i)
n (t) | t ∈ R+

}
, i = 1, . . . , n, n ∈ N,

are left continuous, it holds that

sup
t∈I(τ)

∣∣∣µ̂n,0(t)− En,0

(
µ̂n,0(t)

)∣∣∣ = sup
t∈Qτ

∣∣∣µ̂n,0(t)− En,0

(
µ̂n,0(t)

)∣∣∣,
153



5 Examples and Applications

see Proposition B.5.5. Obviously, it also holds that

lim
C→∞

sup
n∈N

sup
1≤i≤n

∫
sup
t∈Qτ

∣∣Y (i)
n (t)

∣∣1( sup
t∈Qτ

∣∣Y (i)
n (t)

∣∣ > C

)
dPn,0 = 0

and CN(ε, ρn,0) ≤ (n+ 1), where

ρn,0(s, t) =
1
n

n∑
i=1

∣∣Y (i)
n (s)− Y (i)

n (t)
∣∣, s, t ∈ Qτ .

The latter assertion can be seen as follows. We have that{
sup
{
s ∈ R+ | Y (i)

n (s) = 1
}
, i = 1, . . . , n

}
= {sn,1, . . . , sn,kn

},

where sn,i−1 < sn,i and kn ≤ n. Choose rational numbers tn.i, such that

sn,i−1 < tn,i < sn,i, i = 1, . . . , kn + 1, where sn,0 = 0 and sn,kn+1 = ∞.

Setting T = {tn,i | i = 1, . . . , kn + 1} we get that

inf
t∈T

ρn,0(t, s) = 0, for all s ∈ R+.

Thus, n−1 log CN(ε, ρn,0) −→Pn,0 0, as n → ∞. Now the assertions are im-

plied by Dümbgen [17, Satz 8.3]. The other assertions are proved completely

analogously. Note that Z̃n,i, i = 1, . . . , n, n ∈ N, are measurable, because of

Proposition B.5.5.a.

5.2.3 Corollary. In the situation of Proposition 5.2.2, assume that the fol-

lowing conditions hold.

i) supt∈I(τ)

∣∣ 1
n

∑n
i=1 En,0

(
Y

(i)
n (t)

)
− µ0(t)

∣∣→ 0, as n→∞,

ii) supt∈I(τ)

∣∣ 1
n

∑n
i=1 En,0

(
Y

(i)
n (t)

)
En,0

(
Z

(u)
n,i (t)

)
− µ

(u)
1 (t)

∣∣ → 0, as n → ∞,

u = 1, . . . , p,

iii) supt∈I(τ)

∣∣ 1
n

∑n
i=1 En,0

(
Y

(i)
n (t)

)
En,0

(
Z

(u)
n,i (t)Z(v)

n,i (t)
)
− µ

(u,v)
2 (t)

∣∣ → 0, as

n→∞, u, v = 1, . . . , p,

where µ0, µ
(u)
1 and µ

(u,v)
2 , u, v = 1, . . . , p, are bounded and left continuous.

Then Assumption 2.3.9.iv, Assumption 2.3.9.v and Assumption 2.3.9.vi hold

for all t ≤ τ .
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Proof. Proposition B.5.5.a gives that supt∈I(τ)

∣∣µ̂n,0(t)− µ0(t)
∣∣ is measurable.

The Markov-inequality, cf. Gänssler and Stute [20, Lemma 1.18.1], implies

that supt∈I(τ)

∣∣µ̂n,0(t)− En,0 µ̂n,0(t)
∣∣ −→Pn,0 0, as n→∞. Therefore, the first

assertion is an immediate consequence of the triangle inequality. Noting that

En,0

(
Y (i)

n (t)
)

En,0

(
Z

(u)
n,i (t)

)
= En,0

(
Y (i)

n (t)Z(u)
n,i (t)

)
and

En,0

(
Y (i)

n (t)
)

En,0

(
Z

(u)
n,i (t)Z(v)

n,i (t)
)

= En,0

(
Y (i)

n (t)Z(u)
n,i (t)Z(v)

n,i (t)
)
,

one proves the second and third assertion analogously to the first one.

5.2.4 Example (Proposition 5.2.2). a) Let us assume that the paths of the

processes
{
Zn,i(t) | t ∈ R+

}
, i = 1, . . . , n, n ∈ N, are left continuous with

right hand limits (caglad) and that∣∣Z(u)
n,i (s)− Z

(u)
n,i (t)

∣∣ ≤ L(τ)|t− s| (5.6)

and ∣∣Z(u)
n,i (s)Z(v)

n,i (s)− Z
(u)
n,i (t)Z(v)

n,i (t)
∣∣ ≤ L(τ)|t− s|, (5.7)

whenever the process Z
(u)
n,i and Z

(u)
n,i do not jump in the interval [s, t],

where L(τ) ∈ R+ is independent of u, v, i and n. This means the paths

of the processes are piecewise Lipschitz continuous functions. Set Jn =

max{J (u,v)
n | u, v = 1, . . . , p}, where J

(u,v)
n is the number of jumps of the

process
{
µ̂

(u,v)
n,2 (t) | t ∈ R+

}
in the interval [0, τ ]. Assume that for a fixed

ωn ∈ Ωn the paths of the processes
{
Z

(u)
n,i (t ∧ τ)Y (i)

n (t ∧ τ) | t ∈ R+

}
, u =

1, . . . , p, i = 1, . . . , n, do not jump in the interval [s1, s2] ⊂ I(τ). Then it

holds that ρ(u)
n,1(s1, s2) ≤ L(τ) |s2 − s1| and ρ

(u,v)
n,2 (s1, s2) ≤ L(τ) |s2 − s1|,

u, v = 1, . . . , p. Taking the jumps into account one easily checks the follow-

ing estimates for the covering numbers

CN(ε, ρ(u)
n,1) ≤

2τL(τ)
ε

+ Jn + 1 and CN(ε, ρ(u,v)
n,2 ) ≤ 2τL(τ)

ε
+ Jn + 1.
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Without loss of generality we can assume that 2τL(τ)ε−1 ≥ 2 and that

Jn + 1 ≥ 2. Hence, it holds the estimate

log
(

2τL(τ)
ε

+ Jn + 1
)
≤ log(2τL(τ))− log(ε) + log(Jn + 1).

If n−1 log(Jn + 1) −→Pn,0 0 then the condition (5.5) holds.

b) Examples of caglad processes that satisfy the conditions (5.6) and (5.7) are

processes with piecewise constant paths.

c) If the paths of the covariate processes do not contain any jumps and con-

ditions (5.6) and (5.7) hold, then Jn ≤ n + 1. Thus, the condition (5.5)

holds.

5.2.5 Example (k-sample problems). In the situation of Proposition 5.2.2

assume that n > k and that ni = ni(n) i = 0, . . . , k, are sequences of natural

numbers, such that n0 = 0 and nk = n and that under Pn,0 the random

variables

Zn,i(t) ∼ Z̄l(t) and Y (i)
n (t) ∼ Ȳ (l)(t), nl−1 < i ≤ nl

t ∈ R+, l = 1, . . . , k. Suppose that sup1≤l≤k supt∈R+
En,0

∣∣∣∣Z̄l(t)
∣∣∣∣2
∞ < ∞.

If
(
nl − nl−1

)
/n → νl, as n → ∞, for l = 1, . . . , k, then the conditions of

Corollary 5.2.3 hold with µ0(t) =
∑k

l=1 νlE
(
Y (l)(t)

)
, as well as

µ
(u)
1 (t) =

k∑
l=1

νlE
(
Y (l)(t)

)
E
(
Z

(u)
l (t)

)
and

µ
(u,v)
2 (t) =

k∑
l=1

νlE
(
Y (l)(t)

)
E
(
Z

(u)
l (t)Z(v)

l (t)
)
,

u = 1, . . . , p. The left continuity of this functions can be proved analogously

to Proposition B.5.5.

5.2.6 Proposition. Suppose that Assumption 2.3.9.iv – Assumption 2.3.9.vi

and

sup
n∈N

sup
1≤i≤n

sup
t∈I(τ)

En,0

∣∣∣∣Zn,i(t)
∣∣∣∣2
∞ ≤ K <∞
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hold, where ||·||∞ denotes the sup-norm on Rp, see Definition B.4.3. Then the

functions µ0, µ
(u)
1 and µ(u,v)

2 , u, v = 1, . . . , p, are bounded on the interval [0, τ ],

i.e. Assumption 2.3.9.iii holds for all t ≤ τ .

Proof. For µ0 the assertion is straightforward. Let M > 0 be arbitrary. For

all t ∈ [0, τ ] it holds that

Pn,0

(∣∣µ(u)
1 (t)

∣∣ ≥M
)

≤ Pn,0

(∣∣µ̂(u)
n,1(t)− µ

(u)
1 (t)

∣∣ ≥ M

2

)
+ Pn,0

(∣∣µ̂(u)
n,1(t)

∣∣ ≥ M

2

)
.

The Markov-inequality and the Jensen inequality, cf. Gänssler and Stute [20,

Lemma 1.18.1, Satz 5.4.7], yield that

Pn,0

(∣∣µ̂(u)
n,1(t)

∣∣ ≥ M

2

)
≤ 2
M

· En,0

∣∣µ̂(u)
n,1(t)

∣∣ ≤ 2
√
K

M
.

Using Assumption 2.3.9.v, one receives

lim sup
n→∞

Pn,0

(∣∣µ(u)
1 (t)

∣∣ ≥M
)
≤ 2

√
K

M
< 1.

for all sufficiently large M > 0. Note that M is independent of t. As

Pn,0

(∣∣µ(u)
1 (t)

∣∣ ≥M
)

=

{
1, if

∣∣µ(u)
1 (t)

∣∣ ≥M,

0, if
∣∣µ(u)

1 (t)
∣∣ < M,

it results that
∣∣µ(u)

1 (t)
∣∣ ≤ M for all t ∈ I(τ). The third assertion is proved

completely analogously.

5.2.7 Example (Assumption 3.2.11). Suppose that

γ(u̇,ü) = γ
(u̇,ü)
0 ◦H and γ̂(u̇,ü)

n = γ
(u̇,ü)
0 ◦ Ĥn, n ∈ N, u = 1, . . . , r,

where γ(u̇,ü)
0 : [0, 1] −→ R are some continuous functions. Let us discuss the

following two cases.
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a) Assume that H = 1 − µ0 and set Ĥn = 1 − µ̂n,0. Assumption 2.3.9.iv

implies Assumption 3.2.11. This assertion can seen as follows. The processes{
γ̂

(u̇,ü)
n (t) | t ∈ R+

}
, u = 1, . . . , r, n ∈ N, are bounded and left continuous,

i.e. they are especially locally bounded and predictable. In particular, the

functions γ(u̇,ü)
0 , u = 1, . . . , r, are uniformly continuous. Therefore, we can

find for every ε > 0 some δ > 0, such that

Pn,0

(
sup

t∈I(τ)

∣∣γ̂(u̇,ü)
n − γ(u̇,ü)

∣∣ ≥ ε

)
≤ Pn,0

(
sup

t∈I(τ)

∣∣µ0(t)− µ̂n,0(t)
∣∣ ≥ δ

)
→ 0,

as n→∞, for all τ < τ0.

b) Suppose that Assumption 3.2.1 holds and that

1−H(t) = exp
(
−
∫

I(t)

α0(s) ds
)
, t ∈ R+.

Let Ĥn denote a left continuous version of the Kaplan-Meyer estimator for

H, see Andersen et al. [4, Section IV.3]. One readily checks that Assump-

tion 2.3.9.iv implies the conditions of Andersen et al. [4, Theorem IV.3.1].

Therefore, we have that supt∈I(τ)

∣∣Ĥn(t)−H(t)
∣∣ −→Pn,0 0, as n → ∞,

for all τ ≤ τ c
0 . Analogously to Example 5.2.7.a, one shows that Assump-

tion 3.2.11 holds.

Asymptotic normality restricted to time τ0 always depended on some additional

conditions. The next result gives sufficient, handier assumptions for these

premises. We also show the existence of the canonical SHPSM restricted to

time τ0.

5.2.8 Proposition. Under Assumption 5.2.1, suppose that Assumption 2.3.9

and Assumption 3.2.1 hold as well as the conditions

1√
n

max
1≤i≤n

sup
s∈I(τc

0 )

∣∣∣∣Zn,i(s)
∣∣∣∣
∞ −→Pn,0 0, as n→∞, (5.8)

and

sup
n∈N

sup
1≤i≤n

sup
s∈I(τc

0 )

En,0

(∣∣∣∣Zn,i(s)
∣∣∣∣2
∞

)
= K <∞, (5.9)

where ||·||∞ denotes the sup-norm on Rp, see Definition B.4.3.
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a) The conditions (2.24) and (2.25) hold. In particular, the functions µ(u)
1 /µ0,

u = 1, . . . , p, are bounded. This means that the conditions (2.24) and (2.25)

also hold in the context of Theorem 3.2.3.

b) The conditions (3.11) and (3.12) are satisfied.

c) Assume that |γ̂(u̇,ü)
n | ≤ C < ∞, u = 1, . . . , r, n ∈ N, then the condi-

tion (3.13) and (3.17) hold.

Proof. Using the notation of Theorem 2.3.10, we prove that (2.24) holds.

Note that we can replace τ0 by τ c
0 in equation (2.24) and (2.25), because of

Assumption 3.2.1. Choose δ, ε > 0 and define the sets

An =
{

1√
n

max
1≤i≤n

sup
s∈I(τ0)

∣∣∣∣Zn,i(s)
∣∣∣∣
∞ ≤ δ

}
, n ∈ N,

as well as

Bn =

{∣∣∣∣ n∑
i=1

∫
(t,τ0)

V (i)
n (s, ξ, ξ′) λ(i)

n (s) ds
∣∣∣∣ ≥ ε

}
, n ∈ N.

Clearly, it holds that

lim sup
n→∞

Pn,0(Bn) ≤ lim sup
n→∞

Pn,0(An ∩Bn) + lim sup
n→∞

Pn,0(A{
n)

and limn→∞ Pn,0(A{
n) = 0, because of (5.8). A Taylor expansion gives that

exp
(

1√
n
ξ̃TΨn,i(s)Y (i)

n (s)
)
−1 =

1√
n
ξ̃TΨn,i(s) exp

(
ϑ̃(s)√
n
ξTΨ,n,i(s)

)
Y (i)

n (s),

where ϑ̃(s) ∈ (0, 1). Therefore, we get that

∣∣V (i)
n (s, ξ, ξ′)

∣∣ ≤ 1
2n

∣∣ξTΨn,i(s) ξ′
TΨn,i(s)

∣∣
× exp

(
1

2
√
n
ϑ(s) ξTΨn,i(s) +

1
2
√
n
ϑ′(s) ξ′TΨn,i(s)

)
Y (i)

n (s),

where ϑ, ϑ′ : R+ −→ (0, 1). Using the boundedness of the weight functions, on

the set An it holds the estimate
∣∣V (i)

n (s, ξ, ξ′)
∣∣ ≤ C, where C is some constant
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that can be chosen independently of i, n and s. Using Fubini’s Theorem, cf.

Bauer [6, Korollar 23.7], gives

En,0

∫
(t,τc

0 )

C Y (i)
n (s) α0(s) ds = C

∫
(t,τc

0 )

En,0

(
Y (i)

n (s)
)
α0(s) ds.

Using Remark 5.1.4 gives that En,0

(
Y

(i)
n (s)

)
≤ 1− F0(s), where

1− F0(s) = exp
(
−
∫

[0,t]

α0(u) du
)
.

Therefore, we get that

En,0

∫
(t,τ0)

C Y (i)
n (s) α0(s) ds ≤ C

(
F (τ c

0 )− F0(t)
)
. (5.10)

The Markov-inequality, cf. Gänssler and Stute [20, Lemma 1.18.1], and (5.10)

give that

lim sup
n→∞

Pn,0(An ∩Bn) ≤ lim sup
n→∞

Pn,0

(
1
n

∑n

i=1

∫
(t,τc

0 )

C λ(i)
n (s) ds ≥ ε

)
≤ C

ε

(
F0(τ c

0 )− F0(t)
)
→ 0,

as t → τ c
0 . With a similar consideration one proves that (2.25) holds. In the

next step we show that the functions µ(u)
1 /µ0, u = 1, . . . , p, are bounded. For

this proof we also use the same idea as in Proposition 5.2.6. If τ c
0 < ∞ we

can assume without loss of generality that µ(u)
1 (τ c

0 )/µ0(τ c
0 ) = 0. Let M > 0 be

arbitrary. For all t ∈ [0, τ c
0 ) it holds that

lim sup
n→∞

Pn,0

(∣∣∣∣µ(u)
1 (t)
µ0(t)

∣∣∣∣ ≥M

)
≤ lim sup

n→∞
Pn,0

(∣∣∣∣ µ̂(u)
n,1(t)
µ̂n,0(t)

∣∣∣∣ ≥ M

2

)

+ lim sup
n→∞

Pn,0

(∣∣∣∣µ(u)
1 (t)
µ0(t)

−
µ̂

(u)
n,1(t)
µ̂n,0(t)

∣∣∣∣ ≥ M

2

)
Obviously, it holds that∣∣∣∣ µ̂(u)

n,1(t)
µ̂n,0(t)

∣∣∣∣ ≤ µ̂
(u,u)
n,2 (t) · µ̂n,0(t)

µ̂n,0(t)
≤ 1
n

n∑
i=1

∣∣∣∣Zn,i(t)
∣∣∣∣2
∞,
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where we use the Cauchy-Schwarz inequality, see e.g. Gänssler and Stute [20,

Satz 1.13.3]. The Markov inequality and Lemma 3.2.7, give that

lim sup
n→∞

Pn,0

(∣∣∣∣µ(u)
1 (t)
µ0(t)

∣∣∣∣ ≥M

)
≤ 2K

M
< 1

for sufficiently large M . As K and M are independent of t and

Pn,0

(∣∣∣∣µ(u)
1 (t)
µ0(t)

∣∣∣∣ ≥M

)
=

{
1, if

∣∣µ(u)
1 (t)/µ0(t)

∣∣ ≥M,

0, if
∣∣µ(u)

1 (t)/µ0(t)
∣∣ < M,

it follows the assertion.

First, we show that (3.13) holds. Again, using the estimate (µ̂(u̇)
n,1)

2/µ̂n,0 ≤
µ̂

(u̇,u̇)
n,2 , applying Markov’s inequality and Fubini’s Theorem yield

Pn,0

(∫
(t,τc

0 )

(
γ̂(u̇,ü)

n (s)
)2(

µ̂
(u̇,u̇)
n,2 (s)−

(µ̂(u̇)
n,1(s))

2

µ̂n,0(s)

)
α0(s) ds ≥ ε

)
≤ 2
εn

n∑
i=1

∫
(t,τc

0 )

En,0

(
Z

(u̇)
n,i (s)

)2 En,0

((
γ̂(u̇,ü)

n (s)
)2
Y (i)

n (s)
)
α0(s) ds

≤ 2KC2

ε

∫
(t,τc

0 )

En,0

(
Y (i)

n (s)
)
α0(s) ds ≤ 2KC2

ε
·
(
F0(τ c

0 )− F0(t)
)
,

where C > 0 is some suitable constant. For the last estimates we also use

boundedness of the weight functions and the stochastic independence of the

covariates and the at-risk processes. t→ τ c
0 gives that (3.13) holds. With the

same method one proves that the conditions (3.11) and (3.12) are satisfied.

Using the estimates ∣∣µ̂(u̇,v̇)
n,2 (s)

∣∣ ≤ 1
n

n∑
i=1

∣∣∣∣Zn,i(s)
∣∣∣∣2
∞Y

(i)
n (s)

and

∣∣µ̂(u̇)
n,1(s) µ̂

(v̇)
n,1(s)

∣∣ ≤ ( 1
n

n∑
i=1

∣∣∣∣Zn,i(s)
∣∣∣∣
∞Y

(i)
n (s)

)2

≤

(
1
n

n∑
i=1

∣∣∣∣Zn,i(s)
∣∣∣∣2
∞Y

(i)
n (s)

)
· µ̂n,0(s),
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where we applied the Cauchy-Schwarz inequality, one sees that the condi-

tion (3.17) is proved completely analogously to (3.13), cf. also Remark 3.2.14.b.

5.2.9 Remark. a) Abbreviating Z̃n,i = sups∈I(τc
0 )

∣∣∣∣Zn,i(s)
∣∣∣∣
∞ the condition

(5.8) is implied by

lim
C→∞

sup
n∈N

sup
1≤i≤n

∫
1
(
Z̃2

n,i > C
)
Z̃2

n,i dPn,0 = 0. (5.11)

For δ > 0 choose C > 0, such that sup1≤i≤n, n∈N En,0

(
1(Z̃2

n,i > C)Z̃2
n,i

)
≤ δ,

and define the sets An =
{
max1≤i≤n Z̃

2
n,i > C

}
, n ∈ N. It holds that

Pn,0

(
max

1≤i≤n
Z̃n,i ≥

√
nε

)
≤ Pn,0

({
max

1≤i≤n
Z̃2

n,i ≥ nε2
}
∩A{

n

)
+ Pn,0

(
max

1≤i≤n
Z̃2

n,i1(Z̃2
n,i > C) ≥ nε2

)
= pn,1 + pn,2.

Obviously, it holds that pn,1 → 0, as n→∞, and

pn,2 ≤
1
nε2

n∑
i=1

En,0

(
1(Z̃2

n,i > C)Z̃2
n,i

)
≤ δ

ε2
,

since δ was arbitrary, δ ↓ 0 yields the assertion. Additionally, the condi-

tion (5.11) yields that the condition (5.9) holds.

b) The condition (5.9) does not generally imply the condition (5.8). This can

be seen as follows. Using the notation of a) assume that Z̃n,i, i = 1, . . . , n,

n ∈ N, are stochastically independent and

Pn,0

(
Z̃n,i = z

)
=

{
1− 1/i, if z = 0,

1/i, if z =
√
i.

Clearly, it holds that En,0(Z̃n,i) = 1/
√
i and En,0(Z̃2

n,i) = 1. However, some

tedious computation, where one uses the properties of the gamma function,

gives that

lim
n→∞

Pn,0

(
1√
n

max
1≤i≤n

Z̃n,i ≥ ε

)
= 1−min{1, ε2}, ε > 0.
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c) Assume that the random variables Z̃n,i, i = 1, . . . , n, n ∈ N, see Re-

mark 5.2.9.a, have the same distribution and that En,0

(
Z̃2

n,i

)
< ∞, then

the condition (5.11) holds.

d) Using the notation of a) assume that for some δ > 0, it holds that

sup
n∈N

sup
1≤i≤n

En,0

(
Z̃2+δ

n,i

)
= K <∞. (5.12)

Using the Markov inequality yields that

Pn,0

( 1√
n

max
1≤i≤n

sup
s∈I(τ0)

∣∣∣∣Zn,i(s)
∣∣∣∣
∞ ≥ ε

)
≤ ε−(2+δ) · n−(1+δ/2)

n∑
i=1

En,0

(
Z̃2+δ

n,i

)
≤ K

ε2+δ
n−δ/2,

i.e. the condition (5.8) holds. Obviously, the condition (5.9) is also implied

by the condition (5.12).

e) If all paths of all covariate processes are bounded by the same constant then

clearly the condition (5.11) is satisfied.

f) In particular, the condition (5.11) or (5.12) imply Assumption 2.3.9.iii, see

Proposition 5.2.6, and Assumption 2.3.9.vii.

5.2.10 Proposition (Local Boundedness of Covariate Processes). As-

sume that
∣∣∣∣Zn,i(0)

∣∣∣∣
∞ ≤ Cn,i, where Cn,i ∈ R+, i = 1, . . . , n, and that the con-

dition (5.11) holds. Then the processes
{
Zn,i(t ∧ τ c

0 ) | t ∈ R+

}
, i = 1, . . . , n,

are locally bounded with respect to the filtration Gn

Proof. Set

τn,i,k =

{
0, if Z̃n,i ∧ Cn,i > k,

∞, otherwise.

}

Clearly, it holds that {τn,i,k ≤ t} ∈ Gn,0 ⊂ Gn,t and
∣∣∣∣Zn,i(t ∧ τn,i,k ∧ τ c

0 )
∣∣∣∣
∞ ≤

max(Cn,i, k) for all t ∈ R+. The condition (5.11) gives that Z̃n,i is integrable.

Thus Z̃n,i < ∞ Pn,0-almost surely. Thus, we get that τn,i,k → ∞ Pn,0-almost

surely.
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Let us end this section with an important and prominent type of covariate.

5.2.11 Example (Time-Independent Covariates). If the covariates Z ′n,i,

i = 1, . . . , n, n ∈ N, are time independent, we can identify them with the

stochastic processes{
Zn,i(t) = Z ′n,i · 1(t > 0) | t ∈ R+

}
, i = 1, . . . , n, n ∈ N.

Furthermore, assume that the condition (5.11) holds. According to Proposi-

tion 5.2.10 these processes are locally bounded. As these processes are left con-

tinuous, using Example 5.2.4.a we see that the conditions of Proposition 5.2.2

hold. Remark 5.2.9.c yields that the premises of Proposition 5.2.8 are satisfied.

Sufficient conditions for the assumptions of Corollary 5.2.3 can be found in

Example 5.2.5.

5.3 Applications

In the previous sections we basically discussed Assumption 4.3.3, except As-

sumption 4.3.3.ii – Assumption 4.3.3.v, and showed how to construct models

that satisfy these premises. Assumption 4.3.3.ii – Assumption 4.3.3.v guarantee

that our statistical model is reasonable, see Remark 3.2.2.b and Remark 4.3.4.

Therefore, we suppose that Assumption 4.3.3 holds and that our observation

are given by the tuples
(
Xn,i,∆n,i, Zn,i

)
, i = 1, . . . , n, where Xn,i and ∆n,i de-

note a censored survival time and the corresponding censoring indicator. Zn,i

is the covariate process associated with (Xn,i,∆n,i), i = 1, . . . , n, n ∈ N. In

particular, it holds that N (i)
n (t) = 1(Xn,i ≤ t) ·∆n,i and Y (i)

n (t) = 1(Xn,i ≥ t),

t ∈ R+, i = 1, . . . , n, n ∈ N. Further information on the modelling can be

found in Chapter 1. In the next example it is shown, once again, how a non-

parametric testing problem can be transformed into parametric testing prob-

lem with help of the Modified Cox Regression Model (MCRM) and sequences

of hardest parametric sub-models (SHPSM). As this procedure is always the

same, the other examples are only discussed on the level of SHPSM.
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5.3.1 Example (One-Sided Tests). Let Z =
{
Z(t) | t ∈ R+

}
be some mul-

tivariate, non-negative covariate process possibly having some impact on a

survival time T . Let

λ(t | Z = z) = lim
h→0

P
(
t ≤ T < t+ h | T ≥ t, Z = z

)
.

denote the conditional hazard rate of T given Z = z, where z =
{
z(t) | t ∈ R+

}
is a fixed path of the covariate process. In the following it is assumed that z

is not identically zero for every component, i.e. z(u)(tu) > 0 for some tu ∈ R+,

u = 1, . . . , p. Moreover, we suppose that λ(t | Z = z) = λ
(
t | Z(t) = z(t)

)
, i.e.

the conditional hazard rate of T at t depends only at the value of the covariate

process at time t.

Now, we intended to test the hypothesis that the covariates have no influence

on the survival times versus the alternative that the larger the values of the

covariates the shorter the survival times. More precisely, we want to test

H1 : λ
(
t | Z(t) = z(t)

)
= λ

(
t | Z(t) = 0

)
for all t ∈ R+

versus

K1 : λ
(
t | Z(t) = z(t)

)
> λ

(
t | Z(t) = z̃(t)

)
for all t with z(t) 	 z̃(t),

where z(t) 	 z̃(t) means that z(u)(t) ≥ z̃(u)(t) for all u and at least one

inequality is strict.

This testing problem can be modelled with the MCRM. Let us assume that

under the probability measure Pβ,α the hazard rate of the survival time is given

by

λβ,α(t | z) = exp
(
βTz } γα(t)

)
α(t)

= exp

(
p∑

u=1

z(u)(t)
ru∑

v=1

β
(u,v)

γ(u,v)
α (t)

)
α(t),

γ
(u̇,ü)
α = γ

(u̇,ü)
0 ◦Hα, u = 1, . . . , r, are positive weight functions and Hα is some

cumulative distribution that might depend on the baseline hazard α and the
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distribution of the censoring times and β
(u,v)

= β(
∑u−1

l=1 rl+v), v = 1, . . . , ru,

u = 1, . . . , p, see Definition 1.3.2 and Remark 1.3.3.b. Clearly, this setting

means that the weight functions γ(u̇,ü)
0 , u = 1, . . . , r, are positive. In other

words, we assume that the predictable dual projection of N (i) under Pβ,α is

given by

A
(i)
β,α(·) =

∫
I(·)

Y (i)(s)λβ,α

(
s | Zi(s)

)
ds.

Under the MCRM our testing problem H1 versus K1 is equivalent to

H̃1 : β = 0 versus K̃1 : β ≥ 0, β 6= 0,

where we use the notation of Definition 1.3.2. Localizing and embedding our

observations
(
Xn,i,∆n,i, Zn,i

)
, i = 1, . . . , n, in a SHPSM the testing problem

transforms into H̃J
1 versus K̃J

1 , where J = {1, . . . , r}, see Section 4.1. Conse-

quently,

ϕn,1 =

{
1,

0,
LJ,1

(
Ûn(∞), V̂n(∞)

)
− cJ,1

(
α, V̂n(∞)

) >
≤

0 ,

is an admissible test for our testing problem, see Corollary 4.3.6.a. The statis-

tic Ûn(∞) and the variance estimator V̂n(∞) are defined in Theorem 3.2.9,

Remark 3.2.10.a and Theorem 3.2.13.

If one wants to test H1 versus

K2 : λ
(
t | Z(t) = z(t)

)
< λ

(
t | Z(t) = z̃(t)

)
for all t with z(t) 	 z̃(t),

one merely has to replace the positive weight functions by negative ones or use

the covariate processes −Zn,i =
{
−Zn,i(t) | t ∈ R+

}
, i = 1, . . . , n instead of

Zn,i, i = 1, . . . , n. The second proposal is more suitable, if one wants to check,

if the condition (4.12) holds.

5.3.2 Example (Two-Sample Problem, Tests of Mayer [53]). Assume

that we observe a one-dimensional covariate, i.e. p = 1 that can only attain

the values 0 and 1, where Zn,i = 1 (0) means that the i-th observation belongs
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to the first or the second sample. Assume that we want to test the hypothesis

that the distribution of the survival times in both samples is equal versus the

alternative that the distribution in the second sample is stochastically larger

than the distribution in the first sample This means larger values of the covari-

ates correspond with shorter survival times. Therefore, this testing problem is

a special case of Example 5.3.1, see also Example 1.2.1 and Example 1.3.1.

Moreover, assume that Zn,i = 1(1 ≤ i ≤ νn) where 1 ≤ νn < n. Thus, the

sample-size of the first (second) sample is given by νn (n − νn). Obviously,

in this case the covariates are non-random. If one computes the test statis-

tic LJ,1(Ûn, V̂n), see Section 4.1 and Section 4.3, we receive the one-sided

projective-type of Mayer [53]. Setting

µ̂n,0,1 =
1
n

νn∑
j=1

Y (j)
n , µ̂n,0,2 =

1
n

n∑
j=νn+1

Y (j)
n ,

Nn,1 =
νn∑
i=1

N (i)
n , Nn,2 =

n∑
i=νn+1

N (i)
n ,

it hold that

Û (u)
n (∞) =

1√
n

(
νn∑
i=1

∫
I(∞)

γ̂(1,u)
n

µ̂n,0,2

µ̂n,0
dN (i)

n −
n∑

i=νn+1

∫
I(∞)

γ̂(1,u)
n

µ̂n,0,1

µ̂n,0
dN (i)

n

)

=
1√
n

∫
I(∞)

γ̂(1,u)
n

µ̂n,0,1 µ̂n,0,2

µ̂n,0
d
(
Nn,1

µ̂n,0,1
− Nn,2

µ̂n,0,2

)
,

u = 1, . . . , r. Consequently, Ûn(τ) is in this special case a r-dimensional vector

of log-rang statistics that are frequently applied for the two-sample problem

in survival analysis. Furthermore, the estimator of the covariance matrix boils

down to

V (u,v)
n (∞) =

1
n

∫
I(∞)

γ̂(1,u)
n γ̂(1,v)

n

µ̂n,0,1 µ̂n,0,2

µ̂n,0

1
µ̂n,0

d
(
Nn,1 +Nn,2

)
,

u, v = 1, . . . , r, a multivariate version of the variance estimator V2 in Gill [22,

Equation (3.3.12)]. Extensive simulation results for the two-sample problem

can be found in Behnen and Neuhaus [8] and Mayer [53, Section 3.6].
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Clearly, Assumption 2.3.9.vii is satisfied and Assumption 2.3.9.iv – Assump-

tion 2.3.9.vi hold, if

sup
s∈[0,t]

∣∣µ̂n,0,1(s)− µ0,1(s)
∣∣ and sup

s∈[0,t]

∣∣µ̂n,0,2(s)− µ0,2(s)
∣∣,

for all t < τ0 and limn→∞
νn

n = ν ∈ (0, 1), where the last condition provides

that J ∗(τ0) 6= 0. Note that these are the classical conditions needed for

treatment of the two-sample problem.

5.3.3 Example (Trend Test for Discrete Stages). In a study, the subjects

are classified by the stage of their disease, when they start participating in the

study.

Assume that we have p + 1 different stages of the disease. Let λj denote the

hazard rate determining the distribution of the survival times at stage j. We

want to test the hypothesis H : λ1 = λ2 = . . . = λp+1 versus the alternative

K : λ1 ≤ λ2 ≤ . . . ≤ λp+1 with at least one strict inequality. In other words,

we want to test that there is no difference in the hazard rate among the stages

versus the higher the stage, the higher the death rate.

Now, we show how this statistical question can be modelled with the MCRM.

Choosing non-negative weight functions, we have merely to define suitable

covariates. Suppose that Zn,i = j, if and only if the i-th subject is classified

stage j. A possible choice of the covariates is given by

Zn,i =
(
Z

(1)
n,i , . . . , Z

(p)
n,i

)
, where Z(u)

n,i = 1
(
u < Zn,i

)
.

As we assume that our observation are embedded in a SHPSM, the dual pre-

dictable projection of N (i)
n and Pn,ξ is given by

A
(i)
n,ξ(·) =

∫
I(·)

λβ(s, Zn,i)Y (i)
n (s) exp

(
1√
n
ηTγ̃(s)

)
α0(s) ds
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where

λβ(s, Zn,i) = exp
(

1√
n

r∑
u=1

β(u) Z
(u̇)
n,i γ

(u̇,ü)(s)
)

= exp
(

1√
n

p∑
u=1

Z
(u)
n,i

ru∑
v=1

β
(u,v)

γ(u,v)(s)
)

= exp
(

1√
n

Zn,i−1∑
u=1

ru∑
v=1

β
(u,v)

γ(u,v)(s)
)
,

β
(u,v)

= β(
∑u−1

l=1 rl+v), v = 1, . . . , ru, u = 1, . . . , p, see Remark 1.3.3.b.

Obviously, our testing problem H versus K transform into H̃J
1 versus K̃J

1 , where

J = {1, . . . , r} – the same testing problem as in Example 5.3.1, where we stated

the corresponding test procedure.

5.3.4 Example (Trend Test for Continuous Stages). Now we want to

extend Example 5.3.3 and allow as covariate not only discrete stages, but also

continuous stages, i.e. Zn,i can take values in whole R and not only 1, 2, . , p.

Of course, one can always discretize Zn,i but to do this one has to have an idea

of which values of Zn,i represent a certain stage of a disease.

The following example might serve as an illustration. Assume that we can

observe the time between the beginning of a disease and the treatment, this

might be the case if you consider organ transplantation. A possible statistical

question would be to test, the longer the time between the beginning of the

disease and the treatment, the shorter the survival time after the treatment.

In this case, Xn,i denotes the time between treatment and death or censoring

of the i-th subject. And let Zn,i be the time before the treatment of the i-th

subject. Clearly, in this example we could replace time before the transplanta-

tion by any real valued quantity that can be measured, when a subject enters

a study, e.g. the number of white blood cells.

Choosing non-negative weight functions, we have to define suitable covariates.
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A possible choice of the covariates would be Zn,i = Zn,i implying that

λβ(s, Zn,i) = exp

(
1√
n
Zn,i

r∑
u=1

β(u)γ(1,u)(s)

)
,

see Example 5.3.3. And again, our testing problem that the stage of a dis-

ease does not effect the survival time versus the higher the stage, the higher

the death rate transforms into H̃J
1 versus K̃J

1 , where J = {1, . . . , r}. However,

a linear influence might be too restrictive. Therefore, let gu : R+ −→ R+,

u = 1, . . . , p, some strictly increasing, known functions that are linearly inde-

pendent. A different choice of the covariate could be

Zn,i =
(
g1(Zn,i), . . . , gp(Zn,i)

)T
.

Consequently, we get that

λβ(s, Zn,i) = exp

(
1√
n

p∑
u=1

gu(Zn,i)
ru∑

v=1

β
(u,v)

γ(u,v)(s)

)

Choosing γ(u,v) = γ(v), and setting r1 = . . . = rp = r̃, this expression simplifies

to

λβ(s, Zn,i) = exp

(
1√
n

r̃∑
v=1

γ(v)(s)
p∑

u=1

β
(u,v)

gu(Zn,i)

)
.

In this model, covariates and weight functions change their roles to some ex-

tend, as we use the gu to approximate some unknown link function g. Again,

our testing problem transforms into H̃J
1 versus K̃J

1 .

So far, we have mainly considered applications with time-independent covari-

ates, now, let us consider an example with time-dependent covariates.

5.3.5 Example (Application of Example 5.3.1). Assume we want to find

out, if disease complications in the recovery phase lead to shorter survival

times. Therefore, let us define the covariates as follows

Z
(u)
n,i (t) =

{
1, t ≥ time at which disease complication u occurs,

0. otherwise,
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u = 1, . . . , p. In this model we presume that the point in time at which the

disease complication occurs is important. With this choice of covariates our

statistical question boils down to test the hypothesis that the covariates have

no influence on the survival times versus the alternative that the larger the

values of the covariates, the shorter the survival times. This problem was

already treated in Example 5.3.1.

5.3.6 Example (Two-sided Tests). Assume we want to find out whether

the observed covariates have any effect on survival times at all. As we consider

a SHPSM, the predictable dual projection of N (i)
n under Pn,ξ is given by

A
(i)
n,ξ(·) =

∫
I(·)

exp
(

1√
n
· βTZn,i } γ(s) +

1√
n
· ηTγ̃(s)

)
Y (i)

n (s)α0(s) ds,

where γ(u,v), v = 1, . . . , ru, u = 1, . . . , p, are any weight functions. Conse-

quently, our testing problem transforms into H̃L0
2 versus K̃L1

2 , where L1 = Rr

and L0 = 0 ∈ Rr, see Section 4.2. Consequently,

ϕn,2 =

{
1,

0,
LL0,L1,2

(
Ûn(∞), V̂n(∞)

)
− cL0,L1,2

(
α, V̂n(∞)

) >
≤

0

is an admissible test for our testing problem, see Corollary 4.3.6.b. The statis-

tic Ûn(∞) and the variance estimator V̂n(∞) are defined in Theorem 3.2.9,

Remark 3.2.10.a and Theorem 3.2.13.

5.3.7 Example (k-Sample Problem). Let λj denote the hazard rate of the

j-th sample and suppose we want to test the hypothesis H : λ1 = . . . = λk

versus the alternative K : λi 6= λj for at least one pair (i, j), i, j ∈ {1, . . . , k}.
Choosing arbitrary weight functions and defining the covariates as

Z
(u)
n,i =

{
1, i-th observation belongs to sample u,

0, otherwise,
, u = 1, . . . , k,

the testing problem H versus K is a special case of Example 5.3.7.
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5.3.8 Example (Competing Risks). If one changes the interpretation of

the covariate in Example 5.3.7 to

Z
(u)
n,i =

{
1, i-th subject dies of cause u,

0, otherwise,
, u = 1, . . . , k,

we receive a model for competing risks.

5.3.9 Example (Two-Sample Problem with Concomitant Covariates).

In Example 5.3.2, we considered the two sample problem and presented a

testing procedure for the hypothesis no differences between the two samples

versus the alternative the distribution of the second sample is stochastically

larger, where Zn,i = 1 (0) means that the i-th observation belongs to the

first (second) sample. In the two sample problem the group membership often

depends on the kind of treatment a subject receives, more precisely the subjects

in the first (second) sample receive the standard (new) treatment.

However, the individuals within one sample might differ in various character-

istics that might have an additional impact on the survival times, but we only

want to know, if the group membership leads to difference in the survival times.

Such a characteristic could be gender for example.

Of course this situation can be modelled with the MCRM. Assume that our

covariate process
{
Zn,i(t) | t ∈ R+

}
, i = 1, . . . , n, are interpreted as follows

Zn,i(t)(1) = 1 (0), if the i-th observation belongs to the first (second) sample.{
Z

(u)
n,i | t ∈ R+

}
, u = 2, . . . , p denote the concomitant covariates that might

have an impact on the survival times. As we consider a SHPSM the predictable

dual projection of N (i)
n under Pn,ξ is given by

A
(i)
n,ξ(·) =

∫
I(·)

λβ(s, Zn,i(s))Y (i)
n (s) exp

(
1√
n
ηTγ̃(s)

)
α0(s) ds,

where

λβ(s, Zn,i(s)) = exp

(
Z

(1)
n,i (s)

r1∑
u=1

β(u) γ(1,u)(s) +
r∑

u=r1+1

Z
(u̇)
n,i (s)β(u) γ(u̇,ü)(s)

)
.
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Furthermore, let us assume that the weight functions γ(1,1), . . . , γ(1,r1) are non-

negative. The remaining weight functions γ(u̇,ü), u = r1 + 1, . . . , r can be

chosen arbitrarily. In this setting our testing problem in question transforms

into the testing problem H̃J
1 versus K̃J

1 , where the set J = {1, . . . , r1}, see

Section 4.1. The corresponding test is given by

ϕn,1 =

{
1,

0,
LJ,1

(
Ûn(∞), V̂n(∞)

)
− cJ,1

(
α, V̂n(∞)

) >
≤

0 ,

see Corollary 4.3.6.a. The statistic Ûn(∞) and the variance estimator V̂n(∞)

are defined in Theorem 3.2.9, Remark 3.2.10.a and Theorem 3.2.13.

The testing problem no influence of the group membership versus there is

an influence of the group membership on the survival times the under this

model transforms into HL0
2 versus KL1

2 , where L1 = Im(T r
{1,...,r}) and L0 =

Im(T r
{r1+1,...,r}). See Definition 4.1.3 for the matrices T r

{1,...,r} and T r
{r1+1,...,r}.

The corresponding testing procedure is given by

ϕn,2 =

{
1,

0,
LL0,L1,2

(
Ûn(∞), V̂n(∞)

)
− cL0,L1,2

(
α, V̂n(∞)

) >
≤

0 ,

cf. Corollary 4.3.6.b. Analogue to the two-sided testing problem, see Exam-

ple 5.3.6, we do not have to restrict ourselves to non-negative weight functions

γ(1,1), . . . , γ(1,r1) in order to get the ”right“ stochastic ordering.

5.3.10 Remark. In Example 5.3.9 we extended Example 5.3.2 by concomitant

covariates. With an analogue proceeding one can also extended the other

Examples discussed in this section so far by concomitant covariates. However,

one should keep in mind that an extension by concomitant covariates also

increases the number of model parameters. In order to obtain reasonable results

in such situations, the number of observations available for the analysis has to

be adequately large.

5.3.11 Example (Model Check). Analogue to the previous examples we

consider again a SHPSM and assume that the predictable dual projection of
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N
(i)
n under Pn,ξ is given by

A
(i)
n,ξ(·) =

∫
I(·)

λβ

(
s, Zn,i(s)

)
Y (i)

n (s) exp
(

1√
n
ηTγ̃(s)

)
α0(s) ds,

where

λβ

(
s, Zn,i(s)

)
=

exp

 p∑
u=1

Z
(u)
n,i (s)

(
r̃u∑

v=1

β
(u,v)

γ(u,v)(s) +
ru∑

v=r̃u+1

β
(u,v)

γ(u,v)(s)

) ,

β
(u,v)

= β(
∑u−1

l=1 rl+v), v = 1, . . . , ru, u = 1, . . . , p, see Definition 1.3.2 and

Remark 1.3.3.b. Moreover, assume that r̃u ≤ ru, u = 1, . . . , r, where at least

one of the inequalities is strict. Considering the testing problem H̃L0
2 versus

K̃L1
2 , where L1 = Rr and L0 = Im

(
T r

J

)
with

J =
p⋃

u=1

{
u−1∑
v=1

rv + 1, . . . . . . ,
u−1∑
v=1

rv + r̃u

}
,

is a possible simple way to check, if the family of probability
{
Pn,ξ | ξ ∈ L0

}
measures is sufficient to model the given observations, or if we have to introduce

more weight functions. The alternative models are specified by the weight

functions γ(u,v), v = r̃u + 1, . . . , ru, u = 1, . . . , p. The corresponding testing

procedure is given by Corollary 4.3.6.b.

5.3.12 Example. Assume that 1 ≤ p̃ < p and that we want to test the

hypothesis that only the components u = 1, . . . , p̃ of the covariate process

have some effect on the survival times versus the alternative that also other

components of the covariate process have some influence on the survival time.

Clearly, this statistical question can be modelled with the MCRM. Consider-

ing a SHPSM the non-parametric testing problem transforms to H̃L0
2 versus

K̃L1
2 , where L1 = Rr and L0 = Im

(
T r

J

)
with J =

{
1, . . .

∑p̃
u=1 ru

}
, see also

Example 5.3.11.
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In this chapter a different method for determining the critical values for the

tests developed in Chapter 4 is presented. The advantage of these critical values

is that they do not only converge to the correct asymptotic critical values, but

in certain cases they are the exact critical values for finite n ∈ N, so that our

tests hold the level even for finite n ∈ N. In Section 6.1 we motivate and

introduce so called permutation tests. Before we can state our main result

– the asymptotic equivalence of permutation tests and the tests developed in

Chapter 4 – in Section 6.2, we have to present some rather technical results.

The whole proceeding is based on ideas that were developed by Neuhaus [59].

A similar approach is also used by Janssen and Mayer [37] who investigate

conditional studentized permutation tests. The assumptions needed in the

proof of our main result are discussed and verified for important examples in

Section 6.3 in detail.

Unfortunately, this method only applies to external covariates, see Section 1.1,

as our method requires that we can observe the covariates determining the

survival time of a subject even after the death of that subject. Obviously this

condition is satisfied, if we consider time-independent covariates, which are a

major example for external covariates.

6.1 Introduction

In the following it is supposed that Assumption 4.3.3 holds with τ = τ c
0 . Con-

ditions implying these premises were discussed in Chapter 5. So without loss
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of generality, we can assume that we are in the situation of Discussion 5.1.11,

which means in particular that Assumption 5.1.1 is valid.

Remember that the censored survival time Xn,i and the censoring status ∆n,i

of the i-th observation are given by

Xn,i = sup
{
t | Y (i)

n (t) = 1
}
, ∆n,i = N (i)

n (Xn,i), i = 1, . . . , n, n ∈ N.

The ranks of the censored survival times Xn,i, i = 1, . . . , n are denoted by

Rn =
(
Rn,1, . . . , Rn,n

)
, where Rn,i =

∑n
j=1 1(Xn,j ≤ Xn,i), i = 1, . . . , n. The

inverse ranks Dn =
(
Dn,1, . . . , Dn,n

)
are defined by the identities Dn,Rn,i =

Rn,Dn,i = i, i = 1, . . . , n. The statistic

Xn,↑ =
(
Xn:1, . . . , Xn:n

)
=
(
Xn,Dn,1 , . . . , Xn,Dn,n

)
is the order statistic of the observations. The statistic

∆n,↑ =
(
∆n:1, . . . ,∆n:n

)
=
(
∆n,Dn,1 , . . . ,∆n,Dn,n

)
is called the concommitant order statistic of the censoring indicators. Finally,

the reduced covariate processes are given by Zn,↑ =
(
Zn,↑,1, . . . , Zn,↑,n

)
, where

Zn,↑,i =


Z

(1,1)
n,↑,i . . . Z

(1,n)
n,↑,i

...
. . .

...

Z
(p,1)
n,↑,i . . . Z

(p,n)
n,↑,i

 =


Z

(1)
n,i (Xn:1) . . . Z

(1)
n,i (Xn:n)

...
. . .

...

Z
(p)
n,i (Xn:1) . . . Z

(p)
n,i (Xn:n)

 ,

indicate why we only consider external covariates in this chapter.

Additionally, let us suppose that γ̂(u̇,ü)
n (·) = γ̂

(u̇,ü)
n (· | Xn,↑,∆n,↑), i.e. the es-

timators for the weight functions only depend on the order statistics. For

example, estimators based on the Kaplan-Meyer estimator or on µ̂n,0 satisfy

this condition, see Example 5.2.7 for details. Finally, set γ̂(u̇,ü)
n:i = γ̂

(u̇,ü)
n (Xn:i),

u = 1, . . . , r, i = 1, . . . , n.

One readily checks that

Û (u)
n (∞) =

1√
n

n∑
l=1

∆n:lγ̂
(u̇,ü)
n:l

(
Z

(u̇,l)
n,↑,Dn,l

−
∑n

j=l Z
(u̇,l)
n,↑,Dn,j

n+ 1− l

)
= Û

(u)
n,?(Dn,Wn,↑),
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u = 1, . . . , r, and that

V̂ (u,v)
n (∞) =

1
n

n∑
l=1

∆n:l γ̂
(u̇,ü)
n:l γ̂

(v̇,v̈)
n:l

×

(∑n
j=l Z

(u̇,l)
n,↑,Dn,j

Z
(v̇,l)
n,↑,Dn,j

n+ 1− l
−
∑n

j=l Z
(u̇,l)
n,↑,Dn,j

∑n
k=l Z

(v̇,l)
n,↑,Dn,k

(n+ 1− l)2

)
= V̂

(u,v)
n,? (Dn,Wn,↑),

u, v = 1, . . . , r, where Wn,↑ = (Xn,↑,∆n,↑, Zn,↑). Moreover, we note that

the covariate processes
{
Zn,i(t) | t ∈ R+

}
, i = 1, . . . , n, and the multivariate

counting process (Nn, Ñn) are stochastically independent under Pn,0. Thus,{
Zn,i(t) | t ∈ R+

}
, i = 1, . . . , n, and (Xn,i,∆n,i), i = 1, . . . , n, are stochasti-

cally independent under Pn,0. If additionally all censoring times have the same

distribution, i.e.

α̃n,1 = . . . = α̃n,n, (6.1)

see Assumption 5.1.1.vii, Remark 5.1.4, and Assumption 2.2.1.ix, it holds that

(Xn,i,∆n,i), i = 1, . . . , n, are stochastically independent and identically dis-

tributed (i.i.d.). In particular, the ranks of our observations Rn and the in-

verse ranks Dn are uniformly distributed on Per(1, . . . , n) under Pn,0, where

Per(1, . . . , n) denotes the set of all permutation of the numbers 1, . . . , n. More

precisely, it holds that

Pn,0

(
Rn = r

)
= Pn,0

(
Dn = r

)
=

1
n!
, r ∈ Per(1, . . . , n).

Furthermore, one can easily show that Dn and
(
Xn,↑,∆n,↑, Zn,↑

)
are stochas-

tically independent under Pn,0, if condition (6.1) is satisfied. In this situation

assume that the order statistics and the reduced covariate processes are given

and fixed, i.e. Xn,↑ = xn,↑, ∆n,↑ = δn,↑ and Zn,↑ = zn,↑. Then the distribution

of the statistics, cf. Section 4.3,

T ?,1,α
J,1 (Dn, wn,↑) =

LJ,1

(
Ûn,?(Dn, wn,↑), V̂n,?(Dn, wn,↑)

)
− cJ,1

(
α, V̂n,?(Dn, wn,↑)

)
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and

T ?,2,α
L0,L1

(Dn, wn,↑) =

LL0,L1,2

(
Ûn,?(Dn, wn,↑), V̂n,?(Dn, wn,↑)

)
− cL0,L1,2

(
α, V̂n,?(Dn, wn,↑)

)
where we set wn,↑ =

(
xn,↑, δn,↑, zn,↑

)
, is principally known and can be easily

approximated by simulations. This observation leads to the introduction of

conditional permutation tests.

Let F ?,1,α
n,J,wn,↑

and F ?,2,α
n,L0,L1,wn,↑

denote the cumulative distribution functions

of the statistic T ?,1,α
J,1 (Dn, wn,↑) and T ?,2,α

L0,L1
(Dn, wn,↑), in the case that Dn is

uniformly distributed on Per(1, . . . , n). Obviously, for every α ∈ (0, 1) there

exists real numbers

r?,1
n,J(α,wn,↑), r

?,2
n,L0,L1

(α,wn,↑) and k?,1
n,J(α,wn,↑), k

?,2
n,L0,L1

(α,wn,↑),

such that ∫
[0,∞)

φ?,1
n,J(s, wn,↑) dF ?,1,α

n,J,wn,↑
(s) = α

and ∫
[0,∞)

φ?,2
nL0,L1

(s, wn,↑) dF ?,2,α
n,L0,L1,wn,↑

(s) = α,

where

φ?,1
n,J(s, wn,↑) =


1,

r?,1
n,J(α,wn,↑),

0,

s− k?,1
n,J(α,wn,↑)

>

=

<

0

and

φ?,2
n,L0,L1

(s, wn,↑) =


1,

r?,2
n,L0,L1

(α,wn,↑),

0,

s− k?,2
n,L0,L1

(α,wn,↑)
>

=

<

0 .

The sequences of tests

ϕ?
n,1 = φ?,1

n,J

(
T ?,1

J,1,α(Dn,Wn,↑),Wn,↑
)
, n ∈ N,
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and

ϕ?
n,2 = φ?,2

n,L0,L1

(
T ?,2,α

L0,L1,2(Dn,Wn,↑),Wn,↑
)
, n ∈ N,

are called (conditional) permutation tests of level α for the testing problems

H̃J
1 versus K̃J

1 and H̃L0
2 versus K̃L1

2 , respectively, cf. Hájek and Šidák [26, p.

42]. Summarizing the previous discussion gives the following result.

6.1.1 Proposition. In the situation of Discussion 5.1.11 assume that the

condition (6.1) is satisfied and that γ̂(u̇,ü)
n , u = 1, . . . , r, only depend on the

order statistics Xn,↑ and ∆n,↑, then it holds that∫
ϕ?

n,1 dPn,0 =
∫
ϕ?

n,2 dPn,0 = α, n ∈ N.

Proof. Because of condition (6.1), it holds that (Xn,i,∆n,i), i = 1, . . . , n,

are i.i.d. implying that Dn is uniformly distributed on Per(1, . . . , n) under

Pn,0. As Dn and
(
Xn,↑,∆n,↑, Zn,↑

)
are stochastically independent under Pn,0,

conditioning gives that

En,0(ϕ?
n,1) =

∫
En,0

[
ϕ?

n,1 | (Xn,↑,∆n,↑, Zn,↑) = wn,↑
]
dP (Xn,↑,∆n,↑,Zn,↑)

n,0 (wn,↑)

=
∫

En,0

(
φ?,1

n,J

(
T ?,1,α

J,1 (Dn, wn,↑), wn,↑
))

dP (Xn,↑,∆n,↑,Zn,↑)
n,0 (wn,↑)

= α,

where we use that En,0

(
φ?,1

n,J

(
T ?,1,α

J,1 (Dn, wn,↑), wn,↑
))

= α by construction.

The second assertion is shown completely analogously.

6.2 Asymptotic Equivalence

In this section we show that the sequences of tests ϕ?
n,j , n ∈ N, and ϕn,j , n ∈ N,

are asymptotically equivalent, j = 1, 2, which implies that the sequences of

tests ϕ?
n,j , n ∈ N, j = 1, 2, keep asymptotically the level on the hypothesis,

are asymptotically unbiased and asymptotically admissible, cf. Corollary 4.3.6.

However, before we can proof such a result, we need some more assumptions

and notation.

179



6 Generalized Permutation Tests

6.2.1 Assumption. Suppose that Assumption 4.3.3 holds and set

Ω =
∞�

n=1

Ωn, F =
∞⊗

n=1

Fn,

{
Pξ =

∞⊗
n=1

Pn,ξ

∣∣∣ ξ ∈ Rr+q

}
.

Moreover, let
(
Ω′

n,F
′
n, P

′
n

)
, n ∈ N, be a sequence of probability spaces, where

F′n is P ′
n-complete. Assume that D′

n =
(
D′

n,1, . . . , D
′
n,n

)
: Ω′

n −→ Per(1, . . . , n)

are uniformly distributed random permutations, i.e.

P ′
n

(
D′

n = d
)

=
1
n!
, d ∈ Per(1, . . . , n).

Computing the asymptotic distribution of

T ?,1,α
J,1

(
D′

kn
,Wkn,↑(ωkn

)
)

and T ?,2,α
L0,L1

(D′
kn
,Wkn,↑(ωkn

)),

where Wkn,↑(ωkn
) =

(
Xnk,↑(ωkn

),∆nk,↑(ωkn
), Znk,↑(ωkn

)
)
, for sub-sequences

of natural numbers kn, n ∈ N, and fixed ω = (ω1, ω2, . . . ,) ∈ Ω is a key step

in the proof of the asymptotic equivalence of ϕ?
n,j , n ∈ N, and ϕn,j , n ∈ N,

j = 1, 2. As these statistics depend on the statistic Ûkn,?

(
D′

kn
,Wkn,↑(ωkn

)
)

and the variance estimator V̂n,?

(
D′

kn
,Wkn,↑(ωkn

)
)
, we mainly have to prove

a central limit theorem for Ûkn,?

(
D′

kn
,Wkn,↑(ωkn)

)
, n ∈ N, for fixed ω ∈ Ω.

For deriving such a result it is intended to apply Rebolledo’s Martingale Limit

Theorem, see Theorem 2.1.2. Unfortunately, we have to introduce some more

notation.

6.2.2 Definition. Suppose that Assumption 6.2.1 holds. For fixed ω =

(ω1, ω2, . . .) ∈ Ω, we define

ζn,0 = ζn,0(ω) = 0 ∈ Rp×n and ζn,i = ζn,i(ω) = Zn,↑,D′
n,i

(ωn), i = 1, . . . , n,

and

δ̄n,0 = δ̄n,0(ω) = 0 ∈ R and δ̄n,i = δ̄n,i(δ) = ∆n:i(ωn), i = 1, . . . , n,

as well as

γ̄
(u̇,ü)
n,0 = γ̄

(u̇,ü)
n,0 (ω) = 0 ∈ R and γ̄

(u̇,ü)
n,i = γ̄

(u̇,ü)
n,i (ω) = γ̂

(u̇,ü)
n:i (ωn), i = 1, . . . , n,
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6.2 Asymptotic Equivalence

u = 1, . . . , r, n ∈ N. Moreover, we set

̂̄µ(u)
n,1(s) = ̂̄µ(u)

n,1(s, ω) =
1
n

n∑
i=bnsc

ζ
(u,bnsc)
n,i ,

̂̄µ(u,v)
n,2 (s) = ̂̄µ(u,v)

n,2 (s, ω) =
1
n

n∑
i=bnsc

ζ
(u,bnsc)
n,i ζ

(v,bnsc)
n,i ,

s ∈ [0, 1], u, v = 1, . . . , p, n ∈ N, and

hn(s) = hn(s, ω) = δ̄n,bnsc, s ∈ [0, 1], n ∈ N.

Finally, we define the stochastic processes
{̂̄Un(t) | t ∈ [0, 1]

}
, where ̂̄Un(t) =(̂̄U (1)

n (t), . . . , ̂̄U (r)

n (t)
)T

and

̂̄U (u)

n (t) = ̂̄U (u)

n (t, ω) =
1√
n

bntc∑
l=1

δ̄n,l γ̄
(u̇,ü)
n,l

(
ζ
(u̇,l)
n,l −

∑n
j=l ζ

(u̇,l)
n,j

n+ 1− l

)
,

as well as
{̂̄V n(t) | t ∈ [0, 1]

}
, where ̂̄V n(t) =

(̂̄V (u,v)

n (t)
∣∣ u, v = 1, . . . , r

)
and

̂̄V (u,v)

n (t) = ̂̄V (u,v)

n (t, ω)

=
∫

[0,t]

γ̄
(u̇,ü)
n,bnscγ̄

(v̇,v̈)
n,bnsc

( ̂̄µ(u̇,v̇)
n,2 (s)

1− bnsc
n + 1

n

−
̂̄µ(u̇)

n,1(s) ̂̄µ(v̇)
n,1(s)

(1− bnsc
n + 1

n )2

)
hn(s) ds,

n ∈ N.

Obviously, it holds that̂̄Un(1) = Ûkn,?

(
D′

kn
,Wkn,↑(ωkn)

)
and V̂n,?

(
D′

kn
,Wkn,↑(ωkn)

)
= ̂̄V n(1). (6.2)

But before we can proceed in computing the asymptotic distribution of ̂̄Un(1),

we have to compute some quantities which are collected in the following results.

6.2.3 Lemma. Under Assumption 6.2.1 let ω = (ω1, ω2, . . .) ∈ Ω be fixed.

Using the notation provided in Definition 6.2.2, set

Ω̄n = Ω̄n(ω) =
{
Zn,↑,i(ωn) | i = 1, . . . , n

}
=
{
z̄n,1, . . . , z̄n,mn

}
,

where 1 ≤ mn ≤ n, and νn,i =
∑n

j=1 1
(
z̄n,i = Zn,↑,j(ωn)

)
, i = 1, . . . ,mn.
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6 Generalized Permutation Tests

a) For all x̄ ∈ Ω̄n it holds that

P ′
n

{
ζn,i = x̄

}
=

1
n

∑mn

j=1
νn,j 1

(
z̄n,j = x̄

)
, i = 1, . . . , n.

b) For all x̄1, . . . , x̄n ∈ Ω̄n it holds that

P ′
n

{
(ζn,1, . . . , ζn,n) = (x̄1, . . . , x̄n)

}
=

1
n!

mn∏
i=1

(
νn,i! · 1

(∑n

j=1
1
(
z̄n,i = x̄j

)
= νn,i

))
.

c) For all x̄1, . . . , x̄i ∈ Ω̄n it holds that

P ′
n

{
ζn,i = x̄i | (ζn,1, . . . , ζn,i−1) = (x̄1, . . . , x̄i−1)

}
=

1
n+ 1− i

∑mn

j=1
1
(
z̄n,j = x̄i

)(
νn,j −

∑i−1

k=1
1
(
z̄n,j = x̄k

))
,

if the left hand side is defined.

Proof. Straightforward and elementary calculations give the results.

6.2.4 Proposition. Under Assumption 6.2.1 let ω = (ω1, ω2, . . .) ∈ Ω be fixed.

Using the notation provided in Definition 6.2.2, let Z′n denote the σ-algebra that

is generated by all subsets of P ′
n-negligible sets and set F′n =

{
F′n,t | t ∈ [0, 1]

}
,

where

F′n,t = Z′n ∨ σ
(
ζn,0, ζn,1, . . . , ζn,bntc

)
, t ∈ [0, 1].

Then, the process cT ˜̄Un =
{
cT ̂̄Un(t) | t ∈ [0, 1]

}
is a F′n-martingale, c ∈ Rr.

Proof. Basically, the process
{̂̄Un(t) | t ∈ [0, 1]

}
is a process in discrete time.

Therefore, it suffices to show that

E′n
[
cT ̂̄Un(i/n) | F′n,(i−1)/n

]
= cT ̂̄Un

(
(i− 1)/n

)
P ′

n-almost surely
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6.2 Asymptotic Equivalence

for i = 1, . . . , n. As F′n,0 = Zn, it holds that either P ′
n(F ) = 0 or P ′

n(F ) = 1 for

F ∈ F′n,0. Hence, we have P ′
n-almost surely the following chain of equalities

E′n
[
cT ̂̄Un(1/n) | F′n,0

]
= E′n

(
cT ̂̄Un(1/n)

)
=
δ̄n,1√
n

r∑
u=1

c(u)γ̄
(u̇,ü)
n,1 E′n

(
ζ
(u̇,1)
n,1 − 1

n

n∑
j=1

ζ
(u̇,1)
n,j

)

=
δ̄n,1√
n

r∑
u=1

γ̄
(u̇,ü)
n,1

(
E′n
(
ζ
(u̇,1)
n,1

)
− 1
n

n∑
j=1

E′n
(
ζ
(u̇,1)
n,j

))

=
δ̄n,1√
n

r∑
u=1

c(u)γ̄
(u̇,ü)
n,1

(
E′n
(
ζ
(u̇,1)
n,1

)
− E′n

(
ζ
(u̇,1)
n,1

))
= 0 = cT ̂̄Un(0),

where we use Lemma 6.2.3.a. As ζ̄n =
∑n

l=1 ζn,l =
∑n

l=1 Zn,↑,l(ωn) is non-

random, we get that
∑n

j=l ζ
(u,l)
n,j is F′n,(l−1)/n–Bp×n-measurable for all l =

1, . . . , n and u = 1, . . . , p. Consequently, it holds that

E′n
[
cT ̂̄Un(l/n) | F′n,(l−1)/n

]
= cT ̂̄Un

( l − 1
n

)
+
δ̄n,l√
n

r∑
u=1

c(u)γ̄
(u̇,ü)
n,l

(
E′n
[
ζ
(u̇,l)
n,l | F′n,(l−1)/n

]
−
∑n

j=l ζ
(u̇,l)
n,j

n− l + 1

)

P ′
n-almost surely, l = 2, . . . , n. Using Lemma 6.2.3.c we receive that

E′n
[
ζ
(u̇,l)
n,l | (ζn,1, . . . , ζn,l−1) = (x̄n,1, . . . , x̄n,l−1)

]
=

mn∑
j=1

z̄
(u̇,l)
n,j

(
νn,j −

∑l−1
k=1 1(z̄n,j = x̄n,k)

)
n− l + 1

P ′
n-almost surely implying that

E′n
[
ζ
(u̇,l)
n,l | F′n,(l−1)/n

]
=

mn∑
j=1

z̄
(u̇,l)
n,j

(
νn,j −

∑l−1
k=1 1(z̄n,j = ζn,k)

)
n− l + 1

=

∑n
j=l ζ

(u̇,l)
n,j

n− l + 1

P ′
n-almost surely, u = 1, . . . , r.
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6 Generalized Permutation Tests

Before we can apply the Martingale Limit Theorem 2.1.2, we have to calculate

some quantities.

6.2.5 Lemma. Under Assumption 6.2.1 let ω = (ω1, ω2, . . .) ∈ Ω be fixed.

Using the notation provided in Definition 6.2.2, let ε ≥ 0 and consider the

processes

Jε[cT ̂̄Un] =
{
Jε[cT ̂̄Un](t) | t ∈ [0, 1]

}
, Jε[cT ̂̄Un](t) =

bntc∑
l=1

Wn,l 1
(
|Wn,l| ≥ ε

)
,

where

Wn,l =
δ̄n,l√
n

r∑
u=1

c(u) γ̄
(u̇,ü)
n,l

(
ζ
(u̇,l)
n,l −

∑n
j=l ζ

(u̇,l)
n,j

n− l + 1

)
, l = 1, . . . , n,

and

Aε
n[cT ̂̄Un] =

{
Aε

n[cT ̂̄Un](t) | t ∈ [0, 1]
}
, Aε

n[cT ̂̄Un](t) =
bntc∑
l=1

Aε
n,l

where

Aε
n,l =

δ̄n,l√
n

mn∑
j=1

(
r∑

u=1

c(u)γ̄
(u̇,ü)
n,l

(
z̄
(u̇,l)
n,j −

∑n
k=l ζ

(u̇,l)
n,k

n− l + 1

))

× 1

(
δ̄n,l√
n

∣∣∣∣ r∑
u=1

c(u)γ̄
(u̇,ü)
n,l

(
z̄
(u̇,l)
n,j −

∑n
k=l ζ

(u̇,l)
n,k

n− l + 1

)∣∣∣∣ ≥ ε

)

×
νn,j −

∑l−1
k=1 1(z̄n,j = ζn,k)
n− l + 1

,

l = 1, . . . , n. Then the following assertions hold true.

a) The processes

Mε
n,1 =

{
Mε

n,1(t) | t ∈ [0, 1]
}
, Mε

n,1(t) = Jε
n[cT ̂̄Un](t)−Aε

n[cT ̂̄Un](t),

and

Mε
n,2 =

{
Mε

n,2(t) | t ∈ [0, 1]
}
, Mε

n,2(t) = cT ̂̄Un(t)−Mε
n,1(t),

are F′n-martingales, where F′n is defined in Proposition 6.2.4. Moreover, the

process Aε
n[cT ̂̄Un] is predictable with respect to F′n.
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b) Let
〈
Mε

n,1

〉
denote the predictable quadratic variation of Mε

n,1, which is

given by 〈
Mε

n,1

〉
(t) =

bntc∑
l=1

(
Kε

n,l −
(
Aε

n,l

)2)
, t ∈ [0, 1],

where

Kε
n,l =

δ̄n,l

n

mn∑
j=1

(
r∑

u=1

c(u) γ̄
(u̇,ü)
n,l

(
z̄
(u̇,l)
n,j −

∑n
k=l ζ

(u̇,l)
n,k

n− l + 1

))2

× 1

(
δ̄n,l√
n

∣∣∣∣ r∑
u=1

c(u)γ̄
(u̇,ü)
n,l

(
z̄
(u,l)
n,j −

∑n
k=l ζ

(u̇,l)
n,k

n− l + 1

)∣∣∣∣ ≥ ε

)

×
νn,j −

∑l−1
k=1 1(z̄n,j = ζn,k)
n− l + 1

,

l = 1, . . . , n.

c) Let
〈
Mε

n,1,M
ε
n,2

〉
denote the predictable covariation of Mε

n,1 ·Mε
n,2 which

satisfies P ′
n-almost surely the equality

〈
Mε

n,1,M
ε
n,2

〉
(t) =

bntc∑
l=1

(
Aε

n,l

)2
, t ∈ [0, 1].

d) The predictable quadratic variation of the process
{
cT ̂̄Un(t) | 0 ≤ t ≤ 1

}
is

given by 〈
cT ̂̄Un

〉
(t) =

bntc∑
l=1

K0
n,l, t ∈ [0, 1].

Proof. Observe that ζ̄n =
∑n

l=0 ζn,l =
∑n

l=1 Zn,↑,l(ωn) is non-random and

that all considered processes are basically processes in discrete time. As F′n,0 =

Z′n, it holds that either P ′
n(F ) = 0 or P ′

n(F ) = 1 for F ∈ F′n,0. Therefore, we

have P ′
n-almost surely the following chain of equalities

E′n
[
Wn,1 1

(
|Wn,1| ≥ ε

)
| Fn,0

]
= E′n

(
Wn,1 1

(
|Wn,1| ≥ ε

))
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and

E′n
(
Wn,1 1(|Wn,1| ≥ ε)

)
=
δ̄n,1√
n

mn∑
j=1

(
r∑

u=1

c(u) γ̄
(u̇,ü)
n,1

(
z̄
(u̇,1)
n,j − ζ̄

(u̇,1)
n

n

))

× 1

(
δ̄n,1√
n

∣∣∣∣ r∑
u=1

c(u)γ̄
(u̇,ü)
n,1

(
z̄
(u̇,1)
n,j − ζ̄

(u̇,1)
n

n

)∣∣∣∣ ≥ ε

)
νn,j

n

where we use Lemma 6.2.3.a. Applying Lemma 6.2.3.c gives that

E′n
[
Wn,l 1(|Wn,l| ≥ ε) | (ζn,1, . . . , ζn,l−1) = (x̄n,1, . . . , x̄n,l−1)

]
=
δ̄n,l√
n

mn∑
j=1

(
r∑

u=1

c(u)γ̄
(u̇,ü)
n,l

(
z̄
(u̇,l)
n,j −

ζ̄
(u̇,l)
n −

∑l−1
k=1 x̄

(u̇,l)
n,k

n− l + 1

))

× 1

(
δ̄n,l√
n

∣∣∣∣ r∑
u=1

c(u)γ̄
(u̇,ü)
n,l

(
z̄
(u̇,l)
n,j −

ζ̄
(u̇,l)
n −

∑l−1
k=1 x̄

(u̇,l)
n,k

n− l + 1

)∣∣∣∣ ≥ ε

)

×
νn,j −

∑l−1
k=1 1(z̄n,j = x̄n,k)
n− l + 1

,

l = 2, . . . , n, implying that

E′n
[
Wn,l 1(|Wn,l| ≥ ε) | F′n,(l−1)/n

]
= Aε

n,l P
′
n-almost surely, l = 1, . . . , n.

This is the first part of assertion a). Proposition 6.2.4 gives the second part of

the assertion. The predictability of Aε
n[cT ̂̄Un] is straightforward.

Proof of b). It holds that
(
Mε

n,1(t)
)2 = 0, t ∈ [0, 1/n), and

(
Mε

n,1(t)
)2 =

(
Mε

n,1(t− 1/n)
)2 +

(
Wn,bntc 1

(
|Wn,bntc| ≥ ε

)
−Aε

n,bntc

)2

+ 2Mε
n,1(t− 1/n)

(
Wn,bntc 1

(
|Wn,bntc| ≥ ε

)
−Aε

n,bntc

)
,

t ∈ [1/n, 1]. We also have that

E′n
[
Mε

n,1(t− 1/n)
(
Wn,bntc 1

(
|Wn,bntc| ≥ ε

)
−Aε

n,bntc

) ∣∣∣ F′n,(bntc−1)/n

]
= 0

P ′
n-almost surely, where we use that Mε

n,1(t− 1/n) is almost surely bounded

and F′n,(bntc−1)/n–B measurable. Furthermore, using the F′n,(bntc−1)/n–B mea-
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surability of Aε
n,bntc, it holds that

E′n
[(
Wn,bntc 1

(
|Wn,bntc| ≥ ε

)
−Aε

n,bntc

)2

,
∣∣∣ F′n,(bntc−1)/n

]
=

E′n
[(
Wn,bntc

)2

1
(
|Wn,bntc| ≥ ε

) ∣∣∣ F′n,(bntc−1)/n

]
−
(
Aε

n,bntc

)2

,

Analog to the previous considerations we get that

E′n
[
W 2

n,1,1
(
|Wn,1| ≥ ε

)
| F′n,0

]
= E′n

(
W 2

n,1,1
(
|Wn,1 ≥ ε|

))
and

E′n
(
W 2

n,1,1
(
|Wn,1 ≥ ε|

))
=
δ̄n,1

n

mn∑
j=1

(
r∑

u=1

c(u)γ̄
(u̇,ü)
n,1

(
z̄
(u̇,1)
n,j − ζ̄

(u̇,i)
n

n

))2

× 1

(
δ̄n,1√
n

∣∣∣∣ r∑
u=1

c(u)γ̄
(u̇,ü)
n,1

(
z̄
(u̇,1)
n,j − ζ̄

(u̇,1)
n

n

)∣∣∣∣ ≥ ε

)
νn,j

n

as well as

E′n
[
W 2

n,l 1(|Wn,l| ≥ ε) | (ζn,1, . . . , ζn,l−1) = (x̄n,1, . . . , x̄n,l−1)
]

=
δ̄n,l

n

mn∑
j=1

(
r∑

u=1

c(u)γ̄
(u̇,ü)
n,l

(
z̄
(u̇,l)
n,j −

ζ̄
(u̇,l)
n −

∑l−1
k=1 x̄

(u̇,l)
n,k

n− l + 1

))2

× 1

(
δ̄n,l√
n

∣∣∣∣ r∑
u=1

c(u)γ̄
(u̇,ü)
n,l

(
z̄
(u̇,l)
n,j −

ζ̄
(u̇,l)
n −

∑l−1
k=1 x̄

(u̇,l)
n,k

n− l + 1

)∣∣∣∣ ≥ ε

)

×
νn,j −

∑l−1
k=1 1(z̄n,j = x̄n,k)
n− l + 1

,

l = 2, . . . , n. On the whole, we showed that

E′n
[
W 2

n,l 1
(
|Wn,l| ≥ ε

)
| F′n,(l−1)/n

]
= Kε

n,l P
′
n-almost surely.

Proof of c). Note that

Mε
n,2(t) =

bntc∑
l=1

(
Wn,l1

(
|Wn,l| < ε

)
+Aε

n,l

)
.
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Moreover, it holds that Mε
n,1M

ε
n,2(t) = 0, t ∈ [0, 1/n), and

E′n
[
Mε

n,1(t)M
ε
n,2(t) | F′n,(bntc−1)/n

]
= Mε

n,1(t− 1/n)Mε
n,2(t− 1/n)

+Mε
n,1(t− 1/n) E′n

[
Wn,bntc 1

(
|Wn,bntc| < ε

)
+Aε

n,bntc

∣∣∣ F′n,(bntc−1)/n

]
︸ ︷︷ ︸

= 0 P ′
n-almost surely

+Mε
n,2(t− 1/n) E′n

[
Wn,bntc 1

(
|Wn,bntc| ≥ ε

)
−Aε

n,bntc

∣∣∣ F′n,(bntc−1)/n

]
︸ ︷︷ ︸

= 0 P ′
n-almost surely

+ E′n
[
Cn(t) | F′n,(bntc−1)/n

]
t ∈ [1/n, 1], where Cn(t) is given by(

Wn,bntc 1
(
|Wn,bntc| < ε

)
+Aε

n,bntc

)(
Wn,bntc 1

(
|Wn,bntc| ≥ ε

)
−Aε

n,bntc

)
and a) is applied. Using the previous considerations and observing that

W 2
n,bntc 1

(
|Wn,bntc| < ε

)
1
(
|Wn,bntc| ≥ ε

)
= 0 P ′

n-almost surely,

one easily sees that E′n
[
Cn(t) | F′n,(bntc−1)/n

]
=
(
Aε

n,bntc
)2
P ′

n-almost surely.

The assertion of d) is an immediate consequence of the fact that cT ̂̄Un = M0
n,1

and that A0
n,l = 0, l = 1, . . . , n, as an easy calculation shows.

Now, we state the assumptions needed to prove the convergence in distribution

of the statistic ̂̄U(t) for fixed ω ∈ Ω

6.2.6 Assumption. i) The functions µ̄(u)
1 : [0, 1] −→ R, u = 1, . . . , p, and

µ̄
(u,v)
2 : [0, 1] −→ R, u, v = 1, . . . , p, are measurable functions that are

bounded on every interval [0, t].

ii) sups∈[0,t]

∣∣̂̄µ(u)
kn,1(s, ω)− (1− s) µ̄(u)

1 (s)
∣∣ −→P ′

kn
0, as n → ∞, u = 1, . . . , p,

for all t ∈ [0, 1).

iii) sups∈[0,t]

∣∣̂̄µ(u,v)
kn,2 (s, ω)− (1− s) µ̄(u,v)

2 (s)
∣∣ −→P ′

kn
0, as n→∞, u = 1, . . . , p,

v = 1, . . . , p, for all t ∈ [0, 1).

iv) limn→∞
∫
[0,t]

(
γ̂

(u̇,ü)
kn:bknsc(ωkn)− γ̄(u̇,ü)(s)

)2 ds = 0, where γ̄(u̇,ü) is some

square integrable function, u = 1, . . . , r, for all t ∈ [0, 1).
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v)
∫
[0,t]

hkn
(s, ω) ds −→ H̄(t), as n → ∞, for all t ∈ [0, 1], where H̄ is a

monotone non-decreasing function with H̄(0) = 0.

vi) limn→∞
1√
kn

max1≤i≤kn
max

{
|Z(u,v)

kn,↑,i|
∣∣ u = 1, . . . , p, v = 1, . . . , kn

}
= 0.

Later we choose the functions µ̄(u)
1 , µ̄(u,v)

2 , u, v = 1, . . . , p, as well as γ̄(u̇,ü),

u = 1, . . . , r, and H̄(t) independently of ω ∈ Ω. Moreover, we need that the

measure defined by H̄ has a Lebesgue density.

6.2.7 Lemma. Under Assumption 6.2.1, let ω = (ω1, ω2, . . .) ∈ Ω be fixed and

use the notation provided in Definition 6.2.2. Suppose that Assumption 6.2.6.v

holds for fixed ω ∈ Ω, where kn, n ∈ N, is some sub-sequence of natural num-

bers. Then the function H̄ : [0, 1] → R defines a Lebesgue-continuous measure,

i.e.
∫
[0,t]

1 dH̄(s) =
∫
[0,t]

h(s) ds. Additionally, one can choose a version of the

density h, such that 0 ≤ h ≤ 1.

Proof. By construction it holds that

∣∣∣∫[0,t]
δ̄kn,bknsc ds−

∫
[0,u]

δ̄kn,bknsc ds

t− u

∣∣∣︸ ︷︷ ︸
≤1

−→
∣∣∣H̄(t)− H̄(u)

t− u

∣∣∣︸ ︷︷ ︸
≤1

, as n→∞,

for all t, u ∈ [0, 1], which implies that the function H̄ is Lipschitz-continuous,

i.e.
∣∣H̄(t)− H̄(u)

∣∣ ≤ ∣∣t− u
∣∣. Consequently, for ε > 0 and all (ai, bi] ⊂ [0, 1],

i = 1, . . . , k, such that
∑k

i=1(bi − ai) ≤ ε we have
∑k

i=1

∣∣H̄(bi)− H̄(ai)
∣∣ ≤

ε. This means that the function H̄ is absolute continuous on the interval

[0, 1]. Witting and Müller-Funk [72, Theorem B1.21] yield the existence of a

Lebesgue-density h. Because 0 ≤ h(s) = limt→s
H̄(s)−H̄(t)

s−t ≤ 1 for almost all

s ∈ [0, 1] the last assertion holds true.

After these preparatory efforts, we can state a central limit theorem for the

sequence of statistics ̂̄Un(t), n ∈ N, where ω ∈ Ω is fixed.

6.2.8 Theorem. Suppose that Assumption 6.2.1 holds, let kn, n ∈ N, be

some sub-sequence of natural numbers and let ω = (ω1, ω2, . . .) ∈ Ω be fixed.
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Using the notation provided in Definition 6.2.2 assume that Assumption 6.2.6.i

– Assumption 6.2.6.vi hold for ω and kn, n ∈ N. Furthermore, let h denote a

Lebesgue-density of H̄, cf. Lemma 6.2.7. Then it holds that

̂̄Ukn
(t) D−→P ′

kn
N
(
0, J̄ (t)

)
, where J̄ (t) =

(
J̄ (u,v)(t)

)
∈ Rr×r

and

J̄ (u,v)(t) =
∫

[0,t]

γ̄(u̇,ü)(s) γ̄(v̇,v̈)(s)
(
µ̄

(u̇,v̇)
2 (s)− µ̄

(u̇)
1 (s) µ̄(u̇)

1 (s)
)
h(s) ds

u, v = 1, . . . , r, for all t ∈ [0, 1). Moreover, one gets that ̂̄V kn
(t)−J̄ (t) −→P ′

n
0,

as n→∞.

Proof. Without loss of generality, we can suppose that kn = n, n ∈ N. We

intend to apply Rebolledo’s Central Limit Theorem. Therefore, we check the

conditions stated in Theorem 2.1.2 in the following paragraphs.

As a first step we want to show that
〈
Mε

n,1

〉
(t) −→P ′

n
0, as n → ∞, for all

t ∈ [0, 1). Let us introduce some more abbreviations

wn,j(s) =
r∑

u=1

c(u)γ̄
(u̇,ü)
n,bnsc

(
z̄
(u̇,bnsc)
n,j −

∑n
k=bnsc ζ

(u̇,bnsc)
n,k

n− bnsc+ 1

)
, j = 1, . . . ,mn,

pn,j(s) =
νn,j −

∑bnsc−1
k=1 1

(
z̄n,j = ζn,k

)
n− bnsc+ 1

, j = 1, . . . ,mn,

φn(s) =
mn∑
j=1

w2
n,j(s) 1

(
hn(s)√
n

∣∣wn,j(s)
∣∣ ≥ ε

)
pn,j(s),

ψn(s) =
mn∑
j=1

wn,j(s) 1
(
hn(s)√
n

∣∣wn,j(s)
∣∣ ≥ ε

)
pn,j(s),

where s ∈ [0, 1] and we remember that δ̄n,0 = 0, γ̄(u̇,ü)
n,0 = 0, u = 1, . . . , r, n ∈ N,

and ζ(u̇,l)
n,0 = 0, u = 1, . . . , r, l = 1, . . . , n, n ∈ N. It holds that

〈
Mε

n,1

〉
(t) =

∫
[0,bnt+1c/n]

φn(s)hn(s) ds−
∫

[0,bnt+1c/n]

ψ2
n(s)hn(s) ds.
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6.2 Asymptotic Equivalence

Choose t∗ ∈ (t, 1). For all sufficiently large n ∈ N the estimates

0 ≤
∫

[0,bnt+1c/n]

φn(s)hn(s) ds ≤
∫

[0,t∗]

φn(s)hn(s) ds

and

0 ≤
∫

[0,bnt+1c/n]

ψ2
n(s)hn(s) ds ≤

∫
[0,t∗]

ψ2
n(s)hn(s) ds

hold. Therefore, it suffices to show that∫
[0,t∗]

φn(s)hn(s) ds −→P ′
n

0 and
∫

[0,t∗]

ψ2
n(s)hn(s) ds −→P ′

n
0,

as n→∞, for all t∗ ∈ [0, 1).

Using Assumption 6.2.6.i, one can choose Ct∗ ∈ R+, such that
∣∣µ̄(u)

1 (s)
∣∣ ≤ Ct∗

and
∣∣µ̄(u,v)

2 (s)
∣∣ ≤ Ct∗ for all s ∈ [0, t∗], u, v = 1, . . . , p. Moreover, note that

0 ≤ hn ≤ 1. It holds the estimate

0 ≤ φn(s)hn(s) ≤ 1

(
1√
n

max
1≤i≤mn

∣∣wn,i

∣∣ ≥ ε

)
r

r∑
u=1

(
c(u)γ̄

(u̇,ü)
n,bnsc

)2
×

mn∑
i=1

(
z̄
(u̇,bnsc)
n,i −

∑n
j=bnsc ζ

(u̇,bnsc)
n,j

n− bnsc+ 1

)2

pn,i(s)

= 1

(
1√
n

max
1≤i≤mn

∣∣wn,i

∣∣ ≥ ε

)
r

r∑
u=1

(
c(u)γ̄

(u̇,ü)
n,bnsc

)2
×

(∑n
i=bnsc

(
ζ
(u̇,bnsc)
n,i

)2
n− bnsc+ 1

−

(∑n
i=bnsc ζ

(u̇,bnsc)
n,i

n− bnsc+ 1

)2)
(6.3)

for all s ∈ [0, t∗], where we use the estimate
(∑r

i=1 ai

)2 ≤ r
∑r

i=1 a
2
i . Obvi-

ously, it holds that

̂̄µ(u,u)
n,2 (s) ≤ sup

0≤s≤t∗

∣∣∣∣̂̄µ(u,u)
n,2 (s)− (1− s) µ̄(u,u)

2 (s)
∣∣∣∣+ Ct∗

= I
(u)
n,1 + Ct∗

and ∣∣̂̄µ(u)
n,1(s)

∣∣2 ≤ 2 sup
0≤s≤t∗

∣∣∣∣̂̄µ(u)
n,1(s)− (1− s) µ̄(u)

1 (s)
∣∣∣∣2 + 2C2

t∗

= I
(u)
n,2 + 2C2

t∗ ,
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u = 1, . . . , p. Exploiting the estimates

n− bnsc+ 1
n

≥ 1− ns

n
+

1
n
≥ 1− s ≥ 1− t∗

and expanding the fractions with 1/n, we get that∣∣∣∣∣
∑n

i=bnsc
(
ζ
(u,bnsc)
n,i

)2
n− bnsc+ 1

−
(∑n

i=bnsc ζ
(u,bnsc)
n,i

n− bnsc+ 1

)2
∣∣∣∣∣

≤ (1− t∗)−2
(̂̄µ(u,u)

n,2 (s) +
(̂̄µ(u)

n,1(s)
)2) ≤ I(u)

n + C̃t∗ ,

u = 1, . . . , p, where

I(u)
n = (1− t∗)−2

(
I
(u)
n,1 + I

(u)
n,2

)
and C̃t∗ = (1− t∗)−2

(
Ct∗ + 2C2

t∗
)
.

The estimate (6.3) implies that∫
[0,t∗]

φn(s)hn(s) ds ≤ r
r∑

u=1

I(u̇)
n

∫
[0,t∗]

(
c(u)γ̄

(u̇,ü)
n,bnsc

)2 ds

+ 2r
r∑

u=1

C̃t∗

∫
[0,t∗]

(
c(u)
)2(

γ̄
(u̇,ü)
n,bnsc − γ̄(u̇,ü)(s)

)2 ds

+ 2r
r∑

u=1

C̃t∗

∫
[0,t∗]

1

(
1√
n

max
1≤i≤mn

∣∣wn,i

∣∣ ≥ ε

) (
c(u)γ̄(u̇,ü)(s)

)2 ds.

(6.4)

Because of Assumption 6.2.6.iv and Vitali’s Theorem, see e.g. Witting [71,

Satz 1.181], we get that∫
[0,t∗]

(
c(u)γ̄

(u̇,ü)
n,bnsc

)2 ds −→
∫

[0,t∗]

(
c(u)γ̄(u̇,ü)(s)

)2 ds, as n→∞, (6.5)

implying

r
r∑

u=1

I(u̇)
n

∫
[0,t∗]

(
c(u)γ̄

(u̇,ü)
n,bnsc

)2 ds −→P ′
n

0, as n→∞,

where we also use Assumption 6.2.6.ii and Assumption 6.2.6.iii. Clearly, it

holds that
r∑

u=1

C̃t∗

∫
[0,t∗]

(
c(u)
)2(

γ̄
(u̇,ü)
n,bnsc − γ̄(u̇,ü)(s)

)2 ds −→P ′
n

0,
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because of Assumption 6.2.6.iv. Finally, we show that the third summand

of the right hand side of (6.4) converges to 0 in P ′
n-probability. For this we

show that 1
(

1√
n

max1≤i≤mn |wn,i| ≥ ε
)
−→µt∗ 0,where µt∗(B) = 1

t∗

∫
B

1 ds,

B ∈ B[0, t∗], as a first step. It holds the estimate

1√
n

max
1≤i≤mn

∣∣wn,i

∣∣ ≤ ( r∑
u=1

∣∣c(u)γ̄
(u̇,ü)
n,bnsc

∣∣) · 1√
n

max
1≤i≤mn

max
1≤u≤p

max
1≤v≤n

∣∣z̄(u,v)
n,i

∣∣
+

1√
n(1− s)

r∑
u=1

∣∣c(u)γ̄
(u̇,ü)
n,bnsc

∣∣ sup
v∈[0,t]

∣∣∣∣̂̄µ(u̇)
n,1(v)− (1− v)µ̄(u̇)

1 (v)
∣∣∣∣

+
1√
n

r∑
u=1

∣∣c(u)γ̄
(u̇,ü)
n,bnsc

∣∣ · Ct∗ .

implying the estimate

1√
n

max
1≤i≤mn

∣∣wn,i

∣∣ ≤ ( r∑
u=1

∣∣c(u)γ̄
(u̇,ü)
n,bnsc

∣∣) · 1√
n

max
1≤i≤mn

max
1≤u≤p

max
1≤v≤n

∣∣z̄(u,v)
n,i

∣∣
+

1√
n(1− t∗)

max
1≤u≤r

max
1≤i≤bnt∗c+1

∣∣c(u)γ̄
(u̇,ü)
n,i

∣∣ sup
v∈[0,t]

∣∣∣∣̂̄µ(u̇)
n,1(v)− (1− v)µ̄(u̇)

1 (v)
∣∣∣∣

+ Ct∗ ·
1√
n

max
1≤u≤r

max
1≤i≤bnt∗c+1

∣∣c(u)γ̄
(u̇,ü)
n,i

∣∣.
Again, Assumption 6.2.6.iv and Vitali’s Theorem imply that c(u)γ̄

(u̇,ü)
n,bn·c −→

c(u)γ̄(u̇,ü)(·) in µt∗ -probability. As c(u)γ̄(u̇,ü)(·) are integrable with respect to

µt∗ , cf. Assumption 6.2.6.iv, we can immediately conclude that(
r∑

u=1

∣∣c(u)γ̄
(u̇,ü)
n,bnsc

∣∣) · 1√
n

max
1≤i≤mn

max
1≤u≤p

max
1≤v≤n

∣∣z̄(u,v)
n,i

∣∣ −→µt∗ 0, as n→∞,

where we use Assumption 6.2.6.vi. Assumption 6.2.6.iv and Neuhaus [57, Proof

of Theorem 5.2] give that

1√
n

max
1≤u≤r

max
1≤i≤bnt∗c+1

∣∣c(u)γ̄
(u̇,ü)
n,i

∣∣ −→ 0, as n→∞, u = 1, . . . , r.

Thus, it holds that

1√
n

max
1≤i≤mn

∣∣wn,i

∣∣ −→µt∗ 0, as n→∞.
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Finally, Lebesgue’s Theorem yields that
r∑

u=1

C̃t

∫
[0,t]

1

(
1√
n

max
1≤i≤mn

∣∣wn,i

∣∣ ≥ ε

) (
c(u)γ̄(u̇,ü)(s)

)2 ds −→P ′
n

0.

On the whole we showed that
∫
[0,t∗]

φn(s)hn(s) ds −→P ′
n

0, as n→∞. Apply-

ing the Cauchy-Schwarz inequality yields that
(
ψn(s)

)2 ≤ φn(s). Therefore,

we get that
∫
[0,t∗]

(
ψn(s)

)2
hn(s) ds −→P ′

n
0, as n → ∞. Recapitulating, we

proved that
〈
Mε

n,1

〉
(t) −→P ′

n
0 for all t ∈ [0, 1). Fortunately, it holds that

sup
0≤s≤t

∣∣∣〈Mε
n,1,M

ε
n,2

〉
(s)
∣∣∣ = ∫

[0,bnt+1c/n]

(
ψn(s)

)2
hn(s) ds −→P ′

n
0,

for all t ∈ [0, 1), which is an easy consequence of Lemma 6.2.5.c and the previous

calculations.

In the next step we show that
〈
cT ̂̄Un

〉
(t) − Ac(t) −→Pn

0, for all t ∈ [0, 1),

where

Ac(t) =
r∑

u=1

r∑
v=1

c(u) c(v) J̄ (u,v)(t). (6.6)

Lemma 6.2.5.d gives that〈
cT ̂̄Un

〉
(t) =

∫
[0,bnt+1c/n]

(∑mn

i=1
w2

n,i(s) pn,i(s)
)
hn(s) ds

=
r∑

u=1

r∑
v=1

c(u)c(v) ̂̄V (u,v)

n (bnt+ 1c/n).
(6.7)

As
∑r

u=1

∑r
v=1 c

(u)c(v) ̂̄V (u,v)

n (t) is non-decreasing in t and t 7→ Ac(t) is con-

tinuous, if suffices to show that
r∑

u=1

r∑
v=1

c(u)c(v) ̂̄V (u,v)

n (t)−Ac(t) −→P ′
n

0, as n→∞,

for all t ∈ [0, 1). Using Assumption 6.2.6.i, one can choose Ct ∈ R+, such that∣∣µ̄(u)
1 (s)

∣∣ ≤ Ct and
∣∣µ̄(u,v)

2 (s)
∣∣ ≤ Ct for all s ∈ [0, t], u, v = 1, . . . , p. As a first

step we show that ̂̄V (u,v)

n (t)− ˜̄V (u,v)

n (t) −→Pn
0, as n→∞, where

˜̄V (u,v)

n (t) =
∫

[0,t]

γ̄
(u̇,ü)
n,bnscγ̄

(v̇,v̈)
n,bnsc

(
µ̄

(u̇,v̇)
2 (s)− µ̄

(u̇)
1 (s) µ̄(v̇)

1 (s)
)
hn(s) ds,

194



6.2 Asymptotic Equivalence

u, v = 1, . . . , r. Some easy calculations yield that∣∣∣∣(1− bnsc
n

+
1
n

)−1

− (1− s)−1

∣∣∣∣ ≤ 2
n(1− t)2

and∣∣∣∣(1− bnsc
n

+
1
n

)−2

− (1− s)−2

∣∣∣∣
=
∣∣∣∣(1− bnsc

n
+

1
n

)−1

− (1− s)−1

∣∣∣∣ · ∣∣∣∣(1− bnsc
n

+
1
n

)−1

+ (1− s)−1

∣∣∣∣
≤ 4
n(1− t)3

for all 0 ≤ s ≤ t. Using these estimates and abbreviating

R
(u,v)
n,1 (s) =

̂̄µ(u,v)
n,2 (s)

1− bnsc
n + 1

n

−
̂̄µ(u,v)

n,2 (s)
1− s

+
̂̄µ(u)

n,1(s)̂̄µ(v)
n,1(s)(

1− s
)2 −

̂̄µ(u)
n,1(s)̂̄µ(v)

n,1(s)(
1− bnsc

n + 1
n

)2 ,
u, v = 1, . . . , p, one gets that∣∣R(u,v)

n,1 (s)
∣∣ ≤ 4

n(1− t)3
(∣∣̂̄µ(u,v)

n,2 (s)
∣∣+ ∣∣̂̄µ(u)

n,1(s)̂̄µ(v)
n,1(s)

∣∣).
Therefore, we have that∣∣∣∣∫

[0,t]

γ̄
(u̇,v̈)
n,bnscγ̄

(v̇,v̈)
n,bnscR

(u̇,v̇)
n,1 (s)hn(s) ds

∣∣∣∣
≤ 4
n(1− t)3

∫
[0,t]

∣∣γ̄(u̇,ü)
n,bnscγ̄

(v̇,v̈)
n,bnsc

∣∣ · (∣∣̂̄µ(u̇,v̇)
n,2 (s)

∣∣+ ∣∣̂̄µ(u̇)
n,1(s)̂̄µ(v̇)

n,1(s)
∣∣) ds

≤ 4
n(1− t)3

Q(u,v)
n (t) · sup

0≤s≤t

∣∣̂̄µ(u̇,v̇)
n,2 (s)− (1− s)µ̄(u̇,v̇)

2

∣∣
+

4
n(1− t)3

Q(u,v)
n (t) · sup

0≤s≤t

∣∣̂̄µ(u̇)
n,1
̂̄µ(v̇)

n,1 − (1− s)2µ̄(u̇)
1 (s) µ̄(v̇)

1 (s)
∣∣

+
4

n(1− t)3
Q(u,v)

n (t) · (Ct + C2
t ),

u, v = 1, . . . , r, where we set

Q(u,v)
n (t) =

√∫
[0,t]

(
γ̄

(u̇,ü)
n,bnsc

)2 ds
∫

[0,t]

(
γ̄

(v̇,v̈)
n,bnsc

)2 ds, u, v = 1, . . . , r,
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6 Generalized Permutation Tests

and use the Cauchy-Schwarz inequality. Obviously, Assumption 6.2.6.i and

Assumption 6.2.6.ii yield that

sup
0≤s≤t

∣∣̂̄µ(u)
n,1(s) ̂̄µ(v)

n,1(s)− (1− s)2 µ̄(u)
1 (s) µ̄(v)

1 (s)
∣∣ −→P ′

n
0, as n→∞,

u, v = 1, . . . , p. Consequently, Assumption 6.2.6.ii, Assumption 6.2.6.iii and

equation (6.5) give that∣∣∣∣∫
[0,t]

γ̄
(u̇,v̈)
n,bnscγ̄

(v̇,v̈)
n,bnscR

(u̇,v̇)
n,1 (s)hn(s) ds

∣∣∣∣ −→P ′
n

0, as n→∞. (6.8)

With the same arguments we receive that∣∣∣∣∫
[0,t]

γ̄
(u̇,u̇)
n,bnscγ̄

(v̇,v̈)
n,bnscR

(u̇,v̇)
n,2 (s)hn(s) ds

∣∣∣∣
≤ (1− t)−2Q(u,v)

n (t) · sup
0≤s≤t

∣∣̂̄µ(u,v)
n,2 (s)− (1− s)µ̄(u,v)

2 (s)
∣∣

+ (1− t)−2Q(u,v)
n (t) · sup

0≤s≤t

∣∣̂̄µ(u)
n,1(s)̂̄µ(v)

n,1(s)− (1− s)2µ̄(u)
1 (s)µ̄(v)

1 (s)
∣∣,

u, v = 1, . . . , r, where

R
(u,v)
n,2 (s) =

̂̄µ(u,v)
n,2 (s)
1− s

− µ̄
(u,v)
2 (s) + µ̄

(u)
1 (s) µ̄(v)

1 (s)−
̂̄µ(u)

n,1(s)̂̄µ(v)
n,1(s)(

1− s
)2

implying that∣∣∣∣∫
[0,t]

γ̄
(u̇,u̇)
n,bnscγ̄

(v̇,v̈)
n,bnscR

(u̇,v̇)
n,2 (s)hn(s) ds

∣∣∣∣ −→P ′
n

0, as n→∞. (6.9)

Equation (6.8) and equation (6.9) yield that ̂̄V (u,v)

n (t) − ˜̄V (u,v)

n (t) −→P ′
n

0, as

n→∞, because of the estimate

∣∣ ̂̄V (u,v)

n (t)− ˜̄V (u,v)

n (t)
∣∣ ≤ ∣∣∣∣∫

[0,t]

γ̄
(u̇,v̈)
n,bnscγ̄

(v̇,v̈)
n,bnscR

(u̇,v̇)
n,1 (s)hn(s) ds

∣∣∣∣
+
∣∣∣∣∫

[0,t]

γ̄
(u̇,u̇)
n,bnscγ̄

(v̇,v̈)
n,bnscR

(u̇,v̇)
n,2 (s)hn(s) ds

∣∣∣∣
196



6.2 Asymptotic Equivalence

Clearly, ˜̄V (u,v)

n (t)− V̄
(u,v)
n (t) −→P ′

n
0, as n→∞, u, v = 1, . . . , r, where

V̄ (u,v)
n (t) =

∫
[0,t]

γ̄(u̇,ü)(s)γ̄(v̇,v̈)(s)
(
µ̄

(u,v)
2 (s)− µ̄

(u)
1 (s) µ̄(v)

1 (s)
)
hn(s) ds,

u, v = 1, . . . , r, is implied by Assumption 6.2.6.i and the estimate

∣∣ ˜̄V (u,v)

n (t)− V̄ (u,v)
n (t)

∣∣ ≤
(Ct + C2

t )

√∫
[0,t]

(
γ̄

(u̇,ü)
n,bnsc − γ̄(u̇,ü)(s)

)2 ds
∫

[0,t]

(
γ̄

(v̇,v̈)
n,bnsc − γ̄(v̇,v̈)(s)

)2 ds

+ (Ct + C2
t )

√∫
[0,t]

(
γ̄

(u̇,ü)
n,bnsc − γ̄(u̇,ü)(s)

)2 ds
∫

[0,t]

(
γ̄(v̇,v̈)(s)

)2 ds

+ (Ct + C2
t )

√∫
[0,t]

(
γ̄

(v̇,v̈)
n,bnsc − γ̄(v̇,v̈)(s)

)2 ds
∫

[0,t]

(
γ̄(u̇,ü)(s)

)2 ds,

which is derived with the Cauchy-Schwarz inequality. Therefore, for proving〈
cT ̂̄Un

〉
(t)−Ac(t) −→P ′

n
0, as n→∞, it remains to be shown that∫

[0,t]

f (u,v)(s)hn(s) ds−
∫

[0,t]

f (u,v)(s)h(s) ds −→ 0,

as n→∞, where

f (u,v)(s) = γ̄(u̇,ü)(s)γ̄(v̇,v̈)(s)
(
µ̄

(u,v)
2 (s)− µ̄

(u)
1 (s) µ̄(v)

1 (s)
)
, u, v = 1, . . . , r,

and h is the Lebesgue-density of the measure defined by the function H̄, cf. in

Lemma 6.2.7.

It is well known that for every ε > 0, there exists a continuous function g(u,v)
ε :

[0, t] −→ R, such that
∫
[0,t]

∣∣g(u,v)
ε (s)− f (u,v)(s)

∣∣ ds ≤ ε. Lemma 6.2.7 and

Witting and Müller-Funk [72, Satz 5.55 and Korollar 5.56] yield that∫
[0,t]

gε(s)hn(s) ds −→
∫

[0,t]

gε(s)h(s) ds.
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6 Generalized Permutation Tests

Hence, it holds that

lim sup
n→∞

∣∣∣∫
[0,t]

f (u,v)(s)hn(s) ds−
∫

[0,t]

f (u,v)(s)h(s) ds
∣∣∣ ≤

lim sup
n→∞

∫
[0,t]

∣∣f (u,v)(s)− gε(s)
∣∣hn(s) ds

+ lim sup
n→∞

∣∣∣∫
[0,t]

gε(s)hn(s) ds−
∫

[0,t]

gε(s)h(s) ds
∣∣∣

+ lim sup
n→∞

∫
[0,t]

∣∣f (u,v)(s)− gε(s)
∣∣h(s) ds ≤ 2ε,

where one also uses the boundedness of hn and h, see Lemma 6.2.7. Since ε > 0

was chosen arbitrarily, it follows the assertion. In the previous paragraphs we

showed that

r∑
u=1

r∑
v=1

c(u)c(v) ̂̄V (u,v)

n (t)−
r∑

u=1

r∑
v=1

c(u)c(v) J̄ (u,v)(t) −→P ′
n

0, as n→∞,

for all c ∈ Rr, which is equivalent with ̂̄V n(t) − J̄ (t) −→P ′
n

0, as n → ∞,

t ∈ [0, 1).

Let t ∈ (0, 1) and consider the process
{
cT ̂̄Un(t ∧ s) | s ∈ R+

}
and the filtra-

tion
{
F′n,t∧s | s ∈ R+

}
, where F′n,t∧s is defined in Proposition 6.2.4. As this

process is a martingale, where Proposition 6.2.4 and the Optional Stopping

Theorem, cf. Fleming and Harrington [19, Theorem 2.2.2], are used, the pre-

vious calculations give that we can apply Rebolledo’s Central Limit Theorem,

see Theorem 2.1.2. Thus, it holds that{
cT ̂̄Un(t ∧ s) | s ∈ R+

} D−→P ′
n

{
W ◦Ac(t ∧ s) | s ∈ R+

}
, as n→∞, (6.10)

in D(R+,R). In particular this means that cT ̂̄Un(t) D−→P ′
n

N(0, Ac(t)). As c ∈
Rr was arbitrary, applying the Crámer-Wold-device, cf. Witting and Müller-

Funk [72, Korollar 5.69] completes the proof.

The next result extends the assertions of the last Theorem to t = 1.
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6.2 Asymptotic Equivalence

6.2.9 Corollary. In the situation of Theorem 6.2.8 assume that Ac(1) < ∞,

for all c ∈ Rr, where Ac(t) is defined in equation (6.6). Suppose that

lim
t↑1

lim
n→∞

P ′
n

(〈
cT ̂̄Ukn

(ω)
〉
(1)−

〈
cT ̂̄Ukn

(ω)
〉
(t) ≥ ε

)
= 0 (6.11)

for all ε > 0 and for all c ∈ Rr, where
〈
cT ̂̄Ukn

(ω)
〉
(t) is defined in Lemma 6.2.5.d

and a different representation of
〈
cT ̂̄Ukn

(ω)
〉
(t) can be found in equation (6.7).

Then the assertions of Theorem 6.2.8 also hold for t = 1.

Proof. Without loss of generality, we can assume that kn = n, n ∈ N. Con-

sider the metric space
(
D([0, 1],R+),D([0, 1],R+), d

)
, where d denotes the Sko-

rokhod metric. Note that the Skorokhod metric is dominated by the supremum

metric, i.e. d(x, y) ≤ sup0≤t≤1

∣∣x(t)− y(t)
∣∣ for all x, y ∈ D[0, 1]. Moreover, let

tk, k ∈ N, be a strictly increasing sequence satisfying tk < 1 and limk→∞ tk = 1.

Once again, we aim to apply Theorem 2.1.1. Therefore, we define the following

processes

Xn,k =
{
Xn,k(t) | t ∈ [0, 1]

}
, Xn,k(t) = cT ̂̄Un(t ∧ tk),

Xk =
{
Xn,k(t) | t ∈ [0, 1]

}
, Xk(t) = W ◦Ac(t ∧ tk),

X =
{
X(t) | t ∈ [0, 1]

}
, X(t) = W ◦Ac(t),

Yn =
{
Yn(t) | t ∈ [0, 1]

}
, Yn(t) = cT ̂̄Un(t),

where Ac(t) is defined in equation (6.6) and W denotes a standard Wiener

(Brownian) motion. In the proof of Theorem 6.2.8 we showed that Xn,k
D−→P ′

n

Xk in D
(
[0, 1],R+

)
, cf. equation (6.10) and note the remarks on page 26.

Moreover, we have that

sup
0≤t≤1

∣∣Xk(t)−X(t)
∣∣ = sup

tk≤t≤1

∣∣B ◦Ac(tk)− B ◦Ac(t)
∣∣→ 0 almost-surely,

as k → ∞, since the paths of a Wiener motion are almost surely continuous

and Ac is continuous and non-decreasing. In the last step we show that

lim
k→∞

lim sup
n→∞

P ′
n

(
sup

0,≤t≤1

∣∣Yn(t)−Xn,k(t)
∣∣ ≥ ε

)
= 0 for all ε > 0, (6.12)
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6 Generalized Permutation Tests

with the Lenglart Domination property, see Theorem 2.1.5.

Let us consider the
{
F′n,t∧1 | t ∈ R+

}
-sub-martingale(

Yn −Xn,k

)2 =
{(
Yn(t ∧ 1)−Xn,k(t ∧ 1)

)2 ∣∣ t ∈ R+

}
,

where F′n,t∧1 is defined in Proposition 6.2.4. The predictable quadratic varia-

tion of
(
Yn −Xn,k

)2 is given by〈
Yn −Xn,k

〉
(t) =

〈
cT ̂̄Un

〉
(t ∧ 1)−

〈
cT ̂̄Un

〉
(t ∧ tk ∧ 1), t ∈ R+,

see also equation (6.7). For any bounded stopping time T , the process{(
Yn −Xn,k

)2(T ∧ t ∧ 1)−
〈
Yn −Xn,k

〉
(T ∧ t ∧ 1)

∣∣ t ∈ R+

}
is a martingale because of the Optional Stopping Theorem, see Fleming and

Harrington [19, Theorem 2.2.2]. Furthermore, it holds that

E′n
((
Yn −Xn,k

)2(T ∧ t ∧ 1)−
〈
Yn −Xn,k

〉
(T ∧ t ∧ 1)

)
=

E′n
((
Yn −Xn,k

)2(0)−
〈
Yn −Xn,k

〉
(0)
)

= 0

implying that
(
Yn −Xn,k

)2 is Lenglart dominated by
〈
Yn −Xn,k

〉
. Applying

Theorem 2.1.5 (with the stopping time T ≡ 1) yields that

P ′
n

(
sup

0,≤t≤1

∣∣Yn(t)−Xn,k(t)
∣∣ ≥ ε

)
= P ′

n

(
sup

0,≤t≤1

∣∣Yn(t)−Xn,k(t)
∣∣2 ≥ ε2

)
≤ η

ε2
+ P ′

n

(〈
cT ̂̄Un

〉
(1)−

〈
cT ̂̄Un

〉
(tk) ≥ η

)
.

Consequently, we get that

lim sup
k→∞

lim sup
n→∞

P ′
n

(
sup

0,≤t≤1

∣∣Yn(t)−Xn,k(t)
∣∣ ≥ ε

)
≤ η

ε2
.

As η > 0 was arbitrary (6.12) holds. Theorem 2.1.1 gives that Yn
D−→P ′

n{
W ◦Ac(t) | t ∈ [0, 1]

}
on D[0, 1].

In particular this means that cT ̂̄Un(1) D−→P ′
n

N(0, Ac(1)). As c ∈ Rr was

arbitrary, applying the Crámer-Wold-device, cf. Witting and Müller-Funk [72,

Korollar 5.69] yields the first part of the result.

200



6.2 Asymptotic Equivalence

The second part of the assertion is straightforward. Let η, ε > 0 be arbitrary

and choose τ ∈ (0, 1), such that

lim
n→∞

P ′
n

(〈
cT ̂̄Un

〉
(1)−

〈
cT ̂̄Un

〉
(τ) ≥ ε/3

)
≤ η (6.13)

and Ac(1)−Ac(τ) ≤ ε/3. Using the estimate

P ′
n

(∣∣〈cT ̂̄Un

〉
(1)−Ac(1)

∣∣ ≥ ε
)
≤ P ′

n

(∣∣〈cT ̂̄Un

〉
(1)−

〈
cT ̂̄Un

〉
(τ)
∣∣ ≥ ε/3

)
+ P ′

n

(∣∣〈cT ̂̄Un

〉
(τ)−Ac(τ)

∣∣ ≥ ε/3
)

+ P ′
n

(∣∣Ac(τ)−Ac(1)
∣∣ ≥ ε/3

)
,

we receive that

lim sup
n→∞

P ′
n

(∣∣∣〈cT ̂̄Un

〉
(1)−Ac(1)

∣∣∣ ≥ ε
)
≤ η.

As η > 0 was chosen arbitrarily and using equation (6.6) and (6.7), we get that

r∑
u=1

r∑
v=1

c(u)c(v) ̂̄V (u,v)

n (1)−
r∑

u=1

r∑
v=1

c(u)c(v) J̄ (u,v)(1) −→P ′
n

0, as n→∞,

for all c ∈ Rr, which is equivalent to ̂̄V n(1)− J̄ (1) −→P ′
n

0, as n→∞.

The next result finally enables us to characterize the asymptotic properties of

our conditional permutation tests.

6.2.10 Theorem. Abbreviating Wn,↑ = (Xn,↑,∆n,↑, Zn,↑), let us assume that

Assumption 6.2.1 is satisfied. Moreover, suppose that in every sub-sequence of

natural numbers, we can find a sub-sub-sequence kn, n ∈ N, and a set Ω0 ∈ F

with P (Ω0) = 1, such that the following premises are satisfied.

i) Assumption 6.2.6.i – Assumption 6.2.6.vi hold with the sub-sequence kn,

n ∈ N, for all ω ∈ Ω0.

ii) The condition (6.11) holds with the sub-sequence kn, n ∈ N, for all ε > 0,

c ∈ Rr and ω ∈ Ω0.

Then the following assertions are valid.
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6 Generalized Permutation Tests

a) It holds that

F ?,1,α
n,J,Wn,↑

(t)− FJ,J̄ (1)

(
t+ F−1

J,J̄ (1)
(1− α)

)
−→Pn,ξ

0, as n→∞,

for all t > −F−1
J,J̄ (1)

(1− α), and α ∈ (0, 1/2), where the cumulative distri-

bution function FJ,J̄ (1) is defined in Theorem 4.1.14.

b) It holds that

sup
t∈R+

∣∣∣F ?,2,α
n,L0,L1,Wn,↑

(t)− FL0,L1,J̄ (1)

(
t+ F−1

L0,L1,J̄ (1)
(1− α)

)∣∣∣ −→Pn,ξ
0,

as n → ∞, for all α ∈ (0, 1), where FL0,L1,J̄ (1) denotes the distribution

function of a χ2-distribution with l degrees of freedom,

l = rank
(
J̄ (1)L1

)
− rank

(
J̄ (1)L0

)
, Im(L )i = Li, i = 0, 1,

see Section 4.2, in particular Corollary 4.2.5.

Proof. First, we remember the equalities in (6.2) and note that Corollary 6.2.9

is applicable for fixed sub-sequence kn, n ∈ N, and fixed ω = (ω1, ω2, . . .) ∈ Ω0.

Keeping the sub-sequence kn, n ∈ N, and ω ∈ Ω0 fixed, we get that

Ûkn,?

(
D′

kn
,Wkn,↑(ωkn)

) D−→Pk′n
N
(
0, J̄ (1)

)
, as n→∞

and

V̂kn,?(Dkn
,Wkn,↑)(ωkn

)− J̄ (1) −→P ′
kn

0, as n→∞,

by applying Corollary 6.2.9. We readily see that Assumption 4.1.12 holds.

Theorem 4.1.13, Corollary 4.1.15 and Slutsky’s Lemma, cf. Witting and Müller-

Funk [72, Satz 5.83], yield that

T ?,1,α
J,1

(
D′

kn
,Wkn,↑(ωkn

)
) D−→Pk′n

LJ,1

(
X, J̄ (1)

)
−F−1

J,J̄ (1)
(1− α), as n→∞,

where X ∼ N
(
0, J̄ (1)

)
. Theorem 4.1.14 and Witting and Müller-Funk [72,

Satz 5.58] give that

F ?,1,α
kn,J,Wn,↑(ωkn )(t) −→ FJ,J̄ (1)

(
t+ F−1

J,J̄ (1)
(1− α)

)
, as n→∞,
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for all t > −F−1
J,J̄ (1)

(1− α). The sub-sub-sequence principle for random vari-

ables that converge in probability, see Proposition B.4.8, gives that

F ?,1,α
n,J,Wn,↑

(t)− FJ,J̄ (1)

(
t+ F−1

J,J̄ (1)
(1− α)

)
−→P0 0, as n→∞

for all t > −F−1
J,J̄ (1)

(1− α), which implies the convergence in Pn,0-probability.

Remark 2.2.3.c completes the proof of a).

b) is shown completely analogously, instead of Theorem 4.1.13, Corollary 4.1.15

and Theorem 4.1.14, Theorem 4.2.4 and Corollary 4.2.5 are used. Since the

distribution function FL0,L1,J̄ (1) is continuous, Witting and Müller-Funk [72,

Satz 5.75] give that the cumulative distribution functions converge uniformly.

Now, we can state the main result of this section, namely the asymptotic

equivalence of the permutation tests introduced in Section 6.1 and the tests

derived in Chapter 4.

6.2.11 Corollary. In the situation of Theorem 6.2.10, it holds that

ϕn,1 − ϕ?
n,1 −→Pn,ξ

0 and ϕn,2 − ϕ?
n,2 −→Pn,ξ

0, as n→∞.

This means in particular that the assertions of Corollary 4.3.6 also hold for

ϕ?
n,1, n ∈ N, and ϕ?

n,2, n ∈ N.

Proof. We show that ϕn,1, n ∈ N, and ϕ?
n,1, n ∈ N, are asymptotically equiv-

alent. The proof for the other sequence is exactly the same. Remark 2.2.3.c

implies that it suffices to show the assertion under Pn,0, n ∈ N. Because of

Theorem 4.1.14.d, FJ,J̄ (1)

(
·+ F−1

J,J̄ (1)
(1− α)

)
is continuous and strictly in-

creasing on the interval
(
−F−1

J,J̄ (1)
(1− α),∞

)
. Theorem 6.2.10 and Witting

and Müller-Funk [72, Satz 5.76] give that k?,1
n,J(α,Wn,↑) −→Pn,0 0, as n → ∞.

Setting

Qn = LJ,1

(
Ûn(∞), V̂n(∞)

)
− cJ,1

(
α, V̂n(∞)

)
and

Q̂n = T ?,1,α
J,1 (Dn,Wn,↑)− k?,1

n,J(α,Wn,↑),
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we get that Qn − Q̂n = k?,1
n,J(α,Wn,↑) −→Pn,0 0, as n → ∞, because of Qn =

T ?,1,α
J,1 (Dn,Wn,↑). Moreover, we readily check that

ϕn,1 − ϕ?
n,1 = 1

(
Qn ≥ 0

)
− 1

(
Q̂n ≥ 0

)
+
(
1− r?,1

n,J(α,Wn,↑)
)
· 1
(
Q̂n = 0

)
− 1

(
Qn = 0

)
.

Proposition B.4.7 yields that 1
(
Qn ≥ 0

)
− 1

(
Q̂n ≥ 0

)
−→Pn,0 0, as n → ∞.

For all ε > 0 it holds that

Pn,0

(∣∣(1− r?,1
n,J(α,Wn,↑)

)
· 1
(
Q̂n = 0

)∣∣ ≥ ε
)
≤ Pn,0

(
Q̂n = 0

)
.

Because of Theorem 4.1.13, Corollary 4.1.15 and Slutsky’s Lemma, cf. Witting

and Müller-Funk [72, Satz 5.83], we get that

Q̂n −→Pn,0 LJ,1

(
X,J ?(∞)

)
− F−1

J,J ?(∞)(1− α), as n→∞,

where X ∼ N
(
0,J ?(∞)

)
, as n → ∞. Theorem 4.1.14 and the Portman-

teau Theorem, cf. Witting and Müller-Funk [72, Satz 5.40], finally yield that

limn→∞ Pn,0

(
Q̂n = 0

)
= 0. With the same considerations one receives that

1(Qn = 0) −→Pn,0 0, as n→∞, completing the proof.

6.3 Checking Assumptions

In analogy to Section 5.1 and Section 5.2 it is shown that Assumption 6.2.6

is satisfied for an important class of examples in this Section. Note that the

assumptions of Theorem 6.2.10 and Corollary 6.2.11 are based on the sub-

sub-sequence principle for random variables that converge in probability, see

Proposition B.4.8. Therefore, we merely have to show that the quantities in

question converge in probability, as the sub-sub-sequence principle implies the

assertion for fixed sub-sequences kn and ω ∈ Ω.

First, it is intended to discuss Assumption 6.2.6.v, but before we can prove con-

ditions implying this assumption we have to introduce the notion of a pseudo-

inverse.
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6.3.1 Definition (Pseudo-Inverse). Assume that F : R −→ [0, 1] is some

cumulative distribution function, i.e. F is non-decreasing, right continuous

and normed in the sense that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. The

function

F−1 : [0, 1] −→ R ∪ {±∞}, F−1(t) =


sup
{
s | F (s) = 0

}
, t = 0,

inf
{
s | F (s) ≥ t

}
, t ∈ (0, 1),

inf
{
s | F (s) = 1

}
, t = 1,

where we define sup ∅ = −∞ and inf ∅ = ∞, is called pseudo-inverse of F .

6.3.2 Proposition. Suppose that Assumption 6.2.1 holds and that G, G̃ :

R+ −→ [0, 1] are continuous non-decreasing, functions. In particular assume

that G is a cumulative distribution function. Set

Gn(t) =
1
n

n∑
i=1

1(Xn,i ≤ t) and G̃n(t) =
1
n

n∑
i=1

1(Xn,i ≤ t) ·∆n,i,

t ∈ R+, n ∈ N. If the conditions

sup
t∈R

∣∣Gn(t)−G(t)
∣∣ −→Pn,0 0 and sup

t∈R

∣∣G̃n(t)− G̃(t)
∣∣ −→Pn,0 0, (6.14)

as n→∞, hold, then

sup
t∈[0,1]

∣∣∣∣∫
[0,t]

∆n:bnsc ds− G̃ ◦G−1(t)
∣∣∣∣ −→Pn,0 0, as n→∞,

where G−1 denotes the pseudo-inverse of G, see Definition 6.3.1. Clearly, G̃ ◦
G−1 is a non-decreasing function.

Proof. In the following we always use the pseudo-inverse, see Definition 6.3.1.

One readily checks that

sup
t∈[0,1]

∣∣∣∣∫
[0,t]

∆n:bnsc ds− G̃n ◦G−1
n (t)

∣∣∣∣ ≤ 1
n

(6.15)

for all n ∈ N. Therefore, we have merely to show that

sup
t∈[0,1]

∣∣G̃n ◦G−1
n (t)− G̃ ◦G−1(t)

∣∣ −→Pn 0, as n→∞.
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Without loss of generality, we can assume that all random variables are de-

fined on the same probability space. Using the sub-sub-sequence principle for

random variables that converge in probability, cf. Proposition B.4.8, we receive

that in every sub-sequence of natural numbers we can find a sub-sub-sequence

kn, n ∈ N, and a set Ω0 ∈ F, such that P0(Ω0) = 1 and

sup
t∈R

∣∣Gkn(t, ω)−G(t)
∣∣ −→ 0 and sup

t∈R

∣∣G̃kn(t, ω)− G̃(t)
∣∣ −→ 0,

for all ω ∈ Ω0. Keeping ω ∈ Ω0 fixed, the functions Gkn
, n ∈ N, are cumulative

distribution functions, so that applying Witting and Müller-Funk [72, Satz 5.76]

gives G−1
kn

(t, ω) → G−1(t) for all t ∈ Con(G−1), where Con(G−1) denotes the

set of a continuity points of G−1. Because of the estimate∣∣G̃kn
◦G−1

kn
(t, ω)− G̃ ◦G−1(t)

∣∣
≤
∣∣G̃kn ◦G−1

kn
(t, ω)− G̃ ◦G−1

kn
(t, ω)

∣∣
+
∣∣G̃ ◦G−1

kn
(t, ω)− G̃ ◦G−1(t)

∣∣
≤ sup

t∈R

∣∣G̃kn(t, ω)− G̃(t)
∣∣+ ∣∣G̃ ◦G−1

kn
(t, ω)− G̃ ◦G−1(t)

∣∣,
we have that∣∣G̃kn ◦G−1

kn
(t, ω)− G̃ ◦G−1(t)

∣∣ −→ 0, as n→∞, t ∈ Con(G−1), (6.16)

where we use (6.14) and the continuity of G̃. Moreover, note that Con(G−1) is

a dense set in (0, 1), since G−1 is a non-decreasing function. Additionally, one

shows that (6.16) also holds for t = 0 and t = 1. As an immediate consequence

we receive that
∣∣G̃kn ◦G−1

kn
(t, ω)− G̃ ◦G−1(t)

∣∣ converges uniformly to 0 on

[0, 1]. The sub-sub-sequence principle for random variables that converge in

probability and (6.15) give the assertion.

In the next step, conditions implying Assumption 6.2.6.iv are stated.

6.3.3 Proposition. Suppose that Assumption 6.2.1 holds, that H is a con-

tinuous function and that

γ(u̇,ü) = γ
(u̇,ü)
0 ◦H and γ̂(u̇,ü)

n = γ
(u̇,ü)
0 ◦ Ĥn, n ∈ N, u = 1, . . . , r
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where γ(u̇,ü)
0 : [0, 1] −→ R, u = 1, . . . , r, are some continuous functions. If

sup
t∈I(τc

0 )

∣∣Ĥn(t)−H(t)
∣∣ −→Pn,0 0 and sup

t∈I(τc
0 )

∣∣Gn(t)−G(t)
∣∣ −→Pn,0 0,

as n→∞, Gn(t) = 1
n

∑n
i=1 1(Xn,i ≤ t), t ∈ R+. Then it holds that∫

[0,1]

(
γ̂

(u̇,ü)
n:bnsc − γ̄(u̇,ü)(s)

)2 ds −→Pn,0 0, as n→∞,

where γ̂
(u̇,ü)
n:0 = 0, γ̂(u̇,ü)

n:i = γ̂
(u̇,ü)
n (Xn:i), i = 1, . . . , n, as well as γ̄(u̇,ü) =

γ
(u̇,ü)
0 ◦H ◦G−1, u = 1, . . . , r and G−1 denotes the pseudo-inverse of G.

Proof. Let λ denote the Lebesgue measure on B[0, 1]. As G−1(u) = Xn:i, for

all u ∈ ((i− 1)/n, i/n], it holds that

γ̂
(u̇,ü)
n:bn·c = γ

(u̇,ü)
0 ◦ Ĥn ◦G−1

n (· − 1/n) · 1(· ≥ 1/n) λ-almost surely.

By applying the sub-sub-sequence principle for random variables that converge

in probability, cf. Proposition B.4.8, we can assume that in every sub-sequence

of natural numbers we can find a sub-sub-sequence kn, n ∈ N, such that

sup
t∈I(τc

0 )

∣∣Ĥkn
(t)−H(t)

∣∣ −→ 0 and sup
t∈I(τc

0 )

∣∣Gkn
(t)−G(t)

∣∣ −→ 0,

as n→∞, converge P0-almost surely. Note that supt∈I(τc
0 )

∣∣Gkn(t)−G(t)
∣∣ −→

0, as n → ∞, implies that G−1
kn

(s− 1/kn) → G−1(s), as n → ∞, for all

s ∈ Con(G−1). This is an immediate consequence of Witting and Müller-Funk

[72, Satz 5.76], the monotonicity of G−1
kn

, n ∈ N, and G1 as well as the left

continuity of G−1. As [0, 1]\Con(G−1) is countable the previous convergence

holds for λ-almost all s ∈ [0, 1]. Consequently, it holds that∣∣Ĥkn
◦G−1

kn
(s− 1/kn)−H ◦G−1(s)

∣∣
=
∣∣Ĥkn ◦G−1

kn
(s− 1/kn)− Ĥ ◦G−1

kn
(s− 1/kn)

∣∣
+
∣∣Ĥ ◦G−1

kn
(s− 1/kn)−H ◦G−1(s)

∣∣
≤ sup

t∈I(τc
0 )

∣∣Ĥkn
(t)−H(t)

∣∣+ ∣∣H ◦G−1
kn

(s− 1/kn)−H ◦G−1(s)
∣∣ −→ 0,
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as n → ∞, for λ-almost all s ∈ [0, 1], where we also use that H is continuous

on I(τ c
0 ). Using the continuity of γ(u̇,ü)

0 gives that

γ
(u̇,ü)
0 ◦ Ĥkn

◦G−1
kn

(· − 1/kn) · 1(s ≥ 1/kn) → γ
(u̇,ü)
0 ◦H ◦G−1(s) = γ̄(u̇,ü)(s)

for λ-almost all s ∈ [0, 1]. Note that by construction(
γ̂

(u̇,ü)
kn:bknsc − γ̄(u̇,ü)(s)

)2 ≤ C, s ∈ [0, 1] and n ∈ N,

for some suitable C ∈ R+. Thus, the Dominated Convergence Theorem yields

that ∫
[0,1]

(
γ̂

(u̇,ü)
kn:bknsc − γ̄(u̇,ü)(s)

)2 ds −→ 0, as n→∞.

Again, applying the sub-sub-sequence principle for random variables that con-

verge in probability yields that assertion.

Before we finally discuss Assumption 6.2.6.ii and Assumption 6.2.6.iii in the

special case of time-independent covariates, we state conditions implying the

premises of Corollary 6.2.9 which are essential for proving Theorem 6.2.10 and

Corollary 6.2.11.

6.3.4 Proposition. Under Assumption 6.2.1, define

Mn,i(ω) = max
{∣∣Z(u,v)

n,↑,i (ωn)
∣∣2 ∣∣ u = 1, . . . , p, v = 1, . . . , n

}
, ω ∈ Ω,

i = 1, . . . , n, n ∈ N. Suppose that in every sub-sequence of natural numbers

we can find a sub-sub-sequence kn = kn, n ∈ N, and a set Ω0 ∈ F, P0(Ω0) = 1,

such that for all ω = (ω1, ω2, . . .) ∈ Ω0 the following conditions hold.

i) 1
kn

∑kn

i=1Mkn,i(ω) ≤ C(ω) <∞, n ∈ N.

ii)
(
γ̂

(u̇,ü)
kn:kn

(ωn)
)2
/kn −→ 0, as n→∞, u = 1, . . . , r.

iii)
∫
[0,1]

(
γ̂

(u̇,ü)
kn,bknsc(ωn)− γ̄(u̇,ü)

)2 ds −→ 0, as n → ∞, u = 1, . . . , r, where

γ̄(u̇,ü) : [0, 1] −→ R, u = 1, . . . , r are square integrable functions.

Then the condition (6.11) in Corollary 6.2.9 holds with the sequence kn, n ∈ N,

for all ε > 0, c ∈ Rr and ω ∈ Ω0.

208



6.3 Checking Assumptions

Proof. Let ω ∈ Ω0 be fixed and let us use the notation provided in Defini-

tion 6.2.2. Without loss of generality we can assume that kn = n, n ∈ N.

Remember that
〈
cT ̂̄Un(ω)

〉
(t) =

∑bntc
l=1 K

0
n,l, see Lemma 6.2.5. Using the es-

timates
(∑q

j=1 aj

)2 ≤ q
∑q

j=1 a
2
j , where aj ∈ R, j = 1, . . . , q, and q ∈ N, and

0 ≤ δ̄n,i ≤ 1, we get the estimate

K0
n,l ≤

2r
n

mn∑
j=1

r∑
u=1

(
c(u) γ̄

(u̇,ü)
n,l

)2((
z̄
(u̇,l)
n,j

)2 +

∑n
k=l

(
ζ
(u̇,l)
n,k

)2
n+ 1− l

)

×
νn,j −

∑l−1
k=1 1(z̄n,j = ζn,k)
n+ 1− l

.

Lemma 6.2.3 gives that
mn∑
j=1

(
z̄
(u̇,l)
n,j

)2 · νn,j −
∑l−1

k=1 1(z̄n,j = ζn,k)
n+ 1− l

= E′n
[
(ζ(u̇,l)

n,l )2 | ζn,1, . . . , ζn,l−1

]
and

mn∑
j=1

∑n
k=l

(
ζ
(u̇,l)
n,k

)2
n+ 1− l

·
νn,j −

∑l−1
k=1 1(z̄n,j = ζn,k)
n+ 1− l

=

∑n
k=l

(
ζ
(u̇,l)
n,k

)2
n+ 1− l

.

Consequently, it holds that

K0
n,l ≤

2r
n

r∑
u=1

(
c(u) γ̄

(u̇,ü)
n,l

)2(E′n
[
(ζ(u̇,l)

n,l )2 | F′n,(l−1)/n

]
+

∑n
k=l

(
ζ
(u̇,l)
n,k

)2
n+ 1− l

)
.

Thus, we receive that

〈
cT ̂̄Un(ω)

〉
(1)−

〈
cT ̂̄Un(ω)

〉
(t) =

n∑
l=bntc+1

K0
n,l ≤

2r
r∑

u=1

(
c(u)
)2 ∫

[t,1]

(
γ̄

(u̇,ü)
n,bnsc

)2E′n
[
(ζ(u̇,bnsc)

n,bnsc )2 | F′n,(bnsc−1)/n

]
ds

+ 2r
r∑

u=1

(
c(u)
)2 ∫

[t,1]

(
γ̄

(u̇,ü)
n,bnsc

)2∑n
k=bnsc

(
ζ
(u̇,bnsc)
n,k

)2
n+ 1− bnsc

ds

+
2r
n

r∑
u=1

(
c(u)
)2 (

γ̄(u̇,ü)
n,n

)2(E′n
[
(ζ(u̇,n)

n,n )2 | F′n,(n−1)/n

]
+
(
ζ(u̇,n)
n,n

)2)
.
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Moreover, we note that

E′n
(
E′n
[
(ζ(u̇,bnsc)

n,bnsc )2 | F′n,(bnsc−1)/n

])
= E′n

(
ζ
(u̇,bnsc)
n,bnsc

)2
=

1
n

n∑
i=1

(
Z

(u̇,bnsc)
n,↑,i (ω)

)2 ≤ 1
n

n∑
i=1

Mn,i(ω) (6.17)

and that

E′n

(∑n
k=bnsc

(
ζ
(u̇,bnsc)
n,k

)2
n+ 1− bnsc

)
=

∑n
k=bnsc E′n

(
ζ
(u̇,bnsc)
n,k

)2
n+ 1− bnsc

≤ 1
n

n∑
i=1

Mn,i(ω).

(6.18)

Applying the Markov-inequality, cf. Gänssler and Stute [20, Lemma 1.18.1],

Fubini’s Theorem, cf. Bauer [6, Korollar 23.7], as well as (6.17) and (6.18), we

receive that

P ′
n

(〈
cT ̂̄Ukn(ω)

〉
(1)−

〈
cT ̂̄Ukn(ω)

〉
(t) ≥ ε

)
≤

8r
ε
·

(
1
n

n∑
i=1

Mn,i(ω)

)
·

r∑
u=1

(
c(u)
)2 ∫

[t,1]

(
γ̄

(u̇,ü)
n,bnsc − γ̄(u̇,ü)(s)

)2 ds

+
8r
ε
·

(
1
n

n∑
i=1

Mn,i(ω)

)
·

r∑
u=1

(
c(u)
)2 ∫

[t,1]

(
γ̄(u̇,ü)(s)

)2 ds

+
4r
ε
·

(
1
n

n∑
i=1

Mn,i(ω)

)
·

r∑
u=1

(
c(u)
)2 1
n

(
γ̄(u̇,ü)

n,n

)2
.

Therefore, it holds that

lim sup
n→∞

P ′
n

(〈
cT ̂̄Ukn

(ω)
〉
(1)−

〈
cT ̂̄Ukn

(ω)
〉
(t) ≥ ε

)
≤

8r · C(ω)
ε

r∑
u=1

(
c(u)
)2 ∫

[t,1]

(
γ̄(u̇,ü)(s)

)2 ds −→ 0,

as t→ 1, where we also use the Dominated Convergence Theorem.

Remember that the theory developed in this chapter only applies to external

covariates, for which time-independent covariates are major example. There-

fore, we only consider time-independent covariates for the remaining conditions

of Assumption 6.2.6.
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6.3.5 Proposition (Time-Independent Covariates). Suppose that As-

sumption 6.2.1 holds, that Z̃n,i, i = 1, . . . , n, n ∈ N, are time independent

covariates and that the covariates processes
{
Zn,i(t) | t ∈ R+

}
are given by

Zn,i(t) = Z̃n,i · 1(t > 0), cf. Example 5.2.11. If

1
n

n∑
i=1

Z̃
(u)
n,i −→Pn,0 µ̃

(u)
1 ∈ R and

1
n

n∑
i=1

Z̃
(u)
n,i Z̃

(v)
n,i −→Pn,0 µ̃

(u,v)
2 ∈ R,

as n→∞, u, v = 1, . . . , p, and

1√
n

max
1≤i≤n

max
1≤u≤p

|Z̃(u)
n,i | −→Pn,0 0, as n→∞,

then we can find in every sub-sequence of natural numbers a sub-sub-sequence

kn, n ∈ N, and a set Ω0 ∈ F, P0(Ω0) = 1, such that Assumption 6.2.6.i,

Assumption 6.2.6.ii and Assumption 6.2.6.iii hold with kn, n ∈ N, for all ω ∈
Ω0.

The following Glivenko-Cantelli-type result is the key for the proof of Propo-

sition 6.3.5.

6.3.6 Lemma. Under Assumption 6.2.1, let akn,i, i = 1, . . . , kn, kn ∈ N,

n ∈ N, be a triangular array of real numbers and assume that limn→∞ kn = ∞
and that

1
kn

kn∑
i=1

akn,i −→ a ∈ R and
1
kn

max
1≤i≤kn

|akn,i| −→ 0, (6.19)

as n→∞, and that the sequence 1
kn

∑kn

i=1|akn,i|, n ∈ N, is bounded. Then it

holds that

sup
0≤t≤1

∣∣∣∣ 1n
bkntc∑
i=1

akn,D′
kn,i

− t · a
∣∣∣∣ −→P ′

kn
0.

Proof. Without loss of generality, we can assume that kn = n, n ∈ N. Let

us assume that an,i ≥ 0, i = 1, . . . , n, n ∈ N. As a first step we show that
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1
n

∑bntc
i=1 an,D′

n,i
−→P ′

n
t · a for every fixed t ∈ [0, 1]. As bntc

n2

∑n
i=1 an,i → t · a

and

P ′
n

(∣∣∣∣ 1n
bntc∑
i=1

an,D′
n,i
− bntc

n2

n∑
i=1

an,i

∣∣∣∣ ≥ ε

)
≤ 1
ε2

VarP ′
n

(
1
n

bntc∑
i=1

an,D′
n,i

)
,

where we used the Tchebychef-inequality, cf. Gänssler and Stute [20, Korol-

lar 1.18.3], we simply need to show that

VarP ′
n

(
1
n

bntc∑
i=1

an,D′
n,i

)
=
bntc
n

1
n

VarP ′
n

(
an,D′

n,1

)
+
bntc

(
btnc − 1

)
n2

Cov
(
an,D′

n,1
, an,D′

n,2

)
−→P ′

n
0,

as n→∞. We have that bntc/n→ t and

0 ≤ 1
n

VarP ′
n

(
an,D′

n,1

)
≤ 1
n

EP ′
n

(
a2

n,D′
n,1

)
=

1
n2

n∑
i=1

a2
n,i

≤ 1
n

max
1≤i≤n

|an,i|
1
n

n∑
i=1

|an,i| −→ 0,

as n→∞, as well as

E′n(an,D′
n,1
an,D′

n,2
) =

1
n(n− 1)

n∑
i=1

n∑
j=1, j 6=i

an,ian,j

=
n

n− 1

(
1
n

n∑
i=1

an,i

)2

− n

n− 1
1
n2

n∑
i=1

a2
n,i −→ a2,

as n→∞, and

E′n(an,D′
n,i

) =
1
n

n∑
i=1

an,i −→ a, as n→∞.

Consequently, it holds that

Cov
(
an,D′

n,1
, an,D′

n,2

)
= E′n(an,D′

n,1
an,D′

n,2
)− E′n(an,D′

n,1
) E′n(an,D′

n,2
) −→ 0,

as n→∞, completing the proof of the first step.
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As a second step we show that the convergence is uniform. For this purpose we

use the same idea as for the proof of the Glivenko-Cantelli Theorem. It holds

the estimate

1
n

bn(j−1)/mc∑
i=1

an,D′
n,i
− j − 1

m
a− a

m
≤ 1
n

bntc∑
i=1

an,D′
n,i
− t · a

≤ 1
n

bn j/mc∑
i=1

an,D′
n,i
− j

m
a+

a

m
,

whenever j−1
m ≤ t ≤ j

m , m ∈ N. Since we can find for every ε > 0 an m ∈ N,

such that ε− a
m > 0, we get that

P ′
n

(
sup

0≤t≤1

∣∣∣∣ 1n
bntc∑
i=1

an,D′
n,i
− t · a

∣∣∣∣ ≥ ε

)

≤ P ′
n

(
max

1≤j≤m

∣∣∣∣ 1n
bn j/mc∑

i=1

an,D′
n,i
− j

m
· a
∣∣∣∣ ≥ ε− a

m

)
,

where the right hand side converges to 0 because of 1
n

∑bntc
i=1 an,D′

n,i
−→P ′

n
t ·a,

as n→∞. By now we have shown that the assertion of the Lemma holds for

non-negative an,i, i = 1, . . . , n.

In the last step we consider arbitrary an,i, i = 1, . . . , n. We define a+
n,i =

an,i 1
(
an,i ≥ 0

)
and a−n,i = −an,i 1

(
an,i ≥ 0

)
, i = 1, . . . , n, n ∈ N. Obviously,

we have that

1
n

max
1≤i≤n

∣∣a+
n,i

∣∣ −→ 0 and
1
n

max
1≤i≤n

∣∣a−n,i

∣∣ −→ 0,

as n→∞. Additionally, 1
n

∑n
i=1 a

+
n,i and 1

n

∑n
i=1 a

−
n,i are bounded. Therefore

we can find in every sub-sequence of natural numbers a sub-sequence kn, n ∈ N,

such that 1
kn

∑kn

i=1 a
+
kn,i → a+ and 1

kn

∑kn

i=1 a
−
kn,i → a−, as n → ∞. Because

of
1
kn

kn∑
i=1

a+
kn,i −

1
kn

kn∑
i=1

a−kn,i =
1
kn

kn∑
i=1

akn,i,
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6 Generalized Permutation Tests

we get that a+ − a− = a. As we have already proved that the Lemma holds

for non-negative an,i, i = 1, . . . , n, it results that

P ′
kn

(
sup

0≤t≤1

∣∣∣∣ 1
kn

bkntc∑
i=1

ank,D′
kn,i

− t · a
∣∣∣∣ ≥ ε

)
≤

P ′
kn

(
sup

0≤t≤1

∣∣∣∣ 1
kn

bkntc∑
i=1

a+
nk,D′

kn,i
− t · a+

∣∣∣∣ ≥ ε

2

)
+

P ′
kn

(
sup

0≤t≤1

∣∣∣∣ 1
kn

bkntc∑
i=1

a−nk,D′
kn,i

− t · a−
∣∣∣∣ ≥ ε

2

)
−→ 0,

as n→∞. Applying the sub-sub-sequence principle yields that

lim
n→∞

P ′
n

(
sup

0≤t≤1

∣∣∣∣ 1n
bntc∑
i=1

an,D′
n,i
− t · a

∣∣∣∣ ≥ ε

)
= 0.

Proof of Proposition 6.3.5. Because of the sub-sub-sequence principle for

random variables that converge in probability, cf. Proposition B.4.8, for every

sub-sequence of the natural number there exists a sub-sub-sequence kn, n ∈ N,

and a set Ω0 ∈ F, P (Ω0) = 1, such that

1
kn

kn∑
i=1

Z̃
(u)
kn,i(ω) −→ µ̃

(u)
1 and

1
kn

kn∑
i=1

Z̃
(u)
kn,i(ω) Z̃(v)

kn,i(ω) −→ µ̃
(u,v)
2 (6.20)

as well as

1
kn

max
1≤i≤kn

∣∣Z(u)
kn,i(ω)

∣∣ −→ 0, and
1
kn

max
1≤i≤kn

∣∣Z(u)
kn,i(ω)Z(v)

kn,i(ω)
∣∣ −→ 0,

as n→∞, u, v = 1, . . . , n, for all ω ∈ Ω0.

Keeping ω ∈ Ω0 fixed, we show that

1
kn

kn∑
i=1

∣∣Z̃(u)
kn,i(ω)

∣∣ ≤ C and
1
kn

kn∑
i=1

∣∣Z̃(u)
kn,i(ω) Z̃(v)

kn,i(ω)
∣∣ ≤ C, (6.21)
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n ∈ N, u, v = 1, . . . , p, for some C ∈ R+. Because of (6.20) there exists a

C ∈ R+, such that

1
kn

kn∑
i=1

∣∣Z̃(u)
kn,i(ω)

∣∣2 ≤ C, n ∈ N, u = 1, . . . , p. (6.22)

Applying the Jensen inequality and the Cauchy-Schwarz inequality, cf. Gänssler

and Stute [20, Satz 5.4.7, Satz 1.13.2] give that

1
kn

kn∑
i=1

∣∣Z̃(u)
kn,i(ω)

∣∣ ≤
√√√√ 1
kn

kn∑
i=1

∣∣Z̃(u)
kn,i(ω)

∣∣2
and

1
kn

kn∑
i=1

∣∣Z̃(u)
kn,i(ω) Z̃(v)

kn,i(ω)
∣∣ ≤

√√√√ 1
kn

kn∑
i=1

∣∣Z̃(u)
kn,i(ω)

∣∣2 ·
√√√√ 1
kn

kn∑
i=1

∣∣Z̃(v)
kn,i(ω)

∣∣2.
Consequently, (6.22) implies (6.21). Now, the assertion is an immediate con-

sequence of Lemma 6.3.6.

6.3.7 Remark. Both in Proposition 6.3.2 and Proposition 6.3.3 we assume

that

sup
t∈I(τc

0 )

∣∣Gn(t)−G(t)
∣∣ −→Pn,0 0, as n→∞, (6.23)

where Gn(t) = 1
n

∑n
i=1 1(Xn,i ≤ t), t ∈ R. In particular, it holds that Gn(t) =

1 − µ̂n,0(t+), where µ̂n,0(t+) = limh↓0 µ̂n,0(t+ h). As in our setting it holds

that t 7→ En,0

(
µ̂n,0(t)

)
is a continuous function, we get that

sup
t∈I(τc

0 )

∣∣µ̂n,0(t+)− En,0µ̂n,0(t)
∣∣ = sup

t∈I(τc
0 )

∣∣µ̂n,0(t)− En,0µ̂n,0(t)
∣∣,

Pn,0-almost surely, where we also use Assumption 3.2.1. Therefore, Proposi-

tion 5.2.2 and Corollary 5.2.3 can be used to verify condition (6.23). Moreover,

one sees that the remaining assumptions of Proposition 6.3.3 are the same as

in Example 5.2.7.
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6 Generalized Permutation Tests

In the following discussion we summarize the previous results and state a set-

ting in which previous premises are satisfied.

6.3.8 Discussion. Suppose that Assumption 4.3.3 holds and that Z̃n,i, i =

1, . . . , n, n ∈ N, are time-independent covariates and that the covariates pro-

cesses
{
Zn,i(t) | t ∈ R+

}
, i = 1, . . . , n, are given by Zn,i(t) = Z̃n,i · 1(t > 0),

t ∈ R, i = 1, . . . , n, cf. Example 5.2.11. Moreover, let us assume that n > k

and that ni = ni(n), i = 0, . . . , k, are sequences of natural numbers, such that

n0 = 0 and nk = n and that the random variables

(Z̃n,i, Xn,i,∆n,i) ∼ (Z̃l, Xl,∆l), nl−1 < i ≤ nl,

under Pn,0, n ∈ N, l = 1, . . . , k. In other words we consider a k-sample problem,

see also Example 5.2.5. If
(
nl − nl−1

)
/n→ νl, as n→∞, for l = 1, . . . , k and

if all covariates are square integrable it obviously holds that

lim
C→∞

sup
n∈N

sup
1≤i≤n

∫
1

(
max

1≤u≤p
(Z̃(u)

n,i )2 > C
)

max
1≤u≤p

(Z̃(u)
n,i )2 dPn,0 = 0.

Remark 5.2.9.a yields that

1√
n

max
1≤i≤n

max
1≤u≤p

|Z̃(u)
n,i | −→Pn,0 0, as n→∞. (6.24)

Chinchin’s Weak Law of Large Numbers (WLLN) gives that

1
n

n∑
i=1

Z̃
(u)
n,i −→Pn,0 µ̃

(u)
1 ∈ R and

1
n

n∑
i=1

Z̃
(u)
n,i Z̃

(v)
n,i −→Pn,0 µ̃

(u,v)
2 ∈ R, (6.25)

in particular the Assumptions of Proposition 6.3.5 hold. Setting

Gn(t) =
1
n

n∑
i=1

1(Xn,i ≤ t) and G̃n(t) =
1
n

n∑
i=1

1(Xn,i ≤ t) ·∆n,i,

we get that Gn(t)−G(t) −→Pn,0 0 and Gn(t)−G(t) −→Pn,0 0, as n→∞, for

all t ∈ (−∞,∞), where

G(t) =
k∑

l=1

νl · P(Xl ≤ t) and G̃(t) =
k∑

l=1

ν · E
(
1(Xn,i ≤ t) ·∆n,i

)
,
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and the WLLN is applied again. As an immediate consequence, we get that

supt∈R+

∣∣Gn(t)−G(t)
∣∣ −→Pn,0 0 and supt∈R+

∣∣G̃n(t)− G̃(t)
∣∣ −→Pn,0 0, as n→

∞. Thus, we proved that the premises of Proposition 6.3.2 hold, i.e.

sup
t∈[0,1]

∣∣∣∣∫
[0,t]

∆n:bnsc ds− G̃ ◦G−1(t)
∣∣∣∣ −→Pn,0 0, as n→∞. (6.26)

Furthermore, let us suppose that we are in the situation of Proposition 6.3.3,

see also Example 5.2.7. Note that the only assumption in Proposition 6.3.3 not

concerning the weight functions, namely supt∈I(τc
0 )

∣∣Gn(t)−G(t)
∣∣ −→Pn,0 0, as

n→∞, was already verified. Consequently, we get that∫
[0,1]

(
γ̂

(u̇,ü)
n:bnsc − γ̄(u̇,ü)(s)

)2 ds −→Pn,0 0, as n→∞. (6.27)

Let mn, n ∈ N, be some sub-sequence of natural numbers. Using Proposi-

tion 6.3.5, cf. equation (6.25), we can find a sub-sub-sequence kn, n ∈ N, and a

set Ω0,1 ∈ F, P0(Ω0,1) = 1, such that Assumption 6.2.6.i – Assumption 6.2.6.iii

hold for kn, n ∈ N, and all ω ∈ Ω0,1. Because of the sub-sequence principle

for random variables that converge in probability, see Proposition B.4.8 and

(6.24), (6.26) as well as (6.27), we can find a set Ω0,2 ∈ F, P0(Ω0,2) = 1, and a

sub-sub-sequence of the sub-sequence kn, n ∈ N, which we call k′n, n ∈ N, such

that Assumption 6.2.6.iv – Assumption 6.2.6.vi hold for the sub-sub-sequence

k′n, n ∈ N, and for all ω ∈ Ω0 = Ω0,1∩Ω0,2, where we note that P0(Ω0) = 1. In

particular this means that Assumption 6.2.6.i – Assumption 6.2.6.vi hold with

the sub-sequence k′n, n ∈ N, for all ω ∈ Ω0.

Because of the estimate

0 ≤ 1
k′n

kn∑
i=1

Mk′n,i(ω) ≤
p∑

u=1

1
k′n

k′n∑
i=1

̂̄µ(u,u)
k′n

(0, ω) −→
p∑

u=1

µ̃
(u,u)
2 ,

as n → ∞, for all ω ∈ Ω0. Assumption i) of Proposition 6.3.4 holds. As-

sumption ii) of Proposition 6.3.4 is valid because of the boundedness of the

weight functions and assumption iii) of Proposition 6.3.4 is exactly Assump-

tion 6.2.6.iv.
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6 Generalized Permutation Tests

Recapitulating, we showed that in the setting of this discussion the premises of

Theorem 6.2.10 and Corollary 6.2.11 hold, i.e. the permutation tests introduced

in Section 6.1 and the tests of Section 4.3 are asymptotically equivalent.
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A Omitted Proofs

In the text several proofs were omitted for various reason. Some of them are

well known results or slight modifications of such results. Others were omitted

to increase the readability. These proofs are collected in this Appendix.

A.1 Proof of Corollary 2.1.3

We want to apply Theorem 2.1.2. Setting Un(t) =
∑kn

i=1

∫
[0,t]

H
(i)
n (s) dM (i)

n (s),

t ∈ R+, Fleming and Harrington [19, Theorem 2.4.3 and Theorem 2.5.2] give

that
〈
Un

〉
(t) is exactly the left hand side of (2.1). Obviously, it holds that

Jε[Un](t) =
kn∑
i=1

∫
[0,t]

H(i)
n (s)1

(∣∣H(i)
n (s)

∣∣ ≥ ε
)

dN (i)
n

and

Aε[Un](t) =
kn∑
i=1

∫
[0,t]

H(i)
n (s)1

(∣∣H(i)
n (s)

∣∣ ≥ ε
)

dA(i)
n ,

cf. Fleming and Harrington [19, Theorem 2.4.1]. Setting Uε
n,1 = Jε[Un] −

Aε[Un] and Uε
n,2 = Un−Uε

n,1, one sees with the same arguments as above that〈
Uε

n,1, U
ε
n,2

〉
(t) = 0 for all t ∈ R+ and that

〈
Uε

n,1

〉
(t) is the left hand side of

(2.2).

A.2 Proof of Corollary 2.1.6

The proof is a slight modification of a proof given in Fleming and Harring-

ton [19, Corollary 3.4.1]. Lemma 2.2.3 in Fleming and Harrington [19] enables
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us to choose a localization sequence {τ1, τ2, . . .}, such that for any k ∈ N we

have the processes N (i)(· ∧ τk), A(i)(· ∧ τk) and H(i)(· ∧ τk), i = 1, . . . , n,

are bounded by k. Note that the processes A(i) are always locally bounded.

M (i)(· ∧ τk) is a square integrable martingale. Theorem 1.5.1 in Fleming and

Harrington [19] yields that the processes
∫
[0,t∧τk]

H(i)(s) dM (i)(s), i = 1, . . . , n,

are martingales. Because of the linearity of the conditional expectation we get

that the process
∑n

i=1

∫
[0,t∧τk]

H(i)(s) dM (i)(s) is a martingale. Let T be a

bounded stopping time then the Optional Stopping Theorem, Theorem 2.4.2

and Theorem 2.5.2 in Fleming and Harrington [19] give that

E
(
Xk(t ∧ T )− Yk(t ∧ T )

)
= 0, for any t > 0, (A.1)

where

Xk(t) =

(
n∑

i=1

∫
[0,t∧τk]

H(i)(s) dM (i)(s)

)2

and

Yk(t) =
n∑

i=1

∫
[0,t∧τk]

(
H(i)(s)

)2 dA(i)(s).

It holds that Xk(t∧T ) → Xk(T ) and Yk(t∧T ) ↑ Yk(T ), as t→∞. Hence, the

Dominated Convergence Theorem and the Monotone Convergence Theorem

give that E
(
Xk(t ∧ T )

)
→ E

(
Xk(T )

)
and E

(
Yk(t ∧ T )

)
→ E

(
Yk(T )

)
, where

E
(
Xk(T )

)
and E

(
Yk(T )

)
are finite. By (A.1) we get E

(
Xk(T )

)
= E

(
Yk(T )

)
.

Applying Theorem 2.1.5 yields that

p1,k = P
(

sup
0≤t≤T

Xk(t) ≥ ε

)
≤ η

ε
+ P

(
Yk(t) ≥ η

)
=
η

ε
+ p2,k.

The Monotone Convergence Theorem gives that

p2,k ↑ P

(
n∑

i=1

∫
[0,T ]

(
H(i)(s)

)2 dA(i)(s) ≥ η

)
= p2, as k →∞,

so for every k ∈ N we have that p1,k ≤ η
ε + p2. The Monotone Convergence

Theorem finally implies

p1,k → P

(
sup

0≤t≤T

(
n∑

i=1

∫
[0,t]

H(i)(s) dM (i)(s)

)2

≥ ε

)
, as k →∞.
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A.3 Proof of Theorem 2.2.7

A.3 Proof of Theorem 2.2.7

Note that Proposition B.5.3 guarantees that the processes
{
f

(i)
n,ξ(t) | t ∈ R

}
,

i = 1, . . . , n, are predictable and locally bounded. Proposition B.5.3 is used

implicitly in the proof to come several times.

First, we prove the asymptotic expansion of log Υn,ξ(t), t ∈ [0, τ ]. A Taylor-

expansion gives that

kn∑
i=1

∫
I(t)

log

(
α

(i)
n,ξ(s)

α
(i)
n,0(s)

)
dN (i)

n (s) =

2
kn∑
i=1

∫
I(t)

f
(i)
n,ξ(s) dN (i)

n (s)−
kn∑
i=1

∫
I(t)

r
(
f

(i)
n,ξ(s)

) (
f

(i)
n,ξ(s)

)2 dN (i)
n (s),

where r(x) = (1 + θ(x))−2 with |θ(x)| ∈
[
0, |x|

]
is the remainder of the Taylor-

expansion. Using this result, Jacod’s Formula, cf. Proposition 2.2.5, gives that

log Υn,ξ(t) = −
kn∑
i=1

∫
I(t)

(
α

(i)
n,ξ(s)

α
(i)
n,0(s)

− 1

)
λ

(i)
n,0(s) ds

+ 2
kn∑
i=1

∫
I(t)

f
(i)
n,ξ(s) dN (i)

n (s)−
kn∑
i=1

∫
I(t)

r
(
f

(i)
n,ξ(s)

) (
f

(i)
n,ξ(s)

)2 dN (i)
n (s).

Adding and subtracting the following terms
∑kn

i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2 dN (i)
n (s) and∑kn

i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
λ

(i)
n,0(s) ds and 2

∑kn

i=1

∫
I(t)

f
(i)
n,ξ(s)λ

(i)
n,0(s) ds yields

log Υn,ξ(t) = −2
kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
λ

(i)
n,0(s) ds

+2
kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)
dM (i)

n,0(s)−
kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2 dM (i)
n,0(s)

+
kn∑
i=1

∫
I(t)

(
1− r

(
f

(i)
n,ξ(s)

)) (
f

(i)
n,ξ(s)

)2 dN (i)
n (s)

= T
(1)
n,ξ (t) + T

(2)
n,ξ (t)− T

(3)
n,ξ (t) + T

(4)
n,ξ (t).
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Note that T (i)
n,ξ(∞) = limt→∞ T

(i)
n,ξ(t) almost surely, i = 1, . . . , 4, which is mainly

relevant for considering the case that τ = ∞.

In the next step, (2.5) is proved. Let us consider T (1)
n,ξ and use the abbreviation

gξ(t) = 2−1Jξ(t). For every ε > 0 there exists a k ∈ N and 0 = t0 < . . . <

tk = τ , such that gξ(ti)− gξ(ti−1) < ε/2, i = 1, . . . , k. It holds the estimate

T
(1)
n,ξ (ti−1) + gξ(ti−1) +

ε

2
≥ T

(1)
n,ξ (t) + gξ(t) ≥ T

(1)
n,ξ (ti) + gξ(ti)−

ε

2

for all t ∈ [ti−1, ti]. Consequently, we receive that

Pn,0

(
sup

t∈I(τ)

∣∣T (1)
n,ξ (t) + gξ(t)

∣∣ ≥ ε

)
≤ Pn,0

(
max
0≤i≤k

∣∣T (1)
n,ξ (ti) + gξ(ti)

∣∣ ≥ ε

2

)

≤
k∑

i=1

Pn,0

(∣∣T (1)
n,ξ (ti) + gξ(ti)

∣∣ ≥ ε

2

)
−→ 0,

as n→∞, where we use (2.3).

Now, we show that

lim sup
n→∞

Pn,0

(
sup

t∈I(τ)

|T (3)
n,ξ (t)| ≥ ε

)
≤ 4ηε−1 + 4ηε−2,

for all ε, η > 0. Then as η is arbitrary, it follows Pn,0

(
supt∈[0,τ ]|T

(3)
n,ξ (t)| ≥ ε

)
→

0 as n→∞. Choose δ, such that ηδ−2 > 2−1gξ(τ). It holds the estimate

Pn,0

(
sup

t∈I(τ)

|T (3)
n,ξ | ≥ ε

)

≤ Pn,0

(
sup

t∈I(τ)

∣∣∣∣ kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
1

(∣∣fn,ξ(s)
∣∣ > δ

)
dM (i)

n,0(s)
∣∣∣∣ ≥ ε

2

)

+Pn,0

(
sup

t∈I(τ)

∣∣∣∣ kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
1

(∣∣fn,ξ(s)
∣∣ ≤ δ

)
dM (i)

n,0(s)
∣∣∣∣ ≥ ε

2

)
= pn,1 + pn,2.
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Moreover, one sees that

pn,1 ≤ Pn,0

(
kn∑
i=1

∫
I(τ)

(
f

(i)
n,ξ(s)

)2
1

(∣∣fn,ξ(s)
∣∣ > δ

)
λ

(i)
n,0(s) ds ≥ ε

4

)

+ Pn,0

(
sup

t∈I(τ)

kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
1

(∣∣fn,ξ(s)
∣∣ > δ

)
dN (i)

n (s) ≥ ε

4

)

The first summand asymptotically vanishes because of (2.4). Note that

Xn,ξ(t ∧ τ) =
kn∑
i=1

∫
I(t∧τ)

(
f

(i)
n,ξ(s)

)2
1

(∣∣fn,ξ(s)
∣∣ > δ

)
dN (i)

n (s), t ≥ 0,

is Lenglart-dominated by

Yn,ξ(t ∧ τ) =
kn∑
i=1

∫
I(t∧τ)

(
f

(i)
n,ξ(s)

)2
1

(∣∣fn,ξ(s)
∣∣ > δ

)
λ

(i)
n,ξ(s) ds, t ≥ 0,

since
{
(Xn,ξ − Yn,ξ)(t ∧ τ) | t ≥ 0

}
is a local martingale, cf. Jacod and Shiryaev

[32, Theorem I.3.18]. A similar technique is used in the proof of Corollary 2.1.6.

Therefore Theorem 2.1.5 gives that

Pn,0

(
sup

t∈I(τ)

Xn,ξ(t ∧ τ) ≥
ε

4

)
≤ 4η

ε
+ Pn,0

(
Yn,ξ(τ) ≥ η

)
−→ 4η

ε
, (A.2)

as n→∞, because of (2.4). Because of Corollary 2.1.6 and 2.1.7, it holds that

pn,2 ≤
4η
ε2

+ Pn,0

(
kn∑
i=1

∫
I(τ)

(
f

(i)
n,ξ(s)

)2
λ

(i)
n,0(s) ds ≥ η

δ2

)
≤ 4η
ε2

+

Pn,0

(∣∣∣∣ kn∑
i=1

∫
I(τ)

(
f

(i)
n,ξ(s)

)2
λ

(i)
n,0(s) ds− 1

2
gξ(τ)

∣∣∣∣ ≥ η

δ2
− 1

2
gξ(τ)

)
, (A.3)

where the second term of the right hand side tends to 0 as n → ∞, because

of (2.3).
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Let us consider T (4)
n,ξ (t). Obviously, it holds that

T
(4)
n,ξ (t) =

kn∑
i=1

∫
I(t)

(
1− r

(
f

(i)
n,ξ(s)

)) (
f

(i)
n,ξ(s)

)2
1

(∣∣f (i)
n,ξ(s)

∣∣ ≤ δ
)

dN (i)
n (s)

+
kn∑
i=1

∫
I(t)

(
1− r

(
f

(i)
n,ξ(s)

)) (
f

(i)
n,ξ(s)

)2
1

(∣∣f (i)
n,ξ(s)

∣∣ > δ
)

dN (i)
n (s)

= T
(4,1)
n,ξ (t) + T

(4,2)
n,ξ (t)

for all δ > 0. Because of (A.2), we get that

Pn,0

(
sup

t∈I(τ)

∣∣T (4,2)
n,ξ (t)

∣∣ ≥ ε

)

≤ Pn,0

(
sup

t∈I(τ)

max
1≤i≤kn

∫
I(t)

(
f

(i)
n,ξ(s)

)2
1

(∣∣f (i)
n,ξ(s)

∣∣ > δ
)

dN (i)
n (s) > δ2

)

≤ Pn,0

(
sup

t∈I(τ)

kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
1

(∣∣f (i)
n,ξ(s)

∣∣ > δ
)

dN (i)
n (s) > δ2

)
→ 0.

For all |x| ≤ δ < 1 it holds that

∣∣1− r(x)
∣∣ = ∣∣∣∣θ2(x) + 2θ(x)

(1 + θ(x))2

∣∣∣∣ ≤ 3δ
(1− δ)2

= η(δ),
∣∣θ(x)∣∣ ∈ [0, |x|].

For sufficiently small δ > 0, we get the estimate

Pn,0

(
sup

t∈I(τ)

∣∣T (4,1)
n,ξ (t)

∣∣ ≥ ε
)

≤ Pn,0

(
sup

t∈I(τ)

kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
1

(∣∣f (i)
n,ξ(s)

∣∣ ≤ δ
)

dN (i)
n (s) ≥ ε

η(δ)

)

≤ Pn,0

(
sup

t∈I(τ)

∣∣∣∣ kn∑
i=1

∫
I(t)

(
f

(i)
n,ξ(s)

)2
1

(∣∣f (i)
n,ξ(s)

∣∣ ≤ δ
)

dM (i)
n,0(s)

∣∣∣∣ ≥ ε

2η(δ)

)

+ Pn,0

(∣∣∣∣ kn∑
i=1

∫
I(τ)

(
f

(i)
n,ξ(s)

)2
λ

(i)
n,0(s) ds− 1

2
gξ(τ)

∣∣∣∣ ≥ ε

2η(δ)
− 1

2
gξ(τ)

)
= pn,3 + pn,4.
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Note that one can always choose δ, such that ε
(
2η(δ)

)−1− 1
2 gξ(τ) > 0. pn,4 →

0, because of (2.3). pn,3 → 0 is proved completely analogously to pn,2 → 0.

Hence, the proof of (2.5) is complete.

Equation (2.8) is an immediate consequence of equation (2.5), where we use

the fact that∣∣log Υn,ξ(τ) + gξ(τ)− T
(2)
n,ξ (τ)

∣∣ ≤ sup
t∈I(τ)

∣∣log Υn,ξ(t) + gξ(t)− T
(2)
n,ξ (t)

∣∣.
Let be c ∈ Rr and ξj ∈ Rm, j = 1, . . . , r. Consider the process

{
Un(t) | t ∈ R+

}
, where Un(t) = −

r∑
j=1

c(j) T
(2)
n,ξj

(t).

We want to apply Corollary 2.1.3. Because of (2.3) and (2.4), it holds that

kn∑
i=1

∫
I(t)

(
2

r∑
j=1

c(i)f
(i)
n,ξj

(s)

)2

λ
(i)
n,ξ(s) ds −→Pn,0

r∑
i=1

r∑
j=1

c(i) c(j) ξTi J (t)ξj ,

as n→∞, and

kn∑
i=1

∫
I(t)

(
2

r∑
j=1

c(j)f
(i)
n,ξj

(s)

)2

1

(∣∣∣∣ r∑
j=1

c(j)f
(i)
n,ξj

(s)
∣∣∣∣ ≥ ε/2

)
λ

(i)
n,0(s) ds

≤ 4r
kn∑
i=1

r∑
j=1

r∑
k=1

∫
I(t)

(
c(j) f

(i)
n,ξj

(s)
)2
1

(∣∣c(k) f
(i)
n,ξk

(s)
∣∣ ≥ ε/(2r)

)
λ

(i)
n,0(s) ds

≤ 8r2
r∑

j=1

kn∑
i=1

∫
I(t)

(
f

(i)
n,ξj

(s)
)2
1

(∣∣f (i)
n,ξj

(s)
∣∣ ≥ ε/r

)
λ

(i)
n,0(s) ds −→Pn,0 0,

where the estimates
(∑r

j=1 aj

)2 ≤ r
∑r

j=1 a
2
j and(

c(j) f
(i)
n,ξj

)2
1
(
|c(k) f

(i)
n,ξk

| ≥ ε/(2r)
)

= (c(j) f (i)
n,ξj

)21
(∣∣c(k) f

(i)
n,ξk

∣∣ ≥ ε/(2r)
)
1
(
|c(j) f (i)

n,ξj
| ≥ ε/(2r)

)
+ (c(j) f (i)

n,ξj
)21
(
c(k) |f (i)

n,ξk
| ≥ ε/(2r)

)
1
(
|c(j) f (i)

n,ξj
| < ε/(2r)

)
≤ (c(k) f

(i)
n,ξk

)21
(
|c(k) f

(i)
n,ξk

| ≥ ε/(2r)
)

+ (c(j) f (i)
n,ξj

)21
(
|c(j) f (i)

n,ξj
| ≥ ε/(2r)

)
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were used. Thus, the conditions (2.1) and (2.2) hold. Corollary 2.1.3 yields

{
Un(t ∧ τ) | t∈R+

} D−→Pn,0

{
W◦

r∑
i=1

r∑
j=1

c(i)c(j)ξTi J (t ∧ τ)ξj
∣∣∣ t∈R+

}
, (A.4)

as n→∞, on D(R+,R). Choosing r = 1 and c = 1 one sees that (2.6) holds.

Applying Jacod and Shiryaev [32, Proposition VI.3.17] yields that

Xn =

{
2

kn∑
i=1

∫
I(t∧τ)

f
(i)
n,ξ(s) dM (i)

n,0 − gξ(t ∧ τ)
∣∣∣ t ∈ R+

}
D−→Pn,0

{
W ◦ ξTJ (t ∧ τ)ξ − gξ(t ∧ τ) | t ∈ R+

}
, (A.5)

as n → ∞. Let d denote the metric on D(R+,R) defined in Jacod and

Shiryaev [32, Formula VI.1.26]. d generates the Skorokhod topology and makes

D(R+,R) a Polish space. (Note that there are metrics on D(R+,R) that gen-

erate the Skorokhod topology, but fail to make D(R+,R) a complete space,

see Jacod and Shiryaev [32, Remark VI.1.27].) Looking at the definition of the

metric, one sees that

d
({

log Υn,ξ(t ∧ τ) | t ∈ R+

}
, Xn

)
≤ sup

t∈I(τ)

∣∣∣∣log Υn,ξ(t) + gξ(t ∧ τ)− 2
kn∑
i=1

∫
I(t)

f
(i)
n,ξ(s) dM (i)

n,0

∣∣∣∣ −→Pn,0 0,

as n → ∞, where we use (2.5). Applying (A.5) and Slutsky’s Lemma, cf.

Billingsley [9, Theorem 4.1], yield (2.7).

In the case τ < ∞, equation (2.9) follows directly from equation (A.4) by

setting r = 1 and c = 1 and using Proposition VI.3.14 in Jacod and Shiryaev

[32]. Analogously, one sees that

Un(τ)−
r∑

i=1

c(i)gξi
(τ) D−→Pn,0 N

(
−

r∑
i=1

c(i)gξi
(τ), cTS (τ)c

)
,

as n → ∞, c = (c(1), . . . , c(r)), where we use Witting and Müller-Funk [72,

Satz 5.83] and (A.4). Applying (2.8) and the Cramér-Wold device, cf. Billings-

ley [9, Theorem 7.7], gives (2.10).
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Now, let us consider the case τ = ∞. We want to apply Theorem 2.1.1. Assume

that τk, k ∈ N, is a sequence of real numbers, such that limk→∞ τk = ∞.

Defining the following processes

Xn,k =
{
Un(t ∧ τk) | t ∈ [0,∞]

}
,

Xk =

{
W ◦

r∑
i=1

r∑
j=1

c(i) c(j)ξTi J (t ∧ τk)ξj
∣∣∣ t ∈ [0,∞]

}
,

X =

{
W ◦

r∑
i=1

r∑
j=1

c(i) c(j)ξTi J (t)ξj
∣∣∣ t ∈ [0,∞]

}
,

X̃n =
{
Un(t) | t ∈ [0,∞]

}
,

it holds that Xn,k
D−→Pn,0 Xk, as n → ∞, and Xk

D−→Pn,0 X, as n → ∞,

on D
(
[0,∞],R

)
, see also the remarks on page 26. Therefore, it remains to be

proven that

lim
k→∞

lim sup
n→∞

Pn,0

(
d̃(X̃n, Xn,k) ≥ ε

)
= 0 for all ε > 0, (A.6)

where d̃ denotes a metric that generates the Skorokhod topology and such

that ensures that D
(
[0,∞],R

)
is a Polish space. For example choose d̃(x, y) =

d0(x ◦ T−1, y ◦ T−1), where d0 is the metric generating the Skorokhod topology

on D
(
[0, 1],R+

)
and making D

(
[0, 1],R+

)
a Polish space, cf. Billingsley [9,

pp. 112], and T : [0, 1] −→ [0,∞], T (t) = t(1− t)−1, t ∈ [0, 1), and T (1) = ∞.

Note that

d̃(X̃n, Xn,k) ≤ sup
t∈[0,∞)

∣∣X̃n(t)−Xn,k(t)
∣∣.

Let η > 0 be arbitrary and set hk,i = η− 1
4

(
c(i)
)2
ξTi
(
J (∞)−J (τk)

)
ξi. There

exists a k0 ∈ N, such that hk,i > 0 for all i = 1, . . . , r and all k ≥ k0.

Pn,0

(
d̃(X̃n, Xn,k) ≥ ε

)
≤ Pn,0

(
sup

t∈[0,∞)

∣∣X̃n(t)−Xn,k(t)
∣∣ ≥ ε

)
≤
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r∑
i=1

Pn,0

(∣∣c(i)∣∣ sup
t∈[0,∞)

∣∣T (2)
n,ξi

(t)− T
(2)
n,ξi

(τk ∧ t)
∣∣ ≥ ε

r

)

≤K +
r∑

i=1

Pn,0

((
c(i)
)2 kn∑

j=1

∫
(τk,∞)

(
f

(j)
n,ξi

(s)
)2
λ

(j)
n,0(s) ds ≥ η

)

≤K +
r∑

i=1

Pn,0

((
c(i)
)2∣∣∣ kn∑

j=1

∫
(τk,∞)

(
f

(j)
n,ξi

(s)
)2
λ

(j)
n,0(s) ds+ hk,i −η

∣∣∣ ≥ hk,i

)
,

where we set K = r2η/(ε2) and use Corollary 2.1.7. If k ≥ k0 we have that

Pn,0

((
c(i)
)2∣∣∣ n∑

j=1

∫
(τk,∞)

(
f

(j)
n,ξi

(s)
)2
λ

(j)
n,0(s) ds+ hk,i − η

∣∣∣ ≥ hk,i

)
≤

Pn,0

((
c(i)
)2∣∣∣∣ kn∑

j=1

∫
I(∞)

(
f

(j)
n,ξi

(s)
)2
λ

(j)
n,0(s) ds− 1

4
ξTi J (∞)ξi

∣∣∣∣ ≥ hk,i

2

)

+ Pn,0

((
c(i)
)2∣∣∣∣ kn∑

j=1

∫
I(τk)

(
f

(j)
n,ξi

(s)
)2
λ

(j)
n,0(s) ds− 1

4
ξTi J (τk)ξi

∣∣∣∣ ≥ hk,i

2

)
→ 0,

as n→∞, for all i = 1, . . . , r, see (2.3). A η > 0 was arbitrary, assertion (A.6)

holds. We showed X̃n
D−→Pn,0 X on D

(
[0,∞],R+

)
. Thus, it holds that

Un(∞) D−→Pn,0 N

(
0,

r∑
i=1

r∑
j=1

c(i) c(j)ξTi J (∞)ξj

)
.

(2.9) results, if one chooses r = 1 and c = 1. Applying (2.8), Witting and

Müller Funk [72, Theorem 5.83] and the Cramér-Wold device, cf. Billingsley

[9, Theorem 7.7], yield (2.10).

A.4 Proof of Theorem 4.2.1

The statistic S is sufficient for the distribution family
{
Pξ | ξ ∈ Rq+r

}
, see Wit-

ting [71, Satz 3.19]. Consequently, we only need to consider the induced distri-

bution family
{
N(J ξ,J ) | ξ ∈ Rq+r

}
, cf. Witting [71, Satz 3.30]. Therefore,
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without loss of generality, we can assume that P0 = N(0,J ) and S is the

identity.

Proof of a). Let J 1/2 be a positive semi-definite, symmetric matrix, such that

J
1
2 J

1
2 = J , see Proposition B.3.3.a. Abbreviating

Π = V1

(
V T

1 J V1

)−
V T

1 − V0

(
V T

0 J V0

)−
V T

0 ,

we see that

J ΠJ Πx = J Πx for all x ∈ Im(J ), (A.7)

where we use Proposition B.2.4.c. Moreover, it holds that the matrix A =

(J Π)TJ −(J Π) is symmetric and self-adjoint with respect to the Euclidean

inner product and that

J
1
2 A J

1
2 J

1
2 A J

1
2 = J

1
2 (J Π)TJ −(J Π)J (J Π)TJ −(J Π)J

1
2

= J
1
2 (J Π)TJ −(J Π)(J Π)(J Π)J

1
2

= J
1
2 (J Π)TJ −(J Π)J

1
2

= J
1
2 A J

1
2 ,

where we use equation (A.7) and that Π and J are symmetric. Hence,

J
1
2 A J

1
2 is an orthogonal projection of rank l, see Eaton [18, Proposi-

tion 1.17]. Eaton [18, Proposition 3.8] yields that the statistic T (S) is χ2
l (δ)-

distributed. We show that l = dim
(
Im(J V1)

)
−dim

(
Im(J V0)

)
. Using Propo-

sition B.3.3.a we get that

l = rank(J
1
2 A J

1
2 ) = dim Im(J

1
2 A J

1
2 ) = dim Im(J A J )

= dim Im(J ΠJ ) = dim
{
J Πx | x ∈ Im(J )

}
= dim

{
ΠV1(x) | x ∈ Im(J )

}
−
{
ΠV0(x) | x ∈ Im(J )

}
= dim

(
Im(J V1)

)
− dim

(
Im(J V0)

)
.

The equivalence is an easy consequence of the projection properties of the

statistic. Using the concept presented in Section B.2, especially Proposi-

tion B.2.5, one sees that

0 = T (J ξ) =
∣∣∣∣ΠV1(J ξ)−ΠV0(J ξ)

∣∣∣∣2
J− ⇐⇒ ΠV1(J ξ) = ΠV0(J ξ).
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As ΠV1(J ξ) = J ξ, the assertion of a) is proved.

Proof of b). One readily checks that Q0 is indeed a group. The invariance of

the testing problem is more or less obvious. The invariance of T can be seen

as follows. Using the decomposition

s =
(
s−ΠV1(s)

)
+
(
ΠV1(s)−ΠV0(s)

)
+ ΠV0(s), s ∈ Im(J ),

we get for any π = Q(·) + u ∈ Q0 that

ΠV1(π s)−ΠV0(π s)

= ΠV1

(
QΠV1(s)−QΠV0(s)

)
+ ΠV1

(
QΠV0(s)

)
−ΠV0

(
QΠV0(s)

)
= QΠV1(s)−QΠV0(s),

since Q
(
s−ΠV1(s)

)
is orthogonal on Im(J V1) and Q

(
ΠV1(s)−ΠV0(s)

)
is

orthogonal on Im(J V0) with respect to <·, ·>J− , see also Proposition B.2.4.

Applying QTJ −Q = J −, gives the first assertion T (s) = T (πs).

Let B and C the matrices defined in Proposition B.3.3.b, i.e. it holds that

BBT = J , C C T = J −, and BTC = C TB = Erank(J )

where El denotes the (l × l) unity-matrix. Assume that x, y ∈ Im
(
J
)
, such

that xTJ −x = yTJ −y and x 6= y. Set w = C T(x− y)/
√
<x− y, x− y>J−

and

H = B
(
Erank(J ) − 2wwT

)
C T. (A.8)

Erank(J ) − 2wwT is a so-called Householder-Matrix, as wTw = 1. Using the

basic properties of these matrices, cf. Stoer [67, pp. 181], one easily shows

that H x = y, H TJ −H = J −, H J H T = J and z = H z, whenever

<z, x− y>J− = 0, z ∈ Im(J ).

We have to show that T (x) = T (y) implies that there exists a π ∈ Q0, such

that ΠV1(y) = ΠV1(πx) = πΠV1(x). Obviously, the matrices defined in equa-

tion (A.8) are helpful to construct such elements of the group. Using the

decomposition

x =
(
x−ΠV1(x)

)
+
(
ΠV1(x)−ΠV0(x)

)
+ ΠV0(x) = x3 + x2 + x1

230



A.4 Proof of Theorem 4.2.1

and

y =
(
y −ΠV1(y)

)
+
(
ΠV1(y)−ΠV0(y)

)
+ ΠV0(y) = y3 + y2 + y1.

T (x) = T (y) means xT
2 J −x2 = yT

2 J −y2. By the previous considerations

we know that there exists a matrix H , such that H x2 = y2 and π(·) =

H (·) + (y1 − x1) ∈ Q0. Easy calculations give that

ΠV1(π x) = ΠV1

(
H (x3 + x2 + x1)

)
+ (y1 − x1) = y2 + y1 = ΠV1(y)

and

πΠV1(x) = H (x2 + x1) + (y1 − x1) = y2 + y1 = ΠV1(y).

The proof of c) is straightforward. It holds that

log
dP (τ)

ξ

dP (τ)
0

=
〈
S −ΠV1(S),J ξ

〉
J− +

〈
ΠV1(S),J ξ

〉
J− −

1
2
〈
J ξ,J ξ

〉
J− .

As
〈
S −ΠV1(S),J ξ

〉
J−=0 for all ξ ∈ HL1

2 , the statistic ΠV1(S) is sufficient

for the distribution family N
(
J V1κ,J

)
, κ ∈ Rk, cf. Witting [71, Satz 3.19].

Therefore, we can assume that V1 = Im
(
J
)

without loss of generality. T is

a maximal invariant statistic in the conventional sense. Choose x ∈ Im(J ),

such that <x, x>J− = 1 and <x, z>J− = 0 for all z ∈ V0 The mapping

T−(s) =
√
sx, satisfies T ◦T−(s) = s for all s ∈ [0,∞). Witting [71, Satz 3.91,

Satz 3.92] yields that every invariant test ϕ is of the form ϕ = ψ ◦ T . The fact

that the class of χ2
l (δ)-distributions, δ ≥ 0, has a monotone likelihood ratio in

the identity implies the assertion, cf. Witting [71, Satz 2.24, Satz 2.36].
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B.1 Generalized Inverse

This section contains a small summary of the facts on generalized inverses used

in the previous chapters.

B.1.1 Definition (Generalized Inverse). Let A be a real (m× r) matrix.

Any real (r ×m) matrix B that satisfies the conditions

i) A B and BA are symmetric,

ii) A BA = A ,

iii) BA B = B,

is called the generalized inverse of A .

B.1.2 Proposition (Existence and Uniqueness of the Generalized In-

verse). For any real (m× r) matrix A , there exists a uniquely determined

matrix B satisfying the conditions of Definition B.1.1. This matrix is abbre-

viated A −.

Proof. Cf. Graybill [24, Theorem 6.2.1, Theorem 6.2.4].

B.1.3 Proposition (Relation to Inverse). Let A be a real (m×m) matrix

with full rank. Then it holds that A − = A −1.

Proof. Cf. Graybill [24, Theorem 6.2.13].
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B.1.4 Proposition (Inverse of Transposed Matrix). For any real (m× r)

matrix A it holds that (A T)− = (A −)T. Especially, the generalized inverse

of a symmetric matrix is also symmetric.

Proof. Cf. Graybill [24, Theorem 6.2.5]

B.1.5 Proposition (Consistency of Linear Equations). The system of

linear equations A x = b is consistent, if and only if A A −b = b.

Proof. Cf. Graybill [24, Theorem 6.3.1].

B.1.6 Proposition (Generalized Inverse and Orthogonal Matrices).

Let A be a real (m×m) matrix and let F be a real orthogonal (m×m)

matrix, i.e. FTF = FFT = Em, where Em denotes the (m×m) unity-

matrix. It holds that (FTA F )− = FTA −F .

Proof. Cf. Graybill [24, Theorem 6.2.10].

B.2 Projections in Hilbert Spaces

This section contains some results on projections in Hilbert spaces used in

previous chapters.

B.2.1 Definition (Hilbert Space). Let
(
V, ||·||

)
denote a real, complete,

normed vector space. If there exists an inner product
〈
·, ·
〉

: V × V −→ R,

i.e. a positive definite, symmetric, bilinear mapping, satisfying ||v|| =
√〈

v, v
〉
,

v ∈ V, then we call the tuple
(
V,
〈
·, ·
〉)

a real Hilbert space.

B.2.2 Definition (Closed, Convex Cone). Let
(
V,
〈
·, ·
〉)

be some real

Hilbert space. A set V0 ⊂ V is called closed, convex cone, if

(i) V0 is closed in the ||·||-topology,

(ii) v1, v2 ∈ V0 and α ∈ (0, 1) imply that αv1 + (1− α)v2 ∈ V0,
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(iii) v ∈ V0 and α ≥ 0 imply that αv ∈ V0.

B.2.3 Proposition (Characterization of Projections). Let
(
V,
〈
·, ·
〉)

be

some real Hilbert space and V0 be a closed, convex cone.

a) For every v ∈ V there exists a unique element ΠV0(v) ∈ V0, such that

||v −ΠV0(v)|| = inf
ṽ∈V0

||v − ṽ||.

ΠV0(v) is called the projection of v on V0.

b) The projection ΠV0(v) is uniquely determined by the conditions〈
ΠV0(v), v

〉
= ||ΠV0(v)||2

and 〈
v, ṽ
〉
≤
〈
ΠV0(v), ṽ

〉
, ṽ ∈ V0.

Proof. Cf. Behnen and Neuhaus [7, Section 7.2].

B.2.4 Proposition (Properties of Projections). Let
(
V,
〈
·, ·
〉)

be some

real Hilbert space and V0 and V1 be closed, convex cones, such that V0 ⊂ V1.

a) For all α ≥ 0 it holds that ΠV0(αv) = αΠV0(v).

b) ΠV0

(
v −ΠV0(v)

)
= 0.

c) ΠV0(v) = v for all v ∈ V0.

d) If V0 is a linear subspace then
〈
v −ΠV0(v), ṽ

〉
= 0,for all ṽ ∈ V0.

e) If V0 is a linear subspace then ΠV0(v1 + v2) = ΠV0(v1) + ΠV0(v2).

f) If V1 is a linear subspace then
〈
ΠV1(v),ΠV0(v)

〉
= ||ΠV0(v)||2.

g) It holds that ||v −ΠV1(v)|| ≤ ||v −ΠV0(v)|| and ||ΠV1(v)|| ≥ ||ΠV0(v)|| for

all v ∈ V. Equality in one of the inequalities implies ΠV0(v) = ΠV1(v).

h) Assume that ΠV0(v) is an inner point of V0 in the sense that for every

ṽ ∈ V1 there exists a ε > 0, such that

(1− α)ΠV0(v) + αṽ ∈ V0 for all α < ε.

Then it holds that ΠV0(v) = ΠV1(v).
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Proof. a), b) and c) are proved by checking the conditions stated in Proposi-

tion B.2.3.b.

Proof of d). As V0 is a linear space, it holds that
〈
v, ṽ
〉
≤
〈
ΠV0(v), ṽ

〉
and〈

v,−ṽ
〉
≤
〈
ΠV0(v),−ṽ

〉
for ṽ ∈ V0, cf. Proposition B.2.3.b. Combining these

inequalities gives the assertion.

Proof of e). Because of d) it is straightforward to check the conditions of

Proposition B.2.3.b.

Proof of f). Using e) and Proposition B.2.3.b gives〈
ΠV1(v),ΠV0(v)

〉
= −

〈
v −ΠV1(v),ΠV0(v)

〉
+
〈
v,ΠV0(v)

〉
= ||ΠV0(v)||2.

Proof of g). Using Proposition B.2.3.a we get that

||v −ΠV0(v)|| = inf
ṽ∈V0

||v − ṽ|| ≥ inf
ṽ∈V1

||v − ṽ|| = ||v −ΠV1(v)||.

Using Proposition B.2.3.b one easily shows Pythagoras’s equality

||v −ΠVi
(v)||2 = ||v||2 − 2

〈
v,ΠVi

(v)
〉

+ ||ΠVi
(v)||2 = ||v||2 − ||ΠVi

(v)||2.

Therefore, the inequalities ||v −ΠV1(v)|| ≤ ||v −ΠV0(v)|| and ||ΠV1(v)|| ≥
||ΠV0(v)|| are equivalent. Assume that ||v −ΠV1(v)|| = ||v −ΠV0(v)||. Con-

sequently, it holds that ||v −ΠV0(v)|| = inf ṽ∈V1 ||v − ṽ||. As the projection is

unique, see Proposition B.2.3.a, it follows the second part of the assertion.

Proof of h). Assume that ΠV0(v) 6= ΠV1(v) . Define the function

g(α) = ||v − (1− α)ΠV0(v)− αΠV1(v)||2

= α2||ΠV0(v)−ΠV1(v)||2 + 2α
〈
ΠV0(v)−ΠV1(v), v −ΠV0(v)

〉
+ ||v −ΠV0(v)||2.

As d2g/d2α = ||ΠV0(v)−ΠV1(v)||2 > 0 we get that g is a strictly convex

function. g) gives that g(0) > g(1). Consequently, it holds that g(0) > g(α)

for all α ∈ (0, 1]. All in all, we have that (1− α0)ΠV0(v) +α0ΠV1(v) ∈ V0 and

||v − (1− α0)ΠV0(v)− α0ΠV1(v)|| < ||v −ΠV0(v)|| = inf
ṽ∈V0

||v − ṽ||

for sufficiently small α0 > 0, which is a contradiction.
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B.2.5 Proposition. Let J be some real, positive semi-definite, symmetric

(m×m) matrix and set

V = Im
(
J
)

and
〈
v1, v2

〉
J− = vT

1 J −v2, v1, v2 ∈ V.

It holds that

a)
(
V,
〈
·, ·
〉

J−

)
is a real Hilbert space.

b) Let Ṽ ⊂ V a closed, convex cone, then

sup
ṽ∈Ṽ

(〈
v, ṽ
〉

J− −
1
2
||ṽ||2J−

)
=

1
2

∣∣∣∣Π
Ṽ
(v)
∣∣∣∣2

J− , v ∈ V.

c) Let L be some real (m× q) matrix. The sets

V0 =
{
J L ξ | ξ ∈ Rq

}
and V+

0 =
{
J L ξ | ξ ∈ Rq, ξ ≥ 0

}
are closed, convex cones.

d) ΠV0(v) = J L
(
L TJ L

)−
L Tv, v ∈ V.

e) It holds that

∣∣∣∣ΠV+
0
(v)
∣∣∣∣2

J− = max
{
πq

I(L Tv)
T(
ρq

I(L
TJ L )

)−
πq

I(L Tv)×∏
i∈I

1

(
π
|I|
{i}

((
ρq

I(L
TJ L )

)−
πq

I(L Tv)
)
≥ 0
)

∣∣∣ ∅ 6= I ⊂ {1, . . . , q}
}
, (B.1)

where we use the notation provided in Definition 4.1.3.

Proof.
〈
·, ·
〉

J− is clearly symmetric and bilinear, see Proposition B.1.4. It

remains to be shown that
〈
·, ·
〉

J− is positive definite. As v ∈ Im(J ), we have

v = J v0 for some v0. It holds that
〈
v, v
〉

J− = v0J v0 ≥ 0.
〈
v, v
〉

J− = 0

implies that v0 ∈ ker(J ), see Proposition B.3.2.b. Consequently, we get v =
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J v0 = 0. It is well known that (V, ||·||J−), ||v||J− =
√〈

v, v
〉

J− , v ∈ V, is

a real, complete, normed vector space. Therefore, the proof of a) is complete.

Proof of b). Using Proposition B.2.3 we get the following chain of equations

1
2
||Π

Ṽ
(v)||2J− =

1
2
||v||2J− −

1
2
||v||2J− +

〈
v,Π

Ṽ
(v)
〉

J− −
1
2
||Π

Ṽ
(v)||2J−

=
1
2
||v||2J− −

1
2
||v −Π

Ṽ
(v)||2J−

=
1
2
||v||2J− −

1
2

inf
ṽ∈Ṽ

(
||v − ṽ||2J−

)
=

1
2
||v||2J− −

1
2

inf
ṽ∈Ṽ

(
||v||2J− − 2

〈
v, ṽ
〉

J− − ||ṽ||2J−

)
= sup

ṽ∈Ṽ

(〈
v, ṽ
〉

J− −
1
2
||ṽ||2J−

)
,

see also Behnen and Neuhaus [7, Equation (3.2.10)]. c) is straightforward. d) is

a consequence of the usual calculus to compute projections on linear sub-spaces

and the fact that v ∈ Im(J ).

Proof of e). For I ⊂
{
1, . . . , q

}
we define the following closed, convex cones

VI =
{
J L T q

I ξ | ξ ∈ R|I|} and V+
I =

{
J L T q

I ξ | ξ ≥ 0, ξ ∈ R|J|},
where V∅ = V+

∅ = {0} and T q
I are given in Definition 4.1.3. In the following

we abbreviate zj = J L T q
{j}, j = 1, . . . , q.

In the next step it is shown that if κ(j) ≥ 0, j ∈ J, and zj , j ∈ J are linearly

dependent, where J ⊂
{
1, . . . , q

}
, then there exists I ( J and κ̃(i) ≥ 0, i ∈ I,

such that ∑
j∈J

κ(j)zj =
∑
i∈I

κ̃(i)zi.

Without loss of generality we can assume that κ(j) > 0. Because of the linear

dependency of the vectors zj , j ∈ J, there exists sets N,P ⊂ J and j0 ∈ J, such

that N ∩ P = ∅, N ∪ P 6= ∅, N ∩ {j0} = P ∩ {j0} = ∅, and

zj0 =
∑
j∈P

ζ(j)zj −
∑
j∈N

ζ(j)zj , ζ(j) > 0, j ∈ N ∪ P.
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Moreover, set M = J\
(
N ∪ P ∪ {j0}

)
. We distinguish two cases. First, if

min{κ(j)/ζ(j) | j ∈ N} ≥ κ(j0) then it holds that

∑
j∈J

κ(j)zj =
∑
j∈M

κ(j)zj +
∑
j∈P

(κ(j)

ζ(j)
+ κ(j0)

)
ζ(j)zj +

∑
j∈N

(κ(j)

ζ(j)
− κ(j0)

)
ζ(j)zj ,

i.e. the assertion. Second, if min{κ(j)/ζ(j) | j ∈ N} < κ(j0) then one can choose

j1 ∈ N, such that κ(j1)/ζ(j1) = min{κ(j)/ζ(j) | j ∈ N}. Consequently, it holds

that

∑
j∈J

κ(j)zj =
∑
j∈P

(κ(j)

ζ(j)
+
κ(j1)

ζ(j1)

)
ζ(j)zj +

∑
j∈N\{j1}

(κ(j)

ζ(j)
− κ(j1)

ζ(j1)

)
ζ(j)zj

+
(
κ(j0) − κ(j1)

ζ(j1)

)
zj0 ,

i.e. the assertion.

Now, we show that the left hand side of equation (B.1) is smaller or equal to

the right hand side. If ΠV+
0
(v) = 0, the assertion is trivial. Using the previous

considerations we know that there exists a set I ⊂ {1, . . . , q}, I 6= ∅, such

that ΠV+
0
(v) =

∑
i∈I κ

(i)zi, where κ(i) > 0, i ∈ I, and zi, i ∈ I, are linearly

independent. Moreover, one easily shows that ΠV+
0
(v) = ΠV+

I
(v), by checking

the conditions of Proposition B.2.3.b. Using Proposition B.2.4.h yields that

ΠV+
I
(v) = ΠVI

(v). By d) one gets that

∣∣∣∣ΠV+
0
(v)
∣∣∣∣2

J− =
∣∣∣∣ΠVI

(v)
∣∣∣∣2

J− = πq
I(L Tv)

T(
ρq

I(L
TJ L )

)−
πq

I(L Tv),

where Definition 4.1.3 is also applied. As zi, i ∈ I, are linearly independent,

the matrix ρq
I(L

TJ L ) has full rank and it hold that{
π
|I|
{i}

((
ρq

I(L
TJ L )

)−
πq

I(L Tv)
) ∣∣ i ∈ I

}
= {κ(i) | i ∈ I},

consequently, ∏
i∈I

1

(
π
|I|
{i}

((
ρq

I(L
TJ L )

)−
πq

I(L Tv)
)
≥ 0
)

= 1.
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Therefore, the left hand side of equation (B.1) is smaller or equal to the right

hand side.

At last, we show that the right hand side of equation (B.1) is smaller or equal

to the left hand side. In the case that the right hand side is 0 the assertion is

trivial. Therefore, we can assume that the right hand side of equation (B.1) is

greater than 0. For any subset I ⊂ {1, . . . , q}, such that

πq
I(L Tv)

T(
ρq

I(L
TJ L )

)−
πq

I(L Tv) > 0

and ∏
i∈I

1

(
π
|I|
{i}

((
ρq

I(L
TJ L )

)−
πq

I(L Tv)
)
≥ 0
)

= 1,

it holds that

πq
I(L Tv)

T(
ρq

I(L
TJ L )

)−
πq

I(L Tv) =
∣∣∣∣ΠVI

(v)
∣∣∣∣2

J−

and ΠVI
(v) ∈ V+

I . Consequently, one receives that ΠVI
(v) = ΠV+

I
(v), by

checking the conditions of Proposition B.2.3.b. Using Proposition B.2.4.g gives

that ∣∣∣∣ΠVI
(v)
∣∣∣∣2

J− =
∣∣∣∣ΠV+

I
(v)
∣∣∣∣2

J− ≤
∣∣∣∣ΠV+

0
(v)
∣∣∣∣2

J− ,

which completes the proof.

B.3 Results on Covariance Matrices

B.3.1 Definition (Covariance Matrix). Let J be a real, symmetric, pos-

itive semi-definite (m×m) matrix. J is called covariance matrix.

B.3.2 Proposition. For any (m×m) covariance matrix J , it holds that

Rm = ker(J )⊕ Im(J )

with respect to the Euclidean inner product. In particular, we have that

a) s ∈ Im(J ) ⇐⇒ sTκ = 0 for all κ ∈ ker(J ).
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b) s ∈ ker(J ) ⇐⇒ sTJ s = 0.

Proof. Set l = rank(J ). The matrix J is diagonalisable, therefore there

exists an orthonormal basis of eigenvectors v1, . . . vm, such that FTJ F =

D , where D = diag
(
λ1, . . . , λl, 0, . . . , 0

)
, λi > 0, i = 1, . . . , l, and F =(

v1, . . . , vm

)
. We have that Im(J ) = span

(
vi | i = 1, . . . , l

)
and ker(J ) =

span
(
vi | i = l + 1, . . . ,m

)
. Hence, the assertions are trivial.

B.3.3 Proposition (Decompositions of Covariance Matrices). Let J

be a (m×m) covariance matrix and set l = rank(J ). The following assertions

hold true.

a) There exists a (uniquely determined) (m×m) covariance matrix J 1/2 sat-

isfying the following properties.

(i) J 1/2J 1/2 = J .

(ii) rank(J 1/2) = l.

(iii) Im(J ) = Im(J 1/2).

(iv) The linear mappings

J : Im(J ) −→ Im(J ) and J 1/2 : Im(J ) −→ Im(J )

are bijective.

b) There exists (m× l) matrices B and C , such that

(i) J = BBT and J − = C C T,

(ii) rank(B) = rank(C ) = l,

(iii) BTC = C TB = El, where El denotes the (l × l) unity matrix,

(iv) B− = C T and C− = BT.

Proof. We use the notation introduced in the proof of Proposition B.3.2.

Set J 1/2 = FD̃FT, where D̃ = diag
(√
λ1 . . . ,

√
λl, 0 . . . , 0

)
. Obviously, it

holds that J 1/2J 1/2 = FDFT = J and that rank(J 1/2) = rank(D̃) =

rank(D) = l. Clearly, J 1/2 is a covariance matrix. We have that Im(J 1/2) =
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span
(
vi | i = 1, . . . , l

)
= Im(J ). As v1, . . . , vl are eigenvectors to positive

eigenvalues the remaining assertions of a) are straightforward.

For the proof of b) we set

B = F

(
diag

(√
λ1 . . . ,

√
λl

)
0

)
and C = F

(
diag

(
1/
√
λ1 . . . , 1/

√
λl

)
0

)
.

It holds that BBT = FDFT = J and C C T = FD−FT = J −, where we

use Proposition B.1.6. Obviously, it also holds that rank(B) = rank(C ) = l.

The proof of the last but one assertion is straightforward. The last asser-

tion of b) is shown by checking the conditions of Definition B.1.1 and using

Proposition B.1.2.

B.3.4 Proposition. Let J be some (m×m) covariance matrix and s ∈
Im(J ). Furthermore, assume that J is partitioned as follows

J =

(
J1,1 J1,2

J2,1 J2,2

)
,

where J1,1 is a (r × r) matrix.

a) It holds the inclusion ker(J2,2) ⊂ ker(J1,2).

b) There exists a matrix C , such that J1,2 = C TJ2,2.

c) Assume that V is some real (m× q) matrix. It holds that

V Ts ∈ Im(V TJ V ).

Proof. Let B be the matrix defined in Proposition B.3.3.b and assume that

B =

(
B1

B2

)
,

where B1 is a (r × l) matrix. It holds that

J =

(
J1,1 J1,2

J2,1 J2,2

)
=

(
B1BT

1 B1BT
2

B2BT
1 B2BT

2

)
.
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Proposition B.3.2.b gives that κTB2BT
2 κ = 0 for all κ ∈ ker(J2,2). Thus, one

gets that BT
2 κ = 0 and B1BT

2 κ = 0, i.e. the assertion of a) holds.

Proof of b). Proposition B.3.2.a and a) give that the columns of J2,1 are

elements of Im(J2,2). Thus, J2,1 = J2.2C for some matrix C . As J T
2,1 =

J1,2 andJ2,2 is symmetric, the result is the assertion.

Proof of c). As s ∈ Im(J ) there exists s0, such that s = J s0. Assume

that κ ∈ ker
(
V TJ V

)
. Proposition B.3.2.b gives that V κ ∈ ker(J ). Conse-

quently, κTV Ts = sT0 J V κ = 0. Proposition B.3.2.a yields the assertion.

B.4 Results on Stochastic Convergence

This section provides some results on stochastic convergence used in the pre-

vious chapters.

B.4.1 Definition (Stochastic Convergence). a) Assume that
(
Ω,A,P

)
is

some probability space and that V (u,v) : Ω,−→ R, u = 1, . . . , q, v = 1, . . . , r,

are measurable mappings. The mapping

V : Ω −→ Rq×r, V =


V (1,1) · · · V (1,r)

...
. . .

...

V (q,1) · · · V (q,r)

 ,

is called a real (q × r) random matrix.

b) Let Vn, n ∈ N, be a sequence of real (q × r) random matrices. We say Vn

converges in probability to some real (q × r) matrix V ,

Vn − V −→Pn
0, as n→∞,

if and only if, for all ε > 0,

lim
n→∞

Pn

(
|V (u,v)

n − V (u,v)| ≥ ε
)

= 0 u = 1, . . . , q, v = 1, . . . , r.

B.4.2 Remark. a) The vector spaces Rq×r and Rq·r are isomorph.
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b) The definition of the stochastic convergence is based on the vector space

isomorphism between Rq×r and Rq·r and the fact that on Rq·r all norms are

equivalent. Choosing the sup-norm, cf. Definition B.4.3, leads to the above

definition of the stochastic convergence.

c) For sequences of real (1× 1) random matrices Definition B.4.1 is the usual

definition of stochastic convergence for sequences of real random variables.

B.4.3 Definition (Sup-Norm, Row-Sum-Norm). Assume that x ∈ Rq

and that A is some real (r × q) matrix.

a) The mapping ||·||∞ : Rq −→ R, ||x||∞ = max1≤j≤q|x(j)|, is called sup-norm.

b) The mapping ||·||r.s. : Rr×q −→ R, ||A ||r.s. = max1≤u≤q

∑r
v=1|A (u,v)| is

called row-sum-norm.

B.4.4 Proposition (Properties of Row-Sum-Norm). The following as-

sertions hold true.

a) ||·||r.s. is a norm on the space Rq×r.

b) ||A x||∞ ≤ ||A ||r.s. · ||x||∞, A ∈ Rq×r, x ∈ Rr.

c) ||A B||r.s. ≤ ||A ||r.s. · ||B||r.s., A ∈ Rq×r, B ∈ Rr×s.

d) ||x||∞ = ||x||r.s., x ∈ Rq.

Proof. Cf. Königsberger [44, pp. 26].

B.4.5 Proposition. Let V be some real (q × r) matrix. The following state-

ments are equivalent

(i) V̂n − V −→Pn
0, as n→∞.

(ii) ||V̂n − V ||r.s. −→Pn
0, as n→∞.

Proof. Assume that (i) holds. For all ε > 0 we have that

Pn

{
||V̂n − V ||r.s. ≥ ε

}
≤

q∑
u=1

Pn

(
r∑

v=1

|V̂ (u,v)
n − V (u,v)| ≥ ε

)

≤
q∑

u=1

r∑
v=1

Pn

(
|V̂ (u,v)

n − V (u,v)| ≥ ε

r

)
→ 0,
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as n→∞. Let us assume that (ii) holds. As we have

Pn

(
|V̂ (u,v)

n − V (u,v)| ≥ ε
)
≤ Pn

(
||V̂n − V ||r.s. ≥ ε

)
→ 0,

as n→∞, for all ε > 0, the proof is complete.

B.4.6 Proposition. a) Assume that

Vn,i
D−→Pn

Vi and Vn,i −Wn,i −→Pn
0, as n→∞, i = 1, 2,

where Vn,1 is a real (q × r) random matrix and Vn,2 is a real (r × s) random

matrix. It holds that

Vn,1Vn,2 −Wn,1Wn,2 −→Pn
0, as n→∞.

b) Vn − V −→Pn
0, as n → ∞, implies Vn

D−→Pn
V as n → ∞, where Vn,

n ∈ N, is a sequence of (q × r) random matrices and V is a (q × r) matrix.

Proof. We show the first assertion. Using Slutsky’s Lemma, cf. Witting and

Müller-Funk [72, Satz 5.45], one gets that Wn,i
D−→Pn Vi. The Continu-

ous Mapping Theorem, cf. Witting and Müller-Funk [72, Satz 5.43], yields

||Vn,i||r.s.
D−→Pn

||Vi||r.s. and ||Wn,i||r.s.
D−→Pn

||Vi||r.s.. The following estimate

and a special case of Slutsky’s Lemma, cf. Witting and Müller-Funk [72, Ko-

rollar 5.84], give

0 ≤ ||Vn,1Vn,2 −Wn,1Wn,2||r.s.

= ||Vn,1Vn,2 − Vn,1Wn,2 + Vn,1Wn,2 −Wn,1Wn,2||r.s.

≤ ||Vn,1||r.s. ||Vn,2 −Wn,2||r.s. + ||Vn,1 −Wn,1||r.s. ||Wn,2||r.s. −→Pn
0,

as n→∞. Proposition B.4.5 yields the assertion.

Using Remark B.4.2 and Witting and Müller-Funk [72, Hilfssatz 5.82] one gets

the second assertion.

B.4.7 Proposition. Assume that Xn
D−→Pn

X, where L(X) is some distri-

bution on R, such that P
(
X = 0

)
= 0. If Xn − X̂n −→Pn 0 then we have

that

1
(
Xn ≥ 0

)
− 1

(
X̂n ≥ 0

)
−→Pn

0, as n→∞.
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Proof. By Slutsky’s Lemma, cf. Witting and Müller-Funk [72, Satz 5.45], we

also know X̂n
D−→Pn

X, as n→∞. Because of the inclusions{
Xn ≥ 0

}
∩
{
X̂n < 0

}
=
({
Xn ≥ 0

}
∩
{
X̂n < 0

}
∩
{
|Xn − X̂n| ≥ δ

})
∪
({
Xn ≥ 0

}
∩
{
X̂n < 0

}
∩
{
|Xn − X̂n| < δ

})
⊂
{
|Xn − X̂n| ≥ δ

}
∪
{
0 ≤ Xn ≤ δ

}
and {

Xn < 0
}
∩
{
X̂n ≥ 0

}
⊂
{
|Xn − X̂n| ≥ δ

}
∪
{
0 ≤ X̂n ≤ δ

}
,

for all δ, ε > 0, it holds that

Pn

{∣∣1(Xn ≥ 0
)
− 1

(
X̂n ≥ 0

)∣∣ ≥ ε
}

≤ Pn

((
{Xn ≥ 0} ∩ {X̂n < 0}

)
∪
(
{Xn < 0} ∩ {X̂n ≥ 0}

))
≤ 2Pn

(
|Xn − X̂n| ≥ δ

)
+ Pn

(
0 ≤ Xn ≤ δ

)
+ Pn

(
0 ≤ X̂n ≤ δ

)
.

As we can choose a sequence of δk ↓ 0, such that P
(
X = δk

)
= 0, the Port-

manteau Theorem, cf. Billingsley [9, Theorem 2.1], gives that

lim sup
n→∞

Pn

(∣∣1(Xn ≥ 0)− 1(X̂n ≥ 0)
∣∣ ≥ ε

)
≤ 2 P

(
0 ≤ X ≤ δk

)
→ 0,

as k →∞, since P
(
0 ≤ X ≤ δk

)
→ P

(
X = 0

)
, as k →∞.

B.4.8 Proposition (Sub-Sub-Sequence Principle for Convergence in

Probability). Let Xn, n ∈ N be a sequence of real-valued random variables

that are defined on the probabilty space (Ω,F,P), the following conditions are

equivalent

i) Xn −→P 0, as n→∞.

ii) In every sub-sequence of the natural numbers mn, n ∈ N, there exists a

sub-sub-sequence kn, n ∈ N, such that Xkn
→ 0, as n → ∞, P-almost

surely.

Proof. Cf. Bauer [6, Korollar 20.8].
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B.5 Results on Measure Theory

B.5.1 Proposition. Let (Ω,F) be some measurable space and Xt : (Ω,F) −→
(Ω′,F′), t ∈ R+, measurable mappings. If for all t ∈ R+ and ω ∈ Ω there exists

ε > 0, such that

Xt(ω) = Xt+s(ω) for all s ∈ [0, ε)

then the filtration {Ft | t ∈ R+}, Ft = σ
(
Xs | s ≤ t

)
, is right continuous. For

any σ-algebra G, G ⊂ F, it holds that the filtration {G ∨ Ft | t ∈ R+} is right

continuous.

Proof. The first assertion can be found in Fleming and Harrington [19, The-

orem A.2.6]. Considering the mappings

X̃t :
(
Ω,F

)
−→

(
Ω× Ω′,G⊗ F′

)
, X̃t(ω) =

(
ω,Xt(ω)

)
, t ∈ R+,

one sees that G ∨ Ft = σ
(
X̃s | s ≤ t

)
. Thus, the first assertion implies the

second.

B.5.2 Proposition. Set R̄ = R∪{±∞} and let B̄ denote the Borel σ-algebra

on R̄. Assume that
(
Ω,F,F = {Ft | t ∈ R+}, Q

)
is some filtered space and

that Zt : Ω −→ R̄p, t ∈ R+, are measurable mappings, such that the process

{Zt | t ∈ R+} is progressively measurable, i.e. for all t ∈ R+ the mapping

(ω, s) 7→ Zs(ω) on Ω × [0, t] is Ft ⊗ B+[0, t]–B̄p measurable, where B+[0, t] =

{B ∩ [0, t] | B ∈ B+}. The following assertions hold true.

a) {Zt | t ∈ R+} is adapted to F.

b) The mapping s 7→ Zs(ω) is B+–B̄p measurable for every ω ∈ Ω.

c) Assume that f :
(
R̄p, B̄p

)
−→

(
R̄, B̄

)
is non-negative and that µ is some

σ-finite measure on B+. The processes{
f(Zs) | s ∈ R+

}
and

{∫
[0,t]

f(Zs) dµ(s)
∣∣∣ t ∈ R+

}
are progressively measurable.
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Proof. The first assertion is an easy consequence of Bauer [6, Lemma 23.5].

The same Lemma also yields that
{
s | Zs(ω) ∈ B, s ≤ t

}
∈ B+[0, t] for every

ω ∈ Ω and B ∈ B̄p, t ∈ R+. Consequently, we get that{
s | Zs(ω) ∈ B

}
=
⋃
n≥1

{
s | Zs(ω) ∈ B

}
∩ [0, n]

=
⋃
n≥1

{
s | Zs(ω) ∈ B, s ≤ n

}︸ ︷︷ ︸
∈B+

,
(B.2)

which proves b).

Consider the mapping (ω, s) 7→ f
(
Zs(ω)

)
on Ω× [0, t]. Since f−1(B) ∈ B̄p for

all B ∈ B̄, it holds that{
(ω, s) | f

(
Zs(ω)

)
∈ B

}
=
{
(ω, s) | Zs(ω) ∈ f−1(B)

}
∈ Ft ⊗ B+[0, t],

where we use that the process {Zs | s ∈ R+} is progressively measurable.

Consider the space Ω× [0, t]× [0, t] equipped with the σ-algebra Ft⊗B+[0, t]⊗
B+[0, t]. All processes and functions are now defined on this product space. The

mappings (ω, s, u) 7→ f
(
Zs(ω)

)
and (ω, s, u) 7→ 1(u ≤ s), (ω, s, u) ∈ Ω× [0, t]×

[0, t], are obviously Ft ⊗ B+[0, t] ⊗ B+[0, t]–B̄ measurable. Fubini’s Theorem,

cf. Bauer [6, Satz 23.6], gives that

(ω, s) 7→
∫

[0,s]

f
(
Zs(ω)

)
dµ(u), (ω, s) ∈ Ω× [0, t],

is Ft ⊗ B+[0, t]–B̄ measurable.

B.5.3 Proposition. Let
(
Ω,F,F = {Ft | t ∈ R+}, Q

)
be some filtered space

and assume that Zt : Ω −→ R̄p, t ∈ R+, are mappings, such that the process

Z = {Zt | t ∈ R+} is predictable. Moreover, f : Rp −→ Rq is some Bp–Bq

measurable function.

a) The process
{
f(Zt) | t ∈ R+

}
is predictable.

b) Assume that Z is additionally locally bounded. If f is continuous or

bounded then the process
{
f(Zt) | t ∈ R+

}
is locally bounded.
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Proof. Let P denote the predictable σ-algebra. Clearly, for all B ∈ Bq it holds

that {
(ω, s) | f(Zs) ∈ B

}
=
{
(ω, s) | Zs ∈ f−1(B)

}
∈ P.

Proof of b). In the case that f is bounded the assertion is trivial. In the case

that f is continuous the assertion is implied by the fact that f maps compact

sets on compact sets.

B.5.4 Proposition. Assume that (Ωi,Fi,Fi, Qi), where Fi = {Fi,t | t ∈ R+},
i = 1, . . . , n, are filtered probability spaces and that Zi,t : Ωi −→ R̄+, t ∈ R+,

are measurable mappings.

Define Ω =
�

Ωi, F =
⊗n

i=1 Fi, Q =
⊗n

i=1Qi as well as

F0 =
{

F0
t =

⊗n

i=1
Fi,t

∣∣ t ∈ R+

}
, F =

{
Ft =

⋂n

s>t
F0

s

∣∣ t ∈ R+

}
and $i : Ω −→ Ωi, $i(ω1, . . . , ωn) = ωi, i = 1, . . . , n.

a)
∨

t≥0 Fi,t = Fi, i = 1, . . . , n, implies that
∨

t≥0 F0
t =

∨
t≥0 Ft = F.

b) If {Zi,t | t ∈ R+} is progressively measurable then {Zi,t ◦$i | t ∈ R+} is

progressively measurable with respect to F and F0.

c) If {Zi,t | t ∈ R+} is predictable then {Zi,t ◦$i | t ∈ R+} is predictable with

respect to F and F0.

d) If τi is a Fi stopping time then τ◦$i is a F and F0 stopping time.

Proof. As {F0
t | t ≥ 0} is increasing, one gets that

⋃
t≥0 F0

t =
⋃

t≥0 Ft. Obvi-

ously, it holds that
∨

t≥0 F0
t ⊂ F, since

F0
t = σ

(�n

i=1
Fi

∣∣∣ Fi ∈ Fi,t

)
⊂ σ

(�n

i=1
Fi

∣∣∣ Fi ∈ Fi

)
= F.
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On the other hand, it holds that

F = σ
(⋃n

i=1

{
$−1

i (F ) | F ∈ Fi

})
= σ

(⋃n

i=1

{
$−1

i (F )
∣∣ F ∈

∨
t≥0

Fi,t

})
= σ

(⋃n

i=1
σ
(
$−1

i (F )
∣∣ F ∈

⋃
t≥0

Fi,t

))
= σ

(⋃n

i=1

{
$−1

i (F )
∣∣ F ∈

⋃
t≥0

Fi,t

})
= σ

(⋃
t≥0

⋃n

i=1

{
$−1

i (F ) | F ∈ Fi,t

})
= σ

(⋃
t≥0

{�n

i=1
Fi

∣∣∣ Fi ∈ Fi,t

})
⊂ σ

(⋃
t≥0

F0
t

)
= σ

(⋃
t≥0

Ft

)
.

Proof of b). It holds that{
(ω, s) | Zi,s ◦$i(ω) ∈ B

}
= $−1

i

({
(ω, s) | Zi,s(ω) ∈ B

})
∈ F0

t ⊗ B+[0, t]

and F0
t ⊂ Ft for all B ∈ B̄p.

Proof of c). Let Q and Qi denote the predictable σ-algebras with respect to F
and Fi. Define $̃i : Ω×R+ −→ Ωi×R+, $̃i(ω, s) = (ωi, s). As Qi is generated

by the predictable rectangles

F0 × {0}, Fs × (s, t], Fu ∈ Fi,u, s < t,

and as $̃−1
i

(
F0 × {0}

)
= $−1

i (F0)×{0} and $̃−1
i

(
F0 × (s, t]

)
= $−1

i (F0)×(s, t]

are also predictable rectangles, where we use that F0
s ⊂ Fs, it results that $̃i is

Q–Qi measurable. As {Zi,s ◦$i ∈ B} = $̃−1
i

(
{Zi,s ∈ B}

)
, B ∈ B̄p, it follows

the assertion.

Proof of d). It holds that

{τ◦$i ≤ t} ∈ $−1
i

(
{τi ≤ t}

)
∈ F0

t ⊂ Ft, t ∈ R+.

B.5.5 Proposition. Let
(
Ω,F,P

)
be some probability space and assume that

{X(t) | t ∈ T} is a real valued stochastic process on Ω.
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a) Let T0 ⊂ T be some countable set and assume that for every t ∈ T and

every ω ∈ Ω, there exists a sequence tk(ω, t), k ∈ N, such that

i) tk(ω, t) ∈ T0, k ∈ N,

ii) limk→∞X
(
tk(ω, t), ω

)
= X(t, ω).

Then it holds that supt∈T

∣∣X(t)
∣∣ = supt∈T0

∣∣X(t)
∣∣. Moreover, supt∈T

∣∣X(t)
∣∣

is F–B measurable.

b) Additionally, assume that these sequences are independent of ω ∈ Ω, i.e.

tk(t) = tk(t, ω) for all ω ∈ Ω, and that E supt∈T

∣∣X(t)
∣∣ <∞, then

lim
k→∞

EX
(
tk(t)

)
= EX(t) for all t ∈ T.

Proof. For every fixed ω ∈ Ω, we know that there exists a sequence sk ∈
T, k ∈ N, such that limk→∞

∣∣X(sk, ω)
∣∣ = supt∈T

∣∣X(t, ω)
∣∣ and

∣∣X(sk, ω)
∣∣ ≤∣∣X(sk+1, ω)

∣∣, k ∈ N. Using the assumption, we can find a sequence tk ∈ T0,

k ∈ N, such that

lim
k→∞

∣∣∣∣∣X(sk, ω)
∣∣− ∣∣X(tk, ω)

∣∣∣∣∣ = 0.

This establishes the equality of the suprema. For the measurability, see Bauer

[6, Satz 9.5].

Proof of b). As
∣∣X(tk(t)

)∣∣ ≤ supt∈T

∣∣X(t)
∣∣, the result is an immediate con-

sequence of the Dominated Convergence Theorem, cf. Bauer[6, Satz 15.1 and

Satz 15.6].
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Summary

The determination of the influence of covariates on survival times is a common
issue in biomedical research. The interaction between covariates and survival
times can be specified by the Modified Cox Regression Model (MCRM). This
model incorporates crucial aspects of the popular and frequently applied Cox
Regression Model and the basic concept of the rank tests with estimated scores
provided by Behnen and Neuhaus. On the basis of localized, parametric sub-
models of the MCRM, tests for various hypotheses are rigorously developed.

The considered models are stated as counting process models; therefore a gen-
eral result on asymptotic normality for such models is discussed and applied to
localized, parametric sub-models of the MCRM. Using the likelihood ratio test
statistic of the limit experiment, asymptotically unbiased and asymptotically
admissible tests are derived.

In order to receive test statistics that are independent of the special choice
of the underlying localized, parametric sub-model of the MCRM, sequences of
hardest parametric sub-models are considered. In particular, statistical con-
siderations are made to shape and provide a comprehensible and coherent def-
inition of sequences of hardest parametric sub-models.

Examples addressing the applicability of the MCRM are given and the connec-
tion to known results is shown. Moreover, the underlying general assumptions
are investigated in detail for important special cases. Additionally, a descrip-
tive illustration of the tests is provided by presenting them as projective-type
tests.

Finally, a permutation method to determine critical values is introduced. The
resulting conditional permutation tests are asymptotically equivalent to the
above constructed tests, but keep the level even for finite sample-sizes in certain
situations.
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Zusammenfassung

Die Bestimmung des Effekts von Kovariablen auf Überlebenszeiten ist eine in
der biomedizinischen Forschung häufig auftretende Fragestellung. Das Zusam-
menspiel zwischen Kovariablen und Überlebenszeiten kann mit dem modifizier-
ten Cox’schen Regressionsmodell (MCRM) beschrieben werden. Dieses Modell
verbindet die wesentlichen Aspekte des populären und häufig angewandten
Cox’schen Regressionsmodells mit dem Konzept der Rangtests mit geschätzten
Gewichten von Behnen und Neuhaus. Auf der Grundlage von lokalisierten,
parametrischen Teilmodellen des MCRM werden Tests für verschiedene Hy-
pothesen entwickelt.

Die betrachteten Modelle werden als Zählprozessmodelle formuliert, deshalb
wird ein allgemeines Resultat über asymptotische Normalität für solche Mo-
delle erörtert und auf lokalisierte, parametrische Teilmodelle des MCRM ange-
wandt. Unter Verwendung der Likelihood-Quotienten-Teststatistik des Limes-
experiments werden asymptotisch unverfälschte und asymptotisch zulässige
Tests hergeleitet.

Um Tests zu erhalten, die von einer speziellen Wahl des lokalisierten, parame-
trischen Teilmodells unabhängig sind, werden Folgen von härtesten parame-
trischen Teilmodellen betrachtet. Insbesondere wird aufgrund von statistischen
Überlegungen eine anschauliche und verständliche Definition der härtesten
parametrischen Teilmodelle entwickelt.

Weiterhin werden Beispiele, die die Anwendungsmöglichkeiten des MCRM
demonstrieren, diskutiert und die Verbindung zu bekannten Resultaten aufge-
zeigt. Auch werden die allgemeinen Voraussetzungen für wichtige Spezialfälle
näher untersucht. Durch den Nachweis, dass es sich bei den vorgestellten Ver-
fahren um Projektionstests handelt, wird zusätzlich eine anschauliche Deutung
der Ergebnisse gegeben.

Abschließend wird eine Permutationsmethode vorgestellt, um kritische Werte
für die Tests zu bestimmen. Die so konstruierten bedingten Permutationstests
sind asymptotisch äquivalent mit den oben behandelten Tests, aber halten das
Niveau bereits bei endlichen Stichprobenumfängen in bestimmten Situationen
ein.
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