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Abstract

For seismic imaging of complex 3-D structures by e.g. prestack Kirchhoff depth migration
large amounts of traveltime tables are required. This work provides a wavefront-oriented
ray tracing technique for multi-valued traveltimes in smooth 3-D heterogeneous anisotropic
media. In this method, wavefronts are propagated stepwise through the model and output
quantities are interpolate (e.g., traveltimes, slowness) from rays to gridpoints. In con-
trast to isotropic media, where the input is a velocity model, the model for an anisotropic
medium is defined by 21 elastic parameters at each gridpoint. To provide an efficient,
accurate and fast algorithm for the interpolation of the elastic parameters to arbitrary
points, the Cardinal Spline interpolation has been used, which produces an interpolated
function that is continuous through the second derivative. The insertion of a new ray is
performed by tracing it directly from the source (Coman, 2003). To calculate traveltimes
at gridpoints a distance-weighted averaging method is used.

To demonstrate the accuracy of the method the traveltimes computed for a homogeneous
anisotropic model with elliptical symmetry are compared to exact traveltimes available
for this medium. Since it exists no analytical solution for an inhomogeneous anisotropic
model, I compare the results with an alternative method for traveltime computation, the
FD perturbation method (Soukina and Kashtan, 2001). To describe the subsurface models
elastic parameters have been chosen that are related to real rocks.

Kirchhoff migration is an inversion technique that images the structure of the subsur-
face from seismic reflection data. Even if newer migration methods exist that can in some
cases provide better images, Kirchhoff migration is still a standard technique. However, to
obtain a high quality image even illumination of the subsurface is essential. Conventional
Kirchhoff migration, however, does not provide the desired angular coverage at the image
point, especially when complex media are considered. In this work I suggest a new strat-
egy for migration with angular parametrisation in anisotropic media. The method, which
guarantees even illumination, combines the conventional ray shooting with a hyperbolic
traveltime interpolation. This makes the technique very efficient. For the application to
the migration in the angular domain the hyperbolic traveltime interpolation is extended
to an irregular grid.

To confirm the high potential of the new strategy, I present two synthetic data examples.
First I apply the migration technique to a simple anisotropic model where elliptical sym-
metry is assumed. To show that the method can be applied to realistic data sets I also
present a more complex isotropic model.






Zusammenfassung

Die vorliegende Dissertation ist mit Ausnahme dieser Zusammenfassung in englischer
Sprache verfasst. Da die geophysikalische Fachterminolgie zu weiten Teilen aus dem Eng-
lischen kommt und zumeist nur schwer ein deutsches Aquivalent gefunden werden kann,
wurde auf eine Ubersetzung der Fachbegriffe verzichtet. Solche Begriffe sind im Folgenden
durch ”Hochkommata” hervorgehoben.

Einleitung

Im Bereich der Erddl- und Erdgas Exploration ist das Prinzip der Migration ein weitver-
breitetes und etabliertes Werkzeug, um ein realistisches Abbild vom Untergrund zu erhal-
ten. Die Durchfithrung einer Migration verlangt zunéchst ein Untergrundmodell, definiert
durch seine elastischen Parameter. Wird ein Medium als isotrop angenommen, so reichen
zur Beschreibung die Geschwindigkeiten der sich in diesem Medium ausbreitenden Wellen,
Kompressionswelle und Scherwelle, und die Dichte des zugrundegelegten Materials aus.
Im einfachsten Fall, dem homogenen Modell, sind die Geschwindigkeiten fiir alle Unter-
grundpunkte gleich. Weitaus realistischer ist allerdings die Annahme eines inhomogenen
Untergrundes, d.h. von ortsabhéngigen elastischen Parametern. Sobald die Ausbreitungs-
geschwindigkeit der Welle richtungsabhéngig ist, steigt die Anzahl der Parameter, die zur
Beschreibung der elastischen Eigenschaften eines Untergrundpunktes notwendig sind. Das
Medium wird dann als anisotrop bezeichnet und wird im allgemeinsten Fall mit 21 Pa-
rametern und der Dichte definiert.

Sowohl die Industrie als auch die Forschung hat sich lange Zeit auf isotrope Medien
beschrankt, da neben der mathematischen Vereinfachung der Beschreibung der Wellenaus-
breitung auch der rechenzeitliche Aufwand und der damit verbundene Speicherbedarf in
einem tiberschaubaren Rahmen blieben. Obwohl die Erde iiberwiegend anisotrop ist,
konnten aufgrund der isotropen Modelle weite Teile der Erde befriedigend abgebildet wer-
den, so dass die Lokalisierung grosser Rohstoffvorrate ausreichend genau gelang. Heutzu-
tage sind die gesuchten ” Targets” wesentlich kleinrdumiger und die Anforderungen an die
Genauigkeit der Modelle gestiegen. Eine wesentlich Rolle spielt in diesem Zusammenhang
auch die stetig steigende Leistungsfahigkeit der Computer, die eine Beriicksichtigung un-
terschiedlicher Komplexitdten moglich machen. Fin grundliegender Bestandteil der Migra-
tion ist die Bestimmung der ” Green’s” Funktionen, im Allgemeinen sind damit Laufzeiten



und Amplituden gemeint.

Die vorliegende Arbeit gliedert sich im Wesentlichen in zwei Teile: Im ersten Teil wird eine
Methode, basierend auf dem Konzept der Wellenfrontenkonstruktion, zur Bestimmung
von Laufzeiten in beliebig inhomogenen, anisotropen Medien préasentiert. Kernpunkt des
zweiten Teils ist die Strategie einer winkelabhéngigen, laufzeitbasierten Migration.

”Wavefront-oriented ray tracing”

Ausschliesslich fiir einfache Modelle gelingt es eine analytische Losung der Wellengleichung
zu bestimmen, und somit wurden im Laufe der Zeit zahlreiche mathematische Ansétze
entwickelt. Zur Losung der Wellengleichung unterscheidet man hauptséachlich ”Finite Dif-
ference” und strahlen-basierte Methoden. Alle in dieser Arbeit verwendeten mathema-
tischen Grundlagen beruhen auf dem zweiten Ansatz. Die Strahltheorie basiert auf einer
sogenannten Hochfrequenz-Approximation der Wellengleichung. Wie jede Approximation
unterliegt ihre Anwendbarkeit bestimmten Einschrénkungen. Die einleitenden Kapitel
dieser Arbeit beinhalten somit die Beschreibung der verwendeten mathematischen Formal-
ismen und deren Giiltigkeitsbereich. Neben dem theoretischem Aspekt gibt es fiir jedes
Problem unterschiedliche praktische Strategien. In diesem Zusammenhang haben sich die
sogenannten Wellenfrontenkonstruktionsmethoden als durchaus vorteilhaft erwiesen. Bei
diesem Vorgehen werden die nach jedem diskreten Zeitschritt erreichten Strahlendpunkte
bestimmt und definieren somit eine Wellenfront, sie beinhaltet also alle Punkte gleicher
Laufzeit (sieche Abbildung 1).

Zeitschritt= Zeitschritt=tA |t

[neue Wellenfront]

Figure 1: Das Wellenfrontenkonstruktions-Prinzip. Anstelle einzelner Strahlen, werden Wellenfronten
mit einem bestimmten Zeitschritt durch das Medium propagiert. Hierbei wird nach jedem Zeitschritt die
Laufzeit von der Wellenfront interpoliert. Falls die Strahldichte in dem Modell zu gering sein sollte, wird
ein neuer Strahl eingefiigt.

Ist die Strahldichte in einem Teil des Modelles nicht hoch genug, werden neue Strahlen
eingefiigt. Dies geschieht indem direkt an der Quelle ein neuer Strahl eingefiigt und



propagiert wird.

Nach jedem Laufzeitschritt werden alle bestimmten Grossen auf das diskrete Untergrund-
modellgitter mit Hilfe einer Interpolation iibertragen. Fin solches Vorgehen hat eine
Vielzahl an Vorteilen beziiglich der Rechenzeit und der Handhabung innerhalb der Imple-
mentation. Die Genauigkeit der vorgestellten Laufzeitberechnung wird durch eine Vielzahl
von numerischen Beispielen, beginnend mit einfachen Modellen, bis hin zu komplexen in-
homogenen Modellen demonstriert. Dabei werden zumeist aus Laborexperimenten be-
stimmte elastische Parameter natiirlich vorkommender Stoffe verwendet.

Winkelabhangige, laufzeitbasierte Migration

Wie bereits oben angefiihrt werden Laufzeiten unter anderem wahrend einer Migration
bendtigt. Auch in diesem Bereich gibt es die unterschiedlichsten Ansétze ein moglichst
realistisches Abbild des Untergrundes zu bekommen. Der zweite Teil der Arbeit beinhal-
tet die grundlegenden Arbeiten zu einer winkelabhéngigen Migration die mit Hilfe einer
hyperbolischen Laufzeitinterpolation umgesetzt wurde.

Bei einer Migration betrachtet man jeden Untergrundpunkt als einen Diffraktionspunkt,
die zugehorige Laufzeitkurven tiberlagern sich, folglich ergibt sich bei einer Stapelung an
einigen Stellen eine konstruktive, an anderen eine destruktive Uberlagerung. Ublicherweise
wird hierbei eine gleichabsténdige Schuss- Empfangerkonfiguration auf der Oberflache
angenommen. Wie Abbildung 2 zeigt, kann dieses Vorgehen fiir komplexe Untergrund-
modelle einen entscheidenden Nachteil haben: Eine gleichméssige Abdeckung an den
Empfangern muss nicht zwangsldufig eine optimale Abdeckung am Untergrundpunkt be-
deuten. Die gleichmassige Beleuchtung aller Untergrundpunkte ist allerdings fiir bes-
timmte Anwendungen, wie z.B. AVO Studien unerlésslich.

Figure 2: Beide Abbildungen zeigen ein homogenes Hintergrundmodell mit einer negativen
Geschwindigkeitsanomalie im Zentrum. Die linke Seite zeigt die Situation fiir die klassische Kirchhoftf Mi-
gration, die eine gleichmaéssige Abdeckung der an der Oberfléche positionierten Quell- Empfangerauslage
bewirkt. Im Gegensatz dazu ist auf der rechte Seite das Prinzip der winkelabhéngigen Migration dargestellt
ist. Hier ist der einzelne Untergrundpunkt gleichméssig beleuchtet. (Adaptiert von Vanelle (2002a).)

Bei der in dieser Arbeit vorgestellten Strategie werden die Strahlen mit variierendem
Winkelschritt am Untergrundpunkt startend durch das Medium propagiert. Um die
Laufzeiten zu bestimmen, wurde die effektive und schnelle Methode des ”ray shootings”
verwendet. Bei einer solchen Vorgehensweise wird man in den wenigsten Féllen genau



einen Empfanger an der Oberflache treffen. Um nun die Laufzeit direkt am Geophone zu
bestimmen, habe ich die hyperbolische Laufzeitformel im Hinblick auf diese Anwendung
erweitert. Die Berechnung aller zugehorigen Koeffizienten erméglicht zuséatzlich die Inter-
polation neuer Untergrundpunkte und somit die Verdichtung des Migrationsgitters. Wird
ein Empfanger von einem Untergrundpunkt nach erreichen des vorab definiertem mini-
malem Winkelinkrements nicht erreicht, wird dies Spur bei dem Aufstapelprozefl nicht
berticksichtigt. Die abschliessenden synthetischen Datenbeispiele demonstrieren die An-
wendbarkeit und das Potential dieser Strategie.
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Chapter 1

Introduction

For seismic imaging of complex 3-D structures by e.g. prestack Kirchhoff depth migration
large amounts of traveltime tables are required. This work provides an efficient technique
for multi-valued traveltimes in smooth 3-D heterogeneous anisotropic media.

In a typical seismic experiment, the registration surface has an equidistant sampling. This
line-up has, however, a vital disadvantage especially for complex subsurface structures:
the usually equidistant spacing of source and receivers leads to high illumination in some
angular regions, and poor illumination in others (see Figure 1.1).

Figure 1.1: Both figures demonstrate a model with a negative velocity lens structure. The left hand
side figure shows the principle of the conventional Kirchhoff migration, where the registration surface has
an equidistant sampling, but there is no guarantee that this is also the case at the image point; the right
figure shows the situation for the migration with angular parametrisation, where even illumination at the
image point is ensured. (Adapted from Vanelle (2002a).)

In comparison to the standard Kirchhoff migration the migration in the angle domain has
some relevant advantages, e.g. for AVO studies. For Kirchhoff migration, general ray
shooting (two-point ray tracing) has to be performed for each source-receiver combination
which leads to high computational effort. This large amount of traveltimes can be accom-
plished by the combination of the classical ray shooting with the hyperbolic traveltime
interpolation (Vanelle, 2002a).

Three-dimensional prestack depth migration (PsDM) is certainly the most accurate ap-
proach for imaging laterally heterogeneous media. Because of the extensive CPU and



2 1. Introduction

memory requirements for 3-D seismic applications, most of the present 3-D PsDM algo-
rithms are based on the ray theory (Kirchhoff migration). In fact, the ray theory provides
an excellent compromise between precision and computational efficiency in 3-D heteroge-
neous media.

The main difficulty of ray-based migration is the computation of traveltimes in the target
zone for all shot and receiver combinations. In this perspective, the “first arrival” methods
such as the finite-differences solution of the eikonal equation (e.g. Reshef and Kosloff, 1986;
Vidale, 1988) or shortest-path methods using graph theory (e.g. Saito, 1989; Moser, 1991)
have been introduced. These methods provide extremely fast algorithms for kinematic
migration (Reshef, 1991; Mufti et al., 1991). By using these methods traveltimes for a
large number of source-receiver combinations can be calculated, but they are not able to
compute later arrivals or to determine reliable amplitude coefficients. Since no reliable
amplitude information is incorporated in this kinematic approach, migration-based am-
plitude variation with offset (AVO) analysis cannot be performed (Beydoun et al., 1993;
Tura et al., 1997). Moreover, complex structure imaging is often unsuccessful when based
only on first-arrival traveltimes. Traditionally, traveltime and amplitude calculations have
been performed by ray tracing. Shooting or bending techniques may be used to find the
ray path from a source point to a receiver (Julian and Gubbins, 1977). Cerveny (1985)
proposed to shoot a fan of rays from the source and use paraxial extrapolation to estimate
values at the receiver point.

Another family of ray-calculation techniques is ray-field propagation, where the whole
wavefield is propagated rather than a single ray. These methods allow the insertion of
new rays, when the ray field diverges at certain check positions. The ray field may be
examined at constant depth (Lambaré et al., 1992), at interfaces (Astebgl, 1994) or at
wavefronts (Vinje et al., 1993a,b). These approaches are called wavefront construction
and they are based on the classical ray theory as described by (Cerveny and Hron, 1980;
Cerveny, 1985). Vinje et al. (1996) extend the wavefront construction to 3-D models with
explicitly defined smooth interfaces (see Figure 1.2) .
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Figure 1.2: In the NORSAR-3D software, seismic ray modelling is done by the wavefront construction
method. (Adapted from Laurain et al. (2003).)



Lambaré et al. (1996) have also postulated a new strategy to the wavefront construction.
Coman (2003) introduced a new idea for the insertion of new rays and a distance-weighted
traveltime interpolation. However, these implementations are mainly used for isotropic
media.

In seismic imaging, much effort is spent on estimating the elastic parameters (P- and
S-wave velocities) of an assumed isotropic subsurface for the construction of seismic im-
ages. Thomsen (1986) points out the inconsistency of these efforts when the subsurface
is potentially anisotropic. Exploration geophysicists have studied velocity anisotropy for
decades (e.g. Helbig, 1956), but within the past few years the relevance of the subjects
for hydrocarbon exploration and development has become much more widely recognised.
An understanding of anisotropy is important for hydrocarbon exploration because shales,
which make up 75 % of the sedimentary cover of the hydrocarbon reservoirs, are in the ma-
jority of cases anisotropic. Hawkins et al. (2002) have confirmed the benefits of anisotropic
prestack depth migration instead of using the isotropic case. They have presented a com-
parison between a reservoir imaged with isotropic and anisotropic depth imaging (see
Figure 1.3). The reservoir is under an overburden that has been made complex by salt
tectonics. On the anisotropic image, the Top and the Base Salt markers posted on the
intersecting well bore show a salt thickness of just 21.4 metres, in good agreement with
the seismic image. Those same markers are approximately 300 metres above the top of
the isotropic image. Some vertical lines drawn at a fault close to the well illustrate that
there is also lateral movement of about 75 metres between the two images. The effects

ANISOTROPIC
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Figure 1.3: A reservoir comparison at a well location between isotropic and anisotropic depth imaging.
The depth of Top and Base Salt is posted on the well bore on the anisotropic image illustrating a good tie.
The depth of the two seismic depth images differ by approximately 300 metres while fault position appear
to differ of about 75 metres. (Adapted from Hawkins et al. (2002).)

of anisotropy on the kinematics of P-wave propagation and hence their effects on con-
ventional seismic processing are summarised in Larner and Tsvankin (1995). In seismic
shear wave data, anisotropy effects also have a significant influence on data interpretation
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nearly everywhere (Winterstein, 1986). Therefore, an imaging algorithm, where also an
anisotropic subsurface can be assumed, can significantly improve the image quality. One of
the key issues is a sufficiently good technique for the traveltime calculation in such media.
Gajewski and Psencik (1987) presented an algorithm for the computation of traveltimes,
ray amplitudes and ray synthetic seismograms in 3-D laterally inhomogeneous media com-
posed of isotropic or anisotropic layers. Alternative concepts of traveltime computation
for anisotropic media have been developed, e.g. Ettrich and Gajewski (1998) presented a
method by perturbation with FD-eikonal solver in weakly anisotropic media.

Common image gathers (CIGs) in the offset domain are used extensively in velocity anal-
ysis and AVO studies (Castagna and Backus, 1993). If the geology is complex and the
ray field becomes multipathed, the quality of the CIGs deteriorates and hence makes it
difficult to perform any form of AVO or velocity analysis. Such situations arise typically
in seismic imaging beneath gas clouds, salt, and basalt. To overcome these problems,
Brandsberg-Dahl et al. (2003) suggest to generate the CIGs as a function of the scattering
angle and azimuth at the image point. Xu et al. (1998) propose a strategy providing
individual common angle image gathers for complex media. In this work I suggest a
traveltime-based migration in the angle domain. To get the traveltimes which are needed
for the migration algorithm ray shooting is performed and then hyperbolic traveltime in-
terpolation (Vanelle and Gajewski, 2002a) is used for the interpolation to the real receiver
positions. Migration requires traveltimes on finely gridded traveltime tables. To reduces
the effort in computational time as well as in data storage this approach is also used for
the interpolation of sources.

Both concepts that I present in this work are based on the ray method. Therefore the
opening Chapter 2 summarises the basic principles of the wave propagation in the high
frequency limit, the asymptotic ray theory. All given mathematic formulas are valid for
the anisotropic case. The chapter is mainly intended to recollect those foundations that
are crucial for traveltime calculation but also for the presented migration algorithm.

Any medium can be described by the elastic parameters, which are related to the elastic be-
haviour of the material, and to the stratification of the subsurface. The types of anisotropy
which are related to the number of independent elastic parameters are described in Chap-
ter 3. Also the differences between a heterogeneous medium and an anisotropic medium
will be clarified.

Chapter 4 is the key chapter of the first part that describes the wavefront-oriented ray
tracing for anisotropic media. The interpolation of the input model is performed by using
Cardinal splines, which is one of the main differences to the already implemented version
for the isotropic case (Coman, 2003). This chapter describes also some accuracy tests of
individual parts of the algorithm.

Some numerical examples are presented in Chapter 5. For the anisotropic case only a
few materials can be used to calculate exact traveltimes. The elliptically anisotropic



medium is used as a validation test and it follows a comparison of traveltimes calculated
by the wavefront-oriented ray tracing and an alternative traveltime calculation method,
i.e. a combination of finite differences eikonal solver with perturbation method (Soukina,
2004).

Chapter 6 is addressed to the introduction of the idea to combine the migration in the
angle domain and the hyperbolic traveltime interpolation.

One of the key issues to any migration is an efficient method to calculate the traveltimes
for a finely gridded subsurface. To accomplish this demand the hyperbolic traveltime in-
terpolation is used. Therefore, Chapter 7 summarises the basic idea and the verification
of the application of this method.

Numerical investigations are presented in Chapter 8, and it includes the comparison of
conventional Kirchhoff migration and traveltime-based migration in the angle domain, but
also the comparison of a standard traveltime calculation and the wavefront-oriented ray
tracing method.

Finally, the results of the work are summarised in Chapter 9. The outlook in this fi-
nal chapter is addressed to the extension of the traveltime-based migration in the angle
domain to true amplitudes.

Appendix A comprises the introduction of the Hermite and the Cubic spline interpo-
lation, which are the fundament of the Cardinal splines used for the interpolation of the
elastic parameters for the wavefront-oriented ray tracing. To simplify the handling with
the input quantities for the wavefront construction a graphical interface was developed
(Appendix B). Appendix C summarises expressions for elliptical anisotropy for accuracy
tests. All coefficients which are part of the hyperbolic traveltime equation for irregular
grids are given in Appendix D.






Chapter 2

Ray theory

Seismic traveltimes are used in many processing techniques, such as Kirchhoff migration
and traveltime tomography. There are two major approaches for the computation of trav-
eltimes in anisotropic media: ray-tracing methods which are based on the ray theory (see
e.g. Cerveny, 1972; Gajewski and Psencik, 1987) and methods which use a numerical solu-
tion of the eikonal equation by applying finite differences and perturbation (see e.g. Ettrich
and Gajewski, 1998; Lecomte, 1993). The main criteria to compare these methods are the
accuracy and the efficiency (Leidenfrost et al., 1999).

In this work we will concentrate on high-frequency asymptotic methods, such as ray meth-
ods. The high-frequency (HF) asymptotic methods are based on an asymptotic solution
of the elastodynamic equation.

The aim of this chapter is to introduce the basic idea and the fundamental equations
of the ray theory. For a detailed treatment of the ray theory see for example Cerveny
(2001). Here, I only introduce the necessary terminology and those equations which are
needed in this thesis. The Einstein summation convention is used throughout this work.
Partial derivatives with respect to Cartesian coordinates or time are specified by a comma
followed by the index of the coordinate or time, respectively.

Beginning with the stress-strain relation the mathematical background will shortly be in-
troduced. In section 2.2 the eikonal equation will be derived assuming the high-frequency
approximation of the elastodynamic equation. Solving the eikonal equation by the method
of characteristics leads to the kinematic ray-tracing system which is introduced in section
2.3. Using the ray-tracing system the propagation of rays within a predefined model can
be determined (see Figure 2.1).

Section 2.6 employs the initial condition for the ray-tracing system for an inhomogeneous
anisotropic medium. A general description of the phenomenon of anisotropy will be given
in chapter 3.

The given formulas are valid for anisotropic media. This includes isotropic models which
are only a simplified case. Thus, also the mathematics for the isotropic case, like e.g. the
formula of the kinematic ray-tracing system, are simplified (see section 2.4).

In section 2.5 the phase and the group velocities are explained by their physical meaning
for the ray theory.
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depth [km]

velocity [m/s]

2000 3000 4000

Figure 2.1: Principle of ray tracing: to propagate a single ray the kinematic ray-tracing system must be
solved for this ray, thus the initial conditions at the source must be known.

2.1 Stress-strain relation

Consider an anisotropic perfectly elastic inhomogeneous medium described by the elastic
tensor c;jx;, the constitutive stress-strain relation is given by the generalised Hooke’s law,

05 = Cijki€kl- (2.1)

Here, 0;; are the Cartesian components of the stress tensor and the strain tensor is denoted
by €x;. Both tensors are symmetric:

Oij = 0ji €kl = €lk- (2’2)

These symmetries reduce the number of significant components of the elastic tensor c;j;z
to a maximum of 36,

Cijkl = Cjikl  Cijkl = Cijlk (2.3)
in accordance with the fact that both stress and strain tensor have only six significant
components. The symmetries of the tensors on both sides of Hooke’s law (2.1) additionally
reduce the number of independent parameters to 21. The components of the elastic tensor
are also called elastic constants, elastic moduli, elastic parameters, or stiffnesses. The
strain tensor €g; is defined in terms of the displacement vector :

1
€x] = §(uk7l + ulvk). (2.4)
The symmetry relations (2.3) lead to the following expression of Hook’s law (2.1):

Tij = CijkiUk,1- (2.5)
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The eikonal equation is the basis of calculating traveltimes with a high frequency approx-
imation. The basic concepts and equations of linear elastodynamics have been explained
in many textbooks and papers. Therefore, in the next section we introduce only certain
important equations.

2.2 Elastodynamic and eikonal equation

The elastodynamic equation relates the spatial variations of the stress tensor with the
time variations of the displacement vector u:

0ijj + fi = puig, =123, (2.6)

where t is the time, f; the Cartesian components of the body forces and p denotes the
density. The insertion of (2.5) in (2.6) leads to

(cjikuny)j + fi = pui, i=1,2,3. (2.7)

The elastodynamic equation (2.7) represents a system of three coupled partial differential
equations of second order for the Cartesian components u;(x;,t) of the displacement vector
U.

Analytical solutions of the elastodynamic equation exist only for very simple models.
Therefore, a high frequency (HF) approximation is applied for 3-D complex models. The
zero-order HF solution of the elastodynamic equation in the case of harmonic waves reads

(Cerveny, 2001):

g

(Z,t) = U(&)et="@) (2.8)

where U denotes the vectorial amplitude, and the eikonal is defined by 7. Here, U and
7 are only functions of &, thus we have a separation of space and time. Synonyms for
eikonal are phase function and traveltime. It describes the time which a body wave needs
for its propagation from one point to another, e.g. the source and receiver location.

The HF approximation is valid in media in which the characteristic dimensions of all
inhomogeneities (e.g. the variations of elastic parameters) are larger than the prevailing
wavelength of the propagating wave. Thus, in the isotropic case the velocity model has
to be smoothed (see section 4.3). The insertion of (2.8) into the elastodynamic equation
(2.7) without body forces (f; = 0) leads to

(iw)?K;(U) + (iw)M;(U) + Li(U) = 0. (2.9)
The operators K;, M; and L; are given by the relations (Cerveny, 2001):

Ml(ﬁ) = az’jklijk,l + p_l(paijklplUk),j’ (2'10)
U) = P (paijiUx1) j,



10 2. Ray theory

!is the density normalised elastic tensor and the Christoffel matrix

where ajr = cijrip”
(Cerveny, 2001) is:

Dik = aijrpipi- (2.11)
Sometimes, however, the term Christoffel matrix is associated with the matrix A;p =
cijringny (see e.g. Helbig, K. and Treitel, S., 1994). The matrix (2.11) is symmetrical and
positive definite. The slowness vector p; is defined as:

pj :TJ', (212)

so that the slowness vector is always normal to the wavefront (see also section 2.5). To
obtain 7(x;) and U(x;) independent of the frequency, equation (2.9) is solved as follows:
Ki(U) =0, (2.13)

—

M;(U) = 0. (2.14)

This is the basic system of equations of the ray method. By applying high frequencies

—

(w — 00) in equation (2.9) the term L;(U) is negligibly small:
(iw)?K;(U) > Ly(U) and (iw)M;(U) > L;(0). (2.15)

Equation (2.13) will be used to determine the traveltime function 7(z;) and the polarisation
of the amplitude vector U;, whereas equation (2.14) can be used to solve the amplitude
function. Equation (2.13) is an eigenvalue problem:

(Tik — Gdix)Up =0, m=1,23, (2.16)
where 0, is the Kronecker symbol,
5ij =1 for i = j, 5ij =0 for Z;l'é j (217)

In an anisotropic homogeneous medium three types of waves can propagate: one quasi-
compressional (qP) wave and two quasi-shear (qS1 and qS2) waves. In general, these
three types have different properties, particularly different velocities of propagating. The
Christoffel equation (2.11) has three eigenvalues Gy, (x;, p;), m = 1,2, 3, and the associated
eigenvectors g m) (x4, p;). The eigenvalues correspond to the three seismic body waves (qP,
gS1 and ¢S2) which propagate in an inhomogeneous anisotropic medium in a specified
direction. In general, the eigenvalues are different:

G1(xi,pi) # Ga(xi,pi) # G3(x4, ;). (2.18)

The traveltime field for all three waves satisfies the nonlinear partial differential equation
of the first order
Gm(zi,pi) =1, m=1,23. (2.19)

Equation (2.19) is the eikonal equation. Conventionally, m = 1 denotes the gqS1l-wave,
m = 2 the qS2-wave, and m = 3 the qP-wave. The eigenvalues G,, can be expressed in
terms of the Christoffel matrix I';:

G = Tied™ g™ = aijupipig™ g™, (2.20)
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(no summation over m). The direction of propagation of the wavefront is defined by the

unit normal n;. Putting
M (2.21)

for the m-th wave (m = 1 or 2 or 3) and inserting it into (2.20) yields the phase velocity
v (m)

The eigenvectors §™ (x;, p;) determine the polarisation of the individual waves so that
(m)

they can be referred to as polarisation vectors. The components of the eigenvector g,

can be obtained as the solution of equation
(Tir — Gmbi)gy™ =0, g™ g™ =1, (2.23)

(no summation over m).

2.3 Kinematic ray-tracing system
The ray-tracing system will be derived from the eikonal equation in Hamiltonian form,
1
Hp(zi,pi) = i(Gm(wiapi) -1)=0 m=1,2,3, (2.24)

using the method of characteristics. The derived ray-tracing system reads:

dz; 10G, dp; 190G,

S == __ . 2.25
dr 2 Op; ’ dr 2 Ox; (2.25)
Analytical expressions for ggm) and their products are:
d"™ g =D /D, (2.26)
where Djj, and D are given by the relations
Dyy = (Pp—1)(Tg3 — 1) — '3,
Doy = (T —1)(T33 — 1) — T3,
Dy = (T —1)(T2 —1) T,
Dig = Dg; = Ty3l'a3 — '12(I's3 — 1), (2.27)
Di3 = D31 = Tyalle3 —T3(T'22 — 1),

Doz = D3y = T'jol'13 —T'a3(I'11 — 1),
D = Dy + Do+ Ds3.

For the sake of clarity the index m has been omitted. The insertion of equation (2.26) in
the ray-tracing system (2.25) leads to:
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dx;

dTZ aijmDjr/ D,

dpi 1 aajkln (2'28)
@i _ 2 D/ D.

dr 2 Ox; Pepn Dt/

Solving these six ordinary differential equations of first order yields the ray trajectory
x;+x;(A7) and the components of the slowness vector at each point of the ray p; +p;(AT).
If condition (2.18) is not satisfied the ray tracing system (2.25) may fail, because the rel-
evant eigenvectors §) and §® cannot be determined. In the same way, the ray tracing
system (2.28) fails, as in this case D;,/D is an indefinite expression of the type 0/0.
Cerveny (2001) suggested possible ways to overcome these complications. Techniques to
determine the numerical solution of (2.28) are presented in section 4.4.

2.4 The isotropic case

If isotropic media are considered, the formulas given in the previous section are much
simpler than in the anisotropic case. Two of the eigenvalues G,, are equal, and we have
only two types of waves, one compressional and one shear wave. The corresponding
eigenvalues are:

Gl = G2 = U?TJ'T,Z', Gg = 7)12)7'72'7'72', (2.29)

where v, is the shear wave velocity and v, the velocity of the compressional wave. Because
of G,, = 1, the eikonal equation for the isotropic case reads:

1
D= —, 2.30
Pipi = — (2.30)

where v is either v, or v5. The method of characteristics also leads to a ray-tracing system
for isotropic media:

dr = VU D,
v (2.31)
dr v

In the isotropic case the velocity is independent of direction and we have only one velocity
value v (v = v, or v = vy) at the source for each type of wave, so the slowness is defined
by the two take-off angles ig and ¢q:

1 1 1
P10 = — sinig cos ¢g, p2o = — Sinigsingg, p3p = — CoS . (2.32)
v v v

2.5 Phase and group velocity

For a better understanding of the effects of anisotropy, the different types of velocities will
be discussed in this section. The phase velocity V represents the velocity of propagation
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of the wavefront in the direction perpendicular to it:

components of the phase velocity: V; =n; V. (2.33)
Because of relation
V= L (2.34)
DPrPk

and the fact that the slowness vector p'is always perpendicular to the wavefront, the phase
velocity vector is orthogonal to the tangent of the wavefront (see also Figure 2.2).

1
phase velocity: V = +/VipVi = . 2.35
vV PkDk ( )

The velocity vector of the energy flux is called the group velocity vector and is denoted
by v;. It is given by the relation:

da; (m) (m) Dy
7 m m J
Vi = g = GgaPlg; Gy = GigkiPl—p (2.36)

In anisotropic media the direction of the group velocity (also denoted ray velocity) does
not coincide with slowness direction, consequently not with the direction of the phase
velocity. In other words, in anisotropic media, the energy of waves does not propagate
perpendicular to the wavefront.

Figure (2.2) schematically shows a wavefront and the corresponding velocities.

Source

Group-

velocity Wavefront

%3
Phase—"5
velocity e

Z

Figure 2.2: Difference between the phase velocity vector V; and the group velocity vector v;.

Both the phase and group velocities of plane waves in a homogeneous anisotropic medium
depend on the direction of propagation of the wavefront 7. In isotropic media, the phase
and group velocities of a propagating wave not only coincide but are independent on the
direction of wave propagation.
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2.6 Initial conditions

The ray-tracing system (2.28) is identical for all three types of waves. Therefore the type
of wave whose ray is to be computed must be specified by initial conditions. The initial
conditions in anisotropic media specify not only the initial point and the initial direction
of the ray, but also the type of wave that is to be computed. The initial conditions for a
single ray of one particular selected wave type passing through a point S can be expressed
by defining the initial direction of slowness vector p at S, and not the initial direction of
the ray (see section 2.5).

The initial conditions for the ray-tracing system (2.28) are

at S:  x =wmj, pi=Dio, (2.37)
where p;o satisfies the eikonal equation at S,
Gm(zi0, pio) = 1, (2.38)

corresponding to the wave type to be computed (m = 1,2, 3).
The components of the phase normal vector 7y are defined by the two take-off angles, g
and ¢¢ at the source:

N1 = sinig cos ¢g, N9 = sinig sin ¢g, N30 = COS 1. (2.39)

Figure 2.3: Slowness vector and angles in the Cartesian coordinate system. The angle i is the azimuth
and ¢ the polar angle.

The components of the slowness vector 5™ at S are given by:

Plo = n10/Vo(m)7 P20 = n20/Vo(m)7 P30 = nso/Vo(m)- (2.40)

Here, Vy denotes the phase velocity V at the point S for direction 71y and for wave type

m. Solving the eigenvalue problem leads to the phase velocity at the source Vo(m):

Vo(m) — \/aijkmjnlgi(m)glim) at S, (2.41)
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(no summation over m). Afterwards the components of the slowness vector (2.40) at S
can be calculated.

2.7 Caustics

A “caustic point” is defined where the cross-sectional area of the ray tube shrinks to zero.
By introducing the ray coordinates 71, 72 and 3, Cerveny (2001) understands by “ray
tube” the family of rays, where the parameters are within (y1,71 + Av1) and (y2,72 + Av2),
see Figure 2.4.

The ray approximation to the wavefield undergoes a phase shift when the ray crosses a
caustic. The cumulative number of such phase shifts along a ray is called the KMAH
index (Cerveny, 2001). The sign of these phase shifts depends on the sign of the angular
frequency in combination with the sign convention used for the Fourier transformation.
The phase shift due to caustics along the ray from the source S to the receiver G is

T°(G, S) = igk(G, s), (2.42)

where k(G,S) denotes the KMAH index. Along a ray two types of caustic points can
exist. At a caustic point of the first order, a line focus, where the ray tube shrinks to an
elementary arc perpendicular to the direction of propagation (see Figure 2.5, left). At a
caustic point of second order, also called point focus, the ray tube shrinks to a point (see
Figure 2.5, right) .

y2
Do Co
AO By
Y,

A B

Figure 2.4: Ray tube. Ray AgA corresponds to the ray parameter 71 and -2, ray BoB is associated to
Y1 + Av1 and 72, ray BoB corresponds to 1 + Ay1 and 2 + Avy2 and ray DoD is associated to ;1 and
Y2 + Ava.

The KMAH index changes by 1 when a ray passes through a caustic point of the first
order (7€ is +m/2) and by 2 when it passes through a caustic point of the second order
(T is £m).
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A B
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Figure 2.5: Two types of caustic points along a ray. (a) At a caustic point of first order, the ray tube
shrinks into an elementary arc, perpendicular to the direction of propagation. (b) At a caustic point of

second order the ray tube shrinks to a point.



Chapter 3

Anisotropy and real rocks

This chapter deals with causes for seismic anisotropy and gives an overview over types of
symmetry of the elastic parameters. A medium is called anisotropic, when the variation
of a physical property at a spatial position is dependent on the direction in which it is
measured. If an elastic medium is anisotropic, seismic waves of a given type propagate
in different directions with different velocities. By contrast, heterogeneity is defined to be
the dependence of physical properties upon position. Both, anisotropy and heterogeneity
are matters of scale, and so their usage is related to the wavelengths involved. The same
medium may behave heterogeneously for small wavelengths and anisotropically for large
wavelengths (Helbig, K. and Treitel, S., 1994).

Elastic anisotropy is a very common phenomenon in the Earth’s interior. It is caused by
the following mechanisms or a combination of them (see e.g. Thomsen, 2002; Cerveny,
2001):

e Preferred orientation of crystals. Single crystals of rock-forming minerals are
intrinsically anisotropic (see left side in Figure 3.1).

e Anisotropy due to aligned inclusions. The presence of aligned inclusions (such
as cracks, pores, or impurities) can cause effective anisotropy of rocks, if observed
at long wavelengths.

e Anisotropy due to sequences of thin layers. Sequences of isotropic layers
of different properties are very common in the Earth’ interior, at least in the upper
crust. If the prevailing wavelength of the wave under consideration is larger than the
thickness of the individual layer, the sequences of thin layers behave anisotropically
(see right picture in Figure 3.1).

It is common to obtain an anisotropy produced by a certain combination of these factors.
For example, a system of vertical fractures may have developed in finely layered sediments,
or the thin layers themselves may be intrinsically anisotropic. As a result, subsurface
formations may possess several types of anisotropy, each with a different character of wave
propagation.

17
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Figure 3.1: Examples for anisotropy in real rocks. Left: Olivine, anisotropy caused by preferred orienta-
tion of crystals; Right: Thin-bed layered structure.

Section 3.2 introduces the major types of anisotropic symmetries. To determine the elastic
parameters from observed seismograms an inversion procedure is necessary. For instance,
Soukina (2004) suggests an inversion technique for weak anisotropy by using a perturbation
method.

3.1 Representation of the model

The number of independent components of the elastic tensor for an arbitrary anisotropic
medium can be reduce from 81 to 21. To take this reduction of components into account
an anisotropic medium will in praxis be described by a symmetric 6 x 6 matrix Cp,
(Voigt notation). The transformation from the 4, j, k, [ to the contracted p, ¢ is represented
according to the following scheme (see e.g. Helbig, K. and Treitel, S., 1994):

ij (orkl) = 11 22 33 2332 1331 1221
p(orqg) = 1 2 3 4 5 6

To leave the stress tensor as originally defined, we get the following relations for the stress
and the strain tensor:

op =05, but €= (2—k)ew. (3.1)

By using the 6 x 6 matrix Cp, instead of the elastic tensor c;ji; Hooke’s law (2.1) is
expressed by:

o1 o1 Cii Ci2 Ci3 Cuu Ci5 Cig €11

022 o2 Co1 Coy Coz3 Cog (a5 Oy €22

o3| _|os| _ | O O3 Cs3 Csy Cs5 Cse €33 (3.2)
023 o4 Cy Cyp Cu3 Cy Cy5 Cye 2€93 '
013 o5 Cs1 Csy Cs3 Csq Cs5 Cse | | 2613

012 o6 Ce1 Cs2 Cs3 Ces Cos Cep 2¢€12



3.2 Types of symmetry 19

The 6 x 6 matrix is not a tensor. This transformation is immensely useful, because it allows
the notation of an actual 3 x 3 x 3 x 3 tensor in a 2-D matrix-form. The elastic matrix Cj,
is symmetrical, C},q = Cyp. Therefore in the next section the elements below the diagonal
(p > q) are not shown. The diagonal elements in the table are always positive for a solid
medium, but the off-diagonal elements may be arbitrary (positive, zero or negative).

3.2 Types of symmetry

For an arbitrary anisotropic medium the elastic matrix C,, comprises 21 independent
constants. Usually the number is much less than this, because of additional restrictions,
e.g. imposed by the microscopic nature of the medium. Each anisotropy symmetry is
characterised by a specific structure of the stiffness matrix with the number of independent
elements decreasing for higher-symmetry systems. In the following section the different
types of symmetry are presented.

3.2.1 Triclinic medium

The most general form of anisotropy is the triclinic medium. It is described by up to 21
independent elastic parameters:

Cii Ci2 Ci3 Ciu Cis Cis
022 023 024 C’25 026
C33 C34 C35 Csp

Cra = Cu Cis Cu (3:3)
Cs5 Cse
Ce6

Mensch and Rasolofosaon (1997) provide the elastic elements for e.g. a triclinic sand-
stone from core/lab-measurement. But obtaining all 21 elastic parameters by a seismic
experiment will continue be difficult.

3.2.2 Monoclinic medium

The lowest-symmetry model identified from seismic measurements is monoclinic (Win-
terstein and Meadows, 1991) which has 13 independent stiffness coefficients. In contrast
to triclinic models, monoclinic media have a plane of mirror symmetry with the spatial
orientation defined by the underlying physical model. For instance, Figure 3.2 shows
a formation which contains two different non-orthogonal systems of small-scale vertical
fractures embedded in an isotropic background. Here, the effective medium becomes mon-
oclinic with a horizontal symmetry plane.
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Figure 3.2: Two systems of parallel vertical fractures generally form an effective monoclinic medium with
a horizontal symmetry plane. In the special case of two orthogonal (¢1 + ¢2 = 90°) or identical systems
the symmetry becomes orthorhombic.

If the symmetry plane of a monoclinic medium is orthogonal to the x3-axis, the matrix of
elastic parameters has the following form:

Cn Ci2 Ci3 Cie
Co Cas Cag
_ C33 C36
Crg o (3.4)
Css
Ce6

A medium with monoclinic symmetry can be described by 13 independent elastic param-
eters. The number of elastic parameters can be reduced from 13 to 12 by aligning the
horizontal coordinate axes with the polarisation vectors of the vertically propagating shear
waves, which eliminates the element c45. In the special case of two identical or orthog-
onal vertical fracture sets, ¢1 + ¢2 = 90° (see Figure 3.2), the model has orthorhombic
Symmetry.

3.2.3 Orthorhombic medium

The more often considered case is the orthorhombic symmetry, the symmetry of a brick.
Orthorhombic models are characterised by three mutually orthogonal planes of mirror
symmetry (see Figure 3.3). The corresponding cases in real rocks for this type of symmetry
are for example (Thomsen, 2002):

e olivine, which has preferred orientation of crystals,

e thin-bed sequence, or a shale, with a set of fractures perpendicular to the layering
(see Figure 3.3),
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e a horizontally stratified thin-bed sequence, or a shale, or a massive isotropic sand-
stone, with orthogonal sets of vertical fractures in it.

Figure 3.3: Orthorhombic model caused by parallel vertical fractures embedded in a finely layered
medium. Here, one of the symmetry planes is horizontal, while the other two are parallel and normal to
the fractures.

In the coordinate system associated with the symmetry planes the orthorhombic matrix
has nine independent elements:

Ci1 Ci2 Ci3
Co O3
C33

(3.5)

3.2.4 Transversely isotropic medium

The transversely isotropic (TT) model is the most simple realistic case of anisotropy. This
case is referred to as hexagonal symmetry in crystallography. The vast majority of existing
studies of seismic anisotropy are performed for this type of media, which has a single axis of
rotation symmetry. All seismic signatures in a TI model depend only on the angle between
the propagation direction and the symmetry axis. Any plane that contains the symmetry
axis represents a plane of mirror symmetry. The “isotropic plane” is perpendicular to the
symmetry axis and the phase velocities of all three waves in this plane are independent
of propagation direction. In this case the angle between the slowness vector and the
symmetry axis remains constant (90°).

The TI model resulting from aligned plate-shaped clay particles adequately describes the
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intrinsic anisotropy of shales (Sayers, 1994). Shale formations comprise about 75% of
the clastic fill of sedimentary basins, which makes transverse isotropy the most common
anisotropic model. Most shale formations are horizontally layered, yielding a transversely
isotropic medium with a vertical symmetry axis (VTI). Another common reason for TI is
periodic thin-bed layering on a small scale in comparison to the predominant wavelength
(see Figure 3.4).

VTI |

X3

Figure 3.4: VTI model has a vertical axis of rotation symmetry x3 and may be caused by thin-bed layered
structure.

The elastic parameters of a VT media are given by

Ciu  Cin—2C  Ci3
Cii Cin—2Ces
Css
Cya
Cua

Ce6

This matrix has the same nonzero elements as that for the orthorhombic media, but the
relationships between the elastic parameters Cp, reduce the number of independent stiff-
nesses in VTI media from nine to five.

In some areas transversely isotropic layers may be dipping, which leads to a tilt of the
symmetry axis with respect to the earth surface (TTI medium). For example, up-tilted
shale layers near salt domes are expected to produce an effective TTI model with large
inclination of the symmetry axis. To obtain the elastic stiffness of TTI media, the elastic
matrix for a VTT media (3.6) has to be rotated in accordance with the orientation of the
symmetry axis.

A system of parallel vertical circular (so called “penny-shaped”) cracks embedded in an
isotropic background can be the reason for horizontal transversely isotropy (HTI). Hence,
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HTI is the simplest possible model of a formation with vertical fractures. The elastic
stiffness can be obtained from the VTI model (for details see Tsvankin, 2001).

3.2.5 Thomsen parameters

To place emphasis on the anisotropy, Thomsen (1986) uses for transversely isotropic (TT)
media the expression “polar anisotropy”. In such media velocities of seismic waves depend
only on the direction of propagation measured against the symmetry axis. Thomsen
(1986) has introduced a convenient parametrisation of this dependence, replacing the
general notation of elastic anisotropy in terms of elastic constants C,, by more physical
parameters. The conventional notation in VTI has various disadvantages, e.g.:

e it is cumbersome to estimate the degree of velocity anisotropy just from inspection
of the elastic parameters,

e there is no parameter provided for P-wave velocity near the (vertical) symmetry
axis,

e the expression for the normal-moveout velocities in the conventional notation is
complicated (Tsvankin, 2001).

Five elastic parameters can be replaced by P- and S-wave velocities along the symmetry
axis (Vpg and Vgp) and the three dimensionless Thomsen parameters e, d, and 7:

- . = Cr — Cs3
Vpo = =33 2C53 '
P 5 = (Ci3 + Cuy)? — (C33 — Cuy)?
Cu B 2C53(C33 — Cua) ’ (8.7)
Vso = T _ G —Cu
T

In this notation P- and SV-wave signatures depend on the parameters Vpg, Vsg, € and 9,
while the SH-wave is fully described by the shear-wave vertical velocity Vsg and param-
eter 7. The dimensionless quantities €,  and v approach zero for isotropic media and,
therefore characterise the strength of anisotropy. Most rocks are only weakly anisotropic,
even though many of their constituent minerals are highly anisotropic. Thomsen (1986)
defines materials with small values (< 1) of “anisotropy” (defined by the three Thomsen
parameters) as “weakly” anisotropic.

The parameter € represents the simplistically called “P-wave anisotropy”, likewise the
quantity v means the same measure for SH-waves. For VTT media ~ controls the normal-
moveout velocity from horizontal reflectors and the small-angle reflection coefficient.
From equation (3.7) the Thomsen parameters are uniquely defined by the elastic param-
eters. However, the inverse transition is unique for only four coefficients (Ci1, Cs3, Cyg
and Cgg). The remaining coefficient, C3, can only be determined, if the sign of the sum
C13 + Cyy is specified (see Tsvankin, 2001).
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Elliptical anisotropy is a subset form of VTI anisotropic behaviour and is defined by the
condition & = €. Soukina and Gajewski (2003) use this type of anisotropy as background
media for perturbation methods.

3.2.6 Elliptical anisotropy

Elliptical anisotropy is a special case of transverse isotropic media with an additional
constraint that reduces the number of independent elastic parameters to four:

(C13+ Cus)? = (C11 — Cus)(Cs3 — Cua). (3.8)

Elliptical anisotropy is rarely found in real rocks. Nevertheless, this type of symmetry has
significant advantages for verification purposes (see Helbig, 1983). Elliptical anisotropy
allows the analytical calculation of traveltimes for all three types of waves and synthetic
seismograms in a homogeneous medium (see appendix C). Figure 3.5 shows the polarisa-
tion vectors for all three types of waves (qP, ¢SV, SH).

SH wave Y@ X
qSV wave
Z qP wave

Figure 3.5: Polarisation vectors in a medium with elliptical anisotropy. The qP- and qSV- waves propa-
gate in the x-z-plane, the SH-wave polarisation vector is oriented along the y-axis, pointing to the reader.

The phase velocities for the transversely polarised mode are defined by the elastic param-
eters and in terms of the phase angle 6 with the symmetry axis:

Ce sin? 0 + Cyy cos? 6
Vsn (6) = \/ 66 ; a4 . (3.9)

For vertical propagation (§ = 0°) the SH-velocity is equal to \/C44/p, while in the hori-
zontal direction Vgg (0 = 90°) = /Cgg/p. According to equation (3.9), it marks out an
ellipse with the axes in the vertical and horizontal directions, if the slowness 1/Vgpy is
plotted as the radius-vector in the direction #. Therefore, the SH-wave anisotropy in TI
media is called elliptical.
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3.2.7 Isotropic medium

The isotropic model has the highest form of symmetry: an isotropic medium is defined by
the two Lamé parameters A and p and the density p or v, v,. Thus, the elastic matrix
for this symmetry the C),, reads:

A+20 A A
A+20 A

1 A+ 20
Cpg = — . (3.10)

The velocities v, v, are related to A and p as follows:

A+2u \/ﬁ
Uy = , Vg = 4/ —. 3.11
r =\, P (3.11)

Although the earth is usually anisotropic, isotropic models have been successfully ap-
plied, because the anisotropy is almost always small. The reason for the long neglect of
anisotropy 1is, of course, that isotropy is simpler to handle. The equations are simpler
and the application of physical intuition is more direct. Also, anisotropic techniques are
computationally expensive and have therefore only recently gained practical importance.
The fast development in computing capacity and storage as well as a better data base and
new algorithms for imaging now allow to consider anisotropy in seismic methods.

3.3 Factorised anisotropic inhomogeneous medium

A specification and parametrisation of an arbitrary 3-D anisotropic inhomogeneous media
is not simple. In a general case, all 21 density normalized elastic parameters a;; may
depend on Cartesian coordinates in a different way. Thus, the model has to specified by 21
elastic medium parameters as a function of three coordinates, which requires a high amount
of computational time as well as of data storage. For this reason, usually only simpler
anisotropic inhomogeneous media are considered in computations. The simplification of
the medium usually follows one of the two following approaches (or both of them). In the
first approach, the type of anisotropy is simplified. This reduces the number of elastic
parameters (see section 3.2). In the other approach, the spatial distributions of individual
elastic parameters are approximated by some simple functions. For example, the elastic
parameters are assumed to vary linearly with Cartesian coordinates. Most often, both
these approaches are combined.
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Cerveny (1989) propose a more general specification of the anisotropic inhomogeneous
medium, and calls it factorised anisotropic inhomogeneous (FAI) medium.

In the FAI medium the density normalised elastic parameters a;;z; are defined by the
following relations:

aijri(zi) = f2(i)afi”, (3.12)
const

where a7 are constants, independent of the Cartesian coordinates, and f(z;) is an
arbitrary positive continuous function of Cartesian coordinates. Therefore, in a factorised
medium the elastic parameters afj‘?,?l‘*t describe the anisotropy of the model, whereas f(x;)
define the heterogeneity, i.e. in a FAI medium the symmetry type is fixed.

It is also assumed that the first partial derivatives of f with respect to the Cartesian
coordinates, df/0x;, are continuous, and that the second partial derivatives are piecewise
continuous functions of the Cartesian coordinates. Therefore, all the density normalised
elastic parameters a;ji(;) in the FAI medium depend on Cartesian coordinates in the
same way. In Figure 3.6 an example for such a factor function f?(x;) is shown. Here, the
model is given by a low velocity inclusion in an homogeneous background medium. The
figure shows a 2-D slice of a 3-D model.
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Figure 3.6: Example for a smooth factor-field.



Chapter 4

Wavefront-oriented ray tracing

This chapter provides a basic overview of the concept of wavefront-oriented ray tracing
with special focus on the innovations for the anisotropic case.

The traditional, i.e. two-point ray-tracing method is computationally expensive when
traveltimes are required for an entire 2-D or 3-D grid. During the last years several
authors have introduced new ray-tracing based methods, so-called wavefront construction
methods (Vinje et al., 1993b; Lambaré et al., 1996; Lucio et al., 1996). The basic idea of
wavefront construction is to propagate a ray field rather than a single ray (see Figure 4.1).
Wavefronts are defined as isochron traveltime surfaces (lines in 2-D) from the source.

timestep=t+A {

».4
v
| old wavefront

- O~
| new wavefront |

Figure 4.1: Wavefront-construction methods propagate a ray field rather than a single ray. A new
wavefront is constructed from the old one by propagating the ray field with a constant traveltime step At.
In case of insufficient illumination a new ray is inserted between two adjacent rays.

New wavefronts are constructed from previous ones, by ray tracing over a time step At.
As wavefronts propagate, new rays are interpolated between rays that go further apart
than a predefined distance. Figure 4.1 illustrates how wavefronts propagate, by ray tracing
from a time t to a time t+At.

27
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4. Wavefront-oriented ray tracing

Figure 4.2: Representation of the wave-
front by a triangular network.

In general, the representation of a 3-D wavefront is
somewhat more complicated than in 2-D, where the
rays are situated side-by-side along the 2-D wave-
front. The term “neighbouring” or “adjacent” ray is
more difficult to define on a 3-D wavefront, where
the rays are distributed in two dimensions on the
front. Some kind of network connecting the rays on
such a 3-D wavefront must be defined.

It was proved in 1925 that every compact surface
can be triangulated with a finite number of triangles
(Rossl et al., 2000). Triangulation is the division of
a surface into a set of triangles, usually with the
condition that each triangle side is entirely shared
by two adjacent triangles. Triangle meshes are pop-

ular representation of surfaces, e.g., in computer graphics.

Vinje et al. (1996) suggest to represent a wavefront by a network of triangles (see Figure
4.2). The vertices of the triangles are the intersection points between rays and wavefronts.
The triangular network has a simple topology and the ability to adjust to the stretching
and twisting of the wavefront during the propagation through the medium. For instance,
Figure 4.3 shows two wavefronts at two sequent time steps for a heterogeneous isotropic
model. The wavefronts are computed for a model with an embedded positive velocity lens,
where the velocity increases smoothly from the border to the center.

Z(km)

X [km]

velocity [km/s]

2 3 4 5

Figure 4.3: The left figure shows wavefronts at two sequent time steps. The model has an embedded
positive velocity lens in the center, where the velocity increases from the boundary of the lens (v = 2km/s)

to the center (v =5km/s).

In addition, using a set of triangles to represent the wavefront facilitates the integration
of new rays into the network (see also section 4.5).
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The wavefront-oriented ray-tracing technique can be divided into four main parts, which

will be described in more detail in this chapter:

e The definition of the input model on
a rectangular grid, including Cardinal-
spline interpolation (section 4.2).

e The initialisation of a wavefront (sec-
tion 4.1), where
— the source location, and

— the slowness of the rays starting
at the source have to be defined.

e The propagation of the wavefronts by

— solving the ray-tracing system
(section 4.4), and

— inserting a new ray, if necessary
(section 4.5).

e The interpolation of the traveltimes
onto the rectangular grid after each
time step (section 4.6).
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Coman (2003) presented an implementation to compute traveltimes by wavefront-oriented
ray tracing in smooth inhomogeneous isotropic media. Based on this efficient and ac-
curate technique for isotropic media, his method was extended in this work to compute
traveltimes in smooth 3-D anisotropic inhomogeneous media.
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Modifications due to the anisotropy

To apply the wavefront-oriented ray tracing technique to anisotropic media several changes
of the implementation have to realised.

Initial conditions

As mentioned above, the initial conditions in anisotropic media specify not only the initial
point #° and the initial direction 7 of the ray, but also the type of wave (m) that is to
be computed. Therefore, after defining the phase normal vector 7° by the two take-off
angles the phase velocity at the source corresponding to the wave type for direction 7ig
has to be computed. Thus, the slowness at the source is given by:

o it

If the medium is supposed to be isotropic, the phase velocity and the group velocity are
identical and equal for each ray at the source. In the anisotropic case, the phase velocity
for each ray has to be computed by solving the eigenvalue problem (2.41).

Definition of the model

In comparison to an isotropic medium, which can be described by two elastic parameters,
the number of non-vanishing elastic parameters of an anisotropic medium increases up
to 21. For instance, if the subsurface structure is supposed to be transversely isotropic,
the medium could be described by five independent elastic parameter (see section 3.2).
However, the number of non-vanishing elements of the stiffness matrix increases if the
crystal symmetry does not coincide with the acquisition coordinate system.

The elastic stiffness matrix of a triclinic anisotropic medium consists of 21 independent
elastic parameters in any coordinate frame. To provide an efficient, accurate and fast
algorithm for the computation of the elastic parameters, the trilinear interpolation was
replaced by the Cardinal splines.

The ray tracing system

Instead of assuming the simplified ray tracing system (4.14) for isotropic media, in the
anisotropic case the ray tracing system (2.28) has to be solved. Just as in the isotropic
implementation the numerical solution of this system of differential equations is realised
by the Runge-Kutta-technique. The only difference is the definition of the right hand sides
in the ray tracing system (2.28).

Interpolation of traveltimes to grid points

In general, the interpolation of the traveltimes to grid points in an anisotropic medium
works similar to the isotropic case. The traveltime to a grid point will be approximated
using a distance-weighted interpolation (Coman, 2003). However, since for this interpola-
tion the velocity within the ray cell is needed, in the anisotropic implementation it has to
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distinguished between phase and group velocity. To run the program a graphical interface
was designed (see appendix B). In the next section the modifications of the implemen-
tation of the wavefront-oriented ray tracing for anisotropic media are explained in more
detail. The next section explains the definition of the point source by the construction of
the first wavefront.

4.1 Construction of a point source

To start the 3-D wavefront-oriented ray tracing an initial wavefront is required. Following
Vinje et al. (1996), the wavefronts can be represented by a network of triangles. Thus, an
icosahedron (Figure 4.4) with twelve vertices is used to construct the first wavefront. The
initial wavefront is defined by twelve rays which start from the source point (center of the
icosahedron) and nearly pass through the vertices of the icosahedron. The rays pass exact
through the vertices only if the region near the source is homogeneous and isotropic.

Figure 4.4: (a) The icosahedron describes the basic network of the point source. (b) The twelve rays
from the source position in the center pass through the vertices of the icosahedron.

For each wavefront the vertices are the intersection points between rays and wavefronts.
The advantage of using the icosahedron lies in the equidistant angle between neighbouring
rays. The angle between each ray pair is 63.43 degrees. In order to start with a larger
number of rays, a new ray is inserted between each pair of adjacent rays (see also Figure
4.5).

Figure 4.5: Increasing of the number of rays leads to different shapes of the initial wavefront at the
source. (a) A polyhedron with 80 triangles is obtained by inserting a new ray between each adjacent rays.
(b) After the next iteration the wavefront is constructed by 320 triangles and the third iteration leads to
1280 triangles (c).
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In the isotropic case, if the two take-off angles iy and ¢g and the velocity v at the source
are given, the slowness for all rays at the source can be calculated by equation (2.32).

In an anisotropic model the slowness at the source depends on the take-off angles ig and
¢o and the phase velocity Vj for the corresponding ray. In contrast to the isotropic case
the phase velocity V) depends on the direction of the ray. Therefore, for each starting ray
the components of the normal of the wavefront (2.39) are determined. By applying (2.26)
the phase velocity at the source (2.41) can be expressed as follows:

Vi = afjklnjnlDi(Zl)/Dv (4.2)

where a;s;.kl represents the density normalised elastic parameters at the source location.
This must be solved for each normal vector 7i. Then, the slowness vector follows from 4.1
and (m) specifies the wave type.

Even if the angle between each ray pair at the source in an inhomogeneous anisotropic
media can diverged, the proceeding to apply a icosahedron as initial wavefront can provide
a sufficient coverage at the source

4.2 Interpolation of model parameters

In the isotropic case the velocity v, and in the anisotropic model the elastic parameters
Cpq, are given on a rectangular grid. During the propagation through the model the
kinematic ray-tracing system has to be solved for each time step . It is unlikely that the
ray ends on a grid point where the velocities or the elastic parameters are known. As they
are required at the end point of the ray, an interpolation of the input quantities becomes
necessary (see Figure 4.6).

Source

0\\

Grid pell

@ grid point
(parameters known)

Figure 4.6: Since it is not likely that a propagating ray ends on a grid point an interpolation of v or C)pq
is necessary.

In this work the following interpolation algorithms were taken into consideration:

e Trilinear interpolation: the simplest and fastest method.
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e Cubic spline interpolation: an interpolation with high accuracy, but also high de-
mands on computational storage and time.

e Cardinal Splines: nearly the same accuracy as the Cubic splines, but faster.

Even if in most cases the anisotropic subsurface model is supposed to be transversely
isotropic (VTI or HTT), the stiffness matrix may have more than five non-vanishing com-
ponents. The number of elastic constants given in chapter 3 for the different symmetry
systems apply generally only if they are obtained with reference to the acquisition coor-
dinate system (see for instance Figure 4.7).

(@)

Z=C

Figure 4.7: Block of foliated rock with no tilt; material a-b-c axes are coincident with geographical x-y-z
axes. For transverse isotropy (hexagonal symmetry) the a and b directions have the same behaviour. (b)
Here the crystal symmetry axes (a-b-c) is tilted with respect to acquisition coordinate system x-y-z.

There are two obvious exceptions to the rule that an arbitrary change of the coordinate
system increases the number of elastic constants: the triclinic system has 21 independent
elastic parameters in any coordinate frame (except for at least three frames where there are
only 18 non-vanishing stiffnesses, see, e.g., Helbig, K. and Treitel, S. (1994)), and isotropic
media are completely invariant against any rotation. Therefore, in an arbitrarily oriented
coordinate system any non-isotropic medium may have 21 non-vanishing components of
the stiffness tensor. Consequently, besides being accurate the interpolation must be also
fast and economical in terms of computational storage and time.

Interpolation within a 3-D regular grid is often based on the trilinear interpolation method,
in which the interpolated value at any point is interpolated linearly from values at 8 nodes
of a cube that encloses this point. The advantage of trilinear interpolation is its simplicity
and in many cases it leads to a good sufficient approximation. The main disadvantage of
the trilinear interpolation, which is the fastest method, is the absence of any connection
between the interpolated value and its first derivative. Both are interpolated by weight-
ing the values at the neighbouring grid points. Here, the weight does not depend on the
function values. Thus, the first derivative at a grid point is calculated by multiplying the
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derivatives with the weights (in general proportional to the distances to the grid points)

and therefore do not consider the function values itself. For instance, Figure 4.8 shows

a velocity-depth function, where a non-uniqueness of the derivative at grid point xp oc-

curs. In situations where continuity of derivatives is a concern, one must use the a more

sophisticated interpolation provided by a so-called spline function.

V@) A spline is a polynomial between each pair of table

points, but one whose coefficients are determined

“slightly” non-locally. The non-locality is designed

to guarantee global smoothness in the interpolated

X function up to some order of derivative (Press et al.,

1992). Cubic splines are the most popular. They

produce an interpolated function that is continu-

ous through the second derivative. The number of

points (minus one) used in the interpolation scheme

is called the order of the interpolation. Increasing

the order does not necessarily increase the accuracy,

Figure 4.8: Exemplary a 1-D veloc- especially in polynomial interpolation. If the added

ity /depth distribution. points are distant from the point of interest, the re-

sulting higher-order polynomial, with its additional

constrained points, tends to oscillate between the tabulated values. This oscillation may

have no relation to the behaviour of the “true” function (see for example Figure 4.9(b)).

As it can be seen in Figure 4.9 a smooth function is more accurately interpolated by a

high-order polynomial than by a low-order polynomial. Since for the ray tracing procedure
the model has to be smoothed anyway, spline interpolation is preferred.

z

Figure 4.9: (a) A smooth function (solid black line) is more accurately interpolated by high-order polyno-
mial (schematically shown by the green line) than by a low-order (shown as a piecewise linear dashed line).
(b) A function with sharp corners or rapidly changing higher derivatives is less accurately approximated
by a high-order polynomial (green line) than by a low-order polynomial.

The Cubic spline interpolation calculates individual weights for each grid cell (see Figure
4.6). To get the function value (Figure 4.6 orange dot) in a 2-D model, the 16 surrounding
grid points (Figure 4.6 green dots) are used, whereas in 3-D the number of used grid points
is 64. Assuming a 3-D model with 100 grid points in each direction for the interpolation of
each of the 21 elastic parameters 64 -10°% weights must be calculated and stored. Thus, the
Cubic splines are not recommended, because of the demands in computational storage and
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CPU time. Instead of Cubic spline interpolation, we have implemented a Cardinal spline
interpolation. In the next section the theoretical background and tests of the accuracy of
the Cardinal splines are presented.

4.2.1 Cardinal splines

Thomson and Gubbins (1982) have introduced the idea of using Cardinal splines for the
computation of 3-D model quantities. The Cardinal spline interpolation is based on the
Hermite interpolation (see also appendix A). But instead of using the derivatives of the
values at grid points directly, as in the Hermite interpolation, Cardinal splines use only
the function values of the surrounding grid points. In contrast to the Cubic splines, where
individual spline functions for each grid cell are calculated, the Cardinal splines depend
only on the distance between the ray end point and the nearest grid point.

Fi.Ci(y) Fy,Co(y)  f(x) F3,C3(y) Fy, Cy(y)
° S ° o o
—_ Y — b Az i

Figure 4.10: To determine f(z) in the one-dimensional case the function values F; at four points neigh-
bouring z are weighted by the Cardinal spline weights C;(y).

The contribution of each point to the function value at = is weighted by a precalculated
Cardinal spline weight Cj:

4
fl@) =) FCy), (4.3)
=1

where the Fj are the function values of the four neighbouring grid points (see Figure 4.10).
The Cardinal spline weights C} are independent of the location of x in the model. This
is the main difference to the common Cubic splines, where for each grid cell a set of
individual weights have to be determined.

The Cardinal splines are calculated by:

4
Cily)=Hy-1)+Az> GuH(y—k), 1=1234 (4.4)
k=1

The functions H (A.2) and Hy (A.3) are linked to the Hermite interpolation. The matrix
G}y is defined by

2 1 2 -1
1 =1 0 1 o0

“=9az10 -1 0o 1] (45)
1 -2 -1 2

(the derivation is given in appendix A).
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Accuracy of the Cardinal Splines

The accuracy of the Cardinal spline interpolation will be demonstrated in this section. A
3-D function defined by:

f(x,y,z) = 2sin(x) + cos(y) + 0.5sin(z) + 4 (4.6)

is used for the test. The function (4.6) can be interpreted as a velocity model. The
velocity values range between 2 km/s and 6 km/s (see Figure 4.11). The velocity range
and the distribution of velocity values in the model make high demands on the interpolation
algorithm. Thus, this more or less unrealistic model is used for testing the Cardinal spline
interpolation. The function values are calculated at two different grids:

‘ | Coarse grid | Fine grid |

nr,ny,nz 26 101
dx,dy,dz 0.2 km 0.05 km

The model dimension in each direction is 5 kilometer. To test the Cardinal splines the
coarse grid was used as input and the values on the fine grid were interpolated. Figure
4.11 visualises the input model on the left side, defined by relation (4.6), and the right
side shows the result after the interpolation onto the fine grid.

Yikm]
2 3

Cardinal
Spline
Interpolation

#

Z [km]
Z [km]

function values f(x,y,z) function values f(x,y,z)

2 4 6 2 4 6

Figure 4.11: Left: the coarsely gridded input model. Right: the result of the interpolation onto the fine
grid using the Cardinal spline interpolation.

To evaluate the accuracy of the Cardinal splines, the results are compared with the analyt-
ically computed values on the fine grid. The left side in Figure 4.12 displays the analytical
values and on the right side the relative errors are shown. The absolute error ranges be-
tween —0.001 and 0.001 and reflects the lattice-like pattern of the coarse input-grid. The
maximum relative error of 0.06% is located where the function value is smaller than in
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the remaining part of the model (x = 3.0 — 5.0 and y = 1.0 — 4.0). However, for the most
part of the model the relative error is less than 0.02%. This corresponds to an adequate
accuracy for the input quantities. For the solution of the kinematic ray-tracing system,
not only the velocities or the elastic parameters, but also the derivatives of the elastic
parameters at the ray end points are needed.

Yikm] Yikm]
2 3 1 2 3

Z [km]
Z [km]

absolute error relative error [%]

-0.001 0 0.001 0 0.02 0.04 0.06

Figure 4.12: Absolute errors (left) and the relative errors (right) of the interpolated values.

The accuracy of the interpolation of the derivatives is also tested on the 3-D function
(4.6). The analytical solution is calculated on the coarse grid and on a fine grid, which
will be taken as the reference medium. The model dimensions are the same as for the
first accuracy test of the function value (see Table 4.2.1). The analytical values for the
derivatives are:

df(x7 y7 Z)
dx

= 2 cos(z), %{5’2) = —sin(y), W = 0.5cos(2).  (4.7)
For the first derivatives the results of the calculation are shown in Figures 4.13-4.15. Fig-
ure 4.13(a) shows the analytical values of the first derivatives in x-direction calculated
on the fine grid. The absolute errors of the Cardinal spline interpolation are presented
by 2-D slices through the center of the model (z = 2.5, y = 2.5 and z = 2.5 (Figure
4.13(b)-(c)). Here, the observed absolute errors range between —0.01 and 0.01, exhibiting
a correlation between the maximum errors and the greatest derivative values. In addition,
four different 2-D slices in the y — z-plane are presented 4.13(e), where the variation of
the absolute errors is obviously smaller than in the x — 2- and x — y-plain. The error
distribution correlates to the shape of the input function. For each grid point the same
derivative value is interpolated by using the surrounding function values (see text above).
Accordingly, Figure 4.14 and Figure 4.15 show the absolute errors for the derivative in
y- and z-direction. Apart from slightly different error ranges, these results confirm the
observations for the first derivative in the z-direction.
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Figure 4.13: (a) Analytical values (df (z,v, z)/dz) calculated on the fine grid. (b)-(d) The comparison of
the analytical results with the results of the Cardinal Spline interpolation are shown. The figures display
2-D slices through the center of the model (z = 2.5, y = 2.5 and z = 2.5). (e) In addition, four different
2-D slices in the y — z-plane are presented (z = 0.5, z = 1.5, x = 3.5 and © = 4.5). Please notice the

different error scale.
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Figure 4.14: (a) Analytical values (df (z,y, z)/dy) calculated on the fine grid. (b)-(d) The comparison of
the analytical results with the results of the Cardinal Spline interpolation are shown. The figures display
2-D slices through the center of the model (z = 2.5, y = 2.5 and z = 2.5). (e) In addition, four different
2-D slices in the z — z-plane are presented (y = 0.5, y = 1.5, y = 3.5 and y = 4.5). Please notice the

different error scale.
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Figure 4.15: (a) Analytical values (df (z,y, z)/dz) calculated on the fine grid. (b)-(d) The comparison of
the analytical results with the results of the Cardinal Spline interpolation are shown. The figures display
2-D slices through the center of the model (z = 2.5, y = 2.5 and z = 2.5). (e) In addition, four different
2-D slices in the x — y-plane are presented (z = 0.5, z = 1.5, z = 3.5 and z = 4.5). Please notice the

different error scale.
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4.3 Smoothing of the model

The ray tracing procedure requires smooth models. Smoothing influences also the quality
of migration images, in the way that too much smoothing reduces the image quality.
Therefore, the model has to be smooth enough, so that the ray tracing theory is applicable,
but the model behaviour should change as little as possible to limit the loss of image quality.
Kravtsov and Orlov (1990) formulated: the model parameters, for instance the velocity or
the elastic parameters, must vary insignificantly over the wavelength A in the propagated
medium. Mathematically this can be expressed with:

A
Z <1, (4.8)

where L represents the smallest of the characteristic length and A the wavelength of the
medium. Here this characteristic length is taken as the distance over which the increment
of a certain variable, for example the velocity:

L=Min | — |, 49
(W> 49

is comparable with it in value (details see Kravtsov and Orlov, 1990).

In this work a low pass filtering process is used to attenuate short period spatial velocity
variations. Smoothing the slowness preserves the traveltime better than to smooth the
velocity model, because the traveltime is proportional to the slowness (vertical smoothing
preserves vertical traveltimes etc.). A common 1-D smoothing operator is

A:(l_w w 1_w>, (4.10)

2 772

to be convolved n-times with the model. In this work the common weight w = 0.5 is used.
The result is:

j+1 _ 1—w 1—w
P 2 2

where N is the number of samples in z- or x-direction and with j being the number of

iterations already done. As convolution in the space domain corresponds to multiplication

in the wavenumber (k) domain, we use the Fourier transform of

0z + Azx)  d(xz) Oz — Ax)
4 * 2 * 4 ’

with Az being the spatial sampling interval. Integration yields

P +wp + pl, i=1,...,N, j=1,...,n, (4.11)

Ax) =

A
A(k) = cos®(m k Az) = cos? <7T S 3:) .
Therefore, the n-times application of the smoothing operator in the space domain equals
multiplication with the n-th power of A(k) in the k-domain. The resulting filter curves
are displayed for different values of n. The grid spacing is 10m in this example.
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Figure 4.16: Resulting filter curves for different values of n.

Figure 4.17 shows examples for smoothing. The blocky model (Figure 4.17(a)) is smoothed
by the three-point operator. Figure 4.17(b) and 4.17(c) show the resulting 10-fold and the
100-fold smoothed model (4.17(c)).

The necessity of smoothing is something that all methods have in common, which are
based on the high frequency approximation. Smoothing is a process which occurs in the
propagation of real seismic waves. In the far field we observe band limited signals with
limited resolution since the Earth serves as a low pass filter during propagation (Gajewski
et al., 2002). Thus, suitable smoothing appears to be a natural process.

For an inhomogeneous anisotropic medium we also have to smooth the input quantities,
but here it is much more unclear what the smoothing means and what kind of effect it
causes. To avoid these complications the anisotropic models in this work are restricted
to homogeneous and factorised models, which are introduced in section 3.3, although the
implementation works for arbitrary anisotropic media.

4.4 Propagation of wavefronts

The propagation of a wavefront is in fact the propagation of single rays with a constant time
step (Figure 4.18). The propagation of rays is computed according to the kinematic ray-
tracing system (2.28). The KRT system is a system of six ordinary differential equations.
The numerical solution of this system is performed by integration methods.
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Figure 4.17: (a) Original velocity model; (b) Smoothed model (10-fold); (¢) Smoothed model (100-fold)
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Figure 4.18: The propagation of the wavefront is in fact the propagation of individual rays with a
constant traveltime step. A new wavefront (b) is constructed from the old one (a) by propagating the ray
field with a constant traveltime step At.

By far the most often used method to integrate the ray tracing equation is the classical
fourth-order Runge-Kutta formula. Runge-Kutta methods propagate the ray over a trav-
eltime step by combining the information from several smaller Euler-style steps where the
derivative at the starting point of each interval is extrapolated to find the next function
value. In each step derivatives are calculated four times (see also Figure 4.19): once at
the initial point (1), twice at trial midpoints (2,3), and once at a trial endpoint (4).

t(x) t(x)
/2/ /?i('"// 4
1/ /1/
N
% % PR X, X,

Figure 4.19: Left: Euler’s method: the derivative at the starting point of each interval is extrapolated
to find the next function value. Right: fourth-order Runge-Kutta method: in each step the derivative is
evaluated four times.

From these derivatives the final function value (¢) is calculated. Details about integration
methods can be found in many books on numerical mathematics (e.g. Press et al., 1992).
Each new wavefront is constructed from the old one by propagating the ray field with a
constant traveltime step. After each time step the wavefront-oriented ray tracing

e checks the ray density and if necessary inserts a new ray, and

e interpolates the traveltimes from the wavefronts onto the rectangular grid.

4.5 Insertion of a new ray

To guarantee a sufficient illumination by rays along the wavefront, sometimes new rays
have to be inserted. The implementation of wavefront-oriented ray tracing follows the
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insertion criteria proposed by Coman (2003):

1. The distance between two adjacent
nodes (intersection points between rays
and wavefronts) exceeds a predefined
distance Ar.

wavefront

2. The difference in wavefront curvature
at adjacent nodes exceeds a predefined
value and the distance between the
nodes is larger than a predefined
distance Arj.

wavefront

wavefront (t)

3. One ray in the cell crosses the surface
defined by the other two adjacent rays ray”
and the distance between the nodes is
larger than Ary.

3
ra)(/ )

ra)52

wavefront (tAt

The first criterium is the “traditional” one, where a new ray is inserted, if the distance
between neighbouring rays exceeds a predefined distance Ar. This criterium avoids under-
sampling of small-scale velocity anomalies. The other two criteria are mainly important
in caustic regions. To prevent oversampling in these regions a new ray is inserted only if
the distance between two rays is larger than Ary. For a more detailed explanation of the
insertion criteria see Coman (2003).

Usually the coordinates of the new ray are interpolated onto the wavefront. Coman (2003)
suggest the insertion of a new ray by tracing the ray directly from the source. The initial
conditions of the new ray are given by the known source position and the bisector of
the angles between the two “parent rays”. Thus, the accuracy retains unchanged by the
insertion of a new ray. In addition this concept allows a lower ray density which applies
larger cells.
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As already mentioned the 3-D wavefronts are represented by a network of triangles (see
figure 4.2). The insertion of new rays increase the number of triangles (see Figure 4.20).
Depending on how many new rays are inserted, the “old” triangle might be split into two,
three or four new triangles.

r2 r3 r2 m+1 r3 r2 m+1 r3 r2 r3
rm+3 V rm+2
rn r rn rn
I +
r, v r, IS
) r. r
rl m r'm+ m+1 rm+ 2
(a) (b) (©) (@)

Figure 4.20: The insertion of new rays increase the number of triangles to describe the 3-D wavefront.
An “old” triangle might be split into two (b), three (c) or four (d) new triangles.

4.6 Interpolation of traveltimes

The wavefront-oriented ray tracing provides the traveltimes on wavefronts. Because most
applications, e.g. migration, need the traveltimes on grids an interpolation to the grid
nodes becomes necessary. The traveltimes are interpolated after each time step in the
region between the new and the old wavefront (see Figure 4.21). This has the advantage
that only the present and the previous wavefront have to be stored.

wavefront at wavefront
t+ AT at ¢

UL L DL L]

[ IVl

o
N

O traveltimes calculated after ¢  Otraveltimes calculated after ¢t + At

Figure 4.21: After each time step the traveltimes between the new and the old wavefront are interpolated
to grid points. The red dots are the positions where the traveltimes are calculated after ¢t + A7, and the
traveltimes at the green dots are already known from the step before.



4.6 Interpolation of traveltimes 47

In Figure 4.21 two wavefronts are shown, the present one (red) and the previous one
(green). The traveltimes are interpolated to all grid points which are between these two
wavefronts. The wavefront-oriented ray tracing for anisotropic media uses the distance-
weighted traveltime interpolation introduced by Coman (2003). The general concept of
the traveltime interpolation will be explained the 2-D case, before describing the more
complex 3-D situation.

2-D case

The interpolation of traveltimes to grid points is carried out within cells. To define a ray
cell, rays and wavefronts will be approximated by straight lines. Thus, the boundaries of
a ray cell are two adjacent linearised ray segments and two adjacent linearised wavefront
segments (see e.g. Figure 4.22). After defining a ray cell, all grid points have to be detected
that are located within this cell. In terms of efficiency the searching area will be limited
by a rectangular area around the ray cell (see Figure 4.22(a)).

@) ‘ ‘ ‘ ‘ ‘ ‘ ‘ (b)

WavefrOnt 27

Ray b

® Traveltime grid point in searching area O Intersection point between ray and wavefront
D Searching area @ Traveltime grid point in the ray cell

Q Ray cell

Figure 4.22: Points A; and Bj indicate ray end points on the wavefront with traveltime 7 and points Az
and By correspond to ray end points on the wavefront with traveltime 7 + A7. (a) To limit the searching
area, a rectangular region surrounding the ray cell is defined. (b) Vectors d_;n are distance vectors of the
grld pomt under cons1derat10n from the ray end point x,. By the vector products dA1 X dBl, dB1 X dB2,
d52 X dAz7 and dA2 X dAl it is checked if the grid point G is inside the ray cell A1, A2, B1, Bo.

To decide if a grid point is inside or outside the cell, the implementation uses the approach
introduced by Ettrich and Gajewski (1996). They connected the grid point to every node
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by a vector and perform the vector products cfAl X ch17 JBI X JBZ, chz X JAz, and cfAz X JAl.
The grid point is inside the cell if the signs of all resulting vector products are the same.
If the grid point is located inside the cell, the traveltime will be interpolated.

Figure 4.23 shows the distances which are used for the calculation of traveltimes within a
ray cell in a 2-D media. The traveltime 74 at grid point G is calculated by:

TG = WalTal T Wa2Ta2 + Wp1Tp1 + Wh2Th2, (4.12)

where, e.g. 7,1 is the traveltime to G interpolated from node A; and wg; is the corre-
sponding distance weight. The detailed description of how the weights are calculated from
the distances dy,ds, dg, dp is given by Coman (2003).
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@ Actual interpolation point G
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Figure 4.23: For a grid point G within the cell the distances di, d2, da, d» are used for the computation
of the distance weights required for the traveltime interpolation.

Figure 4.24 shows how the wavefront curvature at node A; is approximated by using the
slowness vector at this node and the position of the nodes A; and the adjacent node on
the same wavefront B;. The intersection point between the normal to the segment A;B;
at M and the backward continuation of the slowness vector p'at A; define the center of
the circle which passes the nodes A; and B;. The radius of this circle R is assumed to
be radius of the wavefront curvature at node A;. Therefore, the traveltime 7,, from the
node A; to the grid point G can approximated by:

|GG
Tay = TA; + I

Too) (4.13)
2 G
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where 74, is traveltime at node Ay, G’ is the projection of point G on the approximated
wavefront with the radius R, GG’ is the distance between G and G, v¢ is the velocity at
point G and the velocity at G is given by v . The interpolation of traveltimes from the
other three nodes to the grid point G is similar.

Figure 4.24: Approximation of the wavefront curvature at node A;. Point M is the midpoint of the
segment A; B1 and point O represents the centre of the circle which passes the nodes A; and B;. Point O
is obtained by the intersection of the backward extension of the slowness vector 7 at A; and the normal
to the segment A1 B; at M. The radius of the wavefront curvature at node A; is approximated by the
distance |OA:|.

G

Figure 4.25: Interpolation of the traveltimes from node A; to the grid point G. The point G’ is the
projection of the grid point G onto the circular wavefront that passes the node A;.
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If the medium is anisotropic we have to distinguish phase and group velocity. In the
anisotropic implementation in equation 4.13 the phase velocity is used.

3-D case

To decide whether a grid point is within a 3-D cell, which is bounded by the two wavefronts
and three rays (Figure 4.26), the cell is decomposed into three tetrahedra.

C1, Wavefront segment 1

Figure 4.26: Decomposition of a ray cell into three tetrahedra.

The decision whether a grid point is inside a ray cell is performed by testing if this grid
point is within one of the three tetrahedra. The position of a grid point with respect
to a tetrahedron is well-defined. For instance, a grid point G is within the tetrahedron
A1 B1C1 (), if, for each plane defined by three points of the tetrahedron, the point G is in
the same half-space as the fourth point of this tetrahedron (see Figure 4.27). As half-space
we considers the spaces separated by the plane under consideration. Similar to the 2-D
case, the interpolated traveltimes from nodes to grid points use the wavefront curvature at
this nodes. In 2-D, the wavefront is represented by a curve and the wavefront curvature at
nodes is approximated by a circle. In 3-D, the wavefront is represented by a surface. The
curvature of this surface will be approximated by two curvatures, which are estimated in
two normal sections at the node. The normal section at node A; in the direction of Bj
(Figure 4.28(a)) is the intersection of a normal plane with the surface. This normal plane is
defined by the normal to the surface at point A1 and point By. The interpolated traveltime
from node A; to the grid point G with respect to the normal plane in the direction of By is
denoted by t,13 and can be calculated by equation (4.13). In contrast, ¢,1, represents the
interpolated traveltime from node A; to the grid point by approximating the wavefront
curvature in the normal plane in the direction of node C; (see Figure 4.28(b)).
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Figure 4.27: For each plane defined by three points of the tetrahedron, the point G (a) is in the same half-
space as the fourth point of this tetrahedron; or (b) if the grid point is not located within the tetrahedron,
the point G is for plane A1 B2C2 not in the same half-space as the fourth point As.

(b)

Figure 4.28: The surface of a wavefront in the vicinity of a node A;. (a) The normal section at node A
in the direction of node B is the intersection of a normal plane with the surface. (b) Here, the normal
plane is defined by the normal to the surface at point A; and point B; and the normal section is the
intersection between this normal plane and the surface.

Thus, the traveltime tg at the grid point G is interpolated by the weighted average of the
twelve interpolated traveltimes:

ta = wal,@talﬁ + wal'ytal'y + Wpratsia + 'wbl'ytbly + Weratela + wclﬁtclﬁ (4 14)
+  Wa2pta28 T Wa2yla2y + Whaalv2a + We2ylp2y + We2alc2a + We2ptcas- '

Each weight can be expressed as a function of three distances (see also Figure 4.29):

e The distance between the grid point and the linear ray segment, e.g., d,
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e The distance between the grid point and the lateral plane, e.g., dg
e The distance between the grid point and the triangular base, e.g., d;

For more details about the interpolation and for the solution in the boundary area of the
model see Coman (2003).

Figure 4.29: 3-D cell and the distances which are used for the traveltime interpolation. The distance
between the grid point G and the upper triangular base is denoted by di, d, is the distance between G
and the ray segment a and dg is the distance between G and the side 3 of the 3-D cell.

In general, the number of arrivals in this implementation is limited to three, mainly mo-
tivated by the fact that the spatial distribution of later arrivals is usually small. In case
of multivalued arrivals at grid points more than one traveltime value is calculated. In this
case the storing is preceded by sorting. The arrivals (1nd, 2nd, 3nd etc.) are sorted with
regard to their traveltimes.



Chapter 5

Numerical examples

After introducing the method of wavefront-oriented ray tracing for anisotropic media in
the previous chapter, here the accuracy of the proposed technique will be demonstrated.
However, the accuracy of the wavefront-oriented ray tracing depends on the accuracy of
the ray-tracing procedure, the accuracy of the insertion of new rays, and the accuracy of
the traveltime interpolation to grid points.

Since in the presented implementation the forth-order Runge Kutta method is used, the
traveltime errors introduced by the numerical integration of the kinematic ray tracing
system can be considered to be negligible.

Because a new ray is inserted by tracing the ray directly from the source, the errors due
to the insertion of a new ray are the same order as the errors of the parent rays.

As described above for the interpolation of the grid point traveltimes from the traveltimes
at nodes, a method of second order is used. The accuracy of this interpolation can be
increased by increasing the ray and wavefront density.

To establish the accuracy of the wavefront-oriented ray tracing, several numerical examples
are presented in this chapter:

e Elliptically anisotropic model (quasi-compressional (qP) wave, quasi-shear vertical
(qSV) wave, shear horizontal (SH) waves)

e Polar anisotropic (qP-wave and quasi-shear (qS) waves)

— homogeneous model

— low velocity lens
e Triclinic (qP- and gS-waves)

— homogeneous model

— gradient model

Almost all chosen elastic parameters are related to real rocks. For example, in the homo-
geneous triclinic model I assumed a triclinic sandstone (Mensch and Rasolofosaon, 1997).
To demonstrate the accuracy of the method the traveltimes computed for a homogeneous

93
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anisotropic model with elliptical symmetry are compared to exact traveltimes available
for this medium.

Since there exists no analytical solution for an inhomogeneous anisotropic model, I com-
pare the results with an alternative method for traveltime computation, the FD perturba-
tion method (Soukina and Kashtan, 2001). To estimate the accuracy of this method com-
pared to wavefront-oriented ray tracing we start with homogeneous models (sections 5.2
and 5.3). The heterogeneous media presented in these sections are factorised anisotropic
media (see section 3.3).

To benefit from the task of wavefront construction methods not only first arrivals are pre-
sented in this chapter, but also second and third arrivals for a selected model are shown.
As already mentioned in the previous chapter the traveltimes are interpolated from wave-
fronts to grid points. Close to the boundary of a 3D model, where the grid cells are
fragmented, this interpolation is less accurate than in the remainder of the model. Be-
cause these effects are not related to the algorithm itself, these regions were omitted for the
traveltime accuracy analysis. To avoid this loss in accuracy at boundaries would causes
much more computational time. Usually the area of interest is located inside the model,
therefore we can ignore these boundary effects.

5.1 Elliptically anisotropic medium

A special case of transversely isotropy which assumes the wavefronts to be ellipsoids has
been used by Cholet and Richard (1954) and Richards (1960) in accounting for the ob-
served traveltimes at Berraine in the Sahara and in the foothills of Western Canada. For
this type of anisotropy the quasi-shear wavefront is forced to be spherical. However, it is
instructive to investigate this simple anisotropic model as it incorporates many features
inherent to wave propagation in a more general anisotropic medium (Daley and Hron,
1979). The kinematics of this anisotropy type have been treated in a number of papers,
e.g., Gassman (1964). A brief overview of the theory for the wave propagation in an el-
lipsoidally anisotropic medium is given in appendix C. The Thomsen parameters of the
example medium are given by

e=90=0.165, v=0.2, wvpy=338km/s, wvso=2.12km/s.

The given model has 201 grid points in x-direction and 101 grid points in y- and z-direction.
The grid spacing is 10 m in each direction. The source point is located in the center of the
z-y-plane and 100 m in depth i.e. at (1.0, 0.5, 0.1km). The exact calculated traveltimes
for the qP-wave (equation (C.20) in appendix C) with the corresponding isochrones are
shown in Figure 5.1.

The results of the comparison of the exact traveltimes and the traveltimes computed by
the wavefront-oriented ray tracing for all wave types are shown in Figures 5.2-5.4.

Figure 5.2 illustrates the relative errors for the qP-wave. The error distribution for the
3-D model is presented by 2-D-slices through the model, one vertical x-z-slice through
the source position y=500m and two horizontal slices at z=100m and z=500m. The top
figure has a different error scale than the two horizontal slices. As readily identifiable in



5.1 Elliptically anisotropic medium 55

the vertical slice the maximum relative error of 0.04% is located near the source. The
relative errors near the source appear exaggerated since there the traveltimes themselves
are very small. Due to the fact that in the remainder of the model the traveltime error is
significantly smaller the observed average relative error is only 1.69 - 1073%. The lattice-
like pattern of the traveltime error which can be observed in all error distributions are
originated by the traveltime interpolation to grid points. The absolute traveltime errors
for the qP-wave are shown in the top of Figure 5.5. In this case the observed average of the
absolute traveltime error is 2.12 - 1073 ms. The calculation of the qP-wave therefore has a
high accuracy and meets the standard demands of all applications, such as migration.

X [km]
@) . . . 8 10 12

(b)

traveltime [s]
— 0.4 | 0 0.2

Figure 5.1: Wavefronts for the elliptical anisotropic medium. The underlying colour-scale illustrates the
exact traveltimes for the qP-wave. The figures show three different slices of the 3-D model: (a) in the
x-z-plane; (b) in the x-y-plane; (¢) in the y-z-plane.

Figure 5.3 visualises the relative errors for the computation of the SH-waves. As for
the qP-wave the upper figure is generated by using a larger error margin than for the
horizontal slices of the traveltime distribution. The magnitude of the traveltime errors
are comparable to the qP-wave. The average relative traveltime error for the SH-wave is
7.43 -107*% and the average of the absolute traveltime error is 2.78 - 1072 ms. Figure 5.4
shows the relative errors for the computation of the qSV-waves. We find an average of
the relative traveltime error for the qSV-wave of 6.25 - 1072% and the average absolute
traveltime error is 3.05 - 1072 ms.
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Figure 5.2: Relative errors for the qP-wave in the elliptically anisotropic model. The upper figure shows
a x-z-slice through the source; the lower figures are 2-D slices in the x-y plane, one through the source
location (z=100m) and the other at a depth of 500 m. The isochrones in the upper figure are shown in
0.04 s steps. Note the different error scale of the top figure.
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Figure 5.3: Relative traveltime errors for the SH-wave in the elliptically anisotropic model. The upper
figure shows a x-z-slice through the source; the lower figures are 2-D slices in the x-y plane, one through
the source location (z=100m) and the other at a depth of 500 m. The isochrones in the upper figure are

shown in 0.04 s steps. Note the different error scale of the top figure.



58 5. Numerical examples

X [km]
01 03 05 07 09 11 13 15 17 19
0.2
0.3+
'_0.4«
£os.
™ 0.6
0.7
0.8+
0.9+
relative traveltime error [%] at y=500m
0 0.02 0.04
X [km]
0.1 0;3 0;5 017 019 111 113 l:5 l:7 119
0.2
0.3
_0.44
Eos
N 0.6
0.7
0.8
0.9-
relative traveltime error [%] at z=100m
0 0.002 0.004
X [km]
01 03 05 07 09 11 13 15 17 19
0.2
0.3+
’_'0.4«
Eos) .
” 0.6
0.74
0.8+
0.9+

relative traveltime error [%] at z=500m

[ T
0 0.002 0.004

Figure 5.4: Relative traveltime errors for the qSV-wave in the elliptically anisotropic model. The upper
figure shows a x-z-slice through the source; the lower two figures are 2-D slices in the x-y plane, one through
the source location at 100m and the other at a depth of 500 m. The isochrones in the upper figure are
shown in 0.04 s steps. Note the different error scale of the top figure.
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Figure 5.5: Absolute traveltime errors in the elliptically anisotropic model. All figures show a 2-D slice
in the x-z-plane. The upper figure represents the error distribution for the qP-wave and the lower figures
corresponds to the qSV- and SH-wave. Here the isochrones for the SH-wave are illustrated by the blue

lines and the green lines are the isochrones for the qSV-wave.
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The cone-shaped region in the error distribution of the shear waves is connected to gS-wave
coupling. Here, the SH- and the qSV-wave cannot be treated as two independent waves
and some formulas of the ray theory fail, e.g. the ray tracing system (2.28), where the
Dj1/D is an indefinite expression of the type 0/0. This is the case where two eigenvalues
are locally close to each other. In Figure 5.6 the traveltime differences between the shear
waves are displayed. The red colour indicates the region where the traveltimes of both
shear waves are nearly the same. In Figure 5.5 the isochrones for both types of waves are
displayed. The green lines present the SH-wave and the blue lines are the isochrones for
the qSV-wave. In the vertical directions the highest traveltime errors correspond to the
region where the isochrones overlap each other. Here, the wavefront-oriented ray-tracing
techniques, as other methods based on zero-order ray theory, cannot calculate traveltimes
for the gS-waves.

X [km]
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traveltime differences [msec]

0 0.2 0.4

Figure 5.6: Absolute traveltime differences between the SH-wave and the qSV-wave in the elliptically
anisotropic model. The figure shows a 2-D slice in the x-z-plane.

5.2 Anisotropic model with polar symmetry

Since no exact traveltimes for a heterogeneous anisotropic medium are available, the cal-
culated P traveltimes by wavefront-oriented ray tracing are compared with traveltimes
obtained by the FD perturbation method (Soukina and Kashtan, 2001). To estimate the
error distribution for both methods, we calculate the absolute traveltime error for the cor-
responding homogeneous model (see Figure 5.7). Thus, the magnitude and distribution of
both methods can be quantified and discussed. Subsequently, this knowledge can be used
to estimate the accuracy for a heterogeneous model (see Figure 5.14). For the qS-waves no
reference traveltimes were available, thus only the results of the traveltime computation
by the wavefront-oriented method are presented.
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The first example model has polar symmetry and the density normalised elastic parameters
are defined by :

1596 6.99 6.06 0.00 0.00 0.00
1596 6.06 0.00 0.00 0.00
11.40 0.00 0.00 0.00

_ 2 2
Agp 992 0.00 0.00 | F™ /5
2.22 0.00
4.48

The Thomsen’s parameters of this anisotropic shale are e = 0.143, v = 0.508 and 0 =
—0.075. We consider a model cube of 100 x 100 x 100 grid points. The grid spacing is 10
m in each direction. The source is located in the center of the z-y plane and at a depth
of 100m at the position (0.5,0.5,0.1km).

Traveltime calculation for the qP-wave

For both methods Figure 5.7 display one vertical slice of the absolute traveltime error
distribution computed for the qP-wave.
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Figure 5.7: Absolute traveltime error for the qP-wave in the anisotropic homogeneous model with polar
symmetry, both figures show a x-z slice at y=500m representing the error distribution for the different
methods. Left: wavefront-oriented ray tracing. Right: FD perturbation method. Please note the different
error scales.

The maximum of the absolute traveltime error for the wavefront-oriented ray tracing,
0.04ms, is located in the source region. The traveltime errors of the wavefront-oriented
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ray-tracing technique are due to the interpolation to the traveltime grid. Therefore, the
traveltime error distribution has that lattice-like pattern. The comparison of the whole 3D
model leads to an observed absolute traveltime average error of 10~3ms. In comparison the
right side in Figure 5.7 show the absolute traveltime errors of the FD perturbation method
(Soukina and Kashtan, 2001). The traveltimes calculated by this method show a typical
error distribution of the Vidale scheme. The FD perturbation method accumulates the
traveltime errors with increasing distance from the source location. Therefore, in this case
the maximum of the traveltime error (3ms) is located near the boundaries of the model. In
addition, for this model the traveltime errors depend on direction of propagation. Before
this knowledge can be used for an inhomogeneous model with the same type of anisotropy,
the results of the comparison between exact traveltimes and traveltimes computed by
wavefront-oriented ray tracing are shown in Figure 5.8. As expected the maximum relative
error of 0.11% is located near the source position. The average relative error is 1.15 -
1073%. The horizontal slice in 500m depth demonstrates that for this homogeneous
model the traveltime calculation by the wavefront-oriented ray tracing technique yields
only randomly distributed round off errors. Again the lattice-like pattern due to the
traveltime interpolation from wavefronts to grid points are visible.

Traveltimes of the qS-waves

To investigate the potential of the wavefront-oriented ray tracing technique to calculate
traveltimes for gS-waves, no reference traveltimes are available. Therefore, in this part
only the calculated results are shown and discussed. To compute both gS-waves for this
homogeneous transversely isotropic medium the source location is moved to the center of
the model (0.5,0.5,0.5)km. The main reason for this approach is that in this case the
symmetric behaviour of the wave propagation is easier to verify.

The left side in Figure 5.9 images the different phase velocities. The red curve represent
the phase velocity of the qP-wave, which is significantly separated from the qS-waves. The
qSV-wave (indicated by the green curve) and the qSH-wave (indicated by the blue curve)
crosses each other. The wavefront-oriented ray tracing technique assumed that the three
wave types have different properties, particularly different velocities of propagating. As
described in section 2.6 the initial conditions in anisotropic media specify the type of wave
that is to be computed. The right-hand side of Figure 5.9 displays the separation of two
gS-wave due to the phase velocity. Here, the green line represents the faster qS1-wave,
whereas the phase velocity for the slower qS2-wave is indicated by the blue line. Figure
5.11 shows the results of the traveltime computation by the wavefront-oriented ray tracing
for the faster qS-wave. The underlying colour scale images the computed traveltimes and
the green curves are the corresponding isochrones. It is readily identifiable that the shape
of the isochrone is similar to the green curve in the right-hand side of Figure 5.9. Obviously
the isochrones for the slower qS-wave, which are displayed in Figure 5.12, correspond to
the blue line in the right-hand side of Figure 5.9.

By plotting the computed isochrones for both gqS-waves in one Figure 5.10 it is clearly
visible that for this anisotropic model the correct separation of the gS-waves fails.
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Figure 5.8: Wavefronts for the qP-wave in the anisotropic model with polar symmetry. The source is
located in the center of the x-y-plane and in 100m in depth. The figures on the left side show vertical slices
through the source position. The figures on the right side show horizontal slices at two different depths
(100 m and 500 m).
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Figure 5.9: Left: Phase velocity for the three propagating wave-types, qP, qSH and qSV. Right: Type
of wave separated due to the phase velocity qP, qS1 and ¢S2.

X [km]
01 02 03 04 05 06 07 08 09

Figure 5.10: Isochrones for both qS-waves computed by the wavefront-oriented ray tracing technique.
The green lines indicate the faster qS1-wave and the blue isochrones correspond to the slower qS2-wave.
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Figure 5.11: Wavefronts for the qS1-wave in the anisotropic model with polar symmetry. The source is
located in the center of the model (0.5, 0.5,0.5)km. The figures on the left side show vertical slices through
the source position. The figures on the right side show horizontal slices at two different depths (100 m and

500 m).



66 5. Numerical examples

X [km] X [km]
02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

Z [km]

traveltime [s] at y=500m traveltime [s] at z=100m
0 0.1 0.2 0.3 0.30 0.35 0.40
Y [km] X [km]

02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 0.9

0.2

0.3

Z [km]
Y [km]
=)

(2]

0.7
0.8

0.9
traveltime [s] at x=500m traveltime [s] at z=500m

0 0.1 0.2 0.3

0 0.1 0.2 0.3

Figure 5.12: Wavefronts for the qS2-wave in the anisotropic model with polar symmetry. The source is
located in the center of the model (0.5, 0.5,0.5)km. The figures on the left side show vertical slices through
the source position. The figures on the right side show horizontal slices at two different depths (100 m and

500 m).

In conclusion, the computed traveltimes for the qS-waves look reasonable, but the sepa-
ration in the specific model fails.

I now consider the result about the error distribution for both methods to assess the qual-
ity of the implementation for traveltimes in a heterogeneous anisotropic model with polar

Symmetry.
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Factorised anisotropic model with polar symmetry

As an inhomogeneous anisotropic example we use a factorised anisotropic medium (FAT).
To construct a FAI we multiply the elastic parameters by an individual factor for each
grid point (see also section 3.3). The elastic parameters are the same as in the previous
paragraph. The factor-field for the polar symmetry vary smoothly from 3 to 5 and form
a parabolic lens (see Figure 5.13).

Ykm]

Z[km]

factor

Figure 5.13: Factor field for the heterogeneous anisotropic medium.

For this type of heterogeneity the wavefronts triplicate, which leads to caustics. Therefore,
this factor-field is used in section 5.4 to analyse the potential of the wavefront-oriented
ray tracing technique for traveltime computation in these regions.

The result of the traveltime comparison is displayed in Figure 5.14. The figure shows four
different slices through the 3-D model. On the left hand side, two vertical slices are shown,
and the right hand side presents two horizontal slices at different depth. Wavefronts com-
puted from wavefront-oriented ray tracing and FD perturbation method are shown, the
black lines indicate the results of the wavefront-oriented ray-tracing method, and the red
dotted line the wavefronts calculated by the FD perturbation method. The underlying
green scale illustrates the traveltime differences between both methods. The error distri-
bution looks similar to the homogeneous case of the FD perturbation method, and the
magnitude of the observed differences are comparable to the homogeneous example as
well. Therefore, we assume that the traveltimes calculated by the wavefront-oriented ray
tracing are in the same accuracy range as in the homogeneous case shown before.
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Figure 5.14: Wavefronts in the factorised anisotropic model with polar symmetry. The source is located
in the center of the x-y-plane and at 100m in depth. The figures on the left side show vertical slices
through the source position. The figures on the right side show horizontal slices at two different depths
(100 m and 500m). The solid lines are the wavefronts calculated by wavefront-oriented ray tracing, and
the thin dashed lines are wavefronts obtained by the FD perturbation method. The underlying green scale
illustrates the absolute traveltime difference between both methods in ms.
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5.3 Anisotropic medium with triclinic symmetry

The most general form of anisotropy is the triclinic medium. Therefore, the next numerical
example is a 3-D anisotropic model of triclinic sandstone. The elastic parameters have
been obtained by Mensch and Rasolofosaon (1997) for a rock sample:
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_ 2/.2
Aaw 235 009 000 |7/
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Again, traveltimes were computed first for a homogeneous triclinic model and then a
heterogeneous model is assumed. The model dimension is the same as for the previous
model with polar symmetry. The source location is assumed to be in the center of the
x-y-plane and in 100m depth (0.5,0.5,0.1km). For the homogeneous triclinic sandstone
nearly exact traveltimes can be calculated by standard ray tracing. Figure 5.15 shows
the results of the comparison between the traveltimes calculated by wavefront-oriented
ray tracing with the exact traveltimes. The figure includes two vertical slices through
the source location and two horizontal slices in different depth (100m and 500m). The
error distribution necessitates the usage of different error scales. The black lines illustrate
the computed isochrones in this medium (display traveltime step is 0.04s). The relative
error distribution is similar to the medium with elliptical and polar symmetry: we have
small errors at the source and for the remainder of the model very accurate computed
traveltimes. Again the horizontal slice in 500m depth illustrates that only more or less
random inaccuracies due to round off errors of digital numbers are introduced by the
wavefront-oriented ray tracing technique. As already discussed the form of the pattern
visible in the traveltime error distribution is due to the traveltime interpolation to grid
points.

The computed traveltimes for the quasi-shear waves are displayed in Figure 5.16 and 5.17.
Both figures comprise two vertical slices through the source position and two horizontal
slices 100m and 500m in depth. For the faster gSl-wave the presented isochrones in
the x-z-plane are smooth and the implementation succeeds by calculating all grid point
traveltimes. In comparison the results in the y-z-plane and in the x-y-plane in 100m
depth possess kinks in the wavefronts. As it has been proved in the transversely isotropic
case these kinks can occur if the separation of the two gS-waves fails. However, while in
this example in the x-y-plane at 100m depth the kinks are visible for the qS1-wave, the
isochrones of the qS2-wave are smooth and comprise no kinks at all. On closer examination
the “propagation direction of the kinks” in the y-z-plane for the qS1-wave differs from the
location of the kinks in the same plane for the qS2-wave. These observation suggests that
the observed kinks in the isochrones are due to the wave propagation within this medium
and not a consequence of difficulties to separated both gS-waves.
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Figure 5.15: Wavefronts for the gP-wave in the homogeneous triclinic sandstone. The source is located in
the center of the x-y-plane and at 100 m in depth. The figures on the left side show vertical slices through
the source position. The figures on the right side show horizontal slices at two different depths (100 m and
500 m). The underlying red-scaled image shows the relative errors. Please note the different error scales.
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Figure 5.16: Wavefronts for the qS1-wave in the homogeneous triclinic sandstone. The source is located
in the center of the x-y-plane and 100 m in depth. The figures on the left side show vertical slices through

the source position. The figures on the right side show horizontal slices at two different depths (100 m and
500 m).
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Figure 5.17: Wavefronts for the qS2-wave in the homogeneous triclinic sandstone. The source is located
in the center of the x-y-plane and 100 m in depth. The figures on the left side show vertical slices through
the source position. The figures on the right side show horizontal slices at two different depths (100 m and

500 m).
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Sometimes undulations appear in the isochrones, which is, for example visible for the
slower qS2-wave in the x-y-plane in 500m depth (see Figure 5.16). These are inaccuracies
which occur predominated in the boundary region or in areas where the ray density is low
despite of numerous insertion of a new ray.

For both gS-waves the traveltime grid in the x-y-plane in 500m comprises a few gaps. Here
the grid point has it’s initial value and during the propagation the traveltime calculation
to this grid point fails.

Causes for gaps in the traveltime tables

There are two main reasons for these gaps. The interpolation is performed for each grid
point within a grid cell, but sometimes the detection of the grid point fails and therefore
the interpolation is not accomplished. In Figure 5.18 the 2D case is illustrated. Here a ray
cell is bordered by two ray segments and two linearised wavefronts. In the 2-D case this
approach leads to a complete coverage of the model, and all grid points can be detected. By
assuming a 3-D model and a varying curvature of the wavefronts the geometrical construct
of a ray cell is much more complicated. Consequently, the probability to “oversight” some
grid points increases.

Source

) Wavefronts

Ray cell 1

Figure 5.18: The traveltime interpolation is performed within ray cells. In the 2D case each ray cell is
restricted by two ray segments and two linearised wavefronts. Grid points which are not part of ray cell 1
because of the curvature of the wavefront will be part of ray cell 2.

The singular behaviour of amplitudes in certain regions, such as caustics, and shear wave
singularities in strongly anisotropic media, can produce numerical instabilities. Triplica-
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tions complicate the geometry of the wavefront but do not pose complications for the ray
tracing equation. In this case the problem occurs due to the traveltime interpolation and
the sorting of the different arrivals. In Figure 5.19 the red circle roughly indicates the
area where the traveltime difference between the first and the second arrival is too small
to determine the number of arrival. For this reason there occurs a few gaps in the vicinity
of a caustic or the interpolated traveltime at some grid points is less accurate.

time

_— ~_

x—direction

Figure 5.19: Problems by interpolation traveltimes in the vicinity of caustic.

The application of the standard ray method (Cerveny, 1972) to the propagation of the
gS waves in inhomogeneous anisotropic media is more complicated than for the qP-wave,
because of difficulties related to singularities. Singularities can cause breakdowns of the ray
tracing algorithm (Gajewski and Psencik, 1990). Moreover, in the vicinity of shear wave
singularities, the two qS waves do not propagated independently but mutually coupled
(Chapman and Shearer, 1989).

Factorised anisotropic model with triclinic symmetry

To construct the heterogeneous triclinic model we again use a factorisation. For the
uppermost 100m the model is homogeneous with the factor F? = 3, below the factor
increases by a vertical gradient with depth up to a value of 3.4 at the bottom of the
model. The size of the model and the location of the source are the same as in the
previous example. Figure 5.20 shows the differences between traveltimes from the FD
perturbation method and the traveltimes obtained by wavefront-oriented ray tracing. The
solid lines display the wavefronts calculated by wavefront-oriented ray tracing, and the
dotted lines show the results from the FD perturbation method. The maximum absolute
traveltime difference is 2.3 ms and we observe an average absolute traveltime difference
of 0.6 ms. It can be seen that the behaviour and the order of traveltime differences are
similar to the observed errors for the heterogeneous medium with polar symmetry.

The wavefront-oriented ray tracing procedure allows the calculation of P traveltimes
within anisotropic models with arbitrary symmetry with a high accuracy. Additionally,
the calculation of traveltimes for the gS-waves is performed (see Figure 5.21 and 5.22).
Here, no reference S traveltimes are available, but it is demonstrated that in general the
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traveltime computation can be accomplished. The few gaps in the traveltime table can be
filled by an interpolation algorithm.

traveltime difference [ms] at x=500m traveltime difference [ms] at z=100m
[ T [ T
0 1 2 0 0.5 1.0 15
Y [km] X [km]

0.15 0.35 0.55 0.75 0.95 0.15 0.35 0.55 0.75 0.95

0.05 : U

traveltime difference [ms] at y=500m traveltime difference [ms] at z=500m

0 1 2

Figure 5.20: Wavefronts for the qP-wave in the factorised triclinic sandstone. The source is located in
the center of the x-y-plane and at 100 m in depth. The figures on the left side show vertical slices through
the source position. The figures on the right side show horizontal slices at two different depths (100 m
and 500 m). The solid lines are the wavefronts calculated by wavefront-oriented ray tracing, and the thin
dashed lines the wavefronts obtained by the FD perturbation method. The underlying red-scaled image
shows the absolute traveltime differences. Please note the different error scales.
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Figure 5.21: Wavefronts for the qS1-wave in the factorised triclinic sandstone. The source is located in
the center of the x-y-plane and 100 m in depth. The figures on the left side show vertical slices through
the source position. The figures on the right side show horizontal slices at two different depths (100 m and
500 m).
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Figure 5.22: Wavefronts for the qS2-wave in the factorised triclinic sandstone. The source is located in
the center of the x-y-plane and 100 m in depth. The figures on the left side show vertical slices through
the source position. The figures on the right side show horizontal slices at two different depths (100 m and

500 m).
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5.4 Calculation of multivalued-arrival traveltimes

The previous sections have demonstrated that the wavefront-oriented ray tracing is an
efficient and accurate technique for the calculation of first arrival traveltimes. In addition
this method allows the calculation of multivalued traveltimes, which occur if the wavefront
triplicates. In this section we presented the traveltime results for a factorised anisotropic
medium with polar symmetry. The corresponding elastic parameters are given in section
5.2. The factor-field (see Figure 5.23) corresponds to a spherical intrusion, where the
factor decreases from f2(z;) = 5 to f2(z;) = 2.

factor

Figure 5.23: Factor field for the heterogeneous anisotropic medium. The constant factor field (f* = 5)
has a spherical intrusion, where the factor decreases to f2 = 2 in the center of the lens structure.

The behaviour of the factor-field causes the wavefront to gradually fold into itself forming
a cusp. The traveltimes which are shown in Figure 5.24 are calculated for the qSV-wave.
The figure shows 2-D slices in the x-z-plane at the left side and y-z-plane at the right side.
All arrivals are displayed.

As already mentioned before in the immediate vicinity of a caustic sometimes the precise
calculation of multivalued traveltimes on grid points failed. This region is roughly bounded
by the green rectangle. Since here the traveltimes of the first arrivals and the second arrival
traveltimes are close to each other and therefore, it is difficult to distinguish between them.
This effect is reflected in the unevenness of the isochrones of the second arrivals (see Figure
5.24 (b)) near the caustic.

In comparison, the distinction between third and second arrival is unambiguously. Figure
5.24 demonstrates that the isochrones of the second and third arrivals for the rest of the
model, apart from the caustic region, are smooth and traceable.
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Figure 5.24: First (a), second (b) and third (c) arrivals in the factorised anisotropic model with polar
symmetry.



80 5. Numerical examples

The observed undulations indicated by the white lines in Figure 5.24(a) are due to the
shear wave singularities. This effect was already discussed for the homogeneous model
with transversely anisotropic symmetry. Consequently for the gSH-wave similar problems
by calculating the traveltimes occurs within the marked region, which are not shown here.
Obviously the artifacts in the second and third arrival traveltimes are connected to this
shear wave singularity.



Chapter 6

Traveltime-based migration with
angular parametrisation

So far this work has presented a method to calculate traveltimes in heterogeneous 3-D
anisotropic media. Traveltimes are needed in several seismic processing methods such as
Kirchhoff prestack and poststack migration, migration velocity analysis, Kirchhoff mod-
elling, or traveltime tomography. The largest number of traveltime is needed by 3-D
prestack Kirchhoff depth migration. The resulting traveltime tables calculated by the
wavefront-oriented ray-tracing method can be directly used for the conventional migra-
tion techniques. Gray et al. (2001) give an overview of current migration practice.
Common-offset migration results in common-image gathers that can be used for migration
velocity analysis (MVA) and amplitude-versus offset (AVO) studies. For amplitude-versus-
angle (AVA) studies an offset-to-angle transformation involving two complete prestack
common-offset migrations need to be performed (Bleistein, 1987). Prestack depth Kirch-
hoff migration is implemented as diffraction stacking along traveltime curves in the prestack
data using source-receiver coordinates as integration variables. This configuration, how-
ever, can complicate the determination of the reflection angle of a reflection event for a
given source-receiver pair.

In geological complex situations, such as imaging beneath gas clouds or salt bodies, mul-
tipathing occurs. There it may happen that for a single subsurface point two (or more)
specular events with different reflection angles are recorded into the same common-shot
or common-offset gather. Here, the single-path assumption of most common-offset mi-
grations is violated, and the resulting common-image gathers are unsuitable for AVO or
velocity analysis (Xu et al., 2001). Problems caused by multipathing can be resolved by
inversion or migration using angle coordinates at the depth image point (Brandsberg-Dahl
et al., 2001). In this context, deHoop et al. (1999) replaced the surface coordinates by the
migration dip, the scattering angle, and the azimuth.

In this chapter I introduce a strategy for a migration with angular parametrisation in

combination with ray shooting and hyperbolic traveltime interpolation to calculate the
traveltimes. In the first step, I will explain the general idea of this technique. Till now,

81
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the method is developed for 3-D models where no variation in the third direction is as-
sumed. Therefore, the basic concept is described by 2-D slices.

The implementation of the traveltime-based migration in the angular domain will be
described by using a complex isotropic velocity model. The medium (see Figure 6.1)
is composed of two layers with a lens-shaped high velocity intrusion in the upper layer.
The velocity varies from 3000 m/s to 4500 m/s. The model dimensions are 2 kilometers in
depth and 3 kilometers in x-direction. Inside the predefined target zone (see Figure 6.1)
traveltimes are calculated from image points on a coarse grid to the registration surface.
To provide the desired uniform angular coverage at the image point M the slownesses rays
emerging at M are chosen by equidistant angles. To calculate the traveltimes by rayshoot-
ing from the image point M to a point at the surface we solve the kinematic ray tracing
system (2.28) with the corresponding slownesses as initial conditions (see Figure 6.2a).

X [km] X [km]
0.0 0.6 1.2 1.8 2.4 3.0 0.0 0.6 -2 -8 2.4 ' 3.0

0.4 0.4
=
% 1.2 2 1.2
0 Target Zone 0
R 16 R 16
2.0 2.0

Velocity [m/s] Velocity [m/s]

3000 3500 4000 4500 3000 3500 4000 4500

Figure 6.1: Left: Definition of the target zone. Right: Rayshooting for an image point on a coarsely
gridded subsurface to the surface for each angle increment.

For the kinematic ray tracing system the constant traveltime step At is defined. After
each time step the position of the ray endpoint and the slowness at this new ray endpoint
is calculated (see Figure 6.2b and 6.2c). If the ray passes the surface the traveltime step
will be bisected as long as the distance between the ray endpoint and the surface is less
than 10 cm (see Figure 6.2d).

As it can be observed in Figure 6.3, the equi-angular increment at the image point does
not coincide with an uniform coverage at the registration surface.

Consequently, the traces which are recorded at the marked green triangles, which represent
sources and receiver positions, have negligible contribution to that image point. During
the migration only those traces, which have a significant contribution to the image point,
are taken into account. By applying rayshooting the traveltimes at irregularly discretise
positions on the registration surface are computed. This is illustrated in Figure 6.4 by the
red curve. In a typical seismic experiment the receiver spacing is uniform. Therefore, in
most cases there will be no source or receiver at the ray-end position.
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Figure 6.2: For the rayshooting procedure a constant traveltime step At is defined. If the ray pass over
the surface the traveltime step will be bisected. This procedure will be repeated as long as the difference
between the ray endpoint and the surface is less than 10 cm.
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Figure 6.3: If the model includes a geologically complex subsurface structure, the equiangular increment
at the image point does not lead to an equidistant spacing at the registration surface.

If the distance between the receiver and the ray end point is greater than a predefine
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distance the shooting angle will be reduced as long as the angle step is greater than a
predefined angle step.

Instead of applying seismic trace interpolation (e.g. Spitz, 1991), I calculate the traveltime
to the real trace positions by applying hyperbolic traveltime interpolation. For this purpose
I have extended the hyperbolic traveltime approach by Vanelle and Gajewski (2002a) to
irregular traveltime grids.

This approach allows to interpolate the traveltimes to the real trace position (Figure 6.4).
The derived formulas for the traveltime coefficients in this case were already given in
section 7.2.

Until now the implementation do not consider, that the interpolation of the traveltimes
to the receivers and therefore the corresponding movement at the surface is associated
to a slightly different ray, and consequently to a different angle at the image point. By
assuming the theory of the paraxial ray it would be possible to get the new departure
angle.

traveltime[s] traveltimes]
o o \\‘\\y/
0.26 0.26

3km VVVV VYV YV VY 3km

Velocity [m/s] Velocity [m/s]

3000 3500 4000 4500 3000 3500 4000 4500

Figure 6.4: Left: The red dots, respectively the red line, illustrate the traveltime curve that is computed
by rayshooting. Right: the migration requires the traveltimes at the real receiver position. Therefore, I
implemented the hyperbolic traveltime interpolation for irregular grids.

To obtain an image with high resolution, the subsurface is discretise on a fine grid. Since
traveltimes to the registration surface are required for each image point on that fine mi-
gration grid, I also use hyperbolic traveltime interpolation. Then, rayshooting only needs
to be carried out for image points on a coarse grid. By using these traveltimes all coeffi-
cients for the hyperbolic traveltime interpolation are computed. Now we have the ability
to calculate all traveltimes for all source-receiver combinations.
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Figure 6.5: To provide a most realistical image of the subsurface the traveltimes are needed on a fine
migration grid. Therefore, the hyperbolic traveltime interpolation is also used for the interpolation of
traveltimes of new image points in the subsurface.






Chapter 7

Hyperbolic traveltime expansion

As already shown in the previous chapter of this work, traveltime tables can be calcu-
lated efficiently. Kirchhoff migration, for instance, needs these traveltime maps for the
summation stack along the diffraction surface. In the case of 3-D depth migration large
amounts of finely-gridded traveltime tables are required. The effort in computational time
as well as in data storage can be significantly reduced if a fast and accurate traveltime
interpolation is applied.

In this context, various authors have developed second-order approximations for reflection
traveltimes mainly by using dynamic ray tracing for the determination of the wavefront
curvature (Ursin, 1982; Gjgystdal et al., 1984). Bortfeld (1989) established a general sec-
ond order approximation of traveltimes in seismic systems, which is based on the paraxial
ray approximation (Cerveny, 2001). A hyperbolic variant of the paraxial traveltime inter-
polation was introduced by Schleicher et al. (1993). Both methods are, however, restricted
to reference surfaces, e.g. source and receiver surfaces.

Gajewski (1998) provides the hyperbolic variant of the paraxial approximation and intro-
duces an algorithm to determine the interpolation coeflicients directly from traveltimes,
and therewith finds an alternative to dynamic ray tracing. That technique is, however
restricted to horizontal interpolation.

Accordingly, Vanelle and Gajewski (2002a) introduce a hyperbolic and parabolic travel-
time interpolation algorithm, that is neither restricted to laterally homogeneous media
nor to interpolation in horizontal layers. Additionally, it allows also the interpolation of
sources, not only receivers.

This chapter contains the hyperbolic traveltime expansion in arbitrary 3-D media and
gives a brief description of the determination of the Taylor coefficients (section 7.1) . For
the application to the migration in the angular domain the hyperbolic traveltime interpo-
lation is extended to an irregular grid (see section 7.2). Due to the fact that this method
allows the interpolation of sources (see section 7.3) the effort in computational storage
can be significantly reduced. To demonstrate the accuracy of the traveltime interpolation
several numerical examples in 2-D are given in section 7.4.
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7.1 Theoretical background

Since the traveltime interpolation to e.g. the receiver position in this work is based on
the hyperbolic traveltime interpolation this section summarises the basic principles of this
theory.

The Taylor expansion of a traveltime T from a source at the coordinates § to a receiver
at g yields a good approximation of the exact traveltime provided that the distance Ag
and A§ to the expansion point, go, S, are small (the first and second order spatial deriva-
tives are assumed to exist and be continuous). For the 3-D case, the Taylor expansion
has to be carried out in six variables: the three components of the source position vector
5= (s1, 52,53)7 and those of the receiver position § = (g1, g2,93)". The hyperbolic trav-
eltime expression is given by Vanelle and Gajewski (2002a)

2 2 22
T2(8i,gi) = TO2 + ASZ‘ 81 + Agz 81 + ASiAgj 87T
8Si 696 agz 696 83289] > o
s S 50,90
9272 92772 (7.1)
A A A i A 0(3),
T G T2 By | OB

where T is the traveltime at the expansion point, e.g. calculated by the wavefront-oriented
ray tracing on a coarse grid. The “source” location here is assumed to be at the surface,
and the receiver at the image point (see Figure 7.1). The first-order derivatives

oT d oT
Dip = and g, = 5— ) 7.2
- Osilgg i 540 (72
are the slowness vectors at the source and the receiver point, and the matrices
o0*T
S = S,
K aSiaSj S$tan It
o0*T
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* 09;0g; S0G% v (7.3)
82
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(i,7 = 1,2,3 correspond to z, y, and z) are the second derivatives of the traveltimes,
which are related to the curvature of the wavefront. With these coefficients the Taylor
series (7.1) reads

T%(5,9) = (To—py AF+ gL Ag)?

4
+ Ty (—ms TNAG — ASTSAS + AngAg) + O(3). (74)

To compute, e.g. ¢, and G, from the traveltime tables, only the traveltimes 79, 7, and
7, are required, as shown in Figure 7.1. The traveltimes are inserted into the hyperbolic
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expansion (7.4). Building the sum and the difference of the resulting expressions yields

72 = 10+ GoAg — 2710 40lge + 0 GurAgy
7'5 = Tg + qﬁoﬁgi + 270 @uoAge + 70 GaaAgs
(7.5)
7'31 =+ Tg = 27'3 =+ 2q:2COAgC2C + 2T0 GCCCCAgg‘
TH—T = — 470 quoAYga
As result the coefficients ¢, and G, are calculated by:
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The y— and the z— components of Gy and G can be found in the same way by varying
gy and g., respectively. Varying both g, and g, leads to Gy; and the components G,
and G, follow accordingly. The determination of py and S is straightforward: instead of
varying the receiver position we use different source positions.

@ (O
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Tm K Tp \
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Figure 7.1: (a) Determination of the coefficients ¢», and Ga.: the traveltimes 7, from 5o to go, 7m from
50 to Jo — Age, and 7, from So to Go + Ags are required. Correspondingly (b), the determination of the
coefficients pr, and Szs: the 7° from Sy to go, 7™ from 8y to Go — Ags, and 7P from 35y to go + Ags are
required (Vanelle, 2002a).

The determination of all remaining coefficients which are needed in equation 7.1 are given
in Vanelle (2002a).

7.2 Hyperbolic traveltime equation for irregular grids

To interpolate the traveltimes from the intersection points of the rays with the registration
surface to the receiver position we use the 3-D hyperbolic traveltime expansion introduced
by Vanelle (2002a).

In contrast to the previous section, the “source” position now is assumed to be the image
point, and the receiver in the registration surface. Therefore, the expansion point now
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corresponds to the “source” on the coarse subsurface grid and the receiver at the endpoint
of the ray in the registration surface. We will now consider one expansion point. The
receiver position of the expansion point is defined by the emergence angle at the image
point. The coefficients G, and ¢ can be computed from the three traveltime values
To = T(50,90), T = T(50, Go — Agm) and T, = T'(5p, o + Agp) (see Figure 7.2).
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Figure 7.2: Traveltime interpolation to the real receiver position. The traveltimes 75,, To and 7} are
computed by ray shooting. First step (left): Determination of the traveltime coefficients ¢, and Gz at
position go. Second step (right): Interpolation to the real receiver position g.

In comparison to the regular grid formula given by Vanelle and Gajewski (2002a), here the
distances between grid points may differ (Ag,, # Agp). The insertion of T}, and T}, into
the hyperbolic equation (7.1) leads to a linear system of two equations with two unknowns,
which can be solved for ¢, and G,.

T2 = T5+ ¢ Ag2 — 2T} Gz0 Agm + Ty Guw Ag2,
sz = TO2 + qfco Agf, + 275 qz0 Ag, + Ty Gy Agﬁ

2 2 2 2 2 2 2 2 (7.7)
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As result for the slowness component ¢, and for the second-derivative component G, we

get
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After the coefficients have been determined, equation (7.1) can be directly applied for
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the traveltime interpolation to the real receiver position g (see Figure 7.2). This is re-
peated for all receiver positions and for each subsurface point.

7.3 Interpolation to the fine migration grid

It is also possible to interpolate traveltimes between image points, i.e. AS # 0. This
requires that the derivatives with respect to the image point positions are also known.
The coefficients Sy, pyo can be obtained from the traveltimes 7},, and T}, (see Figure 7.3).

9m g0 9p
qm; Gm q, G qln Gp TO
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(a) (b)

Figure 7.3: (a) Rays are shot from the three subsurface points at sm, so and sp, respectively. The
corresponding traveltimes to the surface are TS, Tp and TS. (b) With the coefficients ¢m, gp, Gm and Gp
we obtain the traveltimes T}, and T,. These lead to the coefficients pyo and Szz.

The ray shooting from the three subsurface points s,,, sp and s, gives us the traveltimes
TY, Ty and TIE) . By applying the hyperbolic traveltime interpolation with the coefficients
gm and Gy, for the expansion point (S, gm) which we have already calculated before, we
get (see also Figure 7.3)

T2 = (T2 — quAgm)? + T2 G Ag2,. (7.9)
Similar, interpolation with the coefficients ¢, and G}, at (sp, gp) yields
T2 = (T) + ¢pAgp)* + T GpA gy (7.10)
With these traveltimes we can calculate the coefficients p,o and Sy.:
Ty -T2
pZBO 4TOAS bl
) ) ) ) (7.11)
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where As = s, — 59 = 59 — 5,,. The remaining coefficients are computed correspondingly.
Afterwards the traveltimes can be interpolated from the fine grid of image points to the
receiver positions (see also Appendix D).
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7.4 Numerical examples

The hyperbolic formula from the previous sections can be used for traveltime interpolation
with high accuracy, once the according sets of coefficients are known. In this section three
different examples are shown: First a homogeneous anisotropic model with elliptical sym-
metry is presented. The accuracy investigation concerns not only the resulting traveltimes
but also the coefficients themselves. The second example is an anisotropic homogeneous
model with orthorhombic symmetry and the interpolated traveltimes will be compared to
traveltimes calculated by the wavefront-oriented ray tracing. Finally, the interpolation of
traveltimes for a more complex isotropic model is presented.

Homogeneous model with elliptical anisotropy

To illustrate the accuracy of the traveltime interpolation presented in the previous section
we have chosen an anisotropic model with elliptical symmetry. As already mentioned,
elliptical anisotropy is a special case of polar anisotropy with an additional constraint and
it is rarely found in real rocks. This kind of symmetry, however, is suitable for verification
purposes since traveltimes and synthetic seismograms can be computed analytically. We
describe our model by the Thomson parameters e = § = 0.187 and v = 0.2 and the vertical
velocities vy0 = 3.38 km/s and vgg = 1.80 km/s. The ray shooting is performed on a coarse
subsurface grid of 21 x 21 x 21 grid points and a grid spacing of 100 m is considered. The
receivers are located at the surface with 10 m spacing.

The exact coefficients and traveltimes are calculated by the formulas that are given in
appendix C. The left sides of Figures 7.4-7.6 illustrate the calculated coefficients. The
solid blue lines are the analytically calculated values whereas the red dots represent the
computed coefficient by the formulas derived in the previous sections, respectively in ap-
pendix D. The right side presents the corresponding relative error distribution. The
highest relative errors for the x-components of the slowness at the source ¢, and at the
receiver p, correspond to the region near the zero-crossing of the coefficient, because here
the values themselfs are zero or very small. The average relative error is less than 0.004%.
For the z-component of the first derivative p. the relative traveltime error is still smaller,
about 0.0002%. The magnitude of the relative errors for the second-order derivative in
x-direction for the source S,;, the receiver G, and the mixed derivatives N, is around
0.1%. Nearly the same accuracy is obtained for the second-order derivative at the source
Szz, S., and N,,. To evaluate the accuracy of the traveltime interpolation, we will con-
sider an image point at sg = (1.1,1.1)km. From here and the neighbouring image points
on a 100 m coarse grid we have performed ray shooting with a constant angular increment.
Traveltimes were interpolated from four different image points to the receivers using (7.1)
and were compared to analytic values. The results are shown in Figure 7.7 and 7.8.
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Figure 7.4: Analytical coefficients ¢z, pz, p» for the elliptical anisotropic medium (solid blue line) and the
corresponding values (red dots), calculated by the ray shooting and the hyperbolic traveltime interpolation

for irregular grids. The right side shows the acquired relative errors.
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corresponding values (red dots), calculated by the ray shooting and the hyperbolic traveltime interpolation
for irregular grids. The right side shows the acquired relative errors.



7.4 Numerical examples 95
0.1 S ’ ’ ’ 0.1
XZ
0.08} Sxz
0.06} 0.08} ’
0.04} ¥ .
0.02} 5 006} +
ol o : . ' .
o e
-0.02} 2 004} . +
= .
-0.04} © L. .
0.06} 0.02} oo . .
-0.08} . LT
0.1 " " " 0 EEN L L
0 1 1.5 0 0.5 1 15 2
X[km] x[km]
0.01 . ’ ’ 0.16 . .
Szz Szz .
or 0.14}
001t 0.12}
-0.02} )
.é. 0.1}
-0.03} 5
= 0.08f
-0.04} 3] ..
L 006
-0.05} s I
-0.06 } © 004} ) )
-0.07 t 0.02F ., .t R
-0.08 . . . ol R . Tt
0 0.5 1 1.5 0 0.5 1 15
X[km] x[km]
0.1 . . ’ 0.1
Nz
.08} Nzx
0.06 } 0.08}
0.04} =
S
0.02} 5 0.06} N
ot 3]
-0.02} 2 o0af -
‘c'u‘ 4+
-0.04} o .
-0.06 } 0.02} .ot
-0.08 |} L + ", o *,* P
0.1 A A . 0 LI BRI " .
0 0.5 1 15 0 0.5 1 1.5 2
x[km] xTkml

Figure 7.6: Analytical coefficients Sz, S., N. for an elliptical anisotropic medium (solid line) and the
corresponding values (red dots), calculated by the ray shooting and the hyperbolic traveltime interpolation
for irregular grids. The right side shows the acquired relative errors.
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To differentiate the influences due to the hyperbolic traveltime interpolation first, ana-
lytically calculated input traveltimes are used for the interpolation (see Figure 7.7). In
comparison 7.8 presents the traveltime errors by using the ray shooting algorithm to cal-
culate the input traveltimes.

In both cases the figures illustrate the results for different subsurface points: The upper
figure on the left side shows the absolute traveltime error for the image point on the coarse
grid, i.e. at §p = (1.1,1.1)km. Since the source in the subsurface is shifted only in one
direction, x- or z-direction § = (1.15,1.1) Az = 50m and § = (1.1,1.15) Az = 50m, the
results are given in the upper left and lower right side. The results for the traveltime in-
terpolation where the source is shifted in both directions § = (1.15,1.15) Az = Az = 50m,
is presented in the lower right figure.
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Figure 7.7: Distribution of traveltime errors with analytical input traveltimes. Upper left: errors for an
image point on the coarse grid at §o = (1.1, 1.1)km. Upper right: errors for an image point on the fine grid
with §= (1.15,1.1) Az = 50m. Lower left: errors for an image point at §= (1.1,1.15) Az = 50m. Lower
right: Error distribution for an image point on the fine grid with §= (1.15,1.15) Az = Az = 50m.

For the analytical input traveltimes the hyperbolic traveltime interpolation is nearly exact,
the observed absolute traveltime errors are less than 0.2us. In comparison the observed
average absolute traveltime error for the input traveltimes calculated by the ray shooting
procedure is less than 0.5us. The maximum of the traveltime errors is a magnitude larger
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than for the analytically computed input traveltimes (2.0us).

I have chosen a homogeneous medium with elliptical symmetry to validate our implemen-
tation. For this medium, the traveltime expression (7.1) is exact. Therefore, we expect
traveltime errors within machine precision, which was confirmed by the tests.
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Figure 7.8: Distribution of traveltime errors of traveltimes derived by ray shooting. Upper left: errors
for an image point on the coarse grid at 5o = (1.1, 1.1)km. Upper right: errors for an image point on the
fine grid with §= (1.15,1.1) Az = 50m. Lower left: errors for an image point at §= (1.1,1.15) Az = 50m.
Lower right: Error distribution for an image point on the fine grid with § = (1.15,1.15) Az = Az = 50m.
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Handling of Triplications

This section deals with the handling of triplicated traveltimes. To demonstrate how the
implementation works in the presence of triplications I use an isotropic model with a lens
structure (see Figure 7.9), where the velocity from the boundary of the lens (v=4km/s)
decreases towards the center of the lens (v=2 km/s). In this case, the complexity of the
velocity model causes multipathing in the propagating wavefields. Consequently, there is
more than one way for rays to propagate from the source to certain receivers and hence
multiple arrivals from a single source pulse.

0 x—direction [km]
v v

Tiefe[km]

Image boint

2-
velocity [km/s]
EET 02 .
2 3 4

Figure 7.9: The homogeneous isotropic model has a lens structure in its center, where the velocity
decreases from the boundary (v=4km/s) towards the center of the lens (v=2 km/s). By using a constant
angle step a fan of rays will be shot from each image point to the surface.

For each image point a fan of rays will be shot to the surface. The left side in Figure 7.10
illustrates that the angle of initial departure increases clockwise, starting in horizontal
direction. For instance, a traveltime curve corresponding to an image point that is located
below the lens structure in the velocity field like presented on the right-hand side of Figure
7.10. The different colours of the traveltime branches correspond to the symbolically
illustrated starting rays on the left side. If a ray crosses his adjacent ray during the
propagation the kmah index for this ray increases (see section 2.7). Ouly if the kmah
index for the neighbouring ray is the same as for the actual ray the hyperbolic coefficients
will be calculated and thus the traveltime calculation to the receiver position can be done
(see section 7.2).

In Figure 7.10 point P; and P, limit the region with different kmah indices. These points
defined in the time domain correspond to caustic points in the depth domain (see section
2.7).
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Figure 7.10: In general, the initial ray direction at an image points starts horizontal, then the angle of
departure increases clockwise (see left side). The different colours of the initial directions at the image
point correspond symbolically to the different traveltime branches (right figure) of the measured traveltime
curve at the receivers.

For instance, Figure 7.11 shows exemplarily the ray paths from two different image points
to the surface. Both image points are located in a depth of 1.5km. The x-coordinate in
the left figure is chosen to be 0.75 km and in the right figure the x-coordinate is x=1.05
km.
The resulting traveltime curves are presented by the red lines in Figure 7.12. The upper
figures correspond to a receiver distance of 50 m, the lower figures show the resulting
traveltimes if the receiver spacing is 10 m. Corresponding to the clockwise increasing
take off angle at the image point the traveltimes indicated by the green crosses will be
interpolated first. Those rays where the kmah index has changed compared to the green
area, are used to interpolate the traveltimes which are indicated by the magenta crosses.
Finally when the kmah index changes the second time the traveltimes at the blue crosses
will be interpolated by using these corresponding rays. The visible

With ray shooting the change in direction is easily detected, and consequently the
algorithm is able to separate the branches to interpolate the traveltimes.

Image point at x=1.05km and z=1.5km

05

T T
x[km] x[km]

Figure 7.11: Ray paths for two different image points. Left: The image point is located at x=0.75km
and z=1.5km. Right: The image point is located at x=1.05km and z=1.5km.
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Figure 7.12: The upper figures (la and 2a) correspond to a receiver distance of 50m, in comparison the
lower figures (1b and 2b) show the resulting traveltimes if the receiver spacing is 10 m. Corresponding
to the clockwise increasing take off angle at the image point (see left side in Figure 7.10) the interpolated
traveltimes at the receiver positions are indicated by different colours. Note that receivers are only located
between 100 m and 2 km.



Chapter 8

Synthetic data example

In the next section I present two synthetic data examples: one anisotropic medium with
elliptical symmetry and one more complex isotropic model. For the first anisotropic exam-
ple, where an elliptical symmetry is assumed, the synthetic seismograms can be calculated
analytically (Vanelle, 2002b).

8.1 Anisotropic medium with elliptical symmetry

To verify the migration algorithm synthetic seismograms in a common-shot configuration
were computed for the two-layers model. This type of anisotropy was already used for the
verification of the accuracy of the wavefront-oriented ray tracing technique. All required
quantities to generate ray synthetic seismograms can be calculated analytically (Vanelle,
2002b). We describe our model by the Thomsen parameters e = § = 0.187 and v = 0.51
and the vertical velocity v,0. The model is shown in Figure 8.1.

X

Okm 4km

2km

4km

Figure 8.1: The model dimensions for the elliptically anisotropic test model.
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The chosen model dimensions are 4km in x-and z-direction with an input grid spacing
of 20m. The horizontal reflector is assumed to be in 2km depth. The response of the
single shot was received at 201 geophones which are placed every 20 m at the surface. The
resulting synthetic shot section is presented in Figure 8.2. The explosion source is supposed
to be at the surface and is located at x=1km. The presented synthetic shot section is
computed for the P-wave and a Gabor wavelet is assumed as the source pulse. As described
in Chapter 6 the first step during the migration process is to calculate traveltimes on a
coarse subsurface grid. In this case the input traveltimes were calculated on a subsurface
grid with a grid spacing of 100 m. However, to achieve a satisfactory migration results the
traveltimes are required on a finer migration grid. Therefore, by applying the hyperbolic
traveltime interpolation the coarse grid is exchanged by a fine migration grid with a grid
spacing of 5m.

Distance [km]
0 1 2 3 4

Figure 8.2: Synthetic common-shot section: The receiver spacing is 20m and the source is located at
1km.

Figure 8.3 shows the migrated depth section. Due to the limited extent of the receiver line
the reflector cannot be imaged in the region of z < 1km and =z > 2.2km. The reflector
has been migrated to the correct depth. However the reconstruction of the Gabor wavelet
cannot be obtained, until true amplitude migration is performed. The hyperbola-shaped
events in the migrated section are artefacts caused by the limited extent of the receiver
line. They can be suppressed by application of a suitable taper.

The application of the angle-based migration to a simple anisotropic model results in a
kinematically correct image of the subsurface where the reflector depth is successfully
reconstructed.

Definitely this simple anisotropic model cannot demonstrate the real potential of the
traveltime-based angular migration, but it testifies that in general the implementation
leads to reasonable results.
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Figure 8.3: Migrated depth section of the common shot section shown in Figure 8.2. The reflector was
migrated to the correct depth. The hyperbola-shaped artefact is an aperture effect which can be removed
by applying a taper.

The main advantage of the migration with angular parametrisation in comparison to the
conventional Kirchhoff migration is that it leads to an even illumination at the image point.
This is especially important for media with a complex subsurface structure. Therefore,
in the next section the migration for a more complex heterogeneous isotropic medium are
presented.
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8.2 Isotropic model with high velocity lens

The second test of the migration algorithm is performed in a two-layer model with a strong
spherical high-velocity anomaly in the upper layer (Figure 8.4). The constant background
velocity in the upper layer is chosen as 3km/s, and the velocity in the lower layer is
4.5km/s.
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Figure 8.4: 2.5-D subsurface structure: two-layers velocity model with a strong high-velocity anomaly
in the upper layer. The P-wave velocity considered to between 3.0km/s and 4.5km/s. The center of the
lens is located at a depth of 0.8 km and the reflector depth is 1.4 km.

The model dimensions are 2km in x- and z-direction, in y-direction the model extends to
800 m. The sources are located directly at the registration surface with a spacing of 100 m.
Figure 8.5 shows exemplary seismograms for four different shot positions (z; = 0.0km,
zs = 1.0km, z; = 1.5km, x5 = 2.0km). The seismograms were computed by a seismic
forward modeling algorithm which is based on a Fourier method (Kosloff and Baysal,
1982). The source pulse is assumed to be a Ricker wavelet. In these seismograms three
real events are visible, the predominant direct wave, the reflection of the high-velocity
anomaly and the reflection of the flat horizon. Additionally, the shot sections comprise a
“shadow” beneath the direct wave (for further details see Kosloff and Baysal (1982) and
Kosloff and Baysal (1982)).

All computed 21 synthetic shot sections are displayed in Figure 8.6. In these sections the
direct wave is muted and the reflection of the lens structure is observed at approximately
0.6-0.7s and the horizontal reflector at approximately 0.95s. To get the traveltimes for
the migration in the traveltime-based migration ray shooting is performed. Therefore, the
velocity model had to be smoothed, here the smoothing operator (see section 4.3) was
applied 20-fold.
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Figure 8.5: Synthetic common-shot sections: The figure display 4 shots at different shot positions . All
figures represent the full response from all receivers, including the direct wave.
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Figure 8.6: Synthetic common-shot sections: The figure display the 21 shots with a source spacing of
100m and the receiver spacing is 10 m. In all sections the direct wave is muted.
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First a Kirchhoff migration is performed by Seismic Unix (sukdmig). The conventional
migration needs a large number of traveltime tables. Figure 8.8 presents two different
migration results. The subsurface structure in the upper figure is computed by using
traveltimes generated by Seismic Unix. In comparison the lower figure illustrates the mi-
gration result by using traveltime tables calculated by the wavefront-oriented ray tracing
procedure.

In the upper image, it can be observed that the quality of the migrated image near the
boundary of the lens structure is poor in comparison to the lower image. This inaccu-
racies in the migrated image can be attributed to the inaccuracies due to the traveltime
computation (see Figure 8.7).
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Figure 8.7: Left: Traveltime tables calculated by Seismic Unix. Right: Traveltimes computed by the
wavefront-oriented ray tracing technique.

As it can be observed on the right-hand side of Figure 8.7. the traveltime calculation by
the wavefront-oriented ray tracing is more accurate and leads to smooth isochrones even in
the vicinity of the high-velocity structure. Consequently, by applying the same migration
algorithm these traveltime tables lead to a better subsurface image (see Figure 8.8).
Finally Figure 8.9 displays the migrated image by the traveltime-based migration in the
angular domain. In both migrated images the reflector is migrated to the correct position
in 1.4km depth. Furthermore the traveltime-based migration images the lens-shaped
velocity structure more clearly. The green ellipse in both lower figures indicates roughly
the position of the high-velocity anomaly, of course there are no sharp boundaries in the
velocity model.

Now the same input data are migrated, but in comparison to the previous data set, here
random white noise is added to the shot sections (see Figure 8.10). The chosen signal-to-
noise (S/N) ratio is 2.
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Figure 8.8: The figure show two migration results of the classical Kirchhoff migration. The upper
migration result is computed by traveltime tables calculated by Seismic Unix, whereas the lower figure
displays the migration result for traveltimes calculated by the wavefront oriented ray tracing algorithm.
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Figure 8.9: Left: Migration result of the traveltime-based migration in the angular domain (a,aa). Right:
Migration result of the Seismic Unix Kirchhoff migration (b,bb). Lower: the horizontal green line indicates
the position of the reflector and the green ellipses illustrate the position of the lens-shaped structure.
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The same input traveltime tables calculated by the wavefront-oriented ray tracing are used
and the migration result is displayed on the right side of Figure 8.11. In comparison the
left side of Figure 8.11 gives the migration result of the traveltime-based migration in the
angle domain. As in the previous example for both schemes the reflector is migrated to
the correct depth.

As expected the noise in the data have different influences. In the Seismic Unix Kirchhoff
migration in some regions the noise superposes constructively in other destructively. In
praxis, the quality of the migrated section can be significantly increased by applying a
filter operation before migration. Corresponding to the noise-free data example the lens-
shaped velocity inclusion is better visible in the image of the traveltime-based migration
algorithm.

In this section I have presented a traveltime-based implementation for the migration with
angular parametrisation. The traveltimes are computed on coarse grids, leading to con-
siderable savings in storage. Subsequent hyperbolic interpolation leads to the traveltimes
on the required fine migration grid. Application of angle-based migration to a simple
anisotropic model resulted in a kinematically correct image of the subsurface where the
reflector depth was successfully reconstructed. As a second example the migrated image
for a more complex isotropic model was presented. Here, the reflector depth and the
lens-shaped structure were correctly imaged.
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Figure 8.10: Synthetic common-shot sections with added random white noise: The figure displays the
21 shots with a source spacing of 100 m and the receiver spacing is 10m. In all sections the direct wave is
muted. The signal-to-noise (S/N) ratio is 2.
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Figure 8.11: Left: Migration result of the traveltime-based migration in the angular domain (a,aa).
Right: Migration result of the Seismic Unix Kirchhoff migration (b,bb). Lower: the horizontal green

line indicates the position of the reflector and the green ellipses illustrate the position of the lens-shaped
structure.



Chapter 9

Conclusion and outlook

For seismic imaging of complex 3-D structures by prestack Kirchhoff depth migration
(PKDM) many traveltime tables have to be calculated. For the efficient computation of
multivalued traveltimes in 3-D anisotropic media I have implemented an algorithm for
wavefront-oriented ray tracing.

The presented wavefront-oriented ray tracing implementation for anisotropic media is
based on the already existing algorithm for the isotropic case (Coman, 2003). The clas-
sical wavefront construction (Vinje et al., 1993a; Lambaré et al., 1996) was modified by
introducing new insertion criteria and a new strategy for the interpolation of traveltimes
to grid points.

The initial model, e.g. velocities or elastic parameters are given on the discrete input
model. During the propagation of wavefronts these quantities are needed at arbitrary
positions. This requires an interpolation. Instead of the trilinear interpolation used by
Coman (2003), I have implemented a Cardinal spline interpolation. This method pre-
serve all advantages of the classical spline interpolation, e.g. accuracy, continuity of the
derivatives, but is also an efficient implementation. In the anisotropic case, we have 21
elastic parameters instead of one velocity at each grid point, therefore a fast interpolation
is essential if anisotropy is present.

The accuracy of the implementation was demonstrated for an elliptically anisotropic
medium. The observed errors are negligible. To show the high potential of the wavefront-
oriented ray tracing I presented several models with more complex subsurface structures
and compared the results to an alternative technique, the finite differences perturbation
method by (Soukina, 2004).

Not only the traveltime tables for the qP-waves are computed, for all presented anisotropic
media the qS-waves are presented. As discussed in this work if the model comprises shear
wave singularities the actual implementation of the wavefront-oriented ray tracing tech-
nique fails. However, if the algorithm a priori knows that the medium is assumed to be
transversely isotropic it is possible to formulate two different eikonal equations, one for
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the SH-wave and one for the qP- and the qSV-wave (personal discussion Einar Iversen).
If we observe a shear wave singularity the slowness vector for both shear waves are equal
and cannot be used to distinguish between them. If the phase velocity surfaces crosse
each other, the direction of the group velocity vector differs and can be used to distinguish
between both shear waves. If the two phase velocity surfaces are tangent to each other
in some cases the polarization vector can be used to distinguish between both shear wave
modes. Sometimes numerical problems occur in the vicinity of caustics. Nevertheless,
all observed problems in the implementation are due to the traveltime interpolation from
wavefronts to grid points or are due restrictions due to the basic theory.

The traveltime calculation by the wavefront-oriented ray tracing requires several input
quantities, e.g. the model dimension or the ray tracing parameters (e.g., traveltime step).
Therefore, I have enhanced the user-friendly graphical interface for the wavefront-oriented
ray tracing to the anisotropic case.

In the second part, I have presented a traveltime-based implementation for the migra-
tion with angular parametrisation. The traveltimes are computed on coarse grids, leading
to considerable savings in storage. Subsequent hyperbolic interpolation leads to the trav-
eltimes on the required fine migration grid. Numerical examples confirm the quality of
the traveltime interpolation. Applications of angle-based migration to a relatively simple
anisotropic model resulted in a kinematically correct image of the subsurface where the
reflector depth was successfully reconstructed.

The rayshooting technique is one of the fastest methods to calculate traveltimes. The
time consuming part is to get the traveltime from a certain source to a predefined receiver
position, because this requires a large number of iterations for rays with slightly different
directions until the desired ray connecting source and receiver is found. To overcome this
disadvantage I have modified the hyperbolic traveltime expansion to an irregular grid and
applied this technique to calculate the traveltimes from any subsurface point to any re-
ceiver position.

The main advantage of the migration with angular parametrisation in comparison to
conventional migration is that it leads to an even illumination at the image point. This is
especially important for media with a complex subsurface structure. Therefore, a compar-
ison of the migration results between traveltime-based migration and angular parametri-
sation with conventional Kirchhoff migration for heterogeneous complex 2-D models was
performed. For both presented examples we achieve a kinematically correct image of the
subsurface where the reflector depth is successfully reconstructed. The results of both
models are auspicious to apply the method to more complex subsurface structures, espe-
cially a model with a low-velocity anomaly, because then multi arrival traveltimes will be
registered at the receivers.

Furthermore, the consideration of migration amplitudes is an important future aspect.
The output of a true-amplitude migration serves as input for AVO analysis, a key tech-
nique for reservoir characterization. True-amplitude Kirchhoff migration in 2.5-D media
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additionally requires maps of amplitudes, out-of-plane spreading factors, and takeoff an-
gles; these quantities are necessary for calculating the true-amplitude weight term in the
summation.

Future work will therefore be addressed to the extension of the angle-based implementa-
tion to true-amplitude migration in anisotropic media. This implementation will also be
based on traveltimes as the only input information that is needed for the determination
of the true-amplitude weights. Vanelle and Gajewski (2002b) introduced a strategy to
calculate the migration weight alone from traveltimes and therefore significantly reduce
the requirements in computational time and particularly storage.
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Appendix A

Hermite and Cubic spline
interpolation

The Cardinal splines used in this work to interpolate the model parameters are based
on the general Hermite interpolation combined with the Cubic splines. A more detailed
overview of the theory of the Cubic Hermite interpolation can be found in Schultz (1973).
To explain the basic principles of the interpolation algorithm the formulas are shown only
for a one-dimensional function, but the extension to the 3D case is straight forward.

The function values f; and the corresponding derivatives fi’ are known at a set of points
x; = T1,%2,...xN. Here, an equidistant spacing Az is assumed with [x; = Az(i —1),7 =
1, N]. Moreover, the second-order derivatives need to be continuous.

Then, the Hermite interpolation reads (Schultz, 1973):

f(w)ZZZ:;sz(Aix—i—1)+f£AwH1(Aim—i—1), (A1)

where H(z) is given by (see also Figure A.1):

—x3 — 422+ 1 if 1<z <0,
H(z)=1<¢ 223 -322+1 if 0<z2<I1, (A.2)

0 else,

and Hq(x)
r(x+1)? if -1<z<0,
Hi(z) =} z(1—2)? if 0<z<I1, (A.3)
0 else.
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Figure A.1: The figure shows the two functions H(z) and Hi(z) used for the Hermite interpolation.

The Hermite interpolation is local, because for x within the interval defined by Az (i—1) <
x < Ax i only f;, fll , fix1 and fll 41 are taken into account for the interpolation. If the
derivatives are unknown the following relation can be used:

fiy +4fi + i = 3(A2) " (figr — fi1) (A.4)

This relation is valid because of the continuity of the second derivatives. After the defini-
tion of the boundary values at i = 1 and ¢ = N the equation system (A.4) can be solved.
For z within the interval Az(i — 1) < 2 < Az the four surrounding function values are
given by

Fip = fi—stx; k=1,2,3,4. (A.5)

The Hermite interpolation formula (A.1) than reads:

4
xr . ’ X B
f(x)—;FkH(A—x—z—H%—k)JrFkAx Hy(-—i+3—k). (A.6)

The relation (A.4) between the function values and the derivatives in this case leads to:

F| +4F, + Fy = 3(Az) " (Fy — FY),

’ ’ ’ A7
F2+4F3+F4:3(A$)_1(F4—F2). ( )

A linear extrapolation of the interior values gives the expressions for the boundary values:

F, = 2F, — Fj,
1/ 2/ 3/ (A-S)
The derivatives F' now can be expressed by:
-2 1 2 -1
/ 1 -1 0 1 0
Be=CGuli=5 1o -1 o 1 |f (A-9)
1 -2 -1 2
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By applying equation (A.9) the Hermite interpolation can be rewritten as follows:

4 4
X . T .
flz) = kZ::leH(M —i+3—k)+ ;leFle Hy(-—i+3—k). (A.10)

The Cardinal spline function is derived by the substitution y = (Az)~! x — i + 3 and by
changing the order of summation:

4
fl@)=>_ FC(y). (A.11)
=1

To obtained the corresponding derivatives Thomson and Gubbins (1982) suggest an equiv-
alent procedure as for the function values. Here, the derivatives of the Cardinal splines
are used. Thus, we have to calculate the derivatives of the functions H and H;:

—62%2 — 62 falls —1<z<0,

H(z)=< 622—6z fals 0<z<1, (A.12)
0 sonst,
and
3x2 +4x +1 falls -1<z<0,
Hi(x) =< 322 —4x+1 fals 0<z<1, (A.13)
0 sonst.

Similar to (A.11) the derivative of f(z) can be calculated by

4
@) =3 FC(y), (A.14)
=1
with the “Cardinal Splines” given by:
4
Ci(ly)=H (y—1)+ A:L'Z GuH,(y—k); 1=1,2,3,4. (A.15)
k=1

Equation (A.14) shows that no derivatives at grid points have to be stored, since only the
function values are used for the interpolation.






Appendix B

Graphical user interface

To run the program of wavefront-oriented ray tracing for anisotropic media a graphi-
cal user interfacewas designed. The user interfacewas programmed in Perl Tk and the
preparatory work was achieved by the diploma student Jan Dettmer at the University of
Hamburg. His work included the development of a graphical user interfacefor the 2-D and
3-D wavefront-oriented ray tracing for isotropic media. This was the foundation for the
interface, which is presented in this appendix.

The wavefront-oriented ray-tracing user interfaceis divided in several parts. The “input”
sections includes the representation of the model and the definition of the source location.
The “run” section comprises all information to solve the kinematic ray-tracing system and
the output quantities. The last two parts are designed for the visualisation and a first
quality check of the calculated traveltime table.

“Model”

The first decision the user has to make, is what kind of model he wants to calculate (see
Figure B.1).

Figure B.1: The user interfaceworks for both types of models, isotropic and anisotropic media, which
requires two sub-interfaces necessary.
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X430 ANIWR [=E]x]

Check Traveltime

Figure B.2: The figure shows the main menu of the interface. The input sections “model” and “source”,
include the model representation, i.e. in terms of the velocities or elastic parameters and the source
location. All informations necessary to solve the KRT system are defined in the “run” section. The last
two menu items comprehend the visualisation and a first quality check of the calculated traveltimes.

For each model type the user interface has a different appearance. In the isotropic case the
velocities at grid points, the number of grid points and the distance between grid points
are needed (see Figure B.3).

The program expects an anisotropic model in one of the three following forms (see Figure
B.3):

e homogeneous: here only the 21 elastic parameters have to be defined.

e inhomogeneous: the discretized model with all individual elastic parameters is
stored in a file

e factorised: the 21 elastic parameters and the 3-D factor-field have to be defined.
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The density can be constant for all grid points or a user-defined density field can be used.
As for the isotropic case the number of grid points and the distances between them have
to be given.

— 30 ANIWRT - Model <2

Directory: |fusers!uZSDDDTmNIWRTZIbinI

Filename: |factor |v F-floats ‘v C-floats

Unit [»r mis [# ws

Grid parameters

nx IZDW ny 101
dx ID.D1 dy ID 01

View model E

Model structure [+ | [ | - factorised

Directory: |fusers.v‘u250DU?/ANIWRT_MEINthinf

Filename: [tensor

Elastic parameters

cll [4z2.74 €12 [13.25 cl3 |12.25 cld |-153 cl15 |0.59 cl6 |0.44
€22 |35.59 €23 |15.11 €24 |1.34 c2s |-04 c26 |-0.09

€33 |36.59 €34 |3.12 €35 |012 €36 |0.11
o |11.44 c45 |0.60 cd6 |0.27
€55 |14.08 €56 |2.23

EEEE

66 [12.63
Density ? |- constant| [ density-field|
Density Filename Directory:
1o [nichte [fusersuzEN0N7/ANIWRT_MEINS i/
Grid parameters
nx 101 ny |101 nz |101

dx |0.01 dy [0.01

Figure B.3: The sub-menus for both types of model, a more detailed description is given in the text.
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“Source”

For some applications, e.g., migration, traveltimes for many source receiver combinations
are needed. In the user interface three arrangements of source positions are available:

e Single shot: only one source location will be calculated.

e Equidistant sources: traveltimes for a number of sources with equidistant spacing
will be determined.

e Arbitrary source locations: defined in an input-file.

X430 ANIWRT - Source [=1[a[]

[Source]

- Single Shot ? |~ Equidistant Sources ?| [~ Source Input-File 2|

sX sy

Source Position |1 0 |D.5
Humber of sources |1

First Source %51 |1.D ¥s1 ID.5 251 ID.D1
Distances dsz |D.D dsy |D.D dsx ID.D

Filename

|suurce_pos

"ok |

Figure B.4: In one run it is possible to calculate traveltimes for a number of source positions. In this
input user interface the arrangement and the number of sources have to be specified.

“Ray tracing”

The time step for the Runge-Kutta method is preassigned by the “traveltime step” (see
section 4.4). In contrast the parameter “draw wavefront”, specifies the time step after
which all quantities, e.g., traveltimes at grid points, are calculated and stored. The in-
sertion criteria are controlled by the parameters “maximum traveltime error” and the
“maximum distance” between rays.

To control the spacing of the output grid the user interface provides two possibilities: a
constant scaling factor with respect to the input grid or the explicit definition of the dis-
tances between grid points.

For some applications, e.g., Kirchhoff migration the traveltimes are required only in a
restricted target zone. Thus, the target zone can be selected by “interpolation area”.
The implementation calculates multi-arrival traveltimes. The number of arrivals can be
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selected by the user. Not only traveltimes, but also the components of slowness at the
source or at each image point can be stored after running the program.

Additionally, the program allows to store, e.g. the wavefronts themselves or the ray cells,
these are information for the visualisation of the propagating wave.

-~ Ray Tracing

Traveltime step [s]

Draw wavefront

Max traveltime error [s]

Max distance between rays (km)

Max nr. of arrivals

QOutput grid

[~ constant scaling factor 2| [ expiicit output grid ?|

Output f Input  Scaling factor |1

Distance [km] dx [0.01 dy [0:01

Output-Grid nty 102

Interpolation area

Hy Nz
0 km |1_ 0 km |1_ 0 km
2 km |m1 1 km |1n1 1 km

Qutput quantities

i ps | pm

Dutput directory: |fusersfu25E|E|D?IANIWRTZfresf

Write Cells [a]
Write Rays II
Write Wavefronts IZ frequency |5

View IZ

Figure B.5: This user interface includes all information for the intrinsic ray tracing and the information
about the output quantities.
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“View” and quality check

The menu item “view” allows the visualisation of a 2-D slice (in x,z) of the calculated
traveltimes through the 3-D model (see Figure B.6).

443D ANIWRT - View [BIEES

View]

Arrivals
T |z 2] FIRE]

Which source? |
Which slice in y-direction ? |

Xcontour
nc 200
dc IEI.1
title fT1

—

Figure B.6: This user interface manages a 2-D visualisation of the results.

If the traveltime tables are intended to be used for, e.g. migration, the applications need
traveltime tables where all grid points are determined. If the calculation of traveltimes
fails at more than a few (more than five associated points excepting the boundary region)
grid points, the input quantities for the ray tracing should be chosen accordingly or maybe
the input model is not smooth enough. Both makes a new run of the wavefront-oriented
ray tracing necessary. If only isolated grid points are not computed, an interpolation of
the missed values is recommended Vanelle (2005). The “check traveltime” user interface
starts an external program, that searches in the calculated traveltime tables for empty
points.



Appendix C

Elliptical anisotropy

For elliptically anisotropic media most quantities can be calculated analytically. Thus, in
this work, this type of medium is used to verify the accuracy of e.g. traveltimes. The aim
of this appendix is to summarise the basic formulas for the elliptically anisotropic case. A
more detailed description can be found in Vanelle (2002b).

For a medium with elliptical anisotropy and a vertical symmetry axis the matrix of the

density-normalised elastic parameters (A,; = Cpq/p) has the following form:
A Az A
A Asg
Ass
Apg = , C.1
" A, (1)
Aga
Ao
with the additional constraints:
Ay = Ann—24
12 11 66 (C.2)

(A13 + A)? = (Ap — Agg)(Asz — Agg).

A Dbasic role in the ray method in anisotropic media play the 3 x 3 Christoffel matrix
Iik = aijrap;pr, where a;ji = cijp/p- The solution of the Christoffel equation,

(Dik — Gmdig)gy™ =0, m=1,2,3, (C.3)
where d;; is the Kronecker symbol, requires
it — G| =0, m=1,2,3. (C.4)

This determinant leads to the characteristic polynomial of third order, whose three so-
lutions are the eigenvalues G,, = 1. The index m specifies the type of elementary wave
under consideration. Since the matrix A,, displays rotational symmetry with respect to
the vertical axis, the slowness p’ .

7

p = (m) Y (0.5)
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can be chosen in the way that p, = 0. By defining the normal vector 7
= (sin o™, 0, cos (b(m)) ) (C.6)

the slowness vector p'is given by:

in bm) (m)
5= (sm(b 0, cos ¢ >, ©7)

v (m) v/ (m)

where ¢ is the phase angle made by 77 and the vertical axis, and V(™ is the phase velocity
for direction ¢. The insertion of the elliptical elastic elements (C.2) into the formula of
the Christoffel matrix (2.11) leads to:

sin2 (™) cos? ¢p(m)
T = Aupt+ Aups = Allm + A44W’
sinZ (M) cos? ¢p(m)
Ty = Agept + Aupi = AG@’W + A44W’ (
' C.8)
sin2 (M) cos? ¢p(m)
Tgg = Aup?+ Assps = A44W + Az (V(m)2’

I3 = (A3 + Aw)pips = /(A11 — Aaa)(Ass — An)

Insertion of the Christoffel matrix (C.8) for the elliptical case into the characteristic poly-
nomial (C.4) yields three phase velocities V(™):

VqSV = vV A447

VST = [ Aggsin? 697 4 Agy cos? 97, (C.9)

var = \/All sin? ¢9F + Ass cos? ¢aP.

The components of the eigenvector g]im) of the Christoffel matrix I' can be obtained as the
solutions of the equations:

I‘,-kgi(m)g,(cm) = 1. (C.10)

By using the abbreviations n(™) and (™)

m A — Ay
(AH — A44) sin? ¢(m) + (A33 — A44) cos? ¢(m) ’

(C.11)
A Azz — Ay
(A11 — Aag) sin? ¢(m) 4 (Asg — Agq) cos? p(m)’

the polarisations for the elliptical case are given by:
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71V = (09 cos ¢V, 0, 199V sin ¢¢qsv),
g% = (0,1,0), (C.12)
g% = (17 sin ¢, 0,m cos ¢¢qP).

(m)

The ray velocity vector v; ~ determines the direction and speed of energy propagation, and
is therefore of primary importance in seismic traveltime modelling and inversion methods.
As illustrated by the sketch in Figure C.1, the group velocity vector in a homogeneous
medium is aligned with the source-receiver direction (angle 6), while the phase velocity

(or slowness) vector is orthogonal to the wavefront (angle ¢).

Source

Figure C.1: Wavefront in a homogeneous model with elliptical symmetry with the associated angles.
The ray angle is denoted by 6, and ¢ is the phase angle.

The three components of the ray velocity vector are given by:

U,(m) = aijklg§‘m)g](€m)pl- (C.13)

For the elliptically anisotropic media the relation (C.13) leads to:

gV = (x/A44sin¢qSV,0, A44cos¢qsv),

A A
g5 = < 88 sin ¢ |0, k. cosquH),

VSH

Ay Aszs
D <Wsm¢qP0—cos¢qP>

(C.14)

Introducing the ray angle #(™) (see Figure C.1) the ray velocities can be described as:
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,UqSV — A44 — VqSV,
_1
SH \/A%6 sin? ¢SH + Ay cos? pSH sin? 95H N cos?9SH] "2
v = = s
VSH A66 A44 (015)
_1
4P \/All sin? paP + Ags cos? paP sin? 99F N cos? 9172
v = = )
vab A1y A3

Considering a homogeneous elliptical medium, the traveltime can be calculated analyti-
cally. The vector "= (x,y,2) = (9o — 52,9y — Sy, 9> — 5-) describes the distance between
source and receiver positions, and its modulus is r = /22 + y2 + 22. The traveltime 7(m)
of the wave type m propagating from the source to the receiver is given by Daley and
Hron (1979):

2 2

(m) _ x2 Yy z .
() Y ey
(m) (m)

The velocity v, is the ray velocity of a wave traveling in z direction, and vy ’ describes
the ray velocity of a wave traveling in the z-y plane, since the medium shows rotational
symmetry with respect to the z axis. In the case of a qSV-wave the velocities are equal:

ngV = ngV =/ A44. (C17)

(C.16)

For a SH wave the velocities are:

’UxSH = \/A66 and ’UZSH =V A44. (C18)

For a qP-wave they are given by:

U%P = \/All and ’UgP = \/Agg. (Clg)

This results in the following traveltimes:

asv _ P42
Agg ’

SH
T = + —, C.20
Agp Ay ( )
TqP — $2 + y2 + Z_27
Aqy A3z

In section 7.4, the accuracy of the coefficients for the hyperbolic traveltime interpolation
(see section 7.1) are tested. The components of the slowness p at for the elliptically
anisotropic homogeneous model are needed (Vanelle, 2002a):
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2 rm) (C.21)

piron) =(qz0 =

Also the coefficients, which are given by the second-order derivatives (7.3) can be calcu-
lated analytically for the homogeneous case:

_Sxx = Gmm = wa = )

_Syy = ny = Nyy = )

M2 ()2 _ 2 (C.22)
=8, =G,=N,, = (U(Ugl);Z(T(L))gz )
~Suy = Gay = Ny = Nyo = — (vﬁ)ﬁy(ﬂm)):”’
_Syz = Gyz =Ny =Nz = — (Uxm))2<vzni)>2(7_(m))3’
zZr

_Szm = sz = Nzg = Nggz = —






Appendix D

Hyperbolic coefficients for the
irregular grid configuration

In this appendix the remaining coefficients which are needed for the traveltime-based
migration in the angle domain are given. In comparison to the coefficients for regular grids
Vanelle and Gajewski (2002a), here the source is at the image point in the subsurface and
the receivers are located at the surface (see also Figure D.1). For simplicity only a 3-D
situation is considered, where we have no variations in the third (y) direction. In this case
the following coefficients are needed:

Qx horizontal slowness at the receiver,
G second-order traveltime derivative at the receiver,
Dz Ps horizontal and vertical slowness at the image point,
Sex, S.» Sz, second-order traveltime derivative at the image point,
Nizy Nog second-order mixed traveltime derivative,
o= Ny_y2 for the computation of the out-of-plane spreading.

The coefficients ¢, and G, are given by:

T2Ag2, — T2 AgE — TE(Ag2, — Ag?)
2Ty (Ag2,Agp + AgmAgl) ’

4z

(D.1)
T3 Agy + T} Agm — T3 (Agm + Agp) | ¢2

Gow = .
To(Agn,Agy + AgmAgy) To
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I Agm 1 Ag[} |

T 1o Ty

N

AN

S22

Figure D.1: Determination of the slowness at the receiver g, and the second-derivative G.;: the travel-
times Ty from 5o and go, T from 5y and go — Agm and Tj, from 8o and go + Agp.

The slowness p,, p, and the second derivatives S;,, S,, and S;, at the image points are
given by:

(Tmo)2 o (Tpo)2

Pa = ATyAs,
(Tom)2 o (Top)2
b= = ATyAs,
g - Mo (TP - (T p (D.2)
e 4Ty (Asy)? Ty’
g _ 2T02 _ (Top)2 _ (Tom)2 B é
= 4Ty (As,)? Ty’
s _ (Tmm)2 4 (Tpp)2 o (Tpm)2 _ (Tmp)2 B PaDs
v 8ToAszAs, T, ’

For example, to determine the coefficients p, and S, corresponding to the source-receiver
combination gg and sg the three traveltimes 77°, Tjy and TP° are needed (see Figure D.2).
After the ray shooting from the three subsurface points s,,,,, s9 and sp,, however, the trav-
eltimes T, Ty and T} are known (see left side in Figure D.3). Using these traveltimes
and applying the hyperbolic traveltime interpolation leads to the remaining traveltimes.
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go
Pz, Sex

mo po
T T

Smm

Smo S0 Spo

As,

Smp Sop Spp
L ——

As,

Figure D.2: Determination of the slowness p,; and the second-derivative S, at the image point so: the
traveltimes Ty from §p and go, 7™ from sme to go and T7° from sp, and go.

The traveltimes TP¢, T™°, TP™ TP T™mm TPP T and T°" are calculated by

) ( - QmoA9m0)2 monoAggwa
) (T3 + ‘JpoAng) + TpOGpoAgpo,
) ( - QOmAgom) + TgmGomAgoma
) (T + qoz)Agoz)) + TopGOpAgop’
(Tmp)2 = ( - QmpAgmp) + T() mepAgmpa (D'3)
) (Tpm + GpmAgpm)* Té’mGpmAgpm,
) ( - QmmAgmm)2 + T(ganmmAgrznma
) (Tpp + quAgpp) + Top pGppﬁgim

where the coefficient ¢;; and G;; (i, j = 1,2) correspond to the source-receiver pair (g;;,
si;) and Ag;; defines to the distance to the expansion point gy (Agi; = go — gij)-
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9mo J0 9po
dmos Gmo q0, GO Gpo Gpo go
mo ’T"J "]°po
mo po
1g Ty Ty
As, As,
Smo S0 Spo Smo S0 Spo

Figure D.3: In the first step rays are shot from each subsurface point smo, so and spo (left side) to the
surface. The corresponding traveltimes are given by 75", To and T3°. To obtain the traveltimes 77, Tp
and T?° in the second step the hyperbolic traveltime interpolation is applied.

The second-order mixed derivative matrix elements, N,, and N,,, are:

(TP)% + (TP™)? — (TP)* = (T™")*  qupy
AToAsy(Agm + Agy) O

(Tpm)2 4 (Tmp)2 _ (Tpp)2 _ (Tmm)2 qzP> (D4)
ATy As.(Agm + Agp) ]

Nxx =

Nzx =
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