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Abstract

Starting with the observation of Bose-Einstein condensation in single-component bosonic gases
and Fermi degeneracy in spin-polarized Fermi gases, the (still relatively young) field of ultra-
cold quantum gases is rapidly expanding to studies of mixed systems. Ultimately, mixtures of
different atomic species with different statistics, different trapping properties, interactions and
masses open up the widest spectrum of possibilities for quantum simulation, ultracold chem-
istry, exotic pairing phases, disorder-related many-body physics and long-range interacting
systems.

This thesis presents experiments in a system of interacting quantum degenerate fermionic
40K and bosonic 87Rb atoms. An experimental setup for producing Fermi-Bose mixtures which
has been set up together with S. Ospelkaus is described in detail. The observation of both
bosonic and fermionic degeneracy is demonstrated; in the case of fermionic atoms, showing
the quantum behavior requires thorough analysis, which is rewarded by the observation of an
ideal macroscopic Fermi sea.

This thesis presents mixtures with the so far largest particle numbers for the 40K–87Rb
system and discusses measurements with high densities where strong mean-field contracting
interaction effects affect the behavior of the mixture. Clear signatures of the mean field
collapse of large mixtures are observed, the dynamics of the collapsing sample is studied and
important consequences for the interaction parameters are discussed.

Tuning of interactions in a harmonically trapped heteronuclear mixture by means of Fesh-
bach resonances is demonstrated for the first time, allowing all phases of the harmonically
trapped mixture to be observed: stable heteronuclear interaction and repulsion as well as
phase separation and a controlled Feshbach-induced collapse.

From the very beginning, the setup described here has been designed for experiments
in 3-dimensional optical lattices. In recent years, an impressive series on experiments with
homonuclear systems has shown that such perfect optical crystals can be used as quantum
simulators for condensed-matter phenomena. Within this thesis, a heteronuclear system, in
particular a Fermi-Bose mixture, has been loaded into a 3D optical lattice for the first time,
and only a very small fraction of fermionic “impurities” has been found to significantly reduce
the coherence in the bosonic cloud. The observations are currently the subject of intense
theoretical analysis, and there are important connections to thermodynamics, advanced mean
field models and disorder physics.

As a long-awaited step for heteronuclear systems, formation of ultracold Feshbach mole-
cules from two different atomic elements is demonstrated. This ultracold chemical reaction
takes place at temperatures in the nK regime at a heteronuclear Feshbach resonance. A de-
tailed understanding of the observed energy spectrum and the molecular association process
has been developed in collaboration with F. Deuretzbacher, K. Plassmeier and D. Pfannkuche
in terms of a universal model. Long-lived molecules are produced within single wells of the
3D-optical lattice in a well-defined rovibrational state, which makes them an ideal basis for
coherent transfer into both the external and internal ground state using readily available
femtosecond technology. Such all ground state polar molecules open up the way towards ul-
tracold long-range dipolar interacting systems. They may be used as building blocks of novel
quantum gases, scalable quantum computation schemes and for fundamental measurements
of P and T violating effects in atoms.
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Zusammenfassung

Seit der Beobachtung von Bose-Einstein-Kondensation in einkomponentigen bosonischen Ga-
sen und der Realisierung von spin-polarisierten idealen Fermigasen entwickelt sich das (noch
sehr junge) Feld der ultrakalten Quantengase rasch in Richtung mehrkomponentiger Gase.
Das letztendlich weiteste Spektrum an Möglichkeiten für quantenmechanische Simulation, ul-
trakalte Chemie, exotische Paarbildungsmechanismen, Unordnungsphänomene und langreich-
weitige Wechselwirkung wird eröffnet durch Mischungen unterschiedlicher atomarer Elemente
mit unterschiedlicher Statistik, unterschiedlichen Wechselwirkungen und Massen.

Diese Dissertation stellt Experimente in einem System wechselwirkender, entarteter Mi-
schungen aus fermionischen 40K und bosonischen 87Rb Quantengasen vor. Ein zusammen
mit S. Ospelkaus aufgebautes Experiment zur Erzeugung von Fermi-Bose Mischungen wird
detailliert vorgestellt. Bose-Einstein-Kondensation von 87Rb und die Erzeugung eines quan-
tenentarteten Fermigases aus 40K wird demonstriert.

Im Rahmen dieser Arbeit wurden Mischungen aus 40K und 87Rb mit den bislang größ-
ten Teilchenzahlen realisiert. Die entsprechend hohen Dichten führen zur Beobachtung star-
ker kontrahierender Effekte der attraktiven Fermi-Bose-Wechselwirkung, die das Verhalten
der Mischung fundamental beeinflussen. Eindeutige Signaturen eines Kollapses für große Mi-
schungen werden aufgezeigt, und das dynamische Verhalten der kollabierenden Mischung wird
untersucht. Die beobachteten Instabilitäten haben wichtige Konsequenzen für die Bestimmung
der Wechselwirkungsparameter.

Erstmalig wird die Durchstimmung heteronuklearer Wechselwirkung mittels Feshbach-
Resonanzen demonstriert. Dies führt zur Beobachtung aller Phasen harmonisch gespeicherter
Mischungen: stabile, attraktiv oder repulsiv wechselwirkende Mischungen sowie Phasensepa-
ration und ein kontrollierter Feshbach-induzierter Kollaps.

Das hier beschriebene Experiment wurde von Beginn an für Messungen in dreidimensiona-
len optischen Gittern ausgelegt. Für homonukleare Systeme hat weltweit eine beeindruckende
Reihe von Ergebnissen gezeigt, dass solche perfekten optischen Kristallgitter als Quantensi-
mulatoren für Festkörperphänomene dienen können. In dieser Dissertation wurde erstmalig
eine Fermi-Bose Mischung in ein dreidimensionales optisches Gitter geladen. Dabei wird be-
obachtet, dass schon eine kleine Beimengung von fermionischen Atomen die Kohärenz der
bosonischen Wolke in beträchtlichem Maße beeinflusst. Diese Beobachtung ist momentan Ge-
genstand intensiver theoretischer Untersuchungen; es werden Beziehungen zu Thermodynamik
im Gitter, Modellen in “mean field”Näherung und unordnungsgetriebenen Lokalisierungsphä-
nomenen in Festkörpern diskutiert.

Als wichtiger Schritt für heteronukleare Systeme wird die Erzeugung ultrakalter Feshbach-
Moleküle vorgestellt. Diese ultrakalte chemische Reaktion findet an einer heteronuklearen
Feshbachresonanz statt. Das beobachtete Spektrum der Bindungsenergien und die Effizienz
der Molekülassoziation werden im Rahmen eines universellen Modelles (in Zusammenarbeit
mit F. Deuretzbacher, K. Plassmeier und D. Pfannkuche) untersucht. Die langlebigen Mo-
leküle werden an einzelnen Gitterplätzen eines dreidimensionalen optischen Gitters in einem
wohldefinierten Rovibrationszustand erzeugt, was sie zu idealen Kandidaten für einen weite-
ren Transfer in den absoluten internen und externen Grundzustand mittels Femtosekunden-
Frequenzkammtechnologie macht. Solche ultrakalten polaren Moleküle eignen sich als Baustei-
ne neuartiger skalierbarer Quantencomputer, für Quantengase mit langreichweitiger Wechsel-
wirkung und für fundamentale Messungen zu diskreten Symmetrieverletzungen in Atomen.
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Chapter 1

Introduction

In 1924, the Indian physicist Satyendra Nath Bose started a revolution in statistical mechanics
working on the question of distinguishability of particles. Bose was at the time working on a
derivation of Planck’s formula for blackbody radiation by treating the photons in the Hohlraum
as a gas of photons [6]. Bose’s approach to the problem boiled down to asking the question
of how many particles / photons occupy a certain energy state of the system instead of which
particle occupies which energy level. The latter gives rise to the classical Maxwell-Boltzmann
gas of distinguishable particles, whereas the former leads to either Bose-Einstein or Fermi-
Dirac statistics, depending on the choice of statistical weight factor for microstates of the
ensemble.

In Bose-Einstein statistics, each single particle state can be occupied by an arbitrary
number of particles. The original work of Bose was extended to massive particles by Albert
Einstein [7, 8] who immediately recognized the importance of Bose’s work. Particles obeying
Bose-Einstein statistics are called bosons. Einstein discovered that an ensemble of bosons
would undergo a phenomenon later called Bose-Einstein condensation characterized by a
massive occupation of the single particle ground state of the system if the particle number is
increased beyond the maximum capacity of the excited states.

Following the formulation of Pauli’s exclusion principle in 1925 [9], Fermi introduced
Fermi-Dirac statistics [10] for a class of particles nowadays known as fermions. The statistical
weight factor for fermions allows only microscopic states where no more than one identical
fermion occupies a single energy state of the system. Fermi-Dirac statistics and the Pauli
exclusion principle were found to be essential for the electron theory of metals, the stability
of atoms and white dwarf stars.

It took until 1939 before the connection between the spin of a particle and its quantum
statistics was fully discovered: Particles with half-integer spin such as the electron obey Fermi-
Dirac statistics and particles with integer spin such as the photon and the phonon obey Bose-
Einstein statistics. Composite particles also fall into one of these categories, depending on
the total spin. As such, the basic building blocks of an atom (electron, neutron, proton) are
all fermions. Nevertheless, an atom as a whole can be either a boson or a fermion, depending
on the total number of electrons and nucleons.

Although introduced by Einstein in 1925, Bose-Einstein condensation remained a theo-
retical concept for some time. It was then used by London in 1938 [11, 12] to discuss the
superfluidity of liquid 4He. 4He is generally not considered a prototype weakly interacting
Bose-Einstein condensed system due to the importance of interactions in this peculiar liquid.

1



2 CHAPTER 1. INTRODUCTION

Bose-Einstein condensation was also discussed in the context of superconductivity of Cooper
paired electrons in metals. Realistic perspectives of observing BEC in dilute gaseous systems
appeared with work on spin-polarized hydrogen [13, 14] which was expected to remain in
a gaseous state even below the temperature of Bose-Einstein condensation. Techniques de-
veloped for atomic hydrogen, namely magnetic trapping and evaporative cooling, were also
applied to alkali atoms. Connected with efficient laser cooling, this has led to the observa-
tion of BEC of 87Rb and 23Na in 1995 [15, 16]. Work on 7Li [17] explored condensates with
attractive interaction. The field of atomic Bose-Einstein condensates has since exploded, and
today many groups worldwide study the properties of these BECs.

Parallel to the work on bosonic atoms, there was growing interest in fermionic gaseous
ensembles motivated by the perspective of observing cooper pairing between atoms in such a
system. Compared to bosonic systems, fermion experiments were subject to a considerable
delay. In part, this is due to the technical difficulty in applying techniques of evaporative cool-
ing to fermionic systems, and partly due to the popular misconception that fermions “don’t
interact”. There is some truth to this above statement: s wave scattering between identical
fermions is forbidden due to the Pauli exclusion principle, and at the low temperatures that we
are talking about, higher order scattering processes are usually energetically forbidden. The
final step which is so successful in producing atomic BECs, evaporative cooling, relies on re-
distribution of energy in the ensemble through elastic collisions, and it becomes tremendously
inefficient when applied to a spin-polarized Fermi gas. Nevertheless, fermions in different spin
states (distinguishable fermions) do interact, and the observation of a quantum Fermi gas of
atoms [18] (often also called a “degenerate” Fermi gas) as a result of evaporative cooling of an
interacting spin mixture triggered an exciting development. The identification of Feshbach
resonances [19, 20, 21], the advent of rf spectroscopy [22, 23], formation of long-lived bosonic
molecules from an interacting Fermi gas [24, 25, 26, 27, 28], BEC of these molecules [29, 30, 31]
and the exploration of the full BCS-BEC crossover [32, 33, 34, 35, 36], the observation of the
pairing gap [37], and studies of imbalanced gases [38, 39] proved that fermions do interact,
even strongly. Fermionic gases have been loaded into optical lattices [40, 41, 42, 43, 44, 45, 46]
and used for atom interferometry [47]. When the experiment described in this thesis produced
its first “degenerate” Fermi gas in August 2004, we were only the ninth institution worldwide
to dispose of such a sample, while there were already about a hundred BEC experiments.

At that time, three of these experiments [18, 48, 28] used a spin mixture of atoms to
circumvent Pauli blocking of collisions, six of the other experiments (including this one) have
used a gas of bosons as a refrigerator to sympathetically cool the fermions [49, 50, 51, 52,
53, 40]. In most of these two-species setups, the bosonic component was completely removed
during the evaporation process. To date, most experiments have either studied bosons or
fermions or bosonic molecules created from fermions, and mostly studying one particular
atomic isotope at a time. Heteronuclear systems such as degenerate mixtures of different
bosonic atoms [54], fermionic and bosonic atoms or two different fermionic atoms significantly
extend the class of phenomena which can be studied in quantum gases. This is due to the
different interactions between constituents which can be realized in these mixed systems. At
the same time, the differences in masses and trap frequencies raises interesting questions of
universality and possible pairing phases. As can be seen from the introductory discussion of
chapter 6, mixtures possess interesting prospects for simulating disorder related localization
phenomena. Molecules formed from heteronuclear samples as demonstrated in chapter 7 are
candidates for measurements with fundamental relevance in physics. They may allow studies
of P- and T- violating effects, result in novel quantum gases with large long-range anisotropic
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interactions and may be used as building blocks for future molecular quantum computers [55].
As a special case of heteronuclear mixtures, the study of Fermi-Bose mixtures as discussed

in this thesis has been motivated by a particularly compelling analogy with traditional con-
densed matter systems, namely the prospect of observing boson-mediated Cooper pairing in
this system [56, 57]. I have already mentioned that with the observation of the BCS-BEC
crossover for fermionic atoms, an atomic approach to fermionic superfluidity has been realized.
In that approach, the attractive interaction required for Cooper pairing is provided by direct
scattering between fermions in different spin states. In a mixture of fermionic and bosonic
atoms, this attractive interaction can be realized by using bosonic atoms as the attractive
“glue” provoking the fermion pairing. This would provide a strong analogy to solid state sys-
tems, where the attractive interaction between electrons is provided by phonons. Pushing the
analogy even further, by performing the experiment in an optical lattice, the atomic fermions
would take over the role of the electrons, the solid would be replaced by an artificial crystal
made out of light, not matter, and the phonons (quasiparticles) would be replaced by bosonic
atoms. While this analogy may not be true in every sense, it demonstrates the fascinating
prospects of Fermi-Bose mixtures for quantum simulation.

Mixtures of fermionic and bosonic atoms have been studied in 6Li–7Li [49, 50], 6Li–
23Na [52], and 40K–87Rb [51, 53]. The focus of the first experiments has been on under-
standing the effects of mean-field interactions in this rich system [51, 58, 59] and to constrain
the heteronuclear interaction parameter [60, 53, 61]. At the point where this experiment
reached simultaneous degeneracy in August 2004, heteronuclear Feshbach resonances allowing
a much wider parameter space to be explored had only just been identified through inelastic
losses [62, 63], and a significant discrepancy in observed stability limits of 40K–87Rb mix-
tures had not yet been understood. Measurements presented in this thesis have demonstrated
that, in contrast to what was previously believed, large 40K–87Rb mixtures can be created
(chapter 4). This thesis demonstrates that elastic scattering in heteronuclear mixtures can
be tuned by means of Feshbach resonances (chapter 5; see also ref. [2, 64]). By loading the
mixture into a 3D optical lattice (chapter 6; see also [3, 65]), we have accessed a regime of
fascinating many-body effects in the experiment, and, by combining all of the acquired tech-
niques, ultracold heteronuclear molecule formation has been achieved (chapter 7 and ref. [1]).
This thesis documents these experimental achievements and is organized as follows:

• Chapter 2 describes basic properties of degenerate Fermi and Bose gases, introduces
an interaction between the two and discusses the various limiting cases of an interact-
ing mixture trapped in a harmonic trap in terms of numerical simulations and simple
physical arguments.

• Chapter 3 describes the experimental setup for studying degenerate Fermi-Bose mix-
tures in 3D optical lattices which has been setup together with Silke Ospelkaus. Short
research publications, often limited in page number, do not give details of experimental
techniques due to space constraints. This chapter discusses relevant experimental tech-
niques for cooling and trapping in detail. Many of the techniques used in the experiment
were not previously available in our institution and required significant development ef-
fort.
The frequency and intensity stabilization of our VersaDisk lattice laser, the experiment
control system using an ADWIN digital signal processor, the precise rf and microwave
control system, advanced imaging techniques and a lot of software, electronics and op-
tics development is just a small part of this technological “side effect” of experimental
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physics. All of these techniques have been relevant to the measurements presented in
this thesis and are discussed in detail here.

• In the following chapter, I describe how Bose-Einstein condensates and Fermi gases
with the so far highest particle numbers for 40K–87Rb experiments are produced in
this apparatus. Based on chapter 2, chapter 4 discusses experiments performed on
the harmonically trapped mixture in this limit of large particle numbers. I discuss
what we can learn about the interaction of 40K–87Rb mixtures in this regime from the
experiment. The relatively strong attractive interaction in 40K–87Rb mixtures gives
rise to a collapse instability beyond certain critical conditions. I present effects of the
heteronuclear interaction before the onset of the collapse and analyze in detail how
the collapse affects time of flight images and the time evolution of the mixture. I also
discuss the stability limit resulting from these experiments, its important consequences
for interaction parameters in this system and a study of 3-body losses which resulted in
a loss coefficient an order of magnitude lower than previously reported. The result have
been partly published in C. Ospelkaus et al., Phys. Rev. Lett. 96, 040201 (2006) [4]
and are extensively discussed here.

• In chapter 5, I discuss effects of arbitrary interaction between 40K and 87Rb, which can
be realized by exploring heteronuclear Feshbach resonances. The results document the
first realization of tunable heteronuclear interactions as a prerequisite for heteronuclear
molecules (chapter 7). This chapter closely follows S. Ospelkaus et al., Phys. Rev. Lett.
97, 120403 (2006) [2]; a very broad and detailed analysis is contained in Silke’s PhD
thesis [66].

• Chapter 6 describes the first realization of Fermi-Bose mixtures confined in three-
dimensional optical lattices and closely follows S. Ospelkaus et al., Phys. Rev. Lett.
96, 180403 (2006) [3]. Again, an in-depth discussion can be found in [66].

• Finally, chapter 7 reports on the first creation of ultracold long-lived heteronuclear mo-
lecules in a 3D optical lattice. This is an important step towards ultracold ground-state
polar molecules for novel quantum computation schemes, studies of dipolar quantum
gases and fundamental measurements. The chapter contains a detailed description of
the experimental technique of rf association for producing molecules developed in this
thesis. It contains a measurement of the molecular binding energy across the Fesh-
bach resonance and develops a theoretical approach to the binding energy and transfer
efficiency by treating arbitrary heteronuclear interactions in the lattice through a pseu-
dopotential approach (in collaboration with F. Deuretzbacher, K. Plassmeier and D.
Pfannkuche). This chapter provides an extensive in-depth discussion of the results pub-
lished in C. Ospelkaus et al., Phys. Rev. Lett. 97, 120402 (2006) [1] and an upcoming
publication.

As mentioned above, this thesis contains a comprehensive discussion of the experimental
techniques which have been used in this thesis, with particular emphasis on the reasons why we
used and developed certain techniques, not only how they were implemented (chapter 3), and
all of these techniques have been essential to the results presented in this thesis. Readers who
want to start directly with main experimental results can begin with chapter 4; I have included
backreferences to chapter 3 whenever talking about specific features of the apparatus.



Chapter 2

Fermions and bosons

In this introductory chapter, I discuss basic concepts for trapped Fermi-Bose mixtures. I start
my discussion with a thermodynamic approach. This corresponds to the textbook treatment
of fermionic and bosonic gases for the harmonically trapped case. The treatment is valid
for noninteracting particles. This approximation is perfect for single-component ultracold
fermionic gases where s wave interactions are completely absent due to the Pauli exclusion
principle and higher partial wave scattering is energetically suppressed. In later chapters, I
will show that such a perfect Fermi gas can be realized in the experiment and present results
on the thermodynamic behavior of this textbook example of statistical physics (see chapter 4.
The non-interacting approximation is also reasonable for thermal bosonic gases and provides
us with a good estimate for the critical temperature for Bose-Einstein condensation. Even
though the atomic Bose-Einstein condensates are weakly interacting and dilute, interactions
do play a fundamental role for the condensed phase, and I review basic properties of these
condensates as discussed in this thesis, such as their density distributions and the expansion
behavior.

Based on the separate discussion of Bose and Fermi gases, I then switch to the description
of interacting mixtures in a mean field picture of interactions between bosons and fermions. I
calculate density profiles of trapped mixtures for the basic phases (stable attractively and re-
pulsively interacting mixtures, phase separation and collapse). I show how the phase diagram
of the mixture can be calculated. This discussion of phases of harmonically trapped mixtures
is highly relevant both for understanding how mixtures are produced, what the limits of sta-
bility are and which signatures of interactions we can see in the experiment. In chapters 4
and 5, we will see that all of these phases can be observed in the experiment.

For corresponding literature, see [67, 68, 69, 70, 71, 72, 73, 74]. Here, I have attempted to
derive results relevant for non-interacting and interacting Fermi-Bose mixtures as discussed
in this thesis with the maximum degree of parallelism in treating both constituents.

2.1 Statistical considerations

This chapter begins with a discussion of the statistics of harmonically trapped ideal gases.
Most of the formulas that are derived are directly relevant to the experiment, in particular to
thermometry. The symmetrization or antisymmetrization postulate for bosons and fermions,
respectively, leads to the mean occupation number of a single-particle energy eigenstate with

5
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energy εn given by [73]

f(εn) =
1

ζ−1eβεn + a
(2.1)

where ζ = eβµ is the fugacity, a parameter which is sometimes convenient to use instead of
the chemical potential µ. β = 1/kT corresponds to the temperature of the system. In order
to treat the Fermi-Dirac, Bose-Einstein and classical Maxwell-Boltzmann cases alike, it is
convenient to introduce a defined by

a =







−1 Bose-Einstein statistics
+1 Fermi-Dirac statistics
0 Maxwell-Boltzmann statistics

(2.2)

In the case of Fermi-Dirac statistics, the mean occupation number can become at most one
(Pauli principle), whereas in the case of Bose-Einstein statistics, it features a singularity which
can occur when the denominator in eq. 2.1 tends to zero. This singularity is closely connected
to the phenomenon of Bose-Einstein condensation.

In this chapter, I will introduce thermodynamic relationships which are relevant for har-
monically trapped gases, whereas the most simple case, the homogeneous gas, is the classic
textbook example. To introduce some basic notation, the 3D harmonic oscillator potential
considered here is given by:

V (~r) =
1

2
mω2

1x
2
1 +

1

2
mω2

2x
2
2 +

1

2
mω2

3x
2
3 (2.3)

In order to calculate thermodynamic properties of the system, it is convenient to switch from a
representation of discrete energy levels εn to a continuous density of energy eigenstates. This
is a very good approximation, except for the ground state of systems following Bose-Einstein
statistics, as we shall see. The density of states as a function of energy ε is given by:

g(ε) =
ε2

2(~ω̄)3
(2.4)

where ω̄ = 3
√
ω1ω2ω3 is the geometric mean trapping frequency. Note that eq. 2.4 fails for

very small energies – it ascribes a weight of zero to the ground state, which is significant only
for a Bose-condensed case due to the possible massive occupation of the ground state, but
not for a Fermi gas where the ground state can be occupied by at most one identical fermion.
The excited state number of particles can thus be calculated according to

Nex =

∫

∞

0
f(ε)g(ε) dε (2.5)

For the given density of states of eq. 2.4, we obtain the following expression for the excited
state particle number:

Nex = −a
(

kbT

~ω̄

)3

Li3(−aζ) (2.6)

Here, I have introduced Lin(·), the Polylogarithm of order n (n > 0 integer or half integer).
The Polylogarithm function belongs to the class of hypergeometric functions and is a special
case of the Lerch transcendent. Note that

−Lin(−ζ) = fn(ζ) (2.7)
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EF
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f(ε)

ε

Figure 2.1: Zero-temperature Fermi distribution

where fn(·) is the Fermi-Dirac function, and

Lin(ζ) = gn(ζ) (2.8)

where gn(·) is the Bose-Einstein function. The Polylogarithm has a branch cut discontinuity
in the complex z plane along the line z > 1. This discontinuity is responsible for the phe-
nomenon of Bose-Einstein condensation1, as we shall see. The following series expansion for
the Polylogarithm is helpful in many calculations:

Lin(y) =

∞
∑

l=1

yl

ln
(2.9)

For numerical calculations, it is usually better to make use of predefined implementations
of Polylogarithms which rely e. g. on Chebyshev polynomial expansions, such as the ones
given in appendix D. In order to derive the particular result of eq. 2.6, the following integral
representation for the Polylogarithm is very helpful:

∫

∞

0

x(n−1)

ζ−1ex + 1
dx = −Γ(n)Lin(−ζ) (2.10)

2.1.1 Fermi energy

In the case of Fermi-Dirac statistics (a = +1), the occupation of any state, in particular the
ground state, is not larger than 1, and we can use the approximation N ≈ Nex. Let us look
at the T = 0 limit of eq. (2.5). Here,

f(ε) =
1

e
ε−µ
kT + 1

, (2.11)

and for very small T , the argument of the exponential is either large and positive when ε > µ
or close to zero when ε < µ. As a result, f(ε) is either zero or one, depending on whether ε
is above the Fermi edge µ(T → 0) or below the Fermi edge µ(T → 0).

Thus, in this limit, f(ε) is a step function, and µ(T → 0) is called the Fermi energy. At
T = 0, all energy levels up to this level are occupied, and none above (see Fig. 2.1). The actual

1For the most compact and original description of BEC, see footnote on page 234 of ref. [67].
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value of the Fermi energy for a given potential and particle number is found by integrating
eq. (2.5) with

f(ε) =

{

1 ε < EF

0 ε > EF
(2.12)

The integration yields:

N =

∫

∞

0
f(ε)g(ε) dε =

∫ EF

0
g(ε) dε =

E3
F

6(~ω̄)3
(2.13)

and we find the Fermi energy
EF = ~ω̄(6N)1/3 (2.14)

By dividing the Fermi energy by the Boltzmann constant kB , we obtain the Fermi temperature
TF which, for a given particle number and trap geometry, sets the scale for the onset of
“quantum behavior” deviating significantly from the Maxwell-Boltzmann case:

TF =
~ω̄

kB
(6N)1/3 (2.15)

For a typical experimental situation with N = 106 fermions in a spherically symmetric trap
with ω̄ = 2π · 50 Hz, TF = 1µK. Plugging this expression into eq. (2.6), we can eliminate the
particle number and obtain a universal relationship between the fugacity ζ and the degeneracy
parameter T/TF :

Li3(−ζ) =
−1

6(T/TF )3
(2.16)

As we shall see, this relation is of particular importance for thermometry of ultracold Fermi
gases, since it connects T/TF as determined through temperature, trap parameters and parti-
cle number to the single fit parameter ζ. Agreement of the two“thermometers” is an indicator
that systematics are well controlled.

2.1.2 Bose-Einstein condensation

As mentioned above, the Polylogarithm has a complex branch cut discontinuity for real-valued
arguments z with z > 1. This means that for a given temperature, the excited states can
accommodate no more than

Nex =

(

kbT

~ω̄

)3

g3(1) (2.17)

particles. If there is any number of left-over particles, they need to occupy the ground state
of the system:

N = N0 +Nex (2.18)

In the non-interacting case, the density distribution would be given by the modulus of the
single-particle Gaussian ground state wave function of the harmonic oscillator problem, scaled
to reproduce the correct density when integrated over space. This phenomenon of macroscopic
ground state occupation is known as Bose-Einstein condensation. The temperature of con-
densation can be seen from eq. 2.17:

TC =
~ω̄

kB

(

N

g3(1)

)1/3

(2.19)
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For the above-mentioned trap with 106 atoms and ω̄=50 Hz, TC = 226 nK. There are small
corrections arising to the critical temperature as a result of interactions (see e. g. discussions
in [75, 69]). Another important related quantity is the condensate fraction, given by

N0

N
= 1 −

(

T

TC

)3

(2.20)

which can be used as a thermometer for the partly condensed Bose gas, independent of the
width of the thermal component. This may be seen as the bosonic equivalent of eq. 2.16.

In our particular system of 40K and 87Rb with masses mF , mB and particle numbers NF ,
NB , temperatures of degeneracy for bosons and fermions are related according to:

TC

N
1/3
B

=
TF

N
1/3
F

·
(

g3(1)

6

)1/3√mF

mB
≈ 0.40

TF

N
1/3
F

(2.21)

Typical experimentally observed 40K–87Rb mixtures consist of a lot more bosons than fermions
which means that the constraints on temperature for coexistence of a degenerate mixture with
a thermal cloud as small as possible would not require the production of extremely cold Fermi
gases.

2.2 Density distributions

For non-condensed samples, the density distribution in the harmonic trap can be obtained
based on a semiclassical approximation, the Thomas-Fermi approach. Particles are described
in terms of wave packets with a definite position and momentum, and the density in phase
space is given by:

w(~r, ~p, β, ζ) =
1

h3

1

ζ−1eβH(~r,~k) + a
(2.22)

Note that in the case of fermions, this distribution limits the number of fermions per phase
space volume element to at most one, thereby taking into account Fermi-Dirac statistics.
Distributions in position or momentum space can be obtained by integrating over the other
coordinate. For non-condensed samples, integration over p results in the density profile

n(~r) = −a
(

m

2πβ~2

)3/2

Li3/2

(

−aζe−βV (~r)
)

(2.23)

These density distributions are used in chapter 4, where 3-body loss of 40K–87Rb mixtures
is discussed. In order to measure such density-dependent phenomena in thermal clouds,
measured temperature and atom number of the cloud are plugged into the above equation
in order to calculate overlap integrals between bosonic and fermionic densities and hence the
global instantaneous loss rate.

2.2.1 Maxwell-Boltzmann gas

In the classical limit, we can use the fact that Lin(z) → z as z → 0 and recover the well-known
distribution of the harmonically trapped Maxwell-Boltzmann gas:

n(~r) = N ·
(

mβω̄2

2π

)(3/2)

e−βV (~r) (2.24)
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where I have used the same limit for Lin in equation (2.6) (ζ ≈ N · (β~ω̄)3) in order to
eliminate the fugacity.

2.2.2 Fermi gas at zero temperature

At T = 0, the density in phase space assumes a very simple form:

w(~r, ~p,EF ) =
1

h3

{

1 for V (~r) + p2/2m < EF

0 otherwise
(2.25)

In this case, integration of w over p is trivial and results in

n(~r) =



















(2m)3/2

6π2~3 (EF − V (~r))3/2 for V (~r) < EF

0 otherwise

(2.26)

which means that the Fermi gas “fills up” the external trapping potential up to the Fermi
energy. The ideal spin-polarized Fermi gas discussed above is characterized by the complete
absence of interactions. This is a very good approximation for the situations that are discussed
within this thesis. Expanding scattering between particles in terms of partial waves, the s
wave scattering between identical fermions is forbidden by the Pauli exclusion principle –
the scattering wave function needs to be antisymmetric with respect to particle exchange.
The next higher order, p wave scattering, is not forbidden by the Pauli principle, but its
importance scales with T 2, making it energetically forbidden in most experiments reported
to date. The absence of interactions and hence also of rethermalizing collisions is the reason
why evaporative cooling of a spin-polarized Fermi gas is so inefficient, and also explains why
the simple theory outlined above describes the basic properties of such a macroscopic Fermi
sea so well.

2.2.3 Bose-Einstein condensate

For a spin-polarized Bose gas, interactions do play a significant role, and achieving BEC
through evaporative cooling relies on interactions in a fundamental way. In the absence of
interactions, all condensed bosons occupy the lowest single particle harmonic oscillator state;
in the presence of interactions, the ground state of the sample can be found by introducing a
macroscopic wave function ψ with

n(~r) = |ψ(~r)|2 , (2.27)

usually called the condensate wave function. This corresponds to the assumption that all
particles occupy the same single-particle state. By variation of the energy functional of the
system, one obtains the following equation for ψ:

[

− ~
2

2m
∆ + V (~r) + gBBn(~r)

]

ψ(~r) = µψ(~r) (2.28)

which is usually called a “non-linear” Schrödinger equation due to the term involving the
wave function in a nonlinear way through the density and is known as the Gross-Pitaevskii
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equation for the condensate wave function. gBB = 2π~
2aBB/µBB is the well-known coupling

parameter, aBB the s wave scattering length for collisions between bosons, µBB = m/2 the
Bose-Bose reduced mass and µ the chemical potential. Under typical experimental conditions,
the kinetic energy term is small compared to interactions and the external potential. Under
these circumstances, the solution for the density is given by

n(~r) =















1
gBB

(µ− V (~r)) for V (~r) < µ

0 otherwise

(2.29)

Due to the striking similarity with eq. (2.26), this approximation is often given the same
name, “Thomas-Fermi approximation”. For a harmonic trap, the shape of the condensate
wave function takes the form of an inverted three-dimensional parabola. The spatial extension
of the condensate in the i direction is characterized by the so-called Thomas-Fermi radius of
the sample, which is the value of the spatial coordinate where the Thomas-Fermi density
drops to zero. At this point, the trapping potential becomes equal to the chemical potential:

Ri (µ(N, ω̄), ωi) =
1

ωi

√

2µ

m
(2.30)

2.3 Free expansion

By looking at eq. 2.30, we can estimate the size of the trapped sample. For a typical cigar-
shaped magnetic trap (ω1 = ω2 ≡ ωrad = 2π ·214Hz and ω3 ≡ ωax = 2π ·11Hz as used in this
experiment) and an atom number in the condensate of 106 atoms, the axial Thomas-Fermi
radius is 57 µm, and the transverse radius is smaller (2.9 µm). This object is surprisingly
large given the fact that it can well be described by a single macroscopic wave function.
Nevertheless, the length scales can be smaller than or on the order of typical “diagnostic”
length scales such as the pixel size of CCD chips, resolutions of optical imaging systems and
imaging artefacts. Most experiments therefore probe the behavior of the system by suddenly
releasing the sample from the trap and recording the density distribution after a typical time
of flight of 10 to 25 ms when the sample has expanded to a size which is larger than the
in-trap extension.

2.3.1 Non-condensed samples

For non-condensed samples of bosons and for fermions, the time-of-flight distribution in the
Thomas-Fermi approximation can be derived much in the same way as the density distribu-
tion. This is accomplished by integrating the density in phase space w over coordinate space,
not over momentum space. In order to perform the integration of eq. 2.22 in position space,
the trick is to introduce new coordinates x̃i ≡ xi/

√
ωi, which makes the integrand isotropic

and allows the use of spherical coordinates:

n(~p) = −a 1

ω̄

(

1

2πβ~2m

)3/2

Li3/2

(

−aζe−β p2

2m

)

(2.31)

In contrast to the density distribution, the momentum distribution is isotropic. Let us consider
the limit where the cloud expands to a final size which is much larger than the in-trap size.
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Let tE be the time of free expansion. In this case, the momentum distribution is converted
into the time of flight density distribution according to the substitution ~p = m/tE ·~r, and the
distribution is isotropic, in contrast to the in-trap density distribution. In the intermediate
regime, we can introduce the width

σ2
i =

1

mβω2
i

[

1 + (ωitE)2
]

(2.32)

For general tE , it has been shown [68] that the density distribution after time of flight is given
by

n(~r) = −a
(

1

2πβ2~2ω̄2

)3/2

· 1

σ1σ2σ3
Li3/2



−aζe
−

P

i

x2
i

2σ2
i



 (2.33)

The density after time of flight is thus given by a simple rescaling of coordinates. The above
equation contains the large tE limit discussed before since for large tE, the trap frequency
ωi drops out of the σi. When equation 2.33 is integrated over one spatial coordinate (the z
direction in this case), we obtain the two-dimensional column density of the expanded cloud
which is the basis of thermometry for ideal Fermi gases. The trick in doing the integral is to
write the Polylogarithm as its series representation (eq. 2.9), perform the integration on the
individual terms and then go back to the Polylogarithm representation. For each integration
over a spatial coordinate, we get a prefactor of

√
2πσi, we need to increase the order of the

Polylogarithm by 1/2 and we need to remove one of the terms in the exponential:

n(x1, x2) = −a
(

1

2πβ2~2ω̄2

)3/2

· 1

σ1σ2

√
2πLi2



−aζe
−

P

i6=3

x2
i

2σ2
i



 . (2.34)

A one-dimensional profile is obtained by integrating over y:

n(x1) = −a
(

1

2πβ2~2ω̄2

)3/2

· 1

σ1
2πLi5/2

(

−aζe
−

x2
1

2σ2
1

)

(2.35)

As an additional check, we can integrate this over x to obtain:

N = −a
(

1

β~ω̄

)3

Li3(−aζ) (2.36)

which is nothing but the thermodynamic relationship between particle number and fugacity
which we have already seen in eq. 2.6.

2.3.2 Bose-Einstein condensate

The evolution of the condensate density during time of flight can be obtained by using a set
of hydrodynamic equations for the superfluid density. The derivation which is outlined for ex-
ample in ref. [69] scales the equilibrium Thomas-Fermi radii of the sample by time-dependent
coefficients but as an ansatz keeps the same parabolic shape as the equilibrium distribution,
only with the re-scaled coefficients. One can then derive a set of coupled equations for the
scaling of the radii. For a commonly used experimental condition, the trapping potential
corresponds to an elongated cigar-shaped trap, and these equations can be expanded in the
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trap asymmetry parameter λ = ωax/ωrad. In terms of the dimensionless expansion time
τ = ωradtE, the resulting time of flight Thomas-Fermi radii are given by:

Rrad(τ) = Rrad(0)
√

1 + τ2 (2.37)

Rax(τ) = Rax(0)
[

1 + λ2
(

τarctanτ − ln
√

1 + τ2
)]

(2.38)

where Rrad(0) and Rax(0) are given by eq. 2.30.

2.4 Interacting mixtures

So far, I have separately discussed the behavior of degenerate bosonic and fermionic gases.
When simultaneous degeneracy of bosonic and fermionic gases is achieved in a harmonic trap,
interactions between the two can fundamentally affect the behavior of the system, as we
shall see. Interaction in degenerate mixtures of a single bosonic and fermionic component are
characterized by two parameters, one of them, aBB , the s wave scattering length for identical
bosons which I have already introduced, and aFB, the scattering length between bosons and
fermions. For a spin polarized fermionic component, there is no scattering between identical
fermions for ultracold temperatures due to the Pauli exclusion principle, hence the absence
of a scattering parameter for Fermi-Fermi scattering.

This section discusses interacting clouds of many fermions and bosons under the influ-
ence of global harmonic confinement for the whole cloud, the so called mean field limit, in
connection with experiments discussed in chapter 4 and 5. A different scattering problem is
discussed in chapter 7, where I discuss interactions of exactly one fermion and one boson at
a single site of an optical lattice. To some approximation, the latter can be described as a
model harmonic trap, and with exactly two particles per site, the discussion of chapter 7 is
complementary to the many-body approach discussed here.

The question of interacting mixtures in a harmonic trap is intimately related to the ques-
tion of phases of harmonically trapped mixtures. Phases of harmonically trapped Fermi-Bose
mixtures have first been analyzed theoretically by K. Mølmer in 1998 [71]. The density pro-
files of both the fermionic and the bosonic cloud are strongly affected by the presence of an
interspecies interactions aFB. Depending on the sign of the heteronuclear interaction, the
interaction will either mutually enhance the density of the components for attractive interac-
tions (aFB < 0) or push the constituents apart in the case of repulsive interactions (aFB > 0).
In both cases, instabilities can occur - a collapse of the sample for strong attractive interactions
and phase separation for strong repulsive interactions.

In order to quantitatively discuss the behavior of the mixture under the influence of
heteronuclear interactions, let us consider a model where we use the full Gross-Pitaevskii
equation for the bosonic component and the Thomas-Fermi limit for the fermionic component.
The heteronuclear interaction is introduced through a mean field potential entering both the
fermionic and bosonic equations. The modified system of equations is [72, 76]:

[

− ~
2

2mB
∆ + VB(~r) + gBB · nB(~r) + gFB · nF (~r)

]

ψ = µBψ (2.39)

nF (~r) =
(2mF )3/2

6π2~3
max [µF − VF (~r) − gFB · nB(~r), 0]3/2 (2.40)
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The coupling parameters are defined by

gBB = 2π~
2aBB/µBB (2.41)

gFB = 2π~
2aFB/µFB (2.42)

and µBB and µFB are corresponding reduced masses. Using the Thomas-Fermi approximation
for the bosonic equation, we obtain a new set of equations:

nB(~r) =
1

gBB
max [µB − gFB · nF (~r) − VB(~r), 0] (2.43)

nF (~r) =
(2mF )3/2

6π2~3
max [µF − VF (~r) − gFB · nB(~r), 0]3/2

and the bosonic and fermionic chemical potentials are fixed by the particle numbers:

NB =

∫

∞

0
nB(µB, ~x) d3x (2.44)

NF =

∫

∞

0
nF (µF , ~x) d3x

Let us consider a situation where the trapping potential for the bosonic component and the
fermionic component are related to each other by a simple factor, as is the case for magnetically
trapped mixtures. For magnetically trapped mixtures of 40K and 87Rb

VRb(~r) = VK(~r) , (2.45)

and the ratio of the trap frequencies is

ωK/ωRb =
√

mRb/mK =
√

87/40 . (2.46)

We can introduce rescaled coordinates

x̃i =

√

mF

2
ωF,i · xi . (2.47)

In this case, r̃2 = VB = VF , and the coupled Thomas-Fermi problem becomes:

nB(r̃) =
1

gBB
max

[

µB − gFB · nF (r̃) − r̃2, 0
]

(2.48)

nF (r̃) =
(2mF )3/2

6π2~3
max

[

µF − r̃2 − gFB · nB(r̃), 0
]3/2

(2.49)

and the problem only depends on r̃ =
√

x̃2
1 + x̃2

2 + x̃2
3. In the new set of coordinates, equa-

tion 2.44 becomes

NB =

(

2

mF

)3/2 1

(ω̄F )3

∫

∞

0
4π2r̃2 · nB(r̃) dr̃ (2.50)

NF =

(

2

mF

)3/2 1

(ω̄F )3

∫

∞

0
4π2r̃2 · nF (r̃) dr̃ , (2.51)

where I have used the spherical symmetry of the problem in the new coordinates. As one can
see, the above problem can be formulated solely in terms of the potential energy r̃2 of the
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mixture, and the trapping potential only enters the calculation through the geometric mean
trapping frequency ω̄ = 3

√
ω1ω2ω3. This will be particularly relevant in chapter 4, where

mixtures produced in different experiments and different harmonic traps are discussed; the
fact that the discussed mixtures had different aspect ratios, yet the same ω̄, allows direct
comparison to other experiments.

Moreover, the fact that the problem only depends on the modulus r̃ allows the system of
equations to be solved in a 1-dimensional calculation, although the result is fully applicable to
the 3D case. Numerically, a self-consistent solution to the above equations starts by initializing
the bosonic distribution nB,0 to a Thomas-Fermi distribution of a pure condensate. The next
step is to calculate the fermionic density distribution nF,0 which results from eq. 2.49 and
nB,0. Yet, at this point, µF has not yet been fixed, and we can find the corresponding value
using

NF =
4

(~ω̄F )3

∫

∞

0
dr̃max

[

µF − r̃2 − gFBnB(r̃), 0
]3/2

r̃2 (2.52)

µF is initialized with the Fermi energy and iterated over until the right-hand side is equal to
the total particle number. When µF,0 has been determined, we obtain nF,0. The latter can
be used to start the next global iteration and calculate nB,1 through eq. 2.48. Again, we need
to fix the value of the chemical potential µB,1. This is done by solving

NB =
4π

gBB

(

4

m2
F ω̄F

)3 ∫ ∞

0
dr̃max

[

µB − r̃2 − gFBnF (r̃), 0
]

r̃2 (2.53)

We obtain µF,2 and nF,2 by solving 2.52 with the new bosonic input data, and so forth. After
some of these iterations, several outcomes are possible:

• The densities converge. We obtain a self-consistent solution of the full problem.

• The bosonic density converges, and the fermionic density becomes zero at the center.
This is really a special case of the above situation and corresponds to phase separation,
as we shall see.

• Both densities diverge, corresponding to collapse (see below).

In the following, I will discuss four different phases of the harmonically trapped mixture which
have all been observed in the experiment and are discussed in chapter 4 and 5. I illustrate
these phases with numerical solutions to the above Thomas-Fermi model. The solutions
of the Thomas-Fermi model which I am going to discuss have been calculated for equal
boson and fermion numbers of 105 atoms in a harmonic trap with mean oscillator frequency
ω̄ = 2π 50 Hz for 87Rb. I have used aBB = 98.98a0 [77], corresponding to 87Rb. The
heteronuclear interaction is parametrized by comparing it to the 87Rb interaction parameter
through the definition of the ratio

γ :=
gFB

gBB
. (2.54)

2.4.1 Noninteracting limit

In this situation (γ = 0), where the two clouds do not influence each other at all, the solutions
to eq. 2.43 are the well-known Thomas-Fermi profiles of an atomic Bose-Einstein condensate
and a degenerate Fermi gas at T = 0. As a starting point for our discussion, the non-
interacting limit can be used to estimate the relative influence of one species on the other
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Figure 2.2: Non-interacting Fermi-Bose mixture in the Thomas-Fermi model.

as the interaction between the two is gradually turned on. I have plotted the corresponding
T = 0 noninteracting density profiles of the Fermi gas and the BEC in Fig. 2.2. The density
of the BEC is shown in red, and the corresponding scale is on the left y axis. The fermionic
density is plotted in blue, and the corresponding scale is the right y axis in the figure, with
the scale increased by a factor of 10 compared to the bosonic density.

The central density of the BEC in our example trap in this case is 1 · 1014 cm−3, and
the Fermi gas is much more dilute, 6 · 1012 cm−3, about one and a half orders of magnitude
smaller. At the same time, the spatial extension of the Fermi cloud is much larger than the
size of the condensate. The Bose-Einstein condensate has a Thomas-Fermi radius of 8 µm,
and the Fermi cloud is about three times as large. In terms of volume occupied inside the
trap, this corresponds to a factor of 33.

Leaving the non-interacting discussion, weak interactions between fermions and bosons will
affect the density distributions mostly in the overlap region with the Bose-Einstein condensate,
i. e. within the Thomas-Fermi radius of the condensate. Since the bosonic density is so much
larger, a good first order intuitive picture is to only look at how the large bosonic density
affects the fermionic cloud, since the corresponding mean field potential gFB · nB is an order
of magnitude larger than gFB · nF .

2.4.2 Attractive interactions

For attractive interaction between bosons and fermions (γ = −4 in Fig. 2.3), the effect of the
first order correction on the fermions is the appearance of an additional mean field dimple
in the external trapping potential due to the narrow bosonic cloud. This mean field dimple,
gFB ·nB, increases the fermionic density distribution in the center of the harmonic trap where
it overlaps with the BEC and gives rise to a bimodal density distribution of the fermionic
component in the trap. For small enough interactions, the bosonic density is mostly unaffected
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Figure 2.3: Fermi-Bose mixture with moderately attractive interactions.

by the presence of the fermions, and this first order correction in the iterative solving procedure
of the coupled problem remains valid even after several iterations of eq. (2.43). This situation
is illustrated in Fig. 2.3.

In this situation, where the Fermi-Bose attraction is four times as strong as the Bose-Bose
repulsion, the fermionic density is increased by a factor of two in the center of the trap, while
the bosonic density increases only by about 20% for this relatively strong attraction. In the
inset of Fig. 2.3, I have shown the measured axial density profile of an attractively interacting
cloud of bosons and fermions in our magnetic trap in order to show that we can observe this
phase in the experiment. The short time of flight chosen here ensures that the time of flight
distribution is close to the in-trap distribution, and the bimodality in the fermionic density
distribution is clearly visible. I will say more about the experimental observation of this
regime of stable attractive interactions in chapter 4 and 5.

2.4.3 Mean field collapse

For strong attractive interactions, the outward bound Pauli pressure of the Fermi gas [18, 50]
and the repulsive interactions within the BEC can no longer counteract the strong attraction
between the two components, and a simultaneous collapse of the two is observed, reminiscent
of the collapse of pure Bose-Einstein condensates with attractive interactions [78, 79]. Now,
the back-action of the fermionic component on the BEC is significant and so strong that it will
compress the Bose-Einstein condensate even more, which in turn will increase the fermionic
density, ultimately leading to a self-accelerating contraction in a kind of runaway process.

In the mean field model, this is seen from the fact that each of the subsequent steps
in solving equations (2.43) yields significant contracting contributions, and convergence can
no longer be achieved. Since densities cannot become arbitrarily large, the consequence
is that no stable solutions for the densities exist beyond certain critical combinations of
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Figure 2.4: Iterations of the coupled Thomas-Fermi model leading to a collapse of the mixture.

particle numbers, interaction strength and external confinement. For the particle numbers
and trapping frequencies mentioned above, the critical γ for the onset of collapse is -6.992(8)2

(see below). Fig. 2.4 illustrates successive steps (in fact, every third step) of the iterative
solution procedure for γ = −8 (beyond the critical conditions for collapse), demonstrating
this contraction in the simulation. First, the overlap region of condensate and Fermi gas
becomes narrower and narrower, and more and more fermions are trapped inside the BEC.
At the same time, the central densities of both clouds increase more and more. Once complete
self-trapping of the mixture has been achieved, both components contract together and the
densities grow to infinity. In order to be able to visualize the evolution of the algorithm over
these large density and position scales, I have plotted the iterations in a full logarithmic plot
for both the density and the spatial coordinate. In chapter 4 and 5, I will show how we observe
the onset of collapse in the experiment. One of the symptoms of collapse is a sudden drop in
particle number when the mixture becomes overcritical as seen in the plot of 87Rb and 40K
particle number in the inset in Fig. 2.4. The inset shows a sudden drop as the interactions
strength at a Feshbach resonance is more and more increased (from right to left). I will say
more on the experimental observation of the onset of collapse in chapter 4 and 5.

2.4.4 Repulsive interactions

For weak repulsive heteronuclear interactions (here: γ = 4), the mean field dimple in the center
of the trap which I have discussed in the limit of weak attractive interactions is inverted. Now,
it effectively repels fermions from the center of the trap. This repulsive “bump” leads to a
fermionic density distribution which reaches its maximum on an ellipsoid around the origin
as seen in the simulation in Fig. 2.5.

As a result of the additional fermionic “curvature”, the BEC will feel an effectively deeper

2The error stems from the interval process determining stability limits.
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Figure 2.5: Fermi-Bose mixture with moderately repulsive interactions.

external potential due to the presence of the fermions. In chapter 5, I will show how we can
observe this compression of the condensate and the increased potential energy of the fermions
in time of flight through a faster expansion of the system.

2.4.5 Phase separation

When the repulsive BEC bump in the center becomes so strong that the associated potential
is larger than the fermionic chemical potential, the fermionic density distribution at ~r = 0
vanishes completely. In this limit, the mixture phase separates into a dilute fermionic shell
surrounding a dense BEC core, as seen in the simulation in Fig. 2.6 for γ = 8. In the center
of the trap, where the bosonic density vanishes completely, the BEC only feels the external
trapping potential. The effect of the heteronuclear interaction is seen in the outer overlap
region between the dense BEC and the Fermi cloud and has the shape of a very steep mean
field potential as seen in Fig. 2.6. For the particle numbers and trapping frequencies mentioned
above, the critical γ for the onset of phase separation is 7.008(8).

The inset in Fig. 2.6 shows a time of flight image of 40K atoms in the regime of phase
separation which is discussed in chapter 5 from an experimental perspective. Most of the
fermionic density is concentrated in the upper part of the image. This is due to the fact that
in the presence of gravity, phase separation occurs in a slightly different way where the light
fermions will tend to sit above the heavy bosons in the trap. In chapter 5, I will show how
we can observe this vertical phase separation in the experiment.

2.4.6 Full phase diagram

After I have shown these four limiting phases of harmonically confined mixtures, let us look
at the full phase diagram of the mixture. I only discuss the case of repulsion between bosons
here. Even for moderate attractive interactions, an atomic Bose-Einstein condensate is quickly



20 CHAPTER 2. FERMIONS AND BOSONS

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 10 20 30

1.2

1.0

0.8

0.6

0.4

0.2

0.0
r/µm

n
R

b
/

(1
01

4
cm

3
)

n
K

/
(1

01
3

cm
3
)

Fermions

Bosons

Figure 2.6: Fermi-Bose mixture undergoing phase separations for strong repulsive interactions.

subject to collapse all by itself. In the case of repulsive interactions between bosons, the self-
consistent solution of equations 2.43 allows us to calculate a phase diagram of the mixture [72]
by looking at convergence or divergence of the algorithm. The algorithm determines the phase
boundary by initializing γ with −1 or 1, depending on the phase boundary to be determined
(collapse or phase separation). In successive iterations, γ is then multiplied by two until either
phase separation or collapse occurs at γ0 = 2n · 1. Now, an interval procedure initialized with
a lower value γL = 0 and a higher value γH = γ0. In each step, the stability of the mixture
is determined for

γC =
γL + γH

2
(2.55)

and, depending on the outcome, either the lower or upper interval boundary is updated to γC

and thus the length of the interval halved. The algorithm continues until the interval length is
inferior to a threshold reflecting the desired precision. The resulting phase diagram is shown
in Fig. 2.7.

In the phase diagram, I have plotted the phase boundaries as a function of the boson-
boson repulsion and the Bose-Fermi interaction, parametrized through the respective scatter-
ing length. From the phase diagram, we can see that stable mixtures, either attractively or
repulsively interacting, exist as long as the Fermi-Bose interaction is not too strong compared
to the Bose-Bose interaction. For too strong attractive Fermi-Bose interactions, the mixture
collapses. If interactions between fermions and bosons become large and repulsive, phase sep-
aration occurs, where stable density distributions do exist, but the overlap of the constituents
is reduced to a small region.

In this chapter, I have treated interacting fermions and bosons from a mean field perspec-
tive. I have shown the various limiting cases of harmonically trapped mixtures and established
a basis for thermometry. In the following chapter, I will present experimental techniques
which have been used in this thesis to create ultracold mixtures of bosons and fermions and
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Figure 2.7: Phase diagram of a harmonically trapped Fermi-Bose mixture for NB = 106 and
NF = 5 · 105

then show in chapter 4 and chapter 5 how we can make use of these techniques to measure
temperatures of degenerate gases and understand the various experimentally observed phases.

It is important to keep in mind that all of the calculations performed in this chapter
assume equilibrium conditions. In particular, the phase boundaries with respect to collapse
determined here are only valid for thermal equilibrium. In chapter 4, we will see that exci-
tations in the cloud may significantly lower critical conditions for the onset of collapse, since
shape oscillations can cause an overcritical increase in density in an otherwise undercritical
mixture.

A complementary problem to the mean field many particle treatment of this chapter is
considered in chapter 7, where I will experimentally and theoretically study scattering between
only two particles in the steep potential of an optical lattice well and show that this leads to
formation of two-body bound states (heteronuclear Feshbach molecules).
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Chapter 3

Experimental setup

In this chapter, I will describe the experimental setup for quantum degenerate Fermi-Bose
mixtures of 40K and 87Rb in 3D optical lattices which has been realized together with S.
Ospelkaus. The experiments presented in chapters 4 to 7 have required the development
and implementation of a lot of experimental techniques which are described in depth here.
Readers who wish to continue with the main experimental results can continue with chapter 4;
I have included backreferences to this chapter in order to highlight where the experimental
techniques discussed here have been particularly relevant.

In this introductory paragraph, I will briefly sketch our experimental approach to going
from 400◦C to the nanokelvin regime within a few centimeters, covering more than ten orders
of magnitude on the absolute temperature scale. Fig. 3.1 illustrates the basic concept of the
experiment. A vapor of 40K and 87Rb is produced within a rectangular glass cell (2D-MOT
cell) at a pressure of between 10−8 and 10−9 mbar using alkali metal dispensers. When current
is run through these tiny metal boats, a chemical reduction reaction takes place in the interior
and atomic alkali vapor is released into the vacuum system. From this background vapor, a
cold atomic beam is produced using two pairs of horizontal, orthogonal laser beams forming
a two-dimensional magneto-optical trap [80] for both species. The beam is collimated in the
horizontal direction and directed along the vertical axis of the apparatus.

The flux towards the lower part of the apparatus is enhanced by using a resonant pushing
beam which is optimized to match the velocity distribution with the capture range of a 3D
two-species magneto-optical trap which is located in the lower part of the apparatus in a
second glass cell. This region is separated from the 2D-MOT region by a differential pumping
stage, thereby achieving UHV conditions in the 3D-MOT region. From the cold atomic beam,
atoms are accumulated in the 3D-MOT for typically ten seconds with final particle numbers
on the order of 1 · 1010 for 87Rb and 2 · 108 for 40K (5 · 107 in the presence of 87Rb). After
some additional optical molasses cooling, final achievable temperatures of the laser cooled
atoms are on the order of 50 µK for 87Rb. Although already seven orders of magnitude in
temperature reduction have been achieved at this stage, the ensemble is still about three
orders of magnitude away from the quantum regime, and the atoms still behave like little
billiard balls in a classical Maxwell-Boltzmann gas.

In order to further decrease temperature and increase phase space density, evaporative
cooling in a magnetic trap is used. The magnetic moments of the atoms allows them to
be held in an inhomogeneous magnetic field, which is produced at the same place where
the atoms have been accumulated in the 3D-MOT. Radio frequency transitions are used to

23
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Figure 3.1: Sketch of the basic experimental setup, excluding all laser systems, optics and
electronics. In the 2D magneto-optical trap, a cold atomic beam is produced, sent through
a differential pumping stage and recaptured in a 3D-MOT. Atoms are transferred into a
magnetic trap, sympathetically cooled into the degenerate regime and then transferred into
optical traps and optical lattices for further experiments.
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remove atoms from the trap in a velocity-selective way. We start to induce spinflips into
antitrapped states in the outer region of the trap and thereby remove atoms with the highest
overall energy from the sample. Cutting away part of the atomic velocity distribution triggers
rethermalization through collisions between atoms, resulting in fewer atoms, yet at a lower
temperature and with a higher phase space density. Evaporative cooling proceeds by cutting
from the outer regions of the trap to the center with the “rf knife” until the thermal deBroglie
wavelength of the atoms is on the order of the interparticle spacing. At this time, the quantum
nature of the atoms in their external degrees of freedom becomes apparent, which results in
Bose-Einstein condensation for 87Rb and a macroscopic Fermi sea for 40K. The success of
evaporative cooling relies on several factors:

• Low background gas scattering during evaporative cooling. This is the main
reason for using a double-MOT setup which fulfills the otherwise incompatible require-
ments of UHV conditions and efficient and fast loading from a background vapor by
splitting the system up into two regions.

• Low intrinsic collisional losses in the gas. This concerns 3-body and 2-body
inelastic collisions in the sample which lead to trap loss and / or heating. This thesis
contains a measurement of 3-body loss in the 40K–87Rb system which demonstrates that
3-body loss in the magnetically trapped states is much weaker than previously believed.

• Presence of rethermalizing collisions. 87Rb has very favorable properties for evap-
orative cooling. Any spin-polarized fermionic gas alone suffers from Pauli-blocking of
s-wave collisions at the temperatures in the magnetic trap, making evaporative cooling
of such a system very inefficient. In the mixture system, this limitation is overcome
by removing essentially 87Rb atoms with the rf knife and by cooling 40K in the ther-
mal bath of the 87Rb atoms. The 40K–87Rb system has very favorable interspecies
rethermalization properties [81].

In order to perform experiments with the degenerate mixture, we can either transfer it into
an optical dipole trap where the spin of the atoms is an experimental degree of freedom or
ramp up the power in three retroreflected laser beams forming a 3D perfect optical crystal,
the optical lattice. Inside the dipole trap and the optical lattice, Feshbach resonances allow
interactions between atoms to be tuned practically arbitrarily. In order to extract information
on the sample, the atoms are imaged using one or more of the four imaging systems in various
directions after release from the trap.

3.1 Vacuum system

The vacuum system of our experiment is based on the design by Holger Schmaljohann [82]
for the spinor BEC experiment in our group and has been further optimized for optical access
and two-species operation. Initial evacuation of the apparatus has been performed using a
rotary vane roughing pump in a neighboring room connected to the main system by a flexible
PVC tube. A turbomolecular pump together with a Titanium Sublimation pump allowed us
to reach 10−10 mbar in the main chamber. Both the turbomolecular pump and the roughing
pump are then disconnected from the vacuum system using two UHV valves. After this step,
the only remaining connection between the 2D and 3D MOT parts of the vacuum system
is the differential pumping tube. Each of the two regions is pumped separately by a 55 l/s
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Ion pump, and possess a cold cathode vacuum gauge allowing us to measure the pressure in
both regions separately. After bakeout at roughly 300 ◦C during one week, the pressure in
the lower region drops below 10−11mbar, while the pressure in the upper part is on the order
of 10−10 mbar. Note that we cannot directly measure the pressure in the 2D MOT glass
cell, which is higher due to additional differential pumping. We estimate this pressure to be
between 10−8 mbar and 10−9 mbar, based on the estimated performance of the differential
pumping stage.

The one exception where pressure in the lower part of the vacuum system was above the
10−11 level happened in July 2005 where a ceramic part of one of the current feedthroughs
for our 2D MOT dispenser sources broke for no apparent reason. The situation was fixed
by applying a lot of heated TorrSeal vacuum compatible glue (Varian) to the outside of the
current feedthrough, switching on the roughing pump again, selectively baking out the ion
pumps and firing the Titanium sublimation pump a few times. Removing all of the 3D MOT
and lattice optics was also necessary. We had degeneracy again about one month later at a
pressure of 5 ·10−11 mbar, and pressure dropped below 1 ·10−11 mbar within one more month.

3.2 Atomic sources

It is now common in laser cooling experiments to use Alkali Dispensers to produce a back-
ground vapor from which a 3D collection or 2D MOT [80] is loaded. Dispensers are tiny
metal boats containing an alkali salt and a reduction agent. When the boat is heated by
sending current through it, the reduction reaction takes place and atomic alkali atoms are
released into the surrounding vacuum vessel. These dispensers are usually employed in pro-
ducing photosensitive surfaces of photocathodes, and their entire content is “fired” within a
few seconds in these applications. As a source of atoms in laser cooling experiments and run
at much lower current, they last for years. We haven’t seen any degradation in the output
of our commercial 87Rb dispenser until the above mentioned cracking of the corresponding
current feedthrough.

Being a mass product, dispensers are inexpensive sources and the manufacturer usually
charges an extra fee for the small quantities that an atomic physicist will buy. They are,
however, only available for the naturally occurring isotope mixture of a particular element.
40K has a natural abundance of 0.01%, making enriched sources highly desirable, but these
are not available commercially. In the group of D. S. Jin, a technique to build dispensers
based on small quantities of enriched salts ($6000 for 200 mg) has been been developed [83],
and we have been following this approach. The reduction reaction is

2KCL + Ca → 2K + CaCl2

and takes place at around 400◦C. The very fine powder required both for the hygroscopic salt
and the delicate Ca powder required us to perform the whole production process including
several days of filing Ca for just a few mg of material under Ar atmosphere in a glovebox at the
University’s chemistry department. Assembly of the whole dispenser setup was also performed
in this box, and the transport to our institute inside a CF tube under Ar atmosphere. Details
of the production process and the characterization can be found in [66].
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3.3 Laser systems

I will now describe the laser systems which are used for the initial laser precooling in the
2D/3D magneto-optical trap combination and for detection. I will start with the 87Rb laser
system, then describe techniques developed for 40K and finally discuss how the different laser
beams are overlapped in order to be delivered to the experiment.

3.3.1 Rubidium laser system

A schematic sketch of the 87Rb laser setup is given in Fig. 3.3. The concept of the 87Rb laser
system is similar to the one described in [82, 84] and relies on having two extended cavity mas-
ter diode lasers for laser frequencies close to the |1, X〉 → |2, X〉 repumping transition and the
|2, X〉 → |3, X〉 cycling transition for laser cooling, trapping, optical pumping and detection.
Each of these two master lasers is locked to a saturated absorption FM spectroscopy setup;
the light is then amplified in several injection locked slave lasers and frequency shifted using
Acousto-Optical Modulators (AOMs). The frequency locking scheme is shown in Fig. 3.4.

The cooling master M1 runs approximately 160 MHz blue-detuned with respect to the
F = 2 → F ′ = 3 cycling transition. A probe beam is shifted by −267 MHz to the red (using
a 120 MHz AOM in double pass configuration) allowing the laser frequency to be locked to
the F = 2 → F ′ = 2, 3 crossover resonance. The output power of M1 is then amplified
by injection seeding of a slave diode laser S1. The latter is frequency shifted to the red by
an 80 MHz AOM in double pass configuration to provide near-resonant light for detection,
optical pumping and the pushing beam.

The resonant detuning for the detection beam has been determined by taking images
of thermal clouds with varying AOM frequency and recording the detected pixel count (see
Fig. 3.2). An absorptive Lorentzian

N(νAOM) =
N0

1 + ((νAOM − ν0)/w)2 (3.1)

has been fitted to the data, yielding a resonance center position of

ν0 = 66.50(05) MHz (3.2)

AOM frequency and a half width of w = 1.59(3) MHz. This half width needs to be multiplied
by two in order to obtain the frequency half width due to the double pass configuration and
by four in order to compare it to the natural linewidth. The result of 6.36(12) MHz is only
slightly above the natural linewidth of 6.065(9) MHz, possibly due to slight saturation.

Two other identical beam paths originating from S1 involve another −160 MHz frequency
shift using an 80 MHz double pass AOM, another injection seeded slave laser (S1a and S1b)
which in turn produces enough power to seed a tapered amplifier (T1a and T1b) for the
2D and 3D MOTs, respectively. Of course, these beams will also be resonant for an AOM
frequency of 66.5 MHz, and a larger frequency corresponds to a red-detuned situation.

In order to run a large 87Rb MOT, the original setup relied on using broad area diodes as
a last power amplification stage [85]. While this was a good option at a time where previously
used tapered amplifier chips from SDL were no longer available and other options simply a
lot more expensive, we found another option when setting up our system: tapered amplifier
chips from Eagleyard Photonics proved to provide a long lifetime and largely sufficient output
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Figure 3.2: Determination of 87Rb detection AOM resonance frequency. The figure shows
the detected particle number (assuming zero detuning) as a function of AOM frequency. The
displayed particle number therefore only corresponds to the real particle number exactly on
resonance.

power (≈ 500 mW) at the same price as the previously used broad area diodes. In terms of
adjustment, they offer the advantage of the injection being completely independent of fiber
coupling of the output beam, which is incredibly useful in daily maintenance. In order to
transfer atoms from the MOT into the magnetic trap with an additional step of molasses
cooling, we need to be able to quickly switch the T1b intensity. This is done using an Electro-
Optic Modulator (EOM).

The repumper master M2 is directly locked to the F = 1 → F ′ = 1, 2 crossover resonance.
Its output power is amplified by injection locking a slave laser S2. The output of the latter is
frequency shifted 80 MHz to the blue using an AOM in single pass and is then resonant with
the F = 1 → F ′ = 2 repumping transition. It is split into two beams and coupled into the
same optical fibers as the 2D MOT and 3D MOT using orthogonal polarizations. The 87Rb
laser system is described in detail in the diploma thesis of Jürgen Fuchs [86]; the interested
reader is referred to this thesis for details on the tapered amplifier setup.

3.3.2 Potassium laser system

An important aspect to bear in mind when working with some of the light Alkali atoms (such
as 40K) is that hyperfine splittings, especially in the excited state, may be small and that
even on a cycling transition, there is a relatively high probability of atoms being excited into
a state where they can decay into the “blind” ground hyperfine manifold. As a result, there
may be need for more repumping power than in the case of 87Rb. At the time when we were
planning the laser system for 40K, inexpensive tapered amplifiers providing enough power



3.3.
L
A

S
E

R
S
Y

S
T

E
M

S
29

Master 1

Saturation
spectroscopy

CO 2<-->2´,3´

AOM
-267 MHz

Slave 1
AOM
-150MHz

AOM
-150MHz

Slave 1a

Slave 1b

 Pushing Beam

TA 1a

TA 1b

2D MOT

 3D MOT

Saturation 
spectroscopy

CO 1<-->1´,2´

Master 2
Repump laser light

Slave 2
AOM
+80MHz

A
O

M
-150M

H
z

Detection

Optical Pumping

F
igu

re
3.3:

S
im

p
lifi

ed
sk

etch
of

8
7R

b
laser

sy
stem



30 CHAPTER 3. EXPERIMENTAL SETUP

F=2

F=1

F´=1

F´=2

F´=3

F´=0

M
as

te
r 

1/
 S

la
ve

 1

 S
la

ve
 1

a/
1b

  T
A

 1
a/

1b

M
as

te
r 

2/
 S

la
ve

 2

R
ep

um
p 

la
se

r 
lig

ht

AOM
 80 MHz

AOM
 -150 MHz

AOM 
-267 MHz

MOT
CO
F=2-->F´=2,3

CO
F=1-->F´=1,2

Figure 3.4: Laser locking scheme for 87Rb.



3.3. LASER SYSTEMS 31

both for cooling and a repumper were not available. We decided to base this part of the setup
on commercially available laser systems.

A sketch of the 40K laser system can be found in Fig. 3.5. For repumping, we rely on a
tapered amplifier system from Toptica Photonics. The systems consists of an extended cavity
diode laser injecting a Tapered amplifier with a specified output power of 500 mW. This laser
system runs slightly red-detuned with respect to the 40K F = 7/2 → F ′ = 9/2 transition.
Vapor cells containing non-negligible concentrations of 40K for frequency stabilization are not
affordable, and the stabilization of the laser can equally well be done by using the known
isotope shifts relative to the most abundant isotope 39K. In our case, the 39K line closest to
the 40K repumping transition is the F = 2 → F ′ = X transition1. This transition is blue-
detuned by approximately 415 MHz with respect to the repumping transition. We therefore
use a 200 MHz AOM in double pass configuration to shift part of the repumper light towards
higher energy and make it resonant with the the aforementioned 39K transition for frequency
stabilization using a standard saturated absorption FM spectroscopy setup. In order to obtain
a decent signal-to-noise ratio, we heat the vapor cell to about 60-70◦C.

As will become clear from the discussion of our 3D magnetoopical trap for 40K, our dark-
SPOT MOT [87] for 40K relies on two different paths for the repumping light, depending
on whether we run only a bright 3D-MOT or a 2D-MOT and a dark SPOT 3D-MOT. We
therefore need a possibility to quickly switch between these two configurations. Since we
do not have an AOM after the MOPA, we also need the possibility to quickly switch off the
repumper. All this is accomplished by using an Electro-Optical Modulator (EOM). It basically
works as an electronically controllable waveplate in front of a polarizing beam splitter cube
allowing us to send light either of two ways. For loading the 3D-MOT, we use one output port
which feeds a separate fiber for the dark SPOT repumper and sends some of the repumping
light into the 2D-MOT fiber together with the corresponding cooling beam. For transfer into
the magnetic trap, we have a short period of bright MOT only. This uses the other output
port of the cube, and all of the repumping light is coupled into the same fiber as the 3D MOT
cooling beam.

Our cooling laser for 40K is a commercial Coherent MBR110 Titanium-Sapphire ring
laser pumped by a 10 W Verdi-V10 laser at 532 nm. The MBR110 has an internal reference
cavity resulting in an inherent linewidth of about 100 kHz. Two years ago, this laser produced
about 1.6 W of output power at 767 nm; the power has dropped to about 800 mW in between,
which is still largely sufficient for running our 2D/3D MOT combination. One well known
complication when working with lasers with lengthy resonators at 767 nm is the presence
of molecular O2 absorption features in this region. These losses can lead to an important
gain reduction in the laser cavity and make the laser feel more happy on a different spectral
mode than desired. This can be avoided by purging the resonator housing with nitrogen (see
discussion in [88, 89]). The Ti:Sa runs approximately 160 MHz below the 40K F = 9/2 →
F ′ = 11/2 cycling transition and is shifted to frequencies near the resonance for laser cooling,
detection and optical pumping by 80 MHz AOMs in double pass configuration. These are
also used for rapid switching, intensity control and small changes in the detuning. The Ti:Sa
initially used to have its own saturated absorption spectroscopy setup stabilizing it relative
to the 39K groundstate crossover resonance as shown in Fig. 3.5. In experiments on molecule
formation (chapter 7), we have found it necessary to detect atoms at high magnetic fields
(see section 3.11.3.2 and thus detune the imaging laser by up to -800 MHz. For this purpose,

1The largest excited state hyperfine splitting is 21 MHz and is only barely resolved.
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we have instead implemented a frequency offset lock relying on the beat signal between the
Ti:Sa frequency and the repumper frequency recorded on a fast photodiode. For this purpose,
we have adapted a scheme from the group of Martin Weitz [90] which relies on comparison
between the flat frequency characteristic of a -3 dB attenuator and the -3 dB point of an
rf low pass filter. The output of the two is compared in a rectifier circuit and results in a
zero-crossing of the spectroscopy signal at an input rf frequency of 161 MHz. This technique
has the advantage of being robust and providing a large capture range for the lock. In fact,
we can unlock and scan the repump MOPA while the Ti:Sa remains locked relative to the
MOPA. In order to be able to set the desired beat frequency to a wide range of desired values
and thus tune the Ti:Sa laser frequency, we mix the beat signal from the photodiode with the
output of a commercial rf synthesizer and then stabilize the difference frequency to 161 MHz
using the above mentioned error signal circuit (ESC). By changing the output frequency of
the synthesizer via GPIB, we can then detune the Ti:Sa laser over a wide range2. The 40K
offset locking scheme is described in detail in appendix A.

3.3.3 Putting it all together

So far, the 87Rb and 40K systems have been discussed separately; both the 2D-MOT and the
3D-MOT are operated simultaneously at the same place; here I will discuss how we make a
separate 87Rb and 40K laser system one laser system for a two-species MOT. The idea is to
have four fibers delivering the main cooling and repumping light to the experiment. Cooling
and bright repumping light for one species in the 3D-MOT are overlapped using orthogonal
polarizations and coupled into the same polarization non-maintaining single mode fiber. This
makes one 3D-MOT 40K fiber, one 3D-MOT 87Rb fiber and another set of two fibers for the
2D-MOT. This allows us to adjust the 40K and 87Rb MOTs independently at the experiment
and to have the bright repumper always automatically overlapped with the cooling light.

Then there is another set of three auxiliary beams for optical pumping, detection and the
pushing beam enhancing the flux of atoms from the 2D to the 3D MOT. These frequencies are
always near the cycling transition, and are never needed at the same time. We therefore use
one common AOM to shift them near the cycling transition, then divide the power into three
separate paths. We then use dichroic mirrors which reflect 40K light under 20 to 25 degrees
angle of incidence and transmit 87Rb light to overlap 40K detection light with 87Rb detection
light, 40K optical pumping light with 87Rb optical pumping light etc. and send each of these
overlapped beams through a mechanical shutter and couple it into a single mode fiber.

3.4 Two species 2D/3D-magnetoopical trap

Having described how all of the laser light for cooling and trapping is produced, I will now
explain the concept of the two-species magneto-optical trap setup. The description will only
cover the 3D magneto-optical trap, since it is the more complex of the two and also requires
a discussion of imaging and overlapping with the optical lattice beams. The most significant
part of the setup is sketched in Fig. 3.6. The idea underlying our two-species MOT is to
divide both 40K (c) and 87Rb (b) cooling and repumping light up into three different beam

2One of the shortcomings of the current setup is that as the synthesizer frequency comes closer to 161 MHz,
the other mixer products will disturb the ESC, so that one MHz of rf synthesizer frequency change no longer
exactly corresponds to one MHz change in beat frequency change. This is a simple matter of applying a small
correction on the set frequency.
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paths (e) and (d). One 40K and one 87Rb path are then overlapped using a dichroic mirror
(f), forming three two-species cooling beams. Each of these is sent through a beam expansion
telescope (g) and split up into two of the counter-propagating beams for the MOT using a
large 30 mm polarizing beam splitter cube. Care is taken to make the length of the beam
paths of the counter-propagating beams approximately equal for ease of adjustment and a
beam profile of both which is as balanced as possible.

At the experiment, two of the MOT beams run at 45◦ with respect to the laser table (m)
and one beam is running in the horizontal direction. Fig. 3.6 shows only two of the three
MOT axes. The whole setup has been mounted on a custom made vertically oriented fiber
hardened epoxy board (a). The choice of the material is due to its low thermal expansion
coefficient and vanishing conductivity, thereby avoiding eddy currents upon switchoff of the
magnetic trap3. Much of the geometry is influenced by the characteristics of the mirrors that
are used for overlapping 40K and 87Rb light (f). These are HR coated for 767 nm and AR
coated for 780 nm, all at an angle of incidence of 20 to 25◦, so that they will reflect 40K
(e) cooling light and transmit 87Rb cooling light (d). Producing such an optical filter with
an edge of only 13 nm between HR and AR is only possible using the ion beam sputtering
technique4. The angle of incidence of these mirrors means that the 1:3 setup for 40K (e) is
rotated by 45◦ with respect to the 87Rb 1:3 (d) setup before the 2 · 3 beams are overlapped
(f) and sent through a common telescope (g) for each direction of the MOT. All of the beam
preparation is done on the back side of the 3D-MOT (a) board in order not to compromise
the optical access close to the atoms. Finally, each of the beams is sent onto a diagonal beam
path on the “atomic” side of the MOT board using a beam walk consisting of two mirrors, one
on each side of the board (i). Before going through the glass cell, each of the beams passes
another edge filter which transmits the MOT light, but reflects 1030 nm light. These mirrors
are used to shine in the optical lattice beams (l).

The horizontal beam path for the MOT is built very much in the same way, except that
the overlapping and beam expansion is done on two stainless steel boards parallel to the
optical table and 65 mm below the MOT center. This setup allows flexible imaging and
lattice configurations in the horizontal direction.

There are of course other aspects to the MOT setup. One aspect is imaging in the direction
of the MOT and dipole beams. Many of the MOT beams can be blocked individually during
evaporative cooling using low-vibration “shutters” made from servo motors and cardboard
so that imaging can be done in the direction of the lattice / MOT beams using the MOT
beam. Another aspect is that as soon as 40K and 87Rb light has been overlapped, achromatic
waveplates need to be used for polarization manipulation.

I have already briefly mentioned the dark SPOT scheme [87] which is used for the 40K
3D-MOT. The repumping light for this dark SPOT is delivered to the experiment using a
separate fiber. It is sent through a glass plate with a 0.5 mm diameter dark spot in the center
and imaged to the atoms by sending it through a lens system into the unused port of the 40K
cube which produces the two diagonal MOT beams (e), thus resulting in a repumper beam
profile in the MOT which is characterized by a roughly 5 mm dark area in the center. The
effect of the dark area is that repumping is very weak in the center of the trap and atoms
can easily fall into the “uncooled” F=7/2 hyperfine state as long as they stay in the center

3The field lines from the magnetic trap run directly through the board
4The edge filters used in this experiment were produced by Laserzentrum Hannover and have transmission

/ reflection of better than 95% for both species.
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of the MOT, i. e. as long as they are “cold enough”. Atoms which leave this area will be
repumped into the “bright” F=9/2 state and pushed into the center of the trap by radiation
pressure as in a traditional MOT. The dark SPOT scheme allows one to overcome limitations
due to the density in the center of the trap, related to radiation trapping and excited-ground
state collisions. Before implementing the dark SPOT MOT, very low magnetic field gradients
and very weak cooling power had been required to run a 40K MOT, particularly in the
presence of 87Rb, which is a typical indication of light-assisted collisional losses. A detailed
characterization of the double MOT system can be found in [66, 91, 5]; for a pure 40K dark
SPOT, see [67].

3.5 Magnetic trapping

Since the initial experiments on Bose-Einstein condensation in dilute atomic gases, magnetic
trapping and evaporative cooling of samples precooled by laser cooling techniques has been
the workhorse of ultracold quantum gases. Magnetic trapping relies on the potential energy
of an atom with a magnetic moment ~µ in an external inhomogeneous magnetic field:

V = −~µ · ~B

Let us consider the limit where the precession of the magnetic moment of the atom around
the ~B-field is fast compared to the motion of the atom along the field lines. Let F be the
total angular momentum of the atom, mF its projection on the z-axis and gF the g-factor of
the atom. In this case,

V = −gF ·mFµB · | ~B|
Atoms in states with gF · mF < 0 (“weak-field seeking states”) will be attracted towards a
local minimum of the modulus of the magnetic field and atoms with gF ·mF > 0 (“high-field
seeking states”) would tend to stay at a local maximum of the magnetic field. According to a
result from classical electrodynamics, such a local maximum of the magnetic field cannot be
created in a time-independent field configuration (Earnshaw theorem). Magnetic trapping of
atoms has hence been limited to the weak-field seeking states. In the presence of an external
magnetic field, any weak-field seeking state cannot be the absolute ground state of the atom.
Inelastic losses related to this internal energy can therefore limit the practicability of magnetic
trapping, as observed in Cs. This atom was initially thought to be one of the best candidates
for achieving BEC in alkali gases, but showed strong dipolar losses in magnetic traps and has
only been condensed in 2003 using a sophisticated optical evaporation scheme.

The simplest configuration of a magnetic trap is given by two coils in anti-Helmholtz
configuration, see Fig. 3.7a). The magnetic field at the center is then given by a zero at the
trap center and a linear increase in | ~B| away from the center. While conceptually simple, this
trap has one important shortcoming: When the temperature of the trapped sample becomes
low and approaches the degenerate limit, the time that an atom spends near B = 0 will
increase. In this case, spin flips of the atoms can occur and transfer atoms from the trapped
to the anti-trapped state. These so-called Majorana losses remove just the coldest atoms
from the trap, making cooling to the degenerate regime impracticable in pure quadrupole
traps. Traps relying on AC fields for confinement such as the TOP trap [15] can make use
of this hole by making it revolve around the trap center, and thus exploit it for “circle of
death”-evaporation. In experiments at MIT [16], the magnetic-field zero at the center of the
trap has been “plugged” with a blue-detuned repulsive laser beam.
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a) b) c)

Figure 3.7: Illustration of three different magnetic trap types: a) Quadrupole trap b) Ioffe-
Pritchard trap c) A variant of the original Ioffe-Pritchard trap, the cloverleaf trap.

Today, the majority of experiments use a configuration with a non-zero magnetic field
minimum at the trap center and a quadratic increase of the magnetic field away from the
center, the Ioffe-Pritchard trap [92], see Fig. 3.7b). The most simple realization relies on four
horizontal bars on the edges of a square to provide a radial gradient field. Two axial coils
with a radius significantly smaller than required for a pure Helmholtz configuration provide
a non-zero magnetic field at the trap center and weak curvature for axial confinement. The
relatively large bias field can be tuned by additional anti-Bias coils in Helmholtz configuration.
The magnetic field of such a trap at the trap center is:
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where B0 is the bias field, B ′ the radial gradient and B ′′ the axial curvature. B ′ and B′′ are
generally given by the winding pattern and the maximum current allowed in the wires, and
the trap geometry is changed as a function of the bias field B0. The confinement in the axial
direction is always harmonic and the corresponding curvature is independent (except for the
sign) of B0 and given by B ′′. There are three limiting cases as a function of the bias field:

• For B0 = (2B′2)/(3B′′), the resulting trapping potential is isotropic and harmonic with
a common curvature of B ′′. This configuration is generally used for mode-matched
transfer of laser cooled atoms into the magnetic trap, and the resulting trap frequency
is:

ωiso =

√

gFmFµB

m
B′′ (3.3)

• For B0 slightly larger than 0 (typical values between 300 mG and 1 G) we obtain a
compressed cigar-shaped trap. In the axial direction, the potential is harmonic; in the
radial direction, the potential is linear far from the center and has a harmonic minimum
near the origin. In this tightly confining configuration, one obtains the highest collision
rate for evaporative cooling; the trapping frequencies in the harmonic minimum are:

ωax =

√

gFmFµB

m
B′′ (3.4)

ωrad =

√

gFmFµB

m
B̃′′ (3.5)
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where B̃′′ = B′2

B0
− B′′

2 is the radial curvature which strongly depends on the offset field.

• For B0 < 0, we obtain a situation similar to the above case, except that in the axial
direction, we now obtain two magnetic field zeros symmetric to the origin. In the center
of the trap, the potential is confining in the radial direction and expelling in the axial
direction or vice versa, depending on the product gF · mF < 0. We have sometimes
used this configuration when experimenting with elongated single-beam dipole traps
to provide some additional very weak axial confinement. The atomic states in this
configuration are high field seekers; the antitrapping in the radial direction in this case
is overcompensated by the single beam dipole trap along the axis of the magnetic trap.

A significant simplification of this scheme [93] replaces the original Ioffe bars with a cloverleaf-
shaped configuration, resulting in 2π optical access in the radial direction. The cloverleaf trap
still requires the quadrature and anti-bias coils for axial confinement and bias field tuning, see
Fig. 3.7c). A variant of the cloverleaf trap is the 4Dee trap [94]. This trap drops two of the
cloverleaves on each side of the trap and thus achieves both radial gradient and axial curvature
with one set of coils. The resulting trapping potential is relatively isotropic, compared to the
strongly elongated cigar-shaped potential of the cloverleaf trap.

3.5.1 Magnetic trap concept

The magnetic trap designed for this experiment is a hybrid between the cloverleaf trap and
the 4Dee trap and is based on developments by Markus Kottke [95] for the Spinor BEC
experiment set up by Holger Schmaljohann and Michael Erhard in Hamburg [82, 84]. The
idea is to build an “unbalanced” cloverleaf trap where on each half of the trap two of the
leaves feature less windings than the other two. The main features of this trap are:

• In its optimized configuration, the aspect ratio of this trap is somewhat between the
strongly elongated cloverleaf trap and the relatively isotropic 4Dee trap. At B0 = 1 G,
the aspect ratio is 19.

• It offers the full 2π optical access of the cloverleaf trap

• The trap obtains its strongly confining cigar shape when the current in the bias coils is
close to zero, in contrast to the cloverleaf trap which is tightly confining when the field
from the antibias and curvature coils almost exactly cancel each other. This has the
advantage that the current in the antibias Helmholtz coils can be supplied by a separate
power supply, eliminating the need for current control through MOSFETs.

• There is no need for separate z curvature coils, as the confinement in the axial direction
is provided by the unbalanced winding pattern of the cloverleaves.

The winding pattern chosen here consists of 6 layers of 7 windings for the strong leaves each
covering an angle of 112 degrees and 2 layers of 7 windings for the weak leaves covering an
angle of 68 degrees has been chosen. The winding pattern is illustrated in Fig. 3.8.

Additionally, a set of Helmholtz coils providing both the magnetic field gradient for the
magneto-optical trap (in anti-Helmholtz configuration) and spatially homogeneous magnetic
fields of up to 1 kG allowing manipulation of atoms with Feshbach resonances has been
integrated.
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Figure 3.8: Trap winding pattern of cloverleaf / 4Dee hybrid magnetic trap

3.5.2 Trap simulation

Due to the significantly improved simulations using a numerical integration of Biot-Savart’s
law, it has become possible to predict the resulting trap parameters very precisely (see below)
and to calculate the inductivity of the complex winding pattern. The outcome of the simula-
tion is a radial gradient of B ′ = 167.7 G/cm and an axial curvature B ′′ = 77.1 G/cm2. This
corresponds to a radial 87Rb trap frequency of 2π · 214 Hz in the |F = 2,mF = 2〉 state for
B0 = 1 G and an axial frequency of 2π · 11.2 Hz. The calculated inductivity of the combina-
tion of all leaves is 226 µH. The Helmholtz coil wound outside of the curvature coil consists
of 9 windings in 6 layers, producing a calculated magnetic field of 7.645 G/A in Helmholtz
configuration and an axial gradient of 113 G/(cm·A) in anti-Helmholtz configuration.

3.5.3 Trap characterization

The magnetic trap has been characterized before being integrated into the experiment by
performing a magnetic field scan using a combination of 3 stepper motors and a 3-axis Hall
probe. The equipment (see Fig. 3.10) has been developed by Michael Erhard [84] for the spinor
BEC experiment in our group. Fig. 3.9(a) shows the obtained field scan for the quadrupole
field of the MOT configuration. From the image, one can see that on the symmetry axis of
the quadrupole coils, the gradient is twice as large as in the perpendicular direction. The
isotropic trap for transfer from the MOT into the magnetic trap is shown in Fig. 3.9(b),
resulting from a 243 G offset field, whereas the compressed cigar-shaped trap with an offset
field of 1 G is shown in Fig. 3.9(c). Fig. 3.9(d) is a representation of the field of the trap right
after mounting with current only in the Dee coils. In this case, we can see that the bias field is
overcompensated, leading to the characteristic double-well structure. This overcompensation
can be fixed by connecting a few Helmholtz windings in series with the Dee coils (see below).
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(a) MOT Quadrupole field (b) Decompressed trap

(c) Compressed trap (d) Overcompensated bias field

Figure 3.9: Magnetic field scans of various trap configurations. The modulus of the magnetic
field is encoded in a pseudocolor representation in Gauss.

From the experimental data of the field scans, we can extract experimental results for the
radial gradient and the axial curvature. The agreement with the calculated values as seen in
Table 3.1 is remarkable. Note that the inductivity will be discussed in the context of current
switching. Details of the magnetic trap characterization can be found in Ralf Dinter’s diploma
thesis [96].

3.5.4 Magnetic trap in the experiment

When working with magnetic traps of the Ioffe-Pritchard type, one of the most important
aspects is to maintain a stable bias field in the trap. When performing rf induced evaporative
cooling, the final frequency of the rf knife is only slightly above the frequency corresponding
to the bias field; temporal unintended changes in the bias field can therefore be a source of
significant trouble in the experiment. This requirement is somewhat relaxed when the final
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Figure 3.10: Stepper motor setup for magnetic field scans

Quantity Measured Simulation Unit

B′′ 78 77.1 G/cm2

B′ 168 167.7 G/cm

L 237 226 µH

Table 3.1: Characterization of magnetic trap based on field scan (gradient, curvature) and
switch off behavior (inductance). Calculated values are from a numerical solution for the
Biot-Savart law.

stage of evaporation is performed in an optical dipole trap, but it is still a key concern. The
actual bias field of the trap without any current in the Helmholtz coils is one of the aspects of
our magnetic trap that can only vaguely be predicted from field simulation, thereby shining
light on the main possible source of bias field instability: the exact distance between the
two trap housings. Possible thermal expansion of the trap and temperature drifts therefore
should be minimized as much as possible. Our trap has adapted concepts from the spinor
BEC experiment in our group which have proved successful in minimizing bias field drifts.

The magnetic trap is cooled by water flowing through the trap housing at a pressure of
approximately 2 bar. This water is provided by a separate water cooling system with a 40
to 70 l reservoir. Water from the reservoir is pressed into the trap housing from below by a
pump, followed by a pressure regulator. The recycled cooling water is then sent through a heat
exchanger cooled by the institute’s closed cooling system and sent back into the reservoir. The
temperature in the system is measured by a PT100 style temperature probe in the reservoir
and controlled by a commercial fuzzy logic self-optimizing regulator which controls the water
flow through the heat exchanger on the institute’s closed cooling circuit side by means of a
motorized valve.

Bias field control is the most sensitive aspect of magnetic trapping; at the same, the bias
field of the compressed trap in the absence of current in the Helmholtz coils can only be
predicted to within a few Gauss. The field depends a lot on how the trap is wound and
on the precise coil distance achieved in the experiment. After the trap has been integrated
into the experiment, the bias field is determined by looking for the trap bottom in initial
evaporation experiments. A rough compensation is performed by having a few additional
Helmholtz windings in series with the cloverleaves. Fine control of the bias field is then
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performed as outlined in the following section.

3.5.5 Trap control

The magnetic trap is powered by two Delta Electronica SM45-140 power supplies capable of
delivering 140 A at a voltage of 45 V. Needless to say that an interlock system prevents these
supplies from working when there is insufficient water flow in the closed trap cooling circuit
or when the temperature is too high. It is clear from the previous discussion that switching
of magnetic fields and controlling the polarity of the Helmholtz coils is critical to operation of
the trap. We control the main current through the cloverleaf magnetic trap by remote current
programming the Delta supply from an analog output of the experiment control system. Fast
switching is performed using IGBT (Insulated Gate Bipolar Transistor) modules produced
by Powerex, now Mitsubishi (PM200HA-24H). These devices have a switching time of a few
hundred nanoseconds. Combined with the inductivity of a magnetic trap, this extremely short
switching time would lead to an extraordinarily high induction voltage of a few kilovolts upon
switchoff, which is far beyond the voltage handling capability of the modules (1200 V). The
modules are therefore protected by connecting a varistor across collector and emitter of the
device. The varistor will clamp the collector-emitter voltage to a value of about U0=800 V.
The coil is thereby “discharged” at constant voltage, and the resulting switch-off time for an
initial current I0 and an inductivity L is given by

T = L · I0/U0 . (3.6)

For the calculated inductivity of the magnetic trap proper, this results in a switch-off time of
40 µs as observed in the experiment (see Fig. 3.11, where the voltage across the varistor is
plotted as a function of time). The observed oscillatory behavior of the voltage at switchoff
is possibly due to capacitive effects in the varistor, but is not seen in the current. Taking into
account that the switch-off voltage is not exactly constant, we can calculate the inductivity
according to

L =

∫ T

0
U(t) dt / I0 . (3.7)

The result (237 µH) is slightly larger than the calculated value (226 µH, see table 3.1), which
is due to the fact that the voltage across the varistor is measured, not across the coil. The
power supply may introduce some additional non-constant contribution to the overall voltage.
Intended just as a check of the calculated inductivity (to be sure that switchoff is fast enough),
the agreement is excellent.

Whereas for the cloverleaves, a single IGBT is for sufficient switching, control of cur-
rent in the Helmholtz coils is more sophisticated. A total of three power supplies is used
for the Helmholtz coils; their current is added by means of a set of three diodes. This ful-
fills several purposes: The delta power supply in constant voltage programming mode can
provide the current for the magneto-optical trap gradient field and the bias field for the de-
compressed magnetic trap for initial trapping of the laser cooled atoms. Its control voltage is
then ramped down for compression of the magnetic trap; when its output voltage goes to zero,
a HAMEG 8143 supply will take over and provide a current in the range of 400 mA in order
to maintain a precise bias field for evaporation. This power supply is remote controlled using
an analog modulation input. A third diode allows up to 3 A of current to be sent through the
Helmholtz coils produced by one channel of a HAMEG 7044 quadruple power supply, thereby
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Figure 3.11: Magnetic trap switching behavior. Trace 1 shows the behavior of the varistor
voltage upon switchoff; due to the presence of a 1:1000 voltage probe, the oscilloscope reading
needs to be multiplied by 1000. Trace 2 shows the behavior of the current, measured through
a current transducer (1 V / 50 A)
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producing a field of approximately 20 G. The field is controlled by a MOSFET, and used as
an offset field for Landau-Zener state transfer in the optical dipole trap.

So far, I have only talked about meeting various current stability requirements; there is
also the necessity to change between Helmholtz and anti-Helmholtz configuration for magneto-
optical trapping and Stern-Gerlach imaging on the one hand and bias / Feshbach fields on the
other hand. The polarity in one of the coils can be changed using a H-bridge configuration
of four IGBT modules.

One last IGBT module is located in between the H-bridge configuration and the power
supply return. Its function is to provide precise regulation of the Helmholtz current for
control of Feshbach magnetic fields; a DANFYSIK ULTRASTAB 867-200I magnetic field
probe is used as a current probe for this same purpose.

3.6 Other coils

Besides the magnetic trap proper, there are a couple of other magnetic fields in the experiment.
All of these are provided by a compensation cage of three sets of Helmholtz-like coils in the
x-, y- and z-direction. Each of these coils consists of three packages of ten windings of
1.2 mm diameter wire. Each of these sets can be connected separately. We use one package
per direction for offset field compensation using the other three channels of the quadruple
HAMEG 7044 power supply already mentioned above. In the axial (z) direction, one package
is connected to a ELA 5 A max. power supply controlled by a MOSFET and used for providing
a 1 G bias field for optical pumping and imaging. The third package in this direction is
connected to a 20 A power supply which allows us to add a strong bias field for Stern-Gerlach
imaging independent of the proper Helmholtz coils which are switched to Anti-Helmholtz for
this purpose. Note that the compensation coils will under no circumstances withstand more
than 10 A CW; they are protected from accidentally running for a long time at 20 A by means
of a slow 10 A fuse.

3.7 Dealing with the gravitational sag

This part of my thesis is motivated by experiments on Fermi-Bose mixtures in dipole traps
(chapters 5 and 7) as a prerequisite for being able to confine arbitrary spin states. A special
interest is in relatively weak confinement, allowing optical lattice geometries which are as close
as possible to a homogeneous situation. The “magic” crossed dipole trap discussed below has
allowed us to successfully overcome one of the main limitations of experiments working with
atoms with sufficiently different masses. An atom with mass m confined in a harmonic trap
with trap frequency ω in the presence of gravity experiences a gravitational sag given by the
expression

s = −(g/ω2) (3.8)

This expression is found by calculating the local minimum of the combined potential. Different
atomic species and even the different spin states of the same atomic species will in general
experience a different trapping frequency when confined in the same magnetic or optical dipole
trap, giving rise to a difference in gravitational sag. The importance of this issue depends on
the value of the trap frequency. It is generally a non-issue for the compressed magnetic trap or
for strong dipole traps. It does however play a significant role in the weak isotropic magnetic
trap used for transfer of laser precooled atoms and for experiments in shallow and weak dipole
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Trap type νRb νK sRb / µm sK / µm ∆s / µm

Decompr. mag. trap 11.2 16.5 1981 913 1068

Compr. mag. trap 214 315 5.4 2.5 2.9

Far-detuned ODT 50 71 99 50 49

Magic trap 50 50 99 99 0

Table 3.2: Examples for differential gravitational sag in various trap configurations

traps such as the ones used in experiments with optical lattices aiming at a situation close
to homogeneous systems. The difference in gravitational sag can then lead to a significantly
reduced overlap of the two species. Table 3.2 gives examples of the gravitational sag for 87Rb
and 40K in various scenarios. Another possible issue, especially relevant for shallow optical
dipole traps is that the presence of gravity can remove the local potential minimum of such
a trap, thereby preventing trapping completely. These effects have been seen in the BEC
experiment in our group; details can be found in [82].

Let us look more closely both at the weak magnetic trap and at the shallow optical dipole
trap. In our experiment, the position of the magneto-optical trap is overlapped with the
equilibrium position of 87Rb |2, 2〉 atoms in the decompressed magnetic trap (2 mm below
the trap center of the compressed trap according to Table 3.2). We use magnetic offset
fields which are proportional to the MOT gradient in order to achieve fine-tuning of the MOT
position independent of the MOT gradient. While this provides optimum transfer for the 87Rb
component, 40K is not optimally transferred. The 40K atom number is, however, usually at
least two orders of magnitude smaller. If 87Rb transfer is good and 40K is transferred at all,
the subsequent compression of the magnetic trap will immediately provide a sufficiently large
collision rate and the amount of heating due to mismatched 40K transfer is negligible.

3.8 A magic crossed dipole trap

Let us next have a look at shallow dipole traps. In experiments with bosonic atoms in opti-
cal lattices, external confinement with trapping frequencies as low as a few 24 Hz has been
used [97], bringing systems closer to a homogeneous configuration. Note that other consid-
erations, such as desired filling factors, may influence the choice of the external confinement.
The differential gravitational sag may be overcome to some degree by mean field confinement
in a system with strong heteronuclear attraction as in the 87Rb–40K system. It will become
even more important for repulsive interactions – see the discussion in chapter 5. As seen
from table 3.2, the difference in gravitational sag for a trapping frequency of 50 Hz is on
the order of the extension of the cloud, thereby significantly reducing the overlap of the two
samples. This effect could in principle be overcome by applying a magnetic field gradient in
the direction of gravity as in experiments with Cs [98]; it would however restrict the range of
practically usable spin states and magnetic fields.

The idea for solving this issue was based on the expression for the gravitational sag itself:
If we can make the trap frequency in the direction of gravity the same for both species, the
gravitational sag will automatically be the same for 87Rb and 40K. In an optical dipole trap,
this can be done by a suitable choice of the dipole laser wavelength for confinement in the
direction of gravity. This so-called“magic wavelength”can be calculated to be 806.7 nm taking
into account contributions from the D1 and D2 lines. The calculation has been performed by
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λmg = 807.85 nm
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Figure 3.12: Measurement of the magic wavelength for our dipole trap.

Silke and is described in her thesis [66].

With this idea in mind, we first performed a measurement of the magic wavelength by
measuring the ratio of 40K and 87Rb trap frequencies in a dipole trap as a function of wave-
length and found the magic wavelength to be 807.9 nm (see Fig. 3.12)5. Based on this
information, a crossed beam optical dipole trap was designed with one beam at the magic
wavelength providing confinement in the z and x direction. The potential minimum of the
atoms in this beam is made to overlap with the position in the magnetic trap. We tend to
hold the intensity of this beam constant. A second beam is derived from our Yb:YAG lattice
laser (λ = 1030 nm) and provides confinement in the y and z direction. This beam is made
to overlap with the atomic position in the “magic” beam. This is also the beam that we use
for optical evaporation in the crossed dipole trap by lowering its intensity after transfer of
atoms into the optical trap. This optical dipole trap allows us to go to weak optical dipole
traps (ω = 2π · 50 )Hz without having issues with reduced overlap of the two clouds. It has
been the basis for our experiments on tuning of interactions (chapter 5) and heteronuclear
molecules in 3D optical lattices (chapter 7). A detailed discussion of this novel dipole trap
can be found in [66].

3.9 Evaporation and state preparation

This section is dedicated to manipulation techniques within the ground state manifold, cover-
ing both transitions between between individual Zeeman sublevels of one of the two hyperfine
ground states as well as transitions from one hyperfine submanifold to the other. The asso-
ciated frequencies are in the MHz regime (for Zeeman transitions) and in the GHz range for
hyperfine transitions. These transitions are used at several stages in the experiment:

5The magic wavelength may be influence by the choice of polarization and spin state. For a comprehensive
discussion, see [66].



3.9. EVAPORATION AND STATE PREPARATION 47

• Evaporation. During evaporative cooling of 87Rb in |2, 2〉 and 40K in |9/2, 9/2〉,
we drive transitions between neighboring Zeeman sublevels with frequencies between
40 MHz and a few 100 kHz. This corresponds to magnetic field regions in the trap
between 50 G and a few 100 mG. Assuming thermal equilibrium between 40K and 87Rb,
evaporation mostly affects 87Rb. This is a result of

νRb/B = gFmFµB/h = 700 kHz/G , (3.9)

whereas
νK/B = 311 kHz/G. (3.10)

• Zeeman state preparation at low fields. At magnetic fields of 20 G, the quadratic
energy splitting between the sublevels of the ground state in 40K and 87Rb allows sep-
arate addressing of individual transitions. By describing the atom-rf interaction in a
dressed state picture, one obtains a series of avoided crossings in the energy spectrum
as a function of radio frequency. By sweeping the radio frequency across the individual
Zeeman resonances, arbitrary spin compositions can be produced within one hyperfine
manifold. This technique has been discussed in detail e. g. in [84, 99].

• Hyperfine transfer. The above Zeeman manipulation technique can be generalized to
hyperfine transitions. In general, transitions have been used which allow the assumption
of a two-level system. By sweeping a microwave frequency close to the 87Rb hyperfine
splitting, 87Rb can be transferred from the magnetically trapped |2, 2〉 state to the
|1, 1〉 absolute ground state where heteronuclear Feshbach resonances occur (chapters 5
and 7). The same technique has also been used to transfer 40K from the |9/2,−7/2〉
state to the upper hyperfine manifold at magnetic fields around 547 G.

• Rf spectroscopy. At magnetic field values around the heteronuclear Feshbach res-
onances used in this thesis, the energy separation between the 40K |9/2,−7/2〉 and
|9/2,−9/2〉 states is about 80 MHz. This transition is used for magnetic field calibra-
tion in chapters 5 and 7 as well as for rf spectroscopy to measure interaction shifts
and binding energies in chapter 7. In the latter case, Gaussian amplitude modulated
pulses have been beneficial in order to obtain a quasi-Gaussian frequency response of
the atomic system to pulses and improve the energy resolution.

This section describes a versatile frequency synthesis setup which has been used to generate
all of the above frequencies and fulfill the corresponding modulation requirements. The setup
can be used in order to fulfill in principle arbitrary frequency, phase and amplitude modulation
requirements on time scales down to 5 ns with a minimal experimental complications.

3.9.1 Versatile frequency control

The rf / microwave manipulation setup described here has been crucial to all of the exper-
iments presented in this thesis. The versatility and simplicity of operation as well as the
precise timing down to the nanosecond level has greatly enhanced the experimental possi-
bilities and tremendously reduced the usual rf and evaporation debugging. The setup was
developed based on the observation that many of the commercially available frequency gen-
erators provide a plethora of modulation options, whereas they are usually unable to rapidly
and accurately perform for example simple linear frequency sweeps or AM modulation with a
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given envelope. The usual Rapid Adiabatic Passage (RAP) sequences for Zeeman state prepa-
ration require sweep times on the order of 10 ms, whereas the dwell time of many commercial
synthesizers, i. e. the time duration of each individual “slot” in a linear sweep, is limited to
precisely 10 ms. Most experiments work around this issue by operating these generators in
FM modulation and sweeping the FM modulation control voltage. This approach is not very
versatile, it sacrifices expensive analog output channels and many devices require long times
for switching such as from fixed frequency operation to FM. I have seen delays as long as a
second, and due to this inflexibility, one usually ends up with a whole stack of these expensive
devices just for a couple of sweeps, and all of them want to be programmed separately.

Here, I will describe a solution which relies on one versatile and precise synthesizer which
controls all of the rf and microwave transitions in this experiment. The setup is based on a
device developed by Thilo Hannemann, at the time in the group of C. Wunderlich at Hamburg,
now Siegen. The synthesizer (VFG-150) developed by Thilo Hannemann is based on FPGA
technology, allows frequency, phase and amplitude to be updated every 5 ns and generates
frequencies between a few kHz and 150 MHz. It has been developed for quantum computation
schemes with trapped ions in order to apply pulse sequences known from the NMR literature
to realize quantum gate operations through selective addressing with microwave radiation
in magnetic field gradients. The device is programmed via a fast USB 2.0 link from a host
computer. This link can sustain data rates >50 MB/s. The device’s internal buffer allows
about 1000 “modulation slots” to be stored. This means that “short” sweeps are possible with
a resolution of 5 ns and not exceeding the internal buffer of 1000 slots. “Long” sweeps with
more than 1000 “slots” can be run with a dwell time of shorter than 200 ns. In addition
to its rf output, the device has four optically isolated digital outputs and a trigger input
which can be used to synchronize it with external events. A frequency reference input allows
the internal reference frequency to be locked to an external high-quality low-drift frequency
reference. This device can be used directly for evaporation on Zeeman transitions, for rf
spectroscopy on 40K as described in chapter 7 and for state preparation using rapid adiabatic
passage within the ground state manifold. When higher frequencies were required, the output
of the VFG has been mixed with a fixed frequency reference close to the desired frequency
range. This has been done by connecting its rf output to the input of an rf multiplexer which
is digitally controlled by two of the four digital outputs of the VFG. One of the four outputs of
the rf multiplexer is directly connected to an rf amplifier and an rf antenna for the frequency
range from a few kHz to 150 MHz. The other three are connected to mixer setups for various
microwave transitions as described below.

When it came to integration of this incredibly versatile device into the experiment, several
approaches could have been pursued. One would have been to directly implement support
for this USB 2.0 connected device in the experiment control software which to date supports
analog and digital channels as well as National Instruments VISA devices. The disadvantage
would have been that

• Over time, adding more and more classes of devices makes the experiment control
software overburdened and difficult to understand and maintain.

• The experiment control computer may be overburdened with the load, since for fast
sweeps, a low latency is critical.

The solution was to keep things simple and implement a separate piece of software controlling
the VFG over the USB link. This piece of software listens on a TCP/IP port of its host
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computer for incoming network connections and expects modulation commands in a simple
syntax developed for this purpose. Within the server application, these are translated into
sequences of slots in the wire level protocol of the VFG USB link. Since the National In-
struments VISA library admits TCP/IP connections besides the more commonly used GPIB,
parallel or serial port device classes, this allows integration into the experiment without any
modifications to the experiment control software and without sacrificing its versatility. Also,
the control software can run on the same computer as the experiment control software or on
a different host. In practice, I have always run it on one of our two CCD control computers.
The remaining question is how we synchronize the VFG timing with the rest of the exper-
iment, since delays on TCP/IP links and in the underlying network stack of the operating
system can be considerable. The solution consists in preprogramming the full sequence over
the VISA link and then triggering various key points through the digital trigger input of the
VFG connected to a digital output of the experiment control DSP system. For a description of
the VFG server software syntax developed as part of Manuel Succo’s diploma thesis, see [99].

3.9.2 Hyperfine manipulation

Here, I will briefly describe the approach followed in this thesis for manipulating the atomic
hyperfine state, in particular for 87Rb. In their experiments on F = 1 spinor BECs, the
BEC experiment in our group had initially used a Raman laser setup in order to transfer
a condensate from F = 2 to F = 1. For this thesis, a setup based on direct microwave
coupling has been developed and implemented, which has later been ported back to the BEC
experiment in order the produce F = 2 condensates from F = 1 condensates obtained through
direct evaporation. The scheme is a simple extension of rapid adiabatic passage within one
hyperfine manifold to hyperfine transitions. Due to the nature of the transitions (principally
the |2, 2〉 → |1, 1〉 transition), we can generally assume a two-level system. The oscillating
B field which is used to drive these transitions is perpendicular to the axis of quantization.
Following discussions with Th. Fickenscher at Universität der Bundeswehr (HSU), Hamburg,
it seemed easiest to use a cut-off microwave waveguide in order to produce the required
oscillating B field. Such a waveguide has a rectangular shape and produces a B field along
the long axes of its cross-section. The waveguide fits perfectly directly below the science
chamber glass cell with a distance of about 4 cm to the trapped atoms. In this near field
regime, the field at the location of the atoms is well approximated by the field distribution
in the waveguide for our purposes. Since waveguides are usually not designed to be operated
with an open end, a significant fraction of the microwave power mays be retroreflected into
the amplifier and even destroy the latter or adversely affect its performance. I have never
seen more than -10 dB of retroreflected power in the experiment, which may be due to the
additional metallic elements (magnetic trap coils, vacuum vessel) modifying the near field
behavior and reflection properties at the open end. Nevertheless, it is a good idea to protect
the amplifier by using a circulator and a proper high-load termination behind the amplifier.

It was initially unclear how much microwave power would be required for RAP, and initial
experiments were performed using a 20 W solid state amplifier. In practice, we have never
exceeded 1 W of microwave power due to the efficient waveguide “antenna”, and after a defect
of the 20 W amplifier, we have used a much less expensive 1 W solid state amplifier from
Minicircuits. So in order to transfer 87Rb atoms from the magnetically trapped |2, 2〉 to
the high field seeking |1, 1〉 absolute ground state (magnetic field sensitivity of the transition
ca. 2.1 MHz/G), a 10 ms long 400 kHz sweep over the hyperfine transition at 20 G is fully
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sufficient to transfer 87Rb with almost 100% efficiency from one hyperfine state to the other.

The remaining question is how to generate these rapid sweeps on the microwave transition.
As mentioned above, the microwave frequency is generated by mixing the VFG output with
a fixed reference frequency close to 6.8 GHz. In this case, the fixed reference is a Rohde &
Schwarz SMR 20. Its output is sent into a double-balanced mixer from Minicircuits, and the
other input port of the mixer is connected to one of the VFG multiplexer output ports. In
order to not sacrifice too much of the output power of the final amplification stage in useless
sidebands, a cavity bandpass filter is used to filter out only the upper sideband of the mixing
process. Alternatively, an SSB mixer might have been used.

Another application of such an up conversion is 40K. Manuel’s diploma thesis [99] has
a discussion of methods for 1.3 GHz. At the end of the studies presented in chapter 7,
it was beneficial to be able to drive 40K hyperfine transitions at high magnetic fields; the
corresponding transitions were on the order of 2.4 GHz. While WLAN equipment can be
used in this frequency range, good results were also achieved using a single turn coil-shaped
device in combination with double-stub tuning for “impedance matching”.

A third application of this setup consisted in the initial field calibration method for Fesh-
bach spectroscopy where the 87Rb |1, 1〉 → |1, 0〉 transition was used. For magnetic fields
around 547 G, this transition occurs at 355 MHz. The transition has been driven using a
2 W amplifier from MTS Systemtechnik operated way beyond its frequency specification and
a directly connected single turn coil-shaped device; the 355 MHz signal has been generated
using the VFG, mixed with the fixed frequency output of a Rohde & Schwarz SML 02.

To summarize the state preparation discussion, the highly versatile frequency generation
setup based on the VFG synthesizer has fulfilled all the requirements of this thesis for advanced
state manipulation and rf spectroscopy, as will also become clear from chapter 7 with “plenty
of room at the bottom”both in terms of time resolution and possible extensions of modulation
schemes and complexity. Only a fraction of the potential of this scheme has been necessary
to use in this thesis, yet the scheme is both very simple to apply in the experiment and highly
cost-effective.

3.10 Optical lattice setup

In this section, I will present the optical lattice setup realized within this thesis and used for
the measurements presented in chapter 6 and 7. The lattice laser described here has of course
also been used for the measurements in optical dipole traps discussed in chapter 5.

The lattice setup used in this experiment is based on three mutually orthogonal retrore-
flected standing wave laser beams. All beams have mutually orthogonal polarizations in order
to avoid interference between the different beams. Moreover, a frequency difference of at least
10 MHz is introduced between individual beams by means of an AOM. This ensures that any
cross-interferences between the beams are averaged out over the experimentally relevant time
scales.

Together, these three laser beams create spatially modulated intensity pattern. This 3D
standing wave creates a perfect periodic potential for atoms confined in the intersection of
the three lattice laser axes.

I will start my discussion of optical lattices with considerations which influence the choice
of the lattice laser wavelength and the laser source. Based on these considerations, an ELS
VersaDisk Yb:YAG disc laser with a specified power of 20 W has been chosen for this ex-
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periment. While offering a high output power, these lasers have never been used in optical
lattice experiments so far, and an analysis of the frequency noise of the laser source showed
that a frequency stabilization would be necessary in order to avoid heating in the lattice. A
scheme for frequency stabilization is presented; the required bandwidth has only been achiev-
able by modifying elements in the laser cavity itself, resulting in a combination of power and
linewidth of >20 W and 20 kHz short term. In order to avoid parametric heating due to
intensity fluctuations and in order to increase the reproducibility of the system, an intensity
stabilization for the optical lattice has been implemented together with O. Wille [100].

The optical setup realizing this 3D standing wave configuration is described, including
overlapping with the magneto-optical trap beams and a discussion of imaging along the lattice
axes. The latter is an essential prerequisite for lattice adjustment and diagnosis.

As part of this thesis, I have also looked into extensions of this scheme which might prove
useful for this setup in future experiments and also added the relative options to the design
of the lattice / MOT setup. Ideas developed in this context have influenced the design of this
experiment and may be used later for transport measurements in accelerated optical lattices.
More details on these options are given in appendix C.

3.10.1 Lattice laser system

The choice of the lattice laser system is influenced by several boundary conditions:

• Wavelength. The wavelength of the laser source determines the detuning from the
main atomic resonances. For a given atomic species, it therefore determines the re-
lationship between power and lattice depth. While for far detuned lattices, this is a
mostly technical consideration in single species experiments, there are important con-
siderations when working with multiple species in the same lattice. In general, for the
same total laser power, tunneling will be different for both species, and the choice of
the wavelength is a choice of the relative mobility of both species.

• Power. At the wavelength of choice, spectrally narrow single frequency lasers with the
necessary output power to achieve deep lattices may not be available.

• Spectral quality. Frequency jitter of the lattice laser frequency directly translates
into translational jitter of the lattice laser interference pattern and can be a source
of significant heating. In order to assess the importance of this effect, the frequency
domain of the jitter is important. Slow drifts of the laser frequency over a timescale
of seconds are completely harmless, whereas frequency noise happening at the trapping
frequency in the optical lattice can severely limit the lifetime in the lattice.

• Intensity noise. Intensity noise coupling to the band separation can also cause signif-
icant heating. Intensity noise can to some degree be compensated for by using a fast
intensity servo.

The design of our experiment is based on creating the interference pattern for the optical
lattice at the same position where a two-species 3D-MOT and a magnetic trap are present.
This imposes some boundary conditions: From the beginning, we opted for overlapping the
lattice beams with the magneto-optical trap beams in order to preserve the excellent optical
access. As a consequence, the wavelength had to be sufficiently far detuned from the atomic
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resonance lines so that dichroic mirrors would allow overlapping the optical lattice beams
with the two-species MOT beams.

Taking together all the available options in terms of laser power and available wavelengths,
we opted for a wavelength of 1030 nm, where high power Yb:YAG disc lasers were available.
At this far detuned wavelength, lattice potentials for K and Rb are approximately equal; this
is different when the lattice depth in units of the atomic recoil energy

Er = ~
2k2/2m (3.11)

is considered, setting the scaling behavior for tunneling and interactions in terms of the
particle’s mass. In this sense, for equal absolute potentials, tunneling is about twice as likely
to occur for 40K as for 87Rb.

The following sections discuss both frequency and intensity stabilization for the lattice
laser source as well as the actual lattice setup at the experiment.

3.10.2 Frequency stabilization

The light for the optical lattice setup is produced by a commercial 20 W Yb:YAG disc laser
(VersaDisk) manufactured by ELS. The disc laser is basically a diode pumped solid state
laser where the active medium is a thin Yb doped YAG crystal glued onto a copper mount.
This allows the generated heat to be removed efficiently. A thin etalon in combination with a
birefringent filter ensures single mode operation of the laser; the resonator geometry is a linear
Fabry-Perot cavity. The specified linewidth of the laser is 5 MHz, measured over 50 ms, so an
external frequency stabilization would be required in order to further quench the linewidth.

Previous attempts at stabilizing these lasers that I have heard of have focused on absolute
stabilization to an atomic reference line and have made no attempt at reducing the short term
linewidth of the laser. For the optical lattice, short term stability is important; within this
thesis, stable single mode operation of the lasers locked to the reference cavity has routinely
been achieved over 5-10 hours at a short time linewidth of 20kHz; I will hence discuss the
scheme in some detail.

The frequency stabilization used in this thesis is based on FM (frequency modulation)
spectroscopy of the light reflected from an optical reference cavity (Pound, Drever, Hall) and
has been described in [101]. The setup is shown in Fig. 3.13. A small portion of the output
beam from the laser is sent through an Electro-Optic Modulator operated at a frequency
of 17 MHz given by the resonance frequency of the LRC enhancement circuit connected to
its electrodes. The EOM imprints sidebands separated by the modulation frequency from
the carrier onto the laser light. The light is then coupled into a confocal cavity. The frac-
tion reflected from the cavity is detected on a fast photodiode; the signal component at the
modulation frequency is filtered out by mixing it with the modulation frequency.
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Figure 3.13: Lattice laser frequency stabilization setup. The lower part of of the image shows the VersaDisk lattice laser and the
modifications to the laser cavity for frequency stabilization. The upper right part shows the spectroscopy and servo setup; top left:
FM spectroscopy signal.
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A first step in the frequency stabilization consisted in analyzing the spectral distribution
of the frequency noise of the laser. This was performed by using a low finesse cavity (finesse
F ≈ 15). This realizes the limit of FM spectroscopy where the linewidth of the medium is large
compared to the modulation frequency and where the observed line shape is the derivative of
the absorption (or reflection) coefficient. The line has a wide central zero crossing with the
two central extrema about 100 MHz apart. Since the central zero crossing is linear within the
expected frequency excursion range, this can be used to characterize the spectral distribution
of frequency noise. Most of the frequency noise was found to happen at frequencies in the
acoustic range below 1 kHz, consistent with the statement by the manufacturer that the noise
could be produced by turbulent water flow in the cooling plate of the laser disc.

A first attempt to compensate for this acoustic noise was performed using a mirror
mounted on pre-stressed piezo element (Piezomechanik HPSt 150/14-10/12 VS22) inside the
laser cavity and provided by ELS. While it was possible to lock the laser frequency to the
cavity resonance, the result was disappointing – with optimized lock parameters, the lock
merely compensated for the long-term drift of the laser frequency relative to the cavity, but it
was not possible to tighten the servo loop and reduce the short-term linewidth. On the other
hand, it was easy to lock a cavity with a (relatively) high finesse of F ≈ 500 and an internal
piezo element to the laser output frequency and obtain a residual short term linewidth of
about 20 kHz. It was therefore clear that the reason for the bandwidth constraint would be
found in the laser itself, and more precisely in the pre-stressed piezo.

This picture was confirmed by measuring the bandwidth of the piezo using the low finesse
cavity. The laser frequency was manually held at the central zero crossing of the cavity
resonance, and a modulation signal plus a dc offset from the generator output of a Rohde &
Schwarz UPV audio analyzer applied to the piezo element. The frequency response of the
laser was measured in the central zero crossing of the FM spectroscopy signal using the audio
input of the UPV. The result can be seen in Fig. 3.14. The frequency response of the piezo
exhibits several pronounced resonances between dc and 4 kHz; the most prominent one is at
2.8 kHz and (at least in Fig. 3.14) has a total gain increase of 3. In fact, the situation is much
worse because for these large resonance oscillations, the signal has long left the central linear
portion of the FM spectroscopy signal. The estimated increase in gain is about 10. This was
clearly the reason why, using this piezo actuator, a frequency lock with a bandwidth of 2 kHz
was impossible to achieve.

Since the piezo actuator has a specified intrinsic resonance frequency significantly above
10 kHz, and the mirror glued onto the mount was not heavy enough to significantly alter
the behavior, the reason had to be the mirror mount in which the actuator was sitting.
Specifications of the dynamical behavior of piezo actuators usually assume that the actuator
is fixed to some infinitely heavy object on one end. The large oscillations in the system were
due to the fact that already at 1 kHz, dynamic forces of piezo actuators can be on the order
of several 10 N, even when moving small masses. The mirror mount is simply not able to
withstand the back-action of the moving piezo.

In order to resolve this issue, the laser cavity had to be modified to provide a faster “tuning
knob”. In a first attempt, the original piezo was replaced by a very small stack actuator (PI
Picma PL055.31) and a 0.7 mm diameter and 0.8 mm thick mirror glued on top of it. The
frequency response of this element was flat up to 30 kHz, and it was possible to achieve
a 20 kHz linewidth relative to the high finesse cavity immediately. Over time, the scheme
nevertheless showed some limitations, notably the presence of strong stray reflections from
the thin etalon. Using a small mirror, these reflections would not be reflected onto the laser
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Figure 3.14: Bandwidth of piezo actuators used in the VersaDisk and measured with a low
finesse cavity. The performance of these actuators is relative to the mounting; the relatively
large moving mass and mounting in a mirror mount is the main reason for the many mechanical
resonances in the Piezomechanik actuator. Its specified resonance frequency when fixed to
a rigid wall is 15 kHz. The PicaThru actuator used in the final setup still features some
(much smaller) resonances at roughly the same positions as the Piezomechanik actuator.
This indicates that the origin of the resonances is really the mirror mount in which all piezos
were mounted, combined with a large moving mass. In the case of the PicaThru actuator,
the resonant behavior is so small that it has not affected the possibility to use the Piezo for
frequency stabilization.
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housing wall by the mirror, but instead heat up the mount to sometimes 50◦C. The solution
that would overcome all of these issues was to use a ring actuator (PI PicaThru P016.00H) at
the output coupler with a tiny mirror glued onto it and a mode diaphragm on an xy translation
stage directly in front of the output coupler. The solution developed in this thesis is shown in
Fig. 3.13; note that the original “slow” actuator has been put back into its original position.
Using the fast actuator on the output coupler, any short-term acoustic frequency jitter can
be compensated. The mode diaphragm has proven beneficial in maintaining a stable spatial
output mode of the laser and protects the ring actuator from reflections that might still be
present in the resonator. The ring actuator suffers from significant bending when operated
over its full specified 1 kV voltage range; it is therefore desirable to operate the latter at a
fixed average voltage in order to maintain the same output power.

This is performed using a servo loop with two different output paths. One relatively fast
PI regulator acts onto the output coupler (note the presence of a voltage amplifier to achieve
a 0-200 V piezo voltage). The average voltage can be maintained at about 100 V by carefully
having the reference cavity follow the laser drift on a timescale of seconds using the piezo
actuator inside the reference cavity. The latter is controlled using a very slow integrator and
additional low pass filtering at the second output of the regulator. The advantage of this lock
scheme is that the ring actuator is always run at the same average voltage and maintains a
constant output power. Moreover, the laser will always run where it prefers to; forcing it to
follow the cavity could also quickly break the lock because of the relatively small longitudinal
resonator mode spacing of about 200 MHz. In addition, the cavity does not need to be
temperature stabilized at all since it will automatically remain resonant with the laser. Note
that this scheme relies on the fact that an absolute frequency stabilization is not required for
an optical lattice setup, but short term stability is important.

Using the setup presented in this section, the laser frequency remained locked to the
reference cavity for hours once the experiment was up and running; some nights, we have
forgot about the frequency lock altogether until the early morning when an acoustic signal
connected to the regulator indicated that the laser had left the lock after more than ten hours
stable single mode operation.

3.10.3 Intensity stabilization

Intensity stabilization for the optical lattice and for all dipole traps was an essential prereq-
uisite in the optical lattice experiments described in this thesis. It makes the confinement
independent of laser intensity fluctuations and drifts, provides reproducible operation from
day to day as long as enough light is coupled into the optical fibers and allows a very flexible
characterization of the lattice depth by modulating the set value of the regulator and observ-
ing parametric heating. Together with part of the frequency stabilization, our locking scheme
has been developed by Oliver Wille as part of his diploma thesis [100].

The idea of the setup is the following: optical fibers are used to deliver optical lattice and
dipole trap beams to the experiment proper. Behind the optical fiber, a pickup sends a small
fraction of the light onto a photodiode (Thorlabs PDA255-EC). The regulator compares the
measured intensity to a set value from the computer and compensates for non-zero error signals
by adjusting the rf power in an acousto-optic modulator in front of the optical fiber. When
designing the stabilization, the goal was to achieve a high bandwidth of the servo loop. For
moderately deep optical lattices, parametric heating occurs at frequencies of several 10 kHz,
and the servo loop should be able to suppress any noise at these frequencies. In achieving a
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bandwidth of roughly 100 kHz, we found that the main limiting factor is the choice of the rf
attenuator used for controlling the intensity through the AOM. The AOM itself can switch
off the light on time scales significantly below 500 ns, depending on adjustment. Many VCAs
(Voltage-Controlled Attenuator) either feature high nonlinearity, thereby practically limiting
the bandwidth, or a modulation input with a large overshooting behavior (such as the ZX-73
from Minicircuits or the RVA-2500). It turned out that the best solution is to use a mixer
and control the rf power coupled from LO to RF by means of a voltage applied to the IF
terminal. The mixer has the disadvantage of being insensitive to the polarity at the control
port. A diode in series with the control signal is therefore necessary in order to avoid inverting
the loop gain. The regulator also features a digital control input which allows resetting of
the integrator in the regulator and nulling of the output while the respective beam is not
used. Since the achievable rf extinction of the mixer is not perfect, it can be beneficial to
also connect the disable signal for the regulator to the digital rf on/off input of the VCO box
generating the rf itself.

Another feature of the intensity regulation is the presence of two modulation inputs, one
for “slow” modulation and one for “fast” modulation. The slow modulation input can be used
for frequencies within the bandwidth of the regulator, i. e. for frequencies up to 100 kHz. It
is internally added to the set value input. We have used this input in connection with a gated
frequency generator in order to determine the depth of the optical lattice for a given set value
by means of modulation spectroscopy. The transition used for this measurement is a direct
excitation from the first to the third band of the optical lattice and a measurement of the
excitation spectrum can be compared to a band structure calculation in order to determine
the lattice depth calibration factor.

The “fast” modulation input is added directly to the output of the regulator and may
be used for modulation significantly above the bandwidth of the regulator. It may be used
for modulation spectroscopy in very deep lattices, although care has to be taken since the
response in terms of intensity modulation depth depends on the set value of the regulator.

3.10.4 Lattice setup

Fig. 3.15 shows a general view of the beam preparation scheme for the optical lattice setup.
Behind an optical diode and pickups for laser power monitoring and frequency stabilization
(see 3.10.2), the light from the lattice laser is split up into 4 independent beam paths using
polarization optics. Each of these beam paths has an AOM in single-pass configuration for
intensity control and is coupled into an optical fiber (fc-apc – fc-apc to avoid back-reflections
from the fiber end surfaces and resulting superlattices). All of the AOM frequencies are
detuned by roughly 10 MHz with respect to each other in order to make the interference
terms in the experiment between the individual beams so fast that they are averaged out on
any experimentally relevant time scale. Three of the beam paths are used for three orthogonal
retroreflected lattice beams with mutually orthogonal polarizations, and one of them is used
for one of the two beams of the “magic” crossed optical dipole trap.

After passing through the optical fiber, each of the lattice beams is collimated and focused
using the scheme developed in Oliver Wille’s diploma thesis [100] which relies on one lens for
reducing the numerical aperture of the beam leaving the fiber, a second lens for collimation,
a pickup for intensity stabilization as discussed in 3.10.3, a polarizing beam splitter cube to
produce a fixed polarization and a third lens with a focal length of 400 mm to focus the
beam down to its final size. Having passed this third lens, the lattice beam is delivered to the
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atoms using one adjustable mirror with precision micrometer screws and one last fixed mirror
which is the edge filter overlapping the lattice beam with the MOT beam. After initial course
adjustment, additional degrees of freedom needed for lattice fine adjustment are provided by
a lateral displacement of the focussing lens using a pair of translation stages.

The standing wave configuration for the optical lattice is produced by separating the
MOT and lattice beams again after passing the glass cell using an identical “disentangling”
edge filter, recollimating the beam using a second lens identical to the focussing lens and
retroreflecting it using a mirror. Not shown in Fig. 3.15 are imaging systems in all of the
three lattice axes and the two dipole beams. Along the horizontal (LA) lattice axis, imaging
is performed using the optical pumping beam. This axis can also image the LA lattice beam
and the“magic” beam of the crossed dipole trap onto the CCD chip. On the diagonal axes, the
MOT beams are used for imaging. In the direction of the main detection axis, the 1030 nm
beam of the crossed dipole trap can also be imaged.

Three of the four detection systems share the direction of detection with a pair of MOT
beams. This means that the detection light which is to be imaged onto the camera needs to
be somehow separated from the counter-propagating MOT beam which has of course exactly
the same wavelength. This has been realized using flipper mirrors installed between the
“disentangling” edge filter in the counter-propagating MOT beam path and the next MOT
mirror. The flipper mirror is moved into place during evaporative cooling and directs the
detection light through a two-lens imaging configuration onto a CCD chip.

3.11 Imaging

In this section, I will show how information about the atomic samples stored in magnetic
traps, dipole trap or optical lattices is obtained. The technique used in this thesis, absorption
imaging, is now discussed in many introductory texts, e. g. [75]. It relies on sending a resonant
light beam onto the atomic cloud which absorbs photons and scatters them into 4π. The
shadow cast by the atoms is imaged onto a CCD chip using a set of lenses. Here, I will
only discuss destructive imaging. Non-destructive imaging techniques such as phase-contrast
imaging would allow one to observe the time evolution of a single sample which may be
interesting for example in connection with the mean field collapse. For the experiments
described here, destructive imaging fulfilled all the experimental requirements.

The standard resonant imaging procedure is based on taking three to four different images.
After releasing the atoms from the trap, a first image, A (absorption image), is taken. This
is essentially an image of the detection laser beam with the shadow cast by the atoms. This
image is usually very ugly to look at, since it contains all of the beam imperfections of the
imaging beam and the interference features which arise as a result of the spatially coherent
nature of the light which is being used for imaging. As such, it is of little use for extracting
any quantitative information on the sample. A second image, R (reference image) is taken
as soon as the CCD camera is ready for the next image. The image is taken with the same
exposure time and intensity as A, but without any atoms in the field of view of the imaging
system. These have either fallen out of the imaging area by the time the exposure is made or
wear some other “cloak of invisibility” (see discussion below). By taking the ratio R/A, one
can thus eliminate the laser beam profile through image processing.

In some experiments, there may be a disturbing background signal which is present even in
the absence of any imaging light. This should generally be suppressed as much as possible, but



3.11. IMAGING 59

87Rb / 40K

A
O

M

Photodiode

Thorlabs PDA255-EC

Fiber

Regulator
Mixer

VCO

IF

LO

RF

Collimation

unit

Lattice branch D1

Lattice branch D2

Lattice branch LA

Dipole trap

Frequency stabilization

Power

monitor

VersaDisk

lattice laser

Figure 3.15: Optical lattice setup with beam preparation, intensity stabilization, collimation
unit and retroreflection. Not shown: Imaging along lattice axes and edge filters for overlapping
with MOT beams.



60 CHAPTER 3. EXPERIMENTAL SETUP

can never be completely avoided. The residual signal can be eliminated by taking a third and
fourth exposure DA and DR (dark images) which are taken exactly like the corresponding
A and R images, but without the detection flash. In most cases, DA ≡ DR. These dark
images are subtracted from absorption images before calculating the ratio. The line of sight
integrated optical column density can then be obtained by taking the logarithm of the ratio:

OD = log
R−DR

A−DA

. (3.12)

Below, I will first only briefly look at the optical imaging setup and then describe advanced
properties of CCD chips used for absorption imaging in this experiment and present two
implementations of absorption imaging which have been developed in this thesis and rely on
advanced features of Interline Transfer CCD chips. I will then discuss two implementations
of state-selective imaging, the more traditional Stern-Gerlach imaging and imaging at high
magnetic fields. These techniques have been essential to chapters 5 and 7.

3.11.1 Optical setup

The optical setup for all of our four imaging systems is based on two-lens configurations on
all four imaging axes. A first lens collimates light from the imaging plane, and a second
lens focusses the collimated beam onto a CCD chip. The numerical aperture of the first
lens limits the imaging resolution, and depending on the focal lengths used for the lenses,
various magnifications can be realized. In most experiments described in this thesis, a 1:2
magnification has been used for detection on the main detection axis and on the horizontal
MOT axis; the detection systems on the diagonal axes have mostly been used for lattice
adjustment and have a 1:1 lens configuration. A detailed description of the optical aspects of
imaging as used on this experiment can be found in [66].

3.11.2 Detection techniques

In this section I will discuss various detection techniques that have been crucial for the exper-
iments presented in this thesis. These techniques are related to the readout possibilities that
modern interline CCD chips offer, achieving interframing times on the order of 200 µs. I will
first discuss a technique of imaging two species onto the same CCD chip in one experimental
run. This has been most important with respect to experiments on Fermi-Bose mixtures in the
high particle number limit where it was important to look at the behavior of the cloud in the
axial direction comparing the two species in a regime of instability where large shot-to-shot
variations are possible (chapter 4). Another possibility to take advantage of interline CCD
chips is to take absorption and reference images in very quick succession in order to improve
on the image quality and the number of detectable particles for one particular species. This
has been relevant to experiments on heteronuclear molecule formation (chapter 7).

3.11.2.1 Charge coupled devices

This short paragraph is not meant to be a comprehensive discussion of CCD technology,
but merely as an introduction to the terminology needed for the discussion of fast imaging
with interline CCD chips. Initially developed in the context of memory technology, Charge
Coupled Device (CCD) and CMOS sensors are today used in microscopy, astronomy, consumer
products, digital cameras, x-ray applications, spectroscopy, medicine, and this list is by no



3.11. IMAGING 61

means exhaustive. A CCD element is a collection (row or matrix) of semiconductor potential
wells in which charge can be accumulated as a result of exposure to light. By applying a series
of voltage pulses on gate electrodes, charge can be transferred between neighboring wells. CCD
rows are often used in spectroscopic applications or for telefax machines or barcode scanners.
Matrix elements are commonly used in imaging applications. In the simplest (Full Frame
CCD, FF CCD) case, readout of such a matrix of potential wells is performed by shifting the
charges in individual wells in the parallel direction by one pixel. The outermost row is shifted
into the serial shift register, which is then in turn shifted into an Analog-Digital Converter
(ADC). A full readout of an NP ×NS matrix therefore involves NP parallel shift operations
and NS ·NP serial shift and ADC steps. There are two main shortcomings in this scheme:

• Readout time. The readout process is dominated by the time for the individual ADC
process. Total readout times are typically on the order of at least a few 100 ms. During
readout, no further images can be taken.

• Image smear. During readout and shift, the chip is still sensitive to light. This may
not be such a problem in absorption imaging where the exposure is controlled through
a few µs flash of light and stray light falling onto the CCD chip can be reduced to the
maximum.

The readout time limitation is the most important aspect in atomic absorption imaging.
Imaging is usually done with coherent light leading to the typical interference fringes in the
absorption image. For stationary interference patterns, these can be eliminated by taking a
second reference image and a suitable normalization procedure. The location of the inter-
ference fringes usually drifts as a function of time; in addition, the sudden switch-off of the
magnetic trap for absorption imaging may produce vibrations in the experiment, thereby also
causing similar fluctuations. A long time delay between absorption and reference image will
thus lead to significant fringes even in the normalized output image. At the same time, it is
often desirable to take more than one absorption image in one experimental run, either when
working with two species and imaging with one camera or when using non-destructive phase
contrast imaging.

One extension of the simple scheme is the Frame Transfer CCD (FT CCD) chip. In
this case, one half of the chip close to the serial register is covered with an opaque mask.
This allows one image to be taken, subsequently shifted under the mask quickly by a given
amount of parallel shifts, then a second image etc. until the area under the mask is full and
ready for readout. This technique has been used in non-destructive imaging of Bose-Einstein
Condensates [102]. In terms of speed, a full parallel transfer still requires a time on the order
of milliseconds.

Another extension is the Interline Transfer CCD (IT CCD). In this scheme, each pixel is
made up of two potential wells. One is exposed to light falling onto the chip, and the other is
covered by an opaque mask. Within a few microseconds, the whole image can be shifted under
the mask and a second exposure of the bright pixels can start. Note that the chip remains
sensitive to light for the whole readout period of the first image. This technique is widely
used in consumer devices and has the advantage of a very fast electronic shutter without any
need for mechanical shutters. In the limit of exposure time and readout time being equal, this
technique can double the achievable frame rate. In general, IT CCDs are also less expensive
than FT CCDs. The inherent disadvantage of a lower filling factor, i. e. only half of the
detector area being sensitive to light, has been overcome by placing microlenses above each



62 CHAPTER 3. EXPERIMENTAL SETUP

pixel which will focus almost all of the incoming light onto the bright half of the pixel.There
is also a scheme combining FT CCDs and IT CCDs into Frame Interline Transfer CCDs (FIT
CCDs).

Of course, there are other relevant aspects to choosing a CCD element, such as front illu-
minated vs. back illuminated, quantum efficiency, single photon detection capability, electron
multiplication technology which are not discussed here. Absorption imaging for the exper-
iment described in this thesis has been implemented using IT CCDs because of the above
mentioned advantages; the following sections discuss absorption imaging using these elements
in more detail. Two camera types have been used in these experiments, a Roper Scientific
Coolsnap HQ camera equipped with a special firmware and a PCO Pixelfly double shutter in
the enhanced quantum efficiency version. In both cases, the glass cover in front of the CCD
chip has been removed by the manufacturer in order to further reduce interference fringes.
Both cameras use the same CCD chip (SONY ICX205AL).

3.11.2.2 Two species imaging

This detection technique takes advantage of the extremely short interframing time of interline
CCD cameras for taking two absorption images of two different species with one experimental
run. The detection sequence consists of three double frames. The first double frame contains
absorption images of 40K and 87Rb. Usually, the 40K absorption images is taken after a
relatively short time delay of 5-10 ms. 100 µs before the begin of the exposure, the camera is
triggered with an exposure time of 500 µs programmed into the camera. The exposure flash
itself is typically 50 µs long and controlled using an AOM. After the 500 µs exposure time
is over, the image is shifted under the mask and the chip remains sensitive to light in the
second half of the first double frame for the readout time which is approximately 100 ms. In
a conservative approach, I have usually allowed 200 ms for readout of this first double frame.
Afterwards, the second double image is taken in exactly the same way, but by this time, the
atoms have fallen out of the imaging area and reference images for 40K and 87Rb are recorded.
These are again read out of the chip during 200 ms, and then two dark images are recorded
in order to subtract the background count rate. This is particularly relevant to the second
half of each double frame (usually 87Rb), since the exposure time is considerably longer than
for the first half (40K). Afterwards, the optical density of the two half frames is computed
separately and displayed on screen in a configurable false color representation, together with
1D profiles through the center of the trap and 1D column sums for both the serial and parallel
directions of the CCD chip. The set of three double exposures can be saved to disk when
taking data; a corresponding filename for the protocol file containing the full experimental
sequence in an xml (eXtensible Markup Language) format is sent to the experiment control
computer at the same time.

It has been of particular help in optimizing the experiment that the CCD control software
developed in this thesis has a built-in fit feature which allows the experimenter to fit both a
one-dimensional bimodal distribution for a Bose-Einstein condensate with a thermal cloud and
also a two-dimensional Fermi-Dirac profile given by eq. 2.34 to the experimental data, display
the result of the fit and output relevant fit results such as absolute temperature and relative
temperature (T/TC and T/TF ), total particle number, condensate fraction, and fugacity. This
has become possible through use of very efficient implementations of thermodynamic integrals
contained in Bose-Einstein and Fermi-Dirac functions as well as an efficient implementation
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of the Levenberg-Marquardt nonlinear least-squares fit algorithm6. The algorithms used in
this software are given in appendix D.

3.11.2.3 Fast imaging

This detection technique makes quite different use of the short interframing time of IT CCDs.
In this scheme, both absorption and reference image for one single species are recorded in the
first double frame. There is a pretrigger of 100 µs for the camera, followed by an exposure time
of the first frame set to 300 µs7, and the second half of the double frame is imaged immediately
after the first half has been shifted under the mask. After absorption and reference image
have been read out, a double dark exposure is taken. In this scheme, since the time during
which exposure and reference image are sensitive to stray light is really a lot different, it is
indispensable to record two separate dark images for each of the two absorption images.

The advantage of this scheme is that the short interframing time between reference and
absorption image leads to a huge reduction in interference fringes in the resulting optical
density. The extremely short interframing time does not allow the interference fringes of the
laser beam to move over a considerable distance between the two images, which allows them
to be cancelled almost completely in the normalization procedure. This has particular ad-
vantages when detecting very small particle numbers, such as in the experiments on ultracold
heteronuclear molecules discussed in chapter 7.

A different aspect of the extremely short time between absorption and reference image is
that we somehow need to get the atoms “out of the way” in order to take the reference image
because the time of flight distance during a few microseconds is negligible for all practical
purposes. Several approaches can be taken:

• We have typically combined this technique with experiments with Feshbach resonances
where 87Rb was in the absolute ground state of the system (|F = 1,mF = 1〉). In this
state, the atoms are not seen by the F = 2 → F ′ = 3 detection laser. This allows us
to take the reference image first. In the short interframing time, the MOT repumper
is used to transfer population to the F = 2 manifold. A maximum of one photon per
atom is scattered in this repumping process. The absorption image is then taken in the
second half of the double frame on the aforementioned cycling transition.

• For almost all experiments discussed in this thesis, 40K has been prepared in the F = 9/2
manifold. Therefore, optical pumping tricks as for 87Rb cannot be used to provide a
“cloak of invisibility” for the atoms. Instead, I have used the fact that in the case of
the experiments discussed in chapter 7, a high magnetic field for Feshbach resonances
has been used. This allows the following trick: for 40K, we take the absorption image
in the first half of the first double frame with the detection laser detuned to reflect
the presence of a high magnetic field of 547 G. The detection transitions in this case
are cycling transitions in the Paschen-Back regime between individual |mI ,mJ〉 states,
and typical detunings are on the order of 800 MHz (see discussion in 3.11.3.2). The
magnetic field is then rapidly switched off in the interframing time; this can be done in
a few 10 µs. The detection laser, still running at the same detuning, cannot see these

6The netlib library (http://www.netlib.org/) is an incredible resource full of very efficient algorithms for
various applications in numerical mathematics and physics.

7The length of the detection flash is 50 µs as before

http://www.netlib.org/
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zero-field atoms. The 40K reference image can therefore be recorded in the second half
of the double frame.

As I have already mentioned, the gain in sensitivity due to the high imaging quality of this
detection scheme has been essential to the experiments discussed in chapter 7.

3.11.3 State selective imaging

I will now discuss two possibilities of state-selective imaging, i. e. techniques which allow the
experimenter to independently image atoms in various sublevels of the ground state hyperfine
manifolds. These techniques rely on the possibility of being able to both prepare and confine
arbitrary spin states. The latter becomes possible using purely optical confinement from
dipole traps and optical lattices, and the former can be achieved using e. g. Raman lasers and
techniques of rapid adiabatic passage (see 3.9). Below I will discuss Stern-Gerlach imaging and
detection at high magnetic fields as two possibilities of state-selective detection and point out
their respective advantages and limitations and the particular realization in the experiment
presented in this thesis.

3.11.3.1 Stern-Gerlach imaging

This technique, reminiscent of a seminal experiment by Stern and Gerlach in 1921 [103],
employs inhomogeneous magnetic fields to spatially separate atoms with different magnetic
moments. Michael Erhard’s thesis [84] has an extensive discussion of Stern-Gerlach imaging.
In these studies, it was found to be best to operate the pair of Helmholtz coils in Helmholtz
configuration and then switch off one of the coils in order to produce a strong gradient with a
strong offset field ensuring that the axis of quantization remains well-defined. We have found
this to be not very practicable in the case of 40K. This atom has a total of 10 different Zeeman
sublevels in the lower hyperfine manifold, requiring one to separate them as much as possible
in order to resolve the different components. On the other hand, one can not really afford a
large time of flight with fermions because much more kinetic energy is stored in the gas, and
it quickly becomes very dilute in time of flight. The solution is therefore to increase the force
on the atoms and make the time short. Increasing the force means increasing the magnetic
field gradient. However, with the above mentioned method, the offset field increases as much
as the gradient when the current in the coils is increased. As a consequence, compared to
87Rb, one quickly leaves the quasi-Zeeman regime and enters the Paschen-Back regime where
the lowest nine of the available states begin to have the same magnetic field sensitivity and
are essentially pushed into the same direction altogether – there is no longer a significant
differential force on the spin states.

Efficient Stern-Gerlach imaging for 40K is therefore best performed with a very high field
gradient, but an offset field small enough to stay in the Zeeman regime and high enough to
maintain the quantization axis. The solution implemented in this thesis and used for the mea-
surements in chapter 5 consisted in using the Helmholtz coils in anti-Helmholtz configuration
and quickly switching on an additional current of 20 A through a z pair of coils in the com-
pensation cage in order to have a bias field high enough to maintain the quantization axis8.
Fig. 3.16 shows that this technique of spin-selective imaging can resolve all of the 10 Zeeman

8Note that these coils cannot withstand the high current over a long time. They are protected against
melting by accidental long-time operation by a slow 10 A thermal fuse
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Figure 3.16: Stern-Gerlach imaging of 40K with low bias field and high gradient. The image
combines ten individually recorded images where RAP (Rapid Adiabatic Passage) was used
to selectively prepare all of the ten sublevels of the lower F = 9/2 hyperfine manifold, from
the magnetically trapped |9/2, 9/2〉 state (top left) to the absolute ground state |9/2,−9/2〉
(bottom right).

sublevels within the F = 9/2 hyperfine manifold with an equidistant separation between the
individual components.

3.11.3.2 Detection at high magnetic fields

As outlined in the previous section, high bias fields are mostly undesirable when performing
Stern-Gerlach imaging. This section discusses imaging at high magnetic fields (in our case
often close to a Feshbach resonance) without any magnetic field gradient to spatially separate
the Zeeman components. In this case, we make use of the energy separation between the
different states at high magnetic fields. The different spin components are no longer imaged
in the same image, but using different laser frequencies in different imaging steps (either using
the above-mentioned two-species imaging by taking two images on the same chip in rapid
succession or by using different CCD chips for different spin states). Just to mention the scale
of absolute and relative detunings: at magnetic fields of typical KRb Feshbach resonances
(say 547 G), the absolute detuning with respect to the usual 9/2 → 11/2 cycling transition
is -834 MHz for the |9/2,−9/2〉 state, and -765 MHz for the |9/2,−7/2〉 state. At these high
magnetic fields, it makes more sense to speak of these two states as the |mI = −4,mJ = −1/2〉
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and |mI = −3,mJ = −1/2〉 states. The transitions that we drive in this example case are then
|−4,−1/2〉 → |−4,−3/2〉 and |−3,−1/2〉 → |−3,−3/2〉 transition. Note that because of the
∆mI = 0 selection rule, these transitions are cycling transitions! In fact, once in the Paschen-
Back regime, it is always possible to construct a cycling transition on the D2 line by driving
mJ = +1/2 → mJ = +3/2 or mJ = −1/2 → mJ = −3/2 with ∆mI = 0. If the magnetic
field is too low, this imaging technique will no longer work as the involved transitions have
significant probability of falling back into a different substate in the lower hyperfine manifold.
While this imaging technique works in the case of 40K at magnetic fields of 200 G, it does
not for 87Rb. Detecting at high magnetic fields has the disadvantage of making a maximum
number of two to three spin states detectable due to practical limitations in the number of
imaging paths in an experiment, but it has several important advantages:

• Short TOF. This technique makes it possible to image even small atom numbers
because detection can start right after releasing atoms from the trap. There is no need
to apply a field gradient or even wait for the bias field to change.

• Imaging Feshbach molecules. In the vicinity of Feshbach resonances, weakly bound
molecules can directly be detected by means of absorption imaging, removing the need
to convert them back into atoms by magnetic field sweeps or rf dissociation.

Implementing high field imaging has therefore been essential to experiments on heteronuclear
ultracold molecule formation discussed in this thesis in chapter 7.

3.12 Timing

This section discusses computer control of the experiment. Aspects of the experiment that
need remote control include frequency and intensity control through Acousto-Optic Modula-
tors and EOMs, blocking of beams through mechanical shutters and servo motors, control of
currents in coils and fast switching of magnetic fields. This task is performed by the combi-
nation of a DSP processor controlling 16 analog output channels and 64 digital TTL output
lines and a host PC for user control and VISA synchronization. Each experimental sequence
is defined as a number of time slots with a length of a multiple of 10 µs. In each slot, both the
state of all digital and analog channels and strings to be sent to arbitrary devices controlled
by the National Instruments VISA library are defined. The user interface running on the host
PC groups these slots into a tabular representation. The user interface allows linear ramps of
analog channels to be performed; these are discretized into a predefined number of constant
slots. In addition, pre- and post- delays for digital outputs can be specified; this is most useful
for beam shutters which typically need to be triggered 2 to 20 ms prior to blocking the beam
path.

The National Instruments VISA library is an interface allowing GPIB, VXI, PXI, Serial,
Parallel, Ethernet and USB interfaces to be transparently controlled from a high-level pro-
gramming environment. Usage of VISA in our experiment covers control of power supplies
and frequency synthesizers through RS232 and GPIB connections as well as TCP/IP con-
nections with other application software such as the server software for the VFG-150 (see
section 3.9.1).

At the beginning of each experimental sequence, the user interface program running on
the host PC will discretize all analog ramps into individual constant slots, generate pre- and
post-triggering slots for the digital channels and send the resulting pattern for the analog and
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digital channels over an ethernet link to the DSP system. Once the transfer is complete, a
firmware running on the DSP system will execute the predefined sequence. The user interface
maintains a loose time synchronization with the DSP system (updated every few ms) and
performs VISA output to attached devices when the respective slot has been reached. After
the sequence is over, the user interface will accept a text string from the camera software
and save a file in xml format containing the whole sequence definition. This file can later be
reloaded into the interface.

Tight control of timing can thus be achieved by making use of analog and digital outputs
of the DSP system. Usual delay involved in VISA transmission are on the order of a few 10
ms; the loose synchronization with the host PC therefore does not cause any issues. When
tight time synchronization with VISA devices is necessary, these can often be preprogrammed
and precisely triggered by a digital input, such as the VFG-150 rf synthesizer.

The system developed in this thesis replaces an earlier hardware implementation based
on National Instruments DAQ boards. The advantages of using a separate DSP system for
computer control are obvious:

• Reliability. PC operating systems are not designed with real time capability in mind.
Other operating system activity can unduly delay the experiment cycle when timing
is performed by the host PC and lead to buffer underruns. With the PCI card based
system, the user interacting with the control interface would often cause the same effect.

• EMC. The analog and digital PCI boards previously used had shown to be quite sen-
sitive to electrical back-action from the experiment, although the relevant outputs con-
necting to the magnetic trap circuitry had all been electrically separated from the PC
using isolation amplifiers and optocouplers. This has even lead to unintended reboots
of the host PC. The embedded DSP system proved insensitive to these perturbations.

• Elimination of ground loops. A modern PC is a hostile environment for processing
of precision analog signals. The PC itself is usually one of the most important points
where ground loops are created. The fact that the DSP system has been designed with
precision analog signal processing in mind and is only connected to the host PC using
one twisted pair ethernet cable makes elimination of ground loops and a strict ground
separation with respect to the PC a lot easier.

• Separating PC and experiment. The rack-mount DSP system can be relatively
close to the experiment, thereby limiting the length of signal lines.

The control system presented above has proved to be a very uncomplicated and reliable
method to run our experiment; we have rarely had issues with unexpected triggers of edge-
triggered digital inputs when switching strong magnetic fields, which is a common problem
with magnetic traps. The timing has proved to be extremely reliable and exact, and the
possibility to control arbitrary VISA-compatible devices allows us to access practically all
the available measurement and instrumentation equipment without changes to the control
software itself.

The solution developed here has later been adopted by two other experiments in our group
and the metastable Ca experiment in the group of A. Hemmerich.



68 CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.17: CAD rendering of full apparatus, including vacuum system, magnetic trap, MOT
optics, and most optical lattice optics.

3.13 CAD rendering

Finally, Fig. 3.17 shows a CAD rendering of the whole apparatus discussed in this chapter.
The whole vacuum system is suspended from a baseframe which also carries the 2D-MOT
optics (suspended from the top of the baseframe). The magnetic trap is attached from below
to the main vacuum chamber with the glass cell clearly visible between the two parts of the
cloverleaf trap. Left of the magnetic trap, one can see the MOT board where all of the 3D
MOT and lattice optics are located. Most of the optics has been put on the side of the board
which is pointing “away from the atoms”, so that the excellent optical access is maintained.
The two horizontal boards carry the optics for the z axis of the 3D magneto-optical trap, the
magic dipole trap and for flexible lattice setups. Not shown in this rendering is of course all
of the electronics and computer equipment as well as the cooling and electricity connections.



Chapter 4

Fermions, Bosons and Mixtures

In chapter 2, I have introduced basic concepts for interacting Fermi-Bose mixtures, described
limits on the stability of the samples related to the strength of Fermi-Bose interactions and
discussed density distributions of trapped samples and resulting expansion distributions, both
for single-component fermionic and bosonic gases and for mixtures.

This chapter looks at fermions and bosons from an experimental perspective. I will show
how we produce an atomic Bose-Einstein condensate in the experiment, present sympathetic
cooling of 40K by 87Rb in our magnetic trap and show how a degenerate Fermi gas is produced
through sympathetic cooling. I discuss how the temperature of such an ideal trapped Fermi
gas is determined from absorption images and explore the parameter space in terms of particle
number and temperature covered in the experiment.

Next, I start my discussion of 40K–87Rb mixtures with thermal samples. By stopping the
evaporation above the onset of degeneracy, we are in a regime where the density distribu-
tions are not yet significantly effected by the presence of interactions and can study 3-body
recombination in the mixture as an important prerequisite for understanding the regimes of
degenerate mixtures accessible in the experiment and for adjusting the speed of evaporation.

I will then discuss interacting degenerate mixtures and show from an experimental point
of view how we can observe aspects of the interaction for the harmonically trapped mixture.
In this chapter, I will follow an approach which starts with a fixed value of the heteronuclear
interaction and explores various regimes of interactions by taking particle numbers in the
mixture as a free parameter. Historically, this is the first experimental approach to interacting
Fermi-Bose mixtures which has been pursued; tunable interactions have only become available
very recently (see chapter 5) and opened up the second perspective on harmonically trapped
interacting mixtures.

Saying that we are going to look at the phase diagram as a function of the particle number
is easy to say from a theoretical point of view. Yet from an experimental perspective, particle
numbers are subject to both technical and fundamental constraints, and the work reported
here has become possible mainly because the experiment described in this thesis has allowed
the production of the so far highest particle numbers reported in 40K–87Rb mixtures. The
observed stability limits have imposed constraints on values of the interaction parameter, the
s wave 40K–87Rb scattering length aFB. For a long time, this scattering length had been
believed to be exceedingly large in the community (e. g. -395(15) a0 from [60]). For this
reason, it seemed that particle numbers in 40K–87Rb mixtures would be severely limited by
the onset of the mean-field collapse discussed in section 2.4.3. The observations presented
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in this chapter constrain |aFB | to values below 284 a0, which has important implications for
experiments described in later chapters of this thesis. At the same time, entering the regime of
mean field instability allows us to study the dynamical behavior of the system after the onset
of collapse. The dynamics of the mixture in this regime is a feature which has received little
attention from theory, but allows interesting insights into mixture physics, as for example the
observation of revivals of the collapse.

4.1 Observation of BEC

Figure 4.1: BEC
in time of flight

As a prerequisite for sympathetic cooling to Fermi degeneracy of 40K or
even simultaneous degeneracy of 40K and 87Rb, I will now describe the
experimental procedure which leads to observation of BEC of 87Rb in our
experiment. Over 10 to 20 s, depending on desired final particle numbers,
atoms are captured from the background pressure of the 2D magneto-
optical trap and sent through the differential pumping stage into the lower
part of the vacuum system. Here, the atoms are recaptured in the 3D
magneto-optical trap at a magnetic field gradient of typically 10 G/cm
and a detuning of -20 MHz with respect to the cycling transition. During
the whole MOT phase, a homogeneous magnetic field proportional to the
MOT gradient is applied in the vertical direction in order to shift the
center of the MOT approximately 2 mm below the center of the pure
quadrupole field. This position corresponds to the equilibrium position of
87Rb in the decompressed magnetic trap as a result of the gravitational
sag.

When enough atoms have been accumulated, the loading from the 2D
magneto-optical trap is stopped by blocking the 2D-MOT beams and the
pushing beam using mechanical shutters. 70 ms later, the MOT beams are
blocked using an Electro-Optic Modulator (EOM), the MOT quadrupole
field is rapidly switched off using IGBT modules, and the detuning of
the MOT beams changed to -29.5 MHz. After 200 µs, a 10 ms optical
molasses phase is initiated by again switching on the MOT light using
the EOM. After the optical molasses phase, the MOT light is switched
off and blocked using mechanical shutters as quickly as possible in order
to avoid heating. An auxiliary power supply is connected to one of the
auxiliary coil cage layers in Helmholtz configuration along the z (magnetic
trap) axis using a MOSFET switch, and after 50 µs, the AOM of the
repumping beam oriented along the z axis in the positive z direction is
flashed on for another 50 µs. Optical pumping on the 87Rb F = 2 →
F ′ = 3 cycling transition transfers atoms predominantly into the 87Rb
|F = 2,mF = 2〉 state which is magnetically trappable. For 87Rb, optical
pumping typically gives a factor of 2 improvement in the transfer efficiency
into the magnetic trap.

After the optical pumping flash, we wait another 50 µs and then switch
on the IGBT modules for the magnetic trap. The power supplies have
been preprogrammed to deliver a current of 110 A in the cloverleaf and
Dee coils and 31.8 A in the Helmholtz coils, which corresponds to a round
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Figure 4.2: 1D optical density of 87Rb Bose-Einstein condensate with thermal cloud (broad
wings) after 25 ms TOF. The fitted bimodal distribution would drastically underestimate the
condensate atom number, since the condensate is completely optically dense and practically
does not transmit any light.

trap with a trap frequency of 2π · 11.2 Hz. After 100 ms, the optical pumping field MOSFET
is switched off and the trap compression stage begins. Over 1 s, the current in the Helmholtz
coils is ramped down to 5 A, and then more carefully down to 0 A over 500 ms. During
this last ramp, a HAMEG 8143 power supply takes over and finally provides the remaining
bias field current of typically 400 mA. Radial trapping frequencies in the cigar-shaped trap
after compression depend on the value of the bias field current and are typically between
2π · 200 and 2π · 300 Hz, whereas the axial (z) trap frequency is independent of the bias
field and remains at 2π · 11.2 Hz during compression. Immediately after compression, the
evaporation sequence is started by sending a digital trigger pulse to the VFG synthesizer.
This triggers a sequence of linear ramps which has been preprogrammed into the VFG server
software during the MOT phase over a VISA network link as described in section 3.9.1. The
evaporation sequence typically consists of 3 linear negative chirp frequency ramps starting
at 35 to 40 MHz and ending at rf frequencies corresponding to slightly above the trap bias
field. To give a specific example that has been used in the experiment, the first sweep goes
from 40 to 5 MHz in 7 seconds, the second down to 1 MHz in 4 seconds, and degeneracy is
reached with the last sweep, where the sweep speed depends on the actual experiments. Large
degenerate mixture with comparatively high losses for high densities require a fast sweep of
1 MHz/s, although this may create strong excitations, and producing a 87Rb BEC with a
minimum of excitations is usually achieved with a ramp speed of 250 kHz/G.

The onset of Bose-Einstein condensation is observed as in Fig. 4.1, where I have shown
the evolution of the sample as a function of a time of flight of 1 ms, 3 ms, 5 ms, 7 ms,...
(top to bottom). One immediately recognizes the cigar-shaped in-trap distribution of the
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sample. Over time, the condensate first becomes spherical and then inverts its aspect ratio
which is the signature of the large mean field energy stored in the radial direction. At the
same time, we observe that the tiny residual thermal cloud (visible as a weak background in
the large TOF images) tends to become completely round during time of flight as expected
from eq. 2.31.

From Fig. 4.1, it might look as if the condensate first shrinks in the axial direction. This
is not the case. The condensate is optically dense during the whole time of flight shown here,
whereas the thermal cloud is dense for short TOF and then expands very rapidly and becomes
very dilute. So for very short time of flight, where both components are optically dense, we
cannot really distinguish between condensate and thermal cloud.

For illustration, Fig. 4.2 shows the 1D optical column density of the sample after 25 ms.
Since the BEC is optically dense, it practically does not transmit any light over most of its
area. Determining the condensate atom number from the area under the central peak would
drastically underestimate the condensate size. When quantitative information is desired, off-
resonant imaging may be used to increase the transmission. The latter has been done in our
experiments with large particle numbers (see below).

4.2 Sympathetic cooling

In order to create quantum degenerate Fermi gases or degenerate mixtures, the experimental
procedure leading to the observation of BEC is modified as follows: Generally, the loading
phase for the dark 40K MOT is initiated a few seconds before the 87Rb MOT begins to load.
For transfer into the magnetic trap, the 70 ms 3D-MOT only phase after the 2D-MOT has
been switched off is split into two parts. In the last 50 ms, the dark 40K MOT is switched to a
bright configuration by use of an EOM: Instead of sending 40K repumping light into the dark
SPOT fiber and the 2D-MOT setup, the full repumping power is sent onto the same path as
the 3D-MOT 40K cooling laser. Before the bright MOT phase, 40K is predominantly in the
upper |F = 7/2, X〉 manifold; the bright MOT brings these atoms back into the |F = 9/2, X〉
manifold for magnetic trapping. The length of this slot is determined empirically so that
losses in the bright MOT do not spoil the large atom number accumulated in the dark MOT,
but long enough so that we do not leave a significant fraction in the “wrong” hyperfine state
for magnetic trapping.

In contrast to 87Rb, where optical pumping improves transfer into the magnetic trap by
a factor of two, it is much more important for 40K. This due to two different factors: 40K in
|9/2, X〉 has twice as many Zeeman substates as 87Rb in |2, X〉; in the magnetic trap, only
the |9/2, 9/2〉 ⊗ |1, 1〉 is studied, meaning that there is a lot to gain from efficient optical
pumping! Even worse, if a significant fraction of 40K is left over in other Zeeman sublevels,
this might compromise the stability of the fraction of the mixture which is in the“good” states
through inelastic decay. It is generally easiest to optimize the 40K optical pumping power by
looking at the 40K atom number after some initial evaporation or even with the degenerate
or close to degenerate gas.

The transfer of 40K into the isotropic magnetic trap is generally not optimized with respect
to gravitational sag, since this can be only done for one species at a time due to the differential
sag between the two components. However, the 40K atom number is usually much smaller,
and the suboptimal transfer therefore does not harm too much.

Assuming thermal equilibrium, the sympathetic cooling using rf transitions removes prefer-
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(a) 40 MHz (b) 10 MHz

(c) 5 MHz (d) 1 MHz

Figure 4.3: Sympathetic cooling of 40K by 87Rb. The time of flight images show the 40K
images as a function of evaporation end frequency (given below the image).

entially 87Rb from the trap, and 40K is cooled in the thermal bath, since νRb/B = gFmFµB/h
= 700 kHz/G, whereas νK/B = 311 kHz/G. In principle, it is also possible to perform the
evaporation on a microwave transition for 87Rb, and the Zürich experiment does precisely
that. I have been told that it results in a factor of two in 40K particle number increase
compared to the rf scheme. However, care has to be taken in order not to accumulate 87Rb
atoms in |2, 1〉. Usually, two microwave knives or a cleaning sweep are required to avoid this.
We have not felt in any way limited by particle number, so all of the sympathetic cooling
described here as been performed using rf, although microwave evaporation could be easily
done using the existing existing setup for microwave manipulation described in section 3.9.1.

Fig. 4.3 shows time of flight images of the 40K cloud during the early stages of the sym-
pathetic cooling process. Fig. 4.3(a) shows a dilute 40K cloud right after compression of the
magnetic trap, and the subsequent evaporation of 87Rb leads to more and more dense 40K
samples. Fig. 4.4 has corresponding atom numbers in 40K and 87Rb throughout the non
degenerate parts of the sympathetic cooling process.

As can be seen, the slope in atom number loss is much steeper for 87Rb than for 40K,
which shows that the sympathetic cooling process preferentially removes 87Rb as expected,
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Figure 4.4: Sympathetic cooling of a 40K–87Rb mixture.

and the residual loss may be due to the finite 40K trap depth. At the end of the evaporation
sequence shown here, where the evaporation end frequency is 1 MHz, degeneracy is not yet
achieved. Throughout the shown evaporation ramp, we lose two orders of magnitude in 87Rb
atom number due to evaporation and about a factor of eight in 40K atom number. If we
remove all of the 87Rb atoms in the evaporative cooling process, we obtain a “degenerate”
Fermi gas as explained in the next section.

4.3 A “degenerate” Fermi gas

In discussing the onset of degeneracy for 87Rb, I have shown the striking features of Bose-
Einstein condensation, such as the appearance of a bimodal distribution in time of flight and
the (more indirect) evidence through the inversion of the aspect ratio. A spin-polarized Fermi
gas lacks such a drastic transition as the temperature is lowered. The onset of degeneracy
happens gradually and is seen as the appearance of a macroscopic Fermi sea. The degree of
degeneracy can only be extracted through careful image analysis [67]. Correctly calibrating
the overall particle number vs. absorption imaging optical density is particularly important,
since the total atom number influences the reference temperature, the Fermi temperature TF .
Fortunately, we dispose of two independent “thermometers” for the Fermi cloud which can be
compared using eq. 2.16.

Fig. 4.5 shows the outcome of thermometry for a typical experimental situation. The red
curve is the optical column density as observed in imaging, integrated along the direction
of the detection beam and the horizontal direction. The green curve is the result of a two-
dimensional nonlinear least squares fit of the time of flight expansion profiles discussed in
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Figure 4.5: Thermometry for a degenerate Fermi gas.
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chapter 2 to the experimental data. The fit function is derived from equation 2.34:
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It is however more convenient to use a different set of fit parameters than in the above equation.
The set of fit parameters which proved most useful are horizontal and vertical center position,
the widths σh and σv, the peak optical density a and the logarithm of the fugacity. The latter
makes more sense as a fit parameter than the fugacity since it can assume both positive and
negative values and does not potentially cause problems in the fit algorithms due to temporal
excursions of the fugacity into undefined parameter regions. In terms of these fit parameters,
equation 2.34 becomes:
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From the time-dependent widths σv,h, temperatures are calculated according to

Tv,h = σv,hωv,h
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(4.3)

The total particle number is obtained by integrating the fit function equation 4.2 over both
remaining coordinates. The result is

B = A · 2πσvσh
Li3 (−Exp [ln(ζ)])

Li2 (−Exp [ln(ζ)])
(4.4)

This expression has the dimension of an area, and is related to the particle number by dividing
B by the absorption cross section

σ = 2λ2/(2π) , (4.5)

where λ is the detection wavelength. Based on the known trap frequencies, the total particle
number and the vertical and horizontal temperatures, T/TF can be calculated both for the
vertical and the horizontal direction. A third value for T/TF is based on the fugacity, combined
with equation 2.16:

T/TF = 3
√

−1/(6 · Li3(−ζ)) (4.6)

The benchmark for thermometry is agreement of the three independent thermometers. In the
above typical situation, the trapping frequencies for 40K in the magnetic trap are 2π · 16.6 Hz
in the axial direction and 2π ·447 Hz in the radial direction. The measured particle number is
N = 1.99(60)·1061, resulting in a Fermi temperature of 1.64(16)µK. The resulting degeneracy
parameters are:

Tv/TF = 0.221(22) (4.7)

Th/TF = 0.217(22) (4.8)

Tζ/TF = 0.19 (4.9)

130% is the estimated particle number calibration uncertainty
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Figure 4.6: Parameter space of degenerate Fermi gases covered in the experiment.

The horizontal and vertical temperatures agree very well; within the limit set by the particle
number calibration uncertainty, both do not fully agree with the temperature from the fugacity
– the latter is a little bit lower, which may be an indication that the particle number calibration
for 40K might still have to be corrected upwards a little bit. A reason for this could be the
relatively small hyperfine splitting in the excited 40K levels, which can lead to quick losses
into the dark hyperfine ground state when multiple photons are scattered per atom. This
effect is not easy to account for in the experiment, although it has been compensated to some
degree here by calibrating the atom number against the number of scattered photons.

Overall, the temperature in this particular case is below 25% of the Fermi temperature. For
comparison, I have included a blue line in Fig. 4.5, showing the calculated time of flight image
of a hypothetical Maxwell-Boltzmann gas with the same absolute temperature and particle
number as the Fermi gas. The outward bound Pauli pressure of the Fermi gas, leading to a
significantly flattened distribution compared to the classical gas, is clearly visible.

So far, I have shown only one particular, yet typical example for thermometry. The
parameter space covered by this experiment is shown in Fig. 4.6, where I have plotted particle
number vs. degeneracy parameter T/TF . The temperature shown is the temperature as
extracted from the width of the cloud, which is the more conservative estimate (because it
yields slightly higher temperatures as seen above). As can be seen, Fermi gasses with four
million atoms at T/TF = 0.4 and 1 million atoms at close to 10% of the Fermi temperature
can be created. In these experiments, the initial number of 40K atoms transferred from the
magneto-optical trap into the magnetic trap has been varied in order to vary the final particle
number. In general, lower temperatures come at the expense of fewer particles which seems
to indicate that the final temperature is limited by the 87Rb cloud which is completely used
up in the cooling.

I have explained above that the fugacity ζ and the width of the cloud, combined with the
total particle number, give us two independent thermometers for the cloud. Fig. 4.7 shows a
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Figure 4.7: Fugacity ζ vs. degeneracy parameter T/TF , compared to the prediction of eq. 2.16.

comparison of the two thermometers connected by eq. 2.16. As far as the temperature from
the width of the cloud is concerned, the horizontal and vertical temperature usually agree very
well as seen above in one particular case, so I have taken the average of both temperatures
here. This average is plotted as a function of the fugacity resulting from the full Fermi-Dirac
fit to the experimental data. The corresponding theoretical relation is given by equation 4.6.
This relation is also plotted as a solid line in Fig. 4.7, together with the experimental data.
As can be seen, both curves agree very well for moderate degeneracy (fugacity on the order
of 1 to 10). For deeper degeneracy, the universal relationship eq. 2.16 lies slightly below the
experimental data. Calculating the temperature based on the fugacity would therefore result
in even slightly deeper degeneracy as already seen above.

Fig. 4.7 thus verifies an important universal relationship for ultracold Fermi gases and
demonstrates, based on both of the independent thermometers, that we achieve at least 10%
of the Fermi temperature in the experiment, even for the more conservative thermometer.

4.4 Three-body losses

After this separate discussion of bosonic and fermionic degeneracy as observed in the experi-
ment, I will switch over to discuss mixtures and start my discussion with thermal mixtures and
a measurement of three-body loss in ultracold 40K–87Rb mixtures. Three-body loss is an im-
portant parameter of ultracold atomic gases. This process, where two atoms combine to form
a molecule and a third atom takes away the binding energy (generally leaving the trap as a re-
sult of the excess energy), ultimately limits the lifetime of the trapped samples and timescales
of evaporative cooling (in the absence of 2-body losses which are generally less important
apart from some notorious and well-known examples). When this experiment produced its
first degenerate mixtures, little was known about three-body loss in 40K–87Rb mixtures. An
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experiment at LENS [59] had reported a three-body loss coefficient of 2(1) · 10−27 cm6/s mea-
sured in thermal mixtures at 300 nK. Values extracted for 3-body loss coefficients strongly
depend on particle number calibrations and may also depend on temperature. For this reason,
it is crucial to control the systematics of the experiment very well. One of the advantages
of the high particle numbers produced in the experiment described in this thesis is that it
allowed the production of large thermal 40K–87Rb thermal samples, which has enabled studies
of 3-body loss over a wide range of densities until clouds become undetectable.

For 3-body loss to occur, three particles need to come close to another. In a Fermi-
Bose mixture where scattering between fermionic atoms is forbidden by the Pauli exclusion
principle, the dominant 3-body loss mechanism is collisions between two 87Rb and one 40K
atom. The 3-body loss coefficient K3 then characterizes the local loss rate in the fermionic
cloud according to

ṅF (~r, t) = −nF (~r, t)

τ
−K3nF (~r, t)n2

B(~r, t) (4.10)

where τ is the background loss rate. In order to measure K3 in the experiment, a thermal
mixture is prepared in the magnetic trap in the 40K⊗87Rb |9/2, 9/2〉⊗|2, 2〉 state by stopping
the rf knife before condensation sets in. We then vary the hold time in the magnetic trap
typically up to a few seconds and take absorption images of 40K and 87Rb perpendicular to
the symmetry axis of the magnetic trap. From the 2D distributions recorded after a total
time of flight of 5 ms (40K) and 21 ms (87Rb), both particle number and temperature as
a function of time can be extracted. In the following, I will explain how the 3-body loss
coefficient can be extracted from such a dataset. Some of the ideas have been inspired by a
precision measurement of 87Rb 3-body loss in Paris [104] and at JILA [105].

Since we do not have experimental access to the in-trap distributions, we would rather
like to work in terms of total particle numbers. Integrating equation 4.10 over position yields

ṄF (t) = −NF (t)

τ
−K3

∫

d3r n2
B(~r, t) · nF (~r, t) (4.11)

This expression still contains the derivative of the particle number. By dividing by NF and
integrating this over time, we obtain

ln
NF (t)

NF (0)
+
t

τ
= −K3

∫ t

0
dt′
∫

d3r n2
B(~r, t′) · nF (~r, t′)

NF (t′)
(4.12)

By introducing the time-dependent quantities

N (t) = ln
NF (t)

NF (0)
+
t

τ
(4.13)

and

K3(t) =

∫ t

0
dt′
∫

d3r n2
B(~r, t′) · nF (~r, t′)

NF (t′)
(4.14)

we obtain the following simple expression:

N (t) = −K3 · K3(t) (4.15)

and the idea for the measurement of the 3-body loss rate is to determine K3 from a linear
fit to N as a function of −K3 · K3(t). The remaining question is how K3(t) and N (t) are
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Figure 4.8: Decay analysis of thermal 40K–87Rb mixtures.

determined. For different values of the hold time t, the N (t) can be calculated based on
the measured 40K atom number. The double integral K3(t) is treated in the following way:
For each time step in a decay series, we determine temperature and 87Rb and 40K particle
number from 2-dimensional fits to time of flight absorption images using eq. 2.34. Using
equation 2.23, we can calculate the overlap integral of the two distributions. In order to
evaluate the integral over t′, we use the values of the inner integral for each time step and
create a linear interpolation as a function of time which is integrated directly (trapezoidal
rule).

Fig. 4.8 shows the left-hand side logarithmic expression N (t), of eq. 4.12 vs. the right-
hand side double integral K3(t) of eq. 4.12. From a linear fit, we can extract a value for the
loss coefficient K3 for each individual measurement. We then take the weighted average of
twelve values. The corresponding error budget is determined as follows: The statistical error
from the weighted average is the standard deviation, and the systematic error comes from
the estimate of the atom number calibration. In equation 4.12, K3(t) does not depend on the
40K atom number calibration, since the density is divided by the total atom number in the
integration. The 87Rb atom number calibration does enter the calibration, since the bosonic
density enters to the power of 2. With an estimated uncertainty on the 87Rb atom number
of 20%, this leads to a systematic uncertainty of K3(t) of 40% given by

∆systK3 = 0.4K3 (4.16)
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Altogether, we obtain:

K3 = 2.8 (1.1)syst(0.3)stat · 10−28 cm6/s (4.17)

In order to cross-check the validity of our approach, we have measured 3-body decay of a pure
87Rb thermal cloud with the same technique. In this case, the decay law is

NRb(t) = −KRb(t) · KRb(t) (4.18)

with K3,Rb(t) and NRb(t) defined by

NRb(t) = ln
NB(t)

NB(0)
+
t

τ
(4.19)

KRb(t) =

∫ t

0
dt′
∫

d3r
n3

B(~r, t′)

NB(t′)
(4.20)

From seven different individual decay series, we obtain

K3,Rb = 2.20 (0.88)syst(0.08)stat · 10−29 cm6/s (4.21)

by taking the weighted average of the individual measurements. The systematic error is again
due to the atom number calibration uncertainty of 20%. The precision result from ref. [104]
is

K3,Rb = 1.80 (0.40)syst(0.06)stat · 10−29 cm6/s (4.22)

and both values agree within the systematic errors. Coming back to 3-body decay of the
mixture, the obtained value was:

K3 = 2.8 (1.1)syst(0.3)stat · 10−28 cm6/s (4.23)

The resulting loss coefficient is thus an order of magnitude smaller than the value reported
in [59]. The experimental outcome that 3-body loss in the 40K–87Rb system is so much
lower than previously believed, even when the mixture is not in the absolute internal ground
state, is good news both in view of producing large and dense samples as demonstrated in
this thesis, but it is also an important input parameter for theoretical calculations of the
dynamical behavior of the cloud at the onset of collapse. 3-body loss is the ultimate loss
mechanism in this mean-field implosion and thus an important input parameter for theory
(see e. g. ref. [106]).

4.5 Stages of evaporative cooling

In the previous paragraph, I have limited my discussion to thermal mixtures. Now we will
further lower the “evaporation knife” and see which regimes of degenerate mixtures are acces-
sible in the experiment. When the 87Rb atoms are not completely evaporated, various regimes
of mixtures are accessible, ranging from dense thermal 87Rb clouds of 107 87Rb atoms right
at the phase transition point interacting with a moderately degenerate Fermi gas of 2 · 106

40K atoms to deeply degenerate mixtures with almost pure condensates. We achieve > 1 · 106

atoms in the condensate coexisting with 7.5 · 105 40K atoms, limited by the onset of the
collapse discussed in section 2.4.3.
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My introductory discussion will be based on the experimental approach to mixture cre-
ation which has been to look at time of flight images of both clouds at various stages in the
evaporative cooling cycle when large samples are transferred from the MOT to the magnetic
trap.

Throughout this section, the 40K images were recorded with a time of flight TE of 3 to 5
ms. With an axial 40K trap frequency of ωax = 2π · 16.6 Hz, this means that ωax · TE is on
the order of 0.3 to 0.5, and with the relatively large size of the Fermi gas in the trap, we can
still deduce information on the axial spatial distribution in the magnetic trap from the time
of flight image. In the experiment, this has allowed the extraction of information about the
outer regions of the Fermi gas where it is noninteracting and about the inner regions where
it overlaps with the dense Bose-Einstein condensate.

The 87Rb atoms, on the other hand, are imaged after a total time of flight of 20ms.
All of the experiments described in this chapter are based on imaging using the two-species
detection technique (see section 3.11.2.2) which has allowed us to extract information about
both species on the same CCD chip in one run although only one camera was used. With
these prerequisites, the choice of the 87Rb time of flight is motivated as follows: While it
would in principle be beneficial to increase the time of flight even more in order to make the
samples more dilute and allow an easier extraction of particle numbers, this is limited by the
size of the CCD chip which must image both the 40K and the 87Rb image. Imaging on two
different axes could have been also possible, but would have made the direct comparison of
both observed density profiles more cumbersome.

Fig. 4.9 shows resulting time of flight images for various evaporation end frequencies, with
the final evaporation ramp being carried out at a speed of 1 MHz/s. In Fig. 4.9a), the mixture
is still thermal. Due to the long time of flight, the thermal 87Rb cloud has already reached
its isotropic aspect size; the 40K cloud still reflects the initial cigar-shaped trap profile. As
the evaporation knife further cuts into the 87Rb thermal cloud, a condensate starts to grow
out of the thermal cloud as seen in Fig. 4.9b). At the same time, a hole appears in the axial
direction in the 40K cloud which is most pronounced in Fig. 4.9d), where the condensate is
already almost pure. The hole in the fermionic distribution appears at the same time as
the growth of the large condensate and in the spatial region where the condensate overlaps
with the fermionic cloud and is accompanied by massive particle loss in 40K, whereas the
87Rb loss is essentially due to evaporation which acts mainly on the 87Rb component. In
Fig. 4.9f), evaporation has reduced the condensate size considerably, and the 40K cloud no
longer exhibits the pronounced hole; instead, it is rather peaked at the center, as we shall
see later. In the following, I will present arguments which show that the appearance of the
hole in the center of the cloud is due to the mean field collapse of the mixture. The collapse
gives rise to an interesting dynamic behavior of the 40K cloud which tends to refill the overlap
region of rapid losses from the outer regions of the cloud.

A more direct visualization of the various stages of interacting mixtures is found in the
vertical axial 1d profile of the interacting cloud (see Fig. 4.10). Here, I have analyzed in more
detail three different stages. In a), the Fermi cloud exhibits a small peak in the center on
top off a flat profile. This peak is due to the Fermi-Bose attraction increasing the fermionic
density in the center of the trap where the BEC is formed. Once critical conditions for the
onset of the collapse have been met as in b), the collapse localized in the overlap region
removes the overlapping fraction of the Fermi gas. The hole which is left behind can be
refilled from the outer regions of the trap, and, as we shall see, this refilling process can even
lead to a second collapse of the mixture. The peaked structure which is shown in c) is stable



4.5. STAGES OF EVAPORATIVE COOLING 83

a) f − f0 = 90 kHz

b) f − f0 = 60 kHz

c) f − f0 = 40 kHz

d) f − f0 = 30 kHz

e) f − f0 = 25 kHz

f) f − f0 = 20 kHz

Figure 4.9: Time of flight absorption images of 87Rb (left-hand side) and 40K (right-hand
side) at various stages of the final evaporation ramp. The figure indicates the difference
between the evaporation and frequency and the absolute trap bottom where all atoms would
be removed.
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Figure 4.10: Density profiles of interacting 40K–87Rb mixtures in various stages of the evap-
orative cooling process

over relatively long timescales of several 100 ms once the total 40K number has been reduced
to undercritical values; for comparison, I have included the result of a Fermi-Dirac fit to the
experimental data which clearly fails to account for the interactions with the Bose-Einstein
condensate in the center. In contrast to the situation depicted in a), which results from
overcritical initial conditions and is on the edge to collapse, the condition of subfigure c) is a
signature of Fermi-Bose interactions in a stable mixture.

4.6 Observation of a mean field induced collapse

In the discussion of the density profiles, I have claimed that the appearance of the hole in
the center of the trap is due to the mean field collapse of the mixture. The distinction from
localized loss processes in the presence of high densities is most apparent when looking at the
associated time scales. In order to study the time scale of atom loss, I will discuss a situation
where an only slightly overcritical mixture has been prepared. This time, I will discuss the
behavior of the mixture not as a function of evaporation end frequency, but as a function of
hold time in the magnetic trap. During the first few milliseconds of the hold time, where the
rf knife is held at a fixed frequency, the condensate will still grow out of the thermal cloud
and reach critical conditions after some initial delay. The result of the measurement is shown
in Fig. 4.11. The figure shows the particle number contained in the central part of the 40K
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Figure 4.11: Sudden drop in atom number as a result of the initial collapse, followed by one
revival of the collapse out of a non-equilibrium situation.

absorption image which helps enhance the visibility of the effect. Between 10 and 20 ms after
the start of the measurement, a sudden drop reduces the integrated particle number in this
area to about two thirds of its original value. The atom number then remains constant for
some time and at 100 ms again undergoes a second sudden drop, which is due to a refilling
of the cloud in the center from the outer regions and a subsequent second collapse. Looking
at Fig. 4.11, one might argue that this refilling should become apparent in the center particle
number going up again after the initial collapse. There is no such evidence from the data. One
must however take into account that the central atom number from the time of flight image
only approximately reflects the particle number in the overlap region. The occurrence of
excitations and strong unequilibrium conditions following the initial collapse may modify the
expansion behavior and in particular lower the collapse conditions for the second occurrence
of this mean-field instability. The message of Fig. 4.11 is the step-like feature which shows a
very sudden drop of the particle number which is characteristic for this rapidly contracting
mean-field implosion. From Fig. 4.11, we can constrain this timescale to below 10 ms, which
is incompatible with pure 3-body loss in the absence of the collapse. The inset in Fig. 4.11
shows results from numerical modelling of the mixture in the regime of mean field instability
based on hydrodynamic equations [106]. The numerical simulations qualitatively predict the
same behavior for the particle number as a function of time. Note that these simulations make
explicit use of the three-body loss coefficient for 40K–87Rb which demonstrates the importance
of this parameter discussed in section 4.4.

One of the experimental challenges in measuring data as in Fig. 4.11 is that over many
runs, the initial conditions must be stable enough so that the time evolution can be well
controlled. This is most important with respect to initial particle numbers and transfer from
the MOT to the magnetic trap. When large overcritical mixtures are initially prepared, the
steps shown in Fig. 4.11 can no longer be resolved initially due to initial fluctuations and the
very complex dynamism. Instead, in this limit the collapse is observed as a very rapid overall



86 CHAPTER 4. FERMIONS, BOSONS AND MIXTURES

decay when measurements with independently prepared samples are visualized together as
in Fig. 4.11. It would be an interesting perspective to analyze the behavior of the cloud in
the regime of instability using phase-contrast imaging which would allow several subsequent
nondestructive measurements of the same sample.

4.7 Stability analysis of Fermi-Bose mixtures

During the above discussion, I have mentioned conditions of criticality of mixtures and critical
particle number of the mean field collapse several times. Here, I will summarize experimental
findings on stable and unstable mixtures and discuss the relation with the value of the s wave
scattering length for collisions between 40K and 87Rb. Two criteria for instability have been
used here:

• Particle number combinations where the overall decay of the mixture is much too fast
for normal 3-body decay in connection with the appearance of the pronounced hole are
considered as unstable.

• The observation of the step-like drop as discussed in context with Fig. 4.11 is a sign of
instability.

Other situations are identified as stable. The resulting atom number combinations are plotted
in Fig. 4.12. Stable atom number combinations are plotted in blue, and combinations found
to be unstable in the experiment in red. Atom numbers observed as stable are e. g.

NF = 7 · 105

NB = 1.2 · 106

ω̄ = 2π · 91Hz .

The error bars (c) result from an estimate of the 87Rb and 40K atom number uncertainty of
20% and 30%, respectively. The uncertainty in the 40K atom number is less important than
for 87Rb, since in the regime considered here the dependence of critical conditions on 40K is
much smaller than on 87Rb. Also shown in Fig. 4.12 are particle number combinations from
two other experiments, namely the one at LENS and the JILA 40K–87Rb setup. The particle
number combination (a) of

NF = 2 · 104

NB = 1.5 · 105

ω̄ = 2π · 91Hz

has been reported as critical for the onset of collapse in ref. [60], but is an order of magnitude
smaller than the stable particle number combination observed in Hamburg. Data point (b) is
the stable particle number reported at JILA in ref. [53] without any sign of instability:

NF = 8 · 104

NB = 1.8 · 105

ω̄ = 2π · 86Hz

which raises the question why mixtures which are observed as stable in this experiment and
by the JILA experiment have been reported as unstable at LENS.
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When comparing critical particle numbers of different experiments, a few words on the
role of the trap parameters are appropriate. Conditions for instability are of course influenced
by the trapping potential. In general, the stronger the external confinement, the lower the
critical particle numbers or the critical interaction are. The scale for the onset of instability
is set by the geometric mean of the trap frequencies ω̄ which is given above for all three
experiments. The mean harmonic trap frequency used in this experiment and at LENS are
equal, whereas the JILA trap is just slightly shallower.

Within the Thomas-Fermi approximation for bosons and fermions, I have shown in sec-
tion 2.4 that for fixed harmonic mean trap frequency, the aspect ratio does not influence the
point of onset of collapse. This trap and the LENS trap are therefore directly comparable
within this approximation, and the JILA trap is only slightly shallower and should therefore
be slightly less subject to collapse than the the two other traps for the same particle number.

The only difference between the LENS trap and the trap used here is the trap aspect
ratio, with our trap being slightly more elongated. The latter may play a role in the following
situations:

• Breakdown of the Thomas-Fermi approximation. This may occur when going
to very elongated quasi-1D geometries (which is not the case in any of the experiments
discussed here). The breakdown of the Thomas-Fermi approximation in the radial
direction would result of radial trap frequencies on the order of kHz. The general effect
of such a geometry is a stabilization with respect to collapse. This stabilization is
responsible e. g. for the stabilization of bright solitons in a narrow window before the
onset of collapse [107]. Another reason may be that particle numbers become below,
say, 104. Neither this is the case here.

• Gravitational sag. A trap which is radially more tight features a reduced differential
gravitational sag between atoms of different mass compared to the isotropic situation.
This differential sag is given by:

−g
(

1

ω2
Rb

− 1

ω2
K

)

(4.24)

and vanishes for equal trap frequencies (see discussion in section 3.8. Since the differen-
tial gravitational sag reduces the spatial overlap of the components, some of the mean
field energy is already “used up” in compensating for the gravitational sag. The larger
gravitational sag in the Florence experiment thus results in the LENS trap becoming
“less subject to collapse” for the same critical particle numbers, while the opposite is
observed in the experiment. The role of the gravitational sag has also been discussed
in [108].

Therefore, for the purpose of comparing the above-mentioned experimental results, the differ-
ence in trap aspect ratio does not play a role and cannot account for the order of magnitude
difference in critical particle numbers.

It has been pointed out by the LENS group [60] that with the very sensitive relationship
between critical particle numbers and the Fermi-Bose interaction parameter aFB, the obser-
vation of the collapse instability can be a very sensitive way to constrain aFB. This picture
is true with respect to equilibrium conditions; however, the observation of instabilities during
evaporative cooling, where excitations can never be completely avoided, complicates the pic-
ture, as we shall see. In this sense, the observation of a given particle number combination as
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Figure 4.12: Stability diagram of 40K–87Rb mixtures

stable imposes an upper limit on the interaction parameter. Observation of a particle loss at
lower critical particle numbers means that either some other (possibly technical) mechanism
is causing the loss2, or that excitations lead to collapse for lower than equilibrium particle
numbers.

Excitations

In my discussion of the implications of observed stability limits, I have mentioned several
times that the presence of excitations in the sample during evaporative cooling means that an
observed stability limit is always an upper limit on the interaction parameter. To illustrate
this, fig. 4.13 shows the aspect ratio of the condensate before the onset of collapse in some
of our experiments. The strong deviations (factor of ≈ 10) from the equilibrium aspect ratio
of 1.3 may be due to fast evaporation compared to the axial trap frequency, thereby creating
strong axial excitations.

These excitations can in turn locally increase the density and lead to critical conditions
even for particle number combinations which are stable in an equilibrium situation. For
example, a twofold increase of the Thomas-Fermi radius of the condensate due to excitations
would lead to a fivefold increase in the central density of the condensate, leading to the
same densities required for a an equilibrium collapse at aFB = 200 a0. The same is true
for any experiment observing the collapse during the evaporation ramp: In the absence of
more sophisticated theory taking into account the excitations, observation of certain particle
number combinations as stable provide an upper limit on scattering parameters.

When putting the observed experimental stability limit from this experiment (which pro-
duced the largest degenerate mixtures so far) into mean field theory, we obtain −aFB < 284 a0

2in particular if symptoms of the collapse are scarce, such as a sudden loss of atoms and a localized structure
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Figure 4.13: Aspect ratio of a forming condensate in a 40K–87Rb mixtures, compared to the
pure BEC expected aspect ratio of 1.3 (blue line).

as an upper limit on the interaction parameter. This upper limit coincides with the value
deduced from the first 40K–87Rb spectroscopy experiment at JILA and the corresponding reso-
nance assignment. The identification of more Feshbach resonances and an upgraded collisional
model performed at LENS as well as an improved magnetic field calibration has resulted in a
scattering length of −215(10) a0 [109], and the upper limit reported here is compatible with
that value. Since the same argument is valid for any experiment, there is no contradiction
between the observed stable particle number combinations and aFB = −215(10) a0.

It is an important result from this experiment that large stable 40K–87Rb particle numbers
can be produced, which was not clear a priori, and to have identified experimental signatures
of the mean field collapse in Fermi-Bose mixtures, which have later been seen in experiments
with tunable interactions (see following chapter).
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Chapter 5

Tuning interactions in degenerate
mixtures

In the previous chapter, I have approached interacting Fermi-Bose mixtures from the point
of view of constant attractive interactions. The influence of interactions on the mixture
parameters has been studied by varying the particle number. The overall particle number
influences the value of the mean field interaction through the achieved densities. In this
chapter, I discuss the behavior of the system as a function of scattering length. This approach
has only become possible through heteronuclear Feshbach resonances in scattering between
40K and 87Rb which allow the s wave interaction in the mixture to be tuned from large and
repulsive to large and attractive.

From a more general point of view, Feshbach resonances are the knob in atomic quantum
gases which has made them so versatile and well controlled model systems. Tuning of atomic
interactions through Feshbach resonances has been the key to a series of groundbreaking
experiments in recent years, most recently the exploration of the BCS-BEC crossover in two-
component Fermi gases [32, 33, 34, 35, 36]. Intimately connected with crossover physics
is molecule creation at Feshbach resonances. Chapter 7 contains a discussion on Feshbach
molecules and the first demonstration of heteronuclear Feshbach molecules.

Heteronuclear systems, Fermi-Bose mixtures in this particular case, will benefit a lot from
the availability of controlling interactions through Feshbach resonances. It is one of the most
important prerequisites in realizing a different and complementary approach to fermionic
superfluidity in which the interaction between fermionic atoms is provided by bosonic atoms
taking over the role of phonons in the solid state superconductor [110, 111, 112]. Exploiting
heteronuclear Feshbach resonances could give access to ultracold polar molecules with novel
anisotropic interactions. These molecules may be used as sensitive probes for physics beyond
the standard model, such as a measurement of the permanent electric dipole moment of the
electron. In chapter 7, this thesis presents the first realization of heteronuclear Feshbach
molecules as an important and long awaited step towards the production of absolute ground
state polar molecules and a more in-depth discussion of Feshbach chemistry.

Tunability of interactions is also a key to accessing the wealth of different phases predicted
to exist in Fermi-Bose mixtures in a 3D optical lattice (see chapter 6) or even in a harmonic
trap. So far, due to available scattering lengths in reported Fermi-Bose mixtures, only the
effects of heteronuclear attraction have been studied in detail experimentally. Heteronuclear
Feshbach resonances have already been identified in the systems 6Li – 23Na [62] and 40K –

91
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87Rb [63] in 2004 through increased atom loss at the resonance, but no tuning of interactions
giving access to the above novel phenomena in heteronuclear systems has been reported.

In this chapter, I will report on the demonstration of tuning of elastic collisions through
heteronuclear Feshbach resonances as published in [2]. This is the first time that Feshbach
tuning of heteronuclear interactions has been observed, more than two years after the ini-
tial identification of these resonances through inelastic losses. In addition, we have for the
first time realized all phases of harmonically trapped Fermi-Bose mixtures. Due to available
heteronuclear mixtures, repulsive interactions between fermions and bosons have never been
studied before in the experiment, including the observation of phase separation1. I will first
describe the experimental procedure. Then, I will discuss a determination of the resonance
position for three Feshbach resonances. One of them exhibits the doublet structure charac-
teristic for a p-wave resonance, thereby confirming a recent theoretical assignment [113]. In
order to tune interactions, we then exploit a broad resonance located at 546.8 G and study
both the attractive and repulsive side of the resonance. Strong attractive interaction is iden-
tified both through the expansion profile of the Fermi gas, which develops a strong bimodal
feature, as well as through the mean field energy stored in the condensate. Furthermore, I
will describe how we can induce a mean field collapse in a controlled fashion by tuning the
scattering length. On the repulsive side of the resonance, the fermionic component is found
to be shifted significantly upwards compared to the background scattering situation, which
is explained in terms of vertical phase separation between the light fermionic and the heavy
bosonic component in the presence of the symmetry-breaking gravitational force.

This chapter closely follows the S. Ospelkaus et al., Phys. Rev. Lett. 97 (2006), 120403;
for an in-depth discussion, see [66].

5.1 Experimental procedure

I have already described in chapter 4 how we create degenerate mixtures in the experiment. To
access Feshbach resonances, a few more techniques are required, mostly related to trapping
and preparing arbitrary spin states and controlling magnetic fields. In section 3.8, I have
discussed an approach to purely optical trapping for mixtures which confines an arbitrary
spin state and compensates for the differential gravitational sag between the two species as
much as possible. This dipole trap, which is discussed in detail in [66], has been used in the
experiments described in this chapter.

We evaporatively cool in the magnetically trapped fully stretched 87Rb |F = 2,mF = 2〉 ⊗
40K |F = 9/2,mF = 9/2〉 state. Slightly before reaching degeneracy, we shine in the crossed
“magic” dipole trap. A last step of rf-induced evaporation is performed in the combined
potential before ramping down the magnetic trapping potential and finishing with purely
optical evaporation in the crossed dipole trap. The evaporation is done by lowering the
intensity in the non-“magic” beam of the crossed dipole trap. We typically end up with a
quantum degenerate mixture of 5 · 104 40K and 105 87Rb atoms and no discernible bosonic
thermal fraction. The mean trapping frequency for 87Rb in the dipole trap is 2π · 50 Hz.

As I have already said, the Feshbach resonances that we study occur in the |1, 1〉 ⊗
|9/2,−9/2〉 absolute ground state. The dipole trap gives us the experimental freedom to
prepare and confine this high-field seeking state. This is performed using techniques dis-
cussed in section 3.9. We transfer 87Rb atoms from |2, 2〉 to |1, 1〉 by sweeping a microwave

1Independent work has been performed in parallel at Florence [64].
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Figure 5.1: Doublet structure observed in 40K atom loss at 515 G, showing the p-wave nature
of this heteronuclear resonance.

frequency at a magnetic field of 20 G and remove any residual atoms in the F = 2 hyperfine
manifold by a resonant light pulse. We then transfer 40K atoms into the |9/2,−7/2〉 state
by performing an rf sweep at the same magnetic field achieving close to 100% efficiency. We
subsequently ramp up the magnetic field to a value near the resonance. Magnetic fields near
the Feshbach resonances are calibrated by driving both the 87Rb |1, 1〉 → |1, 0〉 transition and
the 40K |9/2,−7/2〉 → |9/2,−9/2〉 transition2.

5.2 Identifying the resonances

In a first measurement, we have identified the position of strong inelastic losses for sev-
eral previously identified resonances and found positions of 495.28(5) G, 546.8(1) G and
(515.20(5) G / 515.34(5) G)3. The measurement is performed by preparing the system in the
|9/2,−7/2〉⊗|1, 1〉 state at the desired magnetic field and then transferring the fermionic com-
ponent into the Feshbach-resonant |9/2,−9/2〉 state by a 100 kHz wide rf sweep of 3 ms after
the field has settled. We then wait for a given time of 50 ms, 40 ms, (350 ms / 350 ms) for the
above resonances. As an important result, the 515 G feature shown in Fig. 5.1 exhibits a dou-

2For a discussion of magnetic field accuracy, see chapter 7. The same equipment has been used here, only
that the field sweeps performed in the tuning experiments presented this chapter may mean that the final
magnetic field values of the sweeps are not as accurate as 5 · 10−6

3Note that the observed resonances are systematically shifted by roughly 1 G as compared to [113]



94 CHAPTER 5. TUNING INTERACTIONS IN DEGENERATE MIXTURES

blet structure with a separation between the two peaks of 140 mG. Such a doublet feature has
previously been found in p-wave scattering between fermionic atoms [114, 115, 42, 116, 117].
Reference [114] predicted a p-wave resonance to occur in the 40K–87Rb system at magnetic
fields of (540±30) G, with the |ml| = 1 peak located approximately 300 mG above the |ml| = 0
peak. Ref. [113] obtained the most recent resonance assignment in this system by ascribing
a p-wave character to the resonance occurring at 515 G. The doublet structure measured in
our experiment for the first time provides direct evidence of a heteronuclear p-wave resonance
and confirms the resonance assignment. Corresponding loss features for the other observed
resonances can be found in [66].

5.3 Attractive interactions

In order to tune interactions in the heteronuclear system, we have studied the broadest of the
available s-wave resonances which we observe at B0=546.8(1) G, where the resonance position
has been determined by the transition between strong attractive and repulsive interactions
(see below). At the resonance, the scattering length varies as

aFB = aBG · (1 − ∆B

B −B0
) (5.1)

(see Fig. 5.2d) with a predicted width ∆B of -2.9 G [113] and a background scattering length
of aBG = −185a0 [64]. For these measurements, the |9/2,−7/2〉 → |9/2,−9/2〉 transfer is
performed at fixed fields of 550.5 G (for studies of aFB < 0) or 543.9 G (aFB > 0) after the
field has settled. The field is then ramped to varying values near the resonance within 50 ms,
thereby changing aFB adiabatically.

Above the center of the heteronuclear resonance, the K-Rb interaction is expected to be
attractive. We study tuning of interactions by observing the mean field energy of the BEC
confined in the combined potential of the external dipole trap and the heteronuclear mean
field potential:

UB(r) = UB,ext(r) + gFB · nF(r) . (5.2)

The additional trapping potential due to the fermions becomes evident when both the external
trapping potential and the magnetic field are switched off simultaneously. In the case of
attractive interactions, the effective trap frequency for the bosonic component increases with
interactions due to the additional heteronuclear mean field confinement. This leads to a larger
density and thus to a stronger mean field energy of the condensate which has an intrinsic
repulsion characterized by aBB = 100.4(1)a0 [77]. As the simultaneous switchoff occurs,
the heteronuclear mean field confinement is reduced to its background value determined by
aFB ≈ aBG. The stronger the in-trap interaction is compared to the background interaction,
the faster the condensate will expand due the increased mean field energy [51, 118] as shown
in Fig. 5.2a above resonance.

Complementary information can be gained from a measurement where we leave on the
magnetic field during expansion (Fig. 5.2b). In contrast to Fig. 5.2a, the permanence of
strong attraction now slows down the expansion of the BEC as the heteronuclear attraction
will tend to keep the sample together during expansion. A peculiar feature arises in the
expansion profiles of the Fermi gas which, in our experiment, has a larger extent than the
BEC and only overlaps in the center. In this overlapping region, fermions and bosons are
held together by the mean field attraction and give rise to a dense feature in the center of the
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Figure 5.2: Observed width of the components after expansion as a function of magnetic
field. The inset shows numerical mean field calculations where the width of the BEC after
expansion has been plotted as a function of detuning from resonance. a) bosonic component
when the resonant interaction is turned off in the same moment as the external potential
b) corresponding bosonic component with resonant interaction left on during expansion c)
fermionic width corresponding to b). The region shaded in grey indicates instability with
respect to collapse. The black vertical line marks the observed transition from attractive to
repulsive interactions. (1 pixel =̂ 3.2 µm; time of flight 25.2 ms for 87Rb and 7.5 ms for 40K)
d) Heteronuclear scattering length and expected phases.
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fermionic cloud, while the non-overlapping fraction gives rise to a broader background. The
overall fermionic image thus acquires a bimodal appearance as seen in images in Fig. 5.3d.

5.4 An induced mean field collapse

For even stronger attraction closer to the resonance, the system is expected to become unstable
with respect to collapse as explained in chapter 2 and observed as a function of particle number
in chapter 4. The corresponding magnetic field region for our experimental parameters is
shaded in Fig. 5.2. This region of mean field instability is studied in detail in Fig. 5.3, where
we have plotted the atom numbers in the mixture as a function of magnetic field in a). At a
detuning of about 0.6 G above resonance, we observe a sudden drop in both the fermionic and
the bosonic atom number which is due to the mean field collapse of the mixture. In contrast
to previous work observing the onset of instability as a function of atom number (see previous
chapter and [59]), the collapse is now due to tuning of interactions above a certain critical
interaction strength in an otherwise undercritical mixture. We can also observe the collapse
happen as a function of time – see Fig. 5.3b, where we have ramped to a fixed magnetic
field in the region of instability and then varied the hold time of the mixture. The onset of
the collapse, again visible as a sudden drop in atom number, is retarded by a timescale given
roughly by the trap frequency and happens on a timescale <1 ms (Fig. 5.3d). During the
collapse the overlap region of the fermionic cloud with the BEC is destroyed by a three-body
implosion which causes significant heating and excitation in the remaining sample, reflected
in the width of the remaining cloud in Fig. 5.3c. Possibly due to evaporation of the sample
in the shallow dipole trap, the mixture assumes a new equilibrium. The heating leads to
significantly reduced densities in the cloud, which means that losses in the remaining cloud
are approximately constant as we further approach the resonance (see Fig. 5.3a). Fig. 5.3d
shows time of flight images of the Fermionic component with the field left on during expansion,
clearly demonstrating the bimodality of the Fermionic distribution, the sudden loss due to
the collapse and the remaining fraction.

5.5 Repulsive interactions and phase separation

Phase separation due to repulsive interactions in a composite system of harmonically trapped
fermions and bosons has been intensely discussed in theory [71, 72], but never explored in
experiment. Tuning of heteronuclear interactions has enabled us to enter the regime of re-
pulsive heteronuclear interactions, where phase separation is expected to occur. In the limit
of vanishing differential shift due to gravity and for our experimental parameters, phase sep-
aration will occur as a shell of Fermions surrounding a dense BEC core. For weak repulsive
interactions, there will still be a non-vanishing fermionic density overlapping with the center
of the BEC. In this case, the additional fermionic curvature acting on the condensate will
increase the mean field energy in the condensate, again leading to a faster expansion of the
BEC as seen on the left-hand side of Fig. 5.2. When the fermionic density at the trap center
vanishes at even higher repulsion, the potential felt by the Bose cloud will rather be that
of the pure external trapping potential with quite a sharp transition to a very steep higher
order potential created by the fermionic density in the outer shell, at the edges of the con-
densate. We identify this region with the regime from 546.4 G to the center of the resonance
at 546.8 G where, as seen in Fig. 5.2a, the width of the condensate saturates. At the onset
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Figure 5.3: Induced mean field collapse of the mixture. a) Sudden drop of atom numbers
for critical heteronuclear interactions. b) Varying hold time in the regime of instability (at
B=547.4 G). Onset of the collapse is retarded by a timescale given by the trap frequency.
c) As the collapse happens, the sample is excited and heated, visible in the width of the
fragments. d) Sample time of flight images showing the bimodal distribution in the fermionic
component and the sudden collapse of the system.
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Figure 5.4: Vertical position of the Fermi gas as a function of magnetic field. The grey shaded
area indicates the assumed region of full phase separation, where the fermionic density is
expected to vanish at the BEC core. Due to gravitational symmetry breaking, the fermions
are pushed above the BEC, an effect amplified by time of flight expansion. The inset shows
the corresponding fermionic density distribution where most of the density is concentrated in
the upper part of the image. Again, 1 pixel corresponds to 3.2 µm.

of this regime, we also find the width of the Fermi gas with the magnetic field left on during
expansion (Fig. 5.2c) to exhibit a change of slope. This may indicate that at complete phase
separation, the repulsive interaction leads to a rapid expansion of the Fermi gas suddenly
accelerated outside when the external potential is switched off and the repulsive bump of the
BEC in the center maintained.

Inside a harmonic trap and in the presence of gravity, atoms experience a gravitational
sag given by

−g/ω2 . (5.3)

For systems with different masses, such as the 40K–87Rb system, this will in general lead
to a differential gravitational sag between the components, as the trap frequencies may be
different, and I have explained in section 3.8 how our “magic trap” compensates for most
of the differential sag. There may however still be some residual differential sag left over,
and this becomes particularly important for strong repulsive interactions. A slightly different
gravitational sag breaks the symmetry of the system and therefore favors phase separation
to occur in the vertical direction (see also [108]). As a consequence, the position of the
fermionic component in the time of flight image is shifted upwards as a function of detuning
from resonance, with an even stronger slope in the region of complete phase separation (see
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Fig. 5.4). An important aspect is that the shift in position between fermions and bosons in the
trap is amplified by the repulsive interaction during expansion if we leave on the interaction.

The initial symmetry breaking in the trap may be anything between a differential gravi-
tational sag on the order of 1 µm and a Thomas-Fermi radius of a typical BEC in the dipole
trap of between 5 to 10 mu. In the latter case, the distance would be directly resolvable
using absorption imaging without any amplification in time of flight. Yet, we do not observe
the behavior shown in Fig. 5.4 if we switch off the strong repulsive interactions during time
of flight. Thus, the small initial symmetry-breaking in the direction of gravity is strongly en-
hanced by the permanence of repulsive interactions during time of flight and clearly visible in
absorption images such as in the inset of Fig. 5.4 where the Fermionic density is concentrated
in the upper part of the image.

To summarize this chapter, we have identified a p-wave Feshbach resonance at 515 G in
heteronuclear ultracold K-Rb atom scattering. Tuning of interactions at the 546.8 G s-wave
resonance enables us to explore the entire phase diagram of the mixture for arbitrary het-
eronuclear interaction and fixed repulsive Bose-Bose interaction. We have extensively studied
both the expansion of the cloud for attractive interactions and induced a mean field collapse
of the mixture by tuning the scattering length. On the repulsive side of the resonance, we
have entered a thus far inaccessible part of the phase diagram of the harmonically trapped
mixture. For sufficiently strong repulsive interactions, we observe the mixture to phase sepa-
rate. In the presence of gravity, phase separation is found to occur as a “stacking” effect in the
vertical direction, with the light fermionic component being repelled above the Bose-Einstein
condensate.
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Chapter 6

Fermions and bosons in 3D optical
lattices

In a seminal paper on ultracold atoms in optical lattices [119], D. Jaksch and coworkers have
shown that the Hubbard model discussed in the context of condensed matter systems can be
realized using ultracold (bosonic) atoms in optical lattices, making them possible “quantum
simulators” for condensed matter Hamiltonians. From the experimental point of view, this
potential became apparent in 2002 with the observation of a superfluid to Mott insulator
phase transition for bosonic atoms in optical lattices [120]. This and following experiments
and theoretical work on atoms in optical lattices demonstrated the main advantages of atomic
systems in lattices and also showed important differences from traditional condensed matter
systems. Atomic systems are characterized by an enormous degree of control over the proper-
ties of the system: The strength of the crystal can be tuned just by changing the laser power.
This allows the ratio of tunneling to on-site interaction to be tuned over several orders of
magnitude. The optical crystals made of light have perfect periodicity and are completely
defect-free. By playing with the laser power in the different beams forming the lattice and
“freezing out” degrees of freedom, one- and two-dimensional geometries can be realized. Fesh-
bach resonances allow interactions between atoms to be tuned from repulsive to attractive,
and recent years have seen a tremendous increase in diagnostics, from direct imaging of the
band structure and the quasimomentum distribution to advanced spectroscopic techniques
probing site-dependent interactions. One of the main differences between conventional con-
densed matter systems and atoms in lattices is the presence of the trap. In fact, the initial
demonstration of the Mott insulator transition by increasing the lattice strength has only
become possible as a result of the trap and the finite size of the system1.

Besides offering an interesting approach to condensed matter physics, atoms in optical
lattices also have applications in molecule formation, as we shall see in chapter 7, in quantum
information processing and in other “quantum engineering” proposals. So far, studies with
atoms in 3D optical lattices have been performed using a single atomic species, either bosonic
or fermionic, eventually exploiting the spin internal degree of freedom of the atoms. In this
chapter, I will report on the first realization of heteronuclear systems in 3D lattices, in this
case Fermi-Bose mixtures.

Phase diagrams of Fermi-Bose mixtures in 3D lattices have been calculated in [121, 122].

1For a fixed mean occupation number in a homogeneous system, the system would remain in the superfluid
phase forever.
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The system offers an alternative and in many ways complementary approach to fermionic
superfluidity, compared to the BCS-BEC crossover in two-component Fermi gases [32, 33,
34, 35, 36]. In the literature, this approach is known as boson-induced Cooper pairing [56,
57]. The analogy is perhaps not perfect in every sense, but a very compelling perspective
demonstrating the potential of mixtures in lattices: The role of the crystal in the traditional
solid state system is taken over by an artificial crystal made out of light; the lattice potential
can be varied practically arbitrarily. The fermionic electrons which make up the Cooper
pairs in the superconductor are replaced by fermionic atoms. In the standard superconductor
picture, phonons provide the attractive glue between fermions which is responsible for the
pairing. In the atomic system, the attractive interaction between the fermions is provided by
the Fermi-Bose interaction and the bosonic atoms; the interaction can be varied practically
arbitrarily through Feshbach resonances, as seen in the previous chapter. Realizing this goal
may of course depend on the ability to tune bosonic interactions at the same time, which is
not easy given that they would both be influenced by the same magnetic field at a Feshbach
resonance, and it may also require novel diagnostics to be developed, but this perspective
alone would be motivation enough for studying Fermi-Bose mixtures in lattices.

Another topic which is currently of great interest for ultracold atoms in optical lattices is
the perspective of realizing disorder-related phenomena in such systems. Recently, randomized
light potentials have been used in Florence [123] to create such a system, and the findings have
been interpreted in terms of a Bose glass phase. For Fermi-Bose mixtures, the experimental
perspectives for the realization of disordered systems rely on using atomic “disorder”, i. e. an
“impurity” or defect atomic species randomly distributed over the lattice. Several localization
scenarios can be imagined. Fig. 6.1 gives an illustration of some possible effects, starting
with a pure bosonic superfluid (Fig. 6.1a). Adding fermionic impurities and considering the
attractive 40K–87Rb Fermi-Bose interaction energy as an additional potential for the bosons,
the “defects” caused by the fermionic impurities can be described by a local change of the
effective optical lattice depth for the bosons due to the interparticle interaction (Fig. 6.1b). If
the energy level shift caused by the interaction energy is large enough, the superfluid bosonic
wavefunction will not extend into this defect region, but will be scattered by the impurity. If
scattering becomes frequent, interference effects along a closed scattering path are predicted
to suppress transport and lead to a localization scenario similar to Anderson localization
(e.g. [124]) (Fig. 6.1c). A further increase in the impurity density may lead to the formation
of “forbidden walls”. Once the walls in this quantum percolation scenario lead to a sufficiently
complicated labyrinth like structure for the bosonic wavefunction, a single coherent superfluid
phase can no longer be sustained and several separated domains can be formed (Fig. 6.1d).
For a filling of one fermion per lattice site (Pauli limit for the lowest band) the localized phase
becomes comparable to a pure bosonic Mott-insulator but now the transition is shifted by the
interaction energy with the fermionic impurity (Fig. 6.1e). Access to these various regimes
in the experiment can be controlled by varying both crystal depth and fermionic impurity
concentration and may strongly depend on temperature, external confinement and relative
potential depth for the two species.

In this chapter, I describe the first experimental demonstration of Fermi-Bose mixtures
in 3D optical lattices. In contrast to chapter 7, which discusses two-body physics in the
optical lattice, this chapter deals with many-body systems. The approach described here uses
diagnostic techniques developed for pure bosonic systems to probe the behavior of the bosonic
component of the mixture in the presence of fermionic atoms. All experiments have been
performed in a regime of small fermion number (compared to the total boson number), which
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Figure 6.1: Schematic localization scenarios. a. Pure bosonic superfluid in an optical lattice.
b. Shift of the effective potential depth due to fermionic impurities. c. Localization by
interfering paths of the bosonic wavefunction scattered by randomly distributed fermionic
impurities. d. Localization due to percolation. A random fermion distribution hampers
the establishment of a coherent connection and causes the localization of bosonic ensembles
in superfluid “islands”. e. Mott insulator transition induced by a uniform distribution of
attractive fermionic impurities, resulting in an effectively deeper lattice potential for the
bosons.
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is the first motivation for calling the fermionic atoms“impurities”. When the mixture is loaded
into the optical lattice, I will show that already a small impurity admixture will significantly
alter the behavior of the mixture. More specifically, the loss of coherence accompanying
the onset of a Mott insulating phase in the case of a pure bosonic system is observed much
earlier for a small fermionic admixture than for a pure system. The same is the case for
the correlation length in the sample. I will discuss how this effect is studied as a function
of impurity concentration. The findings were published in [3] and have generated a lot of
theoretical and experimental interest in this novel system. There is an ongoing discussion on
the size of the observed shift and possible explication of the effect both in terms of mean field
models, DMRG calculations, Monte Carlo simulations, adiabatic thermodynamic processes
in the lattice ramp-up sequence and a possible relation to disordered systems. This chapter
closely follows our publication ref. [3]; for a more detailed discussion, including basic lattice
theory, see [66].

6.1 Experimental procedure

The experiments presented in this chapter rely on techniques discussed in previous chapters for
creating degenerate Fermi-Bose mixtures. I have already mentioned the role of the external
trap in my introductory discussion. Experiments in optical lattices greatly benefit from a
weak external confinement which is as isotropic as possible. Experimental complications arise
when trapping several species at the same time due to a possible differential gravitational sag
between the two resulting in a reduced overlap. In section 3.8, I have discussed how this can
be overcome by using a special optical dipole trap with a carefully chosen wavelength. All
the experiments presented in this chapter were performed using the external confinement of
the magnetic trap which is characterized by the same absolute potential for 40K and 87Rb.
In order to reduce the central density as much as possible, but at the same avoid a reduction
in overlap due to the presence of the differential gravitational sag, the following scheme for
loading the mixture into the optical lattice has been developed: When the mixture is close
to degeneracy after the initial rf-induced sympathetic cooling, the shape of the elongated
magnetic trap is adjusted adiabatically to come closer to an isotropic situation. The idea is to
decrease the radial confinement (about 250 Hz for 87Rb) of the magnetic trap to about 150 Hz
by increasing the offset field. In order not to loose too much in terms of collisions for the final
evaporation stage and to make the geometry more isotropic, the axial trap frequency needs to
be increased at the same time. In principle, this could be achieved by increasing the overall
magnetic trap current, but for 11 Hz axial 87Rb trap frequency used during evaporation, the
trap is already running at the maximum current. The answer is therefore to increase the
axial confinement by means of an additional dipole trap beam. In the experiment, this is
performed by using one of the diagonal lattice beams and blocking the retroreflection using
an EOM between the collimation lens and the mirror. The additional dipole beam increases
confinement in the axial direction to about 50 Hz. In the combined potential of the laser beam
and the magnetic trap, one last step of rf-induced sympathetic cooling leads to degeneracy
of the mixture in a trap which is as isotropic as possible but not too weak against gravity.
The next step is to ramp up the optical lattice potential. For one diagonal axis and for
the horizontal beam, this is done just by increasing the power in the beam. For the second
diagonal axis which is in use for the additional dipole trap, the lattice potential is increased
by changing the voltage at the EOM so that the back-reflected fraction of the light increases.
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For all three lattice axes, this ramp-up procedure is performed simultaneously.

Below, I will discuss measurements for pure bosonic atoms and with a variable admixture
of fermionic atoms. In order to make the direct comparison as clear as possible, the pure
bosonic system is prepared in the same way as the mixture, only that the fermionic component
is removed immediately before ramping up the optical lattice using a resonant light pulse.
Final samples contain about 105 87Rb atoms (pure BEC with no discernible thermal cloud)
and a variable 0-20% fermionic impurity component subsequently loaded into the lowest Bloch
band of the optical lattice. The amount of 40K is controlled by adjusting initial laser cooling
parameters.

Due to the additional harmonic confinement by the magnetic trap and the Gaussian lattice
laser profiles, the mixture occupies a few ten thousand lattice sites with an occupation rising
from 0 in the outer regions to 1 fermion and >5 bosons per site at the center. Experimental
parameters have been chosen such that the fermionic impurities always stay within the bosonic
cloud. For 2 · 104 fermions at T = 0, the radial ensemble radius in the harmonic trap (before
lattice ramp-up) is roughly 8.6 µm with a central density just reaching the unity filling density.
For the assumption of a most compressed Fermi cloud with unity filling, the corresponding
radius is approximately 7 µm. These numbers have to be compared to the extension of a pure
BEC of ≈ 105 atoms, whose radial radius is ≈ 8.2µm for 25 ERb

r lattice depth.

After sudden switch-off of the lattice potential and a period of free expansion of 15-20 ms,
we record the interference pattern which builds up in the density distribution of the bosonic
component. The fermionic component is simultaneously imaged after 3-5 ms time of flight
and is used to determine the impurity concentration. In order to study the behavior of the
system, this procedure is repeated for several different final lattice depths.

6.2 Loss of coherence for deep lattices

Fig. 6.2 shows the evolution of the boson interference pattern for about 20% impurity con-
centration (bottom row) in comparison to a pure bosonic sample created under the same
experimental conditions but with a removal of the fermionic atoms just before the lattice
ramp-up sequence (top row). The lattice depths are given in units of the recoil energy for the
87Rb component ERb

r = (~2k2)/(2mRb) ≈ h ·2.14 kHz where k is the lattice wavenumber. The
loss of interference contrast which accompanies the breakdown of long range order is clearly
visible in both cases. In case of the pure bosonic gas, the loss of coherence accompanies the
well-known superfluid to Mott-insulator phase transition [119, 120]. The latter occurs as a
result of competition between the minimization of kinetic energy, parametrized by the tunnel-
ing matrix element J which tends to delocalize the atomic wavefunction over the crystal and
the minimization of interaction energy U (Fig. 6.2a). As can be clearly seen from Fig. 6.2b,
the presence of fermionic impurities induces a loss of coherence at much lower lattice depths
than for a pure BEC.

6.3 Quantitative analysis

In the following, I will study the influence of the fermionic component quantitatively. Taking
the interference contrast in the above pictures as a measure of coherence and putting it into
mathematical terms, one can define the visibility of the matter wave interference pattern as
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Figure 6.2: Time of flight absorption images of the bosonic component 15 ms after switching
off the lattice and trap potentials. a. Pure bosonic ensemble for three different lattice depths.
b. Fermi-Bose mixture for the same lattice depths and 20% fermionic impurity concentration.
The reduction of interference contrast visible in the images accompanies the onset of local-
ization. This loss of coherence is shifted to lower lattice depth in the presence of fermionic
impurities.
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different fermionic impurity concentrations.
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[125]

V =
Npeaks −Nint

Npeaks +Nint
. (6.1)

Here Npeaks denotes the sum of the number of atoms within the first order interference max-
ima, while Nint is the sum of the number of atoms in equivalent areas at intermediate positions
between the maxima. Complementary information can be extracted from the width of the
central interference peak which is related to the correlation length of the bosonic system
[120, 126]. Fig. 6.3 shows sample data comparing the behavior of ensembles with 3% and
7% impurity concentrations to a pure bosonic ensemble. The loss of coherence marked by
a loss of interference contrast and a decrease of correlation length is clearly visible in the
visibility curve as well as in the width data. Fig. 6.3 also shows that the loss of coherence
is shifted by an amount depending on the impurity concentration. Already for 3% impurity
concentration, the visibility data shows a significant shift. The corresponding width data,
however, essentially exhibits a steeper slope for the deep lattices with no pronounced shift as
compared to the pure bosonic system. This indicates a qualitative difference in the type of
transition for the pure bosonic system and the system with fermionic impurities.

We use two different methods to extract quantitative information about the shift of the
coherence loss from our experimental data. For the visibility data, we use a phenomenological
fit function

V(s) =
1

1 + exp(α · (s− scrit))
− V0 (6.2)

where s is the lattice depth in units of ERb
r , scrit is a measure for the onset of the coherence

reduction, and α is an additional fit parameter. The value of α always ranges around 0.35±0.05
and has no significant influence on the observed shift in scrit (fixing α to its mean causes
changes below 0.5ERb

r ). V0 is the visibility offset for small lattice depth which essentially
reflects the choice of the circle size around the interference peaks. For data as in Fig. 6.3, we
compare scrit for a pure bosonic sample recorded under the same experimental conditions to
the impurity induced transition and extract the shift of the transition. Resulting shifts are
plotted as a function of impurity concentration in Fig. 6.4. The corresponding width data is
analyzed by extracting the intersection point of two linear fits to the descending and ascending
branches of the data. As can be seen from Fig. 6.4, an increasing impurity concentration leads
to a considerable shift of the coherence breakdown. For 20% impurity concentration, the shift
is on the order of 5ERb

r .

6.4 Understanding the role of the fermions

In a pure bosonic system, the loss of coherence for deeper optical lattices accompanies the
superfluid to Mott-insulator phase transition. The simplest attempt to understand the origin
of the shift might be to explain it as a shift of a localized phase due to the heteronuclear
interaction.

In order to assess the size of a possible shift to an insulating phase, one can calculate the
value of the on-site Fermi-Bose interaction matrix element

UFB =
2π~

2aFB

µ
·
∫

wF (x)2wB(x)2 d3x = 1.1ERb
r (6.3)

The value on the right-hand side is calculated in the tight binding limit (i.e. using harmonic
oscillator ground state wavefunctions for wF (x) and wB(x)) at the localization transition
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point for our lattice parameters, based on a scattering length of aFB = −205(7)a0 [113].
This matrix element characterizes the additional potential felt by bosonic atoms due to the
presence of a fermionic impurity atom in a single potential well. It is thus on the order of the
expected shift of the localization transition for unity fermionic filling in the simple mean field
picture shown in Fig. 6.1e.

Another way of looking at this picture is to calculate the quantum critical point for the
onset of the Mott phase for a lattice potential modified by the interaction. The calculation
results in essentially the same shift on the order of one recoil energy.

On the other hand, in a trapped geometry, the fermionic atoms may tend to sit in the
center of the trap which can in turn increase the central bosonic density due to the attractive
interaction. An increased occupation number would result in an onset of a “Mott” phase of
the mixture for deeper optical lattices. The opposite has been observed in the experiment.

Quasi-exact one-dimensional DMRG calculations and quantum Monte Carlo simulations
[127] have recently shown that the expected shift would be towards deeper lattices and also
very small. The results have been interpreted in terms of an effective reduction of the Bose-
Bose repulsion by the Fermi-Bose attraction. Given the 1D nature of these calculations, it
is still unclear what the 3D result would be. Preliminary data from mean field calculations
performed by Marcus Cramer at Potsdam show that one would also expect a shift towards
deeper lattices, and a very small one.

Other effects may strongly influence the size of the shift and may even induce a loss of
coherence all by themselves. The role of the trap has an influence on the thermodynamic
behavior of the system, since the ramp up sequence of the optical lattice may affect both
absolute temperatures and critical temperatures. Depending on regimes, either adiabatic
cooling upon ramp-up of the lattice or adiabatic heating can occur. Note that the term
“adiabatic” means that this is not parametric heating due to imperfections of the system but
a fundamental process which is due to thermodynamic properties of the system and which is
fully reversible [128, 129, 130].

Similar experimental data as in this thesis have been obtained in Zürich with an important
shift towards shallower lattices [65], and the origin of the shift is currently by no means clear.
The large shift towards shallower lattices may indicate that disorder or any other of the effects
mentioned above may play a significant role.

It would be interesting to map out the nature of the transition by using further diagnostic
tools such as Bragg spectroscopy and look for the presence of an excitation gap. Other possible
diagnostics include spectroscopy of occupation numbers and correlation measurements.

A detailed understanding of the possible localization scenarios is a challenging task and the
measurements presented in this chapter are a promising starting point for further experimental
and theoretical studies on Fermi-Bose localization physics.
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Figure 6.4: Observed shift of coherence loss as a function of fermionic impurity concentration.



Chapter 7

Heteronuclear molecules in a 3D
optical lattice

Being able to perform experiments with ultracold polar molecules is one of the outstanding
challenges in atomic, molecular and optical physics [131]. The increasing interest in this
problem is motivated by a wide range of of research directions which would directly benefit
from the availability of such molecular samples. In the following, I will discuss possible
applications of ultracold polar molecules, possible routes currently being followed towards this
goal and then describe groundbreaking experiments performed within this thesis on the first
creation of ultracold heteronuclear molecules within a single well of an optical lattice by means
of Feshbach resonances. As will become clear from my discussion of current experimental
efforts, this is a crucial step towards advances in quantum computation, dipolar gases and
fundamental measurements.

7.1 The quest for ultracold polar molecules

7.1.1 Polar molecules and anisotropic interactions

A diatomic polar molecule is characterized by the presence of a permanent internal dipole mo-
ment occurring as a result of the electronic charge distribution not having the same “center of
mass” as the nuclear charge distribution1. The dipole moment associated with this electronic
charge distribution gives rise to a long-range dipolar interaction. This interaction is novel
in two senses: it is long range, and the interaction depends on the relative alignment of the
scattering partners. In a sample of aligned dipoles, it is energetically more favorable for two
dipoles to sit in front of each other than side by side. To date, all quantum gas experiments
have studied effects of internal interactions which are short-range and isotropic, with the ex-
ception of experiments performed with ultracold Cr [132] which has a noticeable magnetic
dipole moment2. Studies of dipole-dipole interacting quantum gases are expected to reveal
novel fascinating physics. For example, in the presence of dipolar interactions, the elementary
excitations and the stability of the gas in various dimensions are expected to strongly depend

1In chemistry, the concept of electronegativity of an element is used to estimate the degree of polarity
present in a covalent bond.

2In this case, the long range dipolar interaction [133] is relatively weak compared to the short range contact
interaction, although there is the perspective of tuning the short range part through Feshbach resonances [134]
and working with a fixed dipolar interaction.
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on the dimensionality, the external confinement and the ratio of long range to short range
interactions. To name only a few of the predicted effects, Quantum hall states of dipolar gases
have been considered, both for fermionic and bosonic particles [135, 136], phases of gases with
dipolar interactions in optical lattices [137] and novel solitonic behavior [138].

7.1.2 Polar molecules and quantum computation

It has been suggested by D. DeMille in 2001 [55] to use polar molecules for quantum compu-
tation. The idea is to encode quantum information in the orientation of the molecular dipole
moment relative to an external field. Using the dipole alignment of a single molecule, a single
qubit can be realized. A qubit register, i. e. multiple qubits can be realized by loading dipo-
lar molecules into a 1D optical lattice. In order to make this quantum information storage
register a quantum computer, some degree of coupling needs to be introduced between the
qubits. This is where the long range dipolar interaction becomes important: it couples mole-
cules at different lattice sites and is used as the quantum bus. Following the initialization of
the quantum register and the proper register operation, the readout of individual qubit states
can be achieved by adding an electric field gradient along the direction of the optical lattice
to separately address lattice sites through the Stark effect.

The suggested quantum computation scheme is currently being considered as a very
promising candidate for future scalable quantum computers with a low decoherence time.

7.1.3 Polar molecules and the EDM

Polar molecules are currently being considered for precision experiments testing upper limits
on the permanent electric dipole moment of the electron. While the standard model sets an
upper limit on such an EDM which is vanishingly small (about 10−40 em), supersymmetric
theories predict values of the EDM which are getting within reach of current experimental
efforts. Improving the upper limit of the EDM would thus eventually enable certain new
theories to be ruled out, while finding a non-zero EDM would be an exciting signature of
T-violating physics beyond the standard model. It has initially been pointed out by San-
dars [139] that the electronic EDM signature (a linear Stark effect) could be enhanced in
heavy paramagnetic atoms, which is expressed by the so-called “enhancement factor”. Several
experiments are under way testing limits on the EDM using e. g. atomic fountains, atoms
confined in solid helium matrices and beam experiments. In almost all atomic experiments,
the achievable sensitivity is limited by the electric fields that can be applied without initiating
a discharge. In paramagnetic heavy polar molecules, an enormous degree of polarization can
be achieved due to the internal electric field with only moderate external fields. Experiments
on polar molecules and the EDM are currently under way using e. g. PbO, TlF, and also
molecular ions. Measurements of the EDM of polar molecules would greatly benefit from the
availability of ultracold samples with long interrogation times, and the counting rate would
be substantially increased by having all molecules in a well defined quantum state.

7.1.4 Possible routes to molecular degeneracy

Actively pursued routes to molecular degeneracy fall into two different categories, depending
on whether the starting point is a deeply bound molecular sample or whether molecules are
assembled from precooled and possibly degenerate atoms. The different approaches will be
discussed in the following sections.
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The molecular way to molecular degeneracy

The key obstacle in obtaining ultracold or even degenerate molecular samples compared to
atomic Bose-Einstein Condensates or degenerate Fermi gases is the lack of laser cooling tech-
niques for molecular gases. The main issue is the wealth of molecular energy levels, enhanced
by rotational and vibrational degrees of freedom and the corresponding lack of clear cycling
transitions for laser cooling of molecules. Currently followed routes to molecular degeneracy
starting with deeply bound molecules therefore either rely on cryogenic techniques bringing
the sample into contact with a thermal reservoir or on interaction with external electric fields
slowing down the external degrees of freedom or filtering out low velocity classes. All of these
can be followed by subsequent evaporative cooling of a trapped sample, but the temperature
gap into the ultracold and even degenerate regime has yet to be bridged.

Buffer gas cooling Buffer gas cooling [140] is a very general technique for cooling anything
that can be held in a magnetic trap, i. e. any paramagnetic atom or molecule. It has been
pioneered by the group of J. Doyle at Harvard. Buffer gas cooling involves cryogenic techniques
in order to produce cold vapors of Helium which cools atoms and molecules through elastic
collisions. Buffer gas cooling can eventually be combined with evaporative cooling in order
to bridge the temperature gap into the ultracold.

Stark deceleration Stark deceleration [141] is based on the interaction of molecules with
an external electric field. A high field seeking molecule runs up a potential hill formed by a
pair of electrodes. Upon reaching the highest potential, it has lost kinetic energy, and this
loss in kinetic energy is conserved when the field is rapidly switched off. Through a cleverly
designed timing sequence and a suitable configuration of electrodes, molecular bunches with
greatly reduced longitudinal velocity can thus be produced from a collimated molecular beam.

Velocity filtering Velocity filtering [142] selects low-energy molecules from an effusive
source by means of Stark deflection as a first step to electrostatic trapping of this low-energy
tail of the velocity distribution.

The atomic route to molecular degeneracy

The technical difficulties associated with slowing down the external degrees of freedom of
molecules have made another route to molecular degeneracy attractive. This approach is
based on ultracold atomic samples which are routinely produced in laboratories today. The
goal is to assemble ultracold molecules in both their external and internal (rovibrational)
ground state from ultracold atoms by means of a coherent photoassociation step.

Photoassociation The idea behind photoassociation is to excite two colliding atoms into an
excited molecular state using a “pump” pulse and then to dump the excited state population
into the internal ground state by means of a second “dump” pulse. Formation of vibronic
ground state molecules from a MOT has been demonstrated in 2005 [143]. Several important
parameters such as the Franck-Condon overlap between initial and final states, pulse shape,
excitation bandwidth etc. influence this process. The currently most promising route is to use
femtosecond lasers for the pump/dump-scheme. These lasers have the advantage of offering
arbitrary frequency synthesis, combined with the benefit of coherent accumulation techniques
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Figure 7.1: Cartoon picture of a Feshbach resonance. When bound molecular state is below
the open channel (left), molecules are formed. Interactions are repulsive in this case. When
the molecular bound state is above the resonance, no stable Feshbach molecules are formed
in free space.

which can be used to increase the overall efficiency. The excitation bandwidth can be varied
by tuning pulse length and shape.

Parallel to the above mentioned work on photoassociation, recent years have seen a lot of
progress in molecule formation based on Feshbach resonances. Molecule creation at Feshbach
resonances is based on the fact that the occurrence of the resonance itself is due to the coupling
between a bound molecular state energetically close to the incoming energy of two free atoms.

Feshbach molecules Feshbach resonances in scattering between atoms occur when the
energy of a bound molecular state is close to degeneracy with the open channel of two colliding
atoms. In this case, the coupling between the two states at the resonance allows the s wave
scattering to be tuned to large and attractive or large and repulsive by tuning the respective
position of the two energy levels using e. g. magnetic fields.

When the energy of the bound molecular state is above the free-atom threshold, the
coupling between the two close to degenerate states gives rise to strong attractive interactions.
In free space, no two-body bound state exists (see Fig. 7.1 right).

When the energy of the bound molecular state is below the open channel, the interaction
between atoms is large and repulsive, and pairs of atoms can occupy the two-body bound
state and form a weakly bound molecule with typical binding energies between a few 10 kHz
and a few MHz. Starting from an atomic sample, such molecules can e. g. be created by
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sweeping a magnetic field from attractive interactions through the resonance center position
over to repulsive interactions. (see Fig. 7.1 left).

In a groundbreaking experiment performed in the group of C. Wieman [144], this magnetic
field sweep technique was first used to create a coherent atom-molecule superposition. In this
and following experiments with bosonic atoms and Feshbach resonances, it was observed that
the resulting molecular lifetime was rather low and on the order of about 1ms, limited by
collisional losses.

Molecules created from fermions are surprisingly stable! A big step forward in
Feshbach chemistry was achieved when it was realized that bosonic molecules created from two
fermionic atoms using the magnetic field sweep technique would be collisionally stable due to
the Pauli exclusion principle [145]. The argument is as follows: These weakly bound molecules
have a relatively large spatial extent, and the atomic character of the two constituents still
plays a major role. In order for inelastic collisional losses to occur, two molecules need to come
close to each other. This necessarily implies that two identical fermions come close to one
another, which is prohibited by the Pauli exclusion principle. The experimental demonstration
of long-lived bosonic molecules created from fermionic atoms was soon to follow [24, 25, 26,
27, 28]. While there was some initial controversy about the scattering length aMM between
these bosonic molecules, it soon became clear that aMM ≈ 0.6·aFF, where aFF is the Feshbach-
resonant scattering length between the constituents [145].

The next landmark in the field was evaporative cooling of these long-lived bosonic mole-
cules and resulted in the creation of a molecular BEC [29, 30, 31], clearly visible in the bimodal
distribution of time of flight absorption images. These experiments thus realized the BEC
limit of the BCS-BEC crossover. The development culminated in early 2004 [32, 33, 34, 35, 36]
when fermionic condensates were created on the BCS side of the Feshbach resonance by ramp-
ing the magnetic field back to the other side of the Feshbach resonance where the interaction is
attractive and no bound two-body state exists. Following studies revealed both the excitation
spectrum of the system [34], the expansion behavior [36, 35], and established the superfluid na-
ture of the fermionic condensates through the observation of vortices [146]. Hence, the system
of two non-identical fermions interacting at a Feshbach resonance realizes the full BEC-BCS
crossover discussed by Eagles, Nozières, Schmidt-Rinck, Leggett [147, 148, 149] and others
and constitutes a continuous crossover between bosonic and fermionic superfluidity.

Molecules and lattices Parallel to this development, it was realized that the lifetime
limitation of molecules created from bosonic atoms [144, 150, 151, 152, 153] can be overcome
in 3-dimensional lattices by creating molecules from atom pairs in isolated wells of the lattice
and thus inhibiting inelastic collisions [154, 155].

Creation of molecules in optical lattices highlighted the role of the external trapping
potential in molecule formation. A model system of two particles in a harmonic trap was
already considered in 1997 [156], and in 2005 experiments with optical lattices demonstrated
that the existence of the external trapping potential shifts the free-atom threshold, resulting
in the existence of molecules on the attractive side of the Feshbach resonance where no stable
molecules exist in free space [41], also seen later in the behavior of repulsively interacting
pairs [157].

Today, many people consider molecule creation through magnetic field sweeps as the way
to create molecules at Feshbach resonances. In recent years, however, a number of techniques
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has been used to create Feshbach molecules. For example, it seems to be a unique property
of 6Li that molecule formation can be achieved by evaporative cooling of thermal lithium
atoms on the repulsive side of the Feshbach resonance without any magnetic field sweeps [30].
Another technique which has been demonstrated is magnetic field modulation at a Feshbach
resonance [158]. When the modulation frequency corresponds to the binding energy of the
bound molecular state at the time average value of the magnetic field, free atoms can be
converted into molecules on the repulsive side of a Feshbach resonance. Another possibility
of creating molecules is rf association of atoms into molecules as developed within this thesis.

7.2 Ultracold heteronuclear Feshbach molecules

While heteronuclear Feshbach resonances were already predicted in 2003 [159] (for 40K—
87Rb) and experimentally identified through collisional losses in the middle of 2004 [63, 62],
all of the fascinating physics which has become accessible through Feshbach resonances has
been limited to homonuclear systems. As a crucial step towards the exploration of dipole-
dipole interacting molecular systems, novel quantum computation schemes and fundamental
measurements, this thesis presents the first experimental demonstration of ultracold long-
lived heteronuclear molecules. Molecules are created within the single well of an optical
lattice at a heteronuclear Feshbach resonance by means of a novel technique developed for
this purpose and based on rf spectroscopy. The technique avoids magnetic field ramps and
precisely determines the energy spectrum of pairs composed of one 40K and one 87Rb atom
in the optical lattice close to a Feshbach resonance. Lifetime and molecule creation efficiency
have been measured and are consistent with a physical picture of lattice occupation. Both
molecules stable in the absence of any external potential, confinement-induced molecules
and repulsively interacting pairs with a positive “binding energy” have been identified. A
detailed understanding of this model system has been developed based on a pseudopotential
approach for the atomic interaction in cooperation with F. Deuretzbacher, K. Plassmeier and
D. Pfannkuche. The model consistently treats both the anharmonicity of the lattice potential
and the general case of particles with unequal trapping frequencies; excellent agreement with
numerical simulations has been obtained. By implementing coherent deexcitation schemes
based on femtosecond technology, it may be possible to convert these Feshbach molecules
into deeply bound molecules in both their internal rovibrational and external ground state.
This work thus opens up intriguing perspectives both for dipolar quantum gases, fundamental
measurements and novel quantum computation schemes. Parallel to this work, efforts at JILA
have resulted in the production of short-lived heteronuclear 40K-87Rb molecules in an optical
dipole trap and later in heteronuclear 87Rb-85Rb molecules [160].

7.2.1 Rf association of molecules

As discussed above, various techniques have been employed for molecule production at Fesh-
bach resonances in the literature. Within this thesis, rf association in an optical lattice as a
novel technique for molecule production has been used. The idea of this association scheme
is to start with a non Feshbach-resonant mixture in one spin state. In another spin state, a
Feshbach resonance occurs at the same magnetic field, and the difference between this state’s
energy and the non-interacting limit in the same spin state is precisely the binding energy.
By shining in an rf photon which provides the undisturbed energy corresponding to the spin
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flip plus the additional interaction or binding energy, we can populate the two-body bound
molecular state (see Fig. 7.4).

This section discusses experimental techniques developed for molecule production based
on rf spectroscopy [22, 23]. In the presence of an optical lattice, molecule production through
rf association provides us with a precise measurement of the binding energy at the same
time, thus extracting a maximum of information about the energy spectrum. Rf association
allows molecule production without rapid magnetic field sweeps and uncertainties associated
with magnetic field settling, thereby removing technical complications which can make a
measurement of the binding energy quite cumbersome.

Rf association as a method for molecule production is inspired by rf spectroscopy. In my
eyes, rf spectroscopy together with the advent of Feshbach resonances is one of the key tech-
niques that has pushed the understanding of resonant strong interactions in recent years. The
idea behind rf spectroscopy is to observe collisional shifts in atomic ensembles as interaction
induced frequency changes on rf and microwave transitions between sub-states of the atomic
ground states. Consider the simple case of a complete transition (π pulse) between two states
1 and 2 in a Bose-Einstein condensate with density n. The size of the collisional shift is given
by

∆ν12 =
2~

m
n (a1 − a2)

The size of the collisional shift is proportional both to the density and to the difference
in scattering length between initial and final state. For Feshbach-resonant two-component
Fermi gases in strongly confining dipole traps, typical collisional shifts are on the order of a
few kHz [22]. Measured collisional frequency shifts in the optical lattice as discussed below
in the context of heteronuclear molecule formation have been between a few kHz and up to
about 150 kHz, and in both cases the difference in scattering length is thousands of Bohr
radii. Spectroscopy of lattice site occupation in the optical lattice [161] has been used to
detect scattering length differences of a few Bohr radii only by making use of magnetic-field
insensitive clock transitions. These had been used at JILA [162] to study interaction shifts in
magnetic traps.

7.2.1.1 40K and 87Rb in external magnetic fields

In order to understand rf spectroscopy as used for molecule creation in this thesis, let us first
look at the energy levels of 87Rb and 40K in the presence of a homogeneous external magnetic
field. For J = I ± 1/2, the well-known Breit-Rabi formula yields the energy levels in the
presence of an external magnetic field:

EB = − ∆EHFS

2(2I + 1)
+mF gKµKB ± ∆EHFS

2



















1 − x · sgn(A) −mF · sgn(A) = I + 1/2

√

1 + 4mF
2I+1x+ x2 otherwise

(7.1)
where x is defined by

x =
gjµb − gKµK

∆EHFS
· B (7.2)
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∆EHFS is related to the Landé interval constant A according to:

∆EHFS = A ·
(

I +
1

2

)

(7.3)

Values of the A and B constants for 87Rb and 40K as well as other atomic parameters can be
found appendix B.

In Figs. 7.2 and 7.3, I have plotted the resulting energy structure for both 40K and 87Rb,
clearly showing both the linear Zeeman regime and the Paschen-Back limit. Due to the lower
hyperfine splitting, much lower fields are required to drive 40K into the Paschen-Back regime
than for 87Rb. The resulting magnetic field insensitivity of transitions between neighboring
levels at experimental fields is one of the reasons for the success of rf spectroscopy in this
system. States are labelled both by their low-field (F = I + J) limit F and mF quantum
numbers and by the independent mI and mJ quantum numbers in the Paschen-Back regime.

7.2.1.2 Transition for rf spectroscopy

The Feshbach resonance that was used for molecule production in this work occurs between
87Rb atoms in the |1, 1〉 and 40K atoms in the |9/2,−9/2〉 absolute ground states at a magnetic
field of 547 G. The idea for determining the energy spectrum of the |9/2,−9/2〉⊗|1, 1〉 state is
to drive a transition between the 40K |9/2,−7/2〉 state and the Feshbach-resonant |9/2,−9/2〉
state. The former features a scattering length which is independent of B over the magnetic
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in this thesis are highlighted in blue.



120 CHAPTER 7. HETERONUCLEAR MOLECULES IN A 3D OPTICAL LATTICE

|9/2,−9/2〉

E

Eb

|9/2,−7/2〉







���

Pure atomic

transition for

field calibration

Interaction shift

at lattice sites

with one atom pair

≈80 MHz

Figure 7.4: Illustration of rf spectroscopy for 87Rb–40K

field range studied in the experiment and small (given approximately by the background
scattering length)3; the energy of the latter strongly varies as a function of B across the
resonance compared to the undisturbed |9/2,−9/2〉 energy level. The interaction energy
(binding energy) of the Feshbach-resonant state |9/2,−9/2〉 is thus given as the difference
of the observed |9/2,−7/2〉 → |9/2,−9/2〉 transition frequency compared to the undisturbed
transition frequency which can be calculated from the Breit-Rabi formula or extracted from
a measurement where no bosons causing the collisional shift are present (see Fig. 7.4). Note
that this measurement of the collisional shift is up to the small constant offset caused by the
non-resonant |9/2,−7/2〉 ⊗ |1, 1〉 interactions.

7.2.2 Experimental protocol

The experimental implementation of this scheme is as follows: A quantum degenerate mixture
of 40K and 87Rb in the |9/2, 9/2〉 ⊗ |2, 2〉 state is prepared in the crossed magic dipole trap
(see section 3.8) using the procedure discussed in chapter 5. Using a current of 1 A through
the main Helmholtz coils, a field of approximately 21 G is created for state preparation. In
the following, the rf and microwave manipulation setup discussed in section 3.9.1 is used to
prepare the mixture in the initial state of the rf association process. A 10 ms microwave
sweep over 400 kHz on the hyperfine transition transfers 87Rb atoms from |2, 2〉 to |1, 1〉 (see
section 3.9.2). Directly afterwards, a 870 kHz rf sweep from 7.7 MHz to 6.83 MHz transfers
40K from |9/2, 9/2〉 to |9/2,−7/2〉 within 40 ms. Any remaining atoms in 87Rb |2, X〉 states

3The closest known heteronuclear Feshbach resonances in this state are located at 522 G and 584 G [109]
and have theoretical widths of below 1 G.
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are removed using a resonant light pulse. Afterwards, the magnetic field is ramped up to
a value close to the Feshbach resonance occurring at 547 G. In total, we allow 150 ms for
the field to stabilize close to its final value. During the last 100 ms, the 3D optical lattice
intensity is increased from zero to its final value using a linear ramp. At magnetic field values
of 547 G, the 40K |9/2,−7/2〉 → |9/2,−9/2〉 transition occurs at about 80 MHz. In order
to probe the energy spectrum for a given magnetic field, an rf pulse with durations between
400 and 800 µs is irradiated using the standard evaporation antenna (a discussion of rf pulse
shapes and the achieved resolution follows in section 7.2.8.2).

About 1 ms after the end of the pulse, the lattice intensity is ramped down using a linear
ramp within 1 ms in order to reduce the kinetic energy, and the dipole trap is then suddenly
switched off, marking the beginning of the time of flight. During time of flight, we detect both
remaining 40K |9/2,−7/2〉 atoms and 87Rb |1, 1〉 atoms as well as weakly bound molecules
and 40K atoms in the |9/2,−9/2〉 channel.

I will first discuss how a maximum of sensitivity is achieved for the detection of weakly
bound molecules and |9/2,−9/2〉 40K atoms, since this signal is used to extract rf spectra
for the determination of the binding energy. During the time of flight, the magnetic field
is left at its current value. After 4 ms time of free expansion, we image the |9/2,−9/2〉
component at a detuning of -764 MHz with respect to the zero field detection frequency
(F = 9/2 → F ′ = 11/2 at B = 0) on the main imaging system perpendicular to the magnetic
field (for a discussion of high field imaging, see section 3.11.3.2 and appendix A). The linear
polarization is perpendicular to the magnetic field, such that it can be represented as a
superposition of left- and right- circular polarizations in the direction of the magnetic field.
The corresponding cycling transition is a |mJ = −1/2,mI = −4〉 → |mJ = −3/2,mI = −4〉
transition and requires circular polarization. Thus, about every second photon contributes to
the signal. While this represents a potential disadvantage (lower signal), this is by far out-
weighted by the fact that this imaging axis usually gave the lowest mechanical vibrations and
hence less interference fringes in the image. The interference fringes are further suppressed
on this axis by quickly switching off the magnetic field after the absorption image using
IGBTs and directly taking the reference image within 500 µs (see section 3.11.2.3). As the
laser detuning is held constant, the imaging laser does not “see” any remaining atoms at zero
magnetic field, although they have not had time to leave the imaging area. As our main
interest is in detecting small numbers of molecules and atoms down to a few hundred, this
detection scheme achieved best sensitivity for our purposes.

40K atoms in the |9/2,−7/2〉 and 87Rb atoms are imaged in the direction of the magnetic
field using one CCD chip and the two-species imaging technique (see section 3.11.2.2). With
the magnetic field still switched on, the 40K |9/2,−7/2〉 absorption image is taken after 3 ms at
a detuning of -833 MHz, corresponding to a |mJ = −1/2,mI = −3〉 → |mJ = −3/2,mI = −3〉
transition, and the 87Rb |1, 1〉 atoms are transferred into |2, 2〉 using a short 40 µs repumper
pulse and imaged immediately afterwards with a total TOF of 15 ms close to zero magnetic
field. The chip with the two absorption images is then read out, and corresponding reference
and dark images are taken after delays of 200 ms.

7.2.3 Rf spectrum

At fixed magnetic field, the rf pulse frequency is varied in the vicinity of the undisturbed 40K
|9/2,−7/2〉 → |9/2,−9/2〉 rf transition to obtain rf spectra as in Fig. 7.5 for B=547.13 G.
The spectrum shows the number of 40K atoms in the |9/2,−9/2〉 state and weakly bound
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Figure 7.5: Rf spectroscopy of 40K–87Rb at 547.13 G in a 40 Er deep optical lattice.

Feshbach molecules as a function of rf detuning from the frequency corresponding to the pure
40K |9/2,−7/2〉 → |9/2,−9/2〉 transition at the set value of the magnetic field. The large
peak at zero detuning occurs whether bosons are present in the optical lattice or not. It stems
from lattice sites where only one fermion and no boson is present and is used as a precise
magnetic field calibration in connection with the Breit-Rabi formula eq. 7.1.

The second peak occurring about 14 kHz above the undisturbed peak is due to the exis-
tence of a collisional shift at lattice sites where one boson and one fermion are present. The
strong interaction between the two at the Feshbach resonance introduces a strong differential
collisional shift between the |9/2,−7/2〉 and the |9/2,−9/2〉 levels. In this case, additional
energy is required to drive the rf transition. This implies that in the presence of a bosonic
atom, the energy of the target state |9/2,−9/2〉 is lower than in the reference level, which
shows that the target state has a negative binding energy and that heteronuclear molecules
have been formed through rf association. Forming heteronuclear molecules through rf associ-
ation thus measures the binding energy of these molecules at the same time. In the particular
case of Fig. 7.5 recorded at a magnetic field of 547.13 G, the interaction between 40K and
87Rb is attractive which, in free space, would not allow molecules to be created because the
bound molecular state is above threshold. As we shall see, the negative binding energy of the
molecules in Fig. 7.5 is due to the presence of the optical lattice which admits the presence of a
bound state even for attractive interactions. The resulting molecule is a confinement-induced
molecule which will decay into free particles when the lattice potential is removed.

7.2.4 Energy spectrum

In order to extract information about the energy spectrum over the whole magnetic field
range of the Feshbach resonance, spectra as in Fig. 7.5 have been recorded for a number of
magnetic fields around 547 G. For each of the spectra, the molecular binding energy has been
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Figure 7.6: Observed energy spectrum of 40K 87Rb atom pairs at an individual lattice site for
two different values of the lattice depth.

extracted by fitting both atomic and molecular peaks and taking the difference in position
between the atomic and the molecular peak. The resulting spectrum is shown in Fig. 7.6,
recorded for two different values of the lattice depth, 40.0 Er and 27.5 Er.

The vertical bar in Fig. 7.6 represents the center position B0 of the Feshbach resonance as
determined from 40K-87Rb interactions in an optical dipole trap (chapter 5). In the magnetic
field range considered here, the interaction is attractive above B0 and repulsive below B0.

The energy spectrum shows two basic branches. The lower branch or molecular branch
is characterized by the presence of a negative binding energy, and the upper branch, which
is only observed for repulsive interactions, is characterized by a positive “binding energy”.
In a system of pure bosons confined in an optical lattice, the behavior of these repulsively
interacting pairs has been studied in recent experiments in Innsbruck [157].

In the molecular branch, one can distinguish between attractive and repulsive interactions.
Above B0, we access an energy branch of confinement-induced molecules [41, 43] which exhibit
a negative binding energy due to the presence of the lattice potential. The sample rf spectrum
in Fig. 7.5 has been recorded in this regime. As the resonance center is crossed, there is a
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smooth transition into “real” molecules which are stable even in the absence of an external
potential. As the scattering length decreases from infinity (at the resonance) towards zero,
these molecules become more and more deeply bound. The maximum binding energy observed
in the experiment is about -130 kHz.

7.2.5 Modelling strong heteronuclear interactions in the lattice

In order to qualitatively and quantitatively understand the observed energy spectrum, let
us consider a model which was considered in 1997 to describe two interacting particles in a
harmonic potential [156]. The model describes the atomic interaction as a regularized delta-
type interaction potential. The Hamiltonian of the system thus consists of the kinetic energy
of the two atoms, of the trapping potential and the interaction potential:

H = − ~
2

2m1
∆1 −

~
2

2m2
∆2 +

1

2
m1ω

2
1r

2
1 +

1

2
m2ω

2
2r

2
2 +

2π~
2a

µ
δ(r)

∂

∂r
r + Vanh(~r1, ~r2) (7.4)

where a is the s-wave scattering length between the two atoms, m1,2 the respective mass,
µ = m1 ·m2/(m1 +m2) the reduced mass, ~r1,2 the respective single particle coordinate, ω1,2

the harmonic trap frequency for atom 1 and 2 and Vanh contains anharmonic correction to
the external trapping potential. Reference [156] proceeds by introducing relative and center
of mass coordinates ~r = ~r1 − ~r2 and ~R = m1~r1+m2~r2

M where M = m1 +m2 is the total mass.
By introducing frequencies
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the resulting Hamiltonian takes the form
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+µ∆ω2 ~R · ~r + Vanh(~R,~r) (7.10)

= HCM +Hrel +Hco (7.11)

with one part HCM involving only center of mass coordinates, one term Hrel containing only
relative coordinates and a final term HCO potential coupling the two coordinates. Ref. [156]
makes the assumption of equal masses and equal trapping frequencies and considers purely
harmonic trapping. In this case, the coupling term vanishes and the solution of the center of
mass motion are harmonic oscillator states with trapping frequency ωCM . The eigenvalues
and eigenfunctions of Hrel are determined using a harmonic oscillator representation of the
unknown wave function to solve the problem of relative motion4. The result for the energy

4Ref. [156] introduces unconventional factors of
√

2 in center of mass and relative coordinates in order to
obtain simpler final expressions. In this thesis, the textbook definition is used.



7.2. ULTRACOLD HETERONUCLEAR FESHBACH MOLECULES 125

eigenvalues Erel of the relative motion is implicitly given by

2
Γ [−Erel/(2~ωrel) + 3/4]

Γ [−Erel/(2~ωrel) + 1/4]
=

1

a/lrel
(7.12)

where lrel =
√

~/(µωrel) is the harmonic oscillator length associated with the relative motion.
Equation 7.12 allows us to plot a as a function of Erel or, alternatively, by changing axes,
the various energy eigenvalues as a function of the dimensionless scattering length a/lrel as
shown in Fig. 7.7. Note that for two identical particles, ωrel ≡ ωCM ≡ ω1,2 ≡ ω, and that
Fig. 7.7 shows the energy of relative motion in units of ~ω. The regularized delta potential
only affects s states with zero angular momentum; only these are shown in Fig. 7.7. From
the treatment of the quantum mechanical harmonic oscillator, we know that these s states all
correspond to an even number of quanta. All other states are not affected by the interaction
and are not shown in the figure.

In order to understand the spectrum of Fig. 7.7, let us first consider the non-interacting
limit. In this case, for s states, Erel = (2n+ 3/2)~ωrel, and the absolute ground state has an
energy of relative motion of 3/2~ωrel, as can be seen in Fig. 7.7.

For strong attractive interactions a < 0, these harmonic oscillator states approach the
lower lying states with non-zero angular momentum and an energy lower by one quantum.
When talking about the lowest level, this corresponds to confinement-induced molecules, since
the energy is lower than the energy of the noninteracting limit, resulting in a negative value
of the binding energy with a unitary limit of −~ω for a→ −∞.

For strong repulsive interactions a > 0, the s states approach the higher lying states with
l 6= 0 characterized by one additional quantum of relative motion. In this case, we obtain
repulsively interacting atom pairs characterized by a positive “binding energy” of +~ωrel in
the unitary limit a→ +∞.

For repulsive interactions, there is a special branch of the energy spectrum which, in the
limit a → +∞, is energetically degenerate with the n = 0 l = 0 a → −∞ state. For small
values of a, this branch features a diverging binding energy, corresponding to the formation
of molecules which are bound even in the absence of the external trapping potential. The
degeneracy of the two aforementioned energy levels in the limit of strong interactions is the
origin of the smooth transition from confinement-induced molecules to “real” molecules in the
experimentally observed energy spectrum of Fig. 7.6, as we shall see.

Next, let us look at the influence of the anharmonicity and of the difference in trap
frequency between the two particles, which both lead to a coupling between the relative and
center of mass motion through HCO. In this case, a numerical solution to the full problem can
be found by diagonalizing HCO in the basis of the decoupled problem corresponding to the
energy eigenvalues of eq. 7.12 and the wavefunctions given in [156]. This approach has been
developed in close collaboration with K. Plassmeier, F. Deuretzbacher and D. Pfannkuche.

Fig. 7.8 shows the resulting energy spectrum as a solid line. The calculation is based
on experimental parameters used for molecule production as described above, i. e. for a
lattice depth of 40.0 Er for 87Rb. For reference, Fig. 7.8 also shows the energy spectrum
without the coupling term. As can be seen, the effect of the coupling term is substantial
and most pronounced in the repulsively interacting pair branch. The effect of the coupling
term decreases the closer one comes to the “real molecule” part of the spectrum. An intuitive
picture is that in the molecular branch of the spectrum, the particles become more and more
deeply bound, get closer to each other and behave more and more like one particle. In this
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model. The calculation has been performed for a lattice depth of 40.0 Er for 87Rb. For
comparison, the spectrum without the coupling terms and the anharmonicity is also shown
(dashed line).

limit, the difference in trap frequency and the anharmonicity of the potential begin to loose
their importance, and the binding energy is close to the free space binding energy. Note
that the binding energy shown in Fig. 7.8 includes the center of mass energy quanta, but is
normalized to the energy of relative motion.

Now, let us look at the energy spectrum not as a function of scattering length, but as a
function of magnetic field at an atomic Feshbach resonance. At the Feshbach resonance, the
scattering length varies according to

a = abg ·
(

1 − w

B −B0

)

(7.13)

where abg is the background scattering length, and w the width of the Feshbach resonance,
characterizing the magnetic field separation between infinite a at the resonance position B0 on
the one hand and the noninteracting limit a = 0 at B = B0 +w on the other hand. In the case
of the resonance used for molecule formation in this thesis, w ≈ -2.9G, and abg is expected
to be approximately equal to the scattering length measured for the magnetically trapped
states, i. e. between 200 and 300 a0. When combining the pseudopotential solution with
equation 7.13, one obtains the binding energy of the various energy branches as a function of
magnetic field as seen in Fig. 7.9. The dotted line shows the result of the numerical solution,
together with the experimental data for a lattice depth of 40.0Er . As can be seen, the above
treatment qualitatively reproduces the energy spectrum very well; both the smooth transition
from confinement-induced molecules to “real” molecules and the repulsively interacting pair
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Figure 7.9: Energy spectrum as a function of magnetic field at the Feshbach resonance for
the pseudopotential model. The calculation shows both a result based on literature values
for the Feshbach resonance parameters (dashed line) and a fit of the theoretical model to the
experimental data allowing a precise determination of the resonance position (solid line).

branch are clearly visible.

A few words on the parameters abg, w and B0 used in obtaining Fig. 7.9 are appropriate
here. The studies of tunable interactions in a dipole trap which I have presented in chapter 5
constrained B0 to 546.8(1) G. It has been pointed out in ref. [32] that molecule formation
and dissociation can allow a very precise determination of a Feshbach resonance position.
In the case of lattice molecules, the resonance position shows no particular discontinuity
in the observed energy spectrum; the energy spectrum is nevertheless very sensitive to B0.
Feshbach parameters which are in a sense orthogonal to B0 are w and abg. For strong resonant
interactions as observed in the experiment, the leading 1 in equation 7.13 becomes small to the
second term, and abg and w become mostly equivalent parameters. Fig. 7.9 has been obtained
by using the Feshbach resonance center position and the width w abg as fit parameters; abg=-
189 a0 has been taken from ref. [113]. Note that due to the uncertainty in our knowledge
of abg, the above procedure only allows the precise determination of B0. The resulting fit
parameter for w is merely shown as an illustration. The resulting resonance center position
of 546.65 G lies slightly outside the confidence interval from the observation of mean-field
tuning of interactions (see chapter 5), which may be due to some sweep imperfections in
those measurements.

Looking closely at Fig. 7.9, there is one outlier at 547.4 G. This data point has been verified
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several times. After completion of the experimental work discussed here, a very narrow spin
resonance (width ca. 100 mG) located at this magnetic field value has been brought to our
attention by the LENS group, which may explain this feature. Also, looking at magnetic
field values close to the resonance position, the pseudopotential binding energy curve seems
to lie slightly above the experimental data points. This may be due to the fact that when the
scattering length becomes on the order of the harmonic oscillator length, energy-dependent
pseudopotentials may introduce corrections to the regularized δ potential.

7.2.6 Transfer efficiency

The maximum expected efficiency of molecule creation in the optical lattice can be estimated
by looking at the number of 40K atoms occupying a lattice site where exactly one boson is
sitting, compared to the total number of 40K atoms in the lattice at sites where no more than
one boson is present. This fraction has to be compared to the ratio of transfer amplitudes of rf
association on the molecular peak, compared to the atomic peak. We estimate the fraction of
40K atoms which can undergo rf association to be about 10%, which is by no means a rigorous
result, but sets the scale of what can be expected. Fig. 7.10 shows experimental results for
the transfer efficiency of the rf association process as a function of magnetic field, both for
the molecular branch and for the repulsively interacting pair branch. The experimental data
is compared to a theory curve which has been calculated using the overlap integral between
the initial state wavefunction of rf association (confinement-induced molecule with almost
vanishing binding energy due to the small background scattering length) and the final state
using the waveforms resulting from the pseudopotential model. Experimentally observed
transfer efficiencies have been scaled by a global normalization factor in order to be able to
compare them to the theory curve.

As can be seen, the rf association process is most efficient for confinement-induced mole-
cules where the initial and final state wave functions are very similar. The observed efficiency
drops to about 20% for the more deeply bound molecules, which is in agreement with the
calculation based on the pseudopotential model.

In the repulsively interacting pair branch, the highest transfer efficiencies are observed for
small scattering lengths at low magnetic fields, where the initial and final state are still close
to each other; it also drops to about 20% as we approach the resonance where the scattering
length is large and positive. Again, the behavior of the transfer efficiency is well described by
the pseudopotential model.

7.2.7 Lifetime of the molecular sample

In my introductory remarks on Feshbach molecules, I have already mentioned an aspect of
Feshbach chemistry which is of extreme experimental relevance: the lifetime of the resulting
molecular sample. In general, these molecules are very fragile objects due to their highly
excited internal state, leading to large collisional losses, possibly both molecule-molecule and
atom-molecule collisions. Initial experiments with molecules created from bosonic atoms [144,
150, 151, 152, 153] correspondingly showed a very short lifetime, meaning that degeneracy
could be achieved, but not thermal equilibrium. This limitation has been overcome in the
presence of a deep 3D optical lattice [154, 155]. Molecules created from two fermionic atoms
have shown a long lifetime close to Feshbach resonances due to Pauli-forbidden inelastic de-
cay [145]. For heteronuclear molecules composed of a bosonic and a fermionic atom, the situ-
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ation is somewhat more complicated; suppression of collisions due to their fermionic character
is expected for more deeply bound molecules [62]. In addition collisions with the remaining
free atoms are expected to strongly limit the lifetime of the molecules, and this effect will
tend to become more important the deeper the molecule is bound.

In the experiment described here, heteronuclear molecules are produced within 3D optical
lattices where the large tunneling time strongly reduces inelastic collisional losses. Fig. 7.11
shows a measurement of the lifetime of the heteronuclear molecular sample in an optical
lattice with a depth of 40.0 Er as a function of magnetic field. The lifetimes are the 1/e
times obtained from exponential fits to the molecule number decay curves. We find a lifetime
of about 120 ms for weakly bound confinement-induced molecules. In the vicinity of the
resonance, the lifetime is about 80 ms, and drops to 20 to 40 ms for more deeply bound
molecules. The measurement is performed by rf associating atoms originally in the |1, 1〉 ⊗
|9/2,−7/2〉 state into molecules via a π pulse on the molecular rf transition and observing
them on the high-field 40K |9/2,−9/2〉 detection frequency.

Exactly on the molecular resonance, rf association creates only molecules and does not
transfer unpaired 40K atoms initially in the |9/2,−7/2〉 state. However, high-field imaging
does not distinguish between atoms and weakly bound molecules, as long as they are in
the |9/2,−9/2〉 channel. It is therefore of potential concern that molecules may fall apart
and form unpaired 40K |9/2,−9/2〉 atoms which would be taken for a false molecular signal.
In order to exclude this scenario, after molecule formation, we transfer any remaining 40K
|9/2,−7/2〉 atoms into the |9/2,−5/2〉 state using an rf sweep at 85 MHz. A resonant light
pulse on the 40K |9/2,−7/2〉 detection frequency ensures that no atoms in this state are left5.
We then introduce a slot with a variable hold time which is used to extract the lifetime. With
the |9/2,−7/2〉 state completely empty, we can now shine in an rf π pulse on the atomic
|9/2,−9/2〉 → |9/2,−7/2〉 transition in order to transfer any possibly remaining unpaired
40K |9/2,−9/2〉 into the |9/2,−7/2〉 state which has been emptied before. Should there by
any unpaired |9/2,−9/2〉 before this procedure, they can now be detected on the |9/2,−7/2〉
high field detection transition and distinguished from the molecular signal. We have however
never found a significant atomic contribution in the |9/2,−9/2〉 channel. This proves that the
lifetime measurement really measures the lifetime of the molecular sample.

In order to understand the lifetime, let us look at atom-molecule collisions. Here we
need to distinguish between 40K and 87Rb atoms. Remaining 87Rb atoms can scatter with
the molecular sample, no matter how deeply bound; there is no Pauli blocking of collisions
here. On the other hand, in units of the atomic recoil energy, the lattice is considerably
deeper for 87Rb than for 40K, so one would expect these 87Rb atoms to remain localized on
the time scales discussed here. 40K atoms are still relatively mobile at the lattice depths
which we study here, and their tunneling time in the lattice is on the order of 10 ms. In the
lifetime measurement discussed above, 40K atoms not assembled into molecules remain in a
different spin state (|9/2,−5/2〉) and are thus“distinguishable”from the fermionic constituents
of the molecules which are in the |9/2,−9/2〉 channel. Hence, there is nothing which can
prevent these atoms from tunneling to lattice sites occupied by molecules and causing inelastic
losses. This effect can explain the observed lifetime of about 20 ms for the more deeply
bound Feshbach molecules. The observed dependency of the lifetime on the binding energy

5This two-step cleaning sequence for the 40K |9/2,−7/2〉 state was necessary since the corresponding op-
tical detection frequency is not far enough detuned from the 40K |9/2,−9/2〉 transition to allow a blasting
pulse reducing the 40K |9/2,−7/2〉 population below the percent level without affecting the 40K |9/2,−9/2〉
population.
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Figure 7.11: Lifetime of heteronuclear 40K–87Rb molecules as a function of magnetic field

or magnetic field is still an open question.
If a further increase in lifetime is desired in future experiments, it may be beneficial to

remove any of the remaining atoms. For this to be possible, 40K atoms would have to be
transferred to the upper hyperfine manifold, where they could be removed using a resonant
light pulse. Very promising steps in this direction have been undertaken towards the end of
this thesis. In the available time, the experiment lacked the possibility to shine in a resonant
“blasting” pulse in the upper hyperfine manifold. For 87Rb, this is slightly more difficult –
available rf transitions are relatively sensitive to magnetic fields which may limit the possibility
to separately address atoms and molecules using rf to the more deeply bound regime, but this
is by no means a fundamental limitation.

7.2.8 Experimental implementation of rf spectroscopy

In the previous part, I have explained the idea of determining energy spectrum, lifetime and
transfer efficiency of heteronuclear molecules in the previous part and discussed experimental
results in comparison to a pseudopotential model for the interactions. I will now discuss the
conditions for success of this technique, i. e. the obtained lineshape, the particular choice of
transition for rf spectroscopy and the achieved magnetic field stability.

7.2.8.1 Choice of transitions for rf spectroscopy

In principle, one might imagine doing this spectroscopic experiment using other transitions,
and I discuss several of the possible alternatives here. As a first criterion for choosing a
transition, either the initial or final state should be the |1, 1〉 ⊗ |9/2,−9/2〉 Feshbach-resonant
absolute ground state. Based on this argument, it could in principle be equally favorable to
perform the spectroscopy using the 87Rb microwave transition from |2, 2〉 to |1, 1〉 or a 87Rb
|1, 0〉 → |1, 1〉 transition, in particular since the former is used anyway to transfer from the
magnetically trapped to the absolute ground state. The advantage of using the 40K transition
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Transition Sensitivity in kHz/G
at 0 G at 547 G

40K |7/2,−7/2〉 ↔ |9/2,−9/2〉 2491 2736
40K |9/2,−7/2〉 ↔ |9/2,−9/2〉 311 67
87Rb |1, 0〉 ↔ |1, 1〉 702 594
87Rb |2, 2〉 ↔ |1, 1〉 2100 2300

Table 7.1: Magnetic field sensitivity of candidate transitions for rf spectroscopy

for rf spectroscopy is that it has a much lower magnetic field sensitivity at the magnetic fields
of the heteronuclear Feshbach resonance. The magnetic sensitivity is of concern because
magnetic field drifts and AC magnetic noise, multiplied by the sensitivity, can easily be on
the order of the interaction shifts that are to be measured or even larger. As seen from Figs. 7.2
and 7.3, neighboring levels with the same mJ run parallel as a function of magnetic field in
the Paschen-Back regime, which makes such transitions totally magnetic-field independent
in the limit of very large fields. For 40K at 547 G, we are already in the Paschen-Back
regime, whereas much larger fields would be required for 87Rb, and this is the reason for the
choice of transition. For comparison, table 7.1 gives magnetic field sensitivities of the various
transitions mentioned above both in the Zeeman regime and at the magnetic fields of interest
(547 G).

7.2.8.2 Rf spectroscopy lineshape

The transitions that are commonly used for rf spectroscopy are usually characterized by a
natural lifetime of the atomic states which is on the order of years. The linewidth and thus the
resolution of collisional shifts observed in the experiment is thus determined by the interaction
time of the atomic sample with the rf field, unless limited by magnetic field noise. Here, I will
discuss the lineshape of the rf transitions that have been used in this work and the relation
to the corresponding pulse rf shape. At the same time, this illustrate two textbook examples
on time of flight linewidth broadening both in the linear and π pulse regime. Let us first
look at the case of a square pulse of duration T , which is the rf pulse shape used for the very
first rf spectroscopy experiments performed within this thesis. The finite length of the pulse
is associated with a frequency spread of the rf spectrum. In order to obtain this spread, we
need to Fourier transform the magnetic field

B(t) =

{

B0 · cos (−2πν0t) |t| < T/2
0 otherwise

(7.14)

and obtain the associated intensity distribution as a function of frequency by taking the square
modulus. The result is

I(ν) = I0 ·
sin2 (πTδν)

(πTδν)2
(7.15)

where δν = ν − ν0 is the detuning from the carrier frequency. This expression is well known
from time of flight broadening of a molecular beam with a single velocity v intersecting with
a transverse laser beam with rectangular intensity profile and width L. The above intensity
distribution is only proportional to the achieved population transfer in the so-called linear
regime of small Rabi flopping angles, not for a π pulse. In the latter case, the exact result
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Figure 7.12: Rf spectroscopy of 40K–87Rb atom pairs using a square pulse of 400 µs duration.

for the population transfer is obtained from the well-known solution for a two-level atom
interacting with an oscillatory field (e. g. [163]). Let P be the transition probability, χ the
Rabi flopping frequency (i. e. not the angular frequency). Then,

P =
χ2

χ2 + δν2
sin2

[

√

χ2 + δν2 πT
]

. (7.16)

Note that eq. (7.16) approaches the linear regime of eq. 7.15 when δν is always small compared
to χ for experimentally interesting δν. The difference between the linear and the π pulse
regime is plotted in Fig. 7.13a. It is generally most pronounced in the height of the side
lobes compared to the on-resonance amplitude. The width of the feature remains essentially
unaffected.

Fig. 7.12 shows the experimentally observed rf spectrum of the 40K |F = 9/2,mF = −7/2〉
→ |F = 9/2,mF = −9/2〉 transition at a finite pulse duration of T=400 µs together with the
prediction of eq. 7.166. The spectrum shows both the characteristic atomic peak at zero
detuning, the appearance of two to three clearly visible side lobes due to the sin2 modulation
term in eq. 7.16 and the molecular peak above the atomic resonance frequency which has
been modelled as a Gaussian in Fig. 7.12. The agreement between the predicted lineshape
and the experimental result is excellent. The appearance of side lobes in the rf spectroscopy
signal when using a square rf pulse can lead to ambiguities in the identification of molecular
features, especially when the molecular feature is close to the atomic feature, and make a
simultaneous least square fit for both cumbersome.

As the Fourier transform argument in the linear regime demonstrates, the appearance of
the side lobes in the spectrum is due to the abrupt change in rf amplitude at the beginning

6The amplitude at the VFG output is -25 dBm, compared to -20 dBm for evaporation. These may not be
directly comparable, since the frequency range is different and the magnetic field produced by our coil-shaped
antenna is probably smaller at 80 MHz than at 1-40 MHz. The Rabi flopping frequency is χ = 1250 Hz.
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and end of the pulse. A smoother rf envelope would hence result in the elimination of the side
lobes. In order to choose a suitable pulse shape, let us look at the linear regime of small Rabi
flopping angles again. In this regime, the line shape is simply the modulus of the Fourier
transformed temporal rf power envelope. It is well known that the Fourier transform of a
Gaussian will again produce a Gaussian pulse. Hence, this is a very natural choice for the rf
amplitude envelope. Let the rf power in the pulse as a function of time be given by

P (t) = P0 · exp
(

−2t2/w2
t

)

(7.17)

where wt is the 1/e2 half width. Fourier transforming the square root of this expression (which
is proportional to the magnetic field) and again taking the square modulus of the result, we
obtain

P (ν) = P0 · exp
(

−2t2/w2
ν

)

(7.18)

with a 1/e2 frequency half width

wν = 1/(πwt) . (7.19)

Coming back to the initial time of flight broadening analogy, this is the direct analogon of
a monochromatic atomic beam transversely intersecting with a Gaussian shaped laser beam.
As in the case of the square pulse, the Fourier argument is not really valid for situations
close to π pulses. In the case of the Gaussian pulse, calculating the resulting rf spectrum
will require a numerical solution (see e. g. [164] or the plot of Fig. 7.13b). Nevertheless, as in
the case of the square pulse, the basic shape of the spectrum is similar to the linear response
regime. This is illustrated in Fig. 7.13b, where I have plotted the spectrum in the linear
regime together with the solution for the π pulse obtained through a numerical integration of
the Bloch equations. As can be seen, the spectrum can very well be approximated by using
the Gaussian result from the linear regime, even for π pulses.

The experimental spectrum of the Gaussian pulse has been shown in Fig. 7.5 with the
corresponding Gaussian fit for the atomic and molecular peak. The Gaussian 1/e2 half width
from the spectrum of Fig. 7.5 is 1.7 kHz; the prediction of the linear regime (eq. 7.19) is
1.6 kHz, and no sidelobes are present in the spectrum, demonstrating that the Gaussian pulse
has the desired effect on the rf spectrum.

In the experiment, the complication arises that in contrast to the square pulse, the Gaus-
sian pulse has in principle infinite wings. Thus, some temporal cutoff has to be chosen. The
cutoff is a compromise between the requirements that the initial increase in power is not
too sudden and that the overall pulse duration should not be too long. For this work, the
following choice was made: Given wt, the total length T of the pulse was 4 · wt, resulting in
almost the same area under the truncated pulse and the full pulse. The rf power as a function
of time is then given by

P (t) = P0 + 7.0697 dBm − t2

T 2
· 138.974 dBm (7.20)

where P0 is the power in dBm of a square pulse with the same area under the B(t) curve as the
Gaussian pulse. In order to produce the desired pulse shape, the VFG-150 rf generator setup
presented in section 3.9.1 has been used without any hardware modifications or external pulse
shaping hardware, demonstrating the versatility and performance of this setup for advanced
manipulations on atomic rf and microwave transitions.
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7.2.8.3 Magnetic field control

In order to achieve a maximum spectroscopic resolution, several steps to reduce magnetic field
drifts and AC magnetic noise have been crucial in the experiment. The first step consisted
in removing sources of AC magnetic fields (typically 50 Hz noise) from the proximity of the
glass cell. In identifying sources of noise, a flux-gate probe connected to a line triggered scope
was of great help. The origin of the dominant AC noise contribution were power supplies for
lattice and dipole trap intensity stabilization which had large internal transformers. In a next
step, a technique developed by J. Kronjäger for the spinor BEC experiment in our group was
adapted for this experiment: The experiment is synchronized with the 50Hz mains frequency.
Shortly before starting the rf association pulse, the cycle is paused for a variable time between
0 and 20 ms until a zero crossing of the mains frequency occurs.

With these improvements of AC noise, the remaining challenge is to produce a magnetic
field which is stable and reproducible enough at 547 G to allow precision rf spectroscopy. First
experiments were performed using the external current programming input of the magnetic
trap bias field power supply, but it soon became clear that this would not provide the required
stability - partly also due to the precision of isolation amplifiers used in between the analog
output of our DSP system and the analog input of the power supply. The conclusion was
that a precision external regulator would best fulfill the needs of precision rf spectroscopy.
Inspired by techniques used at JILA, I have developed a magnetic field servo based on a
DANFYSIK Ultrastab 867-200I transducer measuring the current in the bias coils. Based
on this input signal, a precision regulator controls the current in the bias coils by means
of a Powerex CM200HA-24H IGBT module. Note that care has to be taken in order not
to exceed the device’s power handling capability. The current transducer has a bandwidth
of 100 kHz and a temperature coefficient of < 1 ppm/K. In order not to compromise these
excellent specifications in the regulator or computer control, the input stage of the regulator, in
particular any amplifier in the input signal path up to and including the difference amplifier
comparing to the set value needs to be carefully designed. Precision resistors used in the
regulator have temperature coefficients of < 50 ppm/K; the housing of the regulator was
therefore temperature stabilized. The set value of the regulator is provided by an internal
precision bandgap reference and a combination of fixed divider resistors. In order to be able to
vary the current in the region of 547 G, a modulation input allows variations of the set value
of ±2 A to be controlled from the computer through an isolation amplifier. Not controlling
the full current range from the computer but only this tiny modulation ∆I around a fixed set
value greatly reduces the influence of the modest performance of isolation amplifiers etc. The
result is a mean deviation of the measured magnetic field (based on the atomic peak from rf
spectroscopy) from the magnetic field calibration of 2.7 mG at 547 G (57 measurements on 11
consecutive days), corresponding to a magnetic field reproducibility of ≈ 5 · 10−6 which is the
main key to the excellent quality of the rf spectroscopy data. The resulting field calibration
is shown in Fig. 7.14.

One source of systematic error which could possibly influence the magnetic field calibration
is the reference frequency for the VFG generator used for the rf spectroscopy. This device,
a HAMEG8131-2 which also produces the 100 kHz event source for the DSP system, has a
specified absolute accuracy of 10 ppm. Given the magnetic field sensitivity of 67 kHz/G and
an absolute frequency of 80 MHz, the resulting magnetic field uncertainty is

∆B =
80MHz · 10−5

67 kHz/G
= 12mG (7.21)
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Figure 7.14: Magnetic field calibration. Magnetic fields are determined from the single-atom
peak in rf spectroscopy, and the current is the modulation current around the fixed regulator
set value entered into the experiment control software.

which is a factor of four above the achieved field reproducibility. When we started our exper-
iments on rf spectroscopy, we did not expect to reach a magnetic field control at the 2.7 mG
level, and did not expect the synthesizer to be the ultimate limit. For future experiments, it
may therefore be desirable to use a common high-accuracy 10 MHz source such as the one
available in our SMR microwave generator or a GPS-disciplined reference oscillator and to
synchronize all other rf equipment relative to that source. For the DSP experiment control
system requiring a 100 kHz event source, this could be done using a 1:100 frequency divider.



Chapter 8

Conclusions and Outlook

In the previous chapters, I have looked at trapped heteronuclear quantum gases, in this case
Fermi-Bose mixtures of 40K and 87Rb from several perspectives. Since a large part of the effort
which went into this thesis has been spent on setting up an experiment, the first perspective
has been the production of such ultracold mixtures with all of the experimental details which
have resulted in the so far largest 40K–87Rb mixtures. Equipped with a 3D optical lattice
setup, sophisticated rf manipulation and spectroscopy techniques and excellent optical access
as well as four detection systems, the experiment which I have described allows a plethora of
phenomena to be studied, and the field is currently wide open.

Harmonically trapped mixtures and Feshbach resonances

In chapters 2, 4 and 5, I have looked at a mean-field picture of trapped Fermi-Bose mixtures.
Mixtures are trapped in a global harmonic trap under the influence of heteronuclear back-
ground (chapter 4) and tunable (chapter 5) interactions. I have discussed what we can learn
about the role of interactions from time of flight images in two cases: when the role of interac-
tions is enhanced through densities or through tuning of interactions. In the first case, I have
shown that for large particle numbers, we can unambiguously observe a mean field collapse
of the mixture as a localized phenomenon in the overlap region with the condensate with a
sudden drop in atom number. This fascinating phenomenon, where the Fermi-Bose attraction
overcomes both the outward bound Fermi pressure and the internal repulsion of the BEC, is
possibly enhanced through excitations and the large reservoir of the thermal cloud; yet the
measurements have provided us with an important upper limit on the scattering length and
shown that large 40K–87Rb mixtures can be created, which was not believed to be possible
for a long time.

I have shown how we have made use of heteronuclear Feshbach resonances for the first
time to tune heteronuclear interactions over a wide range and observe all phases of harmoni-
cally trapped mixtures discussed in chapter 2 – stable attractively and repulsively interacting
mixtures as well as an induced collapse and phase separation. The latter occurs preferentially
in the upward direction in the presence of the symmetry-breaking gravitational force. The
measurements of Feshbach resonance positions performed in this context have had important
implications in the context of the 40K–87Rb collisional model.

Already in my introduction on harmonically trapped mixtures, I have talked about the
possibility of observing bright soliton-like structures in Fermi-Bose mixtures [107]. With
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the advent of Feshbach resonances, it may be possible to realize these self-trapping states.
Depending on experimental regimes, it may be beneficial to realize these in 1D optical lattices.
In the same regime, one may also look at collective excitations in the vicinity of the mean
field collapse, which are predicted to be strongly affected in this regime.

Leaving the mean field discussion, the availability of tunable interactions may bring us
a lot closer to the observation of boson-induced cooper pairing in Fermi-Bose mixtures. An
open question is the detection of pairing phases – possibilities include excitation spectroscopy,
noise correlations, Bragg spectroscopy, formation of vortices and possibly many more.

Mixtures in lattices – the many-body limit

In chapter 6, I have reported on the first demonstration of heteronuclear systems in 3D optical
lattices and on interesting many-body phenomena: already a few percent admixture of a
fermionic component in the optical lattice destroys the bosonic coherence in shallow lattices.
The origin of this dramatic loss in coherence is currently the subject of intense theoretical
discussions, and thermodynamical, advanced mean field and disorder related scenarios are
discussed as possible explanations.

Further insight into the origin of this drastic effect may be gained by excitation spec-
troscopy and Bragg spectroscopy and by looking for an excitation gap in the spectrum. Noise
correlation analysis may also be used. Given the availability of Feshbach resonances, this
impurity-induced decoherence may also be studied as a function of scattering length.

Optical lattices allow the realization of lower dimensional systems by freezing out some
of the degrees of freedom. In the case of pure bosonic systems, this has raised interesting
questions, starting with the possibility of condensation itself and the occurrence of phase
fluctuations. A lot of the appeal of low-dimensional systems stems from the fact that many
results can be obtained analytically or through quasi-exact DMRG calculations. Under condi-
tions of reduced dimensionality, an interacting Bose gas can effectively assume the character
of a non-interacting Fermi gas as seen in the observation [165, 166] of a Tonks-Girardeau
gas [167, 168, 169]. In the case of Fermi-Bose mixtures, one-dimensional systems [170] may
exhibit charge-density wave phenomena [171]. It may be possible to observe such phases as
the appearance of a second periodicity in bosonic time of flight images or correlation analysis.

Boson-induced Cooper pairing has been predicted to be enhanced in the presence of an
optical lattice potential. In principle, the same discussion as with boson-enhanced Cooper
pairing in dipole traps applies, mostly concerning diagnostics. In optical lattices, transport
measurements may provide evidence of superfluidity in this system. Transport properties can
be measured in moving lattices, and this experiment has been developed to allow moving
optical lattices to be studied. In appendix C, I have collected some of the ideas for transport
studies, moving lattices and more general phase stabilized interference patterns. Some of the
technological ideas have been used by the spinor BEC experiment in our group, resulting in
a very compact hexagonal lattice setup.

Mixtures in lattices – heteronuclear molecules

In chapter 7, I have reported on the first observation of ultracold heteronuclear Feshbach mo-
lecules. Forming these molecules within individual sites of an optical lattice greatly enhances
the lifetime of the sample; at the same time, it has allowed a very precise measurement of
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the binding energy of these molecules. I have shown how we can explain the energy spectrum
and the transfer efficiency of the molecules in a pseudopotential model. In a heteronuclear
system, the possible different trapping frequencies of the two atoms raise interesting questions
with respect to universality and unitarity for strongly interacting pairs. In fact, this chapter
realizes a third perspective on heteronuclear mixtures – the two-body limit, compared to the
global mean field limit and the many-body lattice perspective discussed above.

One of the most immediate things that one can do with these molecules is to study their
lifetime in the optical lattice when the residual atoms are removed using resonant light beams.
The necessary microwave technology in order to first transfer these atoms into the higher
lying hyperfine manifold was already demonstrated, and a minor modification of the 40K and
87Rb laser systems is necessary in order to be able to shine in two detection laser beams
with a respective detuning of a few GHz within some 100 ms. The necessary offset-locking
technology has already been implemented during this thesis. Once these atoms have been
removed, the lifetime in the lattice should improve even more. One can then think about
ramping the optical lattice down and studying molecule-molecule collisions and eventually
prove the fermionic character of these molecules.

The molecules that have been produced in this thesis are still relatively weakly bound,
which becomes apparent in the fact that there binding energies are so well predicted by a pseu-
dopotential model. Nevertheless, production of heteronuclear Feshbach molecules is generally
considered as an important step forwards towards ultracold polar molecules. In forming ul-
tracold ground state polar molecules from ultracold atoms, there is currently a similar “phase
space density gap” as the one which separated laser cooled atoms from degeneracy before the
advent of evaporative cooling. The phase space density gap is the small Franck-Condon over-
lap between the initial and final states of a two-color photoassociation experiment bringing
two atoms to form a molecule.

The gap may ultimately be bridged using a combination of techniques: performing the
experiment in an optical lattice as in this thesis may increase the lifetime of the sample
and hence relax experimental constraints. The fact that in lattice Feshbach association as
demonstrated in chapter 7, molecules come out in a well-defined ro-vibrational state may be
beneficial since it provides definite starting conditions in comparison to e. g. dipole traps.
This makes these Feshbach molecules ideal candidates for subsequent transfer into the in-
ternal ground state using two-color pulsed photoassociation. The transfer efficiency may be
significantly enhanced by using concepts developed for coherent control and coherent accu-
mulation, thereby tailoring excited state wave packets in the association process which lead
to optimum overlap. This may be done using readily available femtosecond technology.

The fact that these ultracold polar molecules would be associated within the single well
of an optical lattice makes them direct candidates for quantum computation schemes relying
on long-range dipolar interactions [55] and for implementations of lattice spin models [172],
opening new perspectives for scalable quantum computation and quantum simulation.

Together, the measurements presented in this thesis demonstrate the wide range of phe-
nomena which can be studied in heteronuclear systems, in particular Fermi-Bose mixtures,
and the bright perspectives of these systems for ultracold chemistry, fascinating many-body
phenomena and quantum simulation.
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Appendix A

High field detection and frequency
offset lock

In this appendix, I derive the relevant laser detunings for imaging 40K at high magnetic fields
close to the 547 G Feshbach resonance. I also discuss the frequency offset lock which has been
used to produced the required detunings in the experiment.

In the presence of magnetic fields around 500 G, both the ground state 42S1/2 sublevels
and the excited state 42P3/2 sublevels are strongly affected by the presence of the magnetic
field. In the case of the ground state, the shift can be calculated using the Breit-Rabi formula
(equation 7.1). In the excited state, the energy structure as a function of magnetic field
can be calculated numerically by diagonalizing the magnetic field interaction operator. The
intermediate regime between Zeeman effect and Paschen-Back effect is plotted in Fig. A.1.

Compared to Fig. 7.2 which shows the ground state magnetic field dependence, one can see
that the Paschen-Back regime is entered much earlier in the excited state than in the ground
state, which is due to the much smaller hyperfine constant. At 547 G, we can therefore safely
assume the validity of the Paschen-Back formula for the excited state in order to calculate
the optical detection frequency shift:

EPB(B) = gJµBmJB +AmImJ (A.1)

Fig. A.2 shows the relevant frequency shifts. We consider two transitions, one for atoms in the
(low field) |F = 9/2,mF = −9/2〉, |mJ = −1/2,mI = −4〉 (high field) absolute ground state
and one for atoms in the |F = 9/2,mF = −7/2〉 (low field), |mJ = −1/2,mI = −3〉 (high
field) state. The relevant cycling transitions are ∆mI = 0, ∆mJ = −1 transitions, and the
respective detunings from the zero field F = 9/2 → F ′ = 11/2 cycling are given in Fig. A.2
both for the ground and excited state. Altogether, we obtain a detuning of

1531.1MHz − 767.0MHz = 764.1MHz (A.2)

for detection of atoms in |mJ = −1/2,mI = −4〉 (which would be |F = 9/2,mF = −9/2〉 at
low field) and

1519.7MHz − 687.0MHz = 832.7MHz (A.3)

for detection of atoms in |mJ = −1/2,mI = −3〉 (which would be |F = 9/2,mF = −7/2〉 at
low field).

In order to generate these detunings, a frequency offset lock has been implemented together
with Leif Humbert [173] allowing the frequency of the Ti:Sa laser used for detection to be
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Figure A.1: Crossover from Zeeman to Paschen-Back regime for 40K in the 42P3/2 state.

varied over a wide range while it is locked relative to the fixed 40K repumping TA laser system.
The scheme is based on [90]. The basic idea has been mentioned in chapter 3, and the setup is
shown in Fig. A.3. The beat note ∆ν between the Ti:Sa and the TA laser system is mixed with
a variable frequency reference νSMT (Rohde & Schwarz SMT02), and the product is stabilized
to a reference frequency using an error signal circuit generating a dispersive lineshape. The
error signal circuit compares the rf levels of a high pass and a -3 dB attenuator to a -6 dB
attenuator and thus has zero output voltage when the input signal has a frequency equal to
the -3 dB point of the high pass. This dispersive signal is fed back to the Ti:Sa tuning input
through a PI regulator in order to stabilize the system to zero error signal circuit output
voltage, i. e. in our case

νSMT − ∆ν = 161 MHz (A.4)

(161 MHz is the frequency where the error signal circuit output is zero). By changing the SMT
output frequency from the experiment control software over GPIB, the detuning of the Ti:Sa
relative to the TA laser system can be varied over almost one GHz. We use this scheme in
order to red-detune the Ti:Sa (i. e. lower νSMT ) relative to the zero magnetic field |F = 9/2〉
→ F ′ = 11/2 cycling transition for detection at high magnetic fields as outline above, and
the tuning range is fully sufficient for the detunings calculated above.
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Figure A.2: Calculation of detunings for detection of 40K at high magnetic fields.
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Appendix B

Atomic parameters

This appendix lists some of the atomic parameters and fundamental constants that have been
used in calculations in this thesis, in particular for magnetic field calibrations using the Breit-
Rabi formula and for calculation of detunings for detection at high magnetic fields. All values
have been taken from ref. [174].

Symbol Description Value

I Nuclear spin 4

gJ Electron gyromagnetic ratio 2.002 294 21(24)

gI Nuclear gyromagnetic ratio 0.000 175 490(34)

A (42S1/2) Hyperfine constant -285.7308(24) MHz

A (42P3/2) Hyperfine constant -7.59(6) MHz

Table B.1: Atomic parameters for 40K used in this thesis.

Symbol Description Value

I Nuclear spin 3/2

gJ Electron gyromagnetic ratio 2.002 331 13(20)

gI Nuclear gyromagnetic ratio 0.000 176 490(34)

A (52S1/2) Hyperfine constant 3417.341 306 42(15) MHz

Table B.2: Atomic parameters for 87Rb used in this thesis.
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Appendix C

Transport in lattices and phase
stabilization

While BEC and superfluidity are intimately connected, they do not necessarily occur together.
Superfluidity has been intensely discussed in the context of dilute bosonic gases; formation
of vortices and transport measurements provide striking evidence of superfluidity in ultracold
atomic gases. When setting up this experiment, transport measurements have been of partic-
ular interest with respect to future experiments studying the onset of fermionic superfluidity
in Fermi gases and interacting Fermi-Bose mixtures. In a system of atoms confined in a trap
with an overlapped lattice potential, transport can be studied either by displacing the trap
and leaving the lattice stationary or by displacing the lattice and leaving the trap stationary1.

One can then observe the response of the atomic cloud to the displacement. The former
technique has been demonstrated e. g. in experiments in 1D optical lattices performed at LENS
in Florence [175]. In these experiments, the underlying magnetic trap has been displaced by
applying additional magnetic fields. To make use of every possible degree of freedom, in
particular Feshbach resonances as used in proposals for boson-induced cooper pairing, the use
of an underlying trap is impracticable, and optical traps are not displaced as easily. In these
situations, one would therefore prefer the second approach over the first one. When designing
the 3D optical lattice setup for this experiment, I have therefore looked into possibilities of
implementing moving optical lattices.

The idea of a moving lattice is as follows: When using two independent, counterpropa-
gating laser beams with a difference frequency δν, one obtains a moving interference pattern
with a velocity v = δν/2 · λ. At a wavelength of 1 µm, a shift of 1 kHz therefore corresponds
to a lattice velocity of 0.5 mm/s. Thus, by increasing the detuning between two counterprop-
agating beams from zero to v, one can accelerate the lattice and subsequently bring it to rest
by lowering the detuning again.

In the experiment, it is usually desirable to use optical fibers in lattice setups. On the
one hand, this separates the adjustment of the lattice laser source from the adjustment of the
lattice itself, and on the other hand, it provides mode cleaning of the optical lattice beams. In
order to realize two counterpropagating laser beams with the possibility to tune the difference
frequency, two scenarios are possible:

• Single fiber. In this case, the light from the laser source is sent through a single

1Man kann den Propheten zum Berg tragen oder den Berg zum Propheten...

149



150 APPENDIX C. TRANSPORT IN LATTICES AND PHASE STABILIZATION

fiber and then split up into two beams, sent through two different AOMs to control
the relative frequency and then delivered to the atoms on counterpropagating beam
paths. The presence of the AOM may affect beam quality, and the beam path from
the splitting of the two beams to the overlap region is potentially very long, possibly
leading to issues with adjustment and mechanical vibrations. The experiment has been
designed to allow this scenario with a beam path as short as possible on the horizontal
axis of the apparatus using the flexible stainless steel boards (see Fig. C.2a)).

• Two fibers. Both beams can also be sent through separate fibers. This only requires
two fiber output and focussing units on each side of the apparatus. In this situation,
one immediately faces the issue of a relative phase jitter of the interference pattern
after passing through two separate fibers. This effect is due to coupling of mechanical
vibrations to the fiber. The jitter can easily be on the order of a few kHz, thereby
on the order of the desired detuning, and is a main source of concern in optical clock
experiments when a narrow linewidth laser beam is to be transmitted over an optical
fiber [176]. One therefore needs to come up with a method of relative phase separation
after the fiber. Phase stabilization can be achieved by putting a beam splitter into
the path of the two counterpropagating beams, and directing the two outputs onto a
common photodiode. Using the beat signal, the relative phase can be stabilized using
an actuator.

However, the case of two counterpropagating beams is only a special case of a more general-
ized class of optical lattice geometries based on interference of separate beam paths with an
arbitrary angle where phase stabilization is required. For a review, see [177]. To give only
one example, in experiments on condensates in 2D lattices in Munich, the relative phase of
two orthogonal retroreflected beams has been stabilized using a an actuator on one of the
retroreflection mirrors [178].

Another geometry is the well known tetrahedron configuration made up of four indepen-
dent laser beams [177]. Within one plane, it is also possible to use three beams at an angle
of 120◦ and create a hexagonal lattice pattern ( [177], see below). The latter approach is cur-
rently being pursued in the spinor BEC experiment in our group. In all of these experiments,
one benefits from phase stabilization techniques which will not require bulky equipment at
the experiment itself in addition to detection systems, MOT optics, dipole traps, magnetic
trap,... . This would almost certainly occur due to complicated beam paths to overlap light
from the different lattice beam paths, particularly for the not counterpropagating setups.

I have already mentioned that the noise introduced by an optical fiber has been seen
in optical clock experiments [176]. For phase stabilization in optical lattices, we can adopt
techniques which are currently used in many optical clock and frequency standard distribution
experiments (e. g. [176, 179, 180]) to stabilize the beam path through an optical fiber. The
basic idea is shown in Fig. 2.6. Let νL be the frequency of the laser light. An AOM in
single pass configuration with frequency νA in front of the optical fiber allows control of the
frequency of the light sent into the optical fiber. This AOM is needed anyway for intensity
control, and it is not specific to this scheme. The light is coupled into a fiber, which introduces
time-dependent frequency jitter δν. At the end of the fiber, we have νL + νA + δν, and a
small fraction of the light is coupled back into the fiber and passes the AOM in double pass
configuration on its way back to the laser. The simplest way of achieving this is to use the
light which is reflected anyway from the end of an optical fiber. This avoids any additional
elements in the beam path at the experiment proper.
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Between the AOM and the laser itself, the retroreflected fraction has a frequency νL +
2(νA + δν). The retroreflected light can be separated from the main beam path if a quarter
wave plate is introduced in front of the fiber or if the fiber is adjusted such that it acts like
a waveplate. The retroreflected light now has orthogonal polarization and can be split from
the main beam path using a polarizing beam splitter cube in front of the AOM. If this light
is overlapped with the main beam on a photodiode, we obtain a beat note with frequency
2(νA + δν). Using this beat note, the fiber-induced shift can be compensated by acting on the
AOM frequency νA using standard rf phase locking techniques. One can for example divide
the beat note by two and obtain νA + δν. Mixing this with a frequency ν0 close to the AOM
VCO frequency νA, one obtains a low frequency signal proportional to δν+ νA − ν0

2. Using a
regulator, we can control νA such that δν + νA − ν0 ≡ 0 by acting on the AOM VCO source.
This corresponds to νL + νA + δν ≡ νL + ν0 behind the fiber, and we have effectively canceled
the fiber noise and stabilized the phase at the output of the fiber with respect to the phase
at the beam splitter in front of the AOM.

While this setup may look complicated at first sight, there is really not a lot of additional
optical equipment compared to “traditional” lattice branch as shown in section 3.10. There is
just one interferometer in front of the fiber and some standard rf equipment. The particular
advantage of this scheme for optical lattices is that the whole phase stabilization setup can be
placed in front of the fiber, and that it allows a very compact lattice beam collimation and fo-
cussing unit without any bulky equipment near the experiment, which is particularly relevant
if multiple phase stabilized beams are required such as for moving lattices or the tetrahedron
lattice (which would require three phase stabilization setups directly at the experiment).

Another way to close the feedback loop is to drop the frequency divider stage and mix the
rf signal with a reference source with frequency 2ν0 close to 2νA. One obtains a low frequency
signal 2(νA − ν0 − δν). The latter can again be fed back to the VCO generating νA in a
feedback loop in order to compensate δν via νA.

The latter approach avoids the frequency divider stage and has been implemented by
Jochen Kronjäger and Christoph Becker at the spinor BEC experiment in our group in a
hexagonal lattice configuration. Beat notes below one Hz width have been observed between
beams passing different stabilized fibers. In addition, Jochen has added an automatic gain
compensation setup which provides stable operation of the phase lock over a wide range of
output intensities which is important for the lattice ramp-up sequence. In this case, a common
rf source for 2ν0 is used for all three lattice beams, and this phase stabilization approach has
resulted in a very compact lattice setup. This approach also separates the adjustment of
phase control from the adjustment of the lattice itself.

When not using one common source for ν0 but several synthesizers which are stabilized
relative to a common 10 MHz reference, we can achieve a controlled detuning between the
individual beams by detuning one synthesizer with respect to another. This detuning will
lead to a moving interference pattern for the optical lattice. Let us look at the simple case of
two counterpropagating phase stabilized beams. We will have one fixed frequency synthesizer
operated at 140 MHz providing 2ν0 for one beam. The second phase stabilization setup could
obtain its modulation frequency from a VFG rf synthesizer as described in section 3.9.1 with
a frequency equal to or close to 2ν0. By connecting 10 MHz frequency reference inputs of
both synthesizers to a common source, both would be phase stable with respect to each other.
The techniques discussed in section 3.9.1 can then be used to control the detuning and phase

2A phase detector might be more appropriate here.
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between two beams through the VFG output frequency and phase and thus the velocity and
position of a moving lattice very precisely, thereby enabling future transport measurements
in a very elegant setup shown in Fig. C.2b).

With the above mentioned setup, transport would be restricted to one dimension. When
implementing the above-mentioned velocity control with the hexagonal lattice, requiring one
fixed oscillator and two VFG synthesizers, one would be able to move around 1D tubes of
the lattice in a plane with a high degree of control (Fig. C.2c)), eventually in combination
with polarization manipulation. This may be particularly interesting for creation of rotating
lattices as has recently observed at JILA using a rotating diaphragm [181].

The above technique of relative phase stabilization may also be used for experiments
studying atomic transport over large distances, such as through hollow core fibers. By creating
an accelerated lattice of two counterpropagating beams in the fiber, one may transfer atoms
into the fiber in a controlled fashion, bring them to rest, perform a wide variety of manipulation
and cooling schemes within the steep potential formed by the longitudinal lattice and the tight
transverse dipole trap and subsequently accelerate the atoms and transport them out of the
fiber. For a recent demonstration of transport over more than 20 cm using moving lattices
and free lattice beams, see [182].
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Appendix D

Numerical algorithms and software

The purpose of this appendix is to list software libraries, packages and algorithms and recipes
which have been used for data analysis in this thesis.

• The GNU Scientific Library (GSL) is a numerical library for C / C++ programs.
The implementations of Fermi-Dirac functions gsl_sf_fermi_dirac_*() contained in
this library have been used in data analysis. Note that

−Lin(−ζ) = gsl sf fermi dirac (n− 1)(lnζ) .

• From the CEPHES mathematical function library available through netlib, the spence()
function implementing spencers’s integral (related to the dilogarithm) has been used in
the 2-dimensional Fermi-Dirac fit. I have also used implementations of Bose-Einstein
functions and Fermi-Dirac functions given in [183, 184], in particular for g5/2.

• Also from the CEPHES library, the lmdif() function implementing the Marquardt-
Levenberg nonlinear least squares algorithm has been used in all of the one- and two-
dimensional fits for absorption images.

• libjpeg, libtiff and libpng have been used for image in- and output in all of the
data processing software.

• The mingw cross-compiler has been used under linux to develop the VFG-controller
software, along with flex and bison to parse the VFG language.

• The mingw windows port of some of the above-mentioned libraries was used e. g. in the
CCD control software.

• The openafs distributed filesystem, together with the Heimdal Kerberos implementa-
tion and openldap, has allowed setting up a linux cluster which has hosted the 1.2 TB
of image data recorded during this thesis.
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Bose-Fermi Mixtures in a Three-Dimensional Optical Lattice. Phys. Rev. Lett. 96,
180402 (2006). doi:10.1103/PhysRevLett.96.180402.

http://dx.doi.org/10.1103/PhysRevLett.88.160401
http://dx.doi.org/10.1103/PhysRevA.70.021601
http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1103/PhysRevLett.88.067901
http://dx.doi.org/10.1103/PhysRevA.68.043624
http://dx.doi.org/10.1103/PhysRevLett.93.090406
http://dx.doi.org/10.1103/PhysRevLett.92.140405
http://dx.doi.org/10.1126/science.1077386
http://dx.doi.org/10.1103/PhysRevA.68.043626
http://dx.doi.org/10.1103/PhysRevA.71.043408
http://dx.doi.org/10.1103/PhysRevLett.93.143001
http://dx.doi.org/10.1103/PhysRevLett.93.183201
http://dx.doi.org/10.1103/PhysRevA.74.041605
http://dx.doi.org/10.1103/PhysRevLett.96.180402


162 BIBLIOGRAPHY

[66] Silke Ospelkaus-Schwarzer: Quantum Degenerate Fermi-Bose Mixtures of 40K and 87Rb
in 3D Optical Lattices. Ph.D. thesis, Universität Hamburg (2006).

[67] Brian DeMarco: Quantum Behaviour of an Atomic Fermi Gas. Ph.D. thesis, Graduate
School of the University of Colorado (2001).

[68] D. A. Butts and D. S. Rokhsar: Trapped Fermi gases. Phys. Rev. A 55, 4346–4350
(1997). doi:10.1103/PhysRevA.55.4346.

[69] Lev Pitaevskii and Sandro Stringari: Bose-Einstein Condensation. Oxford University
Press (2003).

[70] C. J. Pethick and H. Smith: Bose-Einstein Condensation in Dilute Gases. Cambridge
University Press (2002).

[71] Klaus Mølmer: Bose Condensates and Fermi Gases at Zero Temperature. Phys. Rev.
Lett. 80, 1804 (1998). doi:10.1103/PhysRevLett.80.1804.

[72] Robert Roth: Structure and stability of trapped atomic boson-fermion mixtures. Phys.
Rev. A 66, 013614 (2002). doi:10.1103/PhysRevA.66.013614.

[73] R. K. Pathria: Statistical Mechanics. Butterworth-Heinemann (1972).

[74] Jonathan Michael Goldwin: Quantum Degeneracy and Interactions in the 87Rb - 40K
Bose-Fermi Mixture. Ph.D. thesis, Faculty of the Graduate School of the University of
Colorado (2005).

[75] W. Ketterle, D. S. Durfee and D. M. Stamper-Kurn: Making, probing and understanding
Bose-Einstein condensates. In M. Inguscio, S. Stringari and C. E. Wieman, editors,
Proceedings of the International School of Physics - Enrico Fermi, page 67. IOS Press
(1999).

[76] R. Roth and H. Feldmeier: Mean-field instability of trapped dilute boson-fermion mix-
tures. Phys. Rev. A 65, 021603 (2002). doi:10.1103/PhysRevA.65.021603.

[77] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen and B. J. Verhaar: In-
terisotope Determination of Ultracold Rubidium Interactions from Three High-Precision
Experiments. Phys. Rev. Lett. 88, 093201 (2002). doi:10.1103/PhysRevLett.88.093201.

[78] C. A. Sackett, J. M. Gerton, M. Welling and R. G. Hulet: Measurements of Collective
Collapse in a Bose-Einstein Condensate with Attractive Interactions. Phys. Rev. Lett.
82, 876–879 (1999). doi:10.1103/PhysRevLett.82.876.

[79] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell and C. E.
Wieman: Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412,
295 (2001). doi:10.1038/35085500.

[80] K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller and J. T. M. Walraven: Two-
dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58, 3891
(1998). doi:10.1103/PhysRevA.58.3891.

http://dx.doi.org/10.1103/PhysRevA.55.4346
http://dx.doi.org/10.1103/PhysRevLett.80.1804
http://dx.doi.org/10.1103/PhysRevA.66.013614
http://dx.doi.org/10.1103/PhysRevA.65.021603
http://dx.doi.org/10.1103/PhysRevLett.88.093201
http://dx.doi.org/10.1103/PhysRevLett.82.876
http://dx.doi.org/10.1038/35085500
http://dx.doi.org/10.1103/PhysRevA.58.3891


BIBLIOGRAPHY 163

[81] G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno, G. Roati and A. Simoni: Col-
lisional Properties of Ultracold K-Rb Mixtures. Phys. Rev. Lett. 89, 053202 (2002).
doi:10.1103/PhysRevLett.89.053202.

[82] Holger Schmaljohann: Spindynamik in Bose-Einstein-Kondensaten. Ph.D. thesis, Uni-
versität Hamburg (2004).

[83] B. DeMarco, H. Rohner and D. S. Jin: An enriched 40K source for fermionic atom
studies. Rev. Sci. Instr. 70, 1967 (1999). doi:10.1063/1.1149695.

[84] Michael Erhard: Experimente mit mehrkomponentigen Bose-Einstein-Kondensaten.
Ph.D. thesis, Universität Hamburg (2004).

[85] I. Shvarchuck, K. Dieckmann, M. Zielonkowski and J. T. M. Walraven: Broad-area
diode-laser system for a Rubidium Bose-Einstein condensation experiment. Appl. Phys.
B 71, 475–480 (2000). doi:10.1007/s003400000395.

[86] Jürgen Fuchs: Aufbau und Charakterisierung einer 2D und 3D magneto-optischen Fal-
lenkombination für 87Rb. Diplomarbeit, Universität Hamburg (2004).

[87] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin and David E.
Pritchard: High densities of cold atoms in a dark spontaneous-force optical trap. Phys.
Rev. Lett. 70, 2253–2256 (1993). doi:10.1103/PhysRevLett.70.2253.

[88] Robert Sylvester III Williamson: Magneto-optical trapping of potassium isotopes. Ph.D.
thesis, University of Wisconsin-Madison (1997).

[89] Quang-Viet Nguyen, Robert W. Dibble and Timothy Day: High-resolution oxygen ab-
sorption spectrum obtained with an external-cavity tunable diode laser. Optics Letters
19, 2134–2136 (1994).

[90] G. Ritt, G. Cennini, C. Geckeler and M. Weitz: Laser frequency offset lock-
ing using a side of filter technique. Appl. Phys. B 79, 363–365 (2004). doi:
10.1007/s00340-004-1559-6.
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K. Rza̧żewski: Soliton Trains in Bose-Fermi Mixtures. Phys. Rev. Lett. 93, 100401
(2004). doi:10.1103/PhysRevLett.93.100401.

[108] D. M. Jezek, M. Barranco, M. Guilleumas, R. Mayol and M. Pi: K-Rb Fermi-
Bose mixtures: Vortex states and sag. Phys. Rev. A 70, 043630 (2004). doi:
10.1103/PhysRevA.70.043630.

[109] Francesca Ferlaino, Chiara D’Errico, Giacomo Roati, Matteo Zaccanti, Massimo In-
guscio, Giovanni Modugno and Andrea Simoni: Erratum: Feshbach spectroscopy of a

http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1126/science.1079699
http://dx.doi.org/10.1007/BF00702605
http://dx.doi.org/10.1126/science.273.5271.84
http://dx.doi.org/10.1007/BF01326983
http://dx.doi.org/10.1007/s003400050805
http://dx.doi.org/10.1103/PhysRevLett.79.337
http://dx.doi.org/10.1103/PhysRevA.70.043617
http://dx.doi.org/10.1103/PhysRevLett.93.100401
http://dx.doi.org/10.1103/PhysRevA.70.043630


BIBLIOGRAPHY 165

K − Rb atomic mixture [Phys. Rev. A 73, 040702 (2006)]. Phys. Rev. A 74, 039903
(2006). doi:10.1103/PhysRevA.74.039903.

[110] L. Viverit: Boson-induced s-wave pairing in dilute boson-fermion mixtures. Phys. Rev.
A 66, 023605 (2002). doi:10.1103/PhysRevA.66.023605.

[111] M. J. Bijlsma, B. A. Heringa and H. T. C. Stoof: Phonon exchange in dilute Fermi-
Bose mixtures: Tailoring the Fermi-Fermi interaction. Phys. Rev. A 61, 053601 (2000).
doi:10.1103/PhysRevA.61.053601.

[112] D. V. Efremov and L. Viverit: p-wave Cooper pairing of fermions in mix-
tures of dilute Fermi and Bose gases. Phys. Rev. B 65, 134519 (2002). doi:
10.1103/PhysRevB.65.134519.

[113] Francesca Ferlaino, Chiara D’Errico, Giacomo Roati, Matteo Zaccanti, Massimo Ingus-
cio, Giovanni Modugno and Andrea Simoni: Feshbach spectroscopy of a K −Rb atomic
mixture. Phys. Rev. A 73, 040702 (2006). doi:10.1103/PhysRevA.73.040702.

[114] C. Ticknor, C. A. Regal, D. S. Jin and J. L. Bohn: Multiplet structure of Fesh-
bach resonances in nonzero partial waves. Phys. Rev. A 69, 042712 (2004). doi:
10.1103/PhysRevA.69.042712.

[115] C. A. Regal, C. Ticknor, J. L. Bohn and D. S. Jin: Tuning p-Wave Interactions
in an Ultracold Fermi Gas of Atoms. Phys. Rev. Lett. 90, 053201 (2003). doi:
10.1103/PhysRevLett.90.053201.

[116] C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach, W. Ketterle, A. Simoni,
E. Tiesinga, C. J. Williams and P. S. Julienne: Feshbach resonances in fermionic 6Li.
Phys. Rev. A 71, 045601 (2005). doi:10.1103/PhysRevA.71.045601.

[117] J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy,
M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans and C. Salomon: P -wave
Feshbach resonances of ultracold 6Li. Phys. Rev. A 70, 030702 (2004). doi:
10.1103/PhysRevA.70.030702.

[118] Hui Hu, Xia-Ji Liu and Michele Modugno: Expansion of a quantum degenerate boson-
fermion mixture. Phys. Rev. A 67, 063614 (2003). doi:10.1103/PhysRevA.67.063614.

[119] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner and P. Zoller: Cold Bosonic
Atoms in Optical Lattices. Phys. Rev. Lett. 81, 3108–3111 (1998). doi:
10.1103/PhysRevLett.81.3108.

[120] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hänsch and Immanuel
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[125] Fabrice Gerbier, Artur Widera, Simon Fölling, Olaf Mandel, Tatjana Gericke and Im-
manuel Bloch: Phase Coherence of an Atomic Mott Insulator. Phys. Rev. Lett. 95,
050404 (2005). doi:10.1103/PhysRevLett.95.050404.
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cio Cirac, Gora V. Shlyapnikov, Theodor W. Hänsch and Immanuel Bloch: Tonks-
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