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Abstract

Recent years have seen spectacular progress towards the realization of novel strongly corre-
lated systems with homonuclear ultracold quantum gases. The strongly correlated regime
has been demonstrated to be accessible both by means of strong, periodic confinement as
demonstrated in experiments with optical lattices and through strong resonant interactions
which can be produced by means of Feshbach resonances.

Given the impressive development seen in homonuclear systems, heteronuclear systems
composed of particles with different quantum-statistical behavior (Fermi-Bose mixtures)
offer an even wider spectrum of possibilities for quantum simulation and strongly correlated
phases, in particular when loaded into an optical lattice and combined with the possibility
of almost arbitrary interactions through Feshbach resonances.

In this thesis, experiments with Fermi-Bose mixtures in 3-dimensional optical lattices
and under the influence of tunable heteronuclear interactions are presented. An experiment
allowing for the creation of large mixtures of quantum degenerate fermionic 40K and
bosonic 87Rb gases has been set up together with C. Ospelkaus. The onset of degeneracy in
both components is demonstrated, and effects of the heteronuclear attractive background
interaction are studied.

Heteronuclear Feshbach resonances have been used for the first time in order to change
the interaction properties of the mixture in a controlled fashion. This has allowed the study
of the complete phase diagram of harmonically trapped mixtures, ranging from stable
attractively interacting mixtures over a Feshbach-driven controlled mean field collapse
of the system for strong attractive interactions, the onset of phase separation for strong
repulsive interactions to stable, repulsively interacting mixtures. The studies of Feshbach
resonances have also led to the identification of the first p-wave heteronuclear resonance.

The periodic potential of an optical lattice is an ideal environment for simulation of
quantum many-body Hamiltonians and systems of reduced dimensionality. Theoretical
results for fermionic and bosonic atoms in optical lattices are presented, both in a single
particle picture, highlighting the role of the external trapping potential, as well as in the
interacting many-particle limit.

This thesis documents the first realization of a Fermi-Bose quantum many-body system
in a 3D optical lattice. In these experiments, the effect of a small fermionic fraction on
the coherence properties of the bosonic sample is investigated. Already a small fermionic
“impurity” fraction strongly affects the coherence properties of the bosonic cloud. The
quantitative analysis shows that in the presence of the fermionic component, decoherence
of the bosonic ensemble occurs at much lower lattice depths than for a pure bosonic sample.
The surprisingly large effect has triggered an intense discussion on possible explanations
in terms of thermodynamic properties, mean field models and disorder-related localization
scenarios.

Combining tunable interactions with 3-dimensional optical lattices, formation of het-
eronuclear Feshbach molecules in single wells of the lattice is demonstrated for the first
time, along with a determination of the molecular binding energy and lifetime. By subse-
quent two-color photoassociation schemes, these (externally) ground state molecules may
be transferred into their internal ground state where they exhibit a permanent electric
dipole moment. This may result in the realization of novel quantum gases with anisotropic
interactions.
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Zusammenfassung

Das Feld ultrakalter homonuklearer Quantengase wurde in den letzten Jahren durch fun-
damentale Fortschritte in der Realisierung stark korrelierter Systeme geprägt. Das Regime
starker Korrelation wurde sowohl durch starke äußere Einschlusspotentiale in optischen
Gittern als auch durch starke resonante Wechselwirkung an einer Feshbach-Resonanz er-
reicht.

Heteronukleare Systeme gemischter Quantenstatistik (Fermi-Bose Mischungen), kom-
biniert mit dreidimensionalen optischen Gittern und einstellbarer Wechselwirkung, eröff-
nen die Perspektive, fundamental neue Quantenphasen stark korrelierter Systeme zu rea-
lisieren und in einer extrem reinen und kontrollierbaren Umgebung zu studieren.

In dieser Arbeit wurde zusammen mit C. Ospelkaus ein Experiment zum Studium ul-
trakalter Fermi-Bose Mischungen aus 40K und 87Rb in dreidimensionalen optischen Gittern
mit einstellbarer Wechselwirkung aufgebaut. Ausgehend von quantentarteten Mischungen
großer Teilchenzahl wurden Effekte der attraktiven Hintergrundwechselwirkung zwischen
den Konstituenten untersucht.

Die Durchstimmbarkeit der Wechselwirkung an einer heteronuklearen Feshbach-Reso-
nanz wurde erstmalig demonstriert und die grundlegenden Phasen harmonisch gefange-
ner Fermi-Bose Mischungen untersucht. Dies reicht von einem wechselwirkungsinduzier-
ten Kollaps im Falle attraktiver Wechselwirkung über stabile Mischungen attraktiver und
repulsiver Wechselwirkung bis hin zur Phasenseparation im Falle starker repulsiver Wech-
selwirkung.

Periodische optische Potentiale bieten eine ideale Umgebung zur Simulation von Viel-
teilchen-Hamiltonoperatoren und niederdimensionalen Systemen. Grundlegende theoreti-
sche Ergebnisse für fermionische und bosonische Systeme in optischen Gittern werden
sowohl aus der Perspektive eines Einteilchenbildes als auch eines Vielteilchenbildes mit
und ohne Wechselwirkung vorgestellt.

Im Rahmen dieser Arbeit wurde erstmalig ein Vielteilchensystem gemischter Statistik
in einem dreidimensionalen optischen Gitter realisiert. In ersten Experimenten wurden
die Kohärenzeigenschaften der bosonischen Komponente unter dem Einfluss der fermioni-
schen Atome untersucht. Bereits eine kleine Beimischung fermionischer Atome beeinflusst
die Kohärenzeigenschaften der Bosonen signifikant und induziert einen Kohärenzverlust in
der bosonischen Wolke bei wesentlich flacheren Gittern als im rein bosonischen System. Die
Ursache dieses erstaunlich großen Effektes wird derzeitig kontrovers diskutiert. Als mögli-
che Ursachen werden thermodynamische Eigenschaften des Ladeprozesses der Mischung
in das Gitter, eine Verschiebung des Übergangs einer superfluiden in eine Mott-isolierende
Phase unter dem Einfluss der heteronuklearen Wechselwirkung sowie unordnungsinduzier-
te Lokalisierungsphänomene diskutiert.

Schließlich wird die erstmalige Erzeugung langlebiger heteronuklearer Feshbach-Mole-
küle in einem optischen Gitter vorgestellt. In diesen Experimenten wird die Durchstimm-
barkeit der Wechselwirkung an einer Feshbach Resonanz mit dreidimensionalen optischen
Gittern kombiniert. Die Effizienz des Assoziationsprozesses wird charakterisiert und die
Bindungsenergie und Lebensdauer der Moleküle gemessen. Für heteronukleare Moleküle
aus 40K und 87Rb wird ein permanentes elektrisches Dipolmoment in ihrem absoluten
Grundzustand vorhergesagt. Diese heteronuklearen Moleküle bieten daher weitreichende
Perspektiven zum Studium von Quantengasen anisotroper dipolarer Wechselwirkung.
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Chapter 1

Introduction

Nature distinguishes between two fundamental types of particles: fermions and bosons,
depending on the spin of the particle. Particles with half-integer spin are called fermions
and obey Fermi-Dirac statistics. As a result of Fermi-Dirac statistics, in a system of indis-
tinguishable particles, at most one particle can occupy a given quantum state. Particles
with integer spin are called bosons and obey Bose-Einstein statistics. Any single-particle
eigenstate of a physical system can be occupied by an arbitrary number of bosons.

While all of the basic building blocks of an atom are fermions, an atom as a whole has
bosonic or fermionic character depending on its total angular momentum. For a gas of
atoms confined in an external potential, the quantum statistical properties of the atoms
become important at ultralow temperatures where the thermal deBroglie wavelength of
the constituents is on the order of the interparticle separation. For bosonic atoms, this
leads to the onset of Bose-Einstein condensation as observed for the first time in 1995 in
a gas of 87Rb in the group of Eric Cornell and Carl Wieman [6], in 23Na in the group of
Wolfgang Ketterle [7] and for 7Li in the group of Randy Hulet [8] in the special case of
attractive interactions. For fermionic atoms, the onset of degeneracy is less spectacular
due to the absence of a phase transition. In an ultracold spin-polarized fermionic gas,
the appearance of a macroscopic Fermi sea has first been demonstrated in the group of
D. S. Jin in 1999 [9].

While the pioneering work on quantum degenerate gases revealed important quantum
phenomena such as interference, superfluidity and nonlinear atom optics, recent years
have seen spectacular progress in the realization of novel strongly correlated systems with
ultracold quantum matter. Strong correlations are observed either when the interactions
between the constituents become very strong (e. g. at Feshbach resonances) or when strong
confinement imposes stringent boundary conditions (e. g. in the periodic potential of an
optical lattice).

Atomic systems offer a high degree of control of both the external confinement and the
interactions between the constituents. The latter has become possible with the advent of
Feshbach resonances [10, 11] which allow control of s-wave and even higher order scattering
between atoms through external fields. Feshbach resonances have been the key to a series
of ground breaking experiments. For two-component fermionic gases, they have allowed
the exploration of the BCS-BEC crossover and demonstrated that fermions and bosons
are not as far from one another as it may seem: A Bose-Einstein condensate of diatomic
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2 CHAPTER 1. INTRODUCTION

molecules made from two fermionic atoms can be continuously transformed into a BCS
state of atomic cooper pairs [12, 13, 14, 15, 16, 17].

The “confinement-induced” approach to strongly correlated phases was first proposed
for a gas of repulsively interacting bosons in 1998 by D. Jaksch and coworkers [18]. In
particular, it was demonstrated that bosonic atoms loaded into an optical lattice are
an ideal model system for the simulation of the Bose Hubbard Hamiltonian known from
condensed matter physics, and it was predicted that the phase transition from a superfluid
to a Mott-insulating state can be induced by merely increasing the lattice depth. The
theoretical prediction, together with the experimental demonstration of [19], highlighted
the potential of ultracold atoms in optical lattices for simulations of quantum many-body
systems and for the realization of strongly-correlated systems. Optical lattices have since
been the key to the observation of intriguing phenomena such as a Tonks-Girardeau gas of
atoms in a one-dimensional geometry [20, 21] or a Kosterlitz-Thouless transition in a 1D
lattice (2D geometry) [22]. Two-body bound states (molecules) in homonuclear systems
have been engineered [23, 24] and most recently, evidence for fermionic superfluidity has
been reported in a cloud of 6Li loaded into a 3D optical lattice [25].

As a completely new area in the field of ultracold quantum gases, multicomponent
quantum gases in 3D optical lattices have recently attracted a lot of attention. In the case
of mixtures of fermionic and bosonic atoms, the different quantum-statistical behavior of
the components gives rise to fundamentally novel quantum many-body phases. In the
extreme case of pairing of fermions with one or more bosons, a whole zoo of new quantum
phases of these “composite fermions” has been predicted [26]. Fermi-Bose mixtures in
3D optical lattices may exhibit fermionic pairing which is mediated by the presence of
bosonic atoms in full analogy to solid state superconductivity, and there are interesting
connections to high-TC superconductivity. [27, 28, 29]. Even before such “atom pairs”
form, Fermi-Bose correlations are predicted to become manifest in polaron-related physics
of fermions dressed by a bosonic cloud [30] and quantum percolation [31]. These phenom-
ena are connected to disorder induced localization scenarios. In reduced dimensionality,
phenomena such as charge-density waves [30, 29] and supersolids [32] are predicted to
occur.

From the experimental point of view, there has been an impressive series of experi-
ments on homonuclear systems which I have partly mentioned above, but experiments on
heteronuclear systems in lattices, which Fermi-Bose mixtures are a special case of, have
been scarce. By the end of 2005, the only experiment with Fermi-Bose mixtures in optical
lattices has been reported by Ott and coworkers at LENS [33]. In these experiments, the
“insulating” behavior of a trapped ideal Fermi gas in a 1D lattice has been compared to
collisionally induced transport of fermionic atoms in the presence of a bosonic cloud.

This thesis demonstrates several milestones towards the realization of a fundamentally
novel quantum many-body system with mixed statistics and tunable interactions in 3D
optical lattices. Apart from the first demonstration of tuning of heteronuclear interactions
in the vicinity of a Feshbach resonance (see chapter 4), it presents the first realization of a
Fermi-Bose many-body system in a 3D optical lattice (chapter 6). Tunability of interac-
tions and 3D optical lattices have finally been combined for engineering of heteronuclear
molecules (chapter 7) with important prospects for quantum computation, the realization
of novel quantum gases with dipolar interactions and fundamental physics such as the
search for a permanent electric dipole moment of the electron [34].
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This thesis is organized as follows:
In chapter 2, I will describe the experimental apparatus for the preparation of quan-

tum degenerate Fermi-Bose mixtures of 40K and 87Rb which has been set up from scratch
within this thesis together with C. Ospelkaus. As an ideal basis for all subsequent experi-
ments, this setup has produced the so far largest particle numbers in quantum degenerate
40K–87Rb mixtures. The 40K–87Rb system is characterized by a large attractive back-
ground interaction between fermions and bosons. This attractive interaction can give rise
to a simultaneous collapse of the system beyond critical conditions, and I will describe
symptoms of the collapse as observed in the experiment. The findings in this regime of
large particle numbers have been published in C. Ospelkaus et al., Phys. Rev. Lett. 96,
020401 (2006) and are described in detail in the thesis of Christian Ospelkaus [35].

An important step towards the realization of tunable interactions is dipole trapping of
the mixture. Using an optical dipole trap, the magnetic field degree of freedom is no longer
necessary for trapping, but can be used to control the interactions via a homogeneous
magnetic field at Feshbach resonances. In the case of heteronuclear mixtures, where the
constituents have different mass, both species will exhibit a different gravitational sag in a
dipole trap; in particular for shallow traps, this may result in a significantly reduced overlap
of the mixture and inhibits any experiments relying on interacting mixtures. Chapter 3
presents a crossed dipole trap at a special “magic” wavelength developed within this thesis
which compensates for the differential gravitational sag and ensures an optimal overlap of
the constituents for subsequent experiments with tunable interactions.

Chapter 4 presents experiments on harmonically trapped mixtures in the vicinity
of a heteronuclear Feshbach resonance. While heteronuclear Feshbach resonances have
previously been identified through increased inelastic collisional losses at MIT [36] and
JILA [37], no tuning of elastic heteronuclear collisions had been reported before in the
literature. I will first describe how we precisely determine the resonance positions and
identify one of the resonances as p-wave. Tuning of heteronuclear interactions over a wide
range is then demonstrated at an s-wave resonance located at 547 G. The effect of het-
eronuclear interactions is studied based on the mean field energy of the condensate both
for attractive and repulsive interactions. The tunable interaction is also found to signifi-
cantly affect the time of flight expansion of the mixture. As a function of the heteronuclear
interaction, we observe both attractively and repulsively interacting stable mixtures and
the occurrence of instabilities for strong resonant interactions. In the case of strong attrac-
tive interactions, this gives rise to an induced mean field collapse of the mixture, and for
strong repulsive interactions, phase separation is observed. Due to the available and ex-
perimentally studied Fermi-Bose mixtures, repulsively interacting mixtures are completely
unexplored, and accessing this part of the phase diagram of the harmonically trapped mix-
ture has only become possible as a result of tunable interactions. Parts of this chapter
have been published in S. Ospelkaus et al., Phys. Rev. Lett. 97, 120403 (2006).

The optical lattice part of this thesis starts with chapter 5. I will first review the
theory of optical lattices and the description of non-interacting particles confined in a
periodic potential. I will discuss the resulting band structure in a homogeneous system
and highlight important differences for the case of an underlying harmonic trap. Leaving
the limit of the non-interacting system, I will review how interacting many-body systems
are treated in the Hubbard model. I will discuss the optical lattice setup for Fermi-
Bose mixtures which has been realized in this thesis and present measurements with pure
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bosonic and fermionic ensembles in the optical lattice.
In chapter 6, I will present the first realization of a Fermi-Bose mixed many-body

system in a 3D optical lattice. In particular, we have studied how the coherence prop-
erties of the bosonic component are affected by the presence of a fermionic “impurity”
admixture. We find that already a very small impurity admixture causes a significant
loss of coherence in the bosonic component. This phenomenon is studied as a function
of the fermionic atom number in the system. The observations have generated a lot of
interest, and several approaches are currently being pursued in order to understand the
observed phenomena from a theoretical point of view. Possible scenarios include reversible
thermodynamic processes, mean field Fermi-Bose interaction physics and disorder-related
localization phenomena. Parts of this chapter have been published in S. Ospelkaus et al.,
Phys. Rev. Lett. 97, 180403 (2006).

In chapter 7, tunable heteronuclear interactions and 3D optical lattices are combined
for the first time. This has resulted in the controlled association of heteronuclear Fesh-
bach molecules. These molecules are of particular interest, since they may later be trans-
ferred into their internal ground state where they exhibit long-range anisotropic interac-
tions making them potential building blocks of future quantum computation schemes [38],
novel dipolar quantum gases and the additional perspective of measurements of P- and
T-violating effects [34]. This chapter closely follows C. Ospelkaus et al., Phys. Rev. Lett.
97, 180402 (2006); details can be found in the PhD thesis of Christian Ospelkaus [35].



Chapter 2

Large particle number Fermi-Bose
mixtures in a magnetic trap

Within this thesis, an experimental apparatus for the preparation and study of quantum
degenerate Fermi-Bose mixtures of 40K and 87Rb in 3D optical lattices has been designed
and built up from scratch together with Christian Ospelkaus. In this chapter, an overview
on the experimental apparatus and different techniques for the study of quantum degen-
erate mixtures will be given. The main emphasis will be on the techniques specific for the
preparation of mixtures. Additional and complementary details on the apparatus can be
found in the thesis of Christian Ospelkaus [35].

The setup realized within this thesis has produced the so far largest particle numbers
in quantum degenerate 40K–87Rb mixtures. As the 40K–87Rb system is characterized by a
large attractive background interaction between fermions and bosons (aFB = −215(10)a0),
the system is unstable with respect to mean-field collapse when reaching critical densities.
I will briefly discuss the symptoms of the collapse as observed in the experiment during
the final stage of evaporative cooling. The findings in this regime of large particle numbers
have been published in C. Ospelkaus et al., Phys. Rev. Lett. 96, 020401 (2006) and are
described in detail in the thesis of Christian Ospelkaus [35].

2.1 Vacuum apparatus

Experiments with quantum degenerate gases require both excellent ultrahigh vacuum con-
ditions for long lifetimes of the atomic ensembles on the order of several 10 s and excellent
optical access for cooling, trapping and manipulation of the atomic clouds by various so-
phisticated laser beam configurations. Both requirements impose stringent conditions on
the design of the vacuum chamber. Fig. 2.1 shows a sketch of the vacuum system that has
been designed for the preparation of quantum degenerate mixtures in 3D optical lattices
within this thesis. The vacuum apparatus (which is based on the setup successfully used in
the BEC experiment in our group [39, 40]) consists of two glass cells as the most relevant
vacuum chamber elements, the upper vapor cell and the lower UHV-cell attached to the
central vacuum chamber. The two chamber design reflects the different cooling stages on
the way to quantum degenerate mixtures requiring different vacuum conditions. In the
upper part of the vacuum apparatus (the preparation chamber), high background vapor

5
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Figure 2.1: Sketch of the vacuum chamber design. The apparatus consists of two vacuum
chambers, the preparation chamber in the upper part of the apparatus and the science
chamber in the lower part of the apparatus which are connected by a differential pumping
tube. The differential pumping tube is designed to maintain a vapor pressure gradient of
2 to 3 orders of magnitude.
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pressure has to be maintained to provide a reservoir of atoms. At a vapor pressure of
typically 10−9 mbar, atoms from the background vapor are caught and precooled by dis-
sipative light fields in combination with magnetic fields in a 2D magneto-optical trap [41].
The continuous intense collimated atomic beam of 87Rb and 40K is transferred through a
differential pumping tube to the lower part of the vacuum apparatus where the precooled
atoms are recaptured in a 3D magneto-optical trap [42], evaporatively cooled to quantum
degeneracy and further manipulated. The connecting differential pumping tube between
the two chambers is designed to maintain a vapor pressure gradient of 2 1/2 orders of mag-
nitude ensuring excellent ultrahigh vacuum conditions of typically < 1 · 10−11mbar in the
lower part of the apparatus (the science chamber). The UHV conditions allow us to trap
cold thermal atom clouds with lifetimes of several minutes (cf. Fig. 2.10). The differential
pumping tube has a length of 100 mm and is 4 mm in diameter, resulting in a conductance
of 0.23 ls−1. The effect of differential pumping is further enhanced through graphite tubes
preventing especially alkali atoms from creeping down the differential pumping tube. Both
chambers are pumped by 55 ls−1 ion getter pumps1 in addition to a titanium sublimation
pump on the science chamber side of the apparatus.

Excellent optical access to both chambers is achieved by use of optical quality quartz
glass cells. To ensure a high atom flux from the 2D magneto-optical trap in the preparation
chamber and to avoid losses due to transverse velocity spread of the 2D-MOT atomic beam,
care has been taken to keep the distance between the two vacuum chambers as short as
possible. To this end, the upper glass cell is sealed by a Helicoflex spring seal directly
to the stainless steal sealing surface of the central connection chamber whereas the glass-
metal transition of the lower glass cell is kept as short as possible (8 cm), resulting in a
total distance between the central trapping volumes of the two chambers of 28 cm.

2.2 Atom sources

The necessary background vapor pressure for the preparation of cold atomic beams of
87Rb and 40K is provided by dispensers which are mounted directly in the 2D-MOT glass
cell in the upper part of the vacuum apparatus (see Fig 2.1). The necessary current for
the operation of the dispensers is provided through two current feedthroughs in the upper
part of the vacuum apparatus.

Whereas commercial 87Rb dispensers2 are available, the low abundance of 40K in nat-
ural potassium of only 0.012% limits the usefulness of commercially available potassium
dispensers. With commercial potassium dispensers made of natural potassium, the num-
ber of potassium atoms collected in the vapor cell would be severely limited. However,
potassium enriched to ≈ 6% 40K is available in form of a salt, KCl3. Following the pro-
cedure outlined in [43], a very efficient potassium source can be constructed by mixing
the enriched salt with Ca as reducing agent. Similar to the design developed at JILA,
our sources4 contain 5 mg of KCl in addition to ca. 15 mg pure calcium and rely on the
well-known reduction reaction 2KCl + Ca −→ 2K + CaCl2. By heating the mixture of

1Star Cell 55, Varian Inc. (Italy)
2In our experiments, we use dispensers from SEAS Getters (Rb/NF/7/17/FT10-10).
3The salt KCl enriched in 40K is available from Trace Sciences international Corporation
4The sources have been constructed in cooperation with Dr. Kathrin Hofmann and Prof. Dr. Barbara

Albert from the chemistry department.
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KCl and Ca, K is released into the vacuum whereas Cl is recaptured by the Ca atoms,
forming the salt CaCl2. To avoid contamination of the vacuum, both KCl and Ca have to
be very pure. The calcium was therefore baked out for one week at 350◦C to drive out any
impurities. As KCl is very hygroscopic, the salt was heated for several days to ≈ 100◦C
to drive out any residual water. KCl and Ca are subsequently finely ground, sieved and
mixed. The mixture is then filled into a small boat made of nichrome foil5 which has been
annealed under vacuum conditions for several days prior to use. Every preparation step is
done under pure argon atmosphere to avoid any contact of the ingredients with water or
oxygen. In daily operation, heating of the mixture to a few hundred degrees centigrade is
done by running a current through the nichrome boat and thereby enabling the chemical
reduction reaction.

A major concern in the preparation of these sources is the lifetime. Commercially
available alkali metal dispensers, although containing only 2-5 mg of alkali metal, usually
serve as reliable atom sources in a typical BEC apparatus for more than one year. To
get an estimate on the lifetime of our self-made sources, we have compared the lifetime
of our sources to commercially available potassium dispensers containing natural potas-
sium. The characterization measurement was done in a small test apparatus where both
commercially available dispensers containing natural potassium and self-made potassium
dispensers where operated for several weeks at a current much higher than the usual oper-
ation current in a typical BEC experiment. The amount of potassium released from these
sources was estimated based on the fluorescence of 39K excited on the D2-line at 766.7nm
(see Fig. 2.2 a)). Fig. 2.2 b) shows the time evolution of the fluorescence signal of potas-
sium atoms released from a commercial potassium dispenser compared to the fluorescence
signal of a self-made dispenser. Numerically integrating the fluorescence signal over time
demonstrates that the self-made dispenser is comparable to the commercial one within a
factor of two.

2.3 Laser systems

During the different stages of the experiment, different laser frequencies for cooling, trap-
ping, repumping and detection of the two atomic species are necessary and have to be
generated. An overview of the necessary laser frequencies for both isotopes is given in
table 2.1.

Compared to a single-species experiment, a two-species experiment requires twice as
many laser frequencies to be integrated into the apparatus. In the following, the two
different laser systems for 40K and 87Rb will be described. Whereas the 87Rb laser system
is based on the techniques developed in our group at the neighboring BEC experiment
[39, 40], no previous experience for the design of a laser system for 40K had been available
in our group. The laser systems are designed to deliver largely sufficient trapping and
repumping power for both atomic species allowing the operation of large-volume magneto-
optical traps with large atom numbers. Additional details on the characterization of the
87Rb laser system can be found in the diploma thesis of Jürgen Fuchs [44].

5Nichrome foil from Goodfellow
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Figure 2.2: a) Sketch of the experimental setup for the dispenser characterization: Potas-
sium atoms released from the self-made/commercial dispenser are excited on the D2-line.
The fluorescence is detected on a photodiode. b) Characterization measurement: Fluo-
rescence signal of the potassium atoms released from both the commercial (triangles) and
the self-made dispenser (circles) recorded over several weeks. The initial “divergence” in
the fluorescence signal of the self-made dispenser is due to a too high current chosen in
the initial phase of the experiment.
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Element Transition Detuning
40K 2D/3D-MOT(cooling) 42S1/2F = 9/2 → 42P3/2F = 11/2 red-detuned
40K repumping 42S1/2F = 7/2 → 42P3/2F = 9/2 red-detuned
40K detection 42S1/2F = 9/2 → 42P3/2F = 11/2 resonant
40K state preparation 42S1/2F = 9/2 → 42P3/2F = 11/2 resonant
40K pushing beam 42S1/2F = 9/2 → 42P3/2F = 11/2 blue-detuned
87Rb 2D/3D-MOT(cooling) 52S1/2F = 2 → 52P3/2F = 3 red-detuned
87Rb repumping 52S1/2F = 1 → 52P3/2F = 2 resonant
87Rb detection 52S1/2F = 2 → 52P3/2F = 3 resonant
87Rb state preparation 52S1/2F = 2 → 52P3/2F = 3 resonant
87Rb pushing beam 52S1/2F = 2 → 52P3/2F = 3 blue-detuned

Table 2.1: Overview of the necessary laser frequencies for cooling and trapping of 40K and
87Rb.

2.3.1 Rb laser system

The 87Rb laser system is based entirely on semiconductor laser diodes. Two grating
stabilized external cavity diode lasers are stabilized to the saturated absorption crossover
resonances 87Rb F = 2 ↔ F ′ = 2, 3 and 87Rb F = 1 ↔ F ′ = 1, 2 of the D2-line
(52S1/2 → 52P3/2) at λ ≈ 780 nm using FM-spectroscopy. These two laser frequencies
serve as a starting point for the generation of light in the vicinity of the cooling transition
87Rb F = 2 ↔ F ′ = 3 and the repumping line 87Rb F = 1 ↔ F ′ = 2 (c.f. Fig. 2.3).
Using acousto-optic modulators, laser frequencies for different purposes such as cooling and
trapping in 2D and 3D magneto-optical traps, optical pumping for spin-polarization prior
to loading of the magnetic trap, detection and repumping are produced. The different
laser frequencies are subsequently amplified by additional slave lasers (injection locked
diode lasers).

Both for the operation of an efficient 2D and a large-volume 3D magneto-optical trap,
cooling light with a total power of at least 100 mW is required at the experimental appa-
ratus. To match these power requirements, the cooling light is amplified at the final stage
by two separate tapered amplifier setups prior to guiding the light via single-mode optical
fibers to the experiment. The amplifying medium has a gain of approximately 10 dB and
a maximum output power of 500 mW, requiring approximately 50 mW of seeding power
to achieve the 500 mW of maximum output specified. The tapered amplifier is therefore
seeded by an additional “slave” laser which is itself injection locked by a few hundred
µW of light from the grating stabilized diode laser operated in the vicinity of the cooling
transition. The slave laser as well as the amplifying medium are protected from retrore-
flections by optical diodes with a typical isolation performance of 30 dB. For beam shaping
of the amplified laser light which has a strongly anisotropic divergence, collimation of the
amplified laser light is performed in two steps. In the first step, the laser light is colli-
mated in the vertical direction by a spherical collimator; in the second step, additional
beam shaping is performed by a cylindrical lens providing collimation in the horizontal
direction. To ensure fast and effective switching of the cooling light, an electro-optical
modulator is used in a final stage before fiber coupling of the laser light. Note that despite
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careful beam shaping, typical coupling efficiencies into a single-mode optical fiber are on
the order of 40%, allowing for a typical cooling power of >150 mW at the experimental
apparatus while operating the tapered amplifier at a moderate output power of 400 mW.

The laser light is generated on a separate laser table and any light is transported to
the experiment by single-mode optical fibers for mode-cleaning. A detailed description of
the full Rb laser system and the locking scheme is given in Appendix A.

2.3.2 K laser system

The laser light for manipulation of 40K atoms on the D2−transition (42S1/2 → 42P3/2)
at λ ≈ 767nm is delivered by two independent sources: a 1.6W Ti:Sa laser providing the
necessary frequencies for cooling, trapping, manipulation and detection of 40K on the F =
9/2 → F ′ = 11/2 transition and a commercial MOPA-system from Toptica Photonics with
a power of up to 400 mW to allow for sufficient repump power for both the 2D and the 3D
magneto-optical trap on the 40K F = 7/2 → F ′ = 9/2 transition. As our 40K 3D magneto-
optical trap is operated in a dark-SPOT [45] configuration (see section 2.4.2.1), light for an
additional “dark-spot” repumper is required. Due to the small hyperfine splitting in the
excited state 4P3/2 manifold, a relatively strong repumping laser is required which operates
almost as a second cooling laser. Details on the locking scheme for the Ti:Sa laser and the
MOPA laser can be found in Appendix B. Due to the low abundance of 40K in natural
potassium, both lasers have been locked to saturated absorption spectra of 39K having a
natural abundance of 93.26%. The necessary frequencies for cooling, trapping, detection,
state preparation and repumping are then generated by several acousto-optic modulators
which at the same time assure rapid switching of the respective laser frequencies. As in the
case of the Rb laser system, any light necessary for the manipulation of 40K is generated
on a separate laser table and transported to the experiment via single-mode optical fibers.
A detailed description of the laser system can be found in Appendix B.

2.3.3 Combining the two laser systems

A major concern in the design of the whole apparatus was to ensure optimum optical
access to the main experimental chamber despite the enormous amount of laser frequencies
and laser beams necessary for precooling and detection of both 87Rb and 40K. Whenever
possible, the laser light for 40K and 87Rb has therefore been overlapped prior to fiber
coupling. The overlapping of laser beams for potassium and rubidium has been done
using special dichroic mirrors HR-coated at 780 nm and AR-coated at 767 nm. The laser
beams for pushing, state preparation and detection for potassium are overlapped with the
respective laser beams for the rubidium isotope before being transported to the experiment
proper by three optical fibers. The 2D- and 3D-MOT laser beams, however, are overlapped
with the respective repumping beams separately for the two isotopes and then transported
to the experiment.

2.4 A two-species 2D/3D magneto-optical trap combination

The first precooling step on the way to quantum degeneracy in alkali gases is trapping
and cooling by magneto-optical traps [42]. In magneto-optical traps, the combination of
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trapping light fields and quadrupolar magnetic fields provides the necessary confining and
dissipative forces for the accumulation and cooling of atoms. In a typical magneto-optical
trap, the phase space density of a room temperature gas at 300 K is enhanced by a factor
of 106 achieving final phase space densities of typically 10−6. In our experiment, we use a
combination of two different magneto-optical traps for trapping and cooling of atoms: In
the upper part of the apparatus, a two-species 2-dimensional magneto-optical trap is used
to prepare an intense collimated atomic beam of both 40K and 87Rb. These transversally
cold but longitudinally hot atoms are subsequently recaptured in a 3D magneto-optical
trap in the UHV part of the apparatus (see Figure 2.1). In the following section, the
setup of the 2D/3D two-species magneto-optical trap combination will be described and
the performance of the magneto-optical traps for 40K and 87Rb will be discussed. Finally,
we study the mutual influence of the 40K and 87Rb magneto-optical traps on each other
for simultaneous operation.

2.4.1 Two-species 2D magneto-optical trap

The principle of a two-dimensional magneto-optical trap has first been used for compres-
sion and transverse cooling of atomic beams [46, 47, 48]. However, two-dimensional cooling
can also be used for the generation of a transversally cold and slow atomic beam suitable for
efficient loading of 3D-magneto-optical traps. Such a high-flux atomic beam (1010atoms/s)
prepared from a two-dimensional magneto-optical trap has first been demonstrated by
Diekmann and coworkers in 87Rb [41]. Two-dimensional magneto-optical traps have been
investigated by several groups worldwide [49, 50, 51]. However, apart from our work on
40K [5] and a very recent work on the bosonic potassium isotopes 39K and 41K [52], no
work has been done on potassium.

2.4.1.1 Operation principle and setup of the 2D-MOT

In the upper glass cell of our vacuum apparatus (see Fig. 2.1), a background vapor of
both 87Rb and 40K is generated. The glass cell which is separated from the UHV-chamber
by a differential pumping tube is surrounded by four rectangular coils which generate a
two-dimensional magnetic quadrupole field. The zero line of the magnetic field is along
the axis of the pumping tube. Four laser beams with an almost rectangular beam shape
(1.4 cm x 7 cm beam diameter) propagate perpendicular to the zero line of the magnetic
field and enclose a large cooling volume inside the vacuum chamber. The laser beams are
circularly polarized in the usual MOT configuration. The laser beams have been adjusted
such as to extend the cooling volume almost down to the beginning of the differential
pumping tube. Thermal atoms that enter the cooling volume are slowed down due to
dissipative light forces in the radial direction and compressed on the zero line of the
magnetic field. The atoms form a transversally cold but longitudinally hot atomic beam.
Nevertheless, the longitudinal velocity distribution does not correspond to the velocity
distribution of a thermal atomic beam. The reason is that atoms with initially high
longitudinal velocity will only stay inside the cooling volume for a very short time - too
short to be effectively cooled down radially. An additional pushing beam along the line of
zero magnetic field enhances the flux of atoms in the direction towards the UHV chamber.

In the experiment, we operate the 2D-MOT with a 2D magnetic quadrupole field
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Figure 2.3: Hyperfine structure of the D2-line of 40K and 87Rb respectively. a) Cooling
and repumping occur on different hyperfine transitions of the 40K D2-line. Both cooling
and repumping light is slightly red-detuned to the corresponding hyperfine transition. b)
In the case of 87Rb, only the cooling laser is red-detuned.

of 18 G/cm in the intersecting regions of the laser beams. The 2D-MOT beams are
realized by two retroreflected laser beams which are collimated and shaped by cylindrical
lenses. The retroreflection is realized in a lens mirror cat’s eye configuration with an
additional quarter wave plate for reversal of the circular polarization. Both orthogonal
beams contain light on the cooling and repumping transitions of 40K at 767 nm and 87Rb at
780 nm (see Fig. 2.3) for simultaneous two-species operation. The beams are overlapped
using dichroic mirrors immediately after fiber-outcoupling and beam collimation. The
overlapped beams are then split into two separate laser beams using polarizing beam
splitter cubes, then enlarged to a beam diameter of 14 mm and finally shaped by the
cylindrical lenses. Achromatic waveplates are used to polarize the overlapped laser beams
for both isotopes simultaneously.

2.4.1.2 2D MOT optimization

The 2D magneto-optical trap has been characterized for both species. The main optimiza-
tion criterion is the loading rate of the 3D magneto-optical trap reflecting the trappable
flux created by the 2D MOT. As we have found no mutual influence of one species on the
other in the 2D-MOT, we optimized the two 2D-MOTs for 40K and 87Rb separately.

87Rb 2D-MOT 2D-MOT operation for 87Rb has been reported and characterized in
previous experiments [41, 51, 39]. Similar to these experiments, we use the F = 2 → F ′ = 3
cycling transition for trapping and cooling and the F = 1 → F ′ = 2 transition for repump-
ing (see Fig. 2.3). Optimizing the 87Rb 2D-MOT, we find comparable characteristics to
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previous experiments. In brief, we typically use a total cooling laser power of > 100 mW
combined with a repumping power of 3 mW. Optimal operation is found for a cooling
light detuning of −3 Γ relative to the F = 2 → F ′ = 3 cycling transition. However, the
optimal detuning is slightly dependent on the chosen 3D-MOT detuning due to matching
of velocity classes in the beam with the 3D-MOT capture range. As in [39], the use of an
additional pushing beam enhances the flux of atoms of the 2D-MOT by almost a factor of
10 as compared to a factor of 2 in [41]. The effect of the pushing beam is two-fold. First,
it reverses the direction of propagation of low-velocity atoms which move away from the
3D-MOT and add them to the trappable atom flux. Second, for an optimized detuning,
the pushing beam accelerates the lowest velocity atoms to a few 10 m/s just in the capture
range of the 3D-MOT. It thereby significantly reduces the divergence of the atomic beam
emerging from the 2D-MOT, minimizing losses by atoms hitting the walls of the differen-
tial pumping tube. In Fig. 2.4, the influence of the detuning and the power of the pushing
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Figure 2.4: Influence of detuning and power of the pushing beam on the loading rate of a
87Rb 2D-MOT. a) Loading rate as a function of detuning. b) Loading rate when varying
the power of the pushing beam. The Gaussian beam diameter of the pushing beam is
approximately 2.6 mm.

beam on the loading rate of a 87Rb 3D-MOT is shown. Whereas the loading rate of the
3D-MOT rapidly decreases with increasing red-detuning, optimal loading is observed for
a blue-detuning of +2 Γ. With increasing red-detuning, the pushing beam interacts more
and more with high-velocity atoms moving away from the differential pumping tube and
slows them down, but does not reverse their velocity distribution. Only very few atoms
are therefore added to the trappable atom flux. However, a moderately blue-detuned laser
beam mainly interacts with the low-velocity tail of atoms moving towards the pumping
tube and accelerates them significantly minimizing losses (see above). Note that the char-
acterization measurements of Fig. 2.4 have been done at a moderate background vapor
pressure in the upper glass cell. The atomic flux can be significantly enhanced by choosing
a large 87Rb vapor pressure. Atomic beams with typically > 2 · 109/s and up to 1 · 1010/s
have been prepared in the experiment, allowing the accumulation of ≈ 1010 atoms in the
3D-MOT within less than 10 s.
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40K 2D-MOT To prepare a cold atomic beam of 40K atoms, we use the F = 9/2 →
F ′ = 11/2 transition for cooling and trapping and the F = 7/2 → F ′ = 9/2 transition for
repumping (see Fig. 2.3a)). Due to the small hyperfine splitting of potassium in the excited
state manifold, “losses” of potassium via non-resonant excitation to the 42P3/2F

′ = 9/2
state and subsequent decay into the F = 7/2 ground state are very likely. Sufficient
repumping power is therefore required to transfer the atoms back into the cooling cycle on
the F = 9/2 → F ′ = 11/2 transition. Typically, the 40K 2D-MOT has been operated with
a total cooling power of 100 mW and a repumping power of 30 mW. Optimal operation
of the 2D-MOT has been observed for red-detuned cooling and red-detuned repumping
light. The detunings optimizing the atomic flux are on the order of −3 Γ for both cooling
and repumping light6. Adding a pushing beam along the line of zero magnetic field
increases the atomic flux by a factor of 2. Again, best performance of the pushing beam is
observed with blue-detuned light. The smaller enhancement of the atomic flux in the case
of 40K as compared to the 87Rb case is probably due to the tight and inverted hyperfine
structure of the 42P3/2 state. With increasing blue-detuning, the probability of inducing
F = 9/2 → F ′ = 9/2 transitions grows. The F = 9/2 ground state is, however, subject to
a fast depletion to the F = 7/2 ground state which is dark for subsequent pushing cycles.
Further enhancement of the atomic flux should therefore be possible upon addition of a
blue-detuned repumper. We typically operate the 40K 2D-MOT with atom fluxes of 5·106/s
which is mainly limited by the relatively low vapor pressure of 40K as compared to 87Rb,
but largely sufficient for our experiments. Higher atomic fluxes have been observed when
increasing the current through our self-made dispensers, thereby increasing the background
vapor pressure of 40K in the upper glass-cell.

2.4.2 Two-species 3D-MOT

The two-species 3D-MOT is loaded from the 2D-MOT and is operated in the UHV-part
of the apparatus at a background gas pressure of 1 · 10−11 mbar. The 3D-MOT region is
located between two planar coil arrangements which provide the 3D magnetic quadrupole
field for magneto-optical trapping as well as a Ioffe-Pritchard type field for magnetic trap-
ping (see Fig. 2.1). The cooling and repumping light for both 40K and 87Rb is transported
to the experiment separately for each species by a single optical fiber. The six individual
laser beams for the 3D-MOT are then prepared as follows: First the light for each species
is split up into three beams. The laser light for the two different species is overlapped
using dichroic mirrors. The three beams for the three MOT axes are enlarged to a beam
diameter of 24 mm and finally, each beam is again split up into two to provide counter-pro-
pagating beams for each axis. For more details, see the thesis of Christian Ospelkaus [35].
The careful design of the two-species 3D-MOT optics has allowed the integration of a 3D
optical lattice and four detection systems into the setup (cf. section 5.4).

2.4.2.1 Two-species 3D-MOT optimization

Magneto-optical trapping of 87Rb is a standard technique established in many laboratories
worldwide and has proven to be relatively insensitive to specific optimization parameters.

6Note that the detuning of the repumping laser can only be adjusted simultaneously for both the 2D
and the 3D-MOT.
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We have therefore only roughly optimized the 87Rb MOT parameters and concentrated
on the optimization of the 40K-MOT system and the simultaneous operation of the 40K
and 87Rb-MOT.

87Rb 3D-MOT Optimal operation for the 87Rb MOT is found for a cooling light de-
tuning of −3.5 Γ relative to the F = 2 → F ′ = 3 cycling transition and an on-resonant
repumper on the F = 1 → F ′ = 2 transition. We operate our 87Rb 3D-MOT with a total
cooling power of 160 mW and a total repumping power of 20 mW at a magnetic field
gradient of 10 G/cm. With these parameters, we are able to trap up to 1010 87Rb atoms
within less than 10 s loading time. The atom number is determined from a fluorescence
signal measured on a photodiode.

40K 3D-MOT As compared to 87Rb, 3D magneto-optical trapping of 40K has some
peculiarities: As already discussed in the context of the 2D-MOT, due to the relatively
small hyperfine splitting in the excited state manifold, magneto-optical trapping of 40K
requires relatively high repumping power and it is beneficial to operate the repumper red-
detuned relative to the repumping transition [53, 54]. This is even more important in the
case of the bosonic isotopes of potassium where the hyperfine splitting in the excited state
is even one order of magnitude smaller than the hyperfine splitting of 40K [55, 56, 53, 57].
In addition, the 40K 3D-MOT shows strong intensity dependent and density dependent
losses in a standard bright 3D-MOT configuration. This is illustrated in Fig. 2.5, where we
have analyzed the achievable atom numbers in the 3D-MOT as a function of the cooling
light intensity and the lifetime of the 3D-MOT as a function of the magnetic field gradient
(enhancing the density of the ensemble). Best operation of the 40K 3D magneto-optical
trap is observed at very low intensities of 1 mW/cm2 corresponding to a total cooling
power of 27 mW (!). With increasing laser light intensity, the achievable atom number
in the 3D-MOT decreases exponentially, indicating strong light assisted collisional losses.
The lifetime of the 3D-MOT decreases with increasing magnetic field gradient, reducing
the lifetime of the 40K MOT to < 5 s at a magnetic field gradient of 10 G/cm (which is a
magnetic field gradient at the lower edge of what is reasonable for the operation of a 87Rb
MOT in our experiment).

Both signatures indicate strong light-assisted inelastic collisional losses which can be
reduced significantly by applying the dark SPOT technique. The ”Dark Spontaneous-
Force Optical Trap” has been demonstrated by Wolfgang Ketterle and coworkers in 1993
with sodium [45]. The dark SPOT is a magneto-optical trap which confines most of the
atoms in the hyperfine ground state which does not interact with the cooling light, the
so-called “dark” hyperfine ground state. Atoms in this “dark” hyperfine ground state
are most naturally produced in every magneto-optical trap operated with alkali atoms:
The cooling transition is never fully closed, and off-resonant excitation produces atoms in
hyperfine states in the excited state manifold which decay into the “dark” ground state
within a few nanoseconds. In a dark SPOT, these atoms in the “dark” hyperfine ground
state are accumulated in the center of the magneto-optical trap by strongly reducing or
even blocking the repumping light intensity in a certain spatial region. In this region,
atoms leaving the cooling cycle due to non-resonant excitation will not be transferred
back and will therefore spend most of their time in this dark hyperfine ground state.
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Figure 2.5: Intensity and density dependent losses in the 40K 3D-MOT a) Achievable atom
number in the 40K MOT as a function of the cooling light intensity. b) Lifetime of the
40K 3D-MOT as a function of the magnetic field gradient.

Only when leaving the dark region of the magneto-optical trap, the atoms interact with
the repumper and become visible for the trapping light which will transfer them back to
the center of the trap. The effect of the dark SPOT is thus twofold: First, it significantly
reduces losses due to inelastic collisions between ground- and excited state atoms. Second,
the dark SPOT leads to higher atomic densities as the fluorescence light of the MOT is
diminished, thereby reducing the outward radiation pressure.

In our experiment, we have realized a dark SPOT for potassium by integrating a
second repumping path into the experiment where the central 5 mm of repumping light
are blocked. This is done by passing the repumping beam through a glass plate with a
small black dot and imaging the black dot onto the atomic ensemble. The repumping
light in this dark region is thereby reduced by a factor of 30. A sketch of the setup can
be found in the diploma thesis of Marlon Nakat [58]. Note that the bright repumper is
still necessary for final repumping of the “dark” F = 7/2 atoms into the “bright” F = 9/2
state prior to detection or loading of the atoms into the magnetic trap.

Fig. 2.6 shows a comparison of the loading curve and lifetime of a dark SPOT in
comparison to an ordinary bright 40K MOT. As can be seen from the figure, atom numbers
in the bright 40K MOT saturate at approximately 2.5 · 107 atoms, whereas in the dark
SPOT, atom numbers of > 1.5 · 108 have easily been achieved, thereby increasing 40K
atom numbers by more than a factor of 5. In addition, the lifetime of the 40K dark
SPOT is almost a factor of 20 larger than the lifetime of a corresponding bright MOT (see
Fig. 2.6b).

Combining the two magneto-optical traps When combining the two-species MOT
for the first time, the two MOTs have been operated at the same laser detunings and
magnetic-field gradient used to optimize the single-species MOTs. The most important
observation is a significant decrease in the 40K atom numbers when the two MOTs for the
two species are operated simultaneously. Atom numbers in the 87Rb cloud are, however,
not affected at all. The strong performance reduction of a 40K MOT due to an overlapping
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Figure 2.6: Comparison of the loading and lifetime of a 40K dark SPOT and bright
MOT. a) Comparison of the loading characteristics: The dark SPOT loading saturates
at much larger particle number than the bright MOT. b) Comparison of the lifetime of
the dark SPOT and the bright MOT: The lifetime of the dark SPOT is almost a factor
of twenty larger than the lifetime of a comparable bright MOT. An overlapping 87Rb
MOT induces enhanced losses in the dark SPOT. However, the lifetime of the dark SPOT
overlapped with a 87Rb MOT is still larger than the lifetime of a pure bright 40K MOT
(cf. section 2.4.2.1)

87Rb MOT has first been reported by J. M. Goldwin and coworkers [59] and suggested
light-assisted heteronuclear collisions to be responsible for 40K losses in the two-species
MOT. Fig. 2.7 shows the final atom numbers in the 40K dark SPOT after 20 s of loading
time while varying the loading time tRbload

= 0 of 87Rb between 0 and 20 s. Whereas
we achieve more than 108 40K atoms in a single species 40K MOT (tRbload

= 0), atom
numbers in the 40K dark SPOT decrease by a factor of almost 4 when simultaneously
loading 40K and 87Rb. In addition, the lifetime of the 40K dark SPOT is significantly
decreased by the presence of the 87Rb MOT (see Fig. 2.6 (right)). However, the lifetime
of the combined 40K dark SPOT and 87Rb MOT is still above the one of a pure bright
40K MOT, but the rubidium-induced losses dominate the lifetime of the 40K ensemble and
constrain the maximum achievable 40K atom numbers. For a further optimization of the
40K atom numbers, we take advantage of the relatively fast 87Rb-MOT loading leading
to a saturation of the 87Rb MOT within 3-10 s. The strategy is therefore to keep the
loading time for the potassium MOT fixed at the dark SPOT saturation time of 20 s and
to load the rubidium atoms during the last seconds of this time. This two-step loading in
combination with a dark SPOT for 40K has provided maximum particle numbers in our
experiment.

In addition, we have investigated the laser parameter dependence of a pure 40K dark
SPOT in comparison to a combined 40K dark SPOT / 87Rb MOT. The result of these
investigations is shown in Fig. 2.8. These graphs have been obtained for a loading time of
20 s and a magnetic field gradient of 10 G/cm along the coil axis. However, whereas the
optimum laser parameters for the 40K dark SPOT change only slightly due to the presence
of the 87Rb MOT, the figure impressively demonstrates the dominating 87Rb induced losses
in the 40K cloud. Table 2.2 summarizes the optimum parameters and achieved particle
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Figure 2.7: Final atom numbers in the 40K dark SPOT after 20 s of loading time while
varying the loading time tload of 87Rb between 0 and 20s. Whereas we achieve more than
108 40K atoms in a single species 40K MOT (tRbload

= 0), atom numbers in the 40K dark
SPOT decrease by a factor of almost 4 when simultaneously loading 40K and 87Rb.

numbers for a single 40K dark SPOT and the combined system.

parameter 40K-MOT combined MOT 40K / 87Rb

loading time for data below 20 s 20 s / 10 s
power - pushing-beam 30µW 30µW / 100µW
magnetic field gradient 10 G/cm 10 G/cm

intensity per beam - cooling laser 8 mW/cm2 9 mW/cm2 / 9mW/cm2

detuning - cooling laser -26 MHz -22 MHz / -20 MHz
intensity per beam - repumper 2 mW/cm2 2 mW/cm2 / < 1 mW/cm2

detuning - repumper -33 MHz -23 MHz / 0MHz

lifetime > 90 s ≈ 5 s / > 90 s
atom number 3 × 108 5 × 107 / 5 × 109

Table 2.2: Optimum parameters for cooling and trapping of 40K and mixtures of 40K and
87Rb.

2.5 Optical molasses and state preparation

Typical MOT temperatures are on the order of a few hundred µK. A further reduction in
temperature can be achieved by polarization gradient cooling [60, 61] in optical molasses.
After loading of the two MOTs, the magnetic field gradient is quickly switched off and
the detuning of the cooling lasers is ramped to a detuning appropriate for sub-Doppler
cooling (∆ ≈ −5Γ). We then perform a 10 ms polarization gradient cooling phase with
the counter-propagating σ+ and σ− circularly polarized MOT beams. Although we have
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Figure 2.8: Optimization of the laser parameters for a 40K dark SPOT in comparison to
a combined 87Rb MOT and 40K dark SPOT. The non-varied parameters for an individ-
ual graph have been chosen close to the optimum. The slight differences in maximum
atom number were due to different dispenser currents and do not significantly affect the
optimization result.
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not systematically studied the effect of optical molasses cooling, the additional reduction
in temperature compared to a MOT is clearly visible in the extension of the 87Rb cloud
in the magnetic trap prior to evaporative cooling.

Due to the smaller mass of 40K, conditions for sub-Doppler cooling, which is limited
to a few atomic recoil energies, are not as favorable for 40K as for 87Rb. However, there is
some controversy about that in recent literature [62, 9]. In our experiment, we have passed
on without a systematic study of the temperature of the 40K dark SPOT in comparison to
temperature after the molasses stage. Instead, we have just optimized the laser detuning
of the 40K molasses to produce the largest number of cold 40K after sympathetic cooling
with 87Rb.

The polarization gradient cooling phase is followed by a short state preparation light
pulse of typically 100 µs where atoms released from the molasses are spin polarized on
the F = 9/2 → F ′ = 11/2 and F = 2 → F ′ = 3 cycling transition for 40K and 87Rb
thereby optically pumping them into the Zeeman states |F = 9/2,mF = 9/2 > and
|F = 2,mF = 2 > which can be trapped magnetically. For optical pumping we use a
magnetic guiding field of 1 G.

2.6 Magnetic trapping

Optical cooling methods relying on spontaneous light scattering have shown to be limi-
ted by the cooling mechanism itself. Spontaneous scattering not only limits achievable
temperatures to the temperature of a photon recoil, but also severely limits densities by
radiation pressure forces. For observation of quantum degeneracy in a gas of atoms, it is
therefore necessary to confine the atoms in a different kind of trap and to provide cooling
methods that do not rely on spontaneous scattering. The most common technique in cold
atom experiments is the confinement of atoms in a magnetic trap [63, 64] combined with
evaporative cooling of the atoms [65, 66, 67].

2.6.1 Magnetic trapping of 40K and 87Rb

Magnetic trapping relies on the interaction of a permanent magnetic dipole moment of
neutral atoms with an inhomogeneous magnetic field. The trapping potential of an atom
with magnetic moment ~µ in a magnetic field ~B(~r) is given by

V (~r) = −~µ · ~B(~r) = −gFmFµB | ~B| (2.1)

where µB is the Bohr magneton, mF the magnetic quantum number and gF is the Lande
g-factor. The above equation only makes sense under the assumption that the magnetic
moments of the atoms when moving through the magnetic field adiabatically follow the
magnetic field. This is the case as long as the precession of the magnetic moment of the
atom around the B-field is fast compared to the motion of the atom along the field lines:

h̄ωLamor = mF gFµB | ~B| � | ~̇B|
| ~B|

(2.2)

In this case, atoms in states with gFmF < 0 (“weak-field seeking states”) tend to stay at
a local minimum of the magnetic field whereas atoms with gFmF > 0 (“high-field seeking
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states”) are trapped at a local maximum of the magnetic field. Maxwell’s equations,
however, prohibit a local maximum of the magnetic field. Hence, magnetic trapping is
limited to the weak-field seeking states [68].

In the case of 87Rb, atoms in the |F = 2,mF = 2, 1〉 and |F = 1,mF = −1〉 can be
trapped magnetically, whereas in 40K, a whole bunch of spin states (|F = 9/2,mF = 9/2〉,
|9/2, 7/2〉, ....|9/2, 1/2〉 and |F = 7/2,mF = −7/2〉, |7/2,−5/2〉, ..., |7/2,−1/2〉) are low-
field seeking states. Simultaneous trapping of 40K and 87Rb in a single magnetic trap
is however limited to combinations of spin states which are stable against spin changing
collisions. In our experiment, we have chosen the polarized 40K |F = 9/2,mF = 9/2〉
87Rb |F = 2,mF = 2〉 configuration for simultaneous magnetic trapping and sympathetic
cooling (see below).

2.6.2 Magnetic trap design

This section only reviews basic common techniques and peculiarities of magnetic trapping.
A very detailed discussion of our magnetic trap design can be found in Christian’s PhD
thesis [35] and the diploma thesis of Ralf Dinter [69]. The most simple coil configuration
appropriate for magnetic trapping of atoms is given by two coils in anti-Helmholtz con-
figuration giving rise to a magnetic quadrupole field. The magnetic field is thus zero in
the center of the trap and linearly increases in all three directions. However, this mag-
netic trap has one decisive disadvantage: At | ~B| = 0, the adiabatic following condition
of equation 2.2 is no longer fulfilled. In this case, spinflips of the atoms can occur, so-
called Majorana transitions, and eventually transfer atoms from the low-field seeking to
high-field seeking states. The Majorana losses become the more important the colder the
atoms get and effectively prevent the achievement of quantum degeneracy in these traps
without further precautions [7, 70].

In our experiment, we have followed a very common approach: The use of a magnetic
field configuration with non-zero magnetic field in the center and a quadratic increase of
the magnetic field away from the center. Such a magnetic field configuration is realized by
the Ioffe-Pritchard trap [71] and its numerous variants. The original trap is made up of
four horizontal Ioffe bars providing the radial confinement and two axial coils closing the
trap in the axial direction. The magnetic field of such a trap at the trap center is given
by:

~B = B0
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where B0 is the bias field, B′ the radial gradient and B′′ the axial curvature. The resulting
trapping potential is cigar-shaped with strong radial and weak axial confinement. In the
axial direction, the potential is harmonic with a trapping frequency

ωax =

√

gFmFµB

m
B′′.

In the radial direction, the potential has a harmonic minimum near the origin with a radial
trapping frequency of

ωrad =

√

gFmFµB

m
B̃′′
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where B̃′′ = B′2

B0
− B′′

2 is the radial curvature. Far away from the trap center, the po-
tential increases linearly in the radial direction. The radial curvature and thus the radial

Figure 2.9: Coil configuration for the magnetic trap. Our magnetic trap is a hybrid
between the original cloverleaf and the 4Dee-trap. Compared to the 4Dee-trap, the addi-
tional cloverleaves (with less windings than the Dees) provide additional radial gradient
at the cost of axial curvature, while still offering the excellent 2π optical access in the
radial direction characteristic for the cloverleaf trap. Calculated axial and radial trapping
frequencies are 2π ·11.2Hz and 2π ·214Hz, respectively (for 87Rb) at an operating current
of 110 A and a total power consumption of 2.5 kW.

confinement is strongly dependent on the offset field B0. With increasing offset field, the
radial confinement decreases and for B0 = (2B′2)/(3B′′), a weak isotropic magnetic trap
is realized with ωax = ωrad. Whereas the weak isotropic trap is convenient for loading of
the trap from the MOT, the compressed trap is favorable for evaporative cooling where
fast rethermalization and thus a large elastic scattering rate is required.

The magnetic trap in our experiment is based on the Ioffe Pritchard geometry although
a different coil configuration compared to the original design is used (see Fig. 2.9). The
design has been based on the design of the magnetic trap in the BEC experiment of our
group [39, 40] and is described in detail in [35]. We have realized a hybrid setup based on
the cloverleaf coil configuration [72] and on the 4 Dee trap [73]. Compared to the original
Ioffe configuration with 4 Ioffe bars and pinch coils, the cloverleaf setup is characterized
by excellent full 2π optical access in the radial direction. However, it requires a total of
12 coils (8 cloverleaves, also called quadrupole coils, 2 pinch coils and 2 anti-bias coils in
Helmholtz configuration). The 4-Dee trap, on the other hand, drops 4 of the cloverleaves
and needs no pinch coils, but the radial confinement cannot be made as strong as in the
original cloverleaf trap. Our concept achieves the excellent optical access and the strong
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radial confinement of the cloverleaf trap without the pinch coils. The axial curvature
is provided by reducing the number of windings on four of the eight quadrupole coils
(we refer to these coils as “cloverleaves”, whereas the other four (strong) coils are called
“Dees”). Additionally, this scheme only requires a pair of Helmholtz coils to provide
an additional offset field which can make the radial confinement weaker (“uncompressed
trap”). Note that the Helmholtz coils play exactly the opposite role as in the original
cloverleaf geometry, where the pinch coils produce a large offset field in addition to the
axial curvature, and the Helmholtz coils are activated to lower the offset field and make
the radial confinement stronger.

The magnetic trap is operated with a current of 110 A. The decompressed magnetic
trap is almost spherically symmetric with a trapping frequency of ω

87Rb = 2π · 11.2 Hz.
During compression, the axial trapping frequency remains at the value of 2π ·11.2 Hz while
the radial trapping frequency is ω

87Rb
rad = 2π · (200 − 300) Hz, depending on the value of

the offset field.

Operation of a magnetic trap requires sophisticated electronics for fast switching of the
involved high currents. Using high speed IGBTs, we are able to ramp down the currents
in the magnetic trap within 40 µs. The voltage across the IGBTs is limited to 800 V by
varistors to avoid damage to the semiconductors, which implies that the current is ramped
down linearly at constant voltage in contrast to the more familiar exponential decay.

2.6.3 Loading of the magnetic trap

After accumulation of atoms in the MOT and subsequent polarization gradient cooling, the
atoms are prepared in a spin state appropriate for magnetic trapping. In our experiment,
we use a mixture of 40K in the |F = 9/2,mF = 9/2〉 state and 87Rb in the |F = 2,mF = 2〉
state. Atoms in these states are prepared using σ+ light on the corresponding cycling
transitions starting from ensembles in the F = 9/2 and F = 2 state respectively. We then
switch on the decompressed magnetic trap with trapping frequencies of ωRb

x = ωRb
y =

ωRb
z = 2π · 11 Hz to allow for almost mode-matched and efficient loading of the magnetic

trap. The magnetic trap is then compressed adiabatically in the radial direction during
1.5 s. We typically prepare 3 · 109 87Rb atoms and 2 · 107 40K atoms in the magnetic trap.

2.6.4 Lifetime of thermal atoms in the magnetic trap

For the achievement of quantum degeneracy in a gas of cold atoms, an evaporative cooling
stage of up to 30 s is required. It is therefore essential to realize a long lifetime of the
atoms in the magnetic trap. The lifetime of thermal atoms in the magnetic trap is limited
by collisions with hot background gas atoms. To characterize the lifetime of our magnetic
trap, a pure 87Rb cloud of 109 atoms in the |F = 2,mF = 2〉 state has been prepared in
the compressed magnetic trap. The atom number has then been measured as a function
of hold time in the magnetic trap. Fig. 2.10 shows the corresponding characteristic decay.
We observe an almost purely exponential decay with a 1/e lifetime of (260 ± 50) s which
is largely sufficient for evaporative cooling to quantum degeneracy.
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Figure 2.10: Decay of a pure thermal 87Rb ensemble of initially 109 atoms in the magnetic
trap. The decay is purely exponential with a 1/e-lifetime of (260 ± 50) s

2.7 Absorption imaging of atomic clouds

The standard technique to gain information about dilute atomic gases is absorption imag-
ing. The atoms are illuminated by low-intensity < 50 µs pulses of resonant laser light.
For absorption imaging, we use the |F = 9/2〉 → |F = 11/2〉 and |F = 2〉 → |F = 3〉 tran-
sitions for detection of 40K and 87Rb, respectively. The atoms absorb the photons and
scatter them into 4π. The shadow of the atomic ensemble can be imaged onto a CCD
camera. A quantitative description of this shadow is given by Lambert-Beer’s law. The
intensity of a near-resonant laser beam propagating in z-direction transmitted through an
atomic ensemble with the density distribution n(x, y, z) is given by

I(x, y) = I0(x, y) exp

(

−1

2
σ0

∫

dzn(x, y, z)

)

(2.3)

where σ is the cross section of the atoms for photon scattering. Based on the measured
intensity distribution of the transmitted light, conclusions about the observed atom num-
ber in a certain spatial area defined by the coordinates x, x+ ∆ and y, y+ ∆ and thus the
density distribution of the atoms after (!) time of flight can be drawn. The atom number
within this area, e.g. imaged onto a single pixel of a CCD camera, is given by

N(x, x+ ∆, y, y + ∆) = −∆2

σ
ln
I(x, y)

I0(x, y)
(2.4)

During a typical resonant imaging pulse, an atom scatters up to 300 photons, making the
absorption imaging technique destructive. In typical measurement series, each data point
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requires a new ensemble to be prepared. The preparation of atomic clouds has therefore
to be as reproducible as possible.

The actual imaging process does not rely on a single picture of the atoms’ shadow.
Imperfections in the profile of the imaging beam and interference effects make the actual
absorption image very noisy. In addition, disturbing background signals arise even in
the absence of imaging light due to residual background light falling onto the CCD chip.
To reduce both sources of imperfections as much as possible during a typical absorption
process, three images are taken: The first image takes an absorption image of the atomic
cloud. The second image, the so-called reference image, is taken under the same experi-
mental conditions (exposure time, intensity of detection light) but without atoms. These
two images are divided by each other, thereby reducing noise due to imperfections in the
beam profile of the imaging beam as long as they are stationary between both exposures.
A third image is then taken in a last step, under the same experimental conditions as the
two previous images but without the detection flash. This dark image is subtracted from
the absorption and the reference image. The integrated column density is then obtained
from

OCD(x, y) = ln
Inoatoms(x, y) − Idark(x, y)

Iatoms(x, y) − Idark(x, y)
(2.5)

which is directly related to the atom number in a certain spatial area via

N(x, x+ ∆, y, y + ∆) = −∆2

σ
OCD(x, y) (2.6)

2.7.1 Optical setup

We have integrated four detection systems in our experiment. Two of them allow simulta-
neous detection of the two atomic species in a single run (see below). Three of the imaging
systems are overlapped with the MOT and lattice axes. These detection systems allow
accurate alignment of the lattice laser beams (see 5.4.2). Two of these “lattice” imaging
systems are operated with resonantly tuned MOT light whereas the third is operated with
a separate detection beam. Another optical lattice axis (our main detection axis) is rea-
lized along the z-axis of our apparatus (see Fig. 2.1). Most of the absorption images in this
thesis are taken along this axis of our apparatus. A typical setup of an imaging system is
shown in Fig. 2.11. The resonant laser light is outcoupled from the fiber, carefully colli-
mated by a large NA achromatic lens and then sent onto the atomic cloud. The detection
lens system consists of two achromatic high-quality lenses with typical focal lengths of
f1 = 120 mm and f2 = 250 mm realizing a 1:2 magnification. To minimize imperfections
of the image due to lens errors, we have put them as near as possible to each other. In this
configuration, the second lens compensates to a maximum degree for the lens errors from
the first lens. The finite numerical aperture of the first lens limits the resolution of the
imaging system to a diffraction limited resolution of 4 µm. In the experiment, we observe
a resolution of 6 µm. This is probably due to imperfections in the lens alignment which
are not perfectly parallel with respect to each other and the 2 mm thick glass interfaces
of the vacuum cell.
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Figure 2.11: Optical Setup of a detection system.

2.7.2 Time-of-flight imaging

Dilute atomic gases are typically imaged in time-of-flight absorption imaging. Any confin-
ing atom traps are suddenly switched off and the atoms are allowed to expand for 3−25 ms.
The reason for absorption imaging after time-of-flight instead of in-trap imaging is twofold.

1. The spatial extensions of typical ultracold atomic gases in a confining trap are on the
order of a few 10µm while the imaging resolution is on the same order of magnitude.

2. The in-trap optical density of typical atomic clouds is so dense that the laser beam
is completely dark after passing through the atomic cloud. The absorption imaging
picture is then of limited use, as no information on the density distribution can be
extracted from these images.

After time of flight of 3 − 25 ms, however, the atomic clouds are typically a few hundred
µm in size and the densities of the atomic clouds are significantly reduced.

2.7.3 Two-species imaging

In a single experimental run, we simultaneously image both 40K and 87Rb cloud on a single
detection axis. This is done by taking advantage of the extremely short interframing time
of interline CCD camera chips (ca. 200 µs). A typical imaging sequence then consists of
three double frames. The first double frame consists of two absorption images, one of the
40K cloud and one of the 87Rb cloud. The 40K cloud is typically imaged after 3 − 5 ms
time of flight, whereas we allow for 20 − 25 ms time of flight for the 87Rb cloud. We then
have to allow for > 100 ms read-out time for the two images. The second double frame
then consists of the two reference images for the two clouds, followed by the last double
frame with the dark images. For more details on the different imaging schemes, see [35]).
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2.8 Cooling to quantum degeneracy - Evaporative cooling

2.8.1 Evaporative cooling of 87Rb to quantum degeneracy

Figure 2.12:
BEC in time
of flight. ∆t =
1, 3, ....25 ms

Evaporative cooling [65, 66, 67] has proved to be a reliable way to
bridge the gap in phase space density between laser cooling and quan-
tum degeneracy in dilute atomic gases [6, 8, 7]. It increases the phase
space density of atomic gases by more than 6 orders of magnitude. The
main idea is the following: Atoms with velocities in the high kinetic
energy tail of the Maxwell-Boltzmann distribution are removed from
the trap. The remaining atoms rethermalize by elastic collisions re-
sulting in a lower temperature. Apart from a decrease in temperature,
evaporative cooling has proved to effectively increase the density of an
atomic ensemble.

In a magnetic trap, this cooling mechanism can be realized effi-
ciently by rf-induced forced evaporation. The applied rf defines the
trap height of the magnetic trapping potential via the resonance con-
dition h̄ωrf = µBgF | ~B(~r)|. The trap depth is then given by Edepth =
h̄ (ωrf − ω0) where ω0 = µBgFB0/h̄ and B0 is the magnetic field at the
magnetic field minimum of the trap. Any atoms with kinetic energy
above Edepth are removed from the trap by a sequence of induced spin
flips from a low-field seeking to a high-field seeking state. Decreasing
the radio-frequency results in a continuous decrease of the trap height,
thereby efficiently decreasing the temperature of the gas.

Evaporative cooling of 87Rb is performed starting from a thermal
ensemble of 87Rb atoms in the compressed magnetic trap of up to
3 · 109 atoms in the |F = 2,mF = 2〉 state with typical trapping fre-
quencies of 11 Hz in the axial and 210− 250 Hz in the radial direction.
The radial trap frequencies are achieved by lowering the offset field
of the magnetic trap to values of ∝ 0.5 G. The forced evaporative
cooling process is controlled by a radio-frequency field generated by
an arbitrary sweep function generator which allows predefined phase
continuous radio-frequency sweeps between 0....150 MHz [35]. In our
experiment, the evaporation ramp starts at 35 MHz with a linear ramp
of 6 seconds down to 5 MHz, a second ramp within 3 s down to 2 MHz
and a final ramp with a ramp speed of 0.25 − 0.5 MHz/s preparing
pure Bose-Einstein condensates of up to ∝ 4 · 106 atoms. During the
evaporation ramp the phase space density of the ensemble is increased
by almost 6 orders of magnitude with a factor of 103 loss in atoms.

Fig. 2.12 shows the expansion series of a Bose-Einstein condensate
with > 1 · 106 atoms prepared in our magnetic trap. The time-of-
flight images show the reversion of aspect ratio typical for Bose-Einstein
condensates with intrinsic repulsive interactions in a cigar-shape trap.
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2.8.2 Sympathetic cooling of fermionic potassium to quantum degener-
acy

Due to the Pauli principle, elastic collisions in ultracold fermionic quantum gases are
suppressed in a one-component spin-polarized Fermi gas. Whereas s−wave collisions are
forbidden due to the Pauli exclusions principle, the cross-section of allowed higher-order p-
wave scattering decreases quadratically with decreasing temperature: σp ∝ T 2 [74]. Evap-
orative cooling (which relies on efficient rethermalization via elastic scattering [65]) is thus
highly inefficient in a one-component Fermi gas. Direct evaporative cooling of fermionic
atoms is only possible in two-component Fermi gases as successfully demonstrated at JILA
in a |F = 9/2,mF = 9/2〉 ⊗ |F = 9/2,mF = 7/2〉 mixture. These pioneering experiments
led to the first observation of quantum degeneracy in fermionic gases [9].

In our experiments, we have decided to follow another approach by sympathetically
cooling the fermionic 40K atoms in the |F = 9/2, mF = 9/2〉 state in a bath of bosonic
87Rb in the |F = 2, mF = 2〉 state in a magnetic trap [75]. The idea of sympathetic cooling
is not a new one. Originally proposed in the context of plasmas, sympathetic cooling of
neutral atoms has first been demonstrated in a bath of cryogenically cooled helium [76].
Later on, two overlapping BECs have been produced by sympathetic cooling in a two-
component 87Rb spin mixture [77]. Fermionic 6Li atoms cooled in a bath of bosonic 7Li
atoms [78] have led to the first observation of simultaneous quantum degeneracy in a
mixture of dilute atomic bosonic and fermionic quantum gases [79]. Efficient sympathetic
cooling to quantum degeneracy in a mixture of fermionic 40K in a bath of bosonic 87Rb
has first been demonstrated at LENS [75]. The efficiency of the cooling relies on the large
and negative scattering length between 40K and 87Rb in the above spin states (for the
most recent value aFB = (−215 ± 10)a0, see [80]). While the large value ensures efficient
rethermalization, the attractive interaction arranges for a good spatial overlap.

Production of our first BEC as a benchmark and demonstration of magneto-optical
trapping of 40K showed that no principal obstacles to sympathetic cooling of the mixture
remained. We obtained first evidence of sympathetic cooling only two weeks after the
production of the first BEC. For simultaneous magnetic trapping, both species are pre-
pared via optical pumping in their doubly polarized spin state (|F = 9/2, mF = 9/2〉 for
40K and |F = 2, mF = 2〉 for 87Rb). In these states, both atomic species experience the
same trapping potential while the trapping frequencies of the two species in the trapping
potential differ by a factor of ωK/ωRb =

√

mRb/mK.

Sympathetic cooling of 40K to quantum degeneracy is performed by selectively evap-
orating 87Rb while 40K is cooled in the bath of 87Rb atoms. The selectivity of the evapo-
ration process relies on the fact that the gyromagnetic factors of the resonance frequency
in the magnetic trap for 87Rb is about twice the resonance frequency for 40K. Both 40K
in the |F = 9/2, mF = 9/2〉 state and 87Rb in the |F = 2, mF = 2〉 state have the same
magnetic moment but different numbers of magnetic sublevels in the respective hyperfine
manifold. Thus, they experience the same trapping potential but with an rf-cutoff differ-
ing by a factor of 2.25. In terms of temperature, a 1 MHz change in rf corresponds to
a change of the potential height of 96 µK for 87Rb and 216 µK for 40K. Given an offset
field of 0.7 G, the radio-frequency reaching the trap bottom for 87Rb still corresponds
to a trap depth of 59 µK for 40K. It is thus possible to restrict the evaporation losses
to the rubidium atoms and sympathetically cool the potassium ensemble, which quickly
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thermalizes with the cold 87Rb cloud due to the large interspecies collisional elastic cross
section.

Figure 2.13: Observation of sympathetic cooling. Shown are absorption images of potas-
sium atoms which are taken after different end frequencies of the rubidium evaporation
ramp. The density increase and temperature decrease over several orders of magnitude
are clearly visible.

The efficiency of the cooling process of the 40K cloud is nicely illustrated in figure 2.13.
The figure shows images of the potassium cloud at different end frequencies of the radio
frequency ramp while rubidium is being evaporated. While absolute particle numbers are
hard to extract when the gas is still relatively dilute, we estimate that particle loss of
potassium during the evaporation is relatively small. While the fermion particle number
seems to remain stable, a considerable density increase and temperature decrease over
several orders of magnitude is clearly visible from these images. The last image in figure
2.13 is taken at a frequency of 1 MHz, when the potassium cloud is not yet in the quantum
degenerate regime.

In the experiment, we have optimized the evaporative cooling process by splitting the
rf-ramp into two or three linear sweeps with fixed end frequencies and sequentially maxi-
mizing the particle number at the end of each sweep with the sweep rate as optimization
parameter. The resulting rf sweep differs from an optimized pure 87Rb sequence only
during the last (low frequency) sweep, when the 87Rb particle number becomes similar
to the 40K particle number. Typical atom numbers in the two clouds throughout the
evaporation process are given in Fig. 2.14. Whereas we observe very little atom losses in
the 40K cloud, atom numbers in the 87Rb cloud are reduced by 2 orders of magnitude due
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Figure 2.14: Atom numbers in the 40K and 87Rb cloud throughout the sympathetic cooling
process. Whereas we observe very little losses in the 40K cloud, the atom numbers in the
87Rb cloud are decreased by 3 orders of magnitude due to forced evaporation

to forced evaporation. The moderate losses of 40K during the evaporation ramp are likely
due to the small fraction of atoms with an energy larger than the 40K trap depth. At
low temperatures near the end of the evaporation ramp the 40K losses slightly increase.
This indicates the onset of a new loss mechanism, dominating at high densities, which
we identify as 3-body K-Rb-Rb collisions. This loss process is characterized by the rate
equation

ṄF (t)

NF (t)
= −K3 ·

∫

d3r n2
B(r, t)

nF (r, t)

NF (t)

where nB and nF are the boson and fermion densities. Analyzing a set of decay series
both in the degenerate and non-degenerate regime, we measure the three-body loss rate
coefficient to be K3 = (2.8 ± 1.1) · 10−28 cm6/s for our experimental parameters [5]. Note
the value extracted from our measurements is a factor of 10 smaller than a previously
reported value (cf. [81]). However, this is good news as a low three-body decay rate is
essential for the realization of long-lived mixtures and a variety of experiments relying on
a long lifetime of the atomic clouds.

Starting from 40 MHz, we optimize the evaporative cooling process by splitting the
rf-ramp in two or three7 linear sweeps with fixed end frequencies and sequentially maxi-
mizing the particle number at the end of each sweep with the sweep rate as optimization
parameter. The resulting rf sweep sequence differs from an optimized “pure rubidium”
sequence essentially only during the last (low frequency) sweep, when the 87Rb particle
number becomes similar to the 40K particle number. The onset of mixed species three-
particle losses in this low temperature and high density regime favors fast cooling with
relatively high evaporation losses over efficient but slow evaporation. For our parameters,
we found an optimum mixed species sweep rate on the order of 0.5 MHz/s as compared

7For maximum particle numbers we use two sweeps, for minimum collective excitations of the mixture
the last of these two sweeps has to be split, such that degeneracy can be approached more slowly.
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to an optimum sweep rate of ≈ 250 kHz/s for single species 87Rb ensembles. If all of the
87Rb atoms are removed during the evaporation sequence, we obtain Fermi gases of up
to 3 · 106 40K atoms at T/TF = 0.2 or 9 · 105 at T/TF = 0.1. Maximizing the particle
numbers for both 40K and 87Rb in a quantum degenerate Fermi-Bose mixture we obtain
up to > 1 · 106 atoms in the condensate coexisting with 7.5 · 105 40K atoms, limited by
the attractive 87Rb-40K interactions, which cause a (possibly excitation induced) collapse
of the mixture as discussed in the next section.

2.9 Detection of quantum degeneracy in fermionic gases

Whereas the onset of Bose-Einstein condensation is immediately visible due to the striking
bimodal distribution of the time-of-flight images and the inversion of the BEC’s aspect
ratio during time of flight, the onset of Fermi degeneracy deserves a more careful analysis
of the time-of-flight absorption images. Figure 2.15 shows an absorption image of about
7 · 105 fermionic 40K atoms at T/TF ≈ 0.25. No striking feature indicates the onset of
quantum degeneracy. Instead, a continuous crossover from non-degenerate to degenerate
gases happens which can only be detected through careful temperature and atom number
analysis of the time of flight images. This is performed by fitting 2D Fermi-Dirac profiles
to the experimental data, thereby determining the temperature of the gas. Combined with
information about the atom number in the system, we obtain the degeneracy parameter
T/TF .

Figure 2.15: Quantum degenerate Fermi gas of 7 ·105 fermionic 40K atoms at T/TF = 0.25

Figure 2.16 shows 1D profiles of Fermi gases both deeply in the degenerate regime
and at moderate T/TF . In both cases, we have fitted a 2D Fermi-Dirac profile. As can
be seen from these figures, the onset of quantum degeneracy is most striking when the
Fermi-Dirac 1D expansion profile is compared to a hypothetical Maxwell-Boltzmann gas
with the same particle number and temperature as obtained from the Fermi-Dirac fit. For
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Figure 2.16: Thermometry for a degenerate Fermi gas.

a detailed discussion of the techniques to extract temperature and degeneracy information
from time-of-flight images of fermionic and bosonic gases see Christian’s thesis [35].

2.10 Interaction effects during evaporation

In our experiment, we have been able to produce the to our knowledge so far highest
particle numbers in the 40K / 87Rb system with > 7 · 105 40K atoms coexisting with
a Bose-Einstein condensate of > 1 · 106 atoms. The observation of stable large-particle
number mixtures has been of particular importance. At that time, scattering properties
of 40K and 87Rb were still controversially discussed. The only thing about the heteronu-
clear scattering of 40K and 87Rb that was known for sure was the attractive character of
heteronuclear interactions which gives rise to a mean-field collapse (see [82], section 4.3)
above certain critical particle numbers. In 2002, critical particle numbers for the occur-
rence of the mean-field collapse [82] of the mixture of NK ≈ 2 · 104 and NRb ≈ 105 [81])
had been reported. Although this observation suggested an excitingly large value for the
attractive interspecies interaction, characterized by an s-wave scattering length of −395a0,
the observation appeared to impose severe constraints on maximally achievable particle
numbers. Nowadays, the current best value for the scattering length is derived from precise
spectroscopy of Feshbach resonances to be (−215 ± 10)a0 [80].

In our experiment we have been able to access various regimes of mixtures, ranging from
dense thermal 87Rb clouds of 107 atoms right at the phase transition point, coexisting with
a moderately degenerate Fermi gas of 2 · 106 40K atoms, to deeply degenerate mixtures
with almost pure condensates of > 7 · 105 40K and > 1 · 106 87Rb atoms only limited
by the observation of a (possibly excitation enhanced) mean-field collapse of the mixture.
Fig. 2.17 shows the simultaneously achieved particle numbers in the 40K cloud as a function
of condensed 87Rb atoms, as observed in our experiments (blue data points). Data points in
red indicate instable mixtures where instability has been detected either through a decay
dynamics of the mixture incompatible with three-body decay [4] or through a sudden
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Figure 2.17: Stability diagram for the 40K / 87Rb mixture. The uncertainty in NRb/NK

is assumed to be 20%/30%. The error on NF is not critical and is given exemplarily in
(c). The solid black line is based on the theory of ref. [83] and aFB = −284 a0. (a)
is the critical particle number reported in ref. [84] (here the trap had a different aspect
ratio, but a similar mean trapping frequency ν̄K = 134Hz, as compared to our experiment
with ν̄K = 133Hz). (b) is a stable particle number reported in [85] (for a mean trapping
frequency ν̄K = 127Hz).
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step-like loss of particles in the fermionic component (see below). The black line is the
instability limit due to a mean-field collapse of the mixture as derived from an equilibrium
mean-field model and based on a scattering length of −284a0 (thereby providing an upper
limit on the scattering length).

The derived upper limit on the scattering length is larger than the most recent value
of the scattering length suggested by Feshbach spectroscopy of (−215±10)a0 (see [80] and
section 4.2.4). In order to achieve the regime of very high particle numbers, the optimum
method was to use a relatively fast evaporation ramp in the last stage of evaporative
cooling, inducing strong shape oscillations [35, 5] in the mixture. These significantly
enhance the density of the mixture compared to an equilibrium situation.
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Figure 2.18: Typical evolution of an overcritical mixture after an evaporation ramp (rate
-1 MHz/s) stopped and held fixed for 15 ms at 80 kHz (a), 50 kHz (b) and 20 kHz (c)
above the 87Rb trap bottom of 490 kHz. Left-hand side: 3D representation of absorption
images with false-color coding of the optical density. 87Rb and 40K images are taken in
the same run, although at different TOF: 20 ms (87Rb) and 3 − 5 ms (40K). Right-hand
side: corresponding 40K axial line profiles integrated along the vertical direction.

During the last stage of evaporative cooling, we observe strong interaction induced
effects. These effects become clearly visible in the axial 40K density distribution. Due to
the relatively short time of flight (TOF), this should closely reflect the in trap distribution.
The fast ramp speed (1MHz/s) in this experiment means that we are potentially dealing
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with strongly out of equilibrium samples. Already at the phase transition point (a) of the
bosonic cloud, we observe strong distortions of the axial 40K density profile. The profile
looks like a chopped off Fermi profile with a peak in the center of the flat top which we
ascribe to the interaction with the bosonic component (peak density ≈ 4 · 1014 cm−3). For
a large BEC (b) the 40K profile exhibits a pronounced hole in the trap center which we
ascribe to a strong localized loss process due to the interaction with the BEC. These losses
are too fast for transport in the slow axial direction to be able to continuously maintain
the undisturbed density profile by refilling the center of the trap from the outer regions.
As we shall see, this fast loss (e. g. from Fig. 2.19 ≤ 10ms) is a signature of the mean
field collapse of the mixture. After the collapse, we observe that 40K distributions sharply
peaked in the center remain stable for relatively long timescales exceeding 100ms (c). A
Fermi-Dirac fit to the data is shown as a dotted line for comparison. We attribute this
peaked distribution to the Fermi-Bose attraction creating an additional trapping potential
for the fermions (“mean field dimple” in the magnetic trap potential).
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Figure 2.19: Decay of the fermionic component in a slightly overcritical mixture. The first
sudden drop is the initial collapse; the second drop is one “revival” of the collapse. The
line is to guide the eye. For comparison, the inset shows results from dynamical modelling
of the collapse (taken from [86]).

The strong depletion of the Fermi cloud in the center is accompanied by rapid particle
loss of approximately two thirds of the fermionic particle number. We ascribe this loss
to the mean field collapse of the mixture. Beyond critical particle numbers, the mean
field potential is no longer balanced by the repulsive interaction in the 87Rb BEC and the
outward bound Fermi pressure, so that the part of the mixture overlapping with the BEC
contracts rapidly to such large densities that enormous 3-body losses reduce the overall
particle number in this region to an undercritical value. It is therefore natural that we
observe the collapse in the vicinity of strong contracting mean field effects of the Bose gas
on the fermionic distribution (see Fig. 2.18a) and c); cf. [87]). Although the ensemble is
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out of equilibrium and shows very complex dynamics after this rapid loss [86], one can
intuitively imagine that the Fermi distribution depleted in the center of the cloud is refilled
from the outside parts of the sample on a timescale related to the axial trap frequency,
possibly leading to repeated local collapses, until the mixture will become undercritical
and reestablish an equilibrium situation. In order to observe this phenomenon, we have
prepared a mixture where the bosonic part (≈ 107 atoms) has only started condensing
and observed the evolution of the ensemble at constant evaporation frequency. As the
condensate grows due to the mild remaining evaporative cooling, it reaches the critical
particle number of NB = 1.2 · 106. Due to the near-equilibrium situation before, the
collapse now only leads to a relatively small loss in total particle number but is still
clearly visible in the 40K atom number integrated over the central part of the TOF image
as shown in Fig. 2.19. After the first collapse, this number remains constant for some time
and then drops abruptly again8. Such “revivals” of the collapse have been predicted in a
recent numerical analysis of the collapse dynamics ([86], see inset in Fig. 2.19), although
in a spherically symmetric configuration with νRb = 100Hz.

8The refilling is not visible for the chosen TOF of 3ms and integration area of 83µm×62 µm.
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Chapter 3

A “magic” optical dipole trap

Although most experiments on quantum degenerate atomic gases rely in some way on
magnetic trapping for evaporative cooling, optical dipole traps offer a couple of important
advantages: First, the geometry of an optical dipole trap can be varied easily, allowing for
rapid switching between 1D-like geometries and spherically symmetric traps. Second, far
off-resonance optical dipole traps confine atoms (almost) irrespective of their spin state
and allow the use of an external magnetic field as a completely independent parameter.
The latter enables a large variety of experiments including the use of Feshbach resonances
for the control of interactions in 40K and 87Rb mixtures (see chapter 4) and molecule
formation (see chapter 7).

Apart from these very general considerations, the shallow optical dipole trap described
in the following chapter has allowed us to overcome one of the main limitations in experi-
ments dealing with two different atomic species with different mass m. In general, different
atomic species simultaneously confined in the same magnetic or optical trap will experience
different gravitational sags. Depending on the chosen trapping frequencies in the direc-
tion of gravity, the differential gravitational sag can easily adopt values on the order of
100 µm to 1 mm. The reduced overlap of the two simultaneously confined clouds impedes
any experiment relying on interacting mixtures. The issue of a different gravitational sag
becomes especially important when working with weakly confined low-density mixtures
which are required when preparing atomic clouds with the ultimate goal of loading them
into optical lattices. Many experiments on atoms in optical lattices rely on lattice site
occupation numbers on the order of 1 and hence require the preparation of atomic clouds
with densities on the order of the lattice site density which is given by nLattice = (2/λ)3

and is on the order of 1013/cm3 in our experiment.

To overcome the above-mentioned limitations, a shallow optical dipole trap for the
simultaneous trapping of quantum degenerate Fermi-Bose mixtures of 40K and 87Rb has
been realized in our experiment. The optical dipole trap is designed to compensate for
the differential gravitational sag between 40K and 87Rb. It relies on a careful choice of the
dipole laser wavelength responsible for the confinement in the direction of gravity. This
“magic”1 optical dipole trap assures optimal overlap of the two different atomic species

1We call the wavelength necessary for compensation of the differential gravitational sag between 40K
and 87Rb “magic” wavelength. Note that the term “magic” wavelength is used differently depending on
context.
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even in cases where low densities and low trapping frequencies are required.

In the following chapter, I will start with a short review on optical dipole traps followed
by a brief reminder on the role of the gravitational sag for atoms confined in harmonic po-
tentials. After some design considerations for the “magic” optical dipole trap for 40K and
87Rb, the “magic” wavelength will be derived theoretically and compared to a measure-
ment in our experiment. The chapter will conclude with characterization measurements
of the “magic” dipole trap.

3.1 The optical dipole force

Atoms placed in an inhomogeneous light field experience a force which, depending on the
detuning of the field relative to the atomic transitions, points in or against the direction
of the light field gradient. In the late sixties, it has been pointed out that this force
can be used to design traps for atoms [88, 89]. The first optical dipole trap for neutral
atoms has been demonstrated by Steve Chu and coworkers in 1986 [90]. Twelve years
later, Stamper-Kurn and coworkers realized the first optically trapped quantum degenerate
gas [91]. Today, these Far Off Resonance Traps (FORTs) are a standard tool in ultracold
atom laboratories worldwide (for a review see [92]).

The simplest FORT operates with red-detuned light and consists of one polarized
laser beam focused to a waist of typically a few ten to hundred microns. In this case,
atoms are attracted into regions of high intensity. In a semiclassical simplified picture
this can be understood as follows: In a two-level atom with resonance frequency ω0, the
inhomogeneous light field with frequency (ωLaser) will induce an oscillating dipole moment.
Due to the red detuning of the light field relative to the atomic transition (ωlaser < ω0),
the oscillating dipole moment will oscillate in phase and atoms are attracted to the regions
of high intensity. However, in case of a blue detuned light field ωlaser > ω0 the induced
dipole moment will oscillate out-of-phase and atoms are repelled from regions with high
intensity.

In a dressed-state picture of the atom-field interaction, one obtains the following ex-
pression for the potential V (~r) felt by a two-level atom [93]

V (~r) = −3πc2

2ω2
0

(

Γ

ω0 − ωL
− Γ

ω0 + ωL

)

· I (~r) , (3.1)

where Γ is the linewidth of the transition and I(~r) is the intensity of the confining laser
light.

As V (~r) ∝ I (~r), the geometry of the realized trap is determined by the intensity
distribution of the confining laser light. The most common and well-established technique
is to confine atoms in the focus of a red-detuned Gaussian laser beam. In the case of a
laser beam with power P propagating in the z direction, the intensity distribution is given
by

I(r, z) =
2P

πw(z)2
exp

(

−2
r2

w(z)2

)

(3.2)

with the z-dependent focus w(z) = w0

√

1 + (z/zR)2, where the Rayleigh range zR is the
characteristic length scale in the direction of propagation and w0 the waist at z = 0. In
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the case of ultracold atomic clouds, the radial and axial extension of the cloud is typically
much smaller than the characteristic length scales of the potential w0 and zR. The intensity
distribution can therefore be expanded in a Taylor series to

I(r, z) ≈ 2P

πw(z)2

(

1 − 2

(

r

w0

)2

−
(

z

zR

)2
)

. (3.3)

Combining equations 3.1 and 3.3, a cylindrically symmetric harmonic potential is obtained,
characterized by the (usually steep) radial and (weak) axial trap frequencies:

ωr = 2
w0

√

−V (0)
m and ωr = 1

zR

√

−2V (0)
m . (3.4)

The dipole potential of a Gaussian laser beam both for the case of red-detuned and blue-
detuned light in the z = 0 plane is illustrated in Fig. 3.1. Whereas the potential has a
minimum in the case of red-detuned light, it has a maximum for blue-detuned light and
is therefore repulsive in the latter case.
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Figure 3.1: Dipole potential of a Gaussian laser beam for both, red-detuned and blue-
detuned laser light for z = 0.

Based on equation 3.1, there are two knobs for increasing the potential, either through
increasing the intensity or by decreasing the detuning. At first sight, it could seem favor-
able to choose a very small detuning in order to minimize the necessary laser intensity at
a fixed potential depth. However, photons scattering off atoms induce heating and loss
processes for the atoms confined in optical dipole traps. The scattering rate Γ is given by

Γscatt =
3πc2

2h̄ω3
0

(

ωLaser

ω0

)3 ( Γ

ω0 − ωLaser
+

Γ

ω0 + ωLaser

)2

I (~r) . (3.5)

and decreases with 1/ (ωLaser − ω0)
2 as compared to the potential depth which decreases

only linearly with the detuning (cf. equation 3.1). It is therefore favorable to choose the
detuning of the dipole trap frequency ωLaser relative to the atomic transition ω0 as large
as practically feasible to suppress inelastic loss processes as much as possible.
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Multilevel atoms The above simplified picture for the case of a two-level atom can
easily be extended to the multilevel case [93]. In the case of a multilevel atom prepared
in a specific ground state |g〉, coupling of the laser light to any transition to an excited
state |e〉 has to be taken into account. The different contributions will then simply sum
up to a dipole potential bearing in mind the coupling strength of the different transitions.
In the case of alkali atoms, the most important contributions to the dipole potential of a
red-detuned dipole trap are given by the D1 and the D2 line, i.e. the transitions n2S1/2 →
n2P1/2 and n2S1/2 → n2P3/2 respectively. In the case of 87Rb, these two transitions occur
at 795 nm and 780 nm, respectively, whereas the corresponding transitions in 40K have a
slightly higher energy with wavelengths of 769 nm and 766.7 nm, respectively.

3.2 Gravitational sag

The trapping potential formed by external magnetic or optical fields is modified due to the
presence of the gravitational potential. In general, gravity does not change the shape of the
trapping potential, however, the center of the confining trap, either optical or magnetic, is
shifted away from the center of the unperturbed trapping potential. This has important
consequences for the overlap of two simultaneously confined species. Assuming harmonic
trapping for the atoms and including the effect of gravity, the trapping potential for the
atoms is given by

V (~r) =
1

2
mω2y2 +mgy. (3.6)

Searching for the minimum of the external potential, one immediately obtains the gravi-
tational sag ysag to be given by

ysag = −g/ω2 (3.7)

At first glance, the gravitational sag seems to be independent of the mass of the confined
atoms and therefore independent of the atomic species; however, in optical traps, the
harmonic trapping frequency ω is proportional to

√

−V (0)/m (cf. equation 3.4) where
V (0) is the depth of the external potential and m the mass of the confined species. The
decisive parameter is therefore given by the ratio of the depth of the trapping potential
and the atomic mass.

Fig. 3.2 (solid red line) shows the gravitational sag of an atom confined in a harmonic
potential for typical values of the trapping frequency of the external confinement. As can
be seen from the figure, depending on the chosen trapping frequency, the gravitational sag
can easily reach values on the order of 10 − 1000 µm.

Let us now consider the case relevant for our experiments: Simultaneous confinement
of both 40K and 87Rb in a far-off resonance dipole trap. Typical optical dipole traps for
alkali atoms operate at a wavelength of round about 1 µm. The detuning of the laser light
relative to the D1 and D2-line of both species is in this case comparable and hence, the
trap depth for both species in a good approximation equal. In this case, the differential
gravitational sag between the two species is determined solely by the mass ratio of the two
species. Fig. 3.2 (blue dashed-dotted line) shows a plot of the differential gravitational
sag between 40K and 87Rb as a function of the 87Rb trapping frequency in the specific
case described above. From the figure, it is obvious that the differential gravitational sag
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Figure 3.2: Gravitational sag as a function of the trapping frequency of the external
harmonic confinement (solid line) and differential gravitational sag between two species
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significantly reduces the overlap between the two simultaneously confined species. At a
still moderate confinement of about ω = 2π · 50Hz, the differential gravitational sag is
approximately 50µm which is a factor of 5 larger than the Thomas-Fermi-Radius of a
Bose-Einstein condensate of 105 atoms and comparable to the spatial extension of a Fermi
gas of the same atom number at T = 0.

3.3 Dealing with the gravitational sag

To avoid issues with poor overlap in mixtures of 40K and 87Rb, an optical dipole trap
has to be designed which minimizes the differential gravitational sag between the two
components and hence allows weak (mean) harmonic confinement and the realization of
low-density clouds. Based on the above considerations two routes seem possible:

1. The first option is to realize a strongly asymmetric trapping potential with large
trapping frequency ωgrav and tight confinement in the direction of gravity and trap-
ping frequencies ω⊥ as weak as possible in the two directions perpendicular to the
gravitational force while at the same time keeping the mean harmonic trapping fre-

quency ω =
(

ωgravω
2
⊥
)1/3

on the order of a few ten Hz. Such a geometry can be
achieved using cylindrical lenses. However, due to the strong confinement in the
direction of gravity, the aspect ratio of the trap will be necessarily very high which
is unfavorable for the efficient loading of optical lattices.



44 CHAPTER 3. A “MAGIC” OPTICAL DIPOLE TRAP

2. Another option is to allow for a possibly large but equal gravitational sag of both
components, eliminating the differential gravitational sag completely irrespective of
the chosen trapping frequencies in the direction of the gravitational force. Following
section 3.2, this can be achieved by realizing the same trapping frequencies for both
species (cf. equation 3.7) which one obtains through a suitable choice of the dipole
laser wavelength (cf. section 3.4). A decisive advantage of this second approach
is that it does not rely on a specific trap geometry and even spherically symmetric
clouds can be realized.

We have decided to follow the second route. The idea of the “magic” dipole trap is
the following: The trap is operated as a crossed dipole trap with two independent laser
beams propagating in z and x direction, respectively (both perpendicular to gravity, see
Fig. 2.1). One of the beams (the so-called “magic” beam, x-direction) is operated at the
“magic” wavelength of ≈ 807nm, where the trapping frequencies for 40K and 87Rb are
equal, thus the gravitational sag is the same for the two components (cf. section 3.4 for
a theoretical prediction and section 3.7 for a measurement of the “magic” wavelength).
This beam is held at a fixed intensity and barely compensates for gravity. In addition,
this beam ensures confinement in the z direction.2 A second beam of the crossed trap is
derived from our lattice laser and operates at a wavelength of λ = 1.03 µm. It is adjusted
such that the center of the beam coincides with the equilibrium position of the atoms in
the “magic” beam. This beam ensures confinement in the two remaining directions: the
x direction and the direction of gravity (y-direction).

3.4 Theoretical calculation of the “magic” wavelength

Following the discussion of section 3.2, the “magic” wavelength of an optical dipole trap in
which the gravitational sag of both 40K and 87Rb is equal is determined by the condition
that the radial trap frequencies for both components are equal:

ωK

ωRb
≡ 1. (3.8)

This condition is of course only adequate in case that the assumption of harmonic trapping
and thus, the reasoning of section 3.2 is justified. For clouds of ultracold atoms confined
in optical dipole traps, harmonic trapping can be assumed as long as the thermal energy
of the ensemble is much smaller than the depth of the confining potential. Combining con-
dition 3.8 with the expression for the radial harmonic trapping frequency of equation 3.4,
the condition for equal gravitational sag between 40K and 87Rb reads as follows:

VK(0)/VRb(0) ≡ mRb/mK (3.9)

which means that the ratio of depths of the optical dipole potential has to be inversely
proportional to the ratio of masses.

Adapting equation 3.1 to the multiplet structure of real atoms, one can calculate the
depth of the optical dipole potential and the associated trap frequencies (see equation 3.4)

2Due to the large Rayleigh range of the magic beam, contributions of the magic beam to the trap
frequency in x-direction are negligible. Contributions in the direction of gravity are also negligible due to
the vanishing curvature of the magic beam at the position of maximum gradient r = w0/2.
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as a function of the dipole laser wavelength. As already mentioned in section 3.1, the most
important contributions to the dipole potential of a red-detuned dipole trap in alkali atoms
are given by the D1 and the D2 line. As the considered range of detuning of the dipole
trap from the relevant atomic transitions of both 40K and 87Rb is on the order of > 5 nm
and therefore large compared to the hyperfine splitting of both the ground state 2S1/2 and
the involved excited states 2P1/2 and 2P3/2, one can neglect the hyperfine splitting. To
obtain the correct dipole potentials, one has to account only for the fine structure of the
atoms. We therefore sum up the contributions of both the D1 and D2 lines.
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Figure 3.3: Ratio of trapping frequencies for 40K and 87Rb ωK/ωRb as a function of
the dipole laser wavelength. Note that the condition ωK/ωRb ≡ 1 defines the “magic”
wavelength where the differential gravitational sag is zero.

Fig 3.4 shows the calculated ratio of the radial trap frequency of 40K and 87Rb as a
function of the dipole laser wavelength. Equal harmonic trapping frequencies (see con-
dition 3.8) are obtained at a wavelength of 806.7 nm. This is the wavelength where the
differential gravitational sag of 40K and 87Rb in a red-detuned optical dipole trap of Gaus-
sian focus is zero. Below the “magic” wavelength, the ratio of trapping frequencies drops
below 1, corresponding to a tighter confinement of 87Rb than for 40K, whereas the op-
posite is true above the “magic” wavelength. For large red-detunings, corresponding to
wavelengths on the order of 1 µm, the ratio of trap frequencies asymptotically assumes the
value of

√

87/40 which is determined by the mass ratio of the two species. In this case,
the potential depths for both species are equal. In Fig. 3.4, the differential gravitational
sag is plotted as a function of the dipole laser wavelength for a couple of fixed trapping
frequencies. Note that the trapping frequency has been fixed for the 87Rb component to
various values whereas the trapping frequency of 40K varies according to Fig. 3.4 as a func-
tion of wavelength. For any assumed trapping frequency, the differential gravitational sag
shows a zero crossing at the “magic” wavelength whereas below and above the “magic”
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Figure 3.4: Differential gravitational sag as a function of the dipole laser wavelength
for various fixed trapping frequencies for 87Rb. Independent of the trapping assumed
trapping frequency, the differential gravitational sag shows a zero crossing at the “magic”
wavelength of 806.7 nm. Positive differential gravitational sag above the magic wavelength
describes cases where the Rubidium component has a larger gravitational sag than the
Potassium component. Negative differential gravitational sag describe the opposite case
which is true for wavelengths below the magic wavelength.

wavelength the differential gravitational sag is dependent on the trapping frequency of
the external harmonic confinement. Note that a positive differential gravitational sag de-
scribes cases where the 40K component is above the 87Rb component in the trap whereas
negative differential gravitational sag accounts for the opposite case.

The existence of the “magic” wavelength for 40K and 87Rb in a red-detuned optical
dipole trap is only due to the fact that the D1 and D2 transitions of rubidium at 795 nm
and 780 nm respectively are red-detuned relative to the corresponding transitions in potas-
sium which occur at 769.9 nm and 766.7 nm. Red-detuned dipole traps therefore have a
larger detuning from the potassium transitions than the corresponding rubidium transi-
tions and are correspondingly deeper for the rubidium component than for the potassium
component. This allows the compensation of the twice as large gravitational potential for
rubidium.

3.5 Spin and polarization dependence

So far, the theoretical analysis of the magic wavelength has been done under the assump-
tion that we operate the dipole trap with linearly polarized (π0) light. Only in this case,
the spin dependence of the dipole potential can be neglected. However, in the current
geometry of our experiment, it has been most practical to shine in the magic beam along
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the quantization axis (x-axis, see Fig. 2.1). Since true π0 light is impossible in this geom-
etry, the one remaining possibility to provide spin-independent trapping is to use linearly
polarized light. For any deviation from linearly polarized light, the dipole force is thus spin
dependent. For large detuning of the dipole laser light relative to the hyperfine splitting,
the dipole potential is given by [92]

Vpot(~r) [F,mF ] =
πc2γ

2ω3
0

(

1 − PgFmF

ωL − ω0,D1

+
2 + PgFmF

ωL − ω0,D2

)

I(~r) (3.10)

where P denotes the laser polarization (P = ±1, 0 for σ± and π0 polarization) and gF is
the Lande-factor. For convenience, the counter-rotating terms have not been written down
although, they have been considered in the calculations. In the case of linear polarization,
equation 3.10 reduces to the equation 3.4, and the dipole force is independent of the chosen
spin state, yielding a theoretical “magic” wavelength of 806.7nm.

This picture changes when operating the dipole trap with elliptically Polaris ed laser
light characterized by the ellipticity ε. In this case, the coupling strength of the dipole
laser light is different for the different spin states and depends strongly on the chosen
polarization. This is illustrated in figure 3.5 which shows the “magic” wavelength for 40K
and 87Rb as a function of ξ = tan−1 ε of the laser light for various spin mixtures of 40K
and 87Rb. Apart from the spin mixture used for sympathetic cooling in the magnetic
trap and used for the measurement of the magic wavelength of section 3.7 (87Rb in the
|F = 2,mF = 2〉 state and 40K in the |F = 9/2,mF = 9/2〉 state), any stable mixture with
87Rb being in the |F = 1,mF = 1〉 absolute ground state and 40K in an arbitrary Zeeman
substate of the |F = 9/2,mF 〉 ground state manifold has been considered. Note that the
combinations |F = 9/2,mF = −9/2〉⊗|F = 1,mF = 1〉 and |F = 9/2,mF = −7/2〉⊗|1, 1〉
have been used for the molecule and Feshbach resonance experiments of chapter 7 and 4.

3.6 The choice of experimental parameters

As outlined in section 3.3, the magic trap is operated as a crossed dipole trap with the
intensity of the “magic” beam held fixed merely compensating for gravity and the second
beam at λ = 1.03 µm adjusted to coincide with the equilibrium position of the atoms in
the magic beam and providing confinement in the direction of gravity and perpendicular
to the direction of propagation of the “magic” beam. The magic beam is derived from
a Ti:Sa laser which allows tuning of its wavelength over several ten nanometers around
the predicted “magic” wavelength of 806.7 nm.3 The second beam has been derived from
our lattice laser. Fig. 3.6 shows the overlapping scheme for the crossed dipole trap. Both
laser beams propagate horizontally but orthogonal one to another. We prepare linear
polarization for both laser beams, realizing π0 polarization for the 1030nm beam relative
to the quantization axis and a superposition of σ± light for the magic beam. The first
laser beam (at 1030 nm) is overlapped with the main detection axis of our experiment
(see Fig. 2.1, z-axis) using a dichroic mirror. The “magic” beam (along the x-axis) is
overlapped with the horizontal MOT axis and one of the lattice laser beams using an

3The Ti:Sa has been provided by our colleagues from the Spinor BEC experiment. Light from the Ti:Sa
has been guided with a 25m fiber from the neighboring room to our lab. Thank you!
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|9/2, 1/2〉 ⊗ |1, 1〉
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Figure 3.5: Spin and polarization dependence of the magic wavelength. The magic wave-
length for the spin combinations |F = 2,mF = 2 > ⊗|F = 9/2,mF = 9/2 > and
|F = 1,mF = 1 > ⊗|F = 9/2,mF > have been calculated as a function of ellipticity of
the laser light.

additional dichroic mirror AR coated for 767 nm and 780 nm and HR coated for 830nm.
The mirror is operated at > 45◦ to shift the HR-edge of the mirror to somewhat lower
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Figure 3.6: Overlapping scheme for the magic dipole trap.The magic beam is overlapped
with one lattice axis and the MOT axis whereas the second beam at 1030nm is overlapped
with the detection axis.

wavelength needed for the reflection of the magic beam.4

The magic beam focus has been chosen to allow for trapping frequencies below 100 Hz
even under the influence of the gravitational potential. Neglecting the effect of gravity the
above requirement is trivial to fulfil since the intensity of the dipole laser beam can be
chosen arbitrarily weak realizing trapping frequencies even below 1 Hz independent of the
chosen focus. However, when gravity is taken into account, the combination of laser focus
and intensity (determining the trapping frequency) has to be chosen to provide at least the
force necessary for the compensation of the gravitational force. The gradient of the dipole

4The mirror was produced by Laseroptik Garbsen for the neighboring BEC experiment where HR for
830 nm and AR for 780 nm is needed. We have used the mirror somewhat beyond specifications. However,
choosing an angle slightly larger than the 45◦, the reflection at 805 nm was still larger than 90%.
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trapping potential is largest at r = w0/2 (cf. Fig. 3.8). In order to hold the atoms against
gravity, the gradient of the dipole trapping potential at this position has to be at least as
large as the gravitational force which is given by mg. Fig. 3.7 shows the required power
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Figure 3.7: Required power as a function of the chosen dipole trap waist for compensation
of the gravitational force at z = 0, r = w0/2, assuming the magic wavelength of 806.7nm.
In the same diagram, the hypothetical harmonic trapping frequency for these dipole trap
parameters is shown. In our experiment, we have chosen w0 ≈ 120 µm allowing for
trapping frequencies of ≈ 80 Hz.

as a function of the chosen dipole trap waist for compensation of the gravitational force
at z = 0, r = w0/2, assuming the magic wavelength of 806.7nm. In the same diagram,
we have plotted the hypothetical radial harmonic trapping frequency for these dipole trap
parameters, this time evaluated at r = z = 0. As can be seen from the figure, for a dipole
trapping frequency in the direction of gravity below 100 Hz, a waist of 100 µm is required
along with a power of > 100 mW. Estimating the maximal available power for the dipole
trap after beam preparation and fiber coupling below 200 mW , we have chosen a beam
waist of ≈ 120 µm corresponding to a radial trap frequency of ≈ 80 Hz at z = r = 0 when
the dipole trap power is exactly chosen to compensate for gravity. Note that the actual
trap frequency at z = 0, r 6= 0 certainly differs somewhat from the z = r = 0 value due
to the decreasing curvature of the Gaussian beam dipole potential with increasing r (see
Fig. 3.8) and it is therefore hard to predict the actual trap frequency.

3.7 Measurement of the magic wavelength

Based on the criterion of equation 3.9, the magic wavelength of 40K and 87Rb has been
determined experimentally by a measurement of the ratio of the radial trapping frequen-
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Figure 3.8: Potential gradient (acceleration) gradrad(r) of a typical Gaussian beam profile
dipole potential and the curvature curvrad(r) as a function of the radial coordinate r.
Note that the potential gradient and the curvature have been normalized differently: The
potential gradient has been normalized to its maximum value at r = w0/2 whereas the
curvature has been normalized to its value at r = 0.

cies of the simultaneously confined species as a function of the dipole laser wavelength.
In order to measure the trap frequency of either 40K or 87Rb in the optical dipole trap
formed solely by the Gaussian intensity profile of the magic beam, ultracold mixtures of
potassium and rubidium have been prepared in our magnetic trap in a spin mixture of
|F = 9/2,mF = 9/2〉 and |F = 2,mF = 2〉, respectively. Shortly before reaching quantum
degeneracy, the magic beam of the crossed optical dipole trap has been ramped up and
the ensemble has subsequently been transferred into this dipole trap. At this point either
the rubidium or the potassium component has been removed from the trap to avoid inter-
actions between 40K and 87Rb to distort the measurement. The remaining cloud has then
been excited to a center of mass oscillation in the direction of gravity by a short switch
off of the confining trap and a subsequent recapture. The center of mass oscillation of
the ensemble in the focussed beam trap has then been recorded over approximately four
to five oscillation periods and the oscillation frequency extracted from the measurement.
The measurement of the radial oscillation frequency of rubidium and potassium has been
repeated at four different wavelengths between 800 nm and 820 nm.

Fig. 3.9 shows the measured ratio of trapping frequencies as a function of the dipole
laser wavelength along with the theoretical prediction. The measured “magic” wavelength
of 807.9 nm differs from the theoretical prediction of 806.7nm by ≈ 1.2 nm. In addition,
we experimentally observe a linear dependence of the ratio of trap frequencies as a function
of the dipole laser wavelength, whereas theory predicts a square-root like behavior. For
the calculation of the magic wavelength, both the rotating and counter-rotating terms of
the D1 and D2-lines have been taken into account, whereas the influence of higher energy
levels has been neglected. While the consideration of higher energy levels could somehow
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Figure 3.9: Comparison of the measured “magic” wavelength to the theoretical prediction.
Whereas theory predicts a wavelength of 806.65nm, the measurement yields 807.85nm.

shift the calculated magic wavelength in either direction, it is not expected to significantly
transform the general square-root behavior into the experimentally observed linear one.
This linear behavior is possibly due to a systematic effect.

One possible source of systematic error is the gravitational sag itself. Let us consider
the case λ < λmag: In this case, the gravitational sag for 40K atoms is larger than the
gravitational sag for 87Rb atoms (rK > rRb). Due to the decreasing curvature with
increasing r, the ratio of trapping frequencies between potassium and rubidium ωK/ωRb

is then smaller than the theoretical value at r = 0. For λ > λmag,
87Rb atoms experience

a larger gravitational sag than 40K atoms and the theoretical value for ωK/ωRb is smaller
than the experimental one. However, this effect cannot account for a systematic shift of
the “magic wavelength”, only for the square-root vs. linear behavior.

A second source of systematics is the polarization that we have prepared for the
“magic” beam (see section 3.6) along with the dichroic mirror operated at > 45◦ some-
what beyond specifications. We have tried to prepare mainly s−polarized light relative
to the dichroic mirror axis, but a residual fraction of p−polarization up to ≈ 10 − 20% is
likely. The dichroic mirror introduces a wavelength dependent phase shift ψ(λ) between
the s− and p−polarization. This phase shift varies between > π/2 at 820 nm and < π/4
at 800 nm, thereby introducing an imbalance between σ+ and σ− polarized light after
reflection.5 Starting with an intensity of s-polarized and p-polarized light Is = (1 − f)I0

5The values for the relative phase shift have been provided by calculations of Christian Petter (Laserop-
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and Ip = fI0 with 0 < f < 1, assuming a phase shift of ψ between the two polarizations,
the intensity of σ+ and σ− light after reflection at the mirror is given by

Iσ± =
I0
2

(1 ± f sinψ(λ)) (3.11)

which yields a wavelength dependent imbalance given by ∆I/I0 = (Iσ+ − Iσ−)/I0 =
f sinψ(λ). The intensity imbalance at 807 nm is then approximately 17%, leading to a
shift of the magic wavelength due to polarization issues of ≈ 1 nm, which is on the order
of the observed shift with respect to the π calculation. The wavelength dependent phase
shift might also be at the heart of the significantly different dependence of the theoretical
trap frequency ratio compared to the measured dependence (square-root vs. linear).

3.8 Degenerate mixtures in the magic trap

Quantum degenerate mixtures in the magic trap are prepared starting from an evapo-
ratively cooled purely magnetically trapped Fermi-Bose mixture of 40K and 87Rb in the
|9/2, 9/2 > ⊗|2, 2 > state. The evaporation ramp is stopped right at the phase transition
point of the bosonic thermal cloud to a Bose Einstein condensate. At this point, the
crossed dipole trap is ramped up using a linear ramp of 500 ms. Quantum degeneracy is
achieved in the combined magnetic and optical potential in a final step of forced rf-induced
evaporative cooling. In the next step, we realize purely optical trapping of the quantum
degenerate mixture by carefully ramping down the confining inhomogeneous magnetic field
within 50−100 ms while at the same time increasing the bias field to ≈ 20 G to assure spin
conservation throughout the ramp down process of the magnetic trapping potential. The
ramp down process is usually accompanied by mild heating of the atomic clouds which is
compensated for in a final step of purely optical evaporation. This last step of cooling is
induced by decreasing the intensity of the 1030 nm beam by 20 − 40% within a few hun-
dred milliseconds. However, the magic beam is held at fixed intensity. Achieved particle
numbers in the deeply degenerate regime are a few times 105 87Rb atoms in a condensate
with no discernible thermal cloud and up to 1 · 105 fermionic atoms.

As mentioned above, the intensity of the magic beam is chosen to barely compensate
for gravity. The trapping frequency of the magic beam for the 87Rb component in z-
direction is measured to be ωz = 2π ·50 Hz. The intensity of the crossed beam is chosen to
realize the same trapping frequencies for the 87Rb component in y- and x-direction thereby
realizing a shallow almost spherically symmetric trapping potential without facing issues
with differences in the gravitational sag of the two components.

The realization of the magic trap has been an essential prerequisite both for the obser-
vation of tuning of interactions in the vicinity of heteronuclear Feshbach resonances (see
chapter 4) and the engineering of heteronuclear molecules (see chapter 7).

tik Garbsen).
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Chapter 4

Tuning of heteronuclear
interactions

In the early days of ultracold quantum gases, a lot of interest in a particular atomic
species was motivated by its static scattering properties; in the case of 87Rb e. g., the
moderately large background scattering length, combined with favorable collisional losses
(and technical considerations such as cooling laser sources), is the main reason for the
fact that the overwhelming majority of BEC experiments relies on 87Rb these days. This
picture changed dramatically with the advent of Feshbach resonances.

A Feshbach resonance is a phenomenon originally introduced in the context of nuclear
physics [94]. In cold atomic gases, these resonance phenomena have been discussed
since 1992, especially for Cs [95, 96] which at the time seemed to be the most promising
candidate for the observation of BEC in a dilute atomic gas. A Feshbach resonance allows
tuning of the interaction properties of an atomic gas from repulsive to attractive and vice
versa. It occurs when the energy of the colliding atoms in an open channel resonantly
couples to a quasibound molecular state in a closed channel. Such resonances have been
suggested to be inducible via static electric fields [97], rf radiation [98], via far-resonant or
near-resonant laser fields [99, 100] or via homogeneous magnetic fields [95, 96, 101, 102].
Nowadays, magnetically induced Feshbach resonances are a very versatile and common
tool in cold atom laboratories. They occur when the magnetic moment of the bound
state in the closed channel is different from the magnetic moment of the open channel and
the energy of the bound state can thus be continuously tuned through the open channel
dissociation limit.

The first observation of Feshbach resonances in cold atom scattering has been reported
almost simultaneously by P. Courteille and coworkers in 85Rb [10] and by S. Inouye and
coworkers in a BEC of 23Na [11]. Tuning of interactions was demonstrated by Inouye
and coworkers in the vicinity of the resonance by a static homogeneous magnetic field.
Magnetically induced Feshbach resonances have later been reported in almost any alkali
atom: 6Li [103] and 7Li [104, 105], 23Na [11], 40K [106], 85Rb [10, 107], 87Rb [108] and
133Cs [109]. Recently, optically induced Feshbach resonances have been reported in [110,
111].

The availability of an additional knob to tune the scattering length has had important
consequences for the development of the field. On the one hand, the fact that interaction
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parameters no longer have to be taken for granted has enabled new species to be condensed
which would otherwise have been very difficult to nearly impossible, such as 85Rb [112] or
133Cs [113]. Tuning of interactions is needed in order to achieve efficient rethermalization
in this case. On the other hand, a large class of experiments exploring degenerate gases had
been studying the properties of the system in terms of atom numbers or trap frequencies,
whereas in many situations the parameter which is physically interesting is the interaction,
and Feshbach resonances allow this knob to be turned just by changing the magnetic field.
7Li, for example, is a system with a strong attractive background interaction, allowing
the production of BECs of only a few thousand atoms before the onset of collapse [8].
Phenomena like the collapse have first been observed by varying the atom number in the
sample [114], thereby only indirectly affecting interactions through the density. Feshbach
resonances allow these phenomena to be directly observed as a function of interactions.

Feshbach resonances have allowed to enter the regime of strongly correlated systems
and have made a whole class of experiments possible which have no analogon in neigh-
boring fields such as solid state physics. To name only one example, let us look at
the BCS-BEC crossover in two-component Fermi gases interacting at a Feshbach reso-
nance [12, 13, 14, 15, 16]. When the interaction in the sample is strong and repulsive, di-
atomic molecules can be formed and further cooled through evaporative cooling [115, 116].
These molecules can even form a Bose-Einstein condensate [117, 118], and when the in-
teraction is subsequently varied from repulsive to strongly attractive, fermions pair up in
momentum space and realize a BCS-like state of Cooper pairs. In fact, due to the Fesh-
bach resonance, a continuous crossover from a molecular BEC to a fermionic superfluid
can be realized. Apart from the BCS-BEC crossover, Feshbach resonances have been the
key to success in ground breaking experiments such as solitons [105, 104], collapse [119],
molecule formation [120, 121, 122, 123, 124, 125, 126, 127, 118, 24].

In any case, the impressively large variety of experiments relying on Feshbach reso-
nances have exclusively made use of homonuclear Feshbach resonances, that is Feshbach
resonances arising between spin states of a single atomic species. However, the study of
heteronuclear Feshbach resonances in collisions between certain spin states of two different
atomic species (either bosonic or fermionic) is still in its infancy. Heteronuclear Feshbach
resonances have been identified for the first time in Fermi-Bose mixtures of 6Li - 23Na
at MIT [36] and in 40K-87Rb at JILA [37]. The identification has been reported through
increased inelastic collisions and atom loss at the resonance, but no tuning of interactions
has been reported.

The control of heteronuclear interactions offers fascinating perspectives in Fermi-Bose
mixed systems and Fermi-Fermi systems of different mass: In Fermi-Fermi systems, het-
eronuclear Feshbach resonances would open the way to the exploration of the BCS-BEC
crossover in a two-species fermion mixture with unequal mass [128, 129]. In Fermi-Bose
systems, a different and complementary approach to fermionic superfluidity has been sug-
gested in which the interaction between fermionic atoms is provided by bosonic atoms
taking over the role of phonons in the solid state superconductor [130, 131, 132, 28].
When loaded into three-dimensional optical lattices, a wealth of different phases with no
equivalent in condensed matter systems have been predicted to exist [28, 26, 133, 134]. In
addition, heteronuclear Feshbach molecules which have been produced for the first time
within this thesis (see chapter 7) could be used as a starting point for the creation of polar
molecules with novel anisotropic interactions. These polar molecules have bright perspec-
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tives as sensitive probes for physics beyond the standard model, such as a measurement
of the permanent electric dipole moment of the electron [34].

In this chapter, the first demonstration of the tunability of heteronuclear interactions
in the vicinity of a Feshbach resonance arising between 40K and 87Rb will be presented.
To provide evidence for tuning of interactions and thus a variation of the scattering length
around these heteronuclear resonances, the interaction energy of the Bose-Einstein con-
densate coexisting with a quantum degenerate Fermi gas is measured in the vicinity of a
heteronuclear Feshbach resonance. Additional and complementary information is gained
from a measurement of interaction effects of the Fermi gas on an expanding Bose-Einstein
condensate and vice versa. As a first application of heteronuclear Feshbach resonances,
the phase diagram for harmonically trapped Fermi-Bose mixtures ranging from collapse
for large attractive interactions to phase separation in the case of strong repulsive inter-
actions [82] has been studied within this thesis. Tuning of interactions has subsequently
been used for the first formation of ultracold heteronuclear molecules (see chapter 7).

The following chapter will start with a short review on the known properties and
open questions concerning background scattering properties and Feshbach resonances in a
Fermi-Bose mixture of 40K and 87Rb. I will then present loss measurements for the identi-
fication of the resonances and the first observation of a p-wave resonance in heteronuclear
scattering. I will then discuss theoretically the influence of heteronuclear interactions,
either attractive or repulsive, on the density distributions of harmonically trapped Fermi-
Bose mixtures and discuss the instabilities occurring in the limit of strong interactions.
Finally, I will present our measurements demonstrating tunability of heteronuclear in-
teractions in the vicinity of a Feshbach resonance: Starting from the measurement of
heteronuclear interaction effects in stable Fermi-Bose mixtures, I will show how we access
the various phases (ranging from collapse to phase separation) of the harmonically trapped
mixture. Parts of this chapter have been published in [2].

4.1 Feshbach resonances and background scattering prop-
erties

Historically, Fermi-Bose mixtures share a lot with the above development for homonuclear
systems, and this thesis describes important steps from studies based on the background
interaction to tunable interactions and heteronuclear molecule creation at Feshbach res-
onances. Below, I will give a “historical” perspective on our understanding of the back-
ground interactions in the case of 40K and 87Rb; this is intimately related to the identi-
fication of Feshbach resonances and their assignment to specific features in a collisional
model, as we shall see.

The achievement of quantum degeneracy in a mixture of 40K and 87Rb by sympathetic
cooling was first reported in 2002 by G. Roati and coworkers at LENS [75]. In these
experiments, efficient rethermalization in the mixture of 40K and 87Rb has been reported,
suggesting a large triplet scattering length |aFB| = 330+160

−100a0 from the experimental data.
In these measurements, the attractive character of the interaction as predicted by [135] has
been confirmed by studies on the effect of the Fermi gas on the condensate’s aspect ratio
after time-of-flight [87]. Additional evidence for the attractive character of the interspecies
interaction was given by the observation of a bimodal distribution of the fermionic cloud
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after time-of-flight held together during expansion by the Bose-Einstein condensate [87].
From report on a mean-field collapse of the mixture by the LENS group at rather low
particle numbers of 2 · 104 40K atoms and 1 · 105 87Rb atoms [81], the interaction between
40K and 87Rb was determined to be even stronger aFB = −(395 ± 15)a0 as a result of
quantitative comparison of the experimental findings on the critical particle numbers for
collapse with mean-field theory [84].

The observation of stable particle numbers above the reported critical particle numbers
by the JILA group [85] and the preparation of stable mixtures of up to 1.2 · 106 87Rb
atoms in the condensate and 7.5 · 105 40K atoms in this thesis along with the observation
of a possibly excitation enhanced mean-field collapse of the mixture above these stable
particle numbers suggested an upper limit on the scattering length of −284a0 (see [35, 4]
and chapter 2.9). This was confirmed by the first observation of heteronuclear Feshbach
resonances along with a collisional model suggesting a triplet scattering length of (−281±
15)a0 [37]. The following extensive study of the magnetic-field locations of 13 interspecies
resonances resulted in significantly different scattering background parameters for the
interspecies s-triplet scattering length of (−215±5)a0 between 40K and 87Rb [136, 137] and
some differences in the assignment of p− or s−wave character to the individual resonances
(see table 4.1).

40K⊗87Rb Resonance position ∆Bexp
1 l

|9/2,−9/2〉 ⊗ |1, 1〉 494.0 G (from [136]) -0.5 G s [136]/p [37]

|9/2,−9/2〉 ⊗ |1, 1〉 514.2 G (from [136]) -0.5 G p [136]/s [37]

|9/2,−9/2〉 ⊗ |1, 1〉 545.4 G (from [136]) -1.2 G s [37, 136]

Table 4.1: Overview on the resonances that have been investigated within this thesis.
Two of them have previously been predicted to exhibit either s- or p-wave character,
depending on the collisional model. Experimental evidence for the p-wave character of the
515 G resonance has been reported in the measurements performed in this thesis.

In this thesis, we have concentrated our measurements on three resonances in the
vicinity of 500 G (see table 4.1). When we started working on Feshbach resonances, there
was no experimental evidence concerning the s− or p−wave character of the individual
features, and there were different assignments of the resonances. We have precisely deter-
mined the position of these resonances and have detected a systematic small shift compared
to the previously observed resonance positions with consequences for the interaction pa-
rameters (see section 4.2.4.2) and have for the first time observed a p-wave resonance in
heteronuclear scattering, thereby confirming the theoretical assignment of [136] (see sec-
tion 4.2.4.1). We have then used the broadest of the available resonances to observe tuning
of the scattering parameters.

4.2 Identification of Feshbach resonances

The enhancement of the scattering length in the vicinity of a Feshbach resonance is usu-
ally accompanied by enhanced inelastic losses. Loss spectroscopy is therefore a common
technique for the identification of Feshbach resonance positions.
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4.2.1 Experimental techniques

4.2.1.1 Preparation of “Feshbach-resonant” mixtures

For the preparation of “Feshbach-resonant” mixtures, we start with a magnetically trapped
thermal ensemble of 40K ⊗ 87Rb in the low-field seeking but non-resonant |9/2, 9/2〉⊗|2, 2〉
states. Slightly before reaching the critical temperature for condensation Tc of the bosonic
87Rb ensemble, we ramp up the optical dipole potential of our “magic” trap (see chapter 3)
within 500 ms. In the combined optical and magnetic potential, a last step of rf-induced
evaporation is performed within 1 s and a quantum degenerate mixtures prepared. While
ramping down the magnetic trapping potential care has to be taken not to induce spin
flips in either potassium or rubidium affecting the polarization of the atomic ensemble. To
this end, an offset field of a few ten Gauss is applied throughout the ramp-down process.
Residual heating of the cloud during the ramp down is subsequently compensated for by
a last step of purely optical evaporation in the crossed dipole trap. We typically end up
with a quantum degenerate mixture of 5 · 104 40K and up to 2 · 105 87Rb atoms and no
discernible bosonic thermal fraction.

The mixture of |F = 9/2,mF = 9/2〉 ⊗ |F = 2,mF = 2〉 states is favorable for evapo-
rative cooling in a magnetic trap because of the large magnetic moment of both states
and the stability of the polarized mixture against spin changing collisions. However, the
corresponding molecular potentials involved in the appearance of a Feshbach resonance
have the same magnetic moment and the relative energy of open and bound channels are
thus not tunable one against the other as a function of magnetic field [138]. As a conse-
quence, no Feshbach resonances have been predicted or measured in a mixture of these
states. Most of the heteronuclear Feshbach resonances between 40K and 87Rb occur in a
mixture with 87Rb in the |1, 1〉 state and potassium in some Zeeman substate of the lower
hyperfine level |9/2,X〉. As the broadest of the resonances has been predicted to occur
in the |9/2,−9/2〉 ⊗ |1, 1〉 absolute ground state, we concentrated on resonances in these
states in the magnetic field range of 500 G.

Feshbach resonant mixtures in the above states are prepared using the following proce-
dure: After achieving quantum degeneracy in the optical trap in a |F = 9/2,mF = 9/2〉⊗
|F = 2,mF = 2〉 mixture, the offset field assuring spin conservation is ramped up to a
value of 20 G. The desired spin mixture is then produced using a sequence of Landau
Zener transfers [139, 140]. First, we transfer 87Rb atoms from |2, 2〉 to |1, 1〉 by a 100 kHz
microwave sweep at ≈ 6.8 GHz and remove any residual atoms in the F = 2 hyperfine
manifold by a resonant light pulse. Second, we transfer 40K atoms into the |9/2,−7/2〉
state by performing an rf sweep of 100 kHz across 8 spin spates at the same magnetic field
within 40 ms, achieving close to 100% efficiency. We subsequently ramp up the magnetic
field to a value near the resonance.2. Note that at this stage, the prepared mixture in
the |9/2,−7/2〉 ⊗ |1, 1〉 states is non-resonant, allowing for an equilibration time of the
magnetic field on the order of a few hundred ms. Depending on the experiment to be
performed, the resonant mixture in the |9/2,−9/2〉 ⊗ |1, 1〉 states is then prepared either
by a π-pulse on the 40K |9/2,−7/2〉 → |9/2,−9/2〉 transition or by a short Landau-Zener
transfer of 3 ms and 50 kHz width on the same transition.

2For a detailed description of the microwave and rf manipulation setup, see the diploma thesis of Manuel
Succo [141].
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4.2.1.2 Magnetic field control

Loss measurements on the 40K-87Rb mixture performed at JILA [37] and LENS [136]
suggested the availability of heteronuclear resonances possibly suitable for tuning of in-
teractions in the magnetic field range round about 500 G. The predicted and partially
measured widths of the different resonances vary between a few ten mG and a few hun-
dred mG, the broadest having a predicted width of approximately 3G. For precise control
of interactions via Feshbach resonances even on relatively narrow resonances, we aimed at
having the magnetic field in the 500 G range reproducible down to the 10 mG level which
corresponds to a magnetic field accuracy of approximately 10−5. To this end, the external
current programming input of the Helmholtz coil DELTA power supply soon proved to
be unsuitable even in initial experiments. One of the limiting elements was the isolation
amplifier used to guarantee galvanic separation between the analog output of our DSP
system and the analog input of the power supply.

The envisioned magnetic field stability and reproducibility below the 10−5 level has
only been achieved by means of an external current regulator (for details, see the PhD the-
sis of Christian Ospelkaus [35] and the diploma thesis of Leif Humbert [142]). The DELTA
power supply has been operated in constant voltage mode and the current through the
Helmholtz coils was controlled by the external controller relying on a precision DAN-
FYSIK ULTRASTAB 867-200I current transducer. The current was controlled around a
fixed value of approximately 70 A necessary for the generation of magnetic fields of approx-
imately 547 G. An additional modulation input provides the necessary variations around
the set value of ±2A, corresponding to a magnetic field variation of ±14 G. The restriction
to a moderate “tuning” range of the magnetic field, however large compared to the width
of the studied resonances, avoids the performance of the regulator to be limited by the
“noisy” isolation amplifiers. One drawback of this restriction is of course the necessary
change of the fixed “central” current when switching between different resonances.

Note that the achieved magnetic field stability and reproducibility below the 10 mG
level has been the key for the identification of one of the resonances as p-wave (see sub-
section 4.2.3 below) and the precise measurement of the binding energy of heteronuclear
molecules in a 3D lattice (see chapter 7), allowing the resolution of collisional shifts of a
few kHz on the 40K |9/2,−7/2〉 to |9/2,−9/2〉 transition.

4.2.1.3 Magnetic field calibration - Rf Spectroscopy

A precise magnetic field calibration has been performed using rf spectroscopy on the
40K |9/2,−7/2〉 → |9/2,−9/2〉 transition and cross-checked by spectroscopy on the 87Rb
|1, 1〉 → |1, 0〉 transition. At 500 G, these transitions have a magnetic field sensitivity
of 67 kHz/G and 594 kHz/G, respectively, and occur at ≈ 80 MHz and ≈ 350 MHz.
The much lower magnetic field sensitivity of the 40K transition compared to the 87Rb
transition is mainly due to the relatively small hyperfine coupling of the 40K 2S1/2 ground
state. The Paschen-Back regime is therefore already reached at magnetic field values of
approximately 200 G. To perform rf spectroscopy on the above-mentioned transitions, a
quantum degenerate mixture of 40K and 87Rb is prepared in the |9/2,−7/2〉 ⊗ |1, 1〉 states
at 20 G. After removal of one of the components by a resonant light pulse, the magnetic
field is ramped up to a certain fixed value. Rf pulses are then irradiated in the vicinity
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of the atomic Zeeman transition frequency. The pulse frequency is varied around the
resonance frequency. The magnetic field is subsequently switched off quickly and state
sensitive detection is performed using the well-known Stern-Gerlach technique. Prior to
using pulses, the search interval for the resonance frequency has been narrowed down to
10 kHz by appropriate rf Landau Zener transfers. Starting with rf pulses of extremely
low intensity but fixed length, the power of the rf pulse is adjusted to realize π-pulses
on resonance. From the measured resonance center, the magnetic field values can then
be deduced based on the well-known Breit-Rabi formula. The above procedure has been
repeated at 5 magnetic field values for 40K and 87Rb.

Our first rf spectra have been limited by magnetic field drifts in the laboratory and
AC magnetic noise. After removing sources of AC noise from the experiment with the
help of a fluxgate probe, reproducible rf spectra for both 40K and 87Rb atoms have been
observed. We have observed a Fourier limited linewidth with rf pulses of 0.8 ms on the
|9/2,−7/2〉 → |9/2,−9/2〉 at about 500 G, indicating that AC fluctuations are smaller
than 20 mG. Synchronization of the experimental cycle with the 50 Hz mains frequency
even improved the performance. The magnetic field calibration is found to have an overall
drift of smaller than 10 mG over several weeks.

4.2.2 Identification of the resonances

4.2.2.1 The 547 G resonance

In a first experiment, we tried to reproduce the position of the previously identified broad
resonance at 545.4 G [37, 136]. Starting from a quantum degenerate |9/2,−7/2〉 ⊗ |1, 1〉
40K–87Rb ensemble at high magnetic fields in the vicinity of the expected resonance po-
sition, we transfer the |9/2,−7/2〉 state to the “Feshbach-resonant” |9/2,−9/2〉 state by
a Landau Zener rf ramp of 100 kHz within 3 ms. The transfer efficiency throughout the
probed magnetic field range is larger than 90%. The “resonant” mixture is then held at
a fixed magnetic field value for 300 ms and the left-over 40K and 87Rb is detected after
time of flight. Again we perform state sensitive detection based on the Stern-Gerlach
technique. This allows us to detect simultaneously eventual incomplete initial state trans-
fer from |9/2,−7/2〉 → |9/2,−9/2〉, thereby checking our magnetic field calibration online
during the sampling process with an uncertainty < 1.5 G. We have checked for loss features
±7 G around the expected resonance position with a sampling of 0.02 A, corresponding
to 0.14 G and could detect a pronounced feature at 547 G in both 40K and 87Rb and an
additional loss feature in the 87Rb cloud only at 551.4 G. The corresponding spectrum
is shown in Fig. 4.1. In these experiments, the mixture has been held for 300 ms. The
relatively long hold time resulted in a complete loss of 40K atoms in a magnetic field range
of approximately (547 ± 1) G and is therefore inappropriate for a “precision” determina-
tion of the heteronuclear resonance position. Due to the long hold times, we were able
to observe a second feature in the 87Rb cloud which stems from a previously identified
87Rb Feshbach resonance with a width of 0.2 mG at 551.47 G [108]. We observed the
loss feature at 551.45 G within the experimental uncertainty of 30 mG of reference [108].
Apart from the above-mentioned online-check of our magnetic field calibration due to the
100 kHz Landau Zener transfer, the precision measurement of 87Rb resonance positions of
reference [108] provided an independent check of our magnetic field calibration.
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Figure 4.1: Loss spectrum for both the 40K and 87Rb component of a heteronuclear mixture
in the vicinity of 547 G. The mixture has been held for 300 ms. A pronounced loss feature
in both the 40K and 87Rb component is observed at approximately 547 G. An additional
feature only visible in the Rb component is located at 551.45 G. This second feature stems
from a known Rb resonance in the |1, 1〉 state at 551.47(3) G with a width of 0.2 mG,
providing an independent confirmation of our magnetic field calibration.
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Figure 4.2: Loss spectrum for the 40K component of a heteronuclear mixture in the vicinity
of 547 G. The mixture has been held for 40 ms. A pronounced loss feature in the 40K
component is observed at (546.9 ± 0.4) G.



4.2. IDENTIFICATION OF FESHBACH RESONANCES 63

For a more precise measurement of the resonance position of the heteronuclear reso-
nance, we thus repeated the measurement in the vicinity of 547 G, this time choosing a
hold time of 40 ms and a much finer sampling of 0.07 G. The corresponding loss spectrum
of the 40K cloud is shown in Fig. 4.2. Note that the loss spectrum shows the relative
losses of 40K atoms during the hold time which have been plotted in a logarithmic plot.
From this spectrum, the resonance position can be determined to be at (546.9 ± 0.4)G.3

Although a precision determination of the resonance position by loss spectra is a bold
venture in quantum degenerate Fermi-Bose mixtures due to mean-field instabilities (see
section 4.5 below) which might enhance or suppress loss processes, a pronounced shift of
the resonance positions by 3.9 G and 1.5 G from the values reported in references [37]
and [136] has been observed in both measurements. The validity of the observed shift
has been supported by our precise magnetic field calibration performed in the immediate
vicinity of the resonance and rechecks by Landau Zener transfers and the observed 87Rb
resonance. To get some more insight into the nature of the observed shift, we extended
our loss measurements to two additional resonances also occurring in the absolute ground
state of the 87Rb-40K mixture |9/2,−9/2〉 ⊗ |1, 1〉 at 495 G and 515 G.

4.2.2.2 Resonances at 495 G and 515 G

The measurements have been performed similarly to the experiments reported in sec-
tion 4.2.2.1. We have prepared the system in the |9/2,−7/2〉 ⊗ |1, 1〉 state at the desired
magnetic field and then transferred the fermionic component into the Feshbach-resonant
|9/2,−9/2〉 state by a 100 kHz wide rf sweep after the field has settled. We then waited
for a given time. Whereas a distinct loss feature in the 40K cloud was observed after a
hold time of 50 ms in case of the 495 G resonance, we had to significantly lengthen the
hold time in case of the 515 G resonance. In the latter case, we used a hold time of 350 ms
after the final transfer. The 40K loss spectra for the 495 G and the 515 G resonances are
shown in Fig. 4.3 and Fig. 4.4. The positions of the resonances are found to be 495.28(5) G
and 515.2 G. Again we observe a slight shift of the resonance positions as compared to
the measurements at LENS [136] and JILA [37] reporting center positions of 494.0 G /
514.2 G and 492 G / 512 G. The shift of ∝ 1−2 G on a magnetic field of 500 G seems like a
minor correction. However, it has consequences on the Fermi-Bose interaction parameters
which can be deduced from the resonance positions (see section 4.2.4). In addition, the
515 G resonance feature shows a pronounced doublet-structure providing strong evidence
for the p-wave nature of the resonance (see section 4.2.3).

4.2.3 p-wave resonance in a mixture of 40K and 87Rb

At 515 G, we clearly observe a doublet feature in the resonant atom loss. Such a doublet
feature has previously been found in p-wave scattering between fermionic atoms in different
internal spin states [143, 144, 145, 146]. Reference [147] predicted a p−wave resonance to
occur in the 40K-87Rb system at magnetic fields of (540 ± 30)G, with the |ml| = 1 peak
located approximately 300 mG above the |ml| = 0 peak. p−wave resonances occur when
the energy of the incoming particles in a scattering channel is large enough to overcome the

3The error bars have been estimated by taking the half width at half maximum of the corresponding
loss spectrum.
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Figure 4.3: 40K loss feature of the 495.28 ± 0.05G resonance after a hold time of 50ms.
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Figure 4.4: Doublet structure observed in 40K atom loss at 515 G, showing the p-wave
nature of this heteronuclear resonance.
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energy barrier of the centrifugal potential. A characteristic feature of p−wave resonances
is a doublet structure in the observed loss spectra. The partial-wave projection onto the
quantization axis given by the external magnetic field can adopt three different values:
m = 0,±1. Due to dipole-dipole interaction of the valence electrons of the involved
atoms, the degeneracy between the |m| = 1 and |m| = 0 collisional channels is broken
which results in a splitting of the corresponding Feshbach resonance [147]. Note that
the splitting of the resonance channels provides access to tuning of the anisotropy of the
interaction. Fig. 4.4 shows the observed loss spectrum of the 40K cloud at 515 G. We
observe the loss features corresponding to the |m| = 1 and |m| = 0 collisional channels
at 515.2 G and 515.34 G. The fact that we have been able to resolve the characteristic
structure although separated only by 140 mG and each feature having a width of 50 mG
impressively demonstrates the quality of our magnetic field stability and accuracy.

Note that the measurements reported in this thesis provide evidence for the existence
of higher-order partial wave resonances in a Fermi-Bose mixture of 40K and 87Rb for the
first time.

4.2.4 Consequences for the interaction parameters

The measurements on three of the Feshbach resonances arising in the absolute ground state
of the 40K–87Rb mixture reported in this thesis have profound impact on the interaction
parameters between 40K and 87Rb.

4.2.4.1 p-wave nature of the 515 G resonance

Following the pioneering work by S. Inouye and coworkers at JILA [37] on heteronuclear
Feshbach resonances, a collisional model has been developed ascribing a p−wave character
to the 495 G resonance and fixing the interaction parameters between 40K and 87Rb to
(−54±12)a0 and (−281±15)a0 for singlet and triplet scattering length, respectively. A re-
cent study following the work by Ferlaino and coworkers at LENS [136] provided an almost
complete overview of the available Feshbach resonances occurring in different spin states
of the 40K–87Rb hyperfine ground state manifold along with a collisional model resulting
in significantly different scattering background parameters between 40K and 87Rb [136].
The two collisional models ascribe different character, either s- or p-wave character, to the
resonances occurring at 495 G and 515 G. Whereas reference [37] ascribed p-wave charac-
ter to the 495 G resonance and s−wave character to the 515 G resonance, reference [136],
however, ascribed p−wave character to the 515 G resonance; but no direct evidence for this
assignment has been available. The doublet structure of the 515 G resonance, however,
as measured in our experiment and shown in Fig. 4.4 demonstrates the p−wave nature of
the 515 G resonance and provides evidence for this aspect of the most recent assignment
of reference [136].

4.2.4.2 Systematic shift of the resonances

Feshbach spectroscopy along with an associated collisional model is a sensitive way for
the reliable determination of background scattering parameters. However, the scattering
parameters depend critically on the involved molecular potentials which on their part
are calculated based on the observed Feshbach resonance positions. Based on Feshbach
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States 40K⊗87Rb Resonance position [136] Resonance position (this thesis) l

|9/2,−9/2〉 ⊗ |1, 1〉 494.0 G 495.28(1) G s

|9/2,−9/2〉 ⊗ |1, 1〉 514.2 G 515.20(1) / 515.34(1) G p

|9/2,−9/2〉 ⊗ |1, 1〉 545.4 G 546.9(4) G s

Table 4.2: Comparison of the observed resonance positions for 3 of the heteronuclear
Feshbach resonances in 40K and 87Rb. Compared are the values measured within this
thesis and a previous resonance observation at LENS [136].

spectroscopy and the collisional model of [136], the background scattering length between
40K and 87Rb has been calculated to be asinglet = (−108±3)a0 and atriplet = (−205±5)a0.
However, a slight systematic shift of the resonance positions towards lower magnetic field
values has influenced the background scattering parameters for the 40K–87Rb mixture.
Table 4.2 summarizes our findings compared to previous studies by the LENS group [136]
which resulted in a correction of the background interaction parameters to (−111 ± 5)a0

for the singlet scattering length and (−215 ± 10)a0 for triplet scattering [80].

4.3 Phases of harmonically trapped mixtures

In this section, I will give a a short review on the modelling of harmonically trapped Fermi-
Bose mixtures based on a mean-field approach. I will discuss a variety of interaction effects
as well as the different phases and instabilities that occur in these mixtures depending on
the sign and the strength of the heteronuclear interaction.

4.3.1 Modelling harmonically trapped mixtures

The behavior of harmonically trapped Fermi-Bose mixtures at T = 0 under the influence
of heteronuclear interactions can be quantitatively described by a mean-field model [82].
Within this formalism, the mutual influence of both components on each other is described
by additional mean field potentials. These mean-field potentials generated by one of either
species confine/repel the respective other component: The Fermi gas “feels” an additional
mean-field potential UF

MF generated by the bosonic cloud which is proportional to the
interaction strength aFB and the bosonic density nB:

UF
MF =

2πh̄2

µFB
aFBnB(~r) (4.1)

where µFB is the reduced mass: µFB = mF·mB

mF+mB
. Correspondingly, the Bose Einstein

condensate feels an additional potential UB
MF induced by the fermionic cloud and which is

hence proportional to the fermionic density nF:

UB
MF =

2πh̄2

µBF
aFBnF(~r). (4.2)

The effective trapping potential for the fermionic and bosonic cloud is thus composed of
the external trapping potentials VF,ext and VB,ext and the additional mean-field potentials
and is given by

UB/F(r) = VB/F,ext(r) + U
B/F
BF (4.3)
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Neglecting the kinetic energy for the condensate, we can use the Thomas-Fermi approx-
imation for the density distribution of both harmonically trapped clouds, and obtain a
set of coupled equations where the components influence each other via heteronuclear
interactions:

nB(~r) =
1

UBB

[

µB − 2πh̄2

µFB
aFB · nF(~r) − VB,ext(~r)

]

(4.4)

nF(~r) =
(2mF)3/2

6π2h̄3

[

EF − VF,ext(~r) −
2πh̄2

µFB
aFB · nB(~r)

]3/2

In these equations, VB/F,ext(~r) = 1
2mF/B(ω2

B/Fx
x2 + ω2

B/Fy
y2 + ω2

B/Fz
z2 is the external

harmonic trapping potential and UBB = 4πh̄2aBB/mB accounts for interactions between
bosonic atoms. aBB is the Bose-Bose s-wave scattering length, µB is the chemical potential
of the bosonic cloud and EF the Fermi energy.

The solutions to this system of coupled equations can be obtained by iterative inser-
tion of one density distribution into the other equation starting from equilibrium-density
distributions for vanishing heteronuclear interactions. In each step, a numerical search for
the chemical potential µB and the Fermi energy EF under the condition of fixed particle
numbers NF and NB is performed (see also [35]).

Due to the much larger density of a Bose-Einstein condensate compared to a Fermi gas
of comparable atom numbers (nB/nF ≈ 10−100), the effect of heteronuclear interaction on
the fermionic cloud is usually much larger than the reverse effect on the condensate. The
following discussion will adopt this approach by starting the discussion with the effects on
the fermionic cloud and only then consider the back-action of the affected fermionic cloud
on the Bose-Einstein condensate. Note that this iterative reasoning reflects the iterative
numerical solution of the system of coupled equations.

4.3.2 Interaction effects and phases of harmonically trapped mixtures

Attractive interactions Let us start our discussion of interaction effects with weak
attractive heteronuclear interaction (aFB < 0). In this case, the effective potential for
the fermionic cloud is given by the external trapping potential and a steep additional
mean-field dimple in the center of the external potential. The deformed effective trapping
potential gives rise to a bimodal fermionic density distribution (see Fig. 4.5(right)) with a
relatively dilute broad pedestal and a steep and dense core in the center where the density
of the fermionic cloud is significantly enhanced due to the presence of the BEC. Depending
on the strength of the heteronuclear interaction, the enhanced density of the fermionic
cloud has significant effects on the Bose condensate which itself feels an additional mean-
field potential which increases the density of the bosonic cloud. In the case of weak
attractive interactions, the influence of the fermions on the bosons is relatively weak and
the iterative calculation of disturbed density distributions of the fermions and the bosons
converges after some iterations, resulting in significantly enhanced but stable coupled
density distributions.

However, the picture changes dramatically above a certain critical interaction strength:
Now, the additional mean-field potential is so strong that the density distributions in each
step are considerably compressed resulting in a strong back-action in the next iterative
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Figure 4.5: Density profiles of interacting mixtures (NF = NB = 105) (left) for repulsive
heteronuclear interactions UFB/UBB = 4 (right) for attractive heteronuclear interactions
UFB/UBB = −4

step. In this case, the iterative process does not converge and a stable coupled solution
of the equations 4.4 do not exist. This is a regime of instability for the case of attractive
interactions: The mean-field potential of the bosonic cloud overcomes the outward bound
Pauli pressure of the Fermi gas and the mixture is unstable with respect to mean-field
collapse.

4.3.2.1 Repulsive interactions

For weak repulsive heteronuclear interactions, fermions feel a repulsive mean-field potential
in the center of the fermionic trapping potential. Due to the much larger density of the
BEC and the smaller spatial extension of the BEC compared to the fermionic cloud, the
mean-field potential has the form of an inverted dimple in the center of the trap. The
condensate thus acts as a repulsive bump in the center of the fermionic cloud pushing the
fermionic cloud out of the center of the trap (see Fig. 4.5(left)). The fermionic density
overlapping with the center of the BEC will be reduced whereas the fermionic density in
the border areas of the potential increases.

When the repulsive core in the center becomes too strong, the fermionic density distri-
bution in the center of the trap vanishes completely. In this limit, the mixture is unstable
with respect to phase separation. A fermionic shell surrounds a dense core of the Bose-
Einstein condensate. The shell of fermions significantly compresses the Bose-Einstein
condensate.

4.4 Tuning of interactions in stable harmonically trapped
Fermi-Bose mixtures

A large variety of experiments relying on tuning of interactions have been made with
homonuclear systems since the first observation of Feshbach resonances in 1998 [10, 11].
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The study of heteronuclear Feshbach resonances in collisions of two different atomic species
(either bosonic or fermionic) is still in its infancy. In this and the following section, I will
demonstrate tuning of heteronuclear interactions in the vicinity of a Feshbach resonance
in a harmonically trapped Fermi-Bose mixture. These experiments are the first to provide
evidence for the tunability of the heteronuclear scattering length.4 I will start the discus-
sion of experiments on harmonically trapped Fermi-Bose mixtures with tunable scattering
length with a discussion of observable interaction effects in stable mixtures.

Evidence for tuning of interactions in the heteronuclear 40K–87Rb mixture is provided
in two different and complementary ways:

1. In a first experiment, we study tuning of interactions by a measurement of the
mean-field energy of the Bose Einstein condensate as a function of magnetic field
in the vicinity of a Feshbach resonance. Due to the heteronuclear interaction the
Bose-Einstein condensate is confined in the combined potential of the external dipole
trap and the heteronuclear mean-field potential. The latter becomes stronger as the
heteronuclear interaction increases. Hence, the effective confinement of the Bose-
Einstein condensate which determines its mean-field energy, is changed. A mea-
surement of this interaction-dependent mean-field energy is performed by a sudden
switch off of all confining potentials including the additional mean-field potential and
an observation of the time-of-flight expansion of the condensate. A sudden switch off
of the mean-field potential is realized in a good approximation by suddenly switching
off the Feshbach field, reducing the heteronuclear scattering length to its background
value. A related study has been done in the very first demonstration of tuning of
homonuclear interactions in a Bose-Einstein condensate of 23Na [11] in the vicinity
of a Feshbach resonance.

2. In a second experiment, we study the influence of the heteronuclear interaction on the
time-of-flight expansion of the Bose-Einstein condensate and the Fermi gas. When
the heteronuclear interaction is left on during time-of-flight, the expansion of the two
clouds is either slowed down due to attractive interaction or influenced by repulsive
interactions. The study is performed by a sudden switch off of the external dipole
trapping potential while the Feshbach field is left on during time of flight.

For our studies, we have used the broadest of the available s-wave resonances which we
observe at B0=546.8(1) G. The resonance center position has been determined by the
transition between strong attractive and repulsive interactions (see below). At the res-
onance, the scattering length varies dispersively as a function of the external magnetic
field [101]

aFB = aBG · (1 − ∆B/(B −B0)). (4.5)

In equation 4.5, B0 is the resonance center, aBG = −185a0 [148] is the background scat-
tering length between bosons and fermions in the respective spin state and ∆B is the
width of the resonance which in our case has been predicted to be -2.9 G [136]. Note that
the width of the Feshbach resonance can be negative. In our case, this means that the
scattering length will diverge to a → +∞ below the resonance (B < B0) and a → −∞
above the resonance (B > B0). A sketch of the expected variation of the scattering length

4Tuning of heteronuclear interactions has been reported almost simultaneously at LENS [148].
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Figure 4.6: Theoretically predicted variation of the Fermi-Bose scattering length aFB

across the heteronuclear Feshbach resonance at 546.8(1) G. We assumed a width of ∆B =
−2.9 G (see reference [136] and a background scattering length of abg = −185a0 (see
reference [148]).

as a function of the magnetic field for the 40K–87Rb s-wave resonance at B = 546.8(1) G
is given in Fig. 4.6.

4.4.1 Experimental sequence

For the following measurements, a quantum degenerate mixture of 40K and 87Rb in the
|9/2,−7/2〉 ⊗ |1, 1〉 of typically 5 · 104 40K and 1 · 105 87Rb atoms has been prepared in
the magic optical dipole trap. The transfer |9/2,−7/2〉 → |9/2,−9/2〉 to the resonant
|9/2,−9/2〉 state in 40K is performed at two fixed magnetic field values by a rf Landau-
Zener transfer after the field has settled. For studies above the resonance (B > B0),
where the heteronuclear interaction is expected to be attractive (aFB < 0), the final
transfer is performed at a magnetic field of 550.5 G. For studies below the resonance center
(B < B0), where the heteronuclear interaction is expected to be repulsive (aFB > 0)
the transfer is done at B = 543.8 G. At these magnetic field values, the heteronuclear
scattering length is still moderately attractive in both cases and not too different from the
background scattering length between 40K and 87Rb in the |9/2,−7/2〉 ⊗ |1, 1〉 mixture.
This is important in order not to induce oscillations in both clouds due to the sudden
change of the scattering length. After the final transfer at these two magnetic field values,
the field is ramped to varying values in the immediate vicinity of the resonance either from
above or below. The ramp is performed within 50 ms, thereby changing aFB adiabatically
with respect to any other time scale in the experiment: ȧ/a� ωi so that the clouds remain
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in equilibrium within the field ramp [11, 149].5 We then probe the expansion of the cloud
at different values of the heteronuclear scattering length and under different conditions.

4.4.2 Evidence for tuning I: Mean-field energy of the BEC

While the kinetic energy of a Bose-Einstein condensate in the trap is negligible (Thomas-
Fermi limit), the energy of the BEC is dominated by its interaction energy given by

EI/N =
(2π)3h̄

m
aBB 〈nB〉 . (4.6)

In this equation, aBB denotes the Bose-Bose scattering length, 〈nB〉 is the average density
of the condensate, N the number of atoms of mass m. This mean-field energy of the
condensate can be measured by time-of-flight expansion. During time-of-flight, the stored
interaction energy is converted into the kinetic energy of a freely expanding condensate.

At first glance, the interaction energy of the condensate, proportional to the mean
density and the bosonic scattering length, seems to be independent of the value of the
heteronuclear scattering length. However, the effect of heteronuclear interaction enters
through the density of the Bose-Einstein condensate which is affected by the presence of
the fermionic cloud. The trapped fermions, along with the heteronuclear interaction, act
as an additional heteronuclear mean-field potential forming an effective potential UB(~r)
composed of the dipole trapping potential VB,ext and the mean-field potential UB

MF and
determines the density distribution of the bosonic cloud via the Thomas Fermi equation
nB(~r) = (µB − UB(~r))/UBB where UBB ∝ aBB (c.f. section 4.3).

In the case of attractive interactions, the density distribution of the fermionic cloud
interacting with the BEC is increased compared to the non-interacting case. The effective
confinement of the BEC is thus increased with increasing attractive heteronuclear inter-
action in the vicinity of the resonance, enhancing the density and the mean-field energy
according to equation 4.6. Along with the intrinsic repulsion of the Bose-Einstein con-
densate, characterized by the positive bosonic scattering length aBB = 100.4(1)a0 [150],
the effect is observable through the increasing kinetic energy of the bosonic cloud after
time-of-flight.

In the case of repulsive interactions, the condensate acts as a repulsive bump in the
center of the fermionic cloud, pushing the fermionic cloud out of the center of the trap.
The fermionic density overlapping with the center of the BEC will be reduced, whereas the
fermionic density in the border areas of the potential increases. In this case, the additional
fermionic curvature acting on the condensate will push the bosons towards the center of
the trap, thereby increasing density and mean field energy of the condensate. However,
the effect is smaller than the enhancement of density in the attractive case.

4.4.2.1 Some theoretical results

The above intuitive picture can be supported by numerical simulations. The simulations
rely on the mean-field model of section 4.3 [82] and provide a self-consistent calculation
of the densities of the harmonically trapped fermionic and bosonic cloud, considering the

5In the immediate vicinity of the resonance, the adiabaticity condition may break down as ȧ/a becomes
comparable to ωi
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additional heteronuclear mean-field potentials UF
MF and UB

MF. For an introduction into
the model see section 4.3. Fig. 4.7 shows the theoretically expected variation of the mean-
field energy EI of a condensate of 105 bosons in the vicinity of the Feshbach resonance at
546.8(1) G, interacting with a fermionic cloud of 5 · 104 atoms via a varying heteronuclear
scattering length aFB(B). In the figure, I have plotted the interaction energy of the
condensate as a function of B − B0, where B0 is the resonance position. The mean field
energy has been calculated according to equation 4.6 and is normalized to the mean field
energy of a pure condensate. The behavior of the scattering length in the vicinity of
the resonance is determined by equation 4.5 with an assumed width of the resonance of
∆B = −2.9 G. I have plotted the interaction energy only for stable interacting mixtures.
In the same diagram, a sketch of the expected heteronuclear scattering length is plotted.

On the repulsive side of the resonance (low-field side), the interaction energy of the
condensate increases by 20% compared to the non-interacting case. At the same time, the
heteronuclear scattering length varies between 0 at ≈ −3 G and ≈ 400a0 before the onset of
phase separation. On the high field side of the resonance, where heteronuclear interactions
are attractive, the effect of heteronuclear interactions is much more pronounced: the mean-
field energy of the condensate increases by almost a factor of 2 while the scattering length
is increased by approximately the same factor. The effect of heteronuclear interactions
on the mean-field energy of the condensate is thus strongest on the attractive side of the
resonance whereas only a slight effect is observed on the repulsive side.
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4.4.2.2 Experimental data

In the above sections, we have seen that the mean field energy of a Bose-Einstein con-
densate in a Fermi-Bose mixture does depend on the value of the heteronuclear scattering
length, although the dependence can only be calculated numerically. The interaction
energy can be measured in a time-of-flight expansion experiment where all confining po-
tentials are suddenly switched off, thus converting the stored mean-field energy into kinetic
energy. The kinetic energy per particle is just given by EK/N = 1

2mv
2
rms where vrms is
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Figure 4.8: Interaction energy of a BEC per particle in the vicinity of a heteronuclear
resonance normalized to the interaction energy of a pure condensate. On both sides of the
resonance, the interaction energy increases although the effect is much more pronounced
on the attractive side of the resonance where both the fermionic and the bosonic density
distribution is enhanced. On the repulsive side of the resonance the interaction energy
increases only slightly. In the same diagram, I have plotted the expected variation of the
heteronuclear scattering length across the resonance according to equation 4.6.

the mean-root-squared velocity. Both the atom number N and the velocity vrms can be
extracted from time-of flight images, more precisely vrms from the size of the cloud after
time of flight. Fig. 4.8 shows a measure of the condensates mean-field energy per particle
as a function of the magnetic field in the vicinity of the 546.8(1) G heteronuclear Feshbach
resonance. The experimental procedure for the preparation of resonant mixtures in the
vicinity of the resonance is described in section 4.4.1. After the final magnetic field ramp
from either above or below the resonance center to final field values near the resonance
and a 10 ms hold time, both the Feshbach field and the external optical potential are
suddenly switched off and 40K and 87Rb are detected after time-of-flight.

On the low-field side of the resonance, the interaction energy increases only slightly
with increasing repulsive heteronuclear interaction. Within the investigated magnetic field
range below the resonance, the scattering length is expected to vary from 0 to +1000a0. In
the same magnetic field interval, the interaction energy is observed to increase only by 25%.
A comparable effect has been predicted by the theoretical calculations of section 4.4.2.1.
On the high-field side of the resonance, the effect of heteronuclear interactions is much
more pronounced. The heteronuclear scattering length is expected to vary between −300a0
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and −1000a0 within the investigated magnetic field range. As can be seen from the data,
the mean-field energy per particle stored in the condensate increases in the same interval
by a factor of 3 which is quite comparable to theory where an increase in heteronuclear
interaction by a factor of 2 resulted in an increase in interaction energy of the condensate
by the same factor (see section 4.4.2.1).

For magnetic field values above B > 551 G, the heteronuclear scattering length is ex-
pected to recover slowly to its background value of −185a0. Consequently, the interaction
energy per particle is expected to saturate somewhat above the interaction energy of a
pure condensate. On the low magnetic field side, however, the scattering length changes
sign from repulsive interaction to attractive at B ≈ 543.9 G. Below this zero-crossing, the
scattering length will become negative and eventually recover the negative background
interaction. Hence, the interaction energy per particle is expected to increase again be-
low the zero-crossing converging towards the same interaction energy as far above the
resonance.

4.4.3 Evidence for tuning II: Interaction effects during expansion

In a second experiment, we have studied the influence of the heteronuclear interaction on
the time-of-flight expansion of the Bose-Einstein condensate and the Fermi gas. When the
heteronuclear interaction is left on during time-of-flight, the expansion of the two clouds
is either slowed down due to attractive interactions or influenced by repulsive interactions.
The study is performed as described in section 4.4.1. The external dipole potential is
suddenly switched off, whereas the Feshbach field is left on during time-of-flight expansion.

The effect of attractive interactions on the time-of-flight expansion of the bosonic and
fermionic cloud has already been studied in [87] in a Fermi-Bose mixture of 40K and
87Rb. However, in these experiments, the heteronuclear interaction was determined by
the background interaction strength and could not be tuned. The observations in [87]
are therefore restricted to the observation of an affected time-of-flight expansion of the
bosonic and fermionic cloud, respectively, in comparison to the expansion of a pure bosonic
or fermionic cloud.

Fig. 4.9 shows the width of the bosonic and fermionic cloud after 7.5 ms and 25.2 ms
time-of-flight. To account for enhanced particle loss in the vicinity of the resonance, the
observed width data should be normalized by N1/5 and N1/6 for the bosonic and fermionic
cloud, respectively.6 However, the observed particle number loss is on the order of 20% in
the studied magnetic field range and the correction due to particle number variations is
therefore below 5%. On the repulsive side of the resonance, where the effect of interaction
on the time-of-flight expansion is very weak compared to the attractive case, particle
loss is even smaller. In the same diagram, I have plotted the expected variation of the
heteronuclear scattering length across the resonance.

On the high-field side of the resonance, where heteronuclear interactions are attractive,
we observe the width of both the fermionic and the bosonic cloud to decrease when ap-
proaching the resonance. This is a clear signature for increasing heteronuclear attraction.
The simultaneous expansion of both clouds is slowed down due to the attractive potential
that is present throughout the expansion process. However, the effect of the heteronuclear

6The equilibrium width of a non-interacting Fermi gas grows with N1/6 whereas the width of a Bose-
Einstein condensate increases with N1/5
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attractive interaction on the expansion of the BEC and the Fermi gas is twofold. On the
one hand, the densities of both components are significantly increased inside the trap. This
enhancement of density which corresponds to a tighter confinement of either of the clouds,
will lead to a faster expansion (as discussed for the bosonic cloud in section 4.4.2). On
the other hand, the condensate and degenerate Fermi gas will interact during expansion
and most importantly in the early stages of time of flight, thereby reducing significantly
the expansion rate. This slow-down mechanics is determined by the relative dynamics
between the condensate and the degenerate Fermi gas and dominates the experiments.

On the repulsive side of the resonance, however, the effects of heteronuclear interac-
tion are less pronounced. The width of the condensate after time-of-flight stays almost
constant, whereas the width of the Fermi gas after time of-flight increases slightly. In the
immediate vicinity of the resonance, this increase exhibits a change of slope. When the
fermionic density at the trap center vanishes at even higher repulsion, the potential felt
by the Bose cloud will rather be that of the pure external trapping potential with quite
a sharp transition to a very steep higher order potential created by the fermionic density
in the outer shell, at the edges of the condensate. We identify this region with the regime
from 546.4 G to the center of the resonance at 546.8 G where, as seen in Fig. 4.8, the
width of the condensate saturates. This may indicate that at complete phase separation,
the repulsive interaction leads to a rapid expansion of the Fermi gas suddenly accelerated
outside when the external potential is switched off and the repulsive bump of the BEC in
the center maintained.

4.5 Observing collapse and phase separation

As we have seen in the previous section, interactions between fermions and bosons can
fundamentally affect the properties of the system such as the density of the components
and expansion properties. However, when increasing the scattering length above a certain
critical interaction strength, two instabilities can occur: collapse for the case of attractive
interactions and phase separation for the case of repulsive interactions. In our experiments,
we have for the first time been able to access the complete phase diagram of the mixture
and observe clear signatures of both collapse and phase separation. The phase diagram
has been accessed through tuning of interactions in the vicinity of the Feshbach resonance.
Although the mean-field collapse of a harmonically trapped Fermi-Bose mixture has been
studied before, in those experiments critical conditions have been achieved by increasing
particle numbers in the system, holding the value of the heteronuclear interaction fixed
(see [81, 4, 35] and chapter 2.10), whereas in the experiments reported here, the collapse
is induced by tuning of the heteronuclear scattering length.

4.5.1 Mean-field collapse

For attractive interactions above a certain critical value, the Fermi-Bose mixture is ex-
pected to become unstable with respect to collapse. In the vicinity of the resonance
occurring at 546.8 G, attractive interactions are strongest immediately above the reso-
nance center. In Fig. 4.9, the corresponding region has been shaded in grey. This region
immediately above the resonance center has been studied in detail in Fig. 4.10. Fig. 4.10
shows the atom numbers of both the fermionic and the bosonic cloud as a function of
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Figure 4.10: Induced mean field collapse of the mixture. Sudden drop of atom numbers
for critical heteronuclear interactions.

magnetic field when adiabatically approaching the resonance from above similar to the
experiments in section 4.4.1. In the vicinity of 547.4 G (at a detuning of about 0.6 G
above the resonance), we observe a sudden drop in both the fermionic and the bosonic
atom number. We loose almost 50% of the fermionic atoms and a significant fraction of
the bosonic cloud. In contrast to previous work, reporting the onset of instability as a
function of atom number (see previous chapter and [81]), the collapse is now due to tuning
of interactions above a certain critical interaction strength in an otherwise undercritical
mixture. The precise magnetic field value at which the collapse happens is of course depen-
dent on the initially prepared atom number. In the experiments, we observe the onset of
the collapse at a magnetic field value corresponding to a theoretically predicted scattering
length of −1000a0.

To gain some information about the time scale on which the collapse happens, we have
repeated the experiment in a slightly varied version: In this case, we have stopped the
magnetic field ramp at the observed critical magnetic field value and then varied the hold
time of the mixture, thereby observing the collapse happen as a function of time. This is
illustrated in Figure 4.11. We cannot fully exclude some residual variation of the scattering
length due to settling of the magnetic field after the nominal stop of the ramp. The onset
of the collapse, again visible as a sudden drop in atom number, is retarded by a timescale
given roughly by the trap frequency and happens on a timescale <1 ms. The dynamics
associated with the collapse can be seen in Fig. 4.11 bottom and Fig. 4.12. Fig. 4.12
shows two time of flight images of the fermionic cloud prior to the collapse and after the
collapse has happened (when leaving the Feshbach field on during expansion). Prior to the
collapse, the density of the fermionic cloud is strongly enhanced. The fermionic density
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Figure 4.11: Induced mean field collapse of the mixture. The onset of the collapse is
retarded by a timescale given by the trap frequency. As the collapse happens, the sample
is excited and heated, visible in the width of the fragments. After the collapse, the mixture
finds a new equilibrium.



4.5. OBSERVING COLLAPSE AND PHASE SEPARATION 79

∆t = 1��

Figure 4.12: Sample time of flight images showing the bimodal distribution in the
fermionic component and the sudden collapse of the system.

profile after time of flight shows a bimodal distribution with a broad and dilute bottom
and a very dense center. The latter part of the fermionic cloud is trapped inside the
mean-field potential of the BEC. When critical conditions for collapse are achieved, this
central core suddenly disappears. During the collapse, the overlap region of the fermionic
cloud with the BEC is destroyed by a giant three-body implosion, leaving behind only the
broad dilute pedestal. The three-body implosion causes significant heating and excitation
in the remaining sample, reflected in the evolution of the width of the fermionic cloud
as the collapse happens (see Fig. 4.12). After the collapse, the mixture assumes a new
equilibrium which is reflected in the decreasing width of the fermionic cloud after the
collapse has happened.

4.5.2 Phase separation

Phase separation due to repulsive interactions in a composite system of harmonically
trapped fermions and bosons has been discussed in theory [82, 151], but never been ex-
plored in experiment. Tuning of heteronuclear interactions has enabled us to enter the
regime of repulsive heteronuclear interactions, where phase separation occurs. In the limit
of vanishing differential shift due to gravity and for our experimental parameters, phase
separation will occur as a shell of Fermions surrounding a dense BEC core (as we have
seen above).

Inside a harmonic trap and in the presence of gravity, atoms experience a gravitational
sag given by −g/ω2. For systems with different masses, such as the 87Rb / 40K system,
this will in general lead to a differential gravitational sag between the components, as
the trap frequencies may be different. A slightly different gravitational sag breaks the
symmetry of the system and therefore favors phase separation to occur in the vertical
direction. As a consequence, the position of the fermionic component in the time of flight
image is shifted upwards as a function of detuning from resonance, with an even stronger
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Figure 4.13: Vertical position of the Fermi gas as a function of magnetic field. The grey
shaded area indicates the assumed region of full phase separation, where the fermionic
density is expected to vanish at the BEC core. Due to gravitational symmetry breaking,
the fermions are pushed above the BEC, an effect amplified by time of flight expansion.
The inset shows the corresponding fermionic density distribution where most of the density
is concentrated in the upper part of the image.

slope in the region of complete phase separation (see Fig. 4.13). An important aspect
is that the shift in position between fermions and bosons in the trap is amplified by the
repulsive interaction during expansion if we leave on the interaction. Thus, the small
initial symmetry-breaking in the direction of gravity is strongly enhanced and clearly
visible in absorption images such as in the inset of Fig. 4.13, where the Fermionic density
is concentrated in the upper part of the image.



Chapter 5

Quantum degenerate atomic gases
in 3D optical lattices

Quantum degenerate gases in optical lattices provide unique opportunities for engineering
of many-body Hamiltonians discussed in the context of condensed matter systems and
even beyond in a very pure and controllable environment: The periodic potentials realized
by optical lattices are almost defect-free. By tuning the depth of the lattice, the strength
of the crystal can be controlled, thereby controlling e. g. tunnelling with respect to on-
site interaction. Playing with lattices of different geometries and dimensionalities, one,
two- and three-dimensional geometries can be realized and continuously transformed from
one into another. In addition, the use of Feshbach resonances allows the precise control
of interactions between the atoms even allowing for continuous tuning from repulsive
interactions to attractive interactions and vice versa [95, 96, 101, 102, 10, 11].

The possibility of realizing strongly correlated systems with ultracold atoms loaded
into 3D optical lattices has first been pointed out in a seminal paper by D. Jaksch and
coworkers in 1998 who discussed the realization of the Bose Hubbard Hamiltonian with
ultracold bosons loaded into 3D optical lattices [18, 152]. The experimental observation of
the quantum phase transition from a superfluid to a Mott-Insulator state with repulsively
interacting bosons followed in a pioneering experiment by M. Greiner and coworkers in
2002 [19]. Following experiments with either bosonic or fermionic atoms in optical lattices
demonstrated the enormous degree of control inherent in these intriguing physical systems
[19, 153, 154, 20, 21, 155, 156, 157, 24, 25, 158, 1] (the list of references is by no means
complete, for a review see [134]).

In this chapter, the basic formalisms for the description of quantum degenerate gases
in optical lattices will be presented. Starting from a review of the theory of optical lattices,
I will discuss formalisms describing quantum degenerate gases in 3D optical lattices both
in the weakly and the strongly interacting regime. I will conclude this chapter with a
description of our optical lattice setup and a presentation of different diagnostic methods
useful when working with optical lattices.

81
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5.1 Optical lattices

Optical lattices are periodic potentials that are realized by means of various laser beam
configurations suitable for the formation of standing wave configurations [159]. The sim-
plest optical lattice is formed by using counterpropagating laser beams to form a simple
standing wave. The resulting periodic potential can then be used to trap atoms via the op-
tical dipole force (see section 3.1) in a periodic pattern thereby localizing them periodically
in space.

5.1.1 Optical lattice potentials

A wealth of different geometries and periodic potentials for atoms can most easily be
realized based on the optical dipole force [159, 117]. Below, I will discuss various geometries
with different dimensionality starting from the most simple one-dimensional standing wave
configuration and finally discussing higher dimensional potentials.

5.1.1.1 1D optical lattice

When retroreflecting a Gaussian laser beam of an optical dipole trap, the resulting stand-
ing wave interference between the incoming and the outgoing laser beam of equal linear
polarization and wavelength gives rise to an optical dipole potential with a periodicity
λ/2 given by the distance between the nodes and antinodes of the standing wave (see
Fig. 5.1). Depending on the detuning of the lattice laser wavelength relative to the atomic
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Figure 5.1: Periodic pancake-like potential formed by the interference pattern of a retrore-
flected Gaussian laser beam. a) Schematic sketch b) Dipole potential in false color repre-
sentation in the x = 0 plane for the unrealistic case of w0 = λ (I have not accounted for
the curvature of the wavefronts.). c) For the realistic case w0 = 100λ. In our experiments,
this corresponds to w0 ≈ 100 µm.
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transitions, the atoms are either trapped in the nodes (red-detuning) or antinodes (blue-
detuning)1 of the standing wave interference pattern. The resulting optical potential is
given by

V 1D
Lattice(r, z) = 4V (0) cos2 (kz) exp

(

−2
r2

w(z)2

)

(5.1)

and is composed of an array of 2D-like (pancake-like) structures in the z-direction with
a Gaussian envelope in the radial direction. In equation 5.1, k = 2π/λ denotes the
wavevector of the lattice laser beam, w(z) is the z-dependent waist (with w(0) = w0)
of the Gaussian laser beam and V (0) is the potential depth of a single beam optical
dipole trap. Note that the maximum dipole potential in the nodes of the standing wave
pattern VLattice is four times the dipole potential of a single-beam dipole trap V (0) due to
constructive interference of the counterpropagating beams: VLattice = 4V (0). In the center
of the confining potential at z = r = 0, the 2d-like geometry of the individual wells can
easily be described by two characteristic trapping frequencies: Expanding the potential of
a single well quadratically around its minimum in the z and r-directions, one obtains a
cylindrically symmetric harmonic potential characterized by two trapping frequencies. In
the axial direction, the trapping frequency is characterized by

ωz =
2Er

h̄

√

VLattice

Er
(5.2)

whereas the trapping frequency in the radial direction is

ωr =

√

4Er

mw2
0

√

VLattice

Er
(5.3)

With Er = h̄2k2/(2m), a convenient unit for the depth of an optical lattice potential
VLattice = 4V (0) = sEr has been introduced given by the atomic recoil energy.2

5.1.1.2 Higher-dimensional optical lattices

Different geometries can be realized by using higher dimensional optical lattices. These
can be created by superimposing additional standing waves from different directions.

2D optical lattice configuration To form a two-dimensional lattice potential, two
standing waves can be superimposed orthogonal to each other. In general, the dipole
potential of two retroreflected laser beams with arbitrary polarization vectors ~e1 and ~e2
and phase φ, but propagating orthogonally one to each other (~k1 ⊥ k2), is given by

V (y, z) = VLattice(cos
2(ky) + cos2(kz) + 2~e1 · ~e2 cosφ cos(ky) cos(kz)). (5.4)

1In the case of a simple 1D optical lattice, a blue-detuned retroreflected Gaussian laser beam does not
constitute a trap because atoms can escape from the antinodes of the potential.

2The trapping frequencies in a single lattice well vary slightly with position r and z due to the Gaussian
shape of the laser beam (see section 5.1.1.2).
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Figure 5.2: Optical lattice configurations in 1D, 2D and 3D: a) 1D-optical lattice is com-
posed of an array of pancake-like structures b) 2D optical lattice consists of an array of
quasi-one-dimensional tubes c) With three orthogonal retroreflected laser beams a simple
cubic lattice structure is formed.

The above potential reduces to a simple square lattice if the polarizations of the two lattice
beams are perfectly orthogonal ~e1 · ~e2 = 0. The resulting potential is then simply given
by the sum of two superimposed 1D lattices

V (y, z) = VLattice(cos
2(ky) + cos2(kz)) (5.5)

resulting in an array of 1D-like geometries as illustrated in Fig. 5.2 b). The geometry of
a single tube can again be characterized by two characteristic trapping frequencies, the
“radial“ trapping frequencies of a single tube

ωz = ωy = ωr =
2Er

h̄

√

VLattice

Er
(5.6)

and the axial trapping frequency

ωx = ωaxial =

√

8Er

mw2
0

√

VLattice

Er
(5.7)

only determined by the waists of the two lattice laser beams.
In case that ~e1 · ~e2 6= 0, the additional cross-interference term in equation 5.4 plays

a dominant role leading to a variation of the potential depth of neighboring lattice sites
(see 5.3). Phase fluctuations may then lead to a time-dependent variation of the lattice
geometry inducing heating and decoherence processes.
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Figure 5.3: Variation of lattice geometry in the extreme case of ~e1 · ~e2 = 1. a) φ = 0
b) φ = π/2 c) φ = π. From a) to c), initially trapping lattice wells are transformed into
non-trapping wells and vice versa

When a simple cubic square lattice is to be realized in the experiments, the polar-
izations of the two lattice laser beams are chosen orthogonal with respect to each other
reducing cross-interference terms as much as possible. Residual interference due to not
perfectly orthogonal polarizations are then further suppressed by choosing different laser
frequencies for both lattice beams. For large frequency differences on the order of a few
ten MHz, the residual interference averages out in the effective potential.

3D optical lattice configurations The 2D optical lattice can easily be upgraded to a
3D optical lattice by superimposing one additional retroreflected laser beam perpendicular
to the 2D lattice laser beams. In our experiments on Fermi-Bose mixtures in 3D optical
lattices (see chapter 6 and chapter 7), we have used a simple cubic 3D optical lattice (see
Fig. 5.2). This has been realized by superimposing three mutually orthogonal standing
waves (for a description of the setup, see section 5.4). Care has been taken to avoid
additional cross interferences similar to the cross-interference term in equation 5.4 by
choosing orthogonal polarizations and operating the different lattice beams at slightly
different frequency to average out residual interferences. The resulting optical potential,
including the “external” overlapping confinement due to the Gaussian shape of the lattice
laser beams, is given by

V (x, y, z) = V x
Lattice cos(kx)2 exp(−2(y2 + z2)/wx(x)2)

+ V y
Lattice cos(ky)2 exp(−2(x2 + z2)/wy(y)

2) (5.8)

+ V z
Lattice cos(kz)2 exp(−2(x2 + y2)/wz(z)

2)

In practice, the resulting optical potential of equation 5.8 is often regarded as a homo-
geneous optical lattice superimposed with an external harmonic trapping potential. This is
justified for typical experimental parameters and typical extensions of atomic clouds in the
lattice. The trapping frequencies for the effective external harmonic confinement can be
derived by expanding the potential of equation 5.8 in the case of λ� x, y, z � wx, wy, wz.
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The potential is then given by

V (x, y, z) ≈ V x
Lattice cos(kx)2

(

1 − 2
(y2 + z2)

w2
x

)

+ V y
Lattice cos(ky)2

(

1 − 2
(x2 + z2)

w2
y

)

(5.9)

+ V z
Lattice cos(kz)2

(

1 − 2
(x2 + y2)

w2
z

)

which can be written as

V (x, y, z) ≈ V x
Lattice cos(kx)2 + V y

Lattice cos(ky)2 + V z
Lattice cos(kz)2 (5.10)

+
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

with the external trapping frequencies given by

ωx =

√

√

√

√

4Er

m

(

1

w2
y

V y
Lattice

Er
+

1

w2
z

V z
Lattice

Er

)

(5.11)

Similar equations hold for ωy and ωz and are obtained by a cyclic permutation of the
indices.

In deep optical lattices, atoms are often regarded to be localized at individual lattice
sites. For sufficiently deep optical lattices, the potential of a single optical lattice well can
be approximated by a harmonic potential with the trapping frequency given by

ωlat
x/y/z =

2Er

h̄

√

√

√

√

V
x/y/z
Lattice

Er
(5.12)

In practice, the depths of the individual lattice wells and the associated trapping
frequencies are of course position dependent due to the Gaussian shape of the lattice laser
beams. The trapping frequencies at the individual lattice wells for deep optical lattices
vary according to

ωlat
x = ωlat

x (0) exp

(

−y
2 + z2

wx(x)2

)

(5.13)

Whereas this effect is below the 10−5 level along the axis of propagation of the lattice
beam (e.g. along the x-axis in the current example) for a waist of wx(0) ≈ 100 µm, it is
much larger in radial direction. For typical extensions of bosonic and fermionic clouds on
the order of 1

4 ·wx(0) the frequency of a single lattice well decreases from the center to the
border of the cloud by 10%.

5.2 Energy spectrum of single particles confined in optical

lattices

In the non-interacting or weakly interacting regime, the description of quantum degenerate
gases in optical lattices can be reduced to a single-particle problem: Based on a calculation
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of the energy spectrum of a single particle confined in a periodic potential, the many-
body wavefunction of the quantum degenerate ensemble is constructed from single-particle
eigenstates taking into account the statistics of the atoms. In the following section, an
overview on the energy spectrum of particles moving in a periodic potential will be given.
Starting from the energy spectrum in the case of an infinitely extended, homogeneous
periodic potential, we will extend our studies to the more realistic case of a periodic
potential superimposed with a harmonic trapping potential.

5.2.1 Homogeneous lattices - Bloch bands

The physics of particles moving in a periodic potential is a well-known quantum mechanical
problem. It has first been considered rigorously in the context of solid state physics by Felix
Bloch. In 1928, Bloch introduced the formalism to describe the conduction of electrons in
crystalline solids [160]. The same formalism can be applied to atoms placed in a periodic
potential which is in our case given by the dipole potential of the optical lattice. The
wave functions of particles moving in a sinusoidal periodic potential V (x) = V0 cos2(kx)
are given by Bloch wave functions which are the eigenfunctions of the corresponding
Schrödinger equation given by

(

− h̄2

2m

∂2

∂x2
+ V0 cos2(kx)

)

Ψ(x) = EΨ(x), (5.14)

where we have restricted ourselves to the one-dimensional case for convenience only.3 Ac-
cording to Bloch’s theorem, these Bloch functions can be written as product states of plane
waves with quasimomentum q and envelope functions which have the same periodicity as
the underlying potential. The wavefunctions are then given by

Ψ~q,n(~r) = exp(i~q · ~r)un,~q(~r). (5.15)

with un,~q(~r) being the periodic envelope function. Due to the periodicity of the envelope
functions, the wavefunctions of the confined particles are delocalized over the whole lattice.
Note that in equation 5.15, an additional quantum number, the band index n, has been
introduced. As the quasimomentum ~q is unique only up to a reciprocal lattice vector k,
it is therefore convenient to restrict the quasimomenta to the first Brillouin zone, which
means −h̄k < qi < +h̄k. Due to this restriction, an infinite number of eigenfunctions
and corresponding eigenstates exists for a given quasimomentum ~q which are labelled by
the band index n. Characteristic for the energy spectrum of a particle confined in a
periodic potential is the emergence of energy bands, which are separated by an energy gap
depending on the strength of the periodic potential.

Fig. 5.4 shows the calculated energy spectrum of particles confined in optical lattices
for various different lattice depths V0/Er = s. In the limit of vanishing optical lattice
potential s = 0, the quasimomentum q is just the free particle momentum and the energy

spectrum is given by the free particle energy parabola Eq = q2

2m , mapped onto the first
Brillouin zone. With increasing lattice depth, an energy gap appears between the different

3The generalization to the three-dimensional case with an assumed simple cubic periodic potential of the
form V (~r) = Vx cos2(kx) + Vy cos2(ky) + Vz cos2(kz) is straightforward, as the corresponding Hamiltonian
is fully separable.
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Figure 5.4: Energy spectrum of a single particle confined in a 1D periodic structure. The
spectrum shows the typical band structure for different potential depths V0. Higher bands
have been mapped into the first Brillouin zone. In the case of an infinitely homogeneous
optical lattice, states with energy above zero are untrapped. a) V0 = 0 Er. The spectrum
is given by the free particle energy parabola, mapped into the first Brillouin zone. b)
V0 = 2.5 Er. With increasing lattice depth the typical band structure develops and band
gaps appear, starting with the lowest bands. c) V0 = 5 Er. d) V0 = 10 Er. e) V0 = 20 Er.
In the case of deep optical lattices, the bands correspond to the vibrational oscillator levels
in a single lattice well.
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bands whereas the width of each band becomes smaller. In the limit of infinitely deep
optical lattices, the resulting bands correspond to the oscillator levels of a single lattice
well which can be characterized by a harmonic trapping frequency (see equation 5.12).

5.2.2 Inhomogeneous optical lattices

In typical experiments dealing with ultracold atoms confined in optical lattices, the lattice
potential is neither homogeneous nor infinitely extended. Usually, a harmonic confinement
is superimposed with the optical lattice which has to be taken into account for a rigorous
description of atoms confined in optical lattices (see Fig. 5.5). The harmonic confinement
is often due to an additional optical or magnetic potential that is used to prepare quantum
degenerate atomic ensemble prior to ramping up the optical lattice and is independent of
the optical lattice potential itself. In addition, the optical lattice beams themselves produce
an additional harmonic confinement which is particularly strong in the radial direction
(see section 5.1.1.2). This additional harmonic confinement is given by equation 5.11
and is thus strongly dependent on the lattice depth and increases with increasing lattice
depth. When independent tuning of lattice depth and external harmonic confinement is
desirable, it is thus advisable to make the lattice potential as homogeneous as possible
and to choose large beam waists for the retroreflected lattice beams in addition to an
independent magnetic or optical external confinement. This configuration also ensures
that the depth of a single lattice well is no longer dependent on the position of the lattice
well (compare equation 5.13).

A 1D lattice potential of VLattice = 5 Er with additional harmonic confinement of
ωRb = 2π · 100Hz is shown in Fig. 5.5. The assumed parameters correspond to a realistic
experimental configuration. The inhomogeneity of the lattice has important influence on
the band structure. The resulting spectrum can be assumed to become position dependent
as illustrated in Fig. 5.6 for the same parameters.

However, a rigorous treatment of single particles confined in inhomogeneous optical
lattices can only be obtained by a calculation of the corresponding one-particle energy
spectrum: The energy spectrum of the periodic potential with superimposed harmonic
confinement can be calculated by numerically solving the one-dimensional Schrödinger
equation

(

− h̄2

2m
∆ + V (x)

)

Ψ(x) = EΨ(x) (5.16)

with

V (x) =
1

2
mω2

hox
2 + sEr cos(kx+ φ)2 (5.17)

and an arbitrarily chosen phase φ = 16.5◦ (see below). Fig. 5.7 shows the calculated
spectrum as a function of the depth of the optical lattice. In the calculations, the atomic
recoil energy Er = h̄2k2/2m, giving a typical energy scale for the band structure of a pure
periodic potential, has been assumed to be 12.5 times the harmonic oscillator energy scale
h̄ωho. This corresponds to the assumption k2â2 = 25, where â is the harmonic oscillator
length. Although this assumption is unrealistic in actual experiments where Er/h̄ωext ≈
50 − 100, it does not affect the qualitative behavior of the harmonic oscillator eigenstates
(for s = 0) transferring into eigenstates of the combined potential with increasing s. Apart
from significantly reducing the dimensionality of the problem in terms of basis vectors that
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Figure 5.5: Potential of a 1D inhomogeneous optical lattice. The chosen parameters
correspond to typical experimental parameters: V0 = 5 Er, aho = λ which for (λ =
1.03µm) correspond to a harmonic trapping frequency for 87Rb of ω = 2π · 100 Hz
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Figure 5.6: Sketch of the position dependence of the resulting band structure for an
inhomogeneous optical lattice at V0 = 5 Er and additional harmonic confinement charac-
terized by the harmonic oscillator length aho = λ, corresponding to a harmonic oscillator
frequency for 87Rb of ωRb = 2π · 100 Hz.

have to be taken into account, the above assumption increases the clarity of the spectrum
which hence does not consist a few 50 − 100 energy levels in the first band.

Already from the spectrum, the eigenstates visually fall into two categories, the energy
eigenstates with E < Er at s = 0 and the eigenstates with E > Er at s = 0. Whereas
the energy of the eigenstates with E < Er for s = 0 decrease continuously relative to the
lowest eigenenergy, the energy of eigenstates with E > Er at s = 0 partly decreases or
increases and shows a series of avoided crossings.

Fig. 5.8 and 5.9 show the single-particle eigenstates and eigenfunctions in the combined
potential for 4 different lattice depths. Starting from the harmonic oscillator eigenenergies
and eigenstates in Fig. 5.8 a) at VLattice = 0, with increasing lattice depth a pseudo band
gap opens up in the center of the harmonic trap and the eigenfunctions become more
and more localized. The localization process starts at the boundary of the potential (see
Fig. 5.8 b)) and extends with increasing lattice depth down to the center of the trap (see
Fig. 5.9 c) and Fig. 5.9 d), corresponding to 8 Er and 40 Er respectively). In the limit
of deep optical lattices (see Fig. 5.9d)), the eigenstates are each localized on a different
lattice well with site index i where i is the position of the lattice well in units of the lattice
well separation given by λ/2 relative to x = 0. The eigenenergies of these localized states
are given by

E1
i =

1

2
h̄ωLattice +

1

2
mω2 (λ/2)2 i2 (5.18)

in the first pseudoband and

En
i = (

1

2
+ (n− 1))h̄ω +

1

2
mω2 (λ/2)2 i2 (5.19)
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Figure 5.7: a) Eigenstates of a single particle confined in a periodic potential of the
form Vperiodic = V0 cos(kx + φ)2 which is overlapped with a harmonic potential Vho(x) =
1
2mω

2x2. We assume 12.5h̄ω = Er. This corresponds to k2â2 = 25 where â is the harmonic
oscillator length. We have introduced a symmetry breaking (see b)) into the problem by
choosing an arbitrary phase φ = 16.5◦. The periodic potential is then no longer symmetric
with respect to x = 0. This avoids degeneracy of single particle states in the deep optical

lattice where the energy of the single particle eigenstates are given by Ei = 1
2mω

2
(

λ
2

)2
i2

where i is the site position in units of λ/2 with respect to x = 0. b) Sketch of the periodic
plus harmonic potential used for the calculations in a)
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the energy eigenvalues along with the eigenfunctions.
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in the nth pseudoband where ωLattice is the harmonic oscillator frequency on a single lattice
well given by (see equation 5.12). Note that in the case of very steep harmonic confinement,
states in the boundaries of the first pseudoband can become degenerate to or have even
higher energy than states in the center of the second pseudoband. Tunnelling between
the first and the second pseudoband is nevertheless suppressed as long as these states
are localized at different positions in space. In the assumed example, we have introduced
a symmetry breaking into the problem (see Fig. 5.7b)) by choosing an arbitrary phase
φ = 16.5◦ in the periodic potential (see equation 5.17). The periodic potential is then
no longer symmetric with respect to x = 0. This avoids degeneracy of single particle
eigenstates which, in the limit of deep optical lattices, are localized on either side of x = 0.

It has been pointed out by Viverit and coworkers [161] that the structure of eigenstates
in a combined periodic plus harmonic potential along with the Pauli exclusion principle
for fermionic atoms is very favorable for the creation of a lattice with unit occupancy with
very high efficiency [161]. The localization of eigenfunctions in deep optical lattices has
been probed experimentally with fermions loaded into a one-dimensional optical lattice
by selectively addressing these localized states with a radio-frequency field [162].

5.3 Many-particle approach

Although the single-particle approach of section 5.2 is very useful to describe an ensemble
of non-interacting particles confined in an optical lattice, the single-particle approach is
invalid when interactions between the particles cannot be neglected or even dominate the
behavior of the system. In this case, a many-particle approach has to be followed. An
appropriate model for the description of particles confined in a periodic potential is the
Hubbard model [163, 164]. It has been introduced in solid state physics to describe the
transition between conducting and insulating systems. In the following, we will derive the
Hubbard Hamiltonian from the full many-particle Hamiltonian and introduce the main
approximate assumptions of the model. We will then discuss the model in the context
of fermionic and bosonic particles and finally extend the Hamiltonian to the Bose-Fermi
Hubbard Hamiltonian for the description of interacting Bose-Fermi mixtures in an optical
lattice.

5.3.1 The Hubbard model

Consider a single-component many-particle system of fermions or bosons confined in a
periodic potential which is overlapped with an additional harmonic trapping potential
similar to equation 5.10 and interacting via an arbitrary interaction potential W (~r,~r′).
The full many-particle Hamiltonian is then given by

HB/F =

∫

d3rΨ†
B/F (~r)

(

~p

2mB/F
+ VLattice + Vho

)

ΨB/F (~r) (5.20)

+
1

2

∫

d3rd3r′Ψ†
B/F (~r)Ψ†

B/F (~r′)W (~r,~r′)ΨB/F (~r)ΨB/F (~r′)

where the first term accounts for kinetic and potential energy of the ensemble of particles
and the second term is the interaction energy. ΨB/F (~r) are the bosonic and fermionic field
operators satisfying the bosonic commutation and fermionic anticommutation relation.
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Figure 5.10: Probability density of the Wannier functions of the lowest Bloch band. I have
plotted the probability density for V0 = 0 Er, V0 = 5 Er and V0 = 20 Er. With increasing
lattice depth, the Wannier functions become more and more localized to a single lattice
well. In addition, I have plotted the underlying sin(kx)2-potential.

For the expansion of the field operators, an appropriate basis of single-particle states
is needed. As pointed out in section 5.2.1, the eigenstates of a particle confined in a
periodic potential are given by the Bloch functions which are delocalized over the whole
lattice. However, when the lattice is deep and tunnelling is strongly suppressed, atoms
are localized on a certain lattice site. Hence, another approach seems more intuitive:
A convenient complete set of orthonormal functions is given by the so-called Wannier
functions [165]. The Wannier functions are the Fourier transform of the Bloch functions
and defined as follows:

wn(~r − ~ri) =
1

N 1/2

∑

~q

exp(−i~q · ~ri)Ψn,~q(~r) (5.21)

where N is a normalization constant and Ψn,~q is the Bloch function of the band n with
quasimomentum ~q and band index n. In contrast to the Bloch functions, the Wannier
functions wn(~r−~ri) are localized at a lattice site ~ri, as illustrated in Figure 5.10 for lattice
depth of 0 Er, 5 Er and 20 Er.

Based on the Wannier functions, the field operators can be expanded ΨB/F (~r) =
∑

iwn(~r − ~ri) ai and the Hamiltonian in equation 5.20 reads

H = −
∑

i,j

Jija
†
iaj +

1

2

∑

ijkl

Ui,j,k,la
†
ia

†
jakal (5.22)
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with the tunnelling matrix elements

Jij =

∫

d3rw∗
1(~r − ~ri)

(

~p

2mB/F
+ VLattice + Vho

)

w1(~r − ~rj) (5.23)

and the interaction matrix elements

Uijkl =

∫

d3rw∗
1(~r − ~ri)w

∗
1(~r − ~rj)W (~r,~r′)w1(~r − ~rk)w1(~r − ~rk). (5.24)

In the above equation, a†i/ai stands for the bosonic b†i/bi and fermionic f †i /fi creation and
annihilation operator, and we have restricted ourselves to particles confined in a single
Bloch band for ease of notation.

The Hubbard model introduces a number of stringent simplifications which are, how-
ever, well-justified for the case of dilute ultracold gases in optical lattices.

1. First, the Hubbard model restricts to the lowest Bloch band and is thus a good
approximation for particles in a periodic potential at sufficiently low filling and
temperatures.

2. Second, due to the localized nature of the Wannier functions, only nearest neighbor
tunnelling matrix elements are considered (subsequently denoted by 〈i, j〉).

3. Third, the interaction potential W (~r,~r′) = V (~r−~r′) is assumed to be strongly peaked
at ~r = ~r′ so that long-range interactions can be ignored. The numerical value for
the off-site interaction matrix elements are neglected compared to the large onsite
matrix elements Ui,i,i,i. In dilute atomic gases, interactions between particles can
even be described by a single s-wave-scattering length as due to the suppression of
nonzero angular momentum scattering at sufficiently low temperatures. The inter-
action potential is then often simply described by a contact potential of the form
V (~r − ~r′) = 4πh̄2

m δ(~r − ~r′).4

With these simplifying assumptions including the contact interaction potential, the Hub-
bard Hamiltonian reads:

H = −
∑

〈i,j〉
a†iaj +

1

2
U0

∑

i

ni(ni − 1) + εini (5.25)

where Ji,j = J for {i, j} ∈ 〈i, j〉, U0 = Ui,i,i,i and ni = a†iai. The term εi

εi =

∫

d3rw∗
1(~r − ~ri)Vho(~r)w1(~r − ~ri) (5.26)

is due to the diagonal tunnelling elements Jii and a site dependent energy offset due to
the additional trapping potential Vho.

The tunnelling and interaction matrix elements are given by the following integrals

Ji,j =

∫

d3rw∗
1(~r − ~ri)

(

~p

2mB/F
+ VLattice + Vho

)

w1(~r − ~ri) (5.27)

4For single-component fermions, s-wave scattering is forbidden due to the Pauli exclusion principle, so
that in the considered limit the fermions are non-interacting.
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Figure 5.11: Interaction and tunnelling matrix element as a function of lattice depth a)
Whereas the interaction matrix element U increases only moderately with lattice depth,
the tunnelling matrix element is exponentially suppressed. b) Ratio of U/J as a func-
tion of lattice depth. The ratio can be tuned over several orders of magnitude within
experimentally accessible lattice depths.

and

U0 =
4πh̄2as

m

∫

d3r |w1(~r)|4 (5.28)

which can be calculated analytically in the limit of deep optical lattices V0 � Er. In
this case, the Wannier functions can be approximated by the Gaussian ground state of
the harmonic oscillator with trapping frequency ωLattice given by equation 5.12. One
then obtains the following expression for the on-site matrix element in the tight-binding
limit [18, 166]:

U = 2

√

2

π
kasEr (VLattice/Er)

3/4 (5.29)

The tunnelling matrix element is directly related to the bandwidth of the lowest Bloch
band and can be obtained analytically in the limit VLattice � Er [166]:

J =
4Er√
π

(

V0

Er

)3/4

exp(−2
√

V0/Er). (5.30)

In Fig. 5.11 a), both the interaction matrix elements and the tunnelling matrix elements
are plotted as a function of lattice depth. For the calculation of the interaction matrix
elements, we have assumed as = 100a0 which corresponds to the s−wave scattering length
between two 87Rb atoms in the |F = 2,mF = 2 > state. Whereas U increases only
moderately with increasing lattice depth, the kinetic energy falls off exponentially.

From equations 5.30 and 5.29, it is obvious that the ratio of onsite interaction U to
tunnelling J can be tuned over several orders of magnitude without changing the s-wave
scattering length as (see Fig. 5.11b)). By changing the lattice depth, atoms confined in
optical lattices give the opportunity to access the strongly interacting/correlated regime
without making use of mechanisms to tune the scattering length such as Feshbach reso-
nances.
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5.3.2 Phase diagram of repulsively interacting bosons in 3D optical lat-
tices

The phase transition of a superfluid to a Mott-Insulating state in repulsively interacting
bosons has first been discussed in the context of liquid Helium [152]. In 1998, D. Jaksch and
coworkers pointed out that the Bose-Hubbard Hamiltonian is suitable for the description
of bosons confined in 3D optical lattices and discussed the phase transition in this new
context [18]. In 2002, this phase transition has been observed experimentally in a seminal
experiment by Markus Greiner and coworkers with 87Rb prepared in a single Zeeman state
loaded into a three dimensional optical lattice [19].

Let us consider the Hubbard Hamiltonian in the regime of weak interactions where
onsite interaction is negligible against the kinetic energy (U � J). In this limit, the
atoms are delocalized across the lattice. The atoms condense into the lowest Bloch state
and form a macroscopic wave function. The many-body ground state is superfluid and
can be written as

ΨSuperfluid ∝
(

N
∑

i=1

a†i

)N

|0〉 (5.31)

where |0〉 is the vacuum state (empty lattice) and N the number of lattice sites. In the
case of the macroscopic wavefunction, the probability distribution of the local occupation
numbers ni obeys a Poissonian distribution.

In the limit U/J � 1, however, atom number fluctuations are energetically too expen-
sive and the ground state becomes a product of local Fock states:

ΨMott ∝
N
∏

i=1

(

a†i
)n

|0〉 (5.32)

The quantum critical point for the phase transition for a superfluid to Mott-insulator state
with n atoms per lattice site has been calculated in mean-field theory and is determined
by [152, 167, 18, 168]

U = z(2n + 1 + 2
√

n(n+ 1))J (5.33)

where z is the number of nearest neighbors in the lattice. In the case of the simple
cubic lattice in our experiment, z = 6. In the case of the inhomogeneous system, when
a weak harmonic trap is overlapped upon the optical lattice, the above criterion can
nevertheless be used to estimate the quantum critical point of the system. The density is
then nonuniform, increasing from the edges of the cloud towards the center. The lattice
depth needed to observe the Mott-insulator transition is then different for shells with a
local occupation of n. Shells with different occupation number n will undergo the phase
transition at different optical lattice depths, starting from the edges of the cloud towards
the center[169].

Similar to the seminal experiment by Markus Greiner and coworkers [19], we have
been able to observe the phase transition of a superfluid to a Mott-insulator state in our
experiment in a 87Rb |F = 2,mF = 2〉 cloud loaded into a three-dimensional optical lattice
with λ = 1030 nm. By adiabatically ramping up the optical lattice we have been able
to reversibly tune the system from the superfluid to the Mott-insulator ground state. In
our experiment, we have estimated the peak occupation number n of the cloud to be < 6.
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Figure 5.12: Quantum critical point for the superfluid to Mott insulator state for different
lattice occupancies n = 1, ....8. The quantum phase transition for a lattice occupancy n
occurs at the lattice depth where U = z(2n + 1 + 2

√

n(n+ 1))J [168].

Based on a band structure calculation we then obtain quantum critical points of 13.0 Er,
15.0 Er, 16.4 Er, 17.5 Er and 18.4 Er (see Fig. 5.12). The observation of the superfluid to
Mott insulator transition is done by time-of flight imaging of the bosonic cloud. The time-
of-flight images reveal the momentum distribution of the atoms. Fig. 5.13 shows series of
images of the bosonic cloud after sudden switch off the lattice and 15 ms time-of-flight
for different lattice depth. At low lattice depth, we observe a characteristic interference
pattern with a series of peaks at momenta nh̄~k around the central p = 0 momentum
peak. The interference pattern reflects the momentum components of the lowest Bloch
state with quasimomentum q = 0 (see equation 5.31). Above a certain lattice depth
(≈ 13 Er), these interference fringes begin to decrease (b) and c)) and eventually vanish
completely at lattice depth of ≈ 20 Er (d). The disappearance of the interference pattern
with increasing lattice depth indicates the loss of phase coherence associated with the
transition from the superfluid state to the Mott insulator state. In the pure Mott state,
the atomic cloud is a product of local Fock states with a Gaussian momentum distribution.
The continuous decrease of the interference pattern instead of a sudden transition is due
to the inhomogeneity of the system with various phase transition points for different
occupation numbers. Ramping down the lattice again, the interference pattern can be
restored proving that the system remains in the ground state during the ramp-up and
down process.5

Strictly speaking, the disappearance of phase coherence is a necessary but not a suf-
ficient sign of the phase transition from the superfluid to Mott insulator state and addi-

5For a quantitative analysis of the time-of-flight images, see chapter 6.
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Figure 5.13: Superfluid to Mott-insulator transition for a bosonic cloud loaded into an
optical lattice. At lattice depth of VLattice = 10Er the typical matter wave interference
pattern is observed. With increasing lattice depth (b) and (c)) the interference pattern
decreases and vanishes in the limit of deep optical lattices (d) (> 20 Er).
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tional evidence is required. Further evidence for the Mott-Insulator state can be obtained
by probing the excitation spectrum of the system similar to the experiment by Markus
Greiner and coworkers [19]. Deep in the Mott insulator state, a finite excitation gap with
energy U is observed corresponding to the system’s increase in energy when an atom tun-
nels to a lattice well which is already occupied by one atom. The shell structure of the
Mott-insulator state has been probed using spatially selective microwave transitions and
spin-changing collisions [169]. By using density-dependent transition frequency shifts on
the clock transition in 87Rb, Campbell and coworkers have been able to spectroscopically
identify sites with different occupation numbers [170].

5.3.3 Fermions confined in optical lattices

At ultralow temperatures, single-component Fermi gases can be regarded as non-interacting
ideal gases. s−wave scattering is forbidden due to the Pauli exclusion principle and the
cross-section of the next higher order process (p−wave scattering) decreases with temper-
ature according to σp ∝ T 2. The Fermi Hubbard Hamiltonian then reduces to

H = −J
∑

<i,j>

f †i fj + εimi. (5.34)

with εi = 0 in the homogeneous case. Although the Hamiltonian is simple, it exhibits a
crossover from an insulating state with 〈mi〉 = 1 (band insulator) to a conducting state
with 〈mi〉 < 1 (see [171]; experimentally, the band insulator has been observed in pioneer-
ing experiments with fermions loaded into optical lattices by Köhl and coworkers [156]).

In this case, it is more intuitive to go back to the single particle picture of section 5.2.2.
At T = 0, N fermions occupy the N energetically lowest eigenstates of the system. The
energy of the last occupied quantum state is referred to as the Fermi energy of the system
EF . For T > 0, N fermions distribute over the available energy eigenstates according to
Fermi Dirac statistics

f(E) =
1

exp((E − µ)/kT ) + 1
(5.35)

where µ is the chemical potential which is determined via the condition

N =

∫

dEg(E)f(E) (5.36)

where g(E) is the density of states.
When ramping up the optical lattice, the system transforms from a pure 3D harmonic

potential with eigenstates and eigenenergies given by

Enx,ny,nz = (nx + ny + nz +
3

2
)h̄ωho (5.37)

into a tight optical lattice. Whereas the structure of eigenstates of the inhomogeneous
system is complicated in the intermediate regime where tunnelling between different lattice
sites is still allowed (for the 1D eigenstates of the periodic plus harmonic potential, see
section 5.2.2), it becomes very simple in the limit of deep optical lattices. For convenience,
we restrict ourselves to the first pseudoband and the eigenenergies are then given by

ELattice
ix,iy,iz =

1

2
mω2

ho

(

λ

2

)2

(i2x + i2y + i2z) +
3

2
h̄ωLattice (5.38)
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Figure 5.14: Density of states for a pure harmonic oscillator in comparison to a deep
optical lattice restricted to the first pseudoband. The description is only valid in case of
h̄ωho � Er

where ix/y/z are the lattice site indices relative to the center x = y = z = 0 in units of
λ/2; ωLattice is the harmonic oscillator frequency of a single lattice site.

Note that the structure of eigenenergies is completely different in the two limiting
cases of a vanishing lattice and a very tight lattice. In the limit of a vanishing lattice, the
density of states g(E) is the well-known density of states of a three-dimensional harmonic
oscillator6

gho(E) =
E2

2h̄3ω3
ho

. (5.39)

In the limit of tight optical lattices, the structure of energy eigenstates (see equation 5.38)
is similar to that of a free Fermi gas in a “box” of side lengths L where the energy
eigenstates are given by

Efree
ix,iy,iz =

p2
ix + p2

iy + p2
iz

2m
=

h̄2

2m

(

2π

L

)2

(i2x + i2y + i2z) (5.40)

with the density of states in three-dimensions

gfree(E) =

(

mL2

2πh̄2

)3/2
E1/2

Γ(3/2)
(5.41)

By comparing equation 5.38 to equation 5.40, we obtain by simple rescaling for the Fermi

6We restrict ourselves to the spherically symmetric case. When going to an arbitrary three-dimensional
harmonic oscillator, ω3

ho = ω1ω2ω3
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Figure 5.15: Fermi energy EF for a pure harmonic oscillator potential in comparison to
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combined magnetic and optical potential and the magic trap respectively.

gas in the tight lattice

gLattice(E) =







π
mω2

ho

2

(

λ
2

)2







3/2

E1/2

Γ(3/2)
(5.42)

Fig. 5.14 shows a comparison of the density of states in the case of a pure 3D harmonic
oscillator and a deep 3D optical lattice restricted to the first pseudoband. The character-
istic plots are only valid in the limit h̄ωho � Er when the discrete nature of the energy
eigenstates is no longer important.

Due to the different density of states, the Fermi energy of a purely harmonically trapped
Fermi gas is for our experimental parameters (Er ≈ 30 − 80 h̄ωho and NF < 105) much
larger than the Fermi energy of a Fermi gas in a deep optical lattice overlapped with the
same harmonic confinement. Whereas the Fermi energy of a purely harmonically trapped
gas is given by

Eho
F = (6N)1/3h̄ωho (5.43)

the Fermi energy of N atoms in a deep optical lattice ELattice
F is

ELattice
F =

(

3N

4π

)2/3 mωho

2

(

λ

2

)2

. (5.44)

Fig. 5.15 shows the Fermi energy as a function of atom number for a pure harmonic
oscillator and a deep optical lattice in the cases relevant for our experiments, namely
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ωK
ho = 2π ·140 Hz7 and ωK

ho = 2π ·56 Hz8 corresponding to EK
r /h̄ω

K
ho ≈ 32 and EK

r /h̄ω
K
ho ≈

82. When EF (N) > Er at s = 0 (for vanishing optical lattices), strict adiabaticity with
respect to the energy splitting of the avoided crossings is required when ramping up the
lattice to avoid transfer of atoms initially in energy states eigenstates with E > Er at
s = 0 into energy states in the boundaries of the first pseudoband or even into higher
bands (see Fig. 5.7). For a discussion of adiabatic heating/cooling issues see section 6.6.2.

5.3.4 Fermi-Bose mixtures in 3D optical lattices

The Fermi Bose mixtures confined in a 3D optical lattice is theoretically described by
the Hubbard Hamiltonian. It has first been introduced by A. Albus and coworkers [172].
It can be derived similarly to the Hubbard Hamiltonian of equation 5.25 describing a
one-component system of fermions or bosons.

The Fermi-Bose Hubbard Hamiltonian consists of the Hamiltonian for the one-component
Fermi system HF , the one-component Bose system HB and an interaction term accounting
for interactions between fermions and bosons. Due to the low temperatures, the scattering
between fermions and bosons can be assumed to be purely s−wave, modelled by a contact
interaction potential

VFB(~r,~r′) =
2πh̄2

mreduced
aFBδ(~r − ~r′) (5.45)

where mreduced = mB ·mF
mB+mF

is the reduced mass and aFB the Fermi Bose s−wave scattering
length. The Hamiltonian then reads:

H = HB +HF + VBF (5.46)

where HB is the Bose Hubbard Hamiltonian

HB = −JB

∑

<i,j>

b†i bj +
1

2
UBB

∑

i

ni(ni − 1) + εBi ni . (5.47)

HF is the Fermi-Hubbard Hamiltonian

HF = −JF

∑

<i,j>

f †i fj + εFi mi , (5.48)

and VFB accounts for interactions between Fermions and Bosons.

VFB =

∫

d3rd3r′Ψ†
B(~r)Ψ†

F (~r′)VBF (~r − ~r′)ΨF (~r′)ΨB(~r) (5.49)

Inserting the contact interaction of equation 5.45 in equation 5.49, one obtains

VFB =
2πh̄2

mreduced
aFB

∫

d3rΨ†
B(~r)Ψ†

F (~r′)ΨF (~r)ΨB(~r) (5.50)

=
2πh̄2

mreduced
aFB

∑

i,j,k,l

b†if
†
j fkbl

∫

d3rwB(~r − ~ri)
∗wF (~r − ~rj)

∗wF (~r − ~rk)w
B(~r − ~rl)

≈ UFB

∑

i

n̂im̂i

7The parameters correspond to the parameters of the combined optical and magnetic potential (see
section 6.1).

8The parameters correspond to the parameters of the magic trap (see section 3).
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where we have accounted only for onsite interaction and UFB is given by the following
expression:

UBF =

∫

d3r
∣

∣

∣wF
1 (~r)

∣

∣

∣

2 ∣
∣

∣wB
1 (~r)

∣

∣

∣

2
. (5.51)

The full Fermi-Bose Hubbard Hamiltonian then reads:

HBF = −JB

∑

<i,j>

b†i bj +
1

2
UBB

∑

i

ni(ni − 1) + εBi ni (5.52)

− JF

∑

<i,j>

f †i fj + εFi mi (5.53)

+ UBF

∑

nB
i mi (5.54)

Similar to the case of a purely bosonic system, the interaction matrix element can again
be calculated analytically in the tight-binding limit and is given by

UBF =

√

8

π
kaBFEr

√

V0

Er

1 +mB/mF

1 +
√

mB/mF
(5.55)

where aFB is the Fermi-Bose s-wave scattering length and Er is the bosonic recoil energy.
In the case of a mixture of fermionic 40K and bosonic 87Rb with atriplet

FB = −205(10)a0 [137]
in the corresponding spin states |9/2, 9/2 > and |2, 2 >,

UFB = −2.6UBB. (5.56)

The properties of the Fermi-Bose Hubbard Hamiltonian have been studied in a number
of theoretical publications. The ground state properties of the mixed system has first
been studied by Albus and coworkers [172] who pointed out that the Fermi-Bose Hubbard
Hamiltonian exhibits a rich phase diagram depending on the strength and sign of aBB

and aFB and the depth of the optical lattice. Apart from the superfluid to Mott-insulator
transition in the bosonic cloud, Albus and coworkers observed a “simultaneous transition to
demixing in the boson fermion sector” and a “transition to a multiply degenerate phase” in
the limit of deep optical lattices. Lewenstein and coworkers studied theoretically the limit
of zero tunnelling (J = 0) and predicted an extraordinary rich phase diagram with novel
quantum phases as for example pairing of fermions with one or more bosons or bosonic
holes [26]. The effects of inhomogeneity on the ground state and the Mott and superfluid
regions emerging in systems of fermions and bosons confined in optical lattices has been
studied by Marcus Cramer and coworkers [133]. Apart from these three works, there
are a number of theoretical studies on Fermi-Bose mixtures confined in optical lattices of
different dimensions or geometry and in disordered potentials [173, 174, 30, 175, 29, 176,
177]. Boson induced fermionic superfluidity has been discussed in [28, 29, 178].

However, there have been no experimental studies on a Fermi-Bose mixed system in
3D optical lattices until recently. The first realization of this intriguing new many-body
system has been reported almost simultaneously by the Zurich group and ourselves in
2006. In these experiments, the bosonic coherence properties have been studied, affected
by the admixture of a varying fermionic impurity fraction [179, 5]. An in depth discussion
of these experiments can be found in chapter 6.
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5.4 Experimental realization of a 3D optical lattice

In this section, we will discuss practical aspects necessary for the realization of quantum
degenerate Fermi-Bose mixtures in 3D optical lattices. Starting with an overview of the
setup, I will discuss lattice alignment and lattice depth calibration issues and conclude
with a few aspects on lattice loading.

5.4.1 Lattice setup

An overview of the lattice setup in our experiment is given in Fig. 5.16. The optical lattice
is operated at 1030 nm by a commercial 20 W Yb:YAG laser and is formed by three
orthogonal retroreflected laser beams. The three laser beams intersect at the position of
the atomic clouds and form a simple cubic three-dimensional lattice potential of the form
V (~r) = V x

Lattice cos(kx)2 + V y
Lattice cos(ky)2 + V z

Lattice cos(kz)2. In order to avoid heating of
the atomic cloud in the optical lattice by spatial shaking of the lattice interference pattern
due to frequency fluctuations of the laser, the lattice laser has been frequency stabilized
by a Pound-Drever-Hall frequency stabilization on an optical cavity with a Finesse of
> 500. The short-term linewidth of the laser has thereby been reduced from < 5 MHz to
< 20 kHz. Residual slow drifts of the cavity due to thermal drifts of the cavity length do
not affect our experiments performed on a time scale of a few ten milliseconds (for details
on the frequency stabilization, see the thesis of Christian Ospelkaus [35] and the diploma
thesis of Oliver Wille [180]). In order to avoid cross interferences between the different
lattice laser beams giving rise to a fluctuating depth of neighboring lattice wells, the three
orthogonal lattice laser beams are operated with mutually orthogonal polarizations and
are each operated at a slightly different frequency. The frequency offsets are on the order
of a few ten MHz and are realized by Acousto-Optical modulators shifting the frequencies
of the lattice laser beams compared to the “initial” lattice laser beams by 115 MHz,
125 MHz and 135 MHz. The lattice laser light is transported to the experiment by single-
mode optical fibers spatially filtering the mode of the beams to achieve a pure Gaussian
TEM00 mode for each of the lattice beams. The intensities of each of the three laser
beams are actively stabilized using photodiodes behind the fiber and a feedback-loop to
the radio-frequency power operating the Acousto-Optic Modulators. Behind the optical
fiber, the lattice laser beams are collimated using aspheric telescopes and finally focused
onto the atomic ensembles by high-quality achromatic lenses. Circular 1/e2 radii of the
beams are 82 µm, 92 µm and 55/100 µm9 respectively. The incoming laser beams are
then recollimated again using achromatic lenses and finally retroreflected. The use of
high-quality optics is crucial to get rid of residual interference fringes in the Gaussian
beam profile giving rise to distorting overlapping potential gradients. To avoid the build-
up of an additional resonator between the retroreflecting mirror and the fiber, we use
fibers polished with an angle of 8◦ on both the incoupling and the outcoupling side of the
fiber.10

9The lattice laser beam focus has been changed from initially 55 µm to 100 µm during the experiments
described in chapter 6.

10For more details on the experimental setup of the lattice see the diploma thesis of Oliver Wille [180].
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Figure 5.16: Schematic sketch of the lattice setup. The frequency stabilized lattice laser
is operated at 1030 nm. Three lattice laser beams are prepared and frequency shifted
using acousto-optical modulators. The acousto-optical modulators are operated at slightly
different frequencies to assure frequency offsets between the different lattice laser beams of
≈ 10 MHz, thereby avoiding cross-interferences between the different lattice beams. The
lattice laser light is fiber-coupled and transported to the vacuum chamber. Behind the
fiber, all three lattice beams are actively intensity stabilized and then irradiated onto the
atomic cloud. To form a simple cubic lattice, three orthogonal laser beams with mutual
orthogonal polarization are used. For convenience, only a single lattice laser beam setup
is shown.
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5.4.2 Lattice alignment

Accurate alignment of the optical lattice is crucial for any lattice experiments. We have
therefore integrated three additional imaging systems in our experiment. The additional
detection systems allow for imaging of the atomic clouds along the lattice axes. It is
therefore possible to simultaneously image atomic clouds and the lattice laser beam onto
a single CCD camera. The imaging is performed either using one of the MOT beams on
the corresponding axis or using additional separate beams such as the state preparation
beam. A detailed sketch of the optical setup of a typical lattice axis including MOT and
detection optics is shown in Figure 5.17. The lattice laser beam of one axis is coupled out of
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Figure 5.17: Schematic sketch of the lattice beam preparation including the overlapping
scheme for the detection and MOT beams. The MOT beams are overlapped with the
lattice laser beams using dichroic mirrors which are HR coated at 1030 nm and AR coated
at 767 nm and 780 nm. Using a flipper mirror, one of the MOT beams can be redirected
through detection optics onto a scientific CCD camera. During detection, the counter-
propagating MOT beam is blocked by a large-area shutter.

the fiber, collimated, appropriately polarized, intensity stabilized and then focussed onto
the atomic cloud. The lattice beam is directed onto the atomic ensemble using a dichroic
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mirror which is high-reflection coated at 1030 nm and anti-reflection coated at 767 nm
and 780 nm corresponding to the wavelength of the D2-line of 40K and 87Rb. The same
dichroic mirror is also integrated into the retroreflection unit of the lattice laser beam. The
AR-coating of these mirrors allows overlapping the MOT beams for 40K and 87Rb with
the lattice laser beam so that both the lattice and the MOT can in principle be operated
simultaneously. The detection setup is additionally integrated into the experiment by a
flipper mirror which allows to redirect one of the MOT beams through detection optics
onto a scientific CCD camera. During detection, the counter-propagating MOT beam is
blocked by a large-area shutter.

Accurate alignment of the lattice laser beams onto the atomic cloud is achieved as
follows: In a first step, we simultaneously detect the lattice laser beam and the degenerate
atoms on the same CCD camera. Simultaneous detection of the laser beam and the
atomic cloud is possible due to some residual transmission of the 1030 nm light through
the dichroic mirror. The lattice laser beams are adjusted to the same position. In a
next step, we block the retroreflected beam and align the incoming lattice laser beam
to excite only shape oscillations of the atomic cloud. Finally, the retroreflected beam is
fine-adjusted using the same procedure.

5.4.3 Lattice depth calibration
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Figure 5.18: Energy difference between the first and the third Bloch band as a function
of lattice depth. The energy difference is plotted in two limits: for q = 0 (center of the
Brillouin zone, red line ) and q = k (at the edge of the Brillouin zone, black line). Due to
the finite widths of the involved Bloch bands, the energy of the transition from the first
to the third band depends on the quasimomentum q. The width of the transition can be
estimated based on the energy difference between the transitions at the edge and at the
center of the Brillouin zone (blue line).
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The lattice depth is calibrated by studying the energy difference between the first
and the third band in a one-dimensional optical lattice. This is performed by periodically
modulating the lattice depth [181] which results in heating and loss of atoms on resonance.
Due to the finite width of the involved bands, the calibration either has to be performed
with an atomic cloud occupying essentially only the lowest energy states in the lattice
(q = 0) or in the limit of a deep optical lattice where the width of the involved bands tend
to zero. Fig. 5.18 illustrates the energy difference between the first and the third band as
a function of lattice depth in the center of (q = 0) and at the edge (q = k) of the Brillouin
zone. In the same diagram, I have plotted the width of the transition which is estimated
based on the energy difference between the transitions at the edge and at the center of the
Brillouin zone ∆E(q = k)−∆E(q = 0). At a lattice depth of 40 Er, the energy difference
between the first and the third band is > 20 Er with a width of < 0.3 Er corresponding
to a relative uncertainty of < 0.015.

The calibration of each of the optical lattice beams has typically been performed at
a lattice depth > 40Er with a cloud of 87Rb atoms confined in the lowest Bloch band,
but not necessarily in the lowest quasimomentum state. The width of the observed loss
feature at ≈ 50 kHz is on the order of 5 kHz which is much larger than estimated based
on the width of the involved bands.

The essential broadening mechanism, probably dominating the width, is related to the
radial inhomogeneity of the optical lattice. Due to the Gaussian shape of the lattice beams
with a typical beam waist of 100 µm, the lattice depth varies easily across the extension
of typical thermal atomic clouds by 20%. Due to ωLattice ∝

√

VLattice/Er, this results in
a variation of the vibrational frequency of ≈ 10%, being on the order of the observed
broadening of the transition.

5.5 Probing atomic states in the optical lattice

5.5.1 Probing the momentum distribution

The momentum distribution of the atoms loaded into a three-dimensional optical lattice
with a lattice vector characterized by the reciprocal lattice vector ~k can be probed by time
of flight imaging. When the optical lattice is switched off fast against the band separation
so that the atomic states cannot follow the change in the energy states, the atomic states
are directly projected onto free atomic states. Initial Bloch states characterized by the
quasimomentum q are projected onto the basis of free atomic states with “real” momentum
p. Due to the periodicity of the Bloch envelope function, a Bloch state Ψq is composed of

free atomic states with momenta ~p = ~q and ~q+n2h̄~k. The momentum components of the
lowest Bloch state with q = 0 can be revealed in the experiment by probing the momentum
distribution of a Bose-Einstein condensate loaded into a shallow optical lattice where the
system is still superfluid. In a shallow optical lattice, a Bose-Einstein condensate macro-
scopically occupies the lowest Bloch state with quasimomentum q = 0. Projecting the
macroscopic wavefunction onto free atomic state, we obtain the characteristic interference
pattern with the free atomic momenta p = 0, p = ±2h̄k,.... This interference pattern is
shown in Fig. 5.19 imaged along two different imaging axes of our experiment, along the
z-axis and the x-axis.
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Figure 5.19: Momentum distribution of a Bose-Einstein condensate in a 3D optical lattice
of V0 = 10 Er. Apart from the p = 0 component, integer multiples of ~p = h̄~k are observed.
a) Momentum distribution imaged along the z-axis of our experiment. b) Momentum
distribution imaged along the x−axis. Note that the peaks in vertical direction are actually
1√
2
h̄k peaks which stem from the projection of the diagonal h̄k peaks from a) onto the

imaging plane of b).
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The interference pattern can also be understood in a less formal picture. The interfer-
ence stems from the coherent interference of wave packets released from different lattice
sites. Essential for the observation of the interference pattern is phase coherence across
the lattice. In the case of Bose-Einstein condensate, the many-body wavefunction is a
macroscopic wave function with well-defined phase across the lattice and a sharp interfer-
ence pattern is therefore observed. In the Mott-insulating state, however, the macroscopic
phase coherence across the system is lost, instead, the many-body wave function is a prod-
uct of Fock states and the coherence length of the system is smaller than the separation
between two lattice sites. This is reflected in the vanishing of the macroscopic interference
pattern.

5.5.2 Probing the quasimomentum distribution

The quasimomentum distribution of the atoms confined in the optical lattice can also
be probed by time of flight images. In this case, the quasimomentum distribution has
to be converted into real free atomic momentum prior to time of flight. The lattice
potential is therefore ramped down adiabatically with respect to the band separation
(i.e. slow compared to the vibrational frequency of the atoms in a single lattice well)
thereby converting Bloch states with quasimomentum q into free atom states with atomic
momentum p = q. To get an unaltered picture of the quasimomentum distribution, the
ramp down process has to be fast compared to collisional processes redistributing atoms
among the different quasimomentum states [182].

� � � � � �

2h̄
k

Figure 5.20: Quasimomentum distribution of fermionic atoms c) and bosonic atoms a) in
a 3D optical lattice. b) illustrates the geometry of our lattice setup with two lattice beams
irradiated onto the atoms under 45◦. For the measurement, the lattice has been ramped
up to 30E

87Rb
r . After a hold time of 5 ms, the lattice is ramped down adiabatically with

respect to band separation to convert the quasimomentum distribution into real atomic
momentum.

Fig. 5.20 shows images of the quasimomentum distribution of bosonic and fermionic
atoms loaded into a 3D optical lattice. The lattice has been ramped up to 30 ERb

r for
87Rb atoms (corresponding to a lattice depth of ≈ 15 EK

r for 40K.11. After a hold time of

11Note that the dipole potentials for both species are approximately equal whereas E
40

K
r = 87

40
E

87
Rb
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20 ms in the deep optical lattice, any confining potentials have been ramped down within
1 ms, thereby converting quasimomentum into free momentum. The two clouds are then
subjected to 10 ms of ballistic expansion and finally imaged onto a CCD camera by a
resonant light pulse.

Both images show the quasimomentum distribution of an almost homogeneously oc-
cupied first Brillouin zone. In the case of fermionic atoms, the homogeneous population
can be achieved most naturally due to the Pauli exclusion principle by choosing an ap-
propriate number of atoms to fill the first band. A Bose-Einstein condensate, however,
loaded into an optical lattice forms a macroscopic wavefunction occupying only the lowest
quasimomentum state q = 0 with a small quasimomentum spread due to interactions12.
To achieve a homogeneous population of the first band, it is therefore necessary to heat
the cloud in the optical lattice by small amplitude modulations prior to ramping down the
lattice. The atoms are thereby redistributed over the first Brillouin zone. The different
size of the first Brillouin zone after time-of-flight is due to the smaller mass of fermionic
potassium compared to rubidium resulting in a velocity that is approximately two times
larger for the potassium atoms compared to the rubidium atoms.

12This picture is of course only valid for sufficiently shallow optical lattices (see section 5.3.2)



Chapter 6

Fermi-Bose mixtures in optical
lattices

Since the realization of strongly correlated systems with pure bosonic [19] and pure
fermionic gases [25] in 3D optical lattices, there has been increasing theoretical inter-
est in mixtures composed of fermionic and bosonic quantum gases. The different quantum
statistical behavior of the two components gives rise to fundamentally novel quantum
many-body phases. In the extreme case of pairing of fermions with one or more bosons, a
whole zoo of new quantum phases of these “composite fermions” has been predicted [26].
Fermi-Bose mixtures in 3D optical lattices may exhibit fermionic pairing mediated by
the presence of bosonic atoms in full analogy to solid state superconductivity, and there
are interesting connections to high-TC superconductivity [27, 28, 29]. Even before such
“atom pairs” form, Fermi-Bose correlations are predicted to become manifest in polaron-
related physics of fermions dressed by a bosonic cloud [30] and quantum percolation [31].
These phenomena are connected to disorder induced localization scenarios. In reduced
dimensionality, phenomena such as charge-density waves [30, 29] and supersolids [32] are
predicted to occur.

From the experimental point of view, studies on mixtures confined in optical lattices
have been extremely rare. By the end of 2005, the only experiment with Fermi-Bose
mixtures in optical lattices has been reported by Ott and coworkers at LENS [33]. In
these experiments, the “insulating” behavior of a trapped ideal Fermi gas in a 1D lattice
has been compared to collisionally induced transport of fermionic atoms in the presence
of a bosonic cloud.

In this chapter, we report on the first realization of a Fermi-Bose quantum many-body
system confined in a 3D optical lattice. In these studies, we investigate the coherence
properties of bosonic atoms when interacting with a varying fraction of fermionic impu-
rities. When ramping up the optical lattice, we observe the phase coherence properties
of the bosonic cloud to be strongly affected by a very small fraction (NF /NB ≈ 3%) of
fermionic atoms and find a fermion concentration dependent shift of the coherence prop-
erties with respect to the properties of a pure bosonic ensemble. A very small admixture
of fermionic impurities induces a significant loss of coherence at much lower lattice depths
as compared to the pure bosonic case. While the coherence properties of the pure bosonic
system (loss of coherence with increasing lattice depth) can be explained in terms of the

115



116 CHAPTER 6. FERMI-BOSE MIXTURES IN OPTICAL LATTICES

superfluid to Mott-insulator transition and the associated many-body wavefunctions in
the superfluid and the Mott-insulating regime (see section 5.3.2), the nature of the ob-
served shift of the coherence properties towards lower optical lattice depth in the mixture
is still a point of intensive discussions in the community. Possible scenarios include ther-
modynamic effects like adiabatic heating when ramping up the optical lattice1, disorder
induced localization scenarios or a shift of the quantum critical point of the bosonic super-
fluid to Mott-insulator transition due to attractive interactions with the fermionic atoms
(aFB = −215(10)a0 [137]).

This chapter is organized as follows: First, I will describe how we prepare quantum
degenerate Fermi-Bose mixtures in 3D lattices. I will then discuss qualitatively the fermion
induced effects on the bosonic coherence properties when ramping up the optical lattice.
Based on two different quantitative methods for the analysis of the bosonic coherence
properties, we analyze the fermion induced effects on the bosonic cloud as a function of
lattice depth and fermionic impurity concentration. Finally, we discuss possible scenario
which might cause these phenomena. In parallel to this work, similar studies and results
have been reported at ETH Zürich [179].

6.1 Experimental Procedure

Preparation of quantum degenerate mixtures prior to ramping up the optical
lattice For studying mixtures of fermionic and bosonic atoms in 3D optical lattices,
we create the mixture similarly to the procedure described in chapter 2. In brief, we
create Fermi-Bose mixtures by first collecting and precooling bosonic 87Rb and fermionic
40K atoms using the combined 2D-3D MOT laser cooling system. After transfer to the
Ioffe-Pritchard type magnetic trapping potential, we perform forced rf evaporative cooling
of the rubidium component in the |2, 2〉 state (which in turn sympathetically cools the
potassium atoms in the |9/2, 9/2〉 state) until the mixture is close to quantum degeneracy.

In order to load the mixture into a 3D optical lattice, the cigar-shaped strongly elon-
gated geometry of the magnetic trap with an aspect ratio of ≈ 20 is unfavorable and at
the time where most of these experiments were performed, the magic dipole trap had not
yet been implemented. We therefore increase the confinement in the axial direction of
the magnetic trap to ωax = 2π · 50 Hz (this and all the subsequent trapping frequencies
correspond to the trapping frequency for the 87Rb component). To this end, we add an
additional optical dipole trap at λ = 1030 nm perpendicular to the long axis (x-axis) of
the magnetic trap. At the same time, we reduce the radial trapping frequency of the
magnetic trap from ωrad = 2π · 250 Hz to ωrad = 2π · 150 Hz, thereby achieving an aspect
ratio of 1:3.

For the study of degenerate gases in optical lattices, it is favorable to work with low-
density clouds to avoid lattice site occupations � 1 which result in enhanced atom loss
in the tight lattice wells. In experiments with a single species bosonic quantum gas, the
particle number was therefore restricted to a few times 105 atoms in the condensate.
These condensates were confined in a very shallow almost spherically symmetric magnetic
trap with a mean trapping frequency of ω̂ ≈ 2π · 20 Hz [19], corresponding to central

1Note that the latter is a reversible thermodynamics effect happening at constant entropy and quite
different from irreversible heating processes due to noise or loss processes.
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condensate densities n(0) ≈ 1014/cm3. In the case of our experiment, a further lowering of
the radial trapping frequency would be desirable. However, in the experiments reported
here, the trapping frequency in the radial direction was chosen as a compromise between
the realization of clouds with as low density as possible without running into trouble due
to a possibly large differential gravitational sag reducing the overlap of the two atomic
clouds. At ωrad = 2π ·150 Hz, the differential gravitational sag between the condensate and
the Fermi gas becomes comparable to the size of the Thomas Fermi radius of a condensate
of 105 atoms which is on the order of 10 µm. For even lower trapping frequencies, the
differential gravitational sag increases ∝ 1/ω2

rad whereas the size of the cylindrically shaped
condensate increases only with ∝ 1/ωα

rad where α ≈1/2.

Quantum degeneracy is achieved in the combined optical and magnetic potential by
forced rf-induced evaporative cooling. In order to keep the density as low as possible, we
restrict particle numbers in the condensate to < 105, thereby typically realizing conden-
sates with a peak density of n(0) ≤ 5 ·1014/cm3 prior to ramping up the lattice. The 87Rb
condensates have no discernible thermal cloud and coexist with a variable 0-20% fermionic
40K atom impurity component.

With the realization of the “magic” dipole trap (which I have presented in detail in
chapter 3) we have later been able to produce low-density two-species mixtures without
being limited by the differential gravitational sag. Some of the data presented in this chap-
ter was recorded with the mixture confined in the “magic trap”. This trap is characterized
by an almost spherically symmetric trapping potential with a mean trapping frequency of
ωmagic = 2π ·50 Hz. In this case, typical peak condensate densities are n(0) ≤ 2 ·1014/cm3

Loading of the mixture into the optical lattice To load the mixture into the optical
lattice, we have overlapped the lattice either with the combined magnetic and optical
trapping potential or with the purely optical potential of the “magic” trap. The optical
lattice potential is created by three orthogonal and retroreflected laser beams at 1030 nm
with waists of 82/92 µm in the radial directions and 55 µm in the axial direction with
respect to the original trap (c.f. 5.4). The 55 µm focus has later been exchanged against a
100 µm focus for the lattice experiments starting with mixtures prepared in the magic trap.
The optical lattice is ramped up with a linear ramp of 0.5 − 1 ERb

r /ms to various lattice
depths between 0 ERb

r and 25 ERb
r . After a sudden switch off of the lattice potential and

typically 15 ms time-of-flight, we probe the momentum distribution of the bosonic cloud.
Throughout the measurements, we have checked that the atoms occupy only the lowest
Bloch band by adiabatically ramping down the lattice with respect to band separation
and probing the quasimomentum distribution (see section 5.5.2). We could not detect any
discernible fraction of atoms in higher Bloch bands.

Due to the additional harmonic confinement by the magnetic trap and the Gaussian
lattice laser profiles, the mixture occupies a few ten thousand lattice sites with an oc-
cupation rising from 0 in the outer regions to 1 fermion and >5 bosons per site at the
center.
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6.2 Influence of fermions on bosonic coherence - A qualita-
tive study

In this section, we will present the first studies on a mixed Fermi-Bose many-body system
loaded into a three-dimensional optical lattice.2 In these experiments, we have studied
the influence of fermionic impurities on the bosonic coherence properties and observed
a significant reduction of the bosonic coherence due to the admixture of fermions. As
already briefly mentioned in section 5.5.1, the coherence properties of a bosonic cloud
can be revealed by a study of the bosonic interference pattern after a sudden switch off
of the lattice and time-of-flight expansion. Whereas the observation of sharp interference
peaks is a striking signature of long-range phase coherence of the bosonic cloud, decreasing
interference peaks and the appearance of an incoherent background indicates the reduction
of the coherence length. In a pure bosonic component, the loss of phase coherence with
increasing lattice depth accompanies the transition from a superfluid to a Mott-insulating
state (see section 5.3.2).

In a first experiment, we have qualitatively studied the influence of a small admixture
of fermionic atoms on the bosonic cloud. In these experiments, we have prepared 2 ·
104 fermionic 40K atoms, coexisting with a pure Bose-Einstein condensate of 105 87Rb
atoms with no discernible thermal cloud in the above described (see section 6.1) combined
magnetic and optical potential with trapping frequencies of ω = 2π · (50, 150, 150) Hz.
Finally, the lattice is ramped up to various lattice depths between 2.5 ERb

r and 25 ERb
r .

Fig. 6.1 shows three sample images of the interference pattern of the pure bosonic
cloud (top row) in comparison to the interference pattern of the bosonic cloud interacting
with 2 · 104 fermionic impurities (bottom row). The images have been taken after 15 ms
time-of-flight. To ensure that experimental conditions are really comparable in the two
cases, we have prepared the pure bosonic component with the same experimental sequence
as the mixture prior to ramping up the optical lattice: In both cases, we have prepared a
deeply degenerate mixture of fermionic and bosonic atoms in the combined magnetic and
optical potential. The pure bosonic cloud is then realized immediately before ramping up
the optical lattice by a removal of the fermionic atoms from the trap with a short resonant
light pulse, leaving back a pure Bose Einstein condensate. The three sample images of
Fig. 6.1 have been taken at lattice depths of 12.5 ERb

r , 20 ERb
r and 25 ERb

r , respectively.
The lattice depths are given in units of the recoil energy for the 87Rb component ERb

r =
(h̄2k2)/(2mRb) ≈ h · 2.14 kHz where k = 2π/λ.

In both cases, starting with a pure condensate or with a mixture of bosonic and
fermionic atoms, we clearly observe a loss of interference contrast with increasing lattice
depth marking the breakdown of long range phase coherence. As already mentioned, in
case of the pure bosonic gas, the loss of coherence accompanies the well-known superfluid
to Mott-insulator phase transition [18, 19, 117] which occurs as a result of competition be-
tween the minimization of kinetic energy, parameterized by the tunnelling matrix element
J which tends to delocalize the atomic wavefunction over the crystal and the minimization
of interaction energy U (Fig. 6.1a). As can be clearly seen from Fig. 6.1b, the presence
of fermionic impurities induces a loss of coherence at much lower lattice depths than for

2Related experiments have been reported simultaneously by the group of T. Esslinger at ETH
Zürich [179].
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Figure 6.1: Time of flight absorption images of the bosonic component 15 ms after
switching off the lattice and trap potentials. (The colors and pseudo-3d representation
encode the particle column density integrated along the imaging direction). a. Pure
bosonic ensemble of 105 atoms at three different lattice depths. b. Bosonic ensemble
interacting with a fermionic impurity fraction of 20% for the same lattice depths as in
a). We observe a striking loss of interference contrast in the images of the bosonic cloud
interacting with fermions compared to the pure bosonic cloud.
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a pure BEC. At 12.5 ERb
r , we observe sharp interference peaks in the pure bosonic cloud

and the mixture. At 20 ERb
r , however, the interference pattern vanishes almost completely

in case of the mixed system, whereas significant interference is still visible in the case of
pure 87Rb.

6.3 Characterizing the phase coherence properties of the
bosonic cloud

For a quantitative analysis of the observed phenomena, we adopt two different approaches
appropriate for the characterization of the coherence properties of the bosonic cloud.
These approaches have both been developed in the context of studies on the superfluid to
Mott-insulator transition in an ensemble of repulsively interacting bosons.

1. First, we characterize the interference pattern using the visibility of the interference
fringes [183, 184]. The definition of visibility, in this context, is motivated by the
definition of the interference contrast in optics. The visibility can be related to the
correlation properties of the many-body wavefunction of the atomic cloud [183, 184].

2. Second, we analyze the width of the central p = 0 peak which is directly related to
the inverse coherence length of the ensemble apart from some deviations due to the
repulsive interactions between the bosonic atoms [185].

In the following, I will first introduce the two different techniques taking data of a
pure bosonic ensemble as an example. I will then apply the techniques to the analysis of
mixed systems and introduce a quantitative measure of the observed reduction in bosonic
coherence.

6.3.1 Visibility

Fig. 6.2 (left) shows a typical interference pattern of a bosonic ensemble after time of
flight released from a shallow optical lattice where a macroscopic fraction of the system
occupies the lowest Bloch state and phase coherence is present across the lattice. An
intuitive definition of the contrast of the interference pattern is given by [183, 184]

V =
nmax − nmin

nmax + nmin
(6.1)

where nmax is the total atom number in the first order interference fringes reflecting the
p = 2h̄k momentum component and nmin is the sum of number of atoms in equivalent
areas at intermediate positions between the maxima.

At first sight, the relation of the visibility to the bosonic many-body wavefunction is
not clear. However, it can be derived from the density distribution of the atoms after time
of flight which is given by [186, 187, 166, 184]

n(~r) ∝
∣

∣

∣

∣

ŵ

(

~k =
m~r
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(
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V = nmax−nmin

nmax+nmin

nmax = n(p = 2h̄k)

nmin

Figure 6.2: Definition of the visibility of the bosonic interference pattern V [183, 184].
The visibility is calculated from the atom numbers in the first order interference fringes
in comparison to the atom numbers in equivalent areas at intermediate positions between
these maxima. The definition is illustrated by a typical interference pattern for shallow
optical lattices (a) and with a schematic sketch (b). Apart from the interference fringes,
the schematic sketch illustrates the first (light blue) and second Brillouin zone (dark blue).
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Figure 6.3: Visibility data for both a pure bosonic and a mixed system with an impurity
fraction of 10%. We have fitted a phenomenological fit function to the data given by
V(s) = V0/(1 + exp(α · (s− s0)).

where ŵ is the Fourier transformation of the Wannier function w(~r) and

S(~k) =
∑

i,j

exp(i~k · (~ri − ~rj))
〈

b†ibj
〉

(6.3)

is the quasimomentum distribution when we restrict ourselves to the lowest Bloch band.

As S is the Fourier transformation of the correlation function
〈

b†ibj
〉

, sharp interference

fringes are only possible when the correlation function varies slowly across the lattice. As

outlined in [183], this is the case of long-range phase coherence.
〈

b†i bj
〉

extends only over

a few lattice sites in the case of short range coherence, resulting in a reduction of contrast
and visibility. Note that based on the definition of equation 6.1, the Wannier envelope
|ŵ|2 cancels out and the visibility V is directly related to the Fourier transform of the
correlation function.

Fig. 6.3 shows the visibility of a bosonic cloud of 105 atoms loaded into an optical
lattice as a function of lattice depth. The data have been obtained starting from a pure
condensate in the magic trap with trapping frequencies of ω = 2π · 50 Hz in the axial
and radial direction. The optical lattice is ramped up with a linear ramp of 0.5 ERb

r /ms
to various final lattice depths. nmax and nmin as defined in Fig. 6.2 are extracted from
the time-of-flight images using a circle with a radius of 4 pixels around the center of the
first order interference peaks and the displaced intermediate region, respectively. In the
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same figure, I have plotted the visibility of the bosonic cloud in a mixed system with 10%
impurity fraction.

Let us first study the visibility of the pure bosonic cloud. Starting from lattice depth
of 10 ERb

r , we observe a continuous decrease in the visibility of the bosonic interference
pattern which becomes particularly steep above 15 ERb

r . Note that in our system, the
quantum critical points for the onset of the superfluid to Mott-insulator transition in
a pure bosonic system are lattice depths of 13.5 ERb

r , 15.5 ERb
r , 16.9 ERb

r , 18.0 ERb
r

and 18.8 ERb
r for n = 1,.....n = 5 respectively (see section 5.3.2). The observed loss of

interference contrast is ascribed to the increasing fraction of atoms which enters the Mott-
insulating phase. The quasi-continuous decrease in visibility, instead of a sharp one above
just one lattice depth corresponding to the quantum critical point of the transition, can be
explained by the inhomogeneity of the system (see section 5.3.2) where atoms in different
shells enter the Mott-insulating state with n atoms per site at different lattice depths.

Phenomenological fit function For the analysis of the visibility data, we use a phe-
nomenological fit function defined by

V(s) =
V0

1 + exp (α · (s− s0))
(6.4)

where V0 is the initial visibility in the limit s → 0, s0 is a measure for the “critical”
lattice depth and α is an additional fit parameter accounting for the steepness of the loss
of contrast.3 As can be seen in Fig. 6.3, the phenomenological function describes the
experimental data quite well. Especially, the fit function accounts for the limiting cases
of the superfluid state with a theoretical visibility of V = 1 and the pure Mott-state with
a visibility of V = 0.

Comparison of pure bosonic to mixed systems Based on the phenomenological fit
function of equation 6.4, we can now compare the decrease in visibility for a pure bosonic
cloud to the decrease in case of a mixed system. The corresponding data is plotted in
Fig. 6.3. Every data point corresponds to 5 to 10 averaged measurements. The errorbars
denote the standard deviation of the 5-10 measurements. To both the visibility data of the
bosonic and the visibility data of the mixed system with 10% impurity fraction, we have
fitted the phenomenological fit function of equation 6.4. The obtained fit parameters are
summarized in table 6.1. Whereas V0 and the fit parameter α are equal in the two cases

System s0/E
Rb
r α V0

pure Bose cloud 16.8 ± 0.2 0.45 ± 0.03 0.8 ± 0.02

10% impurities 13.7 ± 0.3 0.5 ± 0.05 0.8 ± 0.02

Table 6.1: Comparison of the parameters of the phenomenological function for a fit to two
data sets, one for a pure bosonic system and one for a system with 10% impurity fraction.
The errors correspond to the fit errors only. Note that e.g. the lattice depth calibration
is estimated to be accurate within 5%, resulting in an error bar on s0 of ≈ 1 ERb

r .

within the fit errors, we obtain a significantly lower “critical” lattice depth in the case of

3For typical fit results with α ≈ 0.4 and s0 ≈ 15, we obtain exp(−αs0) ≈ 0 and therefore V(s → 0) ≈ V0
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the mixed system than in the pure bosonic case. We observe a shift in the characteristic
parameter s0 of ∆s = spure

0 −smixed
0 ≈ −3ERb

r towards lower lattice depth when comparing
the mixed to the pure system. We have checked that we do not observe a significant
variation in smixed

0 for the mixed system when fixing α and V0 to the values of the pure
bosonic system.

Comparison of the “phenomenological” analysis to the analysis of [184] To es-
timate the reliability of the analysis based on the phenomenological fit function, we have
analyzed the visibility data a second time, this time based on an analytically known depen-
dence of the visibility in the limit of deep optical lattices. Based on perturbation theory
in the limit of very weak tunnelling, the ground state of the system can be approximated
by

|Ψ〉 ≈ |Ψ〉MI +
J

U

∑

<i,j>

b†ibj |Ψ〉MI (6.5)

where |Ψ〉MI is the Mott-insulating state. The analytical expression for the “column”
integrated visibility is then given by [184]

V ∝ zJ

U
(6.6)

which is valid in the limit of deep optical lattices where tunnelling is strongly suppressed.

To compare our analysis of the visibility data based on the phenomenological fit func-
tion to an analysis based on the known dependence of the visibility in the limit of deep
optical lattices, we have analyzed the visibility both for the pure bosonic cloud and the
mixture in the limit of deep optical lattices. Fig. 6.4 shows the visibility data from the
previous paragraph, this time plotted as a function of (U/zJ) which is directly related to
the lattice depth in the tight-binding limit via

U

zJ
=
kaBB√

2z
exp(2

√
s), (6.7)

where z is the number of nearest neighbor lattice sites (z = 6 in case of a simple cubic

3D lattice). To extract a shift from the data, we have fitted a function C
(

U
zJ

)ν
in the

limit of deep optical lattices (U/zJ > 10) and a constant in the limit of shallow optical
lattices. From these fits, we can again extract critical lattice depths for both, the pure
bosonic cloud and the mixture where the critical depth is defined as the intersection
point between the two fits. We observe a critical (U/zJ)c ≈ 9.9 in the case of the pure
bosonic cloud which corresponds to a lattice depth of 15.6 ERb

r and a critical depth of
(U/zJ) ≈ 3.3 corresponding to V0 ≈ 11.6 ERb

r in the case of the mixture. The exponent ν
is comparable to each other in both cases. We observe ν = −1.3(1) for the pure bosonic
cloud and ν = −1.2(2) in case of the mixture. From the analysis, we extract a shift
of ≈ −4 ERb

r which is comparable to the shift extracted from the phenomenological fit
function. However, the extracted shift depends critically on the chosen fit interval for
the deep lattice limit and varies easily by ±1 ERb

r , whereas the analysis based on the
phenomenological fit function is independent of the fit interval.
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Figure 6.4: Visibility data both for a pure bosonic and a mixed system with an impurity
fraction of 10%. This time, we have plotted the visibility against U/zJ where U/J =
kaBB√

2
exp(2

√
s) with s = V0/E

Rb
r .

6.3.2 Width of the central interference fringe

The phase coherence properties of the bosonic cloud loaded into the optical lattice can also
be characterized by the width of the central interference fringe w which is directly related
to the correlation length ζ of the system via ζ ∝ w−1. The analysis is again motivated
by fundamental properties of the superfluid to Mott-insulator transition of a pure bosonic
system. Whereas, in the superfluid phase, the correlation length diverges, ζ becomes finite
in the Mott-insulating state and is on the order of the inverse energy gap of the system
ζ ∝ U−1 [185].

Fig. 6.5 shows the half-width of the central interference fringe as a function of lattice
depth for the pure bosonic and the mixed system for the data of section 6.3.1. In both
cases, the width stays constant for some time or even slightly decreases for shallow optical
lattices. At a certain lattice depth, the width suddenly turns off and increases rapidly. The
characteristic lattice depth for the sudden increase is extracted from the data by fitting
two linear fits to the descending and ascending branches of the data. The characteristic
lattice depth is then defined by the intersection point of the two linear curves.

Table 6.2 summarizes the characteristic lattice depths for the two cases. The error
bars are again based on the fit errors. Whereas the critical lattice depth of the pure
bosonic cloud is given by 16.5(1.6) ERb

r , in the mixed system, we observe a critical depth
of 12.5(1.5) ERb

r . The critical depth is thus shifted by -4.0(2.0) ERb
r towards shallower
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Figure 6.5: Width of the central interference fringe of the bosonic cloud both for a pure
bosonic cloud and a mixed system with 10% impurity fraction. The width data shows a
sudden increase above a certain lattice depth. The associated characteristic depth can be
extracted from the data as the crossing point of two straight lines fitted to the data at low
lattice depth and at high lattice depth.

optical lattices. The result is comparable to the respective results extracted from the
visibility data.

6.4 Particle number dependence

Based on the techniques of section 6.3, we have studied the change of coherence properties
in the bosonic cloud as a function of particle number of the fermionic impurities. We have
therefore prepared mixtures of ≈ 105 bosons with a variable fraction of admixed fermionic
atoms in the optical lattice. In the experiments, we have prepared mixtures with 3%, 7%,
10% and 20% fermionic atoms corresponding to 3 · 103, 7 · 103, 1 · 104 and 2 · 104 fermions,

System s0/E
Rb
r

pure Bose cloud 16.5 ± 1.6

10% impurities 12.5 ± 1.5

Table 6.2: Comparison of the “critical depth” of a pure bosonic cloud to a mixed system
with 10% impurity fraction as extracted from the width data.
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respectively, in the combined magnetic and optical potential with trapping frequencies of
~ω = 2π · (50, 150, 150) Hz or in the magic trap with trapping frequencies of ω = 2π ·50 Hz.
When choosing the above fractions of fermionic impurities, care has been taken to realize
mixtures where the extension of the fermionic atoms is mostly still within the extension
of the bosonic cloud in the optical lattice. The extensions of both fermionic and bosonic
atoms are estimated for a pure harmonic confinement prior to ramp-up of the optical
lattice and for a deep optical lattice: The extension of 2 · 104 fermions at T = 0 in a
harmonic trap with trapping frequencies of ω = 2π · (50, 150, 150) Hz is given by

Ri =

√

2EF

mω2
i

with EF = (6N)1/3h̄(ω2
radωax)

1/3 (6.8)

and is Rrad ≈ 8 µm and Rax ≈ 24 µm for the above parameters with a central density

of n(0) = 1
6π2

(

2m
h̄2 EF

)3/2
≈ 8 · 1012/cm3, thereby just reaching a density corresponding

to the lattice site density ≈ 7.5 · 1012/cm3. In a deep optical lattice, the corresponding
radius under the assumption of unity filling, can be derived from the condition that the
extension of the fermionic cloud in the different directions is determined by the condition

1

2
mω2

radx
2
rad =

1

2
mω2

axx
2
ax (6.9)

where xrad/ax = irad/ax ·λ/2 corresponds to the coordinate of the last occupied lattice site

in radial/axial direction and N = 4
3πi

2
rad · iax. The radial/axial extension of the cloud is

then given by

xrad = iradλ/2 =

(

3N

4π

ωax

ωrad

)1/3

· λ/2 ≈ 6 µm (6.10)

xax = iaxλ/2 =

(

3N

4π

ω2
rad

ω2
ax

)1/3

· λ/2 ≈ 18 µm

These numbers have to be compared to the extension of a pure BEC of ≈ 105 atoms,

whose radial/axial radius is ≈ 6µm/≈ 18µm in the pure harmonic trap and for 25 ERb
r

lattice depth 7.5 µm/20.5 µm. The extensions of the cloud in the deep optical lattice have
been estimated based on a chemical potential of the cloud in the deep optical lattice of

µdeep lattice =

(

15

16

(λ/2)3m3/2NUBB(s = 25 ERb
r )ωaxω

2
rad√

2π

)2/5

[188]. (6.11)

Fig. 6.6 shows sample data comparing the coherence properties of the bosonic cloud
with an impurity concentration of 3% and 7% to the properties of a pure bosonic ensemble.
The data has been analyzed as outlined in section 6.3. The loss of interference contrast
and a decrease of correlation length in comparison to a pure bosonic cloud is clearly vis-
ible in the visibility curve (see Fig. 6.6a)) as well as in the width data (see Fig. 6.6b)).
The loss of coherence in the bosonic clouds shifts towards shallower optical lattices with
increasing impurity fraction. Already for 3% impurity concentration, the visibility data
shows a significant shift of approximately −2 ERb

r . The corresponding width data, how-
ever, essentially exhibits a steeper slope with no pronounced shift compared to the pure
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Figure 6.6: Visibility V (a) and central peak width (b) of the bosonic interference pattern
for different fermionic impurity concentrations.
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Figure 6.7: Observed shift of the “critical” lattice depth characterizing the loss of coher-
ence in the bosonic cloud as a function of fermionic impurity concentration.

bosonic system. When increasing the impurity fraction to 7%, the shift in both the visi-
bility and the width data becomes significantly larger. We observe shifts of −3 ERb

r from
the visibility data and ≈ −1 ERb

r from the width data.

Fig. 6.7 summarizes our findings on the particle number dependence. We have analyzed
samples with 105 bosons with varying impurity concentration between 3% and 20%. In
case of the visibility data, the error bars in the diagram correspond to the “sample”
rate of the underlying data. A sample rate of 1 − 1.25 ERb

r has been translated into an
assumed maximum error of the same size; this error is larger than the error based on
the fit errors. In case of the width data, we have calculated the error bars based on the
underlying fit errors of the involved parameters. As can be seen from 6.7, an increasing
impurity concentration leads to a considerable shift of the bosonic coherence properties
towards shallower optical lattices. The shift increases with impurity concentration and
reaches −5 ERb

r for an impurity concentration of 20%. Note that the different data points
correspond to ensembles that have been prepared on different days and under various
conditions. Whereas most of the measurements have been done with an external harmonic
confinement given by a combined magnetic and optical potential with an aspect ratio of
1 : 3 (see above), some of the data points have been recorded with an almost spherically
symmetric confinement of ω = 2π · 50 Hz determined by the magic trap (see chapter 3).
In all these cases, we observe qualitatively and quantitatively the same characteristic
behavior.
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6.5 Studies on systematic effects

To exclude trivial irreversible heating effects as a source of the observed systematic shift
in the coherence properties of the bosonic cloud, we have studied the reversibility of the
observed coherence loss. To this end, we have ramped up the optical lattice to final lattice
depths between 15 ERb

r and 20 ERb
r , where the coherence of the bosonic cloud is either

completely lost or at least significantly distorted, and have subsequently ramped down the
lattice with the same ramp speed to varying lattice depths between 5 ERb

r and 7.5 ERb
r .

Apart from some signs of non-adiabaticity visible in a slight asymmetry of the obtained
visibility data with respect to the reversal point at deep optical lattices, we have been
able to restore the initial visibility of the bosonic cloud almost completely. The maximum
observed irreversible loss of visibility is on the order of 10%. In case that the overall ramp
sequence has not been fully reversible, allowing for an additional equilibration time of
5 − 10 ms after ramp-down has resulted in a near complete recovery of visibility.

6.6 Discussion

As already outlined in the introduction to this chapter, there is currently an intense
discussion on the nature of the observed shift of the coherence properties of the bosonic
cloud due to a small admixture of fermionic atoms. Possible scenarios include a shift of
the superfluid to Mott insulator transition of the bosonic cloud due to interactions with
the fermionic impurities, thermodynamic effects such as adiabatic heating and effects
of disorder induced localization scenarios. In the following section, I will briefly review
the current status of the discussion and provide the interested reader with some simple
estimates.

6.6.1 Shift of the superfluid to Mott-insulator transition

One of the possible scenarios is a shift of the superfluid to Mott insulator transition of
the bosonic cloud due to the admixture of attractively interacting fermions. I will discuss
the effects of fermions on the quantum critical point of the bosonic phase transition based
on two different models, the Fermi-Bose Hubbard approximation and a simple mean-field
estimate.

6.6.1.1 Fermi-Bose Hubbard approximation

Homogeneous System in Bose-Fermi-Hubbard approximation The change of
the quantum critical point of the bosonic superfluid to Mott-insulator transition in a ho-
mogeneous system due to the presence of fermionic atoms has been discussed in a very
recent work by Pollet and coworkers [189]. Based on the Fermi-Bose-Hubbard Hamilto-
nian, Pollet et al. have discussed in zero and first order perturbation theory the change
in (U/zJ)c due to interactions with the fermionic cloud. We summarize here the main
results:

Let us consider the Bose-Fermi Hubbard Hamiltonian of a homogeneous system

HBF = −JB

∑

<i,j>

b†ibj +
1

2
UBB

∑

i

ni(ni − 1) (6.12)
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− JF

∑

<i,j>

f †i fj (6.13)

+ UBF

∑

i

nB
i mi

which can directly be derived from the more general inhomogeneous case of section 5.3.4

by setting ε
F/B
i = 0.

Let us consider the influence of the fermions as a perturbation of the pure bosonic
Hubbard Hamiltonian. The lowest order effect that the fermions have on the bosons can
be derived when replacing the fermionic particle number operators mi by their expec-
tation values. In this case, the perturbation to the pure bosonic Hubbard Hamiltonian
is: UFB

∑

nB
i 〈mi〉. To lowest order perturbation theory, the fermionic expectation values

〈mi〉 are calculated by solving the pure fermionic Hubbard Hamiltonian (neglecting the
effects of the bosons on the fermionic cloud). In the homogeneous system considered here,
〈mi〉 is independent of the lattice site 〈mi〉 = 〈mj〉 = 〈m〉. To lowest order perturbation
theory, the fermions thus induce an overall shift of the system’s energy and do not change
the phase diagram of the bosonic cloud at all.

The next order effect can be derived when adopting the results of linear response theory.
In this case, one assumes the unknown bosonic density nB(~q) to induce a fermionic den-
sity 〈nF (~q)〉 = UFBΞ(T, ~q)nB(~q) where Ξ(T, ~q) is the Lindhard response function known
from the theory of screening when calculating electronic charge distributions in condensed
matter physics [160, 173, 189]. The induced fermionic density distribution results in a
back-action on the bosons and thus in an effective interaction for the pure bosonic cloud
given by Û eff

BB = UBB +U2
FBΞ(T, ~q). As the Lindhard function is always negative, the inter-

action matrix elements between two initially repulsively interacting bosons is effectively
reduced by an amount U2

FBΞ(T, ~q) independent of the sign of UFB. This induced attractive
interaction is in analogy to phonon induced attraction between electrons in conventional
superconductors and is at the heart of recent proposals on boson-induced Cooper pairing
of fermions in optical lattices [28]. Based on these considerations, the superfluid to Mott-
Insulator transition is shifted towards deeper optical lattices independent of the sign of
Bose-Fermi interaction UFB.

Inhomogeneous system in BFH approximation The situation becomes more com-
plicated when considering an inhomogeneous situation where the atoms experience both an
optical lattice and an external harmonic trapping potential. In this case, the equilibrium
densities of both components bosons and fermions will be enhanced in the center of the
confining potential (see section 4.3) due to the attractive interactions. However, enhanced
density results in an increased mean bosonic occupation number on a single lattice site,
thereby shifting the transition from a superfluid to a Mott insulating state towards deeper
optical lattices (see equation 5.33).

6.6.1.2 Mean-field approach - Induced effective potential

Let us now come back to the scenario of a homogeneous optical lattice without addi-
tional overlapped harmonic potential. Let us consider the fermionic density distribu-
tion in the lattice as an additional mean-field potential UF

MF (~r) which enters into the
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bosonic many-particle Hamiltonian via the confining external potential Veffective(~r) =
Vperiodic(~r)+U

F
MF (~r). To lowest order perturbation theory, the additional fermionic mean-

field potential is determined by the unperturbed fermionic density distribution given by
nF (~r − ~ri) = 〈m〉∑i |wF(~r − ~ri)|, resulting in

UF
MF = nF (~r)UBF = 〈m〉UBF

∑

i

|wF (~r − ~ri)|2, (6.14)

where wF is the fermionic Wannier function for the case of a pure sinusoidal external lattice
potential of depth VLattice. Taking into account this additional potential, the bosonic
many-particle Hamiltonian reads:

HB =

∫

d3rΨ†
B(~r)

(

p2

2m
+ Vperiodic(~r) + nF (~r)UBF

)

ΨB(~r) (6.15)

+
1

2
UBB

∫

d3rΨ†
B(~r)Ψ†

B(~r)ΨB(~r)ΨB(~r)

The fermions thus alter the properties of the pure external periodic potential and change
both the depth and geometry of a single lattice well (see also Fig. 6.12e). From the effec-
tive many-body Hamiltonian of equation 6.15, we can derive an effective Bose-Hubbard
Hamiltonian. The presence of the fermionic mean-field potential then changes both onsite
interaction and tunnelling matrix elements of the bosonic atoms.

A rough estimate on the shift of the superfluid to Mott-insulator due to the additional
mean-field potential of the fermionic cloud can be obtained as follows:

Estimating the change of the bosonic tunnelling matrix element J We first
estimate the change of the bosonic tunnelling matrix element due to the presence of exactly
one fermionic atom on each lattice site (〈m〉 = 1). In the tight-binding limit, the fermionic
Wannier function can be approximated by a Gaussian wavefunction of the form

φF (~r) =

(

mωK
Lattice

πh̄

)3/4

exp

(

−1

2

mωK
Lattice

h̄
~r2
)

(6.16)

where ωK
Lattice = ωK

Lattice(s) is the oscillator frequency of a 40K atom confined on a single
lattice well of depth s = VLattice/E

Rb
r . To lowest order, fermionic atoms, which interact

attractively with the bosonic atoms, induce an effectively deeper optical lattice where the
new depth is given by

V effective
Lattice (s) ≈ VLattice + UBFnF(~r = 0) 〈m〉 ≈ s ·ERb

r +

(

mωK
Lattice(s)

πh̄

)3/2

UBF. (6.17)

From a band structure calculation based on the effective lattice depth, we obtain a new
tunnelling matrix element J+F for the bosonic cloud changed by the presence of fermionic
atoms. In this picture, the effective bosonic tunnelling matrix element is significantly
reduced in case of attractive interactions between bosons and fermions (see Fig. 6.8).
Note that this is only a very rough estimate for several reasons. First, the fermions alter
significantly the geometry of a single confining lattice well which is totally neglected in
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Figure 6.8: Rough estimate on the shift of Mott-insulator transition based on a fermionic
mean-field potential (see text). Plotted in this diagram are the onsite interaction matrix
elements for bosons in a pure bosonic cloud U , for bosons interacting with the mean-field
potential generated by the fermionic cloud U+F and the tunnelling matrix elements for
both cases Jn = (2n + 1 + 2

√

n(n+ 1))J and J+F
n = (2n + 1 + 2

√

n(n+ 1))J+F . A
rough estimate on the shift of the quantum critical points ∆sc can be extracted from the
diagram.

the above approach. Second, the fermionic densities have been assumed to be completely
undisturbed by the bosonic cloud. Third, due to the lighter mass of the fermions compared
to the bosonic atoms, the fermions are only localized on a single lattice well at much deeper
optical lattices than the bosons and are still mobile at typical lattice depths of 20 ERb

r

corresponding to VLattice ≈ 10 EK
r .

Estimating the change in onsite interaction U An estimate for the change of
the bosonic onsite interaction matrix element in the tight binding limit can be obtained
similarly. The change of geometry of a single confining lattice well due to the fermionic
density distribution is neglected and an effective lattice depth derived as in equation 6.17.
The new onsite interaction matrix element can then be obtained from equation 5.29.

Estimating the effect on the quantum critical point Fig. 6.8 summarizes the
results of the approach outlined above. Plotted in this diagram are the onsite interac-
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tion matrix element U for bosons in a pure bosonic cloud (black dotted line), the on-
site interaction matrix element for bosons interacting with fermions on a single lattice
well (dashed black line) and tunnelling matrix elements for the pure bosonic cloud Jn

(blue) and the cloud interacting with a fermionic mean-field potential J+F
n (red) where

Jn = (2n + 1 + 2
√

n(n+ 1)J and n is the bosonic occupation number of a single lattice
site (see equation 5.33). Following the mean-field approach and the outlined rough esti-
mate, the onsite interaction matrix element for the bosons is significantly enhanced due
to interactions with the fermionic mean-field, whereas the tunnelling matrix elements are
significantly reduced. Both contribute to a significant shift of the Mott-insulator transi-
tion towards shallower optical lattices. Based on the criterion of equation 5.33, we obtain
a shift ∆sc ≈ 1.5 ERb

r for n = 1, 2 (see Fig. 6.8) which is still much smaller than the
observed shift of 5 ERb

r of the coherence properties of the bosonic cloud interacting with
2 · 104 fermionic atoms.

Note that for a rigorous estimate, the change of geometry of the periodic potential
due to the presence of the fermionic cloud has to be taken into account as well as the
inhomogeneity of the periodic potential which is in actual experiments overlapped by a
harmonic potential. Whereas the sign of the correction due to the geometry change can
only be obtained by a numerical calculation, the effect of inhomogeneity of the optical
lattice is similar to the effect described in section 6.6.1.1. In brief, due to attractive
interactions between fermions and bosons, the bosonic occupation number in the center of
the trap will be enhanced which results in a shift of the quantum critical points towards
deeper optical lattices. Numerical calculations are currently performed by M. Cramer.

6.6.2 Adiabatic heating or cooling

When adiabatically loading either bosonic or fermionic quantum gases into an optical lat-
tice, the density of states for the components changes markedly (as we have seen for the
case of non-interacting atoms in section 5.2.2), thereby e. g. changing the characteristic
temperatures for degeneracy in bosonic and fermionic quantum gases, Tc and TF . Adia-
batic loading of atoms occurs at constant entropy S, not at constant temperature, and the
absolute temperature may change. The change in degeneracy characterised by T/Tc and
T/TF depends on the starting conditions such as temperature and atom number as well
as the trap geometry and the interactions present in the system. Note that the tempera-
ture change is reversible as it occurs at constant entropy and is a purely thermodynamic
effect. However, increasing T/Tc with increasing lattice depth may lead to a decreasing
condensate fraction which might result in loss of coherence of the bosonic cloud.

Adiabatic temperature change at constant entropy due to adiabatic loading of atoms
into an optical lattice has been discussed in the literature for a homogeneous non-interacting
Fermi gas [190] and for homogeneous and inhomogeneous interacting and non-interacting
bosonic clouds [191, 192].

To illustrate how this adiabatic temperature change occurs, we consider here the ex-
ample of non-interacting fermions in an inhomogeneous optical lattice composed of the
periodic potential and a superimposed harmonic oscillator potential: When loading single-
component non-interacting fermions into a 3D optical lattice, the density of states changes
from the density of states of a pure harmonic oscillator to the density of states in the limit
of a deep optical lattice (see section 5.3.3). Based on the density of states, we can calculate
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Figure 6.9: Entropy per particle in the two limiting cases: VLattice = 0 corresponding to
pure harmonic oscillator (red) and deep optical lattice (blue).

the entropy of non-interacting fermions in the two limiting cases: Assuming h̄ω � EF , we
obtain

Sho/kN = 4
f4(z)

f3(z)
− ln(z) (6.18)

Sdeep lattice/kN =
5

2

f5/2(z)

f3/2(z)
− ln(z) (6.19)

where z = exp(− µ
kT ) is the fugacity. The entropy per particle of a single-component

fermionic gas in the two limiting cases is plotted in Fig. 6.9. As can be seen from the
figure, the entropy per particle is much lower in the case of a deep optical lattice than
in the case of the “initial” pure harmonic oscillator. Adiabatic lattice loading occurs at
constant entropy which results in rapid heating of the fermionic cloud in terms of T/TF

when changing the external confining potential from that of a pure harmonic oscillator to
a deep optical lattice plus harmonic oscillator. The change in the degeneracy parameter
T/TF is illustrated in Fig. 6.10. In this figure we have plotted the final (T/TF)deep lattice

versus the initial (T/TF)ho. However, the absolute temperature change depends on the

ratio of Fermi temperatures T deep lattice
F /T ho

F (which is in most experimentally relevant
cases < 1, c.f. section 5.3.3) and the initial temperature Tinitial of the cloud in the harmonic
oscillator potential. The regimes of adiabatic cooling/heating are illustrated in Fig. 6.11.
For typical experimental parameters of our experiment (N = 104, EK

r /h̄ω
K = 82), the

critical temperature separating adiabatic cooling from adiabatic heating regions is then
given by kTinitial/E

K
r ≈ 0.45. At lower temperatures, the absolute temperature Tfinal

becomes smaller than the initial temperature Tinitial whereas adiabatic heating occurs
above the critical temperature.

While this very simple example is useful for an understanding of adiabatic heating and
cooling phenomena, it does not provide estimates for the interacting Fermi-Bose mixture.
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Figure 6.10: Change in T/TF when adiabatically transforming a pure harmonic oscillator
potential into a deep optical lattice plus harmonic confinement: (T/TF)deep lattice as a
function of (T/TF)ho. Adiabatic loading of atoms into an optical lattice occurs at constant
entropy which results in rapid heating of the fermionic cloud in terms of the degeneracy
parameter T/TF.
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Figure 6.11: Tfinal in the deep optical lattice as a function of Tinitial in the harmonic
oscillator potential. We assume typical experimental parameters from our experiments:
N = 104, EK

r /h̄ω
K = 82. For comparison, we have plotted the line Tfinal = Tinitial in the

same diagram.

It has been pointed out by Rey et al. [192] that even in the case of a single-component pure
bosonic cloud, adiabatic cooling/heating critically depends on a wide parameter space like
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Figure 6.12: Schematic localization scenarios. a. Pure bosonic superfluid in an optical
lattice. b. Shift of the effective potential depth due to fermionic impurities. c. Localiza-
tion by interfering paths of the bosonic wavefunction scattered by randomly distributed
fermionic impurities. d. Localization due to percolation. A random fermion distribution
hampers the establishment of a coherent connection and causes the localization of bosonic
ensembles in superfluid “islands”. e. Mott insulator transition induced by a uniform
distribution of attractive fermionic impurities, resulting in an effectively deeper lattice
potential for the bosons.

initial temperatures, interactions and harmonic confinement.

Estimates for the mixture can in principle be obtained by an extension of the above
approach to non-interacting Fermi-Bose mixtures based on the available literature on
single-component systems and eventually including the effects of Fermi-Bose interactions.
These steps are currently underway.

6.6.3 Disorder-enhanced localization scenarios

Let us finally review intuitively possible disorder-related localization scenarios which have
been discussed in the literature and which might be observable in Fermi-Bose mixtures
and would possibly also lead to reduced coherence in the bosonic cloud. For illustration
purposes, let us start with a pure bosonic superfluid (Fig. 6.12 a). Adding fermionic
impurities and considering the attractive 40K — 87Rb Fermi-Bose interaction energy as
an additional potential for the bosons, the “defects” caused by the fermionic impurities
can be described by a local change of the effective optical lattice depth for the bosons
due to the interparticle interaction (Fig. 6.12 b). If the energy level shift caused by the
interaction energy is large enough, the superfluid bosonic wavefunction will not extend into
this defect region, but will be scattered by the impurity. If scattering becomes frequent,
interference effects along a closed scattering path are predicted to suppress transport and
lead to a localization scenario similar to Anderson localization (Fig. 6.12 c). A further
increase in the impurity density will lead to the formation of “forbidden walls”. Once the
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walls in this quantum percolation scenario lead to a sufficiently complicated labyrinth like
structure for the bosonic wavefunction, a single coherent superfluid phase can no longer
be sustained and several separated domains will be formed (Fig. 6.12 d).

6.7 Conclusions

In this chapter, I have presented experiments which have for the first time combined Fermi-
Bose mixtures with crystals made of light. We have investigated the coherence properties
of the bosonic cloud when admixing a small fermionic impurity fraction and observe a
significant shift of the loss of coherence in the bosonic cloud. The nature of the observed
effect is still a point of controversial discussion and we have discussed possible starting
points which might contribute to the explanation of the observed effect.

Definitely, further experiments are required to shine more light on the observed phe-
nomena. A possible shift of the Mott-insulating transition can be probed by a spectro-
scopic investigation of the excitation spectrum of the mixture similar to probing of the
excitation gap of the pure bosonic Mott insulator in [19, 154]. Lattice site occupation can
be probed by rf spectroscopic techniques [170]. The correlation properties of the fermionic
and bosonic components can be revealed by noise correlation techniques [193, 194, 195].
With the availability of heteronuclear Feshbach resonances (see chapter 4 and 7), it is
straightforward to extend our studies to almost arbitrary interaction strength between the
fermionic and bosonic constituents. In any case, further studies will have to concentrate
on isolation and identification of underlying phases and associated phase transitions in
this rich system.



Chapter 7

Heteronuclear Molecules

There has been a long quest for production of ultracold molecules in recent years. In
particular, heteronuclear molecules would open up intriguing perspectives both in view of
their internal properties and their interactions. The electric dipole moment of heteronu-
clear molecules in their internal ground states makes them one of the best candidates for
tests of fundamental physics like the search for a permanent electric dipole moment of the
electron and parity violation [196] as well as for studies on the drifts of fundamental con-
stants. In addition, polar molecules are a key for novel promising quantum computation
schemes [38]. Furthermore, their large anisotropic interactions give rise to quantum mag-
netism [197], new types of superfluid pairing [198] and a variety of quantum phases [199].
Currently, two main routes to the production of ultracold ground-state molecules are be-
ing pursued. One approach aims at cooling thermal ensembles of molecules, e. g. using
buffer gas cooling [200], Stark deceleration [201] or velocity filtering [202]. The other
approach starts with ultracold atomic ensembles and assembles them into molecules by
means of photoassociation [203] or Feshbach resonances [120, 121, 122, 123]. In the latter
case, ultracold molecules in a highly excited rovibrational state are created which can
subsequently be transferred into their internal ground state by appropriate Raman-like
transitions [204]. One major issue has been the stability of these highly excited molecules.
While molecules created in bosonic quantum gases have a very short collisional lifetime,
bosonic molecules from two fermionic atoms are relatively stable due to the Pauli princi-
ple [124, 125, 117, 118, 127]. In other cases, as recently demonstrated for bosonic samples
[24, 158] and also expected for heteronuclear mixtures, it is favorable to produce the
molecules in separated wells of optical lattices to suppress collisional inelastic losses. So
far, molecules produced at Feshbach resonances have been limited to homonuclear systems.

In this chapter, I report on the first creation of ultracold heteronuclear molecules in a
3D optical lattice at a Feshbach resonance. This approach produces ultracold molecules
in the ground state of individual lattice sites. This method offers several advantages:
long lifetimes allow for further manipulation towards the internal molecular ground state.
Moreover, the inherent order within the lattice enables studies of new quantum phases of
dipole-dipole interacting systems.

In particular, we perform rf association of fermionic 40K and bosonic 87Rb atoms close
to a heteronuclear Feshbach resonance. Molecules form both on the repulsive and on
the attractive side of the resonance, which is a consequence of two-body physics in the
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presence of strong external confinement. We measure the binding energy as a function
of the magnetic field by rf spectroscopy [205, 206] and study the lifetime and production
efficiency of the bound pairs.

This chapter follows closely PRL 97, 120402 (2006) [1]. An in-depth discussion can be
found in the thesis of Christian Ospelkaus [35]

7.1 Feshbach molecules in a 3D optical lattice

Quite generally, a Feshbach resonance occurs when the total energy of two colliding atoms
is equal to the energy of a bound molecular state. In free space, the Feshbach molecular
state describes a stable molecule on the side of the resonance with positive scattering
lengths. Molecule formation, that means a transition from a two-atom state of two col-
liding atoms to a bound molecular state, is thus possible in the vicinity of a Feshbach
resonance and has been demonstrated in a number of experiments. One common tech-
nique is molecule formation by an adiabatic magnetic field ramp from the attractive side
of the resonance (bound state of closed channel above the free-atom threshold) to the re-
pulsive side (bound state below free atom threshold), thereby adiabatically transforming
the two-atom state into a bound molecular state. The bound molecular state, however,
ceases to exist at the position of the resonance and beyond on the attractive side. In free
space, molecules close to a Feshbach resonance only exist for a > 0.

This picture is modified in the presence of an optical lattice potential [207] where
the two atoms forming the molecule reside in the tightly confining potential of a single
lattice well. In this case, bound states for a < 0 also exist (so-called confinement-induced
molecules [23]). These exhibit a smooth transition into “real” molecules bound even in the
absence of the external confinement on the a > 0 side of the Feshbach resonance. As the
scattering length becomes smaller and smaller again on the repulsive side of the resonance,
molecules become more and more deeply bound.

We investigate molecule formation in a heteronuclear Fermi-Bose mixture of 40K and
87Rb confined in a 3D optical lattice in the vicinity of the 546.8 G heteronuclear Feshbach
resonance (for a sketch of the expected variation of aFB across the resonance see Fig. 4.6).

7.2 Experimental sequence

We create quantum degenerate mixtures of 87Rb in the |F = 2,mF = 2〉 state and 40K
in the |F = 9/2,mF = 9/2〉 state in a crossed optical dipole trap (mean 87Rb trapping
frequency 50 Hz). In order to get a maximum of lattice sites occupied by one boson and
one fermion, we have found it beneficial to limit the particle number at this stage to a few
ten thousand. We then prepare the mixture in the 87Rb ⊗ 40K |1, 1〉 ⊗ |9/2,−7/2〉 state
at a magnetic field close to the Feshbach resonance at 546.8(1) G (see [37, 136, 148, 2] and
chapter 4) for the |1, 1〉⊗|9/2,−9/2〉 state using the following procedure: First, 87Rb atoms
are transferred from |2, 2〉 to |1, 1〉 by a microwave sweep at 20 G and any remaining atoms
in the upper hyperfine |2,X〉 states are removed by a resonant light pulse. 40K atoms are
transferred into the |9/2,−7/2〉 state by performing an rf sweep at the same magnetic field
with almost 100% efficiency. We then increase the magnetic field to a value close to the
resonance and ramp up a 3-dimensional optical lattice at a wavelength of 1030nm, where
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Figure 7.1: rf spectroscopy of 40K - 87Rb in a 3D optical lattice on the |9/2,−7/2〉 →
|9/2,−9/2〉 transition (see inset) at a lattice depth of Ulat = 27.5Er and a magnetic field of
547.13 G, where the interaction is attractive. Er = h̄2k2/2mRb is the 87Rb recoil energy.
The spectrum is plotted as a function of detuning from the undisturbed atomic resonance
frequency and clearly shows the large atomic peak at zero detuning. The peak at 13.9kHz
is due to association of |1, 1〉 ⊗ |9/2,−7/2〉 atom pairs into a bound state.

the trapping potential for both species is approximately equal. The optical lattice light
is derived from a frequency stabilized 20W Yb:YAG disc laser with a 50 ms linewidth
of 20 kHz. The lattice is formed by three retroreflected laser beams with orthogonal
polarizations and a minimum detuning of 10 MHz between individual beams.

7.3 Rf-association of molecules and rf-spectroscopy

In the optical lattice, we create molecules by rf association (see inset of Fig. 7.1) of pairs
of one 87Rb and one 40K atom at a single lattice site1 (see Fig. 7.1). The binding en-
ergy is measured as a frequency shift between the molecular and atomic feature. In the
following, we discuss the measurement procedure in detail. The |1, 1〉 ⊗ |9/2,−7/2〉 state

1We have also created Feshbach molecules by sweeping the magnetic field across the resonance and
probed them via rf dissociation. However – due to limitations in the magnetic field settling time – for an
accurate measurement of the binding energy it is more favorable in our setup to apply the rf association
method.
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that we prepare in the optical lattice has scattering properties which are to a good ap-
proximation independent of the magnetic field in the region where we probe the system.
The corresponding energy thus serves as reference level for the following measurements.
In order to measure interaction shifts and determine molecular binding energies of the
Feshbach-resonant |1, 1〉 ⊗ |9/2,−9/2〉 mixture, we perform rf spectroscopy on the 40K
|9/2,−7/2〉 → |9/2,−9/2〉 transition in the optical lattice (see inset in Fig. 7.1). At
magnetic field values close to the Feshbach resonance, this transition occurs at about
80 MHz and has a magnetic field sensitivity of 67 kHz/G. We detect left-over atoms in
the |9/2,−7/2〉 state at high magnetic field by detuning the imaging laser by -834 MHz
with respect to the low-field |9/2, 9/2〉 → |11/2, 11/2〉 cycling transition. Atoms in the
|9/2,−9/2〉 state and molecules are probed at a detuning of -765 MHz. Using high field
imaging and separate CCD cameras, we can thus state-selectively detect both atoms and
weakly bound molecules in a single experimental run. The rf spectroscopy is performed
by shining in an rf pulse with a Gaussian amplitude envelope with a 1/e2 full width of
400 µs and a total pulse length of 800 µs, resulting in an rf 1/e2 half linewidth of 1.7 kHz.
The pulse power is chosen to achieve full transfer on the single atom transition.

Fig. 7.1 shows a typical rf spectrum with atomic and molecular resonance peaks. The
peak at zero frequency with respect to the unperturbed atomic transition frequency be-
tween the two Zeeman substates is the single atom peak from lattice sites occupied by
only one fermion. On the high energy side of the spectrum at a detuning of 13.9 kHz
with respect to the atomic transition, we observe a distinct feature which is due to rf
association of atoms into molecules. The spectrum in Fig. 7.1 was recorded at 547.02 G
on the high field side of the resonance, where the interaction between bosons and fermions
is attractive and stable molecules do not exist in free space. The presence of the optical
lattice nevertheless admits a bound state at aFB < 0 [23, 207]. From the rf spectrum,
we can determine the separation between the single atom and the molecular peak with
high precision and thus extract the binding energy up to a constant offset due to non-zero
background scattering lengths. At the same time, the atomic peak provides us with a pre-
cise magnetic field calibration across the whole resonance. We find that the magnetic field
deviates by no more than 9 mG from the calibration over one week, which corresponds to
a maximum frequency shift of about 500 Hz.

7.4 Binding Energy of the molecules across the resonance

Fig. 7.2 as the main result of this chapter shows our results for the binding energy as a
function of magnetic field across the resonance for two different lattice depths of 40ER

and 27.5Er, respectively, where Er = h̄2k2/2mRb is the 87Rb recoil energy. 2 Above
the resonance, we observe the association of confinement-induced molecules which do not
exist in free-space. Depending on the magnetic field value in the vicinity of the Feshbach
resonance and thus the scattering length, the binding energy varies between 5 and 20 kHz
in a 40 Er deep optical lattice. Across the resonance, we observe a smooth transition into
“real” molecules bound even in the absence of the external confinement on the a > 0 side
of the Feshbach resonance. This is clearly visible in the bottom branch of the spectrum in

2The lattice depth has been calibrated by observing the response of a 87Rb cloud to modulation of the
lattice potential.
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Figure 7.2: Binding energy of heteronuclear 40K - 87Rb molecules in an optical lattice
for two different lattice depths Ulat in units of the 87Rb recoil energy Er = h̄2k2/2mRb.
The center of the Feshbach resonance is located at 546.8(1) G. We observe attractively
bound molecules which are confinement-induced at a positive detuning with respect to the
resonance center and “real” molecules which are stable in free space below the center of the
resonance. In addition, we observe repulsively interacting pairs with a positive“binding
energy” below the resonance.
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Figure 7.3: Transfer efficiency of the rf association process as a function of magnetic field.
The transfer efficiency is normalized to its peak value on the attractive side of the Feshbach
resonance, where we have observed the highest efficiency within the plotted magnetic field
range.

Fig. 7.2. As the scattering length becomes smaller and smaller again on the repulsive side
of the resonance, molecules become more and more deeply bound. We observe binding
energies > 120 kHz. On this side of the resonance, we can observe an additional energy
branch with positive “binding” energy. This branch is due to repulsively interacting atom
pairs in a single lattice well. In this case, the repulsive interaction between Bosons and
Fermions (a > 0) shifts the two-particle ground state towards a higher energy [207]. As
expected, Fig. 7.2 shows that increasing lattice depth tends to increase both the “positive
binding energy” of the repulsive pairs and the binding energy of the molecular branch away
from the noninteracting case. A qualitative and quantitative analysis of the binding energy
across the resonance and the “positive” binding energy of the repulsively interacting pairs
is contained in the thesis of Christian Ospelkaus [35].

7.5 Association efficiency

As a further point, we have analyzed the transfer efficiency of the rf association (Fig. 7.3).
We detect the molecule number as a function of the magnetic field across the Feshbach
resonance and normalize it to the high-field side of the resonance, where the overlap
between the initial attractively interacting state and the bound state wave function is
highest in the magnetic field range covered by our experiments. The transfer efficiency
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Figure 7.4: Lifetime of heteronuclear molecules in the optical lattice as a function of
magnetic field. On the repulsive side of the resonance below 546.8(1) G the lifetime tends
to decrease.

is observed to be almost constant for attractive interactions and then decreases on the
repulsive side of the resonance. As expected from the decreasing overlap of atomic and
molecular wave functions for more deeply bound molecules, the transfer efficiency drops to
about 20% on the low-field side of the resonance. On the attractive side of the resonance,
we achieve a total efficiency for the transfer of 40K |9/2,−7/2〉 into molecular 87Rb-40K
states of about 10%, producing approximately 104 molecules. This corresponds roughly to
the estimated fraction of lattice sites with one fermion and one boson as compared to the
total fermion number. Purification schemes for the bosonic component and adjustment of
the relative population are possible routes to increase the efficiency.

7.6 Lifetime of the molecules

One of the main concerns in ultracold Feshbach chemistry is the lifetime of the molecules.
In general, these molecules are very fragile objects due to their highly excited internal
state. Initial experiments with molecules created from bosonic atoms [120, 121, 122, 123]
accordingly showed a very short lifetime, which has recently been overcome in the pres-
ence of a deep 3D optical lattice [24, 158]. Molecules created from two fermionic atoms
have shown a long lifetime close to Feshbach resonances due to Pauli-forbidden inelastic
decay [116]. For heteronuclear molecules composed of a bosonic and a fermionic atom, the
situation is somewhat more complicated; suppression of collisions due to their fermionic
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character is expected for more deeply bound molecules [36]. However, in this case, remain-
ing free atoms are expected to strongly limit the lifetime of the molecules. We therefore
produce the heteronuclear molecules within 3D optical lattices where the large tunnelling
time strongly reduces inelastic collisional losses. Fig. 7.4 shows a measurement of the
lifetime of the heteronuclear molecular sample in an optical lattice with a depth of 40.0
Er as a function of magnetic field. We find a lifetime of about 120 ms for weakly bound
confinement-induced molecules. In the vicinity of the resonance, the lifetime is about
80 ms, and drops to 20 to 40 ms for more deeply bound molecules. The measurement
is performed by rf associating atoms in the |1, 1〉 ⊗ |9/2,−7/2〉 state into molecules and
transferring any remaining |9/2,−7/2〉 atoms into the |9/2,−5/2〉 state using an rf sweep
at 85 MHz. A resonant light pulse on the |9/2,−7/2〉 detection frequency ensures that
no atoms in this state are left. Since high-field imaging detects both atoms and weakly
bound molecules, it is of potential concern that molecules may fall apart and form unpaired
|9/2,−9/2〉 atoms. We therefore drive a π pulse on the atomic |9/2,−7/2〉 → |9/2,−9/2〉
transition prior to imaging in order to detect any free |9/2,−9/2〉 atoms on the |9/2,−7/2〉
detection transition, but have found no atomic signal. This proves that our lifetime mea-
surement really measures the lifetime of the molecular sample. The lifetime may be
currently limited due to remaining fermionic 40K atoms which, for this measurement, are
in the |9/2,−5/2〉 state.3. For these atoms, the optical lattice potential is only 20 EK

r deep
(EK

r = h̄2k2/(2mK)), which corresponds to a tunnelling time on the order of 10 ms. The
observed dependency of the lifetime on the binding energy is still an open question.

Evidence for short-lived 40K-87Rb molecule formation in an optical dipole trap was
recently reported by the group of D. S. Jin at JILA [208] and in a mixture of 85Rb-87Rb
in the group of C. Wieman [209].

3We performed other measurements on the system where 40K remained in the |9/2,−7/2〉 state and
found comparable lifetimes.



Chapter 8

Conclusions and outlook

Within this thesis, an experimental apparatus for the preparation of quantum degenerate
Fermi-Bose mixtures in 3D optical lattices has been realized. Important milestones towards
a mixed statistics many-body system with tunable interactions in 3D optical lattices as a
versatile model system for the simulation of quantum many-body Hamiltonians and the
exploration of fundamentally novel quantum phases have been presented.

Starting from the realization of the so far largest particle numbers in a magnetically
trapped degenerate 40K–87Rb system, we have investigated interaction effects due to the
large and attractive background interaction between the components. As an essential
prerequisite for the realization of tunable interactions in the mixture via magnetic fields in
the vicinity of a Feshbach resonance, I have presented a crossed dipole trap operating at
a special “magic” wavelength to compensate for the differential gravitational sag between
the two species and to ensure optimal overlap of the constituents.

Tuning of heteronuclear interactions in the vicinity of a Feshbach resonance has been
demonstrated for the first time within this thesis and has allowed studies of arbitrary
interactions between bosons and fermions. The complete phase diagram of harmonically
trapped mixtures has been accessed. Starting with experiments on stable density distribu-
tions for attractively and repulsively interacting mixtures, for strong repulsive interactions,
phase separation has been observed and a Feshbach-induced collapse for strong attractive
interactions. In the presence of gravity, phase separation occurs as a stacking effect in the
vertical direction. A heteronuclear p-wave resonance has been identified, confirming a the-
oretical assignment of Feshbach resonances in the 40K–87Rb system and opening intriguing
perspectives for tuning of the anisotropy of the interaction. These studies on heteronu-
clear Feshbach resonances pave the way for studies with strongly interacting Fermi-Bose
mixtures.

The availability of tunable interactions may also lead to the observation of bright
soliton-like structures in Fermi-Bose mixtures [210]. These structures are expected to
occur for experimental situations close to 1D geometries, such as an elongated optical
dipole trap or a 2D optical lattice. In such an almost one-dimensional configuration,
a small window in the phase diagram is expected to open up between stable attractively
interacting mixtures and the mean field collapse. In this window, fully self-trapped soliton-
like states are predicted to become stable. The availability of tunable interactions may give
access to this regime similar to experiments on bright solitons in attractively interacting
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Bose-Einstein condensates [105, 104].
From the very beginning, the experimental setup described here has been designed for

studies in 3D optical lattices. Within this thesis, Fermi-Bose mixtures have been loaded
into a three-dimensional optical lattice for the first time, demonstrating a large fermion-
induced loss of coherence of the bosonic sample. The results are currently the subject of
intense theoretical analysis, and explanations ranging from disorder-related localization
phenomena over adiabatic thermodynamic effects and a mean-field induced shift of the
superfluid to Mott-insulator transition are being discussed.

Further insight into these observations may be gained by implementing additional diag-
nostics. This may include Bragg spectroscopy, excitation spectroscopy to probe possible
excitation gaps in deep optical lattices, probing of lattice occupation through rf or mi-
crowave spectroscopy and noise correlation analysis. The studies may also be extended to
mixtures with varying heteronuclear interaction strength.

In 1D or 2D optical lattices one or several spatial degrees of freedom can experimentally
be frozen out, resulting in the preparation of low-dimensional systems. Depending on
interaction strength and lattice occupation, charge-density wave or pairing phases may be
observable. Low dimensional systems are of particular interest for direct comparison of
experimental results to theory. For 1-dimensional situations (2D optical lattice) exactly
solvable models exist and direct comparison to quasi-exact DMRG calculations is possible.

The combination of tunable interactions with 3-dimensional optical lattices has resulted
in the demonstration of ultracold heteronuclear Feshbach molecule formation. Long-lived
heteronuclear Feshbach molecules have been created in a controlled fashion through rf
association of atoms to molecules. This has allowed a precise determination of the binding
energy of the molecular sample as a function of the magnetic field. Lifetimes between 20 ms
and 100 ms have been experimentally observed, and the efficiency of the rf association
process has been analyzed.

Molecule formation may be the starting point for studies of pairing phases in the
optical lattice, including studies of 3-body bound states. After molecule association and
removal of the left-over atomic fraction, the lattice potential may be ramped down. The
molecule formed from a bosonic 87Rb and a fermionic 40K atom is again a fermion, and
the observation of a molecular Fermi sea may be demonstrated.

In the optical lattice, Feshbach molecules are created in their absolute external ground
state, but in a highly excited rovibrational state. Pulsed two-color photoassociation may
be used to transfer these molecules into their internal ground state. The resulting molecule
would exhibit a permanent electric dipole moment (polar molecule). The dipole moment
gives rise to a long-range, anisotropic interaction. In the optical lattice, this long-range
interaction may be used to implement scalable quantum computation schemes. In the
many-body limit, these polar molecules give access to novel quantum gases with long-
range anisotropic interactions.



Appendix A

87Rb laser system

The 87Rb laser system has been based on the concept developed at the neighbouring BEC
experiment by Holger Schmaljohann and Michael Erhard [39, 40]. A detailed character-
isation of the 87Rb laser setup in our experiment can be found in the diploma thesis of
Juergen Fuchs [44]. The laser system is entirely built with semiconductor laser diodes.
Two external cavity diode lasers (M1 and M2) are stabilised to the saturated absorption
crossover resonances 87Rb F = 2 ↔ F ′ = 2, 3 and 87Rb F = 1 ↔ F ′ = 1, 2 of the D2-line
at λ ≈ 780nm respectively using FM-spectroscopy (see the locking scheme of Fig. A.1).
These two laser frequencies serve as a starting point for the generation of light in the
vicinity of the cooling transition 87Rb 52S1/2F = 2 ↔ 52P3/2F

′ = 3 and the repumping
line 87Rb 52S1/2F = 1 ↔ 52P3/2F

′ = 2.
The cooling master M1 runs approximately 160 MHz blue-detuned with respect to the

F = 2 → F ′ = 3 cycling transition. A probe beam is shifted by -267 MHz to the red
(using a 120MHz AOM in double pass configuration) allowing the laser frequency to be
locked to the F = 2 → F ′ = 2, 3 crossover resonance. The output power of M1 is then
amplified by injection seeding of a slave diode laser S1. An acousto-optical modulator
operated at 80 MHz in double pass configuration shifts a part of the laser light from S1 by
160 MHz to the red thereby providing near-resonant light on the cooling transition 87Rb
52S1/2F = 2 ↔ 52P3/2F

′ = 3 for detection, state preparation and the pushing beam. Two
further beams originating from the S1 laser are also frequency shifted by ≈ 160 MHz to
the red each of them injecting a slave laser (S1 and S2). The laser light from these slaves
is amplified in a final stage by two tapered amplifier semiconductor chips providing largely
enough cooling power for the 2D and 3D MOT. While fast switching of detection, state
preparation and pushing light is assured by acousto-optical modulators, fast switching of
the cooling light for the 3D-MOT is done using an Electro-Optic Modulator.

Repumping light is prepared starting from the repumper master M2. This external
cavity diode laser is locked to the F = 1 → F ′ = 1, 2 crossover resonance. Its output
power is again amplified by injection locking the slave laser S2. Light from slave S2 is
frequency shifted 80 MHz to the blue using an AOM in single pass thereby producing
resonant light on the F = 1 → F ′ = 2 repumping transition. The repumping light is split
up into two beams and coupled into the same optical fibres as the 2D MOT and 3D MOT
using orthogonal polarisations.
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Appendix B

40K laser system

The laser light for manipulation of 40K atoms on the D2-transition at λ ≈ 767nm is
delivered by two independent sources: a 2W Ti:Sa laser providing the necessary frequen-
cies for cooling, trapping, manipulation and detection of 40K on the 42S1/2F = 9/2 →
42P3/2F = 11/2 transition and a commercial MOPA-system from Toptica Photonics with
a power of up to 400 mW to allow for sufficient repump power for both the 2D and the
3D magneto-optical trap on the 40K 42S1/2F = 7/2 → 42P3/2F = 9/2 transition.

Both the cooling laser and the repumping laser are locked on saturated absorption lines
of 39K. The cooling laser is locked 420 MHz to the blue of the 42S1/2F = 2, 1 → 42P3/2

cross-over line.1 Light from the Ti:Sa is then split up into three beams. Each of the laser
beams is frequency shifted by ≈ 160 MHz to the blue to provide near-resonant light on the
cooling transition of 40K (F = 9/2 → F = 11/2). Two of the beams provide cooling light
for the 2D and 3D MOT, respectively, and are directly fibre-coupled. The third beam is
split up into three after frequency shifting providing light for detection, state preparation
and pushing respectively.

For repumping, we rely on a tapered amplifier system from Toptica Photonics. The
system consists of an extended cavity diode laser injecting a Tapered amplifier with a
specified output power of 500 mW. Slightly red-detuned laser light with respect to the
40K F = 7/2 → F ′9/2 transition is realized by frequency shifting the laser light for the
saturated absorption spectroscopy by 420 MHz with an acousto-optical modulator and
then locking the laser onto the 42S1/2F = 2 → 42P3/2 line of 39K. The tapered amplifier
provides laser light for repumping in the 2D-MOT, the bright 3D-MOT and the dark
SPOT. Whereas cooling and bright repumping light for the 2D and 3D-MOT is fibre
coupled each into a single optical fibre, the light for the dark repumper is transported
separately to the experiment.

Rapid switching of the light for the cooling light of the MOT, detection, state prepara-
tion and pushing beam is ensured by the acousto-optical modulators, the repumping light
is switched on and off by an electro-optical modulator.

For a sketch of both the locking scheme and the laser setup, see Fig. B.1 and B.2.

1The hyperfine structure of the 39K 42P3/2 manifold is too small to be resolved in saturated absorption
spectroscopy.
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[123] Stephan Dürr, Thomas Volz, Andreas Marte and Gerhard Rempe: Observation of
Molecules Produced from a Bose-Einstein Condensate. Phys. Rev. Lett. 92, 020406
(2004). doi:10.1103/PhysRevLett.92.020406.

[124] Cindy A. Regal, Christopher Ticknor, John L. Bohn and Deborah S. Jin: Creation
of ultracold molecules from a Fermi gas of atoms. Nature 424, 47–50 (2003). doi:
10.1038/nature01738.

[125] Kevin E. Strecker, Guthrie B. Partridge and Randall G. Hulet: Conversion of an
Atomic Fermi Gas to a Long-Lived Molecular Bose Gas. Phys. Rev. Lett. 91, 080406
(2003). doi:10.1103/PhysRevLett.91.080406.

[126] J. Cubizolles, T. Bourdel, S. J. J. M. F. Kokkelmans, G. V. Shlyapnikov and C. Sa-
lomon: Production of Long-Lived Ultracold Li2 Molecules from a Fermi Gas. Phys.
Rev. Lett. 91, 240401 (2003). doi:10.1103/PhysRevLett.91.240401.

[127] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadz-
ibabic and W. Ketterle: Observation of Bose-Einstein Condensation of Molecules.
Phys. Rev. Lett. 91, 250401 (2003). doi:10.1103/PhysRevLett.91.250401.

http://dx.doi.org/10.1103/PhysRevLett.92.150404
http://dx.doi.org/10.1103/PhysRevLett.93.090404
http://dx.doi.org/10.1038/nature02199
http://dx.doi.org/10.1126/science.1093280
http://dx.doi.org/10.1103/PhysRevLett.86.4211
http://dx.doi.org/10.1038/417529a
http://dx.doi.org/10.1126/science.1088876
http://dx.doi.org/10.1103/PhysRevLett.91.210402
http://dx.doi.org/10.1103/PhysRevLett.92.020406
http://dx.doi.org/10.1038/nature01738
http://dx.doi.org/10.1103/PhysRevLett.91.080406
http://dx.doi.org/10.1103/PhysRevLett.91.240401
http://dx.doi.org/10.1103/PhysRevLett.91.250401


BIBLIOGRAPHY 167
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