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Zusammenfassung

Dreidimensionale, konzentrierte, atmosphärische Wirbel die sich vertikal durch

die gesamte Troposphäre erstrecken und dessen mittleren horizontalen Abmes-

sungen unterhalb der synoptischen Skala im Bereich des Gradientwind-Regimes

liegen, sind Gegenstand der Untersuchungen in der vorliegenden Arbeit. Ein typ-

isches Beispiel für derartige atmosphärische Strömungsphänomene sind tropische

Zyklonen mit zentrumsnahen Winden die Hurrikanstärke erreicht haben. In

den letzten Jahren haben Forschungsergebnisse unabhängiger wissenschaftlicher

Studien gezeigt, dass die Bewegung, Struktur und Entwicklung derartiger kon-

zentrierter Wirbel sehr stark von atmosphärischen Prozessen beeinflußt wer-

den, die auf unterschiedlichen Raum- und Zeitskalen auftreten und miteinander

wechselwirken. Es ist allgemein bekannt, dass diese wechselwirkenden Prozesse

beispielsweise durch den Einfluss der Erdrotation, einer Umgebungsströmung

und kleinskaliger konvektiver Systeme hervorgerufen werden können. Die In-

halte der vorliegenden Dissertation sollen zu einer weiteren Vertiefung dieser

Erkenntnisse beitragen. Insbesondere wurden dafür reduzierte Modellgleichun-

gen hergeleitet, die herangezogen werden können, um den Einfluss kleinskaliger

Prozesse die die mesoskalige Struktur des Wirbels bestimmen, auf die Bewegung

des Wirbels über synoptisch skalige Distanzen und umgekehrt zu beschreiben.

Dabei wird der Einfluss einer vertikal gescherten Hintergrundströmung und der

Einfluss diabatischer Effekte aufgrund von Feuchteumwandlungsprozessen mit-

berücksichtigt.

Es besteht ein grosses Interesse darin, jene Mechanismen besser zu verstehen,

die die Bewegung und Struktur konzentrierter atmosphärischer Wirbel bestim-

men. Für den operationellen Betrieb ist beispielsweise eine korrekte Vorher-

sage der Wirbeltrajektorie von enormer Wichtigkeit, um mögliche Katastro-

phen im Falle sich der Küste nähernder Hurrikane rechtzeitig abzuwenden. Die

in dieser Arbeit hergeleiteten Modellgleichungen könnten eine Grundlage für

die Entwicklung neuartiger Vorhersagemodelle darstellen, die einen Beitrag zur

Verbesserung der Vorhersagen für die Wirbeltrajektorie leisten könnten.



Abstract

Three-dimensional concentrated atmospheric vortices with vertical extensions

throughout the whole troposphere and diameters corresponding to the sub-

synoptic gradient wind regime are studied in this work. Hurricane-like vor-

tices are representative examples for this type of atmospheric flow phenom-

ena. Research in recent years have shown that the complex interplay between

atmospheric processes acting on different time and length scales strongly af-

fect the motion, structure and development of hurricane-like vortices. It is well

known that these interacting processes arise among others from the earth ro-

tation, the environmental flow and small scale convective systems. It is against

this background that this dissertation aims to derive reduced model equations

that elucidate how scale interactions influence the motion and structure of con-

centrated atmospheric vortices. In particular reduced model equations are de-

rived that describe how the mesoscale structure of the vortex itself affects the

synoptic scale vortex motion and vice versa, while taking the influence of a verti-

cally sheared environmental flow and diabatic effects due to moisture conversion

processes into account. For the derivation of such reduced model equations mul-

tiple scales asymptotic analysis based on matched asymptotic expansions are

used.

For various reasons a better understanding of the mechanisms determining

the motion and structure of atmospheric vortices is of great interest. In opera-

tional use, for instance, an accurate forecast of the vortex trajectory is needed

to avoid potential disasters caused by a landfalling storm systems. The reduced

model equations derived in this work can be used to design hurricane track

models that might contribute to improvements of hurricane track forecasts.
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Chapter 1

Introduction

Tropical cyclones as well as extratropical cyclones are representative exam-

ples for three-dimensional, concentrated atmospheric vortices considered in this

work. Tropical cyclones form over the warm tropical oceans within a global band

between 10 and 30 degrees, called Intertropical Convergence Zone (ITCZ). They

can be viewed as giant vertical heat engines whose primary energy source is the

release of the heat of condensation from water vapor condensing at high al-

titudes. Tropical cyclones are refered to by different names depending on its

intensity measured in terms of its sustained surface winds and location. For

example, cyclones with maximum winds of 17 m/s are called tropical depres-

sion, whereas cyclones with typical winds between 17 m/s ≤ umax < 33 m/s

are called tropical storm. Above 33 m/s they are refered to hurricane in the

North Atlantic Ocean, the Northeast Pacific Ocean east of the dateline and the

South Pacific Ocean east of 160E, or typhoon in the Northwest Pacific Ocean

west of the dateline. Extratropical cyclones are storm systems that form in the

westwind zone of the northern and southern Hemisphere. Here the cyclones

derive their energy from horizontal temperature differences. In the southern

Hemisphere, for instance, it is not uncommon that extratropical cyclones reach

hurricane like intensities with umax ≥ 33 m/s. That is why seafaring men called

the southern higher latitudes the roaring 40’s, furious 50’s or screaming 60’s. A

famous example for a northern hemispheric severe extratropical storm system

is the winter storm ’Lothar’1 in which maximum winds up to 55 m/s were ob-

served. A typical life-span of both tropical and extratropical cyclones ranges

between 1-30 days.

In the last decades much effort has been made to study concentrated at-

mospheric vortices described above. Notably the motion, structure and de-

1In 1999 (24-26 December) the storm devastated many regions in northern France, southern
Germany and northern Switzerland.
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velopment of these vortices has been a favourite subject among atmospheric

scientists. It is well known that a variety of parameters, such as the environ-

mental flow conditions, the Coriolis force, diabatic effects and the atmospheric

stratification strongly affect these vortex properties. For instance, it is observed

that an unfavourable condition for a hurricane to develop or survive is given by

a strong vertical shear in the environmental flow. One common explanation for

this is that the dispersion of heat as a consequence of disruption of organized

pattern of convection by strong winds is responsible for a weakening or limiting

of the development of mature storms. Observational evidence for such interac-

tions between hurricane-like vortices and its environmental flows can be found

during a major El Niño2 event, which is characterized by strong winds aloft

over the tropical Atlantic. During this time one observes usually fewer Atlantic

hurricanes than normal (Ahrens, 1999).

Studies on the motion and structure of atmospheric vortices is the central

theme of this work. The overall goal is to derive a reduced set of model equations

that can be used to gain deeper insights into the mechanisms that determine the

motion and three-dimensional structure of atmospheric vortices. In particular,

a vortex embedded in an environmental flow with vertical shear is considered in

an attempt to answear the following two research questions:

(1) How do scale interactions between the flow on vortex scales and a large

scale vertically sheared environmental flow determine the vortex motion

and its structural features? and

(2) In this context, what is the role of diabatic effects due to moisture con-

version processes?

Research in recent years have shown that multi-scale processes play a nontrivial

role in tropical cyclone (TC) development, motion and structure. In a review

about the current status of TC structure and intensity changes, Wang & Wu

(2004) summarize the main results of current research focusing on multi-scale

interactions as follows: ”While the motion is mostly controlled by the steering

flow associated with the large-scale environment, as well as the beta-gyres3 and

the upper-tropospheric negative potential vorticity anomalies, ..., the structure

and intensity changes are affected at any time by large and complex arrays

of physical processes that govern the inner core structure and the interaction

between the storm and both the underlying ocean and its atmospheric environ-

2An extensive ocean warming that begins along the coast of Peru and Ecuador. Major El
Niño events occur once every 2 to 7 years as a current of nutrient-poor tropical water moves
southward along the west coast of South America (from Ahrens, 1999).

3Beta-gyres characterize a secondary dipole circulation in the vicinity of the cyclone center.
A dipole is a pair of counter-rotating vortices that mutually advect each other. Therewith
they provide a mechanism of self-propagation (beta-drift).
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ment”. With an increasing awareness that complex scale interactions play an

important role in determining the intensity and structure of TCs, Wang & Wu

(2004) proposed that future work should focus on improving the understanding

of complex interactions between different scales. It is against this background

that this work focuses on the above research questions.

There have been some attempts to derive reduced model equations for the

motion of atmospheric vortices. Considering a one-layer, inviscid and homoge-

nous atmosphere on an f -plane, Morikawa (1960) applied an ordering approx-

imation procedure to the shallow water equations in order to derive approxi-

mate (reduced) systems of equations that are more manageable than the parent

equations. As a key step to solve the lowest-order approximate system Morikawa

(1960) applied the concept of geostrophic point vortices. In so doing he was able

to derive equations for the motion of a single geostrophic vortex embedded in

a continuous-flow field that represents a background flow. The equations state

that the vortex motion is determined by the continous flow field evaluated at

the vortex point, i.e. the vortex is steered by the background flow. The concept

of geostrophic point vortices has also been used by Reznik (1992) in order to

derive equations for the vortex motion. However, in order to account for the

meridional variations of the Coriolis parameter (i.e. ∂yf = β 6= 0), the govern-

ing equations of Reznik’s studies are the shallow water equations on a β-plane.

Although Reznik’s approach to derive equations for the vortex motion differs in

some points from the approach used by Morikawa (1960), Reznik (1992) man-

aged to extend Morikawa’s theory. In particular, Reznik found that the above

mentioned continous-flow field determining the vortex motion may have some

contributions that are due to the β-effect generated by the vortex flow itself.

According to Morikawa (1960), however, ”care and ingenuity must be used” in

applying the results derived on the basis of the concept of geostrophic point

vortices to actual flows. That is why the approximate representation of a cir-

cularly rotating vortex by a geostrophic vortex breaks down in the immediate

vicinity of the point vortex, since the winds satisfying the geostrophic balance4

only blow along straight paths parallel to the isobars.

The concept of geostrophic point vortices to derive equations for the vortex

motion has also been used by Ling & Ting (1988). However, their approach

differs from those of Morikawa and Reznik in that they apply matched asymp-

totic techniques for their derivations, where the concept of geostrophic point

vortices is only used in order to derive the so called outer flow solutions. The

equations for the vortex motion are derived by matching the outer solution with

the so called inner solution describing the flow on smaller spatial scales within

4The geostrophic wind balance is a balance between the pressure gradient force and the
Coriolis force.

3



the vicinity of the vortex core. One advantage of such an ansatz is that the

singularities in the flow field induced by the point vortex are removed. Another

advantage of Ting & Ling’s matching ansatz becomes obvious if one looks at

their matching results obtained from two-time scale inner solutions. Here they

used a faster and slower time scale to describe the temporal evolution of the

inner core and the outer flow solutions including the vortex motion. In so doing

they found solutions describing a geostrophic vortex which induces an oscilla-

tory motion in addition to moving with the background flow. The important

point here is that the period, amplitude and the deviation from the mean trajec-

tory depend on the smaller scale core structure itself and the initial conditions.

Thus, the method of matched asymptotic expansions turned out to be a useful

tool to derive equations for the vortex motion that takes into account the in-

teraction between the smaller scale flow within the vortex core region and an

environmental (outer) flow.

In this doctoral thesis, the approach of Ling & Ting (1988) is extended from

a 2D vortex case described with the aid of the shallow water equations to a

3D case based on the three-dimensional Euler equation on the rotating earth

that also include diabatic source terms. This is done within the framework of

an unified approach to meteorological modelling recently developed by Klein

(2004). Such an extension allows the use of the method of matched asymptotic

expansions in order to derive equations for the motion and structure of three-

dimensional atmospheric vortices under the influence of a vertically sheared

environmental flow and diabatic effects, the latter representing the consequences

of moisture conversion processes occuring in convective cloud systems. The

results obtained by such an ansatz may contribute to a deeper understanding

of vortex motion and structure mechanisms.

For various reasons a better understanding of the mechanisms determining

the motion and structure of atmospheric vortices embedded in an environmental

flow with vertical shear is of great interest. In operational use, for instance, an

accurate forecast of the vortex trajectory is needed to avoid potential disasters

caused by a landfalling storm system. Here, an accurate forecast not only in-

cludes a correct prediction of the long-term track but also information about

the specific paths of the vortices. Long-range observations based on modern

satellite techniques show that the actual path of a hurricane may vary consid-

erably. In particular, tropical cyclones tend to meander about a mean path,

where these meanders cover a wide range of scales and take on several forms

(Holland & Lander, 1992). Some hurricanes, for example, take erratic paths

and make odd turns that occasionally catch weather forecasters by surprise

(see Figure 1.1; Ahrens, 1999). Holland & Lander (1992) suggest that many

meanders occur from interactions with mesoscale vortices and small scale con-
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vective systems within the cyclone circulation. In this thesis attempts are made

to understand such kind of interactions using the method of matched asymp-

totics for the derivation of reduced model equations for the vortex motion. In

addition to these small scale impacts, processes acting on larger scales may also

have an influence on the mesoscale vortex structure. As noted earlier, it is well

known that tropical cyclones have little chance of surviving differential advec-

tion caused by the vertical shear of an environmental flow in which the vortex is

embedded in. In particular, large vertical shear (i.e. above a treshold of approxi-

mately 12.5-15 m/s in the 850-200 mb layer) frequently inhibits their formation

or results in a loss of the vortex coherence leading to a weakening or limit-

ing of the development of mature vortices (Zehr, 1992; Frank & Ritchie, 2001).

Under environmental flow conditions with weak to medium vertical shear, how-

ever, vortices seem to have a greater chance to withstand the differential ad-

vection (Reasor & Montgomery, 2001 and 2004 ; Frank & Ritchie, 1999). These

observations naturally lead to the need to understand what mechanisms are re-

sponsible for such vortex behaviours. There is a hope that the reduced model

equations for the vortex motion derived in the present work can be used to find

out whether there are favourable structural features (and the mechanisms that

cause them) that help the vortex to maintain its coherence in an environmental

flow with vertical shear. This in turn might be helpful for weather forecasters

to differentiate between situations where tropical storms have the potential to

maintain and/or increase its intensity.

In addition to purposes described so far, reduced model equations for the

vortex motion might be of interest to the scientific area of climate modelling.

It has long been recognized that an accurate description of a meridional flux

of mass, momentum and energy caused by travelling storm systems (eddies) in

the midlatitudes is an essential prerequisite for a realistic generation of climate

scenarios. In Earth System Model of Intermediate Complexity (EMIC), for ex-

ample, the CLIMBER model developed at the Potsdam Institute for Climate

Impact Research (PIK), the net-effects of large scale eddy transports on time

scales relevant for the climate have to be parameterized because of the low tem-

poral and spatial resolution of the model. For that reason the quality of such

models hinges critically on the choice of a parameterization scheme for eddy

transports of heat and momentum (Egger, 1992). Even though different para-

meterization schemes are available (e.g. the diffusive parameterization ansatz

proposed by Green (1970)), an opportunity for the development of novel pa-

rameterization schemes is given by employing reduced model equations for the

large scale vortex motion as derived in the dissertation. In particular, such a

reduced model may be used to generate datasets describing realistic large scale

5



Figure 1.1: Some erratic paths taken by Hurricanes. As an example, Hurricane
Elena, with peak winds of 90 knots, moved nothwestward into the Gulf of Mexico
on August 29, 1985. It then veered eastward toward the west coast of Florida.
After stalling offshore, it headed northwest. After weakening, it then moved
onshore near Biloxi, Mississippi, on the morning of September 2. (Ahrens 1999,
Fig. 16.9)

fluctuations which in turn strongly depend on a realistic description of travel-

ling large scale eddies. Then, statistical-empirical techniques can be applied to

such datasets in order to construct parameterizations schemes appropriate for

a realistic description of the eddy transport of mass and momentum.

This thesis is organised as follows. A general introduction of the method used

to derive reduced model equations is given in the second chapter. A particular

application of this method to derive reduced model equations for the motion

and structure of concentrated atmospheric vortices is presented in chapter 3. In

chapter 4 and 5, some aspects of adiabatic and diabatic vortices, respectively,

in vertically sheared environmental flow are given. For ease of reading, both

chapter 4 and 5 are divided into two parts. The first part gives a literature review

on the current understanding of adiabatic and diabatic vortices in vertically

sheared environmental flows. The second part presents the derivation of reduced

equations governing their motion and structure and a discussion of these results.

Finally, a summary of the key results of this doctoral thesis is presented in

chapter 6.
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Chapter 2

Unified approach to

meteorological modelling

The subject of the present work is to derive simplified model equations to ex-

plore the physical mechanism that determine the motion and structure of con-

centrated atmospheric vortices. In doing so an unified approach to meteorologi-

cal modelling is employed, which has been recently introduced by Klein (2004).

The fundamentals of this approach are based on perturbation methods which are

frequently used in applied mathematics to solve problems arising from physical

problems. The difficulty one wants to overcome in using perturbation methods

is that in most instances the governing equations of physical problems are non-

linear, inhomogeneous and multidimensional such that the derivation of closed-

form solutions proves to be difficult. Nonetheless, in order to handle such prob-

lems the underlying idea of perturbation methods is to exploit the situation

that most physical problems involve a small parameter ε, which may appear

either in the governing differential equations of the problem or in its boundary

conditions. Then, based on the assumption that the solutions of the problem

have an asymptotic expansion in terms of that small parameter, an asymptotic

analysis formalism is used to construct reasonable accurate approximations to

the solution of the problem. There are various reasons why perturbation meth-

ods can be regarded as an analysis tool that is at least as useful as numerical

methods in order to obtain solutions of a problem. For instance, the most

important advantage is that analytical approximate solutions of a problem are

more suitable to get a better understanding for the physics of the problem, than

to try an interpretation of a model output obtained by numerical simulations of

the same problem. The unified approach to meteorological modelling by Klein

(2004) uses perturbation methods and is a helpful framework to atmospheric
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scientists who are interested in deriving simplified model equations in a system-

atic way. Moreover, one outstanding feature of the approach is that with the

use of multiple scale perturbation methods the opportunity is given to study

scale interactions of different atmospheric flow phenomena acting on different

length and time scales. The following sections shall provide an overview about

the key steps of the method.

2.1 Governing equations

The unified approach to meteorological modelling builds up on the conservation

equations for mass, momentum and energy. On the rotating earth they have

the following form

∂ρ

∂t
+ ~∇h · (ρ ~vh) +

∂(ρw)

∂z
= 0

∂(ρ~vh)

∂t
+ ~∇h · (ρ~vh ◦ ~vh) +

∂(ρ~vhw)

∂z
+ ~∇hp+ (~Ω × ρ~v)h = Dρ~vh

∂(ρw)

∂t
+ ~∇h · (ρ~vhw) +

∂(ρw2)

∂z
+
∂p

∂z
+ (~Ω × ρ~v)⊥ + ρ = Dρw

∂(ρe)

∂t
+ ~∇h · ([ρe+ p] ~vh) +

∂([ρe+ p] w)

∂z
= Dρe + ρQ

(2.1)

Here, the variables ρ,~vh, w, p, e are functions of (x, y, z, t) space and denote

respectively the density, the horizontal and vertical velocity, the pressure and

the total energy. ~Ω is the vector of earth rotation, and Dρ~vh
,Dρw,Dρe represent

effects of microscopical transport of momentum and energy. The diabatic source

term ρQ summarizes heating effects due to chemical reactions, radiation and

moisture related processes which include among others latent heat release due

to condensation. In cartesian coordinates the horizontal velocity vector ~vh is

given by ~vh = u~i+v ~j, whereas u and v are horizontal wind components in~i and

~j direction, respectively. Hence, u and v have to be considered as parallel to a

tangential or beta plane approximating the surface of the globe. The horizontal

Nabla operator ~∇h has the form ~∇h =
(

~i ∂/∂x+~j ∂/∂y
)

. Note that the total

energy ρe is defined as a sum of internal energy, the kinetic energy and the

potential energy, i.e. ρe = cvT + (1/2)ρ~v2 + ρgz, with the specific heat cv, the

temperature T and the acceleration of gravity g. Using the state equation

p = ρRT , (2.2)

the gas constant R = cp− cv for dry air, and the isentropic exponent γ = cp/cv,
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the equation for the total energy takes the form

ρe =
p

γ − 1
+

1

2
ρ~v2 + ρgz (2.3)

Hence, equation (2.3) closes the equations set (2.1), if appropriate parameteri-

zations for Dρ~vh
,Dρw,Dρe and Q are given. Note that in this work the effects

described by Dρ~vh
,Dρw,Dρe are neglected. Moreover, (2.3) is used in order to

rewrite the energy equation (2.1)4 into an evolution equation for the atmospheric

pressure p. Then, the equation set (2.1) takes the following form

∂ρ

∂t
+ ~∇h · (ρ ~vh) +

∂(ρw)

∂z
= 0

∂(ρ~vh)

∂t
+ ~∇h · (ρ~vh ◦ ~vh) +

∂(ρ~vhw)

∂z
+ ~∇hp+ (~Ω × ρ~v)h = 0

∂(ρw)

∂t
+ ~∇h · (ρ~vhw) +

∂(ρw2)

∂z
+
∂p

∂z
+ (~Ω × ρ~v)⊥ + ρ = 0

∂p

∂t
+ ~vh · ~∇hp+ w

∂p

∂z
+ γp (~∇h · ~vh +

∂w

∂z
) = Q̃

(2.4)

Here, the diabatic source term is given by Q̃ = (γ − 1)ρQ.

2.2 Nondimensionalization

To nondimensionalize equations means traditionally to remove the units from

a mathematical equation. This can be done by a suitable substitution of the

independent and dependent variables, i.e. by use of

a′ =
a

aref
(2.5)

Here a denotes the quantity to nondimensionalize, aref a reference quantity and

a′ the corresponding dimensionless quantity. The technique of nondimension-

alization is closely related to dimensional analysis. The former on uses units

such as SI units for nondimensionalization. For a dimensional analysis, however,

units that refer to quantities charactersitic for the system are used. In that case

a′ denotes a nondimensional quantity scaled relative to aref.

The unified approach to meteorological modelling uses either SI units nor

reference quantities characteristic for the system in the sense, that they are re-

lated to characteristic length and time scales of a particular atmospheric flow

phenomena under consideration. However, it can be said that the unified ap-

proach uses reference quantities for the nondimensionalization of the governing
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equations (2.4) that are

a) intrinisc to the rotating earth, i.e. the earth’s rotation frequency Ωref, the

acceleration of gravity g and the radius of earth a with its characteristic

values

Ωref = 10−4 1/s, g = 10 m/s
2
, a = 6 · 106 m (2.6)

b) and intrinsic to a wide range of atmospheric flow conditions, given by the

thermodynamic pressure pref, the air density ρref and the air flow velocity

uref with its characteristic values

pref = 105 kg/(m s2), ρref = 1 kg / m
3
, uref = 10 m/s (2.7)

A particular combination of these reference quantities allows the definition of a

reference length hsc denoting the pressure scale height (vertical distance with

significant pressure drop) and reference time tref given by

hsc =
pref

g ρref
= 104 m and tref =

hsc

uref
= 103 s (2.8)

Note that employing these universally valid reference quantities independent on

the length and time scales of any particular atmospheric flow phenomena made

it possible for Klein, to construct a generalized formal approach to atmosphere

modelling. Based on the general substitution (2.5) and the given reference

quantities (2.6) - (2.7) nondimensionalization of the equations (2.4) yields

∂ρ′

∂t′
+ ~∇′

h · (ρ′ ~v′h) +
∂(ρ′w′)

∂z′
= 0

∂(ρ′~v′h)

∂t′
+ ~∇′

h · (ρ′~v′h ◦ ~v′h) +
∂(ρ′~v′hw

′)

∂z′
+
~∇′
hp

′

M2
+

( ~Ω′ × ρ′~v′)h
Rohsc

= 0

∂(ρ′w′)

∂t′
+ ~∇′

h · (ρ′~v′hw′) +
∂(ρ′w

′2)

∂z′
+

1

M2

∂p′

∂z′
+

( ~Ω′ × ρ′~v′)⊥
Rohsc

+
ρ′

Fr2
= 0

∂p′

∂t′
+ ~v′h · ~∇′

hp
′ + w′ ∂p

′

∂z′
+ γp′ (~∇′

h · ~v′h +
∂w′

∂z′
) = Q̃′

(2.9)

with Q̃′ = (γ − 1)ρ′Q′. Note that Q̃ denotes a heating rate with the units K/s.

Hence, the relation Tref = pref/(Rρref) (state equation: p = ρRT ) can be used to

make Q̃ dimensionless. In terms of the flow numbers Mach (M), Rossby (Rohsc
)

and Froude (Fr), a number of more or less small parameters appear in (2.9).

These dimensionless parameters are defined by
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M =
vref

√

pref/ρref

∼ 1

30
, Fr =

vref√
g hsc

∼ 1

30

Rohsc
=

vref
2 Ωref hsc

∼ 5

(2.10)

The magnitudes of the reference values M, Rohsc
and Fr are determined based

on (2.6) - (2.7).

Using perturbation methods, differential equations with more than one small

parameters have to be treated more carefully than equations with only one small

parameter. But before going on to explain how the unified approach to mete-

orological modelling handles this, a discussion on the fundamental differences

between scale analysis and asymptotic methods is given first. Since the appli-

cation of the former is common in theoretical meteorology to derive simplified

model equations it seems instructive to point out briefly where the advantage of

the latter lies. This will give a better understanding why asymptotic techniques

serve as the technical basis of the unified approach to meteorological modelling.

2.2.1 Scale analysis vs. asymptotics

The general case is considered where the nondimensional governing equations of

a system include only one small parameter given by ε with ε << 1. Proponents

of scale analysis techniques argue that terms multiplied with ε can be neglected

with respect to the others. Then, a favourable condition would be if neglecting

such terms results in simplified equations in the sense that the derivation of

solutions is more tractable compared to the original problem. However, such a

solution may be considered only as a first approximation and it is unclear how

to determine a correction to the approximate solution (Holmes, 1995). In other

words there is no way to find out to what extent the inclusion of the omitted

terms would change the approximation that has been made in the absence of

them. The asymptotic methods overcome these difficulties by assuming that

the solution f of the problem can be expanded in terms of a small parameter ε,

e.g.

f ∼ f (0) + εf (1) + ε2f (2) + ... (2.11)

Then a formal analysis procedure is to substitute such an asymptotic expansion

ansatz into the governing equations of the problem under consideration and

evaluate terms of corresponding powers of ε . In general this procedure allows

step by step a derivation of solutions for f (0) and f (i) (with i = 1, 2, ..., n),

whereas the leading order term f (0) is similar to the first approximation one

obtains using scale analysis arguments. Eventually, the derivation of higher

order corrections f (i) makes it possible to estimate how well the leading order
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term f (0) approximates the real solution.

Eqn. (2.11) just denotes one example for an asymptotic expansion. A general

definition for an asymptotic expansion is given through

f =

m∑

k=1

f (k)φk(ε) + o(φm) for m = 1, ...., n as ε→ ε0 (2.12)

The φk(ε) are called basis functions. They form an asymptotic sequence φ1, φ2,

φ3, ... as ε → ε0 if and only if φn = o(φm) for all m and n that satisfy m < n

(Holmes, 1995), where o denotes the Landau1 symbol ’little o’. Note that in the

given example (2.11), the asymptotic sequence reads φ1 = 1, φ2 = ε, φ3 = ε2, ....

It is worth to point out, however, that depending on the problem to be studied

other forms of the basis functions may arise.

2.3 Small parameter ε and distinguished limit

The identification of a dimensionless small parameter ε is a key step in Klein’s

development of an unified approach to meteorological modelling. Dimensionless

numbers (M, Rohsc
, Fr) characterizing atmospheric flow conditions are discussed

in Section 2.2. However, a further dimensionless parameter can be derived by

a combination of the reference quantities (2.6) related to the rotating earth. In

doing so one obtains a dimensionless number denoting the ratio of the centripetal

acceleration on earth’s surface to the acceleration of gravity at earth’s surface,

i.e.

κ =
aΩ2

g
∼ 1

512
...

1

216
(2.13)

Hence, the dimensionless numbers (2.10) together with (2.13) characterize gen-

eral atmospheric flow conditions on a rotating earth.

If physical problems with more than one small parameter are considered,

Klein (2004) points out that the asymptotic equations depend strongly on the

path on which the parameters are to approach their respective limiting values.

For instance, that means that an asymptotic expansion using M as expansion

parameter for a formal asymptotic analysis would lead to different results than

an expansion with κ or even both M and κ as expansion parameters. Eventually,

this problem leads to the idea of a distinguished limit, such that the parameters

(2.10) and (2.13) are related to each other in the following way

ε ∼ κ
1
3 ∼ 1

Rohsc

∼
√

M ∼
√

Fr (2.14)

1Landau symbols are commonly used asymptotic notation for comparing functions. Math-
ematically the Landau symbol o is defined by f(ε) = o(g(ε)) : limε→ε0 f(ε)/g(ε) = 0.
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where ε ∼ 1/8...1/6. Other distinguished limits are conceivable. However, the

successful employment of (2.14) that allows to rederive a number of well-known

classical models in theoretical theory (see Section 2.4.1), gives evidence that

Klein (2004) was guided by the right intuition by choosing the distinguished

limit (2.14).

Substitution of the distinguished limit (2.14) into the nondimensional gov-

erning equations (2.9) yields

∂ρ

∂t
+ ~∇h · (ρ ~vh) +

∂(ρw)

∂z
= 0

∂(ρ~vh)

∂t
+ ~∇h · (ρ~vh ◦ ~vh) +

∂(ρ~vhw)

∂z
+
~∇hp

ε4
+ ε(~Ω × ρ~v)h = 0

∂(ρw)

∂t
+ ~∇h · (ρ~vhw) +

∂(ρw2)

∂z
+

1

ε4
∂p

∂z
+ ε~Ω × ρ~v)⊥ +

ρ

ε4
= 0

∂p

∂t
+ ~vh · ~∇hp+ w

∂p

∂z
+ γp (~∇h · ~vh +

∂w

∂z
) = Q̃

(2.15)

with Q̃ = (γ − 1)ρQ. Note that the primes denoting dimensionless variables

have been dropped.

With the aid of the mass continuity (2.15)1, the state equation (2.2) in

its nondimensional form, and the nondimensionalized definition of a potential

temperature2, i.e.

p = ρ T and Θ = Tp−( γ−1
γ ) , (2.16)

the pressure equation (2.15)4 can be rewritten into an equation for the potential

temperature equation

(
∂

∂t
+ ~vh · ~∇h + w

∂

∂z

)

Θ =
γ − 1

γ

ρ Θ

p
Q (2.17)

As pointed out by Klein (2004), the asymptotic treatment of stratified fluids can

be simplified by introducing the ”Newtonian limit” for the isentropic exponent.

Such a limit is given by

γ − 1

γ
= ε Γ⋆⋆ with Γ⋆⋆ = O(1) as ε→ ∞ (2.18)

Thus, together with that limit, a replacement of the pressure equation (2.15)4
2The temperature a volume of dry air at pressure P and temperature T would have if

compressed adiabatically to a reference level Pref , i.e. Θ = T (Pref/P )(γ−1)/γ , where γ is
the heat capacity ratio of the gas.
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through the potential temperature equation (2.17) yields the following set of

governing equations that can be used for an asymptotic analysis of different

atmospheric flow phenomena

∂ρ

∂t
+ ~∇h · (ρ ~vh) +

∂(ρw)

∂z
= 0

∂~vh
∂t

+ ~vh · ~∇h~vh + w
∂~vh
∂z

+
1

ε4

~∇hp

ρ
+ ε(~Ω × ~v)h = 0

∂w

∂t
+ ~vh · ~∇hw + w

∂w

∂z
+

1

ε4
1

ρ

∂p

∂z
+ ε(~Ω × ~v)⊥ +

1

ε4
= 0

(
∂

∂t
+ ~vh · ~∇h + w

∂

∂z

)

Θ = S

(2.19)

where the diabatic source term S is given by

S = ε Γ⋆⋆
ρ Θ

p
Q (2.20)

Note that with the aid of ~∇h · (ρ~vh ◦ ~vh) = ρ~vh · (~∇h~vh) + ~vh~∇h · (ρ~vh) and the

mass continuity (2.15)1, the momentum equations (2.15)3,4 have been rewritten

into (2.19)3,4. Moreover, on account of the Newtonian limit (2.18) the state

equation (2.16)2 takes in terms of the potential temperature the following form

ρ Θ = p1−Γ⋆⋆ε (2.21)

2.4 Multiple-scales techniques

It is well known, that the dynamical behaviour of a particular atmospheric flow

phenomena is as a result of processes acting on different length and time scales.

For such multiple-scale problems, the theory of perturbation methods provides

multiple-scales techniques for finding an asymptotic approximations to the so-

lutions of the problem (Holmes, 1995). The two frequently used techniques

are known as (1) multiple-scale expansions and (2) matched asymptotic expan-

sions. The use of these methods is a further key step of the unified approach to

meteorological modelling.
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2.4.1 General multiple scale expansions

If multiple-scale expansions are used, it is generally assumed that the solutions

of the multi-dimensional compressible flow equations can be expressed as

U(t, ~x, z; ε) =
∑

i∈N

φi(ε) U (i)

(
t

ε
, εt, ε2t, ...,

~x

ε
, ε~x, ε2~x, ...,

z

ε
, z

)

(2.22)

where U denotes a shortcut for a solution component of the governing equations

(2.19), i.e. U ∈ {~vh, w, p, ρ,Θ}. The functions φi form an asymptotic sequence

(see Section 2.2.1).

With such a general expansion ansatz the flow variables are considered to

be functions of a number of independent time and space coordinates which are

differently scaled in terms of the expansion parameter ε. Within the framework

of the unified approach the above expansion can be used in different ways. De-

pending on the particular flow phenomena under consideration, ansatz (2.22)

can be specialized in the sense that only relevant length and time scales are

included. This includes all the scales that are necessary to study certain inter-

actions between phenomena acting on separate scales. On the other hand, if

the study of interactions between different scales are not focus of interest, the

expansion (2.22) can be reduced to a single scale expansion with only one time,

one horizontal, and one vertical coordinate.

It is important to point out that with the application of (2.22) to construct

approximate solutions for a particular atmospheric flow phenomena (which is

characterized by particular length and time scales) appropriate choice of scaled

coordinates are used that were not used in the nondimensionalization of the

three-dimensional Euler equations (see Section 2.2). For the sake of clarity the

following example shall be given. In studying synoptic scale phenomena typical

horizontal length scales are of order ∼ 1000 km. However, for nondimensional-

ization of the Euler equations both the horizontal and vertical coordinates have

been made dimensionless using the pressure scale height hsc = 104 m, i.e.

(x′, y′) =

(
x

hsc
,
y

hsc

)

and z′ =
z

hsc

To study phenomena acting on different scales than hsc a so called stretching

transformation has to be introduced that re-scales the dimensionless horizontal

coordinates from (x′, y′) to the claimed scale (x̄, ȳ). Such a transformation reads

in general

(x̄, ȳ) =

(
x′

εα
,
y′

εα

)

(2.23)

Hence, with ε = 1/8...1/6 and the particular choice of α = −2 the re-scaled new
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Coordinate scalings Simplified model obtained

U (i)(t,x, z) Anelastic & pseudo-incompressible models

U (i)(t, εx, z) Linear large scale internal gravity waves

U (i)( tε ,x,
z
ε ) Linear small scale internal gravity waves

U (i)(ε2t, ε2x, z) Mid-latitude Quasi-Geostrophic model

U (i)(ε2t, ε2x, z) Equatorial Weak Temperature Gradient models

U (i)(ε2t, ε−1ξ(ε2x), z) Semi-geostrophic model

U (i)(ε
5
2 t, ε

7
2x, ε

5
2 y, z) Equatorial Kelvin, Yanai & Rossby Waves

Table 2.1: Overview about coordinate scalings and associated classical models.
(adopted from Klein (2004))

coordinates (x̄, ȳ) = (ε2x′, ε2y′) resolve synoptic length scales.

Note, the expansion ansatz (2.22) not only allows for specializations with

respect to particular length and time scales. Furthermore the amplitudes of

the variables may be varied by starting the expansions for different i’s in the

asymptotic sequence φi(ε).

It has been shown by Klein (2004) that certain specializations of the general

expansion ansatz (2.22) yield upon substitution into the governing equations

(2.15), and a subsequent formal asymptotic analysis, a number of well-known

reduced models in theoretical meteorology. A list of the models and the accom-

panied expansions is given in Table 2.1. It is the success of these re-derivations

that motivates use of the unified approach to meteorological modelling for in-

vestigations of derivation of simplified models for arbitrary atmospheric phe-

nomena.

2.4.2 Matched asymptotic expansions

A second technique that makes it possible to study multiple-scale problems is

traditionally known as matched asymptotic expansions.

The method of matched asymptotic expansions is frequently used if one is

concerned with boundary layer problems, e.g. the fluid flow past a solid body.

The most prominent example for such a problem is the air flow past an aeroplane

wing. Here it is known that due to the effects of viscosity the physical situation

in the thin layer of fluid in direct contact with the airplane (inner layer) is

different from the physical situation outside this layer where such viscous effects

can be neglected (outer layer). As a consequence, the difference of the physical
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situation in the different layers must be reflected in the mathematical behaviour

of the solutions of equations modelling the flow in the inner and outer layer,

respectively. This can be shown by a systematic analysis of the boundary layer

problem using two asymptotic expansions, whereas

a) the inner expansion approximates flow solutions which are valid in the

inner layer

b) and the outer expansion approximates flow solutions which are valid in

the outer layer

With a) and b), however, the description of the solution describing the air flow

past an air wing consist of two pieces. Since the main interest in studying the

flow past an air wing is to get solutions of the whole flow problem, so called

’matching conditions’ are derived which satisfy the inner and outer solutions

within an overlapping domain. This is the main idea underlying the method of

matched asymptotic expansions and which is eventually necessary to combine

the inner and outer solutions to form a composite expansion.

Mathematical details on how the method of matched asymptotic expansions

can be used within the framework of the unified approach to meteorological

modelling are explained next. Let’s assume that a two-scale problem with re-

spect to the horizontal has to be solved, whereas the stretching transforma-

tion (see (2.23)) for the horizontal coordinates resolving the smaller scale reads

(ξ1, ξ2) = (εαx, εαy) and the stretching transformation for the horizontal coordi-

nates resolving the larger scale reads (η1, η2) = (εβx, εβy). Note, the coordinates

x and y are dimensionless and that α < β. Then, the construction of approxi-

mate solutions proceeds in four steps.

Step 1-2: The first two steps are related to the construction of inner (U (i))

and outer (Ǔ (i)) solutions valid in the different regions of the problem to be

studied. Here the inner and outer solutions are derived by means of single scale

expansions, which are defined through

U(t, ~x, z; ε) =
∑

i∈N

φi(ε) U (i) (t, εα~x, z) =
∑

i∈N

φi(ε) U (i)
(

t, ~ξ, z
)

(2.24)

and

Ǔ(t, ~x, z; ε) =
∑

i∈N

φ̌i(ε) Ǔ (i)
(
t, εβ~x, z

)
=
∑

i∈N

φ̌i(ε) Ǔ (i) (t, ~η, z) (2.25)
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Step 3: The actual matching of the inner and outer expansions happens in

a third step. Here it is important to have in mind that the inner (see (2.24))

and outer expansions (see (2.25)) are valid in different regions, but nevertheless

have to be considered as approximations for the same function. That is why one

should expect that inner and outer expansions give in their transition region

the same results. Thus, the idea is to introduce an intermediate horizontal

coordinate (χ1, χ2) = (ελx, ελy) with α < λ < β. In particular, ~χ describes an

’overlap’ lengthscale on which both inner and outer expansions should be valid.

Note that for a fixed ~χ and ε → 0 one obtains that ~η → 0 and ~ξ → ∞. Then,

changing variables (i) in the inner expansion (2.24) from ~ξ to ~χ and (ii) in the

outer expansion (2.25) from ~η to ~χ, a matching criterion between the inner and

outer expansions that has to be satisfied, reads

∑

i∈N

φi(ε) U (i)
(
t, εα−λ~x, z

)
=
∑

i∈N

φ̌i(ε) Ǔ (i)
(
t, εβ−λ~x, z

)
(2.26)

The matching condition (2.26) states that the solution U as one moves out of

the smaller scale region (i.e. ~ξ → ∞) has to be equal to the solution Ǔ as one

moves into the smaller region (i.e. ~η → 0). Note, the matching procedure can

also be regarded as a technique to find outer boundary conditions for the inner

solutions U (i), and vice versa. In doing so the matching procedure makes it

possible to elucidate the role of scale-interactions between the flow in the inner

and outer layer.

Step 4: The fourth step combines the inner and outer solutions to find a

composite expansion. This is done by adding the expansions and then subtract-

ing the part that is common to both (Holmes, 1995).

Summing up, one may say that the technique of matched asymptotic expan-

sions differs from multiple-scale expansions in that it starts with the construc-

tion of solutions in different regions that are then patched together to form a

composite expansion (Holmes, 1995).
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Chapter 3

Asymptotic formulation of

the vortex problem

The purpose of this chapter is to provide an overview from a technical per-

spective about how the unified approach to meteorological modelling is used

to derive simplified model equations that are suitable to study the motion and

three-dimensional structure of concentrated atmospheric vortices. Regarding

the mechanisms influencing these vortex features, the primary goal of the present

work is to employ the unified approach in such a way so that the role of scale

interactions between the mesoscale flow of the vortex itself and an large scale

vertically sheared environmental flow in which the vortex is embedded in, can

be explored. Figure 3.1 and 3.2 is a schematic diagram of this situation.

Additional interest is on the modifying effect brought about by moisture ef-

fects on these scale interactions compared to scale interactions in a pure dry

atmosphere. It is expected that solutions of such a multiple scale problem may

help to understand how an environmental forcing and diabatic processes affect

the mesoscale vortex structure and the large scale vortex motion. Employing as-

ymptotic methods, the work on this issue can be regarded as an extension of the

work of Callegari & Ting (1978), who studied the motion and two-dimensional,

synoptic-scale core structure of a geostrophic vortex in a dry atmosphere.

Two different techniques have been proposed in Section 2.4 to study com-

plex interactions of processes acting on different length and time scales. In anal-

ogy to the work of Callageri & Ting (1987) the technique of matched asymptotic

expansions is used in the present work. Thus, the derivation of approximate so-

lutions for the motion and structure of concentrated vortices that account for

scale interactions between the vortex scale flow and an large scale environmen-

tal flow, is based on the construction of vortex solutions valid on vortex scales
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Figure 3.1: Schematic diagram showing mesoscale vortex embedded in an large
scale vertically sheared environmental flow; for further explanations see the text

Figure 3.2: Schematic diagram showing scale interactions influencing the motion
and structure of atmospheric vortices
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and large scales, respectively, which are then matched together. An expansion

ansatz that accounts for typical scales of concentrated vortices such as tropical-

cyclone like vortices, is discussed in Section 3.1. Moreover, reduced model

equations related to such an expansion ansatz are derived, whose solutions are

refered to as inner solutions of the multi-scale vortex problem. An expansion

ansatz and the corresponding reduced model equations suitable to find vortex

solutions w.r.t to synoptic-scales and which are refered to as outer solutions, are

derived in Section 3.2. Matching conditions between inner and outer solutions

are discussed in Section 3.3.1. To account additionally for diabatic effects, an

appropriate expansion for a diabatic source term is given in Section 3.4.

As noted in the introductory paragraph, in this chapter theoretical basics

such as the choice of asymptotic expansions, asymptotic equations, matching

conditions etc. are discussed. This are necessary preliminaries on which a deriva-

tion of solutions for the vortex motion and structure of adiabatic vortices in

Chapter 4 and diabatic vortices in Chapter 5 are built. Hence, for the reader

who is primarily interested how the reduced model equations for adiabatic and

diabatic vortices look like, its discussion (interpretation) and further manip-

ulations in order to derive equations for the vortex motion, it is possible to

start reading with Chapter 4 and to use Chapter 3 only as a reference for

theoretical details.

3.1 Meso-scale Regime

The atmospheric vortices considered in the present work are schematically shown

in Figure 3.1. They are approximately 400 km in diameter and extend through-

out the whole troposhere. Furthermore it is assumed that the winds within the

vortex region are approximately 30 m/s. These values are characteristic for

hurricanes. They measure on average 550 km in diameter and if they reach

sustained winds of about 33 m/s they belong to the hurricane category I of the

Saffir-Simpson scale. Due to the horizontal scales the vortices can be regarded

as mesoscale flow phenomena.

3.1.1 Stretching transformations

An asymptotic expansion ansatz that accounts for the vortex scales defined

above, is derived next.

Due to the circular geometry of the vortex, an asymptotic analysis of the flow

field using cylindrical coordinates is convenient. This requires a transformation

of the flow equations discussed in Section 2.3, from a frame of reference fixed

at the earth into a frame of reference whose origin is attached to the centre of
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Figure 3.3: top: Schematic diagram showing frame of references, middle: Para-
meterization of vortex-centreline, bottom: coordinate transformation in 2D
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the moving vortex (see Figure 3.3). For this a vector ~XC = (XC ,YC) =
~XC(z, t) is defined, that denotes a position vector of the point P on the vortex-

centreline C in the fixed frame of reference. Then, the transformation equation

into the moving frame reads

~x = ~XC(z, t) + ~̂x , z = z (3.1)

whereas the horizontal vector ~̂x = (x̂, ŷ) denotes a position vector of the point

P̂ in the moving frame of reference. Note, in the subsequent analysis the tem-

poral evolution of the vortex centreline shall be used to describe the vortex

motion. Thus, considering the vector ~XC(z, t) not only as a function on the

temporal coordinate t but also as a function on the vertical coordinate z, allows

to account for a differential motion of the three-dimensional vortex with respect

to the vertical, resulting in a vortex tilt. As illustrated in Figure 3.3, due

to the vertical dependency of ~XC(z, t) on the vertical coordinate z, the three-

dimensional vortex may be now regarded as a stack of two-dimensional vortices

in the vertical.

Using the relations ~x′ = ~x/hsc, ~X
′

C = ~XC/hsc , ~̂x′ = ~̂x/hsc and z′ = z/hsc

with hsc defined through (2.8)1, the dimensionless form of (3.1) reads

~x′ = ~X
′

C + ~̂x′ , z′ = z′ (3.2)

As noted earlier, solutions for the vortex motion expressed by the motion of

the vortex centreline on synoptic-scales, i.e. LS = 1000 km ∼ ε−2 hsc, and the

vortex structure on mesoscale, i.e. LM = 400 km ∼ ε−
3
2 hsc, are sought. Hence,

a so called stretching transformation has to be introduced that re-scales the

dimensionless horizontal coordinates (3.2) to the claimed scales. With the aid

of (2.23) the following stretched coordinates ~XC and ~̂x are defined

~XC =
~X

′

C

εα
for α = −2 and ~̂x =

~̂x′

εα
for α = −3

2
(3.3)

with ~XC = (XC , YC) and ~̂x = (x̂, ŷ). Here, ~XC denotes the position vector

for the vortex centreline resolved on synoptic scale and ~̂x denotes a position

vector resolving the mesoscale vortex region. Because of uref = hsc/tref with

uref given through (2.7)3, rescaled advection times with respect to synoptic-

and mesoscales read

τ1 = ε2t′ and τ2 = ε
3
2 t′ (3.4)

where t′ = t/tref denotes the dimensionless time coordinate. In the subsequent
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analysis we will restrict our interest on the vortex motion and it’s structural

change on the synoptic time scale τ1. Thus, the following transformation equa-

tion for the velocity field from the frame of reference fixed at the earth into the

co-moving frame is used

~vh = ~VC + ~vrel (3.5)

whereas the velocity vector ~VC for the centreline motion, and the velocity

vector ~vrel for the relative flow in the co-moving frame of reference are given by

~VC =
∂ ~XC

∂τ1
=~i UC +~j VC , ~vrel = ~er ur + ~eθ uθ (3.6)

With the scalings choosen above and using the notations of Section 2.4.1, an

expansion ansatz suitable to derive reduced model equations in order to describe

concentrated atmospheric vortices with typical diameters of 400 km reads

U(t, ~̂x, z; ε) =
∑

i∈N

ε
i
2 U (i)

(

ε2t, ε
3
2 ~̂x, z

)

(3.7)

Note that the expansion ansatz (3.7) is written with respect to the co-moving

frame of reference and the primes indicating dimensionless variables have been

dropped.

Next, transformation equations for the derivative operators ~∇h, ∂/∂z and

∂/∂t appearing in the complete three-dimensional compressible flow equations

(2.15) have to be derived, that account for the change of variables in (3.3) and

(3.4)1. Upon substitution of (3.3) into (3.2), the transformation equation into

the moving frame reads

~x = ε−2 ~XC + ε−
3
2 ~̂x (3.8)

with ~XC = ~XC(z, τ1) and where the primes denoting dimensionless variables

have been dropped, again. Due to the circular geometry of the vortex, the rela-

tive coordinates ~̂x = (x̂, ŷ) will be expressed in terms of cylindrical coordinates,

i.e.

x̂ = r cos θ , ŷ = r sin θ (3.9)

With ~̂x = ε
3
2 (~x− ε−2 ~XC) from (3.8), the radius r and the azimuthal angle θ in

(3.9) are defined through

r = ε
3
2

(
(x− ε−2XC) cos θ + (y − ε−2YC) sin θ

)

θ = arctan

(
y − ε−2YC
x− ε−2XC

)

z = z

(3.10)
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Then, from the transformations (3.3), (3.4)1, (3.8)-(3.10) together with (3.6)1

and the chain rule (see Appendix A.1), we have that

~∇h = ε
3
2

(

~er
∂

∂r
+ ~eθ

1

r

∂

∂θ

)

= ε
3
2
~̂∇h

∂

∂z

∣
∣
∣
∣
x,y

=
∂

∂z

∣
∣
∣
∣
r,θ

− ε−
1
2
∂ ~XC

∂z
· ~̂∇h

∂

∂t
= ε2

∂

∂τ
− ε

3
2 ~VC · ~̂∇h

(3.11)

with τ = τ1 and where ~er and ~eθ denote the unit radial and the unit tangen-

tial vector in the horizontal plane (see Figure 3.3). Note that we write the

position vector ~XC in the fixed frame of reference in cartesian coordinates, i.e.
~XC =~i XC +~j YC , whereas the unit vectors ~i,~j and ~er, ~eθ are related to each

other via

~i = (~er cos θ − ~eθ sin θ) , ~j = (~er sin θ + ~eθ cos θ) (3.12)

Eventually, substitution of the transformations (3.11) and (3.5) into the

equations (2.19) yields the starting equations to study concentrated, mesoscale

vortices from an asymptotic perspective. In particular one obtains

ε2
∂ρ

∂τ
+ ε

3
2
~̂∇h · (ρ ~vrel) +

∂(ρw)

∂z
− 1

ε
1
2

∂ ~XC

∂z
· ~̂∇h(ρw) = 0

ε2
∂(~VC + ~vrel)

∂τ
+ ε

3
2~vrel · ~̂∇h~vrel + w

∂(~VC + ~vrel)

∂z
−

w

ε
1
2

∂ ~XC

∂z
· ~̂∇h~vrel +

1

ε
5
2

~̂∇hp

ρ
+ ε(~Ω × (~VC + ~vrel + w~k))h = 0

ε2
∂w

∂τ
+ ε

3
2~vrel · ~̂∇hw + w

∂w

∂z
− w

ε
1
2

∂ ~XC

∂z
· ~̂∇hw +

1

ε4
1

ρ

∂p

∂z
−

1

ε
9
2

1

ρ

∂ ~XC

∂z
· ~̂∇hp+ ε(~Ω × (~VC + ~vrel + w~k))⊥ +

1

ε4
= 0

(

ε2
∂

∂τ
+ ε

3
2 ~vrel · ~̂∇h + w

∂

∂z
− w

ε
1
2

∂ ~XC

∂z
· ~̂∇h

)

Θ = S

(3.13)

Here
~̂∇h · ~VC = 0 and

~̂∇h
~VC = 0 is used. We shall show in Chapter 4 and 5

that solutions for ~XC can be derived with the aid of matched asymptotics. Note

that the above equations (3.13) are closed with the state equation (2.21), i.e.

ρ Θ = p1−Γ⋆⋆ε . (3.14)
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3.1.2 Inner expansion schemes

Using the notation of the stretched coordinates (3.3)2 and (3.4)1, and its trans-

formations into cyclindrical coordinates (see (3.9)), the expansion ansatz (3.7)

takes the form

U =
∑

i∈N

ε
i
2 U (i) (r, θ, z, τ) (3.15)

with U ∈ {~vh, w, p, ρ,Θ}. Since the method of matched asymptotics is used to

derive equations for the vortex motion and structure, the expansions based on

ansatz (3.15) are refered to as inner solutions (see Section 2.4.2). However,

further specializations of the variables ~vh, w and Θ are needed.

Regarding the potential temperature Θ, Klein & Majda (2004) points out

that order-of-magnitudes estimates based on the Brunt-Väisalä frequency or

buoyancy frequency N2 = (g/Θ)(∂Θ/∂z), yield a dimensionless quantity

N2hsc

g
=

1

Θ

∂Θ

∂z
∼ 1

10
∼ ε2 (3.16)

It can be shown (see Appendix A.2), that upon substitution of the expan-

sion (3.15) into (3.16) the following conclusions about the atmospheric stability

conditions in leading orders can be drawn

∂Θ( i
2 )

∂z
= 0 , i = 0, 1, 2, 3 (3.17)

Hence, it is assumed that a solution for Θ has the expansion

Θ = Θ(0)(r,Θ, τ) + ε
1
2 Θ( 1

2 )(r,Θ, τ) + ε
2
2 Θ( 2

2 )(r,Θ, τ) +

ε
3
2 Θ( 3

2 )(r,Θ, τ) + ε
4
2 Θ( 4

2 )(r,Θ, z, τ) + O(ε
5
2 ) (3.18)

Here O denotes the Landau1 symbol ’big O’.

The expansions for the velocity components uθ, ur and w will be addressed

in the following way. Recall, that the governing equations (2.19) have been

nondimensionalized using uref = 10 m/s as a typical reference value for the

velocity of atmospheric flows. We are interested, however, in intensely rotating

vortices characterized by circumferential velocities with magnitudes of about

uθ ∼ 30 m/s ∼ ε−
1
2 uref. Taking this into account we change the magnitude of

the horizontal velocity field by assuming following asymptotic expansions

1The Landau symbol O is defined by f(ε) = O(g(ε)) : limε→ε0 f(ε)/g(ε) = const. 6= 0.
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uθ = ε−
1
2u

(0)
θ (r, z, τ) + u

( 1
2 )

θ (r, θ, z, τ) + ε
1
2u

( 2
2 )

θ (r, θ, z, τ) + O(ε
2
2 )

ur = u
( 1
2 )
r (r, θ, z, τ) + ε

1
2u

( 2
2 )
r (r, θ, z, τ) + O(ε

2
2 )

w = w( 1
2 )(r, θ, z, τ) + ε

1
2w( 2

2 )(r, θ, z, τ) + O(ε
2
2 )

(3.19)

Please note that the leading order flow u
(0)
θ is assumed to be rotationally sym-

metric about the vertical axis.

The position vector ~XC = ~XC(z, τ) describing the location of the vortex

centreline C also depends on the small parameter ε. Recall that ~XC is scaled

with respect to synoptic scales (see (3.3)1). However, supported by observations

one can act on the assumption that the horizontal displacement between the

upper and lower part of a coherent vortex is at least smaller than ∼ 1000 km

(i.e. smaller than synoptic scales). Taking this into account, it is assumed that
~XC has the following expansion

~XC = ~X
(0)
C (τ) + ε

1
2 ~X

( 1
2 )

C (z, τ) + ε
2
2 ~X

( 2
2 )

C (z, τ) + O(ε
3
2 ) (3.20)

Note that the leading order term in (3.20) is independent of z, such that vertical

variations of the centreline have to be described by higher order corrections.

Due to ∂ ~XC/∂τ1 = ~VC (see (3.6)1 with τ = τ1), the expansion (3.20) implies

immediately that an expansion for the centreline velocity ~VC has to be of the

form
~VC = ~V

(0)
C (τ) + ε

1
2 ~V

( 1
2 )

C (z, τ) + ε
2
2 ~V

( 2
2 )

C (z, τ) + O(ε
3
2 ) (3.21)

Taking into account that the vector of earth rotation ~Ω = ~j Ωh+~kΩ⊥ varies

with latitude ϕ, we now turn to an asymptotic description of the vector of earth

rotation ~Ω. The Coriolis parameter Ωh and Ω⊥ are defined through

Ωh =| ~Ω | cosϕ , Ω⊥ =| ~Ω | sinϕ (3.22)

Ignoring curvature effects, the earth’s surface at the patch of flow under consid-

eration can be approximated by a plane, i.e.

ϕ = ϕ0 +
y

a
(3.23)

where a ≈ 6000 km denotes the radius of the earth. With the transformation

(3.1) we also can write

ϕ = ϕ0 +
(YC + ŷ)

a
. (3.24)

27



After nondimensionalization (see eqn. (3.2)) and together with the stretched

variables (3.3) and the centreline expansion (3.20), one obtains

ϕ = ϕ0 +
href Y′

C

a
+
href ŷ′

a
= ϕ0 +

href YC
ε2 a

+
href ŷ

ε
3
2 a

= ϕ0 + εYC + ε
3
2 ŷ = ϕ0 + εY

(0)
C + ε

3
2 (Y

( 1
2 )

C + ŷ) + O(ε
4
2 )

︸ ︷︷ ︸

ϕ̃

(3.25)

Then, Taylor expansion of sinϕ and cosϕ around ϕ0 yields

sin(ϕ0 + ϕ̃) ≈ sinϕ0 + ϕ̃ cosϕ0

≈ sinϕ0 + εY
(0)
C cosϕ0 + O(ε

3
2 )

cos(ϕ0 + ϕ̃) ≈ cosϕ0 − ϕ̃ sinϕ0

≈ cosϕ0 − εY
(0)
C sinϕ0 + O(ε

3
2 )

(3.26)

Hence, upon substitution of (3.26) into (3.22) the following asymptotic expan-

sion for the Coriolis parameter (3.22) can be derived

Ωh = | ~Ω | cosϕ0 − ε | ~Ω | sinϕ0 Y
(0)
C + O(ε

3
2 )

Ω⊥ = | ~Ω | sinϕ0
︸ ︷︷ ︸

Ω0

+ ε | ~Ω | cosϕ0
︸ ︷︷ ︸

β

Y
(0)
C + O(ε

3
2 ) (3.27)

This approximation is also known as beta - plane approximation. Thus, an

asymptotic expansion of ~Ω takes the form

~Ω = ~Ω(0) + ε~Ω(1) + O(ε
3
2 ) (3.28)

with ~Ω(0) = ~j Ω
(0)
h +~k Ω0 and ~Ω(1) = ~j Ω

(1)
h +~k βY

(0)
C , whereas Ω

(i)
h (i = 0, 1)

is the projection of the earth rotation vector ~Ω onto the horizontal unit vector ~j

and Ω0 onto the vertical unit vector ~k.

We close this subsection with an asymptotic expansion for the source term

S, reading

S = S(0)(r, θ, z, τ) + ε
1
2S( 1

2 )(r, θ, z, τ) + ε
2
2S

( 2
2 )

C (r, θ, z, τ) + O(ε
3
2 ) (3.29)

A discussion of further specializations of this expansion is postponed into Sec-

tion 3.4.

3.1.3 Asymptotic equations

The construction of asymptotic approximations of the solutions of the problem

(3.13) starts with a substitution of the asymptotic expansions (3.15) (for ρ and p
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only), and the expansions (3.18), (3.19), (3.20)-(3.21) and (3.28)-(3.29) into the

governing equations (3.13). Then equating like powers of ε, reduced or so called

asymptotic equations are derived. The asymptotic equations denote different

problems for solutions in different orders of ε. Solving the problems sequentially,

allows one to construct solutions to the whole problem (3.13) in the form of n-

term approximations (see notation in ansatz (3.15), i = 0, 1, ..., n, i ∈ N). This

section provides an overview about the reduced equations arranged in different

orders of the small parameter. It should be noted that the asymptotic equations

will serve as the starting equations for the different vortex solutions to be studied

for adiabatic vortices in Chapter 4 and diabatic vortices in Chapter 5.

First few trivial equations It turns out that starting with the lowest order

of ε, the reduced equations are trivial equations in the sense that they only give

informations about the spatial and the temporal dependencies of the dependent

flow variables p, ρ,Θ, etc. in leading orders.

Continuity equation:

O(1) :
∂(ρ(0)w( 1

2 ))

∂z
− ∂ ~X

( 1
2 )

C

∂z
· ~̂∇h(ρ

(0)w( 1
2 )) = 0 (3.30)

From first principles, (3.30) describes the change of mass flux experienced by a

material element displaced vertically. Due to the transformation from a frame

of reference fixed at the earth into a co-moving frame of reference whose origin

is located at a tilted vortex-centreline, this change of mass flux appears in the

equations as a sum of two contributions, i.e. the change of vertical mass flux

experienced by a material element displaced along any line parallel to the first

correction of the vortex centreline (∂/∂z for a fixed r, θ, τ) and a change of mass

flux from a horizontal displacement (
~̂∇h for a fixed z, τ). Due to the zero right

hand side of (3.30) the mass flux (ρ(0)w( 1
2 )) remains conserved with respect to

vertical displacements. Thus by choosing the boundary conditions w( 1
2 ) = 0 at

z = 0 it follows immediately that

w( 1
2 ) = 0 , ∀ z (3.31)

From the next two orders of the mass continuity equation, same reasoning yields

O(ε
j
2 ) : w( j+1

2 ) = 0, j = 1, 2 (3.32)

Horizontal momentum equations:

O(ε−
i
2 ) :

~̂∇hp
( i
2 ) = 0, i = 0, 1, 2, ..., 5 (3.33)
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Vertical momentum equation:

O(ε−
8
2 ...−

3
2 ) :

∂p( j
2 )

∂z
= −ρ( j

2 ), j = 0, 1, 2, ..., 5 (3.34)

Note, from the leading order hydrostatic conditions (3.34) together with (3.33)

it follows immediately

~̌∇ρ( i
2 ) = 0, i = 0, 1, 2, ..., 5 (3.35)

State equation:

An overview about the O(ε
i
2 ) state equations is given in Appendix A.3. It

can easily be checked that with the aid of (3.35) together with (3.33) it follows

immediately that

O(ε
i
2 ) : ~̌∇Θ( i

2 ) = 0, i = 0, 1, 2, ..., 5 (3.36)

Potential temperature equation:

From (3.31), (3.32) and (3.36) one obtains

O(ε
i
2 ) : S( i

2 ) = 0, i = 0, 1, 2, ..., 6 (3.37)

Upon substitution of (3.37) into the diabatic source term expansion (3.29) it

turns out that O(ε
7
2 ) source terms become important if mesoscale vortices are

studied. In particular, it is shown in Section 3.4.1 that S( 7
2 ) describes heating

of about 20 K / day.

First few non-trivial equations We shall next present higher order asymp-

totic equations of (3.13). Here we already use the matching results ρ( 1
2 ) = 0,

∂ρ(0)/∂τ = 0 and ∂Θ( 4
2 )/∂τ = 0, ∂Θ( 5

2 )/∂z = 0 which will be discussed in more

details in Subsection 3.3.1.

Horizontal momentum equations:

O(ε
1
2 ) : ~v

(0)
rel ·

~̂∇h~v
(0)
rel +

~̂∇hp
( 6
2 )

ρ(0)
+ (~Ω(0) × ~v

(0)
rel)h = 0 (3.38)

With ~v
(0)
rel = ~eθ u

(0)
θ (r, z, τ) (see (3.19)), ~Ω(0) = Ω

(0)
h
~j + Ω0

~k (see (3.28)),

and
~̂∇h given by (3.11)1, the component equations in ~er and ~eθ direction read
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respectively

~er :
1

ρ(0)

∂p( 6
2 )

∂r
− u

(0)2

θ

r
− Ω0u

(0)
θ = 0

~eθ :
∂p( 6

2 )

∂θ
= 0

(3.39)

O(ε
2
2 ) : w( 4

2 ) ∂~v
(0)
rel

∂z
− w( 4

2 ) ∂
~X

( 1
2 )

C

∂z
· ~̂∇h~v

(0)
rel + ~v

(0)
rel ·

~̂∇h~v
( 1
2 )

rel +

~v
( 1
2 )

rel ·
~̂∇h~v

(0)
rel +

~̂∇hp
( 7
2 )

ρ(0)
+ (~Ω(0) × (~V

(0)
C + ~v

( 1
2 )

rel ))h = 0 (3.40)

Here, the horizontal velocity vectors are defined through ~v
(0)
rel = ~eθ u

(0)
θ (r, z, τ)

and ~v
( 1
2 )

rel = ~er u
( 1
2 )
r + ~eθ u

( 1
2 )

θ . Recall that the centreline vector ~XC = ~XC(z, τ)

is given in cartesian coordinates, i.e. ~XC = ~i XC + ~j YC . Then, together

with τ1 = τ , the definition for the centreline motion (3.6)1, the relation (3.12),

the leading order earth rotation vector ~Ω(0) = Ω
(0)
h
~j + Ω0

~k (see (3.28)), the

horizontal operator
~̂∇h given through (3.11)1, and the following abbreviations

Λja = −∂X
( j
2 )

C

∂z
sin θ +

∂Y
( j
2 )

C

∂z
cos θ

Λjb = +
∂X

( j
2 )

C

∂z
cos θ +

∂Y
( j
2 )

C

∂z
sin θ

(3.41)

for j = 0, 1, 2, ..., n and

Πj
a = U

( j
2 )

C sin θ − V
( j
2 )

C cos θ

Πj
b = U

( j
2 )

C cos θ + V
( j
2 )

C sin θ ,

(3.42)

one obtains from the above O(ε
2
2 ) horizontal momentum equation in ~er and ~eθ

direction, respectively

~er : Λ1
a

w( 4
2 ) u

(0)
θ

r
+
u

(0)
θ

r

∂u
( 1
2 )
r

∂θ
− 2u

(0)
θ u

( 1
2 )

θ

r
+

1

ρ(0)

∂p( 7
2 )

∂r
+

Ω0Π
0
a − Ω0u

( 1
2 )

θ = 0

~eθ : w( 4
2 ) ∂u

(0)
θ

∂z
− Λ1

b w
( 4
2 ) ∂u

(0)
θ

∂r
+ u

( 1
2 )
r

∂u
(0)
θ

∂r
+ u

( 1
2 )
r

u
(0)
θ

r
+

u
(0)
θ

r

∂u
( 1
2 )

θ

∂θ
+

1

r ρ(0)

∂p( 7
2 )

∂θ
+ Ω0Π

0
b + Ω0u

( 1
2 )
r = 0

(3.43)
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O(ε
3
2 ) :

∂~v
(0)
rel

∂τ
+ w( 4

2 ) ∂~v
( 1
2 )

rel

∂z
+ w( 5

2 ) ∂~v
(0)
rel

∂z
− w( 5

2 ) ∂
~X

( 1
2 )

C

∂z
· ~̂∇h~v

(0)
rel −

w( 4
2 ) ∂

~X
( 2
2 )

C

∂z
· ~̂∇h~v

(0)
rel − w( 4

2 ) ∂
~X

( 1
2 )

C

∂z
· ~̂∇h~v

( 1
2 )

rel + ~v
(0)
rel ·

~̂∇h~v
( 2
2 )

rel +

~v
( 1
2 )

rel ·
~̂∇h~v

( 1
2 )

rel + ~v
( 2
2 )

rel ·
~̂∇h~v

(0)
rel +

~̂∇hp
( 8
2 )

ρ(0)
− ρ( 2

2 ) ~̂∇hp
( 6
2 )

ρ(0)2
+

(~Ω(0) × (~V
( 1
2 )

C + ~v
( 2
2 )

rel ))h + (~Ω(1) × ~v
(0)
rel)h = 0

Here, the horizontal velocity vectors are defined through ~v
(0)
rel = ~eθ u

(0)
θ (r, z, τ)

and ~v
( i
2 )

rel = ~er u
( 1
2 )
r + ~eθ u

( i
2 )

θ with i = 1, 2. Taking into account that ~Ω(1) =

Ω
(1)
h
~j + βY

(0)
C
~k (see (3.28)) and that p( 6

2 ) = p( 6
2 )(r, z, τ) (see (3.39)2), together

with the abbreviations (3.41) - (3.42) one obtains

~er : w( 4
2 ) ∂u

( 1
2 )
r

∂z
− Λ1

b w
( 4
2 ) ∂u

( 1
2 )
r

∂r
− Λ1

a w
( 4
2 ) 1

r

∂u
( 1
2 )
r

∂θ
+

Λ1
a w

( 5
2 )u

(0)
θ

r
+ Λ1

a w
( 4
2 )u

( 1
2 )

θ

r
+ Λ2

a w
( 4
2 )u

(0)
θ

r
+ u

( 1
2 )
r

∂u
( 1
2 )
r

∂r
+

u
( 1
2 )

θ

r

∂u
( 1
2 )
r

∂θ
+
u

(0)
θ

r

∂u
( 2
2 )
r

∂θ
− u

( 1
2 )2

θ

r
− 2u

(0)
θ u

( 2
2 )

θ

r
+

1

ρ(0)

∂p( 8
2 )

∂r
−

ρ( 2
2 )

ρ(0)2

∂p( 6
2 )

∂r
+ Ω0Π

1
a − Ω0u

( 2
2 )

θ − u
(0)
θ βY (0) = 0 (3.44)

~eθ :
∂u

(0)
θ

∂τ
+ w( 5

2 ) ∂u
(0)
θ

∂z
+ w( 4

2 ) ∂u
( 1
2 )

θ

∂z
− Λ1

b w
( 5
2 ) ∂u

(0)
θ

∂r
−

Λ1
bw

( 4
2 ) ∂u

( 1
2 )

θ

∂r
− Λ2

bw
( 4
2 ) ∂u

(0)
θ

∂r
− Λ1

a w
( 4
2 )u

( 1
2 )
r

r
− Λ1

a w
( 4
2 ) 1

r

∂u
( 1
2 )

θ

∂θ
+

u
( 1
2 )
r

∂u
( 1
2 )

θ

∂r
+ u

( 1
2 )
r

u
( 1
2 )

θ

r
+ u

( 2
2 )
r

∂u
(0)
θ

∂r
+ u

( 2
2 )
r

u
(0)
θ

r
+

u
(0)
θ

r

∂u
( 2
2 )

θ

∂θ
+
u

( 1
2 )

θ

r

∂u
( 1
2 )

θ

∂θ
+

1

rρ(0)

∂p( 8
2 )

∂θ
+ Ω0Π

1
b + Ω0u

( 2
2 )
r = 0 (3.45)

Vertical momentum equations:

O(ε−
2
2 ) :

∂p( 6
2 )

∂z
− Λ1

b

∂p( 6
2 )

∂r
= −ρ( 6

2 ) (3.46)
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O(ε−
1
2 ) :

∂p( 7
2 )

∂z
− Λ1

b

∂p( 7
2 )

∂r
− Λ1

a

1

r

∂p( 7
2 )

∂θ
− Λ2

b

∂p( 6
2 )

∂r
= −ρ( 7

2 ) (3.47)

Mass continuity:

O(ε
3
2 ) :

~̂∇h · (ρ(0)~v
( 1
2 )

rel ) +
∂(ρ(0)w( 4

2 ))

∂z
− ∂ ~X

( 1
2 )

C

∂z
· ~̂∇h(ρ

(0)w( 4
2 )) = 0 (3.48)

Note that ρ(0) = ρ(0)(z) (see (3.35) and matching conditions), and that in

general the horizontal divergence
~̂∇h · ~v( i

2 )

rel in cylindrical coordinates reads

~̂∇h · ~v( i
2 )

rel =

(

∂u
( i
2 )
r

∂r
+
u

( i
2 )
r

r
+

1

r

∂u
( i
2 )

θ

∂θ

)

, i = 1, 2, ..., n (3.49)

Hence, together with the abbreviations (3.41) the above O(ε
3
2 ) mass continuity

takes the form

ρ(0)

(

∂u
( 1
2 )
r

∂r
+
u

( 1
2 )
r

r
+

1

r

∂u
( 1
2 )

θ

∂θ

)

+
∂(ρ(0)w( 4

2 ))

∂z
−

Λ1
b

∂(ρ(0)w( 4
2 ))

∂r
− Λ1

a

1

r

∂(ρ(0)w( 4
2 ))

∂θ
= 0 (3.50)

O(ε
4
2 ) :

~̂∇h · (ρ(0)~v
( 2
2 )

rel ) +
∂(ρ(0)w( 5

2 ))

∂z
− ∂ ~X

( 2
2 )

C

∂z
· ~̂∇h(ρ

(0)w( 4
2 )) −

∂ ~X
( 1
2 )

C

∂z
· ~̂∇h(ρ

(0)w( 5
2 )) = 0 (3.51)

Same reasonings as for the O(ε
3
2 ) mass continuity yield

ρ(0)

(

∂u
( 2
2 )
r

∂r
+
u

( 2
2 )
r

r
+

1

r

∂u
( 2
2 )

θ

∂θ

)

+
∂(ρ(0)w( 5

2 ))

∂z
− Λ2

b

∂(ρ(0)w( 4
2 ))

∂r
−

Λ2
a

1

r

∂(ρ(0)w( 4
2 ))

∂θ
− Λ1

b

∂(ρ(0)w( 5
2 ))

∂r
− Λ1

a

1

r

∂(ρ(0)w( 5
2 ))

∂θ
= 0 (3.52)

Potential temperature equations:

O(ε
7
2 ) : w( 4

2 ) ∂Θ( 4
2 )

∂z
= S( 7

2 ) (3.53)
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O(ε
8
2 ) : ~v

(0)
rel ·

~̂∇hΘ
( 6
2 )

︸ ︷︷ ︸

u
(0)
θ

r

∂Θ( 6
2 )

∂θ

+ w( 5
2 ) ∂Θ( 4

2 )

∂z
= S( 8

2 ) (3.54)

O(ε
9
2 ) : ~v

(0)
rel ·

~̂∇hΘ
( 7
2 ) + ~v

( 1
2 )

rel ·
~̂∇hΘ

( 6
2 ) + w( 4

2 ) ∂Θ( 6
2 )

∂z
+

w( 6
2 ) ∂Θ( 4

2 )

∂z
− w( 4

2 ) ∂
~X

( 1
2 )

C

∂z
· ~̂∇hΘ

( 6
2 ) = S( 9

2 ) (3.55)

or

u
(0)
θ

1

r

∂Θ( 7
2 )

∂θ
+ u

( 1
2 )
r

∂Θ( 6
2 )

∂r
+ u

( 1
2 )

θ

1

r

∂Θ( 6
2 )

∂θ
+ w( 4

2 ) ∂Θ( 6
2 )

∂z
+

w( 6
2 ) ∂Θ( 4

2 )

∂z
− Λ1

bw
( 4
2 ) ∂Θ( 6

2 )

∂r
− Λ1

aw
( 4
2 ) 1

r

∂Θ( 6
2 )

∂θ
= S( 9

2 ) (3.56)

3.1.4 Further mathematical tools

As noted earlier, a detailed discussion of the asymptotic equations specified in

the previous subsection will be carried in the Chapters 4 and 5 for adiabatic

and diabatic vortices, respectively. In doing so further mathematical analysis

techniques shall be employed. A short introduction into them is given next.

Harmonic analysis To find solutions from the reduced equations specified

in Section 3.1.3 the technique of harmonic analysis is utilized. Recall that

the dependent variables ρ( i
2 ), p( i

2 ),Θ( i
2 ), etc. are described in a (r, θ, z, τ) space.

Thus its perodicity in θ allows to replace each variable by its Fourier series,

which means in general

a(r, θ, z, τ) = a0 +

n∑

j=1

(aj1 sin(jθ) + aj2 cos(jθ)) (3.57)

with a ∈ {ρ( i
2 ), p( i

2 ),Θ( i
2 ), w( i

2 ), ~v
( i
2 )

rel }. The coefficients a0, aj1 and aj2 are the

Fourier coefficients (or harmonics) of a and can be determined through

a0(r) =
1

2π

∫ 2π

0

a(r, θ, z, τ) dθ

aj1(r) =
1

2π

∫ 2π

0

a(r, θ, z, τ) sin(jθ) dθ

aj2(r) =
1

2π

∫ 2π

0

a(r, θ, z, τ) cos(jθ) dθ

(3.58)
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Helmholtz’s Theorem Taking advantage of Helmholtz’s theorem the expan-

sion terms of the horizontal velocity vector ~v
( j
2 )

rel = (u
( j
2 )
r , u

( j
2 )

θ ) will be considered

as a sum of two vectors, i.e.

~v
( j
2 )

rel = ~v
nd( j

2 )

rel + ~v
d( j

2 )

rel = (u
nd( j

2 )
r , u

nd( j
2 )

θ ) + (u
d( j

2 )
r , u

d( j
2 )

θ ) (3.59)

The superscript (nd) denotes a solenoidal vector satisfying
~̂∇·~v nd( j

2 )

rel = 0 which

allows the definition of a stream function, i.e.

(u
nd( j

2 )
r , u

nd( 1
2 )

θ ) =

(

1

r

∂ψ( j
2 )

∂θ
,−∂ψ

( j
2 )

∂r

)

(3.60)

The superscript (d) denotes an irrotational vector satisfying
~̂∇×~v d( j

2 )

rel = 0 that

allows the introduction of a velocity potential, i.e.

(u
d( j

2 )
r , u

d( 1
2 )

θ ) =

(

∂φ( j
2 )

∂r
,
1

r

∂φ( j
2 )

∂θ

)

(3.61)

Applying (3.58) to the Fourier decomposition of u
nd( j

2 )
r and u

d( j
2 )

θ yields for

the zeroth modes

u
nd( j

2 )
r,0 = 0, u

d( j
2 )

θ,0 = 0 (3.62)

and the asymmetric components of u
( j
2 )
r and u

( j
2 )

θ in terms of the stream function

ψ( j
2 ) and velocity potential φ( j

2 ) read

u
( j
2 )

θ,11 = u
nd( j

2 )

θ,11 + u
d( j

2 )

θ,11 = −∂ψ
( j
2 )

11

∂r
− φ

( j
2 )

12

r

u
( j
2 )

θ,12 = u
nd( j

2 )

θ,12 + u
d( j

2 )

θ,12 = −∂ψ
( j
2 )

12

∂r
+
φ

( j
2 )

11

r

u
( j
2 )
r,11 = u

nd( j
2 )

r,11 + u
d( j

2 )
r,11 = −ψ

( j
2 )

12

r
+
∂φ

( j
2 )

11

∂r

u
( j
2 )
r,12 = u

nd( j
2 )

r,12 + u
d( j

2 )
r,12 = +

ψ
( j
2 )

11

r
+
∂φ

( j
2 )

12

∂r

(3.63)

3.2 Synoptic-scale regime

As shown in Section 2.4.1 first applications of the unified approach to mete-

orological modelling were based on a re-derivation of well-known reduced mod-

els in theoretical meteorology. Here the quasi-geostrophic (QG) theory is in-

cluded, which is known as a relatively accurate approximation for synoptic-
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scale atmospheric motions in which the Rossby number2 is less than unity

(Pedlosky, 1987). A brief review about the most important results yielding

QG-theory from an asymptotic perspective will be given in Section 3.2.1. In

Section 3.2.2 it is assumed that in synoptic scales, three-dimensional mesoscale

vortices studied in the present work can be treated as line vortices denoting

an anomaly from the synoptic scale three-dimensional quasi-geostrophic poten-

tial vorticity. Appropriate singular vortex solutions will be derived, which will

serve as outer solutions for matching. Moreover, the inclusion of a regular

flow will account for the impact of meridional variations of the Coriolis para-

meter Ω0 (β effect) on the ambient vortex flow. Note, that the discussions in

Section 3.2.2 are strongly related to the works of Reznik (1992) and Callegari

& Ting (1978).

3.2.1 Unified Approach and QG-theory

Considering synoptic-scale flows the characteristic length scale of motion is given

by the internal deformation radius LS = 1000 km ∼ ε−2 hsc. Hence, on account

of the stretching transformations (2.23) an appropriate expansion Ansatz for an

asymptotic analysis of the governing equations (2.19) with respect to synoptic

scales, reads

Ǔ =
∑

i∈N

εiǓ (i)(ε2t, ε2~x, z) =
∑

i∈N

εiǓ (i)(τ, ~η, z) (3.64)

with Ǔ ∈ {~̌vh, w̌, ρ̌, p̌, Θ̌}. Here, ~η = (η1, η2) = (ε2x, ε2y) denote the new

stretched coordinates. Note that the notation (̌.) is used hereafter in order to

indicate dependent variables resolved with respect to synoptic-scales.

It has been shown by Klein (2004) that inserting Ansatz (3.64) into the Euler

equations (2.19) yields the QG-theory, which in absence of heating (i.e. S = 0)

describes conservation of the quasigeostrophic potential vorticity q̌ along parcel

trajectories, i.e.

dq̌

dτ
= 0 with q̌ = ζ̌(0) + βη2 +

Ω0

ρ̌(0)

∂

∂z

(

ρ̌(0)Θ̌(3)

dΘ̌(2)

dz

)

(3.65)

Here, the total time derivative is given by

d

dτ
=

∂

∂τ
+ ~̌v(0)

g · ~̌∇h . (3.66)

2In order to study large scale motions which are significantly influenced by the earth’s
rotation, Pedlosky defines the Rossby number by RoL = U/(2ΩLS) with U = 10 m/s and
LS = 1000 km, such that RoL ≤ 1. Note, in the framework of the unified approach to
meteorological modelling the Rossby number Rohsc

is defined by (2.10)3.
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In terms of the stretched coordinate ~η = (η1, η2), the Nabla operator reads
~̌∇h =~i ∂/∂η1 +~j ∂/∂η2. Note, in 3D the quasigeostrophic potential vorticity q̌

is comprised of three terms: a) the vertical component of the relative vorticity

given by ζ̌(0) = ∂v̌
(0)
g /∂η1 − ∂ǔ

(0)
g /∂η2, b) the vorticity due to the earth rotation,

i.e. βη2, and c) a vorticity stretching term associated with a nonconstant strat-

ification on the vertical given by (Ω0/ρ̌
(0))(∂z(ρ̌

(0)Θ̌(3)/∂zΘ̌
(2))). Leading order

advection in (3.66) is realized by the geostrophic wind ~̌v
(0)
g = (ǔ

(0)
g , v̌

(0)
g ) which

is a result of a two way balance between the Coriolis force and the horizontal

pressure gradient force

Ω0
~k × ~̌v(0)

g = − 1

ρ̌(0)
~̌∇hp̌

(3) (3.67)

Note, that based on Ansatz (3.65) the equation (3.67) is an O(ε−1) equation of

the horizontal momentum equation (2.19)2.

Further results primarily obtained from the O(ε−i) equations (with i =

0, 1, 2) of the mass continuity (2.19)1, are that the vertical velocity can be ex-

panded as

w̌ = ε3w̌(3) + ε4w̌(4) + O(ε4) (3.68)

and that ~̌v
(0)
g satisfies the incompressibility condition, i.e.

~̌∇ · ~̌v(0)
g = 0 (3.69)

An asymptotic expansion of the vertical momentum equation yields hydrostatic

up to the fourth order, i.e.

∂p̌(i)

∂z
= −ρ̌(i), i = 0, 1, ..., 4 (3.70)

with p̌(i) = p̌(i)(z) and ρ̌(i) = ρ̌(i)(z). By means of the state equation one gets

Θ̌(3) satisfying the QG hydrostatic equation

Θ̌(3)

Θ̌∞

=
∂

∂z

(
p̌(3)

ρ̌(0)

)

(3.71)

Here it has been assumed that the potential temperature Θ̌ has the asymptotic

expansion

Θ̌ = Θ∞ + ε2Θ̌(2)(z) + ε3Θ̌(3)(~η, z, τ) + O(ε4) (3.72)

In particular, Klein (2004) has shown that this is an appropriate temperature

scaling with respect to synoptic scales. Taking the incompressibility condition

(3.69) and the hydrostatic condition (3.71) into account a stream function can
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be introduced, which is defined by

~̌v(0)
g =

(

∂ψ̌
(0)
g

∂η2
,−∂ψ̌

(0)
g

∂η1

)

, ψ̌(0)
g = − p̌(3)

Ω0ρ̌(0)
(3.73)

Using (3.73), the quasigeostrophic vorticity equation (3.65) can be written as

∂q̌1
∂τ

− J(ψ̌(0)
g , q̌1) −

∂ψ̌
(0)
g

∂η1
β = 0 (3.74)

with

q̌1 = − ~̌∇2ψ̌(0)
g − Ω2

0Θ∞

ρ̌(0)

∂

∂z




ρ̌(0) ∂ψ̌

(0)
g

∂z

dΘ̌(2)

dz



 (3.75)

The Jacobian in (3.74) is given by J(ψ̌
(0)
g , q̌1) =

(
∂ψ̌(0)

g

∂η1

∂q̌1
∂η2

− ∂ψ̌(0)
g

∂η2

∂q̌1
∂η1

)

. The

horizontal Laplacian of the geostrophic stream function gives the relative vor-

ticity, i.e. ~̌∇2ψ̌
(0)
g = −ζ̌(0). For more details regarding the asymptotic analysis

based on Ansatz (3.64) the reader is refered to (Klein & Vater, 2004).

3.2.2 Singular Vortex theory

A number of studies regarding interactions of concentrated small-scale vor-

tices and large scale environmental flows under the simplifying assumption of

barotropic atmospheric conditions (two-dimensional flows), are based on the

idea of representing distributed small-scale vortices by point vortices that de-

note an anomaly from the background quasigeostrophic vorticity (Morikawa,

1960; Egger 1992; Reznik, 1992). A justification for such an approach is given

by the fact that the vorticity of real atmospheric vortices often exceeds the

background vorticity. Moreover, an important advantage of studying point vor-

tices rather than distributed regular vortices lies in the ease with which many

mathematical operations can be handled.

One purpose of this work is to show, however, that the point vortex approach

alone has the disadvantage that effects produced by the small scale vortex flow

are partially excluded, but which may be of central importance to the entire

flow evolution including the vortex motion. In Chapters 4 and 5 it will be

shown that the method of matched asymptotics is a useful tool that allows

one to include these effects. Using this method, however, does not mean that

we reject the theory of point vortices. Indeed we use the concept of point

vortices and derive in Subsection 3.2.2.1 so called outer vortex solutions valid

on synoptic scales. Later on, matching the outer vortex solutions with the

inner vortex solutions obtained from the mesoscale asymptotic Ansatz (3.7),

38



yields approximate vortex solutions that give insight into the manner in which

scale-interactions between the mesoscale vortex flow itself and a synoptic scale

environmental flow govern the entire flow evolution.

For the derivation of outer vortex solutions this thesis resorts to a singular-

vortex theory for geostrophic, beta-plane dynamics which is proposed in Reznik

(1992). Considering two-dimensional flows governed by the equivalent barotropic

quasigeostrophic vorticity equation3 Reznik managed to show that owing to the

β-effect, the redistribution of the background potential vorticity induced by the

vortex flow itself, generates a regular field in addition to the velocity field in-

duced by the vortices themselves. Furthermore he found analytically that for

an individual vortex this regular field affects the vortex trajectory. A short in-

troduction of this topic is given in Subsection 3.2.2.3. Note that it is shown

in this thesis that matched asymptotics gives an opportunity to include the net

effects of the mesoscale vortex structure in addition to the effect of a regular

flow on the vortex motion as shown by Reznik (1992).

In analogy to Reznik’s approach and using the principle of superposition,

the total geostrophic stream function ψ̆
(0)
g in (3.74) will be given by a sum of

three contributions

ψ̌(0)
g = Ψ̌

(0)
B + ψ̌′ = Ψ̌

(0)
B + ψ̌(0)

s + ψ̌(0)
r (3.76)

Here, Ψ̌
(0)
B denotes a background flow and ψ̌′ a localized vortex flow which is

again regarded as a sum of two terms, namely a singular component ψ̌
(0)
s and

a regular component ψ̌
(0)
r . Then the quasigeostrophic potential vorticity q̌ in

(3.65) is given by

q̌ = q̌B + q̌s + q̌r (3.77)

Note, that Ψ̌
(0)
B in (3.76) denotes the leading order term of an asymptotic

expansion of the background flow in which the vortex is embedded in. In general

it is assumed that the background flow has the following asymptotic expansion

Ψ̌B(~η, z, τ) = Ψ̌
(0)
B (~η, z, τ) + ε

1
2 Ψ̌

( 1
2 )

B (~η, z, τ) + O(ε
2
2 ) , (3.78)

whereas each single expansion term Ψ̌
( i
2 )

B (i = 0,1,2,...) is assumed to be given.

3The atmosphere is refered to be in an equivalent barotropic state if the temperature
gradients are such that the isotherms are parallel to the isotherms. On a β-plane the equation
of barotropic flow under zero forcing is given by ∂τ q + β∂xψ + J(ψ, q) = 0 with q = ∇2ψ.
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Figure 3.4: Schematic diagram showing the idealized representation of a
mesoscale vortex by a line vortex embedded in an synoptic scale environmental
flow; see the text for further explanations

3.2.2.1 Leading order line vortex solutions

By similar arguments that support the concept of representing mesoscale vor-

tices by point vortices in two-dimensional and large scale flows, localized meso-

scale vortices in three dimensions can be represented by the so called line vor-

tices. In particular it is assumed that the distributed vortex (or vortex-tube)

with respect to mesoscales contracts on to a curve with the strength of the

vortex-tube remaining constant. Then, the line denotes a line singularity of the

whole vorticity distribution. Figure 3.4 is a schematic diagram of this situ-

ation. Note, the position of the line vortex described by the position vector
~XC = (XC , YC) (see Section 3.1.1) coincides with the position of the vortex-

centreline displayed in Figure 3.3. Then, singular vortex solutions ψ̌
(0)
s de-

scribing the induced flow in the neighbourhood of the line vortex, satisfy the

nonhomogeneous equation

− ~̌∇2ψ̌(0)
s − Ω2

0Θ∞

ρ̌(0)

∂

∂z




ρ̌(0) ∂ψ̌

(0)
s

∂z

dΘ̌(2)

dz



 = q̌s , (3.79)

with ~̌∇2 = ∂2/∂η2
1 + ∂2/∂η2

2 and where the concentration of the source q̌s is

located at the vortex centreline ~XC = ~XC(z, τ), i.e.

q̌s =
Γ

2π
δ(~η − ~XC(z, τ))

=
Γ

2π
δ(η1 −XC(z, τ)) δ(η2 − YC(z, τ)) (3.80)

Here, Γ denotes the circulation of the velocity field ǔθ = −∂ψ̌(0)
s /∂ř along a
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closed curve CΓ surrounding the line vortex, i.e. Γ =
∮

CΓ
ǔθ ds. The Kronecker

delta defines a two dimensional Dirac delta function with δ(~η − ~XC) = 0 for

~η 6= ~XC . Introducing the relative vector ~̌r = ~η − ~XC(z, τ) as a new coordinate

with | ~̌r | = ř representing a synoptic scale radial distance from ~η = ~XC(z, τ),

solutions for (3.79) in the vicinity of the line source (ř → 0), to a first approxi-

mation, are

ψ̌
(0)
s,0 (ř, z, τ) = −Γ(z, τ)

2π
ln ř as ř → 0

ψ̌
(0)
s,1k (ř, z, τ) =

c1
4

1

ř
Zs,1k(z, τ) as ř → 0

(3.81)

Here, ψ̌
(0)
s,0 denotes the axissymmetric contribution of ψ̌

(0)
s and ψ̌

(0)
s,1k its first

Fourier coefficients (see Subsection 3.1.4). Note, the sign of Γ gives the sense

of the circulation: for Γ < 0 it is clockwise (anticyclonic) and for Γ > 0 it

is anticlockwise (cyclonic). See Appendix A.4 for details on how (3.81) is

obtained from (3.79) and the meaning of Zs,1k(z, τ) and c1.

3.2.2.2 Regular flow

The regular flow ψ̌
(0)
r satisfies the nonhomogeneous problem

− ~̌∇2ψ̌(0)
r − Ω2

0Θ∞

ρ̌(0)

∂

∂z

(

ρ̌(0)

Θ̌
(2)
z

∂ψ̌
(0)
r

∂z

)

− βη2 = q̌r (3.82)

For a given PV distribution q̌r and boundary conditions, solutions for ψ̌r can

be obtained. Since ψ̌r defined by (3.73) satisfies the balance conditions (3.67)

and (3.71), solutions for ψ̌r can be used to retrieve associated pressure and

temperature fields. Such a solution algorithm is referred to as the invertibility

principle.

3.2.2.3 Equations for the vortex motion: Reznik’s approach

As noted earlier, using the theory of singular vortices on the equivalent barotropic

quasigeostrophic vorticity equation, Reznik (1992) managed to show that the

large scale vortex motion is nontrivially affected by a regular flow, which is due

to the β - effect generated by the vortex flow itself. A brief introduction into

Reznik’s technique for the derivation of equations for the vortex motion is now

given. Later on, this turns out to be helpful for a comparison of the results for

the vortex motion obtained by Reznik’s technique and the technique of matched

asymptotics used in the present work.

According to Reznik’s approach, equations for the vortex motion can be de-

rived upon substituting ψ̌′ = ψ̌r+ψ̌s (see (3.76)) into (3.74) and equating to zero
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the regular part and the parts proportional to δ′κ(η1 −X
(0)
C (τ)) δ(η2 − Y

(0)
C (τ))

and δ(η1−X(0)
C (τ)) δ′κ(η2−Y

(0)
C (τ)), where δ′κ is the derivative of the Dirac delta

function with respect to κ ∈ {τ, η1, η2}. Additionally, imposing a prescribed

background flow Ψ̌
(0)
B , then the following equations for the vortex motion can

be derived (see Appendix A.5)

dX
(0)
C

dτ
= U

(0)
C = −∂(Ψ̌

(0)
B + ψ̌

(0)
r )

∂η2
dY

(0)
C

dτ
= V

(0)
C = +

∂(Ψ̌
(0)
B + ψ̌

(0)
r )

∂η1

(3.83)

Moreover, an equation for the evolution of the regular flow can be derived

∂q̌r
∂τ

− β
∂ψ̌

(0)
r

∂η1
− J(ψ̌(0)

r , q̌r) + J((q̌r + βη2), ψ̌
(0)
s ) = 0 (3.84)

where solutions for ψ̌
(0)
s are given through (3.81). Solving (3.84) together with

(3.82) and appropriate initial/boundary conditions, yields solutions for ψ̌
(0)
r as

functions on β and ψ̌
(0)
s , which in turn yield via (3.83) solutions for the vortex

motion (U
(0)
C , V

(0)
C ). In Chapters 4 and 5 it is shown that the inclusion of

mesoscale vortex solutions via matching, yields a third contribution on the right

hand side of (3.83) that affects the vortex motion.

3.3 Matching conditions

The underlying idea of the method of matched asymptotic expansions has al-

ready been explained in Section 2.4.2. In this section the general matching

criterion (2.26) is used to obtain particular matching conditions for the velocity,

potential temperature and pressure fields describing the vortex under consider-

ation from an meso- and synoptic scale perspective, respectively. In the previ-

ous Sections 3.1 and 3.2 asymptotic expansions and the necessary stretching

transformations to obtain vortex solutions valid on meso- and synoptic scale

have been discussed. The general matching criterion defined with respect to the

co-moving frame of reference that guarantees that the inner (see (3.7)) mesoscale

and outer (see (3.64)) synoptic scale solutions U ∈ {~vh, w, p, ρ,Θ} give in their

transition region the same results, is given by

∑

i∈N

ε
i
2 U (i)

(

ε2t, ε
3
2−λ~χ, z

)

=
∑

i∈N

εi Ǔ (i)
(

ε2t, ~XC(z, ε2t) + ε2−λ~χ, z
)

(3.85)

Here ~XC = ε2~X
′

C denotes the synoptic scale centreline coordinate (see (3.3)1)

and ~χ = (χ1, χ2) = (ελx̂′, ελŷ′) with 3/2 < λ < 2 denotes an intermediate coor-
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Figure 3.5: top left: distributed vortex w.r.t. mesoscale whose inner solutions
are assumed to have the expansion (3.7), top right: line vortex w.r.t. synoptic
scale whose outer solutions are assumed to have the expansion (3.64)), bot-
tom: Schematic representation of the domains of validity of the inner and outer

expansions, where the highlighted region marks the transition region resolved
by the ’overlap’ lengthscale ~χ = ελ~xrel (with ~xrel = ~̂x) and which is located
between meso- and synoptic scales.
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dinate describing an ’overlap’ lengthscale between the meso- and synoptic scale.

Note that to change the coordinates in the outer expansion from ~η to ~χ the

transformation equation (3.2) into the co-moving frame of reference has been

used. To simplify things we choose a crude way to do the matching by setting

λ = 3/2, which implies immediately that ~̂x = ~χ (see the stretching transforma-

tion (3.3)2), i.e. the intermediate coordinate is equal to the inner coordinates

resolving the mesoscale. In doing so (3.85) becomes

∑

i∈N

ε
i
2 U (i)

(

ε2t, ~̂x, z
)

=
∑

i∈N

εi Ǔ (i)
(

ε2t, ~XC(z, ε2t) + ε
1
2 ~̂x, z

)

(3.86)

3.3.1 Horizontal velocity field

In Section 3.2.1 it has been shown that the leading order outer velocity ~̌v(0)

satisfies the geostrophic wind balance (3.67) such that ~̌v(0) = ~̌v
(0)
g . Moreover it

has been shown that the incompressibility condition (3.69) allows us to introduce

a so called geostrophic stream function ψ̌
(0)
g = ψ̌

(0)
g (~η, z, τ) which in turn is

decomposed into three contributions representing the background flow (Ψ̌
(0)
B ),

the regular flow (ψ̌
(0)
r ), and the singular flow (ψ̌

(0)
s ) (see (3.76)), where ψ̌

(0)
s

is induced by the vortex itself that appears as a line vortex with respect to

synoptic scales.

Recall that for matching purposes the outer solutions are expressed as func-

tions on the intermediate coordinate ~χ = ~̂x (see (3.86)). This means that a

general outer stream function ψ̌d = ψ̌d(~η, z, τ) with d ∈ {B, r} is considered in

the following way

ψ̌d(~η, z, τ) = ψ̌d

(

~XC(z, τ) + ε
1
2 ~̂x, z, τ

)

(3.87)

with τ = ε2t (see (3.4)1) and ~η = (η1, η2). Taking the centreline expansion

(3.20) into account and using the transformation equations (3.9) for cartesian

(x̂1, x̂2) into cylindrical coordinates (r, θ), equation (3.87) takes the form

ψ̌d(~η, z, τ) = ψ̌d(X
(0)
C + δ1, Y

(0)
C + δ2, z, τ) (3.88)

with

δ1 = ε
1
2

(

X
( 1
2 )

C + r cos θ
)

+ O(ε
2
2 )

δ2 = ε
1
2

(

Y
( 1
2 )

C + r sin θ
)

+ O(ε
2
2 )

(3.89)

Then, Taylor expansion of (3.88) around ~X
(0)
C = (X

(0)
C , Y

(0)
C ) yields

ψ̌d(η1, η2, z) = ψ̌d( ~X
(0)
C , z) + δ1

∂ψ̌d
∂η1

∣
∣
∣
∣
~η= ~X

(0)
C

+ δ2
∂ψd
∂η2

∣
∣
∣
∣
~η= ~X

(0)
C

+ O(ε
2
2 ) (3.90)
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With the aid of (3.73) the velocity of the background and regular flow are given

by

~V
( i
2 )

B = (U
( i
2 )

B , V
( i
2 )

B ) =

(

∂Ψ̌
( i
2 )

B

∂η2
,−∂Ψ̌

( i
2 )

B

∂η1

)

, i = 0, 1, 2, ...

~V
(0)
R = (U

(0)
R , V

(0)
R ) =

(

∂ψ̌
(0)
r

∂η2
,−∂ψ̌

(0)
r

∂η1

) (3.91)

Note that for the background flow the expansion (3.78) has been assumed. Thus,

using (3.90) expansions for ~V
( i
2 )

B = (U
( i
2 )

B , V
( i
2 )

B ) and ~V
(0)
R = (U

(0)
R , V

(0)
R ) around

the leading order centreline ~X
(0)
C yields

U
( i
2 )

B = U
( i
2 )

B ( ~X
(0)
C , z, τ) +

2∑

j=1

δj
∂U

( i
2 )

B

∂ηj

∣
∣
∣
∣
∣
~η= ~X

(0)
C

+ O(ε
2
2 )

V
( i
2 )

B = V
( i
2 )

B ( ~X
(0)
C , z, τ) +

2∑

j=1

δj
∂V

( i
2 )

B

∂ηj

∣
∣
∣
∣
∣
~η= ~X

(0)
C

+ O(ε
2
2 )

U
(0)
R = U

(0)
R ( ~X

(0)
C , z, τ) +

2∑

j=1

δj
∂U

(0)
R

∂ηj

∣
∣
∣
∣
∣
~η= ~X

(0)
C

+ O(ε
2
2 )

V
(0)
R = V

(0)
R ( ~X

(0)
C , z, τ) +

2∑

j=1

δj
∂V

(0)
R

∂ηj

∣
∣
∣
∣
∣
~η= ~X

(0)
C

+ O(ε
2
2 )

(3.92)

with i = 0, 1, 2, ... .

Solutions for the singular stream function ψ̌
(0)
s as function on the radius ř

have been derived in Section 3.2.2.1. Note that ř resolves synoptic scales (see

(A− 41)1). Comparing the definition (3.10)1 for r and the definition (A− 41)1

for ř, and on account of ~η = (η1, η2) = (ε2x, ε2y) (see (3.64)), the transforma-

tion equation (3.2) into the co-moving frame of reference, and the centreline

stretching transformation (3.3)1, it can be shown that r and ř are related to

each other in the following way

ř = ε
1
2 r (3.93)

Thus, from (3.93) and the singular solutions (3.81) the leading order first Fourier

modes of the outer tangential velocity field ǔθ = −∂ψ̌(0)
s /∂ř induced by the line

vortex are given by

ǔθ,0 =
1

ε
1
2

Γ

2πr

ǔθ,1k = −1

ε

c1 Zs,1k
4

1

r2

(3.94)
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Finally, taking (3.12), (3.92), (3.94) and the expansion (3.78) of the back-

ground flow into account, it turns out that within the transition region between

mesoscales and synoptic scales the leading order solution for the outer velocity

field ~̌v can be written as

~̌v(0)
g = ε−

1
2

Γ

2πr
~eθ + ε−1 c1Zs,11

4r2
sin θ ~eθ + ε−1 c1Zs,12

4r2
cos θ ~eθ +

ε0
([

(U
(0)
B,C + U

(0)
R,C)~i+ (V

(0)
B,C + V

(0)
R,C)~j

])

+

ε
1
2 [(U

( 1
2 )

B,C + F1)~i+ (V
( 1
2 )

B,C + F2)~j] + O(ε
2
2 ) (3.95)

where ~V
(0)
B,C = ~V

(0)
B ( ~X

(0)
C , z, τ), ~V

(0)
R,C = ~V

(0)
R ( ~X

(0)
C , z, τ) and Fs (s = 1,2) is given

by

Fs = −M ∂(V
(0)
B + V

(0)
R )

∂ηs

∣
∣
∣
∣
∣
~η= ~X

(0)
C

+N
∂(U

(0)
B + U

(0)
R )

∂ηs

∣
∣
∣
∣
∣
~η= ~X

(0)
C

(3.96)

where M = (X
( 1
2 )

C + r cos θ) and N = (Y
( 1
2 )

C + r sin θ). Then, a specification of

the general matching condition (3.86) for the inner velocity field ~vh (see (3.5),

(3.19)1,2 and (3.21)) and the outer velocity field ~̌vh (see eqn. (3.64)), yields

ε−
1
2u

(0)
θ ~eθ + ε0

(

[U
(0)
C
~i+ V

(0)
C
~j] + [u

( 1
2 )
r ~er + u

( 1
2 )

θ ~eθ]
)

+

ε
1
2

(

[U
( 1
2 )

C
~i+ V

( 1
2 )

C
~j] + [u

( 2
2 )
r ~er + u

( 2
2 )

θ ~eθ]
)

+ O(ε
2
2 ) =

ε−
1
2

Γ

2πr
~eθ + ε−1 c1Zs,11

4r2
sin θ ~eθ + ε−1 c1Zs,12

4r2
cos θ ~eθ +

ε0
([

(U
(0)
B,C + U

(0)
R,C)~i+ (V

(0)
B,C + V

(0)
R,C)~j

])

+

ε
1
2 [(U

( 1
2 )

B,C + F1)~i+ (V
( 1
2 )

B,C + F2)~j] + O(ε
2
2 ) (3.97)

It has been mentioned in Section 2.4.2 that the matching condition (3.97)

requires for ε → 0 that solutions for the velocity field as one moves out of the

smaller scale, i.e. r → ∞, have to be equal to the solutions for the velocity

field as one moves into the smaller region, i.e. ř → 0 with ř given through

(3.93). Since the velocity fields in (3.97) have been expressed in terms of inner

coordinates r, collecting terms in corresponding powers of ε in (3.97) gives

ε−1 : Zs,1k = 0 , k = 1, 2 (3.98)
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ε−
1
2 : u

(0)
θ =

Γ(z)

2πr
as r → ∞ (3.99)

ε0 : (u
( 1
2 )
r ~er + u

( 1
2 )

θ ~eθ) =
(

U
(0)
B,C + U

(0)
R,C − U

(0)
C

)

~i +
(

V
(0)
B,C + V

(0)
R,C − V

(0)
C

)

~j (3.100)

ε
1
2 : (u

( 2
2 )
r ~er + u

( 2
2 )

θ ~eθ) =
(

U
( 1
2 )

B,C − U
( 1
2 )

C + F2

)

~i +
(

V
( 1
2 )

B,C − V
( 1
2 )

C + F1

)

~j (3.101)

as r → ∞. Using the relations~i = (~er cos θ − ~eθ sin θ) and~j = (~er sin θ+~eθ cos θ)

the matching condition (3.100) becomes

u
( 1
2 )
r = +

(

U
(0)
B,C + U

(0)
R,C − U

(0)
C

)

cos θ +
(

V
(0)
B,C + V

(0)
R,C − V

(0)
C

)

sin θ

u
( 1
2 )

θ = −
(

U
(0)
B,C + U

(0)
R,C − U

(0)
C

)

sin θ +
(

V
(0)
B,C + V

(0)
R,C − V

(0)
C

)

cos θ

(3.102)

as r → ∞. Harmonic analysis (see Section 3.1.4) of (3.102) yields for the first

harmonics

u
( 1
2 )

θ,11 = − u
( 1
2 )
r,12 = −

(

U
(0)
B,C + U

(0)
R,C − U

(0)
C

)

u
( 1
2 )

θ,12 = + u
( 1
2 )
r,11 = +

(

V
(0)
B,C + V

(0)
R,C − V

(0)
C

) (3.103)

as r → ∞. Same procedure for the next higher order flow yields

u
( 2
2 )

θ,11 = − u
( 2
2 )
r,12 = −(U

( 1
2 )

B,C − U
( 1
2 )

C ) +

X
( 1
2 )

C

∂(V
(0)
B + V

(0)
R )

∂η2

∣
∣
∣
∣
∣
~η= ~X

(0)
C

− Y
( 1
2 )

C

∂(U
(0)
B + U

(0)
R )

∂η2

∣
∣
∣
∣
∣
~η= ~X

(0)
C

(3.104)

and

u
( 2
2 )

θ,12 = + u
( 2
2 )
r,11 = +(V

( 1
2 )

B,C − V
( 1
2 )

C ) −

X
( 1
2 )

C

∂(V
(0)
B + V

(0)
R )

∂η1

∣
∣
∣
∣
∣
~η= ~X

(0)
C

+ Y
( 1
2 )

C

∂(U
(0)
B + U

(0)
R )

∂η1

∣
∣
∣
∣
∣
~η= ~X

(0)
C

(3.105)

as r → ∞.
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Remark: Rearranging terms in (3.103) one obtains equations for the leading

order vortex motion in terms of its leading order centreline motion, i.e.

U
(0)
C (τ) = U

(0)
B,C(z) + U

(0)
R,C(z) + u

( 1
2 )

θ,11(r, z, τ) as r → ∞

V
(0)
C (τ) = V

(0)
B,C(z) + V

(0)
R,C(z) − u

( 1
2 )

θ,12(r, z, τ) as r → ∞
(3.106)

From (3.106) it is observed that the vortex motion in leading order is composed

of three contributions, namely the background flow, the regular flow and asym-

metric components of the leading order vortex flow. One of the objectives of

the asymptotic analysis in Chapter 4 and 5 is to show that there are solutions

for u
( 1
2 )

θ,1k with k = 1, 2 that have contributions that do not disappear for large r.

The advantage of using matched asymptotics techniques is seen by comparing

the centreline velocity obtained by this method (see (3.106)) and the results

obtained by Reznik’s (1992) approach (see (3.83)). The difference lies in such

kind of asymmetric contributions of the next higher order flow characterising

the mesoscale vortex structure. Thus, it turns out that the method of matched

asymptotic expansions allows us to account for additional effects on the vortex

motion that are due to the mesoscale flow of the vortex itself. It is further shown

in Chapter 4 and 5 that (3.106) is not only an equation for the vortex motion

but also it imposes additional constraints on both the vertical structure of the

vortex and the nature of the background flow for concentrated vortices to exist.

3.3.2 Potential temperature field

Using the outer expansion (3.72) and the fact that in the inner expansion the

potential temperature is only a function on the vertical coordinate z up to the

5/2th order (see (3.36)), a specification of the general matching condition (3.86)

for the potential temperature yields

Θ(0)(z) + ε
1
2 Θ( 1

2 )(z) + ...+ ε
6
2 Θ( 6

2 )(r, θ, z) + ε
7
2 Θ( 7

2 )(r, θ, z) + O(ε
8
2 ) =

Θ̌∞ + ε2Θ̌(2)(z) + ε3Θ̌(3)( ~XC(z, τ) + ε
1
2 ~̂x, z, τ) + O(ε4) (3.107)

with τ = ε2t. Note that here the inner expansions have already been expressed

in terms of cylindrical coordinates (see (3.9)). Due to the horizontal homo-

geneity in leading orders, collecting terms in corresponding powers of ε yields

Θ(0) = Θ∞ = Θ̌∞, Θ( i
2 ) = 0 with i = 1, 3, 5 and Θ( 4

2 )(z) = Θ̌(2)(z) which de-

notes a background stratification. Next we use the hydrostatic equation (3.71)

and the geostrophic stream function defined by (3.73) in order to derive the
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matching conditions for Θ( 6
2 ) and Θ( 7

2 ). Because of (3.71) and (3.73)2 the

potential temperature Θ̌(3) is related to the geostrophic stream function ψ̌
(0)
g

through

Θ̌(3)

Ω0
= −∂ψ̌

(0)
g

∂z
(3.108)

where Θ̌(3) = Θ̌(3)( ~XC(z, τ) + ε
1
2 ~̂x, z, τ) and ψ̌

(0)
g = ψ̌

(0)
g ( ~XC(z, τ) + ε

1
2 ~̂x, z, τ).

With the superposition ψ̌
(0)
g = Ψ̌

(0)
B +ψ̌

(0)
s +ψ̌

(0)
r (see eqn. (3.76)) one finds by use

of the singular vortex solution (3.81) together with the matching result (3.98)

that
Θ̌(3)

Ω0
= −∂Ψ̌

(0)
B

∂z
+

ln ř

2π

∂Γ

∂z
− ∂ψ̌

(0)
r

∂z
(3.109)

Changing outer coordinates ř into inner coordinates r via (3.93) and with the

aid of the Taylor expansion (3.90) of the background and regular flow around

the leading order centreline position (X
(0)
C , Y

(0)
C ), one obtains

Θ̌(3)

Ω0
=
∂Γ

∂z

ln r

2π
+
∂Γ

∂z

ln ε

4π
−
∂Ψ̌

(0)
B,C

∂z
−
∂ψ̌

(0)
r,C

∂z
+ O(ε

1
2 ) (3.110)

where Ψ̌
(0)
B,C = Ψ̌

(0)
B ( ~X

(0)
C , z, τ) and ψ̌

(0)
r,C = ψ̌

(0)
r ( ~X

(0)
C , z, τ). Thus, substituting

(3.110) into the matching condition (3.107) and collecting terms in corresponding

powers of ε gives in the limit r → ∞

ε
6
2 : Θ( 6

2 )(r, θ, z) = Ω0
∂Γ

∂z

ln r

2π
− Ω0

∂Ψ̌
(0)
B,C

∂z
− Ω0

∂ψ̌
(0)
r,C

∂z

ε
7
2 : Θ( 7

2 )(r, θ, z) = Ω0
∂

∂z

(

M (V
(0)
B,C + V

(0)
R,C) −N (U

(0)
B,C + U

(0)
R,C)

)
(3.111)

with M = (X
( 1
2 )

C + r cos θ), N = (Y
( 1
2 )

C + r sin θ) and Ψ̌
(0)
B,C = Ψ̌

(0)
B ( ~X

(0)
C , z, τ),

ψ̌
(0)
r,C = ψ̌

(0)
r ( ~X

(0)
C , z, τ) evaluated at the leading order vortex centreline position.

3.3.3 Pressure field

Taking into account that the inner ad outer pressure solutions are horizontally

homogeneous up to the 5/2th order (see (3.33) and (3.70)), a specification of

the general matching condition (3.86) for the pressure fields yields

p(0)(z) + ε
1
2 p( 1

2 )(z) + ...+ ε
6
2 p( 6

2 )(r, z) + ε
7
2 p( 7

2 )(r, θ, z) + O(ε
8
2 ) =

p̌(0)(z) + ε2p̌(2)(z) + ε3p̌(3)( ~XC(z, τ) + ε
1
2 ~̂x, z, τ) + O(ε4)

Collecting terms in corresponding powers of ε gives p(0)(z) = p̌(0)(z), p( i
2 ) = 0

with i = 1, 3, 5 and p( 4
2 )(z) = p̌(2)(z). Moreover, using the procedure as in

Section 3.3.2, together with the relation (3.73)2 yields
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ε
6
2 : p( 6

2 )(r, z) = Ω0 ρ
(0)

(
Γ

2π
ln r − Ψ̌

(0)
B,C − ψ̌

(0)
r,C

)

ε
7
2 : p( 7

2 )(r, θ, z) = Ω0 ρ
(0)
(

M(V
(0)
B,C + V

(0)
R,C) −N(U

(0)
B,C + U

(0)
R,C)

)
(3.112)

as r → ∞.

3.3.4 Vertical velocity field

Using the asymptotic results (3.31) - (3.32) derived so far, together with the

outer expansion (3.68) the matching condition for the vertical velocity can be

written as

ε
3
2w( 4

2 )(r, θ, z, τ) + ε
4
2w( 5

2 )(r, θ, z, τ) + O(ε
5
2 ) =

ε3w̌(3)( ~XC(z, τ) + ε
1
2 ~̂x, z, τ) + O(ε4)

Collecting terms in corresponding powers of ε gives

ε
i
2 : w( i+1

2 )(r, θ, z, τ) = 0 , i = 3, 4, 5 as r → ∞ (3.113)

3.4 Formulation of diabatic source terms and its

expansions

The potential temperature source term S on the right side of (2.19)4 includes

heating sources due to different kind of diabatic effects such as radiative heating

and condensation heating. Moreover, heating effects due to turbulent heat fluxes

and molecular transport are included. The manner in which the sources operate

in a fluid depends strongly upon the fields of motion and temperature of the fluid

itself. Unfortunately, details of these processes are poorly understood due to

the complex interactions of processes covering a range of scales from microscale

to large scales. That is why parameterizations describing net heating effects of

unresolved physical processes in terms of resolvable variables are a popular tool

to overcome these difficulties.

One of the issues addressed in this thesis is the impact that moisture related

processes have on the vortex motion and structure. Thus, it is assumed that

S(r, θ, z, τ) = SL(r, θ, z, τ) (3.114)

where SL denotes a heat source describing heating effects due to phase changes of

water such as latent heat release due to condensation. In classical meteorological
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modelling one differentiates between the nature of the condensation processes

while including the heating effects due to moisture conversion in large scale

atmospheric models (Holton, 1992). That is why substantial differences have

to be accounted for in the mathematical formulation of heating processes due

to latent heat release by large scale vertical motion (hereafter indicated by Srs)

on the one hand, and net large scale heating effects resulting from cooperative

action of many small scale convecting cumulus cloud (hereafter indicated by Sus)

on the other hand. From that point of view (3.114) can be decomposed into

S = SL = Srs + Sus (3.115)

Two different perceptions are possible in implementing (3.115) in the asymptotic

analysis in the present work. In analogy to the work of Hack & Schubert (1986)

the first possibility is to assume that (3.115) is given in terms of an externally

prescribed source term. This is discussed in Section 3.4.1. Another possibility

is to describe (3.115) via an explicit inclusion of moisture parameter which is

discussed in Section 3.4.2.

Remark: Interactions between processes acting on different scales are cap-

tured in a systematic way by use of appropriate multi-scale asymptotic expan-

sions in an unified approach framework. Thus, net heating effects of cumulus

convection (small scale) in terms of Sus are actually not included in the source

(3.114), since the choosen asymptotic expansion ansatz in this work does not

resolve small cumulus scales. Note that the expansion ansatz (3.7) used in

the present work resolves only vortex scales. But it is expected that with the

aid of sublinear growth conditions4 a systematic multi-scale asymptotic analy-

sis that accounts for both large vortex scales and small cumulus scales, would

yield asymptotic equations that look similar to the equations resulting from a

single-scale expansion ansatz for the dependent thermodynamic variables. The

difference that would occur are additive expressions denoting horizontal aver-

ages over the small cumulus scales appearing within the equations which in

summary represent heating effects Sus. It is beyond the scope of the present

work to study the interactions between vortex scales and cumulus scales in large

detail using multi-scale expansions, but a crude way of studying the potential

impact of the smaller scale heating effects due to small scale cumulus convection

on the vortex motion and structure on the basis of single scale expansions is to

assume that Sus 6= 0 without knowing the details regarding its representation.

4A standard technique in multi-scale asymptotics to separate long wave and short wave
components. For further details see Klein (2004).
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3.4.1 External forcing

The heat source on the right and side of Sus can be regarded as an external

or internal forcing. In this subsection we treat the diabatic source term exter-

nally. This allows one to use dry thermodynamics instead of complex moist

thermodynamics as discussed in the next subsection.

It is important to point out that the external forcing method is only suited

to applications when the latent heat release is a product of cumulus convection

rather than explicitly resolved vertical motion (Nielson-Gammon & Keyser,

1999). Thus, considering the case of an external forcing it is assumed that

the heating effect Srs due to explicitly resolved vertical motions is negligible

compared to Sus. This means that (3.115) simplifies to

S = SL = Sus (3.116)

An external forcing as suggested by Hack & Schubert (1986) is used and

which in dimensional form is specified by

Q̃ = a β(z)
r

r0
exp

(

d

[

1 −
(
r

r0

)2
])

(3.117)

with β(z) = Q̃1 sin(π z/hsc) exp(−α z/hsc) denoting a vertical heating profile.

In particular, the function β(z) is an analytic approximation to the apparent

heat source obtained by Yanai et. al. (1973). Note that the nondimensional

expression of (3.117) is equivalent to Sus with regard to the vortex setting

used in the present work. The following values for the constants Q̃1, α, a etc.

as suggested by Hack & Schubert (1986) are choosen. The heating rate is

Q̃1 = 7.87 K /day, d = 1/2 and α = 0.554 places the maximum of heating in

the middle of the troposphere. The constant a is a normalization coefficient

determined by

a = (r1/r0)
2
[

1 − exp
(

− (r1/r0)
2
)]−1

, (3.118)

that enforces the horizontally averaged heating inside radius r1 to be equal to

β(z). Note, we choose r1 = 300 km and r0 = ε−
3
2hsc, which yields a = 2.5.

Recall that for the nondimensionalization of the diabatic source term Q̃ in (2.4)

the reference quantities Tref = pref/(Rρref) ∼ 300 K and tref = hsc/uref ∼ 20 min

have been used (see Section 2.2). Thus, typical heating rates ranging around

∼ 20′000 K/day have been assumed. However, order of magnitude estimates

of (3.117) yield Q̃ ∼ a Q̃1 ∼ 20 K/day. It can easily be verified that the two

heating rates mentioned above differ by a factor ε
7
2 . Hence, according to the

source term expansion (3.29) the external heating source specified by (3.117)
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is only suitable to represent diabatic heating sources given by S( 7
2 ). Note that

for the vortex setting used in the present work the source term S( 7
2 ) is the

first nonzero source term (see eqn. (3.37)). In particular it turns out that the

nondimensional form of the source (3.117) takes the form

S( 7
2 ) = S

( 7
2 )

L = sin(πz) exp (−α z) r exp
(
d
[
1 − r2

])
(3.119)

where r and z denote dimensionless coordinates of O(1).

3.4.2 Explicit treatment of moisture

A more physical alternative to account for diabatic effects is based on an ex-

plicit inclusion of moisture. Motivated by their interests in convective clouds,

Klein & Majda (2006) developed an extended version of the unified approach

to meteorological modelling that accounts for moist physics. Here, the bulk

microphysics parameterizations of moist processes from Grabowski (1998) pro-

vided the basis for such an extension. The implementation of the latter into

the asymptotic framework as described in Chapter 2 was accompanied by a

careful nondimensionalization of the bulk microphysics equations and the choice

of appropriate distinguished limits for the small parameters that appear.

For the explicit treatment of moisture in the present work, the asymptotic

framework accounting for moist physics from Klein & Majda (2006) is used.

For the sake of simplicity, the studies are restricted to vortices in an idealized,

saturated model atmosphere. Under that assumption the resolved contribution

Srs of the nondimensional diabatic source term (3.115) describes diabatic heating

due to condensation-evaporation of cloud water (no evaporation of precipitation)

and takes the form

Srs = −γ − 1

γ

ρ Θ

p
L⋆q⋆vs

dqvs
dt

(3.120)

Here qvs = qvs(Θ, p) denotes a scaled saturated water vapor mixing ratio5 and

q⋆vs is a constant denoting the saturation value for the water vapor mixing ratio

at some reference conditions. The constant L⋆ = L/(pref/ρref) is a value for the

nondimensionalized latent heat per unit mass of water vapor. The superscripts

(.)⋆ indicate that the dimensionless constants are still unscaled, i.e. they are

generally functions of ε. With the knowledge of typical orders of magnitude for

the constant parameters gained from different textbooks, distinguished limits

have been introduced by Klein & Majda (2006) which relate L⋆, q⋆vs (and further

constant parameters that appear in the nondimensionalized bulk microphysics

parameterizations) via the small expansion parameter ε to each other. The

5The water vapor mixing ratio is defined as the ratio of the water vapor density versus
that of the dry air.

53



limits for L⋆ and q⋆vs read

q⋆vs = ε2q⋆⋆vs and L⋆ =
1

ε
L⋆⋆ (3.121)

Here, q⋆⋆vs and L⋆⋆ denote scaled dimensionless constants so that q⋆⋆vs , L
⋆⋆ = O(1)

as ε→ 0. Then, with the aid of (3.121) and together with the Newtonian limit

(2.18) the source term (3.120) can be rewritten into

Srs = −ε2 Γ⋆⋆L⋆⋆q⋆⋆vs
ρ Θ

p

dqvs
dt

(3.122)

For an asymptotic analysis that accounts for heating effects determined

through (3.122), an asymptotic expansion for Srs is required. Based on a

careful nondimensionalization of the equation for the saturation vapor mix-

ing ratio and Boltons formula that approximates the saturation vapor pressure,

Klein & Majda (2006) suggest the following formulation of the saturation mix-

ing ratio appropriated for the purposes of asymptotic analysis

qvs(Θ, p) =
1

p
exp

(

A⋆⋆

ε

T (θ, p) − 1

1 + (T (θ, p) − 1 − εT
⋆⋆(1)
1 )

)

(3.123)

Here, A⋆⋆ and T
⋆⋆(1)
1 are constants of O(1). With the aid of the potential

temperature definition (2.16) and the Newtonian limit (2.18) an equation for

the temperature T (θ, p) reads

T (θ, p) = θ p
γ−1

γ = θ pεΓ (3.124)

Upon substitution of (3.124) into (3.123) and after a number of manipulations

(see Appendix A.6 ), the right hand side of (3.123) can be rewritten to obtain

qvs = q(0)vs (z) + εq(1)vs (z) + O(ε2) (3.125)

where

q(0)vs (z) =
1

p(0)
exp (A⋆⋆Γ⋆⋆ ln p(0)) (3.126)

and

q(1)vs (z) = −
(

(1 +A⋆⋆Γ⋆⋆)
p(1)

p(0)2
+
µ̃(0)

p(0)

)

exp (A⋆⋆Γ⋆⋆ ln p(0)) (3.127)

with µ̃(0) = A⋆⋆{Γ⋆⋆ ln p(0) (Γ⋆⋆ ln p(0) + T ⋆⋆
(1)

1 ) − Γ⋆⋆2

2 (ln p(0))2 − Θ(2)} and

where p(0) = p(0)(z), p(1) = p(1)(z) and Θ(2) = Θ(2)(z) (see (3.33) and (3.36)).

Note, until O(ε2) there appear no square roots of ε within the expansion (A-99).
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Thus, it is concluded that

q
( i
2 )
vs = 0 for i = 1, 3 (3.128)

With the above expansion for the saturation water vapor mixing ratio asymp-

totic expansions for Srs with respect to the co-moving frame of reference used in

the present work can be derived. Recall that within the co-moving frame of ref-

erence whose origin is located at the vortex centre ~XC and whose expansion is of

the form ~XC = ~X
(0)
C (τ)+ε ~X

( 1
2 )

C (z, τ)+O(ε
2
2 ), the substantial derivative d/dt =

∂/∂t+~vh · ~∇h+w∂/∂z in (3.122) takes the form (see the transformations (3.11)

and (3.5))

d

dt
= ε2

∂

∂τ
+ ~vrel · ε

3
2
~̂∇h + w

∂

∂z
− ε−

1
2w

∂ ~XC

∂z
· ~̂∇h (3.129)

with
~̂∇h = ~er ∂/∂r + ~eθ r

−1∂/∂θ. Due to (3.31) and (3.32) the asymptotic

expansion (3.19)3 for the vertical velocity w simplifies to w = ε
3
2w( 4

2 ) + O(ε
4
2 ).

Thus, the substantial derivative (3.129) applied to (3.128) simplifies in leading

orders to

dqvs
dt

= ε
3
2w( 4

2 ) dq
(0)
vs

dz
+ ε

4
2w( 5

2 ) dq
(0)
vs

dz
+

ε
5
2

(

w( 6
2 ) dq

(0)
vs

dz
+ w( 4

2 ) dq
(1)
vs

dz

)

+ O(ε
6
2 ) (3.130)

Based on the inner expansions (3.15) and (3.18) together with the matching

results ρ( 1
2 ) = 0, p( 1

2 ) = 0 (see Section 3.3.1), Taylor series can be used to

expand Θρ/p, yielding

Θρ

p
=

ρ(0)

p(0)
+ ε

(

−ρ
(0)p(1)

p(0)2
+
ρ(1)

p(0)

)

+ O(ε2)

= 1 + εΓ⋆⋆z + O(ε2) (3.131)

Note that the last equality can be derived by use of (A-97)-(A-98). Thus,

substituting (3.131) and (3.130) into (3.122), an expansion for Srs reads

Srs = ε
7
2S

( 7
2 )

rs + ε
8
2S

( 8
2 )

rs + ε
9
2S

( 9
2 )

rs + O(ε5) (3.132)

where
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S
( 7
2 )

rs = −Γ⋆⋆L⋆⋆q⋆⋆vs w
( 4
2 ) dq

(0)
vs

dz

S
( 8
2 )

rs = −Γ⋆⋆L⋆⋆q⋆⋆vs w
( 5
2 ) dq

(0)
vs

dz

S
( 9
2 )

rs = −Γ⋆⋆L⋆⋆q⋆⋆vs

(

w( 6
2 ) dq

(0)
vs

dz
+ (Γ⋆⋆z) w( 4

2 ) dq
(0)
vs

dz

)

(3.133)

It can be observed, that source terms are proportional to the upward motion.

This is what Nielsen-Gammon & Keyser (1999) call the Effective Stratification

approach. Note that so far it has only been shown how heating effects due

to vortex-scale forced uplift can be included in the asymptotic analysis. Since

in the present work only single-scale expansion for vortex scales are used, the

unresolved heating contribution Sus in (3.115) needs to be parameterized in

terms of resolved variables. However, if multi-scale expansion for both the

vortex scale and cumulus scales would have been employed, same procedure as

described above would also give explicit expressions for Sus in terms of flow and

moisture related variables resolving cumulus scales.

Finally, without going into details, Klein & Majda (2006) concluded from

the estimates for typical CAPE6 values that the background stratification of

potential temperature which is nontrivially affected by moist processes, must

satisfy

dΘ( 4
2 )

dz
= −Γ⋆⋆L⋆⋆

dq
(0)
vs

dz
(3.134)

with Θ(4/2) = Θ(4/2)(z) and q
(0)
vs = q

(0)
vs (z).

3.5 General balance conditions

So far, the discussions in the Sections 3.1 - 3.4 provide a complete basis for a

detailed asymptotic analysis of adiabatic vortices (S = 0) and diabatic vortices

(S 6= 0) which follows in Chapter 4 and Chapter 5, respectively. There are,

however, vortex flow conditions that are valid for both adiabatic and diabatic

vortices which is discussed in the section below.

6Convective available potential energy (CAPE) provides a measure of the maximum pos-
sible kinetic energy that a statically unstable parcel can acquire (neglecting effects of water
vapor and condensed water on the buoyancy), assuming that the parcel ascends without
mixing with the enviroment and instantaneously adjusts to the local environmental pressure
(Holton, 1992).
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Gradient wind relation One of the first balance condition coming out from

the asymptotic approach is the gradient wind relation (3.39)1, i.e.

1

ρ(0)

∂p( 6
2 )

∂r
− u

(0)2

θ

r
− Ω0u

(0)
θ = 0 (3.135)

This relation describes a three-way balance between the pressure gradient force

∂p( 6
2 )/∂r, the centrifugal force u

(0)2

θ /r and the Coriolis force Ω0u
(0)
θ . The gra-

dient wind is a wind that blows parallel to curved isobars p( 6
2 ) = const.

Hydrostatics for the first few pressure terms With p( 6
2 ) = p( 6

2 )(r, z, τ)

(see (3.39)2) and ρ( 6
2 ) = ρ( 6

2 )(r, θ, z, τ) integration of the vertical momentum

equation (3.46) with respect to θ from 0 to 2π yields

∂p( 6
2 )

∂z
= −ρ( 6

2 )
0 (3.136)

Thus, the pressure term p( 6
2 ) which is relevant for the leading order vortex

flow satisfies the hydrostatic balance condition. Note, as already shown in

Section 3.1.3 same holds for p( i
2 ) with i = 0, 2, 4.

Leading order vortex tilt and background flow Taking into account

that p( 7
2 ) = p( 7

2 )(r, θ, z, τ) the zeroth mode equation of the vertical momentum

equation (3.47) reads

∂p
( 7
2 )

0

∂z
− P̃12

2

∂X
( 1
2 )

C

∂z
− P̃11

2

∂Y
( 1
2 )

C

∂z
= −ρ( 7

2 )
0 (3.137)

with

P̃1k =

(

∂p
( 7
2 )

1k

∂r
+
p
( 7
2 )

1k

r

)

k = 1, 2

Contrary to p( 6
2 ) it turns out that due to asymmetric pressure terms p

( 7
2 )

1k the

axissymmetric pressure component p
( 7
2 )

0 is no more a hydrostatic one. In partic-

ular it can be observed that the strength of the hydrostatic imbalance depends

on both p
( 7
2 )

1k and the vortex tilt ∂ ~X
( 1
2 )

C /∂z = (∂X
( 1
2 )

C /∂z, ∂Y
( 1
2 )

C /∂z). By means

of matched asymptotics it will be shown next, that the strength of the hydrosta-

tic imbalance governed by the vortex tilt can be related to environmental flow

conditions. With the aid of the zeroth mode O(ε
7
2 ) state equation of (A-39),

i.e. ρ
( 7
2 )

0 Θ(0) + ρ(0)Θ
( 7
2 )

0 = p
( 7
2 )

0 (with Θ(0) = Θ∞ (see (3.107))), elimination of

ρ
( 7
2 )

0 in (3.137) yields
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∂p
( 7
2 )

0

∂z
− P̃12

2

∂X
( 1
2 )

C

∂z
− P̃11

2

∂Y
( 1
2 )

C

∂z
+
p
( 7
2 )

0

Θ∞
=

ρ(0)

Θ∞
Θ

( 7
2 )

0 (3.138)

The matching conditions (3.111)2 and (3.112)2 yield for the axissymmetric and

first Fourier components of p( 7
2 ) and Θ( 7

2 ) (see Section 3.1.4) in the limit as

r approaches ∞

p
( 7
2 )

0 = Ω0ρ
(0)
[

X
( 1
2 )

C

(

V
(0)
B,C + V

(0)
R,C

)

− Y
( 1
2 )

C

(

U
(0)
B,C + U

(0)
R,C

)]

p
( 7
2 )

11 = −Ω0

2
ρ(0) r

(

U
(0)
B,C + U

(0)
R,C

)

p
( 7
2 )

12 = +
Ω0

2
ρ(0) r

(

V
(0)
B,C + V

(0)
R,C

)

Θ
( 7
2 )

0 = + Ω0
∂

∂z

[

X
( 1
2 )

C

(

V
(0)
B,C + V

(0)
R,C

)

− Y
( 1
2 )

C

(

U
(0)
B,C + U

(0)
R,C

)]

(3.139)

Substituting (3.139) into (3.138) for large r, yields by additional use of the

leading order zeroth mode state equation ρ(0)Θ∞ = p(0) (see Appendix A.3)

and with Θ∞ = 1

∂Y
( 1
2 )

C

∂z

(

U
(0)
B,C + U

(0)
R,C

)

=
∂X

( 1
2 )

C

∂z

(

V
(0)
B,C + V

(0)
R,C

)

(3.140)

which can be rewritten as

~X
( 1
2 )
z × (~V

(0)
B,C + ~V

(0)
R,C) = 0 , (3.141)

implying ∂ ~X
( 1
2 )

C /∂z ‖ (~V
(0)
B,C + ~V

(0)
R,C). It can be observed that the direction of

the leading order vortex tilt coincides with the direction of the background and

regular flow. Note that for a pure zonal background flow, i.e. ~VB = (UB , 0)

and in absence of any regular flow, i.e. ~VR = 0, it would follow immediately

that ∂Y
( 1
2 )

C /∂z = 0 or Y
( 1
2 )

C = Y
( 1
2 )

C (τ). Hence, the result (3.140) indicates that

the existence of a background (regular) flow may have a nontrivial effect on the

vortex tilt. More detailed discussions on this issue follow in Chapter 4 and 5.
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Chapter 4

Adiabatic Vortex

Attention of this chapter is focused on the leading and next higher order motion

and structure of concentrated adiabatic vortices which are embedded within a

background flow with vertical shear. The indication adiabatic in that context

means that the influence of moisture effects on the vortex motion and structure

will be neglected by equating diabatic sources equal to zero. More complex

studies accounting for diabatic effects are carried out in Chapter 5.

The study of isolated effects of an environmental flow on the vortex motion

and structure is motivated by works of Jones (1994), Wang & Holland (1996),

Frank & Ritchie (1999), Schecter et al. (2002), Reasor & Montgomery (2001;

2004), and others. In particular, one major objective in their studies is to de-

scribe and to explain the influence of an environmental flow on the vortex tilt.

Once a vertically sheared background flow is imposed, one would expect that

the vortex becomes tilted and eventually shears away due to the differential

advection. Numerical simulations for mature tropical cyclones carried out by

Frank & Ritchie (1999), however, have shown that after 48 h and in the presence

of a 5 m/s environmental shear throughout the troposphere, the vortex remained

in its vertically upright position while a strongly asymmetric, quasi-steady ver-

tical motion pattern was observed with maximum upward motion downshear

left of the centre. The mechanism behind the generation of such asymmetries

is refered to as the adiabatic lifting mechanism. A detailed discussion of this

mechanism follows in Section 4.2.1.

The maintenance of a coherent vortex structure in absence of any diabatic

effects has also been observed by Wang & Holland (1996). In particular a quasi-

steady tilt to the downshear left was found after a 72 h period of simulation.

On an f -plane, Reasor & Montgomery (2001) observed a free1 alignment of a

1Free alignment means that during the alignment phase the environmental shear has been
turned off.
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Figure 4.1: Schematic showing the resonant vortex Rossby wave damping
mechanims (Reasor & Montgomery 2004, Fig.1)

quasigeostrophic vortex which initially has been tilted by a sheared background

flow. Their observations were based upon numerical simulations valid for small

Rossby number satisfying the use of quasigeostrophic dynamics. The simula-

tions in turn were carried out using the concept of vortex Rossby wave (VRW)

theory. Here a tilt perturbation is defined as a departure from a vertically av-

eraged azimuthal mean component of a tilted potential vorticity (PV) column.

Assuming the tilted PV column is vertically bounded by rigid lids the tilt per-

turbation is described in terms of barotropic and internal baroclinic modes.

Depending on internal Rossby deformation radii larger or smaller than the hor-

izontal vortex scale two different alignment mechanisms have been found. The

manner in which an initially tilted vortex reached its upright position for inter-

nal Rossby deformation radii larger than the horizontal vortex scale is described

by Schecter et al. (2002) in the following way: ”In time, the orientation of the

tilt rotates, while the amplitude of the vortex tilt decays ”. Based on that ob-

servations Schecter et al. (2002) managed to derive a theory that explains this

relaxation to an upright position by a resonant damping mode. Considering

the vortex tilt perturbation in terms of an excited discrete vortex Rossby mode

Schecter et al. (2002) have shown that the rotation frequency of this mode ”is

resonant with the flow rotation frequency at a critical radius rc in the outer

skirt of the vortex”. Eventually that resonance has been identified to be re-

sponsible for an exponential decay with time of the vortex tilt ”provided that

the radial PV gradient is negative at rc” (Schecter et al. 2002). Figure 4.1

illustrates schematically the alignment mechanism described above, which is

also called resonant VRW damping. Later on, Reasor & Montgomery (2004)
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extended their work to finite Rossby numbers Ro to study vortex regimes more

characteristic for real tropical cyclones. Then, depending on Ro and the ratio

of the horizontal scale of the vortex to the global internal Rossby deformation

radius, i.e. L/lr,G, they found that the tilt decay occured either via outward

propagating sheared VRW disturbances or again via an inviscid damping mech-

anism intrinsic to the dry adiabatic dynamics (Mallen et al. 2004). Here, the

deformation radius lr,G is defined as

lr,G =
Nh

m π f
(4.1)

whereas h denotes the height of the vortex, f is the Coriolis parameter, N the

Brunt-Väisälä frequency and m is a vertical core mode number that dominates

the vortex tilt. Note, the graphs in Figure 4.2 taken from Reasor & Mont-

gomery (2004), give an overview about which vortex regimes have been found

to realign via sheared VRW’s (labeled by S) or the VRW damping mechanism

(labeled by Q). Based on the above findings Reasor & Montgomery (2004) ar-

gue that the diabatically driven secondary circulation observed in real tropical

cyclones is not directly responsible for maintaining the vertical alignment of

the vortex in presence of a vertically sheared background flow. Note that the

background flow choosen in their studies was a weak to moderate unidirectional

vertical shear flow with ambient vertical shear between 0 and 4 m/s per 10 km.

There are, however, numerical studies that yield results which are completely

contrary to the results described right above. Comparing dry and moist numer-

ical simulations Frank & Ritchie (1999) observed that diabatic vortices have

a greater chance to withstand an imposed weak background shear than adia-

batic ones. Considering initially barotropic vortice, Jones (1994) observed a

rotation of the upper and lower-level vortex centres about the mid level cen-

tre, shortly after the vortex was tilted in the plane of the shear. The rotation,

however, decreased in time, while the magnitude of the vortex tilt increased in

time. Although the first observed rotation of the vortex centres about the mid

level coincides with the observations made by Reasor & Montgomery (2004),

the increase of the vortex tilt in time shows a completely contradictory vortex

behaviour. Studies undertaken by Mallen et al (2004) to find the sources of the

discrepancy between the simulations of Jones and Reasor & Montgomery, point

out that a vortex realignment depends strongly on the initial radial structure

of the vortex profile. In particular they showed that the idealized radial vor-

tex velocity profile used by Jones does not exhibit the negative gradient at the

critical radius rc necessary for a resonant damping mechanism.

The primary goal of this chapter is to find out whether from an asymptotic
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Figure 4.2: Schematic diagram showing the vortex regimes aligning either via
resonant VRW damping denoted by ”Q” or sheared VRW’s denoted by ”S”
(Reasor & Montgomery 2004, Fig.3)

perspective results regarding the vertical vortex alignment mechanisms can be

obtained, similar to those of Reasor & Montgomery. For the vortex regime stud-

ied in the present work with the horizontal vortex scale L = ε−
3
2hsc ∼ 200 km

and the tangential velocity U = ε−
1
2uref ∼ 30 m/s, the Rossby number is

Ro = RoL = 0.625. With N = 10−2 s−1, h = hsc = 10 km, f ≡ Ω0 = 10−4 s−1

and m = 1 the internal Rossby deformation radius is lr,G ∼ 300 km, giving

a typical value for the ratio between L and lr,G that is L/lr,G ∼ 0.67. Thus,

according to the graphs in Figure 4.2 vortices studied in the present work

should realign via an inviscid damping mechanism (Q). To elucidate the role of

an environmental flow for the vortex tilt, the present work uses the definition of

the vortex centreline ~XC = (XC , YC) to determine a vortex tilt. Because of the

centreline expansion (3.20) vertical variations of the next higher order vortex

centreline (X
( 1
2 )

C , Y
( 1
2 )

C ) give a first approximation to the vortex tilt. Thus, in

the rest of the work we refer to the vertical gradients ∂X
( 1
2 )

C /∂z and ∂Y
( 1
2 )

C /∂z

as the vortex tilt. In particular it will be shown that by means of matched

asymptotics, equations describing the temporal evolution of X
( 1
2 )

C and Y
( 1
2 )

C can

be derived. Assuming a weak background flow, solutions of these equations de-

scribe a precession motion of a tilted vortex-centreline, which is in agreement

with the observations made by Reasor & Montgomery on an f-plane. However,

solutions describing a simultaneous realignment of an initially tilted vortex via

resonant VRW waves can not be derived due to the slow time scales choosen in

Ansatz (3.7). An asymptotic analysis including both fast and slow times scales

is subject for the future work.
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The outline of this chapter is as follows. In Section 4.1 an overview about

the relevant equations is given which constitute the basis for the derivation of

solutions describing the structure and motion of adiabatic vortices up to the

first orders. Section 4.2 explains how wavenumber-one vertical velocities fields

are related to the first order vortex tilt. Together with an analysis of appro-

priate potential temperature fields a mechanism known as the adiabatic lifting

mechanism is recovered. In addition solutions describing the leading order vor-

tex motion are derived by means of matched asymptotics. Provided that such

solutions exist, the equation describing the leading order vortex motion can be

used to explore the necessary environmental conditions for a concentrated vor-

tex to survive. In Section 4.3 solutions describing the second order horizontal

asymmetric velocity fields are used to derive via matched asymptotics an evo-

lution equation for the first order vortex centreline. Depending on the initial

conditions different solutions are derived and discussed in comparison with the

results obtained by Reasor & Montgomery (2001).

4.1 Governing equations

Unless otherwise stated a constant and statically stable background stratifica-

tion is assumed for the derivations below, i.e. ∂Θ(2)/∂z = σ with σ > 0. Then,

in absence of any heating from the O(ε
7
2 ) thermodynamic equation (3.53) it

follows immediately that w( 4
2 ) = 0 and the relevant equations describing the

leading and next higher order vortex structure are (see Section 3.1.3) listed

below. Note that leading order vertical momentum and potential temperature

equations does not change if w( 4
2 ) = 0.

Vertical momentum equations:

∂p( 6
2 )

∂z
− Λ1

b

∂p( 6
2 )

∂r
= −ρ( 6

2 )

∂p( 7
2 )

∂z
− Λ1

b

∂p( 7
2 )

∂r
− Λ1

a

1

r

∂p( 7
2 )

∂θ
− Λ2

b

∂p( 6
2 )

∂r
= −ρ( 7

2 )

(4.2)

Potential temperature equation:

u
(0)
θ

r

∂Θ( 6
2 )

∂θ
+ w( 5

2 ) ∂Θ( 4
2 )

∂z
= 0 (4.3)
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Horizontal momentum equations:

With w( 4
2 ) = 0 one obtains from (3.43)

~er :
u

(0)
θ

r

∂u
( 1
2 )
r

∂θ
− 2u

(0)
θ u

( 1
2 )

θ

r
+

1

ρ(0)

∂p( 7
2 )

∂r
+ Ω0Π

0
a − Ω0u

( 1
2 )

θ = 0

~eθ : u
( 1
2 )
r ζ(0) +

u
(0)
θ

r

∂u
( 1
2 )

θ

∂θ
+

1

r ρ(0)

∂p( 7
2 )

∂θ
+ Ω0Π

0
b + Ω0u

( 1
2 )
r = 0

(4.4)

where ζ( j
2 ) = (∂u

( j
2 )

θ /∂r + u
( j
2 )

θ /r) with i = 0,1,2,... denotes the relative vorticity

with respect to the vertical. The next higher order momentum equations (3.44)

and (3.45) simplify to

~er : Λ1
a w

( 5
2 )u

(0)
θ

r
+ u

( 1
2 )
r

∂u
( 1
2 )
r

∂r
+
u

( 1
2 )

θ

r

∂u
( 1
2 )
r

∂θ
+
u

(0)
θ

r

∂u
( 2
2 )
r

∂θ
− u

( 1
2 )2

θ

r
−

2u
(0)
θ u

( 2
2 )

θ

r
+

1

ρ(0)

∂p( 8
2 )

∂r
− ρ( 2

2 )

ρ(0)2

∂p( 6
2 )

∂r
+ Ω0Π

1
a − Ω0u

( 2
2 )

θ − u
(0)
θ βY (0) = 0 (4.5)

~eθ :
∂u

(0)
θ

∂τ
+ w( 5

2 ) ∂u
(0)
θ

∂z
− Λ1

b w
( 5
2 ) ∂u

(0)
θ

∂r
+ u

( 1
2 )
r ζ( 1

2 ) + u
( 2
2 )
r ζ(0) +

u
(0)
θ

r

∂u
( 2
2 )

θ

∂θ
+
u

( 1
2 )

θ

r

∂u
( 1
2 )

θ

∂θ
+

1

rρ(0)

∂p( 8
2 )

∂θ
+ Ω0Π

1
b + Ω0u

( 2
2 )
r = 0 (4.6)

with Πj
a,Π

j
b and Λja,Λ

j
b (j = 0,1,2,...) given through (3.42) and (3.41).

Continuity equations:

With w( 4
2 ) = 0 the mass continuity equations (3.50) and (3.52) take the form

∂u
( 1
2 )
r

∂r
+
u

( 1
2 )
r

r
+

1

r

∂u
( 1
2 )

θ

∂θ
= 0 (4.7)

ρ(0)

(

∂u
( 2
2 )
r

∂r
+
u

( 2
2 )
r

r
+

1

r

∂u
( 2
2 )

θ

∂θ

)

+
∂(ρ(0)w( 5

2 ))

∂z
=

Λ1
b

∂(ρ(0)w( 5
2 ))

∂r
+ Λ1

a

1

r

∂(ρ(0)w( 5
2 ))

∂θ
(4.8)
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4.2 Asymptotic solutions of the first order equa-

tions

The purpose of this section is to find asymptotic solutions for the leading order

vertical velocity w( 5
2 ) and the associated thermodynamic fields Θ( 6

2 ) and ρ( 6
2 )

(Section 4.2.1). Furthermore solutions for the first order horizontal velocities

u
( 1
2 )
r and u

( 1
2 )

θ shall be derived (Section 4.2.2). In doing so it is assumed

that the leading order circumferential velocity u
(0)
θ , satisfying the matching

condition (3.99), is given. Finally, matching the horizontal velocity fields with

the environmental vortex flow gives equations for the leading order vortex cen-

treline motion ~V
(0)
C = ∂ ~X

(0)
C /∂τ (Section 4.2.3).

4.2.1 Wavenumber-one leading order vertical velocity pat-

terns and the adiabatic lifting mechanism

Dry simulations were carried out by Frank & Ritchie (1999) ”to determine the

patterns of forced ascent that occur as the vortex responds to imposed vertical

wind shear and translational flow”. They revealed a mechanism modulating

vertical velocity fields and which has been called the adiabatic lifting mechanism.

Via a three-stage sequence of events caused by vertical wind shear the lifting

mechanism can be summarized as follows:

[1 ] The first stage describes a downshear tilting of the vortex in response to

an environmentally sheared background flow.

[2 ] In a second stage the tilt causes an unbalanced wind and mass field of the

vortex flow itself, resulting in weak ascent downshear and descent upshear

of the low-level vortex centre. This in turn gives rise to a bulging of the

cold/warm isentropes downshear/upshear of the surface vortex.

[3 ] The third stage includes a further development of the secondary circula-

tion forcing the primary vortex circulation to flow up and down the tilted

isentropes. The resulting vertical circulation pattern was determined by

maximum upward motion in the downshear right quadrant and subsidence

in the upshear left quadrant.

Similar observations as described above have been done by Jones (1994) studying

the evolution of vortices in vertical shear using a primitive equation numerical

model on an f -plane. A schematic summary of Jones results is illustrated in

Figure 4.3.

In the following paragraph it is shown that a systematic analysis of the gov-

erning equations for an adiabatic vortex yields a set of equations that describes

the same mechanisms as observed in the simulations mentioned above.
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Figure 4.3: Adiabatic lifting mechanism: - plan view of asymmetric potential
temperature patterns after the vortex has been tilted downshear in response
to an imposed westerly environmental shear. The environmental flow is 4 m/s
near the surface and zero at the upper boundary, - bold circle: relative motion
through the anomaly (Jones 1994, Fig. 4 c)

Figure 4.4: Horizontal cross-sections showing wavenumber-one vertical velocity
(a) and potential temperature fields (b) after 30 min simulation; (c), (d) show
the same after 6 h simulation (taken from Jones (1994), Fig. 3)
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[1] Taking the general balance condition (3.140) between the leading order

background flow and the vortex tilt into account, the mechanisms that cause

a vortex tilt will be discussed in Section 4.3.3 at length. In particular, an

equation is derived that describes how the evolution of (X
( 1
2 )

C , Y
( 1
2 )

C ) is forced

by a vertically sheared background flow. Hence, a tilted vortex in response to

an environmental vertical background shear can be identified, similar to that

described by Frank & Ritchie (1999) in the first stage of the adiabatic lifting

mechanism.

[2] The essence of the second stage described by Frank & Ritchie (1999)

is the occurence of asymmetric potential temperature anomalies once the vor-

tex has been tilted. From an asymptotic perspective the following derivation

confirms the existence of such anomalies. Applying (3.58)2 and (3.58)3 on the

vertical momentum (4.2) gives

∂X
( 1
2 )

C

∂z

∂p( 6
2 )

∂r
= ρ

( 6
2 )

12 and
∂Y

( 1
2 )

C

∂z

∂p( 6
2 )

∂r
= ρ

( 6
2 )

11 (4.9)

In addition, the harmonic analysis of the O(ε
6
2 ) state equation (A-37) yields a

direct relation between asymmetric density fields ρ
( 6
2 )

1k and asymmetric potential

temperature fields Θ
( 6
2 )

1k , reading

ρ(0)Θ
( 6
2 )

1k + ρ
( 6
2 )

1k Θ∞ = 0, k = 1, 2 (4.10)

Here we have used the fact that Θ(0) = Θ∞ and that p( i
2 ) = p( i

2 )(r, z, τ) for

i = 2, 4, 6. Thus, substitution of (4.10) into (4.9) gives

∂X
( 1
2 )

C

∂z

1

ρ(0)

∂p( 6
2 )

∂r
= −Θ

( 6
2 )

12

Θ∞
and

∂Y
( 1
2 )

C

∂z

1

ρ(0)

∂p( 6
2 )

∂r
= −Θ

( 6
2 )

11

Θ∞
(4.11)

It turns out that a tilted vortex with ∂X
( 1
2 )

C /∂z 6= 0 and ∂Y
( 1
2 )

C /∂z 6= 0 requires

asymmetric potential temperature patterns to achieve a balanced state. From

the general balance condition (3.140) we know that on an f -plane (i.e. ~V
(0)
R = 0)

and for a pure westerly environmental flow (i.e. V
(0)
B = 0) we have ∂Y

( 1
2 )

C /∂z = 0

but ∂X
( 1
2 )

C /∂z > 0. Then, the above equations state that cold temperature

anomalies occur downshear and warm potential temperature anomalies occur

upshear which is in agreement with Jones schematic illustration in Figure 4.3.

Note that further observations can be made regarding the location of the cen-

tres of the anomalies. Since the pressure gradient ∂p( 6
2 )/∂r in (4.11) can be

viewed as a weighting factor the location of the centre of the anomalies will cor-

respond with the location of strongest pressure gradients and hence strongest

circumferential winds u
(0)
θ .
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[3] Finally it is shown how an asymmetric secondary circulation can be

enforced by vertically tilted isentropes, i.e. potential temperature anomalies.

For a stable background stratification, i.e. ∂Θ( 4
2 )/∂z > 0, the zeroth mode

equation of (4.3) implies immediately that

w
( 5
2 )

0 = 0 (4.12)

From the first sine and cosine modes of (4.3) one obtains a direct relation

between tilt induced asymmetric potential temperature patterns Θ
( 6
2 )

1k and an

asymmetric vertical velocity field w
( 5
2 )

1k

w
( 5
2 )

11

∂Θ( 4
2 )

∂z
= +

u
(0)
θ

r
Θ

( 6
2 )

12 and w
( 5
2 )

12

∂Θ( 4
2 )

∂z
= −u

(0)
θ

r
Θ

( 6
2 )

11 (4.13)

Thus, together with the observations from (4.11) it follows that within a pure

zonal background shear flow maximum ascent appears downshear right of the

vortex centre and maximum descent downshear left of the vortex centre which

in turn results in a 90◦ phase shift between the vertical velocity and potential

temperature anomalies. This is in good agreement with the observations made

by Jones (1994) (see Figure 4.3).

After an initial adjustment time of 6 hours Jones (1994) further observed

that the potential temperature anomaly started to rotate due to the rotation

of the vortex tilt. In the present work, solutions describing a precession mo-

tion of the vortex centreline ~X
( 1
2 )

C = (X
( 1
2 )

C , Y
( 1
2 )

C ) are discussed in more detail

in Section 4.3. Taking such solutions into account, a precession motion of
~X

( 1
2 )

C implies via (4.11) and (4.13) a rotation of the asymmetric velocity and

potential temperature patterns w
( 5
2 )

1k and Θ
( 6
2 )

1k , which is in agreement with the

observations made by Jones (1994) (see Figure 4.4).

Summarizing the results discussed under point [1] - [3] the following cause-effect

can be found

∂U
( 1
2 )

B

∂z
=⇒ ∂X

( 1
2 )

C

∂z
=⇒ w

( 5
2 )

11 =⇒ Θ
( 6
2 )

12

and

∂V
( 1
2 )

B

∂z
=⇒ ∂Y

( 1
2 )

C

∂z
=⇒ w

( 5
2 )

12 =⇒ Θ
( 6
2 )

11

(4.14)

The equations (4.14) state that a vertically sheared environmental flow induces

a vortex tilt which in turn generates asymmetric patterns of the vertical velocity

and potential temperature fields within the mesoscale vortex region.
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Inner and outer boundary limits For subsequent analysis in this chapter,

knowledge about the behaviour of w
( 5
2 )

1k for both the far field region (r → ∞)

and regions near the vortex centre (r → 0) is needed. By combining (4.13) with

(4.11) one obtains

Tk
u

(0)
θ

r

∂π

∂r
= w

( 5
2 )

1k

∂Θ( 4
2 )

∂z
, k = 1, 2 (4.15)

with π = p( 6
2 )/ρ(0) and

T1 = −∂X
( 1
2 )

C

∂z
and T2 = +

∂Y
( 1
2 )

C

∂z
(4.16)

Elimination of ∂π/∂r with the aid of the gradient wind relation (3.135) one

obtains

w
( 5
2 )

1k = Θ∞

(

∂Θ( 4
2 )

∂z

)−1

Tk
u

(0)
θ

r

(

u
(0)2

θ

r
+ Ω0u

(0)
θ

)

k = 1, 2 (4.17)

From (4.17) it is observed that the radial behaviour of w
( 5
2 )

1k is determined

uniquely by the radial profile of the leading order vortex flow u
(0)
θ . Thus, with

the aid of the matching condition (3.99) one obtains

w
( 5
2 )

1k = g̃ Tk
Γ2

r3
as r → ∞ (4.18)

with g̃ = g̃(z) = Θ∞Ω0(4π
2∂Θ( 4

2 )/∂z)−1 and the circulation Γ = Γ(z, τ). A

further observation that can be made from (4.17) is that the asymmetric vertical

velocities w
( 5
2 )

11 and w
( 5
2 )

12 differ only in the tilt components T1 and T2. Thus,

from (4.17) the following relation is derived

w
( 5
2 )

11

∂Y
( 1
2 )

C

∂z
+ w

( 5
2 )

12

∂X
( 1
2 )

C

∂z
= 0 (4.19)

Next, solutions for w
( 5
2 )

1k in the limit r → 0 are derived. Solving the gradient

wind relation (3.135) for u
(0)
θ gives

u
(0)
θ = −Ω0r

2
±

√

Ω2
0r

2

4
+

r

ρ(0)

∂p( 6
2 )

∂r
(4.20)

The minimum of the pressure in cyclones is located at the centre of the vortex,

which implies ∂p( 6
2 )/∂r = 0 at r = 0. Hence, considering the limit r → 0 of
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equation (4.17) one obtains with the aid of L’ Hospitals rule

w
( 5
2 )

1k ∼ u
(0)3

θ

r2
+ Ω0

u
(0)2

θ

r
= 0 as r → 0 (4.21)

4.2.2 Wavenumber-one first order horizontal velocity fields

The purpose of this section is to derive solutions for the asymmetric contribu-

tions of the next higher order vortex flow described by u
( 1
2 )
r and u

( 1
2 )

θ . For one

thing the solutions are used to get a first order correction on the leading order

vortex field given by u
(0)
θ . For another, the solutions serve as a basis of deriving

equations for the leading order vortex motion ~V
(0)
C = (U

(0)
C , V

(0)
C ) by means of

matched asymptotics, which is discussed in Section 4.2.3.

Incompressible first order horizontal flow The first non-trivial mass con-

tinuity (4.7) implies a nondivergent first order horizontal flow (u
( 1
2 )
r , u

( 1
2 )

θ ), i.e.

∂u
( 1
2 )
r

∂r
+
u

( 1
2 )
r

r
+

1

r

∂u
( 1
2 )

θ

∂θ
= 0 (4.22)

Thus, based on Helmholtz’s Theorem (see Section 3.1.4) a stream function

ψ( 1
2 ) can be introduced which is defined by

(u
nd( 1

2 )
r , u

nd( 1
2 )

θ ) =

(

1

r

∂ψ( 1
2 )

∂θ
,−∂ψ

( 1
2 )

∂r

)

(4.23)

Since u
( 1
2 )
r and u

( 1
2 )

θ have no divergent contributions, i.e. u
d( 1

2 )
r = 0 and u

d( 1
2 )

θ = 0,

the ’nd’ superscripts denoting nondivergent flows are dropped in subsequent

analysis. Note also that (3.62) implies

u
( 1
2 )
r,0 = 0 (4.24)

Solutions for the stream function Elimination of p( 7
2 ) from (4.4)1 and

(4.4)2 by cross-differentiation, i.e. ∂θ(4.4)1 − ∂r(r (4.4)2), gives

u
(0)
θ

r

∂2u
( 1
2 )
r

∂θ2
− 2u

(0)
θ

r

∂u
( 1
2 )

θ

∂θ
− Ω0

∂u
( 1
2 )

θ

∂θ
− ∂

∂r

(

ru
( 1
2 )
r

∂u
(0)
θ

∂r

)

−

∂

∂r
(u

( 1
2 )
r u

(0)
θ ) − ∂

∂r

(

u
(0)
θ

∂u
( 1
2 )

θ

∂θ

)

− Ω0
∂

∂r
(ru

( 1
2 )
r ) = 0 (4.25)
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We substitute (4.23) into (4.25) to obtain an equation for ψ( 1
2 ). Then, a har-

monic analysis (see Section 3.1.4) yields homogeneous linear second-order or-

dinary differential equations for the first Fourier modes ψ
( 1
2 )

1k , i.e.

u
(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 1
2 )

1k = 0 , k = 1, 2 (4.26)

Here the symbol ζ
(0)
r = ∂ζ(0)/∂r is used. When constructing asymptotic ap-

proximations, it is not always immediately clear which boundary conditions the

solutions should satisfy (Holmes, 1995). Motivated studies of Wang & Holland

(1996) which show that a non-zero relative flow at r = 0 was responsible for the

deflection of the vortex motion from the steering flow, the following boundary

conditions (BC’s hereafter) are choosen

ψ
( 1
2 )

1k = 0 ,
∂ψ

( 1
2 )

1k

∂r
= A1k at r = 0 (4.27)

Here, A1k = A1k(z, τ) is a constant accounting for the possibility of fluid parcels

flowing through the vortex centre. But note, A1k = A1k(z, τ) is presently un-

known and, in fact, it could turn out to be zero. To find solutions for ψ
( 1
2 )

1k it

is helpful to make a transformation of (4.26) and (4.27) into an initial value

problem with homogeneous BC’s. For this purpose a stream function ψ
( 1
2 )

1k is

introduced, defined through

ψ
( 1
2 )

1k = ψ
( 1
2 )

1k −A1kr (4.28)

Upon substitution of (4.28) into (4.26) one obtains the following equation

u
(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 1
2 )

1k = ζ(0)
r A1kr , (4.29)

which we solve subject to the homogeneous BC’s

ψ
( 1
2 )

1k = 0,
∂ψ

( 1
2 )

1k

∂r
= 0 at r = 0 (4.30)

Integration of (4.29) yields (see Appendix B.1)

ψ
( 1
2 )

1k = u
(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

A1k r
2 ζ(0)

r dr

]

dr̄ (4.31)

Eventually, solving the integrals in (4.31) (see Appendix B.2) and use of (4.28)
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yields

ψ
( 1
2 )

1k = u
(0)
θ

2A1k

ζ
(0)
⋆

(4.32)

Here, the subscript (.)⋆ denotes values evaluated at the vortex centre, i.e.

ζ
(0)
⋆ = ζ(0)(r = 0, z, τ). Using the notation in terms of the asymmetric veloc-

ity fields u
( 1
2 )

θ,1k and u
( 1
2 )

r,1k (k = 1, 2), from (4.32) and together with (3.63) one

obtains

u
( 1
2 )

θ,1k = −∂u
(0)
θ

∂r

2A1k

ζ
(0)
⋆

, k = 1, 2

u
( 1
2 )
r,11 = −u

(0)
θ

r

2A12

ζ
(0)
⋆

u
( 1
2 )
r,12 = +

u
(0)
θ

r

2A11

ζ
(0)
⋆

(4.33)

Here, however, a contradiction appears by comparing the far field conditions of

the asymmetric velocity components (4.33) with the matching conditions (3.103).

Taking into account that u
(0)
θ = Γ/2πr as r approaches ∞ (see eqn. (3.99)), one

finds from (4.33)

u
( 1
2 )

θ,11 = + u
( 1
2 )
r,12 and u

( 1
2 )

θ,12 = − u
( 1
2 )
r,11 as r → ∞ (4.34)

By contrast, the matching conditions (3.103) yield

u
( 1
2 )

θ,11 = − u
( 1
2 )
r,12 and u

( 1
2 )

θ,12 = + u
( 1
2 )
r,11 as r → ∞ (4.35)

The only possibility to avoid the contradiction appearing between (4.34) and

(4.35) is to require A1k = 0 which implies immediately that

ψ
( 1
2 )

1k = 0 or u
( 1
2 )

θ,1k ≡ u
( 1
2 )

r,1k = 0 (4.36)

4.2.3 Leading order vortex motion and constraints on the

environmental flow

Equations for the leading order vortex motion ~V
(0)
C shall be derived by means

of matched asymptotic techniques. As noted earlier, the idea of this approach

stems from the work of Callagari & Ting (1978) who studied the motion and

decay of Vortex filaments, and also from the work of Ling & Ting (1987) who

studied the motion and core structure of a two dimensional geostrophic vor-

tex. Furthermore it is worth noting that with the scalings used in the present

work centreline velocities of order ~V
(0)
C are a measure for dimensional velocities
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of ∼ 10 m/s. From observations it is known that most hurricanes may move

along at 5 - 10 m/s, in extreme cases they even could be moving as fast as

20 m/s. But there are also situations where hurricanes go much more slowly

or even become quasi-stationary. The winter storm ’Lothar’2 (24-26 Decem-

ber 1999) is an example for hurricane-like vortices in the mid-latitudes which

reached translations speeds of ∼ 30 m/s and which were distinctively larger than

the ambient background flow of ∼ 10 m/s (Wernli, 2002). The numbers above

provide a wide variety of how fast hurricane-like vortices may move. From the

solutions for ~V
(0)
C a discussion is given on environmental conditions necessary

for a concentrated vortex to reach translation speeds of ∼ 10 m/s.

For the present case, matching the inner velocities u
( 1
2 )

θ,1k and u
( 1
2 )

r,1k with

the environmental flow becomes easy. Since u
( 1
2 )

θ,1k and u
( 1
2 )

r,1k are zero for all

r (see (4.36)), it follows from the matching condition (3.103) that

U
(0)
C (τ) = U

(0)
B,C(z, τ) + U

(0)
R,C(z, τ)

V
(0)
C (τ) = V

(0)
B,C(z, τ) + V

(0)
R,C(z, τ)

(4.37)

where U
(0)
C (τ) and V

(0)
C (τ) denote the zonal and meridional velocity compo-

nents of the leading order vortex centreline with U
(0)
C (τ) = ∂X

(0)
C /∂τ and

V
(0)
C (τ) = ∂Y

(0)
C /∂τ (see (3.6)1). Recall that the leading order centreline ex-

pansion term ~X
(0)
C (τ) = (X

(0)
C (τ), Y

(0)
C (τ)) has been assumed to be independent

on the vertical coordinate z (see (3.20)). That is why vortices with a horizontal

displacement of about 1000 km between the upper und lower vortex part can

not be viewed as concentrated vortices. This, however, sets specific constraints

on the right hand sides of (4.37). In particular it turns out that (4.37) is only

satisfied if the z dependence of the background flow ~V
(0)
B (~η, z, τ) compensates

the z dependence of the regular flow ~V
(0)
R (~η, z, τ) at the leading order centreline

position ~η = ~X
(0)
C such that the totals (U

(0)
B,C + U

(0)
R,C) and (V

(0)
B,C + V

(0)
R,C) are

constant with respect to the vertical z, respectively. In the present work the

background flow at the leading order centreline, i.e. ~V
(0)
B,C = ~V

(0)
B (X

(0)
C , Y

(0)
C ), is

assumed to be given. Equations determining the regular flow ~V
(0)
R in terms of a

regular stream function ψ̌
(0)
r have been derived in Sections 3.2.2.2 - 3.2.2.3.

Unfortunately, due to the nonlinearity of (3.84) it turns out to be difficult to

find analytical solutions for ψ̌
(0)
r . Due to the lack of exact analytical solutions

for ψ̌
(0)
r , three different cases are considered below.

2’Lothar’ was a winter storm originating in the North Atlantic, which after its rapid inten-
sification devastated regions in northern France and Switzerland, and southern Germany.
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Case A: This case is based on the assumption that solutions for ψ̌
(0)
r (or ~V

(0)
R,C)

exist such that the right hand side of (4.37) is constant with respect to the verti-

cal. Then (4.37) state that the concentrated vortex is in leading order steered by

the background flow ~V
(0)
B,C = (U

(0)
B,C , V

(0)
B,C) evaluated at the leading order centre-

line, but its path is modified by the regular flow field ~V
(0)
R,C = (U

(0)
R,C , V

(0)
R,C). Here

it is worth pointing out that a partial cancellation of the effects of environmen-

tal vertical wind shear by a β-plane-induced shear vector has been observed by

Frank & Ritchie (2002), provided that the imposed environmental wind shear

was easterly.

Case B: Now if no physically reasonable solutions for ψ̌
(0)
r (or ~V

(0)
R,C) exist such

that for a given vertically sheared background flow ~V
(0)
B,C the right hand side of

(4.37) is constant with respect to the vertical, then one has to draw a conclusion

different from Case A. In this case the choosen background flow conditions are

not adequate for a concentrated vortex to maintain its coherence to leading

order. This in turn would imply that not only a strong sheared background

flow can inhibit the maintenance of concentrated vortices, but also the β effect.

Case C: Since no exact solutions for ψ̌
(0)
r are available, a more simplified

case describing the leading order vortex motion on a f plane is considered by

assuming that β = 0. Considering a 2D vortex, Reznik (1992) found that for

a singular point vortex and β = 0 the generation of a non-zero regular field is

not possible. Assuming that this is true for the 3D vortex case studied in the

present work, the impact of a regular flow on the leading order vortex motion

would disappear. This, however, would restrict the environmental conditions

necessary for a concentrated vortex to survive. In particular, (at least at this

stage of analysis), favourable conditions are either a leading order background

flow constant throughout the whole troposphere or a background flow is of

1/2 th order, i.e. ~V
(0)
B = 0. Considering the first possibility, an appropriate

asymptotic expansion (see (3.78)) for the background flow ~VB = (UB , VB) with

UB = −∂ψ̌B/∂η2 and VB = ∂ψ̌B/∂η1 at the leading order centreline position

~η = ~X
(0)
C would read

~VB,C = ~V
(0)
B,C(τ) + ε

1
2 ~V

( 1
2 )

B,C(z, τ) + O(ε
2
2 ) . (4.38)
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4.3 Asymptotic analysis of the second order equa-

tions

The primary goal of this section is to elucidate the role of a vertically sheared

background flow, i.e. ∂~VB/∂z 6= 0, on the leading order vortex tilt ∂ ~X
( 1
2 )

C /∂z

and therefore the vertical distribution of next higher order vortex centreline

motion ~V
( 1
2 )

C = ∂ ~X
( 1
2 )

C /∂τ . The relevant equations for the analysis are the mass-

conservation equation (4.8) and the horizontal momentum equations (4.5) and

(4.6). The derivations are similar to the procedure in the previous section.

4.3.1 Wavenumber-one second order horizontal velocity

fields for non-zero first order vortex tilt

In numerical simulations carried out by Wu & Wang (2001) focusing on vertical

coupling and movement of adiabatic baroclinic tropical cyclones (TC) affected

either by a vertical environmental shear or a differential beta drift, the following

observations were made: A three-dimensional asymmetric circulation with a

typical radius of 100 km developed within the TC core region, after the vortex

has been tilted in the vertical in response to the environmental forcing. It was

shown in Section 4.2.1 that asymmetric vertical velocity patterns w
( 5
2 )

1k only

occur in presence of a vortex tilt T
( 1
2 )

k . It will be shown below that the same

holds for second order asymmetric contributions u
( 2
2 )

r,1k and u
( 2
2 )

θ,1k. Therefore,

from an asymptotic perspective, a tilt induced three-dimensional asymmetric

flow given by w
( 5
2 )

1k , u
( 2
2 )

r,1k and u
( 2
2 )

θ,1k can be derived that is in agreement with the

observations made by Wu & Wang (2001).

Compressible second order horizontal flow Unlike the mass continuity

equation (4.7), the mass-conservation equation (4.8) describes a divergent sec-

ond order vortex flow given by u
( 2
2 )
r and u

( 2
2 )

θ . This is due to the tilt induced

asymmetric vertical velocity patterns w
( 5
2 )

1k on the right hand side of (4.8). Thus,

the velocity components can be decomposed according to Helmholtz’s Theorem

(u
( 2
2 )
r , u

( 2
2 )

θ ) = (u
nd( 2

2 )
r , u

nd( 2
2 )

θ ) + (u
d( 2

2 )
r , u

d( 2
2 )

θ ) , (4.39)

where the divergent flow component has to satisfy

ρ(0)

(

∂u
d( 2

2 )
r

∂r
+
u
d( 2

2 )
r

r
+

1

r

∂u
d( 2

2 )

θ

∂θ

)

=

−∂(ρ(0)w( 5
2 ))

∂z
+ Λ1

b

∂(ρ(0)w( 5
2 ))

∂r
+ Λ1

a

1

r

∂(ρ(0)w( 5
2 ))

∂θ
(4.40)
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Here, Λ1
a and Λ1

b are given by (3.41). Since w
( 5
2 )

0 = 0 (see (4.12)) and ρ(0) =

ρ(0)(z), equations for the first two harmonics of u
d( 2

2 )
r are

2
∂

∂r

(

ru
d( 2

2 )
r,0

)

=
∂X

( 1
2 )

C

∂z

∂

∂r

(

rw
( 5
2 )

12

)

+
∂Y

( 1
2 )

C

∂z

∂

∂r

(

rw
( 5
2 )

11

)

(4.41)

and

1

r

∂

∂r

(

ru
d( 2

2 )
r,11

)

−
u
d( 2

2 )

θ,12

r
= − 1

ρ(0)

∂(ρ(0)w
( 5
2 )

11 )

∂z

1

r

∂

∂r

(

ru
d( 2

2 )
r,12

)

+
u
d( 2

2 )

θ,11

r
= − 1

ρ(0)

∂(ρ(0)w
( 5
2 )

12 )

∂z

(4.42)

Note that radial integration of (4.41) from 0 to r′ together with (4.21) and (4.19)

yields

2u
d( 2

2 )
r,0 =

∂X
( 1
2 )

C

∂z
w

( 5
2 )

12 +
∂Y

( 1
2 )

C

∂z
w

( 5
2 )

11 = 0 (4.43)

which implies immediately u
d( 2

2 )
r,0 = 0. This in turn yields via (3.59) and (3.62)

that

u
( 2
2 )
r,0 = 0 (4.44)

Solutions for the velocity potential Rewriting (4.42) in terms of a velocity

potential φ( 2
2 ) (see Section 3.1.4) one obtains a linear second order partial

differential equation for the asymmetric components φ
( 2
2 )

1k (k = 1, 2)

∇2
1φ

( 2
2 )

1k = − 1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
, (4.45)

where the operator ∇2
1 is defined by

∇2
1 =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)

(4.46)

In a similar manner as in Section 4.2.2 we will describe the flow through the

vortex centre in terms of nondivergent components of the velocity field given by

u
( 2
2 )
r and u

( 2
2 )

θ . Hence, we assume the following BC’s for the velocity potential

φ
( 2
2 )

1k

φ
( 2
2 )

1k = 0,
∂φ

( 2
2 )

1k

∂r
= 0 at r = 0 (4.47)
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Integrating (4.45) using the identity

∇2
1φ

( i
2 )

1k =
1

r2
∂

∂r

(

r

(

r
∂φ

( i
2 )

1k

∂r
− φ

( i
2 )

1k

))

k = 1, 2; i = 0, 1, ... (4.48)

solutions of (4.45) satisfying the BC’s (4.47) are (see Appendix B.3)

φ
( 2
2 )

1k = −r
∫ r

0

1

r̄3

[
∫ r̄

0

¯̄r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
d¯̄r

]

dr̄ (4.49)

Further manipulations can be made using integration by parts and taking into

account that w
( 5
2 )

1k = 0 at r = 0 (see (4.21)). This gives

φ
( 2
2 )

1k =
1

2

(

1

r

∫ r

0

r̄2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄ − r

∫ r

0

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄

)

(4.50)

Note that solutions for φ
( 2
2 )

1k vanish for a zero vortex tilt in leading order, i.e.

Tk = 0, since in such a case w
( 5
2 )

1k = 0 from (4.17).

Solutions for the stream function Applying the same procedure as in

Section 4.2.2, a linear second order differential equation for the higher order

sreamfunction ψ
( 2
2 )

1k can be obtained from (4.5)-(4.6), (3.59)-(3.61) together with

(4.36)2. However, contrary to (4.26) this is an inhomogeneous equation

−u(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 2
2 )

12 = H11 + I11

u
(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 2
2 )

11 = H12 + I12

(4.51)

with

H1k =
∂

∂r

(

rw
( 5
2 )

1k

∂u
(0)
θ

∂z

)

I1k = r[ζ(0) + Ω0]∇2
1φ

( 2
2 )

1k +
∂φ

( 2
2 )

1k

∂r

(

r
∂ζ(0)

∂r

)
(4.52)

Again, to allow for non-zero relative flow at the vortex centre (see Section 4.2.2)

inhomogeneous BC’s are assumed

ψ
( 2
2 )

1k = 0 ,
∂ψ

( 2
2 )

1k

∂r
= B1k at r = 0 , (4.53)
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where B1k = B1k(z, τ) is still unknown at this stage of analysis. Using the

transformation

ψ
( 2
2 )

1k = ψ
( 2
2 )

1k −B1kr (4.54)

the initial value problem (4.51) - (4.53) can be rewritten as

−u(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 2
2 )

1k = K1k (4.55)

where

K11 = −H12 − I12 − ζ(0)
r B11r

K12 = +H11 + I11 − ζ(0)
r B12r

and the BC’s are

ψ
( 1
2 )

1k = 0,
∂ψ

( 1
2 )

1k

∂r
= 0 at r = 0 . (4.56)

Integration of (4.55) (see Appendix B.1 and Appendix B.2) and using (4.54)

yields

ψ
( 2
2 )

11 = +u
(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (H12 + I12) dr

]

dr̄ + u
(0)
θ

2B11

ζ
(0)
∗

ψ
( 2
2 )

12 = −u(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (H11 + I11) dr

]

dr̄ + u
(0)
θ

2B12

ζ
(0)
∗

(4.57)

Since the existence of H1k and I1k depends primarily on vertical velocities w
( 5
2 )

1k

induced by the vortex tilt Tk, the first sum on the right of (4.57) disappears for

Tk = 0 and the resulting solutions for ψ
( 2
2 )

1k does not differ from solutions for

ψ
( 1
2 )

1k (see (4.36)).

Boundary conditions Recall that in Section 4.2.2 solutions for the stream

functions ψ
( 1
2 )

1k become trivial, because far field conditions for the higher order

velocity components u
( 1
2 )

θ,1k = −∂ψ( 1
2 )

1k /∂r and u
( 1
2 )

r,1k = (−1)kψ
( 1
2 )

1(δ1k+1)/r have not

been satisfied. However, with respect to the next higher order, non-zero com-

ponents u
( 2
2 )

θ,1k = −∂ψ( 2
2 )

1k /∂r = B1k at r = 0 can be derived. This can be done

by substituting the far field solutions for ψ
( 2
2 )

1k and φ
( 2
2 )

1k given by (B-48) and

(B-27)-(B-31) into the matching conditions (3.104) and (3.105). In doing so it

can be shown that
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B11 = +
ζ
(0)
⋆ π

2Γ

∫ ∞

0

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

12 )

∂z
dr

B12 = −ζ
(0)
⋆ π

2Γ

∫ ∞

0

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

11 )

∂z
dr

(4.58)

for Γ 6= 0. Hence, the flow through the vortex centre is determined by the hori-

zontally averaged leading order mass flux over the mesoscale vortex region. The

existence of the integrals in (4.58) can be proved using the far field behaviour

of w
( 5
2 )

1k (see (4.18)). To show this we write the integrals in the following way

∫ ∞

0

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr =

∫ R

0

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr +

∫ ∞

R

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr

=

∫ R

0

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr + h(z)

∫ ∞

R

1

r
dr (4.59)

where 0 < R < r and

h(z) =
1

ρ(0)

∂(ρ(0)g̃ Tk Γ2)

∂z
(4.60)

Taking w
( 5
2 )

1k = 0 at r = 0 into account (see (4.21)), from (4.59) it is observed

that the integrals in (4.58) give only finite values if h(z) = 0 as shown in

Section 4.3.3.

4.3.2 Leading order vortex intensity changes

Before discussing how the next higher order vortex motion can be determined

by means of matched asymptotics, it is helpful to have a knowledge about the

temporal evolution of u
(0)
θ . Applying (3.58)1 to the O(ε

3
2 ) horizontal momentum

equation (4.6) an evolution equation for u
(0)
θ can be derived

∂u
(0)
θ

∂τ
+ w

( 5
2 )

0

∂u
(0)
θ

∂z
− 1

2

(

∂X
( 1
2 )

C

∂z
w

( 5
2 )

12 +
∂Y

( 1
2 )

C

∂z
w

( 5
2 )

11

)

∂u
(0)
θ

∂r
+

u
( 1
2 )
r,0 ζ

( 1
2 )

0 +
1

2

2∑

k=1

u
( 1
2 )

r,1kζ
( 1
2 )

1k + u
( 2
2 )
r,0 [ζ(0) + Ω0] = 0

(4.61)

However, using the results (4.12), (4.19), (4.24), (4.44) and (4.36) as derived in

the previous sections, the above equation reduces to

∂u
(0)
θ

∂τ
= 0 (4.62)
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Thus the leading order circumferential flow can be viewed as a steady flow,

i.e. u
(0)
θ = u

(0)
θ (r, z) which also implies that Γ = Γ(z). This seems to be a

reasonable result, since so far neither diabatic effects nor frictional effects have

been accounted for.

4.3.3 Higher order vortex motion - equations for the higher

order vortex centreline correction

Having obtained the solutions for ψ( 2
2 ) and φ( 2

2 ), equations for the higher order

vortex motion ~V
( 1
2 )

C and therefore the vortex centreline determined through
~X

( 1
2 )

C (see (3.6)) can be derived. Rewriting the matching conditions (3.104) and

(3.105) with the aid of (3.59)-(3.61) in terms of ψ
( 2
2 )

1k and φ
( 2
2 )

1k one obtains

−ψ
( 2
2 )

12

r
+
∂φ

( 2
2 )

11

∂r
= V

( 1
2 )

B,C − V
( 1
2 )

C −R1 as r → ∞

+
ψ

( 2
2 )

11

r
+
∂φ

( 2
2 )

12

∂r
= U

( 1
2 )

B,C − U
( 1
2 )

C −R2 as r → ∞

(4.63)

with

Rs = X
( 1
2 )

C

∂(V
(0)
B + V

(0)
R )

∂ηs

∣
∣
∣
∣
∣
~η= ~X

(0)
C

− Y
( 1
2 )

C

∂(U
(0)
B + U

(0)
R )

∂ηs

∣
∣
∣
∣
∣
~η= ~X

(0)
C

(4.64)

for s = 1, 2.

Far field solutions The far field solutions for ψ
( 2
2 )

1k and ∂φ
( 2
2 )

1k /∂r can be de-

rived from (4.45) and (4.51) with the aid of the matching result u
(0)
θ = Γ(z)/2πr

as r → ∞ (see (3.99)), since the radial behaviour of both the source terms H1k

and I1k (see (4.52)) and the asymmetric vertical velocities w
( 4
2 )

1k (see (4.17)) only

depends on the radial behaviour of u
(0)
θ = u

(0)
θ (r, z). In particular, as shown in

Appendix B.4, in the limit r → ∞ one obtains

ψ
( 2
2 )

12 ∼ C2
12 r −

π

Γ

(

b T ♯2 + c
∂T ♯2
∂z

)

r ln r − C1
12

r
+ O

(
1

r2

)

ψ
( 2
2 )

11 ∼ C2
11 r −

π

Γ

(

b T ♯1 + c
∂T ♯1
∂z

)

r ln r − C1
11

r
+ O

(
1

r2

)
(4.65)

where

T ♯1 =
∂Y

( 1
2 )

C

∂z
and T ♯2 =

∂X
( 1
2 )

C

∂z
(4.66)
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and

b(z) =
Ω0

ρ(0)

∂(ρ(0)g̃ Γ2)

∂z
, c(z) = Ω0 g̃ Γ2 , g̃(z) =

Θ∞Ω0

4π2∂Θ( 4
2 )/∂z

(4.67)

The integration constants C1
1k and C2

1k that may depend on the vertical coor-

dinate z are given by (B-29), (B-31) and (B-36). The far field solutions for the

gradient of the velocity potential, as shown in Appendix B.6, are given by

∂φ
( 2
2 )

1k

∂r
∼ C̄2

1k + O(r−2) , k = 1, 2 (4.68)

as r → ∞ with C̄2
1k independent on r.

Finally, upon substitution of (4.68) and (4.65) into the matching conditions

(4.63) one obtains in the limit r → ∞

V
( 1
2 )

C = V
( 1
2 )

B,C −R1 + C2
12 − C̄2

11 −
π

Γ

(

b T ♯2 + c
∂T ♯2
∂z

)

ln r

U
( 1
2 )

C = U
( 1
2 )

B,C −R2 − C2
11 − C̄2

12 +
π

Γ

(

b T ♯1 + c
∂T ♯1
∂z

)

ln r

(4.69)

for Γ = Γ(z) 6= 0.

4.3.3.1 Eigenmode of the first order vortex centreline

From (4.69) it is observed that in the limit r → ∞ bounded solutions for both

V
( 1
2 )

C and U
( 1
2 )

C only exist when

(

b T ♯k + c ∂T ♯k/∂z
)

= 0 , k = 1, 2 (4.70)

With the aid of the expressions for b and c (see (4.67)), equation (4.70) can

be written as ∂/∂z
(

σ−1ρ(0)T ♯k Γ2
)

= 0 with σ = ∂Θ( 4
2 )/∂z which implies that

σ−1ρ(0)T ♯k Γ2 = C♯k, By use of (4.66) this can be written as

σ−1ρ(0) ∂ξk
∂z

Γ2 = C♯k (4.71)

with k = 1, 2 and where ξ1 = Y
( 1
2 )

C (z, τ) and ξ2 = X
( 1
2 )

C (z, τ). Note that because

of ρ(0) = ρ(0)(z) and Γ = Γ(z) the integration constant C♯k = C♯k(τ) is a function

of the time coordinate τ . Dividing (4.71) through by σ−1ρ(0)Γ2 and integrating

again yields

ξk(z, τ) = C♯k(τ)

∫ z

z0

1

ρ(0)(z) Γ2(z)

∂Θ( 4
2 )

∂z
dz + C♯♯k (τ) (4.72)
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where z0 denotes an arbitrary lower boundary. C♯♯k = C♯♯k (τ) is a second constant

of integration which may depend on τ again. From (4.72) it is observed that

centreline solutions belong to a certain class of separation of variables solutions

ξk = C♯k(τ) J(z) + C♯♯k (τ) with J(z) =

∫ z

z0

1

ρ(0) Γ2

∂Θ( 4
2 )

∂z
dz (4.73)

Here, the function J(z) determines an Eigenmode of the vortex centreline’s

vertical structure, depending on the background density ρ(0)(z), the background

stratification ∂Θ( 4
2 )/∂z and the vertical structure of the vortex circulation Γ(z).

Note that this Eigenmode also determines the vortex tilt T ♯k = ∂ξk/∂z. The

amplitude of the Eigenmode is controlled by C♯k = C♯k(τ). Equations for the

latter and some solutions under certain simplifying assumptions are derived in

Section 4.3.4.

It is worth pointing out that Reasor & Montgomery (2004) studied the re-

alignment phenomena of tilted vortices embedded in vertically sheared back-

ground flows. In their studies the vortex tilt is described in terms of a PV

departure q′ = q′(r, z, λ, t) from an azimuthally (
∫
dλ) and vertically (

∫
dz) av-

eraged tilted PV column q = q(r, z, λ, t), i.e. q = q̄(r, t)+ q′(r, z, λ, t). To mimic

a simple tilt they expressed the tilt perturbation in terms of an m = 1 baroclinic

mode3, i.e.

q′ ∼ cos
(πz

H

)

(4.74)

Moreover they used the same vertical distribution to represent an environmental

vertical shear forcing, i.e.

(us, vs) ∼
(

cos
(πz

H

)

,− cos
(πz

H

))

(4.75)

Then, for an initially barotropic and vertically upright vortex they observed the

development of a vortex tilt (4.74) after the environmental shear flow (4.75)

was imposed. The observations based on (4.74) and (4.75) raises the question,

whether the asymptotic solutions (4.73) with the vertical Eigenmode J(z) also

sets out certain requirements on the vertical structure of the imposed back-

ground flow. For instance, this background flow might also be compatible with

the vortex tilt ∂ξk/∂z ∼ ∂J(z)/∂z. This is discussed in detail in Section 4.3.4.

Remark Recall that so far the matching conditions (3.104) and (3.105) does

not account for analytic solutions of the regular stream function ψ̌
(0)
r satisfying

(3.84). It proves to be difficult to derive analytic solutions for ψ̌
(0)
r , due to the

3Using the Boussinesq approximation, Reasor & Montgomery (2004) describe the vertical
structure of q′ and (us, vs) in terms of cos(m πz/H) modes, where m is the vertical mode
number and H is the physical depth of the vortex.
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nonlinearity of (3.84). However, it is conceivable that taking into account an

analytical expression of the regular stream function would yield a non-zero left

hand side of (4.70) while matching in the radial direction. As a consequence

the vertical Eigenmodes J(z) determining the vertical structure of ξk would

look different than those given in (4.72). In principle, a solution of the form

ψ̌
(0)
r ∼ ř ln ř can lead to such a non-zero left hand side. This can be seen as

follows. Recall that the inner and outer expansions for the velocity fields (ǔ, v̌)

and (ur, uθ), i.e. (3.64) and (3.19)1,2, in terms of the respective inner and outer

stream functions read

ψ(r, θ, z, τ) = ε−
1
2ψ(0) + ψ( 1

2 ) + ε
1
2ψ( 2

2 ) + O(ε)

ψ̌(ř, θ, z, τ) = ε0 ψ̌
(0)
g + εψ̌(1) + O(ε2)

(4.76)

Seeking outer solutions ψ̌(α) ∼ ř ln ř as ř → 0 that match with inner solutions

ψ( 2
2 ) ∼ r ln r as r → ∞, using the transformation ř = ε

1
2 r (see (3.93)) one finds

ε
1
2 lim
r→∞

ψ( 2
2 ) ∼ ε

1
2 lim
r→∞

(r ln r) = lim
ř→0

ε
1
2

(

ε−
1
2 ř ln(ε−

1
2 ř)
)

= ε0 lim
ř→0

(ř ln ř) − ln ε
1
2 lim
ř→0

ř

= ε0 lim
ř→0

ψ̌(0)
g − ln ε

1
2 lim
ř→0

ř (4.77)

By comparing the right hand side of the (4.77) with (4.76)2 it is observed that

the leading order outer ψ̌
(0)
g terms would in principle match the inner solutions

ψ( 2
2 ). Note that the singular stream function ψ̌

(0)
s as one of the three con-

tributions of ψ̌
(0)
g (see (3.76)) behaves like ψ̌

(0)
s ∼ ln ř as ř → 0 (see (3.81)).

Thus, if contributions that match ψ( 2
2 ) exist they have to be sought in regular

solutions ψ̌
(0)
r .

4.3.3.2 Evolution equation for the first order centreline on a β-plane

With the condition (4.70) and the expressions for C2
1k and C̄2

1k (see (B-36) and

(B-49)), the equations (4.69) for the next higher order vortex motion take the

form

V
( 1
2 )

C = V
( 1
2 )

B,C −R1 +
π

Γ

∫ ∞

0

W1 dr

U
( 1
2 )

C = U
( 1
2 )

B,C −R2 +
π

Γ

∫ ∞

0

W2 dr

(4.78)

with

Wk = rw
( 5
2 )

1k

∂u
(0)
θ

∂z
+

[

Ω0 +
u

(0)
θ

r

]

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
(4.79)
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and

Rk = X
( 1
2 )

C

∂(V
(0)
B + V

(0)
R )

∂ηk

∣
∣
∣
∣
∣
~η= ~X

(0)
C

− Y
( 1
2 )

C

∂(U
(0)
B + U

(0)
R )

∂ηk

∣
∣
∣
∣
∣
~η= ~X

(0)
C

(4.80)

where k = 1, 2. The existence of the integrals in (4.78) can be proved using the

far field behaviour of w
( 5
2 )

1k (see (4.18)) and u
(0)
θ (see (3.99)). For this we write

the integrals in the following way

∫ ∞

0

W1 dr =

∫ R

0

W1 dr +

∫ ∞

R

W1 dr

=

∫ R

0

W1 dr + h1(z)

∫ ∞

R

1

r3
dr + h2(z)

∫ ∞

R

(Ω0 +
Γ

2πr2
)
1

r
dr

with

h1(z) =
g̃ Tk Γ2

2π

∂Γ

∂z
, h2(z) =

1

ρ(0)

∂(ρ(0)g̃ Tk Γ2)

∂z
(4.81)

However, taking the matching result (4.66) into account it follows that h2 = 0.

Hence, the last integral in the above equation disappears which in turn allows for

finite values for the integrals in (4.78). Two conclusions can be made from (4.78)

as regards the modification to the background flow. Firstly, horizontal gradients

of the leading order background and regular flow evaluated at the leading order

vortex centreline position ~η = ~X
(0)
C enforce a modification of the higher order

vortex motion from the first order background flow ~V
( 1
2 )

B,C . Secondly, the integral

terms in (4.78) describe a net-effect of processes acting on the mesoscale vortex

region on the synoptic scale vortex motion. Please note that this net-effect is

primarily due to the existence of asymmetric vertical velocities w
( 5
2 )

1k which in

turn are strongly related to non-zero vortex tilt components Tk (see (4.17)).

Note that Wk = 0 for w
( 5
2 )

1k = 0.

It is shown next that the relation between w
( 5
2 )

1k and Tk allows us to obtain

from (4.78) partial differential equations (PDEs) for the first order centreline

components X
( 1
2 )

C and Y
( 1
2 )

C . Upon substitution of (4.17) into (4.79) and taking

into account that due to (4.70) it is possible to replace ∂Tk/∂z by −(b/c) Tk,

one finds

W1 = −∂X
( 1
2 )

C

∂z
W̃

W2 = +
∂Y

( 1
2 )

C

∂z
W̃

(4.82)
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where

W̃ =
∂u

(0)
θ

∂z
rf⋆ + r2

[

Ω0 +
u

(0)
θ

r

](

g⋆ − b

c
f⋆
)

(4.83)

with

f⋆ = Θ∞

(

∂Θ( 4
2 )

∂z

)−1
u

(0)
θ

r

(

u
(0)2

θ

r
+ Ω0u

(0)
θ

)

g⋆ =
1

ρ(0)

∂(ρ(0)f⋆)

∂z

(4.84)

Recall that b and c are given by (4.67). If one accounts further that V
( 1
2 )

C =

∂Y
( 1
2 )

C /∂τ and U
( 1
2 )

C = ∂X
( 1
2 )

C /∂τ (see (3.6)1) the first order vortex motion equa-

tions (4.78) can be written as

∂Y
( 1
2 )

C

∂τ
= V

( 1
2 )

B,C −R1 −
∂X

( 1
2 )

C

∂z

π

Γ

∫ ∞

0

W̃ dr

∂X
( 1
2 )

C

∂τ
= U

( 1
2 )

B,C −R2 +
∂Y

( 1
2 )

C

∂z

π

Γ

∫ ∞

0

W̃ dr

(4.85)

It has been found in Section 4.3.3.1 that centreline solutions belong to a

certain class of separation of variables solutions given by (4.73), i.e.

Y
( 1
2 )

C (z, τ) = C♯1(τ) J(z) + C♯♯1 (τ)

X
( 1
2 )

C (z, τ) = C♯2(τ) J(z) + C♯♯2 (τ)
(4.86)

where J(z) denotes an vertical Eigenmode determined by the background den-

sity ρ(0)(z), the background stratification ∂Θ( 4
2 )/∂z, and the vortex circulation

Γ(z). Thus, upon substitution of the above equations into (4.85), ordinary differ-

ential equations (ODE) for C♯k = C♯k(τ) are obtained whose solutions eventually

determine the temporal evolution of X
( 1
2 )

C and Y
( 1
2 )

C . Here, however it should

be noted that solutions for X
( 1
2 )

C and Y
( 1
2 )

C should also satisfy at any time τ the

general balance condition (3.140), i.e.

∂Y
( 1
2 )

C

∂z

(

U
(0)
B,C + U

(0)
R,C

)

=
∂X

( 1
2 )

C

∂z

(

V
(0)
B,C + V

(0)
R,C

)

(4.87)

Remark So far, equations for the leading and first order vortex motions have

been derived (see (4.37) and (4.78)). Thus, based on the asymptotic expansion

(3.21) for the synoptic scale vortex motion ~VC = (UC , VC) we find the following
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two-term approximation for the synoptic scale vortex motion

UC = U
(0)
B,C(z, τ) + U

(0)
R,C(z, τ) + ε

(

U
( 1
2 )

B,C −R2 +
π

Γ

∫ ∞

0

W2 dr

)

VC = V
(0)
B,C(z, τ) + V

(0)
R,C(z, τ) + ε

(

V
( 1
2 )

B,C −R1 +
π

Γ

∫ ∞

0

W1 dr

) (4.88)

4.3.4 Centerline solutions on an f-plane for an initially

baroclinic vortex embedded within a spatial uniform

background flow in leading order

Solutions describing the temporal evolution of the first order centreline com-

ponents X
( 1
2 )

C and Y
( 1
2 )

C on an f-plane are now studied. Particular attention is

focused on the question, whether an alignment mechanism similar to a resonant

VRW damping can be explored from an asymptotic perspective. Recall that

the theory of VRW damping has been described in detail at the beginning of

this chapter.

The temporal evolution of the first order centreline components X
( 1
2 )

C and

Y
( 1
2 )

C are studied, based on the assumption that no regular fields are generated

by the vortex flow itself as long as β = 0. Thus the studies below are carried out

for a zero regular flow, i.e. ~V
(0)
R = 0. Recall that in this case the leading order

background flow ~V
(0)
B is indepenent of height throughout whole troposphere in

order to avoid any contradictions with the equations which describe the leading

order vortex motion (see (4.37)). Moreover, a horizontally uniform leading order

background flow is assumed, so that ~V
(0)
B = ~V

(0)
B (τ). Note that with ~V

(0)
R = 0

and ~V
(0)
B = ~V

(0)
B (τ) it follows immediately that Rk = 0 (see (4.80)). Hence the

equations (4.85) simplify to

∂Y
( 1
2 )

C

∂τ
= V

( 1
2 )

B,C − ∂X
( 1
2 )

C

∂z

π

Γ

∫ ∞

0

W̃ dr

∂X
( 1
2 )

C

∂τ
= U

( 1
2 )

B,C +
∂Y

( 1
2 )

C

∂z

π

Γ

∫ ∞

0

W̃ dr

(4.89)

with Γ = Γ(z), W̃ = W̃(r, z) and ~V
( 1
2 )

B,C = ~V
( 1
2 )

B (~η = ~X
( 1
2 )

C , z, τ). The general

balance condition (4.87) takes the form

∂Y
( 1
2 )

C

∂z
U

(0)
B =

∂X
( 1
2 )

C

∂z
V

(0)
B (4.90)

It has been discussed in Section 4.3.3.1 that the vertical Eigenmode J(z) of the

first order centreline components X
( 1
2 )

C and Y
( 1
2 )

C might change if the regular flow
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field ψ̌
(0)
r behaves like ř ln ř in the limit ř → 0. Since it is assumed that there are

no regular fields on an f-plane the only possible vertical Eigenmode of X
( 1
2 )

C and

Y
( 1
2 )

C is determined by J(z) which is given by J(z) =
∫

1/(ρ(0) Γ2) dΘ( 4
2 )/dz dz.

In the following subsections two different cases based on the assumptions

that either ~V
(0)
B = const. (steady leading order background flow) or ~V

(0)
B = 0 are

analysed. Note that regarding the latter assumption the additional constraint

(4.90) on first order centreline solutions disappears.

4.3.4.1 Impact of a strong background flow ~V
(0)
B = const. with weak

vertical shear ~V
( 1
2 )

B = ~V
( 1
2 )

B (z, τ)

In the case of vortices embedded in strong background flow (i.e. ~V
(0)
B,C = const.)

with weak vertical shear (i.e. ~V
( 1
2 )

B,C = ~V
( 1
2 )

B,C(z, τ)), substitution of (4.90) into

(4.89) yields centreline transport equations

∂ξk
∂τ

+ ck(z)
∂ξk
∂z

= Fk(z, τ) , k = 1, 2 (4.91)

where

ξ1 = Y
( 1
2 )

C , ξ2 = X
( 1
2 )

C and F1 = V
( 1
2 )

B,C , F2 = U
( 1
2 )

B,C (4.92)

The advection velocity ck is given by

ck(z) = λ̃k
π

Γ(z)

∫ ∞

0

W̃(z, r) dr (4.93)

with

λ̃1 = U
(0)
B,C/V

(0)
B,C , λ̃2 = −V (0)

B,C/U
(0)
B,C (4.94)

It has been shown in Section 4.3.3.1 that centreline solutions ξk belong to a

certain class of separation of variable solutions given by ξk(z, τ) = C♯k(τ) J(z)+

C♯♯k (τ) (see (4.73)), where the time-dependent functions C♯k and C♯♯k are the only

unknowns. Linear first order non-homogeneous ordinary differential equations

(ODEs) for C♯k can be derived by substituting (4.73) into (4.91). In so doing

one obtains
dC♯k
dτ

+ ΠkC
♯
k =

1

J

[

Fk(z, τ) −
dC♯♯k
dτ

]

(4.95)

where

Πk = ck
1

J

dJ

dz
= λ̃k

π

ρ(0)Γ3J

∫ ∞

0

W̃ dr = λ̃k Π+ (4.96)

Recalling the general form of a first order ODE, i.e. g1(x) y
′ + g0(x) y = f(x),

the variable Πk in (4.95) may be in principle a function on the time τ . For the
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present case, however, this is not allowed since ck = ck(z) and J = J(z). For

mathematical convenience it is assumed that Πk = const.. Thus it is important

to note that this sets together with ρ(0)(z) and Γ(z) a certain constraint on the

vertical structure of W̃ = W̃(r, z). Moreover, because of Πk = const. a right

hand side of (4.95) independent on z is only guaranteed if dC♯♯k /dτ = 0, and if

the first order background flow (see (4.92)3,4) can be written as

Fk(z, τ) = J(z) Bk(τ) (4.97)

There are two different ways for interpretating (4.97). One possibility is to

consider J(z) (i.e. ρ(z), Γ(z) and dΘ( 4
2 )/dz (see (4.73)2)) as to be given. This

would mean that there is no free choice for the type of vertical shear for an

imposed first order background flow. In particular, the prescribed vortex cir-

culation Γ(z), background stratification dΘ( 4
2 )/dz and the background density

ρ(0)(z) would fix the vertical distribution of the background flow in which the

vortices studied in the present work may exist. However, things can also be

viewed in the opposite sense. A prescribed background flow Fk(z, τ) could also

act in the sense that it determines the vertical structure of the vortex circulation

Γ(z).

Based on the necessary assumptions made above (4.95) simplifies to

dC♯k
dτ

+ ΠkC
♯
k = Bk(τ) (4.98)

Homogeneous solutions C♯k,h of (4.98) describe an exponential damping/growing

process determined by C♯k,h = C̃♯k,h exp (−Πkτ) where the damping/growing rate

Πk is given by (4.96). Particular solutions can be derived using the method of

variation of constants4. In so doing it can be shown that general solutions of

(4.98) read

C♯k = exp (−Πkτ)

(∫

Bk(τ) exp (+Πkτ) dτ + C+
k

)

(4.99)

where C+
k denotes a constant of integration. To simplify matters a steady first

order background flow, i.e. dBk/dτ = 0, is assumed. Then, the above solution

simplifies to

C♯k = µk + C+
k exp (−Πkτ) (4.100)

4Given a homogeneous solution a particular solution of the inhomogeneous equation can be
found by considering the constants of integration as a function on the independent variables.

For the case considered in the present work that means by treating C̃♯
k,h ≡ α as a function

on τ , i.e. α = α(τ). Then, substituting this ansatz into the inhomogeneous equations yields
equations that have to be solved for α.
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where µk = Bk/Πk. Thus, upon substitution of (4.100) into (4.71) one obtains

general centreline solutions for the first order centreline components ξk

ξk(z, τ) =
(
µk + C+

k exp (−Πkτ)
)
∫ z

z0

1

ρ(0)Γ2

∂Θ( 4
2 )

∂z
dz + C♯♯k (4.101)

Accordingly one obtains for the centreline tilt

∂ξk
∂z

=
(
µk + C+

k exp (−Πkτ)
) 1

ρ(0)Γ2

∂Θ( 4
2 )

∂z
(4.102)

Note that the difference between Π1 and Π2 relies in the difference between λ̃1

and λ̃2 (see (4.96)). Since λ̃k with (k = 1, 2) are of opposite sign (see (4.94)) this

results in an exponential decrease for the tilt ∂ξ2/∂z in zonal direction but an

exponential increase for the tilt ∂ξ1/∂z in meridional direction. Unfortunately,

such solutions does not satisfy the general balance condition (4.90) which is

valid as long as cases with strong background flow (~V
(0)
B,C 6= 0 ) are considered.

It can easily be verified that only centreline solutions (4.101) with C+
k = 0 can

satisfy (4.90). Therefore the solutions (4.101) become stationary, i.e.

ξk(z) = µk

∫ z

z0

1

ρ(0)Γ2

∂Θ( 4
2 )

∂z
dz + C♯♯k

or

ξk(z) =
1

Πk
Fk(z) + C♯♯k

(4.103)

with ξ1 = Y
( 1
2 )

C , ξ2 = X
( 1
2 )

C , µk = Bk/Πk and Fk given through (4.92). From

(4.103)2 it is observed that for a prescribed background flow Fk it follows that

dξk
dz

∼ dFk
dz

or
d ~X

( 1
2 )

C

dz
∼ d~V

( 1
2 )

B

dz
(4.104)

Thus, we find a vortex tilt that is induced by the vertical shear of the background

flow. Recall that a non-zero vortex tilt was strongly related to asymmetric pat-

terns in the vertical velocity w( 5
2 ) and potential temperature Θ( 6

2 ) fields (adia-

batic lifting mechanism; see Section 4.2.1). Note that, however, that choice of

the higher order background flow Fk cannot be arbitrary since the centreline so-

lutions (4.103) must satisfy the general balance condition (4.90). In particular,

it can be shown that upon substitution of (4.103)2 into (4.90) one obtains

V
(0)
B

∂V
( 1
2 )

B,C

∂z
+ U

(0)
B

∂U
( 1
2 )

B,C

∂z
= ~V

(0)
B ·

∂~V
( 1
2 )

B,C

∂z
= 0 (4.105)
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which implies that

~V
(0)
B ⊥

∂~V
( 1
2 )

B,C

∂z
(4.106)

Hence, the vertical shear of the next higher order background flow ~V
( 1
2 )

B,C has to

be orthogonal to the leading order background flow ~V
(0)
B,C .

A further observation that can be made is that the relation (4.104) coincides

with the assumptions (4.74) and (4.75) made by Reasor & Montgomery (2004).

As noted earlier, Reasor & Montgomery (2004) found a realignment mecha-

nism for tilted adiabatic vortices in sheared environmental flow, that could be

explained by means of VRW damping. Unfortunately, solutions describing a

realignment could not be found for the vortex case considered here. However,

this does not mean that such a realignment mechanism does not exist. Since

in the asymptotic analysis only the synoptic time scale τ = ε2t is used, it is

expected that an additional inclusion of faster time scales into the asymptotic

analysis may lead to different equations describing a vortex behaviour that may

be similar to the observations made by Reasor & Montgomery (2004).

Summing up, (4.37) and (4.103)-(4.104) show that on an f-plane (~V
(0)
R = 0)

the vortex moves with the leading order background flow ~V
(0)
B = const. while

having a vortex tilt d ~X
( 1
2 )

C /dz induced by the vertical shear of the higher order

background flow corrections.

4.3.4.2 Impact of a weak background flow ~V
(0)
B = 0 with weak vertical

shear ~V
( 1
2 )

B = ~V
( 1
2 )

B (z, τ)

The general balance condition (4.90) disappears, when one considers the case of

a zero leading order background flow, i.e. ~V
(0)
B = 0. Unlike the previous section

it will be shown that this allows for non-stationary centreline solutions. Please

note that, however, the general solution (4.73) for the first order centreline

coordinates has to be satisfied, regardless whether the leading order background

flow is zero or not.

In absence of the general balance condition (4.90), substitution of (4.73) into

(4.89) yields a system of two first order ODEs for C♯1 and C♯2

dC♯1
dτ

=
V

( 1
2 )

B,C

J
− 1

J

dC♯♯1
dτ

− C♯2
π

ρ(0)Γ3J

∫ ∞

0

W̃ dr

dC♯2
dτ

=
U

( 1
2 )

B,C

J
− 1

J

dC♯♯2
dτ

+ C♯1
π

ρ(0)Γ3J

∫ ∞

0

W̃ dr

(4.107)

For same reasons as discussed in the previous subsection, solutions for C♯k only

exist if Fk(z, τ) = J(z) Bk(τ) (see (4.97)) with (F2, F1) = (U
( 1
2 )

B,C , V
( 1
2 )

B,C) and
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dC♯♯k /dτ = 0 in order to satisfy C♯k = C♯k(τ). Moreover, the vertical structure of

W̃(z, r) has to be in such a way that

Π+ =
π

ρ(0)(z) Γ3(z) J(z)

∫ ∞

0

W̃(z, r) dr (4.108)

is satisfied, where for mathematical convenience Π+ is a constant independent

on z and τ . It is assumed that the vertical structure of the background flow ~V
( 1
2 )

B,C

is prescribed. Then, this fixes the vertical structure of the vortex circulation

Γ(z) (see Section 4.3.4.1), i.e. for a given vertical structure of ρ(0), Γ and J

there is no free choice for the vertical structure W̃ .

Taking into account the necessary conditions discussed above, (4.107) sim-

plify to

dC♯1
dτ

= B1(τ) − Π+ C♯2

dC♯2
dτ

= B2(τ) + Π+ C♯1

(4.109)

The unknown C♯2 can be eliminated from (4.109)1 first by differentiating the

latter one with respect to τ and a subsequent replacement of the occuring tem-

poral derivative of C♯2 by (4.109)2. Similar procedure can be used in order to

eliminate C♯1 from (4.109)2. In doing so one obtains the following second order

ODEs for C♯k
d2C♯1
dτ2

+ Π+2

C♯1 =
dB1

dτ
− Π+B2

d2C♯2
dτ2

+ Π+2

C♯2 =
dB2

dτ
+ Π+B1

(4.110)

Note that the above equations are characteristic equations for an harmonic

oscillator without damping but with an external force. Assuming a stationary

background flow again, i.e. dBk/dτ = 0, general solutions of (4.110) are

C♯1(z, τ) = a1 cos (Π+τ) + b1 sin (Π+τ) − Π+B2

C♯2(z, τ) = a2 cos (Π+τ) + b2 sin (Π+τ) + Π+B1

(4.111)

Note that the free parameters of general solutions of (4.111) have to be choosen

in such a way that (4.109) is satisfied. For simplification solutions with a2 = 0

and b1 = 0 are considered. Then it can easily be verified that general solutions

(4.111) with a1 = b2 ≡ a and Π+ = 1 satisfy (4.109). Therefore, general

centreline solutions are
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X
( 1
2 )

C = (a cos (τ) +B1)

∫ z

z0

1

ρ(0)Γ2

∂Θ( 4
2 )

∂z
dz

Y
( 1
2 )

C = (a sin (τ) −B2)

∫ z

z0

1

ρ(0)Γ2

∂Θ( 4
2 )

∂z
dz

or

X
( 1
2 )

C = F1(z) (ã1 cos (τ) + 1)

Y
( 1
2 )

C = F2(z) (ã2 sin (τ) − 1)

(4.112)

with ãk = a/Bk and Fk determined by (4.92) and (4.97). Two things are

observed from (4.112). As in the previous section, the tilt of the vortex cen-

treline is determined by the vertical shear of the given background flow, i.e.

∂ ~X
( 1
2 )

C /∂z ∼ d~V
( 1
2 )

B /dz. Moreover it turns out that for an initially, zonally

tilted vortex (B2 = 0 at τ = 0) the trajectory of the tilted first order centreline

(X
( 1
2 )

C , Y
( 1
2 )

C ) describes a circle around the stationary leading order vortex centre-

line position (X
(0)
C , Y

(0)
C ). This means that the tilted vortex makes a precession

motion. Such steadily oscillating solutions are similar to those of an undamped

harmonic oscillator. Note that the coordinates (X
(0)
C , Y

(0)
C ) are stationary be-

cause of the assumption ~V
(0)
B,C = 0. Comparing the above result (4.112) with the

centreline solutions ( 4.103) of the previous subsection, one can conclude that a

strong, but vertically uniform background flow ~V
(0)
B,C ’holds the vortex tilt tight’

such that a rotation is no longer possible.

Recall that a precession motion of a tilted vortex has also been observed by

Reasor & Montgomery (2001), although they considered an initiallly barotropic

vortex. Refering to the work of Reasor & Montgomery, in Schecter et al. (2002)

the initial conditions and subsequent temporal evolution of the vortex tilt in

absence of any environmental shear has been described as follows: ”At t = 0,

the vortex is tilted by an episode of external vertical shear, and then the shear is

turned off. In time, the orientation of the tilt rotates, while the amplitude of the

vortex tilt decays. Eventually the vortex relaxes to an upright position.” For the

case considered in this section a precession of a tilted vortex but no alignment

can be observed. Note, however, that in Reasor & Montgomery (2004) the

damping was attributed to resonance of the tilt rotation frequency with the

’ambient flow rotation frequency at a critical radius’. This implies that their

observed tilt rotation must have been on time scale of the ambient rotational

flow. Since in the present work the temporal evolution of ~X
( 1
2 )

C is described on

time scales slower than the ambient rotational vortex flow, it remains to be seen

whether an asymptotic analysis on faster time scales yields solutions including
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the resonant damping effect described above.

It has been shown in Section 4.2.1 that a first order vortex tilt is strongly

related to asymmetric vertical velocities w
( 5
2 )

1k 6= 0 (see (4.17)), whose generation

can be explained by means of an adiabtic lifting mechanism. Note that based

on the solutions derived in this section the rotation of the w
( 5
2 )

1k patterns as de-

scribed by Jones (1994) can be attributed to the precession of the vortex tilt.

Moreover it is important to point out, that centreline solutions similar to those

of an undamped harmonic oscillator could only be derived for
∫∞

0
W̃ dr 6= 0

(see (4.89)). It will be shown in the next subsection that the integral disap-

pears for barotropic (du
(0)
θ /dz = 0) vortex conditions with the consequence

that ~X
( 1
2 )

C = 0. Another possibility of getting rid of
∫∞

0
W̃ is to set w

( 5
2 )

1k = 0 re-

sulting in the same centreline solutions as for the barotropic vortex case. Hence,

considering baroclinic vortices it turns out that the maintenance of the vortex

tilt in a sheared background flow with the same vertical Eigenmode as those of

the vortex centreline is strongly related to the balancing impact of asymmetric

vertical velocities w
( 5
2 )

1k 6= 0 which is generated immediately after the vortex has

been tilted. This is in agreement with observations made by Flatau et al. (1994)

and Wang & Li (1992).

4.3.5 Centerline solutions on an f-plane for an initially

barotropic vortex embedded within a horizontally

uniform background flow

To study the evolution of a vortex tilt, both Jones (1994) and Reasor & Mont-

gomery (2004) assumed initially barotropic conditions for the vortex flow. While

Jones observed an increasing tilt with time, Reasor observed vortices becom-

ing more and more upright until a quasi steady tilt has been reached. Using

same initial conditions for the leading order vortex flow in the present work,

because of ∂u
(0)
θ /∂τ = 0 (see (4.62)) it follows for an initially barotropic vortex

(∂u
(0)
θ /∂z = 0) at τ = 0, that

u
(0)
θ = u

(0)
θ (r) for all τ (4.113)

which in turn yields Γ = const. for all τ . For such a condition together with a

constant background stratification ∂Θ( 4
2 )/∂z = const. the last term on the right

and side of (4.83) becomes zero such that (4.89) simplifies to

∂Y
( 1
2 )

C

∂τ
= V

( 1
2 )

B,C (z, τ) and
∂X

( 1
2 )

C

∂τ
= U

( 1
2 )

B,C (z, τ) (4.114)
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Substitution of (4.73) into (4.114) yields again two 1st order ODEs for

C♯k = C♯k(τ)

dC♯k
dτ

=
Fk
J

− 1

J

dC♯♯k
dτ

(4.115)

with Fk given by (4.92)2. Note that with ρ(0) = ρ0 exp (−z) (see (A-94)) in a

barotropic vortex case the vertical Eigenmode J can be written as

J =
1

Γ2

∫ z

z0

1

ρ(0)

∂Θ( 4
2 )

∂z
dz (4.116)

As in the previous section it turns out that C♯k = C♯k(τ) is only satisfied if

dC♯♯k /dτ = 0 and if the background flow satisfies

Fk(z, τ) = µ̃k(τ) J(z) (4.117)

Hence, it turns out that for the barotropic vortex case there is no free choice for

the vertical structure of the first order background flow Fk. Taking the above

constraints into account and assuming a steady first order background flow, i.e.

Fk = Fk(z), integration of (4.115) with respect to the time yields

C♯k(τ) = µ̃k τ + C♯k(τ0) (4.118)

with µ̃k = const. Finally, upon substitution of (4.116)-(4.118) into (4.73), gen-

eral solutions describing the temporal evolution of the first order vortex centre-

line of a barotropic vortex are

ξk(z, τ) = (τ + κk) Fk(z) + C♯♯k (4.119)

with κk = C♯k(τ0)/µ̃k and where C♯♯k is a constant. The centreline solutions

(4.119) state that the vortex is sheared away with increasing time since upper

portions of the vortex centreline are advected faster by larger background flow

velocities than lower portions of the vortex due to smaller background velocities

(see (4.117)). Hence, neither a precession motion nor a realignment of the tilted

vortex is observed using Reasor & Montgomery’s (2001) initial conditions.
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Chapter 5

Diabatic Vortex

This chapter examines the motion and structure of concentrated atmospheric

vortices if they are affected by diabatic heat sources, i.e. S 6= 0. Then, unlike

Chapter 4 stronger vertical velocities of order w( 4
2 ) become important. The

aim of this chapter is to find out the manner in which non-zero diabatically

induced vertical velocities may lead to a modification of the vortex structure

and its motion.

There are studies based on observation that give evidence on the impor-

tance of diabatic effects on the vortex motion. For instance, Willoughby (1990)

and Holland & Lander (1992) have shown that there is a consistent relation-

ship between steady spiral rainband1 asymmetries in the core region of tropical

cyclones and a tendency for tropical cyclones to meander2 about a longer term-

track with periods of several day and amplitudes around 100 km. Wang (1995a)

and Wang & Holland (1995) used a three-dimensional primitive equation model

with simple physical parameterizations to study the potential impacts of convec-

tive asymmetries on tropical cyclone motion. They found that ”the convective

asymmetries developed in the vortex core region influence the vortex motion

through development of asymmetric divergent flow crossing the vortex centre,

which tends to deflect the vortex toward the region with maximum convection.”

The observations described above raise the question what kind of mecha-

nisms generate convective asymmetries. A number of studies attribute the oc-

currence of convective asymmetries in tropical cyclones to the vertically sheared

environmental flow. Simulations carried out by Wang & Holland (1996) and

1Spiral rainbands are a unique feature of tropical cyclones and play an important role in
tropical cyclone structure and intensity changes. They are made up of organized intense con-
vective cells embedded in widespread stratiform precipitation (Chen & Yau, 2001). Willoughby
et. al (1984) also use the terminology stationary band complexes (SBCs) to describe such phe-
nomena.

2Note, from observation it is known that the meandering (oscillation) of tropical cyclones
covers a wide range of scales and take on several forms. Holland & Lander (1992)
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later on by Frank & Ritchie (1999; 2001) show pronounced shear induced asym-

metric patterns. In particular, enhanced upward motion and convection oc-

curred to the left for an observer facing downshear and upward motion and

convection was suppressed to the right for an observer facing upshear. As noted

in Chapter 4, Jones (1995) and Frank & Ritchie (1999) found using dry sim-

ulations for tropical cyclone-like vortices, that wavenumber one asymmetries

in the vertical motion field occured (adiabatic lifting mechanism) when the

vortex tilted away from the vertical in response to an imposed vertical back-

ground shear. Based on these results it was postulated that these vertical mo-

tion patterns would modulate convection in real tropical cyclones. However,

the results of subsequent simulations including moist physics carried out by

Frank & Ritchie (1999) have shown that asymmetries developed in response to

imbalances caused by vertical shear, but which differed significantly from the

adiabatic simulations. Based on these observations they concluded that the

adiabatic lifting mechanism vanishs with a set up of saturated conditions.

Observational studies carried out by Corbosiero & Molinari (2002) verify

the existence of convective asymmetries in tropical cyclones due to vertical

shear. Using cloud-to-ground lightning data they found a strong correlation

between the azimuthal distribution of flashes and the direction of the vertical

wind shear in the environment. While differentating between the inner core

region (r < 100 km) and the outer band region (100 ≤ r ≤ 300 km) they found

for a vertical shear throughout the troposphere exceeding 5 m s−1, that 90 %

of the flashes occurred downshear, where a slight preference for downshear left

occurred in the storm core, and a strong preference for downshear right in the

outer rainbands (see Figure 5.1). Moreover, based on their observations of a

huge number of tropical cyclones in vertical shear flows ranging from weak shear

(0-2 m s−1) over medium shear (6-8 m s−1) up to strong shear (10-24 m s−1),

Corbosiero & Molinari (2002) argue that in convectively active tropical cyclones,

deep divergent circulations may oppose vertical shear up to about 13 m s−1 and

act to minimize the vortex tilt. Similar observations have been made by Zehr

(1992). This might give one possible answer to a frequently asked question:

How does real tropical cyclone-like vortex sustain its coherent vertical structure

in vertical shear? Focusing on this issue Frank & Ritchie (1999) used numerical

simulations to study the impact of an environmental shear flow on the vortex

structure. They compared dry with moist numerical simulations and found that

there was a greater chance for a moist vortex to survive in environmental vertical

shear flow than for a dry vortex.

Although derived from different perspectives, the above observations make

it clear that diabatic effects play an important role for the motion and structure

of concentrated atmospheric vortices. It was shown in Chapter 4 that the use
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of asymptotic methods in the context of an unified approach to meteorologi-

cal modelling, proved to be useful in deriving approximate solutions describing

adiabatic processes induced by an environmentally vertical shear flow and its

consequences for the vortex motion and structure. It is shown in this chap-

ter that a similar method accounting for non-zero diabatic source terms yields

reduced sets of model equations that can be used to describe some aspects of

the behaviour of diabatic vortices in vertical shear flows as observed in the

above studies described right above. Additionally it is shown that the reduced

model equations provide insights into the mechanism determining the vortex

motion. Here, the influence of the vortex tilt will play an important role. Since

the asymptotic model equations that account for diabatic source terms look

familiar with the Eliassen balanced vortex model, a short introduction into the

governing equations of this model is given in Section 5.1. In Section 5.2

a new version of an Eliassen balanced vortex model is derived and different

solutions for an externally prescribed diabatic source term are discussed. Mod-

ifications to this version are studied, based on an explicit inclusion of moisture

in Section 5.3. Additionally, equations for the leading order vortex motion are

derived that describe specific effects on the vortex motion related to diabatic

processes, such as latent heat release due to condensation.

Figure 5.1: Locations of flashes occuring within 100 km of the storm centre
which have been observed in 35 Atlantic basin tropical cyclones from 1985-99
and for medium shear (5 - 10 m/s) time periods. The flashes have been ro-
tated around the centre so that the vertical wind vector is pointing due north.
(Graphical illustration from Corbosiero, 2002)
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5.1 The Eliassen balanced vortex model (EbVM)

The Eliassen balanced vortex model is an idealized two-dimensional model that

was originally derived by Eliassen (1952) in order to investigate the response

of an arbitrary axially symmetric vortex in gradient wind balance to sources of

heat and angular momentum. If the sources are acting on the fluid, the balance

of the vortex will be disturbed and a secondary circulation3 superimposed upon

the vortex motion will develope. Realizing that axially symmetric meridional

circulations of the type described by this model also occur in atmospheric flows

as for example in form of the general circulation, Eliassen was the first who

made an attempt to apply this theory to suitable meridional currents in the

earth’s atmosphere. Later on, many authors discovered that this model is also

of considerable value to study certain aspects causing tropical cyclone devel-

opment (e.g. Charney & Eliassen, (1964); Hack & Schubert, (1982, 1983) and

others). For instance, Hack & Schubert considered the axissymmetric balanced

flow occuring in a thermally forced vortex in which the frictional inflow was

confined to a thin boundary layer. For that case sources of momentum can be

omitted and the governing equations of the EbVM take the form

M2 − 1

4
f2r4 = r3

∂φ

∂r

DM

Dt
= 0

∂φ

∂z
=

g

Θ0
Θ

1

r

∂(ru)

∂r
+

1

ρ

∂(ρw)

∂z
= 0

cp
D ln Θ

Dt
=

Q

T

(5.1)

The notation of the equation set (5.1) uses the pseudoheight coordinate (Hoskins

& Bretherton, 1972)

z =

[

1 − p

p0

κ
]
cpΘ0

g
(5.2)

and the definition of the absolute angular momentum per unit mass, i.e.

M =
1

2
fR2 = rv +

1

2
fr2 . (5.3)

The equations in (5.1) describe sequentially gradient wind balance, conservation

of absolute angular momentum along the air parcel trajectory, hydrostatic ba-

3Other terms used for secondary ciculation are meridional circulation or transverse circu-
lation.
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lance, mass continuity and the evolution equation of the potential tempera-

ture. The dependent variables u, v, w are the radial, tangential and vertical

components of velocity, T is the temperature, φ is the geopotential, ρ is the

pseudo-density (known), D/Dt = ∂/∂t + u ∂/∂r + w ∂/∂z is the material

derivative in the r − z plane, f is the Coriolis parameter and Q is a specified

heating function. The subscript zero denote values evaluated at the top of the

boundary layer. Based on the assumption that the source term Q is given, the

equations (5.1) are closed for the unknowns M,φ, θ, u, w. Note that Eliassen

assumes the sources of heat (and angular momentum) are and are distributed

symmetrically with respect to the axis of the vortex. This assumption shall

ensure the axissymmetry of the vortex. Then, the assumption of a weak source

allows to study the secondary circulation necessary for a vortex that is in its

balanced state all the time. Three steps are necessary to derive a diagnostic

equation for the secondary circulation; (i) the derivation of the thermal wind

equation from (5.1)1 and (5.1)3

1

r3
∂M2

∂z
=

g

Θ0

∂Θ

∂r
,

(ii) the definition of a stream function (u = −∂ψ/∂z, w = ∂(rψ)/∂r) satisfying

the mass continuity (5.1)4 , and finally (iii) the elimination of the local time

changes between (5.1)2 and (5.1)5. Combining all these steps one obtains

∂

∂r

(

A1

r

∂(rψ)

∂r
+ B∂ψ

∂z

)

+
∂

∂z

(

B 1

r

∂(rψ)

∂r
+ C ∂ψ

∂z

)

=
g

Θ0

∂Q

∂r
(5.4)

where

A =
g

Θ0

∂Θ

∂z

B = − g

Θ0

∂Θ

∂r
= − 1

r3
∂M2

∂z

C =
1

r3
∂M2

∂r
=

(

f +
1

r

∂(rv)

∂r

)(

f +
2v

r

)

(5.5)

The coefficients A, B and C denote three stabilizing factors acting against di-

abatically driven air parcels. Static stabiliy (A) and inertial stability (C) pro-

vide resistance to vertical and radial displacements, respectively. Baroclinicity

(B) determines the outward tilt with height of the ascending branch of the

transverse circulation. Boundary conditions for (5.4) that have been used by

Hack & Schubert (1983) are

ψ(0, z) = ψ(0, zT ) = 0 and rψ → 0 as r → ∞ (5.6)
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Note that in order to solve (5.4) for ψ (and hence for the transverse circulation

given by u and w) the coefficients A, B and C as functions on Θ and M must be

known. A temporal evolution of Θ and M is obtained by solving the equations

(5.1)2 and (5.1)5.

As noted earlier, balanced models such as the EbVM have proven to be

useful to study certain aspects causing tropical cyclone development. Char-

ney & Eliassen (1964) used the concept of balance to derive the well-known

CISK theory (Convective Instability of the Second Kind). The linear theory

describes cyclone development by a kind of secondary instability, in which the

interaction between small-scale cumulus convection and convective circulations

of cyclone scale leads to a large-scale self-amplification of a pre-hurricane depres-

sion. Charney & Eliassen (1964) suggest that this requires that the small-scale

cumulus convection and the convective circulation of the cyclone support one

another - ”the cumuls cell by supplying the heat energy for driving the depres-

sion, and the depression by producing the low-level covergence of moisture into

the cumulus cell”. Later on Hack & Schubert (1982) employed the EbVM to

study nonlinear effects on intensity changes of hurricane-like vortices, since it

was believed that CISK alone can’t be responsible for cyclone development. In

particular, Hack & Schubert (1982) noted that the linear CISK process is inef-

ficient, if adiabatic cooling of rising air parcels is balanced by heating due to

latent heat release resulting in zero net warming of the air column. Therefore

no reservoir of convective energy would be available to drive the cyclone inten-

sification. Hack & Schubert (1982) argue that such a condition is favoured by

linear CISK due to the approximation of the inertial stability C (see (5.5)3) by

f2. Including the full effect of inertial instability on the cyclone development,

Hack & Schubert (1982) found that an increased inertial stability within regions

of deep convection yields an imbalance between adiabatic cooling of rising air

parcels and heating due to latent heat release such that a net warming of an air

column is realized to enhance the vortex intensity.

One shortcoming of the EbVM, however, is its limitation to the investigation

of symmetric dynamics and thermodynamics in hurricane-like vortices, since

real tropical cyclones are often highly asymmetric, particularly in the upper

troposphere outside of the core (Molinari et.al, 1993). Attempts have been made

to design extensions of the EbVM that make it possible to study the influence of

azimuthal eddies on tropical cyclone development (e.g. Pfeffer & Challa, 1981;

Molinari & Vollaro, 1990). Numerical solutions of such extended model versions

show, for instance, that the inclusion of lateral fluxes of angular momentum by

azimuthal eddies results in an enhanced secondary circulation that deepened

the model storm to hurricane intensity. Based on the findings described above

it is also possible that asymmetries in the vortex structure not only have an
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influnece on the vortex intensification but also may have a non-trivial influence

on the vortex trajectory. Hence, in awareness of the importance of asymmetric

vortex features, attempts are made in Section 5.2 and Section 5.3 to derive

extended versions of the Eliassen balanced vortex model from an asymptotic

perspective, that account for the influence of diabatically induced asymmetries

in the velocity and potential temperature fields on the leading order secondary

circulation. Among others it will be shown, that solutions for the secondary

circulation obtained from such a model have a non-trivial effect on the vortex

trajectory.

5.2 Modified EbVM with externally prescribed

source term

For the vortices under consideration the relevant equations are the general bal-

ance conditions (3.135), (3.136), the horizontal momentum equations (3.43),

the mass continuity (3.50), the thermodynamic equations (3.53) and the state

equation (A-37). Since Eliassen’s theory is developed within an axissymmetric

framework, equations describing the axissymmetric thermodynamic fields are

obtained by applying (3.58)1 to the equations mentioned above. To be compa-

rable with Eliassen’s balanced vortex model a leading order absolute angular

momentum M (0) is defined by

M (0) = ru
(0)
θ +

Ω0

2
r2 (5.7)

Then, the following general balanced vortex model can be derived

M (0)2 − 1

4
Ω2

0r
4 = r3

∂π

∂r
(

w
( 4
2 )

0

∂

∂z
+ u

( 1
2 )
r,0

∂

∂r

)

M (0) = K(r, z, τ)

∂π

∂z
= Θ

( 6
2 )

0

1

r

∂(ru
( 1
2 )
r,0 )

∂r
+

1

ρ(0)

∂(ρ(0)w
( 4
2 )

0 )

∂z
= L(r, z, τ)

w
( 4
2 )

0

∂Θ( 4
2 )

∂z
= S

( 7
2 )

0

(5.8)

with π = p( 6
2 )/ρ(0) and the sources K and L are given by
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K(r, z, τ) =
1

2

∂u
(0)
θ

∂r

(

rw
( 4
2 )

12

∂X
( 1
2 )

C

∂z
+ rw

( 4
2 )

11

∂Y
( 1
2 )

C

∂z

)

L(r, z, τ) =
1

2

(

∂X
( 1
2 )

C

∂z

1

r

∂(rw
( 4
2 )

12 )

∂r
+
∂Y

( 1
2 )

C

∂z

1

r

∂(rw
( 4
2 )

11 )

∂r

) (5.9)

The asymmetric vertical velocities w
( 4
2 )

1k appearing in (5.9) are determined through

the first sine and cosine modes of the O(ε8/2) thermodynamic equation

w
( 4
2 )

1k

∂Θ( 4
2 )

∂z
= S

( 7
2 )

1k
(5.10)

The equations (5.8) - (5.10) are closed, provided the vortex tilt ∂ ~X
( 1
2 )

C /∂z,

the background stratification ∂Θ( 4
2 )/∂z and the diabatic source term S( 7

2 ) are

known.

The following observations are made when comparing the asymptotically

derived equation set (5.8) - (5.10) with the original governing equations (5.1) of

the EbVM:

1. The temporal derivatives appearing in the original equations (5.1) are

missing in set (5.8), which leads to a steady version of a Eliassen kind of

balanced vortex model. This is attributed to the temporal scaling τ = ε2t

used in expansion ansatz (3.15). Note that equations for the temporal

evolution are determined by the next order O(ε
3
2 ) horizontal momentum

equation (3.45).

2. Equations (5.8)5 and (5.10) describe a balance between adiabatic cooling

w( 4
2 )∂zΘ

( 4
2 ) and diabatic heating S( 7

2 ).

3. A diabatic source term including asymmetric contributions must not nec-

essarily violate the leading order axissymmetry of the circumferential flow.

Thus the assumption by Eliassen that sources have to be axissymmeric in

order to ensure the axissymmetry of the vortex circumferential flow is not

necessary.

4. The equation set (5.8) includes with Θ( 6
2 ) in the hydrostatic balance (5.8)3

and Θ( 4
2 ) in the O(ε

7
2 ) potential temperature equation (5.8)5 two asymp-

totically different potential temperature terms. Thus, with ∂Θ( 4
2 )/∂z > 0

as a given background stratification and S( 7
2 ) as a given source term, equa-

tion (5.8)5 is decoupled from the rest of equations and can be solved for

w( 4
2 ) independently.
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5. Transverse circulation determined through u
(1/2)
r,0 and w( 4

2 ) is not diver-

gence free for ∂ ~X
( 1
2 )

C /∂z 6= 0, w
( 4
2 )

1k 6= 0.

6. The momentum equation (5.8)3 has a non-zero source term owing to both

∂ ~X
( 1
2 )

C /∂z 6= 0 and w
( 4
2 )

1k 6= 0 although frictional effects are neglected.

Note that a closer agreement of the asymptotically derived equations (5.8) -

(5.10) with the governing equations (5.1) of the original EbVM can be achieved

if one either assumes that the leading order diabatic heating rate is symmetric

with respect to the vortex axis, which implies immediately that w
( 4
2 )

1k = 0, or

if one assumes that the leading order vortex tilt is zero i.e. ∂ ~X
( 1
2 )

C /∂z = 0.

Based on such assumptions different versions of a balanced vortex model can

be derived. Some aspects of the solutions for the secondary circulation of those

versions are studied in the following subsections.

5.2.1 Far field solutions for the secondary circulation

In this section far field solutions for the secondary circulation (u
( 1
2 )
r,0 , w

( 4
2 )

0 ) are

derived. To simplify things lets first assume axissymmetric vertical velocities,

i.e. w( 4
2 ) = w( 4

2 )(r, z, τ) which implies that w
( 4
2 )

1k = 0 and S
( 7
2 )

1k = 0 (see (5.10)).

Such an assumption simplifies (5.8). In particular, it turns out that the source

terms K = 0 and L = 0 vanish such that (5.8) take the form of

M (0)2 − 1

4
Ω2

0r
4 = r3

∂π

∂r
(

w( 4
2 ) ∂

∂z
+ u

( 1
2 )
r,0

∂

∂r

)

M (0) = 0

∂π

∂z
= Θ

( 6
2 )

0

1

r

∂(ru
( 1
2 )
r,0 )

∂r
+

1

ρ(0)

∂(ρ(0)w( 4
2 ))

∂z
= 0

w( 4
2 ) ∂Θ( 4

2 )

∂z
= S( 7

2 )

(5.11)

Comparing (5.11)2 with (5.1)2 it is observed that in absence of asymmetric

diabatic source terms and on time scales of about 1-3 days the leading order

absolute angular momentum M (0) may be considered as being constant along

streamlines instead as conserved along particle trajectories. With the aid of the

far field behaviour of the leading order circumferential flow u
(0)
θ it will be shown

that this allows us to deduce some fundamental features about the secondary

circulation within the vortex region.
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To begin with a kind of stream function ψ́ is introduced which is defined by

(ρ(0)u
( 1
2 )
r,0 , ρ

(0)w( 4
2 )) =

(

−∂ψ́
∂z

,
1

r

∂(rψ́)

∂r

)

(5.12)

Based on this definition the corresponding streamline tangential to the velocity

field described by u
( 1
2 )
r,0 and w( 4

2 ) at every point in the r − z plane is given by

χ = rψ́ = const. (5.13)

which is a solution of (u
( 1
2 )
r , w( 4

2 ))× (dr, dz) = 0. Using the matching condition

(3.99), i.e. u
(0)
θ = Γ(z)/2πr as r → ∞ the leading order angular momentum

(5.7) takes the form

M (0) =
Γ(z)

2π
+

Ω0

2
r2 as r → ∞ (5.14)

Upon substitution of (5.14) and (5.12) into (5.11)2 a partial differential equation

(PDE) satisfying far field solutions of χ is obtained

−∂χ
∂z

+
1

2πΩ0

∂Γ(z)

∂z

1

r

∂χ

∂r
= 0 as r → ∞ . (5.15)

A method that can be used to solve first order PDE’s is the method of charac-

teristics. Applying this method to (5.15) the first step is to change coordinates

from (r, z) space to a new coordinate system (z0, s) in which the PDE becomes

an ordinary differential equation along characteristic curves s. Note, the new

variable s will vary, and the new variable z0 will be constant along the charac-

teristics. In so doing one assumes that χ = χ(r(s), z(s)) such that

dχ

ds
=
∂χ

∂r

dr

ds
+
∂χ

∂z

dz

ds
(5.16)

By comparing (5.16) with (5.15) one obtains the following set of characteristic

equations
dχ

ds
= 0,

dz

ds
= −1,

dr

ds
=

1

2πΩ0

∂Γ(z)

∂z

1

r
(5.17)

The boundary conditions for (5.17) are

z(s = 0) = z0, r(s = 0) = r0 and χ(r, z0) = r ψ́(r, z0) (5.18)

From (5.17)1 it is observed that χ is conserved along characteristic curves s.

This means that χ and s surfaces coincide and the characteristic curves can be

comparably regarded as streamlines of the transversal circulation. Solutions of

(5.17)2 is z = −s+ z0 which can be used to rewrite (5.17)3 as
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Figure 5.2: Vortex circulation Γ(z)
typically for hurricane-like vortices
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Figure 5.3: Characteristic curves de-
noting the streamlines for large r.

dr

dz
= −1

r

1

2πΩ0

∂Γ(z)

∂z
(5.19)

Solving the equation (5.19) gives the characteristic curves, i.e.

r = ±
√

Γ(z0) − Γ(z)

πΩ0
+ r20 as r → ∞ (5.20)

Assuming a circulation profile Γ(z) that is typically for a hurricane, i.e. maximum

values near the surfaces and a slow decrease upward becoming anticyclonic near

the top of the storm (see Figure 5.2), characteristic curves determined by (5.20)

are displayed in Figure 5.3. It is observed that the characteristics run mainly

vertically with a slight slope. Since the characteristics can be similarly identified

as streamlines, a conclusion can be drawn that the curves mark a branch of a

leading order secondary circulation with mainly vertically moving air parcels.

Hence, the shape of the streamlines for large r indicates a clear separation of

inner vortex air masses from environmental air masses, leading to the picture

of a closed leading order secondary circulation. Note that the direction (up-

ward/downward) of the vertically moving air parcels depends on the boundary

conditions choosen for χ at the reference level z = z0.

The question comes up, however, whether far field solutions as derived above

exist only because of the assumption of axissymmetric vertical velocities, i.e.

w( 4
2 ) = w( 4

2 )(r, z, τ) which implies that w
( 4
2 )

1k = 0. Taking the matching condition

into account that w( 4
2 )(r, θ, z, τ) = 0 as r approaches ∞ (see (3.113)), it can

easily be verified that the source terms K and L in (5.8) disappear for large r

even if asymmetric contributions w
( 4
2 )

1k 6= 0 exist in the near core region. From

that a conclusion can be drawn that the asymptotically derived picture of a

closed leading order secondary circulation with respect to the far field region

also holds in a more general case w( 4
2 ) = w( 4

2 )(r, θ, z, τ) for all r.
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Figure 5.4: A model that shows a vertical view of air motions, clouds, and
precipitation in a typical hurricane. (Graphical illustration from Ahrens (1999).)

A question that naturally comes up in connection with the derived far field

results for the secondary circulation, is whether such solutions are typical for

real hurricane like vortices. According to Emanuel (1991) real hurricanes are

open systems that continually exchange mass with their environments. This

wouldn’t be in agreement with the just derived leading order results describing a

closed secondary circulation where at least to a first approximation an exchange

of air masses with the environment is not possible. As opposed to Emanuel’s

view, however, other textbooks (e.g. Ahrens, 1999) explain the clear weather

conditions occuring immediately outside the storm area by sinking and warming

air masses at the storms periphery (see Figure 5.4). Such arguments, in turn,

would support the picture of a closed secondary circulation.

We conclude this section with the derivation of a certain class of solutions for

the streamline χ applying the method of separation of variables. The solutions

are needed for later discussions on the derivation of an equation for the leading

order vortex trajectory. Assuming special product solutions, i.e. χ(r, z) =

H(r) h(z), equation (5.15) can be separated into equations for H(r) and h(z),

respectively. In particular one obtains

−2πΩ0

(
∂Γ

∂z

)−1
1

h

∂h

∂z
= −1

r

1

H

∂H

∂r
= +λ2, as r → ∞ (5.21)

It turns out that general solutions describe exponential behaviour in r and Γ(z)

respectively, i.e.

h(z) = Ch exp (−λ2/(2πΩ0) Γ(z))

H(r) = CH exp (−λ2/2 r2)
(5.22)
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From (5.12) one obtains

ρ(0)w( 4
2 ) = CH h(z) exp (−λ2/2 r2) as r → ∞ (5.23)

Note that to guarantee a closed transverse circulation with upward moving flow

in the vicinity of the core and downward moving flow far away from the vortex

centre the z dependent solution h(z) has to satisfy h(z) < 0 if CH > 0.

5.2.2 Constraints on the nature of an externally prescribed

diabatic source

Two different routes for the treatment of diabatic heat sources SL due to latent

heat release have been proposed in Section 3.4. In this section the leading

order diabatic source is externally prescribed by means of (3.119). For such

a case it is shown that solutions of (5.11)5 cannot fulfill the constraints on

the far field behaviour of the streamlines χ denoting the transverse circulation

as discussed in Section 5.2.1. It turns out that physically meaningful results

are only obtainable if the prescribed heating function meets certain conditions.

Moreover it is shown that in this context certain conclusion can be drawn about

the nature of the condensation process producing heating rates in the order

S
( 7
2 )

L .

Solutions for a transverse circulation Because of the axissymmetry of the

prescribed heat source (3.119), from (5.10) it follows immediately that asym-

metric vertical velocities disappear, i.e. w
( 4
2 )

1k = 0. Hence, (5.11) is used in the

subsequent analysis. Substitution of (5.12) and (3.119) into (5.11)5 yields an

equation for ψ́, reading

1

r

∂(rψ́)

∂r

dΘ( 4
2 )

dz
= ρ(0)(z) β̃(z) r exp

(
d
[
1 − r2

])
(5.24)

with β̃(z) = sin(πz) exp (−α z). Assuming a constant background stratification,

i.e. dΘ( 4
2 )/dz = const., and the boundary condition (rψ́) = χ = 0 at r = 0

(i.e. no vertical mass flux at the vortex centre), integration of (5.24) in radial

direction from 0 to r yields

ψ́r = µ(z) b⋆ erf
(√

d r
)

− µ(z) b⋆⋆ r exp(−d r2) (5.25)

Here, erf(r) is the ’error function’. The vertical distribution of ψ́ is deter-

mined through µ(z) = ρ(0)β̃ (∂Θ(4/2)/∂z)−1 and the remaining coefficients are

b⋆⋆ = exp (d)/(2d) and b⋆ = exp(d)
√
π/4 d3/2. Considering the limit for large r,
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the far field solution of (5.25) is

ψ́r = µ(z) b⋆ as r → ∞ (5.26)

The graphs of the heating field used and the streamlines χ = ψ́r of the cor-

responding enforced transverse circulation are shown in Figure 5.5 and 5.6.

It is observed that the heating source induces an ascending branch with verti-

cally upward moving air parcels in the vicinity of the vortex core. In the region

far away from the bulk of latent heat release, however, it is observed that the

streamlines χ = rψ́ run horizontally, which leads to the picture of an open

secondary circulation with respect to the surrounding. Unfortunately, such so-

lutions for the stream function do not conform with the constraints on the far

field solutions discussed in Section 5.2.1. Recall that the far field constraints

on χ have been derived using the matching condition (3.99) for circumferential

velocity in leading order, i.e. u
(0)
θ = Γ/(2πr) as r → ∞. Note that with the

solutions for the stream function χ = rψ́ shown in Figure 5.6, this condition

can not be satisfied. That is why conservation of M (0) along χ (see (5.11)2

and (5.7)) together with the horizontal run of the streamlines in the far field

region yields unphysically, large negative circumferential velocities u
(0)
θ for fluid

particles approaching ∞.

Finally, the only way out of the above dilemma is to conclude that the given

forcing function (3.119) can not be used to describe the leading order thermal

forcing S
( 7
2 )

L .

External heat source requirements From the discussions above it is ob-

vious that an appropriate heat source in leading order should include the net

effects of mechanisms that force the streamlines to become vertically oriented far

away from the bulk of heating as shown in Figure 5.3. Possible mechanisms,

for instance, can be studied by adopting Emanuel’s view about hurricanes as a
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natural Carnot engine that converts heat energy extracted from the ocean to

mechanical energy (Emanuel, 1991). In his idealized picture (see Figure 5.7)

Emanuel relates the first three steps of the Carnot-process to the secondary

circulation as follows:

1. isothermal expansion between point a and C as air flows along the sea

surface radially inward toward regions of much lower surface pressure;

here so much heat is added from the warm ocean surface to the air that

the surface air temperature remains nearly constant

2. adiabatic expansion between point C and o as air ascends within deep

convective clouds in the eyewall of the storm and then flows out to large

radii (adiabatic cooling due to ascent = heating due to latent hat release)

3. isothermal compression between point o and o′ as air descends slowly in

the lower stratosphere; a nearly constant temperature is retained while

loosing heat by electromagnetic radiation to space

As noted earlier, Emanuel (1991) considers hurricanes as open systems that

continually exchange mass with the environment. For that reason he points

out that in his idealized picture the fourth branch of a Carnot cycle does not

really exists, since this would require the downward movement of air parcels to

close the cycle. Please note that only the first three branches in Figure 5.7 are

streamlines denoting the path of an air parcel under steady state conditions.

The fourth branch is an absolute vortex line which has nothing to do with the

path taken by the moving air parcels. Returning to the results of the present

work, however, it is observed that the leading order secondary circulation given

through (u
( 1
2 )
r,0 , w

( 4
2 )) can be regarded as a closed circulation with respect to the

far field region. That means in our picture about a secondary circulation all

branches denote streamlines, which means that we have indeed descending air

masses in the far field vortex region. Hence staying with the idea of a hurricane

Carnot cycle, there must be an additional cooling mechanism along the fourth

branch that balances the heating due to adiabatic descent. Here, however, the

question arises on what causes such cooling effects. One possibility, for instance,

is to put the descending branch in the far field region down to radiative cooling

effects. Recall that in Figure 5.7 the existence of a third descending branch

confined to the upper troposphere has already been explained through a loss

of heat due to electromagnetic radiation to space. One might assume that

this cooling effect works throughout the whole troposphere in order to bring

the air masses in the far field region down from the top of the troposphere to

the surface. Another mechanism that also might explain how air masses come

down to the surface is strongly related to moisture conversion processes. At
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Figure 5.7: Schematic diagram for the hurricane Carnot cycle. (see the text for
explanations; graphical illustration from Emanuel (1991))

10 km

RADIUS

H
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260 km

Figure 5.8: Schematic diagram for radial and vertical motions defining the sec-
ondary circulation from an asymptotic perspective (see text for further expla-
nations)
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least from theoretical point of view it is conceivable that cooling effects may be

caused by evaporation processes. This may occur if dry air parcels from the

outer edge of the outflow branch move downward along vertically and slightly

inward directed streamlines as indicated in Figure 5.3. In this way dry air

reaches regions of rich precipitation falling out from the upper outflow branch

and rain may evaporate within the dry air parcels. The latter is accompanied by

evaporative cooling which in turn forces the air masses downward towards the

surface. Hence, in the context of the present work a fourth descending branch

of a secondary vortex circulation can be described by

4. adiabatic compression as air descends through rainy regions (adiabatic

heating due to descent = adiabatic cooling due to evaporation of rain)

But note that it is the subject of future work to investigate whether the above

mentioned cooling effect due to evaporative cooling offers an adequate expla-

nation for mechanisms that force the air masses down from the top of the tro-

posphere to the surface. Thus an asymptotic analysis should be carried out

based on multiple scale expansions that also resolve smaller cumulus scales in-

cluding moisture parameters explicitly.

The diagram in Figure 5.8 summarizes the results from the thought experi-

ments described above. With such a picture in mind a specified heating function

for S
( 7
2 )

L has to account for both latent heat release due to condensation near

the storm centre and latent heat removal due to evaporation. This implies that

a heating function used to describe S
( 7
2 )

L must not only mirror the net effect of

convective heating but also additional cooling processes. Representing the lat-

ter in an appropriate way may eliminate the unphysical results for the leading

order circumferential velocity.

Based on the discussion above one may also question the treatment of dia-

batic source terms as an externalized force in question. Recall that the heating

function applied above was designed to describe the net effect of heating due

to cumulus convection. In section Section 3.4.2, however, it has been pointed

out that it is important to differentiate between the nature of the condensation

processes. Thus, the lack of success of the externally pescribed heat source in

generating a secondary circulation may be attributed to the fact that heating

rates S
( 7
2 )

L may be regarded as a result of large-scale vertical motion rather than

as a result of deep cumulus convection acting on smaller scales. Whether this

could be the case will be studied in the section below. This, however, calls for

an explicit treatment of moisture. The importance of an explicit treatment of

moisture has already been discussed by Emanuel (1991). In particular, in step

two of the Carnot cycle he points out that modelling hurricane-like vortices, adi-

abatic conditions within the ascending branch of the secondary circulation can
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only be reached if water vapor is properly included. That is why the diabatic

source is purely a function of the flow itself which makes an external treatment

of a diabatic source difficult.

5.3 Modified EbVM with explicit inclusion of

moisture

In the analysis below moisture shall be included explicitly. Then, retracing the

route suggested in Section 3.4.2, the diabatic source SL (see (3.115)) is con-

sidered as a sum of a resolved contribution Srs and an unresolved contribution

Sus. Using the notations (3.133) for Srs under the idealized assumption of a

saturated atmosphere for the vortex region, an asymptotic expansion for SL is

SL = ε
7
2S

( 7
2 )

L + ε
8
2S

( 8
2 )

L + ε
9
2S

( 9
2 )

L + O(ε5)

where

S
( 7
2 )

L = −Γ⋆⋆L⋆⋆q⋆⋆vs w
( 4
2 ) dq

(0)
vs

dz
+ S

( 7
2 )
us

S
( 8
2 )

L = −Γ⋆⋆L⋆⋆q⋆⋆vs w
( 5
2 ) dq

(0)
vs

dz
+ S

( 8
2 )
us

S
( 9
2 )

L = −Γ⋆⋆L⋆⋆q⋆⋆vs

(

w( 6
2 ) dq

(0)
vs

dz
+ (Γ⋆⋆z) w( 4

2 ) dq
(1)
vs

dz

)

+ S
( 9
2 )
us

(5.27)

Recall that Sus denotes a net-heating effect of convective processes due to small-

scale vertical motions upon the vortex-scale flow. Because of the fact that

single-scale expansions resolving vertical motions on vortex scales are used, only

heat sources Srs can be regarded as a function of the vortex flow itself, whereas

Sus remains to be parameterized. In order to elucidate the role of Sus on both

the three-dimensional vortex-scale flow and the synoptic scale vortex motion,

two different vortex models are discussed below. The derivation of a vortex

model based on the assumption Sus = 0 (hereafter refered to as Model A) is

presented in Subsection 5.3.1 and in Subsection 5.3.2 a model based on

Sus 6= 0 (hereafter refered to as Model B ) is discussed.

5.3.1 Model A - no net-heating due to small-scale convec-

tive processes

For the subsequent asymptotic analysis of this section it is assumed that Sus = 0,

which in turn implies that S
( i
2 )

us = 0 for i ∈ N . Then, substitution of the diabatic
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source term (5.27)1 into the O(ε
7
2 ) thermodynamic equation (5.11)5 yields

w( 4
2 )

(

dΘ( 4
2 )

dz
+ ΓL⋆⋆

dq
(0)
vs

dz

)

= 0 (5.28)

The above equation is satisfied either if w( 4
2 ) = 0 or if the sum in the bracket

is zero. Recall that from asymptotic analysis of moist atmospheric processes,

Klein & Majda (2005) found solutions that allow for deep convection that the

background potential temperature Θ( 4
2 ) = Θ( 4

2 )(z) satisfies the moist adiabatic

equation (3.134). In such a case the term in brackets in (5.28) disappears. As

a consequence, next higher order potential temperature equations have to be

considered in order to find equations that can be used to determine w( 4
2 ).

The O(ε
8
2 ) thermodynamic equation (3.54) taken together with the source

term (5.27)2 and the assumption that S
( 8
2 )
us = 0 results in

u
(0)
θ

r

∂Θ( 6
2 )

∂θ
+ w( 5

2 ) dΘ
( 4
2 )

dz
= −ΓL⋆⋆w( 5

2 ) dq
(0)
vs

dz
(5.29)

Note that the higher order advection terms w( 4
2 )dΘ( 5

2 )/dz and w( 4
2 )dq

( 1
2 )
vs /dz do

not appear in (5.29) due to Θ( 5
2 ) = 0 and q

( 1
2 )
vs = 0 (see (3.107) and (3.125)).

It can easily be verified that rearranging terms in (5.29) and use of the moist

adiabatic equation (3.134), yields

u
(0)
θ

r

∂Θ( 6
2 )

∂θ
= 0 ,

For u
(0)
θ 6= 0 this implies that

Θ( 6
2 ) = Θ( 6

2 )(r, z, τ) or Θ
( 6
2 )

ik = 0 i = 1, 2, ..., n; k = 1, 2 (5.30)

The two terms in (5.29) cancel only identically provided that sufficient amount

of liquid water is available along the downward moving branches within the

secondary circulation, i.e. in the regions where w( 5
2 ) is negative. Since for w( 5

2 ) <

0 the term on the right hand side of (5.29) reflects an evaporation rate, the

term would disappear if there is no liquid water available for evaporation. Here,

however, we assume that sufficient liquid water is available through the presence

of cloud water and rain droplets.

Using (5.30) a harmonic analysis of the vertical momentum equation (3.46)

and the state equation (A-37) yields

∂X
( 1
2 )

C

∂z

1

ρ(0)

∂p( 6
2 )

∂r
= 0 and

∂Y
( 1
2 )

C

∂z

1

ρ(0)

∂p( 6
2 )

∂r
= 0 (5.31)
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Two possible conclusions can be drawn from (5.31). Either that the radial

pressure gradient is zero or that the vortex tilt is zero. A zero pressure gradient

together with the gradient wind relation (3.135) would yield u
(0)
θ = Ω0 r. Such

a solution for the leading order tangential velocity, however, does not satisfy the

matching condition (3.99). Thus, for reasons of consistency we have to conclude

that

∂Y
( 1
2 )

C

∂z
= 0 and

∂X
( 1
2 )

C

∂z
= 0 (5.32)

Summarizing the findings (5.30) - (5.32) it is observed that unlike the adi-

abatic vortex case (see Section 4.2.1), zero asymmetric potential tempera-

ture fields Θ
( 6
2 )

1k in the diabatic vortex case exclude the existence of vertically

varying centreline solutions ~X
( 1
2 )

C . This motivates the following thought ex-

periment. It is assumed, as for adiabatic vortices, that a matching of the

higher order velocity fields yields for diabatic vortices a direct relation be-

tween the vertical background shear and the vortex tilt in next higher order, i.e.

∂ ~X
( 1
2 )

C /∂z ∼ ∂~V
( 1
2 )

B,C/∂z (see (4.104)). Because of (5.32), however, this would set

a constraint ∂~V
( 1
2 )

B,C/∂z = 0 on the vertical shear of a given background flow, i.e.

there would be no degree of freedom in the choice of a vertical distribution for

the higher order background flow. This conclusion together with (5.30) - (5.32)

would mean that vertically varying centreline solutions ~X
( 1
2 )

C do not exist in a

vertically sheared background flow ∂~V
( 1
2 )

B,C/∂z 6= 0. Please note, however, that

a verification of the validity of ∂ ~X
( 1
2 )

C /∂z ∼ ∂~V
( 1
2 )

B,C/∂z for the diabatic vortex

is difficult due to the high complexity of the asymptotic equations for u
( 2
2 )
r and

u
( 2
2 )

θ if moisture is included.

Since the vertical velocity w( 4
2 ) does not appear in the O(ε

8
2 ) thermodynamic

equation (5.29), the next higher order thermodynamic equation is considered

such that the equations (5.8)1 - (5.8)4 are closed if moisture is included explicitly.

Using the above derived results (5.30), (5.32), the moist adiabatic equation

(3.134), and the diabatic source term (5.27)3 (where S
( 9
2 )

us = 0), the O(ε
9
2 )

thermodynamic equation (3.56) takes the form

u
( 1
2 )
r

∂Θ( 6
2 )

∂r
+ u

(0)
θ

1

r

∂Θ( 7
2 )

∂θ
+ w( 4

2 )

(

∂Θ( 6
2 )

∂z
+ J (z)

)

= 0 (5.33)

with

J (z) = Γ⋆⋆
2

L⋆⋆q⋆⋆vs z
dq

(1)
vs

dz
(5.34)
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Note that due to the explicit treatment of moisture the process of latent heat

release affects the stratification in the vertical advection term of (5.33). Refer

to Section 5.3.2.2 for further comments on this issue. Finally, taking into

account that q
(1)
vs = q

(1)
vs (z) and Θ( 6

2 ) = Θ( 6
2 )(z, r, τ), the zeroth mode equation

of (5.33) is

u
( 1
2 )
r,0

∂Θ( 6
2 )

∂r
+ w

( 4
2 )

0

(

∂Θ( 6
2 )

∂z
+ J

)

= 0 (5.35)

Now that a closed set of equations have been obtained, we summarize and

discuss the axissymmetric vortex structure equations in Section 5.3.1.1 and

the asymmetric equations in Section 5.3.1.3. Equations for the leading order

vortex motion are derived in Section 5.3.1.2. Please note that the equations

discussed in the mentioned subsection constitute a closed set of equations that

can be used to study the isolated effect of diabatic heating sources on the motion

and structure of hurricane-like vortices, whereas it has been taken into account

that the diabatic source is a function of the vortex-scale flow itself.

5.3.1.1 Model A - Part I

Vortex features related to the axissymmetric vortex structure are discussed in

this subsection. The system of equations determining the axissymmetric vortex

structure is refered to as Model A - Part I and is summarized in Table 5.1.

It turns out that with the replacement of (5.8)5 through (5.35) and taking

into account a zero tilt (5.32), the modified EbVM (5.8) valid for an exter-

nally given diabatic source term becomes a modified EbVM that explicitly ac-

counts for condensation heating due to vortex-scale forced uplift. Note that

together with (5.37)-(5.38), i.e. asymptotic solutions for the leading and next

higher order saturation mixing ratio q
(0)
vs , q

( 2
2 )
vs , density ρ(0) and pressure p( 2

2 )

(see Appendix A.6), the modified EbVM (5.36) is closed in the unknowns

u
(0)
θ , u

( 1
2 )
r,0 , w

( 4
2 )

0 , Θ( 6
2 ) and p( 6

2 ).

Far field constraints It is observed that the equation set (5.36) with explicit

treatment of moisture and the equation set (5.11) based on an externally pre-

scribed diabatic source term differ only in the potential temperature equation.

It is shown next, that based on the new potential temperature equation (5.36)5

and the matching conditions for Θ( 6
2 ) with the environmental temperature field

Θ̂(3), stronger constraints on the secondary circulation in the far field region

can be derived, than obtained from the horizontal momentum equation (5.36)2

alone which has been discussed in Section 5.2.1.

It can easily be verified that with the aid of the definitions for the stream

function (see (5.12)-(5.13)), the matching condition (3.111) for Θ( 6
2 ) and using
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Model A - Part I

M (0)2 − 1

4
Ω2

0r
4 = r3

∂π

∂r
(

w
( 4
2 )

0

∂

∂z
+ u

( 1
2 )
r,0

∂

∂r

)

M (0) = 0

∂π

∂z
= Θ( 6

2 )

1

r

∂(ru
( 1
2 )
r,0 )

∂r
+

1

ρ(0)

∂(ρ(0)w
( 4
2 )

0 )

∂z
= 0

w
( 4
2 )

0

(

∂Θ( 6
2 )

∂z
+ J (z)

)

+ u
( 1
2 )
r,0

∂Θ( 6
2 )

∂r
= 0

(5.36)

where

M (0) = ru
(0)
θ +

Ω0

2
r2

π =
p( 6

2 )

ρ(0)

J (z) = Γ⋆⋆
2

L⋆⋆q⋆⋆vs z
dq

(1)
vs

dz

(5.37)

and
q(0)vs = exp (−[A⋆⋆Γ⋆⋆ − 1]z)

q(1)vs = q(0)vs

[(

A⋆⋆
∂Θ( 4

2 )

∂z
− 1

2
A⋆⋆Γ⋆⋆

2

z2

)

+

exp (−z)(A⋆⋆Γ⋆⋆ − 1) p(1)(z)
]

ρ(0) = p0 exp (−z)

p(1) = p0Γ
⋆⋆

(

−1

2
z2

)

exp (−z)

(5.38)

Table 5.1: Model A - Part I, see the text for explanations
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the fact that ρ(i) = ρ(i)(z), p(i) = p(i)(z) and q
(i)
s = q

(i)
s (z) (with i = 0, 1),

(5.36)5 can be written as

1

r

∂χ

∂r

(
Ω0

2π

∂2Γ

∂z2
ln r + J̃ (z)

)

− ∂χ

∂z

Ω0

2π

∂Γ

∂z

1

r2
= 0 as r → ∞ (5.39)

with

J̃ (z) = J (z) − Ω0

(

∂2Ψ̌
(0)
B,C

∂z2
+
∂2ψ̌

(0)
R,C

∂z2

)

and where J (z) is given by (5.34). Elimination of ∂χ/∂z from (5.39) and the

horizontal momentum equation (5.15) yields

1

r

∂χ

∂r

(

Ω0

2π

∂2Γ

∂z2
ln r + J̃ (z) − 1

4π2

(
∂Γ

∂z

)2
1

r2

)

= 0 as r → ∞ (5.40)

Note that (5.40) is only satisfied if

∂χ

∂r
= o ((ln r)−1) as r → ∞ (5.41)

Taking (5.41) into account, one obtains from (5.15) together with (5.12), that

−∂χ
∂z

= ρ(0)u
( 1
2 )
r,0 = 0 as r → ∞ (5.42)

This implies that the radial inflow u
( 1
2 )
r,0 vanishs rapidly for large r, since ρ(0) =

ρ(0)(z) . Hence, (5.42) implies that for the vortex case studied in the present

section the location of the descending branch of the secondary circulation must

be closer to the vortex centre than indicated by the asymptotically derived

characteristic curves shown in Figure 5.8.

General remarks Recall that in Section 5.2.2 an externally imposed heat-

ing source with maximum heating in near the vortex core but no cooling in

the far field region was not suitable to generate a descending branch of a sec-

ondary circulation in the far field region. Recall that the far field cooling con-

straint was as a result of the matching condition u
(0)
θ = Γ/(2πr) for large r (see

(3.99)). Unfortunately, even in the present case where moisture effects resolved

on vortex-scales are explicitly included, there is no guarantee that the solutions

of the equations summarized in Table 5.1 characterise such a closed secondary

circulation. Since Model A - Part I does not know that the matching condi-

tion (3.99) has to be satisfied, principially it might be possible that solutions

of Model A - Part I describe a secondary circulation that does not satisfy the
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feature of a closed circulation. This, however, can only be verified by solving

the equations numerically which is beyond the scope of this work. Failure of

Model A - Part I to satisfy the far field constraints may be as a consequence

of assuming that S
( 9
2 )

us = 0. This assumption may lead to an exclusion of mech-

anisms necessary to generate a descending branch in the far field region of the

secondary vortex circulation. This possibility is studied in more detail on the

basis of Model B in Section 5.3.2. However, even if in the currently discussed

Model A - Part I effects caused by S
( 9
2 )

us are excluded, there is a possibility of

avoiding solutions for the secondary circulations that are not compatible with

the far field constraints. Recall, that unphysically large tangential velocities

u
(0)
θ are a consequence of solutions for the stream function χ that describes an

open circulation (see Section 5.2.2). To avoid such unphysical results which

are not compatible with the matching condition (3.99), i.e. u
(0)
θ = Γ(z)/(2πr)

for large r, momentum sinks in the horizontal momentum equation (5.36)2 can

be introduced. This decelerate unphysically large tangential velocities u
(0)
θ to-

wards resonable results, which in turn would also enforce a closed secondary

circulation. Please keep in mind, however, that such an approach is somewhat

arbitrary, especially when it is not clear whether in the order considered dissi-

pative effects may appear in the interior of the vortex at all. Though, such a

simplified approach may be fruitful if Model A - Part I together with Model

A - Part II is used to study both the impact of the leading order primary

vortex circulation given by u
(0)
θ and the impact an asymmetric secondary cir-

culation given by w
( 1
2 )

1k , on the vortex trajectory. This is addressed in the next

two subsections.

Note that other alternatives that may result in simplified model equations

without the deficiencies described above are based on the inclusion of radiative

heating and a weakening of the idealized picture of a fully saturated model at-

mosphere within the vortex region. These alternatives have not been addressed

in this thesis.

5.3.1.2 Leading order vortex motion

In this section equations for the leading order motion of diabatic vortices are

derived by means of matched asymptotics. While studying adiabatic vortices

in Section 4.2.2 it has been shown that in absence of diabatic effects the

leading order vortex trajectory is determined by a superposition of a prescribed

background field and regular field caused by the β-effect. It is the purpose

of this section to show how the inclusion of diabatic source terms leads to a

modification of the results for the leading order vortex motion.

Starting point of derivation is the O(ε
3
2 ) mass continuity equation (3.50).
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For the moist vortex setting considered in the present section with w( 4
2 ) 6= 0 but

∂ ~X
( 1
2 )

C /∂z = 0 (see (5.32)), the mass continuity takes the form

ρ(0)

(

∂u
( 1
2 )
r

∂r
+
u

( 1
2 )
r

r
+

1

r

∂u
( 1
2 )

θ

∂θ

)

+
∂(ρ(0)w( 4

2 ))

∂z
= 0 (5.43)

It is observed from this equation that due to non-zero vertical velocities w( 4
2 ) 6= 0

the next higher order horizontal velocity field (u
( 1
2 )
r , u

( 1
2 )

θ ) of diabatic vortices

is divergent unlike the next higher order flow of adiabatic vortices. It is shown

in the subsequent analysis that this already causes a departure of the diabatic

vortex trajectory from the background flow in leading order.

Velocity potential Using Helmholtz’s theorem (see Section 3.1.4) solutions

for the divergent velocity components u
d( 1

2 )
r and u

d( 1
2 )

θ have to satisfy

∂u
d( 1

2 )
r

∂r
+
u
d( 1

2 )
r

r
+

1

r

∂u
d( 1

2 )

θ

∂θ
= − 1

ρ(0)

∂ρ(0)w( 4
2 )

∂z
(5.44)

A harmonic analysis for wavenumber-one asymmetric contributions u
d( 1

2 )
r ,u

d( 1
2 )

θ

and w
( 4
2 )

1k with k = 1, 2 yields

∂u
d( 1

2 )
r,11

∂r
+
u
d( 1

2 )
r,11

r
−
u
d( 1

2 )

θ,12

r
= − 1

ρ(0)

∂(ρ(0)w
( 4
2 )

11 )

∂z

∂u
d( 1

2 )
r,12

∂r
+
u
d( 1

2 )
r,12

r
+
u
d( 1

2 )

θ,11

r
= − 1

ρ(0)

∂(ρ(0)w
( 4
2 )

12 )

∂z

(5.45)

Note, that the zeroth mode equation of (5.43) has already been discussed in

Model A - Part I. With the aid of (3.63) and the definition of an operator

∇2
1 =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)

, (5.46)

the terms on the left of (5.45) can be rewritten to obtain a second order inho-

mogeneous ordinary equation for the velocity potential φ
( 1
2 )

1k , i.e.

∇2
1φ

( 1
2 )

1k = − 1

ρ(0)

∂(ρ(0)w
( 4
2 )

1k )

∂z
, k = 1, 2 (5.47)

By determining the flow through the vortex centre in terms of ψ
( 1
2 )

1k , boundary

conditions for the first harmonics φ
( 1
2 )

1k are assumed to be homogeneous, i.e.

φ
( 1
2 )

1k = 0 and
∂φ

( 1
2 )

1k

∂r
= 0 at r = 0 (5.48)
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Using the identity (4.48) integration of (5.47) in radial direction yields

∂φ
( 1
2 )

1k

∂r̄
− φ

( 1
2 )

1k

r̄
= r̄

∂

∂r̄

(

φ
( 1
2 )

1k

r̄

)

= − 1

r̄2

∫ r̄

0

¯̄r2

ρ(0)

∂(ρ(0)w
( 4
2 )

1k )

∂z
d¯̄r (5.49)

Integrating once again gives

φ
( 1
2 )

1k = −
∫ r

0

1

r̄3

[
∫ r̄

0

¯̄r2

ρ(0)

∂(ρ(0)w
( 4
2 )

1k )

∂z
d¯̄r

]

dr̄ (5.50)

In the calculations that follow, far field solutions for φ
( 1
2 )

1k are derived which are

required for matching with the environmental flow. For this, precise knowledge

about the behaviour of w
( 4
2 )

1k if r becomes large is needed. As long as the

environmental flow is regarded as a dry flow such that the QG-theory describes

conservation of quasi-geostrophic vorticity along parcel trajectories (see Section

3.2.1), the matching conditions (3.113) on the vertical velocity field are valid

so that

w( 4
2 ) → 0 as r → ∞ (5.51)

Recall, that the axissymmetric contribution w
( 4
2 )

0 decays exponentially (see

(5.23)). For the subsequent analysis it is assumed that asymmetric contribu-

tions w
( 4
2 )

1k behave like

w
( 4
2 )

1k ∼ r−m as r → ∞ , for m ≥ 0 (5.52)

Then, using the identity (4.48) and (5.52), equation (5.47) can be written as

∂

∂r

(

r

(

r
∂φ

( 1
2 )

1k

∂r
− φ

( 1
2 )

1k

))

=
α1k

r(m−2)
as r → ∞, for m ≥ 0 (5.53)

Here, α1k(z) is a function that may depend on z. Integrating the above equation

twice yields for

m = 1:

φ
( 1
2 )

1k =
α1k

2
r ln r −

C1
1k1

2r
+ C2

1k1r as r → ∞ (5.54)

m = 2:

φ
( 1
2 )

1k = −α1k

3

1

r2
−
C1

1k2

4r3
+ C2

1k2r as r → ∞ (5.55)

m ≥ 3:

φ
( 1
2 )

1k = O(r−n) + C2
1km

r as r → ∞ , n ≥ 1 (5.56)

Here, C1
1km

and C2
1km

denote constants of integration.
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Stream function Solutions for ψ
( 1
2 )

1k are derived next. In doing so an approach

similar to that in Section 4.2.2 is used. First, elimination of p( 7
2 ) from the

horizontal momentum equations (3.43)1 and (3.43)2 yields

u
(0)
θ

r

∂2u
( 1
2 )
r

∂θ2
− 2u

(0)
θ

r

∂u
( 1
2 )

θ

∂θ
− Ω0

∂u
( 1
2 )

θ

∂θ
− ∂

∂r

(

ru
( 1
2 )
r

∂u
(0)
θ

∂r

)

−

∂

∂r
(u

( 1
2 )
r u

(0)
θ ) − ∂

∂r

(

u
(0)
θ

∂u
( 1
2 )

θ

∂θ

)

− Ω0
∂

∂r
(ru

( 1
2 )
r ) = F (5.57)

where

F =
∂

∂r

(

rw( 4
2 ) ∂u

(0)
θ

∂z

)

Note that unlike (4.25) the non-zero right hand side of (5.57) is due to diabatic

effects causing non-zero w( 4
2 ). By use of Helmholtz’s decomposition (3.63),

Fourier decomposition yields for the first asymmetric modes reading

−u(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 1
2 )

12 = F11 + B11

u
(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 1
2 )

11 = F12 + B12

(5.58)

with

F1k =
∂

∂r

(

rw
( 4
2 )

1k

∂u
(0)
θ

∂z

)

B1k = r[ζ(0) + Ω0]∇2
1φ

( 1
2 )

1k +
∂φ

( 1
2 )

1k

∂r
(rζ(0)

r ) k = 1, 2

(5.59)

and ζ
(0)
r = ∂ζ(0)/∂r. Using the same boundary conditions as for the dry case,

i.e. (4.27), and the stream function transformation (4.28) the following PDE

can be obtained

−u(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 1
2 )

1k = M1k

with ψ
( 1
2 )

1k = 0,
∂ψ

( 1
2 )

1k

∂r
= 0 at r = 0

(5.60)
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Note, the right hand side of (5.60) denotes a sum of

M11 = −F12 − B12 −A11 r ζ
(0)
r

M12 = +F11 + B11 −A12 r ζ
(0)
r

(5.61)

Integration of (5.60) (see Appendix B.1 and B.2) and reverse-transformation

yields

ψ
( 1
2 )

11 = +u
(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (F12 + B12) dr

]

dr̄ + u
(0)
θ

2A11

ζ
(0)
∗

ψ
( 1
2 )

12 = −u(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (F11 + B11) dr

]

dr̄ + u
(0)
θ

2A12

ζ
(0)
∗

(5.62)

Far field solutions for ψ
( 1
2 )

1k with k = 1, 2 are (see Appendix C.1)

m = 1:

ψ
( 1
2 )

1k = Ω0α̃1kr
2 − 1

2r
D1

1k1 + rD2
1k1 as r → ∞ (5.63)

m = 2:

ψ
( 1
2 )

1k =
Ω0α̃1k

2
r ln r − 1

2r
D1

1k2 + rD2
1k2 as r → ∞ (5.64)

m = 3:

ψ
( 1
2 )

1k = −Ω0α̃1k −
1

r
D1

1k3 + rD2
1k3 as r → ∞ (5.65)

m ≥ 4:

ψ
( 1
2 )

1k = O(r−n) + rD2
1km

as r → ∞ , n ≥ 1 (5.66)

Here, D1
1km

and D2
1km

denote constants of integration.

Matching Once solutions for ψ
( 1
2 )

1k and φ
( 1
2 )

1k (k = 1, 2) have been derived,

equations for the leading order vortex motion (U
(0)
C , V

(0)
C ) can be derived by

means of matched asymptotics. With u
( 1
2 )
r and u

( 1
2 )

θ expressed in terms of φ( 1
2 )

and ψ( 1
2 ) (see (3.63)) and with the aid of (3.12) the matching condition (3.100)

of the inner and outer velocity fields takes the form

−ψ
( 1
2 )

12

r
+
∂φ

( 1
2 )

11

∂r
= V

(0)
B,C + V

(0)
R,C − V

(0)
C as r → ∞

+
ψ

( 1
2 )

11

r
+
∂φ

( 1
2 )

12

∂r
= U

(0)
B,C + U

(0)
R,C − U

(0)
C as r → ∞

(5.67)
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For simplification, it is assumed that the asymmetric vertical velocities w
( 4
2 )

1k

decay faster than 1/r2 for large r. This means that it is assumed that m ≥ 3

(see (5.52)). Considering that case, one obtains from the matching condition

(5.67) together with (5.56) and (5.65)-(5.66) that

U
(0)
C = U

(0)
B,C + U

(0)
R,C −D11 − C11

V
(0)
C = V

(0)
B,C + V

(0)
R,C +D12 − C12

(5.68)

Note that the superscripts on the constants have been dropped. By equating

(5.56) to (5.50) in the limit as r approaches ∞, it turns out that the constants

C1k are determined by

C1k = − lim
r→∞

(

1

r

∫ r

0

1

r̄3

[
∫ r̄

0

¯̄r2

ρ(0)

∂(ρ(0)w
( 4
2 )

1k )

∂z
d¯̄r

]

dr̄

)

(5.69)

If the limit exists, i.e. C1k 6= 0, using the L’ Hospitals rule twice one obtains

C1k = − lim
r→∞

(

1

r3

∫ r

0

¯̄r2

ρ(0)

∂(ρ(0)w
( 4
2 )

1k )

∂z
d¯̄r

)

= − lim
r→∞

1

ρ(0)

∂(ρ(0)w
( 4
2 )

1k )

∂z
(5.70)

It follows from ρ(0) = ρ(0)(z) and the matching condition that

C1k = 0 (5.71)

Equating (5.62) equal to (5.65) in the limit r → ∞, together with (3.99) similar

procedure yields for D1k that

D11 = +
π

Γ

∫ ∞

0

r(F12 + B12) dr

D12 = −π
Γ

∫ ∞

0

r(F11 + B11) dr

(5.72)

Thus, upon substitution of (5.71) and (5.72) into (5.68) the equations for the

leading order vortex motion of diabatic vortices take the following form

U
(0)
C = U

(0)
B,C + U

(0)
R,C − π

Γ

∫ ∞

0

r(F12 + B12) dr

V
(0)
C = V

(0)
B,C + V

(0)
R,C − π

Γ

∫ ∞

0

r(F11 + B11) dr

(5.73)
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The functions F1k and B1k can be regarded as F1k = f(u
(0)
θ , w

( 4
2 )

1k ) and B1k =

g(u
(0)
θ , w

( 4
2 )

1k ,Ω0) (see (5.59)). It is observed that additional terms appear in

the equation for the leading order vortex motion for diabatic vortices (5.73)

compared to the equations for adiabatic vortices (4.37). These terms describe

net effects primarily caused by diabatically induced asymmetries in the vertical

velocity field w( 4
2 ) = w( 4

2 )(r, θ, z, τ) resolved with respect to mesoscales. A

system of equations that can be used to find solutions for w
( 4
2 )

1k is discussed in

Section 5.3.1.3. Recall that in the next higher order vortex motion equation

for adiabatic vortices (see (4.78)) the appearence of the integral term describing

net effects of mesoscale processes was due to w
( 5
2 )

1k 6= 0 (see (4.17)) which was

strongly related to a non-zero vortex tilt ∂ ~X
( 1
2 )

C /∂z. However, for the diabatic

vortex case studied here, asymmetric vertical velocities w
( 4
2 )

1k are independent

on the vortex tilt, which in turn makes the appearence of the integral term

in (5.73) possible, even for zero next higher order perturbations in the vortex

tilt, i.e. ∂ ~X
( 1
2 )

C /∂z = 0. For this reason (5.73) is suitable to describe the

motion of vortices having small tilts with horizontal displacements between the

upper and lower vortex part equal or smaller than 80 km (i.e. ∂ ~XC/∂z =

ε
2
2 ∂ ~X

( 2
2 )

C /∂z+O(ε
3
2 )). Mature hurricanes are examples for vortices having such

a small tilt. Another comparison between the leading order motion of adiabatic

and diabatic vortices is that the requirement of a vertically constant background

flow ~V
(0)
B,C on an f-plane for the constraint ~V

(0)
C = ~V

(0)
C (τ) to be satisfied is not

necessary if the background shear satisfies the following

∂U
(0)
B,C

∂z
=

∂

∂z

(
π

Γ

∫ ∞

0

r(F12 + B12) dr

)

∂V
(0)
B,C

∂z
=

∂

∂z

(
π

Γ

∫ ∞

0

r(F11 + B11) dr

)
(5.74)

Regarding an interpretation of the above constraint, two different perspectives

are possible. One possibility is to say that the vertical distribution of the in-

tegral on the right hand side of (5.74) determines the vertical distribution of a

background flow within a concentrated vortex may exist. Another possibility is

that a given background flow determines the vertical distributions of the inte-

grals and therefore indirectly the vertical distribution of w
( 4
2 )

1k and uθ. Please

note that such a constraint must be taken into account when solving the gov-

erning equations of the entire Model A numerically. Note, however, that if the

initial conditions for Model A are not compatible with such a constraint, then

this may be interpreted as a hint that certain processes must take place on faster

time scale that eventually would generate the balance (5.74) with respect to the

slower time scale (synoptic time scale).
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5.3.1.3 Model A - Part II

The equations of Model A - Part II (see Table 5.2 and 5.3) constitute a

closed set of equations describing asymmetric contributions of (i) a next higher

order correction for the primary circulation given by u
( 1
2 )

θ,1k, (ii) a diabatically

driven secondary circulation given by u
( 1
2 )

r,1k and w
( 4
2 )

1k , and (iii) appropriate po-

tential temperature and pressure fields given by p
( 7
2 )

1k ,Θ
( 7
2 )

1k and ρ
( 7
2 )

1k with k = 1, 2.

Note that solutions for u
(0)
θ , ρ(0) etc. can be obtained from solving the equa-

tions summarized Model A - Part I. Furthermore, Model A - Part II in-

cludes equations for the leading order vortex motion components in meridional

and zonal direction, i.e. U
(0)
C and V

(0)
C . It is argued that using the Fredholm

Alternative Theorem (see for instance Holmes (1995) and Werner (2000)) the

equations for the vortex motion can be used to find solvability conditions for the

higher order vortex tilt components ∂X
( 2
2 )

C /∂z and ∂Y
( 2
2 )

C /∂z as well.

The equations (5.75) in Table 5.2 have been derived first by eliminat-

ing the pressure variable p( 7
2 ) from the O(ε

2
2 ) horizontal momentum equations

(3.43)1 and (3.43)2 via cross-differentiation and a subsequent harmonic analy-

sis using (3.58)2 and (3.58)3 with j = 1. Note that an elimination of p( 7
2 )

comes along with an elimination of the leading order meridional and zonal

velocity components V
(0)
C and U

(0)
C determining the leading order vortex mo-

tion. The equations (5.76) - (5.79) emanate sequentially from a harmonic

analysis of the O(ε−
1
2 ) vertical momentum equation (3.47), the O(ε

3
2 ) mass

continuity (3.50), the O(ε
9
2 ) potential temperature equation (5.33) and the

O(ε
7
2 ) state equation (A-39). The equations (5.80) in Table 5.3 are the equa-

tions for the vortex motion that have been derived in the previous section with

the aid matched asymptotics . The equations (5.82) emanate from a harmonic

analysis of the O(ε
2
2 ) horizontal momentum equations (3.43) and a subsequent

combination of the equations including p
( 7
2 )

11 and p
( 7
2 )

12 , respectively.

As noted earlier, the Fredholm Alternative Theorem can be used to solve the

equations summarized in Model A - Part II for the 18 unknowns mentioned

at the beginning of this section. For this, the inhomogeneous system of equations

consisting of the twelve equations given through (5.75) - (5.79) and (5.82) has

to be solved for u
( 1
2 )

r,1k, u
( 1
2 )

θ,1k, p
( 7
2 )

1k , w
( 7
2 )

1k , θ
( 7
2 )

1k and ρ
( 7
2 )

1k , whereas the solutions still

depend on the unknowns U
(0)
C , V

(0)
C and ∂X

( 2
2 )

C /∂z, ∂Y
( 2
2 )

C /∂z. Assuming the

case that the homogeneous part of the linear system has only the trivial solution,

then the solutions of the inhomogeneous system are unique for every U
(0)
C , V

(0)
C

and ∂X
( 2
2 )

C /∂z, ∂Y
( 2
2 )

C /∂z. Then, the solutions for u
( 1
2 )

r,1k, u
( 1
2 )

θ,1k etc. as functions

on U
(0)
C , V

(0)
C and ∂X

( 2
2 )

C /∂z, ∂Y
( 2
2 )

C /∂z can be used in order to solve the integrals

in the equations for the vortex motion, i.e. (5.80). Because of ∂U
(0)
C /∂z = 0 and

∂V
(0)
C /∂z = 0, however, the equations for the vortex motion will set certain con-
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Model A - Part IIa

horizontal momentum (p( 7
2
) eliminated):

u
( 1
2
)

r,11

u
(0)
θ

r
− u

( 1
2
)

θ,12

 
2u

(0)
θ

r
+ Ω0

!
+

∂

∂r

�
u

( 1
2
)

r,11r ζ
(0)
abs − u

( 1
2
)

θ,12u
(0)
θ

�
= F11

u
( 1
2
)

r,12

u
(0)
θ

r
+ u

( 1
2
)

θ,11

 
2u

(0)
θ

r
+ Ω0

!
+

∂

∂r

�
u

( 1
2
)

r,12r ζ
(0)
abs − u

( 1
2
)

θ,11u
(0)
θ

�
= F12

(5.75)

where F1k = −
∂

∂r

 
rw

( 4
2
)

1k

∂u
(0)
θ

∂z

!
, ζ

(0)
abs = ζ(0) + Ω0 , ζ(0) =

1

r

∂(ru
(0)
θ )

∂r

vertical momentum :

∂p
( 7
2
)

11

∂z
−

∂Y
( 2
2
)

C

∂z

∂p( 6
2
)

∂r
= −ρ

( 7
2
)

11

∂p
( 7
2
)

12

∂z
−

∂X
( 2
2
)

C

∂z

∂p( 6
2
)

∂r
= −ρ

( 7
2
)

12

(5.76)

mass continuity :

∂u
( 1
2
)

r,11

∂r
+

u
( 1
2
)

r,11

r
−

u
( 1
2
)

θ,12

r
= −

1

ρ(0)

∂(ρ(0)w
( 4
2
)

11 )

∂z

∂u
( 1
2
)

r,12

∂r
+

u
( 1
2
)

r,12

r
+

u
( 1
2
)

θ,11

r
= −

1

ρ(0)

∂(ρ(0)w
( 4
2
)

12 )

∂z

(5.77)

thermodynamic equation :

u
( 1
2
)

r,11

∂Θ( 6
2
)

∂r
−

u
(0)
θ

r
Θ

( 7
2
)

12 + w
( 4
2
)

11

 
∂Θ( 6

2
)

∂z
+ J (z)

!
= 0

u
( 1
2
)

r,12

∂Θ( 6
2
)

∂r
+

u
(0)
θ

r
Θ

( 7
2
)

11 + w
( 4
2
)

12

 
∂Θ( 6

2
)

∂z
+ J (z)

!
= 0

(5.78)

state equation : ρ(0)Θ
( 7
2
)

1k +ρ
( 7
2
)

1k Θ∞ = p
( 7
2
)

1k (5.79)

Table 5.2: Model A - Part IIa, see the text for explanations
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Model A - Part IIb

vortex motion:

U
(0)
C = U

(0)
B,C + U

(0)
R,C −

π

Γ

Z
∞

0

r(F12 + B12) dr

V
(0)

C = V
(0)

B,C + V
(0)

R,C −
π

Γ

Z
∞

0

r(F11 + B11) dr

(5.80)

with

F1k =
∂

∂r

 
rw

( 4
2
)

1k

∂u
(0)
θ

∂z

!
B1k = r[ζ(0) + Ω0]∇

2
1φ

( 1
2
)

1k +
∂φ

( 1
2
)

1k

∂r

�
r
∂ζ(0)

∂r

�
, k = 1, 2

∇
2
1φ

( 1
2
)

1k = −
1

ρ(0)

∂(ρ(0)w
( 4
2
)

1k )

∂z

(5.81)

horizontal momentum:

1

ρ(0)

1

r

∂(rp
( 7
2
)

12 )

∂r
= +u

( 1
2
)

θ,12

u
(0)
θ

r
+ Ω0(2V

(0)
C + u

( 1
2
)

θ,12 + u
( 1
2
)

r,11)+

w
( 4
2
)

11

∂u
(0)
θ

∂z
+ u

( 1
2
)

r,11

∂u
(0)
θ

∂r

1

ρ(0)

1

r

∂(rp
( 7
2
)

11 )

∂r
= +u

( 1
2
)

θ,11

u
(0)
θ

r
− Ω0(2U

(0)
C − u

( 1
2
)

θ,12 + u
( 1
2
)

r,11)−

w
( 4
2
)

12

∂u
(0)
θ

∂z
− u

( 1
2
)

r,12

∂u
(0)
θ

∂r

(5.82)

Table 5.3: Model A - Part IIb, see the text for explanations

straints on the vertical variations of the higher order vortex tilt components

∂Y
( 2
2 )

C /∂z and ∂X
( 2
2 )

C /∂z . It is beyond the scope of the present work to solve

this problem.

5.3.2 Model B - with net-heating due to small-scale con-

vective processes

The derivation of Model B is based on the assumption that Sus 6= 0. It is shown

in the subsequent sections that net-heating sources caused by small-scale convec-

tive flows, have a nontrivial impact on the vortex tilt, the secondary vortex cir-

culation and the leading order vortex motion. In analogy with the derivation of
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Model A in Section 5.3.1, it is distinguished between Model B - Part I and

Model B - Part II summarizing equations for the axissymmetric and asym-

metric vortex structure, respectively.

At the beginning of the derivation of Model B - Part I, the source term

S( 7
2 ) in (5.8)5 is replaced by (5.27)1 to obtain

w( 4
2 )

(

dΘ( 4
2 )

dz
+ ΓL⋆⋆

dq
(0)
vs

dz

)

= S
( 7
2 )

us (5.83)

Due to the moist adiabatic equation (3.134) the bracket on the left hand side of

(5.83) becomes zero, which implies that

S
( 7
2 )

us = 0 . (5.84)

Thus, unlike the discussions in Section 5.3.1, zero net heating effects caused by

small-scale cumulus convection in leading order are no longer an assumption,

but it follows directly from an asymptotic analysis. For this reason leading

order heating effects given by S
( 7
2 )

L can basically be regarded as a consequence

of convective flows on vortex-scale in a conditionally neutral4 environment with

respect to leading order.

Also as in Section 5.3.1 it turns out that with the explicit inclusion of mois-

ture the O(ε
7
2 ) thermodynamic equation becomes trivial, and the next higher

order equation becomes important in the determination of w( 4
2 ). It is shown

below, that based on the next higher order thermodynamic equation a nontriv-

ial relation between net-heating effects S
( 8
2 )

us caused by mesoscale processes and

the leading order vortex tilt ∂ ~X
( 1
2 )

C /∂z can be found.

5.3.2.1 Vortex tilt and small-scale convection

With the aid of the O(ε
8
2 ) source term (5.27)2, the O(ε

8
2 ) thermodynamic equa-

tion (3.54) takes the form

u
(0)
θ

r

∂Θ( 6
2 )

∂θ
+ w( 5

2 ) dΘ
( 4
2 )

dz
= −Γ⋆⋆L⋆⋆q⋆⋆vsw

( 5
2 ) dq

(0)
s

dz
+ S

( 8
2 )

us (5.85)

On account of the moist adiabatic equation (3.134), equation (5.85) simplifies

to
u

(0)
θ

r

∂Θ( 6
2 )

∂θ
= S

( 8
2 )

us (5.86)

Because of u
(0)
θ = u

(0)
θ (r, z, τ), integration in circumferential direction from

0 to 2π yields for the axissymmetric contribution of S
( 8
2 )

us that S
( 8
2 )

us,0 = 0. A

4In a conditionally neutral atmosphere is the lapse rate exactly equal to the dry adiabatic
rate, i.e. rising or sinking saturated air will cool or warm at the same rate as the air around it.

128



harmonic analysis of (5.86) for the sine and cosine modes yields

u
(0)
θ

r
Θ

( 6
2 )

11 = S
( 8
2 )

us,12 and − u
(0)
θ

r
Θ

( 6
2 )

12 = S
( 8
2 )

us,11 (5.87)

In Section 4.2.1 it has been shown that a combination of the first harmonics

of the vertical momentum equation (4.2) and state equation (A-37) gives

∂X
( 1
2 )

C

∂z

1

ρ(0)

∂p( 6
2 )

∂r
= −Θ

( 6
2 )

12

Θ∞
and

∂Y
( 1
2 )

C

∂z

1

ρ(0)

∂p( 6
2 )

∂r
= −Θ

( 6
2 )

11

Θ∞
(5.88)

Then, elimination of Θ
( 6
2 )

1k in the above equation by use of (5.87) yields together

with π = p( 6
2 )/ρ(0), that

−u
(0)
θ

r

∂π

∂r

∂Y
( 1
2 )

C

∂z
= S

( 8
2 )

us,12 and +
u

(0)
θ

r

∂π

∂r

∂X
( 1
2 )

C

∂z
= S

( 8
2 )

us,11 (5.89)

Using the gradient wind relation (3.135) the gradient ∂π/∂r can be replaced by

∂π

∂r
=

1

ρ(0)

∂p( 6
2 )

∂r
=
u

(0)2

θ

r
+ Ω0u

(0)
θ (5.90)

The equations (5.89) provide a direct relationship between asymmetric fields of

active convection reflected by S
( 8
2 )

us,1k and the direction of the vortex tilt deter-

mined by vertical gradients of the vortex centreline components, i.e. ∂X
( 1
2 )

C /∂z

and ∂Y
( 1
2 )

C /∂z in zonal and meridional direction, respectively. Difficulties arise

in separating cause and effect in the physical interpretation of (5.89). [i] One

possible interpretation is that net-heating effects due to small-scale cumulus

convection force the vortex tilt. Then, for a given leading order velocity field

u
(0)
θ and an appropriate parameterization for S

( 8
2 )

us,1k the equations (5.89) may be

regarded as equations for the vortex tilt. Note that a parameterization for S
( 8
2 )

us,1k

in terms of resolved variables should be in such a way that ~X
( 1
2 )

C = ~X
( 1
2 )

C (z, τ)

is satisfied, which sets a certain constraint on the radial distribution of S
( 8
2 )

us,1k.

[ii] Another possible interpretation is that convection and therefore convective

heating can also be seen as response to a vortex tilt which in turn is initiated by

some other mechanisms. Note that unlike the adiabatic vortex case it is not easy

to show within the asymptotic framework, that there might be a relation be-

tween the background shear and the votex tilt. One of the difficulty is to apply

the same matching strategy as for adiabatic vortices. However, there are stud-

ies from Frank & Ritchie (1999) and Corbosiero & Molinari (2003) that would

support the argument [ii]. Frank & Ritchie (1999) designed a series of numeri-

cal simulations to study the effects of an imposed external circulation upon the
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structure of tropical cyclone like vortices. In doing so they found evidence for

their hypothesis that sheared zonal winds and boundary layer processes modu-

late dynamically the vertical velocity field within the storm which in turn forces

regions of ascent within the cyclone that organize and control the amount and

distribution of latent heat release. Moreover, based on a statistical analysis of

lightning data which were measured in convective rainbands in hurricane-like

vortices, Corbosiero & Molinari (2003) showed that there are prefered regions

for lightnings depending on the direction in which the vertical shear vector

points. In particular they found enhanced flash activity downshear left within

the core region (r < 100 km) and enhanced flash activity downshear right in

the outer rainbands (100 ≤ r ≤ 300) km (see Figure 5.1). Note that under

the assumption of a pure zonally tilted vortex (i.e. ∂Y
( 1
2 )

C /∂z = 0), from (5.89)

one obtains enhanced convective heating (S
( 8
2 )

us,11 > 0) downshear left which is in

agreement with Corbosiero & Molinaris observations within the core region.

Comparing the equations (5.89) with the corresponding equations (4.15) for

adiabatic vortices, it is observed that for the dry case the right hand side of

(5.89), i.e. the asymmetric diabatic source term due to small-scale processes,

is replaced by a term denoting vertical advection of the background potential

temperature Θ( 4
2 ) via asymmetric vertical velocities w

( 5
2 )

1k . Recall that the exis-

tence of w
( 5
2 )

1k is due an adiabatic lifting mechanism that attributes the existence

of the vertical velocity fields to a shear induced vortex tilt. Thus, comparing

the dry and moist (saturated) vortex case studied here it turns out that the

effects caused by a vortex tilt are dependent on whether moisture is included or

not. This finding is in agreement with numerical simlations by Frank & Ritchie

(1999). Comparing moist and dry runs they observe that vertical motion pat-

terns in both simulations are dominated by similar adiabatic lifting mechanism

prior to the development of partial eyewall saturation. However, the adiabatic

lifting mechanism vanishes with a set up of saturated conditions within the

simulations that account for moist physics. Based on these findings Frank &

Ritchie (1999) argue that the patterns of forced ascent in the dry runs should

be relevant for understanding patterns of convection in loosely organized sys-

tems such as tropical depressions, but not in mature hurricanes. In light of

the present work, it is important to point out again that the results derived

in this section are based on the idealized assumption of a completely saturated

atmosphere (see Section 3.4.2). Thus, motivated by the above cited argumen-

tation of Frank & Ritchie (1999), an interesting topic for future research would

be to elucidate the role of an adiabatic lifting mechanism on the transition from

an undersaturated air regime into a saturated regime. For this a multi-scale

expansion ansatz that accounts for both vortex-scales and small cumulus-scales

should be applied within the framework of an unified approach to meteorolog-
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ical modelling that accounts for bulk microphysics parameterization of moist

processes. See Klein & Majda (2005) for details regarding such parameteri-

zations within an unified approach. Studies on this issue may contribute to

a better understanding of conditions that favour an intensification of tropical

depressions towards hurricane intensity. Moreover it might be helpul to find a

detailed answer to the following question asked by Reasor & Montgomery (2004):

’Do the details of cumulus convection determine whether a given storm shears

apart or remains vertically aligned, or can the effect of convection meaningfully

parameterized and still yield a reasonably accurate forecast ?’

Another interesting observation that is made from (5.89) is that the maxi-

mum of latent heat release given by S
( 8
2 )

us,1k and therefore the maximum of con-

vection corresponds roughly with the location of strongest pressure gradients

∂p( 6
2 )/∂r and thus strongest circumferential winds u

(0)
θ . It is known from ob-

servational studies that hurricanes may extend 1000 km from its centre. At the

core there is an eye of 5-50 km with calm winds and little convection. The eye,

however, is surrounded by an 10-20 km eyewall cloud with extremely strong

tangential wind flow and intense convection. Based on these observations it is

argued, that the convective clouds causing the source terms S
( 8
2 )

us,1k must be an

integral part of an eyewall cloud.

5.3.2.2 Model B - Part I

In the previous section it has been shown that the O(ε
8
2 ) thermodynamic equa-

tion is useful to study interactions between the vortex tilt and small-scale con-

vective fields. Similar to Section 5.3.1 it is shown below that the O(ε
9
2 ) ther-

modynamic equation can be used in order to reshape the general balanced vortex

model (5.8)-(5.10) into a modified EbVM named Model B - Part I that unlike

Model A - Part I not only accounts for condensation heating due to vortex-

scale forced uplift, but also accounts for net heating effects due to small-scale

cumulus convection.

Because of ∂ ~X
( 1
2 )

C /∂z 6= 0 due to ∂Θ( 6
2 )/∂θ 6= 0, substitution of the diabatic

source term (5.27) into the O(ε
9
2 ) thermodynamic equation (3.56) yields

u
( 1
2 )
r

∂Θ( 6
2 )

∂r
+ u

( 1
2 )

θ

1

r

∂Θ( 6
2 )

∂θ
+ u

(0)
θ

1

r

∂Θ( 7
2 )

∂θ
+ w( 4

2 )

(

∂Θ( 6
2 )

∂z
+ J (z)

)

−

w( 4
2 )Λ1

b

∂Θ( 6
2 )

∂r
− w( 4

2 )Λ1
a

1

r

∂Θ( 6
2 )

∂θ
= S

( 9
2 )
us (5.91)

with

Λ1
b = +∂X

( 1
2 )

C /∂z cos θ + ∂Y
( 1
2 )

C /∂z sin θ

Λ1
a = −∂X( 1

2 )

C /∂z sin θ + ∂Y
( 1
2 )

C /∂z cos θ
(5.92)
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and

J (z) = Γ⋆⋆
2

L⋆⋆q⋆⋆vs z
dq

(1)
vs

dz
. (5.93)

To simplify things, in the following it is assumed that w( 4
2 ) is purely axissym-

metric, i.e. w( 4
2 ) = w( 4

2 )(r, z, τ). It is shown in the following subsections, that

this assumption allows one to study the isolated effect of a vortex tilt on the

secondary vortex circulation and the leading order vortex motion. Then, a

harmonic analysis for the zeroth mode equation of (5.91) yields

u
( 1
2 )
r,0

∂Θ
( 6
2 )

0

∂r
+ w

( 4
2 )

0

(

∂Θ
( 6
2 )

0

∂z
+ J̃ (r, z, τ)

)

= S̃ (5.94)

with

J̃ (r, z, τ) = Γ⋆⋆
2

L⋆⋆q⋆⋆vs z
dq

(1)
vs

dz
− D

2

S̃(r, z, τ) = S
( 9
2 )

us,0 −
1

2

(
2∑

k=1

u
( 1
2 )

r,1k

∂Θ
( 6
2 )

1k

∂r

)

−

1

2

(

u
( 1
2 )

θ,12

Θ
( 6
2 )

11

r
− u

( 1
2 )

θ,11

Θ
( 6
2 )

12

r

)

(5.95)

and

D =

(

∂X
( 1
2 )

C

∂z

1

r

∂(r Θ
( 6
2 )

12 )

∂r
+
∂Y

( 1
2 )

C

∂z

1

r

∂(r Θ
( 6
2 )

11 )

∂r

)

= −1

r

∂

∂r

(

r
∂π

∂r

)
∣
∣
∣
∣
∣

∂ ~X
( 1
2 )

C

∂z

∣
∣
∣
∣
∣

2

(5.96)

The simplified form of D is obtained by eliminating the asymmetric contribu-

tions of Θ( 6
2 ) with the aid of (4.10) and (4.9). Eventually, together with the

assumption that w( 4
2 ) = w( 4

2 )(r, z, τ), a replacement of the potential tempera-

ture equation (5.7)5 through (5.94) yields a second version of a modified EbVM

which is referred to as Model B - Part I and is summarized in Table 5.4.

While the net-heat source S
( 9
2 )
us,0 has to be parameterized, it can be observed that

unlike Model A - Part I, the equations in Model B - Part I are not closed

in the variables describing the leading order axissymmetric vortex structure, i.e.

the unknowns u
(0)
θ , u

( 1
2 )
r,0 , w

( 4
2 )

0 , Θ
( 6
2 )

0 and p( 6
2 ). This is due to the occurence of

additional terms including the vortex tilt components ∂X
( 1
2 )

C /∂z and ∂Y
( 1
2 )

C /∂z,

asymmetric potential temperature contributions Θ
( 6
2 )

1k , and asymmetric velocity

components u
( 1
2 )

r,1k and u
( 1
2 )

θ,1k in next higher order. The equations necessary to

close the equations in Model B - Part I are summarized and discussed in Mo-
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Model B - Part I

M (0)2
−

1

4
Ω2

0r
4 = r3 ∂π

∂r�
w

( 4
2
)

0

∂

∂z
+ u

( 1
2
)

r,0

∂

∂r

�
M (0) = 0

∂π

∂z
= Θ

( 6
2
)

0

1

r

∂(ru
( 1
2
)

r,0 )

∂r
+

1

ρ(0)

∂(ρ(0)w
( 4
2
)

0 )

∂z
= 0

u
( 1
2
)

r,0

∂Θ
( 6
2
)

0

∂r
+ w

( 4
2
)

0

 
∂Θ

( 6
2
)

0

∂z
+ J̃ (r, z, τ)

!
= S̃

(5.97)

where

M (0) = ru
(0)
θ +

Ω0

2
r2 , π =

p( 6
2
)

ρ(0)

J̃ (r, z, τ) = Γ⋆⋆2

L⋆⋆q⋆⋆
vs z

dq
(1)
vs

dz
−

D

2

D = −
1

r

∂

∂r

�
r
∂π

∂r

�������∂ ~X
( 1
2
)

C

∂z

������2
S̃(r, z, τ) = S

( 9
2
)

us,0 −
1

2

0� 2X
k=1

u
( 1
2
)

r,1k

∂Θ
( 6
2
)

1k

∂r

1A−

1

2

 
u

( 1
2
)

θ,12

Θ
( 6
2
)

11

r
− u

( 1
2
)

θ,11

Θ
( 6
2
)

12

r

! (5.98)

and

q(0)
vs = exp (−[A⋆⋆Γ⋆⋆

− 1]z)

q(1)
vs = q(0)

vs

" 
A⋆⋆ ∂Θ( 4

2
)

∂z
−

1

2
A⋆⋆Γ⋆⋆2

z2

!
+

exp (−z)(A⋆⋆Γ⋆⋆
− 1) p(1)(z)

i
ρ(0) = p0 exp (−z)

p(1) = p0Γ
⋆⋆

�
−

1

2
z2

�
exp (−z)

(5.99)

Table 5.4: Model B - Part I, see the text for explanations
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del B - Part II, in Section 5.3.2.4. Note that the solutions (5.99)3 and

(5.99)4 in Table 5.4, i.e. solutions for the leading order density ρ(0) and higher

order pressure p(1), are obtained from the leading order vertical momentum

equations (3.34) and the state equation (A-31). Based on these results the

equations (3.126) and (3.127) for the leading order saturation water vaper mix-

ing ratio q
(0)
vs and q

( 1
2 )
vs can be simplified to obtain the equations (5.99)1 and

(5.99)2 shown in Table 5.4 (see Appendix A.6).

Total effective stability Recalling Eliassen’s original transverse circulation

equation (5.4) in terms of a kind of stream function ψ, three stability criteria

turned out to be important for the final establishment of an externally forced

transverse circulation. The criteria were called static stability, baroclinicity

and inertial stability. Unfortunately, it becomes difficult to derive an analogous

equation to Eliassen’s original equation (5.4) using equation set (5.97). That

is why the asymmetric advection terms in (5.97)5 turn out to be functions on

the axissymmetric vertical velocity w( 4
2 ) itself. This is discussed in detail in

Section 5.3.2.4. Though, studying the thermodynamic equation (5.97)5 alone

allows one to get some deeper insights into the mechanism that influence the

static stability and therefore the establishment of a secondary circulation.

Recall that in Eliassen’s original model (5.4) a mechanism called the static

stability has an influence on the secondary circulation. A simlar mechanism can

be derived here, which is refered to as total effective stability (see the term in

the bracket of (5.94))

(
∂Θ

∂z

)

teff

=
∂Θ

( 6
2 )

0

∂z
+ Γ⋆⋆

2

L⋆⋆q⋆⋆vs z
dq

(1)
vs

dz
︸ ︷︷ ︸

J1

+
1

2

1

r

∂

∂r

(

r
∂π

∂r

)
∣
∣
∣
∣
∣

∂ ~X
( 1
2 )

C

∂z

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

J2

(5.100)

Let’s assume that net heating effects S
( 8
2 )

us,1k caused by small-scale convective

flows, are primarily stimulated by an environmentally shear induced vortex tilt

(see (5.89)). Then, the contributions J1 and J2 in (5.100) control the strat-

ification through two different physical processes. The first process is related

to phase changes from gaseous water into liquid water and vice versa. The ac-

companied latent heat release affects the potential temperature as though the

stratification is reduced by an amount equal to J1 (note that dq
(1)
vs /dz < 0).

The second process is only efficient if ∂ ~X
( 1
2 )

C /∂z 6= 0. If it is assumed that there

is a nontrivial relation between the vortex tilt and the background flow, the ap-

pearance of J2 in (5.100) can be regarded as a direct indication of an impact of

the environmental flow on the smaller scale vortex structure. Due to ∂π/∂r ≥ 0

for cyclonically rotating flows, it turns out that a non-zero vortex tilt has a
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stabilizing effect on the stratification and therefore vertically upward moving

air parcels. Moreover, due to the weighting factor ∂π/∂r ∼ ∂p( 6
2 )/∂r it can be

observed, that this effect will be more/less prominent in regions of strong/weak

pressure gradients. It is known from observations that approaching a hurricane

from the outer edge, the barometric pressure drops slowly at first, but then more

rapidly as one moves closer to the centre until the so called eyewall5 has reached.

Then moving further into the eye6 the winds slacken again, as a result of weak

pressure gradients. Motivated by these observations it is hypothesized that the

influence of the vortex tilt on the stratification as described above, might play

a nontrivial role for the formation of an eye and eyewall during the transition

process from tropical cyclones into mature hurricanes. The verification of this

is beyond the scope of this work.

5.3.2.3 Leading order vortex trajectory

In the context of Model A it has been shown in Section 5.3.1.2 that diabati-

cally induced asymmetric contributions w
( 4
2 )

1k of the vertical velocity field w( 4
2 )

are responsible for a modfication of the leading order vortex trajectory from

an environmental steering flow in leading order. While asymmetric contribu-

tions w
( 4
2 )

1k are neglected in the derivation of Model B, it is the purpose of this

section to show how next higher order effects of the background flow on the

vortex tilt ∂ ~X
( 1
2 )

C /∂z may affect the leading order vortex trajectory. Since the

derivation of equations for the leading order vortex motion is similar to those

in Section 5.3.1.2, only key steps of derivation are presented below.

Velocity potential Using Helmholtz’s theorem (see Section 3.1.4) to the

O(ε
3
2 ) mass continuity (3.50), divergent velocity components u

d( 1
2 )

r and u
d( 1

2 )

θ

have to satisfy

∂u
d( 1

2 )
r

∂r
+
u
d( 1

2 )
r

r
+

1

r

∂u
d( 1

2 )

θ

∂θ
= G (5.101)

with

G = − 1

ρ(0)

∂(ρ(0)w( 4
2 ))

∂z
+

(

∂X
( 1
2 )

C

∂z
cos θ +

∂Y
( 1
2 )

C

∂z
sin θ

)

∂w( 4
2 )

∂r
. (5.102)

Based on the assumption that w( 4
2 ) = w( 4

2 )(r, z, τ) which implies immediately

5A ring of intense thunderstorms that whirl around the storm’s centre and extend upward
to almost 15 km above sea level (Ahrens, 1999)

6A region in the centre of a hurricane (tropical storm) where the winds are light and skies
are clear to partly cloudy. (Ahrens, 1999)
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that w( 4
2 ) = w

( 4
2 )

0 , equations for the first asymmetric horizontal velocity contri-

butions u
d( 1

2 )
r and u

d( 1
2 )

θ are

∂u
d( 1

2 )
r,11

∂r
+
u
d( 1

2 )
r,11

r
−
u
d( 1

2 )

θ,12

r
=

∂Y
( 1
2 )

C

∂z

∂w
( 4
2 )

0

∂r

∂u
d( 1

2 )
r,12

∂r
+
u
d( 1

2 )
r,12

r
+
u
d( 1

2 )

θ,11

r
=

∂X
( 1
2 )

C

∂z

∂w
( 4
2 )

0

∂r

(5.103)

Note that unlike (5.45) in Model A, in Model B the asymmetric divergent veloc-

ity field given by u
d( 1

2 )

r,1k and u
d( 1

2 )

θ,1k is not caused by asymmetric vertical velocities

w
( 4
2 )

1k , but by non-zero tilt components ∂X
( 1
2 )

C /∂z and ∂Y
( 1
2 )

C /∂z. Writing the

asymmetric contributions u
d( 1

2 )

r,1k and u
d( 1

2 )

θ,1k in terms of a velocity potential (see

(3.63)) the equations (5.103) take the form

∇2
1φ

( 1
2 )

1k = T ♯k
∂w

( 4
2 )

0

∂r
k = 1, 2 (5.104)

The operator ∇2
1 is defined by (5.46) and T ♯k denotes a shortcut for the vortex

tilt components

T ♯1 =
∂Y

( 1
2 )

C

∂z
and T ♯2 =

∂X
( 1
2 )

C

∂z
(5.105)

Using the identity (4.48) and the boundary conditions (5.48), integrating (5.104)

twice, yields

φ
( 1
2 )

1k = T ♯k r

∫ r

0

1

r̄3

[
∫ r̄

0

¯̄r2
∂w

( 4
2 )

0

∂ ¯̄r
d¯̄r

]

dr̄ (5.106)

Taking into account that the radial behaviour of w
( 4
2 )

0 for large r is given by

(5.23), far field solutions of (5.106) take the form

φ
( 1
2 )

1k = O
(

1

r

)

+ rD̄2
1k as r → ∞ (5.107)

where

D̄2
1k = T ♯k

∫ ∞

0

1

r̄3

[
∫ r̄

0

¯̄r2
∂w

( 4
2 )

0

∂ ¯̄r
d¯̄r

]

dr̄ (5.108)

Refer to Appendix C.2 for a detailed derivation of (5.107) - (5.108) these

equations.
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Stream function Elimination of p( 7
2 ) from the horizontal momentum equa-

tions (3.43)1 and (3.43)2 via cross-differentiation yields

u
(0)
θ

r

∂2u
( 1
2 )
r

∂θ2
− 2u

(0)
θ

r

∂u
( 1
2 )

θ

∂θ
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∂u
( 1
2 )

θ
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− ∂

∂r

(

ru
( 1
2 )
r

∂u
(0)
θ

∂r

)

−

∂

∂r
(u

( 1
2 )
r u

(0)
θ ) − ∂

∂r

(

u
(0)
θ

∂u
( 1
2 )

θ

∂θ

)

− Ω0
∂

∂r
(ru

( 1
2 )
r ) = P (5.109)

with

P =

(

∂X
( 1
2 )

C

∂z
cos θ +

∂Y
( 1
2 )

C

∂z
sin θ

)

w( 4
2 ) u

(0)
θ

r
+

∂

∂r

(

rw( 4
2 ) ∂u

(0)
θ

∂z

)

−

∂

∂r

(
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2 )

(

∂X
( 1
2 )

C

∂z
cos θ +

∂Y
( 1
2 )

C

∂z
sin θ

)

∂u
(0)
θ

∂r

)

Note the difference between (5.109) and the analogous equation (5.57) in Model A

because of a non-zero vortex tilt, i.e. ∂ ~X
( 1
2 )

C /∂z 6= 0. With the aid of Helmholtz’s

decomposition (see (3.63)), a harmonic analysis of (5.109) yields equations for

the first Fourier modes of the stream function ψ( 1
2 )

−u(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 1
2 )

12 = P11 + R11

u
(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( 1
2 )

11 = P12 + R12

(5.110)

where ζ
(0)
r = ∂ζ(0)/∂r and

P1k = T ♯k

(

w
( 4
2 )

0

u
(0)
θ

r
− ∂

∂r

(

rw
( 4
2 )

0

∂u
(0)
θ

∂r

))

R1k = r[ζ(0) + Ω0]∇2
1φ

( 1
2 )

1k +
∂φ

( 1
2 )

1k

∂r
(rζ(0)

r ) k = 1, 2

(5.111)

Here, T ♯k with k = 1, 2 represents the vortex tilt components ∂X
( 1
2 )

C /∂z and

∂Y
( 1
2 )

C /∂z (see (5.105)). The asymmetric contributions of the velocity potential

φ
( 1
2 )

1k are given by (5.106). Using the same boundary conditions as used in order

to derive equations for the leading order motion of adiabatic vortices (see (4.27)),

i.e.

ψ
( 1
2 )

1k = 0 ,
∂ψ

( 1
2 )

1k

∂r
= A1k at r = 0 , (5.112)
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the same strategy as in Section 4.2.2 and Section 5.3.1.2 is applied to solve

(5.110). Then, one obtains

ψ
( 1
2 )

11 = +u
(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (P12 + R12) dr

]

dr̄ + u
(0)
θ

2A11

ζ
(0)
∗

ψ
( 1
2 )

12 = −u(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (P11 + R11) dr

]

dr̄ + u
(0)
θ

2A12

ζ
(0)
∗

(5.113)

To derive far field solutions for ψ
( 1
2 )

1k , far field constraints for u
(0)
θ , i.e. (3.99),

and for w
( 4
2 )

0 , i.e. (5.23), have been used to obtain (see Appendix C.3)

ψ
( 1
2 )

12 = O
(

1

r

)

+ rD2
12 as r → ∞

ψ
( 1
2 )

11 = O
(

1

r

)

+ rD2
11 as r → ∞

(5.114)

with

D2
12 = −π

Γ

∫ ∞

0

r (P11 + R11) dr

D2
11 = +

π

Γ

∫ ∞

0

r (P12 + R12) dr

(5.115)

Matching Upon substitution of the far field solutions (5.107) for the velocity

potential φ
( 1
2 )

1k and far field solutions (5.114) for the stream function ψ
( 1
2 )

1k into

the matching conditions (5.67), the leading order vortex motion in the context

of Model B (with Sus 6= 0) is determined through

V
(0)
C = V

(0)
B,C + V

(0)
R,C +D2

12 − D̄2
11

U
(0)
C = U

(0)
B,C + U

(0)
R,C −D2

11 − D̄2
12

(5.116)

Here, D2
1k = D2

1k(z, τ) and D̄2
1k = D̄2

1k(z, τ) denote functions of the vertical

coordinate z and the time coordinate τ and are given through (5.108) and

(5.115), respectively. After some further manipulations it turns that the sums

D2
12 − D̄2

11 and −D2
11 − D̄2

12 can be written as a product of the vortex tilt

components T ♯k in meridional/latitudinal direction and an improper integral

over the mesoscale vortex region, i.e.

D2
12 − D̄2

11 = −T ♯1
π

Γ(z)

∫ ∞

0

C(u
(0)
θ , w( 4

2 ),Ω0) dr

−D2
11 − D̄2

12 = −T ♯2
π

Γ(z)

∫ ∞

0

C(u
(0)
θ , w( 4

2 ),Ω0) dr

(5.117)
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with

C = w( 4
2 )u

(0)
θ − r

∂

∂r

(

rw( 4
2 ) ∂u

(0)
θ

∂r

)

+ r2[ζ(0) + Ω0]
∂w( 4

2 )

∂r
+

r2
∂ζ(0)

∂r

∂φ̃( 1
2 )

∂r
− Γ(z)

π

1

r3

∫ r

0

r̄2
∂w( 4

2 )

∂r̄
d r̄ (5.118)

where φ̃( 1
2 ) = φ

( 1
2 )

1k /T
♯
k (see (5.106)). Finally, upon substitution of (5.105) and

(5.117) into (5.116) the equations for the leading order vortex motion take the

following form

V
(0)
C = V

(0)
B,C + V

(0)
R,C − ∂Y

( 1
2 )

C

∂z

π

Γ

∫ ∞

0

C(u
(0)
θ , w( 4

2 ),Ω0) dr

U
(0)
C = U

(0)
B,C + U

(0)
R,C − ∂X

( 1
2 )

C

∂z

π

Γ

∫ ∞

0

C(u
(0)
θ , w( 4

2 ),Ω0) dr

(5.119)

It has been shown in Section 5.3.1.2, that diabatic effects caused by convective

flows with respect to vortex scales have a nontrivial impact on the vortex mo-

tion in leading order. In particular, it was found that a deviation of the vortex

trajectory from the environmental mean flow was primarily caused by diabati-

cally induced asymmetries in the vertical velocity field w( 4
2 ). Even though such

asymmetries are neglected in the present case, it is observed from (5.119) that

a non-zero vortex tilt ∂ ~X
( 1
2 )

C /∂z has a similar modifying effect on the vortex

trajectory. Please keep in mind that ∂ ~X
( 1
2 )

C /∂z 6= 0 is only satisfied as long

as net effects of small-scale cumulus convection, i.e. S
( 8
2 )

us,1k 6= 0 are accounted

for, since they contribute to a stabilization of a tilted vortex (see (5.89)). These

effects were neglected in the derivation of the vortex motion equations in the

context of Model A.

5.3.2.4 Model B - Part II

With the introduction of Model B - Part II it is the purpose in this section to

provide an overview about the equations that determine the asymmetric vortex

structure. Studying the equations describing the axissymmetric vortex struc-

ture, i.e. Model B - Part I, it has been noted that the equations are only

closed together with the equations describing the asymmetric vortex structure.

Hence the equations summarized in this section are subdivided in the following

way. Model B - Part IIa includes those asymmetric vortex structure equa-

tions that are necessary to close the equations in Model B - Part I.
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Model B - Part IIa

vertical momentum equation : (O(ε
6
2 ))

T ♯
k

∂π

∂r
= −Θ

( 6
2
)

1k with T ♯
1 =

∂Y
( 1
2
)

C

∂z
, T ♯

2 =
∂X

( 1
2
)

C

∂z
(5.120)

thermodynamic equation (O(ε
8
2 )):

u
(0)
θ

r
Θ

( 6
2
)

1k = S̃
( 8
2
)

k with S̃
( 8
2
)

1 = −S
( 8
2
)

us,12 , S̃
( 8
2
)

2 = S
( 8
2
)

us,11 (5.121)

horizontal momentum (p( 7
2
) eliminated):

u
( 1
2
)

r,11

u
(0)
θ

r
− u

( 1
2
)

θ,12

 
2u

(0)
θ

r
+ Ω0

!
+

∂

∂r

�
u

( 1
2
)

r,11r ζ
(0)
abs − u

( 1
2
)

θ,12u
(0)
θ

�
= P11

u
( 1
2
)

r,12

u
(0)
θ

r
+ u

( 1
2
)

θ,11

 
2u

(0)
θ

r
+ Ω0

!
+

∂

∂r

�
u

( 1
2
)

r,12r ζ
(0)
abs − u

( 1
2
)

θ,11u
(0)
θ

�
= P12

(5.122)

with ζ
(0)
abs = ζ(0) + Ω0 , ζ(0) =

1

r

∂(ru
(0)
θ )

∂r

P1k = T ♯
k

 
w

( 4
2
)

0

u
(0)
θ

r
−

∂

∂r

 
rw

( 4
2
)

0

∂u
(0)
θ

∂r

!!
mass continuity:

∂u
( 1
2
)

r,11

∂r
+

u
( 1
2
)

r,11

r
−

u
( 1
2
)

θ,12

r
=

∂Y
( 1
2
)

C

∂z

∂w
( 4
2
)

0

∂r

∂u
( 1
2
)

r,12

∂r
+

u
( 1
2
)

r,12

r
+

u
1
2
)

θ,11

r
=

∂X
( 1
2
)

C

∂z

∂w
( 4
2
)

0

∂r

(5.123)

general balance condition:

∂Y
( 1
2
)

C

∂z

�
U

(0)
B,C + U

(0)
R,C

�
=

∂X
( 1
2
)

C

∂z

�
V

(0)
B,C + V

(0)
R,C

�
(5.124)

Table 5.5: Model B - Part IIa, see the text for explanations
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Model B - Part IIb

horizontal momentum :

1

ρ(0)

1

r

∂(rp
( 7
2
)

12 )

∂r
= −

∂Y
( 1
2
)

C

∂z
w( 4

2
)ζ(0) + Ω0(2V

(0)
C + u

( 1
2
)

θ,12 + u
( 1
2
)

r,11)+

u
( 1
2
)

θ,12

u
(0)
θ

r
+ u

( 1
2
)

r,11

∂u
(0)
θ

∂r

1

ρ(0)

1

r

∂(rp
( 7
2
)

11 )

∂r
=

∂X
( 1
2
)

C

∂z
w( 4

2
)ζ(0)

− Ω0(2U
(0)
C − u

( 1
2
)

θ,11 + u
( 1
2
)

r,12)+

u
( 1
2
)

θ,11

u
(0)
θ

r
− u

( 1
2
)

r,12

∂u
(0)
θ

∂r

(5.125)

vertical momentum (O(ε
7
2 )):

∂p
( 7
2
)

11

∂z
−

∂Y
( 1
2
)

C

∂z

∂p
( 7
2
)

0

∂r
−

∂Y
( 2
2
)

C

∂z

∂p( 6
2
)

∂r
= −ρ

( 7
2
)

11

∂p
( 7
2
)

12

∂z
−

∂X
( 1
2
)

C

∂z

∂p
( 7
2
)

0

∂r
−

∂X
( 2
2
)

C

∂z

∂p( 6
2
)

∂r
= −ρ

( 7
2
)

12

(5.126)

vortex motion :

V
(0)

C = V
(0)

B,C + V
(0)

R,C −
∂Y

( 1
2
)

C

∂z

π

Γ

Z
∞

0

C(u
(0)
θ , w( 4

2
), Ω0) dr

U
(0)
C = U

(0)
B,C + U

(0)
R,C −

∂X
( 1
2
)

C

∂z

π

Γ

Z
∞

0

C(u
(0)
θ , w( 4

2
), Ω0) dr

(5.127)

with

C = w( 4
2
)u

(0)
θ − r

∂

∂r

 
rw( 4

2
) ∂u

(0)
θ

∂r

!
+ r2[ζ(0) + Ω0]

∂w( 4
2
)

∂r
+

r2 ∂ζ(0)

∂r

∂φ̃( 1
2
)

∂r
−

Γ(z)

π

1

r3

Z r

0

r̄2 ∂w( 4
2
)

∂r̄
d r̄ (5.128)

φ
( 1
2
)

1k = T ♯
k r

Z r

0

1

r̄3

"Z r̄

0

¯̄r2 ∂w( 4
2
)

∂ ¯̄r
d¯̄r

#
dr̄ , φ̃( 1

2
) = φ

( 1
2
)

1k /T ♯
k , k = 1, 2

equation of state: ρ(0)Θ
( 7
2
)

1k + ρ
( 7
2
)

1k Θ∞ = p
( 7
2
)

1k (5.129)

Table 5.6: Model B - Part I, see the text for explanations

141



In Model B - Part IIb the rest of the asymmetric structure equations are sum-

marized.

Let’s assume the asymmetric source terms S
( 8
2 )

us,1k, S
( 9
2 )
us,0, the background

flow ~UB,C = (UB,C , VB,C) and the regular flow ~UR,C = (UR,C , VR,C) are given.

Then, the equations in Model B - Part I/IIa which are shown in Table 5.4

and Table 5.5 constitute a closed set of equations in the unknown variables

u
(0)
θ , u

( 1
2 )
r,0 , w

( 4
2 )

0 , p( 6
2 ), Θ

( 6
2 )

0 and u
( 1
2 )

r,1k, u
( 1
2 )

θ,1k,Θ
( 6
2 )

1k . The derivations of the first two

equations (5.120) and (5.121) have already been discussed in Section 5.3.2.1.

Both (5.122) and (5.123) result from a harmonic analysis of the horizontal mo-

mentum equations (5.109) (with p( 7
2 ) eliminated via cross- differentiation) and

the mass continuity (3.50), using (3.58)2 and (3.58)3 with j = 1. It is important

to point out, that for non-zero vortex tilt components ∂X
( 1
2 )

C /∂z and ∂Y
( 1
2 )

C /∂z

the general balance condition (5.124) has to be satisfied. Its derivation is dis-

cussed in Section 3.5. But note that the general balance condition (5.124)

becomes trivial if vortices on an f-plane (~VR,C = 0) embedded in a weak back-

ground flow (~V
(0)
B,C = 0) are studied (see Section 4.104).

Having once solved the equations in Model B - Part I/IIa, the mass ρ
( 7
2 )

1k ,

temperature Θ
( 7
2 )

1k , and pressure p
( 7
2 )

1k fields that are related to the asymmetric,

horizontal velocity field components u
( 1
2 )

r,1k and u
( 1
2 )

θ,1k are obtained by solving the

equations in Model B - Part IIb which are shown in table 5.6. Here, the

equations (5.125) emanate from a harmonic analysis of the O(ε
2
2 ) horizontal

momentum equations (3.43) and a subsequent combination of the equations

including p
( 7
2 )

11 and p
( 7
2 )

12 , respectively. A harmonic analysis of the vertical mo-

mentum equations (3.47) yields the equations (5.126). Details on the deriva-

tion of the equations (5.127) for the leading order vortex motion are given in

Section 5.3.2.3. Note, due to ∂X
( 1
2 )

C /∂z 6= 0 and ∂Y
( 1
2 )

C /∂z 6= 0 the equations

are closed in the unknowns ρ
( 7
2 )

1k ,Θ
( 7
2 )

1k , p
( 7
2 )

1k , if ∂X
( 2
2 )

C /∂z, ∂Y
( 2
2 )

C /∂z and p
( 7
2 )

0

together with the solutions obtained from Model B - Part I/IIa, are given.

Note that the equations of Model B are complex as those in Model A. Hence,

to get a better understanding about the mechanisms that determine the motion

and structure of diabatic votices, the equations have to be solved numerically

which is beyond the scope of this work.
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Chapter 6

Summary

In this thesis a derivation and discussion of reduced model equations describing

the motion and structure of three-dimensional, concentrated atmospheric vor-

tices has been presented. The manner in which the derivations have been car-

ried out were aimed at constructing reduced model equations that are suited to

study complex scale interactions between the inner core, mesoscale (∼ 200 km)

structure of hurricane-like vortices with typical wind speeds of ∼ 30 m s−1 and

and the vortex motion over synoptic scale (∼ 1000 km) distances. Focusing

on possible mechanisms that may generate and/or influence such kind of scale

interactions, two different vortex settings have been choosen. In a so-called

adiabatic vortex case reduced model equations have been derived that describe

scale interactions between the mesoscale vortex structure and the synoptic scale

vortex motion influenced by an environmental flow with a vertical wind shear

up to ∼ 10 m s−1 over the depth of the troposphere (∼ 10 km). In a so-called

diabatic vortex case the additional influence of diabatic effects caused by mois-

ture conversion processes occuring within the inner core vortex region have been

taken into account. Among others, one of the main objectives in the derivation

of such reduced model equations was to provide a set of equations whose solu-

tions may help to explore a manner in which processes acting on smaller scales

may lead to a modification of the synoptic scale vortex motion from its envi-

ronmental steering. Knowledge about such scale interactions can be used to

find information about favourable structurally vortex features with respect to

mesoscales, which allow a vortex to sustain its coherence in the presence of a

vertically sheared environmental flow.

The derivations of reduced model equations for both the adiabatic and di-

abatic vortex case were based on matched asymptotic methods that have been

applied within the framework of an unified approach to meteorological mod-

elling developed by Klein (2004) and Klein & Majda (2005). The approach is
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based on a set of carefully chosen distinguished limits for several small non-

dimensional parameters, and on specializations of a very general multiple-scales

asymptotic ansatz which is applied to the full three-dimensional compressible

flow equations. The concept of using matched asymptotic methods to derive

equations for the vortex motion goes back to Ling & Ting (1988). They were

the first who applied this concept successfully in order to derive solutions for

the motion of two-dimensional geostrophic vortices in a dry atmosphere.

Using matched asymptotic methods for the derivation of equations for the

motion and structure of both adiabatic and diabatic vortices, the following

sequence of steps have been necessary in the present work: (i) construction of

reduced model equations for the vortex structure with respect to mesoscales

and synoptic scales on the basis of appropriate single scale inner and outer

expansions, (ii) derivation of analytical solutions for the inner and outer velocity

fields from the leading order reduced model equations, and (iii) matching of the

velocity fields on the basis of suitable matching conditions. For the different

vortex settings choosen in the present work, the matching procedure came with

a variety of results. On the one hand equations for the vortex motion have been

derived that account for net effects of mesoscale processes acting within the

inner core vortex region. Depending on whether the adiabatic or diabatic vortex

case has been considered, these mesoscale processes differ in the mechanisms

that cause them. On the other hand, the matching procedure gave a number of

additional constraints that reflect the impact of an environmental flow on the

mesoscale vortex structure. An overview of the main results obtained for the

adiabtic and diabatic vortex case is given below.

Adiabatic vortex Considering the adiabatic vortex case, leading order solu-

tions for the synoptic scale vortex motion on a β-plane have been derived that

describe how the vortex motion is determined by the background flow and a

regular flow field which is due to the β-effect induced by the vortex flow itself.

Here the vortex motion has been expressed in terms of the temporal evolution

of a vortex centreline. Basically, the solutions are in agreement with those ob-

tained by Morikawa (1960) and Reznik (1992) who considered two-dimensional

geostrophic vortices. However, since three-dimensional vortices have been stud-

ied in the present work, the leading order equations for the vortex motion ad-

ditionally allow one to make some statements about the vertical shear of the

environmental flow in which vortex solutions describing coherent vortices may

exist. Moreover, next to the solutions for the leading order vortex motion, solu-

tions denoting higher order corrections have been derived. They describe how

the vortex motion in higher order is determined by higher order corrections of

the background flow and a net effect caused by the mesoscale structure of the
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vortex itself. This net effect, however, is only efficient as long as baroclinic vor-

tices are considered and/or the vortex has a nonzero tilt. Here the tilt has been

expressed in terms of vertical derivatives of the higher order vortex centreline.

A relation between the vortex tilt and the background flow has been found

using the equations for the higher order vortex motion and an vertical Eigen-

mode constraint for the next higher order vortex centreline. The latter was

an additional result of the matching procedure with respect to the inner and

outer velocity fields. In particular it has been shown that the vortex tilt compo-

nents in meridional and zonal direction are proportional to the vertical shear of

the respective flow components denoting higher order corrections of a prescribed

background flow. Therefore, a vortex tilt caused by the vertical shear of an envi-

ronmental flow was identified. Considering baroclinic vortices it has been shown

that both the direction in which the vortex is tilted and the magnitude of the vor-

tex tilt are fixed as long as a steady and strong background flow is assumed. For

baroclinic vortices embedded in a steady but weak background flow, however,

the higher order vortex centreline makes a precession motion, i.e. the direction

in which the vortex is tilted changes with time, while the magnitude of the tilt

remains constant. Regarding the precession motion of the tilted vortex, a simi-

lar vortex behaviour has been observed by Reasor & Montgomery (2001, 2004)

and Jones (1994) on the basis of numerical simulations. In view of the tempo-

ral changes of the magnitude of the vortex tilt, different results were obtained

for barotropic vortices. As noted earlier, the influence of the mesoscale vortex

structure on the higher corrections for the vortex motion vanishes if barotropic

vortices are considered. As a consequence, the solutions derived for the vortex

centreline describe how the vortex is sheared away with increasing time (i.e. the

tilt becomes infinite large) due to the differential advection by the vertically

sheared environmental flow.

Finally, with the understanding obtained on the impact of an vertically

sheared environmental flow on the vortex tilt, it was possible to find solutions

describing the influence of the evironmental flow on the mesoscale vortex struc-

ture. In particular, a harmonic analysis of the reduced model equations valid for

the mesoscale vortex region revealed direct relationships between the vortex tilt

and both wavenumber-one asymmetries in the potential temperature patterns

and vertical velocity fields. Since these mesoscale asymmetries would only exist

if the vortex has been tilted by the background flow, the derived relations can be

used to gain insights into the manner in which an environmental flow affects the

mesoscale vortex structure. From a comparison of the asymptotically derived

relationships between the background flow induced vortex tilt and wavenumber-

one asymmetries with the observations made by Frank & Ritchie (1999) on the

basis of numerical simulations, it has been found that the asymptotically derived
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relations describe a mechanism known as the adiabatic lifting mechanism. This

terminology was introduced by Frank & Ritchie (1999) in order to summarize

a sequence of events that explains the generation of patterns of forced ascent

that occur as the vortex responds to imposed vertical wind shear.

It is envisaged that with an introduction of a faster time scale, asymptotically

solutions describing a realignment of a tilted vortex in an environmental flow

with vertical shear, similar to the observations made by Reasor & Montgomery

(2001, 2004), may be derived.

Diabatic vortex Considering the diabatic vortex case two different models,

Model A and Model B, for the motion and structure of atmospheric vortices have

been derived under the simplifying assumption of an saturated atmosphere.

Although the difference between the two models is in the physical treatment

of the diabatic source term, both models can be regarded as extendend versions

of the Eliassen balanced vortex model (Eliassen, 1952). The original Eliassen

balanced vortex model is an idealized two-dimensional model that can be used

to investigate the response of an axially symmetric vortex in gradient wind

balance to sources and sinks of heat and angular momentum, where the sources

have to be prescribed externally. Compared to the original Eliassen balanced

vortex model, the modifications of the two models derived in the present work

consists of four points. The first two are related to an additional provision for

asymmetries in the thermodynamic fields describing the vortex structure and

an explicit description of the diabatic source term which is possible due to an

explicit inclusion of moisture parameters. Dropping the simplifying assumption

of an axissymmetric vortex structure makes it possible to get closer to the

description of real atmospheric cyclones which are highly asymmetric. The

explicit inclusion of moisture parameters is meaningful since the diabatic source

term has to be regarded as a pure function of the flow itself which makes an

external treatment of the diabatic source difficult. The third point regards

the influence of a vertically sheared environmental flow on the vortex structure

which has been taken into account through matched asymptotic methods. The

fourth modification relies in a restriction of the description of the temporal

evolution of the vortex structure to the synoptic scale advection time. Although

the models have not been solved in this thesis, an interpretation of the equations

allows for some discussions concerning the influence of an environmental flow

and diabatic effects on the vortex motion and structure.

Model A: Regarding the formulation of the diabatic source in Model A,

only latent heat release due to condensation-evaporation of cloud water in ver-

tically moving air parcels has been taken into account, whereas the vertical
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motion of the air parcels has been resolved with respect to the scales choosen

in the asympotic ansatz. Net mesoscale heating effects resulting from a coop-

erative action of smaller scale convective clouds have been neglected. It has

been shown that the latter assumption yields reduced model equations for the

mesoscale vortex structure that exclude vortex solutions describing vortices hav-

ing a relatively large tilt. That means the reduced model equations summarized

in Model A are only suitable to study the motion and structure of atmospheric

vortices with a horizontal displacement between the upper and lower vortex

part equal or smaller than ∼ 80 km, to which for example mature hurricanes

belong to. Moreover and unlike the adiabatic vortex case, equations for the

vortex motion have been derived, that include in leading order a net effect on

the synoptic scale vortex motion that are related to mesoscale processes. This

net effect is effective as long as diabatically induced asymmetries in the vertical

velocity fields, which are one order larger than in the adiabatic vortex case,

determine the leading order vortex structure.

Model B: In Model B both latent heat release due to evaporation-conden-

sation of cloud water in vertically moving air parcels which are resolved with

respect to mesoscales and the possibility of net heating effects caused by small-

scale cumulus convection have been taken into account. However, because of

the single scale asymptotic ansatz used here, an explicit description of the lat-

ter has not been possible. Nonetheless, it has been shown that the additional

inclusion of net heating effects due to small scale convection allows the exis-

tence of a vortex tilt one order larger than in Model A. In particular, reduced

model equations have been derived that describe a relationship between a vortex

tilt and a net heating effect within the mesoscale vortex region due to smaller

scale cumulus convection. It has been argued that this heating effect has to

be identified as a direct response to a vortex tilt which in turn is initiated

by some other mechanisms, as for instance a vertically sheared environmental

flow. This argument is supported by observational studies on real hurricanes

made by Corbosiero & Molinari (2003). Furthermore, it has been observed that

the relationship between the vortex tilt and a net heating effect due to smaller

scale cumulus convection derived in the diabatic vortex case, replaces the rela-

tionship between a background shear induced vortex tilt and wavenumber-one

asymmetries in the vertical velocity fields derived in the adiabatic vortex case.

This means that the adiabatic lifting mechanism that modulates the vertical

velocity fields in a dry vortex vanishes if moisture effects are included. This

finding is in agreement with numerical simulations by Frank & Ritchie (1999).

Since Frank & Ritchie (1999) argue that the adiabatic lifting mechanism might

be relevant for an understanding of patterns of convection in loosely organized
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systems such as tropical depressions, it would be interesting to connect the dry

and moist (saturated) vortex case studied here in order to understand the role

of an adiabatic lifting mechanism on the transition from an undersaturated dry

air regime into a saturated regime. Although asymmetric vertical velocities in

leading order have been neglected in the derivation of Model B, as in Model A

the leading order equations for the vortex motion include a net effect caused

by the mesoscale vortex structure. This net effect, however, is only effective as

long as the vortex tilt is nonzero.

In this thesis reduced model equations have been derived without attempt-

ing to solve them numerically. However, to enable one to gain a better insight

into the mechanisms describing the vortex motion and structure, the equations

have to be solved numerically. Moreover, a possible extension of these models

is to resolve the smaller cumulus scales in addition to the mesoscale region of

the vortex itself via a multiple-scales expansion ansatz to study the interactions

between these scales.

In summing up it can be said that the unified approach to meteorological mod-

elling used in the present work is a useful tool to derive systematically reduced

model equations for the motion and structure of hurricane-like atmospheric

vortices under the influence of an environmental flow with vertical shear and

diabatic effects. However, research is required on how reduced equations derived

in this thesis can be used for practical applications.
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Appendix A

Auxiliary calculations for

Chapter 3

A.1

Transformations for the derivative operators ~∇h, ∂/∂z, ∂/∂t appearing in (2.19),

from an (x, y, z, t) space into an (r, θ, z, τ) space are derived, on account of the

coordinate and stretching transformations (3.3), (3.4)1, (3.8)-(3.10). For further

manipulations it is instructive to rewrite the latter into

x̂ = ε
3
2 (x− ε−2 XC (z, ε2t)) = r cos θ

ŷ = ε
3
2 (y − ε−2 YC (z, ε2t)) = r sin θ

(A-1)

where the radius r and the azimuthal angle θ satisfy

r = (x̂ cos θ + ŷ sin θ) , θ = arctan

(
ŷ

x̂

)

(A-2)

Moreover we have

z = z , τ = ε2t (A-3)

Note, the primes denoting dimensionless variables have been dropped.
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a) Horizontal Nabla Operator With the above transformations and with

the aid of the chain rule one obtains

~∇h = ~i
∂

∂x
+ ~j

∂

∂y
(A-4)

= ~i

(
∂

∂r

∂r

∂x̂

∂x̂

∂x
+

∂

∂θ

∂θ

∂x̂

∂x̂

∂x

)

+~j

(
∂

∂r

∂r

∂ŷ

∂ŷ

∂y
+

∂

∂θ

∂θ

∂ŷ

∂ŷ

∂y

)

where

∂r

∂x̂
= cos θ ,

∂r

∂ŷ
= sin θ ,

∂x̂

∂x
=
∂ŷ

∂y
= ε

3
2 ,

∂θ

∂x̂
= − sin θ

r
,
∂θ

∂ŷ
= +

cos θ

r
(A-5)

Thus, together with the transformation (3.12) for the unit vectors ~i and ~j, the

right hand side of (A-4) takes the form

~∇h = ǫ3/2
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)

(cos θ ~er − sin θ ~eθ) +

ǫ3/2
(

sin θ
∂

∂r
+

cos θ

r

∂

∂θ

)

(sin θ ~er + cos θ ~eθ)

= ǫ3/2
(
∂

∂r
~er +

1

r

∂

∂θ
~eθ

)

= ǫ3/2
~̂∇h (A-6)

b) Vertical Derivative Operator With the transformations (A-1) - (A-2)

and with the aid of the chain rule one obtains

∂

∂z
=

∂

∂r

∂r

∂x̂

∂x̂

∂z
+

∂

∂r

∂r

∂ŷ

∂ŷ

∂z
+

∂

∂θ

∂θ

∂x̂

∂x̂

∂z
+

∂

∂θ

∂θ

∂ŷ

∂ŷ

∂z
+

∂

∂z
(A-7)

where
∂x̂

∂z
= −ε− 1

2
∂XC

∂z
,
∂ŷ

∂z
= −ε− 1

2
∂YC
∂z

(A-8)

Hence, upon substitution of (A-8) and (A-5) into (A-7), one obtains

∂

∂z
= −ε− 1

2

(
∂XC

∂z
cos θ +

∂YC
∂z

sin θ

)
∂

∂r
−

ε−
1
2

(

−∂XC

∂z

sin θ

r
+
∂YC
∂z

cos θ

r

)
∂

∂θ
+

∂

∂z
(A-9)

With ~XC =~i XC + ~j YC , (A-6) and the relation (3.12), equation (A-9) can be

rewritten into
∂

∂z
=

∂

∂z
− ε−

1
2
∂ ~XC

∂z
· ~̂∇h (A-10)
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c) Temporal Derivative Operator With the transformations (A-1) - (A-2)

and with the aid of the chain rule one obtains

∂

∂t
=

∂

∂r

∂r

∂x̂

∂x̂

∂τ

∂τ

∂t
+

∂

∂r

∂r

∂ŷ

∂ŷ

∂τ

∂τ

∂t
+

∂

∂θ

∂θ

∂x̂

∂x̂

∂τ

∂τ

∂t
+

∂

∂θ

∂θ

∂ŷ

∂ŷ

∂τ

∂τ

∂t
+

∂

∂τ

∂τ

∂t
(A-11)

where
∂τ

∂t
= ǫ2 ,

∂x̂

∂τ
= −ε− 1

2
∂XC

∂τ
,
∂ŷ

∂τ
= −ε− 1

2
∂YC
∂τ

(A-12)

Upon substitution of (A-12) and (A-5) into (A-11) yields

∂

∂t
= − ǫ3/2

(
∂XC

∂τ
cos θ +

∂YC
∂τ

sin θ

)
∂

∂r
−

ǫ
3
2

(

−∂XC

∂τ

sin θ

r
+
∂YC
∂τ

cos θ

r

)
∂

∂θ
+ ǫ2

∂

∂τ

= ǫ2
∂

∂τ
− ∂ ~XC

∂τ
· ~∇h (A-13)

A.2

An asymptotic expansion of (3.16) based on expansion ansatz (3.15) reads

1

Θ

∂Θ

∂z
=

1

(Θ(0) + δ)

(

∂Θ(0)

∂z
+ ε

1
2
∂Θ( 1

2 )

∂z
+ ε

2
2
∂Θ( 2

2 )

∂z
+ O(ε

3
2 )

)

(A-14)

with δ = ε
1
2 Θ( 1

2 ) + ε
2
2 Θ( 2

2 ) + ε
3
2 Θ( 3

2 ) +O(ε
4
2 ). With the aid of Taylor’s theorem

it can be shown, that asymptotic approximations of 1/Θ read

1

Θ
=

1

Θ(0)
− ε

1
2

Θ( 1
2 )

Θ(0)2
+ ε

2
2

(

− Θ( 2
2 )

Θ(0)2
+

1

4

Θ( 1
2 )2

Θ(0)3

)

+

ε
3
2

(

− Θ( 3
2 )

Θ(0)2
+

1

2

Θ( 1
2 )Θ( 2

2 )

Θ(0)3

)

+ O(ε
4
2 ) (A-15)
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Hence, (A-14) can be written as

1

Θ

∂Θ

∂z
=

1

Θ(0)

∂Θ(0)

∂z
+ ε

1
2

(

1

Θ(0)

∂Θ( 1
2 )

∂z
− ∂Θ(0)

∂z

Θ( 1
2 )

Θ(0)2

)

+

ε
2
2

(

1

Θ(0)

∂Θ( 2
2 )

∂z
+
∂Θ(0)

∂z

[

− Θ( 2
2 )

Θ(0)2
+

1

4

Θ( 1
2 )2

Θ(0)3

])

+

ε
3
2

(

1

Θ(0)

∂Θ( 3
2 )

∂z
+
∂Θ(0)

∂z

[

− Θ( 3
2 )

Θ(0)2
+

1

2

Θ( 1
2 )Θ( 2

2 )

Θ(0)3

])

+ O(ε
4
2 ) (A-16)

Since order of magnitude estimates of the Bruint-Väisalä frequency yield

(1/Θ) ∂Θ/∂z = O(ε2) (see (3.16)), from (A-16) one has to conclude that

∂Θ( i
2 )

∂z
= 0 , i = 0, 1, 2, 3 (A-17)

A.3

Expansion of the equation of state ρΘ = p1−Γ⋆⋆ε. For an asymptotic expansion

the state equation can be rewritten into

pΓ⋆⋆ερΘ = p (A-18)

Taylor’s theorem is used to find an approximation of f(εΓ) = pεΓ by expanding

about ε0 = 0. With f ′(εΓ) = pεΓ ln p, f ′′(εΓ) = pεΓ(ln p)2 and f ′′′(εΓ) =

pεΓ(ln p)3 one obtains

pεΓ = 1 + εΓ ln p+
(εΓ)2

2!
(ln p)2 +

(εΓ)3

3!
(ln p)3 + O(ε4) (A-19)

With the asymptotic expansion p = p(0)+δ̃ where δ̃ = ε
1
2 p( 1

2 )+ε
2
2 p( 2

2 )+ε
3
2 p( 3

2 )+

ε
4
2 p( 4

2 ) + O(ε(
5
2 )), Taylor series expansion of ln p around p(0) takes the form

ln p = a+ ε
1
2 b+ ε

2
2 c+ ...+ ε

7
2h+ O(ε(

8
2 )) (A-20)

where

a = ln p(0) , b =
p( 1

2 )

p(0)
, c =

(

p( 2
2 )

p(0)
− A

2p(0)2

)

(A-21)
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and

d =

(

p( 3
2 )

p(0)
− B

2p(0)2
+

A′

3!p(0)3

)

e =

(

p( 4
2 )

p(0)
− C

2p(0)2
+

B′

3!p(0)3
− A′′

4!p(0)4

)

f =

(

p( 5
2 )

p(0)
− D

2p(0)2
+

C ′

3!p(0)3
− B′′

4!p(0)4
+

A′′′

5!p(0)5

)

g =

(

p( 6
2 )

p(0)
− E

2p(0)2
+

D′

3!p(0)3
− C ′′

4!p(0)4
+

B′′′

5!p(0)5
− A′′′′

6!p(0)6

)

h =

(

p( 7
2 )

p(0)
− F

2p(0)2
+

E′

3!p(0)3
− D′′

4!p(0)4
+

C ′′′

5!p(0)5
− B′′′′

6!p(0)6
+

A′′′′′

7!p(0)7

)

(A-22)

with
A = p( 1

2 )2

B = 2p( 1
2 )p( 2

2 )

C = 2p( 1
2 )p( 3

2 ) + p( 2
2 )2

D = 2p( 1
2 )p( 4

2 ) + 2p( 2
2 )p( 3

2 )

E = 2p( 1
2 )p( 5

2 ) + 2p( 2
2 )p( 4

2 ) + p( 3
2 )2

F = 2p( 1
2 )p( 6

2 ) + 2p( 2
2 )p( 5

2 ) + 2p( 3
2 )p( 4

2 )

(A-23)

and
A′ = p( 1

2 )3

B′ = Ap( 2
2 ) +Bp( 1

2 )

C ′ = Ap( 3
2 ) +Bp( 2

2 ) + Cp( 1
2 )

D′ = Ap( 4
2 ) +Bp( 3

2 ) + Cp( 2
2 ) +Dp( 1

2 )

E′ = Ap( 5
2 ) +Bp( 4

2 ) + Cp( 3
2 ) +Dp( 2

2 ) + Ep( 1
2 )

(A-24)
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and
A′′ = A′p( 1

2 )

B′′ = A′p( 2
2 ) +B′p( 1

2 )

C ′′ = A′p( 3
2 ) +B′p( 2

2 ) + C ′p( 1
2 )

D′′ = A′p( 4
2 ) +B′p( 3

2 ) + C ′p( 1
2 ) + C ′p( 1

2 )

A′′′ = A′′p( 1
2 )

B′′′ = A′′p( 2
2 ) +B′′p( 1

2 )

C ′′′ = A′′p( 3
2 ) +B′′p( 2

2 ) + C ′′p( 1
2 )

A′′′′ = A′′′p( 1
2 )

(A-25)

With the aid of (A-20) an asymptotic expansion for (ln p)2 and (ln p)3 is

(ln p)2 = a2 + ε
1
2 2ab+ ε

2
2 (2ac+ b2) + ε

3
2 (2ad+ 2bc) + O(ε

4
2 )

(ln p)3 = a3 + ε
1
2 (2a2b+ ba2) + O(ε

2
2 )

(A-26)

Using (A-20)-(A-26), then (A-19) becomes

pεΓ = 1 + εa′ + ε
3
2 b′ + ε

4
2 c′ + ...+ ε

7
2 f ′ (A-27)

where
a′ = Γa

b′ = Γb

c′ = Γc+
Γ2a2

2

d′ = Γd+ Γ2ab

e′ = Γe+
Γ2

2
(2ac+ b2) +

Γ3

6
a2

f ′ = Γf +
Γ2

2
(2ad+ 2bc) +

Γ3

6
(2a2b+ ba2)

(A-28)

The expansion of the product ρΘ on the left hand side of (A-19) can be written
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as

ρΘ =

∞∑

j=0

(ρ(0)Θ(j) + ρ( 1
2 )b(j−

1
2 ) + a(j)b(0))εj

= ρ(0)Θ(0)

︸ ︷︷ ︸

(ρΘ)(0)

+ε
1
2 (ρ(0)Θ( 1

2 ) + ρ( 1
2 )Θ(0))

︸ ︷︷ ︸

(ρΘ)(
1
2
)

+

ε
2
2 (ρ(0)Θ( 2

2 ) + ρ( 1
2 )Θ( 1

2 ) + ρ( 2
2 )Θ(0))

︸ ︷︷ ︸

(ρΘ)(
2
2
)

+... (A-29)

where (j = 0, 1
2 ,

2
2 ,

3
2 , ...). Thus, with the aid of (A-29) and (A-27) an asymptotic

expansion of the left hand side of (A-18) reads

pΓ⋆⋆ερΘ = (ρΘ)(0) + ε
1
2 (ρΘ)(

1
2 ) + ε

2
2 [(ρΘ)(

2
2 ) + a′(ρΘ)(0)] +

ε
3
2 [(ρΘ)(

3
2 ) + a′(ρΘ)(

1
2 ) + b′(ρΘ)(0)] +

ε
4
2 [(ρΘ)(

4
2 ) + a′(ρΘ)(

2
2 ) + b′(ρΘ)(

1
2 ) + c′(ρΘ)(0)] +

ε
5
2 [(ρΘ)(

5
2 ) + a′(ρΘ)(

3
2 ) + b′(ρΘ)(

2
2 ) + c′(ρΘ)(

1
2 ) + d′(ρΘ)(0)] +

ε
6
2 [(ρΘ)(

6
2 ) + a′(ρΘ)(

4
2 ) + b′(ρΘ)(

3
2 ) + c′(ρΘ)(

2
2 ) + d′(ρΘ)(

1
2 ) + e′(ρΘ)(0)] +

ε
7
2

[

(ρΘ)(
7
2 ) + a′(ρΘ)(

5
2 ) + b′(ρΘ)(

4
2 ) + c′(ρΘ)(

3
2 ) + d′(ρΘ)(

2
2 )+

e′(ρΘ)(
1
2 ) + f ′(ρΘ)(0)

]

+ O(ε
8
2 ) (A-30)

Taking additionally the matching results Θ( 1
2 ) = 0, Θ( 2

2 ) = 0 and Θ( 3
2 ) = 0 into

account (see the matching condition (3.107)), collecting same powers of ε, yields

O(1):

ρ(0)Θ(0) = p(0) (A-31)

O(ε
1
2 ):

ρ( 1
2 )Θ(0) = p( 1

2 ) (A-32)

O(ε
2
2 ):

ρ( 2
2 )Θ(0) + Γρ(0)Θ(0) ln p(0) = p( 2

2 ) (A-33)

O(ε
3
2 ):

ρ( 3
2 )Θ(0) + ρ( 1

2 )Γ ln p(0) + Γ
p( 1

2 )

p(0)
= p( 3

2 ) (A-34)

O(ε
4
2 ):

ρ( 4
2 )Θ(0) + ρ(0)Θ( 4

2 ) + ρ( 2
2 )Γ ln p(0) + ρ( 1

2 )Γ
p( 1

2 )

p(0)
+ = p( 4

2 ) (A-35)
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O(ε
5
2 ):

ρ( 5
2 )Θ(0) + ρ( 1

2 )Θ( 4
2 ) + ρ( 3

2 )Θ(0)Γ ln p(0) + ρ( 2
2 )Θ∞Γ

p( 1
2 )

p(0)
+

(

Γ

[

p( 2
2 )

p(0)
− p( 1

2 )2

2p(0)2

]

+
Γ2(ln p(0)2)

2

)

ρ( 1
2 )Θ(0) +

(

Γ

[

p( 3
2 )

p(0)
− p( 1

2 )p( 2
2 )

2p(0)2
+

p( 1
2 )3

3!p(0)3

]

+ Γ2 ln p(0) p
( 1
2 )

p(0)

)

ρ(0)Θ(0) = p( 5
2 ) (A-36)

O(ε
6
2 ):

ρ( 6
2 )Θ(0) + ρ( 1

2 )Θ( 5
2 ) + ρ( 2

2 )Θ( 4
2 ) + Γ ln p(0)(ρ(0)Θ( 4

2 ) + ρ( 4
2 )Θ(0)) +

ρ( 3
2 )Θ(0)Γ

p( 1
2 )

p(0)
+

(

Γ

[

p( 2
2 )

p(0)
− p( 1

2 )2

2p(0)2

]

+
Γ2(ln p(0)2)

2

)

ρ( 2
2 )Θ(0) +

(

Γ

[

p( 3
2 )

p(0)
− p( 1

2 )p( 2
2 )

2p(0)2
+

p( 1
2 )3

3!p(0)3

]

+ Γ2 ln p(0) p
( 1
2 )

p(0)

)

ρ( 1
2 )Θ(0) +

e′ρ(0)Θ(0) = p( 6
2 ) (A-37)

where

e′ = Γ

(

p( 4
2 )

p(0)
− 2p( 1

2 )p( 3
2 ) + p( 2

2 )2

2p(0)2
+

3p( 1
2 )2p( 2

2 )

3!p(0)3
− p( 1

2 )4

4!p(0)4

)

+ (A-38)

Γ2

2

(

2 ln p(0)

(

p( 2
2 )

p(0)
− p( 1

2 )2

2p(0)2

)

+
p( 1

2 )2

p(0)2

)

+
Γ3

6
(ln p(0))2

O(ε
7
2 ):

ρ( 7
2 )Θ(0) + ρ( 3

2 )Θ( 4
2 ) + ρ( 2

2 )Θ( 5
2 ) + ρ( 1

2 )Θ( 6
2 ) + ρ(0)Θ( 7

2 ) +

Γ ln p(0)(ρ(0)Θ( 5
2 ) + ρ( 1

2 )Θ( 4
2 ) + ρ( 5

2 )Θ(0)) +

(ρ( 4
2 )Θ(0) + ρ(0)Θ( 4

2 ))Γ
p( 1

2 )

p(0)
+

(

Γ

[

p( 2
2 )

p(0)
− p( 1

2 )2

2p(0)2

]

+
Γ2(ln p(0)2)

2

)

ρ( 3
2 )Θ(0) +

(

Γ

[

p( 3
2 )

p(0)
− p( 1

2 )p( 2
2 )

2p(0)2
+

p( 1
2 )3

3!p(0)3

]

+ Γ2 ln p(0) p
( 1
2 )

p(0)

)

ρ( 2
2 )Θ(0) +

e′ρ( 1
2 )Θ(0) + f ′ρ(0)Θ∞ = p( 7

2 ) (A-39)
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where

f ′ = Γ

(

p( 5
2 )

p(0)
− 2(p( 1

2 )p( 4
2 ) + p( 2

2 )p( 3
2 ))

2p(0)2
+

3(p( 1
2 )2p( 3

2 ) + p( 1
2 )p( 2

2 )2)

3!p(0)3

)

+

Γ

(

−4p( 1
2 )3p( 2

2 )

4!p(0)4
+

p( 1
2 )5

5!p(0)5

)

+

Γ2

(

ln p(0)

(

p( 3
2 )

p(0)
− 2p( 1

2 )p( 2
2 )

2p(0)2
+

p( 1
2 )3

3!p(0)3

))

+

Γ2

(

p( 1
2 )

p(0)

(

p( 2
2 )

p(0)
− p( 1

2 )2

2p(0)2

))

+
Γ3

6

(

3(ln p(0))2
p( 1

2 )

p(0)

)

(A-40)

A.4

To study the effect of the point source q̌s in the vicinity of ~XC(z, τ) the relative

vector ~̌x = ~η − ~XC(z, τ) is introduced as a new coordinate with | ~̌x | = ř rep-

resenting a synoptic-scale radial distance from ~η = ~XC . Note that ~η = (η1, η2),
~XC(z, τ) = (XC(z, τ)), YC(z, τ)) and ~̌x = (x̌, y̌). We write ~̌x = (x̌, y̌) in terms

of cylindrical coordinates, i.e. x̌ = ř cos θ and y̌ = ř sin θ, with

ř = (η1 −XC(z, τ)) cos θ + (η2 − YC(z, τ)) sin θ

θ = arctan

(
η2 − YC(z, τ)

η1 −XC(z, τ)

) (A-41)

Then, spatial derivatives in (3.79) take the form

~̌∇2 =
1

ř

∂

∂ř

(

ř
∂

∂ř

)

+
1

ř2
∂2

∂θ2

∂

∂z

∣
∣
∣
∣
η1,η2

=
∂

∂z

∣
∣
∣
∣
ř,θ

− Λ̃b
∂

∂ř
− Λ̃a

1

ř

∂

∂θ

(A-42)

with

Λ̃a = −∂XC

∂z
sin θ +

∂YC
∂z

cos θ

Λ̃b = +
∂XC

∂z
cos θ +

∂YC
∂z

sin θ

(A-43)

Note, the derivation for the transformation (A−42)2 is similar to the derivation

of (3.11)2. Furthermore, with the transformations made, equation (3.80) can be

written as

q̌s =
Γ

2π

1

ř
δ(ř − ř0) δ(θ − θ0) (A-44)
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Then, upon substitution of (A-42) and (A-44) into (3.79) singular solutions ψ̌
(0)
s

have to satisfy

1

ř
δ(ř − ř0) δ(θ − θ0) = −1

ř

∂

∂ř

(

ř
∂ψ̌

(0)
s

∂ř

)

− 1

ř2
∂2ψ̌

(0)
s

∂θ2
−

ρ̌(0)

Θ̌
(2)
z

(

∂2ψ̌
(0)
s

∂z2
− ∂

∂z

[

Λ̃b
∂ψ̌

(0)
s

∂ř
+ Λ̃a

1

ř

∂ψ̌
(0)
s

∂θ

])

−

∂

∂z

(
ρ̌(0)

Θ̌
(2)
z

)(

∂ψ̌
(0)
s

∂z
− Λ̃b

∂ψ̌
(0)
s

∂ř
− Λ̃a

1

ř

∂ψ̌
(0)
s

∂θ

)

(A-45)

with Θ̌
(2)
z = ∂Θ̌(2)/∂z. A complete analysis of (A-45) is difficult. However,

recalling the centreline expansion (3.20) we obtain approximate solutions for

the singular vortex flow ψ̌
(0)
s by assuming that ~XC = ~X

(0)
C (τ). Then, equation

(A-45) simplifies to

1

ř
δ(ř − ř0) δ(θ − θ0) =

−1

ř

∂

∂ř

(

ř
∂ψ̌

(0)
s

∂ř

)

− 1

ř2
∂2ψ̌

(0)
s

∂θ2
− Ω2

0Θ∞

ρ̌(0)

∂

∂z

(

ρ̌(0)

Θ̌
(2)
z

∂ψ̌
(0)
s

∂z

)

(A-46)

A harmonic analysis (see Subsection 3.1.4) of (A-46) for the first Fourier

modes of the singular streamfunction ψ̌
(0)
s , i.e. ψ̌

(0)
s,0 and ψ̌

(0)
s,1k where k = 1, 2 ,

together with ρ̌(0) = ρ̌(0)(z) and Θ̌(2) = Θ̌(2)(z) (see (3.72)), yields

1

2πř
δ(ř − ř0) = −1

ř

∂

∂ř

(

ř
∂ψ̌

(0)
s,0

∂ř

)

− Ω2
0Θ∞

ρ̌(0)

∂

∂z

(

ρ̌(0)

Θ̌
(2)
z

∂ψ̌
(0)
s,0

∂z

)

ν1k
πř

δ(ř − ř0) = −1

ř

∂

∂ř

(

ř
∂ψ̌

(0)
s,1k

∂ř

)

+
ψ̌

(0)
s,1k

ř2
− Ω2

0Θ∞

ρ̌(0)

∂

∂z

(

ρ̌(0)

Θ̌
(2)
z

∂ψ̌
(0)
s,1k

∂z

)

(A-47)

with ν11 = cos(θ0) and ν12 = sin(θ0). Note that for the derivation of the

left hand side of (A-47) the Fourier series expansions δ(θ − θ0) = 1/(2π) +

(1/π)
∑∞
n=1 cos(n(θ − θ0)) of the Dirac delta function δ(θ − θ0) has been used.

Axissymmetric solutions For ř 6= ř0 (where ř0 = 0), the left hand side in

(A− 47)1 disappears and one obtains

1

ř

∂

∂ř

(

ř
∂ψ̌

(0)
s,0

∂ř

)

+
Ω2

0Θ∞

ρ̌(0)

∂

∂z

(

ρ̌(0)

Θ̌
(2)
z

∂ψ̌
(0)
s,0

∂z

)

= 0 (A-48)
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Assuming the singular component ψ̂s,0 is separable, i.e.

ψ̌
(0)
s,0 = Rs,0(ř) Zs,0(z) , (A-49)

then the following two equations are obtained

1

Rs,0

1

ř

d

dř

(

ř
dRs,0
dř

)

= +λ2
0

Ω2
0Θ∞

Θ̌
(2)
z

1

Zs,0

d2Zs,0
dz2

+
Ω2

0Θ∞

ρ̌(0)

1

Zs,0

d

dz

(
ρ̌(0)

Θ̌
(2)
z

)
dZs,0
dz

= −λ2
0

(A-50)

where λ2
0 is the separation constant. Equation (A−50)1 is known as a modified

Bessel’s differential equation1, of order m = 0, i.e.

d2Rs,0
dř2

+
1

ř

dRs,0
dř

− λ2
0Rs,0 = 0 . (A-51)

and solutions are the zeroth order modified Bessel functions of the first kind

K0(λ
2
0 ř) and of the second kind I0(λ

2
0 ř) of zeroth order, i.e.

Rs,0(ř) = c1 K0(λ
2
0ř) + c2 I0(λ

2
0ř) . (A-52)

For bounded solution one has to set c2 = 0, therefore

Rs,0(ř) = c1K0(λ
2
0ř) (A-53)

A solution for (A− 50)2 is obtained by assuming a constant background strati-

fication, i.e. Θ̌
(2)
z = const. Then (A− 50)2 becomes

d2Zs,0
dz2

+
1

ρ̌(0)

dρ̌(0)

dz

dZs,0
dz

+

(
λ0

α

)2

Zs,0 = 0 (A-54)

where α2 = (Ω2
0Θ∞)/Θ

(2)
z . From the hydrostatic relation (3.70) and the gas

law (2.21) (where the potential temperature Θ has the expansion (3.72)) it is

known that
dp̌(0)

dz
= −ρ̌(0) and ρ̌(0)Θ∞ = p̌(0) (A-55)

which implies (1/ρ̌(0))(∂ρ̌(0)/∂z) = −1/Θ∞. Hence, (A-54) can be written as a

second order ODE with constant coefficients, i.e.

d2Zs,0
dz2

− 1

Θ∞

dZs,0
dz

+

(
λ0

α

)2

Zs,0 = 0 (A-56)

1The modified Bessel’s differential equation, of order m, in general is
w2d2f/dw2 + zdf/dw + (−w2 −m2)f = 0, where different values of m denote different
differential equations. Refer to Habermann (1983) for further details.

159



The corresponding characteristic equation is

s2 − 1

Θ∞
s+

(
λ0

α

)2

= 0 (A-57)

whose solutions are given through

s1,2 = 1/(2Θ∞) ±
√
D with D =

1

4Θ2
∞

−
(
λ0

α

)2

(A-58)

There are three cases to consider:

A: For non-complex roots (i.e. D > 0) general solutions of (A-56) read

Zs,0(z) = exp

(
1

2Θ∞

)

[c3 exp (−D z) + c4 exp (+D z)] (A-59)

Note, here the separation constant λ has to satisfy

λ2
0 <

α2

4Θ2
∞

=
Ω2

0

4Θ∞Θ̌
(2)
z

(A-60)

B: For complex roots (i.e. D < 0) of the characteristic equation (A-57)

real-valued solutions are

Zs,0(z) = exp

(
1

2Θ∞
z

)[

c3 cos
(√

| D | z
)

+ c4 sin
(√

| D | z
)]

(A-61)

C: If D = 0, then we have

Zs,0(z) = c5 exp

(
1

2Θ∞
z

)

(A-62)

Thus, upon substitution of (A-53) into the separation Ansatz (A-69) and having

(A-59) - (A-62) in mind, singular solutions ψ̌
(0)
s,0 take the form

ψ̌s,0 = c1 K0(λ
2
0ř) Zs,0(z) (A-63)

We determine the constant c1 as follows. In polar coordinates the circumferential

velocity is defined by

ǔθ,0 = −∂ψ̌s,0
∂ř

= −c1 λ0 K1(λ
2
0ř) Zs,0(z) (A-64)

where K1 = ∂K0/∂ř is the modified Bessel function of the first kind, first order.
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The circulation for small (ř → 0) and concentrated vortices is

Γ = lim
ř→0

(∫ 2π

0

ǔθ,0 ř dθ

)

= − lim
ř→0

(

c1λ0 K1(λ
2
0ř) Zs,0(z) ř

∫ 2π

0

dθ

)

(A-65)

Note, as ř → 0 one can use the approximations K1(λ
2
0ř) ∼ (λ2

0ř)
−1 and

K0(λ
2
0ř) ∼ ln(λ2

0ř). It follows

Γ(z) = −c1 2π Zs,0(z) or c1 = −Γ(z)

2π

1

Zs,0(z)
as ř → 0 (A-66)

and the streamfunction for a concentrated single vortex of strength Γ at the

origin is

ψ̌s,0(ř, z) = −Γ(z)

2π
ln(λ2

0ř) as ř → 0 (A-67)

Note that Γ can, in principle, depend on the temporal coordinate τ .

Asymmetric solutions In a similar way as shown for (A − 47)1, solutions

ψ̌
(0)
s,1k satisfying (A− 47)2 for ř 6= ř0 (where ř0 = 0) is derived below. Thus, the

following equation has to be solved

1

ř

∂

∂ř

(

ř
∂ψ̌

(0)
s,1k

∂ř

)

−
ψ̌

(0)
s,1k

ř2
+

Ω2
0Θ∞

ρ̌(0)

∂

∂z

(

ρ̌(0)

Θ̌
(2)
z

∂ψ̌
(0)
s,1k

∂z

)

= 0 (A-68)

Assuming ψ̌
(0)
s,1k is separable, i.e.

ψ̌
(0)
s,1k = Rs,1k(ř) Zs,1k(z) , (A-69)

from (A-68) one obtains under the assumption Θ̌
(2)
z = const and together with

(A-55), that

d2Rs,1k
dř2

+
1

ř

dRs,1k
dř

−Rs,1k

(
1

ř2
+ λ2

1k

)

= 0

d2Zs,1k
dz2

− 1

Θ∞

dZs,1k
dz

+

(
λ1k

α

)2

Zs,1k = 0

(A-70)

where the variable λ1k denotes a constant of separation. Note that unlike (A−
50)1, equation (A − 70) denotes Bessel’s differential equation of order m = 1

(with argument λ2
1kř), which has the general solution

Rs,1k(ř) = c1K1(λ
2
1kř) + c2I1(λ

2
1kř) (A-71)

where K1 and I1 denote modified Bessel functions of the first and second kind,

and of order m = 1. For bounded solutions one has to set c2 = 0. It can be
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shown, that the behaviour of K1 in the neighbourhood of ř0 = 0 is given by

K1 = 1/4 ř−1 (see Habermann (1983)). Thus, one obtains for (A-71) in the

limit ř → ř0

Rs,1k =
c1
4

1

ř
as ř → 0 (A-72)

The type of solutions for Z1k satisfying (A− 70) can be derived in a similar

manner as shown for (A-62) - (A-59). Hence, solutions for the first asymmetric

modes ψ̌
(0)
s,1k read

ψ̌
(0)
s,1k =

c1
4

1

ř
Zs,1k(z) as ř → 0 (A-73)

Note that Zs,1k can, in principle, depend on the temporal coordinate τ .

A.5

Substituting ψ′ = ψ̌
(0)
r + ψ̌

(0)
s for ψ̌

(0)
g into (3.74) yields

∂q̌r
∂τ

+
∂q̌s
∂τ

− β
∂ψ̌

(0)
r

∂η1
− β

∂ψ̌
(0)
s

∂η1
− J(ψ̌(0)

r , q̌r) − J(ψ̌(0)
r , q̌s) −

J(ψ̌(0)
s , q̌r) − J(ψ̌(0)

s , q̌s) = 0 (A-74)

Taking (3.80) into account and using the notation ∂δ/∂κ = δ′κ with κ ∈ {τ, η1, η2}
one can write

∂q̌s
∂τ

= δ′τ (η1 −X
(0)
C (τ)) δ(η2 − Y

(0)
C (τ)) +

δ(η1 −X
(0)
C (τ)) δ′τ (η2 − Y

(0)
C (τ)) (A-75)

J(ψ̌(0)
r , q̌s) =

∂ψ̌
(0)
r

∂η1

∂q̌s
∂η2

− ∂ψ̌
(0)
r

∂η2

∂q̌s
∂η1

=
∂ψ̌

(0)
r

∂η1
δ(η1 −X

(0)
C (τ)) δ′η2(η2 − Y

(0)
C (τ)) −

∂ψ̌
(0)
r

∂η2
δ′η1(η1 −X

(0)
C (τ)) δ(η2 − Y

(0)
C (τ)) (A-76)
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Then, in (A-74) equating to zero the regular part and the parts proportional to

δ′κ(η1 −X
(0)
C (τ)) δ(η2 − Y

(0)
C (τ)) and δ(η1 −X

(0)
C (τ)) δ′κ(η2 − Y

(0)
C (τ)), yields

δ′τ (η1 −X
(0)
C (τ)) +

∂ψ̌
(0)
r

∂η2
δ′η1(η1 −X

(0)
C (τ)) = 0

δ′τ (η2 − Y
(0)
C (τ)) − ∂ψ̌

(0)
r

∂η1
δ′η2(η2 − Y

(0)
C (τ)) = 0

(A-77)

and

∂q̌r
∂τ

− β
∂ψ̌

(0)
r

∂η1
− J(ψ̌(0)

r , q̌r) + J((q̌r + βη2), ψ̌
(0)
s ) = 0 (A-78)

Note that the derivative of the delta function is in general δ′(x − a) = −(x −
a)−1 δ(x− a). Hence together with the chain rule the equations (A-77) can be

written as
∂X

(0)
C

∂τ
= −∂ψ̌

(0)
r

∂η2
,

∂Y
(0)
C

∂τ
= +

∂ψ̌
(0)
r

∂η1
(A-79)

A.6

It follows the derivation of an asymptotic expansion for qvs given by

qvs(Θ, p) =
1

p
exp

(

A⋆⋆

ε

T (θ, p) − 1

1 + (T (θ, p) − 1 − εT
⋆⋆(1)
1 )

)

(A-80)

whereas T (θ, p) is of the form

T (θ, p) = θ p
γ−1

γ = θ pεΓ (A-81)

First, to obtain an asymptotic approximation for T (θ, p) Taylor’s theorem is

used to find an approximation of f(εΓ) = pεΓ by expanding about ε0 = 0. With

f ′(εΓ) = pεΓ ln p and f ′′(εΓ) = pεΓ(ln p)2 one obtains

pεΓ = 1 + εΓ ln p+
(εΓ)2

2!
(ln p)2 + O(ε3) (A-82)

Together with the asymptotic expansion ansatz (3.18) for Θ an asymptotic

approximation for T (θ, p) takes the form

T (θ, p) = 1 + εΓ ln p+ ε2
(

Γ2

2!
(ln p)2 + Θ(2)

)

+ O(ε3) (A-83)
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Substitution of the above expansion into the equation (3.123) for the saturation

mixing ratio qvs, yields

qvs(θ, p) =
1

p
exp

(
A⋆⋆

ε

(εΓ ln p+ ε2A(ε) + O(ε3))

1 + ε(Γ ln p− T ⋆⋆
(1)

1 ) + ε2A(ε) + O(ε3)

)

(A-84)

with A(ε) = Γ2

2 (ln p)2 + Θ(2). Next Taylor’s theorem is used to find an asymp-

totic expansion of f(ε) = 1/(1 + ε(Γ ln p− T ⋆⋆
(1)

1 ) + ε2A(ε) +O(ε3)). Using the

notation f(ε) = 1/(1 + δ), whereas δ = ε(Γ ln p − T ⋆⋆
(1)

1 ) + ε2A(ε) + O(ε3) an

expansion around δ = 0 (i.e. ε = ε0 = 0) yields

1/(1 + δ) = 1 + δ + δ2/2 + ...

= 1 − ε(Γ ln p+ T ⋆⋆
(1)

1 ) + ε2
(

A(ε) + (Γ ln p− T ⋆⋆
(1)

1 )2
)

+ O(ε3)

Thus the fraction appearing in the exponential in (A-84) can be written as

εΓ ln p+ ε2A(ε) + O(ε3)

1 + δ
= εΓ ln p−ε2

(

Γ ln p (Γ ln p+ T ⋆⋆
(1)

1 ) −A(ε)
)

+O(ε3)

Based on the above simplification, equation (A-84) can be rewritten as

qvs(θ, p) =
1

p
exp

(

A⋆⋆(Γ ln p− ε{Γ ln p (Γ ln p+ T ⋆⋆
(1)

1 ) −A(ε)} + O(ε2))
)

(A-85)

Next, Taylor expansion is used to find an asymptotic series of the exponential

function exp (A⋆⋆Γ ln p− εµ̃+ O(ε2)), with µ̃(ε) = A⋆⋆{Γ ln p (Γ ln p+T ⋆⋆
(1)

1 )−
A(ε)}. In doing so one obtains

exp (A⋆⋆Γ ln p− εµ̃(ε) + O(ε2)) = exp (A⋆⋆Γ ln p)−εµ̃(ε) exp (A⋆⋆Γ ln p)+O(ε2)

and (A-85) becomes

qvs(θ, p) =
1

p

(
exp (A⋆⋆Γ ln p) − εµ̃(ε) exp (A⋆⋆Γ ln p) + O(ε2)

)
(A-86)

Finally, one has to account for the asymptotic expansion of the pressure variable

p. As shown earlier, an expansion for p takes the form p = p(0)(z) + εp(1)(z) +

ε2p(2)(z)+ ε3p(3)(r, z, τ)+O(ε
7
2 ). Thus, with the aid of Taylor’s theorem it can

be shown, that asymptotic approximations of 1/p and ln p read

1

p
=

1

p(0)
− ε

p(1)

p(0)2
+ ε2

(

p(2)

p(0)2
− 1

4

p(1)2

p(0)3

)

+ O(ε3) (A-87)
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and

ln p = ln p(0) + ε
p(1)

p(0)
+ ε2

(
p(2)

p(0)
− p(1)

2p(0)2

)

+ O(ε3) (A-88)

Thus, for the exponential function exp (A⋆⋆Γ ln p) in (A-86) can be written

exp (A⋆⋆Γ ln p) = exp

(

A⋆⋆Γ

[

ln p(0) + ε
p(1)

p(0)
+ ε2

(
p(2)

p(0)
− p(1)

2p(0)2

)

+ O(ε3)

])

In general holds that exp (a+ εb+ ε2c) = exp (a) exp (εb) exp (ε2c). Thus,

using Taylor series of exp (εb) around ε0 = 0, i.e. exp (εb) = 1+εb+ε2b2/2+ ...,

the above expression can be simplified to obtain

exp (A⋆⋆Γ ln p) = exp (A⋆⋆Γ ln p(0)) +

εA⋆⋆Γ
p(1)

p(0)
exp (A⋆⋆Γ ln p(0)) + O(ε2) (A-89)

Upon substitution of (A-89) and (A-87) into (A-86) one obtains

qvs(θ, p) = q(0)vs + εq(1)vs + O(ε2) (A-90)

where

q(0)vs =
1

p(0)
exp (A⋆⋆Γ⋆⋆ ln p(0))

q(1)vs = −
(

(1 +A⋆⋆Γ⋆⋆)
p(1)

p(0)2
+
µ̃(0)

p(0)

)

exp (A⋆⋆Γ⋆⋆ ln p(0))

(A-91)

with µ̃(0) = A⋆⋆{Γ⋆⋆ ln p(0) (Γ ln p(0) + T ⋆⋆
(1)

1 ) − Γ⋆⋆2

2 (ln p(0))2 − Θ(2)}.
Further simplifications can be obtained for (A-91). From the O(1) hydro-

static relation (3.34) and gas law (A-31) it is known that

dp(0)

dz
= −ρ(0) and ρ(0)Θ∞ = p(0) (A-92)

where Θ∞ = 1. Substitution, rearranging terms and integation gives

dp(0)

p(0)
= −dz =⇒ p(0) = p0 exp (−z) (A-93)

whereas p0 = p(0)(z = 0). Note, from (A− 92)2 it follows immediately that

ρ(0) = ρ0 exp (−z) (A-94)

with ρ0 = ρ(0)(z = 0). The O(ε) hydrostatic relation (3.34) and gas law (A-33)
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read

dp(1)

dz
= −ρ(1) and Γ⋆⋆ρ(0) ln p(0)Θ∞ + Θ∞ρ

(1) = p(1) (A-95)

with Θ(0) = Θ∞. Elimination of ρ(1) from the above equations gives

dp(1)

dz
+ p(1) = Γ⋆⋆ ln p(0) (A-96)

It can be easily checked that a solution of (A-96) reads

p(1) = Γ⋆⋆
(

−1

2
z2

)

p(0) (A-97)

Substitution of (A-97) into (A− 95)2 gives

ρ(1) = Γ⋆⋆
(

−1

2
z2 + z

)

ρ(0) (A-98)

Based on the fact that the variables p(0), p(1),Θ(2) are horizontally homogeneous

(see Section 3.3.1), the asymptotic expansion (A-90) for qvs can be specified

in the following way

qvs = q(0)vs (z) + εq(1)vs (z) + O(ε2) (A-99)

whereas solutions (A-91) for the leading and next higher order saturation water

vapor mixing ratio take together with (A-93) and (A-97) the following final form

q(0)vs = exp (−[A⋆⋆Γ⋆⋆ − 1]z)

q(1)vs = q(0)vs

[(

A⋆⋆
∂Θ( 4

2 )

∂z
− 1

2
A⋆⋆Γ⋆⋆

2

z2

)

+

exp (−z)(A⋆⋆Γ⋆⋆ − 1) p(1)(z)
]

(A-100)
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Appendix B

Auxiliary calculations for

Chapter 4

B.1

A general approach is given to solve ODE’s of type

−u(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( i
2 )

1k = D1k , (B-1)

subject to the homogeneous boundary conditions

ψ
( i
2 )

1k = 0,
∂ψ

( i
2 )

1k

∂r
= 0 at r = 0 (B-2)

with k = 1, 2 and i = 1, 2, ... and D1k denoting an arbitrary inhomogeneity of

(B-1). Let

u
(0)
θ = −∂ψ

(0)

∂r
= −ψ(0)

r

ζ(0)
r = −∇2

1ψ
(0)
r

(B-3)

where the operator ∇2
1 is given through

∇2
1 =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)

(B-4)

Then, after some manipulations the left hand side of (B-1) can be written as

−u(0)
θ

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

u
(0)
θ

+
1

r2

])

ψ
( i
2 )

1k = (ψ(0)
r ∇2

1ψ
( i
2 )

1k − ψ
( i
2 )

1k ∇2
1ψ

(0)
r ) (B-5)
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Then, the identity

ψ(0)
r ∇2

1ψ
( i
2 )

1k − ψ
( i
2 )

1k ∇2
1ψ

(0)
r =

1

r

[

r

(

ψ(0)
r

(

ψ
( i
2 )

1k

)

r

− ψ
( i
2 )

1k ψ
(0)
rr

)]

r

(B-6)

can be used to solve (B-1) via integration. Note, the index r denotes a partial

derivative with respect to r. Using the above manipulations, (B-1) can be

rewritten into

[

r

(

ψ(0)
r

(

ψ
( i
2 )

1k

)

r

− ψ
( i
2 )

1k ψ
(0)
rr

)]

r

= r D1k (B-7)

Integration over r from 0 to r̄ and adjacent division through by r̄ gives

(

ψ(0)
r

(

ψ
( i
2 )

1k

)

r

− ψ
( i
2 )

1k ψ
(0)
rr

)

=
1

r̄

∫ r̄

0

r D1k dr (B-8)

With ψ
(0)
r = −u(0)

θ one can also write

−u(0)
θ

(

ψ
( i
2 )

1k

)

r

+ ψ
( i
2 )

1k

(

u
(0)
θ

)

r
=

1

r̄

∫ r̄

0

r D1k dr (B-9)

Multiplying through both sides of the equation with −1/u
(0)2

θ one obtains

1

u
(0)
θ

(

ψ
( i
2 )

1k

)

r

− ψ
( i
2 )

1k

u
(0)2

θ

(

u
(0)
θ

)

r
=




ψ

( i
2 )

1k

u
(0)
θ





r

= − 1

r̄u
(0)2

θ

∫ r̄

0

r D1k dr (B-10)

Integration yields




ψ

( i
2 )

1k

u
(0)
θ





¯̄r

0

= −
∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r D1k dr

]

dr̄ (B-11)

From (4.20) we know that u
(0)
θ = 0 at r = 0. Then, using L’Hospital’s rule one

finds

lim
r→0

u
(0)
θ

r
= lim
r→0

∂u
(0)
θ

∂r
(B-12)

such that one can write for ζ(0) at r = 0

lim
r→0

ζ(0) = ζ
(0)
∗ = lim

r→0

(

∂u
(0)
θ

∂r
+
u

(0)
θ

r

)

= lim
r→0

2u
(0)
θ

r
(B-13)
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Using the boundary conditions (B-2) one can write

lim
r→0




ψ

( i
2 )

1k

u
(0)
θ



 = lim
r→0






ψ
( i
2
)

1k

∂r

∂u
(0)
θ

∂r




 =

0

ζ
(0)
∗

= 0 (B-14)

Hence (B-11) can be rewritten into

ψ
( i
2 )

1k = −u(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r D1k dr

]

dr̄ k = 1, 2 (B-15)

B.2

The following simplifications can be made using (B-13) and integration by parts

u
(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r2ζ(0)
r dr

]

dr̄ = u
(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[

−2r̄u
(0)
θ + r̄

∂

∂r̄
(r̄u

(0)
θ )

]

dr̄

= u
(0)
θ

∫ ¯̄r

0

(

− 1

u
(0)
θ

+
r̄

u
(0)2

θ

∂u
(0)
θ

∂r̄

)

dr̄

= −u(0)
θ

∫ ¯̄r

0

∂

∂r̄

(

r̄

u
(0)
θ

)

dr̄

= −u(0)
θ

[

r̄

u
(0)
θ

]¯̄r

0

Using L’Hospital’s rule and (B-13) one finds that

u
(0)
θ

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r2ζ(0)
r dr

]

dr̄ = −¯̄r + u
(0)
θ

2

ζ
(0)
∗

(B-16)

B.3

Here an equation of this type is solved

∇2
1φ

( i
2 )

1k = h(r, z) ,

subject to the boundary conditions φ
( 1
2 )

1k = 0 and ∂φ
( 1
2 )

1k /∂r = 0 at r = 0. Using

the identity (4.48), integration from 0 to r̄ yields

∂φ
( i
2 )

1k

∂r̄
− φ

( i
2 )

1k

r̄
=

1

r̄2

∫ r̄

0

¯̄r2h d¯̄r (B-17)
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Rewriting the left hand side of (B-17) yields

r̄
∂

∂r̄

(

φ
( i
2 )

1k

r̄

)

=
1

r̄2

∫ r̄

0

¯̄r2h d¯̄r (B-18)

and again integration from 0 to r yields

φ
( i
2 )

1k = r

∫ r

0

1

r̄3

[
∫ ¯̄r

0

¯̄r2h d¯̄r

]

dr̄ (B-19)

B.4

Far field solutions for ψ
( 2
2 )

1k can be obtained by solving (4.51) for large r. Con-

sidering this limit, the differential equations for ψ
( 2
2 )

1k reduce to

∇2
1ψ

( 2
2 )

12 = − 2π

Γ(z)

(

b
∂X

( 1
2 )

C

∂z
+ c

∂2X
( 1
2 )

C

∂z2

)

1

r
as r → ∞

∇2
1ψ

( 2
2 )

11 = − 2π

Γ(z)

(

b
∂Y

( 1
2 )

C

∂z
+ c

∂2Y
( 1
2 )

C

∂z2

)

1

r
as r → ∞

(B-20)

The above equations can be derived by use of (3.99), (4.17) and (4.45), which

in particular yield for the inhomogeneous terms on the right hand side of (4.51)

H1k = −Tk
a

r4
as r → ∞

I1k = −
(

bTk + c
∂Tk
∂z

)
1

r2
as r → ∞

(B-21)

with a = a(z) = 3g̃Γ2

2π
∂Γ
∂z , b = b(z) = Ω0

ρ(0)
∂
∂z (ρ

(0)g̃Γ2), c = c(z) = Ω0g̃Γ
2 and

whereas Tk denotes the tilt components, i.e.

T1 = −∂X
( 1
2 )

C

∂z
and T2 = +

∂Y
( 1
2 )

C

∂z
(B-22)

The operator ∇2
1 is defined through (B-4). Using the identity (4.48) integration

of (B-20) yields

∂ψ
( 2
2 )

12

∂r
− ψ

( 2
2 )

12

r
= − π

Γ(z)

(

b
∂X

( 1
2 )

C

∂z
+ c

∂2X
( 1
2 )

C

∂z2

)

+
C1

12

r2
(B-23)

with C1
12 = C1

12(z, τ) is a constant of integration. The associated homogeneous

solution reads

ψ
( 2
2 )

12 = C̃ r (B-24)
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The method of variation of parameters is used to find the particular solution.

Then, by assuming that C̃ = C̃(r, z) substitution of (B-24) into (B-23) yields

∂C̃

∂r
= − π

Γ(z)

(

b
∂X

( 1
2 )

C

∂z
+ c

∂2X
( 1
2 )

C

∂z2

)

1

r
+
C1

12

r3
(B-25)

and after integration

C̃ = − π

Γ(z)

(

b
∂X

( 1
2 )

C

∂z
+ c

∂2X
( 1
2 )

C

∂z2

)

ln r − C1
12

r2
+ C2

12 (B-26)

where C2
12 = C2

12(z, τ) is a second constant of integration. Thus, the far field

solution for ψ
( 2
2 )

12 is in the limit r → ∞

ψ
( 2
2 )

12 = C2
12 r −

π

Γ(z)

(

b
∂X

( 1
2 )

C

∂z
+ c

∂2X
( 1
2 )

C

∂z2

)

r ln r − C1
12

r
(B-27)

The unknown function C2
12 is determined by equating (B-27) to (4.57) for large

r. This yields

C2
12 = lim

r→∞

(

−u
(0)
θ

r

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (H11 + I11) dr

]

dr̄+

π

Γ(z)

(

b
∂X

( 1
2 )

C

∂z
+ c

∂2X
( 1
2 )

C

∂z2

)

ln r

)

(B-28)

Furthermore one finds, that

C1
12 = −Γ(z)

2π

2B12

ζ
(0)
∗

(B-29)

Same procedure yields for ψ
( 2
2 )

11

ψ
( 2
2 )

11 = C2
11 r −

π

Γ(z)

(

b
∂Y

( 1
2 )

C

∂z
+ c

∂2Y
( 1
2 )

C

∂z2

)

r ln r − C1
11

r
as r → ∞

where

C2
11 = lim

r→∞

(

+
u

(0)
θ

r

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (H12 + I12) dr

]

dr̄+

π

Γ(z)

(

b
∂Y

( 1
2 )

C

∂z
+ c

∂2Y
( 1
2 )

C

∂z2

)

ln r

)

(B-30)

171



and

C1
11 = −Γ(z)

2π

2B11

ζ
(0)
∗

(B-31)

Note that with the aid of the matching condition (3.99) for u
(0)
θ , the expres-

sions (B-28) and (B-30) can be written as

C2
12 =

Γ

2π
lim
r→∞

(

− 1

r2

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (H11 + I11) dr

]

dr̄

)

C2
11 =

Γ

2π
lim
r→∞

(

+
1

r2

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (H12 + I12) dr

]

dr̄

) (B-32)

If the limit exists, i.e. C2
1k 6= 0 for large r, L’ Hospitals rule and (3.99) can be

used to obtain

C2
12 = −π

Γ

∫ ∞

0

r (H11 + I11) dr

C2
11 = +

π

Γ

∫ ∞

0

r (H12 + I12) dr

(B-33)

Further simplifications for the integrals can be made. Taking into account that

H1k is given through (4.52)1, integration by parts yields together with the BC’s

(4.21) and (4.18) for the first integrals in (B-33)

∫ ∞

0

r H1k dr = −
∫ ∞

0

rw
( 5
2 )

1k

∂u
(0)
θ

∂z
dr , k = 1, 2 (B-34)

With I1k given through (4.52)2 it is shown in Appendix B.5 that the second

integrals in (B-33) can be written as

∫ ∞

0

r I1k dr = −
∫ ∞

0

[

Ω0 +
u

(0)
θ

r

]

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr +

Γ(z)

2π

∫ ∞

0

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr (B-35)

Eventually, upon substitution of (B-34) and (B-35) into (B-33) one obtains

C2
12 = +

π

Γ

∫ ∞

0

rw
( 5
2 )

11

∂u
(0)
θ

∂z
+

[

Ω0 +
u

(0)
θ

r
− Γ

2πr2

]

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

11 )

∂z
dr

C2
11 = − π

Γ

∫ ∞

0

rw
( 5
2 )

12

∂u
(0)
θ

∂z
+

[

Ω0 +
u

(0)
θ

r
− Γ

2πr2

]

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

12 )

∂z
dr

(B-36)
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B.5

Here the improper integral over rI1k is simplified. With (4.52)2 the integral is

∫ ∞

0

r I1k dr =

∫ ∞

0

r2 [ζ(0) + Ω0]∇2
1φ

( 2
2 )

1k +
∂φ

( 2
2 )

1k

∂r

(

r2
∂ζ(0)

∂r

)

dr (B-37)

Using (4.48) the above equation can be rewritten into

∫ ∞

0

r I1k dr =

∫ ∞

0

[ζ(0)+Ω0]
∂

∂r

(

r

(

r
∂φ

( i
2 )

1k

∂r
− φ

( i
2 )

1k

))

+
∂φ

( 2
2 )

1k

∂r

(

r2
∂ζ(0)

∂r

)

dr ,

and integration by parts yields

∫ ∞

0

r I1k dr =

[

ζ(0) r2

(

∂φ
( 2
2 )

1k

∂r
− φ

( 2
2 )

1k

r

)]∞

0

+

Ω0

[

r2

(

∂φ
( 2
2 )

1k

∂r
− φ

( 2
2 )

1k

r

)]∞

0

+

∫ ∞

0

∂ζ(0)

∂r
rφ

( 2
2 )

1k dr (B-38)

Taking into account that ζ(0) is finite and not singular at r = 0, and to-

gether with the BC’s (4.47), the far field behavior ζ(0) = o(r−n) for all n as

r approaches ∞ (see (3.99)), the first term on the right hand side in (B-38)

disappears. With the aid of (B-17), where h is given through the right hand

side of (4.45), the bracket in the second term of (B-38) can be written as

Ω0

[

r2

(

∂φ
( 2
2 )

1k

∂r
− φ

( 2
2 )

1k

r

)]∞

0

= −Ω0

∫ ∞

0

r̄2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄ (B-39)

With (4.50) the second integral on the right hand side of the above equation

can be written as

∫ ∞

0

∂ζ(0)

∂r
rφ

( 2
2 )

1k dr =
1

2

∫ ∞

0

∂ζ(0)

∂r

(
∫ r

0

r̄2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄

)

dr −

1

2

∫ ∞

0

∂ζ(0)

∂r
r2

(
∫ r

0

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄

)

dr (B-40)

Integration by parts yields for the first integral on the right hand side of (B-40)

∫ ∞

0

∂ζ(0)

∂r

(
∫ r

0

r̄2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄

)

dr =

[

ζ(0)

∫ r

0

r̄2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄

]∞

0

−
∫ ∞

0

ζ(0) r
2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr , (B-41)
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and for the second integral on the right hand side of (B-40)

∫ ∞

0

∂ζ(0)

∂r
r2

(
∫ r

0

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄

)

dr =

[

ζ(0)r2
∫ r

0

r̄2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄

]∞

0

−
∫ ∞

0

ζ(0) r
2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr −

Γ

π

∫ ∞

0

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr + 2

∫ ∞

0

u
(0)
θ r

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr (B-42)

Note that here we have used that ζ(0) = r−1(∂ ru
(0)
θ /∂r) and u

(0)
θ = Γ/2πr as

r approaches ∞. Again, taking into account that ζ(0) is finite and not singu-

lar at r = 0, the far field behavior ζ(0) = o(r−n) for all n as r approaches ∞
(see (3.99)), the first terms on the right hand side of (B-41) and (B-42), respec-

tively, disappear. Thus, (B-40) simplifies to

∫ ∞

0

∂ζ(0)

∂r
rφ

( 2
2 )

1k dr =

Γ

2π

∫ ∞

0

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr −

∫ ∞

0

u
(0)
θ r

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr (B-43)

Therefore, one obtains for (B-37)

∫ ∞

0

r I1k dr = −
∫ ∞

0

[

Ω0 +
u

(0)
θ

r

]

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr +

Γ(z)

2π

∫ ∞

0

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr (B-44)

B.6

Solutions for φ
( 2
2 )

1k in the limit r → ∞ are derived here. Using the identity (4.48)

and the far field conditions for w
( 5
2 )

1k (see (4.18)), equation (4.45) becomes for

large r

1

r2
∂

∂r

(

r

(

r
∂φ

( 2
2 )

1k

∂r
− φ

( 2
2 )

1k

))

= − P

r3
as r → ∞ (B-45)

with P = P (z) = ρ(0)−1

∂(ρ(0)g̃ Tk Γ2)/∂z. Integration yields

∂φ
( 2
2 )

1k

∂r
− φ

( 2
2 )

1k

r
= r

∂

∂r

(

φ
( 2
2 )

1k

r

)

= −P ln r

r2
+
C̄1

1k

r2
as r → ∞ (B-46)
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with C̄1
1k = C̄1

1k(z) a constant of integration. Integration again gives

φ
( 2
2 )

1k = P

(
2 ln r + 1

4 r

)

− C̄1
1k

2 r
+ C̄2

1k r as r → ∞ (B-47)

and by use of L’ Hospital’s rule

φ
( 2
2 )

1k =

(
3

4
P − 1

2
C̄1

1k

)
1

r
+ C̄2

1kr as r → ∞ (B-48)

The unknown C̄2
1k can be determined by equating (B-48) to (4.50) for large r.

In doing so, one gets

C̄2
1k = −1

2

∫ ∞

0

1

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄

C̄1
1k = −

∫ ∞

0

r2

ρ(0)

∂(ρ(0)w
( 5
2 )

1k )

∂z
dr̄ +

3

2
P

(B-49)
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Appendix C

Auxiliary calculations for

Chapter 5

C.1

Using (3.99) and (5.52) for large r, (5.58) can be written as

∇2
1ψ

( 1
2 )

1k = +Ω0
α̃1k

r(m−1)
as r → ∞ , for all m ≥ 0 (C-1)

with ∇2
1 defined through (5.46) and α̃12 = α11 and α̃11 = −α12 which are

functions that may depend on z. Here the fact that F1k decays faster than B1k

for large r is used, i.e

F1k =
∂

∂r

(

rα⋆1k(z)
1

2πr|m|

∂Γ

∂z

)

∼ 1

r(|m|+1)
as r → ∞

B1k = −rΩ0α1k
1

r|m|
∼ 1

r(|m|−1)
as r → ∞

(C-2)

Using the identity (4.48), equation (C-1) can be simplified to

∂

∂r

(

r

(

r
∂ψ

( 1
2 )

1k

∂r
− ψ

( 1
2 )

1k

))

= +Ω0
α̃1k

r(m−3)
as r → ∞

Then, integrating the above equation twice yields for

m = 1:
ψ

( 1
2 )

1k = Ω0α̃1kr
2 − 1

2r
D1

1k1 + rD2
1k1 as r → ∞ (C-3)

m = 2:
ψ

( 1
2 )

1k =
Ω0α̃1k

2
r ln r − 1

2r
D1

1k2 + rD2
1k2 as r → ∞ (C-4)
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m = 3:
ψ

( 1
2 )

1k = −Ω0α̃1k −
1

r
D1

1k3 + rD2
1k3 as r → ∞ (C-5)

m ≥ 4:
ψ

( 1
2 )

1k = O(r−n) + rD2
1km

as r → ∞ , n ≥ 1 (C-6)

Here, D1
1km

and D2
1km

denote constants of integration.

C.2

Seeking far field solutions for φ
( 1
2 )

1k in the absence of asymmetric vertical veloci-

ties, equation (5.47) simplifies together with (5.23) to

∇2
1φ

( 1
2 )

1k = −T ♯k λ2 κ(z) r exp (−α r2) as r → ∞ (C-7)

with κ(z) = CH h(z)/ρ(0) and α = λ2/2. Using the identity (4.48), integration

of (C-7) yields

∂φ
( 1
2 )

1k

∂r
− φ

( 1
2 )

1k

r
= −T ♯k

λ2κ(z)
√
π

2
√
α

erf(
√
α r)

r2
+
D̄1

1k

r2
as r → ∞

= −T ♯k
λ2κ(z)

√
π

2
√
α

1

r2
+
D̄1

1k

r2
as r → ∞ (C-8)

whereas for large r: r3 exp (−α r2) ≈ exp (−α r2) and erf(
√
α r) ≈ 1 with

α = λ2/2. D̄1
1k denotes a constant of integration that may be a function on z,

i.e. D̄1
1k = D̄1

1k(z). Rewriting the left hand side of (C-8) yields

r
∂

∂r

(

φ
( 1
2 )

1k

r

)

= −T ♯k
λ2κ(z)

√
π

2
√
α

1

r2
+
D̄1

1k

r2
as r → ∞ (C-9)

and integration gives

φ
( 1
2 )

1k =
1

r

(

T ♯k
λ2κ(z)

√
π

4
√
α

− 1

2
D̄1

1k

)

+ rD̄2
1k as r → ∞ (C-10)

The constants D̄2
1k can be determined by equating (C-10) to (5.106) for large r.

Then, one obtains

D̄2
1k = T ♯k

∫ ∞

0

1

r̄3

[
∫ r̄

0

¯̄r2
∂w( 4

2 )

∂ ¯̄r
d¯̄r

]

dr̄ (C-11)
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C.3

Using (3.99) and (5.23) for large r, equation (5.110) can be written as

∇2
1ψ

( 1
2 )

12 = +T ♯1 ã(z) exp (−αr2) as r → ∞

∇2
1ψ

( 1
2 )

11 = −T ♯2 ã(z) exp (−α r2) as r → ∞
(C-12)

with ∇2
1 defined through (5.46), ã = 2π (α κ(z) [Γ(z)π−1 + 2Ω0]) / Γ(z) and

where

F1k = −T ♯k α κ(z) Γ(z) π−1 exp (−α r2) as r → ∞

B1k = −T ♯k α κ(z) 2Ω0 exp (−α r2) as r → ∞
(C-13)

Using the identity (4.48), equation (C − 12)1 can be simplified to

∂

∂r

(

r

(

r
∂ψ

( 1
2 )

12

∂r
− ψ

( 1
2 )

12

))

= +T ♯1 α̃(z) r2 exp (−αr2) as r → ∞ (C-14)

Note that r2 exp (−αr2) ≈ exp (−αr2) as r → ∞. Thus, integration of (C-14)

leads

∂ψ
( 1
2 )

12

∂r
− ψ

( 1
2 )

12

r
= +T ♯1

√
πα̃(z)

2
√
α

erf(
√
α r)

r2
+
D1

12

r2
as r → ∞ (C-15)

with D1
12 a constant of integration. Homogenous solutions of (C-15) read ψ

( 1
2 )

12 =

rD̃12 with D̃12 another constant of integration. Then, employing the method

of variation of parameters, i.e. assuming that D̃12 = D̃12(r, z), yields

∂D̃12

∂r
= +T ♯1

√
πα̃(z)

2
√
α

1

r3
+
D1

12

r3
as r → ∞ (C-16)

Since erf(
√
α r) ≈ 1 for large r, further integration yields

D̃12 = −q⋆2T ♯1
1

2r2
+D2

12 as r → ∞ (C-17)

with q⋆2 = (
√
πα̃(z)/2

√
α + D1

12) and D2
12 the second constant of integration.

Eventually, applying same procedure to (C − 12)2 the far field behavior of ψ
( 1
2 )

1k

is given by

ψ
( 1
2 )

12 ∼ −q⋆2T ♯1
1

2r
+ rD2

12 as r → ∞

ψ
( 1
2 )

11 ∼ −q⋆1T ♯2
1

2r
+ rD2

11 as r → ∞
(C-18)
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where q⋆1 = (−√
πα̃(z)/2

√
α + D1

11). The unknown functions D2
1k = D2

1k(z)

can be determined by equating (C-18) to (5.113) for large r. This yields

D2
12 = lim

r→∞

(

−u
(0)
θ

r

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (F11 + B11) dr

]

dr̄

)

D2
11 = lim

r→∞

(

+
u

(0)
θ

r

∫ ¯̄r

0

1

r̄u
(0)2

θ

[∫ r̄

0

r (F12 + B12) dr

]

dr̄

) (C-19)

C.4

Following integrals have to be solved

∫ ∞

0

r B̃1k dr =

∫ ∞

0

r2[Ω0 + ζ(0)]∇2
1φ

( 1
2 )

1k +
∂φ

( 1
2 )

1k

∂r
(r2ζ(0)

r ) dr

∫ ∞

0

r F̃1k dr = T ♯k

∫ ∞

0

w( 4
2 )u

(0)
θ − r

∂

∂r

(

rw( 4
2 ) ∂u

(0)
θ

∂r

)

dr

(C-20)

With the aid of (4.48), integration by parts and solutions for φ
( 1
2 )

1k , i.e. (5.106),

the integral (C − 20)1 can be written as

∫ ∞

0

r B1k dr = T ♯k

[

[Ω0 + ζ(0)]T ♯k

(

−2

∫ r

0

w( 4
2 )rdr + r2w( 4

2 )

)]∞

0

+

∫ ∞

0

∂ζ(0)

∂r
rφ

( 1
2 )

1k dr (C-21)

Assuming that w( 4
2 )(r = 0, z) = 0 one can show together with the far field

solution (5.23) for w( 4
2 ), the streamfunction (5.12) and the boundary conditions

χ(r, z) → 0 for large r and χ(r = 0, z) = 0, that

∫ ∞

0

r B1k dr =

∫ ∞

0

∂ζ(0)

∂r
rφ

( 1
2 )

1k dr (C-22)

Together with (3.99) and (5.106) further manipulations give
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∫ ∞

0

r B1k dr =

∫ ∞

0

∂ζ(0)

∂r
rφ

( 1
2 )

1k dr = T ♯k

∫ ∞

0

∂ζ(0)

∂r

[∫ r

0

w( 4
2 )r̄ dr̄

]

dr

= T ♯k

[

ζ(0)

∫ r

0

w( 4
2 )r̄ dr̄

]∞

0

− T ♯k

∫ ∞

0

ζ(0)w( 4
2 )r dr

= −T ♯k
∫ ∞

0

rw( 4
2 ) ∂u

(0)
θ

∂r
dr − T ♯k

∫ ∞

0

w( 4
2 )u

(0)
θ dr (C-23)

whereas the latter equality is obtained from ζ(0) = r−1∂(ru0
θ)/∂r. On a same

way as above it can be shown that (C − 20)2 has the form

∫ ∞

0

r F1k dr = +T ♯k

∫ ∞

0

rw( 4
2 ) ∂u

(0)
θ

∂r
dr + T ♯k

∫ ∞

0

w( 4
2 )u

(0)
θ dr (C-24)

C.5

Considering the case w
( 4
2 )

1k = 0 with k = 1, 2, the expressions for F1k and B1k

together with (5.47) simplify to

F1k = T ♯k

(

w
( 4
2 )

0

u
(0)
θ

r
− ∂

∂r

(

rw
( 4
2 )

0

∂u
(0)
θ

∂r

))

B1k = r[ζ(0) + Ω0] T
♯
k

∂w
( 4
2 )

0

∂r
+
∂φ

( 1
2 )

1k

∂r
(rζ(0)

r )

(C-25)

Taking the sum F1k + B1k and rearranging terms one can write

F1k + B1k = T ♯k

(

−r
[

∂2u
(0)
θ

∂r2
+

1

r

∂u
(0)
θ

∂r
− u

(0)
θ

r2

]

w
( 4
2 )

0 +

[

u
(0)
θ + rΩ0

] ∂w
( 4
2 )

0

∂r

)

+
∂φ

( 1
2 )

1k

∂r
(rζ(0)

r ) (C-26)

Here ζ(0) = ∂u
(0)
θ /∂r + u

(0)
θ /r is used. Using the definition for the operator ∇2

1

in (B-3) further simplifications can be made, i.e.

F1k + B1k = T ♯k

(

−r w( 4
2 )

0 ∇2
1u

(0)
θ +

[

u
(0)
θ + rΩ0

] ∂w
( 4
2 )

0

∂r

)

+ r ζ(0)
r

∂φ
( 1
2 )

1k

∂r
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With the aid of (B-3) and using the fact that w
( 4
2 )

0 can be written in terms of a

streamfunction (see (5.12)) it can be shown that

F1k + B1k = T ♯k

(

−r ζ(0)
r

1

ρ(0)

(

∂ψ́

∂r
+
ψ́

r

)

+
[

u
(0)
θ + rΩ0

] 1

ρ(0)
∇2

1ψ́

)

+

r ζ(0)
r

T ♯k
ρ(0)

∂ψ́

∂r
− r ζ(0)

r

T ♯k
ρ(0)

∂ψ́

∂r

∣
∣
∣
∣
∣
r=0

=
T ♯k
ρ(0)

(

−ζ(0)
r ψ́ +

[

u
(0)
θ + rΩ0

]

∇2
1ψ́
)

− r ζ(0)
r

T ♯k
ρ(0)

∂ψ́

∂r

∣
∣
∣
∣
∣
r=0

= −uabs
Tk
ρ(0)

(

∂2

∂r2
+

1

r

∂

∂r
−
[

ζ
(0)
r

uabs
+

1

r2

])

ψ́ −

r ζ(0)
r

T ♯k
ρ(0)

∂ψ́

∂r

∣
∣
∣
∣
∣
r=0

(C-27)

where uabs = u
(0)
θ + rΩ0 .
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